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Preface

The Jahn–Teller (JT) effect continues to be a paradigm for structural instabilities and
dynamical processes in molecules and in the condensed phase. While the basic theo-
rem, first published in 1937, had to await experimental verification for 15 years, the
intervening years saw rapid development, initially in the theoretical arena, followed
increasingly by experimental work on molecules and crystals. The International
Jahn–Teller Symposium was established in the mid-1970s, to foster the exchange of
ideas between researchers in the field. Among the many important developments in
the field, we mention cooperative phenomena in crystals, the general importance of
pseudo-Jahn–Teller (PJT) couplings for symmetry-lowering phenomena in molec-
ular systems, nonadiabatic processes at conical intersections of potential energy
surfaces and extensions of the basic theory in relation to the discovery of fullerenes
and other icosahedral systems.

It is the objective of this volume to provide the interested reader with a collection
of tutorial reviews by leading researchers in the field. These reviews provide a com-
prehensive overview of the current status of the field, including important recent
developments. This volume is targeted at both the non-expert scientist as well as the
expert who wants to expand his/her knowledge in allied areas. It is intended to be
a complement to the existing excellent textbooks in the field. Guided by the idea of
tutorial reviews, we provide here short introductory remarks to the various sections,
as they appear in the table of contents. These are followed by a brief characterization
of the individual papers to make their basic contents, as well as their interrelation,
more transparent.

1. Jahn–Teller Effect and Vibronic Interactions: General Theory

The first set of reviews deals with general formal aspects of the theory, its range of
application and implementation. While the original formulation of the JT theorem
applies to orbitally degenerate electronic states, it was later recognized that simi-
lar mechanisms for structural instabilities are operative also in nondegenerate states
(PJT effect). In the first paper of this volume, Bersuker emphasizes the even more
general implications of the JT and related couplings, by demonstrating that they may
affect ground state structural properties, even when operative in the excited state
manifold (hidden JT effect). This may be associated with spin-crossover effects and
orbital disproportionation. The following two papers (by Ceulemans and Lijnen, and
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by Breza) address group theoretical aspects. A desire has sometimes been expressed
to gain more insight into the nature of the JT theorem than is afforded by the origi-
nal proof (which consists in enumerating all topologically distinct realizations of all
molecular point groups). This goal is indeed achieved in the article by Ceulemans
and Lijnen. Poluyanov and Domcke advocate the use of the microscopic Breit-Pauli
operator for the spin–orbit coupling rather than the phenomenological form often
adopted. They point out that the resulting dependence of the spin–orbit coupling on
the nuclear coordinates can lead to novel effects, of relevance to molecular spectra.
Sato and coworkers present a scheme for analyzing vibronic coupling constants in
terms of densities, which allows them to investigate their local properties and visu-
alize their electronic origin. Finally, an efficient method to compute multimode JT
coupling constants with density functional theory is presented by Zlatar et al. The
approach uses information from the JT distorted structure, which is decomposed
into contributions from the various relevant normal modes.

2. Conical Intersections and Nonadiabatic Dynamics in Molecular Processes

Conical intersections can be considered generalizations of the JT intersections in
less symmetric cases, the latter being also conical in shape owing to the presence of
the linear coupling terms predicted by the JT theorem. In molecular physics, con-
ical intersections have emerged in the past one or two decades as paradigms for
nonadiabatic excited-state dynamics, triggering a plethora of studies of elementary
photophysical and photochemical processes. The article by Blancafort et al. reports
on modern developments in the characterization of conical intersections by ab ini-
tio techniques. Their second-order analysis shows, for example, how to distinguish
between minima and saddle points in the subspace of electronic degeneracy and to
identify photochemically active coordinates. The paper by Bouakline et al. presents
a quantum dynamical analysis of the smallest JT active system, triatomic hydrogen.
This prototypical reactive scattering system is subject to geometric phase effects
which, however, almost completely cancel out in the integral cross section. On the
other hand, strong nonadiabatic couplings/geometric phase effects govern the upper-
cone resonances (Rydberg states) of the system. The papers by Faraji et al. and by
Reddy and Mahapatra present multimode quantum dynamical treatments of JT and
PJT systems with more than two intersecting potential energy surfaces. Pronounced
effects of the couplings in the spectral intensity distribution and in femtosecond (fs)
internal conversion processes are identified. A systematic dependence of the phe-
nomena on the (fluoro) substituents as well as the importance for the photostability
of hydrocarbons is demonstrated. In the article by McKinlay and Paterson, similar
phenomena, including nonadiabatic photodissociation processes and fs pump-probe
spectroscopy, are discussed for transition metal complexes, thus providing a bridge
between the JT effect and photochemistry.

3. Impurities; Spectroscopy of Transition Metal Complexes

Transition metal complexes have represented, for a long time, the archetypical sys-
tem for which the JT effect plays a crucial role, especially with regard to crystal
field splitting and spin–orbit interaction (Ham effect). This affects optical as well
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as EPR spectra of 3d group ions, for example. In the review by Brik and Avram
these are studied for various coordination sites using an effective Hamiltonian for-
malism. Useful relations for the Ham reduction factors are derived, and the JT
parameters obtained from the Ham effect are compared with those obtained from
the JT-distorted minima of the potential energy surfaces. Tregenna-Piggott and Riley
present in their review a very pedagogic introduction to the Exe JT effect, and the
Ham effect as one of its consequences. Applications to various types of spectra
of different transition metal complexes underline the usefulness of the theoretical
concepts. Garcia-Fernandez et al. address the question of structural instabilities of
doped materials and their type and origin. They argue, and present convincing evi-
dence, that these are frequently not due to differences in atomic sizes (as is often
assumed in the literature) but rather to vibronic coupling, that is, the PJT effect.
Finally in their review, Reinen and Atanasov analyze in their review, the effects of
JT coupling on the changes from a high-spin to a low-spin electronic ground state
in hexacoordinate fluoride complexes of Mn(III), Co(III), Ni(III) and Cu(III), an
aspect which is frequently ignored in the literature on spin-crossover systems. In
particular, the strong links to coordination and solid state chemistry are set out in
this contribution.

4. Fullerenes and Fullerides

In the mid 1980s and subsequent years, the discovery of C60 and other fullerenes
opened a route to the analysis of JT systems with higher than threefold degenera-
cies (G and H irreducible representations). This led to substantial developments
from the point of view of pure theory as well as applications. This volume includes
two important papers in this area. Structural aspects of fulleride salts, i.e. fullerene
anions in various charge states in the solid state, are covered by Klupp and Kamaras.
Evidence, based mostly on infrared spectroscopy, is used to discuss issues including
static vs. dynamic JT effect, unusual phases, and relation to conductivity. The review
by Hands et al. addresses the further complication of fullerenes being adsorbed on
surfaces. The lowering in symmetry due to the surface interactions is considered, as
well as the rather slow time-scale of the experimental technique of scanning tunnel-
ing microscopy proposed. Detailed simulations of the corresponding images shed
useful light on their possible significance in establishing the presence and shape of
JT distortions.

5. Jahn–Teller Effect and Molecular Magnetism

Molecular magnetism concerns the synthesis, characterization and application of
molecular-based materials that possess the typical properties of magnets – slow
relaxation, quantum tunneling and blocking of the magnetization at low temper-
atures (single molecular magnets (SMM)). It is an interdisciplinary research field
which requires the combined efforts (cooperation) of chemists, molecular and solid
state physicists, as well as theoreticians (quantum chemists). This is the point where
the JT effect enters into the game. The magnetic properties of SMMs are affected by
the structural influences caused by vibronic coupling and these influences are further
manifested in the optical band shapes, the interactions between magnetic molecules
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with degenerate ground states (cooperative JT effect), and the dynamical JT and PJT
effects (which impact upon the magnetic relaxation and spin coherence times). In
their review, Tsukerblat, Klokishner and Palii address these points in spin-frustrated
systems with threefold symmetry, mixed valence systems, photoswitchable spin
systems, and magnetic molecules which undergo tautomeric transformations lead-
ing to long-lived (metastable) states. The Jahn–Teller effect plays a crucial role in
magnetic clusters built up from magnetic centers in orbitally degenerate ground
states. Using a combination of ligand field theory and density functional theory
Atanasov and Comba show how small structural changes due to Jahn–Teller activ-
ity and/or structural strains induce a dramatic lowering of the magnetic anisotropy.
The same authors also show for the first time, using cyanide-bridged systems as
model examples, how one can deduce the parameters of the spin Hamiltonian from
first principles.

6. The Cooperative Jahn–Teller Effect and Orbital Ordering

It has long been recognized for JT crystals, i.e., crystals containing a JT center in
each unit cell, that the intrinsic instability of JT complexes against distortions may
give rise to an effective interaction between JT ions, mediated by the surrounding
ligands of the ions. Below a critical temperature, this interaction may lead to the
cooperative JT effect (CJTE), a structural phase transition where the whole crystal
distorts. There are two main approaches to the CJTE, differing in the form of the
effective ion–ion interaction. Kaplan’s review is partly based on Kanamori’s treat-
ment, who generated this interaction by the transformation from local vibrational
modes to phonons. This treatment, in combination with the canonical Hamiltonian
shift transformation and a subsequent mean-field approximation, is the most popu-
lar approach to the CJTE. Although this concept, also referred to as virtual phonon
exchange, has led to impressive results for some simpler systems, it cannot be
applied to systems characterized by the Exe JT effect because of insurmountable
technical difficulties. Such systems are conveniently treated by means of an alter-
native approach, developed by Thomas and co-workers and described in Polinger’s
article. This method assumes a bilinear lattice-dynamical interaction between the
normal coordinates belonging to nearest-neighbor cells. However, the main empha-
sis of this article lies in a detailed comparison of the CJTE with the orbital-ordering
(or Kugel-Khomskii) approach. A typical example of the orbital-ordering approach
is presented in Ishihara’s review. The main emphasis of this article is on the intrinsic
orbital frustration effect, meaning that no orbital configuration exists, whereby the
bond energies in all equivalent directions are simultaneously minimized. It is shown
that the orbital frustration effect leads to several nontrivial phenomena in strongly
correlated systems with orbital degrees of freedom. The influence of the CJTE and
of JT impurities on material properties is elucidated in the reviews by Gudkov and
Lucovsky. The review by Gudkov deals mainly with the influence of JT impurities
on the elastic moduli and ultrasonic wave attenuation in diluted crystals. The elastic-
wave technique broadens the facilities of JT spectroscopy in its low-energy part and
provides new information, mostly about the properties of the ground state and its
tunneling splitting. That the JT effect even plays an important role in semiconduc-
tor technology is convincingly demonstrated in Lucovsky’s article. Here the CJTE
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manifests itself in the group IVB transition-metal oxides, designed as replacement
gate dielectrics for advanced metal-oxide-semiconductor devices.

