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Preface 

 

 

This book consists of a number of papers regarding the thermodynamics and structure of 
multicomponent systems that we have published during the last decade.  Even though they 
involve different topics and different systems, they have something in common which can be 
considered as the “signature” of the present book.  First, these papers are concerned with 
“difficult” or very nonideal systems, i.e. systems with very strong interactions (e.g., hydro-
gen bonding) between components or systems with large differences in the partial molar vol-
umes of the components (e.g., the aqueous solutions of proteins), or systems that are far from 
“normal” conditions (e.g., critical or near-critical mixtures).  Second, the conventional ther-
modynamic methods are not sufficient for the accurate treatment of these mixtures.  Last but 
not least, these systems are of interest for the pharmaceutical, biomedical, and related indus-
tries. 

In order to meet the thermodynamic challenges involved in these complex mixtures, we 
employed a variety of traditional methods but also new methods, such as the fluctuation the-
ory of Kirkwood and Buff and ab initio quantum mechanical techniques. 

The Kirkwood-Buff (KB) theory is a rigorous formalism which is free of any of the ap-
proximations usually used in the thermodynamic treatment of multicomponent systems.  This 
theory appears to be very fruitful when applied to the above mentioned “difficult” systems. 
Indeed, in some cases (see Chapters 3–5) this theory allows one to obtain results that are 
scarcely attainable by traditional thermodynamic methods.  For example, in mixtures of three 
or more components, thermodynamics can not provide any rigorous relations connecting the 
thermodynamic properties, such as the activity coefficients of components in multicompo-
nent mixtures to those in binary mixtures of the constituents, whereas the KB theory of solu-
tions provides such relations.  It allows one, for example, to develop a method for predicting 
or correlating the solubility of drugs in multicomponent solvents.  Let us emphasize again 
that the above results are possible because the KB theory provides a rigorous method for the 
treatment of multicomponent (not only binary!) mixtures. 

We have employed ab initio quantum mechanical techniques to obtain information about 
the intermolecular interactions and the geometry of large molecular clusters.  Such informa-
tion was very helpful in the understanding of the properties of the “difficult” systems and is 
not readily obtained by other computational methods. 

The results presented in this book have both theoretical and practical importance.  Among 
the most important theoretical results one can list:  I) the explanation of density augmenta-
tion in dilute supercritical mixtures (chapter 2); II) a new method for computing the excess 
(or deficit) around a central molecule in multicomponent mixtures (chapter 1);  III) new  
criteria for the salting-in or salting-out effect on gas solubility (Chapter 3); and IV) new 
methods for analyzing protein-solvent and protein-protein interactions in aqueous protein 
solutions (Chapter 5). 

On the other hand, the results regarding:  A) the Henry constant in binary and in mul-
ticomponent solutions (Chapter 3);  B) the entrainer effect in supercritical mixtures 



 
 
(Chapter 2);  C) methods for correlating the solubility of drugs and environmentally impor-
tant substances in multicomponent solutions (Chapter 4); and D) protein solubility and its 
correlation with the preferential binding parameter (Chapter 5) can have practical applica-
tions.   

We also hope that the book will be helpful to undergraduate and graduate students who are in-
terested in the applications of modern methods of thermodynamics and statistical mechanics to 
complex systems. 

  Prefacevi
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Chapter 1 

The Kirkwood–Buff integrals and their applications to binary and  
ternary solutions  

1.1 Kirkwood–Buff integrals in aqueous alcohol systems: 
comparison between thermodynamic  calculations  
and X - ray scattering experiments. 

1.2  Kirkwood–Buff integrals in aqueous alcohol systems: 
aggregation, correlation volume and local composi-
tion. 

1.3  Range and energy of interaction at infinite dilution in 
aqueous solutions of alcohols and hydrocarbons. 

1.4  Aggregation in binary solutions containing 
hexafluorobenzene. 

1.5  Hydrophobic self-assembling in dilute aqueous solu-
tions of alcohols and hydrocarbons. 

1.6  Effect of a third component on the interactions in a 
binary mixture determined from the fluctuation theory 
of solutions. 

1.7  The Kirkwood-Buff theory of solutions and the local 
composition of liquid mixtures. 

1.8  Excess around a central molecule with application to 
binary mixtures. 

1.9  Reply to Comment on The Kirkwood–Buff theory of 
solutions and the local composition of liquid mixtures.   

1.10 An improved local composition expression and its 
implications for phase equilibrium models. 

 

 

Introduction to Chapter 1 
 
Chapter 1 is devoted to the application of the Kirkwood–
Buff theory of solutions to the investigation of the struc-
tures of binary and multicomponent mixtures.  The analysis 
involves the quantity ijnΔ , which represents the excess (or 
deficit) number of molecules of species i around a central 
molecule of species j compared with a hypothetical mixture 
in which molecules of species i are distributed randomly 
around a central molecule of species j.   

The KBIs can be accurately determined from measurable 
macroscopic properties, such as the derivatives of the chemical 
potentials with respect to concentrations, the isothermal com-

pressibility and the partial molar volumes.  To date, the KBIs 
have been calculated for numerous binary (see 1.1, 1.4–1.5, 
1.7–1.8) and ternary (see 1.6) mixtures.  The KBI could also 
be determined experimentally by small-angle X-ray scattering, 
small-angle neutron scattering, light scattering, and other 
methods.  Comparison of these experimentally determined 

demonstrated good agreement between them (see 1.1). 
The KB theory provides a unique opportunity to obtain 

information about the structure of liquid mixtures at a 
nanometer level from the excesses ( )ijnΔ .  However, it 
took a long time to find the correct procedure to calculate 
the above excess (or deficit).  For several decades the calcu-
lations of ijnΔ  were based on the expression suggested by 
Ben-Naim [1]: 

 

ijiij Gcn =Δ            (1) 
 
where ic is the molar  concentration of species i  in the 
mixture and ijG  are the Kirkwood - Buff integrals (see 1.7–
1.9 for details).  However, the excesses (or deficits) calcu-
lated with (Eq. 1) provide nonzero values for ideal binary 
mixtures and the opinion [2] was expressed that they should 
be equal to zero in that case.  For this reason it was pro-
posed in [Ref. 2], and also by us (see 1.1), that the excess 
(or deficit) number of molecules around a central molecule 
should be calculated with respect to a reference state (for 
example, the ideal binary mixture [2]) 

 
)( R

ijijiij GGcn −=Δ                        (2) 
 
where R

ijG   are the Kirkwood–Buff integrals of the refer-
ence state.  More recently we suggested a different refer-
ence state, rather than the ideal mixture.  However, this 
yielded results comparable to those obtained with the ideal 
mixture reference state (see 1.1 for details).  The excesses 
(or deficits) calculated with Eq. (2) for various reference 
states were dramatically different (in many cases) from 
those provided by Eq. (1).  

KBIs with those obtained from thermodynamic calculations 



 
 
  Thermodynamics of Solutions2

There is a basic issue regarding the suggested reference 
states: 

Is, indeed, in an ideal mixture, the excess (or deficit) 
number of molecules around a central molecule equal to 
zero?  This is true if the distribution of the components in 
an ideal mixture is random.  However, because in an ideal 
mixture the volumes of the components are different, there 
is no absolute randomness in them.  

In addition, this new insight suggested an improved 
method for the treatment of phase equilibria (1.10). 
 
[1] Ben-Naim, A. J. Chem. Phys. 1977, 67, 4884-4890. 
[2] Matteoli, E.; Lepori, L. J. Chem. Soc., Faraday Trans. 
1995, 91, 431-436 and  Matteoli, E. J. Phys. Chem. B 1997, 
101, 9800-9810.  

Such considerations led us to a new treatment, which took 
into account the existence of a volume which is not accessi-
ble to the molecules surrounding a central molecule and 
which revealed that, for ideal mixtures, the excesses (or defi-

cits) are not zero (1.7-1.10).  This observation allowed us to 
apply the KB theory to the investigation of the microstructure 
of a wide range of mixtures starting from binary Lennard-
Jones uids to mixtures with complex intermolecular interac-
tions including hydrogen bonding (see 1.7–1.9).  

fl



Kirkwood-Buff Integrals in Aqueous Alcohol Systems: Comparison between
Thermodynamic Calculations and X-Ray Scattering Experiments

I. Shulgin† and E. Ruckenstein*
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Thermodynamic data were used to calculate the Kirkwood-Buff integrals for the aqueous solutions of methanol,
ethanol, propanols, and butanols. The calculated values have been compared to those obtained from small-
angle X-ray scattering (SAXS) experiments, and satisfactory agreement was found. Improved expressions
have been suggested and used to calculate the excess number of molecules around central ones. On this
basis, information about the structure of the solutions was gathered, the main conclusion being that the
interactions among similar molecules prevail; this leads to clustering dominated by the same kind of molecules.

Introduction

Many models are available for describing the thermodynamic
behavior of solutions.1-2 However, so far no one could
satisfactorily simulate the solution behavior over the whole
concentration range and provide the correct pressure and
temperature dependencies. This generated interest in the ther-
modynamically rigorous theories of Kirkwood-Buff 3 and
McMillan-Mayer.4 In the present paper, the emphasis is on
the application of the Kirkwood-Buff theory to the aqueous
solutions of alcohols, because it is the only one which can
describe the thermodynamic properties of a solution over the
entire concentration range.5 The key quantities in the Kirk-
wood-Buff theory of solution are the so-called Kirkwood-
Buff integrals (KBIs) defined as

where gij is the radial distribution function between species i
and j and r is the distance between the centers of molecules i
and j. From the KBI’s valuable information regarding the
structural and energetic features of the binary, ternary and
multicomponent solutions could be obtained.3 Ben-Naim indi-
cated how to calculate the KBIs from measured thermodynamic
properties.6 Since then, the KBIs have been calculated for
numerous systems7-14 and the results used to examine the
solution behavior with regard to (1) local composition, (2)
various models for phase equilibrium, and (3) preferential
solvation and others.15-18

The KBIs could also be determined experimentally from
small-angle X-ray scattering, small-angle neutron scattering
(SANS) and light-scattering 5,19-20 experiments. It is worth
mentioning that SAXS and SANS experiments allow one to
obtain not only the KBIs, but also to gather information about
the formation of complexes and clusters in solutions.

Numerous SAXS determinations for aqueous alcohol solu-
tions are available.20-30 The aqueous solutions of tertiary butanol
(tert-butyl alcohol) were examined in refs 20-24, the methanol-
water system in ref 25, and the aqueous solutions of ethanol in
ref 26. The aqueous solutions of 1-propanol were studied in a
number of papers,27-29 and the 2-propanol + water system was
also investigated.27-28 It is worth mentioning that these inves-

tigations were performed over a wide range of concentrations
and that measurements at different temperatures were con-
ducted.24,28 All the systems investigated in refs 19-29 were
homogeneous. SAXS measurements were also carried out for
binary aqueous solutions of 1-butanol, 2-butanol, and iso-butanol
for a few compositions near the transition to the two-phase
region.30 The aggregation or cluster formation was the subject
of SAXS research as well: aggregates were identified in the
aqueous systems of any of the propanols or butanols and the
dependence of the aggregate size on composition obtained.
SANS was much rarely employed; it was used to study the
aqueous alcohol solutions at a few concentrations.19

The aqueous alcohol systems were chosen for the current
research because (1) aggregation in these systems was found
by several independent experimental methods; (2) while there
are several investigations regarding their KBI’s, there is no
agreement between the reported data. This becomes clear if we
compare the peak G11 values in the system 1-propanol (1)-
water (2). (Throughout this paper, component 1 represents the
alcohol and component 2 the water.) (3) For all the selected
systems, accurate thermodynamic data are available. (4) Last
but not least, SAXS data are available for most of the systems
chosen (except the methanol-water system), but a systematic
comparison between the KBI’s extracted from the SAXS data
and those obtained thermodynamically was not yet made.

Therefore the aim of this paper is to calculate the KBIs for
aqueous solutions of alcohols from thermodynamic data, to
compare the results to those obtained from SAXS measurements,
and to examine some specific features regarding the structure
of aqueous alcohol solutions.

Theory and Formulas. 1. KBI’s Calculation. The main
formulas for calculations7,13-14 are

where

In eqs 2-4, kT is the isothermal compressibility, Vi is the partial

* To whom the correspondence should be addressed. E-mail: fealiru@
acsu.buffalo.edu. Fax: (716) 645-3822.

† Current e-mail address: ishulgin@eng.buffalo.edu.

Gij ) ∫0

∞
(gij - 1)4πr2 dr i, j ) 1, 2 (1)

G12 ) G21 ) RTkT -
V1V2

VD
(2)

Gii ) G12 + 1
xi

(Vj

D
- V) i * j (3)

D ) (∂ ln γi

∂xi
)

P,T
xi + 1 (4)
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molar volume of component i, xi is the molar fraction of
component i, V is the molar volume of the mixture, T is the
absolute temperature and γi is the activity coefficient of
component i. Because the dependence of kT on composition is
not known for all the systems investigated and because of the
small contribution of RT kT to the KBI’s,7 the dependence of
kT on composition will be approximated by

where æi is the volume fraction of component i in solution and
kT,i

0 is the isothermal compressibility of the pure component i.
The analysis of the possible errors in the calculation of KBI’s

clearly indicated that the main error is introduced through the
D value.7,31 The usual way for calculating D is from isothermal
vapor-liquid equilibrium data, by assuming that

The main uncertainty in the derivative of the activity coefficient
or partial pressure is caused by the vapor composition which is
needed to calculate the activity coefficient or the partial pressure.
Almost 35 years ego, Van Ness 32 suggested to measure the
dependence of the total pressure on liquid composition at
constant temperature and to use the data to calculate the vapor
composition and the activity coefficient. This suggestion has
the advantage that the vapor pressure can be measured much
more precisely than the vapor composition. As shown in
Appendix 1, D can be related to the pressure via the expression

where P1
0 and P2

0 are the saturated vapor pressures of the pure
components 1 and 2 at a given temperature T, and γi can be
taken from experiment or calculated through any of the usual
models, such as the Wilson, NRTL, or UNIQUAC model.2

At infinite dilution, the following limiting expressions are
valid for KBIs7,13-14

and

where Vi
0 is the molar volume of the pure component i and Vi

∞

is the partial molar volume of component i at infinite dilution.
The limiting value (∂ ln γi/∂xi)P,T,xi)0 was calculated using for
the dilute region the following expression:33

where ki(P,T) can be obtained directly from isothermal vapor-
liquid equilibrium data in the dilute region.

2. Excess Number of Molecules around a Central Molecule.
Almost all the considerations regarding the KBI’s are based on
the quantity

(where ci is the molar concentration of species i in the mixture)
which is usually interpreted as the excess (or deficit) number
of molecules i around a central molecule j.6

Matteoli and Lepori13,14 noted that ∆nij calculated with eq
13 have nonzero values for ideal systems, even though they
are expected to vanish. In addition, there are many systems for
which all KBIs (G11, G12, and G22) are negative in certain ranges
of composition.17,34 As a result, in such cases all ∆nij would be
negative, and this is not possible.

Because the KBIs have nonzero instead of zero values for
ideal systems, Matteoli and Lepori suggested to replace Gij in
eq 13 by (Gij - Gij

id)13,14

with the KBIs for ideal systems (Gij
id) given by the expres-

sions13,14

and

where kT
id and Vid are the isothermal compressibility and the

molar volume of an ideal solution, respectively.
However, because “the volume occupied by the excess j

molecules around an i molecule must be equal to the volume
left free by the i molecules around the same i molecule”,13

Equation 14 does not satisfy identically eq 18, because its
insertion in the latter equation leads to

Equation 19 indicates that only if Gij
id is replaced by Gij

V (eqs 20
and 21), which is obtained from the former by substituting kT

id,
Vi

0, and Vid with kT, Vi, and V, respectively, can eq 18 be
satisfied identically.

kT ) kT,1
0 æ1 + kT,2

0 æ2 (5)

(∂ ln γi/∂xi)P,T ) (∂ ln γi/∂xi)T (6)

D )
(∂ ln P

∂x1
)

T

P1
0γ1 - P2

0γ2

(7)

lim G12
xif0

) RTkT,j
0 - Vi

∞ (8)

lim G12
xif1

) RTkT,i
0 - Vj

∞ (9)

lim Gii
xif0

) RTkT,j
0 + Vj

0 - 2Vi
∞ - Vj

0(∂ ln γi

∂xi
)

P,T,xi)0
(10)

lim Gii
xif1

) RTkT,i
0 - Vi

0 (11)

(∂ ln γi

∂xi
)

P,T
) ki(P,T) (12)

∆nij ) ciGij (13)

∆nij′ ) ci(Gij - Gij
id) ) ci∆Gij (14)

G12
id ) RTkT

id -
V1

0V2
0

Vid
) RTkT,2

0 - V1
0 -

æ1(V2
0 - V1

0 + RTkT,2
0 - RTkT,1

0 ) (15)

G11
id ) G12

id + V2
0 - V1

0 (16)

G22
id ) G12

id - (V2
0 - V1

0) (17)

Vj∆nji′ ) -Vi∆nii′ (18)

RTV(kT - kT
id) ) ViV + Vi(Vj

0 - Vid) -
Vi

0 Vj
0 V

Vid
(19)

G12
V ) G21

V ) RTkT -
V1V2

V
(20)

Gii
V ) G12

V + Vj - Vi i * j (21)
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Consequently

and

A comparison between Gij
V and Gij

id for the methanol-water
system is presented in Figure 1. It is worth mentioning that for
ideal mixtures ∆nij′ ) 0.

Data Sources and Treatment Procedure. The calculation
of the KBIs from thermodynamic data requires information
about the dependence on composition of the following vari-
ables: D, molar volume V, partial molar volumes V1 and V2,
and the isothermal compressibility kT. The sources of these data
are listed in Table 2.

The vapor-liquid equilibrium data used in the calculations
have been selected on the basis of the following two criteria:
(1) the thermodynamic consistency tests (the integral test and
the point test47) should be fulfilled by the systems chosen, (2)
the sets chosen should contain at least 10-15 experimental

points. For several systems the vapor-liquid equilibrium data
and those for excess volume are available at different temper-
atures. This has no significant effect on the results.48 The partial
molar volumes at infinite dilution used for calculating the
limiting values of KBIs have been taken from refs 49-52 or
calculated from excess volume data.

The isothermal compressibilities have been calculated with
eq 5, using for the isothermal compressibilities of the pure
substances the data from refs 53-56 (only the value for
2-butanol was taken as that for isobutanol). The VE data have
been fitted using the Redlich-Kister equation.57 The values of
D have been obtained from the activity coefficients or total
pressure data by the sliding polynomials method.58 To check
the accuracy of our calculations, the D values have been

Figure 1. Comparison between Gij
id and Gij

V for methanol-water at
298.15 K. Gij

id is given by the solid line and Gij
V by the broken line.

TABLE 1: Peak G11 for the 1-Propanol-Water System

x1 (max) G11 [cm3/mol] ref

∼0.25 ∼390 7
0.06 876 11

∼0.15 ∼1900 12

TABLE 2: Original Data Used for Calculating the
Kirkwood-Buff Integrals

D V, V1, V2

system data ref data ref

methanol-water P-x-y, T ) 298.14 K 35 VE a, T ) 298.15 K 36
ethanol-water P-x, T ) 298.15 K 37 VE, T ) 298.15 K 36
1-propanol-water P-x-y, T ) 303.15 K 38 VE, T ) 298.15 K 39
2-propanol-water P-x-y, T ) 298.15 K 40 VE, T ) 298.15 K 41
1-butanol-water P-x, T ) 323.23 K 42 VE, T ) 308.15 K 43
2-butanol-water P-x, T ) 323.18 K 42 VE, T ) 293.15 K 44
iso-butanol-water P-x, T ) 323.15 K 42 VE, T ) 293.15 K 45
tert-butanol-water P-x, T ) 323.13 K 42 VE, T ) 303.15 K 46

a VE is the excess volume.

∆n12′ ) c1(G12 - G12
V ) ) c1∆G12 ) c1∆G21 )

-
c1V1V2

V (1 - D
D ) (22)

∆n21′ ) c2(G12 - G12
V ) ) c2∆G12 ) c2∆G21 )

-
c2V1V2

V (1 - D
D ) (23)

∆nii′ ) ci∆Gii ) ci(Gii - Gii
V) )

cixjVj
2

xiV (1 - D
D ) i * j

(24)

Figure 2. Comparison between Gij calculated by us (solid lines) and
ref 8 (b).

TABLE 3: The Sources for the Kirkwood-Buff Integrals
from SAXS Measurements

system data ref

ethanol-water Gij, T ) 298.15 K 26
1-propanol-water Gij, T ) 293.15 K 27

Gij, T ) 298.15 K 29
2-propanol-water I(0), T ) 293.15 K 27
1-butanol-water Gij, T ) 298.15 K 30
2-butanol-water Gij, T ) 298.15 K 30
iso-butanol-water Gij, T ) 298.15 K 30
tert-butanol-water Gij, T ) 293.15 K 23

2498 J. Phys. Chem. B, Vol. 103, No. 13, 1999 Shulgin and Ruckenstein
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additionally evaluated using the NRTL equation. The KBIs
obtained from SAXS measurements were taken from the original
publications,24-30 and the sources of the data are listed in Table
3.

The KBI’s data for the 2-propanol-water system have been
obtained from the so-called X-ray zero-angle intensity I(0).27

The equations used to calculate the KBIs are summarized in
Appendix 2.

Results

A comparison between the KBIs obtained thermodynamically
and those obtained from SAXS measurements is made in Figures
2-9. For the methanol-water system no SAXS data are

available, and we compared our calculations to those of
Donkersloot 8 and found satisfactory agreement between the
two sets (Figure 2). Only for G11 in the dilute range of methanol
there are differences between the compared sets. However, by
calculating the limiting values of KBIs with eqs 8-11 a value
of G11

0 equal to -25 ( 5 [cm3/mol] was found for T ) 298 K,
which is in good agreement with our results. Our calculations
for the ethanol-water mixture (Figure 3) are in agreement with
the Gij obtained from the SAXS measurements,26 with the excep-
tion of G11 at low concentrations of ethanol and the peak value
of G22. The limiting value of G11 (G11

0), calculated using eq
10, and that obtained by extrapolating the results of the calcu-
lation for the nondilute region nearly coincide. The comparison
of our results with those from SAXS measurements for 1- or
2-propanol-water systems (Figures 4 and 5) show agreement,
except for the dilute region of the 2-propanol-water system.

Figure 3. Comparison between the KBIs from thermodynamic
calculations (solid line) and those from SAXS (b, ref 26).

Figure 4. Comparison between the KBIs from thermodynamic
calculations (solid line) and those from SAXS (b, ref 29; O, ref 27).

Kirkwood-Buff Integrals in Alcohol Systems J. Phys. Chem. B, Vol. 103, No. 13, 1999 2499
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The experiments provide somewhat lower values for G11 (x1 <
0.2) and for G22 (x2 < 0.2), but the limiting values Gij

0 are in
good agreement with the calculated extrapolated results. There
are some differences in the peak values of the KBI’s for the
1-propanol-water system. Table 1 shows that for this system
there is a large scattering of the KBI’s peaks. This scattering is
caused by the difficulty to obtain reliable D values in the
composition range 0 e x1 e 0.3. More precise vapor-liquid
equilibrium data are needed to obtain more exact peak values
for the KBI’s. As well-known,42,51 the mixture tert-butyl
alcohol-water (Figure 6) is in normal conditions the only
homogeneous one among the butanol-water systems. The
vapor-liquid equilibrium in this system was thoroughly inves-
tigated in ref 42, where it was also pointed out that it is difficult
to describe the vapor-liquid equilibrium for this system with
the conventional equations (e.g., NRTL and UNIQUAC equa-

tions wrongly indicate phase separation). This generates some
deviations between the calculated KBI’s and those obtained from
SAXS measurements, in the composition range 0.06 e x1 e
0.25.

Figure 5. Comparison between the KBIs from thermodynamic
calculations (solid line) and those from SAXS (b, ref 27).

Figure 6. Comparison between the KBIs from thermodynamic
calculations (solid line) and those from SAXS (b, ref 23).

Figure 7. Comparison between the G11 from thermodynamic calcula-
tions (O, this work) and those from SAXS (b, ref 30).

2500 J. Phys. Chem. B, Vol. 103, No. 13, 1999 Shulgin and Ruckenstein
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Limited information is available concerning the KBI’s for
systems with phase separation. The KBI’s for the 1-butanol-
water system were calculated in ref 7. The behavior of the KBI’s
in all butanol (1-, 2-, and iso-)-water systems is similar (Figures
7-9). In these systems, the Gijs change rapidly and become
infinite at the phase separation point

where x1
f is the butanol concentration at the point where the

mixture becomes partially miscible. In the butanol-rich region,
Gij tends to infinity when the concentration approaches the
boundary of the two phase region. Only few SAXS data are
available for the systems 1-, 2-, and iso-butanol + water,30 and
we found satisfactory agreement between the results of our
calculations and the SAXS measurements.

Generally Figures 2-9 show satisfactory agreement between
the KBI’s calculated and those obtained from SAXS measure-
ments.

Discussion

Using the expressions suggested in this paper, we calculated
the excess number of molecules ∆n′ij around a central one (eqs
22-24). Figure 10 provides the excess (or deficit) number of
molecules in the vicinity of an alcohol molecule and Figure
11sin the vicinity of a water molecule as the central molecule.

The present calculations are in agreement with the conclusion
of ref 59 (which employed both a lattice and the McMillan-
Mayer theories of solution4) that the solute-solute interactions
in the systems investigated increase in the sequence MeOH <
EtOH < 2-PrOH < 1-PrOH = t-BuOH. There are, however,
essential differences between the lower alcohols (MeOH and
EtOH) and the higher ones.

Figures 10 and 11 reveal that, for the methanol-water and
ethanol-water systems, the local compositions are close to the
bulk ones over the entire concentration range. This means that,

Figure 8. Comparison between the G11 from thermodynamic calcula-
tions (O, this work) and those from SAXS (b, ref 30).

Figure 9. Comparison between the G11 from thermodynamic calcula-
tions (O, this work) and those from SAXS (b, ref 30).

Figure 10. ∆nij′ in the vicinity of an alcohol molecule. ∆n11′ is given by broken line, ∆n21′ by the solid line. (a) methanol-water, (b) ethanol-
water, (c) 1-propanol-water, (d) 2-propanol-water, (e) tert-butanol-water.

lim
x1fx1

f
Gij ) (∞ (25)
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in these systems, little clustering occurs, a conclusion in
agreement with the SAXS measurements.25,26

For the ethanol-water system, there are somewhat larger
changes in the vicinity of a water molecule. Indeed, in the
concentration range 0.25 < x1 < 0.65, 2.5 > ∆n22′ > 1 and
small clusters, dominated by water molecules, seems to be
generated. Figures 10 and 11 bring evidence for clustering in
aqueous binary systems of 1- and 2-propanols and tert-butyl
alcohol; SAXS experiments also indicated the presence of
clusters in these systems.23-24,27-29

One may note that the values of ∆n′ij for the 2-propanol-
water system are much smaller than those for 1-propanol-water
and tert-butyl alcohol-water; they are, however, about twice
as large as those in the ethanol-water system.

The calculation of the ∆n′ij in aqueous systems of propanols
and butanols indicates that clustering in these systems is caused
by the accumulation of alcohol molecules near a central alcohol
molecule and water molecule near a central molecules of water.
This means that the hydrophobic interactions between the
alcohol molecules and the interactions between water molecules
are dominant in these systems.

Conclusion

The aqueous systems of methanol, ethanol, propanols, and
butanols were examined in the framework of the Kirkwood-
Buff theory of solution. The Kirkwood-Buff integrals were
calculated using thermodynamic equations, in which the deriva-
tives (∂ lnγi/∂xi)P,T were expressed in terms of (∂ lnP/∂xi)T, which

can be more accurately determined from isothermal P-x data.
The calculated KBI’s were compared to those obtained from
SAXS measurements and satisfactory agreement found.

New expressions for the excess number of molecules near a
central molecule were suggested and used to calculate the
distribution of species near the water or alcohol molecules as
central ones. The main conclusion is that separate clusters of
water and alcohol are formed and that the clustering increases
with the length of the alcohol chain.

Acknowledgment. We are indebted to Dr. K. Fischer
(University of Oldenburg, Germany) for providing information
regarding the phase equilibria and excess volume.

Appendix 1

For vapor-liquid equilibrium in binary system with ideal
behavior of the vapor phase one can write:1-2

Differentiating with respect to x1 for isothermal condition, one
obtains

Figure 11. ∆nij′ in the vicinity of an water molecule. ∆n22′ is given by the broken line, ∆n12′ by the solid line. (a) methanol-water, (b) ethanol-
water, (c) 1-propanol-water, (d) 2-propanol-water, (e) tert-butanol-water.
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According to eq 4

and

Inserting the last two equations in eq A1-2 yields

For nonideal vapor phase, corrections for nonideality should
be included.1-2

Appendix 2

To calculate the KBIs from the SAXS data for the 2-pro-
panol-water mixture, the following equations were used:23,27,60

where Nh is the mean total number of molecules in the considered
volume V of mixture, z1, z2, and z are average numbers of
electrons per mole of alcohol, water, and mixture, respectively,
kB is the Boltzman constant, δ ) (Nh /V)(V1 - V2) is the dilatation
factor, Nh 〈(∆x1)2〉, 〈(∆N)2〉/Nh , and 〈(∆x1)(∆N)〉 are the mean-
square fluctuation in concentration, the mean-square fluctuation
in particle number, and their correlation, respectively.

The three kinds of fluctuations have been obtained from eqs
A2-1-A2-3, and the KBIs have been calculated using the
expressions:
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Kirkwood-Buff Integrals in Aqueous Alcohol Systems: Aggregation, Correlation Volume,
and Local Composition

I. Shulgin† and E. Ruckenstein*
Department of Chemical Engineering, State UniVersity of New York at Buffalo, Amherst, New York 14260

ReceiVed: September 11, 1998; In Final Form: December 2, 1998

The Kirkwood-Buff theory of solution was used to investigate the formation of clusters in aqueous alcohol
solutions. The correlation volume (volume in which the composition differs from the bulk one) was calculated
for the systems 1-propanol-water and tert-butyl alcohol-water and compared with the sizes of clusters
determined by various physical techniques. The calculations indicated that two types of clusters, alcohol- and
water-rich clusters, are present in the solutions. Their sizes, which depend on composition in a similar way,
exhibit maxima in the water-rich region. The calculated values are in a satisfactory agreement with experiment.
The composition inside the clusters (the local composition) was calculated as a function of the correlation
volume for dilute aqueous methanol, ethanol, propanols, and tert-butyl alcohol solutions. The results were
compared with the local compositions provided by the Wilson and NRTL equations.

Introduction

The alcohol-water systems have attracted attention1-5 for a
number of reasons:

They are used as industrial solvents for small- and large-
scale separation processes,2 and they have unusual thermo-
dynamic properties, which depend in a complicated manner on
composition, pressure, and temperature; for example, the excess
molar enthalpy (HE) of ethanol + water mixture against
concentration exhibits three extrema in its dependence on
composition at 333.15 K and 0.4 MPa.6 The thermodynamic
behavior of these systems is particularly intricate in the water-
rich region, as illustrated by the dependencies of the molar heat
capacity and partial molar volume on composition.7-9 This
sensitivity of the partial molar properties indicates that structural
changes occur in the water-rich region of these mixtures.2,3 Of
course, the unique structural properties of water are responsible
for this behavior.5,10

One of the peculiar features of the alcohol-water systems is
the clustering that takes place in the solutions of the higher
alcohol members (PrOH, BuOH, and higher). Direct experi-
mental evidence regarding clustering was provided by small-
angle X-ray scattering (SAXS),11-18 small-angle neutron scat-
tering (SANS),19 light scattering (LS),20-23 fluorescence emission
spectroscopy,24 microwave dielectric analysis,25 and adsorp-
tion.26 No clustering could be found, however, in the aqueous
solutions of methanol and ethanol.27,28 The results obtained by
SAXS, SANS, and LS are summarized in Table 1.

The data in Table 1 show that clustering occurs in the water-
rich region of solutions of propanols and tert-butyl alcohol, for
alcohol molar fractions <0.3-0.4. Numerous models have been
suggested to explain the properties of water-alcohol mixtures.
They can be roughly subdivided in the following groups: (a)
Chemical models 5,29-33, based on chemical equilibrium between
clusters and the constituent components, which can explain some
thermodynamic properties of these solutions, but involve

oversimplified descriptions of the structure of the alcohol-water
mixtures;2 (b) clathrate-like models for dilute aqueous solutions
of several alcohols;13,15,34 (c) micellar-like models in which the
alcohol molecules aggregate like surfactants in water, with the
alkyl chain inside and the polar OH group outside;19 (d) models
that combine any of the above models with the representation
of water as ice-like domains.29-30,35 In the latter cases, the
solution behavior in the water-rich region was attributed to a
second-order phase transition involving the disordering of an
ice-like network;36,37 (e) the Kirkwood-Buff theory38 provides
a useful tool for the investigation of the structural features of
solutions. The latter approach became popular particularly after
Ben-Naim,39 using the Kirkwood-Buff equations,38 calculated
the integrals Gij (KBI)

from measurable macroscopic thermodynamic properties. In the
relation of eq 1, gij is the radial distribution function between
species i and j and r is the distance between the centers of
molecules i and j. The KBIs have been calculated for numerous
binary and ternary systems including the water-alcohol
mixtures40-48 and used to examine the solution behavior
regarding the local composition, preferential solvation, and
various models for phase equilibria.49-52 In this paper, the KBI
combined with the NRTL expression53,54 for the local composi-
tion will be utilized for the calculation of the correlation volume
(the volume in which the composition differs from the bulk
composition). The correlation volumes for several alcohol-
water systems will be calculated and compared with the sizes
of clusters determined by various physical techniques (Table
1).

Theory and Formulas

1. Excess Number of Molecules near a Central One. The
key quantities in the Kirkwood-Buff approach are the integrals

* To whom the correspondence should be addressed. E-mail: fealiru@
acsu.buffalo.edu; fax: (716) 645-3822.

† Current e-mail address: ishulgin@eng.buffalo.edu.

Gij ) ∫0

∞
(gij - 1)4πr2 dr i, j ) 1, 2 (1)

ciGij ) ci∫0

∞
(gij - 1)4πr2 dr (2)
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where ci is the molar concentration of species i in the mixture
and ciGij represents the excess (or deficit) number of molecules
i around a central molecule j.39 The integrals Gij (see Appendix
for their expressions in terms of macroscopic thermodynamic
quantities40) provide information about the tendency of mol-
ecules to stay away or to aggregate. However, these integrals
have finite values for ideal solutions, which should be considered
nonaggregated. Consequently, a better measure of the above
tendency of the molecules can be obtained by introducing new
quantities, ∆nij, defined with respect to a reference state.
Matteoli and Lepori46,47 suggested to use the ideal mixture as
the reference state and hence considered that the excess (or
deficit) number of molecules i around a central molecule j is
given by

where Gij
id are the KBIs of an ideal system (See Appendix for

their expressions in terms of macroscopic thermodynamic
quantities40,46,47). However, ∆nij are not independent quantities,
because the volume occupied by the excess i molecules around
an i molecule must be equal to the volume left free by the j
molecules around the same i molecule.46 This volume conserva-
tion condition leads to

where Vi is the partial molar volume of component i. Eq 3 does
not satisfy identically eq 4, because its insertion in the latter
equation leads to

where kT and V are the isothermal compressibility and the molar
volume of the liquid mixture, respectively, the superscript “id”
indicates ideal mixture, the superscript 0 refers to the pure

component, R is the universal gas constant, and T is the
temperature in Kelvin. Eq 4 is satisfied identically only if kT

id,
Vi

0, and Vid are replaced in the expressions of Gij
id with kT, Vi,

and V, respectively. Consequently, Gij
id in eq 3 has to be

replaced with Gij
V, which is given by the following expres-

sions48

Consequently ∆nij can be written as

and

where D is given by

In eq 11, γi is the activity coefficient of component i, P is
the pressure, and xi is the molar fraction of component i in the
mixture. Eqs 8-10 have been used48 to calculate the ∆nij for
the aqueous solutions of the following alcohols: MeOH, EtOH,

TABLE 1: Clustering in Aqueous Solutions of Alcohols

system method clustering size (Å)a composition range (x1) temperature (K) reference

MeOH/H2O SAXS no 298.15 27
EtOH/H2O SAXS no 293.15 28
1-PrOH/H2O SAXS yes 3-13.5 0.05-0.3 293.15 15

SAXS yes - - 278.15 16
SAXS yes 2-12 0.056-0.365 298.15 17
LS yes 8 0.05-0.4 298.15 20

1-PrOH/D2O SANS yes 14.4 0.114 298.15 19
SANS yes 18.7 0.114 278.15 19

2-PrOH/H2O SAXS yes 1.5-6.5 0.1-0.3 293.15 15
2-PrOH/D2O SANS yes 7.4 0.234 298.15 19
1-BuOH/H2O SAXS yes 8.2 0.018 298.15 18
2-BuOH/H2O SAXS yes 9 0.041 298.15 18

SAXS yes 12 0.48 298.15 18
i-BuOH/H2O SAXS yes 13 0.019 298.15 18

SAXS yes 13 0.568 298.15 18
t-BuOH/H2O SAXS yes - - 278.15 11

SAXS yes - - 300.15 11
SAXS yes - - 329.15 11
SAXS yes 0-17.1 0.05-0.4 300.15 12
SAXS yes - - 293.15 13
SAXS yes 3-19 0.05-0.3 293.15-348.15 14

t-BuOH/D2O SANS yes 29.1 0.107 278.15 19
SANS yes 18.4 0.107 298.15 19
SANS yes 30.4 0.107 310.15 19

t-BuOH/H2O LS yes 9.8-22 0.0725-0.26 257.15-345.15 21
LS yes 9.3-19 0.04-0.27 298.15-318.15 23

In Table 1, x1 is the molar fraction of alcohol (throughout this paper, component 1 represents alcohol and component 2, water). a The size is
given by the Debye correlation length (lD), which is related to the radius of the cluster (RC) through the expression lD ) 1.1RC.13,14

∆nij ) ci(Gij - Gij
id) ) ci∆Gij (3)
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0
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D ) (8)
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1-PrOH, 2-PrOH, and t-BuOH. It should be noted that for ideal
mixtures ∆nij ) 0.

2. Local Composition and Correlation Volume. One of the
most attractive features of the Kirkwood-Buff approach is its
capability to provide values for the local composition.49,52 Let
us consider a molecule i whose correlation volume is Vcor

i . The
total number of molecules i and j in this volume is given by
the expressions

and

Consequently the local molar fractions, xii and xji, can be
expressed as

and

Combining with eqs 8-10 and taking into account that cj )
nj/ and xj ) nj/∑ni, where nj is the number of moles of
component j in solution and is the solution volume, eqs 14
and 15 become

and

Similar equations can be written for the local composition
near a central molecule j. To calculate the correlation volumes
with eqs 16 and 17, it is necessary to express xii, xji, Gij, Gij

V as
a function of composition. The values of Gij, Gij

V for the
systems investigated were calculated in our previous paper.48

For xii and xji, the Wilson55 and NRTL53 equations can be used.
Although not always satisfactory,56 the NRTL expression
represents the local composition better than the Wilson equa-
tion.56 The NRTL provides the following expressions for the
local compositions:53

where R12, τji are parameters. The Wilson model leads to the
following expressions for the local compositions:55

and

where (λij - λii) are parameters in the Wilson equation.
3. Local Composition in the Dilute Region. Let us consider

the alcohol molecule as the central one (i ) 1). Consequently,
for the dilute region of alcohol one can write that

where Vi
0 and Vi

∞ are the molar volume of the pure component
i and the partial molar volume of component i at infinite dilution,
respectively. In addition, in the dilute region57

where57

Inserting expressions 22-26 into eq 16 yields

and

where

It should be noted that all the above quantities have a linear
dependence on Vcor

1 .

Calculations and Results

The correlation volumes were calculated using eqs 16 and
17 for the aqueous systems 1-PrOH (T ) 303.15 K) and t-BuOH
(T ) 323.15 K). These systems were chosen because reliable
data about their clustering are available (Table 1). The values
of the KBIs were taken from our previous paper,48 and the

nii ) ∆nii + ciVcor
i (12)

nji ) ∆nji + cjVcor
i (13)

xii )
nii

nii + nji
)

∆nii + ciVcor
i

∆nii + ∆nji + (ci + cj)Vcor
i

(14)

xji )
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nii + nji
)

∆nji + cjVcor
i
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i

(15)

xii )
xi(Gii - GV
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V) + Vcor
i

(16)

xji )
xj(Gji - Gji

V) + xjVcor
i

xi(Gii - Gii
V) + xj(Gji - Gji

V) + Vcor
i

(17)

xii )
xi

xi + xj exp(-R12τji)
(18)

xji )
xj exp(-R12τji)

xi + xj exp(-R12τji)
(19)

xii )
xi

xi + xj exp(-
λij - λii

RT )
(20)

xji )
xj exp(-

λij - λii

RT )
xi + xj exp(-

λij - λii

RT )
(21)

V1 ) V1
∞ (22)

V2 ) V2
0 (23)

V ) x1V1
∞ + x2V2

0 (24)

Vcor
1 ) Vcor

1 (P,T) (25)

D ) K(P,T)x1 + 1 (26)

K(P,T) ) (∂lnγ1

∂x1
)

P,T,x1f0

x11 )
R1(P,T)x1 + R2(P,T)x1

2 + R3(P,T)x1
3

â0(P,T) + â1(P,T)x1 + â2(P,T)x1
2

(27)

x21 ) 1 - x11 (28)

R1 ) -(V2
0)2K + Vcor

1 V2
0

R2 ) (V2
0)2K + Vcor

1 V2
0K + Vcor

1 V1
∞ - Vcor

1 V2
0

R3 ) Vcor
1 V1

∞K - Vcor
1 V2

0K

â0 ) Vcor
1 V2

0

â1 ) -(V2
0)2K + V1

∞V2
0K + Vcor

1 V1
∞ - Vcor

1 V2
0 + Vcor

1 V2
0K

â2 ) (V2
0)2K - V2

0V1
∞K + Vcor

1 V1
∞K - Vcor

1 V2
0K
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NRTL equation was used to express xij in terms of the overall
composition. The parameters of the NRTL equation were taken
from the Gmehlings vapor-liquid equilibrium (VLE) data
compilation.58 The results of the calculations are compared with
experimental data in Figures 1 and 2.

The local composition x11 was calculated with eq 27 for dilute
aqueous solutions of MeOH, EtOH, 1-PrOH, 2-PrOH, and
t-BuOH at 298.15 K in the composition range 0 e x1 e 0.06.
The partial molar volumes of alcohols at infinite dilution were
taken from literature.2 The parameter K (P, T) was calculated
using data from the Gmehlings VLE compilation.58 The results
are compared with those calculated with the Wilson and the
NRTL equations in Figures 3-7. The parameters of the Wilson
and NRTL equations were taken from the above-mentioned
compilation.58

Discussion

A satisfactory agreement was found between the sizes of the
clusters determined experimentally and calculated. For the

1-PrOH + H2O solutions, the calculations indicate (Figure 1)
that two types of clusters, namely alcohol- and water-rich, are
present in the solution and that the dependencies of their sizes
on composition are similar. They reach a maximum at an alcohol
molar fraction x1 ≈ 0.2-0.3, after which they decrease. A
similar behavior was found for ∆nii.48 Even though the systems
investigated are homogeneous at all compositions (in normal
conditions), a “phase separation” at molecular scale, in water-

Figure 1. Correlation radius RC against x1 for the 1-propanol - water
system. The broken line is for the alcohol-rich cluster and the solid
line is for the water-rich cluster; experimental data from: b, ref 15;
O, ref 17; 0, ref 19.

Figure 2. Correlation radius RC against x1 for the tert-butanol-water
system. The broken line is for the alcohol-rich cluster and the solid
line is for the water-rich cluster; experimental data from: b, ref 14
(T ) 301.15 K); O, ref 21 (T ) 293.15 K); 0, ref 23 (T ) 293.15 K).

Figure 3. Local composition in the methanol-water system. The solid
line is calculated with the NRTL and the broken line with the Wilson
equation; b, eq 27 with Vcor

1 ) 100 cm3/mol; [, eq 27 with Vcor
1 ) 250

cm3/mol; 2, eq 27 with Vcor
1 ) 500 cm3/mol; O, eq 27 with Vcor

1 )
1000 cm3/mol.

Figure 4. Local composition in the ethanol-water system. The solid
line is calculated with the NRTL and the broken line with the Wilson
equation; b, eq 27 with Vcor

1 ) 100 cm3/mol; [, eq 27 with Vcor
1 ) 250

cm3/mol; 2, eq 27 with Vcor
1 ) 500 cm3/mol; O, eq 27 with Vcor

1 )
1000 cm3/mol.
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and alcohol-rich clusters, takes place. Although there is qualita-
tive agreement with the experimental results provided by the
SAXS and SANS, the calculated values do not decay for x1 >
0.4 as rapidly as the experimental ones. A similar conclusion
can be noted for the system t-BuOH + H2O (Figure 2). The
cluster size combined with the values of ∆nij allow one to
estimate the cluster composition. At the molar fraction x1 )
0.1, the alcohol composition in the alcohol-rich cluster is 0.145

and in the water-rich cluster is 0.096; for x1 > 0.35, the alcohol-
rich cluster is essentially free of water molecules and the alcohol
molar fraction in the water-rich clusters is about 0.14-0.15.

Because the cluster composition is not constant, a clathrate-
like structure cannot be used for its representation. Nevertheless,
the clathrate-like structure [(PrOH)8(H2O)40] suggested in ref
20 is compatible with the water-rich clusters for x1 > 0.35.
Indeed, the alcohol molar fraction of about 0.15, calculated for
the water-rich clusters when x1 > 0.35, corresponds to the
clathrate (PrOH)8(H2O)40.

The Kirkwood-Buff model can be used for the calculation
of the local composition in the dilute region. Our calculation
of the local composition in the aqueous systems of MeOH,
EtOH, 1-PrOH, 2-PrOH, or t-BuOH is compared with the local
compositions provided by the Wilson and NRTL equations
(Figures 3-7). The local composition of an aqueous solution
of MeOH, calculated with eq 27 for Vcor

1 ) 100 cm3/mol
(Figure 3), is in agreement with the local composition obtained
from the NRTL equation; this means that even if clusters are
present in this solution, they are small. (For comparison, the
molar volume of pure MeOH in normal condition is 40.74 cm3/
mol.) The local composition of EtOH + H2O system plotted in
Figure 4 shows that there is agreement between eq 27 and the
NRTL equation for Vcor

1 ≈ 250 cm3/mol; consequently the
clusters in this system are also small. There is some experimental
evidence that small clusters are present in the EtOH + H2O
system.19,28,59 It is worth mentioning that for the systems MeOH
+ H2O and EtOH + H2O there is no agreement between the
Wilson and NRTL equations. For the 1-propanol-water system
and x1 < 0.03 (Figure 5), there is agreement between eq 27
and the Wilson and NRTL equations for Vcor

1 ≈ 100-250 cm3/
mol. The size of the clusters determined experimentally (Table
1) is in agreement with the above values of Vcor

1 . For the
2-PrOH + H2O system (Figure 6), small clusters are present in
the dilute region. Figure 7 shows that for the system t-BuOH
+ H2O, there is quantitative agreement between eq 27 and the

Figure 5. Local composition in the 1-propanol-ater system. The solid
line is calculated with the NRTL and the broken line with the Wilson
equation; b, eq 27 with Vcor

1 ) 100 cm3/mol; [, eq 27 with Vcor
1 ) 250

cm3/mol; 2, eq 27 with Vcor
1 ) 500 cm3/mol; O, eq 27 with Vcor

1 )
1000 cm3/mol.

Figure 6. Local composition in the 2-propanol-water system. The
solid line is calculated with the NRTL and the broken line with the
Wilson equation; b, eq 27 with Vcor

1 ) 100 cm3/mol; [, eq 27 with
Vcor

1 ) 225 cm3/mol; 2, eq 27 with Vcor
1 ) 500 cm3/mol; O, eq 27 with

Vcor
1 ) 1000 cm3/mol.

Figure 7. Local composition in the tert-butanol-water system. The
solind line is calculated with the NRTL and the broken line with the
Wilson equation; b, eq 27 with Vcor

1 ) 100 cm3/mol; [, eq 27 with
Vcor

1 ) 175 cm3/mol; 2, eq 27 with Vcor
1 ) 500 cm3/mol; O, eq 27 with

Vcor
1 ) 1000 cm3/mol.
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NRTL equation for Vcor
1 ≈ 100-175 cm3/mol and x1 < 0.04.

The latter values of Vcor
1 are in agreement with the SAXS

results (Table 1).

Conclusion

The clustering in aqueous solutions of alcohols was examined
by combining the Kirkwood-Buff theory of solution with the
Wilson and the NRTL equations. The correlation volumes were
calculated for the aqueous systems of 1-PrOH and t-BuOH. Two
type of clusters, alcohol- and water-rich, were found with similar
dependencies of size on composition. Satisfactory agreement
was found between the calculated cluster sizes and those
provided by the SAXS, SANS, and LS experiments.

An analytical expression was derived for the local composi-
tion in the dilute region, which was used for the dilute aqueous
solutions of MeOH, EtOH, 1-PrOH, 2-PrOH, and t-BuOH. The
results were compared with those obtained with the Wilson and
NRTL equations and on this basis the correlation volume in
the dilute region evaluated. It was found that small clusters (such
as dimers and trimers) can be present in the dilute region of
alcohols.

Appendix

The main formulas for the calculation of the KBIs40,46-47 are

where

In eqs A1-A3, kT is the isothermal compressibility, Vi is the
partial molar volume of component i, xi is the molar fraction of
component i, V is the molar volume of the mixture, and γi is
the activity coefficient of component i.

Consequently, the KBIs of an ideal binary mixture, Gij
id, are

given by the expressions:40,46,47

and

where kT
id and Vid are the isothermal compressibility and the

molar volume of an ideal mixture, respectively, and Vi
0 is the

molar volume of the pure component i.
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0

Vid
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Range and Energy of Interaction at Infinite Dilution in Aqueous Solutions of Alcohols and
Hydrocarbons

I. Shulgin† and E. Ruckenstein*
Department of Chemical Engineering, State UniVersity of New York at Buffalo, Amherst, New York 14260

ReceiVed: February 16, 1999; In Final Form: April 14, 1999

Infinitely dilute hydrocarbon/water and alcohol/water systems were examined, with the objective to gather
information about the size of the volume which is affected by the presence of a solute molecule and the
interaction energy parameter between solute and solvent. First, an expression for the local composition at
infinite dilution was obtained on the basis of the Kirkwood-Buff theory of solution. Second, equations for
the activity coefficients at infinite dilution were derived using a modified Flory-Huggins equation for the
excess free energy. In this modified expression, the molar fractions in the volume fractions were replaced by
the local compositions provided by the first step. Finally, an additional expression for the local molar fraction
was selected, which was coupled with that obtained on the basis of the Kirkwood-Buff approach. Experimental
data regarding the activity coefficient at infinite dilution combined with the above equations allowed to obtain
the values of the correlation volume (volume which is affected by a single solute molecule) and the interaction
energy parameter between solute and solvent. The thickness of the layer of solvent influenced by the presence
of a solute molecule was found to be equal to several molecular shells of water molecules (from 4 for propane
to 7-8 for dodecane).

Introduction

The infinite dilution state is very suitable for the investigation
of intermolecular interactions between solute and solvent
molecules, because in that state a single solute molecule is
completely surrounded by solvent molecules and thus informa-
tion regarding the solute-solvent interaction in the absence of
the solute-solute interactions can be obtained. This is particu-
larly relevant for systems with complicated intermolecular
interactions such as the aqueous systems.

To characterize the process of dissolution in water, Butler
suggested that “the process of bringing a solute molecule into
a solvent may be supposed to consist of two steps: (1) making
a cavity in the solvent large enough to hold the solute molecule;
(2) introducing the solute molecule into the cavity”.1 In the
calculation of the contribution of the second step to the enthalpy
of hydration, Butler considered only the interactions between
the solute molecule and the nearest-neighboring water mol-
ecules. He also assumed that the water molecules are distributed
around a solute molecule as randomly as in its absence. Butler’s
assumption of random distribution in solution was replaced by
Frank and Evans2 by a nonrandom distribution. The latter
authors suggested that around a molecule of a nonpolar solute,
there is a layer of more ordered water molecules (“iceberg”).
The approach can account for the negative enthalpy and entropy
of solution (see discussion for additional comments). No
evaluation of the thickness of this layer was, however, provided.
Nemethy and Scheraga3 extended their model for water to
aqueous solutions of hydrocarbons, but considered that only a
monolayer of solvent molecules is affected by a solute molecule.
The aim of this paper is to evaluate the thickness of the layer
of water, which is affected by a solute molecule. In addition,

information about the interaction energy parameter between the
solute molecule and a solvent molecule will be obtained. In
order to evaluate those quantities, expressions for the correlation
volume (volume which is affected by a single solute molecule),
the local compositions, and the activity coefficients at infinite
dilution are needed, and they are presented below.

Theory and Formulas

1. Correlation Volume. We consider a molecule of species
i and its surrounding correlation volume Vcor

i in which the
composition and/or the structure differ from the bulk one. The
total number of molecules i and j in this volume is given by
the expressions

where ∆nii and ∆nji are excess (or deficit) number of molecules
i and j around a central molecule i. Using the Kirkwood-Buff
theory (KB)4 of solution and a suitable reference state for the
excess quantities, ∆nii and ∆nji can be expressed as follows:5

and

* Author to whom the correspondence should be addressed. E-mail:
fealiru@acsu.buffalo.edu. Fax: (716) 645-3822.
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nii ) ∆nii + ciVcor
i (1)

nji ) ∆nji + cjVcor
i (2)

∆n12 ) -
c1V1V2

V (1 - D
D ) (3)

∆n21 ) -
c2V1V2

V (1 - D
D ) (4)

∆nii )
cixjVj

2

xiV (1 - D
D ) i * j (5)
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where ci is the overall molar concentration of species i in the
mixture, xi is the overall molar fraction of component i in
solution, V is the molar volume of the solution, Vi and Vj are
the partial molar volumes of components i and j, respectively,
D ) (∂ ln γi/∂xi)P,Txi + 1, γi is the activity coefficient of
component i, P is the pressure, and T is the absolute temperature.
Because the local molar fractions are given by

one obtains

where xji is the local molar fraction of component j in the vicinity
of a central molecule i. Because for the dilute region one can
consider that6 (∂ ln γi/∂xi)P,T is independent of xi, one can write
that

where

For infinite dilution, eq 8 leads to

where Vj
∞ ) limxjf0 Vj is the partial molar volume of compo-

nent j at infinite dilution and Vcor
i,0 ) limxif0 Vcor

i . One may note
that limxif0 (xii/xi) > 1 when Ki(P,T) < 0 (or (∂ ln γi/∂xi)P,T,xif0

< 0). To calculate the correlation volume Vcor
i,0 , hence the size

of the region affected by a solute molecule, an additional
expression for limxif0 (xii/xi) is needed. Such an expression,
proposed in refs 7-9, will be used in what follows. Since that
expression contains the interaction energy parameter between
the solute and solvent molecules and this quantity is not known,
an equation for the activity coefficients at infinite dilution will
be also derived. This equation coupled with the two expressions
for the local composition and experimental values for the activity
coefficients at infinite dilution will allow to obtain both the
correlation volume and the interaction energy parameter.

2. Activity Coefficient at Infinite Dilution. A procedure
similar to that employed by Wilson10 will be used here to obtain
an expression for the excess Gibbs energy. Wilson started from
the Flory and Huggins expression11,12 for the excess free energy
of athermal solutions, but expressed the volume fractions in
terms of local molar fractions. We selected Wilson’s approach
from a number of approaches,13 because it provided a better
description of phase equilibria and because the interactions that
count the most are the local one, but started from the more

complete Flory-Huggins equation:

where æi are volume fractions and ø is the energetic parameter,
given by

In eq 13, w is the interchange energy, k is the Boltzmann
constant, R is the universal gas constant, Γij is the energetic
parameter for the interaction between molecules of species i
and j and z is the coordination number.

We write for the volume fractions the expressions

which differ from those used by Wilson because they contain
the partial molar volumes Vi instead of the molar volumes Vi

0

of the pure components. Eliminating the local molar fractions
between eqs 8-9 and 14-15 yields

Assuming that ø ) ø(x1), the activity coefficients are given by
the expressions

Inserting eqs 16-17 into eqs 18-19, one obtains at infinite
dilution, by assuming that the derivative of the correlation
volume with respect to the molar fraction is negligible

gE ) x1 ln
æ1

x1
+ x2 ln

æ2

x2
+ øæ1æ2 (12)

ø ) w/kT ) z
Γ12 - 0.5(Γ11 + Γ22)

RT
(13)

æ1 )
V1x11

V1x11 + V2x21
(14)

æ2 )
V2x22

V1x12 + V2x22
(15)

æ1 ) x2

V1V2
2

Vcor
1 V2(1 - D

D ) +
x1V1

V
(16)

æ2 ) x1

V2V1
2
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2 V2(1 - D

D ) +
x2V2

V
(17)

ln γ1 ) ln
æ1

x1
+ x2[x1(∂(ln
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)
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) + x2(∂(ln

æ2

x2
)

∂x1
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ø[æ1æ2 + x2æ2

∂æ1

∂x1
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∂æ2
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xji )
- xjViVj(1 - D) + xjVcor

i VD

xjVj
2(1 - D) - xjViVj(1 - D) + Vcor

i VD
(9)

D ) Ki(P,T)xi + 1 (10)

Ki(P,T) ) (∂ ln γi

∂xi
)

P,T,xif0

lim
xif0

xii

xi
) 1 -

Vj
∞Ki(P,T)

Vcor
i,0

(11)
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Each of the above two equations contains two unknown, namely
Vcor

i,0 and ø(xi)0). The additional equation needed to calculate
them can be obtained by equating eq 11 with another expression
for the local compositions.

3. Local Composition. There have been many attempts to
express the local composition in terms of the bulk composition
and intermolecular interactions.7-10,13-17 While Guggenheim
was the first to introduce the concept of local composition,17

this idea became extensively used after it was applied by Wilson
to phase equilibria.10 A number of authors proposed various
expressions for the local composition,7-10,14-17 among which
we selected the following equations proposed in refs 7-9,
because they were derived on the basis of some plausible
theoretical considerations:

where ∆ ) 2e12 - e11 - e22 and eij is the interaction energy
parameter between species i and j. Equations 22 and 23 have
been obtained by Lee et al.7 on the basis of Monte Carlo
simulations for the nonrandom behavior of off-lattice square-
well molecules, and derived theoretically by Aranovich and
Donohue.8-9 The latter authors extended the Ono-Kondo lattice
model for the density profile near a surface to the concentration
profile around a solute molecule, by assuming that only the first
shell has a composition different from that in the bulk. While
approximate, their expression will be extended in this paper to
the entire correlation volume. At infinite dilution, eq 22 becomes

Data Sources and Numerical Calculations

The calculations were conducted for aqueous solutions of
alcohols (methanol, ethanol, propanols, butanols, and tert-
pentanol) and hydrocarbons (normal saturated aliphatic hydro-
carbon from propane through dodecane, isobutane, cyclopentane,
cyclohexane, cycloheptane, benzene, toluene).

The parameters Γii (in eq 13) for pure substances can be
identified with eii in eq 24 and evaluated from the heats of
vaporization ∆Hvap

i using the expression

where ∆Hvap
i is the heat of vaporization of component i. The

latter quantity was obtained from eq 26, which is based on the
Antoine equation for the vapor pressure.18

Equations 11, 13, 20, 21, 24-26 were employed to calculate
Ki(P,T)/Vcor

i,0 and Γij. The correlation volume was finally ob-
tained by extracting Ki(P,T) ) (∂ ln γi/∂xi)P,T,xif0 from vapor-
liquid equilibrium data. The Antoine parameters Bi and Ci were
taken from ref 18 and the activity coefficients at infinite dilution
of the alcohols in water and water in alcohols from refs 19-
22. The molar volume of alcohols was taken from ref 23, and
the partial molar volumes at infinite dilution of alcohols in water
and water in alcohol were taken from refs 23-27 and for tert-
pentanol-water was calculated from the excess molar volume.28

The values of Ki(P,T) were extracted from vapor-liquid
equilibria data20,21,29 in the dilute region. The values of γi

∞, Vi
∞,

Ki(P,T) used for the calculation of the correlation volume in
hydrocarbon + water systems were taken from ref 30. The
derivatives (∂Vk/∂xk)xk)0 were estimated by (Vk

0 - Vk
∞) and were

taken zero for all hydrocarbon/water systems. The coordination
number was taken to be 4 for water and infinitely dilute aqueous
solutions31 and 6 for alcohols and infinitely dilute alcohol
solutions.32 All the data used in the calculations are listed in
Tables 1-3. Throughout this paper, component 1 is an alcohol
or a hydrocarbon and component 2 is water.

Results, Discussion, and Conclusion

The calculated correlation volumes and energetic parameters
for the alcohol-water and hydrocarbon-water systems are listed
in Tables 4 and 5. The calculated volumes are compared with
the sizes of clusters in several alcohol/water systems determined
by small-angle X-ray scattering or light scattering33-37 at low
concentrations (Table 6). Table 6 shows that there is reasonable
agreement between them and the calculated correlation volumes
at infinite dilution.

For the systems investigated, the free energies, enthalpies and
entropies of hydration are known.38-40 They exhibit linear
dependencies on the number of carbon atoms for different
homologous series.38-40 One may note that, for the systems
investigated, ∆Hhyd is negative and much smaller in absolute
value than T∆Shyd, which is also negative. Frank and Evans2

concluded that the decrease in entropy caused by the organiza-
tion of the water molecules as an iceberg is responsible for the
low solubility of hydrocarbons in water. In reality,41-44 the
change in entropy due to the ordering is compensated by the
change in the enthalpy caused by the interactions between the
hydrocarbon molecule and water, and the free energy associated
with the formation of a cavity is mainly responsible for hydro-
phobic bonding.41-44 Shinoda41,42 concluded that the formation
of a cavity constitutes the main effect, while Ruckenstein43,44

has shown on the basis of a simple thermodynamic approach
that while the formation of a cavity provides the largest con-
tribution, the iceberg formation plays also a role. The emphasis
in this paper is, however, only on the hydrophobic layer.

One can see from Tables 4 and 5 that the correlation volume
at infinite dilution increases for both normal hydrocarbons and
normal alcohols with the number of carbon atoms. A comparison
between the two shows that they are several times larger for
hydrocarbons than for the corresponding alcohols, but that the
difference between them decreases as the number of carbon
atoms increases (Figure 1).

The smaller values for alcohols are due to the presence of
the hydroxyl group, which, because of its favorable interaction
with the solvent, does not disturb, as much as the hydrocarbon

ln γ2
∞ ) ln(-K2(P,T)V2

∞

Vcor
2,0

+
V2

∞

V1
0) + 1 -

V2
∞

V1
0

+ 1

V1
0(∂V1

∂x2)
x2)0

+

ø(x2 ) 0)(-K2(P,T)V2
∞

Vcor
2,0

+
V2

∞

V1
0) (21)

xii )
xi exp(xj

∆
RT)

xj + xi exp(xj
∆
RT)

(22)

xji )
xj

xj + xi exp(xj
∆
RT)

(23)

lim
xif0

xii

xi
) exp[2e12 - e11 - e22

RT ] (24)

Γii ) eii ) - 2
z
(∆Hvap

i - RT) (25)

∆Hvap
i )

RT2Bi

Ci + T
(26)
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molecules do, the structure of water. Table 4 also reveals that
the correlation volume is much larger when the alcohol is the
solute. The larger value is due to the higher disturbance produced
by the alcohol molecule in the structure of water solvent than
that produced by a water molecule in the structure of alcohol
solvent.

The correlation volume was not accounted in the Butler’s
scheme. Butler’s scheme for dissolution in water1 accounted
only for the formation of a cavity, introduction of the solute
molecule in that cavity, and its interactions with the nearest-
neighbor water molecules. He assumed, however, that the water
molecules are distributed around a solute molecule as randomly
as in its absence. One more step should be added, namely, the
formation of a “ hydrophobic layer “ of volume Vcor

1 around the
cavity, in which the water molecules are reorganized and are
no longer randomly distributed (Figure 2). While this layer is
similar to that suggested by Frank and Evans in their “iceberg”

model,2 the present approach provides also the size of the region
of water affected by the presence of the solute.

The estimation of the thickness of the water layer affected
by the presence of a solute molecule was made for two
geometries: (1) the cavity containing the solute and the
correlation volume have the shape of a sphere, (2) both have
the shape of a cylinder. The results of the calculations are listed
in Table 7, which shows that the water layer is formed of several
molecular shells (between 4 and 8, Table 7). The correlation
volumes for cyclic hydrocarbon are much lower than for
aliphatic hydrocarbons, but, among the cyclic hydrocarbons, the

TABLE 1: Data Used for the Calculation of the Correlation
Volumes of Alcohols at Infinite Dilution in Alcohol/Water
Solutions

system temp (K) γ1
∞ V1

∞ (cm3/mol) -K1(P,T)

methanol-water 298.15 1.8 38.2 1.5
ethanol-water 298.15 4.0 55.1 4.5
1-propanol-water 303.15 16.3 70.7a 11.5
2-propanol-water 298.15 8.3 71.8 6.5
1-butanol-water 323.15 78.7 86.37 31
2-butanol-water 323.15 35.5 87.72 23
i-butanol-water 323.15 58.1 87.63 28
t-butanol-water 323.15 19.2 89.2 18
t-pentanol-water 328.15 78.1 100.9b 27

a T ) 298.15 K. b Calculated from excess volume data28 at T )
303.15 K.

TABLE 2: Data Used for the Calculation of the Correlation
Volumes of Water at Infinite Dilution in Alcohol/Water
Solutions

system temp (K) γ2
∞ V2

∞ (cm3/mol) -K2(P,T)

methanol-water 298.15 1.5 14.48 0.5
ethanol-water 298.15 2.7 13.81 1.3
1-propanol-water 303.15 5.6 15.09a 3.2
2-propanol-water 298.15 3.6 14.51 1.6
1-butanol-water 323.15 5.2 16.90b 2.3
2-butanol-water 323.15 4.6 17.53b 2.4
i-butanol-water 323.15 5.3 16.99b 2.6
t-butanol-water 323.15 4.9 16.05b 1.7
t-pentanol-water 328.15 3.43 14.7b 2.0

a T ) 298.15 K. b T ) 318.15 K.

TABLE 3: Data Used for the Calculation of the Correlation
Volumes of Hydrocarbon at Infinite Dilution in
Hydrocarbon/Water Solutions

system temp (K) ln γ1
∞ V1

∞ (cm3/mol) -K1(P,T)

propane-water 298.15 8.35a 70.7 80.7
n-butane-water 298.15 9.99 76.6 112.6
isobutane-water 298.15 9.86 81.3 107.4
n-pentane-water 298.15 11.6 92.3 150.4
n-hexane-water 298.15 13.1 110.0 190.4
n-heptane-water 298.15 14.5 129.4 231.1
n-octane-water 298.15 16.1 145.2 288.1
n-decane-water 298.15 18.9 176.8 395.4
n-dodecane-water 298.15 21.7 209.5 523.5
cyclopentane-water 298.15 10.1 84.5 100.5
cyclohexane-water 298.15 11.3 98.8 120.2
cycloheptane-water 298.15 12.1 105.5 131.1
benzene-water 298.15 7.8 82.5 42.5
toluene-water 298.15 9.2 97.7 61.9

a This value was taken from ref 19.

TABLE 4: Correlation Volumes and Intermolecular
Interaction Energy Parameters in Alcohol/Water Systems at
Infinite Dilutiona

system
temp
(K)

-Γ12

(J/mol)
Vcor

1,0

(cm3/mol)
-Γ21

(J/mol)
Vcor

2,0

(cm3/mol)

methanol + water 298.15 16 750 270 17 000 80
ethanol + water 298.15 17 560 490 18 500 110
1-propanol + water 303.15 18 620 860 19 900 220
2-propanol + water 298.15 18 020 570 19 360 120
1-butanol + water 323.15 19 010 1900 20 240 180
2-butanol + water 323.15 18 070 1600 19 600 210
i-butanol + water 323.15 18 660 1800 19 940 210
t-butanol + water 323.15 17 600 1500 19 010 140
t-pentanol + water 328.15 17 960 1700 18 860 140

a Component 1 is alcohol, component 2 is water and Vcor
i,0 ) limxif0

Vcor
i .

TABLE 5: Correlation Volumes and Intermolecular
Interaction Energy Parameters in Hydrocarbon/Water
Systems at Infinite Dilutiona

system temp (K) -Γ12 (J/mol) Vcor
1,0 (cm3/mol)

propane-water 298.15 14 160 2900
n-butane-water 298.15 14 970 3760
isobutane-water 298.15 14 660 3710
n-pentane-water 298.15 15 710 5020
n-hexane-water 298.15 16 470 6350
n-heptane-water 298.15 17 240 8000
n-octane-water 298.15 18 090 9990
n-decane-water 298.15 19 930 13630
n-dodecane-water 298.15 21 950 18100
cyclopentane-water 298.15 16 120 2900
cyclohexane-water 298.15 16 810 3500
cycloheptane-water 298.15 17 750 3700
benzene-water 298.15 16 800 1440
toluene-water 298.15 17 510 2870

a Component 1 is hydrocarbon, component 2 is water and Vcor
i,0 )

limxif0 Vcor
i .

TABLE 6: Comparison between the Radius of the
Correlation Volume at Infinite Dilution of Alcohol in
Alcohol/Water Systems and Size of Clusters at Small
Concentration of Alcohol in These Systems Obtained by
Different Physical Methodsa

radius of cluster obtained by
different physical methods

system

radiusb

of correlation
volume (Å)

radius
(Å)

molar
fraction, x1 method ref

1-propanol-water 7.0 7.3 LS 33
∼4c 0.05 SAXS 34

1-butanol-water 9.1 7.5 0.018 SAXS 35
2-butanol-water 8.6 8.2 0.041 SAXS 35
i-butanol-water 8.9 11.8 0.019 SAXS 35
t-butanol-water 8.4 ∼5c 0.05 SAXS 36

8.3 0.04 LS 37

a LC ) light scattering; SAXS ) small-angle X-ray scattering. b The
correlation volume is approximated as a sphere. c Data evaluated from
the figures of the corresponding papers.
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aromatic hydrocarbons have especially low correlation volumes
(Table 5). These results should be attributed to the favorable
interactions of the π electrons of the aromatic hydrocarbon with
the surrounding water molecules. For this reason, the structure
of water is less perturbed by the aromatic hydrocarbons than
by the aliphatic ones.

Tables 4 and 5 also list the values of the energy interaction
parameters Γij for the alcohol/water and hydrocarbon/water
systems. For the alcohol/water systems, the parameters were
calculated for both dilute solutions of alcohol in water and dilute
solutions of water in alcohol. For hydrocarbon/water systems,
the calculations were carried out only for dilute solutions of
hydrocarbon in water, because no experimental information
could be found for the solutions of water in hydrocarbons. Figure
3 presents a plot of Γ12 versus the number of carbon atoms in
molecules for normal alcohols and hydrocarbons.

Figure 3 and Tables 4 and 5 show that Γ12 increases when
the number of carbon atoms increases and that Γ12 is greater
for alcohols than for the corresponding hydrocarbons. This result

is as expected, because the alcohol molecules have hydroxyl
groups, which interact strongly with the water molecules. It is
interesting to compare the value Γij from both sides (when x1

f 0 and x2 f 0) in the alcohol/water systems. The data listed
in Table 4 show that Γ12 and Γ21 are different. This indicates
that the interactions between alcohol and water are not the same
in the two limiting cases and hence that the usual assumption
that Γ12 ) Γ21 is not a good approximation. Of course, the
present calculations involve a number of approximations and it
is not yet clear how accurate is the above conclusion.
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Figure 1. Dependence of correlation volume at infinite dilution on
the number of hydrocarbon atoms n. Hydrocarbon in water (2) and
alcohol in water (b).

TABLE 7: Thickness of the Hydrophobic Layer (l)
Covering an Aliphatic Hydrocarbon Molecule in Water at
Infinite Dilutiona

n l1 (Å) l2 (Å) N

3 7.4 7.9 ∼4
4 8.3 8.7 g4
5 9.3 9.6 ∼5
6 10.1 10.4 g5
7 11.0 11.2 ∼6
8 12.0 12.0 g6

10 13.4 13.4 ∼7
12 14.9 14.7 g7

a n is the number of carbon atoms, l1 is the thickness of the
hydrophobic layer when the cavity and correlation volume are ap-
proximated as spheres and l2 when they are approximated as cylinders,
and N is the estimated number of water shells. This estimation was
made on the basis of X-ray scattering data of cold water.31

Figure 2. Schematic of a hydrocarbon molecule covered by water
molecules at infinite dilution: (a) random distribution of water
molecules around a hydrocarbon molecule; (b) water molecules with
an ordered structure.

Figure 3. Energetic parameter Γ12 (J/mol) as a function of the number
of carbon atoms in alcohol and hydrocarbon molecules (n): (9) alcohol/
water systems; and (b) hydrocarbon/water systems.
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Aggregation in Binary Solutions Containing Hexafluorobenzene
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Some information about the aggregation in aromatic fluorocarbon-aromatic hydrocarbon systems was obtained
on the basis of the Kirkwood-Buff theory of solution. The Kirkwood-Buff integrals and the excess (or
deficit) number of molecules aggregated around a central one were calculated for the following systems:
hexafluorobenzene-benzene, hexafluorobenzene-toluene, hexafluorobenzene-cyclohexane, benzene-toluene,
and benzene-cyclohexane. It was found that the composition dependence of the excess (or deficit) number
of molecules aggregated around a central one for the systems hexafluorobenzene-benzene and hexafluo-
robenzene-toluene has a nontypical character since it changes sign for a mole fraction of about 0.4 for the
former and 0.2 for the latter. It was found that such compositions correspond to extrema in the activity
coefficients and inflection points in the excess Gibbs energy. The excess (or deficit) number of molecules
aggregated around a central one in the systems investigated allowed us to conclude that in the mixtures
hexafluorobenzene-benzene and hexafluorobenzene-toluene there are some like (enriched in the same
component as the central one) aggregates for mole fractions of hexafluorobenzene smaller than 0.4 and 0.2,
respectively, and some unlike aggregates for larger values of mole fraction of hexafluorobenzene. The change
of aggregation from like to unlike as well as its moderate temperature dependence suggest that the interactions
involved are not too strong. In addition, because the radius of the correlation volume (the volume affected by
the presence of a molecule) is relatively large (∼10 Å), the interactions are relatively long range. In the other
mixtures investigated, only like aggregates were formed and for the mixture hexafluorobenzene-cyclohexane
relatively large like aggregation of hexafluorobenzene was found.

Introduction
The unusual thermodynamic properties of binary mixtures

containing an aliphatic or an alicyclic fluorocarbon have been
known since the 1950s.1,2 A review written by R. L. Scott1 in
1958 “The Anomalous Behavior of Fluorocarbon Solutions”
suggested various directions for further studies. Intensive studies
of such systems started in the 1960s3-10 and comprehensive
reviews for the 1960s and 1970s were written by Swinton.11-12

It was found that binary mixtures of aromatic fluorocarbon-
aromatic hydrocarbon behave very differently when compared
to similar mixtures containing an aliphatic or an alicyclic
fluorocarbon.12 Unusual properties were found particularly for
the hexafluorobenzene (C6F6)-benzene (C6H6) system. Indeed,
this system exhibits unusual dependencies of the viscosity and
the excess thermal pressure coefficient on composition, and a
rare type of vapor-liquid equilibrum with two azeotropic points
in a wide range of pressures and temperatures.3-4,8-10 Only a
few (less than 10) double-azeotropic mixtures among more than
17 500 mixtures investigated are known.13 The fact that these
substances form an equimolar molecular compound in the solid
state6,14-15 suggested to explain their behavior by assuming that
such a complex is formed in solution as well. Donor-acceptor
interactions involving π electrons, the hexafluorobenzene
molecule being the acceptor and the benzene molecule the
donor,14 or electrostatic interactions between their quadrupole
moments, which are equal in magnitude and of opposite sign16,17

have been considered responsible for the formation of the
complex.

For the thermodynamic treatment of the problem, it was
supposed that the excess free energy consists of two parts, a
nonspecific part due to the “physical” fluorocarbon-hydrocar-
bon interactions and a specific or “chemical” part due to the
complex formation between the two components.5,11,18-19 The
equilibrium constant for complex formation was calculated from
the experimental data regarding the excess Gibbs energy.5

Several experimental studies aimed at finding experimental
evidence for intermolecular complexes in aromatic fluorocarbon/
aromatic hydrocarbon systems20-27 have been carried out. The
analysis of the nuclear spin-lattice relaxation in such systems
suggested the existence of clusters of fluorocarbon molecules.28

The neutron and X-ray diffraction studies were interpreted by
assuming that quadrupole-quadrupole interactions constitute
the main factor in these systems and that a 1:1 complex between
the two species might form.20 However, a number of spectro-
scopic studies regarding the formation of unlike intermolecular
complexes in the system hexafluorobenzene-benzene have
proven ambiguous.21-26 Wang et al.26 concluded that the results
of spectroscopic studies “cannot be explained on the basis of a
simplified model of association and reorientation.” Similarly,
the recently published molecular dynamic studies of the system
C6F6-C6H6 found that only heterodimers cannot explain the
experimental data and that long-range interactions of the order
of 7-11 Å are present because of quasistacked heterodimers.27

In this paper, the system C6F6-C6H6 and several other
systems such as C6F6-C6H5CH3, C6F6-c-C6H12, C6H6-C6H5-
CH3, and C6H6-c-C6H12 will be analyzed and compared on the
basis of the Kirkwood-Buff (KB) theory of solutions.29 The
KB theory of solutions allows information about the excess (or
deficit) number of molecules, of the same or different kind,
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around a given molecule to be extracted from macroscopic
thermodynamic properties, such as phase equilibria, excess
volume, and isothermal compressibilities. The excess (or deficit)
number of molecules is a result of the differences in intermo-
lecular interactions between molecules of the same and different
kind and can be calculated from the so-called Kirkwood-Buff
integrals.30 These quantities will allow some information about
the local structure of the solution to be obtained.31-34 The
calculation could be carried out because reliable thermodynamic
properties for aromatic fluorocarbon/aromatic hydrocarbon
mixtures are available.11-12

Theory and Formulas

1. The Kirkwood-Buff Integrals. The Kirkwood-Buff
integrals (KBI) are defined as29

where gij is the radial distribution function between species i
and j, r is the distance between the centers of molecules i and
j, and Gij is expressed as volume per molecule. Ben-Naim was
the first to calculate, by using the Kirkwood-Buff equations,
the KBIs from measured thermodynamic properties.30 For binary
mixtures, the Kirkwood-Buff equations acquire the form35

where

In the above equations, the Gij are expressed in volume per mole,
kT is the isothermal compressibility, Vi is the partial molar
volume of component i, xi is the mole fraction of component i,
V is the molar volume of the mixture, T is the absolute
temperature, R is the universal gas constant, and γi is the activity
coefficient of component i.

2. The Excess (or Deficit) Number of Molecules around a
Central One. The key quantities in the Kirkwood-Buff
approach are the ciGij, the excess (or deficit) number of
molecules i around a central molecule j, where ci is the molar
concentration of species i in the mixture.30 However, as noted
by Matteoli and Lepori, ciGij have nonzero values for ideal
systems,36-37 even though they should be considered nonag-
gregated. For this reason, Matteoli and Lepori suggested using
the ideal system as a reference system and calculating the excess
(or deficit) number of molecules i aggregated around a central
molecule j as ci(Gij - Gij

id),36-37 with the KBIs for the ideal
systems (Gij

id) given by the expressions36-37

where kT
id and Vid are the isothermal compressibility and the

molar volume of an ideal solution, respectively, æi is the volume
fraction of component i in solution, defined on the basis of the
molar volumes of the pure components, kT,i

0 is the isothermal
compressibility of the pure component i, and Vi

0 is the molar
volume of the pure component i.

However, because “the volume occupied by the excess j
molecules aggregated around an i molecule must be equal to
the volume left free by the i molecules around the same i
molecule”,36 the following equality should be satisfied:

Nevertheless, eq 8 is not satisfied identically by the above
expressions. Indeed, using eqs 2, 3, 5, 6, and 7, eq 8 becomes

Only if Gij
id is replaced by Gij

V (eqs 10 and 11), which is
obtained from the former by substituting kT

id, Vi
0, and Vid with

kT, Vi, and V, respectively, can eq 8 be satisfied identically.33

Consequently, the excess (or deficit) number of molecules ∆nij

with respect to a reference state are given by the expressions33

In other words, a more appropriate reference state, one which
is compatible with the volume conservation condition, is
characterized by Gij

V, and the differences Gij - Gij
V constitute

better measures of aggregation than Gij.
A comparison between Gij

V and Gij
id for the methanol-water

system showed that in that case they were close to each other.34

However, as was already pointed out,36-37 the use of a reference
state is particularly important for the systems with small
deviations from the Raoult law. In such cases, the reference
state based on Gij

V provides results very different from those
based on Gij

id.
3. The Correlation Volume and Local Composition. Let

us consider a molecule of species i and its surrounding
correlation volume (Vcor

i ) in which the composition and/or the
structure differ from the bulk one. The total number of
aggregated molecules i and j in this volume is given by the
expressions

and

Gij ) ∫0

∞
(gij - 1)4πr2 dr i, j ) 1, 2 (1)

G12 ) G21 ) RTkT -
V1V2

VD
(2)

Gii ) G12 + 1
xi

(Vj

D
- V) i * j (3)

D ) (∂ln γi

∂xi
)

P,T
xi + 1 (4)

G12
id ) RTkT

id -
V1

0V2
0

Vid
) RTkT,2

0 - V1
0 -

æ1(V2
0 - V1

0 + RTkT,2
0 - RTkT,1

0 ) (5)

G11
id ) G12

id + V2
0 - V1

0 (6)

G22
id ) G12

id - (V2
0 - V1

0) (7)

Vjcj(Gji - Gji
id) ) -Vici(Gii - Gii

id) (8)

RTV(kT - kT
id) ) ViV + Vi(Vj

0 - Vid) -
Vi

0Vj
0V

Vid
(9)

G12
V ) G21

V ) RTkT -
V1V2

V
(10)

Gii
V ) G12

V + Vj - Vi i * j (11)

∆n12 ) c1(G12 - G12
V ) ) c1∆G12 ) c1∆G21 )

-
c1V1V2

V (1 - D
D ) (12)

∆n21 ) c2(G12 - G12
V ) ) c2∆G12 ) c2∆G21 )

-
c2V1V2

V (1 - D
D ) (13)

∆nii ) ci∆Gii ) ci(Gii - Gii
V) )

cixjVj
2

xiV (1 - D
D ) i * j (14)

nii ) ∆nii + ciVcor
i (15)

nji ) ∆nji + cjVcor
i (16)

Aggregation in Binary Solutions J. Phys. Chem. B, Vol. 103, No. 46, 1999 10267

Thermodynamics of Solutions24



According to the local composition (LC) concept, the composi-
tion of solution in the vicinity of any molecule differs from the
overall (bulk) composition. For binary mixtures composed of
components 1 and 2 with mole fractions x1 and x2, respectively,
four LCs can be considered: the local mole fractions of
components 1 and 2 around a central molecule 1 (x11 and x21)
and the local mole fractions of components 1 and 2 around a
central molecule 2 (x12 and x22). In terms of the total number
of molecules i and j in the correlation volume, the local mole
fractions are given by

and

Using eqs 12-14, eqs 17 and 18 become

and

Equations 19 and 20 coupled with expressions for the local
compositions and for the activity coefficients at infinite dilution
allowed the evaluation of the correlation volume and the unlike
interaction energy parameter at infinite dilution.38

Treatment Procedure and Data Sources

The values of Gij, ∆Gij, and ∆nij were calculated for the
following five systems: hexafluorobenzene (HFB)-benzene
(B), HFB-toluene (TL), HFB-cyclohexane (CH), B-TL, and
B-CH. For the system HFB-B, the calculations were carried
out at five temperatures, while for the other systems, the
calculations were carried out at a single temperature. To perform
the calculations, information is needed about the dependence
on composition of the following quantities: D (defined by eq
4), molar volume V, partial molar volumes V1 and V2, and the
isothermal compressibility kT. Because the dependence of kT

on composition is not known for the systems investigated and
because of the small contribution of RT kT to the KBIs,35 the
dependence of kT on composition will be approximated by

The isothermal compressibilities of benzene, toluene, and
cyclohexane are available in ref 39. The isothermal compress-
ibility of hexafluorobenzene is not available in the literature,
but values for the isentropic compressibility (kS

0) are available.8

Because the contribution of the compressibility to the values
of the KBIs is small,35 we assumed that the difference between
the isothermal and isentropic compressibilities (kT

0 - kS
0) are

the same for benzene and hexafluorobenzene. The sources of
the data for the calculation of D, molar volume V, partial molar
volumes V1 and V2 are listed in Table 1. The values of the molar
volume V and of the partial molar volumes V1 and V2 were

obtained from the molar volumes of the pure components4,5,39

and the excess volume data VE (the sources of these data are
listed in Table 1), which have been fitted using the Redlich-
Kister equation.44

The analysis of the possible errors in the calculation of KBIs
clearly indicated that the main error is introduced through the
parameter D35,45 and is caused by the uncertainty in the
derivative of the activity coefficient. In the present paper,
isothermal vapor-liquid equilibrium (VLE) data were used to
calculate D. The data were taken from Gmehling’s VLE
compilation46 and were selected if they satisfied the integral
and the point46 thermodynamic consistency tests. The selected
VLE data were treated by the Barker method,47-48 using only
liquid mole fraction-pressure (x-P) data. The vapor phase
nonideality was taken into account, and the total pressure was
calculated using the equation

where

Pi
0 is the vapor pressure of the pure component i, Bii is the

second virial coefficient of component i, d12 ) 2B12 - B11 -
B22 and B12 is the crossed second virial coefficient of the binary
mixture. The virial coefficients of the pure components were
taken from ref 5 and the vapor pressures of the pure components
Pi

0 from refs 4, 5, 40, and 42. The crossed second virial
coefficients of the binary mixtures were taken from refs

TABLE 1: Sources of Data Used for Calculating the
Kirkwood-Buff Integralsa

D V, V2, V2

system data ref data ref

HFB-B P-x-y T ) 303.15 K 5 VE T ) 313.15 K 7
P-x-y T ) 313.15 K 5
P-x-y T ) 323.15 K 5
P-x-y T ) 333.15 K 5
P-x-y T ) 343.15 K 5

HFB-TL P-x-y T ) 303.15 K 5 VE T ) 313.15 K 7
HFB-CH P-x-y T ) 303.15 K 4 VE T ) 313.15 K 7
B-TL P-x T ) 303.15 K 40 VE T ) 298.15 K 41
B-CH P-x-y T ) 298.15 K 42 VE T ) 298.15 K 43

a P is the pressure and x and y are equilibrium mole fractions in
liquid and vapor; VE is the excess volume.

Figure 1. Values of D for the system HFB-B at 313.15 K calculated
using various expressions for the activity coefficient: (-) the NRTL
equation; (2) the Van Ness-Abbott equation; (b) the equation proposed
by the authors in ref 52.

xii )
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2(1 - D) - xjViVj(1 - D) + Vcor

i VD
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i VD
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0 æ1 + kT,2
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x1γ1P1
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+
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(22)

F1 ) exp
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2d12

RT
(23)

F2 ) exp
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2d12

RT
(24)
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49-50 or were evaluated using the expression5 B12 ) (B11 +
B22)/2. The NRTL,51 the Van Ness-Abbott,48 and the authors
equation52 were used to express the activity coefficients in eq
22. The expressions for the activity coefficients provided by

these three methods were differentiated analytically, and the
obtained derivatives were used to calculate D. There is good
agreement between the values of D obtained with the three
expressions. The agreement is illustrated in Figure 1 for the
system HFB-B at 303.15 K.

Figure 2. KB integrals (Gij in [cm3/mol]) in the systems investigated:
(a) the system HFB-B at 303.15 K; (b) the system HFB-TL at 313.15
K; (c) the system HFB-CH at 303.15 K; (d) the system B-TL at
303.15 K; (e) the system B-CH at 298.15 K. Figure 2e also contains
the KBIs from ref 37 at 303.15 K: G11 (]); G22 (0); G12 (O).

Figure 3. The excess (or deficit) molecules near a central one (∆nij in
[mol/mol]): (a) the system HFB-B at 303.15 K; (b) the system HFB-
TL at 313.15 K; (c) the system HFB-CH at 303.15 K; (d) the system
B-TL at 303.15 K; (e) the system B-CH at 298.15 K.
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Results and Discussion

The results of the calculations are presented in Figures 2 and
3. For the system benzene-hexafluorobenzene, the calculations
were carried out at 303.15, 313.15, 323.15, 333.15, and 343.15
K. The results for 303.15 K are given in Figures 2a and 3a, and
the temperature dependence is examined later in the paper.
Except the system benzene-cyclohexane, for which the KBIs
were calculated previously at 303.15 K,37 all the other KBIs
were calculated in this paper for the first time. There is good
agreement between our calculations at 298.15 K and those
calculated in the literature37 at 303.15 K for the benzene-
cyclohexane mixture (Figure 2e).

All the KBIs of the system HFB-B are negative at all
compositions (Gij in Figure 2a) and all the KBIs of the system
HFB-TL are negative (Gij in Figure 2b) for x1 g 0.1. They are
also negative for ideal mixtures in the entire composition range.
Because the ideal mixtures should be considered nonaggregated,
the above systems are good illustrations for the need of a
reference state for the calculation of the excess (or deficit)
number of molecules around a given molecule due to aggrega-
tion. The values of ∆Gij for HFB-B and HFB-TL, calculated
with eqs 2-3 and eqs 10-11, show that for these mixtures all
the ∆Gij are only slightly different from zero, hence from ideal
behavior, except ∆G11 for x1 < 0.2 and ∆G22 for x2 < 0.2-
0.3.

The ∆nij values for the systems HFB-B and HFB-TL (parts
a and b of Figure 3) change sign at x1* ≈ 0.4 and at x1* ≈ 0.2,
respectively. At compositions x1*, all ∆nij ) 0 and all local
compositions are equal to the bulk ones. To obtain more
information about this point, let us note that from eqs 12-14
one finds that ∆nij ) 0 when D ) 1 and hence (see eq 4) that

On the other hand, one can write for the molar excess Gibbs
energy of a binary system the following relation:

which differentiated gives

Taking into account the Gibbs-Duhem equation for isothermal
conditions

eq 27 leads to

From eqs 25 and 29 it is clear that

This means that for ∆nij ) 0, the activity coefficients reach
extrema and the excess Gibbs energy exhibits an inflection point.
To check this conclusion the logarithm of the activity coef-
ficients and the excess Gibbs energy for the system HFB-B
are plotted against concentration in parts a and b of Figure 4.
Comparing Figure 3a and parts a and b of Figure 4, one can
see that, in the points where ∆nij ) 0, the activity coefficients
reach extrema and the excess Gibbs energy exhibits an inflection
point.

The values of ∆G12 for the mixtures HFB-B and HFB-TL
being close to zero, it is clear that in those cases the unlike
interactions are comparable to the like ones. Some conclusions
can be also reached from the analysis of ∆nij. Indeed, one can
see from parts a and b of Figure 3 that ∆n11 and ∆n22 are
positive and small when x1 < x1* and they become negative
and small when x1 > x1*. The situation is inverted for ∆n12

and ∆n21. ∆n11, ∆n22, ∆n12, and ∆n21 have the common feature
that their absolute values do not exceed 0.15-0.2 and that they
change sign for x1 ) x1*. Some like (enriched in the same
component as the central one) aggregates are formed when x1

e x1* and some unlike aggregates are formed when x1 g x1*.
This aggregation involves, however, not too strong interactions.
If strong interactions would have been involved, then the ∆nij

should not have changed sign. It is of interest to compare
HFB-B or HFB-TL with the system HFB-CH. In the latter
case, Figures 2c and 3c show that like aggregations of HFB
and CH, but not the unlike ones, occur over the entire
composition range. The results for the system, B-CH (Figures
2e and 3e) are similar to those for HFB-CH with one exception,
the like aggregation of HFB is much stronger than that of B.
This means that the interactions between the HFB molecules
are stronger than those between the B molecules. The mixtures

(∂ln γ1

∂x1
)

P,T,x1)x1*
) (∂ln γ2

∂x1
)

P,T,x1)x1*
) 0 (25)

∆GE

RT
) x1 ln γ1 + x2 ln γ2 (26)

∂(∆GE

RT )
∂x1

) ln γ1 - ln γ2 + x1

∂ ln γ1

∂x1
+ x2

∂ ln γ2

∂x1
(27)

x1

∂ln γ1

∂x1
) x2

∂ln γ2

∂x2
(28)

[∂2(∆GE

RT )
∂x1

2 ]
T

) (∂ln γ1

∂x1
)

T
- (∂ln γ2

∂x1
)

T
(29)

Figure 4. (a) Dependence of the activity coefficients on composition
at 313.15 K for the C6F6-C6H6 system obtained from experimental
vapor-liquid equilibrium data5 correlated with the Van Ness-Abbott
equation.48 (b) The dependence of excess functions (J/mol) on composi-
tion at 313.15 K. ∆GE was calculated from vapor-liquid equilibria
data,5 ∆HE was taken from ref 53, and T∆SE was calculated as the
difference between ∆GE and ∆HE.

[∂2(∆GE

RT )
∂x1

2 ]
T,x1)x1*

) 0 (30)
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containing CH behave so differently because CH is not aromatic
and therefore π-π interactions cannot occur with either HFB
or B. It is clear that, in the latter two cases, the like interactions
are stronger than the unlike one.

The correlation volume and the energy of interaction between
two unlike molecules in the systems HFB-B were calculated
as for the binary aqueous solutions of alcohols and hydrocar-
bons,38 using eqs 19-20 and expressions for the local composi-
tions and activity coefficients at infinite dilution. It should be
however emphasized that the calculation procedure38 is not very
accurate when the activity coefficients at infinite dilution are
close to unity. For the system HFB (1)-B (2) at 40 °C, γ1

∞ )
1.2 and γ2

∞ ) 0.8; these values were calculated from VLE
data5 using the Van Ness-Abbott equation.48 The calculations
also showed that the energies of interaction between unlike
molecules are almost the same for both concentration limits (x1

f 0 and x2 f 0). The correlation volume has the following
values: Vcor

1 ≈ 14 000 [cm3/mol] and Vcor
2 ≈ 3000 [cm3/mol].

Assuming a spherical shape, these values correspond to radii
of 10-15 Å, which are in agreement with the neutron diffraction
experiments,27 which indicated a structuring over about 7-11
Å. The KBIs were also calculated for the system B-TL (Figure
2d). This figure shows that this system exhibits small deviations
from ideality which are somewhat larger for benzene mole
fractions greater than 0.6. The comparison of this system with
the HFB-TL one shows that the replacement of benzene with
hexafluorobenzene leads to a completely different composition
dependence of the KBIs and ∆nij.

The values of ∆nij for the HFB-B system were calculated
at 303.15, 313.15, 323.15, 333.15, and 343.15 K. The calcula-
tions indicated that all the ∆nij decrease in absolute value with
increasing temperature. Figure 5 presents the peak values of
∆n11 against temperature and shows that they decrease mod-
erately with increasing temperature, indicating again that the
interactions involved are not too strong.

Conclusion

The Kirkwood-Buff theory of solutions was applied to the
systems aromatic fluorocarbon/aromatic hydrocarbon. The Kirk-
wood-Buff integrals and the excess (or deficit) number of
molecules around a central one were calculated for five systems
(hexafluorobenzene-benzene, hexafluorobenzene-toluene,
hexafluorobenzene-cyclohexane, benzene-toluene, benzene-
cyclohexane).

The values of KBIs and the excess (or deficit) number of
molecules ∆nij near a central one with respect to a reference
state showed that the local structure in solutions of hexafluo-
robenzene with benzene or toluene slightly differs from the bulk
one and that this is caused, mainly, by moderate interactions.

It was found that a particular composition exists in the
systems of hexafluorobenzene-benzene and hexafluoroben-
zene-toluene for which all ∆nij are zero and that at this

composition the activity coefficients exhibit extrema and the
excess Gibbs energy an inflection point.
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Abstract

Microheterogeneities, such as local compositions which di-er from the average ones, are typical features of aqueous solutions of
organic substances. A method for computing the sizes of microheterogeneities at in0nite dilution (correlation volumes) is proposed,
which is based on a combination between the Kirkwood–Bu- theory of solution, an expression for the local concentration, ab
initio quantum chemical calculations of the interaction energies and available thermodynamic data. The correlation volumes are
calculated for aqueous solutions of methanol, ethanol, propanol and isopropanol. The results obtained for propanol and isopropanol
could be compared with the sizes determined via small-angle X-ray scattering and good agreement between the calculated and
experimental values found. In addition, the mutual a6nity of solute molecules (their self-assembling), which is one of the important
characteristics of hydrophobic interactions in aqueous solutions, was evaluated for a number of in0nitely dilute aqueous solutions of
alcohols and hydrocarbons. The calculations provided an additional argument that the hydrophobic self-assembling of hydrocarbons
is mainly a result of the preference of the water molecules to interact among themselves via hydrogen bonding than a result of the
interactions between hydrocarbon molecules. ? 2001 Elsevier Science Ltd. All rights reserved.

Keywords: Hydrophobic interactions; Self-assembling; Correlation volume

1. Introduction

The aqueous solutions have received attention for more
than a century because they are of industrial, environ-
mental and scienti0c importance. One of the features
of the aqueous solutions of organic substances is their
microheterogeneity, re:ected in the fact that the local
concentration di-ers from the bulk concentration. The
microheterogeneities in solutions can be characterized by
the following nanometer-level parameters: (1) the corre-
lation volume, i.e. the volume in which the concentration
di-ers from the average concentration, (2) the excess (or
de0cit) number of molecules in the correlation volume
compared to the number of molecules when they are ran-
domly distributed, and (3) the inter molecular interac-
tions between the molecules in the above volume.

∗ Corresponding author. Tel.: +1-716-645-2911; fax: +1-716-645-
3822.
E-mail addresses: feaeliru@acsu.bu-alo.edu (E. Ruckenstein),

ishulgin@eng.bu-alo.edu (I. Shulgin).

The microheterogeneities in aqueous solutions have
been investigated by various physical methods. For
example, for the alcohol=water systems, microhetero-
geneities could be determined in solutions of the higher
alcohols (PrOH, BuOH and higher) by small-angle
X-ray scattering (SAXS) (Bale, Sherpler, & Sor-
gen, 1968; Koga, 1984; Nishikawa, Kodera, & Iijima,
1987; Nishikawa, Hayashi, & Iijima, 1989; Hayashi,
Nishikawa, & Iijima, 1990; Shulgin, Serimaa, & Torkkeli,
1991; Hayashi & Udagawa, 1992), small-angle neu-
tron scattering (SANS) (D’Arrigo & Teixeira, 1990),
light scattering (LS) (Grossmann & Ebert, 1981; Euliss
& Sorensen, 1984; Ito, Kato, & Fujiyma, 1981; Ben-
der & Pekora, 1986). The microheterogeneities were,
however, too small to be detected in the aqueous so-
lutions of the lower alcohols, methanol and ethanol
(Donkersloot, 1979; Nishikawa & Iijima, 1993). There
is experimental and theoretical evidence that such mi-
croheterogeneities are also present in aqueous solutions
of hydrocarbons and other organic substances (Tanford,
1980).

0009-2509/01/$ - see front matter ? 2001 Elsevier Science Ltd. All rights reserved.
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The microheterogeneity was frequently used to explain
the properties of aqueous solutions. Frank and Evans
(1945) suggested that around a molecule of a nonpolar
solute, there is a layer of more structured water molecules
(“iceberg”). This concept was helpful in explaining,
via the “melting” of icebergs, the unusually large
speci0c heats of the solutions in water of simple
hydrocarbons (Gill, Dec, Olofsson, & WadsNo, 1985;
Kauzmann, 1987).
However, a theoretical method to determine the sizes

of such microheterogeneities and their properties, such
as the local composition, was proposed only recently
(Shulgin & Ruckenstein, 1999a), by combining, for in0-
nite dilution, the Kirkwood–Bu- theory of solution with
expressions for the activity coe6cient and local composi-
tion. The expression for the activity coe6cient provided
the interaction energies between molecules. In this paper,
a variant of that method is suggested, based on a syn-
thesis between the Kirkwood–Bu- theory of solution, an
expression for the local composition, and ab initio quan-
tum mechanical calculation of the interaction energies.
The e-ect of various aliphatic alcohols on the structure
of water at in0nite dilution will be thus investigated. In
addition, the previous approach (Shulgin & Ruckenstein,
1999a) will be used to analyze the self-assembling of
solute molecules in dilute aqueous solutions. It will be
shown that the results thus obtained provide information
about hydrophobic bonding.

2. Theory and formulas

2.1. The correlation volume

We consider a molecule of species i and its surrounding
correlation volume V icor in which the composition and=or
the structure di-er from the bulk one. The total number
of molecules i and j in this volume is given by the ex-
pressions

nii=Pnii + ciV icor (1)

and

nji=Pnji + cjV icor ; (2)

where Pnii and Pnji are the excess (or de0cit) number of
molecules i and j around a central molecule i. Using the
Kirkwood–Bu- theory (KB) (Kirkwood & Bu-, 1951) of
solutions and a reference state for the excess quantities,
Pnii and Pnji can be expressed as follows (Shulgin &
Ruckenstein, 1999b):

Pn12 = − c1V1V2

V

(
1 −D
D

)
; (3)

Pn21 = − c2V1V2

V

(
1 −D
D

)
(4)

and

Pnii=
cixjV 2

j

xiV

(
1 −D
D

)
i �= j; (5)

where ci is the average molar concentration of species i in
the mixture, xi is the average mole fraction of component
i in solution, V is the molar volume of the solution, Vi
and Vj are the partial molar volumes of components i
and j, respectively, D−1= xi( @ ln �i@xi

)P;T ; �i is the activity
coe6cient of component i, P is the pressure and T is the
absolute temperature. Since the local mole fractions are
given by

xii=
nii

nii + nji
=

Pnii + ciV icor
Pnii +Pnji + (ci + cj)V icor

(6)

and

xji=
nji

nii + nji
=

Pnji + cjV icor
Pnii +Pnji + (ci + cj)V icor

; (7)

one obtains

xii=
xjV 2

j (1 −D) + xiV icorVD
xjV 2

j (1 −D) − xjViVj(1 −D) + V icorVD
(8)

and

xji=
−xjViVj(1 −D) + xjV icorVD

xjV 2
j (1 −D) − xjViVj(1 −D) + V icorVD

; (9)

where xji is the local mole fraction of component j in the
vicinity of a central molecule i.
Due to the dilute region one can consider that

(Debenedetti & Kumar, 1986) (@ ln �i=@xi)P;T is indepen-
dent of xi; consequently

D=Ki(P; T )xi + 1; (10)

where

Ki(P; T )=
(
@ ln �i
@xi

)
P;T;xi→0

:

At in0nite dilution, Eq. (8) leads to

lim
xi→0

xii
xi

=1 − V 0
j Ki(P; T )

V i;0cor
(11)

where V 0
j is the molar volume of pure component j and

V i;0cor = limxi→0V icor. One may note that limxi→0 xii=xi ¿ 1
when Ki(P; T )¡ 0 (or (@ ln �i=@xi)P;T; xi→0¡ 0). To
calculate the correlation volume V i;0cor (the size of the
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region a-ected by a solute molecule) using Eq. (11), an
additional expression for limxi→0 xii=xi is needed. Such an
expression, based on the local composition concept will
be provided in the next section.

2.2. The local composition concept

According to the local composition (LC) concept, the
composition in the vicinity of any molecule di-ers from
the overall composition. If a binary mixture is composed
of components 1 and 2 with mole fractions x1 and x2, re-
spectively, four LCs should be considered: the local mole
fractions of components 1 and 2 near a central molecule
1 (x11 and x21) and the local mole fractions of compo-
nents 1 and 2 near a central molecule 2 (x12 and x22).
Many attempts have been made to express LC in terms of
bulk compositions and intermolecular interaction parame-
ters (Wilson, 1964; Renon & Prausnitz, 1968; Panayiotou
& Vera, 1980, 1981; Lee, Sandler, & Patel, 1986; Ara-
novich & Donohue, 1996; Wu, Cui, & Donohue, 1998;
Ruckenstein & Shulgin, 1999). In the calculations that
follow, the Aranovich and Donohue (1996) expressions
will be employed, because they have a theoretical basis.
These expressions are

xii=
xi exp(xjP=RT )

xj + xi exp(xjP=RT )
(12)

and

xji=
xj

xj + xi exp(xjP=RT )
; (13)

where �=2e12−e11−e22 and eij is the interaction energy
parameter between molecules i and j.
The following expression for limxi→0 xii=xi is obtained

from Eq. (12):

lim
xi→0

xii
xi

=exp
[
2e12 − e11 − e22

RT

]
: (14)

Let us analyze the expressions written for limxi→0 xii=xi
(Eqs. (11) and (14)). Eq. (11) contains the variables:
limxi→0 xii=xi, V 0

j ; Ki and V
i;0
cor . The quantities V

0
j and Ki

Table 1
Size of microheterogeneities in dilute aqueous solutions of alcohols

System Calculateda correlation volume Experimental values of size of microheterogeneities

r( RA) r( RA) Method R( RA) References
present Shulgin and
paper Ruckenstein (1999a)

MeOH(1)=H2O(2) −4:4 4.7 SAXS No microheterogeneity identi0ed Donkersloot (1979)
EtOH(1)=H2O(2) 3.9 5.8 SAXS No microheterogeneity identi0ed Nishikawa and Iijima (1993)
1-PrOH(1)=H2O(2) 4.2 7.0 SAXS 4 at x1 = 0:05 Hayashi and Udagawa (1992)
2-PrOH(1)=H2O(2) 3.7 6.1 SAXS 2.6 at x1 = 0:1 Hayashi and Udagawa (1992)

aThe correlation volume is approximated by a sphere.

can be obtained from the density of the pure component
j and phase equilibrium data, respectively (Debenedetti
& Kumar, 1986; Liu & Ruckenstein, 1999; Ruckenstein
& Shulgin, 2000); the correlation volume, which charac-
terizes the solution nanostructure, is an unknown quan-
tity, which can be calculated by combining Eq. (14) with
(11) and providing values for the intermolecular inter-
action energies. These values can be obtained either in-
directly, using an expression for the activity coe6cient
at in0nite dilution as in our previous paper (Shulgin &
Ruckenstein, 1999a), or directly, by calculating them via
quantum mechanics.

3. Evaluations of the correlation volume in aqueous
solutions of alcohols and hydrocarbons

By coupling the equations obtained in the previous sec-
tion with expressions for the activity coe6cient at in0nite
dilution (Shulgin &Ruckenstein, 1999a) one could calcu-
late the correlation volumes of alcohol and hydrocarbon
molecules in (in0nitely) dilute aqueous solutions. The re-
sults obtained (Shulgin & Ruckenstein, 1999a) were in
good agreement with experimental data.
A more direct method consists in combining Eq. (11)

with (14), and with the intermolecular energies calculated
via the quantum mechanical ab initio method (Levine,
1991; Szabo & Ostlund, 1996). The quantum mechanical
method was recently employed to calculate the interac-
tion energies between molecules for water=alcohol mix-
tures by Sum and Sandler (1999) and their results will
be employed in what follows.
The combination of Eqs. (11) and (14) yields

exp
[
2e12 − e11 − e22

RT

]
=1 − V 0

2K1(P; T )
V 1;0
cor

: (15)

Eq. (15) will be used to calculate the correlation vol-
ume. The values of V 0

2 and K1 were taken from our pre-
vious paper (Shulgin and Ruckenstein, 1999a), and the
values of the intermolecular interaction energies from
the paper of Sum and Sandler (1999). The results are
listed in Table 1. Calculations were carried out only for

1   The Kirkwood-Buff integrals and their applications to binary and ternary solutions 31



5678 E. Ruckenstein, I. Shulgin / Chemical Engineering Science 56 (2001) 5675–5680

Table 2
The values of limx1→0 x11=x1 in in0nitely dilute aqueous solutions of
alcohols and hydrocarbons

System Temperature (K) lim
x1→0

x11
x1

Methanol=water 298.15 1.10
Ethanol=water 298.15 1.17
1-propanol=water 303.15 1.24
2-propanol=water 298.15 1.21
1-butanol=water 323.15 1.29
2-butanol=water 323.15 1.26
i-butanol=water 323.15 1.28
t-butanol=water 323.15 1.22
t-pentanol=water 328.15 1.29
Propane=water 298.15 1.50
n-butane=water 298.15 1.54
Isobutane=water 298.15 1.52
n-pentane=water 298.15 1.54
n-hexane=water 298.15 1.54
n-heptane=water 298.15 1.52
n-octane=water 298.15 1.52
n-decane=water 298.15 1.52
n-dodecane=water 298.15 1.52
Cyclopentane=water 298.15 1.63
Cyclohexane=water 298.15 1.62
Cycloheptane=water 298.15 1.64
Benzene=water 298.15 1.53
Toluene=water 298.15 1.39

the systems MeOH=H2O; EtOH=H2O; 1-PrOH=H2O and
2-PrOH=H2O, for which the intermolecular interaction
energies were available (Sum & Sandler, 1999). It is dif-
0cult to explain the negative value obtained for the cor-
relation volume around methanol at in0nite dilution. One
can, however, show that the values of the interaction ener-
gies used to calculate that correlation volume also lead to
an unreasonable value for limxi→0 xii=xi, which is less than
unity. This means that the local composition of molecules
i around a central molecule i is less than the bulk com-
position. However, it is well known (Kozak, Knight, &
Kauzmann, 1968) that self-aggregation of water and al-
cohol molecules are typical for the aqueous solutions of
alcohols. It is worth mentioning that for the other alco-
hol/water systems considered in this paper the above limit
is larger than unity.

4. Hydrophobic interactions and self-assembling at
in!nite dilution

The method suggested in the present paper provides the
correlation volume. The thickness of the layer of water
thus calculated, which is a-ected by a solute molecule,
indicates how deeply a single solute molecule has per-
turbed the structure of the vicinal water molecules.
Another feature of the hydrophobic interactions is the

self-assembling of hydrophobic molecules in water. At
in0nite dilution, the value of limxi→0 xii=xi can serve as
a measure of self-aggregation of molecule i at in0nite

dilution. limxi→0 xii=xi can be computed using Eq. (11) or
(14). Consequently, the method suggested in the current
paper allows one to estimate not only the thickness of
the layer of water that is a-ected by a solute molecule,
but also the mutual a6nity of solute molecules at in0nite
dilution. The compounds selected, hydrocarbons and al-
cohols, allowed one to investigate the hydrophobic e-ect
for pure hydrophobic molecules (hydrocarbons) and for
less hydrophobic substances such as the alcohols.
To evaluate limxi→0 xii=xi, either the interaction ener-

gies between molecules (Eq. (14)) or the values of V 0
j ; Ki

and V i;0cor (Eq. (11)) are required. Because, the interac-
tion energies were calculated by quantum mechanics only
for a few systems, Eq. (11) will be used to calculate
limxi→0 xii=xi. All the required data (V 0

j ; Ki and V
i;0
cor) were

taken from our previous paper (Shulgin & Ruckenstein,
1999a) and the results are listed in Table 2.

5. Discussion

The present paper is focused on the nanostructure of
dilute binary aqueous solutions of organic substances, or,
in other words, on how the addition of a small amount of
an organic compound such as an alcohol or a hydrocarbon
a-ects the nanostructure of liquid water. The results ob-
tained regarding the correlation volumes around 1-PrOH
and 2-PrOH molecules in dilute aqueous solutions are in
good agreement with the experimental data obtained by
small-angle X-ray di-raction. The correlation volumes
around 1-PrOH and 2-PrOH allowed one to evaluate
the number of ambient water layers a-ected by a single
molecule of 1-PrOH or 2-PrOH. Using X-ray scattering
data for cold water (Narten & Levy, 1972), one can
0nd that 2–3 vicinal layers of water are a-ected by a
single 1-PrOH or 2-PrOH molecule at in0nite dilution.
The thickness of the layer is even larger for in0nitely
dilute solution of hydrocarbons (Shulgin & Ruckenstein,
1999a). In his classical scheme, Butler (1937) suggested
that “the process of bringing a solute molecule into a
solvent may be supposed to consist of two steps: (1)
making a cavity in the solvent large enough to hold the
solute molecule; (2) introducing the solute molecule into
the cavity”. In the calculation of the contribution of the
second step to the enthalpy of hydration, Butler consid-
ered only the interactions between the solute molecule
and the nearest neighboring water molecules. He also
assumed that the water molecules are distributed around
a solute molecule as randomly as in its absence. It should
be noted that Nemethy and Scheraga (1962) also con-
sidered that only one layer of water is a-ected by the
solute molecule. Our results revealed, however, that, as
suggested by Frank and Evans (1945), several layers of
water molecules are reorganized around a solute
molecule as “icebergs”. In contrast to Frank and Evans,
the present approach allows one to evaluate the number
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of layers of water which are a-ected by the presence of
the solute.
One of the most important features of hydropho-

bic interactions is the self-assembling of hydrophobic
molecules in aqueous solutions. Kauzmann was the
0rst to focus the attention on self-assembling in his
paper about the folding of protein molecules (Kauzmann,
1959).
We propose here to consider the quantity limxi→0 xii=xi

as a measure of self-assembling of solute (alcohol or
hydrocarbon) molecules in in0nitely dilute aqueous so-
lutions. The results of our calculation of limxi→0 xii=xi
(Table 2) showed that for the alcohol molecules the above
ratio increased somewhat with increasing size of the hy-
drophobic radical. These results are in agreement with lit-
erature observations (Kozak et al., 1968). However, the
values of limxi→0 xii=xi for aliphatic hydrocarbons are al-
most independent of the length of the molecule. For in-
stance, the value of the limit is 1.50 for propane and 1.52
for dodecane. This provides an additional argument that
the process of self-assembling of hydrocarbon molecules
in in0nitely dilute aqueous solutions depends mainly on
the water and much less on the interactions between the
solute molecules. This observation is in agreement with
the idea that the hydrophobic interaction is a result of
the preference of the water molecules for their hydro-
gen bonding than the preferences of the hydrocarbon
molecules to interact among themselves (Tanford, 1980;
Ruckenstein, 1998 and references therein).
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Abstract

The Kirkwood–Buff (KB) theory of solution is applied to a ternary mixture by deriving explicit expressions for the
various Kirkwood–Buff integrals (KBIs) and the corresponding excesses of the number of molecules around central
ones. However, the ideal solution should be considered non-aggregated, and the above expressions for the excesses
provide non-zero values for such a case. For this reason, in order to obtain information about clustering one must sub-
tract from the traditional excesses those which correspond to a reference state, thus ensuring that for an ideal mixture
the excesses are zero. The expressions derived for the latter excesses have been applied to the investigation of the
N,N-dimethylformamide–methanol–water mixture, to conclude that: (i) in the vicinity of the water molecules there
are excesses of water and N,N-dimethylformamide molecules and a deficit of methanol molecules; (ii) in the vicinity
of the methanol molecules there are excesses of methanol and N,N-dimethylformamide molecules and a deficit of
water molecules; (iii) in the vicinity of the N,N-dimethylformamide molecules there are excesses of methanol and
water molecules and a deficit of N,N-dimethylformamide molecules; (iiii) the excesses of N,N-dimethylformamide
around water and methanol molecules and those around N,N-dimethylformamide are weakly dependent on the con-
centration of the third component in a large range of concentrations of the latter, and these results are compatible with
the existence of N,N-dimethylformamide–water and N,N-dimethylformamide–alcohol complexes. © 2001 Elsevier
Science B.V. All rights reserved.
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mixtures

1. Introduction

The Kirkwood–Buff (KB) theory of solution [1] (often called fluctuation theory) was originally de-
veloped in 1951. This theory connects the macroscopic properties of solutions, such as the isothermal
compressibility, the concentration derivatives of the chemical potentials and the partial molar volumes
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to their microscopic characteristics in the form of spatial integrals involving the radial distribution func-
tions. This theory provides a unique opportunity to extract some microscopic characteristics of mixtures
from measurable thermodynamic quantities. However, in spite of its attractiveness, the KB theory was
not often used [2–4] in the first three decades after its appearance, for two main reasons: (1) the lack of
precise data (in particular regarding the composition dependence of the chemical potentials); and (2) the
difficulty to interpret the results obtained. Only after Ben–Naim indicated how to calculate numerically
the Kirkwood–Buff integrals (KBIs) for binary systems [5], this theory was used more frequently. Since
then, the KBIs have been calculated for numerous binary systems [6–12] and the results were used to
examine the solution behavior with regard to: (1) local composition; (2) various models for phase equi-
librium; (3) preferential solvation and others [13–15]. Because the KB theory of solution is an exact
statistical mechanical formalism, it can also be used for near critical and supercritical binary mixtures
[14,16–19], whereas the conventional theories fail under these conditions [20]. As noted by Matteoli and
Lepori [10,11] and later by the authors [12], information about aggregation in such mixtures should be
obtained by subtracting from the KBIs the KBIs of a reference state. Matteoli and Lepori selected the ideal
solution as the reference state, because an ideal solution should be considered non-aggregated (hence its
excesses should be zero) and its KBIs differ from zero. The authors have modified this reference state
[12] to take into account the volume conservation condition (this issue is discussed later in the paper).

The KB theory of solution was also used to obtain information about the intermolecular interactions
in ternary mixtures [10,21–26]. However, only Matteoli and Lepori [10,11,26] used a reference state in
their calculations, while Zielkiewiecz [24,25] did not. The KB theory was also applied to a number of
ternary mixtures regarding alloys [27], electrolyte solutions [28] and supercritical mixtures [29,30].

Equations for the KBIs in ternary mixtures are available in matrix form [2]. Explicit equations are
obtained here which will allow us to analyze interesting features of ternary mixtures, such as the effect of
a third component on the phase behavior of a binary mixture and the effect of a cosolvent (entrainer) on
supercritical binary mixtures. Only the former problem is examined in the present paper. The calculations
will be carried out for an interesting ternary mixture, namely N,N-dimethylformamide–methanol–water,
in order to extract information about the intermolecular interactions. In the next section explicit equations
for the KB integrals will be derived and applied to the above ternary mixture. Finally, the results obtained
will be used to shed some light on the local structure and the intermolecular interactions in the above
mixture.

2. Theory and formulas

2.1. The Kirkwood–Buff integrals (KBI)

The KBIs are given by the expressions [1]

Gαβ =
∫ ∞

0
(gαβ − 1)4πr2 dr (1)

where gαβ is the radial distribution function between species α and β, and r the distance between the
centers of molecules α and β. Equations for KBIs of binary mixtures are available in literature, including
those for an ideal mixture (see Appendix A).
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The expressions for the KBIs of ternary systems derived from the general KB equations (in volume per
mole) have the following form:

Gii = RTkT − V

xi
+ RT(x2

1 µ̄11lii + x2
2 µ̄22mii + x2

3 µ̄33nii)

VQ
(2)

and

Gij (i �= j) = RTkT + RT(x2
1 µ̄11lij + x2

2 µ̄22mij + x2
3 µ̄33nij)

VQ
(3)

where R denotes the universal gas constant, T represents the absolute temperature, kT denotes the isother-
mal compressibility, xi is the mole fraction of component i and V is the molar volume. The expressions
of µ̄ii lij, mij, nij and Q are given in Appendix B. Eqs. (2) and (3) will be used to calculate the KBIs of
ternary mixtures.

3. Excess number of molecules near a central one

3.1. Binary mixture

The conventional excess number of j molecules around a central molecule i is given by [5]

�n′
ji = cjGji (4)

where cj is the molar concentration of component j.
Matteoli and Lepori [10,11] noted that the cjGji are non-zero for ideal mixtures, which should be

considered non-aggregated, and suggested that the aggregation is better reflected in the excesses (the ML
excesses) defined as

�n′′
ji = cj (Gji − Gid

ji ) (5)

which provide zero values for the excesses in ideal mixtures. In Eq. (5), Gid
ji are the KBs integrals of

an ideal binary system. In other words, the ideal binary mixture was considered as a reference state.
However, �n′′

ii and �n′′
ji are not independent quantities. The relation between the two can be obtained by

first observing that the thermodynamic definition of partial molar volumes implies a uniform distribution
of the molecules. Indeed, V = ∑

ViNi , where Vi and Ni are the partial molar volume and the number
of molecules of species i, respectively. In reality, around a molecule of a given species there is an excess
of one species and a deficit of the other species. To maintain the same volume V for the real system it is,
therefore, necessary for the volume occupied by excess i molecules (brought from the bulk) around an
i molecule to be equal to the volume left free by j molecules (displaced to the bulk) around the same i
molecule. This leads to the following relation [10]

Vj �n′′
ji = −Vi �n′′

ii (6)

A derivation of Eq. (6) involving the KB theory is presented in Appendix C. It should be, however, noted
that if the number of molecules clustered around a central one is calculated as cj (Gji − Gid

ji ), Eq. (6)
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cannot be satisfied identically [12,31]. Indeed, the insertion of expressions 5, with Gij and Gid
ij listed in

Appendix A, in Eq. (6) leads to

RTV(kT − kid
T ) = ViV + Vi(V

0
j − V id) − V 0

i V
0
j V

V id
(7)

where the superscript ‘id’ indicates an ideal mixture and the superscript ‘0’ refers to the pure components.
It is clear that Eq. (5) do not satisfy Eq. (6). However, Eq. (7) indicates that the volume conservation
condition can be satisfied if Gid

ij is replaced by GV
ij , which is obtained from the former by replacing kid

T ,
V 0
i and Vid by kT , Vi and V, respectively., Hence, the excesses (the SR excesses) compatible with Eq. (6)

are given by

�nji = cj (Gji − GV
ji ) (8)

The new reference state reduces to Gid
ij in the limiting case of an ideal mixture, but also satisfies the

volume conservation condition. The following differences exist between the ML and SR excesses: the
ML excesses have non-zero values if either the partial molar volumes differ from the ideal ones or
D = 1 + xi(∂ ln γi/∂xi)P,T �= 1, where P represents the pressure and γi is the activity coefficient of
component i; the SR excesses have non-zero values only if D �= 1. The present reference state is a
hypothetical one similar to the ideal state, in which the molar volume, the partial molar volumes and the
isothermal compressibility are the real ones.

3.2. Ternary mixtures

The KBIs for an ideal ternary system can be obtained from Eqs. (2) and (3), by taking into account
that in this case: (1) γi = 1 (i = 1, 2, 3); (2) V = V id = ∑3

j=1xjV
0
j ; (3) kT = kid

T = ∑3
j=1ϕjk

0
T ,j ;

(4) Vj = V 0
j (j = 1, 2, 3); (5) kT,j = k0

T ,j (j = 1, 2, 3), where V 0
j is the molar volume of the pure

component j and ϕj is the volume fraction of component j. The following simple expressions are thus
obtained (in volume per mole):

Gid
11 = RTkid

T − V id

x1
+ x2(V

0
2 )

2 + x3(V
0

3 )
2 − x2x3(V

0
2 − V 0

3 )
2

x1V id
(9)

Gid
22 = RTkid

T − V id

x2
+ x1(V

0
1 )

2 + x3(V
0

3 )
2 − x1x3(V

0
1 − V 0

3 )
2

x2V id
(10)

Gid
33 = RTkid

T − V id

x3
+ x1(V

0
1 )

2 + x2(V
0

2 )
2 − x1x2(V

0
1 − V 0

2 )
2

x3V id
(11)

Gid
12 = RTkid

T + x3V
0

3 (V
0

3 − V 0
1 − V 0

2 ) − V 0
1 V

0
2 (1 − x3)

V id
(12)

Gid
13 = RTkid

T + x2V
0

2 (V
0

2 − V 0
1 − V 0

3 ) − V 0
1 V

0
3 (1 − x2)

V id
(13)

and

Gid
23 = RTkid

T + x1V
0

1 (V
0

1 − V 0
2 − V 0

3 ) − V 0
2 V

0
3 (1 − x1)

V id
(14)
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As for binary mixtures, Gji −Gid
ji does not satisfy the volume conservation condition. However, if Gid

ji is
replaced by GV

ji the conservation condition becomes satisfied.
For a ternary mixtures the volume conservation condition (6) should be recast as follows (for any central

molecule i = 1, 2, 3)

3∑
j=1

Vj �nji = 0 (15)

where�nji = cj (Gji−GV
ji ) and the expressions forGV

ji can be obtained from Eqs. (8)–(13) by substituting
kid
T , V id and V 0

i by kT , V and Vi , respectively.
To illustrate the above method for calculating the excess number of molecules near a central one, the

ternary system N,N-dimethylformamide–methanol–water and the corresponding binary mixtures will be
considered. This mixture was previously examined in the framework of the KB theory of solutions [24,25].
However, in [24,25] the calculations have been carried out without an appropriate reference state. The
use of a reference state is important for this particular mixture, because it deviates slightly from ideality
[10] and, consequently, |Gid

ji | and |GV
ji | are not negligible compared to |Gji|.

4. Source of data and calculation procedure

All calculations were carried out at T = 313.15 K. The vapor–liquid equilibrium (VLE) data for the
ternary mixture and the corresponding binaries were taken from [32]. The excess volume data for the
ternary mixture N,N-dimethylformamide–methanol–water and binary mixtures N,N-dimethylformamide–
methanol and methanol–water were taken from [33], and the excess volume data for the binary mixture
N,N-dimethylformamide–water from [34]. There are no isothermal compressibility data for the ternary
mixture, but the contribution of compressibility to the binary KBIs is almost negligible far from the
critical point [6]. For this reason, the compressibilities in binary and ternary mixtures were taken to be
equal to the ideal compressibilities, and were calculated from the isothermal compressibilities of the pure
components as follows:

kT = kid
T =

∑
j

ϕjk
0
T ,j (16)

where k0
T ,j is the isothermal compressibility of the pure component j. The isothermal compressibilities of

pure water and methanol were taken from [35], and the isothermal compressibility of N,N-dimethylforma-
mide from [36]. The VLE in binary mixtures was treated using the Barker method [37]. The vapor phase
non-ideality was taken into account and the total pressure was calculated using the equation

P = x1γ1P
0
1

F1
+ x2γ2P

0
2

F2
(17)

where

F1 = exp

(
(B11 − V 0

1 )(P − P 0
1 ) + Py2

2d12

RT

)
(18)
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F2 = exp

(
(B22 − V 0

2 )(P − P 0
2 ) + Py2

1d12

RT

)
(19)

In the above equations yi denotes the vapor mole fraction of component i, P 0
i is the vapor pressure

of the pure component i, Bii is the second virial coefficient of component i, d12 = 2B12 − B11 − B22

and B12 is the crossed second virial coefficient of the binary mixture. The vapor pressures, the virial
coefficients of the pure components and the crossed second virial coefficients of the binary mixtures
were taken from [32]. The Wilson [38], NRTL [39] and the Van Ness–Abbott [40] equations were
used for the activity coefficients in Eq. (17). The expressions for the activity coefficients provided by
these three methods were differentiated analytically and the obtained derivatives were used to calcu-
late D = 1 + xi(∂ ln γi/∂xi)P,T . There is good agreement between the values of D obtained with the
three expressions for the systems N,N-dimethylformamide–methanol and methanol–water. For the system
N,N-dimethylformamide–water, the D values calculated with the Van Ness–Abbott equation [40] were
found in good agreement with those obtained with the NRTL equation, but the agreement with the Wilson
expression was less satisfactory.

The derivatives (∂µ1/∂x1)x2 , (∂µ2/∂x2)x1 and (∂µ2/∂x1)x2 for the ternary mixture were obtained from
the VLE data [32]. The ternary VLE data were again treated by the Barker method [37]. The total pressure
was calculated using the equation

P = x1γ1P
0
1

F1
+ x2γ2P

0
2

F2
+ x3γ3P

0
3

F3
(20)

and the vapor phase non-ideality factors Fi were obtained from the expressions

F1 = exp

(
(B11 − V 0

1 )(P − P 0
1 ) + P(y2

2d12 + y2y3(d12 + d13 − d23) + y2
3d13)

RT

)
(21)

F2 = exp

(
(B22 − V 0

2 )(P − P 0
2 ) + P(y2

1d12 + y1y3(d12 + d23 − d13) + y2
3d23)

RT

)
(22)

and

F3 = exp

(
(B33 − V 0

3 )(P − P 0
3 ) + P(y2

1d13 + y1y2(d13 + d23 − d12) + y2
2d23)

RT

)
(23)

where dij = dji = 2Bij − Bii − Bjj.
The excess Gibbs energy of the ternary mixture was expressed through the Wilson [38], NRTL [39]

and Zielkiewicz [32] expressions. Because of the agreement between the latter two expressions, detailed
results are presented only for the more simple NRTL expression. The parameters in the NRTL equation
were found by fitting x–P (the composition of liquid phase–pressure) experimental data [32]. The deriva-
tives (∂µ1/∂x1)x2 , (∂µ2/∂x2)x1 and (∂µ2/∂x1)x2 in the ternary mixture were found by the analytical
differentiation of the NRTL equation. The excess molar volume (V E) in the binary mixtures (i–j) was
expressed via the Redlich–Kister equation

V E = xixj
∑
m=1

K ij
m(xi − xj )

m−1 (24)
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where the adjustable parameters K were taken from [33,34]. The excess molar volume (V E) in the ternary
mixtures was expressed as [34]

V E =
∑
i

∑
i>j

V E
ij + V E

ter (25)

where the values of V E
ij were calculated for every binary mixture using Eq. (24) (with xi and xj the mole

fractions of components i and j in the ternary mixture) and

V E
ter = x1x2x3(e1 + e2(2x1 − 1) + e3(2x1 − 1)2 + · · · ) (26)

ei being parameters provided by [33]. The derivatives of the excess molar volumes in binary and ternary
mixtures can be calculated using Eqs. (24)–(26) and thus the partial molar volumes can be obtained.

4.1. Analysis of intermolecular interactions in binary and ternary mixtures

The KBIs allow to calculate the�nij around any central molecule j. The composition dependence of�nij

in binary and ternary mixtures provides information about the intermolecular interactions. It is useful to
carry out such an analysis by comparing binary mixture (ij) with quasi-binary ternary mixture (ij) for a con-
stant mole fraction of the third component. The presentation will be restricted to two quasi-binary ternary
mixtures starting from the binary mixtures of methanol–water and N,N-dimethylformamide–methanol.

Firstly, the binary mixture methanol–water and the corresponding quasi-binary ternary mixtures will
be analyzed. There are several papers in which the KBIs for the mixture methanol–water were calculated
[6,7,12,41,42]. The comparison made in Fig. 1 shows good agreement between the present and previous
calculations.

The letters F, M and W in subscript indicate N,N-dimethylformamide, methanol and water, respectively.
Figs. 2–4 represent �nij around methanol, water and N,N-dimethylformamide as a central molecule in

the binary and quasi-binary methanol–water mixtures. As already noted [6,12,43], there is affinity between
like molecules in aqueous solutions of alcohols. Two types of clusters (water-enriched around the water
molecules and alcohol-enriched around the alcohol molecules) could be detected [12]. While for higher
alcohols clusters could be identified by small-angle X-ray and light scattering, the clusters in the aqueous

Fig. 1. The KBIs in the methanol–water mixture. The present results given by the solid line (T = 313.15 K) are compared with
the Gij obtained in [12] (T = 298.15 K).
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Fig. 2. The composition dependence of �nij (mol/mol) around a methanol molecule for the (a) binary system methanol–water;
and for the quasi-binary system N,N-dimethylformamide–methanol–water (b) xF = 0.04; (c) xF = 0.08; (d) xF = 0.16.
zM = (xM/(xM + xW)).

