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Preface

Prediction has been one of the earliest forms of statistical inference. The emphasis
on parametric estimation and testing seems to only have occurred about 100 years
ago; see Geisser (1993) for a historical overview. Indeed, parametric models served
as a cornerstone for the foundation of Statistical Science in the beginning of the
twentieth century by R.A. Fisher, K. Pearson, J. Neyman, E.S. Pearson, W.S. Gosset
(also known as “Student”), etc.; their seminal developments resulted into a complete
theory of statistics that could be practically implemented using the technology of the
time, i.e., pen and paper (and slide-rule!).

While some models are inescapable, e.g., modeling a polling dataset as a se-
quence of independent Bernoulli random variables, others appear contrived, often
invoked for the sole reason to make the mathematics work. As a prime example,
the ubiquitous—and typically unjustified—assumption of Gaussian data permeates
statistics textbooks to the day. Model criticism and diagnostics were developed as a
practical way out; see Box (1976) for an account of the model-building process by
one of the pioneers of applied statistics.

With the advent of widely accessible powerful computing in the late 1970s,
computer-intensive methods such as resampling and cross-validation created a rev-
olution in modern statistics. Using computers, statisticians became able to analyze
big datasets for the first time, paving the way towards the “big data” era of the
twenty-first century. But perhaps more important was the realization that the way
we do the analysis could/should be changed as well, as practitioners were gradually
freed from the limitations of parametric models. For instance, the great success of
Efron’s (1979) bootstrap was in providing a complete theory for statistical inference
under a nonparametric setting much like Maximum Likelihood Estimation had done
half a century earlier under the restrictive parametric setup.

Nevertheless, there is a further step one may take, i.e., going beyond even non-
parametric models, and this is the subject of the monograph at hand. To explain this,
let us momentarily focus on regression, i.e., data that are pairs: (Y1,X1),(Y2,X2), . . . ,
(Yn,Xn), where Yi is the measured response associated with a regressor value of Xi.
There are several ways to model such a dataset; three main ones are listed below.
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viii Preface

They all pertain to the standard, homoscedastic additive model:

Yi = μ(Xi)+ εi (1)

where the random variables εi are assumed to be independent, identically distributed
(i.i.d.) from a distribution F(·) with mean zero.

• Parametric model: Both μ(·) and F(·) belong to parametric families of func-
tions, e.g., μ(x) = β0 +β1x and F(·) is N(0,σ2).

• Semiparametric model: μ(·) belongs to a parametric family, whereas F(·) does
not; instead, it may be assumed that F(·) belongs to a smoothness class, etc.

• Nonparametric model: Neither μ(·) nor F(·) can be assumed to belong to
parametric families of functions.

Despite the nonparametric aspect of it, even the last option constitutes a model,
and is thus rather restrictive. To see why, note that Eq. (1) with i.i.d. errors is not
satisfied in many cases of interest even after allowing for heteroscedasticity of the
errors. For example, consider the model Yi = G(Xi,εi), where the εi are i.i.d., and
G(·, ·) is a nonlinear/non-additive function of two variables. It is for this reason, i.e.,
to render the data amenable to an additive model such as (1), that a multitude of
transformations in regression have been proposed and studied over the years, e.g.,
Box-Cox, ACE, AVAS, etc.; see Linton et al. (1997) for a review.

Nevertheless, it is possible to shun Eq. (1) altogether and still conduct inference
about a quantity of interest such as the conditional expectation function E(Y |X = x).
In contrast to nonparametric model (1), the following model-free assumption can be
made:

• Model-free regression:

– Random design. The pairs (Y1,X1),(Y2,X2), . . . , (Yn,Xn) are i.i.d.
– Deterministic design. The variables X1, . . . ,Xn are deterministic, and the ran-

dom variables Y1, . . . ,Yn are independent with common conditional distribu-
tion, i.e., P{Yj ≤ y|Xj = x}= Dx(y) not depending on j.

Inference for features, i.e., functionals, of the common conditional distribution Dx(·)
is still possible under some regularity conditions, e.g., smoothness. Arguably, the
most important such feature is the conditional mean E(Y |X = x) that can be denoted
μ(x). While μ(x) is crucial in the model (1) as the function explaining Y on the basis
of X = x, it has a key function in model-free prediction as well: μ(xf) is the mean
squared error (MSE) optimal predictor of a future response Yf associated with a
regressor value xf.

As will be shown in the sequel, it is possible to accomplish the goal of point and
interval prediction of Yf under the above model-free setup; this is achieved via the
Model-free Prediction Principle described in Part I of the book. In so doing, the
solution to interesting estimation problems is obtained as a by-product, e.g., infer-
ence on features of Dx(·); the prime example again is μ(x). Hence, a Model-free
approach to frequentist statistical inference is possible, including prediction and
confidence intervals.



Preface ix

In nonparametric statistics, it is common to try to develop some asymptotic the-
ory for new methods developed. In addition to offering justification for the accuracy
of these methods, asymptotics often provide insights on practical implementation,
e.g., on the optimal choice of smoothing bandwidth, etc. All of the methods dis-
cussed/employed in the proposed Model-free approach to inference will be based
on estimators that have favorable large-sample properties—such as consistency—
under regularity conditions. Furthermore, asymptotic information on bandwidth
rates, MSE decay rates, etc. will be given whenever available in the form of Facts
or Claims together with suggestions on their proof and/or references. However, for-
mal theorems and proofs were deemed beyond the scope of this monograph in order
to better focus on the methodology, as well as keep the book’s length (and time of
completion) under control. Perhaps more importantly, note that it is still unclear how
to properly judge the quality of prediction intervals in an asymptotic setting; some
preliminary ideas on this issue are given in Sects. 3.6.2 and 7.2.3, and the Rejoinder
of Politis (2013).

Interestingly, the emphasis on prediction seems to be coming back full-circle in
the twenty-first century with the recent boom in machine learning and data mining;
see, e.g., the highly influential book on statistical learning by Hastie et al. (2009),
and the recent monograph on predictive modeling by Kuhn and Johnson (2013).
The Model-free prediction methods presented here are of a very different nature but
share some similarities, e.g., in employing cross-validation and sample re-use for
fine-tuning and optimization, and may thus complement well the popular model-
based approaches to prediction and classification. Furthermore, ideas from statisti-
cal learning and model selection could eventually be incorporated in the Model-free
framework as well, e.g., selecting a subset of regressors; this is the subject of on-
going work. Notably, the methods presented in this monograph are very computer-
intensive; relevant R functions and software are given at: http://www.math.
ucsd.edu/˜politis/DPsoftware.html.

I would like to thank my colleagues in the Departments of Mathematics and
Economics of UCSD for their support, and my Ph.D. students for bearing with
some of the material. I have benefited immensely from suggestions and discussions
with colleagues from all over the world; a very partial list includes: Ian Abramson,
Ery Arias-Castro, Brendan Beare, Patrice Bertail, Ricardo Cao, Anirban DasGupta,
Richard Davis, Brad Efron, Peter Hall, Xuming He, Nancy Heckman, Göran Kauer-
mann, Claudia Klüppelberg, Piotr Kokoszka, Jens-Peter Kreiss, Michele La Rocca,
Jacek Leskow, Tim McMurry, George Michailidis, Stathis Paparoditis, Mohsen
Pourahmadi, Jeff Racine, Joe Romano, Dimitrios Thomakos, Florin Vaida, Slava
Vasiliev, Philippe Vieu, and Michael Wolf. Further acknowledgements are given at
the end of several chapters.

In closing, I would like to thank the Division of Mathematical Sciences of the
National Science Foundation for their continuing support with multiple grants, the
most recent ones being DMS-10-07513 and DMS 13-08319, and the John Simon
Guggenheim Memorial Foundation for a 2011–2012 fellowship that helped me get
started on this monograph. I would also like to thank Marc Strauss and Hannah

http://www.math.ucsd.edu/~politis/DPsoftware.html
http://www.math.ucsd.edu/~politis/DPsoftware.html
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Bracken of Springer for a wonderful collaboration, and Somnath Datta and the Edi-
torial Board of the Frontiers Series for hosting this project.

The impetus for putting together this monograph was to show how very different
statistical problems can be approached afresh in a Model-free setting. Due to time
and space limitations, I could only explicitly address a handful of areas of practical
implementation, e.g., regression, autoregression, Markov processes, etc. It is my
sincere hope that the monograph will incite the interest of readers to take another
look at their favorite problem—either theoretical or applied—in this new light; the
insights gained may be well worth it.

San Diego, CA, USA Dimitris N. Politis
Spring 2015
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Part I
The Model-Free Prediction Principle



Chapter 1
Prediction: Some Heuristic Notions

1.1 To Explain or to Predict?

Statistics is the scientific discipline that enables us to draw inferences about the
real world on the basis of observed data. Statistical inference comes in two general
flavors:

A. Explaining/modeling the world. Here the role of the statistician is much like
the role of a natural scientist trying to find how the observed/observable quantity
Y depends on another observed/observable quantity X . Natural scientists may
have additional information at their disposal, e.g., physical laws of conservation,
etc., but the statistician must typically answer this question solely on the basis of
the data at hand. Nonetheless, insights provided by the science behind the data
can help the statistician formulate a better model.
In a question asked this way, Y is called the response variable, and X is called
a regressor or predictor variable. The data are often pairs: (Y1,X1),(Y2,X2), . . . ,
(Yn,Xn), where Yi is the measured response associated with a regressor value
given by Xi. Figure 1.1a shows an example of a scatterplot associated with such
a dataset.
The goal is to find a so-called regression function, say μ(·), such that Y ≈ μ(X).
The relation Y ≈ μ(X) is written as an approximation because either the associa-
tion between X and Y is not exact and/or the observation of X and Y is corrupted
by measurement error. The inexactness of the association and the possible mea-
surement errors are combined in the discrepancy defined as ε = Y − μ(X); the
last equation can then be re-written as:

Y = μ(X)+ ε. (1.1)

In the above, μ(X) is the part of Y that is “explainable” by X , and ε is an unex-
plainable, error term.

© The Author 2015
D.N. Politis, Model-Free Prediction and Regression, Frontiers in Probability
and the Statistical Sciences, DOI 10.1007/978-3-319-21347-7 1
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Is Eq. (1.1) a model? Not yet. It becomes a model if/when it is complemented
by an assumed structure for the stochastic nature of the error term. A typical
such assumption is that ε1, . . . ,εn are independent, identically distributed (i.i.d.)
random variables with mean zero, where εi = Yi − μ(Xi). For example, without
the mean zero assumption on the errors, any function could equally serve as the
μ(·) appearing in Eq. (1.1).
In addition to assumptions on the error term ε , typical model assumptions spec-
ify the allowed “type” for function μ(·). This is done by specifying a family
of functions, say F , and insisting that μ(·) must belong to F . If F is finite-
dimensional, then it is called a parametric family. A popular two-dimensional
example corresponds to

F = {all μ(·) such that μ(x) = β0 +β1x for two real numbers β0,β1} (1.2)

which is the usual straight-line regression with slope β1 and intercept β0. If F is
not finite-dimensional, then it is called a nonparametric (sometimes also called
infinite-parametric) family. For instance, F could be the family of all functions
that are (say) twice continuously differentiable over their support.

Under such model assumptions, the task of the statistician is to use the available
data {(Yi,Xi), i = 1, . . . ,n} in order to (a) optimally estimate the function μ(·), and
(b) to quantify the statistical/stochastic accuracy of the estimator.

Part (a) can be accomplished after formulating an appropriate optimality criterion;
the oldest and most popular such criterion is Least Squares (LS). The LS estima-
tor of μ(·) is the function, say μ̂(·), that minimizes the sum of squared errors
∑n

i=1 ε2
i = ∑n

i=1(Yi − μ(Xi))
2 among all μ(·) ∈ F . If F happens to be the two-

parameter family of straight-line regression functions, then it is sufficient to obtain
LS estimates, say β̂0 and β̂1, of the intercept and slope β0 and β1, respectively.
Under a correctly specified model, the LS estimators β̂0 and β̂1 have minimum vari-
ance among all unbiased estimators that are linear functions of the data.

To address part (b) before the 1980s statisticians often resorted to further res-
trictive model assumptions such as an (exact) Gaussian distribution for the errors εi.
Fortunately, the bootstrap and other computer-intensive methods have rendered such
unrealistic/unverifiable assumptions obsolete; see, e.g., Efron (1979), Efron and Tib-
shirani (1993), Politis (1998), or Politis et al. (1999).

To fix ideas, consider a toy example involving n = 20 patients taken from a
group of people with borderline high blood pressure, i.e., (systolic) blood pressure
of about 140. A drug for lowering blood pressure may be under consideration, and
the question is to empirically see how (systolic) blood pressure Y corresponds to
dosage X where the latter is measured as units of the drug taken daily. The Y res-
ponses were as follows: (145,148,133,137) for X = 0; (140,132,137,128) for
X = 0.25; (123,131,118,125) for X = 0.5; (115,118,120,126) for X = 1; and
(108,115,111,112) for X = 2. Figure 1.1b shows the scatterplot of the 20 data
pairs (Yi,Xi), one for each patient, having superimposed both the LS straight-line
regression function (with estimated intercept and slope equal to 136.5 and −13.7,
respectively), as well as an estimated nonparametric regression function based on a
smoothing spline, i.e., piecewise cubic function, under the assumption that the true
function μ(·) is smooth, e.g., twice continuously differentiable.
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Fig. 1.1 (a) Systolic blood pressure vs. daily dosage of a drug. (b) Same data with superimposed
straight-line regression as well as nonparametric regression based on a smoothing spline

B. Predicting a future state of the world. In contrast to trying to model how Y
depends on X , one can instead focus on the pragmatic question: what can I say
about a future response value Yf that will be associated with the regressor Xf tak-
ing on a potential value equal to xf? For example, with respect to the scatterplot
of Fig. 1.1, can one predict the response, i.e., blood pressure, of a patient from
the same group who is prescribed a daily dose equal to xf = 1.5 units of the drug?
The goal now is to find a function, say ν(·), such that ν(Xf) is a good (in some
sense) predictor of Yf on the basis of Xf. The statistician’s task now is to (a) iden-
tify the optimal (with respect to some criterion) prediction function ν(·) among a
family of allowed functions, say F , and (b) to quantify the statistical/stochastic
accuracy of the predictor ν(Xf). A popular optimality criterion is minimum Mean
Squared Error (MSE) of prediction which can be defined either conditionally or
unconditionally. For concreteness, in what follows we will focus on the condi-
tional MSE of prediction given by:

MSE pred
xf

= E
(
(Yf −ν(Xf))

2|Xf = xf
)
. (1.3)

If the modeling step A has been already accomplished, then the prediction problem
appears to immediately be solvable by simply taking ν(·) = μ(·). This has been the
modus operandi in the last 100 or so years: first construct/fit a model, and then use
the fitted model for prediction. Nevertheless, the Model-Free Prediction Principle
to be expounded upon in Chap. 2 shows how prediction can be accomplished in a
direct way, without the intermediate step of model-fitting. In so doing, Model-Free
Prediction restores the emphasis on observable quantities, i.e., current and future
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data, as opposed to unobservable model parameters and estimates thereof. In this
sense, the Model-Free prediction principle is in concordance with Bruno de Finetti’s
statistical philosophy; see, e.g., Dawid (2004) and the references therein. Interest-
ingly, being able to predict the response Yf associated with the regressor Xf taking on
any possible value (say xf) seems to inadvertently also achieve the aforementioned
main goal of modeling/explaining the world, i.e., trying to find how Y depends on X .

1.2 Model-Based Prediction

In addition to qualitative/philosophical issues, e.g., disproportionate focus on unob-
servable parameters, the traditional approach of prediction following (and based on)
a preliminary step of model-fitting faces several major difficulties:

(i) All models are wrong. This extreme statement was made more than once
by one of the pioneers of statistical model-building, George Box—see Box
(1976, p. 792). He later revised this to his more famous statement “essentially,
all models are wrong, but some are useful” which, incidentally, is now the
domain of a webpage; see Box and Draper (1987, p. 424). The underlying
philosophical notion is that it may be hybris to expect that we can capture the
exact workings and complications of the real world in a simple mathematical
equation; indeed, this appears to be true with the exception of a handful of
elegant laws of nineteenth century physics.
Leaving philosophy aside, statistical model-building involves a back-and-forth
interaction of the statistician with the data. Box (1976) describes this process
in detail which roughly goes as follows:

– The practitioner adopts a tentative model as being “true.”
– Under the assumption of the “true” model, optimal estimation/fitting is car-

ried out.
– Finally, diagnostics on the “correctness” of the model are carried out which

may point to weaknesses and necessary modifications to the assumed model.

The implication is that model-building is always in a state of flux. The final
model one settles on is not necessarily the true one; it is just a model for which
no apparent problems manifest.
For example, consider the straight-line regression model of Fig. 1.1b. With a
negative slope (estimated or true), it is apparent that for a high enough value
for the dosage, the model will predict a negative value for the blood pres-
sure response. This is highly problematic because blood pressure is a non-
negative quantity; hence, the straight-line model must be wrong, or at least
its range of applicability must be limited to a narrow region of X–values. To
fix this problem, a statistician may employ a logarithmic transformation of the
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response,1 e.g., regress logY on X , or venture into a Generalized Linear Model;
either option would entail a modification of the original model which may itself
lead to a further modification, and so on and so forth.

(ii) Optimal methods for model-fitting are often not robust. Typical textbook
treatments of statistical problems have the following structure: (a) assume a
particular model as being true, and (b) identify the optimal statistical proce-
dures under the assumed model. For the most part, published research in clas-
sical mathematical statistics has been patterned in a similar way.
However, from the previous discussion it should be apparent that one cannot
expect that any model is exactly true. Hence, it was recognized in the 1970s
that a good statistical procedure for practical use should not break down under a
small deviation from model assumptions. These ideas led to the creation of the
sub-field of Robust Statistics that deals with estimators that are robust against
model misspecification as well as possible outliers; see the early papers by
Hampel (1973) and Huber (1973) and the recent monograph by Maronna et al.
(2006) and the references therein.
Furthermore, the computational implementation of a good statistical proce-
dure must be devoid of problems otherwise the procedure will be of lit-
tle use. To give an example of a problematic situation, consider the popular
ARCH/GARCH models for financial time series of Engle (1982) and Boller-
slev (1986) that are expounded upon in Part IV of the book. The most popular
of these models in practice is the GARCH(1,1) that involves four unknown
parameters (including a parameter that quantifies the degree of heavy tails for
the errors). To achieve optimality in estimation, such parametric models are
commonly fitted by Maximum Likelihood Estimation (MLE), i.e., the likeli-
hood function is maximized over the four free parameters. Unfortunately, for
the ARCH/GARCH family there is no closed-form solution for the maximizer;
thus, the MLEs are found by numerical optimization which is not entirely sta-
ble unless the sample size is very large—see Sect. 10.7 for an illustration.

(iii) Can one perform optimal prediction using the wrong model? In short, yes.
To elaborate, consider the model of Eq. (1.1) with the εi assumed i.i.d. with
mean zero and variance σ2. Optimal model-fitting is tantamount to optimal
estimation of the function μ(·) that is assumed to belong to family F . To
simplify the problem, let us focus on optimal estimation of μ(xf), where xf is
some particular point of interest. We can then define an optimal estimator μ̂(xf)
as the minimizer of the MSE of estimation defined as

MSE est
xf

= E (μ̂(xf)− μ(xf))
2 = Bias 2(μ̂(xf))+Var(μ̂(xf))

where Bias (μ̂(xf)) = E μ̂(xf)− μ(xf) and Var(μ̂(xf)) = E [μ̂(xf)−E μ̂(xf)]
2.

1 Interestingly, for the dataset of Fig. 1.1, straight-line regression of logY on X gives a fitted curve
that is almost identical to the straight-line regression of Y on X so long as X is in the interval [0,2];
the difference between the two models becomes pronounced only for large X .



8 1 Prediction: Some Heuristic Notions

Interestingly, under an additive model such as Eq. (1.1) with i.i.d. errors having
variance σ2, the MSE of estimation is closely related to the (conditional) MSE
of prediction defined in Eq. (1.3), namely

MSE pred
xf

= σ2 +MSEest
xf

provided we use the estimated regression function μ̂(·) for prediction, i.e., we
set ν̂(·) = μ̂(·). Thus, it appears that MSE–optimality in fitting/estimating the
model (1.1) is tantamount to MSE–optimality for prediction.
Perhaps surprisingly, both goals—estimating μ(xf) and predicting Yf—can
sometimes be better achieved using the wrong model. To see why, consider
the dataset of Fig. 1.1a; there appears to be a small curvature in the regression
function that is captured by the smoothing spline in Fig. 1.1b. The key observa-
tion is that if the parameter associated with the curvature is in truth very small,
and if the variance associated with estimating it is large, one might be better off
omitting the curvature term even though it may well belong to the true model;
this would entail admitting some bias in order to get significant reduction in
variance, resulting into smaller MSE pred

xf and MSE est
xf

as compared to using the
true model!
As it turns out, there are often quantifiable benefits in using simplified, e.g.,
under-fitted, models for prediction as opposed to using the “true” model even
in the unrealistic case when the latter is known. This possibility was pointed out
more than 30 years ago by Hocking (1976); see Wu et al. (2007) for an exp-
ounded treatment including precisely formulated conditions on when under-
fitting a regression is optimal for the purpose of prediction.
For instance, consider again the dataset of Fig. 1.1; in such a practical situa-
tion, the true model is not known and the practitioner must play the “what if”
game: what if μ(·) were a quadratic, and I fitted a straight-line regression?
In this case, one must also fit a quadratic, and compare the two models. In
the traditional approach, the practitioner would include a quadratic term only
if the associated estimated coefficient was found to be statistically significant.
For the blood pressure dataset, the quadratic coefficient is indeed statistically
significant at the 95 % level—but not at the 99 % one.
Figure 1.2a shows a plot of the quadratic which indeed fits the given data quite
well; but is the quadratic better for prediction? To appreciate the dangers of
over-parameterization, Fig. 1.2b gives a plot of the quadratic predictor using
an extended range for the regressor. The implication of adopting the quadratic
model is the conclusion that the drug works in reducing blood pressure for
dosages up to 2 units daily but that it would actually increase blood pressure
when the dosage is increased any further; this is counter-intuitive, and certainly
not justified based on the data at hand. Notably, this quadratic passes the afore-
mentioned checks given by Eqs. (30)—(32) of Wu et al. (2007), suggesting
that a straight-line regression is not recommended here; this shows the caveats
in trying to use these conditions in practical work.
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Of course, what does work in practice is to abandon the preconception of a
“true” model, and try to find instead the most parsimonious model that fits the
data well, i.e., perform model selection; see, e.g., the comprehensive treatment
in Hastie et al. (2009). Interestingly, modern methods for model selection are
increasingly based on the concept of cross-validation which, in its essence, is
associated with the quality of prediction as opposed to model-fitting.
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Fig. 1.2 (a) Systolic blood pressure vs. daily dosage with superimposed straight-line regression
and the LS quadratic fit. (b) Same as (a) but considering possible dosages up to 3 units of the drug

1.3 Model-Free Prediction

Section 1.2 outlined some perils associated with prediction based on a preliminary
step of model-fitting. By contrast, Model-free prediction by-passes the modeling
“middle-man” and goes straight to solving the problem at hand, namely prediction
of an observable quantity of interest. The essence of the Model-Free Prediction
Principle that is elaborated upon in Chap. 2 can be heuristically described as
follows.

Consider the regression setup with a vector of observed responses Y n = (Y1, . . . ,
Yn)

′ that are associated with the vector of regressors Xn = (X1, . . . ,Xn)
′. Also con-

sider the enlarged vectors Y n+1 = (Y1, . . . ,Yn,Yn+1)
′ and Xn+1 = (X1, . . . ,Xn, Xn+1)

′
where (Yn+1,Xn+1) is an alternative notation for (Yf,Xf); recall that Yf is yet unob-
served, and Xf will be set equal to the value xf of interest. If the Yis were i.i.d. (and
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not depending on their associated X value), then prediction would be trivial: the
MSE–optimal predictor of Yn+1 is simply given by the mean, i.e., expected value, of
the i.i.d. Yis completely disregarding the value of Xn+1.

In a nutshell, the Model-Free Prediction Principle amounts to using the structure
of the problem in order to find an invertible transformation Hm that can map
the non-i.i.d. vector Y m to a vector εm = (ε1, . . . ,εm)

′ that has i.i.d. components;
here m could be taken equal to either n or n+ 1 as needed. Letting H−1

m denote the
inverse transformation, we have εm = Hm(Y m) and Y m = H−1

m (εm), i.e.,

Y m
Hm�−→ εm and εm

H−1
m�−→ Y m. (1.4)

If the practitioner is successful in implementing the Model-Free procedure,
i.e., in identifying the transformation Hm to be used, then the prediction prob-
lem is reduced to the trivial one of predicting i.i.d. variables. To see why, note
that Eq. (1.4) with m = n+ 1 yields Y n+1 = H−1

n+1(εn+1) = H−1
n+1(εn,εn+1). But εn

can be treated as known (and constant) given the data Y n; just use Eq. (1.4) with
m = n. Since the unobserved Yn+1 is just the (n+ 1)th coordinate of vector Y n+1,
we have just expressed Yn+1 as a function of the unobserved εn+1. Note that predict-
ing a function, say g(·), of an i.i.d. sequence ε1, . . . ,εn,εn+1 is straightforward bec-
ause g(ε1), . . . ,g(εn),g(εn+1) is simply another sequence of i.i.d. random variables.
Hence, the practitioner can use this simple structure to develop point predictors and
prediction intervals for the future response Yn+1.

Under regularity conditions, such a transformation Hm always exists although
it is not unique. The challenge to the skills and expertise of the statistician is to
be able to devise a workable such transformation for the problem of interest. The
monograph at hand is devoted to outlining how to put the Model-free prediction
principle to good use in some key problems in statistics, including regression and
time series analysis, and to hopefully pave the road for further such applications.

As previously mentioned, the Model-Free Prediction Principle places full emp-
hasis on observable quantities, i.e., current and future data, as opposed to unobserv-
able model parameters and estimates thereof. However, being able to predict the
response Yf associated with the regressor Xf taking on any possible value seems to
inadvertently also achieve the main goal of modeling, i.e., trying to find how Y dep-
ends on X . As a consequence, a practitioner can use Model-Free Prediction ideas
in order to obtain point estimates and confidence intervals for relevant parameters
if so desired; this may help justify the oxymoron “Model-free model-fitting” in the
title of the paper by Politis (2013). In other words, as prediction can be treated as
a by-product of model-fitting, some key estimation problems can be solved as a
by-product of being able to perform prediction.

In anticipation of the detailed discussion on the setup of regression in Part II
of the book, it should be mentioned that devising transformations in regression has
always been thought to be a crucial issue that received attention by statistics pioneers
such as F. Anscombe, M.S. Bartlett, R.A. Fisher, etc.; see the excellent exposition of
DasGupta (2008, Chap. 4) and the references therein, as well as Draper and Smith
(1998, Chap. 13), Atkinson (1985), and Carroll and Ruppert (1988).
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Regarding nonparametric regression in particular, the power family of Box and
Cox (1964) has been routinely used in practice, as well as more elaborate, computer-
intensive transformation techniques. Of the latter, we single out the ACE algo-
rithm of Breiman and Friedman (1985), and the AVAS transformation of Tibshirani
(1988). Both ACE and AVAS are very useful for transforming the data in a way
that the usual additive nonparametric regression model is applicable with AVAS
also achieving variance stabilization. Notably, as will be apparent in Chap. 4, the
Model-free approach to nonparametric regression is insensitive to whether such pre-
processing by Box/Cox, ACE or AVAS has taken place. Consequently, the Model-
free practitioner is relieved from the need to find an optimal transformation; thus,
Model-free Model-fitting in regression is a totally automatic technique.

To recapitulate, a practitioner can use the Model-Free Prediction Principle to
obtain point and interval predictors in regression and other situations with complex
datasets, e.g., time series and random fields. In addition, the Model-Free approach
can be used to construct point and interval estimators for some parameters of int-
erest as well, e.g., the regression function μ(·); see, e.g., Chap. 5 and Sect. 8.8 for
examples. Since a hypothesis test can be performed by inverting a confidence int-
erval, the Model-Free Prediction Principle is seen to give a complete approach to
statistical inference that offers an alternative to the classical treatment.

Acknowledgements
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Chapter 2
The Model-Free Prediction Principle

2.1 Introduction

In the classical setting of an i.i.d. (independent and identically distributed) sample,
the problem of prediction is not very interesting. Consequently, practitioners have
mostly focused on estimation and hypothesis testing in this case. However, when
the i.i.d. assumption no longer holds, the prediction problem is both important
and intriguing. Typical examples where the i.i.d. assumption breaks down include
regression and time series analysis.

Two key models are given below.

• Regression
Yt = μ(xt)+σ(xt) εt for t = 1, . . . ,n. (2.1)

• Time series

Yt = μ(Yt−1, · · · ,Yt−p;xt)+σ(Yt−1, · · · ,Yt−p;xt) εt for t = 1, . . . ,n. (2.2)

Here, Y1, . . . ,Yn are the data, εt are the errors which are assumed1 i.i.d. (0,1), and
xt is a fixed-length vector of explanatory (predictor) variables associated with the
observation Yt . The functions μ(·) and σ(·) are unknown but assumed to belong to
a class of functions that is either finite-dimensional (parametric family) or not; the
latter case is the usual nonparametric setup in which case the functions μ(·) and
σ(·) are typically assumed to belong to a smoothness class.

Given one of these two models, the optimal model-based predictors of a future
Y -value can be constructed. Nevertheless, the prediction problem can, in principle,
be carried out in a fully model-free setting, offering—at the very least—robustness
against model misspecification. Perhaps more importantly, the Model-free view-
point gives a different way to approach standard problems, leading to new insights.

1 The notation i.i.d. (μ ,σ 2) is shorthand for i.i.d. with mean μ and variance σ 2.

© The Author 2015
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In this chapter, we identify the underlying principles and elements of Model-free
prediction that apply equally to cases where the breakdown of the i.i.d. assump-
tion is either due to non-identical distributions, i.e., the regression example (2.1),
and/or due to dependence in the data as in example (2.2). In the following sections,
these general principles for Model-free prediction are theoretically formulated; their
essence is based on the notion of transforming a given setup into one that is easier to
work with, e.g., i.i.d. or Gaussian. Being i.i.d., the transformed data are amenable to
resampling; indeed, the Model-free prediction principle can be combined with the
bootstrap to yield frequentist predictive distributions in a very general framework.

2.2 Model-Free Approach to Prediction

2.2.1 Motivation: The i.i.d. Case

As already mentioned, the prediction problem is most interesting in cases where the
i.i.d. assumption breaks down. However, we briefly outline the i.i.d. case in order to
motivate the more general results.

Consider real-valued data Y1, . . . ,Yn i.i.d. from the (unknown) distribution FY .
The goal is prediction of a future value Yn+1 based on the data. It is apparent that
FY is the predictive distribution, and its quantiles could be used to form predictive
intervals. Furthermore, different measures of center of location of the distribution
FY can be used as (point) predictors of Yn+1. In particular, the mean and median of
FY are of interest since they represent optimal predictors under an L2 and L1 loss
criterion, respectively.

Of course, FY is unknown but can be estimated by the empirical distribution of the
data Y1, . . . ,Yn, denoted by F̂Y , that has favorable consistency properties. Hence, the
L2 and L1 optimal predictors can be well approximated by the mean and median of
F̂Y , respectively. Furthermore, simple Model-free predictive intervals could also be
based on quantiles of F̂Y . Such intervals will have asymptotically correct coverage
level but are expected to exhibit under-coverage in finite samples as the variability
of the estimated quantiles is ignored; see Sect. 2.4 for an elaboration.

2.2.2 The Model-Free Prediction Principle

In general, the data Y n = (Y1, . . . ,Yn)
′ may not be i.i.d. so the predictive distribu-

tion of Yn+1 given the data may depend on Y n and on Xn+1 which is an array of
observable, explanatory (predictor) variables. The notation Xn here is cumulative,
i.e., Xn is the collection of all predictor variables associated with the data {Yt for
t = 1, . . . ,n}; in the regression example of Eq. (2.1), the array Xn would be formed
by concatenating together all the (fixed-length) predictor vectors xt , t = 1, . . . ,n. The
predictors can be deterministic or random; in the latter case, prediction (and regres-
sion) will be carried out conditionally on Xn+1.
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Let Yt take values in the linear space B which often will be Rd for some integer d.
The goal is to predict g(Yn+1) based on Y n and Xn+1 without invoking any particular
model; here g is some real-valued (measurable) function on B. The key to successful
Model-free prediction is the following Model-free Prediction Principle that was
first presented in the extended abstract of Politis (2007b), and expounded upon in
Politis (2013). Intuitively, the basic idea is to transform the non-i.i.d. setup to an
i.i.d. dataset for which prediction is easy—even trivial— and then transform back.

Model-Free Prediction Principle

(a) For any integer m ≥ some m0, suppose that a transformation Hm is found that

maps the data Y m = (Y1, . . . ,Ym)
′ onto the vector ε(m)

m = (ε(m)
1 , . . . ,ε(m)

m )′ where

the {ε(m)
i , i = 1, . . . ,m} are i.i.d. with distribution Fm satisfying

Fm
L
=⇒ F as m → ∞; (2.3)

in the above, F is some limit distribution, and
L
=⇒ denotes convergence in law.

The transformation Hm may depend on the structure of the problem as well as
the explanatory variables Xm.

(b) Suppose that the transformation Hm is invertible for all m ≥ m0 (possibly mod-
ulo some initial conditions denoted by IC), and—in particular—that one can

solve for Ym in terms of Y m−1,Xm, and ε(m)
m alone, i.e., that

Ym = gm(Y m−1,Xm,ε
(m)
m ) (2.4)

and

Y m−1 = fm(Y m−2,Xm−1; ε(m)
1 , . . . ,ε(m)

m−1; IC) (2.5)

for some functions gm and fm and for all m ≥ m0.
(c) From the above, a predictive equation for the unobserved Yn+1 can be formed:

Yn+1 = gn+1(Y n,Xn+1,ε
(n+1)
n+1 ). (2.6)

Hence, the L2-optimal Model-free predictor of g(Yn+1) given the data Y n and
the predictors Xn+1 is obtained by the (conditional) expectation

∫
Gn+1(Y n,Xn+1,ε)dFn+1(ε) (2.7)

where Gn+1 = g ◦ gn+1 and ◦ denotes composition of functions.
(d) The predictive distribution of g(Yn+1) is given by the (conditional) distribution

of the random variable Gn+1(Y n,Xn+1,εn+1) where εn+1 is drawn from distri-
bution Fn+1 and is independent of Y n. The median of this predictive distribution
yields the L1-optimal Model-free predictor of g(Yn+1) given Y n and Xn+1.
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Parts (c) and (d) above outline a general approach to the problem of prediction of
(a function of) Yn+1 given a dataset of size n. As will be apparent in the sequel, the
application of Model-free prediction hinges on the aforementioned transformation
Hm and its inverse for m = n and m = n+ 1; see, e.g., the predictive equation (2.6).

Remark 2.2.1 The predictive distribution in part (d) above is understood to be
conditional on the value of Y n (and the value of Xn+1 when the latter is random);
the same is true for the expectation in part (c). Note also the tacit understanding that
the “future” εn+1 is independent to the conditioning variable Y n; this assumption is
directly implied by Eq. (2.5) which itself—under some assumptions on the function
gm—could be obtained by iterating (back-solving) Eq. (2.4). The presence of initial
conditions such as IC in Eq. (2.5) is familiar in time series problems of autoregres-
sive nature where IC would typically represent values Y0,Y−1, . . . ,Y−p for a finite
value p; the effect of the initial conditions is negligible for large n. In regression
problems, the presence of initial conditions would not be required if the regression
errors can be assumed to be i.i.d. as in Eq. (2.1).

Remark 2.2.2 Equation (2.4) with ε(m)
i being i.i.d. from distribution Fm looks like

a model equation but it is more general than a typical model. For one thing, the

functions gm and Fm may change with m, and so does ε(m)
i which, in essence, is a

triangular array of i.i.d. random variables. Furthermore, no assumptions are made a
priori on the form of gm. However, the process of starting without a model, and—by
this transformation technique—arriving at a model-like equation deserves the name
Model-Free Model-Fitting (MF2 for short).

Remark 2.2.3 The predictive distribution in part (d) above is the true distribu-
tion in this setup, but it is unusable as such since it depends on many potentially
unknown quantities. For example, the distribution Fn+1 will typically be unknown

but it can be consistently estimated by F̂n, the empirical distribution of ε(n)1 , . . . ,ε(n)n ,
which can then be plugged-in to compute estimates of the aforementioned (condi-
tional) mean, median, and predictive distribution. Similarly, if the form of function
gn+1 is unknown, a consistent estimator ĝn+1 that is based on the data Y n (and the
regressors Xn) could be plugged-in. The resulting empirical estimates of the (con-
ditional) mean and median would typically be quite accurate but such a “plug-in”
empirical estimate of the predictive distribution will be too narrow, i.e., possessing a
smaller variance and/or inter-quartile range than ideal. The correct predictive distri-
bution should incorporate the variability of estimated quantities such as F̂n and ĝn+1.
The only general frequentist way to nonparametrically capture such a widening of
the predictive distribution via resampling; see Sect. 2.4 for more details.

Remark 2.2.4 Although the distribution Fn+1 will typically be unknown, some-
times the large-sample distribution F of Eq. (2.3) will be known (perhaps up to
estimating a finite-dimensional parameter). It is then possible to use F in place of
Fn+1 in connection with the Model-Free Prediction Principle, as well as the resam-
pling step alluded to in Remark 2.2.3 and elaborated upon in Sect. 2.4. Using the
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large-sample distribution F in this context can be denoted a Limit Model-Free
method that combines knowledge/estimation of an asymptotic distribution with the
Model-Free Prediction notions.

2.3 Tools for Identifying a Transformation Towards i.i.d.–Ness

2.3.1 Model-Free Prediction as an Optimization Problem

The task of finding a set of candidate transformations Hn for any given particular
setup is challenging, and demands expertise and ingenuity. Sometimes, however, the
problem itself suggests the appropriate transformation; this is the case with Model-
free regression analyzed in Chap. 4, and Model-free inference for Markov processes
studied in Chap. 8.

In other situations, a whole class of candidate transformations may be identified
(and denoted by H ). In this case, the procedure is easy to formalize: find the trans-
formation Hn ∈ H that minimizes the (pseudo)distance d(L (Hn(Y n)),Fiid,n)
over all Hn ∈H ; here L (Hn(Y n)) is the probability law of Hn(Y n), and Fiid,n is
the space of all distributions associated with an n-dimensional random vector Y n
whose B–valued coordinates are i.i.d., i.e., the space of all distributions of the type
G×G× ·· ·×G where G is some distribution on space B. There are many choices
for the (pseudo)distance d(·, ·); see, e.g., Hong and White (2005). As an example,
the NoVaS transformation for financial returns developed in Chap. 10 is the outcome
of optimization over a class H that is a parametric family of transformations.

Framed as above, the application of the prediction principle may appear similar
in spirit to the Minimum Distance Method (MDM) of Wolfowitz (1957). Never-
theless, their objectives are quite different since MDM is typically employed for
parameter estimation and testing whereas in the prediction paradigm parameters are
of secondary importance. A typical MDM searches for the parameter θ̂ that min-
imizes the distance d(F̂n,Fθ ), i.e., the distance of the empirical distribution F̂n to
a parametric family Fθ . In this sense, it is apparent that MDM sets an ambitious
target (the parametric family Fθ ) but there is no necessity of actually “hitting” this
target. By contrast, the prediction principle sets the minimal target of independence
but its successful application requires that this minimal target is achieved (at least
approximately/asymptotically).

2.3.2 Transformation into Gaussianity as a Stepping Stone

If a model such as (2.1) and (2.2) is plausible, then the model itself suggests the
form of the transformation Hn, and the residuals from model-fitting would serve as

the “transformed” values ε(n)t . Of course, the goodness of the model should now
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be assessed in terms of achieved “i.i.d.–ness” of these residuals, i.e., by how close
the residuals are to being i.i.d. It is relatively straightforward—via the usual graph-
ical methods—to check that the residuals have identical distributions but checking
their independence is trickier; see, e.g., Hong (1999). However, if the residuals hap-
pened to be (jointly) Gaussian, then checking their independence is easy since it is
equivalent to checking for correlation, e.g., portmanteau test, Ljung-Box, etc.

This observation motivates the following variation of the Model-free prediction
principle that is particularly useful in the case of dependent data; here, and for the
remainder of Sect. 2.3, we will assume that B = R, i.e., that the responses Yt are real
valued.

(a′) For any m(> m0), find an invertible transformation Hm on Rm that maps the

data Y m = (Y1, . . . ,Ym)
′ into a Gaussian vector W (m)

m = (W (m)
1 , . . . ,W (m)

m )′ hav-
ing covariance matrix Vm.

(b′) Use a linear transformation to map W (m)
m into the i.i.d. Gaussian vector ε(m)

m =

(ε(m)
1 , . . . ,ε(m)

m )′, and then continue with parts (c) and (d) of the Model-free
prediction principle.

In applications, the linear transformation in step (b′) above may be estimated by
fitting a linear model and/or by direct estimation of the covariance matrix Vn from

the transformed data W (n)
1 , . . . ,W (n)

n using some extra assumption on its structure,
e.g., a Toeplitz structure in stationary time series as in McMurry and Politis (2010),
or an appropriate shrinkage/regularization technique as in Bickel and Li (2006);
then, the estimate V̂n must be extrapolated to give an estimate of Vn+1; see Chap. 6
for details.

Normalization as a prediction “stepping stone” can be formalized in much the
same way as before. To elaborate, once H , the set of candidate transformations
is identified, the procedure is to: choose the transformation Hn ∈ H that mini-
mizes the (pseudo)distance d(L (Hn(Y n)),Φn) over all Hn ∈ H where now Φn

is the space of all n-dimensional Gaussian distributions. Many choices for the
(pseudo)distance d are again available, including usual goodness-of-fit favorites
such as the Kolmogorov-Smirnov distance or χ2 test; a pseudo-distance based on
the Shapiro-Wilk statistic is also a valid alternative here. Interestingly, in the setting
of financial data, i.e., a heteroskedastic time series setup like example (2.2) with
μ ≡ 0 and heavy tails, Politis (2003a, 2007a) was able to achieve normalization
using a kurtosis-based distance measure; see Chap. 10 for details.

Remark 2.3.1 Now that Hn is essentially a normalizing transformation, a collection
of graphical and exploratory data analysis (EDA) tools are also available. Some of

these tools include: (a) Q-Q plots of the W (n)
1 , . . . ,W (n)

n data to test for Gaussianity;

(b) Q-Q plots of linear combinations of W (n)
1 , . . . ,W (n)

n to test for joint Gaussianity;

and (c) autocorrelation plots of ε(n)1 , . . . ,ε(n)n to test for independence—since in the
(jointly) Gaussian case, independence is tantamount to zero correlation.
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2.3.3 Existence of a Transformation Towards i.i.d.–Ness

Under regularity conditions, a transformation such as Hm of part (a) of the Model-
Free Prediction Principle always exists but is not necessarily unique. For example,
if the variables (Y1, . . . ,Ym) have an absolutely continuous joint distribution and no
explanatory variables Xm are available, then the Rosenblatt (1952) transformation
can map them onto a set of i.i.d. random variables with Fm being Uniform (0,1).
Nevertheless, estimating the Rosenblatt transformation from data may be infeasible
except in special cases. On the other hand, a practitioner may exploit a given struc-
ture for the data at hand, e.g., a regression structure, in order to construct a different,
case-specific transformation that may be practically estimable from the data.

To elaborate, recall that the Rosenblatt transformation maps an arbitrary ran-
dom vector Y m = (Y1, . . . ,Ym)

′ having absolutely continuous joint distribution onto
a random vector Um = (U1, . . . ,Um)

′ whose entries are i.i.d. Uniform(0,1). This is
done via the probability integral transform based on conditional distributions. For
k > 1 define the conditional distributions Dk(yk|yk−1, . . . ,y1) = P{Yk ≤ yk|Yk−1 =
yk−1, . . . ,Y1 = y1}, and let D1(y1) = P{Y1 ≤ y1}. Then the Rosenblatt transforma-
tion amounts to letting

U1 = D1(Y1),U2 = D2(Y2|Y1),U3 = D3(Y3|Y2,Y1),

. . . , and Um = Dm(Ym|Ym−1, . . . ,Y2,Y1). (2.8)

The problem is that the conditional distributions Dk for k ≥ 1 are typically unknown
and must be estimated (in a continuous fashion) from the Y n data at hand. It is
apparent that unless there is some additional structure, e.g., Markovian as in Chap. 8,
this estimation task may be unreliable or even infeasible for large k. As an extreme
example, note that to estimate Dn we would have only one point (in n-dimensional
space) to work with. Hence, without additional assumptions, the estimate of Dn

would be a point mass which is a completely unreliable estimate, and of little use in
terms of constructing a probability integral transform due to its discontinuity.

Remark 2.3.2 (Blocking a time series) Suppose the data Y1, . . . ,Yn constitute a
stretch of a univariate time series {Yt ∈ Z}. A time-honored time series technique is
blocking the data—also known as “vectorizing” the time series; see, e.g., Bartlett
(1946), Künsch (1989), and Politis and Romano (1992). To elaborate, one would
then create blocks of data by defining Bt = (Yt , . . . ,Yt+m−1)

′ for t = 1, . . . ,q with
q = n−m+ 1. Now focus on the multivariate time series Bt for t = 1, . . . ,q, and

let D(m)
t denote the distribution function of vector Bt which is nothing else than the

m–dimensional joint marginal of Yt , . . . ,Yt+m−1. Using the knowledge (or a consis-

tent estimate) of D(m)
t , one can then use the Rosenblatt transformation (2.8) to map

the vector Bt to a vector Ut having components U (1)
t , . . . ,U (m)

t that are i.i.d. Uniform
(0,1). Hence, we can create Gaussian data by a further transformation, i.e., letting

Z( j)
t = Φ−1(U ( j)

t ) for j = 1, . . . ,m, and t = 1, . . . ,q; here Φ is the cumulative dis-

tribution of a standard normal. The new vector time series Zt = (Z(1)
t , . . . ,Z(m)

t )′ is



20 2 The Model-Free Prediction Principle

multivariate Gaussian, and standard autocorrelation-based methods can be used to
handle it as discussed in Sect. 2.3.2. For example, after estimating the autocorre-
lation structure of {Zt}, a further “whitening” transformation can bring us to the
setup of an independent Gaussian time series where vector Zt is independent to vec-
tor Zs for t �= s but also the elements of vector Zt are independent from each other.
The composition of these three successive transformations gives the transformation
to i.i.d.–ness as required in premise (a) of the Model-free prediction principle; see
Chap. 9 for an application.

2.3.4 A Simple Check of the Model-Free Prediction Principle

Section 2.3.3 showed the existence of a transformation towards i.i.d.–ness (under
regularity conditions), i.e., the viability of finding a transformation Hm satisfying
premise (a) of the Model-Free Prediction Principle with m = n. However, for any
practical implementation we would need to also satisfy premise (b) of the Model-
Free Prediction Principle, and in particular Eq. (2.4) with m = n+1. In other words,
we need to be able to express the yet unobserved Yn+1 as a function of the previous

data and the unobserved ε(n+1)
n+1 . This might not be possible with a given transfor-

mation Hm (say) but may be made possible using a different transformation towards
i.i.d.–ness; see Sect. 6.6.1 for an example.

The difficulty is that, in general, the variables ε(m)
1 , . . . ,ε(m)

m )′ constitute the mth

row of a triangular array of i.i.d. data. Interestingly, if it so happens that ε(m)
j = ε j

does not depend on m, i.e., the variables ε(m)
1 , . . . ,ε(m)

m )′ constitute an i.i.d. se-
quence instead of a triangular array, then premise (b) of the Model-Free Predic-
tion Principle comes for free. To see why, recall that in this case we would have

Y m
Hm�−→ εm and εm

H−1
m�−→ Y m, where εm = (ε1, . . . ,εm)

′. Letting m = n+ 1 yields
Y n+1 =H−1

n+1(εn+1) =H−1
n+1(εn,εn+1). But εn can be treated as known given the data

Y n since εn = Hn(Y n). Hence, the function gn+1 needed in Eq. (2.4) can be simply
constructed by extracting the last coordinate of the vector H−1

n+1(Hn(Y n),εn+1).

Fact 2.3.1 If, for any m(> m0), the invertible transformation Hm maps the vec-
tor Y m to vector εm = (ε1, . . . ,εm)

′ where ε1, . . . ,εm are the first m elements of an
i.i.d. sequence ε1,ε2, . . . , then Hm also satisfies premise (b) of the Model-Free Pre-
diction Principle.

Interestingly, the Rosenblatt transformation (2.8) manages to map Y m to ε1, . . . ,εm

that are the first m elements of an i.i.d. sequence. Hence, existence of a transforma-
tion that satisfies both premises (a) and (b) of the Model-Free Prediction Principle
is ensured when the data vector Y n has an absolutely continuous joint distribution.
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2.3.5 Model-Free Model-Fitting in Practice

As mentioned in Sect. 2.3.2, the task of identifying the transformation Hn for a given
particular setup is expected to be challenging since it is analogous to the difficult
task of identifying a good model for the data at hand, i.e., model-building. Thus,
faced with a new dataset, the Model-free practitioner could/should take advantage
of all the model-building know-how associated with the particular problem. The
resulting “best” model can then serve as the starting point in concocting the desired
transformation.

As with model-building, the candidate transformation may well depend on some
unknown parameter, say θ , that may be finite-dimensional or infinite-dimensional—
the latter corresponding to a “nonparametric” situation. If θ is high-dimensional,
the optimization procedure outlined in Sect. 2.3.1 may be problematic. In this case,
there are several potential strategies for choosing an optimal value for the parameter
θ based on the data. The simplest strategy is the following.

(A) Continue with the model-building analogy, and use standard estimation tech-
niques such as Maximum Likelihood (ML) or Least Squares (LS) when θ is
finite-dimensional, or standard nonparametric/smoothing techniques when θ is
infinite-dimensional.

If step (A) is not successful in rendering the transformed data i.i.d., then the strategy
may be modified as follows.

(B) The parameter θ may be divided in two parts, i.e., θ=(θ1, θ2) where θ1 is of
finite (and hopefully small) dimension. Firstly, (θ1, θ2) are fitted using standard
methods as in strategy (A). Then, using the fitted value for θ2, a new search for
θ1 is initiated choosing the θ1 value that renders the transformed data closest
to being i.i.d.; i.e., the procedure follows the optimization procedure outlined
in Sect. 2.3.1 only as far as θ1 is concerned.

A final option involves a different kind of optimization focusing directly on the
objective at hand, i.e., prediction; this appears similar to optimization techniques
used in machine learning due to the focus of the latter in predictive modeling.

(C) The parameter θ is divided in three parts, i.e., θ = (θ1, θ2, θ3) where the first
two parameters are estimable as in step (B) above; the last parameter θ3 is a
low-dimensional (hopefully univariate) parameter reserved for “fine-tuning.”

To proceed, construct a discrete grid {θ ( j)
3 for j = 1, . . . ,J} that spans the

(finite) range of θ3. For example, if θ3 is univariate taking values in an int-

erval [a,b], then we may let θ ( j)
3 = a+(b− a) j/J for some large enough J.

For each value of j = 1, . . . ,J, assume θ3 equals θ ( j)
3 and perform step (B)

above to come up with optimal values θ ( j)
1 and θ ( j)

2 for θ1 and θ2, respectively,

yielding θ ( j) = (θ ( j)
1 , θ ( j)

2 ,θ ( j)
3 ). Finally, rank the parameter choices {θ ( j) for

j = 1, . . . ,J} in terms of their predictive ability in premises (c) and (d) of
the Model-free prediction principle (according to an L2 or L1 loss criterion),
and choose the parameter value θ ( j) that ranks best; see Sect. 10.5.3 for a
worked-out example.
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Fortunately, in many examples the form of the desired transformation Hn is self-
evident, and optimization is not needed; this is the case in the regression example
whether an additive model is true (as in Chap. 3) or not (as in Chap. 4).

Remark 2.3.3 It has been noted that the Model-free (MF) approach relinquishes the
notion of a model only to replace it with that of a transformation; indeed, the Model-
free approach could equally be termed a Transformation-based approach to in-
ference. To further elucidate the similarities and differences between the Model-free
and the Model-based (MB) approaches, consider a setup where an additive model
with respect to i.i.d. errors is indeed available, e.g., assume Yt = μ(xt) + εt with
εt being i.i.d. (0,σ2), and μ(·) an unknown function; this is the setup that will
be analyzed more generally in Part II of the book. It is apparent that in order to
concoct a transformation towards i.i.d.–ness, the Model-free practitioner would do
well by estimating the mean μ(xt) and subtracting it from the Yt data. Hence, when
a model with respect to i.i.d. errors is available, the Model-free practitioner may
base his/her transformation on the model and thus appear to proceed in a similar
way as in the model-based approach. Still, the Model-free/Transformation-based
approach may offer new insights; see Chap. 3. Interestingly, the Model-Free princi-
ple appears to be more primitive than Least Squares, i.e., implying Least Squares
(or even L1 regression) under certain conditions—see Sect. 3.7.3. So using (say) a
Least Squares estimator of μ(·) is very much in line with the Model-free Prediction
Principle. Of course, when a model is not available, the Model-free approach has
little competition—see, e.g., Chap. 4.

2.4 Model-Free Predictive Distributions

2.4.1 Prediction Intervals and Asymptotic Validity

Statistical inference is not considered complete if it is not accompanied by a mea-
sure of its inherent accuracy. With point estimators, the accuracy is measured either
by a standard error or a confidence interval. With (point) predictors, the accuracy
is measured either by the predictor error variance or by the prediction interval. Fo-
cusing on the latter, given the data Y n and the regressor value Xn+1, the goal is to
construct a prediction interval that will contain the future value g(Yn+1) with a pre-
specified coverage probability. Hence the prediction interval’s coverage probability
should be interpreted as conditional probability given Y n and Xn+1 (when the latter
is random).

Definition 2.4.1 Let Ln, Un be functions of Y n and Xn+1. The interval [Ln,Un] will
be called a (1−α)100% asymptotically valid prediction interval for g(Yn+1) given
Y n and Xn+1 if

P(Ln ≤ g(Yn+1)≤Un)→ 1−α as n → ∞ (2.9)

for all values of Y n and Xn+1 in a set of probability one.
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The probability P in (2.9) should thus be interpreted as conditional probability given
Y n and Xn+1 although it is not explicitly denoted. Hence, property (2.9) indicates the
large-sample conditional validity of the prediction interval [Ln,Un]. All prediction
intervals developed in the book will be constructed in such a way to satisfy the
asymptotic validity property (2.9) under regularity conditions. Different notions of
validity for prediction intervals are reviewed in Lei et al. (2013).

Asymptotic validity is a fundamental property but it does not tell the whole story.
Prediction intervals are particularly useful if they can also capture the uncertainty
involved in model estimation although the latter is asymptotically negligible; see
Sect. 3.6 for an elaboration. Similarly, in the Model-free approach, the practitioner
is estimating the requisite transformation towards i.i.d.–ness from the data at hand;
this entails some variability as it is analogous to estimating/fitting a model. Ideally,
this variability should be captured/incorporated in the construction of prediction
intervals, and resampling gives a unique way to do just that.

2.4.2 Predictive Roots and Model-Free Bootstrap

As mentioned in Remark 2.2.3, plugging-in estimates of F̂n and/or ĝn+1 in the theo-
retical predictive distribution defined in part (d) of the Model-Free Prediction Princi-
ple may yield an estimated predictive distribution that is too narrow, and prediction
intervals that are too short resulting in undercoverage. The only general frequentist
way to practically correct for that is via resampling. Having created the i.i.d. vari-

ables ε(n)1 , . . . ,ε(n)n , the Model-free Prediction Principle appears ideally amenable to
the i.i.d. bootstrap of Efron (1979) as will be shown in what follows.

For simplicity—and concreteness—we assume henceforth that the effect of the
initial conditions IC is negligible as is, e.g., in the regression example (2.1). We
will focus on constructing bootstrap prediction integrals of the ‘root’ type in anal-
ogy to the well-known confidence interval construction; cf. Hall (1992), Efron and
Tibshirani (1993), Davison and Hinkley (1997), or Shao and Tu (1995).

To start with, let us denote by Π(g,gn+1,Y n,Xn+1,Fn+1) the optimal (with re-
spect to either an L1 or L2 loss function) point predictor of g(Yn+1) as obtained by
the Model-free Prediction Principle. For example, in the L2–optimal case,

Π(g,gn+1,Y n,Xn+1,Fn+1) =

∫
Gn+1(Y n,Xn+1,ε)dFn+1(ε)

where Gn+1 = g ◦ gn+1 by Eq. (2.7); note that the above integral is typically ap-
proximated by Monte Carlo. Similarly, in the L1–optimal case, we can approximate
Π(g,gn+1,Y n,Xn+1,Fn+1) by Monte Carlo as the median of the set

{Gn+1(Y n,Xn+1,ε∗j ) for j = 1, . . . ,M}

where ε∗1 , . . . ,ε∗M are generated as i.i.d. from Fn+1, and M is some large integer.
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To use predictor Π(g,gn+1,Y n,Xn+1,Fn+1) in practice, it is necessary to estimate
the functions gn+1 and Fn+1. The latter can be estimated by F̂n, i.e., the empirical

distribution of ε(n)1 , . . . ,ε(n)n as in Remark 2.2.3. Furthermore, estimating the trans-
formation Hn in the Model-free Prediction Principle by (say) Ĥn, yields an estima-
tor ĝn+1 of the prediction function gn+1. Plugging-in the estimates ĝn+1 and F̂n in
the theoretical expression Π(g,gn+1,Y n,Xn+1,Fn+1) gives Π(g, ĝn+1,Y n,Xn+1, F̂n)
which is our data-based approximation to the optimal point predictor of g(Yn+1).

Hence, under an L2–loss, the data-based optimal predictor Π(g, ĝn+1,Y n,
Xn+1, F̂n) is given by

∫
g(ĝn+1(Y n,Xn+1,ε))dF̂n(ε) =

1
n

n

∑
j=1

g
(

ĝn+1(Y n,Xn+1,ε
(n)
j )
)
,

whereas, under an L1–loss, it is given by the median of the set

{g
(

ĝn+1(Y n,Xn+1,ε
(n)
j )
)

for j = 1, . . . ,n}.

Definition 2.4.2 The predictive root is the error in prediction, i.e.,

g(Yn+1)−Π(g, ĝn+1,Y n,Xn+1, F̂n). (2.10)

Furthermore, given bootstrap data Y ∗
n = (Y ∗

1 , . . . ,Y
∗
n )

′ and Y ∗
n+1, the bootstrap

predictive root is the error in prediction in the bootstrap world, i.e.,

g(Y ∗
n+1)−Π(g, ĝ∗n+1,Y n,Xn+1, F̂n) (2.11)

where ĝ∗n+1 is our estimate of function gn+1 based on the bootstrap data Y ∗
n (and the

regressors Xn).

To elaborate, under an L2–loss, Π(g, ĝ∗n+1,Y n,Xn+1, F̂n) is given by

∫
g
(
ĝ∗n+1(Y n,Xn+1,ε)

)
dF̂n(ε) =

1
n

n

∑
j=1

g
(

ĝ∗n+1(Y n,Xn+1,ε
(n)
j )
)
,

whereas, under an L1–loss, it is given by the median of the set

{g
(

ĝ∗n+1(Y n,Xn+1,ε
(n)
j )
)

for j = 1, . . . ,n}.

Remark 2.4.1 Note that Eq. (2.11) depends on the bootstrap data Y ∗
n only through

the estimated function ĝ∗n+1. One might be tempted to define2 the bootstrap predic-
tive root as

g(Y ∗
n+1)−Π(g, ĝ∗n+1,Y

∗
n,Xn+1, F̂n). (2.12)

2 Indeed, Politis (2013) employed definition (2.12) in a regression context; note, however, that
when the responses Y1,Y2, . . . are independent, definitions (2.11) and (2.12) coincide since in this
case the theoretical predictor Π(g,gn+1,Y n,Xn+1,Fn+1) does not depend on its third argument,
namely Y n, at all.
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The reason for defining the bootstrap predictive root via Eq. (2.11) is to give validity
to bootstrap prediction intervals conditionally on the data Y n; see the discussion after
Definition 2.4.1.

Remark 2.4.2 It is also plausible to instead define the bootstrap predictive root as

g(Y ∗
n+1)−Π(g, ĝ∗n+1,Y n,Xn+1, F̂

∗
n ) (2.13)

where F̂∗
n is a bootstrap version of F̂n, i.e., F̂∗

n is the empirical distribution of ran-
dom variables ε1, . . . ,εn generated as i.i.d. from F̂n. Nevertheless, in all the examples
treated in this book the major source of variability is due the estimation of the func-
tion gn+1; thus, definitions (2.11) and (2.13) are practically equivalent, and the for-
mer is simpler. In fact, as will be apparent in Sect. 2.4.3, plugging-in the asymptotic
limit F instead of either F̂n or F̂∗

n also gives a viable option.

Algorithm 2.4.1 MODEL-FREE (MF) BOOTSTRAP FOR PREDICTIVE DISTRIBU-
TION AND PREDICTION INTERVALS FOR g(Yn+1)

1. Based on the data Y n, estimate the transformation Hn and its inverse H−1
n by Ĥn

and Ĥ−1
n respectively. In addition, estimate gn+1 by ĝn+1.

2. Use Ĥn to obtain the transformed data, i.e., let (ε(n)1 , . . . ,ε(n)n )′ = Ĥn(Y n). By

construction, the variables ε(n)1 , . . . ,ε(n)n are approximately i.i.d.; let F̂n denote
their empirical distribution.

a. Sample randomly (with replacement) the variables ε(n)1 , . . . ,ε(n)n to create the
bootstrap pseudo-data ε∗1 , . . . ,ε∗n .

b. Use the inverse transformation Ĥ−1
n to create pseudo-data in the Y domain,

i.e., let Y ∗
n = (Y ∗

1 , . . . ,Y
∗
n )

′ = Ĥ−1
n (ε∗1 , . . . ,ε∗n ).

c. Calculate a bootstrap pseudo-response Y ∗
n+1 as the point ĝn+1(Y n,Xn+1,ε)

where ε is drawn randomly from the set (ε(n)1 , . . . ,ε(n)n ).
d. Based on the pseudo-data Y ∗

n, re-estimate the transformation Hn and the cor-
responding function gn+1 by Ĥ∗

n and ĝ∗n+1 respectively.
e. Calculate a bootstrap root replicate using Eq. (2.11).

3. Steps (a)—(e) in the above should be repeated a large number of times (say B
times), and the B bootstrap root replicates should be collected in the form of an
empirical distribution whose α–quantile is denoted by q(α).

4. A (1−α)100% equal-tailed prediction interval for g(Yn+1) is given by

[Π + q(α/2), Π + q(1−α/2)] (2.14)

where Π is short-hand for Π(g, ĝn+1,Y n,Xn+1, F̂n).
5. Finally, our Model-free estimate of the predictive distribution of g(Yn+1) is the

empirical distribution of bootstrap roots obtained in step 3 shifted to the right by
the number Π ; this is equivalent to the empirical distribution of the B bootstrap
root replicates when the quantity Π is added to each. [Recall that the predictive
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distribution of g(Yn+1) is—by definition—conditional on Y n and Xn+1; hence, the
quantity Π = Π(g, ĝn+1,Y n,Xn+1, F̂n) is a constant given Y n and Xn+1.]

Algorithm 2.4.1 is analogous to the so-called residual bootstrap schemes in model-
based situations—cf. Efron (1979). The key difference is that, in the Model-free

setting, the i.i.d. variables ε(n)1 , . . . ,ε(n)n are not residuals but the outcome of the
data-transformation.

Remark 2.4.3 Note that in Step 2(c), the bootstrap pseudo-response Y ∗
n+1 is con-

structed based on the original data Y n—as opposed to the bootstrap data Y ∗
n—for

the same reasons discussed in Remark 2.4.1, i.e., to ensure conditional validity of
the bootstrap prediction intervals.

Using an estimate of the prediction error variance, bootstrap prediction intervals
can also be constructed based on studentized predictive roots. However, in contrast
to what happens in confidence intervals, studentization does not ensure second or-
der accuracy of prediction intervals; see, e.g., Shao and Tu (1995, Chap. 7.3) and
Remark 3.6.3. For completeness, we give some relevant details below.

Let V̂ 2
n be an estimate of Var (g(Yn+1)−Π |Yn,Xn+1) where Π is short-hand for

Π(g, ĝn+1,Y n,Xn+1, F̂n) and V̂n is short-hand for Vn(g, ĝn+1,Y n,Xn+1, F̂n); so, its
bootstrap version will be V̂ ∗

n =Vn(g, ĝ∗n+1,Y n,Xn+1, F̂n) by analogy to Remark 2.4.1.

Definition 2.4.3 The studentized predictive root is defined as

(
g(Yn+1)−Π(g, ĝn+1,Y n,Xn+1, F̂n)

)
/V̂n, (2.15)

and the bootstrap studentized predictive root is defined as

(
g(Y ∗

n+1)−Π(g, ĝ∗n+1,Y n,Xn+1, F̂n)
)
/V̂ ∗

n . (2.16)

Algorithm 2.4.2 MODEL-FREE BOOTSTRAP BASED ON STUDENTIZED ROOTS

1–3. Same as Steps 1–3 of Algorithm 2.4.1 with one exception; step 2(e) should
read: Calculate a bootstrap root replicate using Eq. (2.16).

4. A (1 − α)100% equal-tailed, studentized prediction interval for g(Yn+1) is
given by

[Π + q(α/2)V̂n, Π + q(1−α/2)V̂n]. (2.17)

2.4.3 Limit Model-Free Resampling Algorithm

As mentioned in Remark 2.2.4, sometimes the limit distribution F appearing Eq. (2.3)
may be known (perhaps after estimating a finite-dimensional parameter). Using it
instead of the empirical F̂n results into the Limit Model-Free (LMF) resampling
algorithm that is outlined in the sequel.
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The LMF data-based approximation to the optimal (with respect to either L1 or
L2 loss) point predictor of g(Yn+1) will be denoted by Π(g, ĝn+1,Y n,Xn+1,F). To
elaborate, the L2–optimal LMF point predictor of g(Yn+1) would be given by

∫
g(ĝn+1(Y n,Xn+1,ε))dF(ε)

where the integral can be approximated by numerical integration or Monte Carlo
methods. Similarly, the L1–optimal LMF predictor can be approximated via Monte

Carlo by the median of the set {g
(

ĝn+1(Y n,Xn+1,ε∗j )
)
, for j = 1, . . . ,N} where

ε∗1 , . . . ,ε
∗
N are drawn i.i.d. from F , and N is some large integer.

Let V 2
n (g, ĝn+1,Y n,Xn+1,F) be an estimate of Var (g(Yn+1)−Π |Y n,Xn+1), where

Π = Π(g, ĝn+1,Y n,Xn+1,F). Then, our LMF predictive root is denoted by

(g(Yn+1)−Π(g, ĝn+1,Y n,Xn+1,F))/V̂n (2.18)

whose distribution can be approximated by that of the LMF bootstrap predictive
root (

g(Y ∗
n+1)−Π(g, ĝ∗n+1,Y n,Xn+1,F)

)
/V̂ ∗

n . (2.19)

The above covers both possibilities, studentized as well as unstudentized roots. For
studentized roots, let V̂n =Vn(g, ĝn+1,Y n,Xn+1,F) and V̂ ∗

n =Vn(g, ĝ∗n+1,Y n,Xn+1,F);
for unstudentized roots, just let V̂n = 1 = V̂ ∗

n .

Algorithm 2.4.3 LIMIT MODEL-FREE (LMF) BOOTSTRAP FOR PREDICTIVE DIS-
TRIBUTION AND PREDICTION INTERVALS FOR g(Yn+1)

1. Based on the data Y n, estimate the transformation Hn and its inverse H−1
n by Ĥn

and Ĥ−1
n respectively. In addition, estimate gn+1 by ĝn+1.

2. a. Generate bootstrap pseudo-data ε∗1 , . . . ,ε∗n in an i.i.d. manner from F.
b. Use the inverse transformation Ĥ−1

n to create pseudo-data in the Y domain,
i.e., let Y ∗

n = (Y ∗
1 , . . . ,Y

∗
n )

′ = Ĥ−1
n (ε∗1 , . . . ,ε

∗
n ).

c. Calculate a bootstrap pseudo-response Y ∗
n+1 as the point ĝn+1(Y n,Xn+1,ε)

where ε is a random draw from distribution F.
d. Based on the pseudo-data Y ∗

n, re-estimate the transformation Hn and the cor-
responding function gn+1 by Ĥ∗

n and ĝ∗n+1 respectively.
e. Calculate a bootstrap root replicate using Eq. (2.19).

3. Steps (a)—(e) in the above should be repeated a large number of times (say B
times), and the B bootstrap root replicates should be collected in the form of an
empirical distribution whose α–quantile is denoted by q(α).

4. A (1−α)100% equal-tailed prediction interval for g(Yn+1) is given by

[Π + q(α/2)V̂n, Π + q(1−α/2)V̂n] (2.20)

where Π is short-hand for Π(g, ĝn+1,Y n,Xn+1,F).



28 2 The Model-Free Prediction Principle

5. Finally, our Model-free estimate of the predictive distribution of g(Yn+1) is the
empirical distribution of bootstrap roots obtained in step 3 shifted to the right by
the number Π ; this is equivalent to the empirical distribution of the B bootstrap
root replicates when the quantity Π is added to each.

Remark 2.4.4 Note that the forward step of the Model-free transformation, i.e., the
transformation

Y n
Ĥn�−→ εn = (ε(n)1 , . . . ,ε(n)n )′

is not needed in the Limit Model-Free algorithm; thus step 2 of the algorithm is
considerably simplified. In addition, note that the Limit Model-Free algorithm only
requires the explicit construction of the inverse transformation Ĥ−1

m with m = n+1;
the form of the forward transformation Ĥm is not used at all—see Chaps. 4 and 9 for
examples.

2.4.4 Prediction of Discrete Variables

The variable to be predicted, i.e., g(Yn+1), has been assumed real-valued. However,
it can be the case that g(Yn+1) is not a continuous random variable. If the (condi-
tional) distribution of g(Yn+1) is mixed, i.e., it has both a continuous and a discrete
part, then the Model-free bootstrap algorithms are still applicable if/when the trans-
formation Hn and its inverse can be identified and estimated. In some cases it may be
easier to estimate/identify just H−1

n in which case the LMF Algorithm 2.4.3 would
be more useful—see the discussion at the end of Sect. 4.3.1. However, if the (condi-
tional) distribution of g(Yn+1) is purely discrete, many items have to be modified.

So in this subsection, assume that g(Yn+1) takes values in a discrete, i.e., count-
able, set S ⊂ R. In this case, the L1 and L2-optimal predictors of g(Yn+1) make
little sense. More appropriate is a 0–1 loss function under which the optimal pre-
dictor of g(Yn+1) is the mode of the predictive distribution of the random variable
Gn+1(Y n,Xn+1,εn+1) defined in premise (d) of the Model-free Prediction Principle;
as before εn+1 is drawn from distribution Fn+1 and is independent of the condi-
tioning variable Y n. In addition, having a prediction interval around such a discrete
predictor is not appropriate unless the set S is of lattice form; even then, the prob-
lem of non-achievable α–levels ensues. Fortunately, the predictive distribution of
Gn+1(Y n,Xn+1,εn+1) is still very informative, and can be presented in graphical
form in lieu of prediction intervals.

