
Expert’s Voice in Swift

 COMPANION eBOOK

Shelve in
Mobile Computing

User level:
Beginning–Intermediatewww.apress.com

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

SOURCE CODE ONLINE

Companion

eBook
Available

Cam
pbell

Sw
ift Quick Syntax Reference

The Expert’s Voice in Swift

Swift Quick Syntax
Reference

Matthew Campbell

Swift Quick Syntax Reference is a condensed code and syntax reference to
the new Apple Swift programming language, which is the alternative new

programming language alongside Objective-C behind the APIs found in the
Apple iOS SDK 8 and OS X Yosemite SDK. It presents the essential Swift syntax in
a well-organized format that can be used as a handy reference.

You won’t find any technical jargon, bloated samples, drawn out history lessons,
or witty stories in this book. What you will find is a language reference that is
concise, to the point, and highly accessible. The book is packed with useful
information and is a must-have for any Swift programmer.

In the Swift Quick Syntax Reference, you will find a concise reference to the Swift
language syntax using the new Playgrounds. Playgrounds lets you type a line of
code and the result appears immediately.

In this book, you’ll learn:

• How to declare and print constants and variables

• What are and how to use numbers, strings, booleans, tuples, optionals,
aliases, global and local variables, assertions and more

• How to use assignment, arithmetic, comparison, ternary conditional, range,
and logical operators

• What are enumerations, arrays, dictionaries, loops, if/switch, control transfer,
labeled statements

• How to do closures in Swift

• How to define or handle structures, classes, instances, class instance identity,
properties, property observers, type properties, and type methods

• How to work with subscripts, inheritance, overriding methods/properties,
initialization, type checking/casting, nested types, extensions, delegation,
generics and more

9 781484 204405

51999
ISBN 978-1-4842-0440-5

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

v

Contents at a
Glance

About the Author ��� xv

About the Technical Reviewer ��� xvii

Introduction �� xix

Chapter 1: Hello World ■ �� 1

Chapter 2: Declaring Constants and Variables ■ ������������������������������� 7

Chapter 3: Printing Variables and Constants ■ �������������������������������� 11

Chapter 4: Code Comments ■ �� 15

Chapter 5: Numbers ■ �� 19

Chapter 6: Strings ■ ��� 21

Chapter 7: Booleans ■ ��� 25

Chapter 8: Tuples ■ �� 27

Chapter 9: Optionals ■ ��� 29

Chapter 10: Type Aliases ■ �� 31

Chapter 11: Global and Local Variables ■ �� 33

Contents at a Glancevi

Chapter 12: Assertions ■ ��� 35

Chapter 13: Assignment Operators ■ �� 37

Chapter 14: Arithmetic Operators ■ �� 39

Chapter 15: Comparison Operators ■ �� 43

Chapter 16: Ternary Conditional Operator ■ ������������������������������������ 45

Chapter 17: Range Operators ■ ��� 47

Chapter 18: Logical Operators ■ �� 49

Chapter 19: Enumerations ■ �� 51

Chapter 20: Arrays ■ ��� 53

Chapter 21: Dictionaries ■ ��� 57

Chapter 22: Loops ■ ��� 61

Chapter 23: if Statements ■ ��� 65

Chapter 24: switch Statements ■ �� 67

Chapter 25: Control Transfer Statements ■ ������������������������������������� 71

Chapter 26: Labeled Statements ■ �� 75

Chapter 27: Functions ■ �� 79

Chapter 28: Nested Functions ■ �� 83

Chapter 29: Closures ■ �� 87

Chapter 30: Structures ■ ��� 89

Chapter 31: Classes ■ �� 93

Chapter 32: Using Instances ■ ��� 97

Chapter 33: Class Identity Operators ■ �� 99

Chapter 34: Properties ■ ��� 101

Chapter 35: Property Observers ■ ��� 107

Contents at a Glance

vii

Chapter 36: Class Type Properties ■ �� 109

Chapter 37: Type Methods ■ �� 111

Chapter 38: Subscripts ■ ��� 113

Chapter 39: Inheritance ■ �� 115

Chapter 40: Overriding Methods and Properties ■ ������������������������ 117

Chapter 41: Initialization ■ �� 121

Chapter 42: De-initialization ■ ��� 123

Chapter 43: Type Casting ■ �� 125

Chapter 44: Nested Types ■ ��� 129

Chapter 45: Extensions ■ ��� 131

Chapter 46: Protocols ■ ��� 133

Chapter 47: Delegation ■ ��� 137

Chapter 48: Generics ■ �� 143

Chapter 49: Automatic Reference Counting ■ ������������������������������� 147

Index ■ ��� 153

xix

Introduction

The expressions of the WWDC 2014 audience quickly changed from excitement
and enthusiasm to looks of shock, horror, and awe. At this WWDC, after a
succession of ever-surprising announcements, Apple ended the conference
by announcing a completely new programming language designed entirely for
Mac and iOS applications. This programming language is named Swift, which
is what I have written about in this book.

The audience members’ looks of shock and horror were understandable in
context. Most of the developers at that conference had spent the past six
years mastering the previous, relatively obscure programming language used
to develop apps called Objective-C. The people sitting in those seats were
world-class experts in a programming language that was just declared dead
right in front of them.

What many of these developers probably had long since forgotten was just
how difficult it is for most people to use Objective-C at first. Objective-C is also
missing many features that other programmers take for granted such as tuples
and generics. This is likely why that over the summer of 2014 many developers
would become quite enthusiastic about adopting Swift in their projects.

It didn’t take long for me to get on board with Swift. My initial reaction was
relief that Apple decided to clean up the syntax, remove the clutter associated
with Objective-C, and eject nonmainstream notions like messaging objects.
I could tell immediately that the students I teach would take to Swift way more
quickly than Objective-C.

Introductionxx

This is one of the reasons I was so excited to write this book with Apress.
Swift is absolutely the programming language that will take iOS and Mac into
the future. Swift is a dramatic improvement to the application ecosystem.
If you were turned off from making applications before because of Objective-C,
now is the time to give making your app another go.

This book is written for programmers who want to get up to speed quickly in
Swift. I made an effort to keep chapter headings specific, simple, and clear
so you can go right to the area that you need to focus on. Chapters are short
and focus on the syntax, but concepts are briefly illustrated at times when the
information is crucial to the programming concepts that I’m presenting.

Since Swift is so new, I didn’t make many assumptions about your technical
background, so anyone with a general understanding of programming will
benefit from this book. If you know what loops, functions, and objects are, you
can follow the content here. Any niche or advanced programming constructs
will be explained so you can follow along.

Good luck with your app! I hope that this book will help you appreciate Swift
and see how this new language will make your life and your app much better.

1

Chapter 1
Hello World

I will start our conversation about Swift with the venerable Hello World
program. However, you need to get some things in place before I can do
that. Most importantly, you need a Mac app that will help you write and test
Swift code. This Mac app is called Xcode.

Xcode
Xcode is a free app that you can download from the Apple App Store.
Xcode gives you all the tools that you need to build applications for the Mac
and iOS devices. These tools include a code editor, debugging tools, and
everything else you need to turn your Swift code into an app.

Note Xcode requires a Mac with OS X 10.9.3 or OS X 10.10. You cannot
install Xcode on a Windows- or Linux-based computer.

Install Xcode
To install Xcode, go to the Mac App Store by selecting your Mac’s menu
bar, clicking the Apple symbol, and then clicking App Store. Use the App
Store search feature to locate Xcode by typing the word Xcode into the text
box next to the hourglass. Press Return to search for Xcode. You will be
presented with a list of apps, and Xcode should be the first app in the list.
Install Xcode by clicking the button with the word free next to the Xcode
icon. The word free changes to installed once it’s ready to go, as shown in
Figure 1-1.

CHAPTER 1: Hello World2

Note Xcode version 6 is required to do Swift programming. By the time
this book is released, Xcode 6 should be available in the Apple App Store,
and you should be able to get it by following the previous instructions.
However, at the time of this writing, Xcode 6 is still in beta and available
only to registered Apple developers who can download it from the Apple
developer web site at http://developer.apple.com.

Figure 1-1. Downloading Xcode from the App Store

Create a New Playground
Playgrounds are a workspace that you use to quickly prototype Swift code.
The examples in this book will assume that you are using playgrounds to
follow along. You use Xcode to make a playground.

Open Xcode by going to your Applications folder and clicking the Xcode
app. You will be presented with a welcome screen. Click the text “Get
started with a playground” to build your playground (see Figure 1-2).

http://developer.apple.com/

CHAPTER 1: Hello World

3

You will be presented with a Save As screen, as shown in Figure 1-3. Use
this screen to choose a name and location for your Swift playground.

Figure 1-2. Xcode welcome screen

Figure 1-3. Playground Save As screen

CHAPTER 1: Hello World4

Once you choose your playground’s name and folder location, Xcode will
present a code editor with some boilerplate code already filled in for you
(see Figure 1-4).

Figure 1-4. Playground boilerplate

Your first playground has been created, and you already have a sort of Hello
World program coded for you. Well, not exactly. Your code says “Hello,
playground,” as you can see in Listing 1-1.

Listing 1-1. Hello Playground

// Playground - noun: a place where people can play
import Cocoa
var str = "Hello, playground"

You use a playground by typing in code in the left area of the code editor. You
can immediately see results appear on the right in the playground. To create a
Hello World program, all you need to do is type in the phrase "Hello World"
(including the quotes) into the playground code editor (see Listing 1-2).

Listing 1-2. Hello World

// Playground - noun: a place where people can play
import Cocoa
var str = "Hello, playground"
"Hello World"

When you type in "Hello World", you will immediately see the output
“Hello World” appear on the right. See Figure 1-5 as a reference.

CHAPTER 1: Hello World

5

Figure 1-5. “Hello World” output

7

Chapter 2
Declaring Constants and
Variables

While you can use values like the string "Hello World" from the previous
chapter or a number like 3.14 directly in code, usually you assign values like
these to either a variable or a constant. You can give values a convenient
name using variables and constants in Swift.

Variables can change their values over time, while constants get an assigned
value and keep that value throughout the execution of a program. Both
variables and constants can store only one type of data.

Constants
Let’s reproduce the Hello World example from Chapter 1 using a constant.
Listing 2-1 shows how to store the string "Hello World" in a constant
named s1.

Listing 2-1. Hello World Constant

let s1:String = "Hello World"

The first part of the constant declaration is the let keyword. The let
keyword lets you know that you are working with a constant. The next part
is the constant name s1. You will use the constant name s1 to refer to this
constant in your code from now on.

You also have the type declaration :String. The type declaration tells you
what data type the constant stores. Since you used the type declaration
:String, you know that you can store strings (a sequence of characters) in
the constant s1.

CHAPTER 2: Declaring Constants and Variables8

The next part is the assignment operator =, which assigns a value to the
constant s1. The value here is a string enclosed in quotes, "Hello World".

If you use a playground to prototype the code here, you will see that it
immediately reports the value of the s1 constant on the right side of the screen.

You can reference a constant by using its name. To get the value of s1, you
can just type in the constant name anywhere in your code. Try it right now
by typing s1 into your playground (see Listing 2-2).

Listing 2-2. Referencing Constants

s1

You will be using constants more as you learn about the capabilities of Swift.

Constants Are Immutable
Let’s say you would rather have “Hello World” print as “Hello World!” (with
an exclamation point). Since s1 is a constant, you cannot simply change the
value or this code would cause an error (see Listing 2-3).

Listing 2-3. Error Caused by Assigning a Value to a Constant

s1 = "Hello World!"

When you need to change a value when a program runs, you must use a
variable.

Variables
Variables are mostly used like constants but with two key differences. The
first is that variables use the var keyword instead of the let keyword when
variables are being declared. The second difference is that variable values
can change.

Listing 2-4 shows an example of a variable s2 that can change value over
time.

Listing 2-4. Variable Declaration

var s2:String = "Hello World"

CHAPTER 2: Declaring Constants and Variables

9

As you can see in Listing 2-4, you use the var keyword to specify variables.
Variables also don’t require that you immediately assign a value to them, so
you could have waited to assign the "Hello World" string to s2.

Variables Are Mutable
Since s2 is a variable, you can change its value. So, if you wanted to say
“Hello World” in Spanish instead, you could change the value of s2 as
shown in Listing 2-5.

Listing 2-5. Changing Variable Value

s2 = "Hola Mundo"

Now if you type s2 into your playground, you will see the value “Hola
Mundo” appear on the right.

Type Inference
In the previous examples, you clearly spelled out the data type for both the
variables and the constants. However, Xcode can figure this out for you
based on what value you assign to the variable or constant. This is called
type inference. This means you could have omitted the :String from your
declarations and instead use something like Listing 2-6.

Listing 2-6. Type Inference

var s3 = "Hallo Welt"

Data Types
Swift supports more than the String data type. You also work with numbers
and booleans. Table 2-1 describes the common Swift data types.

CHAPTER 2: Declaring Constants and Variables10

Table 2-1. Swift Data Types

Data Type Description

String Sequence of characters

Int Whole number

Float Number with fractional component

Double Bigger number with fractional component

Bool True or false value

See Listing 2-7 for examples of how to use these data types.

Listing 2-7. Swift Data Types

let s:String = "Hey There"
let i:Int = -25
let f:Float = 3.14
let d:Double = 99.99
let b:Bool = true

11

Chapter 3
Printing Variables and
Constants

When you are prototyping your code with playgrounds, you automatically
get output for any variable or constant that you are working with. But, if you
are coding an application, you will need to use special functions to print out
values to the console screen.

Since playgrounds have no console window, you will need to create a new
Mac command-line tool to print values to a console screen.

Creating a Command-Line Tool
Open Xcode 6 and then choose Create a new Xcode project from the
welcome screen.

On the screen that appears, choose OS X ➤ Application ➤ Command Line Tool.

Click Next.

On the next screen, fill out the information required, including the name of
the application. Be sure to choose Swift as the language. See Figure 3-1 for
an example.

CHAPTER 3: Printing Variables and Constants12

Click Next.

Choose the folder location for your command tool application and then click
Create.

The Command Line Tool Xcode project is a little bit more complicated than
a playground. You are most interested in the Swift code file named
main.swift. You should see this file in Xcode’s folder view on the left part
of your screen. Click the file main.swift. You should see a screen similar to
Figure 3-2.

Figure 3-1. Command tool information fields

Figure 3-2. Command Tool Xcode project

CHAPTER 3: Printing Variables and Constants

13

In the middle of your screen you should see a code editor with a simple
“Hello World!” line of code filled in.

Printing to the Console
The code that appears in main.swift contains the function that you will use
to print out values to the console window: println(), as shown in Listing 3-1.

Listing 3-1. println()

import Foundation

println("Hello, World!")

To see the output of the println() function, click the big arrow in the
upper-left area of your Xcode screen to build and run the command-line
tool application. At the bottom of your screen, you should see the console
window with the “Hello World!” message printed out.

Note If you adjusted your Xcode screens and ended up hiding your
console window, you may need to use the controls located in the
upper-right area of Xcode and on the bottom-center screen to reveal your
console window. Figure 3-3 shows where these controls are located.

Figure 3-3. Showing/hiding Xcode windows

CHAPTER 3: Printing Variables and Constants14

You can use println() to print strings like you have just seen, or you can
print out variable and constant values, as shown in Listing 3-2.

Listing 3-2. Printing Variables

println(s)

While println() prints something out and then goes to the next line,
print() will print out a value without moving to the next line in the console
window, as shown in Listing 3-3.

Listing 3-3. print() Function

print("Print this")
print(" and ")
print("that")

The code in Listing 3-3 will print everything on one line like this:

Print this and that

String Interpolation
If you need to print out different variables, constants, literals, and
expressions in a string on one line, you can use string interpolation. You do
this by putting a forward slash (\) in front of a variable name in parentheses.
For instance, let’s say you have the constants from the end of Chapter 2 and
want to print them out all in one line with a println() function, as shown in
Listing 3-4.

Listing 3-4. String Interpolation

let i:Int = -25
let f:Float = 3.14
let d:Double = 99.99
let b:Bool = true

println("i = \(i), f = \(f), d = \(d), b = \(b)")

The code in Listing 3-4 will print out the following line:

i = -25, f = 3.14000010490417, d = 99.99, b = true

15

Chapter 4
Code Comments

You use code comments when you want to add information to your code.
With Swift, you can add a one-line code comment, multiple-line code
comments, and even nested code comments.

One-Line Code Comments
Use the double backslashes (//) to start a one-line code comment.
See Listing 4-1 as an example.

Listing 4-1. One-Line Code Comment

//One line code comment

You can fill up one line with these types of comments.

Multiline Comments
One-line comments are fine for quick notes about code that may need some
extra information provided. But when you want to add a lengthier description,
you can write over many lines at once. To write a multiline comment, you
start the comment with a backslash and asterisk (/*), write the comment, and
end it with an asterisk and backslash (*/). See Listing 4-2.

Listing 4-2. Multiline Comments

/*
Multiple line code comment
Use this when you need to provide more detail
*/

CHAPTER 4: Code Comments16

Nested Code Comments
Swift supports nested comments. Nested comments allow you to quickly
comment out large chunks of code that have code comments included in
the code. You can use the same code comment symbols /* and */ with
nested comments. For instance, let’s assume you have two sets of two
constants declared, each of which have their own comments. You could
write that as shown in Listing 4-3.

Listing 4-3. Multiple Code Comments

/*
Define a and b constants
*/

let a = 1
let b = 2

/*
Define c and d constants
*/

let c = 3
let d = 4

You can comment out all of this code by enclosing everything in Listing 4-3
in code comments, as shown in Listing 4-4.