7. Jahn–Teller Effect and High-Tc Superconductivity

The explanation of high-temperature superconductivity (HTSC) in copper oxides
(cuprates) is one of the most difficult problems in modern physics. The undoped
cuprates are antiferromagnetic Mott insulators, where the insulating behavior is
caused by a strong on-site Coulomb repulsion. HTSC arises upon hole doping,
whereupon the originally immobile electrons in the half-filled conduction band
become mobile. The basic problem is to find the proper mechanism for the formation
of Cooper pairs, the necessary ingredient of all superconductors. There are mainly
two antagonistic views on the problem amounting to the question of whether the
participation of phonons is indispensable for the pair formation or whether the elec-
trons alone can do the job. The review by Miranda Mena tries to answer this question
by gathering all available evidence in favor of electron–phonon mechanisms such as
(bi)polarons and JT (bi)polarons. Seen in this perspective, the article gives a fair
account of the state of the art in HTSCs. A more detailed theory of JT polarons
and bipolarons with application to the fullerene superconductors is presented in the
article by Hori and Takada. In addition to offering a thorough mathematical analy-
sis, the authors also make the interesting observation that, for stronger coupling, JT
polarons acquire a smaller effective mass than the Holstein polaron. Such a reduc-
tion of the polaron effective mass is essential for the existence of superconductivity,
as the polaron mass increases with increasing coupling so that, for sufficiently strong
coupling, the polaron becomes immobile and cannot contribute to the electric cur-
rent. These remarks apply, in particular, to Koizumi’s work, which proposes that the
doped holes become small polarons and not, as is supposed in all electron-based the-
ories of HTSC, constituents of Zhang-Rice singlets. As the mobility of the polarons
is very limited, a novel mechanism is required to facilitate a macroscopic electric
current. The author solves the problem by a loop current generation around each spin
vortex due to the spin Berry phase. The macroscopic current is then the collection
of all these loop currents.

This set of tutorial reviews has been created on the occasion of the 19th Inter-
national Jahn–Teller Symposium, held in Heidelberg, University Campus, 25–29
August 2008. The volume does not, however, reflect directly the conference con-
tents. Full coverage of the 46 oral presentations given at the meeting (plus a similar
number of posters) was not attempted. Conversely, the 27 papers collected here go
into considerably more depth than would be normal for a proceedings volume. We
hope that this volume constitutes a valuable reference, for beginners and experts
alike.

Heidelberg H. Köppel
Stuttgart H. Barentzen
Baltimore D.R. Yarkony
May 2009
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Part I
Jahn-Teller Effect and Vibronic

Interactions: General Theory



Recent Developments in the Jahn–Teller
Effect Theory
The Hidden Jahn–Teller Effect

Isaac B. Bersuker

Abstract In a review paper an updated formulation of the Jahn–Teller (JT) effect
(JTE) (including proper JT, pseudo JT, and Renner–Teller (RT) effects) is given
based on the latest achievements in this field, including the conclusion that the JTE
is the only source of instability and distortion of any polyatomic system from its
high-symmetry configuration. Together with the statement in particle physics that
“symmetry breaking is always associated with a degeneracy” the extended formula-
tion of the JTE leads us to the speculation that Nature tends to avoid degeneracies.
In the updated formulation the presence of two or more electronic states, degenerate
or within a limited energy gap, that mix strongly enough under nuclear displace-
ments is the necessary and sufficient condition of instability. Distinguished from the
usually considered electron-vibrational (electron–phonon) interaction in which one
electronic state interacts with totally symmetric vibrations, the JTE, mixing two or
more electronic states, involves also low-symmetry displacements.

It is shown that if in the global minimum of the adiabatic potential energy surface
(APES) the polyatomic system is distorted from its high-symmetry configuration,
while the electronic term in the latter is neither degenerate nor pseudo degenerate,
and hence there is no apparent JTE or pseudo-JTE (PJTE), the distortion is due to
these effects in the higher excited states. This is possible when the JT stabilization
energy is larger than the energy gap to the ground state. Since the JT origin of the
distortion is not seen explicitly from the calculation of the ground state, we call
it hidden JTE (HJTE). There are two kinds of HJTE: (1) induced by proper JTE
in an excited state, and (2) produced by the PJTE which mixes two exited states.
Both types of HJTE are confirmed by ab initio calculations of a variety of molecular
systems. While the first type of HJTE is more “accidental” (ozone, O3, is shown
to be a nice example), the second type occurs in e2 and t3 electron configurations
and it is accompanied by orbital disproportionation, making the spin state in the
global minimum different from that of the high-symmetry configuration. This in
turn results in two minima of the APES with relatively close energies, but different
electronic states and spin, and a spin crossover between the two minima. With the
PJTE and HJTE included, the role of excited states in the analysis of structure and
properties of molecular systems in the ground state becomes most important. It can
be said that no full treatment of polyatomic systems is possible without involving
excited states, even when the properties in the ground state are considered.

3
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1 Introduction: An Updated View on the Formulation
and the Meaning of the Jahn–Teller Effect

The Jahn–Teller effect (JTE) (including proper JTE, pseudo JTE (PJTE), and
Renner–Teller effects (RTE)) in its present understanding is a local feature of any
polyatomic system which describes its properties in high-symmetry configurations
with respect to nuclear displacements from this configuration [1]. This understand-
ing is essentially enlarged and much different from that introduced by E. Teller
[2] based on a discussion with L. Landau [3]. The new achievements in this field
so far did not reach the layman physicists and chemists and are not introduced
in textbooks; the latter continue to treat the JTE as a small effect of instability
and spontaneous distortion relevant to specific situations of electronic degeneracy
in nonlinear molecules, which is not entirely true. In the modern formulation (see
below) the JTE is possible, in principle, in any polyatomic systems without a priori
exceptions.

If not restricted to the special case of electronic degeneracy, interactions of elec-
tronic states with nuclear displacements that constitute the basis of the JTE look like
the well known general electron-vibrational (in molecules) and electron–phonon (in
crystals) interactions. In fact, however, JT vibronic couplings are different from the
general cases, and the difference is due to the different number of electronic states
involved in the interaction with vibrations. In the usual approach the interaction
of one electronic nondegenerate (usually ground) state or band with vibrations is
considered, and therefore it is nonzero for totally symmetric vibrations only. Distin-
guished from this general case the JTE involves necessarily two or more electronic
states (bands), degenerate or with a limited energy gap between them (pseudode-
generate), which allow for interaction also with low-symmetry nuclear displace-
ments. The latter may produce peculiar (unusual) adiabatic potential energy surfaces
(APES) with conical intersections, instabilities, distortions, and pseudorotations,
and a variety of important observable properties, jointly termed JTE.

Since two or more electronic states and low-symmetry nuclear displacements
are present in any quantum polyatomic system with more that two atoms, there
are no a priori exceptions from possible occurrence of JTE in such systems. The
question is only that, depending on the system parameters, the JTE may be small,
and it may be unobservable directly. For nuclear configurations with zero energy
gaps between the interacting electronic states (exact degeneracy) the APES has no
minimum due to the JTE, but if the vibronic coupling constants are small, there is
only splitting of vibrational frequencies and no structural instability. This is true
also for weak RTE. The weak PJTE just softens (lowers the vibrational frequency
of) the state under consideration in the direction of the active coordinate, but in
many cases this softening cannot be observed directly as we don’t know the primary
frequency without the PJT interaction (still there are indirect indications of the PJTE
in this case, too). The strong PJTE results in instability and distortions which can be
observed directly via a variety of consequences for observable properties [1]. The
latter may be qualitatively different for JT, PJT, and RT effects, respectively.
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This modern understanding of the JTE is based on the latest achievements of
the theory. In the primary (“primitive”) formulation based on the JT theorem [2] in
which only exact degeneracy and the interaction with only linear terms of vibronic
coupling were taken into account, the JTE states that in electronic degenerate states
of nonlinear molecular systems the nuclear configuration is unstable with respect
to low-symmetry distortions that remove the degeneracy. The limitation of linear
vibronic coupling resulted in the exclusion of linear molecules, making them an
exception from the JTE; with the inclusion of quadratic terms of vibronic coupling,
linear molecules in degenerate states may become unstable (this is the RTE), similar
to the JTE1).

The limitation of exact degeneracy was first removed by Opik and Pryce [4],
but they assumed that the degeneracy is lifted by a small perturbation transform-
ing the point of degeneracy into an avoided crossing, for which the JTE remains,
albeit slightly modified. The idea was essentially extended much later to include
interactions with any excited states (with large energy gaps) and to show that this
interaction is of fundamental importance, as it is the only source of instabilities and
distortions in polyatomic systems in nondegenerate states. Because of its extreme
importance and to introduce some denotations used below, we bring here a simple
formulation of the PJTE.

Consider the APES of a two-level system with the ground state 1 and excited
state 2 and an energy gap � between them, which interact (mix) under the sym-
metrized nuclear displacement Q� . Using perturbation theory with respect to the
linear vibronic coupling term .@H=@Q�/0 Q� we easily obtain [1] that the primary
curvature (the curvature without vibronic coupling) of the ground state K�

0 ,

K�
0 D

˝
1
ˇ
ˇ�@2H=@Q2

�

�
0

ˇ
ˇ 1
˛

(1)

is lowered by the amount
�
F 12�

�2
=�12,

K� D K�
0 � .F 12� /2=�12 (2)

where F 12� is the PJT vibronic coupling constant,

F 12� D h1 j.@H=@Q�/0j 2i (3)

1 The above formulation of the JTE without the exception of linear molecules was given first by
L. Landau in a discussion with E. Teller of his student’s (Renner’s) work on the linear CO2

molecule [3]. Since in the linear vibronic coupling approximation linear molecules are excep-
tions from the JTE, Teller claimed that in this case Landau was wrong and that “this was the only
argument” he “won in discussions with Landau”. It turns out that Teller did not win this argu-
ment, because when the full vibronic coupling is taken into account (as was implied in Landau’s
statement) linear molecules are not exceptions.
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Similarly, for a multilevel problem in the linear approximation,

K� D K�
0 �

X

j

.F
1j
� /

2=�1j (4)

At the point of extremum of the APES in the Q� direction,

h1 j.@H=@Q�/0j 1i D 0 (5)

(we call this point high-symmetry configuration) the curvature K� coincides with
the force constant; the latter is thus a sum of two terms:

K� D K�
0 CK�

v (6)

where K�
0 after (1) is the rigidity of the system with regard to Q� displacements

of the nuclei in the fixed electron distribution, while the negative PJT vibronic cou-
pling contributionK�

v stands for the softening of the system in this direction due to
electrons partly following the nuclei.

If

jK�
v j > K�

0 (7)

(or for a two-level system � < F�
2=K�

0 ), the force constant (5) is negative and the
system is unstable in the directionQ� .

Thus the condition (7) is sufficient to make the system unstable. But is it a
necessary condition? In other words, can the system become unstable beyond the
condition (7), that is, can the inequalityK�

0 < 0 be realized? We succeeded to show
[5, 6] that at the extrema points (5) the inequality

K�
0 > 0 (8)

always holds, meaning that the PJT coupling to the appropriate excited states is
the only possible source of instability of the ground state high-symmetry configura-
tion (5) (a similar statement can be formulated for the instability of excited states).
This means also that the condition

ˇ
ˇK�

v

ˇ
ˇ > K�

0 is both necessary and sufficient for
instability of the systems.

For atoms the condition (8) is trivial. Indeed, since the charge distribution around
the nucleus obeys the condition of minimum energy, any displacement of the
nucleus in the fixed electron cloud (equivalent to the displacement of the latter with
respect to the fixed nucleus) will increase the energy. This argumentation does not
hold for molecules, because when there are two or more nuclei, the energy mini-
mum of charge distribution for fixed nuclei is not an energy minimum with regard to
nuclear displacements; the latter may decrease the nuclear repulsion. Nevertheless,
it was shown both analytically and by ab initio calculations [5, 7] that the condition
(8) at the points (5) is valid always.
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Thus, with these proofs two important additions to the previous traditional
understanding of the JTE emerged: (1) Any polyatomic system may be subject to
the JTE, and (2) if there are instabilities and distortions of high-symmetry con-
figurations, they are due to, and only to the JTE. Together with the previously
achieved understanding of the role of quadratic terms of the vibronic coupling, the
extended formulation of the JTE that includes the latest achievements in this field is
as follows [1, 8]:

The necessary and sufficient condition of instability of high-symmetry configu-
rations of any polyatomic system (lack of minimum of the APES) is the presence
of two or more electronic states, degenerate or nondegenerate, that are interacting
sufficiently strongly under the nuclear displacements in the direction of instability,
the twofold spin degeneracy being an exception.

