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Preface

Statistics is a science central to many disciplines: modern, big, and smart data
analysis can only be performed with statistical scientific tools. This is the reason
why statistics is fundamental and is taught in many curricula and used in many
applications. The collection and analysis of data changes the way how we observe
and understand real data. Nowadays, we are collecting more and more, mostly less
structured, data, which require a new analysis method and challenge the classical
ones. But even nowadays the ideas used for the development of the classical methods
are the foundation to new and future methods.

At the Ladislaus von Bortkiewicz Chair of Statistics, School of Business and
Economics in Humboldt-Universität zu Berlin, we are introducing students into
this important science with the lectures “Statistics I & II.” The structure of these
lectures and the methods used have changed over time, especially with the rise of
the internet, but the topics taught are still the same.

In the end of the last millennium, we developed a set of hyperlinked web
pages on CD, which covered even more than our lectures “Statistics I & II” in
English, Spanish, French, Arabic, Portuguese, German, Indonesian, Italian, Polish,
and Czech. This gave the students an easy access to data and methods.

An integral and important part of the CD were the interactive examples where
the students can learn certain statistical facts by themselves. With wiki, we made a
first version in German available in the internet (without interactive examples). But
modern web technology nowadays allows much easier, better, and faster develop-
ment of interactive examples than 15 years ago, which lead to this SmartBook with
web-based interactive examples.

Dicebat Bernardus Carnotensis nos esse quasi nanos gigantum umeris insidentes, ut
possimus plura eis et remotiora videre, non utique proprii visus acumine, aut eminentia
corporis, sed quia in altum subvehimur et extollimur magnitudine gigantea.

Bernard of Chartres used to compare us to [puny] dwarfs perched on the shoulders of giants.
He pointed out that we see more and farther than our predecessors, not because we have
keener vision or greater height, but because we are lifted up and borne aloft on their gigantic
stature.

Johannes von Salisbury: Metalogicon 3,4,46–50
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Structure of the Book

Each chapter covers a broader statistical topic and each topic is categorized in
sections, additionally, you may find larger explained, enhanced, and interactive
examples:

Explained examples are directly related to the content of the section or chapter.
Enhanced examples may require knowledge from other earlier chapters to under-

stand them.
Interactive examples allow to use different datasets, to choose between analysis

methods and/or to play with the parameters of the (chosen) analysis method. The
web address of a specific interactive example can be found in the appropriate
section.

In the online version of the book under http://www.springer.com/de/book/
9783319177038, you can also find at the end of each chapter a set of multiple choice
exercises.
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Chapter 1
Basics

1.1 Objectives of Statistics

A Definition of Statistics

Statistics is the science of collecting, describing, and interpreting data, i.e., the tool
box underlying empirical research.

In analyzing data, scientists aim to describe our perception of the world.
Descriptions of stable relationships among observable phenomena in the form of
theories are sometimes referred to as being explanatory. (Though one could argue
that science merely describes how things happen rather than why.) Inventing a
theory is a creative process of restructuring information embedded in existing (and
accepted) theories and extracting exploitable information from the real world. (We
are abstracting from purely axiomatic theories derived by logical deduction.)

A first exploratory approach to groups of phenomena is typically carried out
using methods of statistical description.

Descriptive Statistics

Descriptive statistics encompasses tools devised to organize and display data in
an accessible fashion, i.e., in a way that doesn’t exceed the perceptual limits of
the human mind. It involves the quantification of recurring phenomena. Various
summary statistics, mainly averages, are calculated; raw data and statistics are
displayed using tables and graphs.

© Springer International Publishing Switzerland 2015
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2 1 Basics

Statistical description can offer important insights into the occurrence of isolated
phenomena and indicate associations among them. But can it provide results that
can be considered laws in a scientific context? Statistics is a means of dealing
with variations in characteristics of distinct objects. Isolated objects are thus not
representative for the population of objects possessing the quantifiable feature under
investigation. Yet variability can be the result of the (controlled or random) variation
of other, underlying variables. Physics, for example, is mainly concerned with the
extraction and mathematical formulation of exact relationships, not leaving much
room for random fluctuations. In statistics such random fluctuations are modeled
Statistical relationships are thus relationships which account for a certain proportion
of stochastic variability.

Inductive Statistics

In contrast to wide areas of physics, empirical relationships observed in the natural
sciences, sociology, and psychology (and more eclectic subjects such as economics)
are statistical. Empirical work in these fields is typically carried out on the basis
of experiments or sample surveys. In either case, the entire population cannot be
observed—either for practical or economic reasons. Inferring from a limited sample
of objects to characteristics prevailing in the underlying population is the goal of
inferential or inductive statistics. Here, variability is a reflection of variation in the
sample and the sampling process.

Statistics and the Scientific Process

Depending on the stage of the scientific investigation, data are examined with vary-
ing degrees of prior information. Data can be collected to explore a phenomenon in
a first approach, but it can also serve to statistically test (verify/falsify) hypotheses
about the structure of the characteristic(s) under investigation.

Thus, statistics is applied at all stages of the scientific process wherever
quantifiable phenomena are involved.

Here, our concept of quantifiability is sufficiently general to encompass a
very broad range of scientifically interesting propositions. Take, for example, a
proposition such as “a bumble bee is flying by.” By counting the number of
such occurrences in various settings we are quantifying the occurrence of the
phenomenon. On this basis we can try to infer the likelihood of coming across a
bumble bee under specific circumstances (e.g., on a rainy summer day in Berlin).
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Table 1.1 Absolute
frequencies of numbers in
National Lottery

1 2 3 4 5 6 7

311 337 345 316 321 335 322

8 9 10 11 12 13 14

309 324 331 315 302 276 310

15 16 17 18 19 20 21

322 319 337 331 326 312 334

22 23 24 25 26 27 28

322 319 304 325 337 323 285

29 30 31 32 33 34 35

321 311 333 378 340 291 330

36 37 38 39 40 41 42

340 320 357 326 329 335 335

43 44 45 46 47 48 49

311 314 304 327 311 337 361

Fig. 1.1 Absolute frequencies of numbers in the National Lottery from 1955 to 2007

Explained: Descriptive and Inductive Statistics

Descriptive statistics provide the means to summarize and visualize data. Table 1.1,
which contains the frequency distribution of numbers drawn in the National Lottery,
provides an example of a such a summary. Cursory examination suggests that some
numbers occur more frequently than others (Fig. 1.1). Does this suggest bias in the
way numbers are selected? As we shall see, statistical methods can also be used to
test such propositions.
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1.2 Statistical Investigation

Conducting a Statistical Investigation

Statistical investigations often involve the following steps:

1. Designing the investigation: development of the objectives, translation of theoret-
ical concepts into observable phenomena (i.e., variables), environmental setting
(e.g., determining which parameters are held constant), cost projection, etc.

2. Obtaining data

• Primary data: data collected by the institution conducting the investigation

– Surveys:

� recording data without exercising control over environmental conditions
which could influence the observations

� observing all members of the population (census) or taking a sample
(sample survey)

� collecting data by interview or by measurement
� documentation of data via questionnaires, protocols, etc.
� personal vs. indirect observation (e.g., personal interview, question-

naires by post, telephone, etc.)

– Experiments: actively controlling variables to capture their impact on other
variables

– Automated recording: observing data as it is being generated, e.g., within
a production process

• Secondary data: using readily available data, either from internal or external
sources.

3. Organizing the data
4. Analysis: applying statistical tools
5. Interpretation: which conclusions do the quantitative information generated by

statistical procedures support?

Sources of Economic Data

• Public Statistics
• Private Statistics
• International Organizations

Figure 1.2 illustrates the sequence of steps in a statistical investigation.
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Economic Theory 
Theoretical Concepts etc. 

Judical & Institutional 
Environment 

Economic Policy 
Values and Goals 

Cost Consideration 

Feasibility 
Adjustment 

Investigation 

Processing 

Evaluation 

Presentation 
of results 

Interpretation 

Judgement 
Decision 

Fig. 1.2 Overview of steps in statistical investigation
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Table 1.2 Data on animal
populations of Berlin’s three
major zoos

Animals in Berlin, 2013 Zoo and Aquarium Tierpark

Mammals

Total population 1044 1283

Species 169 199

Birds

Total population 2092 2380

Species 319 356

Snakes

Total population 357 508

Species 69 103

Lizards

Total population 639 55

Species 54 3

Fish

Total population 7629 938

Species 562 106

Invertebrate

Total population 8604 2086

Species 331 79

Visitors 3059136 1035899

Data from: Financial reports 2013 of Zoologischer Garten
Berlin AG, Tierpark Berlin GmbH and Amt für Statistik
Berlin-Brandenburg

Explained: Public Sources of Data

The official body engaged in collecting and publishing Berlin-specific data is the
Amt für Statistik Berlin-Brandenburg. For example, statistics on such disparate sub-
jects as the animal populations of Berlin’s three major zoos and voter participation
in general elections, are available (Table 1.2). The data on voter participation covers
the elections into the 8th European Parliament in Berlin (25.05.2014). The map
displays the election participation in election districts of Berlin (Fig. 1.3).

More Information: Statistical Processes

A common objective of economic policy is to reduce the overall duration of
unemployment in the economy.

An important theoretical question is, to what extent can the level of unemploy-
ment benefits account for variations in unemployment duration.

In order to make this question suitable for a statistical investigation, the variables
must be translated into directly observable quantities. (For example, the number
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 0−10%
10−20%
20−30%
30−40%
40−50%
50−60%

Fig. 1.3 Voter participation in Berlin (Data from: Amt für Statistik Berlin-Brandenburg 2014)

of individuals who are registered as unemployed is a quantity available from
government statistics. While this may not include everyone who would like to be
working, it is usually used as the unemployment variable in statistical analyses.)

By examining government unemployment benefit payments in different coun-
tries, we can try to infer whether more or less generous policies have an impact on
the unemployment rate.

Prior to further investigation, the collected raw data must be organized in a
fashion suitable for the statistical methods to be performed upon them.

Exploring the data for extractable information and presenting the results in
an accessible fashion by means of statistical tools lies at the heart of statistical
investigation.

In interpreting quantitative statistical information, keys to an answer to the initial
scientific questions are sought.

Analogous to the general scientific process, conclusions reached in the course of
statistical interpretation frequently give rise to further propositions—triggering the
next iteration of the statistical process.
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1.3 Statistical Element and Population

Statistical Elements

Objects whose attributes are observed or measured for statistical purposes are called
statistical elements.

In order to identify all elements relevant to a particular investigation, one must
specify their defining characteristics as well as temporal and spatial dimensions.

Example Population Census in Germany

• defining characteristic: citizen of Germany
• spatial: permanent address in Federal Republic of Germany
• temporal: date of census

Population

The universe of statistical elements covered by a particular set of specifications is
called population. In general, increasing the number of criteria to be matched by the
elements will result in a smaller and more homogeneous population. Populations
can be finite or infinite in size.

In a census, all elements of the population are investigated. Recording informa-
tion from a portion of the population yields a sample survey.

The stock of elements constituting a population may change over time, as some
elements leave and others enter the population. This sensitivity of populations to
time flow has to be taken into account when carrying out statistical investigations.

Explained: Statistical Elements and Population

We use the following questionnaire, developed at the Department of Statistics, to
clarify the notions of statistical unit and population. This questionnaire was filled
out by all participants in Statistics 1. The investigation was carried out on the first
lecture of the summer semester in 1999.

The population consists of all students taking part in Statistics 1 at Humboldt
University during the summer semester 1999. The statistical unit is one student.
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HUMBOLDT UNIVERSITY BERLIN
Department of Statistics - Statistics 1

QUESTIONNAIRE

Welcome to Statistics. Before we start, we would like to ask a you few questions. Your answers will help us to optimize the
lectures. Furthermore, your answers will be statistically analyzed during the lecture. Everybody, who fills in this questionnaire,
will have a chance to win the multimedia version of Statistics 1 which is worth 200,-DM.

1. Do you have access to the internet?

Yes No

If yes:

2. From where do you connect to the internet?

home university
internet cafe friends
other (please, specify):

3. Which internet browser do you usually use?

Netscape 4.5 or newer
older version of Netscape
Netscape, I do not know the version number
Internet Explorer 4 or newer
older version of Internet Explorer
Internet Explorer, I do not know the version number

4. Do you have access to a multimedia computer (i.e., computer which can be used to play audio
and video files?)

Yes No

5. Have you previously studied Theory of Probability or Stochastics?

Yes No

6. What is the probability that the sum of numbers of two dice is seven?

7. In which state did you attend secondary school?

grebmettrüW-nedaB Bayern
Berlin Brandenburg
Bremen Hamburg
Hessen Mecklenburg-Vorpommern
Niedersachsen Nordrhein-Westfalen
Rheinland-Pfalz Saarland
Sachsen Sachsen-Anhalt
Schleswig-Holstein negnirühT

Thank you. If you would like to win the multimedia CD, please complete the following entries:
Name:
ID number:
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1.4 Statistical Variable

An observable characteristic of a statistical element is called statistical variable.
The actual values assumed by statistical variables are called observations, measure-
ments, or data. The set of possible values a variable can take is called sample space.

Variables are denoted by script capitals X; Y; : : :, whereas corresponding realiza-
tions are written in lowercase: x1; x2; : : :, the indices reflect the statistical elements
sampled.

Variable Observations
X x1; x2; x3; : : :

Y y1; y2; y3; : : :

It is useful to differentiate between variables used for identification and target
variables.

Identification variables In assigning a set of fixed values the elements of the
population are specified. For example, restricting a statistical investigation to female
persons involves setting the identification variable “sex” to “female.”

Target variables These are the characteristics of interest, the phenomena that are
being explored by means of statistical techniques, e.g., the age of persons belonging
to a particular population.

Example Objective of the statistical investigation is to explore Berlin’s socio-
economic structure as of December 21, 1995. The identification variables are chosen
to be:

• legal: citizen
• spatial: permanent address in Berlin
• temporal: 31 December 1995

Statistical element: a registered citizen of Berlin on 31 December 1995
Population: all citizens of Berlin on 31 December 1995
Possible target variables:

Symbol Variable Sample space
X Age (rounded to years) f0; 1; 2; : : :g
S Sex {female, male}
T Marital status {single, married, divorced}
Y Monthly income Œ0; 1/
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1.5 Measurement Scales

The values random variables take can differ distinctively, as can be seen in the
above table. They can be classified into quantitative, i.e., numerically valued (age
and income) and qualitative, i.e., categorical (sex, marital status) variables. As
numerical values are usually assigned to observations of qualitative variables,
they may appear quantitative. Yet such synthetic assignments aren’t of the same
quality as numerical measurements that naturally arise in observing a phenomenon.
The crucial distinction between quantitative and qualitative variables lies in the
properties of the actual scale of measurement, which in turn is crucial to the
applicability of statistical methods. In developing new tools statisticians make
assumptions about permissible measurement scales.

A measurement is a numerical assignment to an observation. Some measure-
ments appear more natural than others. By measuring the height of persons, for
example, we apply a yardstick that ensures comparability between observations up
to almost any desired precision—regardless of the units (such as inches or centime-
ters). School grades, on the other hand, represent a relatively rough classification
indicating a certain ranking, yet putting many pupils into the same category. The
values assigned to qualitative statements like “very good,” “average,” etc. are an
arbitrary yet practical shortcut in assessing people’s achievements. As there is no
conceptual reasoning behind a school grade scale, one should not try to interpret the
“distances” between grades.

Clearly, height measurements convey more information than school marks, as
distances between measurements can consistently be compared. Statements such as
“Tom is twice as tall as his son” or “Manuela is 35 centimeters smaller than her
partner” are permissible.

As statistical methods are developed in mathematical terms, the applicable scales
are also defined in terms of mathematical concepts. These are the transformations
that can be imposed on them without loss of information. The wider the range of
permissible transformations, the less information the scale can convey. Table 1.3
lists common measurement scales in increasing order of information content. Scales
carrying more information can always be transformed into less informative scales.

1.6 Qualitative Variables

Nominal Scale

The most primitive scale, one that is only capable of expressing whether two values
are equal or not, is the nominal scale. It is purely qualitative.

If an experiment’s sample space consists of categories without a natural ordering,
the corresponding random variable is nominally scaled. The distinct numbers
assigned to outcomes merely indicate whether any two outcomes are equal or not.
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Table 1.3 Measurement scales of random variables

Measurement Permissible

Variable scale Statements transformations

Qualitative Nominal scale Equivalence Any equivalence

preserving mapping

Categorical Ordinal scale Equivalence, order Any order

preserving mapping

Quantitative Interval scale Equivalence, y D ˛x C ˇ; ˛ > 0

metric order, distance

Ratio scale Equivalence, y D ˛x; ˛ > 0

order, distance, ratio

Absolute scale Equivalence, order, Identity function

distance, ratio,

absolute level

For example, numbers assigned to different political opinions may be helpful in
compiling results from questionnaires. Yet in comparing two opinions we can only
relate them as being of the same kind or not. The numbers do not establish any
ranking.

Variables with exactly two mutually exclusive outcomes are called binary
variables or dichotomous variables. If the indicator numbers assigned convey
information about the ranking of the categories, a binary variable might also be
regarded as ordinally scaled.

If the categories (events) constituting the sample space are not mutually exclu-
sive, i.e., one statistical element can correspond to more than one category, we
call the variable cumulative. For example, a person might respond affirmatively to
different categories of professional qualifications. But there cannot be more than
one current full-time employment (by definition).

Ordinal Scale

If the numbers assigned to measurements express a natural ranking, the variable is
measured on an ordinal scale.

The distances between different values cannot be interpreted—a variable mea-
sured on an ordinal scale is thus still somehow nonquantitative. For example, school
marks reflect different levels of achievement. There is, however, usually no reason
to regard a work receiving a grade of “4” as twice as good as one that achieved a
grade of “2.”
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As the numbers assigned to measurements reflect their ranking relatively to each
other, they are called rank values.

There are numerous examples for ordinally scaled variables in psychology,
sociology, business studies, etc. Scales can be designed attempting to measure such
vague concepts as “social status,” “intelligence,” “level of aggression,” or “level of
satisfaction.”

1.7 Quantitative Variables

Apart from possessing a natural ordering, measurements of quantitative variables
can also be interpreted in terms of distances between observations.

Interval Scale

If distances between measurements can be interpreted meaningfully, the variable is
measured on an interval scale. In contrast to the ratio scale, ratios of measurements
don’t have a substantial meaning, for the interval scale doesn’t possess a natural zero
value. For example, temperatures measured in degrees centigrade can be interpreted
in order of higher or lower levels. Yet, a temperature of 20 degrees centigrade cannot
be regarded to be twice as high as a temperature of 10 degrees. Think of equivalent
temperatures measured in Fahrenheit. Converting temperatures from centigrade to
Fahrenheit and vice versa involves shifting the zero point.

Ratio Scale

Values of variables measured on a ratio scale can be interpreted both in terms
of distances and ratios. The ratio scale thus conveys even more information than
the interval scales, in which only intervals (distances between observations) are
quantitatively meaningful.

The phenomena to be measured on a ratio scale possess a natural zero element,
representing total lack of the attribute. Yet there isn’t necessarily a natural measure-
ment unit. Prominent examples are weight, height, age, etc.

Absolute Scale

The absolute scale is a metric scale with a natural unit of measurement. Absolute
scale measurement is thus simply counting. It is the only measurement without
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alternative. Example: All countable phenomena such as the number of people in
a room or number of balls in an urn.

Discrete Variable

A metric variable that can take a finite or countably infinite set of values is called
discrete. Example: Monthly production of cars or number of stars in the universe.

Continuous Variable

A metric variable is called continuous, if it can take on an uncountable number of
values in any interval on the number line. Example: Petrol sold in a specific period
of time.

In practice, many theoretically continuous variables are measured discretely
due to limitations in the precision of physical measurement devices. Measuring a
person’s age can be carried out to a certain fraction of a second, but not infinitely
precisely.

We regard a theoretically continuous variable, which we can measure with a
certain sufficient precision, as effectively continuous. Similar reasoning applies
to discrete variables, which we sometimes regard as quasi-continuous, if there
are enough values to suggest the applicability of statistical methods devised for
continuous variables.

1.8 Grouping Continuous Data

Consider height data on 100 school boys. In order to gain an overview of the
distribution of heights you start “reading” the raw data. But the typical person will
soon discover that making sense of more than, say, 10 observations without some
process of simplification is not useful. Intuitively, one starts to group individuals
with similar heights. By focusing on the size of these groupings rather than on the
raw data itself one gains an overview of the data. Even though one has set aside
detailed information about exact heights, one has created a clearer overall picture.

Data sampled from continuous or quasi-continuous random variables can be con-
densed by partitioning the sample space into mutually exclusive classes. Counting
the number of realizations falling into each of these classes is a means of providing
a descriptive summary of the data. Grouping data into classes can greatly enhance
our ability to “see” the structure of the data, i.e., the distribution of the realizations
over the sample space.
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Table 1.4 Example for
grouping of continuous
variables

1st alternative

Less than 10 < 10

10 to less than 12 � 10; < 12

12 to less than 15 � 12; < 15

15 or greater � 15

2nd alternative

Less than or equal to 10 � 10

Greater than 10 to less than or equal to 12 > 10; � 12

Greater than 12 to less than or equal to 15 > 12; � 15

Greater than 15 > 15

Classes are nonoverlapping intervals specified by their upper and lower limits
(class boundaries). Loss of information arises from replacing the actual values by the
sizes and location of the classes into which they fall. If one uses too few classes, then
useful patterns may be concealed. Too many classes may inhibit the expositional
value of grouping.

Class boundaries The upper and lower values of a class are called class bound-
aries. A class j is fully specified by its lower boundary xl

j and upper boundary
xu

j . j D 1; : : : ; k/, where
xu

j D xl
jC1 . j D 1; : : : ; k � 1/, i.e., upper boundary of the jth class and lower

boundary of the . j C 1/th class coincide.
xl

j < x � xu
j or xl

j � x < xu
j . j D 1; : : : ; k/, i.e., the class boundary can be

attributed to either of the classes it separates (Table 1.4).
When measurements of (theoretically) unbounded variables are being classified,

left- and/or right-most classes extend to �1, C1, respectively, i.e., they form a
semi-open interval.

Class width Taking the difference between two boundaries of a class yields the
class width (sometimes referred to as the class size). Classes need not be of equal
width:

�xj D xu
j � xl

j . j D 1; : : : ; k/

Class midpoint The class midpoint xj can be interpreted as a representative value for
the class, if the measurements falling into it are evenly or symmetrically distributed.

xj D xl
j C xu

j

2
. j D 1; : : : ; k/
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Table 1.5 Income
distribution in Germany

Consolidated

Persons gross income

Taxable income (1000) (mio. marks)

1 – 4000 1445:2 2611:3

4000 – 8000 1455:5 8889:2

8000 – 12000 1240:5 12310:9

12000 – 16000 1110:7 15492:7

15000 – 25000 2762:9 57218:5

25000 – 30000 1915:1 52755:4

30000 – 50000 6923:7 270182:7

50000 – 75000 3876:9 234493:1

75000 – 100000 1239:7 105452:9

100000 – 250000 791:6 108065:7

250000 – 500000 93:7 31433:8

500000 – 1 Mio. 26:6 17893:3

1 Mio. – 2 Mio. 8:6 11769:9

2 Mio. – 5 Mio. 3:7 10950:8

5 Mio. – 10 Mio. 0:9 6041:8

� 10 Mio. 0:5 10749:8

Data from: Datenreport 1992, p. 255; Statistisches
Jahrbuch der Bundesrepublik Deutschland 1993,
p. 566

Explained: Grouping of Data

Politicians and political scientists are interested in the income distribution. In
Germany, a large portion of the population has taxable income The 1986 data,
compiled from various official sources, displays a concentration in small and
medium income brackets. Relatively few individuals earned more than one million
marks. Greater class widths have been chosen for higher income brackets to retain
a compact exposition despite the skewness in the data (Table 1.5).

1.9 Statistical Sequences and Frequencies

Statistical Sequence

In recording data we generate a statistical sequence. The original, unprocessed
sequence is called raw data. Given an appropriate scale level (i.e., at least an ordinal
scale), we can sort the raw data, thus creating an ordered sequence.
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Data collected at the same point in time or for the same period of time on different
elements are called cross-section data. Data collected at different points in time or
for different periods of time on the same element are called time series data. The
sequence of observations is ordered along the time axis.

Frequency

The number of observations falling into a given class is called the frequency. Classes
are constructed to summarize continuous or quasi-continuous data by means of
frequencies.

In discrete data one regularly encounters so-called ties, i.e., two or more
observations taking on the same value. Thus, discrete data may not require grouping
in order to calculate frequencies.

Absolute Frequency

Counting the number of observations taking on a specific value yields the absolute
frequency:

h
�
X D xj

� D h
�
xj
� D hj

When data are grouped, the absolute frequencies of classes are calculated as
follows:

h
�
xj
� D h

�
xl

j � X < xu
j

�

Properties:

0 � h
�
xj
� � n

X

j

h
�
xj
� D n

Relative Frequency

The proportion of observations taking on a specific value or falling into a specific
class is called the relative frequency, the absolute frequency standardized by the
total number of observations.

f
�
xj
� D h

�
xj
�

n
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Properties:

0 � f
�
xj
� � 1

X

j

f
�
xj
� D 1

Frequency Distribution

By standardizing class frequencies for grouped data by their respective class
widths, frequencies for differently sized classes are made comparable. The resulting
frequencies can be compiled to form a frequency distribution.

Oh �xj
� D h

�
xj
�

xu
j � xl

j

Of �xj
� D f

�
xj
�

xu
j � xl

j

;

where xl
j; xu

j are the upper and lower class boundaries with xl
j < x � xu

j .

Explained: Absolute and Relative Frequency

150 persons have been asked for their marital status: 88 of them are married, 41
single, and 21 divorced.

The four conceivable responses have been assigned categories as follows:

• single: x1

• married: x2

• divorced: x3

• widowed: x4

The number of statistical elements is n D 150. The absolute frequencies given
above are:

• h .x1/ D 41

• h .x2/ D 88

• h .x3/ D 21

• h .x4/ D 0
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Dividing by the sample size n D 150 yields the relative frequencies:

• f .x1/ D 41=150 D 0:27

• f .x2/ D 88=150 D 0:59

• f .x3/ D 21=150 D 0:14

• f .x4/ D 0=150 D 0:00

Thus, 59 % of the persons surveyed are married, 27 % are single, and 15 %
divorced. No one is widowed.



Chapter 2
One-Dimensional Frequency Distributions

2.1 One-Dimensional Distribution

The collection of information about class boundaries and relative or absolute
frequencies constitutes the frequency distribution. For a single variable (e.g., height)
we have a one-dimensional frequency distribution. If more than one variable is
measured for each statistical unit (e.g., height and weight), we may define a two-
dimensional frequency distribution. We use the notation X to denote the observed
variable.

2.1.1 Frequency Distributions for Discrete Data

Suppose the variable X can take on k distinct values xj; j D 1; ::; k. Note that
we index these distinct values or classes using the subscript j. We will denote n
observations on the random variable by xi; i D 1; : : : ; n. The context will usually
make it clear whether we are referring to the k distinct values or the n observations.
We will assume that n > k.

Frequency Table

For a discrete variable X, the frequency table displays the distribution of frequencies
over the given categories. From now on we will speak of discrete variables to
encompass categorical variables and discrete metric variables with few possible
observations. Note that the sum of the frequencies across the various categories
equals the number of observations, i.e.,

Pk
jD1 xj D n (Table 2.1).

© Springer International Publishing Switzerland 2015
W.K. Härdle et al., Introduction to Statistics, DOI 10.1007/978-3-319-17704-5_2
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Table 2.1 A frequency table Values Absolute frequencies Relative frequencies

x1 h .x1/ f .x1/

x2 h .x2/ f .x2/

:
:
:

:
:
:

:
:
:

xj h
�
xj

�
f
�
xj

�

:
:
:

:
:
:

:
:
:

xk h .xk/ f .xk/

Total n 1

Fig. 2.1 Example of a bar
graph
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2.1.2 Graphical Presentation

Several graph types exist for displaying frequency distributions of discrete data.

Bar Graph

In a bar graph, frequencies are represented by the height of bars vertically drawn
over the categories depicted on the horizontal axis. Since the categories do not
represent intervals as in the case of grouped continuous data, the width of the bars
cannot be interpreted meaningfully. Consequently, the bars are drawn with equal
width (Fig. 2.1).

Stacked Bar Chart

Sometimes one wants to compare relative frequencies in different samples (different
samples may arise at different points in time or from different populations). This can
be done by drawing one bar graph for each sample. An alternative is the stacked bar
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Fig. 2.2 Example of a
stacked bar chart
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Fig. 2.3 Example of a pie
chart x1 

 21.93 %

x2 
30.7 %

x3 
28.95 %

x4 
 18.42 %

chart. It consists of as many segmented bars as there are samples. Each segment of
a bar chart represents a relative frequency (Fig. 2.2).

Pie Chart

In pie charts, frequencies are displayed as segments of a pie. The area of each
segment is proportional to the corresponding relative frequency (Fig. 2.3).

Pictograph

In a pictograph, the size or number of pictorial symbols is proportional to observed
frequencies (Fig. 2.4).

Statistical Map

Different relative frequencies in different areas are visualized by different colors,
shadings, or patterns (Fig. 2.5).
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Fig. 2.4 Two examples of pictographs

 0−10%
10−20%
20−30%
30−40%
40−50%
50−60%

Fig. 2.5 Example of a statistical map
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Table 2.2 Frequency table
on employed population in
Germany

j Status xj h
�
xj

�
.10000s/ f

�
xj

�

1 Wage-earners 14568 0:389

2 Salaried 16808 0:449

3 Civil servants 2511 0:067

4 Self employed 3037 0:081

5 Family employed 522 0:014

Total 37466 1:000
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Fig. 2.6 Pie chart and bar graph on employed population in Germany

Explained: Job Proportions in Germany

In April 1991, Germany’s employed population was surveyed with respect to type of
employment. Table 2.2 summarizes the data. Visualizing the proportions helps us to
analyze the data. In Fig. 2.6 you can clearly see the high proportion of wage-earners
and salaried in contrast to the other categories.

Enhanced: Evolution of Household Sizes

The evolution of household sizes over the twentieth century can be studied using
data compiled at various points in time.

Statistical elements: households
Statistical variable: size of household (metric, discrete)

Table 2.3 contains relative frequencies measured in percent for various years.
The structural shift in the pattern of household sizes towards the end of the

century becomes visible if we draw bar charts for each year. The graphics in Fig. 2.7
display a clear shift towards smaller families during the twentieth century.
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Table 2.3 Frequency table
on the evolution of household
sizes over the twentieth
century

Household size X 1900 1925 1950 1990

1 7.1 6.7 19.4 35.0

2 14.7 17.7 25.3 30.2

3 17.0 22.5 23.0 16.7

4 16.8 19.7 16.2 12.8

� 5 44.4 33.3 16.1 5.3

Total 100 100 100 100

1900

size of household

re
la

tiv
e 

fre
qu

en
cy

 in
 p

er
ce

nt

0
5

10
15
20
25
30
35
40
45

1 2 3 4 >5

1925

size of household

re
la

tiv
e 

fre
qu

en
cy

 in
 p

er
ce

nt

0
5

10
15
20
25
30
35
40
45

1 2 3 4 >5

1950

size of household

re
la

tiv
e 

fre
qu

en
cy

 in
 p

er
ce

nt

0
5

10
15
20
25
30
35
40
45

1 2 3 4 >5

1990

size of household

re
la

tiv
e 

fre
qu

en
cy

 in
 p

er
ce

nt

0
5

10
15
20
25
30
35
40
45

1 2 3 4 >5

Fig. 2.7 Histograms on the evolution of household sizes over the twentieth century

2.2 Frequency Distribution for Continuous Data

Given a sample x1; x2; : : : ; xn on a continuous variable X, we may group the data
into k classes with class boundaries denoted by xl

1; xu
1 D xl

2; xu
2 D xl

3; : : : ; xu
k and

class widths �xj D xu
j � xl

j .j D 1; : : : ; k/. Note that the upper boundary for a given
class is equal to the lower boundary for the succeeding class.

An observation xi belongs to class j, if xl
j � xi < xu

j . Since within a category,
there are a range of possible values we will focus on the midpoint and denote it
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Table 2.4 Structure of a
frequency table Class # Classes

Absolute
frequencies

Relative
frequencies

1 xl
1 � X < xu

1 h .x1/ f .x1/

2 xl
2 � X < xu

2 h .x2/ f .x2/

:
:
:

:
:
:

:
:
:

:
:
:

j xl
j � X < xu

j h
�
xj

�
f
�
xj

�

:
:
:

:
:
:

:
:
:

:
:
:

k xl
k � X < xu

k h .xk/ f .xk/

Total n 1

by xj. (Contrast this with the discrete data case where xj denotes the value for the
category.) Once again the subscript j corresponds to categories xj ; j D 1; : : : ; k and
the subscript i denotes observations xi ; i D 1; : : : ; n.

Frequency Table

A frequency table for continuous data provides the distribution of frequencies over
the given classes. The structure of a frequency table is shown in Table 2.4.

Graphical Presentation

Histogram

In a histogram, continuous data that have been grouped into categories are repre-
sented by rectangles. Class boundaries are marked on the horizontal axis. As they
can be of varying width, we cannot simply represent frequencies by the heights
of bars as we did for bar graphs. Rather, we must correct for class widths. The
rectangles are constructed so that their areas are equal to the corresponding absolute
or relative frequencies.

Oh �xj
� � �xj D h

�
xj
�

xu
j � xl

j

� �xu
j � xl

j

� D h
�
xj
�

or

Of �xj
� � �xj D f

�
xj
�

xu
j � xl

j

� �xu
j � xl

j

� D f
�
xj
�



28 2 One-Dimensional Frequency Distributions
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Fig. 2.8 Example of histogram—716 observations on monthly income (Euro)

If the class widths are identical, then the frequencies are also proportional to
the heights of the rectangles. The rectangles are drawn contiguous to each other,
reflecting common class boundaries xu

j D xl
jC1 (Fig. 2.8).

Stem-and-Leaf Display

In stem-and-leaf displays (plots), the data are not summarized using geometric
objects. Rather, the actual values are arranged to give a rough picture of the data
structure. The principle is similar to that of the bar chart, but values belonging to a
particular class are recorded horizontally rather than being represented by vertical
bars. Classes are set up by splitting the numerical observations into two parts: One
or more of the leading digits make up the stem, the remaining (trailing) digits are
called leaves. All observations with the same leading digits, i.e., the same stem,
belong to one class. Typically, class frequencies are proportional to the lengths of
the lines.

The principle is best understood by applying it to real data. Consider the
following collection of observations :

32; 32; 35; 36; 40; 44; 47; 48; 53; 57; 57; 100; 105

The “stems” consist of the following “leading digits”: 3; 4; 5; 10. They corre-
spond to the number of times that “ten” divides into the observation. The resulting
stem-and-leaf diagram is displayed below.

Frequency Stems Leaves
4 3 2256

4 4 0478

3 5 377

2 10 05
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Displaying data graphically (or, as is the case here, quasi-graphically), we can
extract more relevant information than we could otherwise. (The human brain is
comparatively efficient at storing and comparing visual patterns.)

The above stem-and-leaf plot appears quite simple. We can refine this by splitting
the lines belonging to one stem in two, the first one for the trailing digits in the
range one to four, the second for five to nine. We label the first group with l for
low, the second with h for high. In the resulting stem-and-leaf plot the data appears
approximately evenly distributed:

Frequency Stems Leaves
2 3 l 22

2 3 h 56

2 4 l 04

2 4 h 78

1 5 l 3

2 5 h 77

1 10 l 0

1 10 h 5

Yet there is an apparent gap between stems 5 and 10. It is indeed one of the
advantages of stem-and-leaf plots that they are helpful in both giving insights into
concentration of data in specific regions and spotting extraordinary or extreme
observations. By labeling 100 and 105 as outliers we obtain a useful enhancement
to the stem-and-leaf plot:

Frequency Stems Leaves
2 3 l 22

2 3 h 56

2 4 l 04

2 4 h 78

1 5 l 3

2 5 h 77

2 Extremes: 100; 105

For an example with data conveying a richer structure of concentration and a
more detailed stem structure have a look at the following examples for grouped
continuous data.

Dotplots

Dotplots are used to graphically display small datasets. For each observation, a “dot”
(a point, a circle or any other symbol) is plotted. Some data will take on the same
values. Such ties would result in “overplotting” and thus would distort the display
of the frequencies.
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0 5 10 15

dotplot

hourly wage (n=150)

0 5 10 15

dotplot

hourly wage of males (blue) and females (red)

Fig. 2.9 Example of dotplot—student salaries in the USA

The dots are therefore spread out into the vertical dimension in a random fashion.
The y-axis thus contains uniformly spread random numbers over the Œ0; 1� interval.
Provided, the size of each symbol is sufficiently small for a given sample size, the
dots are then unlikely to overlap each other.

Example The data in Fig. 2.9 consist of 150 observations on student salaries in the
USA. In the upper part panel, we display a dot plot for all 150 observations. In the
lower part, we use color to distinguish the gender of the students. Since the random
perturbations in the vertical dimension are different for the two panels, the points
are located in slightly different positions.

Explained: Petrol Consumption of Cars

Petrol consumption of 74 cars has been measured in miles per gallon (MPG). The
measurements are displayed in a frequency table shown in Table 2.5. Using the same
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Table 2.5 Petrol
consumption of 74 cars in
miles per gallon (MPG)

X: Petrol consumption
Absolute
frequencies

Relative
frequencies

(MPG) h
�
xj

�
f
�
xj

�

12 � X < 15 8 0:108

15 � X < 18 10 0:135

18 � X < 21 20 0:270

21 � X < 24 13 0:176

24 � X < 27 12 0:162

27 � X < 30 4 0:054

30 � X < 33 3 0:041

33 � X < 36 3 0:041

36 � X < 39 0 0:000

39 � X < 42 1 0:013

Total 74 1:000
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Fig. 2.10 Histogram for petrol consumption of 74 cars in miles per gallon (MPG)

constant class width of 3 MPG, the frequency distribution is displayed in a histogram
in Fig. 2.10. As is evident from both, the frequency table and the histogram, the
largest proportion of cars lies in the category 18–21 MPG.

Explained: Net Income of German Nationals

Data

Statistical elements: German nationals, residing in private households,
minimum age 18

Statistical variable: monthly net income
sample size n 716
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Fig. 2.11 Histograms of monthly net income in Euro for different bandwidths

Histogram

In the histograms shown in Fig. 2.11, the classes are income brackets of equal width.
Reducing the common class size (and hence increasing the number of classes)
yields a more detailed picture of the income distribution. Observe how the absolute
frequencies decline as the class widths become more narrow.

Furthermore, increasing the number of classes decreases the smoothness of the
graph. Additional gaps become visible as more information about the actual data is
displayed. In choosing a class width we are striking a balance between two criteria:
the essential information about the population which might be more strikingly
conveyed in a smoother graph, and greater detail contained in a histogram with a
larger number of classes.

We can also separate histograms by gender, using a bin width of 500 Euro, as
shown in Fig. 2.12.
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Fig. 2.12 Histograms of monthly net income in Euro for males and females

Stem-and-Leaf Display

The stem-and-leaf plot provided in Table 2.6 displays all 716 income figures. It is
more detailed than the stem-and-leaf plots we have previously drawn. The stems,
specified by the first leading digit, are divided into five subclasses corresponding
to different values in the first trailing, i.e., leaf digit: The first line of each stem,
denoted by *, lists all leaves starting with 0 or 1, the second (t) those starting with
2 or 3, and so on. As the stem width is specified to be 1000, the first leaf digit
counts the hundreds. To condense exposition, each two observations belonging to
the same class (i.e., being the same leaf) are represented by just one number (leaf).
For example, six of the 716 surveyed persons earn between 2400 and 2500 Euros,
denoted by “444” in the “2 f” line.

The ampersand (&) denotes pairs of observations covering both leaves repre-
sented by one line. For example, 4 persons earn between 4200 and 4400 Euros.
Following the convention of each leaf representing two cases, there are two persons
with net earnings in the interval Œ4200; 4300/. The other two persons, symbolized by
&, would be displayed by the sequence “23,” if one leaf represented one observation.
Thus, one of the two persons belongs to the income bracket Œ4200; 4300/, the other
to the Œ4300; 4400/-bracket.

Observe, that the 17 “extreme” values are displayed separately to highlight their
distance from the other more heavily populated classes.



34 2 One-Dimensional Frequency Distributions

Table 2.6 Stem-and-leaf plot

Frequency Stem and Leaf

2 0 * 1

21 0 t 2233333333

35 0 f 44444444555555555

47 0 s 66666666666666667777777

41 0 . 88888888888899999999

45 1 * 0000000000000000111111

38 1 t 2222222222222233333

63 1 f 4444444444455555555555555555555

45 1 s 6666666666667777777777

72 1 . 88888888888888888888888889999999999

78 2 * 00000000000000000000000000000001111111

46 2 t 22222222222222333333333

32 2 f 444555555555555

28 2 s 66666667777777

23 2 . 88888889999

28 3 * 00000000000011

10 3 t 2233

16 3 f 44555555

8 3 s 6677

5 3 . 88

12 4 * 00000&

4 4 t 2&

10 Extremes: (4400), (4500), (5000),(5500), (5600),(5900),

(6400), (6500), (7000), (15000)

Stem width: 1000

Each leaf: 2 case(s), & denotes fractional leaves

2.3 Empirical Distribution Function

Empirical distribution functions can be constructed for data that have a natural
numerical ordering. If h

�
xj
�

is the absolute frequency of observations on a discrete
variable, then the absolute frequency (or number) of observations not exceeding that
value is called the absolute cumulated frequency:

H
�
xj
� D

jX

sD1

h .xs/ ; j D 1; : : : ; k
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The relative cumulative frequency is calculated as:

F
�
xj
� D H

�
xj
�

n
D

jX

sD1

f .xs/ ; j D 1; : : : ; k

If the variable is continuous and the data are grouped into k classes, then
the above definitions apply except that we interpret H.xj/ as the frequency of
observations not exceeding the upper boundary of the j-th class.

2.3.1 Empirical Distribution Function for Discrete Data

For the relative cumulative frequency we have

F .x/ D
8
<

:

0 if x < x1Pj
sD1 f .xs/ if xj � x < xjC1 ; j D 2; : : : ; k

1 if xk � x

The graph of an empirical distribution function is a monotonically increasing step
function, the step size corresponds to the relative frequency at the “jump” points xj

(Table 2.7; Fig. 2.13).
In creating empirical distribution functions we are not losing information about

relative frequencies of observations, as we can always reverse the cumulation
process:

f
�
xj
� D F

�
xj
� � F

�
xj�1

�
; for j D 1; : : : ; k I F .x0/ D 0

Suppose xl < xu are two values that the discrete variable can take. Then the
number or frequency of observations taking on values between xl and xu can be
calculated as follows:

F .xu�1/ � F .xl/

Table 2.7 Example of
cumulative frequencies for
number of persons in a
household—data from 1990

# persons per household f
�
xj

�
F
�
xj

�

1 0:350 0:350

2 0:302 0:652

3 0:167 0:819

4 0:128 0:947

� 5 0:053 1:000



36 2 One-Dimensional Frequency Distributions

Fig. 2.13 Distribution
function for the number of
persons in a household—data
from 1990

size of household
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x)
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8
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2.3.2 Empirical Distribution Function for Grouped
Continuous Data

As for discrete data, the empirical distribution function for grouped continuous data
is a function of relative cumulative frequencies. But in this case, rather than using a
step function, one plots the cumulative frequencies against the upper boundaries of
each class, then joints the points with straight lines. Mathematically, the empirical
distribution function may be written as:

F .x/ D

8
ˆ̂
<

ˆ̂
:

0 if x < xl
1

Pj�1
iD1 f .xi/ C x�xl

j

xu
j �xl

j
� f
�
xj
�

if xl
j � x < xu

j ; j D 1; : : : ; k

1 if xu
k � x

The rationale for interpolating with straight lines is that one might expect the
distribution of points within classes to be approximately uniform.

An Example is provided in Table 2.8. The corresponding distribution function is
given in Fig. 2.14.

As mentioned earlier, the straight lines connecting class boundaries reflect linear
interpolations motivated by the assumption that observations are evenly distributed
within classes. We will illustrate this by drawing the variable part of the distribution

function for xl
j � x < xu

j ,
Pj�1

iD1 f .xi/ C x�xl
j

xu
j �xl

j
f .xj/, for a fixed interval (class)

h
xl

j; xu
j

�i
.

Evaluating at a lower class boundary we obtain F
�

xl
j

�
D Pj�1

iD1 f .xi/ C
xl

j�xl
j

xu
j �xl

j
f .xj/ D Pj�1

iD1 f .xi/. We can thus substitute F
�

xl
j

�
for

Pj�1
iD1 f .xi/ in the



2.3 Empirical Distribution Function 37

Table 2.8 Example—lives
of 100 light bulbs

Statistical elements Light bulbs

Statistical variable Life in hours, metric variable

sample size n 100

X: Life (hours) h
�
xj

�
f
�
xj

�
H
�
xj

�
F
�
xj

�

0 � X < 100 1 0:01 1 0:01

100 � X < 500 24 0:24 25 0:25

500 � X < 1000 45 0:45 70 0:70

1000 � X < 2000 30 0:30 100 1:00

Total 100 1:00

x

F(
x)

0 500 1000 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fig. 2.14 Cumulative distribution function for lives of 100 light bulbs

formula for the distribution function and get

F .x/ D F
�
xl

j

�C x � xl
j

xu
j � xl

j

if xl
j � x < xu

j ; j D 1; : : : ; k

Figure 2.15 depicts the linear intra-class segment.

Explained: Petrol Consumption of Cars

The petrol consumption of 74 cars has been measured in miles per gallon (MPG).
The measurements are displayed in an augmented frequency table shown in
Table 2.9. The corresponding empirical distribution function is given in Fig. 2.16.

Again, the linear interpolation of lower class boundaries follows from the
assumption of an even distribution of observations within classes. Class widths
and boundaries are in turn constructed to approximate this assumption as closely as
possible. This allows us to retain as much information as possible about the shape
of the data.
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Fig. 2.15 Linear intra-class
segment for distribution
function
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Table 2.9 Augmented frequency table for petrol consumption of 74 cars measured in miles per
gallon (MPG)

X: Petrol
consumption

Absolute
frequencies

Relative
frequencies

Relative cumulative
frequencies

(MPG) h
�
xj

�
f
�
xj

�
F
�
xj

�

12 � X < 15 8 0:108 0:108

15 � X < 18 10 0:135 0:243

18 � X < 21 20 0:270 0:513

21 � X < 24 13 0:176 0:689

24 � X < 27 12 0:162 0:851

27 � X < 30 4 0:054 0:905

30 � X < 33 3 0:041 0:946

33 � X < 36 3 0:041 0:987

36 � X < 39 0 0:000 0:987

39 � X < 41 1 0:013 1:000

Total 74 1:000

Various statements can be extracted from Table 2.9, e.g.: 68.9 % of cars cannot
travel more than 24 miles per gallon.

Explained: Grades in Statistics Examination

These are the grades 20 students have achieved in a Statistics examination:

f2; 2; 4; 1; 3; 2; 5; 4; 2; 4; 3; 2; 5; 1; 3; 2; 2; 3; 5; 4g
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Fig. 2.16 Empirical
distribution function for
petrol consumption of 74 cars
measured in miles per gallon
(MPG)
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Table 2.10 Frequency table
of grades in statistics
examination

Absolute
frequency

Relative
frequency

Relative cumulative
frequency

X: Mark h
�
xj

�
f
�
xj

�
F
�
xj

�

1 2 0:10 0:10

2 7 0:35 0:45

3 4 0:20 0:65

4 4 0:20 0:85

5 3 0:15 1:00

Fig. 2.17 Relative
cumulative frequencies of
grades in statistics
examination
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Table 2.10 summarizes the information about the distribution of the given data.
The graph of the relative cumulative frequencies is depicted in Fig. 2.17. We
observe that the graph of the relative cumulative frequency (and hence the function)
is continuous from the right. Each bullet indicates the value of the distribution
function at a jump point. In the figure, the x-axis covers all real numbers within
the grade range, even though the random variable cannot take other values than
f1; 2; 3; 4; 5g. For theoretical reasons, the definition of the distribution function
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also assigns numbers (zero and one, respectively) to values outside Œ1; 5�. Various
statements can be deduced from the data summarized in the frequency table, e.g.

• 65 % of students have achieved a grade of at least 3.
• 15 % (1:00 � 0:85) of students achieved a grade of 5.

2.4 Numerical Description of One-Dimensional Frequency
Distributions

Statistics are numbers which summarize particular features of the data. Formally, a
statistic is a function of the data. They can be used to measure different features,
such as where the data are generally located (measures of location), the degree
to which they are dispersed (measures of dispersion or scale), whether they are
symmetrically distributed, the degree to which they are correlated, and so on. In the
following sections we will consider various measures of location and dispersion.
These measures can then be used to compare different datasets.

Measures of Location

In addition to summarizing where the data are located or concentrated, location
measures provide a benchmark against which individual observations can be
assessed.

Mode

The value occurring most frequently in a dataset is called the mode or the modal
value. If the variable is discrete, the mode is simply the value with the greatest
frequency. For continuous data measured with sufficient accuracy, however, most
observations are likely to be distinct, rendering the idea meaningless. However, by
grouping the data, we can determine the modal class, i.e., the class with the highest
frequency.

Mode for qualitative or discrete data is given by

arg max
xj

ff
�
xj
�g

Mode for Grouped Continuous Data The modal class is the class with the highest
class frequency. As a class interval consists of infinitely many numbers, we have
to introduce a convention according to which a single number within this class is
determined to represent the mode. The simplest convention is to use the midpoint of
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the modal class. An alternative and more technical adjustment involves selecting
a point which moves towards the neighboring cell with the higher density of
observations. It is defined as follows:

xD D xl
j C

Of �xj
� � Of �xj�1

�

2 � Of �xj
� � Of �xj�1

� � Of �xjC1

� � �xu
j � xl

j

�
;

where

xl
j,x

u
j lower/upper boundary of modal class

Of �xj
�

frequency distribution for modal class
Of �xj�1

�
frequency distribution for class preceding modal class

Of �xjC1

�
frequency distribution for class succeeding modal class

The modal class is given by: Œ500; 1000/. We can calculate the mode approx-
imated by the midpoint of the modal class which is just the arithmetic average

of the class boundaries: 0:5 �
�

xu
j C xl

j

�
D 750 h. Using the above formula

which moves the mid-point in the direction of the neighboring cell with the
higher density of observations one obtains: xD D 500 C 9�6

18�6�3
� 500 D 666 2

3

(Table 2.11).

Quantiles

Given data x1; x2; : : : ; xn; suppose we order or rank the data in increasing order to
obtain the ordered sequence x.1/; x.2/; : : : ; x.n/:.We call the elements of this sequence
the order statistics of the data. From the order statistics we can immediately read off
the third largest value, the smallest value, and so on.

Let p be a number between zero and one and think of p as a proportion of
the data. A value which divides the sequence of order statistics into the two sub-
sequences containing the first .p � n/ and the last ..1 � p/ � n/ observations is called
the p-quantile. We will denote it by xp. Equivalently, we may think of xp as a
value such that 100p % of the data lie below it and 100.1 � p/ % of the data lie
above.

Table 2.11 Example—Lives of 100 light bulbs

j X: Life (hours) h
�
xj

�
f
�
xj

� Of �xj

� � 10�4 F
�
xj

�

1 0 � X < 100 1 0:01 1 0:01

2 100 � X < 500 24 0:24 6 0:25

3 500 � X < 1000 45 0:45 9 0:70

4 1000 � X < 2000 30 0:30 3 1:00

Total 100 1:00
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Quantiles for Ungrouped Data

• If n � p is not an integer and k the smallest integer satisfying k > n � p, then we
define xp D x.k/. The quantile is thus the observation with rank k, x.k/.

• If, k D n � p is an integer, we will take xp to be the midpoint between x.k/.and
x.kC1/.

Quantiles for Grouped Data For data that are grouped in classes, we will carry out
interpolations between class boundaries to obtain a p-quantile:

xp D xl
j C

p � F
�

xl
j

�

f
�
xj
� � �xu

j � xl
j

�

Here, xl
j, xu

j and f
�
xj
�

are the lower boundary, upper boundary, and the relative
frequency of the class containing the p-th quantile. The cumulative relative fre-
quency up to and including the class preceding the quantile class is denoted by

F
�

xl
j

�
.

The quantile xp can be defined using interpolation. The principle of interpolation
for the quantity p D F.xp/ can be easily understood from Fig. 2.18.

Some special quantiles:

• deciles (tenths)—the ordered observations are divided into ten equal parts. p D
s=10; s D 1; : : : ; 9—deciles: x0:1; x0:2; : : : ; x0:9

• quintiles—the ordered observations are divided into five equal parts. p D
r=5; r D 1; 2; 3; 4—quintiles: x0:2; x0:4; x0:6; x0:8

• quartiles—the ordered observations are divided into four equal parts. p D
q=4; q D 1; 2; 3—quartiles: x0:25; x0:5; x0:75

Median (Central Value)

The value which divides the ordered observations into two equal parts is called
the median xz D x0:5. The median is much less sensitive to outlying or extreme
observations than other measures such as the mean which we study below. The
median xz corresponds to the second quartile x0:5.

Median for Ungrouped Data

• for n odd: x0:5 D x
. nC1

2 /

• for n even: x0:5 D .x.n=2/ C x.n=2C1//=2: This is simply the mid-point of the two
center-most observations.

Median for Grouped Variables

• The median for grouped data is defined as the mid-point of the class which
contains the central portion of the data.
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Fig. 2.18 Quantiles of grouped data

• Formally, let xl
j and xu

j be the lower and upper boundaries of the class for which
F.xu

j�1/ D F.xl
j/ � 0:5 and F.xu

j / � 0:5. Then,

x0:5 D xl
j C 0:5 � F.xl

j/

f .xj/
� .xu

j � xl
j/

• The median can be easily determined from the graph of the distribution function
since F.x0:5/ D 0:5, see Fig. 2.19.
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Fig. 2.19 Median for grouped continuous data

Properties of the Median (of Numerical Variables)

• optimality

nX

iD1

jxi � x0:5j D
kX

jD1

jxj � x0:5j � f .xj/ ! min:

The median is optimal in the sense that it minimizes the sum of absolute
deviations of the observations from a point that lies in the midst of the data
(Fig. 2.19).

• linear transformation yi D a C bxi �! y0:5 D a C bx0:5

If the data are transformed linearly, then the median is shifted by that same
linear transformation.

Calculation of Quartiles The empirical distribution function (third column of the
Table 2.12) implies that both the first quartile x0:25; p D 0:25 and the second quartile
x0:5; p D 0:50 belong to third group (3000–5000 EUR). By interpolation we find
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Table 2.12
Example—Monthly net
income of households (up to
25000 EUR)

Income range
Proportion of
households:

Empirical distribution
function:

(EUR) f .x/ F.x/

1–800 0:044 0:044

800–1400 0:166 0:210

1400–3000 0:471 0:681

3000–5000 0:243 0:924

5000–25000 0:076 1:000

X        (in DM)

F(
X)

1536 2385 3568 5000

0.25

0.50

0.75

11

Fig. 2.20 Graph of the empirical distribution function and quartiles

the following (Fig. 2.20).

x0:25 D 1400 C 1600 � 0:25 � 0:21

0:471
D 1535:88 EUR

x0:50 D 1400 C 1600 � 0:50 � 0:21

0:471
D 2385:14 EUR

x0:75 D 3000 C 2000 � 0:75 � 0:681

0:243
D 3567:90 EUR

The Interpretation 25 % of the households has net monthly income not exceeding
1535.88 EUR and 75 % of the households has income higher than 1535.88 EUR
(first quartile). 50 % of the households have income smaller than 2385.14 EUR and
50 % of the households have income higher than 2385.14 EUR (second quartile).
75 % of the households have income less than 3567.90 EUR and 25 % of the
households have income exceeding 3567.90 EUR (third quartile).

The above also implies that 50 % of the households has net income between
1535.88 EUR and 3567.90 EUR.



46 2 One-Dimensional Frequency Distributions

Arithmetic Mean

The arithmetic mean or average, denoted NX, is obtained by summing all observations
and dividing by n. The arithmetic mean is sensitive to outliers. In particular, an
extreme value tends to “pull” the arithmetic mean in its direction.

The mean can be calculated in various ways, using the original data, using the
frequency distribution and using the relative frequency distribution. For discrete
data, each method yields a numerically identical answer.

Calculation using original data:

Nx D 1

n

nX

iD1

xi

Calculation using the frequency and relative frequency distribution:

Nx D 1

n

kX

jD1

xjh.xj/ D
kX

jD1

xjf .xj/

Properties of the Arithmetic Mean

• Center of gravity: The sum of the deviations of the data from the arithmetic mean
is equal to zero.

nX

iD1

.xi � Nx/ D 0 ,
kX

jD1

.xj � Nx/h.xj/ D 0

• Minimum sum of squares: The sum of squares of the deviations of the data from
the arithmetic mean is smaller than the sum of squares of deviations from any
other value c.

nX

iD1

.xi � Nx/2 <

nX

iD1

.xi � c/2

kX

jD1

.xj � Nx/2h.xj/ <

kX

jD1

.xj � c/2h.xj/

• Pooled data: Assume that the observed data are in disjoint sets D1; D2; : : : ; Dr,
and that the arithmetic mean Nxp for each of the sets is known. Then the arithmetic
mean of all observed values (considered as one set) can be calculated using the
formula

Nx D 1

n

rX

pD1

Nxpnp n D
rX

pD1

np

where np denotes the number of observations in p-th group (p D 1; : : : ; r).
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Table 2.13
Example 1—Monthly income
of households (MIH)

MIH
Proportion of
households

Cumulative distribution
function

(EUR) f .x/ F.x/

1–800 0:044 0:044

800–1400 0:166 0:210

1400–3000 0:471 0:681

3000–5000 0:243 0:924

5000–25000 0:076 1:000

Table 2.14
Example 2—Monthly income
of 716 people

Nx D 1881:40 EUR

x0:25 D 1092:50 EUR

x0:50 D 1800:00 EUR

x0:75 D 2400:00 EUR

‘mode’ D 2000.00 EUR

• Linear transformation:

yi D a C bxi �! Ny D a C bNx

• Sum:

zi D xi C yi �! Nz D Nx C Ny

From the data of Example 1 given in Table 2.13 we can calculate the arithmetic
mean using the mid-points of the groups:

Nx D 400 � 0:044 C 1100 � 0:166 C 2200 � 0:471 C 4000 � 0:243 C 15000 � 0:076

D 17:6 C 182:6 C 1036:2 C 972 C 1140 D 3348:4 EUR.

The arithmetic mean 3348.4 EUR is higher than the median calculated above
(2385.14 EUR). This can be explained by the fact that the arithmetic mean is more
sensitive to the relatively small number of large incomes. The high values shift the
arithmetic mean but do not influence the median (Table 2.14).

Explained: Average Prices of Cars

This dataset contains prices (in USD) of 74 cars. The distribution of prices is
displayed using a dotplot below. The price variable is on the horizontal axis. The
data are randomly scattered in the vertical direction for better visualization.

In Fig. 2.21, the median is displayed in red and the arithmetic mean in magenta.
As can be seen, the two values almost coincide.
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4000 6000 8000 10000 12000 14000 16000

Fig. 2.21 Prices for 74 cars (USD)—arithmetic mean: 4896.417 (magenta) and median: 4672.000
(red)

4000 6000 8000 10000 12000 14000 16000

Fig. 2.22 Corrected prices for 74 cars (USD)—arithmetic mean: 5063.083 (magenta) and median:
4672.000 (red)

4000 6000 8000 10000 12000 14000 16000

Fig. 2.23 Repeated measurements of car prices—arithmetic mean: 5063.083 (magenta) and
median: 5006.500 (red)

For symmetric distributions, the median and arithmetic mean are identical. This
is almost true for our example.

However, during a check of the data, it was discovered that one value had not
been entered correctly. The value 15962 USD was incorrectly changed to 5962 USD.
Figure 2.22 contains corrected values:

The median (because it is robust) did not change. On the other hand, the
arithmetic mean has increased significantly, as it is sensitive to extreme values. The
miscoded observation takes on a value well outside the main body of the data.

The measurements were repeated after some time with the results shown in
Fig. 2.23.
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Fig. 2.24 Screenshot of the interactive example, available at http://u.hu-berlin.de/men_dot1

Now, there are a number of relatively more expensive cars. The distribution of
prices is now skewed to the right. These more extreme observations pull the mean
to the right much more so than the median. Thus for right-skewed distributions, the
arithmetic mean is larger than the median.

Interactive: Dotplot with Location Parameters

The interactive example includes a number of sidebar panels. You can access the
panels by setting a mark at the corresponding check box on the upper right.

Please select

• a dotplot type, e.g., jitter
• if you like the mean and median to be included in the plot

The last two panels allow you to choose a dataset or variable and to change
the font size. For a detailed explanation on datasets and variables, please refer to
Appendix A.

Output

The interactive example allows us to display a one-dimensional frequency distribu-
tion in the form of a dotplot for a variety of variables. Possible values are displayed
along the horizontal axis. For easier visualization, the observations may be randomly
shifted (jitter) in the vertical direction. The median and the arithmetic mean can be
displayed graphically and numerically (Fig. 2.24).

Interactive: Simple Histogram

The interactive example includes a number of sidebar panels. You can access the
panels by setting a mark at the corresponding check box on the upper right.

http://u.hu-berlin.de/men_dot1
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Fig. 2.25 Screenshot of the interactive example, available at http://u.hu-berlin.de/men_hist

Please select

• the number of bins
• if you like the observations to be shown

The last two panels allow you to choose a dataset or variable and to change
the font size. For a detailed explanation on datasets and variables, please refer to
Appendix A.

Output

The graphic displays all observations of a variable summarized in a histogram
(Fig. 2.25).

2.5 Location Parameters: Mean Values—Harmonic Mean,
Geometric Mean

If the observed variables are ratios, then the arithmetic mean may not be appropriate.

Harmonic Average

The harmonic average, denoted NxH , is useful for variables which are ratios. We
assume that all data points are not equal to zero, i.e., xi ¤ 0. As a consequence
the xj ¤ 0.

NxH D n
nP

iD1

1
xi

http://u.hu-berlin.de/men_hist
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NxH D

kP

jD1

gj

kP

jD1

gj

xj

; j D 1; : : : ; k

In the latter formula, gj provides additional information which will become clear
in the example below.

Example 1

Part of the road j 1 2 3 4

Distance gj in km 2 4 3 8

Speed xj in km/h 40 50 80 100

We would like to calculate the average speed of the car during the period of
travel. It is inappropriate to simply average the speeds since they are measured over
differing periods of time. In the table, gj is the distance traveled in each segment.
Using the above formula we calculate:

Total time:
kP

jD1

gj

xj
D 0:2475 h

Total distance:
kP

jD1

gj D 17 km

Average: NxH D 17
0:2475

D 2C4C3C8
2
40 C 4

50 C 3
80 C 8

100

D 68:687 km=h

The arithmetic mean would lead to an incorrect result 67:5 km=h, because it does
not account for the varying lengths of the various parts of the road. Correct use of
the arithmetic mean would involve calculating the time spent along each segment.
In the above example these times are denoted by hj D gj=xj for each segment.

h1 D g1=x1 D 0:05I h2 D g2=x2 D 0:08I
h3 D g3=x3 D 0:0375I h4 D g4=x4 D 0:08I

Nx D 40 � 0:05 C 50 � 0:08 C 80 � 0:0375 C 100 � 0:08

0:05 C 0:08 C 0:0375 C 0:08
D 68:687 km=h

Thus, in order to calculate the average of ratios using additional information
for the numerator (in our case xj with the additional information gj) we use the
harmonic average. In order to calculate the average from ratios using additional
information on the denominator, we choose the arithmetic average.

Example 2 Four students, who have part time jobs, have the hourly (respectively
weekly) salaries given in Table 2.15.

We are supposed to find the average hourly salary. This calculation cannot be
done using only the arithmetic average of the hourly salaries, because that would
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Table 2.15 Hourly and
weekly salary of four students

Student Euro/h Weekly salary in Euro

A 18 180

B 20 300

C 15 270

D 19 380

Table 2.16 Hourly salary
and working hours of four
students

Student Euro/h Working hours

A 18 10

B 20 15

C 15 18

D 19 20

not take into account the different times spent in the job. The variable of interest is
a ratio (Euro/h) and the additional information (weekly salary in Euro) is related to
the numerator of this ratio. Hence, we will use the harmonic average.

NxH D

P

j
gj

P

j

gj

xj

D 180 C 300 C 270 C 380
180
18

C 300
20

C 270
15

C 380
19

D 1130

63
D 17:94

These four students earn on average 17.94 Euro/h (Table 2.15). The situation
changes if we are given the number of hours worked per week (instead of the weekly
salary).

Now, the additional information (weekly working hours) is related to the
denominator of the ratio. Hence, we can use an arithmetic average, in this case
the weighted arithmetic average.

Nx D 18 � 10 C 20 � 15 C 15 � 18 C 19 � 20

10 C 15 C 18 C 20
D 1130

63
D 17:94

The average salary is again 17.94 Euro/h.

Geometric Average

The geometric mean, denoted NxG, is used to calculate the mean value of variables
which are positive, are ratios (e.g., rate of growth) and are multiplicatively related.

NxG D n
p

x1 � x2 � � � � � xn
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The logarithm of the geometric average is equal to the arithmetic average of the
logarithms of the observations:

log NxG D 1

n

X

iD1

n log xi

Mean Growth Rate and Forecast

Let x0; x1; : : : ; xn be the measurements ordered according to the time of observation
from 0 to n. The growth rates can be calculated as

it D xt=xt�1

i1 � i2 � � � � � in D xn=x0

The product of all growth rates is equal to the total growth from time 0 to n. The
average growth rate will be obtained as a geometric average of the growth rates in
distinct time periods:

N{g D p
n i1 � i2 � � � � � in D p

n
xn

x0

Knowing the mean growth rate and the value in time n, we can forecast the value
in time n C T.

x?
nCT D xn � .N{G/T

Solving this equation with respect to T, we obtain a formula for the time which is
necessary to reach the given value:

T D log.xnCT/ � log.xn/

log.N{G/

Example 1

Now we calculate:

• mean value (geometric average)
• forecast for 1990
• time (year), when GDP reaches the value 2500.

N{G D 8

r
1971:8

1733:8
D 1:0162

x?
1990 D 1971:8 � 1:01622 D 2036:2 bn DM

T D log.2500/ � log.1971:8/

log.1:0162/
D 14:77 years.
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Table 2.17 Gross domestic
product (GDP) for Germany
in 1985 prices (bn DM)

Year t GDP xt it

1980 0 1733:8 –

1981 1 1735:7 1:0011

1982 2 1716:5 0:9889

1983 3 1748:4 1:0186

1984 4 1802:0 1:0307

1985 5 1834:5 1:0180

1986 6 1874:4 1:0217

1987 7 1902:3 1:0149

1988 8 1971:8 1:0365

Table 2.18 German stock index (DAX) during the period 1990–1997

Year 1989 1990 1991 1992 1993 1994 1995 1996 1997

DAX
(end of
the year)

1791 1399 1579 1546 2268 2107 2254 2889 4250

DAX
(change)

�21.9 % 12.9 % �2.1 % 46.7 % �7.1 % 7.0 % 28.0 % 47.1 %

The value of GDP of 2500 is forecasted in year 1988 C 15 D 2003 (Table 2.17).

Example 2
The German stock index (DAX) was changing during the period 1990–1997, as

shown in Table 2.18.

We want to find the average yearly change in the DAX over the period. Use of
the arithmetic average leads to an incorrect result as illustrated below.

• Nx D .�21:9/C.12:9/C.�2:1/C.46:7/C.�7:1/C.7:0/C.28:2/C.47:1/

8
D 110:80

8
D 13:85 %

• Starting in the year 1989 and using the “average change of DAX” to calculate the
value of the DAX in 1997, one obtains:

1990 1791 � 1.1385D2093
1991 2093 � 1.1385D2383
: : : : : :

1997 4440 � 1.1385D5055
• The result 5055 is much higher than the actual value of the DAX in 1997 which

was 4250.

The correct mean value is, in this case, the geometric mean, because it measure
the growth during a certain period. The value of DAX in 1990 can be calculated
from the value in 1989 and the relative change as follows:

DAX1990 D .1 C .�0:219// � DAX1989

D .1 C .�0:219// � 1791 D 0:781 � 1791 D 1399
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Analogously, we can “forecast” the value for 1991 from the relative change and
the value of DAX in 1990:

DAX1991 D .1 C 0:129/ � DAX1990

D .1 C 0:129// � 1399 D 1:129 � 1399 D 1579

The values are multiplicatively related. The geometric mean yields the following:

XG D 8
p

0:781 � 1:129 � 0:979 � 1:467 � 0:929 � 1:070 � 1:282 � 1:417

D 1:1141

The average growth rate per year of the DAX over the period 1990–1997 was
11.41 %. Using this geometric mean and the value of DAX in 1989 to predict the
value of DAX in 1997, we obtain the correct result:

1990 1791 � 1.1141D1995
1991 1995 � 1.1141D2223
: : : : : :

1997 3815 � 1.1141D4250

The average growth rate of DAX in 1990–1997 can be used also to forecast the
value of at the end of year 1999. We obtain the prediction:

DAX1999 D DAX1997 � 1:1141 � 1:1141 D 4250 � 1:11412 D 5275

2.6 Measures of Scale or Variation

The various measures of location outlined in the previous sections are not sufficient
for a good description of one-dimensional data. An illustration of this follows:

Monthly expenditures for free time and holidays (in EUR):

• data from 10 two person households: 210, 250, 340, 360, 400, 430, 440, 450,
530, 630 displayed on the axis:

• data from 10 four person households: 340, 350, 360, 380, 390, 410, 420, 440,
460, 490 displayed on the axis:
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The arithmetic average NX is in both cases is equal to 404 EUR, but the
graphs show visible differences between the two distributions. For households
with four people the values are more concentrated around the center (in this case
the mean) than for households with two people, i.e., the spread or variation is
smaller.

Measures of scale measure the variability of data. Together with measures of
location (such as means, medians, and modes) they provide a reasonable description
of one-dimensional data. Intuitively one would want measures of dispersion to have
the property that if the same constant was added to each of the data-points, the
measure would be unaffected. A second property is that if the data were spread
further apart, for example through multiplication by a constant greater than one, the
measure should increase.

Range

The range is the simplest measure of scale:

Range for Ungrouped Data

• The range, denoted R, is defined as the difference between the largest and the
smallest observed value

R D xmax � xmin D x.n/ � x.1/

where x.1/; : : : ; x.n/ are the ordered data, i.e., the order statistics.

Range for Grouped Data

• For grouped data, the range R is defined as the difference between the upper
bound of the last (highest) class xu

k and the lower bound of the first (smallest)
class xl

1:

R D xu
k � xl

1

Properties

• For a linear transformation we have: yi D a C bxi �! Ry D jbjRx

Note that addition of the constant a which merely shifts the data does not
affect the measure of variability.
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Interquartile Range

The interquartile range is the difference between the third quartile x0;75 and the first
quartile x0;25:

QA D x0:75 � x0:25

The interquartile range is the width of the central region which captures 50 % of the
observed data. The interquartile range relative to the median is defined as QAr D
QA=x0:5.

Properties

• Robust towards extreme values (outliers)
• Linear transformation: yi D a C bxi �! QAy D jbjQAx

Again addition of the constant a does not affect the measure of variability.

Mean Absolute Deviation

The mean of the absolute deviations of the observed values from a fixed point c is
called the mean absolute deviation (MAD) and it is denoted by d. The fixed point
c can be any value. Usually, it is chosen to be one of the measures of location;
typically the mean Nx or median x0:5.

As with the range and the interquartile range, adding the same constant to all
the data. Multiplication by a constant rescales the measure by the absolute value of
that same constant. Each of the formulas below may be used for ungrouped data.
If the data have been grouped, then one would use the second formula where the
xj are mid-points of the classes, and h.xj/ and f .xj/ are the absolute and relative
frequencies:

d D 1

n

nX

iD1

jxi � cj

d D 1

n

kX

jD1

jxj � cjh.xj/ D
kX

jD1

jxj � cjf .xj/

Properties

• The optimality property of the median implies that the median is the value which
minimizes the mean absolute deviation. Thus any other value substituted for c
above would yield a larger value of this measure.

• For a linear transformation of the data: yi D a C bxi �! dy D jbjdx
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Example

• Observed values: 2, 5, 9, 20, 22, 23, 29
x0:5 D 20; d.x0:5/ D 8; 29

Nx D 15:71; d.Nx/ D 8:90

The Variance and the Standard Deviation

The mean of the squared deviations of the observed values from a certain fixed point
c is called the mean squared error (MSE) or the mean squared deviation. The point
c can be chosen ad libitum.

MQ.c/ D 1

n

nX

iD1

.xi � c/2

MQ.c/ D 1

n

kX

jD1

.xj � c/2h.xj/ D
kX

jD1

.xj � c/2f .xj/

The Variance If we choose the point c to be the mean Nx, then the MSE is called
the variance. The variance of the observed values will be denoted as s2 and may be
computed as follows.

s2 D 1

n

nX

iD1

.xi � Nx/2 D 1

n

nX

iD1

x2
i � Nx2

s2 D 1

n

kX

jD1

.xj � Nx/2h.xj/ D
kX

jD1

.xj � Nx/2f .xj/

Standard Deviation The standard deviation (s) is defined as the square root of the
variance.

s D
p

s2 D
vu
u
t1

n

nX

iD1

.xi � Nx/2

s D
vu
ut1

n

kX

jD1

.xj � Nx/2h.xj/ D
vu
ut

kX

jD1

.xj � Nx/2f .xj/

The variance s2 (and therefore also the standard deviation s) is always greater
than or equal to 0. Zero variance implies that the observed data are all identical and
consequently do not have any spread.
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Properties

• The mean squared error with respect to Nx (the variance) is smaller than the mean
square error with respect to any other point c. This result can be proved as
follows:

MSE.c/ D 1

n

nX

iD1

.xi � c/2 D 1

n

nX

iD1

.xi � Nx C Nx � c/2

D 1

n

"
nX

iD1

.xi � Nx/2 C 2.Nx � c/

nX

iD1

.xi � Nx/ C n.Nx � c/2

#

D 1

n

nX

iD1

.xi � Nx/2 C .Nx � c/2 D s2 C .Nx � c/2

The middle term of the middle line vanishes since
nP

iD1

.xi � Nx/ D 0. These

formulas imply that the mean square error MSE.c/ is always greater than or equal
to the variance. Obviously equality holds only if c D Nx.

• For linear transformations we have: yi D a C bxi �! s2
y D b2s2

x ; sy D jbjsx

• Standardization: by subtracting the mean and dividing by the standard deviation
one creates a new dataset for which the mean is zero and the variance is one. Let:
zi D a C bxi; where a D �Nx=sx; b D 1=sx, then

zi D xj � Nx
sx

) Nz D 0; s2
z D 1

Example

• Observed values: 2, 5, 9, 20, 22, 23, 29
• x0:5 D 20 MSE.x0:5/ D 109:14

• Nx D 15:71 MSE.Nx/ D Variance D 90:78

Theorem (pooling) Let us assume that the observed values (data) are divided into r
groups with ni i D 1; ::; r observations. Assume also that the means and variances
in these groups are known. To obtain the variance s2 of the pooled data we may use:

s2 D
rX

iD1

ni

n
s2

i C
rX

iD1

ni

n
. Nxi � Nx/2

Nx1; : : : ; Nxr are the arithmetic averages in the groups
s2
1; : : : ; s2

r are the variances in the groups
n1; : : : ; nr are numbers of observations in the groups, n D n1 C � � � C nr
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Variance Decomposition The above formula illustrates that the variance can be
decomposed into two parts:

Total variance D variance within the groups C variance between the groups.

Coefficient of Variation In order to compare the standard deviations for different
distributions, we introduce a relative measure of scale (relative to the mean), the
so-called coefficient of variation. The coefficient of variation expresses variation as
a percentage of the mean:

v D s=Nx Nx > 0

Example The mean values and the standard deviations of two sets of observations
are:

Nx1 D 250 s1 D 10

Nx2 D 750 s2 D 30

By comparing the standard deviations, we conclude that the variation in the
second dataset is three times higher than the variation in the first. But, in this case
it would be more appropriate to compare the coefficients of variation since the data
have very different means:

v1 D 10=250 D 0:04

v2 D 30=750 D 0:04

The relative spread of both datasets is the same.

Explained: Variations of Pizza Prices

The price (in EUR) of Dr. Oetker pizza was collected in 20 supermarkets in Berlin
(Fig. 2.26):

3.99; 4.50; 4.99; 4.79; 5.29; 5.00; 4.19; 4.90; 4.99; 4.79; 4.90; 4.69; 4.89; 4.49;
5.09; 4.89; 4.99; 4.29; 4.49; 4.19

• The average price for a pizza in these 20 supermarkets is 4.27 Euro (= mean)
• The median price is 4.84 Euro (= median)
• The difference between the highest and smallest price is 1.30 Euro (= range)
• If the MAD is calculated around the mean it is 0.29 Euro (= MAD) if calculated

around the median it is 0.28 Euro (= MAD).
• 50 % of all prices lie in the interval between 4.49 Euro (quartile x0:25) and

4.99 Euro (quartile x0:75), this interval is of width 0.50 Euro (= interquartile
range).2

• Mean square error around the mean is 0.12241 Euro2 (= variance), the square
root of the variance is 0.34987 Euro (= standard deviation).
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4.0 4.2 4.4 4.6 4.8 5.0 5.2

arithm. mean

range
standard deviation

4.0 4.2 4.4 4.6 4.8 5.0 5.2

median

range
interquartile range

Fig. 2.26 Prices for pizza in 20 supermarkets—parameters of scale

Enhanced: Parameters of Scale for Cars

The price of 74 types of cars in USD was collected in 1985. The data are displayed
in Fig. 2.27. The upper panel displays the range (green), arithmetic average (black),
and the standard deviation (red). The lower panel displays the range (green), median
(mint green), and the interquartile range (magenta).

Arithmetic average: 4896.417
Median: 4672
Range 4536
Interquartile range 1554.75
Standard deviation 991.2394

During a check of the data, it was discovered that there was an input error. The
correct value of 15962 USD was incorrectly recorded as 5962 USD. Figure 2.28
contains the corrected results.

Arithmetic average: 5063.083
Median: 4672
Range 12508
Interquartile range 1554.75
Standard deviation 1719.064

It is clear that the range increased, because it is a function of the extreme values.
The value of interquartile range did not change since no prices within this range
were altered. The standard deviation increased significantly. The reason is that
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4000 6000 8000 10000 12000 14000 16000

Fig. 2.27 Prices of 74 cars in USD—upper panel: range (green), arithmetic average (black), and
the standard deviation (red); lower panel: range (green), median (mint green), and the interquartile
range (magenta)

standard deviation is calculated from all observed prices and involves the squares of
deviations which causes it to be particularly sensitive to extreme values (outliers).

The investigation was repeated after some time. The results are presented in
Fig. 2.29.

Arithmetic average: 6165.257
Median: 5006.5
Range 12615
Interquartile range 2112
Standard deviation 2949.496

Now, there are a number of expensive vehicles whose prices are substantially
different from the lower priced cars. Thus the price are skewed to the right. For
skewed distributions, the standard deviation is typically higher than the interquartile
range. This feature is demonstrated in the above example.

Interactive: Dotplot with Scale Parameters

The interactive example includes a number of sidebar panels. You can access the
panels by setting a mark at the corresponding check box on the upper right.
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4000 6000 8000 10000 12000 14000 16000

Fig. 2.28 Corrected prices of 74 cars in USD—upper panel: range (green), arithmetic average
(black), and the standard deviation (red); lower panel: range (green), median (mint green), and the
interquartile range (magenta)

Please select

• a dotplot type, e.g., jitter
• if you like the mean, median, range, or interquartile range to be included in the

plot

The last two panels allow you to choose a dataset or variable and to change
the font size. For a detailed explanation on datasets and variables, please refer to
Appendix A.

Output

The interactive example in Fig. 2.30 allows us to display a one-dimensional fre-
quency distribution in the form of a dotplot for a variety of variables. Possible values
are displayed along the horizontal axis. For easier visualization, the observations
may be randomly shifted (jitter) in the vertical direction. Furthermore, the median,
the arithmetic mean, range, and interquartile range can be included.
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Fig. 2.29 Repeated investigation of prices of 74 cars in USD—upper panel: range (green),
arithmetic average (black), and the standard deviation (red); lower panel: range (green), median
(mint green), and the interquartile range (magenta)

Fig. 2.30 Screenshot of the interactive example, available at http://u.hu-berlin.de/men_dot2

2.7 Graphical Display of the Location and Scale Parameters

Boxplot (Box-Whisker-Plot)

Unlike the stem-and-leaf diagram, the boxplot does not contain information about
all observed values. It displays only the most important information about the
frequency distribution. Specifically, the boxplot contains the smallest and the largest

http://u.hu-berlin.de/men_dot2
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Fig. 2.31 The structure of a boxplot

observed values x.1/ and x.n/ and three quartiles x0:25; x0:5ax0:75. The second quartile
x0:5 is of course the median (Fig. 2.31).

The quartiles are denoted by a line and the first and third quartile are connected
so that we obtain a box. The line inside this box denotes the median. The height
of this box is the interquartile range which is the difference between the third and
the first quartile: x0:75 and x0:25. Inside this box, one finds the central 50 % of all
observed values.

The whiskers show the smallest and largest values within a 1.5 multiple of the
interquartile range calculated from the boundary of the box. The bounds x0:25 � 1:5 �
QA and x0:75 C1:5 �QA are called the lower and upper fence, respectively. The values
lying outside the fences are marked as outliers with a different symbol. Usually, the
boxplot also displays the mean as a dashed line. The boxplot provides quick insight
into the location, scale, shape, and structure of the data.
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Example—boxplot of student salaries in USD
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Example—boxplot of student salaries in USD; males and females separated

Explained: Boxplot of Car Prices

The prices of 74 types of cars were obtained in 1983. The results are displayed in
Fig. 2.32.

The upper panels of the graphs contain dotplots. The lower panels show boxplots.
The values lying outside a 1.5 multiple (resp. 3 multiple) of the interquartile
range are denoted as extreme (outlying) observations. These outlying observations
produce a large difference between the median (solid line) and the mean (dashed
line).



2.7 Graphical Display of the Location and Scale Parameters 67

Table 2.19
Example—Student salaries in
USD

Total Men Women

xmin D 1 xmin D 1 xmin D 1:74997

xmax D 44:5005 xmax D 26:2903 xmax D 44:5005

R D 43:5005 R D 25:2903 R D 42:7505

x0:25 D 5:24985 x0:25 D 6:00024 x0:25 D 4:74979

x0:5 D 7:77801 x0:5 D 8:92985 x0:5 D 6:79985

x0:75 D 11:2504 x0:75 D 12:9994 x0:75 D 10:0001

QA D 6:00065 QA D 9:99916 QA D 5:25031

Nx D 9:02395 Nx D 9:99479 Nx D 7:87874

s2 D 26:408 s2 D 27:9377 s2 D 22:2774

s D 5:13887 s D 5:28562 s D 4:7199

v D 0:57 v D 0:53 v D 0:60

4000 6000 8000 10000 12000 14000 16000

extreme values

Fig. 2.32 Boxplot of prices of 74 cars

Interactive: Visualization of One-Dimensional Distributions

The interactive example includes a number of sidebar panels. You can access the
panels by setting a mark at the corresponding check box on the upper right.

Please choose

• a dotplot type, e.g., jitter
• the number of bins for the histogram
• if you like the mean and median to be included in the plots
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Fig. 2.33 Screenshot of the interactive example, available at http://u.hu-berlin.de/men_vis

The last two panels allow you to choose a dataset or variable and to change
the font size. For a detailed explanation on datasets and variables, please refer to
Appendix A.

Output

The interactive example in Fig. 2.33 allows us to display a one-dimensional fre-
quency distribution in the form of a dotplot, a histogram, a boxplot, and cumulative
distribution function for a variety of variables. Possible values are displayed along
the horizontal axis. For easier visualization, the observations may be randomly
shifted (jitter) in the vertical direction. Furthermore, the median and the arithmetic
mean can be included. You also receive a table showing the numerical values of
certain parameters.

http://u.hu-berlin.de/men_vis


Chapter 3
Probability Theory

3.1 The Sample Space, Events, and Probabilities

Probability theory is concerned with the outcomes of random experiments. These
can be either real world processes or thought experiments. In both cases,

• the experiment has to be infinitely repeatable and
• there has to be a well-defined set of outcomes.

The set of all possible outcomes of an experiment is called the sample space
which we will denote by S.

Consider the process of rolling a die. The set of possible outcomes is the set
S D f1; 2; 3; 4; 5; 6g. Each element of S is a basic outcome. However, one might be
interested in whether the number thrown is even, or whether it is greater than 3, and
so on. Thus we need to be able to speak of various combinations of basic outcomes,
that is subsets of S.

An event is defined to be a subset of the set of possible outcomes S. We will
denote an event using the symbol E. Events which consist of only one element, such
as a two was thrown, are called simple events or elementary events. Simple events
are by definition not divisible into more basic events, as each of them includes one
and only one possible outcome.

Example Rolling a single die once results in the occurrence of one of the simple
events {1}, {2}, {3}, {4}, {5}, {6}. As we have indicated, the sample space S is
{1,2,3,4,5,6}.

Example For tossing a coin twice we have the following
sample space: S D fTT; TH; HT; HHg and
simple events: {TT},{TH},{HT},{HH}, T �Tail, H �Head.
This specification also holds if two coins are tossed once.
It will be convenient to be able to combine events in various ways, in order

to make statements such as “one of these two events happened” or “both events
occurred.” For example, one might want to say that “either a 2 or 4 was thrown,”

© Springer International Publishing Switzerland 2015
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69



70 3 Probability Theory

complementary event A

event A

sample space

Fig. 3.1 Most simple Venn diagram

or “an even number larger than 3 was thrown.” Since events are sets (in particular
subsets of the set S), we may draw upon the conventional tools of set theory.

Venn Diagram

A common graphical representation of events as subsets of the sample space is the
Venn diagram (Fig. 3.1). It can be used to visualize various combinations of events
such as intersections and unions.

3.2 Event Relations and Operations

In the last section, we have defined events as subsets of the sample space S. In
interpreting events as sets, we can apply the same operations and relations to events
that we know from basic set theory. We shall now recapitulate some of the most
important concepts of set theory.

Subsets and Complements

A is subset of B is denoted by A � B. Thus if event A occurs, B occurs as well
(Fig. 3.2).

A and B are equivalent events if and only if (abbreviated as “iff”) A � B and
B � A. Any event A is obviously a subset of S, A � S. We define the complement
of A, denoted by A, to be the set of points in S that are not in A.
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Fig. 3.2 Venn diagram for
event relation A is subset of
B, A � B

AB

sample space S

Union of Sets

The set of points belonging to either the set A or the set B is called the union of sets
A and B, and is denoted by A [ B. Thus if the event “A or B” has occurred, then a
basic outcome in the set A [ B has taken place (Fig. 3.3).

Set unions can be extended to n sets and hence n events A1; A2; : : : ; An: in which
case we have A1 [ A2 [ : : : [ An D [n

iD1Ai

Example Rolling a die once
Define A D f1; 2g and B D f2; 4; 6g.
Then, A [ B D f1; 2; 4; 6g.

General Results

• A [ A D A
• A [ S D S where S is the sample space.
• A [ ; D A where ; is the null set, the set with no elements in it.
• A [ A D S

Intersection of Sets

The set of points common to the sets A and B is known as intersection of A and
B, A \ B. Thus if the event “A and B” has occurred, then a basic outcome in the set
A \ B has taken place (Fig. 3.4).

Set intersections can be extended to n sets and hence to n events A1, A2, : : : ; An:
A1 \ A2 \ : : : \ An D \n

iD1Ai
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event Bevent A

event A∪B

sample space S

Fig. 3.3 Venn diagram for the union of two sets, A [ B

event Bevent A
A∩B

sample space S

Fig. 3.4 Venn diagram for the intersection of two sets, A \ B
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Fig. 3.5 Venn diagram of
disjoint events

event Bevent A

sample space S

Example Rolling a die once
Define A D f1; 2g and B D f2; 4; 6g
Then A \ B D f2g

General Results

• A \ A D A
• A \ S D A
• A \ ; D ;
• A \ A D ;
• ; \ S D ;
Disjoint Events Two sets or events are said to be disjoint (or mutually exclusive) if
their intersection is the empty set: A \ B D ;. Interpretation: events A and B cannot
occur simultaneously (Fig. 3.5).

By definition, A and A are mutually exclusive. The reverse doesn’t hold, i.e.,
disjoint events are not necessarily complements of each other.

Example Rolling a die once
Define A D f1; 3; 5g and B D f2; 4; 6g.
Then, B D A and A D B.
) A \ B D A \ A D ;
Interpretation: events A and B are disjoint and complementary.
Define C D f1; 3g and B D f2; 4g.
) C \ D D ;
Interpretation: events C and D are disjoint but not complementary.

Logical Difference of Sets or Events

The set or event C is the logical difference of events A and B if it represents the
event: “A has occurred but B has not occurred,” i.e., it is the outcomes in A, that are
not in B: AnB D C � A \ B (Fig. 3.6).
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Fig. 3.6 Venn diagram for
logical difference of two
events, AnB

B

event A\B

sample space S

Example Rolling a six-sided die once
Define A D f1; 2; 3g and B D f3; 4g.
Then, AnB D C D f1; 2g and BnA D f4g.