Listing 4-4. Nested Code Comments

/*
/*
Define a and b constants
*/

let a = 1
let b = 2

/*
Define c and d constants
*/

let c = 3

CHAPTER 4: Code Comments

17

let d = 4

*/

None of the code in Listing 4-4 will execute, but if you remove the outermost
comments, you can preserve the inner comments. This makes it easy to test
code but keep any code comments you added previously.

19

Chapter 5
Numbers

Numbers have their own data types in Swift. Like with other programming
languages, in Swift some number data types can store larger numbers than
others, and numbers that have a fractional component are treated differently
than numbers that are whole numbers.

Integers
Integers are whole numbers that may be either positive or negative. Integers
don’t have any decimal places. For example, 1, 2, and -9 are all integers.
While there are several integer data types, you will usually use the Int data
type. Int is used when you don’t need to specify a size for the integer.
Listing 5-1 shows two examples of declaring integers.

Listing 5-1. Declaring Integers

let i1:Int = 5
var i2 = 7

In Listing 5-1, i1 is an integer constant, while i2 is an integer variable.

Integer Sizes
Int will always conform to the largest native signed size. This means on
32-bit systems Int can store any integer from -2,147,483,648 to 2,147,483,648.

Unless you have a good reason, you should always use Int since this helps
with interoperability (iOS has both 32-bit and 64-bit devices available).

CHAPTER 5: Numbers20

If you do want to specify the integer size, you can use data types that
correspond to the C data types such as Int8, Int16, Int32, Int64, UInt8,
UInt16, UInt32, and UInt64.

In these data types, the numbers indicate the size of the integer.
For example, Int8 means 8-bit, which gives you an integer range of -127
to 127. The data types that have a U as the first character are unsigned
integers. These integers must be positive. UInt8 gives you a range of 0 to
255.

Floating-Point Numbers
Floating-point numbers can have decimal places. An example of a
floating-point number is 9.99. To specify a floating-point number, you can
use the Float data type, as shown in Listing 5-2.

Listing 5-2. Declaring Floating-Point Numbers

let f1:Float = 9.99
let f2 = 3.14

If you leave out the data type and include a number with decimal places,
Swift will use type inference to assume you want a number with the Float
data type.

Float is a 32-bit floating-point number, and you should use that when you
don’t require 64-bit precision. When you do require 64-bit precision, use the
Double data type, as shown in Listing 5-3.

Listing 5-3. Declaring Double Floating-Point Numbers

let d1:Double = 1.2345

21

Chapter 6
Strings

A string is a sequence of characters, such as "Hello World!". Strings use
the String data type, although you don’t need to specify the data type to
use a string, as shown in Listing 6-1.

Listing 6-1. Declaring Strings

var s1 = "Hello World!"

Unicode Characters
Strings can include any Unicode characters. To write single-byte Unicode
characters, you must include \x before the two hexadecimal digits. Two-byte
Unicode characters are prefixed with \u before four hexadecimal digits, and
four-byte Unicode characters have \U written before eight hexadecimal digits.

Listing 6-2 shows an example of using Unicode characters.

Listing 6-2. Unicode Characters

let percentage = "\x{25}"
let snowflake = "\u{2744}"
let heart = "\u{0001F497}"

The code in Listing 6-1 will display a percentage sign, a snowflake, and a
heart in your playground.

CHAPTER 6: Strings22

Character Data Type
Strings are collections of characters, and characters have their own data
type called Character. Characters can have only one character, and you
must explicitly declare your variable or constant as a Character. See
Listing 6-3 for an example of how to declare a Character.

Listing 6-3. Character Declaration

let c1:Character = "A"

Concatenation
In Swift, you can combine strings and characters to create longer strings.
Since a character can contain only one character, you can’t combine strings
or characters using a Character type variable.

If you think you want to have a string that you can add more characters
to, make sure to declare the string as a String type variable with the var
keyword. Constants cannot be modified.

Listing 6-4 shows an example of how you might start constructing an
alphabet string based on characters and strings that you already have on
hand.

Listing 6-4. String/Character Concatenation

//Declare characters and strings
let c1:Character = "A"
let c2:Character = "B"
let c3:Character = "C"
let c4:Character = "D"
let c5:Character = "E"
let s2 = "FGHIJ"

//Declare an empty string
var alphabet = String()

//Concatenate strings, characters and literals
alphabet = c1 + c2 + c3 + c4 + c5 + s2 + "KLMNOP"

If you’re using a playground, you will see the first part of the alphabet appear
on the right.

Also, if you look closely at the declaration for alphabet, you will see that this
sets alphabet to String(). This is how you create an empty string in Swift.
The last statement uses + signs to combine the strings, characters, and the
string literal "LMNOP".

CHAPTER 6: Strings

23

Comparing Strings
You can find out whether one string is equal to another with the equality
comparison operator (==). If you do this, you will get a boolean (true or false)
value back. If you wanted to see whether the alphabet variable contains the
entire alphabet, you can use the comparison operator to test alphabet, as
shown in Listing 6-5.

Listing 6-5. Comparing Strings

//returns boolean false
alphabet == "ABCDEFGHIJKLMNOPQRSTUVWXYZ"

//returns boolean true
alphabet == "ABCDEFGHIJKLMNOP"

Note Comparison operators are usually used with if statements,
and both of these topics are covered later in the book (Chapters 15
and 25, respectively).

String Interpolation
As I discussed in Chapter 3, you can use string interpolation to insert values
into strings to create new strings. These values can be numbers, other
strings, and other types.

In addition to printing out interpolated strings to the console window with
println(), you can create new strings with interpolation, as shown in Listing 6-6.

Listing 6-6. String Interpolation

let s3 = "Three Times Three = \(9) & the alphabet is \(alphabet)"

In Listing 6-6, you are creating a new string with string interpolation by
inserting the value 9 and the value of the variable alphabet into the string
"Three Times Three = & the alphabet is".

The value of s3 will be "Three Times Three = 9 & the alphabet is
ABCDEFGHIJKLMNOP".

25

Chapter 7
Booleans

Boolean values can be either true or false. Booleans are used to help
evaluate logical expressions. To declare a boolean value, you can assign a
value immediately, or you can use the Bool data type to declare a boolean
variable, as shown in Listing 7-1.

Listing 7-1. Declaring Booleans

var b1:Bool
let b2 = false

In Chapter 6, you saw how to make a comparison between two strings to
get a boolean value. You can store the results of an equality comparison like
that in a boolean variable or constant, as shown in Listing 7-2.

Listing 7-2. Storing Boolean Results

let alphabet = "ABCDEFGHIJKLMNOP"
let b4 = alphabet == "ABCDEFGHIJKLMNOP"

In Listing 7-2, the value of b4 is true because the two strings are the same;
you can use this information later in the program by referencing b4. Listing
7-2 uses the equality operator that was introduced in the previous chapter,
but you can do other types of tests and store the results in Bool variables.
See Chapter 15 for a complete list of comparison operators you can use.

Booleans are particularly useful when used with if statements to control the
flow of your program. You will learn more about if statements in Chapter 23.

27

Chapter 8
Tuples

Tuples are ordered lists of values. In Swift, you can group related elements
together as a tuple, reducing the need to depend on complex types, objects,
and immutable arrays.

Listing 8-1 shows how you would declare a tuple for a rectangle.

Listing 8-1. Declaring Tuples

let rectangle1 = (0, 0, 200, 100)

In Listing 8-1, you use the let keyword to declare a constant and give the
constant the name rectangle1. After the assignment operator (=), you supply
a comma-separated list of values enclosed in parentheses.

The value of rectangle1 from Listing 8-1 would be (0, 0, 200, 100).

For greater clarity, you can annotate each value in the tuple list as shown in
Listing 8-2.

Listing 8-2. Annotated Tuple

var rectangle2 = (x:0, y:0, width:200, height:100)

To pull an individual value out of a tuple, you can decompose the values and
assign them to a constant, as shown in Listing 8-3.

Listing 8-3. Decomposed Tuple

let (a, b, c, d) = rectangle1

//prints 200
c

CHAPTER 8: Tuples28

To decompose your tuple values, you can use the let keyword followed by
a comma-separated list of variable names. Each name will be filled with the
corresponding value from the tuple. You can now use these variables as
usual. For instance, when you type c, the variable name from Listing 8-1, the
value 200 from the tuple will appear.

To ignore some values in a tuple, you can replace a variable name with an
underscore (_). So, if you needed only the x origin for the rectangle, you
could do this as shown in Listing 8-4.

Listing 8-4. Ignoring Tuple Parts

var (e, _, _, _) = rectangle2

//prints 0
e

You can assign tuple values to either constants or variables, as you can see
in Listing 8-4.

29

Chapter 9
Optionals

In situations where you can’t be sure a variable has a value present, you
can use optionals. An optional is a variable that can have either an assigned
value or no value at all. Using optionals is an alternative to setting objects
to nil. Optionals can be used with any type in Swift including numbers,
strings, and objects.

You declare optionals like variables or constants, but you must include a ?
after the type declaration (see Listing 9-1). Like variables and constants, the
data type of an optional may be inferred.

Listing 9-1. String Optional Declaration

var s:String?

The variable s in Listing 9-1 is declared as an optional, and the starting value
is nil.

Forced Unwrapping
If you are sure that an optional has a value, then you can use an exclamation
point (!) to unwrap the value. For instance, if you know that s has a value,
then you could unwrap s and use the value as shown in Listing 9-2.

Listing 9-2. Unwrapping

var s:String?

s = "ABC"

s!

CHAPTER 9: Optionals30

You will see the value of s display on the right pane of your playground.

If you attempt to unwrap an optional that has no value, then you will get
a runtime error, and your playground will stop functioning. Make sure the
Assistant Editor is visible so you can see runtime errors (click Xcode ➤ View ➤
Show Assistant Editor). For this reason, you will want to test your optional with
an if statement before attempting to unwrap the optional (Listing 9-3). See
Chapter 23 for more information on if statements.

Listing 9-3. Testing Before Unwrapping Optionals

if s{
 "The value of s is "
 s!
}
else{
 "No value in s"
}

Optional Bindings
Optional bindings give you a way to test an optional and unwrap the
optional in an if statement. Optional bindings will save you from explicitly
unwrapping the optional inside your if statement. To rewrite Listing 9-3 with
optional bindings, use the code in Listing 9-4.

Listing 9-4. Optional Bindings

if let myString = s{
 "The value of s is "
 myString
}else{
 "No value in s"
}

You can see in Listing 9-4 that you have a constant declaration right after
the if statement so that you are both testing for nil and assigning a
temporary constant that you can use in the code block if a value is present.

31

Chapter 10
Type Aliases

You can add an alternative name for existing types using type aliases. This is
something you might do if you want to make your API more expressive and
clearer to other programmers. For instance, let’s say you had a type of string
that you wanted to treat as a note in your code. You could use a type alias
to define Note as an alternative to String.

Use the typealias keyword to define a type alias, as shown Listing 10-1.

Listing 10-1. Type Alias

typealias Note = String

Now that you’ve defined the type alias, you can use the type Note in place
of String when you are declaring new variables, constants, or optionals
(see Listing 10-2).

Listing 10-2. Using Type Aliases

typealias Note = String

var n1:Note = "Today is the first day of our new project"

You can treat n1 as a string, which means you will have the same
functionality as a string object. The only difference is that you can refer to
certain strings as Note types, making the purpose of the notes clearer.

Some types like Int have functions associated with them. For instance, if
you wanted to find out the maximum integer value that can be stored by an
Int type, you could use the max function (Listing 10-3).

CHAPTER 10: Type Aliases32

Listing 10-3. Int Max Function

Int.max

If you do this on your Mac, you will see a large number appear in the
playground. If you set an alias for Int, any function available to Int will be
available to the alias.

For instance, if you defined an alias for Int to represent speed, then you
could do something like Listing 10-4.

Listing 10-4. Speed Max Function

typealias Speed = Int

Speed.max

Since you can treat Speed the same as Int, you can use the max function
on Speed.

33

Chapter 11
Global and Local
Variables

Most of the variables that you have been working with in the examples have
had global scope. Global scope means that once the variable is declared,
you can access its value from anywhere in your Swift program. This is in
contrast to Objective-C, which couldn’t have variables with global scope.

Scope Defined
Scope refers to a portion of a program. In other words, you can access
variables only from the portion of the program where the variable has been
declared. Portions of the program are defined by various Swift constructs
such as if statements (Chapter 23), functions (Chapter 27), and classes
(Chapter 30).

Note Scope applies broadly to other types in Swift as well as variables.

You will see curly brackets ({}) used with Swift constructs to define a scope
for part of your program. Since you saw the if statement already in Chapter 9,
Listing 11-1 uses that as an example to demonstrate scope.

CHAPTER 11: Global and Local Variables34

Listing 11-1. If Statement Scope

let isTrue = true

if(isTrue){
 var myString = "This is a true statement"
 println(myString)
}

Listing 11-1 declares a boolean constant called isTrue and uses an if
statement to test to see whether isTrue is set to a true value. If this
statement is true, you define an area of scope with curly brackets ({}) and
put the code that you want to execute in between the curly brackets.

If you look at the area in the curly brackets (the scoped area), you will see
the variable that is declared is named myString. myString is a variable that
is local to the scoped area.

This means you can access myString only in that scoped area. So,
Listing 11-2 would cause an error.

Listing 11-2. Variable Out of Scope

let isTrue = true

if(isTrue){
 var myString = "This is a true statement"
 println(myString)
}

println(myString)

However, since isTrue is a global variable, you can use that anywhere in
your program, including the scoped area after your if statement.

Variables remain in scope even when a scoped area itself has scoped
portions. So, if you have an if statement that contains other if statements,
then variables declared in the topmost scoped area are still accessible in the
nested scoped areas.

Global Variables
The concept of scope is not unique to Swift, but I am discussing it here
mainly because this is a feature that works differently than in Objective-C.
In Swift, any variable or type that you declare in an area that is not scoped
will be a global variable or type.

35

Chapter 12
Assertions

Assertions are a tool that you can use to help with your debugging efforts.
Assertions work by testing a condition to see whether the condition is
satisfied. If the condition is not satisfied, then a runtime error occurs, and
the program stops executing. Assertions may have an optional message
that is printed in the console window when the condition is not met.

To create an assertion, write the assertion shown in Listing 12-1.

Listing 12-1. Assert

var triangleSides = 4

assert(triangleSides == 3, "A triangle must have three sides")

The assert statement in Listing 12-1 is testing to make sure that the
triangleSides variable has the correct number of sides. If triangleSides
has three sides, nothing happens. If triangleSides has any other number
of sides, the program stops running, and the text in the second part of the
function appears in the console window.

CHAPTER 12: Assertions36

Assertions are tested only in Debug mode since they are meant to help
you when debugging your application. You use assertions when logical
conditions that are possible would cause a fatal error in your application.

You can use any comparison operator (Chapter 15) or logical operator
(Chapter 18) in your assertions.

Note It is hard to see how assertions work when you are working with a
playground since your program doesn’t really stop like it would if you were
coding an app. However, you can see the console window in the playground
by going to the Xcode menu bar and then clicking View ➤ Assistant Editor ➤
Show Assistant Editor. You will see the runtime error printed in the console
window on the right.

37

Chapter 13
Assignment Operators

When you want to initialize or update a value, you use the assignment
operator (=). You saw this already when you learned to declare constants
and variables with a value using the assignment operator (see Listing 13-1).

Listing 13-1. Declaring and Assigning Values

//Assigning a variable value
var a = 1

//Assigning a constant value
let b = 2

You can update the variable values at any time after the variable has been
declared using the assignment operator (see Listing 13-2).

Listing 13-2. Updating Values

a = 3

Of course, you cannot do this with a constant.

You can assign multiple values to multiple variables or constants on the
same line to save space (see Listing 13-3).

Listing 13-3. Multiple Assignments

let (c, d) = (4, 5)

In Listing 13-3, c will equal 4, and d will equal 5.

To assign tuple values, you must supply the variable or constant with a
comma-separated list of values enclosed in parentheses (see Listing 13-4).

CHAPTER 13: Assignment Operators38

Listing 13-4. Assigning Tuple Values

let e = (6, 7, 8)

The output that will appear in the right pane of your playground will be
(.0 6, .1 7, .2 8).

When you need to extract a tuple value from a variable or constant, you
can use an assignment operator to assign one of the tuple values to a new
variable or constant. Every tuple value except the one you are interested in
must be replaced with an underscore (_) character (see Listing 13-5).

Listing 13-5. Extract a Tuple Value

let (_,_,f) = e

Listing 13-5 will give you a new constant f that has the same value as the
third value in the tuple e.

Compound Operators
The assignment operator is often combined with an arithmetic operator
(see Chapter 14) when you want to perform an arithmetic operator and
assign the result to the value in the same line of code (see Listing 13-6).

Listing 13-6. Compound Assignment/Arithmetic Operations

//Declare and assign i integer equal to 0
var i = 0

//Add 4 to i and assign result back to i
i+=4

//Multiple i by 2 and assign result back to i
i*=2

In Listing 13-6, you start off with an integer i that has a value of 0 and then
use compound assignment/arithmetic operations to first add 4 to i and
then multiply i by 2. You can use any arithmetic operation like this with the
assignment operator.

39

Chapter 14
Arithmetic Operators

You use the arithmetic operators to do addition (+), subtraction (-),
multiplication (*), and division (/). Generally, you use these operators in the
same way you would in math (see Listing 14-1).

Listing 14-1. Arithmetic Operators

let r1 = 1 + 2
let r2 = 3 - 1
let r3 = 6 * 5
let r4 = 12 / 3

If you are using arithmetic operators on two integers, then you can expect
an integer result by default. All of the examples in Listing 14-1 will result in
integer output. If one of the values is a Float or Double data type, then the
result will be a floating-point data type as well.