Fig. 3. The composition dependence of �nij (mol/mol) around a water molecule for the binary system methanol–water (a);
and for the quasi-binary system N,N-dimethylformamide–methanol–water (b) xF = 0.04; (c) xF = 0.08; (d) xF = 0.16.
zM = (xM/(xM + xW)).
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Fig. 4. The composition dependence of �nij (mol/mol) around a N,N-dimethylformamide molecule for the quasi-binary system
N,N-dimethylformamide–methanol–water; (a) xF = 0.04; (b) xF = 0.08; (c) xF = 0.16. zM = (xM/(xM + xW)).

solutions of methanol and ethanol are too small to be detected by the above techniques [44–56]. Figs. 2a and
3a show that the�nii are positive and small (the peak values are less than 1) in the latter cases. The effect of
the addition of N,N-dimethylformamide to a binary methanol–water mixture can be seen from Figs. 2b–d
and 3b–d, which show that the excess number of methanol molecules around a central methanol molecule
(�nMM) decreases when N,N-dimethylformamide is added (Fig. 2b–d) and becomes even zero at xF ≈
0.25. The excess number of water molecules around a central water molecule (�nWW) also decreases,
but water-enriched clusters still exist at xF ≈ 0.25. Hence, the addition of N,N-dimethylformamide to
a binary methanol–water mixture leads to a decay of the enrichment in methanol around a methanol
molecule and in water around a water molecule. Fig. 5 presents the peak values of �nMM (xF = const)
and �nWW (xF = const) as a function of xF. The N,N-dimethylformamide molecules preferentially
solvate the unlike species (water or methanol) than themselves. This is obvious from Fig. 4, which
gives �nij in the vicinity of a central N,N-dimethylformamide molecule. Fig. 4a–c shows that �nFF is
always negative in the quasi-binary methanol–water system. On the contrary,�nMF and�nWF are always
positive, clearly demonstrating that the N,N-dimethylformamide molecules prefer to solvate methanol and
water molecules than themselves. This is compatible with the findings by various physical and chemical
methods [26,57–64] that N,N-dimethylformamide forms complexes with water and methanol.

Figs. 6–8 represent �nij around methanol, water and N,N-dimethylformamide as central molecules
in the binary mixture N,N-dimethylformamide–methanol and the corresponding quasi-binary ternary
mixtures. One can see from Figs. 6a and 7a, that the interactions between unlike species are dominant
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Fig. 5. The peak values of �nii (i = M, W) for the quasi-binary methanol–water mixture as a function of the
N,N-dimethylformamide mole fraction.

in the binary mixture of N,N-dimethylformamide–methanol. This behavior is qualitatively different from
the aqueous solutions of alcohols, where the interactions between like species prevailed [6,12,43]. It is
interesting to note that the addition of water up to a mole fraction of 0.25 affects little the peak values
of �nMF and �nFM around both N,N-dimethylformamide and methanol as central molecules (Fig. 9).
These results are compatible with the literature findings [62–64] that a complex is formed between
N,N-dimethylformamide and methanol.

Fig. 6. The composition dependence of �nij (mol/mol) around a N,N-dimethylformamide molecule for the binary sys-
tem N,N-dimethylformamide–methanol (a) and for the quasi-binary system N,N-dimethylformamide–methanol–water; (b)
xW = 0.04; (c) xW = 0.08; (d) xW = 0.16. zF = (xF/(xF + xM)).
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Fig. 8. The composition dependence of �nij (mol/mol) around a water for the quasi-binary system
N,N-dimethylformamide–methanol–water; (a) xW = 0.04; (b) xW = 0.08; (c) xW = 0.16. zF = (xF/(xF + xM)).

Fig. 6b–d shows that there is an excess of water molecules in the cluster around the N,N-dimethylforma-
mide molecule and (Fig. 7b–d) that there is a deficiency of water molecules in the cluster around a
central methanol molecule. This observation is in agreement with the behavior of these molecules in the
quasi-binary ternary mixtures corresponding to the binary methanol–water mixture.

Fig. 8a–c represents the �nij in the vicinity of a water molecule as a central one for the quasi-binary
ternary mixtures corresponding to the binary N,N-dimethylformamide–methanol mixture. One can see

Fig. 9. The peak values of �nij for the quasi-binary N,N-dimethylformamide–methanol mixture as a function of the water mole
fraction.

Thermodynamics of Solutions46



E. Ruckenstein, I. Shulgin / Fluid Phase Equilibria 180 (2001) 281–297 293

from Fig. 8a–c that�nFW and�nWW are positive and�nMW is negative over the almost entire composition
range considered. Again the peak value of �nFW is weakly dependent on the amount of water added up
to a mole fraction of 0.25 of the latter and this result is compatible with a N,N-dimethylformamide–water
complex. Figs. 2–8 show that there is preferential solvation of N,N-dimethylformamide molecules by water
and methanol for all concentrations investigated. The same conclusion was reached in [24], but only for
low concentrations of N,N-dimethylformamide (mole fraction of N,N-dimethylformamide less than 0.15).

5. Conclusion

Explicit expressions for the excess of the number of various species around central ones were derived
on the basis of the KB theory of solutions for ternary mixtures. Because for ideal mixtures the clustering
should be zero, they were obtained by subtracting from the conventional excesses calculated using the
KBIs, those for a reference state. The latter were obtained from those valid for ideal mixtures, corrected to
account for the volume conservation condition. The expressions thus obtained for the excess provide infor-
mation about clustering. The KBIs and the excess of the number of molecules around central ones were
calculated for the ternary mixture of N,N-dimethylformamide–methanol–water and the corresponding
binary mixtures. The obtained results were used to discuss the local structure in the above mixtures.

Appendix A

The KBIs for binary systems are given by the expressions [6]:

G12 = RTkT − V1V2

VD
(A.1)

G11 = G12 + 1

x1

(
V2

D
− V

)
(A.2)

and

G22 = G12 + 1

x2

(
V1

D
− V

)
(A.3)

where R denotes the universal gas constant, V is the molar volume, Vi represents the partial molar volume,
xi is the molar fraction of component i, D = 1 + xi(∂ ln γi/∂xi)P,T and γi is the activity coefficient of
component i.

The KBIs for ideal binary systems are given by the expressions [11]:

Gid
12 = RTkid

T − V 0
1 V

0
2

V id
(A.4)

Gid
11 = Gid

12 + V 0
2 − V 0

1 (A.5)

and

Gid
22 = Gid

12 − (V 0
2 − V 0

1 ) (A.6)
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where kid
T and Vid are the isothermal compressibility and the molar volume of an ideal mixture and V 0

i is
the molar volume of the pure component i.

The expressions for GV
ij are [31]

GV
12 = GV

21 = RTkT − V1V2

V
(A.7)

GV
ii = GV

12 + Vj − Vi, i �= j (A.8)

Appendix B

The expressions for lij, mij, nij and Q in Eqs. (2) and (3) are

Q = x4
1 µ̄

2
11 + x4

2 µ̄
2
22 + x4

3 µ̄
2
33 − 2x2

1x
2
2 µ̄11µ̄22 − 2x2

1x
2
3 µ̄11µ̄33 − 2x2

2x
2
3 µ̄22µ̄33 (A.9)

l11 = 4x2x3V2V3, m11 = −4x2x3V2V3 − 4x2
3V

2
3 , n11 = −4x2x3V2V3 − 4x2

2V
2

2 (A.10)

l22 = −4x1x3V1V3 − 4x2
3V

2
3 , m22 = 4x1x3V1V3, n22 = −4x1x3V1V3 − 4x2

1V
2

1 (A.11)

l33 = −4x1x2V1V2 − 4x2
2V

2
2 , m33 = −4x1x2V1V2 − 4x2

1V
2

1 , n33 = 4x1x2V1V2 (A.12)

l12 = −2x1x3V1V3 + 2x2x3V2V3 − 2x2
3V

2
3 , m12 = 2x1x3V1V3 − 2x2x3V2V3 − 2x2

3V
2

3 ,

n12 = 4x1x2V1V2 + 2x1x3V1V3 + 2x2x3V2V3 + 2x2
3V

2
3 (A.13)

l13 = −2x1x2V1V2 + 2x2x3V2V3 − 2x2
2V

2
2 , n13 = 2x1x2V1V2 − 2x2x3V2V3 − 2x2

2V
2

2 ,

m13 = 4x1x3V1V3 + 2x1x2V1V2 + 2x2x3V2V3 + 2x2
2V

2
2 (A.14)

and

l23 = 4x2x3V2V3 + 2x1x2V1V2 + 2x1x3V1V3 + 2x2
1V

2
1 ,

m23 = −2x1x2V1V2 + 2x1x3V1V3 − 2x2
1V

2
1 ,

n23 = 2x1x2V1V2 − 2x1x3V1V3 − 2x2
1V

2
1 (A.15)

In the above expressions R is the universal gas constant, xi denotes the molar fraction of component i, V
represents the molar volume and Vi is the partial molar volume of component i.

The expressions for µ̄ij (µ̄ij = (N1 + N2 + N3)µij) where µij =
(
∂µi

∂xj

)
xk �=xj

and µi is the chemical

potential component i are given in [22].
The derivatives of the chemical potentials can be expressed in terms of the activity coefficients (γi) as

follows [22]:(
∂µ1

∂x1

)
x2

= RT

[
1

x1
+
(
∂ ln γ1

∂x1

)
x2

]
(A.16)

(
∂µ2

∂x2

)
x1

= RT

[
1

x2
+
(
∂ ln γ2

∂x2

)
x1

]
(A.17)
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∂µ1

∂x2

)
x1

= RT

(
∂ ln γ1

∂x2

)
x1

(A.18)

and (
∂µ2

∂x1

)
x2

= RT

(
∂ ln γ2

∂x1

)
x2

(A.19)

Appendix C

The volume conservation condition can be derived from the KB equation for the partial molar volume
in a binary mixture [1]

V1 = 1 + (G22 − G12)c2

c1 + c2 + c1c2(G11 + G22 − 2G12)
(A.20)

Applied to our reference state GV
ij , Eq. (A.20) leads to

V1 = 1 + (GV
22 − GV

12)c2

c1 + c2 + c1c2(G
V
11 + GV

22 − 2GV
12)

(A.21)

One can verify that Eq. (A.21) is satisfied identically by inserting the expressions ((A.7) and (A.8)) for
GV

ij .
Eqs. (A.20) and (A.21) yield

c1V1(�G11 + �G22 − 2�G12) = (�G22 − �G12) (A.22)

where �Gij = Gij − GV
ij .From Eq. (A.22) and relation c1V1 + c2V2 = 1, one obtains

�V1 ≡ V1�n11 + V2�n21 = V2�n22 + V1�n12 ≡ −�V2 (A.23)

Since the volume V should remain constant, one must have

N1 �V1 + N2 �V2 = �V1(N1 − N2) = 0 (A.24)

Eq. (A.24) leads to �V1 = �V2 = 0, the volume conservation equation.
One can also demonstrate that the volume conservation condition for a ternary mixture (Eq. (15)) is

satisfied if �nij is expressed as �nij = ci(Gij −GV
ij ), with Gij given by Eqs. (2) and (3) and GV

ij obtained
from Eqs. (9)–(14) by substituting kid

T , V 0
i and Vid by kT , Vi and V, respectively.
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The Kirkwood-Buff Theory of Solutions and the Local Composition of Liquid Mixtures
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ReceiVed: January 30, 2006; In Final Form: April 6, 2006

The present paper is devoted to the local composition of liquid mixtures calculated in the framework of the
Kirkwood-Buff theory of solutions. A new method is suggested to calculate the excess (or deficit) number
of various molecules around a selected (central) molecule in binary and multicomponent liquid mixtures in
terms of measurable macroscopic thermodynamic quantities, such as the derivatives of the chemical potentials
with respect to concentrations, the isothermal compressibility, and the partial molar volumes. This method
accounts for an inaccessible volume due to the presence of a central molecule and is applied to binary and
ternary mixtures. For the ideal binary mixture it is shown that because of the difference in the volumes of the
pure components there is an excess (or deficit) number of different molecules around a central molecule. The
excess (or deficit) becomes zero when the components of the ideal binary mixture have the same volume.
The new method is also applied to methanol + water and 2-propanol + water mixtures. In the case of the
2-propanol + water mixture, the new method, in contrast to the other ones, indicates that clusters dominated
by 2-propanol disappear at high alcohol mole fractions, in agreement with experimental observations. Finally,
it is shown that the application of the new procedure to the ternary mixture water/protein/cosolvent at infinite
dilution of the protein led to almost the same results as the methods involving a reference state.

1. Introduction

The Kirkwood-Buff (KB) theory of solution1 (often called
fluctuation theory) employs the grand canonical ensemble to
relate macroscopic properties, such as the derivatives of the
chemical potentials with respect to concentrations, the isothermal
compressibility, and the partial molar volumes, to microscopic
properties in the form of spatial integrals involving the radial
distribution function. This theory allows one to obtain informa-
tion regarding some microscopic characteristics of multi-
component mixtures from measurable macroscopic thermo-
dynamic quantities. However, despite its attractiveness, the KB
theory was rarely used2-4 in the first three decades after its
publication for two main reasons: (1) the lack of precise data
(in particular regarding the composition dependence of the
chemical potentials) and (2) the difficulty to interpret the results
obtained. Only after Ben-Naim indicated how to calculate
numerically the Kirkwood-Buff integrals (KBIs) for binary
systems5 was this theory used more frequently.

So far the KBIs have been calculated for numerous binary
systems,6-17 and the results were used to examine the solution
behavior with regard to (1) local composition, (2) various models
for phase equilibrium, (3) preferential solvation, and others.6-22

One should also mention the use of the KB theory for
supercritical fluids and mixtures containing supercritical
components23-27 and for biochemical issues such as the behavior
of a protein in aqueous mixed solvents.28-38

The present paper is focused on the application of the KB
theory to the local composition. The key quantity related to the
local composition in the KB theory is the excess (or deficit)
number of molecules around a central molecule. The conven-

tional method of calculating the excess (or deficit) number of
molecules around a central molecule was developed by Ben-
Naim.3,5,18-19,39-40 Let us consider a binary mixture 1-2.
The excess (or deficit) number of molecules i (i ) 1, 2)
around a central molecule j (j ) 1, 2) was defined by Ben-
Naim as3,5,18-19,39-40

where ci is the molar concentration of species i in the mixture
and Gij is the Kirkwood-Buff integral defined as (analytical
expressions for the KBIs in a binary mixture are given in the
Appendix)

where gij is the radial distribution function between species i
and j and r is the distance between the centers of molecules i
and j.

However, the following objections can be brought to the use
of eq 1 for calculating the excess (or deficit) number of
molecules around a central molecule. A first objection (1) is
that there are many systems for which all the KBIs (G11, G12,
and G22) are negative at least in certain ranges of composi-
tion.22,41 As a result, in such cases all ∆nij

BN calculated with eq
1 (∆n11

BN and ∆n21
BN around the central molecule 1 and ∆n12

BN

and ∆n22
BN around the central molecule 2) would be negative,

and this is not plausible because then the density around any
molecule in liquid will become lower than that in the bulk. A
second objection examined in detail in the next section is that
(2) eq 1 does not provide the true excess.

Two other methods to calculate the excess (or deficit) number
of molecules around a central molecule have been suggested

* To whom correspondence should be addressed. E-mail: feaeliru@
acsu.buffalo.edu. Phone: (716) 645-2911/ext. 2214. Fax: (716) 645-3822.

† E-mail: ishulgin@eng.buffalo.edu.

∆nij
BN ) ciGij (1)

Gij ) ∫0

∞
(gij - 1)4πr2 dr i, j ) 1, 2 (2)
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which are based on a reference state. Matteoli and Lepori10,11

observed that the excesses (or deficits) calculated with eq 1
provide nonzero values for ideal binary mixtures and expressed
the opinion that they (the excesses (or deficits)) should be in
that case equal to zero. For this reason they proposed that the
excess (or deficit) number of molecules around a central
molecule should be calculated with respect to a reference state
(the ideal binary mixture)

where Gij
id is the Kirkwood-Buff integral for an ideal binary

mixture (expressions for Gij
id are given in the Appendix). In

addition, Matteoli and Lepori10,11 introduced what could be
called the volume conservation condition, which for a binary
mixture can be formulated as follows: “the volume occupied
by the excess of i molecules around a j molecule must be equal
to the volume left free by the j molecules around the same j
molecule”. One can show that the excesses and deficits
calculated using the ideal mixture as reference state do not
satisfy the above volume conservation condition. For this reason,
a new reference state was suggested by Shulgin and Rucken-
stein12 in which all the activity coefficients were taken as equal
to unity and no constraints on the partial molar volumes of the
components were imposed. This reference state satisfies the
volume conservation condition and provides as that of Matteoli
and Lepori10,11 zero excesses for ideal mixtures for both binary
and ternary mixtures.12,42 The excess (or deficit) number of
molecules around a central molecule can be obtained using the
expression

where Gij
SR is the KBI calculated for the reference state

suggested by Shulgin and Ruckenstein12 (expressions for Gij
SR

can also be found in the Appendix).
However, there is a basic issue regarding the suggested

reference states (Matteoli-Lepori and Shulgin-Ruckenstein):
Is the excess (or deficit) number of molecules around a central
molecule equal to zero in ideal mixtures? The considerations
of the above authors imply that the distribution of components
in an ideal mixture is random and therefore all excess (or deficit)
number of molecules around a central molecule should be zero.
However, because the volumes of the components are different,
there is no absolute randomness. A new treatment is suggested
below, which accounts for a volume which is not accessible to
the molecules surrounding a central molecule and which reveals
that for ideal mixtures the excesses (or deficits) are not zero.
The inaccessible volume thus introduced could be considered
a kind of reference state which, however, does not correspond
to an ideal mixture.

2. A New Procedure to Calculate the Excess (Or Deficit)
Number of Molecules around a Central Molecule

The average number of molecules i (nij) in a sphere of radius
R around central molecules j can be calculated using the
expression40,43

which can be recast in the form

As soon as R becomes large enough for gij ≈ 1, eq 6 can be
rewritten as18-19,40

The difference between nij and ci4πR3/3 was considered as the
average excess (or deficit) number of molecules i (i ) 1, 2)
around a central molecule j (j ) 1, 2), and eq 1 was thus
obtained.3,5,18-19,39-40

However, the term ci4πR3/3 includes molecules i assumed
to be located in a volume inaccessible to them because of the
presence of the central molecule j. Therefore, when the average
excess (or deficit) number of molecules i (i ) 1, 2) around a
central molecule j is calculated, those i molecules should be
subtracted from ci4πR3/3, and the second integral in the right-
hand side of eq 6 should be subdivided into two parts

where Rj is the radius of a volume around the center of molecule
j which is inaccessible to molecules i due to the presence of
the central molecule j. The first integral in the right-hand side
is the Kirkwood-Buff integral when R is sufficiently large, the
second integral provides the number of molecules of species i
in a bulk liquid between the radii Rj and R, and the third integral
provides the number of molecules of species i in a bulk liquid
from zero to the radius Rj. The true excess is given by the
difference between nij and the number of molecules of species
i in a bulk liquid between the radii Rj and R. Hence

The third integral ∫0
Rj4πr2 dr in eq 8 represents a bulk volume

V j which is not accessible to the molecules of species i.
Consequently, the expression for calculating the average

excess (or deficit) number of molecules i (i ) 1, 2) around a
central molecule j (j ) 1, 2) has the form

To estimate the volume Vj, eq 10 is applied to a pure
component j (i ) j, cj ) cj

0). In this case, because of complete
randomness one expects ∆njj to be zero. Therefore combining
eq 10 and the equation for Gjj of a pure substance (eq A-11 in
the Appendix) one obtains the following expression for the
volume Vj

where T is the temperature, xj is the molar fraction of component
j, Vj

0 is the molar volume of the pure component j, kT,j
0 is the

isothermal compressibility of the pure component j, and R is
the universal gas constant. Hence, far from the critical point,
the excluded volume Vj is equal to the molar volume of the
pure component j because Vj

0 . RTkT,j
0 .6

On the basis of the above result, the following expression is
suggested for the volume Vj in the entire composition range

nij ) ci∫0

∞
(gij - 1)4πr2 dr + ci∫0

R
4πr2 dr )

ciGij +
ci4πR3

3
(7)

nij ) ci∫0

R
(gij - 1)4πr2 dr + ci∫Rj

R
4πr2 dr + ci∫0

Rj 4πr2 dr
(8)

∆nij ) nij - ci∫Rj

R
4πr2 dr (9)

∆nij ) ciGij + ciV
j (10)

(V j)xj)1 ) Vj
0 - RTkT,j

0 (11)

V j ) Vj - RTkT (12)

∆nij
ML ) ci(Gij - Gij

id) (3)

∆nij
SR ) ci(Gij - Gij

SR) (4)

nij ) ci∫o

R
gij4πr2 dr i, j ) 1, 2 (5)

nij ) ci∫0

R
(gij - 1)4πr2 dr + ci∫0

R
4πr2 dr (6)
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where Vj is the partial molar volume of component j and kT is
the isothermal compressibility of the mixture. Of course, other
forms for Vj compatible with eq 11 can be suggested.

Thus the average excess (or deficit) number of molecules i
(i ) 1, 2) around a central molecule j (j ) 1, 2) can be calculated
using the expression

Similar relations can be written for the excess (or deficit) number
of molecules i (i ) 1, 2, ...) around a central molecule j (j ) 1,
2, ...) for ternary and multicomponent mixtures. The new simple
expression (13) will be now applied to various systems.

3. The Excess (Or Deficit) Number of Molecules around a
Central Molecule Calculated Using the New Expression
(13)

3.1. Ideal Binary Mixture. Using eq 13 and relations (A-4
and A-5) from the Appendix, one can write the following
expressions for the excesses ∆nij values of ideal binary mixtures
around a central molecule 1

and

These equations show that the ∆nij values for an ideal binary
mixture become zero only when the molar volumes of the pure
components are the same, otherwise the excesses and deficits
have nonzero values and can be calculated with eqs 14 and 15.

One can also demonstrate that the volume conservation
conditions (Vi∆nij + Vj∆njj ) 0; i, j ) 1, 2, and i * j) are
satisfied by an ideal mixture when the excesses (or deficits)
are calculated with eqs 14 and 15. We calculated the ∆nij around
a central molecule 1 with eqs 14 and 15 for V1

0 ) 30 cm3/mol
and V2

0 ) 60 cm3/mol. A comparison between the ∆nij

calculated with eq 1 and eqs 14 and 15 is presented in Figure
1. Figure 1 shows that both ∆n11 and ∆n21 calculated with the
conventional eq 1 are negative, whereas those calculated with
eqs 14 and 15 provide ∆n11 > 0 and ∆n21 < 0 in the entire
composition range. One should note that the species with lower
molar volume (component 1) is in excess. (A similar result was
obtained when molecule 2 was the central molecule).

3.2. Binary System Methanol (1)-Water (2). The KBIs
for this system (T ) 313 K)42 are presented in Figure 2a which
shows that, in the composition range (0 < xMeOH e 0.25), all
three KBIs (G11, G12, and G22) are negative. As a result, in this
composition range (Figure 2, parts b and c) all four ∆nij

BN

(excesses or deficits calculated with eq 1) (∆n11
BN and ∆n21

BN

around a central methanol molecule and ∆n12
BN and ∆n22

BN

around a central water molecule) are negative. This means that
the densities around any central molecule (methanol or water)
are less than those in the bulk. However, the calculations based
on eq 13 (Figure 2, parts d and e) provide more reasonable
values regarding the excess (or deficit) number of molecules
around a central molecule:

(1) Around a central methanol molecule, ∆n11 > 0 and ∆n21

< 0 for 0 < xMeOH e 0.35, and ∆n11 < 0 and ∆n21 > 0 for
xMeOH > 0.35. Therefore, in the composition range 0 < xMeOH

e 0.35, methanol is in excess in the vicinity of a central
methanol molecule. However, at sufficiently high methanol mole
fractions (xMeOH > 0.35) the water molecules become in excess
in the vicinity of a central methanol molecule. This result differs
somewhat from the previous findings based on a reference
state,12,14 where methanol was found to be in excess in the
vicinity of a central methanol molecule over the entire composi-
tion range.

(2) Around a central water molecule, ∆n22 > 0 and ∆n12 <
0 for 0 e xMeOH e 1. This means that the water molecules are
in excess around a central water molecule over the entire
composition range.

3.3. Binary System 2-Propanol (1)-Water (2). The KBIs
for this system (T ) 298.15 K)12 are presented in Figure 3a. In
the composition range (0.33-0.35 < xi-PrOH e 1), ∆n11

BN and
∆n21

BN around a central 2-propanol molecule are negative
(Figure 3b). This means that in the above composition range
the density around a 2-propanol molecule is less than in the
bulk. The calculations based on eq 13 (Figure 3, parts d and e)
provide more reasonable values regarding the excess (or deficit)
number of molecules around a central molecule: around the
2-propanol molecule ∆n11 > 0 and ∆n21 < 0 for 0 < xi-PrOH e
0.55-0.57, and ∆n11 < 0 and ∆n21 > 0 for 0.55-0.57 < xi-PrOH

e 1. Therefore, in the composition range 0 < xi-PrOH e 0.55-
0.57 the 2-propanol is in excess in the vicinity of a central
2-propanol molecule. However, at higher 2-propanol mole
fractions (0.55-0.57 < xi-PrOH e 1) the water molecules are in
slight excess in the vicinity of a 2-propanol molecule. These
results differ somewhat from the previous findings based on a
reference state,12,14 where 2-propanol was found to be in excess
in the vicinity of a central 2-propanol molecule over the entire

Figure 1. The excess (or deficit) number of molecules i (i ) 1, 2)
around a central molecule 1 for a binary ideal mixture with V1

0 ) 30
cm3/mol and V2

0 ) 60 cm3/mol. Line 1 is ∆n11, and line 2 is ∆n21.
Shown are (a) ∆nij values of an ideal binary mixture calculated with
the new eq 13, and (b) ∆nij values of an ideal binary mixture calculated
with eq 1 (the KBIs were provided by eqs A-4 and A-5 in which kT

id

was taken as zero).

∆nij ) ciGij + ciV
j ) ciGij + ci(Vj - RTkT) (13)

∆n11
id )

x1x2V2
0(V2

0 - V1
0)

(x1V1
0 + x2V2

0)2
(14)

∆n21
id )

x1x2V1
0(V1

0 - V2
0)

(x1V1
0 + x2V2

0)2
(15)
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composition range. There is some experimental evidence that
clusters dominated by 2-propanol molecules disappear at high
2-propanol concentrations. Hayashi, et al.44 using small-angle
X-ray scattering found clusters dominated by 2-propanol
molecules, with sizes from 1.5 to 6.5 Å, in the range of alcohol
mole fractions from 0.1 to 0.3 that disappeared at higher mole
fractions. Around a central water molecule, ∆n22 > 0 and ∆n12

< 0 for 0 e xi-PrOH e 1. This means that the water molecules
are in excess around a central water molecule over the entire
composition range.

3.4. Comparison between Equation 13 and Equations 3
and 4 for Binary Mixtures. The results obtained on the basis
of eq 13 are comparable numerically to those obtained with
eqs 3 and 4 when the molar volumes of the pure components
or the partial molar volumes become comparable. Indeed, in
this case (V1

0 ≈ V2
0 or V1 ≈ V2) and hence one can write, using

eqs (A-4 to A-7) from the Appendix, that

and

To compare the present method with the Matteoli-Lepori
and Shulgin-Ruckenstein methods based on reference states,
a hypothetical binary mixture (We are indebted to one of the
referees for the suggestion to use such an hypothetical binary
mixture for analyzing the new method) with the volumes of
the pure components V1

0 ) 30, V2
0 ) 70 and the volumes at

infinite dilution V1
∞ ) 26 and V2

∞ ) 66 (all volumes in [cm3/
mol]) will be considered. In addition, the contribution of the
isothermal compressibility will be neglected, and the partial
molar volumes will be assumed to be linear functions of the
mole fractions. Let us first observe that eqs 3, 4, and 13 can be
formally written in the following unified form

where Γ ) -Vj + RTkT for the new method, Γ ) Gij
id for

Figure 2. The KBIs and excesses (or deficits) for methanol (1)/water (2) mixtures (T ) 313.15 K). (a) The KBIs42: G11 (A), G22 (B), and G12(C);
(b) excesses (or deficits) around a central methanol molecule calculated with eq 1; (c) excesses (or deficits) around a central water molecule
calculated with eq 1; (2) excesses (or deficits) around a central methanol molecule calculated with eq 13; (e) excesses (or deficits) around a central
water molecule calculated with eq 13.

∆nij
SR ) ci(Gij - Gij

SR) ≈ ciGij + ci(Vj - RTkT) ) ∆nij (17)

∆nij ) ci(Gij - Γ) (18)

∆nij
ML ) ci(Gij - Gij

id) ≈ ciGij + ci(Vj
0 - RTkT

id) ≈ ∆nij (16)
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the Matteoli-Lepori reference state, and Γ ) Gij
SR for the

Shulgin-Ruckenstein reference state. The calculated values of
V1, V2, -Gij

id, and -Gij
SR are plotted in Figure 4. Several

observations can be made regarding Figure 4 and eqs 3, 4, and
13: (1) All three methods provide almost the same values of Γ
when the molar volumes of the pure components become
comparable. (2) In the new method, Γ ) -Vj + RTkT is the
same for both ∆nij (i * j) and ∆njj excesses, whereas for the
methods involving reference states, Γ ) Gij

ref for ∆nij (i * j)
and Γ ) Gjj

ref for ∆njj (where ref ) id or SR). As well known
and as shown in Figure 4, Gij

ref (i * j) * Gjj
ref for both

reference states. (3) The values ∆njj for pure components are
zero in all three methods. (4) The differences between Gij

id and
Gij

SR are small but not negligible, and this proves the observa-
tion12,15 that far from critical conditions, where the differences
are large, the two reference states methods provide similar
results. In addition, Figure 4 indicates that the excesses
calculated using the two reference states are close to each other.
(5) The volume conservation conditions10,11 (Vi∆nij + Vj∆njj )

0; i, j ) 1, 2 and i * j) are satisfied by the present method and
by the method involving the reference state introduced by
Shulgin and Ruckenstein.12 For the present method, this can be

Figure 3. The KBIs and excesses (or deficits) for 2-propanol (1)/water (2) mixtures (T ) 298.15 K). (a) The KBIs12: G11 (A), G22 (B), and G12

(C); (b) excesses (or deficits) around a central 2-propanol molecule calculated with eq 1; (c) excesses (or deficits) around a central water molecule
calculated with eq 1; (3) excesses (or deficits) around a central 2-propanol molecule calculated with eq 13; (e) excesses (or deficits) around a
central water molecule calculated with eq 13.

Figure 4. The partial molar volumes V1 and V2 for the artificial mixture
(see text), and their comparison with the KBIs for Matteoli-Lepori
and Shulgin-Ruckenstein reference states: -G11

id (1), -G11
SR (2),

-G12
id (3), -G12

SR (4), -G22
id (5), and -G22

SR (6).
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demonstrated using eq 13 for ∆njj and ∆nij together with
expressions (A-1 to A-3) for the corresponding KBIs from the
Appendix.

3.5. Ternary Mixture: a Biomolecule in a Mixed Solvent.
In the last several years the KB theory was applied to the
systems water (1)/protein (2)/cosolvent (or salt) (3) mixtures.28-38

Experimental information regarding the partial molar volumes
and the preferential binding parameters were used to calculate
G12 and G23 at infinite dilution of the protein. Further the
calculated KBIs were used to obtain the excesses (or deficits)
of the constituents of the mixed solvent near a protein molecule
(with respect to the bulk concentrations of a protein-free mixed
solvent).34-35,38 The use of the conventional eq 1 provided
unreasonable results. For example,34 for an infinitely dilute
ribonuclease A (2) in water (1) + glycerol (3) mixtures, one
obtains that for a volume fraction of glycerol of 30%: c1G12 )
-341.8 mol of water which has a volume of -6.18 L, and c3G23

) -48.1 mol of water which has a volume of -3.52 L.
Therefore, the use of the conventional eq 1 provided large
deficits of water and glycerol in the vicinity of ribonuclease A.
In contrast, many experiments confirmed that in this mixture
water is in excess and glycerol is in deficit in the vicinity of a
protein molecule.45-47 The use of the reference state Gij

SR (eq
4) led to the following excesses (or deficits): ∆n12 = 33.3 mol
of water which has a volume of 0.602 L, and ∆n23 = -8.2 mol
of glycerol which has a volume of 0.602 L.

It is worth noting that the application of the new method based
on eq 13 to the mixture water (1)/protein (2)/cosolvent (or salt)
(3) provides the same results as those based on a reference state
(eqs 3 and 4). This occurs, because the protein molecule is much
larger than the water molecule and typical cosolvents molecules,
V2

∞ . Vi, i ) 1, 3. For this reason one can write the following
expressions for G12 and G23 at infinite dilution of the protein34

and

Hence, one can write for the excesses (or deficits) of water and
cosolvent around a protein molecule

and

Therefore, for the system water (1)/protein (2)/cosolvent (or salt)
(3), the new method for calculating the excesses (or deficits)
around a biomolecule at its infinite dilution (eq 13) leads to the
same results as those based on a reference state (eqs 3 and 4).
The method based on eq 1 leads to erroneous results because it
does not reflect the true excesses (deficits) of water and
cosolvent around an infinitely dilute biomolecule.

4. Discussion and Conclusion

One of the most important applications of the KB theory
consists of its use to extract some microscopic characteristics
of liquid mixtures from measurable macroscopic thermodynamic
quantities. The excess (or deficit) number of molecules of

various species around a selected (central) molecule is a key
quantity in the analysis of the microscopic characteristics of
liquid mixtures. Therefore, the correct estimation of the above
excesses (or deficits) is important, and the present paper provides
a procedure for calculating the excess (or deficit) number of
molecules of various species around a selected (central)
molecule in binary and multicomponent mixtures.

The conventional method based on eq 1 provides unreason-
able results, such as nonzero excesses (or deficits) for single
components, all negative excesses for an ideal binary mixture
A-B when all three KBIs are negative, and all negative excesses
in some concentration ranges for some real binary mixtures.

It is shown in this paper that the number of bulk molecules
in the conventional method based on eq 1 was overestimated
because the inaccessible volume due to the presence of the
central molecule was not taken into account.

The new method eliminates the above inconsistencies: It
provides a zero excess for pure components, and excesses (or
deficits) which satisfy the volume conservation condition (for
both ideal and real mixtures). The derived eq 13 allows one to
calculate the excess (or deficit) for an ideal binary mixture
(Figure 1) and shows that they become zero only when the molar
volumes of the components are equal.

It is clear (see Figures 1-3) that the excesses (or deficits)
calculated with the new eq 13 are always very different from
those obtained with eq 1. However, eq 13 and eqs 3 and 4
provide comparable results for binary mixtures when the molar
volumes of the components are approximately the same. The
results obtained using eq 1 and those obtained from eq 13 for
methanol/water and 2-propanol/water mixtures are very differ-
ent. In contrast to the methods based on a reference state, the
new method predicts that the alcohols are preferentially hydrated
at high alcohol mole fractions. For the 2-propanol/water mixtures
there are experimental observations which support this predic-
tion.

In the application of the KB theory to the system water (1)/
protein (2)/cosolvent (or salt) (3), eq 13 provided results,
comparable with experiment. Because in such cases the molar
volume of the protein is much larger than those of water and
cosolvent (salt), eqs 3 and 4 provided almost the same results.
In contrast, eq 1 failed to provide plausible values for the
excesses (or deficits) of water and cosolvent (salt) in the vicinity
of a protein surface.
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Appendix

The purpose of this Appendix is to provide expressions for
calculating the KBIs for binary mixtures from measurable
thermodynamic quantities such as the derivatives of the chemical
potentials with respect to concentrations, the isothermal com-
pressibility, and the partial molar volumes.

The main formulas for the KBIs are 6, 10-11

where

G12
SR ) RTkT - V3c3(V1 - V3) - V2

∞ ≈ RTkT - V2
∞ (19)

G23
SR ) RTkT - V1c1(V1 - V3) - V2

∞ ≈ RTkT - V2
∞ (20)

∆n12
SR ) c1(G12 - G12

SR) ≈ c1G12 + c1(RTkT - V2
∞) ) ∆n12

(21)

∆n23
SR ) c3(G23 - G23

SR) ≈ c3G23 + c3(RTkT - V2
∞) ) ∆n23

(22)

G12 ) G21 ) RTkT -
V1V2

VD
(A-1)

Gii ) G12 + 1
xi

(Vj

D
- V) i * j (A-2)
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P is the pressure, T is the temperature in K, kT is the isothermal
compressibility, Vi is the partial molar volume of component i,
xi is the molar fraction of component i, V is the molar volume
of the mixture, γi is the activity coefficient of component i and
R is the universal gas constant.

The KBIs for an ideal mixture Gij
id are provided by the

expressions:10-11

and

where Vi
0, kT

id, and Vid are the molar volume of the pure
component i, the isothermal compressibility, and the molar
volume of an ideal solution, respectively.

The KBIs for the Shulgin-Ruckenstein reference state are
provided by the expressions12

and

At infinite dilution, or for pure components, the following
limiting expressions can be obtained for the KBIs6,10-11

and

where kT,i
0 is the isothermal compressibility of the pure com-

ponent i and Vi
∞ is the partial molar volume of component i at

infinite dilution.
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∂xi
)

P,T
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G12
id ) RTkT

id -
V1

0V2
0

Vid
(A-4)

Gii
id ) G12

id + Vj
0 - Vi

0 i * j (A-5)

G12
SR ) RTkT -

V1V2

V
(A-6)

Gii ) G12
SR + Vj - Vi i * j (A-7)

lim
xif0

G12 ) RTkT,j
0 - Vi

∞ i * j (A-8)

lim
xif1

G12 ) RTkT,i
0 - Vj

∞ i * j (A-9)

lim
xif0

Gii ) RTkT,j
0 + Vj

0 - 2Vi
∞ - Vj

0(∂ ln γi

∂xi
)

P,T,xi)0
i * j

(A-10)

lim
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Gii ) RTkT,i
0 - Vi
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It was shown by us (J. Phys. Chem. B, 2006, 110, 12707) that the excess (deficit) of any species i

around a central molecule j in a binary mixture is not provided by ciGij (where ci is the molar

concentration of species i in the mixture and Gij are the Kirkwood–Buff integrals) as usually

considered and that an additional term, involving a volume Vj which is inaccessible to molecules

of species i because of the presence of the central molecule j, must be included. In this paper, the

new expression is applied to various binary mixtures and used to establish a simple criterion for

preferential solvation in a binary system. First, it is applied to binary Lennard-Jones fluids. The

conventional expression for the excess (deficit) in binary mixtures, ciGij, provides always deficits

around any central molecule in such fluids. In contrast, the new expression provides excess for

one species and deficit for the other one. In addition, two kinds of binary mixtures involving

weak (argon/krypton) and strong (alcohols/water) intermolecular interactions were considered.

Again, the conventional expression for the excess (deficit) in a binary mixture, ciGij, provides

always deficits for any central molecule in the argon/krypton mixture, whereas the new expression

provides excess for argon (a somewhat smaller molecule) and deficit for krypton. Three alcohol/

water binary mixtures (1-propanol/water, tert-butanol/water and methanol/water) with strong

intermolecular interactions were considered and compared with the available experimental

information regarding the molecular clustering in solutions. We found (for 1-propanol/water and

tert-butanol/water) a large excess of alcohols around a central alcohol molecule and a large excess

of water around a central water molecule. For both mixtures the maximum of the calculated

excess with respect to the concentration corresponds to the maximum in the cluster size found

experimentally, and the range of alcohol concentrations in which the calculated excess becomes

very small corresponds to the composition range in which no clusters could be identified

experimentally.

1. Introduction

The composition in the vicinity of a molecule is called local

composition (LC). Because of differences in intermolecular

interactions between various species and their sizes, the LC

differs from the overall (bulk) composition. Usually the thick-

ness of LC region in ordinary liquid mixtures does not exceed,

far from critical conditions, a few molecular diameters. The

knowledge of the liquid mixture organization at atomic level

together with the interaction between various species is critical

in the understanding of the properties of the mixtures and can

be helpful in correlating and even predicting thermodynamic

properties. The local composition concept is now widely used

in modeling phase equilibrium,1,2 in the theory of supercritical

mixtures,3,4 in the solution chemistry of large molecules such

as polymers,5,6 proteins,7,8 etc. In the theory of aqueous

solutions one routinely examines the preferential hydration

(when the local composition of water is larger than the bulk

composition of water).

It is difficult to determine experimentally the LC and the

thickness of the corresponding layer. When the volume where

the LC is appreciably different from the bulk composition is

large enough it can be determined experimentally by small-

angle X-ray scattering (SAXS),9–15 small-angle neutron scat-

tering (SANS),16 light scattering (LS)17–20 and other meth-

ods.21–23 In such cases there are large microheterogeneities in

the solution. However, until now it was not possible to

experimentally ‘‘measure’’ the thickness of the LC region for

most ‘‘normal’’ liquid mixtures.

Therefore, it is important to have a theoretical tool which

allows one to examine (or even predict) the thickness of the LC

region and the value of the LC on the basis of more easily

available experimental information regarding liquid mixtures.

A powerful and most promising method for this purpose is the

fluctuation theory of Kirkwood and Buff (KB).24 The KB

theory of solutions allows one to extract information about

the excess (or deficit) number of molecules, of the same or

different kind, around a given molecule, from macroscopic

thermodynamic properties, such as the composition depen-

dence of the activity coefficients, molar volume, partial molar

volumes and isothermal compressibilities. This theory was

developed for both binary and multicomponent solutions

and is applicable to any conditions including the critical and

supercritical mixtures.
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The excess (or deficit) number of molecules is a result of the

differences in the intermolecular interactions between mole-

cules of the same and different kinds and can be calculated

using the so-called Kirkwood–Buff integrals (KBIs):24

Gij ¼
Z1

0

ðgij � 1Þ4pr2dr ð1Þ

where gij is the radial distribution function between species

i and j, and r is the distance between the centers of molecules

i and j.

The first method for calculating the excess (or deficit)

number of molecules around a central molecule was suggested

by Ben-Naim.25–30 Let us consider a binary mixture 1–2. The

excess (or deficit) number of molecules i (i = 1, 2) around a

central molecule j (j = 1, 2) was calculated by Ben-Naim as:

DnBNij ¼ ciGij ð2Þ

where ci is the molar concentration of species i in the mixture

and Gij are the Kirkwood–Buff integrals (analytical expres-

sions for the KBIs of a binary mixture are provided in

Appendix 1).

Expression (2) was used by Ben-Naim in numerous pub-

lications25–30 (even in his most recent one31) and by many

authors. However, as we recently demonstrated32 this expres-

sion is incomplete and usually provides physically meaningless

results for the excesses (or deficits) number of molecules

i (i = 1, 2) around a central molecule j (j = 1, 2).

To explain why we consider eqn (2) incomplete, let us

examine its derivation by Ben-Naim.25,26 The average number

of molecules i (nij) in a sphere of radius R (we consider only

spherical volumes; however, similar consideration can be

employed for nonspherical volumes and leads to the same

conclusions) around a central molecules j can be calculated

using the expression30,33

nij ¼ ci

ZR

0

gij4pr2dr i; j ¼ 1; 2 ð3Þ

which can be written in the form

nij ¼ ci

ZR

0

ðgij � 1Þ4pr2drþ ci

ZR

0

4pr2dr ð4Þ

As soon as R becomes large enough for gij to become unity,

eqn (4) can be rewritten as27,28,30

nij ¼ ci

Z1

0

ðgij � 1Þ4pr2drþ ci

ZR

0

4pr2dr

¼ ciGij þ
ci4pR3

3
ð5Þ

ci4pR3

3 was identified25–30 as the total number of molecules of

species i around the center of a central molecule j for a

concentration equal to the bulk concentration ci. Therefore,

the difference between nij and
ci4pR3

3 was considered as the

average excess (or deficit) number of molecules i (i = 1, 2)

around a central molecule j (j = 1, 2) and eqn (2) was thus

obtained.25–30

However, the term ci4pR3

3 overestimates the total number of

molecules i at bulk concentration surrounding the central

molecule j because it includes molecules i assumed to be

located in a volume inaccessible to them because of the

presence of the central molecule j. Therefore, when the average

excess (or deficit) number of molecules i (i = 1, 2) around a

central molecule j is calculated, those i molecules should be

subtracted from ci4pR3

3 , and the second integral in the right

hand side of eqn (4) should be subdivided into two parts

nij ¼ ci

ZR

0

ðgij � 1Þ4pr2drþ ci

ZR

Rj

4pr2drþ ci

ZRj

0

4pr2dr ð6Þ

where Rj is the radius of the volume around the center of

molecule j which is inaccessible to molecules i due to the

presence of the central molecule j. For R sufficiently large for

gij to become unity, the first integral in the right hand side

becomes the Kirkwood–Buff integral; the second term pro-

vides the number of molecules of species i in a bulk liquid

located between the radii Rj and R and the third term provides

the number of molecules of species i in a bulk liquid located

between zero and the radius Rj. The true excess is provided by

the difference between nij and the number of molecules of

species i in a bulk liquid between the radii Rj and R. Hence

Dnij ¼ nij � ci

ZR

Rj

4pr2dr ð7Þ

The third integral
RRj

0

4pr2dr in eqn (6) represents a bulk volume

Vj which is not accessible to the molecules of species i.

Consequently, the expression which provides the average

excess (or deficit) number of molecules i (i = 1, 2) around a

central molecule j (j = 1, 2) has the form

Dnij ¼ ciGij þ ciV
j ð8Þ

Comparing eqn (8) with eqn (2) one can observe that the

former contains an additional term ciV
j which, as it will be

shown later in the paper, is not in most cases negligible. It is

now understandable why eqn (2) provides frequently unphy-

sical results.32,34–36 For example,32,36 there are numerous

systems for which all the KBIs (G11, G12 and G22) are negative

at least in certain ranges of composition, and in such cases all

DnBNij calculated with eqn (2) (DnBN11 and DnBN21 around the

central molecule 1 and DnBN12 and DnBN22 around the central

molecule 2) are negative, and this is not plausible because then

the density around any molecule in the liquid will become

lower than that in the bulk.

Another example is the ideal mixture A–B with equal molar

volumes of components A and B.32 Eqn (2) leads in this case to

negative excesses around molecules A and B (Fig. 1), even

though they are expected to be zero because of the complete

randomness of the equal size molecules.

Unfortunately eqn (2), which has been used for decades,

provides erroneous results, particularly when Gij and Vj are

comparable in absolute values and have different signs or |Vj|
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is large compared to |Gij|. In such cases (which are typical, for

example, of polymer or protein solutions in low molecular

weights solvents), eqn (2) provides large deficits of solvent(s)

around a polymer or protein molecule,32 contradicting both

common sense and the experimental information.

2. A simple criterion for preferential solvation in a

binary system

The concept of preferential solvation28–30 is closely connected

with the excesses (deficits) around a central molecule. Eqn (8)

can provide simple criteria for preferential solvation in a

binary system.

Let us consider the binary mixture a–b. One can define local

compositions in the vicinities of central molecules a (in mole

fraction scale xaa and xba) and b (xab and xbb). The local

compositions can be compared with the bulk compositions

(xa and xb) and on this basis one can conclude if there

is preferential solvation.

Component a is preferentially solvated by itself if

Gaa þ Va40 ð9AÞ

and component a is preferentially solvated by component b if

Gab þ Va40 ð9BÞ

Component b is preferentially solvated by itself if

Gbb þ Vb40 ð10AÞ

and component b is preferentially solvated by component a if

Gab þ Vb40 ð10BÞ

Inequalities (9) and (10) provide simple criteria for preferential

solvation in a binary system. They reveal that, contrary to the

prevailing opinion, the KBIs (Gab) alone can not provide

information about preferential solvation.

3. Evaluation of volume Vj

To calculate Dnij with expression (8), the volume Vj inacces-

sible to molecules of species i because of the presence of the

central molecule j must be known. Minimal and maximal

estimates have been suggested for the volume of a single

molecule; the van der Waals volume VvdW
j as the minimal

estimate and the volume of the pure component V0
j as the

maximal estimate.37,38

In our previous paper,32 eqn (8) was first applied to a pure

component j (i = j, cj = c0j ). In this case, because of complete

randomness, one expects Dnjj to be zero. By combining eqn (8)

with the equation for the Gjj of a pure substance (eqn (A1-9) in

Appendix 1) we obtained the following expression for the

volume Vj

ðVjÞxj¼1 ¼ V0
j � R0Tk

0
T ;j ð11Þ

where T is the temperature, xj is the molar fraction of

component j, k0T,j is the isothermal compressibility of the pure

component j and R0 is the universal gas constant. Hence, far

from the critical point, where V0
T,j c R0TK

0
T,j, the inaccessible

volume Vj is equal to the molar volume of the pure component

j. This result was extrapolated to mixtures by considering that

Vj ¼ Vj � R0TkT ð12Þ

where Vj is the partial molar volume of component j and kT is

the isothermal compressibility of the mixture.

By combining eqns (8) and (12), one obtains for the average

excess (or deficit) number of molecules i (i = 1, 2) around a

central molecule j (j = 1, 2) the expression

Dnij ¼ ciGij þ ciV
j ¼ ciðGij þ Vj � R0TkT Þ ð13Þ

Similar relations can be written for the excess (or deficit)

number of molecules i (i= 1, 2, . . .) around a central molecule

j (j=1, 2, . . .) when the volume of a pure component V0
j or the

van der Waals volume VvdW
j is used instead of Vj in eqn (13).

In these cases one can write the following relations

Dnij ¼ ciðGij þ V0
j � R0TkT Þ ð14Þ

and

Dnij ¼ ciðGij þ VvdW
j � R0TkT Þ ð15Þ

Only in eqn (13), Vj depends, through both Vj and kT, on the

mixture composition. In eqns (14) and (15) only kT is compo-

sition dependent.

Let us apply eqns (13), (14) and (15) to a real system and

compare the results. Fig. 2 provides such a comparison for the

binary system isopropanol (1)–water (2) (The Kirkwood–Buff

integrals were taken from literature36 and the van der Waals

volumes were calculated as suggested in ref. 39–41). Fig. 2

shows that the excesses (deficits) calculated using all three

equations (eqns (13), (14) and (15)) provide quite comparable

results for both central isopropanol and water molecules. The

differences between the excesses (deficits) calculated with

eqns (13) and (14) are small.

However, it is worth mentioning that:

(1) While for pure components, eqns (13) and (14) provide

zero excesses (deficits), eqn (15) provides nonzero excesses

(deficits),

(2) At infinite dilution of component j, the excesses (deficits)

Dnij (i a j) are zero when eqn (13) is used and non-zero when

eqns (14) and (15) are used.

Fig. 1 Application of eqn (2) to an ideal binary mixture A–B with

equal volumes of the components. Excess (or deficit) number of

molecules i (i = A, B) around a central molecule A. 1 is DnBNAA and 2

is DnBNBA (KBIs were provided by eqns (A1-4) and (A1-5) in Appendix

1, where kidT was taken equal to zero). x1 is the mole fraction of

component A.
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(3) The differences between the excesses (deficits) calculated

with eqns (13) and (14) are small. Eqns (13) and (14) should be

preferred to eqn (15) because they provide zero excesses

(deficits) for pure components.

Additional physical arguments can be brought in favor of

eqn (13). Namely, any central molecule in the mixture a–b can

be preferentially solvated by either molecule a or b. Therefore
if one species is in excess the other one must be in deficit. In

terms of eqns (9) and (10), one can write that if, for instance,

Gaa + Va 4 0 (or Gbb + Vb 4 0) holds, then the inequality

Gab + Va r 0 (or Gab + Vb r 0) should also be fulfilled. By

using the identity32

ViciðGij þ Vj � R0TkT Þ þ VjcjðGjj þ Vj � R0TkT Þ ¼ 0;

i; j ¼ 1; 2 and iaj

one can prove that the excesses (deficits) calculated with eqn

(13) satisfy the above conditions. However, the excesses

(deficits) calculated with eqns (14) or (15) do not satisfy them

in the entire range of concentrations.

In what follows eqn (13) will be employed. However, all

three eqns (13)–(15) provide excesses (deficits) which signifi-

cantly differ from those obtained with eqn (2), the differences

being larger when the volume Vj is large.32 We already used

eqn (13) to calculate the excesses (deficits) for several binary

mixtures.32

In the present paper, the new approach will be used to

calculate the excesses (deficits) in binary Lennard-Jones (LJ)

fluids and for several low-molecular-weight binary solutions.

In one of these mixtures, there are weak interactions between

the components (argon (1)/krypton (2)). The components of

this mixture are apolar and have comparable molar volumes

(33 and 34 cm3 mol�1, respectively).35 Further, three mixtures

(1-propanol (1)/water (2), tert-butanol (1)/water (2) and

methanol (1)/water (2)), which possess strong intermolecular

interactions, including H-bonding, will be considered. The

mixtures 1-propanol/water and tert-butanol have been se-

lected because experimental information regarding their mi-

croheterogeneities is available for comparison. The results for

methanol/water could also be compared with some experi-

mental data.

4. Various binary mixtures

4.1 Lennard-Jones fluids

The LJ fluids42 are fluids for which the interactions between

the molecules can be described by LJ potentials

UijðrÞ ¼ 4eij
sij
r

� �12
� sij

r

� �6� �
ð16Þ

where eij and sij are the energy and size parameters of the

molecular species involved.42

The KBIs for the LJ fluids can be calculated with eqn (1)

using for the radial distribution function gij the Percus–Yevick

equation.43 The KBIs obtained in this manner by Kojima,

Kato and Nomura43 have been employed.

4.1.1 The same energy parameters but different size para-

meters. First, the excesses (deficits) were calculated for LJ

fluids with different size parameters (s11 = 1 Å and s22 = 1.35

Å), but with the same energy parameters eij (e11 = e22 = kT/

1.2, where k is the Boltzmann constant). The results of the

calculations are presented in Fig. 3 and details regarding the

calculations are presented in Appendix 2. The results of Fig. 3

demonstrate that the LJ molecules with smaller size (compo-

nent 1) are in excess and those with a larger size (component 2)

are in deficit in the vicinity of both central molecules 1 and 2.

Therefore, for the same interaction energy parameters, their

sizes play a major role in their distribution near central

molecules, the smaller molecules being preferred to the larger

ones. Eqn (2) provides physically unreasonable values for the

excesses (deficits), predicting that all DnBNij are negative at all

compositions.

4.1.2 Different energy parameters but the same size para-

meters. Second, the excesses (deficits) were calculated for

molecules with equal size parameters (s11 = s22 = 1Å) but

different energy parameters eij (e11 = kT/1.2, e22 = kT1/1.8

and e12 = (e11�e22)1/2). The results are presented in Fig. 4. In

this case, the molecule with the larger energy parameter

(component 1) is in excess and the molecule with the smaller

energy parameter (component 2) in deficit around both central

1 and 2 molecules.

By comparing Fig. 3 and 4 one can notice that the absolute

values of the excesses (deficits) in Fig. 3 are much larger than

Fig. 2 Excesses (or deficits) for isopropanol (1)/water (2) mixtures

(T = 298. 15 K). (a) Excesses (or deficits) around a central isopropa-

nol molecule (eqn (13) � solid line, eqn (14) – open circles and

open squares and eqn (15) – dark circles and dark squares), (b)

excesses (or deficits) around a central water molecule (eqn (13) �
solid line, eqn (14) � open circles and open squares and eqn (15) �
dark circles and dark squares which coincide with the open squares).
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in Fig. 4. This occurs because for given parameters the effect of

the size of the molecule on the excesses (deficits) is greater than

that of the energy parameter.

Again, eqn (2) provides unreasonable values for the excesses

(deficits), all DnBNij being negative at all compositions.

One should note that there is an important difference

between the considered LJ fluid and liquid mixtures under

ambient conditions. For liquid mixtures under ambient con-

ditions, the compressibility term in eqns (14) and (15) can

usually be neglected because it is small compared to the other

terms. However, for LJ fluids, this term becomes comparable

to the other terms on the right hand side of eqns (14) and (15)

and its omission leads to errors in calculating the excesses

(or deficits).

4.2 Argon (1)/krypton (2) mixture

The KBIs of the argon (1)/krypton (2) mixture at 115.77 K

have been calculated by Matteoli35 on the basis of data44 on

the excess Gibbs energy and density. We repeated these

calculations using the same literature data44 and the obtained

KBIs have been used to calculate the excesses (deficits) for the

argon (1)/krypton (2) mixture at 115.77 K using eqn (13). The

results of these calculations are compared with those obtained

with eqn (2) in Fig. 5. One can see that argon (a somewhat

smaller molecule than krypton) is in excess (the excess is small)

over the entire composition range around both central mole-

cules. It is noteworthy that the same conclusion was reached

for ideal mixtures32 and for LJ fluids (see section 4.1). The

values provided by DnBNij are always negative for all i–j pairs in

the entire composition range, results which are implausible.

Fig. 3 Excesses (or deficits) around central molecules 1 (Fig. 3a) and

2 (Fig. 3b) for LJ fluids with molecules of different sizes (s11 = 1 Å

and s22 = 1.35 Å) but with the same energy parameter eij (e11 = e22 =
kT/1.2).J � Excesses (or deficits) calculated with eqn (13), solid lines

� excesses (or deficits) calculated using eqn (2).

Fig. 4 Excesses (or deficits) around central molecules 1 (Fig. 4a) and

2 (Fig. 4b) for the LJ fluid with molecules of equal sizes (s11 = s22 =
1 Å) but with different energy parameters eij (e11 = kT/1.2 and e22 =
kT/1.8).J � Excesses (or deficits) calculated with eqn (13), solid lines

� excesses (or deficits) calculated with eqn (2).

Fig. 5 Excesses (or deficits) for argon (1)/krypton (2) mixtures (T =

115.77 K). (a) Excesses (or deficits) around a central argon molecule

calculated with eqns (2) and (13), (b) excesses (or deficits) around a

central krypton molecule calculated with eqns (2) and (13).
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4.3 1-Propanol (1)/water (2) mixture

The KBIs for the 1-propanol (1)/water (2) mixture are avail-

able in the literature,36,45–48 and there is agreement between

the KBIs obtained in various calculations.36,45–48 In the pre-

sent paper, the excesses (deficits) for the 1-propanol (1)/water

(2) mixture have been calculated with eqn (13) by using the

KBIs already calculated by us.36 The partial molar volumes

for the 1-propanol (1)/water (2) mixture have been calculated

from density data49 and the isothermal compressibilities have

been evaluated using the expression:

kT ¼ k0T ;1j1 þ k0T ;2j2 ð17Þ

where ji = xiVi
0/(x1V

0
1 + x2V

0
2) is the volume fraction of

component i in solution and k0T,i is the isothermal compressi-

bility of the pure component i. The isothermal compressibil-

ities of the pure compounds were taken from ref. 50. The

calculated excesses (deficits) for the 1-propanol (1)/water (2)

mixture are plotted in Fig. 6.

One can see from Fig. 6 that 1-propanol is in excess around

a central 1-propanol molecule whereas water is in excess

around a central water molecule. Hence both components of

this mixture have self-aggregation tendencies and two types of

clusters are present in this mixture: one of them is enriched in

alcohol and the other one in water. All Dnij have extremes

around x1 E 0.25. At large alcohol concentrations

(x1 4 0.4–0.5), the excesses (deficits) become small, indicating

the absence of large microheterogeneities.

There are plenty of experimental results provided by

SAXS,13–15 SANS16 and LS17 regarding the microheterogene-

ities (or clustering) present in the 1-propanol (1)/water (2)

mixture. They reveal that: (i) there are large microheterogene-

ities in the dilute aqueous solutions of 1-propanol with a

maximum in size at about x1 E 0.15–0.25 (where x1 is the

mole fraction of 1-propanol), (ii) there are no microhetero-

geneities (or they are too small to be detected) at high 1-

propanol concentrations (x1 4 0.4–0.6). The Landau–Placzek

ratio (which is a measure of the microscopic aggregation)

determined from Rayleigh–Brillouin scattering51 provides a

very similar picture of clustering in this mixture. One can see

that our results (Fig. 6) are in agreement with the experimental

data regarding the microheterogeneities in the 1-propanol (1)/

water (2) mixture.

The calculations of the excesses (deficits) for the 1-propanol/

water mixture carried out with eqn (2) provide results compar-

able to those obtained with eqn (13). This occurs because the

KBIs for the 1-propanol/water mixture are very large in a wide

range of compositions and the contribution of Vj to the

excesses (deficits) for this mixture is small. Such cases are,

however, rare.

4.4 tert-Butanol (1)/water (2) mixture

The KBIs for aqueous tert-butanol (t-butanol) mixtures are

available in literature36,45–48 and there is agreement between

the KBIs calculated by various authors.36,45,47,48 In the present

paper, the excesses (deficits) for the t-butanol/water mixture

have been calculated with eqn (13) using the KBIs already

calculated by us.36 The partial molar volumes for this mixture

were calculated from density data.52 The isothermal compres-

sibilities were evaluated with eqn (17), and the isothermal

compressibilities of the pure compounds were taken from ref.

50 and 53. The calculated excesses (deficits) are plotted in

Fig. 7, which shows that the excesses (deficits) for this mixture

are comparable to those for the 1-propanol (1)/water (2)

mixture. Indeed, t-butanol is in excess around a central

t-butanol molecule whereas water is in excess around a central

water molecule. Hence both components exhibit self-aggrega-

tion tendencies and two types of clusters are present in the

mixture: the first is enriched in alcohols and the second in

water. All Dnij have extrema around x1 E 0.15. At large

alcohol concentrations x1 4 0.4–0.6) the excesses (deficits)

become small indicating the absence of large microhetero-

geneities.

The microheterogeneities in the t-butanol/water mixture

were investigated experimentally with SAXS10,12 and LS.18,20

Microheterogeneities were found in the following ranges of

t-butanol mole fractions: (i) by SAXS10,12 for x1 o 0.35–0.4,

with a maximum size for x1 E 0.15, (ii) by LS18,20 for x1 r 0.3.

The Landau–Placzek ratio 51 revealed that microhetero-

geneities are present in this mixture at x1 o 0.4–0.5 with a

maximum at x1 E 0.15.

One can see that our predictions of microheterogeneities in

the t-butanol/water mixture (Fig. 7) are in agreement with the

experimental data available for this mixture. The theory

Fig. 6 Excesses (or deficits) for 1-propanol (1)/water (2) mixtures

(T = 303.15 K). (a) Excesses (or deficits) around a central 1-propanol

molecule calculated with eqn (13), (b) excesses (or deficits) around a

central water molecule calculated with eqn (13).
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indicates that clusters enriched in alcohols and enriched in

water are present in the t-butanol/water mixture.

4.5 Methanol (1)/water (2) mixture

The excesses (deficits) in the methanol (1)/water (2) mixture

were calculated in our previous paper.32 The results (Fig. 8)

are not typical of alcohol/water mixtures. One can see from

Fig. 8a that methanol is in small excess around a central

methanol molecule for x1 r 0.37 and water is in small excess

around a central methanol molecule for x1 4 0.37. However,

Fig. 8b shows that water is in excess around a central water

molecule at all concentrations. According to previous calcula-

tions of the excesses (deficits) in the alcohol/water mixtures,36

the alcohol is in excess around a central alcohol molecule at all

compositions and the magnitude of the excess increases from

methanol to higher alcohols. It is interesting to note that

recent experimental results54–56 (combined mass spectra and

X-ray diffraction) indicated that there is a structural change

in the methanol/water mixture at x1 E 0.3. This change

can be interpreted as follows: in the composition range x1 r
0.3, the structure of the methanol/water mixture consists of a

network of water molecules but at higher methanol concen-

trations (x1 4 0.3) the water network is gradually replaced

by methanol chains and finally by a network of methanol

molecules.

5. Discussion and conclusion

A new expression (8) for the excess (or deficit) around any

central molecule in a liquid mixture, which was derived by us

in a recent paper,32 is employed to examine various binary

mixtures. Eqn (8) involves a KBI as well as a volume Vj due to

the presence of the central molecule, which is inaccessible to

the considered component of the mixture. In our previous

paper, it was suggested to equate Vj with (Vj�R0TkT), where

Vj is the partial molar volume of component j. In this paper,

additional options are suggested for Vj, namely the molar

volume of the pure components j (V0
j ) (eqn (14)), or the van

der Waals volumes VvdW
j (eqn (15)). The excesses (or deficits)

have been calculated for the isopropanol–water mixture using

all three eqns (13)–(15). Fig. 2 shows that eqns (13)–(15) lead

to comparable results for the excesses (or deficits) for the

isopropanol–water mixture.

Further, eqn (13) was used to calculate the excesses (deficits)

for various binary mixtures. First, the new approach has been

applied to binary LJ fluids. The excesses (deficits) for two

binary LJ fluids were examined: (1) in the first, the same energy

parameters but different size parameters have been employed,

(2) in the second, different energy parameters but the same size

parameters have been used (see Fig. 3 and 4). In both cases,

the KBIs (G11, G12 and G22) were negative at all composi-

tions43 and provided negative values for all DnBNij calculated

with eqn (2) (DnBN11 and DnBN21 around the central molecule 1

and DnBN12 and DnBN22 around the central molecule 2). In

contrast, eqn (13) provided more physically meaningful

Fig. 7 Excesses (or deficits) for t-butanol (1)/water (2) mixtures

(T = 323.15 K). (a) Excesses (or deficits) around a central t-butanol

molecule calculated with eqn (13), (b) excesses (or deficits) around a

central water molecule calculated using eqn (13).

Fig. 8 Excesses (or deficits) for methanol (1)/water (2) mixtures

(T = 323.15 K).32 (a) Excesses (or deficits) around a central methanol

molecule calculated with eqn (13), (b) excesses (or deficits) around a

central water molecule calculated with eqn (13).
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results, namely: in the first case (Fig. 3), an excess for

molecules of smaller size and a deficit for molecules of larger

size in the vicinity of both central molecules 1 and 2. Similar

results have been obtained previously for ideal binary mixtures

as well.32 In the second case (Fig. 4), the molecules with larger

energy parameter (component 1) were in excess and those with

smaller energy parameter (component 2) in deficit around both

central 1 and 2 molecules. For binary LJ fluids, the excesses

(deficits) are relatively small compared to those in mixtures

with strong intermolecular interactions (see below).

Second, a mixture with very weak interactions between

components (argon/krypton) was considered. The compo-

nents of these mixture are apolar and possess comparable

molar volumes (33 and 34 cm3 mol�1, respectively35). One can

see from Fig. 5 that argon (a somewhat smaller molecule than

krypton) is present in excess (which is small) over the entire

composition range around both argon and krypton molecules.

The effect of the intermolecular interactions on the local

compositions in this mixture is smaller than that of the

difference (even small) in the sizes of the components. Again,

all KBIs (G11, G12 and G22) are negative for all compositions

and the values of all DnBNij are always negative for all i–j pairs

in the entire composition range.

Finally, the excesses (or deficits) were examined for three

mixtures (1-propanol/water, tert-butanol/water and methanol/

water) with strong intermolecular interaction including

H-bonding. Fig. 6 and 7 show that there is high self-aggrega-

tion for both alcohol and water in the 1-propanol/water and

tert-butanol/water mixtures. These self-aggregations occur for

mole fractions of alcohol less than 0.4–0.6, with a maximum at

0.2–0.25 for 1-propanol/water and 0.15–0.2 for tert-butanol/

water. These results are in agreement with the experimental

findings regarding the microheterogeneities present in these

mixtures, identified by SAXS, SANS and LS techniques. In

addition, the excesses (or deficits) in methanol/water mixture

were compared with experimental results regarding some

structural features of this mixture.

Appendix 1

The purpose of this Appendix is to provide expressions for the

KBIs of binary mixtures in terms of measurable thermody-

namic quantities such as the derivatives of the chemical

potentials with respect to concentrations, the isothermal

compressibility and the partial molar volumes.

The main formulas for the KBIs are34,35,45

G12 ¼ G21 ¼ R0TkT �
V1V2

VD
ðA1-1Þ

Gii ¼ G12 þ
1

xi

Vj

D
� V

� �
iaj ðA1-2Þ

where

D ¼ @ ln gi
@xi

� �
P;T

xi þ 1 ðA1-3Þ

P is the pressure, T is the temperature in K, kT is the

isothermal compressibility, Vi is the partial molar volume of

component i, xi is the molar fraction of component i, V is the

molar volume of the mixture, gi is the activity coefficient of

component i and R0 is the universal gas constant.

The KBIs for an ideal mixture Gid
ij are provided by the

expressions:34,35

Gid
12 ¼ R0Tk

id
T �

V0
1V

0
2

V id
ðA1-4Þ

and

Gid
ii ¼ Gid

12 þ V0
j � V0

i ; iaj ðA1-5Þ

where V0
i , kidT and Vid are the molar volume of the pure

component i, the isothermal compressibility and the molar

volume of an ideal solution, respectively.

At infinite dilution, or for pure components, the following

limiting expressions can be obtained for the KBIs34,35,45

limG12
xi!0

¼ R0Tk
0
T ;j � V1i iaj ðA1-6Þ

limG12
xi!1

¼ R0Tk
0
T ;i � V1j iaj ðA1-7Þ

limGii
xi!0

¼ R0Tk
0
T ;j þ V0

j � 2V1i � V0
j

@ ln gi
@xi

� �
P;T ;xi¼0

iaj

ðA1-8Þ

and

limGii
xi!1

¼ R0Tk
0
T ;i � V0

i ðA1-9Þ

where k0T,i is the isothermal compressibility of the pure com-

ponent i and VN

i is the partial molar volume of component i at

infinite dilution.

Appendix 2

The purpose of this Appendix is to provide details for calcu-

lating the excesses (deficits) for binary Lennard-Jones fluid.

The excesses (deficits) were calculated with eqn (13). The

KBIs for binary Lennard-Jones fluids were found in litera-

ture.43 The partial molar volumes and the isothermal com-

pressibility were calculated using the Kirkwood–Buff

expressions:24

u1 ¼
1þ ðG22 � G12Þc2

c1 þ c2 þ c1c2ðG11 þ G22 � 2G12Þ
ðA2-1Þ

u2 ¼
1þ ðG11 � G12Þc1

c1 þ c2 þ c1c2ðG11 þ G22 � 2G12Þ
ðA2-2Þ

kTkT ¼
1þ c1G11 þ c2G22 þ c1c2ðG11G22 � G2

12Þ
c1 þ c2 þ c1c2ðG11 þ G22 � 2G12Þ

ðA2-3Þ

The excesses (deficits) for binary Lennard-Jones fluids were

calculated for two different cases:

(1) The same energy parameters but different size para-

meters:

We used the KBIs43 for e11 = e22 = kT/1.2 and s11 = 1 Å

and s22 = 1.35 Å.

(2) The same size parameters but different energy para-

meters:
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We used the KBIs43 for s11 = s22 = 1 Å and e11 = kT/1.2

and e22 = kT/1.8.

s12 and e12 were assumed43 to be provided by the Lorenz-

Berthelot rules

s12 ¼ ðs11 þ s22Þ=2 ðA2-5Þ

and

e12 ¼ ðe11 � e22Þ1=2 ðA2-6Þ

The KBIs43 were calculated at constant packing fraction

Z ¼ pðc1 þ c2Þðx1s311 þ x2s322Þ=6 ðA2-7Þ
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The Kirkwood-Buff (KB) theory of solutions1 relates the
local properties of solutions, expressed through the KB integrals,
to macroscopic thermodynamic quantities. An important ap-
plication of this theory is to the excess (or deficit) number of
molecules of any type around a central molecule. The calculation
of this excess (or deficit) is the matter of our disagreement with
the preceding Ben-Naim comment.2

First, let us note that the Ben-Naim assertion that we “sought
a ‘correction’ to the interpretation of the Kirkwood-Buff
integrals” is not accurate. The latter theory does not require any
correction. We do not disagree with Kirkwood and Buff, but
we disagree with Ben-Naim, namely with the expression he has
employed for calculation of the excess (or deficit).

According to the numerous publications of Ben-Naim (as
cited in our paper3), in a binary mixture of components R and
â, the average excess (or deficit) (∆NRâ) of the number of R
molecules [for the sake of simplicity only a binary mixture is
considered] around a central â molecule is provided by the
expression

where cR is the bulk molar concentration of component R and
GRâ is the KB integral.

It should be emphasized that ∆NRâ was considered by Ben-
Naim to represent the difference between the number of
molecules of a given species around a central molecule and the
number of molecules of the same species at the bulk concentra-
tion in the same volume surrounding the central molecule.
Indeed, in his 1977 paper,4 he writes “Clearly, cRGRâ reflects
the total average excess (or deficiency) of R molecules in the
entire surrounding of a â molecule”.

We recently3 demonstrated that expression (1) for the excess
(or deficit) as defined above is not correct, and we provided a
correct expression that involves the KB integral. Ben-Naim in
his comment2 disagrees. As a reply to his comment, we present
again, in a very simple manner, our arguments.

Let us consider a binary mixture R-â and a central molecule
â. The excess (or deficit) of R molecules in a sphere of radius
R around a central molecule â (see Figure 1) is obviously
provided by the difference between nRâ, the average number of
R molecules around a central molecule â in the volume between
Râ and R, and nRâ

bulk, the number of R molecules at the bulk
concentration in the same volume for which nRâ was calculated.
In Figure 1, Râ is the radius of a volume that is not accessible
to R molecules because of the presence of the central molecule

â (for the sake of simplicity the shapes of the molecules are
considered spherical but our considerations are valid for
molecules of any shape).

Let us now express the above considerations in more details.
The number of molecules nRâ is given by5-6

where gRâ is the radial distribution function between species R
and â.

nRâ
bulk is obviously provided by

Because5-6 gRâ ) 0 for r eRâ, nRâ and nRâ
bulk are calculated for

the same volume between the radii Râ and R. As it will be shown
later, eq 1 of Ben-Naim can be obtained if one takes Râ ) 0 in
eq 3. Thus, Ben-Naim’s expression (1) provides the difference
between the number of R molecules around a central â molecule
and the number of R molecules at the concentration of the bulk
in a sphere of radius R that includes the volume of radius Râ.
In other words, in his approach, the volumes involved in the
two terms are not the same. It is clear that the physically
meaningful and relevant excess is that which involves the same
volume surrounding the central molecule. As already noted, Ben-
Naim intended to calculate the excess as defined after eq 1, but
obtained instead an “excess” corresponding to Râ ) 0 in eq 3.

The basic equations of the two approaches can be derived
starting from eqs 2 and 3.

The Ben-Naim’s “excess” of R molecules in a sphere of radius
R around a central molecule â is obtained by taking Râ ) 0 in
eq 3

which can be rewritten as

Because for sufficiently large R, gRâ ) 1, eq 5 leads to his
eq 1

where GRâ ) ∫0
∞ (gRâ - 1)4πr2 dr is the KB integral.

* To whom correspondence should be addressed. E-mail: feaeliru@
acsu.buffalo.edu. Fax: (716) 645-3822. Phone: (716) 645-2911/ext. 2214.

† E-mail: ishulgin@eng.buffalo.edu.

∆NRâ ) cRGRâ (1)

Figure 1. Illustration to the calculation of excess (or deficit) molecules
R around a central molecule â.

nRâ ) cR ∫0

R
gRâ4πr2 dr (2)

nRâ
bulk ) cR ∫Râ

R
4πr2 dr (3)

∆N Râ
(R) ) cR ∫0

R
gRâ4πr2 dr - cR ∫0

R
4πr2 dr (4)

∆N Râ
(R) ) cR ∫0

R
(gRâ - 1)4πr2 dr (5)

∆NRâ ) cRGRâ (1)
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In our approach, the excess of R molecules in a sphere of
radius R around a central molecule â is

For sufficiently large values of R, gRâ ) 1, and eq 6 becomes

where Vâ is the volume inaccessible to R molecules because of
the presence of the central molecule â. Comparing eqs 1 and 7,
it is clear that in the Ben-Naim treatment the volume Vâ is
ignored. The difference between the two quantities ∆nRâ and
∆NRâ is particularly important for large central molecules such
as the biomolecules.

Let us consider a very instructive example:3 a protein
molecule, ribonuclease A (denoted 2), at infinite dilution in a
binary mixture of water (denoted 1) and glycerol (denoted 3).
Is the ribonuclease A molecule hydrated by water or solvated
by glycerol? We calculated3 the excesses using both our
approach and Ben-Naim’s eq 1. The excess calculated with our
expression (for a glycerol volume fraction of 30%) is positive
for water and negative for glycerol (∆n12 = 33.3 mol of water
per mole of protein and ∆n32 = -8.2 mol of glycerol/mol of
protein). With the Ben-Naim expression both are negative (∆N12

= -341.8 mol of water/mol of protein and ∆N32 = -48.1 mol
of glycerol/mol of protein). Therefore, the use of Ben-Naim’s
eq 1 provides large deficits for both water and glycerol in the
vicinity of ribonuclease A. In contrast, many experiments7-9

confirmed that in this mixture water is in excess and glycerol
is in deficit in the vicinity of the protein molecule. It is clear
why the Ben-Naim excesses are negative: eq 1 ignores the term
cRVâ which is comparable in magnitude in the considered
example with cRGRâ (â ) 2 and R ) 1,3); when this term is
ignored, the number of molecules subtracted (cR ∫0

R 4πr2 dr)

from the number of molecules nRâ around a central molecule â
becomes too large (see eq 4).

There are additional erroneous comments in the Ben-Naim
paper that are less relevant. Let us mention one of them. He is
not accurate in attributing to us “the claim that a negative KBI
is not plausible”. We have not made such an assertion. On the
contrary, we provided3 several examples of real mixtures for
which all the KBIs are negative. We use such examples because
they show that Ben-Naim’s eq 1 can provide negative values
for all of the excesses around any central molecule, and we
said that this is not plausible.

Unfortunately, Ben-Naim’s eq 1 has been used in many
papers published over the last three decades. All of them
considered erroneously that it provides an excess with respect
to the bulk concentration in the surrounding of a central
molecule.

It should be emphasized that Matteoli and Lepori10 and
Matteoli11 were the first to criticize the Ben-Naim excess by
introducing a reference state. For a detailed comparison between
their approach and ours, one can see ref 3.

To close our reply, we emphasize the contradictions between
the first and the last parts of Ben-Naim’s comments, as well as
the contradictions between most of his published papers
concerning this topic (some cited in our paper3) and the present
comment. In his previously published papers, he defined the
excess as noted after eq 1, but derived an incorrect result: eq 1;
in the present paper he interpreted the quantity cRGRâ in a correct
manner, but failed to mention that cRGRâ is not the excess
defined after eq 1.
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An Improved Local Composition Expression and Its Implication for Phase
Equilibrium Models

Ivan L. Shulgin and Eli Ruckenstein*
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A modified local composition (LC) expression is suggested, which accounts for the recent finding that the
LC in an ideal binary mixture should be equal to the bulk composition only when the molar volumes of the
two pure components are equal. However, the expressions available in the literature for the LCs in binary
mixtures do not satisfy this requirement. Some LCs are examined including the popular LC-based NRTL
model, to show how the above inconsistency can be eliminated. Further, the emphasis is on the modified
NRTL model. The newly derived activity coefficient expressions have three adjustable parameters as the
NRTL equations do, but contain, in addition, the ratio of the molar volumes of the pure components, a quantity
that is usually available. The correlation capability of the modified activity coefficients was compared to the
traditional NRTL equations for 42 vapor-liquid equilibrium data sets from two different kinds of binary
mixtures: (i) highly nonideal alcohol/water mixtures (33 sets), and (ii) mixtures formed of weakly interacting
components, such as benzene, hexafluorobenzene, toluene, and cyclohexane (9 sets). The new equations
provided better performances in correlating the vapor pressure than the NRTL for 36 data sets, less well for
4 data sets, and equal performances for 2 data sets. Similar modifications can be applied to any phase
equilibrium model based on the LC concept.

1. Introduction

Generally speaking, the structure of a solution at the nanom-
eter scale and the intermolecular interactions between various
constituents constitute the key to the understanding and even
predicting both its microscopic and its macroscopic properties.

A typical feature of the liquid solutions is their microhetero-
geneity, that is, the presence of microparts of solution where
the local concentration differs from the bulk concentration.
These microheterogeneities can be characterized by the follow-
ing nanometer-level quantities: (i) the correlation volume, that
is, the volume in which the concentration differs from the
average concentration, (ii) the excess (or deficit) number of
molecules in the correlation volume with respect to the number
of molecules corresponding to the bulk concentration, and (iii)
the intermolecular interactions between molecules in the above
volume.

The concentrations of the components in the vicinity of any
molecule are usually called local compositions (LCs). According
to the LC concept, the composition in the vicinity of any
molecule differs from the overall composition. If a binary
mixture is composed of components 1 and 2 with overall mole
fractions x1 and x2, respectively, four LCs can be defined: local
mole fractions of components 1 and 2 near a central molecule
1 (x11 and x21) and local mole fractions of components 1 and 2
near a central molecule 2 (x12 and x22). Many attempts have
been made to express LC in terms of the bulk compositions
and some intermolecular interaction parameters.1–9 Wilson was
the first1 to suggest expressions for the local mole fractions and
to derive on their basis expressions for the activity coefficients
of binary mixtures. Since then, many expressions for LC were
suggested, and the LC concept proved to be a very effective

method in the prediction and correlation of phase equilibria in
binary and multicomponent mixtures.

In this Article, a modified LC expression is suggested. This
modification is a result of the observation that the traditional
expressions for the LCs1–8 are inconsistent with the expressions
for the excesses around molecules in ideal binary mixtures (see
the next section). The new LCs will be used to obtain
expressions for the activity coefficients of binary mixtures using
the NRTL equations2 for illustration. The traditional and
corrected NRTL equations will be used to correlate the
vapor-liquid equilibria (VLE) for alcohol + water binary
mixtures and binary mixtures containing benzene, hexafluo-
robenzene, toluene, and cyclohexane. It is shown that the
modified LCs provide a moderate improvement of the NRTL
results.

2. The Local Composition in an Ideal Mixture

On the basis of the Kirkwood-Buff theory of solution,10 one
can show that the excess (or deficit) number of molecules i (i
) 1, 2) around a central molecule j (j ) 1, 2), ∆nij, in a binary
liquid mixture can be obtained by using the expression:11

∆nij ) ciGij + ci(Vj -RTkT) (1)

where ci is the bulk molar concentration of species i in the
mixture, Gij is the Kirkwood-Buff integral,10 T is the temper-
ature, Vj is the partial molar volume of component j, kT is the
isothermal compressibility of the mixture, and R is the universal
gas constant. For an ideal mixture (according to thermodynam-
ics,9 an ideal mixture is a mixture for which the activity
coefficients of the components are equal to unity at any
concentration, temperature, and pressure), the above expression
leads for the excesses around a central molecule 1 (similar
expressions can be obtained for a central molecule 2) to11
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∆n11
id )

x1x2V2
0(V2

0 -V1
0)

(x1V1
0 + x2V2

0)2
(2)

and

∆n21
id )

x1x2V1
0(V1

0 -V2
0)

(x1V1
0 + x2V2

0)2
(3)

where Vi
0 is the molar volume of the pure component i, and xi

is the bulk molar fraction of component i. These equations show
that the excesses ∆nij for an ideal binary mixture become zero
only when the molar volumes of the pure components are the
same; otherwise the excesses and deficits have nonzero values.
Such a behavior provides a criterium for the LC; the LCs of an
ideal binary mixture should be equal to the bulk compositions
only when the molar volumes of the pure components are the
same. However, the existing expressions1–8 for LC fail to satisfy
this criterium. Let us consider as an example the NRTL model.2

According to this model, the local mole fractions around a
central molecule i (i ) 1, 2) can be expressed as:2

xii )
xi

xi + xj exp(-R12

λij - λii

RT )
(4)

and

xji )
xj exp(-R12

λij - λii

RT )
xi + xj exp(-R12

λij - λii

RT )
(5)

where λij are interaction parameters between molecules i and j,
and R12 is an additional dimensionless parameter.

According to the NRTL model,2 the activity coefficients can
be expressed as:

ln γ1 ) x2
2(τ21

exp(-2R12τ21)

[x1 + x2(-R12τ21)]
2
+ τ12

exp(-R12τ12)

[x2 + x1(-R12τ12)]
2)

(6)

and

ln γ2 ) x1
2(τ12

exp(-2R12τ12)

[x2 + x1(-R12τ12)]
2
+ τ21

exp(-R12τ21)

[x1 + x2(-R12τ21)]
2)

(7)

where τ12 ) (λ12 - λ22)/RT and τ21 ) (λ21 - λ11)/RT.
It is obvious from eqs 4 and 5 that xji ) xj only when λij )

λii (i ) 1, 2 and j ) 1, 2), and this leads (see eqs 6 and 7) to
ln γ1 ) 0 and ln γ2 ) 0, which imply that the mixtures with xji

) xj are ideal. One can easily show that by assuming ln γ1 )
0 and ln γ2 ) 0, one obtains from eqs 6 and 7 that xji ) xj (i )
1, 2 and j ) 1, 2). Consequently, from the point of view of the
NRTL equations, the ideality of a binary mixture and equality
of local and bulk compositions are equivalent results. However,
there is a contradiction between eqs 2 and 3 on one side and
eqs 4 and 5 on the other side, because for ideal mixtures and xji

) xj, the former require V1
0 to be equal to V2

0.

3. A Modification of the NRTL Equation

The present modification of the NRTL equations for the
activity coefficients is based on a correction of LC, which
eliminates the above inconsistency. This correction consists of

replacing the bulk molar fractions xi in eqs 4 and 5 by the
volume fractions �i ) Vi

0xi/(V1
0x1 + V2

0x2) (i ) 1, 2). One thus
obtains

xii )
Vi

0xi

Vi
0xi +Vj

0xj exp(-R12

λij - λii

RT )
(8)

and

xji )
Vj

0xj exp(-R12

λij - λii

RT )
Vi

0xi +Vj
0xj exp(-R12

λij - λii

RT )
(9)

One can easily verify that eqs 8 and 9 are no longer in
contradiction with eqs 2 and 3. Indeed, xji ) xj for λij ) λii and
V1

0 ) V2
0.

The new activity coefficient expressions are obtained using
the method of Renon and Prausnitz2 and eqs 8 and 9 for the
LC. The resulting expressions are

ln γ1 ) x2
2(τ21

W2 exp(-2R12τ21)

[x1 +Wx2(-R12τ21)]
2
+ τ12

W exp(-R12τ12)

[Wx2 + x1(-R12τ12)]
2)

(10)

and

ln γ2 ) x1
2(τ12

exp(-2R12τ12)

[Wx2 + x1(-R12τ12)]
2
+ τ21

W exp(-R12τ21)

[x1 +Wx2(-R12τ21)]
2)

(11)

where W ) V2
0/V1

0.
One can see that, as NRTL, the new eqs 10 and 11 are three-

parameter equations, but contain, in addition, a new quantity
W ) V2

0/V1
0, which is easily available.

4. Comments on Other Expressions for the Local
Concentrations

A number of additional expressions have been derived for
the local concentration.3–8 They have been presented in our
previous work.8 They exhibit the same inconsistency as the
NRTL expression does with regard to the ideal mixtures, and
the contradiction can be eliminated in a similar way. For
illustration, let us consider the Panagiotou and Vera3,4 expres-
sions derived on the basis of the quasi chemical approach:

xii ) 1-
2xj

1+ [1- 4xixj(1-G12)]
1⁄2

xji )
2xj

1+ [1- 4xixj(1-G12)]
1⁄2

where G12 ) exp[(ε11 + ε22 - 2ε12)/RT], and εij is the interaction
energy between the pair of molecules i and j. The above
expressions are not consistent with eqs 2 and 3 because they
lead for ideal mixtures (G12 ) 1) to xii ) xi and xji ) xj. To
make them consistent, one should replace xi and xj by the
corresponding volume fractions Vi

0xi/(Vi
0xi + Vj

0xj) and Vj
0xj/(Vi

0xi

+ Vj
0xj), respectively. Indeed, then xii ) xi when G12 ) 1 and

Vi
0 ) Vj

0. Another possible solution is to replace xj in the
numerator by the corresponding volume fraction and keep xixj

at the denominator unchanged. Of course, the consistency
criterium cannot provide a choice between the two. Intuition
suggests that the first choice is more plausible.
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In the next section, the emphasis will be on eqs 10 and 11,
which are employed to correlate the VLEs of various binary
mixtures, and the results will be compared to those obtained
with the traditional NRTL equations.

5. A Vapor-Liquid Equilibrium Correlation with
Equations 10 and 11

5.1. Systems Employed. Two kinds of binary mixtures were
selected to test eqs 10 and 11.

The first kind are the alcohol/water mixtures. These mixtures
are highly nonideal with strong intermolecular interactions,
including H-bonds between the components. Thirty-three binary
alcohol-water VLE sets for methanol (MeOH), ethanol (EtOH),
1-propanol (1-PrOH), and t-butanol (t-BuOH) were employed.
The information about the alcohol/water mixtures used in
calculations is listed in Table 1.

The second kind of binary systems contain benzene (B),
hexafluorobenzene (HFB), toluene (TL), and cyclohexane
(CH): HFB/B (for five different temperatures), HFB/TL,
HFB/CH, B/TL, and B/CH. In contrast to the first group,
these systems have small deviations from ideality,34 but some
of them have more complex thermodynamic behaviors such
as double azeotropy.35 The information about these mixtures
is listed in Table 2.

5.2. Calculation Procedure. The selected VLE data were
treated by the Barker method,39,40 using only liquid mole
fraction-pressure (x-P) data. The vapor phase nonideality was
taken into account, and the total pressure was calculated using
the equation

P)
x1γ1P1

0

F1
+

x2γ2P2
0

F2
(12)

where

F1 ) exp
(B11 -V1

0)(P-P1
0)+Py2

2d12

RT
(13)

F2 ) exp
(B22 -V2

0)(P-P2
0)+Py1

2d12

RT
(14)

where yi is the mole fraction of component i in the vapor phase,
Pi

0 is the vapor pressure of the pure component i, Bii is the second
virial coefficient of component i, d12 ) 2B12 - B11 - B22, and
B12 is the crossed second virial coefficient of the binary mixture,
which was evaluated using for B12 the expression B12 ) (B11 +
B22)/2. The virial coefficients of the pure components and the
vapor pressures of the pure components Pi

0 were obtained from

references listed in our previous work.8,34

The VLE data listed in Tables 1 and 2 were treated by the
NRTL, and the new equations for the activity coefficients and
the results were compared.

5.3. Results of Calculations. The root-mean-square devia-
tions (rmsd) of the calculated pressures with respect to the
experimental ones are listed in Tables 3 and 4. The comparison
of the rmsd for alcohol/water mixtures indicates that the new
equations provide the best performances for 29 VLE and NRTL
for 5 sets. A similar conclusion was reached for the systems
containing benzene, hexafluorobenzene, toluene, and cyclohex-
ane: the new equations provide the best performances for 7 sets,
and the new equations and the NRTL provide almost the same
results for 2 sets.

The vapor compositions were also calculated and compared
to the available experimental data. The rmsd values of the
calculated vapor compositions with respect to the experimental
ones are listed in Tables 5 and 6. For the alcohol/water mixtures,
the new equations perform better for 15 of the 17 sets, and
NRTL performs better for 2 sets. For the systems containing
benzene, hexafluorobenzene, toluene, and cyclohexane, the new
equations provide the best performance for 6 VLE sets, and
the new equations and the NRTL provide almost the same results
for 2 sets.

Table 1. Information about Vapor-Liquid Data in Alcohol/Water
Mixtures Used in Calculations

system
total number

of points temperature range, K references

MeOH/H2O 79 273.15-333.15 12–17
EtOH/H2O 337 298.15-381.35 18–26
1-PrOH/H2O 104 303.15-363.15 14, 24, 27–29
t-BuOH/H2O 91 298.15-323.15 30–33

Table 2. Information about Vapor-Liquid Data in Binary Systems
Containing Benzene, Hexafluorobenzene, Toluene, and Cyclohexane

system
total number

of points temperature range, K references

HFB/B 59 303.15-343.15 35
HFB/TL 12 303.15 35
HFB/CH 12 303.15 36
B/TL 11 303.15 37
B/CH 13 298.15 38

Table 3. Comparison between the Calculated Pressure Obtained via
the NRTL and the New Equations for Aqueous Systems of Alcohols
and Experiment

rmsd, mm Hg

system
total number

of points NRTL new equations

MeOH/H2O 79 1.23 1.16
EtOH/H2O 337 0.73 0.72
1-PrOH/H2O 104 2.03 1.00
t-BuOH/H2O 91 1.22 1.21

Table 4. Comparison between the Calculated Pressure Obtained via
NRTL and the New Equations for Binary Systems Containing
Benzene, Hexafluorobenzene, Toluene, and Cyclohexane

rmsd, mm Hg

system
total number

of points NRTL new equations

HFB/B 59 0.79 0.66
HFB/TL 12 0.30 0.28
HFB/CH 12 0.27 0.24
B/TL 11 0.52 0.52
B/CH 13 0.03 0.03

Table 5. Comparison between the Calculated Vapor Composition
Obtained via NRTL and the New Equations for Aqueous Systems of
Alcohols

rmsd, molar percent

system
total number

of points NRTL new equations

MeOH/H2O 36 0.62 0.58
EtOH/H2O 75 0.75 0.73
1-PrOH/H2O 77 1.57 1.29
t-BuOH/H2O 35 2.08 2.08

Table 6. Comparison between the Calculated Vapor Composition
Obtained via NRTL and the New Equation for Binary Systems
Containing Benzene, Hexafluorobenzene, Toluene, and Cyclohexane

rmsd, molar percent

system
total number

of points NRTL new equations

HFB/B 59 0.35 0.29
HFB/TL 12 0.63 0.62
HFB/CH 12 0.15 0.15
B/CH 13 0.16 0.16
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6. Conclusion

The contradiction between the expressions obtained by the
authors for the excesses and the LC expressions is resolved by
suggesting a simple modification of the latter expressions. The
modification is based on the observation that the LCs for an
ideal binary mixture should be equal to the bulk composition
only when the components of the mixture have equal molar
volumes. The new expressions for the LCs are used to improve
the NRTL expressions for the activity coefficients.

The new equations for the activity coefficients of binary
mixtures were used to correlate the VLE for 42 binary mixtures.
The new equations provide a better performance than does
NRTL for most mixtures. However, the difference between the
two methods is relatively small.
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Chapter 2 

Supercritical mixtures  

2.1  On density microheterogeneities  in dilute supercriti-
cal solutions. 

2.2  Why density augmentation occurs in dilute supercriti-
cal solutions. 

2.3  Fluctuations in dilute binary supercritical mixtures. 
2.4  Entrainer effect in supercritical mixtures. 
2.5  The solubility of solids in mixtures composed of a 

supercritical fluid and an entrainer. 
2.6  A simple equation for the solubility of a solid in a 

supercritical fluid cosolvent with a gas or another su-
percritical fluid. 

2.7  Cubic equation of state and local composition mixing 
rules:  correlations and predictions.  Application to the 
solubility of solids in supercritical solvents. 

 
 
  
Introduction to Chapter 2 
 
Chapter 2 deals with supercritical fluids and their mixtures.  
This Chapter consists of two parts:  The first is concerned 
with the structure of the supercritical fluids and their mix-
tures (2.1–2.3);  The second is concerned with the modeling 
of the physico-chemical properties of supercritical fluids 
and their mixtures (2.4–2.7). 

Supercritical fluids and their mixtures have many appli-
cations in pharmaceutical, food, and other industries. 
In addition, they constitute a challenge for many experi-
mentalists and theoreticians, because they exhibit unusual 
physico-chemical properties that cannot be explained using 
the methods usually employed for mixtures far from the 
critical point.  One of the most striking examples of such a 

behavior is the concentration dependence of the partial mo-
lar volume of the solute in mixtures consisting of a super-
critical fluid + solute.  Indeed, the partial molar volume of 
the solute at infinite dilution is usually negative and large in 
magnitude, which is not typical for nonelectrolyte solutions 
far from the critical point in which the partial molar volume 
is usually positive and has a value comparable to the molar 
volume of the pure solute (see 2.3)).  This behavior of the 
partial molar volume of the solute and the corresponding 
density augmentation observed experimentally was previ-
ously believed to result from the clustering of the solvent 
about individual solute molecules.  In contrast, we found 
that the augmentation is not caused by the solute, but rather 
it is due to the preexisting near-critical fluctuations in the 
pure solvent and the preference of the solute for the high 
density regions of the solvent (2.1–2.2).  Our explanation is 
in agreement with experimental data regarding both pure 
supercritical solvents and dilute mixtures of supercritical 
solvent + solute. 

The high solubility of solid substances in supercritical 
fluids compared to those in ideal gases (enhancement fac-

pharmaceutical, biomedical and food industries.  Sections 
2.4–2.7 are devoted to predictions of the entrainer effect, 
and of solubility in supercritical fluids with and without 
entrainer.  Reliable predictive methods for solid solubilities 
in mixtures of a supercritical solvent + cosolvent were de-
veloped (2.4–2.6).  These apply not only to the usual cosol-
vents such as organic liquids (2.4–2.5), but also to cases in 
which the cosolvent is a gas or another supercritical fluid 
(2.6).  Our methods provided good agreement with experi-
mental data in all of these cases (2.4–2.6).  

 

tors of 104–108 are common) allows their use as solvents in 



On Density Microheterogeneities in Dilute Supercritical Solutions
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The dilute supercritical mixtures were examined in the framework of the Kirkwood-Buff theory of solutions.
Various expressions were employed for the excess number of aggregated molecules of solvent around individual
solute molecules to conclude that at infinite dilution the above mentioned excess is zero. This suggested that
the density enhancement observed when small amounts of a solute were added to a solvent near the critical
point of the latter may not be caused by the aggregation of the solvent molecules around individual solute
molecules as usually considered. Further, comparing experimental results, it was shown that the density
enhancement caused by the near critical fluctuations in a pure solvent are almost the same, in a wide range
of pressures, as those in dilute supercritical mixtures near the critical point of the solvent.

Introduction

During the last three decades the use of supercritical fluids
(SCF) has dramatically increased because of their applications
to extraction, chromatography, and as media for chemical
reactions.1-6 The most interesting applications of SCFs occur
in the following ranges of pressure and temperature:3,7 1 < P/Pc

< 2 and 1 < T/Tc < 1.1, where P and T are the pressure and
temperature and Pc and Tc are their critical values. Under these
conditions, SCFs (such as CO2, C2H4, CHF3, etc.) are typically
less dense than the liquids by factors of 1.5-3.3 Since these
intervals of pressure and temperature are close to the critical
point, the compressibility of SCFs is high (at the critical point
it becomes infinite).3 Experiment also shows that for a SCF
near the critical point of the solvent, the partial molar volume
of the solute at infinite dilution becomes usually negative and
large in magnitude;8 this behavior is not, however, typical for
a nonelectrolyte solution far from the critical region. Because
of the high compressibility of fluids near the critical point, their
density and dissolving power can be tuned through small
changes in pressure.3 The high dissolving power of the SCF
leads to unusually high solubilities of solids in the SCFs.
Compared to that of a dilute gas, the solubility enhancement
can be as large as 1012 (ref 7). A large body of research was
aimed at understanding the unusual properties of SCFs at the
molecular level, and comprehensive reviews were recently
published.3-6 One of the key problems regarding intermolecular
interactions in a dilute solution involving a SCF as solvent (such
a solution will be called SCR mixture) is the so-called local
density enhancement induced by the addition of a small amount
of solute into the solvent near the critical point of the latter.3-6

There have been many attempts to explain this effect.3-6 The
large negative infinite dilution partial molar volume of the solute
suggested that the aggregation of solvent molecules around
individual molecules of solute is responsible for the enhance-
ment.7,9 This explanation was challenged with the argument that
because of the high compressibility near the critical point of
the solvent, the addition of a small amount of solute causes a

large change in volume, which is responsible for the negative
partial molar volume of the solute at high dilution.10

In this paper, some recent experimental results regarding the
density fluctuations in pure SCF11-15 are used to show that the
local density enhancement in dilute SCR mixtures is mainly
due to the near critical fluctuations in the solvent and an
explanation is suggested for the negative partial molar volume
of the solute. This conclusion was also strengthened by a
discussion, presented in the following section, based on the
Kirkwood-Buff (KB) theory of solution.16 First, the problem
will be examined in the framework of the Kirkwood-Buff
theory of solution. Second, using experimental results about the
near critical fluctuations in pure SCF, it will be shown that the
density enhancement in dilute SCR mixtures is mainly caused
by the near critical density fluctuations in pure SCF.

Theory and Formulas

1. The Kirkwood-Buff Integrals. The Kirkwood-Buff
theory of solution relates the so-called Kirkwood-Buff integral
(defined below) to macroscopic quantities, such as the com-
pressibility, partial molar volumes, and the composition deriva-
tive of the activity coefficient.

The Kirkwood-Buff integrals (KBIs) are given by the
expressions

where gij is the radial distribution function between species i
and j and r is the distance between the centers of molecules i
and j. The KBIs in binary mixtures can be calculated using the
expressions:17

and

where
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Gij ) ∫0

∞
(gij - 1) 4πr2 dr i, j ) 1,2 (1)

G12 ) G21 ) RTkT -
V1V2

VD
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Gii ) G12 + 1
xi

(Vj

D
- V) i * j (3)
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In eqs 2-4, T is the absolute temperature, P is the pressure, kT

is the isothermal compressibility, Vi is the partial molar volume
of component i, xi is the molar fraction of component i, V is
the molar volume of the mixture, R is the universal gas constant,
and γi is the activity coefficient of component i. In the following
considerations, expressions for the KBIs at the extreme con-
centrations (x1 f 0 and x2 f 0), as well as expressions for
KBIs for ideal systems, will be needed. All these expressions
are provided in Appendix 1.

2. Excess Number of Molecules Near a Central One. Ben-
Naim20 suggested to calculate the excess (the BN excess)
number of j molecules around a central molecule i as

and Debenedetti21 considered this excess as a measure of
aggregation. Matteoli and Lepori18,22 noted that the cjGji are
nonzero for ideal mixtures, which should be considered non-
aggregated and suggested that the effects due to aggregation
are better reflected in excesses (the ML excesses) defined as

where Gji
id are the KBs integrals for ideal systems (see Ap-

pendix 1 for the expressions of Gij
id). In other words, the ideal

mixture was considered as a reference system.

However, ∆n′ii and ∆n′ji are not independent quantities,
because the volume occupied by the excess i molecules
aggregated around an i molecule should be equal to the volume
left free by the j molecules around the same i molecule.22 This
leads to the following relation:

It was, however, noted that if the number of molecules clustered
around a central one is calculated as cj (Gji - Gji

id), eq 7 can not
be satisfied identically.19,23 Equation 7 can be satisfied only if
Gij

id is replaced by another reference state Gij
V, which for ideal

mixtures reduces to Gij
id (see Appendix 1 for the expressions of

Gij
V). Hence, the excess (the SR excess) which satisfies eq 7 is

given by

In the next section, the density enhancement provided by the
BN, ML, and SR excesses will be examined in more detail at
low dilution.

3. Density Enhancement in SCR Mixtures through the
KB Theory of Solutions. Usually, the local densities in SCR
mixtures were determined in very dilute solutions (molar
fractions of solute between 10-4 and 10-8), in order to avoid
the experimental and computational complications caused by
solute-solute interactions.24,25 The experimental data are pro-
vided in refs 24 and 25 as either the density augmentation ∆F(2)

around a solute molecule25 (the solvent is denoted as component
1 and the solute as component 2), or the local density F(2) around
a solute molecule.25

The density augmentation is provided by the expression

for the BN excesses and similar expressions in which ∆nji are
replaced by ∆n′ji and ∆n′′ji for the ML and SR excesses,
respectively. In eq 9, Vcor

(2) is the correlation volume, i.e., the
volume around a solute molecule where the density differs from
that in the bulk. Usually, the density augmentation ∆F(2) or the
local density F(2) is compared with Fbulk

(2) , the bulk density
around a solute molecule (which can be taken as the density of
the pure SCF).

Now expressions for ∆F(2) will be derived when the molar
fraction of the solute is very small (x2 ≈ 10-4-10-8) for the
three expressions written above for the aggregated excesses.
For small x2 one can suppose that V1 ) V1

0, V2 ) V2
∞, kT ) kT,1

0 ,
where the superscripts (0) and (∞) refer to the pure component
and infinite dilution, respectively, and D ) (∂ ln γ2/∂x2)P,T x2

+ 1 ≡ K2x2 + 1, where K2 is independent of composition.26

For the BN excess one thus obtains

which for infinite solute dilution become

and

The ML excesses are given by

At infinite dilution they become

The SR excesses have the form

and for infinite solute dilution

The local density enhancement for the BN excesses (eqs 10a
and 10b) is given by

D ) (∂ ln γi

∂xi
)

P,T
xi + 1 (4)

∆nji ) cjGji (5)

∆n′ji ) cj (Gji - Gji
id) (6)

Vj∆n′ji ) -Vi∆n′ii (7)

∆n′′ji ) cj (Gji - Gji
V) (8)

∆F(2) )
∆n12 + ∆n22

Vcor
(2)

(9)

∆n12 ) c1G12 ) c1(RTkT,1
0 - V2

∞) (10a)

∆n22 ) c2G22 ) c2 (RTkT,1
0 + V1

0 - 2V2
∞ - K2V1

0) (10b)

lim
x2f0

∆n12 ) lim
x2f0

c1G12 ) c1
0 (RTkT,1

0 - V2
∞) (10c)

lim
x2f0

∆n22 ) lim
x2f0

c2G22 ) 0 (10d)

∆n′12 ) c1(G12 - G12
id ) ) c1(V2

0 - V2
∞) (11a)

∆n′22 ) c2(G22 - G22
id ) ) c2(2V2

0 - 2V2
∞ - K2V1

0) (11b)

lim
x2f0

∆n′12 ) lim
x2f0

c1(G12 - G12
id ) ) c1

0(V2
0 - V2

∞) (11c)

lim
x2f0

∆n′22 ) lim
x2f0

c2(G22 - G22
id ) ) 0 (11d)

∆n′′12 ) c1(G12 - G12
V ) ) c1V2

∞K2x2 (12a)

∆n′′22 ) c2(G22 - G22
V ) ) - c2V1

0K2 (12b)

lim
x2f0

∆n′′12 ) lim
x2f0

c1(G12 - G12
V ) ) 0 (12c)

lim
x2f0

∆n′′22 ) lim
x2f0

c2(G22 - G22
V ) ) 0 (12d)

∆F(2) )
c1(RTkT,1

0 - V2
∞) + c2(RTkT,1

0 + V1
0 - 2V2

∞ - K2V1
0)

Vcor
(2)

(13)
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for the ML excesses (eqs 11a-11b) by

and for the SR excesses (eqs 12a and 12b) by

The above three equations (eqs 13-15) will be further used to
evaluate the correlation volume.

Calculations

1. Source of Data. There are only a few local density data,
and partial molar volumes of solutes at infinite dilution are
scarce as well. Only two systems could be identified for which
data for the calculation of the correlation volume are available:
CO2 + naphthalene and CO2 + pyrene. The augmented local
density data in these systems were taken from ref 24 and the
partial molar volume of the solute at infinite dilution in CO2 +
naphthalene system from ref 8. Because the partial molar volume
of the solute at infinite dilution for the CO2 + pyrene system
was not available, it was taken equal to that for the CO2 +
phenanthrene.27 The density and compressibility of the pure SCR
CO2 were taken from refs 1 and 24, respectively, and the
solubilities of naphthalene and pyrene in SCR CO2 from refs
28 and 29, respectively.

2. Calculation of K2. K2 is defined as

and was calculated through the fugacity coefficient of solute
φ̂2, which in the dilute region is given by26

where φ̂2
∞ is the infinite dilution fugacity coefficient. Solubility

data were first used to calculate the fugacity coefficient at
saturation, using the expression30

where x2,S is the molar fraction at saturation of the solute, and
P2

0 and V2
0 are the saturation vapor pressure and molar volume

of the solid solute, respectively. The values of P2
0 and V2

0 for
naphthalene and pyrene were taken from ref 31. The equation
for the fugacity coefficient based on the Soave-Redlich-
Kwong equation of state was then employed to calculate the
binary interaction parameter k12, which appears in one of the
mixing rules (see Appendix 2).

Further, the fugacity coefficient was calculated as a function
of x2, and the value of K2 was obtained from the slope of the
curve ln φ̂2 against x2 (for additional details see Appendix 2).
The calculated values of K2 for the CO2 + naphthalene and
CO2 + pyrene systems are plotted in Figure 1. Similar
calculations were carried out using the Peng-Robinson (PR)
EOS.33 Good agreement was found between the values of K2

obtained from the two equations of state.

The correlation volume (Vcor
(2) ) and correlation radius (rcor

(2) )
(3Vcor

(2) /4π)1/3) were calculated using eqs 13-15. The results are
summarized in Tables 1-3.

The calculations based on eqs 13 and 14 indicated that in
the dilute region (molar fraction of solute between 10-4 and
10-8), the second term in the numerator (c2(RTkT,1

0 + V1
0 - 2V2

∞

- K2V1
0) in eq 13 and c2(2V2

0 - 2V2
∞ - K2V1

0) in eq 14) is
negligible and that the relations valid at infinite dilution (eqs
10c and 11c) can be used. Equation 13, whose numerator at
infinite dilution becomes c1

0(RTkT,1
0 - V2

∞), was used to calcu-
late the solvent cluster size around a solute molecule at infinite
dilution.21 The cluster size for a solution of naphthalene in SCF
CO2 at 308.39 K was thus found to vary between 20 and 100
molecules of CO2 per molecule of solute in the pressure range
75-90 bars. The terms RTkT,1

0 and V2
∞ provided comparable

contributions to the cluster size, because not too far from the
critical point of the solvent, the compressibility kT,1

0 has large
positive values and the partial molar volume at infinite dilution
of the solute is negative and large in absolute value. The above
values are in agreement with the solvent cluster sizes around a
solute molecule evaluated from the experimental partial molar
volume of the solute at infinite dilution.9 However, eq 10c and
the equation for lim

x2f0
∆n11 (lim

x2f0
∆n11 ) lim

x2f0
c1G11 ) c1

0(RTkT,1
0

- V1
0)) should be valid not only for SCR mixtures, but also for

∆F(2) )
c1(V2

0 - V2
∞) + c2(2V2

0 - 2V2
∞ - K2V1

0)

Vcor
(2)

(14)

∆F(2) )
c1V2

∞K2x2 - c2V1
0K2

Vcor
(2)

(15)

K2 ) (∂ ln γ2

∂x2
)

P,T,x2f0
(16)

ln φ̂2 ) ln φ̂2
∞ + K2x2 (17)

x2,S )
P2

0

Pφ̂2
exp((P - P2

0)V2
0

RT ) (18)

Figure 1. K2 values calculated with the SRK EOS; (O) CO2 +
naphthalene, (b) CO2 + pyrene.

TABLE 1: The Correlation Volume and Excess Number of
Molecules around a Solute Molecule in Mixtures of
Naphthalene and CO2 Based on BN Excesses

P, bar Vcor
(2) , cm3 rcor

(2) , Å
n1 ) c1Vcor

(2) , number
of bulk molecules

∆n12,
molecules

System CO2 + Naphthalene, x2 ) 3.5 × 10-5, T ) 308 K
141.1 760 6.7 13.9 0.4
129.6 1930 9.1 34.5 1.0
106.8 2020 9.3 34.5 3.6

94.7 6910 14.0 111.3 6.9
89.2 10590 16.1 157.8 9.5
83.9 18000 19.3 250.7 45.0
81.9 34090 23.8 397.8 75.0
79.9 33860 23.8 329.0 115.1
78.7 19510 19.8 169.0 70.2
75.8 8790 15.2 58.6 24.6

System CO2 + Pyrene, x2 ) 3.0 × 10-8, T ) 308 K
136.3 17 19 0.3 0.7
118.1 700 6.5 12.3 2.2
100.7 1950 9.2 32.8 6.4

89.0 5390 12.9 81.4 14.0
82.9 14180 17.8 181.4 69.5
80.4 16320 18.6 148.4 104.5
78.7 10020 15.8 77.4 61.1
75.6 4800 12.4 30.0 23.1
73.9 4040 11.7 23.0 18.2
71.6 4430 12.1 23.7 14.2
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any binary mixture such as alcohol/water far from the critical
point. In the latter cases RTkT,1

0 is negligible compared to V2
∞

(which is positive) and V1
0. This means that at infinite dilution

(x2 f 0) and far from the critical point, lim
x2f0

c1G12 and lim
x2f0

c1G11 for all “normal” binary mixtures are negative and hence
that there are deficits of molecules 1 in the aggregates around
both 1 and 2 molecules compared to the bulk numbers,
regardless of the nature of the interactions between molecules.

The results listed in Tables 1 and 2 also indicate that the
sizes of the solvent aggregates predicted from the BN and ML
excesses are in agreement with those evaluated from the large
negative partial molar volume of the solute at infinite dilution.9

However, as already noted the BN excesses provide unreason-
able results for the aggregate sizes in mixtures far from the

critical point at infinite dilution. While the ML excesses provide
reasonable values, they do not satisfy the volume conservation
condition. The SR excesses do satisfy the volume conservation
condition and lead at infinite dilution to zero excess solvent
molecules aggregated around individual solute molecules. The
latter result stimulated us to look for a different interpretation
of the density enhancement. The comparison between the
experimental results regarding the near critical density enhance-
ment in the pure SCF and the density enhancement caused by
the addition of extremely small amounts of solute appears to
show that the former constitute the main effect. Details are
provided in the next section.

Density Enhancement as a Result of the Near Critical
Fluctuations in the Pure SCF

A number of experimental results are available regarding the
quantity Q ) 〈(∆N1)2〉/〈N1〉 (which involves the average of the
square of the fluctuation ∆N1 of the number of molecules N1

and the average of the number of molecules N1) and the
correlation length in pure SCF.11-15 This information was
obtained via the small-angle X-ray scattering (SAXS) and refs
13-14 provide details about the pressure and temperature
dependencies of Q ) 〈(∆N1)2〉/〈N1〉 and correlation length in
pure SCF CO2. It is worth noting that 〈(∆N1)2〉/〈N1〉 can be also
calculated using the expression34

and Figure 2 shows that there is agreement between the
calculated and experimental values of Q ) 〈(∆N1)2〉/〈N1〉.

Let us compare the density enhancements generated by the
near critical density fluctuations in a pure solvent to those
observed when small amounts of solute were added to the
solvent. The density enhancements in pure CO2 and pure CHF3

were calculated from the experimental data provided by refs
13-15 regarding the correlation lengths and the fluctuations
of the number of molecules given by Q ) 〈(∆N1)2〉/〈N1〉. The
calculations are compared with the experimental results obtained
for CO2 + naphthalene and CO2 + pyrene24 in Figure 3 and
for CHF3 + pyrene24 in Figure 4. Figures 3 and 4 clearly reveal
that the density enhancements in these mixtures are almost
identical to those in the pure solvent. We are therefore tempted
to conclude that the density enhancement in dilute SCR mixtures
is mainly caused by the near critical density fluctuations in the
pure SCF. An explanation for the negative partial molar volume
of the solute at infinite dilution, which differs from that which
involves the aggregation of the solvent about the solute,9 was
provided by Economou and Donohue.10 Because of the high

TABLE 2: The Correlation Volume and Excess Number of
Molecules around a Solute Molecule in Mixtures of
Naphthalene and CO2 based on ML Excesses

P, bar Vcor
(2) , cm3 rcor

(2) , Å
n1 ) c1Vcor

(2) , number
of bulk molecules

∆n′12,
molecules

System CO2 + Naphthalene, x2 ) 3.5 × 10-5, T ) 308 K
141.1 2700 10.2 49.2 1.6
129.6 3940 11.6 70.5 2.0
106.8 2140 9.5 36.6 3.8

94.7 5800 13.2 93.4 5.8
89.2 7620 14.4 113.5 6.9
83.9 14540 17.9 202.6 36.4
81.9 24450 21.3 285.3 53.8
79.9 21750 20.5 211.3 73.9
78.7 13500 17.5 116.9 48.6
75.8 5500 13.0 36.7 15.4

System CO2 + Pyrene, x2 ) 3.0 × 10-8, T ) 308 K
136.3 45 2.6 0.8 1.8
118.1 910 7.1 16.2 2.8
100.7 1830 9.0 30.8 6.0

89.0 4120 11.8 62.3 10.7
82.9 11000 16.4 140.8 53.9
80.4 10810 16.2 98.2 69.2
78.7 6980 14.0 53.9 42.6
75.6 3120 10.7 19.5 15.0
73.9 2660 10.2 15.1 12.0
71.6 2850 10.4 15.2 9.2

TABLE 3: The Correlation Volume and Excess Number of
Molecules around a Solute Molecule in Mixtures of
Naphthalene and CO2 based on SR excesses

P, bar Vcor
(2) , cm3 rcor

(2) , Å
n1 ) c1Vcor

(2) , number
of bulk molecules

∆n′′12,
molecules

System CO2 + Naphthalene, x2 ) 3.5 × 10-5, T ) 308 K
141.1 1.0 0.7 0.02 0
129.6 2.2 1.0 0.04 0
106.8 2.4 1.0 0.04 0

94.7 9.9 1.6 0.2 0
89.2 17.4 1.9 0.3 0.02
83.9 56.5 2.9 0.8 0.2
81.9 131.6 3.7 1.5 0.3
79.9 199.3 4.3 1.9 0.7
78.7 162.6 4.0 1.4 0.6
75.8 26.8 2.2 0.2 0.1

System CO2 + Pyrene, x2 ) 3.0 × 10-8, T ) 308 K
136.3 4 × 10-5 0.02 7 × 10-7 13 × 10-8

118.1 0.001 0.08 2 × 10-5 10-5

100.7 0.005 0.12 9 × 10-5 10-5

89.0 0.02 0.20 0.0003 0.0001
82.9 0.1 0.4 0.001 0.001
80.4 0.2 0.4 0.002 0.001
78.7 0.2 0.4 0.001 0.002
75.6 0.03 0.2 0.0002 0.0002
73.9 0.02 0.2 0.0001 0.0001
71.6 0.02 0.2 9 × 10-5 10-5

Figure 2. Q ) 〈(∆N1)2〉/〈N1〉 in SCF CO2 at 308 K: (O) experimental
data13 (T ) 307.1-307.2 K), (b) calculated with eq 19.

〈(∆N1)
2〉

〈N1〉
) c1

0RTkT,1
0 (19)
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compressibility near the critical point of the solvent the addition
of a small amount of solute causes a large decrease in the
volume of the system.

Conclusion

One first demonstrates that in a dilute supercritical mixture
the aggregation number of the solvent around individual solute
molecules tends to zero at infinite solute dilution. These
theoretical considerations suggested that it is necessary to revise
the conventional explanation, which considers that the clustering
of solvent molecules around individual solute molecules is
responsible for the density augmentation observed when small
amounts of solute were added to a solvent near the critical point
of the latter. By comparing the density fluctuations determined
by small-angle X-ray scattering for pure supercritical solvents
and the density augmentation determined experimentally for
dilute supercritical mixtures we noted that they almost coincide.
In conclusion, it is likely that the near critical fluctuations are
mainly responsible for the local density augmentation in dilute
supercritical mixtures.

Appendixes

Appendix 1. (1) The KBIs for ideal systems are given by
the expressions18

where kT
id and Vid are the isothermal compressibility and the

molar volume of an ideal mixture and Vi
0 is the molar volume

of the pure component i.
(2) The KBIs at infinite dilution have the forms17

where Vi
∞ is the partial molar volume of component i at infinite

dilution, kT,i
0 is the isothermal compressibility of the pure

component i.
(3) The expressions for Gij

V are19

Appendix 2. The Soave-Redlich-Kwong (SRK) EOS32

was selected to calculate the fugacity coefficient. In eq A2-1,
V is the molar volume of the mixture and a and b are the EOS
mixture parameters. The latter quantities are provided by the
usual mixing rules:

and

where ai, bi are the EOS parameters for the pure component i,
and k12 is the binary interaction parameter, which was deter-
mined by fitting the experimental solubility data.

For the fugacity coefficient of the solute φ̂2 the following
expressions was used:

Figure 3. Comparison between the experimental density enhancement
in pure SCF CO2 and density enhancement in the SCR mixtures CO2

+ naphthalene and CO2 + pyrene: (b) calculated from experimental
data13,14 (T ) 307.1-307.2 K) for pure CO2, (O) experimental data24

for the system CO2 + naphthalene (T ) 308 K and x2 ) 3.5 × 10-5),
(×) experimental data24 for the system CO2 + pyrene (T ) 308 K and
x2 ) 3.0 × 10-8).

Figure 4. Comparison between the density enhancement in pure SCF
CHF3 and density enhancement in SCR mixtures CHF3 + pyrene: (b)
calculated from experimental data15 (T ) 310.8-311.5 K) for pure
CHF3, (O) experimental data24 for the system CHF3 + pyrene (T )
303 K and x2 ) 5 × 10-6), (×) experimental data24 for the system
CHF3 + pyrene (T ) 303 K and x2 ) 3 × 10-7). For this solvent
(CHF3) there are no data for densities lower than ≈ 0.004. However,
the experimental data for pure SCF Ar indicate35 a shape of the curve
very similar to the experimental curves for the mixture CHF3 + pyrene
over the entire range of densities.

G12
id ) RTkT

id -
V1

0 V2
0

Vid
(A1-1)

G11
id ) G12

id + V2
0 - V1

0 (A1-2)

G22
id ) G12

id - (V2
0 - V1

0) (A1-3)

lim G12
xif0

) RTkT,j
0 - Vi

∞ (A1-4)

lim G12
xif1

) RTkT,i
0 - Vj

∞ (A1-5)

lim Gii
xif0

) RTkT,j
0 + Vj

0 - 2Vi
∞ - Vj

0 (∂ ln γi

∂xi
)

P,T,xi)0
(A1-6)

lim Gii
xif1

) RTkT,i
0 - Vi

0 (A1-7)

G12
V ) G21

V ) RTkT -
V1V2

V
(A1-8)

Gii
V ) G12

V + Vj - Vi i * j (A1-9)

P ) RT
V - b

-
a(T)

V(V + b)
(A2-1)

a ) x1
2a1 + x2

2a2 + 2x1x2(a1a2)
0.5(1 - k12) (A2-2)

b ) x1b1 + x2b2 (A2-3)
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where A ) aP/(RT)2, B ) bP/RT, and Z is the compressibility
factor.

By fitting the experimental solubility data with the help of
eqs 18 and A2-4, the binary interaction parameters k12 were
determined (at 308 K, k12 ) 0.09803 for CO2 + naphthalene
and k12 ) 0.07619 for CO2 + pyrene). These values of k12 were
used to calculate K2 at different pressures using eqs 17 and A2-
4.
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Abstract

The conventional explanation of the density augmentation in a supercritical solvent, observed spectroscopically

when a small amount of a solute was added, involved the clustering of the solvent about individual solute molecules.

Here it is suggested that the augmentation is not caused by the solute, but rather it is due to the preexisting near critical

¯uctuations in the pure solvent and the preference of the solute for the high density regions of the supercritical solvent.

It is also shown that the local composition of the solute molecules about a solute molecules is enhanced compared to its

bulk composition. Ó 2000 Elsevier Science B.V. All rights reserved.

1. Introduction

Dilute ¯uid mixtures near the critical point of the
solvent exhibit a peculiar behavior because of their
high sensitivity to changes in temperature and
pressure. Among the supercritical ¯uids (SCF),
CO2 is widely used in many areas of technology
because, in addition to the high sensitivity noted
above, it has a critical temperature just above the
room temperature, it is nontoxic and non¯ammable
and can therefore be used as an environmentally
benign solvent in separation processes and as a
medium for chemical reactions [1]. Numerous in-
vestigations have been carried out to study the un-
usual thermodynamic properties of dilute mixtures
containing SCFs as solvents (SCR mixtures). One
of them is the negative and large (compared to the

molar volume of the pure solute) in magnitude
partial molar volume of the solute at in®nite dilu-
tion [2±4]. In contrast, the partial molar volumes at
in®nite dilution for typical nonelectrolyte mixtures
far from the critical point have positive values
comparable to the molar volumes of the respective
pure components. Another unusual characteristic is
the density enhancement in the solvent, observed
spectroscopically when a small amount of solute is
added [3]. To explain these observations, a cluster-
ing of the solvent molecules about individual solute
molecules was suggested [3,5±7]. Other explana-
tions involving the high compressibility near the
critical point [8,9] and the long-range contribution
to the partial molar properties of the solute were
also suggested [10]. We recently noted that the
augmented density in the solvent, observed spec-
troscopically when a small amount of a solute was
added, almost coincides with that due to the near
critical ¯uctuations in the pure solvent [11]. We
suggest here that the enhanced density around a
solute molecule at high dilution is caused by the
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higher solubility of the solute in the preexisting
enhanced density regions of the near critical sol-
vent. In other words, the enhanced density is not
caused by the condensation of the solvent molecules
upon the solute molecules, but by the preexisting
density ¯uctuations in the solvent and the prefer-
ence of the solute molecules for the high density
regions of the latter. In addition, it is noted that the
local concentration of the solute molecules about a
solute molecule is higher than the bulk concentra-
tion. The preference of the solute for the high den-
sity regions of the solvent, the solute clustering and
the high compressibility near the critical point are
likely responsible for the peculiar partial molar
properties of the solute at in®nite dilution.

2. Fluctuations in SCR mixtures

Let us consider an open region of volume v
(grand canonical ensemble) of a binary mixture in
which there are N1 molecules of type 1 and N2

molecules of type 2. The average number of mole-
cules of type i �i � 1; 2� is denoted by Ni and the
local deviation from the average by DNi. Thus the
mean total number of molecules is N � N 1 � N 2

and the local deviation is DN � DN1 � DN2. If xi is
the bulk mole fraction of component i, then the
local deviation from the bulk mole fraction is
Dxi � �xjDNiÿ xiDNj�=N , where i; j � 1; 2 and i 6� j.
Three kinds of ¯uctuations are relevant: the mean-
square ¯uctuation in concentration Nh�Dx1�2i, the
mean-square ¯uctuation in particle number (often-
called density ¯uctuation) h�DN�2i=N and their
correlation h�Dx1��DN�i [12]. The following ex-
pressions can be written for these quantities [12]:

Nh�Dx1�2i �
NkBT

�o2G=ox2
1�T ;P ;N

; �1�

hDx1DNi � ÿdNh�Dx1�2i; �2�

h�DN�2i=N � N
v

kBTkT � d2Nh�Dx1�2i; �3�

where T is the absolute temperature, P the pres-
sure, G the molar Gibbs energy, kT the isothermal
compressibility, kB the Boltzmann constant,
d � �N=v��v1 ÿ v2� is the dilatation factor and v1

and v2 are the partial molar volumes per molecule
of the two species of the mixture. For one com-
ponent system (x1 � 1) the expression for the
density ¯uctuation becomes [12,13]

h�DN1�2i=N 1 �
N 1

v
kBTk0

T ; �4�

where k0
T is the isothermal compressibility of the

pure component. Because k0
T becomes large near

the critical point (at the critical point k0
T becomes

in®nite), the density ¯uctuations are large near the
critical point of the solvent in both pure SCF and
dilute SCR mixtures. It should be noted that
h�DN 2

1 i=N 1 represents the average of the local
density ¯uctuation. Indeed [14],

h�DN1�2i=N 1 � q0
1

Z 1

0

�g0
11 ÿ 1�4pr2 dr � 1; �5�

where the ®rst term in the right-hand side represents
the excess number of molecules in a pure liquid
around any given central molecule and the second
term accounts for the central molecule. Both to-
gether provide the average density ¯uctuation. In
Eq. (5), g0

11 is the radial distribution function of the
pure liquid and q0

1 is the density of the pure liquid.

3. Experimental determination of the local density

microheterogeneities in pure SCF

Light scattering, small-angle X-ray scattering
(SAXS) and small-angle neutron scattering
(SANS) can be employed to determine the micro-
heterogeneities caused by the near critical ¯uctu-
ations. SAXS experiments were carried out with
pure CO2 and pure CHF3 [15±17]. They provided
the mean-square ¯uctuation in the particle number
and also the correlation length, which character-
izes the size of the volume in which those ¯uctu-
ations occur. From the above experimental
information the density enhancement in pure SCF
could be calculated.

4. Local density augmentation in SCR mixtures

Numerous experimental papers have been de-
voted to the determination of the augmented
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density in the solvent, when a small amount of a
solute was added. However, only two of them,
based on ¯uorescence spectroscopy measurements,
provided numerical values for these densities
[18,19]. Augmented densities in SCR mixtures
were determined in very dilute solutions (mole
fractions of solute between 10ÿ4 and 10ÿ8), in or-
der to avoid the experimental and computational
complications caused by solute±solute interactions
[18,19]. In the present Letter, the augmented den-
sities in dilute SCR mixtures [18,19] (CO2 �
naphthalene, CO2 � pyrene and CHF3 � pyrene)
are compared to those in pure SCFs (CO2 and
CHF3) caused by near critical ¯uctuations. The
latter ones were calculated for SCF CO2 and
CHF3 using the mean-square ¯uctuations in the
particle number and the correlation lengths de-
termined experimentally [16,17]. The density aug-
mentation was calculated as �h�DN�2i=N �=�4

3
pr3�,

where the radius of the microheterogeneities is
related to the correlation length (l) via the relation
[20] l � 1:1 r. The correlation lengths for pure CO2

(T � 307:1±307.2 K, 74:1 < P < 90:4 bar) are in
the range 9±19 �A. The comparison is made in Figs.
1 and 2 and reveals that the pressure dependence

of augmented densities in dilute SCR mixtures and
those in pure SCF are almost the same in a wide
range of pressures. This means that the augmented
densities in dilute SCR mixtures and those in pure
SCF solvents have the same origin and are caused
by the preexisting near critical solvent density
¯uctuations, and not by the clustering of solvent
molecules around individual solute molecules. It is
also worth noting that the experimental aug-
mented densities in SCR mixtures CO2 �
naphthalene and CO2 � pyrene (Fig. 1) are almost
the same and hence do not depend on the nature of
the solute. Besides, Fig. 2 indicates that the pres-
sure dependence of the augmented density is al-
most independent of the solute mole fraction.
Because the average augmented densities in the
pure solvent and in the dilute solute system are
almost the same, it is reasonable to conclude that
the solute molecules prefer the higher density re-
gions of the supercritical solvent, hence that the
solute dissolves preferentially and samples the
high-density regions of the solvent. It is of interest
to notice that indeed the solubility of a solute in a
SCF increases with the density of the latter [22,23].
Kumar and Johnston [24] proposed the following

Fig. 1. Comparison between the experimental augmented

densities in pure SCF CO2 and in the SCR mixtures

CO2 � naphthalene and CO2 � pyrene: (�) calculated from ex-

perimental data [16] (T � 307:1±307.2 K) for pure CO2; (�)
experimental data [18] for the system CO2 � naphthalene

(T � 308 K and x2 � 3:5� 10ÿ5); (�) experimental data [18] for

the system CO2 � pyrene (T � 308 K and x2 � 3:0� 10ÿ8).

Fig. 2. Comparison between the augmented densities in pure

SCF CHF3 and in SCR mixtures CHF3 � pyrene: (�) calculated

from experimental data [17] (T � 310:8±311.5 K) for pure

CHF3; (�) experimental data [18] for the system CHF3 � pyrene

(T � 303 K and x2 � 5� 10ÿ6); (�) experimental data [18] for

the system CHF3 � pyrene (T � 303 K and x2 � 3� 10ÿ7�. For

pure CHF3 there are no data for pressures lower than � 50 bar.

However the experimental data for pure SCF Ar indicate [21] a

shape of the curve very similar to the experimental curves for

the mixtures CHF3 � pyrene over the entire range of pressures.
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semiempirical expressions for the solubility x2 of
the solute in SCF

ln x2 � A� Bqr; �6�

ln x2 � D� E ln qr; �7�
where qr is the reduced density of the solvent and
A, B, D and E are constants.

In order to estimate the distribution of the solute
between the average and the enhanced density re-
gions, Eq. (7) will be employed for a
CO2 � naphthalene mixture. In this case E � 2:74
at 308 K [24] and Fig. 1 provides the ratio between
the enhanced and bulk densities. For example, at
P � 75 bar this ratio is about 1.9 and Eq. (7) pro-
vides the ratio of 6 between the solubilities of
naphthalene in the dense and bulk regions. If in-
stead of the bulk density, the density of the de-
pleted region of the solvent would have been
considered (assuming the same di�erence with
changed sign between the depleted and bulk den-
sities as between the enhanced and bulk ones), then
the ratio of solubilities would be very large (about
3200). This means that most solute molecules are
located in the enhanced densities regions of the
solvent. This also contributes to the augmentation
of the solute local composition in those regions of
the SCF, issue which will be discussed in Section 5.

It is important to emphasize that a ¯uorescent
solute molecule samples a large number of micro-
heterogeneities. Indeed, because the excited-state
¯uorescence lifetime s is relatively long (for pyrene
[25] it has a value of the order of 1� 10ÿ7±4� 10ÿ7

s) and the di�usion coe�cient D [26] is on the order
of 10ÿ3 cm2=s; the solute samples a region charac-
terized by the length D � �Ds�1=2 � 10ÿ5 cm � 103

�A. The correlation length being of the order of 10
�A, it is clear that the solute samples a large number
of microheterogeneities. Because of its tendency to
locate in the high density regions, it is reasonable to
consider that the solute ¯uorescence provides the
average of the higher density regions.