Disjoint Decomposition of the Sample Space

A set of events A1; A2; : : : ; An is called disjoint decomposition of S, if the following
conditions hold:

• Ai ¤ ; .i D 1; 2; : : : ; n/

• Ai \ Ak D ; .i ¤ kI i; k D 1; 2; : : : ; n/

• A1 [ A2 [ : : : [ An D S

One can think of such a decomposition as a partition of the sample space where
each basic outcome falls into exactly one set or event. Sharing a birthday cake results
in a disjoint decomposition or partition of the cake.

Example Rolling a six-sided dice

• Sample space: S D f1; 2; 3; 4; 5; 6g.
• Define A1 D f1g, A2 D f3; 4g, A3 D f1; 3; 4g, A4 D f5; 6g, A5 D f2; 5g, A6 D

f6g.
• Claim: one possible disjoint decomposition is given by A1; A2; A5; A6.
• Proof: A1 \ A2 D ;, A1 \ A5 D ;, A1 \ A6 D ;, A2 \ A5 D ;, A2 \ A6 D ;,

A5 \ A6 D ;,
A1 [ A2 [ A5 [ A6 D S.



3.3 Probability Concepts 75

Table 3.1 Summary of event relations

Verbal Technical Algebraic

If A occurs, B is subset of A A � B

then B occurs also

B and A always occur A and B are A � B

together equivalent events

A and B cannot occur A and B are A \ B D ;
together disjoint events

A occurs if and only if A and B are B D A

B does not occur complementary events

A occurs if and only if A is union of Ai A D [iAi

at least one Ai occurs

A occurs if and only if A is intersection A D \iAi

all Ai occur of all Ai

Some Set Theoretic Laws

• De Morgan’s laws
A \ B D A [ B
A [ B D A \ B

• Associative laws
.A \ B/ \ C D A \ .B \ C/

.A [ B/ [ C D A [ .B [ C/

• Commutative laws
A \ B D B \ A
A [ B D B [ A

• Distributive laws
A \ .B [ C/ D .A \ B/ [ .A \ C/

A [ .B \ C/ D .A [ B/ \ .A [ C/

3.3 Probability Concepts

Probability is a measure P.	/ which quantifies the degree of (un)certainty associated
with an event. We will discuss three common approaches to probability.
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Classical Probability

Laplace’s classical definition of probability is based on equally likely outcomes. He
postulates the following properties of events:

• the sample space is composed of a finite number of basic outcomes
• the random process generates exactly basic outcome and hence one elementary

event
• the elementary events are equally likely, i.e., occur with the same probability

Accepting these assumptions, the probability of any event A (subset of the sample
space) can be computed as

P.A/ D # .basic outcomes in A/

# .basic outcomes in S/
D # .elementary events comprising A/

# .elementary events comprising S/

Properties

• 0 � P.A/ � 1

• P.;/ D 0

• P.S/ D 1

Example Rolling a six-sided die
Sample space: S D f1; 2; 3; 4; 5; 6g.
Define, event A D “any even number”
Elementary events in A: f2g,f4g,f6g
P.A/ D 3

6
D 0:5

Statistical Probability

Richard von Mises originated the relative frequency approach to probability: The
probability P.A/ for an event A is defined as the limit of the relative frequency of A,
i.e., the value the relative frequency will converge to if the experiment is repeated
an infinite number of times. It is assumed that replications are independent of each
other.

Let hn.A/ denote the absolute frequency of A occurring in n repetitions. The
relative frequency of A is then defined as

fn.A/ D hn.A/

n

According to the statistical concept of probability we have

P.A/ D lim
n!1 fn.A/
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Since 0 � fn.A/ � 1 it follows that 0 � P.A/ � 1.

Example Flipping a coin
Denote by A the event “head appears.” Absolute and relative frequencies of A

after n trials are listed in Table 3.2. This particular sample displays a non-monotonic
convergence to 0:5, the theoretical probability of a head occurring in repeated flips
of a “fair” coin.

Visualizing the sequence of relative frequencies fn .A/ as a function of sample
size, as done in Fig. 3.7, provides some intuition into the character of the
convergence.

A central objective of statistics is to estimate or approximate probabilities of
events using observed data. These estimates can then be used to make probabilistic
statements about the process generating the data (e.g., confidence intervals which we

Table 3.2 Flipping of a coin n hn.A/ fn.A/

10 7 0:700

20 11 0:550

40 17 0:425

60 24 0:400

80 34 0:425

100 47 0:470

200 92 0:460

400 204 0:510

600 348 0:580

800 404 0:505

1000 492 0:492

2000 1010 0:505

3000 1530 0:510

4000 2032 0:508

5000 2515 0:503

0.
3

0.
4

0.
5

0.
6

0.
7

number of throws (n)

f n
(A

)

10 40 80 200 600

Fig. 3.7 Relative frequencies of A=“head appears” as a function of sample size n
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will study later), to test propositions about the process and to predict the likelihood
of future events.

Axiomatic Foundation of Probability

P is a probability measure. It is a function which assigns a number P.A/ to each
event A of the sample space S.

• Axiom 1
P.A/ is real-valued with P.A/ � 0.

• Axiom 2
P.S/ D 1.

• Axiom 3
If two events A and B are mutually exclusive (A \ B D ;), then
P.A [ B/ D P.A/ C P.B/

Properties
Let A; B; A1; A2; : : : � S be events and P.	/ a probability measure. Then the

following properties follow from the above three axioms:

1. P.A/ � 1

2. P.A/ D 1 � P.A/

3. P.;/ D 1 � P.S/ D 0

4. .A \ B D ;/ ) P.A \ B/ D P.;/ D 0

5. If A � B, then P.A/ � P.B/

6. If Ai \ Aj D ; for i ¤ j, then P.A1 [ A2 [ : : :/ D P.A1/ C P.A2/ C : : :

7. P.AnB/ D P.A/ � P.A \ B/

Addition Rule of Probability

Let A and B be any two events (Fig. 3.8). Then,

P .A [ B/ D P .A/ C P .B/ � P .A \ B/ :

Extension to three events A, B, C:

P.A [ B [ C/ D P.A/ C P.B/ C P.C/

�P.A \ B/ � P.A \ C/ � P.B \ C/ C P.A \ B \ C/
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Fig. 3.8 Addition rule of
probability

event Bevent A
A∩B

sample space S

Extension to n events, A1; A2; � � � ; An:
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More Information: Derivation of the Addition Rule

1) The event B can be rewritten as a union of two disjoint sets A \ B and NA \ B as
follows:

B D .A \ B/ [ . NA \ B/

as illustrated in the Venn diagram in Fig. 3.9.
The probability P.B/ is, according to axiom 3,

P.B/ D PŒ.A \ B/ [ . NA \ B/� D P.A \ B/ C P. NA \ B/

which implies

P. NA \ B/ D P.B/ � P.A \ B/

2) We rewrite the event A [ B as a union of two disjoint sets A and NA \ B so that

A [ B D A [ . NA \ B/
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Fig. 3.9 Rewriting a set as
the union of two disjoint sets,
B D .A \ B/ [ . NA \ B/

A∩B

B

A∩B

A

A∩B

sample space S

The probability P.A [ B/ follows from axiom 3

P.A [ B/ D PŒA [ . NA \ B/� D P.A/ C P. NA \ B/

Now we obtain the desired result by calculating P. NA\B/ using the formula given
in part one:

P.A [ B/ D P.A/ C P.B/ � P.A \ B/:

More Information: Implications of the Probability Axioms

Proof of Property 5 Let us show that for A � B it follows that P.A/ � P.B/. Then,
the event B can be rewritten as B D A [ .B n A/, where A and B n A are disjoint
sets. According to axiom 3, we have the following: P.B/ D P.A/ C P.B n A/.
Nonnegativity of the probability P.B n A/ � 0 implies that P.B/ � P.A/. This rule
can be illustrated using the Venn diagram in Fig. 3.10.

Proof of Property 7 Let us prove that P.A n B/ D P.A/ � P.A \ B/.
We have A n B D A \ NB and A D .A \ B/ [ .A \ NB/, where .A \ B/ and .A \ NB/

are clearly disjoint.
Using axiom 3 the probability of A can be calculated as

P.A/ D PŒ.A \ B/ [ .A \ NB/� D P.A \ B/ C P.A \ NB/ D P.A \ B/ C P.A n B/

This result is displayed in Fig. 3.11.
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Fig. 3.10 Illustration of set
relation A � B which implies
P.A/ � P.B/

A

B\A

sample space S

Fig. 3.11 Illustration of
P.A n B/ D P.A/ � P.A \ B/

B

A\B=A∩B

A

A∩B

sample space S

Explained: A Deck of Cards

Assume you have shuffled a standard deck of 52 playing cards. You are interested
in the probability of a randomly drawn card being a queen or a “heart.” We are thus
interested in the probability of the event .fQueeng [ fHeartg/. Following Laplace’s
notion of probability, we proceed as follows: There are 4 queens and 13 hearts in
the deck. Hence,

• P .fQueeng/ D 4
52

• P .fHeartg/ D 13
52

But there is also one card which is both a queen and a heart. As this card
is included in both counts, we would overstate the probability of either queen or
heart appearing if we simply added both probabilities. In fact, the addition rule of
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probability requires one to deduct the probability of this joint event:

P .A [ B/ D P .A/ C P .B/ � P .A \ B/

Here,

P .A \ B/ D P .fQueeng \ fHeartg/ D 1

52

Thus,

P .fQueeng [ fHeartg/ D P .fQueeng/ C P .fHeartg/
�P .fQueeng \ fHeartg/

D 4

52
C 13

52
� 1

52
D 16

52

The probability of drawing queen’s face and/or heart suit is 16=52.

3.4 Conditional Probability and Independent Events

Conditional Probability

Let A and B be two events defined on the sample space S. The conditional probability
of A given B is defined as

P.AjB/ D P.A \ B/

P.B/
; for P.B/ > 0

The conditional probability assumes that B has occurred and asks what is the
probability that A has occurred. By assuming that B has occurred, we have defined
a new sample space S D B and a new probability measure P.AjB/.

If B D A2 \ A3, then we may write

P.A1jA2 \ A3/ D P.A1 \ A2 \ A3/

P.A2 \ A3/
; for P.A2 \ A3/ > 0

We may also define the conditional probability of B given A:

P.BjA/ D P.A \ B/

P.A/
; for P.A/ > 0
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Multiplication Rule

By rearranging the definition of conditional probability we can extract a formula for
the probability of both A and B occurring:

P.A \ B/ D P.A/ � P.BjA/ D P.B/ � P.AjB/

and, in analogous fashion,

P.A1 \ A2 \ A3/ D P.A1/ � P.A2jA1/ � P.A3jA1 \ A2/

Generalization for events A2; A2; : : : An:

P.A1 \ : : : \ An D P.A1/ � P.A2jA1/ � P.A3jA1 \ A2/ � : : : � P.AnjA1 � : : : � � � An�1/

Independent Events

The notion underlying the concept of conditional probability is that a priori informa-
tion concerning the occurrence of events does in general influence probabilities of
other events. (For example, if one knows that someone is a smoker, then one would
assign a higher probability to that individual contracting lung cancer.) In general,
one would expect: P.A/ ¤ P.AjB/.

The case P.A/ D P.AjB/ has an important interpretation. If the probability of
A occurring remains the same, whether or not B has occurred, we say that the
two events are statistically (or stochastically) independent. (For example, knowing
whether an individual is tall or short does not affect one’s assessment of that
individual developing lung cancer.)

We define stochastic independence of two events A and B by the condition P.A \
B/ D P.A/ � P.B/ which implies that the following conditions hold:

P.A/ D P.AjB/

P.B/ D P.BjA/

P.AjB/ D P.AjB/

P.BjA/ D P.BjA/

The multiplication condition defining stochastic independence of two events also
holds for n independent events:

P.A1 \ : : : \ An/ D P.A1/ � : : : � P.An/
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To establish statistical independence of n events, one must ensure that the
multiplication rule holds for any subset of the events. That is

P .Ai1 \ : : : \ Aim/ D P .Ai1 / � : : : � P .Aim/ ;

for i1; : : : ; im distinct integers < n

It is important not to confuse stochastic independence with mutual exclusivity.
For example, if two events A and B with P.A/ > 0 and P.B/ > 0 are mutually
exclusive, then P.A\B/ D 0, as P.;/ D 0 and A\B D ;. In which case P.A\B/ ¤
P.A/ � P.B/.

A small example should clarify the difference between independence and
mutual exclusivity (rowing Cambridge versus Oxford): click on the symbol of the
loudspeaker.

Two-Way Cross-Tabulation

In many applications the researcher is interested in associations between two
categorical variables. The simplest case is if one observes two binary variables, i.e.,
there are two variables, each with two possible outcomes. For example, suppose
that for a randomly selected individual we observe whether or not they smoke and
whether or not they have emphysema. Let A be the outcome that the individual
smokes and B be the outcome that they have emphysema. We can construct separate
sample spaces

˚
A; A

�
and

˚
B; B

�
.for each of the two variables. Alternatively we can

construct the sample space of ordered pairs:

S D ˚
.A; B/ ;

�
A; B

�
;
�
A; B

�
;
�
A; B

��

In tabulating data of this type, we would simply count the number of individuals
corresponding to each of the four basic outcomes. No information is lost regarding
the two variables individually because we can always obtain frequencies for both
categories of either variable by summing over the two categories of the other
variable. For example, to calculate the number of individuals who have emphysema,
we add up all those who smoke and have emphysema (i.e., .A; B/) and all those who
do not smoke and have emphysema (i.e., .A; B/). Relative frequencies for categories
of the individual variables are called marginal relative frequencies.

Relative frequencies arising from bivariate categorical data are usually displayed
by cross-tabulating the categories of the two variables. Marginal frequencies are
included as sums of the columns/rows representing the categories of each of the
variables. The resulting matrix is called an .r 
 c/-contingency table, where r and
c denote the number of categories observed for each variable. In our example with
two categories for each variable, we have a .2 
 2/-contingency table.

We may summarize the probabilities associated with each basic outcome in a
similar way shown in Table 3.3.
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Table 3.3 .2 � 2/-table of
events A; A; B and B

B B Sum

A P.A \ B/ P.A \ B/ P.A/

A P.A \ B/ P.A \ B/ P.A/

Sum P.B/ P.B/ P.S/ D 1

The structure of this table is particularly helpful in checking for independence
between events. Recall that the joint probability of two independent events can be
calculated as the product of the probabilities of the two individual events. In this
case, we want to verify whether the joint probabilities in the main body of the
table are equal to the products of the marginal probabilities. If they are not, then
the events are not independent. For example, under independence, we would have
P.A/ P.B/ D P.A \ B/.

If one replaces the probabilities in Table 3.3 with their sample frequencies, then
independence implies that the estimated joint probabilities should be approximately
equal to the products of the estimated marginal probabilities. Formal procedures for
testing independence will be discussed later.

More Information: Derivation of Rules for Independent Events

We want to prove the following proposition: For any pair of independent events A
and B we have P.A/ D P.AjB/.

Assume that the events A and B are independent. Then we have

P.AjB/ D P.A \ B/

P.B/
D P.A/ P.B/

P.B/
D P.A/

Similarly, we can show that P.BjA/ D P.B/. Next, suppose that P.A/ D P.AjB/

we want to show that this implies the multiplicative rule, i.e., that A and B are
independent:

P.AjB/ D P.A \ B/

P.B/
D P.A/

P.A \ B/ D P.A/ � P.B/

Indeed stochastic independence can be defined equivalently in a number of ways.

Explained: Two-Way Cross-Tabulation

Joint probabilities of two binary variables are arranged in the contingency table
below. Are the variables represented by the events

˚
A; A

�
respectively

˚
B; B

�

(mutually) independent?
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For the multiplication condition of independence to be satisfied, the inner cells
of the contingency table must equal the product of their corresponding marginal
probabilities. This is true for all four cells shown in Table 3.4.

In this very special example with two binary variables it is, however, not
necessary to verify the validity of the multiplication rule for each of the four cells.
As we have already seen, stochastic independence of two events implies stochastic
independence of the complementary. Consequently, if the multiplication condition
holds for one of the four cells, it must hold for the other three. This is only true
because the only two events to be considered for each variable are complements.

Explained: Screws

A master and his apprentice produce hand-made screws. The data were collected
over the course of the year 1998 and are provided in Table 3.5.

What is the probability, that a randomly selected screw is not faulty given that it
was produced by the master? In order to calculate this probability, we will use this
notation:

A D {screw is good}

B D {screw produced by master}

C D {screw produced by apprentice}

Table 3.4 .2 � 2/-table of
joint probabilities of two
independent binary variables

B B Sum

A 1=3 1=6 1=2

A 1=3 1=6 1=2

Sum 2=3 1=3 1

B B Sum

A 1=3 D 1=2 � 2=3 1=6 D 1=2 � 1=3 1=2

A 1=3 D 1=2 � 2=3 1=6 D 1=2 � 1=3 1=2

Sum 2=3 1=3 1

Table 3.5 Production of
hand-made screws by a
master and his apprentice

Total production 2000 screws

Group 1 1400 Screws

(the master) 1162 Good screws

238 Faulty screws

Group 2 600 Screws

(the apprentice) 378 Good screws

222 Faulty screws
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Fig. 3.12 Production of
hand-made screws by a
master and his apprentice

The situation is displayed in the Venn diagram in Fig. 3.12.
We would like to calculate P.AjB/. This conditional probability is defined as

P.AjB/ D P.A \ B/=P.B/. The event A \ B corresponds to selection of a good
screw produced by the master. In order to calculate P.A \ B/, we divide the number
of screws with this property by the total number of screws: P.A \ B/ D 1162=2000.

The probability P.B/ can be calculated as a ratio of the number of screws
produced by the master and total production: P.B/ D 1400=2000. Thus, we obtain:

P.AjB/ D 1162=1400 D 0:83 :

3.5 Theorem of Total Probabilities and Bayes’ Rule

Recall the disjoint decomposition we have introduced earlier in this chapter as a set
of events A1; A2; : : : ; An satisfying

• Ai ¤ ; .i D 1; 2; : : : ; n/

• Ai \ Ak D ; .i ¤ kI i; k D 1; 2; : : : ; n/

• A1 [ A2 [ : : : [ An D S

Theorem of Total Probabilities

A1; A2; : : : ; An be a disjoint decomposition. Then, for any event B � S
with P.B/ > 0:

P.B/ D P .B \ A1/ C P .B \ A2/ C : : : C P .B \ An/

D P .BjA1/ P .A1/ C P .BjA2/ P .A2/ C : : : C P .BjAn/ P .An/

D
nX

iD1

P .BjAi/ P .Ai/

We have applied the multiplication rule of probability P .A \ B/ D
P .BjAi/ P .Ai/.
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Bayes’ Rule

Let A1; A2; : : : ; An be a disjoint decomposition. Then, for any event B � S with
P.B/ > 0 and given conditional probabilities P .BjA1/, P .BjA2/, : : :, P .BjAn/:

P
�
AjjB

� D P
�
BjAj

�
P
�
Aj
�

Pn
iD1 P .BjAi/ P .Ai/

8j D 1; : : : ; n

The Bayesian approach to statistics interprets the P
�
AjjB

�
as posterior prob-

abilities and P .Ai/ as prior probabilities. This conceptual approach to statistics
accounts for prior information in the form of subjective belief rather than defining
probabilities as limits of relative frequencies.

Explained: The Wine Cellar

In this example we will apply both the theorem of total probabilities and Bayes’
rule.

Wolfram has a wine cellar. Having invited guests for a dinner party, he considers
showing off in the most economical fashion. He knows that his guests usually buy
their wine at the local supermarket. So he decides to provide above average food and
not to spend too much time choosing the accompanying wine. His stock currently
consists of Qualitätswein, Kabinett, and Spätlese in the proportions 5 W 3 W 2. The
proportion of white wine in these classes is 1=5, 1=3, and 1=4, respectively.

Being a technocrat not only in pedantically monitoring his stock, he wants to
compute the probability for producing a bottle of white wine when randomly picking
one. He estimates probabilities by their relative proportions in the stock population:

A1 � fQualitätsweing P .A1/ D 0:5

A2 � fKabinettg P .A2/ D 0:3

A3 � fSpätleseg P .A3/ D 0:2
This classification establishes a disjoint decomposition of Wolfram’s wine stock:

A1 [ A2 [ A3 D S

A1 \ A2 D ;; A1 \ A3 D ;; A2 \ A3 D ;:

Let B represent the event of picking a bottle of white wine. Then we know:

P .BjA1/ D 1=5

P .BjA2/ D 1=3

P .BjA3/ D 1=4
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Fig. 3.13 Wolfram’s wine
cellar containing quantities of
three different wines

Being short of time, Wolfram decides to have the food delivered from a gourmet
deli. Now he has spare time to draw a Venn diagram as shown in Fig. 3.13.

As A1, A2, and A3 establish a disjoint decomposition, A1 \ B, A2 \ B, and A3 \ B
must be disjoint as well. Thus, for B D .A1 \ B/ [ .A2 \ B/ [ .A3 \ B/

P .B/ D P Œ.A1 \ B/ [ .A2 \ B/ [ .A3 \ B/�

D P .A1 \ B/ C P .A2 \ B/ C P .A3 \ B/

As he doesn’t know the probabilities for the union sets on the right-hand side,
Wolfram applies the multiplication rule, substituting P .BjAi/ P .Ai/ for P .Ai \ B/:

P .B/ D P .BjA1/ P .A1/ C P .BjA2/ P .A2/ C P .BjA3/ P .A3/

D 1=5 � 0:5 C 1=3 � 0:3 C 1=4 � 0:2 D 0:25

Thus randomly selecting a bottle will result in a white wine with a 25 %
probability.

Given that Wolfram has selected a bottle of white wine, what is the probability
that it is Qualitätswein, that is, what is P .A1jB/?

Wolfram wants to apply the definition for conditional probability,

P .A1jB/ D P .A1 \ B/

P .B/

He has already calculated P .B/ using the theorem of total probability. But what
about the numerator on the right-hand side? Wolfram chooses to rearrange the
definition for the conditional probability of B, given A1 to yield a multiplication
rule he can substitute into the numerator:

P .BjA1/ D P .A1 \ B/

P .A1/

, P .A1 \ B/ D P .BjA1/ P .A1/
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This yields

P .A1jB/ D P .A1 \ B/

P .B/

D P .BjA1/ P .A1/

P .BjA1/ P .A1/ C P .BjA2/ P .A2/ C P .BjA3/ P .A3/

D P .BjA1/ P .A1/
P3

iD1 P .BjAi/ P .Ai/

D 0:2 � 0:5

0:25
D 0:4

Enhanced: Virus Test

Assume 0:5 % of the population is infected with a particular virus that leads to acute
disease only after a long period of time.

A clinical study shows that 99 % of the individuals suffering from the symptoms
that confirm an infection with the virus test positive. On the other hand, 2 % of
people not developing the symptoms test positive as well.

What is the probability that a person testing positive has the infection?
Let us first formalize the problem. Instead of using the set theoretic notation we

will now define indicator variables for the two binary variables corresponding to the
infection (I) and the test (T):

I D
�

1 if a person is infected
0 if a person is not infected

T D
�

1 if the test is positive
0 if the test is not positive

Using the above we know the following probabilities.

P .I D 1/ D 0:005

P .T D 1jI D 1/ D 0:99

P .T D 1jI D 0/ D 0:02

We would like to calculate P .I D 1jT D 1/. The definition of conditional
probability contains probabilities which not readily available:

P .I D 1jT D 1/ D P Œ.I D 1/ \ .T D 1/�

P .T D 1/
; for P .T D 1/ > 0
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To replace the numerator by a known quantity we rearrange

P .T D 1jI D 1/ D P Œ.I D 1/ \ .T D 1/�

P .I D 1/
; for P .I D 1/ > 0

to yield

P Œ.I D 1/ \ .T D 1/� D P .T D 1jI D 1/ P .I D 1/

The denominator can be calculated using the theorem of total probabilities:

P .T D 1/ D P .I D 1jT D 1/ P .I D 1/ C P .T D 1jI D 1/ P .I D 0/ :

We thus get

P .I D 1jT D 1/ D P .T D 1jI D 1/ P .I D 1/

P .I D 1jT D 1/ P .I D 1/ C P .T D 1jI D 1/ P .I D 0/
:

Performing the calculation we obtain a somewhat surprising result:

P .I D 1jT D 1/ D 0:99 � 0:005

0:99 � 0:005 C 0:02 � 0:995
D 0:199:

Thus a randomly selected person who tests positive has an 80 % chance of not
being infected. But don’t forget about one crucial assumption we have made: the
proportion of infected people has to be the same in the population and the sample
of tested persons. This may be true for large scale clinical tests. But in practice,
there is usually a reason for testing a person, e.g., him/her having been exposed to
an infected person.

Interactive: Monty Hall Problem

The Monty Hall problem (named after Monty Hall, television host of the show
“Let’s make a deal”) is based on the following situation:

Monty Hall shows his guest three doors A, B, and C. The main prize is hidden
behind one of them, other doors conceal smaller prizes. For now, let us assume that
the main prize is behind the door B.

Monty Hall asks the player to choose one door. After the player chooses (let us
say door A), one of the doors which does not contain the main prize is opened (let
us say door C). The player can now decide whether to continue with his original
choice (door A) or if he wants to choose the other closed door (door B). What is the
probability that the main prize is behind the originally selected door (A) or behind



92 3 Probability Theory

the other (unopened and not selected) door (B)? To answer the question, let’s have
a look at the interactive example.

The Interactive Example

The interactive example includes a number of sidebar panels. You can access the
panels by setting a mark at the corresponding check box on the upper right.

Please select

• the door the guest points to
• if the guest decides to keep or change the door

Use

• “Make a deal” to manually play the game with “virtual Monty”
• the slider to cause an automated playing of the game

Output

The resulting graphic in Fig. 3.14 allows you to study the relative frequency
of winning the game depending on your strategy. The statistical definition of
probability ensures that your question will be answered after a sufficient number
of games.

Fig. 3.14 Screenshot of the interactive example, available at http://u.hu-berlin.de/men_hall

http://u.hu-berlin.de/men_hall
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Analytical Solution

Let us define the events

A W Main is price behind door A

B W Main is price behind door B

C W Main is price behind door C

a W Monty opens door A

b W Monty opens door B

c W Monty opens door C

Initially, the probability is 1=3 that you have selected the winning door.

P.A/ D P.B/ D P.C/ D 1=3

These probabilities are valid before Monty opens a door; we can denote them
as the a priori probabilities. Let us say that you choose door A. Monty now opens
one of the other doors which does not contain the main price. We distinguish two
situations:

• Situation 1
If the prize is behind your door (A), then Monty can open either of the

remaining two doors (door B or C). Let us assume that his decision is random—
this means that both door have probability 1/2.

• Situation 2
If the prices is not behind your door, then it has to be behind door B or C and

Monty has to open (i.e., he will open with probability 1) the other one.

Let us assume that Monty opens door B. Mathematically, this means

Situation 1: P.bjA/ D 1

2

Situation 2: P.bjC/ D 1

As a player, you do not know which situation has occurred.
When Monty opens the door, you can stick to your original decision or you can

change it and open door C. Which decision is better, i.e., which of the doors A or
C are more likely to conceal the main prize, if we know that Monty has opened
door B?
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We would like to calculate the probabilities P.Ajb/ and P.Cjb/. The a priori
probabilities were P.A/ D P.C/ D 1

3
. When Monty opens door B, we can calculate

the a posteriori probabilities by applying the Bayes rule and the Total Probabilities
Theorem:

P.Ajb/ D P.bjA/ � P.A/

P.b/
D

1
2

� 1
3

1
2

D 1

3

P.Cjb/ D P.bjC/ � P.C/

P.b/
D 1 � 1

3
1
2

D 2

3

Changing your decision pays off!

Interactive: Die Rolling Sisters

Three siblings are playing dice. The youngest one (a boy) gave one die to each of
his sisters. They roll the die n times and the one who obtains six the most frequently
wins.

The sisters remember that one of the dice is “loaded.” The probability of
obtaining six with this die is 1=3, the probability of other numbers is uniform at
2=15.

The first sister rolled the die n times and she has X sixes. The other sister wants
to calculate the probability that her die is loaded. This can be done easily.

Let us look at the actual number of sixes which can be 0; 1; 2; : : : ; or n. For
simplicity, suppose n D 3. For a fair die we will write W D 0, for a loaded die,
W D 1. All throws are mutually independent and therefore we obtain:

P.X D 0jW D 0/ D P.no 6 in the three throws/

D 5=6 � 5=6 � 5=6 D 0:5787

P.X D 1jW D 0/ D P.just 1 six in the three throws/

D 1=6 � 5=6 � 5=6 � 3 D 0:3472

P.X D 2jW D 0/ D P.exactly 2 sixes in the three throws/

D 1=6 � 1=6 � 5=6 � 3 D 0:0694
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P.X D 3jW D 0/ D P.all three throws give 6/

D 1=6 � 1=6 � 1=6 D 0:0046

For the same experiment with the loaded die (W D 1) we obtain:

P.X D 0jW D 1/ D 2=3 � 2=3 � 2=3 D 0:2963

P.X D 1jW D 1/ D 1=3 � 2=3 � 2=3 � 3 D 0:4444

P.X D 2jW D 1/ D 1=3 � 1=3 � 2=3 � 3 D 0:2222

P.X D 3jW D 1/ D 1=3 � 1=3 � 1=3 D 0:0370

Let us say that the first sister obtains two sixes from her three throws (X D 2).
What is the probability that she played with the loaded die?

We want to calculate the probability P.W D 1jX D 2/. According to the Bayes
rule we have

P.W D 1jX D 2/ D P.X D 2jW D 1/P.W D 1/

P.X D 2jW D 0/P.W D 0/ C P.X D 2jW D 1/P.W D 1/

Using P.W D 1/ D P.W D 0/ D 1=2 leads in the numerator to 0:2222 � 0:5 D
0:1111 and in the denominator 0:0694 � 0:5 C 0:2222 � 0:1458 so that the probability
P.W D 1jX D 2/ D 0:1111=0:1458 D 0:762.

The Interactive Example

The interactive example includes a number of sidebar panels. You can access the
panels by setting a mark at the corresponding check box on the upper right.

Please select

• the number of throws n
• the number of sixes X
• the probability of a six when the die is loaded
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Fig. 3.15 Screenshot of the interactive example, available at http://u.hu-berlin.de/men_die

Output

You receive a graphic as in Fig. 3.15 which displays the probabilities P.W D 1jX/

and P.W D 0jX/. By changing the parameters you may study the influence of your
changes on the resulting probabilities.

http://u.hu-berlin.de/men_die


Chapter 4
Combinatorics

4.1 Introduction

Combinatorial theory investigates possible patterns of orderings of finitely many
elements, composed groups (sets) of such orderings, and the number of these
orderings and groups.

Different Ways of Grouping and Ordering

Groups of elements can differ in several ways: they can contain either all elements
just once, or some elements several times and others not at all; moreover, two groups
that contain the same set of elements and differ from each other just by the ordering
of the elements can be considered to be the same or not.

Examples with three elements a, b, and c:

• A group that contains every element exactly once: b c a
• A group that contains some elements more times and other elements not at all:

b b
• Two groups that differ from each other just by the orderings of their elements:

a b and b a

As you can see on this simple example, groupings of elements can form three
basic types:

• Permutation
• Variation
• Combination

© Springer International Publishing Switzerland 2015
W.K. Härdle et al., Introduction to Statistics, DOI 10.1007/978-3-319-17704-5_4
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Use of Combinatorial Theory

Combinatorial theory mainly helps to answer questions such as:

• How many different ways can 5 different digits be ordered?
• How many ways exists for a choice of 10 words out of 30?
• How many possibilities are available for filling a lottery coupon?

Answers to these questions make possible to determine, for example, the
probability of winning a lottery prize. Therefore, the use of combinatorial theory is
most relevant in probability theory, which, on the other hand, really use the results
of combinatorial theory.

4.2 Permutation

Every group of certain n elements that contains all n elements is called permutation
of these elements. It follows that different permutations of the same set of elements
differ from each other just by orderings of the elements.

There are three kinds of permutations:

Permutations Without Repetition

Permutations without repetition are such permutations in which every element
is contained just once, and thus, all n elements are different. The number of
permutations without repetition, which is denoted from now on by P.n/, is:

P.n/ D 1 � 2 � 3 � � � � � n D n Š

Examples

• For two different elements (a and b) the number of possible permutations is
P.2/ D 1 � 2 D 2 Š D 2: Quite naturally, the two possible permutations are:
fa; bg and fb; ag.

• For three different elements (a, b, and c) the number of possible permutations is
P.3/ D 1 � 2 � 3 D 3 Š D 6. All six possible permutations are as follows: fa; b; cg;
fa; c; bg; fb; a; cg; fb; c; ag; fc; a; bg; and fc; b; ag.
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Permutations with Repetition

This kind of a permutation allows for ordered groups of elements in which some
elements are the same. Let us assume that there are g identical elements among all
n elements in a permutation. The number of possible permutations with repetition
of n elements is denoted P.nI g/ and it can be determined by the following formula:

P.nI g/ D n Š

g Š
g � n ,

where g is the number of the identical elements (the size of their group).

Examples

• First, consider once again the case of two elements: For two different elements
(a and b) the number of possible permutations is P.2/ D 2 Š=1 Š D 2 (which is
the same as for permutations without repetition): fa; bg and fb; ag.

For two identical elements (a and a) the number of possible permutations is
P.2I 2/ D 2 Š=2 Š D 1. The only possible permutation is of course: fa; ag.

• For a group of three elements, it is possible to have g D 1 (the same as for
permutations without repetition), g D 2 (two elements are the same, while the
third is different), or g D 3 (all three elements are the same):

For g D 1 the group is formed by (a, b, and c), so the number of possible
permutations is P.3/ D 3 Š=1 Š D 6:, as before. All six permutations are:
fa; b; cg; fa; c; bg; fb; a; cg; fb; c; ag; fc; a; bg; and fc; b; ag.

For g D 2 (a,a, and b), the number of possible permutations is P.3I 2/ D
3 Š=2 Š D 3: Three are: fa; a; bg; fa; b; ag; and fb; a; ag.

For g D 3 (a, a, and a), the number of possible permutations is P.3I 3/ D
3 Š=3 Š D 1 and the only possible permutations is: fa; a; ag.

Apparently, permutations without repetition are a special case of permutations
with repetition. Permutations with repetition are then a special case of permutations
with more groups of identical elements.

Permutations with More Groups of Identical Elements

For permutations of this kind, it is possible that there are more (different) groups
of identical elements among all n elements of a permutation. For r such groups, the
number of permutations is

P.nI g1; : : : ; gr/ D n Š

g1 Š � g2 Š � � � � � gr Š

where gi represents the size of ith group and it holds that g1 Cg2 Cg3 C� � �Cgr � n.
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Explained: Beauty Competition

There are 14 competitors in a beauty competition. Every juror in the jury has to
create his own private ranking of these 14 competitors. How many jurors are needed
in order to get all possible rankings (every one different from all others) of all 14
competitors if we assume that every juror has different tastes?

To create a ranking, it is just necessary to order all n elements (14 competitors);
thus, every juror has to create a permutation.

Now, one has to decide whether we deal with permutations with or without
repetitions. As every competitor can be in a ranking from a juror included just once,
we consider permutations without repetition.

P.n/ D 1 � 2 � 3 � � � � � n D nŠ

P.14/ D 1 � 2 � 3 � � � � � 14 D 14Š D 87; 178; 291; 200

For all the possible rankings, more than 87 billion of jurors is needed. Clearly, it
would not be easy to find them since the total population of the Earth is currently
about 6 billion.

4.3 Variations

Every group of k elements chosen from a set of n elements in which the ordering
of elements matters is called a variation of the kth order of n elements.

Variations with Repetition

A variation with repetition is a variation in which every element can be present
more than once. The number of possible variations of the kth order of n elements
with repetition is denoted by VW.nI k/ and it can be computed as

VW.nI k/ D nk

Examples with elements a, b, and c (n D 3):

• For k D 1 we have VW.3I 1/ D 31 D 3. The three possible variations are: fag;
fbg, and fcg.

• For k D 2 we obtain VW.3I 2/ D 32 D 9 and the variations are: fa; ag; fb; bg;
fc; cg; fa; bg; fb; ag; fa; cg; fc; ag; fb; cg; and fc; bg.
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• For k D 3 we have VW.3I 3/ D 33 D 27. The variations are: fa; a; ag; fb; b; bg;
fc; c; cg; fa; a; bg; fa; b; ag; fb; a; ag; fa; a; cg; fa; c; ag; fc; a; ag; fb; b; ag;
fb; a; bg; fa; b; bg; fb; b; cg; fb; c; bg; fc; b; bg; fc; c; ag; fc; a; cg; fa; c; cg;
fc; c; bg; fc; b; cg; fb; c; cg; fa; b; cg; fa; c; bg; fb; a; cg; fb; c; ag; fc; a; bg; and
fc; b; ag.

Variations Without Repetition

In this type of variations, every element (from the set of all n elements) can be
included at most once. The number of possible variations of the kth order of n
elements without repetition is denoted V.nI k/ and equals

V.nI k/ D n � .n � 1/ � .n � 2/ � � � � � .n � k C 2/ � .n � k C 1/ D n Š

.n � k/ Š
:

Examples with elements a, b, and c (n D 3)

• For k D 1 we have V.3I 1/ D 3 Š=2 Š D 3. The three possible variations are
obviously: fag; fbg; and fcg.

• For k D 2 we obtain V.3I 2/ D 3 Š=1 Š D 6 and the variations are: fa; bg; fb; ag;
fa; cg; fc; ag; fb; cg; and fc; bg.

• For k D 3 we obtain V.3I 3/ D 3 Š=0Š D 6. The six possible variations are:
fa; b; cg; fa; c; bg; fb; a; cg; fb; c; ag; fc; a; bg; and fc; b; ag.

Explained: Lock Picking

Everybody knows it—a briefcase with a several-digit-code lock. Imagine you
changed that code some time ago and forgot it a few days later. Now, the question
is how many numbers (i.e., series of digits) you have to try to open the briefcase in
the worst case scenario.

In most cases, such a lock has three digits to choose and every digit can be any
number between 0 and 9. Therefore, it is a choice of 3 digits (k elements) from
10 (all n elements). It is clear that ordering of digits matters here—the sequence
462 will have a different effect (it can even open the briefcase) than the sequences
264 or 426. These two pieces of information (k elements out of total n elements
and importance of ordering) indicate that variations are the right concept to use for
this problem. (Please be aware of the fact that in this connection often used term
“numerical combination” is factually wrong, it is numerical variation!)
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Also, it is necessary to decide whether we deal with variations with or without
repetition: every digit can equal to any value between 0 and 9, so, for example,
the sequence 666 is possible. The correct concept is therefore variations with
repetition.

k D 3 n D 10 (0 to 9)

VW D .n; k/ D nk

VW D .10; 3/ D 103 D 10 � 10 � 10 D 1000

Three-digit numerical lock (with digits 0–9) makes 1000 variations possible. If one
tries to open the lock and it takes 2 s on average, in the worst case scenario, it will
take 33.33 mins to open the briefcase.

4.4 Combinations

Every group of k elements chosen from a set of n elements in which the ordering
of the chosen elements is unimportant is called a combination of the kth order of
n elements.

Combinations Without Repetition

Ordering of elements does not play any role when the number of combinations is
to be determined (i.e., groups ab and ba are equivalent combinations). That is why
the number of combinations of the kth order is lower than the number of variations
of the kth order from the same set of n elements. The number of variations, which
differ from each other just by ordering of their elements, is given by P.k/. Hence,
the number of combinations of the kth order of n elements without repetition (it is
denoted here by K.nI k/) is:

K.nI k/ D V.nI k/

P.k/
D n Š

k Š � .n � k/ Š
D
�

n
k

	

Examples with elements a, b, and c (n D 3)

• For k D 1 we have K.3I 1/ D 3 and these three possibilities are: fag; fbg; and
fcg.

• For k D 2 we have K.3I 2/ D V.3I 2/=P.2/ D 6=2 D 3: fa; bg; fa; cg; and fc; bg.
• For k D 3 we have K.3I 3/ D V.3I 3/=P.3/ D 3=3 D 1, so there is just one

combination: fa; b; cg.
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Combinations with Repetition

Combinations with repetition can include one element many times; hence, the
maximal possible number of combinations of the kth order of n elements with
repetition (denoted by KW.nI k/) is

KW.nI k/ D
�

n C k � 1

k

	

Examples with elements a, b, and c (n D 3)

• For k D 1 we have KW.3I 1/ D 3 and the three possibilities are: fag; fbg; and
fcg.

• For k D 2 is KW.3I 2/ D 6: fa; bg; fa; cg; fc; bg; fa; ag; fb; bg; and fc; cg.

Explained: German Lotto

Millions of Germans try every Saturday their luck in the lottery called Lotto. They
choose 6 numbers from 49 and hope that, thanks to these 6 numbers, they will get
rich. They base the choice often on various almost “mystical” numbers—numbers
such as the date of somebody’s birthday, the birthday of their dog, numbers hinted
by a horoscope, and so on. How many possibilities for a choice of 6 numbers out of
49 actually exists?

From 49 numbers (elements), exactly 6 is chosen. The order in which the
numbers are chosen in unimportant—it does not matter whether one crosses first
4 and then 23 or vice versa. That means that ordering of elements is not taken
into consideration. Therefore, permutations (simple reordering of n elements) and
variations as well (ordering of elements matters) are not the right choice. The right
concept is a combination.

Nevertheless, there are still two possibilities—combinations with or without
repetition. Since every number of the lottery ticket can be crossed just once,
repetition of numbers (elements) is not possible and we use combinations without
repetition.

n D 49 k D 6

K.n; k/ D
�

n
k

	
D V.n; k/

P.k/
D n Š

k Š � .n � k/ Š

K.n; k/ D 49 Š

6 Š � .49 � 6/ Š
D 13 983 816

There is 13983816 possible combinations of 6 numbers from 49.
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4.5 Properties of Euler’s Numbers (Combination Numbers)

Euler’s symbol

�
n
k

	
, read n over k, is used in combinatorial theory very often.

So it is useful to know several important properties of these so-called combination
numbers.

Symmetry

�
n
k

	
D
�

n
n � k

	

Proof of symmetry

n Š

k Š.n � k/ Š
D n Š

.n � k/ Š.n � .n � k// Š

Specific Cases

�
n
0

	
D n Š

0 Š.n � 0/ Š
D 1

�
n
1

	
D n Š

1 Š.n � 1/ Š
D n

�
0

0

	
D
�

n
n

	
D 1

�
n
k

	
D 0 for k > n � 0

Sum of Two Euler’s Numbers

�
n
k

	
C
�

n
k C 1

	
D
�

n C 1

k C 1
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Derivation of the Property

n Š

k Š.n � k/ Š
C n Š

.k C 1/ Š.n � .k C 1// Š

D .k C 1/n Š

.k C 1/k Š.n � k/ Š
C .n � k/n Š

.k C 1/ Š.n � .k C 1// Š.n � k/

D n Š..k C 1/ C .n � k//

.k C 1/ Š.n � k/ Š

D n Š.n C 1/

..n C 1/ � .k C 1// Š.k C 1/ Š

D .n C 1/ Š

..n C 1/ � .k C 1// Š.k C 1/ Š

D
�

n C 1

k C 1

	

Euler’s Numbers and Binomial Coefficients

Table 4.1 contains in the left column an expression of the form .a C b/n and in the
right column summands obtained by expansion of the expression in the left column.

Pascal’s Triangle

In the Pascal triangle, one can find all the coefficients from Table 4.1, please note
the additive dependence between the two rows of the triangle.

Table 4.1 Binomial
coefficients

.a C b/0 1

.a C b/1 1a C 1b

.a C b/2 1a2 C 2ab C 1b2

.a C b/3 1a3 C 3a2b C 3ab2 C 1b3

.a C b/4 1a4 C 4a3b C 6a2b2 C 4ab3 C 1b4

.a C b/5 1a5 C 5a4b C 10a3b2 C 10a2b3 C 5ab4 C 1b5

� � � � � �
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1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1

.a C b/6 D a6 C 6a5b C 15a4b2 C 20a3b3 C 15a2b4 C 6ab5 C b6

Binomial Theorem

Binomial theorem documents the mentioned dependence between Euler’s numbers
and combination numbers.

.a C b/n D
�

n
0

	
an C

�
n
1

	
an�1b C

�
n
2

	
an�2b2 C : : :

� � � C
�

n
n � 1

	
abn�1 C

�
n
n

	
bn

D
nX

kD0

�
n
k

	
an�kbk



Chapter 5
Random Variables

5.1 The Definition

Definition A random variable is a function that assigns (real) numbers to the results
of an experiment. Each possible outcome of the experiment (i.e., value of the
corresponding random variable) occurs with a certain probability.

• X: random variable
• xi; .i D 1; : : : ; n/: results of n experiments—the values of the random variable X

A random variable is created by assigning a real number to each event Ej (an
outcome of an experiment). The event Ej is an element of the set S of all possible
outcomes of an experiment. The random variable is then defined by a function that
maps the elements of the set S with numbers on the real line.

X W Ej ! X.EJ/ D xj

More Information

A random variable is a function that assigns real numbers to the outcomes of an
experiment. Random variables (i.e., the functions) are usually denoted by capital
letters. The value of a random variable (i.e., a realization) is not known before we
conduct the experiment.

A realization of a random variable is obtained only after observing the outcome
of the experiment. The realization of random variables are usually denoted by
small letters. This notation allows us to distinguish the random variable from its
realization.

In practice, we usually only have the realizations of the random variables. The
goal of statistics is to use these values to obtain the properties of the (unknown)
random variable that generates these observations.

© Springer International Publishing Switzerland 2015
W.K. Härdle et al., Introduction to Statistics, DOI 10.1007/978-3-319-17704-5_5
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Table 5.1 The number of
tails in three tosses of a coin

S Number of tails

fhhhg 0

fhht; hth; thhg 3

fhtt; tht; tthg 3

ftttg 1

Explained: The Experiment

Two outcomes are possible if you toss a coin: heads (h) or tails (t). Let us consider
three tosses (k D 3). Our experiment will examine the number (n) of tails obtained in
three tosses of a coin. There are 8 possible (VW.nI k/ D nk ! VW.2I 3/ D 23 D 8)
outcomes of this experiment

S D fhhh; hht; hth; thh; htt; tht; tth; tttg

The random variable for this experiment assigns a real number .0; 1; 2; 3/ to each
element of S based on the number of tails appearing in the tosses. For example, tails
appears once (n D 1): f.hho/ [ .hoh/ [ .ohh/g. This random variable “works” as
shown in Table 5.1.

The corresponding random variable, denoted by the capital letter X, is defined as

X D f Number (n) of tails in three tosses of the coin g.

This definition implies that the value of the random variable X has to be one of the
following 4 numbers: x1 D 0I x2 D 1I x3 D 2I x4 D 3.

Enhanced: Household Size I

The government carried out a socioeconomic study that examined the relationship
between the size of a household and its lifestyle choices.

Let us assume that the government has obtained the following results:

E1 D f households with one person g
E2 D f households with two people g
E3 D f households with three people g
E4 D f households with four and more people g

The set of the possible outcomes from the experiment consists of the following
events: S D fE1; E2; E3; E4g. We assign a real number to each event Ei 2 S:
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S R

E1 ! 1

E2 ! 2

E3 ! 3

E4 ! 4

The resulting random variable X is defined as the size of the household. The set
of possible values of this random variable is .1; 2; 3; 4/, this means that the possible
results of this random variable are x1 D 1; x2 D 2; x3 D 3; x4 D 4.

5.2 One-Dimensional Discrete Random Variables

A random variable is one-dimensional if the experiment only considers one
outcome.

Discrete Random Variable

Definition A random variable is called discrete if the set of all possible outcomes
x1; x2; : : : is finite or countable.

Density Function

Definition The density function f gives the probability that the random variable X
is equal to xi. The probability of xi is f .xi/.

P.X D xi/ D f .xi/ i D 1; 2; : : :

f .xi/ � 0;
X

i

f .xi/ D 1

The density function can be plotted using a histogram.

Distribution Function

Definition The distribution function F of a random variable X evaluated at a
realization x is defined as the probability that the value of the random variable X
is not greater than x.

F.x/ D P.X � x/ D
X

xi�x

f .xi/
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The distribution function of a discrete random variable is a step function that only
increases only at increments of xi. The distribution function increases in increments
of f .xi/. The distribution function is also constant between the points xi and xiC1.

The distribution function allows us to compute the probabilities of other events
involving X:

P.a < X � b/ D F.b/ � F.a/; or P.X > a/ D 1 � F.a/:

Explained: One-Dimensional Discrete Random Variable

We count the number of tails (t) in three tosses of a coin. We define the random
variable X:

X D f The number of tails in three tosses of a coin g

with the following four outcomes x1 D 0I x2 D 1I x3 D 2I x4 D 3.
The calculation of the probabilities P.Ej/ is based on the Multiplication Theorem

for independent random events (Table 5.2, Fig. 5.1).

Table 5.2 Probabilities for the number of tails in three tosses of a coin

Probability Number of Probability function
Event Ej P.Ej/ tails (t) xj P.X D xj/ D f .xj/

E1 D fhhhg P.E1/ D 0:125 x1 D 0 f .x1/ D 0:125

E2 D fhhog P.E2/ D 0:125

E3 D fhohg P.E3/ D 0:125 x2 D 1 f .x2/ D 0:375

E4 D fohhg P.E4/ D 0:125

E5 D fhoog P.E5/ D 0:125

E6 D fohog P.E6/ D 0:125 x3 D 2 f .x3/ D 0:375

E7 D foohg P.E7/ D 0:125

E8 D fooog P.E8/ D 0:125 x4 D 3 f .x4/ D 0:125

0 1 2 3

x

f(
x)

0.0

0.1

0.2

0.3

0.4

F
(x

)

0 1 2 3 4

0.2

0.4

0.6

0.8

1

Fig. 5.1 Probabilities and distribution function for the number of tails in three tosses of a coin
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The (cumulative) distribution function is obtained by summing the probabilities
of the different values of the random variable X. For instance

F.1/ D f .0/ C f .1/ D 0:125 C 0:375 D 0:5

Formula for the (cumulative) distribution function:

F.x/ D

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂̂
:

0:000 for x < 0

0:125 for 0 � x < 1

0:500 for 1 � x < 2

0:875 for 2 � x < 3

1:000 for 3 � x

Enhanced: Household Size II

The household sizes in Berlin in April 1998 are provided on page 64 in “Statistisches
Jahrbuch” published by “Statistisches Landesamt Berlin,” Kulturbuch-Verlag Berlin
(Table 5.3).

Let X denote the size of a randomly chosen household from Berlin in April 1998.
We can observe the following outcomes:

x1 D 1 household with one person
x2 D 2 household with two persons
x3 D 3 household with three persons
x4 D 4 household with four or more persons

Before we choose the household, we cannot say anything about its size. The
value of the random variable can take any from the four possible outcomes. We let
X D household size denote the random variable in this experiment. X is discrete,
because the set of all possible outcomes is finite—the outcome must take a value of
1, 2, 3, or 4 (and more).

The probabilities are given by the frequency distribution of the households
in Berlin (Fig. 5.2). This density function provides an overview of all possible
outcomes together with their probabilities (Table 5.4).

Table 5.3 Household sizes
in Berlin in April 1998

Household size Number of households (1000)

1 820.7

2 564.7

3 222.9

4 and more 195.8

Sum 1804.1
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Fig. 5.2 Probabilities of
household sizes in Berlin in
April 1998
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Table 5.4 Probabilities of
household sizes in Berlin in
April 1998

Household size xj f .xj/

1 0.4549

2 0.3130

3 0.1236

4 and more 0.1085

Sum 1.0000

Fig. 5.3 Cumulative
probabilities of household
sizes in Berlin in April 1998

x

F(
x)
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0.2

0.4

0.6

0.8

1

Table 5.5 Cumulative
probabilities of household
sizes in Berlin in April 1998

Household size xj F.x/

1 0.4549

2 0.7679

3 0.8915

4 and more 1.0000

The probability that a household (from Berlin in April 1998) contains two
persons (X D 2) is equal to 0:313 (Fig. 5.2, Table 5.4). The distribution function
F.x/ D P.X � x/ is (Fig. 5.4, Table 5.5):

Similarly, the distribution function provides the probability that a household has
at most two members (X � 2) is equal to 0:7679. The distribution function also
allows us to compute the probabilities of other outcomes, e.g.

• probability that a household has more than two members (X > 2) is

P.X > 2/ D 1 � F.2/ D 1 � 0:7679 D 0:2321
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or

P.X > 2/ D f .3/ C f .4/ D 0:1236 C 0:1085 D 0:2321:

• probability that a household has more than one member but less than four
members is equal to

P.1 < X � 3/ D F.3/ � F.1/ D 0:8915 � 0:4549 D 0:4366

or

P.1 < X � 3/ D f .2/ C f .3/ D 0:3130 C 0:1236 D 0:4366:

5.3 One-Dimensional Continuous Random Variables

Definition A continuous random variable takes values on the real line from either
a finite or infinite interval.

Density Function

Definition If a function f .x/ has the following properties:

P.a < X � b/ D
bZ

a

f .x/ dxI a � b

f .x/ � 0

C1Z

�1
f .x/ dx D 1

The function f .x/ is the density of the continuous random variable X.

Distribution Function

Definition The distribution function can be obtained from the density:

F.x/ D P.�1 < X � x/

D
xZ

�1
f .t/ dt:
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Fig. 5.4 Density and distribution function of a continuous random variable

The distribution function F.x/ is equal to the area under the density f .u/ for
�1 < u � x (Fig. 5.4).

The density function, if it exists, can be computed as the first derivative of the
distribution function:

@F.x/

@x
D F0.x/ D f .x/.

More Information: Continuous Random Variable, Density,
and Distribution Function

The density function of a continuous random variable has the following proper-
ties:

• it cannot be negative
• the area under the curve is equal to one
• probability that the random variable X lies between a and b is equal to the area

between the density and the x-axis on the interval Œa; b�

The density function f .x/ computes the probability that a random variable lies in
the interval Œx; x C dx�.

The probability that a continuous random variable will be equal to a specific real
number is always equal to zero, since the area under a specific point is equal to zero:

Z x

x
f .t/ dt D F.x/ � F.x/ D 0 :
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n =  50

−4 −2 0 2 4

n =  500

−4 −2 0 2 4

n =  5000

−4 −2 0 2 4 −4 −2 0 2 4

Model

Fig. 5.5 Smoothing histograms by increasing the number of observations

This implies as a corollary: the probability that continuous random variable X falls
into an interval does not depend on the closeness or openness of the interval.

P.a � X � b/ D P.a < X < b/ because P.a/ D P.b/ D 0 :

The diagram in Fig. 5.5 illustrates that a histogram can be smoothed by increasing
the number of observations. In the limit (i.e., as n! 1) the histogram can be
approximated by a continuous function.

The area between the points a and b corresponds to the probability that a random
variable X will fall in the interval Œa; b�. This probability can be computed using
integrals.

A distribution function, F.x/; is the probability that the random variable X is less
than or equal to x. Its properties follow:

• F.x/ is nondecreasing, i.e., x1 < x2 implies that F.x1/ � F.x2/

• F.x/ is continuous
• 0 � F.x/ � 1

• limx!�1 F.x/ D 0

• limx!C1 F.x/ D 1

A distribution function cannot be decreasing because this would imply negative
probabilities. In general, the distribution function is defined for all real numbers.
Limits on the sample space are necessary for the complete description of the
distribution function.
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Fig. 5.6 Density of the
triangular distribution
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Explained: Continuous Random Variable

Let us consider the function

f .x/ D
8
<

:

0:25x � 0:5 for 2 < x � 4

�0:25x C 1:5 for 4 < x � 6

0 otherwise.

Is this function a density? We need to verify whether
R1

�1 f .x/ dx D 1 :

Z 1

�1
f .x/ dx D

Z 4

2

.0:25x � 0:5/ dx C
Z 6

4

.�0:25x C 1:25/ dx

D


0:25

1

2
x2 � 0:5x

�4

2

C


�0:25

1

2
x2 C 1:5x

�6

4

D 1

This means that f .x/ is a density. In particular, it is the density of the triangular
distribution (named after the shape of the density shown in Fig. 5.6).

Enhanced: Waiting Times of Supermarket Costumers

The waiting times (in minutes) of supermarket customers were collected, which
resulted in the frequency distribution shown in Table 5.6. The relative frequencies
are used to construct the histogram and the frequency polygon shown in Figs. 5.7
and 5.8.

The continuous random variable X D f waiting time g defines the groups (bins)
with constant bin width of 0:5 min. The probabilities are approximated by relative
frequencies (statistical definition of the probability).
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Table 5.6 Waiting times of
supermarket customers in
minutes

Cumulative

Waiting time Relative frequency relative frequency

8.0–8.5 0.002 0.002

8.5–9.0 0.004 0.006

9.0–9.5 0.009 0.015

9.5–10.0 0.013 0.028

10.0–10.5 0.020 0.048

10.5–11.0 0.043 0.091

11.0–11.5 0.094 0.185

11.5–12.0 0.135 0.320

12.0–12.5 0.169 0.489

12.5–13.0 0.158 0.647

13.0–13.5 0.139 0.786

13.5–14.0 0.078 0.864

14.0–14.5 0.065 0.929

14.5–15.0 0.030 0.959

15.0–15.5 0.010 0.969

15.5–16.0 0.014 0.983

16.0–16.5 0.006 0.989

16.5–17.0 0.004 0.993

16.0–17.5 0.003 0.996

17.5–18.0 0.004 1.000

Fig. 5.7 Histogram of the
waiting times of supermarket
customers
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Note In Fig. 5.7, the probabilities are given as the height of the boxes (and not the
areas of the boxes). This implies that the sum of the areas of all of the boxes is equal
to 0.5 (and not to 1). Similarly, the polygon on Fig. 5.8 cannot be a density because
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Fig. 5.8 Polygon of the
waiting times of supermarket
customers
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Table 5.7 Relative
frequency density of waiting
times of supermarket
costumers

Waiting time Relative frequency density

8.0–8.5 0.004

8.5–9.0 0.008

9.0–9.5 0.018

9.5–10.0 0.026

10.0–10.5 0.040

10.5–11.0 0.086

11.0–11.5 0.188

11.5–12.0 0.270

12.0–12.5 0.338

12.5–13.0 0.316

13.0–13.5 0.278

13.5–14.0 0.156

14.0–14.5 0.130

14.5–15.0 0.060

15.0–15.5 0.020

15.5–16.0 0.028

16.0–16.5 0.012

16.5–17.0 0.008

16.0–17.5 0.006

17.5–18.0 0.008

it does not satisfy the condition

Z C1

�1
f .x/ dx D 1 :

In order to obtain the density of X, we need to compute the relative frequency
density, which is obtained as the ratio of the relative frequencies and the widths
of the corresponding groups summarized in Table 5.7.
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Fig. 5.9 Histogram of the
waiting times of supermarket
customers using relative
frequency density
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Fig. 5.10 Density of the
waiting times of supermarket
customers
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Using this relative frequency density we obtain another histogram and a
smoothed density function.

In Fig. 5.9 the probabilities of the groups are given by the area. This
implies that the sum of these areas is equal to one. The density in Fig. 5.10
is (an approximate) density function of the (continuous) random variable
X D f waiting time of the customer g. The corresponding distribution function
F.x/ is given in Fig. 5.11.

5.4 Parameters

A random variable is completely described by its density and distribution func-
tion. However, some important aspects of the probability distribution can be
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Fig. 5.11 Distribution
function of the waiting times
of supermarket customers
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characterized by a small number of parameters. The most important of which are
the location and scale parameters of a random variable.

Expected Value

The expected value of a random variable X, denoted by E.X/ or �; corresponds to
the arithmetic mean of an empirical frequency distribution. The expected value is
the value that we, on average, expect to obtain as an outcome of the experiment. By
repeating the experiment many times, the expected value E.X/ is the number that
will be obtained as an average of all the outcomes of an experiment.

Definition Let us consider the discrete random variable X with outcomes xi and the
corresponding probabilities f .xi/. Then, the expression

E.X/ D � D
X

i

xif .xi/

defines the expected value of the random variable X.

For a continuous random variable X, with density f .x/, we define the expected
value as

E.X/ D � D
C1Z

�1
x � f .x/ dx

Properties of the Expected Value Let X and Y be two random variables with the
expected values E.X/ and E.Y/. Then:

• for Y D a C bX with any a; b
E.Y/ D E.a C bX/ D a C bE.X/
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• for Z D X C Y
E.Z/ D E.X C Y/ D E.X/ C E.Y/

• for X; Y independent random variables
E.XY/ D E.X/E.Y/

Variance

Definition The variance, which is usually denoted by Var.X/ or �2; is defined as
expected value of the squared difference between a random variable and its expected
value:

Var.X/ D EŒ.X � E.X//2� D E.X2/ D ŒE.X/�2

For discrete random variable we obtain

Var.X/ D �2 D
X

i

Œxi � E.X/�2 � f .xi/ D
X

i

x2
i f .xi/ � ŒE.X/�2

and for a continuous random variable the variance is defined as

Var.X/ D �2 D
C1Z

�1
Œx � E.X/�2 � f .x/ dx D

C1Z

�1
x2f .x/ dx � ŒE.X/�2

The Properties of the Variance Assume that X and Y are two random variables with
the variances Var.X/ and Var.Y/. Then:

• for Y D a C bX, where a and b are constants
Var.Y/ D Var.a C bX/ D b2Var.X/

• for X; Y independent random variables and Z D X C Y
Var.Z/ D Var.X/ C Var.Y/

�Z D �XCY D
q

�2
X C �2

Y

Standard Deviation

The standard deviation � is defined as the square root of the variance, which
summarizes the spread of the distribution. Large values of the standard deviation
mean that the random variable X is likely to vary in a large neighborhood around
the expected value. Smaller values of the standard deviation indicate that the values
of X will be concentrated around the expected value.
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Standardization

Sometimes, it is useful to transform a random variable in order to obtain a
distribution that does not depend on any (unknown) parameters. It is easy to show
that the standardized random variable

Z D X � E.X/

�X

has expected value E.Z/ D 0 and variance Var.Z/ D 1.

Chebyshev’s Inequality

Chebyschev’s inequality provides a bound on the probability that a random variable
falls within some interval around its expected value. This inequality only requires
us to know the expected value and the variance of the distribution; we do not have to
know the distribution itself. The inequality is based on the interval Œ��k �� I �Ck ���

which is centered around �.

Definition Consider the random variable X with expected value � and variance � .
Then, for any k > 0, we have

P.� � k � � � X � � C k � �/ � 1 � 1

k2

Denoting k � � D a, we obtain

P.� � a � X � � C a/ � 1 � �2

k2

We can use the inequality to also obtain a bound for the complementary event
that the random variable X falls outside the interval, i.e., fjX � �j > k � �g

P.jX � �j > k � �/ < 1=k2

and for k � � D a

P.jX � �j > a/ < �2=a2.

Note that the exact probabilities fjX � �j < k � �g and fjX � �j � k � �g depend
on the specific distribution X.
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Explained: Continuous Random Variable

Let X be continuous random variable with the density

f .x/ D
8
<

:

0:25x � 0:5 for 2 < x � 4

�0:25x C 1:5 for 4 < x � 6

0 otherwise

We calculate the expected value of X:

E.X/ D � D
Z 1

�1
xf .x/ dx

D
Z 4

2

x.0; 25x � 0; 5/ dx C
Z 6

4

x.�0; 25x C 1; 5/ dx

D
Z 4

2

.0; 25x2 � 0; 5x/ dx C
Z 6

4

.�0; 25x2 C 1; 5x/ dx

D


0; 25

1

3
x3 � 0; 5

1

2
x2

�4

2

C


�0; 25

1

3
x3 C 1; 5

1

2
x2

�6

4

D 4

Now we calculate the variance:

Var.X/ D �2 D
Z 1

�1
x2f .x/ dx � ŒE.X/�2

D
Z 4

2

x2.0; 25x � 0; 5/ dx C
Z 6

4

x2.�0; 25x C 1; 5/ dx � 42

D
Z 4

2

.0; 25x3 � 0; 5x2/ dx C
Z 6

4

.�0; 25x3 C 1; 5x2/ dx � 42

D


0; 25

1

4
x4 � 0; 5

1

3
x3

�4

2

C


�0; 25

1

4
x4 C 1; 5

1

3
x3

�6

4

� 16

D 0; 6667 :

The standard deviation is equal to � D 0:8165.
For this continuous random variable the distribution has an expected value 4 and

a standard deviation 0:8165.
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Table 5.8 Frequency distribution of the number of traffic accidents occurring at an intersection
during a week

xi 0 1 2 3 4 5

f .xi/ 0.008 0.18 0.32 0.22 0.14 0.06

Explained: Traffic Accidents

Let the random variable X denote the number of traffic accidents occurring at
an intersection during a week. From long-term records, we know the frequency
distribution of X given in Table 5.8.

The expected value of X, i.e., the expected number of crashes, can be computed
as follows:

xi 0 1 2 3 4 5
f .xi/ 0.08 0.18 0.32 0.22 0.14 0.06
xif .xi/ 0.00 0.18 0.64 0.66 0.56 0.30

This gives

E.X/ D � D
X

xif .xi/ D 2:34 :

This number of traffic accidents is, of course, not possible, since we cannot have
2.34 accidents during a week. The value E.X/ D 2:34 just shows the center of the
probability function of the random variable X.

Now we calculate the standard deviation:

x2
i 0 1 4 9 16 25

x2
i f .xi/ 0.00 0.18 1.28 1.98 2.24 1.50

Var.X/ D �2 D
X

x2
i f .xi/ � �2 D 7:18 � 2:342 D 1:7044 ) � D 1:306 :

We can expect that the distribution function for accidents at this intersection has a
mean of 2.34 and a standard deviation of 1:306.

5.5 Two-Dimensional Random Variables

Consider two random variables X and Y. The joint probability distribution function
of two random discrete variables X and Y is defined as the probability that X is equal
to xi at the same time that Y is equal to yj.

P.fX D xig \ fY D yjg/ D P.X D xi; Y D yj/ D f .xi; yj/ i; j D 1; 2; : : :
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Table 5.9 Structure of a
contingency table

X/Y y1 . . . yj . . .

x1 f .x1; y1/ . . . f .x1; yj/ . . .

: : . . . : . . .

xi f .xi; y1/ . . . f .xi; yj/ . . .

: : . . . : . . .

if the following two conditions hold:

f .xi; yj/ > 0 i; j D 1; 2; : : : and
X

i

X

j

f .xi; yj/ D 1:

These two-dimensional probability density functions, for discrete random variables,
can be represented in the form of a contingency table (cross-tabulation) (Table 5.9).

For the density function of a pair of continuous random variables we have:

P.x < X � x C 4xI y < Y � y C 4y/ D f .x; y/

F.x; y/ � 0;

C1Z

�1

C1Z

�1
f .x; y/ dx dy D 1

The (cumulative) distribution function F.x; y/ is equal to the probability that the
random variable X is not greater than x and, at the same time, the variable Y is not
greater than y.

The distribution function for a pair of discrete random variables can be written
as:

F.x; y/ D P.X � x; Y � y/ D
X

xi�x

X

yj�y

f .xi; yj/

The distribution function for a pair of continuous random variables:

F.x; y/ D
xZ

�1

yZ

�1
f .u; v/ du dv

Marginal Distribution

The marginal distribution, f .xi/; of a discrete random variable X provides the
probability that the variable X is equal to xi without considering the variable Y.
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Table 5.10 Contingency
table with marginal
distributions

X / Y y1 . . . yj . . . MD X

x1 f .x1; y1/ . . . f .x1; yj/ . . . f .x1/

: : . . . : . . . :

xi f .xi; y1/ . . . f .xi; yj/ . . . f .xi/

: : . . . : . . . :

MD Y f .y1/ . . . f .yj/ . . . 1.00

The marginal distribution for the random variable Y; f .yj/; is defined analogously.

P.X D xi/ D f .xi/ D
X

j

f .xi; yj/

P.Y D yj/ D f .yj/ D
X

i

f .xi; yj/

The resulting marginal distributions are one-dimensional (Table 5.10).
Similarly, we obtain the marginal densities for a pair of continuous random

variables X and Y:

f .x/ D
C1Z

�1
f .x; y/ dy

f .y/ D
C1Z

�1
f .x; y/ dx

The Conditional Marginal Distribution Function

The conditional marginal distribution function Fy.x/ of the random variable X
denotes the distribution function of the random variable X conditional on the value
of Y. It is defined as:

P.X � xjY/ D Fy.x/ D

8
ˆ̂̂
ˆ̂
<

ˆ̂̂
ˆ̂
:

C1P
jD�1

xP

iD�1
f .xi; yj/ for X discrete

C1R
�1

xR

�1
f .u; v/ du dv for X continuous

The conditional marginal distribution function Fx.y/ of the random variable Y
denotes the distribution function of the random variable Y conditional on the value
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Table 5.11 Joint probability distribution of X=“Voted” and Y=“Interest in politics”

Interest in politics Y

Voted Very int. Int. Medium Low int. No int.

X .y1/ .y2/ int. .y3/ .y4/ .y5/ MD X

Yes (x1) 0.107 0.196 0.398 0.152 0.042 0.895

No (x2) 0.006 0.011 0.036 0.031 0.021 0.105

MD Y 0.113 0.207 0.434 0.183 0.063 1.000

of X, defined as:

P.Y � yjX/ D Fx.y/ D

8
ˆ̂̂
ˆ̂
<

ˆ̂̂
ˆ̂
:

yP

jD�1

C1P
iD�1

f .xi; yj/ for Y discrete

yR

�1

C1R
�1

f .u; v/ du dv for Y continuous

Explained: Two-Dimensional Random Variable

Example of Two Discrete Random Variables

The inhabitants of a district were asked

• whether they voted in the last election (random variable X with possible values
x1 D yes, and x2 D no).

• whether they are interested in politics (random variable Y with possible values
y1 D very intensively, y2 D intensively, y3 D medium interest, y4 D low interest,
and y5 D no interest).

The joint probability distribution of these random variables is presented in the
contingency table given in Table 5.11.

Each entry in Table 5.11 contains the probability that the random variable X will
take the value xi at the same time Y equals yj; and vice versa. The entry of the .1; 2/

element provides the probability that a person who is very interested in politics
voted in the last election. It is 0.196. The marginal distribution (MD) of X provides
the probability distribution of the random variable “Voted.” For example, 0:105

is the probability that a (randomly chosen) citizen participated in the most recent
parliamentary elections. The marginal distribution (MD) of Y is the probability
distribution of the random variable “interest in politics.” For example, 0:183 is the
probability that a (randomly chosen) citizen has low interest in politics.

Figure 5.12 presents the joint probability distribution function for voting behavior
and interest in politics.
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Fig. 5.12 Joint probability distribution of X=“Voted” (yes or no) and Y=“Interest in politics”

Example of Two Continuous Random Variables

Let us consider two continuous random variables X and Y with the joint density

f .x; y/ D
� xC3y

2
for 0 < x < 1; and 0 < y < 1

0 otherwise.

For this density, we have the following:

Z 1

�1

Z 1

�1
f .x; y/ dx dy D

Z 1

0

Z 1

0

x C 3y

2
dx dy D

Z 1

0



x2

4
C 3xy

2

�1

0

dy

D
Z 1

0

�
1

4
C 3y

2

	
dy D



y

4
C 3y2

2

�1

0

D 1

Figure 5.13 contains the graphical display of the two-dimensional probability
distribution function of the variables X and Y. We obtain the following marginal
distributions:

f .x/ D
Z 1

�1
f .x; y/ dy D

Z 1

0

x C 3y

2
dy D



xy

2
C 3y2

4

�1

0

f .x/ D
�

x
2

C 3
4

for 0 < x < 1

0 otherwise.
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Fig. 5.13 Two-dimensional
probability distribution
function
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and

f .y/ D
Z 1

�1
f .x; y/ dx D

Z 1

0

x C 3y

2
dx D



x2

4
C 3xy

2

�1

0

f .y/ D
� 3y

2
C 1

4
for 0 < y < 1

0 otherwise.

Enhanced: Link Between Circulatory Diseases and Patient Age

A cardiologist believes there may be a link between certain circulatory diseases and
the age of a patient. Therefore, he collected the values of these two random variables
for 100 patients. Let X denote the age of the patients and let Y be an indicator of dis-
ease status, which takes values y1 D 0 (patient is healthy) and y2 D 1 patient is sick.

The first step of the analysis, which allows us to assess the validity of the
cardiologist’s hypothesis, is to describe the joint distribution of the two random
variables in the form of a contingency table.

In order to simplify the presentation of the results, we group the ages into
intervals. The width of the interval for most of these age groups was 5 years;
however for very young and very old patients we used 10 years:

20 � 29; 30 � 34; 35 � 39; 40 � 44; 45 � 49; 50 � 54; 55 � 59 and 60 � 69 :
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Table 5.12 Joint probability
distribution of X=“Age” and
Y=“Circulatory Disease”

Circulatory disease Y
Age X y1 D 0 (no) y2 D 1 (yes) MD X

20–29 0.09 0.01 0.10

30–34 0.13 0.02 0.15

35–39 0.09 0.03 0.12

40–44 0.10 0.05 0.15

45–49 0.07 0.06 0.13

50–54 0.03 0.05 0.08

55–59 0.04 0.13 0.17

60–69 0.02 0.08 0.10

MD Y 0.57 0.43 1.00
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Fig. 5.14 Joint probability distribution of X=“Age” and Y=“Circulatory Disease” (yes or no)

Now, the joint probability distribution of the two random variables is shown in
Table 5.12. The entries of this contingency table contain the probabilities that the
random variable X falls within the group xi at the same time Y equals yj.

For example, the entry in the second row and first column, i.e., field (2,1), of the
table provides the probability that a patient between 30 and 34 years of age does not
suffer from a circulatory disease (0.13).

The marginal distribution (MD) of X is the probability distribution of the variable
“Age.” Using this marginal distribution, we can compute the probability that a
patient has a certain age, e.g., the probability that a patient is between 30 and 34
years is 0.15.

The marginal distribution (MD) of Y provides the probability of the disease
independently of the age of the patient. For example, using this marginal distribution
the probability that a patient suffers from a circulatory disease is 0.43. Figure 5.14
contains the joint probability distribution functions for age and morbidity.

The cardiologist knows from experience that older persons are more likely to
suffer from circulatory diseases than other age groups. Therefore, he changed the
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Table 5.13 Joint probability
distribution of X=“Age” and
Y=“Circulatory Disease,”
using a simplified grouping

Circulatory disease Y
Age X y1 D 0 (no) y2 D 1 (yes) MD X

Less than 40 0.32 0.07 0.39

41–54 0.19 0.15 0.34

More than 55 0.06 0.21 0.27

MD Y 0.57 0.43 1.00

no yes
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10
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30
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1
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−4
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>4
4

<4
1

41
−4

4

>4
4

Fig. 5.15 Joint probability distribution of X=“Age” and Y=“Circulatory Disease” (yes or no),
using a simplified grouping

age groupings to: younger than 40, 41–54 years, older than 55 years. Using this
simplified grouping, we obtain the joint distribution shown in Table 5.13. The plot
of this two-dimensional probability function for the simplified grouping is provided
in Fig. 5.15.

Conclusion Grouping is necessary for discrete random variables with a large
number of possible outcomes. The information obtained from a contingency table
will depend on the groupings used. Therefore, it is recommended to perform detailed
statistical analysis for different groupings.

5.6 Independence

(Stochastic) independence of two random variables X and Y is given by the
Multiplication Theorem for independent random event.

If two events, A and B, are independent, then the probability that these two events
occur at the same time equals the product of their probabilities.

P.A \ B/ D P.A/ � P.B/
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Let us consider the events A D fX D xig and B D fY D yjg. We can now define
the independence of these two (discrete) random variables: We say that the random
variables X and Y are stochastically independent if

P.X D xi; Y D yj/ D P.X D xi/ � p.Y D yj/

or equivalently

f .xi; yj/ D f .xi/ � f .yj/

for all pairs .xi; yj/ of the possible outcomes of the random variables X and Y.
The random variables are dependent if there exists at least one pair of points

.xi; yj/ for which the joint distribution does not factor.
We define independence for two continuous random variables in a similar

manner:
Two continuous random variables X and Y are stochastically independent if their

densities, f .x/ and f .y/; are such that

f .x; y/ D f .x/ � f .y/

for all values .x; y/ on the real line.

Conditional Distribution

Let us denote by P.X D xijY D yj/ the probability that a discrete random variable X
is equal to xi conditional on Y equaling yj. Similarly, we denote by P.Y D yjjX D xi/

the probability that Y is equal to yj conditional on X D xi.
Simple probability theory suggests

P.AjB/ D P.A \ B/

P.B/
and

P.BjA/ D P.A \ B/

P.A/

With discrete random variables, for A D fX D xig and B D fY D yjg, we obtain

P.X D xijY D yj/ D P.X D xi; Y D yj/

P.Y D yj/

D f .xi; yj/

f .yj/
D f .xijyj/
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P.Y D yjjX D xi/ D P.X D xi; Y D yj/

P.X D xi/

D f .xi; yj/

f .xi/
D f .yjjxi/

Similarly, for continuous random variables:

f .xjy/ D f .x; y/

f .y/

f .yjx/ D f .x; y/

f .x/

For conditional distribution functions we have the following:

F.xjy/ D F.x; y/

F.y/
D

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂̂
<

ˆ̂
ˆ̂̂
ˆ̂
ˆ̂
:

xP

iD�1

yP

jD�1

f .xi;yj/

C1P

iD�1

yP

jD�1

f .xi;yj/

for X and Y discrete

xR

�1

yR

�1

f .u;v/ dv du

C1R

�1

yR

�1

f .u;v/ dv du

for X and Y continuous

F.yjx/ D F.x; y/

F.x/
D

8
ˆ̂
ˆ̂
ˆ̂̂
ˆ̂
<

ˆ̂̂
ˆ̂
ˆ̂
ˆ̂
:

xP

iD�1

yP

jD�1

f .xi;yj/

xP

iD�1

C1P

jD�1

f .xi;yj/

for X and Y discrete

xR

�1

yR

�1

f .u;v/ dv du

xR

�1

C1R

�1

f .u;v/ dv du

for X and Y continuous

More Information

The independence of random variables is defined using the Multiplication Theorem
for random events. To assess whether two random variables are stochastically
dependent (or independent), we have to examine whether the product of the marginal
distributions equals the joint distribution. If the product of the marginal distributions
is equal to the joint distribution of the random variables, for all values xiI yj, then they
are independent

We are often also interested in the one-dimensional distribution of one of these
random variables. This marginal distribution does not depend on the value of the



134 5 Random Variables

other variable. This is why we calculate the row and column sums in the two-
dimensional contingency table.

In addition, we often examine the distribution of one variable conditional on the
value of the other variable. For example, the conditional distribution of X given Y,
or Y given X. The conditional distribution is computed by dividing the values of the
joint distribution by the values of the marginal distribution.

All formulas used for the discrete variables can be rewritten for continuous
random variables.

Explained: Stochastic Independence

Example for Two Discrete Random Variables

The citizens of a certain town were asked

• whether they voted in the parliamentary elections (random variable X with
possible outcomes x1 D yes, and x2 D no.

• whether they were interested in politics (random variable Y with possible
outcomes y1 D very interested, y2 D interested, y3 D medium interest, y4 D
low interest, and y5 D no interest.

The joint probability distribution of these random variables is provided in
Table 5.14. From this joint distribution we can obtain the conditional distributions
given in Table 5.15 and 5.16.

The probability that a randomly chosen citizen is very interested in politics who
voted the last election (X D yes) is 0.219. On the other hand, the probability for a
randomly chosen citizen who is interested in politics but did not vote in the elections
(X D no) is only 0.105.

A person with low interest in politics (Y D low interest) voted in the last election
with 0.831 (X D yes).

Comparing the conditional distributions f .yjjxi/ and f .xijyj/ indicates that these
random variables are not independent, since the conditional distributions differ. The
dependence of these variables can be verified by computing f .xi; yj/ D f .xi/f .yj/

for all i and j; and comparing it with the observed values of f .xi; yj/. For example,

Table 5.14 Joint probability distribution of X=“Voted” and Y=“Interest in politics”

Interest in politics

Very int. Int. Medium Low int. No int.
Voted .y1/ .y2/ int. .y3/ .y4/ .y5/ MD X

Yes (x1) 0.107 0.196 0.398 0.152 0.042 0.895

No (x2) 0.006 0.011 0.036 0.031 0.021 0.105

MR Y 0.113 0.207 0.434 0.183 0.063 1.000



5.6 Independence 135

Table 5.15 Conditional distribution f .yjjxi/

Interest in politics
Very int. Int. Medium Low int. No int.

Voted . y1/ . y2/ int. . y3/ . y4/ . y5/

Yes (x1) 0.120 0.219 0.444 0.170 0.047 1.00

No (x2) 0.057 0.105 0.343 0.295 0.200 1.00

Table 5.16 Conditional
distribution f .xijyj/

Interest in politics
Very int. Int. Medium Low int. No int.

Voted . y1/ . y2/ int. . y3/ . y4/ . y5/

Yes (x1) 0.947 0.947 0.917 0.831 0.667

No (x2) 0.053 0.053 0.083 0.169 0.333

1.000 1.000 1.000 1.000 1.000

f .x1/f .y2/ D 0:895 � 0:207 D 0:185 but this is not equal to joint probability
f .x1; y2/ D 0:196 (see Table 5.14), which means that these random variables are
not independent.

Example of Two Continuous Random Variables

The continuous random variables X and Y have the following joint density

f .x; y/ D
� xC3y

2
for 0 < x < 1; and 0 < y < 1

0 otherwise
;

with marginal distributions

f .x/ D
�

x
2

C 3
4

for 0 < x < 1

0 otherwise

and

f .y/ D
� 3y

2
C 1

4
for 0 < y < 1

0 otherwise.

In order to show the independence of continuous random variables, we have to
verify that f .x; y/ D f .x/f .y/:

f .x/f .y/ D
�

x

2
C 3

4

	�
3y

2
C 1

4

	
D 3

4
xy C 9

8
y C 1

8
x C 3

16
¤ x C 3y

2
D f .x; y/

Since this equality does not hold these random variables are not independent
(Figs. 5.16 and 5.17).
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Fig. 5.16 The joint density f .xI y/
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Fig. 5.17 The marginal distributions of X and Y: f .x/ and f .y/

Enhanced: Economic Conditions in Germany

In 1991, three thousand Germans were asked to express their opinion about current
economic conditions in Germany. The responses to this question could take the
values:

1–very good, 2—good, 3–reasonable, 4–bad, 5–very bad.
We define the random variable X as “current economic situation,” which takes the

values listed above. In addition to the reply to this question, the investigators also
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Table 5.17 The current
economic situation (X) and
the residence of the
respondent (Y) in 1991

Residence Y
Economic situation X West East MD X

Very good Observed 0.072 0.056 0.128

Expected 0.063 0.065

Good Observed 0.257 0.204 0.461

Expected 0.228 0.233

Reasonable Observed 0.151 0.227 0.378

Expected 0.187 0.191

Bad Observed 0.012 0.014 0.026

Expected 0.013 0.013

Very bad Observed 0.002 0.005 0.007

Expected 0.003 0.004

MD Y 0.494 0.506 1.000
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Fig. 5.18 The current economic situation (X) and the residence of the respondent (Y) in 1991

recorded the respondent’s place of residence—the possible values of this variable
were East (including the former East Berlin) and West (including the former West
Berlin). This variable will be denoted as Y “residence” with possible values y1—
West, y2—East.

The frequency distribution of these two random variables is provided in
Table 5.17.

An interesting question to examine in this example is whether the assessment of
the economic situation depends on the respondent’s place of residence. Therefore,
Table 5.17 contains also the probabilities calculated from the marginal distributions
under the assumption of independence (i.e., f .xi; yj/ D f .xi/�f .yj/), these are denoted
as “expected.”

Figure 5.18 plots the joint distribution function of these random variables.
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Table 5.18 Conditional
distribution f .yjjxi/, rounded
(1991)

Residence Y
Economic situation X West East

Very good 0.563 0.437 1.000

Good 0.558 0.442 1.000

Reasonable 0.399 0.601 1.000

Bad 0.462 0.538 1.000

Very bad 0.286 0.714 1.000

Table 5.19 Current
economic situation (X) and
the place of residence of the
respondent (Y) in 1996

Residence Y

Economic situation X West East MD X

Very good Observed 0.006 0.002 0.008

Expected 0.05 0.003

Good Observed 0.082 0.036 0.118

expected 0.078 0.040

Reasonable Observed 0.314 0.175 0.489

Expected 0.323 0.166

Bad Observed 0.215 0.104 0.319

Expected 0.211 0.108

Very bad Observed 0.044 0.022 0.066

Expected 0.044 0.022

MD Y 0.661 0.339 1.000

In order to determine whether these random variables were independent we
also computed the conditional distribution. The conditional distribution, f .yjjxi/;

is provided in Table 5.18.
Table 5.17 implies: A person from the West considers the economic situation “good”
with probability 0.257. If the place of residence and the assessment of economic
conditions were independent this probability would have to equal 0.228.
Table 5.18 implies: A person who considers the current economic situation as good
is from the West with probability 0.558 and the East with probability 0.442. These
probabilities also differ from the marginal distribution of Y in the last row of
Table 5.17.

This indicates that the random variables X and Y are not independent, i.e.,
the assessment of the economic situation depends on the respondent’s place of
residence.

This survey was also conducted with another 3000 people in year 1996. The joint
distribution from study is presented in Table 5.19, along with the values that would
be obtained under independence (denoted as “expected”). Table 5.20 contains the
conditional distributions. Figure 5.19 presents the joint distribution of these two
random variables.

Using the data from 1996, there are also differences between the observed prob-
abilities and the probabilities expected if the random variables were independent. In
addition, the conditional distribution f .yjjxi/ differs from the marginal distribution
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Table 5.20 Conditional
distribution f .yjjxi/, rounded
(1996)

Residence Y
Economic situation X West East

Very good 0.750 0.250 1.000

Good 0.558 0.305 1.000

Reasonable 0.358 0.601 1.000

Bad 0.462 0.326 1.000

Very bad 0.667 0.333 1.000
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Fig. 5.19 The current economic situation (X) and the residence of the respondent (Y) in 1996

of Y. This suggests that we cannot conclude that the assessment of the economic
condition is independent of the place of residence in 1996.

The conclusions concerning the independence of the random variables “eco-
nomic situation” and “place residence” are valid only for the 3000 people included
in the experiment! This example will be further examined in the chapter discussing
the “�2-test of independence.”

5.7 Parameters of Two-Dimensional Distributions

We can easily compute the expected values and variances of the marginal and
conditional distributions—we simply use the formulas for the expected value and
variance of one-dimensional random variable.

There are some other parameters that contain important information about the
joint distribution of a pair of random variables. The most important of these are the
covariance and the correlation coefficient.
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Covariance

The covariance is based on the product of the differences of random variables X and
Y from their expected values: .X � E.X//.Y � E.Y//. The covariance Cov.X; Y/ is
defined as the expected value of this product:

Cov.X; Y/ D EŒ.X � E.X//.Y � E.Y//� D E.XY/ � E.X/E.Y/

The covariance measures the dependence between two random variables. Note:
the covariance can be either positive or negative! In general, the covariance is not
bounded. The following theorem is very important:

The covariance of two (stochastically) independent random variables X and Y is
equal to zero. In general, the converse does not hold, i.e., zero covariance does not
imply independence.

Correlation Coefficient

The correlation coefficient is used to evaluate the magnitude of the dependence
between two random variables. We standardize the random variables X and Y in
order to obtain a measure that is unit free:

ŒX � E.X/�

�x
I ŒY � E.Y/�

�y

The expected value of this product is called the correlation coefficient:

�.X; Y/ D E



ŒX � E.X/�

�x
� ŒY � E.Y/�

�y

�
D Cov.X; Y/

�x � �y

for �x > 0, �y > 0. It can be shown that:

�1 � �.X; Y/ � C1

Properties of the Correlation Coefficient

• The correlation coefficient and the covariance will have the same sign, because
the standard deviation cannot be negative (square root of the variance)

• The correlation coefficient is always in the interval Œ�1I C1�

• The correlation coefficient measures degree of linear dependence between two
random variables
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• j�.X; Y/j D 1 if and only if X and Y fulfill

Y D a C bX; b ¤ 0; resp. X D c C dY; d ¤ 0

for some a; b; c; d
• If X and Y are independent, then �.X; Y/ D 0. Zero correlation does not imply

independence. If �.X; Y/ D 0, then we say that X and Y are uncorrelated. Two
uncorrelated random variables can still be dependent, but the dependence is not
linear.