Note Be careful when dividing two integers since you can’t always be
sure that the result will be an integer. You will not see the remainder (unless
you also use the remainder operator separately). You must explicitly type
the receiving variable or constant as a Float or Double (or one of
the values being divided must be a floating-point type) to get the
floating-point result.

CHAPTER 14: Arithmetic Operators40

Remainder Operator
When you use the division operator (/), you will get the whole number part
only when you are dividing integers. If you want to also use the remainder
part of the result, you can use the remainder operator (%).

For example, if you wanted to divide 13 by 3, you could use the code in
Listing 14-2.

Listing 14-2. Division and Remainder Operators

//Division and remainder operators
let r5 = 13 / 3
let r6 = 13 % 3

In Listing 14-2, r5 would equal 4, and r6 would be 1.

Order of Operations and Parentheses
You can have more than one arithmetic operator on a line of code. Each
operator requires two values unless the operator is a unary operator (see
the “Unary Minus Operator” section). The entire set of values and operators
is called an expression. Expressions are solved going from left to right, and
multiplication and division are performed before addition and subtraction.
This is called the order of operations. You can change the order of
operations by using parentheses, which could create a completely different
result. See Listing 14-3 for an example.

Listing 14-3. Changing the Order of Operations

let r8:Float = 1 + 2 * 3 - 4 / 5
let r9:Float = (1 + 2) * (3 - 4) / 5

In Listing 14-3, r8 equals a value of 6.19999980926514, while r9 equals a
value of -0.600000023841858.

Increment and Decrement Operators
The unary increment operator (++) and the unary decrement operator
(--)Unary decrement operator (--) increase or decrease the value of a
number by 1.

You use unary plus (++) as shown in Listing 14-4.

CHAPTER 14: Arithmetic Operators

41

Listing 14-4. Increment Operator

var i1 = 5

++i1

In Listing 14-4, ++i1 adds 1 to i1, resulting in a value of 6. You could also
use decrement operator (--) to decrease the value of i1 by 1.

You could achieve the same effect by simply writing i1 = i1 + 1, but using
the increment operator is easier to write.

The placement of the operator here matters. If you place the ++ or -- before
the variable, then the value will be changed first and then returned. If you
put the operator after the variable, then the original value will be returned
first, and the variable will be incremented or decremented (see Listing 14-5).

Listing 14-5. Increment Operator Placement

var i1 = 5

//Returns 5
i1

//Returns 6
++i1

//Returns 6
i1++

//Returns 7
i1

As you can see in Listing 14-5, when you increment i1 with the ++ as a
suffix, you still get the original value reported. But, when you use i1 on the
next line of code, you will get the updated value of 7.

Unary Minus Operator
When you need the negative value of a number, you can simply use the
unary minus operator to make a number negative. For instance, if you
preferred to make i1 negative, then you could do this: i1 = -i1.

There is also a unary plus operator that just returns the same value.

CHAPTER 14: Arithmetic Operators42

Compound Operators
Arithmetic operators can be combined with the assignment operator
(Chapter 13) when you want to perform an arithmetic function and assign
the result to the value in the same line of code (see Listing 14-6).

Listing 14-6. Compound Assignment/Arithmetic Operations

//Declare and assign i integer equal to 0
var i = 0

//Add 4 to i and assign result back to i
i+=4

//Multiple i by 2 and assign result back to i
i*=2

In Listing 14-6, you start off with an integer i that has a value of 0 and then
use compound assignment/arithmetic operations to first add 4 to i and
then multiply i by 2. You can use any arithmetic operation like this with the
assignment operator.

String Concatenation
The addition operator (+) is also used to add strings (and characters)
together (see Listing 14-7).

Listing 14-7. String Concatenation

let s1 = "Hello"
let s2 = "World"
let s3 = s1 + " " + s2 + "!"

Listing 14-7 outputs “Hello World!”

43

Chapter 15
Comparison Operators

You use comparison operators to compare two values. You can test for
equality or whether one value is greater or less than another value.

Table 15-1 describes the comparison operators available in Swift.

Table 15-1. Comparison Operators

Operator Description

x == y Equal to

x != y Not equal to

x > y Greater than

x >=y Greater than or equal to

x < y Less than

x <= y Less than or equal to

x === y Two objects are equal

x !== y Two objects are not equal

Note The last two comparison operators in Table 15-1 (=== and
!==) apply only to objects (see Chapter 32). Objects are also known
as instances in Swift.

CHAPTER 15: Comparison Operators44

Comparison operators return a boolean result that you can store in a
boolean variable or constant. See Listing 15-1 for an example.

Listing 15-1. Using Comparison Operators

let x = 100

let y = 200

//Returns true
let b1 = x < y

//Returns false
let b2 = x == y

Comparison operators are often used with if statements (see Chapter 23) to
control program flow.

45

Chapter 16
Ternary Conditional
Operator

You use the ternary conditional operator to evaluate a question and then
do one of two things based on the result of the question. The ternary
conditional operator is written like this: question ? action1 : action2
(see Listing 16-1).

The question is an expression that returns a boolean true or false. If the
question returns true, then the first action takes place. If the question
returns false, then the second action takes place.

Listing 16-1. Ternary Conditional Operator

let a = 5

a == 5 ? "We're good" : "O0ps, not quite"

In Listing 16-1, the first part of the ternary conditional operator is the
statement a ==5, which is using the equality comparison operator to test to
see whether a is equal to 5.

In the next part of Listing 16-1, you have two possible actions that can take
place separated by the semicolon (:). The first action, “We’re good,” takes
place if the statement is true, while the second action, “Oops, not quite,”
takes place if the statement is not true.

The ternary conditional operator is a shorthand version of the if statement
that is covered in more detail in Chapter 23.

47

Chapter 17
Range Operators

You use range operators to specify a range of integers such as 1 through 10.
There are two types of range operators: the closed range operator (...) and
the half-open range operator (..<).

Closed Range Operator
The closed range operator gives you a way to specify a range of numbers
when you want to include the number that defines the end of the range.
You must specify the beginning of the range and the end of the range with
the closed range operator (...), as shown in Listing 17-1.

Listing 17-1. Closed Range Operator

1...10

This operator is not useful by itself, but you will see range operators used in
for loops (see Chapter 22), as shown in Listing 17-2.

Listing 17-2. Closed Range Operator in a for Loop

for i in 1...10 {
 println("i = \(i)")
}

The code in Listing 17-2 produces output that includes i = 1 through
i = 10 (see Listing 17-3).

CHAPTER 17: Range Operators48

Listing 17-3. for Loop Output

i = 1
i = 2
i = 3
i = 4
i = 5
i = 6
i = 7
i = 8
i = 9
i = 10

Half-Open Range Operator
The half-open range operator (..<) works like the closed range operator
except that the ending value in the range is not included. So, if you replaced
the closed range operator in the for loop from Listing 17-2 with a half-open
range operator, you would print out to i = 9 only (see Listing 17-4).

Listing 17-4. Half-Open Range Operator in for Loop

for i in 0..<10 {
 println("i = \(i)")
}

The output from the for loop in Listing 17-4 would produce Listing 17-5.

Listing 17-5. for Loop Output

i = 0
i = 1
i = 2
i = 3
i = 4
i = 5
i = 6
i = 7
i = 8
i = 9

49

Chapter 18
Logical Operators

The logical operators are used with boolean values and expressions that
return boolean values. You use these operators to deal with expressions that
are made up of parts that can be either true or false. Logical operators are
used to test whether two expressions are true or whether one expression is
true. Table 18-1 describes the logical operators supported by Swift.

Table 18-1. Logical Operators

Operator Description

!x Logical NOT

x && y Logical AND

x || y Logical OR

For instance, let’s assume you already have two variables, x and y, with
values of true and false. To test and see whether both x and y are true, you
would use logical AND, as shown in Listing 18-1.

Listing 18-1. Logical AND

let x = true
let y = false

let a = x && y

In Listing 18-1, the value of a would be false because x and y are not
both true.

If you were interested only in whether one condition was true, you could use
logical OR to test for this, as shown in Listing 18-2.

CHAPTER 18: Logical Operators50

Listing 18-2. Logical OR

let x = true
let y = false

let b = x || y

In Listing 18-2, the value of b would be true because one of the conditions
(x) is true.

You use logical NOT as indicated by ! to test for the opposite of a boolean
value. An exclamation point before a boolean value means the opposite of
the boolean value. So, !true means false, while !false means true.

If you wanted to test x to see what the opposite boolean value is, you could
do Listing 18-3.

Listing 18-3. Logical NOT

let x = true
let y = false

let c = !x

The c value in Listing 18-3 will be false since the value of x is true.

Note While you can use logical operators by assigning the results to
boolean variables or constants, you will most often see logical operators
used with if statements (see Chapter 23).

51

Chapter 19
Enumerations

You use an enumeration (or an enum) to define a restricted set of values.
Enums make your code clearer because you can use descriptive names
instead of something abstract like an integer value.

If you wanted to define an enumeration to describe a machine state, you
could do something like Listing 19-1.

Listing 19-1. Defining Enumerations

enum State {
 case Inactive
 case Active
 case Hibernate
 case Terminated
}

var machineState = State.Inactive

In Listing 19-1, you defined an enum named State that can have four values:
Inactive, Active, Hibernate, and Terminated. You specify enum values with
the case keyword. You can specify one value per case keyword, or you can
provide a comma-separated list of enum values on one line.

You can use enumeration types like other types. In Listing 19-1, you are
assigning the value State.Inactive to the variable machineState.

You can also reference the enum type in the ternary conditional operator
(Chapter 16), if statements (Chapter 23), switch statements (Chapter 24),
and anywhere else variables or constants are used.

Listing 19-2 shows an example of how you would use the State enum with
the ternary conditional operator.

CHAPTER 19: Enumerations52

Listing 19-2. Using Enums

machineState == State.Inactive ? println("Machine Inactive") :
println("Machine State Unknown")

In Listing 19-2, the text “Machine Inactive” will appear since the value of
machineState is State.Inactive.

Enum types can be defined as their own value types, or you can assign
other types to an enumeration, including integers, strings, and floating-point
numbers.

To assign another type to an enumeration, you must specify the enum type
and then use the assignment operator to assign the values. For instance, if
you wanted to define an enumeration for the alphabet while keeping track
of the position of each letter in the alphabet, you could use the code in
Listing 19-3.

Listing 19-3. Integer Enum

enum Alphabet:Int{
 case A = 1
 case B, C, D, E, F, G, H, I
 case J, K, L, M, N, O, P, Q
 case R, S, T, U, V, W, X, Y, Z
}

In Listing 19-3, you defined the enum type Alphabet as an Int. This means
each Alphabet value has a corresponding integer value. You also need to
provide each enum value with a corresponding integer value. You did this
for case A, which has a value of 1. Since this is an integer type, Swift can
figure out that you want the remaining enum values to correspond to integer
values in the order you listed them.

While you would use Alphabet in the same way as State, with Alphabet you
can reference the raw integer value using the toRaw() function.

For instance, if you want to add the integer value of A to the integer value
of B, you would use the code in Listing 19-4.

Listing 19-4. Accessing Raw Enum Values

let result = Alphabet.A.toRaw() + Alphabet.B.toRaw()

toRaw() is a function. See Chapter 27 for a detailed example of Swift
functions.

53

Chapter 20
Arrays

To organize a list of variables, constants, and other types, you can use
arrays. All items in an array must be of the same type, and you can have
lists of items such as integers, floating-point numbers, strings, and objects.
Listing 20-1 shows two ways to create empty arrays that you can add items
to later.

Listing 20-1. Creating Arrays

var a1:Array<String> = Array<String>()
var a2:[String] = [String]()

The first line in Listing 20-1 shows you the long way of declaring an array.
You must use the Array keyword and include the type that is stored in the
array between the less-than (<) and greater-than (>) signs. In Listing 20-1, a1
is an array that can hold a list of strings.

You must also use the assignment operator (=) to initialize the array
followed by the word Array along with the type between the less-than (<)
and greater-than (>) signs. You can see two parentheses after the type in
the first line of code in Listing 20-1, which is a call to the default initializer.
This initializer creates the array object.

There is also a shorthand method for creating arrays, and that is how you
create the a2 array shown in Listing 20-1. a2 simply has the type in square
brackets: [String].

When you have items that you want in the array when you initially create
the array, you can make the array declaration even simpler. This is because
Swift supports type inference, and you can omit the initialization and the
type declaration (see Listing 20-2).

CHAPTER 20: Arrays54

Listing 20-2. Array Type Inference

var a3 = ["A", "B", "C"]

In Listing 20-2, you simply set a3 to ["A", "B", "C"], which was enough
information for Swift to figure out that a3 is a String array. ["A", "B", "C"] is
known as an array literal, which is a quick way to write out a constant array.

Array Mutability
Since both of the arrays in Listing 20-1 are declared with the var keyword,
they are considered mutable. This means you can add, remove, and change
the items in the list. You can also use immutable arrays if you use the let
keyword when creating the array (see Listing 20-3).

Listing 20-3. Immutable Array Example

let ma1 = ["D", "E", "F"]

//Causes build error
ma1+="G"

In Listing 20-3, you can see an example of using the let keyword to create
an immutable array. Immutable arrays cannot be changed, and if you
attempt to add a new item to the array, you will get a build error.

Adding Items to Arrays
Arrays store items in a list that is indexed by integers starting with zero. Use
the += operator or the append function to add items to the end of an array
(see Listing 20-4).

Listing 20-4. Adding Items

a1+="Apples"
a1.append("Oranges")

a1 would now contain the two strings "Apples" and "Oranges". If you
want to add a new item to the array but you don’t want the item to be
appended to the end of the list, you can use the insert function, as shown
in Listing 20-5.

Listing 20-5. Inserting Items

a1.insert("Pineapples", atIndex: 1)

CHAPTER 20: Arrays

55

When you add the code from Listing 20-5, your list will look like this:
[Apples, Pineapples, Oranges]. Type a1 into your playground to see this
for yourself.

Removing Items from Arrays
To remove items from arrays, you use removeAtIndex(). All you need to do is
supply the index of the item you want to remove from the array. Listing 20-6
shows an example of that function along with some others that you can use
to remove items from arrays.

Listing 20-6. Removing Items

a1.removeAtIndex(0)

a1.removeLast()

a1.removeAll(keepCapacity: false)

In Listing 20-6, you removed the first item from a1 using the removeAtIndex()
function and then removed the last item using the function removeLast(). Finally,
you removed all remaining items with the function removeAll(keepCapacity:).
The parameter in removeAll(keepCapacity:) lets you indicate whether you want
the array to stay initialized for the number of items that the array contained. If
you know you are replacing the items immediately, it could save processing
resources if you leave the array initialized.

Changing Items in Arrays
To change an item in an array, you simply reference the item index in
square brackets and use the assignment operator to change the item
(see Listing 20-7).

Listing 20-7. Changing Array Items

var a4 = [1, 2, 33, 4, 5]

a4[2] = 3

In Listing 20-7, you start with an array of integers based on this array literal:
[1, 2, 33, 4, 5]. Then, you change the number 33 in the third position to 3.

In Listing 20-7, you can see an example of how to access an array value
using the integer index. You include the index of the item in square brackets
after the array name to access an item in an array. You access the third
value (written as 2 because the array index starts at 0) of array a4.

CHAPTER 20: Arrays56

Iterating Over Array Items
When you have a list of items stored in an array, there are many situations
where you want to be able to go over each item in the array and access the
item’s value or perform some action on the item. You can use the for-in
loop to do this (see Listing 20-8).

Listing 20-8. Array Iteration

for i in a4{
 println("i = \(i)")
}

Listing 20-8 used a for-in loop to iterate over each item in the a4 array.
Each item value will be accessed and printed out to the console log.
Loops are covered in more detail in Chapter 22. Here is what the loop in
Listing 20-8 will print out to the log:

i = 1
i = 2
i = 3
i = 4
i = 5

57

Chapter 21
Dictionaries

Use a dictionary when you want to store items that you need to reference
with unique identifier keys. Arrays keep items in the order in which you put
the items into the array, while dictionaries don’t guarantee any order at all.
However, you can access each item based on the key that you provided
when the item was originally added to the dictionary.

To create a new dictionary, you will need to specify both the data type for
the key and the data type for the value (see Listing 21-1).

Listing 21-1. Declaring Dictionaries

var d1:Dictionary<String, Int>

In Listing 21-1, d1 is declared as a dictionary that requires String keys
and Int values. Before you add any items, you will need to initialize d1
(see Listing 21-2).

Listing 21-2. Initializing Dictionaries

d1 = Dictionary()

Oftentimes, you will declare the dictionary and initialize the dictionary with
a dictionary literal (see Listing 21-3). A dictionary literal is an constant
dictionary that is filled with an immutable collection of keys and values.

Listing 21-3. Dictionary Literals

var webPages = [1:"http://site/home", 2:"http://site/blog",
3:"http://site/contact"]

The code in Listing 21-3 creates a dictionary called webPages that uses
integers as keys and stores web page addresses as string values.

CHAPTER 21: Dictionaries58

Referencing Dictionary Items
To reference a dictionary item, you must supply the key enclosed in square
brackets, [], after the dictionary name (see Listing 21-4).

Listing 21-4. Referencing Dictionary Items

var webPages = [1:"http://site/home", 2:"http://site/blog",
3:"http://site/contact"]

let blogPage = webPages[2]

In Listing 21-4, the constant blogPage will be set to http://site/blog since
the integer key value 2 points to the string http://site/blog.

Updating Dictionary Items
You can update the value of a mutable dictionary by getting a reference to
the item and using the assignment operator to supply the new value
(see Listing 21-5).