This formulation may be regarded as a general law of instability of polyatomic
systems. As compared with the previous formulations of the JTE this general law
does not restrict the instability to exact degeneracies or near-degeneracies and
excludes other mechanism of instability. The only restriction is the requirement of
“high-symmetry configurations” in the sense of (5). The meaning of this require-
ment is that the system should be force-equilibrated; if there is no extremum of the
APES, the system is unstable for other reasons not related to the JTE (e.g., classical
electrostatic repulsion). The twofold spin degeneracy is an obvious exception from
the JTE since, in accordance with the Kramers theorem, only magnetic interactions
can remove this degeneracy, whereas the vibronic coupling is electrostatic.

The consequences of the extended formulation of the JTE in the form of a gen-
eral law are vast, both for fundamental understanding of the origin of molecular and
solid state structure and its applications [1]. In particular, it leads directly to the con-
clusion that all structural symmetry breakings in molecular systems and condensed
matter are triggered by the JTE [9]. Together with the statement in particle physics
that “symmetry breaking is always associated with degeneracy” [10] we may spec-
ulate that Nature tends to avoid degeneracies. In molecular systems and condensed
matter, avoiding degeneracies is realized via the JTE.

The statement “Nature tends to avoid degeneracies” should be understood in the
sense that any degeneracy will be removed, provided there are degrees of freedom
to do it. In the absence of such appropriate degrees of freedom the degeneracy could
remain. So far we did not find such examples when the degeneracy remains. For
instance, in an isolated system in a degenerate electronic E state, the degeneracy
will be removed by the JTE, but the double degeneracy of the ground vibronic level
in the free molecule at first sight seems to remain. However, it will be removed by
the Coriolis interaction. Another example is the Kramers twofold spin degeneracy
mentioned above, which can be lifted only in the presence of magnetic fields, and
therefore seems to remain in the absence of external perturbations. However, even
in this case there seem to be the magnetic field of the nuclei which formally removes
the degeneracy.

As for practical applications of the extended JTE, they are numerous and
continuously increasing, involving such important fields as molecular shapes,
stereochemistry, chemical activation and mechanism of chemical reactions, al-range
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spectroscopy, electron-conformational changes in biology, impurity physics, lattice
formation, phase transitions, etc. [1].

2 Hidden JTE: General Considerations

The generalized formulation of the JTE given in the previous section raises some
questions that require special explanation. If the instability of any polyatomic sys-
tem is of JT origin, why are there systems with no apparent electronic degeneracy or
pseudo-degeneracy, which are unstable in the high-symmetry configuration and sta-
ble in configurations of lower symmetry? In other words, there are stable molecular
systems in low-symmetry configurations for which the nearest high-symmetry con-
figuration has no degenerate ground state and no low-lying excited states, and hence
no apparent JTE. Recent developments in JTE theory cast light on this question.

As shown below, it turns out that in all cases when the JT origin of distortions is
not seen explicitly, the instability is still due to the JTE, but the latter is “hidden” in
the excited states of the high-symmetry configurations. For any fixed nuclear con-
figuration one can define the ground and excited electronic states, but by changing
the nuclear configuration a crossover of the electronic energy levels may take place
which interchanges the ground and excited states, so that the former excited state
becomes the ground state in the changed nuclear geometry. This is what happens
with the hidden JTE.

Usually, exploring molecular shapes, the nuclear configuration at the global min-
imum of the APES is sought for, but no much attention is paid to the problem of the
origin of this configuration. If the geometry of the system in the global minimum
has lower symmetry than the nearest possible higher symmetry configuration, the
latter should be unstable due to JTE in the ground or excited states. The latter case
(excited-state JTE in the high-symmetry configuration) can be traced back from the
distorted configuration by searching the APES and revealing the electronic level
crossover. The examples in the next Sections explain this situation in more detail.

Hidden JTE (HJTE) cases can be divided into two kinds (Fig. 1):

1. The distorted ground state configuration is due to a strong JTE in the excited state
of the high-symmetry configuration, with a stabilization energy EJT larger than
the energy gap� to the ground state (Fig. 1a).

For an excited state E ˝ e problem the condition that its distortion will pro-
duce a global minimum is

�
FE

2=2KE
�
> �, where FE and KE are the vibronic

coupling and primary force constants, respectively. For a T ˝ .e C t2/ problem
the corresponding conditions are either

�
FE

2=2KE
�
> � when e distortions are

advantageous, or
�
2FT

2=3KT
�
> � in case of t2 distortions.

2. The distorted ground state configuration is due to a strong PJT mixing of two
excited states of the high-symmetry configuration with an energy gap �12 and a
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Fig. 1 Illustration of two cases of hidden JTE: (a) Excited state JTE overcomes the energy gap to
the ground state producing a global minimum with a distorted configuration (the ground state A is
nondegenerate); (b) PJTE between two excited states produces a global minimum with a distorted
configuration

stabilization energy EPJT larger than �0 (Fig. 1b). The condition that the excited
state PJT distorted configuration produces a global minimum of the APES is
thus [1]

.F 12� /2=2K0 ��12 C�122K0=2.F 12� /2 > �0 (9)
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In contrast to the JT case, where the possible distortion is restricted by the JT
active modes only, the PJT-induced distortion may be of any kind, depending on
the symmetries of the mixing states. Another distinguished feature of the excited-
state PJT-induced distortion is that it leads to orbital disproportionation discussed in
Sect. 4.

3 Hidden JTE Generated by Excited JT States

The first type of hidden JTE defined above is generated by an excited state with a
strong JTE. A straightforward example of such a hidden JTE, the ozone molecule
O3, was considered recently [11]. Ab initio calculations of the electronic structure
of this molecule were performed by a number of authors. Figure 2 shows some of
the results obtained by means of high-level ab initio calculations for the ground state
with geometry optimization [12–14].

The APES of O3 has three equivalent minima (Fig. 2a) in which the molecule was
shown to have a distorted (obtuse) triangular configuration, and a central minimum
at higher energy for the undistorted regular triangular geometry. Figure 2b shows
the cross section of the surface along one of the minima. The electronic ground
state of this molecule is not degenerate, neither at the undistorted nor the distorted
nuclear configurations, so there is no JTE in the ground state, nor are there low-lying
excited states to justify an assumption of a PJTE. Nevertheless, we see explicitly the
distortions. So where is the JT origin of these distortions?

a

2

1

E
 [e

V
]

0

50 70

α [deg.]

90 110 130
–1

b

Fig. 2 Ab initio calculations for the ground state APES of the ozone molecule [12–14]: (a)
equipotential contours showing three minima of three equivalent obtuse-triangular distortions and a
shallow minimum (in the centre) of the undistorted regular-triangular configuration [12]; (b) cross
section of the APES along one of the minima [13, 14] (’ is the angle at the distinguished oxygen
atom in the isosceles configuration)
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Fig. 3 Cross-section of the APES of the ozone molecule along the Q� component of the double
degenerate e mode obtained by numerical ab initio calculations including the highly excited E
state, explicitly demonstrating that the ground-state distorted configurations are due to the JTE in
the excited state [11]. The global minimum is at Q� D 0:69 Å and the E–A avoided crossing takes
place at Q� � 0:35 Å

To answer this question, ab initio electronic structure calculations including
excited states were performed [11]. The results for the cross section along one of
the minima are shown in Fig. 3. In comparison with Fig. 2b we see that there is an
excited state, which for the undistorted configuration is an E term, and the global
minimum for the distorted configuration is just a component of this degenerate term
in the E ˝ e problem that produces the three minima of the APES (the interaction
with the ground A term at the crossing is very weak). In this picture, the JT origin
of the three equivalent distorted configurations is seen explicitly as originating from
the strong JTE in the excited state, with essential contribution of quadratic terms of
the vibronic coupling.

Note that the energy gap from the ground A state to the excited E state in the
undistorted configuration is relatively large, �8:5 eV, so the “classical” thinking
of the JTE as a small structural deviation from the configuration of the degenerate
state could not apprehend such an effect of distortion with Q# D 0:69 Å and with
a stabilization energy of more than 9 eV (in our early ab initio calculations [7] we
encountered cases of strong PJTE between states with energy gaps of 10–15 eV).
The paradigm of the JTE as resulting in small distortions should be eliminated. The
JT distortions may be of any size as all the distortions are of JT nature.

To reveal the JT origin of the distortions is not the end of the story: the authors of
the above electronic structure calculations of O3 (or any other ab initio calculations
with geometry optimization that result in distorted configurations) may argue that
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it is nice to know the origin of the minima, but this does not change the validity of
their results on the geometry of the system (the global minimum) and vibrational
frequencies (the curvature of the minimum). With regard to the interpretation of the
numerical results this would be wrong judgment. Indeed, if the minima are of JT ori-
gin, the properties of the system should bear all the features of the JTE that produced
them. In particular, in the case of the ozone molecule the minima emerge as a result
of the JT E ˝ e problem for which the wavefunctions and energy levels should be
subject to the topological (Berry) phase, which may drastically change the results.
The differences include first of all the ordering and spacing of the vibronic energy
levels, their ground state degeneracy, and fractional (semi-integer) quantum num-
bers of the vibrations when the Berry phase is included [1], which in turn change
the spectroscopic and thermodynamic properties. With the Berry phase included,
the ordering of the vibronic energy levels is:

E; A1.2/; A2.1/; E; E; A1.2/; A2.1/; E; E; A1.2/; A2.1/; : : :

and their quantum numbers are fractional, whereas if the Berry phase is ignored
we have:

A1; E; E; A1.2/; A2.1/; E; E; A1.2/; A2.1/; E; E; : : :

and the quantum numbers are integer. Thus by revealing the hidden JTE, the JT
origin of the distorted global minimum configuration, we get the correct observable
spectroscopic and thermodynamic properties of the system, which are essentially
different from those obtained by electronic structure calculations of the ground state.

Of particular interest are the fractional (half-integer) quantum numbers of the
vibronic energy levels as they influence directly the spectroscopic properties, e.g.,
the Coriolis splitting of the ground state. For a triangular X3 (symmetric top)
molecule the rotational energy is given by the following approximate expres-
sion [15]:

E D BJ.J C 1/� .B � C/K2
c ˙ 2C�Kc (10)

where B and C are the rotational constants (the C axis is perpendicular to the X3
plan), J andKc are the rotational quantum numbers of a symmetric top, and the last
term describes the Coriolis interactions with the Coriolis constant �. For strong JTE
or PJTE the effective Coriolis constant can be taken equal to the quantum number
m of the vibronic level [1,12]. It emerges from (10) that the Coriolis splitting equals
4mCKc, and for integer values of m it will differ essentially from those for half-
integer m. Moreover, the ground vibronic state with m D 0 should not be split
by the Coriolis interaction, whereas is should be split in the state with fractional
quantization where m D ˙1=2.
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4 Hidden JTE Generated by PJT Coupling of Two
Excited States

The second type of hidden JTE formulated in Sect. 2 is even more “hidden” than
the first type above. The best examples of this kind of JTE induced by PJT coupling
between two excited states are in systems with half-filled closed shells of degen-
erate e and t orbitals, meaning electronic e2 and t3 configurations. Indeed in the
ground state, according to Hund’s rule, the electronic configurations have the highest
possible spin, 3A in e2 and 4A in t3, as in .e# "I e" "/ and .tx "I ty "I tz "/, respec-
tively. Since the charge distribution in these configurations is totally symmetric with
respect to the geometry of the system and the electronic states are nondegenerate, no
JTE is expected in these ground states. Other distributions of the electrons on these
orbitals result in excited terms with lower spin, 1E and 1A in e2, and 2E;2 T1 and
2T2 in t3. In accordance with the earlier (primitive) formulation of the JT theorem,
the nuclear configuration (geometry) of the system in the excited degenerate states
should be unstable. Unexpectedly, it was shown [16–19] that, in violation of the
earlier formulation of the JTE, all these states are non-JT, meaning that the totally
symmetric charge distribution of the e2 and t3 electron configurations is not violated
by the electron interactions in the excited states. Since the spin of the latter is dif-
ferent from that in the ground state, there is no PJT interaction between them either.
Nevertheless many of these systems are distorted in the ground state. So where is
the JTE in these systems?