More Information

Expected Values and Variances of Marginal Distributions

a) For two discrete random variables

E.X/ D
X

i

X

j

xi � f .xi; yj/ D
X

i

xi

X

j

f .xi; yj/ D
X

i

xif .xi/;

E.Y/ D
X

j

X

i

yj � f .xi; yj/ D
X

j

yj

X

i

f .xi; yj/ D
X

j

yj � f .yj/;

Var.X/ D EŒ.X � E.X//�2 D
X

i

X

j

Œxi � E.X/�2f .xi; yj/

D
X

i

Œxi � E.X/�2
X

j

f .xi; yj/

D
X

i

Œxi � E.X/�2f .xi/ D
X

i

x2
i f .xi/ � ŒE.X/�2;

Var.Y/ D EŒ.Y � E.Y//�2 D
X

j

X

i

Œyj � E.Y/�2f .xi; yj/

D
X

j

Œyj � E.Y/�2
X

i

f .xi; yj/

D
X

j

Œyj � E.Y/�2f .yj/ D
X

j

y2
j f .yj/ � ŒE.Y/�2:
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b) For two continuous random variables

E.X/ D
Z C1

�1

Z C1

�1
xf .x; y/ dx dy

D
Z C1

�1
x


Z C1

�1
f .x; y dy

�
dx D

Z C1

�1
xf .x/ dx;

E.Y/ D
Z C1

�1

Z C1

�1
yf .x; y/ dx dy

D
Z C1

�1
y


Z C1

�1
f .x; y/ dx

�
dy D

Z C1

�1
yf .y/ dy;

Var.X/ D
Z C1

�1
Œx � E.X/�2 � f .x/ dx D

Z C1

�1
x2f .x/ dx � ŒE.X/�2;

Var.Y/ D
Z C1

�1
Œy � E.Y/�2 � f .y/ dy D

Z C1

�1
y2f .y/ dy � ŒE.Y/�2

Expected Values and Variances of Conditional Distribution

a) For two discrete random variables

E.Xjyj/ D
X

i

xif .xijyj/;

E.Yjxi/ D
X

j

yjf .yjjxi/;

Var.Xjyj/ D
X

i

Œxi � E.Xjyj/�
2f .xijyj/ D

X

i

x2
i f .xijyj/ � ŒE.Xjyj/�

2;

Var.Yjxi/ D
X

j

Œyj � E.yjxi/�
2f .yjjxi/ D

X

j

y2
j f .yjjxi/ � ŒE.Yjxi/�

2:

b) For two continuous random variables

E.Xjy/ D
Z C1

�1
xf .xjy/ dx;

E.Yjx/ D
Z C1

�1
yf .yjx/ dx;

Var.Xjy/ D
Z C1

�1
Œx � E.Xjy/�2 � f .xjy/ dx;

Var.Yjx/ D
Z C1

�1
Œy � E.Yjx/�2 � f .yjx/ dy;
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Covariance

Calculation of the covariance of X and Y:

a) X and Y discrete:

Cov.X; Y/ D
X

i

X

j

Œxi � E.X/�Œyj � E.Y/�f .xi; yj/

D
X

i

X

j

xiyjf .xi; yj/ � E.X/E.Y/

b) X and Y continuous:

Cov.X; Y/ D
Z C1

�1

Z C1

�1
Œx � E.X/�Œy � E.Y/�f .x; y/ dx dy

D
Z C1

�1

Z C1

�1
xyf .x; y/ dx dy � E.X/E.Y/

The definition of the covariance immediately implies that the covariance of a
random variable with itself is equal to the variance:

Cov.X; X/ D EŒ.X � E.X//.X � E.X//� D EŒ.X � E.X//2� :

From the definition of the covariance:

Cov.X; Y/ D EŒ.X � E.X//.Y � E.Y//� D E.XY/ � E.X/E.Y/

we obtain:

E.XY/ D E.X/E.Y/ C Cov.X; Y/ if X and Y are dependent and

E.XY/ D E.X/E.Y/ if X and Y are independent.

Furthermore:

Var.XY/ D EfŒXY � E.XY/�2g
D Ef.XY/2 � 2XYE.XY/ C E.XY/E.XY/g
D EŒ.XY/2� � 2E.XY/E.XY/ C E.XY/E.XY/

H)

Var.XY/ D EŒ.XY/2� � ŒE.XY/�2 for X and Y dependent and

Var.XY/ D E.X2/E.Y2/ � ŒE.X/E.Y/�2 for X and Y independent.
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Explained: Parameters of Two-Dimensional Random Variables

Example for Two Discrete Random Variables

The police department collected data on the number of mechanical problems
(denoted by the random variable X) and the age of the cars, which is measured in
years (denoted by the random variable Y). Only cars that are between 1 and 3 years
were selected for further investigation. The joint and marginal density functions for
these variables are given in Table 5.21.

The expected values and the variances of the marginal distributions are:

E.X/ D 0 � 0:46 C 1 � 0:3 C 2 � 0:24 D 0:78;

Var.X/ D 0 � 0:46 C 1 � 0:3 C 4 � 0:24 � 0:782 D 0:6516;

E.Y/ D 1 � 0:6 C 2 � 0:3 C 3 � 0:1 D 1:5;

Var.Y/ D 1 � 0:6 C 4 � 0:3 C 9 � 0:1 � 1:52 D 0:45:

On average, a car has 0.78 mechanical problem(s), with a variance of deviance
0.65. The average age of a car is 1.5 years, with a variance of 0.45.

The covariance and the correlation coefficient are calculated as:

E.XY/ D 0 � 1 � 0:3 C 0 � 2 � 0:14 C 0 � 3 � 0:02 C 1 � 1 � 0:18 C 1 � 2 � 0:1

C1 � 3 � 0:02 C 2 � 1 � 0:12 C 2 � 2 � 0:06 C 2 � 3 � 0:06

D 1:28;

Cov.X; Y/ D 1:28 � 0:78 � 1:5 D 0:11;

�.X; Y/ D 0:11=.0:6516 � 0:45/0:5 D 0:2031:

This means that the number of mechanical problems and the age of the car are
positively correlated.

Table 5.21 Joint marginal
distribution of X=“Number of
mechanical problems” and
Y=“Age of the car”

Number of (X) Age (Y)
Mechanical problems 1 2 3 MD X

0 0.30 0.14 0.02 0.46

1 0.18 0.10 0.02 0.30

2 0.12 0.06 0.06 0.24

MD Y 0.60 0.30 0.10 1.00
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Example for Two Continuous Random Variables

Let us consider two continuous random variables X and Y with the joint density

f .x; y/ D
� xC3y

2
for 0 < x < 1; and 0 < y < 1

0 otherwise

and the marginal distributions

f .x/ D
�

x
2

C 3
4

for 0 < x < 1

0 otherwise

and

f .y/ D
� 3y

2
C 1

4
for 0 < y < 1

0 otherwise.

The expected values and variances are:

E.X/ D
Z 1

0

x

�
x

2
C 3

4

	
dx D



x3

6
C 3x2

8

�1

0

D 1

6
C 3

8
D 13

24

E.Y/ D
Z 1

0

y

�
3y

2
C 1

4

	
dy D



y3

2
C y2

8

�1

0

D 1

2
C 1

8
D 5

8

Var.X/ D
Z 1

0

x2

�
x

2
C 3

4

	
dx C

�
13

24

	2

D



x4

8
C x3

4

�1

0

C
�

13

24

	2

D 3

8
C 169

576
D 0; 6684

Var.Y/ D
Z 1

0

y2

�
3y

2
C 1

4

	
dy C

�
5

8

	2

D



3y4

8
C y3

12

�1

0

C
�

5

8

	2

D 11

24
C 25

64
D 0; 849

The covariance:

Cov.X; Y/ D
Z 1

0

Z 1

0

xy

�
x C 3y

2

	
dx dy �

�
13

24

	�
5

8

	

D 1

2

Z 1

0

Z 1

0

.x2y C 3xy2/ dx dy �
�

13

24

	�
5

8
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D 1

2

Z 1

0



x2y2

2
C xy3

�1

0

dx �
�

13

24

	�
5

8

	

D 1

2

Z 1

0

�
x2

2
C x

	
dx �

�
13

24

	�
5

8

	

D



x3

6
C x2

2

�1

0

dx �
�

13

24

	�
5

8

	

D 1

3
� 65

192
D � 1

192

And the correlation coefficient:

�.X; Y/ D � 1
192p

0; 6684 � 0; 849
D �0; 007

Enhanced: Investment Funds

An investment advisor offers a client two investment funds: Securia (S) and
Technoinvest (T). The expected return is usually taken as a measure of profitability
and the variance (or, equivalently, the standard deviation) is measure of the risk.
The expected return may be related with future economic conditions. To examine
the portfolio weightings on these investments, which contain different levels of risk,
we need to consider the correlation between the expected profits. The investment
advisor offers the following probabilities for three possible scenarios for the path of
the economy (1—no change, 2—recession, 3—growth) and, depending on the state
of the economy, an estimate of the expected return on the investment funds S(ecuria)
and T(echnoinvest) (Table 5.22).

Expected return for the two investment funds over possible states of the world:

E.S/ D 3:5 � 0:5 C 4 � 0:3 C 2 � 0:2 D 3:35%

E.T/ D 5 � 0:5 � 1 � 0:3 C 7 � 0:2 D 3:6%

Table 5.22 Expected returns
of two investment projects

Expected Expected

Scenario Probability return S (%) return T (%)

1 0.5 3.5 5.0

2 0.3 4.0 �1.0

3 0.2 2.0 7.0
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Variance for these investment funds:

Var.S/ D .3:5 � 3:35/2 � 0:5 C .4 � 3:35/2 � 0:3 C .2 � 3:35/2 � 0:2

D 0:5025;

�.S/ D 0:7089 %

Var.T/ D .5 � 3:6/2 � 0:5 C .�1 � 3:6/2 � 0:3 C .7 � 3:6/2 � 0:2

D 9:64;

�.T/ D 3:1048 %

The variability of the expected return, as well as the risk, is larger for the
investment fund Technoinvest (T).

Now we calculate the covariance of the expected returns for these funds:

Cov.S; T/ D .3:5 � 3:35/.5 � 3:6/ � 0:5 C .4 � 3:35/.�1 � 3:6/ � 0:3

C.2 � 3:35/.7 � 3:6/ � 0:2 D �1:71:

And we obtain the correlation coefficient:

�.S; T/ D �1:71=.0:7089 � 3:1048/ D �0:7769:

The expected returns on the funds based on the scenarios provided by the
investment advisor are negatively correlated.

The expected return of portfolio Z depends on the weights attached to each of the
funds. Using the weights a and b (a C b D 1), we obtain:

E.Z/ D aE.S/ C bE.T/;

Var.Z/ D a2Var.S/ C b2Var.T/ C 2abCov.S; T/

D a2Var.S/ C b2Var.T/ C 2ab � �.S/ � �.T/ � �.S; T/:

If we know the risk associated with both investment funds, the risk of the
portfolio is decreasing if the two funds are negatively correlated. We can now
calculate E.Z/ and Var.Z/ for given a and b, e.g., a D b D 0:5:

E.Z/ D 0:5 � 3:35 C 0:5 � 3:6 D 3:475;

Var.Z/ D 0:25 � 0:5025 C 0:25 � 9:64 � 2 � 0:5 � 0:5 � 0:7089 � 3:1048 � 0:7769

D 1:6806;

�.Z/ D 1:296:
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For different values, e.g., a D 0:8 b D 0:2, we obtain:

E.Z/ D 0:8 � 3:35 C 0:2 � 3:6 D 3:4;

Var.Z/ D 0:64 � 0:5025 C 0:04 � 9:64 � 2 � 0:8 � 0:2 � 0:7089 � 3:1048 � 0:7769

D 0:16;

�.Z/ D 0:4:

The risk is much smaller if we invest 80 % in Securia (S) and 20 % in
Technoinvest (T), instead of an equal weighting in both funds. In addition, the
expected return of these two portfolios is equal. The risk of this portfolio is also
smaller than the risk associated with the safer fund.



Chapter 6
Probability Distributions

6.1 Important Distribution Models

In the following section we present some important probability distributions, which
are often used in statistics. These distributions can be described using at most
three parameters. In general, the greater the number of parameters describing a
distribution, the more flexible the distribution will be to model data.

6.2 Uniform Distribution

Discrete Uniform Distribution

A discrete random variable X with a finite number of outcomes xi .i D 1; 2; : : : ; n/

follows a uniform distribution, if each value of X can occur with an equal
probability, which depends on n.

The probability density function of a uniform random variable is:

f .xi/ D
8
<

:

1
n for i D 1; : : : ; n

0 otherwise

The distribution function for a uniform random variable is:

F.x/ D

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

0 for x < x1

i
n for xi � x � xiC1I i D 1; : : : n � 1

1 for xn � x
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The expected value and variance of discrete uniform random variable X are:

E.X/ D � D 1

n

nX

iD1

xi

Var.X/ D �2 D 1

n

nX

iD1

.xi � �/2

Continuous Uniform Distribution

A continuous random variable X on the interval Œa; b� is uniformly distributed if
the density function assigns equal values to each point in that interval. Hence, the
density function will have the following form:

f .x/ D
8
<

:

1
b�a for a � x � b

0 otherwise

The distribution function for a continuous uniform random variable is:

F.x/ D

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

0 for x < a

x�a
b�a for a � x � b

1 for b � x

The expected value and variance of continuous uniform random variables are:

E.X/ D b C a

2

Var.X/ D .b � a/2

12

The parameters of a continuous uniform distribution are a and b.
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Fig. 6.1 Density and distribution function of a discrete uniform random variable on the integers
between 1 and 6

More Information

Discrete Uniform Distribution

The probability density function of discrete Uniform random variable can be
illustrated with a bar chart. The distribution function of this random variable, on
the other hand, will be a step function (Fig. 6.1).

A common example of a discrete uniform random variable is the outcomes
associated with the roll of a fair die. The discrete random variable X (= result of
the throw) can take integer numbers between 1 and 6. If the dice are “fair,” the
probability of each outcome of X is f .xi/ D 1=6; i D 1; : : : ; 6:

Continuous Uniform Distribution

Let us verify whether

f .x/ D
8
<

:

1
b�a for a � x � b

0 otherwise

is a density function: First, b > a, so f .x/ � 0 for all x, i.e., the function is
nonnegative. Furthermore we have:

1Z

�1
f .x/ dx D

bZ

a

1

b � a
dx D

h x

b � a

ib

a
D b � a

b � a
D 1:
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This indicates that f .x/ is a density. The distribution function F.x/ can be
computed as:

F.x/ D
xZ

a

1

b � a
dv D

h v

b � a

ix

a
D x � a

b � a

The expected value and the variance for this random variable are:

E.X/ D
bZ

a

x
1

b � a
dx D



x2

2.b � a/

�b

a

D b2 � a2

2.b � a/

D .b � a/.b C a/

2.b � a/
D .b C a/

2

Var.X/ D
bZ

a

x2 1

b � a
dx �

�
.b C a/

2

	2

D



x3

3.b � a/

�b

a

�
�

.b C a/

2

	2

D b3 � a3

3.b � a/
� b C a

4
D .b � a/2

12

Figure 6.2 illustrates the density and distribution function of a continuous
uniform random variable.

Explained: Uniform Distribution

A man arrives at a tram stop, but does not know the schedule of the tram. The tram
arrives at that stop every 20 min. Define the random variable X: “waiting time for

a b

1/
(b

−a
)

0.
0

0.
4

0.
8

1.
2

a b

Fig. 6.2 Density (left) and distribution function (right) of a continuous uniform random variable
between a and b
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a tram in minutes.” This random variable can take any value in the interval Œ0; 20�.
This implies: P.0 � X � 20/ D 1, a D 0, b D 20.

The random variable X=“waiting time” will have a uniform distribution.
Density of X:

f .x/ D
8
<

:

1
20

for 0 < x � b

0 otherwise

Distribution function:

F.x/ D

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

0 for x < 0

1
20

� x for 0 � x � 20

1 otherwise

The expected value of X is:

E.X/ D
1Z

�1
xf .x/ dx D

20Z

0

x
1

20
dx

D 1

20



1

20
x2

�2

0

0 D 1

20



1

2
202 � 1

2
02

�
D 10

On average a person will have to wait 10 min for a tram.
The variance is:

Var.X/ D
1Z

�1
.x � �/2f .x/ dx D

20Z

0

.x � 10/2 � 1

20
dx

D 1

20

20Z

0

.x2 � 20x C 100/ dx

D 1

20



1

3
x3 � 1

2
20x2 C 100x

�20

0

D 1

20



1

3
203 � 1

2
203 C 100 � 20

�
D 33:33:
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density

0 5 10 15 20

0.
01

0.
03

0.
05

distribution function

0 5 10 15 20

0.
0

0.
5
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Fig. 6.3 Density and distribution function of a continuous uniform random variable between 0
and 20

Since Var.X/ D 33:33, the standard deviation is given by � D p
Var.X/ D 5:77

(Fig. 6.3).

6.3 Binomial Distribution

A binomial distribution is derived from a random experiment in which we either
obtain event A with constant probability p, or the complementary event NA with
probability 1 � p.

Suppose this experiment is repeated n times.
A discrete random variable that contains the number of successes A after n

repetitions of this experiment has a binomial distribution with parameters n and
p. Its probability density function is:

f .xI n; p/ D

8
ˆ̂
<

ˆ̂:

�
n
x

	
� px � .1 � p/n�x for x D 0; 1; : : : ; n

0 otherwise

We write X � B.nI p/. The distribution function is given as:

F.xI n; p/ D

8
ˆ̂
ˆ̂̂
ˆ̂
<

ˆ̂̂
ˆ̂
ˆ̂
:

1 for x > n

xP

kD0

�
n
k

	
� pk � .1 � p/n�k for n � x � 0

0 for x < 0
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The expected value and the variance of a binomial distribution B.nI p/ are:

E.X/ D n � p

Var.X/ D n � p � .1 � p/

The properties of the binomial distribution include:

• Reproduction property:
If X � B.nI p/ and Y � B.mI p/ are independent random variables, then the

random variable Z D X CY has binomial distribution with parameters n Cm and
p, i.e., Z � B.n C mI p/.

• Symmetry:
If X � B.nI p/ and Y D n � X then Y � B.nI 1 � p/.
The binomial distribution has been tabulated for selected values of the

parameters n and p (p � 0:5).

More Information

Derivation of the Binomial Distribution

The random experiment can be described by the following properties:

• Only two events, A and NA, are possible.
• The probabilities of these events are P.A/ D p and P. NA/ D 1 � p.
• The experiment is repeated n times, the repetitions are mutually independent, and

the probabilities are constant.

Each component of this experiment is called Bernoulli experiment. For each
Bernoulli experiment, we define the random variable, Xi.i D 1; : : : ; n/, which takes
the values 0 (if we obtain event NA) and 1 (if we obtain the event A). The probabilities
for the events in this experiment will be P.A/ D p and P. NA/ D 1�p and the random
variable Xi has the following probability function (i.e., Bernoulli distribution):

f .xI p/ D
�

px.1 � p/1�x forx D 0; 1

0 otherwise

E.Xi/ D p; Var.Xi/ D p.1 � p/

After repeating the Bernoulli experiment n times, we obtain the number of
occurrences of the event A, i.e., we observe random variable X={number of
occurrence of event A in n trials}:

X D
nX

iD1

Xi
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X is a function (linear combination) of n random variables. The event X D x
occurs if and only if the event A is observed exactly x times and event NA is observed
.n � x/ times in the n trials, e.g.,

A1 \ A2 \ � � � \ Ax \ NAxC1 \ NAxC2 \ � � � \ NAn

j x � timesA j .n � x/ � times NA j

The index of the event shows the number of trials. The independence of the
Bernoulli experiments means that the probability that X D x is

f .x/ D P.X D x/ D P.A1 \ A2 \ � � � \ Ax \ NAxC1 \ NAxC2 \ � � � \ NAn/

�P.A1/ � P.A2/ � � � � � P.Ax/ � P. NAx C 1/ � P. NAx C 2/ � � � � � P. NAn/

D p � p � � � � � p � .1 � p/ � .1 � p/ � � � � � .1 � p/

D px � .1 � p/n�x

This probability is computed only for the specified ordering of the event A. The
probability of this specific ordering is f .x/ D px �.1�p/n�x. The number of different
orderings of these events is denoted as binomial coefficient and it is computed as:

�
n
x

	
D nŠ

xŠ.n � x/Š

Notice that the different orderings are disjoint events. Hence, we obtain the
following probability function:

P.X D x/ D f .x/ D
�

n
x

	
� px � .1 � p/n�x

The binomial distribution is discrete, the probability function can be displayed as
a histogram, and the distribution function as a step function. The following diagrams
illustrate the density function for various values of p, holding n constant.

For p < 0:5 the distribution is skewed to the left. The skew is greater for smaller
values of p. The distribution is symmetric for p D 0:5, with np being the center of
the distribution. For p > 0:5 the diagrams are skewed to the right. For large values
of n, we can approximate this density function using a normal distribution with
parameters � D np and �2 D np.1 � p/. The quality of approximation improves
the closer p is to 0:5. The approximation follows from the Central Limit Theorem,
which will be explained later.
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Explained: Drawing Balls from an Urn

There are 10 balls in a box, 3 are white and 7 are red;

A D fwhite ballg ! P.A/ D 0:3I
NA D fred ballg ! P. NA/ D 0:7:

After each draw, we return the ball to the box. We draw five balls (n D 5) in total.
The assumptions of a Bernoulli experiment are obviously fulfilled:

• There are only 2 possible outcomes for each draw
• The probabilities associated with each outcome are constant because we return

the balls into the box
• The draws are mutually independent

We want to compute the probability of drawing two white balls, i.e., P.X D 2/.

Xi D fnumber of white balls in drawig

Then, P.Xi D 1/ D 0:3 and P.Xi D 0/ D 0:7 for all i D 1; : : : ; 5. Using five
repetitions, we obtain the following random variables: X1, X2, X3, X4, X5. Consider:

X D fnumber of white balls from n D 5 drawsg
X D

X

i

Xi

X � B.nI p/ D B.5I 0:3/

The number of all possible permutations of the draws when we select 2 white
and 3 red balls is:

�
5

2

	
D 5Š

2Š � 3Š
D 10

The probability is:

P.X D 2/ D fB.2I 5I 0:3/ D
�

5

2

	
� 0:32 � 0:73 D 0:3087

Table 6.1 contains the density and the distribution function of the binomial
distribution for this experiment. Figure 6.4 shows the probability distribution
function B.5I 0; 3/. The probability of a certain event can be calculated using the
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Table 6.1 Binomial
distribution with n D 8 and
p D 0:3

x fB.xI 5I 0:3/ FB.xI 5I 0:3/

0 0:1681 0:1681

1 0:3601 0:5282

2 0:3087 0:8369

3 0:1323 0:9692

4 0:0284 0:9976

5 0:0024 1:0000

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0 1 2 3 4 5

Fig. 6.4 Probability distribution function B.5I 0; 3/

distribution function:

fB.2I 5I 0:3/ D FB.2I 5I 0:3/ � FB.1I 5I 0:3/

D 0:8369 � 0:5282 D 0:3087

The probability that we draw 2 white balls in 5 trials is equal to 0.3087.

Enhanced: Better Chances for Fried Hamburgers

A TV commercial for Hamburger-Land contained following sentence: “Our
research showed that 75 % of people prefer fried hamburgers.” In the same
commercial, the announcer also said: “If you ask four Hamburger-Land customers,
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Table 6.2 Binomial
distribution with n D 4 and
p D 0:25

x fB.xI 4I 0:25/ FB.xI 4I 0:25/

0 0:3164 0:3164

1 0:4219 0:7383

2 0:2109 0:9492

3 0:0469 0:9961

4 0:0039 1:0000

l

l

l

l

0.0

0.2

0.4

0.6

0.8

1.0

f(4; 0.25) − blue         F(4; 0.25) − red

0 1 2 3 4

Fig. 6.5 Density (blue) and distribution function (red) of the binomial distribution with n D 4 and
p D 0:25

at most one of them would choose nonfried hamburger.” Are these sentences saying
exactly the same?

The assumptions of a Bernoulli experiment are satisfied. The outcome of each
experiment can take one of only two values: A D {nonfried hamburger} and NA D
{fried hamburger} with probabilities P.A/ D 0:25 and P. NA/ D 0:75.

A sample of customer can be very large. Therefore, it is not important whether the
sampling is done with or without “replacement.” The probabilities associated with
each outcome can be considered to be constant and the experiments independent.

Define the random variable X D {number of nonfried hamburgers in 4 deci-
sions}, which has a binomial distribution with parameters n D 4, p D 0:25; i.e.,
X � B.4I 0:25/. The probability P.X � 1/ can be computed as

P.X � 1/ D P.X D 0/ C P.X D 1/ D FB.1I 4I 0:25/:

The probability that the event “nonfried hamburger” occurs at most once is the
sum of the probabilities that the “nonfried hamburger” will be chosen by none or by
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only one customer out of four randomly chosen customers of Hamburger-Land. In
other words, it is the value of the distribution function of the binomial distribution
at x D 1.

The binomial distribution with n D 4 and p D 0:25 is summarized in Table 6.2.
The last column of the table implies that FB.1I 4I 0:25/ D 0:7383. Assuming that

the probabilities for fried .P(fried hamburger) D 0:75/ and non-fried hamburgers
(P.nonfried hamburger/ D 0:25) are accurate, the statement from the commercial
is correct with probability 0.7383 (Fig. 6.5).

Enhanced: Student Jobs

Students from a university (HU Berlin) completed a questionnaire. 65 % of the
students responded that they have a part time job. What is the probability that at
most 4 out of 8 randomly chosen students from this university have a part time job?

The assumptions of a Bernoulli experiment are satisfied. Each “experiment” can
produce only two outcomes: A D f student has a part time job g ; NA D f student
does not have a part time job g, P.A/ D 0:65; P. NA/ D 0:35.

We assume that the sample number of students is large compared with the
number of all students, which makes it possible to use a binomial distribution. The
probabilities associated with the events can be considered to be constant and the
responses of the students are independent (the probability of choosing one student
two times is very close to zero).

The outcome of this experiment is the random variable X = f number of
students with a part time jobg. This random variable has a binomial distribution:
X � B.nI p/ D B.8I 0:65/. We need to compute the probability P.X � 4/, i.e., the
distribution function F.4/.

The value of the distribution function B.8I 0:65/ is not tabulated. The calculation
of the distribution function by hand would be very difficult, since we would have
to calculate and then sum up five probabilities f .x/, x D 0; 1; : : : ; 4. Therefore,
we evaluated the distribution function numerically (see the second column of
Table 6.3):

Table 6.3 Binomial
distributions with n D 8,
p D 0:65 and n D 8,
p D 0:35

x B.8I 0:65/ B.8I 0:35/

0 0:0002 0:0319

1 0:0036 0:1691

2 0:0253 0:4278

3 0:1061 0:7064

4 0:2936 0:8939

5 0:5722 0:9747

6 0:8309 0:9964

7 0:9681 0:9998

8 1:0000 1:0000
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Fig. 6.6 Density functions for B.8I 0:35/ and B.8I 0:65/
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Fig. 6.7 Distribution functions for B.8I 0:35/ and B.8I 0:65/

The probability that at most 4 students from n D 8 randomly chosen students
will have a part time job is equal to 0.2936 (Fig. 6.6).

If you are unable to evaluate the distribution numerically, it is possible to use
the tabulated values of the binomial distribution and the symmetry of the binomial
distribution to obtain the probabilities we require (Fig. 6.7). Consider:
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X D fnumber of students with a part time jobg � B.8I 0; 65/;

Y D fnumber of students without a part time jobg � B.8I 0; 35/:

Then, X � 4, i.e., x 2 f0; 1; 2; 3; 4g corresponds to Y � 4, i.e., y 2 f4; 5; 6; 7; 8g.
Instead of computing the probability P.X � 4/, we can compute P.Y � 4/ D
1 � P.Y � 3/. Using the table for a binomial distribution, we find in the third
column P.Y � 3/ D 0:7064 and this implies that

P.Y � 4/ D 1 � 0:7064 D 0:2936:

Interactive: Binomial Distribution

The binomial distribution depends on the parameters n and p that determine

• its shape
• its location, i.e., expected value E.X/ D np, and
• its variance, i.e., � D p

np.1 � p/

The interactive example includes a number of sidebar panels. You can access the
panels by setting a mark at the corresponding check box on the upper right.

Please select

• the number of draws n
• the probability of success per draw p

Moreover, choose one of the following functions:

• Probability mass function
• Cumulative distribution function

Output

This interactive example allows you to change either one or both parameters of the
distribution. The plot in Fig. 6.8 displays the probability distribution function (or
cumulative distribution function) of the binomial distribution B.nI p/.

We recommend to only change value of one parameter at a time, to explore the
effect of this change on the probability plot.
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Fig. 6.8 Screenshot of the interactive example, available at http://u.hu-berlin.de/men_bin

6.4 Hypergeometric Distribution

The Hypergeometric distribution is based on a random event with the following
characteristics:

• Total number of elements is N
• From these N elements, M elements have a certain property of interest, and N�M

elements do not have this property, i.e., only two events, A and NA are possible
• We randomly choose n elements out of N without replacement

This means that the probability P.A/ is not constant and the draws (events)
are not independent in this sort of experiment. The random variable X, which
contains the number of successes A after n repetitions of the experiment, follows
a hypergeometric distribution with parameters N; M, and n, with probability density
function:

fH.xI N; M; n/ D

8
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
:̂

0

@M
x

1

A�
0

@N � M
n � x

1

A

0

@N
n

1

A

for x D a; : : : ; b

0 otherwise

where a D maxŒ0; n � .N � M/�; and b D minŒn; M�

Shorthand notation is: X � H.N; M; n/. The expected value and the variance of
the hypergeometric distribution H.N; M; n/ are:

E.X/ D n � M

N

Var.X/ D n � M

N
�
�

1 � M

N

	
� N � n

N � 1

http://u.hu-berlin.de/men_bin
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More Information

Like the binomial distribution, the hypergeometric distribution is based on an
experiment with only two possible outcomes.

The hypergeometric distribution differs from the binomial distribution in that
we draw without replacement, which means the draws from the hypergeometric
distribution are not independent. This implies that the number of objects in the pool
is decreasing with each draw and furthermore that n � N.

In addition, the number of outcomes with property A also changes and this, in
turn, changes the probability of drawing an object with property A.

Explanation of the Probability Function

• Assuming n draws, we are interested in the total number of objects with the
property A, i.e., the random variable X = “number of outcomes with the property
A among n draws.”

The order of the drawn objects is not important. Using combinatorics, we can
calculate the number of possible combinations in which we can draw n out of N
objects without replacements:

�
N
n

	

• How many different ways are there to obtain X D x objects with property A? We
have x � M, i.e., we cannot draw more objects with property A than there are in
total (no repetition). Again, keep in mind that the order in which these objects are
drawn is not of interest. The total number of combinations of drawing x objects
with property A out of M is:

�
M
x

	

Analogously, n � x � N � M, and the number of possible combinations to
draw n � x objects without property A out of N � M objects is:

�
N � M
n � x

	

The number of possible combinations to draw x objects with property A and
n�x objects without property A is given by the product of the two previous terms:

�
M
x

	
�
�

N � M
n � x
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The desired probability can be obtained using the classical (Laplace) definition
of the probability as the ratio:

P.X D x/ D f .x/ D

�
M
x

	
�
�

N � M
n � x

	

�
N
n

	 :

Determining the Range of Values of X

The largest possible value of X is n for n � M, and M for M < n. This implies that:

xmax D min.nI M/:

The smallest possible value of X is: x � 0 (it can never be smaller than that. No
surprise!). If n is greater than the number of elements without the property A, then
we have that x � n � .N � M/. This implies that:

xmin D maxŒ0I n � .N � M/�:

The Expected Value and the Variance

Let M=N D p, we have the following:

E.X/ D n � M

N
D n � p

Var.X/ D n � M

N
�
�

1 � M

N

	
� N � n

N � 1
D n � p � .p � 1/ � N � n

N � 1

The distribution H.M; N; n/ will have the same expected value as the correspond-
ing binomial distribution B.n; M=N/. However, its variance will be smaller because
it is multiplied by the ratio .N � n/=.N � 1/ because drawing without replacement
implies that we cannot use anymore the information we start with initially. The
constant .N � n/=.N � 1/ is called a continuity correction.

The probability function of the hypergeometric distribution is illustrated in
Fig. 6.9. We choose the following parameters for this example: N D 100, M D 20,
n D 10 and N D 16, M D 8, n D 8.
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Fig. 6.9 Two probability functions for the hypergeometric distribution

Explained: Choosing Test Questions

A student has to complete a test with ten questions. The student must answer three
randomly chosen questions. The student knows that six of the ten questions are so
difficult that no one has a chance to answer them:

• N D 10 questions
• M D 4 questions have property A, they can be answered
• n D 3 randomly chosen questions the student must answer
• X D “number of questions with property A between n randomly chosen

questions”

Possible values of X are: maxŒ0; n � .N � M/� � x � min.n; M/, i.e., 0 � X � 3.
Motivation of the use of hypergeometric distribution:

• finite number of questions,
• returning (repeating) of the questions does not make any sense in this situation,
• hence, the draws are not independent,
• this implies that P.A/ depends on the previously drawn questions.

What is the probability that the student draws three “good” questions?

fH.3I 10; 4; 3/ D

�
4

3

	
�
�

10 � 4

3 � 3

	

�
10

3

	 D 4 � 1

120
D 1

30
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What is the probability that the student chooses at least one question that he can
answer? P.X � 1/ D 1 � P.X D 0/:

P.X D 0/ D fH.0I 10; 4; 3/ D

�
4

0

	
�
�

10 � 4

3 � 0

	

�
10

3

	 D 1 � 20

120
D 1

6

It follows that:

P.X � 1/ D 1 � 1

6
D 5

6
:

Enhanced: Selling Life Insurances

An insurance agent arrives in a town and sells 100 life insurances: 40 are term life
policies and the remaining 60 are permanent life policies. He chooses (randomly
and without returning) five life insurance policies. What is the probability that he
chooses exactly two term life policies.

There are N D 100 policies. The outcomes of this experiment (type of the
insurance policy) can take one of two values: the term life type (property A) with
M D 40 and the permanent life type (complementary event) with N � M D 60.

The random variable X is defined as “number of the term life policies in
five randomly chosen insurance policies.” The random variable X is based on
random sampling without replacement and so follows a hypergeometric distribution
H.NI MI n/ D H.100I 40I 5/.

The smallest value of X is 0 D .maxŒ0; n � .N � M/�/, i.e., none of the five
randomly chosen contracts is a term life policy. The largest possible value of X is
n < M, i.e., 5. The set of possible values of X is such that 0 � x � 5.

We need to compute the value of the probability function for x D 2, i.e., P.X D
2/ D fH.2I 100I 40I 5/:

fH.2I 100; 40; 5/ D

�
40

2

	
�
�

100 � 40

5 � 2

	

�
100

5

	 D
40Š

2Š�38Š
� 60Š

3Š�57Š
100Š
5Š�95Š

D 0:3545

Suppose we increase the number of draws (randomly chosen contracts) to n D
10. The only thing that would change in the example is the range of the random
variable X, which becomes 0 � x � 10. The random variable X now has the
following hypergeometric distribution H.100I 40I 10/.
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If we compute the probability that there are exactly 4 term life policies in the 10
randomly chosen policies, i.e., P.X D 4/, we obtain the following result:

fH.4I 100; 40; 10/ D

�
40

4

	
�
�

100 � 40

10 � 4

	

�
100

10

	 D 0:2643

Enhanced: Insurance Contract Renewal

An insurance agent knows from experience that 70 % of his clients renew their
contracts. Suppose this agent has 20 clients. What is the probability that at least
one half of four randomly chosen clients will renew their contract?

We have total of N D 20 clients. Of these clients, M D 14 clients renew their
policies (property A) and N � M D 6 clients do not. The experiment has only two
possible outcomes.

We choose n D 4 clients randomly. Clearly, it does not make sense to model this
random variable with replacement.

The random variable X is defined as “number of clients who renew their
contract.” X has hypergeometric distribution, H.NI MI n/ D H.20I 14I 4/. The
smallest possible value of X is 0 D .maxŒ0; n � .N � M/�/, i.e., none of the 4
clients renew their contracts. Since n < M, the largest possible value of X in this
example is 4. Hence, X can take the following values: 0 � x � 4.

We need to find the probability P.X � 2/, which can be computed as: P.X D
2/ C P.X D 3/ C P.X D 4/.

fH.2I 20; 14; 4/ D

�
14

2

	
�
�

20 � 14

4 � 2

	

�
20

4

	 D 91 � 15

4845
D 0:2817

fH.3I 20; 14; 4/ D

�
14

3

	
�
�

20 � 14

4 � 3

	

�
20

4

	 D 364 � 6

4845
D 0:4508

fH.4I 20; 14; 4/ D

�
14

4

	
�
�

20 � 14

4 � 4

	

�
20

4

	 D 1001 � 1

4845
D 0:2066
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This implies that: P.X � 2/ D 0:2817 C 0:4508 C 0:2066 D 0:9391. The
probability that at least two of the four chosen clients (out of the 20 clients) decides
to renew their policy is 0.9391.

Interactive: Hypergeometric Distribution

A hypergeometric distribution depends on parameters N, M, and n. These parame-
ters influence its shape, location, and variance.

The interactive example includes a number of sidebar panels. You can access the
panels by setting a mark at the corresponding check box on the upper right.

Please select the

• population size N
• number of success states in the population M
• number of draws n

Moreover, choose one of the following functions:

• Probability mass function
• Cumulative distribution function

Output

This interactive example allows you to change either one or more parameters of
the distribution. The plot in Fig. 6.10 displays the probability distribution function
(or cumulative distribution function) of the hypergeometric distribution function
H.NI MI n/.

Fig. 6.10 Screenshot of the interactive example, available at http://u.hu-berlin.de/men_hyp

http://u.hu-berlin.de/men_hyp
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We suggest that you only change the value of one parameter, holding the others
constant, which will better illustrate the effects of the parameters on the shape of the
hypergeometric distribution.

6.5 Poisson Distribution

The Poisson distribution can describe an experiment in which an event can be
observed a number of times (e.g., accidental deaths).

The random variable X denotes the number of occurrences and is discrete in
nature. This random variable will be described by a probability density function
referred to as a Poisson distribution with parameter 	:

fPO.xI 	/ D
8
<

:

	x

xŠ
e�	 for x D 0; 1; 2; : : : I 	 > 0

0 otherwise

The distribution function is:

FPO.xI 	/ D

8
ˆ̂<

ˆ̂
:

xP

kD0

	x

xŠ
e�	 for k � 0I 	 > 0

0 for k � 0

The expected value and variance of the Poisson distribution are:

E.X/ D 	 Var.X/ D 	:

Properties of the Poisson Distribution

• Reproductivity: Consider two independent variables X � PO.	1/ a Y � PO.	2/,
then the random variable Z = X+Y is Poisson distributed with parameter 	1 C 	2:
Z � PO.	1 C 	2/

• Poisson distribution for an arbitrary interval length: If the number of occurrences
in a unit interval is Poisson distributed, then the number of occurrences in an
interval of length t units will also be Poisson distributed with parameter 	t:

fPO.xI 	 � t/ D .	t/x

xŠ
e�	t
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More Information

The following are some examples for the application of the Poisson distribution:

• The number of printing defaults per page in books.
• The number of twining breaks of a weaving machine in a given interval of time.
• The number of received calls at a telephone center.
• The number of vehicles that drive past an intersection per minute.
• The number of patients arriving at an emergency department per hour.
• The number of alpha-particles emitted by a radioactive substance in a specific

time interval.
• The number of fish caught during a day.
• The number of reported accidents to an insurance firm per year.
• The number of bank customers applying for credit in a month.

The following assumptions are needed.

• The possibility of occurrence is always based on an interval. The use of an
appropriate scale will ascertain that the given size is made up of continuous
interval units.

• The occurrence of an outcome is purely random in the sense that it cannot be
predetermined.

• The independence of the outcomes means that an occurrence (or nonoccurrence)
of an outcome cannot influence the occurrence of the same outcome in another
trial. Subsequently the number of outcomes in 2 disjoint intervals are indepen-
dent.

• Two outcomes cannot occur at the same time, i.e., in any arbitrary interval, the
possibility of obtaining more than one outcome should be 0.

• The “intensity” of occurrence of an outcome must be constant with a parameter
	 > 0, i.e., the average number of outcomes in an interval must be independent
of the interval chosen. Consequently, the probability of occurrence in a specific
interval will only be dependent on the size of the interval.

If these assumptions are true, then the variable is described by a Poisson process.
The Poisson distribution can also be derived using a binomial distribution using the
following assumptions:

• The number of trials; n, is large.
• The probability of occurrence of an outcome A, P.A/ D p, in a single trial is very

small.
• E.X/ D np D 	, then with increasing number of trials n; ((n ! 1)), p will

approach zero .p!0/.

Consequently, the Poisson distribution PO(	 = np) can be used to approximate
a binomial distribution. With large n and small p the Poisson distribution is often
referred to as the distribution of rare occurrences.
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Fig. 6.11 Poisson probability density functions for 	 = 5 and 	 D 1

As a rule of thumb, the approximation of a binomial distribution by a Poisson
distribution requires n > 30 and p � 0.05.

Figure 6.11 presents a plots of Poisson probability density functions for 	 = 5
and 	 = 1. The smaller the value of 	, the more the Poisson distribution is skewed
to the left. However, as 	 increases density function becomes more symmetric.

Explained: Risk of Vaccination Damage

A town has 20,000 inhabitants who need to be vaccinated. The probability that the
vaccine provokes an adverse reaction in an inoculated person is 0.0001.

In fact, this is a Bernoulli experiment, where:

1. A = “Occurrence of adverse effect” and NA = “No adverse effects from vaccine”,
2. P.A/ D 0:0001 is constant, and
3. Independence of trials, i.e., of vaccinations.

To obtain the probabilities for the number of adverse reactions, the binomial
distribution could be used. However, the small probability associated with an
outcome and the large number of trials suggest that the Poisson distribution could
be used as an approximation, since n > 30 and p � 0::05. This approximation rule
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Fig. 6.12 Probability density function PO.2/

of thumb will be explained later in the text. We use the following parameter:

	 D np D 20000 � 0:0001 D 2

This is the expected number of cases with adverse reactions. The probability
density function fPO.2/ is plotted in Fig. 6.12.

• The probability that no one suffers adverse effects is P.X D 0/ D P.X � 0/ D
F.0/ D 0:1353.

• The probability that one person has a bad reaction to the vaccination is: P.X D
1/ D P.X � 1/ � P.X � 0/ D F.1/ � F.0/ D 0:2707.

• The probability that more than 4 persons have adverse effects is: P.X > 4/ D
1 � F.4/. The value of F.4/ can be found in the tables for a Poisson distribution
for 	 D 2 and X D 4: F.4/ D 0:9473 ) P.X > 4/ D 1 � 0:9473 D 0:0527.

Enhanced: Number of Customers in Service Department

Through experience, the customer service department of a major supermarket knows
that it receives on average 1 customer per hour between 9 a.m. and 2 p.m., and 2
customers per hour between 2 p.m. and 7 p.m. Since a request for service from any
customer can be considered to be random, as well as independent of other customer
requests, the random variable X1 = “number of customers per hour between 9 a.m.
and 2 p.m.” will follow a Poisson distribution with parameter 	1 D 1.
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Fig. 6.13 Probability density function PO.5/

The random variable X2 = “number of customers per between 2 p.m. and 7 p.m.”
will also follow a Poisson distribution, but with parameter 	2 D 2. Notice that for
both time intervals, t D 5.

Using this information, we can compute the probability of having a certain
number of customers between 9 a.m. and 2 p.m. Let’s denote this variable by Y1.
For example, if Y1 D 6, we get:

P.Y1 D 6/ D fPO.6I 1 � 5/ D .	1t/y

yŠ
e�	1t D .1 � 5/6

6Š
e�1�5 D 0:1462

The probability of having more than 4 customers at the customer department will
be (Fig. 6.13):

P.Y1 > 4/ D 1 � P.Y1 � 4/ D 1 � e�5

�
50

0Š
C 51

1Š
C 52

2Š
C 53

3Š
C 54

4Š

	

D 1 � 0:4405 D 0:5595:

We can also obtain the probabilities for the number of customers between 2 p.m.
and 7 p.m., denoted Y2 (Fig. 6.14). For Y2 = 6 or Y2 > 4:

P.Y2 D 6/ D fPO.6I 2 � 5/ D .	2t/x

xŠ
e�	2t D .2 � 5/6

6Š
e�2�5 D 0:063
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Fig. 6.14 Probability density function PO.10/

P.Y2 > 4/ D 1 � P.Y2 � 4/ D 1 � e�10

�
100

0Š
C 101

1Š
C 102

2Š
C 103

3Š
C 104

4Š

	

D 1 � 0:0293 D 0:9707

Y1 and Y2; are independent. Using the above results, we can obtain the probability
of receiving more than 4 customers between 9 a.m. and 2 p.m. and 2 p.m. and 7 p.m.
as follows:

P.Y1 > 4; Y2 > 4/ D P.Y1 > 4/ � P.Y2 > 4/ D 0:5595 � 0:9707 D 0:5431:

To obtain the total number of customers between 9 a.m. and 7 p.m., we create the
random variable Y D Y1 C Y2. Since Y1 and Y2 are independent, Y will also have a
Poisson distribution with parameter 	1t C 	2t D 5 C 10 D 15.

Interactive: Poisson Distribution

The Poisson distribution is completely described by the parameter 	, which
influences its shape, position, and variance.

The interactive example includes a number of sidebar panels. You can access the
panels by setting a mark at the corresponding check box on the upper right.

Please select a value for the parameter 	.
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Fig. 6.15 Screenshot of the interactive example, available at http://u.hu-berlin.de/men_poi

Moreover, choose one of the following functions:

• Probability mass function
• Cumulative distribution function

Output

This interactive example allows you to explore the effect of the parameter 	 on
shape of this distribution. The plot in Fig. 6.15 displays the probability distribution
function (or cumulative distribution function) of the Poisson distribution function
PO.	/.

6.6 Exponential Distribution

A continuous random variable X follows an exponential distribution with parameter
	 > 0 if its probability density function can be defined as:

fEX.xI 	/ D
8
<

:

	e�	x for x D� 0I 	 > 0

0 for x < 0

This is denoted as X � EX.	/. The distribution function is given as:

FEX.xI 	/ D
8
<

:

1 � e�	x for x � 0I 	 > 0

0 for x < 0

http://u.hu-berlin.de/men_poi
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The expected value and variance of an exponentially distributed random variable
are:

E.X/ D 1

	
Var.X/ D 1

	2

As 	 ! 1, the faster the density function approaches 0 and the distribution
function approaches 1.

More Information

The Poisson distribution is used to compute the probability associated with a random
variable Y that is defined as the number of occurrences of a certain event within a
specified continuous time interval with an intensity 	.

But if we are interested in the time between these occurrences, an exponential
distribution can be used to make probability statements. The exponential distribution
provides the probability of the “distance” between two subsequent Poisson random
events. We denote this new continuous random variable by X=“the time interval
between 2 subsequent events.”

The probability that X takes on a maximum value of x is P.X � x/ D 1 � P (no
outcome within the interval of length x). But P (no outcome within the interval
of length x) simply represents the probability that a Poisson distributed random
variable Y with the interval of length x takes on a value of 0, P.Y D 0/ so that:

fPO.yI 	x/ D .	x/y

yŠ
e�	x

P.Y D 0/ D fPO.0I 	x/ D .	x/0

0Š
e�	x D e�	x:

We obtain the distribution function of the exponential distribution, i.e., X is
exponentially distributed:

P.X � x/ D 1 � e�	x:

Therefore, there exists a relationship between the exponential and Poisson
distributions. The exponential distribution is often used to model the length of time
for continuous processes as well as waiting times.
For example:

• The waiting time before service in a restaurant, bank, or filling station.
• The time taken before a component within a technical system fails.
• Service time (time to load a truck, time to carry out a repair).
• Half life (life span) of a component (person).



178 6 Probability Distributions

0 1 2 3 4 5 6 7 8 9 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

lambda=1

lambda=0.5

lambda=0.2

Fig. 6.16 Density functions of the exponential distribution for different parameter values

• Time taken for a telephone conversation.
• Time taken before the next report on damages at property insurance firm.

The following condition is often associated with an exponential distribution.

P.X � t C sjX � t/ D P.X � s/:

This condition means that the time associated with an outcome does not depend
on previous times. We say that the exponential distribution is memoryless.

The graphical presentation of an exponentially distributed random variable will
be given in the form of a density function, since it refers to the case of a continuous
random variable (Fig. 6.16).

Explained: Number of Defects

On the basis of the relationship between the exponential and the Poisson distri-
bution, the Poisson distribution defines the probability of the number of outcomes
Y of a specific phenomenon, in a fixed and continuous length or interval with the
intensity 	.

The following example illustrates the relationship between Poisson and expo-
nential distribution. Suppose there is a machine for which 2 defects, on average, are
recorded per week. Let t denote the number of weeks.

• The probability that no defects are recorded in a week is:
Y1= “number of defects in one week” (t D 1)
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E.Y1/ D 	 D 2 ; Y1 � PO.2/

fPO.y1I 	/ D .	t/y1

y1Š
e�	x D .2 � 1/0

0Š
e�2�1 D e�2 D 0:1353

• The probability of recording no defects in two weeks: Y2= “number of defects in
two weeks” (t D 2)

E.Y2/ D 	t D 2 � 2 ; Y2 � PO.4/

P.Y2 D 0/ D .2 � 2/0

0Š
e�2�2 D 40

0Š
e�4 D e�4 D 0:0183

• In general, the probability that no defect is recorded in t weeks is:
Y= “number of defects in t weeks.”

E.Y/ D 	t Y � PO.	t/

P.Y D 0/ D .	t/0

0Š
e�	t D e�	t

• If we are interested in finding the probability associated with the time until the
next defect occurs, for example, the probability that the next defect occurs in
more than two weeks: X= “Waiting time till next defect.”

To calculate P.X > 2/ we use the exponential distribution:

P.X > 2/ D 1 � P.X � 2/ D 1 � FEX.xI 	/ D 1 � .1 � e�	x/

D e�	x D e�2�2 D 0:0183

This value is the same as the probability P.Y2 D 0/ from the Poisson
distribution, for the random variable Y=“in 2 weeks no defects is recorded
(Fig. 6.17).”
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Fig. 6.17 The probability density function (left) and distribution function (right) of EX.2/
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Fig. 6.18 Probability density function for EX.2/

Enhanced: Equipment Failures

In a manufacturing plant, 48 equipment failures are expected per day (=24 h). These
failures are purely randomly and independent. On average, 	=48/24 =2 failures are
expected per hour. Define the random variable T for the time between 2 failures,
which will have an exponential distribution: T � EX.2/. The probability density
function for EX.2/ is displayed in Fig. 6.18.

The probability the next equipment failure will occur in two 2 h is:

P.t > 2/ D 1 � FEX.2/ D 1 � .1 � e�2�2/ D e�4 D 0:01832

Suppose that a plant uses two of these systems. The plant comes to a halt as soon
as one of the systems stops to function. Let T1 = “Time between 2 failures for the
first component.” T2 = “Time between 2 failures for the second component.”

T1 � EX.2/ and T2 � EX.2/

Since the plant can only function while both components are operating, both will
need more than 2 h to operate.

P.The system operates for more than 2 h/

D PŒ.first component operates for more than 2 h/

\P.second component operates for more than 2 h/�

D P.first component operates for more than 2 h/
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Fig. 6.19 Screenshot of the interactive example, available at http://u.hu-berlin.de/men_exp

�P.second component operates for more than 2 h/

D P.T1 � 2/ � P.T2 � 2/ D .0:01832/2 D 0:000336

We use the multiplicative property for independent outcomes here since both
components operate independently.

Interactive: Exponential Distribution

The exponential distribution is completely described by the parameter 	.
The interactive example includes a number of sidebar panels. You can access the

panels by setting a mark at the corresponding check box on the upper right.
Please select a value for the parameter 	.
Moreover, choose one of the following functions:

• Probability mass function
• Cumulative distribution function

Output

This interactive example allows you to explore the effect of the parameter 	 on
shape of the distribution. The plot in Fig. 6.19 displays the probability distribution
function (or cumulative distribution function) of the exponential distribution.

6.7 Normal Distribution

A continuous random variable X is normally distributed with parameters � and �;

denoted X � N.�; �/; if and only if its density function is:

http://u.hu-berlin.de/men_exp
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fNV.xI �; �/ D 1

�
p

2�
e�.x��/2=2�2 � 1 < x < C1; � > 0

the distribution function is :

FNV.xI �; �/ D 1

�
p

2�

xZ

�1
e�.t��/2=2�2

dt

The normal distribution depends on two parameters � and � , which are the
expected value and the standard deviation of the random variable X.

The expected value, variance, and standard deviation are given by:

E.X/ D � D
C1Z

�1
xf .x/ dx; Var.X/ D �2 D

C1Z

�1
.x � �/2f .x/ dx; � D

p
�2

Two important properties of normally distributed random variables are:

• Linear transformation
Let X be normally distributed, X � N.�; �/ and Y be a linear combination

of X: Y D a C bX ; b ¤ 0. Then, the random variable Y also follows a normal
distribution:

Y � N.a C b�; jbj � �/

The values of the parameters of the transformed random variable follow from
the rules for calculating with expected values and variances:

E.a C bX/ D a C b � E.X/;

Var.a C bX/ D b2Var.X/ D b2�2:

• Reproduction property
Let us consider n random variables X1; X2 : : : ; Xn with normal distributions:

Xi � N.�i; �i/; E.Xi/ D �i; Var.Xi/ D �2
i :

The sum of independent, normally distributed random variables X1; : : : ; Xn,
i.e.,

Y D a1X1 C a2X2 C � � � C anXn; ai ¤ 0;

for at least one i, is again normally distributed.

Y D
nX

iD1

aiXi � N

 
nX

iD1

ai�i;

nX

iD1

a2
i �2

i

!
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Fig. 6.20 Density (left) and distribution function (right) of N.2I 1/

Figure 6.20 displays a density and distribution function for a N.2I 1/ random
variable.

Standardized Random Variable

Imagine a random variable X with E.X/ D � and Var.X/ D �2. If we transform this
variable in the following way

Z D X � �

�
;

then random variable Z denotes a standardized random variable, which has been
shifted by its mean and scaled by its standard deviation. We have E.Z/ D 0 and
Var.Z/ D 1. If X is normally distributed, then Z also follows a normal distribution.

Standard Normal Distribution

A standardized normal variable is said to follow a standard normal distribution. The
density function of a standard normal distribution N.0I 1/ is given by:

'.z/ D 1p
2�

e� z2
2

The distribution function of a standard normal distribution is:

ˆ.z/ D 1p
2�

zZ

�1
e�v2=2 dv
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Fig. 6.21 Density (left) and distribution function (right) of N.0I 1/

As mentioned above, the expected value and variance of the standard normal
distribution are given by:

E.Z/ D 0; Var.Z/ D 1

The density and distribution function for a standard normal random variable are
plotted in Fig. 6.21.

The relation between the distribution N.�; �/ and the standard normal distribu-
tion:

x D � C z � �; z D x � �

�

which implies:

FNV.xI �; �/ D P.X � x/ D P

�
X � �

�
� x � �

�

	
D P.Z � z/ D ˆ.z/

Confidence Interval

A confidence interval for the random variable X is the interval with boundaries
xl and xu.xl � xu/, which will contain the value of the random variable X with
probability 1 - ˛, i.e., .1 � ˛) � 100 % of all values of X will fall in this interval and
˛� 100 % will fall outside this interval. 1-˛ is usually referred to as the confidence
level.

For known values of �; the expected value of X, the interval is constructed to
make the probability that X falls outside this region (there are 2 such regions) with
probability ˛/2. We call the interval

Œxu � xo� D Œ� � k � X � � C k�



6.7 Normal Distribution 185

the (symmetric) confidence interval with confidence level

P.xu � X � xo/ D 1 � ˛:

To stress the importance of the standard deviation, as the parameter of scale, the
deviation of X from its expected value � is often measured in multiples of � . The
confidence interval has then this form:

Œ� � c� � X � � C c��:

If the random variable X is N.�; �/, then for x D � C c� the following holds:

x � �

�
D � C c� � �

�
D c D z

and

P.Z � z/ D ˆ.z/ D 1 � ˛

2
:

The critical value z1�˛=2 for the probability 1 - ˛/2 can be obtained from the
tabulated values of a standardized normal distribution. Using these values, we can
obtain the confidence interval for a normally distributed random variable:

Œ� � z1�˛=2� � X � � C z1�˛=2��

and the probability of this interval is:

P.� � z1�˛=2� � X � � C z1�˛=2�/ D 1 � ˛:

For the confidence level of a normally distributed random variable we have
(Fig. 6.22):

P.�z � Z � z/ D P.Z � z/ � P.Z � �z/

D P.Z � z/ � Œ1 � P.Z � z/�

D 2P.Z � z/ � 1;

which implies that

P.� � z1�˛=2� � X � � C z1�˛=2�/ D 2ˆ.z/ � 1:

For given z we can calculate the confidence levels of the interval:



186 6 Probability Distributions

P.� � z� � X � � C z�/ D 0:6827 for z D 1

D 0:9545 for z D 2

D 0:9973 for z D 3

On the other hand, we could also find the value z that produces the desired
confidence level 1-˛, e.g., P.� � z1�˛=2� � X� C z1�˛=2�/ = 0.95, z = 1.96.

More Information

The normal distribution is one of the most important continuous distributions
because:

• approximate normality can be assumed in many applications
• it can be used to approximate other distributions
• many variables have normal distributions if there is a large number of observa-

tions

A random variable with a normal distribution can take all values between �1
and +1. The normal distribution is also sometimes referred to as a Gaussian
distribution. The density of a normal distribution is sometimes called the Bell curve.

The formulas for the density (or the distribution function) imply that a normal
distribution will depend on the parameters � and � . By varying these parameters
we can obtain a range of distributions. Figure 6.23 shows 5 normal densities with
various parameters � and � .

The parameter � specifies the location of the distribution. If we change the
parameter �, the location of the distribution will shift but its shape remains the

Fig. 6.22 The confidence
interval for a normally
distributed random variable
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Fig. 6.23 Density functions of normal distribution with different parameter values
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Fig. 6.24 Density (left) and distribution function (right) of N.2I 1/

same. By increasing or decreasing the parameter � , the density “spreads” or
“concentrates.” Large values of � produce flatter and wider densities. Small values
of � produce distributions that are narrow and tight.

Other Properties of the Normal Distribution

• The density has global maximum (the mode) at point x D �

• The density is symmetric around the point x D �. The symmetry implies that the
median is x0:5 D �.

• The density has inflexion points at x1 D � � � and x2 D � C �

• The density is asymptotically equal to 0 as x ! �1 or x ! 1.

Figure 6.24 contains a plot of a N.2I 1/ distribution
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Standard Normal Distribution

Tabulating the distribution function of the normal distribution for all values of � and
� is not possible.

However, since we can transform a normal random variable to obtain another
normal random variable, we need only to tabulate one distribution. The obvious
choice is the normal distribution with expected value 0, E.X/ D � D 0 and standard
deviation 1, � D 1.

This distribution is called a standard normal distribution, denoted N.0; 1/-
distribution. The corresponding random variables are usually denoted by the letter Z.

The random variable Z is the random variable X centered at its mean and divided
by its standard deviation. Hence E.Z/ D 0 and Var.Z/ D 1. If X is normally
distributed, then Z also has a (standard) normal distribution.

The standard normal distribution is important because each random variable X
with arbitrary normal distribution can be linearly transformed to a random variable
Z with standard normal distribution.

In most tables for the density and distribution function of the standard normal
distribution, you can find only positive values of Z. The tables of standard normal
distribution for negative Z is unnecessary since the normal distribution is symmetric.

ˆ.�z/ D P.Z � �z/ D 1 � P.Z � z/ D 1 � ˆ.z/

Explained: Normal Distributed Random Variable

Let us consider random variable X with normal distribution N.100I 10/.

1. We want to compute P.X � x/ for x D 125:

z D .x � �/=� D .125 � 100/=10 D 2; 5

P.X � 125/ D F.125/ D ˆ

�
125 � 100

10

	
D ˆ.2:5/ D 0:99379

There is a 99.38 % probability that the random variable X is smaller than 125
(Fig. 6.25).

2. We want to calculate the probability P.X � x/ for x D 115:6:

z D .x � �/=� D .115:6 � 100/=10 D 1:56

P.X � 115:6/ D 1 � P.X � 115:6/ D 1 � F.115:6/

D 1 � ˆ

�
115:6 � 100

10

	
D 1 � ˆ.1:56/

D 1 � 0:94062 D 0:05938
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Fig. 6.25 Density of X following N.100I 10/; area P.X � 125/ in gray
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Fig. 6.26 Density of X following N.100I 10/; area P.X � 115:6/ in gray

There is a 5.94 % probability that the random variable X is greater than 115.6
(Fig. 6.26).

3. Let us calculate the probability P.X � x/ for x D 80:

z D .x � �/=� D .80 � 100/=10 D �2
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Fig. 6.27 Density of X following N.100I 10/; area P.X � 80/ in gray

P.X � 80/ D F.80/ D ˆ

�
80 � 100

10

	
D ˆ.�2/ D 1 � ˆ.2/

D 1 � 0:97725 D 0:02275

The random variable X is smaller than 80 with probability of 2.275 %
(Fig. 6.27).

4. Let us compute P.X � x/ for x D 94:8:

z D .x � �/=� D .94:8 � 100/=10 D �0:52

P.X � 94:8/ D 1 � P.X � 94:8/ D 1 � F.94:8/

D 1 � ˆ

�
94:8 � 100

10

	
D 1 � ˆ.�0:52/

D 1 � .1 � ˆ.0:52// D ˆ.0:52/ D 0:698468

The probability that the random variable X is greater than 94.8 is 69.85 %
(Fig. 6.28).

5. We compute the probability P.xu � X � xo/ for xu D 88:8 and xo D 132:

zu D .xu � �/=� D .88:8 � 100/=10 D �1:12

zo D .xo � �/=� D .132 � 100/=10 D 3:2

P.88:8 � X � 132/ D P.X � 132/ � P.X � 88; 8/

D F.132/ � F.88:8/
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Fig. 6.28 Density of X following N.100I 10/; area P.X � 94:8/ in gray

D ˆ.3:2/ � ˆ.�1:12/

D ˆ.3:2/ � .1 � ˆ.1:12/

D 0:999313 C 0:868643 � 1

D 0:867956

The random variable X falls in the interval Œ88:8 I 132� with probability 86.8 %
(Fig. 6.29).

6. Let us calculate P.xu � X � xo/ for xu D 80:4 and xo D 119:6 (centered
probability interval):

zu D .xu � �/=� D .80:4 � 100/=10 D �1:96

zo D .xo � �/=� D .119:6 � 100/=10 D 1:96

P.80:4 � X � 119:6/ D P.X � 119:6/ � P.X � 80:4/

D F.119:6/ � F.80:4/

D ˆ.1:96/ � ˆ.�1:96/

D ˆ.1:96/ � .1 � ˆ.1:96/

D 2ˆ.1:96/ � 1

D 2 � 0:975 � 1 D 0:95
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Fig. 6.29 Density of X following N.100I 10/; area P.88:8 � X � 132/ in gray
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Fig. 6.30 Density of X following N.100I 10/; area P.80:4 � X � 119:6/ in gray

The random variable X falls into the interval Œ88:4 I 119:6� with probability
95 % (Fig. 6.30).

7. We want to calculate an interval, which is symmetric around the expected value,
such that it will contain 99 % of the realizations of X:



6.7 Normal Distribution 193

60 74.2 125.8

0.
00

0.
01

0.
02

0.
03

0.
04

Fig. 6.31 Density of X following N.100I 10/; area P.74:2 � X � 125:8/ in gray

P.xu � X � xo/ D 0:99

D P

�
xu � 100

10
� Z � xo � 100

10

	

D P.�z � Z � z/ D 2ˆ.z/ � 1;

with ˆ.z/ D 1:99

2
D 0:995

For the value (the probability) 0.995 we find in the tables of the distribution
function of standard normal distribution function that z D 2:58. This implies:

xo D � C z� D 100 C 2:58 � 10 D 125:8

xu D � � z� D 100 � 2:58 � 10 D 74:2

take P.74:2 � X � 125:8/ D 0:99.
The random variable X falls into the interval Œ74:2 I 125:8� with a 99 %

probability (Fig. 6.31).
8. Let us find an x such that 76.11 % of the realizations of X are smaller than x:

P.X � x/ D 0:7611

D P

�
Z � x � 100

10

	
D P.Z � z/
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Fig. 6.32 Density of X following N.100I 10/; area P.X � 107:1/ in gray

For the value 0.7611 we obtain from the standard normal distribution tables
that z D 0:71. Hence:

x D � C z� D 100 C 0:71 � 10 D 107:1

so that P.X � 107:1/ D 0:7611.
There is a 76.11 % probability that the random variable X will be smaller than

107.1 (Fig. 6.32).
9. We calculate x such that 3.6 % of realizations of X are greater than x:

P.X � x/ D 0:036

D P

�
Z � x � 100

10

	
D P.Z � z/

Since P.Z � z/ D 1 � P.Z � z/ D 0:964, using the standard normal
distribution tables the value z D 1:8 for the probability 0.964. Hence,

x D � � z� D 100 � 1:8 � 10 D 118

so that P.X � 118/ D 0:036.
There is a 3.6 % probability that the random variable X is greater than 118

(Fig. 6.33).
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Fig. 6.33 Density of X following N.100I 10/; area P.X � 118/ in gray

Interactive: Normal Distribution

The normal distribution is described by two parameters which define its shape,
location, and scale (variance).

The interactive example includes a number of sidebar panels. You can access the
panels by setting a mark at the corresponding check box on the upper right.

Please select a value for

• the mean �

• the variance �2

Moreover, choose one of the following functions:

• Probability mass function
• Cumulative distribution function

Output

This interactive example allows you to explore the effect of the parameters �

and �2 on shape of the distribution. The plot in Fig. 6.34 displays the probability
distribution function (or cumulative distribution function) of the normal distribution
function N.�I �2/.

We recommend that you only change one parameter at a time to better observe
their effects on the distribution function.
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Fig. 6.34 Screenshot of the interactive example, available at http://u.hu-berlin.de/men_norm

6.8 Central Limit Theorem

One property of the normal distribution is that the sum of n independent random
variables X1; X2; : : : ; Xn with normal distribution is also normally distributed. This
property remains true for any value of n. If the random variables X1; X2; : : : ; Xn

are not normally distributed, then this property is not exactly true, but it remains
approximately correct for large n.

Let X1; X2; : : : ; Xn be independently and identically distributed random variables
with E(Xi ) = � and Var(Xi ) = �2 > 0 for i = 1,: : : ,n. Then the sum of these
random variables is for large n approximately normally distributed:

E.X1 C X2 C � � � C Xn D n� and Var.X1 C X2 C � � � C Xn D n�2;

X1 C X2 C � � � C Xn � N.n�; n�2/;

where � means approximately for large n.
Let X1; X2; : : : ; Xn be independently and identically distributed random variables

with E.Xi/ D � and Var.Xi/ D �2 > 0 for iD 1,: : : ; n. Then the mean of these
random variables is for large n approximately normally distributed:

E

�
1

n
.X1 C X2 C � � � C Xn/

	
D E .x/ D � and Var .x/ D �2

n

x � N.�;
�2

n
/:

This result requires that none of the random variables are responsible for most
of the variance. The distribution N.�; �2

n / depends on the number of the summands
n and for infinite n it would have infinite expected value and infinite variance. The
meaning of this theorem can be described more clearly if we use standardized sums
of random variables.

http://u.hu-berlin.de/men_norm
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Central Limit Theorem

Let X1; : : : ; Xn be independent and identically distributed random variables:
E.Xi/ D � and Var.Xi/ D �2 > 0. Then, the distribution function Fn.z/ D
P.Zn � z/ of

Zn D

�
1
n

nP

iD1

Xi

	
� �

q
�2

n

D 1p
n

nX

iD1

Xi � �

�

converges as n! 1 to a standard normal distribution:

lim
n!1 Fn.z/ D ˆ.z/

The “standardized” random variable Zn is approximately standard normal dis-
tributed:

Zn � N.0I 1/:

More Information

The (Lindeberg and Lévy) Central Limit Theorem is the main reason that the normal
distribution is so commonly used. The practical usefulness of this theorem derives
from the fact that a sample of identically distributed independent random variables
follows approximately a normal distribution as the sample increases. Usually n �
30 is deemed to be sufficiently large for a reasonably good approximation. This
theorem becomes particularly important when deriving the sampling distribution of
test statistics.

The convergence towards the normal distribution will be very quick if the dis-
tribution of the random variables is symmetric. If the distribution is not symmetric,
then the convergence will be much slower.

The Central Limit Theorem has various generalizations (e.g., Lyapunov CLT
for independent, but not identically distributed random variables). Furthermore,
there are also limit theorems that describe convergence towards other sorts of
distributions.

Explained: Application to a Uniform Random Variable

In this example, we will try to illustrate the principle of the Central Limit Theorem.
Let us consider continuous random variables X1; X2; : : : random variables which are
independently and identically uniformly distributed on the interval Œ�0; 5I 0; 5�:
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f .x/ D
�

1 for � 0:5 � x � 0:5

0 otherwise.

The expected value and the variance are:

E.X/ D b C a

2
D 0:5 � 0:5

2
D 0

Var.X/ D .b � a/2

12
D Œ0:5 � .�0:5/�2

12
D 1

12
:

Let us consider a sequence of the sum of these variables; the index of the variable
Y denotes the number of observations in the sample:

Yn D
nX

iD1

Xi n D 1; 2; 3; : : : :

For example, for n D 1, n D 2, and n D 3 we get:

Y1 D X1

Y2 D X1 C X2

Y3 D X1 C X2 C X3:

The densities are:

f .y1/ D
�

1 for � 0:5 � y1 � 0:5

0 otherwise

f .y2/ D
8
<

:

1 C y2 for � 1 � y2 � 0

1 � y2 for 0 � y2 � 1

0 otherwise

f .y3/ D

8
ˆ̂
<

ˆ̂
:

0:5.1:5 C y3/
2 for � 1:5 � y3 � �0:5

0:5 C .0:5 C y3/.0:5 � y3/ for � 0:5 < y3 � 1:5

0:5.1:5 � y3/
3 for 0:5 < y3 � 1:5

0 otherwise

All these densities are plotted in Fig. 6.35, which also contains a plot of a N.0; 1/

density for comparison.
The convergence towards of these distributions to a normal density can be clearly

seen. As the number of observations increases the distribution becomes more similar
to a normal distribution. In fact, for n � 30 we can hardly see any differences.
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Fig. 6.35 Illustration of the Central Limit Theorem

6.9 Approximation of Distributions

Approximation means that, under certain conditions, another distribution provides
a description of the data which is similar to the distribution the data were sampled
from. The limit theorems (e.g., Central Limit Theorem) provide a theoretical tool
for deriving such approximations. These limit theorems can be used to approximate
a number of common distributions. Since we are dealing with approximations of the
true distribution, there are some errors. However, there are methods for evaluating
the quality of the approximation. In the following we present approximations for a
number of distributions as well as some of the criteria that can be used to evaluate
the quality of these approximations.

Normal Distribution as Limit of Other Distributions

• Approximation of Binomial distribution by normal distribution:
This approximation is based on Laplace and DeMoivre’s limit theorem.
Let X1; : : : ; Xn be independent, Bernoulli distributed random variables with

E.Xi/ D p and Var.Xi/ D p.1 � p/ for all i. Then X D X1 C � � � C Xn is
random variable with binomial distribution B.n; p/, expected value E.X/ D np
and variance Var.X/ D np.1 � p/.

For n ! 1, the distribution of the standardized random variable

Z D X � np
p

np.1 � p/
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converges to a standard normal distribution N.0I 1/. For large n we have:

Xn � N.npIpnp.1 � p//

with the expected value � D np and variance �2 D np.1 � p/.
Since the binomial distribution is discrete and the normal distribution is

continuous we improve the quality of approximation by using a continuity
adjustment:

P.X � x/ D FB.xI n; p/ � ˆ

 
x C 0:5 � np
p

np.1 � p/

!

P.X D x/ D fB.xI n; p/ � ˆ

 
x C 0:5 � np
p

np.1 � p/

!

� ˆ

 
x � 0:5 � np
p

np.1 � p/

!

A rough rule of thumb for a good approximation for the binomial distribution
requires: np � 5 or n.1 � p/ � 5.

• Approximation of the Poisson distribution by the normal distribution
The Poisson distribution with 	 = np can be derived from a binomial

distribution. Since the binomial distribution can be approximated by the normal
distribution this suggests that the normal distribution can also approximate the
Poisson distribution.

Let X be a random variable with the distribution PO.	/. Then for large 	; we
approximate the Poisson distribution using a normal distribution with expected
value � D 	 and variance �2 D 	 (with the continuity correction):

P.X � x/ D FPO.xI 	/ � ˆ

�
x C 0:5 � 	p

	

	

The rule of thumb for a “reasonable” approximation requires: 	 � 10

• Approximation of hypergeometric distribution by normal distribution
Let nM=N � 5, n.1 � M=N/ � 5, and n=M � 0:05. Then a random

variable with Hypergeometric distribution can be approximated using a normal
distribution with the parameters:

E.X/ D � D n � M

N
Var.X/ D �2 D n � M

N
�
�

1 � M

N

	

We can also use the continuity correction to improve the approximation.
• Approximation of hypergeometric distribution by binomial distribution

The binomial and hypergeometric distributions use different sampling meth-
ods: the binomial distribution uses draws with replacement and the hypergeo-
metric distribution uses draws without replacement. As M and N increase, M=N
converges to a constant p, the difference between these two distributions becomes
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much smaller. As N ! 1 (and M ! 1) the hypergeometric distribution
converges to a binomial distribution. This implies: for large N and M as well as
small n=N , the hypergeometric distribution can be approximated by the binomial
distribution with parameters p D M=N. The rule of thumb requires: n=M � 0:05.

• Approximation of binomial distribution by Poisson distribution
The Poisson distribution can also be derived from a binomial distribution.

Consequently, the binomial distribution can also be approximated by a Poisson
distribution PO.	 D np/, if n is large and the probability p is small. We are using
the following rule of thumb: n > 30 and p � 0:05.

Explained: Wrong Tax Returns

Based on experience, we know that 10 % of tax returns from a certain town have
errors. Using a sample of 100 tax returns from this town—what is the probability
that 12 of them contain errors?

There are only two possible outcomes for the experiment—“wrong” or “correct,”
with corresponding probabilities p D 0:1 and 1 � p D 0:9. The random variables
X—“number of wrong tax returns from 100 randomly chosen ones” has the binomial
distribution B.n; p/ D B.100I 0:1/. We need to compute the probability P.X D
12/ D fB.12/:

fB.12I 100I 0; 1/ D
�

2000

10

	
� 0:112 � 0:988 D 0:0988 :

If the value fB.12I 100I 0; 1/ is not contained in the tables, we would have to
compute it, which might be fairly cumbersome. However, since the conditions for
the validity of an approximation using the normal distribution are satisfied (np D
10 � 5 and n.1 � p/ D 90 � 5), we could approximate the probability with a
normal distribution N.�I �/. The expected value and the variance of the binomial
distribution are:

� D np D 100 � 0:1 D 10 ; �2 D np.1 � p/ D 100 � 0:1 � 0:9 D 9 :

so we could use a N.10I 3/ distribution (see the diagram).
Recall: for a continuous random variable, the probabilities are given by the area

under the density and thus the probability of one specific value is always equal to
zero, e.g., P.X D 12/ D 0.

Therefore, we subtract and add 0.5 to 12; this is a sort of continuity correction.
Instead of x D 12 (for the discrete variable) we use an interval for the continuous
11:5 � x � 12:5 and fB.12I 100I 0; 1/ is then approximated by P.11:5 � x � 12:5/,
i.e., the area under the density of a N.10I 3/ between the points 11.5 and 12.5 shown
in Fig. 6.36.
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Fig. 6.36 Approximation of the binomial distribution by the normal distribution

The tables only contain the distribution function of a N.0; 1/ random variable, so
we have to standardize the random variable X:

z1 D .12:5 � 10/=3 D 0:83 and z2 D .11:2 � 10/=3 D 0:5 :

Using the normal tables, we obtain ˆ.0:83/ D 0:7967 and ˆ.0:5/ D 0:6915.
Hence,

P.11:5 � x � 12:5/ D ˆ.0:83/ � ˆ.0:5/ D 0:7967 � 0:6915 D 0:1052 :

The approximation works reasonably well, the error of the approximation is only
0:1052 � 0:0988 D 0:0064. We can also see that:

• the approximate probability of having at most 12 wrong tax is

P.X � 12/ D ˆŒ12 C 0:5 � 10�=3� D ˆ.0:83/ D 0:7967

• the approximate probability of obtaining more than 12 wrong tax forms is

P.X > 12/ D 1 � ˆŒ12 C 0:5 � 10�=3� D 1 � ˆ.0:83/ D 1 � 0:7967 D 0:2033

• the approximate probability of obtaining at least 12 wrong tax forms is

P.X � 12/ D 1 � ˆŒ12 � 0:5 � 10�=3� D 1 � ˆ.0:5/ D 1 � 0:6915 D 0:3085
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Enhanced: Storm Damage

In a certain town, one house in each 100 is damaged every year because of storms.
What is the probability that storms damage four houses in a year if the town contains
100 houses?

For each house, there are only two possible outcomes—“damage” and “no
damage.” The probabilities of these outcomes are constant: p D 0:01 and 1 � p D
0:99. The random variable X = {number of damaged houses} has the binomial
distribution B.n; p/ D B.100I 0; 01/. We compute the probability P.X D 4/:

P.X D 4/ D fB.4I 100I 0; 01/ D
�

100

4

	
� 0:014 � 0:9996 D 0:01494 :

We could also use the Poisson distribution (with parameter 	 D np D 1) to
approximate this probability since the conditions for a good approximation are
satisfied:

FPO.4I 1/ D 14

4 Š
e�1 D 0:01533 :

We see that the probabilities fB.4/ and FPO.4/ are fairly close. More generally,
the approximation is also good at other points in the distribution (Table 6.4).

After a storm, there are 300 damaged houses out of a total of 2000 in a given
region (Fig. 6.37). What is the probability that there are exactly 2 damaged houses
among 10 randomly chosen houses?

Again, there are only two possible outcomes for each house—“damage” and “no
damage.” Furthermore, N D 2000, M D 300, and N � M D 1700. The probability
P.X D 2/ is equal to

P.X D 2/ D fH.2/ D

�
300

2

	
�
�

1700

8

	

�
2000

10

	 D 0:2766 :

Table 6.4 Approximation of
the binomial distribution
B.100I 0:1/ by the Poisson
distribution PO.1/

x B.100I 0:1/ PO.1/

0 0:36603 0:36788

1 0:36973 0:36788

2 0:18486 0:18394

3 0:06100 0:06131

4 0:01494 0:01533

5 0:00290 0:00307

6 0:00046 0:00051

7 0:00006 0:00007

8 0:00000 0:00000
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Fig. 6.37 Approximation of the binomial distribution B.100I 0:1/ by the Poisson distribution
PO.1/

This calculation is fairly demanding. Fortunately, we can use binomial distribu-
tion (with parameter p D M=N D 0:15/ to approximate this probability:

P.X D 2/ � fB.2/ D
�

10

2

	
� 0:152 � 0:858 D 0:2759 :

6.10 Chi-Square Distribution

Suppose we have n independently and identically distributed standard normal
random variables X1; : : : ; Xn W Xi � N.0I 1/ for i D 1; : : : ; n, where n is a positive
integer.

The distribution of the sum of the squared Xis

Y D X2
1 C X2

2 C : : : X2
n

is referred to as the Chi-square distribution with parameter df , or written shortly
as �2.df /.

The parameter df represents the degrees of freedom of the distribution, with df >

0. The expected value and variance of Chi-square distribution are given as

E.Y/ D df a Var.Y/ D 2df :
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Fig. 6.38 Density functions of the chi-square distribution with different degrees of freedom

Figure 6.38 shows the density functions for some chi-square distributions, with
different values for the degrees of freedom df .

More Information

The chi-square, t-, and F- distributions are distributions that are functions of normal
random variables that are particularly useful in statistics.

On the Chi-Square Distribution

The parameter df denotes the degrees of freedom. The degrees of freedom reflects
the number of independent random variables included in the sum Y. If the random
variables Xi; i D 1; : : : ; n are independent from each other, then squaring and
summing them does not change their properties. In this example, the random
variable Y:

Y D X2
1 C X2

2 C � � � C X2
n

will have the chi-square distribution with df D n degrees of freedom.
The shape of the density function will depend on the parameter df . For df D 1

and df D 2, the �2 distribution follows a monotone structures. For small values
of df , the �2-distribution will be skewed to the right. However, as df increases the
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�2-distribution will tend towards the normal density function. The �2-distribution is
tabulated for a number of values of df .

6.11 t-Distribution (Student t-Distribution)

The t-Distribution is also known as the Student t-Distribution. If Z has a standard
normal distribution N.0I 1/ and Y, the sum of df squared standard normal random
variables, has a �2-distribution with df degrees of freedom, then we define

T D Z
q

Y
df

as the t-distribution with parameter df (shortly written as t(df )), if Z and Y are
independent. The parameter df represents the degrees of freedom for the �2 random
variable Y. The random variable T has range �1 � T � C1 and expected value
and variance:

E.T/ D 0; for df > 1

Var.T/ D f =.f � 2/; for df > 2

Figure 6.39 shows the density functions of the t-distribution for different numbers
of degrees of freedom df .
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Fig. 6.39 Density functions of the t-distribution with different degrees of freedom
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More Information

The Chi-square, t-, and F- distributions are distributions that are functions of normal
random variables that are particularly useful in statistics.

On the t-Distribution

The density function of a t-distribution is a bell-shaped symmetric distribution
with expected value E.T/ D 0 (as a standard normal distribution). However, a t-
distribution has heavier tails than a standard normal distribution. In other words,
the t-distribution will be more dispersed than a standard normal distribution. The
variance of the standard normal distribution is 1, but the variance of a t-distribution
equals Var.T/ D df =.df � 2/ (for df > 2).

As df ! 1, the density function of the t-distribution converges to the standard
normal distribution. For df � 30, a normal distribution can produce a good
approximation to a t-distribution. The t-distribution is tabulated different values of
df .

6.12 F-Distribution

Consider two independent �2 random variables Y1 and Y2, with df1 and df2 degrees
of freedom respectively, then the random variable:

X D
Y1

df1
Y2

df2

will have a F-distribution (denoted as F.df1; df2/) with parameters df1 and df2.
The df1 and df2 parameters represent the degrees of freedom for the �2 distributed
random variables in the numerator and the denominator.

An F-distribution with parameters df1 and df2 has expected value and variance

E.X/ D df2
df2 � 2

; for df2 > 2

Var.X/ D 2df 2
2 .df1 C df2 � 2/

df1.df2 � 2/2.df2 � 4/
; for df2 > 4

Figure 6.40 shows densities of the F-distribution for different values of
df1 and df2.
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Fig. 6.40 Density functions of the F-distribution with different degrees of freedom

More Information

The Chi-square, t-, and F-distributions are distributions that are functions of normal
random variables that are particularly useful in statistics.

On the F-Distribution

The density function of an F-distribution is right-skewed. Increasing the values of
f1 and f2 reduces this skewness. As f1 ! 1 and f2 ! 1, the density of the F-
distribution will tend to a standard normal distribution. The F-distribution is plotted
for different values of df1 and df2.



Chapter 7
Sampling Theory

7.1 Basic Ideas

Population

One of the major tasks of statistics is to obtain information about populations. The
set of all elements that are of interest for a statistical analysis is called a population.
The population must be defined precisely and comprehensively so that one can
immediately determine whether an element belongs to it or not.

Size of the Population The size of the population, N, is simply the number of
elements in the population. Populations can be of finite or infinite in size and may
even be hypothetical.

Suppose that a random variable X takes on J distinct values xj. j D 1; : : : ; J/

in a finite population with certain absolute and relative frequencies h.xj/ and f .xj/

respectively. The absolute frequency h.xj/ is the total number of elements in the
population for which X D xj. The relative frequency is related to the absolute
frequency as follows: f .xj/ D h.xj/=N.

To easily describe the population or distribution, certain characteristics can be
computed. They are often denoted with Greek letters:

• The mean

� D 1

N

NX

iD1

xi D 1

N

JX

jD1

xjh.xj/ D
JX

jD1

xj f .xj/

• The variance

�2 D 1

N

NX

iD1

.xi � �/2 D 1

N

JX

jD1

.xj � �/2h.xj/ D
JX

jD1

.xj � �/2f .xj/
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• The standard deviation

� D
p

�2

• Suppose that a random variable X is binary, that is, it takes on the two distinct
values x1 D 0 and x2 D 1: Then, the proportion is defined as

� D 1

N

NX

iD1

xi D 1

N

2X

jD1

xjh.xj/ D
2X

jD1

xjf .xj/:

Each characteristic takes a fixed value for the population. (As we shall see below,
their sample counterparts which we will call statistics, such as the sample mean,
sample variance, and sample proportion, will vary from sample to sample.)

The distribution of the variable X and its characteristics are typically unknown.
To learn about them one could try to look at all elements of a population, i.e.,
conduct a census.
Census: In a census, data are collected on all elements of a population. Only in this
case can the distribution and characteristics of X be determined exactly.

Sample

Any finite subset of observations drawn from the population is called a sample. The
number of elements of a sample is called the sample size and denoted with n:

Inductive Inference Since a sample only contains a subset of the elements of the
population it can merely provide incomplete information about the distribution of
the variable X in the population. Yet, results obtained from analyzing the sample
can be used to draw inferences about the population. This type of inference (from
the sample to the population) is called inductive inference. Inductive inferences
cannot be made with certainty and may be wrong. Often, the laws of probability
can be used to calculate the degree of uncertainty of these conclusions. That is,
inductive inference provides a set of tools for drawing probabilistic conclusions
about a population from a sample. Using these tools requires that the sample is
drawn in a way that can be formalized by a probability model. This is assured if the
selection of elements into the sample is done randomly.

Random Sampling There are two basic approaches to random sampling from a
finite population:

– without replacement
– with replacement
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In sampling without replacement, each element of the population has the same
probability of being selected as each observation is drawn. However, the draws are
not independent because the population distribution of X changes as observations
are removed.

In sampling with replacement, each observation has the same probability of being
selected as each observation is drawn. In this case, the draws are independent of
each other. However, because observations are being replaced, (and therefore the
population and distribution of X does not change), the same element may occur
more than once in the sample.

Drawing a random sample of size n can be viewed as a sequence of n random
experiments. Each draw thus corresponds to a random variable and the entire sample
is a collection of n random variables X1; : : : ; Xn:

The simplest sampling scheme involves sampling with replacement. In this
case,

• The random variables X1; : : : ; Xn are identically distributed and all have the same
distribution function F.x/ as the variable X in the population;

• the random variables X1; : : : ; Xn are independent random variables.

The n actual realizations of X1; : : : ; Xn are denoted as x1; : : : ; xn:

Statistic

A function U D U.X1; : : : ; Xn/ of the random variables X1; : : : ; Xn is called a
statistic. A statistic, being a function of random variables, is a random variable itself,
with its own distribution, called the sampling distribution.

The expected value, variance, and standard deviation of the sampling distribution
are denoted as follows:

– expected value E.U/ D �U

– variance Var.U/ D �2
U

– standard deviation �U D p
Var.U/

After the sample is actually drawn the n realizations x1; : : : ; xn of the random
variables X1; : : : ; Xn are observed. Calculating u D U.x1; : : : ; xn/ as a function
of the n actual realizations x1; : : : ; xn yields a realization of the statistic U D
U.X1; : : : ; Xn/.

If one repeatedly draws samples of a given size n from the same population, then
the corresponding realizations of X and U will vary from sample to sample.

When discussing statistics, it is common to use lowercase for both the random
variable and its realization. The context determines which object is being described.
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The purpose of calculating statistics is to use them for drawing inferences about
unknown population characteristics. The specific rule for calculating a statistic is
usually obtained by analogy to its population counterpart. Important statistics are:

• sample average (or sample mean) by analogy to population mean �, is calculated
using

x D 1

n

nX

iD1

xi D 1

n

JX

jD1

xj Oh.xj/ D
JX

jD1

xj Of .xj/;

where Oh.xj/ and Of .xj/ are the absolute and relative frequencies in the sample.
In Chap. 2, we outlined descriptive statistics which are applied to a given

body of data. In that case we had not yet distinguished between populations
and samples. Here, we denote population absolute and relative frequencies using
h.xj/ and f .xj/ respectively, while their sample counterparts are distinguished
with the “hat” symbol above. The hat notation is commonly used in statistics to
denote estimators (see Chap. 8), and indeed, we can think of the sample relative
frequencies Of .xj/ as estimates or approximations of their population counterparts
the f .xj/:

• mean squared deviation by analogy to population variance �2

MSD D 1

n

nX

iD1

.xi � x/2 D 1

n

JX

jD1

.xj � x/2 Oh.xj/ D
JX

jD1

.xj � x/2Of .xj/

the closely related sample variance divides by n � 1 instead of n (for further
explanation of this subtle difference see Chap. 8):

s2 D 1

n � 1

nX

iD1

.xi � x/2 D 1

n � 1

JX

jD1

.xj � x/2 Oh.xj/

D n

n � 1

JX

jD1

.xj � x/2Of .xj/

• sample proportion by analogy to population proportion �

O� D 1

n

nX

iD1

xi D 1

n

2X

jD1

xj Oh.xj/ D
2X

jD1

xjOf .xj/

We re-emphasize (see Sect. 5.1) that uppercase letters are used to denote random
variables and lowercase letters are used to denote their realizations.
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More Information

Reasons for Drawing Samples

Although complete information about the distribution of some variable X in a
population can only be obtained by means of a census, there are important reasons
to still draw samples. A census is often not feasible, too expensive or too time
consuming:

• Conducting the census means destroying the elements of the population.
Example: X is the life times of batteries or light bulbs. In this case, each element
of the population would be used until it becomes unusable.

• The population is very large.
Example: to write a report about the state of North American forests, it is
impossible to inspect every tree.

• The population is hypothetical or of infinite size.
• The population has elements that do not yet exist.

Example: the population of all items that have or will be produced by a certain
machine.

Regarding Random Sampling

We have discussed two types of random sampling: sampling with replacement and
sampling without replacement. The distinction between these becomes irrelevant if
the size of the sample n is small relative to the size of the population N, In this case,
removal of observations results in small changes to the remaining population.

There are many other types of sampling schemes, such as stratified sampling and
cluster sampling.

