
Shelve in
Linux/General

User level:
Intermediate

BOOKS FOR PROFESSIONALS BY PROFESSIONALS
®

M
cDonnell

SOURCE CODE ONLINE

www.apress.com

tmux Taster
tmux Taster is your short, concise volume to learn about tmux, the terminal multiplexer
that allows you to multiplex several virtual consoles. With tmux you can access multiple
separate terminal sessions inside a single terminal window or remote terminal session,
and much more.

Through seven to-the-point chapters, you’ll learn the fundamentals of tmux, scripting
and automation, pane and window management, pair programming, and workflow
management.

Increase your productivity by using a terminal multiplexer - start with tmux Taster today.

9 781484 207765

51999
ISBN 978-1-4842-0776-5

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

v

Contents at a Glance

About the Author �� xiii

About the Technical Reviewers ��� xv

Acknowledgments ��� xvii

Introduction �� xix

Chapter 1: Terminal Multiplexer ■ ��� 1

Chapter 2: Fundamentals ■ ��� 19

Chapter 3: Modifications ■ �� 31

Chapter 4: Copy and Paste ■ �� 37

Chapter 5: Pane/Window Management ■ �� 43

Chapter 6: Scripting and Automation ■ ��� 51

Chapter 7: Pair Programming ■ ��� 59

Chapter 8: Workflow Management ■ ��� 67

Index �� 73

xix

Introduction

The standard terminal that comes installed as part of your operating system (whether
it be Mac, Linux, or Windows based) is seen by most users to be a harsh and barren
wasteland, devoid of emotion and color. Respected by many a neckbeard for its power in
all but a few areas where it falls short.

If you’re unfamiliar with the (joke) term “neckbeard”, it roughly refers to a Unix
system administrator type user. You know, the type of person who has an intimate
knowledge of the internals of the Linux kernel and could probably write an OS over a
weekend – the sort of hardened engineer who fears no terminal environment. Even they
have experienced times where their terminal fails to do the advanced tasks required to
ease their workload; and this is where a terminal multiplexer steps in. The focus of this
book being one particularly popular multiplexer: tmux.

At this stage I won’t divulge any further details, as I cover the majority of “why use
a multiplexer?” thoughts in the opening chapter of this book. But suffice to say that the
information contained in this book should help you not only understand what tmux is
and how to use its basic features, but it also covers customizations and abstractions;
automation via a scripted interface; resolving notorious copy and paste issues; pair
programming (using a tool such as Vagrant to emulate a remote server environment), as
well as looking at the best ways to manage your workflow with tmux.

With all this in mind, I hope you enjoy reading tmux Taster and that you’ll be sure
to get in contact to let me know if, and how, this fantastic tool has helped you to improve
your own workflow.

1

Chapter 1

Terminal Multiplexer

The terminal emulators we use on a day-to-day basis do their job admirably. Having
direct access to the shell environment is a fundamental way of life for most software
engineers, as it gives us a sense of power and efficiency that cannot be matched by
GUI-based applications and mouse interactions.

But even a reasonably modern terminal application can fall short in many areas
(such as the Terminal.app on Mac OS X). As an example, imagine your terminal window
is busy with a long-running process, and you want to interact with another part of your
application or project (but you want to keep an eye on the current process, so that you
know when it’s finished). One way you could do this is to create a new terminal tab and
simply switch back and forth. This isn’t a very elegant solution or efficient, but it
would work.

But some terminal emulators don’t let you create tabs, so if you’re one of those
unfortunate souls, you’ll have a worse option ahead of you, which is to use your mouse
to reduce the size of your terminal and then open a new instance of your terminal
application and resize that new instance so you can see both terminal windows at once
(that is, if you even have a GUI; if you don’t, then . . . well, you’re almost out of luck).

Imagine a similar (but much more typical) example: you’re a software engineer and
you’re writing new (or modifying existing) tests for your application. Ideally, you want
to be able to make changes to your tests and application code while getting immediate
feedback as to whether any of those changes have broken your test suite. You want a fast
feedback loop. This is where being able to split your terminal window becomes a very
useful tool.

But just being able to split a window into one or more screens isn’t the only problem
that has to be solved. Software engineers open many different types of files during a
typical workday, and sometimes, you may find yourself in a situation in which the files
you have open would be easier to read and modify if they were placed in a different layout
that just wasn’t possible using a standard terminal emulator.

In Figure 1-1, we can see we’re not just splitting a terminal window into equal-sized
chunks. We have window C, which spans the full width of the screen, while windows D, E,
and F are a third of the overall screen, and windows A, B, G, and H split 50% of the available
screen dimensions.

Chapter 1 ■ terminal multiplexer

2

We also want to be able to manipulate these windows very easily, through shorthand
key bindings, and change their dimensions (and even change the layout of the windows,
so that they are rearranged into a different format, to fit with the work we do later on in
the day).

Humans are also creatures of habit, meaning that there will be a particular layout of
windows that we find works best for us 90% of the time, and, so, being able to automate
the creation of a particular layout is another feature that would be useful.

Finally, a tool that has the capability to allow me to share my screen seamlessly, so
that I can pair program with another individual and have him/her take over the typing on
my machine, is incredibly useful when you’re a remote worker.

Having complete control over our terminal environment—how it looks and
behaves—is a very powerful idea, and one that is possible through the use of an
application called tmux. In the next section, I’ll explain a little about what tmux is and
means, as well as how to install and configure it.

Note ■ Some readers may have heard of a recent terminal emulator called iterm2
(http://iterm2.com [for mac OS x only]), which allows you to make split windows
(among other features) but suffers from much less ubiquity than my tool of choice: tmux.
For example, if i’m on a remote linux server, i can quickly download and install tmux and be
up and running. i can’t do that with a program that is limited to a single operating system.
as with Vim, a popular terminal based text editor, ubiquity is the key.

tmux
tmux is short for [t]erminal [mu]ltiple[x]er. A multiplexer is simply a fancy way of
describing an application that lets you easily manage multiple terminal windows within
one screen.

tmux runs a server/client architecture, meaning that when you start the application,
it will fire up a single server, and every tmux instance you create on your machine will
ultimately connect to that single tmux server. The benefit of this design is that while

| A | B |

C
D

| G | H |

Figure 1-1. Example of a complex layout of terminal windows

http://iterm2.com/

Chapter 1 ■ terminal multiplexer

3

your machine is running, you can detach a tmux “session” (i.e., close tmux but keep the
details of that session open, as it’ll be stored on the tmux server running in a background
process), so you can then reattach to the session at another time.

Note ■ Visit http://tmux.sourceforge.net/ for frequently asked questions and
helpful information (such as documentation, irC, and mailing list details), as well as to
download binaries of the software.

tmux provides a lot of powerful features (most of which were described indirectly via
the introduction of this chapter), which I’ve summarized into a few categories following:

Ability to connect to existing local and remote sessions•	

Advanced window and pane management•	

Ability to move windows between different sessions•	

Scripted automation•	

The usefulness of tmux truly reveals itself once you start utilizing it on a day-to-day
basis and incorporating it firmly into your workflow. By the time we’re finished, you
should have a much better understanding of the power and flexibility tmux provides and
will wonder how you ever managed without it.

Terminology
Let’s take a brief detour to consider the terminology we’ll be using to describe tmux’s
functionality. This will help to understand different tmux concepts as we move through
the following chapters.

Prefix Command
The purpose of a multiplexer is to help you load multiple programs within a single
window. Because you are effectively loading a program within a program (e.g., loading
Vim inside a tmux window), tmux must avoid command conflicts with the subprograms
being loaded. To do this, it introduces the concept of a prefix command, which helps to
differentiate tmux commands from other programs you use.

Note ■ the default prefix for tmux commands is <C-b>. You’ll notice that we shorten
references to keyboard shortcuts. the principle is as follows: pressing the keys <Ctrl> and b
at the same time can be represented as <C-b>. Similarly, pressing the keys <Esc> and 1 can
be expressed as <Esc-1>. if we need to press any further keys, for example, let’s say we need
to press <Ctrl> and b at the same time followed by d, then we express that as <C-b>d

http://tmux.sourceforge.net/

Chapter 1 ■ terminal multiplexer

4

Let’s take a look at a quick example, to clarify what the prefix command does and
why. I appreciate that we have yet to even open tmux, but the concept of a prefix key is
fundamental to using tmux in the first place, and so I’m hoping you’ll indulge me for just
a moment longer, while I attempt to explain it.

Imagine we have tmux running, and for those who have never seen tmux before,
you’ll likely not notice much difference in your terminal’s appearance (other than a bar at
the foot of your screen, but I’ll come back to this and describe what the bar is and what it
means later), because visually, tmux should act as a container around your terminal.

Now, let’s say we want to open a text file within the popular Vim text editor
(e.g., vim ~/foo.txt) and modify the content by deleting a specific selection. Chances
are you would open the file in Vim, find the content you want to delete, select it, and
execute the d command (which is Vim’s delete command). The problem with this process
is that tmux assigns its own functionality to the d key (a command for detaching from
a session; again, if this doesn’t make sense, don’t worry too much for now, as I’ll cover
sessions in due time). This is a perfect example of why tmux commands have a prefix: to
avoid conflicts with other programs loaded within a tmux screen.

Due to tmux commands having a prefix, we can safely use Vim (or any other program)
and not have to worry that executing a command within our subprograms will cause a
side effect in tmux. In the previous scenario, we would detach from our tmux session
using the command <C-b>d (where <C-b> is the prefix, followed by the d to indicate we
wish to detach from the session).

Throughout the rest of the book, I’ll refer to the prefix key <C-b> as just <P>
(for [P]refix). This means the structure of all tmux commands in this book will take the
form <P>{key-binding|:command-prompt}. In the preceding example, in which we
detached from the tmux session using the key binding <C-b>d, we would represent this
using <P>d (see the following note regarding the “command prompt”).

Note ■ tmux provides a “command prompt” (similar in ways to Vim’s COmmanD-line/ex
modes), which you can access by using <P>:, followed by a command. For example,
<P>:{command}.

The reason for shortening the prefix command in the following chapters is, first,
to make the commands shorter and easier to read, but more important, I’ll be showing
you how you can change the prefix key to be any key combination you like. So if you
end up using this book as a reference, and you happen to have changed the prefix to be
something else (let’s say <C-a>), it would be easier to mentally replace <C-b> with your
own prefix.

Help?
Unfortunately, if you need help with tmux commands, you don’t have as rich a support
feature as found in other programs, such as the Vim text editor (whose built-in :help
documentation are very detailed and useful), but there are still a few options available to
you, which are useful to know about.

Chapter 1 ■ terminal multiplexer

5

Command and Key Binding References
tmux provides a quick reference list of all available key bindings, which you can access
either via a key binding or the command-line prompt (or even from outside tmux itself).

To access the key binding reference via a key binding, you would use <P>?. To access
this reference via the command prompt, you would use <P>:list-keys. Finally, you can
also access this list from outside of tmux, using tmux list-keys (allowing you to utilize
this information in some form of scripted automation, which I’ll cover in more detail in
Chapter 6).

The list-keys command will only display a list of available tmux key bindings. This
does not include all commands that are executable within the tmux command prompt.
For that list, you would use <P>:list-commands (or tmux list-commands, if you’re outside
of tmux); there is no key binding variation.

If you would like to see some extra information regarding each of the tmux sessions
you have open, the following command will display this information for you: <P>:info
(or tmux info, if you’re outside of tmux).

Manual
Although the Internet has lots of useful information about how to do certain things in
tmux, ultimately, the best resource of documentation is the official manual, which is
linked to from the tmux web site and is directly accessible at www.openbsd.org/cgi-bin/
man.cgi/OpenBSD-current/man1/tmux.1.

Alternatively, and more usefully, you can access this documentation via your
terminal, using the command man tmux (which also makes it much easier to filter and
search through).

Message Feedback
One annoyance with tmux is when you execute a command incorrectly. What you’ll
notice happen is that tmux tries to be helpful by displaying a message telling you the
correct format of the command it thinks you were trying to execute. But, unfortunately,
that message only displays for a fraction of a second and then disappears, not leaving you
enough time to see what the requirements of the command actually are.

Luckily, tmux provides a key binding that shows us the complete list of messages
tmux has passed to us during our current session (the list of messages is displayed
in ascending order, so the oldest messages are at the top, and the most recent at the
bottom): <P>~. (You can also access this feature via the command prompt
<P>:show-messages.)

Installation and Configuration
I mentioned earlier that one of the benefits of using tmux over other solutions is its
ubiquity across different platforms. Installing tmux is remarkably simple for such a
powerful and distributed piece of software, as we can see in the following options.

http://www.openbsd.org/cgi-bin/man.cgi/OpenBSD-current/man1/tmux.1
http://www.openbsd.org/cgi-bin/man.cgi/OpenBSD-current/man1/tmux.1

Chapter 1 ■ terminal multiplexer

6

Mac
To install tmux on Mac OS X, the simplest option is to use the popular Homebrew
package manager (http://brew.sh/):

brew install tmux

Linux
If you’re working from a Linux machine, then use your package manager of choice
(e.g. Apt, Yum etc). For example, if you’re using Apt then you would run the following
command:

sudo apt-get install tmux

Note ■ at the time of writing, the majority of package managers only have version 1.8
available. if you wish to install a more recent version of tmux then you’ll need to modify your
package manager to point to another registry where tmux can be acquired. as an example,
for apt you would first execute add-apt-repository ppa:pi-rho/dev followed by
apt-get update and finally execute the install command apt-get install tmux

Windows
If you’re on a Windows machine, you can install tmux as a Cygwin package.

Note ■ if Cygwin is already installed, you’ll have to rerun setup.exe and make sure to
select the tmux package.

http://brew.sh/

Chapter 1 ■ terminal multiplexer

7

Configuring tmux
tmux can be configured to work however you require it to. You can change the way it
looks, the key bindings it uses, and many different additional optional settings. This
configuration is primarily handled by a .tmux.conf file, usually placed within your
$HOME directory (e.g., ~/ but can be moved using a symlink).

By the time we’re finished in this chapter, and you have tmux open for the first time,
you should see something similar to Figure 1-2.

Figure 1-2. Expected tmux view, if using the configuration file described in this chapter

In the following section I’ll show you the contents of my own .tmux.conf file (and I’ll
assume you’re using it too). After I show you the file contents, I’ll break down each part of
it, so that you can decide if you would like to use/keep the specific settings or not.

Note ■ it may actually be better to skip this section until you’ve reached the end of the
book. that way, you’ll have more experience with the features of tmux to make a judgment
about what settings you want to keep within your own configuration. there is no harm,
however, in reading through this now, if you’re interested!

Chapter 1 ■ terminal multiplexer

8

unbind C-b
set -g prefix C-Space

bind-key L last-window

bind-key -r h select-pane -L
bind-key -r j select-pane -D
bind-key -r k select-pane -U
bind-key -r l select-pane -R

bind-key Up select-pane -U
bind-key Down select-pane -D
bind-key Left select-pane -L
bind-key Right select-pane -R

bind-key v split-window -h
bind-key s split-window -v

bind-key r source-file ~/.tmux.conf

bind-key -n C-k clear-history

bind-key < resize-pane -L 5
bind-key > resize-pane -R 5
bind-key + resize-pane -U 5
bind-key - resize-pane -D 5
bind-key = select-layout even-vertical
bind-key | select-layout even-horizontal

set -g default-terminal "screen-256color"

set-window-option -g utf8 on
set -g status on
set -g status-utf8 on

set-option -g status-keys vi

setw -g mode-keys vi

set -sg escape-time 0

set-option -g allow-rename off

set-option -g default-shell /bin/zsh

set -g base-index 1

Chapter 1 ■ terminal multiplexer

9

set -g history-limit 30000

set-option -g renumber-windows on

set -g status-right '#[fg=colour234,bg=white,nobold,nounderscore,
noitalics]#[fg=colour250,bg=colour234] %a #[fg=colour247,bg=colour234]
#[fg=colour247,bg=colour234] %b %d %R #[fg=colour252,bg=colour234,nobold,
nounderscore,noitalics]#[fg=red,bg=colour234]#[fg=white,bg=red] #H'
set -g status-bg white
set -g status-justify 'left'
set -g pane-border-fg white
set -g pane-active-border-fg red
set -g message-bg red
set -g message-fg white
setw -g window-status-separator ' '
setw -g window-status-current-format '#[fg=colour231,bg=colour31,bold]
#I #W #[fg=colour31,bg=white,nobold,nounderscore,noitalics]'

Note ■ in the preceding code snippet you’ll notice some some symbols that we use to
help improve the design of our tmux status bar, such as and . if you were to look at
the .tmux.conf file on Github (https://github.com/Integralist/ProVim/blob/
master/.tmux.conf) you’ll likely see a different symbol. this is because the display of
the icon will depend on whether you have utF-8 enabled and the relevant font installed. the
font you need is Ubuntu Mono derivative Powerline.ttf and you can download this
font from the above Github repository as well. the repository also includes a mac OS based
terminal theme file i use. Once you install that theme you’ll need to change the font setting
to the font mentioned above.