Analyzing this situation it was found that, in systems with electronic e2 con-
figurations, there is a strong PJTE between the two excited states 1E and 1A,
approximately twice as strong as the expected JTE in the same system with just
one e electron [16]. The possibility of such a PJTE, in general, was indicated earlier
[17–19], but it was not comprehended that it may produce a global minimum with a
distorted configuration. Calculations including the E–A PJT mixing of excited states
of Na3 were performed to explain its two-photon ionization spectra [20].

Consider, for example, the triangular molecule Si3 with D3h symmetry. Experi-
mental spectroscopic data indicate that, similar to O3, this molecule in its ground
state has a distorted (obtuse triangular) configuration with C2v symmetry. Figure 4
illustrates some results of ab initio MRCI/cc-pqtz calculations of the electronic
structure of this molecule (including excited states) and the APES in the cross-
section along the mode of distortion (Q� coordinate) [16]. We see that the electronic
ground state in the undistorted geometry is a spin triplet 3A02, while the excited states
are singlets 1E 0 and 1A0, with a very small JTE in the 1E 0 state (which cannot over-
come the energy gap to the ground state to produce the global distortion as in the
O3 case), but a strong PJTE .1E 0C1 A0/˝ e0. In the direction of the distortion, one
of the components of the 1E 0 term is stabilized by the strong PJT coupling with the
excited 1A01 state and crosses the ground triplet state of the undistorted configuration
to produce the global minimum with a distorted geometry. The latter is in agreement
with the experimental data on infrared spectra [21, 22]. The small JTE in the 1E 0
state is due to the “contamination” of the non-JT pure e2 configuration with other
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(non-e2) configurations in the process of ab initio calculations with configuration
interaction.

Figure 4 shows also one of the additional conical intersections in the Q� direc-
tion, and there are two other equivalent intersections in the e space of the distortions
in accordance with the JTE theory for the E ˝ e problem [1]. Because of these
additional conical intersections there are no Berry phase implications in this case:
the transition between the minima along the lowest barriers goes around four conical
intersections instead of one [23, 24].

The PJTE in excited states of systems with electronic e2 configurations, which
produce global minima with distorted geometries and orbital disproportionation (see
below), was confirmed also by ab initio calculations of a series of molecular systems
from different classes, including Si3C;Si4;Na4

�, and CuF3 [16].
Moving to systems with half-closed-shell electronic t3 configurations, we find a

similar totally symmetric charge distribution in all their states, ground and excited
(including degenerate states), which makes all of them non-JT, in violation of the
primitive formulation of the JTE. Again, in these cases there is a strong PJTE that
mixes two excited states, with the result that the lower one is pushed down to over-
come the energy gap to the ground state and to produce a global minimum with
a distorted configuration. For the electronic t23 configuration the energy terms are
4A2 (usually the ground state), 2E;2 T1 and 2T2 (the results for t13 are similar), and
the strong PJT problem under consideration is

�
2T1 C2 T2

�˝ e.
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Consider the example of the Na4� cluster [16]. In its high-symmetry configu-
ration the four sodium atoms are arranged in a tetrahedron. The four 3s valence
orbitals in this conformation form a1 and t2 symmetrised orbitals. In the Na4�
system the valence electronic configuration is a12t23, producing electronic terms
4A2;

2T1;
2E and 2T2 from the t23 configuration. CASSCF calculations of the

electronic structure of this system in the ground and excited states as a function of
the tetragonal e displacements using the cc-pvtz basis set and the s valence orbitals
of Na as the active space are illustrated in Fig. 5.

As expected from the general theory [16], there are no significant JT distortions
in any of the states formed by the t23 configuration, but there is a strong PJTE
of the type

�
2T1 C2 T2

� ˝ e that pushes down one of the components of the 2T2
term, making it the absolute minimum, in which the tetrahedron is distorted in the e
direction. We have thus a spin-quadruplet ground state in the undistorted tetrahedral
configuration and a spin-doublet state in the distorted global minimum with the
shape of a rhombus.

The t1u
3 configuration was also explored in the fullerene anions C603�. For this

system the orbital disproportionation (see Sect. 5) was first revealed by Ceulemans,
Chibotaru, and Cimpoesu [25, 26] by direct estimation of the electron interactions
in the distorted configuration in order to explain the origin of conductivity in the
alkaline-doped fullerides A3C60.
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5 PJT-Induced Orbital Disproportionation and Spin-Crossover

Analyzing the wavefunctions in the distorted configurations in the general case of
electronic e2 configurations it was shown [16] that the distortion induced by the
PJT mixing of two excited states is accompanied by orbital disproportionation
of the type .j" "I " #i � j� "I � #i/ ! j� "I � #i, meaning that in the distorted
geometry the two electrons occupy one e orbital with opposite spins, instead of the
proportionate distribution of the two electrons on the two orbitals in the undistorted
configuration. The ab initio calculations for Si3 fully confirm this prediction [16].
The orbital disproportionation provides for a transparent physical picture on why
and how the distortion takes place. The wavefunctions of the excited singlet terms
1A1 and 1E before PJT mixing are:

1A1 D 1p
2

�
j" "I " #i C j� "I � #i

�
(11)

1E� D 1p
2

�
j" "I " #i � j� "I � #i

�
(12)

1E" D 1p
2

�
j� "I " #i C j� #I " "i

�
(13)

In all these states the charge distribution is symmetrical with respect to the � and "
components. Due to the PJTE the 1E™ component mixes with the 1A1 function to
result in their linear combination, which in the case of sufficiently strong vibronic
coupling produces a disproportionate distribution of either j" "I " #i or j� "I � #i
[16]. In any of these cases the charge distribution is nontotally symmetric and dis-
torts the high-symmetry configuration. In other words, if the PJTE conditions are
met, it is more energetically convenient for the system to pair its electrons in the
same orbital and distort the nuclear framework than to remain symmetrical and
high-spin under Hund’s rule.

A quite similar effect takes place in the case of electron configurations t3.
In this case the PJT strong vibronic mixing of two excited states 2T1 and 2T2
results in a lower orbitally disproportionate component of the type jtx "I tz #I tz "i,
while the ground quadruplet state 4A2 corresponds to the Hund’s rule distributionˇ
ˇtx "I ty "I tz "

˛
.

As follows from these results, orbital disproportionation in systems with half-
closed-shell electronic configurations is producing a distorted configuration with a
lower spin than that of the high-symmetry geometry. For the e2 configuration this
results in a transition from the high-spin (HS) triplet 3A state to the low-spin (LS)
singlet state 1A, while for t3 this transition is from the quadruplet .HS D 3=2/ to
the doublet .LS D 1=2/ state. Since the formation of the LS minimum is induced
by the PJT distortion originating from an excited electronic state, the two states,
HS undistorted and LS distorted, coexist in two minima of the APES, which may be
close in energy. Between these two minima there may be a crossing between the two
states of different spin, a spin crossover. The results of ab initio calculations in [16],
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some of which are presented in Figs. 4–6, show explicitly the spin crossover that
takes place in the specific molecules under consideration. It may take place in any
molecular system with electronic e2 or t3 configurations, meaning molecules with
at least one threefold axis of symmetry and an appropriate number of electrons.

The spin-crossover phenomenon is known to take place in cubic coordina-
tion systems of transition metal compounds (TMC) with electronic configurations
d 4–d 7 that may produce either HS or LS complexes, subject to the strength of the
ligand field [27–30]. For some values of the latter the two electronic configurations,
high-spin and low-spin, may be close in energy so they can cross over as a function
of the breathing mode of the system (metal-ligand distance). This spin crossover has
been known for a long time and has been the subject of intensive study for over two
decades because, in principle, systems with two spin-states may serve as molecular
materials for electronics [28, 30]). However, the observation of the two states and
transitions between them under perturbations (required for such materials) encoun-
ters essential difficulties because of fast radiationless transitions between them (very
short lifetime of the higher-energy state due to its fast relaxation to the lower one).
So far the two spin states in TMC have been observed only for some compounds in
optical LS! HS excitations at low temperatures .<50K/, and mostly as a cooper-
ative effect in solids. They are not observed at higher temperatures because of their
poor separation in space and fast relaxation due to the relatively high spin–orbital
interaction in the metal [28, 30].

The crossover and orbital disproportionation induced by the PJTE are essentially
different from the spin crossover in transition metal compounds (TMC) produced
by the strength of the ligand field. Indeed, (1) the PJT-induced spin crossover takes
place in a variety of molecular systems, small to moderate, organic and inorganic, as
well as in metal-containing molecules, as illustrated on a series of molecular systems
taken as examples [16]; (2) the HS–LS intersystem relaxation rate in the PJT case
is expected to be much lower than in TMC because the two spin states have differ-
ent nuclear configurations, distorted and undistorted, producing a significant barrier
between them and a small Franck-Condon factor, while the spin-orbital interaction
in light-atom molecules is smaller by orders of magnitude than in TMC; (3) based
on these considerations (followed by numerical estimates) it can be assumed that
in the PJT-induced spin-crossover the switch between the two states (in both direc-
tions) under perturbations can be observed as a single-molecule phenomenon and at
relatively high temperatures. The molecule Si4 (Fig. 6) seems to be an appropriate
candidate for testing this effect.

For the molecular systems above, for which numerical calculations were carried
out, numerical estimates for the positions of the two minima on the APES, their
energies and the point of crossover of the terms with different spin are given in
Table 1, with the notations shown in Fig. 7. The values of the energy barriers are
corrected for zero-point vibrational energies. We see that the spin-crossover param-
eter values vary in considerably large ranges. Preliminary estimates show that the
relaxation rate in some of these systems is by several orders of magnitude lower than
in TMC. Since the number and the variety of molecules with e2 and t3 electronic
configurations are practically unlimited, we may hope that systems with required
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�
1A1 C1B1

�˝ e PJT coupling between two excited states

Table 1 The parameters of the JT spin-crossover in several systems

Method �ex.eV/ •HS.eV/ •LS.eV/

Si3C CASPT2/cc-pvtz 2:180 �0:148 2:031

Na4 MRCI/cc-pvtz 0:367 �0:020 0:364

Si4 CASPT2/cc-pvtz 1:341 0:004 1:241

Na4� CASPT2/cc-pvtz 0:141 0:107 0:251

Si3 MRCI/cc-pqtz 0:132 0:062 0:194

CuF3 CASPT2/Roos 0:190 0:541 0:712

C60
3� DFT (LDA) [31–33] 0:157 �0:004 �0:001

�ex is the energy difference between the ground states of the high-spin and low-spin configurations,
and ıHS and ıLS are the respective energy barriers, the energy difference between the minima and
the crossing point between the two spin states (Fig. 7). All the energies are corrected for zero-point
vibrational energies

combinations of these parameter values in specific limits and with low relaxation
rates are feasible. This JT single-molecule spin crossover is a new phenomenon that
may also have applications in novel materials for electronics.