Explained: Illustrating the Basic Principles of Sampling Theory

There are N D 7 participants in an examination for a course at the graduate level.
Table 7.1 gives the results.

The variable X=“Number of points in the exam” has the frequency distribution
in the population shown in Table 7.2.

Table 7.1 Examination for a
course at the graduate level

Student A B C D E F G

Points 10 11 11 12 12 12 16
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Table 7.2 Frequency
distribution of X=“number of
points in the exam”

x h.x/ f .x/ D h.x/=N F.x/

10 1 1/7 1/7

11 2 2/7 3/7

12 3 3/7 6/7

16 1 1/7 7/7

Table 7.3 Random sampling with replacement of size n D 2

2. Exam
1. Exam 10 11 11 12 12 12 16

10 10;10 10;11 10;11 10;12 10;12 10;12 10;16

11 11;10 11;11 11;11 11;12 11;12 11;12 11;16

11 11;10 11;11 11;11 11;12 11;12 11;12 11;16

12 12;10 12;11 12;11 12;12 12;12 12;12 12;16

12 12;10 12;11 12;11 12;12 12;12 12;12 12;16

12 12;10 12;11 12;11 12;12 12;12 12;12 12;16

16 16;10 16;11 16;11 16;12 16;12 16;12 16;16

From this distribution the mean, variance, and standard deviation of the variable
X in the population can be calculated:

� D 12 ; �2 D 22=7 D 3:143 ; � D 1:773

Randomly selecting an exam from this population and recording its points give
rise to a random variable, which is also labeled X. The relative frequencies in the
population correspond to the probabilities that an exam with a given score will
be selected. The random variable X therefore has probability function f .x/ and
cumulative distribution function F.X/ as laid out in Table 7.2, as well as expected
value � D 12 and variance �2 D 3:143.

Random Sampling with Replacement

Suppose that two exams are randomly selected from the population and their scores
recorded, but that after each draw, the selected exam is returned to the population
before the next exam is selected. The random variables X1 = “first exam score” and
X2 = “second exam score” can be defined accordingly. Table 7.3 shows all possible
samples of size n D 2.

The probability of obtaining any one of these samples is 1/49. It is straightfor-
ward to infer the probability functions of X1 and X2 from Table 7.3.

The probability functions of X1 and X2 are identical to each other and also to the
distribution of the variable X in the population. The two-dimensional probability
distribution of f .x1; x2/ can also be deduced from Table 7.3.
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Table 7.4 Probability
functions for first and second
draw with replacement, X1

and X2

x1 h.x1/ f .x1/ x2 h.x2/ f .x2/

10 7 7/49 = 1/7 10 7 7/49 = 1/7

11 14 14/49 = 2/7 11 14 14/49 = 2/7

12 21 21/49 = 3/7 12 21 21/49 = 3/7

16 7 7/49 = 1/7 16 7 7/49 = 1/7

Table 7.5 The
two-dimensional probability
distribution of f .x1; x2/

X2

X1 10 11 12 16 f .x1/

10 1 / 49 2 / 49 3 / 49 1 / 49 1=7

11 2 / 49 4 / 49 6 / 49 2 / 49 2=7

12 3 / 49 6 / 49 9 / 49 3 / 49 3=7

16 1 / 49 2 / 49 3 / 49 1 / 49 1=7

f .x2/ 1=7 2=7 3=7 1=7 1

Table 7.6 Random sampling without replacement of size n D 2

2. Exam
1. Exam 10 11 11 12 12 12 16

10 10;11 10;11 10;12 10;12 10;12 10;16

11 11;10 11;11 11;12 11;12 11;12 11;16

11 11;10 11;11 11;12 11;12 11;12 11;16

12 12;10 12;11 12;11 12;12 12;12 12;16

12 12;10 12;11 12;11 12;12 12;12 12;16

12 12;10 12;11 12;11 12;12 12;12 12;16

16 16;10 16;11 16;11 16;12 16;12 16;12

The last column of Table 7.5 contains the marginal distribution of X1 and the
last row contains the marginal distribution of X2, which have already been given in
Table 7.4.

For each cell of Table 7.5, i.e., for each pair .x1; x2/, we have:

f .x1; x2/ D f .x1/ � f .x2/

The random variables X1 and X2 are therefore independent. Independently identi-
cally distributed (i.i.d.) sampling schemes are the simplest data generating mecha-
nisms.

Random Sampling Without Replacement

Two exams are randomly drawn without replacement and the random variables X1

and X2 are defined as before. Table 7.6 shows all possible samples of size n D 2.
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The probability of obtaining any one of these samples is 1/42. It is straightfor-
ward to infer the probability functions of X1 and X2 from Table 7.6.

It is not surprising that f .x1/; the probability function of X1; is identical to
the distribution of X in the population. However, in random sampling without
replacement, the population distribution changes after the first draw because the
sampled item is not returned. The distribution of the second draw depends on the
particular value of the first draw. If the first draw produced an exam with a score
of 10 points (X1 D 10), then—conditional on this turnout of the first draw—the
probability of drawing an exam with a score of 10 in the second draw is also zero
(P.X2 D 10jX1 D 10/ D 0), because there is no exam left with a score of 10 points.
Each column of Table 7.8 contains the conditional probability distribution for the
second draw given a particular value for the first draw.

The unconditional probability (or equivalently the marginal probability) that X2

takes on a specific value x2 (i.e., P.X2 D x2/ D f .x2/) can be calculated from the
law of total probability:

P.X2 D 10/ D P.X2 D 10jX1 D 10/ � P.X1 D 10/ C
P.X2 D 10jX1 D 11/ � P.X1 D 11/ C
P.X2 D 10jX1 D 12/ � P.X1 D 12/ C
P.X2 D 10jX1 D 16/ � P.X1 D 16/

D 0 � 1=7 C 1=6 � 2=7 C 1=6 � 3=7 C 1=6 � 1=7 D 6=42 D 1=7

P.X2 D 11/ D P.X2 D 11jX1 D 10/ � P.X1 D 10/ C
P.X2 D 11jX1 D 11/ � P.X1 D 11/ C
P.X2 D 11jX1 D 12/ � P.X1 D 12/ C
P.X2 D 11jX1 D 16/ � P.X1 D 16/

D 2=6 � 1=7 C 1=6 � 2=7 C 2=6 � 3=7 C 2=6 � 1=7 D 12=42 D 2=7

P.X2 D 12/ D P.X2 D 12jX1 D 10/ � P.X1 D 10/ C
P.X2 D 12jX1 D 11/ � P.X1 D 11/ C
P.X2 D 12jX1 D 12/ � P.X1 D 12/ C
P.X2 D 12jX1 D 16/ � P.X1 D 16/

D 3=6 � 1=7 C 3=6 � 2=7 C 2=6 � 3=7 C 3=6 � 1=7 D 18=42 D 3=7
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Table 7.7 Probability functions for first and second draw without replacement, X1 and X2

x1 h.x1/ f .x1/ x2 h.x2/ f .x2/

10 6 6=42 D 1=7 10 6 6=42 D 1=7

11 12 12=42 D 2=7 11 12 12=42 D 2=7

12 18 18=42 D 3=7 12 18 18=42 D 3=7

16 6 6=42 D 1=7 16 6 6=42 D 1=7

Table 7.8 Conditional
probability distribution for
the second draw given a
particular value for the first
draw without replacement

x2 P.X2 D x2jX1 D 10/ P.X2 D x2jX1 D 11/

10 0 3/6

11 2/6 1/6

12 3/6 3/6

16 1/6 1/6
P

1 1

x2 P.X2 D x2jX1 D 12/ P.X2 D x2jX1 D 16/

10 1/6 1/6

11 2/6 2/6

12 2/6 3/6

16 1/6 0
P

1 1

P.X2 D 16/ D P.X2 D 16jX1 D 10/ � P.X1 D 10/ C
P.X2 D 16jX1 D 11/ � P.X1 D 11/ C
P.X2 D 16jX1 D 12/ � P.X1 D 12/ C
P.X2 D 16jX1 D 16/ � P.X1 D 16/

D 1=6 � 1=7 C 1=6 � 2=7 C 1=6 � 3=7 C 0 � 1=7 D 6=42 D 1=7

These are the probabilities reported in Table 7.7. Hence, f .x2/ is identical to f .x1/

and both are identical to the population distribution. However, X1 and X2 are not
independent. This can be seen from the conditional distributions of Table 7.8 (which
are not identical) as well as from the two-dimensional joint distribution f .x1; x2/

calculated from Table 7.6.
Obviously, f .x1; x2/ ¤ f .x1/ � f .x2/, and hence X1 and X2 are not independent

(Table 7.9).

Conclusion X1 and X2 are identically distributed and have the same distribution as
the variable X in the population but they are not independent.
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Table 7.9 Two-dimensional
joint distribution f .x1; x2/ for
two draws without
replacement

X2

X1 10 11 12 16 f .x1/

10 0 2 / 42 3 / 42 1 / 42 1=7

11 2 / 42 4 / 42 6 / 42 2 / 42 2=7

12 3 / 42 6 / 42 9 / 42 3 / 42 3=7

16 1 / 42 2 / 42 3 / 42 1 / 42 1=7

f .x2/ 1=7 2=7 3=7 1=7 1

7.2 Sampling Distribution of the Mean

The distribution of a statistic (which is itself a function of the sample) is called a
sampling distribution. Statistics are used for estimating unknown population char-
acteristics or parameters and for testing hypotheses. These tasks involve probability
statements which can only be made if the sampling distributions of the statistics are
known (or can be approximated). For the most important statistics, we now present
in each case the sampling distribution its expected value and variance.

Distribution of the Sample Mean

Consider sampling from a population with distribution function F.x/, expected
value E.X/ D �, and variance Var.X/ D �2: One of the most important statistics is
the sample mean.

The sample mean (or sample average) is given by:

NX D 1

n

nX

iD1

Xi

The expected value, variance, and standard deviation of the sample mean are
given by:

1. for a random sample with replacement

E. NX/ D �

Var. NX/ D �2. NX/ D �2

n

�. NX/ D �p
n
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2. for a random sample without replacement

E. NX/ D �

Var. NX/ D �2. NX/ D �2

n
� N � n

N � 1

�. NX/ D �p
n

�
r

N � n

N � 1

The factor N�n
N�1

is called the finite population correction.

If the population variance Var.X/ D �2 is unknown it has to be estimated by the
statistic s2: In the above formulas �2 is replaced by s2 which leads to an estimator
of the variance of the sample mean given by:

• For a simple random sample:

b�2. NX/ D s2

n

• For a random sample without replacement

b�2. NX/ D s2

n
� N � n

N � 1

These results for the expectation and variance of the sample mean hold regardless
of the specific form of its sampling distribution.

Distribution of the Sample Mean

The sampling distribution F.Nx/ of the sample mean is determined by the distribution
of the variable X in the population. In each case below we assume a random sample
with replacement.

1. X has a normal distribution
It is assumed that X is normally distributed with expected value � and variance

�2, that is:

X � N.�; �2/

(a) The population variance �2 is known; in this case Nx has the following normal
distribution:

NX � N.�; �2. NX// D N

�
�;

�2

n
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and the standardized random variable

Z D
NX � �

�. NX/
D p

n
NX � �

�

follows the standard normal distribution Z � N.0I 1/.
(b) The population variance �2 is unknown. In this case, it may be estimated by

s2. The transformed random variable:

T D p
n

NX � �

S

has a tabulated distribution with a parameter (the “degrees of freedom”)
which equals n � 1. This distribution is called the t-distribution and it is
usually denoted by tn�1.

As n increases, the t-distribution converges to a standard normal. Indeed
the latter provides a good approximation when n > 30, as explained in
Chap. 6.

2. The variable X has an arbitrary distribution. This is the most relevant case for
applications in business and economics since the distribution of many interesting
variables may not be well approximated by the normal or its specific form is
simply unknown.

Consider n i.i.d. random variables X1; : : : ; Xn with unknown distribution. The
random variables have expectation E.Xi/ D � and variance Var.Xi/ D �2:

According to the central limit theorem the following propositions hold:

• If �2 is known, then the random variable

Z D p
n

NX � �

�

is approximately standard normal for sufficiently large n.
• If �2 is unknown, then the random variable

T D p
n

NX � �

S

is also approximately standard normal for sufficiently large n.
As rule of thumb, the normal distribution can be used for n > 30.

Calculating probabilities: If X is normally distributed with known � and �2 so
that Nx also follows the normal distribution, then the calculation of probabilities may
be done as in Chap. 6. Calculations hold approximately if X is arbitrarily distributed
and n is sufficiently large. More generally, if the distribution of X is not normal, but
is known, then it is in principle possible to calculate the sampling distribution of Nx
and the probabilities that falls in a given interval (though the results may be quite
complicated).
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Weak Law of Large Numbers

Suppose X1; : : : ; Xn are n independent and identically distributed random variables
with expectation E.Xi/ D � and variance Var.Xi/ D �2. Then, for each 
 > 0 it
holds that:

lim
n!1 P.j NXn � �j < 
/ D 1 :

This can be proven by means of Chebyshev’s inequality. It holds that

P.j NXn � �j < 
/ � 1 � �2. NX/


2
:

After inserting �2. NX/ D �2=n W

P.j NXn � �j < 
/ � 1 � �2

n
2

If n approaches infinity the second term on the right-hand side goes to zero.

Implication of This Law With increasing n, the probability that the sample mean NX
will deviate from its expectation � by less than 
 > 0 converges to one. If the sample
size is large enough the sample mean will take on values within a prespecified
interval Œ� � 
I � C 
� with high probability, regardless of the distribution of X.

More Information

Consider a population with distribution function F.x/, expected value E.X/ D �,
and variance Var.X/ D �2. The random variables Xi; i D 1; : : : ; n all have the
same distribution function F.xi/ D F.x/, expectation E.Xi/ D � and variance
Var.Xi/ D �2.

Expectation of the Sample Mean NX

Using the rules for the expectation of a linear combination of random variables it is
easy to calculate that

E. NX/ D E

 
1

n

nX

iD1

Xi

!

D 1

n
E

 
nX

iD1

Xi

!

D 1

n

nX

iD1

E.Xi/ D 1

n
� n � � D � ;

with E.Xi/ D �. This result holds under random sampling with or without
replacement and is valid for any positive sample size n:
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Variance of the Sample Mean NX

(1) Under random sampling with replacement

Var. NX/ D EŒ. NX � E. NX//2� D EŒ. NX � �/2�

D E

2

4

 
1

n

nX

iD1

.Xi � �/

!2
3

5

D E

"�
1

n
.X1 � �/ C � � � C 1

n
.Xn � �/

	2
#

D 1

n2
ŒE.X1 � �/2 C � � � C E.Xn � �/2 C

X

i

X

j¤i

E.Xi � �/.Xj � �/�

D 1

n2
ŒVar.X1/ C � � � C Var.Xn/ C

X

i

X

j¤i

Cov.Xi; Xj�

For each i D 1; : : : ; n holds Var.Xi/ D �2. Furthermore, under random
sampling with replacement the random variables are independent and therefore
have Cov.Xi; Xj/ D 0. The variance of the sample mean thus simplifies to

Var. NX/ D 1

n2
n�2 D �2

n
:

Note that the variance of NX is equal to the variance of the population variable X
divided by n: This implies that Var. NX/ is smaller than Var.X/ and that Var. NX/

is decreasing with increasing n: In other words, for large n the distribution of NX
is tightly concentrated around its expected value �.

(2) Under random sampling without replacement
The derivation of Var. NX/ in the case of random sampling without replace-

ment is similar but more complicated because of the dependency of the random
variables. Regarding the finite sample correction, for large populations the
following approximation is quite accurate

N � n

N � 1
� N � n

N
;

and the approximate correction 1 � n=N can be used. In sampling without
replacement n cannot exceed N. For fixed n, the finite sample correction
approaches 1 with increasing N :

lim
N!1

N � n

N � 1
D 1 :
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In applications, the correction can be ignored if n is small relative to N. Rule of
thumb: n=N � 0:05. However, this will only give an approximation to Var. NX/.

On the Distribution of NX

Suppose that X follows a normal distribution in the population with expectation �

and variance �2: X � N.�; �2/.
In this case, the random variables Xi; i D 1; : : : ; n are all normally distributed:

Xi � N.�; �2/ for each i D 1; : : : ; n. The sum of n independent and identically
normally distributed random variables also follows a normal distribution:

nX

iD1

Xi � N.n�; n�2/ :

The statistic NX differs from this sum only by the constant factor 1=n and, hence,
is also normally distributed: NX � N.�; �2. NX//. Since only the standard normal
distribution is tabulated the following standardized version of NX is considered:

Z D NX � �

�. NX/
D p

n
NX � �

�
;

which follows the standard normal distribution: Z � N.0; 1/. Evidently, using
the standardized variable Z hinges on knowing the population variance �2: If the
population variance �2 is unknown, the unknown variance �2 is estimated by

S2 D

nP

iD1

.Xi � NX/2

n � 1

Dividing both sides by �2 gives

S2

�2
D 1

�2

nP

iD1

.Xi � NX/2

n � 1

n � 1

�2
S2 D

nX

iD1

.Xi � NX/2

�
:

To simplify notation, set Y D .n�1/S2

�2 . In random sampling with replacement, the
Xi; i D 1; : : : ; n are independent and y is therefore the sum of squared independent
standard normal random variables. It follows that Y is chi-square distributed with
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degrees of freedom n�1. Using the standardized random variable Z to construct the
ratio

T D Z
q

Y
n�1

;

gives rise to the random variable T which follows the t-distribution with degrees
of freedom n � 1: (Recall from Chap. 6 that a t random variable is the ratio of
a standard normal to the square root of an independent chi-square divided by its
degrees of freedom.) Inserting the expressions for Z and Y and rearranging terms
yield:

T D
p

n
NX��

�q
1

n�1

�
n�1
�2 S2

� D p
n

NX � �

S

Probability Statements About NX

If the sampling distribution of NX including all its parameters are known, then
probability statements about NX can be made in the usual way. Suppose one wants to
find a symmetric interval around the true mean which will contain NX with probability
1 � ˛: That is, we need to find c such that PŒ� � c � Nx � � C c� D 1 � ˛.

It will be convenient to use the standardized random variable Z, the distribution
of which we will assume to be symmetric.

P.� � c � NX � � C c/ D 1 � ˛

P.�c � NX � � � c/ D 1 � ˛

P

� �c

�. NX/
�

NX � �

�. NX/
� c

�. NX/

	
D 1 � ˛

P

� �c

�. NX/
� z � c

�. NX/

	
D 1 � ˛

P
�
�z1� ˛

2
� Z � z1� ˛

2

�
D 1 � ˛

c

�. NX/
D z1� ˛

2

c D z1� ˛
2

� �. NX/
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Table 7.10 Examination for
a course at the graduate level

Student A B C D E F G

Score 10 11 11 12 12 12 16

Table 7.11 Frequency
distribution of X=“Number of
points in the exam”

x h.x/ f .x/ D h.x/=N F.x/

10 1 1/7 1/7

11 2 2/7 3/7

12 3 3/7 6/7

16 1 1/7 7/7

Thus, the deviation c from � is a multiple of �. NX/. Inserting �. NX/ leads to the
interval



� � z1� ˛

2
� �p

n
� NX � � C z1� ˛

2
� �p

n

�

with probability

P

�
� � z1� ˛

2
� �p

n
� NX � � C z1� ˛

2
� �p

n

	
D 1 � ˛

If X is normally distributed, then the central interval of variation with prespecified
probability 1 � ˛ is determined by reading z1�˛=2 from the standard normal table.
The probability 1 � ˛ is approximately valid if X has an arbitrary distribution and
the sample size n is sufficiently large.

Explained: Sampling Distribution

N D 7 students take part in an exam for a graduate course and obtain the scores
given in Table 7.10.

The variable X = “score of an exam” has the population frequency distribution
provided in Table 7.11.

The population parameters are � D 12; �2 D 3:143 and � D 1:773.

Random Sampling with Replacement

n D 2 exams are sampled with replacement from the population. Table 7.12 contains
all possible samples of size n D 2 with replacement and paying attention to the order
of the draws.

For each possible sample, the sample mean can be calculated and is recorded in
Table 7.13.
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Table 7.12 Random sampling with replacement of size n D 2

2. Exam
1. Exam 10 11 11 12 12 12 16

10 10;10 10;11 10;11 10;12 10;12 10;12 10;16

11 11;10 11;11 11;11 11;12 11;12 11;12 11;16

11 11;10 11;11 11;11 11;12 11;12 11;12 11;16

12 12;10 12;11 12;11 12;12 12;12 12;12 12;16

12 12;10 12;11 12;11 12;12 12;12 12;12 12;16

12 12;10 12;11 12;11 12;12 12;12 12;12 12;16

16 16;10 16;11 16;11 16;12 16;12 16;12 16;16

Table 7.13 Sample means for all possible samples of size n D 2 with replacement

2. Exam
1. Exam 10 11 11 12 12 12 16

10 10.0 10.5 10.5 11.0 11.0 11.0 13.0

11 10.5 11.0 11.0 11.5 11.5 11.5 13.5

11 10.5 11.0 11.0 11.5 11.5 11.5 13.5

12 11.0 11.5 11.5 12.0 12.0 12.0 14.0

12 11.0 11.5 11.5 12.0 12.0 12.0 14.0

12 11.0 11.5 11.5 12.0 12.0 12.0 14.0

16 13.0 13.5 13.5 14.0 14.0 14.0 16.0

Table 7.14 Distribution of
the sample mean for samples
of size n D 2 with
replacement

Nx P.Nx/ Nx � E. NX/ ŒNx � E. NX/�2 ŒNx � E. NX/�2 � P.Nx/

10.0 1 / 49 �2:0 4:00 4 / 49

10.5 4 / 49 �1:5 2:25 9 / 49

11.0 10 / 49 �1:0 1:00 10 / 49

11.5 12 / 49 �0:5 0:25 3 / 49

12.0 9 / 49 0:0 0:00 0

13.0 2 / 49 1:0 1:00 2 / 49

13.5 4 / 49 1:5 2:25 9 / 49

14.0 6 / 49 2:0 4:00 24 / 49

16.0 1 / 49 4:0 16:00 16 / 49

NX therefore can take on various values with certain probabilities. From Table 7.13
the distribution of NX can be determined as given in the first two columns of
Table 7.14.

The mean of this distribution, i.e., the expected value of NX, is given by

E. NX/ D 588=49 D 12 :

which is equal to the expected value of the variable X in the population: E.X/ D 12.
Using the intermediate results in columns three to five of Table 7.14 allows one to
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Table 7.15 Random sampling without replacement of size n D 2

2. Exam
1. Exam 10 11 11 12 12 12 16

10 10;11 10;11 10;12 10;12 10;12 10;16

11 11;10 11;11 11;12 11;12 11;12 11;16

11 11;10 11;11 11;12 11;12 11;12 11;16

12 12;10 12;11 12;11 12;12 12;12 12;16

12 12;10 12;11 12;11 12;12 12;12 12;16

12 12;10 12;11 12;11 12;12 12;12 12;16

16 16;10 16;11 16;11 16;12 16;12 16;12

Table 7.16 Sample means
for all possible samples of
size n D 2 without
replacement

2. Exam
1. Exam 10 11 11 12 12 12 16

10 10.5 10.5 11.0 11.0 11.0 13.0

11 10.5 11.0 11.5 11.5 11.5 13.5

11 10.5 11.0 11.5 11.5 11.5 13.5

12 11.0 11.5 11.5 12.0 12.0 14.0

12 11.0 11.5 11.5 12.0 12.0 14.0

12 11.0 11.5 11.5 12.0 12.0 14.0

16 13.0 13.5 13.5 14.0 14.0 14.0

calculate the variance of NX:

Var. NX/ D �2. NX/ D 77=49 D 11=7 D 1:5714

This result is in agreement with the formula for �2. NX/ given above:

�2. NX/ D �2=n D .22=7/=2 D 11=7 :

It is easy to see that the variance of NX is indeed smaller than the variance of X in the
population.

Random Sampling Without Replacement

From the population, n D 2 exams are randomly drawn without replacement.
Table 7.15 displays all possible samples of size n D 2 from sampling without
replacement, paying attention to the order of the draws. For each possible sample,
the sample mean is calculated and reported in Table 7.16.
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Table 7.17 Distribution of
the sample mean for samples
of size n D 2 without
replacement

Nx P.Nx/ Nx � E. NX/ ŒNx � E. NX/�2 ŒNx � E. NX/�2 � P.Nx/

10.5 4 / 42 �1:5 2.25 9 / 42

11.0 8 / 42 �1:0 1.00 8 / 42

11.5 12 / 42 �0:5 0.25 3 / 42

12.0 6 / 42 0:0 0.00 0

13.0 2 / 42 1:0 1.00 2 / 42

13.5 4 / 42 1:5 2.25 9 / 42

14.0 6 / 42 2:0 4.00 24 / 42

The first two columns of Table 7.17 contain the probability distribution of the
sample mean. The expected value E. NX/ is

E. NX/ D 504=42 D 12

and is equal to the expected value of X in the population.
The variance is equal to

Var. NX/ D �2. NX/ D 55=42 D 1:3095 ;

which is in agreement with the formula for calculating �2.Nx/ given earlier:

Var. NX/ D �2. NX/ D �2

n
� N � n

N � 1

D 22=7

2
� 7 � 2

7 � 1
D 22 � 5

7 � 2 � 6
D 55

42
:

Enhanced: Gross Hourly Earnings of a Worker

This example is devoted to formally explaining the sampling distribution of the
sample mean, its expectation, and variance. To this end, certain assumptions must
be made about the population. In particular, it is assumed that the mean hourly gross
earnings of all 5000 workers of a company equals $27.30 with a standard deviation
of $5.90 and variance of $34.81.

Problem 1

Suppose that the variable X = “Gross hourly earnings of a (randomly selected)
worker in this company” is normally distributed. That is, X � N.27:3I 34:81/.
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From the population of all workers of this company, a random sample (with
replacement) of n workers is selected. The sample mean gives the average gross
hourly earnings of the n workers in the sample.

Calculate the expected value, variance, and standard deviation, and find the
specific form of the distribution of NX for the following sample sizes:

a) n D 10,
b) n D 50

c) n D 200.

Expected Value Regardless of n, the expected value of NX is

E. NX/ D � D $27:30

Variance and Standard deviation The variance of the sample mean is equal to

Var. NX/ D �2. NX/ D �2=n :

Thus,

a) for a random sample of size n D 10

Var. NX/ D �2. NX/ D 5:92=10 D 34:81=10 D 3:481

�. NX/ D $1:8657.
b) for a random sample of size n D 50

Var. NX/ D �2. NX/ D 5:92=50 D 34:81=50 D 0:6962

�. NX/ D $0:8344

c) for a random sample of size n D 200

Var. NX/ D �2. NX/ D 5:92=200 D 34:81=200 D 0:17405

�. NX/ D $0:4172.

Obviously, the standard deviation of NX is smaller than the standard deviation of
X in the population. Moreover, the standard deviation of NX decreases from 1.8657 to
0.8344 and to 0.4172, as the sample size is increased from 10 to 50 and eventually to
200. Increasing the sample size by a factor of five cuts the standard deviation roughly
by half. Increasing the sample size twentyfold reduces the standard deviation by
more than 3/4.

Sampling Distribution of NX Since X is assumed to be normally distributed it follows
that the sample mean NX is also normally distributed under random sampling with
replacement, regardless of the sample size. Thus:

a) for random samples of size n D 10:

NX � N.27:3I 3:481/

The red curve in Fig. 7.1 corresponds to the distribution of X in the population
while the blue curve depicts the distribution of the sample mean NX.
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Fig. 7.1 The distribution of X in the population (red) and the distribution of the sample mean for
n D 10
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Fig. 7.2 The distribution of X in the population (red) and the distribution of the sample mean for
n D 50

b) for random samples of size n D 50 (Fig. 7.2):

NX � N.27:3I 0:6962/

c) for random samples of size n D 200 (Fig. 7.3):

NX � N.27:3I 0:17405/
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Fig. 7.3 The distribution of X in the population (red) and the distribution of the sample mean for
n D 200

Problem 2

Suppose that the variable X = “gross hourly earnings of a (randomly selected)
worker of this company” is normally distributed, say, X � N.27:3I 34:81/.

A sample of size n is randomly drawn without replacement. The sample mean
gives the gross hourly earnings of the n workers in the sample. Calculate the
expected value, variance, and standard deviation of NX for the following sample
sizes:

a) n D 10,
b) n D 50

c) n D 1000.

Expected Value All random samples without replacement, regardless of n, have the
same expected value as in the first problem:

E. NX/ D � D $27:30

Variance and Standard deviation In the case of sampling without replacement, the
variance of the sample mean is reduced by a “finite population correction factor.”
Specifically, the variance of the sample mean is given by

Var. NX/ D �2. NX/ D �2

n
� N � n

N � 1
:
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However, the finite population correction can be neglected if n is sufficiently small
relative to N for example if n=N � 0:05. Thus,

a) for a random sample with replacement of size n D 10:
Since n=N D 10=5000 D 0:002 < 0:05 the variance can be calculated

sufficiently accurately using Var. NX/ D �2. NX/ D �2=n. This leads to the same
result as in problem 1:

Var. NX/ D �2.Nx/ D 5:92=10 D 34:81=10 D 3:481;

�. NX/ D $1:8657:

In comparison, the finite population correction yields Var. NX/ D �2. NX/ D
3:4747 and �. NX/ D $1:8641, which demonstrates the negligibility of the
correction.

b) for a random sample with replacement of size n D 50:
Since n=N D 50=5000 D 0:01 < 0:05 the variance can be calculated using

Var. NX/ D �2. NX/ D �2=n. This leads to the same result as in problem 1:

Var. NX/ D �2. NX/ D 5:92=50 D 34:81=50 D 0:6962;

�. NX/ D $0:8344;

which is very similar to the finite sample corrected result �. NX/ D $0:8303.
c) for a random sample with replacement of size n D 1000:

Since n=N D 1000=5000 D 0:2 > 0:05 the variance and standard deviation
should be calculated using the finite population correction:

Var. NX/ D �2. NX/ D �2

n
� N � n

N � 1

D 5:92

1000
� 5000 � 1000

5000 � 1
D 0:0279

�. NX/ D $0:1669:

Problem 3

Suppose that, more realistically, the distribution of X = “gross hourly earnings of
a (randomly selected) worker from this company” is unknown. Hence, all that is
known is E.X/ D � D $27:0 and �.X/ D $5:90.

A sample of size n is randomly drawn. The sample mean gives the gross hourly
earnings of the n workers in the sample. Calculate the expected value, variance,
and standard deviation, and find the specific form of the distribution of NX for the
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following sample sizes:

a) n D 10,
b) n D 50

c) n D 200.

Expected Value How the expected value E. NX/ is calculated does not depend on the
distribution of X in the population. Hence, there are no new aspects in the present
situation and the results are identical to the previous two problems:

E. NX/ D � D $27:30

Variance and Standard deviation How the variance of NX is calculated does not
depend on the distribution of X in the population but it does depend on the type
and size of the random sample.

In the statement of problem 3 the sampling scheme has not been specified.
However, for all three sample sizes n=N < 0:05 and, hence, if the sample is drawn
without replacement the formula Var. NX/ D �2. NX/ D �2=n can be used as an
approximation.

for n D 10: Var. NX/ D �2. NX/ D 3:481, �. NX/ D $1:8657

for n D 50: Var. NX/ D �2. NX/ D 0:6962, �. NX/ D $0:8344

for n D 200: Var. NX/ D �2. NX/ D 0:17405, �. NX/ D $0:4172

Sampling Distribution of NX Since the distribution of X in the population is unknown
no exact statement can be made about the distribution of NX: However, the central
limit theorem implies that the standardized random variable Z

Z D p
n

NX � �

�

is approximately standard normal if the sample size n > 30 and—in random
sampling without replacement—the size of the population N is sufficiently large.
This is satisfied for the cases b) n D 50 and c) n D 200.

7.3 Distribution of the Sample Proportion

Consider a dichotomous population with two types of elements and that the
proportion of elements with property A is � while the proportion of elements that
do not have property A is 1 � �:

Randomly selecting an element for this population gives rise to a random variable
that takes on the value 1 if the selected element possesses property A , and that takes



234 7 Sampling Theory

on the value 0 otherwise. n draws produce n random variables X1; : : : ; Xn all of
which can only take on the values 1 or 0.

Let X denote the number of elements in the sample of size n with property A (i.e.,
X is equal to the absolute frequency of elements with property A in the sample).
Then,

O� D X

n
D 1

n

nX

iD1

Xi

is the proportion (i.e., the relative frequency) of elements in the sample of size n
with property A (sample proportion).

After actually drawing a sample a specific number x of sample elements with
property A is observed and the sample proportion takes on the realization O� D X=n:

X and O� vary from sample to sample (even if the sample size n is fixed). They are
statistics (i.e., functions of the sample) and consequently random variables. Their
sampling distributions, expected values, and variances will be determined below.
The sampling distributions depend crucially on

• how the sample is drawn (with or without replacement) and
• the size of the population.

1. Random sampling with replacement: This corresponds to conducting n
Bernoulli-experiments. All sample variables have the following distribution

f .xi; �/ D
�

�xi.1 � �/1�xi if xi D 0; 1

0 otherwise

with expectation E.Xi/ D � and variance Var.Xi/ D � � .1 � �/.
In this case X follows a binomial distribution with parameters n and �: X �

B.nI �/:

fB.xjnI �/ D

8
ˆ̂
<

ˆ̂
:

�
n
x

	
�x.1 � �/n�x if x D 0; 1; : : : ; n

0 otherwise

with

E.X/ D n � �; Var.X/ D �2.X/ D n � � � .1 � �/
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Since O� D X=n and 1=n is just a constant factor it follows that the sample
proportion O� has a probability function closely related to that of X. Expected
value and variance of O� are equal to:

E. O�/ D E

�
X

n

	
D E.X/

n
D .n��/

n
D �

Var. O�/ D �2. O�/ D Var

�
X

n

	
D Var.X/

n2
D n�� � .1 � �/

n2
D � � .1 � �/

n

Approximation Note that the sample proportion O� D P
Xi=n is a mean of n

independent Bernoulli random variables. Thus, one may use the central limit
theorem, to conclude that (for a sufficiently large sample size n) its distribution
and the distribution of X (which is Binomial) can be approximated by the normal
distribution:

X � N.�; �2/; with � D E.X/ D n � � and �2 D �2.X/ D n � � � .1 � �/

and

O� � N.�; �2/; with � D E. O�/ D � and �2 D �2. O�/ D � � .1 � �/=n;

respectively. The sample size is considered to be large enough for a sufficiently
good approximation if n � � � 5 and n � .1 � �/ � 5.

To obtain an improved approximation, the continuity correction may be used,
i.e., for calculating P.x1 � X � x2/ using the standard normal distribution one
applies

z1 D x1 � 0:5 � np
p

np.1 � p/
z2 D x2 C 0:5 � np

p
np.1 � p/

and for the probability P.p1 � O� � p2/

z1 D
np1�0:5

n � �
q

�.1��/

n

D p1 � 1
2n � �

q
�.1��/

n

z2 D
np2�0:5

n � �
q

�.1��/

n

D p2 � 1
2n � �

q
�.1��/

n

:

2. random sampling without replacement
The distinction between sampling with and without replacement is only

relevant for finitely sized populations. Let N denote the size of the population, M
denote the number of elements in the population with property A, and n denote
the sample size. Then � D M=N is the proportion of elements in the population
with property A. The statistics X and O� are defined as before.
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Under sampling without replacement X follows the hypergeometric distribu-
tion with parameters N, M and n: X � H.N; M; n/:

fH.xI N; M; n/ D

8
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
:̂

0

@M
x

1

A

0

@N � M
n � x

1

A

0

@N
n

1

A

if x 2 Œja; bj�

0 otherwise

where a D maxŒ0; n � .N � M/� and b D minŒn; M�.
The expected value and variance of the hypergeometric variable X are given

by:

E.X/ D n � M

N
D n�

Var.X/ D �2.X/ D n�.1 � �/
N � n

N � 1
D n � M

N
� N � M

N
� N � n

N � 1

The statistic O� has a distribution function closely related to that of X D n � O�:

The expectation and variance of O� are :

E. O�/ D 1

n
E.X/ D �

Var. O�/ D �2. O�/ D 1

n2
�2.X/ D �.1 � �/

n
� N � n

N � 1

Approximations For large N and M and small n=N the hypergeometric distri-
bution can be approximated reasonably well by the binomial distribution with
� D M=N. A rule of thumb is: n=N � 0:05.

According to the central limit theorem, for sufficiently large sample sizes,
the hypergeometric distribution may be approximated by the normal distribution
even under sampling without replacement.

X � N.�; �2/; with � D E.X/ D n � � and �2 D �2.X/

and

O� � N.�; �2/; with � D E. O�/ D � and �2 D �2. O�/;

respectively. The sample size is considered to be sufficiently large if nM=N � 5,
n.1 � M=N/ � 5 and n=N � 0:05. For a more accurate approximation the
continuity correction may be used.
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Explained: Distribution of the Sample Proportion

According to Germany’s Bureau of Statistics there were 37.3 million private
households in Germany in April 1996, 35 % of which were one-person households.

Problem 1

From this population, n D 10 households are randomly selected without replace-
ment.

• What is the distribution of X (number of one-person households in the sample)
and O� (proportion of one-person households in the sample)?

• Obtain the expectation, variance, and standard deviation of this distribution.
• What is the probability that the proportion of one-person households in the

sample is larger than 0.2 but smaller than 0.5?

Of the N D 37:3 million private households in the (finitely sized) population
M D 13:055 million are one-person households. Randomly selecting n D 10

households gives rise to 10 random variables Xi; i D 1; : : : ; 10 which take on the
value Xi D 1 if the i-th household selected is a one-person household and Xi D 0

otherwise. The random variable X; being the sum of the 10 sample variables, gives
the number of one-person households in the sample while O� D X=n gives their pro-
portion in the sample. Under sampling without replacement X is hypergeometrically
distributed: X � H.NI MI n/ D H.37:3 millionI 13; 055 millionI 10/.

The statistic O� has a probability function closely related to that of X D n� O�. Since
the population size N is very large and since n=N D 10=.37:3 � 106/ < 0:05 is very
small, the finiteness of the population can be ignored and the binomial distribution
with � D M=N D 0:35 can be used as an approximation: X � B.nI �/ D
B.10I 0:35/.

Expectation Variance St. deviation

E.X/ D 10 � 0:35 D 3:5 Var.X/ D 10 � 0:35 � 0:65 �.X/ D 1:5083

D 2:275

E. O�/ D 0:35 Var. O�/ D 0:35 � 0:65=10 �. O�/ D 0:1508

D 0:02275

The desired probability P.0:2 < O� < 0:5/ is found as follows: since X D n � O� ,
it follows that x1 D 10 � 0:2 D 2 and x2 D 10 � 0:5 D 5, the desired probability is
equal to P.2 < X < 5/.

P.2 < X < 5/ D P.X � 4/ � P.X � 2/ D FB.4/ � FB.2/

D 0:7515 � 0:2616 D 0:4899 ;
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where FB.4/ and FB.2/ can be obtained from a table of the binomial distribution
B.10I 0:35/.

Problem 2

From the population described above a sample of size n D 2000 is drawn without
replacement.

• What is the distribution of the number and the proportion of one-person
households, respectively?

• Give their expectation, variance, and standard deviation.
• What is the probability that the number of one-person households in the sample is

greater than or equal to 700 but less than or equal to 725, i.e., P.700 � X � 725/?

The statistics X and O� are defined as in problem 1. Since the population is very
large and the sample small relative to the population, it is irrelevant whether the
sample has been drawn with or without replacement and the binomial distribution
can be used as an approximation.

Expectation Variance St. deviation

E.X/ D 2000 � 0:35 D 700 Var.X/ D 2000 � 0:35 � 0:65 �.X/ D 21:33

D 455

E. O�/ D 0:35 Var. O�/ D 0:35 � 0:65=2000 �. O�/ D 0:01067

D 0:000114

There is no table for the distribution function of the binomial distribution
B.2000I 0:35/ and a computer was used to calculate:

P.700 � X � 725/ D P.X � 725/ � P.X < 700/ D FB.725/ � FB.699/

D 0:8839 � 0:4916 D 0:3923

Since the sample size n D 2000 is very large and the criteria n�� D 2000�0:35 D
700 � 5 and n.1��/ D 2000�0:65 D 1300 � 5 are satisfied, the normal distribution
can be used to approximate the binomial distribution:

X � N.700I 21:33/ ; O� � N.0:35I 0:01067/ :

With

z1 D 700 � 0:5 � 700

21:33
D �0:02344 ; z2 D 725 C 0:5 � 700

21:33
D 1:1955
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it follows that

P.700 � X � 725/ � ˆ.1:1955/ � ˆ.�0:02344/

D ˆ.1:1955/ � .1 � ˆ.0:02344//

D 0:884054 � .1 � 0:509351/ D 0:3934

which is close to the exact calculation using the binomial distribution.

Enhanced: Drawing Balls from an Urn

From an urn with N balls, and a proportion of � red balls, samples of size n are
drawn without replacement. Calculate the probability of obtaining samples with
proportions of red balls between p1 and p2.

Problem 1

From a population of size N D 5 and � D 0:4 a sample of size n D 3 is drawn
without replacement.

The random variable X which is a sum of the 3 random variables provides the
number of red balls in the sample and the random variable O� D X=n gives the
proportion of red balls in the sample.

• What is the distribution of the number and the proportion of red balls in the
sample, respectively?

• What is the probability that the proportion of red balls in the sample is between
1/3 and 2/3?

Because the population is finitely sized and the sampling is done without
replacement it follows that the statistic X has a hypergeometric distribution: X �
H.NI MI n/ D H.5I 2I 3/, and M D 0:4 � 5 D 2 (Fig. 7.4).

We want to calculate P.1=3 � O� � 2=3/. Since X D n � O� , it follows that
x1 D 3 � 1=3 D 1 and x2 D 3 � 2=3 D 2: Hence we are interested in P.1 � X � 2/:

P.1 � X � 2/ D f .1/ C f .2/ D 0:9 where f .1/ D 0:6 and f .2/ D 0:3 :

Problem 2

From a population of size N D 1000 and proportion � D 0:2 samples of size n D 4

are drawn without replacement. The random variable X is a sum of the 4 random
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Fig. 7.4 The distribution of the number of red balls in the sample for n D 3

variables and gives the number of red balls in the sample. The random variable
O� D X=n gives the proportion of red balls in the sample.

• What is the distribution of the number and the proportion of red balls in the
sample, respectively?

• What is the probability that the proportion of red balls in the sample is between
0.25 and 0.75?

Because the sample is drawn without replacement and the population size is
finite, X follows the hypergeometric distribution: X � H.1000I 200I 4/.

Since the population is very large and since n=N D 0:004 < 0:05; X is
approximately binomially distributed with parameter � D M=N D 0:2; i.e.,
X � B.4I 0:2/ (Fig. 7.5). We may use this probability distribution to calculate
probabilities for O�:

We are interested in P.0:25 � O� � 0:75/. Since X D n � O� and therefore x1 D
4 � 0:25 D 1 and x2 D 4 � 0:75 D 3, the desired probability in terms of X is
P.1 � X � 3/:

P.1 � X � 3/ D FB.3/ � FB.0/ D 0:9984 � 0:4096 D 0:5888

FB.3/ and FB.0/ can be obtained from the table of the distribution function of the
binomial distribution B.4I 0:2/.

Problem 3

From a population of size N D 2500 and with proportion � D 0:2 samples of
size n D 100 are drawn without replacement. The random variable X is a sum of
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Fig. 7.5 The distribution of the number of red balls in the sample for n D 4

100 random variables and gives the number of red balls in the sample. The random
variable O� D X=n gives the proportion of red balls in the sample.

• What is the distribution of the number and the proportion of red balls in the
sample, respectively?

• What is the probability that the proportion of red balls in the sample is between
0.14 and 0.3?

Because the sample is drawn without replacement and the population size is
finite, X follows the hypergeometric distribution: X � H.2500I 500I 100/.

Since the sample size n D 100 is large and the criteria n � M=N D 100 � 0:2 D
20 � 5, n.1 � M=N/ D 80 � 5 and n=N D 0:04 < 0:05 are satisfied, the normal
distribution can be used with:

E. O�/ D � D 0:2;

Var. O�/ D Œ�.1 � �/=n� � Œ.N � n/=.N � 1/� D 0:001537;

�. O�/ D 0:039 � 0:04:

Hence, the hypergeometric distribution is approximated by the normal distribu-
tion N.0:2I 0:0015/. To keep matters simple, the continuity correction is neglected
(Fig. 7.6). The desired probability P.0:14 � O� � 0:3/ can be calculated by using
z1 D .0:3 � 0:2/=0:04 D 2:5 and. z2 D .0:14 � 0:2/=0:04 D �1:5 which leads to

P.0:14 � O� � 0:3/ D ˆ.2:5/ � ˆ.�1:5/ D ˆ.2:5/ � .1 � ˆ.1:5//

D 0:99379 � .1 � 0:933193/ D 0:9269 :

ˆ.2:5/ and ˆ.1:5/ are obtained from a table of the standard normal distribution.
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Fig. 7.6 Distribution of the number and the proportion of red balls in the sample of size n D 100

7.4 Distribution of the Sample Variance

Consider a population variable X with E.X/ D � and Var.X/ D �2. From this
population a random sample of size n is drawn.

The sample variance is based on the sum of squared deviations of the random
variables Xi; i D 1; : : : ; n from the mean. We have proposed two estimators for the
variance, the MSD and s2:

Since E.X/ D � is usually unknown and estimated by the sample mean Nx; the
sample variance is calculated as

s2 D 1

n � 1

nX

iD1

.xi � Nx/2

Alternatively, the sample variance may also be calculated as

MSD D 1

n

nX

iD1

.xi � Nx/2

See the entry under “Information” for more on this version of the sample variance.
The derivation of the distribution of the sample variances s2 will be given for the

case of a normally distributed population, i.e., X � N.�:�2/.
Under these assumptions, the random variables Xi; i D 1; : : : ; n are indepen-

dently and identically normally distributed with E.Xi/ D � and Var.Xi/ D �2:

Xi � N.�; �/ i D 1; : : : ; n
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Moreover, the sample mean NX is also normally distributed with E.Nx/ D � and
Var. NX/ D �2. NX/ D �2=n:

NX � N.�; �2/ :

Distribution of the Sample Variance S2

Consider for the moment the random variable

nX

iD1

�
Xi � �

�

	2

:

It is the sum of squares of n independent standard normals, and hence has a chi-
square distribution with n degrees of freedom, i.e., �2

n: Now consider

.n � 1/s2

�2
D 1

�2

nX

iD1

.Xi � Nx/2 D
nX

iD1

�
Xi � Nx

�

	2

:

and note the similarity. By now using Nx as an estimator of � it can be shown
that we have a sum of squares of n � 1 independent standard normals in which case
.n�1/s2=�2 is chi-square distributed with n�1 degrees of freedom. The distribution
of s2 is a simple rescaling of .n�1/s2=�2. Thus we may make probability statements
about s2.

Using the properties of the chi-square distribution, the expected value and
variance of S2 are:

E.S2/ D �2; Var.S2/ D 2�4=.n � 1/

Probability Statements About S2

For known variance �2 and a normally distributed population one can calculate the
probability that the sample variance S2 will take on values in a central interval with
prespecified probability 1 � ˛:

P

�
v1 � .n � 1/S2

�2
� v2

	
D 1 � ˛
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Furthermore, if we want to put equal probability mass in the tails, i.e., we impose:

P

�
.n � 1/S2

�2
< v1

	
D ˛

2
I P

�
.n � 1/S2

�2
> v2

	
D ˛

2

With n � 1 degrees of freedom, the interval boundaries can be obtained from tables
of the chi-square distribution

v1 D �2
˛
2 In�1 I v2 D �2

1� ˛
2 In�1

Thus,

P

�
�2

˛
2 In�1 � .n � 1/S2

�2
� �2

1� ˛
2 In�1

	
D 1 � ˛

Rearranging yields the probability statement:

P

 
�2�2

˛
2 In�1

n � 1
� S2 �

�2�2
1� ˛

2 In�1

n � 1

!

D 1 � ˛

More Information

� Is Known

Consider the simplifying assumption that � is known and let us modify S	2 as
follows:

S	2 D 1

n

nX

iD1

.Xi � �/2

Derivation of the expected value of S	2:

E.S	2/ D E

"
1

n

nX

iD1

.Xi � �/2

#

D 1

n
E

"
nX

iD1

.Xi � �/2

#

D 1

n

nX

iD1

EŒ.Xi � �/2� D 1

n

nX

iD1

�2 D 1

n
n�2

D �2

Note that the above argument does not assume a distribution for the Xi: It is only
assumed that they are i.i.d. with common variance Var.Xi/ D EŒ.Xi � �/2� D �2.
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Derivation of the Variance of S	2 In this case we assume that the Xi are i.i.d.
N.�; �2/ Recall that the variance of a chi-square random variable with n degrees
of freedom has mean n and variance 2n. Since nS	2=�2 has a chi-square distribution
with n degrees of freedom, it follows that:

Var

�
nS	2

�2

	
D n2

�2
Var.S	2/ D 2n

and therefore

Var.S	2/ D 2�4

n
:

Note also that we can derive the mean of s	2 using:

E

�
nS	2

�2

	
D n

and therefore

E.S	2/ D �2 :

� Is Unknown

Since � is typically unknown, the usual estimator of the variance is given by

S2 D 1

n � 1

nX

iD1

.Xi � NX/2

Derivation of the Expectation of S2 Recall that the variance of a random variable
can be written as:

Var.X/ D EŒ.X � E.X//2� D EŒX2 � 2XE.X/ C .E.X//2�

D E.X2/ � 2E.X/E.X/ C ŒE.X/�2

D E.X2/ � ŒE.X/�2

This implies that

E.X2/ D Var.X/ C ŒE.X/�2
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Applying this result to the Xi and to Nx we have:

E.X2
i / D Var.Xi/ C ŒE.Xi/�

2 D �2 C �2

E.Nx2/ D Var.Nx/ C ŒE.Nx/�2 D �2

n
C �2

Furthermore,

E

"
nX

iD1

.Xi � NX/2

#

D E

"
nX

iD1

X2
i � 2 NX

nX

iD1

Xi C n NX2

#

D E

"
nX

iD1

X2
i � 2n NX2 C n NX2

#

D E

"
nX

iD1

X2
i � n NX2

#

D E

"
nX

iD1

X2
i

#

� E
�
n NX2



D
nX

iD1

E.X2
i / � nE. NX2/ D

nX

iD1

.�2 C �2/ � n

�
�2

n
C �2

	

D n�2 C n�2 � �2 � n�2

D .n � 1/�2

Therefore, the expectation of the sample variance S2 is given by

E.S2/ D E

"
1

n � 1

nX

iD1

.Xi � NX/2

#

D 1

n � 1
E

"
nX

iD1

.Xi � NX/2

#

D 1

n � 1
.n � 1/�2 D �2:

Once again, this argument does not require the assumption of normality, only
that the Xi are i.i.d. with common variance �2.

Derivation of the Variance of S2 In this case we assume that the Xi are i.i.d.
N.�; �2/. Since .n � 1/S2=�2 has a chi-square distribution with n � 1 degrees of
freedom, it follows that

Var

�
.n � 1/S2

�2

	
D .n � 1/2

�4
Var.S2/ D 2.n � 1/

and therefore

Var.S2/ D 2�4

.n � 1/
:
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� Is Unknown

In this case we use the MSD to estimate the variance:

MSD D 1

n

nX

iD1

.Xi � NX/2 :

Note that

MSD D n � 1

n
S2 :

Hence

E.MSD/ D n � 1

n
E
�
S2
 D n � 1

n
�2

and

Var.MSD/ D
�

n � 1

n

	2

Var
�
S2
 D

�
n � 1

n

	2
2�4

.n � 1/
D n � 1

n2
2�4

Note that the expectation of the MSD is not exactly equal to the population
variance �2 which is the reason that the sample variance s2 is usually used in
practical applications. Nevertheless, even for moderately sized samples, the two
estimates will be similar.

Explained: Distribution of the Sample Variance

To measure the variation in time needed for a certain task, the variance is often
utilized. Let the time a worker needs to complete a certain task be the random
variable X. Suppose X is normally distributed with E.X/ D � and Var.X/ D �2.

A random sample of size n is drawn with replacement. The random variables Xi

(i D 1; : : : ; n) are therefore independent and identically normally distributed.

Problem 1

A random sample of size n D 15 is drawn. What is the probability that the sample
variance S2 will take on values in the interval Œ0:5 � �2I 1:5 � �2�? That is, the
probability to be calculated is P.0:5�2 � S2 � 1:5�2/.
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To solve the problem, each side is multiplied by .n � 1/=�2:

P.0:5�2 � S2 � 1:5�2/ D P

�
n � 1

�2
0:5�2 � n � 1

�2
S2 � n � 1

�2
1:5�2

	

D P

�
.n � 1/ � 1:5 � n � 1

�2
S2 � .n � 1/ � 1:5

	

Since n � 1 D 14 it follows that:

P.0:5�2 � S2 � 1:5�2/ D P

�
7 � n � 1

�2
S2 � 21

	

The probability that S2 will take on values between 0:5 ��2 and 1:5 ��2is identical to
the probability that the transformed random variable .n � 1/S2=�2 will take values
between 7 and 21.

The random variable .n � 1/S2=�2 is chi-square n � 1 D 14 degrees of freedom.
The probability can be found by using a table of the chi-square distribution.

P.0:5�2 � S2 � 1:5�2/ D P

�
7 � n � 1

�2
S2 � 21

	

D P

�
n � 1

�2
S2 � 21

	
� P

�
n � 1

�2
S2 � 7

	

D 0:8984 � 0:0653 D 0:8331

The probability that S2 will lie in the interval Œ0:5 � �2 and 1:5 � �2� is equal to
0.8331.

Figure 7.7 shows the density function of the chi-square distribution with 14
degrees of freedom, where the symbol Y is a shorthand for .n � 1/S2=�2.

Problem 2

The goal is to determine a central interval of variation for the sample variance S2

with prespecified probability 1 � ˛ D 0:95 We assume the same population as in
problem 1 and use a random sample of size n D 30: Since

P

�
v1 � .n � 1/S2

�2
� v2

	
D 0:95

and we again put equal probability mass in the tails:

P

�
.n � 1/S2

�2
� v1

	
D 0:025 I P

�
.n � 1/S2

�2
� v2

	
D 0:975
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Fig. 7.7 Density function of
the chi-square distribution
with 14 degrees of freedom

0.0 3.5 7.0 14.0 21.0 28.0 35.0
0.00

0.03

0.06

0.09

Using tables for the chi-square distribution with 29 degrees of freedom we obtain
v1 D 16:05 and v2 D 45:72. Thus,

P

�
16:05 � .n � 1/S2

�2
� 45:72

	
D 0:95

With probability 0.95, the transformed random variable .n�1/S2=�2 takes values
in the interval Œ16:05I 45:72�. Rearranging gives the interval:

P

�
16:05�2

n � 1
< S2 <

45:72�2

n � 1

	
D 0:95

P.0:5534�2 < S2 < 1:5766�2/ D 0:95

With a probability of 0.95 the sample variance S2 will take values in the interval
Œ0:5534�2I 1:5766�2�. The exact numerical boundaries of the interval can be
determined only if the population variance �2 of the variable X is known.



Chapter 8
Estimation

8.1 Estimation Theory

Assume a given population with distribution function F.x/. In general, the distribu-
tion and its characteristics or parameters are not known. Suppose we are interested
in say the expectation � and the variance �2. (Alternatively, if the data are binary,
we may be interested in the population proportion �). As outlined previously, we
can learn about the population or equivalently its distribution function F, through
(random) sampling. The data may then be used to infer properties of the population,
hence the term indirect inference. At the outset, it is important to emphasize that
the conclusions drawn may be incorrect, particularly if the sample is small, or not
representative of the underlying population. The tools of probability may be used
to provide measures of the accuracy or correctness of the estimates or conclusions.
We will focus on the estimation of unknown parameters or characteristics. Assume
� to be the object of interest, then we differentiate two types of procedures: point
estimation and interval estimation.

Point Estimation

The determination of a single estimate using a random sample is referred to as point
estimation. It is desirable that the estimate provides the best possible approximation
to the unknown parameter.

The Estimator or Estimating Function

We will be drawing n independent observations from the population. In that case
Xi; i D 1; ::; n are i.i.d. random variables. The estimator is defined to be a function g
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of the Xi. We write

O� D g.	/ ;

the estimator of � , in which case it is a random variable. The symbol will also
represent a specific estimate for a given dataset. It should be clear from the context
which applies.

A point estimate thus depends on the sample size n and the realizations that
have been drawn. The point estimate will rarely correspond to the true value of
the unknown parameter. Indeed, repeated sampling will generally yield different
estimates. If the sample size is large, we would expect these to be close to the true
parameter value.

A crucial problem of point estimations is the selection of the best estimator.
In some cases, the population parameter or characteristic of interest has a natural
sample analogue. For example, one typically uses the sample mean to estimate the
population mean, the sample proportion to estimate the population proportion and
the sample variance to estimate the population variance. (See e.g., the discussion in
Sect. 7.1.)

Explained: Basic Examples of Estimation Procedures

Given a supposed population of N D 2000 households let the random variable X be
household net income (in EUR). The mean net income of this population, i.e., the
expectation E.X/ D � is unknown and the subject of our estimation. The sample
mean

Nx D 1

n

nX

iD1

xi :

is used. A random sample of size n yields the sample values x1; : : : ; xn.

a) A random sample of n D 20 private households yields the data given in Table 8.1
From the data we obtain Nx D 48300=20 D 2415 EUR. As can be easily seen,

the calculation is identical with the arithmetic mean, a measure which we already
used in descriptive statistics. An important objective of inductive statistics is to
provide a measure of the accuracy of this result as an estimate of the underlying
population mean.

To illustrate the point, we obtain 24 further random samples of the size n D
20: Table 8.2 tabulates the sample means for the 25 samples.

In Table 8.2 the samples are reordered so that the sample means are in
increasing order. Evidently, there is considerable variation in the sample means,
which illustrates the random character of estimation, in particular that the
estimator Nx is a random variable.
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Table 8.1 Data on
household net income

Households net income Households net income

i (EUR) xi i (EUR) xi

1 800 11 2500

2 1200 12 2500

3 1400 13 2500

4 1500 14 2700

5 1500 15 2850

6 1500 16 3300

7 1800 17 3650

8 1800 18 3700

9 2300 19 4100

10 2400 20 4300

Table 8.2 Mean household
net income (EUR)

Sample Nx Sample Nx Sample Nx
1 1884:90 10 2241:15 18 2395:25

2 1915:30 11 2243:15 19 2413:40

3 2060:90 12 2267:75 20 2415:00

4 2062:15 13 2298:80 21 2567:50

5 2110:30 14 2317:00 22 2607:25

6 2126:50 15 2319:55 23 2635:00

7 2163:10 16 2361:25 24 2659:00

8 2168:50 17 2363:50 25 2774:30

9 2203:85

Consequently point estimates need to be supplemented with a measure of their
precision (e.g., by giving the standard deviation of the estimator).

Figure 8.1 displays the estimated values Nx of the 25 samples. In order to depict
the deviation of the estimated values from the true mean of the population, the
actual value � is illustrated as a dashed line.

b) From the same population 100 random samples of size n D 100 were drawn
and mean household net incomes were calculated. The results are provided in
Fig. 8.2. The actual value � appears as a dashed line.

8.2 Properties of Estimators

When estimating a specific parameter or characteristic of a population, several
possible estimators O� exist.

Example 1 Suppose that the underlying population distribution is symmetric. In
this case the population expectation equals the population’s median. Thus the
unknown expectation can be estimated using either the sample mean or the sample
median.
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Fig. 8.1 Estimated values of Nx from 25 random samples of size n D 20
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Fig. 8.2 Estimated values of Nx from 100 random samples of size n D 100

In general, the two estimators will provide different estimates. Which estimator
should be used?

Example 2 To estimate the variance �2 we may use either of the following:

s2 D 1

n � 1

nX

iD1

.xi � Nx/2

MSD D 1

n

nX

iD1

.xi � Nx/2

Which estimator should be used?



8.2 Properties of Estimators 255

Example 3 Suppose that the underlying population distribution is Poisson. For the
Poisson distribution E.X/ D Var.X/ D 	. Therefore, the unknown parameter 	

could be estimated using the sample mean or the sample variance. Again in this
case the two estimators will in general yield different estimates.

In order to obtain an objective comparison, we need to examine the properties of
the estimators.

Mean Squared Error

A general measure of the accuracy of an estimator is the Mean Squared Deviation,
or Mean Squared Error (MSE). The MSE measures the average squared distance
between the estimator O� and the true parameter � :

MSE D EŒ. O� � �/2� :

It is straightforward to show that the MSE can be separated into two components:

MSE D EŒ. O� � �/2� D EŒ. O� � E. O�//2� C ŒE. O�/ � ��2 :

The first term on the right side is the variance of O� :

EŒ. O� � E. O�//2� D Var. O�/ ;

The second term is the square of the bias E. O�/ � � . Hence, the MSE is the sum of
the variance and the squared bias of the estimator:

MSE D Var. O�/ C Œbias . O�/�2 :

If several estimators are available for an unknown parameter of the population, one
would thus select that one with the smallest MSE.

Starting with the MSE three important properties of estimators are described,
which should facilitate the search for the “best” estimator.

Unbiasedness

An estimator O� of the unknown parameter � is unbiased, if the expectation of the
estimator matches the true parameter value:

E. O�/ D � :
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That is, the mean of the sampling distribution of O� equals the true parameter value
� .

For an unbiased estimator the MSE equals the variance of the estimator:

MSE D Var. O�/:

Thus the variance of the estimator provides a good measure of the precision of the
estimator.

If the estimator is biased, then the expectation of the estimator is different from
the true parameter value. That is,

bias. O�/ D E. O�/ � � ¤ 0 :

Asymptotic Unbiasedness

An estimator O� is called asymptotically unbiased, if

lim
n!1 E. O�/ D � ;

i.e., the bias converges to zero with increasing sample size n.

Efficiency

Often there are several unbiased estimators available for the same parameter. In this
case, one would like to select the one with the smallest variance (which in this case
is equal to the MSE).

Let O�n and O�?
n be two unbiased estimators of � using a sample of size n. The

estimator O�n is called relatively efficient in comparison to O�?
n , if the variance of O�n is

smaller than the variance of O�?
n , i.e.,

Var. O�n/ < Var. O�?
n / :

The estimator O�n is called efficient if its variance is smaller than that of any other
unbiased estimator.
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Consistency

The consistency of an estimator is a property which focuses on the behavior of
the estimator in large samples. In particular consistency requires that the estimator
be close to the true parameter value with high probability in large samples. It
is sufficient if the bias and variance of the estimator converge to zero. Formally,
suppose

lim
n!1ŒE. O�n/ � �� D 0

and

lim
n!1 Var. O�n/ D 0

Then the estimator is consistent. Equivalently, the two conditions may be summa-
rized using:

lim
n!1 MSE. O�n/ D 0 :

This notion of consistency is also referred to as “squared mean consistency.”
An alternative version known as weak consistency is defined as follows:

lim
n!1 P.j O�n � � j < 
/ D 1

That is, the probability that the estimator O�n yields values within an arbitrarily
small interval around the true parameter value � converges to one with increasing
sample size n. The probability that the estimator O�n differs from the true parameter
value by more than 
 converges to zero with increasing sample size n. That is,

lim
n!1 P.j O�n � � j � 
/ D 0

More Information

Mean Squared Error

Recall the MSE is defined as

MSE D EŒ. O� � �/2�
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Expanding the expression one obtains:

MSE D EŒ. O� � �/2�

D EŒ. O� � E. O�/ C E. O�/ � �/2�

D EŒ. O� � E. O�//2 C 2. O� � E. O�//.E. O�/ � �/ C .E. O�/ � �/2�

D EŒ. O� � E. O�//2� C 2EŒ. O� � E. O�//.E. O�/ � �/� C ŒE. O�/ � �/2� :

For the middle term we have:

2EŒ. O� � E. O�//.E. O�/ � �/� D 2ŒE. O�/ � E. O�/�ŒE. O�/ � �/� D 0

and consequently we have

MSE D EŒ. O� � E. O�//2� C ŒE. O�/ � ��2

D Var. O�/ C Œbias. O�/�2 :

The MSE does not measure the actual estimation error that has occurred in a
particular sample. It measures the average squared error that would occur in repeated
sample.

Unbiasedness

Figure 8.3 displays three estimators of a parameter � . The estimators O�1 and O�2 are
unbiased since their expectation coincides with the true parameter � (denoted by

0.0

0.1

0.2

0.3

0.4

0.0

0.1

0.2

0.3

0.4

0.0

0.1

0.2

0.3

0.4

theta

theta 1

theta 2

theta 3

Fig. 8.3 Illustration of unbiasedness
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the vertical dashed line). In contrast, the estimator O�3 is biased. For both unbiased
estimators

MSE D Var. O�/ ;

holds, as the bias equals zero. However O�1 has lower variance and is therefore
preferred to O�2: It is also preferred to O�3 which has the same variance but exhibits
substantial positive bias. Each of the following widely used estimators are unbiased.

Sample Mean Nx

The sample mean

NX D 1

n

nX

iD1

Xi

is an unbiased estimator of unknown expectation E.X/ D � since

E. NX/ D �

See section Distribution of the Sample Mean.

Sample Proportion O�

The sample proportion

O� D 1

n

nX

iD1

Xi

is an unbiased estimator for the population proportion � since

E. O�/ D � ;

See section Distribution of the Sample Fraction.

Sample Variance

Assume a random sample of size n.
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1. If the expectation E.X/ D � of the population is unknown and estimated using
the sample mean, the estimator

s2 D 1

n � 1

nX

iD1

.Xi � Nx/2

is an unbiased estimator of �2, since

E.s2/ D �2 ;

See section Distribution of the Sample Variance. The standard deviation which
is the square root of the sample variance s2 is not an unbiased estimator of � ,
as it tends to underestimate the population standard deviation. This result can be
proven by means of Jensen’s inequality.

The estimator:

MSD D 1

n

nX

iD1

.Xi � Nx/2

is not unbiased, since

E.MSD/ D E

"
1

n

nX

iD1

.Xi � Nx/2

#

D 1

n
E

"
nX

iD1

.Xi � Nx/2

#

D n � 1

n
�2 :

See section Distribution of the Sample Variance. The bias is given by:

E.MSD/ � �2 D n � 1

n
�2 � �2 D ��2

n
:

Using the estimator MSD one will tend to underestimate the unknown variance.
The estimator, however, is asymptotically unbiased as with increasing sample
size n the bias converges to zero. Division by n � 1; .as in s2) rather than by n (as
in the MSD) assures unbiasedness.

Efficiency

• The sample mean Nx is an efficient estimator of the unknown population expecta-
tion �. This is true for any distribution.

• Suppose data are drawn from a N.�I �2/ distribution. The sample mean Nx is an
efficient estimator of �. It can be shown that no unbiased estimator of � exists
which has a smaller variance.

• The sample mean Nx is an efficient estimator for the unknown parameter 	 of a
Poisson distribution.
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• The sample proportion O� is an efficient estimator of the unknown population
proportion � for a dichotomous population, i.e., the underlying random variables
have a common Bernoulli distribution.

• For a normally distributed population the sample mean Nx and the sample median
md are unbiased estimators of the unknown expectation �. For random samples
(with replacement) we have:

�2.Nx/ D �2

n

Furthermore one can show that

�2.md/ D �

2

�2

n
D 1:571 �2.Nx/

and hence

�2.Nx/ < �2.md/ :

The sample mean Nx is relatively efficient in contrast to the sample median md.
• The relative efficiency of various estimators of the same parameter in general

depends on the distribution from which one is drawing observations.

Consistency

• Consistency is usually considered to be a minimum requirement of an estimator.
Of course, consistency does not preclude the estimator having large bias and
variance in small or moderately sized samples. Consistency only guarantees that
bias and variance go to zero for sufficiently large samples. On the other hand,
since sample size cannot usually be increased at will, consistency may provide a
poor guide to the finite sample properties of the estimator.

• For random samples, the sample mean Nxn is a consistent estimator of the
population expectation � since bias Nxn D 0 and the variance Var.Nxn/ D �2=n
converge to zero, i.e.,

lim
n!1

�2

n
D 0 :

• For random samples the sample proportion O�n is a consistent estimator for the
population proportion � as the estimator is unbiased bias O�n D 0 and the variance
Var. O�n/ D �.1 � �/=n converges to zero, i.e.,

lim
n!1

�.1 � �/

n
D 0 :
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• For a Gaussian distributed population the sample median md is a consistent
estimator for the unknown parameter �.

• For a Gaussian distribution, the estimator

s2 D 1

n � 1

nX

iD1

.Xi � Nx/2

is consistent for the unknown variance �2, since the estimator is unbiased
bias s2 D 0 and the variance Var.s2/ D 2�4=.n � 1/ converges to zero:

lim
n!1

2�4

n � 1
D 0 :

The sample variance is also a consistent estimator of the population variance
for arbitrary distributions which have a finite mean and variance.

Explained: Properties of Estimators

Assume a population with mean � and variance �2. Let .X1; X2; X3/ be a random
sample drawn from the population. Each random variable Xi; i D 1; 2; 3 has E.Xi/ D
� and Var.Xi/ D �2. Consider the following three estimators of the population
mean:

1. O�1 D 1
3
.X1 C X2 C X3/

2. O�2 D 1
4
.2X1 C 2X3/

3. O�3 D 1
3
.2X1 C X2/

• Which estimators are unbiased?
• Which estimator is most efficient?

All of them are unbiased, since E.Xi/ D � :

E. O�1/ D E
�1
3

.X1 C X2 C X3/
 D 1

3
ŒE.X1/ C E.X2/ C E.X3/�

D 1

3
.� C � C �/ D �

E. O�2/ D E
�1
4

.2X1 C 2X3/
 D 1

4
Œ2E.X1/ C 2E.X3/�

D 1

4
.2� C 2�/ D �

E. O�3/ D E
�1
3

.2X1 C X2/
 D 1

3
Œ2E.X1/ C E.X2/�

D 1

3
.2� C �/ D �
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The variance of each estimator is given by:

Var. O�1/ D Var
�1
3

.X1 C X2 C X3/
 D 1

9
Var.X1 C X2 C X3/

D 1

9
ŒVar.X1/ C Var.X2/ C Var.X3/� D 1

9
.�2 C �2 C �2/ D 1

3
�2

Var. O�2/ D Var
�1
4

.2X1 C 2X3/
 D 1

16
Var.2X1 C 2X3/

D 1

16
Œ4Var.X1/ C 4Var.X3/� D 1

16
.4�2 C 4�2/ D 1

2
�2

Var. O�3/ D Var
�1
3

.2X1 C X2/
 D 1

9
Var.2X1 C X2/

D 1

9
Œ4Var.X1/ C Var.X2/� D 1

9
.4�2 C �2/ D 5

9
�2

Since we use all the data, the first estimator is the most efficient. This estimator
is of course the sample mean. Note that even though the second and third estimators
each use two observations, the third is less efficient than the second because it does
not weight the observations equally.

Enhanced: Properties of Estimation Functions

The unknown mean E.X/ D � and variance �2 will be estimated. A random sample
of size n D 12 was drawn from a population yielding the following data: {1; 5; 3;
8; 7; 2; 1; 4; 3; 5; 3; 6}.

Estimation of the Expectation

The sample mean

Nx D 1

n

nX

iD1

Xi ;

is an unbiased and efficient estimator. Substituting the sample values yields

Nx D 1

12
.1 C 5 C 3 C 8 C 7 C 2 C 1 C 4 C 3 C 5 C 3 C 6/ D 48

12
D 4 :

This result constitutes a point estimate of �.
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Estimation of the Variance

The estimator is given by:

s2 D 1

n � 1

nX

iD1

.Xi � Nx/2 ;

Substituting the sample values yields the point estimate

s2 D 1

n � 1

12X

iD1

.xi � Nx/2

D 1

11
Œ.1 � 4/2 C .5 � 4/2 C � � � C .3 � 4/2 C .6 � 4/2� D 1

11
� 56 D 5:09 :

8.3 Construction of Estimators

In this section we will discuss principles for constructing estimators of an unknown
parameter. We have already seen how sample moments can be used to estimate
their population counterparts (e.g., the sample mean, variance, or proportion are
used to estimate the corresponding population mean, variance, or proportion).
This principle is known as the method of moments. We now consider two other
principles: maximum likelihood and least squares.

Maximum Likelihood

The maximum likelihood approach is one of the most important estimation pro-
cedures. The essential idea is to find the probability law—within a prespecified
family—which is most likely to have generated the observed data.

Assume a discrete resp. continuous random variable X having the probability
resp. density function f .xj�/ in the population. An important prerequisite of the
maximum likelihood method is that the type of distribution must be known prior to
estimation. The distribution depends on an unknown parameter � .

Example 1 Suppose we are drawing from a binomial distribution. Hence, the
probability function f .xj�/ is B.nI �/, which depends on the unknown parameter �:

Example 2 Suppose we are drawing from a normal distribution. Then, the probabil-
ity density function f .xj�/ is N.�I �2/ which depends on the unknown parameters
� and �2
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A random sample of size n is drawn from a distribution f .xj�/. Thus, the
random variables Xi i D 1; ::; n are independent and identically distributed with
probability law: f .xij�/ 8 i D 1; : : : ; n. Since the observations are independent, the
joint distribution of all the random variables equals the product of their individual
distributions, i.e.,

P.fX1 D x1g \ � � � \ fXn D xngj�/ D f .x1; : : : ; xnj�/ D f .x1j�/ � � � � � f .xnj�/ :

Given the sample, we may now ask the question, what is the probability (or
probability density) of having drawn this sample for different values of the unknown
parameter � . Mathematically, we define the likelihood function L.�/ to be a function
of � conditional on the data .x1; : : : ; xn/: That is,

L.� jx1; : : : ; xn/ D f .x1j�/ � � � � � f .xnj�/ D
nY

iD1

f .xij�/ :

L.�/ gives the probability (or probability density) for the realized sample
.x1; : : : ; xn/ at each value of � .

The maximum likelihood principle states that one should select the value O� ,
which maximizes the likelihood function:

L. O�/ D max
�

L.�/ :

Under general conditions L.	/ has a maximum. A necessary condition is that the
first derivative equals zero:

@L. O�/

@�
D 0 :

For simplicity, it is common to take the logarithm yielding the log-likelihood
function log L. O�/. Since the logarithm constitutes a monotone transformation, the
maximum of log.L. O�// occurs at the same value of O� as for the original likelihood
function. The first order condition becomes:

@ log L. O�/

@�
D 0 :

The resulting maximum likelihood estimator O� has been studied widely and is
known to have many favorable properties under general conditions. Among them, it
is consistent, asymptotically normal, and efficient in large samples.
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Least Squares Estimation

Suppose that the expectations of the random variables X1; : : : ; Xn depend on the
unknown parameter � through known functions gi:

E.Xi/ D gi.�/ i D 1; : : : ; n

In the simplest case gi.�/ D � 8 i.
Given data x1; : : : ; xn, then an estimator O� may be chosen by minimizing the sum

of squared deviation of the data from gi. O�/; i.e.,

Q.�/ D
nX

iD1

.xi � gi.�//2

has to be minimized. The solution may be found by differentiating with respect to �

and setting the first derivative equal to zero. The resulting minimizer O� is called the
least squares estimator. Least squares estimators have favorable properties. They are
typically consistent, asymptotically normal, and efficient in large samples.

More Information

Applications of ML

ML Estimation of � and � 2 for the Gaussian Distribution

Assume a Gaussian distributed random variable X with the unknown parameters
� and �2. Assume further that X1; : : : ; Xn is a random sample drawn from this
distribution. Then for each Xi; i D 1; : : : ; n we have:

f .xij�; �/ D 1p
2� �

e� .xi��/2

2�2

The likelihood function is given by:

L.�; �2jx1; : : : ; xn/ D
nY

iD1

f .xij�; �/ D
�

1p
2��2

	n

e
� 1

2�2

nP

iD1
.xi��/2

D .2��2/� n
2 � exp

 

� 1

2�2

nX

iD1

.xi � �/2

!

:
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Taking logarithms yields:

log L.�; �2jx1; : : : ; xn/ D �n

2
� log.2�/ � n

2
� log �2 � 1

2�2
�

nX

iD1

.xi � �/2 :

ML Estimation of � and � 2

To maximize L.�I �2/ for given .x1; : : : ; xn/, O� and O�2 are chosen to maximize the
log-likelihood function. Taking the partial derivatives with respect to � and �2, and
setting the resulting equations equal to zero yields:

@ log L

@�
D �

2 �
nP

iD1

.xi � O�/ � .�1/

2�2
D 0

@ log L

@�2
D �n

2
� 1

O�2
C 1

2
� 1

O�4
�

nX

iD1

.xi � �/2 D 0 :

The first equation may be solved to produce the ML estimator O� of � W
nX

iD1

.xi � O�/ D 0

O� D

nP

iD1

xi

n
D Nx :

The result may be substituted in the second equation which may then be solved
for O�2:

n

2 O�2
D 1

2 O�4

nX

iD1

.xi � Nx/2

O�2 D 1

n

nX

iD1

.xi � Nx/2 ;

Thus the ML estimator of � is the sample mean, which we know to be consistent,
unbiased, and efficient. The ML estimator of �2 is the MSD, which though biased
in finite samples is consistent and asymptotically efficient. Second order conditions
for a maximum can be readily verified.



268 8 Estimation

ML Estimation of � for a Binomial Distribution

Suppose one is drawing a random sample (with replacement) of size n from a
dichotomous population with unknown parameter � . Let X be the number of
successes. Then X is binomially distributed B.n; �/. The likelihood function is given
by:

L.�jx/ D
�

n
x

	
� �x � .1 � �/n�x

and the log-likelihood is given by

log L.�jx/ D log

�
n
x

	
C x log � C .n � x/ log.1 � �/ :

Differentiating with respect to � and setting to zero one obtains:

@ log L.�jx/

@�
D x

O� � n � x

1 � O� D 0

x.1 � O�/ � .n � x/ O� D 0

O� D x

n

To verify that this is a maximum, we check that the second derivative is negative:

@2 log L.�jx/

@�2
D � x

�2
� n � x

.1 � �/2

The ML estimator is the sample proportion O� which is unbiased, consistent, and
efficient.

ML Estimation of � in a Poisson Distribution

Let X1; : : : ; Xn be a random sample (with replacement) of size n from a Poisson
distribution with unknown parameter 	 > 0. Then, for each Xi; i D 1; : : : ; n we
have

fPO.xiI 	/ D 	xi

xi Š
e�	:

The likelihood function for the realized sample x1; : : : ; xn is given by

L.	jx1; : : : ; xn/ D
nY

iD1

	xi

xi Š
e�	 D 	x1C���Cxn

x1 Š � � � � � xn Š
e�n	
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and the log-likelihood becomes:

log L.	jx1; : : : ; xn/ D
nX

iD1

log

�
	xi

xi Š
e�	

	
D

nX

iD1

.xi log 	 � log.xi Š/ � 	/ :

Differentiating with respect to 	 and setting the expression equal to zero yields

@ log L

@	
D

nX

iD1

�
xi

O	 � 1

	
D 0;

and hence

1

O	
nX

iD1

xi � n D 0;

O	 D 1

n

nX

iD1

xi D Nx :

The ML estimation of 	 is the arithmetic mean of the sample values.
A sufficient condition for a maximum is fulfilled if:

@2 log L

@	2
D � 1

	2

nX

iD1

xi < 0 ;

Since 	 > 0 and a Poisson distributed random sample cannot have negative
realizations, the condition is satisfied.

ML Estimation of � in an Exponential Distribution

Let X1; : : : ; Xn be a random sample (with replacement) of size n from an exponential
distribution with unknown parameter 	 > 0. Then for each Xi; i D 1; : : : ; n we have:

fEX.xij	/ D 	e�	xi if x � 0

0 otherwise

The likelihood function for the realized sample x1; : : : ; xn is given by:

L.	jx1; : : : ; xn/ D
nY

iD1

	e	xi D 	n
nY

iD1

e�	xi D 	ne
�	

nP

iD1

xi
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and the corresponding log-likelihood function is:

log L.	jx1; : : : ; xn/ D n log 	 � 	

nX

iD1

xi :

Setting the first derivative to zero yields:

@ log L.	/

@	
D n

O	 �
nX

iD1

xi D 0

Solving for the ML estimator O	 of 	 one obtains:

n
O	 D

nX

iD1

xi

O	 D n
nP

iD1

xi

D 1 = Nx:

Taking the second derivative with respect to 	 one obtains:

@2 log L.	/

@	2
D � n

	2
;

whereby the sufficient condition for a maximum is fulfilled since n > 0 and 	 > 0.

Application of Least Squares

A random sample of size n is drawn from a population with unknown expectation
E.X/ D �. The Xi; i D 1; : : : ; n are identically and independently distributed
with E.Xi/ D � so that gi.�/ D � for each i. The unknown parameter � is
estimated using least squares which minimizes the sum of squared deviations of
the observations from the estimator O�. That is,

Q.�/ D
nX

iD1

.xi � �/2

is minimized. Differentiating and setting to zero yields:

@Q.�/

@�
D �2

nX

iD1

.xi � �/ D 0 :
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A little algebra yields the LS estimator:

O� D 1

n

nX

iD1

xi D Nx

To verify that this is a minimum we check that the second derivative is positive
at � D O� :

@2Q. O�/

@�2
D 2n > 0 :

If the data are drawn from a N.�I �2/ distribution, then the ML estimator of � is
also the sample mean. However, note that under ML, normality has been assumed
while the LS estimator does not require such assumptions.

Explained: ML Estimation of an Exponential Distribution

While waiting for his flight, Mr. Businessman amuses himself by measuring the
time (in minutes) between landings on a particular runway. He records the following
observations: {3, 6, 6, 4, 8, 2, 4, 5, 9, 3}.

The random variable X which is the time interval between touch-downs is
assumed to be exponentially distributed with unknown parameter 	 > 0. He
proceeds to estimate this parameter using ML. The likelihood function for the
sample .x1; : : : ; x10/ is given by

L.	j3; 6; 6; 4; 8; 2; 4; 5; 9; 3/ D	e�3	 � 	e�6	 � 	e�6	 � 	e�4	 � 	e�8	�
� 	e�2	 � 	e�4	 � 	e�5	 � 	e�9	 � 	e�3	

D	10e�50	

and the log-likelihood is given by:

log L.	/ D 10 log 	 � 50	 :

Differentiating with respect to 	 and setting to zero, one obtains:

@ log L.	/

@	
D 10

O	 � 50 D 0 :

Solving this linear equation produces the ML estimator O	 of 	:

O	 D 10

50
D 0:2 D 1=Nx
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Table 8.3 Number of car
accidents for 50 days

No. of car accidents per day No. of days

0 21

1 18

2 7

3 3

4 1

The second derivative (which is used to ensure that the result is a maximum) yields:

@2 log L.	/

@	2
D �10

	2

whereby the sufficient condition for a maximum is fulfilled.

Explained: ML Estimation of a Poisson Distribution

Data are collected on the number of car accidents for each of 50 days. Table 8.3
summarizes the observations.

The Poisson is used to model the number of occurrences of an event in a given
time period. In this case, it is the number of accidents per day. A critical assumption
is that the events are independent. Let X be the number of car accidents per day, then
X � PO.	/. The parameter 	 is unknown and will be estimated using ML.

The likelihood function of the realized sample x1; : : : ; xn is given by:

L.	jx1; : : : ; xn/ D 	x1C���Cx50

x1 Š � � � � � x50 Š
e�50	 D 	45

0 Š � 0 Š � � � � � 3 Š � 4 Š
e�50	 :

and the log-likelihood is given by:

log L.	jx1; : : : ; x50/ D 45 log 	�Œlog.0 Š/Clog.0 Š/C� � �Clog.3 Š/Clog.4 Š/��50	 :

Differentiating with respect to 	 and setting to zero yields

@ log L

@	
D 45

O	 � 50 D 0

and hence

O	 D 45

50
D 0:9 D Nx :
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We verify the second order (sufficient) condition for a maximum:

@2 log L

@	2
D � 1

	2
45 < 0 :

8.4 Interval Estimation

Recall that an estimator O� of a parameter � is a random variable. Even if
the estimator has desirable properties (such as consistency and efficiency), one
cannot determine from the point estimate alone whether it is likely to be a good
approximation to the true parameter. To provide information about the accuracy of
the estimation process one usually applies interval estimation.

An interval estimator for an unknown parameter � produces an interval such
that:

• the probability that the estimation process results in an interval which contains
the true parameter value � , equals a given probability 1 � ˛:

Such an interval is called confidence interval and the corresponding probability
the confidence level. The evaluation of the interval is based:

• on a random sample (with replacement) of size n; X1; : : : ; Xn,
• the determination of two (random) values

VL D gL.X1; : : : ; Xn/ and VU D gU.X1; : : : ; Xn/ ;

for the lower and upper limits of the interval.

If these functions satisfy the condition

P.VL � � � VU/ D 1 � ˛ ;

then ŒVLI VU� yields an interval for � with confidence level 1 � ˛. That is, the
probability that the interval contains the true value � in repeated samples equals
1 � ˛. Commonly, ˛ is chosen so that the confidence level 1 � ˛ is high (e.g.,
0; 90; 0; 95 or 0; 99).

For a specific sample x1; : : : ; xn we will denote a realized confidence interval
with lowercase letters ŒvLI vU�.

It is essential to understand the interpretation of the confidence interval:
Before drawing a sample the limits of the confidence level are random variables.

Since VL and VU are functions of the random variables X1; : : : ; Xn; they are
themselves random variables. Hence ŒVLI VU� is a random interval, for which
probability statements can be made.

1 � ˛ is the probability that the estimation procedure produces intervals which
contain the true value of the parameter � . Put differently, if interval estimation
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were repeated many times, then .1 � ˛/ � 100 % of the intervals will contain � and
conversely ˛ � 100 % of the intervals will not contain � .

Once the data have been drawn, the realizations x1; : : : ; xn are substituted into VL

and VU which leads to the realized confidence interval ŒvLI vU�. The limits vL and vU

are fixed values. Either the unknown parameter � lies within the estimation interval
or it does not.

If one of the two limits is unrestricted, then one obtains one-sided confidence
intervals:

• if VL D �1 then one obtains an upper confidence interval .�1I VU�, with
P.� � VU/ D 1 � ˛.

• if VU D C1 then one obtains a lower confidence interval ŒVLI C1/, with
P.VL � �/ D 1 � ˛.

For example, a one-sided upper confidence interval is of interest, if we want to
have some assurance that the underlying parameter does not exceed a certain value.

Two-sided confidence intervals ŒVLI VU� are used when both upper and lower
bounds on the unknown parameter are of interest.

With two-sided confidence intervals the difference VU � VL is referred to as the
length (or width) of the interval. The length generally depends on the confidence
level 1�˛ and on the sample size n. Holding the sample size n constant, an increase
in the confidence level 1 � ˛ usually increases the length of the confidence interval.
Hence, greater certainty that the unknown parameter � will lie within the interval
results in less precision about its position. On the other hand, an increase in sample
size n while holding the confidence level 1 � ˛ constant in general shortens the
confidence interval.

There is a variety of ways of constructing a confidence interval or region which—
in repeated samples—will contain the true parameter with probability 1 � ˛. A
convenient method for specifying a two-sided confidence interval is to require that
each of the tails contain probability ˛=2. That is the limits VL; VU are constructed
so that:

P.� < VL/ D ˛=2 and P.VU < �/ D ˛=2

Consequently

P.� < VL/ C P.VU < �/ D ˛=2 C ˛=2 D ˛:

Our discussion of confidence intervals will focus on these equal tailed intervals. We
will see that when the sampling distribution of the estimator is (approximately) sym-
metric, the resulting confidence intervals will be symmetric around the estimated
value.

To determine the limits of the confidence interval the estimator O� is typically
used. Furthermore, its estimated standard error �. O�/ usually plays a direct role in
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determining the width of the confidence interval. Indeed, confidence intervals are
often of the form:

ŒVL; VU� D Œ O� � c � �. O�/; O� C c � �. O�/�

where c is determined from the sampling distribution of O� and depends on ˛: The
corresponding confidence level is given by:

P.VL � � � VU/ D P. O� � c � �. O�/ � � � O� C c � �. O�// D 1 � ˛ :

8.5 Confidence Interval for the Mean

Assume a random variable X with unknown expectation E.X/ D �. We wish to
perform interval estimation for �. Let X1; : : : ; Xn represent n i.i.d. draws from this
population. It is known that the sample mean

NX D 1

n

nX

iD1

Xi

is an unbiased, consistent and asymptotically efficient estimator of �. The variance
and standard deviation of NX are (in the case of random sampling with replacement,
see Chap. 7) given by:

Var. NX/ D �2. NX/ D �2

n

�. NX/ D �p
n

:

For the construction of a two-sided confidence interval for �:

• we start with the estimator Nx ,
• the standard deviation �.Nx/ is used as the measure of accuracy
• a factor c will be required to multiply the standard deviation of NX to achieve the

given confidence level.

To construct the interval

ŒVLI VU� D ŒNx � c � �. NX/I Nx C c � �. NX/�

we substitute �. NX/

ŒVLI VU� D



Nx � c � �p
n

I Nx C c � �p
n

�
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and write the probability statement

P

�
Nx � c � �p

n
� � � Nx C c � �p

n

	
D 1 � ˛ ;

In order to determine c, we will need to make assumptions on the underlying
distribution of the data which induces the distribution of NX. Below we will assume
that the underlying data are normally distributed. Alternatively, in large samples, we
know by the central limit theorem that NX is approximately normally distributed. We
also will need to distinguish between two cases: � is known, and � is unknown.