5. Solute±solute interactions

As pointed out by Brennecke and Eckert [27]
solute±solute interactions take place even when the

solute mole fraction is as small as 10ÿ5 or 10ÿ6.
They concluded from spectroscopic studies that
about 50 % of the solute molecules in the system
CO2 � pyrene were present as excimers because of
the solute±solute interactions. While the interpre-
tation of their data is in doubt [28], molecular
dynamics simulations [29] indicated that the solute
molecules prefer to be located in the neighborhood
of other solute molecules, hence that the local
solute concentration around a solute molecule is
greater than the bulk concentration. There is some
experimental evidence that such clustering occurs.
Indeed, Randolph et al. [30] using high-pressure
EPR spectroscopy found that in the system
CO2 � cholesterol, the cholesterol molecules did
aggregate. In order to obtain more information
about the solute±solute interactions in dilute SCR
mixtures, the solute excess around a solute mole-
cule will be calculated on the basis of the Kirk-
wood±Bu� (KB) theory of solution [31]. The
excess will be further employed to obtain the local
mole fraction of component j in the vicinity of
component i (binary system will be considered),
using the expressions

xji �
nji

nii � nji
� Dnji � cjVcor;i

Dnii � Dnji � �ci � cj�Vcor;i
�8�

and

xii �
nii

nii � nji
� Dnii � ciVcor;i

Dnii � Dnji � �ci � cj�Vcor;i
; �9�

where nji is the number of moles of component j in
the correlation volume Vcor;i(in which the local
composition di�ers from the bulk one), cj the
overall molar composition of component j, Dnji is
the excess (or de®cit) of number of molecules j in
the vicinity of molecule i. The excesses Dnji can be
expressed in terms of the KB integrals (Gij) [32±
34]. Several expressions for Dnji based on the KB
theory of solution have been proposed [32±34].

The conventional excess number of j molecules
around a central molecule i is given by [32]

Dn0ji � cjGji � cj

Z 1

0

�gij ÿ 1�4pr2 dr; �10�

where gij is the radial distribution function be-
tween species i and j and r is the distance between
the centers of molecules i and j. The expressions
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for KB integrals (Gji) of a binary mixture are given
in Appendix A.

Matteoli [33] noted that the cjGji are nonzero
for ideal mixtures, which should be considered
nonaggregated and suggested that the aggregation
is better re¯ected in excesses (the ML excesses)
de®ned as

Dn00ji � cj�Gji ÿ Gid
ji �; �11�

where Gid
ji are the KBs integrals for ideal binary

systems (see Appendix A for the expressions of Gid
ij

for binary mixtures). In other words, the ideal bi-
nary system constitutes a background reference
state. However, Dn00ii and Dn00ji are not independent
quantities, because the volume occupied by Dn00ii of
i molecules around an i molecule should be equal
to the volume left free by Dn00ji of j molecules
around the same i molecule [33]. This leads to the
relation

VjDn00ji � ÿViDn00ii; �12�

where Vi is the partial molar volume of component
i.

It was however noted that if the excess number
of molecules is calculated as cj�Gji ÿ Gid

ji �, Eq.
(12) can not be satis®ed identically [34]. Eq. (12)
can be satis®ed only if Gid

ij is replaced by another
reference state GV

ij , which for ideal binary mix-
tures reduces to Gid

ij (See Appendix A for the
expressions of GV

ij for binary mixtures.) One can
verify that the expressions for GV

ij can be obtained
from those for Gid

ij by replacing the volumes of
the pure components by the partial molar vol-
umes and the ideal compressibility by the real
one. Hence, the excess (the SR excess) which
satis®es Eq. (12) is given by

Dnji � cj�Gji ÿ GV
ji�: �13�

Expressions for the local compositions can be
found from any of the Eqs. (10) and (11) or Eq.
(13). In the present paper, the local mole frac-
tion of the solute around a central solute mole-
cule in dilute SCR solutions is of interest. The
following expressions are obtained using the
appropriate excess and the equations from Ap-
pendix A.

The conventional excess (Eq. (10)) provides the
following expression for the local composition x022

lim
x2!0

x022

x2

�
RTk0

T ;1 � V 0
1 ÿ 2V 12 ÿ V 0

1 K2 � Vcor;2

RTk0
T ;1 ÿ V 12 � Vcor;2

:

�14�
The ML excess (Eq. (11)) leads to the following
expression for the local composition x0022

lim
x2!0

x0022

x2

� 2V 0
2 ÿ 2V 12 ÿ V 0

1 K2 � Vcor;2

V 0
2 ÿ V 12 � Vcor;2

�15�

while the SR excess leads to the following expres-
sion for the local composition x22

lim
x2!0

x22

x2

� 1ÿ V 0
1 K2

Vcor;2

: �16�

In Eqs. (14)±(16), V 0
i is the molar volume of the

pure component i, V 1i is the partial molar volume
of component i at in®nite dilution,

K2 � lim
x2!0

o ln c2

ox2

� �
P ;T

;

where c2 is the activity coe�cient of the solute.
Because the latter expression (Eq. (16)) incorpo-
rates the fact that the ideal mixture is nonaggre-
gated and involves the volume conservation
condition (Eq. (12)), it provides a better measure
of aggregation than Eqs. (14) and (15).

The calculation of

lim
x2!0

X22

x2

�with X22 � x022; x
00
22 or x22�

was carried out for the SCR mixture CO2 � pyrene
using Eqs. (14)±(16). All the necessary values
(K2; V 0

i ; V
1

i ; k0
T ;i) were taken from our previous

paper [11]. The correlation volume (Vcor;2) in Eqs.
(12)±(14) was taken to be equal to a sphere with a
radius of 7.4 �A, as suggested in Ref. [19]. The
pressure dependence of limx2!0 X22=x2 is presented
in Fig. 3, which shows that limx2!0 x22=x2 increases
when the pressure approaches the critical value, but
that the limx2!0 x022=x2 and limx2!0 x0022=x2 become
negative (and this is unphysical) near the critical
point. Because the SR excess is a better measure of
aggregation than the other two excesses, it is likely
for the local concentration of the solute around a
solute molecule to be larger than the bulk concen-
tration, particularly near the critical point.

The increased local concentration of the solute,
the tendency of the solute to be located in the high
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density regions of the near critical solvent and the
rapid increase in compressibility near the critical
point are most likely responsible for the unusual
thermodynamic properties of dilute supercritical
mixtures. Details in this direction will be examined
in a forthcoming paper.

6. Conclusion

Evidence was brought that the density en-
hancement in a supercritical solvent, determined
spectroscopically when small amounts of solute
molecules are added, almost coincides with the
preexisting density enhancement in the pure sol-
vent. Consequently, the density enhancement is
not caused by the presence of the solute, but is due
to the preexisting near critical ¯uctuations in the
solvent. The higher solubility of the solute in the
high density regions of the solvent allows one to
determine via ¯uorescence spectroscopy the aver-
age enhancement in the high density regions of the
solvent. In addition, there is an enhanced local
concentration of solute molecules about a solute
molecule.

Appendix A

(1) The KBIs for binary systems are given by
the expressions [35]

G12 � RTkT ÿ
V1V2

VD
; �A:1�

G11 � G12 �
1

x1

V2

D

�
ÿ V

�
�A:2�

and

G22 � G12 �
1

x2

V1

D

�
ÿ V

�
; �A:3�

where R is the universal gas constant, kT the iso-
thermal compressibility, V the molar volume, Vi

the partial molar volume, xi the molar fraction of
component i,

D � 1� xi
o ln ci

oxi

� �
P ;T

and ci is the activity coe�cient of component i.
(2) The KBIs for ideal binary systems are given

by the expressions [33]

Gid
12 � RTkid

T ÿ
V 0

1 V 0
2

V id
; �A:4�

Gid
11 � Gid

12 � V 0
2 ÿ V 0

1 �A:5�
and

Gid
22 � Gid

12 ÿ �V 0
2 ÿ V 0

1 �; �A:6�
where kid

T and V id are the isothermal compress-
ibility and the molar volume of an ideal mixture
and V 0

i is the molar volume of the pure component
i.

(3) The expressions for GV
ij are [34]

GV
12 � GV

21 � RTkT ÿ
V1V2

V
; �A:7�

GV
ii � GV

12 � Vj ÿ Vi ; i 6� j: �A:8�
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Abstract

The objective of this paper is to propose a predictive method for the estimation of the change in the solubility
of a solid in a supercritical solvent when another solute (entrainer) or a cosolvent is added to the system. To
achieve this goal, the solubility equations were coupled with the Kirkwood–Buff (KB) theory of dilute ternary
solutions. In this manner, the solubility of a solid in a supercritical fluid (SCF) in the presence of an entrainer or a
cosolvent could be expressed in terms of only binary data. The obtained predictive method was applied to six ternary
SCF–solute–cosolute and two SCF–solute–cosolvent systems. In the former case, the agreement with experiment
was very good, whereas in the latter, the agreement was only satisfactory, because the data were not for the very
dilute systems for which the present approach is valid. © 2001 Elsevier Science B.V. All rights reserved.

Keywords: Cosolvent; Entrainer; Supercritical fluid; Fluctuation theory; Solubility prediction

1. Introduction

The addition of a small amount (usually less than 5 mol%) of a volatile cosolvent to a supercritical fluid
(SCF) can lead to a very large enhancement in the solubility of a solute (up to several hundred percent) [1].
Similarly, the use of multiple solutes (usually binary) can enhance their solubilities [1]. These phenomena,
often called the cosolvent and entrainer effects, have attracted attention both among experimentalists [2–7]
and theoreticians [8–12]. Two types of ternary supercritical mixtures are of interest.

1. Mixtures containing a cosolvent: SCF (component 1)–solute (usually solid) (2)–cosolvent (usually a
subcritical liquid) (3).

2. Mixtures containing two solutes: SCF (1)–solute (2)–cosolute (3).

For the solubility of a solid in an SCF (binary supercritical mixture SCF (1)+ solid solute(2)), one can
write the well-known relation [13]

xbin
2 = P 0

2

Pφbin
2

exp
(P − P 0

2 )V
0

2

RT
(1)
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where P is the pressure, T the temperature (K), R the universal gas constant, φbin
2 the fugacity coefficient of

the solute in the binary mixture, xbin
2 the mole fraction at saturation of the solute, P 0

2 and V 0
2 the saturation

vapor pressure and molar volume of the solid solute, respectively. A similar expression can be written for
the solubility of a solute in a ternary supercritical mixture

x ter
2 = P 0

2

Pφter
2

exp
(P − P 0

2 )V
0

2

RT
(2)

where φter
2 is the fugacity coefficient of the solute and x ter

2 the mole fraction at saturation of the solute.
When there are two solutes, the equation for the solubility of the cosolute (component 3) has the form

x ter
3 = P 0

3

Pφter
3

exp
(P − P 0

3 )V
0

3

RT
(3)

where P 0
3 and V 0

3 are the saturation vapor pressure and molar volume of the cosolute, respectively, φter
3

the fugacity coefficient of the cosolute and x ter
3 the mole fraction at saturation of the cosolute.

Eqs. (1)–(3) show that the solubilities of solids in an SCF depend among others on their fugacity
coefficients: φbin

2 , φ
ter
2 , φ

ter
3 and the calculations indicated that these coefficients were responsible for the

large solubilities of solids in supercritical solvents. These solubilities are much larger than those in ideal
gases, and enhancement factors of 104–108 are not uncommon [1]; they are, however, still relatively
small and usually do not exceed several mole percent. Consequently, these supercritical solutions can
be considered dilute and the expressions for the fugacity coefficients in binary and ternary supercritical
mixtures simplified accordingly.

For a binary dilute mixture, Debenedetti and Kumar [14] suggested the following expression for the
fugacity coefficient

ln φbin
2 = ln φbin,∞

2 − k22x2 (4)

where

k22 = −
(
∂ ln γ2

∂x2

)
P,T ,x2→0

= −
(
∂ ln φbin

2

∂x2

)
P,T ,x2→0

(5)

In the above equations, x2 and γ 2 are the mole fraction and the activity coefficient of component 2, and
φ

bin,∞
2 the fugacity coefficient at infinite dilution.
The Debenedetti–Kumar expression was extended to multicomponent mixtures in the form [10,12]

ln φi = ln φ∞
i + x2

(
∂ ln φi
∂x2

)
P,T ,x3

+ x3

(
∂ ln φi
∂x3

)
P,T ,x2

(6)

where i = 2, 3 and components 2 and 3 are at high dilution.
For the ternary mixture SCF (1)–solute (2)–cosolute (3), one can write for the fugacity coefficients of

the solute (2) and cosolute (3) the expressions

ln φter
2 = ln φter,∞

2 + x2

(
∂ ln φter

2

∂x2

)
P,T ,x3

+ x3

(
∂ ln φter

2

∂x3

)
P,T ,x2

≡ ln φter,∞
2 − x2K22 − x3K23 (7)
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and

ln φter
3 = ln φter,∞

3 + x2

(
∂ ln φter

3

∂x2

)
P,T ,x3

+ x3

(
∂ ln φter

3

∂x3

)
P,T ,x2

≡ ln φter,∞
3 − x2K32 − x3K33 (8)

Consequently, for a dilute supercritical mixture SCF (1)–solute (2)–cosolute (3), one can write the
following system of equations for the solubilities of the solute and cosolute

x ter
2 = P 0

2

Pφ
ter,∞
2 exp(−x ter

2 K22 − x ter
3 K23)

exp
(P − P 0

2 )V
0

2

RT
(9)

and

x ter
3 = P 0

3

Pφ
ter,∞
3 exp(−x ter

2 K23 − x ter
3 K33)

exp
(P − P 0

3 )V
0

3

RT
(10)

where it was taken into account that K23 = K32.
From Eqs. (9) and (10) one can see, that the calculation of the solubilities of solids in a SCF in the

presence of an entrainer (cosolute or cosolvent) requires information about the properties of the pure
components, the fugacity coefficients at infinite dilution and the values of Kαβ .

Chimowitz and coworkers [9,10] emphasized the synergism caused by the cross exponential terms
exp(−xiK23) on the entrainer effect, and Jonah and Cochran [12] related the coefficients Kαβ to the
limiting values of the Kirkwood–Buff (KB) integrals and used the conformal solution theory to discuss
the entrainer effect.

In the present paper it is shown, on the basis of the KB theory of solution [15], that there are conditions
under which the main parameters in Eqs. (9) and (10), namely, K22, K33 and K23, can be expressed in
terms of the parameters for the two binary mixtures formed with the SCF solvent. Finally, the solubilities
in ternary mixtures are predicted using solubility data for the above binary mixtures.

2. Theory and formulas

2.1. The Kirkwood–Buff theory of solution for ternary mixtures

The KB theory of solution [15] (often called fluctuation theory of solution) employed the grand canon-
ical ensemble to relate macroscopic properties, such as the derivatives of the chemical potentials with
respect to concentrations, the isothermal compressibility and the partial molar volumes to microscopic
properties in the form of spatial integrals involving the radial distribution function.

Kirkwood and Buff [15] obtained expressions for those quantities in compact matrix forms. For binary
mixtures, Kirkwood and Buff provided the results listed in Appendix A. Starting from the matrix form and
employing the algebraic software Mathematica [16], analytical expressions for the partial molar volumes,
the isothermal compressibility and the derivatives of the chemical potentials for ternary mixtures were
obtained by us. They are listed in Appendix B together with the expressions at infinite dilution for the
partial molar volumes and isothermal compressibility.

An important quantity in what follows (see Appendix B, Eq. (B.5)) is

∆αβ = Gαα +Gββ − 2Gαβ, α �= β (11)
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where Gαβ is the KB integral given by [15]

Gαβ =
∫ ∞

0
(gαβ − 1)4πr2 dr (12)

gαβ is the radial distribution function between species α and β and r the distance between the centers of
molecules α and β.

As suggested by Ben-Naim [17], ∆αβ is a measure of the nonideality of the binary mixture α − β,
because for an ideal system∆αβ = 0. For a ternary mixture 1–2–3,∆123 defined in Appendix B (Eq. (B.6))
also constitutes a measure of nonideality. Indeed, inserting Gid

αβ for an ideal mixture (they are listed in
Appendix C) into the expression of ∆123, one obtains that for an ideal ternary mixture ∆123 = 0.

The chemical potential of component α in a multicomponent mixture can be expressed as

µα = µ0
α(P, T )+ kT ln xαγα (13)

where k is the Boltzmann constant, µα andµ0
α(P, T ) the chemical potential and the standard chemi-

cal potential per molecule of species α, respectively, and γ α the activity coefficient of component α.
Consequently(

∂µα

∂xβ

)
P,T ,x3

= kT

xα

(
∂xα

∂xβ

)
P,T ,x3

+ kT

(
∂ ln γα
∂xβ

)
P,T ,x3

(14)

where β �= 3.
Combining Eq. (14) with Eqs. (B.19)–(B.24) of Appendix B allowed us to obtain expressions at infinite

dilution for the derivatives of the activity coefficients with respect to the mole fractions in ternary mixtures.
They are

K11 = − lim
x2→0
x3→0

(
∂ ln γ1

∂x1

)
P,T ,x3

= 0 (15)

K12 = − lim
x2→0
x3→0

(
∂ ln γ1

∂x2

)
P,T ,x3

= 0 (16)

K22 = − lim
x2→0
x3→0

(
∂ ln γ2

∂x2

)
P,T ,x3

= c0
1(G

0
11 +G∞

22 − 2G∞
12) (17)

K21 = − lim
x2→0
x3→0

(
∂ ln γ2

∂x1

)
P,T ,x3

= −c0
1(G

0
11 +G∞

22 − 2G∞
12) (18)

K31 = − lim
x2→0
x3→0

(
∂ ln γ3

∂x1

)
P,T ,x3

= −c0
1(G

0
11 +G∞

23 −G∞
12 −G∞

13) (19)

and

K32 = − lim
x2→0
x3→0

(
∂ ln γ3

∂x2

)
P,T ,x3

= c0
1(G

0
11 +G∞

23 −G∞
12 −G∞

13) (20)

Thermodynamics of Solutions114



E. Ruckenstein, I. Shulgin / Fluid Phase Equilibria 180 (2001) 345–359 349

where

G0
11 = lim

x2→0
x3→0

G11, G∞
αβ = lim

x2→0
x3→0

Gαβ, (α �= β �= 1), Kαβ = Kβα, cα = Nα

v

Nα is the number of molecules of species α in volume v, and c0
α the value of cα for the pure fluid α.

The expressions of (∂ ln γα/∂xβ)P,T ,x3 and of their infinitely dilute limits are important for the thermo-
dynamics of dilute ternary solutions [20,21], especially for dilute supercritical ternary solutions [9–12].
The limiting expressions (17) and (20) were already derived in a different way by Jonah and Cochran
[12] and Chailvo [11]. In the next section of the paper, the above expressions will be applied to ternary
supercritical solutions.

2.2. The prediction of entrainer and cosolvent effects

In this section, a method for predicting the entrainer (cosolvent) effect on the basis of binary solubility
data will be suggested. The equations for the solubilities in ternary mixtures (x ter

2 and x ter
3 ) can be combined

with those in the corresponding binaries (xbin
2 and xbin

3 ) (Eqs. (1)–(3)) to obtain

x ter
2

xbin
2

= φbin
2

φter
2

(21)

x ter
3

xbin
3

= φbin
3

φter
3

(22)

The entrainer effect can be calculated if the fugacity coefficients of the solutes are known. Eqs. (21)
and (22) can be rewritten in a more convenient form, by observing that k22 for a binary mixture, defined
by Eq. (5), is given by (see Eq. (A.4) in Appendix A)

k22 = c0
1 lim
xbin

2 →0
(G11 +G22 − 2G12) (23)

Because

lim
xbin

2 →0
Gbin
αβ = lim

x ter
2 →0
x ter

3 →0

Gter
αβ

comparing Eqs. (17) and (23) one can conclude that k22 = K22 and k33 = K33. Finally, because

lim
xbin

2 →0
φbin

2 = lim
x ter

2 →0
x ter

3 →0

φter
2 and lim

xbin
2 →0

φbin
3 = lim

x ter
2 →0
x ter

3 →0

φter
3

Eqs. (4) and (7) allow us to rewrite Eqs. (21) and (22) as

x ter
2 = xbin

2 exp
⌊
k22(x

ter
2 − xbin

2 )+K23x
ter
3

⌋
(24)

and

x ter
3 = xbin

3 exp
⌊
k33(x

ter
3 − xbin

3 )+K23x
ter
2

⌋
(25)
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Table 1
The pressure dependence of k22 = −(∂ ln γ2/∂x2)P,T ,x2→0 for a binary system SCF CO2 (1) + solid solute (2) at T = 308.15 Ka

P (bar) For (k22) various SCF CO2 (1) + solid solute (2) mixtures

PH NA 2,3-DMN 2,6-DMN BA

120 63.6 34.6 45.3 46.8 64.9
140 51.6 29.5 37.9 39.9 53.0
160 45.0 26.7 34.1 36.3 46.3
180 41.0 25.0 31.8 34.2 41.8
200 38.2 23.8 30.3 32.9 38.5
220 36.1 23.0 29.3 32.0 36.1
240 34.5 22.3 28.6 31.3 34.1
260 33.2 21.9 28.0 30.9 32.5
280 32.3 21.5 27.7 30.6 31.2
300 31.4 21.2 27.4 30.4 30.1
320 30.8 20.9 27.2 30.2 29.1

a PH: phenanthrene; NA: naphthalene; 2,3-DMN: 2,3-dimethylnaphthalene; 2,6-DMN: 2,6-dimethylnaphthalene; BA:
benzoic acid.

This system of equations can be solved for x ter
2 and x ter

3 , if the solubilities of the solute and the cosolute
in the corresponding binary mixtures (xbin

2 and xbin
3 ) and the values of k22, k33 and K23 are known. It should

be noted that only Eq. (24) is necessary for the analysis of the mixture SCF (1)–solute (2)–cosolvent (3),
when the ternary mixture containing the cosolvent is not in equilibrium with the pure cosolvent.

The parameters k22 and k33 can be easily found from binary solubility data (for the binary mixtures used
in this paper, the parameters kαα are listed in Table 1). The main difficulty consists in obtaining information
about the parameter K23; its evaluation, suggested below, is based on the KB theory of solutions.

Eq. (20) can be rearranged in the form

K23 = K32 = − lim
x2→0
x3→0

(
∂ ln γ3

∂x2

)
P,T ,x3

= c0
1(G

0
11 +G∞

23 −G∞
12 −G∞

13) ≡ c0
1 lim
x2→0
x3→0

∆12 +∆13 −∆23

2

(26)

where (see Eq. (11)) ∆αβ = Gαα +Gββ − 2Gαβ . As already noted, for a binary α − β mixture, ∆αβ is
a measure of nonideality. Eq. (23) and the limiting expressions written after it indicate that in the limit
x2 → 0 and x3 → 0, c0

1∆12 and c0
1∆13 become equal to k22 and k33 (defined by Eq. (5)), respectively,

which can be calculated from binary data. While for x2 → 0 and x3 → 0, ∆23 is not equal to ∆23 of
the corresponding binary, it is plausible to consider that if the latter ∆23 is small, the former will also
be small. If the binary mixtures of the solvent and each of the solutes are much more nonideal than the
mixture of solutes and ∆12 and ∆13 have the same sign (they are positive and large for binary mixtures
involving an SCF), then

∆12 +∆13 −∆23 ≈ ∆12 +∆13 (27)

and

K23 = c0
1 lim
x2→0
x3→0

∆12 +∆13 −∆23

2
≈ c0

1 lim
x2→0
x3→0

∆12 +∆13

2
= k22 + k33

2
(28)
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Estimations indicated that the above approximation is reasonable. Indeed, let us consider the ternary
supercritical mixture CO2 (1)+ phenanthrene (PH) (2)+ naphthalene (NA) (3). The parameters k22 for
the binary mixtures CO2 (1) + PH (2) and CO2 (1) + NA (2) in the interval of pressures 120–320 bar
(Table 1) have values in the range 20–60 and their sum varies in the range 50–100. The parameters for
the binary mixture PH (1) + NA (2), estimated from solid–liquid equilibrium data [22] (see Appendix
D), are (∂ ln γ1/∂x1)T ,x1→0 = −0.076 and (∂ ln γ2/∂x2)T ,x2→0 = −0.011, hence much smaller than the
above values.

3. Calculations

First, the entrainer effect in dilute ternary mixture with two solutes will be considered. The following
ternary mixtures for which there are solubility data (for both ternary and binary constituents [2,3,25–27])
were selected: CO2 +PH + NA, CO2 +PH + benzoic acid (BA), CO2 +PH + 2,3-dimethylnaphthalene
(2,3-DMN), CO2 +PH+2,6-dimethylnaphthalene (2,6-DMN), CO2 +NA+BA, and CO2 +2,3-DMN+

Fig. 1. Solubilities of two solutes in supercritical CO2: (1a) CO2 (1)+ PH (2)+ NA (3); (1b) CO2 (1)+ PH (2)+ BA (3); (1c)
CO2 (1) + PH (2) + 2,3-DMN (3); (1d) CO2 (1) + PH (2) + 2,6-DMN (3); (1e) CO2 (1) + NA (2) + BA (3) and (1f) CO2

(1)+ 2,3-DMN (2)+ 2,6-DMN (3). The solubilities are given in mole fractions: (�), experimental values [2]; (�), calculated
solubilities; A, solute (component 2); B, cosolute (component 3).
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2,6-DMN. The binary solubilities allowed us to calculate k22 and k33 using a procedure based on an
equation of state (EOS) [14,28]. The Soave–Redlich–Kwong (SRK) [29] EOS was selected, and the kαα
were calculated as in our previous paper [28]. The results of the calculations are listed in Table 1.

The solubilities for the above-listed ternary systems were calculated using Eqs. (24) and (25) with K23

given by Eq. (28). The predicted solubilities and those found experimentally [2] are compared in Fig. 1,
which demonstrates a good agreement. Even for the system CO2 (1)+ PH + 2,3-DMN, for which there
are the largest differences between predictions and experiment, the agreement is good.

The accurate prediction of the solubilities of the two solutes requires: (1) the solubilities in both binary
and ternary mixtures to be small, because Eq. (4) for binary mixtures and Eqs. (6)–(8) for ternary mixtures
are valid only for very dilute mixtures and (2) the inequality |∆12 +∆13| � |∆23| to be fulfilled.

Only Eq. (24) is necessary to estimate the effect of a cosolvent, which is not in equilibrium with the
mixture, on the solubility of a solute. In the latter case

x ter
2 = xbin

2 exp

[
k22(x

ter
2 − xbin

2 )+
k22 + k33

2
x ter

3

]
(29)

where xbin
2 is the solubility of the solute in a cosolvent free binary mixture SCF (1)–solute (2) and x ter

3
the known mole fraction of the cosolvent in the ternary mixture [5–7]. The values of k22 for the solutes
are listed in Table 1 and those of k33 were calculated for the binary mixture SCF–cosolvent at infinite
dilution of the cosolvent. Two ternary mixtures: CO2 +PH + methanol (M) and CO2 +PH + acetone (A)
were selected, because experimental solubilities were available [7]. Since the solubilities of methanol and
acetone in supercritical CO2 are not available, the values of k33 were estimated from the critical loci of the
binary mixtures CO2 +methanol and CO2 +acetone [30] (Appendix E). The experimental and predicted
solubilities are compared in Fig. 2 for (CO2 +PH + M) and in Fig. 3 for (CO2 +PH + A). Figs. 2 and 3
show that Eq. (24) combined with Eq. (28) can satisfactorily predict the cosolvent effect for low cosolvent

Fig. 2. Solubility (mole fraction) of PH in supercritical CO2 at T = 308.15 K, when a cosolvent (methanol) was added: (�),
experimental solubility [7]; (�), calculated using Eq. (24); (2a) 1 mol% methanol added; (2b) 2.5 mol% methanol added.
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Fig. 3. Solubility (mole fraction) of PH in supercritical CO2 at T = 308.15 K, when a cosolvent (acetone) was added: (�),
experimental solubility [7]; (�), calculated using Eq. (24); (3a) 1 mol% acetone added; (3b) 2.5 mol% acetone added.

concentrations. For a cosolvent (methanol or acetone) concentration of 1 mol%, the predictions are better
than for a concentration of 2.5 mol%, because only for sufficiently low mole fractions of the solute and
cosolvent, the infinite dilute approximation is applicable. It should be also mentioned that the present
approach is valid only if |∆12 +∆13| � |∆23|.

4. Conclusion

Predictive equations for the entrainer (cosolvent) effect are derived by combining solubility equations
with the KB theory of solution of dilute ternary mixtures.

Explicit expressions for the isothermal compressibility, the partial molar volumes and the derivatives
of the chemical potentials with respect to concentrations are obtained in terms of the KB integrals. These
equations are employed to derive expressions at infinite dilution, which are relevant in the calculation of
the solubilities in ternary mixtures in terms of those in the binary constituents.

Two types of systems: (i) SCF (1)–solute (2)–cosolute (3) and (ii)SCF (1)–solute (2)–cosolvent (3),
were considered. The established equations are valid under two conditions: (i) the solution of the two
solutes (or solute and cosolvent) must be dilute; (ii) the absolute value of the sum of the nonidealities
(represented by the quantities∆αβ) of the two binary mixture between the supercritical solvent and each
of the two solutes must be much larger than the absolute value of the nonideality of the mixture of the
two solutes.

For the mixtures of the type, SCF (1)–solute (2)–cosolute (3), good agreement between predictions
and experiment was found. For the mixtures of the type, SCF (1)–solute (2)–cosolvent (3), the agreement
was better (as expected) at low cosolvent concentrations.
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Appendix A

For binary mixtures, Kirkwood and Buff [15] obtained the following expressions for the partial molar
volumes, the isothermal compressibility and the derivatives of the chemical potentials with respect to
concentrations.

v1 = 1 + (G22 −G12)c2

c1 + c2 + c1c2(G11 +G22 − 2G12)
(A.1)

v2 = 1 + (G11 −G12)c1

c1 + c2 + c1c2(G11 +G22 − 2G12)
(A.2)

kTkT = 1 + c1G11 + c2G22 + c1c2(G11G22 −G2
12)

c1 + c2 + c1c2(G11 +G22 − 2G12)
(A.3)

(
∂µ2

∂x2

)
T ,P

= kT

x2(1 + x2c1(G11 +G22 − 2G12))
(A.4)

(
∂µ1

∂c1

)
T ,P

= kT

c1(1 + c1(G11 −G12))
(A.5)

(
∂µ2

∂c2

)
T ,P

= kT

c2(1 + c2(G22 −G12))
(A.6)

where vα is the partial molar volume per molecule of species α, kT the isothermal compressibility, and
cα the bulk molecular concentration of component α.

Appendix B

For a ternary mixture, the following expressions for the partial molar volumes and the isothermal
compressibility were obtained by us.

v1 =
1 + c2(G22 −G12)+ c3(G33 −G13)+ c2c3(−G13G22 +G13G23 −G2

23
+G22G33 +G12G23 −G12G33)

c1 + c2 + c3 + c1c2∆12 + c1c3∆13 + c2c3∆23 + c1c2c3∆123
(B.1)

v2 =
1 + c1(G11 −G12)+ c3(G33 −G23)+ c1c3(−G12G33 +G12G13 −G2

13
+G13G23 +G11G33 −G11G23)

c1 + c2 + c3 + c1c2∆12 + c1c3∆13 + c2c3∆23 + c1c2c3∆123
(B.2)

v3 =
1 + c1(G11 −G13)+ c2(G22 −G23)+ c1c2(−G13G22 +G12G13 −G2

12
+G12G23 +G11G22 −G11G23)

c1 + c2 + c3 + c1c2∆12 + c1c3∆13 + c2c3∆23 + c1c2c3∆123
(B.3)

kT = 1 + c1G11 + c2G22 + c3G33 + c1c2F12 + c1c3F13 + c2c3F23 + c1c2c3F123

kT(c1 + c2 + c3 + c1c2∆12 + c1c3∆13 + c2c3∆23 + c1c2c3∆123)
(B.4)
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where

∆αβ = Gαα +Gββ − 2Gαβ, α �= β (B.5)

∆123 = G11G22 +G11G33 +G22G33 + 2G12G13 + 2G12G23 + 2G13G23 −G2
12 −G2

13

−G2
23 − 2G11G23 − 2G22G13 − 2G33G12 (B.6)

Fαβ = GααGββ −G2
αβ, α �= β (B.7)

F123 = G11G22G33 + 2G12G13G23 −G2
13G22 −G2

12G33 −G2
23G11 (B.8)

At infinite dilution, Eqs. (B.2)–(B.4) become

lim
x2→0
x3→0

v2 = 1

c0
1

+G0
11 −G∞

12 (B.9)

lim
x2→0
x3→0

v3 = 1

c0
1

+G0
11 −G∞

13 (B.10)

kTk0
T ,1 = kT lim

x2→0
x3→0

kT = 1

c0
1

+G0
11 (B.11)

where

G0
11 = lim

x2→0
x3→0

G11 and G∞
1α = lim

x2→0
x3→0

G1α (α = 2, 3)

Eq. (B.11) is the compressibility equation for a fluid [19].
By applying the general KB equations to a ternary mixture and taking into account Eqs. (B.1)–(B.4), the

following expressions for the derivatives of the chemical potential with respect to concentrations under
isothermal–isobaric conditions were obtained(

∂µ1

∂N1

)
T ,P,Nγ �=1

= kT(c2 + c3 + c2c3∆23)

vc1(c1 + c2 + c3 + c1c2∆12 + c1c3∆13 + c2c3∆23 + c1c2c3∆123)
(B.12)

(
∂µ1

∂N2

)
T ,P,Nγ �=2

= −kT(1 + c3(G12 +G33 −G13 −G23))

v(c1 + c2 + c3 + c1c2∆12 + c1c3∆13 + c2c3∆23 + c1c2c3∆123)
(B.13)

(
∂µ1

∂N3

)
T ,P,Nγ �=3

= −kT(1 + c2(G13 +G22 −G12 −G23))

v(c1 + c2 + c3 + c1c2∆12 + c1c3∆13 + c2c3∆23 + c1c2c3∆123)
(B.14)

(
∂µ2

∂N2

)
T ,P,Nγ �=2

= kT(c1 + c3 + c1c3∆13)

vc2(c1 + c2 + c3 + c1c2∆12 + c1c3∆13 + c2c3∆23 + c1c2c3∆123)
(B.15)

(
∂µ2

∂N3

)
T ,P,Nγ �=3

= −kT(1 + c1(G23 +G11 −G12 −G13))

v(c1 + c2 + c3 + c1c2∆12 + c1c3∆13 + c2c3∆23 + c1c2c3∆123)
(B.16)
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∂µ3

∂N3

)
T ,P,Nγ �=3

= kT(c1 + c2 + c1c2∆12)

vc3(c1 + c2 + c3 + c1c2∆12 + c1c3∆13 + c2c3∆23 + c1c2c3∆123)
(B.17)

where Nβ is the number of molecules of species β in the volume v.
Expressions for (∂µα/∂xβ)T ,P,xγ at x3 = constant can be obtained by combining Eqs. (B.12)–(B.17)

with the expression [12](
∂µα

∂xβ

)
T ,P,x3

= N

(
∂µα

∂Nβ

)
T ,P,Nγ �=β

−N
(
∂µα

∂Nθ

)
T ,P,Nγ �=θ

(B.18)

where α = 1, 2, 3, β �= 3, θ �= β, 3 and N = N1 +N2 +N3.
This yields(

∂µ1

∂x1

)
T ,P,x3

= kT(c1 + c2 + c3 + c1c3(G12 +G33 −G13 −G23)+ c2c3∆23)

x1(c1 + c2 + c3 + c1c2∆12 + c1c3∆13 + c2c3∆23 + c1c2c3∆123)
(B.19)

(
∂µ1

∂x2

)
T ,P,x3

= − kT(c1 + c2 + c3 + c1c3(G12 +G33 −G13 −G23)+ c2c3∆23)

x1(c1 + c2 + c3 + c1c2∆12 + c1c3∆13 + c2c3∆23 + c1c2c3∆123)
(B.20)

(
∂µ2

∂x2

)
T ,P,x3

= kT(c1 + c2 + c3 + c2c3(G12 +G33 −G13 −G23)+ c1c3∆13)

x2(c1 + c2 + c3 + c1c2∆12 + c1c3∆13 + c2c3∆23 + c1c2c3∆123)
(B.21)

(
∂µ2

∂x1

)
T ,P,x3

= − kT(c1 + c2 + c3 + c2c3(G12 +G33 −G13 −G23)+ c1c3∆13)

x2(c1 + c2 + c3 + c1c2∆12 + c1c3∆13 + c2c3∆23 + c1c2c3∆123)
(B.22)

(
∂µ3

∂x1

)
T ,P,x3

= kT(c1c3(G11 +G23 −G12 −G13)+ c2c3(G12 +G23 −G13 −G22))

x3(c1 + c2 + c3 + c1c2∆12 + c1c3∆13 + c2c3∆23 + c1c2c3∆123)
(B.23)

and (
∂µ3

∂x2

)
T ,P,x3

= −kT(c1c3(G11 +G23 −G12 −G13)+ c2c3(G12 +G23 −G13 −G22))

x3(c1 + c2 + c3 + c1c2∆12 + c1c3∆13 + c2c3∆23 + c1c2c3∆123)
(B.24)

It should be noted that the derivatives (∂µα/∂xβ)T ,P,xγ �=β depend on which of the xγ is kept constant.

Appendix C

The KB integrals for an ideal ternary system have been obtained in our previous paper [18]. They are
(vol/mol)

Gid
11 = RTkid

T − V id

x1
+ x2(V

0
2 )

2 + x3(V
0

3 )
2 − x2x3(V

0
2 − V 0

3 )
2

x1V id
(C.1)

Gid
22 = RTkid

T − V id

x2
+ x1(V

0
1 )

2 + x3(V
0

3 )
2 − x1x3(V

0
1 − V 0

3 )
2

x2V id
(C.2)

Gid
33 = RTkid

T − V id

x3
+ x1(V

0
1 )

2 + x2(V
0

2 )
2 − x1x2(V

0
1 − V 0

2 )
2

x3V id
(C.3)
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Gid
12 = RTkid

T + x3V
0

3 (V
0

3 − V 0
1 − V 0

2 )− V 0
1 V

0
2 (1 − x3)

V id
(C.4)

Gid
13 = RTkid

T + x2V
0

2 (V
0

2 − V 0
1 − V 0

3 )− V 0
1 V

0
3 (1 − x2)

V id
(C.5)

and

Gid
23 = RTkid

T + x1V
0

1 (V
0

1 − V 0
2 − V 0

3 )− V 0
2 V

0
3 (1 − x1)

V id
(C.6)

where xi is the molar fraction of component i in the ternary mixture, V 0
j and k0

T ,j the molar volume

and the isothermal compressibility of the pure component j, respectively, V id = ∑3
j=1xjV

0
j and kid

T =∑3
j=1ϕjk

0
T ,j with ϕj the volume fraction of component j.

Appendix D

To obtain the values of kαα for the binary mixture PH (1)+ NA (2), the solid–liquid equilibrium data
for this system [22] were used. The mole fraction of component α in the liquid phase was expressed
through the modified Schröder equation [23].

xαγα = exp

[
�H 0

α

R

(
1

T 0
α

− 1

T

)]
(D.1)

where R is the universal gas constant, xα and γ α the molar fraction and activity coefficient of component
α in the liquid phase, respectively, T 0

α and�H 0
α the melting temperature and the molar enthalpy of fusion

of component α and T the melting temperature of the mixture. The activity coefficients were expressed
through the Wilson equation [24].

ln γ1 = −ln(x1 + x2Λ12)+ x2

(
Λ12

x1 + x2Λ12
− Λ21

x2 + x1Λ21

)
(D.2)

and

ln γ2 = −ln(x2 + x1Λ21)− x1

(
Λ12

x1 + x2Λ12
− Λ21

x2 + x1Λ21

)
(D.3)

where Λ12 and Λ21 are the temperature-dependent Wilson parameters.

Λ12 = V 0
2

V 0
1

exp

(
−λ12 − λ11

RT

)
(D.4)

Λ21 = V 0
1

V 0
2

exp

(
−λ21 − λ22

RT

)
(D.5)

where (λ12 − λ11) and (λ21 − λ22) are temperature independent parameters and V 0
α the molar volume of

the pure component α. The parameters (λ12 − λ11) and (λ21 − λ22) for the binary mixture PH + NA were
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found by fitting Eq. (D.1) to the xα − T experimental data [22]. They are λ12 − λ11 = 71.695 (J/mol)
and λ21 − λ22 = 98.897 (J/mol).

Eqs. (D.2) and (D.3) yield(
∂ ln γα
∂xα

)
T ,xα→0

= − 2

Λαβ
+ 1 +Λ2

βα (D.6)

where α, β = 1, 2 and α �= β. The insertion of the parametersΛ12 andΛ21 calculated at the temperature
T = 308.15 K into Eq. (D.6) gives for the binary mixture PH (1)+NA (2), (∂ ln γ1/∂x1)T ,x1→0 = −0.076
and (∂ ln γ2/∂x2)T ,x2→0 = −0.011.

Appendix E

The values of k22 for the systems SCF CO2 + methanol and SCF CO2 + acetone were calculated using
the SRK EOS [29]

P = RT

V − b − a(T )

V (V + b) (E.1)

where V is the molar volume of the mixture and a and b are provided by the usual mixing rules

a = x2
1a1 + x2

2a2 + 2x1x2(a1a2)
0.5(1 − q12) (E.2)

and

b = x1b1 + x2b2 (E.3)

where aα, bα are the SRK EOS parameters of the pure components, and q12 the binary interaction
parameter.

The method of calculation of k22 is presented in detail in [14] and [28] and requires the EOS parameters
of the pure components, and the binary interaction parameter (q12).

The SRK EOS parameters of the pure components can be calculated in terms of their critical pressure
and temperature [29]. The binary interaction parameter q12 can be found from phase equilibria data
for the binary mixture. Because, such data are not available, the critical loci data for the systems CO2

(1)+ methanol (2) and CO2 (1)+ acetone (2) [30] were used to calculate q12 (Reference [30]), provided
the binary critical data in the form: x2 − P cr − T cr, where x2 is the molar fraction of component 2 in
the critical mixture, Pcr the critical pressure and Tcr the critical temperature of the mixture. The mixture
parameter a (a′) in the SRK EOS was calculated for every x2 −P cr − T cr point using the expression [29]

a′ = 0.42747
R2T 2

cr

Pcr
(E.4)

The parameter a was also calculated using Eq. (E.2) for every x2 as a function of the binary interaction
parameter q12. The binary interaction parameter q12 was calculated by minimizing the sum

∑
all x2
(a′−a)2.
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Abstract

The goal of this paper is to develop a predictive method for the solubility of a solid in a supercritical fluid containing
an entrainer at any concentration. The main difficulty consists in the derivation of an expression for the fugacity
coefficient of the solid solute in the binary solvent. A method based on the Kirkwood–Buff formalism was employed
and expressions for the derivatives of the fugacity coefficient of the solute in a ternary mixture with respect to the
mole fractions were obtained. On the basis of these expressions an algebraic equation was derived, which allowed
one to predict the solubility of a solid solute in terms of its solubilities in the supercritical fluid and in the entrainer.
The equation was compared with the experimental results available in the literature regarding the solubility in a
mixture of supercritical fluids and good agreement was obtained. © 2002 Elsevier Science B.V. All rights reserved.

Keywords: Fluctuation theory; Entrainer; Solubility; Supercritical fluid

1. Introduction

The addition of an entrainer to a supercritical (SC) solvent can lead to a very large enhancement in the
solubility of a solute (up to several hundred percent) [1–3]. This phenomenon, often called the entrainer
effect, has relevance in the SC fluid technology. The addition of a small amount of entrainer can increase
the solubility of a solid much more than a pressure increase of several hundred bars [4]. Because the
entrainer effect depends upon the nature of the solute it can be used to enhance the selectivity of a SC
fluid for certain compounds.

The entrainer can be a liquid, a gas, a solid or a supercritical fluid [2]. Does the enhancement have a
physical origin, being caused by the physical interactions among the molecules, or a chemical one, being
a result of the formation of a complex between the solute and entrainer? In a number of cases treated in a
previous paper [5], the enhancement caused in the solubility of a solid by the addition to the SC solvent of
a small amount of a cosolvent was explained in terms of physical interactions. In what follows it will be

∗ Corresponding author. Tel.: +1-716-645-2911; fax: +1-716-645-3822.
E-mail addresses: feaeliru@acsu.buffalo.edu (E. Ruckenstein), ishulgin@eng.buffalo.edu (I. Shulgin).

0378-3812/02/$ – see front matter © 2002 Elsevier Science B.V. All rights reserved.
PII: S0378-3812(02)00012-2
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shown that the enhancement produced by the addition of a cosolvent when its concentration is large can
be also a result of physical interactions. This does not mean that there are no cases in which the chemical
interactions play a role. An example is the mixture CO2 +hydroquinone+tri-n-butylphosphate [6]. In this
mixture, the intermolecular interactions between solute and entrainer generate a charge transfer complex
between hydroquinone and tri-n-butylphosphate [6]. Another example of chemical (specific) interactions
in ternary supercritical mixtures involves hydrogen bonding. For instance, the H-bonding equilibrium
between perfluoro-tert-butyl alcohol and dimethyl ether in supercritical SF6 was investigated [7] and an
equilibrium constant for the resulting H-bonded complexes was evaluated.

Recently, a method [5] for the prediction of the solubility of a solute in a SC fluid in the presence of an
entrainer has been proposed. The method, based on the Kirkwood–Buff (KB) formalism, was however
developed for cases in which the entrainer was in dilute amounts. The present paper is focused on the
solubility of a solid in a non-dilute mixture of a SC fluid and an entrainer. The theoretical treatment,
which is more complex than for the dilute case, is also based on the KB formalism. In this paper the
following aspects will be addressed: (1) general equations for the solubility in binary and ternary mixtures
will be written for the cases involving a small amount of solute; (2) the KB formalism will be used to
obtain expressions for the derivatives of the fugacity coefficients in a ternary mixture with respect to mole
fractions; (3) these expressions will be employed to derive an equation for the solubility of a solute in
a SC fluid containing an entrainer at any concentration; (4) a predictive method for this solubility will
be proposed in terms of the solubilities of the solute in the SC fluid and in the entrainer; (5) the derived
equation will be compared with experimental results from literature regarding the solubility of a solute
in a mixture of two SC fluids.

2. Theory

2.1. General equations for the solubility of a solid in SC fluids

The solubility of a solid in a SC fluid (binary mixture SC fluid (1) + solid solute (2)) can be calculated
using the equation [8]

xbin
2 = P 0

2

Pφbin
2

exp

(
(P − P 0

2 )V 0
2

RT

)
(1)

where R is the universal gas constant, P the pressure, T the temperature in K, xbin
2 and φbin

2 the mole
fraction and fugacity coefficient of a solute in the gaseous phase at equilibrium, and P 0

2 and V 0
2 are the

saturation vapor pressure and molar volume of the pure solute. A similar expression can be written for
the solubility of a solute in a ternary supercritical mixture (SC fluid (1)+ solid solute (2)+ entrainer (3))

x ter
2 = P 0

2

Pφter
2

exp

(
(P − P 0

2 )V 0
2

RT

)
(2)

where φter
2 and x ter

2 are the fugacity coefficient and the mole fraction of the solute in the gaseous phase at
equilibrium.

For a binary dilute mixture, Debenedetti and Kumar [9] used the following series expansion for the
fugacity coefficient of the solute:

ln φbin
2 = ln φ

bin,∞
2 − k22x2 (3)
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where φ
bin,∞
2 is the fugacity coefficient at infinite dilution and x2 is the mole fraction of the solute, and

k22 = −
(

∂ ln γ bin
2

∂x2

)
P,T ,x2→0

= −
(

∂ ln φbin
2

∂x2

)
P,T ,x2→0

(4)

where γ bin
2 is the activity coefficient of the solute.

The above expression was extended to ternary mixtures, containing a solute and an entrainer, both at
high dilution, in the form [10–12]:

ln φter
2 = ln φ

ter,∞
2 +x2

(
∂ ln φter

2

∂x2

)
P,T ,x3,0

+x3

(
∂ ln φter

2

∂x3

)
P,T ,x2,0

≡ ln φ
ter,∞
2 − x2K22 − x3K23 (5)

and

ln φter
3 = ln φ

ter,∞
3 +x2

(
∂ ln φter

3

∂x2

)
P,T ,x3,0

+x3

(
∂ ln φter

3

∂x3

)
P,T ,x2,0

≡ ln φ
ter,∞
3 −x2K32−x3K33 (6)

where xi is the molar fraction of component i in the ternary mixture, subscript 0 indicates that the
derivative should be calculated at infinite dilution of components 2 and 3 and the coefficients Kij in the
ternary mixture are defined as

Kij = − lim
x2→0,x3→0

(
∂ ln γi

∂xj

)
P,T ,xα �=1 and j

(7)

It should be noted that the kii are for binary mixtures and the Kij for the ternary ones. Consequently,
for a dilute mixture SC fluid (1)–solute (2)–entrainer (3), one can write the following equation for the
solubility of a solute (x ter

2 ):

x ter
2 = P 0

2

Pφ
ter,∞
2 exp(−x ter

2 K22 − x ter
3 K23)

exp

(
(P − P 0

2 )V 0
2

RT

)
(8)

On the basis of the KB theory of solution [13], it was shown [5], that K22 and K23 in Eq. (8) can be
expressed in terms of the parameters for the two binary mixtures formed by the solute and entrainer with
the SC solvent. Consequently, the solubility of a solute in a binary mixture could be predicted in terms
of binary data.

For the cases in which only the solute concentration is small, the derivation of an expression for the
fugacity coefficient φter

2 (see Eq. (2)) is still critical for the prediction of the solubility x ter
2 . Let us consider

those compositions of the ternary mixture which are located on the line between the points (x ter
1 = 0,

x ter
2 = 1, x ter

3 = 0) and (x ter
1 = x0

1 , x ter
2 = 0, x ter

3 = x0
3 ) in the Gibbs triangle. This line connects the pure

component 2 and the binary mixtures 1–3 with a mole fraction of component 1 equal to x0
1 . Physically

speaking, this line represents the locus of compositions of the ternary mixtures, formed by adding a solute
to a binary mixture of a SC fluid and an entrainer.

On the above line, the following relation holds:(
x ter

1

x ter
3

)
=
(

x0
1

x0
3

)
= α (9)

Because x ter
1 + x ter

2 + x ter
3 = 1, one can write that

x ter
1 = α

1 − x ter
2

1 + α
(10)
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and

x ter
3 = 1 − x ter

2

1 + α
(11)

For the fugacity coefficient of a solute, whose solubility x ter
2 is small, one can write, at constant tem-

perature and pressure, near the concentration x ter
1 = x0

1 , x ter
2 = 0, x ter

3 = x0
3 , the following expression:

ln φter
2 = ln φter

2 (x0
1 , 0, x0

3) + x ter
2

(
∂ ln φter

2

∂x ter
2

)
P,T ,α(x0

1 ,0,x0
3 )

(12)

where the subscript (x0
1 , 0, x0

3) indicates that the derivative should be calculated at infinite dilution of the
solute.

If, at a given pressure and temperature, the mole fractions of components 1 and 3 are taken as independent
variables, one can rewrite Eq. (12) under the form

ln φter
2 = ln φter

2 (x0
1 , 0, x0

3) + x ter
2

[(
∂ ln φter

2

∂x ter
1

)
P,T ,x ter

3 (x0
1 ,0,x0

3 )

(
∂x ter

1

∂x ter
2

)
α

+
(

∂ ln φter
2

∂x ter
3

)
P,T ,x ter

1 (x0
1 ,0,x0

3 )

(
∂x ter

3

∂x ter
2

)
α

]
(13)

which, taking into account Eqs. (10) and (11), becomes

ln φter
2 = ln φter

2 (x0
1 , 0, x0

3) − x ter
2

1 + α

[
α

(
∂ ln φter

2

∂x ter
1

)
P,T ,x ter

3 (x0
1 ,0,x0

3 )

+
(

∂ ln φter
2

∂x ter
3

)
P,T ,x ter

1 (x0
1 ,0,x0

3 )

]

(14)

or equivalently

ln φter
2 = ln φter

2 (x0
1 , 0, x0

3) − x ter
2

[
x0

1

(
∂ ln φter

2

∂x ter
1

)
P,T ,x ter

3 (x0
1 ,0,x0

3 )

+ x0
3

(
∂ ln φter

2

∂x ter
3

)
P,T ,x ter

1 (x0
1 ,0,x0

3 )

]

(15)

The above equations can become useful if expressions for the two partial derivatives can be obtained.

2.2. Expressions for the derivatives (∂ ln φter
2 /∂x ter

1 )P,T ,x ter
3

and (∂ ln φter
2 /∂x ter

3 )P,T ,x ter
1

through the
Kirkwood–Buff formalism

It was shown previously [5,14] that the KB theory of solution can be used to relate the thermodynamic
properties of ternary mixtures, such as the partial molar volumes, the isothermal compressibility and the
derivatives of the chemical potentials to the KB integrals. In particular for the derivatives of the activity
coefficients (γ ter

2 ) one can write the following rigorous relations [5]:(
∂ ln γ ter

2

∂x ter
1

)
T ,P,x ter

3

= −c2c3(G12 + G33 − G13 − G23) + c1c2∆12 + c2c3∆23 + c1c2c3∆123

x ter
2 (c1 + c2 + c3 + c1c2∆12 + c1c3∆13 + c2c3∆23 + c1c2c3∆123)

(16)
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and (
∂ ln γ ter

2

∂x ter
3

)
T ,P,x ter

1

= −c1c2(G11 + G23 − G12 − G13) + c1c2∆12 + c2c3∆23 + c1c2c3∆123

x ter
2 (c1 + c2 + c3 + c1c2∆12 + c1c3∆13 + c2c3∆23 + c1c2c3∆123)

(17)

where ck is the bulk molecular concentration of component k and Gαβ is the KB integral given by

Gαβ =
∫ ∞

0
(gαβ − 1)4πr2 dr (18)

In the above expressions, gαβ is the radial distribution function between species α and β, r the distance
between the centers of molecules α and β, and ∆αβ and ∆123 are defined as follows:

∆αβ = Gαα + Gββ − 2Gαβ, α �= β (19)

and

∆123 = G11G22 + G11G33 + G22G33 + 2G12G13 + 2G12G23 + 2G13G23 − G2
12 − G2

13 − G2
23

−2G11G23 − 2G22G13 − 2G33G12 (20)

One can show that the factors in brackets in the numerators of Eqs. (16) and (17) and ∆123 can be
expressed in terms of ∆αβ as follows:

G12 + G33 − G13 − G23 = 1
2 (∆13 + ∆23 − ∆12) (21)

G11 + G23 − G12 − G13 = 1
2 (∆12 + ∆13 − ∆23) (22)

and

∆123 = − 1
4((∆12)

2 + (∆13)
2 + (∆23)

2 − 2∆12∆13 − 2∆12∆23 − 2∆13∆23) (23)

The insertion of Eqs. (21)–(23) into Eqs. (16) and (17) provides rigorous expressions for the derivatives
(∂ ln φter

2 /∂x ter
1 )P,T ,x ter

3
and (∂ ln φter

2 /∂x ter
3 )P,T ,x ter

1
in terms of ∆αβ and concentrations.

It is worth noting that ∆ij is a measure of nonideality [15] of the binary mixture α–β, because for
an ideal mixture ∆αβ = 0. For a ternary mixture 1–2–3, ∆123 also constitutes a measure of nonideality.
Indeed, inserting Gid

αβ for an ideal mixture [14] into the expression of ∆123, one obtains that for an ideal
ternary mixture ∆123 = 0. One should also mention that the nonideality parameter ∆12 in a binary mixture
is connected to the parameter k22 (see Eq. (4)). Indeed, at infinite dilution one can write the following
expression:

k22 = −
(

∂ ln γ2

∂x2

)
P,T ,x2→0

= −
(

∂ ln φbin
2

∂x2

)
P,T ,x2→0

= c
0,bin
1 lim

xbin
2 →0

(G11 + G22 − 2G12)

= c
0,bin
1 lim

xbin
2 →0

∆12 (24)

where c
0,bin
1 = limxbin

2 →0 c0
1 and c0

1 is the bulk molecular concentration of component 1 in the binary
mixture 1–2.
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2.3. The solubility of a solid in a binary mixture of SC fluids

In this case, the derivatives of the activity coefficient with respect to mole fractions when x ter
2 → 0 are

needed, and Eqs. (16) and (17) lead to

lim
x2→0

(
∂ ln γ ter

2

∂x ter
1

)
T ,P,x ter

3

= (c0
1 + c0

3){(c0
1 + 0.5c0

3)∆12 + 0.5c0
3∆23 − 0.5c0

3∆13}x ter
2 =0

c0
1 + c0

3 + c0
1c

0
3∆13

−
c0

1c
0
3(c

0
1 + c0

3){(∆12)
2 + (∆13)

2 + (∆23)
2 − 2∆12∆13

−2∆12∆23 − 2∆13∆23}x ter
2 =0

4(c0
1 + c0

3 + c0
1c

0
3∆13)

(25)

and

lim
x2→0

(
∂ ln γ ter

2

∂x ter
3

)
T ,P,x ter

1

= (c0
1 + c0

3){0.5c0
1∆12 + (0.5c0

1 + c0
3)∆23 − 0.5c0

1∆13}x ter
2 =0

c0
1 + c0

3 + c0
1c

0
3∆13

−
c0

1c
0
3(c

0
1 + c0

3){(∆12)
2 + (∆13)

2 + (∆23)
2 − 2∆12∆13

−2∆12∆23 − 2∆13∆23}x ter
2 =0

4(c0
1 + c0

3 + c0
1c

0
3∆13)

(26)

The value of the parameter ∆13 in a gas mixture can be calculated from PVT data using any traditional
EOS. For the mixtures that obey the Lewis–Randall rule [16] (the fugacity of a species in a gaseous
mixture is the product of its mole fraction and the fugacity of the pure gaseous component at the same
temperature and pressure), the fugacity coefficients of the components of the mixture are independent of
composition. In such cases, the KB equation [13] for the binary mixtures 1–3:(

∂ ln φbin
3

∂x0
3

)
P,T

= − c0
1∆13

1 + c0
1x

0
3∆13

(27)

leads to ∆13 = 0. For numerous gaseous mixtures the Lewis–Randall rule is valid at both low and high
pressures [16], and as shown in Appendix A, it can be applied to the mixtures SC CO2 and SC ethane
of interest in the present paper. When, however, an entrainer is a liquid or a solid, the parameter ∆13 is
different from zero and should be calculated from binary data.

For the Lewis–Randall mixtures, one can therefore write that

lim
x2→0

(
∂ ln γ ter

2

∂x ter
1

)
T ,P,x ter

3

=
[
(c0

1 + 0.5c0
3)∆12 + 0.5c0

3∆23 − c0
1c

0
3
(∆12 − ∆23)

2

4

]
x ter

2 =0

(28)

and

lim
x2→0

(
∂ ln γ ter

2

∂x ter
3

)
T ,P,x ter

1

=
[

0.5c0
1∆12 + (0.5c0

1 + c0
3)∆23 − c0

1c
0
3
(∆12 − ∆23)

2

4

]
x ter

2 =0

(29)

and Eq. (15) becomes

φter
2 = φter

2 (x0
1 , 0, x0

3)exp

{
−x ter

2

[
c0

1∆12 + c0
3∆23 − c0

1c
0
3
(∆12 − ∆23)

2

4

]}
x ter

2 =0

(30)
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For the fugacity coefficients in binary mixtures of a solid (2) at high dilution in a SC fluid (1) and in
an entrainer (3), one can write the following equations [9] (see Eq. (3)):

ln φ
bin,1
2 = ln φ

bin,1,∞
2 − k22x

bin,1
2 (31)

and

ln φ
bin,3
2 = ln φ

bin,3,∞
2 − k33x

bin,3
2 (32)

where

k22 = −
(

∂ ln γ
bin,1
2

∂x
bin,1
2

)
P,T ,x

bin,1
2 →0

= −
(

∂ ln φ
bin,1
2

∂x
bin,1
2

)
P,T ,x

bin,1
2 →0

(33)

and

k33 = −
(

∂ ln γ
bin,3
2

∂x
bin,3
2

)
P,T ,x

bin,3
2 →0

= −
(

∂ ln φ
bin,3
2

∂x
bin,3
2

)
P,T ,x

bin,3
2 →0

(34)

However, from Eqs. (1) and (2), one can easily obtain that

x ter
2

x
bin,1
2

= φ
bin,1
2

φter
2

(35)

x ter
2

x
bin,3
2

= φ
bin,3
2

φter
2

(36)

For the fugacity coefficient of a solute at infinite dilution in a mixed gaseous solvent the following
expression:

φter
2 (x0

1 , 0, x0
3) = x0

1φ
bin,1,∞
2 + x0

3φ
bin,3,∞
2 (37)

will be employed.
Combining Eqs. (31), (32) and (35)–(37), yields

1

x ter
2

exp

{
x ter

2

[
c0

1∆12 + c0
3∆23 − c0

1c
0
3
(∆12 − ∆23)

2

4

]
x ter

2 =0

}

= x0
1

x
bin,1
2

exp(k22x
bin,1
2 ) + x0

3

x
bin,3
2

exp(k33x
bin,3
2 ) (38)

Eq. (38) can be further simplified making use of the following approximations limx2→0 ∆12 =
limx2→0,x3→0 ∆12 and limx2→0 ∆23 = limx2→0,x3→0 ∆23. Consequently, Eq. (24) leads to

lim
x2→0

∆12 = V 0
1 k22 (39)

and

lim
x2→0

∆23 = V 0
3 k33 (40)
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where V 0
i is the molar volume of the pure component i (SC fluid or SC entrainer). The molar volume of

the 1–3 gas mixtures will be calculated using the expression:

V = x0
1V

0
1 + x0

3V
0

3 (41)

With these simplifications, Eq. (38) becomes

1

x ter
2

exp

{
x ter

2

[
ϕ1k22 + ϕ3k33 − (x0

3ϕ1k22 − x0
1ϕ3k33)

2

4x0
1x

0
3

]}

= x0
1

x
bin,1
2

exp(k22x
bin,1
2 ) + x0

3

x
bin,3
2

exp(k33x
bin,3
2 ) (42)

where ϕi = x0
i V

0
i /(x0

1V
0

1 + x0
3V

0
3 ) is the volume fraction of component i (i = 1, 3) in the mixture of the

SC fluid and SC entrainer.
Consequently, the solubility of a solid in the mixture of a SC fluid and a SC entrainer can be calculated

from Eq. (42) if the properties of the pure fluids and the binary solubilities x
bin,1
2 and x

bin,3
2 are known

(k22 and k33 can be calculated from the binary solubilities).
The multi-parameter EOS [17,18] allows one to accurately calculate the densities (V 0

i ) at any pressure
and temperature. The parameters k22 and k33 can be calculated [9,19] using any traditional EOS, such as
the Soave–Redlich–Kwong [20] or the Peng–Robinson [21] EOS.

3. Calculations

The equation derived in the preceding section of the paper will be now compared with the experimental
solubilities of solids in binary mixtures of SC fluids.

3.1. Source of data

Three ternary mixtures: (a) CO2 (1) + naphthalene (2) + ethane (3); (b) CO2 (1) + benzoic acid
(2) + ethane (3) and (c) CO2 (1) + phenanthrene (2) + ethane (3) will be considered. The information
[22–26] available regarding the solubilities of the above solids in ternary and binary mixtures (references,
pressure range and temperature) is summarized in Table 1.

3.2. The calculation of V 0
i , k22 and k33

The densities of CO2 and ethane were calculated using multi-parameter EOS [17,18], which are ac-
curate near the critical point. The parameters k22 and k33 were obtained from solubility data in binary
mixtures (solid/SC fluid and solid/SC entrainer). The Soave–Redlich–Kwong [20] EOS was employed
in combination with the classical van der Waals mixing rules as in our previous paper [5].

3.3. Results

The comparison between predicted and experimental solubilities is presented in Fig. 1 for naphthalene,
in Fig. 2 for benzoic acid and in Fig. 3 for phenanthrene. One can see that there is excellent agreement
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Fig. 1. Comparison between experimental (�) and predicted (�) solubilities of naphthalene in the mixtures of SC CO2 and
SC ethane: (a) T = 308.15 K, x0

1 = 0.938, experimental data from [2]; (b) T = 308 K, x0
1 = 0.399, experimental data

from [22]; (c) T = 308 K, x0
1 = 0.496, experimental data from [22]; (d) T = 307.9 K, x0

1 = 0.412, experimental data from
[23]; (e) T = 318.15 K, x0

1 = 0.938, experimental data from [2]; (f) T = 318 K, x0
1 = 0.254, experimental data from [22];

(g) T = 318 K, x0
1 = 0.474, experimental data from [22].
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Fig. 1. (Continued ).

2   Supercritical mixtures 135



E. Ruckenstein, I. Shulgin / Fluid Phase Equilibria 200 (2002) 53–67 63

Fig. 1. (Continued ).

Table 1
Information about the ternary and binary SC mixtures employed in the calculations

Mixture T (K) Pressure range (bar) x0
1 Reference

CO2 (1) + naphthalene (2) + ethane (3) 308.15 99–364 0.938 [2]
318.15 99–364 0.938 [2]
308 69.9–302.6 0.399 [22]
308 58.7–176.1 0.496 [22]
318 69.0–117.5 0.254 [22]
318 58.7–188.8 0.474 [22]
307.9 61.7–265.5 0.412 [23]

CO2 + naphthalene 308.15 60.8–364 [24]
318.15 62.8–314.1 [24]

Ethane + naphthalene 308.15 50.9–362 [25]
318.15 51–364 [25]

CO2 (1) + benzoic acid (2) + ethane (3) 328.15 116–364 0.938 [2]
343.15 116–364 0.938 [2]

CO2 + benzoic acid 328.15 101–363.3 [25]
343.15 101–364.1 [25]

Ethane + benzoic acid 328.15 54.1–361.8 [25]
343.15 66–363.5 [25]

CO2 (1) + phenanthrene (2) + ethane (3) 313 110–350 0.95 [26]
313 110–350 0.9 [26]

CO2 + phenanthrene 313 110–350 [26]
Ethane + phenanthrene 313 110–350 [26]
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Fig. 2. Comparison between experimental (�) and predicted (�) solubilities of benzoic acid in the mixtures of SC CO2 and SC
ethane: (a) T = 328.15 K, x0

1 = 0.938, experimental data from [2]; (b) T = 343.15 K, x0
1 = 0.938, experimental data from [2].

between the predicted and experimental values. It is worth noting that the experimental solubilities for
naphthalene were obtained by a number of authors under different conditions (temperature, pressure
range and composition of the binary SC mixture).

4. Discussion and conclusion

The predictive method suggested in this paper allows one to calculate the solubility of a solid in a
binary mixture of SC fluids. The solubilities of three solids were predicted using only experimental
data regarding the solubilities in the constituent binary mixtures (solid/SC fluid and solid/SC entrainer).
Very good agreement was found between the experimental and predicted solubilities. For the solubilities
of naphthalene and benzoic acid, the prediction of Eq. (42) provided even better agreement than the
correlation [2] of experimental data based on the Peng–Robinson EOS with parameters determined from
ternary data.
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Fig. 3. Comparison between experimental (�) and predicted (�) solubilities of phenanthrene in the mixtures of SC CO2 and
SC ethane: (a) T = 313 K, x0

1 = 0.95, experimental data from [26]; (b) T = 313 K, x0
1 = 0.9, experimental data from

[26].

It should be noted that, while the expressions for the derivatives of the fugacity (activity) coefficients
in ternary mixtures with respect to mole fractions (Eqs. (25) and (26)) employed to derive Eq. (42)
are rigorous, Eq. (42) for the solubility also implies that limx2→0 ∆13 = 0. The latter approximation is
probably not entirely accurate at very high pressures when the intermolecular interactions between the
SC fluids become comparable to those in liquids. Indeed, the predicted solubilities of phenanthrene in
the mixture of SC CO2 and SC ethane (Fig. 3) deviate somewhat from the experimental data [26] at high
pressures. This deviation might have been caused also by the experimental solubilities of phenanthrene
in SC ethane [26] employed in our calculations, which are quite different from other experimental data
[27].

As a rule [1–3], the addition of an entrainer or cosolvent to a SC fluid enhances the solubility of a solid
compared to its solubility in a pure SC fluid. However, this is no longer true when the entrainer (cosolvent)
is a SC fluid or a gas. Indeed, the addition of the SC ethane to the SC CO2 enhanced the solubility of
naphthalene or phenanthrene compared to that in the pure carbon dioxide; however, the addition of the
SC CO2 to the SC ethane decreased the solubility of naphthalene or phenanthrene compared to that in
the pure ethane [2,22,23,26]. These results can be explained in the framework of the present approach.
For this purpose, Eq. (42) will be first simplified by assuming that (1) all the solubilities (x ter

2 , x
bin,1
2 and

x
bin,3
2 ) are small and hence the exponential expressions in Eq. (42) can be expanded in series up to the

first term in x; (2) the molar volumes of the pure components 1 and 3 are equal. Then, Eq. (42) acquires
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the simple form

−x0
1x

0
3
(k22 − k33)

2

4
+ 1

x ter
2

= x0
1

x
bin,1
2

+ x0
3

x
bin,3
2

(43)

The latter equation shows that for an ideal mixture (when all kii are equal to zero), the solubility in a
binary solvent (x ter,id

2 ) has an intermediate value between the solubilities in the binary constituents x
bin,1
2

and x
bin,3
2 . When k22 and k33 have non-zero values, then x ter

2 ≤ x
ter,id
2 and in some cases x ter

2 can be smaller
than both binary solubilities (xbin,1

2 and x
bin,3
2 ). Therefore, one can conclude that when an “inert” gas (i.e.

a gas in which the solubility of the solid is much smaller than in a SC fluid) is added to a SC fluid it should
decrease the solubility of the solid compared to that in the pure SC fluid. Such a decrease in solubility
was found experimentally for caffeine in the SC CO2 entrained by nitrogen [28,29].

Appendix A

The composition dependence of the parameter ∆13 was calculated for the mixture SC CO2 and SC
ethane at T = 350 K and P = 10 MPa. For this purpose, precise PVT data [30] were treated us-
ing the Soave–Redlich–Kwong [20] EOS and the classical van der Waals mixing rules. The binary
interaction parameter q12 was calculated by minimizing the sum

∑N
i=1(V

i,exp − V i,calc)2, where Vi ,exp

and Vi ,calc are the experimental and calculated molar volumes of the mixture and N is the number of
experimental points. It was found that for the selected pressure and temperature q12 = 0.043. The
calculated fugacity coefficients have a weak linear composition dependence from which one could ob-
tain (∂ ln φbin

2 /∂x2)P=10 MPa,T =350 K = 0.09. The composition dependence of the parameter ∆13 can
be calculated using Eq. (27). For x0

1 = 0.5, ∆13 ≈ −30 (cm3/mol), while for the mixtures [5] CO2

(1) + naphthalene (2) and CO2 (1) + phenanthrene (2) at T = 308 K and P = 10 MPa, the nonide-
ality parameters for x2 → 0, calculated with Eqs. (39) and (40), are ∆12 = 9 × 103 (cm3/mol) and
∆12 = 4 × 103 (cm3/mol), respectively. Fugacity data [31] also indicated that the fugacity coefficients of
CO2 and ethane are independent of composition at T = 308 K in a wide range of pressures. Consequently,
the Lewis–Randall rule constitutes a good approximation for the mixture SC CO2 and SC ethane.
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A Simple Equation for the Solubility of a Solid in a Supercritical
Fluid Cosolvent with a Gas or Another Supercritical Fluid

E. Ruckenstein* and I. Shulgin†

Department of Chemical Engineering, State University of New York at Buffalo, Amherst, New York 14260

A simple equation for calculating the solubilities of solid substances in gaseous mixtures of a
supercritical fluid with another supercritical one or an inert gas was derived. This equation
involves only the solubilities of the solid in the individual constituents of the gaseous mixture
and the molar volumes of the latter. The equation was tested for the solubilities of naphthalene,
benzoic acid, caffeine, cholesterol, and soybean oil in gaseous mixtures containing at least one
supercritical fluid. In all cases good agreement with experimental data was found.

1. Introduction

The addition of a miscible compound to a supercritical
(SC) solvent can lead to a dramatic change (in most
cases to an enhancement) in the solubility of a solute.1-3

This phenomenon, known as the entrainer effect, is
relevant in the SC fluid technology. According to a
common definition, an entrainer is a compound that has
a higher volatility than the solute.1 As a consequence,
the entrainer can be a liquid, a solid, a gas, or a SC
fluid.2 While the cases in which the entrainer was a solid
or a liquid were frequently investigated both experi-
mentally and theoretically, those in which the entrainer
was a gas or a SC fluid have received less attention.
The former cases usually provided large enhancements
in the solubility of a solute (up to several hundred
percent).1-3 In contrast, as first noted by Gährs,4 a gas
entrainer can decrease the solubility of a solute com-
pared to that in a pure SC solvent; the addition of even
a small amount of an inert gas can dramatically reduce
the solute solubility (for instance, 5 vol % of N2 decreases
the solubility of caffeine in SC CO2 by 50%).4 The results
of Gährs were later qualitatively discussed by Brunner.5

A similar effect was observed for the solubility of a
solid in a gas mixture composed of two SC fluids.2,6-9

In the latter case, experiments2,6-9 have revealed that
the solubility has a value intermediate between those
recorded in the individual SC fluids. Thus, the addition
of SC ethane to SC carbon dioxide enhanced the solute
solubility compared to that found in pure CO2 but
decreased it relative to that in pure C2H6. King and co-
workers10,11 also investigated the effect of the addition
of helium on the solubilities of cholesterol and soybean
oil in SC CO2 and found that the addition reduces them
dramatically. To date, a theory that can predict the
effect of a gaseous entrainer on the solute solubility has
not yet been developed. The aim of the present research
was to derive an equation able to predict the solubility
of a solid in a SC fluid + entrainer mixture, when the
entrainer is another SC fluid or an inert gas. For this
purpose, the Kirkwood-Buff formalism12 for ternary
mixtures13 was used. In previous papers,13,14 the Kirk-
wood-Buff formalism for ternary mixtures was utilized
to describe the entrainer effect; however, those methods

are not applicable to gaseous entrainers, and the aim
of the present paper is to propose a method for such
cases.

2. Theory

2.1. Thermodynamic Relations for the Solubility
of Solids in SC Fluids and Their Mixtures. Let us
denote a SC fluid as component 1, a solid as component
2, and an entrainer as component 3. For the solubility
of a solid in individual SC fluids and their mixture, one
can write15 the relations

and

where R is the universal gas constant, P is the pressure,
T is the temperature in K, P2

0 and V2
0 are the saturation

vapor pressure and molar volume of the pure solute,
z2

b,i and φ2
b,i (i ) 1, 3) are the mole fractions and fugacity

coefficients of a solute in the gaseous phase of the binary
mixtures SC fluid (i) + solute (2) at equilibrium, and φ2

t

and z2
t are the fugacity coefficient and the mole fraction

of the solute in the gaseous phase of a ternary mixture
[SC fluid (1) + solid solute (2) + SC entrainer (3)] at
equilibrium. The main difficulties in predicting the
solubility of a solid in the pure SC fluids and their
mixtures are the calculations of the fugacity coefficients
of the solid in the binary and ternary mixtures. This
can be done by using the Kirkwood-Buff formalism for
ternary mixtures,13 which allows one to express the
fugacity coefficient of a solid in a ternary mixture in
terms of the fugacity coefficients of the solid in the
binary mixtures solid + individual SC fluids.

2.2. Expression for the Fugacity Coefficient of
a Solid in a Ternary Mixture at Infinite Dilution
by the Kirkwood-Buff Formalism. The following
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expression for the derivative of the fugacity coefficient
of a solid in a ternary mixture at infinite dilution can
be written13

where xi
t is the mole fraction of component i in the

ternary mixture, ck
0 (k ) 1, 3) is the bulk molecular

concentration of component k in the binary gaseous
mixture containing the constituents 1 and 3, denoted
further by binary mixture 1-3, and GRâ is the Kirk-
wood-Buff integral given by

In the above expressions, gRâ is the radial distribution
function between species R and â, r is the distance
between the centers of molecules R and â, and ∆Râ are
defined as follows:

It should be noted that for an ideal mixture ∆Râ ) 0.
Consequently, ∆Râ is a measure of the nonideality16 of
the binary mixture R - â.

Furthermore, for a binary 1-3 mixture, one can write
the relation12

where xi
b,1-3 and φi

b,1-3 are the mole fraction and the
fugacity coefficient of component i (i ) 1, 3), respectively,
in the binary gaseous mixture 1-3 (the superscript
b,1-3 indicates the binary 1-3 mixture).

Introducing ∆13 from eq 7 in eq 4 and integrating the
obtained expression yields

where φ2
t,∞ ) limx2

tf0 φ2
t is the fugacity coefficient of a

solute at infinite dilution in the ternary mixture 1-2-3
and A is an integration constant.

For an ideal binary gaseous mixture 1-3, φ3
b,1-3 ) 1

and

where V is the molar volume of the binary gaseous
mixture 1-3 and V1

0 and V3
0 are the molar volumes of

the individual fluids 1 and 3. Under such conditions,
eq 8 becomes

The main approximation of this paper is the assumption
that (∆12)x2

t)0 ) (G11 + G22 - 2G12)x2
t)0 and (∆23)x2

t)0 )
(G22 + G33 - 2G23)x2

t)0 are independent of the composi-
tion of the gaseous 1-3 mixture. Consequently, eq 10
becomes

where B(P,T) ) (∆12 - ∆23)x2
t)0/2.

Expressions for the constants A(P,T) and B(P,T) can
be obtained using the following limiting relationships
for the fugacity coefficient of a solute at infinite dilution
in the binary gaseous mixture 1-3:

and

Combining eqs 11-13 yields the final result

Equation 14 allows one to calculate the fugacity coef-
ficient of a solute at infinite dilution in the binary
mixture of two SC fluids, in terms of the fugacity
coefficients of the solute at infinite dilution for each of
the SC fluids. This expression will be used in the next
section to derive an expression for the solubility of a
solid in a gaseous mixture of two SC fluids.

2.3. Expression for the Solubility of a Solid in a
Gaseous Mixture Formed of Two SC Fluids. As-
suming that the solute solubilities are very small and
that the fugacity coefficients have the same values as
those at infinite dilution, eqs 1-3 can be recast as

where E ) (P2
0/P) exp[(P - P2

0)V2
0/RT] is a composition-

independent quantity.
By combining eqs 14-17, one obtains the following

expression for the solubility of a solid in a gaseous
mixture formed of two SC fluids:

ln φ2
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This simple equation does not require information about
the ternary mixture 1-2-3 or about its binary con-
stituents; it requires only the solubilities of the solid in
the individual fluids and the molar volumes of the latter.

3. Calculations

3.1. Systems Used in the Calculations. As noted
previously, two different types of systems are consid-
ered:

(a) The entrainer is a SC fluid. For comparison with
experiment, we selected the solubilities of naphtha-
lene,6,7 benzoic acid,2 and cholesterol8 in the binary
mixture of SC CO2 and SC C2H6.

(b) The entrainer is an inert gas. For comparison with
experiment, we selected the solubility4 of caffeine in the
binary mixture of SC CO2 and N2 and those of choles-
terol10,11 and soybean oil10,11 in the binary mixture of
SC CO2 and He.

3.2. Calculation Procedure. The molar volumes
(Vi

0) of the pure SC fluids at a given pressure and
temperature were calculated using multiparameter
equations of state,17,18 which are accurate even in the
critical region. The molar volumes (Vi

0) of the inert gases
(N2 and He) were calculated as for an ideal gas (Vi

0 )
RT/P). The solubilities of the solids in the individual SC
fluids were obtained from refs 4, 8, 10, 11, and 19-21.
The solubilities of the solids in the inert gases were
estimated22 as those in an ideal gas, i.e., using eqs 1 or
2 with the fugacity coefficients φ2

b,i ) 1. The saturated
vapor pressures of caffeine, cholesterol, and soybean oil,
as well as their molar volumes, were available in the
literature.23-26

4. Results

4.1. Entrainer as a SC Fluid. The predicted and
experimental solubilities of naphthalene, benzoic acid,
and cholesterol in the mixture of SC CO2 and SC C2H6
are presented in Figures 1-3, respectively. For the
solubility of cholesterol, the calculations were carried
out at T ) 328.1 K (because experimental data8 were
available only for this temperature). However, no data
on the solubility of cholesterol in pure SC CO2 at this
temperature were found, and we used the solubility at
T ) 333.15 K.21

4.2. Entrainer as an Inert Gas. The predicted and
experimental solubilities of caffeine in SC CO2 entrained
with N2 are compared in Figure 4. Explicit numerical
values for the experimental solubilities4 of caffeine in
SC CO2 and in SC CO2 entrained with N2 were not
available; they could be, however, evaluated from
Figures 1 and 3 of ref 4. The predicted and experimental
solubilities of cholesterol and soybean oil in SC CO2
entrained with He are compared in Figures 5 and 6,
respectively.

5. Discussion

Figures 1-6 show that eq 18 provides accurate
predictions for the solubilities of solid substances in a
SC fluid entrained with another SC fluid or with an
inert gas, such as nitrogen or helium. Because the
selected systems involve different entrainers and wide
ranges of pressure and temperature and because the
solubilities were determined by different authors (with
inevitable experimental errors), the predictions (Figures
1-6) can be considered as excellent. While there is some

disagreement regarding the experimental and calcu-
lated solubilities of cholesterol in SC CO2 entrained with
He (Figure 5), it should be pointed out that there are
large deviations among the literature data for this
system. Indeed, we used in the calculations for the
solubility of cholesterol in neat SC CO2 the values11 z2

t

) 6.2 × 10-5 at T ) 313.15 K and P ) 241.3 bar and z2
t

Figure 1. Comparison between experimental (O) and predicted
(solid lines) solubilities of naphthalene in SC CO2 and SC ethane
mixtures: (a) T ) 308 K, the mole fraction of SC CO2 in the solute-
free gaseous mixture x1

b,1-3 ) 0.496; (b) T ) 308 K, x1
b,1-3 ) 0.399;

(c) T ) 318 K, x1
b,1-3 ) 0.254; (d) T ) 318 K, x1

b,1-3 ) 0.474; (e) T
) 307.9 K, x1

b,1-3 ) 0.412. The experimental data are taken from
ref 6 for parts a-d and from ref 7 for part e.
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) 8.4 × 10-5 at T ) 323.15 K and P ) 275.8 bar,
whereas in the literature, one can also find that21 z2

t )
9.37 × 10-5 at T ) 313.15 K and P ) 250.0 bar and z2

t

) 12.4 × 10-5 at T ) 323.15 K and P ) 250.0 bar, as
well as24 z2

t )19.2 × 10-5 at T ) 313.15 K and P )
252.7 bar, and z2

t ) 32.4 × 10-5 at T ) 333.15 K and P
) 253.6 bar. The results in Figure 5 clearly show that
the accuracy of the binary data employed is important
in predicting the solubility in the mixture.

One of the assumptions made in the derivation of eq
18 is that the mixture of the two gases can be considered
ideal. This assumption is reasonable because it was
shown14 that |∆Râ| for a mixture composed of SC CO2
and SC C2H6 is much smaller than those for the
mixtures of a solid and SC CO2 or SC C2H6; this

Figure 2. Comparison between experimental (O) and predicted
(solid lines) solubilities of benzoic acid in a SC CO2 and SC ethane
mixture: T ) 328.15 K, the mole fraction of SC CO2 in the solute-
free gaseous mixture x1

b,1-3 ) 0.938. The experimental data are
taken from ref 2.

Figure 3. Comparison between experimental (O) and predicted
(solid lines) solubilities of cholesterol in SC CO2 and SC ethane
mixtures: (a) T ) 328.1 K, the mole fraction of SC CO2 in the
solute-free gaseous mixture x1

b,1-3 ) 0.035; (b) T ) 328.1 K, x1
b,1-3

) 0.14; (c) T ) 328.1 K, x1
b,1-3 ) 0.5; (d) T ) 328.1 K, x1

b,1-3 )
0.965. The experimental data are taken from ref 8.

Figure 4. Comparison between experimental (O) and predicted
(b) solubilities of caffeine (x2 is the mole fraction of caffeine, T )
353.15 K) in SC CO2 entrained with 5 vol % N2.

Figure 5. Comparison between experimental11 (b) and predicted
(solid lines) solubilities of cholesterol in the SC CO2 entrained with
He: (a) T ) 313.15 K, P ) 241.3 bar; (b) T ) 323.15 K, P ) 275.8
bar. Curve 1: solubility based on binary data from ref 11. Curve
2: solubility based on binary data from ref 21.

Figure 6. Comparison between experimental11 (b) and predicted
(solid line) solubilities of soybean oil in the SC CO2 entrained with
He. x2 is the mole fraction of soybean oil, and xHe is the mole
fraction of helium in the solute-free gaseous mixture. T ) 343.15
K, and P ) 655.0 bar.
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inequality becomes even stronger when the gaseous
mixture is composed of a SC fluid and an inert gas.

Equation 18 indicates the factors which affect the
solubility of a solid in a SC fluid in the presence of a
gaseous entrainer. The Brunner rule5 that an entrainer
with a lower (higher) critical temperature than that of
a SC fluid decreases (increases) the solubility of a solid
can predict only qualitatively when an entrainer will
increase or decrease the solubility. The solubility of a
solid in a SC fluid could be often correlated with the
density of the fluid.27 However, as mentioned by King
and co-workers,10,11 the change of the density of a
gaseous mixture cannot provide alone an explanation
for the change in the solubility when a SC fluid is
entrained with another SC fluid or an inert gas. Equa-
tion 18 clearly shows that the solubility of a solid in a
SC fluid in the presence of a gaseous entrainer depends
not only on the densities of the constituents of the
gaseous mixture but also on the solubilities of the solid
in the SC fluid and in the gaseous entrainer.

6. Conclusion

This paper deals with the entrainer effect on the
solubility of a solid in a mixture composed of a SC fluid
and an entrainer, when the latter is a SC fluid or an
inert gas. The main thermodynamic difficulty in the
treatment of the entrainer effect is the calculation of
the fugacity coefficient of a solute in a binary gaseous
mixture. In this paper, the Kirkwood-Buff formalism
for ternary mixtures was used to derive an expression
for this fugacity coefficient in terms of the fugacity
coefficients of the solid in each of the constituents of
the gaseous binary mixtures. One of the main assump-
tions is that the nonideality of the gaseous mixture (a
SC fluid + another SC fluid or an inert gas) can be
neglected compared to the nonidealities between the
solid and each of the components of the gaseous mixture.
Based on this reasonable simplification, a simple equa-
tion for the solubility of a solid in a SC fluid in the
presence of a gaseous entrainer was derived. According
to this equation (eq 18), the solubility in the presence
of a gaseous entrainer can be calculated in terms of the
solubilities of the solid in each of the individual con-
stituents of the gaseous mixture and the molar volumes
of the constituents of the gaseous mixture. The com-
parison with experimental data demonstrated that the
derived equation provides excellent agreement.
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Cubic Equation of State and Local Composition Mixing Rules:
Correlations and Predictions. Application to the Solubility of Solids
in Supercritical Solvents

E. Ruckenstein* and I. Shulgin†

Department of Chemical Engineering, State University of New York at Buffalo, Buffalo, New York 14260

A family of new mixing rules for the cubic equation of state through a synthesis between the
classical van der Waals mixing rule and the local composition concept is proposed. The binary
interaction parameter in the van der Waals mixing rule, which is devoid of physical meaning,
is thus replaced with a more physically meaningful parameter. The new mixing rules were used
to correlate the dependence on pressure of the solubilities of a number of solid substances,
including penicillins, in supercritical fluids. Because the new mixing rules contain physically
meaningful parameters, dependent on the energies of the binary intermolecular interactions,
the calculations of those energies can allow one to predict the solubilities of solids in supercritical
fluids. Such predictions were made for the solubility of solid CCl4 in the supercritical CF4. The
required binary intermolecular energies were computed with the help of quantum mechanical
ab initio calculations, and a good agreement between the predicted and experimental solubilities
was obtained.

Introduction

In a number of areas of modeling phase equilibria,
the cubic equation of state (EOS) provided equal or even
better results than the traditional approach based on
the activity coefficient concept. In fact, for certain types
of phase equilibria, the EOS is the only method that
provided acceptable results. The solubility of solids in
a supercritical fluid (SCF) constitutes such a case. For
the solubility of a solid in a SCF [SCF (1) + solid solute
(2)], one can write the well-known relation1

where P is the pressure, T is the temperature in K, R
is the universal gas constant, φ2 is the fugacity coef-
ficient of the solute in the binary mixture, y2 is the mole
fraction at saturation of the solute, and P2

0 and V2
0 are

the saturation vapor pressure and molar volume of the
solid solute, respectively.

Equation 1 shows that the solubility of a solid in SCF
depends among others on the fugacity coefficient φ2, and
as is well-known, this coefficient is responsible for the
unusually large values of the solubility. These solubili-
ties are much larger than those in ideal gases, and
enhancement factors of 104-108 are not uncommon.2
They are, however, still relatively small and usually do
not exceed several mole percent.

The fugacity coefficient can be calculated using a
suitable EOS. The Soave-Redlich-Kwong3 EOS (SRK
EOS) will be employed in this paper. Starting from the
SRK EOS

the following expression for the fugacity coefficient was
obtained:4

In eqs 2 and 3, V is the molar volume, z is the
compressibility factor, n is the total number of moles
in the system, and ni is the number of moles of
component i. Equations 2 and 3 show that the fugacity
coefficient φ2 at a given pressure and temperature can
be calculated if the parameters a and b and their
derivatives with respect to the number of moles of solute
are known. While near the critical point the fluctuations
are important and an EOS involving them should be
used,1 we neglect for the time being their effect.

The mixture parameters a and b can be expressed in
terms of those for the pure components aii and bii, using
a variety of mixing rules starting from those of van der
Waals4 to the modern ones.5,6 For the solubility of a solid
in a SCF, the van der Waals mixing rules are most
often used. They have the form

and

where yi is the mole fraction of component i.
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When the parameters are applied to a binary mixture
and considering that a12 ) xa11a22(1 - k12) and b12 )
(b11 + b22)/2, they become

and

where k12 is the interaction parameter. Using these
mixing rules, one easily obtains

Among the drawbacks of the van der Waals mixing
rules, an important one concerns the interaction pa-
rameter k12. This quantity being purely empirical cannot
be predicted on a physical basis. In addition, being
temperature-dependent, it must be calculated for each
isotherm. The aim of this paper is to suggest mixing
rules based on the local composition (LC) concept1 that
no longer involve empirical parameters such as k12 but
parameters with a more clear physical meaning. The
application of such rules to supercritical mixtures is
most natural, because the near critical density fluctua-
tions generate large local density and composition
changes.7

Theory and Formulas

1. LC Concept. According to the LC concept, the
composition in the vicinity of any molecule differs from
the overall composition. If a binary mixture is composed
of components 1 and 2 with mole fractions y1 and y2,
respectively, four LCs can be defined: the local mole
fractions of components 1 and 2 near a central molecule
1 (y11 and y21) and the local mole fractions of components
1 and 2 near a central molecule 2 (y12 and y22).
Numerous attempts have been made to express the LCs
in terms of the bulk compositions and intermolecular
interaction parameters.8-15 The idea of LC acquired
acceptance starting with Wilson’s paper on phase equi-
libria,8 where the following expressions for the LCs were
suggested:

and

with λij being the interaction parameter between mol-
ecules i and j.1,8

Vera and Panayiotou used the quasi-chemical ap-
proach and suggested the following expressions for the
LCs:10,11

and

where G12 ) exp[(ε11 + ε22 - 2ε12)/RT] and εij is the
interaction energy parameter for the pair i and j.

On the basis of a lattice model, the following expres-
sions for LC were derived:12-14

and

where ∆ ) 2e12 ) e11 - e22 and eij is an interaction
energy parameter between molecules i and j.

Recently,15 a modification of the Wilson expressions
for LCs was proposed by assuming that the interaction
energy parameter between molecules of different types
depends on the composition, and the following expres-
sions were obtained:

and

where λij
0 is the interaction energy parameter between

molecules i and j (i * j) when yi f 0 and λji
0 is the

interaction energy parameter between molecules j and
i (i * j) when yj f 0.

2. LC Mixing Rules. There were attempts16-20 to
express the mixture parameters a and b in terms of the
LC. However, most of the suggested mixing rules belong
to the so-called density-dependent mixing rules (with
the mixture parameter a being a function of the mixture
density) and require information about the above den-
sity. Our considerations will be restricted to density-
independent mixing rules.

The van der Waals parameters a and b are measures
of the attractive energy in intermolecular interactions
and size, respectively. It is, therefore, reasonable to
express for a mixture these parameters in terms of LCs.

In the present paper we suggest a family of LC mixing
rules in which some or all of the bulk compositions in
expressions (4) and (5) are replaced by LCs. Numerous
expressions are possible, and calculations have been
performed with many of them. We provide in the tables

a ) y1
2a11 + y2

2a22 + 2y1y2(a11a22)
0.5(1 - k12) (6)

b ) y1b11 + y2b22 (7)

RT ln φ1 ) -RT ln V - b
V

+ [ RT
V - b

- a
b(V + b)

+

a
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V ]b11 - 1

b(ln V + b
V )[2y1a11 +

2y2(a11a22)
0.5(1 - k12)] - RT ln z (8)
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only results obtained with the following mixing rules,
which appear to be more meaningful from a physical
point of view:

For the parameter a

and

and for the parameter b

and

where ai ) aii and bi ) bii. Many of the other combina-
tions provided comparable results.

If the LCs are expressed through eqs 11-14, then the
expressions for the mixture parameters a and b will
contain only one unknown parameter, G12 or ∆, instead
of the interaction parameter k12. It should be noted that,
in contrast to the interaction parameter k12, G12 and ∆
have a clear physical meaning connected with the
intermolecular interaction energies. Furthermore, it was
recently21,22 shown that the latter parameters can be
calculated independently through an ab initio quantum
mechanical calculation.

Wilson’s expressions for the LCs (eqs 9 and 10) can
also be used to generate mixing rules: the combination
of eqs 9 and 10 with eqs 17a and 18b leads to two-
parameter mixing rules, with parameters λ12 - λ11 and
λ21 - λ22. Three-parameter mixing rules with param-
eters λ12

0 - λ11, λ21
0 - λ22, and λ21

0 - λ12
0 can be obtained

by combining eqs 15 and 16 for the LCs and eqs 17a
and 18b. This flexibility allows one to use two- or three-
parameter mixing rules for systems for which the one-
parameter mixing rules fail.

It should be also noted that eqs 18b and 18c provide
a temperature dependence for parameter b. In contrast,
the conventional expressions (eq 18b), used in numerous
mixing rules,6 provide no temperature dependence of
parameter b, even though the direct calculation of a and
b from experimental data indicated that b is slightly
temperature-dependent.23

This family of LC mixing rules will now be applied to
binary supercritical mixtures, but of course they can be
applied to any kind of phase equilibria.

Correlation of Solubility Data

1. Testing New Mixing Rules for the Supercriti-
cal Mixture CO2 + Naphthalene. The mixture CO2
+ naphthalene was selected to test the new mixing rules
because the solubility of naphthalene in supercritical
CO2 was determined in numerous papers and reliable
data at several temperatures are available. The calcula-
tions were carried out at three different temperatures
(308, 318, and 328 K). The critical temperatures and
pressures of naphthalene and CO2 were taken from refs
24 and 25 and the values of P2

0 and V2
0 for naphthalene

from ref 25. Table 1 compares the new mixing rules with
one adjustable parameter and the van der Waals mixing
rule in a wide range of pressures and at three different
temperatures.

One can see from Table 1 that SRK EOS with the one-
parameter new mixing rules describes the solubility of
naphthalene in supercritical CO2 somewhat better (at
308 K) or better (at 318 and 328 K) than the van der
Waals mixing rules. It should be noted that the energy
parameter exhibits a weak temperature dependence.

2. Correlation of the Solubility of Solids in
Various SCF. The new LC mixing rules were also
tested for the solubility of a large number of solid solutes
in various SCFs. The critical temperatures and pres-
sures of solids and SCFs were taken from refs 24 and
25. The molar volumes of the solids and their saturated
vapor pressures were taken from ref 25. The saturated
vapor pressure of perylene was found in ref 26. The
results are compared with the van der Waals mixing
rules in Table 2, which shows that they are comparable.
The parameters of SRK EOS (a and b) can be expressed
by combining one of eqs 17a-c with one of eqs 18a-c.
Only a few combinations have been included in Table
2; the other ones have also been tested and provided
comparable results.

3. Correlation of the Solubilities of Penicillins
V and G in SCF CO2. As already mentioned, the LC
mixing rules can contain one, two, or three adjustable
parameters. This flexibility has proven to be useful in
representing the solubilities of antibiotic penicillins in
SCF CO2. These solubilities could not be satisfactorily
correlated by the cubic EOS with the conventional
mixing rules,27,28 and several empirical expressions
containing up to seven parameters were employed to
correlate them.28 The LC mixing rules were used by us

a ) y1
2a1 + y2

2a2 + 2y11y22(a1a2)
0.5 (17a)

a ) y11
2a1 + y22

2a2 + 2y11y22(a1a2)
0.5 (17b)

a ) y11
2a1 + y22

2a2 + 2y12y21(a1a2)
0.5 (17c)

b ) y1b1 + y2b2 (18a)

b ) y11b1 + y22b2 (18b)

b ) y12b1 + y21b2 (18c)

Table 1. Comparison between the LC Mixing Rules and
the van der Waals Mixing Rules for the Correlation of
Solubilitiesa of Naphthalene in Supercritical CO2 at
Three Different Temperatures

a b LC adjustable parameterb AAD,c %

T ) 308 K
eq 6 eq 7 0.09803 11.36
eq 17b eq 18a eqs 13 and 14 -243.32 10.80
eq 17b eq 18c eqs 13 and 14 -220.99 10.84
eq 17b eq 18a eqs 11 and 12 -243.63 11.00
eq 17b eq 18c eqs 11 and 12 -220.88 10.84
eq 17c eq 18a eqs 11 and 12 -236.90 11.58

T ) 318 K
eq 6 eq 7 0.10047 19.39
eq 17b eq 18a eqs 13 and 14 -249.43 15.91
eq 17b eq 18c eqs 13 and 14 -224.65 13.91
eq 17b eq 18a eqs 11 and 12 -243.63 15.87
eq 17b eq 18c eqs 11 and 12 -224.51 13.90
eq 17c eq 18a eqs 11 and 12 -239.67 12.27

T ) 328 K
eq 6 eq 7 0.09524 14.56
eq 17b eq 18a eqs 13 and 14 -222.87 8.03
eq 17b eq 18c eqs 13 and 14 -198.33 8.29
eq 17b eq 18a eqs 11 and 12 -222.40 7.99
eq 17b eq 18c eqs 11 and 12 -198.15 8.30
eq 17c eq 18a eqs 11 and 12 -209.60 11.28

a Experimental solubilities of naphthalene in supercritical CO2
were taken from: Tsekhanskaya, Yu. V.; Iomtev, M. B.; Mushkina,
E. V. Russ. J. Phys. Chem. 1964, 38, 1173. b Adjustable parameter
k12 is dimensionless, and adjustable parameters ε11 + ε22 - 2ε12
in eqs 11 and 12 and ∆ in eqs 13 and 14 are given in J/mol.
c AAD(%) ) 100[ ∑

i)1

n
abs(y2

exp - y2
calc)/(ny2

exp)], where n is the number
of experimental points, y2

exp is the experimental solubility, and
y2

calc is the calculated solubility.
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to correlate those data. The critical temperatures and
pressures and the acentric factor ω of penicillins V and
G estimated in refs 27 and 28 were used. The saturated
pressure of penicillin V was taken from ref 27, and that
of penicillin G was estimated using the Lee and Kesler
correlation.29 The results of the calculations are listed
in Table 3, which shows that SRK EOS with one
adjustable parameter LC mixing rules provided values
comparable to those obtained with the van der Waals
mixing rule. However, the two- and three-parameter LC
mixing rules provided improvements in the correlations
of experimental solubilities. While the improvement was
achieved by adding additional parameters, it should be
emphasized that the six-parameter empirical equation28

provided for the solubility of penicillin G in SCF CO2
the same accuracy as the new mixing rule with only
three adjustable parameters. In addition, those three
parameters have clear physical meaning, and there is
the possibility for their prediction on the basis of
quantum mechanical ab initio calculations, as shown
for a more simple case below.

4. LCs Obtained during the Calculations Listed
in Table 4 for the CO2/Naphthalene Mixture. One
may note that y1 is somewhat smaller than y12, hence,
that there is some enrichment of the solvent around a
solute molecule. Experimental30 and integral equation
studies31 have shown that the local density of the
solvent around a solute is higher than its bulk density.
The calculation of the densities from the mole fractions
involves the correlation volume (where the local density
differs from the bulk one) which is not available.
Consequently, either the enhancement is mainly a
density effect or the results reflect a limitation of the
model employed.

Prediction of the Solubility of Solid Substances
in SCF

To our knowledge, no successful prediction of the
solubilities of solid substances in SCFs has been made.
Because of the physical meaning of the parameters
contained in the LC mixing rules, such an attempt
becomes possible. Indeed, the new parameters depend
on the intermolecular energies which can be calculated
independently.

Quantum mechanical ab initio calculations were
performed recently to calculate the interaction energies
between pairs of molecules in binary systems of water
and alcohols or other organic compounds.21,22 These
energies were used to calculate the Wilson and UNI-
QUAC parameters and then to successfully predict the
activity coefficients. The interaction energies were
calculated as follows:21,22 (a) A cluster composed of eight
molecules (four of each kind) was considered to repre-
sent a dense fluid. (b) The cluster geometry was identi-
fied by an optimization procedure involving the PM3
semiempirical method, followed by the Hartree-Fock
method with a 6-31 G** basis set. (c) Interacting
molecular pairs (like and unlike pairs) were selected
from the above optimized cluster. (d) The interaction
energy of each molecular pair was computed using the
Hartree-Fock method for the separation distances and
orientation obtained in the previous steps.

A similar approach with the following modifications
was used in the present paper: (1) The more rigorous
Møller-Plesset (MP) perturbation theory32,33 was se-
lected instead of the Hartree-Fock method. (2) Clusters
of two molecules were employed for the geometry

Table 2. Comparison between the LC Mixing Rules and
the van der Waals Mixing Rule for the Solubilities of
Solids in SCFs at Various Temperaturesa

AAD (%) with different mixing rules

system T, K M1 M2 M3

NP + C2H4
b 285.15 23.86 23.56 23.56

NP + C2H4
b 298.15 25.25 24.84 24.89

NP + C2H4
b 308.15 23.92 23.51 23.58

NP + C2H4
b 318.15 29.90 29.37 29.48

2,6-D + CO2
c 308.2 21.60 21.12 21.02

2,6-D + CO2
c 328.2 33.62 7.65 8.00

2,7-D + CO2
c 308.2 6.84 6.95 7.51

2,7-D + CO2
c 328.2 12.03 9.47 10.04

PR + CO2
d 308.2 10.26 10.24 10.23

PR + CO2
d 318.2 8.23 8.22 8.23

PR + CO2
d 323.2 6.55 6.48 6.49

PR + CO2
d 338.2 7.98 7.92 7.94

AT + CO2
e 313 14.97 15.0 15.0

AT + CO2
e 323 13.34 13.39 13.40

AT + CO2
e 333 5.56 5.58 5.58

AT + C2H6
e 313 10.13 10.15 10.15

AT + C2H6
e 323 7.47 7.50 7.49

AT + C2H6
e 333 8.79 8.82 8.82

PH + CO2
e 313 4.34 5.14 5.14

PH + CO2
e 323 4.08 4.88 4.89

PH + CO2
e 333 8.56 7.88 7.88

PH + C2H6
e 313 5.25 5.20 5.20

PH + C2H6
e 323 2.09 2.12 2.12

PH + C2H6
e 333 3.23 3.11 3.11

PL + CO2
e 323 10.23 10.22 10.22

PL + CO2
e 333 15.74 15.74 15.74

PL + C2H6
e 333 19.20 19.20 19.20

a In Table 2 the following abbreviations were used: NP, naph-
thalene; 2,6-D, 2,6-dimethylnaphthalene; 2,7-D, 2,7-dimethylnaph-
thalene; PR, pyrene; AT, anthracene; PH, phenanthrene; PL,
perylene; M1, van der Waals mixing rules (eqs 6 and 7); M2, LC
mixing rule (eqs 17b and 18a with LCs given by eqs 13 and 14);
M3, LC mixing rules (eqs 17b and 18a with LCs given by eqs 11
and 12). b Tsekhanskaya, Yu. V.; Iomtev, M. B.; Mushkina, E. V.
Russ. J. Phys. Chem. 1964, 38, 1173. c Iwai, Y.; Mori, Y.; Hosotani,
H.; et al. J. Chem. Eng. Data 1993, 38, 509. d Bartle, K. D.;
Clifford, A. A.; Jafar, S. A. J. Chem. Eng. Data 1990, 35, 355.
e Anitescu, G.; Tavlarides, L. L. J. Supercrit. Fluids 1997, 10, 175.

Table 3. Solubilitity of Penicillins V and G in Supercritical CO2, Described by SRK EOS with Various Mixing Rulesa

one-parameter mixing rules,
AAD (%)

two-parameter mixing rules,
AAD (%)

three-parameter mixing rules,
AAD (%)

system temp, K M1 M2 M3 M4

penicillin V + CO2
b 314.85 39.09 39.52 33.50 33.16

penicillin V + CO2
b 324.85 41.42 41.51 41.46 40.78

penicillin V + CO2
b 334.85 51.96 51.96 51.81 46.51

penicillin G + CO2
c 313.15 29.08 29.06 29.06 24.32

penicillin G + CO2
c 323.15 28.37 28.31 28.30 21.50

penicillin G + CO2
c 333.15 41.87 41.82 41.81 27.40

a M1 ) van der Waals mixing rule (eqs 6 and 7), M2 ) LC mixing rule (eqs 17b and 18a with LCs given by eqs 13 and 14), M3 ) LC
mixing rule (eqs 17b and 18a with LCs given by eqs 9 and 10), and M4 ) LC mixing rule (eqs 17a and 18c with LCs given by eqs 15 and
16). b Experimental solubility data were taken from ref 27. c Experimental solubility data were taken from ref 28.
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optimization and calculation of the intermolecular ener-
gies. Of course, it would have been preferable to consider
larger clusters. However, the computational cost of such
calculations for clusters containing seven to eight
molecules by the MP method would have been prohibi-
tively high. For the sake of illustration, the relatively
simple system of nonpolar and symmetrical components
[CF4 (1) + CCl4 (2)] was selected. Each pair (CF4 + CCl4,
CF4 + CF4, and CCl4 + CCl4) was treated using the MP2
method (with the 6-31G basis sets) available in the
standard Gaussian software.34 The results of these
calculations are summarized in Table 5 and used to
predict the solubility of solid CCl4 in the SCF CF4.
Experimental data regarding the solubility of solid CCl4
in the SCF CF4 are available in the literature.35 The
required data for the pure-component properties were
taken from refs 24 and 36. The solubilities of solid CCl4
in the SCF CF4 were predicted for three different
temperatures. Parameter a was calculated using eq 17a
and parameter b using eq 18a. The LCs were expressed
through the Wilson equations (eqs 9 and 10). A com-
parison between the predicted and experimental solu-
bilities is presented in Figures 1-3, which show that
the suggested method provides excellent predictions
regarding the pressure dependence of the solubility of
solid CCl4 in the SCF CF4 at 244 and 249 K but only
satisfactory agreement at 234 K. However, the authors
of ref 35 pointed out that the experiments at 234 K
“proved to be unexpectedly difficult” and may have been
affected by the presence of a third liquid phase.

Conclusion

A family of mixing rules for the cubic EOS was
suggested in which the empirical binary interaction
parameter k12 in the van der Waals mixing rule was
replaced by a physically more meaningful parameter.
In the new mixing rules, some mole fractions in the
expressions of parameters a and b in the van der Waals
mixing rules were replaced with various expressions for

the local mole fractions. The family of the new mixing
rules can contain one, two, or even three adjustable
parameters. The mixing rules were applied to the
correlation of the solubilities of a number of solids in
SCFs. One of the advantages of the new mixing rules
is their flexibility regarding the number of adjustable
parameters. In particular, it was shown that the new
mixing rules with two or three adjustable parameters
provided better correlations of the experimental data
for the solubilities of the antibiotic penicillins in SCF
CO2 than the conventional mixing rules or the empirical
expressions containing many more parameters.

Another attractive feature of the new mixing rules is
that they allow one to predict the solubilities of solids
in SCFs using only data for the pure components and
the intermolecular interactions. In this paper, the
solubilities of solid CCl4 in the SCF CF4 were predicted
for three different temperatures. The energies of the
intermolecular interactions (CF4 + CCl4, CF4 + CF4, and

Table 4. Comparison between Local and Bulk Mole
Fractions in CO2 (1) + Naphthalene (2) Mixture at T )
308.15 K Found from Solubility Dataa

pressure, bar y1 y12

60.8 0.999 0.999
79.5 0.997 0.997
80.6 0.996 0.996
92.2 0.992 0.993

106.4 0.990 0.990
152.0 0.985 0.986
192.5 0.983 0.985
243.2 0.982 0.984
293.8 0.982 0.984
334.4 0.982 0.984

a The calculations for Table 4 were carried out using the LC
mixing rules 17b and 18a with the LCs given by eqs 13 and 14.
The calculations for the mixtures CO2 (1) + pyrene (2) at T )
308.15 K and C2H6 (1) + phenanthrene (2) at T ) 313.15 K
indicated a similar behavior.

Table 5. Interaction Energies by Ab Initio Calculations
Using the MP2 Method with a 6-31G Basis Seta

system
E11

(kJ/mol)
E22

(kJ/mol)
E12

(kJ/mol)
∆u12

(J/mol)
∆u21

(J/mol)

CF4 (1) + CCl4 (2) -1.968 -5.528 -2.944 -976 2584
a Eij is the energy of intermolecular interactions between

molecules i and j, and ∆uij ) λij - λii are the Wilson parameters
in eqs 9 and 10.

Figure 1. Comparison between predicted (O) and experimental35

(b) solubilities of solid CCl4 in the SCF CF4 at 249 K. Parameter
a is given by eq 17a and parameter b by eq 18a. The LCs are given
by the Wilson equations (eqs 9 and 10).

Figure 2. Comparison between predicted (O) and experimental35

(b) solubilities of solid CCl4 in the SCF CF4 at 244 K. Parameter
a is given by eq 17a and parameter b by eq 18a. The LCs are given
by the Wilson equations (eqs 9 and 10).

Figure 3. Comparison between predicted (O) and experimental35

(b) solubilities of solid CCl4 in the SCF CF4 at 234 K. Parameter
a is given by eq 17a and parameter b by eq 18a. The LCs are given
by the Wilson equations (eqs 9 and 10).
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CCl4 + CCl4) were computed using quantum mechanical
ab initio calculation. A good agreement was obtained.
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Solubility of gases in mixed solvents  

3.1  Henry’s constant in mixed solvents from binary data. 
3.2  Salting-out or -in by fluctuation theory. 
3.3  The solubility of binary mixed gases by the fluctuation 

theory. 
3.4  Prediction of the solubility of gases in binary polymer 

+ solvent mixtures. 
3.5  Ideal multicomponent liquid solution as a mixed  

solvent. 
3.6  Solubility and local structure around a dilute solute 

molecule in an aqueous solvent: From gases to bio-
molecules.   

 
 
Introduction to Chapter 3 
 
The solubilities of gases in binary, ternary or more complex 
multicomponent solvents are good examples in which the 
Kirkwood–Buff theory of solutions provides excellent re-
sults that cannot be obtained using the methods of tradi-
tional thermodynamics. Thermodynamics cannot provide 
explicit pressure, temperature, and composition dependence 
of the thermodynamic functions, such as the activity coeffi-
cients of the components. Therefore, various assumptions 
regarding the activity coefficients must be made. In con-
trast, the Kirkwood–Buff theory of solution allows one to 
establish, in some cases, relations between multicomponent 

and binary mixtures (see 3.5).  Although these relations are 
not simple, they could be applied to ternary (3.1–3.4) and 
quaternary (3.5) mixtures to derive relations for the activity 
coefficients.  

Our results regarding the gas solubility in binary mixed 
solvents are presented in papers (3.1–3.2, 3.4).  The new 
expression for the composition dependence of Henry's con-
stant in mixed solvents, which requires only the solubilities 
in the pure solvents (3.1), and the new analysis of the gas 
solubility in aqueous salt solutions, which provides new 
criteria for salting-in or salting-out, should be noted (3.2).  
In addition, a method for predicting Henry's constant in 
multicomponent (ternary and higher) mixed solvents was 
developed and compared with experiment (3.5). Our 
method also allows one to predict the solubility of a binary 
(or multicomponent) gas mixture in individual solvents 
(3.4). 

Structural and energetic characteristics of infinitely dilute 
solutions of gases in water and aqueous mixed solvent are 
also examined in (3.6). The Kirkwood–Buff theory of solu-
tion was used to extract from solubility data information 
about the local composition of the solvent around a gas 
molecule (3.6).  It is worth mentioning that such informa-
tion could be obtained until now only experimentally by 
small-angle X-ray scattering, small-angle neutron scatter-
ing, light scattering, and related methods.  
  

 



Henry’s Constant in Mixed Solvents from Binary Data

I. Shulgin† and E. Ruckenstein*

Department of Chemical Engineering, State University of New York at Buffalo, Buffalo, New York 14260

The Kirkwood-Buff formalism was used to derive an expression for the composition dependence
of the Henry’s constant in a binary solvent. A binary mixed solvent can be considered as composed
of two solvents, or one solvent and a solute, such as a salt, polymer, or protein. The following
simple expression for the Henry’s constant in a binary solvent (H2t) was obtained when the
binary solvent was assumed ideal: ln H2t ) [ln H2,1(ln V - ln V3

0) + ln H2,3(ln V1
0 - ln V)]/

(ln V1
0 - ln V3

0). In this expression, H2,1 and H2,3 are the Henry’s constants for the pure single
solvents 1 and 3, respectively; V is the molar volume of the ideal binary solvent 1-3; and V1

0

and V3
0 are the molar volumes of the pure individual solvents 1 and 3. The comparison with

experimental data for aqueous binary solvents demonstrated that the derived expression provides
the best predictions among the known equations. Even though the aqueous solvents are nonideal,
their degree of nonideality is much smaller than those of the solute gas in each of the constituents.
For this reason, the ideality assumption for the binary solvent constitutes a most reasonable
approximation even for nonideal mixtures.

1. Introduction

The solubility of a gas in a mixture of solvents is a
problem of interest in many industrial applications. One
example is the removal of acidic compounds from
industrial and natural gases.1 The solubility of a gas in
a binary mixture containing water has particular im-
portance because it is connected with the solubility of
gases in blood, seawater, rainwater, and many other
aqueous solutions of biological and environmental sig-
nificance.2 Therefore, it is important to be able to predict
the gas solubility in a mixture in terms of the solvent
composition and the solubilities in the individual con-
stituents of the solvent or in one pure component and a
selected composition of the mixed solvent.

The oldest and simplest relationship between the
Henry’s constant in a binary solvent and those in the
individual solvents [throughout this paper, only binary
mixtures of solvents will be considered, and the follow-
ing subscripts for the components will be used: 1, first
solvent; 2, solute (gas); 3, second solvent] is that
proposed by Krichevsky3

where H2,t, H2,1, and H2,3 are the Henry’s constants in
the binary solvent 1-3 and in the individual solvents 1
and 3, respectively, and x1

b,1-3 and x3
b,1-3 are the mole

fractions of components 1 and 3, respectively, in the
binary solvent 1-3.

The rigorous thermodynamic equation4 for the excess
Henry’s constant in a binary solvent has the form

where γ2,t
∞ , γ2,1

∞ , γ2,3
∞ (γ2,t

∞ ) limx2f0 γ2,t, γ2,1
∞ ) limx2f0

γ2
b,1-2, and γ2,3

∞ ) limx2f0 γ2
b,2-3) are the activity coef-

ficients of the solute in the ternary (γ2,t) and binary (γ2,1

and γ2,3) mixtures at infinite dilution. It shows that
Krichevsky’s relationship (eq 1) is valid when

Although, in principle, eq 3 can be satisfied by some
nonideal systems, it is surely valid when the ternary
mixture and the binary mixtures (1-2 and 2-3) are
ideal.

Equation 2 was used as the starting point for the
prediction of the Henry’s constant in a binary solvent
mixture in terms of binary data, by expressing the
activity coefficients at infinite dilution (γ2,t

∞ , γ2,1
∞ , and

γ2,3
∞ ) through the Wilson5,6 or the van Laar equations.7,8

The Kirkwood-Buff theory of solution9 was used by
O’Connell to develop a semiempirical expression for the
prediction of the Henry’s constant in binary solvents
from binary data.4 He found that his expression pro-
vided better results than that of Krichevsky and that
obtained5 by combining the Wilson equation with eq 2.
Using a corresponding state method, Campanella et al.10

calculated the Henry’s constant for mixed solvents and
obtained good agreement when the excess volume of the
nonideal solvent was taken into account.

The present authors employed the Kirkwood-Buff
theory of solution to obtain expressions for the deriva-
tives of the activity coefficients in a ternary mixture
with respect to the mole fractions and applied them to
ternary mixtures when the composition(s) of one (or two)
component(s) was (were) small.11,12 That approach will
be used here to derive new expressions that can predict
the Henry’s constant in a binary solvent mixture in
terms of binary data.

2. Theory

2.1. Expressions for the Derivatives of the Activ-
ity Coefficients in a Ternary Mixture with Respect
to Mole Fractions through the Kirkwood-Buff
Theory of Solution. For the present purpose, the
following two derivatives, obtained in a previous pa-
per,11 are useful

* Correspondence author. E-mail: feaeliru@acsu.buffalo.edu.
Fax: (716) 645-3822. Phone: (716) 645-2911, ext. 2214.

† E-mail: ishulgin@eng.buffalo.edu.

ln γ2,t
∞ ) x1

b,1-3 ln γ2,1
∞ + x3

b,1-3 ln γ2,3
∞ (3)

ln H2,t ) x1
b,1-3 ln H2,1 + x3

b,1-3 ln H2,3 (1)

ln H2,t
E ) ln γ2,t

∞ - x1
b,1-3 ln γ2,1

∞ - x3
b,1-3 ln γ2,3

∞ (2)
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and

where x2
t is the mole fraction of component 2 in the

ternary mixture, ck is the bulk molecular concentration
of component k in the ternary mixture 1-2-3, and GRâ
is the Kirkwood-Buff integral given by

In the above expression, gRâ is the radial distribution
function between species R and â, r is the distance
between the centers of molecules R and â, and ∆Râ and
∆123 are defined as

and

One can verify that the factors in the square brackets
in the numerators of eqs 4 and 5 and ∆123 can be
expressed in terms of ∆Râ as follows

and

The insertion of eqs 9-11 into eqs 4 and 5 pro-
vides rigorous expressions for the derivatives (∂ ln
γ2,t/∂x3

t )T,P,x2
t and (∂ ln γ1,t/∂x2

t )T,P,x3
t in terms of ∆Râ and

concentrations.
It should be noted that ∆ij is a measure of the

nonideality13 of the binary mixture R-â because, for an
ideal mixture, ∆Râ ) 0. For the ternary mixture 1-2-
3, ∆123 also constitutes a measure of nonideality. Indeed,
inserting GRâ

id for an ideal mixture14 into the expression
∆123, one obtains that for, an ideal ternary mixture,
∆123 ) 0.

At infinite dilution of component 2, eqs 4 and 5
become

and

In eqs 12 and 13, c1
0 and c3

0 represent the bulk molecu-
lar concentrations of components 1 and 3, respectively,
in the gas-free binary solvent 1-3. In addition to eqs
12 and 13, the following expression9 for the derivative
of the activity coefficient in a binary mixture with
respect to the mole fractions will be used in the next
section to derive the basic equation for the Henry’s
constant for mixed solvents

where x3
b,1-3 and γ1

b,1-3 are the mole fraction of compo-
nent 3 and the activity coefficient of component 1,
respectively, in the gas-free binary solvent 1-3.

2.2. Composition Dependence of the Henry’s
Constant for a Binary Solvent. To obtain the
composition dependence of the Henry’s constant in a
binary solvent, one should consider either the derivative
(∂ ln H2t/∂x3

t )P,T,x2
t )0 or the derivative (∂ ln H2t/∂x1

t )P,T,x2
t )0.

To obtain the above derivatives, one can start from the
following expression for the Henry’s constant in a binary
solvent4

where f i
0(P,T) is the fugacity of component i.15 The

combination of eqs 12 and 15 leads to the result

Integration of eq 16 provides the following relation for
the composition dependence of the Henry’s constant in
a binary solvent mixture at constant temperature and
pressure

(∂ ln γ2,t

∂x3
t )

T,P,x2
t

)

-
(c1 + c2 + c3)(c1[G11 + G23 - G12 - G13] + c3[-G12 - G33 + G13 + G23])

c1 + c2 + c3 + c1c2∆12 + c1c3∆13 + c2c3∆23 + c1c2c3∆123

(4)

(∂ ln γ1,t

∂x2
t )

T,P,x3
t

)

(c1 + c2 + c3)(c3[G11 + G23 - G12 - G13] + c2∆12 + c2c3∆123)
c1 + c2 + c3 + c1c2∆12 + c1c3∆13 + c2c3∆23 + c1c2c3∆123

(5)

GRâ ) ∫0

∞
(gRâ - 1)4πr2 dr (6)

∆Râ ) GRR + Gââ - 2GRâ, R * â (7)

∆123 ) G11G22 + G11G33 + G22G33 + 2G12G13 +

2G12G23 + 2G13G23 - G12
2 - G13

2 - G23
2 -

2G11G23 - 2G22G13 - 2G33G12 (8)

G12 + G33 - G13 - G23 )
∆13 + ∆23 - ∆12

2
(9)

G11 + G23 - G12 - G13 )
∆12 + ∆13 - ∆23

2
(10)

∆123 )

-
(∆12)

2 + (∆13)
2 + (∆23)

2 - 2∆12∆13 - 2∆12∆23 - 2∆13∆23)
4

(11)

lim
x2

t
f0(∂ ln γ2,t

∂x3
t )

T,P,x2
t

)

-
(c1

0 + c3
0)[(c1

0 + c3
0)(∆12 - ∆23)x2

t )0 + (c1
0 - c3

0)(∆13)x2
t )0]

2[c1
0 + c3

0 + c1
0 c3

0(∆13)x2
t )0]

(12)

lim
x2

t
f0(∂ ln γ1,t

∂x2
t )

T,P,x3
t

)
c3

0(c1
0 + c3

0)(∆12 + ∆13 - ∆23)x2
t )0

2[c1
0 + c3

0 + c1
0 c3

0(∆13)x2
t )0]

(13)

(∂ ln γ1
b,1-3

∂x3
b,1-3 )

P,T

)
c3

0∆13

1 + c1
0 x3

b,1-3∆13

(14)

ln H2,t ) lim
x2

t
f0

ln γ2,t + ln f 2
0(P,T) (15)

(∂ ln H2t

∂x3
t )

P,T,x2
t )0

)

-
(c1

0 + c3
0)[(c1

0 + c3
0)(∆12 - ∆23)x2

t )0 + (c1
0 - c3

0)(∆13)x2
t )0]

2[c1
0 + c3

0 + c1
0 c3

0(∆13)x2
t )0]

(16)

ln H2t ) -∫(c1
0 + c3

0)(∆12 - ∆23)x2
t )0

2[1 + c1
0 x3

b,1-3(∆13)x2
t )0]

dx3
b,1-3 -

∫ (c1
0 - c3

0)(∆13)x2
t )0

2[1 + c1
0 x3

b,1-3(∆13)x2
t )0]

dx3
b,1-3 + A (17)
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where A(P,T) is a composition-independent constant of
integration.

The last equation can be also derived starting from
the Gibbs-Duhem equation for a ternary mixture (see
Appendix 1).

By eliminating (∆13)x2
t )0 with the help of eq 14, eq 17

becomes

The first term on the right-hand side of eq 18 involves
the ternary mixture through the limiting value (∆12 -
∆23)x2

t )0, whereas the second involves the gas-free bi-
nary solvent. Equation 18 can be transformed using the
Gibbs-Duhem equation for a binary system in the
second integral on the right-hand side of eq 18. The
Gibbs-Duhem equation for a binary system at constant
temperature and pressure has the form

Therefore, one can write

which, introduced into eq 18, leads to

It should be noted that this equation can be applied to
the solubility of a gas in various kinds of binary
mixtures: a mixture of two solvents, or a mixture of a
solvent and a solute (salt, polymer, or protein).

As already mentioned, the Krichevsky equation (eq
1) is valid when the binary mixtures 1-2 and 2-3 (gas
solute/pure solvents) and the ternary mixture 1-2-3
are ideal. However, these conditions are often far from
reality. Let us consider, for example, the solubility of a
hydrocarbon in a water-alcohol solvent (for instance,
water-methanol, water-ethanol, etc.). The activity
coefficient16 of propane in water at infinite dilution is
∼4 × 103, whereas the activity coefficients of alcohols
and water in aqueous solutions of simple alcohols
seldom exceed 10. It is therefore clear that the main
contribution to the nonideality of the ternary gas-
binary solvent mixture comes from the nonidealities of
the gas solute in the individual solvents, which are
neglected in the Krichevsky equation.

For this reason, in a first step, it will be assumed that
only the binary solvent (1-3) behaves as an ideal
mixture. One can therefore write that γ3

b,1-3 ) 1 and

where V is the molar volume of the binary mixture 1-3
and V1

0 and V3
0 are the molar volumes of the individual

solvents 1 and 3, respectively. Under these conditions,
eq 19 becomes

The main single approximation of this paper is the
assumption that (∆12)x2

t )0 ) (G11 + G22 - 2G12)x2
t )0 and

(∆23)x2
t )0 ) (G22 + G33 - 2G23)x2

t )0 are independent of
the composition of the solvent mixture. Consequently,
eq 21 becomes

where B(P,T) ) (∆12 - ∆23)x2
t )0/2.

The constants A(P,T) and B(P,T) can be obtained
using the following extreme expressions

and

Combining eqs 22-24 yields the final result

Equation 25 provides the Henry’s constant for a binary
solvent in terms of those for the individual solvents and
the molar volumes of the pure solvents. This simple
equation was obtained using less restrictive approxima-
tions than those involved in the Krichevsky equation
by assuming that only the binary solvent 1-3 is an ideal
mixture.

This assumption is reasonable because, as already
noted, the nonideality of the binary solvent is much
lower than the nonidealities of the solute gas and each
of the constituents of the solvent.

Equation 19 can, however, be integrated using any
of the analytical expressions available for the activity
coefficient ln γ3

b,1-3, such as the van Laar, Margules,
Wilson, NRTL, etc. To take into account the nonideality
of the molar volume, one can use the expression

where VE is the excess molar volume.
When the integration in eq 19 cannot be performed

analytically, one can first perform the integration
numerically between 0 < x3

b,1-3 < 1 to obtain the
expression

ln H2t ) -∫(c1
0 + c3

0)
(∆12 - ∆23)x2

t )0

2
×

[1 + x3
b,1-3(∂ ln γ3

b,1-3

∂x3
b,1-3 )

P,T
] dx3

b,1-3 +

1
2∫

(x1
b,1-3 - x3

b,1-3)

x1
b,1-3 (∂ ln γ3

b,1-3

∂x3
b,1-3 )

P,T

dx3
b,1-3 + A (18)

x1
b,1-3 d ln γ1

b,1-3 ) -x3
b,1-3 d ln γ3

b,1-3

(x1
b,1-3 - x3

b,1-3)

x1
b,1-3 (∂ ln γ3

b,1-3

∂x3
b,1-3 )

P,T

)

(∂ ln γ1
b,1-3

∂x3
b,1-3 )

P,T

+ (∂ ln γ3
b,1-3

∂x3
b,1-3 )

P,T

ln H2t ) -∫(c1
0 + c3

0)
(∆12 - ∆23)x2

t )0

2
×

[1 + x3
b,1-3(∂ ln γ3

b,1-3

∂x3
b,1-3 )

P,T
] dx3

b,1-3 +

1
2

(ln γ1
b,1-3 + ln γ3

b,1-3) + A (19)

V ) x1
b,1-3 V1

0 + x3
b,1-3 V3
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where γ1,3
∞ ) limx1f0 γ1

b,1-3 and γ3,1
∞ ) limx3f0 γ3

b,1-3.
Equation 27 allows for the determination of the

constant B. Further, eq 19 can be integrated between
0 < x3

b,1-3 < x to obtain the Henry’s constant for the
mole fraction x in the binary solvent

This procedure allows one to account for the nonideality
(activity coefficients and molar volume) of the binary
solvent.

The analytical expressions obtained using the two-
suffix Margules equations15 for the activity coefficients
and eq 20 for the molar volume are given in Appendix
2.

The extension of eq 25 to a multicomponent solvent
is not straightforward and requires additional investi-
gation.

3. Calculations and Comparison with
Experimental Data

For comparison, we selected the solubilities of gases
in aqueous binary solvents because, as noted in ref 6,
the prediction of the Henry’s constant for such mixtures
is the most difficult and the available methods are not
reliable. The results of the calculations are presented
and compared in Table 1 and Figure 1 with the
Krichevsky equation and an empirical correlation for
aqueous mixtures that provided the best results6 among
the existing expressions.

All of the necessary experimental data [Vi
0, H2,1, H2,3,

and E (Margules parameter)] were taken from the
original publications (indicated as footnotes to Table 1)
or calculated using the data from Gmehling’s vapor-
liquid equilibrium data compilation.21 Figure 1 and
Table 1 show that the present eq 25 is in much better
agreement with experiment than Krichevsky’s eq 1 and
equations A2-3-5 from Appendix 2, which involve the
Margules expression for the activity coefficient. The new
eq 25 provides predictions that are comparable to those
of an empirical correlation for aqueous mixtures of
solvents,6 which involves three adjustable parameters.

However, none of the expressions available, including
eq 25, can represent the extremum in the mixed Henry’s
constant found in some experiments at low alcohol
concentrations.17 Perhaps only very accurate represen-
tations of the activity coefficients and excess molar
volume of the mixed solvent in the dilute region can
explain this anomaly.