Change the Default Prefix
In the following code snippet, we’re changing the default prefix command to <C-Space>.
This is an important setting that I personally find makes a positive difference in my use of
tmux.

I typically find that on a laptop (and certain external keyboards), the default prefix of
<C-b> is too awkward to use on a day-to-day basis. I’ve tried many variations, such as
<C-a>, and even just `, as my prefix key, but none of them was as comfortable as <C-Space>.
(This also means, as I’m a heavy Vim user, that my little finger is conveniently placed on
the <Ctrl> key ready for a <C-w> command to be fired off.)

unbind C-b
set -g prefix C-Space

https://github.com/Integralist/ProVim/blob/master/.tmux.conf
https://github.com/Integralist/ProVim/blob/master/.tmux.conf

Chapter 1 ■ terminal multiplexer

10

As you can see, we’re first unbinding the default prefix <C-b>, then we’re resetting
the prefix globally (-g) to <C-Space>.

Quick Access to Last Window
If you find yourself jumping around different tmux windows a lot, you’ll realize the
benefit of a simple binding, such as the following code snippet demonstrates, which lets
you quickly jump back to the last window you were just in (saving you from having to
remember the identifier number of the window).

I’ll cover what “windows” and “panes” mean in the context of tmux (and how they
work), in the following chapters, so don’t worry too much about them now. If it helps,
just think of windows as equivalent to tabs you use in your web browser, and panes as
dividing your visible screen up into individual pieces (each piece is its own terminal).

bind-key L last-window

Vim Style Movements
The following code snippet allows me to use similar bindings to those found in the Vim
text editor (i.e. Vim’s home row keys) when moving to and from different panes. I actually
don’t use these bindings that much, as I prefer to use the arrow keys (see the following
section).

bind-key -r h select-pane -L
bind-key -r j select-pane -D
bind-key -r k select-pane -U
bind-key -r l select-pane -R

Again, we’re using tmux’s bind-key function to create the custom binding of
<P>{h|j|k|l}, and those bindings end up running tmux’s select-pane function, with its
corresponding flag to indicate the direction of the pane to be selected.

The –r flag tells tmux that the command is allowed to be recursive. This simply
means that when the prefix command is hit, and the user then presses one of the keys h,
j, k, or l, he/she can press one of those keys again, to cause the action to be triggered one
more time.

Note ■ the amount of times you can press on a custom key binding that has been set to
“recursive” depends on the repeat-time configuration (default value is 500ms). See the
tmux manual for more information.

In other words, if I had three tmux panes (with my focus being on the pane farthest
left of the screen), and I wanted to move to the one farthest right, then I could execute
<P>ll (thus moving two panes to the right), and this would be more efficient than
executing <P>l<P>l.

Chapter 1 ■ terminal multiplexer

11

Arrow Movements
The following bindings I use a lot! I find these much more useful and efficient than
executing the relevant select-pane commands within tmux’s command prompt
(that would become hideously tedious).

bind-key Up select-pane -U
bind-key Down select-pane -D
bind-key Left select-pane -L
bind-key Right select-pane -R

Simpler Pane Creation
I don’t use the following key bindings any more. I used to use them a lot, but I found
myself getting caught out when working from a tmux configuration that wasn’t my own
(e.g., remote server work or pair programming with a colleague), and so I decided it was
just easier to memorize the default <P>" and <P>% command (we’ll see these bindings
again in later chapters).

bind-key v split-window -h
bind-key s split-window -v

Source .tmux.conf
I don’t use the following binding very often, but it is handy to have included in your
configuration, as it makes it very quick and easy to reload your .tmux.conf file, if you’ve
made a change to it.

bind-key r source-file ~/.tmux.conf

Clear Pane History
I would say that I’ve probably used this feature once in my entire tmux career! I’ve
included it here simply for the sake of completeness (as you may find the need for it that
I never did). The binding does exactly what you might expect: the current pane has its
command history removed.

bind-key -n C-k clear-history

Easier Pane Management
Being able to easily resize panes (you’ll notice we use the resize-pane function and pass
through a default of five columns/rows) and balance out my layouts (I’ll explain this in a
moment) are essential tools for my day-to-day workflow.

Chapter 1 ■ terminal multiplexer

12

bind-key < resize-pane -L 5
bind-key > resize-pane -R 5
bind-key + resize-pane -U 5
bind-key - resize-pane -D 5
bind-key = select-layout even-vertical
bind-key | select-layout even-horizontal

The last two bindings use tmux’s even-vertical and even-horizontal layout
feature, to help balance the many panes you might have open, so that they have equal
distribution (i.e., each pane is made the same size).

For example, take a look at Figure 1-3, which demonstrates what a typical tmux
session might look like (many different sized panes open), then take a look at Figure 1-4,
to see what the even-vertical command does to that layout. Finally, take a look at
Figure 1-5, to see what the even-horizontal command does to the layout.

Figure 1-3. A typical tmux session, with multiple panes open

As you can see from Figure 1-3, we have multiple panes open (again, I’ll cover how
to create panes soon enough in another chapter), which utilize a different process in
each pane.

Chapter 1 ■ terminal multiplexer

13

In Figure 1-4, we can see the result of the key binding <P>=, which actually triggers
tmux’s select-layout function, and we pass it the value of even-vertical. You should
also notice that the result is panes that are vertically stacked evenly on top of each other
(as even-vertical suggests).

Note ■ i chose the = character for this custom key binding, as it adequately represents
the result of the even-vertical option.

Figure 1-4. The same tmux session with even-vertical applied

The top pane has Vim open, and the bottom left pane is displaying the result of
running the ls command, while the bottom middle pane is displaying the result of
running the top command (and so it isn’t static content but updates regularly, as you
would expect). The last pane is an SSH session into a CoreOS Linux box I have built on my
laptop (made available by the use of Vagrant, which is a tool for allowing quick and easy
creation of reproducible development environments—www.vagrantup.com).

http://www.vagrantup.com/

Chapter 1 ■ terminal multiplexer

14

In Figure 1-5, we can see the result of the key binding <P>|, which actually triggers
tmux’s select-layout function, and we pass it the value of even-horizontal. You should
also notice that the result is panes that are horizontally stacked evenly next to each other
(as even-horizontal suggests).

Note ■ i chose the | character for this custom key binding, as it adequately represents
the result of the even-horizontal option.

Color Correction
To ensure that tmux uses the correct color profile, we can inform tmux what the color
support is for our terminal emulator application, by changing the value of the default-
terminal option to be a derivative of “screen,” in this case, that our terminal supports 256
colors.

Although I have this setting in place, it’s strictly not needed, as the default value for
the TERM environment variable will ensure that tmux loads the right color profile (but only
certain versions of Mac OS X have 256-color support, so you may have to tweak this value
to suit your OS requirements).

set -g default-terminal "screen-256color"

Figure 1-5. The same tmux session with even-horizontal applied

Chapter 1 ■ terminal multiplexer

15

Enable utf8
We use a specific font (Ubuntu Mono derivative Powerline.ttf, downloadable from
https://github.com/Integralist/ProVim/) to control the look of our tmux status bar
(see the “Change the Status Bar Appearing” section, following), and because of this, if we
don’t enable utf8 support in tmux, those characters won’t display properly in the tmux
status bar.

set-window-option -g utf8 on
set -g status on
set -g status-utf8 on

Command Prompt Movements
The status-key option lets us modify how we move our cursor around while typing
within the tmux command prompt (e.g., the command prompt is accessed using <P>:),
meaning, if we set the value to vi, we can utilize some basic Vi motions.

If we enter the command prompt and type some text (or, more appropriately, some
tmux commands), we can press <Esc> and then use some basic Vi style motions, such as
w, e, and b, to move around, and i, to start typing again.

set-option -g status-keys vi

Cancel Immediately
I like to set the escape-time setting to zero, so that anytime I press <Esc>, that action is
triggered immediately. If I don’t have this setting, tmux will wait a fraction of a second to
make sure that <Esc> isn’t being executed as part of a sequence of commands.

set -sg escape-time 0

Prevent Program Window Renaming Trigger
tmux tries to be helpful by renaming the window tab to represent the process that is
currently running. I don’t like that behavior, as I prefer to manually rename my window
tabs (I’ll cover how to do this in an upcoming chapter).

As an example, if I were in a normal directory, the window tab would be renamed
to Zsh, to represent that I’m in a shell environment. If I were to start up a Pry session
(Pry is a Ruby CLI REPL tool), because I use JRuby (a Java implementation of the Ruby
programming language), then the underlying process would be Java, and so my
window tab would be renamed java.

After disabling this setting, if I manually rename my window tab to Foo, then no
matter what I do or open in that window, the window tab will continue using the same
name that I gave to it.

set-option -g allow-rename off

https://github.com/Integralist/ProVim/

Chapter 1 ■ terminal multiplexer

16

Change the Default Shell
This is a setting I don’t necessarily need to have, but I like to be explicit and keep it in.
The default value is determined by the SHELL environment variable, which for me is set to
/bin/zsh and means that for all new windows you open in tmux, it will use that shell as
its default.

set-option -g default-shell /bin/zsh

Human Numbering
All tmux windows (by default) are indexed from zero, which I find highly irritating, as
there is no reason for it to be that way. This setting fixes this problem, by forcing tmux to
index windows by starting from the number one.

set -g base-index 1

Increase Scroll-back
When scrolling tmux’s screen buffer (don’t worry if you don’t understand what that
means right now, as I’ll cover it in the next chapter), we can’t keep scrolling forever. There
is a limit of 2000 buffer lines that tmux will store in its history. Certain processes can easily
produce output that exceeds this limit, meaning we will find ourselves scrolling through
a large stack trace error, and we’ll stop halfway through the output, as we can’t scroll back
any further in the buffer’s history. To resolve this issue, we can increase this limit, using
the history-limit option.

set -g history-limit 30000

Automatic Window Renumbering
You’ll see in an upcoming chapter how to create new windows, and in doing so, you’ll
notice that tmux automatically numbers each window (starting from the base-index). If
we had three windows open, then the windows would be numbered 1, 2, and 3 (with the
assumption that the base-index option was set to 1).

If we removed the second window, the default result would be two remaining
windows, numbered 1 and 3. But with the renumber-windows option turned on, this
would mean tmux could automatically renumber the windows to 1 and 2.

set-option -g renumber-windows on

Chapter 1 ■ terminal multiplexer

17

Change the Status Bar Appearing
It seems the first thing most tmux users want to do is to configure the appearance of their
tmux status bar. It is the source of a lot of information, and so I can appreciate that users
are passionate about getting it to look perfect for their needs.

In Figure 1-6, we can see what the tmux status bar will look like when using the
preceding .tmux.conf configuration. Let’s take a moment to review the different parts of
the status bar that we’ve styled.

•	 [test]: This is the name of the tmux session.

•	 1 > zsh: This indicates there is one window running a Zsh shell.

•	 83%: This is my battery percentage.

•	 Wed < Sep 03 < 17:54: This is the current date and time.

•	 Marks-MacB: This is the name of my computer.

Figure 1-6. The tmux status bar redesigned by our .tmux.conf configuration

Following is the relevant code inside the .tmux.conf file that creates this status bar:

set -g status-right '#[fg=colour234,bg=white,nobold,nounderscore,
noitalics]#[fg=colour250,bg=colour234] %a #[fg=colour247,bg=colour234]
#[fg=colour247,bg=colour234] %b %d %R #[fg=colour252,bg=colour234,nobold,
nounderscore,noitalics]#[fg=red,bg=colour234]#[fg=white,bg=red] #H'
set -g status-bg white
set -g status-justify 'left'
set -g pane-border-fg white
set -g pane-active-border-fg red
set -g message-bg red
set -g message-fg white
setw -g window-status-separator ' '
setw -g window-status-current-format '#[fg=colour231,bg=colour31,bold]
#I #W #[fg=colour31,bg=white,nobold,nounderscore,noitalics]'

Note ■ the battery percentage you see in Figure 1-6 is a custom setting that i’ve not
included within the preceding .tmux.conf file, because it requires an external script that
has been untested on linux/Windows. For more details, visit https://github.com/
richo/battery/.

https://github.com/richo/battery/
https://github.com/richo/battery/

Chapter 1 ■ terminal multiplexer

18

Summary
So, this introduction to tmux has been quite fast-paced. I hope you’re now even more
excited to reach the upcoming chapters and discover more about how to use tmux.
With your custom configuration in place, you can move on to learning some of the more
practical uses of tmux. Let’s quickly recap some of the things we’ve seen so far.

We began by considering some of the failures of standard •	
terminal emulators and how tmux can help solve those issues.

I explained the meaning behind the name •	 tmux and what the
architecture pattern is (i.e., a server/client model), including the
ability to attach, detach, and reattach to preexisting sessions.

Next, I covered the tmux terminology (such as the prefix •	
command), so you have a clear language to help you understand
the upcoming chapters.

I also briefly covered the different ways you can get help with •	
tmux.

Last, we looked at installing and configuring tmux, followed by a •	
breakdown of the example tmux configuration file.

19

Chapter 2

Fundamentals

In the previous chapter, we became acquainted with the concept of tmux and what
this program could offer us in the way of resolving some standard terminal emulator
annoyances. In this chapter, we’re going to start using tmux and investigate some of its
different constructs and terminology, such as the following:

Sessions•	

Buffers•	

Panes•	

Windows•	

By the end of this chapter, you’ll know enough about tmux to be a confident user and
start integrating it into your workflow. There will still be much more to learn (and after
this chapter, we’ll start to investigate tmux’s other features), but for now, consider what
you learn here to be an essential and solid foundation upon which we’ll be building.

Sessions
tmux is designed around the idea of a “client-server” model (this introduces three new
terminologies: client, server, and session), and this means that when we start tmux
(from our terminal application), we’re effectively using the tmux client. The client will
attempt to create a new session on the tmux server, and if a server doesn’t exist, one will
be started up in a background process to which our client can connect.

Within a session, we can do anything we could do normally within the terminal
environment. The only difference is that, now, all our activity is recorded within a
tmux session.

Let’s consider a quick example that demonstrates why sessions are so useful.
We start work in the morning by opening a new tmux session. In this session, we’ll be
working on our company’s latest project, “X.” But after lunch, we realize that although
we’re not quite finished with what we needed to get done, we have to jump onto an older
project, “A,” so we can fix some critical bug. In this scenario, we currently have quite a
few tmux “windows” and “panes” open (I’ll explain these features later on in this chapter,
but for now, consider them similar to the tabs in your web browser and dividing your
screen up into multiple sections). It would be nice if we could keep our entire working

Chapter 2 ■ Fundamentals

20

environment in place, so that we can move on to this other project, and then when done
with “A,” we can come back and reinstate the entire “X” environment exactly as we left it.

This type of scenario occurs more often than you probably realize, and although there
are ways to work around it without the use of tmux, they’re not as elegant (as you’ll see).
The reason we have this power to detach and attach sessions at our leisure is because of
tmux’s client-server model, which means that while our computer is running, the tmux
server will stay alive (thus keeping open all the different sessions we’ve created).