Let Π(g, ĝn+1,Y n,Xn+1,Fn+1) denote the abovementioned optimal data-based
predictor under 0–1 loss; here, Fn+1 would be estimated by either F̂n or F under
the Model-free Algorithm 2.4.1 or the Limit Model-free Algorithm 2.4.3, respec-
tively. Hence, premise (d) of the Model-free Prediction Principle can still be used
to obtain the predictive distribution of Π(g, ĝn+1,Y n,Xn+1,Fn+1). However, as pre-
viously mentioned, plugging-in unknown features in this predictive distribution—
although often justifiable asymptotically—fails to take into account the added vari-
ance due to the estimation error of these plug-in values.
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As already claimed, except in the case of the set S being lattice, taking differences
makes little sense; therefore, we cannot rely on resampling predictive roots such as
g(Yn+1)−Π(g, ĝn+1,Y n,Xn+1, F̂n) in order to capture the estimator variability. If
roots are not to be used, then we could approximate the (conditional) distribution
of g(Yn+1) by the bootstrap distribution of g(Y ∗

n+1) (without centering them) where
Y ∗

n+1 is generated by either Algorithm 2.4.1 or 2.4.3. But doing so, is tantamount to a
Monte Carlo implementation of premise (d) of the Model-free Prediction Principle;
in other words, the variability of the estimated features of the optimal predictor is
not captured. An ad hoc way to try to capture (some of) this variability is given by
the following algorithm in which the generation of Y ∗

n+1 itself relies on a bootstrap
sample, therefore the notation Y ∗∗

n+1.

Algorithm 2.4.4 MF AND LMF BOOTSTRAP FOR PREDICTIVE DISTRIBUTION OF

DISCRETE-VALUED g(Yn+1)

1. Based on the data Y n, estimate the transformation Hn and its inverse H−1
n by Ĥn

and Ĥ−1
n respectively. In addition, estimate gn+1 by ĝn+1.

2. Use Ĥn to obtain the transformed data, i.e., (ε(n)1 , . . . ,ε(n)n )′ = Ĥn(Y n). Denote by

F̂n the empirical distribution of the (approximately) i.i.d. variables ε(n)1 , . . . ,ε(n)n .
[Note: Step 2 is not needed in the LMF case.]

3. a. Generate bootstrap pseudo-data ε∗1 , . . . ,ε∗n as i.i.d. from F̂n (case MF) or as
i.i.d. from F (case LMF).

b. Use the inverse transformation Ĥ−1
n to create pseudo-data in the Y domain,

i.e., let Y ∗
n = (Y ∗

1 , . . . ,Y
∗
n )

′ = Ĥ−1
n (ε∗1 , . . . ,ε

∗
n ).

c. Based on the bootstrap pseudo-data Y ∗
n, re-estimate the transformation Hn

and its inverse H−1
n by Ĥ∗

n and Ĥ−1∗
n respectively. In addition, re-estimate

gn+1 by ĝ∗n+1.
d. Calculate a bootstrap pseudo-response Y ∗∗

n+1 = ĝ∗n+1(Y n,Xn+1,ε) where ε is
generated either from F̂n (case MF) or from F (case LMF).

e. Compute the bootstrap pseudo-value g(Y ∗∗
n+1).

4. Steps (a)—(e) in the above should be repeated a large number of times (say B
times), and the B bootstrap replicates of the pseudo-values g(Y ∗∗

n+1) are collected
in the form of an empirical distribution; this is our Model-free estimate of the
predictive distribution of g(Yn+1) whose mode can serve as an alternative point
predictor for g(Yn+1).

Algorithm 2.4.4 is suggested here only as a plan B since plan A—the bootstrap
approximation of predictive roots—is not available in the case of discrete variables.
Interestingly, Alonso et al. (2002) and Pascual et al. (2004) have used a version
of Algorithm 2.4.4 for prediction interval construction in the setting of linear time
series with continuous random variables.

A further justification for Algorithm 2.4.4 is via its analogy to Breiman’s (1996)
bagging. The difference is that in bagging, the B bootstrap series are used to con-
struct B point predictors that are then averaged and/or otherwise aggregated in
order to give a single, more stable point predictor; see Bühlmann and van de Geer
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(2011) for details. In contrast, Algorithm 2.4.4 uses the B bootstrap series in order
to construct B future pseudo-realizations of Yn+1, and thus quantify the predictive
distribution of g(Yn+1).

Remark 2.4.5 Algorithm 2.4.4 may find application even beyond the case of dis-
crete data. For instance, a summary measure of location—e.g., the mean/median for
continuous variables or the mode for discrete—based on the empirical distribution
of the B bootstrap pseudo-values g(Y ∗∗

n+1) can be seen as an alternative point predic-
tor for g(Yn+1) that is more stable than the analogous (mean/median/mode) standard
predictor of the plug-in type, i.e., Π(g, ĝn+1,Y n,Xn+1, F̂n), while being intrinsically
different from Breiman’s (1996) aggregation of predictors.



Part II
Independent Data: Regression



Chapter 3
Model-Based Prediction in Regression

3.1 Model-Based Regression

In this chapter, we focus on the nonparametric regression model of Eq. (2.1) noting
that regression is quintessential in statistical practice. For simplicity, the regressor xt
will be assumed univariate, and denoted simply as xt . The case of a multivariate—
even functional—regressor can be handled in an identical fashion although, of
course, the caveat of the curse of dimensionality must always be born in mind;
see, e.g., Appendix 1 in Chap. 4.

Thus, throughout Chap. 3 our data {(Yt ,xt), t = 1, . . . ,n} are assumed to have
been generated by the model

Yt = μ(xt)+σ(xt) εt for t = 1, . . . ,n (3.1)

with εt being i.i.d. (0,1) from the (unknown) distribution F . The default assumption
will be that the regressors xt are deterministic. However, random regressors can
easily be accommodated as long as they are independent of the errors εt ; in this case,
inference will be conducted conditionally on the realization of regressor values—see
Sect. 4.1 for more discussion.

The functions μ(·) and σ(·) are unknown but assumed to possess some degree
of smoothness (differentiability, etc.). There are many approaches towards nonpara-
metric estimation of μ(·) and σ(·), e.g., wavelets and orthogonal series, smoothing
splines, local polynomials, and kernel smoothers. The reviews by Altman (1992)
and Schucany (2004) give concise introductions to popular methods of nonparamet-
ric regression with emphasis on kernel smoothers; book-length treatments are given
by Härdle (1990), Hart (1997), Fan and Gijbels (1996), and Loader (1999). The
above references focus on estimation of the conditional mean (and other moments).
Regarding estimation of conditional quantiles, the book by Koenker (2005) is an
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excellent reference, and includes a chapter on bootstrapping quantile regression es-
timators; see also Gangopadhyay and Sen (1990), Hahn (1995), Horowitz (1998),
and Li and Racine (2007) to that effect.

For simplicity of presentation, we will focus here on nonparametric regression
based on kernel smoothing. Nevertheless, it is important to stress that our predic-
tive inference procedures can equally be implemented with any other appropriate
regression estimator, be it of parametric or nonparametric form. For example, local
linear smoothers are an attractive alternative to kernel smoothing especially when
boundary issues are concerned; see Chap. 9 for an elaboration.

A popular—and very intuitive—form of a kernel smoother is the Nadaraya-
Watson estimator (Nadaraya 1964; Watson 1964) defined by

mx =
n

∑
i=1

YiK̃

(
x− xi

h

)
(3.2)

where h is the bandwidth, K(x) is a symmetric kernel function with
∫

K(x)dx = 1,
and

K̃

(
x− xi

h

)
=

K
( x−xi

h

)

∑n
k=1 K

( x−xk
h

) . (3.3)

Similarly, the Nadaraya-Watson estimator of σ(x) is given by sx where

s2
x = Mx −m2

x with Mx =
n

∑
i=1

Y 2
i K̃

(
x− xi

q

)
, (3.4)

and q is another bandwidth parameter. Selection of the bandwidth parameters h and
q is often done by cross-validation. To elaborate, let et denote the fitted residuals,
i.e.,

et = (Yt −mxt )/sxt for t = 1, . . . ,n. (3.5)

and ẽt the predictive residuals, i.e.,

ẽt =
Yt −m(t)

xt

s(t)xt

, t = 1, . . . ,n (3.6)

where m(t)
x and M(t)

x denote the estimators mx and Mx respectively computed from
the delete-Yt dataset: {(Yi,xi), i = 1, . . . , t − 1 and i = t + 1, . . . ,n}. As usual, we

define s(t)xt =

√
M(t)

xt − (m(t)
xt )

2. In other words, ẽt is the (standardized) error in trying
to predict Yt from the aforementioned delete-Yt dataset.

Cross-validation amounts to picking the bandwidths h and q that minimize
PRESS = ∑n

t=1 ẽ2
t , i.e., the PREdictive Sum of Squared residuals. PRESS is an L2

measure that is obviously non-robust in case of heavy-tailed errors and/or outliers.
For this reason, in this paper, we favor cross-validation based on an L1 criterion. It
is more robust, and is not any more computationally expensive than PRESS—see
Appendix 2 for more details. L1–cross-validation amounts to picking the bandwidths
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Fig. 3.1 (a) Log-wage vs. age data with fitted kernel smoother mx (solid line). (b) Plot of the
unstudentized residuals Y −mx with superimposed estimated standard deviation sx (solid line)

that minimize ∑n
t=1 |ẽt |; the latter could be denoted PRESAR, i.e., PREdictive Sum

of Absolute Residuals. Note that L1–cross-validation imposes the L1 penalty on
the predictive residuals, and thus should be distinguished from Tibshirani’s (1996)
Lasso that imposes an L1 penalty on the regression parameters.

Remark 3.1.1 Rather than doing a two-dimensional search over h and q to mini-
mize PRESS, the simple constraint q = h will be imposed in what follows which
has the additional advantage of rendering Mx ≥ m2

x as needed for a nonnegative es-
timator s2

x in Eq. (3.4). Note, that the choice q = h is not necessarily optimal; see,
e.g., Wang et al. (2008). Furthermore, note that these are global bandwidths; tech-
niques for picking local bandwidths, i.e., a different optimal bandwidth for each x,
are widely available but will not be discussed further here in order not to obscure
our main focus. Similarly, there are several recent variations on the cross-validation
theme such as the one-sided cross-validation of Hart and Yi (1998), and the far
casting cross-validation for dependent data of Carmack et al. (2009) that present
attractive alternatives. Our discussion will focus on the well-known standard form
of cross-validation for concreteness especially since our aim is to show how the
Model-Free prediction principle applies in nonparametric regression with any type
of kernel smoother, and any type of bandwidth selector.

Remark 3.1.2 If there are large “gaps” in the scatterplot of the data, i.e., if there
are large x–regions within the range of x1, . . . ,xn where no data are available, then
a “local” bandwidth, i.e., a bandwidth that depends on x, or a k–nearest neighbor
technique may be used; see, e.g., Li and Racine (2007, Chap. 14).

As a running example in Chaps. 3 and 4, we will use the Canadian high-school
graduate earnings data from the 1971 Canadian Census; this is a wage vs. age dataset
concerning 205 male individuals with common education (13th grade). The data are
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available under the name cps71 within the np package of R, and are discussed in
Pagan and Ullah (1999). Figure 3.1a presents a scatterplot of the data with the fit-
ted kernel estimator mx superimposed using a normal kernel. The kernel smoother
seems to be problematic at the left boundary. The problem can be alleviated either
using a local linear smoother as in Fig. 2 of Schucany (2004), or by employing the
reflection technique of Hall and Wehrly (1991); see also the paper by Dai and Sper-
lich (2010) for a comparison of different boundary correction techniques for kernel
smoothers. We will not elaborate further here on these issues since our focus is on
the general Model-free Prediction method which can equally be implemented with
any chosen regression estimator. Finally, Fig. 3.1b shows a scatterplot of the unstu-
dentized residuals Y −mx with the estimated standard deviation sx superimposed.

3.2 Model-Based Prediction in Regression

The prediction problem amounts to predicting the future response Yf associated with
a potential design point xf. Recall that the L2–optimal (point) predictor of Yf is
E(Yf|xf), i.e., the expected value1 of the response Yf associated with design point
xf. Under model (3.1), we have that E(Yf|xf) = μ(xf). However, if the Yt–data are
heavy-tailed, the L1–optimal predictor might be preferred; this would be given by
the median response Yf associated with design point xf; under model (3.1), this is
given by μ(xf)+σ(xf) ·median(F). If the error distribution F is symmetric, then
the L2– and L1–optimal predictors coincide.

To obtain practically useful predictors, the unknown quantities μ(x),σ(x), and
median(F) must be estimated and plugged in the formulas of optimal predic-
tors. Naturally, μ(xf) and σ(xf) are estimated by mxf and sxf of Eqs. (3.2) and
(3.4). The unknown F can be estimated by F̂e, the empirical distribution of the
residuals e1, . . . ,en that are defined in Eq. (3.5). Hence, the practical L2– and
L1–optimal model-based predictors of Yf are given respectively by Ŷf = mxf and
Ỹf = mxf + sxf ·median(F̂e).

Suppose, however, that our objective is predicting the future value g(Yf) asso-
ciated with design point xf where g(·) is a function of interest; this possibility is
of particular importance due to the fact that data transformations such as Box/Cox,
ACE, AVAS, etc., are often applied in order to arrive at a reasonable additive model
such as (3.1). For example, the wages in dataset cps71 have been logarithmically
transformed before model (3.1) was fitted in Fig. 3.1a; in this case, g(x) = exp(x)
since naturally we are interested in predicting wage not log-wage.

1 In general, the L2–optimal predictor of Yf would be given by the conditional expectation of
Yf given Y1, . . . ,Yn as well as xf. However, under model (3.1), the Y data are independent, and
E(Yf|Y1, . . . ,Yn,xf) simplifies to just E(Yf |xf); the same will be true under the Model-free regression
setting of Chap. 4. The study of dependent data will be undertaken in Part III of the book.
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In such a case, the model-based L2–optimal (point) predictor of g(Yf) is E(g(Yf)|xf)
which can be estimated by

n−1
n

∑
i=1

g(mxf +σxfei) .

Unfortunately, practitioners sometimes use the naive plug-in predictor g(mxf) that
can be grossly suboptimal since g is typically nonlinear. For instance, if g is convex,
as in the exponential example above, Jensen’s inequality immediately implies that
the naive predictor g(mxf) under-estimates its target, i.e., it is biased downward.

Similarly, the model-based L1–optimal (point) predictor of g(Yf) can be approxi-
mated by the sample median of the set {g(mxf +σxfei) , i = 1, . . . ,n}; interestingly,
the latter would be equivalent to the naive plug-in predictor g(Ỹf) as long as g is
monotone.

3.3 A First Application of the Model-Free Prediction Principle

Consider a dataset like the one depicted in Fig. 3.1. Faced with this type of data, a
practitioner may well decide to entertain a model like Eq. (3.1) for his/her statistical
analysis. However, even while fitting—and working with—model (3.1), it is highly
unlikely that the practitioner will believe that this model is exactly true; more often
than not, the model will be simply regarded as a convenient approximation.

Thus, in applying strategy (A) of Sect. 2.3.5, the model-free practitioner com-
putes the fitted residuals et = (Yt −mxt )/sxt that can be interpreted as an effort to
center and studentize the Y1, . . . ,Yn data. In this sense, they can be viewed as a
preliminary transformation of the Y –data towards “i.i.d.–ness” since the residuals
e1, . . . ,en have (approximately) same first and second moment while the Y–data do
not; see also Remark 2.3.3. Here, and for the remainder of Chap. 3, we will assume
that the form of the estimator mx is linear in the Y data; our running example of a
kernel smoother obviously satisfies this requirement, and so do other popular meth-
ods such as local polynomial fitting.

Recall that throughout Chap. 3 we have assumed that model (3.1) is true. Hence,
the model-free practitioner should find (via the usual diagnostics) that to a good
approximation the fitted residuals et = (Yt −mxt )/sxt are close to being i.i.d. How-
ever, the model-free practitioner does not see this as model confirmation, and may
well try additional choices for centering and/or studentizing the data. Motivated by
the studentizing transformation in Politis (2007a), we may consider a more general
centering/studentization that may provide a better transformation for the Model-free
Prediction Principle. Such a transformation is given by:

Wt =
Yt − m̃xt

s̃xt

, t = 1, . . . ,n. (3.7)
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where

m̃xt = cYt +(1− c)m(t)
xt , M̃xt = cY 2

t +(1− c)M(t)
xt and s̃2

xt
= M̃xt − m̃2

xt
. (3.8)

In the above, m(t)
x and M(t)

x denote the estimators m and M respectively computed
from the delete-Yt dataset: {(xi,Yi), i = 1, . . . , t − 1 and i = t + 1, . . . ,n}, and evalu-
ated at the point x. Note that the Wt ’s, as well as m̃xt ,M̃xt , depend on the parameter
c ∈ [0,1) but this dependence is not explicitly denoted. The optimal choice of c will
be discussed later. The case c = 1 is excluded as it leads to the trivial setting of
Wt = 0, and an inconsistent m̃xt that simply interpolates the data on the scatterplot;
similarly problematic would be choosing c close to unity.

Nevertheless, Eq. (3.7) is a general—and thus more flexible—reduction to resid-
uals since it includes the fitted and predictive residuals as special cases. To see
this, note that (3.2) implies that the choice c = K(0)/∑n

k=1 K
( xt−xk

h

)
corresponds

to m̃xt = mxt and M̃xt = Mxt in which case Eq. (3.7) reduces to Eq. (3.5), i.e., the
fitted residuals. Furthermore, consider the extreme case of c = 0; in this case, Wt is
tantamount to a predictive residual, i.e., Wt = ẽt as defined in Eq. (3.6).

Thus, Eq. (3.7) is a good candidate for our search for a general transformation Hn

towards “i.i.d.—ness” as the Model-free Prediction Principle of Chap. 2 requires.
With a proper choice of bandwidth (and the constant c), W1, . . . ,Wn would be—by
construction—centered and studentized; hence, the first two moments of the Wt ’s
are (approximately) constant. Since the original data are assumed independent, the
Wt ’s are also approximately independent.

Remark 3.3.1 The independence and constancy of the first two moments of the
Wt ’s generally would fall short of claiming that they are i.i.d.; in this case, however,
the claim is true since model (3.1) implies that the nonconstancy of distributions
is only attributed to the first two moments. Furthermore, note that the Wt ’s are not
exactly independent because of dependence of mxt and sxt to mxk and sxk . Neverthe-

less, under typical conditions, mx
P−→ E(Y |x) and s2

x
P−→ Var(Y |x) as n → ∞, i.e.,

they are both asymptotically nonrandom—hence the asymptotic independence of
the Wt ’s follows.

3.4 Model-Free/Model-Based Prediction

Recall that the prediction problem amounts to predicting the future value Yf asso-
ciated with a potential design point xf. As customary in a prediction problem one
starts by investigating the distributional characteristics of the unobservedYf centered
and studentized. To this effect, note that Eq. (3.7) is also valid for the unobserved Yf,
i.e., the yet unobserved Yf is related to the yet unobserved Wf by

Wf =
Yf − m̃f

xf

s̃f
xf

(3.9)
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where m̃f and s̃f are the estimators from Eqs. (3.2) and (3.4) but computed from the
augmented dataset that includes the full original dataset {(xi,Yi), i = 1, . . . ,n} plus
the pair (xf,Yf). As in Eq. (3.8) we have:

m̃f
xf
= cYf +(1− c)mxf, M̃f

xf
= cY 2

f +(1− c)Mxf and s̃f
xf
=
√

M̃f
xf
− (m̃f

xt
)2 (3.10)

where mxf ,Mxf are the estimators m,M computed from the original dataset as in
Sect. 3.2 and evaluated at the candidate point xf.

Solving Eq. (3.9) for Yf is the key to model-free prediction as it would yield an
equation like (2.4). As it turns out, the solution of Eq. (3.9) is given by

Yf = mxf + sxf

Wf√
1− c− cW2

f

; (3.11)

see Appendix 1 for details. Equation (3.11) is the regression analog of the general
Eq. (2.4) of Sect. 2.2.2, and will form the basis for our model-free prediction proce-
dure when the model (3.1) is actually true.

One may now ponder on the optimal choice of c. It is possible to opt to choose c
with the goal of normalization of the empirical distribution of the W ’s in the spirit
of the “Gaussian stepping stone” of Sect. 2.3.2. But inasmuch as prediction is con-
cerned, Gaussianity is not required. Since the Wt are (at least approximately) i.i.d.,
the model-free prediction principle can be invoked, and is equally valid for any value
of c. It is interesting then to ask how the predictors based on Eq. (3.11) depend on
the value of c. Surprisingly (and thankfully), the answer is not at all ! After a little
algebra it is immediate that

Wt√
1− c− cW2

t

≡ ẽt for any c ∈ [0,1), and for all t = 1, . . . ,n (3.12)

where the ẽts are the predictive residuals defined in Eq. (3.6). In other words, the
prediction equation (3.11) does not depend on the value of c, and can be simpli-
fied to:

Yf = mxf + sxf ẽf. (3.13)

Equation (3.13) will form the basis for our application of the Model-free Prediction
Principle under model (3.1).

Remark 3.4.1 Since the model-free philosophy is implemented in a setup where
model (3.1) is true, we will denote the resulting predictors by MF/MB to indicate
both the model-free (MF) construction, as well as the predictor’s model-based (MB)
realm of validity. Recall that the Model-Free methodology is a transformation-based
approach to inference. Hence, a different notation of the MF/MB setup could be:
transformation-based inference when the model is true.

To elaborate on the construction of MF/MB predictors, let F̂ẽ denote the empiri-
cal distribution of the predictive residuals ẽ1, . . . , ẽn. Then, the L2– and L1–optimal
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Model-based MF/MB

Predictive equation Yf = mxf + sxf ef Yf = mxf + sxf ẽf

L2–predictor of Yf mxf mxf + sxf ·mean(ẽi)

L1–predictor of Yf mxf + sxf ·median(ei) mxf + sxf ·median(ẽi)

L2–predictor of g(Yf) n−1 ∑n
i=1 g(mxf +σxfei) n−1 ∑n

i=1 g(mxf +σxf ẽi)

L1–predictor of g(Yf) median(g(mxf +σxf ei)) median(g(mxf +σxf ẽi))

Table 3.1 Comparison of the model-based and MF/MB point prediction procedures obtained when
model (3.1) is true

model-free predictors of the function g(Yf) are given, respectively, by the expected
value and median of the random variable g(Yf) where Yf as given in Eq. (3.13) and
ẽf is a random variable drawn from distribution F̂ẽ.

Focusing on the case g(x) = x, it follows that the L2– and L1–optimal MF/MB
predictors of Yf are given, respectively, by the expected value and median of the
random variable given in Eq. (3.13). Note, however, that the only difference between
Eq. (3.13) and the fitted regression equation Yt = mxt + sxt et as applied to the case
where xt is the future point xf is the use of the predictive residuals ẽt instead of the
regression residuals et . The different predictors are summarized in Table 3.1.

3.5 Model-Free/Model-Based Prediction Intervals

The model-based L2—optimal predictor of Yf from Table 3.1 uses the model infor-
mation that the mean of the errors is exactly zero and does not attempt to estimate it.
Another way of enforcing this model information is to center the residuals ei to their
mean, and use the centered residuals for prediction. The need to center regression
residuals was first pointed out by Freedman (1981) in a linear model setting, and
will also be used in the Resampling Algorithm in what follows.

The use of predictive residuals is both natural and intuitive since the objective
is prediction. Furthermore, in case σ2(x) can be assumed to be constant,2 simple
algebra shows

ẽt = et/(1− δxt) where δxt = K(0)/
n

∑
k=1

K

(
xt − xk

h

)
. (3.14)

2 If σ 2(x) is not assumed constant, then ẽt = etCt/(1−δxt ) where Ct = sxt /s(t)xt .
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Equation (3.14) suggests that the main difference between the fitted and predictive
residuals is their scale; their center should be about the same (and close to zero)
since typically

mean(ẽi)≈ 0 and median(ẽi)≈ 0. (3.15)

Therefore, the model-based and MF/MB point predictors of Yf are almost indistin-
guishable; this is, of course, reassuring since, when model (3.1) is true, the model-
based procedures are obviously optimal. Nevertheless, due to the different scales
of the fitted and predictive residuals, the difference between the two approaches
is more pronounced in terms of construction of a predictive distribution for Yf in
which case the correct scaling of residuals is of paramount importance; see also the
discussion in Sect. 3.7.1.

With regards to the construction of an accurate predictive distribution of Yf, both
approaches (model-based and MF/MB) are formally identical, the only difference
being in the use of fitted vs. predictive residuals. The Resampling Algorithm of
Sect. 2.4 reads as follows for the case at hand where the predictive function gn+1

needed in the Model-free Prediction Principle is essentially determined by μ(x) and
σ(x).

Algorithm 3.5.1 RESAMPLING ALGORITHM FOR PREDICTIVE DISTRIBUTION

AND PREDICTION INTERVALS FOR g(Yf)

1. Based on the data Y n, construct the estimates mx and sx from which the fitted
residuals ei, and predictive residuals ẽi are computed for i = 1, . . . ,n.

2. For the model-based approach, let ri = ei − n−1 ∑ j e j, for i = 1, . . .n, whereas
for the MF/MB approach, let ri = ẽi, for i = 1, . . . ,n. Let F̂n denote the empirical
distribution of r1, . . . ,rn. Also let Π be a short-hand for Π(g,mx,sx,Y n,Xn+1, F̂n),
the chosen predictor from Table 3.1; e.g., for the L2–optimal predictor we have
Π = n−1 ∑n

i=1 g(mxf +σxfri)

a. Sample randomly (with replacement) the variables r1, . . . ,rn to create the
bootstrap pseudo-data r∗1, . . . ,r

∗
n.

b. Create pseudo-data in the Y domain by letting Y ∗
i =mxi +sxi r

∗
i , for i = 1, . . .n.

c. Calculate a bootstrap pseudo-response as Y ∗
f = mxf + sxf r where r is drawn

randomly from the set (r1, . . . ,rn).
d. Based on the pseudo-data {(Y ∗

t ,xt), t = 1, . . . ,n}, re-estimate the functions
μ(x) and σ(x) by the estimators m∗

x and s∗x using the same methodology,3 e.g.,
kernel smoothing with the same kernel, as the original estimators mx and sx.

e. Calculate a bootstrap root replicate as g(Y ∗
f )−Π(g,m∗

x,s
∗
x ,Y n,Xn+1, F̂n).

3. Steps (a)—(e) in the above are repeated B times, and the B bootstrap root repli-
cates are collected in the form of an empirical distribution with α–quantile de-
noted by q(α).

3 m∗
x and s∗x can use the same bandwidth as the original estimators mx and sx provided these are

slightly undersmoothed; otherwise, a two bandwidth trick is recommended—see Remark 3.5.2.
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4. Then, a (1−α)100% equal-tailed predictive interval for g(Yf) is given by:

[Π + q(α/2),Π + q(1−α/2)]. (3.16)

5. Finally, our estimate of the predictive distribution of g(Yf) is the empirical distri-
bution of bootstrap roots obtained in step 3 shifted to the right by the number Π .

Remark 3.5.1 As an example, suppose g(x) = x and the L2–optimal point predictor
of Yf is chosen in which case Π � mxf . Then, our (1−α)100% equal-tailed, pre-
dictive interval for Yf boils down to [mxf + q(α/2), mxf + q(1−α/2)] where q(α)
is the α—quantile of the empirical distribution of the B bootstrap root replicates of
type Y ∗

f −m∗
xf

.

Fact 3.5.1 When σ2(x) is constant, Eq. (3.14) implies that δxt > 0, and thus ẽt will
always be larger in absolute value (i.e., inflated) as compared to et . As a conse-
quence, MF/MB prediction intervals will tend to be wider than their MB counter-
parts. Nevertheless, this difference disappears asymptotically since δxt → 0 under
the usual bandwidth condition h → 0 but hn → ∞.

Remark 3.5.2 As in all nonparametric smoothing problems, choosing the band-
width is often a key issue due to the ever-looming problem of bias; the addition of a
bootstrap algorithm as above further complicates things. In the closely related prob-
lem of constructing bootstrap confidence bands in nonparametric regression, differ-
ent authors have used various tricks to account for the bias. For example, Härdle and
Bowman (1988) construct a kernel estimate for the second derivative μ ′′(x), and use
this estimate to explicitly correct for the bias; the estimate of the second derivative is
known to be consistent but it is difficult to choose its bandwidth. Härdle and Marron
(1991) estimate the (fitted) residuals using the optimal bandwidth but the resampled
residuals are then added to an oversmoothed estimate of μ ; they then smooth the
bootstrapped data using the optimal bandwidth. Neumann and Polzehl (1998) use
only one bandwidth but it is of smaller order than the mean square error optimal rate;
this undersmoothing of curve estimates was first proposed by Hall (1993) and is per-
haps the easiest theoretical solution towards confidence band construction although
the recommended degree of undersmoothing for practical purposes is not obvious.
In a recent paper, McMurry and Politis (2008) show that the use of infinite-order,
flat-top smoothing kernels alleviates the bias problem significantly permitting the
use of the optimal bandwidth. The above literature pertains to confidence intervals;
the construction of prediction intervals is expected to suffer from similar difficulties
but not as pronounced. The reason is that the main thrust of prediction interval ac-
curacy is capturing the variability due to the unobserved error; the variability of the
estimated features mx and sx is of secondary importance—see Sect. 3.6.2.

Remark 3.5.3 An important feature of all bootstrap procedures is that they can
handle joint prediction intervals, i.e., prediction regions, with the same ease as the
univariate ones. For example, xf can represent a collection of p “future” x–points
in the above Resampling Algorithm. The only difference is that in Step 2(c) we
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would need to draw p pseudo-errors r randomly (with replacement) from the set
(r1, . . . ,rn), and thus construct p bootstrap pseudo-responses, one for each of the p
points in xf. Then, Step 5 of the Algorithm would give a multivariate (joint) predic-
tive distribution for the response Y at the p points in xf from which a joint prediction
region can be extracted. If it is desired that the prediction region is of rectangular
form, i.e., joint prediction intervals as opposed to a general-shaped region, then
these can be based on the distribution of the maximum (and minimum) of the p tar-
geted responses that is obtainable from the multivariate predictive distribution via
the continuous mapping theorem; see Wolf and Wunderli (2015) for an elaboration.

For completeness, we now briefly discuss the predictive interval that follows
from an assumption of normality of the errors εt in the model (3.1). In that case, mxf

is also normal, and independent of the “future” error εf. If σ2(x) can be assumed to
be at least as smooth as μ(x), then a normal approximation to the distribution of the
root Yf −mxf implies an approximate (1−α)100% equal-tailed, predictive interval
for Yf given by:

[mxf +Vxf · z(α/2), mxf +Vxf · z(1−α/2)] (3.17)

where V 2
xf
= s2

xf

(
1+∑n

i=1 K̃2( xf−xi
h )
)

with K̃ defined in Eq. (3.3), and z(α) being the
α-quantile of the standard normal. If the “density” (e.g., histogram) of the design
points x1, . . . ,xn can be thought to approximate a given functional shape (say, f (·))
for large n, then the large-sample approximation

n

∑
i=1

K̃2(
xf − xi

h
)∼

∫
K2(x)dx

nh f (xf)
(3.18)

can be used—provided K(x) is such that
∫

K(x)dx = 1; see, e.g., Li and Racine
(2007).

Interval (3.17) is problematic in at least two respects: (a) it completely ignores the
bias of mx, so it must be either explicitly bias-corrected, or a suboptimal bandwidth
must be used to ensure undersmoothing; and (b) it crucially hinges on exact, finite-
sample normality of the data as its validity cannot be justified by a central limit
approximation. As a result, the usefulness of interval (3.17) is limited.

3.6 Pertinent Prediction Intervals

3.6.1 The i.i.d. Case

As mentioned in Sect. 2.4.1, asymptotic validity is a fundamental property but it
does not tell the whole story. Prediction intervals are particularly useful if they
can also capture the uncertainty involved in model estimation although the latter
is asymptotically negligible.
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To give a concrete example, consider the simple case where Y1,Y2, · · · are
i.i.d. N(μ ,σ2). Given the data Y1, · · · ,Yn, we estimate the unknown μ ,σ2 by the
sample mean and variance μ̂ , σ̂2, respectively. Then, the exact Normal theory
(1−α)100% prediction interval for Yn+1 is given by

μ̂ ± tn−1(α/2)σ̂
√

1+ n−1. (3.19)

One could use the standard normal quantile z(α/2) instead of tn−1(α/2), i.e.,
construct the prediction interval:

μ̂ ± z(α/2)σ̂
√

1+ n−1. (3.20)

Since 1+ n−1 ≈ 1 for large n, an even simpler prediction interval is available:

μ̂ ± z(α/2)σ̂ . (3.21)

Notably, all three above prediction intervals are asymptotically valid in the sense
of definition (2.9). Nonetheless, interval (3.21) can be called naive since it fails to
take into account the variability that results from the error in estimating the theo-
retical predictor μ by μ̂ . The result is that, although asymptotically valid, interval
(3.21) will be characterized by undercoverage in finite samples; see Geisser (1993)
for an in-depth discussion.

By contrast, interval (3.20) does take into account the variability resulting from
estimating the theoretical predictor. Therefore, interval (3.20) deserves to be called
something stronger than asymptotically valid; we will call it pertinent to indicate
that it asymptotically captures all three elements of the exact interval (3.19), namely:

(i) the quantile tn−1(α/2) associated with the studentized root;
(ii) the error variance σ2; and

(iii) the variability associated with the estimated parameters, i.e., the factor√
1+ n−1.

In general, an exact interval analogous to (3.19) will not be available because of
non-normality of the errors and/or nonlinearity of the optimal predictor. A “perti-
nent” interval such as (3.20) would be something to strive for. Notably, the bootstrap
is an attempt to create prediction intervals that are asymptotically pertinent in that
(a) they are able to capture the variability due to the estimated quantities—note that
in parametric models with p parameters the correction term inside the square root
of (3.19) would be O(p/n) not just 1/n, and in nonparametric models it would be
O( 1

hn) with h → 0 as n → ∞, i.e., this correction is not so trivial; and (b) they are
able to approximate well the necessary quantiles.

Interestingly, while interval (3.19) is based on the distribution of the studentized
predictive root, the bootstrap can also work with nonstudentized roots; in this case,
the bootstrap would attempt to estimate the product tn−1(α/2) σ̂ as a whole instead
of breaking it up in its two constituent pieces. One might be tempted to think that
the studentized bootstrap would lead to better approximations, and therefore more
accurate prediction intervals but the phenomenon is not as clear-cut as in the case
of bootstrap confidence intervals; the Rejoinder of Politis (2013) gives a discussion
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to that effect. Finally, note that bootstrap prediction intervals are not restricted to be
symmetric around the predictor like (3.19); thus, they may also capture the skewness
of the predictive distribution which is valuable in its own right.

3.6.2 Asymptotic Pertinence of Bootstrap Prediction Intervals

To formally define the notion of pertinence, consider model (3.1) under homoscedas-
ticity, i.e.,

Yt = μ(xt)+σ · εt for t = 1, . . . ,n (3.22)

with εt being i.i.d. (0,1). Recall that the MSE–optimal predictor of Yn+1 associated
with regressor value Xn+1 = xn+1 is μ(xn+1). Hence we let Ŷn+1 = μ̂(xn+1) where
μ̂(·) is some consistent estimator of μ(·). Assume that μ̂(·) has rate of convergence
an, i.e., an(μ̂(·)−μ(·)) has a well-defined, nontrivial asymptotic distribution where
an → ∞ as n → ∞. Then, the predictive root is given by

Yn+1 − Ŷn+1 = εn+1 +Aμ (3.23)

where Aμ = μ(xn+1)− μ̂(xn+1) = Op(1/an) represents the estimation error.
Similarly, the bootstrap predictive root can be written as

Y ∗
n+1 − Ŷ∗

n+1 = ε∗n+1 +A∗
μ (3.24)

where A∗
μ = μ̂(xn+1)− μ̂∗(xn+1). By construction, the model-based bootstrap de-

scribed in Algorithm 3.5.1 should be capable of capturing both the pure prediction
error, i.e., the distribution of εn+1, as well as the estimation error. We are then led to
the following definition.

Definition 3.6.1 Asymptotic pertinence of bootstrap prediction intervals under
model (3.22). Consider a bootstrap prediction interval for Yn+1 that is based on
approximating the distribution of the predictive root Yn+1 − Ŷn+1 of Eq. (3.23) by
the distribution of the bootstrap predictive root Y ∗

n+1 − Ŷ ∗
n+1 of Eq. (3.24). The in-

terval will be called asymptotically pertinent provided the bootstrap satisfies the
following three conditions as n → ∞ conditionally on Xn+1 = xn+1.

(i) supa |P(εn+1 ≤ a)−P∗(ε∗n+1 ≤ a)| P−→ 0, presupposing that the error distri-
bution is continuous.

(ii) |P(anAμ ≤ a)−P∗(anA∗
μ ≤ a)| P−→ 0 for some sequence an → ∞, and for all

points a where the assumed nontrivial limit of P(anAμ ≤ a) is continuous.
(iii) ε∗n+1 and A∗

μ are independent in the bootstrap world as their analogs are in the
real world.

Let V̂ 2
n be an estimate of Var(Yn+1 − Ŷn+1|Xn+1 = xn+1), and let V̂ ∗

n be its boot-
strap counterpart, i.e., an estimate of Var ∗(Y ∗

n+1 − Ŷ ∗
n+1|Xn+1 = xn+1). The boot-

strap prediction interval for Yn+1 that is based on approximating the distribution of
the studentized predictive root (Yn+1 − Ŷn+1)/V̂n by the distribution of the bootstrap
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studentized predictive root (Y ∗
n+1−Ŷ ∗

n+1)/V̂ ∗
n will be called asymptotically pertinent

if, in addition to (i)—(iii) above, the following also holds:

(iv) V̂n/V̂ ∗
n

P−→ 1.

Remark 3.6.1 Note that asymptotic pertinence is a stronger property than asymp-
totic validity. In fact, under model (3.22), just part (i) of Definition 3.6.1 together
with the consistency of μ̂(·) and μ̂∗(·), i.e., the fact that both Aμ and A∗

μ are op(1),
are enough to imply asymptotic validity of the bootstrap prediction interval. Also
note that part (ii) of Definition 3.6.1 is the condition needed in order to show that
the bootstrap can yield asymptotically valid confidence intervals for the conditional
mean μ(·). In many cases in the literature, this condition has been already estab-
lished; we can build upon this for the purpose of constructing pertinent prediction
intervals.

Consider again the heteroscedastic model (3.1). Much of the above discus-
sion carries over verbatim; for example, the MSE–optimal predictor of Yn+1 given
Xn+1 = xn+1 is still Ŷn+1 = μ̂(xn+1). The only difference is that the predictive root
now is expressed as

Yn+1 − Ŷn+1 = σ(xn+1)εn+1 +Aμ , (3.25)

and the bootstrap predictive root as

Y ∗
n+1 − Ŷ∗

n+1 = σ̂(xn+1)ε∗n+1 +A∗
μ (3.26)

where σ̂(·) is the (consistent) estimator of σ(·) that is employed in the bootstrap
data generation mechanism. Hence, the following definition is immediate.

Definition 3.6.2 Asymptotic pertinence of bootstrap prediction intervals under
heteroscedastic model (3.1). Consider a bootstrap prediction interval for Yn+1

that is based on approximating the distribution of the predictive root Yn+1 − Ŷn+1

of Eq. (3.25) by the distribution of the bootstrap predictive root Y ∗
n+1 − Ŷ ∗

n+1 of
Eq. (3.26). The interval will be called asymptotically pertinent provided the boot-
strap satisfies conditions (i)—(iii) of Definition 3.6.1 together with the additional
requirement:

(iv′) σ(xn+1)− σ̂(xn+1)
P−→ 0.

Furthermore, the bootstrap prediction interval for Yn+1 that is based on the approx-
imating the distribution of the studentized predictive root (Yn+1 − Ŷn+1)/V̂n by the
distribution of the bootstrap studentized predictive root (Y ∗

n+1 − Ŷ ∗
n+1)/V̂ ∗

n will be
called asymptotically pertinent if, in addition condition (iv) of Definition 3.6.1 also
holds.

Fact 3.6.1 Under model (3.1) and standard regularity conditions, the model-based
bootstrap prediction interval (3.16) will be asymptotically pertinent provided the
bandwidth h is chosen in such a way that undersmoothing occurs, i.e., letting
h = o(n−1/5) when the kernel K is nonnegative. Otherwise, interval (3.16) will be
asymptotically valid but not pertinent.
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Remark 3.6.2 Taking into account that Aμ = op(1) as n→∞, an immediate estima-
tor for the (conditional) variance of the predictive root Yn+1−Ŷn+1 under model (3.1)
is simply V̂n = σ̂(xn+1). Therefore, condition (iv) of Definition 3.6.1 can be re-

written as σ̂(xn+1)− σ̂∗(xn+1)
P−→ 0, i.e., it is just a bootstrap version of condi-

tion (iv′) of Definition 3.6.2. As a matter of fact, resampling in the heteroscedastic
model (3.1) as described in Algorithm 3.5.1 entails using unstudentized predictive
roots but it is based on studentized residuals. In this case, the unstudentized predic-
tive root method gives prediction intervals that are very close to the intervals that
would be obtained from studentized predictive roots so long as the simple estimator
V̂n = σ̂(xn+1) is used for the latter.

Remark 3.6.3 To continue the discussion of studentized vs. unstudentized predic-
tion intervals for Yn+1 under model (3.1), let F̂n denote the empirical distribution of
r1, . . . ,rn that were defined in step 2 of Algorithm 3.5.1, and recall that the orig-
inal errors ε1, . . . ,εn are i.i.d. F . Under smoothness assumptions, the typical non-
parametric rate of estimating μ(·) is an =

√
nh where h → 0 but nh → ∞; hence,

Aμ = Op(1/
√

nh). Interestingly, under regularity conditions, the residual distribu-
tion F is estimated at a fast parametric rate, i.e., F̂n = F +Op(1/

√
n); see Akritas

and VanKeilegom (2001).
Let us compare Π + q(α/2), the left end-point of prediction interval (3.16) that

is based on unstudentized roots, to Π + Q(α/2)σ̂(xn+1) that would be the left
end-point of the corresponding prediction interval based on studentized roots us-
ing V̂n = σ̂(xn+1). Here, q(α) denotes the α–quantile of L ∗(Y ∗

n+1 − Ŷ ∗
n+1) which is

the bootstrap probability law of the unstudentized root Y ∗
n+1−Ŷ ∗

n+1. From (3.26) and
the above discussion it follows that

L ∗(Y ∗
n+1 − Ŷ∗

n+1) = σ̂(xn+1)F +Op(1/
√

nh).

Similarly, Q(α) denotes the α–quantile of L ∗ ((Y ∗
n+1 − Ŷ∗

n+1)/σ̂∗(xn+1)
)

which is
the bootstrap probability law of the studentized root (Y ∗

n+1 − Ŷ ∗
n+1)/σ̂∗(xn+1). It is

now apparent that

L ∗ ((Y ∗
n+1 − Ŷ∗

n+1)/σ̂∗(xn+1)
)
= F +Op(1/

√
nh)

Therefore, the two end-points, Π +q(α/2) and Π +Q(α/2)σ̂(xn+1), have the same
asymptotic accuracy dictated by the Op(1/

√
nh) term.

3.7 Application to Linear Regression

3.7.1 Better Prediction Intervals in Linear Regression

The literature on predictive intervals in regression is not large; see, e.g., Caroll
and Ruppert (1991), Patel (1989), Schmoyer (1992), and the references therein.
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Furthermore, the literature on predictive distributions seems virtually non-existent
outside the Bayesian framework. What is striking is that even the problem of und-
ercoverage of prediction intervals in linear regression reported by Stine (1985) rem-
ained open three decades later; see, e.g., Olive (2007).

Thus, in this section we focus on the usual linear regression model:

Yi = x′iβ +Zi, for i = 1, . . . ,n, (3.27)

with Zt ∼ i.i.d. (0,σ2). Equivalently, Y n = Xβ + Zn where Y n = (Y1, . . . ,Yn)
′ and

Zn = (Z1, . . . ,Zn)
′ are n× 1 random vectors, β is a p× 1 deterministic parameter

vector, and X is an n× p deterministic design matrix of full rank with ith row given
by vector x′i.

Let β̂ be an estimator of β that is linear in the data Y n so that the MF/MB method-
ology of Sect. 3.4, and in particular Eq. (3.13), applies; an obvious possibility is

the Least Squares (LS) estimator. Also let β̂
(i)

be the same estimator based on the
delete-Yi dataset. The predictive and fitted residuals (z̃i and zi, respectively) corre-

sponding to data point Yi are defined in the usual manner, i.e., z̃i = Yi − x′iβ̂
(i)

and

zi =Yi−x′iβ̂ . Analogously to Eq. (3.14), here too the predictive residuals are always
larger in absolute value (i.e., “inflated”) as compared to the fitted residuals. To see
this, recall that

z̃i =
zi

1− hi
, for i = 1, . . . ,n, (3.28)

where hi = x′i(X ′X)−1xi is the ith diagonal element of the “hat” matrix X(X ′X)−1X ′;
see, e.g., Seber and Lee (2003, Theorem 10.1). Assuming that the regression has an
intercept term, Eq. (10.12) of Seber and Lee (2003) further implies 1/n ≤ hi ≤ 1
from which it follows that |z̃i| ≥ |zi| for all i.

Noting that the fitted residuals have variance depending on hi, Stine (1985) sug-
gested resampling the studentized residuals ẑi = zi/

√
1− hi in his construction of

bootstrap prediction intervals. The studentized residuals ẑi are also “inflated” as
compared to the fitted residuals zi, so Stine’s (1985) suggestion was an effort to re-
duce the undercoverage of bootstrap prediction intervals that was first pointed out
by Efron (1983). However, Stine’s proposal does not seem to fully correct the prob-
lem; for example, Olive (2007) recommends the use of an ad hoc further inflation
of the residuals arguing that “since residuals underestimate the errors, finite sample
correction factors are needed.”

Nevertheless, it is apparent from the above discussion that |z̃i| ≥ |ẑi|. Hence, using
the predictive residuals is not only intuitive and natural as motivated by the model-
free prediction principle, but it also goes further towards the goal of increasing cov-
erage without cumbersome (and arbitrary) correction factors.4 To obtain predictive
intervals for Yf, the Resampling Algorithm of Sect. 3.5 now applies verbatim with
the understanding that in the linear regression setting mx ≡ x′β̂ .

4 Efron (1983) proposed an iterated bootstrap method in order to correct the downward bias of the
bootstrap estimate of variance of prediction error; notably, his method involved the use of predictive
residuals albeit at the 2nd bootstrap tier—see also Efron and Tibshirani (1993, Chap. 17.7).
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As the following subsection confirms, the MF/MB method based on predictive
residuals seems to correct the undercoverage of bootstrap prediction intervals. Fi-
nally, note that the methodology of Sect. 3.5 can equally address the heteroscedastic
case when Var(Zi) = σ2(xi), and an estimate of σ2(xi) is available via parametric
or nonparametric methods.

3.7.2 Simulation: Prediction Intervals in Linear Regression

We now conduct a small simulation in the linear regression setup with p = 2, i.e.,
xi = (1,xi)

′, and Yi = β0 +β1xi +Zi, for i = 1, . . . ,n. For the simulation, the values
β0 = −1 and β1 = 1 were used, and Zt ∼ i.i.d. (0,1) from distribution Normal or
Laplace, i.e., two-sided exponential. The design points x1, . . . ,xn for n = 50 were
generated from a standard normal distribution, and the prediction carried out at the
point xf = 1. The simulation focused on constructing 90 % prediction intervals, and
was based on 900 repetitions of each experiment. Both LS regression and L1 regres-
sion were considered for estimating β0 and β1.

Table 3.2 reports the empirical coverage levels (CVR), and (average) lower and
upper limits of the different prediction intervals in the linear regression case. The
standard error of the CVR entries is 0.01; the provided standard error (st.err.) applies
equally to either the lower or upper limit of the interval. For the first five rows of
Table 3.2, β0 and β1 were estimated by Least Squares which is optimal in the Normal
case; in the last two rows of Table 3.2, β0 and β1 are estimated via L1 regression
which is optimal in the Laplace case. Note that the ideal point predictor of Y at
xf = 1 is zero; so the prediction intervals are expected to be centered around zero.
Indeed, all (average) intervals of Table 3.2 are approximately symmetric around
zero.

Linear regression is, of course, a model-based setup; so both interval construc-
tions MB (=model-based) and MF/MB (=model-free/model-based) of Sect. 3.5 are
applicable; they were both considered here in addition to three competing inter-
vals: Stine’s (1985) interval that is analogous to the MB construction except that
Stine used the studentized residuals; the usual NORMAL theory interval, namely
mxf ± tn−2(α/2)S

√
1+ hf; and Olive’s (2007) “semi-parametric” interval:

(
mxf + ane(α/2)

√
1+ hf, mxf + ane(1−α/2)

√
1+ hf

)
.

In the above, mxf is the usual point predictor given by β̂0 + β̂1xf, hf = x′f(X
′X)−1xf

is the “leverage” at point xf, and S2 = (n− 2)−1 ∑n
i=1 e2

i . In Olive’s interval, e(α)
is the α–quantile of the empirical distribution of the residuals {e1, . . . ,en} while

an = (1+ 15
n )
√

n
n−2 is an ad hoc “correction” factor employed to increase coverage.
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Distribution: Normal Laplace

Case xf = 1 CVR INTERVAL (st.err.) CVR INTERVAL (st.err.)

MF/MB 0.890 [−1.686,1.682] (.011) 0.901 [−1.685,1.691] (.016)

MB 0.871 [−1.631,1.609] (.011) 0.886 [−1.611,1.619] (.015)

MB Stine 0.881 [−1.656,1.641] (.011) 0.892 [−1.640,1.663] (.015)

MB Olive 0.941 [−2.111,2.097] (.017) 0.930 [−2.072,2.089] (.025)

NORMAL 0.901 [−1.723,1.711] (.009) 0.910 [−1.699,1.716] (.011)

MF/MB L1 0.896 [−1.715,1.709] (.012) 0.908 [−1.699,1.705] (.016)

MB L1 0.871 [−1.647,1.632] (.012) 0.896 [−1.619,1.636] (.015)

Table 3.2 Empirical coverage levels (CVR), and (average) lower and upper bounds of different
prediction intervals with nominal coverage of 0.90 in linear regression; the standard error (st.err.)
applies equally to either the lower or upper limit

The findings of Table 3.2 are quite interesting:

• The NORMAL theory interval (based on t–quantiles) has exact coverage with
Normal data—as expected—but slightly over-covers in the Laplace case. It is
also the interval with smallest length variability.

• Olive’s interval shows striking over-coverage which is an indication that the an

correction factor is too extreme. Also surprising is the large variability in the
length of Olive’s interval that is 50 % larger than that of our bootstrap methods.

• Looking at rows 1—3, the expected monotonicity in terms of increasing coverage
is observed; i.e., CVR(MB) < CVR(MB Stine) < CVR(MF/MB).

• The MF/MB intervals have (almost) uniformly better coverage than their MB
analogs indicating that using the predictive residuals is indeed a good solution to
the widely reported undercoverage of MB and Stine’s intervals.

3.7.3 Model-Free vs. Least Squares: A Reconciliation

As claimed throughout the book, the Model-Free approach can form the basis for
a complete statistical inference that includes point estimators and predictors in ad-
dition to confidence and prediction intervals without assuming an additive model
such as (2.1). Interestingly, however, when an additive regression model is known
to hold true, little is lost by adhering to the Model-Free approach, i.e., trying to find
a transformation towards “i.i.d.-ness.”
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To see why, let us assume Eq. (3.27) with an n× p design matrix X that has a
column of 1’s as its first column; then we can write:

Yj = x′jβ +Zj = β0 + x′j,p−1β
p−1

+Zj for j = 1, . . . ,n, (3.29)

where Zt ∼ i.i.d. (0,σ2), β
p−1

= (β1, . . . ,βp−1, and the jth row of X is denoted by

the (row) vector x j = (1,x j,p−1).

From the point of view of Model-free prediction, the essence of this model is
that the variables ε j ≡Yj −x′j,p−1β

p−1
are i.i.d. albeit with (possibly) nonzero mean

β0. Thus, a candidate transformation to “i.i.d.–ness” may be constructed by letting
r j =Yj − x′j,p−1β̂

p−1
, where β̂

p−1
is a candidate vector. The Model-Free prediction

principle now mandates choosing β̂
p−1

with the objective of having the r js become

as close to i.i.d. as possible. However, under the stated regression model, the r js
would be i.i.d. if only their first moment was properly adjusted.

To elaborate, a homoscedastic regression model such as (3.29) implies that all
central moments of order two or higher are constant; the only non-i.i.d. feature of
the data is in the first moment. So, in this case, the Model-Free prediction principle
suggests choosing β̂

p−1
in such a way as to make r1, . . . ,rn have (approximately) the

same first moment. Noting that the first moment—if it is common—would be natu-
rally approximated by the empirical value r̂ = n−1 ∑n

i=1 ri, we can use a subsampling
construction to make this happen; see, e.g., Politis et al. (1999).

To fix ideas, assume for simplicity that p = 2, and that the univariate design
points x1, . . . ,xn found in the 2nd column of X are sorted in ascending order. Then
compute the overlapping block means

r̄k,b = b−1
k+b−1

∑
j=k

r j for k = 1, . . . ,q (3.30)

where b is the block size, and q = n− b+ 1 is the number of available blocks.
Note that r̄k,b is an estimate of the first moment of the ris found in the kth block.

In order to achieve the target requirement that all r1, . . . ,rn have first moment that is
the same (and thus approximately equal to r̂), the Model-free practitioner may

choose β̂1 that minimizes LS(b) =
q

∑
k=1

(r̄k,b − r̂)2 or L1(b) =
q

∑
k=1

|r̄k,b − r̂| (3.31)

according to whether an L2 or L1 loss criterion is preferred. Instead of r̂, we could
equally use the mean of means, i.e., ¯̄r = q−1 ∑q

k=1 r̄k,b as the centering value in
Eq. (3.31). If b = 1, then r̂ = ¯̄r whereas if b > 1, then r̂ = ¯̄r +OP(b/n); thus, the
difference is negligible provided b is small as compared to n.

Recall that in the typical application of subsampling for variance or distribu-
tion estimation, it is suggested to take the block size b to be large (but still of
smaller order than n); this is for the purpose of making the subsample statistics
r̄k,b have asymptotically the same distribution as the statistic r̂ computed from the
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full sample. Nevertheless, it is not crucial in our current setting that each of the r̄k,b

have asymptotically the same distribution as r̂. What is important is that all the r̄k,b

(for k = 1, . . . ,q) have approximately the same distribution whatever that may be.
Therefore, it is not necessary in Eq. (3.31) to use a large value for b. Even the value
b = 1 is acceptable, in which case we have:

d

dβ̂1
LS(1) = 0 ⇒ β̂1 =

∑n
i=1(Yi − Ȳ )(xi − x̄)

∑n
i=1(xi − x̄)2 where Ȳ =

1
n

n

∑
i=1

Yi and x̄ =
1
n

n

∑
i=1

xi.

In other words, the Model-free fitting procedure (3.31) with L2 loss and b = 1 is
re-assuringly identical to the usual Least Squares estimator!

Note that the ris serve as proxies for the unobservable εis which have expected
value β0 under model (3.29). Hence, β0 is naturally estimated by the sample mean
of the ris, i.e.,

β̂0 =
1
n

n

∑
i=1

(Yi − β̂1xi) = Ȳ − β̂1x̄

which is again the Least Squares estimator.
Minimizing LS(b) with b > 1 gives a more robust way of doing Least Squares in

which the effect of potential outliers is diminished by the local averaging of b neigh-
boring values, Similarly, minimizing L1(1) is equivalent to L1 regression, whereas
minimizing L1(b) with b > 1 gives additional robustness.

Finally, let us revisit the general p case of model (3.29). When p > 2, the vector
regressors {xi,p−1 for i = 1, . . . ,n} cannot be sorted in ascending order. One could
instead use a local-averaging or nearest-neighbor technique to compute the subsam-
ple means. But no such trick is needed in the most interesting case of b = 1 since
then the quantities LS(1) and L1(1) are unequivocally defined as

LS(1) =
n

∑
k=1

(rk − r̂)2 and L1(1) =
n

∑
k=1

|rk − r̂|. (3.32)

It is now easy to see that the Model-free practitioner that chooses the β ’s in order
to minimize LS(1) or L1(1) is effectively doing Least Squares or L1 regression,
respectively.

Hence, when an additive linear regression model is available, there is no dis-
crepancy between the Model-free point of view and traditional model fitting. Nev-
ertheless, the Model-free approach can still lend some insights such as the afore-
mentioned use of predictive residuals in connection with the (model-based) residual
bootstrap.
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Appendix 1: The Solution of Eq. (3.9)

Squaring Eq. (3.9) and using (3.10) we obtain the double solution:

Yf =
mxf(1− c)(1− c− cW2

f )±|Wf|
√
(1− c)2m2

xf
(−1+ c+ cW2

f )+ (1− c)MxfDf

Df
(3.33)

where s2
xf
=Mxf −m2

xf
, and Df =(1−c)2+(c2−c)W 2

f . A little algebra shows that the
denominator Df is strictly positive and the argument of the square root in Eq. (3.33)
is nonnegative provided the bound (3.34) below holds5:

|Wt |<
√

1− c
c

for all t. (3.34)

To see that (3.34) is indeed true, note that Eq. (3.7) implies

1

W 2
t
=

s̃2
xt

(Yt − m̃xt )
2 =

M̃xt − m̃2
xt

(Yt − m̃xt )
2

=
cY 2

t +(1− c)M(t)
xt − (cYt +(1− c)m(t)

xt )
2

(1− c)2(Yt −m(t)
xt )

2

=
c− c2

(1− c)2 +
(1− c)

(
M(t)

xt − (m(t)
xt )

2
)

(1− c)2(Yt −m(t)
xt )

2
≥ c− c2

(1− c)2

since M(t)
xt − (m(t)

xt )
2 ≥ 0 having assumed that the bandwidths h and q are the same.

From the above, it follows that |Wt | ≤
√
(1− c)/c as desired, with strict inequality

provided M(t)
xt > (m(t)

xt )
2.

Now as previously noted, c is in general a small number. For example, if
c = K(0)/∑n

k=1 K
( xt−xk

h

)
, then c tends to zero as h → 0 in which case Eq. (3.33)

becomes
Yf � mxf ±|Wf|sxf . (3.35)

Comparing Eq. (3.35) to Eq. (3.9), it follows that the solution Yf � mxf +Wfsxf is the
uniquely correct one for Eq. (3.35). By the same token (and due to the continuity in
the variable c), the double solution (3.33) reduces to the unique solution of Eq. (3.9)

Yf =
mxf(1− c)(1− c− cW2

f )+Wf

√
(1− c)2m2

xf
(−1+ c+ cW2

f )+ (1− c)MxfDf

Df
(3.36)

that simplifies to Eq. (3.11) as claimed.�

5 If c = 0, the bound (3.34) is trivial: |Wt |< ∞.
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Appendix 2: L1 vs. L2 Cross-Validation

Early proponents of cross-validation include Allen (1971, 1974), Geisser (1971,
1975), and Stone (1974). Minimizing the PREdictive Sum of Squared residuals
(PRESS) has been shown to be generally consistent for the optimal bandwidth—
although characterized by slow rates of convergence; see, e.g., Härdle and Marron
(1991), and Härdle, Hall, and Marron (1988).

To further discuss the cross-validation procedure, we will focus here on the non-
parametric model (3.1) with the objective of prediction of Yf under the two criteria L1

and L2; see Table 3.1 for a summary. Since the L2–optimal predictor is the one min-
imizing the Mean Squared Error (MSE) of prediction, the minimization of PRESS
makes perfect sense in order to further reduce this MSE. However, the L1–optimal
predictor is the one minimizing the Mean Absolute Error (MAE) of prediction; to
fine-tune it, it may be preferable to use an L1–cross-validation criterion, i.e., to mini-
mize the PREdictive Sum of Absolute Residuals abbreviated as PRESAR =∑n

t=1 |ẽt |
where ẽt are the predictive residuals of Eq. (3.6).

In addition, L1–cross-validation may be advisable on robustness considerations.
Note that the random variable ε2

t (of which ẽ2
t is a proxy) has a distribution with

potentially heavy tails. For example, if εt ∼ N(0,1), then the density of ε2
t at point u

has tails of type: |u|−1/2 exp(−|u|), i.e., tails of exponential thickness. If εt is itself a
(two-sided) exponential, then the matters are much worse: the density of ε2

t at point
u has tails of type: |u|−1/2 exp(−√|u|). Now recall that n−1×PRESS = n−1 ∑n

t=1 ẽ2
t

is an empirical version of Eε2
t . Although this expectation is finite in the two cases

discussed above, the heavy tails of ε2
t make a sample average like n−1×PRESS

somewhat unstable in practice. In other words, the presence of a large value gener-
ated by the heavy tails (or by potential outliers) can throw off PRESS together with
the resulting bandwidths estimated by cross-validation. For this reason, L1–cross-
validation may be preferable, and is not any more computationally expensive than
the usual L2–cross-validation.6

To see the difference between L1 and L2 cross-validation in practice, a small
simulation was conducted. For the simulation, data were generated from model (3.1)
with the choices μ(x) = sin(x), σ(x) = 1/10, εt ∼ i.i.d. (0,τ2) with distribution
normal or two-sided exponential (Laplace), and different values for τ; reducing the
error standard deviation τ has a similar effect as increasing sample size. For each of
the error distributions, 999 datasets each of size n = 100 were created; the design
points x1, . . . ,xn were drawn each time from a uniform distribution on (0,2π).

The MSE of estimator mx is denoted by MSE x and was empirically evaluated at
25 different x–points taken equi-spaced on a grid of the interval (0,2π); those points
were: 0.24,0.48, · · · ,5.79,6.03. Figure 3.2 shows a plot of the estimated MSE x as
a function of x in the case τ = 4 using either L1 or L2 cross-validation. The peak-
ing of the MSE at the boundaries is a well-known problem associated with kernel
smoothers; it can be alleviated using the reflection technique of Hall and Wehrly

6 In the rare case of non-unique minima in PRESAR cross-validation, the dilemma may be resolved
by picking the result closest to one given by PRESS.
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Fig. 3.2 Plot of estimated MSE x as a function of x in the case τ = 4 using either L1 (dashed circles)
or L2 cross-validation (solid lines). (a) Normal data; (b) Laplace data

τ = 1 2 4

Normal 1.010 1.026 1.034

Laplace 0.970 0.959 0.941

Contam. 0.987 0.934 0.887

Table 3.3 Entries are estimated ratios IMSE(L1)/IMSE(L2) where L1 and L2 indicate the type of
cross-validation used, and τ2 is the error variance; the standard error of each entry is approximately
0.01 as found by subsampling

(1991) which, in effect, makes the kernel estimator approximately equivalent to
local linear fitting when the data are evenly distributed on the x-scale—see, e.g.,
Fan and Gijbels (1996) or Hastie and Loader (1993).

The performance of PRESS appears slightly better in the Normal case—see
Fig. 3.2a, while PRESAR has a definite (and seemingly uniform) advantage in
the Laplace case—see Fig. 3.2b. This is hardly surprising since minimization of
∑n

t=1 ε2
t (resp. ∑n

t=1 |εt |) is tantamount to Maximum Likelihood in the Normal
(resp. Laplace) case. However, note that PRESAR’s target is minimization of the
Mean Absolute Error (MAE) of estimator mx and not its MSE; the fact that PRE-
SAR yields MSE’s that are smaller than that from PRESS (whose target is MSE
minimization) is quite noteworthy.

Estimating MSE x on a grid of points gives a natural estimate of the Integrated
MSE of mx denoted by IMSE=

∫ 2π
0 MSE x dx. Table 3.3 compares the IMSE of mx

using either L1 or L2 cross-validation for the bandwidth. The implication is that the
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two methods are very similar in the Gaussian case (with PRESS being slightly bet-
ter). However, as expected, L1 cross-validation has a definite advantage in the heavy-
tailed case, and this is particularly true when the error variance is large (and/or the
sample size is small).

The simulation was repeated in a situation involving outliers; here the errors
were εt ∼ i.i.d. N(0,τ2) with a 5 % contamination of N(0,(10τ)2). Not surprisingly,
PRESAR displays robustness to outliers and clearly outperforms PRESS in this case
as indicated by the last row of Table 3.3. As a consequence of the above discussion,
it seems that PRESAR may be preferable to PRESS overall since (a) it is optimal
for the L1 predictor, and (b) it works very well even for the L2 predictor and MSE
minimization—outperforming PRESS cross-validation in the non-normal examples.



Chapter 4
Model-Free Prediction in Regression

4.1 Introduction

In Chap. 3, the data {(Yt ,xt), t = 1, . . . ,n} were assumed to have been generated by
model (3.1). As already mentioned, the regressor x j is often thought of as deter-
ministic, and μ(x j) has the interpretation of the expected value of the response Yj

associated with regressor x j. If the regressors are random, i.e., if x1, . . . ,xn are the
realizations of the random variables X1, . . . ,Xn, we can still write an analog of model
(3.1), i.e.,

Yt = μ(Xt)+σ(Xt) εt for t = 1, . . . ,n (4.1)

where the εt are i.i.d. (0,1). Coupled with the “exogeneity” assumption that the
εt are independent of X1, . . . ,Xn, all results of Chap. 3 go through verbatim with
the understanding that inference is conducted conditionally on event Sn = {Xj =
x j for j = 1, . . . ,n}. A weaker assumption is to simply assume that the pairs

(Yj,Xj) for j = 1, . . . ,n are i.i.d. (4.2)

where the joint distribution of (Yj,Xj) is not restricted to belong to a parametric
family. Define μ(x j) = E(Yj|Xj = x j), and recall that E(Y |X) is the Hilbert space
projection of Y on the subspace of all (measurable) functions of X . It then follows
that the discrepancy Zj =Yj −μ(Xj) is uncorrelated with all (measurable) functions
of Xj. One can then write down the equation

Yt = μ(Xt)+Zt for t = 1, . . . ,n

but the above could not plausibly be considered as a regression model with i.i.d.
errors. For instance, the second moment of Zj could very well depend on Xj; this
would make the heteroscedastic random regressor model (4.1) more plausible by
defining εt = Zt/σ(Xt) and σ2(xt) = Var(Yt |Xt = xt) since, by construction, the εt

would have conditional—and therefore also unconditional—mean zero and variance
one. However, there is no reason that the third (or higher moment) of Zj will not

© The Author 2015
D.N. Politis, Model-Free Prediction and Regression, Frontiers in Probability
and the Statistical Sciences, DOI 10.1007/978-3-319-21347-7 4
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depend on Xj, in which case the εt will not be i.i.d. (0,1) as model (4.1) requires.
The above goes to show that Eq. (4.2) is a vague structural assumption, and does
not constitute a nonparametric model per se. Throughout this chapter, we will work
with a weaker version of (4.2) that is elaborated upon in the next section.

Remark 4.1.1 (On resampling pairs) In Chap. 3, the residual-based bootstrap
method was employed in order to construct prediction intervals. As mentioned in
Sect. 2.4, the Model-free resampling algorithm also bears some similarity with the
residual bootstrap. However, the random regressor set of assumption (4.2) motivates
the use of the well-known pairs bootstrap which is nothing else than the i.i.d. boot-
strap of Efron (1979) applied to the i.i.d. pairs (Yj,Xj); see Bose and Chatterjee
(2002) for a review and comparison of several different resampling methods for
(linear) regression. By contrast to the residual bootstrap, the pairs bootstrap can be
performed without appeal to a particular model as it is based on the model-free
assumption (4.2); this makes it very useful for evaluating parameter uncertainty inc-
orporating the uncertainty due to model selection—see Efron (2014) including the
discussion pieces. However, the pairs bootstrap cannot create a pseudo-value for
the future response Yf associated with a chosen regressor value xf; hence, it is not
immediately useful as a method that yields prediction intervals.

4.2 Constructing the Transformation Towards i.i.d.–Ness

We now approach the nonparametric regression setup when a model such as Eq. (3.1)
cannot be considered to hold true. As discussed in the last section, it may be the case
that the skewness and/or kurtosis of Yt depends on xt ; therefore, centering and stu-
dentization alone cannot yield “i.i.d.–ness.” For example, kernel estimates of skew-
ness and kurtosis from dataset cps71—although slightly undersmoothed—clearly
point to the nonconstancy of these two functions; see Fig. 4.1. Throughout this chap-
ter, we will work with a weaker version of (4.2) that is described as follows:

Model-free Regression setup. The dataset is {(Yt ,xt), t = 1, . . . ,n} where the re-
gressors x1, . . . ,xn are either deterministic, or represent a realization of the ran-
dom variables X1, . . . ,Xn. In the latter case, it will be assumed that Yj is inde-
pendent of {Xk for k �= j}, and inference will be conducted conditionally on event
Sn = {Xj = x j for j = 1, . . . ,n}. Conditionally on Sm, for any m ≥ 1, the responses
Y1, . . . ,Ym will be assumed independent although not identically distributed. Also
assume that the conditional distribution P{Yj ≤ y|Xj = x} does not depend on j.

As before, the objective is inference regarding the future response Yf associated with
predictor Xf taking the value xf.

Remark 4.2.1 In the case of deterministic design, the above Model-free Regres-
sion setup implies that the Yts are independent although, of course, not identically
distributed. In the case of random design, the Model-free Regression setup implies
Eq. (4.2) if one additionally assumes that X1, . . . ,Xn are i.i.d.; the latter is a conve-
nient assumption that may be adopted if/when needed.
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Fig. 4.1 (a) Skewness of log-wage vs. age. (b) Kurtosis of log-wage vs. age [Both are kernel-based
estimates from dataset cps71; kurtosis is given relative to the normal value of 3]

For nonparametric estimation, some smoothness assumptions are typically needed
as well. We will generally work under the simple assumption that the common con-
ditional distribution Dx(y) = P{Yj ≤ y|Xj = x} is continuous in both x and y. Ass-
uming that Dx(y) is continuous in y implies that Y1, . . . ,Yn are continuous random
variables; otherwise standard methods like Generalized Linear Models (GLM) can
be invoked, e.g., logistic regression, Poisson regression, etc.—see, e.g., McCullagh
and Nelder (1983). Nevertheless, one of the variations of the methodology, namely
the Limit Model-Free method, remains valid when the responses have a discrete (or
even mixed) distribution thus presenting an alternative to a GLM with “link” that
depends smoothly on x; see Remark 4.4.2. Since the collection of functions Dx(·)
is assumed to depend in a smooth way on x, we can estimate Dx(y) by a “local”
empirical distribution such as

N−1
x,h ∑

t:|xt−x|<h/2

1{Yt ≤ y} (4.3)

where 1{Yt ≤ y} denotes the indicator of event {Yt ≤ y}, and Nx,h is the number
of summands, i.e., Nx,h = # {t : |xt − x| < h/2}. More generally, we can estimate
Dx(y) by

D̂x(y) =
n

∑
i=1

1{Yi ≤ y}K̃

(
x− xi

h

)
(4.4)

where K̃
( x−xi

h

)
= K

( x−xi
h

)
/∑n

k=1 K
( x−xk

h

)
as before; for any fixed y, this is just

a Nadaraya-Watson smoother of the variables 1{Yt ≤ y}, t = 1, . . . ,n. Note that
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Eq. (4.3) is just D̂x(y) with K chosen as the rectangular kernel, i.e., K(x) = 1{|x| ≤
1/2}; in general, we can use any nonnegative integrable kernel K(·) in (4.4). The
nonnegativity of the kernel K(·) is important in order to ensure that D̂x(·) is a bona
fide distribution function for any x.