Table 1 also shows that equations A2-3-5, based on
the two-suffix Margules equation, provide results that
are comparable to those of Krichevsky’s eq 1 but much
less accurate than those of the new eq 25. Numerical

calculations based on eqs 27-28 showed that the use
of the Wilson equation for the activity coefficients in
binary solvent mixtures improved the results obtained
via eqs A2-3-5 only slightly. It seems that eqs 27-28,
which contain the derivatives of the activity coefficient
with respect to the mole fraction, require a much more
accurate representation of the vapor-liquid equilibrium
than that provided by the two-suffix Margules or Wilson
equations. As noted in the literature,4 the above equa-

ln H2,3 - ln H2,1 )

-B∫0

11
V[1 + x3

b,1-3(∂ ln γ3
b,1-3

∂x3
b,1-3 )

P,T
] dx3

b,1-3 +

1
2

(ln γ1,3
∞ - ln γ3,1

∞ ) (27)

ln H2,t )

ln H2,1 - B∫0

x1
V[1 + x3

b,1-3(∂ ln γ3
b,1-3

∂x3
b,1-3 )

P,T
] dx3

b,1-3 +

1
2

[ln γ1
b,1-3(x) + ln γ3

b,1-3(x) - ln γ3,1
∞ ] (28)

Table 1. Comparison between Experimental and
Calculated Henry’s Constants for a Binary Solvent
Mixture

deviations (%) of experimental
data from calculated resultsa

predictions
of this work

system T (K)
Krichevsky’s

eq 1
empirical

correlationb eq 25 eq A2-3

argon (2)- 288.15 17.0 - 15.3 37.9
acetone (1)- 298.15 28.3 - 7.1 39.4
water (3)c 308.15 29.6 - 8.4 39.3
helium (2)- 298.15 5.7 - 10.8 7.3
methanol (1)-
water (3)d

helium (2)- 298.15 5.6 - 12.1 7.8
ethanol (1)-
water (3)d

helium (2)- 298.15 18.2 - 5.6 24.1
1-propanol (1)-
water (3)d

helium (2)- 298.15 13.5 - 7.9 8.9
2-propanol (1)-
water (3)d

oxygen (2)- 273.15 13.9 7.6 22.4 19.8
methanol (1)- 293.15 7.0 6.2 13.3 9.8
water (3)e 313.15 10.4 10.8 8.9 7.4
oxygen (2)- 273.15 12.4 12.2 21.9 20.9
ethanol (1)- 293.15 16.7 6.2 10.3 16.4
water (3)e 313.15 31.5 6.0 8.1 20.5
oxygen (2)- 273.15 20.4 7.9 13.8 32.7
1-propanol (1)- 293.15 45.5 8.3 12.5 35.7
water (3)e 313.15 53.5 13.0 13.9 36.1
oxygen (2)- 273.15 26.6 14.3 19.2 31.0
2-propanol (1)- 293.15 41.4 12.6 16.2 27.5
water (3)e 313.15 67.7 9.2 12.6 30.6
nitrogen (2)- 293.15 7.8 9.9 17.5 15.2
methanol (1)- 313.15 7.7 10.0 9.7 8.5
water (3)e

nitrogen (2)- 293.15 17.3 8.8 7.8 15.0
ethanol (1)- 313.15 22.7 14.2 6.5 19.5
water (3)e

nitrogen (2)- 293.15 43.9 9.5 9.1 29.9
1-propanol (1)- 313.15 73.5 14.5 20.3 40.0
water (3)e

nitrogen (2)- 293.15 44.6 14.5 8.9 28.1
2-propanol (1)- 313.15 61.2 14.0 11.8 28.3
water (3)e

carbon 283.15 14.1 - 12.1 26.4
dioxide (2)- 293.15 18.3 - 6.1 25.2
1-propanol (1)- 303.15 23.4 - 3.7 24.1
water (3)e 313.15 33.7 - 6.9 28.8
carbon 283.15 14.0 - 16.1 21.6
dioxide (2)- 293.15 21.7 - 10.2 22.5
2-propanol (1)- 303.15 23.4 - 8.5 23.4
water (3)e 313.15 30.5 - 6.4 22.5
methane (2)- 293.15 5.3 25.5 15.0 11.7
methanol (1)-
water (3)f

methane (2)- 293.15 33.7 30.3 16.3 24.5
ethanol (1)-
water (3)f

average (%) 25.8 12.1 11.6 23.5

a Defined as (100/m)∑i|H2,t(exp)
(i) - H2,t(calc)

(i) |/H2,t(exp)
(i) , where m is

the number of experimental points. b Taken directly from ref 6.
c Experimental data from ref 18. d Experimental data from ref 19.
e Experimental data from ref 17. f Experimental data from ref 20.
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tions applied to complex mixtures, such as aqueous
mixtures, can lead to results in the wrong direction for
the Henry’s constant.

Conclusion

In this paper, the Kirkwood-Buff formalism was used
to relate the Henry’s constant for a binary solvent
mixture to the binary data and the composition of the
solvent. A general equation describing the above de-
pendence was obtained, which can be solved (analyti-
cally or numerically) if the composition dependence of
the molar volume and the activity coefficients in the gas-
free mixed solvent are known. A simple expression was
obtained when the mixture of solvents was considered
to be ideal. In this case, the Henry’s constant for a
binary solvent mixture could be expressed in terms of
the Henry’s constants for the individual solvents and
the molar volumes of the individual solvents. The
agreement with experiment for aqueous solvents is
better than that provided by any other expression
available, including an empirical one involving three
adjustable parameters. Even though the aqueous sol-
vents considered are nonideal, their degrees of nonide-
ality are much lower than those of the solute gas in each
of the constituent solvents. For this reason, the assump-
tion that the binary solvent behaves as an ideal mixture
constitutes a reasonable approximation.

Appendix 1

On the basis of the Gibbs-Duhem equations for a
ternary mixture, Krichevsky and Sorina22 derived the
following equation

Using eq 14 for the first term of the right-hand side of
eq A1-1 and eq 13 for the second term, eq A1-1 becomes

which after some algebraic transformation acquires the
form

Figure 1. Henry’s constants of gases in binary solvent mixtures at 760 mmHg partial pressure (9, experimental;17 A, calculated with
the new eq 25; B, calculated with Krichevsky eq 1; in Figure 1a, C represents eq A2-3): (a) oxygen (2) in 1-propanol (1)-water (3) at 40
°C, (b) nitrogen (2) in 2-propanol (1)-water (3) at 40 °C, (c) oxygen (2) in ethanol (1)-water (3) at 40 °C, and (d) carbon dioxide (2) in
1-propanol (1)-water (3) at 40 °C. xalc is the mole fraction of the alcohol in the gas-free mixture of solvents.
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which coincides with eq 16 in the text.

Appendix 2

The activity coefficients of the binary mixture 1-3 can
be expressed through the two-suffix Margules equa-
tions15 as

where E is a temperature-dependent constant.
Insertion of eq A2-2 into eq 19 provides the following

result for the Henry’s constant in the mixed solvent (the
molar volume of the mixed solvent being expressed
through eq 20)

The composition-independent constants A and B can be
obtained by combining eq A2-3 with eqs 23 and 24. One
thus obtains the following expressions for A and B

and

Using eqs A2-3-5, one can calculate the Henry’s
constant for any composition of the solvent.

Note Added after ASAP Posting

This article was released ASAP on 2/21/02 with errors
in eqs A1-1 and A1-2 and in footnote a of Table 1. The
correct version was posted on 2/25/02.
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Salting-Out or -In by Fluctuation Theory

E. Ruckenstein* and I. Shulgin†

Department of Chemical Engineering, State University of New York at Buffalo, Amherst, New York 14260

In this paper, the Kirkwood-Buff formalism was used to examine the effect of the addition of
a salt on the gas solubility. A general expression for the derivative of the Henry constant with
respect to the salt concentration was thus derived. The obtained equation was used to correlate
the experimental solubilities as a function of the salt molality. The correlation involves one
parameter, which has to be determined from the experimental data. In addition, it requires
information about the molar volume of the salt solution and the mean activity coefficient of the
salt. It has been shown that the experimental solubilities can be well correlated when an accurate
expression for the mean activity coefficient of the salt is used. It was also shown that the well-
known Sechenov equation constitutes a particular case of the obtained expression. The general
expression allowed one to find a criterion for the prediction of the kind of salting (salting-in or
salting-out) for dilute salt solutions. According to this criterion, the kind of salting depends
mainly on the molar volume of the salt at infinite dilution. This explains the literature
observations that the salts with large molar volumes at infinite dilution usually increase the
gas solubility compared to that in pure water.

1. Introduction

The gas solubilities in aqueous solutions of salts or
organic substances constitute most useful information
in many areas of chemical and biochemical engineering,
hydrometallurgy, geochemistry, etc. There are many
processes, such as the biological and organic reactions,
the corrosion and oxidation of materials, the aerobic
fermentation, the petroleum and natural gas exploita-
tion, the petroleum refining, the coal gasification, the
gas antisolvent crystallization, the formation of gas
hydrates, etc., in which the salting effect is relevant.1
The solubility of naturally occurring and atmospheric
gases in sodium chloride solutions, and its dependence
on pressure, temperature, and the salt concentration,
is of interest not only to the physical chemist but also
to the geochemist because the aqueous salt solutions
containing gases can simulate the brine in the earth’s
crust.

The information about the solubility of atmospheric
gases in water and seawater is also relevant to the
understanding of the ecological balance between the
freshwater and seawater systems.1

The addition of an electrolyte to water decreases in
many cases the gas solubility (salting-out). Similarly,
the addition of an organic compound to water can
decrease or increase the solubility of gases compared
to that in pure water.

The present paper is devoted to the examination of
the effect of the addition of an inorganic substance,
mainly a salt, to water on the gas solubility. Usually
the effect of the salt addition on the solubility has been
attributed to the greater attraction between the ions and
the water molecules than between the nonpolar or
slightly polar gas molecules and water.2 Therefore, the
interactions between the ions and the water molecules
should decrease the number of “free” water molecules
available to dissolve the gas.3 This explanation is,

however, oversimplified because it ignores the effect of
the ions on the water structure.3 Indeed, some electro-
lytes with large ions, which disorganize the structure
of water, increase the solubility (salting-in);4-7 in con-
trast, electrolytes with small ions, which organize the
structure of water, decrease the solubility (salting-out).
An interesting observation regarding the effect of an ion
on the water structure was made in ref 8, where it was
found that the “salting-out” and “salting-in” salts affect
differently the partial molar volume of the gas in an
electrolyte solution, compared to that in pure water.
While the “salting-out” salts decrease this volume, the
“salting-in” salts increase it. However, so far no criterion
for the prediction of whether a salt generates “salting-
out” or “salting-in” was suggested.

The oldest but, nevertheless, the most popular equa-
tion for the representation of the gas solubility in the
presence of a salt is the Sechenov equation9

where H2,t and H21 are the Henry constants in the salt
solution and pure water, respectively, kS is the Sechenov
coefficient, and m is the molality. The Sechenov coef-
ficient depends on the nature of the salt and solute and
the temperature. The following subscripts will be used
throughout this paper: component 1 is the solvent, 2 is
the gas, and 3 is the salt.

Of course, the Sechenov equation (1) can represent
both the salting-out and the salting-in; for salting-out
the Sechenov coefficient is positive and for salting-in
negative. Because of its simplicity, the Sechenov equa-
tion has become a very popular tool for the correlation
of the gas solubility in salt solutions. It has attracted
the attention of theoreticians,5,7,10-11 and several modi-
fications have been suggested.3,12,13 However, it has
failed to correlate the gas solubility at high salt con-
centrations and also was not satisfactory in correlating
the solubility of carbon dioxide in a number of salt
solutions.14 In addition, recent investigations15,16 indi-
cated that the salting effect is more complex. For
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Fax: (716) 645-3822. Phone: (716) 645-2911/ext. 2214.

† E-mail: ishulgin@eng.buffalo.edu.

ln(H2,t/H21) ) kSm (1)

4674 Ind. Eng. Chem. Res. 2002, 41, 4674-4680

10.1021/ie020348y CCC: $22.00 © 2002 American Chemical Society
Published on Web 08/03/2002

Thermodynamics of Solutions160



example, the kind of salting effect can be inverted with
a change in the gas partial pressure, and this inversion
cannot be described by the Sechenov equation. Last
but not least, because of its empirical character, the
Sechenov equation cannot predict whether a salt will
increase the solubility (salting-in) or will decrease it
(salting-out).

The aim of the present paper is to develop a theoreti-
cal approach for the description of the gas solubility in
a solvent containing a salt. To achieve this goal, the
Kirkwood-Buff formalism17 for ternary mixtures will
be used. Recently, such a formalism has been used to
predict the gas solubility in mixed solvents18 (mixture
of two nonelectrolytes) in terms of the solubilities in the
individual solvents. A similar approach will be employed
here.

The paper is organized as follows: first, the Kirk-
wood-Buff formalism will be used to derive general
expressions for the derivatives of the activity coefficients
in ternary mixtures with respect to the mole fractions.
Then, the obtained expressions will be applied to the
gas solubility in dilute and concentrated salt solutions.
Numerical calculation will be carried out for several
mixtures, particularly for those for which the Sechenov
equation failed to provide an accurate correlation.
Finally, a criterion will be proposed for the a priori
prediction of the kind of salting (salting-in or salting-
out).

2. The Henry Constant in a Salt Solution

The Henry constant in a binary solvent is given by
the following expression:19

where xi
t and γi,t are the mole fraction and the activity

coefficient of component i in the ternary mixture,
respectively, f i

0(P,T) is the fugacity of the pure compo-
nent i,3 P is the pressure, and T is the temperature
in K.

For the derivative of the Henry constant in a binary
solvent with respect to the mole fraction of the electro-
lyte, one can write

In a previous paper,20 the Kirkwood-Buff formalism
was applied to ternary mixtures and explicit expressions
for the partial molar volumes, isothermal compress-
ibility, and the derivatives of the activity coefficients
with respect to the mole fractions derived. In par-
ticular, the following expression for the derivative
(∂ ln γ2,t/∂x3

t )T,P,x2
t was obtained:

where ck is the bulk molecular concentration of compo-
nent k in the ternary mixture 1-2-3 and GRâ is the

Kirkwood-Buff integral given by

In the above expression, gRâ is the radial distribution
function between species R and â, r is the distance
between the centers of molecules R and â, and ∆Râ and
∆123 are the following combinations of the Kirkwood-
Buff integrals

and

One can show18 that the factors in the square brackets
in eq 4 and ∆123 can be expressed in terms of ∆Râ as
follows:

and

The substitution of eqs 8-10 into eq 4, and considering
infinite dilution of the solute (component 2), yields the
following rigorous expressions for the derivative (∂ ln
γ2,t/∂x3

t )T,P,x2
t :

In eq 11 c1
0 and c3

0 represent the bulk molecular con-
centrations of components 1 and 3 in the gas-free binary
solvent 1-3. In addition to eq 11, the following expres-
sion17 for the derivative of the activity coefficient in a
binary mixture 1-3 with respect to the mole fraction of
the electrolyte can be written:

where x3
b,1-3 and γ1

b,1-3 are the mole fraction of compo-
nent 3 and the activity coefficient of component 1 in the
gas-free binary solvent 1-3, respectively.

The combination of eqs 3, 11, and 12 provides the
following expression for the derivative of the Henry
constant in a binary solvent:18
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∆12 + ∆13 - ∆23

2
(9)

∆123 ) -(∆12
2 + ∆13

2 + ∆23
2 - 2∆12∆13 - 2∆12∆23 -

2∆13∆23)/4 (10)

lim
x2

t
f0 (∂ ln γ2,t

∂x3
t )

T,P,x2
t

)

-[(c1
0 + c3

0)((c1
0 + c3

0)(∆12 - ∆23)x2
t )0 +

(c1
0 - c3

0)(∆13)x2
t )0)]/2(c1

0 + c3
0 + c1

0 c3
0(∆13)x2

t )0) (11)

(∂ ln γ1
b,1-3

∂x3
b,1-3 )

P,T

)
c3

0∆13

1 + c1
0 x3

b,1-3∆13

(12)
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The first term on the right-hand side of eq 13 involves
the ternary mixture through the limiting value (∆12 -
∆23)x2

t )0, while the second involves the gas-free binary
solvent.

It is important to emphasize that ∆Râ constitutes a
measure of the nonideality21 of the binary mixtures R-â
because for an ideal mixture ∆Râ ) 0.

Two cases will be examined in what follows: (a) the
case of dilute salt solutions and (b) the case of concen-
trated ones:

(a) Dilute Salt Solutions. In the dilute range, it will
be assumed that ∆13 ) 0 (in other words, the mixed
solvent 1-3 behaves like an ideal mixture). From eq 12
one can find that in this case

In a previous paper18 regarding the gas solubility in
mixtures of two nonelectrolytes, the ideality approxima-
tion for the binary solvent was employed to obtain an
expression for the gas solubility. The ideality of the
mixed solvents constituted a good approximation be-
cause usually the nonideality of the mixture of two
nonelectrolytes is much lower than those between each
of them and the gas. A similar assumption can be made
for dilute aqueous salt solutions. Indeed, the data
regarding the activity coefficient of water (γw) in dilute
aqueous solutions of sodium chloride22 indicate that
|(∂ ln γw/∂xw)P,T| < 0.01 for a molality of sodium chlo-
ride smaller than 0.8. Considering, in addition, that
(∆12 - ∆23)x2

t )0 is independent of composition, eq 13
becomes

where B ) (∆12 - ∆23)x2
t )0/2 and V is the molar volume

of the binary gas-free mixture. However, for very dilute
electrolyte solutions, one can write23

where V 1
0 and V 3

∞ are the molar volume of the pure
solvent and the partial molar volume of the electrolyte
at infinite dilution, respectively.

Using eq 16, eq 15 becomes

Because, for very small values of y, ln(1 + y) ≈ y, eq 17
can be rewritten in the form of the Sechenov equation:

where Fw is the water density and C(P,T) is a composi-
tion-independent constant

Equation 15 can be used to correlate the gas solubility
in the presence of a salt if the composition dependence
of the molar volume of the binary electrolyte-water
mixture is known. Such data are available in the
literature for numerous aqueous salt solutions.24 Like
that of Sechenov, eq 15 is a one-parameter equation
whose parameter B has to be determined from the
solubility data. The two equations provide almost the
same results (see Figure 1).

(b) Concentrated Solutions of Electrolytes. Be-
cause the mean activity coefficient of a salt (Kν+Aν-,
where ν+ and ν- are respectively the number of cations
and anions in the salt molecule) is usually expressed in
terms of the salt molality, eq 13 will be converted to
the molality scale. First, the Gibbs-Duhem equation
for the binary mixture water (1)-electrolyte (3) allows
one to rewrite eq 13 as follows:

Second, for the water activity coefficient in the binary
mixture water (1)-electrolyte (3), one can use the
relation2

where γ( is the mean activity coefficient of the salt,
ν ) ν+ + ν-, M1 is the molecular weight of water, and
m is the molality of the salt. By combining eqs 20 and
21 with the obvious relations

(∂ ln H2,t

∂x3
t )

P,T,x2
t )0

)

-(c1
0 + c3

0)
(∆12 - ∆23)x2

t )0

2 [1 + x3
b,1-3 (∂ ln γ3

b,1-3

∂x3
b,1-3 )

P,T
] +

1
2

x1
b,1-3 - x3

b,1-3

x1
b,1-3 (∂ ln γ3

b,1-3

∂x3
b,1-3 )

P,T

(13)

(∂ ln γi
b,1-3

∂xi
b,1-3 )

P,T

) 0 i ) 1, 3 (14)

ln H2,t - ln H21 ) -B∫0

x3dx3
b,1-3

V
(15)

V ) x3
b,1-3 V 3

∞ + (1 - x3
b,1-3)V 1

0 (16)

ln
H2,t

H21
) -

B(P,T) ln[1 + (V 3
∞/V 1

0 - 1)x3]

V 3
∞ - V 1

0
(17)

Figure 1. The Henry constant of nitrogen in an aqueous solution
of sodium sulfate at 25 °C: (O) experimental data;12 (dashed line)
the Henry constant calculated with eq 15; (solid line) the Henry
constant calculated with the Sechenov equation.

ln
H2,t

H21
≈ -

B(P,T)

V 1
0

x3 ≈ -
FwB(P,T)

1000
m ) C(P,T) m

(18)

C(P,T) ) -
FwB(P,T)

1000
) -

Fw(∆12 - ∆23)x2
t )0

2000
(19)

(∂ ln H2,t

∂x3
t )

P,T,x2
t )0

)

-(c1
0 + c3

0)
(∆12 - ∆23)x2

t )0

2 [1 + x1
b,1-3 (∂ ln γ1

b,1-3

∂x1
b,1-3 )

P,T
] +

1
2

x1
b,1-3 - x3

b,1-3

x3
b,1-3 (∂ ln γ1

b,1-3

∂x1
b,1-3 )

P,T

(20)

νm d ln(mγ() )

- 1000
M1

d ln x1
b,1-3 - 1000

M1
d ln γ1

b,1-3 (21)
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and integrating, one obtains an equation for the Henry
constant at a given molality m (again B was considered
independent of composition):

This equation contains a parameter B that must be
calculated from the experimental data. In addition,
information about the molar volume of the mixture and
the mean activity coefficient of the salt on the molality
in the binary mixture water (1)-salt (3) is necessary.

3. One-Parameter Gas Solubility in Aqueous
Salt Mixtures: Comparison with Experiment

Several aqueous salt mixtures were selected to verify
eq 24. They are listed in Table 1. Some mixtures (oxygen
or carbon dioxide with water + sodium sulfate or sodium
chloride) have been selected because the Sechenov
equation did not provide an accurate correlation of the
solubility in these mixtures at high molalities. Other
mixtures, listed in Table 1, have also been considered.

Accurate density data for many aqueous salt mixtures
are available in the literature.24 The following expres-
sion was used for the analytical representation of the
molar volume of aqueous salt solutions:25

where φ is the apparent molar volume of the electrolyte,
φ0 ) V 3

b,∞, V1 is the partial molar volume of water in
the binary electrolyte solution, M1 and V 1

0 are the
molecular weight and molar volume of the pure water,

and â is a constant; â and φ0 were evaluated from
experimental density data,24 and their values are listed
in Table 2.

For the mean activity coefficient of the salt, several
expressions have been used, such as the Debye-Hückel
equation,2 the extended Debye-Hückel equation,2 and
the Bromley equation.2 The Bromley equation was
selected because of its simplicity and its accuracy; of
course, other accurate equations2 are also available. The
values of the parameter B for all cases examined are
listed in Table 3.

A comparison between the experimental solubilities
and those calculated with eq 24 is presented in Figures
2-5. They show that the values calculated using eq 24
are highly dependent on the activity coefficient em-
ployed. Indeed, the correlation based on the Debye-
Hückel equation is very poor, particularly at high
molalities (see curves a in Figures 2-5). The extended
Debye-Hückel equation (see curves b in Figures 2-5)
provides a better agreement but is not yet satisfactory
at high molalities. Equation 15 [based on the ideal 1

Table 1. Information about the Mixtures Used in the
Calculations

gas and salt solution

gas salt solution temp, K
composition

range, m ref

O2 Na2SO4 + H2O 298.15 0-1.517 a
O2 Na2SO4 + H2O 308.15 0-1.656 a
N2 Na2SO4 + H2O 298.15 0-1.070 a
CO2 NaCl + H2O 298.15 0-5.096 b
CO2 Na2SO4 + H2O 298.15 0-2.205 b
O2 NaCl + H2O 298.15 0-5.4 c

a Yasunishi, A. J. Chem. Eng. Jpn. 1977, 10, 89. b Yasunishi,
A.; Yoshida, F. J. Chem. Eng. Data 1979, 24, 11. c Mishina, T. A.;
Avdeeva, O. I.; Bozhovskaya, T. K. Mater. Vses. Nauchno-Issled.
Geol. Inst. 1961, 46, 93 (as given in Solubility Data Series;
Pergamon: New York, 1981; Vol. 7).

x1
b,1-3 ) 1000

1000 + M1m
(22)

dx1
b,1-3 ) -

1000M1

(1000 + M1m)2
dm (23)

ln(H2,t

H21
) ) -B∫0

m
M1ν[1 + m (∂ ln γ(

∂m )
P,T]

1000(1 + 0.001M1m)V
dm +

1
2∫0

m1 - 0.001M1m
1 + 0.001M1m(ν(1 + 0.001M1m)[1 +

m(∂ ln γ(

∂m )
P,T] - 1) dm (24)

V ) x3φ + x1V1 )

1000V 1
0

1000 + M1m
+ â

M1m
1.5

1000 + M1m
+

M1mφ
0

1000 + M1m
(25)

Figure 2. The Henry constant of oxygen in aqueous solutions of
sodium sulfate at 25 °C: (O) experimental data; (a) the Henry
constant calculated with eq 24 using for the mean activity
coefficient of dissolved salt the Debye-Hückel equation; (b) the
Henry constant calculated with eq 24 using for the mean activity
coefficient of dissolved salt the extended Debye-Hückel equation;
(c) the Henry constant calculated with eq 24 using for the mean
activity coefficient of dissolved salt the Bromley equation; (d) the
Henry constant calculated with eq 15.

Figure 3. The Henry constant of carbon dioxide in aqueous
solutions of sodium sulfate at 25 °C: (O) experimental data; (a)
the Henry constant calculated with eq 24 using for the mean
activity coefficient of dissolved salt the Debye-Hückel equation;
(b) the Henry constant calculated with eq 24 using for the mean
activity coefficient of dissolved salt the extended Debye-Hückel
equation; (c) the Henry constant calculated with eq 24 using for
the mean activity coefficient of dissolved salt the Bromley equation;
(d) the Henry constant calculated with eq 15.

Table 2. Constant â and O0 in Equation 25 for the
Mixtures Investigated

mixture
temp,

K
composition

range, m
φ 0,

cm3/mol
â,

(cm3 kg0.5)/mol1.5

NaCl + H2O 298.15 0-6.1 16.04 2.09
Na2SO4 + H2O 298.15 0-2 10.43 12.66
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(water)-3 (electrolyte) mixture approximation] provides
a better agreement for not too high molalities [the
Sechenov equation and eq 15 provide in all of the cases
very similar results (see Figure 1)]. Only when the more
accurate Bromley equation has been employed for the
mean activity coefficient of the salt was the agreement
between experiment and calculation very good. Ad-
ditional systems, also listed in Table 1, have been
examined, and very good agreement was obtained when
the Bromley equation was used for the activity coef-
ficient. We have also employed other accurate equations
for the mean activity coefficient of the salt, such as the
Pitzer equation,2,3 and the agreement was as good as
that provided by the Bromley equation. Figures 2-5
examine only some of the systems investigated. Infor-

mation about the other systems is contained in Table
3. For NaCl, the results are not too accurate at high
molalities. However, it is well-known3 that most models
fail to represent accurately the mean activity coefficient
for the NaCl + H2O mixtures at high molalities. One
can, therefore, conclude that the gas solubility in
aqueous salt solutions can be well described by eq 24
when accurate expressions for the mean activity coef-
ficient of the salt in the binary water + salt mixtures
are used.

4. Salting-In or Salting-Out?

It is worth mentioning that no criterion is presently
available to answer the question of whether the addition
of a salt will increase or decrease the solubility of a gas
in a solvent.

Let us consider eq 15, which is valid for sufficiently
small salt concentrations. Of course, the sign of B
accounts for the type of salting, because the integral
always has positive values: consequently, B should be
negative for salting-out and positive for salting-in.

Using eq 6, one obtains the following relation for B:

The partial molar volume of the solute (component 2)
at infinite dilution in the ternary mixture 1-2-3 is
given by20

Assuming that the mixture 1-3 behaves like an ideal
one and using eq 6, one can write

The combination of eqs 26-28 yields the following
expression for B in the dilute region (c3 , c1 and
c1 ≈ c1

0) (for details, see the appendix):

where V 2
b,∞ is the partial molar volume of the solute

gas (2) in water at infinite dilution, V 3
b,∞ is the partial

molar volume of the electrolyte (3) in water at infinite
dilution, and V 1

0 is the molar volume of pure water.

Table 3. Values of B Obtained from Experimental Solubility Data (for the Sources of Experimental Solubility Data, See
Table 1)

parameter B, cm3/mol

mixture eq 15
eq 24 with the

Debye-Hückel equation
eq 24 with the extended
Debye-Hückel equation

eq 24 with the
Bromley equation

oxygen in Na2SO4 + H2O (T ) 298.15 K) -838 -136 -221 -149
oxygen in Na2SO4 + H2O (T ) 308.15 K) -822 -337 -209 -141
nitrogen in Na2SO4 + H2O -822 -337 -209 -141
carbon dioxide in Na2SO4 + H2O -708 -98 -39 -151
oxygen in NaCl + H2O -3.8 150 184 175
carbon dioxide in NaCl + H2O -6.42 -7.53 36.9 166.4

Figure 4. The Henry constant of oxygen in aqueous solutions of
sodium chloride at 25 °C: (O) experimental data; (a) the Henry
constant calculated with eq 24 using for the mean activity
coefficient of dissolved salt the Debye-Hückel equation; (b) the
Henry constant calculated with eq 24 using for the mean activity
coefficient of dissolved salt the extended Debye-Hückel equation;
(c) the Henry constant calculated with eq 24 using for the mean
activity coefficient of dissolved salt the Bromley equation; (d) the
Henry constant calculated with eq 15.

Figure 5. The Henry constant of carbon dioxide in aqueous
solutions of sodium chloride at 25 °C: (O) experimental data; (a)
the Henry constant calculated with eq 24 using for the mean
activity coefficient of dissolved salt the Debye-Hückel equation;
(b) the Henry constant calculated with eq 24 using for the mean
activity coefficient of dissolved salt the extended Debye-Hückel
equation; (c) the Henry constant calculated with eq 24 using for
the mean activity coefficient of dissolved salt the Bromley equation;
(d) the Henry constant calculated with eq 15.

B )
(G11 - G33 - 2G12 + 2G23)x2

t )0

2
(26)

lim
x2

t
f0

V 2
t ) V 2

t,∞ )

lim
x2

t
f0

{[1 + c1(G11 - G12) + c3(G33 - G23) +

c1c3(-G12G33 + G12G13 - G13
2 + G13G23 +

G11G33 - G11G23)]/(c1 + c3 + c1c3∆13)} (27)

∆13 ) 0 and 2G13 ) G11 + G33 (28)

B ) -
V 2

t,∞ - V 2
b,∞ - c3V 3

b,∞(V 3
b,∞ - V 1

0)

c3V 3
b,∞ (29)

4678 Ind. Eng. Chem. Res., Vol. 41, No. 18, 2002

Thermodynamics of Solutions164



For small values of c3, one can, however, write

and consequently eq 29 becomes

The available information8 indicates that R ) (∂V 2
t,∞/

∂c3)P,T is usually small;8 e.g., for Ar in CaCl2, KCl, KI,
(Me)4NBr, and (Bu)4NBr, R is approximately equal to
-1, -0.5, -0.3, +0.4, and +1.5 (cm3/mol)2, respectively.
The values of R for methane, oxygen, and hydrogen are
also small.8 However, when the difference V 3

b,∞ - V 1
0 is

small, the value of R can affect the sign of B.
When R is small and can be neglected, one obtains a

very simple criterion for salting-out and salting-in.
Namely, salting-out will occur when

and salting-in when

The above criterion indicates that salting-in occurs for
salts with large values of V 3

b,∞ and salting-out for salts
with relatively small or negative values of V 3

b,∞. The
literature data are in agreement with this conclusion
(see Table 4). Salting-in was also observed16 (not for all
conditions) for aqueous solutions of CH3COONH4, CH3-
COONa (V3

b,∞ = 40 cm3/mol),26 and CH3COOH (V 3
b,∞ =

52 cm3/mol).27 To our knowledge, salting-in was not
observed for salts with relatively small (or negative)
V 3

b,∞, for example, for aqueous solutions of NaOH
(V 3

b,∞ = -5 cm3/mol)26 or KOH (V 3
b,∞ = 3-4 cm3/mol).26

The above criterion can also be extended to nonelec-
trolytes. Indeed, the addition of an alcohol (for alcohols28

V 3
b,∞ > V 1

0: for instance, for methanol V 3
b,∞ ) 38.2 cm3/

mol, for ethanol V 3
b,∞ ) 55.1 cm3/mol, and for 1-pro-

panol V 3
b,∞ ) 70.7 cm3/mol) increases the solubilities of

oxygen, nitrogen, and carbon dioxide in water.29

However, it should be noted that the above criteria
(32) and (33) pertain only to very low salt concentrations
and involve the approximation of ideal behavior for
dilute solutions of salt in water.

5. Discussion and Conclusion

The Kirkwood-Buff formalism was used to derive a
general expression for the derivative of the activity

coefficient γ2,t of the gas in a ternary mixture with
respect to the mole fraction x3

t of the salt. The derived
expression was used to obtain the composition depen-
dence of the Henry constant for a gas dissolved in a
mixed solvent. It should be pointed out that the mixed
solvent can be composed of two nonelectrolytes or a
solvent and a solute, such as a salt. In this paper the
emphasis is on the latter case.

A general expression for the Henry constant in a salt
solution was also obtained, which contains as a par-
ticular case the Sechenov equation and which, like the
Sechenov equation, is a one-parameter equation. This
equation requires information about the molar volume
and the mean activity coefficient of the salt in the binary
water + salt mixture. The Sechenov equation and the
new ones (eqs 15 and 24) have been compared with
experimental data. The results obtained with the
Sechenov equation underestimate, in agreement with
literature observations,13 the gas solubility at high salt
concentrations. In contrast, the expressions based on
the Debye-Hückel equation or the extended Debye-
Hückel equation for the mean activity coefficient of the
salt overestimate the gas solubility. When the derived
eq 24 has been combined with an accurate equation for
the mean activity coefficient of the dissolved salt, such
as the Bromley equation, an accurate correlation for the
oxygen solubility in an aqueous solution of sodium
sulfate could be obtained. However, even the Bromley
equation is not accurate enough to represent the mean
activity coefficient of the salt for the NaCl + H2O
mixture at high molalities, and this explains the less
good prediction obtained for the gas solubilities in NaCl
solutions at high molalities.

The main advantage of the new equations in com-
parison with that of Sechenov and its modifications is
their clear physical meaning, which allowed one to
derive a criterion for predicting the kind of salting. The
obtained criterion predicted salting-in for “large” ions
and salting-out for relatively small ions, in agreement
with the available experimental information.

Appendix: Expression for Coefficient B in
Equation 15

Equation 27 for the partial molar volume of compo-
nent 2 at infinite dilution in a binary mixture water (1)
+ electrolyte (3)20 for ∆13 ) 0, c3 , c1, and c1 ≈ c1

0 can
be recast in the form

From eq 26, one obtains

which, introduced in eq A1-1, provides the following
expression for B:

Table 4. Aqueous Mixtures with Salting-Ina

gas salt
V 3

b,∞,b

cm3/mol gas salt
V 3

b,∞,b

cm3/mol

CH4
c (Me)4NBr ∼114 O2, He, Kr (Et)4NBr ∼174

CH4
c (Et)4NBr ∼174 He (Bu)4NBr ∼301

CH4
c (Pr)4NBr ∼240 Ar (Et)4NI ∼185

CH4
c (Bu)4NBr ∼301 Ar (Pr)4NI ∼250

a As given in ref 7. b Data regarding V3
b,∞ (T ) 298.15 K)

obtained from: Millero, F. J. In Water and Aqueous Solutions:
Structure, Thermodynamics and Transport Processes; Horne, R.
A., Ed.; Wiley: London, 1972; Chapter 13. c Salting-in was also
observed for C2H6, C3H8, and C4H10.

V 2
t,∞ ) V 2

b,∞ + (∂V 2
t,∞

∂c3
)

P,T
c3 (30)

B )
-(∂V 2

t,∞

∂c3
)

P,T
+ V 3

b,∞(V 3
b,∞ - V 1

0)

V 3
b,∞ (31)

V 3
b,∞ < V 1

0 (32)

V 3
b,∞ > V 1

0 (33)

V 2
t,∞ ) [1 + c1(G11 - G12)x2

t )0 + c3(G33 - G23)x2
t )0 +

c1c3B(G33 - G11)x2
t )0]/(c1 + c3) (A1-1)

(G23)x2
t )0 ) B

2
-

(G11 - G33 - 2G12)x2
t )0

2
(A1-2)

B ) -[2c1
0 V 2

t,∞ - 2 + 2c1
0(G12 - G11)x2

t )0 +

c3(2G12 - G33 - G11)x2
t )0]/

[c3(1 - c1
0G33 + c1

0G11)x2
t )0] (A1-3)
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For small values of c3, (G12)x2
t )0 can be replaced by30

The Kirkwood-Buff integrals for the mixture water-
electrolyte, when one assumes ideal behavior in the
dilute region, can be expressed as follows:30

and

In the above expressions, R is the universal gas con-
stant, kT,1

0 is the isothermal compressibility of the pure
solvent, V i

b,∞ is the partial molar volume of component
i at infinite dilution in the binary mixture of component
i and solvent, and æ1 is the volume fraction of water.

It should be noted that expressions (A1-5)-
(A1-7) involve ∆13 ) 0 and (∂ ln γ3

b,1-3/∂x3
b,1-3)P,T ) 0

(see eq 14).
Combining eqs A1-4-A1-7 with eq A1-3 leads to

eq 31 in the text.
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The Solubility of Binary Mixed Gases by the Fluctuation Theory

I. Shulgin† and E. Ruckenstein*

Department of Chemical Engineering, State University of New York at Buffalo, Amherst, New York 14260

This paper is devoted to the solubility of mixed gases in a liquid, the goal being to predict their
solubilities from binary data. Only sparingly soluble and weakly interacting gases are considered.
On the basis of the Kirkwood-Buff theory of solution, two transcendental equations are derived
that allow one to predict the solubility of binary mixed gases from the solubilities of pure
individual gases. The suggested method was tested for the solubilities of methane-ethane,
methane-n-butane, and methane-carbon dioxide gas mixtures in water at high pressures. Good
agreement between experiment and predictions was found.

1. Introduction

The removal of acid gases from natural gas streams;
the solubilities of hydrocarbons and natural-gas com-
ponents such as CO2 and H2S in water under high-
pressure/high-temperature conditions; and the solubili-
ties of air and other mixed gases in water, blood,
seawater, rainwater, and many other aqueous solutions
are a few examples for which information about the
solubility of mixed gases in a solvent is needed. This
topic has attracted the attention of both experimental-
ists and theoreticians.1-8 Whereas the solubilities of
many individual gases in liquids have been precisely
measured,9-11 those of mixed gases have rarely been
determined; even complete information about the solu-
bility of air in water in a wide range of pressures and
temperatures is not available.9,10 So far, there is no
rigorous method for predicting the solubilities of gaseous
mixtures in liquids; only an empirical method for
mixtures of hydrocarbons has been suggested.2 As
mentioned in the literature,6 the usual methods for
predicting vapor-liquid equilibrium, such as the Wil-
son, NRTL, and UNIQUAC approaches, cannot be
straightforwardly extended to the solubility of mixtures
of two supercritical gases. Cubic equations of state
(EOS) such as the Peng-Robinson12 and the Soave-
Redlich-Kwong13 EOS provide accurate descriptions for
the solubility of single gases in liquids but can not be
extended to the solubility of gaseous mixtures, especially
when the solvent is polar,13,14 because of the empirical
nature of the interaction parameter in the van der
Waals mixing rule. Whereas the interaction parameter
can be taken zero for multicomponent gaseous mixtures
containing similar compounds,13 it cannot be predicted
for unsymmetrical multicomponent mixtures, such as
CH4 + C2H6 + polar solvent, from the interaction
parameters for binary (individual gas-solvent) mix-
tures. However, the combination of one of the above
EOS with modern mixing rules and group contribution
methods14-16 seems to be promising in predicting the
solubilities of gaseous mixtures in liquids. The aim of
this paper is to propose a method for predicting mixed-
gas solubilities from the solubilities of the constituent
gases in the same solvent, without using an EOS, and
to compare the obtained results with available experi-

mental data. The fluctuation theory of Kirkwood and
Buff17 for ternary mixtures will be employed to develop
the aforementioned method.

2. Theory

2.1. General Expressions for the Solubility of a
Gas Mixture in a Single Solvent. Let us consider the
solubility of a mixed gas (composed of two supercritical
gases: component 2 with mole fraction y2 and compo-
nent 3 with mole fraction y3) in a single solvent
(component 1). At equilibrium, the fugacities of the
components in the liquid and gaseous phases should be
equal. Therefore, one can write

where the superscripts G and L refer to the gaseous and
liquid phases, respectively, and t indicates a ternary
mixture.

The Lewis-Randall rule18 for the fugacity of a species
in a gas mixture will be adopted; hence, the fugacity of
a component in a mixture is obtained by multiplying
its fugacity as a pure gas with its mole fraction. In
addition, for the sake of simplicity, the solubilities of
both gases will be assumed small, and the concentration
of the solvent in the gas phase will be neglected.
Therefore, for the fugacities of the two species of the
gas mixture, one can write

where fi
0(P,T) is the fugacity of the pure gas i at the

pressure and temperature of the system.
The fugacities of the components in the liquid phase

can be expressed as18

where xi
t and γi

t are the mole fraction and the activity
coefficient, respectively, of component i in the liquid
phase and f i

L(T,P) is the fugacity of the pure compo-
nent i in the (hypothetical) liquid state.

Under the same conditions, for the solubilities of the
pure gases in the same solvent (neglecting the concen-
tration of the solvent in the gaseous phase), one can
write

* Corresponding author. E-mail: feaeliru@acsu.buffalo.edu.
Fax: (716) 645-3822. Phone: (716) 645-2911/ext. 2214.

† E-mail address: ishulgin@eng.buffalo.edu.

f i
G(t) ) f i
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where xi
b and γi

b represent the mole fraction and
the activity coefficient, respectively, of component i in
the liquid phase of the binary mixture 1-i, where i is 2
or 3.

The combination of eqs 1-4 yields the relations

and

For dilute binary and ternary mixtures (all solute mole
fractions are small), one can write19-22

and

where γi
b,∞ is the activity coefficient of component i (i )

2, 3) at infinite dilution of component i in the binary
mixture 1-i and

and

for the ternary mixture 1-2-3 at high dilutions of
components 2 and 320-22

and

where γi
t,∞ is the activity coefficient of component i (i )

2, 3) at infinite dilutions of components 2 and 3 in the
ternary mixture 1-2-3 and the subscript 0 indicates
that the derivatives should be calculated for x2

t f 0 and
x3

t f 0. It should be noted that kii in eqs 7-10 refers to
binary mixtures, whereas Kij, defined by eqs 11 and 12,
refers to ternary mixtures.

Because22,23 γ2
t,∞ ) γ2

b,∞, γ3
t,∞ ) γ3

b,∞, and K23 ) K32, the
combination of eqs 5 and 6 with eqs 7 and 8 and eqs 11
and 12 yields

and

Equations 13 and 14 can be used to calculate the
solubilities of mixed gases if the solubilities of the pure
constituent gases in the same solvent and the values of
k22, k33, and K23 are known. Whereas the values of k22
and k33 can be determined from the solubilities of the
individual gases,19,24 an expression for K23 will be
obtained below using the fluctuation theory of solution.

2.2. Expressions for the Derivative of the Activ-
ity Coefficient (D ln γ2

t /Dx3
t)P,T,x2 in a Ternary Mix-

ture through the Kirkwood-Buff Theory of Solu-
tion. General expressions for the derivatives of the
activity coefficients in a ternary mixture with respect
to the mole fractions were obtained in a previous paper23

in the form

where ck is the bulk molecular concentration of compo-
nent k in the ternary mixture 1-2-3 and GRâ is the
Kirkwood-Buff integral given by

In the above expressions, gRâ is the radial distribution
function between species R and â, r is the distance
between the centers of molecules R and â, and ∆Râ and
∆123 are defined as

and

One can show25 that the factors in the square brackets
in the numerator of eq 15 and ∆123 can be expressed in
terms of ∆Râ as

and

The insertion of eqs 19-21 into eq 15 provides an
expression for the derivatives (∂ ln γ2,t/∂x3

t )T,P,x
2
t in

terms of ∆Râ and concentrations.

f i
0 ) xi

b γi
b f i

L(T,P) (i ) 2,3) (4)

x2
t γ2

t ) y2x2
b γ2
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x3
t γ3

t ) y3x3
b γ3
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for the binary mixtures 1-2 and 1-319
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-(c1 + c2 + c3)(c1[G11 + G23 - G12 - G13] +
c3[-G12 - G33 + G13 + G23])/(c1 + c2 + c3 + c1c2∆12 +

c1c3∆13 + c2c3∆23 + c1c2c3∆123) (15)
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(gRâ - 1)4πr2 dr (16)
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It should be noted that, according to Ben-Naim,26 ∆Râ
is a measure of the nonideality of the binary mixture
R-â because, for an ideal mixture, ∆Râ ) 0.

At infinite dilution of components 2 and 3, eqs 15 and
19-21 lead for K23 (defined by eq 11) to

where

When the pair 2-3 (pair of nonpolar gases) is ideal
or its nonideality |∆23| is much smaller than that of the
combined binary pairs 1-2 and 1-3 (solvent-gases)
|∆12 + ∆13|, one can write

Taking into account eq 23, eq 22 acquires the form

Because23 ∆12 is the same for a binary mixture 1-2 in
the limit x2

b f 0 and for a ternary mixture in the limit
x2

t f 0 and x3
t f 0

and

Consequently, eqs 13 and 14 become

and

The system of transcendental eqs 27 and 28 can be used
to predict the mixed-gas solubility from the solubilities
of the individual gases.

3. Calculation Procedure

Calculations were carried out for the solubilities of
mixtures of hydrocarbons (methane-ethane and meth-
ane-n-butane) and for the mixture methane-carbon
dioxide in water, because experimental data regarding
the solubilities of binary gas mixtures and individual
gases are available for these mixtures.7,8,27

For the prediction of the mixed-gas solubilities from
the solubilities of the pure individual gases, the pressure
dependence of the binary parameters kii is needed. The
Peng-Robinson12 EOS was used to determine the
binary parameters kii. The binary interaction parameter
q12 in the van der Waals mixing rule was taken from
ref 28, where it was evaluated for the water-rich phases
of water-hydrocarbon and water-carbon dioxide binary
mixtures. The calculated binary parameters kii are listed
in Table 1. One should note that, as expected for a liquid
phase, the above parameters are almost independent
of pressure, in contrast to their dependence on pressure
in the gaseous phase near the critical point.19,24

4. Results and Discussion

The results of the present calculations are compared
with experiment in Table 2 and Figures 1 and 2, where
y2 is the mole fraction of methane in the gas phase. One
can see that there is good agreement between the two.
The deviations at P ) 20 MPa for the methane-n-
butane gas mixture are possibly caused by the experi-
mental uncertainties regarding the solubility of the pure
n-butane in water.8

Our calculations indicate that the solubility of meth-
ane-ethane gaseous mixture in water (Figure 1) ex-

K23 ) -
lim

x2
t f0

x3
t f0
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t )
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2
t

)
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2 ) (22)
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0 lim
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0 lim
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∆13 (26)
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by2 exp[k22(x2
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2
x3

t] (27)

x3
t ) x3

by3 exp[k33(x3
t - x3

b) +
k22 + k33

2
x2

t] (28)

Table 1. Dependence of the Parameter k22 ) -(D ln
γ2/Dx2)P,T,x2f0 on Pressure at T ) 344.25 K for the Systems
Investigated

system pressure (MPa) k22

water (1)-methane (2) 100 -14.3
75 -14.4
50 -14.5
20 -14.6

water (1)-ethane (2) 100 -40.2
75 -40.3
50 -40.5
20 -40.7

water (1)-n-butane (2) 100 -77.6
75 -77.7
50 -77.8
20 -78.1

water (1)-carbon dioxide (2) 100 -33.7
75 -33.8
50 -34.0
20 -34.3

Table 2. Comparison between Predicted and
Experimental Solubilities of Methane-n-Butane
Mixtures in Water at T ) 344.25 Ka

experimental solubilities8 predicted solubilities

P (MPa) y2 103x2
t,exp 103x3

t,exp 103x2
t,calc 103x3

t,calc

100 0.043 0.286 0.090 0.233 0.093
100 0.230 1.148 0.075 1.232 0.071
100 0.455 2.329 0.052 2.399 0.048
75 0.043 0.233 0.070 0.213 0.098
75 0.230 1.118 0.076 1.124 0.075
75 0.455 2.118 0.048 2.192 0.051
50 0.043 0.198 0.062 0.168 0.087
50 0.230 1.003 0.081 0.889 0.068
50 0.455 1.884 0.042 1.740 0.046
20 0.043 0.127 0.084 0.096 0.091
20 0.230 0.799 0.056 0.513 0.072
20 0.455 1.441 0.037 1.008 0.049
20 0.830 1.886 0.024 1.820 0.015

a x2
t,exp and x3

t,exp are experimental solubilities (mole fractions)
of methane and n-butane in water and x2

t,calc and x3
t,calc are their

solubilities (mole fractions) in water predicted by eqs 27
and 28.
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hibits almost linear behavior (this means that the
solubility of each constituent of the gas mixture can be
determined by multiplying the solubility of the pure
component by its mole fraction in the gaseous mixture).
This conclusion is in full agreement with the experi-
mental results obtained in ref 8 but in disagreement
with those of ref 2, where extrema in the dependence
on composition of the solubilities of hydrocarbon mix-
tures in water (at P, T ) const) were found. Our
calculations also show, in agreement with experiment,7,8

that the solubility of methane-n-butane gaseous mix-
tures (Table 2) exhibits a slight nonlinear behavior and
that of methane-carbon dioxide mixtures (Figure 2), a
nonlinear one.

For ideal binary mixtures, k22 and k33 are equal to
zero, and eqs 27 and 28 reduce to x2

t ) x2
by2 and x3

t )
x3

by3. Of course, linear behavior can be reached when
either kii and/or the solubilities x2

b and x3
b are small

enough for

and

5. Conclusion

The purpose of this paper was to propose a pre-
dictive method for the solubilities of binary mixed
gases in a liquid in terms of the individual solubilities.
For this aim, the derivatives of the activity coeffi-
cients in a ternary mixture with respect to the mole
fractions were derived through the fluctuation theory
of solutions and used to obtain expressions for the
solubility at high dilutions of both gases. The sug-
gested method was tested at 344.25 K and in the
pressure range 20-100 MPa for the solubilities of
methane-ethane, methane-n-butane, and methane-
carbon dioxide in water. The predicted solubilities were
compared with experimental data and good agreement
was found.
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Abstract

This paper is devoted to a theory of gas solubility in highly asymmetrical mixed solvents composed of a low molecular weight (such as

water, alcohol, etc.) and a high molecular weight (such as polymer, protein, etc.) cosolvents. The experimental solubilities of Ar, CH4, C2H6

and C3H8 in aqueous solutions of polypropylene glycol and polyethylene glycol were selected for comparison with the theory. The approach

for predicting these solubilities is based on the Kirkwood–Buff formalism for ternary mixtures, which allowed one to derive a rigorous

expression for the Henry constant in mixed solvents. Starting from this expression, the solubilities could be predicted in terms of those in each

of the two constituents and the properties of the mixed solvent. This expression combined with the Flory–Huggins equation for the activity

coefficient in a binary mixed solvent provided very accurate results, when the Flory–Huggins interaction parameter was used as an adjustable

quantity. A simple expression in which the solubility could be predicted in terms of those in each of the two constituents and the molar

volumes of the latter was also derived. While less accurate that the previous expression, it provided more than satisfactory results.

q 2002 Published by Elsevier Science Ltd.

Keywords: Gas solubility; Mixed solvents; Polymer solutions

1. Introduction

The prediction of the solubilities of gases in mixed

solvents composed of water and a high molecular weight

cosolvent such as a polymer, protein, detergent, biomole-

cule, drug, etc. is important from a practical point of view

[1]. One modern example relevant to this topic is the gas

antisolvent recrystallization process [2], which is widely

used for refining explosives, pharmaceuticals, proteins, etc.

The present paper is devoted to the development of

equations able to predict the gas solubility in a mixed

solvent composed of water (or any other low molecular

weight solvent) and a high molecular weight constituent

(cosolvent) such as polymers, proteins, etc.

The solubilities of nonpolar nonacidic gases in water are

usually small compared to those in nonaqueous solvents;

this behavior is usually attributed to the hydrophobic effect

[3]. However, the solubility of the same gases in nonpolar

solvents is much higher. The solubilities of gases in high

molecular weight solvents, such as liquid (or molten)

polymers differ in major ways from those in low molecular

weight solvents. Indeed, Table 1 which provides a

comparison (in terms of the Henry constant and Ostwald

coefficient) between the solubilities of gases in different

kinds of solvents, reveals that the solubilities [4,5] of

nonpolar, nonacidic gases in liquid polymers, such as

polypropylene glycol (PPG) and polyethylene glycol (PEG),

are much higher than those in water. They are even

comparable with the solubilities [6,7] of the same gases in n-

decane. This means that the well-known principle ‘like

dissolves like’ cannot be applied to high molecular weight

solvents. Indeed, the high molecular weight compounds that

possess polar groups are often very good solvents for

nonpolar, nonacidic gases, and one can generally state that

small size gases are fairly soluble in high molecular weight

solvents. This probably can be explained by the larger free

space between the polymer molecules than between the low

molecular weight solvents.

In a previous paper [9] we developed an equation which

could predict the gas solubility in a mixed solvent from the

solubilities in the individual constituents and the properties

of their mixture. This equation was applied to mixed

solvents composed of small molecules. In the present paper,

we will apply it to the solubility of a gas in a polymer þ

water mixture.

0032-3861/03/$ - see front matter q 2002 Published by Elsevier Science Ltd.

PII: S0 03 2 -3 86 1 (0 2) 00 7 33 -4

Polymer 44 (2003) 901–907

www.elsevier.com/locate/polymer

* Corresponding author. Tel.: þ1-716-645-2911x2214; fax: þ1-716-

645-3822.

E-mail addresses: feaeliru@acsu.buffalo.edu (E. Ruckenstein),

ishulgin@eng.buffalo.edu (I. Shulgin).

Thermodynamics of Solutions172

http://www.elsevier.com/locate/polymer


The aqueous mixtures of polymers (PEG and PPG) were

selected for comparison with the theory, because accurate

data [4,5] regarding the solubility of argon (Ar), methane

(CH4), ethane (C2H6) and propane (C3H8) in the individual

constituents and the polymer þ water mixtures are avail-

able. In addition, the above polymers and water are miscible

in all proportions and solubility data [4,5] are available for

the entire composition range. The theoretical approach

regarding the solubility of gases in polymer þ water mixed

solvents can be extended to the correlation of their solubility

in mixed solvents formed of water and pharmaceuticals,

proteins, biomolecules, etc.

2. Theory

The gas solubility will be expressed in terms of the Henry

constant. There are a number of expressions for the Henry

constant in binary mixed solvents. The oldest and simplest

relationship between the Henry constant in binary solvents

and those in the individual constituents is that proposed by

Krichevsky [10]:

ln H2;t ¼ xb;1–3
1 ln H2;1 þ xb;1–3

3 ln H2;3 ð1Þ

where H2,t, H2,1 and H2,3 are the Henry constants in the

binary mixed solvent 1–3 and the individual solvents 1 and

3, respectively, and xb;1–3
1 and xb;1–3

3 are the mole fractions

of components 1 and 3 in the binary solvent 1–3

(throughout this paper the following subscripts for the

components will be used: 1, high molecular weight

cosolvent, 2, solute (gas), 3, low molecular weight

cosolvent). Krichevsky’s relationship (1) is valid when the

ternary and binary mixtures (1–2 and 2–3) are ideal [9].

However, the ternary 1–2–3 and binary mixtures (1–2 and

2–3) do not always satisfy the ideality conditions. Indeed,

the activity coefficients at infinite dilution for the binary

mixtures gas/solvent (particularly for high molecular weight

solvents) have values much larger [11,12] than unity. On the

basis of the Kirkwood–Buff theory of solutions [13] for

ternary mixtures [14] the authors derived [9] the following

relation for the Henry constant in a binary solvent mixture

ln H2;t ¼
ðln H2;1Þðln V ID 2 ln V0

3 Þ þ ðln H2;3Þðln V0
1 2 ln V IDÞ

ln V0
1 2 ln V0

3

ð2Þ

where V0
1 and V0

3 are the molar volumes of the individual

solvents 1 and 3, and V ID is the molar volume of the ideal

binary mixture 1–3 ðV ID ¼ xb;1–3
1 V0

1 þ xb;1–3
3 V0

3 Þ: Eq. (2) is

less restrictive than the Krichevsky Eq. (1), because it

requires that only the binary mixed solvent 1–3 be an ideal

mixture. Such an approximation is reasonable because the

activity coefficient of water in the binary mixture PEG þ

water [15,16] is small and at infinite dilution [11] is about

0.5, while those between the gas and each of the constituents

of the solvent are very large.

Eq. (2) does not contain any adjustable parameter and

can be used to predict the gas solubility in mixed solvents in

terms of the solubilities in the individual solvents (1 and 3)

and their molar volumes. Eq. (2) provided a very good

agreement [9] with the experimental gas solubilities in

binary aqueous solutions of nonelectrolytes; a somewhat

modified form correlated well the gas solubilities in aqueous

salt solutions [17]. The authors also derived the following

rigorous expression for the Henry constant in a binary

solvent mixture [9] (Appendix A for the details of the

derivation):

ln H2;t ¼ 2
ð B

V
1 þ xb;1–3

3

›ln gb;1–3
3

›xb;1–3
3

 !
P;T

" #
dxb;1–3

3

þ 1
2

ð ðxb;1–3
1 2 xb;1–3

3 Þ

xb;1–3
1

›ln gb;1–3
3

›xb;1–3
3

 !
P;T

dxb;1–3
3 þ A ð3Þ

where V is the molar volume of the binary mixed solvent 1–

3, B ¼ ðD12 2 D23Þxt
2
¼0=2; xt

2 is the mole fraction of the

solute (component 2) in the ternary mixture 1–2–3, AðP; TÞ

is a composition-independent constant of integration, gb;1–3
3

is the activity coefficient of component 3, the superscript b,

1–3 indicates that the activity coefficient is for the binary

1–3 mixture, and D12 and D23 are functions of the

Kirkwood–Buff integrals (Appendix A). If B is considered

independent of the composition of the binary mixed solvent

1–3, Eq. (3) can be rewritten in the form

ln H2;t ¼ 2BI1 þ
I2

2
þ A ð4Þ

where the integrals

I1 ¼ 2
ð 1 þ xb;1–3

3

›ln gb;1–3
3

›xb;1–3
3

 !
P;T

" #

V
dxb;1–3

3

Table 1

The solubility of several nonpolar gases in water, decane and liquid

polymers at T ¼ 298.15 K and gas partial pressure 1 atm

Gas Solubilitya, Henry constant (H, MPa)b (Ostwald coefficient,

102 L)c

Water n-decane PPG-400d PEG-200e

Argon 4025 (3.4) 40.9 (31.0) 41.8 (14.9) 202.5 (6.9)

Methane 4039 (3.4) 39.3 (32.3) 21.0 (29.7) 114.9 (12.1)

Ethane 3027 (4.5) 2.8 (464) 4.1 (154) 24.0 (58.1)

Propane 3745 (3.7) 0.7 (2060) 1.3 (510) 10.6 (132)

a The data for the solubilities in water and polymers were taken from

Refs. [4,5], and those in n-decane from Refs. [6,7].
b The Henry constant is defined as the limiting value of the ratio of the gas

partial pressure to its mole fraction in solution as the latter tends to zero [8].
c The Ostwald coefficient is the ratio of the volume of gas absorbed to the

volume of the absorbing liquid, both measured at the same temperature [8].
d Polypropylene glycol with average molecular weight of 400.
e Polyethylene glycol with average molecular weight of 200.
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and

I2 ¼
ð ðxb;1–3

1 2 xb;1–3
3 Þ

xb;1–3
1

›ln gb;1–3
3

›xb;1–3
3

 !
P;T

dxb;1–3
3

can be calculated if the composition dependencies of the

activity coefficient and molar volume of the binary mixed

solvent 1–3 are known. The combination of Eq. (4) with the

following limiting expressions

ðln H2;tÞxb;1–3
1

¼0 ¼ ln H2;3 ð5Þ

and

ðln H2;tÞxb;1–3
3

¼0 ¼ ln H2;1 ð6Þ

allows one to obtain the constants A(P,T ) and B(P,T ).

Expressions (1), (2) and (4) will be used to calculate the gas

solubility in a mixed solvent composed of water and

polymer.

3. The solubility of gases in binary polymer 1 solvent

mixtures

3.1. The systems considered

The experimental solubilities [4,5] of Ar, CH4, C2H6 and

C3H8 in the aqueous solutions of PPG with the average

molecular weight of 400 (PPG-400), PEG with the average

molecular weight of 200 (PEG-200) and PEG with the

average molecular weight of 400 (PEG-400) were selected

for comparison with the theory.

3.2. The calculation procedure

The experimental Ostwald coefficients [4,5] were

converted into the Henry constants. The molar volumes

of the aqueous solutions of PPG-400, PEG-200 and

PEG-400 were calculated from experimental densities

[4,5] to conclude that they are well approximated by the

expression

V ¼ xb;1–3
1 V0

1 þ xb;1–3
3 V0

3 ð7Þ

The Flory–Huggins equation [18,19] for the activity

coefficient of water in the binary mixed solvent polymer

(1) þ water (3) will be employed. It has the form

ln gb;1–3
3 ¼ ln 1 2 1 2

1

r

� �
w1

� 	
þ 1 2

1

r

� �
w1 þ xw2

1 ð8Þ

where x is the Flory–Huggins interaction parameter

considered here as composition-independent, w1 ¼

rxb;1–3
1 =ðrxb;1–3

1 þ xb;1–3
3 Þ is the volume fraction of poly-

mer in the mixed solvent polymer þ water and r is the

number of segments in the polymer molecule (taken as

the ratio of the molar volumes of the polymer and

water, r ¼ V0
1 =V

0
3 ). For the derivative of the activity

coefficient ð›ln gb;1–3
3 =›xb;1–3

3 ÞP;T ; the Flory – Huggins

equation provides the following expression

The insertion of Eqs. (7) and (9) into Eq. (4) provides

an expression which can be integrated analytically

(Appendix B). The Flory–Huggins interaction parameter

x can be used either as an adjustable parameter, or can

be obtained from phase equilibrium data for the binary

mixture polymer þ water.

3.3. Results

The comparison of the experimental solubilities [4,5] of

Ar, CH4, C2H6 and C3H8 in the binary aqueous mixtures of

PPG-400, PEG-200 and PEG-400 with the calculated ones

is presented in Figs. 1–3 and Table 2. They show that Eq.

(4) coupled with the Flory–Huggins equation, in which the

interaction parameter x is used as an adjustable parameter,

is very accurate. The Krichevsky equation (1) does not

provide accurate predictions. While less accurate than Eq.

(4), the simple Eq. (2) provides very satisfactory results

without involving any adjustable parameters. It should be

noted that Eq. (4) coupled with the Flory–Huggins equation

with x ¼ 0 (athermal solutions) does not involve any

adjustable parameters and provides results comparable to

those of Eq. (2).

4. Discussion

A simple and reliable method for the correlation of the

gas solubility in a mixed solvent composed of two

cosolvents, one of high molecular weight and the other of

low molecular weight, was proposed. It was shown that the

well-known Krichevsky equation could not provide accu-

rate predictions of the gas solubilities in such mixed

solvents. The failure of Krichevsky’s equation is not

surprising since it requires the ternary 1–2–3 and the

binary 1–2 and 2–3 mixtures to be ideal. Such conditions

cannot be satisfied by the highly asymmetrical mixtures of a

high molecular weight cosolvent (1)–gas (2)–low molecu-

lar weight cosolvent (3). Eq. (2) obtained on the basis of the

Kirkwood–Buff formalism is less restrictive, because it

involves the more realistic assumption [9] that the

nonidealities of the gas/cosolvent mixtures are much higher

›ln gb;1–3
3

›xb;1–3
3

 !
P;T

¼ 2
xb;1–3

1 ð2r3xb;1–3
1 2 3r2xb;1–3

3 þ 3rxb;1–3
3 þ 2r2 2 xb;1–3

3 2 r þ 2r2xÞ

ðrxb;1–3
1 þ xb;1–3

3 Þ3
ð9Þ
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Fig. 2. The solubilities of Ar (a), CH4 (b), C2H6 (c), and C3H8 (d) in PEG-200 at 25 8C. W, experimental data [5], curve 1, the solubility calculated with Eq. (4)

combined with the Flory–Huggins Eq. (8) with x as adjustable parameter, curve 2, the solubility calculated with Eq. (2), curve 3, the solubility calculated with

Krichevsky’s Eq. (1).

Fig. 1. The solubilities of Ar (a), CH4 (b), C2H6 (c), and C3H8 (d) in PPG-400 at 25 8C. W, experimental data [4], curve 1, the solubility calculated with Eq. (4)

combined with the Flory–Huggins Eq. (8) with x as adjustable parameter, curve 2, the solubility calculated with Eq. (2), curve 3, the solubility calculated with

Krichevsky’s Eq. (1).
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Table 2

Comparison between experimental and calculated Henry constants in a binary mixed solvent polymer þ water at 298.15 K

Systems Deviations (%) of experimental data [4,5] from calculationsa

Gas Mixed solvent Krichevsky’s equation Eq. (2) Eq. (4)b Eq. (4)c

Argone PPG-400 þ water 12.5 1.9 1.1 (20.17) 1.2

PEG-200 þ water 3.7 3.3 1.3 (21.77) 4.8

PEG-400 þ water 4.8 3.8 2.0 (22.52) 5.2

Methane PPG-400 þ water 18.1 3.9 0.9 (0.55) 2.3

PEG-200 þ Water 7.1 1.8 1.2 (20.94) 3.2

PEG-400 þ water 8.5 2.0 2.0 (21.17) 3.3

Ethane PPG-400 þ water 36.4 11.5 1.8 (1.49) 9.3

PEG-200 þ water 13.9 2.1 2.0 (20.29) 2.1

PEG-400 þ water 15.9 3.7 2.1 (20.10) 2.6

Propane PPG-400 þ water 66.4 25.3 6.5 (2.20) 23.1

PEG-200 þ water 21.5 3.8 2.3 (0.30) 3.2

PEG-400 þ water 21.2 5.5 5.0 (0.18) 5.1

Average (%) 19.2 5.7 1.9 5.5

a Defined as

100
X

i

lnðHðiÞ
2;tðexpÞÞ2 lnðHðiÞ

2;tðcalcÞÞ

lnðHðiÞ
2;tðexpÞ

������
������

m

where m is the number of experimental points.
b Eq. (4) combined with the Flory–Huggins equation with adjustable parameter x (the value of the parameter x is given in parenthesis).
c Eq. (4) combined with the Flory–Huggins equation with parameter x ¼ 0 (athermal solution).

Fig. 3. The solubilities of Ar (a), CH4 (b), C2H6 (c), and C3H8 (d) in PEG-400 at 25 8C. W, experimental data [5], curve 1, the solubility calculated with Eq. (4)

combined with the Flory–Huggins Eq. (8) with x as adjustable parameter, curve 2, the solubility calculated with Eq. (2), curve 3, the solubility calculated with

Krichevsky’s Eq. (1).
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than those of the mixed solvents. For this reason, Eq. (2)

provides more accurate predictions. This equation does not

require information about the ternary mixture 1–2–3 nor

about its binary constituents, requiring only the gas

solubilities in the individual solvents and the molar volumes

of the latter.

The most accurate correlation was obtained with the

rigorous Eq. (4) coupled with the Flory–Huggins equation

for the activity coefficient of water in the polymer þ water

binary mixture, when the Flory–Huggins interaction

parameter x was considered as an adjustable parameter

independent of composition. The values of the Flory–

Huggins parameter x for the systems investigated are listed

in Table 2. While, according to the theory, the interaction

parameter x should be independent of the polymer

concentration and weight, in reality, in most cases x

changes considerably with both [20]. In particular, for the

binary mixtures PPG þ water and PEG þ water, x depends

on both composition and average molecular weight of the

polymer [15,16]. Therefore, the values of x used in our

calculations constitute adjustable parameters. The calcu-

lations (Table 2) show that x depends not only on the

average molecular weight of the polymer, but has different

values for each of the gases considered.

The figures show that Eq. (4) coupled with the Flory–

Huggins equation for the activity coefficient of water in

polymer þ water mixed solvents provides a minimum for

the Henry constant at high (.95 wt%) polymer compo-

sitions. Because gas solubility data are not available for such

high polymer compositions, one cannot determine whether

this minimum is due to the empirical nature of the adjustable

parameter x or reflects an experimental feature of the gas

solubility in such mixed solvents at high polymer

concentrations.

5. Conclusion

The Kirkwood–Buff theory of solutions for ternary

mixtures was used to analyze the gas solubility in a

mixed binary solvent composed of a high molecular

weight and a low molecular weight cosolvent, such as

the aqueous solutions of water soluble polymers. A

rigorous expression for the composition derivatives of

the gas activity coefficient in ternary solution was used

to derive the composition dependence of the Henry

constant under isobaric and isothermal conditions. The

obtained expressions as well as the well-known Kri-

chevsky equation were tested for the solubilities of Ar,

CH4, C2H6 and C3H8 in the aqueous solutions of PPG-

400, PEG-200 and PEG-400. It was shown that the

coupling of our Eq. (4) with the Flory–Huggins equation

for the activity coefficient of the water in the binary

mixed solvent provides an accurate correlation for the

gas solubility with a single adjustable parameter.

However, the more simple Eq. (2) has a satisfactory

accuracy and is recommended because it requires only

the gas solubilities in the individual solvents and the

molar volumes of the latter.
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Appendix A

The following expression can be written for the Henry

constant in a binary solvent [21]

ln H2;t ¼ lim
xt

2
!0

ln g2;t þ ln f 0
2 ðP; TÞ ðA1Þ

where g2,t is the activity coefficient of the solute in the

ternary mixture 1–2–3 and f 0
i ðP;TÞ is the fugacity of

component i [20]. The Kirkwood–Buff theory of solutions

[13] for ternary mixtures [14] provides the following

expression for the composition derivatives of g2,t at infinite

dilution

where xt
3 is the mole fraction of component 3 in the ternary

mixture, c0
k ðk ¼ 1; 3Þ is the bulk molecular concentration of

component k in the binary mixture 1–3 and Gab is the

Kirkwood–Buff integral given by

Gab ¼
ð1

0
ðgab 2 1Þ4pr2 dr ðA3Þ

In the above expressions, gab is the radial distribution

function between species a and b, r is the distance between

the centers of molecules a and b, and Dab are defined as

follows

Dab ¼ Gaa þ Gbb 2 2Gab; a – b ðA4Þ

It should be noted that Dij is a measure of the nonideality

[22] of the binary mixture a–b, because for an ideal

mixture Dab ¼ 0:

lim
xt

2
!0

›ln g2;t

›xt
3

 !
T ;P;xt

2

¼ 2
ðc0

1 þ c0
3Þððc

0
1 þ c0

3ÞðD12 2 D23Þxt
2
¼0 þ ðc0

1 2 c0
3ÞðD13Þxt

2
¼0Þ

2ðc0
1 þ c0

3 þ c0
1c0

3ðD13Þxt
2
¼0Þ

ðA2Þ
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The combination of Eqs. (A1) and (A2) leads to

In addition, for the binary 1–3 mixture one can write the

following relation [13]

›ln gb;1–3
1

›xb;1–3
3

 !
P;T

¼
c0

3D13

1 þ c0
1xb;1–3

3 D13

ðA6Þ

Combination of Eqs. (A5) and (A6) leads to

ln H2;t ¼ 2
ð
ðc0

1 þ c0
3Þ
ðD12 2 D23Þxt

2
¼0

2

£

"
1 þ xb;1–3

3

 
›ln gb;1–3

3

›xb;1–3
3

!
P;T

#
dxb;1–3

3

þ 1
2

ð ðxb;1–3
1 2 xb;1–3

3 Þ

xb;1–3
1

 
›ln gb;1–3

3

›xb;1–3
3

!
P;T

dxb;1–3
3 þ A

ðA7Þ

which is just Eq. (3) in the text.

Appendix B

The aim of this appendix is to provide analytical

expressions for the integrals I1 and I2 of Eq. (4)

I1 ¼ 2
ð 1 þ xb;1–3

3

›ln gb;1–3
3

›xb;1–3
3

 !
P;T

" #

V
dxb;1–3

3 ðB1Þ

and

I2 ¼
ð ðxb;1–3

1 2 xb;1–3
3 Þ

xb;1–3
1

›ln gb;1–3
3

›xb;1–3
3

 !
P;T

dxb;1–3
3 ðB2Þ

The Flory–Huggins Eq. (8) was employed for the activity

coefficient of water gb;1–3
3 in a mixed solvent polymer

(1) þ water (3). Because the integrated expressions require

a too large space, we provide only the results obtained for

x ¼ 0 (athermal mixtures).1 Using Eqs. (7) and (9), the

integration of Eqs. (B1) and (B2) leads to the following

expressions

I1 ¼
a1 þ a2 lnðaxb;1–3

3 þ bÞ þ a3 lnðrxb;1–3
1 þ xb;1–3

3 Þ

ðrxb;1–3
1 þ xb;1–3

3 Þðra þ rb 2 bÞ2
ðB3Þ

and

I2 ¼
2ðrxb;1–3

1 þ xb;1–3
3 Þlnðrxb;1–3

1 þ xb;1–3
3 Þ þ ð1 þ rÞ

ðrxb;1–3
1 þ xb;1–3

3 Þ
ðB4Þ

where a ¼ V0
3 2 V0

1 and b ¼ 2V0
1 : The coefficients a1, a2

and a3 have the following forms

a1 ¼ 2r2b 2 r2a þ rb ðB5Þ

a2 ¼ r3axb;1–3
1 þ r3bxb;1–3

1 þ r2axb;1–3
3 þ r2bxb;1–3

3

2 rbxb;1–3
1 2 bxb;1–3

3 ðB6Þ

and

a3 ¼ 2r3axb;1–3
1 2 r3bxb;1–3

1 2 r2axb;1–3
3 2 r2bxb;1–3

3

þ rbxb;1–3
1 þ bxb;1–3

3 ðB7Þ
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Ideal Multicomponent Liquid Solution as a Mixed Solvent

E. Ruckenstein* and I. Shulgin†

Department of Chemical Engineering, State University of New York at Buffalo, Amherst, New York 14260

The present paper is concerned with mixtures composed of a highly nonideal solute and a
multicomponent ideal solvent. A model-free methodology, based on the Kirkwood-Buff (KB)
theory of solutions, was employed. The quaternary mixture was considered as an example, and
the full set of expressions for the derivatives of the chemical potentials with respect to the number
of particles, the partial molar volumes, and the isothermal compressibility were derived on the
basis of the KB theory of solutions. Further, the expressions for the derivatives of the activity
coefficients were applied to quaternary mixtures composed of a solute and an ideal ternary
solvent. It was shown that the activity coefficient of a solute at infinite dilution in an ideal
ternary solvent can be predicted in terms of the activity coefficients of the solute at infinite
dilution in subsystems (solute + the individual three solvents, or solute + two binaries among
the solvent species). The methodology could be extended to a system formed of a solute + a
multicomponent ideal mixed solvent. The obtained equations were used to predict the gas
solubilities and the solubilities of crystalline nonelectrolytes in multicomponent ideal mixed
solvents. Good agreement between the predicted and experimental solubilities was obtained.

Introduction

The solubilities of gases, liquids, and solids in multi-
component solvents constitute important issues in sci-
ence and technology. The aqueous multicomponent
solutions represent a meaningful example because the
overwhelming majority of solutions of biological and
environmental interest are aqueous multicomponent
solutions.

The experimental research on the solubilities in
multicomponent solutions is tedious and time-consum-
ing because of the large number of compositions needed
to cover the concentration ranges. For example, 11
measurements are needed for different compositions in
a binary solution (10 mol % steps for composition
changes), 66 in ternary, 286 in quaternary, and so on.

Therefore, it is important to have a reliable and
accurate method for predicting the solubility in multi-
component solutions from those in its pure or binary
constituents. The main difficulty in predicting the
solubility in multicomponent solutions consists of the
calculation of the activity coefficient of the solute.
Thermodynamics cannot provide the explicit pressure,
temperature, and composition dependence of thermo-
dynamic functions, such as the activity coefficients of
the components in multicomponent mixtures. For this
reason, empirical expressions such as the Wohl expan-
sion1 have often been used to represent thermodynamic
data regarding multicomponent mixtures.

Another approach is to employ rigorous statistical
thermodynamic theories. In this paper, the Kirkwood-
Buff (KB) theory of solutions2 (fluctuation theory of
solutions) is employed to analyze the thermodynamics
of multicomponent mixtures, with the emphasis on
quaternary mixtures. This theory connects the macro-
scopic properties of n-component solutions, such as the
isothermal compressibility, the concentration deriva-

tives of the chemical potentials, and the partial molar
volumes to the microscopic properties of solutions in the
form of spatial integrals involving the radial distribution
functions, namely, the KB integrals. The KB integrals
are provided by the expression2

where gRâ is the radial distribution function between
species R and â and r is the distance between the centers
of molecules R and â.

Previously,3 the authors have applied the KB theory
of solutions to ternary mixtures. In particular, the
following kinds of relations for the concentration deriva-
tives of the activity coefficients in a ternary mixture
were obtained:

where P is the pressure, T is the absolute temperature,
x2

t and γ2,t are the mole fraction and activity coefficient
of a solute in a ternary mixture (in this paper, compo-
nent 2 designates a solute), x3

t is the mole fraction of
component 3 (one of the solvents, with the other one
being component 1) in a ternary mixture, cR is the bulk
molecular concentration of component R in a ternary
mixture, and ∆Râ and ∆123 are defined by* To whom correspondence should be addressed. Tel.: (716)

645-2911/ext. 2214. Fax: (716) 645-3822. E-mail: feaeliru@
acsu.buffalo.edu.

† E-mail: ishulgin@eng.buffalo.edu.

GRâ ) ∫0

∞
(gRâ - 1)4πr2 dr (1)

(∂ ln γ2,t

∂x3
t )

T,P,x2
t

)

-

(c1 + c2 + c3)(c1[G11 + G23 - G12 - G13] +
c3[-G12 - G33 + G13 + G23])

c1 + c2 + c3 + c1c2∆12 + c1c3∆13 +
c2c3∆23 + c1c2c3∆123

(2)

∆Râ ) GRR + Gââ - 2GRâ, R * â (3)
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and

The factors in the square brackets in the numerator
of eq 2 and ∆123 can be expressed in terms of ∆Râ as
follows:

and

The insertion of eqs 5-7 into eq 2 provides an
expression for the derivative (∂ ln γ2,t/∂x3

t )T,P,x2
t in terms

of ∆Râ and concentrations.
It should be noted that ∆Râ is a measure of the

nonideality4 of the binary mixture R-â because for an
ideal mixture ∆Râ ) 0. For a ternary mixture 1-2-3,
∆123 also constitutes a measure of nonideality. Indeed,
by inserting the KB integrals for an ideal ternary
mixture5 into the expression of ∆123, one could obtain
that for an ideal ternary mixture ∆123 ) 0.

Considering a solvent composed of components 1 and
3 as an ideal one (∆13 ) 0), eq 2 at infinite dilution of a
solute (component 2) leads to the relation

where c1
0 and c3

0 are the bulk molecular concentrations
of components 1 and 3 in the binary 1-3 solvent and
γ2

t,∞ is the activity coefficient of a solute in a ternary
mixture at infinite dilution.

When the factor (∆12 - ∆23)x2
t )0 is considered to be

constant and eq 8 is integrated, the following relation
between γ2

t,∞ and the activity coefficients at infinite
dilution of the solute in each of the constituents (1 and
3) of the solvent was obtained:

where V1
0 and V3

0 are the molar volumes of the
individual solvents 1 and 3, γ2

b1,∞ and γ2
b3,∞ are the

activity coefficients at infinite dilution of the solute in
the pure solvents 1 and 3, respectively, and v is the
molar volume of an ideal binary mixed solvent.

Equation 9 has proven to be useful in the representa-
tion of the gas solubility in a binary solvent,6,7 the

solubility of solids in a supercritical fluid (SCF) mixed
with a gas or with another SCF,8 and so on.

The aim of the present paper is (a) to derive relations
for the activity coefficients in multicomponent mixtures
in terms of the KB integrals, (b) to obtain on their basis
an expression for the solubility of a solute in an ideal
multicomponent solvent, (c) to use the obtained equa-
tions to predict the solubilities in real systems, and (d)
to compare the predicted solubilities with the experi-
mental ones.

Theory and Formulas

Expressions for the derivatives of the chemical po-
tentials with respect to the number of particles, the
partial molar volumes, and the isothermal compress-
ibility were derived by Kirkwood and Buff2 in compact
matrix forms (see Appendix 1). The derivation of explicit
expressions for the above quantities in multicomponent
mixtures required an enormous number of algebraic
transformations, which could be carried out by using a
special algebraic software (Maple9 8 was used in the
present paper). A full set of expressions for the deriva-
tives of the chemical potentials with respect to the
number of particles, the partial molar volumes, and the
isothermal compressibilities in a quaternary mixture
were derived. However, our main interest in this paper
is related to the derivatives of the activity coefficient
with respect to the mole fractions (all of the expressions
for the derivatives of the chemical potentials with
respect to the number of particles, the partial molar
volumes, and the isothermal compressibility can be
obtained from the authors at request), namely, the
derivatives of the form (∂ ln γ2,q/∂x3

q)T,P,x2
q,x4

q, where x2
q, x3

q,
x4

q, and γ2,q are the mole fractions of components 2-4
and the solute activity coefficient, respectively, in the
quaternary mixture. The above derivative under iso-
thermal-isobaric conditions could be obtained from
those of the chemical potential with respect to the
number of particles:

where N ) N1 + N2 + N3 + N4, with Ni (i ) 1-4) the
number of particles of species i, i ) 2 being the solute
and 1, 3, and 4 the components of the solvent.

The final expression for (∂ ln γ2,q/∂x3
q)T,P,x2

q,x4
q has the

following form:

where h1, h3, h14, h34, τ2, τ3, and ∆1234 are defined in
Appendix 2.

One can demonstrate that for an ideal quaternary
mixture ∆1234 ) 0 and hence that ∆1234 is a measure of
the nonideality of the quaternary mixture 1-2-3-4.
The examination of eq 11 reveals that the derivative
(∂ ln γ2,q/∂x3

q)T,P,x2
q,x4

q depends on compositions and the
parameters that characterize the degrees of nonideali-
ties ∆1234, ∆ijk, and ∆ij. Moreover, the parameters ∆1234

∆123 ) G11G22 + G11G33 + G22G33 + 2G12G13 +

2G12G23 + 2G13G23 - G12
2 - G13

2 - G23
2 - 2G11G23 -

2G22G13 - 2G33G12 (4)

G12 + G33 - G13 - G23 )
∆13 + ∆23 - ∆12

2
(5)

G11 + G23 - G12 - G13 )
∆12 + ∆13 - ∆23

2
(6)

∆123 )

-
∆12

2 + ∆13
2 + ∆23

2 - 2∆12∆13 - 2∆12∆23 - 2∆13∆23

4
(7)

lim
x2

t
f0(∂ ln γ2,t

∂x3
t )

T,P,x2
t

) (∂ ln γ2
t,∞

∂x3
t )

T,P,x2
t )0

)

-
(c1

0 + c3
0)(∆12 - ∆23)x2

t )0

2
(8)

ln γ2
t,∞ )

(ln v - ln V3
0) ln γ2

b1,∞ + (ln V1
0 - ln v) ln γ2

b3,∞

ln V1
0 - ln V3

0
(9)

(∂µ2

∂x3
q)

T,P,x2
q,x4

q

) N(∂µ2

∂N3)T,P,Nγ*3

- N(∂µ2

∂N1)T,P,Nγ*1

(10)

(∂ ln γ2,q

∂x3
q )

T,P,x2
q,x4

q

)

-
(c1 + c2 + c3 + c4)(c1h1 + c3h3 + c1c4h14 + c3c4h34)

c1 + c2 + c3 + c4 + τ2 + τ3 + c1c2c3c4∆1234

(11)
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and ∆ijk can be expressed in terms of ∆ij, as was shown
before for ternary mixtures (see eq 7). Thus, the KB
expression for the derivative (∂ ln γ2,q/∂x3

q)T,P,x2
q,x4

q, which
depends for quaternary solutions on 10 KB integrals Gij,
is replaced by eq 11, which contains only six parameters
∆ij. Furthermore, being measures of the nonidealities,
the parameters ∆ij have a clear physical meaning, and
this helps in the analysis of the thermodynamics of
multicomponent mixtures.

At infinite dilution of the solute (x2
q f 0), eq 11

acquires the following form:

where ci
t ) lim

x2
qf0

ci and γ2
q,∞ ) lim

x2
qf0

γ2,q.

By considering the ternary solvent (1-3-4) an ideal
solution, hence that ∆13 ) 0, ∆14 ) 0, and ∆34 ) 0, and
taking into account eqs 7 and A2-1-A2-6 in Appendix
2, eq 12 can be recast in the more simple form

Equation 13 has the same form as expression (8) for
the derivative (∂ ln γ2

t,∞/∂x3
t )T,P,x2

t in a ternary solution.
Equation 13 can be used to derive an expression for

the activity coefficient γ2
q,∞ in a manner similar to that

employed for the binary mixed-solvent case. Considering
the factor (∆12 - ∆23)x2

q)0 to be constant and integrating
eq 13, one obtains the following relation:

where B ) (∆12 - ∆23)x2
q)0/2, A is a constant of integra-

tion, and V ) x1
t V1

0 + x3
t V3

0 + x4
t V4

0 is the molar
volume of the ternary mixed solvent 1-3-4 (for an
explanation of the notations employed, see Table 1,
which provides information about the activity coef-
ficients of a solute in mixed and individual solvents and
about the compositions and molar volumes of mixed and
individual solvents). The constants A and B can be
determined from two limiting conditions (see Figure 1):

(1) x1
t ) 0. In this case, the ternary mixed solvent

becomes a binary one composed of components 3 and 4,

with mole fractions x3
b3 ) 1 - x4

t and x4
b3 ) x4

t and a
molar volume Vb,3 ) x3

b3 V3
0 + x4

b3 V4
0, and the activity

coefficient of a solute in a ternary mixed solvent becomes
equal to that in the binary (3-4) mixed solvent at
infinite dilution (γ2

t3,∞)

(2) x3
t ) 0. In this case, the ternary mixed solvent

becomes a binary one composed of components 1 and 4,
with mole fractions x1

b1 ) 1 - x4
t and x4

b1 ) x4
t and molar

volume Vb,1 ) x1
b2 V1

0 + x4
b1 V4

0, and the activity coef-
ficient of a solute in a ternary mixed solvent becomes
equal to that in the binary (1-4) mixed solvent at
infinite dilution (γ2

t1,∞)

Consequently, eq 14 can be rewritten in the form

Of course, the same procedure can be applied to
(∂ ln γ2,q/∂x3

q)T,P,x2
q,x1

q with x1
q ) constant, instead of x4

q )
constant, and so on.

Equation 17 can also be derived using a more simple
procedure. One can consider the above two mixed
solvents (1-4 with mole fractions x1

b1 ) 1 - x4
t and x4

b1 )

Table 1. Information about Mixed and Individual Solvents

mixed and
individual solvents

composition
(mole fractions) molar volume

activity coefficient of a
solute at infinite dilution comments

ternary 1-3-4 x1
t , x3

t , x4
t V ) x1

t V1
0 + x3

t V3
0 + x4

t V4
0 γ2

q,∞ eq 19, Figure 1
binary 1-3 v γ2

t,∞ eq 9
binary 1-4 x1

b1 ) 1 - x4
t , x4

b1 ) x4
t Vb,1 ) x1

b1 V1
0 + x4

b1 V4
0 γ2

t1,∞ eq 16, Figure 1
binary 3-4 x3

b3 ) 1 - x4
t , x4

b3 ) x4
t Vb,3 ) x3

b3 V3
0 + x4

b3 V4
0 γ2

t3,∞ eq 15, Figure 1
binary 3-4 x3

bi, x4
bi (eq 19) Vbi ) x3

bi V3
0 + x4

bi V4
0 γ2

bi,∞ eq 20, Figure 1
individual solvent 1 V1

0 γ2
b1,∞ eq 9

individual solvent 3 V3
0 γ2

b3,∞ eq 9
individual solvent 4 V4

0

(∂ ln γ2
q,∞

∂x3
q )

T,P,x2
q)0,x4

q

)

-
(c1

t + c3
t + c4

t )(c1h1 + c3h3 + c1c4h14 + c3c4h34)x2
q)0

c1
t + c3

t + c4
t + (τ2 + τ3)x2

q)0

(12)

(∂ ln γ2
q,∞

∂x3
q )

T,P,x2
q)0,x4

q

) -
(c1

t + c3
t + c4

t )(∆12 - ∆23)x2
q)0

2
(13)

(ln γ2
q,∞)x4

q ) -( B ln V
V3

0 - V1
0)

x4
q

+ A (14)

Figure 1. Various representations of a ternary mixed solvent with
mole fractions x1

t , x3
t , and x4

t by the combination of binaries or the
combination of one pure solvent and one binary mixture.

(γ2
q,∞)x4

t ,x1
t )0 ) γ2

t3,∞ (15)

(γ2
q,∞)x4

t ,x3
t )0 ) γ2

t1,∞ (16)

(ln γ2
q,∞)x4

q )

(ln V - ln Vb,3) ln γ2
t1,∞ + (ln Vb,1 - ln V) ln γ2

t3,∞

ln Vb,1 - ln Vb,3
(17)
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x4
t and molar volume Vb,1, and 3-4 with mole fractions

x3
b3 ) 1 - x4

t and x4
b3 ) x4

t and molar volume Vb,3 as
pseudo pure components. These two “components” form
an ideal pseudobinary (see Figure 1). However, in this
case, one can use eq 9.

Because in this case γ2
t,∞ ) γ2

q,∞, γ2
bi,∞ ) γ2

ti,∞, v ) V,
and Vi

0 ) Vb,i (i ) 1 and 3), eq 9A leads to eq 17.
The above ideal ternary mixture with mole fractions

x1
t , x3

t , and x4
t and molar volume V can also be obtained

as an ideal pseudobinary one by mixing the pure solvent
1 and the binary mixture with molar fractions x3

bi and
x4

bi and molar volume Vbi (see Figure 1), which can be
considered as a pseudo pure component. The mole
fractions x3

bi and x4
bi can be calculated as follows. If one

denotes

then one can write the following relations:

Using eq 9, the expression for the activity coefficient
in an ideal ternary solvent can be written as

A similar procedure can be employed for the predic-
tion of the activity coefficient of a solute in any ideal
n-component mixed solvent, namely, (1) the n-compo-
nent ideal mixed solvent can be represented by two (n
- 1)-component ideal mixed solvents or by one pure
solvent and a (n - 1)-component ideal mixed solvent,
(2) the (n - 1)-component ideal mixed solvent can be
represented by two (n - 2)-component ideal mixed
solvents or by one pure solvent and a (n - 2)-component
ideal mixed solvent, and so on.

One can see from eqs 17 and 20 that the activity
coefficient of a solute at infinite dilution in an ideal
ternary mixed solvent (γ2

q,∞) can be calculated in terms
of the activity coefficients of that solute at infinite
dilution in any two binaries of the solvent and their
molar volumes or in terms of the activity coefficients of
the solute at infinite dilution in one binary solvent and
in the remaining individual solvent and their molar
volumes. The activity coefficients of a solute at infinite
dilution in a binary mixed solvent can be obtained
experimentally or calculated. For instance, they can be
calculated using eq 9 and, in this case, the activity
coefficient of a solute at infinite dilution in an ideal
ternary mixed solvent (γ2

q,∞) can be predicted from the

activity coefficients of the solute at infinite dilution in
the individual solvents (components 1, 3, and 4) and
their molar volumes.

Applications

The obtained equations can be applied to numerous
cases involving multicomponent solutions. In the present
paper, we examine the gas solubilities and the solubili-
ties of solid nonelectrolytes in multicomponent mixed
solvents.

Gas Solubility. In this case, an expression for the
composition dependence of the Henry constant will first
be obtained. The Henry constants and the activity
coefficients of a solute in a ternary mixed solvent (1-
3-4) with mole fractions x1

t , x3
t , and x4

t and in two
binary mixed solvents (1-4 and 3-4) with compositions
(x1

b1 ) 1 - x4
t , x4

b1 ) x4
t ) and (x3

b3 ) 1 - x4
t , x4

b3 ) x4
t ) (see

Figure 1) are related via the expressions10

and

where H2,q, H2,t1, and H2,t3 are the Henry constants in a
ternary mixed solvent (1-3-4) with mole fractions x1

t ,
x3

t , and x4
t , and in two binary mixed solvents (1-4) and

(3-4) with compositions (x1
b1 ) 1 - x4

t , x4
b1 ) x4

t ) and (x3
b3

) 1 - x4
t , x4

b3 ) x4
t ), respectively (see Figure 1), and

f 2
0(P,T) is the fugacity of component 2.
Inserting expressions (21)-(23) into eq 17 leads to the

following expression relating the Henry constant in a
ternary mixed solvent to those in two binaries of the
solvent constituents and their molar volumes:

Similarly, the Henry constant in a ternary mixed
solvent can be related to those in one binary mixed
solvent, for instance, 3-4 (of course, any other pair can
be taken) and in the remaining individual component
(1) and their molar volumes:

where H2,bi is the Henry constant in a 3-4 mixed solvent
with molar fractions x3

bi and x4
bi and molar volume Vbi

(see Figure 1).
Equations 24 and 25 can be used to predict the Henry

constant in a ternary mixed solvent in two different
ways:

ln γ2
t,∞ )

(ln v - ln V3
0) ln γ2

b1,∞ + (ln V1
0 - ln v) ln γ2

b3,∞

ln V1
0 - ln V3

0
(9A)

R ) x3
t /x4

t (18)

x3
bi ) R

1 + R

x4
bi ) 1

1 + R

(19)

(ln γ2
q,∞)x4

q )

(ln V - ln Vbi) ln γ2
b1,∞ + (ln V1

0 - ln V) ln γ2
bi,∞

ln V1
0 - ln Vbi

(20)

ln H2,q ) ln γ2
q,∞ + ln f 2

0(P,T) (21)

ln H2,t1
) ln γ2

t1,∞ + ln f 2
0(P,T) (22)

ln H2,t3
) ln γ2

t3,∞ + ln f 2
0(P,T) (23)

(ln H2,q)x4
q )

(ln V - ln Vb,3) ln H2,t1
+ (ln Vb,1 - ln V) ln H2,t3

ln Vb,1 - ln Vb,3

(24)

ln H2,q )

(ln V - ln Vbi) ln H2,1 + (ln V1
0 - ln V) ln H2,bi

ln V1
0 - ln Vbi

(25)
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(A) H2,t1, H2,t3, and H2,bi can be calculated from the
Henry constants in the pure solvents (1, 3, and 4) as
suggested before:6

and

where H2,1, H2,3, and H2,4 are the Henry constants in
the individual solvents 1, 3, and 4.

(B) H2,t1 and H2,t3 can be determined from experimen-
tal data.

We applied both techniques to the solubilities of
ethane and ethylene in the ternary mixed solvent

acetone (1)-methanol (3)-water (4).11 Information about
the solubilities of ethane and ethylene in the corre-
sponding binary mixed solvents and individual solvents
was also found in the same publication.11 The results
of the solubility predictions are summarized in Tables
2 and 3.

Solubility of a Solid. For the solubilities of poorly
soluble crystalline nonelectrolytes in a multicomponent
mixed solvent, one can use the infinite-dilution ap-
proximation and consider that the activity coefficient
of a solute in a mixed solvent is equal to the activity
coefficient at infinite dilution. Therefore, one can write
the following relations for the solubility of a poorly
soluble crystalline nonelectrolyte in a ternary mixed
solvent and in two of its binaries:12,13

and

where γ2
q,∞, γ2

t1,∞, and γ2
t3,∞ are the activity coefficients at

infinite dilution of the solute in a ternary mixed solvent
(1-3-4) with mole fractions x1

t , x3
t , and x4

t and in two
binary mixed solvents (1-4) and (3-4) with composi-
tions (x1

b1 ) 1 - x4
t , x4

b1 ) x4
t ) and (x3

b3 ) 1 - x4
t , x4

b3 ) x4
t ),

Table 2. Comparison between Predicted and Experimental Henry’s Constants at T ) 298.15 K and Atmospheric
Pressure for the Solubilities of Ethane in the Ternary Mixed Solvent Acetone (1)-Methanol (3)-Water (4)

Henry’s constant (bar)composition
(gas-free) of

mixed solvent
(mole fraction)

x1 x3 expt11

eq 24 with Henry’s constants
for two binaries (calculated
using eqs 26 and 27 which

involve x4
t ) constant)

eq 25 with Henry’s constants
for the methanol/water binary

(calculated using eq 28)
and acetone

eq 24 with Henry’s constants
for two binaries (1-4 and 3-4)

provided by experiment

0.3318 0.3367 348.49 370.69 370.56 368.32
0.1006 0.8022 270.16 271.15 271.03 281.13
0.1981 0.6005 309.11 313.92 313.6 327.7
0.7983 0.1028 124.72 130.18 130.43 125.84
0.6129 0.1928 177.65 189.58 189.92 181.07
0.2019 0.2009 1058.3 1034.1 1033.3 1040.8
0.0995 0.1043 3587.2 2849.9 2848.3 3520.9
deviationa (a) 6.2 6.1 (a) 3.2

(b) 6.1
(c) 6.3

a Deviation (%) between the predicted and experimental Henry’s constants is defined as {100∑i)1
m [(H2,q(exp)

(i) - H2,q(calc)
(i) )/H2,q(exp)

(i) ]}/m,
where m is the number of experimental points, (a) x4

t ) constant, (b) x3
t ) constant, and (c) x1

t ) constant.

Table 3. Comparison between Predicted and Experimental Henry’s Constants at T ) 298.15 K and Atmospheric
Pressure for the Solubilities of Ethylene in the Ternary Mixed Solvent Acetone (1)-Methanol (3)-Water (4)

Henry’s constant (bar)composition
(gas-free) of

mixed solvent
(mole fraction)

x1 x3 expt11

eq 24 with Henry’s constants
for two binaries (calculated
using eqs 26 and 27 which

involve x4
t ) constant)

eq 25 with Henry’s constants
for the methanol/water binary

(calculated using eq 28)
and acetone

eq 24 with Henry’s constants
for two binaries (1-4 and 3-4)

provided by experiment

0.3318 0.3367 440.24 495.21 489.92 459.25
0.1006 0.8022 301.44 307.47 306.82 317.36
0.1981 0.6005 363.1 382.9 380.4 390.5
0.7983 0.1028 144.06 152.44 152.20 141.84
0.6129 0.1928 209.54 233.26 232.05 209.10
0.2019 0.2009 1520.8 1685.5 1668.6 1504.4
0.0995 0.1043 6549.3 5623.3 5595.7 6264.9
deviationa (a) 8.9 8.3 (a) 3.5

(b) 8.4
(c) 9.1

a Deviation (%) between the predicted and experimental Henry’s constants is defined as {100∑i)1
m [(H2,q(exp)

(i) - H2,q(calc)
(i) )/H2,q(exp)

(i) ]}/m,
where m is the number of experimental points, (a) x4

t ) constant, (b) x3
t ) constant, and (c) x1

t ) constant.

ln H2,t1
)

(ln Vb,1 - ln V4
0) ln H2,1 + (ln V1

0 - ln Vb,1) ln H2,4

ln V1
0 - ln V4

0

(26)

ln H2,t3
)

(ln Vb,3 - ln V4
0) ln H2,3 + (ln V3

0 - ln Vb,3) ln H2,4

ln V3
0 - ln V4

0

(27)

ln H2,bi )

(ln Vbi - ln V4
0) ln H2,3 + (ln V3

0 - ln Vbi) ln H2,4

ln V3
0 - ln V4

0

(28)

f 2
S/f 2

L(T,P) ) x2
q γ2

q,∞ (29)

f 2
S/f 2

L(T,P) ) x2
t1 γ2

t1,∞ (30)

f 2
S/f 2

L(T,P) ) x2
t3 γ2

t3,∞ (31)
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and x2
q and x2

t1, x2
t3 are the solubilities (mole fractions) of

a poorly soluble crystalline nonelectrolyte in the ternary
and binary mixed solvents, f 2

L(T,P) is a hypothetical
fugacity of a solid as a (subcooled) liquid at a given
pressure (P) and temperature (T), and f 2

S is the fugac-
ity of a pure solid component 2. If the solubilities of the
pure and mixed solvents in the solid phase are negli-
gible, then the left-hand sides of eqs 29-31 depend only
on the properties of the solute. By inserting into eq 17
the expressions of the activity coefficients from eqs 29-

31, one obtains an expression for the solubility (mole
fractions) of a poorly soluble solid nonelectrolyte in a
ternary mixed solvent in terms of those in two of its
binary mixed solvents:

Table 4. Comparison between Predicted and Experimental Solubilities at T ) 298.15 K and Atmospheric Pressure of
Anthracene in Ternary Mixed Solvent 1-Propanol (1)-2-Propanol (3)-Cyclohexane (4)

mole fraction solubilities
composition

(solute-free) of
mixed solvent
(mole fraction)

x1 x3 expt14

eq 32, which involves x4
t ) constant,

with the solubilities of anthracene in
two binaries predicted from those

in the individual solvents15

eq 33 with the solubilities of
anthracene in one binary (3-4)

(predicted from those in
the individual solvents15) and

component 1

eq 32 with solubilities of
anthracene in two binaries
(1-4 and 3-4) provided by

experiment16-18

0.3804 0.357 0.000 897 0.000 697 0.000 697 0.000 884
0.165 0.722 0.000 61 0.000 52 0.000 52 0.000 604
0.299 0.2887 0.001 126 0.000 834 0.000 833 0.001 103
0.2773 0.5317 0.000 761 0.000 607 0.000 607 0.000 749
0.7297 0.117 0.000 782 0.000 674 0.000 674 0.000 779
0.7111 0.2081 0.000 661 0.000 602 0.000 601 0.000 658
0.2164 0.7038 0.000 567 0.000 503 0.000 503 0.000 562
0.1313 0.552 0.000 924 0.000 69 0.000 69 0.000 925
0.4179 0.5031 0.000 604 0.000 54 0.000 54 0.000 597
0.5153 0.4032 0.000 617 0.000 561 0.000 561 0.000 62
0.1946 0.188 0.001 395 0.001 05 0.001 05 0.001 355
0.735 0.1554 0.000 709 0.000 633 0.000 633 0.000 71
0.5465 0.2649 0.000 812 0.000 665 0.000 665 0.000 798
0.1323 0.249 0.001 389 0.001 031 0.001 031 0.001 351
0.1167 0.7275 0.000 664 0.000 545 0.000 545 0.000 662
0.2603 0.1395 0.001 389 0.001 051 0.001 05 0.001 342
0.1342 0.4639 0.001 053 0.000 777 0.000 777 0.001 06
0.4666 0.1318 0.001 107 0.000 87 0.000 87 0.001 115
0.556 0.1282 0.000 99 0.000 798 0.000 798 0.001 003
deviationa (a) 18.5 18.5 (a) 1.2

(b) 18.5
(c) 18.5

a Deviation (%) between the predicted and experimental solubilities of anthracene is defined as {100∑i)1
m {[(x2

q )exp
(i) - (x2

q )calc
(i) ]/(x2

q )exp
(i) }}m,

where m is the number of experimental points, (a) x4
t ) constant, (b) x3

t ) constant, and (c) x1
t ) constant.

Table 5. Comparison between Predicted and Experimental Solubilities at T ) 298.15 K and Atmospheric Pressure of
Anthracene in Ternary Mixed Solvent 1-Butanol (1)-2-Butanol (3)-Cyclohexane (4)

mole fraction solubilities
composition

(solute-free) of
mixed solvent

(mole fractions)
x1 x3 expt14

eq 32, which involves x4
t ) constant,

with the solubilities of anthracene in
two binaries predicted from those

in the individual solvents15

eq 33 with the solubilities of
anthracene in one binary (3-4)

(predicted from those in
the individual solvents15) and

component 1

eq 32 with solubilities of
anthracene in two binaries
(1-4 and 3-4) provided by

experiment16-18

0.3531 0.3475 0.001 06 0.000 892 0.000 892 0.001 079
0.1557 0.7135 0.000 806 0.000 706 0.000 706 0.000 803
0.2727 0.2707 0.001 284 0.001 019 0.001 019 0.001 267
0.2623 0.5162 0.000 938 0.000 801 0.000 801 0.000 955
0.7231 0.1023 0.000 975 0.000 881 0.000 88 0.000 978
0.7134 0.1988 0.000 849 0.000 803 0.000 803 0.000 856
0.2038 0.7107 0.000 738 0.000 683 0.000 683 0.000 746
0.1126 0.5298 0.001 104 0.000 879 0.000 879 0.001 125
0.4087 0.5061 0.000 792 0.000 728 0.000 728 0.000 786
0.5102 0.4045 0.000 789 0.000 751 0.000 751 0.000 808
0.1728 0.1666 0.001 52 0.001 206 0.001 206 0.001 453
0.7165 0.1532 0.000 909 0.000 84 0.000 839 0.000 916
0.5219 0.2567 0.000 991 0.000 868 0.000 868 0.001 002
0.1154 0.2233 0.001 476 0.001 186 0.001 186 0.001 457
0.1074 0.7174 0.000 846 0.000 728 0.000 728 0.000 86
0.2269 0.1127 0.001 508 0.001 225 0.001 225 0.001 449
0.114 0.4305 0.001 248 0.000 97 0.000 97 0.001 253
0.4313 0.1126 0.001 307 0.001 068 0.001 068 0.001 278
0.5324 0.1103 0.001 188 0.000 999 0.000 999 0.001 179
deviationa (a) 14.2 14.2 (a) 1.5

(b) 14.2
(c) 14.2

a Deviation (%) between the predicted and experimental solubilities of anthracene is defined as {100∑i)1
m {[(x2

q )exp
(i) - (x2

q )calc
(i) ]/(x2

q )exp
(i) }}m,

where m is the number of experimental points, (a) x4
t ) constant, (b) x3

t ) constant, and (c) x1
t ) constant.

(ln x2
q)x4

q )

(ln V - ln Vb,3) ln x2
t1 + (ln Vb,1 - ln V) ln x2

t3

ln Vb,1 - ln Vb,3
(32)

Ind. Eng. Chem. Res., Vol. 42, No. 19, 2003 4411

184 Thermodynamics of Solutions



As for the gas solubility, the above equations can be
used to calculate the solubility (a) from the solubilities
in the pure solvents (1, 3, and 4) and (b) from experi-
mental solubilities in two binary solvents.

The solubility of a poorly soluble crystalline nonelec-
trolyte in a ternary mixed solvent can also be calculated
from those in one binary mixed solvent, for example,
the 3-4 binary, and the remaining individual compo-
nent and their molar volumes (of course, any other pair
can also be selected):

where x2
bi is the solubility of the solute in the 3-4

mixed solvent with molar fractions x3
bi and x4

bi and x2
b1 is

the solubility of the solute in the pure solvent 1.
We applied both techniques to two systems:14 (a) the

solubility of anthracene in 1-propanol (1)-2-propanol
(3)-cyclohexane (4); (b) the solubility of anthracene in
1-butanol (1)-2-butanol (3)-cyclohexane (4). The re-
sults of the solubility predictions are summarized in
Tables 4 and 5.

The results presented in Tables 2-5 show that the
approach suggested in the present paper can be suc-
cessfully applied to the gas solubilities and the solubili-
ties of crystalline nonelectrolytes in multicomponent
mixed solvents. The solubilities of a solute in ternary
mixed solvents were predicted either from those in pure
solvents or from those in two binaries of the solvent
components. The predictions from the solubilities in
pure solvents were satisfactory (more satisfactory in the
case of gas solubilities), and the predictions were
excellent when binary data were used. Even though the
solvent is assumed to be an ideal mixture, such an
agreement is not unexpected. Indeed, as previously
emphasized,6,15 in such highly asymmetrical systems
such as a gas + liquid mixed solvent or a crystalline
nonelectrolyte + liquid mixed solvent and at high
dilution, the nonidealities of the pairs solute + indi-
vidual solvents are much higher that those between the
components of the mixed solvent.

Conclusion

In this paper, the fluctuation theory of solutions was
applied to a quaternary mixture and rigorous expres-
sions for the derivatives of the chemical potentials with
respect to the number of particles, the partial molar
volumes, and the isothermal compressibility were de-
rived. Expressions for the derivatives of the activity
coefficients of a solute with respect to the concentrations
of the solvents in an ideal ternary mixed solvent were
obtained from the derivatives of the chemical potentials
with respect to the number of particles. Using the
obtained expressions, an equation was derived for the
activity coefficient of a solute in an ideal n-component
mixed solvent in terms of those in constituent sub-
systems formed either of the individual solvents or of
two of the binaries among the three components of the
solvent and their molar volumes. Examples regarding
the gas solubilities and the solubilities of crystalline
nonelectrolytes in multicomponent mixed solvents were
examined for illustration purposes. The comparison with
the experiment revealed, in general, a good agreement
and, particularly, an excellent agreement between the

experimental solubilities and those predicted from ac-
curate data for the solubilities in binary solvent mix-
tures.
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Appendix 1

Kirkwood and Buff2 expressed the concentration
derivatives of the chemical potentials, the partial molar
volumes, and the isothermal compressibility in compact
matrix forms as follows:

and

In eqs A1-1-A1-3, k is the Boltzmann constant, T is
the absolute temperature, Nâ is the number of particles
of species â in the volume v, µR is the chemical potential
per molecule of species R, vR is the partial molar volume
per molecule of species R, kT is the isothermal compress-
ibility, and cR is the bulk molecular concentration of
component R (cR ) NR/v). The derivative (∂µR/∂Nâ)T,V,Nγ*â

is taken under isothermal-isochoric conditions and with
Nγ ) constant for any γ * â. |B|Râ represents the cofactor
of BRâ of the determinant |B|. For BRâ the following
equation can be written:

where δRâ is the Kroneker delta (δRâ ) 1 for R ) â, and
δRâ ) 0 for R * â) and GRâ is the KB integral.

Instead of the isothermal-isochoric derivative of the
chemical potential (∂µR/∂Nâ)T,V,Nγ*â, one can introduce
in eq A1-1 the isothermal-isobaric derivative (∂µR/
∂Nâ)T,P,Nγ*â. The two derivatives are related via the
expression.2

One can see from eqs A1-1-A1-3 that the thermody-
namic quantities (∂µR/∂Nâ)T,V,Nγ*â or (∂µR/∂Nâ)T,P,Nγ*â, vR,
and kT for any n-component mixture can be expressed
in terms of the mixture composition and the KB
integrals GRâ.

ln x2
q )

(ln V - ln Vbi) ln x2
b1 + (ln V1

0 - ln V) ln x2
bi

ln V1
0 - ln Vbi

(33)

1
kT (∂µR

∂Nâ
)

T,V,Nγ*â
)

|B|Râ

v|B| (A1-1)

vR )

∑
â)1

n

câ|B|Râ

∑
â,γ)1

n

câcγ|B|âγ

(A1-2)

kTkT )
|B|

∑
R,â)1

n

cRcâ|B|Râ

(A1-3)

BRâ ) cRδRâ + cRcâGRâ (A1-4)

(∂µR

∂Nâ
)

T,V,Nγ*â
) (∂µR

∂Nâ
)

T,P,Nγ*â

+
vRvâ

kTv
(A1-5)
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Appendix 2

The aim of Appendix 2 is to provide the expressions
for h1, h3, h14, h34, τ2, τ3, and ∆1234 of eq 11. They are

and
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h1 )
∆12 + ∆13 - ∆23

2
(A2-1)

h3 )
∆12 - ∆13 - ∆23

2
(A2-2)

h14 ) (-∆13∆12 + ∆13∆24 + ∆14∆13 - 2∆14∆23 +
∆14∆12 + ∆34∆12 - ∆34∆24 + ∆14∆24 + ∆34∆14 -

∆14
2 )/4 (A2-3)

h34 ) (-∆34∆23 - ∆13∆34 + ∆13∆23 - 2∆34∆12 -
∆13∆24 - ∆14∆23 - ∆34∆24 + ∆14∆24 - ∆34∆14 +

∆34
2 )/4 (A2-4)

τ2 ) c1c2∆12 + c1c3∆13 + c1c4∆14 + c2c3∆23 +
c2c4∆24 + c3c4∆34 (A2-5)

τ3 ) c1c2c3∆123 + c1c2c4∆124 + c1c3c4∆134 +
c2c3c4∆234 (A2-6)

∆1234 ) -2G11G22G34 - 2G12G23G14 - G24
2 G11 -

G12
2 G44 + 2G24G12G14 + G11G22G44 - G14

2 G22 -

2G24G12G13 + 2G24G11G23 + 2G12
2 G34 -

2G24G11G33 - 2G12G13G34 - 2G13G23G14 +
2G12G13G44 + 2G11G23G34 + 2G12G33G14 +

2G13
2 G24 - 2G24G13G14 + 2G24G11G34 -

2G11G23G44 - 2G12G14G34 - G13
2 G44 - G14

2 G33 +

2G14
2 G23 - G34

2 G11 + 2G13G14G34 + 2G23
2 G14 +

G11G33G44 + 2G24G12G33 + 2G22G13G34 -
2G22G33G14 - 2G24G13G23 + 2G22G14G34 -
2G24G12G34 + 2G12G23G44 - 2G22G13G44 -
2G24G23G14 - 2G12G23G34 + 2G13G23G44 +

2G24G33G14 - 2G24G13G34 + 2G34
2 G12 + 2G24

2 G13 -

G2
24G33 - 2G23G14G34 - G34

2 G22 - G23
2 G44 -

2G12G33G44 + G22G33G44 + 2G24G23G34 - G12
2 G33 +

2G12G13G23 - G13
2 G22 + 2G22G13G14 + G11G22G33 -

G23
2 G11 (A2-7)
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Abstract

A new approach regarding the solubility of various sparingly soluble solutes, such as proteins, drugs and gases, and the local structure around a
solute molecule is presented. This approach is based on an expression for the activity coefficient derived through the Kirkwood–Buff fluctuation
theory of solutions. First, an expression for the solubility of proteins in aqueous solutions in terms of the preferential binding parameter is
derived and criteria for salting-out or salting-in by various cosolvents obtained. Second, the methodology developed for the solubility of proteins
in water + cosolvent mixtures is extended to the solubility of sparingly soluble gases in the same kinds of solvents. The derived equation was
successfully applied to the experimental data regarding the solubilities of oxygen, carbon dioxide and methane in water + sodium chloride. In
addition, the excesses (or deficits) of water and sodium chloride molecules in the vicinity of a gas molecule have been calculated to conclude that
the infinitely dilute solute gas molecules are preferentially hydrated.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

It is a privilege to contribute to this volume of Fluid Phase
Equilibria honoring Professor Jürgen Gmehling. One of us (ILS)
had the good fortune to be a postdoctoral scientist in his Depart-
ment at Oldenburg and had benefited from numerous discussions
with him. One of the frequent topics of these discussions was the
aqueous system, its properties and structure. The goal of our con-
tribution to this volume of Fluid Phase Equilibria is to extend
the treatment previously suggested by us for the solubility of
proteins to the solubility of gases.

The overwhelming majority of liquids in nature are the aque-
ous mixed solvents, such as the sea and rain waters, the brine
in the earth crust, the blood, the lymph, the industrial waters
and so on. Therefore, the research on the solubilities of different
types of solutes in the above mentioned multicomponent aque-
ous mixed solvents is of paramount importance in medicine,
pharmaceutics, environmental science, industry, etc. One can

∗ Corresponding authors. Tel.: +1 716 645 2911x2214; fax: +1 716 645 3822.
E-mail addresses: ishulgin@eng.buffalo.edu (I.L. Shulgin),

feaeliru@acsu.buffalo.edu (E. Ruckenstein).

list numerious relevant topics, such as the solubilities of gases
in blood, seawater, rain water and in many other aqueous solu-
tions of biological and environmental significance [1], as well
as the solubilities of drugs, proteins and other biomolecules in
biological liquids. The list of examples regarding the solubilities
of molecules of biomedical and environmental significance in
aqueous solvents is countless.

Generally speaking, the thermodynamic properties of these
complex mixtures (solute + multicomponent aqueous solvent)
depend on many factors such as the chemical natures of the solute
and of the constituents of the mixed solvent, the intermolecu-
lar interactions between the components in these mixtures, the
mixture composition and the pressure and temperature. In the
present paper only low soluble solutes are considered. Therefore,
the solutions can be considered as dilute and the intermolecu-
lar interactions between the solute molecules can be neglected.
Thus, the properties of a solute-free mixed solvent and the activ-
ity coefficient of the solute at infinite dilution can describe the
behavior of such dilute mixtures.

The prediction of the activity coefficients of solutes (such
as gases and large molecules of biomedical and environmental
significance) in saturated solutions of multicomponent mixtures
constitutes the main difficulty in calculating the solute solubil-

0378-3812/$ – see front matter © 2007 Elsevier B.V. All rights reserved.
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ity. Generally speaking, the activity coefficient of a solute in
a saturated solution of a multicomponent mixture can be pre-
dicted using group-contribution methods, such as UNIFAC and
ASOG [2–6]. However, the above group-contribution methods
cannot provide accurate results for the activity coefficient of
large molecules, such as drugs and environmental molecules, in
aqueous mixed solvents [7–10].

The application of UNIFAC to the solid–liquid equilibrium
of solids, such as naphthalene and anthracene, in nonaqueous
mixed solvents provided quite accurate results [11]. Unfortu-
nately, the accuracy of UNIFAC regarding the solubility of
solids in aqueous solutions is low [7–9]. Large deviations from
the experimental activity coefficients at infinite dilution and
the experimental octanol/water partition coefficients have been
reported [8,9] when the classical old version of UNIFAC inter-
action parameters [4] was used. To improve the prediction of the
activity coefficients at infinite dilution and of the octanol/water
partition coefficients of environmentally significant substances,
special ad hoc sets of parameters were introduced [7–9]. The
reason is that the UNIFAC parameters were determined mostly
using the equilibrium properties of mixtures composed of low
molecular weight molecules. Also, the UNIFAC method cannot
be applied to the phase equilibrium in systems containing

supercritical components [10,12], or even to gas solubilities in
pure and mixed solvents. However, a group-contribution equa-
tion of state such as PSRK [12,13] could be successfully applied
to predict the gas solubilities in the above solvents. Gmehling
and coworkers have demonstrated that PSRK can be success-
fully used to predict the solubilities of various gases in water
and water + salt solvents [14–17].

Another method suggested by the authors for predicting the
solubility of gases and large molecules such as the proteins,
drugs and other biomolecules in a mixed solvent is based on the
Kirkwood–Buff theory of solutions [18]. This theory connects
the macroscopic properties of solutions, such as the isother-
mal compressibility, the derivatives of the chemical potentials
with respect to the concentration and the partial molar vol-
umes to their microscopic characteristics in the form of spatial
integrals involving the radial distribution function. This theory
allowed one to extract some microscopic characteristics of mix-
tures from measurable thermodynamic quantities. The present
authors employed the Kirkwood–Buff theory of solution to
obtain expressions for the derivatives of the activity coefficients
in ternary [19] and multicomponent [20] mixtures with respect
to the mole fractions. These expressions for the derivatives of
the activity coefficients were used to predict the solubilities of
various solutes in aqueous mixed solvents, namely:

(1) the solubilities of drugs and environmentally significant
molecules in binary and multicomponent aqueous mixed
solvents [21–25],

(2) the solubilities of gases in binary and multicomponent aque-
ous mixed solvents [20,26–28],

(3) the solubilities of various proteins in aqueous solutions
[29–31].

The present paper is devoted to the extension of the the-
ory developed by the authors for the solubility of proteins to
the solubility of gases, Because this theory is based on the
Kirkwood–Buff fluctuation theory of solutions, the next sec-
tion summarizes the expressions which are involved. This is
followed by a summary of the derivation of an equation for the
solubility of proteins and finally its extension to the solubility of
gases.

2. The application of the Kirkwood–Buff fluctuation
theory of solutions to the activity coefficients in ternary
and multicomponent solutions

On the basis of the fluctuation theory, the following expres-
sion for the derivative of the activity coefficient of a solute
(γ2t) in a water (1)–solute (2) –cosolvent (3) mixture can be
derived [19], which is valid for any kinds of solutes and cosol-
vents:(

∂ ln γ2,t

∂xt
3

)
T,P,xt

2

= − (c1 + c2 + c3)(c1[G11 + G23 − G12 − G13] + c3[−G12 − G33 + G13 + G23])

c1 + c2 + c3 + c1c2Δ12 + c1c3Δ13 + c2c3Δ23 + c1c2c3Δ123
(1)

where xt
i is the mole fraction of component i in the ternary

mixture, ck the bulk molecular concentration of component k
in the ternary mixture 1–2–3, P the pressure, T the tempera-
ture in K, and Gαβ is the Kirkwood–Buff integral (KBI) given
by

Gαβ =
∫ ∞

0
(gαβ − 1)4πr2 dr (2)

where gαβ is the radial distribution function between species α

and β, r the distance between the centers of molecules α and β,
and Δαβ and Δ123 are defined as

Δαβ = Gαα + Gββ − 2Gαβ, α �= β (3)

and

Δ123 = G11G22 + G11G33 + G22G33 + 2G12G13 + 2G12G23

+2G13G23 − G2
12 − G2

13 − G2
23 − 2G11G23

−2G22G13 − 2G33G12 (4)

One can verify that the factors in the square brackets in the
numerators of Eq. (1), and Δ123 can be expressed in terms of
Δαβ as follows

G12 + G33 − G13 − G23 = Δ13 + Δ23 − Δ12

2
(5)

G11 + G23 − G12 − G13 = Δ12 + Δ13 − Δ23

2
(6)
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and

Δ123 = −

(Δ12)2 + (Δ13)2+(Δ23)2−2Δ12Δ13 − 2Δ12Δ23

−2Δ13Δ23

4
(7)

The insertion of Eqs. (5)–(7) into Eq. (1) provides a rigorous
expression for the derivatives (∂ ln γ2,t/∂x

t
3)

T,P,xt
2

in terms of

Δαβ and concentrations.
It should be noted that Δαβ is a measure of the nonideality

[32] of the binary mixture α–β, because for an ideal mixture
Δαβ = 0. For a ternary mixture 1–2–3, Δ123 also constitutes a
measure of nonideality. Indeed, inserting Gid

αβ for an ideal mix-
ture [33] into the expression of Δ123, one obtains that for an
ideal ternary mixture Δ123 = 0.

At infinite dilution of component 2, Eq. (1) becomes

lim
xt

2→0

(
∂ ln γ2,t

∂xt
3

)
T,P,xt

2

= −
(c0

1 + c0
3)((c0

1 + c0
3)(Δ12 − Δ23)xt

2=0 + (c0
1 − c0

3)(Δ13)xt
2=0)

2(c0
1 + c0

3 + c0
1c

0
3(Δ13)xt

2=0)
(8)

where c0
1 and c0

3 are the bulk molecular concentrations of com-
ponents 1 and 3 in the solute-free binary solvent 1–3. In addition
to Eq. (8), the following expression [18] for the derivative of the
activity coefficient in a binary mixture with respect to the mole
fraction x0

1 can be written

J11 =
(

∂ ln γ0
1

∂x0
1

)
P,T

= − c0
3Δ13

1 + c0
1x

0
3Δ13

(9)

where x0
i and γ0

1 are the mole fraction of component i (i = 1,
3) and the activity coefficient of component 1 in the solute-free
binary solvent 1–3.

By combining Eqs. (8) and (9), one obtains an expression for
the derivative of the activity coefficient of an infinitely dilute
solute with respect to the cosolvent mole fraction in terms of the
characteristics of the solute-free binary solvent (J11, c0

1 and c0
3)

and the parameters Δ12 and Δ23 which characterize the inter-
actions of an infinitely dilute solute with the components of the
mixed solvent. Even though Eq. (8) constitutes a formal sta-
tistical thermodynamics relation in which all Δij are unknown,
it could be successfully used to derive analytical expressions
for the solubilities of gases and large molecules of biomedi-
cal and environmental significance, including the proteins, in
aqueous media [20–30]. In addition, Eq. (8) could be also used
to identify whether a cosolvent is a salting-out or salting-in
agent [27,29–31]. The derivative of the activity coefficient of an
infinitely dilute solute in quaternary and multicomponent mix-
tures with respect to the cosolvent mole fraction can also be
expressed in terms of KBIs [20]. The latter expressions are, of
course, more complicated than Eq. (8).

3. Solubility of a protein in aqueous solutions

It is well known that the solubility of a protein in a
water + cosolvent mixture depends on numerous factors such as
temperature, cosolvent concentration, pH, type of buffer used,

etc. [31,34–38]. Experimental measurements of the solubility of
a protein in a water + cosolvent mixture are difficult and time-
consuming [38]. There are in the literature a number of examples
in which the same cosolvent was found to generate both salting-
out and salting-in. However, reliable experimental data appear
to be available only for the water (1)–lyzosyme (2)–NaCl (3)
mixtures for which there is agreement between the results from
various laboratories [39–43].

One should distinguish between the effects on aqueous pro-
tein solubility of two different types of cosolvents: organic
cosolvent and salts. Experiment has shown that the addition
of an organic cosolvent reduces the aqueous protein solubil-
ity [36,37]. Therefore, the organic cosolvents are, in general,
salting-out agents. However, there are exceptions; for instance,
urea increases the aqueous solubility of ribonuclease Sa [44].

Regarding the salts, the old solubility measurements [45,46]
indicated that a small amount of salt increases the aqueous

protein solubility, and a large one decreases the protein solubil-
ity. In contrast, the measurements regarding the protein solubility
in the presence of a salt carried out in the last two decades
[39–43] revealed only salting-out effects.

One of the parameters which characterizes the behavior of a
protein in an aqueous mixed solvent is the preferential binding
parameter [47–51]. The preferential binding parameter can be
defined in various concentration scales (component 1 is water,
component 2 is a protein and component 3 is a cosolvent):

(1) in molal concentrations

Γ
(m)
23 ≡ lim

m2→0

(
∂m3

∂m2

)
T,P,μ3

(10)

where mi is the molality of component i and μi is the chem-
ical potential of component i.

(2) in molar concentrations

Γ
(c)
23 ≡ lim

c2→0

(
∂c3

∂c2

)
T,P,μ3

(11)

where ci is the molar concentration of component i. One
should notice that Γ

(m)
23 and Γ

(c)
23 are defined at infinite dilu-

tion of the protein.

The preferential binding parameter Γ
(m)
23 was determined

experimentally by sedimentation [49], dialysis equilibrium [51],
etc., for numerous systems [47–51].

Both preferential binding parameters (Γ (m)
23 and Γ

(c)
23 ) can be

expressed in terms of the KBIs as follows [52,53]:

Γ
(m)
23 = c0

3

c0
1

+ c0
3(G23 − G12 + G11 − G13) (12)

and

Γ
(c)
23 = c0

3(G23 − G13) (13)
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Using the expressions for G11, G13, G12 and G23 from
Appendix A, one can obtain an expression for the derivative of
the activity coefficient of an infinitely dilute solute with respect
to the cosolvent mole fraction in terms of the properties of the
solute-free binary solvent, and the preferential binding parame-
ter Γ

(m)
23 [29,30]:

lim
xt

2→0

(
∂ ln γ2,t

∂xt
3

)
T,P,xt

2

= c0
3(c0

1 + c0
3)V1 − Γ

(m)
23 (1 − c0

3V3)(c0
1 + c0

1J11 + c0
3)

c0
1c

0
3V1

(14)

where V1 and V3 are the partial molar volumes of compo-
nents 1 and 3 in a protein-free mixed solvent and J11 =
(∂ ln γ0

1 /∂x0
1)

xt
2=0.

Eq. (14) was obtained from Eq. (8) by replacing the parame-
ters Δ12 and Δ23 in terms of the preferential binding parameter
Γ

(m)
23 and partial molar volumes V1 and V3.

Using Eq. (14), a simple criterion for salting-in or salting-
out at low cosolvent concentrations can be derived. For low
cosolvent concentrations (c0

3 → 0), Eq. (14) leads to [29]
(

∂ ln y2

∂x0
3

)
= −

(
∂ ln y2

∂x0
1

)
= α

V 0
1

− 1 (15)

where y2 is the mole fraction of the protein solubility, α =
limc0

3→0(Γ (m)
23 /c0

3) and V 0
1 is the molar volume of pure water.

For low cosolvent concentrations salting-in occurs when
(

∂ ln y2

∂x0
3

)
> 0, hence when α > V 0

1 (16)

and salting-out occurs when
(

∂ ln y2

∂x0
3

)
< 0, hence when α < V 0

1 (17)

Expression (15) can be used as a consistency test of the
experimental data regarding the protein solubility and the pref-
erential binding parameter. If the experimental data regarding
the solubility and the preferential binding parameter do not
satisfy Eq. (15), then one of the above quantities or both of
them does (do) not correspond to thermodynamic equilibrium.
In some cases Eqs. (15)–(17) can help to estimate the quality
of the solubility data. For example, there are controversial data
regarding the solubility of lysozyme in water + polyethy1ene
glycol (PEG) mixtures. According to numerous data [54–56]
the addition of PEG decreases the protein solubility in an aque-
ous solution (water + PEG) compared with that in pure water;
there are, however, some measurement [57] which indicate that
PEG can act as a salting-in agent. Experimental measurements
[58–60] of the preferential binding parameter in the system
water (1) + lysozyme (2) + PEG (3) showed that in this system
Γ

(m)
23 < 0 and hence that inequality (17) is valid. Therefore, our

criteria reveal a salting-out effect of PEG.

Eq. (14) can be also used to derive an expression for the
solubility of a protein in a mixed solvent as a function of the
cosolvent concentration [29,30]. Indeed, by combining Eq. (14)
with the phase equilibrium condition one obtains the following
equation [30]
(

∂ ln y2

∂x0
3

)
= − 1

x0
1

+ Γ
(m)
23 (c0

1 + c0
1J11 + c0

3)

c0
3

(18)

Eq. (18) allows one to calculate the protein solubility in a wide
range of cosolvent concentrations if information regarding (i) the
composition dependence of the preferential binding parameter
and (ii) the properties of the protein-free mixed solvent such as
the molar volume and the activity coefficients of the components
are available. In addition, one should mention that Eq. (18) was
obtained for ternary mixtures (water (1)–protein (2)–cosolvent
(3)). However, those mixtures contain also a buffer, the effect of
which is taken into account only indirectly through the prefer-
ential binding parameter Γ

(m)
23 . Another limitation of Eq. (18) is

the infinite dilution approximation, which means that the protein
solubility is supposed to be small enough to satisfy the infi-
nite dilution approximation (γ2 ∼= γ∞

2 , where γ∞
2 is the activity

coefficient of a protein at infinite dilution).
In the dilute region of the cosolvent, the preferential binding

parameters Γ
(m)
23 and Γ

(c)
23 are linear functions of the cosolvent

concentration [61–63] and Eq. (18) leads after a number of
simplifications to

ln
y2

yw
2

≈ −c0
1α ln a1 (19)

where yw
2 is the protein solubility in a cosolvent-free water plus

buffer, a1 the water activity in the protein-free mixed solvent
and α = Γ

(m)
23 /c0

3. Eq. (19) was successfully used to predict the
protein solubility in several water + salt mixed solvents by using
experimental preferential binding parameter values [29].

It is worth noting that the developed theory provides not only
an equation for the protein solubility in mixed solvents, but also
provides some insight into the hydration of a protein molecule in
aqueous solutions and its connection with the protein solubility.
In particular, it was shown [29] that the preferential hydration of
a protein molecule (Γ (m)

23 < 0) is connected with the decrease of
the protein solubility (salting-out) and when the water is prefer-
entially excluded from a protein surface (Γ (m)

23 > 0), the addition
of a small amount of cosolvent increases the protein solubility
(salting-in).

4. Solubility of a gas in aqueous salt solutions

The Kirkwood–Buff formalism can be also used to derive
the composition dependence of the Henry constant for a spar-
ingly soluble gas dissolved in a mixed solvent containing
water + electrolyte [27]. The obtained equation requires infor-
mation about the molar volume and the mean activity coefficient
of the electrolyte in the binary (water + electrolyte) mixture.
Several expressions for the mean activity coefficient of the elec-
trolyte were tested and it was concluded that the accuracy in
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predicting the Henry constant is highly dependent on the accu-
racy of the expression used for the mean activity coefficient of
the electrolyte. In addition, a criterion for predicting the kind
of salting (salting-in or salting-out) for dilute salt solutions was
established [27]. According to that criterion the kind of salting
depends mainly on the molar volume of the electrolyte at infi-
nite dilution. This result explains the experimental observation
that the electrolytes with large molar volumes at infinite dilution
increase the gas solubility compared to that in pure water.

In the present section, the expression obtained for the pro-
tein solubility will be extended to the solubility of a sparingly
soluble gas in an aqueous electrolyte solution. Eq. (14) will
be used for the derivative of the activity coefficient of an
infinitely dilute gas with respect to the mole fraction of the
cosolvent (electrolyte). While there are no experimental results
for the preferential binding parameter Γ

(m)
23 for the systems

water (1) + gas (2) + electrolyte (3), Eq. (14) can be still used by
assuming, however, in analogy with the protein solutions that
Γ

(m)
23 = εx0

3, where ε is a constant. Because for the derivative of
the logarithm of the Henry constant H2t in a binary solvent with
respect to the mole fraction of the electrolyte one can write [27]
(

∂ ln H2t

∂xt
3

)
P,T,xt

2=0

= lim
xt

2→0

(
∂ ln γ2,t

∂xt
3

)
P,T

(20)

Eq. (14) can be recast in the form

(
∂ ln H2t

∂xt
3

)
P,T,xt

2=0

=
(

∂ ln H2t

∂x0
3

)
P,T

= 1

x0
1

− ε(1 + x0
1J11)

(21)

which integrated leads to

ln

(
H2t

H21

)
P,T

= − ln x0
1 − ε

∫ x0
3

0
(1 + x0

1J11) dx0
3 (22)

where H21 is the Henry constant in pure water.
Because dx0

3 = −dx0
1 and a1 = x0

1γ
0
1 , Eq. (22) becomes

ln

(
H2t

H21

)
P,T

= − ln x0
1 + ε

∫ a1

0
x0

1 d ln a1

= − ln x0
1 + εx0

1 ln(a1(x0
1)) − ε

∫ x0
1

0
ln a1 dx0

1

(23)

where a1(x0
1) is the activity of water at a mole fraction x0

1. By
taking into account that

ln a1 = −ϕM1m3ν

1000
(24)

and

dx0
1 = − 1000M1

(1000 + M1m3)2 dm3 (25)

where ϕ is the osmotic coefficient, M1 the molar weight of water,
m3 the molality of the electrolyte in the gas-free mixed sol-
vent, and ν is the number of ions formed through the complete
dissociation of the electrolyte molecule, Eq. (23) can be recast
as

ln

(
H2t

H21

)
P,T

= − ln x0
1 + εx0

1 ln(a1(x0
1))

−ε

∫ m3

0

(M1)2ϕm3ν

(1000 + M1m3)2 dm3 (26)

Eq. (26) can be used to calculate the Henry constant H2t in a
binary solvent water (1) + electrolyte (3) using experimental data
for the osmotic coefficient and considering ε as an adjustable
parameter.