Confidence Interval for the Mean with Known Variance

Normally Distributed Population

Suppose X is normally distributed with E.X/ D � and Var.X/ D �2:

X � N.�I �2/

For expositional purposes we assume �2 is known and the expectation � is
unknown. Suppose one draws a random sample of size n.

The random variables X1; : : : ; Xn are i.i.d. normally distributed with E.X/ D �

and Var.X/ D �2:

Xi � N.�I �2/ for each i :

From this it follows, that the estimator NX is also normally distributed with E. NX/ D �

and Var. NX/ D �2. NX/ D �2=n:

NX � N.�; �2. NX// :

The standardized random variable

Z D
NX � �

�. NX/
D

NX � �
�p

n

D p
n

NX � �

�

is standard normal: Z � N.0; 1/.
Let z˛=2 be the ˛=2-quantile and z1�˛=2 the .1 � ˛=2/-quantile of the standard

normal distribution. Then,

P.z˛=2 � Z � z1�˛=2/ D 1 � ˛:
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The symmetry of the standard normal distribution implies that

z˛=2 D �z1�˛=2

Hence,

P.�z1�˛=2 � Z � z1�˛=2/ D 1 � ˛:

For the probability 1 � ˛=2 the corresponding quantile z1�˛=2 is found in standard
normal tables.

After substitution for Z, we will isolate � in the middle of the probability
statement as follows:

P
�
�z1� ˛

2
� Z � z1� ˛

2

�

D P

�
�z1� ˛

2
� p

n
NX � �

�
� z1� ˛

2

	

D P

�
�z1� ˛

2

�p
n

� NX � � � z1� ˛
2

�p
n

	

D P

�
NX � z1� ˛

2

�p
n

� � � NX C z1� ˛
2

�p
n

	
D 1 � ˛ :

The last probability statement yields the confidence interval for �



NX � z1� ˛

2

�p
n

; NX C z1� ˛
2

�p
n

�

The constant c which multiplies the standard deviation of NX is given by c D
z1�˛=2. For a given sample, x1; : : : ; xn; substitution in the above expression yields a
realization of the confidence interval.

Properties of the Confidence Interval

• The confidence interval constructed above assigns equal probabilities to each of
the tails:

P

�
� < NX � z1� ˛

2

�p
n

	
D ˛

2
; P

�
NX C z1� ˛

2

�p
n

< �

	
D ˛

2
:

• Symmetry of the distribution of Z results in a symmetric confidence interval
around NX.
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• The length of the confidence interval

�
NX C z1� ˛

2

�p
n

	
�
�

NX � z1� ˛
2

�p
n

	
D 2z1� ˛

2

�p
n

does not depend on the realized values x1; : : : ; xn. For a given � , n, and 1 � ˛

one obtains different estimation intervals from sample to sample. However, these
estimation intervals all have the same fixed length.

• The width of the confidence interval depends on the standard deviation � of
the population, the sample size n, and via z1�˛=2 on the given confidence level.
Increases in the standard deviation � will ceteris paribus cause the interval to
become wider. Increases in the confidence level 1 � ˛ will also cause the interval
to become wider. Increases in the sample size n result in increased precision in
estimation and hence in narrowing of the confidence interval.

If the population distribution is unknown but the variance is known, then
by the central limit theorem, Nx is approximately normally distributed given a
sufficiently large normal sample size. In this case, the above confidence interval
may be viewed as approximate.

Confidence Interval for the Mean with Unknown Variance

Normal Distribution in the Population

Suppose as before that

X � N.�I �2/ ; Xi � N.�I �2/ for all i and NX � N.�I �2. NX//

We will again need a random variable which depends only on the unknown
parameter �. The standardized random variable Z will not work, because it requires
us to know �2. Suppose the variance �2 is estimated using

S2 D 1

n � 1

nX

iD1

.Xi � NX/2 :

and replace � with the standard deviation S in the Z statistic to obtain

T D p
n

NX � �

S
:

The random variable T follows a t-distribution with n � 1 degrees of freedom:

T � t.n � 1/
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Let tn�1I˛=2 be the ˛=2-quantile and tn�1I1�˛=2 be the .1 � ˛=2/-quantile of the t-
distribution. Due to the symmetry of the t-distribution

tn�1I˛=2 D �tn�1I1�˛=2 ;

Hence it follows

P.�tn�1I1�˛=2 � T � tn�1I1�˛=2/ D 1 � ˛ :

For the probability 1 � ˛=2 one then obtains tn�1I1�˛=2 from the table of the t-
distribution.

Substituting T and after some algebraic manipulation we have a confidence
interval.



NX � tn�1I1� ˛

2
� Sp

n
; NX C tn�1I1� ˛

2
� Sp

n

�

for the unknown parameter � with corresponding probability statement and confi-
dence level given by:

P

�
NX � tn�1I1� ˛

2
� Sp

n
� � � NX C tn�1I1� ˛

2
� Sp

n

	
D 1 � ˛ :

Since the t-distribution converges to N.0I 1/ as sample size n increases, the standard
normal may be used instead of the t-distribution if the sample size is sufficiently
large. As a rule of thumb, this is the case for n > 30.

Properties of the Confidence Interval

• The properties are similar to those in the previous case except that the length of
the confidence interval is no longer fixed but a random variable since it depends
on the estimate s of � :

2tn�1I1� ˛
2

� sp
n

With given sample size n and confidence level 1 � ˛ one obtains different
estimated intervals from sample to sample, which also may display different
lengths.

• As before, the length of the confidence interval depends on the sample size n and
via tn�1I1�˛=2 on the given confidence level 1 � ˛.

• As the quantiles tn�1I1�˛=2 from the t-distribution are larger than the quantiles
z1�˛=2 from the standard normal the confidence intervals are wider when the
variance is unknown. This additional absence of knowledge about the underlying
data generating mechanism is “embedded” in the t-distribution.
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If the population distribution is unknown, then again using the central limit
theorem, NX is approximately normally distributed, and the above procedure yields
approximate confidence intervals.

Explained: Confidence Intervals for the Average Household Net
Income

For a population of N D 2000 households let X be a random variable representing
a household’s net income. Expected household net-income, i.e., E.X/ D �, is
unknown and must be estimated. We are interested in a point estimate and a
confidence interval with a confidence level of 1 � ˛ D 0:95.

To estimate � we use the sample mean

NX D 1

n

nX

iD1

Xi :

The specification of the confidence interval is determined by the information that
is available about the population.

Normally Distributed Population

1.) Confidence interval for � with known standard deviation �

Assume the random variable X (household net-income) to be normally dis-
tributed with standard deviation � D 1012:8. Using this information we may
calculate a two-sided confidence interval:



Nx � z1� ˛

2

�p
n

; Nx C z1� ˛
2

�p
n

�

for � which has confidence level

P

�
NX � z1� ˛

2

�p
n

� � � NX C z1� ˛
2

�p
n

	
D 1 � ˛

To the given level of 1 � ˛ D 0:95 one obtains z1�˛=2 D z0:975 D 1:96. Substituting
� and z1�˛=2 yields

P

�
Nx � 1:96

1012:8p
n

� � � Nx C 1:96
1012:8p

n

	
D 0:95
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Table 8.4 Observations on household net income, sample size n D 20 (data have been reordered)

i Households net-income xi i Households net-income xi

1 800 11 2500

2 1200 12 2500

3 1400 13 2500

4 1500 14 2700

5 1500 15 2850

6 1500 16 3300

7 1800 17 3650

8 1800 18 3700

9 2300 19 4100

10 2400 20 4300

and



Nx � 1:96
1012:8p

n
; Nx C 1:96

1012:8p
n

�

A random sample (with replacement) of size n D 20 households from the above
population yielded the results provided in Table 8.4

Mean household net income is Nx D 48; 300=20 D 2; 415.
The estimated confidence interval is given by:



2415 � 1:96

1012:8p
20

; 2415 C 1:96
1012:8p

20

�
D Œ2415 � 443:88 ; 2415 C 443:88�

D Œ1971:12; 2858:88�

To illustrate some issues related to confidence intervals, 24 further samples of
size n D 20 are drawn. Mean households net income Nx and the corresponding
confidence interval are computed for each sample. They are given in Table 8.5.

Figure 8.4 shows the 25 point estimates and confidence intervals. The true mean
� of the population is depicted as a dotted line. Note the following points.

• The limits VL and VU of a confidence interval are random variables and as such
differ from sample to sample.

• Of the 25 intervals, 23 intervals (92 %) contain the true value � and 2 intervals
(samples no. 9 and no. 24) do not. Does this contradict the fixed confidence level
0.95?

The answer is NO, since the confidence level refers to a very large number of
samples (much larger than 25).

• All 25 intervals have the same width 887.76, since the standard deviation � of
the population has been assumed to be known.
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Table 8.5 Mean household net income and confidence interval for 25 random samples of size
n D 20

i Nx vL vU i Nx vL vU

1 2413:40 1969:52 2857:28 14 2126:50 1682:62 2570:38

2 2317:00 1873:12 2760:88 15 2243:15 1799:27 2687:03

3 2567:50 2123:62 3011:38 16 2361:25 1917:37 2805:13

4 2060:90 1617:02 2504:78 17 2607:25 2163:37 3051:13

5 2363:50 1919:62 2807:38 18 2319:55 1875:67 2763:43

6 2774:30 2330:42 3218:18 19 2203:85 1759:97 2647:73

7 2298:80 1854:92 2742:68 20 2395:25 1951:37 2839:13

8 72241:15 1797:27 2685:03 21 2659:00 2215:12 3102:88

9 1915:30 1471:42 2359:18 22 2168:50 1724:62 2612:38

10 2062:15 1618:27 2506:03 23 2110:30 1666:42 2554:18

11 2267:75 1823:87 2711:63 24 1884:90 1441:02 2328:78

12 2163:10 1719:22 2606:98 25 2415:00 1971:12 2858:88

13 2635:00 2191:12 3078:88
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Fig. 8.4 Point estimates and confidence intervals for 25 random samples of size n D 20

2.) Confidence Interval for � with unknown Standard Deviation �

Again assume a normally distributed random variable X (household net-income)
where the standard deviation is unknown : X � N.�I �2/. We will draw random
samples of size n D 20. To determine the confidence interval for � the variance �2
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is estimated using s2. The confidence interval is given by



Nx � tn�1I1� ˛

2

sp
n

; Nx C tn�1I1� ˛
2

sp
n

�

with confidence level

P

�
NX � tn�1I1� ˛

2

Sp
n

� � � NX C tn�1I1� ˛
2

Sp
n

	
D 1 � ˛

For the given confidence level 1 � ˛ D 0:95 tables for the t-distribution yield
tn�1I1�˛=2 D t19I0:975 D 2:093. Substituting in the above, one obtains



Nx � 2:093

sp
n

; Nx C 2:093
sp
n

�

Referring to the data provided in Table 8.1, we calculate the mean and standard
deviation to be Nx D 48 300=20 D 2 415, s D 1001:065 and the confidence interval
to be



2415 � 2; 093

1001:065p
20

; 2415 C 2; 093
1001:065p

20

�

D Œ2415 � 468:51 ; 2415 C 468:51�

D Œ1946:49; 2883:51� :

Table 8.6 contains mean household net-income Nx, the standard deviation s and
the confidence interval as well as the width of the confidence interval for the 25
samples.

Figure 8.5 shows the 25 point estimates and confidence intervals. For illustrative
purposes the true mean � of the population is depicted as a dashed line.

In this case only one interval does not cover the true value of the parameter �

(sample no. 24). From Table 8.6 and Fig. 8.5 it is evident that the lengths of the
intervals vary from sample to sample and are hence random variables. The cause is
the unknown standard deviation � of the population, which has to be estimated for
each sample.

Unknown Population Distribution and Unknown Standard Deviation

The case most frequently occurring in practice is now considered. In this case the
distribution of the random variable X and the standard deviation � are unknown. In
order to use the procedures we have proposed, it is necessary that the sample size
n be sufficiently large, so that the central limit theorem can be applied. We select
n D 100.
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Table 8.6 Mean household net income Nx, standard deviation s, confidence interval and interval
width for 25 samples of size n D 20

i Nx s vL vU Width

1 2413:40 1032:150 1930:34 2896:46 966:12

2 2317:00 872:325 1908:74 2825:26 816:52

3 2567:50 1002:008 2098:55 3036:45 937:90

4 2060:90 812:365 1680:71 2441:09 760:38

5 2363:50 1376:648 1719:22 3007:78 1288:56

6 2774:30 1213:779 2206:24 3342:63 1136:12

7 2298:80 843:736 1903:92 2693:68 789:76

8 2241:15 1116:827 1718:46 2763:84 1045:38

9 1915:30 1113:122 1394:35 2436:25 1041:90

10 2062:15 856:069 1661:50 2462:80 801:30

11 2267:75 1065:227 1769:21 2766:29 997:08

12 2163:10 1040:966 1675:92 2650:28 974:36

13 2635:00 1154:294 2094:78 3175:22 1080:44

14 2126:50 1103:508 1610:05 2642:95 1032:90

15 2243:15 1126:913 1715:74 2770:56 1054:82

16 2361:25 1166:260 1815:43 2907:07 1091:64

17 2607:25 848:019 2210:37 3004:13 793:76

18 2319:55 941:236 1879:04 2760:06 881:02

19 2203:85 974:980 1747:55 2660:15 912:60

20 2395:25 899:461 1974:29 2816:21 841:92

21 2659:00 969:720 2205:16 3112:84 907:68

22 2168:50 763:222 1811:31 2525:69 714:38

23 2110:30 1127:608 1582:57 2638:03 1055:46

24 1884:90 928:420 1450:39 2319:41 869:02

25 2415:00 1001:065 1946:49 2883:51 937:02

Then,



Nx � z1� ˛

2

sp
n

; Nx C z1� ˛
2

sp
n

�

is a confidence interval for the unknown parameter � at the approximative confi-
dence level

P

�
NX � z1� ˛

2

Sp
n

� � � NX C z1� ˛
2

Sp
n

	
� 1 � ˛

Again, if 1 � ˛ D 0:95 tables for the standard normal distribution yield z1�˛=2 D
z0:975 D 1:96.
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Fig. 8.5 Estimation intervals for 25 random samples of size n D 20

Figure 8.6 depicts the point estimates and confidence intervals for 50 random
samples (with replacement). For illustrative purposes the true mean � of the
population is depicted using a dashed line. Numerical results are not provided.

We again observe that the width of the intervals varies from sample to sample and
are hence random variables. This is due to the unknown standard deviation of the
population. Of the 50 estimation intervals 2 (4 %) do not cover the true parameter
value �.

Enhanced: Confidence Intervals for the Lifetime of a Bulb

The marketing department of a lamp manufacturer needs values for the average
lifetime of a particular type of bulb.

• It is of course not possible to sample the entire population since it consists of
bulbs that are yet to be produced. Furthermore, in determining its lifetime, the
bulb is destroyed. Hence, a sample from the population needs to be drawn.

• To ensure that the sample is representative, a random sample is drawn.
• Drawing a random sample with replacement is not feasible since once its lifetime

is measured, the bulb is destroyed. Since the total production is large, however,
the fact that one is sampling without replacement does not significantly effect the
distribution from which one is sampling.

• We are interested in a point estimate for the unknown average life time � as well
as a symmetric confidence interval with confidence level 1 � ˛ D 0:95.
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1300 1800 2300 2800 3300

x
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Fig. 8.6 Confidence intervals of 50 random samples of size n D 100

• Neither the variance �2 nor the distribution of the random variable X = {life time}
is known. We assume the sample size n is large enough so that we can use the
approximate confidence interval



NX � z1� ˛

2

Sp
n

; NX C z1� ˛
2

Sp
n

�

with corresponding approximate confidence level

P

�
NX � z1� ˛

2

Sp
n

� � � NX C z1� ˛
2

Sp
n

	
� 1 � ˛

At the given confidence level 1 � ˛ D 0:95 one may consult a table for the
standard normal distribution to obtain z1�˛=2 D z0:975 D 1:96.

• There is a trade-off between the accuracy of the approximation and the cost of
sampling. We select n D 50.
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The specific sample yields the following point estimates:

Mean life time in sample Nx: 1600 hours

Variance s2 in sample: 8100 hours2

Standard deviation s in the sample: 90 hours

The confidence interval is given by:



1600 � 1:96

90p
50

; 1600 C 1:96
90p
50

�
D Œ1600 � 24:95 ; 1600 C 24:95�

D Œ1575:05; 1624:95�

A high confidence level (in this case 0.95) is selected to ensure that the resulting
confidence intervals contain the true parameter value with high probability.

From the point of view of marketing and quality control, it is important that the
advertised lifetime is met or exceeded with high probability. Thus, one is interested
in a one-sided confidence interval of the form

P

�
NX � z1�˛

Sp
n

� �

	
D 1 � ˛ D 0:95

where one obtains z1�˛ D z0:95 D 1:645 from tables of the standard normal. Using
the previous data one obtains:

vL D 1600 � 1:645 � 90p
50

D 1600 � 20:94 D 1579:06 h

and the corresponding one-sided estimation interval

Œ1579:06 I C1/ :

Interactive: Confidence Intervals for the Mean

The interactive example includes a number of sidebar panels. You can access the
panels by setting a mark at the corresponding check box on the upper right.

Please select

• the confidence level 1 � ˛

• the sample size n
• if you expect the true population variance to be known
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Fig. 8.7 Screenshot of the interactive example, available at http://u.hu-berlin.de/men_ci1

Use

• “Draw sample” to manually construct a confidence interval
• “Reset” to reset the graphic
• the slider to cause an automated drawing of samples

The last two panels allow you to choose a dataset or variable and to change
the font size. For a detailed explanation on datasets and variables, please refer to
Appendix A.

Output

The upper graphic in Fig. 8.7 displays the resulting confidence intervals. The
dashed line represents the population mean. After drawing an appropriate amount
of samples we may see that 1 � ˛ of the observed intervals capture the population
mean.

The graphic below is a scatterplot including the population (green) and sample
(orange).

8.6 Confidence Interval for Proportion

Suppose we are drawing from a dichotomous population, where � denotes the
proportion of elements with a given property. We want to estimate a confidence
interval for the unknown parameter � .

We draw a random sample of size n in such a manner that X1; : : : ; Xn are inde-
pendently and identically Bernoulli distributed (see Sect. Binomial Distribution).

http://u.hu-berlin.de/men_ci1
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The sample proportion is the number of “successes” in the sample divided by
the sample size n, that is, the mean of the Bernoulli variables X1; : : : ; Xn. It is worth
emphasizing that the sample proportion is a sample mean and as such inherits the
properties and behavior of a sample mean. Thus,

O� D 1

n

nX

iD1

Xi

with expectation and variance

E. O�/ D � ; Var. O�/ D �.1 � �/

n

It is an unbiased and consistent estimator of � (see Sect. Properties of Estimators).
Since it is quite difficult to construct confidence intervals for small samples, we

will restrict ourselves to the case where the sample size n is sufficiently large so that
we may use the Central Limit Theorem to obtain the distribution of the estimator. In
particular,

Z D O� � �

�. O�/
D O� � �
q

�.1��/

n

is approximately normal: Z � N.0I 1/. Hence, we conclude that

P

�
�z1� ˛

2
� O� � �

�. O�/
� z1� ˛

2

	
� 1 � ˛ ;

where z1�˛=2 is obtained from standard normal tables. Still we cannot construct a
confidence interval for � , since the variance of O� depends on � which is unknown.
We simply replace �. O�/ with a consistent estimate

O�. O�/ D
r O�.1 � O�/

n

This is a consistent estimator of
q

�.1��/

n since O� is a consistent estimator of � .
The above probability statement becomes

P

�
�z1� ˛

2
� O� � �

O�. O�/
� z1� ˛

2

	
� 1 � ˛
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We isolate � in the middle of the probability statement to obtain:

P

 

O� � z1� ˛
2

�
r O�.1 � O�/

n
� � � O� C z1� ˛

2
�
r O�.1 � O�/

n

!

� 1 � ˛ :

Hence for large sample sizes an approximate confidence interval is given by:

"

O� � z1� ˛
2

�
r O�.1 � O�/

n
; O� C z1� ˛

2
�
r O�.1 � O�/

n

#

The normal distribution provides a reasonable approximation so long as � is not
too close to zero or one. Typically, sample size should be no smaller than 30, and
preferably substantially larger, e.g., n � 100.

Properties of Confidence Intervals

• The two-sided confidence intervals we have constructed assign roughly equal
probabilities to the tails:

P

 

� < O� � z1� ˛
2

�
r O�.1 � O�/

n

!

� ˛

2
;

P

 

O� C z1� ˛
2

�
r O�.1 � O�/

n
< �

!

� ˛

2
:

• By construction the confidence interval is symmetric around the point estimate
O� .

• The length of the interval

2z1� ˛
2

�
r O�.1 � O�/

n

is a random variable, since it depends through O� on the random sample.
• The length of the confidence interval also depends on the confidence level 1 � ˛

and on n.
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Explained: Confidence Intervals for the Percentage of Votes

The leader of a political party ‘F’ is interested in knowing what fraction of citizens
would vote for it if an election were held. A survey of n D 2000 citizens is
performed which asks the question:

If there were an election tomorrow which party would receive your vote?

According to the survey 103 citizens declared that they would vote for “F.” We wish
to estimate a 95 % confidence interval for � , the proportion of voters who would
vote for “F.”

Note the following:

• In order to insure that a citizen that has been already asked is not sampled
a second time, we sample without replacement (though the probability of
replication is low given the sample size).

• Since interest is focused on party “F,” the event A is defined as “the individual
votes for F” and the complementary event NA as “the individual does not vote for
F.” Thus for our purposes the population is dichotomous. The proportion of votes
for party F is � D P.A/.

• The sample size is sufficiently large (n D 2000), so that one may construct an
approximate confidence interval using the normal approximation:

"

O� � z1� ˛
2

�
r O�.1 � O�/

n
; O� C z1� ˛

2
�
r O�.1 � O�/

n

#

which has an approximate confidence level of 95 %. We obtain z0:975 D 1:96

The results of the survey yield O� D 103=2000 D 0:0515 and a 95 % confidence
interval:

"

0:0515 � 1:96 �
r

0:0515 � 0:9485

2000
; 0:0515 C 1:96 �

r
0:0515 � 0:9485

2000

#

D Œ0:0418 I 0:0612� :

Interactive: Confidence Intervals for the Proportion

The interactive example includes a number of sidebar panels. You can access the
panels by setting a mark at the corresponding check box on the upper right.

Please select

• the confidence level 1 � ˛

• the sample size n
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Fig. 8.8 Screenshot of the interactive example, available at http://u.hu-berlin.de/men_cipi

Use

• “Draw sample” to manually construct a confidence interval
• “Reset” to reset the graphic
• the slider to cause an automated drawing of samples

The last two panels allow you to choose a dataset or variable and to change
the font size. For a detailed explanation on datasets and variables, please refer to
Appendix A.

Output

The upper graphic in Fig. 8.8 displays the resulting confidence intervals. The dashed
line represents the population proportion. After drawing an appropriate amount of
samples we may see that 1 � ˛ of the observed intervals capture the population
proportion.

The graphic below compares the proportion of the population (thick bar) and
sample (thin bar).

8.7 Confidence Interval for the Variance

We want to derive a confidence interval for the unknown variance �2 of a population
under the following assumption:

1. The population is normally distributed: X � N.�I �2/.
2. The expectation E.X/ D � is unknown.

http://u.hu-berlin.de/men_cipi
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3. A random sample of size n is drawn, the random variables X1; : : : ; Xn are
independently and identically normally distributed.

As we have seen above, an unbiased estimator of the unknown variance �2 is
given by:

S2 D 1

n � 1

nX

iD1

.Xi � NX/2 :

It has been shown (see Sect. Distribution of the Sample Variance) that

.n � 1/S2

�2
D 1

�2

nX

iD1

.Xi � NX/2 D
nX

iD1

�
Xi � NX

�

	2

follows a chi-square distribution with n � 1 degrees of freedom. We can now make
probability statements of the following form:

P

 
�2�2

˛
2 In�1

n � 1
� S2 �

�2�2
1� ˛

2 In�1

n � 1

!

D 1 � ˛

Here, �2
˛
2 In�1

is the ˛=2-quantile and �2
1� ˛

2 In�1
the .1 � ˛=2/-quantile of the chi-

square distribution with n � 1 degrees of freedom. By algebraic manipulation we
may isolate �2 in the middle of the probability statement:

P

 
.n � 1/S2

�2
1� ˛

2 In�1

� �2 � .n � 1/S2

�2
˛
2 In�1

!

D 1 � ˛ :

The corresponding estimate of the confidence interval is given by
"

.n � 1/s2

�2
1� ˛

2 In�1

;
.n � 1/s2

�2
˛
2 In�1

#

:

The interpretation is the same as before: a proportion 1 � ˛ of confidence intervals
constructed in this fashion will contain the true parameter value �2.

Properties of the Confidence Interval

• By construction, these confidence intervals assign equal probability mass to the
tails:

P

 

�2 <
.n � 1/S2

�2
1� ˛

2 In�1

!

D ˛

2
; P

 
.n � 1/S2

�2
˛
2 In�1

< �2

!

D ˛

2
:
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Table 8.7 Realizations of
random samples of size
n D 20 (ordered by size)

Household net income Household net income

i (EUR) xi i (EUR) xi

1 800 11 2500

2 1200 12 2500

3 1400 13 2500

4 1500 14 2700

5 1500 15 2850

6 1500 16 3300

7 1800 17 3650

8 1800 18 3700

9 2300 19 4100

10 2400 20 4300

• The confidence interval is not symmetric around the point estimate s2, since the
chi-square distribution is not a symmetric distribution.

• The length of the confidence interval

.n � 1/S2

 
1

�2
˛
2 In�1

� 1

�2
1� ˛

2 In�1

!

depends on the sampled values x1; : : : ; xn and is a random variable. The length of
the interval also depends on the sample size n and on the confidence level 1 � ˛.

Explained: Confidence Intervals for the Variance of Household
Net Income

For a population of N D 2000 households let X denote net household income.
We assume that X is approximately normally distributed X � N.�I �2/; the two
parameters � and the variance �2 are unknown.

Construction of confidence intervals for the unknown mean � has been studied
in the section Confidence Intervals for the Expectation.

Here, we want to focus on the unknown variance �2, for which we will construct
a confidence interval with confidence level 1 � ˛ D 0:95.

Mean household income of the sample is (Table 8.7)

Nx D 48 300=20 D 2 415 :

Our point estimate for the unknown variance �2 is given by

s2 D 1 002 131:58
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Using chi-square tables we find

�2
˛=2In�1 D �2

0:025I19 D 8:91 and �2
1�˛=2In�1 D �2

0:975I19 D 32:85

Hence the confidence interval is given by



19 � 1002131:58

32:85
;

19 � 1002131:58

8:91

�
D Œ579619:48; 2136980:92� :

Interactive: Confidence Intervals for the Variance

The interactive example includes a number of sidebar panels. You can access the
panels by setting a mark at the corresponding check box on the upper right.

Please select

• the confidence level 1 � ˛

• the sample size n

Use

• “Draw sample” to manually construct a confidence interval
• “Reset” to reset the graphic
• the slider to cause an automated drawing of samples

The last two panels allow you to choose a dataset or variable and to change
the font size. For a detailed explanation on datasets and variables, please refer to
Appendix A.

Output

The upper graphic in Fig. 8.9 displays the resulting confidence intervals. The dashed
line represents the population variance. After drawing an appropriate amount of
samples we may see that 1 � ˛ of the observed intervals capture the population
variance.

The graphic below compares the variance of the population (green) and sample
(orange).

8.8 Confidence Interval for the Difference of Two Means

There are various ways to construct a confidence interval for the difference of two
means �1 � �2 depending on the assumptions one makes. Our assumptions are as
follows:
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Fig. 8.9 Screenshot of the interactive example, available at http://u.hu-berlin.de/men_cisig

• In the two populations the random variables X1 and X2 are normally distributed
with parameters E.X1/ D �1 , E.X2/ D �2, Var.X1/ D �2

1 and Var.X2/ D �2
2 ,

i.e., X1 � N.�1I �2
1 / and X2 � N.�2I �2

2 /.
• From each population a random sample is drawn (with replacement), The sample

sizes are denoted by n1 and n2, respectively.
• The random samples are independent of each other.

When constructing confidence intervals for the difference �1 � �2 of two means
one is often interested in seeing whether the value 0 is covered by the interval. If
�1 � �2 D 0 is not an element of the interval, then the two populations are different
at least with respect to their means.

Since X1 and X2 are normally distributed, Nx1 and Nx2 are also normal (see
Sect. Distribution of the Sample Mean). Moreover we have:

E. NX1/ D �1 Var. NX1/ D �2. NX1/ D �2
1

n1
;

E. NX2/ D �2 Var. NX2/ D �2. NX2/ D �2
2

n2
.

In summary

NX1 � N

�
�1I �2

1

n1

	
NX2 � N

�
�2I �2

2

n2

	

Since linear combinations of independent normally distributed random variables are
also normally distributed, we also have that the difference of the two sample means

D D NX1 � NX2

http://u.hu-berlin.de/men_cisig
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is normally distributed with expectation

E.D/ D E. NX1 � NX2/ D E. NX1/ � E. NX2/ D �1 � �2

and variance

Var.D/ D �2
D D Var. NX1 � NX2/ D Var. NX1/ C Var. NX2/ D �2

1

n1

C �2
2

n2

:

The standardized random variable

Z D D � E.D/

�D
D . NX1 � NX2/ � .�1 � �2/

q
�2

1

n1
C �2

2

n2

is therefore N.0I 1/.
We distinguish between two cases:

• the variances of the two populations �2
1 and �2

2 are known
• the variances of the two populations �2

1 and �2
2 are unknown

1. Case: The Variances � 2
1

and � 2
2

of the Two Populations
Are Known

If both variances �2
1 and �2

2 known, we have the confidence interval
2

4. NX1 � NX2/ � z1� ˛
2

s
�2

1

n1

C �2
2

n2

; . NX1 � NX2/ C z1� ˛
2

s
�2

1

n1

C �2
2

n2

3

5

for the difference �1 � �2 at confidence level 1 � ˛; i.e.,

P

0

@. NX1 � NX2/ � z1� ˛
2

s
�2

1

n1

C �2
2

n2

� �1 � �2 � . NX1 � NX2/ C z1� ˛
2

s
�2

1

n1

C �2
2

n2

1

A

D 1 � ˛ :

Properties of the Confidence Interval

• By construction these confidence intervals assign equal probability mass to the
tails:

P
�
�1 � �2 < D � z1� ˛

2
�D

�
D ˛

2
; P

�
D C z1� ˛

2
�D < �1 � �2

�
D ˛

2
:
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• The confidence interval is symmetric around the estimated difference D,
• The length of the interval is constant given n1 and n2, the variances �2

1 and �2
2

and the confidence level 1 � ˛.

Hint: If we cannot assume the populations to be normally distributed, but the two
sample sizes n1 � 30 and n2 � 30, the Central Limit Theorem may be used to
justify the same confidence interval procedure. In this case, the confidence level is
approximately 1 � ˛.

2. Case: The Variances � 2
1

and � 2
2

of the Two Populations
Are Unknown

In this case �2
1 and �2

2 are estimated using the unbiased and consistent estimators

S2
1 D 1

n1 � 1

n1X

iD1

.X1i � NX1/
2 S2

2 D 1

n2 � 1

n2X

iD1

.X2i � NX2/
2:

If we can assume variance homogeneity, i.e., �2
1 D �2

2 , one may produce an
estimate s2 for the joint variance �2. This is the weighted arithmetic mean of the
two sample variances:

s2 D .n1 � 1/s2
1 C .n2 � 1/s2

2

n1 C n2 � 2

s2 is also called a pooled variance. The estimator s2
D for �2

D is hence:

s2
D D s2

�
1

n1

C 1

n2

	
D n1 C n2

n1n2

.n1 � 1/s2
1 C .n2 � 1/s2

2

n1 C n2 � 2
:

The standard deviation sD—the square root of s2
D—is used to standardize. The

resulting random variable

T D D � E.D/

SD
D . NX1 � NX2 � .�1 � �2/
q

n1Cn2

n1n2

.n1�1/S2
1C.n2�1/S2

2

n1Cn2�2

is t-distributed with n1 C n2 � 2 degrees of freedom. We may now construct a
confidence interval for the difference �1 � �2:

h
.Nx1 � Nx2/ � tn1Cn2�2I1� ˛

2
sD ; .Nx1 � Nx2/ C tn1Cn2�2I1� ˛

2
sD

i
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at a confidence level .1 � ˛/:

P
�
. NX1 � NX2/ � tn1Cn2�2I1� ˛

2
SD � �1 � �2 � . NX1 � NX2/ C tn1Cn2�2I1� ˛

2
SD

�

� 1 � ˛ :

If one has variance heterogeneity, i.e., �2
1 ¤ �2

2 , we use the estimator S2
D of �2

D
given by:

S2
D D S2

1

n1

C S2
2

n2

If the two sample sizes are sufficiently large (n1 > 30 and n2 > 30), then we may
use

2

4.Nx1 � Nx2/ � z1� ˛
2

s
s2
1

n1

C s2
2

n2

; .Nx1 � Nx2/ C z1� ˛
2

s
s2
1

n1

C s2
2

n2

3

5

for the confidence interval at level .1 � ˛/, i.e.,

P

0

@. NX1 � NX2/ � z1� ˛
2

s
S2

1

n1

C S2
2

n2

� �1 � �2 � . NX1 � NX2/ C z1� ˛
2

s
S2

1

n1

C S2
2

n2

1

A

D 1 � ˛ :

Properties of Confidence Intervals When Variances
Are Unknown

• By construction these confidence intervals assign equal probability mass to the
tails.

• The confidence interval is symmetric around the point estimate Nx1 � Nx2.
• The length of the confidence interval is random since it depends on s2

1 and s2
2.

• The confidence interval also depends on the sample sizes n1 and n2 and on the
confidence level 1 � ˛.
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Explained: Confidence Interval for the Difference of Car Gas
Consumptions

An automobile club wants to compare (highway) gas consumption of two similar
types of cars produced by company A and B. To assist the club, we will construct
a confidence interval for the difference of the two means �1 � �2 at a confidence
level 1 � ˛ D 0:95. We make the following assumptions:

• It is assumed that the random variables:

X1 D “gas consumption per 100 km of A type cars,” and

X2 D “gas consumption per 100 km of B type cars”

are normally distributed with unknown means E.X1/ D �1 and E.X2/ D �2 and
unknown variances Var.X1/ D �2

1 and Var.X2/ D �2
2 . We do not assume that

variances are equal.
• We assume n1 � 30 and n2 � 30.
• The populations are large so we will perform sampling with replacement.
• We will assume all observations are independent.

The confidence interval for the difference �1 � �2 can be constructed using
2

4.Nx1 � Nx2/ � z1� ˛
2

s
s2
1

n1

C s2
2

n2

; .Nx1 � Nx2/ C z1� ˛
2

s
s2
1

n1

C s2
2

n2

3

5

with approximate confidence level

P

0

@. NX1 � NX2/ � z1� ˛
2

s
S2

1

n1

C S2
2

n2

� �1 � �2 � . NX1 � NX2/ C z1� ˛
2

s
S2

1

n1

C S2
2

n2

1

A

D 0:95 :

where z1�˛=2 D 1:96. The automobile club tests 36 cars of company A and 40 cars
of company B. The following quantities are calculated (in liters per 100 km, l/100
km) :

Nx1 = 9.2 l/100 km, s = 0.6 l/100 km

Nx2 = 8.4 l/100 km, s = 0.4 l/100 km

The confidence interval is:
"

.9:2 � 8:4/ � 1:96 �
r

0:62

36
C 0:42

40
; .9:2 � 8:4/ C 1:96 �

r
0:62

36
C 0:42

40

#

D Œ0:586 ; 1:032� :
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This interval does not cover 0. We will see later that this implies a statistically
significant difference in mean gas consumption between the two populations.

Enhanced: Confidence Intervals of the Difference of Two Mean
Stock Prices

Company X wants to analyze its share performance on two stock exchanges using
the spot price which is observed daily at 12.00 p.m. The company is particularly
interested in the difference of mean spot prices. We will construct both a point
estimate and a confidence interval at level 1 � ˛ D 0:95.

The random variables are:

X1 D “the spot price on the first stock exchange”;

X2 D “the spot price on the second stock exchange”:

The means E.X1/ D �1, E.X2/ D �2 and variances Var.X1/ D �2
1 , Var.X2/ D �2

2

are unknown. We assume that

• prices are independent at the two stock exchanges
• the variances are equal (variance homogeneity)

We draw a random sample from each population. The sample sizes are n1 D 10

and n2 D 10. Since the company X has been traded at the two stock exchanges for
a long time, both populations are large. Hence we can assume that we are sampling
with replacement. Moreover we assume independence of the two samples.

In demonstrating the construction of confidence intervals for the difference �1 �
�2, consider the following two cases:

• X1 and X2 are normally distributed
• the distributions of X1 and X2 are unknown

1. Case

We have X1 � N.�1I �2/ and X2 � N.�2I �2/. The standardized random variable

T D D � E.D/

SD
D . NX1 � NX2/ � .�1 � �2/
q

n1Cn2

n1n2
� .n1�1/S2

1C.n2�1/S2
2

n1Cn2�2

;

is t-distributed with n1 C n2 � 2 D 18 degrees of freedom. Under these assumptions

h
.Nx1 � Nx2/ � tn1Cn2�2I1� ˛

2
sD; I .Nx1 � Nx2/ C tn1Cn2�2I1� ˛

2
sD

i
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Table 8.8 Spot prices for
n D 10 randomly selected
days

i x1i x2i .x1i � Nx1/2 .x2i � Nx2/2

1 18:50 18:45 0:0841 0.1296

2 19:00 18:90 0:0441 0.0081

3 18:70 18:80 0:0081 0.0001

4 19:30 19:50 0:2601 0.4761

5 17:10 17:30 2:8561 2.2801

6 18:30 18:10 0:2401 0.5041

7 18:60 18:80 0:0361 00001

8 19:00 18:85 0:0441 0.0016

9 19:40 19:50 0:3721 0.4761

10 20:00 19:90 1:4641 1.1881

is a confidence interval for the difference of the two spot price means �1 � �2 at a
confidence level

P
�
. NX1 � NX2/ � tn1Cn2�2I1� ˛

2
sD � �1 � �2 � . NX1 � NX2/ C tn1Cn2�2I1� ˛

2
sD

�

D 1 � ˛ D 0:95 :

For 1 � ˛ D 0:95, we find tn1Cn2�2I1�˛=2 D t18I0:975 D 2:101.
For n D 10 randomly selected days, we record spot prices on each of the two

exchanges, given in Table 8.8 in column 2 and 3. Columns 4 and 5 contain squared
deviations from the estimated means which are used to calculate the individual
variances.

We obtain:

Nx1 D 18:79 Nx2 D 18:81

s2
1 D 0:601 s2

2 D 0:563 :

Since we have assumed homogeneity of variances, the point estimate s2 for the
joint or pooled variance �2 is given by the weighted arithmetic mean of the sample
variances:

s2 D .n1 � 1/s2
1 C .n2 � 1/s2

2

n1 C n2 � 2
D 9 � 0:601 C 9 � 0:563

18
D 0:582 :

The variance of the difference of the sample means is

s2
D D s2

�
1

n1

C 1

n2

	
D 0:582 � 1

5
D 0:1164 :
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and the standard deviation is sD D 0:3412. A confidence interval for the difference
is given by:

Œ.18:79 � 18:81/ � 2:101 � 0:3412 ; .18:79 � 18:81/ C 2:101 � 0:3412�

D Œ�0:7369 ; 0:6969� :

which is small relative to the levels of the individual spot prices. The confidence
interval includes the value 0. Hence there does not appear to be an appreciable
difference between the two mean spot prices �1 and �2. In a later chapter we will
see how this implies that there is no statistically significant difference between the
two prices.

2. Case

We will now drop the assumption of normality of X1 and X2. We will require
larger sample sizes in order that we may rely upon the central limit theorem as
an approximation to the distributions of NX1 and NX2 (and their difference NX1 � NX2).
We will draw samples of size n1, n2 D 50. The standardized random variable

D � E.D/

SD
D . NX1 � NX2/ � .�1 � �2/q

n1Cn2

n1n2
� .n1�1/S2

1C.n2�1/S2
2

n1Cn2�2

is approximately normally distributed. Under the above assumptions

h
.Nx1 � Nx2/ � z1� ˛

2
sD; .Nx1 � Nx2/ C z1� ˛

2
sD

i

is an approximate confidence interval for the difference �1 � �2 at confidence level
.95:

P
�
. NX1 � NX2/ � z1� ˛

2
SD � �1 � �2 � . NX1 � NX2/ C z1� ˛

2
SD

�
� 1 � ˛ D 0:95 :

where z1�˛=2 D z0:975 D 1:96. Using our two samples of 50 observations each we
obtain:

Nx1 D 18:80 s2
1 D 0:5967

Nx2 D 18:83 s2
2 D 0:6188 :

Since we assumed homogeneous variances, we estimate �2 using

s2 D 49 � 0:5967 C 49 � 0:6188

98
D 0:6078 :
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and

s2
D D s2

�
1

n1

C 1

n2

	
D 0:6078 � 1

25
D 0:0243 :

The standard deviation is sD D 0:1559.
The confidence interval is given by:

Œ.18:80 � 18:83/ � 1:96 � 0:1559 ; .18:80 � 18:83/ C 1:96 � 0:1559�

D Œ�0:3356 ; 0:2756� :

The interpretation follows as in case 1 above.

Comparing the Two Approaches

• In case 1 we had more information about the population than in case 2.
• The difference of the two sample means and the joint variances are approximately

of the same size in both cases.
• The variance s2

D and standard deviation sD of the difference are much smaller in
case 2 due to the larger sample size.

• The length of the confidence interval in case 2 is much smaller than in case 1.
• The confidence interval in case 2 is approximate because of the absence of exact

knowledge of the underlying distributions.

Interactive: Confidence Intervals for the Difference of Two
Means

The interactive example includes a number of sidebar panels. You can access the
panels by setting a mark at the corresponding check box on the upper right.

Please select

• the confidence level 1 � ˛

• the sample sizes n1 and n2

Use

• “Draw sample” to manually construct a confidence interval
• “Reset” to reset the graphic
• the slider to cause an automated drawing of samples

The last two panels allow you to choose a dataset or variable and to change
the font size. For a detailed explanation on datasets and variables, please refer to
Appendix A.



8.9 Confidence Interval Length 305

Fig. 8.10 Screenshot of the interactive example, available at http://u.hu-berlin.de/men_ci2

Output

The upper graphic in Fig. 8.10 displays the resulting confidence intervals. The
dashed line represents the difference between the two means in the population. After
drawing an appropriate amount of samples we may see that 1 � ˛ of the observed
intervals capture the population difference.

The graphic below shows a scatterplot of the population (green) and sample
(orange).

8.9 Confidence Interval Length

The length of a confidence interval generally depends on the confidence level and
on the sample size n. An increase in the confidence level 1 � ˛ (keeping the sample
size n constant) yields a broader confidence interval. Increasing the sample size n
(while keeping the confidence level 1 � ˛ constant), enhances precision and yields
a smaller interval. Hence by adjusting the confidence level and sample size, we may
control the width of the confidence interval.

Until now we have assumed that confidence level and sample size are given. In
some applications, however, it is necessary to find the sample size which yields a
confidence interval of prespecified width at a confidence level 1 � ˛.

The problem will be illustrated using confidence intervals for a mean � and a
proportion � . We will assume sampling with replacement from a large population.

http://u.hu-berlin.de/men_ci2
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(a) Confidence Interval for �

We assume that the population is normally distributed. The exact sample size can
be found, if the length of the sample size is not random, i.e., does not depend on the
data. This is true if the variance �2 of the population is known. The length of the
confidence interval for � is given by:

L D 2 � z1� ˛
2

� �p
n

and depends on the confidence level 1 � ˛ as well as the sample size n. If the length
L and the confidence level 1 � ˛ are given, we may solve the above equation for
n. More precisely, the required sample size is the smallest integer for which the
condition holds:

n �
4�2z2

1� ˛
2

L2
:

In order to obtain a confidence interval not exceeding length L and confidence level
1 � ˛, n has to be at least as large as this integer.
Hint: If the variance �2 is unknown, the length of the interval for �

L D 2 � tn�1I1� ˛
2

� sp
n

is random since it depends on the standard deviation s which is a function of
the sample. There are procedures which ensure that the expected length of the
confidence interval equals some value, but these will not be considered here.

(b) Confidence Interval for �

Suppose we have a sufficiently large sample so that the sample proportion O� is
approximately normally distributed. The length of the confidence interval for � is
given by

L D 2 � z1� ˛
2

�
r O�.1 � O�/

n
:

Given a prespecified value L, and confidence level 1 � ˛, we could solve the above
equation for the required sample size. More precisely, the required sample size
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would be the smallest integer for which the following condition holds:

n �
4 � z2

1� ˛
2

O� � .1 � O�/

L2
:

However, note that O� is random, in which case the required sample size would
vary from sample to sample. Fortunately, we can arrive at a conservative minimum
sample size as follows. Note first that �.1 � �/ is maximal when � D 0:5 and
1 � � D 0:5. This is the situation which requires, ceteris paribus, the largest sample
size. Thus if we select

n �
4 � z2

1� ˛
2

� 1
2

� 1
2

L2
D

z2
1� ˛

2

L2
:

then it will also be the case that

n �
4 � z2

1� ˛
2
� � .1 � �/

L2
:

for any other � . We need to take some care to ensure that sample size n is sufficiently
large so that the normal distribution applies.

Explained: Finding a Required Sample Size

The Bimmelbahn Corporation would like to make a statement about the timeliness
of its trains, in particular, the average delay and the proportion of timely trains.
Confidence interval based on a random sample will be used.

1. Question

What should be the sample size in order to find a confidence interval for mean delay
at a confidence level 1 � ˛ D 0:90 and width 60 min? We assume that the random
variable X = “duration of delays” is normally distributed with mean E.X/ D � and
known variance Var.X/ D �2 D 68:8. We want a confidence interval for �. Note
that z1�˛=2 D z0:95 D 1:645. Hence the required sample size is

n �
4�2z2

1� ˛
2

L2
D 4 � 68:82 � 1:6452

602
D 14:23 :

Thus if n � 15, the confidence interval will have the desired precision and width.
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2. Question

What should be the sample size so that the confidence interval for � (the proportion
of timely trains) be of length not exceeding 0.1 at a confidence level 1 � ˛ D 0:95?
We assume the normal approximation holds for the distribution of O� (rule of thumb:
n � 100). Note that z1�˛=2 D z0:975 D 1:96.

We need to find n to satisfyW

n �
4 � z2

1� ˛
2

� O� � .1 � O�/

L2

A conservative bound for minimum sample size may be obtained by setting � D
0:5.

We obtain:

n � z2

L2
D 1:962

0:12
D 384:16 :

Thus to achieve the desired width and confidence level, we need n � 385.

Enhanced: Finding the Sample Size for an Election Threshold

The leader of a small political party would like to know whether the party will
receive more than 5 % of the vote if the election were held tomorrow. He has
appointed a statistician to perform the analysis. During their conversation the
statistician highlights the following issues:

• In order to find the exact proportion of supporters, one would have to ask all the
voters (i.e., the whole population).

• The proportion of votes in the sample is but an estimate or approximation of the
true proportion.

• The confidence interval provides a measure of the uncertainty associated with the
estimate.

• The length and level of confidence may be chosen by the politician.
• The shorter the required interval and the higher the confidence level, the larger

the sample size.

The statistician calculates the required sample size using

n �
4 � z2

1� ˛
2

� O� � .1 � O�/

L2
:
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Fig. 8.11 Screenshot of the interactive example, available at http://u.hu-berlin.de/men_cilen

Since O� is unknown, the statistician uses the largest imaginable proportion of
votes for his party. That proportion is 10 %. (This is because � � .1 � �/ increases
with � .) This yields a conservative value for minimum sample size.

Interactive: Confidence Interval Length for the Mean

The interactive example includes a number of sidebar panels. You can access the
panels by setting a mark at the corresponding check box on the upper right.

Please select

• the confidence level 1 � ˛

• the maximum sample size n
• the standard deviation �

• the confidence interval length L

Output

The plot in Fig. 8.11 displays a graph showing the changes of the confidence interval
length L if the sample size n varies.

http://u.hu-berlin.de/men_cilen


Chapter 9
Statistical Tests

9.1 Key Concepts

Statistical tests are tools for the analysis of hypotheses about the characteristics
of unknown probability distributions or relationships between random variables. If
the probability distribution is specified up to a finite set of parameters, testing for
the fully specified probability density amounts to testing whether the parameters
take on specific values. As the mathematical specification of a class of probability
distributions involves writing down a function that contains parameters whose
values aren’t known a priori, tests based on postulated parameters that determine the
characteristics of a probability distribution are dubbed “parametric” tests. Statistical
estimation procedures can be used to obtain estimates of the specific parameter(s)
of interest. Statistical test theory provides a means of quantifying the significance of
such estimates. Closely related to the choice of the parameter value(s) is the choice
of the class of probability distributions. Such a fully specified distribution has to
describe reality as accurately and reliably as possible. In practice, the choice of a
functional class such as the Normal (or Gaussian) distribution and estimating and
testing parameters is an iterative process. Empirical researchers will have to consider
various models (alternative distributions) at the explorative stage of the investigation
into the nature of the phenomena of interest. However, very often certain probability
models are chosen a priori for their tractability rather than on theoretical grounds.
When the postulated class of distribution functions is theory-driven in that it is the
result of logical deduction from accepted premises, testing for the significance of
parameters forms an important part of the verification of scientific theory. Much of
empirical research is, however, data-driven in that there is no a priori distribution
function.

The objective of a parametric statistical hypothesis test procedure can be summa-
rized as follows. Given a certain population with parametric distribution function
F .x/ (with parameters such as expected value � and variance �2 in the class of

© Springer International Publishing Switzerland 2015
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normal distributions or the proportion � in a repeated Bernoulli experiment), some
“guess” (hypothesis) about the true parameter value(s) has to be tested on the basis
of an observed sample of finite size. Clearly, this would not be necessary if one could
observe the random variable under consideration for all members of the population
of interest (which of course is not theoretically possible for continuous random
variables, as a continuous distribution is comprised of infinitely many possible
outcomes). In general, (sub-)samples cannot convey all the information necessary
to precisely describe the underlying distribution (even if they are representative in
terms of some suitable concept) and are the result of a (random) sampling process,
therefore their implied parameter values (as determined by statistical estimation
procedures conducted with the sample data) are themselves random variables.
Often these estimates will only equal the correct population parameter value on
average. Fortunately, statistical tests provide an appropriate yardstick that allows
us to quantify and assess whether the difference between the sample-specific (i.e.,
statistically estimated) and hypothesized parameter values is statistically significant.
In short, we evaluate whether our hypothesized parameter value is close enough to
the estimated parameter value for the sampling process to have caused the difference
or whether the two numbers (respectively vectors) cannot be reconciled even after
having allowed for sampling noise (i.e., whether the noise created by observing on
only a finite sample of elements can account for the difference).

In order to put the above verification problem on an objective decision theoretical
basis, statistical tests have been devised to tackle the problems that may otherwise
lead us to rely on subjective assessments. Questions that we will need to address
include:

• What is the “correct” formulation of the actual hypothesis in mathematical terms?
• How is the data to be condensed? (i.e., which statistics or estimators are to be

used)
• How is the difference of the condensed collected data from the structure implied

by the hypothesis to be quantified? (i.e., what expression will we use for our test
statistic)

• How is the quantified difference to be evaluated in decision-theoretical terms?
When is the difference statistically significant? (i.e., what is the distribution of
our test statistic and what is acceptable sampling noise)

To provide an objective rational for verification of hypotheses (given certain
assumptions about the functional class of the distribution, etc.), statistical tests must
satisfactorily address all of the above issues.

We can get a grasp of the key concepts and terms of statistical tests by considering
an example of a parametric test. Let � be a parameter of the distribution function
of random variable X. Its true value is unknown, but we can specify the parameter
space, which is the set of possible values it can assume.
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Table 9.1 One-sided and
two-sided hypothesis tests

Null hypothesis Alternative hypothesis

a) Two-sided test H0 W � D �0 H1 W � ¤ �0

b) One-sided tests

Right-sided test H0 W � � �0 H1 W � > �0

Left-sided test H0 W � � �0 H1 W � < �0

Formulating the Hypothesis

The hypothesis states a relation between the true parameter � and the hypothetical
value �0. Usually a pair of connected hypotheses is formulated, the null hypothesis
H0 and the alternative hypothesis H1.

The null hypothesis is the statistical statement to be tested; thus it has to be
formulated in such a way that statistical tests can be performed upon it. Sometimes
the underlying scientific hypothesis can be tested directly, but in general the
scientific statement has to be translated into a statistically tractable null hypothesis.
In many cases the null hypothesis will be the converse of the conjecture to be tested.
This is due to certain properties of parametric statistical tests, which we will be
dealing with later on.

The asserted relation between the true parameter � and the hypothetical value �0

is stated so that the combined feasible parameter values of both null and alternative
hypothesis capture the entire parameter space. Clearly the alternative hypothesis can
be thought of as a converse of the null hypothesis. The possible variants are given
in Table 9.1

The two-sided hypothesis in a) is a so-called simple hypothesis, because the
parameter set of the null hypothesis contains exactly one value. As the alternative
hypothesis highlights, deviations from the hypothetical value �0 in both directions
are relevant to the validity of the hypothesis. That’s why it is referred to as two-sided.

The hypotheses of the one-sided tests under b) belong to the class of composite
hypotheses. “Composite” refers to the parameter set of the null hypothesis being
composed of more than one value. Consequently, not rejecting the null hypothesis
wouldn’t completely specify the distribution function, as there is a set of (in above
cases infinitely many) parameter values that have not been rejected. The hypotheses
are one-sided, because deviation from the hypothetical parameter value in only one
direction can negate the null hypothesis—depending on that direction these tests are
further characterized as left- or right-sided.

Clearly, the scientific problem to be formulated in statistical terms determines
which test will be of interest (applied).

Note some important principles of hypothesis formulation:

• Statistical test procedures “test” (i.e., reject or do not reject) the null hypothesis.
• Null and alternative hypothesis are disjoint, that is, their respective parameter

spaces don’t contain the same value.
• Parameter sets encompassing exactly one value will always belong to the null

hypothesis.
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Test Statistic

In order to follow the above procedure, we need a quantity to base our decision
rule on. We need a suitable estimator in order to extract the information required to
properly compare the hypothetical with the sample-specific parameter value(s).

If an estimator is used as a verification quantity within a statistical test procedure,
we call it a test statistic, or simply a statistic. We will denote the statistic by V D
V .X1; : : : ; Xn/.

The statistic V is a function of the sample variables X1; : : : ; Xn and hence itself
a random variable with some distribution FV .v/. In order to conduct a statistical
test, the distribution of V for a valid null hypothesis has to be known (at least
approximately). Thus, we consider FV conditional on (given) the null hypothesis:
FV D FV .vjH0/.

So in the case of a parametric test this means that the distribution of the test
statistic depends on the (unknown) parameter � : F .v j �/. In order to determine this
distribution, the parameter � has to be specified numerically. But the only a priori
information about � at hand is the hypothetical boundary value �0. Thus we will now
(at least for the time being) assume that �0 is the true parameter value prevailing in
the population, i.e., � D �0. In a two-sided test, this assumption accurately reflects
the null hypothesis. In a one-sided test, the boundary value �0 must belong to the
null hypothesis—one reason, why “equality,” i.e., � D �0 always belongs to the
parameter space of the null hypothesis. For all three possible test scenarios we are
thus assuming that the test statistic V has a distribution with parameter �0 under the
null hypothesis.

Observing the random variable under consideration on n statistical observations
yields a sample x1; : : : ; xn. Plugging these realizations into the test statistic gives a
realization of the test statistic: v D v .x1; : : : ; xn/.

Decision Regions and Significance Level

Being a random variable, the test statistic can take on one of several possible
values. If the test statistic for a given sample is sufficiently close to the hypothetical
parameter value, the difference may be considered “random.” In this case the null
hypothesis won’t be rejected. Yet this doesn’t mean that the null hypothesis is correct
(or has been ‘accepted’) and hence that �0 is the true parameter value. The only
permissible statement is that, given the particular sample, it cannot be ruled out for
a certain degree of confidence, that the underlying population follows a distribution
specified by the parameter value �0.

Large deviations of the test statistic from the hypothetical parameter value make
the null hypothesis appear implausible. In this situation the sample may “as well”
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have been generated by a population distributed according to parameter values
suggested in the alternative hypothesis. We can then assume that a parameter value
other than �0 specifies the true population distribution. Still that doesn’t mean �0

is wrong with certainty. We can only say that it is very unlikely that a population
following the thus specified probability distribution has generated the sample we
have observed.

Following these considerations, the set of possible test statistic realizations is
partitioned into two disjoint regions, reflecting whether the observed sample can be
reconciled with the null hypothesis for a given level of “plausibility” (non-rejection
region) or not (rejection region).

Non-rejection Region of Null Hypothesis

The non-rejection region for H0 is the set of possible outcomes of the test statistic
leading to a decision in favor for H0, i.e., non-rejection for H0.

Rejection Region of Null Hypothesis

The rejection region (or critical region) for H0 encompasses all possible outcomes
of the test statistic that lead to a rejection for H0.

Rejection and non-rejection regions for H0 form a disjoint and exhaustive
decomposition of all possible outcomes of the test statistic. If the outcomes are
real-valued, there are boundary values termed “critical values” that partition the real
line into rejection and non-rejection regions. The critical value itself belongs to the
non-rejection region.

In order to obtain a usable, decision rule, these critical values have to be
computed. This is accomplished using probability theory.

The probability, that, any sample induces the test to reject H0 given the null
hypothesis is actually true (i.e., the true parameter value falls into the region stated
in the null hypothesis) must not be greater than the significance level ˛:

P .V is element of rejection region for H0 j �0/ � ˛:

Accordingly, the probability of V assuming a value in the non-rejection region,
when V is computed from a sample drawn from a population with parameter �0, is
at least .1 � ˛/:

P .V is element of non-rejection region associated with H0 j �0/ � 1 � ˛:
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Given the probability ˛, critical values can be derived from the test statistics’
conditional probability distribution F .vjH0/. This helps us to understand why
the distribution of the test statistic given H0 is true must be known (at least
approximately).

As the probability ˛ determines whether any given sample deviates significantly
from the value implied by the hypothesized parameter set, it is termed the level
of significance. For heuristic reasons (mainly historical in nature), the significance
level is chosen to be small such that the null hypothesis is only rejected if the sample
is very unlikely to stem from the hypothesized distribution—usually either 0:01,
0:05 or 0:10.

We will now derive decision regions for the three test scenarios we have intro-
duced earlier for a given significance level ˛ and validity for H0. For convenience’s
sake in what follows below we assume V to be normally distributed.

Two-Sided Test

H0 W � D �0 versus H1 W � ¤ �0

Rejection Region for H0

In a two-sided test, the rejection region is composed of two sets (areas), as deviations
of the sample statistic from the hypothesized parameter value �0 in two directions
matter. The non-rejection region is separated from these two rejection regions by
two critical values cl and cu (it actually resides between the two portions of the
rejection region—this helps explain why two-sided tests are also often referred to
as two-tailed tests, the two rejection regions reside in the tails of the probability
distribution of V).

The rejection region consists of all realizations v of the test statistic V smaller
than the lower critical value cl or greater than the upper critical value cu:

fvjv < cl or v > cug :

The combined probability of sampling a value from the rejection region, given
H0 (i.e., �0) is true, equals the given significance level ˛:

P .V < clj�0/ C P .V > cuj�0/ D ˛=2 C ˛=2 D ˛

Non-rejection Region for H0

The non-rejection region for H0 encompasses all possible values v of the test statistic
V smaller than (or equal to) the upper critical value cu and greater than (or equal to)
the lower critical value cl:

fcl � v � cug :
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Fig. 9.1 Distribution of test
statistic V for two-sided test
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α/2 α/2
Cl θ0 Cu V

f(V
)

The probability of encountering a test statistic realization within the non-
rejection region, given �0 is true, is .1 � ˛/ (Fig. 9.1):

P fcl � V � cu j �0g D .1 � ˛/ :

One-Sided Tests

By design, there is exactly one critical region associated with one-sided tests: Devi-
ations of the test statistics from the hypothetical parameter value are “significant” in
only one direction. The critical value splitting non-rejection and rejection region is
denoted by c.

1. Left-sided test:

H0 W � � �0 versus H1 W � < �0

Rejection region for H0 The critical or rejection region for H0 consists of realiza-
tions v of the test statistic V smaller than c:

fv j v < cg :

The probability that the test statistic assumes a value from the rejection region,
given H0 is true, is less than or equal to the significance level ˛:

P fV < c j �0g � ˛:
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Fig. 9.2 Distribution of test
statistic V for left-sided test
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Non-rejection Region for H0 The non-rejection region for H0 encompasses all
realizations v of the test statistic V greater than or equal to c:

fv j v � cg :

The probability of the test statistic assuming a value within the non-rejection
region, given H0 is true, is at least .1 � ˛/ (Fig. 9.2):

P fV � c j �0g � 1 � ˛:

2. Right-sided test:

H0 W � � �0 versus H1 W � > �0

Rejection region for H0 The rejection region for H0 consists of all realizations v of
the test statistic V greater than c:

fv j v > cg :

The probability of v falling into the rejection region, given H0 is true, is less than
or equal to the given (chosen) significance level ˛:

P fV > c j �0g � ˛:
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Fig. 9.3 Distribution of test
statistic V for right-sided test
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Non-rejection Region for H0 The non-rejection region for H0 is the set of test
statistic values v less than or equal to c:

fv j v � cg :

The probability of v assuming a value from the non-rejection region, given H0 is
true, is greater than or equal to .1 � ˛/ (Fig. 9.3):

P fV � c j �0g � 1 � ˛:

As statistical tests are based on finite samples from the (theoretically infinitely
large) population, wrong decisions concerning the parameter values specifying the
underlying distribution cannot be ruled out.

Depending on the actual value of the test statistic v, the null hypothesis will either
be not-rejected or rejected. We will symbolize this as follows:

‘H0’ W Test does not-reject the null hypothesis:

‘H1’ W Test rejects the null hypothesis:

Irrespective of the decisions made on the basis of particular samples, there are
two possible “true” states of the world, only one of which can be true at any point
in time:

H0 W Null hypothesis is “really” true.

H1 W Null hypothesis is wrong, i.e., the alternative hypothesis is true.



320 9 Statistical Tests

Table 9.2 .2 � 2/-table of test decision and true situation

Sample-based True parameter in population distribution
decision H0 H1

‘H0’ (i.e., Test Right Decision Type II error

does not-reject H0) ‘H0’jH0 ‘H0’jH1

P .‘H0’jH0/ D 1 � ˛ P .‘H0’jH1/ D ˇ

‘H1’ (i.e., Test Type I error Right Decision

rejects H0) ‘H1’jH0 ‘H1’jH1

P .‘H1’jH0/ D ˛ P .‘H1’jH1/ D 1 � ˇ

Joining the categorizations of the sample-induced test decision and true situation
together yields a .2 
 2/-table of possible combinations shown in Table 9.2.

The Null Hypothesis Is True

Let us first examine the nature of the wrong and right decision to be made given the
null hypothesis H0 is true “in reality.”

Suppose, a test statistic computed using an observed sample deviates substan-
tially from the proposed boundary parameter value �0. It is in fact the scope of
statistical tests to rationally assess these deviations in terms of significance, i.e.,
evaluate whether the deviation is substantial in statistical terms. But for the moment
assume that the deviation is substantial in that the test statistic realization v falls
into the rejection region. Following the decision rule created for the test, the null
hypothesis will be rejected. Yet our decision doesn’t affect the true data generation
process, and consequently we may have made an error which we expect to make
with probability ˛ (when our null hypothesis is true). This error is dubbed type I
error or ˛-error, and its (probabilistic) magnitude is what we control when we set
up the test procedure. By fixing (choosing) ˛ we set the probability

P .‘H1’jH0/ D P.Test rejects null given the null is true/ D ˛

as a parameter—the significance level. Even though we can vary the significance
level ˛, we cannot completely prevent the occurrence of a Type I Error (which will
occur with probability ˛). Setting ˛ to zero amounts to never rejecting the null
hypothesis, consequently never rejecting given the null hypothesis describes reality
correctly. The probability of making the right decision, given the null hypothesis is
true is computed as

P .‘H0’jH0/ D P.Test does not-reject the null given the null is true/ D 1 � ˛;
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which equals one, if we set ˛ to zero. As tempting as setting ˛ to zero sounds there
is a down side which we will see occurs when the alternative, rather than the null,
hypothesis is true.

The Alternative Hypothesis Is True

What are the right and wrong decisions that can be made when the alternative
hypothesis states the true parameter range?

If the test statistic computed from an observed sample indicates a relatively small
deviation from the parameter value � proposed in the null hypothesis, the decision
rule will induce us to not-reject the null hypothesis H0. Since we are presently
postulating H1 to be true we know that this is an error. This outcome ‘H0’jH1 (non-
rejection of a false null) is commonly known as the type II error or ˇ-error.

As is the case in the situation called ˛-error, we cannot rule out the ˇ-error either:
Even though it is “unlikely” that a sample drawn from a population that does not
belong to the null hypothesis gives a test statistic value “close” to the null hypothesis
value, it is still possible—and this will happen with probability

P .‘H0’jH1/ D ˇ .�1/ ;

given the alternative hypothesis correctly describes reality.
Note that ˇ depends on the true parameter value �1. As this still hasn’t been

disclosed to us (and never will), we cannot compute this probability.
There is, of course, also the possibility of the decision rule inducing us to make

a right decision, i.e., reject H0 when the alternative hypothesis is true: ‘H1’jH1.
The conditional probability of this happening is (conditional on the alternative
hypothesis being true):

P .‘H1’jH1/ D 1 � ˇ .�1/ :

The probability ˇ .�1/ of making a type II error depends on the given significance
level ˛. Decreasing ˛ for a constant sample size n will result in an increased
probability of the ˇ-error, and vice versa. This “error trade-off” cannot be overcome,
that is, it is not possible to reduce ˛ whilst also reducing ˇThis dilemma is depicted
in Figs. 9.4 and 9.5.

As already mentioned, the probability of making a type II error also depends
on the true value of the parameter to be tested. Given a fixed sample size n and
significance level ˛, the distance between �1 and �0 is inversely related to ˇ .�1/:
The greater the distance, the smaller is the probability of making a type II error
when the alternative hypothesis is true.
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Fig. 9.4 Relationship between significance level and type II error
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Fig. 9.5 Distribution of test statistic V under null and alternative hypothesis

The following two diagrams show this for our normally distributed test statis-
tic V .

Interpretation of Test “Results”: Reasoning Behind Controlling the Type I
Error

Statistical inference is a means of inferring probability distributions (or their
characteristics, e.g., parameters like the expected value) from samples with limited
size for either practical or economical reasons. As these subsets of the population
don’t convey the complete information about the distribution of the variable under
consideration, making errors is inevitable. All we try to achieve is to quantify and
control them in the sense that in a repeated sampling context they occur with a
certain probability. As already pointed out: Rejecting a hypothesis doesn’t prove it
wrong—the probability of the hypothesis actually being right (i.e., of making a type
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I error) merely doesn’t exceed a small threshold that is set by the researcher. Not-
rejecting the null hypothesis exposes the researcher to the risk of making an error
of type II which occurs with a probability that cannot be quantified statistically.
As we have seen, depending on the true parameter, the corresponding probability
ˇ can be “significantly” greater than the controlled ˛-probability. For this reason,
the scientific conjecture to be tested statistically is usually chosen as the null, rather
than the alternative, hypothesis so that the probability of rejecting it in error (a type
I error) can be controlled. The possibility of a reject H0 decision being wrong can
then be quantified to be no more than ˛. The same logic applies, if the decision
object is of high ethical or moral importance, e.g., human health when it comes to
testing a new drug or the assumption of innocence until guilt is proven in the case
of suspected criminals.

Power of a Test

The probability of rejecting the null hypothesis as a function of all possible
parameter values (i.e., those � of the null and alternative hypothesis) is called the
power of a test, denoted by P .�/:

P .�/ D P .V is element of the rejection region for H0 j �/ D P .‘H1’j�/ :

If the true parameter � is element of the subset of the parameter space stated in the
alternative hypothesis, a right decision has been made: .‘H1’jH1/. Hence, for all true
parameter values � that agree with the alternative hypothesis, the power measures
the probability of correctly rejecting the null hypothesis (respectively correctly not-
rejecting the alternative hypothesis):

P .�/ D P .‘H1’jH1/ D 1 � ˇ .�/ I 8� 2 �1;

where �1 is the subset of the parameter space (the parameter space is the set of all
parameters that � can equal) specified by the alternative hypothesis.

If the true parameter equals �0, the set of values under the null hypothesis, the
power returns the probability of making a wrong decision, i.e., the probability of the
situation .‘H1’jH0/. This is a familiar quantity, namely, the probability of making a
type I, or ˛ error:

P .�/ D P .‘H1’jH0/ � ˛ .�/ I 8� 2 �0;

where �0 is the subset of the parameter space specified by the null hypothesis.
The power measures the reliability of a test procedure in correctly rejecting a

false null hypothesis.
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OC-Curve

The operating characteristic (OC-curve) is equal to 1 � P .�/, it provides the
probability of not rejecting the null hypothesis as a function of all possible � :

1 � P .�/ D P .V is element of the non-rejection region for H0j�/ D P .‘H0’j�/ :

If the true parameter � is a member of the subset of the parameter space
associated with the alternative hypothesis, the operating characteristic assigns a
probability of making the wrong decision .‘H0’jH1/, that is, the probability of
making a type II error:

1 � P .�/ D P .‘H0’jH1/ D ˇ .�/ I 8� 2 �1;

where �1 is the subset of parameters specified by the alternative hypothesis.
If, on the other hand, the true parameter is in the subset of values specified

by the null hypothesis, the operating characteristic measures the probability of
the situation,.‘H0’jH0/, i.e., making the right decision in not rejecting the null
hypothesis:

1 � P .�/ D P .‘H0’jH0/ � 1 � ˛ .�/ I 8� 2 �0;

where �0 is the parameter set of the null hypothesis.
The shape of the graph of the operating characteristic curve (similarly the power

curve) depends on the:

• test statistic and its distribution, which must be determined not only for the
boundary parameter value delineated by the null hypothesis �0, but also for all
admissible parameter values;

• given significance level ˛; and
• sample size n.

A Decision-Theoretical View on Statistical Hypothesis Testing

In the absence of a consistent rational for the conduct of empirical research (and the
economic trade-offs involved in deciding what proportion of resources to allocate
to different competing lines of research/thought), the scientific community has
more or less explicitly agreed that certain significance levels (most notably 0:05

and 0:01) are adequate. Of course, use of these vary with the degree to which
various measured variables or impacts can be accurately quantified. If making errors
can be tackled within a cost benefit decision-making approach, an approximate
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collective preference order can be assumed that strikes a balance between the long-
term scientific success of a society, economic success and short-term costs. As it is
impossible to predict the future value of undertaking a particular scientific effort,
the economics of science as an allocation tool itself has to deal with uncertainty in
the level of generated knowledge for each feasible research environment. For these
reasons, significance levels chosen for empirical research not closely linked to a
specific application will always be conventions based on some human perception
of how frequent “infrequent” should be. But even on the more applied level,
significance levels aren’t usually the result of a systematic analysis of the relevant
preference system and the experimental conditions. Consider some crucial problems
of public choice. In deciding how many ambulances to fund for a particular area, a
community actively caps the number of patients to be catered for at the same time.
If you wanted to test whether three ambulances are sufficient, i.e., not more than
three citizens become critically ill at any time, where would you fix the significance
level? Setting it to zero would imply the decision is to buy as many ambulances and
employ as many staff as there are citizens, if one cannot rule out the occurrence
of an epidemic possibility of all citizens coincidentally becoming ill at the same
time. Clearly, this is not feasible in any society. No matter which significance
level the decision-maker chooses—she will always have to accept the possibility
of (rather) unlikely events causing unfortunate outcomes for society (i.e., deaths in
the community in the case of choice of how many ambulances).

As noted above, the choice of a suitable significance level is—more or less—
arbitrary, because at least one important component of the specification of the
decision problem cannot be observed or formalized: on the general level of
fundamental research, the future benefits are unknown or they cannot be compared
to today’s resource spending as their pecuniary value cannot be determined. On the
more applied level, research into health or other issues related to the well-being of
humans cannot be rationalized for the intangibility of the involved “commodities”
(i.e., health). But there are certain applications that can be reduced to cost benefit
analysis. Carrying out sample-based quality control in a manufacturing company,
for example, requires inspectors to accurately quantify the impact of given choices
on the proportion of defective output. She can estimate the expected number of
returned items and resulting currency value of related lost sales, etc. as market
prices (values) already exist for such items. The preference order applied could
for example be the appetite of shareholders to face a particular risk-return profile
implied by the choice of alternative work practices.

More Information: Examples

Statistical tests are procedures for the analysis of assumptions about unknown
probability distributions or their characteristics. The “behavior” of random variables
from a population is inferred from a sample of limited size, constrained by
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either practical or economical parameters. This inductive character makes them
an important pillar of inferential statistics, the second branch being statistical
estimation procedures. We will now illustrate the theory introduced in this chapter
with some practical examples.

Example 1 A large software company is subject to a court trial, media coverage
bringing it to the forefront of public debate. The management wants to assess the
impact of the legal action on revenues. Average monthly sales before the lawsuit are
known, serving as the hypothetical value to be tested. The average of a randomly
selected sample of monthly revenues from the time after the trial firstly hit the
news is calculated. The directors are particularly interested whether the revenues
have fallen and ask their in-house statistician to test the hypothesis that the average
monthly revenue has fallen since the beginning of the lawsuit. Hence, the monthly
revenue is treated as a random variable, and the test is based on its mean.

Example 2 An environmental organization claims that the proportion of citizens
opposed to nuclear power is 60 %. The operators of the nuclear power plants
dismiss this figure as overstated and commission a statistical analysis based on a
random sample. The variable “attitude to nuclear energy” is measured by only two
outcomes, e.g., “support” and “opposed.” Hence, the statistician tests the mean of
the population distribution of a dichotomous variable: Can the hypothetical value of
0:6 be reconciled by the sample?

In both examples an unknown parameter of the probability distribution in the
population is tested. The test procedures employed are known as parametric tests.
Furthermore, as they are based on one single sample, they are called one-sample
tests.

Example 3 Two producers of mobile phones launch separate advertising campaigns
claiming to build the phones with the longest stand-by time. Clearly, one of them
must be wrong—given, that stand-by time is sufficiently precisely measured such
that the average stand-by time doesn’t coincide and standby time varies across
individual phones, i.e., is a random variable. The managers of a consumer organiza-
tion are concerned and want to assess whether the cellular phones manufactured by
the two companies differ significantly with respect to stand-by time. The statistical
investigation has to be based on an average to account for the fluctuations of stand-
by time across output. Samples are drawn independently from both producers’
output in order to compare the average location of the duration as measured by the
sample means. An inductive statement is sought whether or not the mean stand-by
times in the overall outputs are (significantly) different or not.

The test procedure applied is a parametric test, as one tests for equality of the
two means. This can only be done on the basis of two samples: This is an example
of a two-sample test procedure.

Example 4 Someone claims that a specific die (single dice) is what statisticians call
a fair die: The probability of any outcome is equal. The hypothesis to be tested is
that the outcomes of the die rolling process has a discrete uniform distribution.
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This test doesn’t refer to a parameter of the underlying population distribution,
i.e., doesn’t take a particular distribution class as given. Consequently, it is classified
as nonparametric test or distribution-free test. This particular type belongs to the
class of goodness-of-fit tests, as one wants to verify how good a given sample
can be explained to be generated by a particular, completely specified, theoretical
probability distribution.

More Information: Hypothesis Testing Using Statistical
Software

Let’s assume you want to carry out a right-sided statistical test about a parameter � :
H0 W � � �0 and H1 W � > �0 For simplicity, we also assume that the test statistic V
follows a standard normal distribution (i.e., a normal distribution with mean 0 and
variance 1 ).

The rejection region for H0 is the set of all test statistic realizations v greater
than the critical value c: fvjV > cg. The probability of the test statistic assuming a
value within the rejection region equals the given (chosen) significance level, ˛ D
P .V > cj�0/, and is given by the green area in Fig. 9.6.

The test decision is made by comparing the realized test statistic value with the
critical value: If the realized test statistic value, computed from a particular sample
of size n, is greater than the critical value, then the null hypothesis is rejected. The
critical value splits the distribution of all possible test statistic values into two sets
with probabilities ˛ and 1 � ˛.

Popular statistical software packages (e.g., SAS, SPSS, Statistica, Systat,
XploRe, R) not only compute the test statistic value v, but additionally return a
so-called p-value. This is the theoretical probability that V assumes a value greater
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)

Non-rejection region of H0 Rejection region of H0

Fig. 9.6 The rejection region of test statistic V



328 9 Statistical Tests

P
v

f(v
)

Fig. 9.7 Illustration of the p-value

than that computed from the given sample: P .V > vj�0/. The p-value is sometimes
called significance or 1-tailed P, and we will denote it by p D P .V > vj�0/. The
crucial assumption underlying its computation is that the distribution of V is the
one that follows from assuming that �0 is the true parameter value. In Fig. 9.7, p is
depicted by the blue area.

As the p-value represents the minimum significance level for not rejecting the
null hypothesis, the user doesn’t need to look up the critical value corresponding to
the given significance level in a table. She merely needs to compare ˛ with the size
of the p-value as follows:

Rejecting the Null Hypothesis

If the parameter estimate is “substantially” larger than the hypothetical parameter
value �0, the p-value will be relatively small. Recall that the null hypothesis is one
sided with values less than or equal to �0, consequently estimates that are greater
than �0 are less easily reconciled with the null hypothesis than those within the
postulated parameter range. The “farther” away the estimate lies from the null
hypothesis, the less probable it is to have been generated by sampling from a
population distribution with � less than or equal to �0. The p-value is the probability
that v will be observed given a true parameter �0. In our example, this becomes
decreasingly likely with rising parameter estimate, and a sufficiently large parameter
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Fig. 9.8 Case of rejection
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estimate will induce us to infer that �0 and � differ significantly. Given a parameter
estimate, the p-value tells us how likely the observed distance to �0 is to occur. When
this probability is small, the risk of being wrong in rejecting the null hypothesis is
small. That is, we conclude that the null hypothesis is false rather than conclude that
the null is not false and that a highly unlikely outcome (under the null) has occurred.

Let’s translate these considerations into a decision rule:
A p-value smaller than ˛ is a reflection of the test statistic value v falling into the

rejection region for H0 for the given significance level ˛. Thus, the null hypothesis
is rejected.

This is true for both left- and right-sided tests, as we did not specify how p was
computed. In our example, it’s p D P .V > vj�0/, but for a left-sided test it would
be p D P .V < vj�0/. Figure 9.8 shows the right-sided test case.

Not Rejecting the Null Hypothesis

If the parameter estimate value is close to the hypothetical parameter value �0, then
the validity of the null hypothesis appears “relatively” plausible. The probability of
the estimate assuming values greater than v, is relatively high. In other words, �0

and the estimate are close enough to interpret their distance as the result of the noise
created by the sampling process. Consequently, H0 won’t be rejected. Hence the
following decision rule:

For p > ˛ the test statistic realization v is an element of the non-rejection region
for H0, and the null hypothesis isn’t rejected. Once again this rule holds for all
single- and two-sided tests, p suitably computed (Fig. 9.9).
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Fig. 9.9 Case of non-rejection

9.2 Testing Normal Means

In many applications one is interested in the mean of the population distribution of
a particular attribute (random variable). Statistical estimation theory “tells” us how
to best estimate the expectation for a given distribution shape, yet doesn’t help us
in assessing the uncertainty of the estimated average: an average computed from a
sample of size n D 5 will be a single number as will be the one based on a sample
size of n D 5; 000. Intuition (and the law of large numbers) leads us to believe that
the latter estimate is “probably” more representative than the former in that on the
average the sample mean (e.g., the arithmetic mean) of large samples is closer to
the population than that of small samples. That is, sample means computed from
large samples are statistically more reliable. A method of quantifying the average
closeness to the population parameter is to compute the standard error of the statistic
under consideration (here: the mean), i.e., the square root of the estimated average
squared deviation of the estimator from the population parameter. The actual sample
mean for a given sample in conjunction with its standard deviation would specify an
interval (i.e., the sample mean plus/minus one or more standard errors) in which
the sample mean isn’t “unlikely” to fall into, given the theoretical mean equals
the one estimated from the observed sample. Now suppose a scientist proposes a
value for the theoretical mean derived from some theory or prior data analysis. If
the hypothetical value turns out to be close to the sample mean and, in particular,
within a certain range around the sample mean like the one specified by the standard
error, he is more likely to propose it to be the true population mean then if he had
initially proposed a more distant value. But how can the distance of the sample mean
from the hypothetical population mean be assessed in probabilistic terms suitable
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for decision making based on the ˛ error concept? In other words: How can we
construct a statistical test for the mean of a random variable?

Our goal is to test for a specific value of the expectation � D E .X/ of
a population distribution. Our data are a randomly drawn sample of size n,
theoretically represented by the sample variables X1; : : : ; Xn, and we want to base
the test decision at a significance level of ˛.

Hypotheses

We can construct one- and two-sided tests.

1. Two-sided test

H0 W � D �0; H1 W � ¤ �0:

2. Right-sided test

H0 W � � �0; H1 W � > �0:

3. Left-sided test

H0 W � � �0; H1 W � < �0:

In a one-sided statistical hypothesis testing problem the scientific conjecture
to be validated is usually stated as alternative hypothesis H1 rather than the null
hypothesis H0. That is, the researcher tries to statistically verify that the negation of
the hypothesis to be tested does not hold for a certain significance level ˛. This is
due to the “nature” of the significance level we have mentioned earlier: Rejecting
the null hypothesis at a given significance level only means that the probability
of it not being false is no greater than ˛. Yet, it is chosen to be small (most
commonly 0:05 or 0:01), as one tries to control the ˛ error in order to be “reasonably
certain” that an “unwanted” proposition is not true. This makes sense if one thinks
of some critical applications that rely on this approach. In testing a new drug for
harmful side effects, for example, one wants to have a rational for rejecting their
systematic occurrence. In doing so one accepts the converse claim that side effects
are ‘negligible’. Underlying this approach is the (unknown) relationship between ˛

and ˇ: Whereas we can control the former, the latter is a function of not only the
former but also other test conditions such as the underlying distribution.

For these reasons it is common to speak of not rejecting a hypothesis instead of
accepting it.



332 9 Statistical Tests

Test Statistic, Its Distribution, and Derived Decision Regions

We need a quantity to condense the information in the random sample that
is required to make a probabilistic statement about the unknown distribution
characteristic (in the present case the population mean). For parametric tests, this
is an estimator of the parameter. We have already shown that the arithmetic mean

X D 1

n

nX

iD1

Xi

is a statistically “reasonable” point estimator of the unknown population mean,
i.e., the unknown expectation E .X/, in particular it’s unbiased and consistent.
The variance and standard deviation of X computed from a random sample (i.e.,
independent and identically distributed—i.i.d.) are given by

Var
�
X
� D �2

�
X
� D �2

X
D �2

X

n

�
�
X
� D �Xp

n

We will construct our test statistic around the sample mean X. In order to derive
the (rejection/non-rejection) regions corresponding to a given significance level,
we need to make an assumption concerning the distribution of the sample mean.
Either

• The random variable under investigation X is normally distributed, implying
normal distribution of X ; or

• n is sufficiently large to justify the application of the Central Limit Theorem:
If the sample variables Xi are i.i.d. with finite mean and variance, X is approxi-
mately normally distributed regardless of the underlying (continuous or discrete,
symmetric or skewed) distribution. In this case, our test will in turn be an
approximate one, i.e., has additional imprecision.

We thus postulate:
X is (at least approximately) normally distributed with expectation E

�
X
� D �

and variance Var
�
X
� D �2

X=n.
Thus, the distribution of the estimator of the population mean � depends on

exactly the unknown parameter we are seeking to test �. The only way to overcome
this circular reference is to assign a numerical value to �. The least arbitrary value
to take is the boundary value in the null hypothesis, i.e., the value that separates
the parameter ranges for H0 and H1: �0. This approach does in fact make sense,
if you recall the principle of rejecting the null hypothesis in order to not-reject the
alternative hypothesis: Basing the decision on a postulated distribution of our test
statistic with parameter �0 enables us to test this particular �, by removing the
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uncertainty in the distribution function. Note that in the two-sided test this �0 makes
up the entire parameter space of the null hypothesis. In one-sided tests, it is the
boundary value.

Let’s put our assumption into practice and set the expectation of X, i.e., �, to
�0: Given the null hypothesis H0 W � D �0 is true, respectively � equals the
boundary value of the null hypothesis for single-sided test, we can write X is (at
least approximately) normally distributed with expectation E

�
X
� D �0 and variance

Var
�
X
� D �2

X=n, or, using common notation for normal distribution functions:

X
H0Ï N

�
�0I �=

p
n
�

:

So far, we have focused on the location parameter �. But what about the
second central moment that specifies a particular normal distribution, the variance
(respectively standard deviation) of the random variable? As you will see, it is
critical to the construction of a decision rule to distinguish between situations in
which we can regard � as known and those where we can’t.
Known �: Given a known � , the distribution of X is completely specified. As
we cannot analytically integrate the normal density function to get a closed
form normal distribution function, we rely on tables of numerical solutions for
N .� D 0; � D 1/. We thus standardize X and take

V D X � �0

�

p
n

as our test statistic.
Given H0 is true, V (approximately) follows a standard normal distribution:

V
H0Ï N .0; 1/ :

The critical value corresponding to the relevant significance level ˛ can thus be
taken from a standard normal distribution table.

We can now write down the decision regions for the three types of test for
significance level ˛, given the boundary expectation from H0, i.e., �0, is the true
population mean.

1. Two-sided test
The probability of V falling into the rejection region for H0 must equal the

given significance level ˛:

P .V < clj�0/ C P .V > cuj�0/ D ˛=2 C ˛=2 D ˛:

For P .V � cu/ D 1 � ˛=2 we can retrieve the upper critical value from the
cumulative standard normal distribution table N .0; 1/: cu D z1�˛=2. Symmetry
of the normal (bell) curve implies cl D �z1�˛=2.
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The rejection region for H0 is thus given by

˚
vjv < �z1�˛=2 or v > z1�˛=2

�
:

The non-rejection region for H0 is then

˚
vj � z1�˛=2 � v � z1�˛=2

�
:

The probability of V assuming a value from the non-rejection region for H0 is

P .cl � V � cuj�0/ D P
��z1�˛=2 � V � z1�˛=2j�0

� D 1 � ˛

2. Right-sided test
Deviations of the standardized test statistic V from E .V/ D 0 to the “right

side” (i.e., positive .V > 0/) tend to falsify H0. The rejection region will thus be
a range of positive test statistic realizations v (i.e., a positive critical value). The
probability of observing realization of V within this region must equal the given
significance level ˛:

P .V > cj�0/ D ˛:

For P .V � c/ D 1�˛ we find the critical value in the table for the cumulative
standard normal distribution N .0; 1/: c D z1�˛ .

The rejection region for H0 is given by

fvjv > z1�˛g ;

and the non-rejection region for H0 is

fvjv � z1�˛g :

The probability of V assuming a value within the non-rejection region for
H0 is

P .V � c j �0/ D P .V � z1�˛ j �0/ D 1 � ˛

3. Left-sided test
Sample means smaller than �0 imply negative realizations of the test statistic

V , that is, deviations of V from E .V/ D 0 to the left side on the real line. In
this case, the rejection region for H0 therefore consists of negative V outcomes.
Consequently, the critical value c will be negative.

Once again, we require the probability of observing realization of V within
the rejection region to equal ˛:

P .V < �cj�0/ D ˛:
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Using the symmetry property of the normal distribution, we can translate
P .V < �c/ into 1 � P .V < c/. Thus, the absolute value of the critical value,
j � cj D c, is the value of the cumulative normal distribution function for
probability .1 � ˛/, i.e., c D z1�˛ , and �c D �z1�˛

The rejection region for H0 is given by

fvjv < �z1�˛g ;

and the non-rejection region for H0 is

fvjv � �z1�˛g :

The probability of V taking on a value within the non-rejection region for
H0 is

P .V � �c j �0/ D P .V � �z1�˛ j �0/ D 1 � ˛:

Unknown � If we don’t have any a priori knowledge about the standard deviation
of the random variable under investigation, we need to plug an estimator of it into
the test statistic

V D X � �0

�

p
n:

An unbiased estimator of the population variance is

S2 D
Pn

iD1

�
Xi � X

�2

n � 1
:

Replacing � by the square root of S2 yields our new test statistic:

T D X � �0

S

p
n:

If the null hypothesis H0 is true, T has (at least approximately) a t distribution
with n � 1 degrees of freedom.

For a given significance level ˛ and n � 1 degrees of freedom, the critical values
can be read from the t distribution table.

If we denote the p-quantile of the t distribution with n � 1 degrees of freedom by
tpIn�1, and assume �0 is the true population mean, we have the following decision
regions for the test situations under consideration.
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1. Two-sided test
rejection region for H0:

˚
tjt < �t1�˛=2In�1 or t > t1�˛=2In�1

�
;

where t is a realization of the random variable T computed from an observed
sample of size n.