6 Role of Excited States in Rationalization and Prediction
of Molecular and Solid State Properties

The extended formulation of the JTE above – the law of instability – states that
the necessary and sufficient condition for instability of the high-symmetry config-
uration of any polyatomic system is the presence of two or more electronic states
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Fig. 7 Cross-section of the APES of C60
3� along the effective mode that takes the system from

the undistorted high-spin minimum to the distorted low-spin minimum due to the multimode
(HuCT1u/˝hg PJT coupling [31–33]. The zero-point energies (ZPE) along this mode (which are
different from the global ZPE) show that the lowest vibronic state associated with the electronic
spin-doublet state is lower than that of the spin-quadruplet state

that interact sufficiently strong under the nuclear displacements in the direction of
instability. Configurational instabilities are present in a vast majority of processes
in chemistry, physics, and biology, including, e.g., transition states of chemical
reactions, conformational changes in biology, phase transitions in physics, etc.
(for examples see [1]). In all these situations, the possible instabilities (their trig-
ger mechanisms) are controlled by the two or more electronic states; there is no
instability within just one electronic state.

If the ground state in the high-symmetry configuration is degenerate (meaning
it has two or more electronic states), it may produce the instability by itself. More
often, the electronic ground state is nondegenerate, and then the instability is pos-
sible only if there are appropriate excited states that produce the necessary PJT
interaction. In this way we get a general approach to (a tool for) solving molec-
ular and solid state problems in which the excited states assume a key role: they
determine both the possibility and the direction of instability (e.g., the mechanism
of the elementary step of a chemical reaction, starting at its transition state).

The role of excited states in the instability of the ground state comes out clearly
from the practice of ab initio calculations. Indeed, it is well known that in general,
one cannot get instability and energy barriers without including some representation
of the corresponding excited states in the basis set or in the singles of configuration
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interaction. The negative PJT contribution of the excited states to the curvature of
the APES of the ground state, resulting in its instability, was confirmed also directly
by means of ab initio calculations for specific molecular systems (see, e.g., in
[1,7,34,35]). A direct probe of the role of excited atomic states (in the basis sets) in
producing the instability of the ground state was performed recently [36]. The CaF2
molecule was shown by ab initio calculations to have a bent geometry in its ground
state due to the PJT instability of the linear configuration, in which the main contri-
bution to the PJTE is due to the excited states formed mainly by the excited atomic
d states of Ca [37]. Based on this information, one can predict that by excluding
the atomic d states from the basis set there will be no instability. Indeed, ab initio
CCSD(T) calculations with a F–cc-pvtz basis set yield a bent configuration for CaF2
in the ground state, with an angle ˛ D 154ı and interatomic distance R D 2:006 Å
when the full basis set is involved, and a linear configuration with ˛ D 180ı and
R D 2:059 Å if the excited atomic d states are excluded from the basis set [36].

The role of the JTE is most important in interpretation (rationalization) of exper-
imental results including results of ab initio calculations. With regard to the latter
the JTE may serve as a general (based on first principles) analytical model for
understanding and generalizations. In the majority of cases the results of ab initio
calculations are published “as they are” with discussion of methods used and accu-
racies achieved in comparison with other similar calculations, which is an important
problem by itself, also because they yield necessary numbers good for comparison
with the experimental data. But very rarely the question is raised why the results are
“as they are”, meaning what is the origin of the molecular characteristics obtained
from the calculations. As an illustrative example we mention the results of a recent
paper entitled: Why are some ML2 molecules (M D Ca, Sr, Ba; L D H, F, Br) bent
while others are linear? [37]. While the ab initio calculations only yield that some
of these molecules are linear and others are bent, the analysis of the results from
the point of view of the PJTE shows convincingly what is the difference in the elec-
tronic structure of the atoms that makes the molecular geometry different. Indeed,
Fig. 8 shows the MO scheme for such ML2 molecules, from which it is seen that
the PJT mixing of the HOMO ¢u, formed mainly by the ligand orbitals, with the
unoccupied  g orbitals, formed by mainly central atomic d orbitals, may produce
the odd (bending) nuclear displacements. Obviously, both the energy gap between
these states � and the vibronic coupling constant F are specific for the atoms M
and L, and only some of them obey the condition of instability (7) [37].

Another example is the prediction of possible noncentrosymmetric linear con-
figurations of XYX molecules as a result of the PJT mixing of the electronic state
under consideration with a higher-energy state of opposite parity. Such a configu-
ration with two nonequivalent Y–X bonds to two equivalent atoms X seems to be
unreasonable, but the bonding interpretation of the PJTE [38] suggest that under
certain conditions the additional covalency on   bonding gained by the shorten-
ing of one of the Y–X bonds is larger than the loss on distorted (stressed) ¢ bond,
and two such bonds cannot be formed simultaneously. The two minima of the
APES with nonequivalent Y–X bonds in each of them and a dipole moment of the
molecule was found in the lowest excited 2…u state of CuCl2 [38], and there is
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Fig. 8 Molecular orbital (MO) scheme of the valence states in the ML2 molecules. Shown in
parenthesis are the main atomic orbital contributions to the MOs

reasonable confidence that this is not the only case of such PJT-predicted distorted
configurations.

Another illustration of the role of the JTE in rationalization of the results of
ab initio calculations is the APES (discussed above) of the ground and first two
excited states of the Si3 molecule the cross section of which is shown in Fig. 4 [16].
Presently, just the picture of this APES and the numerical values of its parameters,
without further rationalization, may not be sufficiently informative, even for a jour-
nal publication; the only model to fully explain this picture is the JTE. The picture
reveals a very weak JTE in the excited 1E 0 state in combination with the PJTE on
the two excited states 1E 0 and 1A10 accompanied by orbital disproportionation (and
no Berry phase factor) which together provide for a sufficiently full understanding
of the results of the ab initio calculations.

7 Conclusions

In this review paper we give an updated formulation of the JTE, which states, in
essence, that structural instabilities of high-symmetry configurations of any poly-
atomic system are due to and only to sufficiently strong mixing of two or more
electronic states (degenerate or with a limited energy gap) by nuclear displace-
ments. This means that if the symmetry of the stable (global minimum) nuclear
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configuration of a molecular system is lower than the nearest highest possible
symmetry, the latter is unstable due to, and only to the JTE. Based on this under-
standing, we introduce the hidden JTE (HJTE): if for distorted systems there is no
apparent JTE in the undistorted configuration, it is hidden in its excited states. Two
qualitatively different cases can be distinguished: (1) the distortion is due to a strong
JTE in one of the excited states of the undistorted configuration, and (2) it is created
by a strong PJTE mixing two excited states of the latter. Examples with ab initio
calculations illustrate both cases. An interesting consequence of the hidden PJTE is
that it results in orbital disproportionation and the spin-crossover phenomenon. In
general, excited electronic states cannot be ignored in any full analysis of molecular
properties (even in the ground state), and the JTE is the unique model that allows
for a reasonable rationalization of experimental and computational results.
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Electronic Degeneracy and Vibrational
Degrees of Freedom: The Permutational
Proof of the Jahn–Teller Theorem

Arnout Ceulemans and Erwin Lijnen

Abstract In 1937 Jahn and Teller stated their remarkable theorem that all non-
linear nuclear configurations are unstable for an orbitally degenerate electronic state.
The original demonstration of this theorem was by exhaustive verification for all
non-trivial cases. Since then several authors have presented theoretical treatments
that offer formal proofs. None of these however succeeds to attain a real insight
into the origin of the theorem, nor does there appear to exist a general proof that
covers all point groups in a uniform way. For a clear understanding of the Jahn–
Teller theorem a different starting point is needed, based on the question: What is
the origin of electronic degeneracy? According to Group Theory the existence of an
n � 1 fold degeneracy is related to the existence of a set of n identical sites which
form a doubly transitive orbit of a symmetry group. Using the symmetric groups this
permutational character of electronic degeneracies can be turned into a transparent
proof for the Jahn–Teller theorem. The presentation of this proof is preceded by
introductory sections which explain the principal group-theoretical concepts that
come into play. The proof is followed by an application to the fivefold degenerate
irreducible representation in the icosahedral group. This quintuplet degeneracy can
be described by the S6 permutation group, which gives rise to extra selection rules.
The embedding of the icosahedral group in S6 is discussed, and the relevance of
this group-theoretical scheme for the Jahn–Teller interactions in icosahedral shells
is demonstrated. The extension to the hyperoctahedron in 4D space is also discussed.

1 Introduction

The Jahn–Teller theorem states that ‘a configuration of a polyatomic molecule for
an electronic state having orbital degeneracy cannot be stable with respect to all dis-
placements of the nuclei unless in the original configuration all the nuclei lie on a
straight line’ [1]. In the original paper of 1937 verification of the theorem was by
enumeration of all possible cases. In the words of Teller, ‘this was not a proof that a
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mathematician would enjoy.’1 Nevertheless up till now the original procedure is still
considered to be the most practical and useful way to introduce the theorem [2]. Sev-
eral authors have presented more general proofs, which however lack transparency
and do not yield additional insights into the strong connection between distortions
and degeneracy. In the present paper we will first review these treatments and then
develop a different point of view which leads to a concise permutational proof.

2 Existing Proofs of the Jahn–Teller Theorem

The first attempt to clarify the physical basis of the Jahn–Teller theorem was due
to Ruch, [3] in an introductory presentation to the 1957 annual meeting of the
Bunsen–Gesellschaft in Kiel, which was organised by H. Hartmann. Ruch discussed
the general connection between symmetry and chemical bonding, and also touched
upon the Jahn–Teller effect in transition-metal complexes. He explained that degen-
eracy can always be related to the existence of a higher than twofold rotational axis
and a wave function which is not totally symmetric under a rotation around this
axis. Provided that the wave function is real the electron densities for such a wave
function are bound to be anisotropic. The combination of an anisotropic distribution
of the electron cloud and a symmetric nuclear frame leads to electrostatic distortion
forces where the nuclear frame adapts itself to the anisotropic attraction force.

Strictly speaking the densities of the electronic cloud on the sites of the atomic
nuclei, the so-called on-site density, need not be different for different components
of a degenerate wave function. A simple counter-example is a T1u orbital level in a
cubic cluster. Let j�i i denote a �-type atomic orbital on a given site i . The symme-
try adapted linear combinations (SALC’s) of these basis orbitals are given by (see
Fig. 1):

jT1ux >D 1

2
p
2
.j�1i � j�2i � j�3i C j�4i C j�5i C j�6i � j�7i � j�8i/

jT1uy >D 1

2
p
2
.j�1i C j�2i � j�3i � j�4i � j�5i C j�6i C j�7i � j�8i/

jT1uz >D 1

2
p
2
.j�1i C j�2i C j�3i C j�4i � j�5i � j�6i � j�7i � j�8i/ : (1)

Clearly all three components have the same on-site densities. What differs
are the inter-site or overlap matrix elements. The importance of these inter-site
contributions is confirmed by a recent analysis of the vibronic coupling density
functional [4]. Parenthetically we note that a function which has the same on-site

1 Historical note by Edward Teller in R. Englman, The Jahn–Teller effect in molecules and crys-
tals (Wiley, London, 1972). See also: B. R. Judd, in: Vibronic Processes in Inorganic Chemistry,
C. D. Flint (ed.) Nato ASI series C288, pp. 79–101 (Kluwer, Dordrecht, 1989)
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Fig. 1 SALC’s for the T1u representation of the cube

density on all equivalent atomic sites is called ‘equidistributive’. In fact as we have
shown elsewhere, [5] for all degeneracies of the cubic groups a degeneracy basis
can always be constructed with equidistributive components, provided the use of
complex component functions is allowed. For some icosahedral degeneracies more
intricate cases may occur where the wave functions have to be of quaternionic
form.