Listing 21-5. Updating Dictionary Items

webPages[1] = "http://site/home/a"

In Listing 21-5, you simply provide the key in square brackets to change the
web page address. This works the same way for other kinds of keys such as
strings and floating-point numbers (see Listing 21-6).

Listing 21-6. Using String and Float Keys

var d2:Dictionary = ["a":"AAAA", "b":"BBBB"]
var d3:Dictionary = [1.1:"AAAA", 1.2:"BBBB"]

d2["a"] = "AAAAaaaa"
d3[1.2] = "BBBBbbbb"

The code in Listing 21-6 uses String keys to access and change d2
dictionary values. It also uses floating-point numbers to reference and
change d3 dictionary values.

To remove an item from a dictionary, simply update the item with the nil
value or use the removeValueForKey() function (see Listing 21-7).

Listing 21-7. Removing Items

d2["b"] = nil
d2.removeValueForKey("a")

CHAPTER 21: Dictionaries

59

In Listing 21-7, you use the removeValueForKey() function to remove the
value for key a from dictionary d2.

Iterating Over Dictionary Items
To iterate over dictionary items, use the for-in loop (see Chapter 22 for
more information on loops). You will get a reference to each key and item in
the loop (see Listing 21-8).

Listing 21-8. Iterating Over Dictionary Items

for (key, value) in d3{
 println("key:\(key), value:\(value)")
}

The loop in Listing 21-8 prints this:

key:1.10000002384186, value:AAAA
key:1.20000004768372, value:BBBBbbbb

If you only need to iterate through the keys, you can access the key property
on the dictionary, as shown in Listing 21-9.

Listing 21-9. Iterating Over Dictionary Keys

for key in d3.keys{
 println("key:\(key)")
}

Listing 21-9 will print out the keys like this:

key:1.10000002384186
key:1.20000004768372

61

Chapter 22
Loops

When you want to repeat operations, you can use loops. Loops give you a
neat way to do something a set number of times or to do operations until
a certain condition (that you define) is met. Collection types such as arrays
and dictionaries use loops for iteration.

for-condition-increment Loop
This for loop will be familiar to many programmers. The for-condition-
increment loop gives you a loop that will execute a set number of times.
You will have to use the for keyword along with an ending condition and an
increment statement.

The loop shown in Listing 22-1 prints out 1 through 10 to the console as an
example.

Listing 22-1. for-condition-increment Loop

for var i = 1; i <= 10; ++i {
 println("i = \(i)")
}

Let’s look at the loop in Listing 22-1 more closely. The first thing you see is
the for keyword. This indicates you are using a for loop. Next you can
see three sections of code separated by semicolons (;).

The first section of code, var i = 1, declares a variable i and then assigns
1 to the variable i.

The next section of code is i <= 10;. This is the condition part of the
for-condition-increment loop. This means the loop will execute as long as
the value of i is less than or equal to 10.

CHAPTER 22: Loops62

Next, you have the increment part of the for-condition-increment loop: ++i;.
This means i will increment by 1 each time the loop executes.

Finally, you have the code block between the curly brackets, {}, and the
code that you want to execute in the loop: println("i = \(i)").

When the loop from Listing 22-1 executes, the following list is printed out to
the console:

i = 1
i = 2
i = 3
i = 4
i = 5
i = 6
i = 7
i = 8
i = 9
i = 10

for-in Loop
Use the for-in loop to iterate over items in collections such as arrays and
dictionaries. To use a for-in loop, you must specify a local variable name
and the collection you are iterating over. Like other for loops, you also need
to supply the for keyword and put the code that executes each time into a
code block.

Listing 22-2. for-in Loops

let names = ["Jim", "John", "Jill"]

for n in names{
 println(n)
}

let inventory = [1:"TV", 2:"Bookcase", 3:"Table"]

for (key,item) in inventory{
 println("\(key) : \(item)")
}

In Listing 22-2 you use for-in loops to iterate through the array names and
the dictionary inventory and print out the items in each collection.

You can also iterate through a range specified by a range operator
(see Chapter 17), as shown in Listing 22-3.

CHAPTER 22: Loops

63

Listing 22-3. Iterating with Range Operators

var result = 0

for i in 1…3{
 ++result
}

result

The code in Listing 22-3 uses a range operator to specify a range between 1
and 3 and uses this to increment the variable result.

While Loop
while loops work by evaluating a condition and executing code as long as
the condition is true. You write a while loop by including the while keyword
followed by the condition and the code block to execute (see Listing 22-4).

Listing 22-4. while Loop

var i = 1

while i <= 10{
 println("i = \(i)")
 i++
}

In Listing 22-4 you reformulated the for-condition-increment loop from
Listing 22-1 as a while loop to get the same result.

i = 1
i = 2
i = 3
i = 4
i = 5
i = 6
i = 7
i = 8
i = 9
i = 10

CHAPTER 22: Loops64

do-while Loop
The do-while loop will execute the code in the block before evaluating the
condition. Use this loop when you want to make sure that code executes
at least one time. Listing 22-5 shows how you would rewrite the while loop
from Listing 22-4 as a do-while loop.

Listing 22-5. do-while Loop

do{
 println("i = \(i)")
 i++
}while i <= 10

The do-while loop in Listing 22-5 required the do keyword followed by a
code block. The condition was specified right after the while keyword.

You may have noticed that you just reused the variable i from the while loop
in Listing 22-4 and the value of i is already 11. Of course, I’m assuming that
you followed along with the code in the order it’s presented in this chapter.
The do-while loop goes through the code even though the condition was
never met, resulting in the following output:

i = 11

65

Chapter 23
if Statements

if statements are used when you want to make a choice to execute code
based on the result of a comparison expression. To make this work, you
evaluate an expression that uses comparison and logical operators to yield a
true or false result. If you evaluate an expression to be true, then you can
execute the code; otherwise, you can ignore the code.

You need the if keyword and an expression along with a code block to use
the if statement (see Listing 23-1).

Listing 23-1. if Statement

if (1 < 2){
 println("This is true")
}

The statement is saying that if 1 is less than 2, then execute the code that
will print out the string “That is true” to the console log.

else Keyword
You can also define an alternate action with the else keyword. This gives
you a way of executing either one of two actions based on the results of the
expression that you are evaluating (see Listing 23-2).

Listing 23-2. else Keyword

if (1 < 2){
 println("That is true")
} else {
 println("Not true")
}

CHAPTER 23: if Statements66

Listing 23-2 will print out the text “That is true” to the console log since 1 is
always less than 2.

Each if statement can contain nested if statements. This gives you a way
of testing multiple conditions. Generally speaking, it’s best to limit yourself
to three nested if statements at most. Listing 23-3 shows what a nested if
statement looks like.

Listing 23-3. Nested if Statements

if (1 > 2){
 println("True")
} else {
 if (3 > 4){
 println("True")
 } else {
 println("Not True")
 }
}

The code from Listing 23-3 will print out “Not True” to the console log.

67

Chapter 24
switch Statements

switch statements are used to execute code based on the value of a
variable. To make a switch statement work, you need to define a level
variable, and then you need to write a code block for each possible value of
the level variable that you expect.

For this chapter, let’s assume you are writing code to help you do some
geometry work. You have different shapes that you need to work with, and
you want to calculate the area of each shape. You can keep track of what
type of shape you are working with by using an integer variable named
shape (see Listing 24-1).

Listing 24-1. shape Variable

var shape = 0

Each value of shape will correspond to a type of shape; for instance, 0 could
be a square, 1 could be a parallelogram, and 2 could be a circle. Variables
like shape are called level variables because they represent possible levels.

For the purposes of this example, you also need a variable to store the
results of any calculation you make, which is why you define a float variable
named area (see Listing 24-2).

Listing 24-2. area Variable

var area: Float?

In Listing 24-2, you define area as an optional float to accommodate
situations where the shape you are looking at is not defined and you need
to set the value of area to nil.

CHAPTER 24: switch Statements68

switch Keyword
Now, let’s get to the switch statement itself. To start a switch statement,
you need the switch keyword followed by the level variable. Use curly
braces to create a code block for the switch statement (see Listing 24-3).

Listing 24-3. switch Statement

switch shape {

}

Case Keyword
Next, you can define code that will be associated with each value that the
level variable can take on. You use the case keyword to associate each
possible value with a code block (see Listing 24-4).

Listing 24-4. Completed switch Statement

switch shape {

case 0:
 let length: Float = 3
 area = length * length
 println("Square area is \(area!)")

default:
 area = nil
 println("No Shape Specified")

}

What you see in Listing 24-4 is the case keyword followed by the value that
you are testing for, which is 0. Then you have a colon. The code after the
colon will execute when the value of shape is 0.

If you look at Listing 24-4, you can see that there is a default keyword. This
keyword is used to define a default case, which is a way to define a code
block that will execute if no other condition is met. So, if the value of shape
happened to be 6 and had no code block defined, you would be sure that at
least the code that was included in the default case would execute.

Usually, switch statements will include more than one level (see Listing 24-5).

CHAPTER 24: switch Statements

69

Listing 24-5. Completed switch Statement

switch shape {

case 0:
 let length: Float = 3
 area = length * length
 println("Square area is \(area!)")

case 1:
 let base:Float = 16
 let height:Float = 24
 area = base * height
 println("Parallelogram area is \(area!)")

default:
 area = nil
 println("No Shape Specified")

}

Here is what you will find in the console log if you run the code from
Listing 24-5 when the value of shape is 0:

Square area is 9.0

If you were to change the value of shape to 1, then the outcome would be
different (see Listing 24-6).

Listing 24-6. Selecting Parallelogram

shape = 1

switch shape {

case 0:
 let length: Float = 3
 area = length * length
 println("Square area is \(area!)")

case 1:
 let base:Float = 16
 let height:Float = 24
 area = base * height
 println("Parallelogram area is \(area!)")

CHAPTER 24: switch Statements70

default:
 area = nil
 println("No Shape Specified")

}

In this instance, the output from Listing 24-6 would be as follows:

Parallelogram area is 384.0

71

Chapter 25
Control Transfer
Statements

Control transfer statements change the order that your code is executed in.
You use these when you have specific situations where you would like to
change the normal execution of code based on a condition that you specify.
You have four control transfer statements available to you: continue, break,
fallthrough, and return.

Note Only the first three control statements are discussed in this chapter
because the return control statement is discussed in Chapter 27.

continue Statement
Use the continue statement with loops to stop code execution and return to
the beginning of the loop’s code block. For example, let’s say you wanted
to print out the numbers 1 through 3 and 8 through 10 to the console log
screen. You could do something like Listing 25-1.

Listing 25-1. continue Statement

for i in 1...10 {
 if (i >=4 && i <= 7){
 continue
 }
 println(i)
}

CHAPTER 25: Control Transfer Statements72

In Listing 25-1, you use the range operator 1...10 to specify a for loop that will
execute the code block 10 times. You also have an if statement in the for
loop’s code block that tests to see whether i is between the values of 4 and 7.
When the if statement is true, you use the continue keyword to stop executing
the current block. Then you go back to the beginning. The output produced
by the code from Listing 25-1 will look like this:

1
2
3
8
9
10

The numbers 4 through 7 are not printed because of the continue statement.

break Statement
A break statement completely interrupts the execution of a loop. If you
replaced the continue statement with the break statement in the loop from
Listing 25-1, the output would look much different (see Listing 25-2).

Listing 25-2. break Statement

for i in 1...10 {
 if (i >=4 && i <= 7){
 break
 }
 println(i)
}

The loop from Listing 25-2 will stop executing completely once the condition
i == 4 is true. The output from Listing 25-2 will look like this:

1
2
3

You can use break statements in switch statements. break statements work
in the same way for switch statements as they do for loops; when the break
statement is reached, program control leaves the switch statement and
resumes at the end right after the ending curly brace, }, as shown in
Listing 25-3.

CHAPTER 25: Control Transfer Statements

73

Listing 25-3. Break in switch Statement

let x = 6

switch x {

case 0...5:
 println("0 through 5")

case 6:
 break

case 7:
 println("Value 7")

default:
 println("Default")

}

Listing 25-3 will print “0 through 5,” “Value 7,” or “Default” depending on the
value of x except when x is equal to 6. When x equals 6, nothing happens at
all. In this way, you use break to code exceptions with switch statements.

fallthrough Statement
In C programming, switch statements will automatically fall through to the
next case statement if you don’t include break statements after each case
statement. Swift doesn’t behave in this way. When a case condition is made,
code execution stops in the switch and resumes right after the ending curly
bracket, }.

If you would like to code switch statements that do include this fall-through
behavior, you can use the fallthrough statement.

If you changed the switch statement from Listing 25-3 to make the code
implement fall-through behavior instead of break behavior, you could do
what’s shown in Listing 25-4.

Listing 25-4. fallthrough Statement

switch x {

case 0...5:
 println("0 through 5")

case 6:
 fallthrough

CHAPTER 25: Control Transfer Statements74

case 7:
 println("Value 6 or 7")

default:
 println("Default")

}

In Listing 25-4, when x is equal to six, control will fall through to case 7, and
the output “Value 6 or 7” will be printed.

75

Chapter 26
Labeled Statements

Sometimes your programs can become complicated when you start to nest
control structures such as loops, if statements, and switch statements.
With Swift, you can label control statements and then use control transfer
statements (Chapter 25). You can use the break, continue, and fallthrough
control statements with labeled statements.

For instance, let’s assume you have two nested loops to print integers
from 1 to 3, as shown in Listing 26-1.

Listing 26-1. Nested Loop

for x in 1...3 {
 for y in 1...3 {
 println("x = \(x), y = \(y)")
 }
}

The code from Listing 26-1 will print out this:

x = 1, y = 1
x = 1, y = 2
x = 1, y = 3
x = 2, y = 1
x = 2, y = 2
x = 2, y = 3
x = 3, y = 1
x = 3, y = 2
x = 3, y = 3

CHAPTER 26: Labeled Statements76

If you wanted to skip any value where y equals 2, you could just include a
continue statement right inside the innermost loop (see Listing 26-2).

Listing 26-2. continue Statement

for x in 1...3 {
 for y in 1...3 {
 if y == 2{
 continue
 }
 println("x = \(x), y = \(y)")
 }
}

Here you are skipping those situations where y is 2 because of the continue
statement, which brings control back to the beginning of the innermost loop.

The output from Listing 26-2 will look like this:

x = 1, y = 1
x = 1, y = 3
x = 2, y = 1
x = 2, y = 3
x = 3, y = 1
x = 3, y = 3

If your intention is to skip all the way back to the outermost loop, you will
be out of luck with this approach unless you use a label statement. You can
label each loop first as shown in Listing 26-3.

Listing 26-3. Labeled Statements

outerloop: for x in 1...3 {
 innerloop: for y in 1...3 {
 if y == 2{
 continue
 }
 println("x = \(x), y = \(y)")
 }
}

Once you label the statements, you can choose which labeled statement to
apply the control transfer statement to (see Listing 26-4).

CHAPTER 26: Labeled Statements

77

Listing 26-4. Labeled continue Statement

outerloop: for x in 1...3 {
 innerloop: for y in 1...3 {
 if y == 2{
 continue outerloop
 }
 println("x = \(x), y = \(y)")
 }
}

In Listing 26-4, you are still testing to see when y is equal to 2. When this
situation is true, you send control all the way back to the outer loop.
This results in output like this:

x = 1, y = 1
x = 2, y = 1
x = 3, y = 1

As you can see, this changes the output dramatically. Labeled statements
give you much more control and clarity when you are dealing with complex
and nested control structures.

79

Chapter 27
Functions

You can declare a function anywhere with the func keyword. Functions are
used to organize code into reusable chunks that take input parameters and
return results. Listing 27-1 shows an example of a function that returns the
string “Hello World.”

Listing 27-1. Simple Function

func getPhrase() -> String{
 return "Hello World"
}

In Listing 27-1, the function declaration starts with the func keyword
followed by the name of the function. After the function name in Listing 27-1,
you have (), which designates an empty parameter list. The return type of
the function (String) is written after the return type symbol ->.

After the function return type, you have a code block designated in the curly
brackets, {}. The getPhrase() function has only one line of code, which
simply returns a string to the caller. The return keyword is a control transfer
statement that returns code execution to the caller.

To call the function, just use the name of the function including the parameter
values in parentheses. In the case of the function declared in Listing 27-1,
you can call the function as shown in Listing 27-2.

Listing 27-2. Calling Functions

let s = getPhrase();

println(s)

CHAPTER 27: Functions80

As you can see, you call the function and assign the results to a constant
and then print that to the log. Usually, you will assign results of functions
to variables or constants, but you could have also used the getPhrase()
function directly with the println(), as shown in Listing 27-3.

Listing 27-3. Calling Functions Directly

println(getPhrase())

Not all functions return results. Listing 27-4 shows an example of a function
that just writes out the log without returning a value.

Listing 27-4. Void Function

func justDoSomething() {

 println("Printing justDoSomething() function")

 return
}

Functions like the one declared in Listing 27-4 are sometimes called void
functions. To call this function, you can simply type the name of the function
followed by the empty parentheses, as shown in Listing 27-5.

Listing 27-5. Calling Void Functions

justDoSomething()

Parameters
To declare a function with parameters, you include the name of the
parameter and the data type of the parameter (see Listing 27-6).

Listing 27-6. Declaring Parameters

func averageScore(scores:[Float]) -> Float{

 var total:Float = 0
 var count:Float = 0

 for score in scores{
 total+=score
 count++
 }

 return total / count
}

CHAPTER 27: Functions

81

In Listing 27-6, you declared a function named averageScore that takes an
array of Float values as a parameter. The function will return a Float value.
In the code block, you add all the scores together and divide by the number
of scores in the array. That value is returned to the caller.

Listing 27-7 shows how you would call this function.