Non-rejection region for H0:

˚
tj � t1�˛=2In�1 � t � t1�˛=2In�1

�
:

2. Right-sided test
rejection region for H0:

ftjt > t1�˛In�1g :

Non-rejection region for H0:

ftjt � t1�˛In�1g :

3. Left-sided test
rejection region for H0:

ftjt < t1�˛In�1g :

Non-rejection region for H0:

ftjt � t1�˛In�1g :

Note: If the sample size is sufficiently large (n > 30), the t distribution can
be adequately approximated by the standard normal distribution. That is, T is
approximately N .0I 1/ distributed. Critical values can then be read from the normal
table, and the decision regions equal those derived for known population standard
deviation � . Hence, for large n we can estimate � by S and abstract from the
estimation error (that will occur with probability one, even if the estimator hits the
correct parameter on average, i.e., is unbiased).

Calculating the Test Statistic from an Observed Sample

When we have obtained a random sample x1; : : : ; xn, we can compute the empirical
counterparts of the theoretical test statistics we have based our test procedures on.
On the theoretical level, we have expressed them in terms of (theoretical) sample
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variables, i.e., X1; : : : ; Xn, that is, have denoted them by capital letters: X, V and S.
Actual values calculated from a sample of size n, x1; : : : ; xn, are denoted by x, v and
s and differ from their theoretical counterparts only in that now the variables stand
for real numbers rather than a range of theoretically permissible values. Hence, the
respective empirical formulae for sample mean and sample standard deviation are

x D 1

n

nX

iD1

xi

and

s D
sPn

iD1 .xi � x/2

n � 1
:

Accordingly, the two realized test statistics for testing normal means for known
and unknown variance respectively are

v D x � �0

�

p
n

and

t D x � �0

s

p
n:

You may have recognized that we have already applied this notation when
specifying the decision regions.

Test Decision and Interpretation

If the test statistic v falls into the rejection region, the null hypothesis H0 is rejected
on the basis of a random sample of size n and a given a significance level ˛: ‘H’1.
Statistically, we have concluded that the true expectation E .X/ D � does not equal
the hypothetical �0.

If the true parameter does belong to the range postulated in the null hypothesis
(H0), we have made a type I error: ‘H1’jH0. In fact, in choosing a particular
significance level, we are really deciding about the probability of making exactly
this error, since the decision regions are constructed such that the probability of
making a type I error equals the significance level: P .‘H1’jH0/ D ˛.

If, on the other hand, v falls into the non-rejection region, the particular sample
leads to a non-rejection of the null hypothesis for the given significance level: ‘H’0.
Thus, we are not able to show statistically, that the true parameter E .X/ D �

deviates from the hypothetical one (�0). Chances are, though, nontrivial that we
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are making a type II error, i.e., the alternative hypothesis correctly describes reality:
‘H0’jH1. As already pointed out, the probability of making a ˇ error is, in general,
unknown and has to be computed for individual alternative parameter values �1.

Power

How can we assess the “goodness” of a test? We have seen that in setting up a test
procedure we are controlling the probability of making an ˛ error (by assigning
a value to the significance level ˛). The probability of making a ˇ error is then
determined by the true (and unknown) parameter. The smaller ˇ is for a given
true parameter �, the more reliable the test is in that it more frequently rejects
the null hypothesis when the alternative hypothesis is really true. Hence, given a
specific significance level, we want ˇ to be as small as possible for true parameter
ranges outside that specified in the null hypothesis, or, equivalently, we want to
maximize the probability of making the correct decision .‘H1’jH1/, that is maximize
the quantity .1 � ˇ/ for any given true � outside the null hypothesis region, i.e.,
inside that of the alternative hypothesis.

This notion of “goodness” of a test is conceptualized with the so-called power, a
function assigning probabilities of rejecting H0 .1 � ˇ/ to true parameter values
� within the H1 parameter region for given ˛ and hypothetical parameter �1.
These probabilities represent the theoretical averages of making a right decision in
rejecting H0 over all possible samples (given ˛ and �). They can thus be computed
without utilizing actual samples; in fact, the power is computed because we can
obtain only a limited sample and aim to quantify the expected “accuracy” of the
individual test procedure.

Technically, the power P .�/ yields the probability of rejecting H0 given
hypothetical parameters �:

P .�/ D P .V 2 rejection region for H0j�/ D P .‘H1’j�/

1. Two-sided test
In a two-sided test, the null hypothesis is true if and only if � D �0. Rejecting

H0 given that it is true means we have made a type I error:

P .V 2 rejection region for H0j� D �0/ D P .‘H1’jH0/ D ˛:

For all other possible parameter values, rejecting H0 is a right decision:

P .V 2 rejection region for H0j� ¤ �0/ D P .‘H1’jH1/ D 1 � ˇ:
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Fig. 9.10 Power function in
a two-sided test
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We thus have

P .�/ D
(

P .‘H1’jH0/ D ˛; if � D �0;

P .‘H1’jH1/ D 1 � ˇ; if � ¤ �0:

Using our normality assumption about the underlying probability distribution,
we can analytically calculate the power for the case of a two-sided test:

P .�/ D 1 �



P

�
V � z1�˛=2 � � � �0

�=
p

n

	
� P

�
V � �z1�˛=2 � � � �0

�=
p

n

	�
:

The probability of a type II error can be calculated from the power:

P .‘H0’jH1/ D 1 � P .� ¤ �0/ D ˇ:

Properties of the power for a two-sided test:

• For � D �0, the power assumes its minimum, ˛.
• The power is symmetrical around the hypothetical parameter value �0

• The power increases with growing distance of the true parameter � from the
hypothetical �0 and converges to one as the distance increases to 1 or �1
respectively.

The above characteristics are illustrated in the following power curve diagram.
In Fig. 9.10, two alternative true parameter values �1 and �2 are depicted. If �1

is the true parameter, the distance �1 � �0 is comparatively high. Consequently,
the probability 1 � ˇ of making a right decision in not-rejecting the alternative
hypothesis H1 (conversely, correctly rejecting the null) is relatively high and the
probability of making a type II error, ˇ, small.
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The distance of the “hypothetically true” parameter value �2 from the hypo-
thetical parameter value �, �2 � �0, is relatively small. Hence, the probability of
making a right decision in rejecting the null hypothesis, 1 � ˇ, is smaller than in
the first example, and the probability of making a type II error, ˇ, greater. This is
intuitively plausible, i.e., that relatively small deviations are less easily discovered
by the test.

2. Right-sided test
In a right-sided test, the null hypothesis is true if the true parameter is less

than or equal to the hypothetical boundary value �0, i.e., if � � �0. If this is the
case, the maximum probability of rejecting the null hypothesis and hence making
a type I error, equals the significance level ˛:

P .V 2 rejection region for H0j� � �0/ D P .‘H1’jH0/ � ˛:

If the alternative hypothesis, i.e., � > �0, is true, rejecting the null hypothesis
and hence making a right decision occurs with probability:

P .V 2 rejection region for H0j� � �0/ D P .‘H1’jH1/ D 1 � ˇ:

Combining these formulae for the two disjoint subsets of the parameter space
gives the power:

P .�/ D
(

P .‘H1’jH0/ � ˛; if � � �0;

P .‘H1’jH1/ D 1 � ˇ; if � > �0:

We can explicitly calculate the power for our right-sided test problem for all
possible true parameter values �:

P .�/ D 1 � P

�
V � z1�˛ � � � �0

�=
p

n

	
:

Figure 9.11 displays the typical shape of the power for a right-sided test problem.
For all values within the parameter set of the alternative hypothesis, the power

increases monotonically to one. The greater the distance � � �0, the higher
the probability 1 � ˇ of making a right decision in not-rejecting the alternative
hypothesis, and hence the smaller the probability ˇ of making a type II error. At
the point � D �0 the power is ˛, the given significance level. For all other values
associated with the null hypothesis, i.e., � < �0, the power is less than ˛. That’s
what we assumed when we constructed the test: We want ˛ to be the maximum
probability of rejecting the null hypothesis for a true null hypothesis. As you can see
from the graph, this probability decreases with rising absolute distance � � �0.
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Fig. 9.11 Power function in
a right-sided test
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3. Left-sided test
In a left-sided test, the null hypothesis is true if the true parameter is greater

than or equal to the hypothetical boundary value, that is, if � � �0. In this case,
rejecting the null hypothesis and hence making a type I error, will happen with
probability of no more than ˛:

P .V 2 rejection region for H0j� � �0/ D P .‘H1’jH0/ � ˛:

If the alternative hypothesis is true, i.e., � < �0, the researcher makes a right
decision in rejecting the null hypothesis, the odds being:

P .V 2 rejection region for H0j� � �0/ D P .‘H1’jH1/ D 1 � ˇ:

For the entire parameter space we thus have:

P .�/ D
(

P .‘H1’jH0/ � ˛; if � � �0;

P .‘H1’jH1/ D 1 � ˇ; if � < �0:

For our normally distributed population we can calculate the probability of
rejecting H0 as a function of the true parameter value � (the power) explicitly:

P .�/ D P

�
V � �z1�˛ � � � �0

�=
p

n

	
:

A typical graph of a power for a left-sided test is depicted in Fig. 9.12. The graph
is interpreted similar to the right-sided test case.
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Fig. 9.12 Power function in
a left-sided test
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More Information: Conducting a Statistical Test

Formulating the Hypotheses

Let us illustrate the problem of choosing an appropriate null (and hence alternative)
hypothesis with a real-world example.

Consider a company manufacturing car tires. Alterations in the production
process are undertaken in order to increase the tires’ lives. Yet competitors will not
hesitate to claim that the average life of the tires hasn’t increased from the initial,
pre-restructuring value of 38; 000 kilometers (km). The producers’ management
wants to justify the investment into the new production process and subsequent
advertising campaign (i.e., save their necks) and commissions a scientific, i.e.,
statistical, investigation.

That’s our part. The variable of interest is the life of an individual tire measured in
km, denoted by, say, X. It is a random variable, because its fluctuations in magnitude
depend on many unknown and known factors, that cannot practically be taken into
account (such as speed, weight of the individual car, driving patterns, weather
conditions, and even slight variations in the production process, etc.). Before the
“improvements” in the production process, the average life of the particular type of
car tire was 38; 000 km; in theoretical terms, the expectation was E .X/ D �0 D
38; 000 km. The mean value under the new production process is unknown and, in
fact, the quantity we want to compare in statistical terms with �0: The producer
pays the statistician(s) to objectively show, if � > �0 D 38; 000 km. Note that
we denote the true expectation under the new regime by �, as this is the parameter
we are interested in and thus want to test. The “old” mean �0 “merely” serves as
benchmark, and the actual output it represents (the old tires) doesn’t receive further
attention (and in particular neither does its fluctuations around the mean).
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The statement that management hopes that the statistician will “prove” scientif-
ically, � > �0, looks very much like a readily testable null hypothesis. But as we
have emphasized earlier, there is a crucial difference between formalized statements
of scientific interest and the means of testing it by stating a null hypothesis suitable
to make a reliable decision, that is, a decision that is backed by acceptable type I
and II errors.

So which hypothesis shall we test? It should be clear, that the problem at hand
is a single-sided one; only deviations of the new expected life from the historical
expected life in one direction are of interest. In deciding whether to test the
hypothesis as it is already formalized using a left-sided test procedure or testing
the negation, � � �0, on a right-sided basis, we have to focus on the actual aim of
the investigation: The tire producer intends to verify the claim of � being greater
than �0, whilst at the same time controlling the risk of making a wrong decision
(type I error) to a level that allows him to regard the (hopefully positive, i.e., a
rejection of the null) test decision as statistically proven. This would be the case
if the reverse claim of the new tires being less durable can be rejected with an
acceptable (i.e., small) significance level, for this would imply that there is only a
small probability that the null hypothesis, � � �0, is true and hence the alternative
hypothesis, � > �0, not true. But that’s exactly the result the managers want to see.
Let’s therefore state the negation of the statement to be tested as null hypothesis
(and hope it will be rejected on the given significance level):

H0 W � � �0 versus H1 W � > �0;

with �0 D 38; 000 km.
If the sample of n new tires’ usable life leads to a rejection of the null hypothesis

H0 (‘H1’), a type I error will be made if the null hypothesis is true. If the null
hypothesis is not rejected on the basis of a particular sample of size n, the conjecture
stated in the alternative hypothesis may still be true, in which case, the researcher
has (unknowingly) made a type II error.

Comparing the implications of type I and type II error for this example shows
that the former’s impact on the manufacturers fortune is the crucial one, for

• the competitors can carry out (more or less) similar investigations using a left-
sided test, leading to the PR nightmare associated with a possible contradiction
of the producers’ test result,

• future investigation into tires subsequently produced would reveal the actual
properties of the tires as the sample size inevitably increases with the amount
sold, triggering even more embarrassing questions concerning the integrity and
reliability of the manufacturer.

For these reasons, the tire manufacturer is best advised to keep the probability of
a type I error, P .‘H1’jH0/, small, by controlling the significance level, e.g., setting
it to ˛ D 0:05.
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Decision Regions

When testing � with either single- or two-sided tests the size of the non-rejection
and rejection regions on the V or T (standardized test statistic) axis depends only
on:

• the given (chosen) level of significance ˛: ceteris paribus, increasing ˛ will
increase the size of the rejection region for H0, and will reduce the size of the
non-rejection region (and vice versa).

Alternatively, when testing � with either single- or two-sided tests the size of
the non-rejection and rejection regions on the X (our original random variable) axis
depends on:

• the given (chosen) level of significance ˛: ceteris paribus, increasing ˛ will
increase the size of the rejection region for H0, and will reduce the size of the
non-rejection region (and vice versa);

• the sample size n: ceteris paribus, the larger the sample size, the greater the size
of the rejection region for H0, and the smaller the size of the non-rejection region
(and vice versa); and

• the dispersion � of the variable in the population and therefore S in the sample:
ceteris paribus, an increased variability � or S leads to a decrease in the size of
the rejection region for H 0, and increases the size of the non-rejection region
(and vice versa).

That is, the critical values on the standardized test statistic axis are independent
of the size of n or � (alternatively, S). The same cannot be said for the “equivalent”
critical values for the original X axis where sample size and dispersion affect the
magnitude of “acceptable” expected deviations from the null.

If the population variance � is known, the critical values and therefore the non-
rejection/rejection regions for H0 can easily be calculated for the sample mean X.
We will do this for a two-sided test.

We have derived the test statistic V as a standardization of the estimator X:

V D X � �0

�

p
n;

and, in terms of realizations xi’s of sample variables Xi’s:

v D x � �0

�

p
n:

In a two-sided test the non-rejection region for H0 consists of all realization v of
V greater than or equal to �z1�˛=2 and less than or equal to z1�˛=2:

˚
vj � z1�˛=2 � v � z1�˛=2

�
:
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Thus, the critical values �z1�˛=2 and z1�˛=2 are possible realization of the test
statistic V . They are subject to the same standardization carried out to convert X
into V to express it in units comparable with standard normal quantiles:

�z1�˛=2 D Xl � �0

�

p
n ; z1�˛=2 D Xu � �0

�

p
n:

As �z1�˛=2 is the lower critical value with respect to V , we similarly have
denoted the lower critical value for X by Xl (the same applies to the upper bound of
the non-rejection region, denoted by the subindex u).

We can isolate the upper and lower bound of the rejection region for H0 in terms
of the units of the sample mean:

Xl D �0 � z1�˛=2 � �p
n

; Xu D �0 C z1�˛=2 � �p
n

:

The resulting non-rejection region for H0 in terms of X is:

˚
X j Xl � X � Xu

� D
�

X j �0 � z1�˛=2 � �p
n

� X � �0 C z1�˛=2 � �p
n

�
;

and the associated rejection region is given by the complement

˚
X j X < Xl or X > Xu

� D
�

X j X > �0 � z1�˛=2 � �p
n

or X > �0 C z1�˛=2 � �p
n

�
:

Similar transformations can be imposed on the estimators for one-sided tests.

Power Curve

We will derive the power curve for a two-sided population mean test. The power is
calculated as

P .�/ D P .V 2 rejection region for H0 j �/

D 1 � P .V 2 non-rejection region for H0 j �/ :

Assuming � to be the true population mean, we have

P .�/ D 1 � P
��z1�˛=2 � V � z1�˛=2 j �

�

D 1 � P

 

�z1�˛=2 � X � �0

�
p

n
� z1�˛=2 j �

!

:
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Adding � � � to the numerator of the middle term yields

P .�/ D

D1 � P

 

�z1�˛=2 � X � �0 C � � �

�
p

n
� z1�˛=2 j �

!

D1 � P

 

�z1�˛=2 � X � �

�
p

n
C � � �0

�
p

n
� z1�˛=2 j �

!

D1 � P

 

�z1�˛=2 � � � �0

�
p

n
� X � �

�
p

n
� z1�˛=2 � � � �0

�
p

n
j �

!

D1 � P

�
�z1�˛=2 � � � �0

�
p

n
� V � z1�˛=2 � � � �0

�
p

n
j �

	

D1 �



P

�
V � z1�˛=2 � � � �0

�
p

n
j �

	
� P

�
V � �z1�˛=2 � � � �0

�
p

n
j �

	�
:

The power for the one-sided tests can be derived in a similar fashion.
From a decision-theoretical point of view it is desirable that the probability of

correctly rejecting the null hypothesis increases quickly with a growing distance
between the true parameter � and the hypothetical value �0, that is, we want
the graph of the power curve to be as steep as possible in that range of the true
parameter value. For a given estimator and test statistic, there are two possible ways
of improving the “shape” of the power curve.

1. Increasing the sample size n
The above formula for the power of a two-sided test for the mean is clearly

positively related to the size of the sample n. In general, ceteris paribus, the graph
of the power curve becomes steeper with growing n: For any true parameter value
within the H1 region (i.e., � ¤ �0 for the two-sided, � > �0 for the right-
sided and � < �0 for the left-sided test), the probability 1 � ˇ of rejecting the
null hypothesis, and hence making a right decision, increases with growing n.
That’s mirrored by a decreasing probability ˇ of making a type II error. Thus,
the probability of correctly discriminating between the true and the hypothetical
parameter value grows with increasing sample size. Given a fixed significance
level ˛, the probability of a type II error can be improved (reduced) by “simply”
enlarging the sample.

Figure 9.13 displays the graphs of 4 power curves based on four distinct
sample sizes, with n1 < n2 < n3 < n4.

2. Varying the significance level ˛

Ceteris paribus, allowing for a higher probability of making a type I error,
i.e., increasing the significance level ˛, will shift the graph of the power curve
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Fig. 9.13 Power of
two-sided test for the
population mean for
alternative sample sizes
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Fig. 9.14 Power of
two-sided test for the
population mean for
alternative significance levels
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upwards. This means, that a higher ˛ leads to an increase in the probability of
rejecting the null hypothesis for all possible true parameter values �. If the true
parameter value within the H1 region (� ¤ �0 for the two-sided, � > �0 for
the right-sided and � < �0 for the left-sided test), rejecting the null is a right
decision—the probability 1 � ˇ of correctly rejecting the null hypothesis has
increased, the probability ˇ of making a type II error has decreased. But the
probability of rejecting the null hypothesis has also increased for true parameter
values within the H0 region, increasing the probability of making a type I error.
Hence, we encounter a trade-off between the probabilities of making a type I
and type II error, a problem that cannot be overcome mechanically, but has to be
tackled within some sort of preference-based decision-theoretical approach.

In Fig. 9.14 the power curve of a two-sided test with fixed sample size for two
alternative significance levels is depicted. The red graph represents P .�/ for ˛ D
0:05, the blue one P .�/ for ˛ D 0:10.
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Explained: Testing the Population Mean

A company is packing wheat flour. The machine has been set up to fill 1; 000 grams
(g) into each bag. Of course, the probability of any bag containing exactly 1 kg,
is zero (as weight is a continuous variable), and even if we take into account the
limited precision of measurement, we will still expect some fluctuation around the
desired (theoretical) content of 1 kg in actual output. But without prior knowledge
we can’t even be sure, if the average weight of output is actually 1 kg. Fortunately,
we have means of testing this statistically. Denote by X the actual net weight per
bag. We are interested in the expectation of this random variable, i.e., the average
net bag weight, E .X/ D �. Is it sufficiently close to �0 D 1 kg, the ideal quantity
we want the machine to fill into each bag? As the machine has to be readjusted from
time to time to produce output statistically close enough to the required weight, the
producer regularly takes samples to assess the then current precision of the packing
process. If the mean of any of these samples statistically differs significantly from
the hypothetical value �0, the machine has to be readjusted.

Hypothesis

The management is interested in deviations of the actual from the desired weight
of �0 D 1 kg in both directions. Filling in too much isn’t cost-effective and putting
in too little may trigger investigations from consumer organizations, with all the
negative publicity that comes with it. Thus, a two-sided test is indicated:

H0 W � D �0 versus H1 W � ¤ �0;

where �0 D 1; 000 g.

Sample Size and Significance Level

The statistician decides to test at a 0:05 level and asks a technician to extract a
sample of n D 25 bags. As the population, that is, the overall production, is large
compared to the sample size, the statistician can regard the sample as a simple
random sample.

Test Statistic and Its Distribution: Decision Regions

The estimator of the unknown population mean E .X/ D � is the sample mean X.
Experience has shown that the actual weight can be approximated sufficiently

closely by a normal distributions with standard deviation � D 10 g. The estimator X
is then normally distributed with standard deviation � D 10=.25/1=2 D 2 g. Under
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Fig. 9.15 Distribution of V under H0 and decision regions

H0, i.e., given, the true population parameter � equals the hypothetical (desired)
one, �0, X is thus normally distributed with parameters � D 1; 000 g and � D 2 g:

X
H0Ï N .1; 000I 2/ :

The test statistic V is the standardization of the sample mean,

V D X � �0

�

p
n;

and follows the standard normal distribution:

V
H0Ï N .0I 1/ :

We can look up the upper critical value in the cumulative standard normal
distribution table as cu D z0:975 D 1:96 to satisfy P .V � cu/ D 1 � ˛=2 D 0:975.
Using symmetry of the normal curve, cl D �z1�˛=2 D �1:96.

We thus have (Fig. 9.15):

The non-rejection region for H0 W fv j � 1:96 � v � 1:96g ; and

The rejection region for H0 W fv j v < �1:96 or v > 1:96g :
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Drawing the Sample and Calculating the Test Statistic

25 bags are selected randomly and their net content is weighed. The arithmetic mean
of these measurements is x D 996:4 g. The realized test statistic value is thus

v D 996:4 � 1; 000

2
D �1:8:

Test Decision and Interpretation

As v D �1:8 lies within the non-rejection region for H0, the hypothesis is not-
rejected.

Based on a sample of size n D 25, the hypothetical mean value �0 D 1; 000 g
couldn’t be shown to differ statistically significantly from the true parameter value
�, i.e., we couldn’t verify that the packing process is not precise.

Power

Not having rejected the null hypothesis, we are inevitably taking the risk of making
a type II error: ‘H0’ j H1, i.e., the alternative hypothesis is true and we have rejected
it. We should therefore assess the reliability of our decision in terms of type II error
probabilities for parameter values different from that stated in the null hypothesis,
i.e., � ¤ �0. They are given by 1 � P .�/.

Suppose, 1; 002 g is the true average weight and the alternative hypothesis
therefore a true statement. As the power assigns probabilities for right decisions
to alternative true parameter values, P .1; 002/ is the probability of making a right
decision (correctly rejecting the null hypothesis):

P .‘H1’jH1/ D 1 � ˇ:

Plugging �0 D 1; 000, ˛ D 0:05, � D 10 and n D 25 into the formula for the
power gives

P .1; 002/ D

D1 �



P

�
V � 1:96 � 1; 002 � 1; 000

2

	
� P

�
V � �1:96 � 1; 002 � 1; 000

2

	�

D1 � ŒP .V � 0:96/ � P .V � �2:96/�

D1 � ŒP .V � 0:96/ � .1 � P .V � 2:96//�

D1 � Œ0:831472 � .1 � 0:998462/�

D1 � 0:829934

D0:17 D 1 � ˇ:
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The probability of making a type II error if the true population mean is 1; 002, is
therefore

P .‘H0’jH1/ D ˇ .1; 002/ D 1 � P .1; 002/ D 0:83:

There, if the true average weight is 1; 002 , 83 % of all samples of size n D 25

would not convert that fact into a correct test decision (rejection of the null) for the
given significance level of ˛ D 0:05. Since 1; 002 � 1; 000 is only a relatively small
difference, in statistical terms, the probability of a type II error is large.

If, on the other hand, 989 grams is the true average weight, P .989/ returns the
probability of making a right decision in rejecting the null hypothesis: P

�
‘H0

1jH1

� D
1 � ˇ , and we can calculate

P .989/ D 1 � ˇ D 0:9998 and ˇ .989/ D 0:0002:

In this case, only 0.02 % of all samples will result in a non-rejection of the null
hypothesis and hence a wrong decision. The probability of a type II error is small,
because the difference 989 � 1; 000 is large in statistical terms.

Table 9.3 lists values of P .�/ and 1�P .�/ for selected true population averages
�, given the above �0, ˛ and � . Figure 9.16 shows the graph of the power curve.

We can alter the shape of the power curve for a (given) fixed significance level ˛

in our favor by increasing the sample size n. We will illustrate the effect of a change
in the sample size for the two “hypothetically” true parameter values 1; 002 and 989.
The other test parameters remain constant: �0 D 1; 000, ˛ D 0:05 and � D 10.

Figure 9.17 displays the power of the two-sided test for these 4 alternative sample
sizes.

When there is reason to believe that the machine produces output with small
deviations from the desired weight, an increase of the significance level is advisable
to statistically “discover” these deviations reliably and minimize the type II error
risk—given the incurred extra sampling costs are outweighed by the information
gain.

Table 9.3 Values of power function

� True hypothesis P .�/ 1 � P .�/

988:00 H1 0:999973 D 1 � ˇ 0:000027 D ˇ

990:40 H1 0:997744 D 1 � ˇ 0:002256 D ˇ

992:80 H1 0:949497 D 1 � ˇ 0:050503 D ˇ

995:20 H1 0:670038 D 1 � ˇ 0:329962 D ˇ

997:60 H1 0:224416 D 1 � ˇ 0:775584 D ˇ

1; 000:00 H0 0:05 D ˛ 0:95 D 1 � ˛

1; 002:40 H1 0:224416 D 1 � ˇ 0:775584 D ˇ

1; 004:80 H1 0:670038 D 1 � ˇ 0:329962 D ˇ

1; 007:20 H1 0:949497 D 1 � ˇ 0:050503 D ˇ

1; 009:60 H1 0:997744 D 1 � ˇ 0:002256 D ˇ

1; 012:00 H1 0:999973 D 1 � ˇ 0:000027 D ˇ
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Fig. 9.16 Power of
two-sided test for the
population mean with
�0 D 1000, ˛ D 0:05,
� D 10 and n D 25
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Fig. 9.17 Power of
two-sided test for the
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Enhanced: Average Life Time of Car Tires

We will now illustrate how information about the population can influence the
choice of the test statistic, the decision regions and—depending on the sample at
hand—the test decision.
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A car tire producer alters the mix of raw material entering the production process
in an attempt to increase the average life of the output. After the first new tires have
been sold, competitors criticize that the average life of the new tires doesn’t exceed
that of the old ones, which is known to be 38; 000 km.

The random variable under investigation is the actual life of the population of new
tires, measured in km, denoted by X, and the producer’s claim is that its expectation
E .X/ D � is higher than the historical one of the old types, �0 D 38; 000 km. The
management wishes to scientifically test this claim and commissions a statistical
investigation hoping to verify that the average life has in fact increased, i.e., that
� > �0. But they also want to minimize the risk of making a wrong decision so as
not to be exposed to the competitors’ (justified) counter arguments.

Hypothesis

Since deviations in one direction are the subject of the dispute, a one-sided test will
be conducted. We put the competitors’ claim in the null hypothesis with the hope
that the sample rejects it, yielding a right-sided test:

H0 W � � �0 versus H1 W � > �0;

where �0 D 38; 000 km.
Does this operationalization support the producers’ intention? We can answer

this question by analyzing the possible errors.
Rejecting H0 gives rise to the possibility of a type I error. Not rejecting the null

hypothesis exposes the decision-maker to a type II error.
The producers’ emphasis is on keeping the type I error small, as its implications

are more severe than those of the type II error: With the production process going
ahead and thus the available sample of tires gradually increasing, an actual average
life below the acclaimed one would sooner or later be revealed. The maximum
probability of the type I error, P .‘H1’jH0/ is given by the significance level ˛, a
parameter the producer can control. Thus, the test is in line with the producers’
requirements.

The probability of making a type II error, P .‘H0’jH1/ D ˇ, is unknown, as the
true average life of the new processes’ output is unknown. The probability of not
verifying an increase in the average life of the tires that has actually taken place, can
be substantial. That’s the price the producer has to pay for choosing the conservative
approach of stating the claim as alternative hypothesis and actively controlling the
significance level and thus keeping the crucial type I error small. This trade-off
makes sense, as the perceived long term reliability of the producer is more important
than short term sales gains.
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1st Alternative

Significance Level and Sample Size

The test will be conducted at a 0:05 significance level. A sample of size n D 10 is
taken from the output. As the population is reasonably large (a couple of thousand
tires have already been produced), the sample can be regarded as a simple random
sample.

Test Statistic and Its Distribution: Decision Regions

Sample-based investigations into the tires’ properties carried out prior to the
implementation of changes in the production process indicate that the fluctuations
in the life of the tires can be described “reasonably” well by a normal distribution
with standard deviation � D 1; 500 km. Assuming, this variability is still valid in
the new production regime, we have for the distribution of the sample mean under
the null hypothesis:

X
H0Ï N

�
38; 000I 1; 5002

10

	
:

Under H0, the test statistic

V D X � �0

�

p
n;

follows the standard normal distribution:

V
H0Ï N .0I 1/ :

The critical value c that satisfies P .V � c/ D 1 � ˛ D 0:95 can be found from
the cumulative standard normal distribution table as the 95 % quantile: c D z0:95 D
1:645. The resulting decision regions are:

Non-rejection region for H0 W fv j v � 1:645g ;

Rejection region for H0 W fv j v > 1:645g :

Sampling and Computing the Test Statistic

Suppose the average life of 10 randomly selected tires is x D 39; 100 km. Then the
realized test statistic value is

v D 39; 100 � 38; 000

1; 500

p
10 D 2:32:
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Test Decision and Interpretation

As 2:32 is element of the rejection region for H0, the null hypothesis is rejected.
Based on a sample of size n D 10 and a significance level of ˛ D 0:05, we have
shown statistically, that the new tires can be used significantly longer than the old
ones, that is, that the true expectation E .X/ D � of the tires’ life is greater than the
hypothetical value �0 D 38; 000 km.

The test has resulted in a non-rejection of the alternative hypothesis H1: “average
life has increased.” The producer makes a type I error (‘H1’jH0) if the null
hypothesis correctly describes reality (H0: “average life has not increased”). But
the probability of an occurrence of this error has intentionally been kept small with
the significance level ˛ D 0:05.

If the alternative hypothesis is true, a right decision has been made: ‘H1’jH1.
The probability P .‘H1’jH1/ of this situation can only be computed for specific true
population parameters. Assuming this value is � D 39; 000 km, the power is

P .39; 000/ D 1 � P

�
V � 1:645 � 39; 000 � 38; 000

1; 500

p
10

	

D 1 � P .V � �0:463/ D 1 � Œ1 � P .V � 0:463/�

D 0:6783 D 1 � ˇ:

The greater the increase in average life, the higher the power of the test i.e., the
probability 1 � ˇ. For example, if an increase to 40; 000 had been achieved, the
power would be 0:9949: P .40; 000/ D 1 � ˇ D 0:9949.

2nd Alternative

The significance level ˛ D 0:05 and sample size n D 10 remain constant, and we
continue to assume a normal distribution of the new tires’ lives. But we drop the
restrictive assumption of a constant standard deviation. We now allow for it to have
changed with the introduction of the new production process.

Test Statistic and Its Distribution: Decision Regions

Since we now have to estimate the unknown standard deviation with its empirical
counterpart, the square root of the sample variance, S, we must employ the T-
statistic

T D X � �0

S

p
n;

which, under H0, has a t-distribution with n � 1 D 9 degrees of freedom.
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We can look up the critical value c satisfying P .T � c/ D 1 � ˛ D 0:95 as the
upper 0:05 quantile of the t-distribution with 9 degrees of freedom in a t-distribution
table and find it to be t0:95I9 D 1:833. Thus, our decision regions are:

Non-rejection region for H0 W ft j t � 1:833g ;

Rejection region for H0 W ft j t > 1:833g :

You will notice that the size of the non-rejection region has increased. This is due
to the added uncertainty about the unknown dispersion parameter � . Consequently,
there must be a larger allowance for variability in the test statistic for the same
significance level and sample size than in the corresponding test for known standard
deviation.

Sampling and Computing the Test Statistic

Along with the sample mean x the sample standard deviation s has to be computed.
Suppose their realized values are x D 38; 900 km and s D 1; 390 km. Thus, the
realized test statistic value is

t D x � �0

s

p
n D 38; 900 � 38; 000

1; 390

p
10 D 2:047:

Test Decision and Interpretation

As t D 2:047 falls into the rejection region, the null hypothesis is rejected. Based
on a sample of size n D 10 and a significance level of ˛ D 0:05, we were again
able to statistically show that the true (and unknown) expectation E .X/ D � of
the new tires’ lives has increased from its former (i.e., hypothetical) level of �0 D
38; 000 km.

Of course, we still don’t know the true parameter �, and if it happens to be
less than (or equal to) 38; 000 km, we have made a type I error, for we have
rejected a true null hypothesis: ‘H1’jH0. In choosing a significance level of 5 % we
have restricted the probability of this error to a maximum of 5 % (the actual value
depending on the true parameter �).

If the true parameter � does lie within the region specified by the alternative
hypothesis, we have made a right decision in rejecting the null hypothesis: ‘H1’jH1.
The probability of this event, P .‘H1’jH0/ D 1�ˇ, can be (approximately) computed
for alternative true population means � if we assume the sample standard deviation
s to be the true one in the population, i.e., s D � .
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3rd Alternative

Suppose we now drop the assumption of normality, which is a situation more
relevant to practical applications. In order to conduct an approximate test about �,
we require the sample size to be greater than 30. If the sample size is smaller than 30,
we cannot justify the application of the central limit theorem, as the approximation
wouldn’t be good enough. The managers decide to pick a sample of n D 35 tires,
incurring further sampling costs as the price to employ a more suitable and therefore
reliable statistical procedure. Further, suppose that the significance level is chosen
to be ˛ D 0:025.

Test Statistic and Its Distribution: Decision Regions

As in the 2nd alternative, the T-statistic

T D X � �0

S

p
n;

has to be used. Having chosen n > 30 independent observations, we can justify
to employ the central limit theorem and approximate the distribution of this
standardized statistic by a standard normal distribution:

V
asÏ N .0I 1/ :

In the above statement, “as” stands for “asymptotically”: T is asymptotically
standard normal, that is, the standard normal distribution is the limit it converges
to as n tends to infinity. For finite samples, the standard normal distribution serves
as an approximation. The critical value c satisfying P .T � c/ D 1 � ˛ D 0:975 is
then (approximately) the upper 2:5 % quantile of the standard normal distribution,
z0:975 D 1:96, and we have the following decision regions:

Non-rejection region for H0 W ft j t � 1:96g ;

Rejection region for H0 W ft j t > 1:96g :

Sampling and Computing the Test Statistic

As in the 2nd alternative, we have to compute both the sample mean x and the
sample standard deviation s as estimators for their population counterparts � and � .
Suppose, their values are X D 38; 500 km and s D 1; 400 km for our new sample of
size 35. Then the realized test statistic value is:

t D x � �0

s

p
n D 38; 500 � 38; 000

1; 400

p
35 D 2:11:
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Test Decision and Interpretation

As v D 2:11 lies within the rejection region, the null hypothesis is rejected. On the
basis of a particular sample of size n D 35 and a significance level of ˛ D 0:05 we
were able to statistically verify that the true population mean E .X/ D � of the new
tires’ lives is greater than the tires’ expected life before the implementation of the
new process, �0 D 38; 000 km.

If the null hypothesis is in fact true, we have made a type I error. Fortunately,
the probability of this happening (given we have rejected H0 as is the case here) has
been chosen not to exceed ˛ D 0:025 for any true population mean � within the
parameter space specified in H0.

Given the small (maximum) type I error probability of 0:025, it is much more
likely that we are right in rejecting the null hypothesis: ‘H1’jH1. But the associated
probability, P .‘H1’jH0/ D 1 � ˇ, can only be computed for specific true parameter
values. As in the 2nd alternative, we have to assume a known � in order to calculate
this quantity by setting � D s D 1; 400 km.

Interactive: Testing the Population Mean

The interactive example includes a number of sidebar panels. You can access the
panels by setting a mark at the corresponding check box on the upper right.

Please select

• the hypothetical mean �0

• the significance level ˛

• the sample size n

Use “Draw sample” to manually draw a sample and carry out a test.
The last two panels allow you to choose a dataset or variable and to change

the font size. For a detailed explanation on datasets and variables, please refer to
Appendix A.

Output

In this interactive example you can study the impact of the significance level ˛ and
the sample size n on the test decision of a two-sided test:

H0 W � D 0 versus H0 W � ¤ 0:

You can carry out this test as often as you like—for every new run a new sample
is drawn from the population. You can vary the parameters as you like and isolate
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Fig. 9.18 Screenshot of the interactive example, available at http://u.hu-berlin.de/men_tmu1

their effects by holding either of these constant. In particular, you can

• Hold both the significance level ˛ and sample size n constant to observe different
test decisions based on different samples;

• Vary the significance level ˛ for a fixed sample size n;
• Change the sample size n and leave the significance level ˛ fixed to your chosen

level; or
• Vary both the significance level ˛ and the sample size n.

The lower graphic in Fig. 9.18 is a scatterplot including the population (green)
and sample (orange).

Interactive: Testing the Population Mean with Type I and II
Error

The interactive example includes a number of sidebar panels. You can access the
panels by setting a mark at the corresponding check box on the upper right.

Please select

• the test type
• a hypothetical �0

• the significance level ˛

• the sample size n

Use “Draw sample” to manually draw a sample and carry out a test (Fig. 9.19).
The last two panels allow you to choose a dataset or variable and to change

the font size. For a detailed explanation on datasets and variables, please refer to
Appendix A.

http://u.hu-berlin.de/men_tmu1


360 9 Statistical Tests

Fig. 9.19 Screenshot of the interactive example, available at http://u.hu-berlin.de/men_terr

Output

In this interactive example you can choose three type of tests for the mean and study
the impact of the significance level ˛, the sample size n, and the choice of �0 on the
size of the type I and II error.

After you have made your choices you are presented a graphic containing

• the distribution of the sample mean under H0 (gray bell curve),
• the distribution of the sample mean under H1 (green bell curve),
• the probability of making a type I error (gray area under the gray bell curve),
• and the probability of making a type II error (green area under the green bell

curve).

By varying n, � and �0, you can explore the impact of these test parameters on
the type I and II error probability. To isolate the impacts we recommend change the
value of only one parameter in successive trials. To facilitate easy diagnostics you
are shown a table containing all test values and decisions.

9.3 Testing the Proportion in a Binary Population

Consider a random variable X which has only two possible outcomes. We call the
statistical population of X binary, as introduced earlier. If X is an indicator variable
storing the information about the existence (or nonexistence) of a feature, we can
carry out statistical inference about the proportion of elements within the population

http://u.hu-berlin.de/men_terr
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possessing the property of interest (�) or not (1 � �). As in other parametric tests,
the inference relates to a hypothetical value, here �0, that represents a hypothetical
proportion of population elements having the property of interest.

We will introduce statistical test procedures based on a simple random sample
of size n. This ensures that the sample variables X1; : : : ; Xn, which are indicator
variables with outcomes measured as either 0 or 1, are independent and identically
distributed Bernoulli variables. As usual the significance level is denoted by ˛.

Hypotheses

Depending on the application at hand, one- or two-sided tests are formulated:

1. Two-sided test

H0 W � D �0; H1 W � ¤ �0:

2. Right-sided test

H0 W � � �0; H1 W � > �0:

3. Left-sided test

H0 W � � �0; H1 W � < �0:

Our earlier remarks on the choice of null and alternative hypothesis in the section
on testing population means also apply in this environment.

Test Statistic and Its Distribution: Decision Regions

The sample proportion

O� D X

n
D 1

n

nX

iD1

Xi

is a suitable estimator of the population parameter � . The estimator

X D
nX

iD1

Xi;
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is a simple transformation of O� (X D n � O�), which contains all the important
information. It counts the number of elements in the sample possessing the property
of interest. As has already been shown, X follows a Binomial distribution with
parameters n and �: X Ï B .nI �/. As n is chosen by the decision-maker, � is the
only remaining parameter needed to completely specify the Binomial distribution.
Following the logic applied in all parametric hypothesis testing problems, we
assume � to be �0, that is, we determine the distribution of the test statistic given the
hypothetical proportion �0 is the one prevailing in the population: � D �0. Hence,
the estimator X becomes our test statistic, since it has a Binomial distribution with
parameter n and �0 under H0:

V D X
H0Ï B .nI �0/ :

The rejection region of the null hypothesis contains all realizations of V for which
the cumulated probabilities don’t exceed the significance level ˛. The critical values
can be read from the numerical table of the cumulative distribution function FB .x/

of B .nI �0/, by following these rules:

1. Two-sided test
The lower critical value cl is the realization x of X, for which the cumulative

distribution function just exceeds the value ˛=2: FB .cl � 1/ � ˛=2 and FB .cl/ >

˛=2.
The upper critical value cu is the argument x of the cumulative distribution

function that returns a probability equal to or greater than 1�˛=2: FB .cu � 1/ <

1 � ˛=2 and FB .cu/ � 1 � ˛=2. The rejection region for H0 is given by
fv j v < cl or v > cug, such that

P .V < clj�0/ C P .V > cuj�0/ � ˛:

For the non-rejection region for H0 we have fv j cl � v � cug, such that

P .cl � V � cuj�0/ � 1 � ˛:

2. Right-sided test
The critical value c is the smallest realization of the test statistic that occurs

with cumulated probability of at least 1�˛: FB .c � 1/ < 1�˛ and FB .c/ � 1�˛.
The rejection region for H0 is then fv j v > cg, such that

P .V > cj�0/ � ˛:

The non-rejection region for H0 is fv j v � cg, such that

P .V � cj�0/ � 1 � ˛:
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3. Left-sided test
The critical value c is determined as the smallest realization of the test statistic

that occurs with cumulated probability of at least ˛: FB .c � 1/ � ˛ and FB .c/ >

˛. The rejection region for H0 is fv j v < cg, such that

P .V < cj�0/ � ˛:

The non-rejection region for H0 is given by fv j v � cg, such that

P .V � cj�0/ � 1 � ˛:

As V D X is a discrete random variable, the given significance level ˛ will
generally not be fully utilized (exhausted). The actual significance level ˛a will
only by chance reach that level and will usually be smaller. The above tests are
thus conservative with respect to the utilization of the allowance for the maximum
probability of the type I error.

Given the sample size n is sufficiently large, the estimator O� can be standardized
to give the test statistic

V D O� � �0

�0 . O�/
D O� � �0q

�0 .1��0/

n

:

Here, �0 . O�/ is the standard deviation of the estimation function O� under H0.
Under H0, V has approximately standard normal distribution (i.e., normal with mean
0 and variance 1). Critical values for the given significance level can be taken from
the cumulative standard normal distribution table. Decision regions for the one-
and two-sided tests are determined in the same way as those for the approximate
population mean test for unknown � : In fact, a hypothesis about a proportion is a
hypothesis about an expectation (of a binary indicator variable): E . O�/ D � .

Sampling and Computing the Test Statistic

Once a sample of size n has been drawn, we have realization x1; : : : ; xn of the
sampling variables, X1; : : : ; Xn, and can compute the realized value v of the test
statistic V .

Test Decision and Interpretation

See the remarks for the � test.
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Power Curve P .�/

The power curve of the large-sample test based on

V D O� � �0

�0 . O�/
D O� � �0q

�0 .1��0/

n

can be calculated explicitly for all test situations in the same manner as the power
curve for the population mean tests.

The power curve of the exact test based on V D X is computed using the
Binomial distribution (as this is the distribution underlying the test statistic) for all
0 � � � 1 and fixed n.

From the definition

P .�/ D P .V D X 2 rejection region for H0 j �/

it follows:

1. For the two-sided test

P .�/ D P .V < cl j �/ C P .V > cu j �/

D P .V � cl � 1 j �/ C Œ1 � P .V � cu j �/� ;

2. For the right-sided test

P .�/ D P .V > c j �/ D 1 � P .V � c j �/ ;

3. For the left-sided test

P .�/ D P .V < c j �/ D P .V � c � 1 j �/ :

Given the respective critical values, the probabilities can be looked up in the
numerical table of the cumulative Binomial distribution function. For � D �0, the
power curve equals the actual significance level ˛a.

Explained: Testing a Population Proportion

A statistics professor has the impression that in the last year the university library
has bought proportionally less new statistics books than in the past. Over the last
couple of years the relative amount of statistics books amongst new purchases
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has consistently been more than 10 %. He asks one of his assistants to investigate
whether this has changed in favor of other departments. Acting on behalf of his
students whom he wants to secure as many new books as possible, he asks his
assistant to minimize the risk of not complaining to the head of the library when
the proportion of statistics books has decreased.

The assistant decides to have a sample of 25 books taken from the file containing
the new purchases over the last 12 months. He wants to know how many of these are
statistics books. He is thus dichotomizing the random variable “subject matter” into
the outcomes “statistics” and “not statistics.” Of course, if you regard the purchases
as an outcome of a decision-making process conducted by the librarians, this is
anything but a random variable. But for the statisticians who rely on a sample
because they don’t have access to all relevant information, it appears to be one.
From the proportion of statistics books the assistant wants to infer to the population
of all newly purchased books, using a statistical test to allow for deviations of the
proportion in the sample from those in the population. In particular, he wants to
verify whether the proportion has indeed dropped below the past average of 10 %.
He will thus test the population proportion � and chooses a “standard” significance
level of 0:05.

Hypothesis

As the assistant wants to verify whether the proportion has dropped below 0:1, he
has to employ a one-sided test. He recalls that the professor wants him to minimize
the probability of not disclosing that the proportion has decreased below �0 D 0:1

when in reality it has. He thus opts for a right-sided test, i.e., puts the professors’
claim as null hypothesis in the hope of not rejecting it:

H0 W � � �0 D 0:1 versus H1 W � > �0 D 0:1:

The assistant undertakes an investigation into the properties of this test with
respect to the professors’ intention of minimizing the probability of not detecting
a relative decrease in the statistics book supply. A real-world decrease can only not
have been detected if the null hypothesis has been rejected even though it is really
true. This situation is called type I error:

‘H1’jH0 D‘conclude proportion of

statistics books has not decreased’j
in reality, the proportion has decreased:

The maximum probability of this situation, P .‘H1’jH0/, is given by the significance
level ˛, which has been set to 0:05. Thus, the risk the professor wanted to
“minimize” is under control.
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If the null hypothesis is not-rejected, then a type II error can arise:

‘H0’jH1 D‘conclude proportion of

statistics books has decreased’j
in reality, the proportion has not decreased.

The probability of this happening (conditional on the null hypothesis not having
been rejected), P .‘H1’jH0/ D ˇ, is unknown, because the true proportion � (which
is element of the parameter set specified by the alternative hypothesis), is unknown.
As we have already seen in other examples, it can be substantial, but the professors’
priorities lie on trading off type II error for type I error which is under control.

Test Statistic and Its Distribution: Decision Regions

The estimator X W “number of statistics books in a sample of 25 books” can serve as
test statistic V . Under H0, V D X has Binomial distribution with parameter n D 25

and � D 0:1: V Ï B .25I 0:1/. A relatively high number of statistics books in the
sample supports the alternative hypothesis that the proportion of statistics books has
not decreased. The critical value c is the realization of X, for which FB .c/ equals
or exceeds 1 � ˛ D 0:95, that is, we require FB .1 � c/ < 1 � ˛ D 0:95 and
FB .c/ � 1 � ˛ D 0:95.

In the table of the cumulative distribution function of B .25I 0:1/ you will find
c D 5. The rejection region for H0 is thus fv j v > 5g D f6; 7; : : : ; 25g, such that

P .V > 5j0:1/ D 0:0334 D ˛a < ˛:

As V D X is a discrete random variable, the given significance level isn’t fully
utilized:˛a D 0:0334 < ˛ D 0:05:

The non-rejection region for H0 is given by fv j v � 5g D f0; 1; 2; 3; 4; 5g, such
that

P .V � 5j0:01/ D 0:9666:

Sampling and Computing the Test Statistic

A subset of 25 books is selected at random from the list of last years’ new purchases
and categorized in statistics and non-statistics books. As the total amount of new
books is sufficiently large from a sample-theoretical point of view, a simple random
sample is drawn, i.e., the sampling is carried out without replacement. The amount
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of statistics books in the sample is counted to be x D 3, which will serve as the
realized test statistic value v.

Test Decision and Interpretation

As v D 3 falls into the non-rejection region for H0, the null hypothesis cannot be
rejected. On the basis of a random sample of size n D 25 and a significance level of
˛ D 0:05, the assistant couldn’t verify statistically that the proportion of statistics
books is still above 10 %. This test result means that a complaint to the library seems
to be merited.

Power

Given our test parameters (�0 D 0:1, n D 25, ˛ D 0:05 and c D 5), what is the
probability of not rejecting the null hypothesis if the true proportion of statistics
books is � D 0:2? That is, we want to calculate the probability of the type II
error given a specific element of the parameter set associated with the alternative
hypothesis, � D 0:2:

ˇ .0:2/ D P .‘H0’jH1/

D P .V D X 2 non-rejection region for H0 j � D 0:2/

D P .V � 5 j � D 0:2/ :

In the table of the cumulative Binomial distribution B .25I 0:2/ we find this prob-
ability to be 0:6167. Alas, if the true proportion has increased to 20 %, there is still
a 61:67 % chance of not discovering a significant deviation from the hypothetical
boundary proportion of 10 %. This is the probability of an unjustified complaint
issued by the professor given the proportion has risen to 0:2—a substantial relative
increase.

The probability of making a type II error contingent on alternative true propor-
tions � can be computed via the power curve. Levels of P .�/ and 1 � P .�/ for
several values of � are listed in Table 9.4.

For example, if the true proportion (and therefore absolute amount) of statistics
books is � D 0, the sample cannot contain any statistics books and we will expect
x D 0 and won’t reject the null hypothesis. The rejection of the null hypothesis
(‘H1’) is an impossible event with associated probability of zero. The power is the
conditional probability of rejecting the null hypothesis given the relative amount is
zero:

P .0/ D P .V D X 2 rejection region for H0 j � D 0/ D P .‘H1’ j 0/ D 0:
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Table 9.4 Some values of
the power function

� True hypothesis P .�/ 1 � P .�/

0 H0 0 D ˛ 1 D 1 � ˛

0.05 H0 0:0012 D ˛ 0:9988 D 1 � ˛

0.1 H0 0:0334 D ˛a 0:9666 D 1 � ˛a

0.15 H1 0:1615 D 1 � ˇ 0:8385 D ˇ

0.20 H1 0:3833 D 1 � ˇ 0:6167 D ˇ

0.25 H1 0:6217 D 1 � ˇ 0:3783 D ˇ

0.30 H1 0:8065 D 1 � ˇ 0:1935 D ˇ

0.35 H1 0:9174 D 1 � ˇ 0:0826 D ˇ

0.40 H1 0:9706 D 1 � ˇ 0:0294 D ˇ

0.45 H1 0:9914 D 1 � ˇ 0:0086 D ˇ

0.50 H1 0:9980 D 1 � ˇ 0:0020 D ˇ

0.60 H1 0:9999 D 1 � ˇ 0:0001 D ˇ

0.70 H1 1 D 1 � ˇ 0 D ˇ

If, on the other hand, the true proportion of statistics books is � D 0:35, the
power is calculated as

P .0:35/ D P .V > 5 j � D 0:35/ D 1 � P .V � 5 j � D 0:35/

D 1 � 0:0826 D 0:9174;

where P .V � 5 j � D 0:35/ can be looked up in the table of the cumulative
distribution function as the value of B .25I 0:2/ for c D 5.

P .0:35/ is the probability of correctly rejecting the null hypothesis, P.‘H1’jH1/.
The probabilities of rejecting the null hypothesis and not-rejecting it must always
sum up to one for any given true parameter value within the range specified by the
alternative hypothesis:

P .‘H0’jH1/ C P .‘H1’jH1/ D 1:

For a true proportion of � D 0:35, the former sampling result amounts to making a
type II error, the probability of which is denoted by ˇ .0:35/. Thus, we can write

ˇ .0:35/ C P .‘H1’jH1/ D 1

or

P .‘H1’jH1/ D 1 � ˇ .0:35/ :

As P .‘H1’jH1/ is the value of the power at point � D 0:35, we can calculate the
probability of making a type II error as

ˇ .0:35/ D 1 � P .0:35/ D 0:0826:
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Fig. 9.20 Power curve for
the right-sided test
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If the true proportion of statistics books is 35 %, 8:26 % of all samples of size n D 25

will lead to a non-rejection of the null hypothesis, i.e., won’t detect the significant
difference between � D 0:35 and �0 D 0:10.

Figure 9.20 depicts the graph of the power curve for the right-sided test we have
just discussed: �0 D 0:10, n D 25, ˛ D 0:05 and c D 5.

Enhanced: Proportion of Credits with Repayment Problems

One of the raison d’etres of financial intermediaries is their ability to efficiently
assess the credit-standing (‘creditworthiness’) of potential borrowers.

The management of ABC bank decides to introduce an extended credit checking
scheme if the proportion of customers with repayment irregularities isn’t below
20 %. The in-house statistician conducting the statistical test is asked to keep the
probability of not deciding to improve the credit rating procedure even though the
proportion is “really” above 20 % low (i.e., to keep ˛ low).

The random variable X W “credit event” or “repayment problems” is defined as
an indicator variable taking on zero (“no”) or one (“yes”). The actual proportion
� of clients having trouble with servicing the debt is unknown. The hypothetical
boundary value for testing this population proportion is �0 D 0:2.

Hypothesis

Deviations from the hypothetical parameter into one direction are of interest;
thus, a one-sided test will be employed. As the bank hopes to prove that the
evaluation processes in place are sufficient, i.e., the proportion of debtors displaying
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irregularities in repaying their loans is less than 20 %, this claim is formulated as the
alternative hypothesis:

H0 W � � �0 D 0:2 versus H1 W � < �0 D 0:2

The properties of this test with respect to the bank managers’ requirements have
to be evaluated to ensure the test really meets their needs. The type I error, which
can be made if the null hypothesis is rejected, is here:

‘H1’jH0 D‘do not-reject that the proportion of

problematic debtors< 0:2; no new guidelines’ j
in reality, unreliable debtors make up

at least 20 %; credit process has to be reviewed.

If the test results in the non-rejection of the null hypothesis, a type II error might
occur:

‘H0’jH1 D‘do not-reject that the proportion of

problematic debtors� 0:2;

new evaluation process to be developed’ j
in reality, unreliable debtors make up no more than 20

per cent; no need for action.

The type I error represents the risk the managers of the ABC bank want to cap. Its
maximum level is given by the significance level, which has been set to a sufficiently
low level of 0:05.

The type II error represents the risk of a costly introduction of new credit
evaluation processes without management-approved need. The impact of this
scenario on the banks’ profitability is difficult to assess, as the new process will
lead to a repricing of credits and thus may also generate cost savings. The following
two alternatives are both based on the above test.

A random sample is drawn from the population of 10; 000 debtors without
replacement. This is reasonable, if n=N � 0:05, as the random sample can then
be regarded as “simple” anyway.

1st Alternative

To curb costs, a sample size of n D 30 is chosen. The sampling-theoretical
requirement n=N � 0:05 is fulfilled.
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Test Statistic and Its Distribution: Decision Regions

The estimator X W “Number of clients with irregularities in debt servicing in sample
of size 30” can directly serve as our test statistic V . Under H0, V D X has Binomial
distribution B .30I 0:2/. A small V supports the alternative hypothesis. The critical
value c is the smallest realization of X, for which FB .x/ equals to or is greater
than ˛ , i.e., it has to satisfy: FB .c � 1/ � ˛ D 0:05 and FB .c/ > ˛ D 0:05. In the
numerical table of the cumulative distribution function of B .30I 0:2/ we find c D 3,
and thus we have the following decision regions:

Rejection region for H0:

fv j v < 3g D f0; 1; 2g ; with P .V < 3j0:2/ D 0:0442:

Non-rejection region for H0:

fv j v � 3g D f3; 4; : : : ; 30g ; with P .V � 3j0:02/ D 0:9558:

Because V D X is a discrete random variable, the given significance level isn’t
exhausted: i.e., ˛a D 0:0442 < ˛ D 0:05:

Sampling and Computing the Test Statistic

30 randomly selected debtors are investigated with respect to reliability in debt
servicing. Assume 5 of them haven’t always fulfilled their contractual obligations:
v D 5.

Test Decision and Interpretation

As v D 5 belongs to the non-rejection region for H0, the null hypothesis is not-
rejected. Even though the sample proportion x=n D 5=30 D 0:167 is smaller than
the hypothetical boundary proportion �0 D 0:2, which should favor H1, we cannot
conclude H0 is false: at a significance level of 0:05, the difference cannot be regarded
as statistically significant. In other words: It is far too likely that the difference has
arisen from sampling variability due to the small sample size to be able to reject
the null hypothesis. It is important to observe that it’s not merely the value of the
point estimator compared to the hypothetical value that leads to a non-rejection
or rejection of the null hypothesis, but intervals that take into account the random
character of the estimator (i.e., the difference is compared to an appropriate, case
specific, statistical yardstick to determine what is statistically significant large, and
hence small, deviations/differences). Based on a random sample of size n D 30

and a significance level ˛ D 0:05, we were unable to show statistically, that the
proportion of trouble debtors is significantly smaller than 20 %. Consequently, the
ABC bank will review and try to improve the credit approval procedures.
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Power

Not having rejected the null hypothesis, we are vulnerable to a type II error, which
occurs when the alternative hypothesis is a true statement: ‘H0’jH1.

Let’s calculate the type II error probability for a true parameter value � D 0:15:
What is the probability of not rejecting the null hypothesis in a left-sided test with
�0 D 0:2, n D 30, ˛ D 0:05 and c D 3, given the true population proportion is
� D 0:15 and hence the null hypothesis actually wrong?

ˇ .� D 0:15/ D P .‘H0’jH1/

D P .V D X 2 non-rejection region for H0j� D 0:15/

D P .V � 3j� D 0:15/ :

We compute

P .V � 3 j � D 0:15/ D 1 � P .V < 3 j � D 0:15/

D 1 � P .V � 2 j � D 0:15/ D 1 � 0:1514 D 0:8486;

where P .V � 2 j � D 0:15/ is taken from the table of the cumulative distribution
function B .30I 0:15/ for c D 2, that is FB .2/.

Interpretation Given the true proportion is � D 0:15, 84:86 % of all samples of
size n D 30 will not be able to discriminate between the true parameter and the
hypothetical �0 D :20, inducing the bank to undertake suboptimal improvements
of the credit assessment process with probability 0:8486. In deciding to control the
maximum error I probability, the bank is accepting type II error probabilities of
such magnitude, statisticians can provide management with power function graphs
for any desired true parameter value � .

Of course, not rejecting the null hypothesis can also be the right decision:
‘H0’jH1. Suppose, for example, that the true proportion of unreliable debtors is � D
0:25. The probability of not rejecting the null hypothesis and hence (unknowingly)
making the right decision given our current test setting (left sided with �0 D 0:20,
n D 30, ˛ D 0:05 and thus c D 3) is

P .V D X 2 non-rejection region for H0 j � D 0:25/

D P .V � 3 j � D 0:25/ D P .‘H0’jH1/ D 1 � ˛:

We have

P .V � 3 j � D 0:25/ D 1 � P .V < 3 j � D 0:25/

D 1 � P .V � 2 j � D 0:25/ D 1 � 0:0106 D 0:9894;
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Fig. 9.21 Power curve of the
left-sided test with parameters
�0 D 0:20, n D 30,
˛ D 0:05 and c D 3
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Table 9.5 Some values of
the power function

� True hypothesis P .�/ 1 � P .�/

0 H1 1 D 1 � ˇ 0 D ˇ

0.05 H1 0:8122 D 1 � ˇ 0:1878 D ˇ

0.10 H1 0:4114 D 1 � ˇ 0:5886 D ˇ

0.15 H1 0:1514 D 1 � ˇ 0:8486 D ˇ

0.20 H0 0:0442 D ˛a 0:9558 D 1 � ˛a

0.25 H0 0:0106 D ˛ 0:9894 D 1 � ˛

0.30 H0 0:0021 D ˛ 0:9979 D 1 � ˛

0.35 H0 0:0003 D ˛ 0:9997 D 1 � ˛

0.40 H0 0 D ˛ 1 D 1 � ˛

where P .V � 2 j � D 0:25/ can be looked up in a numerical table of B.30I 0:25/

as the cumulative probability for values less than or equal to c D 2, i.e., FB .2/.
These calculations can be carried out for any desired parameter value within

the overall parameter space (here: � 2 .0; 1/). Depending on which hypothesis
the individual parameter adheres to, the power curve P .�/ or 1 � P .�/ returns
probabilities for making a right decision or a type I or type II error. Figure 9.21
shows the graph of the power curve of the left-sided test with parameters �0 D 0:20,
n D 30, ˛ D 0:05 and c D 3 (Table 9.5).

2nd Alternative

Now the statistician tries to both satisfy the parameter ˛ D 0:05 set by the
management to contain the probability of the crucial type I error and keep the type
II error as low as possible. She is aware of the trade-off relationship between ˛

and ˇ error and focuses on possibilities of reducing the associated probabilities
simultaneously by increasing the sample size n and thus making the decision an
economic one. Cost projections in conjunction with a valuation of the benefit
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of higher reliability lead to a choice of n D 350, still small enough to satisfy
n=N � 0:05 as basis for simple random sampling without replacement.

Test Statistic and Its Distribution: Decision Regions

The standardized test statistic

V D O� � �0

�0 . O�/
D O� � �0q

�0 .1��0/

n

is used. Under H0, it is approximately normally distributed with parameters � D 0

and � D 1. Large sample theory suggests that the approximation is sufficiently
accurate for a sample size of n D 350. From the cumulative standard normal
distribution table we can take c D z0:95 D 1:645 to satisfy P .V � c/ D 1 � ˛ D
0:95. From symmetry it follows that �c D �1:645, and we have fv j v < �1:645g as
the approximated rejection region for H0 and fv j v � �1:645g as the approximated
non-rejection region for H0.

Sampling and Computing the Test Statistic

From the universe of 10; 000 debtors, 350 are selected and random, of which 63 turn
out to have displayed problems in debt servicing at least once in their repayment
history. Their proportion within the sample is thus 0:18. Plugging this into the test
statistic yields

v D 0:18 � 0:2
q

0:2 �. 0:8/

350

D �0:935:

Test Decision and Interpretation

As v D �:0935 falls into the non-rejection region for H0, the null hypothesis is
not rejected. On the basis of this particular sample of size n D 350, it cannot be
statistically claimed, that the proportion of problematic debtors is less than 20 %.
The ABC bank management will thus initiate a review of their credit procedures.

Type II Error Probability

As the bank management has been induced to not-reject the statement in the null
hypothesis, it may have made a type II error, which occurs if the true proportion
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amongst the 10; 000 is actually smaller than 0:2: ‘H0’jH1. Let’s examine the
probability of this happening for a “hypothetical” true population proportion of
� D 0:15, i.e., P .‘H0’jH1/ D ˇ .� D 0:15/.

First we must determine the critical proportion pc corresponding to the critical
value calculated using the normal approximation. From

�c D .pc � �0/ =� . O�/

follows

pc D �0 � c � � . O�/ D 0:2 � 1:645 .0:2 � 0:8=350/ D 0:1648:

ˇ .� D 0:15/ is the probability of the sample function O� assuming a value from
the non-rejection region of the null hypothesis, given the true parameter � belongs
to the alternative hypothesis:

ˇ .� D 0:15/ D P . O� � pc j � D 0:15/ D P . O� � 0:1648 j � D 0:15/ :

In order to determine this probability on the basis of a numerical table for the
standard normal distribution, we must standardize using E . O�/ D � D 0:15 and
Var . O�/ D � .1 � �/ =n D 0:15 � 0:85=350:

ˇ .� D 0:15/ D P . O� � pc j � D 0:15/ D P

0

B
@

O� � �0q
� .1��/

n

� pc � �0q
� .1��/

n

j � D 0:15

1

C
A

D P

0

B
@

0:1648 � 0:15
q

0:15�.0:85/

350

j � D 0:15

1

C
A D P .V � 0:775 j � D 0:15/ :

In the standard normal distribution table we find P .V � 0:775/ D 0:7808 and
thus have

ˇ .� D 0:15/ D 1 � P .V � 0:775/ D 1 � 0:7808 D 0:2192:

Thus, compared to ˇ .� D 0:15/ from the 1st alternative, the increase in the
sample size has resulted in a sizeable reduction in the error type II probability for a
true population proportion of � D 0:15.
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Fig. 9.22 Screenshot of the interactive example, available at http://u.hu-berlin.de/men_tprop

Interactive: Testing a Proportion in a Binary Population

The interactive example includes a number of sidebar panels. You can access the
panels by setting a mark at the corresponding check box on the upper right.

Please select

• the test type
• a hypothetical proportion �0

• the significance level ˛

• the sample size n

Use “Draw sample” to manually draw a sample and carry out a test (Fig. 9.22).
The last two panels allow you to choose a dataset or variable and to change

the font size. For a detailed explanation on datasets and variables, please refer to
Appendix A.

Output

In this interactive example you can choose three type of tests for the proportion and
study the impact of the significance level ˛, the sample size n and the choice of �0

on the test decision.
After you have made your choices you are presented a graphic containing

• the distribution of the sample proportion under H0 (bell curve),
• a vertical line displaying your �0

• a green and orange area showing the test decisions

http://u.hu-berlin.de/men_tprop
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By varying n, � and �0, you can explore the impact of these test parameters on
the test decision. To isolate the impacts we recommend change the value of only one
parameter in successive trials. To facilitate easy diagnostics you are shown a table
containing all test values and decisions.

9.4 Testing the Difference of Two Population Means

The unknown parameter to be tested now is the difference of two expectations in
two distinguishable populations, .�1 � �2/. Our parameter tests will be based on
individual samples arising from these two populations; we will thus be dealing with
two-sample tests.

There are many different ways of constructing tests for the difference in two
population expectations. Our tests will be suited to the following assumptions:

• There are two populations. The random variable observed in the first, X1 has
expectation E .X1/ D �1 and variance Var .X1/ D �2

1 ; the parameters of the
random variable observed in the second population, X2, are E .X2/ D �2 and
Var .X2/ D �2

2 . We test for the difference in their expected values, because we
have to regard �1 and �2 as unknown.

• The sizes of the two populations, N1 and N2, are sufficiently large to base the test
procedures on simple random samples drawn without replacement. The sample
sizes are denoted by n1 and n2, respectively.

• The two samples are independent. This means they are drawn independently of
each other so as to not convey any cross-sample information.

• Either the random variables X1 and X2 are normally distributed (X1 Ï N .�1I �1/

and X2 Ï N .�2I �2/), or the sums of observations from both populations can be
approximated sufficiently accurately by a normal distribution via the central limit
theorem. For this to be feasible, the sample sizes n1 and n2 have to be sufficiently
large.

There is a hypothesis about the difference, expressed in terms of !0 D �1 � �2.
A special case of particular practical interest is that of hypothetical equality of the
two population means, i.e., !0 D 0. The test will be conducted at a significance
level of ˛.

Hypotheses

Depending on the application at hand, a two- or one-sided test will be carried out:

1. Two-sided test

H0 W �1 � �2 D !0 versus H1 W �1 � �2 ¤ !0:
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2. Right-sided test

H0 W �1 � �2 � !0 versus H1 W �1 � �2 > !0:

3. Left-sided test

H0 W �1 � �2 � !0 versus H1 W �1 � �2 < !0:

The choice of the appropriate test should be guided by the considerations laid out
in the section on one-sample tests of �.

Test Statistic and Its Distribution: Decision Regions

We have already shown that the estimator of the difference of two expectations,

D D X1 � X2;

where X1 and X2 are the sample means, that is,

X1 D 1

n1

n1X

iD1

X1i X2 D 1

n2

n2X

iD1

X2i;

has normal distribution with expectation E .D/ D ! D �1 � �2. Independence
of the sample variables implies the variance of the sample mean differential is the
difference of the variances of the sample means:

Var .D/ D �2
D D �2

1

n1

C �2
2

n2

:

Assume that !0 is the true distance between the population expectations: ! D !0.
Then D follows a normal distribution with expectation E .D/ D !0 and variance �2

D.
In constructing an appropriate test statistic, we have to make the same distinction

concerning our knowledge about the standard deviations �1 and �2 as in the one-
sample case. Let’s start with the simplifying (and unrealistic) assumption that, for
some miraculous reason, we know the standard deviations in both populations, �1

and �2.

Known Standard Deviations �1 and �2

If we know �1 and �2, the distribution of D is fully specified as above, and we can
standardize D to ensure the applicability of numerical tables for the standard normal
distribution:

V D D � !0

�D
D
�
X1 � X2

�� !0
q

�2
1

n1
C �2

2

n2

:
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Table 9.6 Rejection and non-rejection region for known standard deviations

Test Rejection region for H0 Non-rejection region for H0

Two- sided
˚
vjv < �z1�˛=2; or v > z1�˛=2

� ˚
vj � z1�˛=2 � v � z1�˛=2

�

Right-sided fv j v > z1�˛g fv j v � z1�˛g
Left-sided fv j v < z�1�˛g fv j v � �z1�˛g

Under H0, V has (at least approximately) standard normal distribution, and the
table of numerical values of the cumulative standard normal distribution can be
used to determine critical values. These normal quantiles translate into the decision
regions for tests at a significance level ˛ shown in Table 9.6.

Unknown Standard Deviations �1 and �2

We have to estimate the unknown quantities �1 and �2 using their sample counter-
parts:

S2
1 D 1

n1 � 1

n1X

iD1

�
X1i � X1

�2
; S2

2 D 1

n2 � 1

n2X

iD1

�
X2i � X2

�2
:

Assuming homogeneity in variances, i.e., the random variable under considera-
tion has the same dispersion in both populations, �2

1 D �2
2 , the estimation function

S2 of the joint variance �2 is a weighted arithmetic average of the two variance
estimators S2

1 and S2
2:

S2 D .n1 � 1/ S2
1 C .n2 � 1/ S2

2

n1 C n2 � 2
:

Thus, we can write the estimator S2
D of �2

D as

S2
D D S2

�
1

n1

C 1

n2

	
D n1 C n2

n1 n2

.n1 � 1/ S2
1 C .n2 � 1/ S2

2

n1 C n2 � 2
:

The test statistic V is then calculated as

V D D � !0

SD
D

�
X1 � X2

� � !0
q

n1Cn2

n1 n2

.n1�1/ S2
1C.n2�1/�S2

2

n1Cn2�2

;

and has t�distribution with n1 C n2 � 2 degrees of freedom.
Under the assumption of heterogeneous variances, �2

1 ¤ �2
2 , the estimator S2

D
can only be approximated as

S2
D D S2

1

n1

C S2
2

n2

:
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Table 9.7 Rejection and non-rejection region for unknown standard deviations

Test Rejection region for H0 Non-rejection region for H0

Two-sided fv j v < �t1�˛=2In1Cn2�2 ; or fv j � t1�˛=2In1Cn2�2 � v

v > t1�˛=2In1Cn2�2g � t1�˛=2In1Cn2�2g
Right-sided

˚
v j v > t1�˛In1Cn2�2

� ˚
v j v � t1�˛In1Cn2�2

�

Left-sided
˚
v j v < t�1�˛In1Cn2�2

� ˚
v j v � �t1�˛In1Cn2�2

�

Welsh has suggested to base the test statistic on this approximation and use

V D D � !0

SD
D
�
X1 � X2

� � !0
q

S2
1

n1
C S2

2

n2

as test statistic.
Under the null hypothesis, V can be approximated by a t�distribution with f

degrees of freedom calculated as follows:

f D
�

S2
1

n1
C S2

2

n2

�2

1
n1�1

�
S2

1

n1

�2

C 1
n2�1

�
S2

2

n2

�2
:

In both cases (homogenous and heterogeneous variances) critical values can be
taken from the t�distribution table. Table 9.7 shows the derived decision regions for
the three test situations (for significance level ˛).

Note that the t�distribution quantiles in Table 9.7 can be approximated by
standard normal quantiles, if both sample sizes n1 and n2 are big enough to justify
the application of the central limit theorem (n1 > 30 and n2 > 30). The resulting
decision regions are then similar to those in the case of known variances.

Sampling and Computing the Test Statistic

On the basis of an observed sample, the two sample means x1 and x2 and, if needed,
the empirical standard deviations s1 and s2 can be computed. Plugging these values
into the test statistic formula gives the realized test statistic value v.

Test Decision and Interpretation

Test decision and interpretation are carried out analogously to the one-sample mean
test.
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Explained: Testing the Difference of Two Population Means

Student Sabine visits two farms to buy fresh eggs. The farms are populated by two
different breeds of hens—one on each. Sabine randomly picks 10 eggs from the
first and 15 eggs from the second farm. Back home, she has the impression that the
eggs produced by the hens on the first farm are heavier than those from the second.
To verify this suspicion, she conducts a statistical test at a significance level of ˛.
Sabine compares two (weight) averages by testing for the difference �1 � �2 of two
means.

Hypothesis

As Sabine has reason to believe that the average weight of one egg variety is greater
than that of the other, a single-sided test is indicated. She wants to prove statistically,
that the first farm produces heavier eggs and consequently puts her conjecture as
alternative hypothesis, hoping that her sample will reject the null hypothesis which
states the negation of the statement she wants to verify positively. But Sabine has
no idea as to how great the average weight difference could be and thus sets the
hypothetical difference that has to be exceeded to prove her right to zero: �1 ��2 D
!0 D 0. She can formalize her test as

H0 W �1 � �2 � 0 versus H1 W �1 � �2 > 0;

or, equivalently,

H0 W �1 � �2 versus H1 W �1 > �2:

Test Statistic and Its Distribution: Decision Regions

Sabine has picked the eggs at random—in particular, she hasn’t tried to get hold
of the biggest ones on either farm. Naturally, she sampled without replacement,
but we must also assume that the population of daily produced eggs on both farms
is sufficiently large to justify the assumption of a simple random sample. Clearly,
Sabine has drawn the samples independently, for she sampled on two unrelated
farms.

Sabine assumes that the random variables X1 W “egg weight of first breed” and
X2 W “egg weight of second breed” are normally distributed: X1 Ï N .�1I �1/ and
X2 Ï N .�2I �2/. Expectations E .X1/ D �1 and E .X2/ D �2 and variances
Var .X1/ D �2

1 and Var .X2/ D �2
2 are unknown. To simplify matters, Sabine

assumes that the population variances are homogenous: �2
1 D �2

2 . This assumption
implies that a differential in the expectation doesn’t induce a differential in
the variances—a rather adventurous assumption. Nevertheless, acknowledging the
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above assumptions (and the possibility of their violation), Sabine can base her test
on the test statistic

V D
�
X1 � X2

�� !0
q

n1Cn2

n1 n2

.n1�1/ S2
1C.n2�1/�S2

2

n1Cn2�2

:

Here, n1 D 10 and n2 D 15 are the sample sizes, X1 and X2 are the sample
means and S1

1 and S2
1 are the estimators of �2

1 and �2
2 . Under H0, V has t�distribution

with n1 C n2 � 2 D 10 C 15 � 2 D 23 degrees of freedom. In the corresponding
t-table we find the quantile t0:95I23 D 1:714 to be the critical value c satisfying
P .V � c/ D 1 � ˛ D 0:95 and hence have the following decision regions:

Non-rejection region for H0 W fv j v � 1:714g :

Rejection region for H0 W fv j v > 1:714g :

Sampling and Computing the Test Statistic

Sabine weighs the eggs and computes the sample-specific arithmetic averages and
variances:

1st breed:

x1 D 65:700 s2
1 D 50:35:

2nd breed:

x2 D 60:433 s2
1 D 42:46:

Using !0 D 0 she calculates a test statistic value of v D 1:91.

Test Decision and Interpretation

The test statistic realization v D 1:91 falls into the rejection region for H0. Thus,
Sabine couldn’t prove statistically on the basis of two independent random samples
of sizes n1 D 10 and n2 D 15 and a significance level of ˛ D 0:05, that the
difference �1 � �2 of the population averages of the eggs’ weights is significantly
negative. As the type I error probability P .‘H 1’jH0/ cannot exceed ˛, Sabine has
scientific backing for her claim that the eggs from breed 1 hens are heavier than
those from the second farm—on average!
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Enhanced: Average Age Difference of Female and Male Bank
Employees

Mr. Schmidt and Mr. Maier, two senior bank managers, enjoy lunch hours that are
long enough to start arguing about the average age of their colleagues.

1st Dispute

Mr. Schmidt claims that the average age of female employees differs from that of
the male employees—an opinion Mr. Maier cannot and, more importantly, doesn’t
want to share.

2nd Dispute

Mr. Schmidt even believes to know the direction of the deviation: Female workers
are older on average, it appears to him. Being opposed to Schmidt’s first claim,
Maier cannot but disagree with his second.

3rd Dispute

The above is not enough confrontation to override the boredom that has spread
after numerous discussions about the fair value of the Euro and the best national
football team coach. Mr. Schmidt cannot help himself and switches to attack: “On
average, the women in our bank are 5 years older than the men!” Mr. Maier is more
than happy to disagree, even though he suddenly concedes that the average male
colleague might be younger than the average female. But he cannot rule out the
possibility that these subjective impressions could be subject to a focus bias arising
from a more critical examination of their female colleagues (Maier and Schmidt are
both married).

To settle their disputes and hence make space for other future discussions, Maier
and Schmidt decide to carry out a statistical investigation. They are both surprised
that they can agree on the following settings:

The statistical test will be based on the difference of two population means �1 �
�2; significance level is ˛.

Random variable X1 captures the age of a female banker, X2 the age of a male
banker. Expectations E .X1/ D �1, E .X2/ D �2 and variances Var .X1/ D �1 ,
Var .X2/ D �2 are unknown. Homogeneity of variances cannot be assumed, Maier
and Schmidt agree. Furthermore, there is no prior knowledge about the shape of the
distribution of X1 and X2 . Consequently, sample sizes n1 and n2 will have to be
sufficiently large to justify the application of the central limit theorem. Maier and
Schmidt know that there are approximately as many female as male workers in the
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bank, and they thus choose equal sample sizes: n1 D n2 D 50. They ask human
resources for support in there ground-breaking investigations. Of course, personnel
could simply provide them with the exact data, but they agree to draw two samples
of size 50 at random, without replacing the sampled entity after each draw. They
assure that the two samples from the male and female population can be regarded as
independent. Sample averages and variances are computed for both samples.

Test Statistic and Its Distribution: Decision Regions

As �1 and �2 are unknown and Maier&Schmidt have to assume heterogeneity of
variances, they employ the test statistic

V D
�
X1 � X2

� � !0
q

S2
1

n1
C S2

2

n2

;

where

X1 D 1

n1

n1X

iD1

X1i; X2 D 1

n2

n2X

iD1

X2i

are the sample means and

S2
1 D 1

n1 � 1

n1X

iD1

�
X1i � X1

�2
; S2

2 D 1

n2 � 1

n2X

iD1

�
X2i � X2

�2

are estimators of the population variances �1 and �2.
As the sample sizes satisfy n1 > 30 respectively n2 > 30, the central limit

theorem can be applied, and the distribution of V can, under H0, be approximated
by the standard normal distribution (bell curve). Maier&Schmidt will thus apply an
asymptotic or approximate test for �1 � �2.

1st Dispute

Hypothesis

Mr. Schmidt’s first claim is general in that he doesn’t specify direction or size of
the proposed average age differential. Thus, a two-sided test with !0 D 0 has to be
specified:

H0 W �1 � �2 D !0 D 0 versus H1 W �1 � �2 ¤ !0 D 0;
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or, equivalently,

H0 W �1 D �2 versus H1 W �1 ¤ �2:

Determining the Decision Regions for H0

The upper critical value satisfying P .V � cu/ D 1 � ˛=2 D 0:975 can be looked
up in the normal distribution table as the 97:5 % quantile: cu D z0:975 D 1:96. From
the symmetry of the normal distribution around zero follows for the lower critical
value cl D �z1�˛=2 D �1:96, such that P .V � cl/ D ˛=2 D 0:025. We thus have
the following decision regions:

Approximate non-rejection region for H0:

fv j � 1:96 � v � 1:96g :

Approximate rejection region for H0:

fv j v < �1:96 or v > 1:96g :

Sampling and Computing the Test Statistic

Personnel submits the following data computed from the two samples:

• Female bank clerks: x1 D 47:71; s2
1 D 260:875:

• Male bank clerks: x2 D 41:80; s2
2 D 237:681:

• Using !0 D 0, Maier&Schmidt derive a test statistic value of v D 1:87.

Test Decision and Interpretation

The test statistic value of v D 1:87 falls into the non-rejection region for H0, and
consequently the null hypothesis is not rejected. Based on two independent random
samples of sizes n1 D n2 D 50, Maier&Schmidt couldn’t prove statistically the
existence of a significant difference in the population averages of female and male
bank clerks’ ages, �1 and �2.

Having not-rejected the null hypothesis, Maier&Schmidt may have made a
wrong decision. This is the case, if in reality the two population means do differ.
The probability of the occurrence of a type II error (‘H0’jH1) can only be computed
for “hypothetical” true parameter values, i.e., the parameter region of the alternative
hypothesis is narrowed to a single parameter point.
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2nd Dispute

Hypothesis

Mr. Schmidt believes that subsequently he has come up with some substantial new
arguments in favor of his proposition and insists in putting it as the alternative
hypothesis in a further test to be conducted. If the null hypothesis is rejected and
thus his hypothesis verified, he can quantify the maximum type I error probability
to be ˛ and has thus scientific backing for maintaining his position. The resulting test
is a right-sided one, still without quantification of the suggested positive difference:
!0 D 0:

H0 W �1 � �2 � !0 D 0 versus H1 W �1 � �2 > !0 D 0;

or, equivalently,

H0 W �1 � �2 versus H1 W �1 > �2:

Determining the Decision Regions for H0

The critical value satisfying P .V � c/ D 1 � ˛ D 0:95 can be found in the normal
distribution table to be c D z0:95 D 1:645. The decision regions are then:

Approximative non-rejection region for H0:

fv j v � 1:645g :

Approximative rejection region for H0:

fv j v > 1:645g :

Sampling and Computing the Test Statistic

Human resources supplies Mr. Maier and Mr. Schmidt with the following sample
characteristics:

• Female bank clerks: x1 D 51:71; s2
1 D 385:509:

• Male bank clerks: x2 D 45:16; s2
2 D 283:985

• Using !0 D 0, Maier&Schmidt compute the test statistic value as v D 1:79.

Test Decision and Interpretation

As the test statistic value of v D 1:87 falls into the rejection region for H 0, the null
hypothesis is rejected. Maier&Schmidt could show on the basis of two independent
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random samples of sizes n1 D n2 D 50, that the difference �1 � �2 is significant at
the ˛ D 0:05 level. Thus, Schmidt has reason to maintain his claim that the average
female bank clerk is older than the average male.

The probability of having made a wrong conclusion in a repeated test context,
i.e., the type I error probability P .‘H1’jH0/, is constrained by the significance level
˛ D 0:05.

Compared to the two-sided test, the rejection region for H0 doesn’t consist of
two segments, but is located on the right-hand side of E .V/ D 0. As the area under
the normal curve corresponding to this region has to equal the “entire” quantity ˛,
the critical value is smaller than that for the two-sided version. For this reason the
null hypothesis is more likely to be rejected for the same significance level ˛ and
sample sizes n1 and n2 in the one-sided test than in the two-sided test for equal
deviations of the test statistic from the hypothetical boundary parameter value in the
same direction.

3rd Dispute

Hypothesis

In his third claim, Mr. Schmidt has gone one step further in that he has quantified the
average age of his female colleagues to be at least 5 years higher than the average
age of his male coworkers. Translated into our test formalization, the hypothetical
difference is !0 D 5. Maier agrees to adopt the same test structure as in the second
dispute, leaving Schmidt’s claim as alternative hypothesis. The resulting right-sided
test is:

H0 W �1 � �2 � !0 D 5 versus H1 W �1 � �2 > !0 D 5:

Determining the Decision Regions for H0

The critical value for P .V � c/ D 1 � ˛ D 0:95 is looked up in the normal
distribution table: c D z0:95 D 1:645. The resulting approximate decision regions
are the same as in the second dispute:

Approximative non-rejection region for H0:

fv j v � 1:645g :

Approximative rejection region for H0:

fv j v > 1:645g :
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Sampling and Computing the Test Statistic

Human resources submit the following statistics:

• Female bank clerks: x1 D 52:22; s2
1 D 321:914:

• Male bank clerks: x2 D 43:13; s2
2 D 306:527

• This time Maier&Schmidt compute the test statistic value using !0 D 5, yielding
v D 1:154.

Test Decision and Interpretation

The test statistic value v D 1:154 belongs to the non-rejection region for H0, and
the null hypothesis is thus not rejected. On the basis of two independent random
samples of sizes n1 D n2 D 50, Maier&Schmidt couldn’t verify statistically, that
the difference �1 � �2 is significantly greater than 5. Schmidt hence couldn’t prove
statistically at a significance level of ˛ D 0:05, that the average female bank clerk
is 5 years older than the average male bank worker. The test delivers an objective
decision basis for a proposed difference of exactly 5—nothing can be said about
any other positive difference smaller than 5 (neither for true differences greater than
5, owing to the possibility of the type II error). Thus, if the average female banker
is older than the average male banker in the population, Mr. Schmidt has either
overstated the difference or is a victim of the type II error, ‘H0’jH1, the probability
of which can only be computed for specific values of the true population parameter
differential.

Interactive: Testing the Difference of Two Population Means

The interactive example includes a number of sidebar panels. You can access the
panels by setting a mark at the corresponding check box on the upper right.

Please select

• the significance level ˛

• the sample size for group one n1 and two n2

Use “Draw sample” to manually draw a sample and carry out a test (Fig. 9.23).
The last two panels allow you to choose a dataset or variable and to change

the font size. For a detailed explanation on datasets and variables, please refer to
Appendix A.
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Fig. 9.23 Screenshot of the interactive example, available at http://u.hu-berlin.de/men_tmu2

Output

In this interactive example you can study the impact of the significance level ˛ and
the sample sizes n1, n2 on the test decision of a two-sided test:

H0 W �1 D �2 versus H0 W �1 ¤ �2:

You may conduct this test as often as you like. Each repetition is based on freshly
simulated random samples of X1 and X2 and carried out using your specified test
parameters. You can:

• repeatedly observe test decisions on the basis of unchanged significance level ˛

and sample sizes n1 and n2;
• alter ˛; for constant n1 and n2;
• vary the sample sizes n1 and n2, holding the significance level ˛ constant; or
• vary ˛, n1 and n2 simultaneously.

To facilitate easy diagnostics you are shown a table containing all test values and
decisions.

9.5 Chi-Square Goodness-of-Fit Test

The chi-square goodness-of-fit test allows us to test the unknown population
distribution of a random variable X. In the test procedures we have introduced so far
we have assumed that the distribution of X can be described (at least approximately)
by a function that is specified up to some parameter (e.g., � and �; or � and n). Our
tests were “merely” designed to verify whether certain hypothetical values for these

http://u.hu-berlin.de/men_tmu2
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unknown parameters can be reconciled with the sample at hand. Our goal now is to
verify whether the data can be fit by a fully specified probability model. That means
that there aren’t any parameters left to test for, and we are thus moving on from a
parametric to a nonparametric approach. The chi-square goodness-of-fit test is based
on a simple random sample. As usual the significance level ˛ has to be fixed before
the test is conducted. Note that the chi-square test represents only one approach to
testing the fit of a probability model. Consult the literature for other tests.

A random variable X has probability distribution F .x/. No restrictions are
imposed on the measurement level of X. The probability distribution is unknown,
but there is a hypothesis about it, denoted by F0 .x/.

If X is a discrete random variable, we denote the set of possible outcomes by
x1; : : : ; xk. We define:

• h
�
xj
� D hj is the observed absolute frequency of xj in the sample, j D 1; : : : ; k,

• P
�
X D xj

�
is the probability of X assuming the value xj, j D 1; : : : ; k.

If X is a continuous random variable (which we understand to include quasi-
continuous variables, i.e., discrete variables with infinitely many possible realiza-
tion), we have to partition the set of possible outcomes. If k � 2 is the number
of classes, the classes are given by the following exhaustive sequence of disjoint
intervals:

�
x	

0 ; x	
1


;
�
x	

1 ; x	
2


; : : : ;

�
x	

k�1; x	
k


respectively

�
x	

j�1; x	
j


; j D 1; : : : ; k:

We define for the continuous case:

• h
�

x	
j�1 < X � x	

j

�
D hj is the observed absolute frequency in the jth class in the

sample, j D 1; : : : ; k,

• P
�

x	
j�1 < X � x	

j

�
is the probability of X assuming values within the jth class,

�
x	

j�1; x	
j

i
, j D 1; : : : ; k.