Remark 4.2.2 For D̂x to be an accurate estimator of Dx, the value x must be such
that it has an appreciable number of h-close neighbors among the original predictors
x1, . . . ,xn, i.e., that the number Nx,h is not too small. For example, if Nx,h ≤ 1 the
estimation of Dx is not just inaccurate—it is simply infeasible.

Estimator D̂x(y) enjoys many good properties including asymptotic consistency un-
der regularity conditions. For example,

Var(D̂x(y)) = O(
1

hn
) and Bias (D̂x(y)) = O(h2) (4.5)

with h → 0 but such that hn → ∞; see Theorem 6.1 of Li and Racine (2007). Never-
theless, D̂x(y) is discontinuous as a function of y, and therefore unacceptable for our
immediate purposes. In Politis (2010) a piecewise linear—and strictly increasing—
version of D̂x(y) was proposed; here, we will take a slightly different approach.
Observe that the discontinuity of D̂x(y) as a function of y stems from the disconti-
nuity of the indicator functions 1{Yt ≤ y}. We may therefore replace 1{Yt ≤ y} by

the smooth function Λ
(

y−Yt
h0

)
in Eq. (4.4) leading to the estimator

D̄x(y) =
n

∑
i=1

Λ
(

y−Yt

h0

)
K̃

(
x− xi

h

)
(4.6)

that is also studied in Li and Racine (2007, Chap. 6). In the above, h0 is a posi-
tive bandwidth parameter and Λ(y) is a smooth distribution function that is strictly
increasing, rendering the estimator D̄x(y) continuous and strictly increasing in y.
For example, we may define Λ(y) =

∫ y
−∞ λ (s)ds, where λ (s) is a symmetric density

function that is continuous and nonnegative over its support. In this case, it is ap-
parent that D̄x(y) will not only be continuous—it will actually be differentiable with
respect to y. Thus, a different interpretation of estimator D̄x(y) is that it is the in-
definite integral of a local estimate of the density associated with distribution Dx(y),
i.e., an estimate of the derivative of Dx(y) with respect to y (provided that exists).

Remark 4.2.3 A local linear (or polynomial) smoother of the indicator variables

1{Yt ≤ y} or the smooth variables Λ
(

y−Yt
h0

)
could conceivably be used in place of

the local constant estimators (4.4) and (4.6); this may be preferable in view of bet-
ter handling of edge effects and non-equally spaced x–points. There is a difficulty
here as these local linear (or polynomial) smoothers are not guaranteed to yield an
estimated conditional distribution that is a proper distribution function, i.e., nonde-
creasing in y with a left limit of 0 and right limit of 1; see Li and Racine (2007).
There have been several proposals in the literature to address this issue. An inter-
esting one is the adjusted Nadaraya-Watson estimator of Hall et al. (1999). In add-
ition, Hansen (2004) has proposed a quick-and-easy adjustment to the local linear
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estimator that yields a proper distribution function while maintaining its favorable
asymptotic properties. The local linear versions of D̂x(y) and D̄x(y) using Hansen’s
(2004) adjustment are given by:

D̂LL
x (y) =

∑n
i=1 w�

i 1(Yi ≤ y)

∑n
i=1 w�

i
and D̄LL

x (y) =
∑n

i=1 w�
i Λ( y−Yi

h0
)

∑n
i=1 w�

i
. (4.7)

The weights w�
i are defined by

w�
i =

{
0 when β̂ (x−Xi)> 1

wi(1− β̂(x−Xi)) when β̂ (x−Xi)≤ 1
(4.8)

where

wi =
1
h

K(
x−Xi

h
) and β̂ =

∑n
i=1 wi(x−Xi)

∑n
i=1 wi(x−Xi)2 . (4.9)

See Chap. 9 for an application of the above to a time series prediction problem.

Fact 4.2.1 Under regularity conditions that include a well-behaved “density” f (·)
(e.g., large-sample histogram) of the design points x1, . . . ,xn and the assumption
that, for all x, Dx(y) is twice continuously differentiable as a function of y, it follows
that D̄x(y) satisfies an equation similar to Eq. (4.5), namely:

Var(D̄x(y)) = O(
1

hn
) and Bias(D̄x(y)) = O(h2 + h2

0) (4.10)

assuming that h0 = o(h), h → 0, hn → ∞, and
√

hn(h3 + h3
0) = o(1); see Theo-

rem 6.2 of Li and Racine (2007). Furthermore, the two estimators D̄x(y) and D̂x(y)
are asymptotically equivalent, i.e., for any fixed x,

√
hn (D̄x(y)− D̂x(y)) = op(1).

Interestingly, although the two estimators D̄x(y) and D̂x(y) have Mean Squared Er-
rors (MSE) that are of the same asymptotic order, smoothing may give a finite-
sample advantage when the true Dx(y) is smooth (at least twice continuously differ-
entiable) as a function of y. Comparing Eq. (6.2) and (6.4) of Li and Racine (2007),
it follows that:

MSE [D̂y(x)]−MSE [D̄y(x)] = cy,x
h0

nh
+ o(max{h4,

1
nh

}) (4.11)

where cy,x =C ∂
∂y Dx(y)/ f (x) for some constant C ≥ 0.

Remark 4.2.4 (On choice of bandwidths) In order to minimize the asymptotic
MSE of D̄x(y), the optimal bandwidth specifications are h ∼ chn−1/5 and h0 ∼
c0n−2/5 for some positive constants ch,c0. This suggests the following bandwidth
choice rule-of-thumb which works reasonably well in practice: pick h via cross-
validation, and then let h0 = h2.
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Remark 4.2.5 (Quantile estimation) Recall that Dx(y) is assumed continuous as
a function of y. Suppose also that for some α ∈ [0,1] of interest, Dx(y) is strictly
increasing at y = D−1

x (α). Then, the asymptotic consistency of D̄x(y) that follows
from Eq. (4.10) implies that the inverse D̄−1

x (α) will be consistent for D−1
x (α); see,

e.g., Lemma 1.2.1 of Politis et al. (1999). Similarly, Eq. (4.5) implies that D̂−1
x (α)

is also consistent for D−1
x (α) where D̂−1

x (α) now denotes the quantile inverse.

Recall that the Yts are non-i.i.d. only because they do not have identical distributions.
Since they are continuous random variables, the probability integral transform is the
key idea to transform them towards “i.i.d.–ness.” To see why, note that if we let

ηi = Dxi(Yi) for i = 1, . . . ,n

our transformation objective would be exactly achieved since η1, . . . ,ηn would be
i.i.d. Uniform (0,1). Of course, Dx(·) is not known but we have the consistent es-
timator D̄x(·) as its proxy. Therefore, our practical transformation to be used in
connection with the Model-Free Prediction Principle amounts to defining

ui = D̄xi(Yi) for i = 1, . . . ,n. (4.12)

Claim 4.2.1 Under the regularity conditions implicit in Fact 4.2.1, including the
requirement that Dx(y) is (absolutely) continuous in y for all x, the variables
u1, . . . ,un are approximately i.i.d. Uniform (0,1).

The word “approximately” in the above should be interpreted as “asymptotically”
for large n; note that, technically, u1, . . . ,un represent the nth row of a triangular
array although this is not explicitly denoted. A way to prove Claim 4.2.1 is to use the

uniform consistency of D̄x(·), i.e., that supy |D̄x(y)−Dx(y)| P−→ 0 under regularity

conditions, and thus show that ui −ηi
P−→ 0 for each fixed i and xi.

Remark 4.2.6 If a parametric specification for Dx(y) happens to be available, i.e.,
if P{Yt ≤ y|xt = x} has known form up to a finite-dimensional parameter θx that
may depend on x, then obviously our probability integral transform of Yt would
be based on the parametric distribution with parameter θx estimated from a local
neighborhood of the associated regressor xt .

The probability integral transform has been previously used by Ruppert and Cline
(1994) as an intermediate step towards building better density estimators; however,
our application is quite different as the following sections make clear.
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4.3 Model-Free Optimal Predictors

4.3.1 Model-Free and Limit Model-Free Optimal Predictors

Since a transformation of the data towards i.i.d.–ness is available from Eq. (4.12),
we can now formulate optimal predictors in the Model-free paradigm. As a first step,
we formulate the inverse transformation needed in premise (b) of the Model-Free
Prediction Principle. To do this, consider the inverse transformation D̄−1

xf
which is

well-defined since D̄xf(·) is strictly increasing by construction. Note that, for any
i = 1, . . . ,n, D̄−1

xf
(ui) is a bona fide potential response Yf associated with predictor xf

since D̄−1
xf
(ui) has (approximately) the same distribution as Yf. These n valid poten-

tial responses given by {D̄−1
xf
(ui) for i= 1, . . . ,n} can be gathered together to give us

an approximate empirical distribution for Yf from which our predictors will be de-
rived. Thus, analogously with the discussion associated with the entries of Table 3.1
from Chap. 3, it follows that the L2–optimal predictor of g(Yf) will be the expected
value of g(Yf) that is approximated by

Πxf = n−1
n

∑
i=1

g
(
D̄−1

xf
(ui)
)
. (4.13)

Similarly, the L1–optimal predictor of g(Yf) will be approximated by the sample
median of the set {g

(
D̄−1

xf
(ui)
)
, i = 1, . . . ,n}. The model-free predictors are given

in the middle column of Table 4.1 that can be compared to Table 3.1 of the previous
chapter. Note that any of the two optimal model-free predictors (mean or median)
can be used to give the equivalent of a model fit. To fix ideas, suppose we focus on
the L2–optimal case and that g(x) = x. Calculating the value of the optimal predictor
of Eq. (4.13) for many different xf values, e.g., taken on a grid, the equivalent of a
nonparametric smoother of a regression function is constructed, and can be plotted
over the (Y,x) scatterplot. In this sense, Model-Free Model-Fitting is achieved as
discussed in Remark 2.2.2.

Remark 4.3.1 Following the discussion of Remark 4.2.3, recall that for D̄−1
xf

to be
an accurate estimator of D−1

xf
, the value xf must be such that it has an appreciable

number of h-close neighbors among the original predictors x1, . . . ,xn as discussed in
Remark 4.2.2. As an extreme example, note that prediction of Yf when xf is outside
the range of the original predictors x1, . . . ,xn, i.e., extrapolation, is not feasible in the
model-free paradigm. It is also apparent that the Model-free predictors of Table 4.1
are still computable in the case where the x–variable is discrete-valued provided,
of course, that Nx,h the number of data points in the local neighborhood of each of
these discrete values is large enough to permit accurate estimation of Dxf(·) locally.
What allows the method to work here—and also to still work in terms of predictive
intervals to be developed shortly—is that xf will by necessity be one of these discrete
values as well.
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Model-free (MF) LMF

L2–predictor of Yf n−1 ∑n
i=1 D̄−1

xf
(ui)

∫ 1
0 D̂−1

xf
(u)du

L1–predictor of Yf median{D̄−1
xf

(ui), i = 1, . . . ,n} D̂−1
xf

(1/2)

L2–predictor of g(Yf) n−1 ∑n
i=1 g

(
D̄−1

xf
(ui)
) ∫ 1

0 g
(
D̂−1

xf
(u)
)

du

L1–predictor of g(Yf) median{g
(
D̄−1

xf
(ui), i = 1, . . .,n

)} g
(
D̂−1

xf
(1/2)

)

Table 4.1 Middle column: Model-free (MF) optimal point predictors, where ui = D̄xi (Yi). Last
column: Limit Model-Free (LMF) optimal point predictors; in the bottom LMF entry, it was as-
sumed that g(·) is monotone [Recall that if g(·) is a monotone function, and X a random variable
with median M, the median of g(X) equals g(M)]

Finally, recall that under the Limit Model-Free (LMF) paradigm of Sect. 2.4.3, F
is the limit distribution of the i.i.d. variables u1, . . . ,un. In our case, F is known to
be the Uniform (0,1) distribution which can be used explicitly in the construction
of the optimal predictors that are given in the last column of Table 4.1. Also recall
that under the LMF methodology it is not required to generate the i.i.d. variables
u1, . . . ,un. Hence, it is not necessary to estimate Dx(y) as a continuous function (in
y), and the smoothing step involved in constructing D̄x(y) is not needed.1 Thus,
for the LMF point predictors, as well as the LMF prediction intervals developed in
Sect. 4.4, all that is needed is a consistent estimator of D−1

x (·) which can be imme-
diately provided by the (quantile) inverse D̂−1

x (·); see Remark 4.2.5. Note that the
Limit Model-free L2– and L1–optimal predictors are very intuitive, corresponding
to the mean and median of the (estimated) conditional distribution of Yf.

4.3.2 Asymptotic Equivalence of Point Predictors

To fix ideas, let us continue to focus on the simple case where g(x) = x, recall that
the L2–optimal predictor of Yf associated with design point xf is simply the condi-
tional expectation E(Yf|xf). The latter is well approximated by our kernel estimator
mxf (or a local polynomial) even without the validity of model (3.1), therefore also
qualifying to be called a model-free point predictor. Table 4.1 gave two alternative
approximations to the theoretical conditional expectation E(Yf|xf). How different
are these expressions? To start with, note that the Nadaraya-Watson estimator mxf

can be expressed alternatively as

1 Nevertheless, if Dx(y) is smooth in y, D̄x(y) may be more accurate than D̂x(y); see Eq. (4.11). So,
if a practitioner has taken the trouble to construct D̄x(y), they may well decide to use it in place of
D̂x(y) in all entries of Table 4.1.
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mxf =
n

∑
i=1

YiK̃

(
xf − xi

h

)
=

∫
y D̂xf(dy) =

∫ 1

0
D̂−1

xf
(u)du; (4.14)

where the last equality is due to the identity
∫

y F(dy) =
∫ 1

0 F−1(u)du that holds
true for any distribution F . In other words, the LMF L2–optimal predictor of Yf from
Table 4.1 is identical to the Nadaraya-Watson estimator. From the case g(x) = x of
Eq. (4.13) we have

Πxf = n−1
n

∑
i=1

D̄−1
xf
(ui);

also denote

Π̂xf = n−1
n

∑
i=1

D̂−1
xf
(ui). (4.15)

Under the regularity conditions implicit in Fact 4.2.1, it is not hard to show that Πxf

and Π̂xf are asymptotically equivalent, i.e., that for any xf,
√

nh (Πxf −Π̂xf) = op(1).
But perhaps more important is a relationship of Πxf and Π̂xf to the Nadaraya-Watson
smoother mxf . To motivate it, note that for large n, a law of large numbers gives the
approximation

mxf =

∫ 1

0
D̂−1

xf
(u)du � n−1

n

∑
i=1

D̂−1
xf

(ui) = Π̂xf . (4.16)

Claim 4.3.1 Under the regularity conditions implicit in Fact 4.2.1, including the
assumption that Dx(y) is continuous in x, and differentiable in y with derivative that
is everywhere positive on its support, Π̂xf and mxf are asymptotically equivalent,
i.e.,

√
nh (Π̂xf −mxf) = op(1) for any xf that is not a boundary point.

One way to prove the above is to show that the average appearing in (4.15) is close
to a Riemann sum approximation to the integral

∫ 1
0 D̂−1

xf
(u)du from Eq. (4.16) based

on a grid of n points. The law of the iterated logarithm for order statistics of uniform
spacings can be useful here; see Devroye (1981) and the references therein.

Remark 4.3.2 The above line of arguments indicates that there is a variety of est-
imators that are asymptotically equivalent to mxf in the sense of Claim 4.3.1. For
example, the Riemann sum M−1 ∑M

k=1 D̂−1
xf
(k/M) is such an approximation as long

as M ≥ n. A stochastic approximation can also be concocted as M−1 ∑M
i=1 D̂−1

xf
(Ui)

where U1, . . . ,UM are i.i.d. generated from a Uniform (0,1) distribution and M ≥ n.

Remark 4.3.3 Reverting momentarily to the L1–optimal predictors, note that the
Model-free L1–predictor of Yf can be expressed as:

median {D̄−1
xf
(ui)}= D̄−1

xf
(median{ui})� D̄−1

xf
(1/2)

since the uis are approximately Uniform (0,1). But D̄−1
xf
(1/2) � D̂−1

xf
(1/2); hence,

the Model-free L1–optimal point predictor is practically equivalent to the Limit
Model-free L1–optimal point predictor.
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Fig. 4.2 (a) Wage vs. age scatterplot. (b) Circles indicate the salary predictor from Eq. (4.13) cal-
culated from log-wage data with g(x) = ex. In both figures, the superimposed solid line represents
the MF L2–optimal salary predictor calculated from the raw data (without the log-transformation)

Remark 4.3.4 From Claim 4.3.1, it is apparent that Model-free and Limit Model-
free point predictors are asymptotically equivalent to the standard predictors based
on the mean and median of the (estimated) conditional distribution of Yf in the L2

and L1 cases, respectively. However, the advantages of the Model-free philosophy
are twofold: (i) it allows us to go beyond the point predictions and obtain valid pre-
dictive distributions and intervals for Yf as will be described in Sect. 4.4—this is sim-
ply not possible on the basis of the kernel estimator mxf without resort to a model
like (3.1); and (ii) it is a totally automatic method that relieves the practitioner
from the need to find an optimal transformation for additivity and variance
stabilization. This is a significant practical advantage because of the multitude of
such proposed transformations, e.g., the Box/Cox power family, ACE, AVAS, etc.;
see Linton et al. (2008) and the references therein. For example, Fig. 4.2a depicts the
cps71 dataset using the raw salary data, i.e., without the logarithmic transforma-
tion employed in Fig. 3.1a; superimposed is the MF L2–optimal predictor of salary
that uses transformation (4.12) on the raw data. As Fig. 4.2b shows, the latter is vir-
tually identical to the MF L2–optimal predictor obtained from the logarithmically
transformed data and then using an exponential as the function g(x) for predic-
tor (4.13). Furthermore, Fig. 4.3a shows the Q-Q plot of the transformed variables
ui based on the logarithmically transformed data whereas Fig. 4.3b is its analogue
based on the raw data; in both cases, the uniformity seems to be largely achieved,
and the practitioner can equally choose either domain to work with.
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Fig. 4.3 Q-Q plots of the transformed variables ui vs. the quantiles of Uniform (0,1) for the cps71
data: (a) The ui’s are obtained from the log-wage vs. age dataset of Fig. 3.1 using bandwidth 5.5.
(b) The ui’s are obtained from the raw (untransformed) dataset of Fig. 4.2 using bandwidth 7.3

4.3.3 Cross-Validation for Model-Free Prediction

As seen in the last subsection, estimating the conditional distribution Dx(·) by D̄x(·)
or D̂x(·) is a crucial part of the Model-free procedures; the accuracy of this est-
imation depends on the choice of bandwidth h. Recall that cross-validation is a
predictive criterion since it aims at minimizing the sum of squares (or absolute val-
ues) of predictive residuals. Nevertheless, we can still construct predictive residu-
als in model-free prediction, and thus cross-validation is possible in the model-free
framework as well. To fix ideas, suppose we focus on the L2–optimal predictor of

Eq. (4.13), and let Π (t)
t denote the predictor of Yt as computed from the delete-Yt

dataset: {(Yi,xi) for i = 1, . . . , t − 1 and i = t + 1, . . . ,n}, i.e., pretending the (Yt ,xt)

data pair is unavailable; this involves estimating Dx(·) by D̄(t)
x (·) computed from the

delete-Yt dataset, and having only n− 1 values of ui in connection with Eqs. (4.12)
and (4.13). Finally, define the MF predictive residuals:

ẽt = g(Yt)−Π (t)
t for t = 1, . . . ,n. (4.17)

Choosing the best bandwidth h to use in our model-free predictor (4.13) can then
be based on minimizing PRESS=∑n

t=1 ẽ2
t or PRESAR=∑n

t=1 |ẽt | as before. If D̂x and
D̄x are based on k–nearest neighbor estimation as in Remark 4.2.3, then minimizing
PRESS or PRESAR would yield the cross-validated choice of k to be used. Note that
cross-validation using the MF predictive residuals of Eq. (4.17) can be quite compu-
tationally expensive. In view of Claim 4.3.1 arguing that the Model-free L2–optimal
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predictor (4.13) is asymptotically equivalent to a kernel smoother of the (g(Y ),x)
scatterplot, it follows that cross-validation on the latter should give a quick approx-
imate solution to the bandwidth choice for the Model-free predictors of Sect. 4.3.1
as well.

4.4 Model-Free Bootstrap

The empirical distribution of g(Yf) that was mentioned in the construction of pre-
dictor (4.13) cannot be regarded as a predictive distribution because it does not
capture the variability of estimator D̄x; resampling gives us a way out of this dif-
ficulty once again. Generally, the predictive distribution and prediction intervals
for g(Yf) can be obtained by the resampling algorithm of Sect. 2.4 that is re-cast
below in the model-free regression framework. Let g(Yf)−Πxf be the prediction
root with Πxf denoting either the L2– or L1–optimal predictor from Table 4.1, i.e.,
Πxf = n−1 ∑n

i=1 g
(
D̄−1

xf
(ui)
)

or Πxf = median {g
(
D̄−1

xf
(ui)
)}. Then, our Model-free

(MF) bootstrap algorithm for regression goes as follows.

Algorithm 4.4.1 RESAMPLING ALGORITHM FOR MF PREDICTIVE DISTRIBU-
TION AND PREDICTION INTERVALS FOR g(Yf)

1. Based on the Y –data, estimate the conditional distribution Dx(·) by D̄x(·), and
use Eq. (4.12) to obtain the transformed data u1, . . . ,un that are approximately
i.i.d.; let F̂n denoted the empirical distribution of u1, . . . ,un.

a. Sample randomly (with replacement) the transformed data u1, . . . ,un to create
bootstrap pseudo-data u∗1, . . . ,u

∗
n whose empirical distribution is denoted F̂∗

n .
b. Use the inverse transformation D̄−1

x to create pseudo-data in the Y domain,
i.e., let Y ∗

n = (Y ∗
1 , . . . ,Y

∗
n ) where Y ∗

t = D̄−1
xt
(u∗t ).

c. Generate a bootstrap pseudo-response Y ∗
f by letting Y ∗

f = D̄
−1

xf
(u) where u is

drawn randomly from the set (u1, . . . ,un).
d. Based on the pseudo-data Y ∗

n, re-estimate the conditional distribution Dx(·);
denote the bootstrap estimator by D̄∗

x(·).
e. Calculate a replicate of the bootstrap root g(Y ∗

f )− Π ∗
xf

where we define

Π ∗
xf
= n−1 ∑n

i=1 g
(

D̄∗−1

xf
(u∗i )
)

or Π ∗
xf
= median {g

(
D̄∗−1

xf
(u∗i )
)
} according to

whether L2– or L1–optimal prediction has been used for the original Πxf .

2. Steps (a)—(e) in the above are repeated B times, and the B bootstrap root repli-
cates are collected in the form of an empirical distribution with α–quantile den-
oted by q(α).

3. Then, the model-free (1−α)100% equal-tailed, prediction interval for g(Yf) is

[Πxf + q(α/2),Πxf + q(1−α/2)] (4.18)

and our estimate of the predictive distribution of g(Yf) is the empirical distribu-
tion of bootstrap roots obtained in step 2 shifted to the right by the number Πxf .
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Remark 4.4.1 (On edge effects) Smoothing techniques are often plagued by edge
effects, and this is especially true for kernel smoothers; Figs. 3.1a and 4.2a show
the bias problems near the left boundary. Thus, to implement the MF Resampling
Algorithm for prediction intervals given in this section—but also to construct the
MF point predictors of Table 4.1—it is practically advisable to only include the uis
obtained from xis that are away from either boundary by more than a bandwidth.
From these uis, a full-size resample (u∗1, . . . ,u

∗
n) can be generated that, in turn, gives

rise to a full-size pseudo-sample (Y ∗
1 , . . . ,Y

∗
n ) which allows us to compute the boot-

strap estimator D̄∗
x(·). Similarly, only the Y ∗s that are away from the boundaries by

more than a bandwidth will be used in the construction of Π ∗
xf

in Step 1(e) above.

Algorithm 4.4.1 is essentially the Model-free Bootstrap Algorithm 2.4.1 as app-
lied to the nonparametric regression setup. We could devise an analog of the
Limit Model-Free Bootstrap Algorithm 2.4.3 by just modifying Step 1(a) of
Algorithm 4.4.1, i.e., having u∗1, . . . ,u

∗
n drawn as i.i.d. from F (instead of F̂n); here,

of course, the limit distribution F is Uniform (0,1). Substituting F instead of F̂n

makes little impact in practice because even with reasonably big sample sizes, F̂n is
already very close to Uniform (0,1); see, e.g., Fig. 4.3. Note, however, that defining
u∗1, . . . ,u

∗
n to be i.i.d. Uniform (0,1) does avoid the edge effects issues mentioned in

Remark 4.4.1. Hence, we will reserve the term Limit Model-Free (LMF) bootstrap
in regression for the following algorithm that takes it a step further: since we do not
need to rely (or even construct) the “uniformized” data u1, . . . ,un, the whole alg-
orithm can be based on the step function estimator D̂x(·) instead of the smoothed
D̄x(·). As D̂x(·) is a step function, D̂−1

x (β ) will be interpreted as a quantile inverse,
i.e., D̂−1

x (β ) = inf{y such that D̂x(y) ≥ β}. As before, let Πxf denote either the
L2– or L1–optimal predictor from Table 4.1, i.e., Πxf = n−1 ∑n

i=1 g
(
D̄−1

xf
(ui)
)

or
Πxf = median {g

(
D̄−1

xf
(ui)
)}.

Algorithm 4.4.2 LMF RESAMPLING ALGORITHM FOR PREDICTIVE DISTRIBU-
TION AND PREDICTION INTERVALS FOR g(Yf)

1. Based on the Y –data, estimate the conditional distribution Dx(·) by D̂x(·).
a. Generate bootstrap pseudo-data u∗1, . . . ,u

∗
n i.i.d. Uniform (0,1), and denote

F̂∗
n the empirical distribution of u∗1, . . . ,u

∗
n.

b. Use the quantile inverse D̂−1
x to create pseudo-data in the Y domain, i.e., let

Y ∗
n = (Y ∗

1 , . . . ,Y
∗
n ) where Y ∗

t = D̂−1
xt
(u∗t ).

c. Generate a bootstrap pseudo-response Y ∗
f by letting Y ∗

f = D̂
−1

xf
(u) where u is

drawn randomly from a Uniform (0,1) distribution.
d. Based on the pseudo-data Y ∗

n, re-estimate the conditional distribution Dx(·)
by the step-function estimator denoted by D̂∗

x(·).
e. Calculate a replicate of the bootstrap root g(Y ∗

f )− Π ∗
xf

where we define

Π ∗
xf
= n−1 ∑n

i=1 g
(

D̂∗−1

xf
(u∗i )
)

or Π ∗
xf
= median {g

(
D̂∗−1

xf
(u∗i )
)
} according to

whether L2– or L1–optimal prediction has been used for the original Πxf .
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2. Steps (a)—(e) in the above are repeated B times, and the B bootstrap root repli-
cates are collected in the form of an empirical distribution with α–quantile den-
oted by q(α).

3. The Limit Model-Free (1−α)100% equal-tailed, prediction interval for g(Yf) is

[Πxf + q(α/2),Πxf + q(1−α/2)] (4.19)

and our estimate of the predictive distribution of g(Yf) is the empirical distribu-
tion of bootstrap roots obtained in step 2 shifted to the right by the number Πxf .

Remark 4.4.2 (On discrete responses) Until now, it has been assumed that Dx(y)
is continuous both in x and y. Continuity in x is a sine qua non in terms of esti-
mating Dx(·) by a local (in x) window technique. However, it is interesting to see
that the above LMF algorithm remains valid verbatim when Dx(y) is the distribution
of a discrete random variable, and even when Dx(y) is the distribution of a mixed
discrete–continuous random variable. The reason is that the step function estimator
D̂x(y) remains consistent in this case as it does not rely on continuity of Dx(y) in y.
However, when g(Yf) takes values in a countable set, the caveats of Sect. 2.4.4 apply;
in this case, optimality of the point predictor should be gauged with respect to 0–1
loss, and the whole predictive distribution of g(Yf) should be estimated/presented
instead of just prediction intervals.

As we have seen, the LMF method has two advantages namely: (a) it is not af-
fected by edge effect corruption of u1, . . . ,un, and (b) it can accommodate discrete
(or mixed) responses. However, it is the basic MF method that affords us a general-
ization that is analogous to using the predictive residuals in model-based regression
in Sect. 3.5; this is the subject of the following section.

4.5 Predictive Model-Free Bootstrap

The success of the MF/MB method of Sect. 3.5 was based on the fact that the
distribution of the prediction error can be approximated better by the (empirical)
distribution of the predictive residuals as compared to the (empirical) distribution
of the fitted residuals. Using the latter—as in the Model-Based (MB) method—
typically results in variance underestimation and under-coverage of prediction inter-
vals. Since Model-Free (MF) predictive residuals are computable from Eq. (4.17),
one might be tempted to try to use them in order to mimic the MF/MB construc-
tion. Unfortunately, the MF predictive residuals of Eq. (4.17) are not i.i.d. in the
model-free context of the present chapter; hence, i.i.d. bootstrap on them is not rec-
ommended. In what follows, we will try to identify analogs of the i.i.d. predictive
residuals in this model-free setting. Recall that the accuracy of our bootstrap pre-
diction intervals hinges on the accuracy of the approximation of the prediction root
g(Yf)−Πxf by its bootstrap analog, namely g(Y ∗

f )−Π ∗
xf

. However, Πxf is based on
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a sample of size n, and Yf is not part of the sample. Using predictive residuals is a
trick that helps the bootstrap root mimic this situation by making Y ∗

f into a genuinely
“out-of-the-sample” point; the reason is that every data point is treated as an “out-
of-the-sample” point as far as the computation of predictive residuals is concerned.
We can still achieve this effect within the basic MF paradigm using an analogous

trick; to see how, let D̄(t)
xt denote the estimator D̄xt as computed from the delete-Yt

dataset: {(Yi,xi), i = 1, . . . , t − 1 and i = t + 1, . . . ,n}. Now let

u(t)t = D̄(t)
xt (Yt) for t = 1, . . . ,n; (4.20)

the u(t)t variables will serve as the analogs of the predictive residuals ẽt of Sect. 3.5.
Although the latter are approximately i.i.d. only when model (3.1) holds true, the

u(t)t s are approximately i.i.d. in general under the weak assumptions of smoothness
of Dx(y). The Predictive Model-Free (PMF) bootstrap algorithm goes as follows.

Algorithm 4.5.1 PMF RESAMPLING ALGORITHM FOR PREDICTIVE DISTRIBU-
TION AND PREDICTION INTERVALS FOR g(Yf)

• The PMF Resampling Algorithm is identical to Algorithm 4.4.1 with one excep-

tion: replace the variables u1, . . . ,un by u(1)1 , . . . ,u(n)n throughout the construction.

In addition, the PMF optimal point predictors are identical to the MF predictors
given in the middle column of Table 4.1 with the same exception: replace the vari-

ables u1, . . . ,un by u(1)1 , . . . ,u(n)n . However, as was the case in the model-based case
of Sect. 3.5, there is little advantage in using the PMF point predictors. It is the

finite-sample variability of u(1)1 , . . . ,u(n)n that is generally bigger compared to that of
u1, . . . ,un that results into prediction intervals with better coverage.

4.6 Model-Free Diagnostics

The three Model-Free prediction schemes in regression (MF, LMF, and PMF) have
been developed under minimal assumptions, e.g., continuity of Dx(y) in both x
and y—although the latter can be dropped in the LMF scheme—and availability
of enough data so that “local” estimation can take place. With regards to the latter,
traditional conditions for asymptotic validity would include the usual requirement
that h → 0 as n → ∞ but also ensuring Nx,h → ∞ for all x over an interval of in-
terest; see Remark 4.2.2. For good finite-sample results, however, we would like
Dx(·) to remain largely unchanged over an x–interval of length 2h, where h is the
chosen bandwidth in the practical application. Hence continuity is not enough in
practice; what is needed is that Dx(·) is changing smoothly with x. As an illustra-
tion, consider the following problematic model Yt = β0 + β1xt + ctεt where xt = t
for t = 1, . . . ,n, ct = 1{t ≥ n/2}, and εt ∼ i.i.d. N(0,σ2). The change-point that is
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Fig. 4.4 (a) Scatterplot of model Y = 2x+1{x≥ 25}·εx for x= 1, . . . ,50 with εx ∼ i.i.d. N(0,100).
(b) Q-Q plot of the transformed variables ut vs. the quantiles of Uniform (0,1)

present in the error variance obviously negates our practical requirement that Dx(·)
changes slowly with x; see Fig. 4.4a for an illustration. Letting ut = D̄t(Yt), it is easy
to see that ut � 1/2 for all t < n/2, but ut ∼ i.i.d. Uniform (0,1) for t ≥ n/2. This
mixed quality of the transformed variables ut causes the basic Model-free prediction
method to break down. Interestingly, the LMF method is robust in such a setting as
it does not rely on the variables u1, . . . ,un. The LMF method would be problematic
here only in the neighborhood of the change-point, i.e., for x within h of the middle
value. Fortunately, the problem can be diagnosed by an exploratory investigation
of the transformed variables ui much like the usual diagnostics on residuals in re-
gression. It is obvious that non-uniformity of the uis is a red flag, and can be easily
diagnosed by a histogram and/or Q-Q plot. In particular, if the distribution of the
uis appears to contain a point mass at 1/2 or elsewhere, then a problem is identified;
for example, the Q-Q plot of Fig. 4.4b clearly indicates the presence of a point mass
on 1/2.

4.7 Simulations

4.7.1 When a Nonparametric Regression Model Is True

The building block for the simulation in this subsection is model (3.1) with μ(x) =
sin(x), σ(x) = 1/2, and errors εt that are i.i.d. N(0,1) or Laplace (two-sided exp-
onential) rescaled to unit variance. Knowledge that the variance σ(x) is constant
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Fig. 4.5 Typical scatterplots with superimposed kernel smoothers; (a) Normal data; (b) Laplace
data

was not used in the estimation procedures, i.e., σ(x) was estimated from the data.
For each distribution, 500 datasets each of size n = 100 were created with the des-
ign points x1, . . . ,xn being equi-spaced on (0,2π), and Nadaraya-Watson estimates
of μ(x) = E(Y |x) and σ2(x) = Var(Y |x) were computed using a normal kernel in
R. Two typical datasets are depicted in Fig. 4.5. Prediction intervals with nominal
level 90 % were constructed using the two methods presented in Chap. 3: Model-
Based (MB) and Model-Free/Model-Based (MF/MB); the three methods presented
in this chapter: Model-Free (MF), Limit Model-Free (LMF) and Predictive Model-
Free (PMF), and the NORMAL approximation interval (3.17). For all methods (ex-
cept the LMF and the NORMAL) the correction of Remark 4.4.1 was employed.
The required bandwidths were computed by L1 (PRESAR) cross-validation. For
simplicity—and to guarantee that Mx ≥ m2

x—equal bandwidths were used for both
mx and Mx, i.e., the constraint h = q was imposed. Before evaluating the perfor-
mance of the resulting prediction intervals, it is of interest to check whether the
ui defined in (4.12) are indeed “uniformized” as their usage in the MF and PMF
procedures requires. From each of the 500 replications, the set of u1, . . . ,un was
constructed, and compared to the Uniform (0,1) via a Kolmogorov-Smirnov (K-S)
test. Only 1 out of the 500 cases resulted in a rejection of the Uniform (0,1) null
hypothesis at level 0.05. This could be regarded as good news for the “uniformize”
procedure of Eq. (4.12) but it also underscores an interesting issue: the variability of
the K-S distances is smaller than that expected from i.i.d. Uniform (0,1) samples,
and that is why the number of rejections is smaller than expected. The reason for this
reduced variability could be attributed to the fact that the u1, . . . ,un are not exactly
independent in our finite-sample setup; instead, they exhibit lag-1 and lag-2 auto-
correlations of the order of -0.07 which is not statistically significant but neverthe-
less present. The negative—albeit small—autocorrelation may result into a reduced
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probability of clustering of the u1, . . . ,un data, and therefore explain the reduced
variability of the K-S statistics. Note, however, that this is a finite-sample effect;
with a larger n, the bandwidth h decreases, and so does the correlation present in the
u1, . . . ,un data. In any case, this correlation is destroyed in the bootstrap reshuffling
that is implemented in the MF and PMF procedures. For each type of prediction in-
terval constructed, the corresponding empirical coverage level (CVR) and average
length (LEN) were recorded together with the (empirical) standard error associated
with each average length. The standard error of the reported coverage levels over
the 500 replications is 0.013; notably, these coverage levels represent overall (i.e.,
unconditional) probabilities in the terminology of Cox (1975) and Beran (1990). As
previously mentioned, in the practical construction of bootstrap predictive intervals
one would employ a large number of bootstrap simulations, e.g., B = 999; we did
so here, effectively re-running the simulations of Politis (2013) that were based on
B = 249 due to limitations on computing time. Each method, NORMAL, MB, etc.,
is represented by 3 lines of entries in Tables 4.2 and 4.3. The first line of entries
gives the empirical coverage levels (CVR) of prediction intervals calculated at sev-
eral xf points spanning the interval (0,2π); nominal coverage was 0.90. The second
line of entries gives the average length (LEN) of the corresponding interval; and the
third line gives the standard error associated with interval length. Tables 4.2 and 4.3
summarize our findings, and contain a number of important features.

• As mentioned before, the standard error of the reported CVRs is 0.013. In ad-
dition, note that—by construction—this simulation problem has some symmetry
that helps us further appreciate the variability of the CVRs. For example, the
expected CVRs should be the same for xf = 0.3π and 1.7π in all methods; so
for the NORMAL case of Table 4.2, the CVR would be better estimated by the
average of 0.886 and 0.866, i.e., closer to 0.876. Similarly, the CVR of PMF for
xf = 0.15π in Table 4.3 can be better estimated by (0.918+ 0.878)/2= 0.898.

• The NORMAL intervals are characterized by under-coverage even when the true
distribution is Normal. This under-coverage is a bit more pronounced when xf =
π/2 or 3π/2 due to the high bias of the kernel estimator at the points of a “peak”
or “valley” that the normal interval (3.17) “sweeps under the carpet.”

• The length of the NORMAL intervals is quite less variable than those based on
bootstrap; this should come as no surprise since the extra randomization implicit
in any bootstrap procedure is expected to inflate the overall variances. [Note that
the standard deviation of the length can be estimated by st. err. ×√

500.]
• The MF/MB intervals are always more accurate (in terms of coverage) than their

MB analogs in Tables 4.2 and 4.3. This was not unexpected since (i) the reg-
ression model (3.1) holds true here; (ii) bootstrap model-based intervals are exp-
ected to under-cover; and (iii) by Fact 3.5.1, MF/MB intervals are expected to be
wider, and therefore partially correct this under-coverage. The increase in cover-
age of the MF/MB intervals comes at the cost of increased variability of interval
length.
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• The three Model-free methods have generally comparable coverages and vari-
abilities; in addition, they are all comparable to the MF/MB intervals. Hence, it
appears there is little to lose in conducting model-free inference even when the
model is true.

• All bootstrap methods (model-free and model-based) result in overcoverage
when xf ≈ π ; this could be explained by the phenomenon of “bias leakage” that
will be discussed in more detail below. The only bootstrap method that, in prin-
ciple, should be immune to “bias leakage” is LMF; this is confirmed in Table 4.3
while the unusually large value of 0.926 of Table 4.2 could be attributed to the
randomness of the simulation (it is two standard errors away from 0.90).

The case xf ≈ π deserves special discussion. In principle, this should be an easy case
since kernel smoothers have approximately zero bias there. Nevertheless, smoothers
will have appreciable bias at all other points where the curvature is nonzero, and in
particular, at the peak/valley points xf = π/2 and xf = 3π/2. This bias is passed
on to the residuals (fitted, predictive, or even the ui variables of MF and PMF) in
the following way: residuals obtained near the point xf = π/2 will tend to be larger
(their distribution being skewed right), while residuals near the point xf = 3π/2 will

xf/π = 0.15 0.3 0.5 0.75 1 1.25 1.5 1.7 1.85

NORMAL

0.878

1.6147

0.006

0.886

1.6119

0.006

0.854

1.6117

0.006

0.886

1.6116

0.006

0.878

1.6117

0.006

0.860

1.6116

0.006

0.876

1.6117

0.006

0.866

1.6119

0.006

0.870

1.6146

0.006

MB

0.852

1.6021

0.013

0.864

1.5326

0.013

0.818

1.4547

0.012

0.854

1.5855

0.014

0.878

1.7120

0.015

0.866

1.5955

0.013

0.802

1.4530

0.012

0.808

1.5223

0.012

0.818

1.5666

0.013

MF/MB

0.904

1.8918

0.017

0.894

1.8097

0.016

0.890

1.7248

0.017

0.900

1.8602

0.016

0.928

2.006

0.016

0.910

1.8669

0.015

0.870

1.7170

0.016

0.888

1.7930

0.015

0.896

1.8482

0.016

LMF

0.916

1.8581

0.016

0.872

1.7730

0.015

0.860

1.6877

0.014

0.898

1.8286

0.016

0.926

1.9685

0.017

0.910

1.8334

0.015

0.888

1.6921

0.015

0.914

1.7681

0.015

0.890

1.8213

0.015

MF

0.910

1.8394

0.016

0.888

1.7531

0.015

0.902

1.6784

0.014

0.892

1.8117

0.016

0.906

1.9423

0.017

0.922

1.8139

0.016

0.874

1.6808

0.015

0.896

1.7500

0.015

0.894

1.8085

0.015

PMF

0.900

1.8734

0.016

0.884

1.7814

0.014

0.880

1.7013

0.014

0.906

1.8394

0.015

0.912

1.9705

0.016

0.912

1.8462

0.015

0.884

1.7076

0.014

0.890

1.7759

0.014

0.902

1.8339

0.015

Table 4.2 Simulation results for additive model with i.i.d. Normal errors
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xf/π = 0.15 0.3 0.5 0.75 1 1.25 1.5 1.7 1.85

NORMAL

0.886

1.6296

0.008

0.892

1.6268

0.008

0.872

1.6266

0.008

0.896

1.6265

0.008

0.896

1.6266

0.008

0.878

1.6266

0.008

0.894

1.6266

0.008

0.904

1.6268

0.008

0.890

1.6296

0.008

MB

0.872

1.5881

0.017

0.836

1.5743

0.017

0.856

1.5114

0.018

0.868

1.6276

0.017

0.890

1.7526

0.017

0.860

1.6255

0.017

0.846

1.4487

0.016

0.880

1.5426

0.016

0.868

1.5804

0.016

MF/MB

0.914

1.8663

0.021

0.904

1.8602

0.022

0.906

1.7735

0.022

0.898

1.9157

0.020

0.938

2.044

0.020

0.898

1.9043

0.020

0.892

1.7049

0.020

0.874

1.8130

0.020

0.912

1.8575

0.019

LMF

0.902

1.8418

0.022

0.868

1.8470

0.022

0.904

1.8034

0.025

0.912

1.8777

0.022

0.910

1.9907

0.021

0.912

1.8978

0.022

0.870

1.7110

0.021

0.888

1.8025

0.021

0.886

1.8361

0.021

MF

0.898

1.8134

0.022

0.884

1.8307

0.022

0.886

1.7847

0.025

0.914

1.8632

0.023

0.938

1.9704

0.021

0.904

1.8756

0.023

0.874

1.7054

0.022

0.860

1.7932

0.021

0.866

1.8282

0.022

PMF

0.918

1.8504

0.022

0.910

1.8633

0.022

0.868

1.8090

0.024

0.880

1.8954

0.022

0.946

1.9953

0.021

0.928

1.8995

0.022

0.882

1.7236

0.021

0.842

1.8144

0.021

0.878

1.8341

0.020

Table 4.3 Simulation results for additive model with i.i.d. Laplace errors

tend to be smaller (more negative, i.e., skewed left). By the bootstrap reshuffling
of residuals, the skewness disappears but an artificial inflation of the residual distri-
bution ensues; this contamination of the residual pool may adversely influence the
prediction interval coverage. This is the phenomenon previously referred to as “bias
leakage” that is expected to result in over-coverage of bootstrap prediction (or con-
fidence) intervals at points where the regression function has small curvature. “Bias
leakage” would be alleviated with a larger sample size and/or using higher-order
smoothing kernels or other low bias approximation methods, e.g., wavelets. It could
also be alleviated using bandwidth tricks such as undersmoothing—see the detailed
discussion in Remark 3.5.2.

4.7.2 When a Nonparametric Regression Model Is Not True

In this subsection, we investigate the performance of the different prediction inter-
vals in a setup where model (3.1) is not true. For easy comparison with Sect. 4.7.1,
we will keep the same (conditional) mean and variance, i.e., we will generate
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xf/π = 0.15 0.3 0.5 0.75 1 1.25 1.5 1.7 1.85

NORMAL

0.906

1.5937

0.009

0.890

1.5911

0.009

0.890

1.5908

0.009

0.884

1.5908

0.009

0.908

1.5908

0.009

0.900

1.5908

0.009

0.870

1.5908

0.009

0.890

1.5911

0.009

0.872

1.5937

0.009

MB

0.846

1.4846

0.021

0.878

1.4530

0.019

0.860

1.3485

0.018

0.882

1.5421

0.019

0.894

1.6795

0.019

0.862

1.5329

0.017

0.804

1.4012

0.015

0.814

1.4745

0.014

0.826

1.5315

0.014

MF/MB

0.928

1.8161

0.031

0.946

1.7776

0.025

0.886

1.6409

0.023

0.964

1.8833

0.026

0.932

2.051

0.024

0.912

1.8695

0.022

0.846

1.7162

0.021

0.862

1.8017

0.019

0.880

1.8609

0.019

LMF

0.916

1.7555

0.027

0.934

1.7460

0.025

0.908

1.5870

0.023

0.928

1.8489

0.024

0.918

1.9798

0.024

0.898

1.7985

0.020

0.846

1.6652

0.019

0.884

1.7407

0.017

0.900

1.8094

0.017

MF

0.908

1.7344

0.027

0.932

1.7265

0.025

0.882

1.5561

0.023

0.910

1.8300

0.025

0.906

1.9345

0.023

0.910

1.7707

0.020

0.860

1.6355

0.019

0.876

1.7181

0.017

0.876

1.7963

0.018

PMF

0.926

1.7748

0.026

0.936

1.7636

0.024

0.932

1.5991

0.022

0.922

1.8550

0.023

0.932

1.9898

0.023

0.872

1.8083

0.019

0.872

1.6737

0.019

0.902

1.6737

0.016

0.902

1.8246

0.017

Table 4.4 Simulation results using regression model with non-identically distributed errors

independent Y data such that E(Y |x) = sin(x), Var(Y |x) = 1/4, and design points
x1, . . . ,x100 equi-spaced on (0,2π) as before. However, the error structure εx =
(Y −E(Y |x))/√Var(Y |x) may have skewness and/or kurtosis that depends on x,
thereby violating the i.i.d. assumption. For our simulation we considered the simple
construction:

εx =
cxZ +(1− cx)W√

c2
x +(1− cx)2

(4.21)

where cx = x/(2π) for x ∈ [0,2π ], and Z ∼ N(0,1) independent of W that has mean
zero and variance one but has an exponential shape, i.e., it is distributed as 1

2 χ2
2 −1,

to capture a changing skewness. Table 4.4 presents our findings; it is qualitatively
similar to Tables 4.2 and 4.3 although the problem at hand is more complicated
because of the skewness or kurtosis changing with x. In particular:

• Note the coverage of the NORMAL intervals decreases monotonically as xf

increases, yielding correct coverage in the region where skewness exists, and
under-coverage in the region with (close to) normal errors; this is counter-
intuitive but explained by the fact that the NORMAL interval undercovers in
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the case of normal data; see Table 4.2. The boost in coverage in the case of a
skewed distribution is a fluke.

• The MF/MB intervals correct (and sometimes over-correct) the under-coverage
of MB intervals.

• The three model-free methods perform well throughout, with the PMF being the
most conservative.

All in all, the Model-free Prediction Principle suggests ways to do inference in
nonparametric regression in the presence or absence of an additive regression model.
Interestingly, the Model-free methodology seems competitive to the model-based
ones when an additive model is true, suggesting that there is little loss in adopting
the Model-free approach throughout.
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Appendix 1: High-Dimensional and/or Functional Regressors

So far in Chap. 4, it has been assumed for simplicity that the regressors are uni-
variate; we now relax this assumption and show how the Model-free ideas are
immediately applicable bearing in mind, of course, the curse of dimensionality.
Throughout this Appendix we consider regression data (Y1,x1), . . . ,(Yn,xn) where
Yk is the univariate response associated with a regressor value xk that takes val-
ues in a linear vector space E equipped with a semi-metric d(·, ·). The space E
can be high-dimensional or even infinite-dimensional, e.g., a function space; see
Chap. 5 of Ferraty and Vieu (2006) for details. We will assume that the data adhere
to the Model-free regression setup defined in Sect. 4.2. As before, we can estimate
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Dx(y) = P{Yj ≤ y|Xj = x} by the “local” weighted average

D̂x(y) =
n

∑
i=1

1{Yi ≤ y}K̃

(
d(x,xi)

h

)
(4.22)

where K̃
(
h−1d(x,xi)

)
= K

(
h−1d(x,xi)

)
/∑n

k=1 K
(
h−1d(x,xk)

)
, the kernel K is a

bounded, symmetric probability density with compact support, and h > 0 is the
bandwidth parameter. For any fixed y, estimator D̂x(y) is just a Nadaraya-Watson
smoother of the variables 1{Yi ≤ y} for i = 1, . . . ,n. As such, it is discontinuous
as a function of y; to come up with a smooth estimator, we replace 1{Yi ≤ y} by

Λ
(

Yi−y
h0

)
in Eq. (4.22), leading to the estimator

D̄x(y) =
n

∑
i=1

Λ
(

Yi − y
h0

)
K̃

(
d(x,xi)

h

)
(4.23)

where h0 is another bandwidth parameter, and Λ(y) =
∫ y
−∞ λ (s)ds with λ (·) being a

symmetric density function that is continuous and strictly positive over its support.
As a result, D̄x(y) is differentiable and strictly increasing in y. Assuming Eq. (4.2)
and additional regularity conditions, e.g., that as n → ∞, max(h,h0)→ 0 but not too
fast, Ferraty and Vieu (2006, Theorem 6.4) showed that

D̄x(y)
a.s.−→ Dx(y) for any y, and D̄−1

x (α)
a.s.−→ D−1

x (α) (4.24)

for any α ∈ [0,1] as long as Dx(y) is strictly increasing at y = D−1
x (α). It is conjec-

tured that a similar consistency result can be obtained in the case of deterministic
regressors that follow a regular design. Conditionally on event Sn = {Xj = x j for j =
1, . . . ,n}, the Yts are non–i.i.d. but this is only because they do not have identical
distributions. Since they are assumed to be continuous random variables, the proba-
bility integral transform can again be used to transform them towards “i.i.d.–ness.”
Hence, as in Sect. 4.2, our proposed transformation amounts to defining

ui = D̄xi(Yi) for i = 1, . . . ,n. (4.25)

Equation (4.24) then implies that u1, . . . ,un should be approximately i.i.d. Uniform
(0,1) provided n is large. We can now invoke the Model-Free Prediction Principle
in order to construct optimal predictors of g(Yf) where Yf is the out-of-sample re-
sponse associated with regressor value xf, and g(·) is a real-valued function; for
simplicity, we focus on the case g(x) = x. As usual, the L2–optimal predictor of Yf

is the expected value of Yf given xf that is estimated in the Model-Free paradigm by

Πxf = n−1
n

∑
i=1

D̄−1
xf
(ui). (4.26)
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Similarly, the Model-Free (MF) L1–optimal predictor of g(Yf) is the median of
the set {D̄−1

xf
(ui), i = 1, . . . ,n}. Under the Limit Model-Free (LMF) paradigm, the

L2– and L1–optimal predictors are given by
∫ 1

0 D̂−1
xf
(u)du and D̂−1

xf
(1/2), respectively.

Of course, one can also construct traditional estimators of the L2– and L1–optimal
predictors of Yf; these are respectively given by

mxf =
n

∑
i=1

YiK̃
(
h−1d(xf,xi)

)
and D̄−1

xf
(1/2).

Equation (4.24) shows that D̄−1
xf
(1/2) is a consistent estimator of the theoretical

L1–optimal predictor D−1
xf
(1/2). Under some additional regularity conditions, Fer-

raty and Vieu (2006) also showed that the Nadaraya-Watson smoother mxf is consis-
tent for E(Yf|Xf = xf) under model (4.2). As in Sect. 4.3.2, here as well it is true that
the MF, LMF, and traditional predictors are asymptotically equivalent. To elaborate,

mxf =

∫
y D̂xf(dy) =

∫ 1

0
D̂−1

xf
(u)du �

∫ 1

0
D̄−1

xf
(u)du � n−1

n

∑
i=1

D̄−1
xf
(ui) = Πxf ,

and median{D̄−1
xf
(ui)} = D̄−1

xf
(median{ui}) � D̄−1

xf
(1/2)� D̂−1

xf
(1/2) since the uis

are approximately Uniform (0,1), and D̄−1
xf
(·) is strictly increasing.

Remark 4.7.1 All the aforementioned predictors are based on either the estimator
D̄xf(·) or D̂xf(·) whose finite-sample accuracy crucially depends on the number of
data pairs (Yj,Xj) with regressor value that lies in the neighborhood of the point of
interest xf. If few (or none) of the regressors are found close to xf, then nonparamet-
ric prediction will be highly inaccurate (or just plain impossible); this is where the
curse of dimensionality may manifest in practice.

As already mentioned, the main advantage of the Model-Free, transformation-based
approach to regression is that it allows us to go beyond point prediction and obtain
valid predictive distributions and intervals for Yf. To do this, however, some kind
of resampling procedure is necessary in order to also capture the variance due to
estimation error. For example, consider the prediction interval

[D̂−1
xf
(α/2), D̂−1

xf
(1−α/2)] (4.27)

given in Ferraty and Vieu (2006, Eq. (5.10)); this interval is indeed asymptotically
valid as it will contain Yf with probability tending to the nominal (1−α)100%.
However, interval (4.27) will be characterized by under-coverage in finite samples
since the nontrivial variability in the estimated quantiles D̂−1

xf
(α/2) and

D̂−1
xf
(1−α/2) is ignored. Having mapped the responses Y1, . . . ,Yn onto the approxi-

mately i.i.d. variables u1, . . . ,un, the premises of the Model-Free Prediction Prin-
ciple are seen to be satisfied. Hence, the Model-Free bootstrap Algorithm 4.4.1
applies verbatim to the current setup of nonparametric regression with univariate
response and functional regressors, and the same is true for the Limit Model-Free
resampling Algorithm 4.4.2. Furthermore, the Predictive Model-Free resampling
Algorithm 4.5.1 also applies verbatim to the current setup.



Chapter 5
Model-Free vs. Model-Based Confidence
Intervals

5.1 Introduction

As in the previous two chapters, consider regression data of the type {(Yt ,xt),
t = 1, . . . ,n}. For simplicity of presentation, the regressor xt is again assumed uni-
variate and deterministic; the case of a multivariate regressor is handled in an iden-
tical way—see Sect. 4.7.2 for a discussion. As in the whole of Part II of the book, it
will be assumed that Y1, . . . ,Yn are independent but not identically distributed.

Let Dx(y) = P{Yt ≤ y|xt = x} denote the conditional distribution of the pairs
(Yt ,xt) that is assumed to be common for all t in accordance with the Model-free
regression setup of Chap. 4. It may be of interest to estimate certain features, i.e.,
functionals, of Dx(·) such as the conditional mean, the conditional median, etc. For
example, consider the first two conditional moments

μ(xt) = E(Yt |xt) and σ2(xt) = Var(Yt |xt)

where the functions μ(·) and σ(·) are considered unknown but assumed to possess
some degree of smoothness (differentiability, etc.).

As discussed in Chap. 3, there are many approaches towards nonparametric esti-
mation of the functions μ(·) and σ2(·), e.g., wavelets and orthogonal series, smooth-
ing splines, local polynomials, and kernel smoothers. For concreteness, this chapter
will also focus on one of the simplest methods, namely the Nadaraya-Watson kernel
estimators (3.2) and (3.4).

Beyond point estimates of the functions μ(·) and σ(·), it is important to be able
to also provide interval estimates in order to have a measure of their statistical accu-
racy. Suppose, for example, that a practitioner is interested in the expected response
to be observed at a future point xf; a confidence interval for μ(xf) is then desirable.
Under regularity conditions, such a confidence interval can be given either via a
large-sample normal approximation, or via a resampling approach; see, e.g., Freed-
man (1981), Härdle and Bowman (1988), Härdle and Marron (1991), Hall (1993), or
Neumann and Polzehl (1998). Typical regularity conditions for the above bootstrap
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approaches involve the assumption of an additive model with respect to independent
and identically distributed (i.i.d.) errors, i.e., a model such as Eq. (3.1).

In Sect. 5.2, we revisit the usual model-based bootstrap for confidence intervals
in regression adding the dimension of employing predictive as opposed to fitted
residuals as developed in Chap. 3. More importantly, in Sect. 5.3 we address the
problem of constructing a bootstrap confidence interval for μ(xf)—where xf is a
regressor value of interest—without assuming an underlying additive model. We
focus attention on the parameter μ(xf) just for simplicity and concreteness. The
resampling algorithms developed in this chapter apply verbatim to any parameter
associated with the conditional distribution of Yf given a regressor value xf. Other
interesting parameters are the conditional variance σ2(xf), the conditional median,
and other quantiles of Dxf(·).

As was the case for prediction intervals, here as well the Model-free approach is
totally automatic, relieving the practitioner from the need to find an optimal trans-
formation towards additivity and variance stabilization; this is a significant practi-
cal advantage because of the multitude of such proposed transformations, e.g. the
Box/Cox power family, ACE, AVAS, etc.—see Linton et al. (1997) and the refer-
ences therein. The finite-sample simulations provided in Sect. 5.4 confirm the via-
bility and good performance of the model-free confidence intervals.

5.2 Model-Based Confidence Intervals in Regression

The usual additive model for nonparametric regression is given by Eq. (3.1) from
Chap. 3 that is repeated below for convenience:

Yt = μ(xt)+σ(xt) εt for t = 1, . . . ,n, (5.1)

with εt ∼ i.i.d. (0,1) from an (unknown) distribution F . As before, the Nadaraya-
Watson estimator of μ(x) is defined as

mx =
n

∑
i=1

YiK̃

(
x− xi

h

)
with K̃

(
x− xi

h

)
=

K
( x−xi

h

)

∑n
k=1 K

( x−xk
h

)

where h is the bandwidth, and K(x) is a symmetric kernel function satisfying∫
K(x)dx = 1. Similarly, the Nadaraya-Watson estimator of σ(x) is given by s2

x =
Mx −m2

x where Mx = ∑n
i=1 Y 2

i K̃
( x−xi

h

)
. As in Chap. 3, let et = (Yt −mxt )/sxt de-

note the fitted residuals, and ẽt = (Yt −m(t)
xt )/s(t)xt the predictive residuals where m(t)

x

and M(t)
x denote the estimators mx and Mx, respectively, computed from the delete-Yt

dataset: {(Yi,xi), i = 1, . . . , t−1 and i = t+1, . . . ,n}; also let s(t)xt =

√
M(t)

xt − (m(t)
xt )

2.



5.2 Model-Based Confidence Intervals in Regression 83

Consider the problem of constructing a confidence interval for the regression
function μ(xf) at a point of interest xf. A normal approximation to the distribution
of the estimator mxf implies an approximate (1−α)100% equal-tailed, confidence
interval for μ(xf) given by:

[mxf + vxf · z(α/2), mxf + vxf · z(1−α/2)] (5.2)

where v2
xf
= s2

xf
∑n

i=1 K̃2( xf−xi
h ), and z(α) being the α–quantile of the standard nor-

mal. If the “density” (e.g., large-sample histogram) of the design points x1, . . . ,xn

can be thought to approximate a given functional shape (say, f (·)) for large n, then
Eq. (3.18) gives the useful approximation

n

∑
i=1

K̃2(
xf − xi

h
)∼

∫
K2(x)dx

nh f (xf)

provided K(·) is a probability density, i.e.,
∫

K(x)dx = 1.
Interval (5.2) may be problematic in two respects: (a) it ignores the bias of mx, so

it must be either explicitly bias-corrected, or a suboptimal bandwidth must be used
to ensure undersmoothing; and (b) it is based on a Central Limit Theorem which
may not be a good finite-sample approximation if the errors are skewed and/or lep-
tokurtic, or when the sample size is not large enough. For both above reasons, practi-
tioners often prefer bootstrap methods over the normal approximation interval (5.2).

When using fitted residuals, the following algorithm is the well-known residual
bootstrap pioneered by Freedman (1981) in a linear regression setting, and extended
to nonparametric regression by Härdle and Bowman (1988), and other authors. As
an alternative, we also propose the use of predictive residuals for resampling as
developed in the MF/MB paradigm of Sect. 3.4; this may help alleviate the well-
known phenomenon of under-coverage of bootstrap confidence intervals. Our goal
is to approximate the distribution of the confidence root: μ(xf)−mxf by that of its
bootstrap counterpart.

The Model-based (MB) resampling algorithm goes as follows.

Algorithm 5.2.1 MB AND MF/MB RESAMPLING FOR CONFIDENCE INTERVALS

FOR μ(xf) BASED ON ROOTS

1. Based on the {(Yt ,xt), t = 1, . . . ,n} data, construct the estimates mx and sx from
which the fitted residuals ei, and predictive residuals ẽi are computed for i =
1, . . . ,n.

2. For the traditional model-based bootstrap approach (MB), let ri = ei−n−1 ∑ j e j,
for i = 1, . . . ,n. For the predictive residual model-based approach (MF/MB) as
in Sect. 3.4, let ri = ẽi − n−1 ∑ j ẽ j, for i = 1, . . . ,n.

a. Sample randomly (with replacement) the residuals r1, . . . ,rn to create the
bootstrap pseudo-residuals r∗1, . . . ,r

∗
n whose empirical distribution is denoted

by F̂∗
n .

b. Create pseudo-data in the Y domain by letting Y ∗
i =mxi +sxi r

∗
i for i= 1, . . . ,n.
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c. Based on the pseudo-data {(Y ∗
t ,xt), t = 1, . . . ,n}, re-estimate the functions

μ(x) and σ(x) by the estimators m∗
x and s∗x using the same methodology,1 e.g.

kernel smoothing with the same kernel, as the original estimators mx and sx.
d. Calculate a replicate of the bootstrap confidence root: mxf −m∗

xf
.

3. Steps (a)—(d) in the above are repeated B times, and the B bootstrap root repli-
cates are collected in the form of an empirical distribution with α–quantile den-
oted by q(α).

4. Then, a (1−α)100% equal-tailed confidence interval for μ(xf) is given by:

[mxf + q(α/2), mxf + q(1−α/2)]. (5.3)

Note that by defining the root as μ(xf)− mxf and not as the usual mxf − μ(xf)
the cumbersome inversion of the quantiles in the bootstrap confidence interval is
avoided. For example, our bootstrap confidence interval (5.3) has the α/2 quantile
in the left limit and the 1−α/2 quantile in the right limit which is more intuitive.

Interval (5.3) is of the “root” type; it is possible to construct bootstrap confidence
intervals based on “studentized” roots instead. A studentized root is an asymptoti-
cally pivotal quantity whose distribution is typically well approximated by bootstrap
methods. Hence, confidence intervals based on studentized roots are in general more
accurate, i.e., have a coverage level closer to the nominal, as compared to unstuden-
tized ones—see, e.g., Hall (1992).

Recall that our estimate of the variance of mxf is v2
xf
= s2

xf ∑n
i=1 K̃2( xf−xi

h ). Since

the factor ∑n
i=1 K̃2( xf−xi

h ) is the same in the real and bootstrap worlds, it is sufficient
to studentize using sxf alone. The goal then would be to approximate the distribution
of the studentized root (μ(xf)−mxf)/sxf by that of its bootstrap counterpart.

Algorithm 5.2.2 MB AND MF/MB RESAMPLING FOR CONFIDENCE INTERVALS

FOR μ(xf) BASED ON STUDENTIZED ROOTS

The algorithm is the same as Algorithm 5.2.1 with one exception: in Step 1(d)
the bootstrap root is defined in a studentized way, i.e., (mxf −m∗

xf
)/s∗xf

instead of
mxf −m∗

xf
. With Q(α) denoting the α–quantile of the empirical distribution of the B

studentized bootstrap root replicates, the resulting (1−α)100% equal-tailed, stu-
dentized confidence interval for μ(xf) is given by:

[mxf +Q(α/2)sxf , mxf +Q(1−α/2)sxf]. (5.4)

As mentioned above, the studentized interval (5.4) should, in principle, be more
accurate than the unstudentized interval (5.3). Nevertheless, the two intervals have
almost identical performance in simulations. It turns out that the effect of studen-
tization is mitigated by two factors: (i) the nonparametric nature of the problem in

1 m∗
x and s∗x can use the same bandwidth as the original estimators mx and sx provided these

are slightly undersmoothed; otherwise, a two bandwidth trick should be used as discussed in
Remark 3.5.2.
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which the choice of bandwidth(s) is often the most crucial aspect, and (ii) the fact
that we are already using a model that takes sxf into account by resampling studen-
tized residuals; see Remark 3.6.3 for a related discussion.

Remark 5.2.1 An important feature of all bootstrap procedures is that they can
handle joint confidence intervals, i.e., confidence regions, with the same ease as the
univariate ones. This is especially true in regression where simultaneous confidence
intervals are typicalled constructed in the form of confidence bands. The details are
well known in the literature and are omitted due to lack of space; note that studen-
tization is particularly helpful here as it ensures that the resulting joint confidence
intervals are balanced, i.e., they all have (approximately) the same individual cov-
erage level.

5.3 Model-Free Confidence Intervals Without an Additive Model

We now revisit the nonparametric regression setup but in a situation where an addi-
tive model such as Eq. (5.1) cannot be considered to hold true; we thus revert to the
Model-free regression setup described in Sect. 4.2. As an example of model (5.1) not
being valid, consider the setup where the skewness and/or kurtosis of Yt depends on
xt , and thus centering and studentization will not result in “i.i.d.–ness.” The dataset is
still {(Yt ,xt), t = 1, . . . ,n} where the regressor xt is univariate and deterministic, and
the variables Y1,Y2, . . . are independent but not identically distributed. Recall also the
definition of the conditional distribution Dx(y) =P{Yf ≤ y|xf = x} where (Yf,xf) rep-
resents the random response Yf associated with regressor xf. Attention still focuses
on constructing a Model-free interval estimate of μ(xf) = E(Yf|xf) =

∫
y Dxf(dy) to

be compared with the model-based ones from the previous section.
As in Chap. 4, here too the default assumption is that the function Dx(y) is

continuous in both x and y. Consequently, we can estimate Dx(y) by the local
(weighted) empirical distribution D̂x(y) defined in Eq. (4.4), i.e., D̂x(y)=∑n

i=1 1{Yi ≤
y}K̃

( x−xi
h

)
. D̂x(y) is a step function but we can construct the continuous in y (and

differentiable) estimator D̄x(y) as in Eq. (4.6), i.e.,

D̄x(y) =
n

∑
i=1

Λ
(

y−Yt

h0

)
K̃

(
x− xi

h

)
.

where Λ(y) is a (differentiable) distribution function that is strictly increasing over
its support. Under regularity conditions, the two estimators D̂x(y) and D̄x(y) are
consistent; see Eq. (4.5) and Claim 4.3.1.

As in Chap. 4, we define the variables u1, . . . ,un that are approximately i.i.d. and
Uniform(0,1) via Eq. (4.12), i.e.,

ui = D̄xi(Yi) for i = 1, . . . ,n.
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Recall that the quantity

Π̂xf = n−1
n

∑
i=1

D̂−1
xf

(ui)

was proposed in Eq. (4.15) as an L2–optimal predictor of Yf, i.e., an approximation
to the conditional expectation μ(xf) = E(Yf|xf). Both Π̂xf and the closely related
expression

Πxf = n−1
n

∑
i=1

D̄−1
xf
(ui)

from Eq. (4.13) are defined as functions of the approximately i.i.d. variables u1, . . . ,un

and hence they are amenable to the original i.i.d. bootstrap of Efron (1979). Recall
Claim 4.3.1 where it was claimed that both Π̂xf and Πxf are asymptotically equiv-
alent to the standard Nadaraya-Watson estimator mxf . Consequently, a bootstrap
procedure that works for Π̂xf and/or Πxf will by necessity also be valid for mxf .
Here it is best to think of Π̂xf and Πxf as estimators of the conditional expectation
μ(xf) instead of predictors.

Let μ̂(xf) denote our chosen estimator of μ(xf) = E(Yf|xf), i.e., either mxf , Π̂xf

or Πxf , or even one of the other asymptotically equivalent estimators discussed in
Remark 4.3.2. Our goal is to approximate the distribution of the confidence root:
(μ(xf)− μ̂(xf))/Vf by that of its bootstrap counterpart. As in the discussion lead-
ing to interval (5.4), all the aforementioned asymptotically equivalent estimators of
μ(xf) have (estimated) variance proportional to s2

xf
; thus, Vf can be taken to either

equal 1 or sxf , leading to unstudentized or studentized roots, respectively.
The Model-Free (MF) bootstrap algorithm goes as follows.

Algorithm 5.3.1 MF BOOTSTRAP FOR CONFIDENCE INTERVALS FOR μ(xf)

1. Based on the {(Yt ,xt), t = 1, . . . ,n} data, construct the estimate D̄x(·), and
use Eq. (4.12) to obtain the transformed data u1, . . . ,un that are approximately
i.i.d. Uniform (0,1).

a. Sample randomly (with replacement) the transformed data u1, . . . ,un to create
bootstrap pseudo-data u∗1, . . . ,u

∗
n.

b. Use the inverse transformation D̄−1
x to create bootstrap pseudo-data in the Y

domain, i.e., let Y ∗
n = (Y ∗

1 , . . . ,Y
∗
n ) where Y ∗

t = D̄−1
xt
(u∗t ). Note that Y ∗

t is paired
with the original xt design point; hence, the bootstrap dataset is {(Y ∗

t ,xt), t =
1, . . . ,n}.

c. Based on the pseudo-data {(Y ∗
t ,xt), t = 1, . . . ,n}, re-estimate the conditional

distribution Dx(·); denote the bootstrap estimates by D̂∗
x(·) and D̄∗

x(·).
d. Calculate a replicate of the bootstrap confidence root: (μ̂(xf)− μ̂∗(xf))/V ∗

f

where μ̂∗(xf) equals either
∫

y D̂∗
xf
(dy) =

∫ 1
0 D̂∗−1

xf
(u)du, n−1 ∑n

i=1 D̂∗−1

xf
(u∗i ), or

n−1 ∑n
i=1 D̄∗−1

xf
(u∗i ) according to whether μ̂(xf) was chosen as mxf , Π̂xf , or Πxf ,

respectively. Similarly, V ∗
f is taken to either equal 1 or s∗xf

according to the
corresponding choice for Vf; as usual, s∗xf

is the statistic sxf recomputed from
the bootstrap dataset {(Y ∗

t ,xt), t = 1, . . . ,n}.
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2. Steps (a)—(d) in the above are repeated B times, and the B bootstrap root repli-
cates are collected in the form of an empirical distribution with α–quantile den-
oted by q(α).