In 1968 Ruch and Schönhofer cast the qualitative arguments in a more formal
proof [6]. The authors expressed the hope that the proof would yield additional
insight. This hope did not really materialize because the proof was not very trans-
parent, one of the reasons being that it was not illustrated with an actual example.
In order to obtain a better understanding of this proof we try to apply it to a prac-
tical example of a 2T2g state in an octahedral complex, as would be the case for a
.d/1 transition-metal ion such as Ti3C surrounded by six ligands. The site symme-
try group of a ligand in an octahedron is C4v. In this site symmetry group the T2g
symmetry of the electronic level transforms as B2 C E. The argument then runs
as follows: since the electronic level is threefold degenerate and the site-symmetry
group only allows non-degenerate and twofold degenerate irreducible representa-
tions at least one of the components of the electronic level has to transform as a
non-degenerate irreducible representation of the site group. This is indeed the case
for the B2 representation. The electronic density at the site transforms as the direct
product B2 ˝ B2 D A1 and thus is totally symmetric. This implies that the elec-
tronic level will always yield a non-zero vibronic coupling matrix element with the
radial displacement of the ligand at that site. The proof continues to show that this
condition is sufficient to claim vibronic instability of the octahedral triplet level.
The radial distortions of the octahedron induce a distortion space of the following
symmetry:
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� .A1 C4v " Oh/ D a1g C t1u C eg : (2)

According to the Jahn–Teller theorem the active modes for an orbital multiplet
are given by the non-totally symmetric part of the symmetrized direct product of the
electronic degeneracy:

ŒT2g ˝ T2g � � a1g D eg C t2g : (3)

Square brackets denote the symmetrized part of the direct square. Two aspects
of the formal proof are noteworthy. Firstly, as in the qualitative argument the proof
only considers the on-site densities. As a result for the T2g level the vibronic cou-
pling resides with the radial distortions of the octahedron only, as described by
the antisymmetric stretch of eg symmetry which is the common symmetry in the
above equations. However the 1937 Jahn–Teller treatment yielded a stronger result
in that it showed both active modes to be present in an octahedral complex with six
ligands. As we know T2g electrons preferentially couple with tangential bending
modes of t2g symmetry rather than with radial eg distortions, which coincide with
nodal planes of the T2g orbitals. Secondly, although the derivation is no longer by
discrete enumeration the proof still rests on the consideration of several separate
cases, depending on whether the index n in the cyclic site group Cnv is equal to 2 or
larger than two, and whether the electronic degeneracy is even or odd.

In 1971 a different proof was provided by Blount in the Journal of Mathematical
Physics [7]. Blount mentions that after the completion of his proof he learned about
the work of Ruch and Schönhofer. He further notes that, although both treatments
are closely connected, his approach ‘uses the basic ideas in a more direct fash-
ion and reveals more clearly the distinction between general and special features’
(quoted from [7]). Indeed the 1971 proof calculates directly by means of the stan-
dard character theory the overlap between the direct square of the electronic irrep
and the normal distortion modes. In line with Ruch and Schönhofer, Blount also sub-
duces this expression to the site groups which leave individual atoms invariant. The
proof then splits into several cases depending on whether the subduction of the elec-
tronic irrep is reducible or not. The irreducible case occurs when the atoms are lying
on a threefold axis and urges Blount to consider the cubic and icosahedral groups
separately. Interestingly Blount has also considered possible symmetry breaking in
higher dimensions. He argued that already in 4D there appear symmetries where the
JT theorem is not obeyed. We will illustrate an example of the hypercube in more
details later. This may not be too surprising in view of the fact that also linear 1D
structures constitute exceptions to the theorem.

Further rather indirect proofs have been given by Raghavacharyulu [8] and most
recently by Pupyshev [9].

In the present work we will approach the problem from a different point of view,
and start from the causes for electronic degeneracies. So we will ask ourselves the
question: Why is it that certain point groups contain degenerate irreps? Accord-
ing to group theory the necessary and sufficient condition is that the group has
at least two generators which do not commute. For a proper understanding of the
Jahn–Teller effect this algebraic condition is not very useful, and we will find a
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more inspiring answer in the theory of induction. Before we can proceed to the
actual proof, we collect various group-theoretical propositions that will introduce
the reader to the necessary mathematical background that is required for the subse-
quent proof. For a more intuitive chemical perspective on the present proof, we refer
the interested reader to our recent contribution to the commemorative accounts of
the Chemical Society of Japan [10].

3 Group-Theoretical Propositions

3.1 Transitive Left Cosets

Degeneracy starts from equivalence. A simple way to demonstrate that two objects
are equivalent is when the permutation of the two objects is symmetry allowed. Con-
sider a simple triatomic molecule with the shape of a regular triangle. The relevant
point group in two dimensions is limited to C3v. The equivalence of the three nuclei
is demonstrated by symmetry operations which permute nuclei that are identical and
occupy equivalent positions in space. The set of the three nuclei that are connected
in this way is called an orbit. Symmetry operations are said to act transitively on the
elements of the orbit, i.e. they send every element over into every other element of
the same orbit. The stabilizer of a given nucleus hai in the molecule is the subgroup
Ha � G which leaves the site hai invariant. In the case of a triangle the stabilizer
of a nucleus is a Cs subgroup. This corresponds to the site groups in the previous
proofs. The total group may be expanded in left cosets of this subgroup, according
to the general formula:

G D
X

r

grH; (4)

where gr is a coset generator or representative. The number of cosets is equal
to the quotient of the group orders, n D jGj=jH j D 3. For our example, using the
notation in Fig. 2 the coset expansion of C3v over Cs reads:

C3v D fE; �ag C fC3; �cg C fC 23 ; �bg: (5)

Fig. 2 Triatomic
configuration with C3v

symmetry together with the
corresponding symmetry
labels

a

b c

C3

σa

σcσb

C3
2
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It is easily seen that the coset distribution reflects the generation of the trian-
gle from the starting point on hai. The first coset is the set of all elements which
map hai onto itself, the second collects all elements which map hai onto hbi, and
the third contains the elements which send hai over into hci. There is thus a one-
to-one mapping between the cosets and the elements of the orbit. The cosets thus
really represent equivalent sites, and they too form an orbit. Through the coset
expansion the geometric concept of equivalent nuclei may be turned into a purely
group theoretical concept. We may now pass from a nuclear orbit to an electronic
function space by decorating each site with an orbital which is totally symmetric
under the respective stabilizer. The space of these basis functions transforms as the
orbit of the nuclei, and its symmetry representation is called the positional repre-
sentation [11, 12]. Again we may free ourselves of a particular set of nuclei and
think of the positional representation as the transitive representation of the orbit of
cosets of a particular site group. We will denote this orbit as 	.H � G/, and its
representation as ��. In the language of induction theory this positional or orbit
representation corresponds to the induced representation from the totally symmetric
subgroup representation:

�� D �
�
A0 Cs " C3v

�
: (6)

Although �� describes a set of equivalent elements, it is not degenerate, since
it can be further reduced into invariant subspaces. For the case of a triangle this
representation gives rise to two irreducible representations (irreps) of C3v.

Triangle: �� D A1 C E: (7)

Indeed the sum or trace of the elements of the orbit is certainly invariant under
any group action, and thus always constitutes the totally symmetric root, A1. In the
present case the traceless reminder space with dimension 2 is in fact twofold degen-
erate. This is not always the case though. Already in a square this is no longer true as
the positional representation of the four quadrangular sites, after subtraction of the
A1 irrep, further decomposes into E C B1 irreps. The essential difference between
the triangle and the square is that in the triangle the three sites are equidistant. This
will prove to be a general result: a configuration of n equivalent sites gives rise to a
degeneracy space of dimension n � 1, provided all sites are equidistant.

3.2 Doubly Transitive Orbits

As we have already indicated, in a group theoretical treatment the geometric con-
cept of equivalent nuclei is generalized to the concept of equivalent site symmetries,
which together constitute the orbit of cosets of a given subgroup. This is an essential
point of the present treatment which allows us to make abstraction of the particu-
lar nuclear configuration and reformulate the problem entirely in group-theoretical
terms. At this point we take a different route as compared to the first proof by Ruch
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and Schönhofer, where the sites are identified as atomic nuclei. Let us consider
equivalence inside the orbit 	.H � G/. In precise terms the orbit is singly transi-
tive, meaning that there always exists a symmetry operation in G which can map a
given coset grH onto any other coset gsH . To define degenerate irreps however a
stronger criterion is needed, which requires the orbit of cosets to be doubly transi-
tive. This means that any ordered pair of cosets can be mapped on any other ordered
pair, i.e.:

8 grH;gsH;guH;gvH 2 	.H � G/)
9x 2 G W xgrH D guH ^ xgsH D gvH: (8)

This criterion is a rigorous group theoretical translation of the intuitive concept of
equal distances between all sites. As an example in a square there are no symmetry
elements that will turn a pair of opposite sites into a pair of adjacent sites, which
reflects the fact that the inter-site distances between opposite and adjacent sites are
different. In contrast in a tetrahedron all vertices are equidistant and the six possible
pairs or bonds can indeed be permuted. For the representation of a doubly transitive
orbit the following theorem was proven by Hall: [13]

Theorem 1. A doubly transitive permutation representation of a group G over the
complex field is the sum of the identical representation and an absolutely irreducible
representation [13].

This theorem provides a connection between a degenerate irrep of dimension
n � 1 and the existence of an orbit of n equivalent and equidistant sites. We will
express this result as follows:

�� D �0 C �n�1; (9)

where the elements of the orbit are seen to transform according to the direct sum of
two irreps: �0 which is the totally symmetric irrep of G, and an irrep �n�1, which
represents a degeneracy of dimension n � 1, i.e. one less than the dimension of the
orbit. A legitimate example is the threefold degenerate T2 irrep in a tetrahedron,
which arises through the doubly transitive orbit of the C3v subgroups:

Tetrahedron: �� D � .A1 C3v " Td / D A1 C T2: (10)

A useful corollary, which was known to the Luleks, [14] reads:

Corollary 1. The orbit of the cosets of a subgroup H of group G, 	.H � G/, can
only be doubly transitive for H a maximal subgroup of G.

A subgroup H is maximal if there are no intermediate subgroups between H
and G in the branching scheme of G. A proof of this corollary is presented in the
Appendix.
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A case in point is the pentagonal subgroup D5d of the icosahedral point group.
This subgroup is a maximal subgroup, and the six pentagonal directions are ‘equidis-
tant’, in the sense that any pair of them can be mapped onto any other pair. Induction
then yields the five-fold degenerate H representation:

Icosahedron: �� D � .A1 D5d " Ih/ D A1g CHg : (11)

Note that the opposite is not necessarily true, e.g. the orbit of a maximal sub-
group is not necessarily doubly transitive. A case in point in icosahedral symmetry
is the trigonal subgroupD3d . This is a maximal subgroup, but its orbit is not doubly
transitive. In fact an icosahedron has ten trigonal sites which are however not all
equidistant. Induction fromD3d yields three irreps:

Icosahedron: �� D � .A1 D3d " Ih/ D A1g CGg CHg : (12)

It is also important to remind that double transitivity implies the mapping of all
ordered pairs. As an example if the symmetry of the triangle is limited to C3 only,
the double transitivity is lost, since this group does not allow odd permutations that
are needed to switch the ordering of pairs. As a result the E irrep is split into two
complex conjugate one-dimensional irreps.