Hypothesis

The null hypothesis in a goodness-of-fit test states that the proposed probability
model correctly describes the distribution of the data in the population; the
alternative hypothesis contains the negation of this statement. Applied to the chi-
square test using above conventions, the test is formalized as follows:

Discrete X

H0 W P
�
X D xj

� D pj 8j D 1; : : : ; k

versus

H1 W P
�
X D xj

� ¤ pj for at least one j:
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Continuous X

H0 W P
�
x	

j�1 < X � x	
j

� D pj 8j D 1; : : : ; k

versus

H1 W P
�
x	

j�1 < X � x	
j

� ¤ pj for at least one j:

In both cases pj denotes the probability of X assuming the value xj (or falling into

the jth class,
�

x	
j�1; x	

j

i
), given the null hypothesis is true and hence F0 .x/ is the

true probability distribution:

pj D P
�
X D xj j H0

�
respectively pj D P

�
x	

j�1 < X � x	
j j H0

�
:

How Is pj Computed?

Fully Specified Parametric Distribution Function
The quantities pj can be readily calculated if the hypothetical distribution is a fully
specified function. If F0 .x/ is a member of some parametric class, all parameters
have to be known.

Example X has Poisson distribution PO .	/ with given parameter 	.

Partially Specified Parametric Distribution Function
If the hypothetical distribution belongs to a parametric family involving one or more
parameters, of which at least one is unknown, they will have to be estimated before
the pj’s can be calculated.

Example We want to test whether X has a normal distribution N .� ; �/, where
expectation � and variance � are unknown. We will have to estimate these
parameters using the information conveyed by the sample to obtain a completely
specified distribution function and calculate the hypothetical probabilities pj.

Frequency Distribution
The null hypothesis may state the hypothetical probability model in the form of a
numerical frequency distribution.

Example The random variable X can take on 4 possible values with associated
probabilities p1 D 0:2, p1 D 0:4, p1 D 0:1 and p1 D 0:3.

Test Statistic and Its Distribution: Decision Regions

The tests’ principle is to compare the hypothetical probabilities derived from
the hypothetical distribution stated in the null hypothesis with observed relative
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frequencies. The underlying test statistic is based on observed absolute frequencies
hj. Once we have drawn a sample, of size n, we can calculate them as frequencies

of the events
˚
X D xj

�
respectively

n
x	

j�1 < X � x	
j

o
. The set of all absolute

frequencies hj; j D 1; : : : ; k constitutes the samples’ distribution. They are random,
because by sampling randomly we carry out a random experiment. We must
therefore regard the absolute frequencies hj as realizations of random variables
Hj; j D 1; : : : ; k.

If the null hypothesis is true, the expected values of the relative frequencies in the
sample are given by the probabilities pj. The expectations of the absolute frequencies
are thus npj.

The comparison between observed and expected (under H0) frequencies is
constructed around the differences Hj �npj; j D 1; : : : ; k. Small differences count in
favor of the null hypothesis. A way of consolidating the differences across possible
outcomes/classes is expressed by the following test statistic:

V D
kX

jD1

�
Hj � npj

�2

npj
:

Under H0, V has approximately chi-square distribution with k � m � 1 degrees
of freedom—independent of the distribution that is being tested for.

Approximation Conditions

The approximation can be assumed to be sufficiently accurate if

• npj � 1 for all j and
• npj � 5 for at least 80 % of all expected absolute frequencies.

A means of ensuring the applicability of the chi-square goodness-of-fit test when
these conditions aren’t fulfilled in the original setting is to combine bordering
classes or outcomes into larger classes. As the hypothetical probabilities pj are fixed
(through the null hypothesis), an increase in the sample size n will always result in
an improved approximation accuracy.

In determining the degrees of freedom we have to take into account:

• k is the number of classes after a possibly necessary combination of classes,
• m is the number of parameters that has to be estimated from the sample in order

to fully specify the distribution. If the probability distribution proposed in H0 is
completely specified, m is zero.

Observe that
�
Hj � npj

�2
=npj cannot be negative. The test statistic v as the sum

of these ratios can thus assume only positive values. Large (absolute) deviations
Hj � npj are translated into high positive contributions to the test statistic value,
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Fig. 9.24 Distribution for the
chi-square goodness-of-fit
test
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increasing the likelihood of a rejection for H0. Small deviations are more likely
to stem from the noise introduced by the sampling process rather than being the
result of a distribution function fundamentally (i.e., significantly) different from the
hypothetical one. They thus tend to support the null hypothesis. Small deviations
are marginalized through the square operator. As only relatively high values of the
test statistic lead to a rejection of the null hypothesis, the chi-square test is a right-
sided test. The critical value c satisfying P .V � cu/ D 1 � ˛ for the given degrees
of freedom is taken from the chi-square distribution function table. The decision
regions are thus:

Rejection region for H0 W ˚v j v > �2
1�˛Ik�m�1

�
:

Non-rejection region for H0 W ˚v j v � �2
1�˛Ik�m�1

�
:

The probability of V assuming a value from the rejection region for H0, given H0

is true, equals the significance level: ˛ D P
�
V > �2

1�˛Ik�m�1 j H0

�
. The probability

of V falling into the non-rejection region under H0 is P.V � �2
1�˛Ik�m�1jH0/ D 1�˛

(Fig. 9.24).

Sampling and Computing the Test Statistic

Once a random sample of size n has been observed, the absolute frequencies hj can
be computed. If needed, unknown parameters in the hypothetical distribution can be
estimated and the expected absolute frequencies, npj, can be calculated. Plugging
this condensed data into the test statistic formula gives the test statistic value.
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Test Decision and Interpretation

If v belongs to the rejection region for H0, the null hypothesis will be rejected on the
basis of a random sample of size n and a significance level ˛: ‘H1’. In this case the
researcher could show statistically, that the population distribution of the random
variable X is not given by F0 .x/.

Rejecting the null hypothesis makes the researchers’ conclusions subject to the
risk of a type I error: ‘H1’jH0. Fortunately, that’s a quantity the empirical scientist
can control: the probability of the null hypothesis being true, given it has been
rejected, cannot—by construction—exceed the significance level ˛.

If v is observed within the non-rejection region, the null hypothesis is not rejected
on the basis of a particular sample of size n for a given significance level ˛: ‘H0’.
One could not verify statistically that the true population distribution generating the
data differs significantly from the hypothetical distribution F0 .x/.

Of course, this decision doesn’t imply, that the true distribution does coincide
with the proposed one. The actual sample merely couldn’t falsify this possibility,
and in a certain number of samples it won’t do so even though the null hypothesis
is not true. Such a case is an example of a type II error: ‘H0’jH1.

More Information

In principle the general approach used in goodness-of-fit tests resembles that of
parametric tests. A test statistic is constructed summarizing or condensing the
information about the hypothetical distribution and that conveyed by the sample
to form the basis for a probabilistic statement about the null hypothesis. The
test statistic distribution has to be derived (at least approximately) under the null
hypothesis. Thus, the decision about the non-rejection or rejection of a probability
model to describe the real-world data generating process (a nonparametric test) is
subject to the same possible errors as in parametric tests: In repeated samples (tests),
a type I error will be made with (conditional) probability P .‘H0’jH1/ D ˛, if H0 has
been not-rejected and a type II error will be made with probability P .‘H1’jH0/ D ˇ

if it has been rejected. The ˛ error probability is controlled by the researcher through
the significance level ˛, but the type II error probability cannot be computed, for it
is not clear what the alternative probability model is—we only know that it is not
the one specified in the null hypothesis, but one can make up infinitely many models
that are arbitrarily close to the hypothetical one. It should thus always be the goal of
the researcher to reject the null hypothesis, as this caps the probability of making a
wrong decision. On the other hand it’s not possible to “accept” the null hypothesis
(hypothetical model)—we either reject it or do not reject it—non-rejection does not
imply that the null is necessarily true (recall we may have experienced a type II
error).
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Hypothesis

If the hypothetical distribution is the true distribution actually generating the data
throughout the population, we expect to encounter this distributional pattern in
the sample. As the sample is a randomly chosen subset of the population, it will
more or less accurately reflect the true population pattern, and only on average will
the samples (in a large-sample context) reveal the true (and correctly “guessed”)
distribution. Deviations of the empirical distribution encountered in the sample will
then be a result of noise introduced by the sampling process (due the fact, that only a
limited number of statistical elements making up the entire population is represented
in the sample). Statistical goodness-of-fit tests are designed to reliably discriminate
between this sampling noise and deviations of the hypothetical distributions from
the actual. The “reliability” concept is based on a repeated sampling context—
on average, we want the test to discriminate properly, as there is always a (albeit
small) probability of drawing a sample that is atypical (or nonrepresentative) for
the underlying true distribution. The question that the chi-square goodness-of-fit
test tries to answer is thus whether the encountered deviation of the empirical
from the hypothetical (theoretical) distribution is significant in that it exceeds the
average sample noise expected for the given sample size n. The pair of hypotheses
is always:

• H0 W The distribution of the random variable in the population is the hypothetical
one.

• H1 W The distribution of the random variable in the population differs from the
hypothetical one.

As already mentioned, large deviations of the sample distribution from the hypo-
thetical distribution tend to falsify the null hypothesis, indicating that a different
distribution is governing the population data.

The pair of hypotheses underlying the chi-square goodness-of-fit test contains
the probabilities pj .j D 1; : : : ; k/, which are calculated from the hypothetical
distribution. If X is a discrete random variable, the probabilities pj D P

�
X D xj j H0

�

are explicitly given with the probability function. In the case of continuous random
variables the probability of one specific value having been realized is always zero.
For this reason intervals have to be formed, within which realizations can be

observed. The probability pj D P
�

x	
j�1 < X � x	

j j H0

�
, that the continuous random

variable X assumes values in the interval (class)
�

x	
j�1; x	

j

i
can be calculated from

the given probability density function. Note that it may be necessary to group (quasi-
continuous) discrete variables into classes—if only for the sake of improving the
approximation accuracy of the chi-square distribution.
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Test Statistic

We will now illustrate the random nature of the observed absolute frequencies Hj.
Our reasoning is valid both for continuous and discrete variables, but we will refer
to the discrete case for simplicity.

Suppose we randomly pick a statistical element from the population of all
elements (objects/subjects) displaying the random variable X under consideration.
If we want to compute the absolute frequency Hj for one specific outcome xj, the
only information we are interested in is whether X assumes this value on that
particular element or not. Thus, there are only two possible outcomes: Under H0,
the probability of X being observed in xj is pj, and the probability of this element
not counting towards the absolute frequency Hj is 1 � pj. Drawing a sample of
size n means to independently repeat this random experiment n times. As the
hypothetical distribution and therefore the derived quantity pj remains unchanged,
we are carrying out a Bernoulli experiment, if we focus on one single absolute
frequency Hj.

Having repeated the Bernoulli experiment n times, we are interested in the
overall number of realization of

˚
X D xj

�
, i.e., the absolute frequency of xj in the

sample. This frequency can (and most certainly will) vary across samples. Hence,
Hj W Number of observations X D xj in a simple random sample of size n is a
discrete random variable with possible outcomes 0; : : : ; n. More specifically, under
H0 the random variable Hj has Binomial distribution with parameters n and pj:
Hj Ï B

�
nI pj

�
. Its expectation is given by E

�
Hj
� D npj, the expected absolute

frequency
˚
X D xj

�
under the null hypothesis. The variance Var

�
Hj
� D npj

�
1 � pj

�

captures the variation in the observed absolute frequency of
˚
X D xj

�
.

The test statistic is based on deviations of the random variables from their
expectation: Hj � npj. Summing over these quantities would result in negative
and positive deviations offsetting each other. Squaring the terms before summation
prevents from that:

�
Hj � npj

�2
. Dividing by the sample size n and the probabilities

pj weights the squared deviations by their “importance” in terms of contribution
to the overall probability distribution. A difference hj � npj D 5 receives a higher
weighting for npj D 10 than for npj D 100—for a fixed sample size, the difference
accounts for a higher proportion in the test statistic, if the value xj is expected with
low probability and thus accounts for a smaller part of the distribution in terms of
probability (the tails of the distribution for example). These considerations apply for
all j D 1; : : : ; k.

Summation over all normalized deviations consolidates the overall deviation of
the empirical distribution function from the hypothetical, yielding an adequate test
statistic with a known asymptotic distribution:

V D
kX

jD1

�
Hj � npj

�2

npj
:
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Because Hj; j D 1; : : : ; k are random variables, V is also a random variable.
When n is sufficiently large and the approximation conditions on the npj hold,
V is approximately chi-square distributed with k � m � 1 degrees of freedom under
the null hypothesis, regardless of the shape of the hypothetical distribution. If the
approximation conditions aren’t fulfilled, combining classes may provide a fix.
This may require the construction of classes for discrete random variables (or a
broadening of one or more classes, if the data has already been grouped). Since
we have summarized, or condensed, our data into k classes we have k pieces of
information to provide information about the null. The ‘�1’ term in the formula for
the degrees of freedom reflects the fact, that any absolute frequency hj is determined
by the other k � 1 frequencies, as the overall number of absolute frequencies must
satisfy

P
j hj D n. The absolute frequencies are thus not (linearly) independent of

each other. The need for estimation of parameters in the hypothetical distribution
F0 .x/ results in a further loss of degrees of freedom. If m is the number of
parameters to be estimated, we have k � m � 1 degrees of freedom.

Explained: Conducting a Chi-Square Goodness-of-Fit Test

A die is claimed to be fair. We want to verify this statement using a chi-square
goodness-of-fit test at a significance level of ˛ D 0:1. The size of the sample is
n D 240.

Hypothesis

The random variable we are dealing with, X W “Number on top of the die,” is a
discrete variable that can assume the values x1 D 1, x2 D 2, x3 D 3, x4 D 4, x5 D 5

and x6 D 6. Its distribution F .x/ is unknown, but the null hypothesis is that the die is
fair and hence all outcomes (sides) are equally probable. Hence, the null hypothesis
states that X has discrete uniform distribution:

H0 W P
�
X D xj

� D pj D 1=6 ; 8j D 1; : : : ; 6

vs.

H1 W P
�
X D xj

� D pj ¤ 1=6 ; for at least one (and hence at least one further) j:
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Test Statistic and Its Distribution: Decision Regions

We use the test statistic for the chi-square goodness-of-fit test:

V D
kX

jD1

�
Hj � npj

�2

npj
:

Under H0, V is approximately chi-square distributed. The approximation con-
ditions are fulfilled, as npj D 40 > 5 for all j D 1; : : : ; 6. The discrete uniform
distribution is fully specified and there are hence no parameters to be estimated
(m D 0). We thus have k � m � 1 D 6 � 0 � 1 D 5 degrees of freedom.

Looking up the critical value c for which P .V � c/ D 1 � ˛ D 0:9 in the table
of the chi-square distribution with 5 degrees of freedom gives c D �2

1�˛Ik�m�1 D
�2

0:90I5 D 9:24. The resulting decision regions are:
Rejection region for H0:

fv j v > 9:24g :

Non-rejection region for H0:

fv j v � 9:24g :

Sampling and Computing the Test Statistic

The die is rolled 240 times. The resulting sequence of observations constitutes a
simple random sample, because the individual trials are independent of each other.
Table 9.8 summarizes the data.

Take a look at the deviations of the observed frequencies from the frequencies
expected under the null hypothesis. Can they be regarded as random variations
around the expected value arising from the finite size of the sample? The test statistic
value is given by the sum of the last column: v D 9:8.

Table 9.8 Data on 240 throws of a die

Observed Expected
xj frequencies hj frequencies npj hj � npj

�
hj � npj

�2 .hj�npj/
2

npj

1 52 40 12 144 3:6

2 50 40 10 100 2:5

3 32 40 �8 64 1:6

4 36 40 �4 16 0:4

5 32 40 �8 64 1:6

6 38 40 �2 4 0:2
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Test Decision and Interpretation

As the test statistic value falls into the rejection region for H0, the null hypothesis is
rejected (‘H1’). On the basis of a random sample of size n D 240 and a significance
level ˛ D 0:1, we couldn’t prove statistically that the die is fair, i.e., that the true
probability distribution of X W “Number on top of the die” is the discrete uniform
distribution. In repeated samples (tests) the probability of making a type I error,
P .‘H1’jH0/, doesn’t exceed a chosen significance level ˛ D 0:1 by construction.
Therefore, any faith that we associate with this test conclusion (result) stems from
the fact that we have conducted a test that is “accurate” on average.

Enhanced: Goodness-of-Fit Test for Product Demand

The management of a wholesaler analyzes the business. The focus is on demand
for a certain specialized product. Which distribution can describe the variation in
demand?

The demand for a product unfolds continuously in time. Customers place their
orders independently of each other, and the distributor cannot trace back the
individual orders to common underlying factors. As a consequence, the overall
demand is a random phenomenon. Let’s partition continuous time into intervals
of one days’ length. Then the random variable X denotes the discretely measured
demand for the product under investigation. These settings suggest that the Poisson
distribution may be a suitable model for the random variations in the demand:
X Ï PO .	/.

The test has to be conducted at a significance level of ˛ D 0:05. The data
encountered in a simple random sample of size of n D 50 days is summarized
in Table 9.9.

Table 9.9 Probabilities and expected absolute frequencies under H0

j Demand xj Observed frequencies hj pj D P
�
X D xj j H0

�
npjjH0

1 0 3 0:1653 8:265

2 1 9 0:2975 14:875

3 2 14 0:2678 13:390

4 3 13 0:1607 8:035

5 4 6 0:0723 3:615

6 5 5 0:0260 1:300

7 � 6 0 0:0104 0:520
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1st Version

Hypothesis

An experienced member of the staff believes that the average quantity sold in any 5

days period is 9. As the mean of the Poisson distribution is given by E .X/ D 	 and
we are observing in intervals of 1 day, we must scale the expectation to 	 D 9=5 D
1:8. Our test is then

H0 W X has Poisson distribution with parameter 	 D 1:8; i.e., X Ï PO .1:8/

vs.

H1 W X doesn’t have Poisson distribution with parameter 	 D 1:8:

Columns 4 and 5 of Table 9.9 contain the probabilities under H0, P
�
X D xj j H0

�D
pj (taken from the PO .1:8/ table) and the associated expected absolute frequencies
npj.

Test Statistic and Its Distribution: Decision Regions

The test statistic for the chi-square goodness-if-fit test is :

V D
kX

jD1

�
Hj � npj

�2

npj
:

Under H0, V is asymptotically chi-square distributed with k � m � 1 degrees of
freedom.

Are the approximation conditions satisfied? As you can see in the fifth column
of Table 9.9, the realizations x5 D 4 and x6 D 5 do not satisfy npj � 5. Realization
x7 � 6 doesn’t even satisfy npj � 1. We thus combine these three realization into
one class.

Determining degrees of freedom:
There are k D 5 classes left after the re-grouping. The hypothetical Poisson

distribution had been fully specified; the given parameter 	 D 1:8 didn’t have to be
estimated: m D 0. Thus we have V has approximately chi-square distribution with
k � m � 1 D 5 � 0 � 1 D 4 degrees of freedom.

We find the critical value c satisfying P .V � c/ D 1 � ˛ D 0:95 in the table of
the chi-square distribution with 4 degrees of freedom: c D �2

1�˛Ik�m�1 D �2
0:95I4 D

9:49. The decision regions are:
Rejection region for H0:

fv j v > 9:49g :
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Table 9.10 Test statistic components for new grouping

xj hj npj hj � npj

�
hj � npj

�2 �
hj � npj

�2
=npj

0 3 8:265 �5:265 27:7202 3:3539

1 9 14:875 �5:875 34:5156 2:3204

2 14 13:390 0:610 0:3721 0:0278

3 13 8:035 4:965 24:6512 3:0680

� 4 11 5:435 5:565 30:9692 5:6981

Non-rejection region for H0:

fv j v � 9:49g :

Calculating the Test Statistic Value

Table 9.10 summarizes the sample data in terms of test statistic components for the
new grouping.

Summing over all five values in the last columns gives the realized (observed)
test statistic value: v D 14:4682.

Test Decision and Interpretation

The test statistic value belongs to the rejection region for H0; consequently, the null
hypothesis is rejected (‘H1’). On the basis of a random sample of size n D 50 and
a significance level ˛ D 0:05, we could prove statistically that the random variable
X W “Daily demand for considered product” does not have Poisson distribution with
parameter 	 D 1:8. Note, this doesn’t imply that we have to leave the class of
Poisson distribution when searching for an appropriate probability model, for we
have only tested for the assumed parameterization 	 D 1:8.

Having decided in favor of the alternative hypothesis we may have made a type
I error: ‘H1’jH0. This is the case if PO .1:8/ is the true distribution of X. The
probability of this happening in a repeated sampling (i.e., over many tests) is given
by the significance level ˛ D 0:05.

2nd Version

Hypothesis

We maintain our assumption that the class of Poisson distributions is an adequate
model for the demand: X Ï PO .	/. This time we don’t have any prior knowledge
(or belief) about the parameter 	 and thus have to estimate its value from the data.
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Table 9.11 Probabilities and expected absolute frequencies under H0

j Demand xj Observed frequencies hj pj D P
�
X D xj j H0

�
npjjH0

1 0 3 0:0821 4:105

2 1 9 0:2052 10:260

3 2 14 0:2565 12:825

4 3 13 0:2138 10:690

5 4 6 0:1336 6:680

6 5 5 0:0668 3:340

7 � 6 0 0:0420 2:100

We will use the sample of size n D 50 as in the first version. Applying the method
of moments estimation principle, we can estimate 	 D E .X/ with the first sample
moment

X D 1

n

nX

iD1

Xi:

The arithmetic mean in the observed sample is x D 125=50 D 2:5, and we have
the following pair of hypotheses:

H0 W X has Poisson distribution with parameter 	 D 2:5; i.e., X Ï PO .2:5/

vs.

H1 W X doesn’t have Poisson distribution with parameter 	 D 2:5:

In columns 4 and 5 of the Table 9.11 you find the probabilities implied by H0:
P
�
X D xj j H0

� D pj (taken from the PO .2:5/ table) and the associated expected
absolute frequencies npj.

Test Statistic and Its Distribution: Decision Regions

Once again, we use the test statistic

V D
kX

jD1

�
Hj � npj

�2

npj
;

which we know is approximately chi-square distributed with k � m � 1 degrees of
freedom.
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Verifying the Approximation Conditions
As can be seen in the fifth column of Table 9.11, the realization x1 D 0 doesn’t
satisfy the approximation condition npj � 5. We fix this by combining it with the
second realization x2. The sixth and seventh possible outcomes (h6 D 5, h7 � 6)
still aren’t expected to be observed sufficiently frequently under the null hypothesis.
We group them into one class.

Calculating Degrees of Freedom
After the re-grouping there are k D 5 classes left. The Poisson distribution
parameter has been estimated, imposing a reduction of one: m D 1. Hence we have
k � m � 1 D 5 � 1 � 1 D 3 degrees of freedom. V has approximately chi-square
distribution with 3 degrees of freedom.

The value v satisfying P .V � c/ D 1�˛ D 0:95 can be looked up in the table of
the chi-square distribution with 3 degrees of freedom: c D �2

1�˛Ik�m�1 D �2
0:95I3 D

7:81. The critical value specifies the decision regions:
Rejection region for H0:

fv j v > 7:81g :

Non-rejection region for H0:

fv j v � 7:81g :

Calculating the Test Statistic Value

Table 9.12 contains the sampled data in terms of test statistic components.
The test statistic value is computed by taking the sum of the last column: v D

1:101.

Table 9.12 Test statistic components for new grouping

xj hj npj hj � npj

�
hj � npj

�2 �
hj � npj

�2
=npj

0-1 12 14:365 �2:365 5:5932 0:3894

2 14 12:825 1:175 1:3806 0:1076

3 13 10:690 2:310 5:3361 0:4992

4 6 6:680 �:680 0:4624 0:0692

� 5 5 5:440 �0:440 0:1936 0:0356



404 9 Statistical Tests

Test Decision and Interpretation

As the test statistic value belongs to the non-rejection region for H0, the null
hypothesis is not rejected (‘H0’ ). On the basis of a random sample of size n D 50

and a significance level ˛ D 0:05, we could not prove statistically that the random
variable X W “Daily demand for considered product” does not follow a Poisson
distribution with parameter 	 D 2:5, PO .2:5/.

We have made a type II error if the underlying isn’t PO .2:5/ and thus the null
hypothesis not true: ‘H0’jH1 . In repeated samples (i.e., over repeated tests), the
probability of this error, P .‘H1’jH0/, is unknown.

9.6 Chi-Square Test of Independence

The chi-square test of independence allows us to test for statistical (stochastic)
independence. It is a nonparametric test applicable to all measurement scales.

We assume that two random variables X and Y are observed simultaneously on
i D 1; : : : ; n statistical elements, the observed pairs being mutually independent
(simple random sample). If X and Y are discrete random variables, they can be
observed in the realization xk; k D 1; : : : ; K respectively yj; j D 1; : : : ; J. If X
and Y are continuous (including quasi-continuous discrete variables), the sample
space has to be partitioned into disjoint exhaustive classes (intervals). In this case,
xk; k D 1; : : : ; K and yj; j D 1; : : : ; J denote representative values within the
classes (usually the class midpoints) and J and K denote the overall number of
classes. A suitable representation of the observed joint frequency distribution is the
two-dimensional frequency table, also known as bivariate contingency table (see
Chap. 10 for additional material on contingency tables).

Here, hkj denotes the absolute frequency of the observed pair
�
xk; yj

�
, i.e., that X

assumes xk or a value from the kth class, and Y assumes yj or a value within the jth
class:

hkj D h
�fX D xkg \ ˚

Y D yj
�� I k D 1; : : : ; K ; j D 1; : : : ; J:

The last column contains the observed marginal distribution (md) of X, com-
posed of the absolute marginal frequencies hk
 D h .X D xk/ I k D 1; : : : ; K,
denoting the frequencies with which X has been observed in xk (discrete realization
or class midpoint) regardless of the value of Y. In the last row you find the
observed marginal distribution of Y, given by the absolute marginal frequencies
hj
 D h

�
Y D yj

� I j D 1; : : : ; J, the frequencies of Y being observed in yj regardless
of X. The following definitions are used in the construction of the two-dimensional
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Table 9.13 Two-dimensional contingency table

x y y1 � � � yj � � � yJ md x

x1 h11 � � � h1j � � � h1J h1�

:
:
:

:
:
: � � � :

:
: � � � :

:
:

:
:
:

xk hk1 � � � hkj � � � hkJ hk�

:
:
:

:
:
: � � � :

:
: � � � :

:
:

:
:
:

xK hK1 � � � hKj � � � hKJ hK�

md x h�1 � � � h�j � � � h�J h�� D n

contingency table (Table 9.13):

hk
 D
JX

jD1

hkj I k D 1; : : : ; KI

h
j D
KX

kD1

hkj I j D 1; : : : ; JI

h

 D
KX

kD1

hk
 D
JX

jD1

h
j D
KX

kD1

JX

jD1

hkj D n:

Hypothesis

The null hypothesis in a chi-square test of independence states that X and Y are
statistically (stochastically) independent; the alternative hypothesis negates this.

H0 W X and Y are statistically independent

vs.

H1 W X and Y are not statistically independent:

If the null hypothesis is true, the multiplication rule for independent events gives

P .X D xkg \ ˚
Y D yj

� D P .X D xk/ � P
�
Y D yj

� D pk
 � p
j:

In above formula,

• pkj denotes the probability of X assuming xk (or a value belonging to the class
represented by xk) and Y assuming yj (or a value within the jth class),

• pk
 is the probability of X being observed in xk respectively the kth class
(marginal probabilities of X),
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• p
j is the probability that Y assumes the value xk or is observed in the jth class
(marginal probabilities of Y).

The pair of hypotheses can thus be written

H0 W pkj D pk
 � p
j 8 .k; j/

vs.

H1 W pkj ¤ pk
 � p
j for at least one pair .k; j/ :

As usual the significance level ˛ and sample size n have to be fixed before the
test is conducted.

Test Statistic and Its Distribution: Decision Regions

As the test is based on a comparison between observed absolute frequencies and
absolute frequencies expected under the null hypothesis, the test statistic is built
around absolute frequencies.

An observed sample is summarized in the bivariate contingency table in terms
of joint absolute frequencies hkj (k D 1; : : : ; K ; j D 1; : : : J). These quantities
are outcomes of a random experiment and thus vary across samples. They are
realizations of their theoretical counterparts, the random variables denoted by Hkj.

If the null hypothesis is true, the expected joint frequencies are ekj D n � pk
 � p
j.
The joint probabilities pkj and marginal probabilities pk
 and p
j are unknown and
have to be estimated from the sample. Unbiased and consistent estimators for pk

and p
j are the relative marginal frequencies (sample proportions) fk
 D hk
=n and
f
j D h
j=n. This implies, that we are assuming fixed marginal frequencies in the
two-dimensional contingency table. Our estimators for the expected joint absolute
frequencies under H0 are given by

Oekj D n � fk
 � f
j D n � hk

n

� h
j

n
D hk
 � h
j

n
:

The comparison between the joint absolute frequencies encountered in the
sample and those expected under the null hypothesis is based on the differences
Hkj � Oekj (k D 1; : : : ; K I j D 1; : : : J). A test statistic weighting these differences is
the sum

V D
KX

kD1

JX

jD1

�
Hkj � Oekj

�2

Oekj
:

Under H0, the test statistic V has approximately chi-square distribution with
.K�1/�.J � 1/ degrees of freedom. The approximation is sufficient, if Oekj � 5 for all
pairs .k; j/. When these conditions aren’t fulfilled, adjoining realizations (or classes)
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Fig. 9.25 Distribution for the
chi-square test of
independence
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have to be combined into larger sets of (possible) observations. K and J denote the
numbers of classes in both variables after such necessary (re-)grouping.

The critical value c satisfying P .V � c/ D 1 � ˛ has to be looked up in the
table of the cumulative chi-square distribution function with appropriate degrees of
freedom ( D .K � 1/ � .J � 1/ ). The decision regions are

Rejection region for H0:

n
v j v > �2

1�˛I.K�1/�.J�1/

o
:

Non-rejection region for H0:

n
v j v � �2

1�˛I.K�1/�.J�1/

o
:

Under the null, the probability of the test statistic V assuming a value
from the rejection region for H0 equals the significance level ˛ D P.V >

�2
1�˛I.K�1/�.J�1/jH0/. The probability of the test statistic V being observed in the

non-rejection region for H0 is P.V � �2
1�˛I.K�1/�.J�1/jH0/ D 1 � ˛ (Fig. 9.25).

Sampling and Computing the Test Statistic

After a sample of size n has been drawn, the absolute frequencies hkj of all
observed realization pairs

�
xk; yj

�
can be calculated. We can consolidate these

into the empirical marginal frequencies for X and Y and derive the expected
absolute frequencies Oekj from these according to the above formulas. If violated the
approximation conditions necessitate further grouping, and the frequencies hkj, hk
,
h
j and Oekj have to be recalculated. Plugging hkj and Oekj into the test statistic formula
yields the realized test statistic value v.
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Test Decision and Interpretation

If v falls into the rejection region for H0, the null hypothesis is rejected on the basis
of a random sample of size n at a significance level of ˛ (‘H1’ ). In this case it had
been shown that the random variables X and Y are statistically dependent. If they
are actually independent in the population, a type I error has been made (‘H1’j H0),
the probability of which in repeated samples (tests) equals the significance level:
P .‘H1’jH0/ D ˛.

If v belongs to the non-rejection region for H0, the null hypothesis is not rejected
on the basis of a random sample of size n (‘H0’). The sample doesn’t statistically
contradict the assumption of independence. A type II error has been made, in this
case, if the alternative hypothesis is actually true (‘H0’jH1).

More Information

The principle underlying the independence tests resembles that of the parametric
tests. A test statistic is constructed to summarize (consolidate) the distance of the
relevant information about the theoretical distribution under the null hypothesis
from the corresponding structure in the sample (i.e., measure the distance between
the two distributions). The distribution of the test statistic has to be determined—
either exactly or approximately. The null hypothesis is being tested, and the decision
can result in a type I error with probability P .‘H1’jH0/ D ˛, if the null hypothesis
has been rejected, or in a type II error, if it has not been rejected with probability
P .‘H0’jH1/ D ˇ. The error I probability is controlled by setting the significance
level, but the type II error probability cannot be calculated, as there are infinitely
many probability models different from that claimed to be the true one in the null
hypothesis. For this reason one will try to reject the null hypothesis and thus back
a possible rejection by a known maximum probability of making a wrong decision
(in repeated samples).

Hypothesis

If the random variables are independent in the population, we expect this to be
reflected in the sample. But a sample cannot convey all the information embedded
in the population, and we have to account for random variation introduced by the
sampling process. If the hypothesis is true, we expect it to be reflected accurately
on statistical average only and have to determine what the expected deviation
of the sample characteristics from the hypothetical ones arising from sampling
noise is. Deviations of the observed joint absolute frequencies from those implied
by independence, Oekj, will occur with probability one. The task is to quantify
them relative to the expected variation—an excess disagreement, i.e., a significant
deviation, leading to a rejection of the null hypothesis. As it is always the null
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hypothesis that is being tested, the independence of X and Y has to be proposed as
null hypothesis. Only this way the expected absolute frequencies can be calculated;
after all we need some probability model that allows us to derive the distribution
of the test statistic and thus assess its intrinsic variation. Large deviations of
the observed joint absolute frequencies hkj from those expected if X and Y are
independent, ekj, contradict the independence assumption and thus increase the
likelihood of rejecting the null hypothesis (everything else equal).

The test statistic underlying the chi-square test of independence is calculated
using observed frequencies and the theoretical probabilities pkj, pk
, and p
j (k D
1; : : : ; K I j D 1; : : : J ). If X and Y are discrete random variables, the joint
probabilities are related to exactly one pair of realizations:

pkj D P
�fX D xkg \ ˚

Y D yj
��

; pk
 D P .fX D xkg/ ; p
j D P
�˚

Y D yj
��

:

Continuous random variables assume specific values with probability zero. Thus,
the sample space has to be partitioned into exhaustive disjoint intervals. In the
continuous case the probabilities are defined as follows:

• pkj is the probability of X assuming a value belonging to the class
�
x	

k�1; x	
k

�
and

Y assuming a value from the class
�

y	
j�1; y	

j

�
,

• pk
 is the probability of X being observed in kth class
�
x	

k�1; x	
k

�
(marginal

probabilities of X),

• p
j is the probability that Y takes values from the jth class
�

y	
j�1; y	

j

�
(marginal

probabilities of Y).

Formally:

pkj D P
�˚

x	
k�1 < X � x	

k

� \ ˚
y	

j�1 < Y � y	
j

��
;

pk
 D P
�
x	

k�1 < X � x	
k

�
;

p
j D P
�
y	

j�1 < Y � y	
j

�
:

To simplify and unify exposition for discrete and continuous random variables,
xk; .k D 1; : : : K/ and yj; .j D 1; : : : J/ are taken to be values representative for the
classes in the continuous case (e. g. midpoints). K and J denote the number of classes
constructed for X and Y.

Note that it may prove necessary to group observations from discrete variables
into classes—if only to improve approximation accuracy (for the price of a less
detailed probability model).

Test Statistic

We want to illustrate why the joint absolute frequencies Hkj are random variables.
Our argumentation is valid both for discrete and continuous variables.
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Suppose we sample one statistical element from the population with respect
to the random variables X and Y and check whether the observation pair equals�
xk; yj

�
, i.e., whether the event fX D xkg \ ˚

Y D yj
�

has been realized. There are
only two possible outcomes to this random experiment. The probability of the event
fX D xkg \ ˚Y D yj

�
happening is pkj, and the probability of one single element not

being observed in this particular pair of X and Y realizations is 1 � pkj. If we draw a
sample of n independent pairs of observations, we repeat this random experiment n
times under the same conditions and thus with constant pkj. In other words, we are
carrying out a Bernoulli experiment with n replications.

In doing so, we are interested in the total number of occurrences of the event
fX D xkg \ ˚

Y D yj
�
, i.e., the absolute frequency of the value pair

�
xk; yj

�
in the

sample. This frequency is the outcome of a Bernoulli experiment and thus varies
across samples. Thus, Hkj W “Number of occurrences of fX D xkg \ ˚

Y D yj
�

in
a simple random sample of size n” is a discrete random variable with possible
outcomes 0; 1; : : : ; n. The random variable Hkj has Binomial distribution with
parameters n and pkj: Hkj Ï B

�
nI pkj

�
. Expectation for Hkj is given by E

�
Hkj
� D

npkj. If the null hypothesis is true and thus X and Y are statistically independent, the
joint probability pkj is calculated according to the multiplication rule for independent
events as the product of the marginal probabilities pk
 and p
j: pkj D pk
 � p
j . The
expected joint absolute frequencies are then given by ekj D n � Pkj D n � pk
 � p
j.
This result applies to all k D 1; : : : ; K and j D 1; : : : J.

The test statistic is based on a comparison of the joint absolute frequencies
encountered in the sample with those to be expected given the null hypothesis
is true. The probabilities underlying the expected frequencies are unknown and
have to be estimated from the sample. The comparison is based on the differences
Hkj � Oekj as distance measures. To prevent negative differences from offsetting

positive ones (or vice versa), the difference is squared:
�
Hkj � Oekj

�2
. To account for

varying importance of these squared deviations, they are weighted by dividing by
Oekj: A difference of hkj � Oekj D 5 receives a higher weighting if Oekj D 10 than
if Oekj D 100. Summing over all pairs .k; j/ summarizes (condenses) all weighted
squared deviations into one test statistic:

V D
KX

kD1

JX

jD1

�
Hkj � Oekj

�2

Oekj
:

As the Hkj are random variables, so is V . Under the null hypothesis, for a
sufficiently large sample size n and validity of the approximation conditions, V is
approximately chi-square distributed with .K � 1/ � .J � 1/ degrees of freedom. If
the approximation requirements aren’t fulfilled, bordering classes or values have
to be combined in a suitable way. The outcomes of discretely measured random
experiments are then being grouped into classes. K and J are the numbers of classes
remaining after such a necessary re-grouping.
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Determining the Degrees of Freedom
There is a total of K � J probabilities pkj constituting the bivariate distribution of the
random variables X and Y as categorized in the two-dimensional contingency table.
We lose one degree of freedom because the probabilities aren’t independent of each
other: From

P
k

P
j pkj D 1 follows that any probability pkj is determined by the

other K�J�1 joint probabilities. If we could derive all probabilities joint probabilities
from both variables’ marginal distributions (probabilities) applying pkj D pk
 � p
j,
we had thus K � J � 1 degrees of freedom. Unfortunately the marginal probabilities
pk
 and p
j are unknown and have to be estimated from the data, further reducing
the degrees of freedom. The marginal distribution of X encompasses K probabilities
pk
, of which only K�1 have to be estimated because

P
k pk
 D 1. The same applies

to the marginal distribution of Y: As
P

j p
j D 1, only J � 1 marginal probabilities
p
j have to be estimated. Thus, a total of .K � 1/ C .J � 1/ marginal probabilities
has to be estimated, and the overall degrees of freedom are:

K � J � 1 � Œ.K � 1/ C .J � 1/� D K � J � K � J C 1 D .K � 1/ � .J � 1/ :

As
�
Hkj � Oekj

�2
=Oekj is positive for all pairs .k; j/, the test statistic V will always

be positive. Large deviations Hkj � Oekj translate into a high test statistic value. The
null hypothesis is thus rejected for high values of V . Hence, the chi-square test of
independence is a right-sided test.

Explained: The Chi-Square Test of Independence in Action

Someone suggests that the number of defects on a car is statistically independent
from its age. We want to test this hypothesis at a significance level of ˛ D 0:05

using the chi-square test of independence.
The random variable X W “number of defects” is measured in the realization x1 W

“no defect,” x2 W “one defect” and x3 W “two or more defects”; random variable Y W
“cars’ age” is categorized as x1 W “� 1 year,” x2 W “> 1 year and � 2 years” and x2 W
“> 2 years.”

Hypothesis

As the test statistic underlying the chi-square test of independence uses as inputs
the expected joint frequencies, which are in turn calculated using the assumption of
independence, the independence hypothesis must to be stated as null hypothesis:

H0 W X and Y are statistically independent

vs.

H1 W pkj D X and Y are not statistically independent
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or

H0 W pkj D pk
 � p
j8 .k; j/

vs.

H1 W pkj ¤ pk
 � p
j for at least one pair .k; j/ :

Test Statistic and Its Distribution: Decision Regions

We use the test statistic of the chi-square test of independence:

V D
KX

kD1

JX

jD1

�
Hkj � Oekj

�2

Oekj
:

Under H0, V is approximately chi-square distributed with .K � 1/ � .J � 1/ degrees
of freedom. The decision regions of the null hypothesis can only be determined after
the sample has been drawn and analyzed:

• First, the expected joint absolute frequencies have to be estimated.
• Then the approximation conditions can (must) be checked and necessary combi-

nations of classes (or values) can be established.
• Once the two above steps have been concluded, and not before, the degrees of

freedom can be determined and the critical values looked up.

Sampling and Computing the Test Statistic

Police officers positioned at various locations randomly stop 110 cars and record age
and number of defects. In Table 9.14 , the absolute joint and marginal frequencies
in this sample are listed together with the expected frequencies under the null
hypothesis, calculated as

Oekj D hk
 � h
j

n
:

The approximation conditions are fulfilled, as all expected absolute joint frequen-
cies are equal to or greater than five: Oekj � 5. We are observing X and Y in K D 3

respectively J D 3 classes and thus have .K � 1/ � .J � 1/ D 4 degrees of freedom.
The critical value satisfying P .V � c/ D 1 � ˛ D 0:95 is looked up in the table of
the chi-square distribution as c D �2

1�˛I.K�1/�.J�1/ D �2
0:95I4 D 9:49, implying the

following decision regions
Rejection region for H0:

fv j v > 9:49g :
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Table 9.14 Absolute joint
and marginal frequencies

Age (yj)

# Defects (xk) < 1 1 � 2 > 2 MD X

0 Observed 30:0 14:0 5:0 49:0

Expected 26:7 13:4 8:9

1 Observed 18:0 10:0 4:0 32:0

Expected 17:5 8:7 5:8

� 2 Observed 12:0 6:0 11:0 29:0

Expected 15:8 7:9 5:3

MD Y 60:0 30:0 20:0 110:0

Non-rejection region for H0:

fv j v � 9:49g :

The realized test statistic value is

v D .30 � 26:7/2

26:7
C .14 � 13:4/2

13:4
C : : : C .11 � 5:3/2

5:3
D 10:5:

Test Decision and Interpretation

Since the test statistic value v D 10:5 falls into the rejection region the null
hypothesis is rejected. Given our test parameters (sample size n D 110 and
significance level ˛ D 0:05), we could verify the random variables X W “number
of defects” and Y W “cars’ age” to be statistically dependent. If this is not true in the
population, we have made a type I error (‘H1’jH0). In repeated samples (tests) the
probability of this happening is given by the significance level ˛ D 0:05.

Enhanced: Chi-Square Test of Independence for Economic
Situation and Outlook

In 1991 and 1996, randomly selected German citizens over 18 have been presented
the following two questions:

• Q1) Assess the current economic situation
• Q2) What is the economic outlook for the upcoming year The participants we

asked to express their opinion on the following scale:
• Possible answers for Q1): 1 = “Very Good”, 2 = “Good”, 3 = “Satisfactory”, 4 =

“Fair”, 5 = “Poor”
• Possible answers for Q2): 1 = “Significantly improved”, 2 = “Improved”, 3 =

“Unchanged”, 4 = “Deteriorated”, 5 = “Significantly deteriorated”
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The questions are translated into the random variables X1 W “Current economic
situation” and X2 W “Economic outlook,” with the above realizations. In addition, a
third variable Y W “Survey region” with the categories “West Germany” and “East
Germany” has been recorded.

We want to test at a significance level of ˛ D 0:05, whether the random variables
X1 and Y respectively X2 and Y as surveyed in 1991 and 1996 are statistically
independent.

Hypothesis: Test Statistic and Its Distribution

The independence of the random variables has to be stated in H0 to facilitate the
computation of the expected absolute joint frequencies and thus the test statistic:

H0 W X1 and Y are statistically independent

vs.

H1 W X1 and Y are not statistically independent

and

H0 W X2 and Y are statistically independent

vs.

H1 W X2 and Y are not statistically independent:

We use the test statistic for the chi-square test of independence,

V D
KX

kD1

JX

jD1

�
Hkj � Oekj

�2

Oekj
;

which, under H0, has approximately a chi-square distribution with .K � 1/ � .J � 1/

degrees of freedom. The decision regions of the null hypothesis cannot be deter-
mined before the sample has been drawn and analyzed, because we have to follow
a sequential approach:

• First, we estimate the expected joint absolute frequencies.
• On this basis we can check the approximation conditions and, if necessary,

combine values or classes.
• Now we can determine the degrees of freedom and retrieve the critical values.
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Sampling and Computing the Test Statistic: Test Decision

Tables 9.15, 9.16, 9.17, and 9.18 contain the joint absolute frequencies in the
samples of the years 1991 and 1996 as well as the expected absolute joint
frequencies for true null hypothesis, calculated as

Oekj D hk
 � h
j

n
;

and the differences hkj � Oekj.
The approximation conditions are fulfilled for all 4 tests to be conducted, i.e.,

Oekj � 5 for all pairs .k; j/. The critical value satisfying P .V � c/ D 0:95 is
�2

1�˛I.K�1/�.J�1/ D �2
0:95I4 D 9:49 as we have .K � 1 � .J � 1/ D 4 degrees of

freedom. The decision regions are thus
Rejection region for H0:

fv j v > 9:49g :

Non-rejection region for H0:

fv j v � 9:49g :

Chi-square values and resulting decisions for the 4 tests are given in Table 9.19.

Table 9.15 Current economic situation (X1) versus region (Y), 1991

Region (yj)

Current economic situation (x1k) West East MD X1

Very good Observed 209:0 165:0 374:0

Expected 184:8 189:2

Difference 24:2 �24:2

Good Observed 744:0 592:0 1; 336:0

Expected 660:1 675:9

Difference 83:9 �83:9

Satisfactory Observed 431:0 647:0 1; 078:0

Expected 532:6 545:5

Difference �101:6 101:6

Fair Observed 36:0 39:0 75:0

Expected 37:1 37:9

Difference �1:1 1:1

Poor Observed 4:0 15:0 19:0

Expected 9:4 9:6

Difference �5:4 5:4

MD Y 1; 424:0 1; 458:0 2; 882:0
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Table 9.16 Current economic situation (X1) versus region (Y), 1996

Region (yj)

Current economic situation (x1k) West East MD X1

Very good Observed 20:0 6:0 26:0

Expected 17:2 8:8

Difference 2:8 �2:8

Good Observed 264:0 116:0 380:0

Expected 251:3 128:7

Difference 12:7 �12:7

Satisfactory Observed 1; 006:0 557:0 1; 563:0

Expected 1; 033:7 529:3

Difference �27:7 27:7

Fair Observed 692:0 335:0 1; 027:0

Expected 679:2 347:8

Difference 12:8 �12:8

Poor Observed 141:0 73:0 214:0

Expected 141:5 72:5

Difference �0:5 0:5

MD Y 2; 123:0 1; 087:0 3; 210:0

Table 9.17 Economic outlook (X1) versus region (Y), 1991

Region (yj)

Economic outlook (x2k) West East MD X2

Significantly improved Observed 75:0 203:0 278:0

Expected 137:4 140:6

Difference �62:4 62:4

Improved Observed 449:0 763:0 1; 212:0

Expected 598:9 613:1

Difference �149:9 149:9

Unchanged Observed 684:0 414:0 1; 108:0

Expected 547:5 560:5

Difference 136:5 �136:5

Deteriorated Observed 200:0 62:0 262:0

Expected 129:5 132:5

Difference 70:5 �70:5

Significantly deteriorated Observed 16:0 6:0 22:0

Expected 10:9 11:1

Difference 5:1 �5:1

MD Y 1; 424:0 1; 458:0 2; 882:0
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Table 9.18 Economic outlook (X1) versus region (Y), 1996

Region (yj)

Economic outlook (x2k) West East MD X2

Significantly improved Observed 9:0 6:0 15:0

Expected 9:9 5:1

Difference �0:9 0:9

Improved Observed 190:0 131:0 321:0

Expected 212:3 108:7

Difference �22:3 22:3

Unchanged Observed 809:0 444:0 1; 253:0

Expected 828:7 42:3

Difference �19:7 19:7

Deteriorated Observed 960:0 426:0 1; 386:0

Expected 916:7 469:3

Difference 43:3 �43:3

Significantly deteriorated Observed 155:0 80:0 235:0

Expected 155:4 79:6

Difference �0:4 0:4

MD Y 2; 123:0 1; 087:0 3; 210:0

Table 9.19 Chi-square values and resulting decisions

Year Random variables Test statistic value v Test decision

1991 X1, Y 71:85 Reject H0

1996 X1, Y 6:15 Do not-reject H0

1991 X2, Y 278:17 Reject H0

1996 X2, Y 14:61 Reject H0

Interpretation

Perception of Current Economic Situation
While the 1991 data rejects the null hypothesis of statistical independence, at a
significance level of 0:05, the proposition that the random variables X1 W “Current
economic situation” and Y W “Survey region” are statistically independent is not-
rejected for the 1996 data. But we can extract more qualitative information if we
look at the contingency tables. As can be seen from the comparatively high positive
differences hkj � Oekj for the positive statements in Table 9.15, in 1991 West Germans
tended to classify the economic situation more positively compared to the East
Germans. In 1996, there are still positive differences hkj � Oekj, but their sum isn’t
significant anymore. Some kind of convergence in the assessment of the (then)
current economic situation has taken place.
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Economic Outlook
Both surveys’ data reject the null hypothesis that the random variables X2 W
“Economic outlook” and Y W “Survey region” are statistically independent at a
significance level of ˛ D 0:05. Observe that in both years the East Germans have
been more positive about the future of the economy than the West Germans. If you
compare the differences hkj � Oekj for both years, you will notice the same qualitative
tendency to homogeneity in opinions across (East and West) Germany as in the
assessment of the current economic environment. Yet quantitatively they are still
large enough (in total) to be significant in 1996, and we cannot but conclude (at
least within the assumed test parameter setting) that the East and West Germans
have structurally different opinions. The type of dependency between X2 and Y can
be explored using suitable statistical tools for dependence analysis (e.g., categorical
regression).



Chapter 10
Two-Dimensional Frequency Distribution

10.1 Introduction

In the natural sciences, we can often clearly represent the relationship between two
variables by means of a function because it has its origin in physical laws.

That is quite different in socio-economic studies. What kind of relationship for
instance exists between income and consumption expenditures? In this case, we may
not be able to clearly describe the relationship by means of a simple deterministic
function. However, there may be a statistical relationship which can be uncovered.
Tools such as Scatterplots, Scatterplot-Matrices, and 3D-scatterplots can be used
for exploratory analysis. We can also use contingency tables and measures of
dependence to evaluate the strength of a relationship.

In the following chapter, we will analyze n statistical observations on a pair of
variables X and Y. Questions that we will want to answer include:

• Is there a relationship or a dependency between the variables X and Y?
• How pronounced is this relationship?
• Can we describe the relationship by means of a function?

10.2 Two-Dimensional Frequency Tables

We are given:

• Variable X which takes on possible values xi .i D 1; : : : ; m/

• Variable Y which takes on possible values yj .j D 1; : : : ; r/ (Table 10.1)

© Springer International Publishing Switzerland 2015
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Table 10.1 Structure of a
contingency table

Variable Y

Variable X yi � � � yj � � � yr MD X

x1 h11 � � � h1j � � � h1r h1�

:
:
:

:
:
:

: : :
:
:
:

: : :
:
:
:

:
:
:

xi hi1 � � � hij � � � hir hi�

:
:
:

:
:
:

: : :
:
:
:

: : :
:
:
:

:
:
:

MD Y h:1 � � � h:j � � � h�r h�� D n

Realizations m � r

By enumerating all possible ordered pairs, we can calculate their number to be m � r:

.xi; yj/ D .X D xi/
\

.Y D yj/

Absolute Frequency

The absolute frequency for a particular ordered pair .xi; yj/ is the number of
observations which take on that specific combination of values:

h.xi; yj/ D hij:

Relative Frequency

The relative frequency is the proportion of observations with a specific combination
of values .xi; yj/

f .xi; yj/ D fij D h.xi; yj/=n:

Properties

mX

iD1

rX

jD1

h.xi; yj/ D n;

mX

iD1

rX

jD1

f .xi; yj/ D 1
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A two-dimensional absolute frequency distribution or contingency table tabulates
the number of occurrences of each ordered pair. In the right and bottom margins it
tabulates the marginal frequencies or marginal distribution (MD) for each variable
individually. These are the row sums hi: and column sums h:j of the joint frequencies
(Table 10.2).

The two-dimensional relative frequency distribution is defined similarly using
the relative frequencies (fij). (Note, this may be accomplished simply by dividing all
of the absolute frequencies in the absolute frequency distribution table by n.)

• 5
3 contingency table
• X—occupation; Y—athletic activity
• n = 1000 working people

Explained: Two-Dimensional Frequency Distribution

For n D 100 randomly selected persons it has been determined whether they smoke
and whether they have had lung cancer. The variables are:

• X - Smoker with realizations x1 = “yes” and x2 = “no”
• Y - Lung cancer with realizations y1 = “yes” and y2 = “no”

The two-dimensional frequency distribution is provided in a 2 
 2 contingency
table shown in Table 10.3.

The numbers in Table 10.3 have the following meaning: Among smokers there
were 10 cases of lung cancer, among nonsmokers only 5 cases. Among all surveyed
persons there were 25 smokers; 85 of the surveyed persons did not have lung cancer.

Table 10.2 Example of a
contingency table

Athletic activity Y

Occupation X Rarely Sometimes Regularly MD X

Worker 240 120 70 430

Salaried 160 90 90 340

Civil servant 30 30 30 90

Farmer 37 7 6 50

Self-employed 40 32 18 90

MD Y 507 279 214 1000

Table 10.3
Two-dimensional frequency
distribution for X and Y

Lung cancer

Smoker Yes(y1) No(y2) MD X

Smoker(x1 ) 10 15 25 .h1�/

Nonsmoker (x2) 5 70 75 .h2�/

MD Y 15 .h�1/ 85 .h�2/ 100 .n/
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Enhanced: Department Store

The “department store” data set contains the following variables recorded for n D
165 randomly selected customers:

Variable Possible realizations

X gender 1—male

2—female

Y method of payment 1—cash

2—ATM card

3—credit card

Z residence 1—Berlin

2—not in Berlin

Below, the three possible two-dimensional frequency distributions are given that
can be constructed from this data. Absolute frequencies hij and relative frequencies
fij (in brackets and rounded to three decimals) are given.

The two-dimensional frequency distribution for the variables gender and
method of payment is a 2 
 3 contingency table (Table 10.4).

The two-dimensional frequency distribution for the variables gender and resi-
dence is a 2 
 2 contingency table (Table 10.5).

The two-dimensional frequency distribution for the variables residence and
method of payment is a 2 
 3 contingency table (Table 10.6).

Table 10.4 Two-dimensional frequency distribution for gender and method of payment

Method of payment .Y/

Gender .X/ .y1/ .y2/ .y3/ MD X

Male .x1/ 31 (0.188) 32 (0.194) 23 (0.139) 86 (0.521)

Female .x2/ 30 (0.182) 29 (0.176) 20 (0.121) 79 (0.479)

MD Y 61 (0.370) 61 (0.370) 43 (0.260) 165 (1.00)

Table 10.5 Two-dimensional frequency distribution for gender and residence

Residence .Z/

Gender .X/ Berlin .z1/ Not in Berlin .z2/ MD X

Male .x1/ 50 (0.303) 36 (0.218) 86 (0.521)

Female .x2/ 37 (0.224) 42 (0.255) 79 (0.429)

MD Y 87 (0.527) 78 (0.473) 165 (1.00)
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Table 10.6 Two-dimensional frequency distribution for residence and method of payment

Method of payment .Y/

Residence .Z/ .y1/ .y2/ .y3/ MR X

Berlin .z1/ 44 (0.267) 22 (0.133) 21 (0.127) 87 (0.527)

Not in Berlin .z2/ 17 (0.103) 39 (0.237) 22 (0.133) 78 (0.473)

MD Y 61 (0.370) 61 (0.370) 43 (0.260) 165 (1.00)

Fig. 10.1 Screenshot of the interactive example, available at http://u.hu-berlin.de/men_tab2

Interactive: Example for Two-Dimensional Frequency
Distribution

The interactive example includes a number of sidebar panels. You can access
the panels by setting a mark at the corresponding check box on the upper right
(Fig. 10.1).

Please select

• a dataset
• a column and row variable

Output

The interactive example allows us to display a two-dimensional frequency distribu-
tion in the form of a crosstable for a variety of variables.

10.3 Graphical Representation of Multidimensional Data

Frequency Distributions

When there are two variables, a three-dimensional graph is required to depict the
frequency distribution where the vertical dimension corresponds to frequencies.
Alternatively, one can use a grouped bar chart.

http://u.hu-berlin.de/men_tab2
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Fig. 10.2 Example of a grouped bar chart

Grouped Bar Chart

For each value of one variable a group of bars corresponding to the value of the
second “grouping variable” are drawn (Fig. 10.2).

3D-Bar Chart

For each combination of values of the two variables, a vertical bar is drawn with
height proportional to the frequency (Fig. 10.3).

Scatterplots

Scatterplot

We can represent observations on two continuous variables as points in a plane
(a scatterplot). Scatterplots are very useful to show possible relations between two
variables measured on a metric scale (example: increase of variable X leads to a
visible increase of variable Y; Fig. 10.4).

3D-Scatterplot

We can represent simultaneously three continuous variables in a 3D-scatterplot.
Different statistical software can be used to rotate the 3D-scatterplot which helps
us to see possible relations (Fig. 10.5).
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Fig. 10.4 Example of a scatterplot
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Fig. 10.5 Example of a
3D-scatterplot
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Scatterplot-Matrix

If we need to analyze more than two continuous variables, we can use the
scatterplot-matrix to represent them. Here, we produce the scatterplots of all
possible pairs of two variables and put them together as a matrix. However,
interpretation and clarity becomes increasingly difficult the greater the number of
variables being studied (Fig. 10.6).

Explained: Graphical Representation of a Two- or Higher
Dimensional Frequency Distribution

In 1985, the following variables describing criminal activity were recorded for each
of the 50 states of the USA:

X1—land area

X2—population

X3—murder

X4—rape

X5—robbery

X6—assault

X7—burglary

X8—larceny

X9—auto theft

X10—US states region number

X11—US states division number
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Fig. 10.6 Example of a scatterplot-matrix

The relationship between rate of “murder” (X3) and “population size” (X2) can
be visualized in a scatterplot. Each state is represented in the scatterplot by a point
with coordinates .x2; x3/ (Fig. 10.7).

The scatterplot shows a tendency of the rate of murder to increase with
population size.

The three variables “population” (X2), “murder” (X3), and “robbery” (X5) can
be visualized simultaneously in a 3D-scatterplot (Fig. 10.8).

Note: You can use this section’s interactive example to visualize the relationships
between the other variables of this data set (Fig. 10.9).
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Fig. 10.7 Scatterplot of murder (X3) and population size (X2)
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Fig. 10.8 3D-scatterplot of population (X2), murder (X3) and robbery (X5)

Fig. 10.9 Screenshot of the interactive example, available at http://u.hu-berlin.de/men_plot

http://u.hu-berlin.de/men_plot


10.4 Marginal and Conditional Distributions 429

Interactive: Example for the Graphical Representation
of a Two- or Higher Dimensional Frequency Distribution

The interactive example includes a number of sidebar panels. You can access the
panels by setting a mark at the corresponding check box on the upper right.

Please select a scatterplot type, e.g., scatterplot matrix.
The last two panels allow you to choose a dataset or variable and to change

the font size. For a detailed explanation on datasets and variables, please refer to
Appendix A.

Output

The interactive example allows us to display a two- or three-dimensional frequency
distribution in the form of a 2D/3D-scatterplot or a scatterplot matrix. After
choosing a set of variables (attention: three variables are required for the 3D-plot),
the output window shows the corresponding scatterplot.

10.4 Marginal and Conditional Distributions

Marginal Distribution

Suppose one is given a two-dimensional frequency distribution of the variables
X and Y. The marginal distribution of X (respectively Y) is the one-dimensional
distribution of variable X (respectively Y), in which we do not consider what
happens to variable Y (respectively X).

The marginal distribution is the result of “adding up” the frequencies of the
realizations. For example for the marginal (absolute) distribution of X as shown
in Table 10.7.

Table 10.7 Marginal distributions

Variable Y Marginal
Variable X y1 y2 y3 distribution of X

� � � � � � � � � � � � � � �
D h.xi; y1/

xi h.xi; y1/ h.xi; y2/ h.xi; y3/ Ch.xi; y2/

Ch.xi; y3/

� � � � � � � � � � � � � � �
Marginal � � � � � � � � �
distribution of Y
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Marginal absolute distribution of variable X with the values xj:

hi� D
rX

jD1

hijI i D 1; : : : ; ; m

Marginal absolute distribution of variable Y with the values yj:

h�j D
mX

iD1

hijI j D 1; : : : ; r

Total number of observations equals n:

h�� D
mX

iD1

rX

jD1

hij D
mX

iD1

hi� D
rX

jD1

h�j D n

The marginal relative distribution is defined similarly using the relative frequen-
cies (fij). (Note, this may be accomplished simply by dividing all of the absolute
frequencies in the marginal absolute distribution table by n.)

Marginal relative distribution of variable X with the values xj:

fi� D
rX

jD1

fijI i D 1; : : : ; ; m

Marginal relative distribution of variable Y with the values yj:

f�j D
mX

iD1

fijI j D 1; : : : ; r

Total of all relative frequencies equals 1:

f�� D
mX

iD1

rX

jD1

fij D
mX

iD1

fi� D
rX

jD1

f�j D 1

Conditional Distribution

Suppose one is given a two-dimensional frequency distribution of two variables X
and Y. The frequency distribution of X given a particular value of Y is called the
conditional distribution or conditional distribution of X given yj. (The conditional
distribution of Y given xi is defined analogously.)
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Conditional relative frequency distribution of X for a given Y D yj:

f .xijY D yj/ D f .xijyj/ D fij
f�j

D hij

h�j

Conditional relative frequency distribution of Y for a given X D xi:

f .yjjX D xi/ D f .yjjxi/ D fij
fi�

D hij

hi�

Like marginal distributions, conditional distributions are one-dimensional distri-
butions.

Example The starting point is the 5 
 3 contingency table of the two variables:

• X—occupation
• Y—athletic activity

which have been observed for n D 1000 employed persons (Table 10.8).
The conditional distribution of the variable Y (athletic activity) for a given xi

(occupational group) are summarized in Table 10.9.

Table 10.8 Contingency
table of X and Y

Athletic activity Y

Occupation X Rarely Sometimes Regularly MDX

Worker 240 120 70 430

Salaried 160 90 90 340

Civil servant 30 30 30 90

Farmer 37 7 6 50

Self-employed 40 32 18 90

MD Y 507 279 214 1000

Table 10.9 Conditional
distribution of Y given X

Athletic activity Y

Occupation X Rarely Sometimes Regularly

Worker 0:56 0:28 0:16 1:00

Salaried 0:47 0:26 0:26 1:00

Civil servant 0:33 0:33 0:33 1:00

Farmer 0:74 0:14 0:12 1:00

Self-employed 0:44 0:36 0:20 1:00
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Explained: Conditional Distributions

In a survey of 107 students their major and gender were recorded. The responses
were used to produce the 9 
 2 contingency table given in Table 10.10.

What are the shares of females and males in each major? The answer is given
by the conditional distributions of gender, given the major. The frequencies of the
conditional distribution are computed as the ratio of the corresponding cells of the
joint distribution table and the marginal distribution (i.e., row sum in this case) of
the respective major (Table 10.11).

The results show that business is dominated by males who account for 73.7 %
of all students majoring in business. In theology, on the other hand, women are the
majority comprising 77.8 % of theology majors.

Table 10.10 Contingency
table of gender and university
major for 107 students

Gender

Major Female Male MD (Major)

Social sc. 12 13 25

Engineering 1 1 2

Law 8 13 21

Medicine 6 4 10

Natural sc. 1 8 9

Psychology 3 8 11

Other 1 0 1

Theology 7 2 9

Business 5 14 19

MD (Gender) 44 63 107

Table 10.11 Conditional
distribution of gender given
the university major

Female Male

Social sc. 0:480 0:520 1:000

Engineering 0:500 0:500 1:000

Law 0:381 0:619 1:000

Medicine 0:600 0:400 1:000

Natural sc. 0:111 0:889 1:000

Psychology 0:273 0:727 1:000

Other 1:000 0:000 1:000

Theology 0:778 0:222 1:000

Business 0:263 0:737 1:000

Total 0:411 0:589 1:000
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Enhanced: Smokers and Lung Cancer

For n D 100 randomly selected persons it has been determined whether they smoke
and whether they have had lung cancer. The variables are:

• X—Smoker with realizations x1 = “yes” and x2 = “no”,
• Y—Lung cancer with realizations y1 = “yes” and y2 = “no.”

The two-dimensional frequency distribution is a 2 
 2 contingency table shown
in Table 10.12.

The conditional distributions of the variable X (smoker) for a given yj (lung
cancer) are shown in Table 10.13.

Each element of the conditional distribution has been calculated as the ratio of
the respective cell of the joint distribution and the corresponding element of the Y
marginal distribution.

From Table 10.13 we learn that 66.7 % of all persons diagnosed with lung cancer
are smokers. 82.4 % of the persons not diagnosed with lung cancer are nonsmokers.

The conditional distribution of the variable Y (lung cancer) for a given value xi

(smoker/nonsmoker) is constructed analogously and shown in Table 10.14.
Hence, 40 % of all smokers but only 6.7 % of all nonsmokers have been

diagnosed with lung cancer.

Table 10.12
Two-dimensional frequency
distribution for X and Y

Lung cancer

Smoker Yes (y1) No (y2) MD X

Smoking yes (x1) 10 15 25

Smoking no (x2) 5 70 75

MD Y 15 85 100

Table 10.13 Conditional
distribution of X given Y

Lung cancer

Smoker Yes .y1/ No .y2/

Smoker yes 0:667 0:176

Smoker no 0:333 0:824

1:000 1:000

Table 10.14 Conditional
distribution of X given Y

Lung cancer

Smoker Yes .y1/ No .y2/

Smoker yes .x1/ 0:400 0:600 1:000

Smoker no .x2/ 0:067 0:933 1:000
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Table 10.15 Contingency
table of age and education for
941 persons

Education

High Middle Lower
Age University school school school MD (Age)

18–29 38 93 134 42 307

30–39 23 94 168 70 355

40–49 12 39 129 99 279

MD 73 226 431 211 941

(Education)

Table 10.16 Conditional
distribution of education
given age

High Middle Lower
University school school school

18–29 0:124 0:303 0:436 0:137 1:000

30–39 0:065 0:265 0:473 0:197 1:000

40–49 0:043 0:140 0:462 0:355 1:000

Table 10.17 Conditional
distribution of age given
education

High Middle Lower
University school school school

18–29 0:521 0:411 0:311 0:199

30–39 0:315 0:416 0:390 0:332

40–49 0:164 0:173 0:299 0:469

1:000 1:000 1:000 1:000

Enhanced: Educational Level and Age

In a survey of 941 persons, respondents’ age (grouped as 18–29, 30–39, and 40–49)
and the highest level of education attained (university, high school, middle school,
and lower school) were recorded. The observed frequencies are shown in the 3 
 4

contingency table in Table 10.15.
The conditional distributions of educational attainment, given age, are summa-

rized in Table 10.16.
Each element of the distribution has been calculated as the ratio of the respective

cell of the joint distribution and the corresponding element of the marginal
distribution of age.

Table 10.16 shows that among the 18–29-year-olds 12.4 % have completed
a university education, 30.3 % graduated from high school, and 43.6 % finished
middle school. In the group of 40–49-year-olds the fraction of persons with a
university degree is only 4.3 %.

The conditional distribution of age, for a given level of educational attainment,
is constructed analogously and shown in Table 10.17.

It can be seen that among those with at most a high school education, 41.1 %
belong to the age group 18–29, 41.6 % to the age group 30–39, and 17.3 % to the
age group 40–49.
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10.5 Characteristics of Two-Dimensional Distributions

For the marginal distribution and the conditional distribution we can use the
location- and dispersion measures the same way as for one-dimensional distribu-
tions (see preceding chapter), because they are also one-dimensional distributions.

Covariance

The covariance is a special characteristic for two-dimensional distributions that
measures the common variation of two variables X and Y on a continuous scale.

The covariance for a pair of discrete random variables with true probabilities
pij D p.xiI yj/; .i D 1; : : : ; mI j D 1; : : : ; r/ is given by:

Cov.X; Y/ D
mX

iD1

rX

jD1

.xi � E.X//.yj � E.Y// � pij

If one has n observations on these variables with absolute frequencies h.xiI yj/

and relative frequencies f .xiI yj/ .i D 1; : : : ; mI j D 1; : : : ; r/ one can calculate the
sample covariance:

sxy D 1

n.n � 1/

mX

iD1

rX

jD1

.xi � Nx/.yj � Ny/ � hij

D 1

n � 1

mX

iD1

rX

jD1

.xi � Nx/.yj � Ny/ � fij

D 1

n � 1

nX

kD1

.xk � Nx/.yk � Ny/

In contrast to the variance, the covariance can also take on negative values.

Properties of Covariance

• If the variables X and Y are independent, then the covariance is zero.
Note: This does not automatically work the other way round. If the covari-
ance between the variables X and Y is zero we cannot conclude that they are
statistically independent.

• The contribution of a realization .xiI yj/ to the covariance is positive if the
differences .xi � Nx/ and .yj � Ny/ have the same sign. It is negative if the differences
.xi � Nx/ and .yj � Ny/ have opposite signs.
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• The covariance of a variable with itself is equal to the variance of this variable:
s2

x D sxx

• Linear transformation: X	 D a C bX, and Y	 D c C dY, then sX�Y� D b � d � sXY

Independent Variables

Independence means that the distribution of a variable does not depend on the values
of another variable. If two variables X and Y are independent:

1. All the conditional distributions of X are equal to each other and to the
corresponding marginal distribution, that is for the conditional distribution of
X: f .xijyj/ D f .xijyk/ D f .xi/ for all j; k D 1; : : : ; r and for all i D 1; : : : ; m

and the same holds for the conditional distribution of Y: f .yjjxi/ D f .yjjxh/ D
f .yj/ for all i; h D 1; : : : ; m and for all j D 1; : : : ; r.

2. The joint distribution is equal to the product of the marginal distributions:

f .xijyj/ D f .xi/ D f .xi; yj/

f .yj/

, f .xi; yj/ D f .xi/ � f .yj/

f .yjjxi/ D f .yj/ D f .xi; yj/

f .xi/

, f .xi; yj/ D f .xi/ � f .yj/

Similarly, in the case of independence, the true joint probabilities also factor
into a product of the marginal probabilities pij D p.xiI yj/ D p.xi/ � p.xj/ D
pi � pj; .i D 1; : : : ; mI j D 1; : : : ; r/.

We hardly ever use the covariance as autonomous characteristic. It is more of an
auxiliary quantity that we can use to calculate other characteristics (see correlation
in the following paragraph).
Note: A data set observed from independent variables may not exhibit an exact fac-
torization of the joint relative frequency distribution into the product of the marginal
frequency distributions of the respective variables. Similarly, the sample covariance
of a data set drawn from independent variables may not be exactly zero. But one
may conclude, as a result of further statistical tests, that the joint relative frequency
distribution approximately factors and the sample covariance approximately equals
zero thereby providing evidence that the variables are independent. However, keep
in mind that a covariance of zero is only a necessary condition for independence,
not a sufficient one.
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More Information

If the variables X and Y are independent, then their covariance is equal to zero, that
is, Cov.X; Y/ D 0.

Proof

Cov.X; Y/ D
mX

iD1

rX

iD1

.xi � E.x//.yj � E.y// � pij

D
mX

iD1

rX

jD1

.xi � E.x//.yj � E.y// � pi � pj

D
(

mX

iD1

.xi � E.x//pi

) 8<

:

rX

jD1

.yj � E.y//pj

9
=

;

D
(

mX

iD1

xipi � E.x/

mX

iD1

pi

) 8<

:

rX

jD1

yjpj � E.y/

rX

jD1

pj

9
=

;

D fE.x/ � E.x/gfE.y/ � E.y/g D 0

Explained: How the Covariance Is Calculated

For n D 15 firms the variables Y—annual profit (in Mill. Euro) and X—annual
rent for computer equipment (in 1,000 Euro) have been recorded. The possible
realizations of these variables are given in columns 2 and 3 of Table 10.18.

For these 15 firms, how much common variation (about their respective means)
exists between variables X and Y? The sample means (averages) of the variables are:

Ny D 30 (Mill. Euro)

Nx D 200 (Tsd. Euro)

Column 4 of the table contains the deviation of variable Y from its sample mean
and those for variable X are contained in column 5.

The sample covariance is calculated according to the following formula:

sxy D 1

n � 1

mX

iD1

rX

jD1

.xi � Nx/.yj � Ny/ � fij D 1

n � 1

nX

kD1

.xk � Nx/.yk � Ny/
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Table 10.18 Annual profits (in Mill. Euro) and annual rent for computer equipment (in Tsd. Euro)
for 15 firms

Firm i Annual profit yi Annual rent xi .yi � Ny/ .xi � Nx/ .yi � Ny/.xi � Nx/

1 10 30 �20 �170 3,400

2 15 30 �15 �170 2,550

3 15 100 �15 �100 1,500

4 20 50 �10 �150 1,500

5 20 100 �10 �100 1,000

6 25 80 �5 �120 600

7 30 50 0 �150 0

8 30 100 0 �100 0

9 30 250 0 50 0

10 35 180 5 �20 �100

11 35 330 5 130 650

12 40 200 10 0 0

13 45 400 15 200 3,000

14 50 500 20 300 6,000

15 50 600 20 400 8,000

The product of the deviations for each firm is listed in column 6 of the table. The
sample covariance is the sum of the elements of this column divided by .n�1/ D 14.

sxy D 28; 100=14 D 2; 007:143

10.6 Relation Between Continuous Variables (Correlation,
Correlation Coefficients)

The common variation (covariation) of the two continuous variables X and Y
determines the strength of the relation between the two variables. Variation is
measured using the dispersion or deviation of the realizations from their mean. In
the first step, we center the observations:

x	
k D .xk � Nx/

y	
k D .yk � Ny/; k D 1; : : : ; n

The common variation of both variables is the product of the deviations of the
observations of their mean (see the calculation of the covariance):

nX

kD1

x	
k y	

k D
nX

kD1

.xk � Nx/.yk � Ny/
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The scale on which each of the variables is measured and the number of
observations can have a large impact on the magnitude of the common variation.

Assume the mean of one variable is 8 and the observed value is 10, and the mean
of another variable is 1,008 and the observed value is 1,260. Then the deviation of
the mean in the first variable is 2 and the deviation of the second is 252, the relative
deviation of the mean value is in both cases 25 %. This fact may not have been
observed if we simply calculated the common variation for this observation 504.

Therefore, in order to get similar deviations of the variables, we perform a
standardization: .xk � Nx/=sx and .yk � Ny/=sy. Now, change the above equation into:

nX

kD1

.xk � Nx/

sx

.yk � Ny/

sy

We subsequently divide this sum of products by the number of observations in
order to eliminate its influence. Now we have obtained the Bravais-Pearson (sample)
correlation coefficient which measures the strength of the linear relation between the
two continuous variables X and Y:

ryx D rxy D

nP

kD1

.xk � Nx/.yk � Ny/

n � sx � sy
D sxy

sx � sy

The final parts of the above equation shows that the Bravais-Pearson correlation
coefficient is equal to the variation common to both variables X and Y (= covariance)
standardized by the product of the standard deviations of each variable.

The Bravais-Pearson correlation coefficient can also be written as follows:

ryx D

nP

kD1

.xk � Nx/.yk � Ny/

s
nP

kD1

.xk � Nx/2
nP

kD1

.yk � Ny/2

D
n

nP

kD1

xkyk �
nP

kD1

xk

nP

kD1

yk

vu
u
t
"

n
nP

kD1

xk
2 �

�
nP

kD1

xk

	2
#"

n
nP

kD1

yk
2 �

�
nP

kD1

yk

	2
# :

Properties of the Correlation Coefficient

• The correlation coefficient only takes on values between �1 and C1:

�1 � rxy � 1
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• The sign of the correlation coefficient tells us the direction of the linear relation

– “C” corresponds to a positive correlation (proportional variation)
– “�” corresponds to a negative correlation (inverse proportional variation)

• If all observations are exactly on a straight line, the correlation coefficient is equal
to 1 or �1.

The more the absolute value of the correlation coefficient approaches 1, the
more pronounced is the linear relation between the variables X and Y (and the
other way round).

• If the variables X and Y are independent, then the correlation coefficient is equal
to 0.

On the other hand, a correlation coefficient of 0 only means that there is no
linear relation between the variables X and Y (linear independence). But it is
very well possible that there exists a pronounced nonlinear relation between both
variables.

• The correlation coefficient is symmetric: rxy D ryx

Relation of Correlation and the Scatterplot of X and Y
Observations

• Perfect correlation (jrxyj = 1) (Fig. 10.10)
• Strong correlation ( jrxyj > 0:5) (Fig. 10.11)
• Weak correlation (jrxyj < 0:5) (Fig. 10.12)
• No correlation (rxy D 0) (Fig. 10.13)

A correlation of 0 corresponds “in general” to some kind of a circular
scatterplot point cloud.
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Fig. 10.10 Perfect correlation
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Fig. 10.11 Strong correlation
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Fig. 10.12 Weak correlation
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Fig. 10.13 No correlation

Example In n D 15 firms, we observed the variables Y—annual profit (in Mill.
Euro) and X—annual rent for the computer facilities (in 1,000 Euro). You can



442 10 Two-Dimensional Frequency Distribution

Table 10.19 Annual profits
(in Mill. Euro) and annual
rent for computer equipment
(in 1,000 Euro) for 15 firms

Company Annual profit Annual rent

k in Mill. EUR .yk/ in Tsd. EUR .xk/

1 10 30

2 15 30

3 15 100

4 20 50

5 20 100

6 25 80

7 30 50

8 30 100

9 30 250

10 35 180

11 35 330

12 40 200

13 45 400

14 50 500

15 50 600

100 200 300 400 500 600
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20
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40
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annual rent
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 p
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Fig. 10.14 Annual profits (in Mill. Euro) and annual rent for computer equipment (in Tsd. Euro)
for 15 firms

see their variable values in Table 10.19. We also illustrate them graphically in a
scatterplot as shown in Fig. 10.14.

From the observations, the following results can be obtained:

y D 30,
15P

kD1

.yk � y/2 D 2;250

x D 200,
15P

kD1

.xk � x/2 D 457;000
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15X

kD1

.xk � x/.yk � y/ D 28;100

rxy D 28100
p

.457000/ � .2250/
D 0:8763

The sample correlation coefficient is in this example 0.8763. This points to a
strong positive linear relation.

Explained: Relationship of Two Metrically Scaled Variables

In 1985, rates of criminal activity of the 50 states of the USA were recorded, among
them murder rate. The relationship between the murder rate and the size of the
population can be visualized by a scatterplot (Fig. 10.15).

The different sums of squared deviations (SSD) are calculated in the following
way:

Sum of the products of deviations of “population” and “murder”:

SSD.population j murder/ D
X

.xk � Nx/.yk � Ny/ D 260; 121:05

Sum of squared deviations for “population”:

SSD.population/ D
X

.xk � Nx/2 D 1; 259; 033; 421:62

Sum of squared deviations for “murder”:

SSD.murder/ D
X

.yk � Ny/2 D 725:54
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Fig. 10.15 Murder rate and size of population of 50 US states
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The sample correlation coefficient is equal to

r D 260; 121:05
p

.1; 259; 033; 421:62/ � .725:54/
D 0:27

The sample correlation coefficient of 0.27 points to a weak positive linear
relationship.

Interactive: Correlation Coefficients

The interactive example includes a number of sidebar panels. You can access the
panels by setting a mark at the corresponding check box on the upper right.

Please select a scatterplot type, e.g., scatterplot matrix. Moreover, choose which
coefficient should be calculated and displayed.

The last two panels allow you to choose a dataset or variable and to change
the font size. For a detailed explanation on datasets and variables, please refer to
Appendix A.

Output

The interactive example allows us to display a two- or three-dimensional frequency
distribution in the form of a 2D/3D-scatterplot or a scatterplot matrix. After
choosing a set of variables (attention: three variables are required for the 3D-plot),
the output window shows the corresponding scatterplot (see Fig. 10.16). In addition,
we may choose to display a correlation coefficient.

Fig. 10.16 Screenshot of the interactive example, available at http://u.hu-berlin.de/men_corr

http://u.hu-berlin.de/men_corr


10.7 Relation Between Discrete Variables (Rank Correlation) 445

10.7 Relation Between Discrete Variables (Rank Correlation)

Spearman’s Rank Correlation Coefficient

The starting point for the measurement of relationships of two discrete, or ordinal,
variables X and Y are the ranks.

R.xi/; R.yi/; i D 1; : : : ; n

which are assigned to the observations xi and yj according to their rank. The ranks
are defined so that R.xi/ is equal to 1 for the xi that takes on the largest value we
have observed, is equal to 2 for the xi that takes on the second largest value we have
observed, and so on.

Spearman’s rank correlation coefficient is computed from the pairs of ranks as
follows:

rs D 1 �
6

nP

iD1

ŒR.xi/ � R.yi/�
2

n.n2 � 1/
D 1 �

6
nP

iD1

d2
i

n.n2 � 1/
; di D R.xi/ � R.yi/

Spearman’s rank correlation coefficient amounts to applying the Bravais-Pearson
correlation coefficient to the ranks (rather than the observations themselves).

It is true that:

nX

iD1

R.xi/ D
nX

iD1

R.yi/ D n.n C 1/

2

nX

iD1

R.xi/
2 D

nX

iD1

R.yi/
2 D n.n C 1/.2n C 1/

6

nX

iD1

R.xi/R.yi/ D 1

2

"
nX

iD1

R.xi/
2 C

nX

iD1

R.yi/
2 �

nX

iD1

.R.xi/ � R.yi//
2

#

The Bravais-Pearson Correlation Coefficient is calculated as:

ryx D
n

nP

iD1

xiyi �
nP

iD1

xi

nP

iD1

yi

vu
u
t
"

n
nP

iD1

x2
i �

�
nP

iD1

xi

	2
#"

n
nP

iD1
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�
nP

iD1
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	2
#
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If we use the corresponding ranks R.xi/ and R.yi/ instead of the observations xi

and yi themselves, then we have derived Spearman’s rank correlation coefficient:

ryx D
n

nP

iD1

R.xi/R.yi/ �
nP

iD1

R.xi/
nP

iD1

R.yi/

vuu
t
"

n
nP

iD1

R.xi/2 �
�

nP

iD1

R.xi/

	2
#"

n
nP

iD1

R.yi/2 �
�

nP

iD1

R.yi/

	2
#

D
n � 1

2
� 2

n.nC1/.2nC1/

6
� n � 1

2

nP

iD1

ŒR.xi/ � R.yi/�
2 � n2.nC1/2

4

n � n.nC1/.2nC1/

6
� n2.nC1/2

4

D 1 �
6

nP

iD1

ŒR.xi/ � R.yi/�
2

n.n C 1/.n � 1/
D rs

Properties of Spearman’s Rank Correlation Coefficient

• Spearman’s rank correlation coefficient can only take on values between �1 and
C1: �1 <D rs <D 1.

• The rank correlation coefficient takes on the value +1 if the ranks behave exactly
the same way, i.e., R.xi/ D R.yi/ for all i.

• Spearman’s rank correlation coefficient takes on the value �1, if the ranks are
perfectly opposed to each other, i.e., R.xi/ D n C 1 � R.yi/ for all i.

Example

• X—Ranking of an athlete in downhill skiing
• Y—Ranking of an athlete in slalom

Does there exist a relationship between the ranking in both disciplines?
The coefficient rs D 0:714 points to a strong relationship between the ranking

in both disciplines (Table 10.20).

Table 10.20 Ranking of
athletes in downhill and
slalom skiing

Athlete 1 2 3 4 5 6

Downhill R.xi/ 2 1 3 4 5 6

Slalom R.yi/ 2 3 1 5 4 6

di
2 0 4 4 1 1 0
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Kendall’s Rank Correlation Coefficient

Kendall’s rank correlation coefficient is based on the comparison of the order
relation for all possible pairs of observations of two variables. Concordant are the
pairs of variables which show the same order relation, i.e., which show for both
variables a low or high value. Discordant are the pairs which show a different order
relation, that is which show in one of the variables a low and in the other variable
a high value. Moreover, there can be pairs of variables, which are equal in terms of
one value or both values. We call this bounding.

The number of concordant pairs P and discordant pairs Q can be calculated as
follows:

• The variable pairs R.xi/ a R.yi/ are sorted in increasing order of R.xi/.
• We call pi the number of ranks prior to R.yi/ which are larger than R.yi/:

• We call qi the number of the ranks subsequent to R.yi/ which are smaller than
R.yi/:

Using the number of discordant and concordant variable pairs, we can calculate
Kendall’s rank correlation coefficient:

T D P � Q

P C Q
;

with Q D P
i qi and P D P

i pi The total number of all ranks to be compared is
given by: n.n � 1/=2 D Q C P. The correlation coefficient can only take on values
between �1 and C1: �1 <D � <D 1.

An alternative way of calculating Kendall’s rank correlation coefficient is given
by:

T D 1 � 4Q

n.n � 1/
D 4P

n.n � 1/
� 1:

Example Ten employees have been ranked according to their managerial abilities
(X) and their work ethic (Y). In order to make a statement about the relationship
between both variables, we calculate both Spearmans’ and Kendall’s rank correla-
tion coefficients (Tables 10.21 and 10.22).

Table 10.21 Ranking of employees according to managerial abilities (X) and their work ethic (Y)
for Spearman’s rank correlation coefficient

Employee 1 2 3 4 5 6 7 8 9 10

R.X/ 7 3 9 10 1 5 4 6 2 8

R.Y/ 3 9 10 8 7 1 5 4 2 6

di
2 16 36 1 4 36 16 1 4 0 4
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Table 10.22 Ranking of employees according to managerial abilities (X) and their work ethic (Y)
for Kendall’s rank correlation coefficient

Employee 5 9 2 7 6 8 1 10 3 4

R.X/ 1 2 3 4 5 6 7 8 9 10

R.Y/ 7 2 9 5 1 4 3 6 10 8

q 6 1 6 3 0 1 0 0 1 0

p 3 7 1 3 5 3 3 2 0 0

Table 10.23 Standings of 20 athletes in the 100 m dash and 200 m dash

Athlete (i) 01 02 03 04 05 06 07 08 09 10

100 m 5 7 3 13 2 15 19 14 12 1

200 m 3 9 1 10 7 5 13 14 17 4

Athlete (i) 11 12 13 14 15 16 17 18 19 20

100 m 6 20 17 4 18 11 10 16 9 8

200 m 11 16 18 12 20 2 15 19 6 8

• Spearman’s rank correlation coefficient

rs D 1 �
6

nP

iD1
d2

i

n.n2�1/

rs D 1 � 6 � 118=.10 � 99/ D 0:2848

• Kendall’s rank correlation coefficient
Q D 18, P D 27

Q C P D n.n � 1/=2 D 10 � 9=2 D 45

T D .27 � 18/=.27 C 18/ D 9=45 D 0:200

Explained: Relationship Between Two Ordinally Scaled
Variables

The standings of 20 athletes in the 100 m dash and 200 m dash are given in
Table 10.23.

In what follows, the statistical relationship between the standings of the athletes
in the two disciplines will be determined. Since the variables are ordinally scaled
(discrete) we will use Spearman’s and Kendall’s rank correlation coefficients.
Calculating both coefficients gives the following results:
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Spearman’s coefficient is calculated as:

rs D 1 � 6
Pn

iD1 di
2

n.n2 � 1/

The information necessary to apply the formula can be obtained from the table—
d is the difference between xi and yj, n is the number of athletes (= 20). The
calculations produce a coefficient of 0.6617, which implies a positive relationship
between the standings in the two disciplines—athletes doing well in the 100 m dash
also tend to do well in the 200 m.

To calculate Kendall’s rank correlation coefficient, one needs to determine the
concordant and discordant pairs of athletes. A pair of observations (=athletes) is
called concordant, if the same order relation applies to both variables and discordant
if the order relations don’t agree. For instance, athletes 1 and 2 are concordant:
athlete 1 has a better standing than athlete 2 in both the 100 m dash and the 200
m dash. Athletes 1 and 5, however, are discordant: athlete 1 is behind in the 100
m but is ahead of athlete 5 in the standings of the 200 m dash. Overall, there are
n�.n�1/

2
D 190 different pairs in this example, 138 of which are concordant while 52

are discordant. Using these numbers Kendall’s rank correlation coefficient can be
calculated:

� D P � Q

P C Q
;

where Q D P
i qi and P D P

i pi.
Here, P is the number of concordant pairs and Q the number of discordant pairs.

Kendall’s rank correlation coefficient turns out to be 0.4526 in this example, which
is an evidence for a positive relationship between the standings.
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Fig. 10.17 Screenshot of the interactive example, available at http://u.hu-berlin.de/men_rank

Interactive: Example for the Relationship Between Two
Ordinally Scaled Variables

The interactive example includes a number of sidebar panels. You can access the
panels by setting a mark at the corresponding check box on the upper right.

Please select which coefficient should be calculated and displayed.
The last two panels allow you to choose a dataset or variable and to change

the font size. For a detailed explanation on datasets and variables, please refer to
Appendix A.

Output

After choosing a set of variables, the output window in Fig. 10.17 shows the cor-
responding crosstable. In addition, this example allows us to calculate Spearmans’
and Kendall’s rank correlation coefficients for two series of ranks to be input by the
user.