3. Then, the Model-Free (1−α)100% equal-tailed confidence interval for μ(xf) is

[μ̂(xf)+ q(α/2)Vf, μ̂(xf)+ q(1−α/2)Vf]. (5.5)

Remark 5.3.1 (On resampling pairs) As mentioned in Remark 4.1.1, an alterna-
tive resampling scheme in regression is bootstrapping pairs; this is typically justi-
fied under assumption (4.2), i.e., that x1, . . . ,xn represent a realization of the random
regressors X1, . . . ,Xn, and that the pairs (Yj,Xj) for j = 1, . . . ,n are i.i.d. The ran-
dom vs. deterministic regressor dilemma is of little consequence in practice since in
the former case inference is just conducted conditionally on the observed regressor
values. Although bootstrapping pairs has good performance for confidence inter-
vals and tests in semiparametric, e.g. linear, regression even in the presence of het-
eroscedastic errors, difficulties ensue when nonparametric regression is concerned.
To see why, suppose that the goal is to set prediction intervals for μ(xf); by resam-
pling the i.i.d. pairs (Yj,Xj) we run the risk of obtaining a bootstrap pseudo-sample
{(Y ∗

j ,X
∗
j ) for j = 1, . . . ,n} for which few of the X∗

j are found in the neighborhood
of the point of interest xf, thus making nonparametric estimation inaccurate (or just
plain impossible) in the bootstrap world.

We can also define a Limit Model-Free (LMF) bootstrap algorithm. In the LMF
case, there is no need to use Eq. (4.12) to create the transformed data u1, . . . ,un; in
this sense, the smooth estimator D̄x(·) is not needed, and the step function D̂x(·)
suffices for the algorithm. The natural estimator of μ(xf) associated with LMF is

Π̌xf = n−1
n

∑
i=1

D̂−1
xf

(Ui)

where the Ui are generated as i.i.d. Uniform (0,1). In other words, Π̌xf is a Monte
Carlo approximation to

∫ 1
0 D̂−1

xf
(u)du which is nothing else than the Nadaraya-

Watson estimator mxf . Nevertheless, the asymptotically equivalent estimators mxf

or Π̂xf could also be used in the LMF procedure.

Algorithm 5.3.2 LMF BOOTSTRAP FOR CONFIDENCE INTERVALS FOR μ(xf)

1. Based on the {(Yt ,xt), t = 1, . . . ,n} data, construct the estimate D̂x(·).
a. Generate bootstrap pseudo-data u∗1, . . . ,u

∗
n i.i.d. from an exact Uniform (0,1)

distribution.
b. Use the quantile inverse transformation D̂−1

x to create bootstrap pseudo-data
in the Y domain, i.e., let Y ∗

n = (Y ∗
1 , . . . ,Y

∗
n ) where Y ∗

t = D̂−1
xt
(u∗t ).

c. Based on the pseudo-data {(Y ∗
t ,xt), t = 1, . . . ,n}, re-estimate the conditional

distribution Dx(·); denote the bootstrap estimate by D̂∗
x(·).
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d. Calculate a replicate of the bootstrap confidence root: (μ̂(xf)− μ̂∗(xf))/V ∗
f

where μ̂∗(xf) equals either
∫ 1

0 D̂∗−1

xf
(u)du,

∫
y D̂∗

xf
(dy) =

∫ 1
0 D̂∗−1

xf
(u)du or

n−1 ∑n
i=1 D̂∗−1

xf
(u∗i ) according to whether μ̂(xf) was chosen as Π̌xf , mxf or Π̂xf .

Similarly, V ∗
f is taken to either equal 1 or s∗xf

according to the corresponding
choice for Vf.

2. Steps (a)—(d) in the above are repeated B times, and the B bootstrap root repli-
cates are collected in the form of an empirical distribution with α–quantile den-
oted by q(α).

3. The Limit Model-Free (1−α)100% equal-tailed confidence interval for μ(xf) is

[μ̂(xf)+ q(α/2)Vf, μ̂(xf)+ q(1−α/2)Vf]. (5.6)

Fact 5.3.1 Both MF and LMF confidence intervals, i.e., intervals (5.5) and (5.6)
respectively, were shown to be asymptotically valid under regularity conditions by
Wang and Politis (2015) under the Model-free assumption (4.2). In addition, in the
present setup of nonparametric regression, the LMF bootstrap can be shown to be
equivalent to the local bootstrap of Shi (1991).

As mentioned in Chap. 4, a major advantage of the LMF algorithm is that it
remains valid even if Dx(y) is not continuous in y, e.g. the case of discrete responses.
However, LMF’s downside is that the option to use “predictive” u–data is unavail-
able. To elaborate, recall that model-free “predictive” u–data were constructed in

Sect. 4.5 as follows. Let D̄(t)
xt denote the estimator D̄xt as computed from the delete-

Yt dataset, i.e., {(Yi,xi), i = 1, . . . , t − 1 and i = t + 1, . . . ,n}. Now let

u(t)t = D̄(t)
xt (Yt) for t = 1, . . . ,n. (5.7)

Using the u(t)t variables, we can now define Predictive Model-Free (PMF) confi-
dence intervals for μ(xf).

Algorithm 5.3.3 PMF BOOTSTRAP FOR CONFIDENCE INTERVALS FOR μ(xf)

• The algorithm is identical to Algorithm 5.3.1 with one exception: replace the

variables u1, . . . ,un with u(1)1 , . . . ,u(n)n throughout the construction.

Remark 5.3.2 Recall that the Model-free L1–optimal predictor of Yf is given by the
median{D̄−1

xf
(ui)}. Therefore, by analogy to Claim 4.3.1, we have:

median{D̄−1
xf
(ui)}= D̄−1

xf
(median{ui})� D̄−1

xf
(1/2)

since the uis are approximately Uniform (0,1). Hence, if the practitioner wants to es-
timate the median (as opposed to the mean) of the conditional distribution of Yf given
xf, then the local median D̄−1

xf
(1/2) could be bootstrapped using i.i.d. resampling
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in the same manner that median{D̄−1
xf
(ui)} can be bootstrapped. In fact, the above

three Model-free resampling algorithms apply verbatim to any parameter associated
with the conditional distribution of Yf given a regressor value xf. Examples include
the aforementioned conditional median, the conditional variance σ2(xf), and other
quantiles of the conditional distribution of Yf given xf, etc.

5.4 Simulations

5.4.1 When a Nonparametric Regression Model Is True

As in Sect. 4.7.1, the building block for the simulations here as well is model (5.1)
with μ(x) = sin(x), σ(x) = 1/2, and errors εt i.i.d. N(0,1) or two-sided exponential
(Laplace) rescaled to unit variance. Knowledge that the variance σ(x) is constant
was not used in the estimation, i.e., σ(x) was estimated from the data. For each
distribution, 500 datasets each of size n = 100 were created with the design points
x1, . . . ,xn being equi-spaced on (0,2π), and Nadaraya-Watson (N-W) estimates of
μ(x) = E(Y |x) and σ2(x) = Var(Y |x) were computed using a normal kernel in R.
On each dataset, several bootstrap methods were run; each bootstrap simulation was
based on B = 999 replications.

Confidence intervals with nominal level 90 % were constructed using the two
methods presented in Sect. 5.2: Traditional Model-Based (MB) and Predictive Resid-
ual Model-Based (MF/MB); the two methods presented in Sect. 5.3: Model-Free
(MF) of Eq. (5.5), Limit Model-Free (MF) of Eq. (5.6), and Predictive Model-Free
(PMF) from Algorithm 5.3.3; the NORMAL approximation interval (5.2), and the
Local Bootstrap (LB) interval according to the method of Shi (1991).

In view of the discussion following Algorithm 5.2.2, all these intervals were
based on unstudentized roots; intervals based on studentized roots have very similar
finite-sample performance. The required bandwidths were computed by L1 cross-
validation. For each type of interval, the corresponding empirical coverage level
(CVR) and average length (LEN) were recorded together with the (empirical) stan-
dard error associated with each average length.

Each method, NORMAL, MB, etc. is represented by three lines of entries in
Tables 5.1 and 5.2. The first line of entries gives the empirical coverage levels
(CVR) of prediction intervals calculated at several xf points spanning the interval
(0,2π); nominal coverage was 0.90. The second line of entries gives the average
length (LEN) of the corresponding interval; and the third line gives the standard
error associated with interval length.

As already mentioned, several different estimators of μ(xf) are asymptotically
equivalent but may give some finite-sample differences. The default estimator of
μ(xf) for all methods is the Nadaraya-Watson (N-W), i.e., mxf . However, for LMF
the natural estimator Π̌xf was used, while for MF and PMF the estimator Πxf was
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xf/π = 0.15 0.3 0.5 0.75 1 1.25 1.5 1.7 1.85

NORMAL

0.842

0.3852

0.002

0.826

0.3723

0.002

0.768

0.3711

0.002

0.824

0.3710

0.002

0.886

0.3710

0.002

0.822

0.3711

0.002

0.796

0.3711

0.002

0.850

0.3723

0.002

0.796

0.3852

0.002

MB

0.790

0.3865

0.004

0.752

0.3523

0.003

0.740

0.3392

0.004

0.764

0.3598

0.003

0.840

0.3835

0.003

0.778

0.3621

0.003

0.760

0.3377

0.004

0.782

0.3498

0.003

0.752

0.3793

0.004

MF/MB

0.856

0.4657

0.006

0.832

0.4255

0.007

0.808

0.4134

0.008

0.844

0.4341

0.006

0.886

0.4621

0.006

0.850

0.4346

0.006

0.838

0.4104

0.007

0.854

0.4224

0.006

0.826

0.4580

0.006

LB

0.846

0.4403

0.004

0.816

0.4036

0.004

0.800

0.3853

0.004

0.830

0.4129

0.004

0.886

0.4405

0.003

0.840

0.4133

0.003

0.832

0.3866

0.004

0.824

0.4015

0.004

0.812

0.4336

0.004

LMF

using

N-W

0.846

0.4398

0.004

0.808

0.4023

0.004

0.804

0.3871

0.004

0.818

0.4118

0.004

0.884

0.4382

0.003

0.824

0.4126

0.003

0.818

0.3851

0.004

0.836

0.3985

0.004

0.816

0.4330

0.004

LMF

0.880

0.5244

0.004

0.844

0.4907

0.004

0.864

0.4706

0.004

0.868

0.5118

0.004

0.880

0.5498

0.003

0.870

0.5115

0.003

0.866

0.4679

0.004

0.852

0.4851

0.004

0.842

0.5146

0.004

MF

0.862

0.4579

0.003

0.836

0.4287

0.003

0.828

0.4147

0.003

0.848

0.4408

0.003

0.888

0.4698

0.003

0.852

0.4420

0.003

0.840

0.4123

0.003

0.842

0.4248

0.003

0.826

0.4494

0.003

PMF

0.928

0.5482

0.005

0.898

0.5152

0.005

0.904

0.5005

0.005

0.926

0.5310

0.005

0.936

0.5613

0.005

0.936

0.5319

0.004

0.916

0.5006

0.005

0.910

0.5122

0.005

0.894

0.5412

0.005

Table 5.1 Simulation results for additive model with i.i.d. Normal errors

used. In order to show the equivalence of LMF bootstrap to the Local Bootstrap
(LB) we also ran the LMF algorithm using mxf as estimator—as done in LB; this is
indicated by the entry: LMF using N-W.

Tables 5.1 and 5.2 summarize our findings, and contain a number of important
features.

• The standard error of the reported coverage levels over the 500 replications is
0.013. Also note that—by construction—this simulation problem has some sym-
metry that helps us further appreciate the variability of the CVRs. For example,
the expected CVRs should be the same for xf = 0.15π and 1.85π in all methods.
So for the NORMAL case of Table 5.1, the CVR would be better estimated by
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xf/π = 0.15 0.3 0.5 0.75 1 1.25 1.5 1.7 1.85

NORMAL

0.846

0.3820

0.002

0.792

0.3701

0.002

0.816

0.3691

0.002

0.858

0.3690

0.002

0.884

0.3691

0.002

0.856

0.3691

0.002

0.814

0.3690

0.002

0.846

0.3700

0.002

0.854

0.3820

0.002

MB

0.788

0.3648

0.004

0.740

0.3454

0.004

0.756

0.3307

0.004

0.808

0.3545

0.003

0.826

0.3761

0.003

0.824

0.3535

0.003

0.760

0.3210

0.003

0.750

0.3355

0.004

0.818

0.3627

0.004

MF/MB

0.870

0.4555

0.006

0.834

0.4322

0.006

0.864

0.4119

0.005

0.894

0.4414

0.005

0.924

0.4679

0.005

0.894

0.4394

0.006

0.846

0.4006

0.006

0.850

0.4185

0.006

0.904

0.4513

0.006

LB

0.866

0.4242

0.005

0.790

0.4008

0.004

0.828

0.3830

0.004

0.850

0.4108

0.003

0.908

0.4373

0.004

0.870

0.4066

0.004

0.832

0.3733

0.004

0.818

0.3904

0.004

0.880

0.4188

0.004

LMF

using

N-W

0.866

0.4210

0.004

0.798

0.3975

0.004

0.838

0.3819

0.004

0.868

0.4079

0.003

0.914

0.4333

0.004

0.878

0.4072

0.004

0.828

0.3691

0.004

0.826

0.3865

0.004

0.884

0.4180

0.004

LMF

0.900

0.5053

0.005

0.890

0.4879

0.005

0.924

0.4648

0.005

0.932

0.5100

0.004

0.934

0.5476

0.004

0.922

0.5072

0.004

0.908

0.4546

0.004

0.898

0.4746

0.004

0.896

0.5022

0.005

MF

0.868

0.4119

0.003

0.806

0.3932

0.003

0.848

0.3765

0.003

0.890

0.4078

0.003

0.910

0.4404

0.003

0.876

0.4064

0.003

0.836

0.3703

0.003

0.862

0.3869

0.003

0.872

0.4124

0.003

PMF

0.946

0.5172

0.004

0.914

0.4962

0.005

0.914

0.4808

0.004

0.940

0.5161

0.004

0.964

0.5499

0.004

0.952

0.5147

0.004

0.922

0.4737

0.004

0.928

0.4909

0.005

0.946

0.5157

0.004

Table 5.2 Simulation results for additive model with i.i.d. Laplace errors

the average of 0.842 and 0.796, i.e., closer to 0.819; similarly, the PMF CVR for
the same points could be better estimated by the average of 0.928 and 0.894, i.e.,
0.911.

• The NORMAL intervals are characterized by under-coverage even when the true
distribution is Normal. This under-coverage is more pronounced when xf = π/2
or 3π/2 due to the high bias of the kernel estimator at the points of a “peak” or
“valley” that the normal interval (5.2) “sweeps under the carpet.”

• The length of the NORMAL intervals is quite less variable than those based on
bootstrap; this is not surprising since the extra randomization from the bootstrap
is expected to inflate the overall variances.
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• Although regression model (5.1) holds true here, the MB intervals show pro-
nounced under-coverage; this is a phenomenon well-known in the bootstrap
literature that could be alleviated by a two bandwidth trick as discussed in
Remark 3.5.2.

• The MF/MB intervals are wider, and manage to partially correct the under-
coverage of the MB intervals just using a single bandwidth based on cross-
validation; this was to be expected since, as discussed in Chap. 3, the predictive
residuals have larger scale than the fitted ones.

• The performance of MF intervals is better than that of MB intervals despite the
fact that the former are constructed without making use of Eq. (5.1); hence, there
is little to lose by conducting MF inference even when a model is true. However,
as with the MB intervals, the MF intervals also show a tendency towards under-
coverage.

• The equivalence of LB to LMF using N-W is clear in the simulations. However,
the performance of either seems to be the worst among all model-free methods.
By contrast, using LMF with its natural estimator leads to quite improved perfor-
mance.

• The following pattern emerges, namely CVR(MF)<CVR(LMF)<CVR(PMF).
The pattern CVR(MF)<CVR(PMF) is analogous to the aforementioned pattern
CVR(MB)<CVR(MF/MB); it is unclear why LMF fits right in the middle.

• The PMF intervals appear to over-correct the MF under-coverage; this is es-
pecially prominent in the Laplace error case. The PMF intervals are therefore
the only bootstrap intervals that are conservative, guaranteeing coverage of at
least 90 %.

5.4.2 When a Nonparametric Regression Model Is Not True

Here, we investigate the performance of different confidence intervals in the ab-
sence of model (5.1). For easy comparison with Sect. 5.4.1, we will keep the same
(conditional) mean and variance, i.e., we will generate independent Y data such
that E(Y |x) = sin(x), Var(Y |x) = 1/4, and design points x1, . . . ,x100 equi-spaced on
(0,2π). However, the error structure εx = (Y −E(Y |x))/√Var(Y |x) has skewness
that depends on x, thereby violating the i.i.d. assumption. For our simulation, we
considered the same construction as in Sect. 4.7.2, i.e.,

εx =
cxZ +(1− cx)W√

c2
x +(1− cx)2

(5.8)

where cx = x/(2π) for x ∈ [0,2π ], and Z ∼ N(0,1) independent of W that is dis-
tributed as 1

2 χ2
2 −1 to capture a changing skewness; note that EW = 0 and EW 2 = 1.

Our results are summarized in Table 5.3. The findings are qualitatively similar
to those in Sect. 5.4.1. The MF/MB intervals are the undisputed winners here in
terms of coverage accuracy; the overcoverage for xf ≈ π could be attributed to the
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xf/π = 0.15 0.3 0.5 0.75 1 1.25 1.5 1.7 1.85

NORMAL

0.836

0.3824

0.002

0.834

0.3700

0.002

0.780

0.3689

0.002

0.848

0.3688

0.002

0.876

0.3689

0.002

0.804

0.3688

0.002

0.762

0.3688

0.002

0.838

0.3700

0.002

0.814

0.3824

0.002

MB

0.746

0.3593

0.005

0.720

0.3342

0.004

0.736

0.3146

0.004

0.754

0.3530

0.004

0.796

0.3810

0.004

0.772

0.3511

0.004

0.718

0.3287

0.004

0.756

0.3418

0.003

0.768

0.3697

0.003

MF/MB

0.808

0.4822

0.009

0.798

0.4463

0.009

0.806

0.4205

0.009

0.850

0.4722

0.009

0.884

0.5061

0.010

0.872

0.4393

0.008

0.822

0.4393

0.009

0.846

0.4567

0.009

0.850

0.4908

0.009

LB

0.800

0.4175

0.006

0.782

0.3885

0.005

0.806

0.3697

0.005

0.836

0.4098

0.005

0.872

0.4422

0.005

0.834

0.4102

0.004

0.778

0.3814

0.004

0.810

0.4006

0.004

0.804

0.4332

0.004

LMF

using

N-W

0.798

0.4185

0.006

0.780

0.3891

0.005

0.796

0.3671

0.005

0.824

0.4114

0.005

0.870

0.4425

0.005

0.844

0.4074

0.003

0.760

0.3832

0.004

0.810

0.3997

0.004

0.820

0.4335

0.004

LMF

0.822

0.4977

0.007

0.790

0.4713

0.005

0.782

0.4448

0.005

0.858

0.5090

0.006

0.890

0.5548

0.005

0.876

0.5056

0.004

0.832

0.4639

0.005

0.848

0.4854

0.004

0.828

0.5130

0.004

MF

0.794

0.4074

0.004

0.796

0.3851

0.003

0.784

0.3690

0.003

0.824

0.4028

0.003

0.868

0.4394

0.003

0.844

0.4108

0.003

0.772

0.3830

0.003

0.822

0.3983

0.003

0.804

0.4210

0.003

PMF

0.870

0.5167

0.007

0.888

0.4897

0.006

0.876

0.4688

0.005

0.902

0.5265

0.006

0.938

0.5509

0.005

0.930

0.5181

0.005

0.880

0.4821

0.006

0.894

0.4971

0.005

0.886

0.5214

0.005

Table 5.3 Simulation results using regression model with non-identically distributed errors

aforementioned “bias leakage” discussed in Chap. 4. By contrast, the NORMAL and
the MB bootstrap intervals show pronounced under-coverage; interestingly, these
are the two methods that most practitioners use at the moment.
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Part III
Dependent Data: Time Series



Chapter 6
Linear Time Series and Optimal Linear
Prediction

6.1 Introduction

Consider data Y1, . . . ,Yn arising as an observed stretch of a strictly stationary time
series {Yt , t ∈ Z}. For simplicity, we will assume that EYt = 0 which implies that
the time series has been centered at expectation before our analysis. Assuming
EY 2

t < ∞, denote the lag-k autocovariance by γk = Cov(Yt ,Yt+k), and the autocor-
relation function (acf) at lag k by ρk = γk/γ0. If ρk = 0 for all k > 0, then the series
{Yt} is said to be a white noise, i.e., an uncorrelated sequence.

The time series {Yt , t ∈Z} will be assumed to be weakly dependent. To that effect
it is common to assume that γk → 0 as k → ∞ fast enough so that ∑∞

k=−∞ |γk| < ∞;
in this case, we can also define the spectral density function

f (w) = (2π)−1
∞

∑
k=−∞

γke−iwk for w ∈ [−π ,π ],

i.e., the Fourier series associated with the autocovariance sequence γk.
A key question in time series analysis is optimal one-step-ahead prediction. Un-

der the aforementioned finite variance assumption, it is immediate that the MSE–
optimal predictor of Yn+1 given the data Y1, . . . ,Yn is the conditional expectation
E(Yn+1|Yn, . . . ,Y1). In the twentieth century, the simplifying assumption of Gaus-
sianity was often made, i.e., that all finite-dimensional marginals of {Yt , t ∈ Z} are
(multivariate) Gaussian. Under such an assumption, the problem of optimal one-
step-ahead prediction is greatly simplified since in this case E(Yn+1|Yn, . . . ,Y1) turns
out to be a linear function of the given variables Yn, . . . ,Y1; hence, in the Gaussian
case, optimal prediction is tantamount to optimal linear prediction.

© The Author 2015
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The simplifying property of the optimal predictor being linear is shared by a class
of time series that is larger than the Gaussian class. To discuss this further, recall that
a time series {Yt} is called linear if it satisfies an equation of the type:

Yt =
∞

∑
k=−∞

ψkZt−k (6.1)

where the coefficients ψk are (at least) square-summable, and the series {Zt} is
i.i.d. with mean zero and variance σ2 > 0. A linear time series {Yt} is called causal
if ψk = 0 for k < 0, i.e., if

Yt =
∞

∑
k=0

ψkZt−k. (6.2)

Remark 6.1.1 Equation (6.2) should not be confused with the Wold decomposition
that all purely nondeterministic, stationary time series possess—see, e.g., Brock-
well and Davis (1991). In the Wold decomposition, the innovations {Zt} are only
assumed to be a white noise and not i.i.d.; the i.i.d. assumption is of course much
stronger.

A linear time series is called invertible if one can use Eq. (6.1) to solve for Zt in
terms of present and past Yts in which case we can write

Yt =
∞

∑
k=1

φkYt−k +Zt ; (6.3)

a typical assumption here is that the sequence φk is absolutely summable. For causal
time series, invertibility occurs when the power series ψ(s) =∑∞

k=0 ψksk has no roots
on the unit disc. Similarly, for a time series satisfying Eq. (6.3), causality occurs if
the function φ(s) = ∑∞

k=0 φksk has no roots on the unit disc. Now it is not difficult to
see that for a linear time series satisfying Eqs. (6.2) and (6.3) we have

E(Yn+1|Yn,Yn−1, . . .) =
∞

∑
k=1

φkYn+1−k

where E(Yn+1|Yn,Yn−1, . . .) denotes the conditional expectation given the infinite
history. Hence, given the infinite past, the property of the optimal predictor being
linear is shared by the class of linear time series that are causal and invertible.1

Under standard weak dependence conditions, it holds that

E(Y0|Y−1,Y−2, . . . ,Y−m)→ E(Y0|Y−1,Y−2, . . .) as m → ∞

1 A slight generalization of this statement is possible, i.e., replacing the i.i.d. assumption for {Zt}
with a martingale difference assumption; see, e.g., Kokoszka and Politis (2011).
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for almost all sample paths of {Yt , t < 0}. Using the assumed stationarity of {Yt}
we can then write

E(Yn+1|Yn,Yn−1, . . . ,Y1)� E(Yn+1|Yn,Yn−1, . . .) (6.4)

for large n, i.e.,

E(Yn+1|Yn,Yn−1, . . . ,Y1)�
n

∑
k=1

φkYn+1−k. (6.5)

Note that Eq. (6.3) represents an Auto-Regressive (AR) recursion of infinite order
that generalizes the well-known AR(p) recursion defined by

Yt =
p

∑
k=1

φkYt−k +Zt (6.6)

for some natural number p. Under causality of the above AR(p) model, approxima-
tions (6.4) and (6.5) become equalities provided, of course that, n ≥ p.

6.2 Optimal Linear Prediction

In general, the MSE–optimal predictor E(Yn+1|Yn, . . . ,Y1) will not necessarily be a
linear function of the observed variables Yn, . . . ,Y1. For example, there is no guar-
antee that the time series at hand is linear, let alone causal and invertible. However,
in order to compute E(Yn+1|Yn, . . . ,Y1) one needs to know (or estimate) the joint
distribution of Yn+1,Yn, . . . ,Y1 which is unrealistic based on a sample of size n with-
out additional simplifying assumptions.2 Hence, more often than not, practitioners
have to contend themselves with a predictor that is only optimal among all linear
functions of the data Yn, . . . ,Y1.

The MSE–optimal linear predictor is given by

Ỹn+1 = φ1(n)Yn +φ2(n)Yn−1 + . . .+φn(n)Y1, (6.7)

where the optimal coefficients φi(n) are computed from the normal equations

φ(n)≡

⎡

⎢
⎢
⎢
⎣

φ1(n)
...

φn(n)

⎤

⎥
⎥
⎥
⎦
= Γ −1

n γ(n); (6.8)

2 Chapter 8 studies the case where the time series {Yt} is Markov of order p; the Markov assump-
tion indeed allows us to estimate the joint distribution of Yn+1 ,Yn, . . . ,Y1 based on data Y1 , . . .,Yn,
and to then estimate E(Yn+1 |Yn, . . .,Y1).
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see Brockwell and Davis (1991, p. 167). The notation φi(n) makes it clear that the
optimal coefficients depend on n despite the fact that they stabilize asymptotically
as Eq. (6.5) claims. In Eq. (6.8), Γn = [γ|i− j|]ni, j=1 is the autocovariance matrix of the
data vector Y n = (Y1, . . . ,Yn)

′, and γ(n) = (γ1, . . . ,γn)
′ is the vector of covariances

at lags 1, . . . ,n. Note that Eq. (6.7) represents an oracle predictor because the coef-
ficients φ1(n), . . . , φn(n) are unknown.

In practice, the coefficient vector φ(n) ≡ (φ1(n),φ2(n), . . . ,φn(n))′ is often trun-
cated to its first p components in order to be consistently estimated; this procedure
is equivalent to fitting an AR(p) model to the data. The resulting predictor is

Ŷ AR
n+1 = φ̂1Yn + φ̂2Yn−1 + . . .+ φ̂pYn−p+1, (6.9)

where the coefficient vector is typically estimated by the Yule-Walker equations

(φ̂1, . . . , φ̂p)
′ = Γ̆ −1

p γ̆(p). (6.10)

In Eq. (6.10), γ̆k = n−1 ∑n−|k|
t=1 YtYt+|k| is the sample autocovariance at lag k; we also

let γ̆(p) = (γ̆1, . . . , γ̆p)
′, and Γ̆p = [γ̆|i− j|]

p
i, j=1.

Interestingly, Γ̆p is positive definite for any p≤ n as long as γ̆0 > 0, which is a sine
qua non. In addition, for any fixed p, γ̆(p) and Γ̆p are consistent for their respective
targets γ(p) and Γp; a similar statement can be made when p is allowed to increase
with n but at a slower rate, i.e., the case p = o(n). Unfortunately, when p is large,
problems ensue. For example, when p = n, Wu and Pourahmadi (2009) showed that
the sample autocovariance matrix Γ̆n = [γ̆|i− j|]ni, j=1 is not a consistent estimator of

matrix Γn, i.e., the operator norm of the difference Γ̆n−Γn does not converge to zero.
Hence, Eq. (6.10) cannot be used with p = n to give a consistent estimator of the
full coefficient vector φ(n).

6.3 Linear Prediction Using the Complete Process History

Instead of truncating the oracle predictor (6.7) to its first p summands, McMurry
and Politis (2015) recently proposed an alternative approach to estimating all n coe-
fficients in Eq. (6.7) which then allows for the complete process history to be used
in prediction. The estimated prediction coefficients φ̂ (n) = (φ̂1(n), . . . , φ̂n(n))′ are
given by the n-dimensional Yule-Walker equations:

φ̂ (n) = (Γ̂ �
n )−1γ̂(n), (6.11)

where Γ̂ �
n is a positive definite version of the n× n banded and tapered estimate of

the autocovariance matrix Γn introduced in McMurry and Politis (2010), and γ̂(n) is
the corresponding estimate of the autocovariance vector; the quantities appearing in
Eq. (6.11) will be defined and discussed in the following section.
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Using the estimated coefficients φ̂ (n), McMurry and Politis (2015) introduced
the so-called Full-Sample Optimal (FSO) predictor

Ŷn+1 = φ̂1(n)Yn + φ̂2(n)Yn−1 + . . .+ φ̂n(n)Y1, (6.12)

and proved its convergence to the oracle optimal predictor (6.7) under standard mo-
ment and weak dependence conditions.

Remark 6.3.1 Bickel and Gel (2011) proposed a predictor for Yn+1 that uses the
upper-left p × p submatrix of the sample autocovariance matrix Γ̆n with p = o(n).
Their estimator is designed for an “on-line” prediction problem that allows for the
parameters to be updated after each new observation at relatively low computational
cost, and the resulting prediction for Yn+1 is a linear combination of Yn, . . . ,Yn−p+1.
This is still an AR-type predictor as in Eq. (6.9) but using a larger order p than the
one employed when fitting an AR model by minimizing AIC or a related criterion;
see Choi (1992) for details.

6.3.1 Autocovariance Matrix Estimation

The matrix estimator of McMurry and Politis (2010) is defined as

Γ̂n =
[
γ̂|i− j|

]n
i, j=1

(6.13)

with

γ̂s = κ(|s|/l)γ̆s for |s| ≤ n, and γ̂(n) = (γ̂1, . . . , γ̂n)
′. (6.14)

In the above, κ(·) can be any member of the flat-top family of compactly supported
functions defined in Politis (2001), i.e., κ(·) is given by

κ(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if |x| ≤ 1

g(|x|) if 1 < |x| ≤ cκ

0 if |x|> cκ ,

(6.15)

where the function g(·) satisfies |g(x)|< 1, and cκ is a constant satisfying cκ ≥ 1.

Remark 6.3.2 Wu and Pourahmadi (2009) conducted an in-depth study of a matrix
estimator of the type (6.13) that uses the indicator function κ(x)= 1[−1,1](x) as taper,
i.e., a purely banded matrix, following up on earlier work by Bickel and Levina
(2008a,b). However, as discussed by Politis (2011), and McMurry and Politis (2010,
2015), it is advantageous if the flat-top taper κ(x) is a continuous function. A simple
example of a flat-top taper with good properties is the trapezoidal, i.e.,
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κ(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if |x| ≤ 1

2−|x| if 1 < |x| ≤ 2

0 if |x|> 2

(6.16)

which was originally put forth by Politis and Romano (1995) in the related context
of spectral density estimation.

Remark 6.3.3 Recently, Cai et al. (2013) proved that the matrix estimator Γ̂n that
uses the trapezoidal taper (6.16) enjoys a (slightly) improved rate of convergence as
compared to the matrix estimator using the rectangular κ(x) = 1[−1,1](x); this gives
some theoretical substance to the aforementioned suggestion of employing a flat-top
taper κ(x) that is continuous. Recent papers showing interesting asymptotic results
on estimating Γn include Chen et al. (2013), Cheng et al. (2015), and Xiao and Wu
(2012).

Note that Γ̂n as defined by (6.13) is consistent under regularity assumptions, and
therefore asymptotically positive definite; however, in finite samples it can exhibit
negative eigenvalues. In order to use it in practice, it must be corrected to positive
definiteness. McMurry and Politis (2015) gave four different ways of correcting Γ̂n

to make it positive definite; these are reviewed in Sect. 6.4. The matrix Γ̂ �
n appearing

in Eq. (6.11) is a positive definite version of Γ̂n where any one of the correction
methods has been used.

6.3.2 Data-Based Choice of the Banding Parameter l

The matrix estimator (6.13) depends on the nonnegative banding parameter l. The
flat-top tapering leaves the 2l + 1 main diagonals of the sample autocovariance ma-
trix intact, and gradually down-weights more distant diagonals. In order to cover the
possibility of the data at hand being uncorrelated, it is useful to adopt the convention
that when l = 0, the resulting Γ̂n matrix is given by γ̆0In where In is the n×n identity
matrix; this is equivalent to adopting that 0/0 = 0 in the context of Eq. (6.14).

As a result, the FSO predictor of Eq. (6.12) depends on the choice of the banding
parameter l. One possible approach to choosing l in a data-dependent way is the
following rule, which was introduced for density and spectral density estimation in
Politis (2003b).

Empirical rule for picking l. Let ρk = γk/γ0 and ρ̆k = γ̆k/γ̆0. Let l̂ be the small-
est positive integer such that |ρ̆l̂+k| < c(logn/n)1/2 for k = 1, . . . ,Kn where c > 0
is a fixed constant, and Kn is a positive, nondecreasing sequence that satisfies
Kn = o(logn).

McMurry and Politis (2010) further showed that the above rule produces approxi-
mately correct rates for autocovariance matrix estimation, and has good finite sam-
ple performance.
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Remark 6.3.4 The empirical rule for picking l remains valid for all c > 0 and
1 ≤ Kn ≤ n, although different choices of c and Kn can lead to different finite
sample performances. Nonetheless, there are some guidelines for practically useful
choices. The factor (logn)1/2 varies slowly; for example, if log is taken to denote
base 10 logarithm, then for sample sizes between 100 and 1000, as is quite typical,
(logn)1/2 varies between 1.41 and 1.73. Thus, if c is chosen to be around 2 and
Kn about 5, Bonferroni’s inequality implies that the bound ±c(logn/n)1/2 can be
used as the critical value for an approximate 95 % test of the null hypothesis that
ρ(l̂ + 1), . . . ,ρ(l̂ +Kn) are all simultaneously equal to zero; values in this range
seem to work well in practice.

6.4 Correcting a Matrix Towards Positive Definiteness

Under standard moment and weak dependence assumptions, e.g. assuming that the
spectral density f (w) is continuous and strictly positive for all w ∈ [−π ,π ], the
matrix Γ̂n of Eq. (6.13) will have eigenvalues bounded away from zero with prob-
ability tending to one as n → ∞. However, for finite samples, Γ̂n may occasionally
have eigenvalues that are negative and/or positive but close to zero. Since the inv-
erse of Γ̂n is a key element in prediction, the matrix Γ̂n must be corrected to achieve
finite-sample positive definiteness and avoid ill-conditioning. Following McMurry
and Politis (2015), we now present four ways to implement such a correction.

6.4.1 Eigenvalue Thresholding

In the context of the Linear Process Bootstrap, McMurry and Politis (2010) sug-
gested correcting the eigenvalues obtained in the spectral decomposition

Γ̂n = TnDT ′
n (6.17)

where Tn is an orthogonal matrix, and D is diagonal with i-th entry denoted di.
Letting Dε = diag(dε

1 , . . . ,d
ε
n) with dε

i = max{di,εγ̂0/nβ}, the adjusted estimate

Γ̂ ε
n = TnDε T ′

n (6.18)

is positive definite but maintains the same asymptotic rate of convergence as Γ̂n; in
the above, ε > 0 and β > 1/2 are some fixed numbers. For the purposes of Lin-
ear Process Bootstrap, it had been found that the simple choices ε = 1 and β = 1
worked well in practice. In the matrix estimation context, however, the choice ε = 1
sometimes produced unstable predictions; a much larger ε , of the order of 10 or 20
(together with β = 1) seems to solve the problem.

Note that the average eigenvalue of Γ̆n equals γ̆0, which is our best estimator of
VarYt ; similarly, the average eigenvalue of Γ̂n equals γ̂0 = γ̆0. However, the threshold
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correction (6.18) increases the average eigenvalue of the estimated matrix which is
associated with an increased/inflated estimate of VarYt . To see why, recall that, up
to a factor of 2π , the eigenvalues of Γn are asymptotically given by the values of
the spectral density evaluated at the Fourier frequencies; see, e.g., Gray (2005).
Since the integral of the spectral density equals VarYt , it is apparent that increasing
the integral of the estimated spectral density results in an (artificially) increased
estimate of VarYt . Consequently, it is intuitive to rescale the estimate Γ̂ ε

n in order to
ensure that its average eigenvalue remains equal to γ̂0 = γ̆0.

Another way to motivate rescaling the corrected matrix estimate is to note that the
Yule-Walker equations (6.11) should be scale invariant, i.e., invariant upon changes
of VarYt . In fact, they are often defined via a correlation matrix and vector instead
of a covariance matrix and vector. To turn γ̂(n) into a vector of correlations, we just
divide it by γ̂0. Dividing Γ̂ �

n by γ̂0 should then provide a correlation matrix—hence
the need for rescaling.

The rescaled estimate is thus given by

Γ̂ �
n = cΓ̂ ε

n where c = γ̂0/d̄ε (6.19)

and d̄ε = n−1 ∑n
i=1 dε

i is the average eigenvalue of Γ̂ ε
n .

6.4.2 Shrinkage of Problematic Eigenvalues

Section 6.4.1 described a hard-threshold adjustment to the eigenvalues of Γ̂n in order
to render it positive definite. An alternative approach is to make the adjustment
based on a positive definite estimate of Γn.

If the flat top weight function (6.16) is replaced by a weight function with a pos-
itive Fourier transform such as Parzen’s piecewise cubic lag window, the resulting
estimator Γ̂ pd

n will be positive definite and consistent—albeit with a slower rate of
convergence than Γ̂n. Since Γ̂ pd

n and Γ̂n are both Toeplitz, they are asymptotically di-
agonalized by the same orthogonal matrix—see, e.g., Grenander and Szegö (1958).
Therefore, letting Tn be the orthogonal matrix from Eq. (6.17), the matrix defined as

D̃ = T ′
nΓ̂ pd

n Tn

will be close to diagonal, and its diagonal entries will approximate the eigenvalues
of Γ̂ pd . Let d̃1, . . . , d̃n be the diagonals of D̃. We then produce adjusted eigenvalues
d�

i of D [as in (6.17)] by the following shrinkage rule. Let d+
i = max{di,0}. Then

d�
i =

⎧
⎨

⎩
di if di ≥ d̃i

(1− τn)d
+
i + τnd̃i if di < d̃i,

(6.20)
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where τn = c/na for constants c > 0 and a > 1/2. Let D� be a diagonal matrix with
diagonal elements d�

1 , . . . ,d
�
n , and define the shrinkage estimator

Γ̂ �
n = TnD�T ′

n

that is positive definite, and maintains the same asymptotic properties as Γ̂n as long
as the constant a in (6.20) is greater than 1/2. However, if a is chosen too large,
the shrinkage correction will be ineffective for small samples. Finally, note that a
rescaling step as given in Eq. (6.19) must be performed here as well; hence, our
final estimator is given by

Γ̂ �
n = cΓ̂ �

n where c = γ̂0/d̄� (6.21)

and d̄� = n−1 ∑n
i=1 d�

i is the average eigenvalue of Γ̂ �
n .

6.4.3 Shrinkage Towards White Noise

Section 6.4.2 proposed shrinking Γ̂n towards the positive definite estimator Γ̂ pd
n .

The shrinking was selective: only problematic eigenvalues were corrected as in
the threshold method of Sect. 6.4.1. We now describe a correction that is based on
shrinking the corresponding spectral density estimate toward that of a white noise
with the same variance—in effect adjusting all eigenvalues; this approach provides
substantial computational benefits. Note that the notion of shrinking covariance mat-
rices towards the identity has been previously employed by Ledoit and Wolf (2003,
2004) in a different context, namely as a tool to regularize the sample covariance
matrix based on a sample consisting of multiple i.i.d. copies of a random vector.

The shrinkage corrected version of Γ̂n is given by

Γ̂ �
n = sΓ̂n +(1− s)γ̂0In, (6.22)

where In is the identity matrix and s ∈ (0,1]. If all the eigenvalues di are greater or
equal to εγ̂0/nβ , then we let s = 1. Otherwise, we let s be the maximum value that
ensures that the minimum eigenvalue of Γ̂ �

n is exactly equal to εγ̂0/nβ .
Estimator (6.22) has several appealing properties. First, it keeps the estimated

variance of the process fixed to γ̂0, i.e., there is no need for rescaling. Second, the
shrinkage estimator Γ̂ �

n remains banded and Toeplitz, therefore fast and memory
efficient Toeplitz equation solving algorithms can be used. Third, the estimate itself
does not require numerical diagonalization of Γ̂n since s can be estimated by evalu-
ating the corresponding spectral density estimate.
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6.4.4 Shrinkage Towards a Second Order Estimate

Section 6.4.2 suggested shrinking the smaller eigenvalues of Γ̂n towards a second
order target. Section 6.4.3 introduced the idea of shrinking all the eigenvalues of
Γ̂n towards those of a white noise process. An approach that combines the most
appealing features of these two methods is to shrink the whole of Γ̂n towards a
positive definite, second order estimate of Γn.

Let Γ̂ pd
n be as defined in Sect. 6.4.2, and define the corrected estimator by

Γ̂ �
n = sΓ̂n +(1− s)Γ̂ pd

n . (6.23)

The shrinkage factor s ∈ [0,1] is chosen to raise the minimum eigenvalue of Γ̂n as
close as possible to εγ̂0/nβ while keeping s in the desired range.

Estimator (6.23) also has the desirable property of yielding a Γ̂ �
n that is banded

and Toeplitz. In addition, Γ̂ �
n has no need for rescaling as it has γ̆0 on the main

diagonal. Finally, using the second order estimator as the target feels less arbitrary
than shrinking towards white noise. However, the reason that both shrinkage meth-
ods work well, asymptotically as well as in simulations, is that the correction is a
small one, i.e., s tends to one in large samples. Thus, the target is not meant to be
achieved but gives only a general direction for the correction—see McMurry and
Politis (2015) for more discussion.

Remark 6.4.1 Among the four correction methods, the two global shrinkage esti-
mators, namely estimators (6.22) and (6.23), may prove especially useful in the case
of very large data sets. The reason is that they both result in a banded Toeplitz matrix
that can be calculated easily, stored efficiently, and inverted via fast algorithms. Re-
call that the system T b = z with T being Toeplitz can be solved in O(n log2 n) time
using O(n) memory; see, e.g., Brent et al. (1980).

6.5 Estimating the Length n Vector γ(n)

Implicit in the n-dimensional Yule-Walker equations (6.11) is the need for consistent
estimation of the length n vector of auto-covariances γ(n) = (γ1, . . . ,γn)

′. The vector
of sample auto-covariances γ̆(n) = (γ̆1, . . . , γ̆n)

′ is not a consistent estimator of γ(n).
In fact, γ̆(n) misbehaves. To see why, recall that the periodogram of the centered
data vanishes at frequency zero; this implies the identity ∑n

i=1 γ̆i =−γ̆0/2 which, of
course, has no reason to hold for the true γi.

By contrast, the flat-top weighted estimator γ̂(n) = (γ̂1, . . . , γ̂n)
′ defined in

Eq. (6.14) is consistent for γ(n) in (Euclidean) norm although not positive definite.
Notice that γ̂(n) is closely related to the first row of Γ̂n which is a consistent estima-
tor of Γn; the only difference is that while γ̂(n) = (γ̂1, . . . , γ̂n)

′, the first row of Γ̂n is
(γ̂0, γ̂1, . . . , γ̂n−1)

′.
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Let Γ̂ �
n denote the matrix Γn corrected to positive definiteness by one of the four

methods discussed in the previous section. By looking at the first row of the con-
sistent and positive definite matrix Γ̂ �

n , McMurry and Politis (2015) proposed an
alternative estimator of γ(n). To elaborate, define

γ̂�(n) = [(Γ̂ �
n )1,2, · · · ,(Γ̂ �

n )1,n,0]
′ (6.24)

where (Γ̂ �
n )i, j denotes the i, j-th element of matrix Γ̂ �

n . Estimator γ̂�(n) is also con-
sistent for γ(n) in (Euclidean) norm, and has the additional property of being a
positive definite sequence (by construction).

As an application, the coefficients in the FSO predictor (6.12) can be estimated
via Yule-Walker equations that use γ̂�(n) instead of γ̂(n), i.e., letting

φ̂(n) = (Γ̂ �
n )−1γ̂�(n). (6.25)

6.6 Linear Prediction Based on the Model-Free
Prediction Principle

6.6.1 A First Idea: The Discrete Fourier Transform

To apply the Model-Free Prediction Principle, one must find a way to transform the
time series data vector Y n = (Y1, . . . ,Yn)

′ into an i.i.d. data vector. Recall that the aut-
ocovariance matrix of Y n is denoted Γn = [γ|i− j|]ni, j=1 which is a symmetric Toeplitz
matrix. As already mentioned, a fundamental tool for time series analysis is the fact
that all symmetric n×n Toeplitz matrices are approximately, i.e., asymptotically as
n → ∞, diagonalized by the same orthogonal matrix that has eigenvectors obtained
from sinusoids sampled on a grid. This orthogonal transformation is nothing other
than the Discrete Fourier Transform (DFT).

To elaborate, the DFT maps the vector Y n to the vector Un = (U1, . . . ,Un)
′ with

j-th coordinate given by

Uj =
1√
n

n

∑
t=1

Yt exp(−iλ jt)

where, as usual, λ j = 2π j/n for j = 1, . . . ,n are the Fourier frequencies. Because of
the aforementioned (approximate) diagonalizing property of the DFT, it now follows
that the variables U1, . . . ,Un are (approximately) uncorrelated.

Now if the time series {Yt} is linear, i.e., it satisfies Eq. (6.1), then it is not
hard to see that the variables U1, . . . ,Un will also be (approximately) independent
with an asymptotic Gaussian distribution. Lahiri (2003) gives necessary and suffi-
cient conditions for the asymptotic independence and normality of the DFT coeffi-
cients. Since EUj = 0, a simple re-scaling would then bring us to an approximate
i.i.d. setting.
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The required re-scaling involves the spectral density; as shown in Brockwell and

Davis (1991, Chap. 10), letting ε(n)j =Uj/
√

f (λ j) renders the variables ε(n)1 , . . . ,ε(n)n

(approximately) i.i.d. Furthermore, they contain all the information needed to rec-
apture (by re-scaling and inverse DFT) the original data vector Y n. Hence, the map

from Y n to ε (n)
n = (ε(n)1 , . . . ,ε(n)n )′ is invertible as the first premise of the Model-Free

Prediction Principle requires.
However, there seems to be a difficulty with premise (b) of the Model-Free Pre-

diction Principle as it is not clear if/how one can solve for Yn+1 in terms of Y n and

ε(n+1)
n+1 alone. Nevertheless, this de-correlation idea can be made fruitful using a dif-

ferent approach; Sect. 6.6.2 gives the details that are based on a whitening filter.

Remark 6.6.1 The DFT variables U1, . . . ,Un are complex-valued; an equivalent
real-valued transformation is obtained by looking at the real and imaginary parts
separately, i.e., letting UR

j = Real(Uj) and UI
j = Imag(Uj). Due to the symmetries

UR
n− j = UR

j and UI
n− j = −UI

j , it is apparent that the coefficients UR
j and UI

j for
j = 1, . . . ,�(n−1)�/2 carry all the necessary information required in order to recap-
ture (by inverse DFT) the original series; see Kirch and Politis (2011) for details.

Remark 6.6.2 The periodogram I(λ j) is defined via the modulus squared of the
DFT, i.e., I(λ j) = (2π)−1|Uj|2. Note that the asymptotic independence of DFT or-
dinates U1, . . . ,Un implies the asymptotic independence of periodogram ordinates
I(λ1), . . . , I(λn) that has served as the basis of the well-known frequency-domain
bootstrap for time series proposed by Franke and Härdle (1992); see also Kreiss and
Paparoditis (2012) for some current developments. A frequency-domain bootstrap
that resamples the DFT instead of the periodogram was recently put forth by Kirch
and Politis (2011) reviving an early idea of Hurvich and Zeger (1987).

6.6.2 Whitening and the Model-Free Linear Predictor

To start with, let us assume the working hypothesis that {Yt , t ∈ Z} is a linear time
series that is causal and invertible, i.e., it satisfies Eqs. (6.2) and (6.3) with respect
to the innovations {Zt} that are i.i.d. with mean zero and variance σ2.

Recall that the autocovariance matrix of data vector Y n is denoted Γn which is a
positive definite Toeplitz matrix. Consider a square-root decomposition

Γn =CnC′
n (6.26)

where Cn is positive definite. Now define the new vector Z(n)
n = (Z(n)

1 , . . . ,Z(n)
n )′ by

Z(n)
n =C−1

n Y n. (6.27)
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Equation (6.27) is a whitening filter since the variables Z(n)
1 , . . . ,Z(n)

n are mean-zero,
variance one, and uncorrelated, i.e., they constitute a white noise sample path.

Nevertheless, a stronger result is true if we insist that Eq. (6.26) is the Cholesky
decomposition of Γn, i.e., requires that the positive definite matrix Cn is (lower) tri-

angular. In that case, it is not hard to see that the variables Z(n)
1 , . . . ,Z(n)

n are approxi-
mately i.i.d. as the filter (6.27) gives an approximation to the inversion (6.3). In fact,
the whitening filter (6.27) that uses the Cholesky decomposition of Γn is equivalent
to the well-known innovations algorithm of Brockwell and Davis (1988); see also
Rissanen and Barbosa (1969), and Pourahmadi (1999, 2011) for further applications
of the Cholesky decomposition of Γn.

To elaborate, letting Cn be the (lower) triangular Cholesky factor of Γn implies

Z(n)
j � Zj/σ for all j ≥ some j0; the reason we have approximation instead of equal-

ity is due to edge effects in initializing the filter. Furthermore, transformation (6.27)

is invertible so if we define Hn : Y n �→ Z(n)
n , then transformation Hn satisfies the first

premise of the Model-Free Prediction Principle.3 It is easy to see that it also satisfies

premise (b) of the Model-Free Prediction Principle since the Z(n)
j do not depend on

n for j ≥ j0, i.e., they are a simple sequence (up to edge effects) and not a triangular
array; see Sect. 2.3.4.

In order to put the Model-Free Prediction Principle to work, we need to esti-
mate the transformation Hm both for m = n and for m = n+ 1. Recall that Sect. 6.4
developed several estimators of Γn that are consistent and positive definite. Let Γ̂ �

n
denote one of the two global shrinkage estimators, i.e., either estimators (6.22) or
(6.23). The reason we focus on the two global shrinkage estimators is that they yield
a matrix Γ̂ �

n that is banded and Toeplitz; see Remark 6.4.1. In addition to fast com-
putation, the banded Toeplitz property gives us an immediate way of constructing
Γ̂ �

n+1 that is needed for transformation Hn+1 and its inverse.
Denote by γ̂�|i− j| the i, j-th element of Γ̂ �

n for i, j = 1, . . . ,n; by construction, the
sequence γ̂�s for s = 0,1, . . . is positive definite, and consistent for the true γ̂s for
s = 0,1, . . .. Hence, we define Γ̂ �

n+1 to be the symmetric, banded Toeplitz matrix
with i, j-th element given by γ̂�|i− j| for i, j = 1, . . . ,n+ 1. Recall that Γ̂ �

n is banded,

so γ̂�|i− j| = 0 if |i− j| > lcκ . Thus, the two entries of Γ̂ �
n+1 at the upper-right and

lower-left, i.e., both i, j-th entries that satisfy |i− j| = n are naturally estimated by
zeros.

The practical application of the Model-Free Prediction Principle in order to obt-
ain the L2–optimal predictor of Yn+1 can be summarized in the following algorithm.

3 The fact that the Z(n)
j are only approximately i.i.d. is of little consequence in practice since the

matrix Γn is unknown, and has to be estimated; hence, the practically feasible version of the Z(n)
j

can only be expected to approximately i.i.d. anyway.
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Algorithm 6.6.1 L2-OPTIMAL MODEL-FREE LINEAR PREDICTOR

1. Let Ĉn be the (lower) triangular Cholesky factor of Γ̂ �
n , and define

Ẑn = Ĉ−1
n Y n and hence Y n = ĈnẐn. (6.28)

Ignoring the aforementioned edge effects, we have denoted Ẑn = (Ẑ1, . . . , Ẑn)
′ as

a simple sequence as opposed to a triangular array.
2. Let Y n+1 = (Y1, . . . ,Yn,Yn+1)

′ that includes the unobserved Yn+1, and Ẑn+1 =
(Ẑ1, . . . , Ẑn, Ẑn+1)

′. Use the inverse transformation to write

Y n+1 = Ĉn+1Ẑn+1 (6.29)

where Ĉn+1 is the (lower) triangular Cholesky factor of Γ̂ �
n+1.

3. Note that Eq. (6.29) implies that

Yn+1 = ĉn+1Ẑn+1 (6.30)

where ĉn+1 = (ĉ1, . . . , ĉn, ĉn+1) is the last row of Ĉn+1.
4. Recall that the prediction is carried out conditionally on Y n. Due to Eq. (6.28),

the first n elements of the vector Ẑn+1 can be treated as fixed (and known)
given Y n. Then, the Model-Free approximation to the L2–optimal predictor
E(Yn+1|Yn, . . . ,Y1) is given by

Ŷn+1 =
n

∑
i=1

ĉiẐi + ĉn+1Ẑ (6.31)

where Ẑ is an empirical approximation to the expected value of Ẑn+1. A natural

choice is to let Ẑ = n−1 ∑n
i=1 Ẑi; alternatively, we can simply estimate Ẑ by zero

using the fact that Ẑn+1 � Zn+1/σ , and E(Zn+1|Yn, . . . ,Y1) = E(Zn+1) = 0 by
assumption.

Remark 6.6.3 Recall our working hypothesis that {Yt , t ∈ Z} is a linear time series
that is causal and invertible. Under this hypothesis, the conditional expectation
E(Yn+1|Yn, . . . ,Y1) is linear in Y n, and the same is true for its Model-Free esti-
mate (6.31). However, if the working hypothesis of linearity is not true, then pre-
dictor (6.31) gives a novel approximation to the best linear predictor of Yn+1 on the
basis of Y n, i.e., the orthogonal projection of Yn+1 onto the linear span of (Yn, . . . ,Y1).

The performance of the Model-free predictor was investigated in simulation
using some simple AR and MA models based on innovations εt ∼ i.i.d. N(0,1).
The models were: MA(1): Yt = εt + θεt−1, and AR(1): Yt = φYt−1 + εt for dif-
ferent choices of θ and φ ; each model was simulated 1000 times using a sample
size n = 200. Additional models were considered in the Rejoinder of McMurry and
Politis (2015).

The notation for Tables 6.1 and 6.2 is as follows: FSO denotes the predic-
tor (6.12); WN vs. 2o denotes that Γ̂ �

n was obtained via shrinkage to white noise
from Eq. (6.22) vs. shrinkage towards a second order estimator from Eq. (6.23);
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Raw vs. Shr indicates using γ̂(n) vs. γ̂�(n) in the Yule-Walker equations, i.e., using
Eq. (6.11) vs. (6.25). For simplicity, we considered the Model-Free prediction app-
roach with Γ̂n corrected to positive definiteness using shrinkage to white noise, i.e.,
the matrix Γ̂ �

n used corresponded to estimator (6.22); hence, the notation MF-WN
for the Model-Free method. AR denotes the AR(p) predictor (6.9) with the order p
chosen by AIC minimization.

Note that the AR predictor (6.9) has been the linear prediction method of choice
for the last century or so; hence, it serves as the benchmark for comparison. Interest-
ingly, all versions of the FSO predictor seem competitive to the AR predictor under
an AR(1) model, and for the most part outperform it in the case of the MA(1) model.
Also notable is that the MF-WN method generates predictions that are of very sim-
ilar quality to the FSO-WN-Shr approach; see Tables 6.1 and 6.2. The Model-Free
approach using matrix Γ̂ �

n obtained from estimator (6.23), i.e., shrinkage towards
a second order estimator, would generate predictions that are of similar quality to
the FSO-2o-Shr approach. Thus, it looks like the Model-Free approach in essence
gives a different way to compute the FSO predictor based on Γ̂ �

n in connection with
the shrunk autocovariance estimator γ̂�(n) whatever the choice of Γ̂ �

n might be. This
is corroborated by the fact that, as mentioned before, the construction of predictor
(6.31) was motivated by the Model-Free Prediction Principle but it is similar in spirit
to the innovations algorithm of Brockwell and Davis (1988). The latter, however, as-
sumes knowledge of Γn; the crucial difference is that the Model-Free predictor uses
the consistent, positive definite estimator Γ̂ �

n in place of the unknown Γn.

FSO-WN-Raw FSO-WN-Shr FSO-2o-Raw FSO-2o-Shr MF-WN AR

θ =−0.9 1.0626 1.0662 1.0635 1.0629 1.0647 1.0614

θ =−0.5 0.9849 0.9839 0.9892 0.9885 0.9840 0.9886

θ =−0.1 0.9869 0.9869 0.9869 0.9869 0.9869 0.9939

θ = 0.1 1.0314 1.0314 1.0314 1.0314 1.0314 1.0348

θ = 0.5 1.0087 1.0070 1.0112 1.0106 1.0070 1.0222

θ = 0.9 1.0481 1.0507 1.0460 1.0484 1.0504 1.0374

Table 6.1 Root mean square prediction errors associated with different one-step-ahead predictors:
MA(1) model simulation

6.6.3 From Point Predictors to Prediction Intervals

The Model-free point predictor (6.31) was based on the matrix estimator Γ̂ �
n . How-

ever, it is possible to use alternative matrix estimators in Algorithm 6.6.1 as long as
they are consistent for Γn and positive definite. One such possibility is the AR-based
estimation of the matrix Γn discussed in the Rejoinder of McMurry and Politis
(2015). To elaborate, we may fit an AR(p) model to the data based on the sample
autocovariances γ̆0, . . . , γ̆p; fitting the AR(p) model via the Yule-Walker equations is
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FSO-WN-Raw FSO-WN-Shr FSO-2o-Raw FSO-2o-Shr MF-WN AR

φ =−0.9 1.1481 1.0968 1.0948 1.0633 1.0952 1.0091

φ =−0.5 1.0121 1.0100 1.0239 1.0204 1.0102 0.9978

φ =−0.1 0.9874 0.9874 0.9874 0.9874 0.9875 0.9841

φ = 0.1 0.9975 0.9975 0.9975 0.9975 0.9975 0.9983

φ = 0.5 1.0322 1.0298 1.0489 1.0454 1.0300 1.0093

φ = 0.9 1.0942 1.0866 1.0654 1.0496 1.0849 1.0087

Table 6.2 Root mean square prediction errors associated with different one-step-ahead predictors:
AR(1) model simulation

convenient as it results in a causal (and therefore stationary) model. Then, we esti-
mate the whole autocovariance sequence by the autocovariance implied by the fitted
AR model, i.e., by solving the difference equation as outlined in Brockwell and
Davis (1991, Sect. 3.3); R automates this process through the ARMAacf() func-
tion.

Denote by γ̂AR
k the lag-k autocovariance of the fitted AR model. As the autoco-

variance sequence of a stationary time series, the sequence γ̂AR
k for k ∈ Z is positive

definite. Hence if we define Γ̂ AR
n as the n×n Toeplitz matrix with i, j-th entry given

by γ̂AR
|i− j|, it then follows that Γ̂ AR

n will be a positive definite estimator of matrix Γn.

Under regularity conditions, Γ̂ AR
n will also be consistent (in operator norm) for Γn

provided p → ∞ but p = o(n). Choosing p by minimizing the popular AIC criterion
typically satisfies the above consistency requirement.

Hence, we can use Γ̂ AR
n and Γ̂ AR

n+1 instead of Γ̂ �
n and Γ̂ �

n+1, respectively, in Algo-
rithm 6.6.1 giving rise to a Model-free point predictor of Yn+1 that is of AR–type,
i.e. it is a linear combination of just the last p values Yn−p+1, . . . ,Yn despite the fact
that the given dataset Y n is of size n. Both Model-free predictors—the one based
on Γ̂ AR

n and the original one based on Γ̂ �
n —are consistent for the theoretically opti-

mal point predictor; in fact, the AR–type Model-free predictor should be practically
indistinguishable from the AR(p) predictor (6.9), i.e., the AR entry in Tables 6.1
and 6.2. The AR–type Model-free predictor can be easily extended with the pur-
pose of constructing prediction intervals for Yn+1; this is the subject of Chap. 7. The
banded estimator Γ̂ �

n is revisited and found useful in Chap. 9.
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Chapter 7
Model-Based Prediction in Autoregression

7.1 Introduction

Chapter 3 described in detail the construction of prediction intervals in model-based
regression. An autoregressive (AR) time series model, be it linear, nonlinear, or non-
parametric, bears a formal resemblance to the analogous regression model. Indeed,
AR models can typically be fitted by the same methods used to estimate a regres-
sion, e.g., ordinary Least Square (LS) regression methods for parametric models,
and scatterplot smoothing for nonparametric ones. The practitioner has only to be
careful regarding the standard errors of the regression estimates but model-based
resampling should in principle be able to capture those.

Therefore, it is not surprising that model-based resampling for regression can
be extended to model-based resampling for autoregression. Indeed, standard errors
and confidence intervals based on resampling the residuals from a fitted AR model
have been one of the first bootstrap approaches for time series; see, e.g., Freedman
(1984), Efron and Tibshirani (1993), and Bose (1988).

However, the situation as regards prediction intervals is not as clear; for exam-
ple, the conditional nature of the predictive inference in time series poses a difficulty.
There are several papers on prediction intervals for linear AR models but the liter-
ature seems scattered and there are many open questions: (a) how to implement the
model-based bootstrap for prediction, i.e., how to generate bootstrap series; (b) how
to construct prediction intervals given the availability of many bootstrap series al-
ready generated; (c) how to evaluate asymptotic validity of a prediction interval;
and lastly (d) how to construct prediction intervals for nonlinear and nonparametric
autoregressions.

Following Pan and Politis (2015), we now attempt to give some answers to the
above, and thus provide a comprehensive approach towards bootstrap prediction

© The Author 2015
D.N. Politis, Model-Free Prediction and Regression, Frontiers in Probability
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intervals for linear, nonlinear, or nonparametric autoregressions. Equation (2.2)
from Chap. 2 gave a general autoregression model; for simplicity, in what follows
we will not consider the possibility of having the additional regressor xt .

Therefore, the time series we will consider in this chapter are the stationary so-
lutions of one of the following two recursions for t ∈ Z:

• AR model with homoscedastic errors

Yt = μ(Yt−1, . . . ,Yt−p)+ εt with εt ∼ i.i.d. (0,σ2) (7.1)

• AR model with heteroscedastic errors

Yt = μ(Yt−1, . . . ,Yt−p)+σ(Yt−1, . . . ,Yt−p)εt with εt ∼ i.i.d. (0,1). (7.2)

In the above, μ(·) and σ(·) are unknown; if they can be are assumed to belong to a
finite-dimensional, parametric family of functions, then the above describe a linear
or nonlinear AR model. If μ(·) and σ(·) are only assumed to belong to a smoothness
class, then the above models describe a nonparametric autoregression.

In addition, the following causality condition is assumed:

εt is independent from {Ys,s < t} for all t. (7.3)

Under either model (7.1) or (7.2), the causality assumption (7.3) ensures that

E(Yt |Ys,s < t) = μ(Yt−1, . . . ,Yt−p) (7.4)

which then gives the predictor of Yt given {Ys,s < t} that is optimal with respect to
Mean Squared Error (MSE) of prediction; this is a manifestation of the Markovian
property of causal autoregressive models such as (7.1) and/or (7.2).

7.2 Prediction Intervals in AR Models: Laying the Foundation

7.2.1 Forward and Backward Bootstrap for Prediction

As previously mentioned, an autoregression can be formally viewed as regression.
However, in prediction with an AR(p) model, linear or nonlinear, an additional
difficulty is that the one-step-ahead prediction is done conditionally on the last p
observed values that are themselves random.

To fix ideas, suppose Y1 = y1, . . . ,Yn = yn constitutes a realization from the lin-
ear AR(1) model: Yt = φ1Yt−1 + εt where |φ1| < 1 and the εt are i.i.d. with mean
zero. Given the data, the MSE–optimal predictor of Yn+1 is φ1yn which is approx-
imated in practice by plugging-in an estimator, say φ̂1, for φ1; hence, our practical
approximation to the MSE–optimal predictor of Yn+1 is Ŷn+1 = φ̂1yn.
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Generating bootstrap series Y ∗
1 ,Y

∗
2 , · · · from the fitted AR model enables us to

capture the variability of φ̂1 when the latter is re-estimated from bootstrap datasets
such as Y ∗

1 , · · · ,Y ∗
n . For the application to prediction intervals, note that the bootstrap

also allows us to generate Y ∗
n+1 so that the statistical accuracy of the predictor φ̂1Yn

can be gauged. However, none of these bootstrap series will have their last value Y ∗
n

exactly equal to the original value yn as needed for prediction purposes. Herein lies
the problem, since the behavior of the predictor φ̂1Yn needs to be captured condi-
tionally on the original value Yn = yn.

To avoid this difficulty, Thombs and Schucany (1990) proposed to generate
the bootstrap data Y ∗

1 , · · · ,Y ∗
n going backwards from the last value that is fixed at

Y ∗
n = yn; this is the backward bootstrap method that was revisited by Breidt et al.

(1995) who gave the correct algorithm for constructing the backward errors. Note
that the generation of Y ∗

n+1 is still done in a forward fashion using the fitted AR
model conditionally on the value Yn.

Nevertheless, the natural way autoregressions evolve is forward in time, i.e.,
given Yt−1, the next observation is generated as Yt = φ1Yt−1 + εt , and so on. It is
intuitive to construct bootstrap procedures that run forward in time, i.e., given Y ∗

t−1,
the next bootstrap observation is given by

Y ∗
t = φ̂1Y ∗

t−1 + ε∗t ; (7.5)

as usual, the bootstrap errors ε∗t are generated in an i.i.d. fashion from some esti-
mate of the error distribution. Indeed, most (if not all) of the literature on bootstrap
confidence intervals for AR models uses the natural time order to generate bootstrap
series. It would be nice to be able to build upon this large body of work in order to
construct prediction intervals. However, recall that predictive inference is to be con-
ducted conditionally on the last value Yn = yn in order to be able to place prediction
bounds around the point predictor φ̂1Yn. So how can one ensure that Y ∗

n = yn so that
Y ∗

n+1 = φ̂1yn + ε∗n+1?
Aided by the additive structure of the AR model, it is possible to “have our cake

and eat it too,” i.e., generate bootstrap series forward in time but also ensure that Y ∗
n+1

is constructed correctly. This procedure was called the forward bootstrap method
for prediction intervals by Pan and Politis (2015), and comprises of the following
steps:

A. Choose a starting value Y ∗
0 appropriately, e.g., choose it at random from one of

the original data Y1, · · · ,Yn. Then, use recursion (7.5) for t = 1,2, . . . ,n in order
to generate bootstrap data Y ∗

1 , · · · ,Y ∗
n . Re-compute the statistic of interest (in this

case φ̂1) from the bootstrap data Y ∗
1 , · · · ,Y ∗

n to obtain the bootstrap statistic φ̂∗
1 .

B. Re-define the last value in the bootstrap world, i.e., let Y ∗
n = yn. Compute the

one-step ahead bootstrap predictor Ŷ ∗
n+1 = φ̂∗

1 yn, and also generate the future
bootstrap observation Y ∗

n+1 = φ̂1yn + ε∗n+1.
C. Use the simulated distribution of the bootstrap predictive root Y ∗

n+1 − Ŷ ∗
n+1 to

estimate the true distribution of the real-world predictive root Yn+1 − Ŷn+1; note
that it is also possible to use studentized predictive roots.
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The above algorithm works because the two constituents of the prediction error
Yn+1 − Ŷn+1 = (φ1Yn − φ̂1Yn)+ εn+1, i.e., estimation error (φ1Yn − φ̂1Yn) and inno-
vation error εn+1 are independent, and the same is true in the bootstrap world. As
stated above, the forward bootstrap algorithm is specific to an AR(1) model but its
extension to higher-order models is straightforward and will be given in the sequel.
Indeed, the forward bootstrap is the method that can be immediately generalized
to nonlinear and nonparametric autoregressions as well, thus forming a unifying
principle for treating all AR models.

The forward bootstrap idea has been previously used for prediction intervals in
linear AR models by Masarotto (1990) and Pascual et al. (2004) but with some
important differences. For example, Masarotto (1990) omits the above step B, while
Pascual et al. (2004) base their prediction intervals on an analog of the bootstrap
percentile method without considering predictive roots.

Remark 7.2.1 Both aforementioned bootstrap ideas, backward and forward, hinge
on an i.i.d. resampling of the residuals obtained from the fitted model. In the AR(1)
case, the fitted residuals are obtained as ε̂t =Yt − φ̂1Yt−1 for t = 2,3, · · · ,n. Neverthe-
less, in Chap. 3 we made the case that resampling the predictive residuals gives more
accurate prediction intervals in regression, be it linear or nonparametric. Section 7.3
defines a particular notion of predictive residuals in autoregression, and shows their
potential benefit in constructing bootstrap prediction intervals.

7.2.2 Prediction Intervals for Autoregressive Processes

Let Y1, · · · ,Yn be an observed stretch of a time series that follows a stationary au-
toregressive model of order p, i.e., model (7.1) or (7.2); the autoregression can be
linear, nonlinear, or nonparametric. Denote by Ŷn+1 a point predictor of Yn+1 based
on the data Y n = (Y1, . . . ,Yn)

′. Let V̂ 2
n be an estimate of Var(Yn+1 − Ŷn+1|Y1, · · · ,Yn)

which is the conditional variance in one-step-ahead prediction. Given a bootstrap
pseudo series Y ∗

1 , · · · ,Y ∗
n ,Y

∗
n+1, analogs of the aforementioned quantities can be de-

fined, i.e., Ŷ ∗
n+1 and V̂ ∗

n . Recall that bootstrap probability and expectation are usually
denoted by P∗ and E∗, and they are understood to be conditional on the original data
Y1 = y1, · · · ,Yn = yn.

Our objective is to construct a prediction interval for Yn+1 given the data Y n.
The salient point in all bootstrap algorithms discussed in this monograph is to use
the bootstrap distribution of the bootstrap predictive root Y ∗

n+1 − Ŷ ∗
n+1 or studen-

tized predictive root (Y ∗
n+1 − Ŷ ∗

n+1)/V̂ ∗
n to estimate the true distribution of the real-

world predictive root Yn+1 − Ŷn+1 or studentized predictive root (Yn+1 − Ŷn+1)/V̂n,
respectively.