�� D � .A C1 " C3/ D AC EC C E�: (13)

3.3 All-Transitive Orbits

When an ordered set of all n elements of a given orbit can be mapped onto any
differently ordered set of these elements the orbit is all-transitive and the corre-
sponding symmetry group will be isomorphic to the symmetric group, Sn which
contains all permutations of n elements. In a ‘molecular’ sense, symmetric groups
describe the symmetry of a set of n equivalent equidistant nuclei, which is a
so-called simplex. The n-simplex is the elementary building block of a n�1 dimen-
sional Euclidean space. The whole space can be tesselated in a lattice of such
simplex unit cells. We have already encountered the triangle and tetrahedron as the
simplexes of 2D and 3D space respectively. Their symmetry groups are isomorphic
to symmetric groups:

C3v � S3
Td � S4: (14)

The stabilizer of a vertex in a simplex, i.e. the group of all elements of Sn which
leave a given vertex invariant, is the maximal subgroup Sn�1. The set of all ver-
tices thus will transform as the induced representation of a totally symmetric irrep
of the site group in the parent group. Since this representation is certainly doubly
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Table 1 Isomorphism relations between the elements of the groups Td and S4

Td E 8C3 3C2 6S4 6�d
S4 14 1131 22 41 1221

A1 .4/ 1 1 1 1 1

A2 .14/ 1 1 1 �1 �1

E .22/ 2 �1 2 0 0

T1 .2; 12/ 3 0 �1 1 �1

T2 .3; 1/ 3 0 �1 �1 1

transitive, the theorem applies and the positional space contains a totally symmetric
representation, denoted as .n/, and a n � 1 fold degenerate traceless irrep, �n�1,
which in the symmetric group is denoted as .n � 1; 1/:

�� D � ..n � 1/ Sn�1 " Sn/ D .n/C .n � 1; 1/: (15)

The isomorphism between Td and S4 provides a simple illustration to become
familiar with the formal description of permutational groups. A permutational oper-
ation on four elements can be characterized as a sequence of cyclic permutations,
e.g. a threefold axis running through atom 1 will map 1 onto itself and produce a
cyclic permutation of the remaining three atoms. It is therefore denoted as .3; 1/.
All threefold elements have the same cycle structure and in view of the complete
transitivity of the set thus must belong to the same symmetry classes. In this way
the elements of Td can easily be identified as S4 operators, as shown in Table 1. The
irreps themselves are also denoted as partitions of n, indicated between patentheses.
Pictorially these partitions may be denoted by Young tableaux, as also indicated in
the character table.

We may put the numbers from 1 to 4 in the Young tableaux in strictly increas-
ing order, such that the number sequence in any row and in any column always
increases. The number of ways in which this is possible gives the dimension of the
corresponding irreducible representation. The important advantage of the symmetric
group over the point groups is that the direct product rules as well as the correspond-
ing Clebsch–Gordan coefficients can be obtained by general combinatorial formulae
which apply to all symmetric groups [15]. As an example, the following product
rules apply:
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.n � 1; 1/˝ .n � 1; 1/ D �.n/C .n � 1; 1/C .n � 2; 12/�C f.n � 2; 2/g ; (16)

where square and round brackets denote the symmetrized and antisymmetrized
products respectively.

4 Electronic Degeneracy

In the previous section the existence of a n � 1 fold degeneracy was shown to be
related to the presence of a set of n identical molecular sites, which are symmetry
equivalent and equidistant from each other. In these cases the molecular point group
can be considered to be a subgroup of the symmetric group Sn.

G � Sn: (17)

The combinatorial structure of this parent group offers a closed form expres-
sion of the connection between permutational degeneracy and internal motion. This
forms the basis of our proof.

4.1 Construction of a Degeneracy Basis

The theorem by Hall and its corollary provides us with a general tool to describe
degenerate irreps of finite groups. The procedure proceeds as follows: one finds all
maximal subgroups of a given group and then verifies if the orbit 	.H � G/ is
doubly transitive. If this is the case, the theorem states the existence of a degenerate
irrep, �n�1, with dimension n�1. This link between	 and �n�1 provides at once a
carrier space which is singly and doubly transitive. This carrier space is a degeneracy
basis, i.e. it defines a purely permutational description of the degeneracy manifold.
Indeed for any function space, jˆi, which transforms as �n�1, symmetry lowering
or subduction from G to Ha will yield exactly one component which is totally
symmetric in the subgroup. Let us denote this component as j
ai, and define the
other components by applying the coset generators to it, as follows:

gr j
ai D j
ri: (18)

The set jˆi D fj
iigiD1;n forms a carrier space which is in one to one correspon-
dence with the elements of the orbit 	.H � G/. An orthogonal basis set for jˆi
may then always be defined by forming the n � 1 traceless combinations of these n
components. As an example in the case of a tetrahedron an arbitrary function space,
transforming as T2, will have exactly one component which is totally symmetric
under a C3v subgroup, and which we will label as j
ai. Four such components can
be formed, one for each trigonal site. The T2 basis may then be expressed (up to



Permutational Proof of the JT Theorem 35

Fig. 3 The threefold
degenerate T2 representation
and the tetrahedron
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Table 2 Degeneracies in the cubic and icosahedral groups

D3 � .A1 C2 " D3/ D A1 C E
O � .A1 D4 " O/ D A1 C E

� .A1 D3 " O/ D A1 C T1
� .A2 D3 " O/ D A2 C T2

I � .A T " I /D A1 CG
� .A1 D5 " I / D A1 CH

a common normalizer) as three orthogonal traceless combinations of this standard
basis (cf. Fig. 3):

jT2xi D 1

2
.j
ai � j
bi C j
ci � j
d i/

jT2yi D 1

2
.j
ai � j
bi � j
ci C j
d i/

jT2zi D 1

2
.j
ai C j
bi � j
ci � j
d i/ : (19)

Extension of this method to the alternative tetrahedral threefold degenerate irrep
T1 is straigthforward. This irrep is formed in the same way as T2 but starting from
the antisymmetric A2 representation in the C3v subgroup, hence:

� .A2 C3v " Td / D A2 C T1: (20)

When this method is applied to the point group degeneracies, a distinction must
be made between spherical-like point groups, which include the cubic and icosa-
hedral families, and the cylindrical-like point groups which contain the cyclic and
dihedral families. The application to the first class is shown in Table 2. In this case
nearly all degeneracies stem from doubly transitive orbits of maximal subgroups.
The only exceptions are the threefold degenerate irreps in the icosahedral point
group. These would require the presence of a maximal subgroup of order 30 which
is not available in Ih.
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On the other hand for the cylindrical-like point groups only the simplest case
with triangular symmetry, obeys the equidistance criterion required by the present
construction. This case is included in Table 2 asD3. In summary the expansion of a
degenerate manifold in a permutational carrier space based on maximal subgroups
can be executed for all degenerate irreps of the cubic and icosahedral groups, except
for the T irreps in the icosahedron. For the cyclic groups double transitivity does not
exist, except for the triangle. However in this case there is the additional feature that
single transitivity is of a cyclic nature, requiring only one generator. So here too the
concept of a permutational carrier space will simplify the analysis. This aspect will
be developed in Sect. 6.1.

4.2 Construction of the Jahn–Teller Hamiltonian

At present we have found that for the degenerate point group irreps which are listed
in the table the basis functions can be expressed by means of a carrier space which
exactly matches the orbit of a maximal subgroup of the point group, and counts
jGj=jH j D n elements. The one-particle Hamiltonian operating in this carrier space
can easily be constructed as follows:

H D k
X

i<j

�j
iih
j j C j
j ih
i j
�
; (21)

where as previously the i and j components refer to elements of the orbit	.H �G/.
Since this orbit is doubly transitive the interaction parameter k does not depend
on the pair indices. The Hamiltonian contains n.n � 1/=2 symmetrized inter-site
operators. As the theorem states the �� representation of the carrier space corre-
sponds to the direct sum �0 C �n�1. The symmetrized square of this direct sum
not only covers the symmetries of the inter-site operators but also of the on-site
diagonal operators of type j
iih
i j. The latter transform as the representation of ��
itself. The inter-site operators thus span the symmetrized square of the positional
representation minus ��:

�H D Œ�� ˝ ��� � ��
D Œ.�0 C �n�1/˝ .�0 C �n�1/� � ��
D Œ�n�1 ˝ �n�1� : (22)

Note in the second line of this equation that symmetrization of the direct square
gives rise to only one cross-term. This equation expresses the standard Jahn–Teller
result that time-even interactions in a degeneracy space transform according to the
symmetrized square (indicated by square brackets) of the corresponding irrep. This
square can be further resolved, into a non-distortive totally symmetric part and the
proper Jahn–Teller part.
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We will now take this result to the parent symmetric group, which describes the
permutation of all the sites. In this group the sites transform as .n � 1; 1/ and the
inter-site operators span the symmetrized square of .n � 1; 1/, hence:

�H D Œ.n � 1; 1/˝ .n � 1; 1/� : (23)

This square can be further resolved, yielding:

�H D .n/C .n� 1; 1/C .n � 2; 2/: (24)

The non-totally symmetric interactions which can appear in the degenerate
.n � 1; 1/ irrep thus will transform as .n � 1; 1/C .n � 2; 2/.

So far the analysis has lead to the concept of a carrier space which links the
degeneracy to a doubly transitive orbit of cosets of maximal subgroups. Interactions
in this space are expressed as transition operators between the cosets. The final
part of the treatment should bring in the vibrational degrees of freedom which are
responsible for the Jahn–Teller activity.

5 Vibrational Degrees of Freedom

5.1 Symmetric Group Analysis

Having identified the symmetries of the electronic distortion operators, we now
determine the symmetries of the nuclear degrees of freedom. These are defined as
the direct product of the positional representation with the symmetry of the trans-
lations [12, 16]. The n-simplex is situated in a .n � 1/-dimensional space and thus
will exhibit .n � 1/ translations. The corresponding irrep is denoted as �T . One
easily realizes that this will correspond to the .n� 1; 1/ irrep: from the center of the
simplex one can move in n different directions, but the vectorial sum of all these
directions amounts to zero, hence the translational space has one degree of freedom
less than the number of sites. The direct product can be decomposed in a standard
way as follows:

�� ˝ �T D .n/C 2.n� 1; 1/C .n � 2; 2/C .n � 2; 12/: (25)

These degrees of freedom also contain the so-called external degrees of freedom:
translations and rotations. The rotations, described by �R, transform as the anti-
symmetrized square of the translations. One thus has for the external modes:

�T D .n � 1; 1/
�R D f�T ˝ �T g D .n � 2; 12/: (26)
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Finally the symmetries of the internal or vibrational degrees of freedom are
obtained by subtracting the external modes from the space of nuclear motions:

�� ˝ �T � �T � �R D .n/C .n � 1; 1/C .n � 2; 2/: (27)

Clearly this symmetry shows a perfect match with the symmetry of the interac-
tion Hamiltonian, as obtained in (24).

�� ˝ �T � �T � �R � �H: (28)

This expression is the central result of our paper and the most concise expression
of the Jahn–Teller theorem. It shows that the time-even interactions in a degenerate
irrep based on a simplex of n nuclei are in one-to-one correspondence with the
vibrational degrees of freedom of that simplex. Another way to express this is that
the bonds between the sites form a complete set of internal coordinates. In 3D this
reflects the Cauchy theorem that ‘in a convex polyhedron with rigid faces the angles
between the faces will also be rigid’ [17, 18].