Three systems were selected for examination, namely
the solubilities of oxygen, carbon dioxide, and methane in
water + sodium chloride. An accurate semiempirical equation
[64] was used to express the composition dependence of the
osmotic coefficient in water + sodium chloride. The results of
the calculations are presented in Fig. 1 and Table 1. One can
see that Eq. (26) provides an accurate correlation for the gas
solubility in solutions of strong electrolytes. In addition, the
fluctuation theory allows one to use the experimental solubility
data to examine the hydration in water (1)–gas (2)–cosolvent (3)
mixtures.

5. The use of experimental solubility data to analyze
hydration phenomena

The excesses (or deficits) �n12 and �n32 were calculated
using the following relations [65]:

�n12 = c0
1G12 + c0

1(V∞
2 − RTkT) (27)

Table 1
Calculation of the gas solubility with Eq. (26)

The gas and the electrolyte solution Temperature (K) Composition range, molality References Value of the parameter ε in Eq. (26)

Gas Electrolyte solution

O2 NaCl + H2O 298.15 0–6.1 a −6.97
CO2 NaCl + H2O 298.15 0–5.7 b −4.84
CH4 NaCl + H2O 298.15 0–2.1 c −8.74

a T.A. Mishina, O.I. Avdeeva, T.K. Bozhovskaya, Materialy Vses. Nauchn. Issled. Geol. Inst. 46 (1961) 93 (as given in Solubility Data Series, vol. 7, Pergamon,
1981).

b F.J. Yoshida, Chem. Eng. Data 24 (1979) 11.
c A. Ben-Naim, M. Yaacobi, J. Phys. Chem. 78 (1974) 170.
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Fig. 1. The Henry constant (expressed in bars) of oxygen (A), carbon dioxide
(B) and methane (C) in aqueous solutions of sodium chloride at 25 ◦C (©)
experimental data, solid line (—) the Henry constant calculated with Eq. (26)
(see Table 1 for details).

and

�n32 = c0
3G23 + c0

3(V∞
2 − RTkT) (28)

where V∞
2 is the partial molar volume of the solute at infinite

dilution and kT is the isothermal compressibility of the mixed
solvent.

The above expressions show that to calculate �n12 and �n32
information about the Kirkwood–Buff integrals G12 and G23

is necessary. This information can be extracted from Γ
(m)
23 and

an expression relating the partial molar volume V∞
2 at infinite

dilution of the solute to the Kirkwood–Buff integrals and to the
partial molar volumes V1 and V3 of the components of the mixed
solvent-free of solute [66]. Indeed, the preferential binding
parameterΓ (m)

23 can be expressed in terms of KBIs as follows [53]

Γ
(m)
23 = c0

3

c0
1

+ c0
3(G23 − G12 + G11 − G13) (12)

and the partial molar volume V∞
2 at infinite dilution is given by

[66]

V∞
2 = −c0

1V1G12 − c0
3V3G23 + kTkT (29)

where k is the Boltzmann constant.
Whereas G12 and G23 depend on the gas characteristics, G11

and G13 depend only on the characteristics of the gas-free mixed
solvent and can be calculated from the thermodynamic proper-
ties of the gas-free mixed solvent.

The calculations have been carried out for those systems
for which the solubility calculations have been performed. The
dilute region of sodium chloride (c0

3 ≤ 0.3) was selected to

ensure that the condition Γ
(m)
23 /x0

3 = ε = constant is satisfied.
The partial molar volume V∞

2 was estimated using literature
data [67–69]. According to the latter data, V∞

2 depends weakly
on c0

3 and this dependence is linear in the dilute range [68,69].
For sodium chloride and potassium chloride, V∞

2 decreases by
at most 1 cm3/mol when c0

3 is changed from 0 to 2 mol/l. In
our calculations, the above decrease was taken 1 cm3/mol. On
this basis the composition dependence of V∞

2 was evaluated in
the composition range 0 ≤ c0

3 ≤ 0.3. The partial molar volumes
V1 and V3 of water and sodium chloride in the binary mixture
water (1) + sodium chloride (3) were obtained from data avail-
able in the literature [70,71], and the composition dependence
of the isothermal compressibility of the mixed solvent (water
(1) + sodium chloride (3)) was taken from reference [71].

The Kirkwood–Buff integrals G11 and G13 in the binary mix-
ture water (1) + sodium chloride (3) were taken from reference
[71]. The values obtained for G12 and G23 from Eqs. (27) and
(28) were used to calculate the excesses (or deficits) number of
water and sodium chloride molecules in the vicinity of a gas
molecule.

The results of the calculations are presented in Table 2, which
shows that infinitely dilute oxygen, carbon dioxide and methane
molecules are preferentially hydrated in dilute aqueous solu-
tions of sodium chloride. This means that water is in excess and
sodium chloride is in deficit in the vicinity of a gas molecule in
contrast with the random distribution of water and sodium chlo-
ride in their binary mixtures. The values of �n12 and �n32 are
small because only the dilute region was considered in Table 2
(c0

3 = 0.3 corresponds to x0
3 = 0.0054). To carry out similar cal-

culations in the nondilute region, experimental data regarding
Γ

(m)
23 and V∞

2 are required and they are not available.
As our calculations have shown, the contribution of the com-

pressibility to the excesses �n12 and �n32 is negligibly small
and to V∞

2 , G12 and G23 small.
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Table 2
The Kirkwood–Buff integrals G12 and G23 and the excesses (or deficits) numbers �n12 and �n32 in a binary mixture water (1) + gas (2) + sodium chloride (3)

c0
3 G12 (cm3/mol) G23 (cm3/mol) �n12 (mol/mol) �n32 (mol/mol)

Water (1) + oxygen (2) + sodium chloride (3)
0.05 −33.1 −168.1 0.007 −0.007
0.1 −32.9 −168.0 0.013 −0.013
0.15 −32.8 −167.9 0.020 −0.020
0.2 −32.6 −167.8 0.027 −0.027
0.25 −32.5 −167.7 0.033 −0.034
0.3 −32.3 −167.6 0.040 −0.040

Water (1) + carbon dioxide (2) + sodium chloride (3)
0.05 −32.7 −129.2 0.005 −0.005
0.1 −32.6 −129.1 0.009 −0.010
0.15 −32.5 −129.0 0.014 −0.015
0.2 −32.4 −129.0 0.019 −0.019
0.25 −32.3 −128.9 0.024 −0.024
0.3 −33.2 −129.8 0.029 −0.029

Water (1) + methane (2) + sodium chloride (3)
0.05 −36.1 −203.1 0.008 −0.008
0.1 −36.0 −203.0 0.016 −0.017
0.15 −35.8 −202.9 0.024 −0.025
0.2 −35.6 −202.7 0.033 −0.033
0.25 −35.5 −202.6 0.041 −0.042
0.3 −36.4 −203.6 0.050 −0.050

Molecular dynamics simulations for the mixture water
(1) + methane (2) + sodium chloride (3) revealed a similar local
structure around an infinitely dilute gas molecule, namely the
methane molecule is preferentially hydrated and sodium chlo-
ride is preferentially excluded from the vicinity of a methane
molecule [72].

6. Discussion and conclusion

The authors of the present paper have shown previously
[21–31] that the fluctuation theory of solution can provide a
new approach to the solubility of gases, drugs, protein, etc., in
binary and multicomponent aqueous mixed solvents.

In the present paper, the method which the authors employed
previously to derive an expression for the solubility of various
proteins in aqueous solutions, has been extended to the solubility
of gases in mixtures of water + strong electrolytes. One param-
eter equation for the solubility of gases has been derived, which
was used to represent the solubilities of oxygen, carbon dioxide
and methane in water + sodium chloride. In additions, the devel-
oped theory could be used to examine the local composition of
the solvent around a gas molecule. The results revealed that the
oxygen, carbon dioxide and methane molecules are preferen-
tially hydrated in water + sodium chloride mixtures. A similar
result was obtained for the water + methane + sodium chloride
by molecular dynamics simulations [72].

There is a similarity between the solubility of a protein and
that of a gas in an aqueous mixed solvent. For the solution of
a protein in an aqueous mixed solvent, it was shown [29] that
when the protein molecule is preferentially hydrated (Γ (m)

23 < 0),
the addition of a small amount of cosolvent decreases the pro-
tein solubility (salting-out) and when the water is preferentially

excluded from the protein surface (Γ (m)
23 > 0), the addition of

a small amount of cosolvent increases the protein solubility
(salting-in). One can see from Table 2 that sodium chloride is
preferentially excluded from an infinitely dilute gas molecule,
hence that this gas molecule is preferentially hydrated. This
occurs because Na+ and Cl− prefer the environment of water
and less that of the gas molecule.

List of symbols
a1 activity of water
ci molar concentration of component i
c0
i bulk molecular concentrations of component i in the

solute-free binary solvent
D parameter in Eqs. (A.1) and (A.2) defined in Eq. (A.3)
gαβ radial distribution function between species α and β

Gαβ Kirkwood–Buff integral
H2t Henry constant in a binary solvent
H21 Henry constant in pure water
J11 derivative of the activity coefficient of water in the

water + cosolvent mixture with respect to the mole frac-
tion of water

k Boltzmann constant
kT isothermal compressibility
mi molality of component i
M1 molar weight of water
�nij excess (or deficit) of molecule i around a central

molecule j
P pressure
r distance between the centers of molecules α and β

R universal gas constant
T temperature (K)
V molar volume of the mixture
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Vi partial molar volume of component i
V 0

1 molar volume of pure water
V∞

2 partial molar volume of the solute at infinite dilution
xt
i mole fraction of component i in the ternary mixture

x0
i mole fraction of component i in the solute-free binary

solvent
y2 mole fraction of the protein solubility
yw

2 protein solubility in a cosolvent-free water plus buffer

Greek letters
α parameter in Eq. (15) defined in the text after Eq. (15)
Δαβ measure of the nonideality of the binary mixture α–β

Δ123 measure of the nonideality of the ternary mixture 1–2–3
ε constant defined before Eq. (20)
γ0
i activity coefficient of component i in the solute-free

binary solvent
γ2,t activity coefficient of a solute in a water (1)–solute

(2)–cosolvent (3) mixture
γ∞

2 activity coefficient of a protein at infinite dilution

Γ
(c)
23 preferential binding parameter defined on the basis of

molar concentration
Γ

(m)
23 preferential binding parameter defined on the basis of

molal concentration
ϕ osmotic coefficient
μi chemical potential of component i
ν number of ions formed through the complete dissocia-

tion of an electrolyte molecule

Appendix A

The purpose of this Appendix is to provide expressions for
the KBIs for binary and ternary mixtures (G11, G13, G12 and
G23) in terms of measurable thermodynamic quantities such as
the derivatives of the chemical potentials with respect to con-
centrations, the isothermal compressibility and the partial molar
volumes.

The main formulas for the KBIs of binary mixtures are
[73,74]

G13 = G31 = RTkT − V1V2

VD
(A.1)

and

G11 = G13 + 1

x0
1

(
V3

D
− V

)
(A.2)

where

D =
(

∂ ln γ0
i

∂x0
i

)
P,T

x0
i + 1, i = 1, 3 (A.3)

P is the pressure, T the temperature in K, kT the isothermal
compressibility, Vi the partial molar volume of component i, x0

i

the molar fraction of component i, V the molar volume of the
mixture, γ0

i the activity coefficient of component i and R is the
universal gas constant.

The KBIs for a ternary mixture at infinite dilution of compo-
nent 2 (G12 and G23) are provided by the expressions [52]:

G12 = kTkT − J21V3c
0
3 + J11V

∞
2 c0

1

c0
1 + c0

1J11 + c0
3

−V3c
0
3(c0

1 + c0
3)(V1 − V3) + V∞

2 (c0
1 + c0

3)

c0
1 + c0

1J11 + c0
3

(A.4)

and

G23 = kTkT + J21V1c
0
1 − J11c

0
1V

∞
2

c0
1 + c0

1J11 + c0
3

+c0
1V1(c0

1 + c0
3)(V1 − V3) − V∞

2 (c0
1 + c0

3)

c0
1 + c0

1J11 + c0
3

(A.5)

where

J21 = lim
xt

2→0

(
∂ ln γ2,t

∂xt
1

)
xt

2,P,T

.
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Chapter 4 

Solubility of pharmaceuticals and environmentally important  
compounds  

4.1  Solubility of drugs in aqueous solutions. Part 1: Ideal 
mixed solvent approximation.  

4.2  Solubility of drugs in aqueous solutions. Part 2: Non-
ideal mixed solvent. 

4.3  Solubility of drugs in aqueous solutions. Part 3: Multi-
component mixed solvent. 

4.4  Solubility of drugs in aqueous solutions. Part 4: Drug 
solubility by the dilute approximation. 

4.5  Solubility of drugs in aqueous solutions. Part 5: Ther-
modynamic consistency test for the solubility data. 

4.6  Solubility of hydrophobic organic pollutants in binary 
and multicomponent aqueous solvents.   

 
 
Introduction to Chapter 4 
 
Chapter 4 is devoted to the solubility of poorly soluble 
solids in mixed solvents (especially in aqueous solvents). 
Two types of solids are considered here: 1) drugs and 2) 
environmentally important compounds. 

It is self-evident that accurate prediction and/or correlation 
of the solubility of drugs in mixed aqueous solutions are of 
great interest for pharmaceutics. One or more cosolvents can 
be added to water to create a desirable multicomponent 
solvent, which satisfies pharmaceutical requirements with 
respect to solubility, toxicity, stability, price, and other factors. 
However, the experimental determination of solubilities in 
multicomponent solutions is time-consuming, because of the 
large number of compositions which must be covered in the 
concentration ranges of interest, and can be very expensive 
because of the high prices of some modern drugs. For this 
reason, it is important to provide a reliable method for 
predicting the solubility of drugs in multicomponent mixed 
solvents from available experimental solubilities in subsystems 
such as pure solvents, binary mixed solvents, etc. In Chapter 4 
we provide such methods for predicting and correlating the 
solubility of drugs in multicomponent mixed solvents. 

First, the fluctuation theory for multicomponent 
solutions is coupled with the thermodynamic condition for 

equilibrium between a solid and a solvent, and several 
equations for correlating the drug solubility data are derived 
(4.1–4.2, 4.4). Second, experimental data regarding the 
solubility of drugs in binary mixed solvents are examined and 
compared with the equations (4.1–4.2, 4.4). The main 
difference between these equations and the numerous empirical 
expressions from the literature is that they have a theoretical 
basis in the fluctuation theory of solutions. In addition, they 
perform better than those from literature (4.1–4.2). A method 
for predicting drug solubility in multicomponent (binary and 
higher) mixed solvents is developed and compared with 
available experimental data in paper (4.3). This contribution is 
important because, to the best of our knowledge, there is no 
other method for predicting the solubility of drugs in 
multicomponent mixed solvents. This method can provide a 
computerized scheme for fast screening of many combinations 
of potential multicomponent solvents to select a desirable 
solvent (or solvents) that satisfies the pharmaceutical 
requirements with respect to the solubility. 

The solubility of an organic compound (including 
pollutants) in water is one of the key factors that affects its 
environmental behavior. Because this topic is of high 
importance in environmental science, we apply our methods to 
the available experimental information about the solubility of 
hydrophobic organic pollutants in binary and multicomponent 
aqueous solvents. Our methodology provides a simple and 
reliable method that can be used for correlating and predicting 
the solubility of hydrophobic organic pollutants in binary and 
multicomponent aqueous solvents (4.6).  

At present, the solubility of pharmaceuticals and 
environmentally important compounds in binary and 
multicomponent aqueous solvents is attracting the attention 
of many research laboratories, which produce a large 
amount of experimental data. Frequently, the results of one 

Therefore, a rigorous criterion for the verification of the 
correctness of the solubility data is important. Such a 
criterion, based on the Gibbs–Duhem equation for ternary 
mixtures, is suggested in paper (4.5).  

laboratory contradict the results from other laboratories. 
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Abstract

The present paper deals with the application of the fluctuation theory of solutions to the solubility of poorly soluble drugs in
aqueous mixed solvents. The fluctuation theory of ternary solutions is first used to derive an expression for the activity coefficient
of a solute at infinite dilution in an ideal mixed solvent and, further, to obtain an equation for the solubility of a poorly soluble
solid in an ideal mixed solvent. Finally, this equation is adapted to the solubility of poorly soluble drugs in aqueous mixed solvents
by treating the molar volume of the mixed solvent as nonideal and including one adjustable parameter in its expression. The
obtained expression was applied to 32 experimental data sets and the results were compared with the three parameter equations
available in the literature.
© 2003 Elsevier Science B.V. All rights reserved.

Keywords: Drug solubility; Fluctuation theory; Aqueous mixed solvents

1. Introduction

It is well-known that the addition of an organic co-
solvent to water can dramatically change the solubility
of drugs (Yalkowsky and Roseman, 1981). This fact
is important for pharmaceutics because a poor aque-
ous solubility can often affect the drug efficiency. For
this reason, the prediction of the solubility of drugs in
aqueous mixed solvents or even a reliable correlation
of the available experimental data is of interest to the
pharmaceutical science and industry.

The solubility of solid substances in pure and mixed
solvents can be described by the usual solid–liquid
equilibrium conditions (Acree, 1984; Prausnitz et al.,

∗ Corresponding author. Tel.: +1-716-645-2911x2214;
fax: +1-716-645-3822.

E-mail addresses: feaeliru@acsu.buffalo.edu (E. Ruckenstein),
ishulgin@eng.buffalo.edu (I. Shulgin).

1986). For the solubilities of a solid substance (so-
lute, component 2) in water (component 3), cosolvent
(component 1) and their mixture (mixed solvent, 1–3),
one can write the following equations:

f S
2

f L
2 (T, P)

= x
b1
2 γ

b1
2 (T, P, {x}) (1)

f S
2

f L
2 (T, P)

= x
b3
2 γ

b3
2 (T, P, {x}) (2)

f S
2

f L
2 (T, P)

= xt
2γ

t
2(T, P, {x}) (3)

In Eqs. (1)–(3), x
b1
2 , x

b3
2 and xt

2 are the solubilities
(mole fractions) of the solid component 2 in the co-
solvent, water, and their mixture, respectively, γ

b1
2 ,

γ
b3
2 and γ t

2 are the activity coefficients of the solid
in its saturated solutions in the cosolvent, water, and

0378-5173/03/$ – see front matter © 2003 Elsevier Science B.V. All rights reserved.
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mixed solvent, f L
2 (T, P) is the hypothetical fugacity

of a solid as a (subcooled) liquid at a given pressure
(P) and temperature (T), f S

2 is the fugacity of a pure
solid component 2, and {x} designates that the activ-
ity coefficients of the solid depend on composition.
If the solubilities of the pure and mixed solvents in
the solid phase are negligible, then the left hand sides
of Eqs. (1)–(3) depend only on the properties of the
solute. Eqs. (1)–(3) show that the solubilities of solid
substances in pure and mixed solvents can be calcu-
lated if its activity coefficients in the binary and ternary
saturated solutions (1–2, 2–3, and 1–2–3) are known.
The activity coefficients of a solute in a pure and
mixed solvent can be calculated by group-contribution
methods, such as UNIFAC or ASOG (Acree, 1984;
Prausnitz et al., 1986). The application of UNIFAC
to the solubility of naphthalene in nonaqueous mixed
solvents provided satisfactory results when compared
to experimental data (Acree, 1984). However, the ac-
curacy of the UNIFAC was poor for the solubility of
solids in aqueous solutions (Fan and Jafvert, 1997).

The activity coefficients of a solute in a mixed sol-
vent could be also calculated by employing various
well-known phase equilibria models, such as the Wil-
son, NRTL, Margules, etc., which using information
for binary subsystems could predict the activity co-
efficients in ternary mixtures (Fan and Jafvert, 1997;
Domanska, 1990).

Many other methods, mainly empirical and semiem-
pirical, were suggested for the correlation and pre-
diction of the solubility of solids in a mixed solvent.
Details regarding these methods and their comparison
with experiment were summarized in books and re-
cent publications (Acree, 1984; Prausnitz et al., 1986;
Barzegar-Jalali and Jouyban-Gharamaleki, 1996;
Jouyban-Gharamaleki et al., 1999).

The solubility of drugs in aqueous mixed solvents
often exhibits a maximum in the curve solubility ver-
sus mixed solvent composition. This “enhancement”
in solubility often greatly exceeds the solubilities
not only in water, which is quite natural, but also in
nonaqueous cosolvents. Such a dependence could not
be explained by simple equations like the log-linear
model for the solubility in a mixed solvent (Yalkowsky
and Roseman, 1981)

ln xt
2 = ϕ1 ln x

b1
2 + ϕ3 ln x

b3
2 (4)

where φi (i = 1, 3) is the volume fraction of com-
ponent i in the mixed solvent 1–3. One should men-
tion that such simple equations provided satisfactory
results for systems which did not exhibit maxima.

Various other models for drug solubility in aque-
ous mixed solvents have been proposed and the re-
sults were compared (Barzegar-Jalali and Jouyban-
Gharamaleki, 1996; Jouyban-Gharamaleki et al.,
1999).

The main difficulty in predicting the solid solubility
in a mixed solvent consists in calculating the activity
coefficient of a solute in a ternary mixture (γ t

2). In this
paper, the Kirkwood–Buff (KB) theory of solutions
(or fluctuation theory) (Kirkwood and Buff, 1951) is
employed to analyze the solid (particularly drug) sol-
ubility in mixed (mainly aqueous) solvents. The anal-
ysis is based on results obtained previously regarding
the composition derivatives of the activity coefficients
in ternary solutions (Ruckenstein and Shulgin, 2001).
These equations were successfully applied to gas sol-
ubilities in mixed solvents (Ruckenstein and Shulgin,
2002; Shulgin and Ruckenstein, 2002).

Thus, the aim of the present paper is to apply the
fluctuation theory for ternary mixtures to the solubility
of drugs in aqueous mixed solvents and to suggest
on this basis a simple and accurate method for its
correlation.

2. Theory

2.1. The Kirkwood–Buff theory of solution

The KB theory of solution (Kirkwood and Buff,
1951) connects the macroscopic properties of solu-
tions, such as the isothermal compressibility, the con-
centration derivatives of the chemical potentials, and
the partial molar volumes to their microscopic char-
acteristics in the form of spatial integrals involving
the radial distribution function.

The key quantities in the KB theory of solution are
the so-called Kirkwood–Buff integrals (KBIs), defined
as

Gαβ =
∫ ∞

0
(gαβ − 1)4πr2 dr (5)

where gαβ is the radial distribution function between
species α and β, and r is the distance between the
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centers of molecules α and β. The isothermal com-
pressibility, the concentration derivatives of the chem-
ical potentials, and the partial molar volumes in any
multicomponent mixture can be expressed in terms of
the KBIs. In this paper, the attention is focused on the
concentration derivatives of the chemical potentials,
because they can provide useful information regard-
ing the activity coefficient of a solute in a ternary
mixture (γ t

2).
Kirkwood and Buff (Kirkwood and Buff, 1951) ob-

tained the following expression for the concentration
derivative of the activity coefficient of component α

in a binary mixture α–β:(
∂ ln γα

∂xα

)
P,T

=
c0
β(Gαα + Gββ − 2Gαβ)

1 + c0
αxβ(Gαα + Gββ − 2Gαβ)

(6)

where xi and �i are the mole fraction and the activ-
ity coefficient of component i in the binary mixture
α–β and c0

i is the bulk molecular concentrations of
component i. The present authors (Ruckenstein and
Shulgin, 2001) established explicit expressions for the
concentration derivatives of the activity coefficients in
a ternary mixture. These expressions are more com-
plicated than Eq. (6), and the only derivative which is
of interest in the present paper has the form(

∂ ln γ2,t

∂xt
3

)
T,P,xt

2

= −
(c1 + c2 + c3)(c1[G11 + G23 − G12 − G13]

+ c3[−G12 − G33 + G13 + G23])

c1 + c2 + c3 + c1c2∆12 + c1c3∆13
+ c2c3∆23 + c1c2c3∆123

(7)

where ∆αβ and ∆123 are defined as follows:

∆αβ = Gαα + Gββ − 2Gαβ, α �= β (8)

and

∆123 = G11G22 + G11G33 + G22G33 + 2G12G13

+ 2G12G23 + 2G13G23 − G2
12 − G2

13

− G2
23 − 2G11G23 − 2G22G13 − 2G33G12

(9)

The factors in the square brackets in the numerator
of Eq. (7) and ∆123 can be expressed in terms of ∆αβ

as follows

G12 + G33 − G13 − G23 = ∆13 + ∆23 − ∆12

2
(10)

G11 + G23 − G12 − G13 = ∆12 + ∆13 − ∆23

2
(11)

and

∆123 = −
(∆12)

2 + (∆13)
2 + (∆23)

2

− 2∆12∆13 − 2∆12∆23 − 2∆13∆23

4
(12)

The insertion of Eqs. (10)–(12) into Eq. (7) provides
a rigorous expression for the derivative (∂ ln γ2,t/

∂xt
3)T,P,xt

2
in terms of ∆αβ and concentrations.

It should be noted that ∆αβ is a measure of the
nonideality (Ben-Naim, 1977) of the binary mixture
α and β, because for an ideal mixture ∆αβ = 0. For
a ternary mixture 1–2–3, ∆123 also constitutes a mea-
sure of nonideality. Indeed, inserting Gid

αβ for an ideal
mixture (Ruckenstein and Shulgin, 2001) into the ex-
pression of ∆123 one obtains that for an ideal ternary
mixture ∆123 = 0.

2.2. The activity coefficient of a solute in a mixed
solvent at infinite dilution

At infinite dilution of a solute, Eq. (7) can be recast
as follows:

lim
xt

2→0

(
∂ ln γ2,t

∂xt
3

)
T,P,xt

2

= −

(c0
1 + c0

3)((c
0
1 + c0

3)(∆12 − ∆23)xt
2=0

+ (c0
1 − c0

3)(∆13)xt
2=0)

2(c0
1 + c0

3 + c0
1c

0
3(∆13)xt

2=0)
(13)

where c0
1 and c0

3 are the bulk molecular concentrations
of components 1 and 3 in the binary 1–3 solvent.

For a binary 1–3 solvent, Eq. (6) can be rewritten
as follows:(

∂ ln γ3

∂x3

)
P,T

= c0
3∆13

1 + c0
3x1∆13

(6a)

Eq. (6a) allows one to obtain for ∆13 the following
expression:

∆13 = (∂ ln γ3/∂x3)P,T

c0
3 − c0

3x1(∂ ln γ3/∂x3)P,T

(6b)
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Introducing ∆13 from Eq. (6b) in Eq. (13) and inte-
grating yields

lnγ
t,∞
2 = −

∫
(c0

1 + c0
3)

(∆12 − ∆23)xt
2=0

2

[
1 + x

b,1–3
3

(
∂ ln γ

b,1–3
3

∂x
b,1–3
3

)
P,T

]
dx

b,1–3
3

+ 1

2

∫
(x

b,1–3
1 − x

b,1–3
3 )

x
b,1–3
1

(
∂ ln γ

b,1–3
3

∂x
b,1–3
3

)
P,T

dx
b,1–3
3 + A (14)

where x
b,1–3
i (i = 1, 3) is the mole fraction of compo-

nent i in the mixed solvent, γ
t,∞
2 is the activity coeffi-

cient of a solute in a mixed solvent at infinite dilution
and A is a constant of integration.

Eq. (14) will be used in the next section to derive
an expression for the solubility of a solid in a mixed
solvent.

2.3. Solubility of poorly soluble solids in an ideal
mixed solvent

For poorly soluble solids one can use the infinite
dilution approximation and consider that the activ-
ity coefficient of a solute in a mixed solvent is equal
to the activity coefficient at infinite dilution. Thus,
Eqs. (1)–(3) can be rewritten as follows:

f S
2

f L
2 (T, P)

= xt
2γ

t,∞
2 (15)

f S
2

f L
2 (T, P)

= x
b1
2 γ

b1,∞
2 (16)

and

f S
2

f L
2 (T, P)

= x
b3
2 γ

b3,∞
2 (17)

where γ
b1,∞
2 and γ

b3,∞
2 are the activity coefficients at

infinite dilution of the solute in the pure solvents 1
and 3.

Eq. (14) is a rigorous equation applicable to any
ternary mixture.

At this point, two simplifications are introduced
which allow one to obtain working expressions for the
solubility of poorly soluble solids in an ideal mixed
solvent:

(a) (∆12)xt
2=0 = (G11 + G22 − 2G12)xt

2=0 and
(∆23)xt

2=0 = (G22 + G33 − 2G23)xt
2=0 are

independent of the composition of the solvent mix-
ture, and

(b) the binary solvent 1–3 is ideal and therefore
γ

b,1–3
3 = 1 and

V = x
b,1–3
1 V 0

1 + x
b,1–3
3 V 0

3 (18)

where V is the molar volume of the binary mixture
1–3, and V 0

1 and V 0
3 are the molar volumes of the

individual solvents 1 and 3.
With these two simplifications, Eq. (14) can be

rewritten, when V 0
1 �= V 0

3 , in the form

ln γ
t,∞
2 = A(P, T)−B(P, T) ln(x

b,1–3
1 V 0

1 +x
b,1–3
3 V 0

3 )

V 0
3 −V 0

1

(19)

where B(P, T) = (∆12 − ∆23)xt
2=0/2.

The constants A(P, T) and B(P, T) can be obtained
using the following limiting expressions:

(ln γ
t,∞
2 )

x
b,1–3
1 =0 = ln γ

b,2–3,∞
2 (20)

and

(ln γ
t,∞
2 )

x
b,1–3
3 =0 = ln γ

b,1–2,∞
2 (21)

Combining Eqs. (19)–(21) yields the following ex-
pression for the activity coefficient of a solute in an
ideal mixed solvent at infinite dilution when V 0

1 �= V 0
3

ln γ
t,∞
2 =

(ln V − ln V 0
3 )ln γ

b,1–2,∞
2

+ (ln V 0
1 − ln V) ln γ

b,2–3,∞
2

ln V 0
1 − ln V 0

3

(22)

Inserting expressions (15–17) into Eq. (22) yields the
following equation for the solubility of a poorly solu-
ble solid in an ideal mixed solvent:

ln xt
2 = (ln V − ln V 0

3 ) ln x
b1
2 + (ln V 0

1 − ln V) ln x
b3
2

ln V 0
1 − ln V 0

3

,

V 0
1 �= V 0

3 (23)
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Fig. 1. Comparison between experimental (�) (Jouyban et al., 2002) and predicted (solid lines) solubilities of oxolinic acid (S is the
mole fraction of oxolinic acid) in the mixed solvent water/ethanol (xet is the mole fraction of ethanol) at room temperature. 1—solubility
calculated using Eqs. (23) and (25), 2—solubility calculated using Eqs. (23) and (18), and 3—the solubility calculated using Eq. (4).

However, when V 0
1 = V 0

3 , Eq. (23) leads to a nonde-
termination 0/0. In this case, using the same approxi-
mations as in the previous case and taking into account
that V = V 0

1 = V 0
3 , Eq. (14) leads to

ln xt
2 = x

b,1–3
1 ln x

b1
2 + x

b,1–3
3 ln x

b3
2 (24)

Eq. (24) is similar to Eq. (4) with the difference that
the volume fractions for the mixed solvent are replaced
by mole fractions.

Fig. 2. Comparison between experimental (�) (Bustamante et al., 1993) and predicted (solid lines) solubilities of sulfadiazine (S is the
mole fraction of sulfadiazine) in the mixed solvent water/dioxane (xdiox is the mole fraction of dioxane) at room temperature. 1—solubility
calculated using Eqs. (23) and (25), 2—solubility calculated using Eqs. (23) and (18), and 3—the solubility calculated using Eq. (4).

Eq. (23), which was derived using the KB theory of
solutions for a ternary mixture, can predict the solubil-
ity of a poorly soluble solid in an ideal mixed solvent
in terms of the solubilities of the solid in the individ-
ual constituents of the mixed solvent and their molar
volumes.

However, Eq. (23) cannot describe the maximum
in the curve of solubility versus mixed solvent com-
position which was frequently observed experimen-
tally for the solubilities of drugs in aqueous mixed
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solvents (Jouyban-Gharamaleki et al., 1999 and ref-
erences therein). To accommodate this feature of the
solubility curve, the molar volume of the mixed sol-
vent will be replaced in Eq. (23) by

v = x
b,1–3
1 V 0

1 + x
b,1–3
3 V 0

3 + exb,1–3
1 x

b,1–3
3 (25)

where e is an empirical parameter which is evalu-
ated from the solubility data in a mixed solvent. One
should not expect for Eq. (25) to satisfactorily repre-
sent the molar volume of the mixed solvent. The inser-
tion of Eq. (25) into Eq. (23) leads to a one-parameter
semiempirical equation for the solubility of a solid in

Table 1
The experimental dataa regarding the solubilities (at room temperature) of drugs in aqueous mixed solvents used in calculations

Systems no. Cosolvent Solute nb Reference Value of e
(cm3/mol)
in Eq. (25)

1 N,N-Dimethylformamide Sulfadiazine 14 Martin et al. (1982) 49.3
2∗ N,N-Dimethylformamide Theophyllene 11 Gonzalez et al. (1994) 45.2
3∗ N,N-Dimethylformamide Caffeine 11 Herrador and Gonzalez (1997) 42.8
4 Dioxane Caffeine 16 Adjei et al. (1980) 1433.9
5 Dioxane p-Hydroxybenzoic acid 13 Wu and Martin (1983) 183.2
6 Dioxane Paracetamol 17 Romero et al. (1996) 365.4
7 Dioxane Phenacetin 13 Bustamante and Bustamante (1996) 249.8
8 Dioxane Sulfadiazine 17 Bustamante et al. (1993) 325.9
9 Dioxane Sulfadimidine 19 Bustamante et al. (1993) 220.5

10 Dioxane Sulfamethizole 19 Reillo et al. (1995a) 678.6
11 Dioxane Sulfamethoxazole 15 Bustamante et al. (1993) 199.0
12 Dioxane Sulfapyridine 17 Reillo et al. (1995b) 390.5
13 Dioxane Sulfamethoxypyridazine 19 Bustamante et al. (1993) 252.9
14 Dioxane Sulfanilamide 16 Reillo et al. (1993) 256.3
15 Dioxane Sulfisomidine 21 Martin et al. (1985) 536.0
16 Dioxane Theobromine 11 Martin et al. (1981) 348.8
17 Dioxane Theophyllene 21 Martin et al. (1980) 2317.7
18 Ethanol Paracetamol 13 Romero et al. (1996) 108.3
19 Ethanol Sulfamethazine 11 Bustamante et al. (1994) 152.0
20 Ethanol Sulfanilamide 12 Bustamante et al. (1994) 113.0
21∗ Ethanol Oxolinic acid 11 Jouyban et al. (2002) 261.3
22 Ethylene glycol Naphthalene 18 Khossravi and Connors (1992) 2.2
23 Ethylene glycol Theophyllene 17 Khossravi and Connors (1992) 24.7
24 Methanol Theophyllene 13 Khossravi and Connors (1992) 151.2
25 Propylene glycol Butyl p-aminobenzoate 11 Rubino and Obeng (1991) 32.5
26 Propylene glycol Butyl p-hydroxybenzoate 11 Rubino and Obeng (1991) 19.6
27 Propylene glycol Ethyl p-aminobenzoate 11 Rubino and Obeng (1991) 44.5
28 Propylene glycol Ethyl p-hydroxybenzoate 11 Rubino and Obeng (1991) 40.5
29 Propylene glycol Methyl p-aminobenzoate 11 Rubino and Obeng (1991). 43.1
30 Propylene glycol Methyl p-hydroxybenzoate 11 Rubino and Obeng (1991). 46.8
31 Propylene glycol Propyl p-aminobenzoate 11 Rubino and Obeng (1991). 34.2
32 Propylene glycol Propyl p-hydroxybenzoate 11 Rubino and Obeng (1991). 21.8

a Most of the references were taken from the paper of Jouyban-Gharamaleki et al. (Jouyban-Gharamaleki et al., 1999), but some additional
data (∗) were also included.

b n is the number of experimental points in each data set.

a mixed solvent. This equation exhibits a maximum
in the curve of solubility versus mixed solvent com-
position (Figs. 1 and 2).

3. Results and discussion

In order to verify the applicability of Eq. (23)
combined with the nonideal molar volume of a
mixed solvent to the solubility of a drug in an aque-
ous mixed solvents, 32 experimental sets were se-
lected. Most of them were taken from the paper of
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Table 2
Comparison between the drug solubilities calculated using
Eqs. (23) and (25) and literature models

Number of constants MPD (%)a

Using Eqs. (23)
and (25)

MRSb GSMc

3 14.1 15.9 15.9

a MPD (%) is the mean percentage deviation defined as
100

∑M
j=1

∑Nj
i=1|(xexp

i −xcalc
i )/x

exp
i |∑M

j=1Nj
where x

exp
i and xcalc

i are experimental

and calculated solubilities (mole fractions), Nj is the number of
experimental points in the data set j (Table 1), M is the number
of experimental data sets (here 32).

b MRS is the mixture response surface method (Ochsner et al.,
1985). The value of MPD was taken from Table 2 of the Jouyban-
Gharamaleki et al. (Jouyban-Gharamaleki et al., 1999) paper.

c GSM is the general single model (Barzegar-Jalali and
Jouyban-Gharamaleki, 1996). The value of MPD was taken from
Table 2 of the Jouyban-Gharamaleki et al. (Jouyban-Gharamaleki
et al., 1999) paper.

Jouyban-Gharamaleki et al. (Jouyban-Gharamaleki
et al., 1999), but some additional data were also
included. All selected mixtures and the results of
calculations are listed in Tables 1 and 2.

There is only one adjustable parameter (e) in our
equation. However, the solubilities of the solute in the
individual constituents of the mixed solvent are also
needed. Therefore, one can consider our equation as
a three-parameter one. For this reason, our results in
Table 2 are compared to the best three-parameter equa-
tions. One can see from Table 2 that Eq. (23) with the
molar volume given by Eq. (25) provides slightly bet-
ter results than the three-parameter equations available
in literature.

Generally speaking, the correlating equations
should meet the following criteria:

(a) provide an accurate enough representation of the
experimental data,

(b) use a minimum number of adjustable constants,
(c) have some theoretical justification, and
(d) have predictable power.

Regarding criterion (a), 30% for the mean percent-
age deviation is considered an acceptable error range
(Reillo et al., 1995b). Therefore, all equations listed
in Table 2 satisfy criterion (a). Of course, one can
achieve a much better mathematical representation of
the data by using a larger number of adjustable pa-

rameters. In the paper by Jouyban-Gharamaleki et al.
(Jouyban-Gharamaleki et al., 1999), equations with 4,
5, and 6 adjustable parameters were listed. However,
they are devoid of any physical meaning and require
numerous experimental points for the parameter esti-
mation. The adjustable parameter (e) in our equation
can be found from a single solubility measurement.
Furthermore, our Eq. (23) was derived using the fluc-
tuation theory for ternary mixtures and is rigorously
valid. It is clear that the idealized model employed can-
not predict some peculiar features of real systems, such
as the maximum in the curve of solubility versus mixed
solvent composition. However, a simple modification
(Eq. (25)) enabled Eq. (23) to represent this maximum.

An inspection of the values of the parameter (e)
(Table 1) shows that this parameter has always posi-
tive values for the systems investigated and depends
on the natures of both the drug and cosolvent. For
the solubilities of structurally related caffeine and
theophyllene in aqueous N,N-dimethylformamide, the
values of (e) are close to each other (45.2 and 42.8).
However, the values of (e) for the structurally more
different sulfonamides (sulfadiazine, sulfadimidine,
sulfamethizole, sulfamethoxazole, sulfapyridine, sul-
famethoxypyridazine, sulfanilamide, and sulfisomi-
dine) in water/dioxane mixtures differ by a factor of
two and even three for sulfamethizole.

The limitations of the proposed method are directly
related to the simplifications made. The two most im-
portant ones are: (1) the ideality of the mixed solvents
and (2) the infinite dilution approximation. Our next
papers will be focused on nonideal mixed solvents and
on the effect of the finite concentration of a solute.

4. Conclusion

In this paper, the fluctuation theory of solutions was
applied to the solubility of drugs in aqueous mixed
solvents. A rigorous expression for the composition
derivative of the activity coefficient of a solute in a
ternary solution (Ruckenstein and Shulgin, 2001) was
used to derive an equation for the activity coefficient
of a solute at infinite dilution in an ideal mixed solvent
and an expression for the solubility of a poorly soluble
solid in an ideal mixed solvent (Eq. (23)). This simple
equation can predict the solubility in terms of those in
the individual constituents of the mixed solvent and

204 Thermodynamics of Solutions



200 E. Ruckenstein, I. Shulgin / International Journal of Pharmaceutics 258 (2003) 193–201

their molar volumes. However, this simple equation
cannot explain the maximum observed experimentally
in the curve of solubility versus mixed solvent com-
position. By considering that the molar volume of the
mixed solvent is nonideal and that the excess volume
depends on its composition, the above equation was
modified by including one adjustable parameter. This
modified equation can be considered a three param-
eter equation (parameter (e) in Eq. (25) and the two
solubilities of the solid in the individual constituents).
The semiempirical equation proposed was compared
with other three parameter equations for the solubility
of drugs in an aqueous mixed solvent.
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Abstract

As in a previous paper [Int. J. Pharm. 258 (2003) 193–201], the Kirkwood–Buff theory of solutions was employed to calculate
the solubility of a solid in mixed solvents. Whereas in the former paper the binary solvent was assumed ideal, in the present one
it was considered nonideal. A rigorous expression for the activity coefficient of a solute at infinite dilution in a mixed solvent
[Int. J. Pharm. 258 (2003) 193–201] was used to obtain an equation for the solubility of a poorly soluble solid in a nonideal
mixed solvent in terms of the solubilities of the solute in the individual solvents, the molar volumes of those solvents, and the
activity coefficients of the components of the mixed solvent.

The Flory–Huggins and Wilson equations for the activity coefficients of the components of the mixed solvent were employed
to correlate 32 experimental data sets regarding the solubility of drugs in aqueous mixed solvents. The results were compared with
the models available in literature. It was found that the suggested equation can be used for an accurate and reliable correlation
of the solubilities of drugs in aqueous mixed binary solvents. It provided slightly better results than the best literature models
but has also the advantage of a theoretical basis.
© 2003 Elsevier Science B.V. All rights reserved.

Keywords: Solubility of drugs; Nonideal binary aqueous solvents; Fluctuation theory

1. Introduction

The solubility of drugs in aqueous mixed sol-
vents often exhibits a maximum as a function of the
mixed solvent composition. The higher solubility of
a solid solute in a mixed solvent than in either of the
pure solvents, was frequently observed (Acree, 1984;
Prausnitz et al., 1986) and is not an exception as it
seemed several decades ago.

Gordon and Scott (1952) observed an enhanced sol-
ubility of phenanthrene in the mixture of cyclohexane

∗ Corresponding author. Tel.: +1-716-645-2911x2214;
fax: +1-716-645-3822.

E-mail addresses: feaeliru@acsu.buffalo.edu (E. Ruckenstein),
ishulgin@eng.buffalo.edu (I. Shulgin).

and methylene iodine, while Smith et al. (1959) noted
such an enhancement in the solubility of iodine in the
C7F16/CCl4 mixture. In their book, Hildebrand and
Scott (1962) pointed out that such enhancements can
be predicted in the framework of the regular solution
theory (the Scatchard–Hildebrand solubility parame-
ter model), when the solubility parameter of the solid
solute lies between those of the two solvents.

However, when the solute or either of the pure sol-
vents is polar, the regular solution theory could no
longer provide quantitative agreement regarding the
solubility of a solid solute in a mixed solvent (Acree,
1984; Walas, 1985).

Many models, including various modifications of
the Scatchard–Hildebrand solubility parameter model,
were suggested for the correlation and prediction of

0378-5173/03/$ – see front matter © 2003 Elsevier Science B.V. All rights reserved.

4   Solubility of pharmaceuticals and environmentally important  compounds 207



284 E. Ruckenstein, I. Shulgin / International Journal of Pharmaceutics 260 (2003) 283–291

the solubility of solids in mixed solvents. Details
regarding these methods and their comparison with
experiment have been summarized in books and re-
cent publications (Acree, 1984; Prausnitz et al., 1986;
Barzegar-Jalali and Jouyban-Gharamaleki, 1996;
Jouyban-Gharamaleki and Acree, 1998; Jouyban-
Gharamaleki et al., 1999).

In a previous paper (Ruckenstein and Shulgin,
2003), the Kirkwood–Buff theory of solutions
(Kirkwood and Buff, 1951) was employed to obtain
an expression for the solubility of a solid (particularly
a drug) in binary mixed (mainly aqueous) solvents. A
rigorous expression for the composition derivative of
the activity coefficient of a solute in a ternary solution
(Ruckenstein and Shulgin, 2001) was used to derive
an equation for the activity coefficient of the solute
at infinite dilution in an ideal binary mixed solvent
and further for the solubility of a poorly soluble solid.
By considering that the excess volume of the mixed
solvent depends on composition, the above equation
was modified empirically by including one adjustable
parameter. The modified equation was compared with
the other three-parameter equations available in the lit-
erature to conclude that it provided a better agreement.

In the present paper, an equation for the activity
coefficient of a solute at infinite dilution in a nonideal
mixed solvent is used to derive expressions for its
solubility in a nonideal binary mixed solvent.

The paper is organized as follows: first, an equation
for the activity coefficient of a solute at infinite dilu-
tion in a binary nonideal mixed solvent (Ruckenstein
and Shulgin, 2003) is employed to derive an expres-
sion for its solubility in terms of the properties of the
mixed solvent. Second, various expressions for the
activity coefficients of the cosolvents are inserted into
the above equation. Finally, the obtained equations
are used to correlate the drug solubilities in binary
aqueous mixed solvents and the results are compared
with experimental data and other models available in
the literature.

2. Theory and formulas

The following rigorous expression for the activity
coefficient (γt,∞

2 ) of a solid solute (the designation of
the components in this paper is as follows: the solid so-
lute is component 2, the water is component 3 and the

other cosolvent component 1) in a binary mixed sol-
vent at infinite dilution can be written as (Ruckenstein
and Shulgin, 2003):

ln γ
t,∞
2 = −

∫
B

V

[
1+x

b,1–3
3

(
∂ln γ

b,1–3
3

∂x
b,1–3
3

)
P,T

]
dx

b,1–3
3

+ 1

2

∫
(x

b,1–3
1 − x

b,1–3
3 )

x
b,1–3
1

×
(

∂ln γ
b,1–3
3

∂x
b,1–3
3

)
P,T

dx
b,1–3
3 + A (1)

where P and T are the pressure and temperature, xb,1–3
i

and γ
b,1–3
i (i = 1, 3) are the mole fraction and the ac-

tivity coefficient of component i in the binary solvent
1–3, V is the molar volume of the binary 1–3 solvent,
A(P, T) is a composition-independent constant of in-
tegration, and B is a function of the Kirkwood–Buff
integrals (Ruckenstein and Shulgin, 2003). If B is con-
sidered independent of the composition of the binary
mixed solvent 1–3, Eq. (1) can be rewritten in the form:

ln γ
t,∞
2 = −BI1 + I2

2
+ A (2)

where

I1 =
∫

[1+x
b,1–3
3 ((∂ln γ

b,1–3
3 )/(∂x

b,1–3
3 ))P,T ]

V
dx

b,1–3
3

(3)

and

I2 =
∫

(x
b,1–3
1 − x

b,1–3
3 )

x
b,1–3
1

(
∂ln γ

b,1–3
3

∂x
b,1–3
3

)
P,T

dx
b,1–3
3

(4)

On the other hand, the solubility of a poorly soluble
solute in a mixed solvent is given by the expression
(Prausnitz et al., 1986):

f S
2

f L
2 (T, P)

= xt
2γ

t,∞
2 (5)

where f L
2 (T, P) is a hypothetical fugacity of compo-

nent 2 as a (subcooled) liquid at a given pressure (P)
and temperature (T), f S

2 is the fugacity of the pure
solid component 2 and xt

2 is the solubility of the solid
solute. The combination of Eqs. (2) and (5) provides
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an expression for the solubility of a poorly soluble
solid in a mixed binary solvent:

ln xt
2 = BI1 − I2

2
+ Ā(P, T) (6)

where Ā(P, T) = −A(P, T) + ln
⌊
f S

2 /f L
2 (T, P)

⌋
.

The integrals I1 and I2 can be calculated if the com-
position dependencies of the activity coefficients and
of the molar volume V of the binary mixed solvent
1–3 are known. The solubilities of the solute in the
individual solvents are also needed for the calculation
of the composition-independent constants Ā(P, T) and
B(P, T).

Because it contains the derivative of the activity
coefficient and this gives rise to numerical errors,
Eq. (6) is not entirely suitable for numerical cal-
culations. Therefore, Eq. (6) was first modified by
replacing the derivative of the activity coefficient with
a less error-prone quantity.

The integral I2 can be transformed by using the
Gibbs–Duhem Eq. (7) for a binary system at constant
temperature and pressure:

x
b,1–3
1 dln γ

b,1–3
1 = −x

b,1–3
3 dln γ

b,1–3
3 (7)

Consequently,

(x
b,1–3
1 − x

b,1–3
3 )

x
b,1–3
1

(
∂ln γ

b,1–3
3

∂x
b,1–3
3

)
P,T

=
(

∂ln γ
b,1–3
1

∂x
b,1–3
3

)
P,T

+
(

∂ln γ
b,1–3
3

∂x
b,1–3
3

)
P,T

(8)

and the integral I2 becomes:

I2 = ln γ
b,1–3
1 + ln γ

b,1–3
3 (9)

The integral I1 will be modified by assuming that V
can be still considered as ideal:

V = x
b,1–3
1 V 0

1 + x
b,1–3
3 V 0

3 (10)

where V 0
i is the molar volume of the pure component

i(i = 1, 3).
Then,

I1 = ln(x
b,1–3
1 V 0

1 +x
b,1–3
3 V 0

3 )

V 0
3 −V 0

1

+ ln γ
b,1–3
3

V 0
3 −V 0

1

− V 0
1

V 0
3 − V 0

1

×
∫

1

x
b,1–3
1 V 0

1 + x
b,1–3
3 V 0

3

dln γ
b,1–3
3 (11)

Integrating by parts, Eq. (11) becomes:

I1 = ln(x
b,1–3
1 V 0

1 + x
b,1–3
3 V 0

3 )

V 0
3 − V 0

1

+ ln γ
b,1–3
3

V 0
3 − V 0

1

− V 0
1

V 0
3 − V 0

1

ln γ
b,1–3
3

x
b,1–3
1 V 0

1 + x
b,1–3
3 V 0

3

− V 0
1

∫
ln γ

b,1–3
3

(x
b,1–3
1 V 0

1 + x
b,1–3
3 V 0

3 )2
dx

b,1–3
3 (12)

Eqs. (9) and (12) for the integrals I1 and I2 no longer
contain the derivative of the activity coefficient. The
simplifying assumption that the molar volume can be
treated as ideal (Eq. (10)) does not introduce major
errors (see Appendix A).

Eq. (6) combined with Eqs. (9) and (12) allows one
to calculate the solubility of a poorly soluble solid in
a mixed solvent in terms of the solubilities in the indi-
vidual solvents (which provide the values of Ā(P, T)

and B(P, T), their molar volumes and the activity co-
efficients of the components of the mixed solvent.

There are numerous expressions for the activity co-
efficients, which can be employed to calculate the sol-
ubility of a poorly soluble solid in a mixed binary
solvent. In this paper two expressions for the activity
coefficients will be used.

(1) The Flory–Huggins equation (Walas, 1985):

ln γ
b,1–3
1 = ln

[
ϕ1

x
b,1–3
1

]
+
(

1 − 1

r

)
ϕ3 + χϕ2

3

(13)

and

ln γ
b,1–3
3 = ln

[
ϕ3

x
b,1–3
3

]
+ (r − 1)ϕ1 + χϕ2

1

(14)

(2) The Wilson equation (Wilson, 1964):

ln γ
b,1–3
1

= −ln(x
b,1–3
1 + x

b,1–3
3 L13) + x

b,1–3
3

×
[

L13

x
b,1–3
1 +x

b,1–3
3 L13

− L31

x
b,1–3
3 +x

b,1–3
1 L31

]

(15)
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and

ln γ
b,1–3
3

= −ln(x
b,1–3
3 + x

b,1–3
1 L31) − x

b,1–3
1

×
[

L13

x
b,1–3
1 +x

b,1–3
3 L13

− L31

x
b,1–3
3 +x

b,1–3
1 L31

]

(16)

In Eqs. (13)–(16), ϕi = (V 0
i x

b,1–3
i )/(V 0

1 x
b,1–3
1 +

V 0
3 x

b,1–3
3 ) is the volume fraction of component i(i =

1, 3) in the mixed solvent 1–3, r = (V 0
3 )/(V 0

1 ), χ is
the Flory–Huggins interaction parameter and L13 and
L31 are the Wilson parameters. All these parameters
are assumed to be composition independent.

Eq. (6) combined with Eqs. (9) and (12) leads to
a slightly cumbersome expression. The expression for
the integral in Eq. (12) when the Wilson Eq. (16)
is used for the activity coefficient γ

b,1–3
3 is given in

Appendix B.

3. Calculations and results

For the sake of comparison, the same 32 sets of
experimental data regarding the solubility of drugs in
aqueous mixed solvents correlated in a previous paper
(Ruckenstein and Shulgin, 2003) are used here.

Fig. 2. Comparison between experimental ( ) (Romero et al., 1996) and calculated (solid lines) solubilities of paracetamol (S is the mole
fraction of paracetamol) in the mixed solvent water/ethanol (xet is the mole fraction of ethanol) at room temperature. The solubility was
calculated using Eq. (6) combined with Eqs. (9) and (12): (1) the activity coefficients expressed via the Flory–Huggins equation, (2) the
activity coefficients expressed via the Wilson equation.

Fig. 1. Comparison between experimental ( ) (Bustamante and
Bustamante, 1996) and calculated (solid lines) solubilities of
phenacetin (S is the mole fraction of phenacetin) in the mixed sol-
vent water/dioxane (xdiox is the mole fraction of dioxane) at room
temperature. The solubility was calculated using Eq. (6) combined
with Eqs. (9) and (12): (1) the activity coefficients expressed via
the Flory–Huggins equation; (2) the activity coefficients expressed
via the Wilson equation.

Each data set is treated using Eq. (6) combined with
Eqs. (9) and (12), with the activity coefficients ex-
pressed via the Flory–Huggins or Wilson equations.

The Flory–Huggins interaction parameter (χ) and
the Wilson parameters (L13 and L31) are considered
here adjustable parameters and are calculated from the
experimental data regarding the solubility of drugs in
aqueous mixed solvents.

The results of the calculations are listed in Tables 1
and 2, and some details are provided for illustration
in Figs. 1 and 2.
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Table 2
Comparison between the results of calculation of the drug solubilities using the present method (Eq. (6)) combined with Eqs. (9) and (12)
and various literature models

Number of
parameters

MPD (%)a

Eq. (6) combined with Eqs. (9) and (12) Literature models

Flory–Huggins
activity coefficients

Wilson activity
coefficients

MRSb GSMc CNIBS/R-Kd

3 14.4 – 15.9 15.9 22.3
4 – 7.7 18.7 9.1 10.7

a MPD (%) is the mean percentage deviation defined as (100
∑M

j=1
∑Nj

i=1|(xexp
i − xcalc

i )/x
exp
i |)/(∑M

j=1Nj) where x
exp
i and xcalc

i are
experimental and calculated solubilities (mole fractions), Nj is the number of experimental points in the data set (see Table 1) and M is
the number of experimental data sets (here 32).

b MRS is the mixture response surface method (Ochsner et al., 1985). The value of MPD was taken from Table 2 of the
Jouyban-Gharamaleki et al. (1999) paper.

c GSM is the general single model (Barzegar-Jalali and Jouyban-Gharamaleki, 1996). The value of MPD was taken from Table 2 of the
Jouyban-Gharamaleki et al., 1999) paper.

d CNIBS/R-K is the combined nearly ideal binary solvent/Redlich–Kister equations (Acree et al., 1991). The value of MPD was taken
from Table 2 of the Jouyban-Gharamaleki et al. (1999) paper.

When the activity coefficients are expressed via
the Flory–Huggins equation, one adjustable pa-
rameter is introduced. When, however, the Wilson
expressions are employed, two adjustable param-
eters are needed. The solubilities of the solute in
the individual solvents are also necessary to calcu-
late the composition-independent constants Ā(P, T)

and B(P, T). Therefore, our method can be consid-
ered a three-parameter method, when based on the
Flory–Huggins equations, and a four-parameter one,
when based on the Wilson equations (see Table 2).

Table 3
The Wilson parameters (L13 and L31) determined from the solubilities of sulfadiazine, sulfadimidine, sulfamethizole, sulfamethoxazole,
sulfapyridine, sulfamethoxypyridazine, sulfanilamide and sulfisomidine in water (1)/dioxane (3) mixtures

Solute The Wilson parameters Deviation (%) from experimental data, when the
average values of the Wilson parameters are used

L13 L31

Sulfadiazine 0.11 0.10 19.4
Sulfadimidine 0.27 0.12 35.4
Sulfamethoxazole 0.19 0.12 31.1
Sulfamethoxypyridazine 0.19 0.10 22.0
Sulfamethizole 0.20 0.01 57.3
Sulfapyridine 0.31 0.04 20.7
Sulfanilamide 0.17 0.04 25.4
Sulfisomidine 0.12 0.02 48.6

Average 0.195 0.069 32.4

4. Discussion

One can see from Tables 1 and 2 that our methods
for the correlation of the solubility of drugs in aqueous
mixed solvents provide accurate and reliable results.
A comparison with the models available in the litera-
ture (Table 2) demonstrates that our Eq. (6) provides
slightly better results than the best literature models
with the same number of parameters.

Only one- and two-parameter activity coefficient
expressions were employed in this paper. However,
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expressions for the activity coefficients with any num-
ber of parameters can be used.

It should be emphasized that the parameters in-
volved in the activity coefficients are adjustable pa-
rameters which cannot be obtained easily from the
properties of the mixed solvents, for instance the
vapor–liquid equilibria. However, for the solubili-
ties of structurally related caffeine and theophyllene
in water/N,N-dimethylformamide, the values of the
Wilson parameters are close to each other (1.96
and 0.12 for caffeine and 1.81 and 0.10 for theo-
phyllene). If the Wilson parameters for theophyl-
lene are used to predict the solubility of caffeine in
water/N,N-dimethylformamide, a deviation of 8.8%
from experimental data is obtained. The deviation
was, however, 6.5% when the Wilson parameters
were determined by fitting the experimental solubility
data (Table 1). The values of the Wilson parameters
determined from the solubilities of the structurally
more different sulfonamides (sulfadiazine, sulfadimi-
dine, sulfamethizole, sulfamethoxazole, sulfapyridine,
sulfamethoxypyridazine, sulfanilamide and sulfisomi-
dine) in water/dioxane mixtures are listed in Table 3.
Even for such cases, the average values of the Wilson
parameters can be used for a first estimation of the
solubilities of the above group of drugs (Table 3).

Eq. (6) is a rigorous equation for the solubility of
poorly soluble solids in a mixed solvent. The only ap-
proximation involved is that the solubilities of the solid
in either of the pure solvents and in the mixed solvent
are very small (infinite dilution approximation). It is
not applicable when at least one of these solubilities
has an appreciable value. Indeed (see Table 1), when
the solubility of a solute in a nonaqueous solvent ex-
ceeds about 5 mol%, such as the solubilities of drugs
in propylene glycol (Rubino and Obeng, 1992), the
deviation from the experimental data is about 11.5%
for the Wilson equation, whereas the average devia-
tion for all 32 mixtures of Table 1 is only 7.7%.

5. Conclusion

In this paper, the fluctuation theory of solutions was
applied to the solubility of drugs in aqueous mixed
solvents. A rigorous expression for the activity coef-
ficient of a solute at infinite dilution in a real mixed
solvent was used to derive an equation for the sol-

ubility of poorly soluble solutes, such as drugs, in
mixed solvents. The latter solubility is expressed in
terms of the solubilities in the individual solvents,
their molar volumes, and the activity coefficients of
the constituents of the binary solvent. For illustration
purposes, the one-parameter (Flory–Huggins) and the
two-parameter (Wilson) expressions were employed
for the activity coefficients of the constituents of the
solvent.

Thirty-two experimental data sets were selected and
used to test the equation suggested. The results were
compared with the models available in literature. It
was found that the suggested equation provides an
accurate and reliable correlation of the solubility of
drugs in aqueous mixed solvents with slightly better
results than the best of the literature models.

Appendix A

The aim of this appendix is to evaluate the sensitiv-
ity of the integral in Eq. (12) to the ideality assump-
tion of the molar volume. For this purpose, the com-
position dependence of (ln γ

b,1–3
3 )/(V 2) for the mix-

ture water/1,4-dioxane at 25 ◦C was calculated for two
cases: (1) V E = 0 (VE being the excess molar vol-
ume); and (2) V E 
= 0 (the mixture water/1,4-dioxane
was selected because it is the most frequently used
mixed solvent considered in the present paper). The
activity coefficient of water in water/1,4-dioxane mix-
ture was calculated using the Wilson equation with the
parameters provided by the Gmehling VLE compila-
tion (Gmehling and Onken, 1977). The molar volume
of the mixed solvent was calculated using the expres-
sion:

V = x
b,1–3
1 V 0

1 + x
b,1–3
3 V 0

3 (A.1)

or

V = x
b,1–3
1 V 0

1 + x
b,1–3
3 V 0

3 + V E (A.2)

The composition dependence of the excess molar
volume of the mixture water/1,4-dioxane at 25 ◦C was
found in a paper by Aminabhavi and Gopalakrishna
(1995).

The composition dependence of the integrant
(ln γ

b,1–3
3 )/(V 2) is presented in Fig. 3, which demon-

strates that the numerical values of the integrand are
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Fig. 3. The composition dependence of the integrand (ln γ
b,1–3
3 )/(V 2) of the integral in Eq. (12). (1) The molar volume of the mixed

solvent was calculated using Eq. (A.1), (2) the molar volume of the mixed solvent was calculated using Eq. (A.2).

almost the same for the molar volumes expressed via
both Eq. (A.1) or Eq. (A.2).

Appendix B

The aim of this appendix is to derive an analytical
expression for the integral:

I =
∫

ln γ
b,1–3
3

(x
b,1–3
1 V 0

1 + x
b,1–3
3 V 0

3 )2
dx

b,1–3
3 (B.1)

in Eq. (12), when the activity coefficient is expressed
via the Wilson Eq. (16).

The integration leads to:

(B.2)

where V = x
b,1–3
1 V 0

1 + x
b,1–3
3 V 0

3 .
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Abstract

The results obtained previously by Ruckenstein and Shulgin [Int. J. Pharm. 258 (2003a) 193; Int. J. Pharm. 260 (2003b) 283]
via the fluctuation theory of solutions regarding the solubility of drugs in binary aqueous mixed solvents were extended in the
present paper to multicomponent aqueous solvents. The multicomponent mixed solvent was considered to behave as an ideal
solution and the solubility of the drug was assumed small enough to satisfy the infinite dilution approximation.

An expression derived for the activity coefficient of a solid solute in a multicomponent solvent was used to obtain an equation
for the solubility of a drug in terms of its solubilities in two subsystems of the multicomponent solvent and their molar volumes.
Ultimately the solubility can be expressed in terms of those in binary or even in individual solvents and their molar volumes.

The method was applied to the solubility of tioconazole and 19-Nor-1�,25-dihydrovitamin D2 in several ternary and in a
quaternary aqueous mixed solvents. The predicted solubilities were compared with experimental data and good agreement was
found.
© 2003 Elsevier B.V. All rights reserved.

Keywords: Solubility of drugs; Multicomponent mixed solvent; Fluctuation theory

1. Introduction

The two previous papers (Ruckenstein and Shulgin,
2003a, b) of this series were focused on the solubil-
ity of a solid (particularly a drug) in binary mixed
(mainly aqueous) solvents. The present paper extends
the method suggested in the above publications to
the solubility of drugs in ternary and multicomponent
mixed solvents.

While the binary aqueous mixed solvents usually
increase the solubility of a poorly soluble drug com-

∗ Corresponding author. Tel.: +1-716-645-2911x2214;
fax: +1-716-645-3822.

E-mail addresses: feaeliru@acsu.buffalo.edu (E. Ruckenstein),
ishulgin@eng.buffalo.edu (I. Shulgin).

pared to that in pure water, they could also increase
the risk of toxicity. The right selection of a ternary and
multicomponent aqueous mixed solvent can, however,
improve the solubility of the drug with minimal toxic
effects (Lachman et al., 1976).

The pharmaceutical practice has shown that many
marketed liquid formulations, which utilize cosol-
vents, involve multiple solvents (Yalkowsky and
Roseman, 1981). However, the experimental deter-
minations of the solubilities in multicomponent solu-
tions are time-consuming because of the large number
of compositions needed to cover the concentration
ranges of interest and can be very expensive because
of the high prices of some modern drugs. For this
reason, it is important to provide a reliable method for
predicting the solubility of drugs in multicomponent

0378-5173/$ – see front matter © 2003 Elsevier B.V. All rights reserved.
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mixed solvents from available experimental solubili-
ties in subsystems such as pure solvents, binary mixed
solvents, etc.

For the solubility of a solid (solute, component 2)
in a (n − 1) multicomponent mixed solvent one can
write the following equation (Acree, 1984; Prausnitz
et al., 1986):

ln(xn
2 ) = ln

(
f S

2

f L
2 (T , P )

)
− ln(γ n

2 (T , P, {x})) (1)

where xn
2 is the solubility (mole fraction) of the solid

component 2 in a (n − 1)-component mixed solvent,
γ n

2 is the activity coefficients of the solid in its satu-
rated solutions (n-component mixture composed of so-
lute + (n−1)-component mixed solvent), f L

2 (T , P ) is
the hypothetical fugacity of the solid as a (subcooled)
liquid at a given pressure (P) and temperature (T),
f S

2 is the fugacity of a pure solid component 2, and
{x} indicates that the activity coefficient of the solid
solute depends on composition. If the solubility of a
(n−1)-component mixed solvent in the solid phase is
negligible, then the right hand side of Eq. (1) depends
only on the properties of the solute and its activity co-
efficient in the saturated solution of the n-component
mixture.

The calculation of the activity coefficient of a solid
in a saturated solution of a n-component mixture con-
stitutes the main difficulty in predicting the solid solu-
bility. Generally speaking, the activity coefficient of a
solid in a saturated solution of a n-component mixture
can be predicted using either group-contribution meth-
ods, such as UNIFAC and ASOG, or the experimental
solubilities of the solid in subsystems of the multi-
component mixed solvent combined with the Wilson,
NRTL, etc. equation (Acree, 1984; Prausnitz et al.,
1986).

The application of UNIFAC to the solubility of
naphthalene in nonaqueous mixed solvents provided
satisfactory results when compared to experimental
data (Acree, 1984). However, the UNIFAC was inac-
curate in predicting the solubilities of solids in aque-
ous solutions (Fan and Jafvert, 1997). Furthermore,
the application of the traditional UNIFAC to mixtures
containing a polymer or another large molecule, such
as a drug, and low molecular weight solvents is debat-
able (Fredenslund and Sørensen, 1994). The reason is
that the UNIFAC parameters were determined mostly

from equilibrium properties of mixtures formed of low
molecular weight compounds.

The prediction of the activity coefficient of a solid in
its saturated solution in a n-component mixture from
the experimental solubilities of the solid in subsys-
tems, such as binary mixed solvents or even individ-
ual solvents, is very attractive, because the solubilities
in many of the binary mixed solvents and individual
solvents are known or can be determined rapidly and
their determinations are cheaper than for multicom-
ponent mixed solvents. The method most often used
for the solubility of a solid in ternary and multicom-
ponent mixed solvents is the combined nearly ideal
binary solvent/Redlich–Kister equation (Acree et al.,
1991). This method was applied to the solubility of a
solid in ternary nonaqueous mixed solvents and even
to the solubility of a solid in a 7-component non-
aqueous mixed solvent (Jouyban-Gharamaleki et al.,
2000a; Deng et al., 1999). Jouyban-Gharamaleki et al.
(2000b) suggested to apply this method also to the
solubility of drugs in multicomponent aqueous mixed
solvents.

Recently (Ruckenstein and Shulgin, 2003c), a
method was suggested to calculate the activity coeffi-
cient of a poorly soluble solid in an ideal multicom-
ponent solvent in terms of its activity coefficients at
infinite dilution in some subsystems of the multicom-
ponent solvent. The method, based on the fluctuation
theory of solutions (Kirkwood and Buff, 1951), pro-
vided the following expression for the activity co-
efficient of a poorly soluble solid solute in an ideal
multicomponent solvent:

(ln γ
n,∞
2 )xn

i �=1,3
= −

(
B ln V

(V 0
3 − V 0

1 )

)
xn
i �=1,3

+ A (2)

where γ
n,∞
2 is the activity coefficient of the solid

solute (denoted 2) in a n-component mixture (so-
lute + (n − 1)-component solvent), V is the molar
volume of an ideal (n − 1)-component solvent, V 0

i

is the molar volume of the individual i-solvent, xn
i is

the mole fraction of component i in the n-component
mixture, and A and B are composition independent
constants. The constants A and B can be determined
from the activity coefficients of the solid solute in two
(n− 1)-component mixtures with the mole fraction of
component 1 zero in one of them and the mole frac-
tion of component 3 zero in the other one. Expression
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(2) was used to predict the gas solubilities and the sol-
ubilities of solid nonelectrolytes in multicomponent
mixed solvents (Ruckenstein and Shulgin, 2003c).

Expression (2) implies that V 0
1 �= V 0

3 . When V 0
1 =

V 0
3 , another expression for the activity coefficient of

a poorly soluble solid solute in an ideal multicompo-
nent solvent was obtained (Ruckenstein and Shulgin,
2003a):

(ln γ
n,∞
2 )xn

i �=1,3
= −

(
Bxn

3

V

)
xn
i �=1,3

+ A (2A)

Details regarding such cases are provided in the
above cited paper. In the present paper, only expression
(2) will be employed to predict the solubility of drugs
in ternary and quaternary aqueous mixed solvents. It
should be emphasized that Eq. (2) remains valid even
for small differences between V 0

1 and V 0
3 ; it is not

valid only when V 0
1 is mathematically equal to V 0

3
(very rare case).

2. Solubility of drugs in a multicomponent mixed
solvent

In order to apply Eq. (2) to the solubility of a solid
solute in a (n−1)-component solvent, one must calcu-
late the constants A and B. For this purpose, we con-
sider a (n−1)-component solvent with mole fractions
xn

1 , xn
3 , . . . , xn

n , among which, as required by Eq. (2),
all mole fractions with the exception of xn

1 and xn
3 are

constant. Because xn
1 +∑n

i=3x
n
i = 1, it is clear that

the sum of the mole fractions of components 1 and
3 must be constant. Consequently, the composition of
the (n − 1)-component solvent can be changed along
the line xn

1 + xn
3 = const. To determine the constants

A and B one can use two limiting (n − 2)-component
solvents (along the line xn

1 + xn
3 = const); the mole

fraction of component i in one of them will be denoted
yn−1
i and in the other zn−1

i . In the first, the mole frac-
tion of component 3, yn−1

3 , and in the other one the
mole fraction of component 1, zn−1

1 , is taken zero. Be-
cause yn−1

1 +yn−1
3 = zn−1

1 +zn−1
3 = xn

1 +xn
3 = const,

one obtains that yn−1
1 = xn

1 +xn
3 and zn−1

3 = xn
1 +xn

3 .
Consequently,

• In the first limiting case, denoted I, the mole frac-
tions are yn−1

1 = xn
1 + xn

3 , yn−1
3 = 0, yn−1

4 =

xn
4 , . . . , yn−1

n = xn
n with yn−1

1 + ∑n
i=3y

n−1
i = 1

and the mole fraction of the solute is yn−1
2 .

• In the second limiting case, denoted II, the mole
fractions are zn−1

1 = 0, zn−1
3 = xn

1 + xn
3 , zn−1

4 =
xn

4 , . . . , zn−1
n = xn

n with
∑n

i=3z
n−1
i = 1 and the

mole fraction of the solute is zn−1
2 .

• In the limiting cases I and II, Eq. (2) acquires the
form:

ln(γ
n−1(I),∞
2 ) = − B ln V (I)

(V 0
3 − V 0

1 )
+ A (3)

ln(γ
n−1(II),∞
2 ) = − B ln V (II)

(V 0
3 − V 0

1 )
+ A (4)

where V(I) and V(II) are the molar volumes of the
mixtures composed of (n − 2)-component solvents
I and II and the solid solute, respectively. Further-
more, for a poorly soluble solid, the molar volumes
of the mixtures can be taken equal to the molar vol-
umes of the solvents.

When the solubility of the solute is small (which
is typical for drugs in aqueous mixed solvents), one
can write the following expressions (see Eq. (1)) for
the solubility of a solute in the above multicomponent
mixed solvents:

ln(xn
2 ) = ln

(
f S

2

f L
2 (T , P )

)
− ln(γ

n,∞
2 ) (5)

ln(yn−1
2 ) = ln

(
f S

2

f L
2 (T , P )

)
− ln(γ

n−1(I),∞
2 ) (6)

and

ln(zn−1
2 ) = ln

(
f S

2

f L
2 (T , P )

)
− ln(γ

n−1(II),∞
2 ) (7)

where γ
n−1(I),∞
2 and γ

n−1(II),∞
2 are the activity coef-

ficients of the solid solute at infinite dilution in the
(n − 2)-component solvents I and II, respectively.

Taking into account Eqs. (3) and (4), Eq. (2) can be
recast as:

(ln γ
n,∞
2 )xn

i �=1,3
=

(ln V − ln V (II))ln(γ
n−1(I),∞
2 )

+ (ln V (I) − ln V )ln(γ
n−1(II),∞
2 )

ln V (I) − ln V (II)

(8)

Thermodynamics of Solutions218



124 E. Ruckenstein, I. Shulgin / International Journal of Pharmaceutics 267 (2003) 121–127

Eq. (8) provides an expression for the activity co-
efficient of a poorly soluble solid at infinite dilution
in an ideal (n − 1)-component mixed solvent in terms
of its molar volume and the activity coefficients at in-
finite dilution in the two limiting cases I and II and
their molar volumes.

The combination of Eq. (8) with Eqs. (5)–(7) yields
an expression for the solubility of a poorly soluble
solid in an ideal (n − 1)-component mixed solvent in
terms of its solubilities in the ideal (n−2)-component
mixed solvents I and II and their molar volumes.

ln(xn
2 ) =

(ln V − ln V (II))ln(yn−1
2 )

+ (ln V (I) − ln V )ln(zn−1
2 )

ln V (I) − ln V (II)
(9)

Furthermore, the solubilities of a poorly soluble
solid in ideal (n − 2)-component mixed solvents I
and II can be expressed through those in the ideal
(n − 3)-component mixed solvents and so on. There-
fore, the suggested procedure allows one to predict
the solubility of a poorly soluble solid in an ideal
(n−1)-component mixed solvent from the solubilities
in binary mixed solvents or even from the solubilities
in the individual solvents.

3. Comparison with experiment

3.1. Ternary mixed solvents

The experimental solubility of tioconazole (Gould
et al., 1984) in the following mixed solvents:

(1) ethanol–propylene glycol–water,
(2) ethanol–polyethylene glycol 400 (PEG 400)–water,
(3) propylene glycol–PEG 400–water,

and the solubility of 19-Nor-1�,25-dihydrovita-
min D2 (an analog of vitamin D2) (Stephens et al.,
1999) in

(4) ethanol–propylene glycol–water

were selected for comparison of the developed method
with experiment.

The above systems were selected because the ex-
perimental solubilities of tioconazole in the binary
mixed solvents: ethanol–water, propylene glycol–
water and PEG 400–water, and the solubilities of
19-Nor-1�,25-dihydrovitamin D2 in the binary mixed
solvents: ethanol–water and propylene glycol–water

are available (Gould et al., 1984; Stephens et al.,
1999).

The solubilities of the drugs in ternary aqueous
mixed solvents were calculated from those in binary
aqueous mixed solvents using Eq. (9). The solubilities
in the limiting binary aqueous mixed solvents (y and
z) were evaluated using two different procedures:

(1) The experimental solubility data were correlated
using the following relation (Ruckenstein and
Shulgin, 2003a):

ln(x
(b)
2 ) =

(ln V (b) − ln V (H2O))ln(x
(co)
2 )

+ (ln V (co) − ln V (b))ln(x
(H2O)
2 )

ln V (co) − ln V (H2O)

(10)

where x
(b)
2 is the drug solubility in the binary

solvent: water + cosolvent (co), x
(H2O)
2 and x

(co)
2

are the drug solubilities in water and cosolvent,
respectively, V (H2O) and V (co) are the molar vol-
umes of water and cosolvent at 25 ◦C, respectively,
and V (b) = xb

coV
(co) + xb

H2OV (H2O) + exb
cox

b
H2O,

where xb
co and xb

H2O are the mole fractions of
the cosolvent and water, respectively, in the
mixed solvent: water + cosolvent and e is an ad-
justable parameter introduced in a previous paper
(Ruckenstein and Shulgin, 2003a).

Finally, the solubility of the drug for the com-
positions of the mixed solvents corresponding to
the limiting binary mixtures I and II were calcu-
lated using Eq. (10).

(2) The solubilities in binary aqueous mixed solvents
(y and z) were evaluated graphically from experi-
mental data.

A comparison between predicted and experi-
mental drug solubilities in ternary aqueous mixed
solvents is made in Table 1.

It is worth mentioning that all the predictions
listed in Table 1 were obtained on the basis of
experimental drug solubilities in binary aqueous
mixed solvents, without using any experimental
drug solubilities in ternary aqueous mixed sol-
vents.

One can see from Table 1 that the drug solubil-
ities in ternary aqueous mixed solvents could be
accurately predicted using the experimental drug
solubilities in binary aqueous mixed solvents.
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Table 1
Comparison between predicted and experimental drug solubilities in ternary solvents

Solute Mixed solvent Reference Deviation (%) between experimental
and predicted (Eq. (9)) solubilitiesa

The solubilities in
binary solvents
calculated using
Eq. (10)b

The solubilities in binary
solvents evaluated
graphically from
experimental data

Tioconazole Ethanol–propylene glycol–water Gould et al.
(1984)

10.4 6.8

Ethanol–PEG 400–water 19.6 15.4
Propylene glycol–PEG 400–water 39.1 15.2

19-Nor-1�,25-
dihydrovitamin D2

Ethanol–propylene glycol–water Stephens
et al. (1999)

55.4 15.0

a Deviation from experimental data calculated as MPD (%) (mean percentage deviation) defined as [100
∑N

i=1|(xexp
i − xcalc

i )/x
exp
i |]/N ,

where x
exp
i and xcalc

i are experimental and calculated (using Eq. (9)) solubilities (mole fractions) and N is the number of experimental points.
b Because we could not find in literature the solubilities of 19-Nor-1�,25-dihydrovitamin D2 in ethanol and propylene glycol, they were

taken equal to the solubility of vitamin D2 in ethanol (Penau and Hagemann, 1946).

The difference in predicted solubilities when
the solubilities in binary aqueous mixed solvents
(y and z) were evaluated using Eq. (10) or ob-
tained graphically from experimental data is un-
derstandable. The accuracy of Eq. (10) for predict-
ing the drug solubility in binary aqueous mixed
solvents is about 14% (the mean percentage devi-
ation) (Ruckenstein and Shulgin, 2003a) and this
inaccuracy plays a role in the prediction of the
drug solubilities in ternary aqueous mixed sol-
vents (see Table 2 for details).

3.2. Quaternary mixed solvent

We found in literature only one example regard-
ing the drug solubilities in quaternary aqueous mixed

Table 2
Comparison between calculated (using Eq. (10)) and experimental drug solubilities in aqueous binary solvents

Solute Cosolvent Deviation from experimental dataa Value of e (cm3/mol)b

Tioconazole Ethanol 4.12 40.87
Tioconazole Propylene glycol 7.74 37.75
Tioconazole PEG 400 18.60 507.09
19-Nor-1�,25-dihydrovitamin D2

c Ethanol 27.56 −34.71
19-Nor-1�,25-dihydrovitamin D2

c Propylene glycol 8.72 −78.63

a Deviation from experimental data calculated as MPD (%) (mean percentage deviation) defined as [100
∑N

i=1|(xexp
i − xcalc

i )/x
exp
i |]/N ,

where x
exp
i and xcalc

i are experimental and calculated (using Eq. (10)) solubilities (mole fractions) and N is the number of experimental
points.

b Parameter e was used in the following equation for molar volume of binary mixed solvent (see Ruckenstein and Shulgin, 2003a)
V (b) = xb

coV
(co) + xb

H2OV (H2O) + exb
cox

b
H2O.

c Because we could not find in literature the solubilities of 19-Nor-1�,25-dihydrovitamin D2 in ethanol and propylene glycol, they were
taken equal to the solubility of vitamin D2 in ethanol (Penau and Hagemann, 1946).

solvents: the solubility of tioconazole in ethanol–pro-
pylene glycol–PEG 400–water (Gould et al., 1984).

The prediction of the solubility of tioconazole in
ethanol–propylene glycol–PEG 400–water was carried
out using the following steps:

(1) Two ternary solvents: I (ethanol–propylene
glycol–water) and II (ethanol–PEG 400–water)
were selected,

(2) The solubilities of tioconazole in the above ternary
solvents were calculated as described in the pre-
vious section (Eq. (10) was used to evaluate the
solubility of tioconazole in binary aqueous mixed
solvents, see Table 2 for details),

(3) The solubilities of tioconazole in ethanol–pro-
pylene glycol–PEG 400–water mixed solvent
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Table 3
Comparison between predicted and experimental tioconazole solubilities in quaternary solvent

Solute Mixed solvent Reference Deviation (%) between experimental
and predicted (Eq. (9)) solubilitiesa

Tioconazole Ethanol–propylene glycol–PEG 400–water Gould et al. (1984) 10.6

a Deviation from experimental data calculated as MPD (%) (mean percentage deviation) defined as [100
∑N

i=1|(xexp
i − xcalc

i )/x
exp
i |]/N ,

where x
exp
i and xcalc

i are experimental and calculated (using Eq. (9)) solubilities (mole fractions) and N is the number of experimental points.

were calculated with Eq. (9), using the solubilities
of tioconazole in the ternary solvents obtained in
the previous step.

The results of the predictions are listed in Table 3,
which show that there is an excellent agreement be-
tween the experimental and predicted solubilities.

It is also noteworthy to emphasize that all the pre-
dictions listed in Table 3 were made on the basis of ex-
perimental drug solubilities in binary aqueous mixed
solvents, without using any experimental drug solubil-
ities in ternary and quaternary aqueous mixed solvents.

4. Discussion and conclusion

As in our previous publications regarding the solu-
bility of drugs in aqueous mixed solvents (Ruckenstein
and Shulgin, 2003a, b), the fluctuation theory of solu-
tions was used as a theoretical tool. However, whereas
the above publications were devoted to binary mixed
solvents, the present one provides a predictive method
for the solubility of drugs in multicomponent aqueous
mixed solvents.

First, a rigorous expression for the activity coeffi-
cient of a solid solute at infinite dilution in an ideal
multicomponent solvent was derived using the fluctu-
ation theory of solution. Second, the obtained expres-
sion was used to express the solubility of a poorly sol-
uble solid in an ideal multicomponent solvent in terms
of the solubilities of this solid in two subsystems of
the multicomponent solvent and their molar volumes.
Finally, the developed procedure was used to predict
the drug solubilities in ternary and quaternary aqueous
mixed solvents using the drug solubilities in the con-
stituent binary aqueous mixed solvents. The predicted
solubilities were compared with the experimental ones
and good agreement was found.

It is worth noting that good agreement was found
despite two important limitations imposed on our

method: (a) the multicomponent solvent was con-
sidered ideal, and (b) the drug solubility in a mixed
solvent was supposed to be small enough to satisfy
the infinite dilution approximation.

The developed predictive method can be applied not
only to ternary and quaternary mixed solvents, but also
to any multicomponent solvent.
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Abstract

As in our previous publications in this journal [Int. J. Pharm. 258 (2003a) 193; Int. J. Pharm. 260 (2003b) 283; Int. J. Pharm.
267 (2003c) 121], this paper is concerned with the solubility of poorly soluble drugs in aqueous mixed solvents. In the previous
publications, the solubilities of drugs were assumed to be low enough for the so-called infinite dilution approximation to be
applicable. In contrast, in the present paper, the solubilities are considered to be finite and the dilute solution approximation is
employed. As before, the fluctuation theory of solutions is used to express the derivatives of the activity coefficient of a solute in a
ternary solution (dilute solute concentrations in a binary solvent) with respect to the concentrations of the solvent and cosolvent.
The expressions obtained are combined with a theoretical equation for the activity coefficient of the solute. As a result, the activity
coefficient of the solute was expressed through the activity coefficients of the solute at infinite dilution, solute mole fraction,
some properties of the binary solvent (composition, molar volume and activity coefficients of the components) and parameters
reflecting the nonidealities of binary species. The expression thus obtained was used to derive an equation for the solubility of
poorly soluble drugs in aqueous binary solvents which was applied in two different ways. First, the nonideality parameters were
considered as adjustable parameters, determined from experimental solubility data. Second, the obtained equation was used to
correct the solubilities of drugs calculated via the infinite dilution approximation. It was shown that both procedures provide
accurate correlations for the drug solubility.
© 2004 Elsevier B.V. All rights reserved.

Keywords: Solubility; Drugs; Dilute approximation

1. Introduction

In our previous papers regarding the solubility
of poorly soluble drugs in aqueous mixed solvents
(Ruckenstein and Shulgin, 2003a–c), the fluctuation
theory of solutions (Kirkwood and Buff, 1951) was
used for their correlation and prediction. Such infor-

∗ Corresponding author. Tel.: +1-716-645-2911x2214;
fax: +1-716-645-3822.

E-mail addresses: feaeliru@acsu.buffalo.edu (E. Ruckenstein),
ishulgin@eng.buffalo.edu (I. Shulgin).

mation is useful because poor aqueous solubility can
often affect the drug efficiency.

Whereas the first two publications of this series
(Ruckenstein and Shulgin, 2003a,b) were concerned
with binary mixed solvents, the third one (Ruckenstein
and Shulgin, 2003c) was devoted to the solubility of
drugs in multicomponent solvents.

In the above papers, the solubility of drugs in mixed
solvents was assumed to be low enough for the infi-
nite dilution approximation to be applicable. Let us
examine this approximation in more detail. The solu-
bility of solid substances in pure and mixed solvents

0378-5173/$ – see front matter © 2004 Elsevier B.V. All rights reserved.

4   Solubility of pharmaceuticals and environmentally important  compounds 223



222 E. Ruckenstein, I. Shulgin / International Journal of Pharmaceutics 278 (2004) 221–229

can be described by the classical solid–liquid equilib-
rium equations (Acree, 1984; Prausnitz et al., 1986).
For the solubilities of a solid solute (component 2) in
water (component 3), cosolvent (component 1), and
their mixture (mixed solvents 1–3), one can write the
following equations

f S
2

fL
2 (T, P)

= y
b1
2 γ

b1
2 (T, P, {y}) (1)

f S
2

fL
2 (T, P)

= y
b3
2 γ

b3
2 (T, P, {y}) (2)

f S
2

fL
2 (T, P)

= yt
2γ

t
2(T, P, {y}) (3)

where y
b1
2 , y

b3
2 , and yt

2 are the solubilities (mole
fractions) of the solid component 2 in the cosolvent,
water, and their mixture, respectively; γ

b1
2 , γ

b3
2 , and

γt
2 are the activity coefficients of the solid solute in its

saturated solutions in the cosolvent, water, and mixed
solvent, respectively; fL

2 (T, P) is the hypothetical fu-
gacity of a solid as a (subcooled) liquid at a given
pressure (P) and temperature (T); f S

2 is the fugac-
ity of the pure solid component 2; and {y} indicates
that the activity coefficients of the solute depend on
composition. If the solubilities of the pure and mixed
solvents in the solid phase are negligible, then the
left hand sides of Eqs. (1)–(3) depend only on the
properties of the solute.

The infinite dilution approximation implies that the
activity coefficients in Eqs. (1)–(3) can be replaced by
their values at infinite dilution of the solute (γb1,∞

2 ,

γ
b3,∞
2 , and γ

t,∞
2 ). However, the solubilities of drugs

in aqueous mixed solvents are not always very low.
While the solubilities of various drugs in water (only
poorly soluble drugs are considered in the present
paper) do not exceed 1–2 mol%, the solubilities of
the same drugs in the popular cosolvents ethanol and
1,4-dioxane can reach 5–20 mol%, and the solubili-
ties in the water/1,4-dioxane and water/ethanol mix-
tures are often appreciable and can reach 8–30 mol%.
Therefore, the effect of the infinite dilution approxima-
tion on the accuracy of the predictions of the solubili-
ties of poorly soluble drugs deserves to be examined.

In the present paper, dilute binary and ternary so-
lutions (drug + water, drug + cosolvent, and drug +
water + cosolvent) will be considered, hence the in-

finite dilution approximation will be replaced by the
dilute solution approximation. The range in which the
infinite dilution approximation is valid and the range
in which the dilute approximation can be used were
discussed by Kojima et al. (1997). They pointed out
that the above composition ranges depend on the na-
ture of the solute and solvent and on the types of in-
termolecular interactions in the mixtures involved. For
example, mixtures with self-association of one of the
components have a narrower range in which the dilute
approximation is valid.

As for infinite dilution, the main difficulty in pre-
dicting the solid solute solubility in a mixed solvent for
a dilute solution is provided by the calculation of the
activity coefficient of the solute in a ternary mixture.
To obtain an expression for the activity coefficient of
a low concentration solute in a ternary mixture, the
fluctuation theory of solution will be combined with
the assumption that the system is dilute with respect
to the solute.

The paper is organized as follows: first, an equation
for the activity coefficient of a low concentration so-
lute in individual and binary solvents will be written.
This equation will be combined with the fluctuation
theory of solutions and with Eqs. (1)–(3) to derive
an expression for the drug solubility. Further, the ex-
pression obtained will be compared with experimen-
tal data and with the infinite dilution approximation
(Ruckenstein and Shulgin, 2003a,b).

2. Theory

2.1. The activity coefficient of a solute in its dilute
range in binary solvents

For a binary dilute mixture, Debenedetti and Kumar
(1986) suggested the following series expansion for
the fugacity coefficient of a solute (φb

2)

ln φb
2 = ln φ

b,∞
2 − k22x

b
2 (4)

where φ
b,∞
2 is the fugacity coefficient at infinite dilu-

tion, xb2 is the mole fraction of the solute, and

k22 = −
(
∂ln γb

2

∂xb2

)
P,T,xb2→0

= −
(
∂ln φb

2

∂xb2

)
P,T,xb2→0

(5)
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γb
2 being the activity coefficient of the solute in the

binary mixture.
The above expression was extended to ternary mix-

tures, containing a solute and a cosolvent in low con-
centrations by Chialvo (1993), Jonah and Cochran
(1994), and Munoz et al. (1995).

In this paper we consider the case in which only
the solute concentration is small (Ruckenstein and
Shulgin, 2002). Let us consider those compositions
(mole fraction) of the ternary mixture (xt1, xt2, xt3)
which are located on the line connecting the points
(xt1 = 0, xt2 = 1, xt3 = 0) and (xt1 = x0

1, xt2 = 0,
xt3 = x0

3) in the Gibbs triangle (Fig. 1). This line con-
nects the pure component 2 (a solute) and the binary
mixtures 1–3 (cosolvent + solvent) with a mole frac-
tion of component 1 equal to x0

1. Physically speaking,
this line represents the locus of the compositions of
ternary mixtures formed by adding a solute (2) to a
binary mixture of a solvent (3) and a cosolvent (1).

On the above line, the following relation holds(
xt1

xt3

)
=
(
x0

1

x0
3

)
= α (6)

Because xt1 + xt2 + xt3 = 1, one can write that

xt1 = α
1 − xt2

1 + α
(7)

and

xt3 = 1 − xt2

1 + α
(8)

Fig. 1. The change of composition in a ternary mixture
solute + binary solvent, when a solute (2) is added to a binary
solvents (1–3) of composition (mole fractions) (x0

1, x0
3).

For the fugacity coefficient of a solute in a ternary
dilute solution, one can write, at constant temperature
and pressure, near the composition xt1 = x0

1, xt2 = 0,
xt3 = x0

3, the following expression

ln φt
2 = ln φt

2(x
0
1, 0, x0

3) + xt2

(
∂ln φt

2

∂xt2

)
P,T,α,(x0

1,0,x
0
3)

(9)

where φt
2 is the fugacity coefficient of the solute in a

ternary mixture and φt
2(x

0
1, 0, x0

3) = φ
t,∞
2 is its value

at infinite dilution of the solute.
If, at a given pressure and temperature, the mole

fractions of components 1 and 3 are taken as inde-
pendent variables, one can rewrite Eq. (9) under the
form

ln φt
2 = ln φt

2(x
0
1, 0, x0

3)

+ xt2

[(
∂ln φt

2

∂xt1

)
P,T,xt3,(x

0
1,0,x

0
3)

(
∂xt1

∂xt2

)
α

+
(
∂ln φt

2

∂xt3

)
P,T,xt1,(x

0
1,0,x

0
3)

(
∂xt3

∂xt2

)
α

]
(10)

which, taking into account Eqs. (7) and (8), becomes

ln φt
2 = ln φt

2(x
0
1, 0, x0

3)

− xt2

1 + α

[
α

(
∂ln φt

2

∂xt1

)
P,T,xt3,(x

0
1,0,x

0
3)

+
(
∂ln φt

2

∂xt3

)
P,T,xt1,(x

0
1,0,x

0
3)

]
(11)

or equivalently,

ln φt
2 = ln φt

2(x
0
1, 0, x0

3)

− xt2

[
x0

1

(
∂ln φt

2

∂xt1

)
P,T,xt3,(x

0
1,0,x

0
3)

+ x0
3

(
∂ln φt

2

∂xt3

)
P,T,xt1,(x

0
1,0,x

0
3)

]
(12)

A similar equation can be written for the activity
coefficient of a low concentration solute in a ternary
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mixture

ln γt
2 = ln γt

2(x
0
1, 0, x0

3)

− xt2

[
x0

1

(
∂ln γt

2

∂xt1

)
P,T,xt3,(x

0
1,0,x

0
3)

+ x0
3

(
∂ln γt

2

∂xt3

)
P,T,xt1,(x

0
1,0,x

0
3)

]
(13)

Eq. (13) will be used for the drug solubility when
its saturated solution in a binary solvent can be con-
sidered dilute. First, expressions for the two partial
derivatives in Eq. (13) will be derived on the basis
of the fluctuation theory of solutions (Kirkwood and
Buff, 1951).

2.2. Expressions for the derivatives (∂ln γt
2/∂x

t
1)P,T,xt3

and (∂ln γt
2/∂x

t
3)P,T,xt1

It was shown previously, that, for the derivatives of
the activity coefficient (γt

2) one can write the following
relations (Ruckenstein and Shulgin, 2001)(
∂ln γt

2

∂xt1

)
T,P,xt3

=

−c2c3(G12 + G33 − G13 − G23)

+ c1c2∆12 + c2c3∆23 + c1c2c3∆123

xt2(c1 + c2 + c3 + c1c2∆12 + c1c3∆13

+ c2c3∆23 + c1c2c3∆123)

(14)

and(
∂ln γt

2

∂xt3

)
T,P,xt1

=

−c1c2(G11 + G23 − G12 − G13)

+ c1c2∆12 + c2c3∆23 + c1c2c3∆123

xt2(c1 + c2 + c3 + c1c2∆12 + c1c3∆13

+ c2c3∆23 + c1c2c3∆123)

(15)

where ck is the bulk molecular concentration of com-
ponent k and Gαβ is the Kirkwood–Buff integral given
by

Gαβ =
∫ ∞

0
(gαβ − 1)4πr2 dr (16)

In the above expressions, gαβ is the radial distribution
function between species α and β, r is the distance
between the centers of molecules α and β, and ∆αβ

and ∆123 are defined as follows

∆αβ = Gαα + Gββ − 2Gαβ, α 	= β (17)

and

∆123 = G11G22 + G11G33 + G22G33 + 2G12G13

+ 2G12G23 + 2G13G23 − G2
12 − G2

13 − G2
23

− 2G11G23 − 2G22G13 − 2G33G12 (18)

It was shown that the expressions in the brackets
in the numerators of Eqs. (14) and (15) and ∆123 can
be expressed in terms of ∆αβ as follows (Ruckenstein
and Shulgin, 2001)

G12 + G33−G13 − G23 = ∆13 + ∆23 − ∆12

2
(19)

G11 + G23−G12 − G13 = ∆12 + ∆13 − ∆23

2
(20)

and

∆123 = −

(∆12)
2 + (∆13)

2 + (∆23)
2 − 2∆12∆13

− 2∆12∆23 − 2∆13∆23

4
(21)

The insertion of Eqs. (19)–(21) into Eqs. (14) and
(15) provides the following expressions for the deriva-
tives (∂ln γt

2/∂x
t
1)P,T,xt3

and (∂ln γt
2/∂x

t
3)P,T,xt1

in terms
of ∆αβ and the concentrations of the solute-free mixed
solvent

lim
x2→0

(
∂ln γt

2

∂xt1

)
T,P,xt3

=

(c0
1 + c0

3){(c0
1 + 0.5c0

3)∆12 + 0.5c0
3∆23

− 0.5c0
3∆13}xt2=0

c0
1 + c0

3 + c0
1c

0
3∆13

−

c0
1c

0
3(c

0
1 + c0

3)((∆12)
2 + (∆13)

2 + (∆23)
2

− 2∆12∆13 − 2∆12∆23 − 2∆13∆23)xt2=0

4(c0
1 + c0

3 + c0
1c

0
3∆13)

(22)
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and

lim
x2→0

(
∂ln γt

2

∂xt3

)
T,P,xt1

=

(c0
1 + c0

3){0.5c0
1∆12 + (0.5c0

1 + c0
3)∆23

− 0.5c0
1∆13}xt2=0

c0
1 + c0

3 + c0
1c

0
3∆13

−

c0
1c

0
3(c

0
1 + c0

3)((∆12)
2 + (∆13)

2 + (∆23)
2

− 2∆12∆13 − 2∆12∆23 − 2∆13∆23)xt2=0

4(c0
1 + c0

3 + c0
1c

0
3∆13)

(23)

where c0
1 and c0

3 are the bulk molecular concentrations
of components 1 and 3 in the solute-free binary 1–3
solvent.

The derivatives (∂ln γt
2/∂x

t
1)P,T,xt3

and (∂ln γt
2/

∂xt3)P,T,xt1
are expressed in Eqs. (22) and (23) in

terms of ∆αβ and the concentrations of the solute-free
mixed solvent. It is worth noting that ∆αβ is a mea-
sure of nonideality (Ben-Naim, 1977) of the binary
mixture α−β, because for an ideal mixture ∆αβ = 0.
Furthermore, being measures of nonideality, the pa-
rameters ∆αβ have a clear physical meaning and
this fact is useful in the thermodynamic analysis of
multicomponent mixtures.

2.3. Equations for the solubility of a solid in a
binary solvent

Insertion of Eqs. (22)–(23) into Eq. (12) leads to

ln γt
2 = ln γt

2(x
0
1, 0, x0

3)

− xt2

(x0
1∆12 + x0

3∆23 − x0
1x

0
3∆13)xt2=0

V + x0
1x

0
3∆13

+

x0
1x

0
3x

t
2((∆12)

2 + (∆13)
2 + (∆23)

2

− 2∆12∆13−2∆12∆23−2∆13∆23)xt2=0

4V(V+x0
1x

0
3∆13)

(24)

where V is the molar volume of the solute-free binary
solvent.

An expression for the activity coefficient of a solute
at infinite dilution in a ternary mixture γt

2(x
0
1, 0, x0

3)

was obtained elsewhere (Ruckenstein and Shulgin,
2003b) and has the form

ln γ
t,∞
2 = ln γt

2(x
0
1, 0, x0

3)

= −(∆12 − ∆23)xt2=0

(
I1

2

)
+
(
I2

2

)
+ A

(25)

where A is a composition independent constant

I1 =
∫

1 + x0
3(∂ ln γb

3/∂x
0
3)P,T

V
dx0

3 (26)

and

I2 = ln γb
1 + ln γb

3 (27)

In Eqs. (26) and (27), γb
1 and γb

3 are the activity co-
efficients of the cosolvent and solvent in a solute-free
binary solvent.

The combination of Eqs. (24)–(27) with the equa-
tion for the solid–liquid equilibrium provides a rela-
tion for the solubility of a solute forming a dilute so-
lution in a ternary mixture.

ln yt
2 = (∆12 − ∆23)xt2=0

(
I1

2

)
−
(
I2

2

)

+ yt
2

(x0
1∆12 + x0

3∆23 − x0
1x

0
3∆13)xt2=0

V + x0
1x

0
3∆13

+ Ā

− yt
2

x0
1x

0
3((∆12)

2 + (∆13)
2 + (∆23)

2

− 2∆12∆13 − 2∆12∆23

− 2∆13∆23)xt2=0

4V(V + x0
1x

0
3∆13)

(28)

where Ā(P, T) = −A(P, T) + ln[f S
2 /fL

2 (T, P)] is a
composition-independent constant.

Eq. (28) allows one to calculate the solubility of a
solute in a binary mixed solvent if the composition de-
pendence of the activity coefficients, the molar volume
V, the nonideality parameters ∆12, ∆23 and the con-
stant Ā are known. The nonideality parameters ∆αβ

for a binary mixture α − β can be obtained from the
composition dependence of the activity coefficients in
the above mixture using the expression (Kirkwood and
Buff, 1951)

∆αβ = −
V(∂ln γb

β/∂x
0
β)P,T

x0
α − x0

αx
0
β(∂ln γb

β/∂x
0
β)P,T

(29)
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Table 1
The solubility of drugs in binary solvents calculated with Eq. (28)

Drug Mixed solvent Deviation from experimental dataa

Eq. (28) combined with
Wilson’s equation

Infinite dilution approximation
combined with Wilson’s equationb

Caffeine Water/N,N-dimethylformamide 2.8 6.5
Caffeine Water/1,4-dioxane 5.3 9.6
Sulfamethizole Water/1,4-dioxane 16.8 18.9
Methyl p-hydroxybenzoate Water/propylene glycol 12.8 12.4
Methyl p-aminobenzoate Water/propylene glycol 6.5 6.6
Ethyl p-aminobenzoate Water/propylene glycol 8.1 8.5
Propyl p-hydroxybenzoate Water/propylene glycol 13.5 16.1
Butyl p-hydroxybenzoate Water/propylene glycol 22.4 24.0

a Deviation from experimental data calculated as MPD (%) (the mean percentage deviation) defined as 100×∑N
i=1|(xexp

i −xcalc
i )/x

exp
i |/N,

where x
exp
i and xcalc

i are the experimental and calculated solubilities, and N is the number of experimental points.
b These results were taken from our previous publication (Ruckenstein and Shulgin, 2003b).

Eq. (29) can be used to calculate the parameter ∆αβ

from vapor–liquid equilibrium data for mixed binary
solvents. Unfortunately, for most solute + individual
solvent pairs such data are not available.

3. Application of Eq. (28) to the solubility of
drugs in a binary solvent

Being a transcendent equation, Eq. (28) cannot pro-
vide an explicit expression for the solubility of a drug
(yt

2), but has to be solved numerically for every set of
parameters.

In order to check Eq. (28), the solubilities of caf-
feine in the water/N,N-dimethylformamide (Herrador
and Gonzalez, 1997) and water/1,4-dioxane mixtures
(Adjei et al., 1980), as well as the solubilities of sul-
famethizole in the mixture water/1,4-dioxane (Reillo
et al., 1995) and of five solutes in water/propylene
glycol (Rubino and Obeng, 1991) were employed.

First, ∆12, ∆23, and Ā were considered adjustable
parameters which were determined by fitting Eq. (28)
to the experimental solubility data. The activity co-
efficients of the components in binary solvents were
expressed via the Wilson equation (Wilson, 1964) (of
course, any other expressions for the activity coeffi-
cients can be used)

ln γb
1 = −ln(x0

1 + x0
3L13)

+ x0
3

(
L13

x0
1 + x0

3L13
− L31

x0
3 + x0

1L31

)
(30)

and

ln γb
3 = −ln(x0

3 + x0
1L31)

− x0
1

(
L13

x0
1 + x0

3L13
− L31

x0
3 + x0

1L31

)
(31)

where L13 and L31 are the Wilson parameters.
The parameters L13 and L31 were also de-

termined from the experimental solubility data.
Therefore, Eq. (28) can be considered as a five pa-
rameters equation. The results of the calculations
as well as a comparison with those obtained un-
der the infinite dilution approximation are listed in
Table 1.

Table 1 shows that Eq. (28) provides slightly better
results that the correlation based on the infinite dilu-
tion approximation. However, it is not clear whether
this improvement was caused by the use of the more
realistic dilute approximation, or of a larger number of
adjustable parameters (five in the present case instead
of four in the equation based on the infinite dilution
approximation).

The new equation can be consider as a correction to
the infinite dilution approximation. Indeed, combining
Eq. (24) with Eq. (3) and with the following equation
involving the infinite dilution approximation

f S
2

fL
2 (T, P)

= zt2γ
t
2(x

0
1, 0, x0

3) (32)
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Table 2
Comparison between the drug solubilities in aqueous binary solvents calculated using Eq. (34) and the infinite dilution approximation
(Ruckenstein and Shulgin, 2003a)

System number Cosolvent Solute MPD (%)a

Eq. (34)b The infinite dilution
approximation (Ruckenstein
and Shulgin, 2003a)c

1 N,N-dimethylformamide Sulfadiazine 11.8 11.4
2 N,N-dimethylformamide Theophyllene 14.1 14.1
3 N,N-dimethylformamide Caffeine 11.9 11.9
4 Dioxane Caffeine 10.2 12.8
5 Dioxane p-Hydroxybenzoic acid 21.7 28.1
6 Dioxane Paracetamol 7.3 15.4
7 Dioxane Phenacetin 6.2 6.9
8 Dioxane Sulfadiazine 5.0 7.6
9 Dioxane Sulfadimidine 7.4 5.4
10 Dioxane Sulfamethizole 12.0 12.7
11 Dioxane Sulfamethoxazole 9.1 10.3
12 Dioxane Sulfapyridine 7.6 9.0
13 Dioxane Sulfamethoxypyridazine 6.6 7.8
14 Dioxane Sulfanilamide 9.1 14.6
15 Dioxane Sulfisomidine 12.0 13.0
16 Dioxane Theobromine 23.6 23.7
17 Dioxane Theophyllene 13.7 16.6
18 Ethanol Paracetamol 7.3 15.4
19 Ethanol Sulfamethazine 7.5 7.6
20 Ethanol Sulfanilamide 22.2 22.5
21 Ethanol Oxolinic acid 9.5 9.5
22 Ethylene glycol Naphthalene 9.1 9.3
23 Ethylene glycol Theophyllene 4.6 4.6
24 Methanol Theophyllene 11.1 11.1
25 Propylene glycol Butyl p-aminobenzoate 19.6 19.7
26 Propylene glycol Butyl p-hydroxybenzoate 36.3 36.4
27 Propylene glycol Ethyl p-aminobenzoate 10.7 10.7
28 Propylene glycol Ethyl p-hydroxybenzoate 4.0 4.6
29 Propylene glycol Methyl p-aminobenzoate 9.3 9.3
30 Propylene glycol Methyl p-hydroxybenzoate 17.8 18.4
31 Propylene glycol Propyl p-aminobenzoate 13.9 14.2
32 Propylene glycol Propyl p-hydroxybenzoate 26.8 27.1

Averaged 11.8 13.3

a Deviation from experimental data calculated as MPD (%) (the mean percentage deviation) defined as 100×∑Nj

i=1|(xexp
i −xcalc

i )/x
exp
i |/Nj ,

where x
exp
i and xcalc

i are experimental and calculated solubilities (mole fractions), and Nj is the number of experimental points in the data
set j.

b The parameter ∆13 was calculated from vapor–liquid equilibrium data for binary solvents using Eq. (29). The activity coefficients of
the components in the binary solvents were expressed via the Wilson equation (Wilson, 1964) and the Wilson parameters L13 and L31

were taken from Gmehling’s vapor–liquid equilibrium data compilation (Gmehling et al., 1977–2003).
c The values of MPD were calculated in a previous paper (Ruckenstein and Shulgin, 2003a).
d The average was calculated as 100 ×∑M

j=1
∑Nj

i=1|(xexp
i − xcalc

i )/x
exp
i |/∑M

j=1Nj where x
exp
i and xcalc

i are the experimental and calculated
solubilities (mole fractions), Nj is the number of experimental points in the data set j, and M is the number of experimental data sets
(here 32).
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one obtains

ln yt
2 = ln zt2 + yt

2

{x0
1∆12 + x0

3∆23 − x0
1x

0
3∆13}xt2=0

V + x0
1x

0
3∆13

− yt
2

x0
1x

0
3((∆12)

2 + (∆13)
2 + (∆23)

2

− 2∆12∆13 − 2∆12∆23

− 2∆13∆23)xt2=0

4V(V + x0
1x

0
3∆13)

(33)

where zt2 is the solubility of the solute under the infinite
dilution approximation.

Because the infinite dilution approximation pro-
vides in many cases accurate results (Ruckenstein
and Shulgin, 2003a), the difference between yt

2 and
zt2 is expected to be small. Consequently, one can
expand ln(yt

2/z
t
2) in a Taylor series to obtain for

the solute solubility in the dilute approximation, the
expression

yt
2 = zt2

1 − zt2Φ
(34)

where

Φ =
(x0

1∆12 + x0
3∆23 − x0

1x
0
3∆13)xt2=0

V + x0
1x

0
3∆13

−

x0
1x

0
3((∆12)

2 + (∆13)
2 + (∆23)

2 − 2∆12∆13

− 2∆12∆23 − 2∆13∆23)xt2=0

4V(V + x0
1x

0
3∆13)
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Fig. 2. Comparison between experimental (�) (Romero et al.,
1996) and predicted (the solid line is based on Eq. (34), while
the dashed line is based on the infinite dilution approximation
(Ruckenstein and Shulgin, 2003a)) solubilities of the paracetomol
(S is the mole fraction of paracetomol) in the binary solvent
water/1,4-dioxane (xDIOX is the mole fraction of dioxane) at room
temperature.

Eq. (34) allows one to correct the solubility of a
solute under the infinite dilution approximation if the
properties of the binary solvent and the nonideality pa-
rameters ∆12 and ∆23 are known. Any of the methods
available can be used to calculate the solubility of a
solute under the infinite dilution approximation. For il-
lustration purposes we selected a method suggested by
us previously, and use Eq. (34) for the same 32 exper-
imental sets, which were utilized there (Ruckenstein
and Shulgin, 2003a). The results of the calculations
are given in Table 2. Fig. 2 provides details for a par-
ticular case.

4. Discussion and conclusion

In contrast to previous papers (Ruckenstein and
Shulgin, 2003a–d), the solubility of the drug in a bi-
nary solvent is considered to be finite, and the infinite
dilution approximation is replaced by a more realistic
one, the dilute solution approximation. An expression
for the activity coefficient of a solute at low concen-
trations in a binary solvent was derived by combin-
ing the fluctuation theory of solutions (Kirkwood and
Buff, 1951) with the dilute approximation. This pro-
cedure allowed one to relate the activity coefficient of
a solute forming a dilute solution in a binary solvent
to the solvent properties and some parameters char-
acterizing the nonidealities of the various pairs of the
ternary mixture.

Eq. (28) thus obtained can be used to represent
the solubility of poorly soluble drugs in aqueous
mixed solvents if information about the properties
of the binary solvent (composition, phase equilibria
and molar volume), the nonideality parameters and
the constant Ā is available. These parameters can be
considered as adjustable, and determined by fitting
the experimental solubilities in the binary solvent. We
applied such a procedure to the solubilities of caf-
feine in water/N,N-dimethylformamide (Herrador and
Gonzalez, 1997) and water/1,4-dioxane (Adjei et al.,
1980), of sulfamethizole in water/1,4-dioxane (Reillo
et al., 1995) as well as of five solutes in water/
propylene glycol (Rubino and Obeng, 1991). It was
shown that Eq. (28) provides accurate correlations of
the experimental data.

In essence, the developed computational scheme
is a first order perturbation to the infinite dilution
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approximation. Therefore, the results regarding the
solubility of poorly soluble drugs in aqueous mixed
solvents obtained from the equations based on the infi-
nite dilution approximation, can be slightly improved
by the suggested method. The procedure was applied
to 32 experimental data sets to show that the infinite
dilution approximation is improved by the dilute so-
lution approximation.
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Abstract

This paper is devoted to the verification of the quality of experimental data regarding the solubility of sparingly soluble solids,
such as drugs, environmentally important substances, etc. in mixed solvents. A thermodynamic consistency test based on the
Gibbs–Duhem equation for ternary mixtures is suggested. This test has the form of an equation, which connects the solubilities
of the solid, and the activity coefficients of the constituents of the solute-free mixed solvent in two mixed solvents of close
compositions.

The experimental data regarding the solubility of sparingly soluble substances can be verified with the suggested test if accurate
data for the activity coefficients of the constituents of the solute-free mixed solvent are available.

The test was applied to a number of systems representing the solubilities of sparingly soluble substances in mixed solvents.
First, the test was scrutinized for four nonaqueous systems for which accurate solubility data were available. Second, the suggested
test was applied to a number of systems representing experimental data regarding the solubility of sparingly soluble substances
in aqueous mixed solvents.
© 2005 Published by Elsevier B.V.

Keywords: Drug solubility; Mixed solvent; Thermodynamic consistency test

1. Introduction

The solubility of drugs in water and aqueous mixed
solvents is one of the important topics in pharmaceu-
tical science and industry. However, the literature data

∗ Corresponding author. Tel.: +1 716 645 2911x2214;
fax: +1 716 645 3822.

E-mail addresses: feaeliru@acsu.buffalo.edu (E. Ruckenstein),
ishulgin@eng.buffalo.edu (I. Shulgin).

regarding the aqueous solubility are not always reliable
and large discrepancies between the data from different
authors are typical. Indeed, according to a recently pub-
lished compilation of aqueous solubilities (Yalkowsky
and He, 2003), the aqueous solubility of naphthalene at
room temperature measured by different authors varies
from 0.0125 to 0.04 g/L, for anthracene from 3 × 10−4

to 7.3 × 10−4 g/L, and so on. The same or even worse
situation could be observed for the solubilities of drugs
in aqueous mixed solvents. Consequently, it is difficult

0378-5173/$ – see front matter © 2005 Published by Elsevier B.V.
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to judge whether the solubility data are accurate or not,
and it is important to have a rigorous test for checking
the experimental solubility data and selecting the
correct ones. Because we could not find such a method
in the literature, the purpose of the present paper
is to suggest a thermodynamic method for testing
the accuracy of the experimental data regarding the
solubility of drugs in aqueous mixed solvents.

Thermodynamic consistency tests are well known,
and have been frequently used for vapour–liquid equi-
librium data in binary mixtures (for reviews one can see
Gmehling and Onken, 1977; Acree, 1984; Prausnitz
et al., 1986). These tests are based on the Gibbs–Duhem
equation and allow one to grade the experimental data
for vapor–liquid equilibrium in binary mixtures. A
more difficult problem is the consistency of data regard-
ing vapor–liquid equilibrium in ternary or multicom-
ponent mixtures. However, several thermodynamic
consistency tests, also based on the Gibbs–Duhem
equation, were suggested for vapor–liquid equilibrium
in ternary or multicomponent mixtures (Li and Lu,
1959; McDermott and Ellis, 1965).

2. General relations for multicomponent
mixtures

The isothermal–isobaric Gibbs–Duhem equation
for an N-component mixture (N≥ 2) can be written as
follows

N∑
i=1

xid(ln γi) = 0 (1)

where xi and γ i are the mole fraction and the activity
coefficient of component i in theN-component mixture.
Integrating Eq. (1) directly along a loop of points a, b,
c, . . ., y, z, . . . by using the trapezoidal rule, one can
obtain the following equation (Li and Lu, 1959)
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+ · · · + x
(y)
i + x
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}
= 0 (2)

McDermott and Ellis (1965) applied Eq. (2) to a pair
of points c and d. In this case, Eq. (2) reduces to

N∑
i=1

(x(c)
i + x

(d)
i )[ln γ

(d)
i − ln γ

(c)
i ] = 0 (3)

The McDermott and Ellis consistency test means that
if the vapor–liquid equilibrium data for points c and d
are correct, then Eq. (3) should be satisfied. Eq. (3) will
be used to derive a thermodynamic consistency test for
verifying the experimental data regarding the solubility
of drugs in aqueous mixed solvents.

3. Thermodynamic consistency test regarding
the solubility of drugs in binary aqueous mixed
solvents

For the solubility of a solid substance (solute,
component 2) in a mixed solvent 1–3, one can write
the following equation (Prausnitz et al., 1986):

f S
2

f L
2 (T, P)

= x2,tγ2,t(T, P, {x}) (4)

where x2,t and γ2,t are the solubility (mole fraction)
and the activity coefficient of the solid in its saturated
solution in a mixed solvent, f L

2 (T, P) is the hypo-
thetical fugacity of a solid as a (sub-cooled) liquid at
a given pressure (P) and temperature (T), f S

2 is the
fugacity of a pure solid component 2, and {x} indicates
that the activity coefficient of the solid depends on
composition. If the solubility of the mixed solvent
in the solid phase is negligible, then the left hand
side of Eq. (4) depends only on the properties of the
solute.

Rewriting of Eq. (3) for a ternary mixture yields the
expression

(x(c)
1 + x

(d)
1 )[ln γ

(d)
1 − ln γ

(c)
1 ] + (x(c)

2 + x
(d)
2 )

× [ln γ
(d)
2 − ln γ

(c)
2 ] + (x(c)

3 + x
(d)
3 )

× [ln γ
(d)
3 − ln γ

(c)
3 ] = 0 (5)

Let us consider the solubilities of a poorly solu-
ble solid in two mixed solvents of close compositions
(points c and d). Because these solubilities satisfy Eq.
(4), one can express the activity coefficients of the solid
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via Eq. (4), and Eq. (5) acquires the form
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1 )[ln γ

(d)
1 − ln γ

(c)
1 ] + (x(c)
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2 − ln x
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2 ] + (x(c)

3 + x
(d)
3 )

× [ln γ
(d)
3 − ln γ

(c)
3 ] = 0 (6)

Let us suppose that the solubility of the solid in
the mixed solvent is so low, that one can consider the
activity coefficients of the solvent and cosolvent equal
to those in the solute-free binary solvent mixture (γ1,0
and γ3,0). In addition, the following relations for the
mole fractions of the constituents of the solvent can be
used

x1,t = x1,0 − x1,0x2,t (7)

and

x3,t = x3,0 − x3,0x2,t (8)

where x1,0 and x3,0 are the mole fractions of constituents
1 and 3 in a solute-free mixed solvent.

Consequently, Eq. (6) becomes
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The last equation can be simplified by applying
Eq. (5) to the pair of binary mixed solvent mixtures of
compositions (x(c)

1,0, x
(c)
3,0) and (x(d)

1,0, x
(d)
3,0). For this pair,

Eq. (5) becomes
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Subtracting Eq. (10) from Eq. (9) yields
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Eq. (11) provides a thermodynamic consistency
test for the solubility of poorly soluble substances,
such as drugs, environmentally important sub-
stances, etc. in mixed solvents in terms of the

activity coefficients of the constituents of the bi-
nary solute-free mixed solvent and mixed solvent
composition.

Two limitations are involved in the derivation of
the above equation: (1) the compositions of mixed
solvents (points c and d) should be close enough to
each other for the trapezoidal rule used to integrate the
Gibbs–Duhem equation to be valid, (2) the solubility
of the solid should be low enough for the activity coef-
ficients of the solvent and cosolvent to be taken equal
to those in a solute-free binary solvent mixture. In ad-
dition, the fugacity of the solid phase in Eq. (4) should
remain the same for all mixed solvent compositions
considered.

4. Numerical estimations

Of course, for real mixtures the left hand side of
Eq. (11) is not exactly equal to zero; it has certain
finite values even for very accurate data. Let us
denote that value with D. McDermott and Ellis
(McDermott and Ellis, 1965) suggested that the
vapor–liquid equilibrium data in a ternary mixture
are thermodynamically consistent if |D| for Eq. (6)
is smaller than Dmax = 0.01. Now we should find the
value of Dmax for the solubility of poorly soluble
substances in mixed solvents for Eq. (11). Of course,
this value should differ from that for the vapor–liquid
equilibrium.

In order to find Dmax the following procedure was
employed:

(1) Several data sets for the solubilities of poorly
soluble substances in mixed solvents were selected
from Solubility Data Series (Acree, 1995);

(2) The selected data were correlated with reliable
equations (Ruckenstein and Shulgin, 2003a,b);

(3) Using the above equations, the solubility of the
solute was calculated for small changes in the
mixed solvent composition (2.5 mol%);

(4) The value of D was calculated for each of the two
neighboring points;

(5) Artificial deviations (“errors”) were added to
selected points and a criterium for thermodynamic
consistency was identified.

Thermodynamics of Solutions234



90 E. Ruckenstein, I. Shulgin / International Journal of Pharmaceutics 292 (2005) 87–94

Table 1
Correlation of the experimental data regarding the solubility (at room temperature) of anthracene in mixed solvents

Solvent + cosolvent Solute Reference Deviation from experimental dataa

3-Parameter equation
(Ruckenstein and Shulgin, 2003a)

4-Parameter equation
(Ruckenstein and Shulgin, 2003b)

1-Propanol-2-propanol Anthracene Acree, 1995 0.41 0.39
n-Hexane-cyclohexane Anthracene Acree, 1995 0.48 0.29

a Deviation from experimental data calculated as the mean percentage deviation (MPD) (%) defined as
(

100
∑Nj

i=1|(x
exp
i − xcalc

i )/(xexp
i )|
)

/Nj ,

where x
exp
i and xcalc

i are experimental and calculated solubilities (mole fractions), and Nj is the number of experimental points in the data set j.

5. The use of the solubilities of anthracene in
1-propanol-2-propanol and anthracene in
n-hexane–cyclohexane mixtures for the
determination of the Dmax value

The experimental data regarding the solubility of
anthracene in 1-propanol-2-propanol and anthracene
in n-hexane–cyclohexane mixtures were taken from
the Solubility Data Series (Acree, 1995) and corre-
lated with equations based on the fluctuation theory
of solutions (Ruckenstein and Shulgin, 2003a,b). The
results of these correlations are presented in Table 1.
The values of D, calculated using Eq. (11), are plot-
ted in Fig. 1a and b (Throughout this paper, the
activity coefficients of the constituents of a solute-
free mixed solvent were calculated with the Wilson
equation (Wilson, 1964), using the Wilson param-
eters the values listed in Gmehling’s vapor–liquid
compilation (Gmehling and Onken, 1977)). In or-
der to understand how the errors affected the val-
ues of D, 20% “error” was added to every second
point and the D values were again calculated via
Eq. (11). The results of these calculations are pre-
sented in Fig. 2. Figs. 1 and 2 show that for ther-
modynamically consistent data |D| <Dmax = 10−4. One
should note that the solubility of anthracene in 1-
propanol-2-propanol varies in the range 4.1 × 10−4

to 5.9 × 10−4 mole fraction and the solubility of
anthracene in n-hexane-cyclohexane varies in the
range 1.3 × 10−3 to 1.6 × 10−3 mole fraction. It is
of interest to calculate the D values for more sol-
uble substances. We carried out such calculations
(Fig. 3) for the solubility of pyrene in 1-propanol-2-
propanol (for which the solubility varies in the range
3.9 × 10−3 to 4.3 × 10−3 mole fraction) and pyrene in

n-hexane–cyclohexane mixtures (for which the solubil-
ity varies in the range 8.5 × 10−3 to 10.9 × 10−3 mole
fraction) (Acree, 1995; Zvaigzne et al., 1995). Fig. 3
shows that the established limit (|D| <Dmax = 10−4) is
valid when the mole fraction solubility is smaller than
1 mol%.

Fig. 1. D values obtained via Eq. (11) for the solubilities of
anthracene in 1-propanol-2-propanol (a) and anthracene in n-
hexane-cyclohexane (b).
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Fig. 2. D values obtained via Eq. (11) for the solubilities of an-
thracene in 1-propanol-2-propanol (a) and anthracene in n-hexane-
cyclohexane (b) when 20% “errors” were added to every second
point.

6. Application of Eq. (11) to the solubility of
poorly soluble solids in aqueous mixed solvents

6.1. Solubility of naphthalene in ethanol–water
mixtures

There are several experimental determinations of
the solubility of naphthalene in ethanol–water mix-
tures at room temperature (Bennett and Canady, 1984;
Morris, 1988; Dickhut et al., 1989; LePree et al.,
1994). These data deviate appreciably from each other
(Fig. 4). The analysis of the above data with Eq. (11)
(Table 2) indicated that those regarding the solubility
of naphthalene in ethanol–water mixtures at room
temperature, obtained by various authors, were thermo-
dynamically consistent in the dilute region; however,
the data of LePree et al. (1994), and Morris (1988) are
thermodynamically inconsistent at high mole fractions
of ethanol. Only the data for ethanol mole fractions

Fig. 3. D values obtained via Eq. (11) for the solubilities of pyrene in
1-propanol-2-propanol (a) and pyrene in n-hexane-cyclohexane (b).

less than 0.3 were analyzed by us, because the exper-
imental determinations in the above publications were
made with small changes in composition in that range
only, and with large changes outside that range. For the
latter cases, the trapezoidal rule for the integration of
the Gibbs–Duhem equation might no longer be valid.

Fig. 4. The solubility of naphthalene (x2) in ethanol–water mixtures
at room temperature: (◦) Bennett and Canady, 1984; (•) Morris, 1988;
(�) Dickhut et al., 1989; (×) LePree et al., 1994). xETOH is the mole
fraction of ethanol in the solute-free mixed solvent.
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Table 2
D values obtained via Eq. (11) for data regarding the solubility of naphthalene in ethanol–water mixtures

Mole fraction of ethanol in the solute-free mixed solvent Mole fraction of naphthalene solubility Reference D

0.0333 5.3E−06 A
0.0720 8.2E−06 A −5.9E−06
0.1173 1.2E−05 A −6.6E−06
0.1713 1.9E−05 A −1.6E−05
0.2367 2.3E−04 A −6.2E−04
0.0159 5.9E−06 B
0.0329 8.3E−06 B −3.1E−06
0.0508 1.1E−05 B −4.9E−06
0.0508 1.5E−05 B −4.5E−06
0.0031 4.5E−06 C
0.0095 4.8E−06 C −5.5E−07
0.0161 5.8E−06 C −2.0E−06
0.0333 8.0E−06 C −4.4E−06
0.0937 3.0E−05 C −5.1E−05
0.0438 7.3E−06 E
0.0672 1.1E−05 E −7.0E−06
0.1024 2.4E−05 E −7.5E−06
0.1308 4.8E−05 E −2.7E−05
0.1826 1.6E−04 E −5.0E−05
0.2101 2.7E−04 E −2.5E−04

A (Morris, 1988); B (Bennett and Canady, 1984); C (Dickhut et al., 1989); E (LePree et al., 1994).

In the present paper, Eq. (11) was used to ana-
lyze separately each of the sets of experimental data
listed above. Therefore, each of the examinations was
concerned with the internal consistency of a selected
set.

6.2. Solubility of naphthalene in acetone–water
mixtures

The analysis of the experimental solubilities of
naphthalene in acetone–water mixtures at room

Table 3
D values obtained via Eq. (11) for data regarding the solubility of naphthalene in acetone–water mixtures

Mole fraction of ethanol in the solute-free mixed solvent Mole fraction of naphthalene solubility Reference D

0.0176 7.4E−06 A
0.0557 2.9E−05 A −5.0E−05
0.0907 7.3E−05 A −1.3E−04
0.1339 2.9E−04 A −4.6E−04
0.1816 4.2E−04 A −2.6E−04
0.2261 1.9E−03 A −3.5E−03
0.0128 1.0E−05 B
0.0266 1.7E−05 B −1.3E−05
0.0580 6.9E−05 B −1.2E−04
0.0954 2.0E−04 B −2.8E−04
0.1410 7.2E−04 B −1.2E−03
0.1975 2.3E−03 B −3.5E−03
0.0266 9.3E−06 C
0.0580 3.0E−05 C −4.6E−05
0.0954 7.9E−05 C −1.1E−04
0.1410 3.1E−04 C −5.2E−04
0.1975 1.2E−03 C −2.1E−03

A (LePree et al., 1994); B (Fu and Luthy, 1985); C (Morris, 1988).
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temperature (LePree et al., 1994; Fu and Luthy, 1985;
Morris, 1988), summarized in Table 3, shows that,
as in the previous case, there is thermodynamic
consistency in the diluted region. However, the data
become increasingly inaccurate in more concentrated
mixed solvents. Again, only the data for mole fractions
of acetone less than 0.3 were considered.

6.3. Solubility of naphthalene in ethylene
glycol–water mixtures

The analysis of the experimental solubilities of
naphthalene in ethylene glycol–water mixtures at room
temperature (Khossravi and Connors, 1992; Huot et al.,
1991) showed that both experimental sets were accu-
rate in a wide composition range with the exception
of the points between XETD ≈ 0.5 and 0.6 (Fig. 5).

6.4. Solubility of sulphamethoxypyridazine in
ethanol–water mixtures

The solubility of sulphamethoxypyridazine in
ethanol–water mixtures represents a rare kind of drug
solubility in an aqueous mixed solvent, because it
exhibits two solubility maxima on the curve solubility
versus mixed solvent composition (Escalera et al.,
1994). It is of interest to verify if such behavior
satisfies the thermodynamic consistency criterion.
The values of D were calculated using Eq. (11), and

Fig. 5. D values calculated with Eq. (11) for the solubility of naph-
thalene in ethylene glycol–water mixtures at room temperature;
(◦) (Khossravi and Connors, 1992); (�) (Huot et al., 1991). xETD

is the mole fraction of ethylene glycol in a solute-free ethylene
glycol–water mixture.

Fig. 6. D values (�) calculated with Eq. (11) for the solubility of
sulphamethoxypyridazine in ethanol–water mixture at room tem-
perature. xEtOH is the mole fraction of ethanol in a solute-free
ethanol–water mixture.

the results are presented in Fig. 6. The latter figure
shows that the second maximum (mole fraction of
ethanol approximately 0.75) is thermodynamically
less consistent than the first maximum (mole fraction
of ethanol approximately 0.5).

7. Discussion and conclusion

The Gibbs–Duhem equation for ternary mixtures is
used to analyze the quality of experimental data per-
taining to the solubility of drugs and other poorly solu-
ble solids in a binary mixed solvent. In order to test the
quality of the data, a thermodynamic consistency test
is suggested. This test is based on the thermodynamic
relation between the solubilities of a solid in a binary
mixed solvent at two different compositions and the
activity coefficients of the constituents of the solute-
free mixed solvent. The suggested test is applicable to
all kinds of systems with the following limitations: (1)
the solubility of the solid should be low, (2) the above
two compositions of the mixed solvent should be close
enough to each other.