Listing 27-7. Calling Functions with Parameters

let result = averageScore([0, 90, 84, 76, 67, 95, 73, 89])

In Listing 27-7, you called the function with an array literal that defined a
range of scores. Listing 27-7 would output the result 71.75.

When functions have more than one parameter, you include them in a
comma-separated list, as shown in Listing 27-8.

Listing 27-8. Multiple Parameters

func printStuff (this:String, that:String){

 println("\(this) \(that)!")

 return
}

printStuff("Hello", "World")

In Listing 27-8, you defined a function that prints out the two strings that you
supplied in the function call to the console log. When you call printStuff
like in Listing 27-8, you will get the “Hello World!” message printed out.

83

Chapter 28
Nested Functions

You can code functions within other functions. Nesting functions gives you a
way to organize and reuse your code while limiting the scope of functions to
the parent function.

For instance, let’s say you wanted to write a Swift program to help a teacher
summarize how some students performed on the tests they took this week.
You could write a function called analyzeTestScores() that would figure out
what the average score of a test was including all students and then would
write a report.

Since this function has to do a few things, it makes sense to organize each
task into separate functions. You could start by adding a function that returns
the average test score based on an array of numbers (see Listing 28-1).

Listing 28-1. Nested Functions

func analyzeTestScores(){

 func averageScore(scores:[Int]) -> Float?{
 if scores.count > 0 {
 var total:Int = 0
 var count:Int = 0
 for score in scores{
 total+=score
 count++
 }
 return (Float)(total / count)
 }
 else {
 return nil
 }
 }

}

CHAPTER 28: Nested Functions84

In Listing 28-1, you start your analysis by declaring the function
averageScore([Int]) inside the function analyzeTestScores(). This means
that code located in analyzeTestScores() can now use this function.
averageScore([Int]) will take an array of integers and return a Float value
representing the average test score or nil.

Your analysis would include a report as well, so you would want to add
another nested function to analyzeTestScores(), as shown in Listing 28-2.

Listing 28-2. Calling Nested Functions

func analyzeTestScores(){

 func averageScore(scores:[Int]) -> Float?{
 if scores.count > 0 {
 var total:Int = 0
 var count:Int = 0
 for score in scores{
 total+=score
 count++
 }
 return (Float)(total / count)
 }
 else {
 return nil
 }
 }

 func printReport(testName:String, scores:[Int]){
 if let a = averageScore(scores){
 println("\(testName) Test Results")
 println(" The average score is \(a)")
 }
 }

}

In Listing 28-2, the function printReport(String, [Int]) takes a list of test
scores as a parameter along with a String parameter that you can use for
the test name. This function will call the averageScore([Int]) function right in
the optional binding statement using the array of test scores as a parameter.
Finally, the test name and average score will be printed to the log.

To get this analysis started, you will need to call these functions from within
analyzeTestScores(), as shown in Listing 28-3.

CHAPTER 28: Nested Functions

85

Listing 28-3. Calling Nested Functions

func analyzeTestScores(){

 func averageScore(scores:[Int]) -> Float?{
 if scores.count > 0 {
 var total:Int = 0
 var count:Int = 0
 for score in scores{
 total+=score
 count++
 }
 return (Float)(total / count)
 }
 else {
 return nil
 }
 }

 func printReport(testName:String, scores:[Int]){
 if let a = averageScore(scores){
 println("\(testName) Test Results")
 println(" The average score is \(a)")
 }
 }

 printReport("Math", [90, 84, 76, 67, 45, 95, 73, 89])
 printReport("Social Studies", [36, 17, 42, 25])

}

In Listing 28-3, you call printReport(String, [Int]) two times. Each time
you supply a different set of test scores and a different test name. To finally
get all this to run, you must run the topmost function analyzeTestScores()
from the main part of the playground (see Listing 28-4).

Listing 28-4. Calling Nested Functions

func analyzeTestScores(){

 func averageScore(scores:[Int]) -> Float?{
 if scores.count > 0 {
 var total:Int = 0
 var count:Int = 0
 for score in scores{
 total+=score
 count++
 }
 return (Float)(total / count)
 }

CHAPTER 28: Nested Functions86

 else {
 return nil
 }
 }

 func printReport(testName:String, scores:[Int]){
 if let a = averageScore(scores){
 println("\(testName) Test Results")
 println(" The average score is \(a)")
 }
 }

 printReport("Math", [90, 84, 76, 67, 45, 95, 73, 89])
 printReport("Social Studies", [36, 17, 42, 25])

}

analyzeTestScores()

Nested functions are one construct that you have available to you in Swift to
keep your code organized and reusable.

Note Variables in functions are scoped in the same way as other types
in Swift. Variables can be used in the functions they are declared in and in
any nested function.

The code from Listing 28-4 will result in the following output:

Math Test Results
 The average score is 77.0
Social Studies Test Results
 The average score is 30.0

87

Chapter 29
Closures

Closures are blocks of code that you can pass to functions as parameters or
store as variables or constants to be used later. Closures capture the state
of the other variables around them. These constructs are often used when
you want to perform operations that don’t need to happen immediately but
depend on local state. Closures are also used frequently with functions to
give callers a way of adding behavior to a function that would normally be
out of scope.

One example of where closures are used is as an argument to the Swift
standard library sorted function. This function takes an array and a closure
as parameters. The array contains the items that need to be sorted, and
the closure includes the instructions that will be used to sort the items
(see Listing 29-1).

Listing 29-1. Sorted Function

var alpha = ["D", "E", "A", "C", "B"]

let alpha_sorted = sorted(alpha, { (s1: String, s2: String) -> Bool in
 return s1 < s2
})

In Listing 29-1, you can see the closure highlighted. The entire code block is
enclosed in curly brackets. In the top area you see the closure parameters
in parentheses followed by the return type Bool. In contrast to functions,
closures require the in keyword before you add the code block.

The items in alpha_sorted would be in the following order:

["A", "B", "C", "D", "E"]

CHAPTER 29: Closures88

Closures can be stored in variables or constants and used later as
parameters. The code from Listing 29-1 could be rewritten as shown in
Listing 29-2.

Listing 29-2. Closure Variables

let closure = { (s1: String, s2: String) -> Bool in
 return s1 < s2
};

let alpha_sorted_2 = sorted(alpha, closure)

In Listing 29-2, you assign the closure to a constant named closure and
then use this constant as the input parameter to the sorted function.
You could also use the closure like a function.

The items in alpha_sorted_2 would also be in the following order:

["A", "B", "C", "D", "E"]

Listing 29-3. Calling Closures

let closure = { (s1: String, s2: String) -> Bool in
 return s1 < s2
};

let b = closure("B", "A")

In Listing 29-3, b would be false because you used the closure to compare
the values "B" and "A", and because B is not less than A, the closure
returned false.

89

Chapter 30
Structures

You can use structures to define custom types in Swift. Structures give you
a way of grouping related information together. These Swift constructs give
you the same capability as structures in C programming, but as you will see,
Swift structures are richer than C structures.

To define a Swift structure, use the struct keyword (see Listing 30-1).

Listing 30-1. Defining Custom Types

struct Rectangle {
 var x:Int = 0
 var y:Int = 0
 var width:Int = 0
 var height:Int = 0
}

In Listing 30-1, you define a structure named Rectangle. Your rectangle type
is made of integers that describe the rectangle, including the x and y origin
coordinates and the height and width dimensions.

When used like this in structures and classes (Chapter 31), these variable
and constant types are called properties.

Structure Instances
In Listing 30-1, you defined what a rectangle will look like generally. To use
a structure type, you must create a new instance based on this definition
(see Listing 30-2).

CHAPTER 30: Structures90

Listing 30-2. Structure Instances

struct Rectangle {
 var x:Int = 0
 var y:Int = 0
 var width:Int = 0
 var height:Int = 0
}

var rect = Rectangle()

Accessing Structure Properties
To access structure properties, you use dot syntax (see Listing 30-3).

Listing 30-3. Accessing Properties

rect.x = 10
rect.y = 10
rect.width = 100
rect.height = 50

println("x: \(rect.x), y: \(rect.y), width: \(rect.width),
height: \(rect.height)")

In the first four lines of Listing 30-3, you use dot syntax to change the variable
values to the values you require. In the last line of code in Listing 30-3,
you can see an example of properties being used in the print function with
dot syntax.

Note Structures are value types. This means members are copied and
not passed by reference when the assignment statement is used. Let’s
say you used an assignment operator to assign the values in x to another
structure y. Any changes made to y will not be reflected in x.

Structure Functions
In contrast to C structures, Swift structure types can have functions as part
of their definition. This means Swift structures not only can organize data
but can define behavior. To add a function to a structure like the rectangle
you defined in Listing 30-2, you could do what’s shown in Listing 30-4.

CHAPTER 30: Structures

91

Listing 30-4. Structure Functions

struct Rectangle {
 var x:Int = 0
 var y:Int = 0
 var width:Int = 0
 var height:Int = 0

 func description() -> String{
 return ("x: \(x), y: \(y), width: \(width), height: \(height)")
 }

}

The function defined in Listing 30-4 returns a String that describes the
rectangle. To call this function, you must use dot syntax (see Listing 30-5).

Listing 30-5. Calling Structure Functions

println(rect.description())

The code from Listing 30-5 will print this to the console log:

x: 10, y: 10, width: 100, height: 50

93

Chapter 31
Classes

Use classes to define types in Swift that you want to use as objects.
Like structures, classes give you a way of grouping related information and
behavior together.

To define a Swift class, use the class keyword (see Listing 31-1).

Listing 31-1. Defining Classes

class Person {
 var name: String = "Name"
 var age:Int = 0

 func profile() -> String {
 return "I'm \(self.name) and I'm \(self.age) years old."
 }

}

In Listing 31-1, you defined a class named Person. Your Person class
consists of a string for a person’s name and an integer for a person’s age.

When used like this in structures (Chapter 30) and classes, these variable
and constant types are called properties.

Class Instances (Objects)
In Listing 31-1, you defined what a person will look like generally. To use a
Person instance (or object), you must create a new instance based on this
definition (see Listing 31-2).

CHAPTER 31: Classes94

Listing 31-2. Class Instances

class Person {
 var name: String = "Name"
 var age:Int = 0

 func profile() -> String {
 return "I'm \(self.name) and I'm \(self.age) years old."
 }

}

var p = Person()

Note In Swift, objects are usually references to instances for both
structures and classes.

Accessing Class Properties
As you did with structure properties, for class instance properties you use
dot syntax (see Listing 31-3).

Listing 31-3. Accessing Properties

p.name = "Matt"
p.age = 40

In Listing 31-3, you use dot syntax to change the variable values to the
values you require.

Note Classes are reference types. This means when you use an
assignment operator, you assign only a reference to the instance. When
changes to a class instance members are made, they will reflected in the
instance everywhere in the program.

Class Functions
Class types can have functions as part of their definition. Classes not only
can organize data but can define behavior. In Listing 31-1, you already
added a function named profile() that returns a description of the person
in a friendly format.

CHAPTER 31: Classes

95

See Listing 31-4 for an example of how you might use this function.

Listing 31-4. Calling Class Functions

println(p.profile())

The code from Listing 31-4 will print this to the console log:

I'm Matt and I'm 40 years old.

97

Chapter 32
Using Instances

In the previous two chapters, you saw how to define classes and structures.
Structures and classes are used by creating instances (see Listing 32-1).

Listing 32-1. Class and Structure Instances

struct S {
 var i = 1
}

class C {
 var i = 1
}

var s = S()

var c = C()

As you can see in Listing 32-1, these constructs are nearly identical, with
the exception of the class and struct keywords. You use dot syntax to
access properties in the same way with both class and structure instances
(see Listing 32-2).

Listing 32-2. Accessing Instance Properties

println("s.i = \(s.i)")

println("c.i = \(c.i)")

The statements in Listing 32-2 will print this:

s.i = 1
c.i = 1

CHAPTER 32: Using Instances98

Reference vs. Copy
You will see the major difference between referencing and copying instances
when you use the assignment operator (=) to reference the instance. When
you do this for a structure, you get a copy of the instance. This copy acts
independently from the original instance. If you make changes to the copy,
they will not be reflected in the original instance.

In contrast, if you use the assignment operator to assign a variable to a
class instance when you make changes to the class instance members,
the original instance content will also change (see Listing 32-3).

Listing 32-3. Copy vs. Reference

var s2 = s

var c2 = c

s2.i = 2

c2.i = 2

println("s.i = \(s.i)")

println("c.i = \(c.i)")

In Listing 32-3, you assign the instances to new variables and then use the
same code as before to print the i values from the original instances.
What you get is this:

s.i = 1
c.i = 2

As you can see, the original structure member didn’t change at all. However,
the original class instance member’s value changed to be the same value as
the i property on c2.

99

Chapter 33
Class Identity Operators

Since class instances are referenced and not copied when you use the
assignment operator, it’s common to have many variables in your program
referring to the same class instance. This makes it important for you to
be able to compare two variables to see whether they point to the same
class instance.

Let’s say you are working with the Person class introduced in Chapter 31
(see Listing 33-1).

Listing 33-1. Person Instances

class Person {
 var name: String = "Name"
 var age:Int = 0

 func profile() -> String {
 return "I'm \(self.name) and I'm \(self.age) years old."
 }

}

var p1 = Person()
p1.name = "Matt"
p1.age = 40

var p2 = Person()
p2.name = "Jill"
p2.age = 25

In Listing 33-1, you define a Person class and then created two instances.
You will be using these instances to see the two class identity operators
in action.

CHAPTER 33: Class Identity Operators100

Class Equality Identity Operator
You use the class equality operator (===) to compare two class instances
(see Listing 33-2). This operator returns true if the instance variables both
point to the same instance.

Listing 33-2. Class Instance Equality Operator

var b1 = p2 === p2
var b2 = p1 === p2

In Listing 33-2, the b1 would be true since they are both the same instance,
while b2 would be false. Let’s see how this works when instances have been
assigned to new variables (see Listing 33-3).

Listing 33-3. Comparing Instance Variables

var v1 = p1
var v2 = p2

var b3 = v1 === p1
//returns true
var b4 = v2 === p2
//returns true
var b5 = v2 === p1
//returns false
var b6 = v1 === p2
//returns false

In Listing 33-2, you assign the original class instances to two new variables,
v1 and v2. As you can see from Listing 33-2, the instance equality operator
can tell when the variables point to the original instances.

Class Inequality Identity Operator
The class instance inequality identity operator (!==) tests to see whether two
instances do not point to the same instance (see Listing 33-4).

Listing 33-4. Inequality Operator

var b7 = p1 !== p1
//returns false
var b8 = v1 !== p1
//returns false

In Listing 33-4, you can see that the inequality operator is returning false
when two instances are the same.

101

Chapter 34
Properties

You use properties to describe attributes of an object. To add a property to
an object in Swift, you can add a variable or constant declaration to the
type definition.

Note Properties are not limited to class definitions in Swift. Enumerations
and structures can also have property declarations.

You have already encountered property declarations in Chapter 31 with the
declaration of the Person class (see Listing 34-1).

Listing 34-1. Property Declarations

class Person {
 var name: String = "Name"
 var age:Int = 0
 func profile() -> String {
 return "I'm \(self.name) and I'm \(self.age) years old."
 }
}

In Listing 34-1, you declared two variables, name and age, with initial values.
These types of properties are called stored properties because they simply
store values.

To access properties, you must create an instance of the class or structure
and then use dot syntax (see Listing 34-2).

CHAPTER 34: Properties102

Listing 34-2. Accessing Properties

var p = Person()

p.name = "Matt"
p.age = 40

println("p.name = \(p.name)")
println("p.age = \(p.age)")

In Listing 34-2, you use dot syntax to change the variable values to the
values that you require. In the last two lines of code from Listing 34-2, you
can see an example of properties being used in the print function with
dot syntax.

You can have code properties that have a getter and setter in addition to the
simple stored properties that you see in Listing 34-1 (see Listing 34-3).

Listing 34-3. Property Getters and Setters

class Person {
 var name: String = "Name"
 var age:Int = 0
 private var _lastName:String = ""

 var lastName:String{
 get {
 return _lastName
 }
 set {
 _lastName = newValue
 }
 }

 func profile() -> String {
 return "I'm \(self.name) and I'm \(self.age) years old."
 }

}

var p = Person()

p.name = "Matt"

In Listing 34-3, you coded a getter and setter that returned the private
variable _lastName. You are using _lastName as the local storage here.

CHAPTER 34: Properties

103

Once you have coded getters and setters, you can use them like the properties
that you saw when using dot syntax. See Listing 34-3 for an example of
using the setter to assign the value of the name property of the p object
to Matt.

Note The private keyword is used to limit the visibility of a variable.
When you mark a variable as private, you can access this variable only
from code in the same file as the private variable.

Lazy and Computed Properties
The purpose of the properties you have seen so far is to store values. These
types of properties are called stored properties for that reason. You can also
define lazy and computed properties.

Lazy Properties
When a property value will not need to be generated until the first time the
property value is used, you can use a lazy stored property. This option is
used when the property represents a resource that may be expensive to
generate and needed in only specific situations.

To make a property a lazy stored property, you use the lazy modifier. For
instance, Listing 34-4 shows how you would make the name property of the
Person class a lazy stored property.

Listing 34-4. Lazy Property

class Person {
 lazy var name: String = "Name"
 var age:Int = 0
 private var _lastName:String = ""

 var lastName:String{
 get {
 return _lastName
 }
 set {
 _lastName = newValue
 }
 }

CHAPTER 34: Properties104

 func profile() -> String {
 return "I'm \(self.name) and I'm \(self.age) years old."
 }

}

var p = Person()

p.name = "Matt"
p.age = 40

In Listing 34-4, you use the lazy keyword to make the name property a lazy
stored property. In this situation, the lazy attribute doesn’t change your
program much. But, if you could imagine that the initial value of the name
property was hard to calculate and if the name property was not used often,
it may make sense to use this pattern.