Creating a Session
To create a new tmux session, we run the tmux command from our terminal application.
Doing this will create and connect to a new session that is automatically named by tmux
(unless you provide a name; see Figure 2-1).

Figure 2-1. Example of a new tmux session (automatically numbered)

Note ■ tmux sessions are named numerically by default. so if you run tmux, it will
create a session whose identifier is 0. If you were to run the tmux command again in
another terminal, the next session would be identified as session 1 (and so forth).

To help distinguish between different sessions you have running, you can give them
a descriptive name. To do this, you can run the following command:

tmux new -s my_session

Chapter 2 ■ Fundamentals

21

In the preceding example, we use the -s flag to indicate that we want to give the
session we’re about to create the name “my_session.” When you start a new session, you
are automatically connected to it, but you can start new sessions and not connect, by
adding the -d flag, which indicates a “detached” state, as follows:

tmux new -s my_session -d

Listing Sessions
When you have multiple sessions open, it can be hard to remember them all, so tmux
provides a complete list of every session you have created. To view the session list
(Figure 2-2), you can run one of the following commands:

•	 tmux ls (from outside tmux)

•	 <P>:list-sessions (from inside a current tmux session)

Figure 2-2. Example of listing current sessions (inside tmux)

When using the latter command, the list will be displayed within the current tmux
pane. To close the list, simply press <CR>.

Chapter 2 ■ Fundamentals

22

Selecting a Session
If you have multiple sessions open and you want to jump around the different sessions
currently available, tmux makes this very easy, by providing not only commands that
can be executed via the command prompt but also custom key bindings. (Admittedly,
I personally don’t have much need for this type of feature, but, hey, it’s interesting
nonetheless, I think).

The following command will list all available sessions and allow you to use the arrow
keys to navigate the list and select the session you wish to move to, by pressing <CR> when
your cursor is placed on the relevant session you want to open (see Figure 2-3 for the output):

:choose-session

Figure 2-3. Example of running :choose-session inside a single pane

Note ■ the current session is automatically highlighted.

The following key bindings will also allow you to move through all sessions
sequentially:

•	 <P>(: Move to next session

•	 <P>): Move to previous session

Chapter 2 ■ Fundamentals

23

Renaming Sessions
Most of the time, when I create a new session, I’m being lazy (and/or forgetful), and I
won't specify a name for my session. When I come back to look at what sessions I have
open (so I know what session I want to go back to), it can be tricky to determine what
session holds what project, if they’re all just numerically identified.

In such instances, it can be helpful to rename your sessions, so that they become
more descriptive of what they hold. This can be done while inside of tmux, using the <P>$
command. Doing so will drop you into tmux’s command prompt, allowing you to enter a
new name.

Note ■ You can access this feature from the command prompt by using <P> and then
typing :rename-session -t {current_id} {new_id}. You can also access this
feature (as with other command prompt-based commands) from outside tmux, using tmux
rename-session –t {current_id} {new_id}.

Closing vs. Detaching
Because tmux uses a client-server model, we can close our client but still keep the session
open and running. There are a couple of commands that are easily mixed up (a command
to detach from the session and another for actually closing the session). They may be
similar, but they do have subtle but very important differences that you need to be aware of.

If you have multiple panes open, executing •	 exit or <C-d> within
the terminal shell (for that pane) will cause the pane to be closed.
(If you have multiple panes open, then the remaining panes will
stay open until you run the same command within those panes).

If you only have one pane open within a window, executing •	 exit
or <C-d> within the terminal shell (for that pane) will cause the
pane/window to be closed. If you have only one window, the
entire session will be closed. (If you have multiple windows open,
only that window will be closed).

Executing •	 <P>d from any pane or window will cause the tmux
client to detach from the current session.

Application Bootstrap
tmux also allows us to create a new session and have it start up automatically inside a
program of our choosing. The following command demonstrates how we can start a new
session that automatically opens the Vim text editor program:

tmux new -s my_session vim

Chapter 2 ■ Fundamentals

24

Note ■ this only works with a single application. this means you can’t specify multiple
programs to be opened, without using more advanced automation commands (which we’ll
see in Chapter 6) as tmux doesn’t know how to handle multiple programs. For example, if
there were two programs specified – tmux new vim top – then tmux won’t know how to
load both of them (vim and top).

Buffers
When you establish a tmux session, you’re presented with a viewport to the standard
terminal screen. Effectively, it doesn’t look like much has changed (if it weren’t for the tmux
status bar now appearing at the bottom of the screen). This viewport is referred to as a buffer
(specifically an “output buffer”). What this means is that any information presented to you
is actually farmed off to stdout, which, in this case, is your terminal screen.

Scrolling the Buffer
Because this is just a viewport, if there was too much information to display and it didn’t
fit in your current screen, it would appear “off screen,” and you would have to scroll back
up the screen to see the content you missed. For us to scroll the buffer so that we can see
the additional content that didn’t fit our screen, we have to execute a command that puts
us into tmux’s “copy mode,” as follows:

<P>[

Note ■ Just to reiterate, as all key binding commands can also be accessed via the
command prompt, so copy mode can be accessed by executing <P>:, followed by typing
copy-mode.

You’ll know when you’re in copy mode by the fact of tmux displaying a counter in
the top right of the screen (Figure 2-4). This counter will look something like [0/28441]
(it’ll change depending on context).

Chapter 2 ■ Fundamentals

25

To explain what the counter represents, let’s consider the preceding example.
In the example, I ran the command tree, to display the tree structure of all files and
folders within my $HOME directory. This means there is lots of content that is impossible
to fit onto a single screen, and so it appears outside the screen viewport. When I entered
into copy mode, it displays the counter [0/28441], which tells us that there are currently
28441 buffer lines that have scrolled off the screen. The first number (0 in this case) is the
current offscreen line.

That might not make much sense, so let’s demonstrate what I mean by that
explanation. At the moment, while in copy mode, I’m at the bottom of the visible buffer.
There are 28441 lines of the buffer currently offscreen. If I use the up arrow key to move
up the buffer, the first number will stay set to 0, until I reach the top of the viewport. Once
my cursor moves one line beyond the viewport, you’ll see that the number zero changes
to 1, and then for every line after that I go upward, it increases, until I reach the top of the
buffer itself, where the number will stop at 28441 (as I’ve reached the top of the offscreen
buffer content).

Navigating Copy Mode
You can navigate the copy mode by using both arrow keys, as well as the standard Vim key
bindings hjkl. If you want to jump directly to a specific offscreen line, use the following
command: :{line_number}. So if you wanted to jump to the 50th line outside the
viewport, you would execute :50.

Figure 2-4. tmux in copy mode, indicated by top-right scroll position

Chapter 2 ■ Fundamentals

26

Note ■ this command doesn’t require the prefix, so it’s not <P>:50 but, literally, consists
of pressing :, followed by the line number (while in copy mode).

You can also use familiar Vim bindings such as gg and G to move to the top and
bottom, respectively, of the buffer content. The tmux copy mode also provides both a
forward and backward search facility similar to Vim, as follows:

•	 /{search_phrase} = search forward through the buffer

•	 ?{search_phrase} = search backward through the buffer

To exit copy mode you can press either one of the following keys:

•	 <CR>

•	 q

Panes
In tmux, the “panes” feature effectively splits the current viewport into subsections.
Each split of the screen is referred to as its own pane and contains a new shell instance
for us to work from.

When tmux connects to a session, you will note that you begin with a single window
(and, thus, a single pane inside that window). The window is also referred to as the
viewport.

To split the window into separate panes, you’ll need to decide whether you want to
split it into either a horizontal or vertical pane. To split the viewport into two panes that sit
horizontally to each other, you would execute one of the following commands:

•	 <P>:split-window –h

•	 <P>%

To split the viewport into two panes that sit vertically to each other, you would
execute one of the following commands:

•	 <P>:split-window -v

•	 <P>"

Note ■ remember to check the .tmux.conf file from the previous chapter
(also available online https://github.com/Integralist/ProVim/blob/master/
.tmux.conf), as you’ll find some custom key bindings that replace <P>% and <P>" with
<P>v and <P>s, which feels more at home for Vim users (although I personally prefer to use
the default bindings).

https://github.com/Integralist/ProVim/blob/master/.tmux.conf
https://github.com/Integralist/ProVim/blob/master/.tmux.conf

Chapter 2 ■ Fundamentals

27

Closing
As I mentioned earlier, to close a pane, you just have to run the command <C-d> or type
exit; but these only work when any programs in the pane are closed, and we’re back in
the terminal shell. What happens, though, if we have to force-close a pane? I have had
this problem quite a few times when running certain applications that have hit a fatal
error and can’t use either <C-c> or <C-d> to stop them.

In those instances, running the <P>x command will act as a “force quit.” It’ll
display a message (within the command prompt) asking if we would like to “kill-pane
{pane_number}? (y/n),” to which the response would be y, for yes.

Navigating
tmux makes splitting the current window viewport into multiple panes very easy and
inexpensive, but it does offer a few different ways to navigate your pane layout. There is a
simple sequential command that effectively rotates you through each pane in a sequence
(e.g., moving in one direction), until you reach the pane you want to work inside. Using
the <P>o command does this.

There is also a command prompt variation that allows you to move in any direction.
The following list demonstrates moving left, right, up, and down:

•	 <P>:select-pane -L

•	 <P>:select-pane -R

•	 <P>:select-pane -U

•	 <P>:select-pane -D

The command prompt version of a command can be quite tedious to execute, so
it’s best to create a set of custom key bindings to help make this task a little quicker and
easier. If you have the .tmux.conf configuration file from the previous chapter, then you’ll
find that includes the following custom bindings:

Vim style
bind-key -r h select-pane -L
bind-key -r j select-pane -D
bind-key -r k select-pane -U
bind-key -r l select-pane –R

Arrow keys
bind-key Up select-pane -U
bind-key Down select-pane -D
bind-key Left select-pane -L
bind-key Right select-pane -R

We can also jump straight to any pane we want to focus on by running the <P>q
command. When executed, this command will display a numeric value on top of each
pane. While the numbers are visible, you will be able to specify the pane you want to
move your cursor inside of, by simply typing the relevant number.

Chapter 2 ■ Fundamentals

28

Note ■ the numeric identifiers for each pane only appear for a brief moment, and
jumping to a pane only works while they are visible. so, act quickly and press the number of
the pane you want to jump to while the identifiers are on screen.

The <P>q command is again a key binding built into tmux that simply executes the
command prompt variation :display-panes (see Figure 2-5). So, if you’re looking to
do some kind of scripted automation of tmux (which I’ll cover in a later chapter), being
aware of the command prompt versions can be useful.

Resizing
To resize a pane in tmux, you’ll need the :resize-pane command. The following is an
example of its syntax structure:

<P>:resize-pane -t {pane_id} -D {amount}

In the preceding example, we’re telling tmux to target (-t) the pane we want to resize
(replace {pane_id} with a numeric id value), and then we tell it what direction (-d) to
resize and what amount to resize by (replace {amount} with a numeric value).

Figure 2-5. Result of tmux :display-panes command (before confirming selection)

Chapter 2 ■ Fundamentals

29

For all details of this command, see the documentation, but for the majority of users,
the following flags/options are what they need to know:

•	 -U: Resize window upward.

•	 -D: Resize window downward.

•	 -L: Resize window to the left.

•	 -R: Resize window to the right.

There is also a slightly simpler form, in which you can leave off the target, and tmux
will assume you want to resize the current pane, as follows:

<P>:resizep -D {amount}

If you’re using the .tmux.conf file (covered in the previous chapter), then you’ll
already have a set of custom key bindings that make it easier to resize the current pane,
as shown following:

•	 bind-key < resize-pane -L 5

•	 bind-key > resize-pane -R 5

•	 bind-key + resize-pane -U 5

•	 bind-key - resize-pane -D 5

Balancing
When creating a new split pane, tmux will try to keep them evenly balanced
(i.e., of equal size), but after a while, you can find they shift out of balance. This can
happen by chance but more often when you manually resize your panes to give more
focus on a particular file.

For example, if you’re doing test-driven development, you’ll likely have two panes
open: one holding your code under test, and the other displaying the results of your tests.
Chances are, you want your test-results pane to be quite small and take up less space than
the other pane holding the code being tested. To do this, you’ll end up manually resizing
the panes.

If you want to evenly distribute the space of yours panes (i.e., have them use an equal
amount of space), use one of the following commands:

•	 <P>:select-layout even-horizontal

•	 <P>:select-layout even-vertical

Note ■ We saw the effect of these commands in the previous chapter, so please refer
back to Figures 2-4 and 2-5.

Chapter 2 ■ Fundamentals

30

Windows
In tmux, windows work in a similar way to how “tabs” work within your web browser.
To create a new window, run the <P>c command (or :new-window, if you’re using the
command prompt).

You’ll notice when creating a new window that tmux will automatically name it after
the process that’s running. For example, it will name the window zsh, as that binary is the
default terminal shell running.

At any point, if you have to rename the current window, you can do this very simply,
using the <P>, command. At this point, tmux will ask you to enter a new name for the
window. If you’re using the command prompt, the following example demonstrates the
syntax structure:

:rename-window -t {window_id|window_name} {new_name}

Summary
In this chapter, we’ve covered the majority of the fundamental concepts that tmux is
composed of. Let’s take a quick look at what was covered so far.

We discussed how tmux sessions work, such as how to create/•	
list/select/rename and attach/detach a session, as well as what
benefits they provide.

We then moved on to the concept of buffers and the screen •	
viewport. I explained how overflowing content is displayed
outside of the viewport and is still available within the current
buffer, as well as how we can navigate the buffer, using tmux’s
copy mode.

After that, we looked at how panes work and at their relationship •	
to tmux windows, how we can create/manipulate and navigate
panes, and how we can trigger a window or entire session to be
closed, by removing all available panes.

Finally, we covered the concept of tmux windows and how to •	
create and rename them.

31

Chapter 3

Modifications

Using tmux “out of the box” is useful enough as it is, but most of the time, we’ll want to
make our lives a little easier, by adding some additional customizations (such as we did in
Chapter 23, when we added custom configuration to our .tmux.conf file).

The modifications we’ll be making this chapter aren’t all strictly tmux configurations.
For example, the following section contains modifications aimed at workarounds for
reducing complexity and duplication through the use of shell alias’ and functions. Other
sections are aimed at further modifications to the .tmux.conf file itself.

The number of modifications you make will be down to what it is you’re trying to
simplify for yourself. For myself, I find I only require a small number of modifications
that revolve around minor abstractions and fixing issues that I’ve stumbled across while
using tmux.

Abstractions
There is a vast amount of tmux specific commands (each with varying options), which
can be difficult to memorize. I find that the easiest way to resolve that particular problem
is to abstract away the commands for something more palatable.

For example, I would find myself constantly having to look up the documentation for
how to create named sessions, or attach to an existing session. No matter how often
I would run those commands, I could not commit them to memory.

I decided that the simplest solution was to abstract the relevant commands that
I found myself having the most difficulty with into some simple wrapper functions. These
functions would be added into my .zshrc shell configuration file.

Note ■ If you’re not using the Zsh shell then simply add these to your .bashrc file or
similar shell configuration file.

Most of the abstractions that I’ve created use standard shell functions; for others,
I use a shell alias. Either way, you’re free to use them or to modify them to suit your own
needs, or even remove them completely and use the plain vanilla tmux commands, if you
find this easier than working with abstractions.

Chapter 3 ■ ModIfICatIons

32

Creating New Sessions
The first abstraction I made was to the command I probably use the most: creating a new
“named” tmux session (as seen in the following code snippet):

function tmuxnew() {
 tmux new -s $1
}

Now this isn’t necessarily a difficult command to remember, but if we’re going to
be abstracting other tmux commands, there is no harm in keeping things consistent.
To execute this command, all I have to do is type tmuxnew {my_session_name} (you can
shorten the name, if you prefer, to tn or tnew; whatever works for you) into my terminal
shell, and if I forget to provide a name, the command will fail to run and remind me that
I’ve not specified a session name.