Note that in our causal autoregressive models (7.1) and (7.2) there are no extra-
neous regressors; rather, Yt is regressed on its own past p values. We may then define
Xt−1 = (Yt−1, . . . ,Yt−p)

′ in which case Eqs. (7.1) and (7.2) can be re-written as:
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• AR model with homoscedastic errors

Yt = μ(Xt−1)+ εt with εt ∼ i.i.d. (0,σ2) (7.6)

• AR model with heteroscedastic errors

Yt = μ(Xt−1)+σ(Xt−1)εt with εt ∼ i.i.d. (0,1) (7.7)

thus resembling very closely the regression models of Chap. 3; the main difference
here is that the scatterplot pairs {(Yt ,Xt−1) for t = p+ 1, . . . ,n} are no longer inde-
pendent.

Taking the regression analogy a bit further, recall that in Chap. 3 the future (unob-
served) scatterplot pair was denoted (Yf,xf) which in our case would be (Yn+1,Xn).
Notation aside, here lies the main difficulty: we are interested in the response as-
sociated with a regressor value xf that is fixed to the value Xn = (Yn, . . . ,Yn−p+1)

′
which is actually part of the dataset Y n.

Hence, as described in Sect. 7.2.1 on the forward vs. backward bootstrap, the
tension lies between the need to create bootstrap datasets Y ∗

n = (Y ∗
1 , . . . ,Y

∗
n )

′ in order
to capture the variability of the predictor Ŷn+1 while keeping the last p values of the
bootstrap dataset fixed to the original ones. To do that, it is very convenient to base
our predictive inference on Markovian models such as (7.6) and (7.7) that result into
point predictors of type (7.4) that only utilize the finite history.1

7.2.3 Pertinent Prediction Intervals in Model-Based
Autoregression

In Sect. 3.6.2, the notion of asymptotic pertinence was defined for model-based pre-
diction intervals in regression. To extend these ideas to autoregression, consider
first the homoscedastic model (7.1), and recall that Eq. (7.3) implies that the MSE–
optimal predictor of Yn+1 given Y1 = y1, . . . ,Yn = yn is μ(yn, . . . ,yn−p+1). Hence we
set Ŷn+1 = m̂(yn, . . . ,yn−p+1) where m̂(·) is a consistent estimator of μ(·). Assume
that m̂(·) has rate of convergence an, i.e., an(m̂(·)− μ(·)) has a well-defined, non-
trivial asymptotic distribution where an → ∞ as n → ∞. Then, the predictive root is
given by

Yn+1 − Ŷn+1 = εn+1 +Aμ (7.8)

where Aμ = μ(yn, . . . ,yn−p+1)− m̂(yn, . . . ,yn−p+1) = Op(1/an) represents the esti-
mation error.

Similarly, the bootstrap predictive root can be written as

Y ∗
n+1 − Ŷ∗

n+1 = ε∗n+1 +A∗
μ (7.9)

1 However, as shown in Chap. 9, the Model-free Prediction Principle can still be applied even when
a time series is not Markov.
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where A∗
μ = m̂(yn, . . . ,yn−p+1)− m̂∗(yn, . . . ,yn−p+1). As before, the model-based

bootstrap should be capable of asymptotically capturing both the pure prediction
error, i.e., the distribution of εn+1, and the estimation error.

Definition 7.2.1 Asymptotic pertinence of bootstrap prediction intervals under
model (7.1). Consider a bootstrap prediction interval for Yn+1 that is based on ap-
proximating the distribution of the predictive root Yn+1 − Ŷn+1 of Eq. (7.8) by the
distribution of the bootstrap predictive root Y ∗

n+1 − Ŷ ∗
n+1 of Eq. (7.9). The interval

will be called asymptotically pertinent provided the bootstrap satisfies the following
three conditions as n → ∞ conditionally on Yn−p+1 = yn−p+1, · · · ,Yn = yn.

(i) supa |P(εn+1 ≤ a)−P∗(ε∗n+1 ≤ a)| P−→ 0, presupposing that the error distribu-
tion is continuous.

(ii) |P(anAμ ≤ a)−P∗(anA∗
μ ≤ a)| P−→ 0 for some sequence an → ∞, and for all

points a where the assumed nontrivial limit of P(anAμ ≤ a) is continuous.
(iii) ε∗n+1 and A∗

μ are independent in the bootstrap world—as their analogs are in
the real world due to the causality assumption (7.3).

Furthermore, the bootstrap prediction interval for Yn+1 that is based on the approx-
imating the distribution of the studentized predictive root (Yn+1 − Ŷn+1)/V̂n by the
distribution of the bootstrap studentized predictive root (Y ∗

n+1 − Ŷ ∗
n+1)/V̂ ∗

n will be
called asymptotically pertinent if, in addition to (i)—(iii) above, the following also
holds:

(iv) V̂n/V̂ ∗
n

P−→ 1.

Consider now the heteroscedastic model (7.2). Much of the above discussion carries
over verbatim; for example, our predictor of Yn+1 given Y1 = y1, . . . ,Yn = yn is still
Ŷn+1 = m̂(yn, . . . ,yn−p+1). The only difference is that the predictive root now is

Yn+1 − Ŷn+1 = σ(yn, . . . ,yn−p+1)εn+1 +Aμ , (7.10)

and the bootstrap predictive root is

Y ∗
n+1 − Ŷ∗

n+1 = σ̂ (yn, . . . ,yn−p+1)ε∗n+1 +A∗
μ (7.11)

where σ̂(·) is the (consistent) estimator of σ(·) that is employed in the bootstrap
data generation mechanism. Hence, the following definition is immediate.

Definition 7.2.2 Asymptotic pertinence of bootstrap prediction intervals under
model (7.2). Consider a bootstrap prediction interval for Yn+1 that is based on ap-
proximating the distribution of the predictive root Yn+1 − Ŷn+1 of Eq. (7.10) by the
distribution of the bootstrap predictive root Y ∗

n+1 − Ŷ ∗
n+1 of Eq. (7.11). The interval

will be called asymptotically pertinent provided the bootstrap satisfies conditions
(i)—(iii) of Definition 7.2.1 together with the additional requirement:

(iv′) σ(yn, . . . ,yn−p+1)− σ̂(yn, . . . ,yn−p+1)
P−→ 0.
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Furthermore, the bootstrap prediction interval for Yn+1 that is based on the approx-
imating the distribution of the studentized predictive root (Yn+1 − Ŷn+1)/V̂n by the
distribution of the bootstrap studentized predictive root (Y ∗

n+1 − Ŷ ∗
n+1)/V̂ ∗

n will be
called asymptotically pertinent if, in addition condition (iv) of Definition 7.2.1 also
holds.

Remark 7.2.2 Taking into account that Aμ = op(1) as n → ∞, a simple estimator
for the (conditional) variance of the predictive root Yn+1−Ŷn+1 under model (7.2) is
V̂n = σ̂ (yn, . . . ,yn−p+1). Thus, condition (iv) or Definition 7.2.1 can be re-written as

σ̂(yn, . . . ,yn−p+1)− σ̂∗(yn, . . . ,yn−p+1)
P−→ 0,

i.e., it is just a bootstrap version of condition (iv′) or Definition 7.2.2. As a
matter of fact, resampling in the heteroscedastic model (7.2) entails using studen-
tized residuals. In this case, the predictive root method gives results that are al-
most identical to the studentized predictive root method when the simple estimator
V̂n = σ̂(yn, . . . ,yn−p+1) is used; see Remark 3.6.3 for an analogous discussion.

7.3 Bootstrap Prediction Intervals for Linear Autoregressions

Consider the strictly stationary, causal AR(p) model defined by the recursion

Yt = φ0 +
p

∑
j=1

φ jYt− j + εt (7.12)

which is a special case of model (7.1) with the εt being i.i.d. with mean zero, vari-
ance σ2, and distribution Fε . The assumed causality condition (7.3) is now tanta-
mount to φ(z) = 1−φ1z−·· ·−φpzp �= 0 for |z| ≤ 1. Denote φ = (φ0,φ1,φ2, · · · ,φp)

′

the vector of autoregressive parameters, and φ̂ = (φ̂0, φ̂1, · · · , φ̂p)
′ and φ̂ (z) = 1−

φ̂1z − ·· · − φ̂pzp the respective estimates. Let Ŷt be the “fitted” value of Yt , i.e.,
Yt = φ̂0 +∑p

j=1 φ̂ jYt− j; in other words, Ŷt is our approximation to the MSE–optimal
predictor of Yt given the past. As before, let Xt = (Yt , · · · ,Yt−p+1)

′ be the vector of
the last p observations up to Yt .

As described in Sect. 7.2.1, the idea of forward bootstrap method is that given
observations Y1 = y1, . . . ,Yn = yn, we can use the fitted AR recursion to generate
bootstrap series “forward” in time starting from some initial conditions. This re-
cursion stops when n bootstrap data have been generated; to generate the (n+ 1)th
bootstrap point (and beyond), the recursion has to be re-started with different ini-
tial values that are fixed to be the last p original observations. The details for esti-
mating the coefficients, generating the bootstrap pseudo-data and constructing the
prediction intervals using both fitted and predictive residuals are given below in
Sects. 7.3.1 and 7.3.2
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7.3.1 Forward Bootstrap with Fitted Residuals

Given a sample Y1 = y1, . . . ,Yn = yn from (7.12), the following are the steps needed
to construct the prediction interval for future value Yn+1 based on the predictive root
method.

Algorithm 7.3.1 FORWARD BOOTSTRAP WITH FITTED RESIDUALS (FF)

1. Use all observations y1, · · · ,yn to obtain the Least Squares (LS) estimators φ̂ =

(φ̂0, φ̂1, · · · , φ̂p)
′ by fitting the following linear model

⎛

⎜
⎜
⎜⎜
⎜
⎜
⎝

yn

yn−1

...

yp+1

⎞

⎟
⎟
⎟⎟
⎟
⎟
⎠

=

⎡

⎢
⎢
⎢⎢
⎢
⎢
⎣

1 yn−1 · · · yn−p

1 yn−2 · · · yn−p−1

...
...

...
...

1 yp · · · y1

⎤

⎥
⎥
⎥⎥
⎥
⎥
⎦

⎛

⎜
⎜
⎜⎜
⎜
⎜
⎝

φ0

φ1

...

φp

⎞

⎟
⎟
⎟⎟
⎟
⎟
⎠

+

⎛

⎜
⎜
⎜⎜
⎜
⎜
⎝

εn

εn−1

...

εp+1

⎞

⎟
⎟
⎟⎟
⎟
⎟
⎠

. (7.13)

2. For t = p+ 1, · · · ,n, compute the fitted value and fitted residuals:

ŷt = φ̂0 +
p

∑
j=1

φ̂ jyt− j, and ε̂t = yt − ŷt .

3. Center the fitted residuals: let rt = ε̂t − ¯̂ε for t = p+1, · · · ,n, and ¯̂ε = (n− p)−1

∑n
p+1 ε̂t ; let the empirical distribution of rt be denoted by F̂n.

(a) Draw bootstrap pseudo-residuals ε∗1 ,ε∗2 , . . . i.i.d. from F̂n.
(b) To ensure stationarity of the bootstrap series, we can use an arbitrary initial

condition such as (u∗1, · · · ,u∗p) = (0, . . . ,0), generate n+M pseudo-data for
some large positive integer M, and then discard the first M data. In other
words, generate {u∗t , t ≥ p+ 1} by the recursion:

u∗t = φ̂0 +
p

∑
j=1

φ̂ ju
∗
t− j + ε∗t for t = p+ 1, · · · ,n+M.

Finally, define y∗t = u∗M+t for t = 1,2, · · · ,n.
(c) Based on the pseudo-data {y∗1, · · · ,y∗n}, re-estimate the coefficients φ by the

LS estimator φ̂ ∗
= (φ̂∗

0 , φ̂∗
1 , · · · , φ̂∗

p)
′ as in step 1. Then compute the bootstrap

predicted value

ŷ∗n+1 = φ̂∗
0 +

p

∑
j=1

φ̂∗
j y∗n+1− j.

(d) In order to conduct conditionally valid predictive inference, re-define the
last p observations to match the original observed values, i.e., let y∗n−p+1 =
yn−p+1, · · · ,y∗n = yn. Then, generate the future bootstrap observation
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y∗n+1 = φ̂0 +
p

∑
j=1

φ̂ jy
∗
n+1− j + ε∗n+1.

(e) Calculate a bootstrap root replicate as y∗n+1 − ŷ∗n+1.

4. Steps (a)–(e) above are repeated B times, and the B bootstrap replicates are
collected in the form of an empirical distribution whose α-quantile is denoted
q(α).

5. Compute the predicted value ŷn+1 = φ̂0 +∑p
j=1 φ̂ jyn+1− j.

6. Construct the (1−α)100% equal-tailed prediction interval for Yn+1 as

[ŷn+1 + q(α/2), ŷn+1+ q(1−α/2)]. (7.14)

Remark 7.3.1 Step 3 (b) of the above algorithm describes one method to gener-
ate a stationary stretch of a time series defined by an autoregressive (or in general
Markovian) structure; the technique allows the practitioner to not worry about the
initial conditions. A different approach is to generate the starting points of the au-
toregression from its stationary distribution, e.g., replace Step 3 (b) by (b′) below:

(b′) Let (y∗1, · · · ,y∗p) be chosen at random from the set of p–tuplets {(yk, · · · ,yk+p−1)
for k = 1, · · · ,n− p+ 1}. Then, generate {y∗t , t ≥ p+ 1} by the recursion:

y∗t = φ̂0 +
p

∑
j=1

φ̂ jy
∗
t− j + ε∗t for t = p+ 1, · · · ,n.

In what follows, we will use either (or both) of these techniques in order to generate
stationary autoregressive (or Markovian) time series in the bootstrap world.

Remark 7.3.2 Algorithm 7.3.1 focuses on one-step-ahead prediction for simplic-
ity. However, it is straightforward to extend these results—as well as those in the
sequel—in order to construct a prediction interval for Yn+h for some h ≥ 1 based on
the data Y n. In addition, the use of resampling affords us the possibility of construct-
ing joint, i.e., simultaneous, prediction intervals for Yn+1, . . . ,Yn+h with prespecified
coverage level; details are given in Pan and Politis (2015).

7.3.2 Forward Bootstrap with Predictive Residuals

As in Chap. 3, we may consider using predictive—as opposed to fitted—residuals

for the bootstrap. We define the predictive residuals in the AR context as ε̂(t)t =

yt − ŷ(t)t where ŷ(t)t is computed from the delete-yt data set, i.e., the available data
for the scatterplot of yk vs. {yk−p, · · · ,yk−1} over which the LS fitting that takes
place excludes the single point that corresponds to k = t. The forward bootstrap
with predictive residuals is similar to Algorithm 7.3.1 except for Step 2.
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Algorithm 7.3.2 FORWARD BOOTSTRAP WITH PREDICTIVE RESIDUALS (FP)

1. Same as step 1 of Algorithm 7.3.1.
2. Use the delete-yt dataset to compute the LS estimator

φ̂ (t)
= (φ̂ (t)

0 , φ̂ (t)
1 , · · · , φ̂ (t)

p )′

as in step 1, i.e., compute φ̂ (t)
by changing regression model (7.13) as fol-

lows. Delete the row of yt at the left-hand side of (7.13), delete the row
(1,yt−1, · · · ,yt−p) in the design matrix, delete εt from the vector of εs, and

replace φ̂ by φ̂ (t)
throughout.

Then, calculate the delete-yt fitted values:

ŷt
(t) = φ̂ (t)

0 +
p

∑
j=1

φ̂ (t)
j yt− j , for t = p+ 1, · · · ,n

and the predictive residuals: ε̂(t)t = yt − ŷ(t)t for t = p+ 1, · · · ,n.

3–6. Replace the ε̂t by ε̂(t)t ; the rest is the same as in Algorithm 7.3.1.

Remark 7.3.3 The LS estimator φ̂ is asymptotically equivalent to the popular Yule-
Walker (YW) estimators for fitting AR models. The advantage of YW estimators is
that they almost surely lead to a causal fitted model. By contrast, the LS estimator φ̂
is only asymptotically causal but it is completely scatterplot-based, and thus conve-
nient in terms of our notion of predictive residuals. Indeed, for any bootstrap method
using fitted residuals (studentized or not), e.g., the forward Algorithm 7.3.1 or the
backward Algorithm 7.3.5 in the sequel, we could equally employ the Yule-Walker
instead of the LS estimators. But for methods using our notion of predictive residu-
als, it is most convenient to be able to employ the LS estimators. If the LS estimator
φ̂ is causal—as it is hopefully the case—we can use either fitted or predictive resid-

uals but will need to discard all bootstrap pseudo-series that lead to a non-causal φ̂ ∗
;

this is equally important for the Backward Bootstrap discussed in Sect. 7.3.4.

7.3.3 Forward Bootstrap Based on Studentized Roots

In the previous two subsections, the forward bootstrap based on predictive roots was
described. However, as already mentioned, we can use studentized predictive roots
instead. The forward studentized bootstrap procedure with fitted and/or predictive
residuals is similar to Algorithm 7.3.1; the only differences are in step 3(e) and 6.

The key observation is that in the causal AR(p) model (7.12), σ2 is the variance
of the MSE–optimal predictor of Yn+1; this can be interpreted as either conditional
or unconditional variance since the two coincide in a linear AR(p) model. Hence,
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we can estimate the variance of Ŷn+1 by σ̂2, i.e., the sample variance of the fitted
residuals. Also let σ̂∗2 denote the sample variance of the bootstrap fitted residuals
that are defined as y∗t − ŷ∗t for t = p+ 1, · · · ,n.

Algorithm 7.3.3 FORWARD STUDENTIZED BOOTSTRAP WITH FITTED RESIDU-
ALS (FSF)
The algorithm is the same as Algorithm 7.3.1 except for steps 3(e) and 6 that should
be replaced by the following steps:

3. (e) Calculate a studentized bootstrap root replicate as (y∗n+1 − ŷ∗n+1)/σ̂∗.
6. Construct the (1−α)100% equal-tailed predictive interval for Yn+1 as

[ŷn+1 + σ̂q(α/2), ŷn+1 + σ̂q(1−α/2)] (7.15)

where q(α) is the α-quantile of the empirical distribution of the B studentized
bootstrap roots.

As in Sect. 7.3.2, we can resample the predictive—as opposed to the fitted—
residuals.

Algorithm 7.3.4 FORWARD STUDENTIZED BOOTSTRAP WITH PREDICTIVE RESID-
UALS (FSP)

1. Same as step 1 in Algorithm 7.3.1.
2. Same as step 2 in Algorithm 7.3.2

3–6. Replace the ε̂t by ε̂(t)t ; the rest is the same as in Algorithm 7.3.3

Remark 7.3.4 As in the regression case discussed in Chap. 3, the Fp method yields
improved coverage as compared to the Ff method since predictive residuals are in-
flated as compared to fitted residuals. Interestingly, the FSp method is not much
better than the FSf method in finite samples. The reason is that when we studentize
the predictive residuals, the aforementioned inflation effect is offset by the simul-
taneously inflated bootstrap estimator σ̂∗ in the denominator. In the Monte Carlo
simulations of Sect. 7.5, we will see that the Fp, FSf, and FSp methods have sim-
ilarly good performance while the Ff method is the worst, exhibiting pronounced
undercoverage.

Remark 7.3.5 Under standard assumptions, all four methods Ff, Fp, FSf, and FSp
yield prediction intervals that are asymptotically valid and pertinent; see Pan and
Politis (2015) for details.

7.3.4 Backward Bootstrap

The difference of the backward to the forward bootstrap is in the way they generate
the bootstrap pseudo-data Y ∗

1 , · · · ,Y ∗
n . The idea of the backward bootstrap is to start
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from the last p observations (that are given) and generate the bootstrap-pseudo data
{Y ∗

n−p, · · · ,Y ∗
1 } backward in time using the backward representation

φ(B−1)Yt = φ0 +wt

where B is the backward shift operator: BkYt =Yt−k, and {wt} is the backward noise
defined by

wt =
φ(B−1)

φ(B)
εt . (7.16)

Thombs and Schucany (1990) generated the fitted backward residuals ŵt =
yt − φ̂0 − φ̂1yt+1 − ·· · − φ̂pyt+p for t = 1,2, · · · ,n− p. Then they fixed the last p
values of the data, and generated the pseudo series backwards through the following
backwards recursion:

y∗t = φ̂0 + φ̂1y∗t+1 + · · ·+ φ̂py∗t+p +w∗
t for t = n− p,n− p− 1, · · · ,1

with w∗
t being generated i.i.d. from F̂w, the empirical distribution of the (cen-

tered) ŵts.
However, as pointed out by Breidt et al. (1995), although the backward errors wts

are uncorrelated, they are not necessarily independent. Therefore, it is not advisable
to resample {w∗

t } i.i.d. from F̂w. Nevertheless, the forward errors εt are independent;
so we can generate ε∗t i.i.d. from F̂n. After obtaining the ε∗t s, it is possible to generate
the bootstrapped backward noise w∗

t using the bootstrap analog of (7.16), i.e.,

w∗
t =

φ̂(B−1)

φ̂ (B)
ε∗t .

The following algorithm for backward bootstrap with fitted residuals is identical
to that of Breidt et al. (1995). However, we also describe the backward bootstrap
using predictive residuals which has better finite-sample properties. In addition, we
address the construction of prediction intervals via either unstudentized or studen-
tized predictive roots.

Algorithm 7.3.5 BACKWARD BOOTSTRAP WITH FITTED RESIDUALS (BF)

1–2. Same as steps 1–2 in Algorithm 7.3.1.
3. Center the fitted residuals: define rt = ε̂t − ¯̂ε for t = p+ 1, · · · ,n where ¯̂ε =

(n− p)−1 ∑n
p+1 ε̂t ; the empirical distribution of rt is denoted by F̂n.

(a) Choose a large positive integer M and create the independent bootstrap
pseudo-noise ε∗−M, · · · ,ε∗n ,ε∗n+1, · · · from F̂n; then generate the bootstrap
backward noises {w∗

t , t =−M, · · · ,n} recursively as follows:

w∗
t =

{
0, t <−M

φ̂1w∗
t−1 + · · ·+ φ̂pw∗

t−p + ε∗t − φ̂1ε∗t+1 −·· ·− φ̂pε∗t+p, t ≥−M
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(b) Fix the last p values,i.e., y∗n = yn, · · · ,y∗n−p+1 = yn−p+1, and then generate
a bootstrap realization {y∗t } by the backward recursion:

y∗t =

{
φ̂0 + φ̂1y∗t+1 + · · ·+ φ̂py∗t+p +w∗

t t = n− p,n− p− 1, · · · ,1
yt t = n,n− 1, · · · ,n− p+ 1.

(c) Based on the pseudo-data {y∗1, · · · ,y∗n}, re-estimate the coefficients in φ
by LS estimators φ̂∗

= (φ̂∗
0 , φ̂

∗
1 , · · · , φ̂∗

p)
′ as in step 1. Then compute the

bootstrap predicted value ŷ∗n+1 = φ̂∗
0 +∑p

j=1 φ̂∗
j ŷ∗n+1− j.

(d) Compute the future bootstrap observation y∗n+1 = φ̂0 + ∑p
j=1 φ̂ jy∗n+1− j +

ε∗n+1.
(e) Calculate a bootstrap root replicate y∗n+1 − ŷ∗n+1.

4. Steps (a)–(e) in the above are repeated B times, and the B bootstrap repli-
cates are collected in the form of an empirical distribution whose α-quantile
is denoted q(α).

5. Compute the predicted value ŷn+1 = φ̂0 +∑p
j=1 φ̂ j ŷn+1− j.

6. Construct the (1−α)100% equal-tailed predictive interval for Yn+1 as

[ŷn+1 + q(α/2), ŷn+1 + q(1−α/2)]. (7.17)

Algorithm 7.3.6 BACKWARD BOOTSTRAP WITH PREDICTIVE RESIDUALS (BP)

1–2. Same as steps 1–2 of Algorithm 7.3.2

3–6. Change the ε̂t into ε̂(t)t , i.e., the predictive residuals defined in step 2 of Algo-
rithm 7.3.2; the rest is the same as in Algorithm 7.3.5.

Algorithm 7.3.7 BACKWARD STUDENTIZED BOOTSTRAP WITH FITTED RESIDU-
ALS (BSF)
This algorithm is the same as Algorithm 7.3.5 with the exception of steps 3(e) and 6
that should be replaced by steps 3(e) and 6 of Algorithm 7.3.3.

Algorithm 7.3.8 BACKWARD BOOTSTRAP WITH PREDICTIVE RESIDUALS (BSP)

Replace the ε̂t by ε̂(t)t , the predictive residuals defined in step 2 of Algorithm 7.3.2;
the rest is the same as in Algorithm 7.3.7.

Remark 7.3.6 The asymptotic validity of the backward bootstrap prediction inter-
val based on fitted residuals, i.e., interval (7.17), has been proven by Breidt et al.
(1995). It is not hard to see that the property of asymptotic pertinence also holds
true here; the same is true for the backward bootstrap prediction intervals that use
predictive residuals.
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7.3.5 Generalized Bootstrap Prediction Intervals

Chatterjee and Bose (2005) introduced the generalized bootstrap method for es-
timators obtained by solving estimating equations. The LS estimators of the AR
coefficients is a special case. With a bootstrapped weight (wn1, · · · ,wnn) in the es-
timating equations, the generalized bootstrapped estimators are obtained simply by
solving the bootstrapped estimating equations. The generalized bootstrap method
is computationally fast because we do not need to generate the pseudo-series; in-
stead, we just resample the weights (wn1, · · · ,wnn) from some distribution, e.g.,
Multinomial(n;1/n, · · · ,1/n).

Inspired by the idea of generalized bootstrap, Pan and Politis (2015) proposed the
following bootstrap approach for bootstrap prediction intervals in linear AR models.

Algorithm 7.3.9 GENERALIZED BOOTSTRAP WITH FITTED RESIDUALS (GF)

1–2. Same as the steps in Algorithm 7.3.1.
3.(a) Calculate the bootstrapped estimator of the coefficients

φ̂ ∗
= (X ′WX)−1X ′WY,

where X =

⎡

⎢
⎢
⎢
⎢
⎢⎢
⎣

1 yn−1 · · · yn−p

1 yn−2 · · · yn−p−1

...
...

...
...

1 yp · · · y1

⎤

⎥
⎥
⎥
⎥
⎥⎥
⎦

, Y =

⎛

⎜
⎜
⎜
⎜
⎜⎜
⎝

yn

yn−1

...

yp+1

⎞

⎟
⎟
⎟
⎟
⎟⎟
⎠

and W is a diagonal matrix whose diagonal elements (w1, · · · ,wn−p) are sam-
pled from Multinomial (n− p;1/(n− p), · · · ,1/(n− p)).

(b) Compute the bootstrap predicted value and future observation by

ŷ∗n+1 = φ̂∗
0 +

p

∑
j=1

φ̂∗
j yn+1− j and y∗n+1 = φ̂0 +

p

∑
j=1

φ̂ jyn+1− j + ε∗n+1

respectively; as usual, ε∗n+1 is a random draw from the empirical distribution
of the (centered) fitted residuals. Finally, calculate the bootstrap predictive
root replicate as y∗n+1 − ŷ∗n+1.

4–6. Same as the corresponding steps from Algorithm 7.3.1.

The generalized bootstrap can also be performed using the predictive residuals.

Algorithm 7.3.10 GENERALIZED BOOTSTRAP WITH PREDICTIVE RESID-
UALS (GP)
The algorithm is identical to Algorithm 7.3.9 with the following changes: replace
step 2 of Algorithm 7.3.9 with step 2 of Algorithm 7.3.2, and use the predictive
residuals instead of the fitted residuals in step 3(b) of Algorithm 7.3.9.
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Under regularity conditions, Chatterjee and Bose (2005) proved the consistency of
the Generalized bootstrap in estimating the distribution of

√
n(φ̂ −φ); it follows that

both Gf and Gp prediction intervals are asymptotically pertinent.

7.4 Alternative Approaches to Bootstrap Prediction Intervals
for Linear Autoregressions

Box and Jenkins (1976) proposed a widely used (1−α)100% prediction interval
for a Gaussian AR(p) model as

[ŷn+1 + zα/2σ̂ , ŷn+1 + z1−α/2σ̂ ], (7.18)

where zα is the α–quantile of a standard normal variate, and σ̂2 is an estimate of
the innovation variance σ2. This prediction interval only takes into account the vari-
ability due to the future innovation but does not account for the variability from
the estimation of the model, thus it is not asymptotically pertinent; in fact, it is the
analog of the naive interval (3.21). Still under the assumption of Gaussian errors,
Stine (1987) proposed a resampling-based interval that manages to capture estima-
tion variability.

To relax the often unrealistic assumption of Gaussianity, Masarotto (1990) pro-
posed a bootstrap method to construct the prediction interval as follows. Generate a
pseudo series y∗1, · · · ,y∗n, · · · ,y∗n+1 from the fitted model, and generate the studentized
bootstrap predictive root r∗ = (y∗n+1 − ŷ∗n+1)/σ̂∗. Having generated B replicate val-
ues of r∗, these can be sorted in increasing order as r∗1 ≤ ·· · ≤ r∗B. Letting k = �Bα�,
Masarotto’s (1−α)100% prediction interval is

[ŷn+1 + r∗k σ̂ , ŷn+1 + r∗B−kσ̂ ]. (7.19)

The main difference of the above from our studentized prediction intervals is that
we make it a point—either using Backward or Forward bootstrap—to fix the last
p bootstrap pseudo-values to the values present in the original series with regard
to generating out-of-sample bootstrap data and/or predictors. For example, we ob-
tain the bootstrap predicted value ŷ∗n+1 and future value y∗n+1 in steps 3(c) and 3(d)
of Algorithm 7.3.1 using the original datapoints yn−p+1, . . . ,yn, thus ensuring the
property of asymptotic pertinence, i.e., capturing the estimation error. In essence,
Masarotto’s (1990) method omits step B from our Forward bootstrap procedure out-
lined in Sect. 7.2.1. Consequently, Masarotto’s interval (7.19) is not asymptotically
pertinent although it has reasonably good performance in practice; see Sect. 7.5.2
for further discussion.

In this book, the focus has been on constructing prediction intervals based on a
bootstrap approximation of the distribution of predictive roots. However, some au-
thors have chosen to construct bootstrap prediction intervals via a percentile method
reminiscent of Efron’s well-known percentile method for confidence intervals.
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To elaborate, the percentile method uses the bootstrap distribution of Y ∗
n+h to est-

imate the distribution of the future value Yn+h directly; the following methods are
all based on the percentile method.

Cao et al. (1997) proposed a computationally fast bootstrap method in order to
relax the Gaussianity assumption implicit in the Box/Jenkins interval (7.18). Con-
ditionally on the last p observations, the authors only generate the future bootstrap
observation

y∗n+1 = φ̂0 + φ̂1yn + · · ·+ φ̂pyn+1−p+ ε̂∗n+1 (7.20)

instead of generating the whole bootstrap series up to y∗n+1. As was the case with
the Box/Jenkins interval (7.18), the prediction interval of Cao et al. (1997) does not
make any attempt to capture the variability stemming from model estimation.

Alonso et al. (2002) and Pascual et al. (2004) used a different way to generate
the future bootstrap values, namely they defined

y∗n+1 = φ̂∗
0 + φ̂∗

1 yn + · · ·+ φ̂∗
pyn+1−p + ε̂∗n+1. (7.21)

Equation (7.21) generates the future pseudo-values using the parameters φ̂ ∗
instead

of φ̂ as is customary; e.g., compare with recursion (7.20). We will call the percentile
interval based on (7.21), the APR/PRR bootstrap method. Note that the APR/PRR
interval does consider the variability from the model estimation albeit in a slightly
different fashion than usual.

7.5 Simulations: Linear AR Models

In this section, we evaluate the performance of all the ten proposed bootstrap meth-
ods, i.e., four forward methods with fitted or predictive residuals using nonstu-
dentized or studentized predictive root (Ff, Fp, FSf, and FSp), four corresponding
backward methods (Bf, Bp, BSf, and BSp) and two generalized bootstrap methods
(Gf and Gp), and compare them to the aforementioned older methods discussed in
Sect. 7.4, i.e., Box and Jenkins (1976), Cao et al. (1997), Alonso et al. (2002)/Pas-
cual et al. (2004) and Masarotto (1990); the latter four are abbreviated BJ, Cao,
APR/PRR, and M respectively.

7.5.1 Unconditional Coverage Level

The simulation experiment had the following parameters:

(1) AR(1) model: Yt+1 = φ1Yt + εt with φ1 = 0.5.
(2) Errors εt i.i.d. from N(0,1) or two-sided exponential (Laplace) distribution

rescaled to unit variance.
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(3) 500 “true” datasets each of size n= 50 or 100; for each “true” dataset B= 1000
bootstrap pseudo-series were created.

(4) Prediction intervals with nominal coverage levels of 95 and 90 %.

Simulations with different AR(1) and AR(2) models were also performed with qual-
itatively similar results; see Pan and Politis (2015).

For the ith “true” dataset, one of the bootstrap methods was used to create
B = 1000 bootstrap sample paths (step 4 of the algorithms), and construct the pre-
diction interval (step 6 of the algorithms) [Li,Ui]. To assess the corresponding em-
pirical coverage level (CVR) and average length (LEN) of the constructed interval,
1000 one-step ahead future values yn+1, j = φ̂1yni + ε∗j for j = 1,2, · · · ,1000 were

also generated, where φ̂1 is the estimate from the ith “true” dataset and yni is the
ith dataset’s last value. Then, the empirical coverage level and length from the ith
dataset are calculated as

CVRi =
1

1000

1000

∑
j=1

1[Li,Ui](yn+1, j) and LENi =Ui −Li

where 1A(x) is the indicator function, i.e., 1A(x) equals 1 or 0 according to whether
x ∈ A or not. Note that the ability to generate the future values yn+1, j independently
from the bootstrap datasets allows us to estimate CV Ri in a more refined way as
opposed to the usual 0–1 coverage.

Finally, the coverage level and length for each bootstrap method is estimated by
the average {CVRi} and {LENi} over the 500 “true” datasets, i.e.

CVR =
1

500

500

∑
i=1

CVRi and LEN =
1

500

500

∑
i=1

LENi.

Note, however, that the value of the last observation yni is different from dataset
to dataset; hence, the above CVR represents an unconditional coverage probability,
i.e., an average of the conditional coverage probability discussed in the context of
asymptotic validity.

Tables 7.1 and 7.2 summarize the findings of our simulation; the entry for st.err
is the standard error associated with each average length. Some important features
are as follows:

• As expected, all bootstrap prediction intervals considered are characterized by
some degree of under-coverage. It is encouraging that the use of predictive resid-
uals appears to partially correct the under-coverage problem in linear autoregres-
sion as was the case in linear regression; see Sect. 3.7.2.

• The Fp, Bp, and Gp methods using predictive residuals have uniformly improved
CVRs as compared to Ff, Bf, and Gf using fitted residuals. The reason is that the
finite-sample empirical distribution of the predictive residuals is very much like
a re-scaled (inflated) version of the empirical distribution of fitted residuals.

• The price to pay for using predictive residuals is the increased variability of the
interval length; this is true for the unstudentized methods only.
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nominal coverage 95% nominal coverage 90%

n = 50 CVR LEN st.err CVR LEN st.err

Ff 0.930 3.848 0.490 0.881 3.267 0.386

Fp 0.940 4.011 0.506 0.895 3.405 0.406

Bf 0.929 3.834 0.500 0.880 3.261 0.393

Bp 0.941 4.017 0.521 0.896 3.410 0.410

FSf 0.942 4.036 0.501 0.894 3.391 0.395

FSp 0.941 4.028 0.493 0.894 3.393 0.399

BSf 0.941 4.016 0.514 0.894 3.388 0.402

BSp 0.942 4.033 0.500 0.896 3.402 0.398

Gf 0.930 3.847 0.483 0.881 3.264 0.389

Gp 0.940 4.007 0.502 0.895 3.402 0.399

BJ 0.934 3.832 0.402 0.880 3.216 0.338

M 0.946 4.510 0.599 0.898 3.792 0.493

Cao 0.917 3.720 0.532 0.871 3.199 0.417

APR/PRR 0.930 3.858 0.498 0.880 3.268 0.390

n = 100

Ff 0.940 3.895 0.357 0.892 3.294 0.283

Fp 0.945 3.968 0.377 0.899 3.355 0.281

Bf 0.940 3.895 0.371 0.892 3.286 0.275

Bp 0.945 3.971 0.375 0.899 3.360 0.289

FSf 0.946 3.981 0.358 0.899 3.355 0.282

FSp 0.945 3.977 0.370 0.899 3.350 0.277

BSf 0.945 3.978 0.366 0.898 3.349 0.275

BSp 0.946 3.978 0.366 0.898 3.352 0.283

Gf 0.940 3.891 0.359 0.891 3.289 0.275

Gp 0.944 3.969 0.383 0.897 3.350 0.284

BJ 0.943 3.887 0.275 0.892 3.262 0.231

M 0.948 4.514 0.430 0.898 3.793 0.348

Cao 0.936 3.853 0.392 0.888 3.262 0.291

APR/PRR 0.939 3.893 0.368 0.891 3.283 0.283

Table 7.1 Simulation Results of AR(1) with normal innovations and φ1 = 0.5
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nominal coverage 95% nominal coverage 90%

n = 50 CVR LEN st.err CVR LEN st.err

Ff 0.930 4.175 0.804 0.881 3.270 0.570

Fp 0.937 4.376 0.828 0.892 3.420 0.597

Bf 0.929 4.176 0.815 0.881 3.267 0.571

Bp 0.937 4.376 0.882 0.892 3.415 0.600

FSf 0.940 4.176 0.873 0.894 3.438 0.578

FSp 0.941 4.376 0.851 0.894 3.452 0.583

BSf 0.939 4.457 0.862 0.893 3.436 0.587

BSp 0.941 4.462 0.875 0.895 3.443 0.583

Gf 0.930 4.177 0.774 0.881 3.274 0.577

Gp 0.937 4.367 0.864 0.892 3.420 0.611

BJ 0.923 3.812 0.603 0.885 3.199 0.506

M 0.942 4.827 0.960 0.897 3.817 0.692

Cao 0.921 4.065 0.863 0.873 3.197 0.605

APR/PRR 0.930 4.211 0.832 0.882 3.279 0.573

n = 100

Ff 0.939 4.208 0.612 0.891 3.274 0.431

Fp 0.943 4.302 0.638 0.897 3.344 0.439

Bf 0.940 4.220 0.616 0.892 3.274 0.429

Bp 0.943 4.290 0.618 0.896 3.340 0.431

FSf 0.945 4.343 0.622 0.898 3.363 0.431

FSp 0.945 4.349 0.629 0.898 3.362 0.429

BSf 0.945 4.338 0.618 0.898 3.362 0.435

BSp 0.945 4.340 0.615 0.898 3.357 0.424

Gf 0.940 4.238 0.627 0.892 3.285 0.424

Gp 0.943 4.305 0.638 0.897 3.355 0.439

BJ 0.931 3.877 0.456 0.894 3.254 0.383

M 0.946 4.802 0.668 0.897 3.789 0.479

Cao 0.938 4.198 0.650 0.888 3.245 0.452

APR/PRR 0.940 4.226 0.628 0.892 3.282 0.434

Table 7.2 Simulation Results of AR(1) with Laplace innovations and φ1 = 0.5
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• The four studentized methods have similar performance to the respective
unstudentized methods using predictive residuals. Thus, using predictive resid-
uals is not deemed necessary for the studentized methods although it does not
seem to hurt; see also Remark 7.3.4.

• The coverage levels of the Gf intervals resemble those of Ff and Bf intervals.
Similarly, the coverages of Gp intervals resemble those of Fp and Bp intervals.

In comparison with the older methods discussed in Sect. 7.4, the following ob-
servations are in order.

• The BJ method has similar coverage rates as APR/PRR and our Ff method when
the error is normal. However, when the errors have Laplace distribution, the BJ
method performs poorly.

• Our forward and backward methods with fitted residuals (Ff and Bf) outperform
both Cao and APR/PRR methods. This conclusion is expected and consistent
with the discussion in Sect. 7.4.

• Our methods with predictive residuals (Fp and Bp) and the studentized methods
(FSf, FSp, BSf, BSp) are the best performing in terms of coverage.

• Masarotto’s (M) method has similar performance to our FSf method; this was
somewhat expected in view of the discussion in Sect. 7.4. Further comparison of
Masarotto’s method to the FSf method is given in the following subsection.

7.5.2 Conditional Coverage Level

The CVRs reported in the previous subsection gave a measure of unconditional
coverage level of the different prediction intervals. Obviously, conditional validity
implies unconditional validity but the converse is not necessarily true. We now in-
vestigate the conditional coverage of a subset of the methods already discussed. To
do this, 500 true data series are generated in a backwards fashion fixing the last
datapoint yn to a desired value. Surprisingly, Masarotto’s intervals appear to also
have accurate conditional coverages as the entries of Table 7.3 suggest. Note that
Table 7.3 was based on an AR(1) model with Gaussian errors but similar findings
using Laplace errors were also observed.

To explain this phenomenon, we focus on the causal AR(1) model Yt = φYt−1+εt

with |φ |< 1. Recall that the distribution of the bootstrap predictive root depends on
the value Yn = yn because

y∗n+1 − ŷ∗n+1 = (φ̂ − φ̂∗)yn + ε∗n+1. (7.22)

Since φ̂ − φ̂∗ = Op(1/
√

n), it is apparent that the term (φ̂ − φ̂∗)yn is small com-
pared to the error term ε∗n+1; this is why using the wrong yn—as Masarotto’s method
does—can still yield accurate conditional coverages. The situation is similar for stu-
dentized bootstrap roots since the first term of the numerator contains a term includ-
ing yn. Nevertheless, there seems no reason to forego using the correct yn in the
bootstrap predictive root (7.22).
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n = 100 nominal coverage 95% nominal coverage 90%

Yn = 3 CVR LEN st.err CVR LEN st.err

M 0.947 4.108 0.368 0.899 3.450 0.290

FSf 0.951 4.216 0.355 0.905 3.540 0.272

FSp 0.951 4.222 0.337 0.905 3.535 0.264

Ff 0.946 4.125 0.342 0.898 3.466 0.269

Fp 0.951 4.217 0.341 0.904 3.537 0.265

Yn = 2 CVR LEN st.err CVR LEN st.err

M 0.945 4.002 0.362 0.899 3.384 0.283

FSf 0.947 4.045 0.357 0.902 3.417 0.274

FSp 0.947 4.049 0.349 0.902 3.413 0.263

Ff 0.943 3.959 0.350 0.895 3.350 0.270

Fp 0.947 4.047 0.358 0.902 3.415 0.270

Yn = 1 CVR LEN st.err CVR LEN st.err

M 0.944 3.960 0.364 0.897 3.340 0.282

FSf 0.944 3.957 0.369 0.897 3.336 0.279

FSp 0.945 3.968 0.366 0.897 3.335 0.269

Ff 0.939 3.877 0.370 0.891 3.273 0.275

Fp 0.944 3.966 0.380 0.898 3.340 0.269

Yn = 0 CVR LEN st.err CVR LEN st.err

M 0.945 3.956 0.366 0.897 3.329 0.283

FSf 0.944 3.937 0.371 0.895 3.313 0.281

FSp 0.944 3.949 0.374 0.895 3.312 0.272

Ff 0.939 3.861 0.379 0.889 3.252 0.281

Fp 0.943 3.944 0.389 0.896 3.318 0.273

Table 7.3 Conditional coverage under the AR(1) model Yt = 0.5Yt−1 +εt with normal innovations

To elaborate, Masarotto replaces the term (φ̂ − φ̂∗)yn in (7.22) with (φ̂ − φ̂∗)y∗n
where y∗n is random (with mean zero). If yn is near zero and y∗n happens to be near
its mean, then the terms match well. However, there is an issue of unnecessary vari-
ability here that is manifested with slightly higher standard errors of the lengths of
Masarotto’s intervals and with inflated CVRs—but the CVR inflation is due to a
fluke, not a bona fide capturing of the predictor variability. Now if yn is large (in
absolute value), there is an issue of bias in the centering of the Masarotto intervals
which is again masked by the unnecessary/excess variability of the term (φ̂ − φ̂∗)y∗n.

All in all, adjusting the last p values of the bootstrap series to match the origi-
nal ones is highly advisable in a causal, linear AR(p) model. Furthermore, it may
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achieve particular importance under a nonlinear and/or nonparametric model in
which the above arguments break down. Adjusting the last p values certainly be-
comes crucial in autoregressions with heteroscedastic errors as in Eq. (1.2) of the
main paper where the scale of the error also depends on these last p values.

7.6 Bootstrap Prediction Intervals for Nonparametric
Autoregression

In the last several sections, the focus was on prediction intervals for linear autore-
gressions. In a nonlinear autoregression setting, backward bootstrap methods have
not been found useful mainly because it is unclear how to generate a nonlinear
model such as Eq. (7.1) backwards. By contrast, extension of the four forward boot-
strap methods to nonlinear—but parametric—autoregressions is straightforward;
see Pan and Politis (2015) for details. In what follows, we provide some details
on how to employ the forward bootstrap in order to construct bootstrap prediction
intervals under a nonparametric autoregression model fitted via kernel smoothing.

7.6.1 Nonparametric Autoregression with i.i.d Errors

In this subsection, we consider a stationary and geometrically ergodic process satis-
fying Eq. (7.1) with the conditional mean function μ(·) being unknown but assumed
smooth. Given a sample Y1 = y1, · · · ,Yn = yn, let xt = (yt ,yt−1, · · · ,yt−p+1)

′ as be-
fore.

Algorithm 7.6.1 FORWARD BOOTSTRAP WITH FITTED RESIDUALS (FF)

1. For x ∈ Rp, construct the Nadaraya-Watson kernel estimator m̂(·) as

m̂(x) =
∑n−1

t=p K( ‖x−xt‖
h )yt+1

∑n−1
t=p K(

‖x−xt‖
h )

(7.23)

where ‖ · ‖ is a norm on Rp, and K(·) is compactly supported, symmetric den-
sity function with bounded derivative. As usual, the bandwidth satisfies h → 0
but hn → ∞.

2. Compute the fitted residuals: ε̂i = yi − m̂(xi−1) for i = p+ 1, · · · ,n
3. Center the residuals: r̂i = ε̂i − (n− p)−1 ∑n

t=p+1 ε̂t , for i = p+ 1, · · · ,n.

(a) Sample randomly (with replacement) from the values r̂p+1, · · · , r̂n to create
bootstrap pseudo errors ε∗i for i = −M + p, · · · ,n+ 1 where M is some
large positive number.

(b) Let x∗p = (yp+I, · · · ,y1+I)
′ where I is generated as a discrete random vari-

able uniform on the values 0,1, . . . ,n− p, and define (y∗−M,y∗−M+1, · · · ,
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y∗−M+p−1)
′ = x∗p. Then, generate y∗i by the recursion:

y∗i = m̂(x∗i−1)+ ε∗i for i = p+ 1, . . . ,n

where x∗t = (y∗t , · · · ,y∗t−p+1)
′.

(c) Drop the first M “burn in” observations to make sure that the starting
values have an insignificant effect. Then recompute the kernel estimator
m̂∗(·) from the bootstrap series {y∗1, · · · ,y∗n}, i.e., let

m̂∗(x) =
∑n−1

i=p K(
‖x−x∗i ‖

h )y∗i+1

∑n−1
i=p K(

‖x−x∗i ‖
h )

(7.24)

where x∗t = (y∗t ,y∗t−1, · · · ,y∗t−p+1)
′.

(d) Now fix the last p pseudo values to be the true observations, i.e., re-define
x∗n = xn, and then calculate the bootstrap predictor

ŷ∗n+1 = m̂∗(x∗n) = m̂∗(xn)

and the future bootstrap observation

y∗n+1 = m̂(x∗n)+ ε∗n+1 = m̂(xn)+ ε∗n+1.

(e) Calculate the bootstrap predictive root replicate as y∗n+1 − ŷ∗n+1.

4. Steps (a)–(e) in the above are repeated B times, and the B bootstrap predictive
root replicates are collected in the form of an empirical distribution whose
α-quantile is denoted q(α).

5. Then, a (1−α)100% equal-tailed predictive interval for Yn+1 is given by

[m̂(xn)+ q(α/2), m̂(xn)+ q(1−α/2)]. (7.25)

Estimating μ(·) in the above could in principle be done via different smoothing
methods, e.g., local polynomials, splines, etc. We employ the Nadaraya-Watson
kernel estimator m̂(·) just for simplicity and concreteness. To define the predictive
residuals, however, recall that the chosen estimator must be completely scatterplot-
based.

Algorithm 7.6.2 FORWARD BOOTSTRAP WITH PREDICTIVE RESIDUALS (FP)

1. Same as step 1 of Algorithm 7.6.1.
2. Use the delete-yt dataset as described in Sect. 7.3.2 to compute the delete-one

kernel estimator

m̂(t)(x) =
∑n

i=p+1,i�=t K(
‖x−xi−1‖

h )yi

∑n
i=p+1,i�=t K(

‖x−xi−1‖
h )

for t = p+ 1, · · · ,n. (7.26)
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Then calculate the predictive residuals:

ε̂(t)t = yt − m̂(t)
t (xt−1) for t = p+ 1, · · · ,n. (7.27)

3–5. Replace ε̂t by ε̂(t)t in Algorithm 7.6.1; the remaining steps are the same.

Remark 7.6.1 (Scatterplot-based cross-validation) Cross-validation can be used
in order to choose the bandwidth h in estimator m̂(x) of Eq. (7.23), i.e., choose h that

minimizes either PRESS= ∑n
t=p+1[ε̂

(t)
t ]2 or PRESAR= ∑n

t=p+1 |ε̂(t)t |. Note that the

delete-one kernel estimator m̂(t)(x) that gives rise to the predictive residuals ε̂(t)t of
Eq. (7.27) are completely scatterplot-based, and so is the resulting cross-validation.
To further elaborate, typical time series cross-validation procedures involve deleting
a whole stretch of the time series dataset; see Chap. 9 for an example. By contrast,
working with scatterplot-based estimators such as m̂(x) allows us to carry out a
delete-one cross-validation as in regular regression; for example, to construct esti-
mator (7.26) a single point was deleted from the scatterplot of Yt vs. Xt−1.

The studentized versions of Algorithms 7.6.1 and 7.6.2 are defined analogously to
the ones in Sect. 7.3.

Algorithm 7.6.3 FORWARD STUDENTIZED BOOTSTRAP WITH FITTED RESIDU-
ALS (FSF) OR PREDICTIVE RESIDUALS (FSP)
For FSf, define σ̂ and σ̂∗ to be the sample standard deviation of the fitted residuals
ε̂t and bootstrap residuals ε̂∗t , respectively. For FSp, define σ̂ and σ̂∗ to be the sam-

ple standard deviation of the predictive residuals ε̂(t)t and their bootstrap analogs

ε̂∗(t)t , respectively.
Then, replace steps 3(e) and 6 of Algorithms 7.3.1 and/or 7.6.2 by the following
steps:

3.(e) Calculate a studentized bootstrap root replicate as (y∗n+1 − ŷ∗n+1)/σ̂∗.
6. Construct the (1−α)100% equal-tailed predictive interval for Yn+1 as

[ŷn+1 + σ̂ q(α/2), ŷn+1 + σ̂ q(1−α/2)] (7.28)

where q(α) is the α-quantile of the empirical distribution of the B studentized
bootstrap roots.

Under regularity conditions that include the use of a nonnegative kernel K(·), Franke
et al. (2002) showed the consistency of the residual bootstrap in approximating the
distribution of the kernel estimator m̂(·), i.e., that

sup
y∈R

|P∗{
√

nh(m̂(x)− m̂∗(x)) ≤ y}−P{
√

nh(μ(x)− m̂(x))≤ y}| P−→ 0 (7.29)

under the undersmoothing condition h= o(n−1/5). As a result, all four forward boot-
strap prediction intervals in Sect. 7.6.1 are asymptotically valid and pertinent.
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Remark 7.6.2 Using a nonnegative kernel K(·), the condition hn1/5 → c > 0 leads
to optimal smoothing in that the large-sample MSE of m̂(x) is minimized. In this
case, however, the bias of m̂(x) becomes of exact order O(1/

√
hn) which is the order

of its standard deviation, and (7.29) fails because the bootstrap cannot capture the
bias term exactly. This is of course important for confidence interval construction—
for which (7.29) was originally developed—and is routinely solved via one of three
approaches: (a) plugging-in explicit estimates of bias in the two distributions appear-
ing in (7.29); (b) using a bandwidth satisfying hn1/5 → 0 leading to undersmooth-
ing, i.e., making the bias of m̂(x) negligible as compared to the standard deviation;
or (c) using the optimal bandwidth h ∼ cn−1/5 with c > 0 but resampling based
an oversmoothed estimator. Either of these approaches work—the simplest being
undersmoothing—but note that the problem is not as crucial for prediction intervals
that remain asymptotically valid in both cases c > 0 or c = 0; in the latter case, how-
ever, asymptotic pertinence is compromised. These issues become more important
in the presence of heteroscedastic errors as the following subsection shows.

7.6.2 Nonparametric Autoregression with Heteroscedastic Errors

We now consider the nonparametric autoregression model (7.2) that is driven by
heteroscedastic innovations. As in Sect. 7.6.1, we use Nadaraya-Watson estimators
based on a nonnegative kernel K(·) in order to estimate the unknown (but assumed
smooth) functions μ and σ . In particular, m̂(x) is exactly as given in (7.23) while
σ̂2(x) is defined as

σ̂2(x) =
∑n−1

t=p K( ‖x−xt‖
h )(yt+1 − m̂(xt))

2

∑n−1
t=p K( ‖x−xt‖

h )
. (7.30)

Remark 7.6.3 As mentioned in Remark 7.6.2, in generating the bootstrap pseudo-
series it may be advantageous to use oversmoothed estimators of μ and σ that will
be denoted by m̂g and σ̂g, respectively; these are computed in exactly the same way
as m̂ and σ̂ but using an oversmoothed bandwidth g (instead of h) that satisfies

g/h → ∞ with h ∼ cn−1/5 for some c > 0. (7.31)

Such over-smoothing was originally proposed for bootstrap confidence intervals in
nonparametric regression by Härdle and Bowman (1988), and Härdle and Marron
(1991). It can also be useful in the nonparametric AR model (7.1) with i.i.d. inno-
vations but it is particularly helpful in the heteroscedastic model (7.2).

Algorithm 7.6.4 FORWARD BOOTSTRAP WITH FITTED RESIDUALS (FF)

1. Construct the estimates m̂(·) and σ̂2(·) by formulas (7.23) and (7.30).
2. Recall the notation xt = (yt , · · · ,yt−p+1)

′, and compute the residuals
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ε̂i =
yi − m̂(xi−1)

σ̂(xi−1)
for i = p+ 1, · · · ,n. (7.32)

3. Center the residuals, i.e., let r̂i = ε̂i − (n− p)−1 ∑n
t=p+1 ε̂t for i = p+ 1, · · · ,n.

(a) Sample randomly (with replacement) from the values rp+1, · · · ,rn to create
bootstrap pseudo errors ε∗i for i =−M + p, · · · ,1,2, · · · ,n+ 1 where M is
some large positive integer.

(b) Let x∗p = (yp+I, · · · ,y1+I)
′ where I is generated as a discrete random vari-

able uniform on the values 0,1, . . . ,n− p, and define (y∗−M,y∗−M+1, · · · ,
y∗−M+p−1)

′ = x∗p. Then, generate y∗i by the recursion:

y∗i = m̂g(x
∗
i−1)+ σ̂g(x

∗
i−1)ε∗i for i =−M+ p, · · · ,n (7.33)

where x∗t = (y∗t , · · · ,y∗t−p+1)
′.

(c) Drop the first M “burn in” observations to make sure that the starting
values have an insignificant effect, and construct the kernel estimator m̂∗
from the bootstrap series {y∗1, · · · ,y∗n} as in (7.24).

(d) Now fix the last p pseudo values to be the true observations, i.e., re-define
x∗n = xn, and then calculate the future bootstrap observation

y∗n+1 = m̂g(x
∗
n)+ σ̂g(x

∗
n)ε

∗
n+1 = m̂g(xn)+ σ̂g(xn)ε∗n+1

and the bootstrap predictor ŷ∗n+1 = m̂∗(x∗n) = m̂∗(xn); recall that m̂∗ uses
bandwidth h as the original estimator m̂.

(e) Calculate the bootstrap predictive root replicate as y∗n+1 − ŷ∗n+1.

4. Steps (a)–(d) in the above are repeated B times, and the B bootstrap root repli-
cates are collected in the form of an empirical distribution whose α-quantile
is denoted q(α).

5. Then, a (1−α)100% equal-tailed predictive interval for Yn+1 is given by

[m̂(xn)+ q(α/2), m̂(xn)+ q(1−α/2)]. (7.34)

Algorithm 7.6.5 FORWARD BOOTSTRAP WITH PREDICTIVE RESIDUALS (FP)

1. Same as step 1 of Algorithm 7.6.4.
2. Use the delete-yt dataset to compute the delete-one kernel estimators m̂(t) by

Eq. (7.26) and σ̂ (t) by

σ̂ (t)(x) =
∑n

i=p+1,i�=t K(
‖x−xi−1‖

h )(yi − m̂(t)(xi−1))
2

∑n
i=p+1,i�=t K(

‖x−xi−1‖
h )

. (7.35)

Then, calculate the predictive residuals:

ε̂(t)t =
yt − m̂(t)(xt−1)

σ̂ (t)(xt−1)
for t = p+ 1, · · · ,n. (7.36)

3–5. Replace ε̂t by ε̂(t)t in Algorithm 7.6.4; the remaining steps are the same.
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Algorithms 7.6.4 and 7.6.5 can be extended to include studentized roots as in
Algorithm 7.6.3, yielding prediction intervals based on Forward Studentized boot-
strap with fitted residuals (FSf) or predictive residuals (FSp). As in the case of non-
parametric AR model with i.i.d. errors, Franke et al. (2002) showed the consistency
of the residual bootstrap in approximating the distributions of both kernel estimators
m̂(·) and σ̂2(·) under model (7.2). As a result, the four forward bootstrap prediction
intervals of Sect. 7.6.2 are asymptotically valid.

Monte Carlo simulations assessing the finite-sample performance of prediction
intervals based on a Forward bootstrap using the nonparametric AR models (7.1)
and/or (7.2) are presented in Chap. 8 in comparison with relevant Model-free
methods.
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Chapter 8
Model-Free Inference for Markov Processes

8.1 Introduction

Chapter 7 presented a unified approach towards prediction intervals when a time
series {Yt} obeys an autoregressive model that is either linear/parametric or non-
parametric; the aforementioned are some popular models for Markov processes. We
will now expand our scope by pursuing model-free inference under the sole ass-
umption that {Yt} is a Markov process of order p; some smoothness conditions may
also be needed. Thus, as Chap. 4 studied model-free regression in contrast to the
model-based regression of Chap. 3, the present chapter will investigate model-free
autoregression, i.e., Markov processes, to serve as contrast to the model-based aut-
oregression of Chap. 7.

Bootstrap methods for time series have been the subject of active investigation
for the last 25 years; recent review by Kreiss and Paparoditis (2011) gave a recent
review of the state-of-the-art of the literature. In particular, when the data at hand are
a sample from a Markov process, several different resampling schemes have been
proposed; see, e.g., Bertail and Clémencon (2006) and the references therein. With
respect to constructing bootstrap confidence intervals in the setting of Markov pro-
cesses, two well-known methods exist that are based on employing the conditional
density and/or distribution directly. These are:

1. The bootstrap method based on kernel estimates of the transition density of the
Markov processes as proposed by Rajarshi (1990); see Sect. 8.3.

2. The Local Bootstrap for Markov processes of Paparoditis and Politis (2001,
2002a); see Sect. 8.4.

Recall that two different general approaches towards building bootstrap predic-
tion intervals with conditional validity—namely the Forward and Backward rec-
ursive schemes—were discussed in Chap. 7. We will address both Forward and
Backward approaches towards prediction intervals using either Rajarshi’s method

© The Author 2015
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or the Local Bootstrap. Interestingly, the Local Bootstrap (LB) has already been
used for the construction of prediction intervals via the Backward approach; see
Paparoditis and Politis (1998).

In addition, we will introduce a third resampling option (both for prediction as
well as confidence intervals) that stems from the Model-Free Prediction Principle:

3. The Model-Free Bootstrap for Markov Processes which is a novel resampling
scheme proposed by Pan and Politis (2014); see Sect. 8.6.

As mentioned in Sect. 7.6, the Backward approach is not readily available for
time series that satisfy a nonlinear and/or nonparametric autoregression. Recall
that, under causality, AR models are special cases of Markov processes. Hence, in
Sect. 8.5 we propose a hybrid approach for nonparametric autoregressions in which
the forward step uses the autoregressive equation explicitly while the backward step
uses one of the three aforementioned Markov bootstrap procedures.

Finally, in Sect. 8.8 we will explore the possibility of constructing confidence
intervals using the Model-Free Bootstrap, and contrast them to confidence intervals
obtained by Rajarshi’s methods or the Local Bootstrap. All the above methods are
developed in the case the random variables Yt are continuous; the case of discrete-
valued time series, e.g., finite-state Markov chains, will be dealt with in Sect. 8.9.

8.2 Prediction and Bootstrap for Markov Processes

8.2.1 Notation and Definitions

Here, and throughout the rest of Chap. 8, we assume that Y = {Yt for t ∈ Z} is
a real-valued, strictly stationary process that is Markov of order p. Letting Xt =
(Yt ,Yt−1, · · · ,Yt−p+1)

′, we denote1

F(x) = P[Xp ≤ x],

F(y,x) = P[Yp+1 ≤ y,Xp ≤ x],

F(y|x) = P[Yp+1 ≤ y|Xp = x],

(8.1)

for x ∈ Rp, y ∈ R; in the above, we have used the short-hand {Xp ≤ x} to denote
the event: {the i-th coordinate of Xp is less or equal to the i-th coordinate of x for all
i = 1, . . . , p}.

Let f (x), f (y,x), f (y|x) be the corresponding densities of the distributions in
Eq. (8.1). We will assume throughout the chapter that these densities are with respect
to Lebesgue measure. However, all our model-free methods from Sects. 8.3, 8.4,
and 8.6, i.e., bootstrap based on estimated transition densities, Local Bootstrap, and

1 The distribution of random vector Xp was denoted F in order to be distinguished from the limiting

distribution F of the i.i.d. variables ε(m)
1 , . . . ,ε(m)

m in the Model-Free Prediction Principle.
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the Model-free bootstrap, could be generalized to the case of densities taken with
respect to counting measure, i.e., the case of discrete random variables; Sect. 8.9
gives the details.

Let Y1 = y1,Y2 = y2, · · · ,Yn = yn denote the observed sample path from the
Markov chain Y , and let xt = (yt , · · · ,yt−p+1)

′. Denote by Ŷn+1 the chosen point
predictor of Yn+1 based on the data at hand. Because of the Markov structure, this
predictor will be a functional of f̂n(·|xn) which is our data-based estimator of the
conditional density f (·|xn). For example, the L2–optimal predictor would be given
by the mean of f̂n(·|xn); similarly, the L1–optimal predictor would be given by the
median of f̂n(·|xn). To fix ideas in what follows we will focus on the L2–optimal
predictor, usually approximated by Ŷn+1 =

∫
y f̂n(y|xn)dy, with the understanding

that other functionals of f̂n(·|xn) can be accommodated equally well.

Remark 8.2.1 An integral such as
∫

y f̂n(y|xn)dy can be calculated by numerical
integration, e.g., using the adaptive quadrature method. However, the L2–optimal
predictor can be approximated in several different ways that are asymptotically
equivalent. The most straightforward alternative is a kernel smoothed estimator of
the autoregression scatterplot, i.e., estimator (7.23), that has been discussed in the
previous chapter. Claim 8.6.2 in what follows lists some further alternative options.

Beyond the point predictor Ŷn+1, we want to construct a prediction interval that
will contain Yn+1 with (conditional) probability 1−α asymptotically. Of course,
asymptotic validity is a fundamental property but it does not tell the whole story. For
example, one could construct an interval having as left and right end-points the α/2
and 1−α/2 quantiles of the conditional density estimator f̂n(·|xn), respectively. If
f̂n(·|xn) is consistent for fn(·|xn), then this interval would be asymptotically valid.
Nevertheless, it would be characterized by pronounced undercoverage in finite sam-
ples since the nontrivial variability in the estimator f̂n(·|xn) is ignored.

In order to capture the finite-sample variability involved in model estimation
some kind of bootstrap algorithm is necessary. Thus, consider a bootstrap pseudo
series Y ∗

1 , · · · ,Y ∗
n constructed according to one of the methods mentioned in the

Introduction. Let f̂ ∗n (·|xn) be the corresponding estimator of f (·|xn) as obtained
from the bootstrap data Y ∗

1 , · · · ,Y ∗
n . To achieve conditional validity, we will ensure

that the last p–values in the bootstrap world coincide with the last p–values in
the real world, i.e., that (Y ∗

n , · · · ,Y ∗
n−p+1)

′ = xn. Finally, we construct the predictor

Ŷ ∗
n+1 using the same functional, i.e., mean, median, etc., as used in the construc-

tion of Ŷn+1 in the real world but, of course, this time the functional is applied to
f̂ ∗n (·|xn). For example, the L2–optimal predictor in the bootstrap world will be given
by Ŷ ∗

n+1 =
∫

y f̂ ∗n (y|xn)dy.

Bootstrap probabilities and expectations are usually denoted by P∗ and E∗, and
they are understood to be conditional on the original data Y1 = y1, · · · ,Yn = yn.
Since our goal is conditional asymptotic validity, we will understand that P∗ and
E∗ are also conditional on Y ∗

n−p+1 = yn−p+1, · · · ,Y ∗
n = yn when they are applied to
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“future” events in the bootstrap world, i.e., events determined by {Y ∗
s for s > n};

this is not restrictive since we will ensure that our bootstrap algorithms satisfy this
requirement.

Indeed, all prediction intervals that will be studied in this chapter are asymptoti-
cally valid under appropriate conditions. However, as mentioned earlier, it is difficult
to quantify asymptotically the extent to which a prediction interval is able to capture
both sources of variation, i.e., the variance associated with the new observation Yn+1

and the variability in estimating Ŷn+1; hence, the prediction intervals in this paper
will be compared via finite-sample simulations.

8.2.2 Forward vs. Backward Bootstrap for Prediction Intervals

Consider the bootstrap sample Y ∗
1 , · · · ,Y ∗

n . As mentioned in Sect. 8.2.1, in order to
ensure conditional validity it would be helpful if the last p–values in the bootstrap
world coincided with the last p–values in the real world, i.e., that (Y ∗

n , · · · ,Y ∗
n−p+1)

′ =
xn ≡ (yn, · · · ,yn−p+1)

′. For the application to prediction intervals, note that the boot-
strap also allows us to generate Y ∗

n+1 so that the statistical accuracy of the predictor
Ŷn+1 can be gauged. However, under a usual Monte Carlo simulation, none of the
simulated bootstrap series will have their last p values exactly equal to the original
data sub-vector xn as needed for prediction purposes. Herein lies the problem, since
the behavior of the predictor Ŷn+1 needs to be captured conditionally on the original
vector xn.

As discussed in Chap. 7, one possibility is to generate the bootstrap data Y ∗
1 , · · · ,Y ∗

n
going backwards from the last p values that are fixed at (Y ∗

n , · · · ,Y ∗
n−p+1)

′ = xn; this
is the backward bootstrap method originally proposed by Thombs and Schucany
(1990), and by Breidt et al. (1995) in the context of a linear AR(p) model. Note
that the generation of Y ∗

n+1 must still be done in a forward fashion using the fitted
AR model conditionally on the value Yn. Going beyond the linear AR(p) model, a
backward bootstrap for Markov processes was proposed by Paparoditis and Politis
(1998) via the aforementioned Local Bootstrap. We will elaborate on the backward
Local Bootstrap and other backward bootstrap methods for Markov processes in the
sequel. A key result here is the following; see Pan and Politis (2014) for a proof.

Fact 8.2.1 A stationary Markov process remains a stationary Markov process after
a time-reversal.

Nevertheless, the natural way Markov processes evolve is forward in time, i.e.,
one generates Yt given Yt−1,Yt−2, . . . ,Yt−p. Thus, it is intuitive to construct bootstrap
procedures that run forward in time, i.e., to generate Y ∗

t given Y ∗
t−1,Y

∗
t−2, . . . ,Y

∗
t−p.

Indeed, most (if not all) of the literature on bootstrap confidence intervals for linear
AR models uses the natural time order to generate bootstrap series. However, recall
that predictive inference is to be conducted conditionally on the last p values given
by yn in order to be able to place prediction bounds around the point predictor Ŷn+1.
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In order to maintain the natural time order, i.e., generate bootstrap series forward
in time, but also ensure that Y ∗

n+1 is constructed correctly, i.e., conditionally on the
original xn, Pan and Politis (2014, 2015) introduced the forward bootstrap method
for prediction intervals that was defined in a model-based setting in Sect. 7.2.1. In
describing it under a model-free context, we will use the notion of fitting a Markov
model by estimating the transition density f (y|x) as will be discussed in Sect. 8.3;
different notions of Markov bootstrap, e.g., the Local Bootstrap, work analogously.
The forward bootstrap for Markov processes comprises of the following three steps:

A. Choose a starting vector (Y ∗
1−p,Y

∗
2−p, . . . ,Y

∗
0 )

′ in a way that is compatible to the
stationary distribution of Y , e.g., choose it at random as one of the stretches
(subseries) of length p found in the original data Y1, · · · ,Yn. Then, use the fit-
ted Markov model, i.e., use the estimated transition density f̂n(y|x), in order to
generate bootstrap data Y ∗

t recursively for t = 1, . . . ,n. Now re-fit the Markov
model using the bootstrap data Y ∗

1 , · · · ,Y ∗
n , i.e., obtain f̂ ∗n (y|x) as an estimate of

the transition density.
B. Re-define the last p values in the bootstrap world, i.e., let (Y ∗

n , · · · ,Y ∗
n−p+1)

′ = xn,
and generate the future bootstrap observation Y ∗

n+1 by a random draw from den-
sity f̂ ∗n (·|xn). Also construct the predictor Ŷ ∗

n+1 using the same functional, i.e.,
mean, median, etc., as used in the construction of Ŷn+1 in the real world but this
time the functional is applied to f̂ ∗n (·|xn). For example, the L2–optimal predictor
in the bootstrap world will be given by Ŷ ∗

n+1 =
∫

y f̂ ∗n (y|xn)dy.
C. Use the simulated distribution of the bootstrap predictive root Y ∗

n+1 − Ŷ ∗
n+1 to

estimate the true distribution of the real-world predictive root Yn+1 − Ŷn+1; it is
also possible to use studentized predictive roots in this connection.

Pan and Politis (2015) found that the forward bootstrap is the method that can
be immediately generalized to apply for nonlinear and/or nonparametric autore-
gressions as well, thus forming a unifying principle for treating all AR models.
As already mentioned, for nonlinear/nonparametric autoregressions the backward
bootstrap seems infeasible. Nevertheless, as will be shown in the next two sections,
the backward bootstrap becomes feasible again under the more general setup of
Markov process data. In Sect. 8.5 we will return briefly to the setup of a nonpara-
metric autoregression and propose a hybrid approach in which the forward step uses
the autoregressive equation explicitly while the backward step uses one of the afore-
mentioned Markov bootstrap procedures.