Computed Properties
Computed properties take input values and return a new result. Computed
properties act more like functions in that they perform an action and produce
a result. But, computer properties are used like properties with dot syntax.

For instance, the Person class used in the listings in this chapter has a
profile() function that you use to write the profile of the person to the
console log. You could change this function into a computed property as
shown in Listing 34-5.

Listing 34-5. Computed Properties

class Person {
 lazy var name: String = "Name"
 var age:Int = 0
 private var _lastName:String = ""

 var lastName:String{
 get {
 return _lastName
 }
 set {
 _lastName = newValue
 }
 }

CHAPTER 34: Properties

105

 var profile:String{
 get{
 return "I'm \(self.name) and I'm \(self.age) years old."
 }
 }

}

var p = Person()

p.name = "Matt"
p.age = 40

p.profile

In Listing 34-5, you used a custom setter to create a computed property for
a profile that took the person’s information to return a profile description.
As you can see from the last line of the listing, you used dot syntax (without
the () that a function would need) to access a computed property value.

Here is the output that would appear in the playground:

I'm Matt and I'm 40 years old.

107

Chapter 35
Property Observers

You can observe the state of a property with the willSet and didSet
keywords. You can use these in the property declaration to assign an action
that will occur when a property is about to change and when a property
value just changed. Listing 35-1 shows how you would add an action that
prints a message to the console log whenever the age property value is
about to change and after the age value has changed.

Listing 35-1. Property Observers

class Person {
 var name: String = "Name"
 var age:Int = 0{
 willSet{
 println("age value is about to change to \(newValue)")
 }
 didSet{
 println("age value just changed to \(self.age)")
 }
 }

 func profile() -> String {
 return "I'm \(self.name) and I'm \(self.age) years old."
 }

}

You use these observers by including a code block that includes a willSet
code block and a didSet code block.

CHAPTER 35: Property Observers108

When you change the value of the age property, you will get notifications
printed to your console log (see Listing 35-2).

Listing 35-2. Observing Property State

var p = Person()
p.age = 40

In Listing 35-2, you change the value of age to 40, which prints this to the
console log:

age value is about to change to 40
age value just changed to 40

109

Chapter 36
Class Type Properties

Type properties belong to a particular type, in contrast to the properties
discussed in Chapter 34, which belong to instances of a type. You use
type properties when you want to have properties that are universal to all
instances of that type.

You use the class keyword to declare a type property for a class
(see Listing 36-1).

Listing 36-1. Declaring Class Type Properties

class Person {
 class var species:String{
 return "Homo sapiens"
 }
 var name: String = "Name"
 var age:Int = 0

 func profile() -> String {
 return "I'm \(self.name) and I'm \(self.age) years old."
 }

}
In Listing 36-1, you used the class keyword to define the type property
species. Type properties for classes must be computed properties, which is
why the return value is enclosed in the curly brackets, {}.

You can access a type property using dot syntax using the class name and
the type property. Note that here you don’t need to create a new instance to
use the type property (see Listing 36-2).

CHAPTER 36: Class Type Properties110

Listing 36-2. Accessing Type Property Values

Person.species

The code from Listing 36-2 returns the string Homo sapiens. Class type
properties are constant.

Value Type Properties
Value type properties can be computed properties or stored properties, and
you can change the value of stored type properties. Use the static keyword
to declare a type property for an enumeration or a structure (see Listing 36-3).

Listing 36-3. Value Type Properties

struct Rectangle {
 var x:Int = 0
 var y:Int = 0
 var width:Int = 0
 var height:Int = 0

 static var gtp = "This describes a rectangle"
}

Rectangle.gtp

In Listing 36-2, you use the static keyword to declare a type property.
Other than the static keyword, this declaration looks just like a typical
property declaration.

You access type property values by referencing the type name and using
dot syntax to access the value. The last line of code will print the following
to the playground screen:

This describes a rectangle

You can treat type properties for value types such as enumerations and
structures in the same way that you do for instance properties. Listing 36-4
shows how you would change the value of gtp.

Listing 36-4. Accessing Value Type Properties

Rectangle.gtp = "Something else"

Rectangle.gtp

In Listing 36-4, you change the type property gtp to the string "Something
else" and then use dot syntax to retrieve the type property value.

111

Chapter 37
Type Methods

In Chapter 31, you coded a function for the Person class named profile().
Class functions are also known as methods, and in Chapter 31 you coded
an instance method. Instance methods require a type instance.

In contrast, type methods are functions that require the type (class,
enumeration, or structure) to work. To declare a type method for a class,
you must use the class keyword (see Listing 37-1).

Listing 37-1. Declaring Type Methods

class Person {
 class var species:String{
 return "Homo sapiens"
 }

 class func printDescription() {
 println("The Person class defines the structure to represent an

individual of the species \(species).")
 }

 var name: String = "Name"
 var age:Int = 0

 func profile() -> String {
 return "I'm \(self.name) and I'm \(self.age) years old."
 }

}

Person.printDescription()

CHAPTER 37: Type Methods112

In Listing 37-1, you code a type method named printDescription() that
prints a brief description for the Person class. You would reference the class
name Person and call the type method printDescription().

When you call the type function in Listing 37-1, you will get the following
output:

The Person class defines the structure to represent an individual of the
species Homo sapiens.

Type Methods for Value Types
Structures and enumerations work in the same way for type methods
except that you substitute the class keyword with the static keyword.
Listing 37-2 shows how you could add a printDescription() type method
to the Rectangle structure you coded in Chapter 30.

Listing 37-2. Structure Type Method

struct Rectangle {
 var x:Int = 0
 var y:Int = 0
 var width:Int = 0
 var height:Int = 0

 static var gtp = "This describes a rectangle"

 static func printDescription() {
 println("The Rectangle structure does this: \(gtp).")
 }

}

Rectangle.printDescription()

The code from Listing 37-2 will print this message to the console log:

The Rectangle structure does this: This describes a rectangle.

113

Chapter 38
Subscripts

When you use arrays (Chapter 20) and dictionaries (Chapter 21), you get an
easy way to access the items in these collections with a subscript. A subscript
is a key that you use to extract a value from a collection. You can add subscript
support to your own types.

To add subscript support to the Person class you first coded in Chapter 31,
you can write the code in Listing 38-1.

Listing 38-1. Adding Subscript Support

class Person {
 var name: String = "Name"
 var age:Int = 0

 func profile() -> String {
 return "I'm \(self.name) and I'm \(self.age) years old."
 }

 private var roles = ["Manager", "Parent", "Runner"]

 subscript(index: Int) -> String {
 get {
 return roles[index]
 }
 set(newValue) {
 self.roles[index] = newValue
 }
 }

}

CHAPTER 38: Subscripts114

In Listing 38-1, you added an array named roles that stores three possible
roles a person may have: Manager, Parent, and Runner. This is the content
you will ultimately expose using subscript notation.

In Listing 38-1, you used the subscript keyword followed by input parameters,
the return type, and a getter and setter. The getter and setter define the rules
you set to access the data you want to expose with the subscripts.

Once you have subscripts defined in your type, you can access the content
in your class in the same way that you would in an array (see Listing 38-2).

Listing 38-2. Accessing Values with Subscripts

var p = Person()

println(p[1])

p[0] = "Coach"

In Listing 38-2, once you create the new Person instance, you can access
data by supplying an integer subscript: p[1]. The println(p[1]) code line
will print Parent. In the last line of code from Listing 38-2, you changed the
value of one of the items to Coach.

115

Chapter 39
Inheritance

Classes have the ability to inherit methods and properties from a parent
class. Inheritance encourages code reuse. Generally, when you inherit
a class, you will add custom properties and methods to the new class.

For instance, if you wanted to create a new class to manage the employees
in your small business, you may want to inherit your work from the Parent
class into a new class called Employee. Listing 39-1 shows how you would
do that.

Listing 39-1. Inheriting Person

class Person {
 var name: String = "Name"
 var age:Int = 0

 func profile() -> String {
 return "I'm \(self.name) and I'm \(self.age) years old."
 }
}

class Employee: Person {

}

In Listing 39-1, your new class Employee is inheriting Person. To indicate
what class you are inheriting, add a colon (:) and the name of the class you
are inheriting (called the parent class).

Usually, you would add more properties and/or methods to the new class
(see Listing 39-2).

CHAPTER 39: Inheritance116

Listing 39-2. Custom Properties

class Employee: Person {
 var employeeNumber = 1234567890
 var hourlyRate = 12.00
}

var e1 = Employee()

In Listing 39-2, you added two employee-specific properties to the Employee
class: employeeNumber and hourlyRate. In the last line of code, you created a
new instance for an employee using the Employee class (not the Person class).

Now you can use all the properties from Parent and Employee with your
e1 instance (see Listing 39-3).

Listing 39-3. Accessing Properties

e1.name = "Jim"
e1.age = 18
e1.employeeNumber = 1
e1.hourlyRate = 15.50

In Listing 39-3, you set up the data for the first employee in your business.

117

Chapter 40
Overriding Methods
and Properties

When you use inheritance with a class, you can change how the parent
class methods and properties behave by overriding. When you override a
method, an instance will behave differently than its parent instance even
though the same method name is used as the function call.

For instance, in Chapter 39 you had two classes. The parent class name
Person had a method named profile() that returned a string describing the
Person instance. Employee instances also have this method, and they are
identical.

Note In the code in Listing 40-1, the code has been modified from the
previous chapter to include a property for a person’s last name.

Listing 40-1. Person and Employee Classes

class Person {
 var name: String = "Name"
 var age:Int = 0

 func profile() -> String {
 return "I'm \(self.name) and I'm \(self.age) years old."
 }

CHAPTER 40: Overriding Methods and Properties 118

 private var _lastName:String = ""

 var lastName:String{
 get {
 return _lastName
 }
 set {
 _lastName = newValue
 }
 }

}

class Employee: Person {
 var employeeNumber = 1234567890
 var hourlyRate = 12.00

}

var p1 = Person()

p1.name = "Matt"
p1.lastName = "Campbell"
p1.age = 40

println(p1.profile())

var e1 = Employee()

e1.name = "Jim"
e1.lastName = "Smith"
e1.age = 18
e1.employeeNumber = 1
e1.hourlyRate = 15.50

println(e1.profile())

In Listing 40-1, you created two instances: p1, which is a Person instance,
and e1, which is an Employee instance. When you print the profile() to the
console log, the results are the same (with the exception of the property
values) for both instances:

I'm Matt and I'm 40 years old.
I'm Jim and I'm 18 years old.

You can override the method profile() on the Employee class if you want
employees to have a different profile template than other people
(see Listing 40-2).

CHAPTER 40: Overriding Methods and Properties

119

Listing 40-2. Overriding Methods

class Employee: Person {
 var employeeNumber = 1234567890
 var hourlyRate = 12.00

 override func profile() -> String {
 return "I'm \(self.name) and my hourly rate is $\(self.hourlyRate)"
 }

}

var p1 = Person()

p1.name = "Matt"
p1.lastName = "Campbell"
p1.age = 40

println(p1.profile())

var e1 = Employee()

e1.name = "Jim"
e1.lastName = "Smith"
e1.age = 18
e1.employeeNumber = 1
e1.hourlyRate = 15.55

println(e1.profile())

In Listing 40-2, you used the override keyword to override the method
named profile() and change the returned string. Now the output would
look like this:

I'm Matt and I'm 40 years old.
I'm Jim and my hourly rate is $15.55

You can also override property declarations. For instance, if you wanted to
keep your employee’s last name anonymous, you could override the getter
in the Employee class definition. The new getter could return the string
Anonymous instead of the employee’s real last name (see Listing 40-3).

Listing 40-3. Overriding Properties

class Employee: Person {
 var employeeNumber = 1234567890
 var hourlyRate = 12.00

 override func profile() -> String {
 return "I'm \(self.name) and my hourly rate is $\(self.hourlyRate)"
 }

CHAPTER 40: Overriding Methods and Properties 120

 override var lastName:String {
 get {
 return "Anonymous"
 }
 set {
 _lastName = newValue
 }
 }

}

var p1 = Person()
p1.lastName = "Campbell"

var e1 = Employee()
e1.lastName = "Smith"

println(p1.lastName)
println(e1.lastName)

In Listing 40-3, you used the override keyword to override the lastName
property. You can still set the value, but when you attempt to retrieve the
value Employee, instances will always return Anonymous. The output from
Listing 40-3 would look like this:

Campbell
Anonymous

121

Chapter 41
Initialization

You initialize an instance to get the instance ready for use. Initialization means
you set the starting values for the instance. In Chapter 31, you used the
default initializer when you created a new Person instance (see Listing 41-1).

Listing 41-1. Default Initializer

class Person {
 var name: String = "Name"
 var age:Int = 0

 func profile() -> String {
 return "I'm \(self.name) and I'm \(self.age) years old."
 }

}

var p = Person()

p.name = "Matt"
p.age = 40

In Listing 41-1, you called the default initializer by using the class name
followed by parentheses: Person(). Since you supplied default values for
the two properties name and age, this worked fine.

Use init() to override the default initializer. This can be used as an
alternative to setting the default property values in the class declaration
(see Listing 41-2).

CHAPTER 41: Initialization122

Listing 41-2. Default Initializer

class Person {
 var name: String
 var age:Int

 func profile() -> String {
 return "I'm \(self.name) and I'm \(self.age) years old."
 }

 init() {
 self.name = "Name"
 self.age = 0
 }

}

In Listing 41-2, you overrode the default initializer init() to set the default
property of name to Name and of age to 0.

You can provide custom initializers when you want to provide an easy way
to let callers provide initialization values. This makes instance creation much
easier (see Listing 41-3).

Listing 41-3. Custom Initializers

class Person {
 var name: String
 var age:Int

 func profile() -> String {
 return "I'm \(self.name) and I'm \(self.age) years old."
 }

 init() {
 self.name = "Name"
 self.age = 0
 }

 init(name:String, age:Int) {
 self.name = name
 self.age = age
 }

}

var p = Person(name: "Matt", age: 40)

In Listing 41-3, when you called the custom initializer, you had to provide the
external name for each parameter. External names are descriptive prefixes
designed to make code clear. Swift provides these for you automatically
with init methods. Xcode will use these for code completion assistance.

123

Chapter 42
De-initialization

When an instance is no longer need, Swift deallocates the instance and
frees up the instance resources. For the most part, this is an automatic
process that you don’t need to worry about when you are using standard
Swift types. However, if you are using resources that need to be manually
freed up (such as open files), you can de-initialize these resources by
overriding the deinit method (see Listing 42-1).

Listing 42-1. deinit Method

class Person {
 var name: String = "Name"
 var age:Int = 0

 func profile() -> String {
 return "I'm \(self.name) and I'm \(self.age) years old."
 }

 deinit {
 //Remove any resources outside of standard
 //types and objects here
 }

}

In Listing 42-1, you added the deinit so you can include any additional
resources that need to be deallocated.

Note Creating resources that require deinit is beyond the scope of
this book since Swift is very good at managing typical resources.

125

Chapter 43
Type Casting

You can convert value types such as floating-point and integer numbers to
other types in Swift. This is called type casting. Obviously, if you convert
a Double type to a Float or Int type, you will lose some precision in your
numbers. Listing 43-1 shows some examples of how you might convert a
floating-point number to other value types.

Listing 43-1. Type Casting Value Types

let f1 = 9.99
let i1 = Int(f1)
let d1 = Double(f1)
let b1 = Bool(f1)
let s1 = toString(f1)

In Listing 43-1, you type cast f1 to an integer, double, and boolean. In the
last line, you converted f1 to a String type.

Type Casting Instances
You can type cast instances using the as keyword. Let’s say you are using
the Person and Employee classes from Chapter 39 and you’ve already
created a new Employee instance, as shown in Listing 43-2.

Listing 43-2. Employee Instance

class Person {
 var name: String = "Name"
 var age:Int = 0

 func profile() -> String {
 return "I'm \(self.name) and I'm \(self.age) years old."
 }

CHAPTER 43: Type Casting126

 func doPersonThings() {
 println("\(self.name) is doing person things...")
 }

}

class Employee: Person {
 var employeeNumber = 1234567890
 var hourlyRate = 12.00

 func doEmployeeThings() {
 println("\(self.name) is doing employee things...")
 }
}

var e1 = Employee()

In Listing 43-2, you may notice that the two classes now include the new
methods doPersonThings() and doEmployeeThings(). Also, you’ve created a
new instance called e1 that can use both of the new methods (Listing 43-3).

Listing 43-3. Using Employee Methods

var e1 = Employee()
e1.name = "Jim"

e1.doPersonThings()
e1.doEmployeeThings()

In Listing 43-3, since Jim is an employee, his instance can use both
doEmployeeThings() and doPersonThings().

The output from Listing 43-3 would look like this:

Jim is doing person things...
Jim is doing employee things...

There may be some situations where you want to use Jim’s instance only
as a Person. Maybe you have an array of instances you know for sure are
People instances. While this array may have instances that are Employee
instances, you can’t be sure. So, you instead want to cast the objects in the
array as People (see Listing 43-4).

CHAPTER 43: Type Casting

127

Listing 43-4. Type Casting Instances

var e1 = Employee()
e1.name = "Jim"

e1.doPersonThings()
e1.doEmployeeThings()

let a1 = [e1]

for item in a1 {
 let p = item as Person
 p.doPersonThings()
}

If you attempted to add p.doEmployeeThings() in the loop in Listing 43-4,
you would have gotten an error because you have access only to the
methods available to the Person class now. This is called down casting when
you type cast to a parent class (or any class higher in the class hierarchy).