But this in itself can be a bit long-winded, because we have to think up a unique
name for each session we create. It would be better if we could create a new session that
was named after the project directory in which we are currently residing. That’s what the
following alias does for us. We simply run tat, and it’ll pick up the name of the current
folder and use that, as in the following:

alias tat="tmux new-session -As $(basename $PWD | tr . -)"

The way it works is by utilizing the –A flag for the new-session command. The –A flag
makes new-session behave like attach-session, if the specified session name already
exists. From there, instead of hard-coding in a session name (which wouldn’t be very useful),
we use the shell’s $() command substitution feature, which evaluates the commands
specified within the parentheses before the main/containing command is run. The returned
value from the subshell commands is what is used for the session name.

To get the folder name, we use the basename command and pass it the current
working directory name ($PWD). So if $PWD returned /Users/markmcdonnell, the basename
for that path would be markmcdonnell.

Finally, we pipe (|) the folder name through to the translate (tr) command, which
converts any dots (.) into hyphens, to ensure the session name is valid. This avoids issues
wherein the folder name is x.y.z, by converting it into a valid name, such as x-y-z,
before passing it to the new-session command.

Note ■ this technique was pioneered by http://robots.thoughtbot.com/.

http://robots.thoughtbot.com/

Chapter 3 ■ ModIfICatIons

33

Attaching to Sessions
As you can probably imagine, there are similar abstractions that we can make at this
point, such as the following code snippet, which indicates that I want to connect to a
specific named session:

function tmuxopen() {
 tmux attach -t $1
}

Typically, I’ll execute tmux ls to get a list of open sessions, and then once I have
that list of sessions and I know what session names I have already, I can run tmuxopen
{my_session_name} to reattach to the specified session.

Destroying Sessions
When I want to kill a specific session completely, I use the following function:

function tmuxkill() {
 tmux kill-session -t $1
}

For me, to use this function, I have to know the name of the session I want to kill, so I’ll
execute tmux ls first, to get a list of open sessions, and then once I have that list of sessions,
I’ll know which sessions I have already. Then I can run tmuxkill {my_session_name} to
destroy the specified session. But what happens when we want to destroy all our tmux
sessions?

Note ■ In the following example, I will demonstrate a manual solution to the problem
of destroying multiple tmux sessions at once, by using a collection of Unix commands.
there is a simpler solution using tmux’s built-in command tmux kill-server. the
reasoning behind showing readers a more manual process is to encourage you to become
more comfortable working from the command line and to take advantage of tools that can
help you resolve issues for which there are no built-in commands.

OK, so we could execute the tmuxkill function multiple times, but that’s just slow
and very tedious. Instead, we can use some Unix wizardry to help make killing all our
tmux sessions much easier:

alias tmuxkillall="tmux ls | cut -d : -f 1 | xargs
-I {} tmux kill-session -t {}"

Chapter 3 ■ ModIfICatIons

34

This might seem long and confusing, but with a little background information on the
individual commands, it can start to make a little more sense. I’m not going to get into the
nitty-gritty of how each of the commands works, as this isn’t a book about Unix, but I will
try and break it down as simply as I can.

A top-level view of the alias shows us that we have three commands in place
(tmux ls, cut, and xargs), and each command is separated by a pipe (|), which means
the result from the previous command is passed through to the next command.

The tmux ls command displays into stdout (i.e., the terminal screen) a list of open
tmux sessions that looks something like the following output, which highlights that I have
three separate sessions running on my machine (one called my_session, another called
work, and the last called side project):

my_session: 1 windows (created Thur Aug 28 17:01:34 2014) [118x32]
work: 4 windows (created Fri Aug 29 09:59:12 2014) [118x32]
side project: 2 windows (created Mon Aug 25 08:29:05 2014) [118x32]

From this output, we can see that the part we need is before the colon (:), as that is
the session name. For us to be able to parse the session name from the output, we have to
use the cut command. We tell the command to use the colon as a “field” delimiter (-d :),
which means it’ll split each line of output into chunks, using the colon as its indicator of
where to make a split. Then we tell the command to return us the first chunk or field (-f 1).

Now that we have the session name, we pass that through to xargs to handle. We first
tell xargs to hold the value we’re passing to it, so we can reference it using the syntax {}
(we do this via the -I {} flag). We then tell xargs what command we want it to execute
(in this case, tmux kill-session -t {}), and where we typically would use the session
name, we place a {}.

Because we’ve used the cut command (which processes multiple lines of data), each
listed tmux session will be processed and parsed for its session name and passed to xargs
to handle triggering the kill-session command.

Extending the Message Display Time
By default, tmux sets the length of time a message is displayed onscreen to 750 milliseconds.
This is a remarkably short amount of time for you to decipher the message that’s being
highlighted to you by tmux. Typically, I’ll misuse a tmux function, whereupon tmux
will notify me of the correct syntax (or the error), by utilizing its own display-message
command.

Inevitably, I always miss what the message said (or didn’t get enough time to
read the entire message, or the commands correct options), and so I have to resort to
executing <P>~ to display all messages that have recently been sent, just so I can get a
longer glimpse at the message I missed.

Instead of opening a list of old messages, a better solution is to extend the display
message time, using the display-time command. Let’s extend to two seconds the
message display time for all currently open windows (using the -g flag), by adding the
following setting to our .tmux.conf file:

set-option -g display-time 2000

Chapter 3 ■ ModIfICatIons

35

Repeatable Keys
When creating your own key bindings, tmux provides an additional flag (–r), which lets
you control how the key is repeated. In Chapter 1, I demonstrated a basic usage of the
bind-key command’s -r flag, but in this section, I want to cover another example of how
it is useful. Specifically, I would like to demonstrate how this flag can help to improve
tmux’s ability to switch panes.

To begin, let’s imagine we have two panes open horizontally next to each other.
The left pane has a text document open in the Vim text editor, and the right pane
(the currently focused pane) is a terminal shell. Now imagine we want to move to the
left pane (which has Vim open) and then start moving the cursor to the right (while
within Vim).

To do this, you would first execute <P><Left-Arrow> to move the cursor into the left
tmux pane, and then once inside the left pane (and subsequently within Vim), you would
press <Right-Arrow> to start navigating through the Vim buffer.

What you would typically find is that the cursor would not move to the right of the
buffer (inside of Vim); instead, the cursor would move back to the right tmux pane. But
why? The cause of this is to do with the use of tmux’s default configuration and the –r flag
when defining our custom key bindings.

A naive workaround to this problem would be to simply wait a fraction of a second
before we pressed the <Right-Arrow> key. But a better solution is to prevent the problem
altogether, by re-creating the default bindings ourselves to not use the –r flag, as shown in
the following code sample:

bind-key Up select-pane -U
bind-key Down select-pane -D
bind-key Left select-pane -L
bind-key Right select-pane -R

The -r flag indicates that the key binding can be “repeated.” What this means
in a practical sense is that when you execute the key binding, you can press another
tmux binding key without having to include the prefix. This helps to chain lots of tmux
commands together more efficiently.

Hence, when you execute the <P><Left-Arrow> (to move to the pane holding Vim),
followed by <Right-Arrow> (which you’d expect to move the cursor within Vim to the right),
it, in fact, moves the cursor back over to the right pane, as if you had pressed
<P><Right-Arrow>.

Restoring Broken Commands
Along with adding your own abstractions and working around subtle nuisances in how
tmux interacts with other programs, you may also notice some problems with your
terminal shell environment.

For me, one of the biggest annoyances was that my bck-i-search command (which
allows us to search iteratively back through our previous command history) stopped
working while within tmux.

Chapter 3 ■ ModIfICatIons

36

The reason for some of this was owing to my rebinding <C-r> to dynamically source
the .tmux.conf file, whereas other machines I would be working on would have all kinds
of different custom settings that could cause conflicts.

I found the easiest solution was to add the following snippets, which helped resolve
these issues by redefining the key bindings to do exactly what I expected them to:

bindkey '^R' history-incremental-search-backward
bindkey '^A' beginning-of-line
bindkey '^E' end-of-line

Summary
This was a relatively short chapter, but I trust you found the topics covered interesting
and helpful in resolving some practical concerns when using tmux in your day-to-day
workflow. Let’s have a quick recap.

We started by looking at some abstractions for creating and •	
attaching to new sessions and automating the session naming
process by utilizing some basic Unix commands to parse out the
current folder name.

Similarly, we looked at how we can kill individual sessions and, •	
again using some basic Unix scripting, kill all open tmux sessions.

We looked at how best to resolve an issue of the short amount of •	
time a message is displayed onscreen, using the display-time
command.

We moved on to resolving an issue with the default tmux •	
configuration, whereby interacting with Vim was made
problematic, due to the bind-key and its -r repeat flag.

Finally, we looked at resolving issues with standard terminal •	
commands that break once executed in the terminal, within a
tmux session.

37

Chapter 4

Copy and Paste

One of the most arduous tasks within tmux is the need to be able to copy and paste
content from a buffer. The problem isn’t so much copying content from our buffer
(although that isn’t the simplest of tasks, as we’ll see in the first few sections of this
chapter), but more so that there is no native capability to paste content that has been
copied from a tmux buffer into other external programs.

In this chapter, we’ll look at how copy and paste works in general (for all platforms)
and then review some workarounds for the issue of copying content from tmux into
another program for both Mac and Linux.

Note ■ Some of the solutions provided in this chapter are dependent on the use
of tmux 1.8+.

Copy Mode
In tmux, all content is placed inside a buffer, and if there is not enough screen space to hold
all of the buffer content, it will effectively be scrolled “off screen.” So for us to be able to go
back and view the offscreen buffer content, we first have to get tmux into “copy mode.”

I briefly covered copy mode in Chapter 2, but just to quickly recap: to enter copy
mode, either execute the key binding <P>[or the command <P>:copy-mode, which routes
through tmux’s command prompt.

Once you’re inside copy mode, you can navigate around, using the arrow keys and
quit copy mode, by pressing either q or <Enter> when you’re done.

Note ■ The Linux keys to quit copy mode are <Esc> and q but not <Enter>.

For us to begin making a selection of text, we’ll have to press <Space>, and this will
result in the text being highlighted as we start navigating around with the arrow keys. To
copy our selection, we have to press <Enter> for the selection to be placed into tmux’s
“paste buffer” (space in memory).

ChapTer 4 ■ Copy and paSTe

38

Note ■ The Linux key for selection is <C-Space>, and the key to copy the selection to
the paste buffer is <Esc-w> (or, more accurately, whatever your “modifier” key is set to on
your keyboard: <M-w>).

Paste Buffer
Once you have content in the paste buffer, you can then paste it into any other tmux
buffer you have open, which includes buffers that are open within a completely different
tmux session (see Figure 4-1)!

Figure 4-1. Example of tmux’s paste buffer

The paste buffer keeps a history of all copied content, so you can copy multiple
items and then keep track of them within the paste buffer. To list the current items stored
within the paste buffer, you can either execute the key binding <P># or the command
<P>:list-buffers, which routes through tmux’s command prompt.

Each item in the paste buffer is numbered, so you can easily identify the order in
which items were added (newest items are placed at the top). To close the list-buffers
screen, either press q or <Enter> (or q and <Esc>, if you’re a Linux user). If you would
instead like to see the full content of the latest buffer, there is a shortcut command that
does that and is run via the command prompt <P>:show-buffer.

ChapTer 4 ■ Copy and paSTe

39

The show-buffer screen is only a temporary visual aid. The content is not taken
out of the paste buffer, and it is not placed inside your current buffer. If you would like to
paste the latest item within the paste buffer into your current buffer, you can use the <P>]
key binding or the command <P>:paste-buffer, which routes through tmux’s command
prompt.

You can also capture the current pane in its entirety, using the command
<P>:capture-pane, and from there, you can even save the latest paste buffer directly
into a file, if you want, using the command <P>:save-buffer ~/Desktop/foo.txt.
(See Figure 4-2).

Figure 4-2. Output from capturing a pane and saving it to a file

If you have lots of items within your paste buffer and you need a specific item to
paste into your current buffer, you can select the item you require by executing either
the key binding <P>= or the command <P>:choose-buffer, which routes through tmux’s
command prompt. For example, you could open the Vim text editor within your current
buffer and then run <P>=, to begin navigating the list of items within the paste buffer, and
then select one to have its content pasted directly into Vim.

Note ■ If you’re using the .tmux.conf configuration provided in Chapter 1, then be
aware that the default tmux command <P>= (which maps to <P>:choose-buffer) has
been overridden. So you’ll either want to remove the custom key binding the configuration
file assigns to <P>=, or use the long form <P>:choose-buffer.

ChapTer 4 ■ Copy and paSTe

40

Pasting Between Programs
The problem that confuses most tmux users is the inability to paste what has been copied
from the tmux paste buffer into a different program (because the paste buffer is not the
same thing as the operating system’s clipboard). We’ll take a look at how to resolve this in
both the Mac and Linux operating systems.

Plug-in Solution
Before I jump into the manual process, there is a more automated solution, involving
installing a tmux plug-in called tmux-yank (https://github.com/tmux-plugins/tmux-yank),
which works for both Mac AND Linux operating systems and is very simple to install by
either following the manual installation steps or using a tmux plug-in manager
(https://github.com/tmux-plugins/tpm).

Mac OS X
If you’re using Mac OS X as your development environment, the solution involves the
installation of a program called reattach-to-user-namespace and a modification to your
.tmux.conf file.

The tmux program running on Mac OS X has issues accessing the namespace it
originates from, meaning tmux requires an additional program to reattach it to that
namespace. This is a bug that Apple fixed for the popular multiplexer Screen
(www.gnu.org/software/screen/), but the patch isn’t possible to apply to tmux, owing
to private undocumented functions being utilized by Apple. This means we have to
implement our solution.

First, to install the reattach-to-user-namespace program, you can either
manually compile it, by following instructions from its online repository here:
https://github.com/ChrisJohnsen/tmux-MacOSX-pasteboard, or you can take
the easier route and install it using the Homebrew package manager, which can be
downloaded by following the current instructions found at http://brew.sh/.

brew install reattach-to-user-namespace

The following code snippet demonstrates the changes we have to make to our
.tmux.conf file to configure tmux correctly:

set -g default-command "reattach-to-user-namespace -l '/bin/zsh'"
bind-key -t vi-copy 'v' begin-selection bind-key -t vi-copy 'y' copy-pipe
"reattach-to-user-namespace pbcopy"

Effectively, we’ve instructed tmux to use the wrapper program
(reattach-to-user-namespace) as the default command that should be run when a new
tmux window is created. The specified program then wraps around the Zsh shell.

https://github.com/tmux-plugins/tmux-yank
https://github.com/tmux-plugins/tpm
http://www.gnu.org/software/screen/
https://github.com/ChrisJohnsen/tmux-MacOSX-pasteboard
http://brew.sh/

ChapTer 4 ■ Copy and paSTe

41

The other two key bindings will make tmux more like Vim (i.e., more familiar and
easier to work with), by implementing similar key bindings for making a selection and
yanking content from the buffer. Once you have this modification, you will be able to
enter copy mode and simply hit v to begin making a selection of the buffer and then,
when ready to copy, press y to yank.

Note ■ For a complete breakdown of why the access to system clipboard is broken on
Mac oS X, and to understand how the solution works (including implementation details of
the reattach-to-user-namespace program), I highly recommend having a read through
the Github repo https://github.com/ChrisJohnsen/tmux-MacOSX-pasteboard,
which covers all of this in painstaking detail.

Linux
If you’re using Linux, you’ll have to make sure you have xclip installed first. Depending
on your distribution, the installation can be done using either a yum install xclip or
apt-get install xclip, so pick what’s relevant to you.

Once xclip is installed, you should simply have to add the following changes to your
.tmux.conf file:

bind-key -t vi-copy 'v' begin-selection
bind-key -t vi-copy 'y' copy-pipe "xclip"

Note ■ depending on your distribution, the bindings may have to be modified to suit.
For example, we can also use an alternative method of tmux save-buffer - |
xclip -i -sel clipboard to copy content, and tmux set-buffer \"$(xclip -o
-sel clipboard)\"; tmux paste-buffer to paste.