The test was applied to a number of systems repre-
senting different types of solubilities of drugs and other
poorly soluble substances in binary mixed solvents. It
was shown that the suggested test could be helpful in
the analysis of such experimental data.
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The present paper deals with the application of fluctuation
theory of solutions to the solubility of poorly soluble
substances of environmental significance in aqueous mixed
solvents. The fluctuation theory of ternary solutions was
first used to derive an expression for the activity coefficient
of a solute at infinite dilution in a binary mixed solvent.
This equation contains the activity coefficients of the
constituents of the solute-free mixed solvent and the molar
volume of the solute-free mixed solvent. Further, the
derived expression for the activity coefficient of a solute
at infinite dilution was used to generate a number of
expressions for the solubility of solids in aqueous mixed
solvents. Several expressions for the activity coefficients of
the components were considered: first, the mixed
solvent was considered an ideal mixture; second, the
activity coefficients of the constituents of the binary solvent
were expressed using the two-suffix Margules equations;
third, the activity coefficients of the constituents of the
binary solvent were expressed using the Wilson equations.
The obtained expressions were applied to 25 experimental
data sets pertaining to the solubilities of hydrophobic
organic pollutants (HOP) in aqueous mixed solvents. It was
found that the suggested equations can be used for an
accurate and reliable correlation of the solubilities in aqueous
mixed binary solvents. The best results were obtained
by combining our expression for the activity coefficient of
a solute at infinite dilution in a mixed solvent with the
Wilson equations for the activity coefficients of the
constituents of a solute-free mixed solvent. The derived
equations can also be used for predicting the solubilities
of poorly soluble environmentally important compounds in
aqueous mixed solvents using for the Wilson parameters
those obtained from vapor-liquid equilibrium data. A similar
methodology was applied to the solubility of poorly
soluble substances of environmental significance in
multicomponent (ternary and higher) aqueous mixed
solvents. The expression for the activity coefficient of a
solute in an ideal multicomponent mixed solvent was used
to derive an equation for the solubility of a poorly soluble
solute in an ideal multicomponent mixed solvent in
terms of its solubilities in two subsystems of the
multicomponent solvent and their molar volumes. Ultimately
the solubility could be expressed in terms of those in
binary or even in the individual constituents of the solvent
and their molar volumes. The computational method was
applied to predict the solubilities of naphthalene and

anthracene in ternary, quaternary and quinary aqueous
mixed solvents. The results were compared with experiment
and good agreement was obtained.

Introduction
The solubility of an organic compound in water is one of the
key factors that affects its environmental behavior (1-3).
The aqueous solubility is a fundamental parameter in
assessing the extent of dissolution of environmentally
important substances and their persistence in an aquatic
environment. The extent to which aquatic biota is exposed
to a toxicant is largely controlled by the aqueous solubility.
In addition, these solubilities are of thermodynamic interest
in elucidating the nature of these highly nonideal solutions
(1,2).

As well-known, the solubility in water of a poorly soluble
solid substance, including many of environmentally impor-
tant substances, can be affected by the addition of cosolutes
and cosolvents into water. As a rule the solubility of
hydrophobic organic pollutants (HOP) is much greater in
solutions containing organic cosolvents that in pure water
(2). Moreover, the knowledge of the solubilities of environ-
mentally important compounds in mixtures of water and
organic cosolvents is important in the treatment of indus-
trial wastewaters (1). One may encounter such cases in
industrial wastewaters or at waste disposal sites where,
because of careless dumping procedures, the leachates may
contain a high fraction of organic solvent(s) (1).

While experimental data regarding the solubilities of many
environmentally important substances in pure water are
available in the literature (4-6), experimental data regarding
the solubilities in aqueous mixed solvents (water + organic
cosolvents) are scarce (2, 7-10). Therefore, there is a great
need for a predictive method of the solubilities of environ-
mentally important substances in both pure water and
mixtures of water with one or several organic cosolvents.
Because the majority of environmentally important sub-
stances are highly hydrophobic, they have a low solubility
in water. Therefore, the thermodynamic quantity which
governs their behavior in aqueous solutions is the activity
coefficient at infinite dilution (11, 12). Consequently, the
prediction of the activity coefficient of a solute at infinite
dilution in water and in mixed aqueous solvents constitutes
the main difficulty in the prediction of the solubilities of
environmentally important substances in both pure water
and mixtures of water with one or several organic cosolvent.

It seems promising to use for such predictions group-
contribution methods, such as UNIFAC (13). The application
of UNIFAC to the solubility of naphthalene in nonaqueous
mixed solvents provided satisfactory results (14). Unfortu-
nately, the accuracy of the UNIFAC regarding the solubility
of solids in aqueous solutions is controversial (15-17). Large
deviations from the experimental activity coefficients at
infinite dilution and octanol/water partition coefficients have
been reported (16, 17) when the classical old version of
UNIFAC interaction parameters (13) was used. To improve
the prediction of the activity coefficients at infinite dilution
and of the octanol/water partition coefficients of environ-
mentally important substances, special ad hoc sets of
parameters for environmental applications were introduced
(16-18).

The present paper is focused on the theoretical modeling
of the solubility of HOP in binary and multicomponent
aqueous solvents. Many methods, mostly empirical and
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semiempirical, were suggested for the correlation and
prediction of the solubility of solids in mixed solvents (14,
19). Among the methods used for the solubility of environ-
mentally important components in aqueous solvents, which
have some theoretical basis, one should point out the method
based on the Margules equation for the activity coefficient
of a solute (15) and the Combined Nearly Ideal Binary Solvent/
Redlich-Kister (NIBS/R-K) equation (20). The reader can
find a review of the other methods in refs 1 and 21.

In this paper, a previously developed expression for the
activity coefficient of a solute at infinite dilution in multi-
component solutions (22-24) will be applied to the solubility
of environmentally significant compounds in aqueous solvent
mixtures. The above expression for the activity coefficient of
a solute at infinite dilution in multicomponent solutions (22-
24) is based on the fluctuation theory of solutions (25). This
model-free thermodynamic expression can be applied to both
binary and multicomponent solvents.

The paper is organized as follows: first, the thermody-
namic relations for the solubility of poorly soluble solids in
pure and multicomponent mixed solvents are written.
Second, an equation for the activity coefficient of a solute at
infinite dilution in a binary nonideal mixed solvent (23) is
employed to derive an expression for its solubility in terms
of the properties of the mixed solvent. Third, various
expressions for the activity coefficients of the cosolvents,
such as Margules and Wilson equations (19), are inserted
into the above equation for the solubility. The obtained
equations are used to correlate the HOP solubilities in binary
aqueous mixed solvents and the results are compared with
experiment. Finally, the case of an ideal multicomponent
solvent is considered and used for ternary and higher mixed
solvents.

Thermodynamic Relations for the Solubility of Poorly
Soluble Solids in Pure and Binary Mixed Solvents. For poorly
soluble solids, such as the HOP, one can use the infinite
dilution approximation and consider that the activity coef-
ficient of a solute in pure and mixed solvents to be equal to
those at infinite dilution. Therefore, for the solubilities of a
solid substance (solute, component 2) in water (component
3), cosolvent (component 1) and their mixture (mixed solvent
1-3), one can write the following equations (14, 19)

where γ2
b1,∞ and γ2

b3,∞ are the activity coefficients at infinite
dilution of the solute in the individual solvents 1 and 3, γ2

t,∞

is the activity coefficient of a solute in a mixed solvent at
infinite dilution, x2

b1, x2
b3 and x2

t are the solubilities (mole
fractions) of the solid component 2 in the cosolvent, water
and their mixture, respectively, f 2

L(T,P) is the hypothetical
fugacity of a solid as a (subcooled) liquid at a given pressure
(P) and temperature (T), and f 2

S is the fugacity of a pure solid
component 2. If the solubilities of the pure and mixed solvents
in the solid phase are negligible, then the left-hand sides of
Equations 1-3 depend only on the properties of the solute.
Equations 1-3 show that the solubilities of solid substances
in pure and mixed solvents can be calculated if their activity
coefficients at infinite dilution in the binary and ternary
saturated solutions (1-2, 2-3 and 1-2-3) are known.
Equation 3 is valid not only for binary, but also for ternary
and higher mixed solvents.

Activity Coefficient of a Solute in a Binary solvent at
Infinite Dilution via Fluctuation Theory. The following
expression for the activity coefficient (γ2

t,∞) of a solid solute
in a binary mixed solvent at infinite dilution can be written
(23) on the basis of the fluctuation theory of ternary mixtures
(see Appendix for details)

with

where xi
b,1-3 and γi

b,1-3 (i)1, 3) are the mole fraction and the
activity coefficient of component i in the binary solvent 1-3,
V i

0 is the molar volume of the pure component i (i)1, 3),
A(P,T) is a composition -independent quantity, and B(P,T),
also a composition-independent quantity, is a function of
the Kirkwood-Buff integrals (23). The molar volume (V) of
the binary 1-3 solvent was approximated in Equation 5 by
the ideal one

The combination of Equations 3 and 4 provides an
expression for the solubility of a poorly soluble solid in a
mixed binary solvent

where Ah(P,T) ) -A(P,T) + ln [f 2
S/f 2

L(T,P)].
The two composition -independent quantities Ah(P,T) and

B(P,T)can be expressed in terms of the solubilities of the
solid in the individual solvents. Consequently, Equation 7
expresses the solubility of a poorly soluble solid in a mixed
solvent in terms of the solubilities in the individual solvents,
their molar volumes, and the activity coefficients of the
constituents of the binary solvent. It is worth emphasizing
that Equation 7 is an equation for the solubility of a poorly
soluble solid in a mixed solvent. The only approximation
involved is that the solubilities in either the pure solvents
and in the mixed solvent are very small (infinite dilution
approximation).

The Solubility of Poorly Soluble Solids in a Binary
Solvent by Combining Equation 7 with Various Expressions
for the Activity Coefficients of the Constituents of the Binary
Solvent. 1) The mixed solvent is an ideal binary mixture

This approximation leads to the following expression for
the solubility of poorly soluble solids in a mixed solvent (22)

f 2
S/f 2

L(T,P) ) x2
b1 γ2

b1,∞ (1)

f 2
S/f 2

L(T,P) ) x2
b3 γ2

b3,∞ (2)

f 2
S/f 2

L(T,P) ) x2
t γ2

t,∞ (3)

ln γ2
t,∞ ) -B(P,T)I1 +

ln γ1
b,1-3 + ln γ3

b,1-3

2
+ A(P,T) (4)

I1 )
ln(x1

b,1-3V1
0 + x3

b,1-3V3
0)

V3
0 - V1

0
+

ln γ3
b,1-3

V3
0 - V1

0
-

V1
0

V3
0 - V1

0

ln γ3
b,1-3

x1
b,1-3V1

0 + x3
b,1-3V3

0
-

V1
0 ∫ ln γ3

b,1-3

(x1
b,1-3V1

0 + x3
b,1-3V3

0)2
dx 3

b,1-3 (5)

V ) x1
b,1-3V1

0 + x3
b,1-3V3

0 (6)

ln x2
t ) B(P,T)I1 -

ln γ1
b,1-3 + ln γ3

b,1-3

2
+ Ah(P,T) (7)

γi
b,1-3 ) 1 (i)1, 3) (8)

ln x2
t )

(ln V - ln V3
0)ln x2

b1 + (ln V1
0 - ln V)ln x2

b3

ln V1
0 - ln V3

0
,

when V1
0 * V3

0 (9)
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However, when V1
0 ) V3

0, Equation 9 leads to a nonde-
termination 0/0. In this case, one obtains (22) the following
expression

It should be pointed out that Equations 9 and 10 cannot
represent the composition dependence of the solubilities
when the deviation from ideality is large. For example, they
cannot provide a maximum in the solubility versus mixed
solvent composition. However, such cases are frequently
encountered (see the examples listed in refs 14, 22, 23, 27).
To represent the large deviations from ideal behavior, such
as a maximum, on the solubility curve, the ideal molar volume
of the mixed solvent (Equation 6) will be replaced in Equation
9 by

where e is an empirical parameter which can be evaluated
from the solubility data in a mixed solvent. Such a simple
modification enabled Equation 9 to represent solubility
curves exhibiting maxima. However, one should not expect
Equation 11 to satisfactorily represent the molar volume of
the binary solvent.

2) The activity coefficients of the constituents of the binary
solvent are expressed through the two-suffix Margules
equations (19)

where F is a temperature-dependent constant.

In this case, the integral in Equation 5 becomes

3) The activity coefficients of the constituents of the binary
solvent are expressed through the Wilson equations (26)

and

where L13 and L31 are the Wilson parameters, which are
composition independent.

In this case, the integral in Equation 5 becomes (23)

The following equations: M1) Equation 9 with ideal molar
volume, M2) Equation 9 with the molar volume expressed
via Equation 11, M3) Equation 7 combined with Equations
5, 12-14, and M4) Equation 7 combined with Equations 5,
15-17 will be tested for the solubilities of the HOP in aqueous
mixed solvents.

As one can see, M1 contains no adjustable parameter, M2
contains one adjustable parameter, M3-one and M4-two
adjustable parameters. However, in addition, all equations
(M1-M4) require the solubilities in individual solvents, pure
water and organic cosolvent. By considering them as
parameters, M1 becomes a two-parameter equation (x2

b1 and
x2

b3); M2 - a three-parameter equation (x2
b1,x2

b3 and e); M3 -
a three-parameter equation (x2

b1,x2
b3 and F); and M4 - a four-

parameter equation (x2
b1,x2

b3,L13 and L31). Of course, expres-
sions for the activity coefficients with any number of
parameters can be used.

Activity Coefficient of a Solute in Multicomponent
(Ternary and Higher) Mixed Solvents. Let us consider a
n-component mixture containing a solute (component 2),
water and (n-2) organic cosolvents. If one considers the (n-
1) mixed solvent as an ideal mixture, one can rewrite Equation
4 for the activity coefficient of a solid solute at infinite dilution
in a multicomponent (ternary and higher) solvent (24)

where γ2
n,∞ is the activity coefficient of the solid solute at

infinite dilution in a n-component mixture (solute+ (n-1)
component solvent), W is the molar volume of an ideal (n-1)
- component solvent, Vi

0 is the molar volume of the
individual cosolvent i, xi

n is the mole fraction of component
i in the n-component mixture, and A and B are composition
independent constants. The constants A and B can be
determined from the activity coefficients of the solid solute
in two (n-1) - component mixtures with the mole fraction
of component 1 equal to zero in one of them and the mole
fraction of component 3 equal to zero in the other one. It
should be noted that expression 18 is valid on the line on
which the sum of the mole fractions of components 1 and
3 is constant. Of course, a similar expression can be written
for any pair of components of the mixed solvent.

To apply Equation 18 to the solubility of a solid solute in
a (n-1)-component solvent, one must calculate the constants
A and B. As already noted, Equation 18 is valid along the line
for which

ln x2
t ) x1

b,1-3ln x2
b1 + x3

b,1-3ln x2
b3 (10)

V ) x1
b,1-3V1

0 + x3
b,1-3V3

0 + ex1
b,1-3 x3

b,1-3 (11)

ln γ1
b,1-3 ) F(x3

b,1-3)2 (12)

ln γ3
b,1-3 ) F(x1

b,1-3)2 (13)

∫ ln γ3
b,1-3

(x1
b,1-3V1

0 + x3
b,1-3V3

0)2
dx3

b,1-3 )

( Fx3
b,1-3

(V3
0 - V1

0)2
-

F(V3
0)2

(V3
0 - V1

0)3V
-

2FV3
0ln (V)

(V3
0 - V1

0)3) (14)

ln γ1
b,1-3 ) -ln(x1

b,1-3 + x3
b,1-3L13) + x3

b,1-3 ×

[ L13

x1
b,1-3 + x3

b,1-3L13

-
L31

x3
b,1-3 + x1

b,1-3L31
] (15)

ln γ3
b,1-3 ) -ln(x3

b,1-3 + x1
b,1-3L31) - x1

b,1-3 ×

[ L13

x1
b,1-3 + x3

b,1-3L13

-
L31

x3
b,1-3 + x1

b,1-3L31
] (16)

∫ ln γ3
b,1-3

(x1
b,1-3V1

0 + x3
b,1-3V3

0)2
dx 3

b,1-3 )

L13
2(ln V - ln(x1

b,1-3 + x3
b,1-3L13))

(V3
0 - L13V1

0)2
+

L31(-ln V + ln(x3
b,1-3 + x1

b,1-3L31))

(V1
0 - L31V3

0)2
+

V3
0(L13L31V3

0 - L13V1
0 + L13L31V1

0 - L31V3
0)

(V3
0 - L13V1

0)(L31V3
0 - V1

0)(V3
0 - V1

0)V
+

(-1 + L31)ln((1 - L31)V)

(V3
0L31 - V1

0)(V3
0 - V1

0)
+

(x3
b,1-3 + x1

b,1-3L31)ln(x3
b,1-3 + x1

b,1-3L31)

(L31V3
0 - V1

0)V
(17)

(ln γ2
n,∞)x i*1,3

n ) -( B ln W

(V3
0 - V1

0))x i*1,3
n

+ A (18)

x1
n + x3

n ) const (19)
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In particular, it is valid in the two limiting cases for which
(I) x3

n ) 0and (II) x1
n ) 0. These two limiting cases represent,

two different (n-2) - component mixed solvents with the
following compositions: In the first limiting case (I), the mole
fractions are y 1

n-1 ) x1
n + x3

n, y 3
n-1 ) 0, y 4

n-1 ) x4
n, ..., y n

n-1 )
xn

n with y 1
n-1 + ∑i)3

n y i
n-1 ) 1 and the mole fraction of the

solute is y 2
n-1. In the second limiting case (II), the mole

fractions are z1
n-1 ) 0, z3

n-1 ) x1
n + x3

n, z4
n-1 ) x4

n, ..., zn
n-1 ) xn

n

with ∑i)3
n zi

n-1 ) 1 and the mole fraction of the solute is z2
n-1.

In the limiting cases I and II, Equation 18 acquires the
forms

where γ2
n-1(I),∞ and γ2

n-1(II),∞ are the activity coefficients of the
solid solute at infinite dilution in the (n-2) - component
solvents I and II, respectively; V(I) and V(II) are the molar
volumes of the mixtures composed of (n-2) - component
solvents I and II and the solid solute, respectively. Further-
more, for a poorly soluble solid, the molar volumes of the
mixtures can be taken equal to the molar volumes of the
solvents.

The combination of Equation 18 with Equations 20 and
21 provides the following expression for the activity coefficient
of a poorly soluble solid at infinite dilution in an ideal (n-
1)-component solvent mixture

Equation 22 relates the activity coefficient of a poorly
soluble solid at infinite dilution in an ideal (n-1)-component
mixed solvent to the molar volume W and the activity
coefficients at infinite dilution in the two limiting cases I and
II and their molar volumes. The same procedure can be
applied to the activity coefficient of a poorly soluble solid at
infinite dilution in two ideal (n-2) - component solvents I
and II and so on. Ultimately, γ2

n,∞ in Equation 18 can be
predicted from the activity coefficients of a poorly soluble
solid at infinite dilution in binary or even in the individual
constituents of the solvent and their molar volumes.

Expression for the Solubility of a Poorly Soluble Solid
in a Multicomponent Mixed Solvent. By inserting into
Equation 22 the expressions of γ2

n,∞, γ2
n-1(I),∞ and γ2

n-1(II),∞

from Equations 1-3 written for the solubilities of a solid in
an ideal (n-1)-component solvent mixture and in two ideal
(n-2) - component solvents I and II, one can obtain the
following final expression for the solubility of a poorly soluble
solid in an ideal (n-1)-component solvent in terms of its
solubilities in the ideal (n-2)-component mixed solvents I
and II and their molar volumes:

Furthermore, the solubilities of a poorly soluble solid in
the ideal (n-2)-component mixed solvents I and II can be
expressed through those in the ideal (n-3)-component mixed
solvents, and so on. Therefore, the suggested procedure

allows one to predict the solubility of a poorly soluble solid
in an ideal (n-1)-component mixed solvent from the solu-
bilities in binary constituents of the solvents or even from
those in the individual constituents of the solvent.

Experimental Data
25 experimental data sets pertaining to the solubilities of
HOP in binary aqueous solvents were selected (Table 1).

The main difficulties in this selection were the following:
1) the total number of experimental data regarding the HOP
in aqueous mixed solvents is small, much smaller that the
number of experimental data regarding the solubilities of
drugs in aqueous mixed solvents (1). 2) There is no
thermodynamic consistency test, such as those for vapor-
liquid equilibrium (29), for checking the self-consistency of
the data regarding the solubility of a solid in a mixed solvent.
Therefore, it is difficult to evaluate whether the solubility
data are accurate or contain errors.

Jorgensen and Duffy examined the accuracy of the log of
the experimental solubilities of drugs in water (30) and found
that they have standard deviations of about 0.58 in log units.
In the present paper, the experimental data from literature
with higher deviations in solubilities in pure water (>0.5 in
log units) were not selected for comparison.

One should emphasize that the experimental data of
different research groups exhibit large deviations from each
other. This is illustrated in Figure 1 for the solubility of
naphthalene in the ethanol + water mixture. Figure 1 shows
that there are large differences between the experimental
solubilities of naphthalene (2, 8 and 9) in the ethanol + water
mixture, which are particularly large for mole fractions of
ethanol between 0.05 and 0.25. Therefore, the inaccuracy of
the experimental data should be taken into account, since

ln γ2
n-1(I),∞ ) - Bln V (I)

(V3
0 - V1

0)
+ A (20)

ln γ2
n-1(II),∞ ) - Bln V(II)

(V3
0 - V1

0)
+ A (21)

(ln γ2
n,∞)x i*1,3

n )

(ln W - ln V (II))ln γ2
n-1(I),∞ + (ln V (I) - ln W)ln γ2

n-1(II),∞

ln V (I) - ln V (II)

(22)

ln x2
n )

(ln W - ln V (II))ln y2
n-1 + (ln V (I) - ln W)ln z2

n-1

ln V (I) - ln V (II)

(23)

TABLE 1. Experimental Data Regarding the Solubilities (under
Ambient Conditions) of the HOP in Aqueous Mixed Binary
Solvents Used in Calculations

System
number Cosolvent Solute

Number of
experimental

pointsa Ref

1 methanol Naphthalene 12 (2)
2 ethanol Naphthalene 12 (2)
3 1-propanol Naphthalene 10 (2)
4 acetone Naphthalene 8 (2)
5 methanol Phenanthrene 15 (2)
6 ethanol Phenanthrene 15 (2)
7b acetone Naphthol 9 (2)
8 ethanol Naphthalene 9 (9)
9 methanol 4-chlorobiphenyl 8 (10)
10 ethanol 4-chlorobiphenyl 8 (10)
11 1-propanol 4-chlorobiphenyl 8 (10)
12 methanol 2, 4, 6-trichloro-

biphenyl
8 (10)

13 methanol 2, 2′, 4, 4′, 6, 6′-
hexachloro-
biphenyl

6 (10)

14 methanol Anthracene 22 (8)
15 ethanol Anthracene 22 (8)
16 2-propanol Anthracene 22 (8)
17 acetone Anthracene 22 (8)
18 acetonitrile Anthracene 22 (8)
19 methanol Atrazine 22 (8)
20 acetone Atrazine 22 (8)
21 methanol Naphthalene 22 (8)
22 ethanol Naphthalene 22 (8)
23 2-propanol Naphthalene 22 (8)
24 acetone Naphthalene 22 (8)
25 acetonitrile Naphthalene 22 (8)
a The solubilities in the individual solvents are included in the total

number of experimental points. b The solubility of naphthol in acetone
was taken from reference (28).
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the accuracy of any prediction “cannot exceed the accuracy
of the experimental data” (30).

Much less data is available for the solubilities of HOP in
multicomponent aqueous solvents. The literature provides
the solubilities of naphthalene and anthracene in ternary,
quaternary and quinary aqueous mixed solvents. Detailed
information about the experimental data used in our
calculations is listed in Table 2. So far there is no method for
testing the self-consistency of the experimental data regarding
the solubility of a poorly soluble solid in mixed solvents and
the accuracy of the data in Table 2 could not be verified.

For our computational scheme, it is important to have
the solubilities of naphthalene and anthracene in binary
aqueous mixed solvents, which are subsystems of the ternary,
quaternary and quinary aqueous mixed solvents listed in
Table 2 and they are available (8, 9). One can therefore
compare the predictions from the solubilities in the individual
constituents of the solvent to those obtained on the basis of
the solubilities in binary mixed solvents.

Results of the Calculations
Binary Mixed Solvent. Calculations involving 25 experi-
mental data sets (Table 1) were carried out using the equations
listed above (Ml, M2, M3 and M4), and the results are
summarized in Tables 3 and 4. An additional Table containing
the values of the adjustable parameters obtained for Equa-
tions M2-M4 as well as the values of Ah and B is given as
Supporting Information.

Ternary Mixed Solvent. The solubilities of naphthalene
and anthracene in the ternary aqueous mixed solvents (see
Table 2) were calculated using Equation 23. The prediction

of the solubility of naphthalene in water/methanol/1-
propanol mixed solvent (system 1 of Table 2) is used as an
example. As mentioned above the solubility can be calculated
in two different ways:

1) From the solubilities in the individual constituents of
the solvent and their molar volumes. The molar volume of
a ternary mixed solvent (W) in Equation 23 can be obtained
from the molar volumes of water, methanol and 1-propanol
as an ideal molar volume

where xH2O
t , xMeOH

t and xPrOH
t are the mole fractions of water,

methanol and 1-propanol in the mixed solvent and V H2O
0 ,

V MeOH
0 and V PrOH

0 are the molar volumes of the pure water,
methanol and 1-propanol. There are 3 options for selecting
the binary subsystems I and II: 1) water/methanol and water/
1-propanol, 2) water/methanol and methanol/1-propanol,
or 3) water/1-propanol and methanol/1-propanol. One can
show that all these selections lead to the same result.
However, in our calculations we will select the aqueous binary
subsystems (water/methanol and water/1-propanol), be-
cause the solubilities of naphthalene in binary aqueous mixed
solvents are available in the same references as for the ternary
data (8, 9), Hence, the binary subsystem I is the binary system
water/1-propanol with mole fractions of components: y PrOH

b,I

FIGURE 1. Comparison between experimental (o, ref 8), (/, ref 2),
and (0, ref 9), as well as calculated (solid lines) solubilities of
naphthalene (S is the mole fraction of naphthalene) in the mixed
solvent ethanol/water (xET is the mole fraction of ethanol) at room
temperature. The solubility was calculated using Equation M4. The
adjustable constants were found using the experimental data from
(2).

TABLE 2. Information about the Experimental Data Regarding
the Solubilities of Naphthalene and Anthracene in Ternary,
Quaternary and Quinary Aqueous Mixed Solvents Used in the
Calculations

Number Solute Multicomponent solvent Ref

Ternary mixed solvent
1 naphthalene water/methanol/1-propanol 9
2 naphthalene water/methanol/1-butanol 9
3 anthracene water/methanol/acetone 8
4 naphthalene water/methanol/acetonitrile 8

Quaternary mixed solvent
5 naphthalene water/methanol/1-propanol/

1-butanol
9

Quinary mixed solvent
6 naphthalene water/methanol/ethanol/

isopropanol/acetone
8

7 anthracene water/methanol/ethanol/
isopropanol/acetone

8

TABLE 3. Comparison between Experimental Solubilities in
Binary Mixed Solvents and Solubilities Calculated Using
Different EquationsA

Deviations (%) between experimental and calculated solubilities
Equation M1 Equation M2 Equation M3 Equation M4System

no.B MPD1
C MPD2

D MPD1 MPD2 MPD1 MPD2 MPD1 MPD2

1 15.6 1.8 7.9 0.78 7.5 0.7 7.0 0.6
2 54.5 15.7 17.5 2.6 25.0 4.7 12.7 1.4
3 69.6 32.5 30.4 6.4 40.5 11.0 14.8 5.5
4 55.6 15.8 5.4 0.6 15.9 1.9 5.8 0.6
5 30.1 4.4 3.3 0.3 8.7 1.0 4.3 0.5
6 44.3 8.5 13.9 1.6 28.1 3.4 8.0 1.1
7 39.6 8.8 12.2 1.8 14.5 2.2 11.2 1.6
8 24.9 6.8 15.4 3.2 9.6 1.4 8.6 1.5
9 22.3 1.9 19.3 1.2 17.2 1.0 11.9 0.6
10 34.6 5.9 31.7 4.8 24.3 2.3 20.7 2.4
11 51.5 13.0 30.6 4.1 30.0 5.4 27.7 3.0
12 22.9 2.2 18.2 1.0 14.0 0.7 10.0 0.4
13 33.5 4.7 16.4 1.1 11.1 0.7 9.2 0.4
14 28.9 3.1 16.2 1.5 18.2 1.7 14.3 1.4
15 56.5 10.4 30.8 3.4 31.6 3.3 25.8 1.9
16 67.5 17.8 37.5 5.0 45.0 7.3 29.7 1.8
17 71.8 18.0 23.8 2.2 39.5 5.1 19.3 2.2
18 67.6 16.0 28.4 3.1 42.4 6.1 16.1 1.6
19 65.4 24.5 49.0 16.6 49.5 17.7 18.7 2.7
20 71.6 25.1 39.1 9.7 47.7 13.0 24.1 6.0
21 21.6 3.9 17.0 2.5 13.1 1.6 10.7 1.3
22 56.7 10.9 41.7 15.7 46.8 14.9 38.3 12.0
23 55.5 20.5 32.0 4.0 35.5 6.6 25.6 2.4
24 59.3 24.6 15.5 2.9 24.6 5.7 11.5 2.0
25 59.3 21.9 21.7 3.9 33.8 7.4 13.8 1.9

A Equations M1-M4 are described in text after eq 17. B The systems
are in the same order as in Table 1. C Deviation from experimental data
calculated as MPD1 (%) (the mean percentage deviation) defined as

100∑
i)1

Nj |xi
exp - xi

calc

xi
exp |

Nj
where xi

exp and xi
calc are the experimental and calculated solubilities, Nj

is the number of experimental points in the data set j. D Deviation from
experimental data calculated as MPD2 (%) defined as

100∑
i)1

Nj |ln(xi
exp) - ln(xi

calc)

ln(xi
exp) |

Nj

.

W ) xH2O
t V H2O

0 + xMeOH
t V MeOH

0 + xPrOH
t V PrOH

0 (24)
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) xMeOH
t + xPrOH

t and y H2O
b,I ) 1 - y PrOH

b,I and molar volume

The binary subsystem II is water/methanol with mole
fractions of components: zMeOH

b,II ) xMeOH
t + xPrOH

t and zH2O
b,II )

1 - yMeOH
b,II and molar volume

The solubilities of naphthalene in the binary subsystems
I and II can be calculated from Equation 23 for binary mixed
solvents, which requires only the solubilities in the individual
constituents of the solvent.

2) From the experimental solubilities in binary solvents
and molar volumes of the individual constituents. The
calculation procedure is the same as above, with the exception
that the solubilities of naphthalene in the binary subsystems
I and II were obtained from experiment. The calculation of
the solubilities in binary aqueous solvents was described in
detail in previous sections. It should be noted that the water/
methanol/1-butanol mixed solvent and the binary subsystem
water/1-butanol are not completely miscible. Only the
homogeneous regions of mixed solvents were considered in
this paper.

The solubilities of naphthalene and anthracene in ternary
aqueous mixed solvents are predicted and compared with
experiment in Table 5.

Quaternary Mixed Solvent. The solubilities of naphtha-
lene in the water/methanol/1-propanol/1-butanol solvent
mixture are predicted using Equation 23. The molar volume
of an ideal quaternary mixed solvent was calculated as

where xi
q is the molar fraction of component i in the

quaternary mixed solvent. The two selected ternary sub-
systems I and II were water/methanol/1-propanol and water/
methanol/1-butanol with compositions: I (y PrOH

t,I ) xBuOH
q +

xPrOH
q , y H2O

t,I ) xH2O
q and y MeOH

t,I ) xMeOH
q ) and II (zBuOH

t,II ) xBuOH
q

+ xPrOH
q , zH2O

t,II ) xH2O
q and zMeOH

t,II ) xMeOH
q ). The solubilities of

naphthalene in the ternary subsystems I and II were
calculated as described in the section “Ternary mixed
solvent”.

It should be noted that the water/methanol/1-propanol/
1-butanol solvent is not completely miscible. Only the homo-
geneous regions of mixed solvents were considered in this
paper. The solubility predictions for the quaternary mixed
solvent are listed and compared with experiment in Table
5.

Quinary Mixed Solvent. The solubilities of naphthalene
and anthracene in quinary mixed solvents (water/methanol/
ethanol/2-propanol/acetone) were predicted using Equation
23. The molar volume of an ideal quinary mixed solvent was
calculated as

where xi
qu is the molar fraction of component i in the quinary

mixed solvent. The two selected quaternary subsystems I
and II were water/methanol/ethanol/2-propanol and water/
methanol/ethanol/acetone with compositions: I (y i-PrOH

q,I )
xAcet

qu + xi-PrOH
qu , y H2O

q,I ) xH2O
qu , y MeOH

q,I ) xMeOH
qu and y EtOH

q,I ) xEtOH
qu )

and II (zAcet
q,I ) xAcet

qu + xi-PrOH
qu , zH2O

q,I ) xH2O
qu , zMeOH

q,I ) xMeOH
qu and

zEtOH
q,I ) xEtOH

qu ). The solubilities of naphthalene and an-
thracene in quaternary subsystems I and II were calculated
as described in the section “Quaternary mixed solvent”. The
results of the solubility prediction for quinary mixed solvent
are listed and compared with experiment in Table 5.

Discussion
The results listed in Tables 3 and 4 demonstrate that equation
M4, which combines eq 7 with the Wilson equation, provides
the best results for all 25 experimental sets analyzed. Equation
M2, which contains an empirical parameter performed
surprisingly well, exhibiting an accuracy comparable to those
of the theoretical equation M3 (eq 7 combined with the
Margules equation). Equation 9 (M1) based on an ideal mixed

TABLE 4. Comparison between Average Deviations of the Solubilities in Binary Solvents Calculated Using Equations M1-M4 and
Experimental Data

Average deviation (%)a

M1 M2 M3 M4

Experimental data MPD1 MPD2 MPD1 MPD2 MPD1 MPD2 MPD1 MPD2

All 25 experimental data sets from Table 1 50.8 14.1 25.0 4.7 30.2 6.0 17.5 2.6
13 experimental data sets from references (2, 9 and 10) 38.5 9.4 16.0 2.2 19.1 2.9 11.0 1.5
12 experimental data sets from reference (8) 56.8 15.8 29.4 5.7 35.6 7.2 20.7 3.0

a Average deviation (%) is the mean percentage deviation defined in case MPD1 as

100∑
j ) 1

M

∑
i)1

Nj |xi
exp - xi

calc

xi
exp |

∑
j ) 1

M

Nj

and in case MPD2 as

100∑
j ) 1

M

∑
i)1

Nj |ln(xi
exp) - ln(xi

calc)

ln(xi
exp) |

∑
j ) 1

M

Nj

where xi
exp and xi

calc are experimental and calculated solubilities (mole fractions), Nj is the number of experimental points in the data set j (see
Table 1), M is the number of data sets.

V (I) ) yH2O
b,I V H2O

0 + yPrOH
b,I V PrOH

0 (25)

V (II) ) zH2O
b,II V H2O

0 + zMeOH
b,II V MeOH

0 (26)

W ) xH2O
q V H2O

0 + xMeOH
q V MeOH

0 + xPrOH
q V PrOH

0 +

xBuOH
q V BuOH

0 (27)

W ) xH2O
qu V H2O

0 + xMeOH
qu V MeOH

0 + xEtOH
qu V EtOH

0 +

xi-PrOH
qu V i-PrOH

0 + xAcet
qu V Acet

0 (28)

1628 9 ENVIRONMENTAL SCIENCE & TECHNOLOGY / VOL. 39, NO. 6, 2005

4   Solubility of pharmaceuticals and environmentally important  compounds 245



solvent approximation provided the least accurate results
among the equations Ml-M4, but can be used as a first
approximation for predictions. However, one should again
emphasize that Equation M1 cannot predict a maximum in
the solubility versus mixed solvent composition, which was
frequently observed for the solubility of poorly soluble drugs
and environmentally important substances in aqueous mixed
solvents (see the examples listed in refs 14, 22, 23, and 27).

The main advantage of the proposed computational
scheme is its theoretical basis. The parameters of the
suggested equations M2-M4 (with the exception of the
parameter e in Equation 11) have a clear physical meaning,
being the parameters of the activity coefficients of the
constituents of the mixed solvent.

Generally speaking, one can use for the values of the
parameters those obtained from vapor-liquid or solid-liquid
equilibria. Figure 2 presents such predictions for the solu-
bilities of naphthalene in methanol + water and ethanol +
water mixtures. One can see that while the agreement for the
solubilities of naphthalene in methanol + water is excellent,
the prediction of the solubilities of naphthalene in ethanol
+ water is only fair.

One should mention that the experimental data taken
from different references have different qualities. Indeed,
Table 4 shows that the average deviations of the experimental
data taken from refs 2, 9 and 10 are much smaller than those
from ref 8. Figure 1 also shows that the experimental data
taken from refs 2 and 9 differ from those taken from ref 8.

The prediction of the solubility of poorly soluble sub-
stances of environmental significance in multicomponent
(ternary and higher) aqueous mixed solvents is a difficult
task because it requires the knowledge of the activity
coefficient of a solute in a multicomponent mixed solvent.
The method most often used for the solubility of a solid in
ternary and multicomponent mixed solvents is the combined
nearly ideal binary solvent/Redlich - Kister equation (33).
That equation was applied to the solubility of a solid in ternary

nonaqueous mixed solvents and even to the solubility of a
solid in a 7-component nonaqueous mixed solvent (34, 35).
However, we could not find in the literature any example of
applications of theoretical methods to the solubility of
environmentally important substances in multicomponent

TABLE 5. Comparison between the Experimental Solubilities of Naphthalene and Anthracene in Multicomponent (Ternary,
Quaternary and Quinary) Aqueous Mixed Solvents and the Solubilities Predicted with Equation 23

Deviation (%) from experimental data

Using solubilities in
individual solvents

Using solubilities
in binaries

Solute Multicomponent mixed solvent MPD1
A MPD2

B MPD1 MPD2

Ternary mixed solvent
naphthalene water/methanol/1-propanol 7.8 0.7 3.3 0.3
naphthalene water/methanol/1-butanol 11.9 1.1 4.8 0.4
anthracene water/methanol/acetone 76.4 16.0 36.1 4.8
naphthalene water/methanol/acetonitrile 62.2 18.9 14.8 2.6

Quaternary mixed solvent
naphthalene water/methanol/1-propanol/1-butanol 7.7 0.7 2.6 0.2

Quinary mixed solvent
naphthalene water/methanol/ethanol/2-propanol/acetone 54.3 14.7 28.8 3.8
anthracene water/methanol/ethanol/2-propanol/acetone 76.1 14.7 30.6 2.7
A Deviation from experimental data calculated as MPD1 (%) (the mean percentage deviation) defined as

100∑
i)1

Nj |xi
exp - xi

calc

xi
exp |

Nj
where xi

expand xi
calc are experimental and calculated solubilities, Nj is the number of experimental points in the data set j. B Deviation from

experimental data calculated as MPD2 defined as

100∑
i)1

Nj |ln(xi
exp) - ln(xi

calc)

ln(xi
exp) |

Nj
where xi

expand xi
calc are experimental and calculated solubilities, Nj is the number of experimental points in the data set j.

FIGURE 2. Solubilities of naphthalene (S is the mole fraction of
naphthalene) in the mixtures:a) methanol + water and b) ethanol
+ water. The experimental data (o) were taken from Ref. (2). The
solid lines represent the solubilities of naphthalene predicted using
equation M4. The Wilson constants were taken from Gmeling’s
vapor-liquid equilibrium compilation (29). Thus, the only solubilities
in pure water and cosolvents were used for prediction.
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aqueous mixed solvents. In this paper, the ideal solution
approximation (Equation 18) was used for a mixed solvent.
It was supposed that the main contribution to nonideality
of the very dilute mixture solute + multicomponent solvent
stems from the interactions between the solute molecules
and the molecules of the mixed solvent and not from the
nonideality of the mixed solvent. Indeed, the experimental
data regarding the activity coefficients indicated that such
an assumption is quite reasonable for aqueous solutions of
large molecules containing various functional groups, such
as the drugs and the substances of environmental signifi-
cance. Indeed, whereas the activity coefficient of the com-
ponents of binary mixtures of water and typical organic
cosolvents such as alcohols, acetone, acetonitrile, etc. are
usually between 1 and 10 and they rarely reach few dozens,
the activity coefficients at infinite dilution of large molecules,
such as the polycyclic aromatics are usually greater than
thousands or tens of thousands, or even larger (11, 12, 36).

Examination of the solubility prediction results (Table 5)
reveals that the method suggested provides reasonable
predictions for the solubility of environmentally important
compounds in ternary, quaternary and quinary mixed
solvents. Only the prediction of the solubilities of anthracene
in water/methanol/acetone mixed solvent are not very
accurate. However, they might have been caused by the
inaccuracies of the experimental data (8) for this system. It
should be noted, that the calculated solubilities of anthracene
in the binaries water/methanol and water/acetone (9) were
also in disagreement with the data of ref 8.

The predictions of the solubilities in ternary, quaternary
and quinary mixed solvents were made from the molar
volumes of water and cosolvents and a) the solubilities in
the individual constituents of the solvent or b) solubilities
in binary constituents. The comparison between a) and b)
predictions provided an expected result, namely that the
predictions involving the solubilities in binary constituents
of the solvent are more accurate than those obtained in terms
of the solubilities in the individual constituents of the solvent.
However, the latter provides also sufficiently accurate results.

It is worth noting that good agreement was obtained
despite of two important limitations imposed on the
method: a) the multicomponent solvent was considered
ideal, b) the solid solubility in a mixed solvent was supposed
to be small enough for the infinite dilution approximation
to be valid. This good agreement proves that indeed the main
contribution to nonideality of a mixture composed of a large
solute, such as proteins, polymers, drugs or substances of
environmental significance, and multicomponent aqueous
solvents stems from the interactions between the solute
molecules and the molecules of the mixed solvent, and not
from the interactions between the latter molecules.

Appendix
The aim of this Appendix is to provide some details regarding
the derivation of an equation for the activity coefficient (γ2

t,∞)
of a solid solute in a binary mixed solvent at infinite dilution.

The Kirkwood-Buff theory of solutions (25) for ternary
mixtures (31) provides the following expression for the
composition derivative of γ2,t at infinite dilution

Kirkwood-Buff integral given by

In the above expressions, gRâ is the radial distribution
function between species R and â, r is the distance between
the centers of molecules R and â, and ∆Râ are defined as

It should be noted that ∆Râ is a measure of the nonideality
(32) of the binary mixture R - â, because for an ideal mixture
∆Râ ) 0.

Kirkwood and Buff (25) obtained the following expression
for the concentration derivative of the activity coefficient of
component R in a binary mixture R-â

where xi and γi are the mole fraction and the activity
coefficient of component i in the binary mixture R-â.

Introducing ∆13 from Equation (A-4) in Equation (A-1)
and integrating yields

where xi
b,1-3 (i)1, 3) is the mole fraction of component i in

the mixed solvent, γ2
t,∞ is the activity coefficient of a solute

in a mixed solvent at infinite dilution and U is a constant of
integration. It was supposed that (∆12 - ∆23)x2

t ) 0 is a
composition independent quantity. This assumption was
suggested by the fact that (∆i2)x2

t ) 0 is a measure of the
nonideality between component i (i)1 or 3) and 2 at infinite
dilution of component 2. In the first approximation, we
suppose that (∆i2)x2

t ) 0 is the same as in the binary mixture
i-2 at infinite dilution of component 2. Therefore the
difference between (∆12)x2

t ) 0 and (∆23)x2
t ) 0 is in a first

approximation a composition independent quantity.
Equation (A-5) can be transformed into Equation 4 of the

text (23). However, one should note that Equation 4 was
derived assuming that (∆12 - ∆23)x2

t ) 0 is a composition
independent quantity.

lim
x2

t f0(∂ln γ2,t

∂x3
t )

T,P,x2
t

) - [(c1
0 + c3

0)((c1
0 + c3

0)(∆12 -

∆23)x2
t ) 0 + (c1

0 - c3
0)(∆13)x2

t ) 0)]/

[2(c1
0 + c3

0 + c1
0c3

0(∆13)x2
t ) 0)] (A-1)

GRâ ) ∫0

∞
(gRâ - 1)4πr2dr (A-2)

∆Râ ) GRR + Gââ - 2GRâ, R * â (A-3)

(∂ln γR

∂xR
)

P,T
)

câ
0∆Râ

1 + cR
0xâ∆Râ

(A-4)

ln γ2
t,∞ ) -∫(c1

0 + c3
0)

(∆12 - ∆23)x2
t ) 0

2 [1 +

x3
b,1-3(∂ln γ3

b,1-3

∂x3
b,1-3 )

P,T
]dx3

b,1-3 +

1
2 ∫(x1

b,1-3 - x3
b,1-3)

x1
b,1-3 (∂ln γ3

b,1-3

∂x3
b,1-3 )

P,T

dx3
b,1-3 + U (A-5)
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where x3
t is the mole fraction of component 3 in the ternary

mixture, ck
0 (k)1, 3) is the molecular concentration of

component k in the binary mixture 1-3 and GRâ is the
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Supplementary Material  

Table  

 

The values of the adjustable parameters obtained for Equations M2- 

M4 A 

  
 

Values of adjustable parameters  
Equation M2 Equation M3 Equation M4 

System 

number B 
e, [cm 3 /mol]  

1 4.348 
  

-0.0992 (-402.166 
   and  -46.725)  
 

3.2656 and 0.0067 
(-265.612 and  
-41.266) 

2 30.322 
  

-0.2232 (-611.236 
  and  -41.429)  
  

0.7376 and 0.2182 
(-535.468 and  
-121.325) 

3 69.805 
  

-0.3495 (-825.609 
 and  -40.138)  
  

0.2187 and 0.1587 
(-1178.561 and  
-5951.405) 

4 77.044 
  

-0.4303 (-1321.4 
  and -51.426)  
  

0.3830 and 0.1778 
(-980.696 and  
-463.206) 

5 7.271 
  

-0.1017 (-612.342  
 and -68.963)  
  

1.3589 and 0.2544 
(-443.2819 and  
-107.5740) 

6 26.630 
  

-0.2078 (-767.151 
 and -55.081)  
  

0.7387 and 0.2248 
(-704.185 and  
-160.418) 

7 39.425 
  

-0.3434 (-724.323  
  and -33.966)  
  

0.4575 and 0.4183 
(-570.078 and  
-161.987) 

8 17.310 
  

-0.2427 (-662.576 
 and -42.501)  
  

1.6386 and 0.0670 
(-426.512 and  
-51.891) 

9 3.203 
 

-0.0689 (-453.914 
 and -65.983)  
  

2.2359 and 0.1317 
(-352.070 and  
-68.770) 

10 5.535 
  

-0.2288 (-846.573 
and -60.833) 

2.9568 and 0.0048 
(-487.184 and  

 -53.557)  
11 60.679 

 
-0.3386 (-1062.06 
 and  -57.312) 
   

0.4798 and 0.1398 
(-1099.484 and  
-272.758) 
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F, ( A and  [cm 3 

/mol])  

13L  and 31L  (

A

 

and  [cm 3 /mol]) 

B B



 
   

12 5.163 
 

-0.0936 (-605.598 
 and  -76.783) 
  

1.9002 and 0.1442 
(-429.401 and  
-88.826) 

13 8.701 -0.1171 (-901.869 
and -93.832) 
  

1.4240 and 0.1615 
(-605.136 and  
-147.416) 

14 4.234 
  

-0.0807 (-439.148  
and -59.832) 
  

1.1323 and 0.4561 
(-350.598 and  
-103.732) 

15 25.258 
  

-0.2388 (-790.248  
and -54.856) 
  

0.7629 and 0.1659 
(-665.841 and  
-147.925) 

16 66.167 
  

-0.3534 (-948.369 
 and -50.290) 
  

0.3508 and 0.1082  
(-1172.959 and  
-648.760) 

17 56.912 
  

-0.3098 (-1037.19  
and -56.052) 
  

0.4494 and 0.1765 
(-1133.835 and  
-341.156) 

18 35.763 
  

-0.22 (-864.699  
and -61.708) 
  

0.5393 and 0.1343  
(-812.0732 and  
-511.146) 

19 14.251 
  

-0.1370 (-414.149  
and -40.562) 
  

0.0248 and 0.0370 
(-2994.097 and  
-3.343) 

20 65.088 
  

-0.3441 (-648.405  
and -34.288) 
  

0.0303 and 0.0911 
(-2781.0035 and  
-7.1439) 

21 2.791 
  

5.1632 (-10.601 
and -35.574) 
  

2.4368 and 0.1216 
(-253.294 and  
-44.967) 

22 -15.994 
  

1.3383 (-81.154   
and -29.628) 
  

11.8168 and  
0. 000001 (-
236.6571 and  
-21.1199) 

23 65.196 
  

-0.3509 (-780.332  
and -38.465) 
  

0.5418 and 0.1532 
(-747.381 and  
-142.115) 

24 49.941 
  

-0.3279 (-909.602  
and -44.382) 
  

0.7510 and 0.1582 
(-757.055 and  
-104.408) 

25 32.397 
  

-0.2122 ( -708.843 
and -48.489) 

0.6195 and 0.1600 
(-633.894 and  

  -264.043) 
 
 

A Equations M2-M4 are described in text after Eq. 17,  
B The systems are in the same order as in Table 1. 
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Introduction to Chapter 5 
 
Chapter 5 is concerned with aqueous solutions of 
biomolecules, particularly proteins. The emphasis is on the 
structural features of such solutions at the molecular (or 
nanometer) level and on their thermodynamic properties. 

Aqueous solutions of proteins are of paramount importance 
in modern science. One can mention, for example, that 
numerous human diseases are connected with the behavior of 
proteins in the human body (which is, in essence, an aqueous 
biological solution). A better understanding of the properties of 
such systems at both micro- and macro-levels, is relevant in 
medicine, biology, biochemistry, and other life sciences. 

However, it is difficult to apply the methods usually 
used for low molecular weight systems to these solutions. 
Protein molecule have hydrophobic and hydrophilic 
moieties and are charged. In addition, they form H-bonds 
with other protein molecules, with water, with nonaqueous 
cosolvents and even with themselves. It is understandable 
that the classical thermodynamics of small molecules 
cannot provide insight into the properties of such mixtures. 

This generated interest in the rigorous statistical 
thermodynamic theories of Kirkwood-Buff and McMillan-
Mayer. In Chapter 5, the emphasis is on the application of 
the Kirkwood-Buff theory to aqueous solutions of proteins.  

Two types of mixtures: (water / protein (5.7) and water / 
protein / cosolvent (5.1–5.6 and 5.8), are considered. 

First, for water / protein / cosolvent mixtures, relations 
between measurable properties (such as the preferential 
binding parameter) and the Kirkwood-Buff integrals are 
derived (5.1 and 5.3). Further, the established relations are 
used to examine the local composition around a dilute protein 
molecule in water / protein / cosolvent mixtures (5.1, 5.3–5.4 
and 5.6). Such analysis allows one to explain whether a protein 
molecule is preferentially hydrated or preferentially solvated in 
a water / protein / cosolvent mixture. The derived equations 
were used to establish a relation between the preferential 
binding parameter and the protein solubility. This expression 
was used in two different ways: (1)to propose a simple 
criterion for the salting-in or salting-out by various cosolvents 
of the protein solubility in water, (2) to derive equations which 
predict the solubility of a protein in a binary aqueous solution 
in terms of the preferential binding parameter (5.2, 5.4–5.6). 
The mixture water / protein / polyethylene glycol (PEG) was 
particularly scrutinized (5.4) because PEG is the most 
successful precipitant for protein crystallization and is widely 
used by the protein chemists. The correlations between the 
aqueous protein solubility and the osmotic second virial 
coefficient or the preferential binding parameter were reviewed 
(5.5). Whereas the preferential binding parameter reflects the 
protein / water (and protein / cosolvent) interactions, the 
osmotic second virial coefficients is a measure of the protein / 
protein interactions. A detailed analysis of the various 
contributions (protein / water, protein / cosolvent and protein / 
protein) to the osmotic second virial coefficient in protein-
water-cosolvent solutions is presented (5.8).  

Water / protein (polymer) mixtures are also considered 
(5.7). The local composition around a protein (or polymer) 
molecule is examined, and its connection to the protein / water 
and protein / protein intermolecular interactions is scrutinized.  
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In the present paper a procedure to calculate the properties of proteins in aqueous mixed solvents,
particularly the excesses of the constituents of the mixed solvent near the protein molecule and the
preferential binding parameters, is suggested. Expressions for the Kirkwood-Buff integrals in
ternary mixtures and for the preferential binding parameter were derived and used to calculate
various properties of infinitely dilute proteins in aqueous mixed solvents. The derived expressions
and experimental information regarding the partial molar volumes and the preferential binding
parameters were used to calculate the excesses �deficits� of water and cosolvent �in comparison with
the bulk concentrations of protein-free mixed solvent� in the vicinity of ribonuclease A, ribonuclease
T1, and lysozyme molecules. The calculations showed that water was in excess in the vicinity of
ribonuclease A for water/glycerol and water/trehalose mixtures, and the cosolvent urea was in excess
in the vicinity of ribonuclease T1 and lysozyme. The derivative of the activity coefficient of the
protein with respect to the mole fraction of water was also calculated. This derivative was negative
for the water/glycerol and water/trehalose mixed solvents and positive for the water/urea mixture.
The mixture of lysozyme in the water/urea solvent is of particular interest, because the lysozyme at
pH 7.0 is in its native state up to 9.3M urea, while at pH 2.0 it is denaturated between 2.5 and 5M
and higher concentrations of urea. Our results demonstrated a striking similarity in the hydration of
lysozyme at both pHs. It is worthwhile to note that the excesses of urea were only weakly
composition dependent on both cases. © 2005 American Institute of Physics.
�DOI: 10.1063/1.2011388�

INTRODUCTION

The addition of one more component �a cosolvent� to
aqueous solutions of proteins can dramatically change the
properties of those solutions, such as the protein solubility,
protein self-assembling, and protein stability.1–6 Indeed, the
solubility of proteins can be essentially changed by the ad-
dition of a third component.1–6 It is well known for a long
time that the addition of certain compounds �such as urea�
can cause protein denaturation, and that other cosolvents,
such as glycerol, sucrose, etc., can stabilize at high concen-
trations the protein structure and preserve its enzymatic
activity.1–6

The most plausible explanation of these observations
could be connected with the preferential interactions of some
cosolvents with the proteins. How the water and cosolvent
interact with the protein, how the water interacts with the
cosolvent, and how much the local composition in the vicin-
ity of the protein surface differs from that in the protein-free
solution are natural questions to be asked.

Timasheff subdivided the cosolvents into several
groups:7 “When a protein molecule is immersed into a sol-
vent consisting of water and another chemical species �a co-
solvent�, the interactions between the protein and the solvent

components may lead to three possible situations: �1� the
cosolvent is present at the protein surface in excess over its
concentration in the bulk �this is what constitutes binding�;
�2� the water is present in excess at the protein surface; this
means that the protein has a higher affinity for water than for
the cosolvent �this situation is referred to as preferential hy-
dration, or preferential exclusion of the cosolvent�; �3� the
protein is indifferent to the nature of molecules �water or
cosolvent� with which it comes in contact, so that no solvent
concentration perturbation occurs at the protein surface.”

One of the characteristics of the effect of a cosolvent on
the behavior of a protein is the preferential binding
parameter.7 It can be defined using various concentration
scales as follows �component 1 is water, component 2 is a
protein, and component 3 is a cosolvent�:

�1� in molal concentrations

�23
�m� � lim

m2→0
��m3/�m2�T,P,�3

, �1�

where mi is the molality of component i , P is the pressure, T
the temperature, and �i is the chemical potential of compo-
nent i.

�2� in molar concentrations

�23
�c� � lim

c2→0
��c3/�c2�T,P,�3

, �2�

where ci is the molar concentration of component i. It should
be noted that �23

�m� and �23
�c� are defined at infinite dilution of
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protein �throughout this paper, only infinitely dilute protein
solutions are considered�.

The preferential binding parameter �23
�m� can be deter-

mined experimentally using various methods such as dialysis
equilibrium,8�a� vapor pressure osmometry,8�b� etc. The pref-
erential binding parameters expressed by Eqs. �1� and �2� can
be calculated in terms of each other and they can have dif-
ferent signs4 �for details see Appendix A�. The theoretical
investigation of the preferential binding parameters is com-
plicated because it involves the thermodynamics of ternary
and, for a number of cosolvents larger than one, multicom-
ponent mixtures. In what follows it will be shown that the
Kirkwood-Buff theory of solution9 can shed some light about
the effect of the addition of one more component to an aque-
ous protein solution. So far there are several publications10–15

in which the Kirkwood-Buff theory of solution �or fluctua-
tion theory� was applied to the analysis of the protein behav-
ior in the presence of a cosolvent. The most important ex-
pression derived in the present paper, which connects the
Kirkwood-Buff theory of solution with the present particular
problem, is that for the preferential binding parameter �23

�c�

�Appendix B�

�23
�c� = c3�G23 − G13� , �3�

where G13 and G23 are the Kirkwood-Buff integrals defined
as9

G�� = �
0

�

�g�� − 1�4�r2dr . �4�

g�� is the radial distribution function between species � and
�, and r is the distance between the centers of molecules �
and �.

One can also write the following expression for the par-
tial molar volume of a protein at infinite dilution in a mixed
solvent �V2

�� in terms of the Kirkwood-Buff theory of
solution:16

V2
� = − c1V1G12 − c3V3G23 + kTkT

� − c1V1G12 − c3V3G23, �5�

where Vi is the partial molar volume of component i, k is the
Boltzmann constant, and kT is the isothermal compressibility
of the mixed solvent.

The Kirkwood-Buff integrals G12 and G23 can be calcu-
lated by combining Eqs. �3� and �5� and using the experi-
mental data for �23

�m�, V2
�, V1 and V3, and the values of G13

calculated from the properties of protein-free mixed solvent.
The Kirkwood-Buff integrals G12 and G23 are of prime inter-
est because they can provide information regarding the be-
havior of a mixed solvent in the vicinity of a protein mol-
ecule.

The knowledge of the Kirkwood-Buff integrals for dilute
mixtures can be very helpful in the analysis of the local
water/cosolvent composition17–21 in the vicinity of a solute
molecule. Ultimately, it can provide information about the
effect of various cosolvents on the protein behavior in aque-
ous solutions.

In the present paper, the Kirkwood-Buff theory of solu-
tions will be used to examine dilute mixtures of proteins in a

mixed solvent as follows: first, explicit expressions for the
Kirkwood-Buff integrals G�� in ternary mixtures will be ob-
tained and used to calculate the preferential binding param-
eters of infinitely dilute mixtures of proteins in aqueous
mixed solvents. Various solution behaviors starting with the
ideal mixture will be considered. The final goal of the paper
is to obtain information about the local composition near a
protein molecule and to predict the preferential binding pa-
rameter in various systems.

THE KIRKWOOD-BUFF INTEGRALS IN TERNARY
MIXTURES

Explicit expressions for the Kirkwood-Buff integrals
G�� in ternary mixtures can be derived as described in the
literature.9,22,23 For an infinitely dilute solute, one can derive
the following expressions �for details see Appendix C�:

G12 = kTkT −
J21V3c3 + J11V2

�c1

�c1 + c1J11 + c3�

−
V3c3�c1 + c3��V1 − V3� + V2

��c1 + c3�
�c1 + c1J11 + c3�

, �6�

G23 = kTkT +
J21V1c1 − J11c1V2

�

�c1 + c1J11 + c3�

+
c1V1�c1 + c3��V1 − V3� − V2

��c1 + c3�
�c1 + c1J11 + c3�

, �7�

and

G13 = kTkT −
�c1 + c3�2V1V3

�c1 + c1J11 + c3�
, �8�

where J11=limx2→0�� ln �1 /�x1�x2
, J21

=limx2→0�� ln �2 /�x1�x2
, xi is the mole fraction of component

i, and �i is the activity coefficient of component i in a mole
fraction scale.

Combining Eqs. �3�, �6�, and �8� yields the following
expression for �23

�c�:

�23
�c� =

c1c3�J21V1 − J11V2
��

�c1 + c1J11 + c3�
+

c3�c1 + c3��V1 − V2
��

�c1 + c1J11 + c3�
. �9�

Equations �6�–�9� are new equations free of any approxi-
mations.

It should be noted that only the derivative J21 and the
partial molar volume of the protein V2

� depend on the protein
characteristics; all the other quantities in Eq. �9� can be de-
termined from the characteristics of the protein-free mixed
solvent. Equation �9� shows that the preferential binding pa-
rameter �23

�c� can be decomposed into the sum of two terms.
One of them, depends on the protein nature, reflected in J21

and V2
�, and the other one depends only on the properties of

the protein-free mixed solvent.
Equations �6�–�9� allows one to derive expressions for

the Kirkwood-Buff integrals G12 and G23, and the preferen-
tial binding parameter �23

�c� for various kinds of ternary mix-
tures.

�1� Ideal ternary mixture �superscript “�id�”�. In this case
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all activity coefficients are equal to unity, all partial
molar volumes are equal to the molar volumes of the
pure components,24 and Eqs. �6�–�9� become

G12
�id� = kTkT

�id� − V3
0c3�V1

0 − V3
0� − V2

0, �10�

G23
�id� = kTkT

�id� + V1
0c1�V1

0 − V3
0� − V2

0, �11�

G13
�id� = kTkT

�id� − �c1 + c3�V1
0V3

0, �12�

and

�23
�c,id� = c3�V1

0 − V2
0� , �13�

where Vi
0 is the molar volume of the pure component i.

Equation �13� shows that the preferential binding param-
eter �23

�c,id� is not zero for an ideal mixture, fact also noted a
long time ago by Hade and Tanford.25

�2� Ideal mixed solvent �superscript “�IS�”� approxi-
mation.26,27 In this case, J11=0 and Eqs. �6�–�9� acquire
the forms

G12
�IS� = kTkT −

J21V3
0c3

c1 + c3
− V3

0c3�V1
0 − V3

0� − V2
�, �14�

G23
�IS� = kTkT +

J21V1
0c1

c1 + c3
+ c1V1

0�V1
0 − V3

0� − V2
�, �15�

G13
�IS� = kTkT − �c1 + c3�V1

0V3
0, �16�

and

�23
�c,IS� =

c1c3J21V1
0

�c1 + c3�
+ c3�V1

0 − V2
�� . �17�

This approximation implies that the interaction between
the solute and the constituents of the mixed solvent is much
stronger than those between the constituents of the mixed
solvent. In other words, the main contribution to the nonide-
ality of the very dilute mixture protein+mixed solvent stems
from the nonideality due to the interactions of the solute with
the mixed solvent and not from the nonideality of the mixed
solvent. Indeed, the experimental data regarding the activity
coefficients indicate that such an assumption is quite plau-
sible for aqueous solutions of large molecules containing
various functional groups, such as proteins, drugs, etc. In-
deed, whereas the activity coefficients of the components of
binary mixtures of water and typical organic cosolvents, such
as alcohols, acetone, acetonitrile, etc., are usually between 1
and 10 and rarely reach few dozens, the activity coefficients
at infinite dilution of large molecules, such as proteins,
drugs, etc., are usually greater than thousand or tens of thou-
sands, or even larger.28–30

THE EXCESS AND DEFICIT NUMBERS OF
MOLECULES OF WATER AND COSOLVENT AROUND
A PROTEIN MOLECULE

The conventional way to calculate the excess �or deficit�
number of i molecules around a central molecule j is based
on the following relation:31

�nij� = ciGij �18�

However, Matteoli and Lepori32 and Mateolli33 observed that
�nij� calculated with Eq. �18� has nonzero values for ideal
binary systems, even though they are expected to vanish. It
was also noted34 that there are many systems for which all
the Kirkwood-Buff integrals in binary systems are negative
in certain ranges of composition. As a result, in such cases all
�nij� would be negative, and this is not plausible.

For the above reasons, it was suggested32–34 to calculate
the excess �or deficit� number of molecules i around a central
molecule j with the following relation:

�nij = ci�Gij − Gij
R� , �19�

where Gij
R is the Kirkwood-Buff integral of a reference state.

Matteoli and Lepori32 and Mateolli33 suggested the ideal so-
lution ��id�� as the reference state because then �nij becomes
zero for an ideal solution. However, intuition suggests that
the excesses and deficits should satisfy the so-called volume
conservation condition32,33 which for a binary mixture can be
formulated as follows: “the volume occupied by the excess i
molecules around a j molecule must be equal to the volume
left free by the j molecules around the same j molecule.”
One can show that the excesses and deficits calculated with
the ideal mixture as reference state do not satisfy the above
volume conservation condition. For this reason, a new refer-
ence state was suggested by Shulgin and Ruckenstein34 in
which all the activity coefficients are taken equal to unity but
there are no constraints on the partial molar volumes of the
components �superscript “�SR�”�. This reference state satis-
fies the volume conservation condition and provides zero
excesses for ideal mixtures for both binary and ternary
mixtures.23,34 However,34,35 far from critical conditions, the
above two reference states provide almost the same results.
In this paper, we consider Gij

R =Gij
�SR�.

For the ��SR�� reference state, Eqs. �6� and �7� for G12

and G23 for an infinitely dilute protein in a mixed solvent can
be recast as follows:

G12
�SR� = kTkT

�SR� − V3c3�V1 − V3� − V2
� �20�

and

G23
�SR� = kTkT

�SR� − V1c1�V1 − V3� − V2
�. �21�

NUMERICAL ESTIMATIONS FOR VARIOUS
SYSTEMS

In order to obtain information regarding the behavior of
various cosolvents in the vicinity of a protein surface, the
following quantities were calculated: �1� the Kirkwood-Buff
integrals G12 and G23 for an infinitely dilute protein in a
mixed solvent, �2� the Kirkwood-Buff integrals G12

�SR� and
G23

�SR� for the reference mixture, �3� the excess �or deficit�
number of molecules of water and cosolvent around a protein
molecule, and �4� the preferential binding parameter �23

�c�.
The Kirkwood-Buff integrals G12 and G23 were calcu-

lated by solving Eqs. �3� and �5�. First, the Kirkwood-Buff
integral G23 was calculated from Eq. �3� by assuming that for
dilute solutions of proteins �G23�	 �G13�. Indeed, �G13�

70 �cm3/mol� for aqueous mixtures of glycerol and
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urea,35,36 while the Kirkwood-Buff integrals for the pairs
containing proteins ��G23� and �G12�� have values of the order
of 104 �cm3/mol� or larger. Second, G12 was calculated using
Eq. �5�.

The Kirkwood-Buff integrals G12
�SR� and G23

�SR� were cal-
culated from Eqs. �20� and �21� �the term involving the iso-
thermal compressibility was omitted because it is much
smaller than the other terms�.

The preferential binding parameter �23
�c� was calculated

with Eq. �17�, in which J21 was considered as an adjustable
composition-independent parameter determined by fitting the
experimental data regarding �23

�c�. Equation �9� can be also
used to calculate �23

�c� if accurate data regarding the activity
coefficients in protein-free mixed solvents are available.

All the above quantities were calculated using experi-
mental information36–40 about the partial molar volumes �V1,
V3, and V2

�� and the preferential binding parameter �23
�m� for

the following mixtures.

�1� Ribonuclease A �2� in water �1�+glycerol �3� mixture
�pH=2.9 and 20 °C�.

�2� Ribonuclease A �2� in water �1�+trehalose �3� mixture
�pH 5.5,20 °C�.

�3� Ribonuclease T1 �2� in water �1�+urea �3� mixture
�pH 7.0,25 °C�.

�4� Lysozyme �2� in water �1�+urea �3� mixture
�pH 7.0,20 °C�.

�5� Lysozyme �2� in water �1�+urea �3� mixture
�pH 2.0,20 °C�.

RESULTS AND DISCUSSION

The results of the calculations are presented in Figs. 1–3
and Table I. Fig. 1�a� presents the Kirkwood-Buff integrals
G12 and G23 for an infinitely dilute ribonuclease A �2� in
water �1�+glycerol �3� mixtures. All the Kirkwood-Buff in-
tegrals have negative values. However, G12 and G23 have
different sign deviations from G12

�SR� and G23
�SR�. The same

observation is valid for all the mixtures investigated. The
calculated excesses and deficits in the vicinity of a molecule
of ribonuclease A are presented in Fig. 2�a� and it should be
emphasized that their values satisfy the volume conservation
condition. Indeed, for a volume fraction of glycerol of 30%
we have the following excesses �or deficits�: �n12

�33.3 moles of water which have a volume of 0.602 liters
and �n23�−8.2 moles of glycerol which have a volume of
0.602 liters. In contrast, the calculations of excesses �or defi-
cits� with the expression �ciGij� provided the following val-
ues for a volume fraction of glycerol of 30%: c1G12=
−341.8 moles of water which have a volume equal
−6.18 liters and c3G23=−48.1 moles of water which have a
volume equal −3.52 liters. A deficit of glycerol in the vicinity
of a protein was also found by Gekko and Timasheff.37

Similar results regarding the Kirkwood-Buff integrals
G12 and G23, and excesses or deficits of water and cosolvent
in the vicinity of a protein molecule were obtained for an
infinitely dilute ribonuclease A �2� in water �1�+trehalose �3�
mixture �See Figs. 1�b� and 2�b��. Again, our calculations
demonstrate that in the vicinity of ribonuclease A at high

FIG. 1. The Kirkwood-Buff integrals
G12 and G23 for an infinitely dilute
protein �2� in water �1�+cosolvent �3�
mixture. The solid line represents
G12

�SR� and G23
�SR� for the reference mix-

ture calculated using Eqs. �20� and
�21�. The numerical values of G12

�SR�

and G23
�SR� are so close to each other

that at the scale of the figure they su-
perpose on a single curve. The symbol
��� represents G12 and the symbol ���
represents G23. The values of G12 and
G23 were calculated by solving Eqs.
�3� and �5�.

�a� Ribonuclease A �2� in
water �1�+glycerol �3�
mixture.

�b� Ribonuclease A �2� in
water �1�+trehalose �3�
mixture.

�c� Ribonuclease T1 �2� in
water �1�+urea �3� mix-
ture.

�d� Lysozyme �2� in water
�1�+urea �3� mixture
�pH=7.0�.

�e� Lysozyme �2� in water
�1�+urea �3� mixture
�pH=2.0�.
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dilution of protein, the water is in excess and trehalose in
deficit compared to the bulk concentrations of protein-free
mixed solvent.

The results regarding the infinitely dilute mixtures of
ribonuclease T1 and lysozyme in water/urea mixtures are
presented in Figs. 1�c�–1�e�, 2�c�–2�e�, and 3�c�–3�e�, and
Table I. Urea is a cosolvent of particular interest because it
can cause protein denaturation, in contrast to glycerol and
trehalose which increase the protein stability. Figures 1�c�,
2�c�, and 3�c� present the results obtained for ribonuclease
T1 �2� in water �1�+urea �3� mixture �pH 7.0,25 °C�. Fig-
ures 1�d�, 2�d�, and 3�d� present the results obtained for
lysozyme �2� in water �1�+urea �3� mixture �pH 7.0,20 °C�
and Figs. 1�e�, 2�e�, and 3�e� present the results obtained for
lysozyme �2� in water �1�+urea �3� mixture �pH 2.0,20 °C�.
Whereas the ribonuclease T1 and the lysozyme at pH 7.0 and
up to 9.3M urea are in their native state, the lysozyme at pH
2.0 becomes denaturated between 2.5 and 5.0M and higher
concentrations of urea. Our calculations showed that urea is
in excess at all compositions.

It is worth recalling here the unpublished 1948 opinion
of W. Kauzmann �as quoted by Timasheff and Xie40� that
“the bulkiness of the cosolvent molecules creates around a
protein molecule a zone that is impenetrable to cosolvent, the
thickness of which is determined by the distance of closest
approach between protein and ligand molecules. This region
can be penetrated by the smaller water molecules. Hence, it
is enriched in water relative to bulk solvent.” However, it is
not clear to what extent this opinion is applicable to urea as
a cosolvent, because urea is also a small molecule �the partial

molar volume of urea at infinite dilution in aqueous mixture
is about 43–44 �cm3/mol��. The literature provides some-
times conflicting viewpoints regarding the local composi-
tions in dilute mixtures of proteins in the water/urea solvent.
Timasheff8�a� pointed out that urea can be both preferentially
bound to and preferentially excluded from the surface of dif-
ferent proteins. Recent molecular-dynamics simulation41 pre-
dicted that most of the constituent groups of ribonuclease T1
either preferentially bind urea or are indifferent to urea or
water. Another recent study42 found that urea is moderately
accumulated in the vicinity of the polar amide surfaces of
proteins and is neither accumulated nor significantly ex-
cluded from the anionic areas of the protein. It is worth not-
ing that the methodology suggested in the present paper al-
lows one to conclude not only whether there is a preferential
hydration or not, but it additionally provides values for the
excesses �or deficits� of water and cosolvent in the vicinity of
a protein molecule.

One should note that the results obtained regarding the
excess �or deficit� of water and cosolvent in the vicinity of a
protein in a multiple solvent are valid for the whole protein
molecule and not for particular functional groups of the pro-
tein. It is perfectly possible for urea to be in excess around
the whole protein molecule but in deficit in the vicinity of
certain functional groups.

It is of interest to compare the excesses �or deficits� of
water and cosolvent in the vicinity of lysozyme ��n12 and
�n23� for water/urea mixed solvent at different pHs �2.0 and
7.0�, because the lysozyme molecule at pH=7.0 and for a
concentration of urea up to 9.3M is in a native state and at

FIG. 2. The excess and deficit number
of molecules of water �n12 �repre-
sented as ���� and cosolvent �n23

�represented as ���� around a mol-
ecule of protein.

�a� Ribonuclease A �2� in
water �1�+glycerol �3�
mixture.

�b� Ribonuclease A �2� in
water �1�+trehalose �3�
mixture.

�c� Ribonuclease T1 �2� in
water �1�+urea �3� mix-
ture.

�d� Lysozyme �2� in water
�1�+urea �3� mixture
�pH=7.0�.

�e� Lysozyme �2� in water
�1�+urea �3� mixture
�pH=2.0�.
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pH=2.0 and for an urea concentration starting between 2.5
and 5.0M and larger in a denaturated one. Figures 2�d� and
2�e� exhibit a striking similarity regarding the excesses �or
deficits� of water and cosolvent in the vicinity of a lysozyme
molecule at both pHs. One should mention that the excess of
urea �deficit of water� has a weak composition dependence
compared to the cases with preferential hydration �ribonu-
clease A in water+glycerol and water+trehalose mixtures�. It
can be caused by a strong preferential interaction of some
functional groups �peptide groups?� of the lysozyme with
urea, the remaining part of lysozyme molecule being sur-
rounded by the “bulk” water/urea mixture. The suggestion
about the remaining part of the lysozyme is in agreement
with the observation35 that the water/urea mixture can be
considered an almost ideal one.

Table I shows that J21 for water/glycerol and water/
trehalose mixtures are negative and J21 for water/urea mix-
ture is positive. Therefore, one can notice a correspondence
between the preferential hydration and the sign of J21. If
water is in excess in the vicinity of a protein molecule J21 is
positive and when the cosolvent is in excess J21 is negative.
J21 depends on the nature of the protein and is expected to
depend on the mixed solvent composition as well. However,
our calculations based on Eq. �17� and the experimental val-
ues of the preferential binding parameter have revealed a
weak composition dependence of this parameter. One can see
from Fig. 3 that the one-parameter �J21� Eq. �17� can accu-
rately represent the preferential binding parameter �23

�c� by
considering J21 as composition independent.

It is of interest to establish a connection between the
preferential binding parameters �23

�c� and �23
�m� and the excess

�deficit� of water or cosolvent near a protein molecule. Does
a positive value of �23

�c� ��23
�m�� mean an excess of cosolvent?

In order to understand this connection one should remember
that �23

�c� and �23
�m� are connected via the relation4 �see Appen-

dix A�,

�23
�c� = �1 − c3V3��23

�m� − c3V2
� �22�

which shows4,43 that �23
�c� and �23

�m� can have different signs.
Some of the mixtures considered in the present papers �ribo-
nuclease T1 in water+urea and lysozyme in water+urea�
exhibit this feature. While for almost all compositions of the
mixed solvent �23

�m� are in above cases positive, �23
�c� is nega-

tive. Our calculations have shown that the sign of �23
�m� indi-

cates preferential hydration when it is positive and preferen-
tial exclusion of water when it is negative.

TABLE I. The derivative J21 of the activity coefficient for the systems
investigated.

System J21

Ribonuclease A �2� in water �1�+
glycerol �3� mixture

−129.85

Ribonuclease A �2� in water �1�+
trehalose �3� mixture

−401.10

Ribonuclease T1 �2� in water �1�
+urea �3� mixture

326.51

Lysozyme �2� in water �1�+urea
�3� mixture �pH 7.0,20 °C�

119.42

Lysozyme �2� in water �1�+urea
�3� mixture �pH 2.0,20 °C�

136.59

FIG. 3. The preferential binding pa-
rameter �23

�c� for an infinitely dilute
protein �2� in water �1�+cosolvent �3�
mixture: comparison between experi-
ment ��� and calculation ��� �Eq.
�14��. The preferential binding param-
eter �23

�c� was calculated using the ex-
perimental values from Refs. 37–40
for �23

�m�.

�a� Ribonuclease A �2� in
water �1�+glycerol �3�
mixture.

�b� Ribonuclease A �2� in
water �1�+trehalose �3�
mixture.

�c� Ribonuclease T1 �2� in
water �1�+urea �3� mix-
ture.

�d� Lysozyme �2� in water
�1�+urea �3� mixture
�pH=7.0�.

�e� Lysozyme �2� in water
�1�+urea �3� mixture
�pH=2.0�.
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CONCLUSION

In the present paper the Kirkwood-Buff theory of ternary
solutions was applied to infinitely dilute proteins in aqueous
mixed solvents. Novel expressions for the Kirkwood-Buff
integrals G12, G23, and G13, and the preferential binding pa-
rameter �23

�c� have been derived and used to calculate the
various properties of infinitely dilute proteins in aqueous
mixed solvents. In particular, the Kirkwood-Buff integrals
G12 and G23, the excess �or deficit� of water and cosolvent,
and the derivatives of the activity coefficients of a protein
and cosolvent were calculated for five different mixtures in-
volving infinitely dilute proteins in various aqueous mixed
solvents.

The results demonstrated that water was in excess in the
vicinity of ribonuclease A for water/glycerol and water/
trehalose mixtures and the cosolvent �urea� was in excess in
the vicinity of ribonuclease T1 and lysozyme.

Other noteworthy results were obtained regarding the
excesses �or deficits� of water and urea for denaturated and
native lysozyme at pH=2.0 and pH=7.0, respectively. The
results demonstrate a striking similarity at both pHs. It
should be mentioned that the urea excesses are in both cases
weak composition dependent.

APPENDIX A: RELATION BETWEEN �23
„m… AND �23

„c…

Because

ci =
xi

V
and dci =

dxi

V
−

xidV

V2 ,

where xi is the mole fraction of component i and V is the
molar volume,

dc2 =
dx2

V
−

x2

V2		 �V

�x2



x3

dx2 + 	 �V

�x3



x2

dx3

and

dc3 =
dx3

V
−

x3

V2		 �V

�x2



x3

dx2 + 	 �V

�x3



x2

dx3
 .

By dividing the latter two equations one obtains

	 �c3

�c2

 = �− x3	 �V

�x2



x3

+ 	V − x3	 �V

�x3



x2


dx3

dx2

	V − x2	 �V

�x2



x3


 − x2	 �V

�x3



x2

dx3

dx2

� . �A1�

In terms of molalities,

m2 =
1000x2

M1x1
and m3 =

1000x3

M1x1

from which one obtains

dm2 =
1000dx2

M1x1
+

1000x2d�x2 + x3�
M1�x1�2 ,

dm3 =
1000dx3

M1x1
+

1000x3d�x2 + x3�
M1�x1�2 ,

and

	dm3

dm2

 = 	 x3 + �x1 + x3�dx3/dx2

�x1 + x2� + x2�dx3/dx2�
 . �A2�

In terms of mole fractions, the preferential binding pa-
rameter �23

�x� is defined as

�23
�x� � lim

x2→0
��x3/�x2�T,P,�3

. �A3�

At infinite dilution of the protein, Eqs. �A1� and �A3�
lead to

�23
�c� =

− x3�V2
� − V1� + V1�23

�x�

x1V1 + x3V3
�A4�

and Eqs. �A2� and �A3� to

�23
�m� =

x3 + �23
�x�

x1
. �A5�

Consequently

�23
�c� = �1 − c3V3��23

�m� − c3V2
�. �A6�

Equation �A6� was derived in a different manner in Ref.
4.

APPENDIX B: DERIVATION OF EQ. „3…

Because

d�3 = 	 ��3

�T



P,x
dT + 	 ��3

�P



T,x
dP + 	 ��3

�x2



T,P,x3

dx2

+ 	 ��3

�x3



T,P,x2

dx3,

one can write that

��x3/�x2�T,P,�3
= −

���3/�x2�T,P,x3

���3/�x3�T,P,x2

. �B1�

Expressing limx2→0���3 /�x3�T,P,x2
and

limx2→0���3 /�x2�T,P,x3
in terms of the Kirkwood-Buff

integrals,23 one obtains

�23
�x� =

c1c3�G23 − G13 + G11 − G12�
c1 + c3

, �B2�

which combined with Eq. �A4� and relations for V2
�, V1, and

V3 in terms of the Kirkwood-Buff integrals23 yields Eq. �3�
of the text. It should be mentioned that Eq. �3� for �23

�c� differs
from that used in the literature.10–13

APPENDIX C: ANALYTICAL EXPRESSIONS FOR THE
KIRKWOOD-BUFF INTEGRALS IN TERNARY
MIXTURE

The Kirkwood -Buff integrals in an n-component mix-
ture can be obtained from the following relation:9
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G�� =
��A���

N��N���A�
−

���

c�

, �C1�

where N�� and N�� are the average numbers of molecules
of � and �, respectively, in the volume �, ��� is the Kro-
necker symbol ����=1 for �=� and ���=0 for ����, c� is
the bulk molecular concentration of species ��c�= N�� /��,
�A��� represents the cofactor of A�� in the determinant �A�,
and A�� is given by9

A�� =
1

kT		 ���

�N�



T,P,N�

+
����

kT� 
 . �C2�

In Eq. �C2� k is the Boltzmann constant, T the absolute tem-
perature, P the pressure, �� the chemical potential per mol-
ecule of species �, �� and �� are the partial molar volumes
per molecule of species � and �, respectively, and kT is the
isothermal compressibility.

Equation �C1� can be recast in the following form:

G�� =
�A���

�c�c��A�
−

���

c�

. �C3�

The above equations are valid for any n-component sys-
tem. For ternary mixtures, the Kirkwood-Buff integrals can
be obtained from �C3� using for ���= ���� /�N��T,P,N�

the
expressions22

�̄11 = �1 − x1�	 ��1

�x1



x2

− x2	 ��1

�x2



x1

, �C4�

�̄22 = �1 − x2�	 ��2

�x2



x1

− x1	 ��2

�x1



x2

, �C5�

�̄33 =
1

x3
�x1

2	 ��1

�x1



x2

+ x1x2�	 ��1

�x2



x1

+ 	 ��2

�x1



x2

�
+ x2

2	 ��2

�x2



x1

� , �C6�

where �̄��= �N1+N2+N3����.
For ���= ���� /�N��T,P,N�

with ���, the following ex-
pression were obtained using the Gibbs-Duhem equation:22

��� =
c�

2��� − c�
2��� − c�

2���

2c�c�

with � � �,� . �C7�

The derivatives of the chemical potentials at constant
pressure and temperature can be expressed in terms of the
activity coefficients �i as follows:22

	 ��1

�x1



x2

= RT� 1

x1
+ 	 � ln �1

�x1



x2

� , �C8�

	 ��2

�x2



x1

= RT� 1

x2
+ 	 � ln �2

�x2



x1

� , �C9�

	 ��1

�x2



x1

= RT	 � ln �1

�x2



x1

, �C10�

and

	 ��2

�x1



x2

= RT	 � ln �2

�x1



x2

. �C11�

where R is the universal gas constant.
Combining Eqs. �C4�–�C11� with Eqs. �C2� and �C3�

allows one to obtain the following Kirkwood-Buff integrals
of ternary mixtures for an infinitely dilute solute �of course,
the numerous algebraic transformations necessary could be
carried out by using an algebraic software such as MATH-

EMATICA or MAPLE�,

G12 = kTkT − J12
V3�c1 + c3�

2�c1 + c1J11 + c3�
− J21

V3c3

2�c1 + c1J11 + c3�

+ J11
V3c1 − 2V2

�c1

2�c1 + c1J11 + c3�
−

V3c3�c1 + c3��V1 − V3�
�c1 + c1J11 + c3�

−
V2

��c1 + c3�
�c1 + c1J11 + c3�

, �C12�

G23 = kTkT + J12
V1c1�c1 + c3�

2c3�c1 + c1J11 + c3�

+ J21
V1c1

2�c1 + c1J11 + c3�
− J11

c1�V1c1 + 2c3V2
��

2c3�c1 + c1J11 + c3�

+
c1V1�c1 + c3��V1 − V3�

�c1 + c1J11 + c3�
−

V2
��c1 + c3�

�c1 + c1J11 + c3�
,

�C13�

and

G13 = kTkT −
�c1 + c3�2V1V3

�c1 + c1J11 + c3�
, �C14�

where J11=limx2→0�� ln �1 /�x1�x2
, J12=limx2→0�� ln �1 /

�x2�x1
, and J21=limx2→0�� ln �2 /�x1�x2

. However, J11, J12, and
J21 are not independent quantities. Indeed, it was shown
that9,44

J11 = −
c3�c1 + c3��G11 + G33 − 2G13�

c1 + c3 + c3c1�G11 + G33 − 2G13�
, �C15�

J12 = −
c3�c1 + c3��G33 + G12 − G13 − G23�
c1 + c3 + c3c1�G11 + G33 − 2G13�

, �C16�

and
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J21 =
�c1 + c3��c1�G11 + G23 − G12 − G13� + c3�− G12 − G33 + G13 + G23��

c1 + c3 + c3c1�G11 + G33 − 2G13�
. �C17�

After some algebraic manipulations of Eqs.
�C15�–�C17�, the following relation between the derivatives
J11, J12, and J21 was obtained

J12 = �c1J11 + c3J21�/�c1 + c3� . �C18�

The insertion of Eq. �C18� into Eqs. �C12� and �C13�
provides the following expressions for G12 and G23 at infinite
protein dilution:

G12 = kTkT −
J21V3c3 + J11V2

�c1

�c1 + c1J11 + c3�

−
V3c3�c1 + c3��V1 − V3� + V2

��c1 + c3�
�c1 + c1J11 + c3�

, �C19�

G23 = kTkT +
J21V1c1 − J11c1V2

�

�c1 + c1J11 + c3�

+
c1V1�c1 + c3��V1 − V3� − V2

��c1 + c3�
�c1 + c1J11 + c3�

. �C20�
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Abstract

The present paper is devoted to the derivation of a relation between the preferential solvation of a protein in a binary aqueous solution and

its solubility. The preferential binding parameter, which is a measure of the preferential solvation (or preferential hydration) is expressed in

terms of the derivative of the protein activity coefficient with respect to the water mole fraction, the partial molar volume of protein at infinite

dilution and some characteristics of the protein-free mixed solvent. This expression is used as the starting point in the derivation of a

relationship between the preferential binding parameter and the solubility of a protein in a binary aqueous solution.

The obtained expression is used in two different ways: (1) to produce a simple criterion for the salting-in or salting-out by various

cosolvents on the protein solubility in water, (2) to derive equations which predict the solubility of a protein in a binary aqueous solution in

terms of the preferential binding parameter. The solubilities of lysozyme in aqueous sodium chloride solutions (pH=4.5 and 7.0), in aqueous

sodium acetate (pH=8.3) and in aqueous magnesium chloride (pH=4.1) solutions are predicted in terms of the preferential binding parameter

without any adjustable parameter. The results are compared with experiment, and for aqueous sodium chloride mixtures the agreement is

excellent, for aqueous sodium acetate and magnesium chloride mixtures the agreement is only satisfactory.

D 2005 Elsevier B.V. All rights reserved.

Keywords: Protein; Aqueous mixed solvent; Preferential binding parameter; Solubility

1. Introduction

The solvation behavior of a macromolecule such as a

protein in a binary aqueous solvent is important in the

understanding of such solutions [1–5]. A macromolecule

can be preferentially hydrated when the concentration of

water in the vicinity of the macromolecule (local

concentration of water) is higher than the bulk concen-

tration. The macromolecule can be preferentially solvated

when the concentration of the cosolvent in the vicinity of

the macromolecule is higher than the bulk cosolvent

concentration. A measure of the solvation (or hydration)

is the preferential binding parameter [2–6], which can be

defined using various concentration scales (component 1

is water, component 2 is a protein and component 3 is a

cosolvent):

(1) in molal concentrations

C mð Þ
23 u lim

m2Y0
Bm3=Bm2ð ÞT ;P;l3

ð1Þ

where mi is the molality of component i, P is the

pressure, T the temperature (throughout this paper

only isothermal–isobaric conditions are considered),

and li is the chemical potential of component i.

(2) in molar concentrations

C cð Þ
23u lim

c2Y0
Bc3=Bc2ð ÞT ;P;l3

ð2Þ

where ci is the molar concentration of component i. It

should be noted that C23
(m) and C23

(c) are defined at

infinite dilution of the protein.

0301-4622/$ - see front matter D 2005 Elsevier B.V. All rights reserved.
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Many characteristics of a protein in aqueous solvents

are connected to its preferential solvation (or preferential

hydration). The protein stability is a well-known example.

Indeed, the addition of certain compounds (such as urea)

can cause protein denaturation, whereas the addition of

other cosolvents, such as glycerol, sucrose, etc. can

stabilize at high concentrations the protein structure and

preserve its enzymatic activity [4–7]. The analysis of

literature data shows that as a rule C23
(m) >0 for the former

and C23
(m)<0 for the latter compounds. Recently, the

authors of the present paper showed how the excess (or

deficit) number of water (or cosolvent) molecules in the

vicinity of a protein molecule can be calculated in terms

of C23
(m), the molar volume of the protein at infinite

dilution and the properties of the protein-free mixed

solvent [8]. The protein solubility in an aqueous mixed

solvent is another important quantity which can be

connected to the preferential solvation (or hydration)

[9–13] and can help to understand the protein behavior

[9–17].

The aim of the present paper is to establish a relation

between: (1) the preferential solvation (or hydration) of a

protein and (2) the protein solubility in an aqueous mixed

solvent. The obtained relation will be used to predict the

protein solubility in an aqueous solvent in terms of the

preferential binding parameter.

The preferential binding parameter C23
(m) can be

measured experimentally using various methods such as

sedimentation [4], dialysis equilibrium [7], vapor pressure

osmometry [14], etc. and has been determined for

numerous systems [2–7,9–13,18–22]. It is of interest to

use these experimental results for the evaluation of protein

solubility.

The results obtained will be presented as follows: (1)

firstly a relation between the protein solubility and the

preferential binding parameter in a binary solvent will be

established; (2) secondly the established relation will be

used to derive criteria for the effect of cosolvents

(salting-in or salting-out), (3) thirdly the experimental

data for the preferential binding parameter C23
(m) will be

used to predict the protein solubility and the obtained

results will be compared with available experimental

data.

2. Theoretical part

In a previous paper [8], the following expression for

the preferential binding parameter C23
(c) was derived on

the basis of the Kirkwood–Buff theory of ternary

solutions:

C cð Þ
23 ¼

c1c3 J21V1 � J11V
V
2

� �
c1 þ c1J11 þ c3ð Þ þ

c3 c1 þ c3ð Þ V1 � VV
2

� �
c1 þ c1J11 þ c3ð Þ

ð3Þ

where Vi is the partial molar volume of component i, V2
V

is the partial molar volume of a protein at infinite dilution

in a mixed solvent,

J11 ¼ lim
x2Y0

Blnc1
Bx1

� �
x2

;

J21 ¼ lim
x2Y0

Blnc2
Bx1

� �
x2

;

xi is the mole fraction of component i, and ci is the

activity coefficient of component i at a mole fraction

scale.

It should be noted that the quantities C23
(c), V2

V and J21 of

Eq. (3) depend on the nature of the protein, while all the

other ones are related to the properties of the protein-free

mixed solvent.

Eq. (3) can be rewritten as

J21 ¼
Blnc2
Bx1

� �
x2¼0

¼ �
c3 c1 þ c3ð ÞV1 � C cð Þ

23 þ c3V
V
2

� �
c1 þ c1J11 þ c3ð Þ

c1c3V1

ð4Þ

Because [2,8,23]

C cð Þ
23 ¼ 1� c3V3ð ÞC mð Þ

23 � c3V
V
2 ð5Þ

and experiment provides C23
(m), Eq. (4) can be recast in the

form

Blnc2
Bx1

� �
x2¼0

¼ � c3 c1 þ c3ð ÞV1 � C mð Þ
23 1� c3V3ð Þ c1 þ c1J11 þ c3ð Þ

c1c3V1

ð6Þ

For poorly soluble solids, such as the proteins, one can

use the infinite dilution approximation and consider that the

activity coefficient of the protein in a mixed solvent is equal

to that at infinite dilution. Therefore, for the solubility y2 of

a protein (solute, component 2) in a mixed solvent 1–3, one

can write the following equation [24]:

f S2 =f
L
2 T ;Pð Þ ¼ y2c

V
2 ð7Þ

where c2
V is the activity coefficient of a protein in a mixed

solvent at infinite dilution, f2
L(T,P) is the hypothetical

fugacity of a solid as a (subcooled) liquid at a given pressure

(P) and temperature (T), and f2
S is the fugacity of the pure

solid component 2. If the solubility of the mixed solvent in

the solid phase is negligible, then the left hand side of Eq.

(7) depends only on the properties of the solute.
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The combination of Eqs. (6) and (7) yields the following

relation for the solubility of a protein in a mixed solvent

Blny2

Bx1

� �
¼c3 c1 þ c3ð ÞV1 � C mð Þ

23 1� c3V3ð Þ c1 þ c1J11 þ c3ð Þ
c1c3V1

ð8Þ

2.1. Salting-in or salting-out?

Eq. (8) allows one to derive a criterium for salting-in or

salting-out for small cosolvent concentrations. Starting from

the Gibbs–Duhem equation for a binary mixture

x1
dlnc1
dx1

þ x3
dlnc3
dx1

¼ 0 ð9aÞ

one can conclude that

lim
x3Y0

J11 ¼ 0 ð9bÞ

Eq. (8) can be therefore written for c3Y0 in the form

Blny2

Bx3

� �
¼ � Blny2

Bx1

� �
¼ a

V 0
1

� 1 ð10Þ

where a ¼ limc3Y0
C mð Þ
23

c3
and V1

0 is the molar volume of pure

water. Salting-in occurs when

Blny2

Bx3

� �
> 0; hence when a > V 0

1 ð11Þ

and salting-out occurs when

Blny2

Bx3

� �
< 0; hence when a < V 0

1 ð12Þ

It is well-known [8,19,25,26] that the preferential bind-

ing parameter C23
(m) is proportional to the concentration of

the cosolvent at least at low concentrations. Consequently

the salting-in or salting-out depends on the slope of the

curve C23
(m) versus concentration for small c3. The applica-

tion of the established criteria to salting-in or salting-out in

real systems is illustrated in Table 1.

The above criteria (Eqs. (11) and (12)) are valid:

(1) for c3Y0, hence when a small amount of cosolvent is

added to the pure water;

(2) for ternary mixtures (water (1)–protein (2)–cosolvent

(3)) (the experimental results regarding the preferen-

tial binding parameter) C23
(m) and the solubilities were

obtained for mixtures which involve in addition a

buffer, and the effect of the buffer is taken into

account only indirectly via the preferential binding

parameter C23
(m));

(3) for infinite dilution (this means that the protein

solubility is supposed to be small enough to satisfy

the infinite dilution approximation (c2;c2
V));

(4) for experimental preferential binding parameters )

C23
(m) and solubilities determined at low cosolvent

concentrations (however, the preferential binding

parameter C23
(m) and the solubilities were usually

determined for molalities larger than 0.5 and those

values had to be used for the cases listed in Table 1

because no other experimental data are available).

2.2. Simple equation for the protein solubility in a mixed

solvent

The combination of Eqs. (4) and (7) leads to the

following expression for the solubility of a protein in a

mixed solvent

Blny2

Bx1

� �
¼

c3 c1 þ c3ð ÞV1 � C cð Þ
23 þ c3V

V
2

� �
c1 þ c1J11 þ c3ð Þ

c1c3V1

ð13Þ
The integration of Eq. (13) yields for the solubility y2 of

the protein in a mixed solvent for a water mole fraction x1
the expression

ln
y2

yw2
¼
Z x1

1

V1 � VV
2 � C cð Þ

23 =c3

� �
dx1

x1V1

�
Z x1

1

C cð Þ
23 =c3 þ VV

2

� �
J11

V1

dx1 ð14Þ

where y2
w is the protein solubility in cosolvent-free water

plus buffer.

Eq. (14) allows one to calculate the protein solubility if

the composition dependencies of J11, C23
(c) (or C23

(m)) and

partial molar volumes are available.

Table 1

Application of criteria (Eqs. (11),(12)) for salting-in or salting-out to aqueous solutions of proteins

Protein Cosolventa Experimental data used Do the criteria (Eqs.

(11) (12)) work?Solubility (salting-in or salting-out,

conditions, references)

Preferential binding parameter C23
(m)

(conditions, references)

Lysozyme NaCl Salting-out, T =0–40 -C, pH=3–10 [27–31] pH=4.5 [32], pH=3–7 [12] Yes

Lysozyme MgCl2 Salting-out, T =18 -C, pH=4.5 [27] pH=3.0, 4.5 [13] Yes

Lysozyme NaAcO Salting-out, T =18 -C, pH=4.5, 8.3 [27] pH=4.5–4.71 [32] Yes

Ribonuclease Sa Urea Salting-in, T =25 -C, pH=3.5, 4.0 [16] pH=2.0, 4.0, 5.8 [33]b Yes

Lysozyme Glycerol Salting-in, T =25 -C, pH=4.6 [34] pH=2.0, 5.8 [35] No

h-Lactoglobulin NaCl Salting-in, T =25 -C, pH=5.15–5.3 [36] pH=1.55–10 [12] No

a The term ‘‘cosolvent’’ is also used here for electrolytes.
b The preferential binding parameters were determined for ribonuclease A in 30 vol.% glycerol solution.
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Eq. (14) can be simplified if one takes into account that at

least at low cosolvent concentrations C23
(c) is proportional to

the concentration c3(C23
(c)=bc3) [8,19,25,26] and by assum-

ing in addition that the partial molar volumes V2
V and V1 are

composition independent. With these two approximations,

Eq. (14) becomes

ln
y2

yw2
¼

V1 � VV
2 � b

� �
V1

lnx1 �
bþ VV

2

� �
V1

lnc1ð Þx2¼0

ð15aÞ
and hence

ln
y2

yw2
¼ �

VV
2 þ b

� �
lnaw

V1

þ lnx1 ð15bÞ

where aw is the water activity in the protein-free mixed

solvent. Taking into account Eq. (5) and the relation
CðmÞ
23

c3
¼ a, Eq. (15b) can be recast as follows

ln
y2

yw2
¼ �

a� V3C
mð Þ
23

� �
lnaw

V1

þ lnx1,�
a� V3C

mð Þ
23

� �
lnaw

V1

ð16Þ

Because as noted a long time ago [4] V3C23
(m) ‘‘is two order

of magnitude smaller’’ than a, aHV3C23
(m), and Eq. (16) can

be further simplified to

ln
y2

yw2
¼ � alnaw

V1

ð17Þ

Eqs. (14) (15a) (15b) (16) (17) provide interrelations

between the preferential binding parameter C23
(c) (or C23

(m))

and the protein solubility in a mixed solvent.

3. Calculations

In order to illustrate the results obtained regarding the

solubility, several systems, for which experimental data

regarding both the preferential binding parameter and the

protein solubility in a mixed solvent were available, were

selected. The solubilities of proteins were calculated with

Eq. (17). In order to predict the solubility of a protein as a

function of composition one should have information about

y2
w, V1, a and the composition dependence of the activity of

water aw in the protein-free mixed solvent. The values of y2
w

were taken from the original references regarding the

solubilities [28,29], V1 was taken equal to the molar volume

of pure water at a given temperature, and a was calculated

from the original references regarding the preferential

binding parameters [12,32]. The concentration dependence

of the activity of water aw in protein-free mixed solvents

were calculated from the experimental data for the osmotic

coefficient u [37–39] using the expression [24]

lnaw ¼ � uMwm3m ð18Þ

whereMw is the molar weight of water, m3 is the molality of

the cosolvent in the protein-free mixed solvent, and m is the

number of ions formed through complete dissociation of the

electrolyte.

3.1. Water (1)–Lysozyme (2)–Sodium Chloride (3)

The lysozyme solubilities in aqueous solutions of sodium

chloride are predicted for pH=4.5 and pH=6.5. In these

predictions only the values of the preferential binding

parameter were used and no additional (or adjustable)

parameters were involved. The results are presented in Figs.

1 and 2 and the experimental preferential binding param-

eters used are listed in Table 2. The solubilities at pH=6.5

were predicted from the preferential binding parameter

determined at pH=7.0 because the values for pH=6.5 were

not available. The concentration dependence of the water

activity in solutions of sodium chloride was obtained from

Eq. (18) using an accurate semiempirical equation for the

osmotic coefficient [37].

3.2. Water (1)–Lysozyme (2)–Sodium Acetate (3)

The lysozyme solubilities in aqueous solutions of

sodium acetate were calculated for pH=8.3 and the results

are presented in Fig. 3. The experimental preferential

binding parameters are listed in Table 2 (the values for

pH=4.68–4.7 were, however, used because those for

pH=8.3 were not available). The concentration depend-

ence of the water activity in solutions of sodium chloride

was obtained from Eq. (18) using the Pitzer equation for

the osmotic coefficient [38].

3.3. Water (1)–Lysozyme (2)–Magnesium Chloride (3)

The lysozyme solubilities in aqueous solutions of

magnesium chloride were calculated for a pH=4.1 and the

results are presented in Fig. 4. The experimental preferential

binding parameter is listed in Table 2 (the value for pH=4.5
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0                    0.5 1                    1.5 2

y2 [mg/ml]

NaCl, molarity 

Fig. 1. Lysozyme solubility in aqueous solutions of sodium chloride at

pH=4.5. The solid line represents the prediction based on Eq. (17), (o) and

(r) are the experimental data from Refs. [27,28], respectively.
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was used because that for pH=4.1 was not available). The

concentration dependence of the water activity in solutions

of magnesium chloride was obtained from Eq. (18) using

the Pitzer equation for the osmotic coefficient [39]. For this

system, the solubility data for y2
w was not available and

therefore the experimental solubility [27] for m3=0.4 (5.8

[mg/ml]) was employed as the lower limit of integration in

Eq. (14). Using the approximations involved in the

derivation of Eq. (17), one obtains

ln
y2

y24
¼ � aln aw=aw4ð Þ

V1

ð19Þ

where y2* and aw* are the molar fraction solubility and the

water activity, respectively, both at m3=0.4.

3.4. Comments regarding the solubility predictions

The scheme employed to predict the solubility of a

protein in a mixed solvent involves a number of

simplifications:

(1) The derived equations (Eqs. (14) (15a) (15b) (16)

(17)) involve the infinite dilution approximation

(c2;c2
V).

2) The equations are established for a ternary mixture

(water (1)–protein (2)–cosolvent (3)). However, all

the experimental results regarding the preferential

binding parameter C23
(m) and the solubility involve in

addition to the above three components also a

buffer. The effect of the buffer is taken into account

only indirectly via the preferential binding parameter

C23
(m).

3) The parameter a was determined as the slope of the

composition dependence of the preferential binding

parameter C23
(m), assuming that the latter is propor-

tional to the concentration.

4. Discussion

In the present paper, a connection between the

preferential binding parameter of a protein and its

solubility in an aqueous solvent was established. The

preferential binding parameter is a measure of the protein /

water and protein / cosolvent interaction at molecular level

[6,19]. Regarding the preferential binding parameter,

Timasheff subdivided the cosolvents into several groups

[6]: ‘‘When a protein molecule is immersed into a solvent

consisting of water and another chemical species (a

cosolvent), the interactions between the protein and the

Table 2

Experimental preferential binding parameters used for solubility predictions

Protein Cosolvent Molality pH Preferential

binding

parameter

C23
(m)

[mol/mol]

Reference

Lysozyme NaCl 1 4.5 �6.2 [12]

Lysozyme NaCl 1 7.0 �5.8 [12]

Lysozyme NaAcO 0.5

and 1

4.68 and

4.71

�5.14 and

�7.5
[32]

Lysozyme MgCl2 1 4.5 �1.79 [32]
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Fig. 3. Lysozyme solubility in aqueous solutions of sodium acetate at

pH=8.3. The solid line represents the prediction based on Eq. (17), (o) are

the experimental data from Ref. [29].
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Fig. 4. Lysozyme solubility in aqueous solutions of magnesium chloride at

pH=4.1. The solid line represents the prediction based on Eq. (17), (o) are

the experimental data from Ref. [27].
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Fig. 2. Lysozyme solubility in aqueous solutions of sodium chloride at

pH=6.5. The solid line represents the prediction based on Eq. (17), (o) are

the experimental data from Ref. [28].
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solvent components may lead to three possible situations:

(1) the cosolvent is present at the protein surface in excess

over its concentration in the bulk (this is what constitutes

binding); (2) the water is present in excess at the protein

surface; this means that the protein has a higher affinity for

water than for the cosolvent (this situation is referred to as

preferential hydration, or preferential exclusion of the

cosolvent); (3) the protein is indifferent to the nature of

molecules (water or cosolvent) with which it comes in

contact, so that no solvent concentration perturbation

occurs at the protein surface’’.

The present analysis shows that the same classification

can be made with respect to the effect of a small amount of a

cosolvent on the protein solubility in an aqueous solvent

(see Eqs. (11) and (12)). Namely, the cosolvents of the first

Timasheff’s group (e. g. urea) increase the protein solubility

compared to the solubility in water when a small amount is

added to water. Compounds of the second group (e. g. salts)

decrease the solubility and they are well-known salting-out

agents [14]. Substances of the third group (we have no

example) do not essentially change the solubility compared

to the solubility in pure water.

The present paper emphasizes how the preferential

binding parameter is related to the solubility and how the

preferential binding parameter can be used to predict the

solubility. Eq. (13) (or its equivalent Eq. (8) ) provides

the most general equation that connects the preferential

binding parameter and the solubility. The integration of

this equation leads to Eq. (14) which allows one to

predict the protein solubility in a mixed solvent if the

composition dependencies of J11, C23
(c) (or C23

(m)) and

partial molar volumes are available. A simplified form of

Eqs. (14) and (17), can predict the solubility if informa-

tion about y2
w, V1, a and the composition dependence of

the activity of water aw in a protein-free mixed solvent is

available. Eq. (17) was used in this paper to predict the

protein solubility in an aqueous mixed solvent. The results

of predictions (Figs. 1–4) demonstrate that the exper-

imental data regarding the preferential binding parameter

could be successfully used to predict the solubility of

proteins in aqueous mixed solvents. It should be pointed

out that no additional parameters (adjustable parameters)

were used. However, the present approach involves a

number of approximations, among which the infinite

dilution approximation deserves an additional comment,

because the solubility of some proteins can be relatively

large. For example, the solubility of lysozyme in aqueous

solutions of sodium chloride at pH=4.5 can be as high as

365 mg/ml. However, in the mole fraction scale, this

solubility is smaller than 5 10�4 (2000 molecules of water

per molecule of lysozyme), value which seems to be

sufficiently low for the system to be considered dilute.

The accuracy of the predictions are highly dependent on

the quality of experimental data regarding the preferential

binding parameter, the solubility and the water activity in

protein-free mixed solvents.

5. Conclusion

A relationship between the derivative of the activity

coefficient of the protein with respect to the mole fraction of

water at infinite dilution of protein and the preferential

binding parameter was used to connect the solubility of a

protein in an aqueous mixed solvent to the preferential

binding parameter. This relation was used to examine the

salting-in and salting-out effect of various compounds on the

protein solubility in water and to predict the protein

solubility.
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Comment to the Editor

A Protein Molecule in a Mixed Solvent: The Preferential Binding
Parameter via the Kirkwood-Buff Theory

In a recent article (Schurr, J. M., D. P. Rangel, and S. R.

Aragon. 2005. A contribution to the theory of preferential

interaction coefficients. Biophys. J. 89:2258–2276), a de-

tailed derivation of an expression for the preferential binding

coefficient via the Kirkwood-Buff theory of solutions was

presented. The authors of this Comment (Shulgin, I. L., and

E. Ruckenstein. 2005. A protein molecule in an aqueous

mixed solvent: fluctuation theory outlook. J. Chem. Phys.
123:054909) also recently established on the basis of the

Kirkwood-Buff theory of solutions an equation for the pref-

erential binding of a cosolvent to a protein. There are other

publications that relate the preferential binding parameter to

the Kirkwood-Buff theory of solutions for protein 1 binary

mixed solvents. The expressions derived in the two articles

mentioned above are different because the definitions of the

preferential binding parameter are different. However, there

are articles in which the definitions of the preferential bind-

ing parameter are the same, but the derived equations that

relate the preferential binding parameter to the Kirkwood-

Buff integrals are different. The goal of this Comment is to

examine the various expressions that relate the preferential

binding parameter to the Kirkwood-Buff theory.

INTRODUCTION

An important characteristic of a solution of a protein

(component 2) in a mixture water (1) 1 cosolvent (3) is the

preferential binding parameter G
ðmÞ
23 (1–6)

G
ðmÞ
23 [ lim

m2/0
ð@m3=@m2ÞT;P;m3

; (1)

where mi is the molality of component i, P is the pressure, T
is the absolute temperature, and mi is the chemical potential

of component i. The preferential binding parameter can be

also defined at a molarity scale by

G
ðcÞ
23 [ lim

c2/0
ð@c3=@c2ÞT;P;m3

; (2)

where ci is the molar concentration of component i. It should

be emphasized that G
ðmÞ
23 and G

ðcÞ
23 are defined at infinite pro-

tein dilution.

The preferential binding parameter G
ðmÞ
23 was determined

experimentally (5–7) and provides information regarding the

interactions between a protein and the components of the

mixed solvent. As a rule (1–5), G
ðmÞ
23 , 0; the protein is

preferentially hydrated, for cosolvents such as glycerol,

sucrose, etc., which can stabilize at high concentrations the

protein structure and preserve its enzymatic activity (3–5),

and G
ðmÞ
23 . 0; the protein is preferentially solvated by co-

solvents (such as urea), which can cause protein denatur-

ation.

In literature (8) a number of different definitions of the

preferential binding parameter (coefficient) have been em-

ployed. They can be connected by thermodynamic relations

for ternary mixtures (8). In this Comment the preferential

binding parameter will be mostly defined by Eqs. 1 and 2.

Because the preferential binding parameter is a meaningful

physical quantity, attempts have been made to relate it to

a general theory of solutions, such as the Kirkwood-Buff

theory of solutions (9). Several authors reported results in

this direction (10–17). The authors of this Comment derived

the following equation for G
ðcÞ
23 (16):

G
ðcÞ
23 ¼ c3ðG232G13Þ; (3)

where G13 and G23 are the Kirkwood-Buff integrals defined

as (9)

Gab ¼
Z N

0

ðgab21Þ4pr2dr; (4)

where gab is the radial distribution function between species

a and b; and r is the distance between the centers of mo-

lecules a and b:
Equation 3 differs from the expression of G

ðcÞ
23 employed in

Shimizu (10,11):

G
ðcÞ
23 ¼ c3ðG232G12Þ: (5)

In a recent article in this journal (17), the Kirkwood-Buff

theory of solutions was used to express the preferential bind-

ing coefficient G3ð2Þ; defined as

G3ð2Þ [ 2 lim
c2/0
ð@m2=@m3ÞT;P;c2 ; (6)

in terms of the Kirkwood-Buff integrals. It was found (17)

that

G3ð2Þ ¼ c3ðG232G12Þ: (7)

As noted in Schurr et al. (17) the preferential binding

coefficient G3ð2Þ defined by Eq. 6 differs from the pref-

erential binding parameter G
ðcÞ
23 defined by Eq. 2.
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However, Eqs. 3 and 5 are different equations even though

they are based on the same definition of the preferential

binding parameter and have the same theoretical basis: the

Kirkwood-Buff theory of solutions. To make a selection

between Eqs. 3 and 5 a simple limiting case, the ideal ternary

mixture, will be examined using the traditional thermody-

namics, and the results will be compared to those provided

by Eqs. 3 and 5.

IDEAL TERNARY MIXTURE

Let us consider an ideal ternary mixture. According to the

definition of an ideal mixture (18), the activities of the com-

ponents (ai) are equal to their mol fractions (xi) and their

partial molar volumes are equal to those of the pure

components (Vi ¼ V0
i ).

Because

d m3 ¼
@m3

@T

� �
P; c2; c3

dT1
@m3

@P

� �
T; c2; c3

dP1
@m3

@c2

� �
T; P; c3

dc2

1
@m3

@c3

� �
T; P; c2

dc3; (8)

one can write for an ideal mixture

G
ðcÞ
23 [ lim

c2/0
ð@c3=@c2ÞT; P;m3

¼ 2 lim
c2/0

@m3

@c2

� �
T; P; c3

@m3

@c3

� �
T; P; c2

¼ 2 lim
c2/0

@ ln x3
@c2

� �
T; P; c3

@ ln x3
@c3

� �
T; P; c2

: (9)

For isothermal-isobaric conditions

dc2 ¼
dx2
V

2
x2

V
2

@V

@x2

� �
x3

dx21
@V

@x3

� �
x2

dx3

 !
; (10)

and

dc3 ¼
dx3
V

2
x3

V
2

@V

@x2

� �
x3

dx21
@V

@x3

� �
x2

dx3

 !
; (11)

where V is the molar volume of the ternary mixture.

When c3 is a constant, Eqs. 10 and 11 lead to

@c2
@x3

� �
c3

¼
V2x2

@V

@x2

� �
x3

2x3
@V

@x3

� �
x2

x3V
@V

@x2

� �
x3

; (12)

and when c2 is a constant, Eqs. 10 and 11 lead to

@c3
@x3

� �
c2

¼
V2x2

@V

@x2

� �
x3

2x3
@V

@x3

� �
x2

V V2x2
@V

@x2

� �
x3

 ! : (13)

By inserting Eqs. 12 and 13 into Eq. 9 at infinite dilution

of component 2, one obtains the following expression for

G
ðcÞ
23 of an ideal ternary mixture:

G
ðcÞ
23 ðidealÞ ¼ c3ðV0

12V
0

2Þ: (14)

On the other hand, expressions for G
ðcÞ
23 for an ideal ternary

solution can be also derived by combining Eq. 3 or Eq. 5

with the following Kirkwood-Buff integrals for ideal ternary

mixtures (16):

G
ðidÞ
12 ¼ kTk

ðidÞ
T 2V

0

3c3ðV
0

12V
0

3Þ2V
0

2 (15)

G
ðidÞ
23 ¼ kTk

ðidÞ
T 1V

0

1c1ðV
0

12V
0

3Þ2V
0

2 (16)

G
ðidÞ
13 ¼ kTk

ðidÞ
T 2ðc11c3ÞV0

1V
0

3 ; (17)

where k is the Boltzmann constant and kT is the isothermal

compressibility.

Equation 3 leads to

G
ðcÞ
23 ðidealÞ ¼ c3ðV0

12V
0

2Þ; (18)

whereas Eq. 5 to

G
ðcÞ
23 ðidealÞ ¼ c3ðV0

12V
0

3Þ: (19)

DISCUSSION

One can see that the result obtained on the basis of Eq. 3

(Eq. 18) coincides with Eq. 14 derived from general ther-

modynamic considerations, whereas that based on Eq. 5

does not. The numerical difference between the two ex-

pressions is very large because the molar volume of a protein

is, usually, much larger than the molar volume of the co-

solvent.

Whereas the above discussion involves G
ðcÞ
23 ; the quantity

G
ðmÞ
23 ; which is usually determined experimentally (2–7), is

related to G
ðcÞ
23 through the equation (1,16)

G
ðcÞ
23 ¼ ð12c3V3ÞGðmÞ23 2c3V

N
2 ; (20)

where VN
2 is the partial molar volume of the protein at

infinite dilution. VN
2 and V3 can be expressed at infinite

dilution of component 2 in terms of the Kirkwood-Buff

integrals as follows (19):
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and (9)

V3 ¼
11ðG112G13Þc1

c11c31c1c3ðG111G3322G13Þ
: (22)

By combining Eqs. 3, 20, 21, and 22, one obtains after

some algebra the following simple expression:

G
ðmÞ
23 ¼

c3
c1
1c3ðG232G121G112G13Þ: (23)

Whereas G12 and G23 depend on the protein character-

istics, G11 and G13 depend only on the characteristics of the

protein-free mixed solvent.

For usual cosolvents (organic solvents, salts, etc.), one can

use the following approximation of Eq. 23 in the dilute co-

solvent range:

G
ðmÞ
23 � c3ðG232G12Þ: (24)

Indeed, jG11j and jG13j are much smaller than the

Kirkwood-Buff integrals for the pairs involving the protein

(jG12j and jG23j). Table 1 provides their values for the

system water (1) 1 lysozyme (2) 1 urea (3) (pH 7.0, 20�C).
However, when jG11j and jG13j are large, and this oc-

curs when the cosolvent is, for example, a polymer (G13 �
21000 (cm3/mol) for the system water/polyethylene glycol

2000 at a weight fraction of polyethylene glycol of 0.02

(21)), the complete Eq. 23 should be used. This conclusion is

valid for all large cosolvent molecules (polymers, biomole-

cules, etc.).

Let us consider the biochemical equilibrium between

infinitely dilute native (N) and denaturated (D) states of a

protein in a mixed solvent. The changes of the preferential

binding parameters G
ðcÞ
23 ; G

ðmÞ
23 ; and G3ð2Þ in this process are

given by

DG
ðcÞ
23 ¼ c3ðG23ðDÞ2G23ðNÞÞ ¼ c3DG23 (25)

DG
ðmÞ
23 ¼ c3ðG23ðDÞ2G23ðNÞ2G12ðDÞ1G12ðNÞÞ
¼ c3ðDG232DG12Þ; (26)

and

DG3ð2Þ ¼ c3ðG23ðDÞ2G23ðNÞ2G12ðDÞ1G12ðNÞÞ

¼ c3ðDG232DG12Þ ¼ DG
ðmÞ
23 : (27)

Equations 25 and 26 follow from Eqs. 3 and 23 by taking

into account that G11 and G13 are characteristics of the

protein-free mixed solvent at infinite protein dilution.

The equilibrium constant K of biochemical equilibrium

between infinitely dilute native (N) and denaturated (D)
states of a protein in a mixed solvent can be expressed in

terms of DG
ðmÞ
23 (22)

@ lnK

@ ln a3

� �
T; P;m2

¼

@m3

@m2

� �N

T; P;m3

2
@m3

@m2

� �D

T; P;m3

@m3

@m3

� �
T; P;m2

¼ DG
ðmÞ
23 ;

(28)

where DG
ðmÞ
23 can be provided by experiment (23).

Using for G12 and G23 expressions from Shulgin and

Ruckenstein (16), Eq. 28 can be also rewritten in the form

@ lnK

@ ln a3

� �
T; P;m2

¼ c3DJ21
c11c1J111c3

; (29)

where J11¼ limx2/0ð@ lng1=@x1Þx2 ; J21¼ limx2/0ð@ ln
g2=@x1Þx2 ; and gi is the activity coefficient of component i

at a mol fraction scale. Let us note that J11 is characteristic of
the protein-free mixed solvent at infinite protein dilution.

We are indebted to Prof. J. Michael Schurr (Dept. of Chemistry, University

of Washington, Seattle, WA) for helpful comments regarding this

manuscript and for drawing our attention to the fact that the coefficients

G3ð2Þ and G
ðcÞ
23 are different.
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Abstract

This paper is focused on the local composition around a protein molecule in aqueous mixtures containing polyethylene glycol (PEG) and the
solubility of proteins in water+PEG mixed solvents. Experimental data from literature regarding the preferential binding parameter were used to
calculate the excesses (or deficits) of water and PEG in the vicinity of β-lactoglobulin, bovine serum albumin, lysozyme, chymotrypsinogen and
ribonuclease A. It was concluded that the protein molecule is preferentially hydrated in all cases (for all proteins and PEGs investigated). The
excesses of water and deficits of PEG in the vicinity of a protein molecule could be explained by a steric exclusion mechanism, i.e. the large
difference in the sizes of water and PEG molecules.

The solubility of different proteins in water+PEG mixed solvent was expressed in terms of the preferential binding parameter. The slope of the
logarithm of protein (lysozyme, β-lactoglobulin and bovine serum albumin) solubility versus the PEG concentration could be predicted on the
basis of experimental data regarding the preferential binding parameter. For all the cases considered (various proteins, various PEGs molecular
weights and various pHs), our theory predicted that PEG acts as a salting-out agent, conclusion in full agreement with experimental observations.
The predicted slopes were compared with experimental values and while in some cases good agreement was found, in other cases the agreement
was less satisfactory. Because the established equation is a rigorous thermodynamic one, the disagreement might occur because the experimental
results used for the solubility and/or the preferential binding parameter do not correspond to thermodynamic equilibrium.
© 2005 Elsevier B.V. All rights reserved.

Keywords: Protein; Aqueous polyethylene glycol; Preferential binding parameter; Solubility; Fluctuation theory

1. Introduction

Polyethy1ene glycol (PEG), one of the most useful protein
salting-out agents, is considered to be the most successful
precipitant for protein crystallization [1]. Unlike ethanol and
other organic precipitating agents, PEG has little tendency to
denature or to specifically interact with the proteins even when
present in high concentrations and at elevated temperatures [2].
One can also vary its molecular weight in order to select the
best choice for the precipitation of a particular protein. McPher-
son considers that PEG may be the best reagent for crystallizing
proteins and that the optimum PEG molecular weight for this
purpose is between 2000 and 6000 [2]. The optimum PEG
molecular weight was selected on the basis of the viscosity of

the solution, the denaturation action of aqueous PEG and pro-
tein solubility. It should also be mentioned that PEG is neither
corrosive nor toxic, is not inflammable and has a very low
vapor pressure [1]. In addition, polyethylene glycol is available
commercially in good quality at reasonable prices.

However, the mechanism of PEG induced precipitation is
almost unknown. The interactions between the protein (com-
ponent 2), PEG (3) and water (1) as well as the local properties
of PEG+water mixed solvent near the protein surface are of
particular interest from this point of view.

One of the most informative experimental quantity for the
understanding of the above issues is the preferential binding
parameter [3–9]. The preferential binding parameter can be
expressed at different concentration scales:

1) in molal concentrations

CðmÞ23 u lim
m2Y0
ðAm3=Am2ÞT ;P;l3 ð1Þ
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where mi is the molality of component i, P is the pressure, T the
temperature (throughout this paper only isothermal–isobaric
conditions are considered), and μi is the chemical potential of
component i.

2) in molar concentrations

CðcÞ23u lim
c2Y0
ðAc3=Ac2ÞT ;P;l3 ð2Þ

where ci is the molar concentration of component i. It should be
noted that Γ23

(m) and Γ23
(c) are defined at the infinite dilution of

the protein.
Several authors reported measurements of the preferential

binding parameter in the system water (1)/protein (2)/PEG (3)
[10–14]. It was found that for various proteins, various PEGs
molecular weights, and various PEG concentrations, the protein
is preferentially hydrated and the PEG is excluded from the
vicinity of the protein molecule. The prevalent viewpoint
which explains such a behavior is based on the steric exclusion
mechanism suggested by Kauzmann and cited in Ref. [15].
According to this mechanism [12,14], the deficit of PEG and
the excess of water (in comparison with the bulk concentrations)
are located in the shell (volume of exclusion) between the
protein surface and a sphere of radius R (see Fig. 1) [12,14].
However, Lee and Lee [10,11] suggested that the preferential
exclusion of the PEG from the protein surface also involves the
protein hydrophobicity and charge.

In our recent publication [16], it was shown how the exper-
imental data regarding the preferential binding parameter can
be used to calculate the excess (or deficit) of water and cosol-
vent in the vicinity of a protein molecule. The methodology,
based on the Kirkwood–Buff theory of solutions [17], allowed
one to compare the concentrations of water and cosolvent
molecules in the vicinity of the protein molecule with the

bulk solution concentrations (water+cosolvent mixture) in ab-
sence of the protein molecule and ultimately to draw a conclu-
sion about the preferential hydration or preferential solvation.
Furthermore, such data allowed one to analyze the ability of a
cosolvent to stabilize a protein, because the preferential hydra-
tion of a protein in an aqueous solution containing an organic
compound is related to the ability of the latter to stabilize the
structure of the protein [18–20].

Another important use of the preferential binding parameter
is its connection to the protein solubility. The authors of the
present paper [21] showed that the preferential binding param-
eter is closely related to the solubility of a protein in a mixed
solvent and that the experimental data regarding the preferential
binding parameter can be used to predict how a cosolvent
changes the solubility (salting-in or salting-out) or even to
predict the solubility in a wide range of cosolvent
concentrations.

Consequently, three important characteristics of the protein
behavior in aqueous solutions (stability, preferential hydration
(or solvation) and solubility) can be related to the preferential
binding parameter. For instance, the addition of glycerol leads to
an excess of water in the vicinity of the protein [16], i.e. the
protein is preferentially hydrated; in addition, glycerol can be
used to stabilize the native structure of the protein [18]. Glycerol
also decreases the solubility of the protein, i.e. glycerol is a
salting-out agent [21]. In contrast, the addition of urea leads to
an excess of urea in the vicinity of the protein [22], i.e. the
protein is preferentially solvated [18]. Urea increases the solu-
bility of the protein, i.e. urea induces a salting-in effect [21]. In
addition, it is well-known that urea can cause protein denatur-
ation [4–6,22]. A similar analysis can be carried out for such an
important cosolvent as the polyethy1ene glycol.

In the present paper, the Kirkwood–Buff theory of solutions
will be used to examine dilute mixtures of various proteins in
aqueous solutions containing PEGs of different molecular
weights in terms of the preferential binding parameter. As
already mentioned, extensive experimental data regarding the
preferential binding parameter in the systems water/protein/
PEG are available in the literature [10–14].

The purpose of the present analysis is two-fold: (i) to exam-
ine the local composition of a mixed solvent around different
proteins in dilute solutions of proteins in water/PEG mixed
solvents as a function of the PEG concentration and molecular
weight and to use the obtained results to identify the mecha-
nism of protein hydration in the presence of PEG, and (ii) to
predict the solubility of proteins in water/PEG mixed solvents.
Finally, the obtained results are compared with experiments
available in the literature.

From a theoretical viewpoint, the present analysis can allow
one to better understand the interactions between a protein and
the constituents of a mixed solvent in the system water/protein/
PEG and how these interactions differ from those between a
protein and the constituents of a mixed solvent containing
“regular” and not polymeric cosolvents. From a practical per-
spective, the results of this paper could allow one to better
understand and improve the design of protein precipitation
techniques with polyethylene glycol.

Protein molecule 

         R
R1

PEG 
molecule 

R2

Fig. 1. The excess of water (in comparison with the bulk concentration) is
located in the shell (volume of exclusion) between the protein surface and a
sphere with an effective radius R=R1+R2, where R1 is the radius of the protein
molecule and R2 is the radius of the PEG molecule (it is supposed that both the
protein and the PEG molecules have spherical shapes). This figure is adapted
from Refs. [12,14].
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2. Theoretical part

2.1. Expressions for the preferential binding parameter via the
Kirkwood–Buff integrals

It was demonstrated that the preferential binding parameters
Γ23

(m) and Γ23
(c) can be expressed via the Kirkwood–Buff inte-

grals as follows [23]:

CðmÞ23 ¼
c3
c1
þ c3ðG23−G12 þ G11−G13Þ ð3Þ

and [16]

CðcÞ23 ¼ c3ðG23−G13Þ ð4Þ

where Gαβ are the Kirkwood–Buff integrals defined as [17]

Gab ¼
Z l

0
ðgab−1Þ4kr2dr ð5Þ

gαβ is the radial distribution function between species α and β,
and r is the distance between the centers of molecules α and
β.

The Kirkwood–Buff integrals G11 and G13 can be calculated
from the characteristics of the protein-free mixed solvents,
whereas G12 and G23 depend on the properties of the infinitely
dilute protein solutions [16].

One can also write the following expression for the partial
molar volume of a protein at infinite dilution in a mixed
solvent (V2

∞) in terms of the Kirkwood–Buff theory of solution
[24]

Vl
2 ¼ −c1V1G12−c3V3G23 þ kTkTi−c1V1G12−c3V3G23 ð6Þ

where Vi is the partial molar volume of component i, k is the
Boltzmann constant, and kT is the isothermal compressibility
of the mixed solvent. The partial molar volumes V1 and V3 are
those for the protein- free mixed solvent, and the contribution
of kTkT is usually negligible in comparison with c1V1G12 and
c3V3G23.

Experimental data regarding Γ23
(m) and V2

∞ are available in the
literature for many water/protein/cosolvent systems [4–14,18–
20,22]. The Kirkwood–Buff integrals G11 and G13 are for the
binary mixture water/cosolvent and can be calculated as de-
scribed in the literature [24–28]. The Kirkwood–Buff integrals
G12 and G23 can be calculated from Eqs. (3) and (6) using
experimental data for Γ23

(m), V2
∞, V1 and V3.

2.2. Analytical expressions for the Kirkwood–Buff integrals
G12, G23, G11 and G13 at infinite dilution of a protein

The analytical expressions for the Kirkwood–Buff integrals
G12, G23, G11 and G13 at infinite dilution of a protein are helpful
in analyzing the different factors that affect the preferential
binding parameter and ultimately the preferential hydration or

solvation. The following analytical expressions for the Kirk-
wood–Buff integrals G12 and G23 can be written [16]:

G12 ¼ kTkT−
J21V3c3 þ J11Vl

2 c1
ðc1 þ c1J11 þ c3Þ

−
V3c3ðc1 þ c3ÞðV1−V3Þ þ Vl

2 ðc1 þ c3Þ
ðc1 þ c1J11 þ c3Þ

ð7Þ

and

G23 ¼ kTkT þ
J21V1c1−J11c1Vl

2

ðc1 þ c1J11 þ c3Þ
þ c1V1ðc1 þ c3ÞðV1−V3Þ−Vl

2 ðc1 þ c3Þ
ðc1 þ c1J11 þ c3Þ

ð8Þ

where J11 ¼ limx2Y0
Alng1
Ax1

� �
x2
, J21 ¼ limx2Y0

Alng2
Ax1

� �
x2
, xi is the

mole fraction of component i, and γi is the activity coefficient
of component i in a mole fraction scale. The expressions for the
Kirkwood–Buff integrals G11 and G13 are also well-known
from the literature (see for example [26,27])

G11 ¼ kTkT−
ðc1 þ c3Þ2V1V3

ðc1 þ c1J11 þ c3Þ
þ ðc1 þ c3ÞðV3−V1Þ−J11
ðc1 þ c1J11 þ c3Þ

ð9Þ

and

G13 ¼ kTkT−
ðc1 þ c3Þ2V1V3

ðc1 þ c1J11 þ c3Þ
: ð10Þ

Expressions for G12, G23, G11 and G13 for an ideal ternary
mixture at infinite dilution of a protein can be obtained from
Eqs. (7)–(10) by taking into account that according to the
definition of an ideal mixture [29], the activities of the compo-
nents are equal to their mole fractions (xi) and their partial
molar volumes are equal to those of the pure components
(Vi=Vi

0 ). These expressions are [16]

GðidÞ12 ¼ kTkðidÞT −V 0
3 c3ðV 0

1−V
0
3 Þ−V 0

2 ð11Þ

GðidÞ23 ¼ kTkðidÞT þ V 0
1 c1ðV 0

1−V
0
3 Þ−V 0

2 ð12Þ

GðidÞ11 ¼ kTkðidÞT −ðc1 þ c3ÞV 0
1V

0
3 þ V 0

3−V
0
1 ð13Þ

and

GðidÞ13 ¼ kTkðidÞT −ðc1 þ c3ÞV 0
1V

0
3 : ð14Þ

All the above equations will be later used in the calculations
of the excesses and deficits of the constituents of a mixed
solvent in the vicinity of a protein surface.