8.3 Bootstrap Based on Estimates of Transition Density

Rajarshi (1990) introduced a bootstrap method that creates pseudo-sample paths of
a Markov process based on an estimated transition density; this method can form the
basis for a forward bootstrap procedure for prediction intervals. In what follows, the
phrase “generate z ∼ f (·)” will be used as short-hand for “generate z by a random
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draw from probability density f (·).” For simplicity, we will focus on the L2–optimal
predictor as being the point predictor of choice but other predictor choices can be
accommodated in the same manner.

Algorithm 8.3.1 FORWARD BOOTSTRAP BASED ON TRANSITION DENSITY

1. Choose a probability density K on R2 and positive bandwidths h1,h2 to con-
struct the following kernel estimators:

f̂n(y,x) =
1

(n− p)h1h2

n

∑
i=p+1

K(
y− yi

h1
,
‖x− xi−1‖

h2
) (8.2)

f̂n(x) =
∫

f̂n(y,x)dy (8.3)

f̂n(y|x) = f̂n(y,x)

f̂n(x)
(8.4)

for all y ∈ R, x ∈ Rp, and where ‖ · ‖ is a norm on Rp.
2. Calculate the point predictor ŷn+1 =

∫
y f̂n(y|xn)dy.

3.(a) Generate x∗p = (y∗p, · · · ,y∗1) with probability density function f̂n(·) given by
Eq. (8.3). Alternatively, let x∗p = (yp+I, · · · ,y1+I)

′ where I is generated as a
discrete random variable uniform on the values 0,1, . . . ,n− p, i.e., choose x∗p
as one of the subseries of p consecutive data points found in the original data
series y1, . . . ,yn.

(b) Generate y∗p+1 ∼ f̂n(·|x∗p) given by (8.4).

(c) Repeat (b) to generate y∗t+1∼ f̂n(·|x∗t ) for t = p, · · · ,n − 1, where as before
x∗t = (y∗t , · · · ,y∗t−p+1)

′.
(d) Construct f̂ ∗n (y|x) in a similar way as in (8.4)—with the same kernel and

bandwidths—but based on the pseudo-data y∗1,y
∗
2, · · · ,y∗n instead of the origi-

nal data.
(e) Calculate the bootstrap point predictor ŷ∗n+1 =

∫
y f̂ ∗n (y|xn)dy.

(f) Generate the bootstrap future value y∗n+1∼ f̂n(·|xn).
(g) Calculate the bootstrap root replicate as y∗n+1 − ŷ∗n+1

4. Repeat step 3 above B times; the B bootstrap root replicates are collected in the
form of an empirical distribution whose α-quantile is denoted q(α).

5. The (1−α)100% equal-tailed, bootstrap prediction interval for Yn+1 is given by

[ŷn+1 + q(α/2), ŷn+1 + q(1−α/2)]. (8.5)

Rajarshi (1990) showed the uniform consistency of the density estimators appearing
in Algorithm 8.3.1, i.e., he showed
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sup
x,y

| f̂n(y,x)− f (y,x)| → 0 a.s. (8.6)

sup
y
| f̂n(y)− f (y)| → 0 a.s. (8.7)

sup
x,y

| f̂n(y|x)− f (y|x)| → 0 a.s. (8.8)

under regularity assumptions that include the following:

(β1) {Yt} is an aperiodic, strictly stationary, geometrically ergodic and φ–mixing
Markov chain;

(β2) The densities f (y), f (y,x), and f (y|x) are uniformly continuous and bounded,
and f (y) has compact support; and

(β3) As n → ∞, we have h = h(n)→ 0, nh → ∞, and ∑∞
m=1 mk+1h(m)4(k+1) < ∞ for

some k ≥ 3.

Equations (8.6)—(8.8) are enough to show that the prediction interval (8.5) is
asymptotically valid; the same is true for the prediction interval constructed from
the backward bootstrap of Algorithm 8.3.2 to be described next.

Let us define the backwards transition distribution as Fb(y|x) = P[Y0 ≤ y|Xp = x]
with corresponding density fb(y|x). Similarly, we define the backwards joint dis-
tribution as Fb(y,x) = P[Y0 ≤ y,Xp ≤ x] with corresponding density fb(y,x). Hav-
ing observed the sample path y1,y2, · · · ,yn of our Markov chain Y , Fact 8.2.1 im-
plies that the time-reversed sample path yn,yn−1, · · · ,y1 can be considered as a sam-
ple path of another Markov chain with transition distribution and density given by
Fb(y|x) and fb(y|x), respectively.

Note that the densities fb(y,x) and fb(y|x) admit kernel estimators as follows:

f̂bn(y,x) =
1

(n− p)h1h2

n

∑
i=p+1

K(
y− yi−p

h1
,
‖x− xi‖

h2
) (8.9)

f̂bn(y|x) = f̂bn(y,x)

f̂bn(x)
. (8.10)

Note that the above can be used to form an alternative estimator of the unconditional
density f (x), i.e.,

f̂bn(x) =
∫

f̂bn(y,x)dy;

we will not delve into the difference between f̂n(x) and f̂bn(x) as it is not important
in what follows.

The algorithm for backward bootstrap based on transition density is very sim-
ilar to that of the corresponding forward bootstrap. The only difference is in
Step 3 where we generate the pseudo series y∗1, · · · ,y∗n in a time-reversed fash-
ion. The backward bootstrap algorithm is described below where the notation
x∗t = (y∗t , · · · ,y∗t−p+1)

′ is again used.
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Algorithm 8.3.2 BACKWARD BOOTSTRAP BASED ON TRANSITION DENSITY

1–2. Same as the corresponding steps in Algorithm 8.3.1.
3.(a) Let x∗n = xn.

(b) Generate y∗n−p∼ f̂bn(·|x∗n = xn)

(c) Repeat (b) going backwards in time to generate y∗t ∼ f̂bn(·|x∗t+p) for t = n−
p,n− p− 1, · · · ,1.

(d) Generate bootstrap future value y∗n+1∼ f̂n(·|xn). [Note: this is again going for-
ward in time, using the forward transition density exactly as in the Forward
Bootstrap Algorithm 8.3.1.]

(e) Construct f̂ ∗n (y|x) in a similar way as in (8.4)—with the same kernel and
bandwidths—but based on the pseudo-data y∗1,y

∗
2, · · · ,y∗n instead of the origi-

nal data.
(f) Calculate the bootstrap root replicate as y∗n+1 − ŷ∗n+1.

4– 5. Same as the corresponding steps in Algorithm 8.3.1.

Remark 8.3.1 (On bandwidth choice) Bandwidth choice is as difficult as it is im-
portant in practice. Rajarshi (1990) used the bandwidth choice h= 0.9An−1/6 where
A = min(σ̂ , IQR

1.34), σ̂ is the estimated standard deviation of the data, and IQR is the
interquartile range. However, our simulations indicated that such a bandwidth choice
typically gives prediction intervals that exhibit overcoverage. Note that the last req-
uirement of assumption (β3) implies nh4 → 0; this convergence is allowed to be very
slow (when k is large) but in any case, h should be at most O(n−1/4). Therefore, we
modified the practical bandwidth choice recommendation to h = 0.9An−1/4. Cross-
validation is not recommended here as it results into an h of order n−1/5.

8.4 The Local Bootstrap for Markov Processes

Paparoditis and Politis (2001, 2002a) proposed the Local Bootstrap for Markov
processes that, in essense, generates bootstrap sample paths based on a transi-
tion distribution that is a step function as opposed to generating bootstrap sam-
ple paths based on an estimated transition density as in Sect. 8.3. In that sense,
Rajarshi’s (1990) method is to the Local Boostrap what the smoothed bootstrap for
i.i.d. data is to Efron’s (1979) original bootstrap that resamples from the empirical
distribution function.

As before, let Y1 = y1, · · · ,Yn = yn be the observed sample path, and let Xt =
(Yt ,Yt−1, · · · ,Yt−p+1)

′ and xt = (yt ,yt−1, · · · ,yt−p+1)
′. The aforementioned step-

function estimator of the transition distribution function is given by the weighted
empirical distribution

F̃n(y|x) =
∑n−1

j=p 1(−∞,y](y j+1)Wg(x− x j)

∑n−1
m=p Wg(x− xm)

(8.11)
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where Wg(·) = (1/g)W(·/g) with W (·) being a bounded, continuous, and symmetric
probability density on Rp, and g > 0 is a bandwidth parameter tending to zero.

The Local Boostrap generation of pseudo-data is based on the estimated condi-
tional distribution F̃n(y|x). However, since the latter is a step function, i.e., it is the
distribution of a discrete random variable, it is easier to work with the probability
mass function associated with this discrete random variable.

Algorithm 8.4.1 FORWARD LOCAL BOOTSTRAP

1. Choose a resampling kernel W and bandwidth g; here g can be selected by cross-
validation. Then calculate the predictor ŷn+1 as

∑n−1
j=pWg(xn − x j)y j+1

∑n−1
m=p Wg(xn − xm)

.

2.(a) Let x∗p = (yp+I, · · · ,y1+I)
′ where I is generated as a discrete random variable

uniform on the values 0,1, . . . ,n− p.
(b) Suppose y∗1, · · · ,y∗t for t ≥ p have already been generated. Let J be a discrete

random variable taking its values in the set {p, · · · ,n− 1} with probability
mass function given by

P(J = s) =
Wg(x∗t − xs)

∑n−1
m=p Wg(x∗t − xm)

.

Then, let y∗t+1 = yJ+1 for t = p.
(c) Repeat (b) for t = p+ 1, p+ 2, . . . to generate y∗p+1, · · · ,y∗n.
(d) Calculate the bootstrap predictor ŷ∗n+1 as

∑n−1
j=pWg(xn − x∗j)y∗j+1

∑n−1
m=pWg(xn − x∗m)

,

where x∗t = (y∗t , · · · ,y∗t−p+1)
′.

(e) Re-define x∗n = xn, and then generate y∗n+1 = yJ+1 as in step (b), where J is
a discrete random variable taking its values in the set {p, · · · ,n − 1} with
probability mass function given by

P(J = s) =
Wg(xn − xs)

∑n−1
m=p Wg(xn − xm)

.

(f) Calculate the bootstrap prediction root replicate as y∗n+1 − ŷ∗n+1.
3. Repeat step 2 above B times; the B bootstrap root replicates are collected in the

form of an empirical distribution whose α-quantile is denoted q(α).
4. The (1−α)100% equal-tailed, forward Local Bootstrap prediction interval for

Yn+1 is given by

[ŷn+1 + q(α/2), ŷn+1 + q(1−α/2)].
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Recall Fact 8.2.1, i.e., that the time-reverse of a Markov process is also Markov;
this is the necessary premise behind the Backward Local Bootstrap introduced
by Paparoditis and Politis (1998) whose motivating example was a first order
autoregressive process with conditionally heteroscedastic errors, i.e., the model

Yt = φYt−1 +εt

√
α0 +α1Y 2

t−1 with {εt} i.i.d. (0,1). We will now show how this idea

applies generally to the Markov(p) case. The Backward Local Bootstrap employs
an estimate of the backward conditional distribution given by

F̃bn(y|x) =
∑n−p

j=1 1(−∞,y](y j)Wb(x− x j+p)

∑n−p
m=1 Wb(x− xm+p)

. (8.12)

Remark 8.4.1 In practice, both the forward bandwidth g as well as the backward
bandwidth b can be chosen by delete-one cross-validation on the scatterplot of Yt

vs. Xt−1 as discussed in Remark 7.6.1.

Algorithm 8.4.2 BACKWARD LOCAL BOOTSTRAP

1. Same as in the Forward Local Bootstrap of Algorithm 8.4.1.
2.(a) Set starting value x∗n = xn.

(b) Suppose x∗t+p has already been generated where 1 ≤ t ≤ n− p. Let J be a
discrete random variable taking its values in the set {1,2, · · · ,n− p} with
probability mass function given by

P(J = s) =
Wb(x∗t+p − xs+p)

∑n−p
m=1 Wb(x∗t+p − xm+p)

.

Then let y∗t = yJ.
(c) Repeat (b) to generate y∗n−p, · · · ,y∗2,y∗1 backwards in time, i.e., first generate

y∗n−p, then generate y∗n−p−1, etc.
(d) Let J be a discrete random variable taking its values in the set {p, p +

1, · · · ,n− 1} with probability mass function given by

P(J = s) =
Wb(xn − xs)

∑n−1
m=p Wb(xn − xm)

.

Then, let y∗n+1 = yJ+1. [Note: this is again going forward in time exactly as in
the Forward Local Bootstrap Algorithm 8.4.1.]

(e) Calculate the bootstrap predictor ŷ∗n+1 by

∑n−1
j=pWb(xn − x∗j)y∗j+1

∑n−1
m=pWb(xn − x∗m)

.

(f) Calculate the bootstrap prediction root replicate as y∗n+1 − ŷ∗n+1.

3–4. Same as the corresponding steps of the Forward Local Bootstrap of
Algorithm 8.4.1.
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Under regularity conditions, Paparoditis and Politis (2002a) proved that

sup
x,y

|F̃n(y|x)−F(y|x)| → 0 a.s. (8.13)

where the transition distribution estimator F̃(y|x) was defined in (8.11). This is suffi-
cient to show that the prediction interval constructed from the Forward Local Boot-
strap of Algorithm 8.4.1 is asymptotically valid; the same is true for the prediction
interval constructed from the Backward Local Bootstrap of Algorithm 8.4.2.

8.5 Hybrid Backward Markov Bootstrap for Nonparametric
Autoregression

In this section only, we will revert to the special case where our Markov (p) pro-
cess is generated via a nonparametric autoregression, i.e., either model (7.1) or (7.2)
from Chap. 7. As before, we assume that {Yt} is strictly stationary; we further need
to assume causality, i.e., that εt is independent of {Yt−1,Yt−2, . . .} for all t. As usual,
the recursions (7.1) and (7.2) are meant to run forward in time, i.e., Yp+1 is gener-
ated given an initial assignment for Y1, . . . ,Yp; then, Yp+2 is generated given its own
p-past, etc.

Using the ideas presented in Sects. 8.3 and 8.4, we can now propose a hybrid
Backward Markov Bootstrap for nonparametric autoregression models in which
forward resampling is done using the model, i.e., Eq. (7.1) or (7.2), whereas the
backward resampling is performed using the Markov property only; the latter can
employ either resampling based on estimated (backwards) transition densities or the
backward Local Bootstrap.

Algorithm 8.5.1 HYBRID BACKWARD MARKOV BOOTSTRAP BASED ON TRAN-
SITION DENSITIES—HOMOSCEDASTIC CASE OF MODEL (7.1)

1. Select a bandwidth h and construct the kernel estimator m̂(x) by Eq. (7.23), i.e.,

m̂(x) =
∑n−1

t=p K( ‖x−xt‖
h )yt+1

∑n−1
t=p K( ‖x−xt‖

h )
.

2. Compute the residuals: ε̂i = yi − m̂(xi−1) for i = p+ 1, · · · ,n.
3. Center the residuals: r̂i = ε̂i − (n− p)−1 ∑n

t=p+1 ε̂t for i = p+ 1, · · · ,n; let the

empirical distribution of r̂t denoted by F̂ε .

(a) Construct the backward transition density estimate f̂bn as in Eq. (8.10).
(b) Let x∗n = xn.
(c) Generate y∗n−p∼ f̂bn(·|x∗n = xn). Repeat it to generate y∗t ∼ f̂bn(·|x∗t+p) for

t = n− p, · · · ,1 backwards in time, i.e., first for t = n− p, then for t = n− p−1,
etc.
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(d) Compute a future bootstrap observation y∗n+1 using model (7.1), i.e.,

y∗n+1 = m̂(x∗n)+ ε∗n+1 = m̂(xn)+ ε∗n+1

where ε∗n+1 is generated from F̂ε . Then re-estimate the conditional expectation
based on the pseudo-data, i.e., let

m̂∗(x) =
∑n−1

i=p K(
‖x−x∗i ‖

h )y∗i+1

∑n−1
i=p K(

‖x−x∗i ‖
h )

,

and compute the bootstrap predictor ŷ∗n+1 = m̂∗(x∗n) = m̂∗(xn).
(e) Calculate the bootstrap root replicate as y∗n+1 − ŷ∗n+1.

4. Steps (a)-(e) in the above are repeated B times, and the B bootstrap root repli-
cates are collected in the form of an empirical distribution whose α-quantile is
denoted q(α).

5. Then, a (1−α)100% equal-tailed predictive interval for Yn+1 is given by

[m̂(xn)+ q(α/2), m̂(xn)+ q(1−α/2)].

Algorithm 8.5.2 HYBRID BACKWARD MARKOV BOOTSTRAP BASED ON TRAN-
SITION DENSITIES—HETEROSCEDASTIC CASE OF MODEL (7.2)

1. Select the bandwidth h and construct the estimates m̂(·) and σ̂2(·) from
Eq. (7.23) and (7.30) respectively.

2. Compute the residuals:

ε̂i =
yi − m̂(xi−1)

σ̂(xi−1)
for i = p+ 1, · · · ,n.

3. This step is similar to step 3 of Algorithm 8.5.1—the only difference is
in part (d); here the future bootstrap observation y∗n+1 is computed from
model (7.2), i.e.,

y∗n+1 = m̂g(x
∗
n)+ σ̂g(x

∗
n)ε∗n+1 = m̂g(xn)+ σ̂g(xn)ε∗n+1.

In the above, m̂g and σ̂g are over-smoothed estimates of μ and σ computed in
the same way as m̂ and σ̂ but using a bandwidth g that is of bigger order than
h.

4– 5. Same as the corresponding steps of Algorithm 8.5.1.

Algorithm 8.5.3 HYBRID BACKWARD LOCAL BOOTSTRAP—HOMOSCEDASTIC

CASE OF MODEL (7.1)
The algorithm is identical to Algorithm 8.5.1 with the exception of steps 3 (a) to (c)
that have to be replaced by the following.
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3.(a) Select a resampling bandwidth b and kernel W.
(b) Let x∗n = Xn Suppose x∗t+p has already been generated for 1 ≤ t ≤ n− p. Let

J be a discrete random variable taking its values in the set {1,2, · · · ,n− p}
with probability mass function given by

P(J = s) =
Wb(x∗t+p − xs+p)

∑n−p
m=1 Wb(x∗t+p − xm+p)

,

and let y∗t = yJ.
(c) Repeat (b) to generate y∗n−p, · · · ,y∗2,y∗1 backwards in time.

Algorithm 8.5.4 HYBRID BACKWARD LOCAL BOOTSTRAP—HETEROSCEDASTIC

CASE OF MODEL (7.2)
The algorithm is the same as Algorithm 8.5.2 with the exception of steps 3 (a) to (c)
that have to be performed as in Algorithm 8.5.3.

Remark 8.5.1 The hybrid Algorithms 8.5.1—8.5.4 use a model-based resampling
based on fitted residuals. As discussed in Chap. 7, usage of predictive residuals may
be preferable. According to the two models (7.1) or (7.2), the predictive residuals are

respectively defined as ε̂(t)t = yt − m̂(t)
t (xt−1) or ε̂(t)t = [yt − m̂(t)

t (xt−1)]/σ̂ (t)
t (xt−1)

where m̂(t) and σ̂ (t) are smoothing estimators calculated from the original dataset
having the t-th point deleted. Finally, to define hybrid backward bootstrap intervals
based on predictive residuals we just need to replace the fitted residuals {ε̂i} in

step 2 of Algorithms 8.5.1—8.5.4 by the predictive residuals {ε̂(t)t }.

8.6 Prediction Intervals for Markov Processes Based on the
Model-Free Prediction Principle

We now return to the setup of data from a general Markov(p) process that does not
necessarily satisfy a model equation such as (7.1) or (7.2). In what follows, we will
describe the Model-Free Bootstrap for Markov Processes introduced by Pan and
Politis (2014); this is a novel approach that stems from the Model-Free Prediction
Principle of Chap. 2.

As usual, the key idea is to transform a given complex dataset into one that is
i.i.d., and therefore easier to handle. Instead of generating one-step ahead pseudo-
data by some estimated conditional distribution, e.g., the transition density given in
Eq. (8.4) or the transition distribution function given in Eq. (8.11), the Model-Free
Bootstrap resamples the transformed i.i.d. data, and then transforms them back to
obtain the desired one-step ahead prediction.

Note that the bootstrap based on kernel estimates of the transition density of
Sect. 8.3, and the Local Bootstrap of Sect. 8.4 can also be considered model-free
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methods as they apply in the absence of a model equation such as (7.1) or (7.2).
The term Model-Free Bootstrap specifically refers to the transformation-based app-
roach to inference stemming from the Model-Free Prediction Principle.

8.6.1 Theoretical Transformation

Let Y be a stationary Markov process of order p, and Xt−1 = (Yt−1, · · · ,Yt−p)
′. Given

Xt−1 = x ∈ Rp, we denote the conditional distribution of Yt as

Dx(y) = P(Yt ≤ y|Xt−1 = x). (8.14)

This is the same distribution appearing in Eq. (8.1); changing the notation will
help us differentiate between the different methods, and draws an analogy with the
Model-free regression notions of Chap. 4.

For some positive integer i ≤ p, we also define the distributions with partial con-
ditioning as follows

Dx,i(y) = P(Yt ≤ y|X (i)
t−1 = x) (8.15)

where X (i)
t−1 = (Yt−1, · · · ,Yt−i)

′ and x ∈ Ri. In this notation, we can denote the uncon-
ditional distribution as Dx,0(y) = P(Yt ≤ y) which does not depend on x. Throughout
this section, we assume that, for any fixed x and i, the function Dx,i(·) is continuous
and invertible over its support.

A transformation from our Markov(p) dataset Y1, · · · ,Yn to an i.i.d. dataset
η1, · · · ,ηn can now be constructed as follows. Let

η1 = Dx,0(Y1); η2 = D
X
(1)
1 ,1

(Y2); η3 = D
X
(2)
2 ,2

(Y3); · · · ; ηp = D
X
(p−1)
p−1 ,p−1

(Yp)

(8.16)

and ηt = DXt−1(Yt) for t = p+ 1, p+ 2, · · · ,n. (8.17)

Note that the transformation from the vector (Y1, · · · ,Ym)
′ to the vector (η1, · · · ,ηm)

′
is one-to-one and invertible for any natural number m by construction. Hence, the
event {Y1 = y1, · · · ,Yt = ym} is identical to the event {η1 = ζ1, · · · ,ηt = ζm} when
the construction of ζt follows (8.16) and (8.17), i.e.,

ζ1 = Dx,0(y1); ζ2 = D
x
(1)
1 ,1

(y2); ζ3 = D
x
(2)
2 ,2

(y3); · · · ; ζp = D
x
(p−1)
p−1 ,p−1

(yp) (8.18)

and ζt = Dxt−1(yt) for t = p+ 1, p+ 2, · · · ,n (8.19)

where xt−1 = (yt−1, · · · ,yt−p)
′ and x(i)t−1 = (yt−1, · · · ,yt−i)

′.
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It is not difficult to see that the random variables η1, · · · ,ηn are i.i.d. Uni-
form (0,1); in fact, this is just an application of Rosenblatt’s (1952) transformation
in the case of Markov(p) sequences. For example, the fact that η1 is Uniform (0,1)
is simply due to the probability integral transform. Now for t > p, we have

P(ηt ≤ z|ηt−1 = ζt−1, . . . ,η1 = ζ1) = P(ηt ≤ z|Yt−1 = yt−1, . . . ,Y1 = y1)

= P(ηt ≤ z|Xt−1 = xt−1,Yt−p−1 = yt−p−1, . . . ,Y1 = y1)

by the discussion preceding Eq. (8.18). Letting x be a short-hand for xt−1, we have:

P(ηt ≤ z|ηt−1 = ζt−1, . . . ,η1 = ζ1) =P(Dx(Yt)≤ z|Xt−1 = x,Yt−p−1 = yt−p−1, . . . ,)

=P(Dx(Yt)≤ z|Xt−1 = x) [by Markov property]

=P(Yt ≤ D−1
x (z)|Xt−1 = x)

=Dx(D
−1
x (z))

=z [which is uniform, and not depending on x].

Hence, for t > p, P(ηt ≤ z|ηt−1 = ζt−1, . . . ,η1 = ζ1) = z, i.e., ηt is a random variable
that is independent of its own past and has a Uniform (0,1) distribution. The same is
true for ηt with 1 < t < p; the argument is similar to the above but using the Dx,t(·)
distribution instead of Dx(·). All in all, it should be clear that the random variables
η1, · · · ,ηn are i.i.d. Uniform (0,1).

8.6.2 Estimating the Transformation from Data

To estimate the theoretical transformation from data, we would need to estimate the
distributions Dx,i(·) for i = 0,1, . . . , p− 1 and Dx(·). Note, however, that Dx,i(·) for
i < p can—in principle—be computed from Dx(·) since the latter uniquely specifies
the whole distribution of the stationary Markov process. Hence, it should be suf-
ficient to just estimate Dx(·) from our data. Another way of seeing this is to note
that the p variables in Eq. (8.16) can be considered as “edge effects” or “initial con-
ditions”; the crucial part of the transformation is given by Eq. (8.17), i.e., the one
based on Dx(·).

Given observations Y1 = y1, · · · ,Yn = yn, we can estimate Dx(y) by local averag-
ing methods such as the kernel estimator

D̂x(y) =
∑n

i=p+1 1{yi ≤ y}K(
‖x−xi−1‖

h )

∑n
k=p+1 K(

‖x−xk−1‖
h )

. (8.20)

In the above, D̂x(y) is a step function in y. It is possible to use linear interpolation on
this step function to produce an estimate D̃x(y) that is piecewise linear and strictly
increasing (and therefore invertible); see Pan and Politis (2014) for details. However,
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in the interest of conciseness, we will go straight to the construction of a smooth,
i.e., differentiable, distribution estimator D̄x(y).

As in Chap. 4, let Λ(·) be a cumulative distribution function that is absolutely
continuous and strictly increasing over its support; h0 is a positive bandwidth pa-
rameter. Define the smooth estimator

D̄x(y) =
∑n

i=p+1 Λ( y−yi
h0

)K(
‖x−xi−1‖

h )

∑n
k=p+1 K(

‖x−xk−1‖
h )

; (8.21)

consequently, the transformed data {vt for t = p+ 1, · · · ,n} can be calculated by

vt = D̄yt−1(xt); (8.22)

it then follows that vt ≈ ηt where ηt was defined in Sect. 8.6.1.

Claim 8.6.1 Under regularity conditions, including absolute continuity of Dx(y)
in y for all x, the sequence {vt for t = p + 1, · · · ,n} is approximately i.i.d. Uni-
form (0,1).

As in Claim 4.2.1, the word “approximately” in the above should be interpreted
as “asymptotically” for large n; again note that vp+1, . . . ,vn represent the n-th
row of a triangular array although this is not explicitly denoted. Hence, the goal
of transforming our observed data y1, · · · ,yn to a realization of a sequence of
(approximately) i.i.d. random variables vt has been achieved; note that the “ini-
tial conditions” v1, . . . ,vp were not explicitly generated in the above as they are not
needed in the Model-free bootstrap algorithms.

The Model-free bootstrap algorithm for Markov processes goes as follows.

Algorithm 8.6.1 MODEL-FREE (MF) BOOTSTRAP PREDICTION INTERVALS

1. Use Eq. (8.22) to obtain the transformed data vp+1, · · · ,vn.
2. Calculate ŷn+1, the point predictor of yn+1, by

ŷn+1 =
1

n− p

n

∑
t=p+1

D̄−1
xn
(vt). (8.23)

3.(a) Resample randomly (with replacement) the transformed variables vp+1, · · · ,vn

to create the pseudo-data v∗−M,v∗−M+1, · · · ,v∗0,v∗1, · · · ,v∗n−1,v
∗
n and v∗n+1 for

some large positive integer M.
(b) Let x∗p = (yp+I, · · · ,y1+I)

′ where I is generated as a discrete random variable
uniform on the values 0,1, . . . ,n− p.

(c) Generate the bootstrap pseudo-data y∗t = D̄−1
x∗t−1

(v∗t ) for t =−M+ p, · · · ,n.

(d) Calculate the bootstrap future value y∗n+1 = D̄−1
xn
(v∗n+1).

(e) Calculate the bootstrap predictor ŷ∗n+1 =
1

n−p ∑n
t=p+1 D̄∗−1

xn
(v∗t ) where

D̄∗
x(y) =

∑n
i=p+1 Λ(

y−y∗i
h0

)K(
‖x−x∗i−1‖

h )

∑n
k=p+1 K(

‖x−x∗k−1‖
h )

.

(f) Calculate the bootstrap root y∗n+1 − ŷ∗n+1.
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4. Repeat step 3 above B times; the B bootstrap root replicates are collected in the
form of an empirical distribution whose α-quantile is denoted q(α) .

5. The (1−α)100% equal-tailed prediction interval for Yn+1 is given by

[ŷn+1 + q(α/2), ŷn+1 + q(1−α/2)].

Bandwidth choices here are as in Remark 4.2.4, i.e., h0 = h2 where h is chosen via
the cross-validation procedure discussed in Remark 7.6.1.

Remark 8.6.1 Algorithm 8.6.1 is in effect a Forward bootstrap algorithm for pre-
diction intervals according to the discussion of Sect. 8.2. Constructing a back-
ward bootstrap analog of Algorithm 8.6.1 is straightforward based on the Markov
property of the time-reversed process as in Fact 8.2.1. One would just need a
reverse construction of the theoretical transformation of Sect. 8.6.1. To elaborate
on the latter, we would instead let ηt = GXt+p(Yt) for t = n− p,n − p− 1, . . . ,1
where Gx(y) = P(Yt ≤ y|Xt+p = x) is the backwards analog of Dx(y); the ηt for
t = n, . . . ,n− p+ 1 can be generated using the backwards analogs of Dx,i(y). The
details are straightforward and are omitted especially since the finite-sample perfor-
mance of the two approaches is practically indistinguishable.

As mentioned in Remark 8.2.1, there exist different approximations to the con-
ditional expectation which serves as the L2–optimal predictor. The usual one is the
kernel smoothed estimator (7.23) but Eq. (8.23) gives an alternative approximation;
we have used it in Algorithm 8.6.1 because it follows directly from the Model-Free
Prediction Principle. However, the two approximations are asymptotically equiva-
lent, and thus can be used interchangeably. To see why, note that

1
n− p

n

∑
t=p+1

D̄−1
xn
(ut)�

∫ 1

0
D̄−1

xn
(u)du �

∫
y f̂n(y|xn)dy � m̂(xn) (8.24)

where

m̂(xn) =

∫ 1

0
D̂−1

xn
(u)du � 1

n− p

n

∑
t=p+1

D̂−1
xn
(ut); (8.25)

as usual, D̂−1
x (·) indicates the quantile inverse of the step-function D̂x(·). By analogy

to Claim 4.3.1, we can also state the following:

Claim 8.6.2 Under regularity conditions, all the quantities appearing in Eqs. (8.24)
and (8.25) are asymptotically equivalent, i.e., the difference between any two of
these quantities is op(1/(hn)).

Remark 8.6.2 Recall that D̂x(y) is a local average estimator, i.e., averaging the
indicator 1{yi ≤ y} over data blocks Xt that are close to x. If a given x is outside the
range of the data blocks Xt , then obviously estimator D̂x(y) cannot be constructed,
and the same is true for D̄x(y). Similarly, if x is at the edges of the range of Xt , e.g.,
within h of being outside the range, then D̂x(y) and D̄x(y) will not be very accurate.
Step 1 of Algorithm 8.6.1 can then be modified to drop the vis that are obtained from
an yi whose xi−1 is within h of the boundary; see Chap. 4 for a related discussion.
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From Eq. (8.20), we see that the conditional distribution of main interest is
Dxn(y) = P(Yt ≤ y|Xt−1 = xn) which is estimated by

D̄xn(y) =
∑n

i=p+1 Λ( y−yi
h0

)K(
‖xn−xi−1‖

h )

∑n
k=p+1 K(

‖xn−xi−1‖
h )

.

Since yn+1 is not observed, the above estimated conditional distribution treats the
“scatterplot” pair (xn,yn+1) as an “out-of-sample” pair. To mimic this situation in
the model-free setup, we can use the trick as in Chap. 4, i.e., to calculate an estimate
of Dxn(y) based on a dataset that excludes the pair (xt−1,yt) for t = p+1, · · · ,n. The
corresponding delete-one estimator is defined as

D̄(t)
x (yt) =

∑n
i=p+1,i�=t Λ( yt−yi

h0
)K(

‖xt−1−xi−1‖
h )

∑k=p+1,k �=t K(
‖xt−1−xk−1‖

h )
for t = p+ 1, · · · ,n

that is used to construct the transformed data:

v(t)t = D̄(t)
xt−1(yt) for t = p+ 1, · · · ,n; (8.26)

this leads to the Predictive Model-Free bootstrap algorithm.

Algorithm 8.6.2 PREDICTIVE MODEL-FREE (PMF) PREDICTION INTERVALS

The algorithm is identical to Algorithm 8.6.1 after substituting v(p+1)
p+1 , · · · ,v(n)n in

place of vp+1, · · · ,vn.

As in Chap. 4, we can also devise a Limit Model-Free bootstrap scheme that is
not affected from the boundary issues mentioned in Remark 8.6.2. To do so, we
estimate D−1

x (·) by the quantile inverse D̂−1
x (·). There is no need to estimate the

smooth function Dx(·) per se as there is no need to generate the “uniformized” data
vp+1, · · · ,vn. Otherwise, the LMF algorithm is similar to Algorithm 8.6.1.

Algorithm 8.6.3 LIMIT MODEL-FREE (LMF) PREDICTION INTERVALS

1. Calculate ŷn+1, the point predictor of yn+1, by

ŷn+1 =
1

n− p

n

∑
t=p+1

D̂−1
xn
(vt)

2.(a) For some large positive integer M, generate the pseudo-data v∗−M,v∗−M+1, · · · ,
v∗0,v

∗
1, · · · ,v∗n−1,v

∗
n and v∗n+1 as i.i.d. Uniform (0,1).

(b) Let x∗p = (yp+I, · · · ,y1+I)
′ where I is generated as a discrete random variable

uniform on the values 0,1, . . . ,n− p.
(c) Generate the bootstrap pseudo-data y∗t = D̂−1

x∗t−1
(v∗t ) for t =−M+ p, · · · ,n.

(d) Calculate the bootstrap future value y∗n+1 = D̂−1
xn
(v∗n+1).

(e) Calculate the bootstrap predictor ŷ∗n+1 =
1

n−p ∑n
t=p+1 D̂∗−1

xn
(v∗t ) where D̂∗

x(y) is
the step function estimator Dx(y) as computed from the bootstrap pseudo-data
y∗1, . . . ,y

∗
n.
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(f) Calculate the bootstrap root y∗n+1 − ŷ∗n+1.
3. Repeat step 2 above B times; the B bootstrap root replicates are collected in the

form of an empirical distribution whose α-quantile is denoted q(α) .
4. The (1−α)100% equal-tailed prediction interval for Yn+1 is given by

[ŷn+1 + q(α/2), ŷn+1 + q(1−α/2)].
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Fig. 8.1 Typical scatterplots of yt vs. xt (where xt = yt−1) with the conditional (true) mean func-
tion superimposed. (a) Data from Model 1; (b) Data from Model 2 [Both with normal errors and
n = 100]

8.7 Finite-Sample Performance of Model-Free
Prediction Intervals

Monte Carlo simulations were conducted to assess the performance of the prediction
intervals proposed in this chapter through average coverage level (CVR) and length
(LEN). The following models were chosen in order to generate Markov processes
(of order p = 1).

• Model 1: Yt+1 = sin(Yt)+ εt+1

• Model 2: Yt+1 = sin(Yt)+
√

0.5+ 0.25Y2
t εt+1

where the errors {εt} were i.i.d. N(0,1) or Laplace rescaled to unit variance. Sample
sizes n =50, 100, and 200 were considered, and both 90 % and 95 % prediction
intervals were constructed.

For each model, 500 datasets of size n were generated. Figure 8.1 shows typi-
cal scatterplots of Yt vs. Xt(= Yt−1) from Models 1 and 2 based on normal errors
and n = 100. For each dataset, one of the bootstrap methods was used to create B
bootstrap sample paths and B one-step ahead future values denoted by Yn+1, j for
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j = 1,2, · · · ,B; for computational reasons, we chose B = 250 but in a real-data ap-
plication (with a single dataset) it is advisable to let B be at least 1000.

Replicates of the bootstrap prediction interval (Li,Ui) were constructed for i =
1,2, · · · ,500, and coverage level and length were estimated by

CVR =
1

500

500

∑
i=1

CVRi and LEN =
1

500

500

∑
i=1

LENi

where

CVRi =
1
B

B

∑
j=1

1[Li,Ui ](Xn+1, j) and LENi =Ui −Li.

Note that for the i-th dataset of size n (where i = 1,2, · · · ,500), the prediction inter-
val (Li,Ui) of Yn+1 was constructed given Yn = yni, where yni is the last observation
from the i-th dataset. The values of these ynis are different for each i; therefore, the
above CV Rs are an estimate of unconditional, i.e., average, coverage level.

Some further details are as follows:

• For the bootstrap approach based on the transition density, we chose K(x,y) =
k1(x)k1(y), where k1(x) is the standard normal density. As suggested in
Remark 8.3.1, we chose h = 0.9An−1/4 where A = min(σ̂ , IQR

1.34), σ̂ is the esti-
mated standard deviation of the data, and IQR is the sample interquartile range.

• The kernel W in the Local Bootstrap method was the normal kernel, and the
forward and backward bandwidth g and b were chosen by cross-validation.

• In the hybrid backward bootstrap procedure for nonparametric autoregression,
the estimation bandwidth h for nonparametric bootstrap and the resampling band-
width b for Local Bootstrap were all selected by cross-validation based on corre-
sponding regression kernel estimators. As above, the resampling bandwidth b for
the backward bootstrap based on the transition density was chosen as 0.9An−1/4.

• The model-based and hybrid bootstrap methods employed a two-bandwidth trick
in the case of data from heteroscedastic Model 2 as discussed in Sect. 7.6.2. In
particular, the choice g = 2h was made where h is chosen by cross-validation2;
doubling the original bandwidth h is a simple rule-of-thumb used in previous
work in nonparametric regression with i.i.d. errors.

• For the Model-free Bootstrap, Λ(·) was chosen as the standard normal cum-
ulative distribution function restricted on [−2,2]. As already mentioned, the
bandwidth h for kernel K(·) was chosen via cross-validation, and the smooth-
ing bandwidth h0 was set to h0 = h2.

Tables 8.1, 8.2, 8.3, 8.4, 8.5, 8.6, and 8.7 summarize all the simulation results.
The first two lines of each table are the simulation results using the model-based
bootstrap procedures discussed in Sect. 7.6, i.e., fitting a nonparametric AR model
to the data, and resampling the residuals; entries nonpara-f and nonpara-p
denote resampling the fitted vs. predictive residuals, respectively, i.e., the methods

2 If the choice of bandwidth g is not over-smoothed, e.g., if g = h, then the resulting prediction
intervals exhibit profound under-coverage; see Pan and Politis (2015) for discussion.
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referred to as Ff and Fp in Sect. 7.6. These intervals are based on unstudentized
roots, since as alluded to in Remark 7.2.2, the studentized root intervals FSf and
FSp were found to have identical performance as their unstudentized counterparts
Ff and Fp.

Lines 3 and 4 of each table are the simulation results using bootstrap based on
transition density discussed in Sect. 8.3; the forward and backward methods are de-
noted trans-forward and trans-backward, respectively. Lines 5 and 6 are
the results using the Local Bootstrap discussed in Sect. 8.4; the forward and back-
ward methods are denoted LB-forward and LB-backward, respectively.

Lines 7 to 10 are the simulation results using the hybrid backward Markov boot-
strap for nonparametric autoregression of Sect. 8.5. Notation hybrid-trans-f
and hybrid-trans-p denote that the backward generating mechanism uses an
estimator of transition density while the generation of Y ∗

n+1 is done via model-
based resampling the fitted vs. predictive residuals, respectively. Similarly, notation
hybrid-LB-f and hybrid-LB-p denote that the backward generating mecha-
nism is done by Local Bootstrap while the generation of Y ∗

n+1 is done via model-
based resampling the fitted vs. predictive residuals, respectively.

The last two lines of each table give the results using the Model-free Bootstrap
of Sect. 8.6. Both the basic Model-Free method of Algorithm 8.6.1 as well as the
Predictive Model-Free method of Algorithm 8.6.2 were used; the notation is MF and
PMF, respectively.

Some general comments on the simulations are as follows:

• As expected, when the sample size is increased, then the coverage level accu-
racy is improved and the standard deviation associated with each interval length
(denoted by st.dev. in the tables) is decreased.

• The model-based nonparametric and/or hybrid methods with predictive residuals
outperform the respective ones with fitted residuals. Especially when the sample
size is not large enough, using predictive residuals significantly improves the
coverage level.

• The standard deviations of interval lengths are quite large for the model with
heteroscedastic errors using the model-based nonparametric and/or hybrid ap-
proaches.

• The forward and backward methods have similar performances in both the boot-
strap based on transition density and the Local Bootstrap.

• The Predictive Model-free (PMF) method improves the coverage level of the
basic MF bootstrap at the cost of higher variability.

Comparing all the simulation results from the Tables 8.1, 8.2, 8.3, and 8.4 it is
apparent that with data generated by the model with homoscedastic errors, the non-
parametric model-based and hybrid methods—especially the methods with predic-
tive residuals—have better performance, particularly in view of their smaller stan-
dard deviation of the interval length; this should not be surprising since model-based
methods should have an advantage when the model is true—as it is the case here.
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normal innovations nominal coverage 95% nominal coverage 90%

n = 50 CVR LEN st.dev. CVR LEN st.dev.

nonpara-f 0.913 3.824 0.519 0.855 3.223 0.424

nonpara-p 0.941 4.207 0.536 0.893 3.547 0.425

trans-forward 0.931 4.126 0.760 0.886 3.544 0.667

trans-backward 0.931 4.130 0.757 0.887 3.555 0.677

LB-forward 0.910 3.885 0.778 0.862 3.337 0.685

LB-backward 0.911 3.920 0.795 0.863 3.355 0.676

Hybrid-trans-f 0.908 3.822 0.522 0.852 3.230 0.432

Hybrid-trans-p 0.935 4.181 0.583 0.889 3.553 0.470

Hybrid-LB-f 0.914 3.782 0.525 0.860 3.199 0.433

Hybrid-LB-p 0.938 4.136 0.592 0.892 3.496 0.463

MF 0.892 3.627 0.717 0.843 3.131 0.619

PMF 0.939 4.293 0.828 0.893 3.614 0.709

n = 100 CVR LEN st.dev. CVR LEN st.dev.

nonpara-f 0.927 3.860 0.393 0.873 3.255 0.310

nonpara-p 0.943 4.099 0.402 0.894 3.456 0.317

trans-forward 0.942 4.137 0.627 0.901 3.535 0.519

trans-backward 0.942 4.143 0.621 0.900 3.531 0.519

LB-forward 0.930 3.980 0.625 0.886 3.409 0.511

LB-backward 0.932 4.001 0.605 0.886 3.411 0.508

Hybrid-trans-f 0.921 3.822 0.412 0.868 3.241 0.335

Hybrid-trans-p 0.936 4.045 0.430 0.889 3.441 0.341

Hybrid-LB-f 0.923 3.815 0.430 0.869 3.226 0.343

Hybrid-LB-p 0.937 4.018 0.433 0.890 3.414 0.338

MF 0.916 3.731 0.551 0.869 3.221 0.489

PMF 0.946 4.231 0.647 0.902 3.471 0.530

n = 200 CVR LEN st.dev. CVR LEN st.dev.

nonpara-f 0.938 3.868 0.272 0.886 3.263 0.219

nonpara-p 0.948 4.012 0.283 0.899 3.385 0.231

trans-forward 0.944 4.061 0.501 0.902 3.472 0.415

trans-backward 0.944 4.058 0.507 0.902 3.470 0.424

LB-forward 0.937 3.968 0.530 0.891 3.369 0.439

Table 8.1 Model 1: Yt+1 = sin(Yt )+ εt+1 with normal innovations.
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LB-backward 0.937 3.979 0.551 0.893 3.383 0.448

Hybrid-trans-f 0.932 3.838 0.359 0.880 3.238 0.290

Hybrid-trans-p 0.942 3.977 0.360 0.893 3.358 0.281

Hybrid-LB-f 0.932 3.798 0.336 0.882 3.228 0.272

Hybrid-LB-p 0.942 3.958 0.338 0.895 3.356 0.265

MF 0.924 3.731 0.464 0.877 3.208 0.387

PMF 0.946 4.123 0.570 0.899 3.439 0.444

Table 8.1 (continued)

Interestingly, all our model-free methods seem to be competitive with the model-
based methods—even in our simulation in which an AR model actually holds true—
with the PMF method being the most prominent. What is surprising is that for data
arising from the model with heteroscedastic errors, several of the model-free boot-
strap methods have better coverage level and smaller variability compared to the
benchmark model-based nonparametric AR resampling; this finding is corroborated
by simulations in Pan and Politis (2014) based on three additional models.

8.8 Model-Free Confidence Intervals in Markov Processes

As already mentioned, the Model-Free Bootstrap for Markov Processes is a novel
resampling scheme that follows from the Model-Free Prediction Principle.
Section 8.6 described the application of the Model-Free Bootstrap for the
construction of prediction intervals.

In what follows, we will show how the Model-Free Bootstrap can be used to
construct confidence intervals for parameters associated with the conditional distri-
bution Dx(y) = P(Yt ≤ y|Xt−1 = x) where Xt = (Yt , · · · ,Yt−p+1)

′. For concreteness,
we will focus on the conditional expectation function μ(x) = E(Yt |Xt−1 = x) as the
parameter of interest but the algorithms remain true verbatim for other functionals
of Dy(·), e.g., the conditional median, the conditional variance, etc.

Fix some x ∈ Rp; the goal is to construct a (1−α)100% confidence interval
for μ(x) based on the Markov(p) dataset Y1, . . . ,Yn. To do this, we will need to
approximate the sampling distribution of the root: μ(x)− m̂(x) by the distribution
of the bootstrap root: m̂(x)− m̂∗(x).

The Model-free Bootstrap algorithm for confidence intervals is a simplified ver-
sion of Algorithm 8.6.1.

Algorithm 8.8.1 MODEL-FREE (MF) BOOTSTRAP CONFIDENCE INTERVALS

1. Use Eq. (8.22) to obtain the transformed data vp+1, · · · ,vn.
2. Calculate m̂(x), the estimator of μ(x). Here, m̂(x) can be the Nadaraya-Watson

smoother of Eq. (7.23) or one of its aforementioned asymptotically equivalent
forms.
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Laplace innovations nominal coverage 95% nominal coverage 90%

n = 50 CVR LEN st.dev. CVR LEN st.dev.

nonpara-f 0.912 4.103 0.885 0.854 3.187 0.612

nonpara-p 0.935 4.504 0.890 0.888 3.561 0.641

trans-forward 0.913 4.072 1.033 0.873 3.429 0.894

trans-backward 0.913 4.081 1.021 0.873 3.441 0.897

LB-forward 0.902 4.036 1.138 0.856 3.313 0.935

LB-backward 0.905 4.046 1.103 0.861 3.324 0.847

Hybrid-trans-f 0.905 4.070 0.925 0.848 3.174 0.633

Hybrid-trans-p 0.926 4.425 0.931 0.878 3.507 0.635

Hybrid-LB-f 0.913 4.081 0.934 0.857 3.184 0.623

Hybrid-LB-p 0.929 4.447 0.973 0.882 3.498 0.655

MF 0.891 3.715 0.963 0.846 3.084 0.764

PMF 0.930 4.442 1.126 0.887 3.620 0.972

n = 100 CVR LEN st.dev. CVR LEN st.dev.

nonpara-f 0.933 4.161 0.648 0.879 3.218 0.452

nonpare-p 0.944 4.430 0.658 0.896 3.445 0.470

trans-forward 0.925 4.236 1.027 0.885 3.424 0.763

trans-backward 0.926 4.239 1.024 0.885 3.437 0.764

LB-forward 0.923 4.153 0.935 0.878 3.323 0.714

LB-backward 0.923 4.189 0.986 0.879 3.356 0.724

Hybrid-trans-f 0.925 4.056 0.702 0.872 3.174 0.495

Hybrid-trans-p 0.939 4.370 0.748 0.891 3.418 0.513

Hybrid-LB-f 0.927 4.094 0.687 0.876 3.202 0.493

Hybrid-LB-p 0.938 4.310 0.731 0.891 3.400 0.512

MF 0.910 3.846 0.856 0.864 3.106 0.623

PMF 0.941 4.544 0.965 0.896 3.542 0.738

n = 200 CVR LEN st.dev. CVR LEN st.dev.

nonpara-f 0.937 4.122 0.460 0.885 3.198 0.329

nonpara-p 0.943 4.275 0.455 0.895 3.341 0.341

trans-forward 0.928 4.184 0.914 0.884 3.307 0.619

trans-backward 0.929 4.202 0.904 0.883 3.299 0.619

LB-forward 0.928 4.140 0.838 0.883 3.274 0.586

LB-backward 0.929 4.142 0.850 0.884 3.298 0.610

Hybrid-trans-f 0.931 4.041 0.509 0.880 3.172 0.388

Table 8.2 Model 1: Yt+1 = sin(Yt )+ εt+1 with Laplace innovations.
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Hybrid-trans-p 0.939 4.221 0.544 0.891 3.307 0.385

Hybrid-LB-f 0.932 4.041 0.560 0.881 3.170 0.405

Hybrid-LB-p 0.940 4.204 0.552 0.892 3.302 0.395

MF 0.921 3.895 0.684 0.873 3.103 0.491

PMF 0.942 4.447 0.868 0.894 3.407 0.629

Table 8.2 (continued)

3.(a) Resample randomly (with replacement) the transformed variables vp+1, · · · ,vn

to create the pseudo-data v∗−M,v∗−M+1, · · · ,v∗0,v∗1, · · · ,v∗n−1,v
∗
n for some large

positive integer M.
(b) Let (y∗−M, · · · ,y∗−M+p−1)

′ = (y1+I, · · · ,yp+I)
′ where I is generated as a dis-

crete random variable uniform on the values 0,1, . . . ,n− p; let x∗−M+p−1 =
(y∗−M+p−1, . . . ,y

∗−M).

(c) Generate y∗t = D̄−1
x∗t−1

(v∗t ) for t =−M+ p, · · · ,n.

(d) Calculate the bootstrap estimator m̂∗(x) which is the same estimator as m̂(x)
but computed from the bootstrap data y∗1, . . . ,y

∗
n.

(e) Calculate the bootstrap root m̂(x)− m̂∗(x).
4. Repeat step 3 above B times; the B bootstrap root replicates are collected in the

form of an empirical distribution whose α-quantile is denoted q(α) .
5. The (1−α)100% equal-tailed confidence interval for μ(x) is given by

[m̂(x)+ q(α/2), m̂(x)+ q(1−α/2)].

Bandwidth choices here are as in Remark 4.2.4, i.e., h is chosen via cross-validation,
and then let h0 = h2. As in Remark 8.6.2, the above algorithm can be modified to
drop the vis that are obtained from an Yis whose Xi−1 is within h of the boundary.

We can also define an analog of the Predictive Model-Free Algorithm 8.6.2.

Algorithm 8.8.2 PREDICTIVE MODEL-FREE (PMF) CONFIDENCE INTERVALS

The algorithm is identical to Algorithm 8.8.1 after substituting the variables v(p+1)
p+1 ,

· · · ,v(n)n obtained from Eq. (8.26) in place of vp+1, · · · ,vn.

Finally, the following is a version of the Limit Model-Free Algorithm 8.6.3 tailored
for the construction of confidence intervals.

Algorithm 8.8.3 LIMIT MODEL-FREE (LMF) BOOTSTRAP CONFIDENCE

INTERVALS

1. Calculate m̂(x), the estimator of μ(x). Here, m̂(x) can be the Nadaraya-Watson
smoother of Eq. (7.23) or one of its aforementioned asymptotically equivalent
forms.
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normal innovations nominal coverage 95% nominal coverage 90%

n = 50 CVR LEN st.dev. CVR LEN st.dev.

nonpara-f 0.864 3.112 1.276 0.813 2.671 1.089

nonpara-p 0.904 3.645 1.538 0.850 2.967 1.218

trans-forward 0.927 3.477 0.802 0.882 2.983 0.716

trans-backward 0.928 3.495 0.832 0.882 2.992 0.722

LB-forward 0.914 3.424 0.833 0.867 2.893 0.717

LB-backward 0.914 3.451 0.803 0.867 2.924 0.692

Hybrid-trans-f 0.865 3.169 1.212 0.812 2.721 1.050

Hybrid-trans-p 0.897 3.639 1.494 0.840 2.978 1.148

Hybrid-LB-f 0.862 3.146 1.256 0.808 2.686 1.070

Hybrid-LB-p 0.895 3.639 1.637 0.840 2.956 1.180

MF 0.890 3.073 0.712 0.842 2.653 0.630

PMF 0.931 3.687 0.836 0.891 3.078 0.699

n = 100 CVR LEN st.dev. CVR LEN st.dev.

nonpara-f 0.894 3.015 0.926 0.843 2.566 0.783

nonpara-p 0.922 3.318 1.003 0.868 2.744 0.826

trans-forward 0.943 3.421 0.629 0.901 2.928 0.561

trans-backward 0.943 3.439 0.648 0.901 2.930 0.573

LB-forward 0.938 3.425 0.628 0.895 2.908 0.553

LB-backward 0.937 3.410 0.616 0.894 2.903 0.549

Hybrid-trans-f 0.888 2.997 0.873 0.833 2.564 0.747

Hybrid-trans-p 0.914 3.301 0.980 0.855 3.726 0.792

Hybrid-LB-f 0.888 2.988 0.877 0.834 2.553 0.748

Hybrid-LB-p 0.916 3.301 0.996 0.858 2.727 0.796

MF 0.921 3.119 0.551 0.874 2.679 0.476

PMF 0.951 3.587 0.620 0.908 2.964 0.513

n = 200 CVR LEN st.dev. CVR LEN st.dev.

nonpara-f 0.903 2.903 0.774 0.848 2.537 0.647

nonpara-p 0.921 3.164 0.789 0.863 2.636 0.654

trans-forward 0.943 3.428 0.627 0.901 2.921 0.548

Table 8.3 Model 2: Yt+1 = sin(Yt )+
√

0.5+0.25Y 2
t εt+1 with normal innovations.



8.8 Model-Free Confidence Intervals in Markov Processes 167

trans-backward 0.943 3.430 0.633 0.901 2.921 0.552

LB-forward 0.942 3.425 0.578 0.898 2.894 0.483

LB-backward 0.941 3.406 0.562 0.895 2.858 0.462

Hybrid-trans-f 0.892 2.991 0.789 0.836 2.541 0.652

Hybrid-trans-p 0.908 3.147 0.816 0.849 2.631 0.663

Hybrid-LB-f 0.892 2.953 0.763 0.837 2.520 0.643

Hybrid-LB-p 0.911 3.148 0.810 0.853 2.628 0.663

MF 0.926 3.167 0.504 0.879 2.707 0.420

PMF 0.947 3.481 0.574 0.900 2.890 0.473

Table 8.3 (continued)

2. (a) For some large positive integer M, generate the pseudo-data v∗−M,v∗−M+1, · · · ,
v∗0, v∗1, · · · ,v∗n−1,v

∗
n as i.i.d. from Uniform (0,1).

(b) Let (y∗−M, · · · ,y∗−M+p−1)
′ = (y1+I, · · · ,yp+I)

′ where I is generated as a dis-
crete random variable uniform on the values 0,1, . . . ,n− p

(c) Generate y∗t = D̂−1
x∗t−1

(v∗t ) for t =−M+ p, · · · ,n.

(d) Calculate the bootstrap estimator m̂∗(x) which is the same estimator as m̂(x)
but computed from the bootstrap data y∗1, . . . ,y

∗
n.

(e) Calculate the bootstrap root m̂(x)− m̂∗(x).
3. Repeat step 3 above B times; the B bootstrap root replicates are collected in the

form of an empirical distribution whose α-quantile is denoted q(α) .
4. The (1−α)100% equal-tailed LMF confidence interval for μ(x) is given by

[m̂(x)+ q(α/2), m̂(x)+ q(1−α/2)].

Remark 8.8.1 The above three Model-Free Bootstrap methods were discussed in
terms of the concrete application of constructing a confidence interval for μ(x)
pointwise, i.e., for a given x. However, constructing simultaneous confidence int-
ervals for {μ(x) with x ∈ S} for any finite set S is immediate as with any bootstrap
method. If the set S consists of points on a fine grid that span an interval, say [a1,a2],
then the assumed smoothness of μ can be used to turn the aforementioned simulta-
neous confidence intervals into a confidence band for {μ(x) for x ∈ [a1,a2]}.

8.8.1 Finite-Sample Performance of Confidence Intervals

Monte Carlo simulations were conducted to assess the performance of the Model-
Free bootstrap confidence intervals through average coverage level (CVR) and
length (LEN), and compare them to Rajarshi’s (1990) bootstrap based on transition
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Laplace innovations nominal coverage 95% nominal coverage 90%

n = 50 CVR LEN st.dev. CVR LEN st.dev.

nonpara-f 0.862 3.173 1.676 0.811 2.532 1.230

nonpara-p 0.904 3.881 2.078 0.849 2.878 1.354

trans-forward 0.910 3.359 0.964 0.870 2.828 0.847

trans-backward 0.911 3.369 0.953 0.871 2.839 0.841

LB-forward 0.904 3.423 1.029 0.864 2.809 0.818

LB-backward 0.907 3.433 0.983 0.864 2.798 0.766

Hybrid-trans-f 0.866 3.209 1.562 0.814 2.595 1.195

Hybrid-trans-p 0.899 3.848 1.980 0.841 2.895 1.340

Hybrid-LB-f 0.866 3.194 1.674 0.814 2.572 1.245

Hybrid-LB-p 0.901 3.875 2.093 0.846 2.894 1.391

MF 0.893 3.093 0.871 0.846 2.539 0.707

PMF 0.930 3.774 1.094 0.888 3.017 0.857

n = 100 CVR LEN st.dev. CVR LEN st.dev.

nonpara-f 0.895 3.197 1.270 0.843 2.521 0.909

nonpara-p 0.921 3.662 1.515 0.866 2.740 0.967

trans-forward 0.926 3.518 0.952 0.887 2.867 0.779

trans-backward 0.926 3.526 0.963 0.886 2.872 0.789

LB-forward 0.924 3.482 0.839 0.877 2.762 0.654

LB-backward 0.924 3.531 0.871 0.881 2.810 0.676

Hybrid-trans-f 0.885 3.149 1.232 0.830 2.499 0.890

Hybrid-trans-p 0.910 3.576 1.468 0.849 2.707 0.990

Hybrid-LB-f 0.888 3.153 1.201 0.835 2.514 0.906

Hybrid-LB-p 0.913 3.580 1.470 0.854 2.699 1.026

MF 0.912 3.177 0.724 0.864 2.559 0.555

PMF 0.943 3.880 0.892 0.899 2.950 0.605

n = 200 CVR LEN st.dev. CVR LEN st.dev.

nonpara-f 0.905 3.028 0.955 0.851 2.395 0.747

nonpara-p 0.921 3.285 1.029 0.864 2.514 0.776

trans-forward 0.932 3.492 0.915 0.890 2.783 0.714

trans-backward 0.932 3.494 0.920 0.890 2.780 0.721

Table 8.4 Model 2: Yt+1 = sin(Yt )+
√

0.5+0.25Y 2
t εt+1 with Laplace innovations.
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LB-forward 0.932 3.425 0.717 0.888 2.724 0.580

LB-backward 0.933 3.477 0.735 0.888 2.751 0.592

Hybrid-trans-f 0.894 2.998 1.006 0.837 2.386 0.768

Hybrid-trans-p 0.910 3.241 1.040 0.850 2.494 0.768

Hybrid-LB-f 0.897 3.006 0.961 0.841 2.397 0.765

Hybrid-LB-p 0.911 3.229 1.036 0.852 2.481 0.752

MF 0.926 3.224 0.648 0.878 2.559 0.463

PMF 0.945 3.716 0.846 0.898 2.812 0.562

Table 8.4 (continued)

densities, and the Local Bootstrap of Paparoditis and Politis (2001, 2002a). As in
Sect. 8.7, the following models were chosen in order to generate Markov processes
(of order p = 1).

• Model 1: Yt+1 = sin(Yt)+ εt+1

• Model 2: Yt+1 = sin(Yt)+
√

0.5+ 0.25Y2
t εt+1

where the errors {εt} were i.i.d. N(0,1) or Laplace rescaled to unit variance. Five
hundred datasets were generated from each model with n = 200.

The main bandwidth for each method was chosen either by cross-validation or
by the rule-of-thumb formula: h = 0.9An−1/4 discussed in Remark 8.3.1 where
A = min(σ̂ , IQR

1.34), σ̂ is the estimated standard deviation of the data, and IQR is the
sample interquartile range. The kernels K and Λ had a normal shape; the smoothing
bandwidth for Λ in the basic Model-Free method was taken to be h0 = h2 as before.

Tables 8.5 and 8.6 show empirical CVRs of confidence intervals for μ(x) for
different values of x using all the Model-Free Bootstrap methods, Local Bootstrap
(LB) and Rajarshi’s method (RAJ). Tables 8.7 and 8.8 show the average lengths of
the confidence intervals of Tables 8.5 and 8.6, while Tables 8.9 and 8.10 show the
respective standard deviations of interval lengths.

Some conclusions are as follows:

• Coverage levels are closer to the nominal when x is close to zero; this was to
be expected since the point clouds of Fig. 8.1 are centered around zero. Conse-
quently, the kernel smoothers work with a higher effective sample size when x is
close to zero, leading to better approximations.

• Going from MF to PMF one obtains better coverage level but larger variability
of interval length.

• The Local Bootstrap has better coverage levels than MF but not as good as the
ones from PMF. The best coverage levels are associated with the PMF and RAJ
methods, with LMF being a close second.

• In cases where the PMF and RAJ methods led to similar coverage levels, it is
observed that the PMF intervals have smaller (average) interval length; this is
highly desirable, and indicates that the intervals are centered more accurately.
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• The two bandwidth choice methods, cross-validation and the rule-of-thumb for-
mula, lead to comparable coverage levels; however, the latter is associated with
significantly bigger interval length which is rather striking.

cross-validation bandwidth rule-of-thumb bandwidth

Model 1

x LMF MF PMF LB RAJ LMF MF PMF LB RAJ

−2π/3 0.868 0.854 0.870 0.862 0.884 0.872 0.860 0.892 0.876 0.880

−π/2 0.918 0.898 0.910 0.910 0.918 0.920 0.912 0.928 0.914 0.924

−π/6 0.928 0.908 0.928 0.922 0.936 0.912 0.900 0.932 0.924 0.936

0 0.942 0.926 0.932 0.938 0.948 0.916 0.898 0.920 0.926 0.926

π/6 0.926 0.904 0.912 0.920 0.932 0.912 0.888 0.924 0.904 0.924

π/2 0.878 0.868 0.882 0.870 0.892 0.880 0.858 0.898 0.878 0.892

2π/3 0.850 0.844 0.858 0.846 0.864 0.878 0.878 0.886 0.872 0.884

Model 2

−2π/3 0.800 0.794 0.806 0.798 0.832 0.868 0.856 0.854 0.854 0.856

−π/2 0.894 0.876 0.896 0.890 0.908 0.896 0.900 0.908 0.904 0.906

−π/6 0.918 0.896 0.906 0.902 0.914 0.918 0.904 0.924 0.914 0.920

0 0.962 0.940 0.942 0.954 0.958 0.932 0.914 0.940 0.930 0.944

π/6 0.922 0.896 0.922 0.910 0.920 0.934 0.918 0.944 0.936 0.946

π/2 0.884 0.872 0.884 0.876 0.898 0.880 0.864 0.900 0.882 0.892

2π/3 0.838 0.806 0.836 0.824 0.850 0.858 0.858 0.874 0.862 0.856

Table 8.5 Empirical coverage level (CVR) of confidence intervals for μ(x) for different x values;
simulation with normal errors, n = 200, and nominal coverage 95 %.

8.9 Discrete-Valued Markov Processes

Up till now in this chapter it has been assumed that Yt and Xt =(Yt ,Yt−1, · · · ,Yt−p+1)
′

have densities with respect to Lebesgue measure, i.e., they represent continuous
random variables. In this subsection, we will instead assume that the Markov(p)
chain Yt that takes values on a discrete set S ⊂ R, i.e., S = {s1, . . . ,sd}. If d is finite,
then a finite-state Markov chain ensues; otherwise, the state space is countable.
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cross-validation bandwidth rule-of-thumb bandwidth

Model 1

x LMF MF PMF LB RAJ LMF MF PMF LB RAJ

−2π/3 0.860 0.848 0.870 0.870 0.884 0.874 0.862 0.894 0.874 0.866

−π/2 0.892 0.872 0.898 0.894 0.908 0.888 0.868 0.910 0.888 0.892

−π/6 0.928 0.900 0.914 0.924 0.928 0.918 0.874 0.934 0.908 0.920

0 0.940 0.914 0.934 0.926 0.932 0.928 0.898 0.938 0.934 0.934

π/6 0.946 0.932 0.952 0.942 0.956 0.936 0.904 0.952 0.934 0.938

π/2 0.892 0.864 0.904 0.876 0.900 0.896 0.868 0.910 0.892 0.882

2π/3 0.868 0.870 0.888 0.874 0.884 0.908 0.896 0.910 0.890 0.900

Model 2

−2π/3 0.810 0.804 0.826 0.822 0.842 0.844 0.856 0.852 0.848 0.856

−π/2 0.866 0.842 0.880 0.832 0.844 0.872 0.860 0.898 0.866 0.870

−π/6 0.914 0.878 0.906 0.886 0.902 0.928 0.890 0.944 0.922 0.934

0 0.954 0.918 0.946 0.944 0.958 0.936 0.908 0.956 0.936 0.936

π/6 0.946 0.944 0.950 0.916 0.928 0.948 0.906 0.964 0.944 0.944

π/2 0.868 0.842 0.888 0.844 0.860 0.886 0.880 0.908 0.896 0.890

2π/3 0.830 0.826 0.848 0.830 0.840 0.870 0.876 0.884 0.868 0.872

Table 8.6 Empirical coverage level (CVR) of confidence intervals for μ(x) for different x values;
simulation with Laplace errors, n = 200, and nominal coverage 95 %.

8.9.1 Transition Densities and Local Bootstrap

Definition (8.1) holds true verbatim; however, now the density notation f (x),
f (y,x), f (y|x) will be reserved for the probability mass functions associated with
F(x) = P[Xp ≤ x],F(y,x) = P[Yp+1 ≤ y,Xp ≤ x], and F(y|x) = P[Yp+1 ≤ y|Xp = x],
respectively. As such, they can be estimated by counting as opposed to smoothing.
In other words, Eqs. (8.2)—(8.4) are replaced by

f̂n(y,x) =
1

(n− p)

n

∑
i=p+1

1{yi = y, xi−1 = x} (8.27)

f̂n(x) = ∑
y∈S

f̂n(y,x) (8.28)

f̂n(y|x) = f̂n(y,x)

f̂n(x)
(8.29)

for all y ∈ S and x ∈ Sp.
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cross-validation bandwidth rule-of-thumb bandwidth

Model 1

x LMF MF PMF LB RAJ LMF MF PMF LB RAJ

−2π/3 0.843 0.829 0.861 0.850 0.887 0.995 0.979 1.020 0.993 1.013

−π/2 0.661 0.637 0.675 0.667 0.703 0.756 0.727 0.783 0.752 0.773

−π/6 0.523 0.501 0.537 0.527 0.565 0.564 0.537 0.589 0.562 0.588

0 0.512 0.491 0.527 0.516 0.550 0.547 0.521 0.573 0.548 0.570

π/6 0.521 0.501 0.536 0.525 0.561 0.560 0.534 0.589 0.559 0.582

π/2 0.659 0.639 0.675 0.664 0.702 0.752 0.724 0.785 0.750 0.774

2π/3 0.837 0.818 0.860 0.839 0.877 0.976 0.957 1.014 0.974 0.997

Model 2

−2π/3 1.060 1.038 1.053 1.075 1.093 1.542 1.545 1.523 1.514 1.493

−π/2 0.685 0.664 0.692 0.709 0.742 0.907 0.886 0.935 0.904 0.908

−π/6 0.411 0.395 0.425 0.418 0.466 0.443 0.419 0.480 0.444 0.468

0 0.386 0.371 0.400 0.390 0.439 0.403 0.382 0.440 0.402 0.428

π/6 0.410 0.394 0.425 0.415 0.462 0.445 0.419 0.484 0.443 0.468

π/2 0.678 0.657 0.692 0.695 0.731 0.900 0.871 0.935 0.894 0.902

2π/3 1.018 1.004 1.036 1.050 1.057 1.477 1.483 1.497 1.469 1.450

Table 8.7 Average length of confidence intervals of Table 8.5.

The discrete-valued Forward bootstrap based on transition densities is very sim-
ilar to Algorithm 8.3.1 replacing Eqs. (8.2)—(8.4) with Eqs. (8.27)—(8.29). Its fa-
vorable properties for the purpose of confidence interval construction were shown
by Raı̈s (1994); the application to predictive distributions is new, and goes along the
lines of Algorithm 2.4.4. Since we cannot use predictive roots, we attempt to capture
the estimation variability by generating the bootstrap future value y∗∗n+1∼ f̂ ∗n (·|xn) in-
stead of f̂n(·|xn). Due to the caveats discussed in Sect. 2.4.4, we do not attempt the
construction of prediction intervals here.

Algorithm 8.9.1 DISCRETE-VALUED FORWARD BOOTSTRAP BASED ON TRAN-
SITION DENSITY

1. Compute the estimators f̂ (y,x), f̂ (x), f̂ (y|x) from Eqs. (8.27)—(8.29).
2.(a) Generate x∗p = (y∗p, · · · ,y∗1) with probability density function f̂n(·) given by

Eq. (8.28); alternatively, let x∗p = (y∗p+J, · · · ,y1+J) where J is generated as a
discrete random variable uniform on the values 0,1, . . . ,n− p.

(b) Generate y∗p+1 ∼ f̂n(·|x∗p) given by (8.29).
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cross-validation bandwidth rule-of-thumb bandwidth

Model 1

x LMF MF PMF LB RAJ LMF MF PMF LB RAJ

−2π/3 0.893 0.862 0.927 0.932 0.945 1.211 1.186 1.307 1.195 1.192

−π/2 0.671 0.640 0.699 0.697 0.725 0.864 0.819 0.942 0.860 0.863

−π/6 0.497 0.470 0.513 0.510 0.546 0.558 0.517 0.612 0.554 0.577

0 0.485 0.460 0.501 0.495 0.526 0.541 0.502 0.600 0.541 0.557

π/6 0.496 0.470 0.513 0.505 0.542 0.559 0.517 0.620 0.557 0.580

π/2 0.673 0.637 0.700 0.699 0.726 0.857 0.817 0.949 0.855 0.859

2π/3 0.900 0.867 0.939 0.937 0.947 1.182 1.165 1.298 1.174 1.170

Model 2

−2π/3 1.159 1.116 1.152 1.164 1.163 1.792 1.795 1.817 1.753 1.725

−π/2 0.730 0.688 0.736 0.746 0.772 1.067 1.035 1.146 1.050 1.035

−π/6 0.405 0.382 0.423 0.407 0.455 0.447 0.413 0.514 0.444 0.464

0 0.382 0.360 0.400 0.380 0.430 0.405 0.372 0.474 0.403 0.423

π/6 0.409 0.385 0.430 0.409 0.458 0.451 0.415 0.527 0.449 0.468

π/2 0.719 0.681 0.741 0.733 0.757 1.028 1.004 1.125 1.014 0.998

2π/3 1.139 1.109 1.158 1.181 1.168 1.751 1.782 1.819 1.725 1.698

Table 8.8 Average length of confidence intervals of Table 8.6.