Working from a VM
If you’re running Linux within a virtual machine (VM) from the Mac operating system
(using VirtualBox, VMWare, or some other virtualization software, in addition to
something such as Vagrant to manage the setup/tear-down of VMs), you’ll find that the
preceding solution doesn’t work. This is because you’re running a GUI-less version of
Linux that has no concept of a system clipboard.

The clipboard programs you can install on Linux are typically developed to work
using a system known as X-Windows. So even if you install something like xclip on your
Linux VM, you’ll still have issues getting the preceding tmux configurations to send tmux
selections to the xclip program (as a terminal-only version of Linux inside a VM won’t
have the required X-Windows dependencies).

https://github.com/ChrisJohnsen/tmux-MacOSX-pasteboard

ChapTer 4 ■ Copy and paSTe

42

If you’re using Vagrant to start and manage your VMs, then the solution to this
problem is quite simple. First, you’ll have to install and run the software XQuartz
(http://xquartz.macosforge.org/, which is a Mac OS equivalent of the X-Windows
system). Second, you’ll have to modify your Vagrantfile to include the following option,
so that when you start up your VM, Vagrant can forward the XQuartz program onto the
VM to use (meaning xclip will start working):

config.ssh.forward_x11 = true

Finally, you’ll want to modify the .tmux.conf setting, so it looks like the following
snippet:

bind-key -t vi-copy 'v' begin-selection
bind-key -t vi-copy 'y' copy-pipe "xclip -selection clipboard"

Summary
Let’s take a moment to summarize some of things you’ve learned over the course of
this chapter.

We discussed the fundamental issue of copying and pasting with •	
tmux across different programs, along with some complexity with
the commands required to select and copy specific portions of
tmux’s screen buffer.

We first took a look at tmux’s copy mode and what its purpose is •	
(which is to allow us to scroll back through content that wasn’t
possible to fix in the screen’s viewport). You also learned the
different commands and key bindings that help us navigate
through copy mode (and the variations between Mac and Linux).

Then we moved on to reviewing tmux’s paste buffer, how •	
content is stored in the paste buffer, and how you might retrieve
content, using specific key bindings or more granular control
with commands such as :choose-buffer. (You also discovered
how to copy an entire pane’s content using the :capture-pane
command.)

Finally, we looked at a quick solution for ensuring we’re able •	
to properly copy and paste from tmux into different unrelated
programs, as well as how to make the process easier, by utilizing
some key bindings that make tmux behave more like Vim.

http://xquartz.macosforge.org/

43

Chapter 5

Pane/Window Management

Being able to efficiently manage your tmux windows and panes is a skill that usually is
acquired over a long period of time, as you find yourself becoming more comfortable with
this powerful screen-management tool.

In this chapter, I’m going to review some key binding shortcuts and offer up some
tips that will, I hope, help you become much more proficient in your daily workflow.
We’ll begin by looking at how we can better manage tmux panes and then look at some
of the tmux window features available.

Pane Management
You’ll find that a common process in tmux is creating lots of windows (as well as creating
multiple panes within those windows) for handling the different aspects of individual
tasks. The number of windows and panes you open is dependent on the type of work you
do and the user in general, but regardless of background, the following tips will help you
keep control.

Moving Between Two Commonly Used Panes
Imagine that you have four panes open in a grid format (i.e., two panes in one row and
two panes below in a second row), as the following diagram indicates:

| A | B |

| C | D |

If your cursor were currently focused inside the A pane, and you wanted to get to the
D pane, the quickest route to doing so would be to use the display-panes command
(or the key binding <P>q).

But this is always a mental hurdle to jump over when you’re trying to work quickly
and are bouncing back and forth between specific panes, i.e., moving back and forth
between the panes A and D.

Chapter 5 ■ pane/WindoW ManageMent

44

In these scenarios, I personally find the last-pane command (or, more specifically,
the key binding <P>;) to be a much more efficient way of moving back and forth between
two commonly used panes.

Full-Screen Current Pane
This is one of the most useful features of tmux panes, because it helps to keep other
content hidden. The typical use case I have for this is when I have two panes open, one
running Vim and the other my terminal shell that’s watching some code files for changes
and then displaying the results of my code’s suite of unit tests.

In this scenario, I’ll usually move my cursor’s focus into the pane containing Vim
and run <P>z (or the long form command, <P>:resize-pane -Z) to cause the pane to fill
the window (subsequently hiding the other pane I have open), so I can work primarily
on my code.

From there, I’ll continue working as normal, and if there is ever a point at which I
have to refer to my terminal to check my test suite output, I simply move into the other
pane, which triggers the full-screen mode to stop (or I would execute the same <P>z key
binding again to revert back).

Break a Pane Out into a Separate Window
Sometimes, a pane can start to contain so much content or process output that you wish
you had more room for it. In most cases, you can use the previous tip of going full-screen
with <P>z, but depending on the context, you might be more comfortable just moving the
content to a new window.

Luckily for us, tmux has a built-in command that handles that exact issue; it’s the
break-pane command, and it has a nice key binding shortcut <P>!

Convert a Window into a Pane (Within Another Window)
In the previous example, we broke a pane out of a window, so it became its own
self-contained window. In this section, we want to do the reverse behavior, which can
be achieved using tmux’s join-pane command, like so:

<P>:join-pane -s {source_window} -t {target_window}

In the preceding example, we tell tmux to join the source window into the target
window. This will remove the source window as a separate window and convert it into a
new pane within the target window.

Rotate Panes Within Current Window
When you have multiple panes open, it can be useful to rotate them, so that you have
one pane aligned next to another relevant pane (maybe to make some comparisons of
data easier).

Chapter 5 ■ pane/WindoW ManageMent

45

In Figure 5-1 (following), we can see that we have four panes open. In the top left,
we’re running htop (http://hisham.hm/htop/); in the top right pane, we’re running vtop
(http://parall.ax/vtop); within the bottom right pane, we’re running the standard/
ubiquitous top command; and within the bottom left pane, we have an empty terminal
pane not running anything.

Figure 5-1. Example of some processes running in separate panes

If we decided that we wanted to have the bottom-right pane (top) placed in the
top-left position (so that it was placed to the left of the top-right pane currently holding
the vtop process), we would run either the <P>} key binding (to rotate the pane
clockwise) or the <P>{ key binding (to rotate the pane counterclockwise).

In this example, it wouldn’t matter which pane we currently were focused on.
We would just execute the relevant command until the panes were positioned exactly
how we needed them to be.

Changing Pane Layouts
There are built-in algorithms that tmux uses to provide a different layout when triggering
the <P><Space> key binding. This binding can be executed multiple times and will cause
the layout of the panes to change, whereby you can stop whenever you find a layout that
suits your current working environment.

http://hisham.hm/htop/
http://parall.ax/vtop

Chapter 5 ■ pane/WindoW ManageMent

46

Synchronizing Pane Input
Imagine that you have a group of panes open, and for each pane, you are SSH’ed into
a different remote server (for which you’re tailing some system log file). If you wanted
to execute the same set of commands for each of the processes running on each of the
servers, then instead of doing this manually (i.e., executing the command in the current
pane and moving to the next pane and repeat), we can automate this slightly.

To do this, we have to instruct tmux to synchronize each open pane, using the
command <P>:setw synchronize-panes, so that any input entered into any one of the
panes will be replicated across all of them.

Note ■ By default, the command toggles the behavior, but you can specify an on or off
status as well (for the purpose of automation via shell scripts), for example, :setw
synchronize-panes off.

Window Management
Unlike panes, windows aren’t as much of a large management concern. There are also
a limited number of use cases for handling windows. Once created, you’ll either want to
navigate them, close them, move them, or swap them around. Let’s take a look at each of
these suggestions.

Navigating Windows
There are a couple of ways to navigate through windows: manually (using key bindings)
and via a visual list. Let’s review both of these options . . .

Manually
To navigate manually, you again have a few options available to you: sequential or
indirect. When navigating sequentially, we can use the key bindings <P>n (to move to the
next window) or <P>p (to move to the previous window). When navigating indirectly, we
can use the key binding <P>{n}, whereby you’ll replace {n} with the numerical index of
the window.

Visual List
We can have tmux display a list of the available windows for us and then use our arrow
keys to navigate the list. We display the list, using the <P>w key binding or via the
choose-window command (see Figure 5-2 for an example).

Chapter 5 ■ pane/WindoW ManageMent

47

When you have used your arrow keys to highlight the window you wish to access,
simply press <CR> to jump to the relevant window.

Closing Windows
There are three ways to close a window, as follows:

1. Immediate key binding

2. Command-line prompt

3. Confirmation prompt key binding

Immediate
Most of the time, I’ll use the <C-d> key binding, which sends an EOF
(http://en.wikipedia.org/wiki/End-of-file) signal to the terminal process,
causing it to instantly terminate.

Figure 5-2. Output of the choose-window command

http://en.wikipedia.org/wiki/End-of-file

Chapter 5 ■ pane/WindoW ManageMent

48

Command-Line Mode
The kill-window command will immediately close the current window.

Note ■ You can pass the -a flag, which will mean all windows will be closed, except the
current window or the window specified using the target -t flag.

Confirmation Prompt
The <P>& key binding is an abstraction around the kill-window command. It utilizes
tmux’s confirm-before feature (see the following Note) to ensure that a message is
displayed within the command-line prompt, asking you to confirm whether you are sure
you want to close the window.

Note ■ By default, the confirm-before command will display a generic message
constructed from the original command being executed. this message can be modified
using the confirm-before’s –p flag. You can find more information in the tmux manual.

Finding Windows by Search Phrase
If you want to find a window by either its identifier (i.e., the name you gave the window)
or by its contents, the <P>f key binding might be what you’re after. You can also use the
find-window command itself.

Moving and Switching Windows Within the Current
Session
Thanks to tmux’s client-server architecture, we have the extraordinary power to move a
window not only between a single session but also between completely different sessions,
using the move-window command. Let’s see a simple example first, in which we move the
window into another position within the current session.

Imagine that we have three windows open (indexed 1, 2, and 3), and we want to
move window 1 to the end of the list. To do this would require running the following
command:

<P>:move-window -t 4

You can see in the preceding example that we specify an index that isn’t already
taken and is higher than any defined (in this case, 4). This works by using the target (-t)
flag to specify what index we want to move the window to.

Chapter 5 ■ pane/WindoW ManageMent

49

Similarly, we can swap two windows. Using the same example as previously
(three windows, indexed 1, 2, and 3), imagine that we wanted to swap windows 1 and 3.
To do this, we would run the following command:

<P>:swap-window -s 1 -t 3

In the preceding example, we’ve used the swap-window command, along with
the source flag (-s), indicating the window we want to swap and the target flag (-t) to
indicate the alternate window it should be swapped with.

Moving Windows Between Different Sessions
It can be useful to reduce a complicated multi-window group of sessions down to a single
session. In order to do this, you would have to decide what windows from each session
you wanted to keep and somehow move them into another session that was to act as your
consolidated session.

To achieve this result, we could use the <P>. key binding (or the long-form
move-window –t {session:window_id} command). When you run <P>, tmux will ask
you to choose a window. This means you will have to enter the name of the session you
want to move the window into.

You can also specify a specific window index that you want it to move to. For
example, foo:2 would move the window to the foo session and position the window into
index 2. If you were to specify a numeric session identifier that wasn’t recognized, the
window would be moved to that index within the current session.

We don’t even have to be in a specific session to be able to move a window into
another session. In the following example, we use the “source” flag (-s) to indicate that
we want the index 1 window within the foo session to be moved into the bar session.

tmux move-window -s foo:1 -t bar

Note ■ if the current window has the same name as the session you’re moving it into, the
move will fail, as tmux will get confused and think you’re trying to move the window back
into itself.

Sharing Windows Between Sessions
You may find that, rather than moving a window to another session, you wish you could
just share it. This is possible by using tmux’s link-window command. Imagine that we
have two tmux sessions, foo and bar, both having one window each. The foo session’s
window is named fwin, and the bar session’s window is named bwin.

If we were currently inside the foo session, and we decided that we wanted to share
the fwin window with the bar session, we would simply have to execute the command as
follows: <P>:link-window -t bar:2.

Chapter 5 ■ pane/WindoW ManageMent

50

Note, in the preceding command, that we don’t specify a source. This is because
we’re inside the foo session. If we were not, we would have used the –s flag to identify the
source session/window.

Now, any changes that are made to the fwin window, whether it be inside the foo
session or the bar session, will be reflected in the other session. But be careful, as closing
the window in one session will close it in any other session it is shared with.

Note ■ Sometimes when sharing a window, you might hit upon a conflict, whereby the
destination session already has a window with the same identifier. to resolve this problem,
you can choose to “kill” the window in the destination session, by adding the –k flag to the
command.

Summary
You’ve learned some important shortcuts in this chapter. These techniques can not only
make you more proficient with multitasking across many different sessions but also give
you more tools to extend the automation side of your tmux working environment.
Let’s quickly recap what was covered.

We started by looking at some of the different techniques for manipulating and
managing tmux panes, such as how to move back and forth between two common panes,
converting the current pane into full-screen mode to allow us to take advantage of the
extra space, converting a window into a pane and changing the layout of panes within a
single window, and synchronizing the input for multiple panes.

Finally, we began to review the options available for manipulating and managing
tmux windows. This included considering multiple ways to navigate through windows,
using key bindings or a more traditional visual list; closing windows, using either key
bindings, command-line prompt, or an extra abstraction layer that incorporates the
confirm-before command; filtering a list of windows, using a search pattern; and moving
windows between either the current session or even external sessions, as well as how to
share windows between multiple sessions.

51

Chapter 6

Scripting and Automation

In this chapter, we’ll review some different built-in tmux commands that allow us to
control to a very granular level how existing tmux sessions look and function, as well
as modifying the boot-up process to open multiple sessions and to construct complex
environment layouts within those sessions.

We’ll also be taking a look at three variations of this process. The first will
demonstrate both simple and advanced ways to instruct tmux what to open and how.

The second example will demonstrate how to run shell commands without
triggering a new window to be generated, whereas the third example will return to a
similar concept, as shown in the first example, but this time, utilizing a very popular open
source alternative called tmuxinator.

Finally, I’ll make mention of some additional tmux programs related to restoring and
attaching existing processes.

Example 1: Automation
Following, we’ll first examine a basic example, to give you an idea of how we can
automate tmux to construct a specific layout. After that, we’ll look at a slightly more
complex example, to help demonstrate how we can chain together different tmux
commands to give us total control of the layout and content of a tmux session.

Simple Example
To get us started with our simple demonstration of how to construct layouts
programmatically, let’s first put together a set of basic requirements.

1. Instruct tmux to connect to the last active session.

2. Access the first window open within that session.

3. Open the Vim text editor (and drop us into Vim’s INSERT mode).

The command we need to actually fulfill these requirements is very simple and looks
like the following:

tmux send-keys -t 1 "vim" "C-m" "i" "programmatic content here"

Chapter 6 ■ SCripting and automation

52

In the preceding example, we’re executing the send-keys command from outside
tmux, to indicate that this could well be dropped into an automated shell script, but it’s
fine to execute this via the tmux command prompt. The send-keys command requires us
to specify a target (-t), and all the arguments that follow the target are “keys” to be sent to
that target and executed sequentially.

So, in this case, we tell it to connect to pane one, but pane one of what? How does
tmux know what session to connect to? In this instance, it uses the last active session we
were connected to. Next, we pass the string "vim", followed by the string "C-m", which
triggers Vim to open (this is effectively another way of describing the <Enter> key).

Finally, we execute "i" (which, if that key were pressed when Vim was open, would
drop us into INSERT mode), followed by "programmatic content here", which, if you’re
playing along at home, you’ll notice is entered into the current Vim buffer for us.

Targeting Specific Sessions
As we saw previously, we can target a pane in the latest session and control it with any
command we wish to send to it. But we can also specify a specific session we want to
target, as follows:

tmux send-keys -t foo:2 "vim" "C-m"

In the preceding example, we’re telling tmux to open Vim and to specifically target
(-t) the foo session and the second pane within that session (:2).