10.8 Relationship Between Nominal Variables (Contingency)

The starting point for the analysis of relationships between two nominal variables
X and Y is the joint frequency distribution of X and Y put into a contingency table
including the absolute frequencies hij D h.xi; yj/ .i D 1; : : : ; mI j D 1; : : : ; r/ or
the relative frequencies fij D f .xi; yj/ D h.xi; yj/=n .i D 1; : : : ; mI j D 1; : : : ; r/.

As we showed in Sect. 10.5 the relative frequency for the joint appearance of
realizations xi and yi .i D 1; : : : ; mI j D 1; : : : ; r/—in the case of independence—is
equal to the product of the relative frequencies of the marginal distribution of both
variables:

fij D fi
f
j and hij D hi
h
j

n
D nfi
f
j

http://u.hu-berlin.de/men_rank
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We can now calculate an auxiliary quantity—the squared contingency, repre-
sented by �2:

�2 D
mX

iD1

rX

jD1

�
hij � 1

n hi
h
j
�2

1
n hi
h
j

D n
mX

iD1

rX

jD1

.fij � fi
f
j/
2

fi
f
j

The numerator of the summands above form the squared deviations of the
observed absolute (relative) frequencies from the expected absolute (relative)
frequencies (if the variables are independent). Dividing by the expected absolute
(relative) frequencies (if the variables are independent) we obtain a standardization.

We use the squared contingency to calculate the contingency coefficient as
follows:

C D
s

�2

n C �2

The contingency coefficient provides a measure of the strength of the relationship
between nominal variables.

0 � C �
r

C	 � 1

C	 I C	 D min.m; r/:

If the contingency coefficient equals 0 we have statistical independence. The
contingency coefficient almost never reaches 1 even when there is a perfect
relationship between both variables because the sample size n is always larger than
0 and therefore the denominator is always larger than the numerator.

In order to solve this problem and to be able to reach the value 1 in case of
a perfect relationship, we often use the corrected contingency coefficient which is
calculated as follows:

Ccorr D C �
r

C	
C	 � 1

O � Ccorr � 1

Example We want to analyze if there is a relationship between smoking and lung
cancer. We use the contingency table given in Table 10.24.

Table 10.24 Smoking and
lung cancer

Lung cancer

Smoker Yes(y1) No(y2) MD X

Smoker yes (x1) 10 15 h1�=25

Smoker no (x2) 5 70 h2�=75

MD Y h�1=15 h�2=85 n=100
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�2 D
�
10 � 15�.25/

100

�2

15�.25/
100

C
�
15 � 85�.25/

100

�2

85�.25/
100

C
�
5 � 15�.75/

100

�2

15�.75/
100

C
�
70 � 85�.75/

100

�2

85�.75/
100

D 16:34

C D
r

16:34

100 C 16:34
D 0:375

Ccorr D 0:375 �
r

2

2 � 1
D 0:53

The corrected contingency coefficient of 0.53 is evidence for a relationship
between smoking and lung cancer.

Explained: Relationship Between Two Nominally Scaled
Variables

The “department store” data set contains the following variables recorded for n D
165 randomly selected customers:

Variable Possible realizations

X gender 1—male

2—female

Y method of payment 1—cash

2—ATM card

3—credit card

Z residence 1—Berlin

2—not in Berlin

Below, the three possible two-dimensional frequency distributions are shown
that can be formed for the variables in this data set. The contingency coefficient
is calculated each time.

The two-dimensional frequency distribution for the variables gender and
method of payment is a 2 
 3 contingency table (Table 10.25).

�2 statistic 0:08

Contingency coefficient 0:02

Corrected contingency coefficient 0:03

The corrected contingency coefficient of 0.03 shows that there is only a very
weak relationship between gender and method of payment.
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Table 10.25 Two-dimensional frequency distribution for gender and method of payment

Method of payment .Y/

Gender .X/ .y1/ .y2/ .y3/ MD X

Male .x1/ 31 (0.188) 32 (0.194) 23 (0.139) 86 (0.521)

Female .x2/ 30 (0.182) 29 (0.176) 20 (0.121) 79 (0.479)

MD Y 61 (0.370) 61 (0.370) 43 (0.260) 165 (1.000)

Table 10.26 Two-dimensional frequency distribution for gender and residence

Residence .Z/

Gender .X/ Berlin .z1/ Not in Berlin .z2/ MD X

Male .x1/ 50 (0.303) 36 (0.218) 86 (0.521)

Female .x2/ 37 (0.224) 42 (0.255) 79 (0.429)

MD Y 87 (0.527) 78 (0.473) 165 (1.000)

Table 10.27 Two-dimensional frequency distribution for residence and method of payment

Method of payment .Y/

Residence .Z/ .y1/ .y2/ .y3/ MD X

Berlin .z1/ 44 (0.267) 22 (0.133) 21 (0.127) 87 (0.527)

Not in Berlin .z2/ 17 (0.103) 39 (0.237) 22 (0.133) 78 (0.473)

MD Y 62 (0.370) 61 (0.370) 43 (0.260) 165 (1.000)

The two-dimensional frequency distribution for the variables gender and resi-
dence is a 2 
 2 contingency table (Table 10.26).

�2 statistic 2:11

Contingency coefficient 0:11

Corrected contingency coefficient 0:16

The corrected contingency coefficient of 0.16 shows that there is only a weak
relationship between gender and residence.

The two-dimensional frequency distribution for the variables residence and
method of payment is a 2 
 3 contingency table (Table 10.27).

�2 statistic 16:27

Contingency coefficient 0:30

Corrected contingency coefficient 0:42

The corrected contingency coefficient of 0.42—being considerably larger than in
the previous two cases—shows that there is a medium strength relationship between
residence and method of payment.
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Fig. 10.18 Screenshot of the interactive example, available at http://u.hu-berlin.de/men_asso

Interactive: Example for the Relationship Between Two
Nominally Scaled Variables

The interactive example includes a number of sidebar panels. You can access the
panels by setting a mark at the corresponding check box on the upper right.

Please select which coefficient you like to be calculated and displayed.
The last two panels allow you to choose a dataset or variable and to change

the font size. For a detailed explanation on datasets and variables, please refer to
Appendix A.

Output

After choosing a set of variables, the output window in Fig. 10.18 shows the
corresponding crosstable. In addition, this example allows us to calculate the
Chi-Square coefficient, Contingency coefficient, Corr. contingency coefficient, and
Cramers V for the pre-selected variables.

http://u.hu-berlin.de/men_asso


Chapter 11
Regression

11.1 Regression Analysis

The Objectives of Regression Analysis

The main objective of regression analysis is to describe the expectation and
dependence of a quantity Y on quantities X1; X2; : : :. A one-directional dependence
is assumed. This dependence can be expressed as a general regression function of
the following form:

E.yjx/ D f .x1; x2; : : :/:

The symbol E.yjx/ indicates that the regression function of observed values
x1; x2; � � � does not correspond to an observed value y, but rather, it is the average
value of y given the xi’s, which lies on the regression function.

The random variables X1; X2; : : : are referred to as regressors, explanatory
variables, or independent variables.

The random variable Y is referred as regressand or dependent variable.
An example is the simple linear regression with a dependent variable “Time

working” and one independent variable “Amount of production.” Notice that this
regression is referred to as simple because there is a single independent variable and
is a linear regression since the function f .Amount of production/ is assumed to be
linear (Fig. 11.1).

If the dependence of Y on X can be represented by a linear function, the
regression value E.yijxi/ does describe the expected value of Y given X D xi. It
follows that the value of any observation i can be decomposed as follows:

yi D E.yijxi/ C ui i D 1; : : : ; n

© Springer International Publishing Switzerland 2015
W.K. Härdle et al., Introduction to Statistics, DOI 10.1007/978-3-319-17704-5_11
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Fig. 11.1 Example of a simple linear regression

The difference between the observed values yi and the value of the regression
function E.yijxi/ is called a residual ui. It contains those influences on yi that cannot
be described by means of the regression function; alternatively, this means that
deviations of the observed values from the regression function cannot be explained
by the independent variables employed in the regression function.

ui D yi � E.yijxi/ i D 1; � � � ; n

Regression Function

The regression function is a representation of average statistical dependence of
a dependent variable on one or more independent variables. The dependence is
described by a function based on n observations.

In what follows, we assume only the case when a variable Y depends on a single
variable X. The form of the regression function f .x/ always depends on the specific
application and the purpose of an analysis.

Examples of possible regression functions include:
Linear function E.yjx/ D b0 C b1x
Quadratic function E.yjx/ D b0 C b1x C b2x2

Power function E.yjx/ D axb

Exponential function E.yjx/ D b0b1
x

Logarithmic function E.yjx/ D kl.1 C eaCbx/
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11.2 One-Dimensional Regression Analysis

One-Dimensional Linear Regression Function

A simple linear regression function has the following form:

E.yijxi/ D b0 C b1xi i D 1; : : : ; n

In this equation, xi represents the observed values of a random variable X (fixed)
and b0 and b1 are unknown regression parameters.

The actual observed values yi.i D 1; : : : ; n/ can be obtained by summing residual
ui and E.yijxi/ (as you can see in Fig. 11.2):

yi D E.yijxi/ C ui D b0 C b1xi C ui i D 1; : : : ; n

Regression Parameters

Parameters of a simple linear regression function have the following meaning:

• b0—intercept term (constant)
It describes the intersection of the corresponding regression line and the y-axis

and it has the same value as variable Y at this point.
• b1—linear slope coefficient (also a constant)

It characterizes the slope of the corresponding regression line. It tells us by
how many units the expected value of random variable Y will change if the value
of variable X is increased by one unit.

Fig. 11.2 Components in
linear regression analysis

1 Xi X

Y

ŷ = b0+ b1x

b0

b1
yi

yi− ŷ i= û i

ŷ i
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Estimation of Regression Parameters

To estimate regression parameters, two important conditions have to be satisfied.

1st Condition

The deviations of estimated regression values byi from observed values yi should be
on average equal to zero; that is

nX

iD1

.yi �byi/ D
nX

iD1

bui D 0

NOu D 1

n

nX

iD1

bui D 0

However, this condition is satisfied for infinitely many regression lines, namely
those that go through the point of sample means Nx; Ny (Fig. 11.3). Notice that the
above expressions imply that yi D byi Cbui. Therefore, for each observation i we have
decomposed the observed yi into two parts: (1) an estimated regression functionbyi D
2E.yijxi/ (i.e., an estimate of the conditional mean); and (2) an estimated residual bui

(disturbance).

Fig. 11.3 Possible regression
lines without 2nd condition

x

y

X

Y
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2nd Condition

We search for a regression line such that the spread (variance) of the corresponding
estimated residuals (called disturbances)

s2 Ou D 1

n � 2

nX

iD1

.bui � NOu/
2

is minimal in comparison with all other possible regression lines.
The first condition

NOu D 0

implies

s2 Ou D 1

n � 2

nX

iD1

.bui � 0/
2 D 1

n � 2

nX

iD1

bui
2 D 1

n � 2

nX

iD1

.yi �byi//
2
:

The second condition is illustrated in Fig. 11.4.
The squares drawn in the figure correspond to the squared residuals and the total

area of the squares should be minimized. Hence, the approach is called the least
squares (LS) method.

Fig. 11.4 Illustration of 2nd
condition
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Y

y1̂
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The least squares method minimizes the sum of squared deviations of regres-
sion values from the observed values (residual sum of squares—RSS)

nX

iD1

.yi �byi//
2 ! min: j E.yijxi/ D b0 C b1xi:

The minimized function has two unknown variables (b0 and b1).

S.b0; b1/ D
nX

iD1

.yi � b0 � b1xi/
2 ! min: E.yijxi/ D b0 C b1xi

To find a minimum, the first partial derivatives have to be equal to zero.

S.b0; b1/ D
nX

iD1

.yi � b0 � b1xi/
2 ! min:

@S.b0; b1/

@b0

D �2

nX

iD1

.yi � b0 � b1xi/
:D 0

@S.b0; b1/

@b1

D �2

nX

iD1

.yi � b0 � b1xi/xi
:D 0

To verify whether the solution is really a minimum, the second partial derivatives
have to be evaluated.

@2S.b0; b1/

@b0
2

D 2n > 0

@2S.b0; b1/

@b1
2

D 2

nX

iD1

xi
2 > 0

Since both of the second order derivatives are positive, the extremum will always
be a minimum.

The first order derivatives (equal to zero) lead to the so-called (least squares)
normal equations. By solving these equations, the estimated regression parameters
(bb0 and bb1) can be computed.

nbb0 C bb1

nX

iD1

xi D
X

iD1

nyi

bb0

nX

iD1

xi C bb1

nX

iD1

xi
2 D

nX

iD1

xiyi
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The normal equations can be solved by means of linear algebra (Cramer’s rule):

bb0 D

ˇ̌
ˇ
ˇ

P
yi

P
xiP

xiyi
P

xi
2

ˇ̌
ˇ
ˇ

ˇ
ˇ
ˇ̌n

P
xiP

xi
P

xi
2

ˇ
ˇ
ˇ̌

D
P

yi
P

xi
2 �P

xi
P

xiyi

n
P

xi
2 �P

xi
P

xi

bb1 D

ˇ̌
ˇ
ˇ
n

P
yiP

xi
P

xiyi

ˇ̌
ˇ
ˇ

ˇ
ˇ
ˇ̌n

P
xiP

xi
P

xi
2

ˇ
ˇ
ˇ̌

D n
P

xiyi �P
xi
P

yi

n
P

xi
2 �P

xi
P

xi

Dividing the original equations by n, we get a simplified formula suitable for the
computation of regression parameters:

bb0 C bb1Nx D Ny
bb0Nx C bb1

Nx2 D xy

For the estimated intercept bb0, we get:

bb0 D Ny � bb1Nx

For the estimated linear slope coefficient bb1, we get:

.Ny � bb1Nx/Nx C bb1
Nx2 D xy

bb1. Nx2 � Nx2/ D Nxy � xNy
bb1SX

2 D SXY

bb1 D SXY

SX
2

Properties

• The sample variance of X must be greater than zero: SX
2 > 0

• From the simplified normal equations, you can see that: .Nx; Ny/ ! if xi D Nx then
byi D Ny

byi D bb0 C bb1xi D Ny C bb1.xi � Nx/ D Ny
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Table 11.1 Production output and working time

i xi yi xiyi xi
2 yi

2 byi bui

1 30 73 2,190 900 5,329 70 3

2 20 50 1,000 400 2,500 50 0

3 60 128 7,680 3,600 16,384 130 �2

4 80 170 1,360 6,400 28,900 170 0

5 40 87 3,480 1,600 7,569 90 �3

6 50 108 5,400 2,500 11,664 110 �2

7 60 135 8,100 3,600 18,225 130 5

8 30 69 2,070 900 4,761 70 �1

9 70 148 10,360 4,900 21,904 150 �2

10 60 132 72,920 3,600 17,424 130 2
P

500 1,100 61,800 28,400 134,660 1,100 0

• Combining results from correlation and regression analysis, it is possible to
obtain the estimated linear slope coefficient bb1 as follows:

bb1 D Sxy

Sx
2
; rxy D Sxy

SxSy

) bb1 D rxy
Sy

Sx

The regression .yjx/ of y on x does not correspond to the regression .xjy/ of
x on y.

bb0 = Ny � bb1 Nx bb0

	
= Nx � bb1

	 Ny
bb1 = SXY

SX
2

bb1

	
= SXY

SY
2

Example

• X—production output
• Y—working time
• n D 10 production cycles in a firm

Computation of auxiliary variables (sample mean, sample variance, and sample
standard deviation) (Table 11.1):

Nx = 50 s2
x D 3; 400=10 D 340 sx = 18:44

Ny = 110 s2
x D 13; 660=10 D 13; 366 sy = 36:96

sample Covariance and sample correlation coefficient equal:

sxy D 6; 800=10 D 680 rxy D 680=.18:44 � 36:96/ D 0:9977
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Fig. 11.5 Linear regression line and residual plot for production and working time

From these values, we can compute the estimated regression coefficients bb0 and
bb1 :

bb1 D 680=340 D 2

bb0 D 110 � 2 � .50/ D 10

As a result, we obtain the following estimated regression line (Fig. 11.5):

byi D 10 C 2xi

Quality (Fit) of the Regression Line

Once the regression line is estimated, it is useful to know how well the regression
line approximates the observed data, that is, how good the representation of the data
by means of the regression line is.

A measure that can describe the quality of representation is called the coefficient
of determination (or R-Squared R2). Its computation is based on a decomposition of
the variance of the dependent variable Y.

The smaller is the sum of squared estimated residuals, the better is the quality
(fit) of the regression line. Since the least squares approach minimizes the variance
of the estimated residuals, it also maximizes the R2 by construction.

X
.yi �byi/

2 D
X Oui

2 ! min:
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Fig. 11.6 Decomposition of
observed values

X

Y

yi

ŷ i
y

Xi

ŷ = b0+ b1x

yi− ŷ i= û i
yi−y

ŷi−y

The sample variance of Y is:

sy
2 D

Pn
iD1 .yi � Ny/2

n

The deviation of the observed values yi from the arithmetic mean Ny can be
decomposed to two parts: the deviation of the observed values yi from the estimated
regression values and the deviation of the estimated regression values from the
sample mean.

yi � Ny D Œ.yi �byi/ C .byi � Ny/�; i D 1; � � � ; n

This decomposition is depicted in Fig. 11.6.
Analogously, the sum of the squared deviations can be decomposed:

nX

iD1

.yi � Ny/2 D
nX

iD1

Œ.yi �byi/ C .byi � Ny/�2

nX

iD1

.yi � Ny/2 D
nX

iD1

.yi �byi/
2 C

nX

iD1

.byi � Ny/
2

We were able to derive the second equation above by noting that
Pn

iD1 .yi �byi/

.byi � Ny/ D 0. The reader is urged to prove this using the second least square first
order condition above along with the definition ofbyi:
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Dividing both sides of the second equation by n, it follows:

Pn
i .yi � Ny/2

n
D
Pn

iD1 .yi �byi/
2

n
C
Pn

iD1 .byi � Ny/
2

n
Pn

i .yi � Ny/2

n
D
Pn

iD1bui
2

n
C
Pn

iD1 .byi � Ny/
2

n

Sy
2 D SOu2 C SOy2

The total sample variance of Y is equal to (can be decomposed into) the sum of
the sample variance of the estimated residuals (the unexplained part of the variance
of Y) and the part of the variance of Y that is explained by the regression function
(the sample variance of the regression function).

It holds:

• The larger the portion of the sample variance y as explained by the model is (i.e.,
SOy2/, the better the fit of the regression function.

• On the other hand, the larger the residual variance cSu
2 as a percentage of the

sample variance of y, alternatively the larger the outside influences unexplained
by the regression function are, the worse the regression function fits.

The Coefficient of Determination

The coefficient of determination is defined as the ratio of the (sample) variance Y
explained by the regression function and the total (sample) variance of Y. That is, it
represents the proportion of the sample variance in y “explained” by the estimated
regression function.

R2
yx D

Pn
iD1 .byi � Ny/

2

Pn
iD1 .yi � Ny/2

D SOy2

Sy
2

An alternative way for computing the coefficient of determination is:

R2
yx D Œ

Pn
iD1.yi � Ny/.xi � Nx/�

2

Pn
iD1 .yi � Ny/2Pn

iD1 .xi � Nx/2
D Sxy

2

Sy
2Sx

2

R2
xy D .n

Pn
iD1 xiyi �Pn

iD1 xi
Pn

iD1 yi/
2

Œn
Pn

iD1 xi
2 � .

Pn
iD1 xi/

2
�Œn
Pn

iD1 yi
2 � .

Pn
iD1 yi/

2
�
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Characteristics:

• The coefficient of determination has the following domain: 0 � R2
yx � 1

The higher the coefficient of determination is, the better the regression
function explains the observed values.

If all observed values lie on the regression line, the coefficient of determina-
tion is equal to 1. The total variance of Y can be explained by the variable X. Y
depends completely (and linearly) on X.

If the coefficient of determination is zero, the total variance of Y is identical
with the unexplained variance (the residual variance). The random variable X
does not have any linear influence on Y.

• R2
xy D R2

yx Symmetry (the fit of the regression of y on x is identical to the fit of
the regression of x on y)

• For a linear regression function, the coefficient of determination corresponds to
the square of the correlation coefficient: R2

yx D r2
yx.

Example For the above described dependence between the working time and
the production output, the sample correlation coefficient and the coefficient of
determination are:

ryx D 0:9977

Ryx
2 D 0:9954

One-Dimensional Nonlinear Regression Function

Example

• n D 8 comparable towns
• X—the number of the public-transportation maps that are distributed for free

among citizens of the city at the beginning of the analyzed time period.
• Y—increase in the number of citizens using public transport during the analyzed

time period (Table 11.2).

Linear Regression

byi D bb0 C bb1xi D �1:82 C 0:0435xi

Ryx
2 D 0:875
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Table 11.2 Data on X and Y Increase Y Public-transportation maps X

Town i (in 1,000) (in 1,000)

1 0:60 80

2 6:70 220

3 5:30 140

4 4:00 120

5 6:55 180

6 2:15 100

7 6:60 200

8 5:75 160
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Fig. 11.7 Linear model for X and Y

quadratic regression

100 150 200

0
2

4
6

8

plot of residuals

re
si

du
al

s

100 150 200

−1
.0

−0
.5

0.
0

0.
5

1.
0

Fig. 11.8 Nonlinear model for X and Y

As we see from Fig. 11.7 the estimated residuals are not randomly dispersed
around zero, but instead they have a rather clear nonlinear pattern. Hence, it can be
beneficial to use a nonlinear regression model instead of the linear one (Fig. 11.8).
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Quadratic Regression: Second-Order Polynomial

byi D bb0 C bb1xi C bb2xi
2 D �10:03 C 0:1642xi � 0:0004xi

2

Ryx
2 D 0:995

Explained: One-Dimensional Linear Regression

Now, we examine the monthly net income and monthly expenditures on living of 10
two-person households (Table 11.3).

These observations are drawn in the following scatterplot. You can see that the
net income of a household has a positive influence of the household’s expenditures
and that this dependence can be estimated by means of a linear regression function.

We want to estimate a linear regression function describing expenditures of a
household as a function of the household’s net income (Fig. 11.9).

To estimate the linear regression model, some auxiliary calculations are needed
(Table 11.4).

Using the derived formulas, the estimated regression parameters bb0 and bb1 are
computed as follows:

bb0 D
P

yi
P

xi
2 �P

xi
P

xiyi

n
P

xi
2 �P

xi
P

xi

D .25; 400 � 179; 330; 000/ � .39; 700 � 112; 420; 000/

.10 � 179; 330; 000/ � .39; 700 � 39; 700/

D 423:13

bb1 D n
P

xiyi �P
xi
P

yi

n
P

xi
2 �P

xi
P

xi

D .10 � 112; 420; 000/ � .39; 700 � 25; 400/

.10 � 179; 330; 000/ � .39; 700 � 39; 700/

D 0:5332

Table 11.3 Data on monthly net income and monthly expenditures for 10 two-person households

Household 1 2 3 4 5

Net income in EUR xi 3,500 5,000 4,300 6,100 1,000

Expenditures in EUR yi 2,000 3,500 3,100 3,900 900

Household 6 7 8 9 10

Net income in EUR xi 4,800 2,900 2,400 5,600 4,100

Expenditures in EUR yi 3,000 2,100 1,900 2,900 2,100
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Fig. 11.9 Scatterplot of
monthly net income and
monthly expenditures
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Table 11.4 Auxiliary calculations for linear regression analysis

HH xi yi xi � yi xi
2 yi

2

1 3,500 2,000 7,000,000 12,250,000 4,000,000

2 5,000 3,500 17,500,000 25,000,000 12,250,000

3 4,300 3,100 13,330,000 18,490,000 9,610,000

4 6,100 3,900 23,790,000 37,210,000 15,210,000

5 1,000 900 900,000 1,000,000 810,000

6 4,800 3,000 14,400,000 23,040,000 9,000,000

7 2,900 2,100 6,090,000 8,410,000 4,410,000

8 2,400 1,900 4,560,000 5,760,000 3,610,000

9 5,600 2,900 16,240,000 31,360,000 8,410,000

10 4,100 2,100 8,610,000 16,810,000 4,410,000
P

39,700 25,400 112,420,000 179,330,000 71,720,000

Thus, the estimated regression function is

byi D 423:13 C 0:5332 � xi

Expenditures = 423.13 + 0.5332 � Net income

The estimated regression line can be drawn in the scatterplot as shown in
Fig. 11.10.
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Fig. 11.10 Estimated
regression line for monthly
net income and monthly
expenditures
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The slope of the line corresponds to the marginal propensity to consume: an
increase in the net income by one Mark (1 EUR) translates on average to 0.53 EUR
increase in expenditures for the observed households.

Once sample standard deviations of x and y and their sample covariance are
computed, we can readily obtain the sample correlation coefficient:

rxy D Sxy

SxSy
D 1; 286; 900

1; 553:5 � 894:68
D 0:926

It hints to a strong (positive) dependence between households’ net incomes and
living expenditures.

The quality of the fit of the regression function can be evaluated via the
coefficient of determination. It is a ratio of the variance explained by the regression
function and the total sample variance of expenditures Y:

R2 D
P

.byi � Ny/
2

P
.yi � Ny/2

D 6; 175; 715:85

7; 204; 000:00
D 0:857

The coefficient of determination shows that 86% of the variation in households’
expenditures can be explained by a linear dependence on the household’s net
incomes.
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Enhanced: Crime Rates in the US

In year 1985, information about various crimes in each of 50 states of the USA was
collected, including data on:

X1—land area
X2—population
X3—murder
X4—rape
X5—robbery
X6—assault
X7—burglary
X8—larceny
X9—auto-theft
X10—US states region number
X11—US states division number

The dependence of robbery (X5) on the population (X2) of a state can be
depicted in a scatterplot. Every state is represented in the diagram by a single point
(X2; X5). Moreover, an estimated regression line is added in Fig. 11.11 (it is drawn
in black).

The regression analysis provides the following results:

• The estimated regression intercept is 48:1134. In this case, it does not make sense
to interpret this number; bb0 is a kind of correction parameter.

• The increase in the population of a state by one unit (i.e., by 1,000 citizens) leads
to the increase in the number of robberies by bb1 D 0:0112.
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regression function
robbery = 48.1134 + 0.0112 * popul.

correlation coefficient r = 0.62

SS−Total = 407495.40
SS−Residual = 249210.77
SS−Regression = 158284.63
SS−Total = SS−Regression + SS−Residual

coefficient of determination R2  = 0.39

Fig. 11.11 Linear regression analysis of robbery (X5) and population (X2)
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• The sample correlation coefficient is 0:62—this implies a (positive) dependence
of the population and the number of robberies.

• To estimate the fit of the estimated regression function, the coefficient of
determination can be used. Its calculation is based on the decomposition of
the sample variance of the dependent variable. For the calculation, we can use
the total sample variance (SS-Total), the unexplained (residual) variance (SS-
Residual), and the explained variance (SS-Regression). Using the formula

R2 D SS � Regression

SS � Total
D
P

.byi � Ny/
2

P
.yi � Ny/2

D 1 � SS � Residual

SS � Total
;

we get that the coefficient of determination equals 0:39. The regression line does
not characterize the observed values very well, the explanatory power of the
model is weak.

The observation x.37/ corresponds to the population of 16; 370 thousands and
the number of robberies 134:1. The estimated regression function for such a state
predicts the number of robberies to be equal to 231:66.
Note: The interactive example allows you to display (graphically) the pairwise
dependence of other variables as well.

Enhanced: Linear Regression for the Car Data

The following measures were collected for 74 different types of cars:
X1—price
X2—mpg (miles per gallon)
X3—headroom (in inches)
X4—rear seat clearance
(distance from front seat back to the rear seat, in inches)
X5—trunk space (in cubic feet)
X6—weight (in pound)
X7—length (in inches)
X8—turning diameter (clearance required to make a U-turn, in feet)
X9—displacement (in cubic inches)

The dependence of turning diameter (X8) on the length (X7) of a car can be
depicted in a scatterplot. Every car is represented in the diagram by a single point
(X7; X8). Moreover, an estimated regression line is added in Fig. 11.12 (it is drawn
in black).

The regression analysis provides the following results:

• The estimated regression intercept is 7:1739. In this case, it may not make sense
to interpret this number; bb0 is a kind of correction parameter.



11.2 One-Dimensional Regression Analysis 473

140 160 180 200 220 240

35

40

45

50

length

tu
rn

 −
 d

ia
m

ll

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

ll l

l

l

l

ll

l

l

l

ll

l

l

l

l

l

l l

l

l

ll

l l

l

l x53

regression function
turn−diam = 7.1739 + 0.1735 * length

correlation coefficient r = 0.90

SS−Total = 1361.96
SS−Residual = 259.06
SS−Regression = 1102.90
SS−Total = SS−Regression + SS−Residual

coefficient of determination R2  = 0.81

Fig. 11.12 Linear regression analysis of turning diameter (X8) and length (X7)

• The increase in the length of a car by one unit (i.e., by one inch in this case) leads
to the increase in the turning diameter by bb1 D 0:1735 feet.

• The sample correlation coefficient is 0:90—this implies a strong (positive)
dependence of the turning diameter and the length.

• To estimate the fit of the estimated regression function, the coefficient of
determination can be used. Its calculation is based on the decomposition of the
variance of the dependent variable. For the calculation, the total sample variance
(SS-Total), the unexplained (residual) variance (SS-Residual), and the explained
variance (SS-Regression) are available. Using the formula

R2 D SS � Regression

SS � Total
D
P

.byi � Ny/
2

P
.yi � Ny/2

;

we get that the coefficient of determination equals 0:81. The regression line
characterizes (explains) the observed values quite well.

The observation x.53/ corresponds to the length of a car of 192 inches and a
turning diameter 38 feet. The estimated regression function for a car of this length
predicts the turning diameter to be equal to 40:49 feet.
Note: The interactive example allows you to display (graphically) the pairwise
dependence of other variables as well (Fig. 11.13).

Interactive: Simple Linear Regression

The interactive example includes a number of sidebar panels. You can access the
panels by setting a mark at the corresponding check box on the upper right.



474 11 Regression

Fig. 11.13 Screenshot of the interactive example, available at http://u.hu-berlin.de/men_regr

Please choose if you like

• the linear regression line to be included in the graphic
• a summary of regression results to be displayed below the graphic
• the confidence bands to be shown

The last two panels allow you to choose a dataset or variable and to change
the font size. For a detailed explanation on datasets and variables, please refer to
Appendix A.

Output

Using this interactive example, you can estimate a one-dimensional regression
function for any two variables X, Y from three available data sets. The program
generates a scatterplot, adds an estimated regression line and confidence bounds to
the plot.

11.3 Multi-Dimensional Regression Analysis

Multi-Dimensional Regression Analysis

If a variable Y, which is to be modeled, depends on more than one variable X,
we refer to the regression relationship as multi-dimensional or a multiple linear
regression.

http://u.hu-berlin.de/men_regr
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Let us write down a multi-dimensional linear regression function with m
independent variables X1; X2; � � � ; Xm.m < n/:

E.yijX/ D b0 C b1x1i C b2x2i C � � � C bmxmi

The estimation of unknown regression parameters can be done in the same way
as in the case of one-dimensional linear regression—via the least squares method
(LS).

More detailed discussion of multi-dimensional regression is omitted here, as it is
one of the main topics of Econometrics.



Chapter 12
Time Series Analysis

12.1 Time Series Analysis

Definition

A time series is the vector of realizations of a random variable X over the time.

Graphical Representation

Scatterplots show the development of the realizations of the underlying random
variable over time. The horizontal axis represents the time t (days, months, years)
while the vertical axis shows the corresponding value xt of X. In the following there
are some examples from various fields of interest (Figs. 12.1, 12.2, and 12.3).

The Objectives of Time Series Analysis

The above examples illustrate how different the behavior of a time dependent
random variable can be. The understanding of these different temporal attributes
in any application is the aim of time series analysis. Descriptive time series models
are chosen so that they explain the characteristics of the series. A time series could
be interpreted as the realization of a stochastic process hence one tries to find a
stochastic model that could have generated the observed data. An important issue
is the identification of influence factors, which may be time series themselves.
Stochastic time series modeling can help to understand such observed process.
Also, assuming that the model remains valid in the future, it is possible to forecast

© Springer International Publishing Switzerland 2015
W.K. Härdle et al., Introduction to Statistics, DOI 10.1007/978-3-319-17704-5_12
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Fig. 12.1 Price index for
rents in Berlin, 2005–2012
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Fig. 12.2 Number of phones
in the US (measured in
1; 000s), 1900–1970
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Fig. 12.3 Number of newly
registered cars in Berlin,
1977:1–1989:4
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future observations (predictive time series models). In the following we consider
descriptive time series models only.
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Components of Time Series

Time series are decomposed into its underlying driving components to show its
characteristics:

• Trend
General long-run trend of the series.

• Periodic variation
Short-run influences, which overlap the long-run development corresponding

to a rigid model. If the period is one year, periodic variations are called seasonal
variations.

• Iregular variation

Trend and periodic (seasonal) variation are the systematic components.

12.2 Trend of Time Series

The analysis of time series starts with the extraction of the long-run behavior or
trend from the observed values. There are a variety of different methods, leading to
different trend lines for one and the same series. The choice of a particular method
requires a comparison of advantages and disadvantages.

In this section we will present the moving average and least squares methods.

Method of Moving Average

In this method the estimated trend at every point in time is a weighted average of
the original observed data:

T.t/ D
bX

iD�a

	ixtCi ;

with

bX

iD�a

	i D 1

The set of weights 	i is called the filter.
The selection of the filter depends on periodic/seasonal variations and the desired

smoothness. We will usually employ symmetric filters (a D b). They include future
as well as past periods.
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If the weights 	i of a filter are equal for all i, the filter is called a simple moving
average, if not, we call it a weighted moving average.

Support area The weighted average will be calculated in a window (area) of the
original data. The choice of a and b determines the length of the window of data that
are used for the support area. As a matter of principle the series of estimated trends
can only be as long as the original series (equality, if a D b D 0). The longer the
support area selected, the smaller the number of trend values that can be calculated
and the smoother is the resulting trend series.

Frequently Used Filters for Time Series with Seasonal Variations

Symmetric filters (a D b) are often specified so that the 2a C 1 weights are in
square brackets. For the smoothing of seasonal time series the following filter can
be applied. The reason is that they filter (smooth) out the periodic variations from
original data for the trend calculation.

• six-month data

Œ1=4; 1=2; 1=4� .a D 1/

Œ1=8; 1=4; 1=4; 1=4; 1=8� .a D 2/

• quarterly data

Œ1=8; 1=4; 1=4; 1=4; 1=8� .a D 2/

Œ1=16; 1=8; 1=8; 1=8; 1=8; 1=8; 1=8; 1=8; 1=16� .a D 4/
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Fig. 12.4 Example for smoothing a time series
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• monthly data

Œ1=24; 1=12; 1=12; 1=12; 1=12; 1=12; 1=12;

1=12; 1=12; 1=12; 1=12; 1=12; 1=24� .a D 6/

Example (Quarterly Data)

• Number of newly registered cars in Berlin, 1977:1–1989:4 (Fig. 12.4)
• Filter: Œ1=8; 1=4; 1=4; 1=4; 1=8�

• red: original series
• black: smoothed series (trend)

Least-Squares Method

The Least-squares method is a second approach to estimate the trend component of a
time series. The method was presented in the regression analysis chapter. We select
a set of functions, which describe the trend as a function of time t and estimate the
parameters of these functions. These parameter values minimize the sum of squared
variations of the trend from the original data.

TX

tD1

.xt � Oxt/
2 ! min.

In the following we derive expressions for the least squares estimates of a simple
linear trend and exponential trend functions.

Linear Trend Function

Suppose that the variable X depends linearly on time t

Oxt D a C b � t

The sum of the squared residuals clearly depends on the parameters a and b as

S.a; b/ D
TX

tD1

.xt � Oxt/
2 D

TX

tD1

.xt � a � b � t/2 ! min.
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Fig. 12.5 Time series with a
linear trend
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Minimization results in the following estimators of the parameters (as introduced in
the previous chapter on linear regression).

a D

TP

tD1

xt

TP

tD1

t2 �
TP

tD1

t
TP

tD1

xtt

T
TP

tD1

t2 �
�

TP

tD1

t

	2

b D
T

TP

tD1

xtt �
TP

tD1

xt

TP

tD1

t

T
TP

tD1

t2 �
�

TP

tD1

t

	2

Example Price index for rents in Berlin, 2005–2012 (monthly data):

Oxt D 98:748 C 0:126 � t; R2 D 0:974;

where t D 1 corresponds to January 2005 (Fig. 12.5).

Exponential Trend

Suppose that the variable X exhibits an exponential dependence on time t of the
form

Oxt D abt ;

or, similarly, in logarithmic form

log.Oxt/ D log.a/ C t log.b/
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Fig. 12.6 Time series with
an exponential trend

year
1900 1910 1920 1930 1940 1950 1960 1970

0

20000

40000

60000

80000

100000

120000

140000

nu
m

be
r o

f t
el

ep
ho

ne
s 

in
 th

e 
U

S 
(1

00
0)

Least squares minimization results in the following estimators of the parameters.

log a D

TP

tD1

log xt

TP

tD1

t2 �
TP

tD1

t
TP

tD1

t log xt

T
TP

tD1

t2 �
�

TP

tD1

t

	2

log b D
T

TP

tD1

t log xt �
TP

tD1

log xt

TP

tD1

t

T
TP

tD1

t2 �
�

TP

tD1

t

	2

Example Number of phones in the US (measured in 1; 000s), 1900–1970

log Oxt D 3:553645 C 0:021448 � t;

R2 D 0:9923;

where t D 0 corresponds to the year 1899 (Fig. 12.6).

Oxt D 3; 578:04 � .1:051/t

More Information: Simple Moving Average

Order of Moving Average

Domain: number (k D a D b) of past observations used for the calculation of the
average.
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• odd order 2k C 1:

X?
t D 1

2k C 1

tCkX

iDt�k

Xi t D k C 1; : : : ; T � k

Example

k 1 2

order 2k C 1 D 3 2k C 1 D 5

x1 x?
1 n.a. x?

1 n.a.
x2 x?

2 D 1
3

�P3
iD1 xi x?

2 n.a.
x3 x?

3 D 1
3

�P4
iD2 xi x?

3 D 1
5

�P5
iD1 xi

x4 x?
4 D 1

3
�P5

iD3 xi x?
4 D 1

5
�P6

iD2 xi
:::

:::
:::

xT�2 x?
T�2 D 1

3
�PT�1

iDT�3 xi x?
T�2 D 1

5
�PT

iDT�4 xi

xT�1 x?
T�1 D 1

3
�PT

iDT�2 xi x?
4 n.a.

xT x?
T n.a. x?

T n.a.
Where n.a., in the table, means that it is not feasible to estimate the trend for

this particular point in time given our data and weighting structure.
• even order 2k:

X?
t D 1

2k

2

41

2
Xt�k C 1

2
XtCk C

tC.k�1/X

iDt�.k�1/

Xi

3

5 t D k C 1; : : : ; T � k

Example

k 1 2

order 2k D 2 2k D 4

x1 x?
1 n.a. x?

1 n.a.
x2 x?

2 D 1
2

�
1
2
x1 C 1

2
x3 C x2


x?

2 n.a.

x3 x?
3 D 1

2

�
1
2
x2 C 1

2
x4 C x3


x?

3 D 1
4

h
1
2
x1 C 1

2
x5 CP4

iD2 xi

i

x4 x?
4 D 1

2

�
1
2
x3 C 1

2
x5 C x4


x?

3 D 1
4

h
1
2
x2 C 1

2
x6 CP5

iD3 xi

i

:::
:::

:::

xT�2 x?
T�2 D 1

2

�
1
2
xT�3 C 1

2
xT�1 C xT�2


x?

T�2 D 1
4
Œ 1

2
xT�4 C 1

2
xTC

CPT�1
iDT�3 xi�

xT�1 x?
T�1 D 1

2

�
1
2
xT�2 C 1

2
xT C xT�1


x?

T�1 n.a.
xT x?

T n.a. x?
T n.a.
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Explained: Calculation of Moving Averages

The following time series describes the development of the balance of payments (in
Millions of DM) of Germany in the years 1977–1995.

The trend of these time series is estimated by the moving average method. Recall,
this approach uses the formula

T.t/ D
bX

iD�a

	ixtCi ; with
bX

iD�a

	i D 1 :

Since past and future values should have equal weights for the trend estimation
in t, we choose a D b. For the smoothing of yearly data a simple moving average is
applied, where all weights are identical. The weights must add to 1 over the entire
supporting area, that means:

	i D 1

2a C 1
8i :

In Table 12.1 the moving average T.t/ was calculated for a D 1, a D 2 and
a D 3.

Table 12.1 Calculation of moving averages

T.t/ T.t/ T.t/

Year t Balance of payments a D 1 a D 2 a D 3

1977 1 9478

1978 2 18003 5483:3

1979 3 �11031 �7169:3 �4754:2

1980 4 �28480 �17084:0 �4676:6 �476:0

1981 5 �11741 �10118:3 �6162:6 2161:4

1982 6 9866 2899:3 1631:6 6493:4

1983 7 10573 16126:3 16993:0 20325:4

1984 8 27940 28946:7 36499:8 36122:1

1985 9 48327 54020:0 50946:0 50418:9

1986 10 85793 72072:3 66498:6 63874:7

1987 11 82097 85408:7 81722:0 64551:3

1988 12 88336 91496:7 75118:4 56000:4

1989 13 104057 69234:0 51576:6 44779:3

1990 14 15309 29150:0 29113:0 29186:0

1991 15 �31916 �15609:3 6774:4 12573:9

1992 16 �30221 �28498:0 �20875:2 �4876:7

1993 17 �23357 �29256:3 �30700:6

1994 18 �34191 �30455:3

1995 19 �33818
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Fig. 12.7 Three alternative
estimations of the long-run
trend of the original series
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If a D 1, one cannot estimate a trend for the period t D 1, because the value of
the time series is unknown in t D 0. For t D 2 the estimated trend is .9; 478/=3 C
.18; 003/=3 C .�11; 031/=3 D 5; 483:3.

In Fig. 12.7 the three alternative estimations of the long-run trend and the original
series are compared.

One detects two important characteristics of the procedure:

• The larger the supporting area, over which the trend is estimated, the fewer the
number of values of the trend that can be estimated.

• The estimated trend becomes smoother with increased supporting area (i.e., the
larger is b C a).

Interactive: Test of Different Filters for Trend Calculation

The interactive example includes a number of sidebar panels. You can access
the panels by setting a mark at the corresponding check box on the upper right
(Fig. 12.8).

Please choose the type of trend to be calculated and included in the graphic.
The last two panels allow you to choose a dataset or variable and to change

the font size. For a detailed explanation on datasets and variables, please refer to
Appendix A.

Output:
Using this interactive example, you can select different filters and observe the

effects of your selection on the estimated trend. The program generates a lineplot of
the time series and adds an estimated regression trend.
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Fig. 12.8 Screenshot of the interactive example, available at http://u.hu-berlin.de/men_time1

12.3 Periodic Fluctuations

So far from the original observed time series only the trend has been estimated.
Information about seasonal attributes was dealt with, smoothed out, by the selection
of a suitable filter. Now the season components are also to be estimated. For a better
understanding, we introduce some useful definitions first.

• Periods: pi, i D 1; : : : ; P Number of repetitions of one season.

Example Quarterly data over 10 years: P D 10

• Time subintervals: kj, j D 1; : : : ; k Number of observations in a seasonal cycle.

Example Quarterly data: k D 4

• Total number of observations: T D k � P
• (Estimated) Trend values: Oxi;j

• Observed values: xi;j

• (Estimated) Seasonal fluctuation components: si;j

One must distinguish between additive and multiplicative time series models: An
additive relationship between trend, seasonal component, and residuals is consid-
ered in the additive model while this relationship is multiplicative in multiplicative
model. Accordingly the calculations of the estimated seasonal components differ.

• Additive time series model

si;j D xi;j � Oxi;j ; Nsj D 1

P

PX

iD1

si;j

OxZRM
i;j D Oxi;j C Nsj for i D 1; : : : ; P j D 1; : : : ; k

http://u.hu-berlin.de/men_time1
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Fig. 12.9 Original time
series (red); smoothed series
(black); trend and seasonal
component (blue)
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Table 12.2 Seasonal
components

j Sum Nsj P

1 2:934 0:244 12

2 30:424 2:535 12

3 �17:434 �1:453 12

4 �16:120 �1:343 12

The forecasted value of the variable X from the time series model (ZRM)
consists of the estimated trend value Oxi;j added to the mean (estimated) seasonal
coefficient Nsj.

• Multiplicative time series model

si;j D xi;j

Oxi;j
; Nsj D 1

P

PX

iD1

si;j

OxZRM
i;j D Oxi;j � Nsj for i D 1; : : : ; P j D 1; : : : ; k

The forecasted value of the variable X from to the time series model (ZRM)
consists of the estimated trend value Oxi;j multiplied by the mean (estimated)
seasonal coefficient Nsj.

Example

• Number of newly registered cars in Berlin—1977:1–1989:4 Additive time series
model (Fig. 12.9, Table 12.2):

• Filter: Œ1=8; 1=4; 1=4; 1=4; 1=8�

• Red: Original time series
• Black: Smoothed series (estimated trend)
• Blue: Trend and seasonal component (estimated time series)
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Explained: Decomposition of a Seasonal Series

This example shows how one decomposes an observed time series x.t/ into
estimates of the trend T.t/, the seasonal component S.t/, and a residual vector e.t/.
The model considered has the additive form x.t/ D T.t/CS.t/Ce.t/. For illustration
we apply the method to data on newly registered cars in Berlin.

Trend

Two different procedures for estimation of the trend component were introduced
above: The least squares and the moving average methods. Here the latter is used,
where the trend is calculated according to

T.t/ D
bX

iD�a

	ixtCi ; with
bX

iD�a

	i D 1 :

In order to remove all seasonal variation, one applies the filter Œ1=8; 1=4; 1=4;

1=4; 1=8� to the observed quarterly data. It gives an even consideration of past and
future data (a D b D 2) and the same weighting of all seasons.

Example

T.3/ D 1=8 � x.1/ C 1=4 � x.2/ C 1=4 � x.3/ C 1=4 � x.4/ C 1=8 � x.5/

Seasonal Variation

From the model x.t/ D T.t/ C S.t/ C e.t/ it follows x.t/ � T.t/ D S.t/ C e.t/. The
left-hand side of this equation is an estimated detrended series. Assuming that the
seasonal variation in the respective quarters has the same value (thus e.g.: S.3/ D
S.7/ D : : : D S.51/), an obvious procedure for the seasonal adjustment is the
computation of the arithmetic means over all differences x.t/ � T.t/, which belong
to one season.

Example

S.3/ D S.7/ D � � � D S.51/ D
D Œ.x.3/ � T.3// C .x.7/ � T.7// C � � � C .x.51/ � T.51//�=12

For this procedure it is not important which method was used to estimate the
trend.
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Residuals

One calculates the estimated residuals via e.t/ D x.t/ � T.t/ � S.t/.

Results of the Decomposition of Car Registration Time Series

You should check on the basis of the results for at least one period whether you can
reconstruct the procedure described above or not (Tables 12.3 and 12.4).

The result of the decomposition is graphically illustrated. Note that the estimated
trend series T.t/ (the green series) actually contains no more seasonal variation.
This acknowledges the adequacy of selecting the filter Œ1=8; 1=4; 1=4; 1=4; 1=8�

for smoothing time series with quarterly data.

Table 12.3 Decomposition of car registration time series—part 1

Quarter t x.t/ T.t/ S.t/ e.t/

1977:1 1 15222

1977:2 2 17456

1977:3 3 12988 14897:9 �1909:9 �1452:8 �457:1

1977:4 4 13833 15127:8 �1294:8 �1343:3 48:5

1978:1 5 15407 15395:9 11:1 244:5 �233:4

1978:2 6 19110 15370:5 3739:5 2535:4 1204:1

1978:3 7 13479 15408:8 �1929:8 �1452:8 �477:0

1978:4 8 13139 15487:3 �2348:3 �1343:3 �1005:0

1979:1 9 16407 15246:3 1160:7 244:5 916:2

1979:2 10 18738 14891:0 3847:0 2535:4 1311:6

1979:3 11 11923 14663:0 �2740:0 �1452:8 �1287:2

1979:4 12 11853 14267:1 �2414:1 �1343:3 �1070:8

1980:1 13 15869 14058:5 1810:5 244:5 1566:0

1980:2 14 16109 14160:9 1948:1 2535:4 �587:3

1980:3 15 12883 13971:5 �1088:5 �1452:8 364:3

1980:4 16 11712 13707:8 �1995:8 �1343:3 �652:5

1981:1 17 14495 13298:0 1197:0 244:5 952:5

1981:2 18 15373 12905:1 2467:9 2535:4 �67:5

1981:3 19 10341 12641:3 �2300:3 �1452:8 �847:5

1981:4 20 11111 12205:5 �1094:5 �1343:3 248:8

1982:1 21 12985 11850:1 1134:9 244:5 890:4

1982:2 22 13397 11608:3 1788:7 2535:4 �746:7

1982:3 23 9474 11530:5 �2056:5 �1452:8 �603:7

1982:4 24 10043 11907:6 �1864:6 �1343:3 �521:3

1983:1 25 13431 12450:5 980:5 244:5 736:0
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Table 12.4 Decomposition of car registration time series—part 2

Quarter t x.t/ T.t/ S.t/ e.t/

1983:2 26 15968 12824:3 3143:7 2535:4 608:3

1983:3 27 11246 13161:1 �1915:1 �1452:8 �462:3

1983:4 28 11261 13172:4 �1911:4 �1343:3 �568:1

1984:1 29 14908 12905:5 2002:5 244:5 1758:0

1984:2 30 14581 12736:5 1844:5 2535:4 �690:9

1984:3 31 10498 12182:3 �1684:3 �1452:8 �231:5

1984:4 32 10657 11738:1 �1081:1 �1343:3 262:2

1985:1 33 11078 11894:6 �816:6 244:5 �1061:1

1985:2 34 14858 12232:4 2625:6 2535:4 90:2

1985:3 35 11473 12788:6 �1315:6 �1452:8 137:2

1985:4 36 12384 13414:6 �1030:6 �1343:3 312:7

1986:1 37 13801 14047:3 �246:3 244:5 �490:8

1986:2 38 17143 14685:3 2457:7 2535:4 �77:7

1986:3 39 14249 14826:5 �577:5 �1452:8 875:3

1986:4 40 14712 14633:8 78:2 �1343:3 1421:5

1987:1 41 12603 14761:0 �2158:0 244:5 �2402:5

1987:2 42 16799 15038:3 1760:7 2535:4 �774:7

1987:3 43 15611 15204:5 406:5 �1452:8 1859:3

1987:4 44 15568 15301:1 266:9 �1343:3 1610:2

1988:1 45 13077 15157:0 �2080:0 244:5 �2324:5

1988:2 46 17098 14665:1 2432:9 2535:4 �102:5

1988:3 47 14159 14481:8 �322:8 �1452:8 1130:0

1988:4 48 13085 14514:5 �1429:5 �1343:3 �86:2

1989:1 49 14093 14155:9 �62:9 244:5 �307:4

1989:2 50 16344 13976:1 2367:9 2535:4 �167:5

1989:3 51 12044

1989:4 52 13762

Note: In Fig. 12.10 the black line represents our actual observed data series, green is
the estimated trend component, the blue line is the estimated seasonal component,
and the red line is the estimated residuals.

Interactive: Decomposition of Time Series

The interactive example includes a number of sidebar panels. You can access the
panels by setting a mark at the corresponding check box on the upper right.

Please choose

• the trend type, e.g., exponential trend
• the seasonality type
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Fig. 12.10 Decomposition of car registration time series; trend (green), observed data (black),
seasonal component (blue), residuals (red)

Fig. 12.11 Screenshot of the interactive example, available at http://u.hu-berlin.de/men_time2

The last two panels allow you to choose a dataset or variable and to change
the font size. For a detailed explanation on datasets and variables, please refer to
Appendix A.

Output:
Using this interactive example, you can decompose a time series into its trend and

seasonality components. The program generates a lineplot of the time series, adds
an estimated regression trend, and displays seasonality (Fig. 12.11, Fig. 12.12).

12.4 Quality of the Time Series Model

In the preceding paragraph it likely became clear that, a priori, there is no best time
series model. In particular, there are different methods for the estimation of the trend
which do not differ in the parameters only, but follow different methodologies.

In order to select one model from the variety of possible models, one needs a
criteria to justify a decision. How well a model describes (fits) the available data
can be seen from the structure and the fluctuation of the residuals. The following

http://u.hu-berlin.de/men_time2
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Fig. 12.12 Screenshot of the interactive example, available at http://u.hu-berlin.de/men_time3

measures, which offer information about the fluctuation of the residuals, have
already been studied (Fig. 12.12).

Mean Squared Dispersion (Estimated Standard Deviation)

sZRM D
vu
u
t 1

T

PX

iD1

kX

jD1

.xi;j � OxZRM
i;j /2

the coefficient of variation

v D SZRM

Nx
coefficient of determination (applicable only if the trend was calculated with the
least squares method.)

R2 D 1 � s2
ZRM

s2
x

s2
x D 1

T

PX

iD1

kX

jD1

.xi;j � Nx/2 0 � s2
ZRM

s2
x

� 1

http://u.hu-berlin.de/men_time3
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Interactive: Comparison of Time Series Models

The interactive example includes a number of sidebar panels. You can access the
panels by setting a mark at the corresponding check box on the upper right.

Please choose

• the trend type, e.g., exponential trend
• the seasonality type
• if you like the model fit to be displayed

The last two panels allow you to choose a dataset or variable and to change
the font size. For a detailed explanation on datasets and variables, please refer to
Appendix A.

Output

Like in the preceding paragraph you can select a time series, which will be
decomposed into estimated trend, seasonal component, and residuals. The program
generates a lineplot of the time series, adds an estimated regression trend, and
displays seasonality. Furthermore, in the result window you now also find measure-
ments of the quality of the fit of your model to the data.



Appendix A
Data Sets in the Interactive Examples

A.1 ALLBUS Data

The German General Social Survey (ALLBUS) is a biennial survey that has been
conducted since 1980 on the attitudes, behavior, and social structure of persons
residing in Germany. A set of questions is asked in every ALLBUS on background
information about respondents and their socio-economic context; detailed sets of
questions on one or two topics per ALLBUS are replicated about every 10 years.
More specific information can be found at the GESIS website: http://www.gesis.
org/en/allbus.

The data used in the interactive examples has been taken from the English lan-
guage version of ALLBUS-Cumulation 1980–2012. Note that not all questions were
asked in biennial survey, therefore we have selected several years. Observations with
missing values have been deleted from the data.

A.1.1 ALLBUS1992, ALLBUS2002, and ALLBUS2012:
Economics

Variable Type Values and labels

Current economic situation in Germany Ordered 1=very good,. . . ,5=very bad

Current economic situation in federal statea Ordered As before

Respondents own current financial situation Ordered As before

Economic situation in Germany in one year Ordered As before

Economic situation in federal state in one yeara Ordered As before

Respondents own financial situation in one year Ordered As before

(continued)

© Springer International Publishing Switzerland 2015
W.K. Härdle et al., Introduction to Statistics, DOI 10.1007/978-3-319-17704-5
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Satisfaction with performance of federal government Ordered 1=very satisfied,. . . ,5=very
dissatisfieda

Respondents monthly net income (categorized) Ordered 0=no income, . . . , 22=more
than 7500 EUR

Household net income (categorized) Ordered 0=no income, . . . , 22=more
than 7500 EUR

aOnly for 1992

A.1.2 ALLBUS1994, ALLBUS2002, and ALLBUS2012: Trust

Variable Type Values and labels

Self placement on left right continuum Ordered 1=extreme left, . . . , 10=extreme right

Trust in health service Ordered 1=no trust at all, . . . , 7=great deal of trust

Trust in federal constitutional court Ordered As before

Trust in federal parliament (Bundestag) Ordered As before

Trust in municipal administrationa Ordered As before

Trust in armya Ordered As before

Trust in catholic church Ordered As before

Trust in protestant church Ordered As before

Trust in judicial system Ordered As before

Trust in television Ordered As before

Trust in newspaper Ordered As before

Trust in universities/higher education Ordered As before

Trust in federal government Ordered As before

Trust in trade unionsa Ordered As before

Trust in police Ordered As before

Trust in job centersa Ordered As before

Trust in state pension systema Ordered As before

Trust in employer associationa Ordered As before

Trust in political partiesb Ordered As before
aOnly for 1994
bNot for 1994
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A.1.3 ALLBUS2002, ALLBUS2004, and ALLBUS2012:
General

Variable Type Values and labels

East West Binary 1=Old federal states, 1=New federal
states

Interview type Binary 1=Paper-and-Pencil Interview,
2=Computer-Assisted Personal
Interview

Sex Binary 1=male, 2=female

Member in trade union Binary 1=yes, 2=no

Support political partya Binary 1=yes, 2=no

Eligible for voting in last federal
electionsc

Binary 1=yes, 2=no

Age Numeric in years

Body mass indexb Numeric

Height b Numeric in cm

Weight b Numeric in kg

Respondents monthly net income Numeric in EUR

Household net income Numeric in EUR
aOnly for 2002
bNot for 2002
cNot for 2012
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Source: Wikimedia Commons, the free media repository1

New federal states: Berlin (east), Brandenburg, Mecklenburg-Vorpommern, Sachsen,
Sachsen-Anhalt, and Thüringen

1http://commons.wikimedia.org/wiki/File:Deutschland_politisch_2010.png.

http://commons.wikimedia.org/wiki/File:Deutschland_politisch_2010.png
http://commons.wikimedia.org/wiki/File:Deutschland_politisch_2010.png
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A.2 Boston Housing Data

Housing data for 506 census tracts of Boston from the 1970 census and were first
published by D. Harrison and D.L. Rubinfeld (1978) in the article Hedonic prices
and the demand for clean air in the Journal of Environmental Economics and
Management, no. 5, pages 81–102.

Variable Type Values and labels

Per capita crime rate by town Numeric

Proportion of residential land zoned for lots
over 25,000 sq.ft

Numeric

Proportion of non-retail business acres per town Numeric

Charles River dummy variable Binary 1=tract bounds river, 0=otherwise

Nitric oxides concentration Numeric in parts per 10 million

Average number of rooms per dwelling Numeric

Proportion of owner-occupied units built prior
to 1940

Numeric

Weighted distances to five Boston employment
centers

Numeric

Index of accessibility to radial highways Ordered

Full-value property-tax rate per USD 10,000 Numeric

Pupil-teacher ratio by town Numeric

Transformed proportion of blacks B by town Numeric 1000.B � 0:63/2

Percentage of lower status of the population Numeric

Median value of owner-occupied homes Numeric in 1000 US$

A.3 Car Data

The car dataset was taken from the book Graphical Methods for Data Analysis by
J.M. Chambers, W.S. Cleveland, B. Kleiner, and P.A. Tukey (1983). It consists of
13 variables measured for 74 car types.
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Variable Type Values and labels

Car model Factor

Price Numeric in US$

Mileage Numeric miles per gallon

Repair record 1977 Ordered 1=worst,. . . , 5=best

Repair record 1978 Ordered 1=worst,. . . , 5=best

Headroom Numeric in inches

Rear seat clearance Numeric in inches

Trunk space Numeric in cubic feet

Weight Numeric in pound

Length Numeric in inches

Turning diameter Numeric in feet

Displacement Numeric in cubic inches

Gear ratio for high gear Numeric

A.4 Credit Data

The data are taken from Datasets at the Department of Statistics, University of
Munich, and the SFB3862 are used in the books by Fahrmeir et al. The dataset
consists of 1000 consumer credits from a German bank. We modified the data to
achieve more binary variables.

Variable Type Values and labels

Creditability Binary 1=not credit-worthy,
2=credit-worthy

Running account Binary 1=no, 2=yes
Duration Numeric in month

Payment of previous credits Binary 1=problems, 2=no problems

Purpose of credit Factor 1=other, 2=new car, 3=used car,
4=furniture, 5=radio/television,
6=household appliances,
7=repair, 8=vacation, 9=repair,
10=business

Amount Numeric in Deutsche Mark
Savings or stocks Binary 1=yes, 2=no

Has been employed by current employer for
more than one year

Binary 0=yes, 1=no

Marital Status / Sex Binary 1=other, 2=male: divorced / living
apart

Guarantor Binary 1=yes, 2=no

(continued)

2http://www.statistik.lmu.de/service/datenarchiv/kredit/kredit_e.html.

http://www.statistik.lmu.de/service/datenarchiv/kredit/kredit_e.html
http://www.statistik.lmu.de/service/datenarchiv/kredit/kredit_e.html
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Living in current household for Factor 1=less than 1 year, 2=between 1
and 4 years, 3=between 4 and 7
years, 4=7 or more years

Most valuable available assets Binary 1=house/land, 2=other/none
Age Numeric in years

Other running credits Binary 1=no, 2=yes

Type of apartment Binary 1=other, 2=rented

Number of previous credits at this bank Binary 1=1 or more, 2=none

Occupation Binary 1=other, 2=unskilled or
unemployed

Number of persons entitled to maintenance Binary 1=3 and more persons,
2=between 0 and 2 persons

Telephone Binary 1=no, 2=yes
Foreign worker Binary 1=yes, 2=no

A.5 Decathlon Data

Data are from 33 decathlon participants in the Olympic games 1988. The data are
taken from Hand, Daly, Lunn McConway, and Ostrowski (1994) A handbook of
small data sets, Chapman & Hall, London.

Variable Type Values and labels

100 m run Numeric in seconds

Long jump Numeric in meter

Shot Numeric in meter

High jump Numeric in meter

400 m run Numeric in seconds

110 m hurdles Numeric in seconds

Discus throw Numeric in meter

Pole vault Numeric in meter

Javelin throw Numeric in meter

1500 m run Numeric in seconds

Score Numeric in points



502 A Data Sets in the Interactive Examples

A.6 Hair and Eye Color of Statistics Students

Distribution of hair and eye color and sex in 592 statistics students. The data are
taken from the software R (R Core Team, 2014. R: A language and environment
for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
URL: http://www.R-project.org/).

Variable Type Values and labels

Hair color Factor 1=black, 2=brown, 3=red, 4=blond

Eye color Factor 1=brown, 2=blue, 3=hazel, 4=green

Sex Binary 1=male, 2=female

A.7 Index of Basic Rent

The dataset contains the monthly index for the basic rent for apartments in Berlin
from January 2005 till October 2011. The basic rent is measured in EUR/m2 and
the index contains the basic rent compared to the base year 2005 (Laspeyres price
index). The data are published by the Statistical Office for Berlin-Brandenburg (Amt
für Statistik Berlin-Brandenburg—Verbraucherpreisindex im Land Berlin3).

Variable Type Values and labels

Month, Year Numeric

Index Numeric

3https://www.statistik-berlin-brandenburg.de/Statistiken/statistik_SB.asp?Ptyp=700&Sageb=
61001&creg=BBB&anzwer=4.

http://www.R-project.org/
https://www.statistik-berlin-brandenburg.de/Statistiken/statistik_SB.asp?Ptyp=700&Sageb=61001&creg=BBB&anzwer=4
https://www.statistik-berlin-brandenburg.de/Statistiken/statistik_SB.asp?Ptyp=700&Sageb=61001&creg=BBB&anzwer=4
https://www.statistik-berlin-brandenburg.de/Statistiken/statistik_SB.asp?Ptyp=700&Sageb=61001&creg=BBB&anzwer=4
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A.8 Normally Distributed Data

The dataset consist of 1000 observations simulated from 12 different normal
distributions.

Variable Type Values and labels

NORM_0_1 Numeric Simulated from N.0I 1/

NORM_0_2 Numeric Simulated from N.0I 2/

NORM_0_5 Numeric Simulated from N.0I 5/

NORM_1_1 Numeric Simulated from N.1I 1/

NORM_1_2 Numeric Simulated from N.1I 2/

NORM_1_5 Numeric Simulated from N.1I 5/

NORM_5_1 Numeric Simulated from N.5I 1/

NORM_5_2 Numeric Simulated from N.5I 2/

NORM_5_5 Numeric Simulated from N.5I 5/

NORM_10_1 Numeric Simulated from N.10I 1/

NORM_10_2 Numeric Simulated from N.10I 2/

NORM_10_5 Numeric Simulated from N.10I 5/

A.9 Telephone Data

This time series contains yearly data of telephones in the US from 1871 to 1981
and has been taken from Douglas Galbi’s personal website.4 He compiled the time
series from several sources, mainly

1876–1944: Federal Communications Commission, Statistics of the Communica-
tions Industry, 1944, Table 6, and

1945–1981: Federal Communications Commission, Statistics of Communica-
tions Common Carriers, 1982, Table 5.

Variable Type Values and labels

Year Numeric

Telephones Numeric

4http://galbithink.org/.

http://galbithink.org/
http://galbithink.org/
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A.10 Titanic Data

This dataset provides information on the fate of passengers on the fatal maiden
voyage of the ocean liner Titanic and taken from the software R (R Core Team,
2014. R: A language and environment for statistical computing. R Foundation for
Statistical Computing, Vienna, Austria. URL http://www.R-project.org/).

Variable Type Values and labels

Class Factor 1=1st class, 2=2nd class, 3=3rd class, 4=crew

Sex Binary 1=male, 2=female

Age Binary 1=child, 2=adult

Survived Binary 1=no, 2=yes

A.11 US Crime Data

The data contains crime rates per 100,000 population for some violent and property
crimes for each state in the US. The data are taken from the Uniform Crime
Reporting Statistics website (www.ucrdatatool.gov) and Statistical abstract of the
United States 1987, table 25: resident population by states,5 table 263: crime rates
by state and by type6, and table 316: area of states and other areas.7

5http://www2.census.gov/prod2/statcomp/documents/1987-02.pdf.
6http://www2.census.gov/prod2/statcomp/documents/1987-03.pdf.
7http://www2.census.gov/prod2/statcomp/documents/1987-03.pdf.

http://www.R-project.org/
www.ucrdatatool.gov
http://www2.census.gov/prod2/statcomp/documents/1987-02.pdf
http://www2.census.gov/prod2/statcomp/documents/1987-03.pdf
http://www2.census.gov/prod2/statcomp/documents/1987-03.pdf
http://www2.census.gov/prod2/statcomp/documents/1987-02.pdf
http://www2.census.gov/prod2/statcomp/documents/1987-03.pdf
http://www2.census.gov/prod2/statcomp/documents/1987-03.pdf
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Variable Type Values and labels

State Factor Abbreviation

Total area Numeric in square miles

Population Numeric in thousands

Murder rate Numeric

Robbery rate Numeric

Aggravated assault rate Numeric

Burglary rate Numeric

Larceny-theft rate Numeric

Motor vehicle theft rate Numeric

Census region Factor 1=Midwest, 2=Northeast, 3=South, 4=West

Census divisions Factor 1=East North Central, 2=East South Central,
3=Middle Atlantic, 4=Mountain, 5=New
England, 6=Pacific, 7=South Atlantic,
8=West North Central, 9=West South Central

State name Factor



Glossary

Absolute frequency - number of occurrences of certain value or combination of
certain values of the investigated variable. 17, 21, 209, 396, 420, 422

Absolute scale - containing natural unit of measurement and natural zero point.
See also metric scale. 12, 13

Alternative hypothesis - the hypothesis opposing to the null hypothesis (hypoth-
esis testing). 313, 315, 321, 323, 324, 331, 332, 338–341, 343, 350, 355, 356,
366–368, 371, 372, 375, 381, 385–387, 390, 401, 408

Approximation - Under some assumptions, we are allowed to substitute some
well-known simple distribution (typically Normal) for the true and complicated
one. 235, 236

Arithmetic average - This value is obtained by spreading the sum of all observed
realizations uniformly across all statistical elements. The arithmetic average
makes sense only for metrically scaled variables. 46, 47, 52, 54, 56, 60, 65, 66,
120, 438, 462, 489

Asymptotic unbiasedness - property of an estimator. With increasing number of
observations, the expected value of the estimator converges towards the true value
of the estimated parameter. 256

Bar graph - is a graphical representation with rectangular bars whose lengths
represent the values that they represent. 22

Binary variable - (also dichotomous variable) Random variable whose result is
always one of two distinct values, most often “0",“1" or “true",“false". 12

Binomial distribution - distribution of a discrete random variable: “number of
occurrences of an event in n repetitions of the experiment if the probability of
occurrence of the event in one trial is p. The Binomial distribution has parameters
n and p. 162, 199, 234, 264, 288, 362, 396

Boxplot - graphical display of selected summary statistics containing information
about the frequency distribution of a metrically distributed random variable. It
provides an idea about the shape of the distribution and about the structure of
observed data. 64
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Bravais-Pearson correlation coefficient - It measures the strength and the direc-
tion of the linear relationship between two metrically distributed random vari-
ables. It is the ratio of covariance (common variability) and the product of
standard deviations (variability of the variables). Its value lies between -1 and
1. 439, 445, 462, 473

Census - sampling and investigation of all elements of the sample space. 8, 210
Central Limit Theorem - The theorem concerns the approximation of the sum

of random variables by Normal distribution for a sufficiently large number of
summands. 220, 235, 289, 298, 332, 357, 377, 380, 384

Chebyshev inequality - bounds the probability that a random variable falls outside
an interval around its expected value. 221

Chi-square "Goodness-of-Fit" test - statistical test. The null hypothesis states
that the true distribution function of the observed data is equal to a given
distribution function. The test statistic has Chi-square distribution. xvii, 397, 400

Chi-square distribution - a distribution of a sum of n independent, identically
distributed random variables with standard Normal distributions. The parameter
n is called the degrees of freedom. 204, 293

Chi-square test of independence - statistical test. The null hypothesis says that
two random variables are independent. The test statistic has Chi-square distribu-
tion. 404, 405

Class boundaries - the boundary of a class of a metrically scaled variable is a value
which bounds a given class from above (upper bound) or from bellow (lower
bound). The difference between upper and lower bound is called the width of
the group. 15, 37

Class midpoint - the value representing the group which is obtained as arithmetic
average of its upper and lower boundary. 15

Class width - see boundaries of a class. 15, 37
Coefficient of determination - the coefficient of determination measures the qual-

ity and suitability of the chosen regression function for given data. It is defined
as a ratio of the variability explained by the regression function and the total
variability of the regressors, i.e., it can be interpreted as a proportion of variability
explained by the regression model. Its values lie between 0 and 1, higher values
mean that the model explains the data better. In linear regression, the coefficient
of determination is equal to the square of the correlation coefficient. 463, 470,
472, 473, 493

Combination - choice of k elements out of total n elements if the order is not
important is called combination of k-th class out of n elements. We distinguish
combinations with and without replacement. See also combinatorics. 97, 102

Combinatorics - investigates various ways of sorting and/or grouping of certain
elements. It is very important for the probability theory. See also permutation,
variation, combination. 97

Complementary event - see event. 122, 154
Components of a time series - We distinguish the systematic components (trend,

periodic fluctuations) and irregular random residual fluctuations. 479
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Conditional distribution - in the framework of two-dimensional frequency distri-
bution, it is the distribution of a variable X (resp. Y) for a fixed value (outcome)
of variable Y (resp. X). 430, 432–434

Conditional probability - probability of an occurrence of a certain event under the
condition that some other event also occurs. 82, 87, 89

Confidence interval - random interval, result of an interval estimate of some
unknown parameter. 273, 275, 277, 279, 288, 305

Confidence level - probability that the confidence interval calculated from our data
covers the true unknown value of the estimated parameter. 273, 297, 305

Consistency - a property of an estimator of some unknown parameter. With
increasing number of observations, the expected value of the consistent estimator
converges towards the true value of the unknown parameter and its variance
converges to zero. 257, 289, 298

Contingency coefficient - It measures the intensity of a relation between two
nominal random variables. It is calculated using quadratic contingency and
its value lies between 0 and 1, where 0 means statistical independence. The
contingency coefficient is practically never equal to 1 (complete dependency).
Therefore, the adjusted contingency coefficient was introduced. 451

Contingency table - two-dimensional contingency table (or cross-table) is used
to display the joint frequency distribution of two nominal or ordinal random
variables. 125, 419, 421, 422, 432–434, 450, 452

Continuous variable - metrically scaled random variable which could return any
of infinitely many values in any arbitrarily small interval. 14, 27, 40, 120, 125,
132, 150, 176, 181, 200, 264, 438

Covariance - a measure of joint variability of a pair of metrically scaled variables.
It measure both the strength and the direction of the dependency. The correlation
coefficient can be used to compare different covariances. 435, 437, 438, 462, 470

Critical region - values of the test statistic that lead to rejection of the null
hypothesis. 315

Critical value - value(s) of the test statistics separating the critical and acceptance
regions of the null hypothesis. It depends on the probability distribution of the
test statistic and on the chosen level of significance. 315–317, 327, 328, 333, 334,
345, 349, 354, 356, 357, 362, 366, 375, 382, 385–387, 412, 415

Cross-section data - data collected at the same point in time or for the same period
of time on different elements. 17

Cumulated frequency - frequency of observations smaller or equal to a given
value or, for grouped variables, the upper bound of the class in which this value
lies. It is defined for at least ordinal variables. We can have absolute or relative
cumulated frequency. 34

Decile - any of the nine values that devide the sorted data into ten equal parts. 42
Density - for a continous random variable the density function describes the

relative likelihood of taking on values withiin a given interval. 119
Descriptive statistics - statistical methods oriented towards the collection of data

and its basic description. The results concern only the investigated set of data. 1,
3
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Dichotomous variable - see binary variable. 12
Discrete variable - we say that metrically scaled random variable is discrete if the

set of its possible values is finite or if it contains countably many elements. 14,
21, 40, 120, 132, 149, 154, 170, 200, 264

Disjoint events - see intersection. 73
Distribution function - The distribution function F.x/ of a random variable X is

equal to the probability that the random variable is smaller or equal to x. 119,
149, 154, 170, 176, 182, 197, 311, 313, 333, 335, 362, 364, 366, 368, 371, 372,
391, 393, 407

Dotplot - two-dimensional graphical display of one-dimensional data. On the
horizontal axis, you find the observed value. The value on the vertical axis is
arbitrary (usually randomly chosen). 29

Efficiency - is a property of unbiased estimators. An estimator is called efficient if
its variance is smaller than the variance of any other unbiased estimator of the
same parameter. 256

Equivalence - Equivalence of events means their equality. It means that whenever
event A happens, event B happens too and the other way around. In this case is
A a subset of B and B is a subset of A. See also implication. 70

Error of type I - rejection of null hypothesis if it is true. 320, 323, 343, 360, 365,
372

Error of type II - acceptance of null hypothesis if it is false. 320, 321, 323, 324,
338, 340, 343, 346, 353, 360, 368, 370, 374, 388, 394, 404, 408

Estimate - realization of the estimator. 330
Estimator - function of the sample variables which is suitable for estimating some

unknown parameter of the investigated distribution. 253, 293, 332, 348, 357, 371,
378, 406

Event - An event is any possible outcome of a random experiment. An elementary
event is an event which cannot be split to some partial events; elementary events
are disjoint. A complementary event is a set of all elementary events of the
sample space S which are not contained in the investigated event. Events are
subsets of the sample space and therefore we can use here common set relations
and operations (see also implication, equivalence, union, intersection, logical
difference). 69, 70, 75, 79, 82, 87, 107, 131, 154, 163

Expected value - the value of the random variable which we expect to obtain
before the random experiment is carried out. It corresponds to the arithmetic
average of the frequency distribution. 139, 150, 155, 163, 170, 177, 182, 196,
199, 206, 218, 229, 231, 233, 234, 253, 266, 275, 322, 398

Exponential distribution - a distribution of a continuous random variable. It has
the parameter 	 and it represents the probability distribution of the distance of
two subsequent events in a Poisson process. 176

F-distribution - a distribution of a continuous random variable which is a ratio
of two independent random variables with Chi-square distribution with f1 and f2
degrees of freedom. The distribution has two parameters, the above mentioned
degrees of freedom f1 and f2. 207
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Filter - a set of weights which are used to calculated moving averages for a given
time series. The choice of the filter depends on the type of seasonal fluctuations
and on the desired level of smoothing. Symmetric filters are often used. 479, 489

Frequency distribution - sorted results of an experiment together with their
absolute frequencies are called the frequency distribution of the investigated
variable. Depending on the number of variables, we distinguish one- and more-
dimensional frequency distributions. The Frequency table provides systematic
and accessible information about the data. 18, 21, 49, 63, 68, 120, 421, 423, 429,
444, 452

Frequency table - see frequency distribution. 21, 30, 37
Geometric average - It can be used to calculate the mean for (at least) ratio scaled

random variables with positive values, which are multiplicatively interrelated.
The logarithm of the geometric average is equal to the arithmetic average of the
logarithms of the observed values. 52, 54

Grouping - joining of equal or similar observations of some variable into one
group or class. See also class boundaries. 14, 36, 40

Harmonic average - a special type of arithmetic average for ratio scaled variables.
It is used whenever we calculate an average from ratios and we have an additional
information gj which is related to the numerator of the ratio xj. 50, 52

Histogram - graphical display of the frequencies of grouped continuous by the
area of rectangles whose height corresponds to the relative frequency of the
groups. The histograms are useful also for displaying the frequencies of discrete
variables. 27, 31, 50

Hypergeometric distribution - discrete distribution with parameters M, N, and
n. It describes the probability of occurrence of an event in n repetitions of
random experiment under assumptions of independence and constant probability
of success in a single trial. 163, 200, 236

Identification variables - characteristic which clearly defines the sample space
and which identifies statistical elements (so that we know if they belong to the
sample space under investigation). Its value is the same for all statistical elements
in the sample space and it doesn’t change during the investigation. 10

Inductive statistics - 1.) Statistical methods allowing to draw conclusions con-
cerning parameters of some population based on a random sample from this
population. 2.) According to the Theory of Probability, these are the methods
which allow to make, with given accuracy, statements on the population based
on the information from random samples. 2

Interpolation - method of calculating unknown function value from known "close"
values of that function. 36

Interquartile range - It is the difference between the upper and the lower quartile.
It is the width (size) of a region in which lies 50% of the central observed values.
57, 60, 65

Intersection (of events) - a set of all elementary events which belong to all events
under consideration (i.e., the events involved in the intersection). Two events with
an empty intersection are called disjoint events. 71
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Interval estimate - The unknown parameter is estimated by an interval which
covers the true value of the parameter with prescribed probability. 273, 275

Interval scale - We can measure and interpret differences between the values of
random variables which are measured on the interval scale. Such variables do
not have any natural zero and any natural unit of measurement (see also scale).
12, 13

Kendall correlation coefficient - The Kendall rank correlation coefficient is based
on the comparison of the order of all possible pairs of the observed values. The
pairs of observations with the same (or opposite) order are called concordant
(resp. discordant). Apart of this, some pairs can have equal values. Kendall
correlation coefficient is the ratio of the difference between the number of
concordant and discordant pairs and the sum of concordant and discordant pairs.
447, 448, 450

Least squares - 1.) method for calculating estimators of the regression coefficients
in linear regression. The estimators are defined as the numbers minimizing the
sum of squared residuals (RSS - Residual Sum of Squares) of the fitted values
from the observed values. 2.) Principle for the construction of estimators of an
unknown parameter based on the minimization of the sum of squared differences
between sample values and some function of the parameter. 266, 270, 459, 475,
481, 489, 493

Level of significance - probability that the test statistic falls into the critical region
if the null hypothesis is true. 353, 357–360, 362, 364, 365, 367, 370, 376, 377,
382, 387–389, 393, 394, 397, 401, 406, 411, 413, 414, 417

Likelihood function - function which assigns, with respect to the observations,
values (probability or density) to all possible values of the estimated parameter.
265

Logical difference - a logical difference of two events A and B is an event when
we observe A and do not observe B. 73

Marginal distribution - for two-dimensional frequency distribution, the marginal
distribution is the one-dimensional distribution of the variable X (or Y) which
does not contain any information about the distribution of the other random
variables Y (or X). 421, 429, 432–434, 436

Maximum likelihood - general principle for the construction of estimators of
unknown parameters. The estimator is the value which maximizes the probability
(or density) of the realized sample. 264

Mean absolute deviation - arithmetic average of the absolute deviations of the
observations from a fixed point which is usually chosen as some mean value
(most often median or arithmetic average). 57, 60

Mean squared error (MSE) - 1.) Arithmetic average of the squared deviations of
the observed values from certain mean values. The MSE from the arithmetic
average of the observations is called the variance. 2.) Expected value of the
squared deviation of the estimator and the true value of the estimated parameter.
58, 212, 255
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Median - the value which splits the sorted realizations of (at least ordinal)
random variable into two equal parts. It is robust with respect to outliers and
it corresponds to the second quartile. 42, 47, 60, 65, 66, 253

Mode - It is the most often observed realization of the variable. It can be deter-
mined for any scale. For the nominal variables it represents the only reasonable
mean value. The mode is not sensitive with respect to outlying observations. 40

Nominal scale - We say that the scale is nominal if only the equivalence of the
results can be determined, i.e., the various results of the experiment cannot be
sorted (see also scale). 11, 12, 450

Normal distribution - a bell-shaped distribution of a continuous random variable
with parameters � and � . The parameters � determined the expected value
and the parameter � the standard deviation of the normally distributed random
variable. 181, 196, 199, 219, 235, 264, 290, 306, 374

Null hypothesis - statistical formulation of some statement concerning the sample
space which can be tested (and rejected) by a statistical test. 313–316, 319–321,
323, 324, 327–329, 335, 338, 340, 341, 343, 346, 350, 353, 356, 358, 365, 367,
371, 372, 374, 381, 386, 390, 392–394, 396–398, 401, 404–406, 408, 412, 415,
417, 418

Observation - the actual values assumed by statistical variables. 10, 419
Ordinal scale - the scale is ordinal if the outcomes of the experiment could be

represented by natural numbers, we can determine equivalence of two elements
and the results can be naturally sorted. Attention: using ordinal scale, you cannot
interpret the size of differences between the classes (see also scale). 12

Permutation - each sorting of all n elements contained in some set is called a
permutation. We distinguish permutations with repeating, permutations without
repeating and permutations involving more groups of identical elements (see also
combinatorics). 97, 98

Pictograph - graphical representation in which the size of some object or the
number of depicted objects represent a numerical value. 23

Pie chart - is a circular chart devided into sectors which represent numerical
proportions.. 23

Poisson distribution - distribution of a discrete random variable describing num-
ber of occurrences of an event; the event occurs repeatedly, but randomly and
independently in a fixed time period. The Poisson distribution has parameter 	.
170, 200, 255, 402

Population - set of all statistical elements relevant for the statistical investigation
of at least one chosen characteristic. 8, 218, 251

Power function - function which gives the dependency of the probability of
rejecting the null hypothesis on the true value of the tested parameter. 338, 339,
341, 345, 346, 351, 355, 364, 367

Probability - measure P which quantifies certainty and uncertainty of events in the
random experiment. 75, 80, 81, 86, 90, 98, 107, 109, 124, 131, 149, 154, 163,
184

Probability density function - function giving the probability that random vari-
able X equals to the value xj. 149, 163, 170
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Probability distribution - It is obtained by assigning probabilities to the sorted
values of random variable (discrete probability distribution). 119, 124, 149

Probability theory - theory concentrated on quantitative models of experiments
with random outcomes (random experiments). 69, 98

Quantile - quantile xp is the value which splits the upwards sorted realizations of
the (at least ordinal) variable in the ratio p W .1 � p/, where p lies between 0 and
1. Special cases are quartiles, quintiles, and deciles. 41

Quartile - special case of the quantile for p D 0:25, p D 0:5, and p D 0:75.
The sorted observations are split by the quartiles into four parts of equal size.
The quartile x0;25 is the lower quartile, x0;75 is the upper quartile, and x0;5 is the
median. 42, 65

Quintile - special case of the quantile for p D 0:2, 0:4, 0:6, and 0:8. The sorted
observations are split by the quintiles into five equally large parts. 42

Random experiment - This is a real or constructed experiment which can be
repeated arbitrarily many times under the same conditions and whose result
cannot be determined in advance. 69, 109, 120, 154

Random sampling - method of choosing elements of the sample space. Each
element has nonzero probability of being selected. The probabilities do not have
to be equal. 251, 354

Random variable - random variable is the (real) number which is assigned to
every elementary event. 107, 113, 119, 124, 131, 139, 163, 170, 196, 199, 204,
207

Range - parameter of scale, it is the difference of the highest and smallest
observation (for classified data it is the difference between the highest and
smallest bound of the groups). 56, 60

Ratio scale - The ratio scale is characterized by the fact that ratios of our
observations have natural interpretation. Variables with a ratio scale have natural
zero, but they do not have natural measurement units. 12, 13, 50, 52

Regression function - description of a dependency of the explained variable
(dependent variable) on one or more explanatory variables (independent vari-
ables, regressors) via a (usually linear) function based on n observations. The
regression function assigns to the values of the explanatory variable some average
value (fitted value) which can be very different from the value which was really
observed. The difference between the fitted value and the observations is called
the residual. 455, 457, 468, 472, 473, 475

Rejection region - . 315–318, 327, 329, 333, 334, 336, 344, 345, 355, 374, 385–
387, 394, 399, 408

Relative frequency - the ratio of absolute frequency and the total number of
observations. 17, 21, 25, 35, 76, 84, 209, 420, 422

Sample - subset of the sample space; the elements which have been chosen for the
statistical investigation. 288, 326, 332, 336, 337

Sample mean - arithmetic average of the sample variables X1; : : : ; Xn. 212, 218,
242, 263
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Sample space - a set of all possible events of a random experiment. Each event is
thus a subset of the sample space. The impossible event is empty set, the sure
event is the complete sample space. 10, 69, 70

Sample survey - subset of the sample space; the elements which have been chosen
for the statistical investigation. 8

Sample variable - random variable Xi which is defined as the value of the random
variable X which will be observed on the i-th element of the sample space. 314,
331, 332, 336, 361, 378

Sample variance - empirical variance of the sample variables X1; : : : ; Xn. 212
Sampling with replacement - sampling procedure. Each selected element is

returned before next element is chosen. It corresponds to the simple random
sample. 218, 222, 234

Sampling without replacement - sampling procedure. The selected elements are
taken out of the sample space before the choice of next element. It corresponds
to the representative random sample. 219, 222, 235

Scale - projection of some numerical set (scale) onto the set of investigated
statistical elements, such that the relations are preserved. See also nominal scale,
ordinal scale, metric scale, interval scale, ratio scale and absolute scale. 435

Scatterplot - graphical display of observed values of a pair of metrically scaled
random variables. The values are displayed as a point in the cartesian system
of coordinates. It allows to visualize the dependency between the variables. 3D
scatterplot can be used for 3 variables. 419, 424, 427, 443, 469, 471, 472, 477

Scatterplot matrix - It is used for graphical display of more than two metrically
scaled variables. It contains scatterplots of all pairs of the variables. Attention:
with large number of variables, the scatterplot matrix becomes too complex to
interpret. 419, 426

Seasonal component - see periodic fluctuations. 489, 494
Spearman correlation coefficient - It measures the strength of linear dependency

between two ordinal random variables. It corresponds to the Bravais-Pearson
correlation coefficient and its value lies always between -1 and 1. 445, 448, 450

Stacked bar chart - bar chart in which more than one quantity is captured in each
bar. 22

Standard deviation - positive square root of the variance. 58, 60, 121, 140, 182,
229, 231, 233, 439, 462, 470, 493

Standard Normal distribution - normal distribution of a continuous random
variable with expected value � D 0 and the variance �2 D 1. 235, 333

Statistical element - one object of the statistical investigation. It carries the
information of interest in the experiment. 8, 10, 18

Statistical sequence - the series of observed values (data). The series can be sorted
or unsorted. 16

Statistical variable - property of the statistical element. We distinguish identifying
and investigated characteristics. 10

Statistics - science allowing to investigate objective empirical information
obtained from (random) experiments and questionnaires, to build theoretical
models for this information, and to analyze and interpret it. 1, 6, 234
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Stem-and-leaf display - half-graphical display of the values of the observed series
of a metrically scaled random variable. 28

Support area - space of all possible values that a random variable can assume. 480
T-distribution - distribution of a continuous random variable with parameter f

(degrees of freedom). A random variable with t-distribution can be obtained as
the ratio of two independent random variables with standard Normal and Chi-
square distribution. 206, 220, 298

Target variables - variables of interest in the statistical investigation and whose
(varying) values are observed on all statistical elements of the sample space. 10

Test statistic - function of the observed values which is used in the statistical test.
314, 317, 319–321, 327, 332, 334, 344, 349, 352, 356, 362–364, 366, 378, 384,
392, 394, 396, 398, 400, 403, 406–411, 413, 414

Time series - statistical sequence whose values were obtained in a sequence in
different time points or time periods. See also components of a time series. 17,
477, 479, 485, 489, 494

Trend - the long-time development of the observed time series. The trend is usually
estimated by the method of moving averages of by the Least Squares method (see
also filter). 479, 485, 487, 489, 492, 494

Unbiasedness - property of an estimator. The expected value of the estimator is
equal to the true value of the estimated parameter. 255, 289, 298

Union of events - The union of two events A and B is a set of all elementary events
which belong to A or to B or to both A and B. 71, 79

Variance - the variance is the mean squared error of the observed values from their
arithmetic average. 58, 60, 121, 139, 150, 155, 163, 170, 177, 196, 199, 206, 218,
229, 231, 233, 234, 462

Variations - each selection of k elements out of total n elements, where we take
the ordering of the elements into account, is called variations of k-th class out
of n elements. We distinguish variations with and without repetition (see also
combinatorics). 97, 100, 102
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