(c) Repeat (b) to generate y∗t+1∼ f̂n(·|x∗t ) for t = p, · · · ,n − 1, where as before
x∗t = (y∗t , · · · ,y∗t−p+1)

′.
(d) Construct f̂ ∗n (y|x) in a similar way as in (8.29) but based on the pseudo-data

y∗1,y
∗
2, · · · ,y∗n instead of the original data.

(e) Generate the bootstrap future value y∗∗n+1∼ f̂ ∗n (·|xn).
3. Repeat step 2 above B times; the B bootstrap replicates of the bootstrap future

value y∗∗n+1 are collected in the form of an empirical distribution which is our
estimate of the predictive distribution for Yn+1. The mode of this predictive dis-
tribution can be used as a point predictor for Yn+1.

The discrete-valued Backward bootstrap algorithm is similar to Algorithm 8.9.1
with one exception: the pseudo-data y∗1,y

∗
2, · · · ,y∗n are generated in a backwards fash-

ion as in Algorithm 8.3.2 but based on a backwards transition density estimated by
counting as opposed to smoothing.
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cross-validation bandwidth rule-of-thumb bandwidth

Model 1

x LMF MF PMF LB RAJ LMF MF PMF LB RAJ

−2π/3 0.233 0.232 0.239 0.266 0.247 0.249 0.248 0.234 0.249 0.227

−π/2 0.144 0.134 0.150 0.170 0.152 0.145 0.141 0.144 0.141 0.133

−π/6 0.079 0.073 0.089 0.090 0.084 0.069 0.066 0.068 0.067 0.067

0 0.071 0.066 0.086 0.079 0.070 0.058 0.057 0.057 0.059 0.055

π/6 0.079 0.075 0.092 0.101 0.089 0.065 0.063 0.067 0.063 0.063

π/2 0.161 0.156 0.175 0.170 0.161 0.154 0.149 0.153 0.153 0.143

2π/3 0.272 0.274 0.288 0.268 0.250 0.230 0.227 0.227 0.226 0.212

Model 2

−2π/3 0.374 0.377 0.364 0.441 0.437 0.493 0.511 0.452 0.478 0.433

−π/2 0.188 0.186 0.193 0.276 0.252 0.222 0.220 0.220 0.223 0.200

−π/6 0.064 0.058 0.079 0.091 0.087 0.057 0.056 0.064 0.057 0.056

0 0.053 0.050 0.066 0.066 0.061 0.045 0.044 0.046 0.044 0.045

π/6 0.058 0.056 0.070 0.072 0.060 0.057 0.056 0.061 0.058 0.056

π/2 0.189 0.189 0.203 0.242 0.227 0.218 0.218 0.213 0.223 0.199

2π/3 0.310 0.330 0.340 0.386 0.351 0.431 0.446 0.409 0.435 0.396

Table 8.9 Standard deviation of interval length from Table 8.5.

Remark 8.9.1 (Discrete-valued Local Bootstrap) Recall that the only difference
between bootstrap based on estimates of transition density and the Local Bootstrap
was that the latter used a step function estimator of the transition distribution (sim-
ilar to D̂x(·)) whereas the former used a smooth (differentiable) function estimator
(similar to D̄x(·)). But in the case of discrete-valued Markov process, smoothing is
not recommended; even Algorithm 8.9.1 uses probability mass functions. Hence,
in the case of discrete-valued data, the Local Bootstrap is identical to the bootstrap
based on transition density given in Algorithm 8.9.1.

8.9.2 Model-Free Bootstrap

As alluded to in Remark 8.9.1, here too it is sufficient to avoid the smoothing step. In
the language of Sect. 8.6, this just means that we shun the smooth estimator D̄x(y),
and focus instead on estimator D̂x(y) from Eq. (8.20) using a bandwidth h that is
extremely close to zero, i.e., define
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cross-validation bandwidth rule-of-thumb bandwidth

Model 1

x LMF MF PMF LB RAJ LMF MF PMF LB RAJ

−2π/3 0.256 0.250 0.255 0.335 0.304 0.460 0.454 0.448 0.454 0.405

−π/2 0.166 0.154 0.171 0.191 0.168 0.233 0.222 0.237 0.234 0.214

−π/6 0.077 0.068 0.083 0.098 0.091 0.095 0.086 0.100 0.090 0.087

0 0.062 0.056 0.068 0.080 0.069 0.074 0.068 0.085 0.076 0.071

π/6 0.073 0.069 0.083 0.083 0.076 0.093 0.088 0.104 0.092 0.088

π/2 0.188 1.173 0.190 0.227 0.203 0.259 0.255 0.273 0.261 0.244

2π/3 0.305 0.318 0.301 0.325 0.291 0.434 0.457 0.465 0.447 0.401

Model 2

−2π/3 0.521 0.503 0.491 0.541 0.503 0.744 0.758 0.714 0.733 0.689

−π/2 0.314 0.260 0.266 0.320 0.291 0.386 0.381 0.396 0.375 0.332

−π/6 0.076 0.060 0.077 0.077 0.070 0.081 0.076 0.101 0.080 0.075

0 0.078 0.049 0.062 0.061 0.062 0.059 0.055 0.084 0.058 0.056

π/6 0.074 0.065 0.086 0.077 0.069 0.083 0.079 0.102 0.084 0.076

π/2 0.307 0.251 0.264 0.295 0.249 0.380 0.397 0.388 0.373 0.335

2π/3 0.522 0.502 0.484 0.615 0.546 0.747 0.786 0.735 0.769 0.701

Table 8.10 Standard deviation of interval length of Table 8.6.

D̂x(y) =
1

n− p

n

∑
i=p+1

1{yi ≤ y, xi = x}. (8.30)

Note that the transformed, i.e., “uniformized,” variables vt can no longer be cal-
culated because the probability integral transform does not work for discrete data.
Nevertheless, the Limit Model-Free Algorithm from Sect. 2.4.3 comes to our res-
cue, coupled with the ideas discussed in Sect. 2.4.4. The discrete-valued (forward)
Limit Model-free Bootstrap for Markov processes goes as follows.

Algorithm 8.9.2 DISCRETE-VALUED LIMIT MODEL-FREE (LMF) BOOTSTRAP

1. Compute D̂x(y) from Eq. (8.30).
2.(a) For some large positive integer M, generate v∗−M,v∗−M+1, · · · ,v∗0,v∗1, · · · ,v∗n−1,

v∗n and v∗n+1 as i.i.d. Uniform (0,1).
(b) Let (y∗−M, · · · ,y∗−M+p−1)

′ = (y1+I, · · · ,yp+I)
′ where I is generated as a dis-

crete random variable uniform on the values 0,1, . . . ,n− p; let x∗−M+p−1 =
(y∗−M+p−1, . . . ,y

∗−M).
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(c) Generate y∗t = D̂−1
x∗t−1

(v∗t ) for t =−M+ p, · · · ,n.

(d) Re-compute the estimator D̂∗
x(y) from Eq. (8.30) applied to the bootstrap

pseudo-data y∗1, . . . ,y
∗
n.

(e) Calculate the bootstrap future value y∗∗n+1 = D̂∗−1
xn

(v∗n+1).
3. Repeat step 2 above B times; the B bootstrap future values y∗∗n+1 are collected

in the form of an empirical distribution which is our estimate of the predictive
distribution for Yn+1. The mode of this predictive distribution can be used as a
point predictor for Yn+1.

Remark 8.9.2 All the bootstrap algorithms that were developed in Sect. 8.8 for
the construction of confidence intervals apply verbatim in the case of {Yt} being
a discrete-valued Markov process. The only thing that is different, is that the gen-
eration of bootstrap pseudo-data y∗1, . . . ,y

∗
n must follow the directions of the present

section, i.e., must be done based on transition probabilities estimated by counting
(as opposed to smoothing), and/or on the distribution estimator D̂x(y) as given in
Eq. (8.30).
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Chapter 9
Predictive Inference for Locally Stationary
Time Series

9.1 Introduction

Consider a real-valued time series dataset Y1, . . . ,Yn spanning a long time interval,
e.g., annual temperature measurements spanning over 100 years or daily financial
returns spanning several years. It may be unrealistic to assume that the stochastic
structure of time series {Yt , t ∈ Z} has stayed invariant over such a long stretch of
time; hence, we cannot assume that {Yt} is stationary. More realistic is to assume a
slowly-changing stochastic structure, i.e., a locally stationary model—see Priestley
(1965, 1988) and Dahlhaus (1997, 2012). Our objective is predictive inference for
the next data point Yn+1, i.e., constructing a point and interval predictor for Yn+1.
The usual approach for dealing with nonstationary series is to assume that the data
can be decomposed as the sum of three components:

μ(t)+ St +Wt

where μ(t) is a deterministic trend function, St is a seasonal (periodic) time series,
and {Wt} is (strictly) stationary with mean zero; this is the “classical” decompo-
sition of a time series to trend, seasonal, and stationary components. The seasonal
(periodic) component, be it random or deterministic, can be easily estimated and
removed; see, e.g., Brockwell and Davis (1991). Having done that, the “classical”
decomposition simplifies to the following model with additive trend, i.e.,

Yt = μ(t)+Wt (9.1)

which can be generalized to accommodate a time-changing variance as well, i.e.,

Yt = μ(t)+σ(t)Wt . (9.2)

© The Author 2015
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In both above models, the time series {Wt} is assumed to be (strictly) stationary,
weakly dependent, e.g., strong mixing, and satisfying EWt = 0; in model (9.2), it
is also assumed that Var(Wt) = 1. As usual, the deterministic functions μ(·) and
σ(·) are unknown but assumed to belong to a class of functions that is either finite-
dimensional (parametric) or not; we will focus on the latter, in which case it is
customary to assume that μ(·) and σ(·) possess some degree of smoothness, i.e.,
that μ(t) and σ(t) change smoothly (and slowly) with t.

Remark 9.1.1 (Quantifying smoothness) To analyze locally stationary series it is
sometimes useful to map the index set {1, . . . ,n} onto the interval [0,1]. In that
respect, consider two functions μ

[0,1]
: [0,1] �→ R and σ

[0,1]
: [0,1] �→ (0,∞), and let

μ(t) = μ
[0,1]

(at) and σ(t) = σ
[0,1]

(at) (9.3)

where at = (t − 1)/n for t = 1, . . . ,n. We will assume that μ
[0,1]

(·) and σ
[0,1]

(·) are
continuous and smooth, i.e., possess k continuous derivatives on [0,1]. To take full
advantage of the local linear smoothers of Sect. 9.2.2 ideally one would need k ≥ 2.
However, all methods to be discussed here are valid even when μ

[0,1]
(x) and σ

[0,1]
(x)

are continuous for all x ∈ [0,1] but only piecewise smooth.

As far as capturing the first two moments of Yt , models (9.1) and (9.2) are con-
sidered general and flexible—especially when μ(·) and σ(·) are not parametrically
specified—and have been studied extensively; see, e.g., Zhang and Wu (2011), and
Zhou and Wu (2009, 2010). However, it may be that the skewness and/or kurtosis
of Yt changes with t, in which case centering and studentization alone cannot render
the problem stationary. To see why, note that under model (9.2), EYt = μ(t) and
VarYt = σ2(t); hence,

Wt =
Yt − μ(t)

σ(t)
(9.4)

cannot be (strictly) stationary unless the skewness and kurtosis of Yt are constant.
Furthermore, it may be the case that the nonstationarity is due to a feature of the
m–th dimensional marginal distribution not being constant for some m≥ 1, e.g., per-
haps the correlation Corr(Yt ,Yt+m) changes smoothly (and slowly) with t. Notably,
models (9.1) and (9.2) only concern themselves with features of the 1st marginal
distribution. For all the above reasons, it seems valuable to develop a methodology
for the statistical analysis and prediction of nonstationary time series that does not
rely on simple additive models1 such as (9.1) and (9.2). Fortunately, the Model-
free Prediction Principle gives us the tools to accomplish Model-free inference—
including the construction of prediction intervals—in the general setting of time
series that are only locally stationary. The key here is to be able to construct an

1 An alternative approach to prediction that does not rely on models such as (9.2) is given using
wavelet representations of locally stationary processes; see, e.g., Fryzlewicz et al. (2003), and
Antoniadis et al. (2006).
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invertible transformation Hn : Y n �→ εn, where εn = (ε1, . . . ,εn)
′ is a random vector

with i.i.d. components; the details are given in Sect. 9.3. The next section revisits
the problem of model-based inference in a locally stationary setting, and devel-
ops a bootstrap methodology for the construction of (model-based) prediction int-
ervals. Both approaches, Model-based and Model-free, are novel in the prediction
literature.

9.2 Model-Based Inference

Throughout Sect. 9.2, we will assume model (9.2)—that includes model (9.1) as a
special case—together with a nonparametric assumption on smoothness of μ(·) and
σ(·) as described in Remark 9.1.1.

9.2.1 Theoretical Optimal Point Prediction

It is well known that the L2–optimal predictor of Yn+1 given the data Y n =(Y1, . . . ,Yn)
′

is the conditional expectation E(Yn+1|Y n). Furthermore, under model (9.2), we have

E(Yn+1|Y n) = μ(n+ 1)+σ(n+ 1)E(Wn+1|Y n). (9.5)

For j < J, define F J
j (Y ) to be the information set {Yj,Yj+1, . . . ,YJ}, also known

as σ–field, and note that the information sets F t−∞(Y ) and F t−∞(W ) are identical
for any t, i.e., knowledge of {Ys for s < t} is equivalent to knowledge of {Ws for
s < t}; here, μ(·) and σ(·) are assumed known. Hence, for large n, and due to the
assumption that Wt is weakly dependent (and therefore the same must be true for Yt

as well), the following large-sample approximation is useful, i.e.,

E(Wn+1|Y n)� E(Wn+1|Ys,s ≤ n) = E(Wn+1|Ws,s ≤ n)� E(Wn+1|W n) (9.6)

where W n = (W1, . . . ,Wn)
′. All that is needed now is to construct an approxima-

tion for E(Wn+1|W n). Usual approaches involve either assuming that the time series
{Wt} is Markov of order p as in Chap. 8, or approximating E(Wn+1|W n) by a linear
function of W n as in Chap. 6, i.e., contend ourselves with the best linear predictor
of Wn+1 denoted by Ē(Wn+1|W n). Taking the latter approach, the L2–optimal linear
predictor of Wn+1 based on W n is

Ē(Wn+1|W n) = φ1(n)Wn +φ2(n)Wn−1 + . . .+φn(n)W1, (9.7)

where the optimal coefficients φi(n) are computed from the normal equations, i.e.,
φ(n) ≡ (φ1(n), · · · ,φn(n))′ = Γ −1

n γ(n); here, Γn = [γ|i− j|]ni, j=1 is the autocovariance
matrix of the random vector W n, and γ(n) = (γ1, . . . ,γn)

′ where γk = EYjYj+k. Of
course, Γn is unknown but can be estimated by any of the positive definite estimators
developed in Chap. 6. Alternatively, the L2–optimal linear predictor of Wn+1 can be
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obtained by fitting a (causal) AR(p) model to the data W1, . . . ,Wn with p chosen by
minimizing AIC or a related criterion; this would entail fitting the model:

Wt = φ1Wt−1 +φ2Wt−2 + · · ·+φpWt−p +Vt (9.8)

where Vt is a stationary white noise, i.e., an uncorrelated sequence, with mean zero
and variance τ2. The implication then is that

Ē(Wn+1|W n) = φ1Wn +φ2Wn−1 + · · ·+φpWn−p+1. (9.9)

As discussed in Sect. 6.6.3, the two methods for constructing Ē(Wn+1|W n) are
closely related; in fact, predictor (9.7) coincides with the above AR–type predic-
tor if the matrix Γn is the one implied by the fitted AR(p) model (9.8). We will use
the AR–type predictor in the sequel because it additionally affords us the possibility
of resampling based on model (9.8).

9.2.2 Trend Estimation and Practical Prediction

To construct the L2–optimal predictor (9.5), we need to estimate the smooth trend
μ(·) and variance σ(·) in a nonparametric fashion; this can be easily accomplished
via kernel smoothing—see, e.g., Härdle and Vieu (1992), Kim and Cox (1996), or Li
and Racine (2007). When confidence intervals for μ(t) and σ(t) are required, how-
ever, matters are more complicated as the asymptotic distribution of the different
estimators depends on many unknown parameters; see, e.g., Masry and Tjøstheim
(1995). Even more difficult is the construction of prediction intervals. Note, fur-
thermore, that the problem of prediction of Yn+1 involves estimating the functions
μ
[0,1]

(a) and σ
[0,1]

(a) described in Remark 9.1.1 for a = 1, i.e., it is essentially a
boundary problem. In such cases, it is well known that local linear fitting has better
properties—in particular, smaller bias—than kernel smoothing which is well-known
to be tantamount to local constant fitting; see Fan and Gijbels (1996), Fan and Yao
(2003), or Li and Racine (2007).

Remark 9.2.1 (One-sided estimation) Since the goal is predictive inference on
Yn+1, local constant and/or local linear fitting must be performed in a one-sided
way. To see why, recall that (a) in predictor (9.5), the estimands involve μ

[0,1]
(1)

and σ
[0,1]

(1) as just mentioned, and (b) to compute Ē(Wn+1|W n) in Eq. (9.7) we
need access to the stationary data W1, . . . ,Wn in order to estimate Γn. The Wt ’s are
not directly observed, but—much like residuals in a regression—they can be recon-
structed by Eq. (9.4) with estimates of μ(t) and σ(t) plugged-in. What is important
is that the way Wt is reconstructed/estimated by (say) Ŵt must remain the same
for all t, otherwise the reconstructed data Ŵ1, . . . ,Ŵn cannot be considered station-
ary. Since Wt can only be estimated in a one-sided way for t close to n, the same
one-sided way must also be implemented for t in the middle of the dataset even
though in that case two-sided estimation is possible.
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Continuing the analogy to model-based regression studied in Chap. 3, the one-sided
Nadaraya-Watson (NW) kernel estimators of μ(t) and σ(t) can be defined in two
ways. In what follows, the notation tk = k will be used; this may appear redundant
but it makes clear that tk is the kth design point in the time series regression, and
allows for easy extension in the case of missing data. Note that the new bandwidth
parameter b will be assumed to satisfy

b → ∞ as n → ∞ but b/n → 0, (9.10)

i.e., b is analogous to the product hn in the regression example of Chap. 3. We will
assume throughout that K(·) is a nonnegative, symmetric kernel function.

1. NW–Regular fitting: Let t ∈ [b+ 1,n], and define

μ̂(t) =
t

∑
i=1

Yi K̂

(
t − ti

b

)
and M̂(t) =

t

∑
i=1

Y 2
i K̂(

t − ti
b

) (9.11)

where

σ̂(t) =
√

M̂t − μ̂(t)2 and K̂

(
t − ti

b

)
=

K( t−ti
b )

∑t
k=1 K( t−tk

b )
. (9.12)

Using μ̂(t) and σ̂(t) we can now define the fitted residuals by

Ŵt =
Yt − μ̂(t)

σ̂ (t)
for t = b+ 1, . . . ,n. (9.13)

2. NW–Predictive fitting (delete-1): Let

μ̃(t) =
t−1

∑
i=1

Yi K̃

(
t − ti

b

)
and M̃(t) =

t−1

∑
i=1

Y 2
i K̃(

t − ti
b

) (9.14)

where

σ̃(t) =
√

M̃t − μ̃(t)2 and K̃

(
t − ti

b

)
=

K( t−ti
b )

∑t−1
k=1 K( t−tk

b )
. (9.15)

Using μ̃(t) and σ̃(t) we now define the predictive residuals by

W̃t =
Yt − μ̃(t)

σ̃ (t)
for t = b+ 1, . . . ,n. (9.16)

Similarly, the one-sided local linear (LL) fitting estimators of μ(t) and σ(t) can be
defined in two ways.

1. LL–Regular fitting: Let t ∈ [b+ 1,n], and define

μ̂(t) =
∑t

j=1 wjYj

∑t
j=1 wj + n−2 and M̂(t) =

∑t
j=1 wjY 2

j

∑t
j=1 wj + n−2 (9.17)
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where

wj = K(
t − t j

b
) [st,2 − (t − t j)st,1] , (9.18)

and st,k = ∑t
j=1 K(

t−t j
b )(t − t j)

k for k = 0,1,2. The term n−2 in Eq. (9.17) is just
to ensure the denominator is not zero; see Fan (1993). Equation (9.12) then yields
σ̂(t), and Eq. (9.13) yields Ŵt .

2. LL–Predictive fitting (delete-1): Let

μ̃(t) =
∑t−1

j=1 wjYj

∑t−1
j=1 wj + n−2

and M̃(t) =
∑t−1

j=1 wjY 2
j

∑t−1
j=1 wj + n−2

(9.19)

where

wj = K(
t − t j

b
) [st−1,2 − (t − t j)st−1,1] . (9.20)

Equation (9.15) then yields σ̃(t), and Eq. (9.16) yields W̃t .

Using one of the above four methods (NW vs. LL, regular vs. predictive) gives
estimates of the quantities needed to compute the L2–optimal predictor (9.5). In
order to approximate E(Wn+1|Y n), one would treat the proxies Ŵt or W̃t as if they
were the true Wt , and proceed as outlined in Sect. 9.2.1.

Remark 9.2.2 (Predictive vs. regular fitting) In order to estimate μ(n + 1) and
σ(n+ 1), the predictive fits μ̃(n+ 1) and σ̃(n+ 1) are constructed in a straightfor-
ward manner. However, the formula giving μ̂(t) and σ̂(t) changes when t becomes
greater than n; this is due to an effective change in kernel shape since part of the
kernel is not used when t > n. Focusing momentarily on the trend estimators, what
happens is that the formulas for μ̃(t) and μ̂(t)—although different when t ≤ n—
become identical when t > n except for the difference in kernel shape. Traditional
model-fitting ignores these issues, i.e., proceeds with using different formulas for
estimation of μ(t) according to whether t ≤ n or t > n. However, in trying to predict
the new, unobserved Wn+1 we need to first capture its statistical characteristics, and
for this reason we need a sample of Wt ’s. But the residual from the model at t = n+1
looks like W̃n+1 from either regular or predictive approach, since μ̃(t) and μ̂(t) be-
come the same when t = n+ 1; it is apparent that traditional model-fitting tries to
capture the statistical characteristics of W̃n+1 from a sample of Ŵt ’s, i.e., compar-
ing apples to oranges. Herein lies the problem which is analogous to the discussion
on prediction using fitted vs. predictive residuals in nonparametric regression—see
Chap. 3. Therefore, our preference is to use the predictive quantities μ̃(t), σ̃(t), and
W̃t throughout the predictive modeling.

Remark 9.2.3 (Time series cross-validation) To choose the bandwidth b for ei-
ther of the above methods, predictive cross-validation may be used but it must be
adapted to the time series prediction setting, i.e., always one-step-ahead. To elab-
orate, let k < n, and suppose only subseries Y1, . . . ,Yk has been observed. Denote
Ŷk+1 the best predictor of Yk+1 based on the data Y1, . . . ,Yk constructed according
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to the above methodology and some choice of b. However, since Yk+1 is known,
the quality of the predictor can be assessed. So, for each value of b over a reason-
able range, we can form either PRESS(b) = ∑n−1

k=ko
(Ŷk+1 −Yk+1)

2 or PRESAR(b) =

∑n−1
k=ko

|Ŷk+1 −Yk+1|; here ko should be big enough so that estimation is accurate,
e.g., ko can be of the order of

√
n. The cross-validated bandwidth choice would

then be the b that minimizes PRESS(b); alternatively, we can choose to minimize
PRESAR(b) if an L1 measure of loss is preferred. Finally, note that a quick-and-
easy (albeit suboptimal) version of the above is to use the (suboptimal) predictor
Ŷk+1 � μ̂(k+ 1) and base PRESS(b) or PRESAR(b) on this approximation.

9.2.3 Model-Based Predictors and Prediction Intervals

To go from point prediction to prediction intervals, some form of resampling is req-
uired. Since model (9.2) is driven by the stationary sequence {Wt}, a model-based
bootstrap can then be concocted in which {Wt} is resampled, giving rise to the boot-
strap pseudo-series {W ∗

t }, which in turn gives rise to bootstrap pseudo-data {Y ∗
t }

via a fitted version of model (9.2). To generate a stationary bootstrap pseudo-series
{W ∗

t }, two popular time series resampling methods are (a) the stationary bootstrap
of Politis and Romano (1994), and (b) the AR bootstrap which entails treating the Vt

appearing in Eq. (9.8) as if they were i.i.d., performing an i.i.d. bootstrap on them,
and then generating {W ∗

t } via the recursion (9.8) driven by the bootstrapped inno-
vations. We will use the latter in the sequel because it ties in well with the AR-type
predictor of Wn+1 developed at the end of Sect. 9.2.1, and it is more amenable to
the construction of prediction intervals; see, e.g., Chap. 7. In addition, Kreiss et al.
(2011) have recently shown that the AR bootstrap—also known as AR-sieve boot-
strap since p is allowed to grow with n—can be valid under some conditions even
if the Vt of Eq. (9.8) are not truly i.i.d. We will now develop an algorithm for the
construction of model-based prediction intervals; this is a “forward” bootstrap alg-
orithm in the terminology of Sect. 7.3 although a “backward” bootstrap algorithm
can also be concocted. To describe it in general, let μ̌(·) and σ̌(·) be our chosen esti-
mates of μ(·) and σ(·) according to one of the abovementioned four methods (NW
vs. LL, regular vs. predictive); also let W̌t denote the resulting proxies for the unob-
served Wt for t = 1, . . . ,n. Then, our model-based approximation to the L2–optimal
point predictor of Yn+1 is

Π = μ̌(n+ 1)+ σ̌(n+ 1)
[
φ̂1W̌n + · · ·+ φ̂pW̌n−p+1

]
(9.21)

where φ̂1, . . . , φ̂p are the Yule-Walker estimators of φ1, . . . ,φp appearing in Eq. (9.8).
As in Chap. 2, the construction of prediction intervals will be based on approxi-
mating the distribution of the predictive root: Yn+1 − Π by that of the bootstrap
predictive root: Y ∗

n+1−Π ∗ where the quantities Y ∗
n+1 and Π ∗ are formally defined in

the Model-based (MB) bootstrap algorithm outlined below.
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Algorithm 9.2.1 MODEL-BASED PREDICTION INTERVALS FOR Yn+1

1. Based on the data Y1, . . . ,Yn, calculate the estimators μ̌(·) and σ̌(·), and the
“residuals” W̌b+1, . . . ,W̌n using model (9.2).

2. Fit the AR(p) model (9.8) to the series W̌b+1, . . . ,W̌n (with p selected by AIC
minimization), and obtain the Yule-Walker estimators φ̂1, . . . , φ̂p, and the error
proxies

V̌t = W̌t − φ̂1W̌ ∗
t−1 −·· ·− φ̂pW̌ ∗

t−p for t = p+ b+ 1, . . .,n.

3. a. Let V̌ ∗
t for t = 1, . . . ,n,n+ 1 be drawn randomly with replacement from the

set { ˇ̌Vt for t = p+ b+ 1, . . . ,n} where ˇ̌Vt = V̌t − (n− p− b)−1 ∑n
i=p+b+1V̌i.

Let I be a random variable drawn from a discrete uniform distribution on
the values {p+b, p+b+1, . . .,n}, and define the bootstrap initial conditions
W̌ ∗

t = W̌t+I for t =−p+ 1, . . . ,0. Then, create the bootstrap data W̌ ∗
1 , . . . ,W̌

∗
n

via the AR recursion

W̌ ∗
t = φ̂1W̌ ∗

t−1 + · · ·+ φ̂pW̌ ∗
t−p + V̌ ∗

t for t = 1, . . . ,n.

b. Create the bootstrap pseudo-series Y ∗
1 , . . . ,Y

∗
n by the formula

Y ∗
t = μ̌(t)+ σ̌(t)W̌ ∗

t for t = 1, . . . ,n.

c. Re-calculate the estimators μ̌∗(·) and σ̌∗(·) from the bootstrap data Y ∗
1 , . . . ,Y

∗
n .

This gives rises to new bootstrap “residuals”2 W̌ ∗
b+1, . . . ,W̌

∗
n on which an

AR(p) model is again fitted yielding the bootstrap Yule-Walker estimators
φ̂∗

1 , . . . , φ̂
∗
p .

d. Calculate the bootstrap predictor

Π ∗ = μ̌∗(n+ 1)+ σ̌∗(n+ 1)
[
φ̂∗

1 W̌n + . . .+ φ̂∗
pW̌n−p+1

]
.

[Note that in calculating the bootstrap conditional expectation of W̌ ∗
n+1 given

its p–past, we have re-defined the values (W̌ ∗
n , . . . ,W̌

∗
n−p+1) to make them

match the original (W̌n, . . . ,W̌n−p+1); this is an important part of the “forward”
bootstrap procedure for prediction intervals—see Chap. 7.]

e. Calculate a bootstrap future value

Y ∗
n+1 = μ̌∗(n+ 1)+ σ̌∗(n+ 1)W̌∗

n+1

where again W̌ ∗
n+1 = φ̂1W̌n + · · ·+ φ̂pW̌n−p+1 + V̌ ∗

n+1 uses the original val-
ues (W̌n, . . . ,W̌n−p+1); recall that V̌ ∗

n+1 has already been generated in step (a)
above.

f. Calculate the bootstrap root replicate Y ∗
n+1 −Π ∗.

2 For simplicity, we assume that the bootstrap estimators μ̌∗(·) and σ̌ ∗(·) are based on the same
window width b used in the real world.
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4. Steps (a)—(f) in the above are repeated a large number of times (say B times),
and the B bootstrap root replicates are collected in the form of an empirical
distribution whose α–quantile is denoted by q(α).

5. Finally, a (1−α)100% equal-tailed prediction interval for Yn+1 is given by

[Π + q(α/2), Π + q(1−α/2)]. (9.22)

It is easy to see that prediction interval (9.22) is asymptotically valid (conditionally
on Y1, . . . ,Yn) provided: (i) estimators μ̌(n+1) and σ̌(n+1) are consistent for their
respective targets μ

[0,1]
(1) and σ

[0,1]
(1), and (ii) the AR(p) approximation is consis-

tent allowing for the possibility that p grows as n → ∞. If μ̌(·) and σ̌(·) correspond
to one of the abovementioned four methods (NW vs. LL, regular vs. predictive),
then provision (i) is satisfied under standard conditions including the bandwidth
condition (9.10). Provision (ii) is also easy to satisfy as long as the spectral density
of the series {Wt} is continuous and bounded away from zero; see, e.g., Lemma
2.2 of Kreiss et al. (2011). Although desirable, asymptotic validity does not tell the
whole story. A prediction interval can be thought to be successful if it also manages
to capture the finite-sample variability of the estimated quantities such as μ̌(·), σ̌(·)
and φ̂1, φ̂2, . . .. Since this finite-sample variability vanishes asymptotically, the per-
formance of a prediction interval such as (9.22) must be gauged by finite-sample
simulations.

9.3 Model-Free Inference

Model (9.2) is a general way to account for a time-changing mean and variance of Yt .
However, nothing precludes that the time series {Yt for t ∈ Z} has a nonstationarity
in its third (or higher moment), and/or in some other feature of its mth marginal dis-
tribution. A way to address this difficulty, and at the same time give a fresh perspec-
tive to the problem, is provided by the Model-Free Prediction Principle. For some
m ≥ 1, let L (Yt ,Yt−1, . . . ,Yt−m+1) denote the mth marginal of the time series {Yt},
i.e, the joint probability law of the vector (Yt ,Yt−1, . . . ,Yt−m+1)

′. Although we aban-
don model (9.2) in what follows, we still want to employ nonparametric smoothing
for estimation; thus, we must assume that L (Yt ,Yt−1, . . . ,Yt−m+1) changes smoothly
(and slowly) with t.

Remark 9.3.1 (Quantifying smoothness–model-free case) As in Remark 9.1.1,
we can formally quantify smoothness by mapping the index set {1, . . . ,n} onto the
interval [0,1]. Let s = (s0,s1, . . . ,sm−1)

′, and define the distribution function of the
mth marginal by

D(m)
t (s) = P{Yt ≤ s0,Yt−1 ≤ s1, . . . ,Yt−m+1 ≤ sm−1}.
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Let at = (t − 1)/n as before, and assume that we can write

D(m)
t (s) = D

[0,1]

at
(s) for t = 1, . . . ,n. (9.23)

We can now quantify smoothness by assuming that, for each fixed s, the function

D
[0,1]

x (s) is continuous and smooth in x ∈ [0,1], i.e., possesses k continuous deriva-

tives. As in Remark 9.1.1, here as well it seems to be sufficient that D
[0,1]

x (s) is
continuous in x but only piecewise smooth.

A convenient way to ensure both the smoothness and data-based consistent estima-
tion of L (Yt ,Yt−1, . . . ,Yt−m+1) is to assume that

(Yt ,Yt−1, . . . ,Yt−m+1)
′ L= ft(Wt ,Wt−1, . . . ,Wt−m+1) (9.24)

for some function ft(w) that is smooth in both arguments t and w, and some strictly
stationary and weakly dependent, e.g., strong mixing, univariate time series {Wt}. In

the above, the symbol
L
= denotes equality in distribution, i.e., the left-hand side of

Eq. (9.24) has the same probability law as the right-hand side. Note that model (9.2)
is a special case of Eq. (9.24) with m = 1, the function ft(w) being affine/linear in w,

and
L
= replaced by usual equality. Thus, for concreteness and easy comparison with

the model-based case of Eq. (9.2), we will focus in the sequel on the case m = 1;
Sect. 9.3.7 discusses how to handle the case m > 1.

9.3.1 Constructing the Theoretical Transformation

Hereafter, adopt the setup of Eq. (9.24) with m = 1 , and let

Dt(y) = P{Yt ≤ y}

denote the first marginal distribution of time series {Yt}. Throughout Sect. 9.3, the
default assumption will be that Dt(y) is (absolutely) continuous in y for all t. We
now define new variables via the probability integral transform, i.e., let

Ut = Dt(Yt) for t = 1, . . . ,n; (9.25)

the assumed continuity of Dt(y) in y implies that U1, . . . ,Un are random variables
having distribution Uniform (0,1). However, U1, . . . ,Un are dependent; to transform
them to independence, a preliminary transformation towards Gaussianity is helpful
as discussed in Chap. 2. Letting Φ denote the cumulative distribution function (cdf)
of the standard normal distribution, we define

Zt = Φ−1(Ut) for t = 1, . . . ,n; (9.26)
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it then follows that Z1, . . . ,Zn are standard normal—albeit correlated—random
variables. Let Γn denote the n× n covariance matrix of the random vector Zn =
(Z1, . . . ,Zn)

′. Under standard assumptions, e.g., that the spectral density of the series
{Zt} is continuous and bounded away from zero,3 the matrix Γn is invertible when
n is large enough. Consider the Cholesky decomposition Γn = CnC′

n where Cn is
(lower) triangular, and construct the whitening transformation:

εn =C−1
n Zn. (9.27)

It follows that the entries of εn = (ε1, . . . ,εn)
′ are uncorrelated standard normal. Ass-

uming that the random variables Z1, . . . ,Zn are jointly normal,4 this can be further
strengthened to claim that ε1, . . . ,εn are i.i.d. N(0,1). Consequently, the transforma-
tion of the dataset Y n = (Y1, . . . ,Yn)

′ to the vector εn with i.i.d. components has been
achieved as required in premise (a) of the Model-free Prediction Principle. Note that
all the steps in the transformation, i.e., Eqs. (9.25), (9.26) and (9.27), are invertible;
hence, the composite transformation Hn : Y n �→ εn is invertible as well.

9.3.2 Kernel Estimation of the “Uniformizing” Transformation

We first focus on estimating the “uniformizing” part of the transformation, i.e.,
Eq. (9.25). Recall that the Model-free setup implies that the function Dt(·) changes
smoothly (and slowly) with t; hence, local constant and/or local linear fitting can be
used to estimate it. Using local constant, i.e., kernel estimation, a consistent estima-
tor of the marginal distribution Dt(y) is given by:

D̂t(y) =
T

∑
i=1

1{Yti ≤ y}K̃(
t − ti

b
) (9.28)

where K̃( t−ti
b ) = K( t−ti

b )/∑T
j=1 K(

t−t j
b ). Note that the kernel estimator (9.28) is one-

sided for the same reasons discussed in Remark 9.2.1. Since D̂t(y) is a step function
in y, a smooth estimator can be defined as:

D̄t(y) =
T

∑
i=1

Λ(
y−Yti

h0
)K̃(

t − ti
b

) (9.29)

3 If the spectral density is equal to zero over an interval—however small—then the time series {Zt}
is perfectly predictable based on its infinite past, and the same would be true for the time series
{Yt}; see Brockwell and Davis (1991, Theorem 5.8.1) on Kolmogorov’s formula.
4 The joint normality of Z1, . . .,Zn follows immediately if one assumes that the stationary process
{Wt} appearing in Eq. (9.24) is Gaussian; but even without this additional assumption, it is difficult
to construct examples where the joint normality of the Zts may break down.
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where h0 is a secondary bandwidth. Furthermore, as in Sect. 9.2.2, we can let T = t
or T = t −1 leading to a fitted vs. predictive way to estimate Dt(y) by either D̂t(y)
or D̄t(y).

Remark 9.3.2 (On choice of the two bandwidths) To choose the main bandwidth
b for either D̂t(y) or D̄t(y), predictive cross-validation may be used but it must be
adapted to the time series prediction setting, i.e., as in Remark 9.2.3. Define h= b/n,
and recall that in the analogous regression problem in Chap. 4 the optimal rates
h0 ∼ n−2/5 and h ∼ n−1/5 were suggested in connection with the nonnegative kernel
K; this led to the practical recommendation of letting h0 = h2 with h chosen by
cross-validation. Similarly here, the recommendation is to choose b by the time
series cross-validation of Remark 9.2.3, and then let h0 = b2/n2.

9.3.3 Local Linear Estimation of the “Uniformizing”
Transformation

Note that the kernel estimator D̂t(y) defined in Eq. (9.28) is just the Nadaraya-
Watson smoother, i.e., local average, of the variables u1, . . . ,un where ui = 1{Yi ≤ y}.
Similarly, D̄t(y) defined in Eq. (9.29) is just the Nadaraya-Watson smoother of the
variables v1, . . . ,vn where vi =Λ( y−Yi

h0
). In either case, it is only natural to try to con-

sider a local linear smoother as an alternative to Nadaraya-Watson especially since,
once again, our interest lies on the boundary, i.e., the case t = n+1. Let D̃t(y) denote
the local linear estimator of Dt(y) based on either the indicator variables 1{Yi ≤ y}
or the smoothed variables Λ( y−Yi

h0
). Keeping y fixed, D̃t(y) has good behavior, e.g.,

smaller bias than either D̂t(y) or D̄t(y). However, there is no guarantee that D̃t(y) is
a proper distribution function as a function of y, i.e., being nondecreasing in y with a
left limit of 0 and a right limit of 1; see Li and Racine (2007) for a discussion. There
have been several proposals in the literature to address this issue. An interesting
one is the adjusted Nadaraya-Watson estimator of Hall et al. (1999) which, how-
ever, is tailored towards nonparametric autoregression rather than our setting where
Yt is regressed on t. Coupled with the fact that we are interested in the boundary
case, the equation yielding the adjusted Nadaraya-Watson weights does not admit a
solution. Hansen (2004) has proposed a different, straightforward adjustment to the
local linear estimator of a conditional distribution function that maintains its favor-
able asymptotic properties. The local linear versions of D̂t(y) and D̄t(y) adjusted via
Hansen’s (2004) proposal are given as follows:

D̂LL
t (y) =

∑T
i=1 w�

i 1(Yi ≤ y)

∑T
i=1 w�

i

and D̄LL
t (y) =

∑T
i=1 w�

i Λ( y−Yi
h0

)

∑T
i=1 w�

i

. (9.30)

The weights w�
i are defined by

w�
i =

{
0 when β̂ (t − ti)> 1

wi(1− β̂(t − ti)) when β̂ (t − ti)≤ 1
(9.31)
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where

wi =
1
b

K(
t − ti

b
) and β̂ =

∑T
i=1 wi(t − ti)

∑T
i=1 wi(t − ti)2

. (9.32)

As with Eqs. (9.28) and (9.29), we can let T = t or T = t − 1 in the above, leading
to a fitted vs. predictive local linear estimators of Dt(y), smoothed or unsmoothed.

9.3.4 Estimation of the Whitening Transformation

To implement the whitening transformation (9.27), it is necessary to estimate Γn,
i.e., the n× n covariance matrix of the random vector Zn = (Z1, . . . ,Zn)

′ where the
Zt are the normal random variables defined in Eq. (9.26). As discussed in the anal-
ogous problem in Sect. 9.2.1, there are two approaches towards positive definite
estimation of Γn based on the sample Z1, . . . ,Zn. They are both based on the sample
autocovariances defined as γ̆k = n−1 ∑n−|k|

t=1 ZtZt+|k| for |k|< n.

A. Fit a causal AR(p) model to the data Z1, . . . ,Zn with p obtained via AIC min-
imization. Then, let Γ̂ AR

n be the n× n covariance matrix associated with the
fitted AR model. Let γ̂AR

|i− j| denote the i, j element of the Toeplitz matrix Γ̂ AR
n .

Using the Yule-Walker equations to fit the AR model implies that γ̂AR
k = γ̆k for

k = 0,1, . . . , p−1. For k ≥ p, γ̂AR
k can be found by solving (or just iterating) the

difference equation that characterizes the (fitted) AR model; R automates this
process via the ARMAacf() function.

B. Let Γ̂n =
[
γ̂|i− j|

]n
i, j=1

be the matrix estimator of McMurry and Politis (2010)

where γ̂s = κ(|s|/l)γ̆s. Here, κ(·) can be any member of the flat-top family of
compactly supported functions defined in Politis (2001); the simplest choice—
that has been shown to work well in practice—is the trapezoidal, i.e., κ(x) =
(max{1,2− |x|})+ where (y)+ = max{y,0} is the positive part function. Our
final estimator of Γn will be Γ̂ �

n which is a positive definite version of Γ̂n that is
banded and Toeplitz; for example, Γ̂ �

n may be obtained by shrinking Γ̂n towards
white noise or towards a second order estimator as described in Sect. 6.4.

Estimating the “uniformizing” transformation Dt(·) and the whitening transfor-
mation based on Γn allows us to estimate the transformation Hn : Y n �→ εn. However,
in order to put the Model-Free Prediction Principle to work, we also need to esti-
mate the transformation Hn+1 (and its inverse). To do so, we need a positive definite
estimator for the matrix Γn+1; this can be accomplished by either of the two ways
discussed in the above.

A′. Let Γ̂ AR
n+1 be the (n+ 1)× (n+ 1) covariance matrix associated with the fitted

AR(p) model.
B′. Denote by γ̂�|i− j| the i, j element of Γ̂ �

n for i, j = 1, . . . ,n. Then, define Γ̂ �
n+1 to be

the symmetric, banded Toeplitz (n+ 1)× (n+ 1) matrix with i j element given
by γ̂�|i− j| when |i− j|< n. Recall that Γ̂ �

n is banded, so it is only natural to assign

zeros to the two i j elements of Γ̂ �
n+1 that satisfy |i− j|= n.
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Consider the “augmented” vectors Y n+1 = (Y1, . . . ,Yn+1)
′, Zn+1 = (Z1, . . . ,Zn+1)

′,
and εn+1 =(ε1, . . . ,εn+1)

′ where the values Yn+1,Zn+1, and εn+1 are yet unobserved.
We now show how to obtain the inverse transformation H−1

n+1 : εn+1 �→ Y n+1. Recall
that εn and Y n are related in a one-to-one way via transformation Hn, so the values
Y1, . . . ,Yn are obtainable by Y n = H−1

n (εn). Hence, we just need to show how to
create the unobserved Yn+1 from εn+1; this is done in the following three steps.

i. Let
Zn+1 =Cn+1εn+1 (9.33)

where Cn+1 is the (lower) triangular Cholesky factor of (our positive definite
estimate of) Γn+1. From the above, it follows that

Zn+1 = cn+1εn+1 (9.34)

where cn+1 = (c1, . . . ,cn,cn+1) is a row vector consisting of the last row of ma-
trix Cn+1.

ii. Create the uniform random variable

Un+1 = Φ(Zn+1). (9.35)

iii. Finally, define
Yn+1 = D−1

n+1(Un+1); (9.36)

of course, in practice, the above will be based on an estimate of D−1
n+1(·).

Since Y n has already been created using (the first n coordinates of) εn+1, the
above completes the construction of Y n+1 based on εn+1, i.e., the mapping H−1

n+1 :
εn+1 �→ Y n+1.

9.3.5 Model-Free Point Predictors and Prediction Intervals

In the previous sections, it was shown how to construct the transformation
Hn : Y n �→ εn and its inverse H−1

n+1 : εn+1 �→ Y n+1, where the random variables
ε1,ε2, . . . , are i.i.d. Note that by combining Eqs. (9.34), (9.35) and (9.36) we can
write the formula:

Yn+1 = D−1
n+1

(
Φ( cn+1εn+1)

)
.

Recall that cn+1εn+1 = ∑n
i=1 ciεi + cn+1εn+1; hence, the above can be compactly

denoted as

Yn+1 = gn+1(εn+1) where gn+1(x) = D−1
n+1

(

Φ

(
n

∑
i=1

ciεi + cn+1x

))

. (9.37)

Equation (9.37) is the predictive equation associated with the Model-free Prediction
Principle; conditionally on Y n, it can be used like a model equation in computing the
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L2– and L1–optimal point predictors of Yn+1. We will give these in detail as part of
the general algorithms for the construction of Model-free predictors and prediction
intervals.

Algorithm 9.3.1 MODEL-FREE (MF) POINT PREDICTORS AND PREDICTION IN-
TERVALS FOR Yn+1

1. Construct U1, . . . ,Un by Eq. (9.25) with Dt(·) estimated by either D̄t(·) or D̄LL
t (·);

for the latter, use the respective formulas with T = t.
2. Construct Z1, . . . ,Zn by Eq. (9.26), and use the methods of Sect. 9.3.4 to estimate

Γn by either Γ̂ AR
n or Γ̂ �

n .
3. Construct ε1, . . . ,εn by Eq. (9.27), and let F̂n denote their empirical distribution.
4. The Model-free L2–optimal point predictor of Yn+1 is then given by

Ŷn+1 =

∫
xgn+1(x)dF̂n(x) =

1
n

n

∑
i=1

εign+1(εi) (9.38)

where the function gn+1 is defined in the predictive equation (9.37) with Dn+1(·)
being again estimated by either D̄n+1(·) or D̄LL

n+1(·), both with T = t.
5. The Model-free L1–optimal point predictor of Yn+1 is given by the median of the

set {gn+1(εi) for i = 1, . . . ,n}.
6. Prediction intervals for Yn+1 with prespecified coverage probability can be con-

structed via the Model-free Bootstrap of Algorithm 2.4.1 based on either the
L2– or L1–optimal point predictor.

Remark 9.3.3 Note that Eq. (9.38) gives an approximation to the bona fide
L2–optimal predictor of Yn+1 without resorting to the L2–optimal linear predictor
(9.7) as in the model-based case.

Algorithm 9.3.1 used the construction of D̄t(·) or D̄LL
t (·) with T = t; using T = t−1

instead, leads to the following predictive version of the algorithm.

Algorithm 9.3.2 PREDICTIVE MODEL-FREE (PMF) POINT PREDICTORS AND PRE-
DICTION INTERVALS FOR Yn+1

The algorithm is identical to Algorithm 9.3.1 except for using T = t − 1 instead of
T = t in the construction of D̄t(·) and D̄LL

t (·).

Remark 9.3.4 Under a model-free setup of a locally stationary time series, Papar-
oditis and Politis (2002b) proposed the Local Block Bootstrap (LBB) in order to
generate pseudo-series Y ∗

1 , . . . ,Y
∗
n whose probability structure mimics that of the

observed data Y1, . . . ,Yn. The Local Block Bootstrap has been found useful for the
construction of confidence intervals; see Dowla et al. (2003, 2013). However, it is
unclear if/how the LBB can be employed for the construction of predictors and pre-
diction intervals for Yn+1.

Recall that when the theoretical transformation Hn is employed, the variables
ε1, . . . ,εn are i.i.d. N(0,1). Due to the fact that features of Hn are unknown and
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must be estimated from the data, the practically available variables ε1, . . . ,εn are
only approximately i.i.d. N(0,1). However, their empirical distribution of F̂n con-
verges to F = Φ as n → ∞. Hence, it is possible to use the limit distribution F = Φ
in instead of F̂n in both the construction of point predictors and the prediction in-
tervals; this is an application of the Limit Model-Free (LMF) approach. The LMF
Algorithm is simpler than Algorithm 9.3.2 as the first three steps of the latter can
be omitted. As a matter of fact, the LMF Algorithm is totally based on the inverse
transformation H−1

n+1 : εn+1 �→Y n+1; the forward transformation Hn : Y n �→ εn is not
needed at all. But for the inverse transformation it is sufficient to estimate Dt(y) by
the step functions D̂t(y) or D̂LL

t (y) with the understanding that their inverse must be
a quantile inverse; recall that the quantile inverse of a distribution D(y) is defined as
D−1(β ) = inf{y such that D(y)≥ β}.

Algorithm 9.3.3 LIMIT MODEL-FREE (LMF) POINT PREDICTORS AND PREDIC-
TION INTERVALS FOR Yn+1

1. The LMF L2–optimal point predictor of Yn+1 is

Ŷn+1 =

∫
xgn+1(x)dΦ(x) (9.39)

where the function gn+1 is defined in the predictive equation (9.37) where Dn+1(·)
is estimated by either D̂n+1(·) or D̂LL

n+1(·), both with T = t − 1.
2. In practice, the integral (9.39) can be approximated by Monte Carlo, i.e.,

∫
xgn+1(x)dΦ(x) � 1

M

M

∑
i=1

xign+1(xi) (9.40)

where x1, . . . ,xM are generated as i.i.d. N(0,1), and M is some large integer.
3. Using the above Monte Carlo framework, the LMF L1–optimal point predictor of

Yn+1 can be approximated by the median of the set {gn+1(xi) for i = 1, . . . ,M}.
4. Prediction intervals for Yn+1 with prespecified coverage probability can be con-

structed via the LMF Bootstrap of Algorithm 2.4.3 based on either the L2– or
L1–optimal point predictor.

Remark 9.3.5 Interestingly, there is a closed-form (approximate) solution for the
LMF L1–optimal point predictor of Yn+1 that can also be used in Step 5 of Algo-
rithm 9.3.1. To elaborate, first note that under the assumed weak dependence, e.g.,
strong mixing, of the series {Yt} (and therefore also of {Zt}), we have the following
approximations (for large n), namely:

Median(Zn+1|F n
1 (Z)) � Median

(
Zn+1|F n

−∞(Z)
)

= Median
(
Zn+1|F n

−∞(Y )
)� Median(Zn+1|F n

1 (Y )) .
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Now Eqs. (9.35) and (9.36) imply that Yn+1 = D−1
n+1 (Φ(Zn+1)) . Since Dn+1(·) and

Φ(·) are strictly increasing functions, it follows that the Model-free L1–optimal pre-
dictor of Yn+1 equals

Median(Yn+1|F n
1 (Y )) = D−1

n+1 (Φ (Median(Zn+1|F n
1 (Y ))))

� D−1
n+1 (Φ (Median(Zn+1|F n

1 (Z)))) = D−1
n+1 (Φ (E (Zn+1|F n

1 (Z)))) , (9.41)

the latter being due to the symmetry of the normal distribution of Zn+1 givenF n
1 (Z).

But, as in Eq. (9.7), we have E (Zn+1|F n
1 (Z)) = φ1(n)Zn+φ2(n)Zn−1+ . . .+φn(n)Z1

where (φ1(n), · · · ,φn(n))′ = Γ −1
n γ(n). Plugging-in either D̄n+1(·) or D̄LL

n+1(·) in
place of Dn+1(·) in Eq. (9.41), and also employing consistent estimates of Γn and
γ(n) completes the calculation. As discussed in Sect. 9.3.4, Γn can be estimated by
either Γ̂ AR

n or by the positive definite banded estimator Γ̂ �
n with a corresponding

estimator for γ(n); see Chap. 6 for details.

Remark 9.3.6 (Robustness of LMF approach) The LMF approach focuses com-
pletely on the predictive equation (9.37) for which an estimate of (the inverse of)
Dn+1(·) must be provided; interestingly, estimating Dt(y) for t �= n+ 1 is nowhere
used in Algorithm 9.3.3. In the usual case where the kernel K(·) is chosen to
have compact support, estimating Dn+1(·) is only based on the last b data values
Yn−b+1, . . . ,Yn. Hence, in order for the LMF Algorithm 9.3.3 to be valid, the sole
requirement is that the subseries Yn−b+1, . . . ,Yn,Yn+1 is approximately stationary. In
other words, the first (and biggest) part of the data, namely Y1, . . . ,Yn−b, can suffer
from arbitrary nonstationarities, change points, outliers, etc. without the LMF pre-
dictive inference for Yn+1 being affected—provided a consistent estimate of Γn can
still be constructed.

9.3.6 Special Case: Strictly Stationary Data

It is interesting to consider what happens if/when the data Y1, . . . ,Yn are a stretch of a
strictly stationary time series {Yt}. Of course, a time series that is strictly stationary
is a a fortiori locally stationary; so all the aforementioned procedures should work
verbatim. In terms of Eq. (9.24), stationarity follows if ft does not depend on t.
In this case, however, one could take advantage of the stationarity to obtain better
estimators; effectively, one can take the bandwidth b to be comparable to n, i.e.,
employ global—as opposed to local—estimators. To elaborate, in the stationary case
the distribution Dt(y) does not depend on t at all. Hence, for the purposes of the LMF
Algorithm 9.3.3, we can estimate all occurrences of Dt(y) by the regular (non-local)
empirical distribution

D̂(y) = n−1
n

∑
t=1

1{Yt ≤ y}.

Similarly, for the purposes of Algorithm 9.3.1 we can estimate all occurrences of
Dt(y)—which is assumed smooth—by the smoothed empirical distribution
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D̄(y) = n−1
n

∑
t=1

Λ(
y−Yt

h0
)

where h0 is a positive bandwidth parameter satisfying h0 → 0 as n → ∞. As men-
tioned in Remark 9.3.2, the optimal rate is h0 ∼ n−2/5 when the estimand Dt(y) is
sufficiently smooth in y.

9.3.7 Local Stationarity in a Higher-Dimensional Marginal

The success of the theoretical transformation of Sect. 9.3.1 in transforming the data
vector Y n to the vector of i.i.d. components εn hinges on Eq. (9.24) with m = 1 im-
plying that the driving force behind the nonstationarity of {Yt} is a time-varying
first marginal Dt(·). However, as already mentioned, it is possible to have promi-
nent time-varying features in the mth marginal. For example, it may be that the
autocorrelation Corr(Yt ,Yt+m) varies smoothly with t; the latter can be empirically
checked by estimating Corr(Yt ,Yt+m) over different subsamples of the data, and
checking whether they are (significantly) different from each other. In addition,
if Eq. (9.24) holds with m > 1, the instantaneous transformation (9.26) might fail
to create Z1, . . . ,Zn that are jointly normal; this can be diagnosed by performing a
normality test, e.g., Shapiro-Wilk test, or other diagnostic, e.g., a quantile plot, on
selected linear combinations of m consecutive components of the random vector
(Z1, . . . ,Zn)

′. Interestingly, there is a single solution to address both potential issues,
namely blocking the time series as discussed in Remark 2.3.2. Having identified an
m ≥ 1 for which the above problems do not manifest themselves, i.e., a plausible
m for which Eq. (9.24) may hold, one would then create blocks of data by defining
Bt = (Yt , . . . ,Yt+m−1)

′ for t = 1, . . . ,q with q = n−m+1. Focusing on the multivari-

ate time series dataset {B1, . . . ,Bq}, let D(m)
t (·) denote the first marginal distribution

function of vector Bt which will be assumed to be (absolutely) continuous for each t.

Furthermore, Eq. (9.24) implies that D(m)
t (·) varies smoothly (and slowly) with t as

discussed in Remark 9.3.1. Using the Rosenblatt (1952) transformation, we can map
Bt to a random vector Vt that has components i.i.d. Uniform (0,1), and then perform
the Gaussian transformation and whitening as required by the Model-Free Principle.
Thus, in the general case when the time series {Yt} satisfies Eq. (9.24) with m ≥ 1,
the algorithm to transform the dataset Y n = (Y1, . . . ,Yn)

′ to an i.i.d. dataset goes as
follows.

1. From the dataset Y n = (Y1, . . . ,Yn)
′, create blocks/vectors Bt = (Yt , . . . ,Yt+m−1)

′
for t = 1, . . . ,q with q = n−m+ 1.

2. Use the Rosenblatt transformation to map the multivariate dataset {B1, . . . ,Bq}
to the dataset {V1, . . . ,Vq}; here Vt = (V (1)

t , . . . ,V (m)
t )′ is a random vector having

components that are i.i.d. Uniform (0,1).
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3. Let Z( j)
t = Φ−1(V ( j)

t ) for j = 1, . . . ,m, and t = 1, . . . ,q where Φ is the cdf

of a standard normal. Note that, for each t, the variables Z(1)
t , . . . ,Z(m)

t are
i.i.d. N(0,1).

4. Define the vector time series Zt = (Z(1)
t , . . . ,Z(m)

t )′ that is multivariate Gaussian.
Estimate the (matrix) autocovariance sequence EZtZ′

t+k for k = 0,1, . . ., and use
it to “whiten” the sequence Z1, . . . ,Zq, i.e., to map it (in a one-to-one way) to the
i.i.d. sequence ζ1, . . . ,ζq; here, ζt ∈ Rm is a random vector having components
that are i.i.d. N(0,1).

In Step 2 above, the mth dimensional Rosenblatt transformation is based on the mth

marginal D(m)
t (·) which is unknown but can be estimated using a local average or

local linear estimator, i.e., a multivariate analog of D̄t(·) and D̄LL
t (·); to avoid the

curse of dimensionality here, it is imperative that m is of smaller order of magni-
tude than the sample size n. Regarding Step 4, standard methods exist to estimate
the (matrix) autocovariance of Zt with Zt+k; see, e.g., Jentsch and Politis (2015).
Finally, note that the map Hn : Y n �→ (ζ1, . . . ,ζq)

′ is invertible since all four steps
given above are one-to-one. Hence, Model-free prediction can take place based on
a multivariate version of the Model-free Prediction Principle of Chap. 2; the details
are straightforward.
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Part IV
Case Study: Model-Free Volatility

Prediction for Financial Time Series



Chapter 10
Model-Free vs. Model-Based Volatility
Prediction

10.1 Introduction

Let {Pt , t ∈ Z} denote a financial time series of prices, i.e., Pt may denote a stock
price, stock index, or foreign exchange rate at time t; the time t can run daily, weekly,
or calculated at different (discrete) intervals. From the price series {Pt , t ∈ Z} we
can define the financial returns time series {Yt , t ∈ Z} by Yt = (Pt −Pt−1)/Pt , i.e.,
Yt denotes the relative price change from time t − 1 to time t; consequently, the
percentage return as time t is just 100Yt .

The returns series {Yt} will be assumed (strictly) stationary with mean zero
which—from a practical point of view—implies that trends and other nonstation-
arities have been successfully removed. Figure 10.1 shows the returns from three
illustrative datasets, a foreign exchange rate, a stock index, and a stock price; it
is apparent that the returns are typically small numbers, i.e., for the most part
|Yt |< 0.10 with the exception of a prominent outlier at −0.20 corresponding to the
market crash of October 1987. Another way of seeing this is to note that the ratio
Pt−1/Pt is close to one. Recall the Taylor series expansion of the natural logarithm
logx � x− 1 for x close to one, from which it follows that

Yt = 1− Pt−1

Pt
�− log

Pt−1

Pt
= logPt − logPt−1; (10.1)

this is why the Yts are sometimes called “logarithmic” returns. Throughout this
chapter, we will assume that the observed data consist of the returns Y1, . . . ,Yn which
implies that the price series P0,P1, . . . ,Pn must have been previously available.

Bachelier’s (1900) pioneering Ph.D. thesis put forth the Gaussian random walk
model for (the logarithm of) stock market prices. Because of approximation (10.1),
the implication of Bachelier’s proposal was that the returns series {Yt} can be mod-
elled as independent, identically distributed (i.i.d.) random variables with Gaussian

© The Author 2015
D.N. Politis, Model-Free Prediction and Regression, Frontiers in Probability
and the Statistical Sciences, DOI 10.1007/978-3-319-21347-7 10

199



200 10 Model-Free vs. Model-Based Volatility Prediction

Y
en

D
re

t

0

a

b

c

1000 2000 3000−0
.0

4
0.

02
0.

08
sp

50
0.

s 

0 500 1000 1500 2000

−0
.2

0
−0

.0
5

ib
m

.s
 

0 500 1000 1500 2000

−0
.2

0.
0

0.
1

Fig. 10.1 (a) Plot of the daily Yen/Dollar returns from December 31, 1987 up to August 1, 2002;
(b) plot of the daily S&P500 stock index returns from October 1, 1983 to August 30, 1991; (c) plot
of the daily returns of the IBM stock price from February 1, 1984 to December 31, 1991

N(0,σ2) distribution. Although Bachelier’s thesis was not so well-received by his
Ph.D. committee, his work went on to serve as the foundation for financial modeling
for a good part of the twentieth century.

The assumption of Gaussianity was challenged in the 1960s when it was noticed
that the distribution of returns seemed to have fatter tails than the normal; see, e.g.,
Fama (1965). The adoption of some non-normal, heavy-tailed distribution for the
returns seemed—at the time—to be the solution. However, in the early paper of
Mandelbrot (1963) the phenomenon of “volatility clustering” was pointed out, i.e.,
the fact that days with high volatility are clustered together and the same is true for
days with low volatility; this is effectively negating the assumption of independence
of the returns in the implication that the absolute values (or squares) of the returns
are positively correlated.

For example, Fig. 10.1b depicts the daily returns of the S&P500 index from
October 1, 1983 to August 30, 1991; the extreme values associated with the afore-
mentioned crash of October 1987 are very prominent in the plot. Figure 10.2a is a
“correlogram” of the S&P500 returns, i.e., a plot of the estimated autocorrelation
function (acf); the plot is consistent with the hypothesis of uncorrelated returns. By
contrast, the correlogram of the squared returns of Fig. 10.2b shows some significant
correlations thus lending support to the “volatility clustering” hypothesis.

The celebrated ARCH (Autoregressive Conditional Heteroscedasticity) models
of Engle (1982) were designed to capture the phenomenon of volatility clustering
by postulating a particular structure of dependence for the time series of squared
returns {Y 2

t }. A typical ARCH(p) model is described by an equation of the type:
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Yt = Zt

√

a+
p

∑
i=1

aiY 2
t−i (10.2)

where the series {Zt} is assumed to be i.i.d. N(0,1) and p is an integer indicating
the order of the model.

Let Fn be a short-hand for the observed information set, i.e.,Fn = {Yt ,1≤ t ≤ n}
which was previously denoted F n

1 (Y ). Note that under the above ARCH(p) model,
the L2–optimal predictor of Y 2

n+1 based on Fn is given by

E(Y 2
n+1|Fn) = a+

p

∑
i=1

aiY
2
n+1−i. (10.3)

The conditional expectation E(Y 2
n+1|Fn) is commonly referred to as the volatility

(although the same term is sometimes also used for its square root).
Volatility clustering as captured by model (10.2) does indeed imply a marginal

distribution for the {Yt} returns that has heavier tails than the normal. However,
model (10.2) can account only partly for the degree of heavy tails empirically
found in the distribution of returns, and the same is true for the Generalized ARCH
(GARCH) models of Bollerslev (1986); see Bollerslev et al. (1992) or Shephard
(1996) for a review. For example, the market crash of October 1987 is still an out-
lier (six standard deviations away) even after the best ARCH/GARCH model is
employed; see Nelson (1991).
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Fig. 10.2 (a) Correlogram of S&P500 returns. (b) Correlogram of S&P500 squared returns
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Consequently, researchers and practitioners have been resorting to ARCH mod-
els with heavy-tailed errors. A popular assumption for the distribution of the {Zt}
is the t-distribution with degrees of freedom empirically chosen to match the appar-
ent degree of heavy tails in the residuals; see Shephard (1996) and the references
therein.

Nevertheless, this situation is not satisfactory since the choice of a t-distribution
seems quite arbitrary. Trying to model the excess kurtosis by an arbitrarily cho-
sen heavy-tailed distribution seems to bring us full-circle back to the 1960s. Per-
haps the real issue is that a simple and neat parametric model such as (10.2) could
not be expected to perfectly capture the behavior of a complicated real-world phe-
nomenon such as the evolution of financial returns that—almost by definition of
market “efficiency”—ranks at the top in terms of difficulty of modeling/prediction.

As a more realistic alternative, one may resort to our Model-free prediction app-
roach in trying to understand this complex type of data. In what follows, a nor-
malizing and variance–stabilizing transformation (NoVaS, for short) for financial
returns series will be defined and analyzed. As will be apparent, the NoVaS trans-
formation is a straightforward application of the principle laid out in Sect. 2.3.2,
i.e., using a transformation to normality as a stepping-stone towards a transforma-
tion to “i.i.d.–ness.” Furthermore, the suggestion of Sect. 2.3.5 is taken into account,
namely that the Model-free practitioner could/should use all the modeling know-
how associated with the problem at hand. Since the state-of-the-art of modeling fin-
ancial returns is to employ ARCH/GARCH models, these can serve as the starting
point in concocting the desired transformation. A preliminary announcement of the
NoVaS transformation was given in Politis (2003a), and a full treatment in Politis
(2007a).

Remark 10.1.1 Throughout the chapter, the term “volatility prediction” will be
taken to mean “prediction of squared returns.” Estimating the conditional expec-
tation E(Y 2

n+1|Fn) is briefly discussed in Remark 10.5.2. Note that this quantity is
nonrandom given the data Y1, . . . ,Yn; hence, the term “estimation” is more appro-
priate than “prediction.” As mentioned in Eq. (10.3), these two problems are inter-
related since the MSE–optimal predictor of Y 2

n+1 is nothing other than E(Y 2
n+1|Fn),

so an estimate of the latter must invariably be constructed.

10.2 Three Illustrative Datasets

Throughout the chapter, we focus on three representative datasets of daily returns
taken from a foreign exchange rate, a stock price, and a stock index; a description
of our main datasets is as follows:

• Example 1: Foreign exchange rate. Daily returns from the Yen vs. Dollar exc-
hange rate from January 1, 1988 to August 1, 2002; the data were downloaded
from Datastream. A plot of the returns is shown in Fig. 10.1a; the sample size is
3600 (weekends and holidays are excluded).
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• Example 2: Stock index. Daily returns of the S&P500 stock index from October
1, 1983 to August 30, 1991; the data are available as part of the garch module
in Splus. A plot of the returns is shown in Fig. 10.1b; the sample size is 2000.

• Example 3: Stock price. Daily returns of the IBM stock price from February
1, 1984 to December 31, 1991; the data are again available as part of the garch
module in Splus. A plot of the returns is shown in Fig. 10.1c; the sample size is
2000.

The phenomenon of volatility clustering is quite apparent in the three returns
series of Fig. 10.1. Note, in particular, the extreme volatility and outlying values
around the mid-point of Fig. 10.1b and slightly before the mid-point of Fig. 10.1c;
those points of time correspond to the aforementioned market crash of October
1987.

Returning to the ARCH model (10.2), it should be stressed that this is not just a
model for the conditional variance; the ARCH model is a model for the whole data
generating process (DGP) of the data series Yt . In this connection, observe that the
one-step-ahead ARCH-based predictor for Yn+1 given Fn = {Yt , t ≤ n} is trivial,
i.e., zero, essentially due to the random sign of Zt in Eq. (10.2).

Nevertheless, the litmus test for a model is its predictive ability. Since the ARCH
cannot predict the signed return Yn+1, it should at least have some predictive ability
for the squared returns. Recall also that if {Yt} follows the ARCH(p) model (1),
then {Y 2

t } follows an AR(p) model—see, e.g., Gouriéroux (1997) or Francq and
Zakoian (2011). To see why, define Ut = Y 2

t − a−∑p
i=1 aiY 2

t−i; using Hilbert space
projection arguments, it is now immediate that the time series {Ut} constitutes a
second-order stationary, mean-zero white noise with finite variance.1 We are then
led to the AR(p) model:

Y 2
t = a+

p

∑
i=1

aiY
2

t−i +Ut . (10.4)

which is driven by innovations that constitute a white noise although not i.i.d.
Technically speaking, the Uts are not even a martingale difference since the condi-
tional variance E(U2

t |Fn) is not constant; see, e.g., Kokoszka and Politis (2011).
Nonetheless, the linear predictor associated with this AR(p) model should have
some predictive power for the squared returns, and this predictor is identical to the
usual ARCH model predictor of the volatility.

It is intuitive to also consider an Auto-Regressive Moving Average (ARMA)
model on the squared returns; this idea is closely related to the GARCH(p,q)
models of Bollerslev (1986). Among these, the GARCH(1,1) model is by far the

1 The aforementioned Hilbert space projection arguments require that Ut has a finite second mo-
ments, i.e., that EY 4

t < ∞; however, as the case will be made later on, the existence of a finite fourth
moment for Yt should not be taken for granted.
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most popular, and typically forms the benchmark for modeling financial returns.
The GARCH(1,1) model is described by the equation:

Yt = htZt with h2
t =C+AY 2

t−1 +Bh2
t−1; (10.5)

where the {Zt}s are i.i.d. (0,1), and the parameters A,B,C are assumed nonnegative.
The quantity h2

t = E(Y 2
t |Ft−1) is the volatility as defined in Eq. (10.3).

Back-solving in the right-hand-side of Eq. (10.5), it is easy to see that the
GARCH(1,1) model is tantamount to the ARCH model (10.2) with p = ∞ and the
following identifications:

a =
C

1−B
, and ai = ABi−1 for i = 1,2, . . . (10.6)

In fact, under some conditions, all GARCH(p,q) models have ARCH(∞) repre-
sentations similar to the above; see, e.g., Gouriéroux (1997, Chap. 4.1.5). So, in
some sense, the only advantage GARCH models may offer over the simpler ARCH
is parsimony, i.e., achieving the same quality of model-fitting with fewer parame-
ters. Nevertheless, if one is to impose a certain structure on the ARCH parameters,
then the effect is the same; the exponential structure of Eq. (10.6) is a prime such
example.

The above ARCH/GARCH models constitute a beautiful attempt to capture the
phenomenon of volatility clustering in a simple equation while at the same time
implying a marginal distribution for the {Yt} returns that has heavier tails than
the normal. Viewed differently, the ARCH(p) and/or GARCH (1,1) model may be
considered as attempts to “normalize” the returns, i.e., to reduce the problem to a
model with normal residuals (the Zts). In that respect though the ARCH(p) and/or
GARCH (1,1) models are only partially successful as empirical work suggests that
ARCH/GARCH residuals often exhibit heavier tails than the normal; the same is
true for ARCH/GARCH spin-off models such as the EGARCH—see Bollerslev
et al. (1992) or Shephard (1996) for a review. Nonetheless, the goal of normalization
is most worthwhile and it is indeed achievable as will be shown in the sequel.