Advanced
Now that we’ve seen some basic sample usage, let’s use some more tmux commands and
string them together to build up a complex automated layout.

What we want to do in this example is automate the creation of a new session. In
this session, we want two windows. The first window should show us the result of the top
command. The second window should have Vim open and entered into INSERT mode.
Let’s consider what this automation looks like.

tmux new -s foo -d "top" && \
tmux split-window -t foo:1 && \
tmux break-pane && \
tmux send-keys "vim" "C-m" "i"

In the preceding example, we’re executing a long list of commands (using the logical
&& operator to run them sequentially) across multiple lines (by using the backslash
character, \), but we could very well place this command inside of a single line of a shell

Chapter 6 ■ SCripting and automation

53

script and execute it that way. Let’s now break down the preceding command, so that we
can better understand what it’s doing.

•	 tmux new -s foo -d "top": We create a new session named
foo and detach it (e.g., we don’t jump into tmux; we stay at the
terminal, and we tell tmux to run the top command inside the
first window of that detached session).

•	 tmux split-window -t foo:1: We tell tmux to split the first
window inside the foo session. (This creates two panes in the first
window: the first pane holds the results of our top command, and
the second pane is empty and holds our cursor’s focus.)

•	 tmux break-pane: In the previous command, we targeted the foo
session, so we won’t have to tell tmux to target it again when we
execute the break-pane command. Now, we tell tmux to break the
current pane into its own window (this means the empty pane we
created earlier is now its own window).

•	 tmux send-keys "vim" "C-m" "i": tmux’s current focus is the
new window we just made via the break-pane command, and so
from here, we tell tmux to open up Vim and enter INSERT mode
(we saw this in our earlier “simple” example).

Example 2: Shell Commands
tmux provides a feature called run-shell that (as the name suggests) lets you run shell
commands within tmux, but crucially, it doesn’t create a new window for the results to
be displayed in. Instead, the results are displayed temporarily within “copy mode” of the
current (or specified) buffer.

Let’s see the syntax structure of the command, and then we’ll take a quick look at an
example of how we can use it.

<P>:run-shell [-b] [-t {pane_id}] "{shell_command}"

In the preceding syntax structure, we can see that the tmux command accepts a -b
flag, which allows us to run the shell command as a background process. This is useful
because, if it’s a long-running process, we don’t want to be blocked by it. We can also
instruct tmux to display the result of the command within a target pane of our choice,
using the -t flag. Finally, we have the command itself we want to execute.

Note ■ the -b and -t flags are optional. if you don’t specify a target pane, the current
pane is used.

Chapter 6 ■ SCripting and automation

54

Once you run this command, the result of the shell command is displayed within
tmux in copy mode, allowing you to scroll through the buffer. The run-shell command
can be useful in situations in which we want to bind multiple commands to a single key
binding. For example:

bind-key e select-pane -L \; run-shell "ls -la && ls ~/Desktop"

In the preceding example, we bind multiple tmux commands to the e key
(we’ve bound the select-pane and run-shell commands), and that single key
binding (when executed) will attempt to select the next pane to its left and then run the
ls –la && ls ~/Desktop command, displaying the results within that pane’s copy mode.

This command can also be useful for automating tmux via external scripts. For
example, if you have an existing session open with two windows, you could script tmux at
some point in time to execute a shell command to target the results into one of the panes
within that session.

Conditional Key Bindings
There is a powerful and dynamic feature in tmux that lets you test your environment and
bind a different set of commands to a custom key binding, depending on the result of
your test.

As an example, the following code snippet uses tmux’s if-shell command to
first check if the folder Dropbox exists. If the value returned from the test is greater than
zero, that means the folder exists, and we’ll see the message “Folder exists” displayed.
Otherwise, if the folder doesn’t exist, we’ll see the message “Folder does not exist.”

bind-key u if-shell "test $(ls | grep Dropbox | wc -l) -gt 0"
"display-message 'Folder does not exist'" "display-message 'Folder exists'"

What this ultimately means is that you can cater your tmux key bindings to suit the
environment it is running in. For example, in Chapter 4, we looked at binding a different
command, based on whether you were running on a Linux platform. We could have used
the if-shell function to dynamically bind the value, depending on whether the xclip
function was available or not. (I didn’t do that, as there was other functionality that was
specific to Linux that required modification.)

Example 3: tmuxinator
Remember our first example where we wrote a script to automate the construction of
different layouts for us? Well, there is a Ruby-based project called tmuxinator
(https://github.com/tmuxinator/tmuxinator) that simplifies the script-writing
process, by allowing us to trade our shell script for a YAML configuration file.

You can install tmuxinator by using the following command: gem install
tmuxinator. To create a new project is as simple as running the following command:

tmuxinator new {project}

https://github.com/tmuxinator/tmuxinator

Chapter 6 ■ SCripting and automation

55

After running the preceding command, you should notice that a .tmuxinator folder
has been created in your user’s $HOME directory, and inside that folder will be a YAML file
named after your project.

For example, if the command you executed was tmuxinator new foobar, you should
see the following folder structure within the directory in which you ran that command:

.
├── .tmuxinator
│ └── foobar.yaml

The content of the YAML file will look something like the following (these are the
default settings, which you’ll want to change to suit your own project requirements):

name: foobar
root: ~/your_directory
windows:
 - editor:
 layout: main-vertical
 panes:
 - vim
 - guard
 - server: bundle exec rails s
 - logs: tail -f log/development.log

In the preceding YAML file, you’ll see that the windows key defines different windows
you want to have open when you run the project. You can see that, by default, if you
specify a window key, the value is a command that tmux can run. In the preceding
example, we have a server window that tells tmux to run the bundle exec rails s
command (which starts up a web server for a Ruby on Rails–based project), and the logs
window runs the tail -f log/development.log command, which displays information
from a specific log file on our file system.

The editor window is a little bit more interesting, as it gives us more control over
the layout of our editor window. In the preceding example, we can see we’ve defined a
layout we want to use (in this case, main-vertical), along with a set of panes we want
the window to contain, and what commands to run within those panes (in this case,
execute the vim and guard commands).

Now, whenever we want to run our project, we use the following command:

tmuxinator start {project_name}

Depending on your requirements and experience writing your own provisioning
shell scripts, you might find tmuxinator is a welcome addition to your toolset and that
the configuration format works better for you than rolling your own tmux-focused
shell scripts.

Chapter 6 ■ SCripting and automation

56

Restoration
There are two areas of tmux that have (up until recently) been problematic and have gone
unresolved, but we’ll take a look at some potential workarounds that could be the first
steps toward finally finding a resolution. They are:

1. Attaching an existing process to a new tmux session

2. Restoring state upon a system restart

Attaching Processes
The first issue is one that can (at the time of writing) only be resolved for the Linux
environment by installing a binary called Reptyr (https://github.com/nelhage/reptyr),
using your package manager of choice. For example, either yum install reptyr or
apt-get install reptyr should do the trick.

The reason this solution is Linux-only is because Mac OS X and other Unix
environments don’t support the ptrace shell command (among other required
Linux-based system architecture). Although this restriction might not be such a big
deal if you mainly use a Mac for GUI-based work and a virtual machine (e.g., tools
such as VirtualBox and VMWare alongside Vagrant and Docker) for your development
environment.

The usage process itself is pretty simple.

First you make your process a background process (i.e. •	 <C-z>).

Disown the process from its parent (e.g., •	 disown {process_name}).

Start your multiplexer (e.g., •	 tmux).

Attach process (e.g., •	 reptyr $(pgrep {process_name}) or
reptyr {pid}).

Note ■ reptyr can work with other multiplexers (e.g., screen).

Restoring State
The problem of restoring state, when your operating system restarts, is a tricky one,
because there is only so much that can be done to record the data you were working with
and the state it was in at the point of shutting down.

Luckily, there is a tmux plug-in called tmux-resurrect (https://github.com/
tmux-plugins/tmux-resurrect), which solves this exact problem and will go to great
lengths to restore all of the following items:

All sessions, windows, panes, and their relevant order•	

The current working directory for each tmux pane•	

https://github.com/nelhage/reptyr
https://github.com/tmux-plugins/tmux-resurrect
https://github.com/tmux-plugins/tmux-resurrect

Chapter 6 ■ SCripting and automation

57

Exact pane layouts within tmux windows•	

Active and alternative sessions•	

Active and alternative windows for each session•	

The tmux windows that have focus•	

The active pane for each tmux window•	

Programs running within a tmux pane•	

Restoration of Vim sessions (this is optional) •	

Note ■ the author of the tmux-resurrect plug-in also provides a tmux plug-in manager
(https://github.com/tmux-plugins/tpm), which makes installing tmux add-ons and
plug-ins much easier.

Summary
In this chapter, I’ve covered some very important and fundamental functionality of tmux,
which allows us to control the way tmux works and, if used in the right situations, can
help to automate the entire process of bootstrapping your working environment. Let’s
take a moment to review what you’ve learned.

First, I demonstrated how to programmatically control tmux, •	
using the send-keys, split-window and break-pane commands
(including how to target specific sessions).

We then saw how to execute shell commands and review the •	
results within the current pane. (You now know that we can also
direct the output of any shell command into any tmux pane
of our choosing, by using the -t flag.) You also learned how to
conditionally bind a key command, based on some dynamic
equation.

We also examined the popular tmuxinator Ruby program, •	
which helps to automate complex layouts via a simple YAML
configuration file.

Finally, we reviewed some potential workarounds to traditionally •	
complex problems related to restoring state within tmux (caused
by a system restart) and also how to attach an already running
process to a tmux session.

https://github.com/tmux-plugins/tpm

59

Chapter 7

Pair Programming

When using tmux, we sometimes forget how powerful the client/server model that it
implements is. For example, we all know that because of the client/server model, we can
create multiple sessions on a single server and then at any point, we can jump between
sessions, as we are able to connect to any session on the tmux server that we have
running in the background.

But who’s to say that the server has to be running on our machine! This is where this
chapter steps in, to help demonstrate how you can utilize tmux to benefit users who are
pair programming.

If you’ve not heard the term before, pair programming is the process of two
developers sitting around a single computer and working together to solve the problem
they’ve been presented with. The process takes the form of one developer typing code,
while the other developer helps keep the thought process flowing (e.g., they aren’t just
sitting around twiddling their thumbs, waiting to jump on the keyboard). After a few
hours, the pair will swap positions, allowing the other person to take a different mindset
and approach to the problem they are solving.

As you can imagine, this is typically done in a single location (i.e., both developers
are in the same room, sitting at the same computer), but what happens if you have to pair
program with a colleague who works remotely? Well, this is where using tmux can help,
but before I dive into the details of how this works, I would like first to present you with a
one-line solution . . .

The Simple Route
I would argue that the easiest way to pair program with a colleague is by using the free
service http://tmate.io/, which allows you to install their software tmate onto your
computer and thus share your computer with a remote colleague.

To install the software, please refer to the web site for instructions (tmate is
available for both Mac OS X and Linux distributions). Once installed, you can execute
the single command tmate, which first utilizes a modified version of tmux (so you’ll
notice that it will pick up your local .tmux.conf configuration file), and once started,
will display an ssh command for you to provide to your colleague, allowing him/her
access to your computer. The ssh command will look something like the following: ssh
abcd1X0frvh1egxSysQYa1GIz@am.tmate.io.

http://tmate.io/

Chapter 7 ■ pair programming

60

Once your colleague has connected to the session, you’ll see a small message at the
foot of the tmate program, indicating that a user has joined the session: Your mate has
joined the session (212.58.231.91).

From here, you can do most things you can do using standard tmux (although
there are some commands that won’t work, such as moving a window). It’s important
to remember that the user who has connected to the tmate session now has complete
control over your computer, and so that user could effectively rm –rf / and wipe your
computer clean (or install any kind of software when you weren’t looking), so take care to
whom you give the ssh command.

I would almost always recommend this as your go-to solution, as it’s super-simple to
set up, compared to doing things manually yourself (which we’ll see in the next section).

The Custom Route
There are multiple ways to pair program using tmux. In the preceding section, we used
a simple predefined route that automates some of what we will be looking at within this
section. For example, we could open ssh access on our own computer, which would allow
another user to connect directly to our machine. Alternatively, we could install tmux on
a remote server and have both users connect to that single server, and, again, from there,
we would have a few different options available to us.

Each option presents different pros and cons, and I’ll aim to demonstrate each one,
so that you can choose for yourself which is the most appropriate. I want to state upfront
that I don’t have the luxury of a dedicated server, and I’m far too cheap to spend even a
few pennies spinning up some Amazon EC2 instances (although they are very cheap).
So, instead of having a real server, I’ll use Vagrant (www.vagrantup.com) to set up these
examples and use it to mimic different user logins.

Note ■ Vagrant is a tool for making the creation of virtual machines quick and easy.
i’ll cover it in more detail in the next chapter, but for now, i’ll cover just enough to carry out
the examples.

Vagrant Setup
To get started with Vagrant, first download it from www.vagrantup.com and install it.
Vagrant has a hard dependency on a virtualization program, such as VirtualBox, which
can be downloaded from www.virtualbox.org. Once you have both installed, you’re
ready for the next step.

http://www.vagrantup.com/
http://www.vagrantup.com/
http://www.virtualbox.org/

Chapter 7 ■ pair programming

61

Vagrant is a command line–based tool, and it works by reading configuration settings
from a file called a Vagrantfile. The following code snippet shows the content of the
Vagrantfile required to bring up an instance of a Linux Ubuntu instance:

VAGRANTFILE_API_VERSION = "2"
Rosary
Vagrant.configure(VAGRANTFILE_API_VERSION) do |config|
 config.vm.box = "ubuntu/trusty64"
end

You’ll probably have noticed that the configuration is written using Ruby
programming and that it’s also quite a small file (there are many configuration settings
available, but for our purposes, this is all we need).

To bring up our Linux Ubuntu instance, we simply run the following command
vagrant up, (you’ll need to run this command from the same location as your
Vagrantfile) which will then send a stream of output to our terminal screen, informing
us that Vagrant is spinning up a new Ubuntu instance for us. Once the instance is
successfully brought up, you can log in to the VM (virtual machine) by running the
command vagrant ssh.

Note ■ Vagrant works with multiple virtualization programs. the main two are VirtualBox
and VmWare. if you have more than one of them installed (and VirtualBox is not the default),
the vagrant up command will require an additional flag that indicates the provider to use,
for example, --provider=virtualbox or --provider=vmware_fusion.

Share Session via Single-User Account
In the following steps, we’ll be creating a single user on our VM (if you’re applying this to
a real-world situation, this would be a case of you creating a new user on a remote server),
which means two individual users can then log in to the VM, using this new single/shared
account. Once the first user is logged in, he or she will create a new tmux session.

Log in to the VM:•	

vagrant ssh

Switch to root user (so you can add new users):•	

su

Create new user •	 foo:

adduser foo

Chapter 7 ■ pair programming

62

Close connection to the VM:•	

exit

Reconnect to the VM using the new •	 foo user:

ssh -i $(vagrant ssh-config | grep IdentityFile | awk
'{print $2}') -l foo -p 2222 -o UserKnownHostsFile=
/dev/null -o StrictHostKeyChecking=no 127.0.0.1

Create a new session called •	 pairing:

tmux new-session -s pairing

Note ■ the ssh command to access the Vm using the new foo user is quite intense.
this is because the default user for the vagrant ssh command is root. You can work
around this by modifying the Vagrantfile to include config.ssh.username = "foo" and
then running the command vagrant reload to cause the change to take effect. Since you
already added the foo user inside the Vm, this means you could now use vagrant ssh
instead.

Now, in another terminal window, run the following commands, which effectively
is us simulating another user on a different computer logging in to the same machine the
previous user has logged in to. (If you were trying to apply this to a real-world situation,
this would be one in which two users log in to a machine using the same account, and
because they’re using the same account, they will see the same tmux session.)