2.3. Excess and deficit numbers of molecules of water and
cosolvent around a protein molecule

The conventional way to calculate the excess number of
molecules i around a molecule j (Δnij′) is provided by the
relation [25]:

DnijV ¼ ciGij: ð15Þ
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However, as noted by Matteoli and Lepori [30] and Matteoli
[31], the above expression leads for an ideal binary mixture to
non-zero values, even though they are expected to vanish. For
the above reasons, Eq. (15) was replaced by [27,30,31]:

Dnij ¼ ciðGij−GR
ijÞ ð16Þ

where Gij
R is the Kirkwood–Buff integral of a reference state.

Matteoli and Lepori [30] and Matteoli [31] suggested the ideal
solution ((id)) as the reference state because then Δnij becomes
zero for an ideal solution, as intuition suggests that it should
be. Shulgin and Ruckenstein [27] suggested a reference state
in which all the activity coefficients are equal to unity but
there are no constraints on the partial molar volumes of the
components (superscript (SR)). This reference state provides
zero excesses for ideal mixtures for both binary and ternary
mixtures [27,32]. It also satisfies the volume conservation
condition, which for a binary mixture can be expressed as
“the volume occupied by the excess i molecules around a j
molecule must be equal to the volume left free by the j
molecules around the same j molecule” [30,31]. Far from
critical conditions, the above two reference states provide
almost the same results [27,33]. In this paper, we consider
Gij
R=Gij

(SR).
For the ((SR)) reference state, Eqs. (7) and (8) for G12 and

G23 for an infinitely dilute protein in a mixed solvent can be
recast as follows [16]:

GðSRÞ12 ¼ kTkðSRÞT −V3c3ðV1−V3Þ−Vl
2 ð17Þ

and

GðSRÞ23 ¼ kTkðSRÞT −V1c1ðV1−V3Þ−Vl
2 : ð18Þ

G12 and G23 will be first calculated by combining Eqs. (3)
and (6) with experimental data regarding the preferential bind-
ing parameter Γ23

(m) and the partial molar volumes V2
∞, V1 and

V3. Furthermore the excess (or deficit) number of molecules of
water and PEG around a protein molecule will be calculated
using Eq. (16).

2.4. Relationship between preferential interaction of a protein
in an aqueous PEG solution and protein solubility

The solubility of a protein in a water+cosolvent mixture
depends on many factors such as temperature, cosolvent
concentration, pH, type of buffer used, etc. The solubilities
of proteins in aqueous PEGs solutions have been investi-
gated both experimentally [34–42] and theoretically
[38,41,43–48].

The experimental results showed that: (i) the addition of
PEG decreases the protein solubility; (ii) the low molecular
weight PEG is a less effective precipitant than the high molec-
ular weight PEG, and (iii) the log of protein solubility versus
PEG concentration is linear. The authors of the present paper
[21] recently derived the following relation for the solubility of

a protein in a mixed solvent as a function of the cosolvent mole
fraction

Alny2
Ax3

� �
¼ −

c3ðc1 þ c3ÞV1−C
ðmÞ
23 ð1−c3V3Þðc1 þ c1J11 þ c3Þ

c1c3V1

ð19Þ

where y2 is the protein solubility in mole fraction.
Eq. (19) is a rigorous thermodynamic equation at infinite

protein dilution. It allows one to derive a simple criteria for
salting-in or salting-out for low cosolvent concentrations. At
low cosolvent concentrations (c3→0)

Alny2
Ax3

� �
¼ −

Alny2
Ax1

� �
¼ a

V 0
1

−1 ð20Þ

where a ¼ limc3Y0
CðmÞ23
c3

and V1
0 is the molar volume of pure

water. Consequently, one can conclude that for low cosolvent
concentrations salting-in occurs when

Alny2
Ax3

� �
N 0; hence when a NV 0

1 ð21Þ

and salting-out occurs when

Alny2
Ax3

� �
b 0; hence when abV 0

1 : ð22Þ

It is well-known [8,49,50] that the preferential binding pa-
rameter Γ23

(m) is, at least at low cosolvent concentrations, pro-
portional to the cosolvent concentration. Consequently salting-
in or salting-out depends on the slope of the curve Γ23

(m) versus
concentration for small values of c3.

The above criteria for salting-in or salting-out (Eqs. (21),
(22)) are valid [21]: (i) for c3→0, hence when a small amount
of cosolvent is added to pure water; (ii) for ternary mixtures
(water (1)–protein (2)–cosolvent (3)) (it should be emphasized
that the experimental results regarding the preferential binding
parameter Γ23

(m) and the solubilities are usually for mixtures
which involve in addition a buffer, and the effect of the buffer
is taken into account only indirectly via the preferential binding
parameter Γ23

(m) ); (iii) for infinite dilution (this means that the
protein solubility is supposed to be small enough to satisfy the
infinite dilution approximation (γ2≅γ2

∞, where γ2
∞ is the activ-

ity coefficient of a protein at infinite dilution)); (iiii) for exper-
imental preferential binding parameters Γ23

(m) and solubilities
determined at low cosolvent concentrations.

Physically speaking, Eq. (20) provides the slope of a curve
representing the dependence of log mole fraction of the solu-
bility versus the cosolvent mole fraction.

The following expression for protein solubility in a dilute
cosolvent solution can be derived from Eq. (19), when Γ23

(m) is
proportional to c3 [21]:

ln
y2
yw2
¼ −
ða−V3C

ðmÞ
23 Þlnaw
V1

þ lnx1c−
ða−V3C

ðmÞ
23 Þlnaw
V1

¼ −
ð1−V3c3Þalnaw

V1
¼ −c1alnaw ð23Þ
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where y2
w is the protein solubility in the cosolvent-free water

plus buffer and aw is the water activity in the protein-free mixed
solvent. Eq. (23) allows one to calculate the protein solubility if
the composition dependence of Γ23

(m) is available (aw and the
partial molar volumes V1 and V3 are characteristics of the
protein-free mixed solvent).

3. Numerical estimations for various water/protein/PEG
systems

3.1. Kirkwood–Buff integrals and the excess (or deficit)
number of molecules of water and PEG around a protein
molecule

The Kirkwood–Buff integrals and the excess (or deficit)
number of molecules of water and PEG around a protein
molecule were calculated for β-lactoglobulin (β-LG), bovine
serum albumin (BSA), lysozyme, chymotrypsinogen and ribo-
nuclease A (RNase A). Experimental data regarding Γ23

(m) and
V2
∞ for these systems are available in the literature [11,12,14].

The partial molar volumes V1 and V3 in the aqueous solutions
of PEGs were calculated using the experimental data and the
correlations suggested in Ref. [51].

The Kirkwood–Buff integrals G12 and G23 were calculated
from Eqs. (3) and (6) using experimental data for Γ23

(m), V2
∞, V1

and V3. The difference between G11 and G13 in the right hand
side of Eq. (3) was calculated using the expression (see Eqs. (9)
and (10)):

G11−G13 ¼
ðc1 þ c3ÞðV3−V1Þ−J11
ðc1 þ c1J11 þ c3Þ

cV3−V1: ð24Þ

The above approximation simplifies the calculations without
affecting much the accuracy (see Appendix).

The calculated Kirkwood–Buff integrals G12 and G23 can be
found in the Supplementary Material.

The excess (or deficit) numbers of molecules of water and
PEG (Δn12 and Δn23) around a protein molecule were calculat-
ed using Eq. (16) and are listed in Table 1. The results demon-
strate that in all cases there is preferential exclusion of PEG from
the surface of the protein, conclusion in agreement with previ-
ous observations [10–14]. There is only one exception (water/
lysozyme/PEG 200, at a concentration of 10 g PEG/100 ml
solution). However, this is probably caused by the inaccuracy
in the experimental value of Γ23

(m) (according to the authors of
Ref. [12], for this composition, Γ23

(m) =0.66±1.32 [mol/mol]).
In order to better understand why PEG is preferentially

excluded from the vicinity of a protein molecule, we calculated
the excess (or deficit) number of molecules of water and PEG
around a protein molecule as a function of the PEG molecular
weight at a constant PEG weight concentration. The results of
the calculations are presented in Fig. 2 (only the Δn12s are
plotted; Δn23 can be calculated using the balance relation
V3Δn23=−V1Δn12). One can see from Fig. 2 that the excess
number of molecules of water around a protein increases mono-
tonically with increasing PEG molecular weight (and, respec-
tively, molar volume) in agreement with the above mentioned
steric exclusion mechanism.

In order to provide additional insight on the PEG exclusion,
the dependence of the excess number of molecules of water in
the vicinity of a protein molecule is plotted against the volume
of exclusion (VS ), volume inaccessible to the PEG molecules in
the vicinity of a protein molecule (see Fig. 1). The volume of
exclusion (cm3/mol protein) was calculated using the expres-
sion [12,14]:

VS ¼ ð4kNA=3Þ½ðR1 þ R2Þ3−R3
1�d10−24 ð25Þ

where NA is Avogadro's number.
The radii of various protein molecules were taken from Ref.

[14] where they were estimated from the partial specific
volumes of the proteins and protein molecular weights. The
radii of the PEG molecules were taken equal to their radii of
gyration [14]. The dependence of the excess number of mole-
cules of water in the vicinity of a protein molecule against the
volume of exclusion is presented in Fig. 3. It shows that in all
cases the excess number of molecules of water in the vicinity of
a protein molecule is almost proportional to the exclusion
volume. This proportionality constitutes an argument in the
favor of the steric exclusion mechanism. However, one should
note that the excess water molecules are assumed to be located
in the volume of exclusion and it is supposed that both the
protein and the PEG molecules have spherical shapes.

Table 1
The excess (or deficit) number of molecules of water and PEG around a protein
molecule as a function of cosolvent concentration

System g of PEG/100
ml of solution

Δn12
[mol/mol]

Δn23
[mol/mol]

ΔV [l/mol
protein]A

Water/lysozyme/PEG
400 (pH=3.0) [11]B

2.8 109.9 −5.9 2.0
5.6 160.6 −8.6 2.9
11.2 186.1 −10.0 3.4
22.4 211.6 −11.4 3.8
33.6 240.8 −12.9 4.4
44.8 211.1 −11.1 3.8

Water/lysozyme/PEG
1000 (pH=3.0) [11]

2.5 45.6 −1.0 0.8
5 44.6 −1.0 0.8

10 85.1 −1.8 1.5
20 115.8 −2.5 2.1
30 138.8 −3.9 2.5

Water/lysozyme/PEG
4000 (pH=3.0) [11]

0.5 45.5 −0.2 0.8
1.25 135.6 −0.7 2.5
2.5 166.1 −0.9 3.0
3.75 170.5 −0.9 3.1

Water/β-LG/PEG
200 (pH=2.0) [12]

10 −5.0 0.5 −0.1
20 18.1 −2.0 0.3
30 18.8 −2.0 0.3
40 14.2 −1.5 0.3

Water/1.2 β-LG/PEG
400 (pH=2.0) [12]

30 66.0 −3.5 1.2
40 57.2 −3.0 1.0

Water/β-LG/PEG 600
(pH=2.0) [12]

10 53.7 −1.9 1.0
20 79.4 −2.9 1.4
30 59.6 −2.1 1.1

Water/β-LG/PEG 1000
(pH=2.0) [12]

10 104.3 −2.2 1.9
20 109.6 −2.4 2.0
30 105.5 −2.3 1.9

AΔV is the volume occupied by the excess of water (or by the deficit of PEG)
molecules around a protein molecule, Bthe source of experimental data regard-
ing Γ23

(m) and V2
∞ used in calculations.
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A steric exclusion mechanism implies that a geometric fac-
tor and not an energetic one, such as the differences in the
intermolecular interactions between the constituents of the
water+protein+PEG mixtures is responsible for the local com-
position around a protein molecule. This constitutes the main
difference between the preferential binding in water+protein+
PEG mixtures and water+protein+ low molecular weight
cosolvents (such as urea, glycerol, alcohol, etc.) mixtures.

3.2. Solubility of different proteins in water+PEG mixed
solvents

Generally the experimental data regarding the solubility of a
protein in a water+PEG mixture are presented as a linear
dependence of the logarithm of the solubility versus the PEG
concentration. Eq. (23) can be used for solubility calculations
when the values of y2

w are available; unfortunately, such data
could not be found in the literature. Eq. (20) can be, however,

used to predict the slope of the solubility curve and this pre-
diction can be compared with experiment. The calculated and
measured results are listed in Table 2. Table 2 reveals that for
various proteins and various PEGs molecular weights, Eq. (20)
predicts a negative slope Alny2

Ax3

� �
at c3=0, and hence a salting-

out effect of PEG on protein solubility. Such a conclusion is in
agreement with most experimental data regarding the protein
solubility in aqueous PEG mixtures [34–42]. However, there
are a few investigations [52,53] in which a salting-in effect of
PEG on protein solubility was found. One can also see from
Table 2 that there is no complete agreement between the exper-
imental solubilities of various proteins in aqueous PEG mix-
tures obtained in different laboratories. For example, the value
of Alny2

Ax3

� �
¼ −0:08 at c3=0 for the solubility of BSA in water+

PEG 3350 at pH=4.6 [41] is very different from Alny2
Ax3

� �
¼

−0:23 at c3=0 for the solubility of HSA in water+PEG 4000 at
pH=4.5 [38]. These two cases are, however, very similar and
one should expect the slopes to be comparable.
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Fig. 2. Dependence of Δn12 [mol/mol] on molecular weight of PEG (M3) for various proteins: a) BSA (pH=3.0), b) BSA (pH=7.0), c) chymotrypsinogen (pH=3.0),
d) lysozyme (pH=7.0), e) RNase A (pH=2.0). Experimental data regarding Γ23

(m) and V2
∞ for these systems were taken from Ref. [14].
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It should also be mentioned that there are large discrepancies
between the experimental values for the preferential binding
parameter Γ23

(m) obtained by different authors. For example,
Γ23

(m) =−2.0 [mol/mol] for BSA in water/PEG 1000 at 10%
PEG (w/v) and pH=3 [11], and for the same concentration
Γ23

(m) =−7.21 [mol/mol] (at pH=2) [14]. Another example,
Γ23

(m) =−2.45 [mol/mol] for β-LG in water/PEG 1000 at 10%
PEG (w/v) and pH=2 [12], and for the same concentration
Γ23

(m) =−0.18 [mol/mol] (at pH=3) [11]. Such large differences
led to the scattering in predicted solubilities.

Our Eqs. (19) and (23) are rigorous thermodynamic rela-
tions which provide a relation between the protein solubility
and the preferential binding parameter Γ23

(m). These thermody-
namic equations provide a consistency test between the pro-
tein solubility Alny2

Ax3

� �
and the preferential binding parameter

Γ23
(m). If either the protein solubility and/or the preferential

binding parameter do not correspond to thermodynamic equi-
librium, then Eqs. (19) and (23) cannot be satisfied. We
employed all available experimental data regarding the pref-
erential binding parameter for the systems water (1)+protein
(2)+PEG (3) to calculate the slope of the protein solubility

Alny2
Ax3

� �
at c3=0 and compared the calculated values with the

experimental ones. Table 2 shows that there are cases in
which there is a reasonable agreement between the experi-
mental and the predicted values. This occurs, for instance, for
the solubility of BSA (HSA) in water+high (larger or equal
to 4000) molecular weight PEG. There are, however, also
cases in which there are differences as large as a factor of
six. As already emphasized, in the latter cases either the
solubility and/or the preferential binding parameter deter-
mined experimentally do not correspond to thermodynamic
equilibrium.
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Fig. 3. Dependence of Δn12 [mol/mol] on the volume of exclusion (VS) for various proteins: a) BSA (pH=3.0), b) BSA (pH=7.0), c) chymotrypsinogen (pH=3.0),
d) lysozyme (pH=7.0), e) RNase A (pH=2.0). The dashed lines are shown for comparison. Experimental data regarding Γ23

(m) and V2
∞ for these systems were taken

from Ref. [14].
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According to experimental observations [34–41], the loga-
rithm of the protein solubility versus PEG concentration exhi-
bits linearity over a wide range of PEG concentrations. Eq.
(23) allows one to examine this issue. For the sake of simplic-
ity only the dilute region (m3b0.5) was considered. It is worth
noting that most of the experimental measurements of the
preferential binding parameter Γ23

(m) and protein solubility for
the system water+protein+PEG were carried out in this com-
position range [11–14,34–42]. In this composition range the
preferential binding parameter Γ23

(m) is proportional to the con-
centration of the cosolvent [8,49,50] and Eq. (23) becomes a

rigorous one. Eq. (23) reveals that the linearity (or nonlinear-
ity) of lny2 versus the PEG concentration depends entirely on
the characteristics of the protein-free mixed solvent water/
PEG. The dependence of the product c1lnaw on PEG concen-
tration is plotted in Fig. 4 for various PEG molecular weights.
It shows an almost linear behavior of the logarithm of the
protein solubility versus PEG concentration for PEG 1000 and
PEG 4000. However, the logarithm of protein solubility versus
the PEG concentration for PEG 6000 is nonlinear and one can
expect the same nonlinear behavior to occur for higher molec-
ular weight PEGs.

Table 2
Comparison between the experimental slopes of the solubility versus PEG mole fraction curve

Alny2
Ax3

� �
with the results predicted by Eq. (20)

Experiment Prediction

Protein+PEG pH, referenceA Slope Protein+PEG pH, referenceB Slope

Lysozyme+PEG 4000 pH=7.0, [38] −0.02 Lysozyme+PEG 200 pH=7.0, [14] −0.04
Lysozyme+PEG 400 pH=7.0, [14] −0.04
Lysozyme+PEG 400 pH=3.0, [11] −0.16
Lysozyme+PEG 600 pH=7.0, [14] −0.04
Lysozyme+PEG 1000 pH=7.0, [14] −0.05
Lysozyme+PEG 1000 pH=3.0, [11] −0.01
Lysozyme+PEG 2000 pH=7.0, [14] −0.07
Lysozyme+PEG 3000 pH=7.0, [14] −0.05
Lysozyme+PEG 4000 pH=7.0, [14] −0.11
Lysozyme+PEG 4000 pH=3.0, [11] −0.13
Lysozyme+PEG 6000 pH=7.0, [14] −0.09

β-LG+PEG 20,000 pH=5.0, [36] −0.04 and −0.05C β-LG+PEG 200 pH=2.0, [12] −0.02
β-LG+PEG 400 pH=2.0, [12] −0.04
β-LG+PEG 600 pH=2.0, [12] −0.04
β-LG+PEG 1000 pH=2.0, [12] −0.04
β-LG+PEG 1000 pH=3.0, [11] −0.01
β-LG+PEG 2000 pH=2.0, [14] −0.21
β-LG+PEG 3000 pH=2.0, [14] −0.18
β-LG+PEG 4000 pH=2.0, [14] −0.17
β-LG+PEG 6000 pH=2.0, [14] −0.13

HSAD+PEG 400 pH=4.5, [38] −0.09 BSA+PEG 200 pH=7.0, [14] −0.84
HSA+PEG 600 pH=4.5, [38] −0.11
HSA+PEG 1000 pH=4.5, [38] −0.14
BSA+PEG 1450 pH=4.6, [41] −0.09 and −0.10 BSA+PEG 400 pH=7.0, [14] −0.45
BSA+PEG 1450 pH=7.0, [41] −0.09 and −0.10
BSA+PEG 3350 pH=4.6, [41] −0.08 and −0.08
BSA+PEG 3350 pH=7.0, [41] −0.11 and −0.10 BSA+PEG 600 pH=7.0, [14] −0.46
BSA+PEG 3350 pH=8.0, [41] −0.02 and −0.03
HSA+PEG 4000 pH=3.8, [38] −0.16 BSA+PEG 1000 pH=7.0, [14] −0.29
HSA+PEG 4000 pH=4.5, [38] −0.23
HSA+PEG 4000 pH=5.2, [38] −0.21
HSA+PEG 4000 pH=4.5, [38] −0.15 BSA+PEG 1000 pH=3.0, [11] −0.08
HSA+PEG 6000 pH=4.5, [38] −0.27
BSA+PEG 6000 pH=4.0, [34] −0.29
BSA+PEG 6000 pH=5.1, [34] −0.27 BSA+PEG 2000 pH=7.0, [14] −0.33
BSA+PEG 6000 pH=5.8, [34] −0.26
BSA+PEG 8000 pH=4.6, [41] −0.13 and −0.12 BSA+PEG 3000 pH=7.0, [14] −0.20
BSA+PEG 8000 pH=7.0, [41] −0.20 and −0.12
BSA+PEG 8000 pH=8.0, [41] −0.07 and −0.07
BSA+PEG 10,000 pH=4.6, [41] −0.13 and −0.12 BSA+PEG 4000 pH=7.0, [14] −0.21
BSA+PEG 10,000 pH=7.0, [41] −0.08 and −0.20
BSA+PEG 10,000 pH=8.0, [41] −0.04 and −0.06
HSA+PEG 20,000 pH=4.5, [38] −0.27 BSA+PEG 6000 pH=7.0, [14] −0.19
BSA+PEG 20,000 pH=5.0, [34] −0.22 and −0.24
AReferences regarding the experimental values of solubility data, Breferences regarding the experimental values of the preferential binding parameter, Ctwo
experimental data sets are available and DHSA designates human serum albumin.
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Another important issue is the salting-out strength of various
molecular weight PEGs. It is well-known from literature that
the low molecular weight PEGs are less effective precipitants
than the high molecular weight PEG [11–14,34–42]. Eq. (20)
provides the same result, because the salting-out effectiveness
is proportional to the slope Alny2

Ax3

� �
at c3=0 and hence to a ¼

limc3Y0
CðmÞ23
c3

which, according to the Γ23
(m) experimental data

[11–14], increases with increasing molecular weight of PEG
[11–14].

4. Conclusion

In this paper, the Kirkwood–Buff theory of solutions is used
to examine the effect of PEG on aqueous protein solutions, the
focus being on the local composition of the mixed solvent in
the vicinity of the protein molecule and on the protein solubil-
ity. The theoretical considerations led to equations that connect
the experimental preferential binding parameter with the excess
(or deficit) numbers of water and cosolvent molecules around a
protein molecule. Calculations were carried out for various
proteins in various PEG solutions. The results showed that in
all cases the proteins were preferentially hydrated. Evidence
was also brought that the hydration is a result of steric
exclusion.

In addition, the solubility of a protein in water+PEG
mixed solvent was examined. For this purpose, a previously
[21] derived relationship between the preferential binding
parameter and the solubility of a protein in a binary aqueous
solution was used to predict the slope of the logarithm of the
protein solubility versus the PEG concentration in terms of the
experimental preferential binding parameter. Slopes were pre-
dicted for the solubilities of lysozyme, β-lactoglobulin and
bovine serum albumin in water+PEG mixtures for various
pHs and various PEG molecular weights and compared with
experiment. For all considered cases (various proteins, various
PEG molecular weights and various pHs), the theory predicts
that the PEG acts as a salting-out agent, conclusion in agree-
ment with experimental observations. Numerical comparison
between the predicted and the experimental slopes showed

good agreement in some cases (the solubility of BSA (HSA)
in water+high (larger or equal to 4000) molecular weight
PEG). In other cases, such as the case of the solubility of
BSA in water+ low molecular weight PEG the agreement was
not satisfactory probably because the experimental data re-
garding the preferential binding parameter and/or the solubil-
ity do not correspond to the thermodynamic equilibrium. The
equations were also used to shed some light on the linearity of
the logarithm of protein solubility versus PEG concentration
and on the salting-out effectiveness of PEG of various mo-
lecular weights.

It is noteworthy to point out that the preferential binding
parameter provides an interconnection between the local and
bulk properties in water+protein+cosolvent mixtures. Indeed,
when the preferential binding parameter Γ23

(m) is negative, a
protein is preferentially hydrated (water is in excess), the
protein is additionally stabilized and its solubility is decreased
by the cosolvent. It seems that there is no exception to this
rule.

Appendix A

The purpose of this Appendix is to compare the Kirkwood–
Buff integrals G12 and G23 calculated by combining Eqs. (3)
and (6) with two expressions for (G11−G13):

1) a rigorous expression

G11−G13 ¼
ðc1 þ c3ÞðV3−V1Þ−J11
ðc1 þ c1J11 þ c3Þ

ðA� 1Þ

2) a simplified expression in which J11=0

G11−G13 ¼ V3−V1 ðA� 2Þ

The results of the calculations of G12 and G23 for the
system water (1)/β-lactoglobulin (2)/PEG 1000 (3) are listed
in Table 3.

The partial molar volumes V1 and V3 for water/PEG 1000
were calculated using the experimental data and correlations
provided in Ref. [51] and J11 was calculated using the concen-
tration dependence of the water activity in water/PEG 1000
mixture [54].

Table 3 shows that the simplified expression for (G11−G13)
can be used without essential change in accuracy.
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c1ln(aw)
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3

Fig. 4. Dependence of the product c1ln aw in protein-free mixed solvent
water/PEG on the PEG molality: 1) PEG 1000, 2) PEG 4000, 3) PEG
6000. Water activities in water/PEG mixtures were calculated as indicated
in Ref. [54].

Table 3
G12 and G23 for the system water (1)/β-lactoglobulin (2)/PEG 1000 (3)

g of
PEG/100 ml
of solution

G12 [cm
3/mol] G23 [cm

3/mol]

Calculated
using
expression
(A-1)

Calculated
using
expression
(A-2)

Calculated
using
expression
(A-1)

Calculated
using
expression
(A-2)

10 −11,750 −11,770 −37,060 −36,840
20 −11,360 −11,430 −26,390 −26,050
30 −11,120 −11,250 −22,080 −21,690
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The calculated Kirkwood-Buff integrals 12G  and 23G  as a function of cosolvent 
concentration.   
 
System g of PEG /  

100 ml of 
solution 

12G  [l/mol] 23G  [l/mol] 

2.8 -7.9 -94.2 
5.6 -7.2 -71.7 

11.2 -6.6 -46.2 
22.4 -5.6 -31.0 
33.6 -4.3 -26.1 

Water / 
lysozyme / 
PEG 400 
(pH=3.0) 
[11] A 

44.8 -4.3 -20.7 
2.5 -9.1 -50.1 

5 -9.2 -30.0 
10 -8.5 -29.3 
20 -7.6 -23.4 

Water / 
lysozyme / 
PEG 1000 
(pH=3.0) 
[11] 30 -6.8 -20.9 

0.5 -9.2 -205.8 
1.25 -7.7 -246.6 
2.5 -7.2 -156.6 

Water / 
lysozyme / 
PEG 4000 
(pH=3.0) 
[11]  3.75 -7.1 -111.2 

10 -14.0 -12.8 
20 -13.5 -15.8 
30 -13.5 -15.3 

Water /  
β - LG  / 
PEG 200 
(pH=2.0) 
[12] 

40
-13.5 -14.6 

30
-12.2 -18.9 

Water / 
 β - LG  / 
PEG 400 
(pH=2.0) 
[12] 

40

-12.2 -17.1 
10 -12.8 -25.9 
20 -12.1 -22.9 

Water /  
β - LG  / 
PEG 600 
(pH=2.0) 
[12] 

30

-12.4 -18.6 
10 -11.7 -37.1 
20 -11.4 -26.4 

Water / 
 β - LG  / 
PEG 1000 
(pH=2.0) 
[12] 

30

-11.1 -22.1 

A  the source of  experimental data regarding )(
23
mΓ  and ∞

2V used in calculations. 
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Abstract

The goal of this review is to examine the effect of salts and organic additives on the solubility of proteins in aqueous mixed solvents. The focus
is on the correlation between the aqueous protein solubility and the osmotic second virial coefficient or the preferential binding parameter. First,
several approaches which connect the solubility and the osmotic second virial coefficient are presented. Most of the experimental and theoretical
results correlate the solubility and the osmotic second virial coefficient in the presence of salts. The correlation of the aqueous protein solubility
with the osmotic second virial coefficient when the cosolvent is an organic component requires additional research. Second, the aqueous protein
solubility is correlated with the preferential binding parameter on the basis of a theory developed by the authors of the present review. This theory
can predict (i) the salting-in or -out effect of a cosolvent and (ii) the initial slope of the solubility curve. Good agreement was obtained between
theoretical predictions and experimental results.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Research regarding the solubility of proteins in water and
aqueous solutions has spanned for more than a century and
numerous reviews covering this topic are available [1–8]. It is
well known that the solubility of a protein in a water+cosolvent
mixture depends on many factors such as temperature,
cosolvent concentration, pH, type of buffer used, etc. The

focus of the present review is on the dependence of the protein
solubility on the cosolvent concentration, at constant pH,
temperature and pressure.

The effect of the addition of a cosolvent on the aqueous
protein solubility was examined both experimentally and
theoretically. Experiments have shown that the addition of
organic substances reduces the aqueous protein solubility
[5,6,8]. Therefore, the organic substances constitute salting-
out agents. Arakawa and Timasheff [5] explained this salting-
out effect as a result of (i) the decrease of the dielectric constant
because the dielectric constants of organic substances are
smaller than that of water, and (ii) the “redistribution of water
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and organic molecules around the protein molecule, i.e., the
preferential interactions of solvent components with the
protein”. However, not all organic substances decrease the
aqueous protein solubility, for example, the addition of urea
increases the aqueous solubility of ribonuclease Sa [9].

The addition of a salt to an aqueous protein solution leads
to a more complex behavior of the aqueous protein solubility.
Old solubility measurements [10,11] suggested that (i) a small
amount of salt increases the aqueous protein solubility, and
(ii) a large amount of salt decreases the aqueous protein
solubility. At sufficiently large salt concentrations the
solubility of a protein can be expressed by the empirical
Cohn equation [1]:

lnS2 ¼ a−bc3 ð1Þ

where S2 is the protein solubility (component 1 is water,
component 2 is the protein and component 3 is the cosolvent),
c3 is the salt molarity, and α and β are empirical constants.

However, the measurements regarding the protein solubility
in the presence of a salt carried out in the last two decades [12–
20] revealed only salting-out effects. These measurements,
carried out mostly for water–lysozyme–NaCl, can be consid-
ered to be reliable because there is agreement between the
results obtained in different laboratories. In addition, these
measurements showed that the Cohn equation cannot represent
the dependence of the solubility on the cosolvent concentration.
The data available, particularly for salts containing multivalent
ions, are not sufficient to draw accurate conclusions about the
dependence of the log solubility on cosolvent composition.

The theory of aqueous protein solubility has also attracted
attention [20–39]. In this paper, two of the most promising
approaches are reviewed. The approaches are:

1) correlation of the aqueous protein solubility with the osmotic
second virial coefficient [31–39], and

2) correlation of the aqueous protein solubility with the
preferential binding parameter [5,40–42].

2. The aqueous protein solubility and the osmotic second
virial coefficient

The following expression can be written for the osmotic
pressure [43]

p
RT
¼ c2=M2 þ B2c

2
2 þ B3c

3
2þ ð2Þ

where π is the osmotic pressure, R is the universal gas constant,
T is the absolute temperature, M2 is the protein molecular
weight, B2 and B3 are the osmotic virial coefficients and c2 is the
molarity of the protein.

According to McMillan and Mayer [44], B2 can be expressed
in terms of the interaction between the protein molecules via the
potential of mean force (W22)

B2 ¼ −
NA

2M 2
2

Z l

0
e−W22=kT−1
h i

4pr2dr ð3Þ

where NA is the Avogadro number, k is the Boltzmann constant
and r is the center-to-center separation of two protein molecules.

The osmotic second virial coefficient was used to examine
the crystallization of proteins and their solubility in water and in
aqueous mixed solvents.

Firstly, George and Wilson [31] found empirically that the
osmotic second virial coefficient could be correlated with the
quality of crystallization of proteins from aqueous solutions.
They found that good crystals could be obtained when the
osmotic second virial coefficient was located in a window
(crystallization slot) between −2 ×10−4 and −8×10−4 mL
mol/g2. For B2>−2×10−4, the protein–protein interactions
are not strong enough for crystallization to occur and when
B2<−8×10−4, the protein–protein interactions are too strong
and amorphous precipitates are formed because the process is
too rapid for the protein molecules to acquire crystalline
structures. George and Wilson [31] findings constitute a
useful screening criterion for protein crystallization because
the osmotic second virial coefficient can be relatively easily
obtained from static light scattering, small-angle X-ray and
neutron scattering, osmometry etc. [31,32,34,45–49].

Secondly, it was found that the osmotic second virial
coefficient and the aqueous solubility of a protein are not
independent quantities and relations between them were
established [33–35]. A simple relation between the osmotic
second virial coefficient and the aqueous solubility S2 (g/ml) of
a protein was obtained from the condition of equilibrium
between a protein in a solution and in a crystalline phase [34]. It
has the following form

B2 ¼
−Dl2
RT

1
2M2S2

−
lnS2
2M2S2

ð4Þ

where Δμ2=μ2
0(s)−μ2(c), μ2

0(s) is the standard chemical
potential of the protein in a solution (mole fraction scale),
which depends on temperature and pressure, and μ2(c) is the
chemical potential of the protein in the crystalline phase.

Eq. (4) provides a connection between the osmotic second
virial coefficient B2 and the aqueous solubility S2. However,
because Δμ2 is usually unknown, Eq. (4) cannot be used to
predict the aqueous solubility from the osmotic second virial
coefficient.

A square-well potential model for the interaction between
protein molecules was used to derive a relation between the
osmotic second virial coefficient B2 and the aqueous solubility
[33]. The following expression, which is valid at low
solubilities, was obtained

B2 ¼
4

qM2
1−A

/S

m

� �−ð2=zÞ
−1

( )" #
ð5Þ

where ρ is the density of the protein (ρ≅1.36 g/cm3),
m=M2 / (18ρ) is the number of water molecules that can be
placed in the volume of one protein molecule, z is the
coordination number (the number of nearest-neighbor protein
molecules in the protein crystal), ϕS is the protein solubility
expressed in volume fraction of the protein, and A is a
quantity, which depends on the anisotropy of the crystal and
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range of interaction between molecules, and which can be
considered as an adjustable parameter. Eq. (5) provides an
accurate correlation between the osmotic second virial
coefficient and the aqueous solubility of lysozyme in the
presence of various cosolvents (salts). This dependence has a
monotonic character, i.e. the solubility of lysozyme increases
with increasing osmotic second virial coefficient. According to
experiments both the solubility of lysozyme and the osmotic
second virial coefficient decrease with increasing cosolvent
(salt) concentration [13–20,34]. Recent experiments [39]
regarding the osmotic second virial coefficient of aqueous
lysozyme in the presence of alcohols provide, however, a
different picture. Indeed, when an alcohol is added to an
aqueous lysozyme solution, the osmotic second virial coeffi-
cient increases [39], whereas the alcohols are well-known
protein precipitants, i.e. the aqueous lysozyme solubility
decreases with the addition of an alcohol [2,5,6,8,50].

Using classical thermodynamics, another relation between
the osmotic second virial coefficient and the aqueous solubility
was established [35]. In that paper, the aqueous mixed solvent is
treated as a single component and the obtained relation contains
two adjustable parameters. This equation was used to correlate
the osmotic second virial coefficient and the aqueous protein
solubility in the systems water–lysozyme–salt (NaCl) and
water–ovalbumin–salt ((NH4)2SO4).

3. The aqueous protein solubility and the preferential
binding parameter

The preferential binding parameter [51–56] can be defined in
various concentration scales (component 1 is water, component
2 is a protein and component 3 is a cosolvent):

1) in molal concentrations

CðmÞ23 u lim
m2Y0
ðAm3=Am2ÞT ;P;l3 ð6Þ

where mi is the molality of component i, P is the pressure and μi
is the chemical potential of component i.

2) in molar concentrations

CðcÞ23u lim
c2Y0
ðAc3=Ac2ÞT ;P;l3 ð7Þ

where ci is the molar concentration of component i. One should
notice that Γ23

(m) and Γ23
(c) are defined at infinite dilution of the

protein.
The preferential binding parameter Γ23

(m) was measured
experimentally by sedimentation [53], dialysis equilibrium [56],
vapor pressure osmometry [57,58], etc. for numerous systems
[51–68].

The preferential binding parameter Γ23
(m) provides informa-

tion about the interactions between a protein and the
components of a mixed solvent. Γ23

(m) <0 means that the
protein is preferentially hydrated in the presence of a
cosolvent such as glycerol, sucrose, etc. [5,51,53–56,59–
63]. These cosolvents stabilize at high concentrations the
protein structure and preserve its enzymatic activity [53–

56,59–63]. Γ23
(m) >0 means that the protein is preferentially

solvated by the cosolvent [5,51,53–56,59–63]. This occurs,
for instance, for urea, which can cause protein denaturation.

Timasheff and coworkers [5,59–63] were the first to notice
that there is a connection between the preferential binding
parameter Γ23

(m) and the aqueous protein solubility. On the basis
of their measurements and literature data regarding the
preferential binding parameter and the aqueous protein
solubility, they concluded that there is a general correlation
between these quantities [5,59–63]. Particularly, they conclud-
ed that preferential hydration of a protein (Γ23

(m) <0) is equivalent
to a salting-out behavior, i.e. the addition of a cosolvent
decreases the protein solubility [5,65]. Thus, the local
composition of the components of a mixed solvent is one of
the most important factors affecting the aqueous protein
solubility [5,40,59–63].

The authors of the present paper have developed a theory
which connects the preferential binding parameter and the
aqueous protein solubility [41,42]. The central element of the
theory is the following relation (its derivation is provided in the
Appendix) which relates the solubility of a protein to the mixed
solvent composition and the preferential binding parameter
[41,42]:

Alny2
Ax3

� �
¼ −

c3ðc1þc3ÞV1−C
ðmÞ
23 ð1�c3V3Þðc1þc1J11þc3Þ

c1c3V1

ð8Þ

In Eq. (8), y2 is the protein solubility in mole fraction,
J11 ¼ limx2Y0

Alng1
Ax1

� �
x2
, xi is the mole fraction of component i, γi is

the activity coefficient of component i in a mole fraction scale,
Vi is the partial molar volume of component i.

Eq. (8) is a rigorous thermodynamic equation at infinite
protein dilution; it allows one to derive a simple criterion for
salting-in or salting-out at low cosolvent concentrations. Indeed,
at low cosolvent concentrations (c3→0) it becomes

Alny2
Ax3

� �
¼ −

Alny2
Ax1

� �
¼ a

V 0
1

−1 ð9Þ

where a ¼ limc3Y0
CðmÞ23

c3
and V1

0 is the molar volume of pure
water. One can conclude that for low cosolvent concentrations
salting-in occurs when

Alny2
Ax3

� �
> 0; hence when a > V 0

1 ð10Þ

and salting-out occurs when

Alny2
Ax3

� �
< 0; hence when a < V 0

1 ð11Þ

The above criteria for salting-in or salting-out (Eqs. (10),
(11) are valid [41,42]: (i) for c3→0, hence when only a
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small amount of cosolvent is added to pure water; (ii) for
ternary mixtures (water (1)–protein (2)–cosolvent (3)). It
should be emphasized that those mixtures contain in
addition a buffer, the effect of which is taken into account
only indirectly through the preferential binding parameter
Γ23
(m); (iii) for infinite dilution (this means that the protein

solubility is supposed to be low enough to satisfy the
infinite dilution approximation (γ2≅γ2∞, where γ2

∞ is the
activity coefficient of the protein at infinite dilution).

The following expression for protein solubility in a dilute
cosolvent solution can be derived from Eq. (8) when Γ23

(m) is
proportional to c3 (Γ23

(m) =αc3) [41,42]:

ln
y2
yw2
¼ −
ða�V3C

ðmÞ
23 Þlnaw

V1
þ lnx1c−

ða�V3C
ðmÞ
23 Þlnaw

V1

¼ −
ð1�V3c3Þalnaw

V1
¼ −c1alnaw ð12Þ

where y2
w is the protein solubility in a cosolvent-free water plus

buffer and aw is the water activity in the protein-free mixed
solvent. Eq. (12) allows one to calculate the protein solubility if
the composition dependence of Γ23

(m) is available (aw and the
partial molar volumes V1 and V3 are characteristics of the
protein-free mixed solvent). As already mentioned above, Eq.
(12) was derived by assuming that Γ23

(m) was proportional to c3.
Indeed [58,64,69], the preferential binding parameter Γ23

(m) is, at
least at low cosolvent concentrations, proportional to the
cosolvent concentration.

Eqs. (8)–(12) demonstrate that the experimental preferential
binding parameter Γ23

(m) can be used to predict the protein
solubility. Of course, in turn the experimental protein solubility
can be used to evaluate the preferential binding parameter.

Let us apply Eqs. (8)–(12) to real systems. First, Eqs. (10),
(11) can be used to determine the type of cosolvent: salting-in
or-out. Because in many cases |α|≫V1

0≈18 cm3/mol, criteria

(10)–(11) can be rewritten in the following simplified form
(again, for c3→0). Salting-in occurs when

Alny2
Ax3

� �
> 0; hence when CðmÞ23 > 0 ð13Þ

and salting-out occurs when

Alny2
Ax3

� �
< 0; hence when CðmÞ23 < 0 ð14Þ

Criterion (14) was also suggested by Timasheff and
coworkers [5,63].

The application of the established criteria (Eqs. (10), (11) or
(13), (14)) provides a simple physical picture for the salting-in or
the salting-out by a cosolvent: when a protein molecule is
preferentially hydrated (Γ23

(m) <0), the addition of a small amount
of cosolvent decreases the protein solubility; when the water is
preferentially excluded from a protein surface (Γ23

(m) >0), the
addition of a small amount of cosolvent increases the protein
solubility.

The application of the established criteria (Eqs. (10), (11)
or (13), (14)) to salting-in or-out in real systems is illustrated
in Table 1 (a part of this Table was taken from our previous
paper [41] but a part is new). Table 1 demonstrates that
almost in all cases the established criteria (Eqs. (10), (11) or
(13), (14)) provide types of salting effect by the cosolvents
which coincide with the experimental solubility observations.
However, in two cases (water–lysozyme–glycerol and
water–β-lactoglobulin–NaCl) our criteria predict salting-out
effects but the experimental data for solubility indicate
salting-in. It seems that the experimental results [71] for
water–lysozyme–glycerol (salting-in) are not correct, because
glycerol is a well-known protein precipitant and hence the
aqueous lysozyme solubility should decrease with the
addition of glycerol to aqueous lysozyme solutions
[2,5,6,8,50]. It is not yet clear why there is a discrepancy

Table 1
Application of criteria (Eqs. (10), (11) or (13), (14)) for salting-in or salting-out to aqueous solutions of proteins

Protein Cosolvent A Experimental data used Do the criteria Eqs. (10), (11)
or (13), (14) work?

Solubility (salting-in or salting-out,
conditions, references)

Preferential binding parameter
Γ23
(m) (conditions, references)

Lysozyme NaCl Salting-out, T=0–40 °C, pH=3–10 [15–20] pH=4.5 [59], pH=3–7 [62] Yes
Lysozyme MgCl2 Salting-out, T=18 °C, pH=4.5 [15] pH=3.0, 4.5 [63] Yes
Lysozyme NaAcO Salting-out, T=18 °C, pH=4.5, 8.3 [15] pH=4.5–4.71 [59] Yes
Ribonuclease Sa Urea Salting-in, T=25 °C, pH=3.5, 4.0 [9] pH=2.0, 4.0, 5.8 [70] B Yes
Lysozyme Glycerol Salting-in, T=25 °C, pH=4.6 [71] pH=2.0, 5.8 [72] No
β-Lactoglobulin NaCl Salting-in, T=25 °C, pH=5.15–5.3 [73] pH=1.55–10 [62] No
Ribonuclease A MPDC Salting-out, T=25 °C, pH=5.8 [5] pH=5.8 [5] Yes
Lysozyme PEG 400C Salting-out, T=25 °C, pH=7.0 [74] pH=7.0 [75] Yes
β-Lactoglobulin PEG 20,000 Salting-out, T=25 °C, pH=2.0 [76] pH=2.0 [75, 77] D Yes
BSAC PEG 1450-PEG 20,000 Salting-out, T=25 °C, pH=4.5–8.0 [26,74,78] pH=3.0 [79] E and pH=7.0 [75] F Yes

A The term “cosolvent” is also used here for electrolytes.
B The preferential binding parameters were determined for ribonuclease A in 30 volume % glycerol solution.
C The MPD stands for 2-methyl-2, 4-pentanediol; PEG 400-polyethy1ene glycol with molecular weight 400, BSA-bovine serum albumin.
D The preferential binding parameters were determined for PEG 200–6000.
E The preferential binding parameters were determined for PEG 1000.
F The preferential binding parameters were determined for PEG 400–6000.
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between the experimental solubility and the criteria employed
for the case water–β-lactoglobulin–NaCl.

Eq. (9) can be also used to calculate the initial slope (at
c3→0) of the dependence of the protein solubility against the
cosolvent concentration. The slopes obtained through Eq. (9)
can be compared with the experimental slopes. This comparison
is made in Table 2. Table 2 shows that there is good agreement
between the experimental slopes and those predicted by Eq. (9).
There are, however, also cases in which there are large
differences (for instance for the. water+ lysozyme+NaCl at
pH=6.5). They can be caused by the experimental errors in the
determination of either the solubility and/or the preferential
binding parameter.

As noted in the Introduction, the Cohn equation, (Eq. (1)),
considers that log of protein solubility is a linear function of
the cosolvent molarity. In reality [5,14], the above depen-
dence is not linear. Fig. 1 presents some accurate experimen-
tal data regarding the aqueous solubility of lysozyme and
shows that linearity occurs only in the dilute region (c3<0.5).
Our Eq. (12) allows one to explain this behavior. Only the
dilute region (c3 < 0.5) is considered because in this
composition range the preferential binding parameter Γ23

(m) is
proportional to the concentration of the cosolvent [58,64,69]
and Eq. (12) involves this approximation. Eq. (12) reveals
that the linearity or nonlinearity of ln y2 versus cosolvent
concentration depends on the water activity in the protein-free
aqueous mixed solvent. Eq. (12) was used to examine the log
protein solubility versus cosolvent molarity in water/protein/
polyethy1ene glycol (PEG) mixtures [42]. It was shown that
there were almost linear behaviors for PEG 1000 and PEG

4000 but a nonlinear one for PEG 6000. The same nonlinear
behaviors are expected to occur for higher molecular weights
of PEG.

4. Discussion

Connections between the solubility of proteins in aqueous
solutions and measurable quantities such the osmotic second
virial coefficient and the preferential binding parameter are
useful, because they can help to understand the aqueous protein
solutions and to select the best conditions for protein
crystallization. Such connections can be also used to predict
the protein solubility on the basis of the experimental osmotic
second virial coefficient or the preferential binding parameter.

Different scientific groups have demonstrated that there are
direct connections between the solubility of proteins in aqueous
solutions and both the osmotic second virial coefficient and the
preferential binding parameter. The osmotic second virial
coefficient B22 is a measure of the intermolecular protein–
protein interaction and the preferential binding parameter Γ23

(m) is
an indicator of the redistributions of water and cosolvent in the
vicinity of a protein surface, hence a measure of their
interactions with the solvent and cosolvent. The preferential
binding parameter Γ23

(m) is defined at infinite dilution of a protein
and is expected to be correlated to the protein solubility when
the assumption of infinite protein dilution is valid [41,42]. For
finite concentrations, both the osmotic second virial coefficient
B22 and the preferential binding parameter Γ23

(m) (perhaps not
defined at infinite dilution) are expected to affect the solubility
of proteins in aqueous solutions. The osmotic second virial
coefficient accounts for the interactions between proteins
whereas the preferential binding parameter accounts for the
interactions between the protein and the constituents of a mixed
solvent.

5. Conclusion

The osmotic second virial coefficient and the preferential
binding parameter, quantities which can be determined

Table 2
Comparison between the experimental slopes of the solubility vs. cosolvent
mole fraction curve Alny2

Ax3

� �
with the results predicted by Eq. (9)

System Experiment Prediction

pH,
referenceA

Slope pH,
referenceB

Slope

Water+
lysozyme+NaCl

pH=3.3 [18] −0.32 pH=3.0 [62] −0.37

Water+
lysozyme+NaCl

pH=4.3 [18] −0.37 pH=4.5 [59] −0.34

Water+
lysozyme+NaCl

pH=6.5 [18] −0.50 pH=7.0 [62] −0.32

Water+
lysozyme+NaAcO

pH=4.5 [20] −0.24 pH=4.68–4.71 [59] −0.45

Water+
lysozyme+MgCl2

pH=4.1 [15] −0.07 pH=4.5 [63] −0.10

Water+human serum
albumin+PEG 4000C

pH=3.8 [74] −0.16 pH=7.0 [75]C −0.21
pH=4.5 [74] −0.23
pH=5.2 [74] −0.21

Water+bovine serum
albumin+PEG 6000D

pH=4.0 [78] −0.29 pH=7.0 [75] −0.19
pH=5.1 [78] −0.27
pH=5.8 [78] −0.26

A References regarding the experimental values of solubility data.
B References regarding the experimental values of the preferential binding

parameter.
C Experimental data for the preferential binding parameter in water+bovine

serum albumin+PEG 4000 were used.
D More data regarding slopes for water+protein+PEG mixtures can be found

in [42].

Fig. 1. Logarithm of lysozyme solubility y2 [mg/ml] in aqueous solutions of
sodium chloride at pH=4.5. (○) and (▴) are the experimental data from [15] and
[18], respectively.
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experimentally, can be used to correlate and predict the
solubility of proteins in mixed aqueous solvents.

Appendix A

The aim of this Appendix is to provide a derivation of Eq. (8)
on the basis of the Kirkwood–Buff theory of solutions [80]. The
authors of the present paper derived the following expressions
for Γ23

(m) [81]

CðmÞ23 ¼
c3
c1
þ c3ðG23−G12 þ G11−G13Þ ðA-1Þ

and Γ23
(c) [82]

CðcÞ23 ¼ c3ðG23−G13Þ ðA-2Þ

where Gij are the Kirkwood–Buff integrals which are given by
[80]

Gij ¼
Z l

0
ðgij−1Þ4kr2dr ðA-3Þ

gij is the radial distribution function between species i and j, and
r is the distance between the centers of molecules i and j.

Analytical expressions for the Kirkwood–Buff integrals G12

and G23 at infinite dilution of the protein are available in the
literature [82]:

G12 ¼ kTkT−
J21V3c3 þ J11Vl

2 c1
ðc1 þ c1J11 þ c3Þ

−
V3c3ðc1 þ c3ÞðV1−V3Þ þ Vl

2 ðc1 þ c3Þ
ðc1 þ c1J11 þ c3Þ

ðA- 4Þ

and

G23 ¼ kTkT þ
J21V1c1−J11c1Vl

2

ðc1 þ c1J11 þ c3Þ
þ c1V1ðc1 þ c3ÞðV1−V3Þ−Vl

2 ðc1 þ c3Þ
ðc1 þ c1J11 þ c3Þ

ðA-5Þ

where, J11 ¼ limx2Y0
Alng1
Ax1

� �
, J21 ¼ limx2Y0

Alng2
Ax1

� �
, xi is the

mole fraction of component i, γi is the activity coefficient of
component i in a mole fraction scale and kT is the isothermal
compressibility of the mixture. Expressions for the Kirkwood–
Buff integrals G11 and G13 at infinite dilution of a protein are
also well-known from the literature (see for example [83,84]):

G11 ¼ kTkT−
ðc1 þ c3Þ2V1V3

ðc1 þ c1J11 þ c3Þ
þ ðc1 þ c3ÞðV3−V1Þ−J11
ðc1 þ c1J11 þ c3Þ

ðA-6Þ

and

G13 ¼ kTkT−
ðc1 þ c3Þ2V1V3

ðc1 þ c1J11 þ c3Þ
ðA-7Þ

The insertion of Eqs. (A-4)–(A-7) into Eq. (A-1) leads after
some algebra to Eq. (8) in the text.
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Local Composition in the Vicinity of a Protein Molecule in an Aqueous Mixed Solvent
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This paper is focused on the composition of a cosolvent in the vicinity of a protein surface (local composition)
and its dependence on various factors. First, the Kirkwood-Buff theory of solution is used to obtain analytical
expressions that connect the excess or deficit number of cosolvent and water molecules in the vicinity of a
protein surface with experimentally measurable quantities such as the bulk concentration of the mixed solvent,
the preferential binding parameter, and the molar volumes of water and cosolvent. Using these expressions,
relations between the preferential binding parameter (at a molal concentration scale) and the above excesses
(or deficits) are established. In addition, the obtained expressions are used to examine the effect of the
nonideality of the water + cosolvent mixtures and of the molar volume of the cosolvent on the excess (or
deficit) number of cosolvent molecules in the vicinity of the protein surface. It is shown that at least for the
mixed solvents considered (water + urea and water + glucose) the nonideality of the mixed solvent is not an
important factor in the local compositions around a protein molecule and that the main contribution is provided
by the nonidealities of the protein-water and protein-cosolvent mixtures. Special attention is paid to urea
as cosolvent, because urea is one of only a few compounds with a concentration at the protein surface larger
than its concentration in the bulk. The composition dependence of the excess of urea around a protein molecule
is calculated for the water + lysozyme + urea mixture at pH ) 7.0 and 2.0. At pH ) 7.0, the excess of urea
becomes almost composition independent at high urea concentrations. Such independence could be explained
by assuming that urea totally replaces water in some areas of the protein surface, whereas on the remaining
areas of the protein surface both water and urea are present with concentration comparable to those in the
bulk. The Schellman exchange model was used to relate the preferential binding parameter in water + lysozyme
+ urea mixtures to the urea concentration.

1. Introduction

Addition of an inorganic salt or of a small organic molecule
(both will be called cosolvents in this paper) to an aqueous
protein solution changes the microstructure and composition (the
local composition) in the vicinity of the protein surface. It was
suggested that the cosolvents can be subdivided into three
groups:1

“1) the cosolvent is present at the protein surface in
excess over its concentration in the bulk (this is what
constitutes binding); 2) the water is present in excess at
the protein surface; this means that the protein has a
higher affinity for water than for the cosolvent (this
situation is referred to as preferential hydration, or
preferential exclusion of the cosolvent); 3) the protein is
indifferent to the nature of the molecules (water or
cosolvent) with which it comes in contact, so that no
solvent concentration perturbation occurs at the protein
surface”

The majority of cosolvents belong to the second group. They
are inorganic salts, glycerol, sucrose, or similar compounds.
There are only a few compounds that belong to the first group:
urea, some derivatives of urea, guanidine hydrochloride, etc.

It should be mentioned that the compounds from the second
group can stabilize at high concentrations the protein structure

and preserve its enzymatic activity.2-7 In contrast, the addition
of a compound from the first group can cause protein
denaturation.2-7 It is remarkable that on the basis of their effect
on protein solubility the cosolvents can also be subdivided
into the same groups. The cosolvents of the first group increase
the protein solubility compared to the solubility in water when
small amounts are added to water.8-9 The addition of a small
amount of a compound from the second group decreases the
solubility, and these compounds are well-known salting-out
agents.10-14

There is no common understanding regarding the effect at
the atomic level of various cosolvents on the stability of a protein
in aqueous solutions. Kauzmann4 pointed out the importance
of hydrophobic interactions (the tendency of the nonpolar groups
of two proteins to adhere to one another in an aqueous
environment) in stabilizing the folded configuration in many
native proteins. Another class of theories connects the effect of
various cosolvents on the structure of water (structure-breaker
or structure-maker) in the vicinity of a protein surface. The
cosolvents belonging to the first group, such as urea and
guanidine hydrochloride, are of particular interest because the
understanding of their behavior in aqueous protein mixtures can
provide insight into the mechanism of protein denaturation,
processes in cells, etc.15-37 Many explanations were also
suggested for the effects of the above cosolvents on protein
stability and properties. They range from energetic factors, such
as the formation of H-bonds with the polypeptide backbone,
which disrupts the internal hydrogen bond network of the
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proteins, to the ability of these compounds to increase the
solubility of both hydrophobic and hydrophilic moieties of the
protein.

In this paper, the various factors that affect its behavior, such
as the size of a cosolvent molecule, the nonideality of water +
cosolvent mixture, and the interactions between water and
cosolvent with the protein, will be analyzed from a theoretical
point of view. Experimental data regarding the preferential
binding parameter and the protein partial molar volume at its
infinite dilution will be used. The emphasis will be on urea as
cosolvent.

2. Theory

2.1. Preferential Binding Parameter. The preferential
binding parameter5-7,38-39 can be defined in various concentra-
tion scales (component 1 is water, component 2 is a protein,
and component 3 is a cosolvent):

(1) in molal concentrations

where mi is the molality of component i, T is the absolute
temperature, P is the pressure, and µi is the chemical potential
of component i. A somewhat different quantity, namely
lim

m2f0
(∂m3/∂m2)T,µ1,µ3

, is determined experimentally. However,

as demonstrated a long time ago,40 both quantities are practically
equal.

(2) in molar concentrations

where ci is the molar concentration of component i. One should
notice that Γ 23

(m) and Γ 23
(c) are defined at infinite dilution of the

protein.
The preferential binding parameter Γ 23

(m) was determined
experimentally by sedimentation,38 dialysis equilibrium,39 vapor
pressure osmometry,26,41 etc. for numerous systems.5-7,32,38-39,41-48

Γ 23
(m) provides information about the interactions between a

protein and the components of a mixed solvent. Γ 23
(m) < 0

means that the protein is preferentially hydrated in the presence
of a cosolvent from the second group of cosolvents defined
above.5,7,38-39,41-45 As already mentioned, these cosolvents
stabilize at high concentrations the protein structure and preserve
its enzymatic activity. Γ 23

(m) > 0 means that the protein is
preferentially solvated by the cosolvent.5,7,32,38-39,41-45 This
occurs for instance for urea and other cosolvents belonging to
the first group.1

As shown previously by the authors, the preferential binding
parameters Γ 23

(m) and Γ 23
(c) can be expressed in terms of the

Kirkwood-Buff integrals for ternary mixtures as follows:49

and50

where Gij are the Kirkwood-Buff integrals (see Appendix for
details) and c1

0 and c3
0 are the molar concentrations of water and

cosolvent in the protein-free mixed solvent.

One can also write the following expression for the partial
molar volume of a protein at infinite dilution in a mixed solvent
(V 2

∞) in terms of the Kirkwood-Buff theory of solutions51

where Vi is the partial molar volume of component i, k is the
Boltzmann constant, and kT is the isothermal compressibility
of the protein-free mixed solvent.

Equations 3 and 5 allow one to calculate the Kirkwood-
Buff integrals G12 and G23 using experimental data regarding
the preferential binding parameters Γ 23

(m) and the partial molar
volume of a protein at infinite dilution in a mixed solvent
V 2

∞.49-50,52 The Kirkwood-Buff integrals G11 and G13 can be
evaluated on the basis of the properties of protein-free mixed
solvent water + cosolvent. It should be mentioned that recently
the Kirkwood-Buff theory was used to analyze the effects of
various cosolvents on the properties of aqueous protein
solutions.53-55

2.2. Excess (Deficit) Number of Water and Cosolvent
Molecules around a Protein Molecule. The excesses (or
deficits) number of water and cosolvent molecules around a
protein molecule at infinite dilution are of great importance for
the quantitative characterization of hydration in aqueous protein
solutions. These excesses (or deficits) are results of the
competition between the cosolvent and water molecules around
a protein molecule or, in other words, how the mixed solvent
has been altered in the vicinity of the protein surface in
comparison with the bulk mixed solvent (far from the protein
surface). The excess (deficit) number of water and cosolvent
molecules around a protein molecule at infinite dilution can be
calculated using the expressions56

and

where ∆n12 and ∆n32 are the excesses (deficits) of water and
cosolvent molecules in the vicinity of a protein molecule in
comparison with their bulk values and R is the universal gas
constant. Because of the presence of the central protein
molecule, there is a volume inaccessible to the water and
cosolvent molecules. This effect, which was ignored in the
traditional definition of the excesses, is accounted for in eqs 6
and 7. The detailed derivation of the above expressions was
provided previously by the authors.56

The quantities G12 and G23, and ∆n12 and ∆n32, respectively,
can be calculated using experimental data regarding the
preferential binding parameters Γ 23

(m) and the partial molar
volume of a protein at infinite dilution in a mixed solvent V 2

∞.
More explicit expressions for ∆n12 and ∆n32 can be obtained

by inserting the expressions for the Kirkwood-Buff integrals
G12 and G23 in ternary mixtures (see Appendix) into eqs 6 and
7. One thus obtains

Γ 23
(m) ≡ lim

m2f0
(∂m3/∂m2)T,P,µ3

(1)

Γ 23
(c) ≡ lim

c2f0
(∂c3/∂c2)T,P,µ3

(2)

Γ23
(m) )

c3
0

c1
0

+ c3
0(G23 - G12 + G11 - G13) (3)

Γ23
(c) ) c3

0(G23 - G13) (4)

V 2
∞ ) -c1

0V1G12 - c3
0V3G23 + kTkT =

-c1
0V1G12 - c3

0V3G23 (5)

∆n12 ) c1
0G12 + c1

0(V 2
∞ - RTkT) (6)

∆n32 ) c3
0G23 + c3

0(V 2
∞ - RTkT) (7)

∆n12 ) -
c1

0c3
0V3(c1

0 + c3
0)(V1 - V3) + c1

0c3
0J21V3

(c1
0 + c1

0J11 + c3
0)

(8)
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where J11 ) lim
x2f0

(∂lnγ1 / ∂x1)x2, J21 ) lim
x2f0

(∂lnγ2 / ∂x1)x2, xi is the

mole fraction of component i, and γi is the activity coefficient
of component i in a mole fraction scale.

Equations 8 and 9 show that only the derivative J21 is related
to the infinitely dilute protein; all other quantities in eqs 8 and
9 (c1

0, c3
0, V1, V3, and J11) are provided by the protein-free

mixed solvent water + cosolvent mixture.
Let us consider some particular forms of eqs 8 and 9.
2.2.1. Ideal Mixed SolVent Approximation. In this case, J11

) 0, V1 ) V1
0, and V3 ) V3

0 (V1
0 and V3

0 being the molar volumes
of the pure water and cosolvent), and eqs 8 and 9 acquire the
forms

and

This approximation implies that the nonidealities between the
protein and the constituents of the mixed solvent are much stron-
ger than those between the constituents of the mixed solvent.
In other words, in this case, the main contribution to the noni-
deality of the very dilute mixture protein + mixed solvent stems
from the nonideality of the protein with the mixed solvent and
not from the nonideality of the mixed solvent itself. This means
that the activity coefficients and their derivatives with respect
to the concentrations in the pairs protein-water and protein-
cosolvent are much larger than for the pair water-cosolvent.

2.2.2. Ideal Ternary Solution. In this idealized case, J11 ) 0,
J21 ) 0, V1 ) V1

0, and V3 ) V3
0, and eqs 8 and 9 become

and

In this case, the excesses (or deficits) occur because of
differences in the sizes of the cosolvents.

2.3. Relation between the Preferential Binding Parameter
Γ23

(m) and the Excesses (Deficits) Number of Water and
Cosolvent Molecules around a Protein Molecule. It is well-
known from numerous experimental measurements that Γ23

(m) <
0 means preferential hydration of a protein in the presence of
a cosolvent and Γ 23

(m) > 0 means that the protein is preferen-
tially solvated by the cosolvent.5,7,32,38-39,41-45 A relation
between Γ 23

(m) and ∆n12 or ∆n32 can be obtained as follows.
First, eq 5 can be rewritten as

The combination of this equation with eqs 3, 6, and 7 leads
to the following expressions

or

The right-hand sides of eqs 16 and 17 contain three terms.
For usual cosolvents, the absolute value of -(∆n12)/(c1

0V3) )
(∆n32)/(c1

0V1) is much larger than (c3
0)/(c1

0) + c3
0(G11 - G13).

For example, for the water (1) + lysozyme (2) + urea (3)
mixture (pH 7.0, 20 °C)32,49 and c3

0 ) 1.5 mol/L, (∆n12)/(c1
0V3)

) 1.03, (c3
0)/(c1

0) ) 0.03, and c3
0(G11 - G13) ) 0.04, whereas,

for c3
0 ) 3.0 mol/L, (∆n12)/(c1

0V3) ) 10.1, (c3
0)/(c1

0) ) 0.06, and
c3

0(G11 - G13) ) 0.08. Comparable results can be obtained for
other mixtures. One can, therefore, conclude that, for Γ 23

(m) < 0,
∆n12 > 0 (∆n32 < 0) and, for Γ 23

(m) > 0, ∆n12 < 0 (∆n32 > 0).
However, in the unlikely case when the water (1) + protein (2)
+ cosolvent (3) mixture is close to an ideal ternary mixture, all
the terms in eqs 16 and 17 play a role.

The preferential binding parameter at a molar scale Γ 23
(c) does

not correlate with ∆n12 or ∆n32 as the preferential binding
parameter Γ 23

(m) does. Γ 23
(c) can have the same sign as Γ 23

(m) but
can also have the opposite sign.5,57 A thermodynamic relation
between Γ 23

(m) and Γ 23
(c) can be found elsewhere.5,50

3. Calculation of ∆n12 (∆n32) and Their Dependence on
Various Factors

The excesses (or deficits) ∆n12 or ∆n32 were calculated with
eqs 16 and 17 for (1) water (1) + lysozyme (2) + urea (3) (pH
7.0, 20 °C), (2) water (1) + lysozyme (2) + urea (3) (pH 2.0,
20 °C), and (3) water (1) + lysozyme (2) + glucose (3) (pH
3.0, 20 °C) mixtures. Whereas in the first mixture lysozyme is
in its native state, in the second (at pH 2.0), it undergoes a
transition to a denaturated state between 2.5 and 5.0 M urea.32

The water + lysozyme + glucose mixture was also considered
because, in contrast to urea, glucose is a protein stabilizer.58

The results of the calculations are plotted in Figure 1 where
only ∆n12 is presented. All experimental data required to perform
the calculations were taken from the literature.32,58 In these
calculations, the term (G11 - G13) was approximated by (V3 -
V1), which, as demonstrated before,52 constitutes a good
approximation. The excesses (or deficits) ∆n12 or ∆n32 for the
water (1) + lysozyme (2) + urea (3) mixtures were previously
calculated by a different method involving a reference state.50

The two calculations are in agreement. One can see from Figure
1 that, whereas the lysozyme is preferentially hydrated in the
presence of glucose, urea preferentially pushes out water
from the vicinity of the protein at both pH ) 7 and 2. The
results obtained are in agreement with the literature, which
classifies urea as belonging to the first group of cosolvents,1 in
which water is preferentially excluded from the protein
surface.5,7,32,38-39,41-45 In contrast, the proteins are preferentially
hydrated in the presence of glucose, which belongs to the second
group of cosolvents.5,7,32,38-39,41-45 Figure 1 shows that ∆n12

for the water (1) + lysozyme (2) + urea (3) (pH 7.0) mixture
becomes almost composition independent for c3

0 > 2 mol/L.
Such a behavior can be explained by a mechanism in which
urea totally replaces water in some areas of the protein surface
(probably because of urea-peptide H-bonds), whereas on the
remaining part of the protein surface both water and urea are
present with concentrations comparable to those in the bulk. It
should be emphasized that, at pH ) 7.0, the lysozyme is in its
native state at all compositions, whereas at pH ) 2.0 the

∆n32 )
c1

0c3
0V1(c1

0 + c3
0)(V1 - V3) + c1

0c3
0J21V1

(c1
0 + c1

0J11 + c3
0)

(9)

∆n12 ) -c1
0c3

0V3
0(V1

0 - V3
0) -

c1
0c3

0J21V3
0

(c1
0 + c3

0)
(10)

∆n32 ) c1
0c3

0V1
0(V1

0 - V3
0) +

c1
0c3

0J21V1
0

(c1
0 + c3

0)
(11)

∆n12 ) -c1
0c3

0V3
0(V1

0 - V3
0) (12)

∆n32 ) c1
0c3

0V1
0(V1

0 - V3
0) (13)

V1∆n12 + V3∆n32 ) 0 (15)

Γ23
(m) ) -

∆n12

c1
0V3

+
c3

0

c1
0

+ c3
0(G11 - G13) (16)

Γ23
(m) )

∆n32

c1
0V1

+
c3

0

c1
0

+ c3
0(G11 - G13) (17)
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lysozyme is in its native state only for c3
0 < 2 mol/L and

becomes denaturated for c3
0 > 5 mol/L. The lysozyme is a

mixture of both native and denaturated states in the composition
range 2 mol/L < c3

0 < 5 mol/L. The composition dependence
of the preferential binding parameter Γ 23

(m) for water + lysozyme
+ urea at pH ) 2.0 was examined previously.32

Now, we will try to examine the contributions to these
excesses and deficits of various factors.

3.1. Contribution to the Excesses (or Deficits) ∆n12 or ∆n32

Due to Different Volumes of Water and Cosolvent Based
on Ideal Ternary Mixture. The excesses (or deficits) in an
ideal ternary mixture were calculated using eqs 12 and 13, and
the results are listed in Table 1. The calculations were carried
out for ideal mixtures with molar volumes of the pure
components as in the mixture water + lysozyme + cosolvent.
Table 1 shows that the infinitely dilute component 2 is usually
preferentially hydrated because the cosolvents considered have
molar volumes larger than that of water. When the molar volume
of the cosolvent is small, ∆n12 is also small. For example, for
V3

0 ) 114 [cm3/mol] (this volume corresponds to the partial
molar volume of glucose in an aqueous solution), ∆n12 is small.
However, when the size (molar volume) of the cosolvent is large
(e.g., polyethylene glycol), ∆n12 is large and its contribution to
the total preferential hydration is important. Such a behavior
was suggested in an unpublished opinion of Kauzmann (quoted
by Timasheff32) that

“the bulkiness of the cosolvent molecules creates around
a protein molecule a zone that is impenetrable to the
cosolvent, the thickness of which is determined by the
distance of closest approach between protein and ligand
molecules. This region can be penetrated by the smaller
water molecules. Hence, it is enriched in water relative
to the bulk solvent”.

Whereas the ternary mixture used as an example cannot be
considered an ideal mixture, it is interesting to note that such a

description reflects correctly, at least qualitatively, the effect
of the molar volume of the cosolvent belonging to the second
kind of cosolvents (see Introduction).

3.2. Contribution to the Excesses (or Deficits) ∆n12 or ∆n32

by the Nonideality of the Mixed Solvent. The effect of the
nonideality of the mixed solvent on ∆n12 can be extracted from
eq 8 (or eq 9) and stems from J11 ) lim

x2f0
((∂ ln γ1)/(∂x1))x2sthe

derivative of the activity coefficient of water in the protein-
free mixed solvent (in the molar fraction scale) with respect to
the mole fraction of water. Of course, J11 ) 0 for an ideal mixed
solvent, and J11 * 0 for a nonideal (real) mixed solvent. To
evaluate how much the nonideality of the solvent mixture affects
∆n12, we compared (c1

0 + c1
0J11 + c3

0) in eq 8 for both J11 ) 0
and J11 * 0 (Figure 2). J11 was calculated from accurate data
regarding the activity coefficient of water in the binary mixture

Figure 1. Excesses (or deficits) of water molecules in the vicinity of
infinitely dilute lysozyme for various cosolvents. ∆n12 is expressed in
mol/mol: (A) Water (1) + lysozyme (2) + urea (3) (pH 2.0, 20 °C).
(B) Water (1) + lysozyme (2) + urea (3) (pH 7.0, 20 °C). (C) Water
(1) + lysozyme (2) + glucose (3) (pH 3.0, 20 °C).

TABLE 1: ∆n12 in Ternary Ideal Mixture for Various
Molar Volumes of the Cosolvent

∆n12 [mol/mol]

c3
0

[mol/L]
V3

0 ) 60
[cm3/mol]

V3
0 ) 114

[cm3/mol]
V3

0 ) 1000
[cm3/mol]

0.5 0.07 0.29 25.73
1 0.12 0.54 47.90
1.5 0.17 0.76 67.60
2.0 0.22 0.94 84.36

Figure 2. Dependence of (c1
0 + c1

0J11 + c3
0) on the urea molarity in

water + urea mixture for two cases: (1) J11 ) 0 and (2) J11 * 0.

TABLE 2: Values of J21 for Water (1) + Lysozyme (2) +
Urea (3) Mixture

J21

pH ) 2.0 pH ) 7.0

c3
0

[mol/L] J11 ) 0 J11 * 0 J11 ) 0 J11 * 0

0.5 403.6 403.5
1.0 360.5 360.2
1.5 37.0 37.0 319.9 319.2
2.0 137.2 136.7 300.3 299.3
2.5 157.1 156.2 268.5 267.0
3.0 172.0 170.1 229.0 227.2
3.5 184.3 182.2 217.4 214.9
4.0 194.7 191.8 209.6 206.5
4.5 204.7 200.8 191.1 187.4
5.0 213.1 208.0 175.8 171.6
5.5 209.9 203.7 151.9 147.4
6.0 197.3 190.3 132.0 127.2
6.5 186.9 178.9 125.0 119.7
7.0 158.3 150.3 109.2 103.7
7.5 132.7 124.9 104.5 98.4
8.0 100.6 93.7 91.5 85.4
8.5 97.2 89.6 79.7 73.5
9.0 85.8 78.2 85.8 78.2
9.5 83.7 75.3 75.5 68.0

TABLE 3: Values of J21 for Water (1) + Lysozyme (2) +
Glucose (3) Mixture

J21

c3
0

[mol/L] J11 ) 0 J11 * 0

0.5 -384.67 -384.6
1.0 -276.2 -275.9
1.5 -236.2 -235.6
2.0 -175.5 -174.7
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water + urea.59 One can see from Figure 2 that (c1
0 + c1

0J11 +
c3

0) has almost the same values for both J11 ) 0 and J11 * 0
even for high urea molarities. Equation 8 was used to calculate
J21 ) lim

x2f0
((∂ ln γ2)/(∂x1))x2 for both J11 ) 0 and J11 * 0. The

calculations were carried out for (1) water (1) + lysozyme (2)
+ urea (3) (pH 7.0, 20 °C), (2) water (1) + lysozyme (2) +
urea (3) (pH 2.0, 20 °C), and (3) water (1) + lysozyme (2) +
glucose (3) (pH 3.0, 20 °C) mixtures, and the results are listed
in Tables 2 and 3. Tables 2 and 3 demonstrate that J11 ) 0 and
J11 * 0 lead to almost the same results not only for ∆n12 (or
∆n32), but also for J21. Even at high urea concentrations (c3

0 >
7.0 M), the difference between J21 calculated with J11 ) 0 and
J11 * 0 does not exceed 10% (see Table 2). Therefore, our
calculations show that the nonideality of the urea-water solvent
does not constitute an important factor in the calculation of the
local compositions around a protein molecule. A similar
conclusion is valid for the water-glucose mixed solvent (see
Table 3).

Tables 2 and 3 also demonstrate that J21 constitutes a criterion
for the cosolvent behavior. For cosolvents belonging to the first
group (urea, guanidine hydrochloride, etc.; see Introduction),
J21 > 0 and J23 < 0 (because J23 ) lim

x2f0
((∂ ln γ2)/(∂x3))x2 )

-J21). In contrast for cosolvents belonging to the second group
(inorganic salts, glucose, glycerol, etc.) J21 < 0 and J23 > 0.
Consequently, the addition of urea increases ln γ2, whereas the
addition of glucose decreases ln γ2 (Figure 3). Hence, J21 (or
J23) can be used as a criterium for the behavior of a protein in
a mixed solvent.

4. Calculation of J21 (J23) and the Excesses (or Deficits)
∆n12 (∆n32) Using Various Theories

4.1. Flory-Huggins Equation for Real Solutions. The
Flory-Huggins equation for real solutions60-62 will be used to
derive an expression for J21 (J23) for water (1) + protein (2) +
cosolvent (3) mixtures. The activity coefficient of component
2 in the above ternary mixture can be written in the following
form60

where æi is the volume fraction of component i (æi ) xiVi
0/(x1

V1
0 + x2V2

0 + x3V3
0, and we assumed that V2

0 ) V2
∞) and øij is the

Flory-Huggins interaction parameter between molecules i and

j. Differentiation yields for x3 f 0 the expression

Because the molar volume of water is much smaller than the
molar volume of the protein (V 2

∞ . V1
0), eq 19 reduces to J21 g

0 when

and J21 e 0 when

Equations 20 and 21 provide general conditions for cases B
(eq 20) and A (eq 21) of Figure 3. These inequalities show that
the sign of J21 (J23) depends on the Flory-Huggins interaction
parameters øij and the molar volumes of water and cosolvent.

For an ideal mixed solvent, ø13 ) 0, and eqs 20 and 21 can
be written in the more simple forms J21 g 0 when

and J21 e 0 when

Usually, the Flory-Huggins interaction parameters øij are
positive quantities smaller than unity.60-61,63-64 There are,
however, cases in which øij has negative values. Because the
interaction of a protein with water or urea is exothermic,38,65

the above parameters are expected to be negative. Indeed,60

according to the van Laar expression for the heat of mixing in
a two component system, the Flory-Huggins interaction
parameter øij is proportional to the heat of mixing in the binary
system i-j. Furthermore, as demonstrated in a previous section,
for the water + lysozyme + urea mixture J21 g 0, and eq 22 in
which V3

0/V1
0 ≈ 2.5 leads to

It should be noted that urea is a solid at 20 °C and that we
have used for V3

0 the partial molar volume of urea in an urea +
water mixture at infinite dilution of urea.

From eq 24, one can conclude that urea is preferentially
adsorbed by the protein because its energy of interaction with
the protein is more negative than the energy of interaction of
water with the protein.

4.2. Binding Theory. The binding theory66-67 is based on
the equilibrium between a ligand in solution L and a ligand on
the protein P surface L(P)

Schellman68-70 considered that this classical binding equi-
librium is incomplete and suggested to replace eq 25 with the
exchange equilibrium

In Schellman’s model,68-70 the protein surface is subdivided
into N sites that can be occupied by water or cosolvent

Figure 3. Illustration for the effect of the addition of a small amount
of a cosolvent to an aqueous protein solution on the protein activity
coefficient γ2 (γ2

0, protein activity coefficient at infinite dilution of the
protein): (A) Cosolvents belonging to the second group (inorganic salts,
glucose, glycerol, and similar substances). (B) Cosolvents belonging
to the first group (urea, guanidine hydrochloride etc.).

ln γ2 ) ln(æ2/x2) + 1 - æ2 - æ1V 2
∞/V1

0 - æ3V 2
∞/V3

0 -

ø13æ1æ3V 2
∞/V1

0 + (ø12æ1V 2
∞/V1

0 + ø32æ3V 2
∞/V3

0)(æ1 + æ3)
(18)

lim
x3f0

J21 )

ø12V 2
∞V3

0 - ø32V1
0V 2

∞ + ø13V 2
∞V3

0 + (V 2
∞ - V1

0)(V1
0 - V3

0)

(V1
0)2

(19)

ø12V3
0 - ø32V1

0 + ø13V3
0 + V1

0 - V3
0 g 0 (20)

ø12V3
0 - ø32V1

0 + ø13V3
0 + V1

0 - V3
0 e 0 (21)

V3
0(ø12 - 1) g V1

0(ø32 - 1) (22)

V3
0(ø12 - 1) e V1

0(ø32 - 1) (23)

ø32 e 2.5ø12 - 1.5 (24)

L + P S L(P) (25)

L + P‚N(H2O) S L(P)+N(H2O) (26)
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molecules, and there are no unoccupied sites. According to this
model, the preferential binding parameter Γ 23

(m) can be written
as the sum

where

and

In the above expressions, Γ 23
(m)(i) is the preferential binding

parameter for site i, γ1
0 and γ3

0 are the activity coefficients of
water and cosolvent (in a molar fraction scale) in a protein-free
mixed solvent, and Ki is the equilibrium constant for the
exchange equilibrium (eq 26) on site i. For an ideal mixed
solvent, Ki ) Ki. In the Schellman model, it is necessary to
know how the protein surface is subdivided into various kinds
of sites. Such information is not available for real protein
solutions. However, when some simplifications are made, the
Schellman model can provide some information regarding the
effect of various cosolvents on the protein stability.67-71

The simplest approximation is to consider that all the sites
are identical and independent, an approximation that was applied
by Timasheff to several water + protein + cosolvent mixtures.67

In this case

where m1 and m3 are the molalities of water and cosolvent in
the protein-free mixed solvent. The constant K > 1 for the first
group of cosolvents (urea, some derivatives of urea, guanidine
hydrochloride, etc.) and K < 1 for the second group of
cosolvents (inorganic salts, glycerol, sucrose, or similar com-
pounds). Following a suggestion of Kuntz,72 Timasheff ap-
proximated the total number of sites N as the number of water
molecules of hydration of the protein (N ) 290 for water +
lysozyme + urea). We have used this estimation and eq 30 to
correlate the preferential binding parameter Γ 23

(m) with m3 for
the water (1) + lysozyme (2) + urea (3) mixture (pH 7.0, 20
°C). The constant K was considered as an adjustable parameter,
and the best fit was found for K ) 1.05. The results of the
calculations and the experimental values of the preferential
binding parameter Γ 23

(m) are plotted in Figure 4, which shows
that eq 30 does not correlate satisfactorily the composition
dependence of the preferential binding parameter Γ 23

(m). This is
not surprising because the protein surface is not uniform. Indeed,
there are polar, nonpolar, and charged sites on the protein
surface. An estimation of the various surface areas of a protein
is available in the literature.30 According to this estimation,30

57% of the accessible protein surface of an average native
protein is nonpolar, 13% is polar due to the peptide backbone
and can form hydrogen bonds, 19% is charged, and 11% is polar
due to other polar groups. Consequently, there are at least four
kind of sites on the accessible protein surface. For the sake of
simplicity, it will be considered that the accessible protein
surface consists of two kinds of sites; one kind is polar and can

form hydrogen bonds with water and urea, and the other kind
does not participate in hydrogen bonding.

In this case, eqs 27 and 28 lead to

where NR and Nâ represent the numbers of the two kinds of
sites, NR + Nâ ) N, NR ) 0.13N, Nâ ) 0.87N. Again, the
constants KR and Kâ will be considered as adjustable parameters.
We found that the best fit provides KR ) 15.29 and Kâ ) 0.79.
The results are plotted in Figure 5, which shows that eq 31
accurately represents the composition dependence of the pref-
erential binding parameter Γ 23

(m). Equation 31 can also be used

Γ23
(m) ) ∑

i)1

N

Γ23
(m)(i) (27)

Γ23
(m)(i) )

(Ki - 1)x3
0

1 + (Ki - 1)x3
0

(28)

Ki ) Kiγ3
0/γ1

0 (29)

Γ23
(m) )

N(K - 1)x3
0

1 + (K - 1)x3
0

)
N(K - 1)m3

m1 + Km3
(30)

Figure 4. Comparison between experimental32 and calculated prefer-
ential binding parameter Γ23

(m) for water (1) + lysozyme (2) + urea (3)
mixture (pH 7.0, 20 °C).

Figure 5. Comparison between experimental32 and calculated (with
eq 31) preferential binding parameter Γ23

(m) for water (1) + lysozyme
(2) + urea (3) mixture at pH 7.0 and 20 °C. The solid line represent
the results of calculations, and (•) are experimental points.

Γ23
(m) )

NR(KR - 1)x3
0

1 + (KR - 1)x3
0

+
Nâ(Kâ - 1)x3

0

1 + (Kâ - 1)x3
0

)

NR(KR - 1)m3

m1 + KRm3
+

Nâ(Kâ - 1)m3

m1 + Kâm3
(31)
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to calculate the deficit of water in the vicinity of the protein
surface ∆n12 via eq 16 (as before, the term (G11 - G13) is
approximated as (V3 - V1)). The results are plotted in
Figure 6.

However, eq 31 is not accurate for the water (1) + lysozyme
(2) + urea (3) mixture at pH 2.0 and 20 °C (see Figure 7).

5. Discussion and Conclusion

In this paper, water (1) + protein (2) + cosolvent (3) mixtures
have been examined with the focus on the local composition
of water and cosolvent in the vicinity of the protein surface.
Cosolvents can affect the local composition of water/cosolvent
in the vicinity of the protein surface in various ways:

(1) a small group of cosolvents (urea, some derivatives of
urea, guanidine hydrochloride, etc.) preferentially expel water
from the protein surface (at least in dilute solutions), and the
local composition of the cosolvent is higher in the vicinity of
the protein surface than in the bulk, and

(2) usual cosolvents (inorganic salts, glycerol, sucrose, or
similar compounds) are preferentially expelled from the protein
surface, the protein is preferentially hydrated, and the local water
composition is higher that that in the bulk far from the infinitely
dilute protein molecule.

We examined various factors that affect the local composi-
tions and tried to explain why some compounds belong to the
first and other to the second group of cosolvents. The main tool
in this research was the Kirkwood-Buff fluctuation theory for
ternary mixture. First, the preferential binding parameters were
expressed in terms of the Kirkwood-Buff integrals,49-50 and
analytical expressions for the excesses (or deficits) of water and
cosolvent around an infinitely dilute protein molecule (∆n12 and
∆n32) were derived, which showed how they are connected to
the preferential binding parameters Γ 23

(m) and Γ 23
(c). These ex-

pressions (eqs 8 and 9) revealed that ∆n12 and ∆n32 depend on
both the properties of the protein-free mixed solvent and the
activity coefficient of the protein, namely the derivative of the
activity coefficient of the protein at infinite dilution with respect
to the mixed solvent composition (J21). It was shown that the
contribution of the nonideality of the mixed solvent J11 to ∆n12

and ∆n32 is usually small for the cosolvents considered and that
J21 constitutes a most important factor.

Three mixtures [(1) water (1) + lysozyme (2) + urea (3)
(pH 7.0, 20 °C), (2) water (1) + lysozyme (2) + urea (3) (pH
2.0, 20 °C), (3) water (1) + lysozyme (2) + glucose (3) (pH
3.0, 20 °C)] were selected for numerical estimations (urea
belonging to the first group of cosolvents and glucose to the
second group).

The composition dependence of ∆n12 (∆n32) and J21 for these
mixtures were calculated from experimental data regarding the
preferential binding parameter and the protein partial molar
volume at infinite dilution. It was found that J21 provides a
criterium for the cosolvent behavior. For cosolvents belonging
to the first group, J21 > 0. In contrast, for cosolvents belonging
to the second group, J21 < 0. Consequently, the addition of urea
decreases ln γ2, whereas the addition of, e.g., glucose, increases
ln γ2 (Figure 3). In order to estimate J21, the Flory-Huggins
equation for ternary solutions was used and an analytical
expression for J21 was derived. Using this expression, the
inequalities J21 > 0 and J21 < 0 were recast in terms of the
Flory-Huggins interaction parameters and molar volumes of
water and cosolvent molecules.

The composition dependence of ∆n12 (∆n32) for the water
(1) + lysozyme (2) + urea (3) mixture (Figure 1) indicates that
∆n12 (∆n32) is almost composition independent for c3

0 > 2
mol/L (especially for pH ) 7.0). It is worth noting that at pH
) 7.0 the lysozyme is in its native state at all urea concentra-
tions, whereas at pH ) 2.0 the lysozyme is in its native state
only for c3

0 < 2 mol/L and becomes denaturated for c3
0 > 5

mol/L. The lysozyme is a mixture of native and denaturated
states in the composition range 2 mol/L < c3

0 < 5 mol/L urea.
In order to explain such a dependence, the Schellman exchange
model68-70 was used. First, we considered a single kind of site
and concluded that such a model cannot be applied to the water
+ lysozyme + urea mixture. Second, we considered that there
are two kinds of sites on the protein surface: one kind of site
can form H-bonds with water and urea, whereas the second kind
of site does not form such bonds. Using such an approximation,
the Schellman exchange model could describe the composition
dependencies of Γ 23

(m) and ∆n12 (∆n32) for the water (1) +
lysozyme (2) + urea (3) mixture at pH 7.0 and 20 °C on the
concentration of urea. However, the results for pH ) 2.0 and
20 °C were not too accurate because at this pH the lysozyme is
a mixture of native and denaturated molecules whose composi-
tion depends on the urea concentration.

The large difference between the equilibrium constants (KR
) 15.29 and Kâ ) 0.79) indicates an enormous difference in
the concentrations of urea in the two kinds of sites.

Figure 6. ∆n12 for water (1) + lysozyme (2) + urea (3) mixture at
pH 7.0 and 20 °C calculated with eq 16 and experimental data32 on
Γ23

(m) (•) and with Γ 23
(m) provided by eq 31 (solid line).

Figure 7. Comparison between experimental32 and calculated (using
eq 31) preferential binding parameter Γ 23

(m) for water (1) + lysozyme
(2) + urea (3) mixture at pH 2.0 and 20 °C. The solid line is the result
of calculations, and (•) are the experimental points.
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Appendix

The Kirkwood-Buff integrals are defined as73

where gRâ is the radial distribution function between species R
and â and r is the distance between the centers of molecules R
and â.

The Kirkwood-Buff integrals in an n-component mixture
can be obtained from the following relation73

where 〈NR〉 and 〈Nâ〉 are the average numbers of molecules of
R and â, respectively, in the volume ν, δRâ is the Kronecker
symbol (δRâ ) 1 for R ) â and δRâ ) 0 for R * â), câ is the
bulk molecular concentration of species â (câ ) (〈Nâ〉)/ν), |A|Râ
represents the cofactor of ARâ in the determinant |A|, and ARâ
is given by73

In eq A3, k is the Boltzmann constant, µR is the chemical
potential per molecule of species R, νR and νâ are the partial
molar volumes per molecule of species R and â, respectively,
and kT is the isothermal compressibility. The derivative µRâ )
((∂µR)/(∂Nâ))T,P,Nγ is taken under isothermal-isobaric conditions
for Nγ ) const with γ * â.

Equation A2 can be recast in the following form:

GRâ in eqs A2 and A4 is expressed as volume per molecule.
These equations are valid for any n-component system. Expres-
sions for the Kirkwood-Buff integrals in ternary mixtures can
be obtained from eq A4.50 In particular,50 one can obtain the
following expressions for G12 and G23 for an infinitely dilute
solute (component 2)

The Kirkwood-Buff integrals G11 and G13 can be calculated
from the characteristics of the protein-free mixed solvent (binary
mixture 1-3) using the expressions74-76

and
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Local Composition in Solvent + Polymer or Biopolymer Systems
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The focus of this paper is on the application of the Kirkwood-Buff (KB) fluctuation theory to the analysis
of the local composition in systems composed of a low molecular weight solvent and a high molecular weight
polymer or protein. A key quantity in the calculation of the local composition is the excess (or deficit) of any
species i around a central molecule j in a binary mixture. A new expression derived by the authors (J. Phys.
Chem. B 2006, 110, 12707) for the excess (deficit) is used in the present paper. First, the literature regarding
the local composition in such systems is reviewed. It is shown that the frequently used Zimm cluster integral
provides incorrect results because it is based on an incorrect expression for the excess (or deficit). In the
present paper, our new expression is applied to solvent + macromolecule systems to predict the local
composition around both a solvent and a macromolecule central molecule. Five systems (toluene + polystyrene,
water + collagen, water + serum albumin, water + hydroxypropyl cellulose, and water + Pluronic P105)
were selected for this purpose. The results revealed that for water + collagen and water + serum albumin
mixtures, the solvent was in deficit around a central solvent molecule and that for the other three mixtures,
the opposite was true. In contrast, the solvent was always in excess around the macromolecule for all mixtures
investigated. In the dilute range of the solvent, the excesses are due mainly to the different solvent and
macromolecule sizes. However, in the dilute range of the macromolecule, the intermolecular interactions
between solvent and macromolecule are mainly responsible for the excess. The obtained results shed some
light on protein hydration.

1. Introduction

Systems composed of low molecular weight solvents and high
molecular weight polymers or proteins, etc., are prone to various
types of molecular clustering. We will consider a cluster as a
micropart of a system in which the concentration differs from
the bulk concentration. The first kind of clustering is the solvent
clustering on high-weight polymers when the solvent as a vapor
is adsorbed on the polymer.1-3 Examples are the clustering of
benzene on rubber,1 toluene on polystyrene,1 water on cellulose,2

etc. Another kind of aggregation is the adsorption of water on
a protein that leads to an excess (compared to the bulk) of the
concentration of water in the vicinity of the protein surface.4-5

Finally, one more kind of clustering is the aggregation of
polymer molecules in water or aqueous solutions. As an
example, one should mention the self-assembled aggregation
of polyether block copolymers in water and water + cosolvent
mixtures under particular conditions (above a certain concentra-
tion (cmc) and temperature (cmt), which depend on the
cosolvent type and amount).6 All the above-mentioned molecular
aggregations in systems containing polymers, proteins, etc., are
of industrial significance.1-6 In addition, the understanding of
the molecular origin of such phenomena is of importance in
the theoretical understanding of the above systems.

The molecular clustering in systems composed of low
molecular weight solvents and high molecular weight polymers,
proteins, etc., has been investigated both experimentally and
theoretically. The present paper is focused on the theoretical
investigation of clustering on the basis of the fluctuation theory

of Kirkwood and Buff (KB).7 In a previous paper,8 we applied
the KB theory to the local composition in binary systems
composed of two low molecular weight components. In the
present paper, the systems are composed of low molecular
weight solvents and high molecular weight polymers, proteins,
etc.

2. Theoretical Background

2.1. The Zimm Cluster Integral. Zimm9 was the first to
apply the KB theory to the solvent clustering in binary solvent
(1) + polymer (protein) (2) mixtures. On the basis of the KB
theory, he was the first to derive the following expression for
the KB integral (KBI),

where T is the absolute temperature; VR is the partial molar
volume per molecule of species R; k is the Boltzmann constant;
kT is the isothermal compressibility; cR is the bulk molar
concentration of component R; µ11

(c) ) (1/kT) (∂µ1/∂c1)T,P ) (∂
ln a1/∂c1)T,P, µ1being the chemical potential per molecule 1; P
is the pressure; a1 is the activity of component 1; and Gij is the
Kirkwood-Buff integral (KBI),7 which is defined as

In the above equation, gij is the radial distribution function
between species i and j, and r is the distance between the centers
of molecules i and j. Equation 1 is equivalent to the usual
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c1
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∞
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expression employed10 to calculate the KBI, which involves the
derivative of the chemical potential with respect to the mole
fraction (see the Supporting Information for details).

Because far from critical conditions the contribution of the
compressibility term (kTkT) is very small,2,9-10 eq 1 acquires
the form

Equation 3 can be rewritten in the following frequently used
form9

where æi ) ciVi is the volume fraction of component i in the
mixture.

Further, Zimm9 and Zimm and Lundberg1 introduced the
notion of “cluster integral” G11/V1 to characterize the solvent
clustering in the systems solvent (1)-polymer (protein) (2).
They called G11/V1 a “cluster integral”, because1 “the quantity
æ1G11/V1 is the mean number of type 1 molecules in excess of
the mean concentration of type 1 molecules in the neighborhood
of a given type 1 molecule; thus, it measures the clustering
tendency of the type 1 molecules”.

Using eqs 3 and 4, one can write the following expression
for the cluster integral G11/V1:

The average number of solvent molecules in a cluster or the
mean size of the cluster was considered to be given by2,11

Hence, the average number of solvent molecules in a cluster
was considered as the excess (deficit) (compared to the bulk)
of solvent molecules plus one (the central molecule).

The Zimm9 (or Zimm and Lundberg1) theory of solvent
clustering became a popular tool for the estimation of solvent
clustering in solvent (1)-polymer (protein) (2) systems.2,11-34

It has been used to estimate the solvent clustering in numerous
systems.1,2,11-34 However, several authors noted some incon-
sistencies in the application of the above theory to the solvent
clustering. For instance, Brown19 expressed doubts regarding
the interpretation of æ1G11/V1 as the excess solvent molecules
around a central solvent molecule. Klyuev and Grebennikov31

noted that the average number of solvent molecules in a cluster
calculated with eq 6 can be less than one, even though the central
molecule is already included in the cluster. The authors of the
present paper recently found8,35 that æ1G11/V1 does not represent
the excess (or deficit) of molecules 1 around a central molecule
1 compared to the bulk. The interpretation of æ1G11/V1 ) c1G11

as the excess (or deficit) was used in all publications based on
the Zimm and Lundberg theory of solvent clustering and in all
the papers that employed the KB theory of solutions (for more
details, see refs 8 and 35).

2.2. Expression for the Excess (or Deficit) in Solvent +
Polymer (Protein) Systems. Recently, we demonstrated that
the quantity ciGij does not represent the excess (or deficit) of
molecules i around a central molecule j compared to the bulk.
It was shown that the excess (or deficit) molecules i around a
central molecule j is given by the expression35

In contrast to the traditional expression (∆Nij ) ciGij) for the
excess, the new expression takes into account that owing to the
central molecule j, there is a volume that is not accessible to
molecules i. The difference between the above two expressions
for the excess (or deficit) is particularly large for central
molecules that possess large volumes.8,35

Far from critical conditions, one can neglect the compress-
ibility term (kTkT) as compared to Vj. Consequently, one can
write the following expression for the excess (or deficit) number
of molecules i around a central molecule j:

The excess (deficit) of a solvent around a central solvent
molecule æ1G11/V1 provided by the Zimm cluster integral is
related to the true excess (or deficit) ∆n11via the expression

Therefore, æ1 should be added to the Zimm excess to get the
true excess, ∆n11.

Can the above equations provide information about the
clustering? Let us consider the clustering of molecules 1 around
a central molecule 1 in a volume, Vcorr, of radius R in which
the concentration differs from that in the bulk. This volume
Vcorr is usually called correlation volume. The total number, n11,
of molecules 1 in this volume (which can be identified as the
size of cluster) can be calculated using the expression36-37

which can be rewritten as

As soon as R becomes large enough for g11 to become unity,
eq 11 can be rewritten as36

The number of species 1 in the cluster is given by n11 + 1.
Comparison of this number with the size of the Zimm cluster
(eq 6) reveals that n11 + 1 is larger than æ1G11/υ1 + 1 by c1Vcorr.
Thus, eq 12 provides a cluster size that includes all molecules
1 and not only the excess (or deficit). It also provides a clue as
to why the average size of a cluster calculated using the
expression (æ1G11/υ1 + 1) was often very small.11,19,26-27,31

However, the correlation volume is not usually known, even
though it can be determined experimentally by small-angle X-ray
scattering, small-angle neutron scattering (SANS), light-scat-
tering (LS), etc. Although it is not yet possible to calculate the
cluster size, one can, however, calculate the excesses, ∆nij,
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)

P,T
- 1

c1
(3)

G11 ≈ - V1æ2(∂(a1/æ1)

∂a1
)

P,T
- V1 (4)

G11/V1 ≈ æ2

æ1c1
( ∂c1

∂ ln a1
)

P,T
- 1

æ1
) -æ2(∂(a1/æ1)

∂a1
)

P,T
- 1 (5)

æ1G11

υ1
+ 1 ) -æ1æ2(∂(a1/æ1)

∂ ln a1
)

P,T
+

æ2 ) æ2(∂ ln æ1

∂ ln a1
)

P,T
(6)

∆nij ) ciGij + ci(Vj - kTkT) (7)
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∆n11 ) (æ1G11/V1) + æ1 (9)
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R
g114πr2 dr i, j ) 1, 2 (10)
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R
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around central molecules, and these excesses will be considered
as measures of the clustering.

In the next section, various solvent-polymer (protein)
mixtures will be examined. The excesses ∆nij will be used as
measures of the clustering. Let us emphasize that our model
implies that the systems considered behave like binary solutions.
This behavior is debatable at low volume fractions of the solvent
because then the macromolecules may acquire a gel-like
structure imbibed with the solvent.

3. Excesses (or Deficits) in Various Solvent-Polymer
(Protein) Mixtures

3.1. Toluene (1) + Polystyrene (2). The cluster integral G11/
V1 for this system was calculated by Zimm and Lundberg1 and

later by Lundberg.12 To the best of our knowledge, these papers
contain the first calculation of the Kirkwood-Buff integrals
(KBIs). The accuracy of the calculation of the KBIs mainly
depends on the accuracy of the evaluation of the derivative µ11

(c)

) (1/kT) (∂µ1/∂c1)T,P ) (∂ ln a1/∂c1)T,P (see eq 3). Our
calculations were carried out using a molecular weigh of
polystyrene of 247 800 and the experimental38 activity a1 at T
) 323.15 K. The activities were represented by the Flory-
Huggins equation,39 and the derivative (∂ ln a1/∂c1)T,P was
calculated analytically. The molar volume, V, of toluene (1) +
polystyrene (2) was calculated as V ) x1V1

0 + x2V2
S, where V1

0 is
the molar volume of pure toluene, V2

S is the molar volume of
polystyrene in the toluene (1) + polystyrene (2) mixture
calculated from literature data,40 and xi is the molar fraction of
component i. The results of the calculations of the cluster

Figure 1. Cluster integral, G11/V1, versus solvent volume fraction (the solid line was calculated by us): (A) the toluene (1) + polystyrene (2)
system (b, ref 1), (B) the water (1) + collagen (2) system (b, ref 12), (C) the water (1) + serum albumin (2) system, (D) the water (1) +
hydroxypropyl cellulose (2) system, and (E) the water (1) + Pluronic P105 (2) system.
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integrals G11/V1 are presented in Figure 1A. The other KBIs
(G12 and G22) have been calculated from G11 using the
expressions35 V1∆n11 ) -V2∆n21 and V1∆n12 ) -V2∆n22 with
eq 8 for ∆nij.

The obtained KBIs were used to calculate the excesses (or
deficits) from eq 8, and the Zimm excesses (or deficits) (∆Nij

) ciGij). The results of these calculations are plotted in Figures
2A and 3A. They demonstrate that toluene is in excess around
both (toluene and polystyrene) central molecules. The excesses
(or deficits) from eq 8 and the Zimm excesses (or deficits) (∆Nij

) ciGij) will be compared in the Discussion and Conclusion
Section of the article.

3.2. Water (1) + Collagen (2). The cluster integral G11/V1

for this system was calculated by Zimm and Lundberg1 and

Lundberg.12 Bull’s data at T ) 298.15 K have been used for
the activity of water in this system.4 Starkweather11 has
determined the activity of water in the concentration range 0
eæ1 e 0.2 and noted that it depends on the volume fraction as
a1 ) 12æ1

2, the expression that was used in our calculations.
The molecular weight and the partial specific volume of collagen
were taken from ref 41. The results of the calculations are
presented in Figures 1B, 2B, and 3B. In contrast to the toluene
+ polystyrene mixture, the solvent (water) is in deficit around
a central water molecule but in excess around a protein
molecule.

3.3. Water (1) + Serum Albumin (2). Again, Bull’s data at
T ) 298.15 K have been used for the activity of water.4

Starkweather11 has determined the activity of water in the

Figure 2. Excess of solvent molecules in the vicinity of a central solvent molecule: O, excess calculated with eq 8; and b, excess calculated with
the Zimm expression (∆Nij ) ciGij). (A) The toluene (1) + polystyrene (2) system, (B) the water (1) + collagen (2) system, (C) the water (1) +
serum albumin (2) system, (D) the water (1) + hydroxypropyl cellulose (2) system, and (E) the water (1) + Pluronic P105 (2) system.
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concentration range 0 eæ1 e 0.2 and noted that it depends on
the volume fraction as a1 ) 29æ1

2, the dependence that was
used in our calculations. The molecular weight and the partial
specific volume of serum albumin were taken from ref 41. The

results are plotted in Figures 1C, 2C, and 3C. The results
obtained for the excess (or deficit) of water molecules around
both central molecules (water and serum albumin) are compa-
rable to those obtained for the water + collagen mixture.

3.4. Water (1) + Hydroxypropyl Cellulose (2). There are
several papers11,14,28 in which the KB theory of solutions was
applied to water + cellulose (or cellulose derivatives) mixtures.
The water + hydroxypropyl cellulose mixture was selected in
this paper because there are accurate data regarding the activity
of water.42 The data in the range 0 eæ1 e 0.2 have been
represented by the expression

Figure 3. Excess of solvent molecules in the vicinity of a central solute molecule: O, excess calculated with eq 8; b, excess calculated with the
Zimm expression (∆Nij ) ciGij). (A) The toluene (1) + polystyrene (2) system, (B) the water (1) + collagen (2) system, (C) the water (1) + serum
albumin (2) system, (D) the water (1) + hydroxypropyl cellulose (2) system, and (E) the water (1) + Pluronic P105 (2) system.

TABLE 1: Results of Calculations Regarding the Excess (or
Deficits) in the Systems Investigated

system
composition

range ∆n11 > 0 ∆n21 > 0

toluene (1) + polystyrene (2) 0 e æ1 e 1 yes yes
water (1) + collagen (2) 0 e æ1 e 0.2 no yes
water (1) + serum albumin (2) 0 e æ1 e 0.2 no yes
water (1) + hydroxypropyl

cellulose (2)
0 e æ1 e 0.2 yes yes

water (1) + Pluronic P105 (2) 0 e æ1 e 1 yes yes

ln(a1/æ1) ) t1æ2 + t2æ2
2 (13)
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where t1 and t2 are adjustable parameters (t1 ) 2.925 and t2 )
-0.397).

Equation 13 was used to calculate the derivative µ11
(c), and the

partial specific volume of hydroxypropyl cellulose was taken
as that of the hydroxyethyl cellulose, which is provided in ref
43. The results are plotted in Figures 1D, 2D, and 3D.

3.5. Water (1) + Pluronic P105 (2). Pluronic P105 is6 a
polyether block copolymer (EO37PO58EO37, where EO and PO
denote ethylene oxide and propylene oxide segments, respec-
tively). At elevated temperatures6 (above 40-60 °C), this block
copolymer self-assembles in water and in water + cosolvent as
micelles. At low temperatures and concentrations, the block
copolymer molecules are present in solution as independent
polymer chains.6 We carried out the calculation at the “low”

temperature of 24 °C because activity data were available only
at that temperature.44 The molecular weight and the partial
specific volume of Pluronic P105 were also taken from ref 44.
The activity in the water + Pluronic P105 mixture was
represented by the Flory-Huggins equation44 and the derivative
(∂ ln a1/∂c1)T,P was calculated analytically. The calculated
excesses (or deficits) around both central molecules, water and
Pluronic P105, are plotted in Figures 1E, 2E, and 3E.

4. Discussion and Conclusion

In this paper, the KB theory of solutions was applied to binary
mixtures containing a low molecular weight solvent and a high
molecular weight polymer, protein, etc.

Figure 4. The contribution to ∆n12 due to different volumes of solvent and solute: (A) toluene + polystyrene, (B) water + collagen, (C) water
+ serum albumin, (D) water + hydroxypropyl cellulose, and (E) water + Pluronic P105. O, ∆n12 calculated for a real system using eq 8 (see Figure
3) and b, ∆n12 calculated for an ideal system using eq 14.
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We used our new expression35 for the excess (or deficit) to
examine the local composition in binary solvent (1) + polymer
(protein) (2) mixtures. Several mixtures ((I) toluene (1) +
polystyrene (2), (II) water (1) + collagen (2), (III) water (1) +
serum albumin (2), (IV) water (1) + hydroxypropyl cellulose
(2), and (V) water (1) + Pluronic P105 (2)) were considered.
The excess (or deficit) of solvent molecules around a central
solvent molecule (∆n11) and around a central solute molecule
(∆n12) were calculated (see Figures 2 and 3), and the results
are summarized in Table 1. In addition, the calculated excesses
(or deficits) were compared with the Zimm excesses (or deficits)
∆Nij ) ciGij in Figures 2 and 3. The comparison shows that
∆n11 and ∆N11 are different in magnitude but have the same
sign. Such a result is expected, because for the systems
considered here, |G11| . V1, and for this reason, ∆n11 and ∆N11

have comparable values. In contrast, the comparison between
∆n12 and ∆N12 reveals striking difference between the two
excesses (deficits). Whereas for all systems considered ∆n12 >
0 and large, ∆N12 e 0 and is smaller in absolute value than
∆n12. It is worth noting that ∆N12 e 0 contradicts the
experimental results,41 which reveal that the proteins preferen-
tially uptake water in aqueous solutions.

Let us emphasize the physical significance of the obtained
results regarding the excesses (deficits). ∆n11 > 0 means
preferential hydration (or solvation in the case of toluene +
polystyrene mixture) of the solvent molecules, and ∆n12 > 0
means that the polymer (protein) molecules are preferentially
hydrated (or solvated for the toluene + polystyrene mixture).

The signs and magnitudes of ∆n11 and ∆n12 depend on two
factors that are of “enthalpic” and “entropic” nature. The former
is due to differences in the intermolecular interactions: (1)
solvent-solvent and solvent-solute for ∆n11 and (2) solute-
solute and solvent-solute for ∆n12. As suggested by Kauzmann
(as quoted by Timasheff),45 the latter is due to the different sizes
of the solute and solvent molecules. According to Kauzmann,
the smaller molecules can more easily penetrate in the vicinity
of a central molecule, and for this reason, the vicinity of a central
molecule is enriched in the smaller molecules.

One can see from Table 1 that ∆n11 > 0 for three mixtures,
but not for water + collagen and water + serum albumin
mixtures. The very strong H-bonding46 between two water
molecules and the very small size of the water molecule suggest
that ∆n11 > 0. The opposite inequalities (∆n11 < 0 in water +
collagen and water + serum albumin mixtures) can be attributed
to the much stronger H-bonding of the water molecules to some
functional groups of the protein (collagen and serum albumin)
than to the water molecules.

In contrast to ∆n11, ∆n12 > 0 for all mixtures investigated,
and hence, the polymers or proteins are preferentially hydrated
(solvated in the case of toluene + polystyrene mixture). Let us
examine separately the contributions to ∆n12 provided by the
“entropic” and “enthalpic” factors. The contribution to ∆n12

provided by the different sizes of the solvent and polymer
(protein) molecules will be evaluated from the excess in an ideal

solvent (0 eæ1 e 0.2). The values of 100∆n12
id /∆n12 for æ1 )

0.2 are listed in Table 2. Figures 4A and E show that the
“enthalpic” contribution to ∆n12 becomes dominant at high æ1

(æ1 g 0.4 - 0.5).
Protein hydration has been the focus of attention for more

than a century.47 Many theories have been suggested to explain
protein hydration.41,48 These theories can be subdivided into
three groups:48 (1) those based on the physical adsorption of
water vapor on the protein surface, (2) those based on the
stoichiometric binding of water molecules to specific functional
groups of the protein, and (3) models that have considered the
water-protein system as a simple aqueous solution. Our results
regarding the excess number of water molecules in the vicinity
of a protein molecule indicate that at low humidity (æ1 e 0.2-
0.3), the excess of water in the vicinity of a protein molecule is
due mainly to the difference in the sizes of the water and protein
molecules.

Pauling5 connected the hydration of proteins to the adsorption
of water molecules on the polar groups of the former. He
assumed that each polar group adsorbs one water molecule.
Later, Kuntz and Kauzmann41 criticized this approach because
it provided only one-fourth of the hydration level found
experimentally.

Our simple analysis indicates that the difference in the sizes
of water and protein molecules may constitute an important
factor in protein hydration. For water (1) + serum albumin (2)
mixture, Figure 4C provides at æ1 ) 0.2, ∆n12 ≈ 540 and ∆n12

id

≈ 430. Therefore, almost the entire increase in the hydration
number compared to the bulk is due to the difference in the
sizes of water and protein molecules and a smaller fraction (110
molecules) is probably due to the binding of the water molecules
to the specific functional groups of serum albumin.

TABLE 2: Values of 100∆n12
id /∆n12 (%) for æ1 ) 0.2

system 100∆n12
id /∆n12 (%)

toluene (1) + polystyrene (2) 88.0
water (1) + collagen (2) 88.0
water (1) + serum albumin (2) 88.0
water (1) + hydroxypropyl cellulose (2) 88.1
water (1) + Pluronic P105 (2) 88.2
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mixture of components possessing the same volumes as the
analyzed mixture. In this case,35 one can write the following
expression for ∆n12,

where xi is the bulk mole fraction of component i.
∆n12 and ∆n12

id are compared in Figure 4. One can see that
the contribution of ∆n12

id is important in the dilute range of the

∆n12
id )

x1x2V2(V2 - V1)

(x1V1 + x2V2)
2

(14)
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The purpose of this part is to derive expressions for the Kirkwood-Buff integrals 

(KBIs) in binary systems. For binary mixtures, Kirkwood and Buff  7 obtained the 
following expressions for the partial molar volumes, the isothermal compressibility  and 
the derivatives of the chemical potential with respect to concentrations  
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where P is the pressure, T is the absolute temperature, αν is the partial molar volume per 
molecule of species α , 1μ  is the chemical potential per molecule of component 1, k is 
the Boltzmann constant,  is the isothermal compressibility, is the bulk molecular Tk αc
concentration of component α and is the mole fraction of component αx α . Because 

, one can solve Eqs. (A-1, A-3 and A-5) to obtain the following 
expressions for the KBIs  

12211 =+ vcvc

Thermodynamics of Solutions306



 

)(
11

2
1

22

1
11

1
cT c

vc
c

kTkG
μ

+−=                             (A-6) 

)(
1122

2
1

2
22

1
cT vc

v
c

kTkG
μ

+−=                            (A-7) 

and 

)(
111

1
12 cT c

vkTkG
μ

−=                              (A-8) 

 

where 
PTPT

c

c
a

ckT ,1

1

,1

1)(
11

ln1
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=
μμ , is the activity of component 1 and is 

Boltzmann’s constant. Eq. (A-6) was derived by Zimm 
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Eqs. (A-1, A-3 and A-4) provides the following expressions for the KBIs  
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These expressions are the same as those obtained by Matteoli and Lepori 10.  
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Various Contributions to the Osmotic Second Virial Coefficient in
Protein-Water-Cosolvent Solutions†
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An analysis of the cosolvent concentration dependence of the osmotic second virial coefficient (OSVC) in
water-protein-cosolvent mixtures is developed. The Kirkwood-Buff fluctuation theory for ternary mixtures
is used as the main theoretical tool. On its basis, the OSVC is expressed in terms of the thermodynamic
properties of infinitely dilute (with respect to the protein) water-protein-cosolvent mixtures. These properties
can be divided into two groups: (1) those of infinitely dilute protein solutions (such as the partial molar
volume of a protein at infinite dilution and the derivatives of the protein activity coefficient with respect to
the protein and water molar fractions) and (2) those of the protein-free water-cosolvent mixture (such as its
concentrations, the isothermal compressibility, the partial molar volumes, and the derivative of the water
activity coefficient with respect to the water molar fraction). Expressions are derived for the OSVC of ideal
mixtures and for a mixture in which only the binary mixed solvent is ideal. The latter expression contains
three contributions: (1) one due to the protein-solvent interactions B2

(p-s), which is connected to the preferential
binding parameter, (2) another one due to protein/protein interactions (B2

(p-p)), and (3) a third one representing
an ideal mixture contribution (B2

(id)). The cosolvent composition dependencies of these three contributions
were examined for several water-protein-cosolvent mixtures using experimental data regarding the OSVC
and the preferential binding parameter. For the water-lysozyme-arginine mixture, it was found that OSVC
exhibits the behavior of an ideal mixture and that B2

(id) provides the main contribution to the OSVC. For the
othermixturesconsidered(water-HmMalDH-NaCl,water-HmMalDH-(NH4)2SO4,andwater-lysozyme-NaCl
mixtures), it was found that the contribution of the protein-solvent interactions B2

(p-s) is responsible for the
composition dependence of the OSVC on the cosolvent concentration, whereas the two remaining contributions
(B2

(p-p) and B2
(id)) are almost composition independent.

1. Introduction

For more than 60 years it is known that B2, the osmotic second
virial coefficient (OSVC), constitutes an important thermody-
namic characteristic of protein-protein interactions in protein
solutions.1–5 In a binary mixture solvent (1)-protein (2), B2 is
connected to the osmotic pressure (π) via the virial equation

π
kT

)F2 +B2F2
2 +B3F2

3+ (1)

where F2 is the number density of protein molecules; k is the
Boltzmann constant; T is the absolute temperature; and B3 is
the osmotic third virial coefficient.

A similar expression can be written for multiple solvents.
Our primary interest is on systems containing a protein (2) in
a mixed solvent: water (1)-cosolvent (3). An inorganic salt or
a small organic molecule is considered as a cosolvent.

B2 is related to the radial distribution function g22 of a pair
of protein molecules via the expression1,2

B2 )-1
2∫0

∞
(g22 - 1)4πr2dr (2)

where r is the distance between the centers of the protein
molecules and g22 is to be evaluated for an infinitely dilute
protein solution.2 Equation 1 can be converted into the following

expression, when the composition of the protein is expressed
as mass concentration C2

π
C2RT

) 1
M2

+B22C2 +B222C2
2+ (3)

where B22, B222,... are the second, third,... osmotic virial
coefficients in the new concentration scale; R is the universal
gas constant; and M2 is the protein molecular weight. B2 and
B22 are related as follows

B22 )
B2

M2
2
NA (4)

where NA is the Avogadro number.
In the last 10-15 years, a surge in the interest on both

experimental and theoretical features of the OSVC of a protein
(2) in mixed water (1)-cosolvent (3) mixtures has taken place.
This surge was caused by the connection between OSVC and
protein crystallization as well as its solubility in water and in
aqueous mixed solvents.

First, George and Wilson6 found empirically that protein
crystallization can be correlated with B22. They found that good
crystals could be obtained when the osmotic second virial
coefficient (B22) has a value in the window (crystallization slot)
between -2 × 10-4 and -8 × 10-4 mL mol/g2. For B22 > -2
× 10-4, the protein-protein interactions are not strong enough
for crystallization to occur, and for B22 < -8 × 10-4, the
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protein-protein interactions are so strong that amorphous
precipitates are formed because the process is too rapid for the
protein to acquire a crystalline structure. George and Wilson’s6

findings constitute a useful screening criterion for protein
crystallization because OSVC can be relatively easily obtained
using various experimental techniques such as static light
scattering,7–10 small-angle X-ray,11,12 neutron 7,13 scattering,
membrane osmometry,14–16 ultracentrifugation,17 size-exclusion
chromatography,18 and self-interaction chromatography.19–21

Second, it was suggested that the solubility of a protein in
aqueous mixed solvents can be correlated with the osmotic
second virial coefficient.9,22,23 However, whereas the connection
of B22 to protein crystallization was widely accepted, the
connection of B22 to the solubility of proteins requires additional
investigation.22,24

The theoretical investigation of OSVC was mainly based on
the following expression1

B2 )-1
2∫0

∞ [e-W22⁄kT - 1]4πr2dr (5)

where W22 is the potential of mean force between the protein
molecules. The main difficulty in the use of eq 5 is that the
potential of mean force is unknown and a simplified expression
has to be used. A detailed description of the work in this
direction is available in refs 8 and 25–28.

In the present paper, a different approach based on the
Kirkwood-Buff theory of solution5 will be developed. First,
an expression for the OSVC in ternary water (1)-protein
(2)-cosolvent (3) mixtures will be obtained in terms of the
partial molar volumes and the derivatives of the activity
coefficients of the protein and water with respect to their
concentrations. Further, the obtained expression will be subdi-
vided into three components which reflect protein-protein,
protein-water and cosolvent interactions, as well as an “ideal
mixture” contribution. Finally, the OSVC of several water
(1)-protein (2)-cosolvent (3) mixtures will be analyzed in order
to compare the above contributions and their cosolvent com-
position dependencies.

2. Theory

2.1. Expression for B2. The Kirkwood-Buff integral (KBI)5

in n-component mixtures is provided by

GR� )∫0

∞
(gR� - 1)4πr2dr (6)

where gR� is the radial distribution function (RDF) between
species R and � and r is the distance between the centers of
molecules R and �. For the ternary mixture water (1)-protein
(2)-cosolvent (3), one can write (using eqs 2 and 6) that

B2 )-1
2

lim
x2f0

G22 )-1
2

G22
0 (7)

where x2 is the mole fraction of the protein in the ternary mixture
water (1)-protein (2)-cosolvent (3). One of the attractive
features of the Kirkwood-Buff theory of solutions is that the
KBIs defined in terms of the RDFs can be expressed through
measurable thermodynamic quantities, such as the derivatives
of the chemical potentials with respect to concentrations, the
isothermal compressibility, and the partial molar volumes. Such
expressions provide relations between the microstructure of a
solution (through RDF) and measurable thermodynamic quantities.

Expressions for the KBIs could be obtained for both binary29

and ternary mixtures.30 While an explicit expression for binary
mixtures could be obtained relatively easily, explicit expressions

for ternary and multicomponent mixtures required a long
derivation.30,31

The expression for B2 (G22
0 ) in a ternary mixture has the

following form (see Appendix 1 for the derivation)

B2 )-1
2

G22
0 )-1

2[kTkT - 2V2
∞ -

J22

c1 + c3
+

c1c3J21
2

(c1 + c3)2(c1 + c3 + c1J11)
+

J21( c3
2 + c1c3 + c1

2J11

(c1 + c3)2(c1 + c3 + c1J11)
+

c1V1 - c3V3

c1 + c3 + c1J11
)+

(c1 + c3)(V3 + c1V1(V1 -V3))
c1 + c3 + c1J11

+
c1J11

(c1 + c3)(c1 + c3 + c1J11)]
(8)

where ci (i ) 1, 3) is the molar concentration of component i
in a protein-free mixed solvent 1-3; Vi is the partial molar
volume of component i in a protein-free mixed solvent 1-3;
V2

∞ is the partial molar volume of the protein at infinite dilution;
kT is the isothermal compressibility of the mixed solvent;

J11 ) lim
x2f0(∂ ln γ1

∂x1
)

x2

J21 ) lim
x2f0(∂ ln γ2

∂x1
)

x2

J22 ) lim
x2f0(∂ ln γ2

∂x2
)

x1

and γi is the activity coefficient of component i in a mole
fraction scale.

Equation 8 for B2 does not involve any approximations.
Using eq 8, one can calculate B2 from the properties of

protein-free mixed solvents, such as the concentrations ci (i )
1, 3), the partial molar volumes of the components Vi (i ) 1,
3), the isothermal compressibility kT, and J11 as well as those
of infinitely dilute protein mixtures such as the partial molar
volume of a protein at infinite dilution V2

∞ and the derivatives
J21 and J22.

Let us examine various limiting cases of ternary mixtures.
2.1.1. Ideal Mixture Approximation [Superscript “(ideal)”].

In this case, all the activity coefficients are equal to unity, and
all partial molar volumes are equal to the molar volumes of the
pure components,32 and eq 8 becomes

B2
(ideal))-1

2[kTkT
(id)- 2V2

0 +V3
0 + c1V1

0(V1
0 -V3

0)] (9)

where Vi
0 is the molar volume of the pure component i.

2.12. Ideal Mixed SolWent Approximation31,33,34 (Super-
script “is”). In this case, the protein-free mixed solvent 1-3
behaves as an ideal mixture. This approximation implies that
the main contribution to the nonideality of a very dilute protein
+ mixed solvent mixture stems from the nonideality due to the
interactions of the protein with the mixed solvent and not from
the nonideality of the mixed solvent itself. In this case, J11 )
0, and eq 8 acquires the form
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B2
(is))-1

2[kTkT
(id)- 2V2

∞ -
J22

c1 + c3
+

c1c3J21
2

(c1 + c3)3
+

J21( c3

(c1 + c3)2
+

c1V1
0 - c3V3

0

c1 + c3
)+V3

0 + c1V1
0(V1

0 -V3
0)] (10)

As we recently noted,35 the ideal mixed solvent approximation
is very accurate for water (1)-protein (2)-cosolvent (3)
mixtures. In this paper, we will use this approximation which
implies that B2 ≈ B2

(is). Compared to eq 8, eq 10 is simpler
because it does not involve the activity coefficients of the
components of the mixed solvent.

The above expression for the OSVC (B2
(is)) can be subdivided

into three contributions: (1) activity coefficient-free (or ideal
mixture contribution) (B2

(id)), (2) contribution due to protein/
solvent interactions (B2

(p-s)), (3) residual contribution or con-
tribution due to direct protein/protein interactions (B2

(p-p)).
The part of expression 10 free of activity coefficients (or ideal

mixture contribution) is given by

B2
(id))-1

2[kTkT
(id)- 2V2

∞ +V3
0 + c1V1

0(V1
0 -V3

0)]

(11A)

The difference between the ternary ideal mixture approxima-
tion (eq 9) and eq 11A consists in the molar volume of the
protein: the partial molar volume of the protein at infinite
dilution (V2

∞) in eq 11A and the hypothetical molar volume of
a pure protein (V2

0) in eq 9.
The protein-solvent interactions depend31 on J21, and their

contribution to the OSVC (B2
(is)) is provided by

B2
(p-s))-1

2[ c1c3J21
2

(c1 + c3)3
+ J21( c3

(c1 + c3)2
+

c1V1
0 - c3V3

0

c1 + c3
)]

(11B)

It will be shown in the next section that J21 is directly related
to the preferential binding parameter which is a result of the
interactions between protein and water (or cosolvent).

The third contribution is the residual part of the OSVC. It
depends on

J22 ) lim
x2f0(∂ ln γ2

∂x2
)

x1

and therefore can be attributed to the direct protein-protein
interaction. This contribution to OSVC is provided by

B2
(p-p))

J22

2(c1 + c3)
(11C)

Consequently

B2
(is))B2

(id)+B2
(p-s)+B2

(p-p) (12)
2.2. Relation between the Preferential Binding Parameter

and OSVC. The effect of a cosolvent on the behavior of a
protein is determined by the preferential binding parameter,36–39

which, in molal concentrations, can be defined as follows36

Γ23
(m) ≡ lim

m2f0
(∂m3 ⁄ ∂m2)T,P,µ3

(13)

where mi is the molality of component i; P is the pressure; and
µi is the chemical potential of component i.

Γ23
(m) provides information about the concentrations of water

and cosolvent on the protein surface. A negative value of Γ23
(m)

indicates preferential hydration or preferential exclusion of the

cosolvent, and a positive value of Γ23
(m) indicates preferential

cosolvation on the protein surface. In the framework of the ideal
mixed solvent approximation, Γ23

(m) can be expressed as follows
(see Appendix 2 for the details of its derivation)

Γ23
(m))

c3J21

c1 + c3
+

c3

c1
(14)

Equation 14 shows that J21 can be calculated from experi-
mental data regarding Γ23

(m). In the dilute cosolvent region, the
preferential binding parameter Γ23

(m) is a linear function of
cosolvent concentration,31,39–41 and J21 can be considered to be
a constant provided by the slope of Γ23

(m) versus c3.
Equation 14 provides a relation between OSVC and the

preferential binding parameter Γ23
(m), the two being related through

J21. Therefore, Γ23
(m) allows one to calculate the contribution to

OSVC that is connected with the protein-solvent interactions
B2

(p-s). The ideal mixture contribution (B2
(id)) and the contribution

due to protein/protein interactions (B2
(p-p)) are not connected with

Γ23
(m) and hence with the protein-solvent interactions.

3. Numerical Estimations for Various Systems

3.1. Calculation Procedure. Experimental data regarding the
OSVC and the preferential binding parameter for several water
(1)-protein (2)-cosolvent (3) mixtures will be used to estimate
the above three contributions (B2

(id), B2
(p-s), and B2

(p-p)) to OSVC.
The ideal mixture contribution B2

(id) (eq 11A) can be calculated
from the properties of the protein-free mixed solvent. The
isothermal compressibility (-0.5kTkT

(id)) contribution was ne-
glected. We used the partial molar volumes of the components
of the protein-free mixed solvent (V1 and V3) instead of those
of pure components because they were available in the literature.
The protein-solvent interaction contribution B2

(p-s) (eq 11B) can
be calculated from the properties of the protein-free mixed
solvent and data regarding the preferential binding parameter
Γ23

(m). The direct protein/protein interactions B2
(p-p) (eq 11C) can

be calculated using eq 12, experimental data regarding the
OSVC, and the calculated values of B2

(id) and B2
(p-s). When data

regarding the preferential binding parameter Γ23
(m) are not

available, the experimental OSVC can be correlated using eq
10 with two adjustable parameters J21 and J22.

3.2. Experimental Data and System Selection. We selected
the water (1)-protein (2)-cosolvent (3) mixtures for which
accurate data for both Γ23

(m) and OSVC were available. In
addition, experimental information regarding the partial molar
volume of a protein at infinite dilution (V2

∞) is required. There
are only a few systems for which accurate data for both Γ23

(m)

and OSVC are available. For most systems, only incomplete
data could be found. For example, for the popular water
(1)-lysozyme (2)-NaCl (3) mixture, there are numerous
experimental data regarding the OSVC, but accurate data for
Γ23

(m) in the dilute region are missing. In contrast, for the water
(1)-lysozyme (2)-urea (3) mixture, accurate data for Γ23

(m) are
available,42 but experimental information about OSVC is
missing. We found only a few mixtures for which both Γ23

(m)

and OSVC are available. In addition, we carried out calculations
for one mixture (water-lysozyme-NaCl) with incomplete
information. The selected mixtures are listed in Table 1.

3.3. Various Systems. 3.3.1. Water (1)-Malate Dehydro-
genase (Hm MalDH) (2)-NaCl (3). For water (1)-Hm
MalDH (2)-NaCl (3), experimental data for both Γ23

(m) and
OSVC are available.43,44 The partial molar volumes of the
components of the protein-free mixed solvent (V1 and V3)
were calculated from the densities of the water-NaCl
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solutions.50 The results of the calculations for this mixture
are presented in Figure 1 and Table 2.

3.3.2. Water (1)-Hm MalDH (2)-(NH4)2SO4 (3). For water
(1)-Hm MalDH (2)-(NH4)2SO4 (3), experimental data for both
Γ23

(m) and OSVC are available.43,44 The partial molar volumes of
the components of the protein-free mixed solvent (V1 and V3)
were calculated from the densities of the water-(NH4)2SO4

solutions.50 The results of the calculations for this mixture are
presented in Figure 2 and Table 2.

3.3.3. Water (1)-Lysozyme (2)-Arginine (3). Experimental
data regarding Γ23

(m) and OSVC for the water (1)-lysozyme
(2)-arginine (3) mixture45–47 were obtained under different
conditions. The preferential binding parameter was measured46

at pH ) 5.7, whereas OSVC was measured45 at pH ) 4.5 and
in the presence of various amounts of NaCl (2 or 5 (w/v) %).

The data for 2 (w/v) % were employed. Let us note that Γ23
(m)

was measured without addition of NaCl, whereas the OSVC
have been measured with addition of a certain amount of NaCl.
The partial molar volumes of the components of the protein-
free mixed solvent (V1 and V3) were taken from ref 46. The
results of the calculations for this mixture are presented in Figure
3 and Table 2.

3.3.4. Water (1)-Lysozyme (2)-NaCl (3). Data regarding
the preferential binding parameter for these mixtures are not
available in the dilute range. For this reason, the experimental
OSVC19,28,48 were correlated using eq 10 with two adjustable
parameters, J21 and J22. The partial molar volumes of the
components of the protein-free mixed solvent (V1 and V3) were

TABLE 1: Information About the Water (1)-Protein (2)-Cosolvent (3) Mixtures Selected for Calculations

experimental data

OSVC Γ23
(m) V2

∞

number system conditions, refs conditions, refs conditions, refs

1 water (1)-Hm MalDHa (2)-NaCl (3) pH ) 8.2, ref 43 pH ) 8.2, ref 44 pH ) 8.2, ref 43
2 water (1)-Hm MalDH (2)-(NH4)2SO4 (3) pH ) 8.2, ref 43 pH ) 8.2, ref 44 pH ) 8.2, ref 43
3 water (1)-lysozyme (2)-arginine (3) pH ) 4.5 (in the presence of 2

(w/v) % of NaCl), ref 45
pH ) 5.7, refs 46 and 47 pH ) 5.7, ref 46

4 water (1)-lysozyme (2)-NaCl (3) pH ) 4.5, refs 19, 28, 48 no data available
for the dilute range

pH ) 4.5, ref 49b

a Malate dehydrogenase. b V2
∞ was taken equal to the partial molar volume of the protein in a 1 M NaCl solution.

Figure 1. Dependence of the second virial coefficient on the
concentration of salt in a water (1)-Hm MalDH (2)-NaCl (3) mixture.
9, experimental data; solid line, values predicted using eq 10 with j22

(see Table 2) as an adjustable parameter; b, protein-solvent interaction
contribution B2

(p-s) calculated using eq 11B; O, ideal mixture contribution
B2

(id) (eq 11A); 4, the protein-protein interaction contribution B2
(p-p)

calculated using eq 12 from experimental data regarding the OSVC
and B2

(id) and B2
(p-s); broken line (- - -), protein-protein interaction

contribution B2
(p-p) predicted by eq 11C with j22 as an adjustable

parameter from Table 2. The values of B2, B2
(id), B2

(p-s), and B2
(p-p) were

converted in quantities with subscripts (22) using eq 4, which are
expressed in [mL mol/g2] units.