The literature on volatility prediction is already quite large and appears to be
continuously expanding. The articles by Poon and Granger (2003), and Andersen
et al. (2006) provide comprehensive reviews of the subject. We further mention here
some papers that are related to the problem at hand: Barndorff-Nielsen et al. (1996)
for an early treatment of forecasting volatility; Meddahi (2001) for an eigenfunction
volatility modeling approach; Hansen et al. (2003) on selecting volatility models;
Andersen et al. (2004) on analytic evaluation of volatility forecasts; Hansen and
Lunde (2005, 2006) for comparing forecasts of volatility models against the stan-
dard GARCH(1,1) model and for consistent ranking of volatility models; Koopman
et al. (2005) and Patton (2011) for volatility forecast evaluation; and Ghysels et al.
(2006) for predicting volatility using data sampled at different frequencies.
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10.3 Normalization and Variance-Stabilization

10.3.1 Definition of the NoVaS Transformation

Following the principle laid out in Sect. 2.3.2, we will now try to find a transforma-
tion to map the dataset Y1, . . . ,Yn to a Gaussian one. Our starting point is the ARCH
model (10.2), under which the quantity

Yt√
a+∑p

i=1 aiY 2
t−i

(10.7)

is thought of as perfectly normalized and variance–stabilized as it is assumed to
be i.i.d. N(0,1). From an applied statistics point of view, the above ratio can be
interpreted as an attempt to “studentize” the return Yt by dividing with a (time-
localized) measure of the standard deviation of Yt .

Nevertheless, there seems to be no reason—other than coming up with a neat
model—to exclude the value of Yt from an empirical, causal estimate of the standard
deviation of Yt ; recall that a causal estimate is one involving present and past data
only, i.e., the data {Ys,s ≤ t}. Hence, we may define the new “studentized” quantity

Wt,a :=
Yt√

αs2
t−1 + a0Y 2

t +∑p
i=1 aiY 2

t−i

for t = p+ 1, p+ 2, . . .,n; (10.8)

in the above, s2
t−1 is an estimator of σ2

Y = Var(Y1) based on the data up to (but not
including2) time t; under the zero mean assumption for Y1, the natural estimator is
s2
t−1 = (t − 1)−1 ∑t−1

k=1 Y 2
k .

Equation (10.8) describes our proposed normalizing and variance–stabilizing
transformation (NoVaS, for short) under which the data series {Yt} is mapped to
the new series {Wt,a}. The order p(≥ 0) and the vector of nonnegative parameters
(α,a0, . . . ,ap) are chosen by the practitioner with the twin goals of normalization
and variance stabilization in mind that will be made more precise shortly.

The NoVaS equation (10.8) can be re-arranged to yield:

Yt =Wt,a

√

αs2
t−1 + a0Y 2

t +
p

∑
i=1

aiY 2
t−i. (10.9)

Formally, the only real difference between the NoVaS equation (10.9) and the
ARCH equation (10.2) is the presence of the term Y 2

t paired with the coefficient
a0. Replacing the term a in Eq. (10.2) by the term αs2

t−1 in (10.9) is only natural

2 The reason for not including time t in the variance estimator is for purposes of notational clar-
ity as well as the easy identifiability of the effect of the coefficient a0 associated with Y 2

t in the
denominator of Eq. (10.8).
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since the former has—by necessity—units of variance; in other words, the term a in
Eq. (10.2) is not scale invariant, whereas the term α in (10.9) is.

Equation (10.9) is very useful but should not be interpreted as a “model” for the
{Yt} series; rather, the focus should remain on Eq. (10.8) and the effort to render the
transformed series {Wt,a, t = p+1, p+2, · · ·} close—in some sense to be described
shortly—to behaving like the standard normal ideal. In some sense, Eq. (10.9) is
analogous to Eq. (2.4) from the Model-free Prediction Principle; the analogy would
become exact if it were further shown that the random variables Wt,a are i.i.d.—see
Sect. 10.5.2.

A further note of caution on viewing Eq. (10.9) as a “model” comes from the
observation that exact normality is not even feasible for the series {Wt,a} since the
latter comprises of bounded random variables; to see this, note that

1

W 2
t,a

=
αs2

t−1 + a0Y 2
t +∑p

i=1 aiY 2
t−i

Y 2
t

≥ a0

if all the parameters are nonnegative. Therefore,

|Wt,a| ≤ 1/
√

a0 (10.10)

almost surely, assuming of course that a0 �= 0. However, with a0 chosen small
enough, the boundedness of the {Wt,a} series is effectively (and practically) not not-
iceable. This phenomenon is analogous to the fact that financial returns are modeled
by distributions that have both left and right heavy tails despite being hard-bounded
from below; note that a stock or index cannot lose more than 100 % of its value.

10.3.2 Choosing the Parameters of NoVaS

In choosing the order p (≥ 0) and the parameters α,a0, . . . ,ap the twin goals of
normalization and variance stabilization of the transformed series {Wt,a} are first
taken into account. Secondarily, the NoVaS parameters may be further optimized
with a specific criterion in mind, e.g., optimal volatility prediction; this approach is
expanded upon in the next section. We now focus on the primary goals of normal-
ization and variance stabilization.

The target of variance stabilization is easier and—given the assumed structure of
the return series—amounts to constructing a local estimator of scale for studentiza-
tion purposes; for this reason we require

α ≥ 0, ai ≥ 0 for all i ≥ 0, and α +
p

∑
i=0

ai = 1. (10.11)

Equation (10.11) has the interesting implication that the {Wt,a} series can be ass-
umed to have an (unconditional) variance that is (approximately) unity. Neverthe-
less, note that p and α,a0, . . . ,ap must be carefully chosen to achieve a degree
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of conditional homoscedasticity as well; to do this, one must necessarily take p
small enough—as well as α small enough or even equal to zero—so that a local (as
opposed to global) estimator of scale is obtained. An additional intuitive—but not
obligatory—constraint may involve monotonicity:

ai ≥ a j if 1 ≤ i < j ≤ p. (10.12)

It is practically advisable that a simple structure for the ai coefficients is employed
satisfying (10.11) and perhaps also (10.12). The simplest such example is to let
α = 0 and ai = 1/(p+1) for all 0 ≤ i ≤ p; this specification will be called the ‘sim-
ple’ NoVaS transformation, and involves only one parameter, namely the order p, to
be chosen by the practitioner. Another example is given by the exponential decay
NoVaS, where α = 0 and ai = c′e−ci for all 0 ≤ i ≤ p. The exponential scheme
involves choosing two parameters: p and c > 0 since c′ is determined by (10.11);
nevertheless, the parameter p is now of secondary importance—see Sect. 10.3.4.
The Simple and Exponential NoVaS schemes are most intuitive as they correspond
to the two popular time series methods of obtaining a “local,” one-sided average,
namely a moving average (of the last p+ 1 values) and “exponential smoothing”;
see, e.g., Hamilton (1994).

Subject to the variance stabilization condition (10.11)—together with (10.12)
if desirable—one then proceeds to choose (the parameters needed to identify) p
and α,a0,a1, . . . ,ap with the optimization goal of making the {Wt,a} transformed
series as close to normal as possible. To quantify this target, one can use minimize
a (pseudo)distance measuring departure of the transformed data from normality;
see, e.g., Sect. 2.3.2. In order to render joint distributions of the {Wt,a} series more
normal, one may also apply the (pseudo)distance minimization idea to a few specific
linear combinations of Wt,a random variables; more details are given in the next
subsection.

However, in view of the bound (10.10), one must be careful to ensure that the
{Wt,a} variables have a large enough range such that the boundedness is not seen as
spoiling the normality. Thus, we also require

1√
a0

≥C i.e., a0 ≤ 1/C2 (10.13)

for some appropriate C of the practitioner’s choice. Recalling that 99.7 % of the
mass of the N(0,1) distribution is found in the range ±3, the simple choice C = 3
can be suggested; this choice seems to work reasonably well—at least for the usual
samples sizes.

10.3.3 Simple NoVaS Algorithm

We now give specific algorithms for optimizing the NoVaS transformation in the
two previously mentioned examples, Simple and Exponential NoVaS. First note
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that it is a matter of common practice to assume that the distribution of financial
returns is symmetric (at least to a first approximation); therefore, the skewness of
financial returns is often ignored. In contrast, the kurtosis is typically very large,
indicating a heavy-tailed distribution. The above claims, i.e., approximate symme-
try and heavy tails, are confirmed by Fig. 10.3 where histograms and Q-Q plots for
our three returns series are presented.

Hence, the kyrtosis can serve as a simple (pseudo)distance measuring the depar-
ture of a (non-skewed) dataset from normality. Let KURTn(Y ) denote the empirical
kurtosis of data {Yt , t = 1, . . . ,n}, i.e.,

KURTn(Y ) =
n−1 ∑n

t=1(Yt − Ȳ)4

(n−1 ∑n
t=1(Yt − Ȳ )2)2

where Ȳ = n−1 ∑n
t=1 Yt is the sample mean. For our three datasets, Yen/Dollar,

S&P500 and IBM, the empirical kurtosis was 10.1, 94.0, and 38.3, respectively.
Note that the only free parameter in Simple NoVaS is the order p; therefore, the

Simple NoVaS transformation will be denoted by W S
t,p.

−0.04 −0.02 0.0 0.02 0.04 0.06 0.08

0
20

0
40

0

YenDret Quantiles of Standard Normal

Y
en

D
re

t

−2 0 2

−0
.0

4
0.

02
0.

08

−0.20 −0.15 −0.10 −0.05 0.0 0.05 0.10

0
20

0
40

0

sp500.s Quantiles of Standard Normal

sp
50

0.
s

−2 0 2

−0
.2

0
−0

.0
5

−0.2 −0.1 0.0 0.1

0
10

0
20

0
30

0

ibm.s Quantiles of Standard Normal

ib
m

.s

−2 0 2

−0
.2

0.
0

0.
1

Fig. 10.3 Histograms and Q-Q plots for the three returns series of Fig. 10.1

Algorithm 10.3.1 ALGORITHM FOR SIMPLE NOVAS

1. Let α = 0 and ai = 1/(p+ 1) for all 0 ≤ i ≤ p.
2. Pick p such that |KURTn(W S

t,p)− 3| is minimized.
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Step 2 in the above was described as an optimization problem for mathematical
concreteness. Nevertheless, it could be better understood as a moment matching, i.e.,

2′. Pick p such that KURTn(W S
t,p)� 3

where of course the value 3 for kurtosis corresponds to the Gaussian distribution.

Remark 10.3.1 [Feasibility of normalization by moment matching.] To see that
the moment matching goal is a feasible one, note first that for p = 0 we have a0 = 1,
W S

t,0 = sign(Yt), and KURTn(W S
t,0) = 1. On the other hand, it is to be expected that

for large p, KURTn(W S
t,p) will be bigger than 3. As a matter of fact, the law of

large numbers implies that for increasing values of p, KURTn(W S
t,p) will tend to

the “true” kurtosis of the random variable Y1 which is understood to be quite large
(and may even be infinite—see the discussion in Sect. 10.4.1). Therefore, viewing
KURTn(W S

t,p) as a (smooth) function of p, the intermediate value theorem would
suggest that, for an intermediate value of p, the level 3 can always be (approxi-
mately) attained; this is actually what happens in practice.

Thus, to actually carry out the search for the optimal p in the Simple NoVaS
Algorithm, one sequentially computes KURTn(W S

t,p) for p= 1,2, · · · , stopping when
KURTn(W S

t,p) first hits or just passes the value 3. Interestingly, KURTn(W S
t,p) is

typically an increasing function of p which makes this scheme very intuitive; see
Fig. 10.4a.

The above simple algorithm seems to work remarkably well. A caveat, however,
is that the range condition (10.13) might not be satisfied. If this is the case, the
following “range–adjustment” step can be added to Algorithm 10.3.1.

3. If p (and a0) as found above are such that (10.13) is not satisfied, then increase
p accordingly; in other words, redefine p to be the smallest integer such that
1/(p+ 1)≤ 1/C2, and let ai = 1/(p+ 1) for all 0 ≤ i ≤ p.

It goes without saying that this range–adjustment should be used with restraint, that
is, the choice of C in (10.13) should be reasonably small, as it effectively over-rides
the data-dependent character of choosing p. The conservative choice of letting C = 3
seem to work well in practice; see Remark 10.3.2 for an example.

Figure 10.4 gives an illustration of the Simple NoVaS algorithm for the Yen/Dollar
dataset. The top panel of Fig. 10.4 shows a plot of KURTn(W S

t,p) as a function of p;
the monotonic increase of KURTn(W S

t,p) is apparent, rendering the NoVaS algo-
rithm easy to implement. Notably, KURTn(W S

t,p) is closest to 3 for p = 9; actually,
KURTn(W S

t,9) = 3.03. Interestingly, the data-dependent choice p = 9 seems very
stable; estimating p over different subsamples of the Yen/Dollar dataset typically
yielded the value 9± 1 even for subsamples with length one tenth of n = 3600; see
the bottom panel of Fig. 10.4.

The optimal Simple NoVaS transformed series {WS
t,9} for the Yen/Dollar dataset

is plotted in Fig. 10.5a. Although {W S
t,9} is related in a simple way to the original

data of Fig. 10.1a, the regions of “volatility clustering” corresponding to the {Yt}
series are hardly (if at all) discernible in the plot of the NoVaS series {W S

t,9}.
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Fig. 10.4 Illustration of the Simple NoVaS algorithm for the Yen/Dollar dataset. Top panel: plot of
KURTn(W S

t ,p) as a function of p with the solid line indicating the Gaussian kurtosis of 3; here the
full sample size n = 3600 is used. Bottom panel: optimal values of p in Simple NoVaS calculated
from subseries Y [1 : m] are plotted against subsample size m; here Y is the Yen/Dollar dataset

Similar calculations were performed for our other two datasets; the optimal p
values were 13 for the IBM dataset, and 11 for the S&P500 dataset. Figure 10.5 dep-
icts plots of the Simple NoVaS transformed series for the three datasets of Fig. 10.1.
The variance stabilization effect is quite apparent; in particular, note that the market
crash of October 1987 is hardly (if at all) noticeable in Fig. 10.5b, c. A comparison
with Fig. 10.1 is quite striking.

Figure 10.6 shows histograms and Q-Q plots for the three NoVaS series of
Fig. 10.5. Comparing Fig. 10.6 to Fig. 10.3, it is visually apparent that the goal
of normalization has been largely achieved. The histograms look quite normal
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and the Q-Q plots look quite straight; there is no indication of heavy-tails and/or
outlying values in Fig. 10.6, i.e., no “left-over” kurtosis to account for. A formal
Kolmogorov-Smirnov test of the hypothesis that the transformed series are normal
confirms the conclusions of the visual inspection of the three Q-Q plots; the P-values
were found to be 0.1654, 0.3638, and 0.4646 for the Yen/Dollar, S&P500 and IBM
datasets, respectively, so the hypothesis of normality is not rejected.

Remark 10.3.2 [On range adjustment] Focusing again on the Yen/Dollar data,
note that—perhaps not surprisingly—the lowest P-value in Kolmogorov-Smirnov
testing is associated with the smallest value of p for Simple NoVaS; recall that
p = 9 for Yen/Dollar, whereas p was found to be 11 for S&P500, and 13 for IBM.
A low value of p arising from our kurtosis matching algorithm may indicate an
adverse effect of truncation to our normalization goal, and a subsequent need for
range adjustment. Still the value p = 9 is high enough to yield an effective range of
the Yen/Dollar NoVaS transform {W S

t,9} series of about 3.16 which is acceptable in
terms of Eq. (10.13) being satisfied with C = 3. The higher values of p in connec-
tion with the S&P500 and IBM datasets correspond to ranges of about 3.3 and 3.6,
respectively, indicating even less of a need for possible range adjustement.

Remark 10.3.3 [Normalization of joint distributions] In the Simple NoVaS
algorithm, the target was fourth moment matching of W S

t,p to the corresponding
Gaussian moment, i.e., to obtain KURTn(W S

t,p) � 3; this procedure has the goal
of (approximately) normalizing the marginal distribution of W S

t,p. Interestingly, this
simple procedure seems to somehow be also effective in normalizing joint distri-
butions, e.g., the joint distribution of W S

t,p and its lagged version W S
t−1,p, which

is a highly desirable objective. Table 10.1 gives the sample kurtosis of the series
W̃ S

t,9,i = W S
t,9 + λiW S

t−1,9 (in the case of the Yen/Dollar dataset) for different values
of λi. Notably, all the entries of Table 10.1 are close to the nominal value of 3
supporting the claim of approximate normalization of the joint distribution of the
pair (W S

t,9,W
S

t−1,9). However, if one wanted to ensure that some joint distributions
are also normalized—at least as far as fourth moments are concerned—then the
moment matching criterion of the algorithm can be modified. To fix ideas, consider
the target of normalizing the joint distribution of W S

t,p and W S
u,p. The Cramér-Wold

device suggests that we simultaneously consider some linear combinations of the
type:

W̃ S
t,p,i =W S

t,p +λiW
S
u,p for i = 1, . . . ,K,

where the λi’s are some chosen constants as in Table 10.1. The Simple NoVaS
algorithm is then altered to focus on the kurtosis of W̃ S

t,p,i instead of that of W S
t,p;

to elaborate, the last step of the simple NoVaS algorithm would read:

2′′. Pick p such that maxi |KURTn(W̃ S
t,p,i)− 3| is minimized.
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λi −4 −1 −0.5 0 0.5 1 4

KURTn(W̃ S
t ,9,i) 2.92 2.89 2.98 3.03 3.03 3.10 3.12

Table 10.1 (Yen/Dollar example) Sample kurtosis of the linear combination W̃ S
t ,9,i = W S

t ,9 +

λiW S
t−1,9 for different values of λi

10.3.4 Exponential NoVaS Algorithm

In the Exponential NoVaS, to specify all the ais, one just needs to specify the two
parameters p and c > 0, in view of (10.11). However, because of the exponential
decay, the parameter p is now of secondary significance as the following algorithm
suggests; thus, we may concisely denote the Exponential NoVaS transformation
by W E

t,c. Indeed, p will be determined given c, and the practitioner’s choice of thresh-
old/tolerance level; see the discussion below.

Algorithm 10.3.2 ALGORITHM FOR EXPONENTIAL NOVAS

1. Let p take a very high starting value, e.g., let p � n/4 or n/5. Then, let α = 0
and ai = c′e−ci for all 0 ≤ i ≤ p, where c′ = 1/∑p

i=0 e−ci by Eq. (10.11).
2. Pick c > 0 in such a way that |KURTn(W E

t,c)− 3| is minimized.

Technically, the above search is for c ∈ (0,∞) which appears formidable; what
makes this minimization problem well-behaved is that we know that high values
of c cannot plausibly be solutions. To see why, note that if c is large, then ai ≈ 0 for
all i > 0 and W E

t,c = Yt which has kurtosis much larger than 3.
It is apparent that the search for the optimal c will be practically conducted over

a discrete grid of c–values spanning an interval of the type (0,b] for some b of the
order of one (say). A practical way to narrow in on the optimal c value is to run two
grid searches, one coarse followed by a fine one: (i) use a coarse grid search over
the whole interval (0,b], and denote c̃0 the minimizer over the coarse grid search;
and (ii) run a fine grid search over a neighborhood of c̃0.

Let c0 denote the resulting minimizer from the above algorithm. If needed, the
following range–adjustement step may be added.

3. If c0 as found above is such that (10.13) is not satisfied, then decrease c stepwise
(starting from c0) over the discrete grid until (10.13) is satisfied.

Finally, the value of p must be trimmed for efficiency of usage of the available
sample; to do this we can simply discard the ai coefficients that are close to zero, i.e.,
those that fall below a certain threshold/tolerance level ε which is the practitioner’s
choice. A threshold value of ε =0.01 is reasonable in connection with the ai which—
as should be stressed—are normalized to sum to one.

4. Trim the value of p by a criterion of the type: if ai < ε , then let ai = 0. If i0 is the
smallest integer such that ai < ε for all i ≥ i0, then let p = i0 and renormalize the
ais so that their sum (for i = 0,1, . . . , i0) equals one.



214 10 Model-Free vs. Model-Based Volatility Prediction

c 

K
Y

R
T

(W
 t,

c)

0.02 0.04 0.06 0.08 0.10 0.12 0.14

2.
5

3.
0

3.
5

4.
0

Fig. 10.7 Illustration of the Exponential NoVaS algorithm for the Yen/Dollar dataset: plot of
KURTn(W E

t ,c) as a function of c; the solid line indicates the Gaussian kurtosis of 3

An illustration of the Exponential NoVaS algorithm is given for the Yen/Dollar
dataset. Figure 10.7 is a plot of KURTn(W E

t,c) as a function of c. Except for values
of c very close to zero, KURTn(W E

t,c) seems to be monotonically decreasing hitting
the value 3 for c � 0.097. Nevertheless, the behavior of KURTn(W E

t,c) for c close
to zero is not a fluke; rather it is a predictable outcome of our truncation/clipping
of all coefficients that are less than ε (which was equal to 0.01 for the purposes of
Fig. 10.7). If a very low value for ε is used—say even that ε is set to zero—then the
plot of KURTn(W E

t,c) would be decreasing for all values of c.
To further elaborate, note that Fig. 10.7 indicates KURTn(W E

t,c) hitting the value
3 for another value of c as well, namely for c � 0.011. Figure 10.8 shows a plot of
the exponential coefficients ai versus the index i = 1, . . . , p for the two values of c
suggested by Fig. 10.7; due to the truncation effect with ε= 0.01, we have c � 0.011
corresponding to p= 10, while c � 0.097 corresponds to p= 22. Note that the ultra-
slow decay of the ai coefficients in the case c� 0.011, combined with the truncation
effect at p = 10, makes the Exponential NoVaS with c � 0.011 very similar to a
Simple NoVaS with p = 10; this is because the exponential coefficients decay so
slowly that are close to being constant for i = 1, . . . , p.

To sum up: a plot with shape such as Fig. 10.7 is typical when a nonzero ε is
used, suggesting that the function |KURTn(W E

t,c)−3| may have two values of c min-
imizing it. The higher of those two c values is the bona fide exponential decay con-
stant. The lower of the two c values is typically associated with very slow decay
of the exponential coefficients which—after truncation at the pth term—appear
almost constant, thus approximating the Simple NoVaS coefficients based on p
terms. Hence, a plot with shape such as Fig. 10.7 is doubly informative as it can
give both the Exponential and the Simple NoVaS solutions.

Analogs of Figs. 10.5 and 10.6 can be constructed using the Exponential NoVaS
algorithm on our three datasets; they are not given here to save space as they are
visually very similar to the Simple NoVaS results of Figs. 10.5 and 10.6. The optimal
c values were: 0.066 (with p = 27) for the IBM dataset, and 0.079 (with p = 24) for
the S&P500 dataset.



10.4 Model-Based Volatility Prediction 215

10 20

0.
02

0.
04

0.
06

0.
08

Fig. 10.8 Plot of the exponential coefficients ai versus the index i = 1, . . . , p for the two values of
c suggested by Fig. 10.7; note that c � 0.011 corresponds to p = 10, while c � 0.097 corresponds
to p = 22

As in Remark 10.3.3, for the Exponential NoVaS as well we could focus on
moment matching for the linear combinations of W E

t,c of W E
u,c (say) instead of W E

t,c.
In addition, the Exponential NoVaS algorithm could be extended to include a sum
of two or more exponentials, i.e., a situation where ai = c′e−ci + d′e−di · · · . The
generalization may well include higher order moment matching and/or looking at
linear combinations of higher order lags.

Remark 10.3.4 [Alternative optimization criteria] Instead of kurtosis matching,
there exist different optimization criteria that can alternatively be employed in
order to choose the NoVaS parameters both in Exponential and Simple NoVaS. For
example, one can instead optimize the Shapiro and Wilk (1965) normality test score
associated with the variables Wt,a. Interestingly, Shapiro-Wilk optimization gives
optimization results that are practically indistinguishable from moment matching.
The intuitive reason is that the non-normality in financial returns appears to be
mainly due to the heavy tails; see Politis and Thomakos (2008, 2012) for more
details.

10.4 Model-Based Volatility Prediction

10.4.1 Some Basic Notions: L1 vs. L2

In this section, we consider the problem of prediction of Y 2
n+1 based on the observed

past Fn = {Yt ,1≤ t ≤ n}. Under the zero mean assumption, a first predictor is given
by a simple empirical estimator of the (unconditional) variance σ2

Y of the series
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{Yt ,1 ≤ t ≤ n}, for example, s2
n = n−1 ∑n

k=1 Y 2
k ; this will serve as our “benchmark”

for comparisons.
The above predictor is quite crude as it implicitly assumes that the squared

returns {Y 2
t ,1 ≤ t ≤ n} are independent which is typically not true. As a matter of

fact, the basic premise regarding financial returns is that they are dependent although
uncorrelated—hence the typical assumption of nonlinear/non-normal models in that
respect. For example, Fig. 10.9a confirms that for the Yen/Dollar dataset the returns
indeed appear uncorrelated. However, the squared returns appear to be correlated
even for lags as high as 25 days; see Fig. 10.9b.

An immediate improvement over the above naive benchmark should thus be obt-
ainable by a simple forecasting method such as “exponential smoothing”; see, e.g.,
Hamilton (1994). In our context, the exponential smoothing predictor of Y 2

n+1 is of
the form ∑q

k=1 δ kY 2
n−k/∑q

j=1 δ j, where δ is a number in (0,1) and q an appropriate
practical truncation limit.

Remark 10.4.1 The specification of q in exponential smoothing resembles closely
the choice of p in our Exponential NoVaS algorithm. Note, however, that in Expo-
nential NoVaS, the technique of exponential weighting was used with the purpose
of constructing a (local) estimate of the variance of Yt for the subsequent NoVaS
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squared returns {Y 2

t }; (c) correlogram of the optimal Simple NoVaS series {W S
t ,9}
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Method Yen/Dollar S&P500 IBM

Exponential Smoothing with CV 1.065 1.151 1.198

Eq. (10.14)—AR fit with AIC 1.013 1.002 1.034

Eq. (10.3)—GARCH(1,1) with normal errors 1.029 1.094 1.117

Eq. (10.3)—GARCH(1,1) with t–errors 1.051 1.102 1.139

Table 10.2 Entries give the empirical Mean Squared Error (MSE) of prediction of squared returns
relative to benchmark; note that the MSE of prediction achieved by the benchmark was 2.96e-008,
1.70e-006, 1.78e-006 in the three cases Yen/Dollar, S&P500, IBM, respectively [Predictor type:
conditional mean]

studentization. By contrast, in the present section exponential smoothing is consid-
ered in its usual function of forecasting/predicting the (future) value of the random
variable Y 2

n+1.

The “discount” factor δ in exponential smoothing is typically chosen by a cross-
validation (CV) step with the forecasting goal in mind; that is, δ is chosen to mini-
mize the Mean Squared Error (MSE) of prediction within the available dataset. The
CV method is intuitive and ubiquitous; for example, it is built-in in many statistical
software packages such as the ITSM time series software accompanying the highly
influential book by Brockwell and Davis (1991). Despite its appeal, however, rigor-
ous analysis of the performance of the CV method is difficult and has been lacking
in the literature. A notable exception is the paper by Gijbels et al. (1999) where the
performance of the CV method is successfully analyzed under a model of the type:
deterministic trend function plus error. Unfortunately, such a model cannot be rea-
sonably assumed in connection with our (squared) returns series. Consequently, the
results in the first row of Table 10.2 should not come as a surprise. The exponential
smoothing predictor is seen to perform very poorly; in fact, it is performing quite
worse than our naive benchmark predictor which is our estimate of the (uncondi-
tional) variance σ2

Y = EY 2
t .

Note that the “exponential smoothing” predictor is linear in the variables {Y 2
t ,1≤

t ≤ n} but the coefficients in the linear combination are not chosen according to an
optimality criterion. As a matter of fact, exponential smoothing is analogous to fit-
ting an MA(1) model to the squared returns. However, as discussed in Chap. 6, linear
prediction has been traditionally approached by fitting AR models of appropriately
high order. Thus, a further step in constructing a good predictor of Y 2

n+1 may be to fit
an AR(r) model to the (de-meaned) squared returns {Y 2

t ,1 ≤ t ≤ n} with the order
r determined by minimizing the aforementioned AIC criterion. Denoting by φi the
fitted AR coefficients leads to a linear predictor of Y 2

n+1 which is of the form

(1−
r

∑
i=1

φi)s
2
n +

r

∑
i=1

φiY
2
n+1−i. (10.14)
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It should be noted though that this linear predictor is typically suboptimal since
the series {Y 2

t } is generally non-normal and nonlinear. However, the main reason
that Eq. (10.14) may give a poor predictor in practice is the following: the correl-
ogram of the squared returns {Y 2

t ,1 ≤ t ≤ n} does not give an accurate estimation
of the true correlation structure mainly due to the underlying heavy tails (and non-
linearities); see, e.g., Resnick et al. (1999). For example, using the AIC criterion to
pick the order r in connection with the squared Yen/Dollar returns yields r = 26; this
is not surprising in view of the correlogram of Fig. 10.9b, but it is hard to seriously
entertain a model of such high order for this type of data. An experienced researcher
might instead fit a low order AR or ARMA model in this situation.

As mentioned before, fitting an MA(1) model for prediction is closely related
to the exponential smoothing forecaster. Interestingly, fitting an ARMA(1,1) to the
squared returns is in the spirit of a GARCH(1,1) model since the GARCH(1,1)
predictor of Y 2

n+1 has the same form as predictor (10.14) with the φi coefficients
following the structure of an ARMA(1,1) model.

The GARCH(1,1) model (10.5) is the most popular among the GARCH(p,q)
models as it is believed to achieve the most parsimonious fit for financial ret-
urns data. As previously mentioned, the ARCH family is a subset of the GARCH
family since an ARCH(p) model is equivalent to a GARCH(p,0); in addition, a
GARCH(p,q) model is equivalent to an ARCH(∞) with a special structure for its ai

coefficients—see, e.g., Francq and Zakoian (2011).
In order to compare the different predictors of squared returns, we will use two

popular performance measures: Mean Squared Error (MSE) of prediction and Mean
Absolute Deviation (MAD) of prediction both relative to the benchmark; these are of
course nothing other than the L2 and L1 norms of the prediction error, respectively,
divided by the corresponding L2 or L1 norm of the benchmark’s prediction error.
Hansen et al. (2003) have also compared volatility predictions using both L2 and L1

loss functions.
Table 10.2 reports the L2 prediction performance of the aforementioned predic-

tors, namely exponential smoothing with CV, the linear model (10.14) with order
chosen by minimizing the AIC, and the GARCH(1,1) with normal and t–errors (the
latter having degrees of freedom estimated from the data). It is apparent that the
performance of all methods is rather poor as they seem to perform worse even than
our naive benchmark. In particular, the performance of the GARCH(1,1) predictor
is abysmal, be it with normal or t errors.

Due to empirical results such as those in Table 10.2, it had been widely believed
around the turn of the twenty-first century that ARCH/GARCH models are char-
acterized by “poor out-of-sample forecasting performance vis-a-vis daily squared
returns”; see Andersen and Bollerslev (1998) and the references therein. To further
quote Andersen and Bollerslev (1998): “numerous studies have suggested that
ARCH and stochastic volatility models provide poor volatility forecasts.” As a rem-
edy, Andersen and Bollerslev (1998) defined the notion of “latent” volatility based
on an assumed underlying continuous-time diffusion structure, and showed that
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Method Yen/Dollar S&P500 IBM

Exponential Smoothing with CV 1.053 1.127 1.032

Eq. (10.14)—AR fit with AIC 0.929 0.913 0.883

Eq. (10.3)—GARCH(1,1) with normal errors 0.912 0.979 0.838

Eq. (10.3)—GARCH(1,1) with t–errors 0.924 0.974 0.849

Table 10.3 Entries give the empirical Mean Absolute Deviation (MAD) of prediction of squared
returns relative to benchmark; note that the MAD of prediction achieved by the benchmark was
1.56e-004, 2.33e-004 in the three cases Yen/Dollar, S&P500, IBM, respectively [Predictor type:
conditional mean]

ARCH/GARCH models are successful in predicting future “latent” volatility ins-
tead. Nevertheless, the entries of Table 10.3 on the L1 prediction performance tell
a different story, namely that all aforementioned predictors—with the exception of
exponential smoothing—outperform the benchmark when errors are measured in
the L1 norm!

10.4.2 Do Financial Returns Have a Finite Fourth Moment?

To see why such a big discrepancy exists between the two performance measures,
L1 and L2, we return to our data. Let VARk(Y ) and KURTk(Y ) denote the empirical
(sample) variance and kurtosis of dataset Y up to time k, i.e., {Y1, . . . ,Yk}. By the
(strong) law of large numbers, as k increases, VARk(Y ) should tend to the variance
of the random variable Y1 be that infinite or not. Similarly, KURTk(Y ) should tend
to the kurtosis of Y1 be that infinite or not. Thus, plotting VARk(Y ) and KURTk(Y )
as functions of k one may be able to visually gauge whether Y1 has finite second
and/or fourth moments; this is done in Fig. 10.10 for the Yen/Dollar dataset.

It appears that the Yen/Dollar dataset has finite variance as the plot in Fig. 10.10a
seems to converge. Nevertheless, it seems that it may well have an infinite fourth
moment as the plot in Fig. 10.10b seems to diverge with each extreme value “jolt.”
The same conclusions, namely finite variance but infinite fourth moment, seem to
also apply to our other two datasets—and indeed to several other financial returns
data; see, e.g., Politis (2004, 2007a).

Therefore, it is hardly surprising that the L2 measure of prediction performance
yields unintuitive results: the MSE of predictingY 2

n+1 is essentially a fourth moment,
and the data suggest that fourth moments may well be infinite! It is unreasonable to
use an L2 measure of performance in a setup where L2 norms may not exist.

In addition, note that the GARCH predictions for Tables 10.2 and 10.3 were
performed—as customary—using the estimated volatility as a predictor of Y 2

n+1,
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Fig. 10.10 (Yen/Dollar example) (a) Plot of VARk(Y ) as a function of k; (b) plot of KURTk(Y ) as
a function of k

i.e., the GARCH predictor is h2
n = C +AY 2

n +Bĥ2
n after plugging-in estimates of

the GARCH parameters C,A, and B. But h2
n is the conditional expectation of Y 2

n+1
(given Fn) which is the L2–optimal predictor of Y 2

n+1. Since the evidence leans
heavily against the existence of finite fourth moments for financial returns, it seems
pointless to use a predictor that is optimal for a criterion that is not well-defined.

Under the objective of L1–optimal prediction, the optimal predictor is the con-
ditional median—not the conditional expectation. Under an ARCH(p) model, the
L1–optimal predictor of Y 2

n+1 is given by

Median
(
Y 2

n+1|Fn
)
= (a+

p

∑
i=1

aiY
2
n+1−i)Median(Z2

n+1); (10.15)

note that Median(Z2
n+1) � 0.45 if Zt ∼ N(0,1), whereas Median(Z2

n+1) � 0.53
if Zt ∼ t5.

Furthermore, the aforementioned equivalence of GARCH(1,1) with an ARCH(∞)
implies that Eq. (10.15) would also give the L1–optimal GARCH(1,1) predictor of
Y 2

n+1 by allowing p = ∞, and letting the ARCH coefficients a,a1,a2, . . . follow the

Method Yen/Dollar S&P500 IBM

Eq. (10.15)—GARCH(1,1) with normal errors 0.790 0.914 0.835

Eq. (10.15)—GARCH(1,1) with t–errors 0.797 0.901 0.844

Table 10.4 Entries give the empirical Mean Absolute Deviation (MAD) of prediction of squared
returns relative to benchmark; Eq. (10.15) is coupled with a very large choice of p and Eq. (10.6)
[Predictor type: conditional median.]
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structure given by Eq. (10.6). Table 10.4 shows the L1 prediction performance of our
two GARCH(1,1) models using the optimal L1 predictor (10.15) in connection with
a very large choice of p and Eq. (10.6).

As expected, using the correct predictor leads to ameliorated performance; com-
pare Table 10.4 to Table 10.3. In particular, both GARCH(1,1) models outperform
the lineal predictor (10.14) in the L1 sense. Interestingly, assuming the t distribution
for the errors does not seem to give any appreciable advantage—if at all— over the
customary normal errors assumption.

To conclude, by contrast to what was widely believed, ARCH/GARCH models
do have predictive validity for the squared returns. However, to appreciate and take
advantage of this one must: (a) use a more meaningful measure of prediction such
as L1, and (b) use the proper predictor, i.e., the conditional median in the L1 case.

In the sequel we will focus exclusively on the L1 measure of prediction perfor-
mance. Although we have seen that GARCH models do have reasonable predictive
validity, we will show how we can obtain even better volatility prediction using the
Model-free approach, i.e., the NoVaS transformation.

Remark 10.4.2 [On “honest” predictions] All predictions reported in this chapter
are “honest” in the sense that to predict Y 2

t+1, only information set {Y1, . . . ,Yt} was
used in estimating the particulars of the predictor, be it GARCH parameters, AIC
for AR–fitting, the exponential smoothing constant, or NoVaS parameters in what
follows. Furthermore, we did not follow the usual practice of splitting the dataset
in half, estimating parameters from the first half and predicting the second half;
this is unrealistic as parameters would/should be updated constantly in practice. For
the purposes of our numerical work, however, it was deemed unnecessary—and
computationally too expensive—to update the parameters daily. The updating was
performed every n/10 days for a daily dataset of size n. However, for the S&P500
dataset the updating was only done every n/7 days due to convergence issues in the
numerical MLEs involved in GARCH modeling.

10.5 Model-Free Volatility Prediction

We now revisit the volatility prediction problem through the viewpoint of the
Model-free Prediction Principle of Chap. 2. Note that the NoVaS transformation
developed in Sect. 10.3 was shown to empirically transform the data into a Gaus-
sian time series. Hence, the Gaussian stepping stone of Sect. 2.3.2 has already been
established; as will be shown in the sequel, the transformation towards i.i.d.–ness is
straightforward.
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10.5.1 Transformation Towards i.i.d.–Ness

As already mentioned, the NoVaS transformation is the Gaussian stepping stone
towards i.i.d.–ness. Thus, suppose that the NoVaS parameters, i.e., the order p(≥ 0)
and the parameters α,a0, . . . ,ap have already been chosen. We can re-arrange the
NoVaS equation (10.8) to yield:

Y 2
t =

W 2
t,a

1− a0W 2
t,a

(

αs2
t−1 +

p

∑
i=1

aiY
2

t−i

)

for t = p+ 1, . . . ,n (10.16)

and

Yt =
Wt,a√

1− a0W 2
t,a

√

αs2
t−1 +

p

∑
i=1

aiY 2
t−i for t = p+ 1, . . . ,n. (10.17)

Following the Model-free Prediction Principle, the one-step ahead prediction
problem can be defined as follows. Let g(·) be some (measurable) function of int-
erest; examples include g0(x) = x, g1(x) = |x|, and g2(x) = x2, the latter being
the function of interest for volatility prediction. From Eq. (10.17) it follows that
the predictive (given Fn) distribution of g(Yn+1) is identical to the distribution of
the random variable

g

(

An
W

√
1− a0W 2

)

(10.18)

where An =
√

αs2
n +∑p

i=1 aiY 2
n+1−i is treated as a constant given the past Fn, and the

random variable W has the same distribution as the conditional (on Fn) distribution
of the random variable Wn+1,a.

Therefore, our best (in an L1 sense) prediction of g(Yn+1) given Fn is given by
the median of the conditional (given Fn) distribution of g(Yn+1), i.e.,

̂g(Yn+1) := Median

⎛

⎝g

⎛

⎝An
Wn+1,a√

1− a0W 2
n+1,a

⎞

⎠ |Fn

⎞

⎠ (10.19)

Specializing to the case of interest, i.e., volatility prediction and the function
g2(x) = x2 yields the NoVaS predictor:

Ŷ 2
n+1 = μ2A2

n (10.20)

where

μ2 = Median

(
W 2

n+1,a

1− a0W 2
n+1,a

|Fn

)

.
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Let IC = {Y1, . . . ,Yp} denote the initial conditions, and note that the information
set Fn = {Yt ,1 ≤ t ≤ n} is equivalent to F̃n = {Wt,a, p < t ≤ n} coupled with the
set of initial conditions. Due to the assumed stationarity and subject to a usual weak
dependence condition—such as strong mixing—on the series {Yt}, it also follows
that the series {Wt,a} is stationary and weakly dependent; this implies that Wn+1,a

will be approximately independent of the initial conditions provided n is quite larger
than p; hence, the following approximation can be used, namely

μ2 = Median

(
W 2

n+1,a

1− a0W 2
n+1,a

|F̃n, IC

)

� Median

(
W 2

n+1,a

1− a0W 2
n+1,a

|F̃n

)

(10.21)

in connection with the predictor given in Eq. (10.20).
Our task now is significantly simplified: find the predictive distribution of the ran-

dom variable Wn+1,a based on its own recent past F̃n. But—by construction—Wt,a

should be approximately equal to a normal random variable. In addition, as men-
tioned in Sect. 10.3, the joint distributions of the series {Wt,a, t = p+ 1, . . . ,n} are
also typically normalized by the NoVaS transformation. Thus, the series {Wt,a, t =
p+ 1, . . . ,n} may be thought of as an Gaussian time series in which case optimal
prediction is tantamount to optimal linear prediction as discussed in Chap. 6.

Since {Wt,a, t = p+ 1, . . . ,n} is a Gaussian time series, it can be conveniently
(and accurately) modeled by fitting a causal AR(q) model with a high enough q.
Denote by ci the coefficients, and εt the innovations of the fitted AR(q) model, i.e.,

εt =Wt,a −
q

∑
i=1

ciWt−i,a. (10.22)

By the Hilbert space projection theorem, it follows that the innovations εt consti-
tute a mean zero white noise with variance denoted by σ2

ε . However, due to the
aforementioned normality of joint distributions, a stronger result is true, i.e.,

the innovations εt are i.i.d. N(0,σ2
ε ). (10.23)

Hence, the goal of the Model-free Prediction Principle, i.e., transforming the
dataset {Y1, . . . ,Yn} into an i.i.d. dataset, namely the dataset {εt for t = p+1, . . . ,n},
has now been achieved. Furthermore, the transformation is invertible, i.e., given
the initial conditions {Y1, . . . ,Yp}, one can back-transform the dataset {εt for t =
p+ 1, . . . ,m} into {Y1, . . . ,Ym} for any m > p; Eq. (10.17) is the key to the inverse
transformation after the {Wt,a} are procured based on the AR(q) model (10.22).
Therefore, the Model-free Prediction Principle can be immediately invoked in order
to construct optimal point (and interval) predictors for g(Yn+1).
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10.5.2 Volatility Prediction Using NoVaS

The AR(q) model (10.22) implies that our approximation to the best linear predictor
of Wn+1,a given F̃n is

Ŵn+1,a =
q

∑
i=1

ciWn−i+1,a. (10.24)

Furthermore, under this Gaussian structure, the whole conditional distribution of
Wn+1,a given F̃n would be Gaussian with mean equal to Ŵn+1,a given in Eq. (10.24),
and constant variance σ2

ε , i.e., σ2
ε not depending on F̃n. Recall that fitting an AR(q)

model, e.g., by the Durbin-Levinson algorithm, also gives an estimate of the predic-
tion error variance σ2

ε which is the aforementioned variance of the innovations εt .
The simplified expression (10.21) still represents an unknown quantity but it

could easily be approximated by Monte Carlo, for example using the normal predic-
tive density that has mean given by (10.24) and variance σ2

ε . Recall, however, that
this normal density should be truncated to an effective range of ±1/

√
a0. This pro-

cedure would be in the spirit of the Limit Model-Free philosophy of Remark 2.2.4.
Note that a very large number of Monte Carlo replications would be required due
to the heavy tails of the distribution of W 2/(1− a0W 2). In addition, it should be
stressed that the normal (conditional or unconditional) density for Wn+1,a is only an
approximation; thus, it may be better to estimate μ2 empirically from the data with-
out resort to the normal distribution, i.e., using the Model-free Prediction Principle.

Nevertheless, a simpler scenario emerges with regards to financial returns data:
the correlogram of the series {Wt,a, t = p+1, . . . ,n} typically indicates no significant
correlations; see, e.g., the Yen/Dollar Simple NoVaS correlogram of Fig. 10.9c. For
completeness, we consider both cases below.

• CASE I: THE NOVAS SERIES {Wt,a} APPEARS TO BE UNCORRELATED. In this
case we can infer that the series {Wt,a} is not only uncorrelated but also inde-
pendent, i.e., that the ci coefficients in equation model (10.22) are all zero, and
Wt,a = εt is its own innovation. Hence, the conditional (on F̃n) distribution of
Wn+1,a would equal the unconditional distribution of Wn+1,a, and we may esti-
mate μ2 by the sample median, i.e., let

μ̂2 = median{ W 2
t,a

1− a0W 2
t,a

; t = p+ 1, p+ 2, . . .,n} (10.25)

and subsequently predict Y 2
n+1 by

μ̂2A2
n. (10.26)

• CASE II: THE NOVAS SERIES {Wt,a} APPEARS CORRELATED. Although in all
our examples the NoVaS series {Wt,a, t = p+ 1, . . . ,n} turned out to be effec-
tively uncorrelated, one cannot preclude the possibility that for other datasets
the series {Wt,a} may exhibit some correlations; in that case, the ci coefficients in
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Eq. (10.22) are not all zero, and a slightly more complicated procedure is required
in order to estimate μ2. First, the predictive residuals must be collected from the
data; to do this, let et = Wt,a − Ŵt,a for t = r + 1, . . . ,n where r = max(p,q).
Then the conditional (on F̃n) distribution of Wn+1,a may be approximated by the
empirical distribution of the points {et + Ŵn+1,a; t = r + 1, . . . ,n}, i.e., by the
empirical distribution of the predictive residuals shifted to give it mean Ŵn+1,a.
In that case we would estimate μ2 by

μ̂2 = median{ (et +Ŵn+1,a)
2

1− a0(et +Ŵn+1,a)2
; t = r+ 1,r+ 2, . . . ,n} (10.27)

and again predict Y 2
n+1 by Eq. (10.26). Note that the ratio in Eq. (10.25) is always

positive and finite since its denominator is bigger than zero by Eq. (10.10).
Because of the approximate nature of obtaining the predictive residuals, the same
is not necessarily true for the denominator of Eq. (10.27). However, the sample
median is robust against such anomalies and would trim away negative values
and/or infinities of the ratio found in Eq. (10.27).

Remark 10.5.1 We can generalize the previous discussion to an interesting class of
prediction functions g(·) as in Eq. (10.18), namely the power family where g(x) = xk

for some fixed k, and the power–absolute value family where g(x) = |x|k. Let gk(x)
denote either the function xk or the function |x|k; then Eq. (10.19) suggests that our

best predictor of gk(Yn+1) given Fn is ̂gk(Yn+1) = μkAk
n, where

μk = Median

⎛

⎝gk

⎛

⎝ Wn+1,a√
1− a0W 2

n+1,a

⎞

⎠ |Fn

⎞

⎠ .

Note that if Y 4
t =∞, then we cannot claim L1–optimality of μk when k ≥ 4; however,

summarizing a predictive distribution by its median is a reasonable thing to do.
As before, μk can be estimated by an appropriate sample median. Let us consider

Case I and II separately. Under Case I, we estimate μk by

μ̂k = median{gk

⎛

⎝ Wt,a√
1− a0W 2

t,a

⎞

⎠ ; t = p+ 1, p+ 2, . . .,n}

whereas under Case II the estimator becomes

μ̂k = median{gk

⎛

⎝ et +Ŵn+1,a√
1− a0(et +Ŵn+1,a)2

⎞

⎠ ; t = r+ 1,r+ 2, . . . ,n.

Remark 10.5.2 (Estimating the volatility E(Y 2
n+1|Fn).) Under Case I, i.e., after

empirically showing that the Wt,a variables are (approximately) uncorrelated and
hence independent, it is straightforward to construct a Model-free estimate of the
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Method Yen/Dollar S&P500 IBM

Simple NoVaS 0.802 0.818 0.848

Exponential NoVaS 0.778 0.843 0.850

Table 10.5 Entries give the empirical Mean Absolute Deviation (MAD) of prediction of squared
returns relative to benchmark [Predictor type: conditional median]

conditional expectation E(Y 2
n+1|Fn). In this case, Eq. (10.16) implies that

E(Y 2
n+1|Fn) = A2

nE

(
W2

t,a

1−a0W2
t,a

)
; a natural estimate thereof is

A2
n

n− p

n

∑
t=p+1

(
W 2

t,a

1− a0W 2
t,a

)

which has validity, e.g., consistency, under the sole assumption that Yt has a finite
second moment conditionally on Fn (and therefore unconditionally as well).

10.5.3 Optimizing NoVaS for Volatility Prediction

In the previous section, the methodology for volatility prediction based on NoVaS
was put forth. Using this methodology the L1 prediction performance of the Simple
and Exponential NoVaS was quantified and tabulated in Table 10.5. In the foreign
exchange data, Exponential NoVaS offers some improvement over Simple NoVaS;
the situation is reversed in the S&P500 example. In comparison to the two optimal
GARCH(1,1) predictors of Table 10.4, both NoVaS methods appear to have an adv-
antage in the Yen/Dollar and S&P500 examples. In the case of IBM returns, all four
methods (the two GARCH and two NoVaS) perform comparably.

It is interesting to note that the NoVaS methodology performs competitively in
volatility prediction despite its extreme parsimony: both Simple and Exponential
NoVaS have just one free parameter (p and c, respectively—since the p in Exponen-
tials NoVaS is determined by the tolerance level ε). By contrast, the GARCH(1,1)
with normal errors has three free parameters whereas the GARCH(1,1) with t–errors
has four—the fourth being the degrees of freedom for the t-distribution.

The single free parameter in Simple and Exponential NoVaS was identified using
the kurtosis matching ideas of Sect. 10.3.2. Nevertheless, one can entertain more
general NoVaS schemes with two (or more) free parameters. In such setups, one
(or more) of the parameters can be identified by kurtosis matching (of the data or
lagged linear combinations thereof). The remaining free parameters can then be
identified by specific optimality criteria of interest, e.g., optimal volatility predic-
tion; see option (C) in Sect. 2.3.5.
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Although many different multi-parameter NoVaS schemes can be devised, we
now elaborate on the possibility of a nonzero value for the parameter α in (10.8) in
connection with the Simple and Exponential NoVaS. We thus define the Generalized
Simple (GS) and Generalized Exponential (GE) NoVaS denoted by W GS

t;p,α and W GE
t;c,α

indicating their respective two free parameters; both are based on Eq. (10.8).
The search is performed using a grid of possible values for α , say α1,α2, . . . ,αK ,

that span a subset of the interval [0,1]. In picking the grid values, note that the kurto-
sis matching goal may only be possible with small values of α; else, the intermedi-
ate value argument of Remark 10.3.1 may fail. For instance, choosing α = 1 implies
ai = 0 for all i due to Eq. (10.11); in this case, Wt,a ≡ Yt , i.e., no transformation is
effected.

Algorithm 10.5.1 ALGORITHM FOR GENERALIZED SIMPLE NOVAS

A. For k = 1, . . . ,K perform the following steps.

1. Let α = αk and ai = (1−αk)/(p+1) for all 0 ≤ i ≤ p so that Eq. (10.11) is
satisfied while all the coefficients a0,a1, . . . ,ap are the same.

2. Denote by pk the minimizer of |KURTn(W GS
t,p )−3| over values of p= 1,2, . . ..

3. If pk (and a0) as found above are such that Eq. (10.13) is not satisfied, then
increase pk accordingly, i.e., re-define pk = �1+C2(1−αk)�, and let ai =
(1−αk)/(pk + 1) for all 0 ≤ i ≤ pk by Eq. (10.11); here, �x� denotes the
integer part of x.

B. Finally, compare the transformations {W GS
t;pk,αk

, k = 1, . . . ,K} in terms of their
volatility prediction performance, and pick the model with optimal performance.

Algorithm 10.5.2 ALGORITHM FOR GENERALIZED EXPONENTIAL NOVAS

A. For k = 1, . . . ,K perform the following steps.

1. Let p take a very high starting value, e.g., let p � n/4 or n/5. Then, let
α = αk and ai = c′e−ci for all 0 ≤ i ≤ p, where c′ = (1−αk)/∑p

i=0 e−ci by
Eq. (10.11).

2. Pick c in such a way that |KURTn(W GE
t;c,αk

)− 3| is minimized, and denote by
ck the minimizing value.3

3. Trim the value of p to some value pk as before: if ai < ε , then set ai = 0.
Thus, if ai < ε , for all i ≥ ik, then let pk = ik, and renormalize the ais so that
their sum (for i = 0,1, . . . , pk) equals 1−αk by Eq. (10.11).

B. Finally, compare the transformations {WGE
t;ck,αk

, k = 1, . . . ,K} in terms of their
volatility prediction performance, and pick the model with optimal performance.

An illustration of the Generalized Simple and Exponential NoVaS algorithms in
connection with our three main datasets is presented in Tables 10.6 and 10.8 where

3 As before, if ck is such that (10.13) is not satisfied, then decrease it stepwise over its discrete grid
until (10.13) is satisfied.
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α Yen/Dollar S&P500 IBM

0.0 0.802 0.818 0.848

0.1 0.799 0.792 0.836

0.2 0.798 0.796 0.829

0.3 0.797 0.792 0.824

0.4 0.800 0.788 0.822

0.5 0.803 0.792 0.822

0.6 0.805 0.796 0.820

0.7 0.804 0.788 0.815

Table 10.6 Entries give the empirical Mean Absolute Deviation (MAD) of prediction of squared
returns relative to benchmark using the Generalized Simple NoVaS with parameter α ; the mini-
mum MAD is given with boldface

α Yen/Dollar S&P500 IBM

0.0 9 11 13

0.1 8 9 11

0.2 7 7 10

0.3 6 7 9

0.4 6 6 8

0.5 5 5 8

0.6 5 4 7

0.7 5 4 6

Table 10.7 Entries give the optimal value of p from kurtosis matching in the Generalized Simple
NoVaS with parameter α ; note that the values in this table were computed using the whole available
sample sizes

for each different value of α , the L1 volatility prediction performance is given.
Tables 10.7 and 10.9 give the optimal NoVaS parameters associated with different
values of α .

The results in Tables 10.6 and 10.8 are very interesting. Firstly, the L1 measure
appears convex4 in α making the minimization very intuitive; a unique value of the
optimal α (given in bold-face font) is easily found in each of the three datasets.5

Secondly, although all three datasets seem to benefit from a nonzero value of α ,
the importance of α differs according to the type of data involved: the Yen/Dollar

4 Note that for α = 1, the corresponding entries of Tables 10.6 and 10.8 would be equal to 1 due
to Eq. (10.11).
5 The only exception is the S&P500 column of Table 10.6; this can be attributed to random error
since the discrepancies are small.
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α Yen/Dollar S&P500 IBM

0.0 0.778 0.843 0.850

0.1 0.776 0.832 0.838

0.2 0.778 0.823 0.826

0.3 0.780 0.817 0.822

0.4 0.780 0.810 0.819

0.5 0.782 0.806 0.813

0.6 0.787 0.804 0.809

0.7 0.796 0.811 0.809

Table 10.8 Entries give the empirical Mean Absolute Deviation (MAD) of prediction of squared
returns relative to benchmark using the Generalized Exponential NoVaS with parameter α ; the
minimum MAD is given with boldface

α Yen/Dollar S&P500 IBM

0.0 0.0965 0.0789 0.0660

0.1 0.1111 0.0926 0.0756

0.2 0.1290 0.1084 0.0892

0.3 0.1540 0.1320 0.1042

0.4 0.1882 0.1610 0.1285

0.5 0.2354 0.2097 0.1608

0.6 0.3167 0.2818 0.2133

0.7 0.4649 0.4227 0.3149

Table 10.9 Entries give the optimal exponent c from kurtosis matching in the Generalized Expo-
nential NoVaS with parameter α ; note that the values in this table were computed using the whole
available sample sizes

series is not so sensitive on the value of the parameter α; the S&P500 index is more
sensitive, while the single stock price (IBM) is the most sensitive. Recalling that
the IBM case was the only case where NoVaS did not give a definite advantage
over GARCH, it is now apparent that Generalized NoVaS (Simple or Exponential)
outperforms the optimal GARCH(1,1) predictors of Table 10.4 in all three of our
datasets.

From Tables 10.7 and 10.9 it is apparent that, as α increases, c increases
accordingly, and p decreases. All (p,α) combinations in Table 10.7, and all (c,α)
combinations in Table 10.9 were equally successful in normalizing the NoVaS data
in terms of achieving a kurtosis of about 3. Finally, note that the values in Tables 10.7
and 10.9 were computed using the whole available sample sizes, whereas the
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results in Tables 10.6 and 10.8 were based on “honest” predictions as described
in Remark 10.4.2, i.e., prediction of Y 2

t+1 was only based on information set Ft with
model updating happening periodically.

10.5.4 Summary of Data-Analytic Findings on Volatility Prediction

• Because of the lack of finite fourth moments, the MSE is not a good measure of
performance of prediction of squared returns; see Tables 10.2 and 10.3 where the
same predictors are compared with respect to MSE and MAD, respectively.

• Using the L1/MAD measure of performance, it is apparent that GARCH models
do have predictive validity for the squared returns.

• As expected, once the L1 setting is assumed, using the optimal predictor of
Eq. (10.15) gives an appreciable difference; compare Table 10.3 to Table 10.4.

• Once the optimal GARCH predictor is used, it seems to make little difference
whether the normal or t distribution is assumed for the errors; see Table 10.4.

• Simple NoVaS seems comparable to Exponential NoVaS in volatility predic-
tion, and they both outperform the best GARCH(1,1) predictors in the foreign
exchange and stock index data examples—see Table 10.5.

• Generalized Simple and Exponential NoVaS gives appreciable improvements
over either Simple or Exponential NoVaS; the most significant improvement is
seen in the IBM dataset—see Tables 10.6 and 10.8.

• All in all, Generalized NoVaS (Simple and/or Exponential) outperforms the
optimal GARCH(1,1) predictors of Table 10.4 in all three of our datasets.

10.6 Model-Free Prediction Intervals for Financial Returns

In order to discuss the construction of prediction intervals, we will focus hereafter
on Case I of Sect. 10.5.2, i.e., the case where the NoVaS series {Wt,a} appears to
be uncorrelated; in this case, the series Wt,a for t = p+ 1, . . . ,n is tantamount to the

i.i.d. series ε(n)t featuring in the Model-free Prediction Principle of Chap. 2.
Recall that our best (in an L1 sense) prediction of g(Yn+1) given Fn was given in

Eq. (10.19), i.e.,

̂g(Yn+1) = Median

⎛

⎝g

⎛

⎝An
Wn+1,a√

1− a0W 2
n+1,a

⎞

⎠ |Fn

⎞

⎠

= Median

⎛

⎝g

⎛

⎝An
Wn+1,a√

1− a0W 2
n+1,a

⎞

⎠

⎞

⎠



10.6 Model-Free Prediction Intervals for Financial Returns 231

where the second equality is due to the independence in the series Wt,a. The above
can be seen as a corollary of premise (d) of the Model-free Prediction Princi-
ple which also gives a preliminary approximation to the predictive distribution of
g(Yn+1) given Fn in the form of the empirical distribution of the random variables

{g

(

An
Wt,a√

1−a0W 2
t,a

)

for t = p+ 1, . . . ,n}.

However, as discussed in Remark 2.2.3, this “plug-in” empirical distribution
ignores the variability of estimated parameters in the construction of the NoVaS
transformation; to incorporate this variability, Model-free resampling is needed as

well. Note that the point predictor ̂g(Yn+1) is a function only6 of Yn, . . . ,Yn−p+1,
i.e., is a predictor of the type of a (nonlinear) AR model or Markov process of
order p. Hence, to develop the relevant resampling algorithms, we can borrow some
ideas from Chaps. 7 and 8; in particular, we will adopt the “forward” bootstrap
methodology.

The basic Model-free (MF) bootstrap algorithm for prediction intervals in the
setting of financial returns goes as follows.

Algorithm 10.6.1 MF BOOTSTRAP PREDICTION INTERVALS FOR g(Yn+1)

1. Use one of the NoVaS algorithms (Simple vs. Exponential, Generalized or not,
etc.) to obtain the transformed data {Wt,a for t = p+ 1, . . . ,n} that are assumed
to be approximately i.i.d.7 Let p, α and ai denote the fitted NoVaS parameters.

2. Calculate ̂g(Yn+1), the point predictor of g(yn+1), as the median of the set

{g

(

An
Wt,a√

1−a0W2
t,a

)

for t = p+1, . . . ,n}; recall that An =
√

αs2
n +∑p

i=1 aiY 2
n+1−i.

3.(a) Resample randomly (with replacement) the transformed variables {Wt,a for
t = p+ 1, . . . ,n} to create the pseudo-data W ∗

p+1, · · · ,W ∗
n−1,W

∗
n and W ∗

n+1.
(b) Let (Y ∗

1 , . . . ,Y
∗
p )

′ =(Y1+I, · · · ,Yp+I)
′ where I is generated as a discrete random

variable uniform on the values 0,1, . . . ,n− p.
(c) Generate the bootstrap pseudo-data Y ∗

t for t = p+ 1, . . . ,n using Eq. (10.17),
i.e., let

Y ∗
t =

W ∗
t√

1− a0W ∗2
t

√

αs∗2
t−1 +

p

∑
i=1

aiY ∗2
t−i for t = p+ 1, . . . ,n (10.28)

where s∗2
t−1 = (t − 1)−1 ∑t−1

k=1 Y ∗2
k .

(d) Based on the bootstrap data Y ∗
1 , . . . ,Y

∗
n , re-estimate the NoVaS transformation

yielding parameters p∗, α∗, a∗0,a
∗
1, . . . ,a

∗
p∗ . Let A∗

n =
√

α∗s2
n +∑p∗

i=1 a∗i Y 2
n+1−i,

and calculate the bootstrap predictor ̂g(Y ∗
n+1) as the median of the set

6 In the case of Generalized NoVaS (Simple or Exponential), ̂g(Yn+1) is also a function of s2
n which,

however, converges to EY 2
t for large n; hence, it can be treated as constant for all practical purposes.

7 Otherwise, a further transformation step will be required as discussed in Case II of Sect. 10.5.2.
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{g

⎛

⎝A∗
n

Wt,a√
1− a∗0W

2
t,a

⎞

⎠ for t = p+ 1, . . . ,n} (10.29)

using the convention8 that when 1− a∗0W
2

t,a ≤ 0, we assign 1√
1−a∗0W 2

t,a

= ∞.

(e) Calculate the bootstrap future value Y ∗
n+1 as

Y ∗
n+1 =

W ∗
n+1√

1− a0W ∗2
n+1

√

αs2
n +

p

∑
i=1

aiY 2
n−i+1. (10.30)

(f) Calculate the bootstrap root: g(Y ∗
n+1)− ̂g(Y∗

n+1).
4. Repeat step 3 above B times; the B bootstrap root replicates are collected in the

form of an empirical distribution whose α-quantile is denoted q(α) .
5. The (1−α)100% equal-tailed prediction interval for g(Yn+1) is given by

[ ̂g(Yn+1)+ q(α/2), ̂g(Yn+1)+ q(1−α/2)].

Note that the last p values from the original data, i.e., Yn−p+1, . . . ,Yn, are used
in both the creation of the bootstrap predictor in Eq. (10.29) and bootstrap future
value in Eq. (10.30); this is in accordance with the “forward” bootstrap methodol-
ogy of Chaps. 7 and 8 but also with the general Model-free Bootstrap described in
Algorithm 2.4.1.

An LMF version of Algorithm 10.6.1 can also be devised; it would amount to
replacing Step 3 (a) by:
(a′) Generate W ∗

p+1, · · · ,W ∗
n−1,W

∗
n and W ∗

n+1 as i.i.d. from a N(0,1) distribution
truncated to ±1/

√
a0.

10.7 Time-Varying NoVaS: Robustness Against Structural
Breaks

Up to this point, the series of financial returns has been assumed to be strictly sta-
tionary. Nevertheless, if the data Y1, . . . ,Yn span a long-time interval, e.g., daily
financial returns spanning several years, it may be unrealistic to assume that the
stochastic structure of time series {Yt , t ∈ Z} has stayed invariant over such a long
stretch of time.

8 This is because the original NoVaS data satisfies |Wt ,a| ≤ 1/
√

a0 but a∗0 might turn out bigger
(or smaller) than a0. Alternatively, one can base Eq. (10.29) on the NoVaS transformed series W ∗

t ,a
that corresponds to the bootstrap data Y ∗

1 , . . .,Y
∗
n , or on a Monte Carlo experiment using a N(0,1)

distribution truncated to ±1/
√

a∗0. All these options are practically indistinguishable as far as
taking the median is concerned, and Eq. (10.29) is the most straightforward.
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Instead, one can assume a slowly-changing stochastic structure, i.e., a locally
stationary model as discussed in Chap. 9. Indeed, the theory of time–varying ARCH
(TV-ARCH) processes was developed to capture such a phenomenon; see Dahlhaus
and Subba Rao (2006). The analysis of a time–varying ARCH/GARCH model can
be based on the premise of local stationarity. For example, in order to predict g(Yt+1)
based on Ft via a time–varying GARCH(1,1) model, we can simply fit model (10.5)
using as data the subseries Yt−b+1, . . . ,Yt . Here, the window size b should be large
enough so that accurate estimation of the GARCH parameters is possible based on
the subseries Yt−b+1, . . . ,Yt but small enough so that such a subseries can plausibly
be considered stationary.

In a similar vein, we can predict g(Yt+1) by fitting one of the NoVaS algo-
rithms (Simple vs. Exponential, Generalized or not) just using the “windowed” data
Yt−b+1, . . . ,Yt . In so doing, we are constructing a time–varying NoVaS (TV-NoVaS)
transformation. In numerical work, Politis and Thomakos (2008, 2012) showed
that NoVaS fitting can be done more efficiently than GARCH fitting by (numeri-
cal) MLE. Thus, it is expected that TV-NoVaS may be able to capture a changing
stochastic structure in a more flexible manner; stated in different term, the window
size b required for accurate NoVaS fitting should be smaller than the one required
for accurate GARCH fitting.

We investigate this conjecture in a small simulation experiment. Before describ-
ing it, note that an alternative form of nonstationarity is due to the possible pres-
ence of structural breaks, i.e., change points, occuring at some isolated time points.
Mikosch and Starica (2004), and Starica and Granger (2005) show the interesting
effects that an undetected change point may have on our interpretation and analy-
sis of ARCH/GARCH modeling.9 Hence, in the simulation that follows, we also
include a structural break model in order to see the effect of an undetected change
point on the performance of TV-NoVaS and TV-GARCH volatility predictors.

For the simulation, 500 datasets Y n = (Y1, . . . ,Yn)
′ were constructed using either

a TV-GARCH or a change point GARCH (CP-GARCH); these were defined using
the standard GARCH model Yt+1 = ht+1Zt+1 with h2

t+1 =C+AY 2
t +Bh2

t as building
block with C = 10−5. The i.i.d. errors Zt are commonly assumed to have a Student
t5 distribution; instead, we use the simple assignment Zt ∼ i.i.d. N(0,1) in the sim-
ulation in order to facilitate the convergence of the numerical (Gaussian) MLE in
fitting the TV-GARCH model.

CP-GARCH: For t ≤ n/2, let A = 0.10 and B = 0.73; for t > n/2, let A = 0.05
and B = 0.93. These values are close to the ones used by Mikosch and Starica
(2004).

TV-GARCH: The value of A decreases as a linear function of t, starting at A = 0.10
for t = 1, and ending at A = 0.05 for t = n. At the same time, the value of B
increases as a linear function of t, starting at B = 0.73 for t = 1, and ending at
B = 0.93 for t = n.

9 Kokoszka and Leipus (2000), and Berkes et al. (2004) have studied the detection/estimation of
change points in ARCH/GARCH modeling.
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The difference between the two models, CP-GARCH and TV-GARCH, is an abrupt
vs. smooth transition spanning the same values. Some more information on the
simulation follows.
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Fig. 10.11 MAD of prediction of squared returns obtained by fitting TV-GARCH vs. TV-NoVaS;
data from CP-GARCH model

• The prediction method employed was the conditional median obtained either
from a TV-GARCH model fitted by windowed Gaussian MLE, or via TV-NoVaS
(Simple or Exponential); in either case, two window sizes were tried out, namely
b = 125 or 250.

• The sample size was n = 1001 corresponding to about 4 years of daily data; so
the choices b = 125 and 250 correspond to 6 and 12 months, respectively.

• Training period for all methods was 250, i.e., the experiment amounted to pre-
dicting Y 2

t+1 from the “windowed” data Yt−b+1, . . . ,Yt for t = 250,251, . . . ,1000.
• Updating (re-estimation) of all methods would ideally be for each t = 250,251,

. . . , 1000. To save computing time, updating in the simulation was only per-
formed for t being an integer multiple of 50. In fairness, the performance of pre-
dictions was recorded and compared only at the moment of updating the model,
i.e., at time points 250,300,350, . . .,1000.

Figure 10.11 shows the MAD of volatility prediction of TV-GARCH as com-
pared to the MAD of TV-NoVaS (Simple or Exponential) with data from model
CP-GARCH for the 16 time points where the updating and prediction occured,
i.e., the time points 250,300,350, . . .,1000. Each point in the figure gives the abs-
olute value of the prediction error at the update time point averaged over the 500
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replications; the left panel depicts the case b = 125 while the right panel depicts
the case b = 250. Figure 10.12 is similar but using data generated by a TV-GARCH
model instead.

Some conclusions are as follows:

• Time points 250,300,350,400,450, and 500 in the left panel of Fig. 10.11 cor-
roborate the aforementioned fact that NoVaS (Simple or Exponential) beats
GARCH for prediction of squared returns even if the data generating model is
(stationary) GARCH as long as the sample size available for model-fitting is
small—equal to 125 in this case. The corresponding points in the right panel
of Fig. 10.11 indicate that GARCH manages to do as well as (or better than)10

NoVaS when the effective sample size is increased to 250.
• Figure 10.11 shows that the change point at t = 500 wreaks havoc in GARCH

model fitting and the associated predictions; this adds another dimension to the
observations of Mikosch and Starica (2004). By contrast, both NoVaS methods
seem to adapt immediately to the new regime that occurs after the unknown/
undetected change point.

• Figure 10.12 shows that TV-NoVaS (Simple or Exponential) beats TV-GARCH
for prediction of squared returns even when the data generating model is
TV-GARCH. Not only is the MAD of prediction of TV-NoVaS just a small frac-
tion of that of TV-GARCH, but the wild swings associated with the latter indicate
the inherent instability of GARCH model-fitting; this instability is prominent
even in this simplistic case where the errors have a true Gaussian distribution,
and Gaussian MLE is used for estimating just the three GARCH parameters.

• As seen in both Figs. 10.11 and 10.12, the performance of Simple NoVaS is prac-
tically indistinguishable from that of Exponential NoVaS although upon closer
look the latter appears to be marginally better.
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on analyzing a univariate series of financial returns via the Model-free approach,
i.e., the NoVaS transformation; a multivariate version of NoVaS has been recently
studied by Thomakos et al. (2015) with application to capturing the time-evolution
of conditional correlations.
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Härdle W (1990) Applied nonparametric regression. Cambridge University Press,

Cambridge
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Härdle W, Marron JS (1991) Bootstrap simultaneous error bars for nonparametric

regression. Ann Stat 19:778–796
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