This is the same command as above; we’re logging into the VM:•	

ssh -i $(vagrant ssh-config | grep IdentityFile | awk
'{print $2}') -l foo -p 2222 -o UserKnownHostsFile=
/dev/null -o StrictHostKeyChecking=no 127.0.0.1

This command isn’t necessary; it simply proves the session is •	
available for us to connect to:

tmux ls

Attach to the relevant tmux session:•	

tmux attach -t pairing

The downside of this approach is that although two separate users are now able
to pair program together using a single tmux session, the users are intrinsically linked;
meaning if one user creates a new window, the other user will automatically be focused
on that new window (i.e., you can’t have one user work independently within his/her own
window, although we’ll solve this problem in the next section!).

Chapter 7 ■ pair programming

63

Individual User Control
To solve the problem of two users (logged in under a single shared account) not being
able to independently work in a single tmux session is oddly quite simple to achieve.
The solution is in how the second user connects to the existing tmux session created by
the first user.

When the first user logs into the VM (as the foo user), he/she will create a new tmux
session with the following command:

tmux new-session -s firstuser

When the second user logs in to the VM (again, as the foo user), he/she will create a
new session as well, but the difference is that that user will target the other user’s session,
using the –t flag, like so:

tmux new-session -t firstuser -s seconduser

Once this is done, both users will be able to see the same windows, but any new
windows created occur independently of each user, so one user doesn’t automatically get
thrown into the new window.

Share Session with Multiple Users
If you would prefer to have users log in to a machine using their own logins but still share
a tmux session so they can pair program, the solution is to modify where tmux stores its
socket information and assign group access to the new location. We just need to make
sure that the individual users are added to the group, so they can access the socket
information and thus share the session information.

Note ■ You won’t be able to work independently inside the tmux session, if using the
socket technique (see the next section for a workaround).

The following steps must be carried out before the two users log in to the server.
(This is because their user accounts are added to a new group. If you’re applying this to
a real-world situation, you might not have to create the two user accounts, as they might
already exist, and so you’d just need to make sure the user accounts are added to the
relevant group.)

Log into the VM:•	

vagrant ssh

Switch to root user (so you can add new users and groups):•	

su

Chapter 7 ■ pair programming

64

Create a new •	 foo user:

adduser foo

Create a new •	 bar user:

adduser bar

Create a new •	 baz group:

addgroup baz

Create a directory to hold our socket data:•	

mkdir /var/qux

Apply the •	 baz group to the socket data folder:

chgrp baz /var/qux

Change the permissions for the socket data folder, which will •	
ensure that any new files added are accessible to the group:

chmod g+ws /var/qux

Add the •	 foo user to the baz group:

usermod -aG baz foo

Add the •	 bar user to the baz group:

usermod -aG baz bar

Switch to the new •	 foo user:

su foo

Now, in another terminal window, run the following commands, which effectively
is us simulating another user on a different computer logging in to the same machine the
previous user has logged in to, but this time, the user is logging in with his/her own bar
account (which was created in the preceding steps):

Log in to the VM:•	

vagrant ssh

Switch to the new •	 bar user:

su bar

Chapter 7 ■ pair programming

65

Now, at this point, we have two users logged in to the VM under different user
accounts. If the foo user were to create a new session using the standard tmux command
(i.e., tmux new-session –s mysession), the bar user would still not be able to see that
session, because the session was created using the default socket location.

To work around this issue, we have to use the –S (socket-path) flag when creating the
session. So, if the foo user executes the following command: tmux -S /var/baz/pairing,
he or she will be dropped into a new session, in which the data is stored in a file called
pairing.

Now, the bar user can connect to that session, by using the following command:
tmux -S /var/baz/pairing attach.

Remotely Accessing a Local VM
Finally, in this section, we’ll review some additional features of Vagrant that can let us
utilize the Vagrant setup and pair program remotely, using Vagrant’s sharing functionality
(which allows you to share your VM), and will also let us have independent control over
tmux windows. The Holy Grail!

For what I’m about to propose to work, the person who is going to share his/her VM
has to sign up for a free account with Vagrant (visit https://vagrantcloud.com). Once
that person has an account, we’ll be able to proceed, by having the person sharing the
VM log in to their Vagrant Cloud account via the command line, by executing the vagrant
login command.

Once logged in, the same user will share his/her VM by executing the command
vagrant share --ssh, which will ask the user to enter a password, to secure the
connection. After this is done, Vagrant will display a sample command that you can
provide (along with the password) to the user you wish to pair program with. The
command will look something like the following:

vagrant connect --ssh {dynamically_generated_name}

The user who shared his/her VM will have to open a new terminal shell and execute
the following commands:

•	 vagrant ssh: Log in to the VM.

•	 adduser foo: Create a new shared user.

•	 su foo: Switch to that user.

•	 tmux new-session -s foosession: Create a new session.

When the other user you shared the link with has connected to the shared VM, he or
she will have to run the following commands:

•	 su foo: Switch to the new shared user.

•	 tmux new-session -t groupedsession -s mysession: Create a
new session but specify the foosession as their target session.

https://vagrantcloud.com/

Chapter 7 ■ pair programming

66

Summary
This has been quite a technically intensive chapter, although it has covered lots of
fundamental aspects, to get tmux to bend to your specific requirements. We’ve used a few
different features of Vagrant to help us mimic the situation in which you would ultimately
be connecting to a real server (or opened up SSH access on your own machine).

We also demonstrated how Vagrant’s built-in VM sharing functionality can help us
to work locally on our own machine and to share it with a remote user, while still taking
advantage of tmux pair programming with independent control over tmux windows
(which is both incredibly powerful and useful).

But if all of that seems like hard work, remember that the third-party tool
http://tmate.io can take care of all of that hard work for you (with the exception of
the independent window access).

http://tmate.io/

67

Chapter 8

Workflow Management

Software engineering and web development in particular have changed quite significantly
over the past few years. We now have tools at our disposal that would seem almost magical
in the past. In this chapter, I am going to demonstrate some of these programs alongside
tmux and the Vim text editor, to show you how you can get a more realistic and accurate
development environment. I’ll also be demonstrating use of the programs Reptyr and
tmux-resurrect, so you can see how they fit into your typical workflow.

But before we get into the details of “how,” let’s consider the “why.” What problems
are these tools trying to solve? Well, to answer that, we have to know a bit of the history that
got us to where we are today. The traditional (and massively simplified) web development
process would have taken steps that resembled something like the following:

Open your editor of choice and write code.•	

Upload code to your web server.•	

Check your application to see if everything worked.•	

For large organizations, this type of development was fraught with danger and
potential downtime to the services they offered their customers, and so this process
evolved to include defensive mechanisms, such as writing tests for your code, to ensure
fewer bugs made their way into the production environment. The process continued
to evolve until we had a set of accepted “best practices,” such as, for example,
TDD (Test-Driven Development), which was the principle of writing tests first, before
writing any code, so as to ensure more focused, efficient, and cleaner code.

But all these defensive programming techniques were unable to resolve, arguably,
the most fundamental issue that you’ve likely heard uttered a few times in your
career: “but it works on my machine.” Effectively, this statement would be uttered by a
programmer in the moment of confusion when, after all the tests and checks had passed,
and we were “all systems go,” we would proceed to upload the application to the server
and watch as certain aspects of the software failed to work as intended.

The reason for this is that we weren’t developing our applications in an environment
that accurately represented the live server environment. How can you ever know for sure
whether your application will work, if you’re developing it on a Mac- or Windows-based
operating system, and yet its destination is a Linux server whose architecture is sufficiently
different to cause even simple errors, such as “case sensitivity.”

Chapter 8 ■ WorkfloW ManageMent

68

Because of this issue, tools such as Vagrant (http://vagrantup.com) stepped in
to try and resolve the problem, by providing software engineers a common ground to
work from. With a tool such as Vagrant, you can replicate your live server environment,
by creating a new virtual machine that runs the same operating system and software
packages, as well as utilizing the same provisioning scripts as would your live server.
At this point, I would recommend visiting the web site and downloading/installing the
version of Vagrant that is most relevant to your operating system.

Example Repository
To make things easier, and to save on having to type it all out yourself, you can download
a fully working development environment that includes all the topics, techniques, and
software that I’m about to describe to you. You should be able to run the following Git
command to download the project:

git clone https://github.com/Integralist/Linux-and-Docker-Development-
Environment.git

Once inside the cloned directory, you should notice a file called Vagrantfile. This
file is what Vagrant uses to configure the development environment. As long as you have
Vagrant installed, you can run the vagrant up command from your terminal, to create
the environment. (When you run the command, make sure you are inside the directory
that contains the Vagrantfile.) This will cause VirtualBox to trigger a new instance of the
development environment, which, in this case, is a Ubuntu-based Linux server, to be started.

Note ■ this is a mini-book about tmux, so I won’t be explaining how the code in the
Vagrantfile or the provisioning script works (although both are heavily commented, so you
should be able to get by).

What we should end up with is an Ubuntu instance that has Vim, tmux, and Git installed,
along with the Reptyr program. We should also have Docker (www.docker.com) installed
and a container created that runs our application (in this example, it’s a “Hello World” Ruby
application). Docker is a solution for building modular and distributed applications.

Reptyr
The Reptyr program allows you to attach to your tmux session processes that are already
running (or, in fact, any terminal multiplexer, such as screen). This can be really useful
in situations in which you have some long-running process that is already running by
the time you come to log on to the server. Instead of having to stop and start the process
(and subsequently losing any important information it may have gathered), you can open
tmux and reattach the process so it’s now running inside tmux.

http://vagrantup.com/
https://github.com/Integralist/Linux-and-Docker-Development-Environment.git
https://github.com/Integralist/Linux-and-Docker-Development-Environment.git
http://www.docker.com/

Chapter 8 ■ WorkfloW ManageMent

69

The way it works is complicated. If you’re really interested in the implementation
details, I recommend that you read the documentation on the GitHub repository at
https://github.com/nelhage/reptyr.

To see an example of how this works, we must log in to the VM (virtual machine)
that Vagrant has brought up for us. To do this, you’ll run the command vagrant ssh, and
from that point, you’ll be able to complete the remaining steps, which are as follows
(i.e., execute each step as a separate command):

•	 top

•	 <C-z>

•	 bg

•	 disown top

•	 tmux

•	 reptyr $(pgrep top)

If you have followed the preceding steps, you should have a tmux session open, and
the top program (which was originally started before you created the tmux session) has
been successfully moved inside tmux.

Let’s now go through each of the preceding steps one by one, to clarify what we’ve
done. First, we started a new instance of the top program, which displays information
about running processes on our VM. Next, we suspended the top program by running the
command <C-z>. (This temporarily suspends the process from running but keeps it alive,
so we can resume it later.)

We then ran the bg command to convert the last process (top, in this case) into
a background process. The reason we do that is so the next step can be taken, which
is to run the disown top command (the disown command disassociates the specified
process with its parent process). The reason for disowning the process is to allow us to
re-associate it with the tmux process.

Next, we start a new tmux session, and within tmux, we run the command
reptyr $(pgrep top), which passes the result of the pgrep top command (the result
being the process id for the top program) into the Reptyr program, causing the top
program to be placed into our tmux session.

tmux-resurrect
The tmux-resurrect plug-in gives you the ability to restore the state of tmux, even after a
system restart. It does this by recording all your data at the point of executing a specific
tmux key binding and restoring the data when running a specific tmux key binding.

Although this plug-in can be extremely useful, you might be wondering why I don’t
install it by default as part of my “Linux and Docker Development Environment” GitHub
repository? The reason for this decision is that the plug-in has limited use in a disposable
workflow environment (i.e., one with no persistent storage).

https://github.com/nelhage/reptyr

Chapter 8 ■ WorkfloW ManageMent

70

What I mean by that is, if I was using tmux (and this plug-in) directly on the host
machine (i.e., on my Mac OS), it would be useful, because when I shut down my Mac at
the end of a workday and then start it up again in the morning, I have a persistent storage
drive, which means I’ll be able to restore my tmux sessions.

But when you’re working from a virtual environment, you don’t have persistent
storage in the same way, and so when you shut down a VM and restart it, the entire
operating system is rebuilt from scratch. But this isn’t to say this isn’t a useful plug-in to
have installed on your main host machine (as I don’t just use tmux from within a VM;
I use it all the time on my Mac OS).

Installation
To install the plug-in, you’ll have to first download the repository, using the following
command (we download the code into ~/tmux/plugins/resurrect):

git clone https://github.com/tmux-plugins/tmux-resurrect
~/tmux/plugins/resurrect

Once we have the plug-in downloaded, we can tell tmux to load it, by adding the
following command into the .tmux.conf file:

run-shell ~/tmux/plugins/resurrect/resurrect.tmux

If tmux is already running, I suggest you source the .tmux.conf file, by executing the
source-file ~/.tmux.conf command.

Note ■ there are many additional settings that you can enable, such as restoring Vim
sessions (e.g., set -g @resurrect-strategy-vim 'session'). I recommend reading the
plug-in documentation for the full details.

Sample Usage
Using the plug-in is very easy. Once you have tmux open and in a state that you want to
record, execute the key binding <P><C-s>, to store the current layout and contents.

Once you restart the machine (you can mimic this by executing the tmux command
<P>:kill-server) and open tmux afresh, you’ll notice that the state is lost. To resume the
previous state, simply execute the key binding <P><C-r>, and after a brief moment, you
should see your earlier layout.

https://github.com/tmux-plugins/tmux-resurrect

Chapter 8 ■ WorkfloW ManageMent

71

Summary
We’ve finally arrived to the end of the last chapter. I’ve hoped you’ve enjoyed yourself.
Everything that you’ve learned from this book is merely the beginning.

The true joy of using tools such as tmux is that there is so much more to learn and
to utilize. As you become more and more confident with the tooling, you’ll discover new
ways to take advantage of them.

I would enjoy very much hearing your feedback, so feel free to open discussions
and comments at https://github.com/Integralist/ProVim. But for now, let’s take a
moment to look back on what we have seen in this final chapter.

At the start of the chapter, I briefly discussed the evolution of a •	
traditional development process and how certain practices were
put in place to ensure consistency between development and
production environments. (This is where such tools as VirtualBox
and Vagrant were introduced.)

We moved on to downloading an example repository that with a •	
single command (i.e., vagrant up) would be able to re-create a
complete Linux environment, with development tools installed
and ready to use, thereby demonstrating the power of having a
virtual workspace that is completely deposable and configurable
to match a live production environment.

From there, we took a look at the Reptyr program and how it is •	
useful for attaching existing processes to another process (in this
case, tmux), so that we don’t have to worry about losing any state
we may have accumulated before running tmux.