TABLE 2: Values of the Derivatives J21 and J22 used in
Calculations

number system J21 J22

1 water (1)-Hm MalDH (2)-NaCl (3) -1199 a 141500b

2 water (1)-Hm MalDH (2)-(NH4)2SO4 (3) -2854a 283498b

3 water (1)-lysozyme (2)-arginine (3) -171a 269b

4 water (1)-lysozyme (2)- NaCl (3) -1257b 3863b

a Obtained from experimental Γ23
(m) data (see Table 1). b Obtained

from experimental OSVC data (see Table 1).

Figure 2. Dependence of the second virial coefficient on the salt
concentration for the water (1)-Hm MalDH (2)-NH2SO4 (3) mixture.
See Figure 1 for details.

Figure 3. Dependence of the second virial coefficient on the
concentration of cosolvent in the water (1)-lysozyme (2)-arginine
(3) mixture. 9, experimental data; solid line, values predicted using eq
10 with j22 (see Table 2) as an adjustable parameter; b, protein-solvent
interaction contribution B2

(p-s) calculated using eq 11B; O, ideal mixture
contribution B2

(id) (eq 11A); 4, protein-protein interaction contribution
B2

(p-p) predicted by eq 11C with j22 as an adjustable parameter from
Table 2. See details in Figure 1.
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calculated from the densities of water-NaCl solutions.50 The
results of the calculations for water (1)-lysozyme (2)-NaCl
(3) mixtures are presented in Figure 4 and Table 2.

4. Results

Calculations were carried out for four mixtures: (1) water-Hm
MalDH-NaCl, (2) water-Hm MalDH-(NH4)2SO4, (3) water-
lysozyme-arginine, and (4) water-lysozyme-NaCl mixtures.
The composition dependence of OSVC in water-lyso-
zyme-arginine mixtures is weak and close to that of an ideal
mixture (B2

(id) . B2
(p-s) and B2

(p-p)). In contrast, OSVC has a
strong dependence on the cosolvent composition for the
water-Hm MalDH-NaCl, water-Hm MalDH-(NH4)2SO4,
and water-lysozyme-NaCl mixtures. Our calculations dem-
onstrate that the three contributions (B2

(id), B2
(p-s), and B2

(p-p)) to
the OSVC depend differently on the cosolvent composition.
While the ideal mixture contribution (B2

(id)) and the contribution
due to the direct protein/protein interactions (B2

(p-p)) have very
weak composition dependencies, the contribution due to the
protein/solvents interactions (B2

(p-s)) depends on composition in
a way similar to the OSVC. In the dilute range of the cosolvent,
B2

(p-s) and OSVC have almost the same slope. However, for
the mixtures considered, the composition dependence of the
OSVC is provided, at least in the dilute range, by the
contribution due to the protein/solvent interactions (B2

(p-s)) and
can be evaluated from the preferential binding parameter (Γ23

(m)).
The above observations about the various contributions to

OSVC can provide some insight regarding the relation between
the protein solubility and both Γ23

(m) and OSVC.9,21–24,51–55 The
relation between the solubility of protein crystals and the
preferential binding parameter was noted 51,52 and was explained
theoretically.53–55 In particular, criteria for the occurrence of
salting-out and salting-in were established on the basis of the
sign of Γ23

(m), and in addition, equations relating the solubility
of protein crystals to Γ23

(m) were established.53–55 The correlation
between OSVC and the protein solubility is more complex, since
as shown by eq 10, OSVC depends not only on Γ23

(m) (through
J21), which is connected to the solubility, but also on J22 which
is not related to Γ23

(m). This result allowed us to conclude that
the solubility of the protein cannot always be correlated with
the OSVC. There are some experimental observations in this
direction concerning the solubility of lysozyme in water-alcohol
mixtures. Indeed, when an alcohol is added to an aqueous

lysozyme solution, the osmotic second virial coefficient in-
creases,56 whereas the alcohols are well-known protein precipi-
tants; i.e., the aqueous lysozyme solubility decreases with the
addition of an alcohol.51,57,58

5. Discussion and Conclusion

The purpose of this paper is to shed additional light on the
cosolvent concentration dependence of OSVC in water-
protein-cosolvent mixtures. The Kirkwood-Buff theory of
solutions was used to derive an expression which connects
OSVC to the thermodynamic properties of water-protein-
cosolvent mixtures. These properties can be subdivided into two
groups: (1) those due to a protein-free water-cosolvent mixture,
such as concentrations, isothermal compressibility, partial molar
volumes, and the derivative of the water activity coefficient with
respect to the water molar fraction and (2) those of infinitely
dilute (with respect to the protein) water-protein-cosolvent
mixtures, such as the partial molar volume of the protein at
infinite dilution (V2

∞) and the derivatives of the protein activity
coefficient with respect to the protein and water molar fractions
(J21 and J22). It was found that the derived expression for OSVC
contains three contributions: (1) ideal mixture contribution (B2

(id)),
(2) contribution due to the protein/solvent interaction (B2

(p-s)),
(3) contribution due to the direct protein/protein interaction
(B2

(p-p)). The calculations were carried out for several systems
for which Γ23

(m) and OSVC (or only OSVC) were available. The
results revealed the dominant role of the protein/solvent
interaction in the cosolvent composition dependence of OSVC.
It is worth noting that the contribution due to the direct protein/
protein interaction (B2

(p-p)) is almost composition independent
in the dilute range of the cosolvent.

The approach employed in the present paper did not require
the knowledge of any intermolecular potentials, and this has
some advantage compared to the traditional treatment of the
OSVC in water-protein-cosolvent mixtures used in the
literature. However, the suggested approach has several limita-
tions. While eq 8 for the OSVC is a rigorous one, the
calculations were carried out in the dilute range of the cosolvent
where Γ23

(m) has a linear dependence on composition; in addition,
the derivatives (J21 and J22) are assumed to be constant in that
composition range. It is also worth noting that the present
treatment is based on the Kirkwood-Buff theory of ternary
mixtures. However, the experimental results regarding the
preferential binding parameter Γ23

(m) and the OSVC were obtained
for mixtures which involve in addition a buffer, and the effect
of the buffer is taken into account only indirectly via the
preferential binding parameter Γ23

(m) and the OSVC.

Appendix 1: Derivation of Analytical Expressions for the
Kirkwood-Buff Integrals (KBIs) in Ternary Mixtures

Generally speaking, analytical expressions for the KBIs in an
n-component mixture are provided by the following relation5

GR� )
V|A|R�

〈NR〉〈N�〉|A| -
δR�

c�
(A1-1)

where 〈NR〉 and 〈N�〉 are the average numbers of R and �
molecules, respectively, in the volume V; δR� is the Kronecker
symbol (δR� ) 1 for R ) � and δR� ) 0 for R * �); c� is the
bulk molecular concentration of species � (c� ) 〈N�〉/V); |A|R�
is the cofactor of AR� in the determinant |A|; and AR� is given
by5

Figure 4. Dependence of the second virial coefficient on the
concentration of NaCl in a water (1)-lysozyme (2)-NaCl (3) mixture.
B22 (broken line) was calculated using eq 10 with both j21 and j22 used
as adjustable parameters found by fitting the experimental data (b, ref
48; O, ref 19; and 2, ref 28). B2

(id), ideal mixture contribution predicted
using eq 11A; B2

(p-s), protein-solvent interaction contribution calculated
using eq 11B; B2

(p-p), protein-protein interaction contribution cal-
culated using eq 11C. See Figure 1 for details.

Contributions to Osmotic Second Virial Coefficient J. Phys. Chem. B, Vol. 112, No. 46, 2008 14669

5   Aqueous solutions of biomolecules 313



AR� )
1
kT((∂µR

∂N�
)

T,P,Nγ

+
VRV�

kTV ) (A1-2)

In eq A1-2, k is the Boltzmann constant; T is the absolute
temperature; P is the pressure; µR is the chemical potential per
molecule of species R; VR and V� are the partial molar volumes
per molecule of species R and �, respectively; and kT is the
isothermal compressibility.

However, the derivation of analytical expressions for the KBIs
in ternary and multicomponent mixtures is algebraically exten-
sive and requires the use of an algebraic software, such as
Mathematica or Maple.31 A procedure was developed by us
before31 and used to obtain expressions for G12 and G23 in water
(1)-protein (2)-cosolvent (3) for infinite protein dilution. The
expressions have the forms

G12
0 ) kTkT -

J21V3c3 + J11V2
∞c1

(c1 + c1J11 + c3)
-

V3c3(c1 + c3)(V1 -V3)+V2
∞(c1 + c3)

(c1 + c1J11 + c3)
(A1-3)

and

G23
0 ) kTkT +

J21V1c1 - J11c1V2
∞

(c1 + c1J11 + c3)
+

c1V1(c1 + c3)(V1 -V3)-V2
∞(c1 + c3)

(c1 + c1J11 + c3)
(A1-4)

Using the same technique, one can obtain an expression for
G22 at infinite protein dilution

G22
0 ) kTkT - 2V2

∞ -
J22

c1 + c3
+

c1c3J21
2

(c1 + c3)2(c1 + c3 + c1J11)
+

J21( c3
2 + c1c3 + c1

2J11

(c1 + c3)2(c1 + c3 + c1J11)
+

c1V1 - c3V3

c1 + c3 + c1J11
)+

(c1 + c3)(V3 + c1V1(V1 -V3))
c1 + c3 + c1J11

+
c1J11

(c1 + c3)(c1 + c3 + c1J11)

(A1-5)

Expressions A1-3 and A1-4 are further used in Appendix 2.

Appendix 2: Relation between the Preferential Binding
Parameter Γ23

(m) and the Derivatives of Activity Coefficient
with Respect to the Mole Fractions

The preferential binding parameter Γ23
(m) can be expressed via

the Kirkwood-Buff theory of solution as follows59

Γ23
(m))

c3

c1
+ c3(G23

0 -G12
0 +G11

0 -G13
0 ) (A2-1)

In eq A2-1, all KBIs should be evaluated at infinite protein
dilution. Expressions for G12

0 and G23
0 are provided in Appendix

1. Expressions for G11
0 and G13

0 are available in ref 60. They are
given by

G11
0 ) kTkT -

1
c1

+
c3V3

2(c1 + c3)2

c1(c1 + c3 + c1J11)
(A2-2)

and

G13
0 ) kTkT -

V1V3(c1 + c3)2

c1 + c3 + c1J11
(A2-3)

Inserting eqs A1-3, A1-4, A2-2, and A2-3 into eq A2-1, one
obtains

Γ23
(m))

c3(J21 - J11)
c1 + c3 + c1J11

+
c3

c1
(A2-4)

Equation A2-4 leads to eq 14 of the text for the ideal mixed
solvent approximation because J11 ) 0 in this case.
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Chapter 6 

Water and dilute aqueous solutions  

6.1  Simple computer experiments with ordinary ice. 
6.2  Cooperativity in ordinary ice and breaking of hydrogen 

bonds. 
6.3  The structure of dilute clusters of methane and water 

by ab initio quantum mechanical calculations. 
6.4  Treatment of dilute clusters of methanol and water by 

ab initio quantum mechanical calculations.  
 
 
Introduction to Chapter 6 
 
Chapter 6 is devoted to pure water and dilute aqueous 
solutions. Some of the previous chapters (particularly 
chapters 4 and 5) were also concerned with aqueous 
solutions; however, in this chapter the emphasis is on the 
structure of water.  

Why is water so unique and why are its properties so 
different from those of the “normal” liquids? These questions 
have been asked by numerous researchers, and so far, there 
are no absolute answers. However, there is one point on 
which almost all researchers agree: the network of hydrogen 
bonds in liquid water and ice (a water molecule can form up 
to four H-bonds) is the key to the understanding of this 
“mystery”. Therefore, the main emphasis of Chapter 6 is on 
the H-bond network in water and dilute aqueous solutions. 

The approach used in this chapter differs somewhat from 
those of the other chapters, because it is entirely based 
on computational methods, such as the ab initio 
quantum mechanical methods (6.3–6.4) or combinatorial 
computational methods (6.1–6.2). 

Simple computer experiments (which employ 6–8 
million water molecules) in which various fractions of H-
bonds in ordinary ice are allowed to break are presented 
(6.1–6.2). The results of our calculations show that the 
small fraction of broken H-bonds (13–20%), which is 
usually considered enough for melting, is not sufficient to 
break up the network of H-bonds into separate clusters. 
Consequently, liquid water can be considered to be a 
deformed network with some ruptured H-bonds. The 
cooperative effect, first suggested by Frank and Wen, was 
examined by combining an ab initio quantum mechanical 
method with a combinatorial one (6.2). In agreement with 
the results obtained in (6.1), it is shown that 62–63% of H 
bonds must be broken in order to disintegrate a “piece” of 
ice (containing 8 million water molecules) into 
disconnected clusters. 

The next two papers (6.3 and 6.4) deal with the 
application of an ab initio quantum mechanical method (the 
Møller-Plesset perturbation theory) to large binary clusters 
formed by water with methane or methanol. The molecules 
of methane or methanol were selected because they 
represent two extreme types of molecules: 1) methane, an 
entirely hydrophobic molecule and 2) methanol, which has 
both hydrophobic and hydrophilic parts and, in addition, 
can form H-bonds with water. These calculations allow one 
to analyze the changes in the H-bond network of water in 
the vicinity of both molecules when they are inserted 
into pure water. These two cases might be helpful in 
understanding much more complex molecules such as 
proteins.  
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Simple computer experiments in which various fractions of hydrogen bonds (H-bonds) in ice are allowed to
break are presented in this paper. First, up to six million water molecules were used to build an artificial
piece of ordinary hexagonal ice in the form of a cube, a monolayer, a bilayer, a trilayer, and thicker layers.
Then, certain percentages of H-bonds were broken, and the obtained structures were examined. It was found
that a large percentage of H-bonds must be broken in order to completely fragment the network of ice into
clusters. For a cubic piece of ice, which can be considered bulk ordinary ice, this percentage is equal to 61%
H-bonds, a figure also predicted as the threshold of the percolation theory for ice. If, as usually assumed,
13-20% of H-bonds are broken during melting (estimates based on the comparison between the heats of
melting and sublimation of ice), the H-bond network of ice is not fragmented and the overwhelming majority
of water molecules (>99%) belong to a new, distorted but unbroken network. The percentage of broken
H-bonds required for full fragmentation of layers increases with the number of layers and reaches the bulk
value of ice for 5-8 layers. This value is consistent with the literature observation that films of water thicker
than 20-30 Å have properties close to those of the bulk structure.

1. Introduction

By considering that the main difference between liquid water
and ice consists of the percentage of hydrogen bonds (H-bonds)
of the latter being broken, we determined, by suitable computer
experiments, the fractions of water molecules which are present
as clusters and as a continuous network as a function of the
percentage of broken H-bonds. The calculations have been
carried out for both bulk and multilayer ice.

It is well-known 1,2 that water molecules in ordinary ice (Ih)
have a tetrahedral structure. Every molecule is located in the
center of a regular tetrahedron as a central molecule, has four
nearest neighbors at the corners of this regular tetrahedron, and
is linked through an H-bond with each of its nearest neighbors.
This configuration leads to many (nonplanar) cycles that contain
an even number of water molecules, the smallest cycle being
hexagonal,1-2 thus the reason this ice is called hexagonal (Ih).

Cold liquid water (liquid water at 0 °C) is a very structured
liquid which possesses numerous features resembling the
ordinary ice (Ih). Indeed,1-6 (i) the number of nearest neighbors
is 4.4 (4 in ice), (ii) the water molecules in cold water have
only small deviations from the tetrahedral coordination of ice,
(iii) the length of an H-bond (rOO ) 2.82 Å, rOO being the
distance between the centers of the oxygen atoms of two
H-bonded water molecules) is only a little longer than in ice
(rOO ) 2.76 Å), and (iv) the average number of H-bonds per
molecule is 3.6 (in ice it is 4). This picture of liquid water was
recently challenged by Wernet et al. 7 who investigated the first
coordination sphere in liquid water by X-ray absorption
spectroscopy and X-ray Raman scattering. According to them,
most molecules in liquid water have only two H- bonds; in
one of them the molecule acts as a strong acceptor and in the

other as a strong donor.7 This means that at room temperature
in liquid water there are more than 80% broken H-bonds than
in ice (Ih).7-8 This opinion has been critically discussed in the
literature.8-9

By comparing the heats of melting and sublimation one finds
that only 13% of H-bonds in ice are broken upon melting 2. A
similar result (19%) was recently suggested on the basis of a
heuristic density-functional method.10 Many other estimates of
the percentage of broken H-bonds are available in the litera-
ture.3,11 These estimates, based both on experimental results
obtained by various techniques and on theoretical models,
provided values ranging from 2 to 72%,3,11 which are dependent
on the definition used for an H-bond in liquid water.12-13

In this paper, computer experiments have been performed in
which various percentages of H-bonds in ice (Ih) were consid-
ered broken and the structures of the “liquids” thus obtained
are presented as a function of them. A relatively large number,
6 × 106 molecules of water, were used to form a “piece” of ice
(Ih). First, this piece of ice was created in the form of a cube,
which can be considered as a model for bulk ice. Then, the
same number of water molecules was used to “construct” an
artificial “monolayer”, “bilayer”, “trilayer”, and so on. Second,
certain percentages of H-bonds in ice were randomly broken,
and the structures thus obtained were examined. Finally, the
obtained results were compared with the available models of
liquid water and experimental results.

2. Methodology and Program Code

Experiment 1,2 has shown that every molecule of water in
ice is located in the center of a tetrahedron and has four
hydrogen bonds with its neighbors, which are located at the
vertexes of the tetrahedron. This gives rise to a structure which
can be represented as multiple interconnected sheets parallel to
the xy-plane (see Figure 1 for an illustration of a single sheet).
Each sheet consists of a grid of nonplanar hexagons with
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vertexes in the negative and positive y direction, each containing
six water molecules. The sheets are made up of parallel columns
of hexagons in the y direction, with adjacent columns offset in
the y direction by half the distance between the centers of
adjacent hexagons. Each hexagon is connected with six neigh-
boring hexagons in the sheetsone above and one below in the
same column, as well as two in the left neighboring column
and two in the right. The sheets also possess connections
between them, as described below. Although the program uses
rows of regularly spaced hexagons, its topological structure is
as that of real ice, the regularity being simply a coding tool.
Each water molecule in ice has four bonds: Two bonds are
with neighboring molecules in the hexagon.1-2 Another bond
connects its hexagon to a neighboring hexagon in the same
sheet; since each hexagon contains six molecules, it is connected
to six other hexagons in the same sheet. Finally, the fourth bond
is between sheets. If the molecules in a given hexagon are
numbered around the perimeter from one through six, the odd-
numbered molecules would bond to the sheet above, while the
even-numbered ones would have bonds with the sheet below.

The program has four inputssthree for the dimensions of
the lattice and one for the percentage of broken bonds. The first
three inputs are integers specifying the width, length, and height
of the ice structure. The height provides the number of sheets
of molecules created; the width and length give the number of
columns of hexagons and the length of each column. Thus, the
total number of molecules created is six times the product of
the width, length, and height. When the program receives the
command-line inputs, it creates the lattice. The sheets are created
individually by a loop that runs a number of iterations that is
equal to the number of sheets. Then, the proper number of
hexagons is created which are connected as described above.

Finally, the sheets are connected as already explained. Obvi-
ously, the molecules located on the surface of the lattice end
up with less than four bonds.

Once the lattice is created, the bonds are randomly destroyed
in a proportion specified at the command line. There is a linked
list of sheets in the structure, and each sheet involves a linked
list of bonds; thus, all bonds are processed using a double nested
loop. For each bond, a random number between 0 and 1 is
generated and compared to the specified probability (which is
also between 0 and 1); if the random number is smaller, the
bond is deleted. When a bond is deleted, it acquires the property
“deleted”, which is used later in the program.

Finally, the number and size of the resulting fragments must
be found. If the probability used is very small, it is possible
that no molecule or group of molecules becomes separated from
the original structure and the original lattice is preserved. For
calculating the size of a given piece, each molecule has the
method “pull”, which removes the molecule and any molecules
attached to it from the lattice. Using the “pull” method, a depth-
first search is run to find the number of molecules in each
separate piece.14

3. Calculations

The hardware limitations of the program mainly rest with
the creation of the lattice in the memory and the calculation of
the cluster sizes. The program was designed on a personal
machine with 512 MB RAM which could handle lattices of up
to one million molecules in its memory, albeit very slowly. The
lattices used for the final results, containing up to 6 × 106

molecules, had to be created on a supercomputer with up to 5
GB RAM. Thus, this aspect of the program is dependent directly

Figure 1. Illustration of the ice structure discussed in the paper (only one layer is shown for clarity).
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on the amount of RAM available and is indefinitely expandable.
The second shortcoming, regarding the cluster sizes, does not
have a simple solution. The depth-first search algorithm used
for finding the sizes of the clusters ran into limitations in terms
of the stack size on the machines used. Thus, only clusters
smaller than 3000 molecules could be extracted. The solution
to the problem would be a more efficient data structure for
storing the molecules and their bonds, which allows for a more
efficient breadth-first search.

The supercomputer used for calculations was the Young
machine at the Center for Computational Research at the
University of Buffalo. For the program to be executed using
several processors, a computer-specific script was adopted.

4. Results of Computations

4.1. Bulk Ice. The results of the calculations have shown
that a cubic piece of ice containing about 6 × 106 molecules of
water cannot be broken up completely into small clusters when
less than 61% of H-bonds are broken. This means that when
13-20% of H-bonds (usual estimates from the comparison
between the heats of sublimation and melting of ice) are broken,
the above piece of ice is still an unbroken entity and all the
contained water molecules are connected in a network of
H-bonds. The fraction of water molecules in clusters as a
function of the percentage of broken H-bonds is presented in
Figure 2. The fractions of water molecules having 4, 3, 2, 1,
and 0 H-bonds calculated by the present simulations are
presented in Figure 3. Figure 3 shows that there is a maximum
for the fraction of water molecules having two H-bonds at p )
0.5, (where p = 10-2 × percentage of broken H-bonds), a

maximum for the fraction of water molecules having one
H-bond at p ) 0.75, and a maximum for the fraction of water
molecules having three H-bonds at p ) 0.25. Let us note that
the fractions of water molecules having 4, 3, 2, 1, and 0 H-bonds
can be also calculated using probability theory (see refs 15-
16) and that the results obtained via the latter theory can serve
as a test for the correctness of our simulations. If H-bonds are
broken randomly with a probability p, then the fraction of water
molecules with four H-bonds is given by (1 - p),4 with three
H-bonds by C4

1‚p‚(1 - p)3, with two H-bonds by C4
2‚p2‚(1 -

p)2, with one H-bond by C4
1‚p3‚(1 - p), and with zero bonds

(water monomers) by p,4 where Ci
j is the number of combina-

tions of i objects taken j at a time. The results based on
probability theory coincide with those provided by simulations
and presented in Figure 3.

According to the results obtained by computer experiments,
if more than 61% H-bonds are broken, the piece of ice will be
completely fragmented into clusters. The average size of such
clusters is provided in Table 1. The frequency of the clusters
having various sizes is presented in Figure 4.

4.2. Several Layers of Ice. The same calculations were
carried out for several (1-13) layers of ice. Each layer consisted
of a sheet of hexagons as described in section 2 “Methodology
and Program Code”. As expected, in this case smaller percent-
ages of H-bonds have to be broken for clusters to be generated.
The results are presented in Figure 5 which shows that whereas
for bulk ice (a cubic piece) 61% percent of broken H-bonds
are required to generate separate clusters, this figure becomes
38% for a monolayer, 48% for a bilayer, and 61% for 5-8 layers
of ice.

Figure 2. Percentage of molecules in small clusters (compared to the
total of 6 × 106 molecules of water) as a function of percentage of
broken H-bonds.

Figure 3. Percentages of water molecules having 4, 3, 2, 1, and 0
H-bonds as functions of the percentage of broken H-bonds.

TABLE 1: Average Size of Clusters as a Function of
Percentage of Broken H-bonds

percentage of
broken H-bonds (%)

average size of clusters expressed as
number of water molecules in the cluster

61 3.9
64 3.4
66 3.0
68 2.7
70 2.5
80 1.7

Figure 4. Distribution of the fraction of clusters when 61% of the
H-bonds in ice are broken.
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5. Discussion of Results and Comparison with Available
Models and Experimental Information

5.1. First, the results of computer experiments with a cubic
piece of ice (Figures 2-4 and Table 1) will be examined.

A large number of water molecules (up to 6 × 106 water
molecules) was considered in order to minimize the effect of
water molecules located on the surface. Indeed, the number of
molecules on the surface is small (approximately equal to 6((6
× 106)1/3)2 ≈ 0.2 × 106, hence approximately 3.3% of the total
number of water molecules). In addition, the numbers of water
molecules having different numbers of H-bonds (Figure 3)
coincide with those calculated using the probability theory.

Of course, the present simple computer experiment cannot
be considered as an exact counterpart of the ice melting because2

liquid water cannot be topologically related to ice by the simple
breaking of the H-bonds of the latter. Indeed, our computer
experiments deal only with energetic characteristics of the ice
melting and do not account for changes in entropy and volume.
However, the obtained results can be helpful in analyzing
various liquid water models.

The number of models that describe the structure and
properties of liquid water is enormous. They can be subdivided
into two groups:12 the uniform continuum models and the cluster
or mixture models. The main difference between these two
classes of models is their treatment of the H-bond network in
liquid water; whereas the former assumes that a full network
of H-bonds exists in liquid water, in the latter the network is
considered broken at melting and that the liquid water is a
mixture of various aggregates or clusters. The uniform con-
tinuum models stemmed from the classical publications of
Bernal and Fowler,17 Pople,18 and Bernal.19 Among the cluster
or mixture models, reviewed in refs 2-6 and 12, one should
mention the models of Samoilov,20 Pauling,21 Frank and Quist,22

and Nemethy and Scheraga.23

If (as usually considered) 13% of H-bonds are broken during
melting, the H-bond network of ice cannot be fragmented during
melting and the overwhelming majority of water molecules
(>99%) form a new distorted but unbroken network. This
conclusion is not consistent with the cluster or mixture models,
but it is compatible with the uniform continuum models.
Arguments against the cluster or mixture models were presented
by a number of authors.2,15-16,24

Our calculations lead to the conclusion that the H-bond
network in ice is so dense that 13-20% of the H-bonds broken

cannot generate a mixture of disconnected clusters. They also
show that the network of H-bonds in ice can be completely
fragmented when ∼61 % of the H-bonds are broken. Let us
note that this value (∼61 %) corresponds exactly to the threshold
in the percolation theory for ice (Ih).15-16

Consequently in the “liquid” obtained after breaking 13-
20% of the H-bonds (i) all water molecules belong to one
network and are connected to each other by a weakened network
of H-bonds, (ii) there are some large cavities formed as a result
of the rupture of H-bonds, and (iii) these cavities cannot be
stable and are prone to entropy-driven structural transformations.
These transformations contribute to the entropic and volumetric
changes associated with ice melting.

5.2. The several layers of ice considered in this paper
represent artificial constructions of ice in a vacuum in which
water molecules on the surface have interactions (H-bonds) with
other molecules in the layer and in neighboring layers. These
layers represent slices of ice and are very different from bulk
ice. For example, 99.9% of water molecules in the monolayer
have three H-bonds, about 50% in the bilayer have three
H-bonds, and about 50% have four H-bonds in the bilayer.

The calculations regarding several layers of ice have shown
that the percentage of broken H-bonds needed for full frag-
mentation of layers increases with an increasing number of
layers and reaches the value for bulk ice at 5-8 layers.

Thinfilmsof iceandwaterareof interest in thenanosciences.25-30

Usually these films are considered to be confined between two
solid surfaces (walls). It was found that films thicker than 20-
30 Å have properties close to those of the bulk.25-30 These
observations are consistent with our results that the percentage
of broken H-bonds required for full fragmentation of layers
reaches the bulk value for 5-8 layers.

6. Conclusion

Simple computer experiments were performed to examine
the ordinary ice (Ih) in which a fraction of hydrogen bonds have
been broken. A large number (6 × 106) of water molecules were
considered. The sample of ice was first constructed in a cubic
form, and then the same amount of water molecules was used
to build up mono-, bi-, tri-, etc. layers of ice.

The results of our calculations indicated that in all cases (the
cubic sample, mono-, bi-, tri-, and more layers) the small amount
of 13-20% of broken H-bonds, usually considered enough for
melting, is not sufficient to break up the network of H-bonds
into separate clusters. The so-called cluster or mixture models
are not consistent with the results of the present simulations.
From our results one can conclude that liquid water can be
considered to consist of a deformed network with some H-bonds
ruptured. In the case of bulk ice more than 61% of the H-bonds
has to be broken for its complete fragmentation into clusters to
occur. The same result was obtained via percolation theory.15-16

The calculations, carried out for several layers of ice, indicated
that the percentage of ruptured H-bonds required for full
fragmentation of the layers increases with increasing number
of layers and reaches the bulk value for 5-8 layers.

Acknowledgment. The authors are indebted to Leonid
Shulgin (student from the Department of Physics, Princeton
University) for writing the code.

References and Notes

(1) Petrenko, V. F.; Whitworth, R. W. Physics of Ice; Oxford University
Press: Oxford, 1999.

Figure 5. Fraction of broken H-bonds (f) required for full fragmenta-
tion in clusters of several layers of ice. The solid line represents the
fraction of broken H-bond (0.61) required for full fragmentation of
the bulk ice (a cubic piece).

21384 J. Phys. Chem. B, Vol. 110, No. 42, 2006 Shulgin and Ruckenstein

3216   Water and dilute aqueous solutions



(2) Stillinger, F. H. Science 1980, 209, 451.
(3) Eisenberg, D.; Kauzmann, W. The Structure and Properties of

Water; Oxford University Press: Oxford, 1969.
(4) Narten, A. H.; Levy, H. A. Science 1969, 165, 447.
(5) Frank, H. S. Science 1970, 169, 635.
(6) Narten, A. H.; Levy, H. A. In Water: A ComprehensiVe Treatise;

Franks, F., Ed.; Plenum: New York, 1972; Vol. 1.
(7) Wernet, P.; Nordlund, D.; Bergmann, U.; Cavalleri, M.; Odelius,

M.; Ogasawara, H.; Naslund, L. A.; Hirsch, T. K.; Ojamae, L.; Glatzel, P.;
et al. Science 2004, 304, 995.

(8) Smith, J. D.; Cappa, C. D.; Wilson, K. R.; Messer, B. M.; Cohen,
R. C.; Saykally, R. J. Science 2004, 306, 851.

(9) Smith, J. D.; Cappa, C. D.; Wilson, K. R.; Cohen, R. C.; Geissler,
P. L.; Saykally, R. J. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 14171.
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The total interaction energy between two H-bonded water molecules in a condensed phase is composed of a
binding energy between them and an energy due to a cooperative effect. An approximate simple expression
is suggested for the dependence of the interaction energy between two H-bonded water molecules on the
number of neighboring water molecules with which they are H-bonded. Using this expression, the probabilities
of breaking a H bond with various numbers of H-bonded neighbors are estimated. These probabilities are
used in computer simulations of the breaking of specified fractions of H bonds in an ordinary (hexagonal)
ice. A large “piece” of hexagonal ice (up to 8 millions molecules) is built up, and various percentages of H
bonds are considered broken. It is shown that 62-63% of H bonds must be broken in order to disintegrate
the “piece” of ice into disconnected clusters. This value is only a little larger than the percolation threshold
(61%) predicted both by the percolation theory for tetrahedral ice and by simulations in which all H bonds
were considered equally probable to be broken. When the percentage of broken bonds is smaller than 62-
63%, there is a network of H-bonded molecules which contains the overwhelming majority of water molecules.
This result contradicts some models of water which consider that water consists of a mixture of water clusters
of various sizes. The distribution of water molecules with unequal probabilities for breaking is compared
with the simulation involving equal probabilities for breaking. It was found that in the former case, there is
an enhanced number of water monomers without H bonds, that the numbers of 2- and 3-bonded molecules
are smaller, and the number of 4-bonded molecules is larger than in the latter case.

1. Introduction

The many-body (or cooperative) effect in intermolecular
interactions plays an important role in the modern view of
condensed matter.1 Hydrogen bonding in water constitutes one
such system. This cooperativity explains some of the anomalies
of water and aqueous systems.1,2 For example, the cooperativity
is responsible for the contraction of H bonds in ordinary ice
and liquid water compared to the gaseous dimer.3,4 Indeed, the
length of a H bond (roo distance) in the gaseous dimer is about
2.98 Å, in liquid water it is about 2.85 Å, and in ordinary ice
it is about 2.74 Å. The approaches based on pair additive
interactions cannot properly describe the properties of ice, water,
and aqueous solutions1-6 because they ignore the cooperativity.

Frank and Wen were probably the first to emphasize the
importance of cooperativity in hydrogen bonding in water.7 They
noted7 that “the formation of hydrogen bonds in water is
predominantly a cooperative phenomenon, so that, in most cases,
when one bond forms several (perhaps ‘many’) will form, and
when one bond breaks, then, typically, a whole cluster will
‘dissolve’. This gives a picture of flickering clusters, of various
sizes and shapes, jumping to attention, so to speak, and then
relaxing ‘at ease’”. This simple intuitive idea has been very
popular among scientists interested in water and aqueous
solutions. For example, the well-known model of water8 of
Nemethy and Scheraga is based on “flickering clusters”. The

Frank and Wen image of cooperativity was further clarified by
Eisenberg and Kauzmann.2 The strength of a H bond between
two water molecules is expected to be affected by the cooper-
ativity and to depend on the number of neighboring water
molecules with which the two interacting water molecules are
H-bonded. The energy of a H bond in a dimer (zero H-bonded
neighbors) differs from that in ice (six neighbors H-bonded to
a pair of H-bonded water molecules) and from that in liquid
water where the number of H-bonded neighbors can vary
between zero and six.

One of the critical points in discussing cooperativity in ice,
water, and aqueous mixtures is the evaluation of the H-bonding
energy of a pair of water molecules. For ordinary ice (Ih), this
energy has been estimated in various ways2,10-13 which,
however, provided quite different results. These estimates were
based on the experimentally determined sublimation energy of
ice (Esubl).2,8,11-13 Because every water molecule in ordinary
ice has four nearest neighbors with which it is linked through
H bonds,2,14 one can estimate the energy of a H bond between
two neighboring water molecules in ice using the expression2

where Eother represents the intermolecular energy associated with
interactions other than H bonds (such as the van der Waals
interaction). However, due to the ambiguity of the estimates of
the “other interactions”, the estimates2 of EH2O-H2O vary between
17.8 and 32.2 kJ/mol. A more accurate estimation of the energy
of a H bond in ordinary ice is based on the ice lattice energy2

(∆Elattice), which at 0 K, has the value12,13
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and provides the following energy for a H bond in ordinary ice

The latter value will be used in what follows for the energy of
a H bond in ordinary ice.

A powerful impetus in the calculations of the interactions
between water molecules in a condensed phase has been
provided by quantum mechanical ab initio methods. Indeed, the
advent of powerful computers provided the opportunity to use
quantum mechanical ab initio methods for large clusters of water
(containing up to several dozen water molecules).2,3,15-22 In
addition, quantum mechanical ab initio methods are the only
ones which allow one to calculate separately the energy
contributions from the interactions between two, three, and more
molecules and therefore allow one to make a direct estimate of
the cooperative effect.

The total interaction energy (∆Eint) of a cluster of n water
molecules (n can be 2, 3, 4, ...) can be decomposed as follows3

(for details, see Appendix A)

where ∆Etwo-body is the pair interaction energy which involves
the interaction energies between all pairs of molecules in the
cluster, and ∆Emany-body is the interaction energy between
various combinations of 3, 4, ..., n molecules (see eq A1 in
Appendix A). According to Appendix A, ∆Etwo-body includes
contributions from all possible pairs in the clusters, which can
be H-bonded and non-H-bonded. Consequently, ∆Etwo-body can
be separated into two parts, a contribution from H-bonded pairs
(∆EH-bonds) and a contribution from non-H-bonded pairs
(∆Enon-H-bonded)

By combining eqs 4 and 5, one obtains the following
expression for the total interaction energy of a cluster containing
n water molecules

Quantum mechanical ab initio calculations of small (usually
n < 10) water clusters1,3,4,6,16-22 have shown that the many-
body contribution to the total interaction energy represents more
that 20% for clusters larger than the pentamer, with the main
contribution (larger than 90%) of ∆Emany-body arising from the
ternary interactions (∆Eijk). However, it is not yet known how
large ∆Emany-body is for clusters consisting of a dozen or hundred
molecules. In addition, the above-mentioned calculations have
been carried out with artificially constructed clusters in the form
of chains and rings, which are not present in ordinary ice.
However, the analyses of six-member rings16 and tetrahedral
structures17 provided some information of interest. For instance,
it was found that for six-member rings,16 ∆Etwo-body represents
80% of the total interaction energy and ∆Emany-body 20%. The
∆Etwo-body consists of 87.5% ∆EH-bonds and 12.5% ∆Enon-H-bonded.
The ∆Etwo-body in a cluster of five water molecules (they form
a tetrahedron with one molecule in the center)17 constitutes 95%
of the total interaction energy, whereas ∆Emany-body is 5%. The
∆Etwo-body consists of 92.2% ∆EH-bonds and 7.8% ∆Enon-H-bonded.
The above two examples show that ∆Emany-body and ∆EvdW

provide non-negligible contributions.

In most cases, Eother (see eq 1) is due to the van der Waals
interaction, and Pauling11 suggested that it represents about 20%
of the sublimation enthalpy of ordinary ice. By comparing eqs
1 and 6, one can conclude that the energy of a H bond calculated
from the energy of sublimation includes a contribution from
many-body interactions. This contribution probably constitutes
the main reason for the difference between the H-bond strengths
in ice, liquid water, and gaseous dimers.

Consequently, the cooperative effect represents one factor in
the counting of broken H bonds during the melting of ordinary
ice. In our previous paper,23 simple computer experiments were
carried out in which various fractions of H bonds were allowed
to break in ice. In that paper, the H bonds were considered to
have equal breaking probabilities. It was found that a large
fraction of H bonds must be broken to completely disintegrate
the network of ice into clusters. For a cubic piece of ice, this
percentage was 61%, the value also predicted as the threshold
of the percolation theory for ice. It is usually assumed that 13-
20% of H bonds are broken during melting. These estimates
are based on a comparison between the heats of melting and
sublimation of ice. Through melting, the H-bond network of
ice is not disintegrated, and the overwhelming majority of water
molecules (>99%) belongs to a new distorted but unbroken
network.

In the present paper, a treatment which accounts for the
cooperativity of H bonds will be presented. First, an approximate
simple expression will be suggested for the energy of a H bond
between two water molecules as a function of the number of H
bonds which the above two molecules make with the neighbor-
ing water molecules. This expression will be used to evaluate
the probabilities of breaking the H bonds with various numbers
of H-bonded neighbors. Further, the calculated probabilities will
be used to simulate the breaking of various fractions of H bonds
of a large “piece” of hexagonal ice. Finally, the results will be
discussed and compared with available information.

2. H-Bond Energy Between Two Water Molecules with
Various Numbers of Additionally Bound Water
Molecules

The energy of a H bond is expected to depend on the number
of its H-bonded neighbors with which the two water molecules
are H-bonded, which can be 6 (hexagonal ice), 5, 4, 3, 2, 1,
and 0 (gaseous dimer) (Figure 1). Therefore, the energy of a H
bond in the various cases presented in Figure 1 should depend
on the number of H-bonded neighbors.7,9,24-26 Such a depen-
dence was examined by Symons et al. for H-bonded methanol
molecules.24-26 They compared the energy (R) of the H bond
in the methanol dimer A-B with those in the linear chain
C-A-B-D (where A, B, C, and D are methanol molecules
and - stands for a H bond), with the energies R1 for the pair
C-A and R2 for the pair A-B (absolute values of the energies
were considered). Their experimental results24,25 have shown
that R1 > R and R2 >> R. Similar results are expected to occur
for ice and water, but because of a different structure (tetrahe-
dral) of the H bonds in ice and in water, the dependence of the
H-bond energy on the number of neighboring water molecules
with which the two water molecules are H-bonded can be very
different.7,26,27

To calculate the probability of breaking a H bond with various
numbers of H-bonded water neighbors, one must first obtain
an expression for the energy of breaking a H bond. The total
energy of breaking a H bond includes, in addition to the breaking
energy between two water molecules, a cooperative energy due
to the H bonding of the two water molecules with neighboring
water molecules.

∆Elattice ) 58.95 kJ/mol (2)

EH2O-H2O ) 58.95 kJ/mol
2

) 29.48 kJ/mol (3)

∆Eint ) ∆Etwo-body + ∆Emany-body (4)

∆Etwo-body ) ∆EH-bonds + ∆Enon-H-bonded (5)

∆Eint ) ∆EH-bonds + ∆Enon-H-bonded + ∆Emany-body (6)

Cooperativity in Ordinary Ice and Breaking of H Bonds J. Phys. Chem. B, Vol. 111, No. 25, 2007 7115

Thermodynamics of Solutions324



The total energy of a H bond will be written in the simple
approximate form

where N is the number of broken bonds (N ) 0, 1, 2, 3, 4, 5,
or 6), EH-bond

(N) and EH-bond
(6) are the breaking energies of the H

bonds between two water molecules with N broken neighboring
bonds and with all six broken H bonds (gas dimer), respectively,
and ∆ is a quantity which accounts for the cooperative effect.

There is no cooperative effect for a gaseous dimer (with no
H-bonded neighbors), but there is cooperativity in ice which
affects the total energy of the H bonds. Because both energies
EH-bond

(0) and EH-bond
(6) are known, the parameter ∆ can be

evaluated. Of course, eq 7 is approximate because (i) it takes
into account only the effect of H-bonded neighbors from the
first “layer” on the energy of a pair of H-bonded water
molecules, (ii) it does not account for differences in the energies
of the H bonds of “isomers” with the same number of H-bonded
neighbors (see, e.g., Figure 1 c and d, e and f, and g and h),
and (iii) it does not account for differences in the energies of H
bonds with donor or acceptor neighbors (e.g., a neighbor in

Figure 1h can be both donor and acceptor, and in both cases,
eq 7 provides the same energy for a H bond).

In essence, EH-bond
(N) is the sum of the energy EH-bond

(6) between
two water molecules plus a cooperative effect contribution
∆(6 - N). The results of our ab initio quantum mechanical
calculations listed in Table 1 show that the number of water
molecules H-bonded with the two water molecules does not
appreciably affect the energy EH-bond

(6) (some details regarding
our calculations are presented in Appendix B).

A more rigorous expression for EH-bond
(N) is provided by a

nonlinear expression which also accounts for the approximations
listed above (i, ii, and iii) involved in eq 7. However, for the
time being, there is not enough information to determine all of
the parameters in such an expression, and we have to use eq 7
as a first-order linear approximation.

Further, it will be assumed that the probability to break a H
bond with N broken neighboring bonds (p(N)) is provided by
the expression

where w is a constant independent of N, R is the universal gas
constant, and T is the absolute temperature.

Figure 1. Two H-bonded (‚‚‚) water molecules with various numbers of H-bonded (- - - -) neighbors; (a) six neighbors, like in hexagonal ice, (b)
five neighbors, (c) and (d) four neighbors, (e) and (f) three neighbors, (g) and (h) two neighbors, (i) one neighbor, and (j) no neighbors, like in the
gaseous dimer.

EH-bond
(N) ) EH-bond

(6) + ∆(6 - N) (7)

p(N) ) wexp{-EH-bond
(N) /RT} (8)
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Using eqs 7 and 8, one can write the following relation
between the probabilities

The experimental data for EH-bond
(0) and EH-bond

(6) and the value
of ∆ are listed in Table 2. Using these values, one can rewrite
eq 9 as follows

The above expression shows that the probability to rupture a
H bond with 6 H-bonded neighbors is 77 times lower than that
to rupture a H bond in a dimer. This observation explains why
no measurable dimer concentration was detected in liquid water.
It also indicates that there are small probabilities for the
existence of H bonds with four and five broken neighboring H
bonds and, hence, that simple linear chains and cycles in which
the water molecules possess at most two H bonds have low
probabilities to be present in liquid water.

3. Algorithm, Code, and Calculations

A cubic piece of ice was built up as described in our previous
paper.23 As is well-known, hexagonal ice can be represented as
multiple interconnected sheets parallel to the xy plane (see Figure
1 of our previous paper23), each sheet consisting of a grid of
nonplanar hexagons containing six water molecules with vertices
in the negative and positive y direction. The sheets are made
up of parallel columns of hexagons in the y direction, with
adjacent columns offset in the y direction by half of the distance
between the centers of adjacent hexagons. Each hexagon is
connected with six neighboring hexagons in the sheet, one above
and one below in the same column, as well as two in the left
neighboring column and two in the right neighboring column.
The sheets also possess connections between them, as described
below. Although the program uses rows of regularly spaced
hexagons, its topological structure is as that of real ice, the
regularity representing simply a coding tool. Each water
molecule in ice has four bonds, two with the neighboring
molecules in the hexagon, another connecting its hexagon to a
neighboring hexagon in the same sheet (since each hexagon
contains six molecules, it is connected to six other hexagons in
the same sheet), and a fourth between sheets. If the molecules
in a given hexagon are numbered around the perimeter from
one through six, the odd-numbered molecules are bonded to

the sheet above, while the even-numbered ones are bonded to
the sheet below.

The program involves three groups of inputs, one for the
dimensions of the lattice, another one for the total number of
bonds to be broken, and finally a third one for the probabilities
of bond breaking (p(0), p(1), p(2), p(3), p(4), p(5), and p(6)). The
first group consists of three integers, specifying the width, the
length, and the height of the ice structure. The height is merely
the number of sheets of molecules created; the width and length
are the number of columns of hexagons and the length of each
column, respectively. Consequently, the total number of mol-
ecules created is 6 × width × height × length. When the
program receives the command-line inputs, it creates the lattice.
The sheets are created individually by a loop that runs a (height)
number of iterations. Each sheet is characterized by the
parameters height and length; then, the proper number of
hexagons is created, and they are connected accordingly. Finally,
the sheets are connected as explained above. Obviously, some
molecules end up with less than four bonds since they are
located on the bottom and top sheets; therefore, they cannot be
linked down and up, respectively. Also, the molecules on the
border of each sheet have less than four bonds because there
are fewer hexagons to link to the same sheet.

The second and third groups of inputs deal with the breaking
of the bonds. The second group is a decimal M specifying the
total fraction of bonds that will be broken (i.e., M ) 0.13 for
13% of all bonds). The third group consists of a set of
probabilities for a bond to be broken, different (increasing)
decimals for bonds with six neighboring bonds (the maximum),
five, four, three, two, one, and zero. Only first-neighbor bonds
affect the probabilities; second-order effects are ignored.

Bonds are broken in a multistage process. First, a small
fraction (this fraction can also be selected as equal to zero) of
bonds are broken at the “bulk” probability to “seed” the melting
process. Once that is accomplished, a “breaking” loop is
executed repeatedly until the fraction M of the bonds has been
broken. In each iteration of the “breaking” loop, the program
looks at each bond in the lattice in order. It calculates the number
of neighboring bonds that still exists. This number is originally
six for all bonds on the inside of the lattice (less near the
boundaries, as explained above) but can decrease to anywhere
between five and zero as nearby bonds disappear. On the basis
of the number of neighbors, a probability of breaking is retrieved
for this bond (from the third group of inputs). Say this
probability is 0.02 (2%), then a random decimal between 0 and
1 is generated. If it is less than the probability, the bond is
deleted (on average, this process deletes the bond with a 2%
probability). Then, the loop moves on through the lattice until
all bonds have been visited. After each iteration of the
“breaking” loop, the program calculates the total fraction of
bonds in the lattice that have been broken. If that fraction is

TABLE 1: The Average Pair Interaction Energy and Length of Two H-Bonded Water Molecule in a Dimer and Various
Clusters

cluster

number of
H-bonded
neighbors

average binding energy
between two H-bonded

water molecules
(kJ/mol)

average length
of the H bonds

(ro-o)
(Å) reference

dimer 0 -19.7 ( 1.5 2.91 18, 28
clusters containing
20 and 25 water
molecules

6 (Figure 1a) -17.0 2.80 29a

5 (Figure 1b) -17.8 2.82 29
4 (Figure 1c and d) -18.9 2.81 29

a Details of the calculations regarding large water clusters are briefly summarized in Appendix B.

TABLE 2: Experimental Data (EH-bond
(0) and EH-bond

(6) ) Used to
Calculate ∆ by Eq 7

EH-bond
(0)

(kJ/mol)12,13
EH-bond

(6)

(kJ/mol)18,28
∆

(kJ/mol)

29.5 19.7 1.6

p(0)/p(1)/p(2)/p(3)/p(4)/p(5)/p(6) ) 1/exp(∆/RT)/exp(2∆/RT)/
exp(3∆/RT)/exp(4∆/RT)/exp(5∆/RT)/exp(6∆/RT) (9)

p(0)/p(1)/p(2)/p(3)/p(4)/p(5)/p(6) ) 1/2.1/4.3/8.8/18.1/37.3/77.0
(10)

Cooperativity in Ordinary Ice and Breaking of H Bonds J. Phys. Chem. B, Vol. 111, No. 25, 2007 7117

Thermodynamics of Solutions326



less than the number specified in the second input group, it
repeats the loop. Otherwise, the program moves on to the final
stage.

Finally, the number and size of the resulting fragments must
be found. If the total fraction of bonds broken is very small, it
is possible that no molecule or group of molecules is broken
off from the original structure. To distinguish the separated
fragments in the code, a loop over all molecules is used. At
first, all molecules are flagged as “unexamined”. When an
unexamined molecule is reached, it is added to a queue and set
as “examined”. Then, the program removes the molecule from
the queue and looks at its neighbors. If they are unexamined,
they are, in turn, placed into the queue and set to examined.
This process continues recursively until all of the molecules in
the same fragment as the original molecule have been, at some
point, placed in the queue and flagged as examined. Then, the
number of molecules thus reached is counted and reported as
the size of the fragment. The program then loops through the
lattice until it finds another unexamined molecule; clearly, it
must be part of a new fragment. A new queue is created, and
all of the molecules in the new fragment are labeled and tallied.
The process continues until all of the molecules in the lattice
have been examined.

The hardware limitations of the program mainly rest with
the creation of the lattice in memory. The lattices used for the
final results, up to 8 million water molecules in size (in the
form of a cube with length, width, and height of 110, containing
7986000 molecules), were created on a supercomputer with 2
GB of RAM. Thus, this aspect of the program depends directly
on the amount of RAM available and is indefinitely expandable.
The supercomputer used for calculations was the U2 machine
at the Center for Computational Research at the University of
Buffalo. In order to run the program on a parallel-processor
supercomputer, we had to use a computer-specific script.

4. Results and Discussion

For this computer experiment, a large (about 8 million water
molecules) “piece” was built up, as described above. (In our
previous calculations,23 a piece containing about 6 million water
molecules was used.) Various fractions (from 5 to 95%) of the
H bonds were allowed to break in a process that takes into
account different probabilities of rupture of various types of H
bonds. After that, the resulting piece of “ice” was examined.

4.1. Relation between the Number of Broken Bonds and
Structure. Percolation Threshold. Figure 2 presents the
fraction of water molecules in small clusters as a function of
the fractions of broken H bonds. The calculations show that
the small amount of 13-20% of broken H bonds, usually
considered to occur in melting, is not sufficient to disintegrate
the network of H bonds into separate clusters and that the
overwhelming majority of water molecules (>99%) belongs to
a new distorted but unbroken network. This result was also
obtained by us before23 when we assumed equal probability of
rupture of H bonds and also by others a long time ago.30,31 It
may be used as a test for any models of the water structure.
For instance, the so-called cluster or mixture models2 are not
consistent with the above conclusion.

Figure 2 also shows that when 62-63% of H bonds are
broken, the piece of ice is disintegrated into small separate
clusters, and the network of H bonds is completely broken down.
This result is slightly different from that23 (60-61%) obtained
by assuming equal probability of rupture of all H bonds. Let us
note30,31 that 60-61% is also the threshold provided by the
percolation theory for the tetrahedral structure.

4.2. H-Bond Statistics. If H bonds are broken randomly with
equal probability (p) for each H bond, then the fractions of water
molecules with four intact H bonds is given30,31 by (1 - p)4,
with three intact H bonds by C4

1‚p‚(1 - p)3, with two intact H
bonds by C4

2‚p2‚(1 - p)2, with one intact H bond by C4
1‚p3‚(1 -

p), and with zero bonds (water monomers) by p4, where Ci
j is

the number of combinations of i objects taken j at a time.
However, when the cooperative effect is taken into account,
the H bonds do not rupture with equal probability. The breaking
of one H bond is described mathematically by eqs 7-10. Figure
3 compares the fractions of water molecules having various
numbers of H bonds in the two cases. One can observe that the
numbers of 2- and 3-bonded molecules are smaller and the
numbers of 4-bonded molecules and monomers are larger for
the unequal than the equal probabilities of rupture. It should be
mentioned that several models of the water structure involve a
large fraction of monomer water molecules.11,32 Our calculation
show that when 20% of H bonds in ice are broken, 0.5% of the
monomer is formed; when 25% of H bonds in ice are broken,
1% of the monomer is generated. It is worth noting that the
equal probability assumption leads to 0.16% monomer when
20% of the H bonds in ice are broken and to 0.39% monomer
when 25% of the H bonds in ice are broken. Due to their
capability to fill the “holes” in the ice structure, the monomers
can play an important role. For instance, Frank33 suggested that
“the structure of cold water seems likely to consist, for the most
part, of hydrogen-bonded, four-coordinated, framework regions,
with interstitial monomers occupying some fraction of the
cavities that the framework encloses. The precise geometry of
the framework has not been specified, but some evidence

Figure 2. Percentage of molecules in small clusters (compared to the
total of about 8 × 106 molecules of water) as a function of the
percentage of broken H bonds; O present calculations, b results from
our equal probability previous calculations.23 In B, the results are plotted
for the percentage of broken H bonds between 40 and 70%.
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suggests that it is rather regular at low temperatures and becomes
more random as the water gets warmer.

There are important differences between the literature mod-
els11,32 and our results. In our case, (i) the number of monomers
is smaller than that in the Pauling model (where they are present
in clathrate-like cages),11 and (ii) they “coexist” with a disturbed
but still infinite, not disintegrated network of water molecules.
In contrast, the models in refs 11 and 32 do not involve a
network but only a distribution of clusters.

4.3. How Many H Bonds are Ruptured during Melting?
Various estimates for the fraction of H bonds ruptured during
melting are available, which are reviewed in references 2 and
34. A convenient method is the comparison of the heats of
melting and sublimation. Pauling found that about 15% of H
bonds are ruptured upon melting,11 and Stillinger found a value
of about 13%.14 These calculations involve the enthalpy of
sublimation of ice (∆Hsubl ) 51.6 kJ/mol at 273.15 K) and the
enthalpy of fusion of ice (∆Hfusion ) 6.01 kJ/mol at 273.15 K),2

which constitutes about 11.8% of the enthalpy of sublimation
of ice. However, these simple estimates imply several assump-
tions; (1) the enthalpies of sublimation and fusion are due only
to the H-bond rupture, and (2) the energies of a single H bond
of the hexagonal ice and cold water (at 273.15 K) are the same.
It is clear that assumption 1 constitutes only a rough approxima-
tion (see eq 1) because those enthalpies also include (see eq 6)
other interactions (such as the van der Waals interactions).
Eisenberg and Kauzmann2 employed the ice lattice energy at 0
K (∆Elattice) to estimate the H-bond energy (see eq 3), and this
led to 10.2% ((100 × 6.01)/58.95 ) 10.2%) for the fraction of
H bonds ruptured during melting.

The present procedure allows one to take into account the
cooperative effect in the breaking of H bonds during melting.
Figure 4 presents the contributions of various types of H bonds
(see Figure 1) to the “pool” of ruptured H bonds. One can note
that more than 95% of the ruptured H bonds have six or five
H-bonded neighbors. The results from Figure 4 can be combined
with eq 7 to calculate the energy required to rupture a certain
fraction of H bonds. A comparison of the calculated energy

with the heat of fusion allows one to calculate the fraction of
broken H bonds upon melting. The results of such calculations
are presented in Figure 5. One can see that the fraction of H
bonds ruptured upon melting is between 11 and 12%, a value
only a little larger than the 10.2% calculated by comparing with
the heat of vaporization.

4.4. Average Cluster Size. As already mentioned above, 62-
63% of H bonds must be ruptured to achieve the full fragmenta-
tion of the hexagonal ice structure into small clusters. When
the number of broken H bonds is less than 62-63%, most of
the water molecules belong to an unbroken network (see Figure
2). The average cluster sizes when the number of broken H
bonds is larger than 62-63% are listed in Table 3.

5. Conclusion

The present paper is focused on the role of the cooperativity
(or many-body interactions) on the structure of ordinary ice and
liquid water. For this purpose, the energy of a H bond was
expressed as a function of the number of H-bonded neighbors
(see eq 7). Then, the probabilities of breaking various types of

Figure 3. Fraction of water molecules having various numbers of H
bonds. The solid lines are for equal probability of rupture of H bonds.
Results of the present calculation: b fraction of water molecules having
four H bonds, 0 fraction of water molecules having three H bonds, ×
fraction of water molecules having two H bonds, + fraction of water
molecules having one H bond, O fraction of water molecules having
no H bonds.

Figure 4. The contributions (%) from various types of broken H bonds
to the total number of broken H bonds. (A) six H-bonded neighbors,
(B) five H-bonded neighbors, (C) four H-bonded neighbors, (D) three
H-bonded neighbors, and (E) two H-bonded neighbors (see also the
caption to Figure 1).

Figure 5. The dependence of the energy required to rupture a certain
fraction of H bonds on the fraction ruptured. The solid line represents
the enthalpy of fusion of hexagonal ice.
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H bonds (see Figure 1) were calculated to conclude that there
are large differences in the probabilities of breaking various
types of H bonds. For example, the probability to rupture the
H bond of a water dimer, which is H-bonded to zero water
neighbors (gaseous dimer), is 77 times larger than that of a water
dimer which is H-bonded to six water neighbors because of
the cooperative effect in the latter.

The predicted probabilities were used to simulate the rupture
of H bonds in an ordinary (hexagonal) ice. For this purpose, a
large “piece” (up to 8 million water molecules in the form of a
cube) of ordinary ice was built up, and various fractions (from
5 to 95%) of H bonds were allowed to rupture.

It was found that 62-63% of H bonds must be broken to
disintegrate the above piece of ice into small clusters. This value
is a little larger than that (61%) predicted for equal probability
of rupture for all H bonds.

In addition, it was found that the obtained structure contained
an enhanced (compared with the case of equal probability of
rupture23 of H bonds) number of water monomers. This result
supports the viewpoint11,32,33 that the water monomers play a
role in the liquid water structure.

Our calculation showed that the percentage of ruptured H
bonds during melting is 11-12%.

Acknowledgment. The authors are indebted to the Center
for Computational Research (CCR) of the University at Buffalo
for the use of its facilities.

Appendix A

The total interaction energy of a cluster of n water molecules
(n can be 2, 3, ...) can be decomposed as follows3

where ∆Em-body is the m-body interaction energy of the cluster
(m ) 2, 3, ..., n) and ∆Eij, ∆Eijk, and so forth in eq A1 are
defined as

where Ei is the energy of an isolated molecule i, Eij is the energy
of the complex consisting of molecules i and j, Eijk is the energy
of a complex consisting of molecules i, j, and k, and so forth.
Equation 4 for the total interaction energy of a cluster of n water
molecules can be rewritten in the form

where ∆Etwo-body is the pair interaction energy which includes
the interaction energy between all pairs of molecules in the
cluster of n molecules and ∆Emany-body is the interaction energy
between various combinations of 3, 4, ..., n molecules.
∆Etwo-body can be separated into two parts, one contribution
from H-bonded pairs in the cluster and another contribution from
non-H-bonded pairs in the cluster

Appendix B

The second-order Møller-Plesset perturbation theory (MP2)
with a large 6-311++G (3d, 2p) basis set was employed to
optimize the geometries of the clusters containing 20 and 25
water molecules.29 The computations were carried out as in our
previous publications.35,36

The computational procedure has allowed one (1) to find the
optimal geometries for the clusters considered and (2) to
determine the distances and the interaction energies between
pairs of H-bonded water molecules.

The computational procedure consists of three steps. (i) An
initial cluster configuration was constructed using the Cerius2

4.2 software. The configuration thus built was processed using
the Cerius2 CLEAN function, and the obtained structure was
considered as the initial guess. (ii) The cluster geometry was
obtained by optimizing the guess with respect to all coordinates
using the MP2 method with a 6-311++G (3d, 2p) basis set.
For large clusters, it is difficult to reach the global minimum
because there are many local minima. To avoid the effect of
the initially selected guess, the minimization procedure was
carried out for a large number of initial guesses (five-ten). (iii)
All H-bonded pairs in the optimized clusters were selected and
ascribed to various groups shown in Figure 1. (iv) The
interaction energies between H-bonded molecules R and â
(ERb

int) were calculated using the supermolecular approach37,38

where ERb{Râ} is the total energy of an Râ pair obtained with
an {Râ} basis set and ER{Râ} and Eâ{Râ} are, respectively,
the energies of the individual R and â molecules obtained also
with the {Râ} basis set. (v) The average interaction energies
and lengths between the H-bonded water molecules were
calculated (Table 1) for various H-bonded water molecules (see
Figure 1).
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(3) Ojamäe, L.; Hermansson, K. J. Phys. Chem. 1994, 98, 4271.
(4) Ludwig, R. Angew. Chem., Int. Ed. 2001, 40, 1809.
(5) Barnes, P.; Finney, J. L.; Nicholas, N. D.; Quinn, J. E. Nature 1979,

282, 459.
(6) Xantheas, S. S. Chem. Phys. 2000, 258, 225.
(7) Frank, H. S.; Wen, W. Y. Discuss. Faraday Soc. 1957, 24, 133.
(8) Nemethy, G.; Scheraga, H. A. J. Chem. Phys. 1962, 36, 3382.
(9) Perram, J. W.; Levine, S. Mol. Phys. 1971, 21, 701.

(10) Bernal, J. D.; Fowler, R. H. J. Chem. Phys. 1933, 1, 515.
(11) Pauling, L. The Nature of Chemical Bond, 3rd ed.; Cornell

University Press: Ithaca, NY, 1960.
(12) Petrenko, V. F.; Whitworth, R. W. Physics of Ice; Oxford University

Press: Oxford, U.K. 1999.
(13) Whalley, E. In The Hydrogen Bond; Schuster, P., Zundel, G.,

Sandorfy, C., Eds.; North-Holland: Amsterdam, The Netherlands, 1976;
Vol. III, p 1425.

(14) Stillinger, F. H. Science 1980, 209, 451.
(15) Wales, D. J. In Encyclopedia of Computational Chemistry; Schleyer,

P. v. R., Allinger, N. L., Clark, T., Gasteiger, J., Kollman, P. A., Schaefer,
H. F., III, Schreiner, P. R., Eds.; Wiley: New York, 1998.

(16) Hermansson, K. J. Chem. Phys. 1988, 89, 2149.
(17) White, J. C.; Davidson, E. R. J. Chem. Phys. 1990, 93, 8029.
(18) Xantheas, S. S.; Dunning, T. H., Jr. J. Chem. Phys. 1993, 99, 8774.
(19) Xantheas, S. S. J. Chem. Phys. 1995, 102, 4505.
(20) Milet, A.; Moszynski, R.; Wormer, P. E. S.; van der Avoird, A. J.

Phys. Chem. A 1999, 103, 6811.

(21) Dunning, T. H. J. Phys. Chem. A 2000, 104, 9062.
(22) Lee, H. S.; Tuckerman, M. E. J. Chem. Phys. 2006, 125, 154507.
(23) Shulgin, I. L.; Ruckenstein, E. J. Phys. Chem. B 2006, 110, 21381.
(24) Symons, M. C. R.; Shippey, T. A.; Rastogi, P. P. J. Chem. Soc.,

Faraday Trans. 1 1980, 76, 2251.
(25) Symons, M. C. R.; Thomas, V. K. J. Chem. Soc., Faraday Trans.

1 1981, 77, 1883.
(26) Symons, M. C. R. Philos. Trans. R. Soc. London, Ser. A 2001,

359, 1631.
(27) Frank, H. S. Proc. R. Soc. London, Ser. A 1957, 247, 481.
(28) Szalewicz, K.; Cole, S. J.; Kolos, W.; Bartlett, R. J. J. Chem. Phys.

1988, 89, 3662.
(29) Ruckenstein, E.; Shulgin, I. L. 2007, unpublished results.
(30) Geiger, A.; Stillinger, F. H.; Rahman, A. J. Chem. Phys. 1979, 70,

4185.
(31) Stanley, H. E.; Teixeira, J. J. Chem. Phys. 1980, 73, 3404.
(32) Samoilov, O. Y. Zh. Fiz. Khim. 1946, 20, 1411.
(33) Frank, H. S. Science 1970, 169, 635.
(34) Falk, M.; Ford, T. A. Can. J. Chem. 1966, 44, 1699.
(35) Ruckenstein, E. E.; Shulgin, I. L.; Tilson, J. L. J. Phys. Chem. B

2003, 107, 2289.
(36) Ruckenstein, E. E.; Shulgin, I. L.; Tilson, J. L. J. Phys. Chem. B

2005, 109, 807.
(37) Chalasinski, G.; Gutowski, M. Chem. ReV. 1988, 88, 943.
(38) Jeziorski, B.; Szalewicz, K. In Encyclopedia of Computational

Chemistry; Schleyer, P. v. R., Ed.; Wiley: New York, 1998; Vol. 2,
p 1376.

Cooperativity in Ordinary Ice and Breaking of H Bonds J. Phys. Chem. B, Vol. 111, No. 25, 2007 7121

Thermodynamics of Solutions330



The Structure of Dilute Clusters of Methane and Water by ab Initio Quantum Mechanical
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Ab initio quantum mechanical methods have been used to examine clusters formed of molecules of methane
and water. The clusters contained one molecule of one component (methane or water) and several (10, 8, 6,
4, and 1) molecules of the other component. The Møller-Plesset perturbation theory (MP2 method) was
used in the calculations. The cluster geometries were obtained via optimization and the interaction energies
between the nearest neighbors were calculated for the geometries obtained in the first step. It is shown that
the interaction energies and intermolecular distances between the molecules of methane and water are quite
different in the clusters CH4‚‚‚(H2O)10 and H2O‚‚‚(CH4)10. They are also different from those in the water/
methane dimer. The structure of the cluster CH4‚‚‚(H2O)10 is highly affected by the hydrogen bonding among
the water molecules, and the methane molecule is located inside a cage formed of water molecules. In contrast,
the molecules of methane and water are randomly distributed in the cluster H2O‚‚‚(CH4)10. The average methane/
water intermolecular distance in the cluster CH4‚‚‚(H2O)10 provided by the quantum mechanical calculations
is in agreement with the experimental and simulation results regarding the position of the first maximum in
the radial distribution function goc ) goc(roc) in dilute mixtures of methane in water, where roc is the distance
between the C atom of methane and the O atom of water. It is shown that the water molecules in the vicinity
of a central methane molecule can be subdivided into two groups, A and B. Molecules of type A are touching
nearest neighbors of the central methane molecule. They are located on a sphere with a radius corresponding
to the first maximum in the radial distribution function goc ) goc(roc) and are tangentially oriented toward the
central methane molecule. The layer of A water molecules is somewhat denser than bulk water. The molecules
of type B are also located in the first hydration layer of a central methane molecule (up to a distance given
by the position of the first minimum of the radial distribution function goc ) goc(roc)), but are not touching
nearest neighbors. They are distributed more randomly than the molecules of type A, because they are less
affected by the hydrophobic core of the solute.

1. Introduction

The interactions in mixtures of nonpolar substances, such as
noble gases and hydrocarbons, with water constitute the simplest
manifestation of the hydrophobic effect. A large number of
publications (many thousands) have been devoted to this topic
and information about the hydrophobic effect was summarized
in books and recent reviews.1-7 The hydrophobic effect is
germane to chemistry (gas solubility in water, phase separation,
and self-assembling in aqueous mixtures), biology (protein
folding and micellization), and even geology (undersea deposits
of methane hydrates). Two manifestations of the hydrophobic
effect can be considered: the interaction of one molecule of a
nonpolar solute with the surrounding water molecules (hydro-
phobic hydration) and the interactions of nonpolar molecules
among themselves in a water environment (hydrophobic
interactions).1-7 While Kauzmann was the first to introduce the
notion of hydrophobic interactions in the 1950s,8,9 some
fundamentals of hydrophobic hydration were established earlier
in the 1930s and 1940s in the publications of Butler and those

of Uhlig and Eley.10-13 In their papers, they tried to explain
the poor solubilities of nonpolar molecules in water (as a rule
they are smaller by 1-3 orders of magnitude than those in
organic substances) by dividing the dissolution process into two
steps: (1) the creation of a “cavity” in the bulk water and (2)
the insertion of the nonpolar molecule into the cavity. This
scheme became classic and was used to explain the behavior
of various thermodynamic functions that characterize the
dissolution of nonpolar substances in water under ambient
conditions: the free energy change ∆Gd is positive (unfavor-
able), the enthalpic change ∆Hd is negative (favorable), the
entropic change ∆Sd is negative (unfavorable with a larger
absolute value of T∆Sd than ∆Hd), and the change in the isobaric
heat capacity ∆cp

d is large and positive.14 Reliable values of
these thermodynamic functions are now available for numerous
substances.14-16 Frank and Evans17 provided an additional
insight in the understanding of the hydrophobic hydration by
suggesting that during the second step the layers of water around
the solute molecule become more ordered. The formation of
the more ordered structures (icebergs) around a molecule of a
nonpolar solute was in their opinion the cause of the great loss
of entropy in the process of dissolution. This idea dominated
the field for several decades and more detailed theories were
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developed to provide quantitative explanations for the behavior
of the above thermodynamic functions and for the temperature
and pressure dependencies of the solubility in water.1-7 The
concept of iceberg led to the conclusion that the decrease in
entropy caused by the organization of the water molecules is
responsible for the low solubility of hydrocarbons in water. In
reality, the change in entropy due to ordering is compensated
by the change in enthalpy caused by the interactions between
the hydrocarbon molecule and water.18-22 Shinoda18,19concluded
that the formation of a cavity constitutes the main effect, while
Ruckenstein 20-22 has shown, on the basis of a simple
thermodynamic approach, that while the formation of a cavity
provides the largest contribution, the “iceberg” formation also
plays a role.

A different interpretation of the hydrophobic effect was
suggested by Lucas and Lee.23-24 They suggested that the poor
solubility of nonpolar compounds in water is due to an excluded
volume effect, which is amplified, in the case of liquid water,
by the small size of the water molecules, and that the entire
hydrophobic effect is a result of their small size. The combina-
tion of this idea25-28 with Muller’s two-state water structure29

provided reasonable results regarding the hydrophobic hydration.
The more recent application30-32 of information theory to the
treatment of the hydrophobic effect was used to explain5 (a)
the temperature dependence of the hydrophobic hydration, (b)
the water/hydrogen isotope effect, etc.

During the last 2 decades, the availability of powerful
computers and the wide use of modern experimental methods,
especially X-ray and neutron scattering, allowed one to obtain
valuable information about the nanostructure of mixtures
containing hydrophobic solutes. Moreover, one can observe a
certain redirection in the research of the hydrophobic effect.
While in the past the main goal was to obtain reliable data
concerning the thermodynamics of the hydrophobic hydration
and to interpret them using different models, the goal now is to
obtain information about the nanostructure of water around a
hydrophobic solute and to find out how this nanostructure differs
structurally and energetically from that of bulk water. While
the existence of several layers of water molecules around a
hydrophobic solute which are affected by the solute is beyond
doubt (it was demonstrated experimentally33-35), the charac-
teristics of this “perturbed” water are not yet well-known.
Several questions arise regarding them and the difference from
bulk water: (1) how many water molecules are involved or how
many water molecules are affected by the presence of a
hydrophobic solute? (2) is its structure more ordered than that
of bulk water? (3) what is the local density of this “perturbed”
water? and so on.

It is clear that these questions can be answered if information
about the local structure and intermolecular interactions in the
layers of the “perturbed” water can be obtained.

An important step in understanding the local structure around
a nonpolar solute in water was made by Jorgensen et al.36 Using
Monte Carlo simulations based on an intermolecular potential,
which contained Lennard-Jones and Coulomb contributions, they
determined the number of water molecules in the first hydration
layer (located between the first maximum and the first minimum
of the radial distribution function) around a nonpolar solute in
water. This number (20.3 for methane, 23 for ethane, etc.) was
surprisingly large compared with the coordination numbers in
cold water and ice (4.4 and 4, respectively). These results
provided evidence that major changes occur in the water
structure around a nonpolar solute and that the perturbed
structure is similar to that of the water-methane clathrates,37

which involve 20-24 water molecules that form a clathrate cage
around a methane molecule. The conclusions of Jorgensen et
al.36 were verified both experimentally34,35 (ref 35 provided a
value of 16 for the number of water molecules in the first
hydration layer) and by molecular simulations.38-40 Similar
results regarding the number of water molecules in the first
hydration layer were obtained for infinitely dilute aqueous
solutions of noble gases,38,41 oxygen,42 etc. As expected the
number of water molecules in the first hydration layer de-
pends on the size of the nonpolar solute: this number is about
20 for methane, 17 for oxygen, 19 for argon, 22 for krypton,
23 for xenon, 23 for ethane, 27 for n-propane, and 30 for
n-butane.36,38-42

The local density of water around a nonpolar solute was found
to be somewhat larger than the bulk density under ambient
conditions,42-43 but lower42 for T > 311 K and approaching42

the bulk density of water at sufficiently high temperatures.
Another important characteristic of the aforementioned “per-
turbed” water is the number of hydrogen bonds (H-bonds) per
water molecule. Molecular dynamics40 and Monte Carlo44

simulations indicated that the number of H-bonds per water
molecule in the first hydration layer was slightly smaller than
that in bulk water. It was found that the number of water
molecules in the first hydration layer that possess four H-bonds
was slightly lower and those with 1, 2, and 3 H-bonds slightly
larger when compared to bulk water. However, as noted by
Meng and Kollman45 the water molecules in the first hydration
layer have the same average number of H-bonds as the bulk
water molecules. These results appear to favor the opinion4 that
“water does not undergo a major structural change in the
presence of an apolar solute but maintains its original structure
by accommodating the apolar solute in its original hydrogen
bond network. The unique property of water is that it can
dissolve an apolar solute of limited size without sacrificing a
significant number of hydrogen bonds”.4 There is good agree-
ment between the X-ray, neutron scattering and molecular
simulations regarding the radial distribution functions g in dilute
mixtures of nonpolar species and water. In the particular case
of methane,34-36,39-40,44-46 the position of the first maximum
in the dependence goc ) goc(roc), where roc is the distance
between a C atom of methane and an O atom of water, was
found to be at about 3.5-3.7 Å. The first minimum was found
at 5.1-5.7 Å and the second maximum39 at about 6.3 Å.
Neutron diffraction scattering34,41 indicated that the second
maximum was very shallow. This means that one or at most
two adjoining layers of water are affected by the presence of a
nonpolar solute (methane). The water molecules in these
adjoining layers have peculiar properties, the nearest to the
nonpolar molecule being tangentially oriented toward its
surface,34 due to the “hydrophobic wall” (or hard core) effect
of the solute. Their H-bonds are slightly shorter,44 and the
average number of their nearest neighbors slightly smaller than
in bulk water.44,46-47

Another approach to investigate the hydrophobic effect is the
ab initio quantum mechanical technique.48,49 It is based on first
principles (the Schrödinger equation), and this constitutes its
main advantage compared to molecular dynamics and Monte
Carlo approaches, which are based on classical potentials. At
the present time, the ab initio quantum mechanical methods have
limitations connected to the complexity and size of the molecular
clusters considered.48,50,51 Nevertheless, these methods have been
often used to accurately predict the structure and energy of a
system of two molecules (dimers),50-52 such as the system
methane/water.49,53-57 However, the structure and energy of a
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dimer are different from those in a condensed phase. Let us
consider pure water as an example. The water dimer was
investigated using various quantum mechanical ab initio meth-
ods, and reliable information about its structure and interaction
energy is available.50 They are different from those in condensed
mixtures, where the effect of the nearest neighbors is an
important factor. For pure water, it was clearly demonstrated58

how the equilibrium intermolecular distance depends on the
number of water molecules involved in the ab initio calculations.
As already emphasized,49 for the methane/water mixture, “the
system of final interest is not CH4‚‚‚H2O ..., but CH4‚‚‚(H2O)n”.49

Sandler and co-workers have used quantum mechanical ab initio
calculations for a group of several molecules to simulate the
condensed mixtures and calculated the intermolecular interaction
energies between a solute and the solvent molecules.59-61 They
employed the Hartree-Fock self-consistent field approxima-
tion50,51 to calculate the intermolecular interaction energies for
aqueous solutions of alcohols. The obtained energies were used
to calculate the Wilson and UNIQUAC parameters and then to
(successfully) predict the activity coefficients. Recently,62 we
used a quantum mechanical ab initio method [the Møller-
Plesset perturbation theory50,51 (MP2 method)] to compute the
intermolecular energies for the CF4 + CCl4 dimer and used the
results to (accurately) predict the solubility of solid CCl4 in
supercritical CF4.

The Møller-Plesset perturbation theory will be employed in
this paper to investigate the mixture methane/water. We selected
this mixture because it is an ideal candidate for investigating
the hydrophobic hydration. The mixture methane/water has also
importance in understanding the structure and intermolecular
interactions of the methane hydrates, though the specifics of
these hydrates will not be addressed in this paper. These hydrates
constitute63 a major potential fuel reserve.

The main goal of the present paper is to obtain information
about the intermolecular interactions and distances between
several molecules of water (10, 8, 6, 4, and 1) and a single
molecule of methane and vice versa using quantum mechanical
ab initio methods. In addition, the interactions between the
nearest neighbors water molecules in the vicinity of the
hydrophobic solute will be calculated and compared to those
of the bulk water phase.

The paper is organized as follows: in the next section, the
quantum mechanical ab initio method employed will be
presented. This will be followed by the results obtained for dilute
mixtures of methane and water. Further, these results will be
compared with the available information obtained experimen-
tally and by simulations. Finally, they will be used to examine
the hydrophobic hydration and shed light on the structure and
other features of the water molecules in the vicinity of a
hydrophobic solute.

2. Methodology of Calculations

It would be ideal to use for these calculations molecular
clusters containing a single molecule of a solute and many
(dozens or even hundreds of molecules) of a solvent. Unfortu-
nately, at the present time, the ab initio methods based on the
Møller-Plesset perturbation theory have computational limita-
tions regarding the size of the cluster.64 Therefore, we will have
to compromise between a “dilute solution” and a relatively small
number of solvent molecules. The largest investigated molecular
clusters will contain a single molecule of methane (water)
surrounded by 10 molecules of water (methane). To verify
whether this cluster (1:10) is sufficiently large to capture the
essential physics of the interactions, the same procedure will

be carried out with smaller clusters (1:8, 1:6, 1:4, and 1:1) and
with a larger one (1:11), and the trends will be analyzed. For
the CH4‚‚‚H2O pair the dispersion interactions are vitally
important49 (this statement is valid for all mixtures involving
weak interactions50,65). Therefore, the second-order Møller-
Plesset perturbation theory, which partially accounts for disper-
sion interactions, constitutes a suitable though not ideal ap-
proximation. The cluster geometries will be obtained by
optimizing each of them with respect to all coordinates, using
the MP2 method with a compact 6-31G basis set. This basis
set makes tractable the numerous geometry optimizations
required in this work. The convergence to an energy minimum
was confirmed by calculating the vibrational frequencies. There
is another important feature concerning the quantum mechanical
ab initio calculations for clusters containing several molecules,
namely, the effect of the initial configuration. Indeed, the
equilibrium structure of a weakly interacting cluster, for
example, 1:10, can be affected by the initial guess of the
configuration which can lead to a local minimum. To minimize
the errors associated with the initial guesses, we carried out the
minimization for every cluster composition several times (at
least eight times) starting from different initial configurations.

After generating optimized clusters, the intermolecular in-
teraction energies between pair molecules R and â (ERâ

int ) in the
cluster were calculated using the supermolecular approach59,60,66

where ERâ{Râ} is the total energy of an Râ pair with the {Râ}
basis set, and ER{Râ} and Eâ{Râ} are the energies of R and â
molecules with the {Râ} basis set, respectively, calculated by
the ghost atoms method.64 This method partially accounts for
the basis set superposition error (BSSE). The energies (ERâ{Râ},
ER{Râ}, and Eâ{Râ}) were computed with a much better basis
set than that employed for the cluster geometry optimization.
Specifically all MP2 pair energies were calculated with the
triple-ú 6-311++G(3d,2p) basis set. This basis set includes
polarization and diffuse functions. All of the ab initio computa-
tions were performed using the Gaussian 94 program on the
IBM SP at the Center for Computational Research (CCR), at
the University at Buffalo.

3. Results of the ab Initio Computations

3.1. The Dilute Mixture of Methane in Water. The
calculated bond lengths in methane and water molecules of the
optimized clusters (1:10) are listed in Table 1 together with data
from literature. The arithmetic average distance and interaction
energy between a methane molecule and the nearest touching
water molecules in the cluster CH4‚‚‚(H2O)n are listed in Table
2.

One of the typical minimized clusters 1 (methane):10 (waters)
is presented in Figure 1a,b. They show that the methane
molecule is enclosed in a cavity formed by water molecules.
The two spheres centered on a methane molecule, with radii of
3.6 and 5.35 Å, correspond to the first maximum and the first
minimum in the radial distribution function goc ) goc(roc) in
dilute mixtures of methane in water. It is worth noting that

TABLE 1: Bond Lengths in Methane and Water Molecules
in the Optimized Clusters

bond length [Å]

component exptl67-68 calcd

water (rOH) 0.9571 0.986
methane (rCH) 1.089 1.096

ERâ
int ) ERâ{Râ} - ER{Râ} - Eâ{Râ} (1)
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Jorgensen et al.36 used the distance of 5.35 Å in their Monte
Carlo simulations as a cutoff distance for the definition of the
number of water molecules in the first hydration layer around
a methane molecule in water. One can see from Figure 1a,b
that the water molecules between the spheres with radii 3.6 and
5.35 Å include not only touching nearest neighbors but also
water molecules from a second sublayer which are non touching
nearest neighbors. Consequently, the space between the first
maximum and first minimum in the radial distribution function
goc ) goc(roc) around a central molecule of methane is filled
with water molecules of type A (or first sublayer), which are
touching nearest neighbors, and water molecules of type B (or
second sublayer), which are nontouching nearest neighbors of
the methane molecule. The water molecules of types A and B
are quite different because their distances from the central
methane molecule, their orientations toward it, the number of
H-bonds per water molecule, the energy of interaction with the
central molecule, etc. (see also Discussion), are different.

The distances between the C atom of methane and O and H
atoms of the water molecules of type A (C-O and C-H) are
almost equal to each other (see Table 3) and are tangentially
oriented toward the surface of the methane molecule, as was
also found experimentally.34 However, the B water molecules
have a different orientation (see Table 3). Another important
characteristic of the water molecules in the vicinity of a

hydrophobic molecule, besides their interaction with the latter,
is the interactions between themselves. The intermolecular
distances between the water molecules in the vicinity of a
methane molecule are listed in Table 4. Following the suggestion
of ref 40 we define the water molecules which are located not

TABLE 2: Arithmetic Average Distance and Interaction Energya between a Methane Molecule and Touching nearest Neighbors
Water Molecules (Type A Water Molecules) in the Clusters CH4‚‚‚(H2O)n

cluster
CH4‚‚‚(H2O)n

rCO

[Å]
ECH4-H2O

int

[KJ/mol] data from literature

n ) 1 (dimer) 3.69 -1.06 (1) rCO )3.5 Å (exptl value34 of the position of
the first peak in the radial distribution function
goc ) goc(roc) in dilute methane-water mixtures)

n ) 4 3.73 -1.02 (2) rCO ) 4.0 Å (in solid methane hydrate69)
n ) 6 3.77 -0.93 (3) (a)rCO )3.6 Å, (b) rCO )3.73 Å (the position of the
n ) 8 3.80 -0.79 first peak in the radial distribution function goc ) goc(roc)
n ) 10 3.74 -0.75 in dilute methane-water mixtures found by (a)

Monte Carlo44 and (b) by molecular dynamics70 simulations)

a The interaction energies were calculated between a central methane molecule and all the water molecules located not further than 4.1 Å from
the central methane molecule (type A water molecules) as arithmetic averages. The values listed for the distances are also arithmetic averages.

Figure 1. Optimized methane (1):water (10) cluster. (a) The front view. (b) The view from the right. The two circles in Figure 1 correspond to
the first maximum (3.6 Å) and first minimum (5.35 Å) of the radial distribution function goc ) goc(roc).

TABLE 3: Orientation of the Average Water Molecules in
the First and Second Sublayers Surrounding the Methane
Molecule

the average distance between the
carbon atom of methane and the oxygen

and hydrogen atoms of the water molecules
in the cluster CH4‚‚‚(H2O)10 [Å]

layer rOC rCH(1) rCH(2)

rOC e 4.1 Å (type A) 3.704 3.769 3.771
4.1 Å < rOC e 5.6 Å

(type B)
4.570 4.339 5.138

TABLE 4: The Average Intermolecular Distances between
nearest Water Molecules in the Vicinity of a Methane
Molecule

pair of
water molecules rOO [Å] data from literature71,72

both are of type A 2.69 rOO )2.84 Å in liquid water at 4 °C
one is of type A and

the other of type B
2.73 and rOO )2.759 Å in ice at 223 K
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further than 3.5 Å from a central water molecule as its nearest
neighbors. For comparison, the same parameters for pure water
are also listed in Table 4.

3.2. The Dilute Mixture of Water in Methane. When one
molecule of water is surrounded by methane molecules, the
molecule of water behaves like a regular nonpolar molecule
(see Figure 2, where one of the typical minimized clusters 1
(water):10 (methane) is presented). The average intermolecular
distance and interaction energy between a water molecule and
the nearest neighbors methane molecules in the clusters
H2O‚‚‚(CH4)10 are listed in Table 5.

4. Discussion

4.1. Comparison between Two Clusters: CH4‚‚‚(H2O)n

and H2O‚‚‚(CH4)n. The results listed in Tables 2 and 5 show
that the interaction energies between a water and a methane
molecule in the two clusters CH4‚‚‚(H2O)n and H2O‚‚‚(CH4)n

are very different not only one from another but also from that
in the H2O‚‚‚CH4 dimer. While the intermolecular distances roc

are not very different from one another and from the inter-
molecular distance roc in the methane/water dimer, the interac-
tion energies between methane and water depend on the cluster
type. It reflects the fact that the two kinds of clusters represent
two different physical systems. Indeed, the two extreme cases
at mole fractions x1 f 0 and x2 f 0 are very different. When
one molecule of methane is located in water, the molecules of
water are subjected to hydrogen bonding which will affect the
interaction between H2O and CH4.73 When one molecule of
water is located in CH4, the water molecule is no longer
subjected to hydrogen bonding, but the interactions with the
other methane molecules interfere with the interaction between
H2O and CH4.

The single molecule of methane is located inside a cage
formed by water molecules which are bound through hydrogen
bonds (Figure 1). In contrast, in the second case (a single water
molecule and 10 molecules of methane, Figure 2), the molecules

of methane do not form a cage around a water molecule, but
simply surround it. This generates a difference between the
water/methane intermolecular interaction energies in the two
cases and clearly indicates that the intermolecular interaction
energy between the molecules of water and methane depends
on the composition, which must be taken into account when
calculating phase equilibria. However, usually, the models based
on lattice theories ignore this dependence and use the pair
intermolecular energy in the condensed mixtures as a composi-
tion independent quantity.

4.2. Molecules of Water in the Vicinity of a Methane
Molecule. First, one should clearly emphasize the difference
between (1) the number of water molecules in the first hydration
layer around a methane molecule and (2) the coordination
number of a methane molecule in an infinitely dilute aqueous
solution. Jorgensen et al.36 defined the number of water
molecules in the first hydration layer around a methane molecule
as the water molecules located between the spheres with radii
3.6 and 5.35 Å. Hence, Jorgensen’s first hydration layer contains
both A and B species. However, the coordination number in a
liquid is usually defined74 as the number of nearest touching
neighbors and corresponds to A type molecules.

Let us consider two spheres with radii 3.6 and 5.35 Å in pure
liquid water. Under ambient conditions and assuming the density
equal to that of bulk water one can easily compute that there
are 6.5 water molecules inside the first sphere and 24.5 water
molecules inside the second, and hence, that there are 18 water
molecules between the two spheres. If this number is compared
to that of Jorgensen et al.36 (20.3), one can conclude that the
water layer around a central methane molecule is slightly denser
than the bulk water. Our calculations regarding the inter-
molecular distance between neighboring water molecules in the
vicinity of a central methane molecule (Table 4) is in agreement
with this observation. It is not possible to calculate accurately
the number of water molecules of types A and B because the
number of water molecules considered in the calculations (10)
is smaller than their number between two spheres of radii 3.6
and 5.35 Å in pure liquid water. However, a simple evaluation
can be made by taking into account that a central molecule of
methane replaces 6.5 molecules of water inside the first sphere.
Because each of these molecules of water has 4.4 nearest
neighbors in pure water, by subtracting the nearest neighbors
that are present among them, one obtains that the methane
molecule has 15-16 water molecules of type A. Our computa-

Figure 2. Optimized water (1):methane(10) cluster. (a) The front view. (b) The view from the right. The two circles in Figure 2 correspond to the
first maximum (3.6 Å) and first minimum (5.35 Å) of the radial distribution function goc ) goc(roc).

TABLE 5: The Average Distance and Interaction Energy
between a Water Molecule and nearest Methane Molecules
in the Clusters H2O‚‚‚(CH4)n

cluster
H2O‚‚‚(CH4)n rOC [Å]

ECH4-H2O
int

[KJ/mol]

n ) 8 3.70 -1.79
n ) 10 3.69 -1.83
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tions (Table 4) showed that the A water molecules have
hydrogen bonds slightly shorter between them, than with the
water molecules of type B. These results are in agreement with
the Monte Carlo simulations.44 Table 3 provides information
about the orientation of the water molecules in the vicinity of
a central methane molecule. One can see that the water
molecules in the first sublayer (type A) are oriented almost
tangentially toward to methane molecule; this peculiar orienta-
tion was also found experimentally.34 However, the water
molecules in the second sublayer (type B) are oriented more
randomly. We agree with the previous authors40,44 that the
tangential orientation is due to the “hydrophobic wall” effect.
Consequently, the water molecules of type A are quite different
not only from the “bulk” water molecules, but also from the
water molecules of type B. If one returns to the Frank and
Evans17 “iceberg”, one can state that the iceberg is not uniform,
but contains at least two types of water molecules. A simplified
model of water like the Mercedes-Benz (MB) model75 probably
can be used to simulate the first sublayer of water (type A
molecules) around the central methane molecule.

4.3. Cluster Size. The critical problem is how many water
molecules should be used to accurately represent the hydration
layers around nonpolar molecules. As already mentioned, it
would be ideal to use in such calculations molecular clusters
containing a single molecule of solute and hundreds of solvent
molecules. Unfortunately, the ab initio methods based on MP2
are computationally expensive and this limits the size of clusters
that can be attempted.64 To fully understand whether the cluster
1:10 is sufficiently large to capture the essential physics of the
interactions, we carried out additional calculations for clusters
containing a single molecule of methane surrounded by 11
molecules of water (1:11). A comparison of the average distance
and interaction energy between a methane molecule and the
water molecules of type A in the cluster CH4‚‚‚(H2O)11 with
those for smaller clusters (see Table 2) is presented in Figure

3. This figure shows that the arithmetic average distance and
interaction energy between a methane molecule and the nearest
water molecules (type A) is almost the same in the clusters
CH4‚‚‚(H2O)10 and CH4‚‚‚(H2O)11. One can, therefore, conclude
that the cluster CH4‚‚‚(H2O)10 is large enough for a correct
estimation of the average distance and interaction energy
between a methane molecule and the A water molecules in dilute
solutions of methane in water. A more detailed analysis of the
clusters CH4‚‚‚(H2O)11 leads to the same conclusions regarding
the water molecules in the vicinity of a central methane molecule
for the clusters CH4‚‚‚(H2O)10 (see section 4. 2). However, the
clusters (CH4‚‚‚(H2O)10 and CH4‚‚‚(H2O)11) are not large enough
to accurately represent the characteristics of the B water
molecules and of the water molecules in the second, third, and
so on, hydration layers.

4.4. Influence of Temperature. As is well-known, the ab
initio quantum mechanical methods provide results valid at 0
K and zero pressure. While the interactions depend on temper-
ature and pressure,76,77 this dependence is expected to be weak
up to normal conditions. Indeed, it was shown76,77 that for pure
water the length of the hydrogen bond changed by at most four
parts per thousand when the temperature varied by 100 K.

5. Conclusion

In this paper, the Møller-Plesset perturbation theory was
applied to clusters formed by one molecule of methane and
several molecules of water, or one molecule of water and several
molecules of methane. The goal was to determine the inter-
molecular distances and interaction energies between a water
molecule and a methane molecule in the clusters CH4‚‚‚(H2O)n

and H2O‚‚‚(CH4)n and to compare the obtained results with
available experimental data.

It was found that the intermolecular distances and interaction
energies between a water molecule and a methane molecule
are quite different in the clusters CH4‚‚‚(H2O)10 and H2O‚‚‚
(CH4)10. The average intermolecular distance between a central
methane molecule and the touching nearest neighbor water
molecules is in agreement with the experimental value regarding
the position of the first minimum in the radial distribution
function goc ) goc(roc). It was shown that the water molecules
in the vicinity (roc e 5.35 Å) of a central methane molecule
can be subdivided into two groups. A first group of water
molecules (type A) in the immediate vicinity (roc < 4.1 Å) of
the central methane molecule, which are touching nearest
neighbors and a second group of water molecules (type B) in
the second sublayer (4.1 Å < roc e 5.6 Å). The molecules of
type A are tangentially oriented toward the central methane
molecule and have shorter hydrogen bonds; the central methane
molecule interacts with the water molecules (type A) through
the so-called “hydrophobic wall” effect.
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Large molecular clusters can be considered as intermediate states between gas and condensed phases, and
information about them can help us understand condensed phases. In this paper, ab initio quantum mechanical
methods have been used to examine clusters formed of methanol and water molecules. The main goal was to
obtain information about the intermolecular interactions and the structure of methanol/water clusters at the
molecular level. The large clusters (CH4O‚‚‚(H2O)12 and H2O‚‚‚(CH4O)10) containing one molecule of one
component (methanol or water) and many (12, 10) molecules of the other component were considered. Møller-
Plesset perturbation theory (MP2) was used in the calculations. Several representative cluster geometries
were optimized, and nearest-neighbor interaction energies were calculated for the geometries obtained in the
first step. The results of the calculations were compared to the available experimental information regarding
the liquid methanol/water mixtures and to the molecular dynamics and Monte Carlo simulations, and good
agreement was found. For the CH4O‚‚‚(H2O)12 cluster, it was shown that the molecules of water can be
subdivided into two classes: (i) H bonded to the central methanol molecule and (ii) not H bonded to the
central methanol molecule. As expected, these two classes exhibited striking energy differences. Although
they are located almost the same distance from the carbon atom of the central methanol molecule, they possess
very different intermolecular interaction energies with the central molecule. The H bonding constitutes a
dominant factor in the hydration of methanol in dilute aqueous solutions. For the H2O‚‚‚(CH4O)10 cluster, it
was shown that the central molecule of water has almost three H bonds with the methanol molecules; this
result differs from those in the literature that concluded that the average number of H bonds between a central
water molecule and methanol molecules in dilute solutions of water in methanol is about two, with the water
molecules being incorporated into the chains of methanol. In contrast, the present predictions revealed that
the central water molecule is not incorporated into a chain of methanol molecules, but it can be the center of
several (2-3) chains of methanol molecules. The molecules of methanol, which are not H bonded to the
central water molecule, have characteristics similar to those of the methane molecules around a central water
molecule in the H2O‚‚‚(CH4)10 cluster. The ab initio quantum mechanical methods employed in this paper
have provided detailed information about the H bonds in the clusters investigated. In particular, they provided
full information about two types of H bonds between water and methanol molecules (in which the water or
the methanol molecule is the proton donor), including information about their energies and lengths. The
average numbers of the two types of H bonds in the CH4O‚‚‚(H2O)12 and H2O‚‚‚(CH4O)10 clusters have been
calculated. Such information could hardly be obtained with the simulation methods.

1. Introduction

Alcohol/water systems have attracted the attention of many
scientists and technologists for a number of reasons: (i) The
low cost of the lower members of the aliphatic alcohols and
their miscibility with water make the alcohol/water mixtures
useful as industrial solvents for a variety of chemical reactions
and for small- and large-scale separation processes. In particular,
the aqueous solutions of alcohols are often employed in the
extraction and manipulation of labile materials such as proteins.1

(ii) They have unusual thermodynamic properties that depend
in a complex way on composition, pressure, and temperature.1-8

(iii) They constitute a model for the investigation of the
hydrophobic effect. Although the interaction of a nonpolar solute
molecule such as methane (or other hydrocarbons, noble gases,
etc.) with the surrounding water molecules represents the
simplest manifestation of the hydrophobic hydration, the
interactions with molecules of a dual nature, such as alcohols,
involve not only the hydrophobic hydration of the nonpolar
moiety of the molecule but also the hydrophilic interactions
between the polar groups and the water molecules. (iv) Because
alcohol molecules have a dual nature, details regarding the
aqueous solvation of alcohols can be used to improve our
understanding of aqueous solutions of much more complex
amphiphilic molecules, such as proteins, drugs, and biomol-
ecules. (v) Pure water and alcohol generate different H-bond
networks in the liquid state; it is therefore natural to ask how
these networks reorganize in water/alcohol mixtures and how
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the hydrophobic hydration of the nonpolar part and the H bonds
formed between water and methanol cooperate.

The macroscopic properties of alcohol/water systems were
carefully investigated, and excellent reviews1-2,4-5 and books6-8

are available. In contrast, the structural and energetic features
on the nanometer level have not been as well investigated.

During the last two decades, the wide use of modern
experimental tools, especially X-ray, neutron scattering, and
modern spectroscopic methods,9-17 allowed one to obtain
valuable information about the nanostructure of aqueous mix-
tures containing alcohols or various hydrophobic solutes. The
availability of powerful computers combined with refined
methods of molecular simulations, such as molecular dynamics
and Monte Carlo, were actively used to investigate the nanolevel
scale of aqueous solutions.18-25

The present paper is devoted to the application of ab initio
quantum mechanical investigation to dilute clusters of methanol
and water. The ab initio quantum mechanical methods are based
on the Born-Oppenheimer approximation to the Schrödinger
equation and do not involve the traditional model interaction
potentials that are employed in molecular dynamics and Monte
Carlo simulations. The ab initio quantum mechanical methods
have been used frequently to determine the geometry and energy
of small molecular clusters such as dimers, and the obtained
results were usually used to fit various intermolecular pair
potentials. More recently, the ab initio quantum mechanical
methods have been applied to large molecular clusters26-30

formed of the same molecules or of molecules of two different
kinds. Large molecular clusters can be considered as intermedi-
ate states between gas and condensed phases and can be helpful
in the understanding of some properties of the latter phase,
particularly the local organization of the molecules and the
interactions between them.

The aim of the present paper is to use ab initio quantum
mechanical methods, such as Møller-Plesset perturbation
theory31,32 (MP2 method), to examine large clusters formed of
one molecule of methanol (or water) and up to 10-12 molecules
of water (or methanol). Methanol was selected because it is one
of the simplest amphiphile-like molecules. Furthermore, the
results will be compared to those obtained for dilute clusters of
methane and water.33

The paper is organized as follows: In the next section, the
literature results regarding some features of the nanostructure
of pure water or methanol and the water/methanol binary clusters
will be summarized. Then, the quantum mechanical ab initio
method that was employed will be described. This will be
followed by the presentation of the results that were obtained
for the dilute clusters of methanol and water. Furthermore, the
results will be compared to the available information regarding
the liquid methanol/water mixtures that were obtained experi-
mentally and by simulations. Finally, they will be used to shed
some light on the structure and other features of water molecules
in the vicinity of an amphiphilic solute.

2. Nanometer Features of Water and Methanol and their
Mixture

There is no single theory that can provide explanations for
all of the properties of the most mysterious substance: water.
However, much information is available about the properties
of water and about the organization of molecules in liquid water
at the molecular level. Cold liquid water (liquid water at 0° C)
is a very structured liquid with many features resembling the
nanostructure of ice. Indeed34-38 (i) the number of nearest
neighbors is 4.4 (4 in ice); (ii) the water molecules in cold water
have tetrahedral coordination as in ice, with only a small

deviation; (iii) the length of a H bond (roo ) 2.82 Å) is only a
little longer than that in ice (roo ) 2.76 Å); and (iv) the average
number of H bonds per molecule is 3.6 (in ice it is 4). However,
there are many subtle characteristics in which liquid water is
very different from ice. For instance, the fraction of four
H-bonded molecules in water is about 55%, whereas in ice
almost all of the molecules have four H bonds.

Methanol molecules form in the liquid-state chains of
hydrogen-bonded molecules.2,39-40 The average number of H
bonds per methanol molecule in the liquid state is about 1.8,
whereas a methanol molecule can form three H bonds: two as
acceptors and one as a donor. The average distance between
two H-bonded methanol molecules is 2.8 Å. As for water, there
is a similarity with the methanol in the solid state, where the
molecules form infinite chains with two H bonds per mol-
ecule.41,42

The nanostructure and energetic features of the liquid water/
methanol mixture were investigated both experimentally and
by molecular simulations. Neutron diffraction data13 of a water-
rich region (mole fraction of water 0.9) revealed that a hydration
shell of water molecules is located at a distance of about 3.7 Å
from the carbon atom of a methanol molecule. Although the
water molecules in this shell generated a disordered cage, they
retained roughly the tetrahedral local coordination of pure water.
The water molecules in the above hydration shell were not
greatly affected by the presence of methanol molecules.13 This
observation is in disagreement with the famous hypothesis of
Frank and Evans43 that an ordered structure (iceberg) is formed
around a nonpolar solute in water. This iceberg structure was
frequently1-2,4-5 used to explain the large loss of entropy during
the process of dissolution. A similar observation for the water-
rich region was made by using the depolarized Rayleigh light-
scattering technique15 and by coupling neutron diffraction with
hydrogen/deuterium isotope substitution.17 Although no reor-
ganization of the water surrounding the nonpolar groups was
detected, a compression of the second-neighbor water-water
contact distance was observed, which might constitute a
structural feature of the hydrophobic hydration. The structure
of methanol/water clusters and its dependence on the methanol
mole fraction was investigated by mass spectrometry using
clusters isolated from submicrometer droplets by adiabatic
expansion in vacuum and by X-ray diffraction of bulk binary
solutions.44 It was found that in the water-rich range the water
molecules had a tetrahedral orientation, the length of a H bond
at a mole fraction of water of 0.9 being 2.82 Å, and the average
distance between the carbon of a methanol molecule and the
oxygen of the nearest touching water molecule (not H bonded
to methanol) being 3.40 Å. However, in the methanol-rich
region, chain clusters of methanol molecules became predomi-
nant, the length of a H bond at a mole fraction of methanol of
0.9 being 2.80 Å, and the average distance between the oxygen
of a water molecule and the carbon of the nearest touching
methanol molecule (not H bonded to methanol) being 3.38 Å.

The above experimental results provided many features
regarding the local microscopic structure of methanol/water
mixtures. However, for the time being, the experiment could
not provide some subtleties regarding the local structure. For
example, the hydration picture in the water-rich region was
expected to be different around the hydrophobic moiety of
methanol (methyl group) and around its hydrophilic hydroxyl
group, but the experiment could not provide the details of the
difference.

Meaningful results regarding the structural and energetic
characteristics of methanol/water mixtures were obtained by
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molecular simulation. Two important papers18,19 regarding the
Monte Carlo simulations of dilute solutions of methanol in water
were published about 20 years ago, and they provided some
conflicting results. Okazaki et al.19 concluded that by introducing
one methanol molecule into water the potential energy and the
structure of water had the tendency to be stabilized as a whole.
This stabilization was attributed to the structural stabilization
around the methyl group and to the strong H bonding in the
hydrophilic region that acts cooperatively with the structural
stabilization in the hydrophobic region. In contrast, according
to Jorgensen and Madura,18 the main feature of the hydration
in the water-rich region is the favorable solute-solvent hydrogen
bonding. They found that the first shell around the carbon of a
methanol molecule (from 0 to 3.5 Å) contained 3.4 water
molecules, which formed 2.3 hydrogen bonds with the methanol
molecule, and an average of 2.9 water-water hydrogen bonds
per water molecule. Consequently, they formed a total of 3.6
hydrogen bonds per water molecule, which was exactly the same
as that for a water molecule in pure water. However, the water
molecules from the second shell (from 3.5 to 4.5 Å) had a
slightly lower average number of hydrogen bonds (3.39) than
the bulk water (3.57). Although Okazaki et al.19 found an
iceberg-like structure of water molecules around a methanol
molecule, Jorgensen and Madura18 did not observe a large
distortion of the water molecules around the methyl group.
Results supporting the findings of Jorgensen and Madura18 were
recently obtained by Fidler and Rodger24 via molecular dynam-
ics simulations. They found24 that the structure of water around

the hydrophobic moiety of alcohol was essentially the same as
that found in bulk water; in particular, there was no evidence
of the presence of a clathrate-like cage around the hydrophobic
moiety of the alcohol. Some change in the water structure was
found in the vicinity of the hydroxyl group of the alcohol, with
a hydrogen-bonding network closer to tetrahedral in the solva-
tion shell than in bulk water. The Monte Carlo investigation of
Hernandez-Cobos and Ortega-Blake23 and the molecular dy-
namics results of Meng and Kollman22 for dilute solutions of
methanol in water also supported the results of Jorgensen and
Madura.18 The recently published density functional theory
(DFT) based on molecular dynamics simulation45 found that
the “speculations that the normal water structure is significantly
affected by the hydrophobic alkyl group are groundless”.
However, much less information is available regarding the
structural and energetic characteristics in the methanol-rich
region. The molecular dynamics simulation of Palinkas,
Hawlicka, and Heinzinger46 for dilute solutions of water in
methanol showed that when very little water was added to pure
methanol (methanol-rich region) the water molecules associated
with methanol were incorporated into the chains of the latter.

Some experimental and simulation results regarding the
structural characteristics of methanol/water mixtures are listed
in Table 1.

In contrast to the experimental methods, the molecular
simulation techniques, such as molecular dynamics and Monte
Carlo methods, allowed one to obtain some details about the
molecular arrangements on the nanometer scale. However, the

TABLE 1: Some Experimental and Computational Results Regarding the Local Structure of Water/Methanol Mixtures (T )
298.15 K)

water-rich range methanol-rich range reference comments

number of nearest neighbors 3.1a 47 experimental data
that satisfy the condition 3.4a, 3.24a 2.0b, 1.9b 44

(rCMOW e 3.5 Å) 3.4c 18 molecular simulation
1.62d,e 22
2.9a 2.6b 46
2.6f 3g 48
2.5a 2.51h 49
3.4i 23

number of nearest neighbors 10.7a 47 experimental data
that satisfy the condition 10a 13
(3.5Å e rCM-OW e 5.5 Å)j 17.6k 17

20c 18 molecular simulation
11.3d 22
16f 8g 48
12.4i 23
∼13l 45

number of water/methanol H bonds 2.3c 18 molecular simulation
with the central molecule 2.4l 45
that satisfy the condition
(rCM-OW e 3.5 Å)

average length of H bonds, 2.83a 47 experimental data
rOM-OW (Å) 2.84a, 2.82a 2.76b, 2.80b 44

2.8c 18 molecular simulation
2.85a 2.85b 46

average distance from a central molecule 3.7a 47 experimental data
to the nearest neighbors, 3.7a 13
rCM-OW(Å) 3.4a 3.38b 44

3.7i 23 molecular simulation
3.7l 45

a The mole fraction of methanol is 0.1. b The mole fraction of methanol is 0.9. c The mole fraction of methanol is 0.008. d The mole fraction of
methanol is 0.002. e rCM - OW e 3.3 Å. f The mole fraction of methanol is 0.125. g The mole fraction of methanol is 0.875. h The mole fraction of
methanol is 0.75. i The mole fraction of methanol is 0.003. j The nearest neighbors listed in the previous part of the Table (rCM-OW e 3.5 Å) are
excluded. k The mole fraction of methanol is 0.05. l The mole fractions of methanol are 0.003 and 0.015.
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simulation techniques are very sensitive to the model potentials
that are employed.

So far, ab initio quantum mechanical techniques were applied
to the methanol/water dimer and the methanol/water/water
trimer. It is well known that the methanol/water dimer can adopt
two possible configurations depending on whether water (WdM)
or methanol (MdW) acts as the hydrogen-bond donor. Because
there is no large energetic difference between the two dimers,
it was not easy to select the more stable dimer. Nevertheless, it
was recently established that the dimer in which the water
molecule is the proton donor (WdM) is more stable.50,51

However, one should point out that a dimer or a trimer cannot
represent a real patch of a dilute condensed phase because they
cannot represent, for instance, the cooperative effect of many
molecules. To achieve this goal, one must consider a much
larger cluster.

3. Methodology of Calculations

Ab initio quantum mechanical methods were recently applied
to the analysis of large clusters formed of one solute molecule
and several molecules of solvent for water/methane mixtures.33

It was shown33 that they can provide information regarding the
interaction energies and intermolecular distances between the
molecules of methane and water. The obtained results were
compared to the available experimental and molecular simula-
tions regarding condensed mixtures, and agreement was found.
A similar methodology of calculations will be used in the present
paper as well.

Two types of clusters will be considered: (1) clusters with 1
methanol and 12 water molecules and (2) clusters with 1 water
and 10 methanol molecules. Such clusters represent a compu-
tational compromise between the current capabilities of the
modern ab initio methods and computer power on one hand
and a feasible representation of dilute binary condensed mixtures
on the other hand.

Second-order Møller-Plesset perturbation theory (MP2) is
the quantum mechanical approach selected for the calculations
because the sizes of the clusters that were employed were too
large to use more accurate methods. In addition, MP2 provides
accurate results regarding the calculation of the interaction
energies for both H-bonded pairs52 and van der Waals interacting
pairs.53

The computational procedure presented below has the fol-
lowing objectives: (1) to find an optimal geometry for the
clusters considered and (2) to determine the distances and the
interaction energies between a central “solute” molecule and
its nearest neighbors (“solvent” molecules).

The computational procedure consisted of three steps: (i) An
initial cluster configuration was constructed using the Cerius2

4.2 software. The solute molecule was placed in the center and
was randomly surrounded by the molecules of the solvent. The
configuration that was built was processed using the Cerius2

CLEAN function, and the obtained structure was considered as
the initial guess. (ii) The cluster geometry was obtained by
optimizing the guess with respect to all coordinates using the
MP2 method with a 6-31G basis set. This basis set makes the
numerous geometry optimizations required tractable. For large
clusters, it is difficult to reach the global minimum because the
minimum reached can be a local one. To avoid the effect of
the initially selected guess, we carried out the minimization
procedure for a large number of initial guesses (12-16). In
addition, vibrational frequencies were used to ensure that the
optimized geometries were located at real minima. (iii) All of
the pairwise intermolecular interaction energies were calculated

for all of the optimized geometries. All of the interaction
energies between molecules R and â (ERâ

int ) were calculated
using the supermolecular approach26,27,54

where ERâ{Râ} is the total energy of an Râ pair obtained with
an {Râ} basis set and ER{Râ} and Eâ{Râ} are the energies of
the individual R and â molecules, respectively, also obtained
with the {Râ} basis set. The basis set superposition error
(BSSE)55 was partially accounted for by using the function
counterpoise method (FCP).56

In contrast to the geometry optimization, which was carried
out with the smaller 6-31G basis set, a larger 6-311++G (3d,
2p) basis set was employed to calculate the energies because,
at least for small clusters,57-59 the geometry is less sensitive,
whereas the energies are very sensitive to the size of the basis
set used.

We were tempted to use the same basis set for the cluster
geometry optimization as that used for the calculations of the
interaction energies between molecules (6-311++G (3d, 2p)).
However, the present computer capabilities have not allowed
us to perform such calculations in a reasonable amount of time.

4. Results of the ab Initio Computations

4.1. Dilute Mixture of Methanol in Water. Sixteen initial
guesses, each containing 1 molecule of methanol and 12
molecules of water, were optimized in the present paper. The
optimized clusters were treated as follows: (1) The geometries
of the clusters were used to calculate the distances between the
carbon and oxygen atoms of the central methanol molecule and
the oxygen atoms of the water molecules. (2) The interaction
energies between the central methanol molecule and the
surrounding water molecules were calculated using eq 1.

Experimental data and simulation results for dilute solutions
of methanol in water13,23 indicated that the radial distribution
function gCMOW has the first maximum at a distance of about
3.7 Å and the first minimum at about 5.2-5.3 Å from the central
methanol molecule. The water molecules located in the layer
between 3.7 and 5.3 Å constitute the first solvation shell.
According to recent data,17 there are about 18 water molecules
around a central methanol molecule in the first solvation shell.
These molecules can be roughly subdivided into two groups:33

(1) touching nearest neighbors and (2) nontouching nearest
neighbors. The molecules of the first group are in contact with
the central methanol molecule. In our paper regarding dilute
clusters of methane in water,33 we used (somewhat arbitrarily)
a distance of 4.1 Å from the central methane molecule to
separate these two groups of molecules from each other. These
two groups of molecules have very different interaction energies
with the central methane molecule. Besides, the molecules of
the first group (touching nearest neighbors) are tangentially
oriented toward the central methane molecule, and this sublayer
is somewhat denser than the bulk water. We will use the same
separation of water molecules around the central methanol
molecule in the first solvation shell. A similar subdivision was
used by Rossky and Karplus in a paper regarding dipeptide
hydration.60

For each of the water molecules belonging to the first group,
the distances between the O atom of water and the carbon atom
of the methanol molecule and the intermolecular interaction
energy were calculated. The results of these calculations are
listed in Tables 2-4. These Tables contain the average distances
and interaction energies as double arithmetic averages. First,

ERâ
int ) ERâ{Râ} - ER{Râ} - Eâ{Râ} (1)
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calculations were made for all of the water molecules of a cluster
belonging to one of the groups, and second, for all of the 16
clusters investigated. One of the typical minimized clusters
(CH4O‚‚‚(H2O)12) is presented in Figure 1a and b.The molecules
of water in the vicinity of a central methanol molecule can be
subdivided into two classes: (1) not H bonded with the central
methanol molecule and (2) H bonded with it. (A hydrogen bond
is defined here as suggested by Jorgensen and Madura.18

Namely, any pair of molecules with an interaction energy of
-9.5 (kJ/mole) or less is considered to be hydrogen bonded.)
Although the average distances between the central methanol
molecule and these two types of water molecules are almost
the same, the interaction energies are enormously different (see
Tables 2 and 4).

The arithmetic averages of the distances and of the interaction
energies between a central methanol molecule and the water
molecules belonging to each of the above two classes in the
CH4O‚‚‚(H2O)12 cluster are listed in Table 2. The orientation
of the non-H-bonded water molecules with respect to the central
methanol molecule is presented in Table 3.

Details regarding the second class of water molecules (H
bonded with the central methanol molecule) in the CH4O‚‚‚
(H2O)12 cluster are listed in Table 4. A comparison with the
literature data regarding the liquid methanol/water mixtures
(Table 1) reveals that (1) the average number of water molecules

having H bonds with a central methanol molecule is about 2.8,
whereas molecular simulation18,45 predicted 2.3-2.4 and (2) the
obtained lengths of the H bonds are somewhat shorter than those
obtained by molecular simulation18,45 (see Discussion).

4.2. Dilute Mixture of Water in Methanol. Twelve initial
guesses, each containing 1 molecule of water and 10 molecules
of methanol, were optimized and then analyzed in the same
way as the CH4O‚‚‚(H2O)12 clusters in the preceding section.
Namely, (1) the geometries of each cluster were determined,
and the distances between the oxygen atom of water and the
carbon and oxygen atoms of the methanols were calculated and
(2) the interaction energies between a central water molecule
and the surrounding methanol molecules were calculated using
eq 1. The results of these calculations are presented in Tables
2 and 4. One of the typical minimized clusters (H2O‚‚‚(CH4O)10)
is presented in Figure 2a and b.As in the previous case (CH4O‚
‚‚(H2O)12 cluster), the molecules of methanol in the vicinity of
a central water molecule can be subdivided into two different
classes: (1) not H bonded with water and (2) H bonded with
it.

The arithmetic averages of the distances and of the interaction
energies between a central water molecule and the methanol
molecules belonging to each of the above classes in the
H2O‚‚‚(CH4O)10 cluster are listed in Table 2. It is interesting to
note that the methanol molecules not H bonded to a central
water molecule have characteristics very similar to those of
methane molecules around a central water molecule in the
H2O‚‚‚(CH4)10 cluster.33 Indeed, in the latter cluster, the average
distance and interaction energy between a central water molecule
and the nearest touching methane molecules (rCCH4OH2O ) 3.69
Å and ECH4-H2O

int ) -1.83 kJ/mol) are very close to the
corresponding values in Table 2 (rCMOW ) 3.65Å and EH2O-CH4O

int

) -1.79 kJ/mol). However, the average distance between a
central water molecule and the nearest touching methanol
molecules from Table 2 is somewhat different from the distance
(3.38 Å, see Table 1) obtained experimentally44 for a dilute
solution of water in methanol.

Let us consider in more detail the second class of methanol
molecules in the H2O‚‚‚(CH4O)10 cluster, which are H bonded
to a central water molecule (see Table 4). Comparing Tables 1
and 4, one can conclude that the lengths of H bonds in the
H2O‚‚‚(CH4O)10 clusters are in agreement with the experimental
lengths;44 the simulations 46 provided somewhat longer H bonds.
Our results regarding the average number of H bonds between
a central water molecule and methanol molecules in the
H2O‚‚‚(CH4O)10 cluster differ from those predicted in the
literature.46 According to the literature,44,46 the average number
of H bonds between a central water molecule and methanol
molecules in a dilute solution of water in methanol is about 2,
and the molecular dynamics simulation of Palinkas, Hawlicka,
and Heinzinger46 showed that the water molecules are associated
with methanol, being incorporated into the chains of the latter.
Our results (Table 4) provide for the average number of H bonds
between a central water molecule and methanol molecules a
value of about 3. This means that a central water molecule

TABLE 2: Arithmetic Averages of the Distances and
Interaction Energiesa between a Central Solute Molecule and
Touching Nearest-Neighbor Solvent Moleculesb in the
CH4O‚‚‚(H2O)12 and H2O‚‚‚(CH4O)10 Clusters

cluster
type of solvent molecules

in the cluster
rCMOW,

Å
ECH4O-H2O

int ,
kJ/mol

CH4O‚‚‚(H2O)12

not H bonded with the
central methanol molecule

3.45 -2.7

H bonded with
the central methanol molecule

3.61 -15.79

H2O‚‚‚(CH4O)10

not H bonded with
the central water molecule

3.65 -1.8

H bonded with
the central water molecule

3.62 -17.29

a The interaction energies were calculated between a central solute
molecule and all of the solvent molecules located not further than 4.1
Å from the central solute molecule. b The solvent molecules located
not further than 4.1 Å from the central solute molecule were considered
to be touching nearest neighbors of a central solute molecule.

TABLE 3: Average Orientation of Water Moleculesa Not H
Bonded with a Central Methanol Molecule toward the
Central Methanol Molecule

average distance between the carbon atom of
methanol and the oxygen and hydrogen atoms

of the water molecules in the CH4O‚‚‚(H2O)12 cluster,
Å

layer rCMOW rCMHW(1) rCMHW(2)

rCMOW e 4.1 Å 3.45 3.85 3.77

a The water molecules are not located further than 4.1 Å from the
central methanol molecule.

TABLE 4: Methanol/Water Hydrogen Bonds in the CH4O‚‚‚(H2O)12 and H2O‚‚‚(CH4O)10 Clusters

average number of H bonds
between a central solute molecule

and the solvent molecules
average length of the H bonds

(rOM-OW), Å
average energy of the H bond,

kJ/mol

cluster WdMa MdWb WdMa MdWb WdMa MdWb

CH4O‚‚‚(H2O)12 1.75 0.94 2.74 2.67 -18.34 -11.04
H2O‚‚‚(CH4O)10 1.75 1.08 2.77 2.72 -18.50 -14.75

a The water molecule is the proton donor. b The methanol molecule is the proton donor.
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cannot be incorporated into the middle of a chain of methanol
molecules but can be, for instance, the center of several (2-3)
chains of methanol molecules.

5. Discussion

Sixteen different CH4O‚‚‚(H2O)12 clusters and twelve different
H2O‚‚‚(CH4O)10 clusters were optimized, and the results listed
in Tables 2-4 represent double arithmetic averages per cluster
and all of the clusters of the calculated properties. Table 5
provides the mean percentage deviation of the average H-bond
lengths and energies (Table 2) from the values provided by the
optimized clusters. Table 5 shows that the number of initial
cluster configurations considered (16 and 12) is large enough
to represent accurately the distances and the interaction energies

between a central solute molecule and its nearest neighbors
(solvent molecules).

The results listed in Tables 2-4 show that the interaction
energies and the intermolecular distances between the molecules
of water and methanol are quite different in the CH4O‚‚‚(H2O)12

and H2O‚‚‚(CH4O)10 clusters. This difference reflects the fact
that the two kinds of clusters represent two different physical
systems. Indeed, the two extreme cases at mole fractions of x1

f 0 and x2 f 0 are very different because the solute molecules
have different solvent environments in the two clusters. This
generates a difference between the water/methanol inter-
molecular interaction energies in the two cases and clearly
indicates that the intermolecular interaction energy between the
molecules of water and methanol depends on composition. This

Figure 1. Optimized methanol (1)/water (12) cluster: (a) full cluster and (b) fragment containing only the central methanol molecule and the water
molecules H bonded to the central one. (- - -) denotes H bonds. The circles (in a, r ) 3.6 Å centered on a carbon atom of the methanol and in b,
r ) 2.8 Å centered on an oxygen atom of the methanol) are included for illustration.

Figure 2. Optimized water (1)/methanol (10) cluster: (a) full cluster and (b) fragment containing only the central water molecule and the methanol
molecules H bonded to the central one. (- - -) denotes H bonds. The circles (in a, r ) 3.7 Å centered on an oxygen atom of the water, and in b,
r ) 2.8 Å centered on an oxygen atom of the water) are included for illustration.
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fact should be taken into account when the intermolecular
interaction energies are employed to calculate the thermo-
dynamic properties at different compositions of a binary
mixture.61

The molecules of solvent in both clusters (CH4O‚‚‚(H2O)12

and H2O‚‚‚(CH4O)10) can be subdivided into two very different
classes: (1) H bonded with a central solute molecule and (2)
not H bonded with a central solute molecule. As expected, these
two classes possess striking energy differences. Indeed, although
they are located at about the same distance from the central
solute molecule (rCMOW in Table 2), their intermolecular inter-
action energies with the central molecule are extremely different.
One can see from Table 2 that the H-bond energy between a
central water molecule and a neighboring methanol molecule
is almost 10 times larger (in magnitude) than when the water/
methanol pair is not H bonded.

Let us examine the properties of the water molecules around
a solute molecule by discussing how these molecules differ from
those in pure water, how they are oriented toward the surface
of the solute, and the properties of the H bonds between the
water molecules (their lengths and energies). Such characteristics
of the water molecules in the vicinity of a solute molecule are
important not only for small molecules, such as alcohols and
hydrocarbons, but also for “large” molecules such as biomol-
ecules.

First, let us consider the lengths of the H bonds between the
water molecules in the vicinity of a central methanol molecule
in the CH4O‚‚‚(H2O)12 clusters (Table 6). One can see from
Table 6 that the lengths of the H bonds between the water
molecules in the vicinity of a central methanol molecule are
almost the same as those in the CH4‚‚‚(H2O)10

33cluster. How-

ever, the H bonds in the above clusters are shorter than those
in pure water (see Table 6). This observation can be explained
if one supposes that the layer of water molecules around a solute
molecule (methane or methanol) is a little denser than that in
pure water. This increase in density is probably caused by the
so-called hydrophobic wall effect, which occurs when the water
molecules have a hydrophobic surface on one side and cannot
form four H bonds. Because the average number of H bonds
per molecule of water in pure water is 3.6, the water molecules
in the vicinity of a solute molecule should have a smaller number
of H bonds, and therefore their characteristics should be different
from those in pure water.

Second, the orientation of the water molecules (not H bonded
with a central solute molecule) toward the hydrophobic surface
of the solute plays a role in the understanding of the hydration
of molecules of dual nature, such as methanol. Although for
pure hydrophobic solutes, such as hydrocarbons and noble gases,
the water molecules in the vicinity of a solute are tangentially
oriented toward the surface of the solute (a fact also observed
experimentally62), such an orientation is not obvious for the
molecules of dual nature. Indeed, we found that the average
orientation of the water molecules in the vicinity of a central
methanol molecule is not fully tangential (Table 3). However,
it is clear that not all of the water molecules in the vicinity of
a central methanol molecule are under “the same conditions”.
The water molecules located on the CM-OM line beyond the
CH3 group can be tangentially oriented toward the surface of
the CH3 group; however, it is hardly possible for the water
molecules located in the vicinity of the hydrophobic/hydrophilic
interface of a methanol molecule to be tangentially oriented
toward the methanol molecule.

As already noted, the methanol/water dimer can adopt two
possible configurations (WdM or MdW), depending on whether
the water or methanol molecule acts as the hydrogen-bond
donor. It was recently established that the dimer in which the
water molecule is the proton donor (WdM) is more stable.50,51

However, in a condensed phase, which is represented here
approximately by the CH4O‚‚‚(H2O)12 and H2O‚‚‚(CH4O)10

clusters, both types of H-bond configurations are present (see
Table 4). Let us compare some of the characteristics of dimer
WdM or MdW in the gas phase with the different H-bond
configurations in the clusters investigated (Table 7). One can
see from Table 7 that the lengths of the H bonds (O-O
distances) in both kinds of H-bond configurations (WdM and
MdW) in the CH4O‚‚‚(H2O)12 and H2O‚‚‚(CH4O)10 clusters are
shorter and their interaction energies are smaller (in magnitude)
than those of the gas-phase dimers. These results can be
explained by the mutual steric hindrances between the solvent
molecules that cannot be oriented in their optimal positions as
they are for the gas-phase dimers. Table 7 also reveals that the
average number of WdM configurations is twice as large as
the average number of MdW configurations. For the CH4O‚‚‚
(H2O)12 clusters, this result can be explained by observing that
the methanol molecule can donate only a single H bond but
can accept two. However, for the H2O‚‚‚(CH4O)10 clusters, the
number of WdM and MdW configurations is determined by
energetic and steric factors.

Although the average number of H bonds per molecule in
cold water is 3.6 (in ice it is 4), in the H2O‚‚‚(CH4O)10 clusters,
the average number of H bonds per molecule of water is 2.7.
Therefore, a molecule of water has lost about 1 H bond when
compared to cold water. However, the average number of H
bonds per molecule in liquid methanol is about 2, and we found
that the average number of H bonds per molecule of methanol

TABLE 5: Mean Percentage Deviation of the Average
H-Bond Length and Energy (Table 2) from the Values
Obtained for All of the Optimized Clusters

deviation (%)a

cluster
composition

number of
optimized
clusters

length of the H bonds
(rOM-OW)

energy of the
H bonds

CH4O‚‚‚(H2O)12 16 3.0 9.8
H2O‚‚‚(CH4O)10 12 3.3 11.8

a Deviation (%) is the mean percentage deviation defined as

100∑
i)1

N

|
xi - x

x
|

N

where xi is either the length of the H bonds or the energy of the H
bonds in the optimized cluster i, x is the arithmetic average value of
these quantities (see Table 2), and N is the number of optimized clusters
(here, 16 and 12).

TABLE 6: Average Intermolecular Distances between
H-bonded Water Molecules in the Vicinitya of a Solute
Molecule

rOO, (Å)

cluster b c

data from the literature35,37

regarding the length of H
bonds in liquid water

CH4O‚‚‚(H2O)12 2.74 2.74 rOO ) 2.82 (Å) in liquid water at 4 °C
and

rOO ) 2.84 (Å) in liquid water at 20 °C
CH4‚‚‚(H2O)10

d 2.73

a The pairs of water molecules were selected such that at least one
water molecule was located not further than 4.5 Å from the central
solute molecule. b At least one water molecule is H bonded to the central
solute molecule. c Neither water molecule is H bonded to the central
solute molecule. d Data for the CH4‚‚‚(H2O)10 cluster were calculated
on the basis of previous results.33
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in the CH4O‚‚‚(H2O)12 clusters is about 2.8; a molecule of
methanol acquires about 0.8 additional H bond compared to
pure liquid methanol, probably because the water molecules are
smaller.

Two additional issues should be examined at least in
passing: (1) the effect of cluster size and (2) the effect of
temperature. (1) In our previous publication,33 we considered
clusters of 1 methane and several (1, 4, 6, 8, 10 and 12) water
molecules, and the conclusion was that the clusters with 10-
12 water molecules provided accurate results for the “average”
distances and interaction energies between a methane molecule
and the nearest water molecules in the CH4‚‚‚(H2O)n cluster.
Of course, a full picture of the hydration phenomenon of small
solutes can be obtained only if larger clusters (1 molecule of
solute and 24 or 36 molecules of water) are considered. In
particular, larger clusters are required to understand the structure
and intermolecular interactions in the second and probably third
hydration layers. The same conclusion is likely to be valid for
the CH4O‚‚‚(H2O)12 and H2O‚‚‚(CH4O)10 clusters considered
in the present paper. The clusters considered in the present paper
are helpful in understanding the interactions between a central
solute molecule and its nearest neighbors (solvent molecules).
(2) The ab initio quantum mechanical methods provide results
at 0 K and zero pressure. Although the interactions depend on
temperature and pressure, this dependence is expected to be
weak up to normal conditions.63,64 Indeed, it was shown63,64 for
pure water that the length of the hydrogen bonds has changed
by only 4 parts per 1000 at most when the temperature varied
by 100 K. Furthermore, a comparison between the local structure
of supercooled water and liquid water under ambient conditions
indicated that the number of nearest neighbors and the position
of the maximum on the radial distribution function goo )
goo(roo) (where roo is the distance between the oxygen atoms of
two water molecules) are only slightly different.65-69 In addition,
a simple procedure to account for the effect of temperature was
suggested.63,64 One should note that the results of the ab initio
quantum mechanical method, such as those obtained in the
present paper, cannot provide information about the temperature
effect on the hydrophobic hydration. In contrast, the molecular
simulation methods can provide such information but involve
model interaction potentials.

6. Conclusions

In this paper, the Møller-Plesset perturbation theory was
applied to clusters formed by 1 molecule of methanol and 12
molecules of water or 1 molecule of water and 10 molecules of
methanol. The goal was to determine the intermolecular
distances and interaction energies between water and methanol
molecules in the CH4O‚‚‚(H2O)12 and H2O‚‚‚(CH4O)10 clusters
to compare the obtained results with the available experimental
data and to shed some light on the nanostructure and molecular
interactions in dilute solutions of methanol and water.

It was found that the solvent molecules in both clusters
(CH4O‚‚‚(H2O)12 and H2O‚‚‚(CH4O)10) can be subdivided into
two classes: (1) not H bonded with a central solute molecule

and (2) H bonded with a central solute molecule. Although they
are located at almost the same distances (rCMOW) from the central
solute molecule, these two classes possess striking differences
regarding the interaction energies with a solute.

The solvent molecules, which are not H bonded with a central
solute molecule, do not exhibit any peculiar features different
from those of pure solvents (water or methanol). However, the
H bonds in the clusters investigated demonstrated the presence
of salient features, which seem to be important in the under-
standing of the molecular interactions in dilute mixtures formed
by water and methanol.

In general, the ab initio quantum mechanical method that was
employed in the present paper provided useful information about
the hydrogen bonds in the systems investigated. In particular,
it gives full information about two types of H bonds (WdM
and MdW) between water and methanol molecules, including
information about their energies and lengths; it provided a
relationship between the numbers of the two types of H bonds
in the CH4O‚‚‚(H2O)12 and H2O‚‚‚(CH4O)10 clusters. Such
unique information could hardly be obtained by other methods.
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