129

Chapter 44
Nested Types

When you are working with value types such as enumerations (Chapter 19),
structures (Chapter 30), and reference types like classes (Chapter 31),
you can nest other types in your type definitions. This means your class
definition may include other class definitions, structure definitions, and
enumeration definitions. Each of these may contain their own nested types.

For instance, if you wanted to expand the construct of a Person to include
health information, you might do something like Listing 44-1.

Listing 44-1. Nested Classes

class Person {
 var name: String = "Name"
 var age:Int = 0
 var health = Health()

 func profile() -> String {
 return "I'm \(self.name) and I'm \(self.age) years old."
 }

 class Health {
 var pulse:Int = 100
 var bmi:Int = 20

 func profile() -> String {
 return "Pulse:\(self.pulse), BMI:\(self.bmi)"
 }

 }

}

let p = Person()

p.health.profile()

CHAPTER 44: Nested Types130

In Listing 44-1, you added a Health class definition right inside the class
definition for Person. Since you added a health property inside the class
definition, you also have a way to play with an example of a Health instance.
The last line of code from Listing 44-1 produces this output:

Pulse:100, BMI:20

You could also add more organization to the structure you started in
Chapter 30 (see Listing 44-2).

Listing 44-2. Nested Structures

struct Shapes {

 struct Rectangle {
 var x:Int = 0
 var y:Int = 0
 var width:Int = 0
 var height:Int = 0
 }

 struct Circle {
 let pi:Float = 3.1415
 var radius:Float = 0.0
 }
}

var c = Shapes.Circle()
c.radius = 45.0

In Listing 44-2, you have two types of shapes under the Shapes structure.
You can reference nested types using dot syntax. You are free to mix, match,
and nest types as you see fit as you create your programs.

131

Chapter 45
Extensions

You use extensions when you want to add methods and computed properties
to a class, structure, or enumeration that already exists. This comes in handy
when you want new behavior for a type but only in a particular context.
Extensions will remind Objective-C programmers of categories.

To extend a type, you use the extension keyword followed by the name of
the type you want to extend, as shown in Listing 45-1.

Listing 45-1. Extending the Person Class

class Person {
 var name: String = "Name"
 var age:Int = 0

 func profile() -> String {
 return "I'm \(self.name) and I'm \(self.age) years old."
 }

}

extension Person {
 var dogYears:Int {
 get{
 return self.age * 7
 }
 }
}

var p = Person()
p.name = "Matt"
p.age = 40

println(p.dogYears)

CHAPTER 45: Extensions132

As you can see in Listing 45-1, you just need to use the extension keyword
followed by the name of the class. Once you have that in place, you can add
your computed properties, methods, initializers, subscripts, and other type
definitions. In the last line of code, you printed the information from the new
computed property dogYears, which is 280.

133

Chapter 46
Protocols

When you want to specify properties, methods, and types that would require
other types to implement, you can use protocols. A protocol can be adopted
by a type. Adopting a protocol means that a type will agree to implement the
definition defined in the protocol.

To define a protocol, use the protocol keyword (see Listing 46-1).

Listing 46-1. Defining a Protocol

protocol PrinterProtocol {
 func printThis()
}

In Listing 46-1, you coded a new protocol named PrinterProtocol, which
defined a function named printThis(). If you coded a class that you wanted
to adopt this protocol, you would write the code shown in Listing 46-2.

Listing 46-2. Adopting a Protocol

class aClass:PrinterProtocol {

}

In Listing 46-2, you defined a class that adopted the PrinterProtocol
protocol. When you adopt a protocol, the protocol name goes after the class
name and a colon (:). If the class is also inheriting another class, you must
list the protocol name after the parent class. For instance, if aClass inherited
the Person class, you would need to use the code in Listing 46-3.

CHAPTER 46: Protocols134

Listing 46-3. Protocol and Inheritance

class aClass: Person, PrinterProtocol{

 var i = 0

 func printThis() {
 println("Implement printThis for aClass")
 }
}

You may have noticed that your playground is displaying a build error. You
should see a red disc in the left gutter. If you click the red disc, you’ll see the
message Type 'aClass' does not conform to protocol 'PrinterProtocol'.
This error appears because you haven’t yet implemented the function
printThis(). Fix that now (see Listing 46-4).

Listing 46-4. Implementing Protocols

protocol PrinterProtocol {
 func printThis()
}

class aClass:PrinterProtocol {
 func printThis() {
 println("Implement printThis for aClass")
 }
}

var obj = aClass()

obj.printThis()

The error should have gone way for you if you followed the code from
Listing 46-4. Protocols require only that you match the definition specified
in the protocol. The actual implementation that you choose is entirely
up to you.

The code from Listing 46-4 would result in this console log output:

Implement printThis for aClass

When you use protocols to specify variables, you must include the getter
and/or setter definitions (Listing 46-5).

CHAPTER 46: Protocols

135

Listing 46-5. Protocol Properties

protocol PrinterProtocol {
 func printThis()
 var i:Int {get set}
}

class aClass:Person, PrinterProtocol {

 var i = 0

 func printThis() {
 println("Implement printThis for aClass & i = \(self.i)")
 }
}

var obj = aClass()

obj.printThis()

In Listing 46-5, you required a property i and then implemented i in the
aClass class. The output from Listing 46-5 would look like this:

Implement printThis for aClass & i = 0

137

Chapter 47
Delegation

Delegation is a design pattern where one object asks another object for
help. Protocols (Chapter 46) are an important part of delegation because
protocols define how an object will be helped.

Delegation works by defining a protocol that will list all the methods and
properties an object will need help with. Another object, known as the
delegate, will provide the help needed by adopting and implementing the
protocol. Objects ask for help by sending messages to their delegates.

To demonstrate delegation, imagine that you are working on a project
management application and you’ve defined two classes: Project and Task.
A Project instance manages a list of Task instances (see Listing 47-1).

Listing 47-1. Project Manager Classes

class Project {
 var name = ""
 var listOfTasks = [Task]()
}

class Task {
 var name = ""
 var done = false
}

var p = Project()
p.name = "Cook Dinner"

let taskNames = ["Choose Menu", "Buy Groceries", "Prepare Ingredients",
"Cook Food"]

CHAPTER 47: Delegation138

for name in taskNames{
 var t = Task()
 t.name = name
 p.listOfTasks.append(t)
}

In Listing 47-1, you defined the Project and Task classes. Then you created
a Project instance: p. Finally, you used an array of strings to create four
tasks and add each task to p.

Implementing Delegation
Let’s say you want to implement delegation for your project application that
includes the Project object and Task instances. In your app, Task instances
may need help from the Project instance. For instance, when a Task status
is marked as Done, the task may not know what to do next. The task could
ask the Project instance for help if Project was capable of acting as the
Task’s delegate.

Defining a Protocol
To act as a Task delegate, you need to first define a protocol for Task that
defines the ways that Task will need help (see Listing 47-2).

Listing 47-2. Define TaskDelegate

protocol TaskDelegate{
 func taskStatusHasChanged(task:Task, done:Bool)
}

class Project {
 var name = ""
 var listOfTasks = [Task]()
}

class Task {
 var name = ""
 var done = false
}

In Listing 47-2, you defined a protocol named TaskDelegate that defined one
function required to act as a delegate for a Task instance. In Listing 47-2,
you had to include the TaskDelegate protocol definition before the class
definitions because you will be using TaskDelegate in Project.

CHAPTER 47: Delegation

139

Adopting the Protocol
Since Project instances will be acting as delegates for Task instances,
you will need to adopt the TaskDelegate protocol in your Project class
(see Listing 47-3).

Listing 47-3. Adopting TaskDelegate

protocol TaskDelegate{
 func taskStatusHasChanged(task:Task, done:Bool)
}

class Project:TaskDelegate {
 var name = ""
 var listOfTasks = [Task]()
}

class Task {
 var name = ""
 var done = false
}

Implement Protocol
Now that you have adopted TaskDelegate, you must implement the methods
defined in the protocol. Until you do that, you will see an error in the
playground (see Listing 47-4).

Listing 47-4. Implementing TaskDelegate Methods

protocol TaskDelegate{
 func taskStatusHasChanged(task:Task, done:Bool)
}

class Project:TaskDelegate {
 var name = ""
 var listOfTasks = [Task]()
 func taskStatusHasChanged(task:Task, done:Bool){
 let status = (task.done ? "DONE" : "IN PROGRESS")
 println("Task \(task.name) is now \(status)")
 }
}

class Task {
 var name = ""
 var done = false
}

CHAPTER 47: Delegation140

In Listing 47-4, you implemented the method from the TaskDelegate protocol.
This method prints a notification to the console log when a Task status has
changed. Now, you will need to set up Task to be able to use a delegate.

Adding Delegate Property
For Task instances to be able to ask for help, they will need to be able to
reference a delegate property (see Listing 47-5).

Listing 47-5. Delegate Property

protocol TaskDelegate{
 func taskStatusHasChanged(task:Task, done:Bool)
}

class Project:TaskDelegate {
 var name = ""
 var listOfTasks = [Task]()
 func taskStatusHasChanged(task:Task, done:Bool){
 let status = (task.done ? "DONE" : "IN PROGRESS")
 println("Task \(task.name) is now \(status)")
 }
}

class Task {
 var name = ""
 var delegate:TaskDelegate?
 var done = false
}

In Listing 47-5, you added an optional property delegate. This is the instance
that you will use as the delegate. You will want to use this delegate every
time the Done status changes, so this is a good place to implement a custom
getter and setter (see Listing 47-6).

Listing 47-6. Calling Delegate

protocol TaskDelegate{
 func taskStatusHasChanged(task:Task, done:Bool)
}

class Project:TaskDelegate {
 var name = ""
 var listOfTasks = [Task]()
 func taskStatusHasChanged(task:Task, done:Bool){
 let status = (task.done ? "DONE" : "IN PROGRESS")
 println("Task \(task.name) is now \(status)")
 }
}

CHAPTER 47: Delegation

141

class Task {
 var name = ""
 private var _done = false
 var delegate:TaskDelegate?
 var done:Bool {
 get {
 return _done
 }
 set {
 _done = newValue
 self.delegate?.taskStatusHasChanged(self, done: _done)
 }
 }

}

In Listing 47-6, you defined a custom getter and setter for the done property.
In the setter for done, you made a call to the delegate letting the delegate
know that the task status has changed. You also passed the delegate a
reference to the task (using the self) keyword.

Note The self keyword is used to reference an instance from a definition.
So, when you use self in a class definition, the self keyword refers to the
instance created from the class definition.

Assigning Delegate Property
For each task, you must assign the delegate property to the project
instance. For this example, this is best done in the for loop where you
created each task (see Listing 47-7).

Listing 47-7. Assigning Delegates

var p = Project()
p.name = "Cook Dinner"

let taskNames = ["Choose Menu", "Buy Groceries", "Prepare Ingredients",
"Cook Food"]

for name in taskNames{
 var t = Task()
 t.name = name
 t.delegate = p
 p.listOfTasks.append(t)
}

CHAPTER 47: Delegation142

Using Delegation
To test your delegation pattern, change the task status of one of your tasks
and examine the console log (see Listing 47-8).

Listing 47-8. Testing Delegation

p.listOfTasks[0].done = true

In Listing 47-8, you changed the status of the first task to complete.
The project instance was notified and printed this output to the console log:

Task Choose Menu is now DONE

Note This Delegation pattern as code will lead to a strong reference
cycle (see Chapter 49), which means that a memory leak could occur
because Task instances are maintaining references to the top-level
Project instances. See Chapter 49 for more information about this,
along with tips on how to resolve strong reference cycles.

143

Chapter 48
Generics

When you are working with types such as Int or String in Swift, you
typically must declare the type or have the type inferred from the value.
While this pattern makes some code clearer, sometimes you want to be able
to use any type in your code. Generics gives you a way of doing just this.

To use generics, you must add <T> after a function name. Then you can
substitute T in place of the type name. For example, let’s say you are working
with your Person and Employee classes from Chapter 40. Maybe you decide
that you want to add a function to print information about the types of
instance that you could have. Listing 48-1 shows how you can use generics
to create one function for both types of instances.

Listing 48-1. Using Generics

class Person {
 var name: String = "Name"
 var age:Int = 0

 func profile() -> String {
 return "I'm \(self.name) and I'm \(self.age) years old."
 }
}

class Employee: Person {
 var employeeNumber = 1234567890
 var hourlyRate = 12.00

 override func profile() -> String {
 return "I'm \(self.name) and my hourly rate is $\(self.hourlyRate)"
 }
}

CHAPTER 48: Generics144

var p1 = Person()

p1.name = "Matt"
p1.age = 40

var e1 = Employee()

e1.name = "Jim"
e1.age = 18
e1.employeeNumber = 1
e1.hourlyRate = 15.55

func printPerson<T>(p:T){
 let o = p as Person
 println(o.profile())
}

printPerson (p1)
printPerson (e1)

In Listing 48-1, you added a function after setting up the Person and Employee
classes and instances. Your function takes any instance and prints the
instance profile. The output from Listing 48-1 would look like this:

I'm Matt and I'm 40 years old.
I'm Jim and my hourly rate is $15.55

Type Checking
The function from Listing 48-1 works great as long as you use the function
only with Person or Employee instances. However, if you attempt to use this
function with another type, you would get a runtime EXC_BAD_ACCESS error.

To avoid this type of error, you can add type checking to the function. Type
checking is a way to test an instance to see whether it is a particular type.
With type checking, you can say “Is this a Person instance?” Listing 48-2
shows how you would add type checking to your function.

Listing 48-2. Type Checking

func printPerson<T>(p:T){
 if p is Person || p is Employee{
 let o = p as Person
 println(o.profile())
 }
 else{
 println("\(p) is not a supported type.")
 }
}

CHAPTER 48: Generics

145

printPerson (p1)
printPerson (e1)

var s = "ABC"
printPerson(s)

In Listing 48-2, you use the is keyword along with the OR logical operator
(||) to test to see whether p is a Person or an Employee.

The function prints an employee or person profile or an error message if p is
neither of these types. Here is the output that Listing 48-2 would produce:

I'm Matt and I'm 40 years old.
I'm Jim and my hourly rate is $15.55
ABC is not a supported type.

147

Chapter 49
Automatic Reference
Counting

As your Swift program creates new instances, memory resources are used
to store the information associated with each instance. When an instance
is no longer needed, Swift will reclaim the resources associated with the
instance so that these resources can be used with other instances.

The system that Swift uses to keep track of all your instances is called
automatic reference counting (ARC). ARC works because Swift can keep
a count of how many times an instance is referenced in a program. This is
called the reference count. For the most part, you don’t need to manage this
yourself since Swift takes care of reference counting automatically.

Note In Chapter 42, you coded a deinit, which is a special method that
executes right before Swift disposes of an object. This method is called
when an instance reference count is zero. When an instance reference
count is zero, there are no remaining references to the instance.

Strong References and Reference Cycles
When a property is defined in a class, the class is said to have a strong
relationship with the property. This means that instances of the class
will increase the property’s reference count in ARC. When the instance’s
reference count reaches zero and the instance is disposed of, any properties
with strong references will be decreased by one.

CHAPTER 49: Automatic Reference Counting148

ARC runs into a problem when you have classes reference each other. Take
your Project and Task from Chapter 47 as an example. Listing 49-1 shows a
simplified example of that relationship.

Listing 49-1. Project-Task Reference Cycle

import Foundation

class Project {
 var name = ""
 var listOfTasks = [Task]()
 deinit {
 println("\(self.name) project is being deinitialized")
 }
}

class Task {
 var name = ""
 private var _done = false
 var parent:Project?
 deinit {
 println("\(self.name) task is being deinitialized")
 }
}

var p:Project? = Project()
p!.name = "Cook Dinner"

let taskNames = ["Choose Menu", "Buy Groceries", "Prepare Ingredients",
"Cook Food"]

for name in taskNames{
 var t = Task()
 t.name = name
 t.parent = p
 p!.listOfTasks.append(t)
}

p = nil

Note To follow along with this example, you will need to create a command-
line tool Mac application (see Chapter 3). You need the command-line
application because playgrounds always maintain a reference to instances
regardless of what you do, so you will never see the deinitialization messages
unless you are using an application.

CHAPTER 49: Automatic Reference Counting

149

In Listing 49-1, you have coded two classes, Project and Task, each of
which have deinit methods that will execute right before these instances
are disposed of.

Note Instead of a delegate property in Task, you have a property named
parent, which is an optional Project type that a Task instance may use to
get information about the project that the Task instance belongs to. Finally,
when you instantiate your Project and Task instances, you declare the
Project instance as optional. You declare Project as optional because you
need to set this instance to nil at the end to dispose of the instance.

When you build and run the application in Listing 49-1, it seems to run fine.
But, if you look at the console log, you will notice that no messages were
written out even though you expected some. This means the code in deinit
was never reached and these five Task instances were never disposed of.
This is a memory leak.

You could solve this problem by removing the line of code that assigns the
Project instance to the parent property for each Task instance (Listing 49-2).

Listing 49-2. Removing Strong Reference

var p:Project? = Project()
p!.name = "Cook Dinner"

let taskNames = ["Choose Menu", "Buy Groceries", "Prepare Ingredients",
"Cook Food"]

for name in taskNames{
 var t = Task()
 t.name = name
 //t.parent = p
 p!.listOfTasks.append(t)
}

p = nil

When you comment out the line from Listing 49-2, you will get the following
output in the console log:

Cook Dinner project is being deinitialized
Choose Menu task is being deinitialized
Buy Groceries task is being deinitialized
Prepare Ingredients task is being deinitialized
Cook Food task is being deinitialized

CHAPTER 49: Automatic Reference Counting150

This demonstrates the problem, but this is not a great solution because
each Task instance may need to reference the parent Project at times. Swift
helps you with the weak keyword for properties. By adding the weak keyword,
you are telling the class to not maintain a strong relationship to the property.
This means the parent instance will not increase the property’s reference
count (see Listing 49-3).