We also looked at the tmux-resurrect plug-in, which demonstrates •	
how tmux’s layout and content (even down to individual panes
and Vim context) can be persisted through a system restart.
Powerful tooling, indeed.

https://github.com/Integralist/ProVim

A, B, C, D, E��
Automation, 51

F, G, H, I, J, K, L��
Fundamentals, tmux

buffers/viewports
copy mode, 25
scrolling, 24

panes
balancing, 29
exit command, 27
horizontal, 26
navigation, 27
resizing, 28
vertical, 26

sessions, 19
bootstrap application, 23
closing vs. detaching, 23
creation, 20
description, 20
key bindings, 22
listing, 21
renaming, 23
selection, 22

windows, 30

M, N, O��
Modifications, tmux

abstractions, 31
attach-session, 32–33
tmuxkill function, 33
tmux session, 32

broken commands, 35
display-time command, 34
repeatable keys, 35

P, Q��
Pair programming

custom route
multiple users, 63
remote access, 65
single users, 61
user controls, 63
Vagrant setup, 60

simple route, 59
Pane management

break-pane command, 44
display-panes command, 43
join-pane command, 44
last-pane command, 44
pane layouts, 45
resize pane command, 44
rotate pane, 44
synchronization, 46
top command, 45

Paste buffer, 37–38
capture-pane command, 39
programs

using Linux, 41
using Mac OS X, 40
plug-in manager, 40
tmux-yank, 40
virtual machine (VM), 42
X-Windows, 41

save-buffer command, 39
show-buffer screen, 39

Index

73

R��
Restoration, 56

S��
Shell commands, 53

if-shell command, 54
run-shell command, 54

T, U, V��
Terminal emulators, 1
Terminal multiplexer (tmux), 1

configuration, 7
arrow movements, 11
bind-key function, 10
clear pane, 11
color correction, 14
default prefix command, 9
default shell, 16
easier pane management, 11
enable utf8, 15
escape-time setting, 15
even-vertical command, 12
human numbering, 16
ls command, 13
pane creation, 11
quick access, 10
status bar, 17
status-key option, 15
tmux.conf file, 11
Vim style movements, 10

window renaming, 15
window renumbering, 16

copy mode, 37
features, 3
fundamentals (see Fundamentals, tmux)
installation, 5

Linux machine, 6
Mac machine, 6
windows machine, 6

key bindings, 5
manual documentation, 5
message feedback, 5
paste buffer (see Paste buffer)
prefix command, 3

Terminal windows, 2
tmuxinator, 54

W, X, Y, Z��
Window management

choose-window command, 46
confirm-before command, 48
find-window command, 48
kill-window command, 48
link-window command, 49
move-window command, 48–49
navigation, 46
swap-window command, 49
terminal process, 47

Workflow management, 67
Reptyr program, 68
tmux-resurrect plug-in, 69
Vagrantfile, 68

74

■ index

tmux Taster

Mark McDonnell

tmux Taster

Copyright © 2014 by Mark McDonnell

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are
brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for
the purpose of being entered and executed on a computer system, for exclusive use by the purchaser
of the work. Duplication of this publication or parts thereof is permitted only under the provisions
of the Copyright Law of the Publisher’s location, in its current version, and permission for use must
always be obtained from Springer. Permissions for use may be obtained through RightsLink at the
Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4842-0776-5

ISBN-13 (electronic): 978-1-4842-0775-8

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image, we use the names, logos, and
images only in an editorial fashion and to the benefit of the trademark owner, with no intention of
infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the author nor the editors nor the publisher can accept any legal responsibility
for any errors or omissions that may be made. The publisher makes no warranty, express or implied,
with respect to the material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Louise Corrigan
Technical Reviewers: Jayant Varma, Jenna Pederson
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Louise Corrigan,

Jim DeWolf, Jonathan Gennick, Robert Hutchinson, Michelle Lowman, James Markham,
Matthew Moodie, Jeff Olson, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke,
Dominic Shakeshaft, Gwenan Spearing, Matt Wade, Steve Weiss

Coordinating Editor: Christine Ricketts
Copy Editor: Michael G. Laraque
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California
LLC and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional
use. eBook versions and licenses are also available for most titles. For more information, reference
our Special Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available
to readers at www.apress.com. For detailed information about how to locate your book’s source code,
go to www.apress.com/source-code/.

http://orders-ny@springer-sbm.com
http://www.springeronline.com
http://rights@apress.com
http://www.apress.com
http://www.apress.com/bulk-sales
www.apress.com
http://www.apress.com/source-code/

This book is dedicated to my family (Catherine, Richard, Katie, Vincent,
Mum & Dad). You all know how much I love what I do, but I love you all

so much more.

vii

Contents

About the Author �� xiii

About the Technical Reviewers ��� xv

Acknowledgments ��� xvii

Introduction �� xix

Chapter 1: Terminal Multiplexer ■ ��� 1

tmux �� 2

Terminology ��� 3

Prefix Command ��� 3

Help? ��� 4

Command and Key Binding References ��� 5

Manual �� 5

Message Feedback ��� 5

Installation and Configuration ��� 5

Mac ��� 6

Linux ��� 6

Windows ��� 6

Configuring tmux ��� 7

Change the Default Prefix ��� 9

Quick Access to Last Window ��� 10

Vim Style Movements ��� 10

Arrow Movements �� 11

Simpler Pane Creation �� 11

■ Contents

viii

Source �tmux�conf �� 11

Clear Pane History �� 11

Easier Pane Management ��� 11

Color Correction �� 14

Enable utf8 ��� 15

Command Prompt Movements ��� 15

Cancel Immediately �� 15

Prevent Program Window Renaming Trigger �� 15

Change the Default Shell �� 16

Human Numbering �� 16

Increase Scroll-back ��� 16

Automatic Window Renumbering ��� 16

Change the Status Bar Appearing ��� 17

Summary ��� 18

Chapter 2: Fundamentals ■ ��� 19

Sessions �� 19

Creating a Session �� 20

Listing Sessions �� 21

Selecting a Session �� 22

Renaming Sessions �� 23

Closing vs� Detaching ��� 23

Application Bootstrap ��� 23

Buffers ��� 24

Scrolling the Buffer ��� 24

Navigating Copy Mode �� 25

Panes��� 26

Closing �� 27

Navigating��� 27

■ Contents

ix

Resizing �� 28

Balancing �� 29

Windows �� 30

Summary ��� 30

Chapter 3: Modifications ■ �� 31

Abstractions �� 31

Creating New Sessions ��� 32

Attaching to Sessions ��� 33

Destroying Sessions ��� 33

Extending the Message Display Time �� 34

Repeatable Keys �� 35

Restoring Broken Commands �� 35

Summary ��� 36

Chapter 4: Copy and Paste ■ �� 37

Copy Mode��� 37

Paste Buffer ��� 38

Pasting Between Programs ��� 40

Plug-in Solution �� 40

Mac OS X �� 40

Linux ��� 41

Working from a VM ��� 41

Summary ��� 42

Chapter 5: Pane/Window Management ■ �� 43

Pane Management �� 43

Moving Between Two Commonly Used Panes �� 43

Full-Screen Current Pane ��� 44

Break a Pane Out into a Separate Window ��� 44

■ Contents

x

Convert a Window into a Pane (Within Another Window) �� 44

Rotate Panes Within Current Window ��� 44

Changing Pane Layouts �� 45

Synchronizing Pane Input ��� 46

Window Management ��� 46

Navigating Windows ��� 46

Closing Windows �� 47

Finding Windows by Search Phrase ��� 48

Moving and Switching Windows Within the Current Session ��������������������������������� 48

Moving Windows Between Different Sessions ��� 49

Sharing Windows Between Sessions ��� 49

Summary ��� 50

Chapter 6: Scripting and Automation ■ ��� 51

Example 1: Automation �� 51

Simple Example �� 51

Advanced �� 52

Example 2: Shell Commands ��� 53

Conditional Key Bindings �� 54

Example 3: tmuxinator �� 54

Restoration �� 56

Attaching Processes ��� 56

Restoring State ��� 56

Summary ��� 57

Chapter 7: Pair Programming ■ ��� 59

The Simple Route �� 59

The Custom Route ��� 60

Vagrant Setup ��� 60

Share Session via Single-User Account �� 61

■ Contents

xi

Individual User Control ��� 63

Remotely Accessing a Local VM ��� 65

Summary ��� 66

Chapter 8: Workflow Management ■ ��� 67

Example Repository ��� 68

Reptyr �� 68

tmux-resurrect �� 69

Installation �� 70

Sample Usage ��� 70

Summary ��� 71

Index �� 73

xiii

About the Author

Mark McDonnell is a London-based software engineer currently working for BBC News
as a senior developer. Over the past 15 years, Mark has worked his way up the ranks of the
agency lifestyle. Along the way, he has built software applications in Classic ASP, ASP.NET,
Flash, PHP, Node, and Ruby. He has also had the pleasure of managing and mentoring
teams of highly talented developers before moving on to the BBC as a responsive front-end
specialist, evolving from the client side back to the server side to work on cloud-based
distributed and concurrent systems. He is a lover of the Unix philosophy and the power of
the command line and always relishes the opportunity to learn new technologies. You’ll
normally find him chattering about functional programming with Clojure or how best to
solve a technical problem, using design patterns and S.O.L.I.D principles.

xv

About the Technical
Reviewers

Jayant Varma is a technophile and was introduced to computing from the days of 8-bit
computers and Z80 chips. While managing IT and Telecom at the BMW Dealerships in
India and Oman and at Nissan in Qatar, he worked extensively on Windows, AS/400, and
Unix. His love of traveling inspired him to work in and explore several countries, and he is
currently based in Australia.

His technological journey began as a Microsoft technologies developer and has
diversified to currently focus on Apple and mobile technologies. He holds a master’s
degree in business administration and IT from James Cook University (Australia). He also
lectured at James Cook University (Australia) and coordinated the onshore and offshore
teaching of Linux/Unix administration. He worked closely with the ACS (Australian
Computer Society) and AUC (Apple University Consortium) on workshops and projects.

He authored the book Learn Lua for iOS Game Development for those about to Lua
and is currently working on Swift- and iOS-related titles. As a founder, consultant, and
developer at OZ Apps (www.oz-apps.com), he helps organizations and individuals integrate
technology into their business and strategies. He also conducts training sessions and
workshops and writes blogs to share his knowledge with the community.

Jenna Pederson became fascinated with building things at an early age. By age 13, she
had run a couple of lemonade stands, a tie-dye T-shirt company, and various other
businesses. She transformed her entrepreneurial drive and desire to build cool things
into her career. She worked as a software engineer and technical manager before stepping
out on her own in 2011. Today, Jenna runs her own company, 612 Software Foundry,
helping clients translate technical needs into working software. She shares her knowledge
and experience with others by presenting at tech conferences, blogging, mentoring, and
volunteering.

http://www.oz-apps.com

xvii

Acknowledgments

Hello and welcome to this tmux taster book. The content you’ll find within these pages
was originally written as a bonus section at the end of another book I have written called
Pro Vim. That bonus section started to expand more than I initially expected it to, and so
it was decided we should extract it out into the form you find it now.

In Pro Vim I thanked a whole group of people for whom I’ve included again below;
as these same people were as much a support mechanism for me writing Pro Vim as they
were for this tmux Taster. So let me share with you again my thanks for their help…

I have poured a lot of time and hard work into this book, but it would be wrong
of me not to acknowledge the people who have helped, either directly or indirectly,
to get this book (and myself!) into the state of completion that you find it now. People
such as Drew Neil, author of Practical Vim and the entire http://vimcasts.org/ series,
whose knowledge of Vim is wide, deep, and unquestionable. If you ever find yourself
in the London area, be sure to check out the Vim London events (https://twitter.com/
VimLondon), which Drew kindly organizes for the community.

There is also Tim Pope, a prolific Vim plug-in creator. His work has produced a vast
selection of plug-ins, which have helped make the Vim environment a much saner place.
Let’s take a brief moment to consider the sheer number of plug-ins he has released on
which I rely daily: vim-endwise, vim-fireplace, vim-dispatch, vim-fugitive, vim-haml,
vim-surround, vim-sexp-mappings-for-regular-people, vim-pathogen, vim-markdown,
vim-commentary, vim-classpath, vim-repeat, vim-cucumber, timl. Phew!

Arguably, one of the most important people on this list is Simon Thulbourn (@sthulb),
who is possibly the most sarcastic person I’ve ever met. (Sorry @dblooman, but you were
a close second.) Before my time at the BBC, I had attempted, on a couple of occasions,
to understand Vim and failed, but it was Simon who convinced me to give Vim one last
try, and it was that last try that finally “broke the camel’s back.” Not only was I starting
to make some headway with seeing myself using Vim long-term, but I also had an
experienced Vim user on tap to answer questions I had when I hit a problem. I would
then proceed to pester Simon on a regular basis for the next few months on every minor
issue I encountered, and he would eventually (I mean graciously!) concede his valuable
time to help me understand where I had gone wrong (albeit usually via the most sarcastic
response he could muster). If it were not for his help, I would have likely failed for a
second time, and this book would not have been.

Throughout my time at the BBC, I’ve had the opportunity to work with some
fantastically talented developers. Dan Scotton (@danscotton) is one of those rare breeds
of human being who is unbearably talented, while also being unbelievably positive and
friendly. Working with Dan has been one of the highlights of my career. There is also Tom
Maslen (@tmaslen) and John Cleveley (@jcleveley), neither of whom are Vim users, but
don’t hold that against them! I get the impression they think I’m smarter than

http://vimcasts.org/%20series
https://twitter.com/VimLondon
https://twitter.com/VimLondon

■ ACknowledgments

xviii

I actually am, but, ultimately, they gave me the chance to become part of their team, for
which I’m very grateful, as it has helped me progress more in the past couple of years
than I could ever have imagined.

Robert Kenny (@kenturamon) and Steven Jack (@stevenjack85) are two fellow
colleagues who I’ve worked with at the BBC, and they, too, are keen Vim users. Both
Kenny and Steve have given positive comments and encouraged this project from the
beginning. They arrive here in the form of people who I greatly respect and admire and
whose company I have enjoyed immensely. The amount I have learned from these two
people in such a short span of time is incredible. Although the lessons I have learned
from them were admittedly not directly related to the subject of Vim, they are some of
the nicest and most intelligent people to spend your working hours solving complex
problems with. I’m a better software engineer now, thanks to them.

Last and most important is the person who is my ultimate inspiration and support:
my wife and soul mate, Catherine. Her tireless patience and encouragement of everything
I do is the primary reason I have achieved one of my dreams in life. I could not have done
this without her.

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewers
	Acknowledgments
	Introduction
	Chapter 1: Terminal Multiplexer
	tmux
	Terminology
	Prefix Command

	Help?
	Command and Key Binding References
	Manual
	Message Feedback

	Installation and Configuration
	Mac
	Linux
	Windows

	Configuring tmux
	Change the Default Prefix
	Quick Access to Last Window
	Vim Style Movements
	Arrow Movements
	Simpler Pane Creation
	Source .tmux.conf
	Clear Pane History
	Easier Pane Management
	Color Correction
	Enable utf8
	Command Prompt Movements
	Cancel Immediately
	Prevent Program Window Renaming Trigger
	Change the Default Shell
	Human Numbering
	Increase Scroll-back
	Automatic Window Renumbering
	Change the Status Bar Appearing

	Summary

	Chapter 2: Fundamentals
	Sessions
	Creating a Session
	Listing Sessions
	Selecting a Session
	Renaming Sessions
	Closing vs. Detaching
	Application Bootstrap

	Buffers
	Scrolling the Buffer
	Navigating Copy Mode

	Panes
	Closing
	Navigating
	Resizing
	Balancing

	Windows
	Summary

	Chapter 3: Modifications
	Abstractions
	Creating New Sessions
	Attaching to Sessions
	Destroying Sessions

	Extending the Message Display Time
	Repeatable Keys
	Restoring Broken Commands
	Summary

	Chapter 4: Copy and Paste
	Copy Mode
	Paste Buffer
	Pasting Between Programs
	Plug-in Solution
	Mac OS X
	Linux
	Working from a VM

	Summary

	Chapter 5: Pane/Window Management
	Pane Management
	Moving Between Two Commonly Used Panes
	Full-Screen Current Pane
	Break a Pane Out into a Separate Window
	Convert a Window into a Pane (Within Another Window)
	Rotate Panes Within Current Window
	Changing Pane Layouts
	Synchronizing Pane Input

	Window Management
	Navigating Windows
	Manually
	Visual List

	Closing Windows
	Immediate
	Command-Line Mode
	Confirmation Prompt

	Finding Windows by Search Phrase
	Moving and Switching Windows Within the Current Session
	Moving Windows Between Different Sessions
	Sharing Windows Between Sessions

	Summary

	Chapter 6: Scripting and Automation
	Example 1: Automation
	Simple Example
	Targeting Specific Sessions

	Advanced

	Example 2: Shell Commands
	Conditional Key Bindings

	Example 3: tmuxinator
	Restoration
	Attaching Processes
	Restoring State

	Summary

	Chapter 7: Pair Programming
	The Simple Route
	The Custom Route
	Vagrant Setup
	Share Session via Single-User Account
	Individual User Control
	Share Session with Multiple Users

	Remotely Accessing a Local VM

	Summary

	Chapter 8: Workflow Management
	Example Repository
	Reptyr
	tmux-resurrect
	Installation
	Sample Usage

	Summary

	Index