Listing 49-3. Weak References

import Foundation

class Project {
 var name = ""
 var listOfTasks = [Task]()
 deinit {
 println("\(self.name) project is being deinitialized")
 }
}

class Task {
 var name = ""
 private var _done = false
 weak var parent:Project?
 deinit {
 println("\(self.name) task is being deinitialized")
 }
}

var p:Project? = Project()
p!.name = "Cook Dinner"

let taskNames = ["Choose Menu", "Buy Groceries", "Prepare Ingredients",
"Cook Food"]

for name in taskNames{
 var t = Task()
 t.name = name
 t.parent = p
 p!.listOfTasks.append(t)
}

p = nil

In Listing 49-3, you added the weak keyword to the parent Project property.
You were also able to assign the Project instance to each Task instance
without creating a strong reference cycle or creating a memory leak.

CHAPTER 49: Automatic Reference Counting

151

The output shown here would still look correct and verify that no memory
leak is occurring, and you would still get the needed reference:

Cook Dinner project is being deinitialized
Choose Menu task is being deinitialized
Buy Groceries task is being deinitialized
Prepare Ingredients task is being deinitialized
Cook Food task is being deinitialized

A ■
Arithmetic operators, 39

compound, 42
division and remainder

operators, 40
expressions, 40
increment and decrement

operator, 40
minus, 41
string concatenation, 42

Arrays
creation

assignment operator, 53
shorthand method, 53
type inference, 53

mutability
change items, 55
iteration, 56
remove items, 55
store items, 54

Assertions
comparison/logical operator, 36
creation, 35
testing, 36
triangleSides, 35

Assignment operator (=)
assign tuple values, 37
declaration, 37
multiple assignments, 37
tuple value, extract, 38
updating values, 37
vs. arithmetic operator, 38

Automatic reference counting
(ARC), 147

reference cycle, 148
strong reference, 149
weak references, 150

B ■
Booleans

declaration, 25
if statements, 25
storing results, 25

Break statement, 72–73

C ■
Case keyword, 68–70
Classes

accessing properties, 94
class keyword, 93
functions, 95
identity operators

equality, 100
inequality, 100
person class, 99

Instances, 94
nested types, 129
type properties, 109

Closures
sorted function, 87
variables, 88

Code comments
multiline, 15
nested, 16
one-line, 15

Command-line tool
fields, 12
println() function, 13–14
string interpolation, 14

Comparison operators (==), 23
if statements, 44
types, 43

Compound operators, 42
Computed properties, 104

Index

153

Constants
assignment operator =, 8
Hello World program, 7
immutable, 8
let keyword, 7
referencing, 8
String type declaration, 7

Continue statement, 71–72, 76
Control transfer statements

break, 72–73
continue, 71–72
fallthrough, 73–74

D ■
De-initialization, 123
Delegation

adoptation, 139
assigning delegates, 141
definition, 138
delegate property, 140
implementation, 139
project management

application, 137
testing, 142

Dictionary
creation, 57
iteration, 59
reference, 58
update, 58

E ■
Enumerations

defined, 51
integer enum, 52
ternary conditional operator, 51
toRaw() function, 52
using enums, 51

Expressions, 40
Extensions, 131

F ■
Fallthrough statement, 73–74
Functions

getPhrase(), 79–80
parameters, 80
simple, 79
void, 80

G, H ■
Generics, 143
getPhrase() function, 79–80
Global variables, 34

I, J, K ■
If statements

else keyword, 65
nested if, 66

Inheritance, 115
Initialization

custom intializers, 122
default intializer, 121

Instances
accessing properties, 97
class and structures, 97
copy vs. reference, 98
type casting, 125

Integers
declaration, 19
floating-point numbers, 20
size, 19

L ■
Labeled statements

continue statement, 76
Nested Loop, 75

Lazy stored property, 103
Logical operators

AND, 49
NOT, 50
OR, 50

Loops
do-while loop, 64
for-condition-increment

loop, 61
for-in loop, 62
while loop, 63

Index154

M ■
Method overriding, 117
Multiline comment, 15

N ■
Nested code comments, 16
Nested functions, 83

analyzeTestScores(), 84
printReport(String, [Int]), 84

Nested Loop, 75
Nested types

classes, 129
structures, 130

Numbers
integers

declaration, 19
floating-point numbers, 20
size, 19

O ■
One-line code comment, 15
Optionals

bindings, 30
declaration, 29
unwrapping, 29

Order of operations, 40

P, Q ■
Properties

access properties, 102
computed properties, 104
declarations, 101
getters and setters, 102
Lazy property, 103

Property observers, 107
Protocols, 133

R ■
Range operators

closed range operators, 47
half-open range operators, 48

Reference vs. copy, 98
Remainder operator (%), 40

S ■
Simple function, 79
String concatenation, 42
String interpolation, 23
Strings

Character data type, 22
comparison operator (==), 23
concatenation, 22
declaration, 21
interpolation, 23
unicode characters, 21

Structures
accessing properties, 90
functions, 91
instances, 90
nested types, 130
struct keyword, 89

Subscripts, 113
Switch statements, 67, 68

T ■
Ternary conditional

operator, 45
Tuples

annotated tuple, 27
declaration, 27
decomposed tuple, 28
ignoring values, 28

Type aliases
Int Max function, 31
Speed Max function, 32
typealias keyword, 31

Type casting, 125
Type checking, 144
Type methods

declaration, 111
structure, 112

Type properties
classes, 109
value, 110

Index

155

U ■
Unary increment operator (++), 40
Unary minus operator, 41
Unwrapping optionals, 29

V, W ■
Variables, 7–8

data types, 9
global variables, 34
mutable, 9
scope

if statement, 33
myString, 34

type inference, 9
Void functions, 80

X, Y, Z ■
Xcode

command-line tool
fields, 11
println() function, 13–14
string interpolation, 14

constants, 7
installation, 1
playground creation

boilerplate, 4
Hello Playground, 4
Hello World program, 4
save as screen, 3
welcome screen, 2

variables, 7

Index156

Swift Quick
Syntax Reference

Matthew Campbell

Swift Quick Syntax Reference

Copyright © 2014 by Matthew Campbell

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are
brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the
purpose of being entered and executed on a computer system, for exclusive use by the purchaser of
the work. Duplication of this publication or parts thereof is permitted only under the provisions of the
Copyright Law of the Publisher’s location, in its current version, and permission for use must always
be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright
Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4842-0440-5

ISBN-13 (electronic): 978-1-4842-0439-9

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, and
images only in an editorial fashion and to the benefit of the trademark owner, with no intention of
infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility
for any errors or omissions that may be made. The publisher makes no warranty, express or implied,
with respect to the material contained herein.

Publisher: Heinz Weinheimer
Lead Editor: Michelle Lowman
Development Editor: Douglas Pundick
Technical Reviewer: Charles Cruz
Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Louise Corrigan,

James T. DeWolf, Jonathan Gennick, Jonathan Hassell, Robert Hutchinson,
Michelle Lowman, James Markham, Matthew Moodie, Jeff Olson, Jeffrey Pepper,
Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft, Gwenan Spearing,
Matt Wade, Steve Weiss

Coordinating Editor: Melissa Maldonado
Copy Editor: Kim Wimpsett
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring
Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our
Special Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this text is available to
readers at www.apress.com. For detailed information about how to locate your book’s source code,
go to www.apress.com/source-code/.

http:\\orders-ny@springer-sbm.com
www.springeronline.com
http:\\rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/

To my girls, Stacie and Keira.

ix

Contents

About the Author ��� xv

About the Technical Reviewer ��� xvii

Introduction �� xix

Chapter 1: Hello World ■ �� 1

Xcode �� 1

Install Xcode ��� 1

Create a New Playground ��� 2

Chapter 2: Declaring Constants and Variables ■ ������������������������������� 7

Constants �� 7

Constants Are Immutable ��� 8

Variables �� 8

Variables Are Mutable ��� 9

Type Inference ��� 9

Data Types ��� 9

Chapter 3: Printing Variables and Constants ■ �������������������������������� 11

Creating a Command-Line Tool ��� 11

Printing to the Console ��� 13

String Interpolation ��� 14

Contentsx

Chapter 4: Code Comments ■ �� 15

One-Line Code Comments ��� 15

Multiline Comments �� 15

Nested Code Comments �� 16

Chapter 5: Numbers ■ �� 19

Integers ��� 19

Integer Sizes ��� 19

Floating-Point Numbers �� 20

Chapter 6: Strings ■ ��� 21

Unicode Characters ��� 21

Character Data Type �� 22

Concatenation ��� 22

Comparing Strings ��� 23

String Interpolation �� 23

Chapter 7: Booleans ■ ��� 25

Chapter 8: Tuples ■ �� 27

Chapter 9: Optionals ■ ��� 29

Forced Unwrapping ��� 29

Optional Bindings �� 30

Chapter 10: Type Aliases ■ �� 31

Chapter 11: Global and Local Variables ■ �� 33

Scope Defined ��� 33

Global Variables ��� 34

Chapter 12: Assertions ■ ��� 35

Contents

xi

Chapter 13: Assignment Operators ■ �� 37

Compound Operators �� 38

Chapter 14: Arithmetic Operators ■ �� 39

Remainder Operator �� 40

Order of Operations and Parentheses ��� 40

Increment and Decrement Operators �� 40

Unary Minus Operator ��� 41

Compound Operators �� 42

String Concatenation ��� 42

Chapter 15: Comparison Operators ■ �� 43

Chapter 16: Ternary Conditional Operator ■ ������������������������������������ 45

Chapter 17: Range Operators ■ ��� 47

Closed Range Operator �� 47

Half-Open Range Operator �� 48

Chapter 18: Logical Operators ■ �� 49

Chapter 19: Enumerations ■ �� 51

Chapter 20: Arrays ■ ��� 53

Array Mutability ��� 54

Adding Items to Arrays ��� 54

Removing Items from Arrays �� 55

Changing Items in Arrays �� 55

Iterating Over Array Items ��� 56

Chapter 21: Dictionaries ■ ��� 57

Referencing Dictionary Items �� 58

Updating Dictionary Items ��� 58

Iterating Over Dictionary Items�� 59

Contentsxii

Chapter 22: Loops ■ ��� 61

for-condition-increment Loop�� 61

for-in Loop ��� 62

While Loop ��� 63

do-while Loop ��� 64

Chapter 23: if Statements ■ ��� 65

else Keyword ��� 65

Chapter 24: switch Statements ■ �� 67

switch Keyword ��� 68

Case Keyword ��� 68

Chapter 25: Control Transfer Statements ■ ������������������������������������� 71

continue Statement ��� 71

break Statement �� 72

fallthrough Statement ��� 73

Chapter 26: Labeled Statements ■ �� 75

Chapter 27: Functions ■ �� 79

Parameters �� 80

Chapter 28: Nested Functions ■ �� 83

Chapter 29: Closures ■ �� 87

Chapter 30: Structures ■ ��� 89

Structure Instances ��� 89

Accessing Structure Properties ��� 90

Structure Functions ��� 90

Contents

xiii

Chapter 31: Classes ■ �� 93

Class Instances (Objects) �� 93

Accessing Class Properties ��� 94

Class Functions ��� 94

Chapter 32: Using Instances ■ ��� 97

Reference vs� Copy �� 98

Chapter 33: Class Identity Operators ■ �� 99

Class Equality Identity Operator �� 100

Class Inequality Identity Operator ��� 100

Chapter 34: Properties ■ ��� 101

Lazy and Computed Properties ��� 103

Lazy Properties ��� 103

Computed Properties �� 104

Chapter 35: Property Observers ■ ��� 107

Chapter 36: Class Type Properties ■ �� 109

Value Type Properties �� 110

Chapter 37: Type Methods ■ �� 111

Type Methods for Value Types ��� 112

Chapter 38: Subscripts ■ ��� 113

Chapter 39: Inheritance ■ �� 115

Chapter 40: Overriding Methods and Properties ■ ������������������������ 117

Chapter 41: Initialization ■ �� 121

Chapter 42: De-initialization ■ ��� 123

Chapter 43: Type Casting ■ �� 125

Type Casting Instances �� 125

Contentsxiv

Chapter 44: Nested Types ■ ��� 129

Chapter 45: Extensions ■ ��� 131

Chapter 46: Protocols ■ ��� 133

Chapter 47: Delegation ■ ��� 137

Implementing Delegation �� 138

Defining a Protocol ��� 138

Adopting the Protocol ��� 139

Implement Protocol �� 139

Adding Delegate Property ��� 140

Assigning Delegate Property �� 141

Using Delegation ��� 142

Chapter 48: Generics ■ �� 143

Type Checking ��� 144

Chapter 49: Automatic Reference Counting ■ ������������������������������� 147

Strong References and Reference Cycles ��� 147

Index �� 153

xv

About the Author

Matthew Campbell is a data analyst,
programmer, and published technology
author with 14 years of experience in research
data analysis, mobile applications, Windows
applications, and web services.

He spent six years as an indy application
developer with a grand total of twelve
applications, including two featured apps on
the Apple App Store.

Matt holds a master’s degree in information
systems and a bachelor’s degree in
psychology. He is a lifelong learner who is
excited about learning new domain knowledge,
processes, and technologies.

xvii

About the Technical
Reviewer

Charles Cruz is a mobile application developer
for the iOS, Windows Phone, and Android
platforms. He graduated from Stanford
University with bachelor’s and master’s
degrees in engineering. He lives in Southern
California and runs a photography business
with his wife (www.bellalentestudios.com).
When not doing technical things, he plays lead
guitar in an original metal band
(www.taintedsociety.com). Charles can be
reached at codingandpicking@gmail.com and
@CodingNPicking on Twitter.

www.bellalentestudios.com
www.taintedsociety.com
mailto:codingandpicking@gmail.com
mailto:@CodingNPicking

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Introduction
	Chapter 1: Hello World
	Xcode
	Install Xcode
	Create a New Playground

	Chapter 2: Declaring Constants and Variables
	Constants
	Constants Are Immutable

	Variables
	Variables Are Mutable

	Type Inference
	Data Types

	Chapter 3: Printing Variables and Constants
	Creating a Command-Line Tool
	Printing to the Console
	String Interpolation

	Chapter 4: Code Comments
	One-Line Code Comments
	Multiline Comments
	Nested Code Comments

	Chapter 5: Numbers
	Integers
	Integer Sizes

	Floating-Point Numbers

	Chapter 6: Strings
	Unicode Characters
	Character Data Type
	Concatenation
	Comparing Strings
	String Interpolation

	Chapter 7: Booleans
	Chapter 8: Tuples
	Chapter 9: Optionals
	Forced Unwrapping
	Optional Bindings

	Chapter 10: Type Aliases
	Chapter 11: Global and Local Variables
	Scope Defined
	Global Variables

	Chapter 12: Assertions
	Chapter 13: Assignment Operators
	Compound Operators

	Chapter 14: Arithmetic Operators
	Remainder Operator
	Order of Operations and Parentheses
	Increment and Decrement Operators
	Unary Minus Operator
	Compound Operators
	String Concatenation

	Chapter 15: Comparison Operators
	Chapter 16: Ternary Conditional Operator
	Chapter 17: Range Operators
	Closed Range Operator
	Half-Open Range Operator

	Chapter 18: Logical Operators
	Chapter 19: Enumerations
	Chapter 20: Arrays
	Array Mutability
	Adding Items to Arrays
	Removing Items from Arrays
	Changing Items in Arrays

	Iterating Over Array Items

	Chapter 21: Dictionaries
	Referencing Dictionary Items
	Updating Dictionary Items
	Iterating Over Dictionary Items

	Chapter 22: Loops
	for-condition-increment Loop
	for-in Loop
	While Loop
	do-while Loop

	Chapter 23: if Statements
	else Keyword

	Chapter 24: switch Statements
	switch Keyword
	Case Keyword

	Chapter 25: Control Transfer Statements
	continue Statement
	break Statement
	fallthrough Statement

	Chapter 26: Labeled Statements
	Chapter 27: Functions
	Parameters

	Chapter 28: Nested Functions
	Chapter 29: Closures
	Chapter 30: Structures
	Structure Instances
	Accessing Structure Properties
	Structure Functions

	Chapter 31: Classes
	Class Instances (Objects)
	Accessing Class Properties
	Class Functions

	Chapter 32: Using Instances
	Reference vs. Copy

	Chapter 33: Class Identity Operators
	Class Equality Identity Operator
	Class Inequality Identity Operator

	Chapter 34: Properties
	Lazy and Computed Properties
	Lazy Properties
	Computed Properties

	Chapter 35: Property Observers
	Chapter 36: Class Type Properties
	Value Type Properties

	Chapter 37: Type Methods
	Type Methods for Value Types

	Chapter 38: Subscripts
	Chapter 39: Inheritance
	Chapter 40: Overriding Methods and Properties
	Chapter 41: Initialization
	Chapter 42: De-initialization
	Chapter 43: Type Casting
	Type Casting Instances

	Chapter 44: Nested Types
	Chapter 45: Extensions
	Chapter 46: Protocols
	Chapter 47: Delegation
	Implementing Delegation
	Defining a Protocol
	Adopting the Protocol
	Implement Protocol
	Adding Delegate Property
	Assigning Delegate Property

	Using Delegation

	Chapter 48: Generics
	Type Checking

	Chapter 49: Automatic Reference Counting
	Strong References and Reference Cycles

	Index