As in the original treatment of Jahn and Teller our result attributes the vibronic
instability to the terms in the Hamiltonian which are linear in the nuclear displace-
ments. Higher order contributions will of course occur as well but they cannot be
responsible for the conical instability at the high symmetry origin.

5.2 Extensions to Other Symmetries and irreps

The case of a perfect match which we have considered in the previous section
reveals the intimate connection between degeneracy and vibrational degrees of free-
dom. In the simplex this connection attains a one-to-one correspondence. In more
complex frames the connection is often disguised by the presence of additional inac-
tive modes. In fact five possible situations can occur, depending on the relationship
between the space of normal modes and the space of JT interactions. The sym-
metries of the non-totally symmetric vibronic interactions will be denoted as �JT ,
while the symmetries of the non-totally symmetric normal modes will be denoted
as �NM . The five possible set relations between these two sets are:

1. �JT D �NM
2. �JT � �NM
3. �JT \ �NM D ;
4. �JT \ �NM ¤ ;
5. �JT � �NM : (29)

The first case describes the perfect match of both spaces, which as we have seen
occurs for the .n � 1; 1/ irrep of the n-simplex.
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The usual JT effect in 3D point groups exemplifies the second case, �JT �
�NM . These cases involve molecules that are more involved than the simplexes,
which implies that the site which is stabilized by a maximal subgroup contains more
nuclei than the one that is considered in the simplex. As a result all the possible JT
interaction symmetries are represented at least by one normal mode, but in addition
the space of vibrational modes also contains inactive modes. A case in point are
centrosymmetric molecules where only gerade modes can be JT active, the odd
modes are found in the remainder space �NM � �JT .

The third case, �JT \�NM D 0, constitutes an exception to the Jahn–Teller the-
orem since it states that none of the normal modes has the right symmetry to couple
with the degeneracy. As we know this occurs in linear molecules. More examples
can be found in higher dimensions.

The remaining cases offer the intriguing possibility that not all of the vibronic
operators that are required for the coupling between the sites have a counterpart in
the space of normal modes. This does not occur in point group symmetries, although
in practice coupling to some modes may be so weak that it can be neglected, thus
giving rise to partial Jahn–Teller activity. Again in higher symmetric groups exam-
ples of these cases may be found. They occur for degenerate irreps that do not
subduce one-dimensional subrepresentations when symmetry is lowered to the max-
imal subgroup of the site symmetry. This implies that the electronic structure on the
sites is of a composite nature.

6 Applications

6.1 2D: Cylindrical Symmetry

As we have indicated before, apart from the triangle, orbits which correspond to the
sites of higher polygons are not doubly transitive. In this case Halls theorem cannot
be used. However as was already alluded to in the original proof of Jahn and Teller,
for such cylindrical like structures, there is a general generic treatment, which in its
simplest form only is based on the cyclic generator structure of these polygons. In
a n-cycle symmetry eigenfunctions can always be written as cyclic waves running
over the sites, with some angular momentum �, i.e.:

‰� D
X

k

exp.�
2�ki

n
/jki; (30)

where � is an integer ring quantum number, which characterizes the symmetry of
this function. When the function is rotated over an angle of 2�=n a phase factor
of exp.��2�i

n
/ appears. Unless � D n=2, this wave function will always have a

complex conjugate counterpart which has the same electronic density over the sites,
and thus will be degenerate. This implies that the vibronic instability resides in the
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electronic operator connecting‰� and ‰��. It is given by:

j‰��ih‰�j D
X

k;k0

exp.�
2�.k C k0/i

n
/jkihk0j: (31)

When this operator is rotated over the angle 2�=n a phase is built up which
equals exp.�2�2�i

n
/, hence the operator runs twice as fast as the wavefunctions. Its

symmetry is therefore characterized by the ring quantum number 2�.
A convenient set of internal normal modes is offered by the set of all edges of the

polygon. The set of n-edges transforms as the regular representation, thus it offers
a complete set of all irreducible representations of the cyclic generator. As a result
this set will always contain the symmetry of the active operator.

6.2 3D: The Icosahedral Quintuplet

The fivefold degenerate representation of the icosahedral group is the highest possi-
ble orbital degeneracy within the 3D point groups. As indicated in (11), this fivefold
degeneracy originates from the presence of six equivalent and equidistant pentag-
onal directions in the icosahedron (labeled A to F in Fig. 5). The mere existence
of this quintuplet is remarkable in itself and can be related to a unique prop-
erty of its parental symmetric group S6. The symmetric group S6 stands out in
the family of symmetric groups Sn as it is the only member which has two non-
equivalent maximal subgroups of type Sn�1 (S5) [19]. As the icosahedral group
I Š A5 � S5 � S6, this will lead to two separate branches in the subgroup lat-
tice leading to inequivalent icosahedral embeddings as indicated in Fig. 4. To fully
understand these two embeddings, it is helpfull to take a closer look at the exact
structure of their intermediate S5 subgroups.

A first type of S5 subgroup can easily be seen to originate from fixing one of
the elements of S6 and acting fully transitive on the remaining five elements. This
type of Sn�1 subgroup is common to all Sn groups, but clearly not the one we are
interested in as it does not act doubly transitive, not even singly transitive, on the set
of six pentagonal directions. The icosahedral quintuplet therefore originates from
a second and unexpected branch in the subgroup lattice of S6. In this branch the
embedding of I into S6 is mediated by a second type of S5 subgroup (see Table 3)
which acts doubly transitive on the six pentagonal directions. The actual elements of

Fig. 4 Branching scheme of
the symmetric group S6
showing two separate
branches leading to
inequivalent I subgroups

S6

S5 S5

A6

A5=I~ A5=I~
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Fig. 5 The icosahedron
showing the six equidistant
pentagonal directions A to F
and the three generators of
(32)

C2 C5

C3

z

x
y

A

B

C

A

E

F

D

D

F

Table 3 Embedding of the icosahedral group I into the symmetric group S6

S6 1 15 40 45 90 120 144 15 90 40 120

16 1421 1331 1222 1241 112131 1151 23 2141 32 61

S5 1 15 30 24 10 20 20

16 1222 1241 1151 23 32 61

I Š A5 E 15C2 12C5 20C3
12C2

5

this icosahedral subgroup can easily be deducted using the three generators depicted
in Fig. 5:

C5 ! .A/.B; F;E;D;C /

C3 ! .A;B; F /.C;D;E/

C2 ! .A; C /.B;D/.E/.F /: (32)

In order to generate the intermediate S5 subgroup it suffices to add one of its uneven
permutations to the generators of I . As seen from Table 3 the uneven permutations
constitute three classes: 61, 23 and 1241 with respectively 30 ,10 and 20 elements.
Prototypical examples are:

61 ! .A; C; F;E;D;B/

23 ! .A;E/.C;D/.F;B/

1241 ! .A/.B/.C;D;F;E/: (33)

The action of these elements can be clarified by means of the icosahedral embed-
ding of Fig. 5. From the 120 possible 61 elements existing within S6, only those
encircling a ‘supertriangle’ of the icosahedron survive within S5. A supertriangle
is by definition composed of a triangular face of the icosahedron together with
its three neigboring faces. The 61 element listed above for instance originates
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from encircling the supertriangle AFD in Fig. 5 (in an anticlockwise direction).
Obviously the number of such supertriangles coincides with the number of trian-
gular faces of the icosahedron therefore leading to exactly twenty elements of type
61. Notice that the chosen sense of rotation is immaterial as the set of permutations
generated by clockwise rotations would be exactly the same due to the inversion
symmetry of Fig. 5. The ten elements of the class 23 are now easily identified as
cubes of these 61 elements. The squares of the 61 elements do not constitute a new
class. They are of even type and coincide nicely with the twenty C3 rotations of
the icosahedral group. The last uneven class 1241 consists of elements which fix
two pentagonal directions and cyclicly permute the remaining four elements. Only
thirty from a total of ninety such elements survive in the subduction from S6 to
S5. They correspond to those elements for which the four non-fixed elements encir-
cle two neighboring triangles on the surface of the icosahedron. For the listed 1241

element for instance the fourcyle .C;D;F;E/ encircles the neighboring triangles
CDF and FEC .

In previous work we have shown how this embedding of the icosahedron in S6
can be used to resolve the product multiplicity in the icosahedral H ˝ .g C 2h/
Jahn–Teller problem [10, 20]. In the context of atomic spectroscopy, Judd and Lo
have made use of the S6 connection to explain some puzzling degeneracies in the
spectroscopic terms of d3 [21].

As a further illustration we will demonstrate here the use of this embedding to
resolve a multiplicity case for the symmetry coordinates of a vibrating icosahe-
dron [22]. An icosahedral cage with twelve atoms has 30 internal modes. Since the
icosahedron is a deltahedron, the stretchings of the 30 edges form a non-redundant
set of internal coordinates. The corresponding symmetry representations are given
by:

�NM D ag C t1u C t2u C gg C gu C 2hg C hu: (34)

For the even modes, displacements of opposite edges are equal. If two opposite
edges are being squeezed simultaneously, two pentagonal directions approach each
other. In this way the 15 pairs of opposite edges correspond to the 15 edges of the
S6 simplex, consisting of the six pentagonal directions. Hence the 15 gerade sym-
metry coordinates will transform in S6 as .6/C .5; 1/C .4; 2/, exactly as described
in (27). Using the embedding relations in Table 3, the following subduction relations
between the S6 and Ih labels can be found:

.6/! Ag

.5; 1/! Hg

.4; 2/! Gg CHg : (35)

This subduction shows that the two equisymmetric hg cluster deformations may
be distinguished by a different S6 parentage. The construction of the modes with
.5; 1/ and .4; 2/ parentage proceeds as follows. One first defines a carrier space of
Hg symmetry, based on the six pentagonal sites. The components of this space are
labeled �; ; �; �; �.
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j�i D 1

2
.�jAi C jDi � jEi C jF i/

ji D 1p
12
.jAi � 2jBi � 2jC i C jDi C jEi C jF i/

j�i D 1p
2
.jDi � jF i/

j�i D 1p
2
.�jAi C jEi/

j�i D 1p
2
.�jBi C jC i/: (36)

Then these components are coupled using Clebsch–Gordan coefficients for the
H ˝ H D 2H direct product. In view of the product multiplicity in this cou-
pling, two independent sets of coefficients exists. The coefficients which we have
published before are based on a product multiplicity separation which obeys the
S6 parentage [23]. The published a and b coefficients correspond to the .4; 2/ and
.5; 1/ Young tableaux resp. Hence by using these components we obtain at once the
desired permutational multiplicity separation. Upon coupling only the off-diagonal
terms are kept, since these correspond to the inter-site distances. Here we will limit
ourselves to present the normalized coordinates for pentagonal and trigonal distor-
tion modes. In the coordinate frame of Fig. 5, the hg -symmetry components which
are totally symmetric along the pentagonal C5 direction, corresponding to site A,
are given by:

Q5;1 D 1p
30
.2rAB C 2rAC C 2rAD C 2rAE C 2rAF

� rBC � rBD � rBE � rBF � rCD � rCE � rCF � rDE � rDF � rEF /

Q4;2 D 1p
10
.�rBC C rBD C rBE � rBF � rCD C rCE C rCF

� rDE C rDF � rEF / : (37)

Here the r variables denote the distance between two pentagonal directions, which
correspond to the simultaneous activation of the two edges connecting the atoms
along these directions. Note that the Q5;1 coordinate corresponds to a pure pen-
tagonal squashing mode: the icosahedron is elongated along the A direction, and
simultaneously compressed around its waist. The Q4;2 mode behaves differently.
This mode does not involve the apical A site. The two pentagonal rings forming the
tropics around the waist are compressed, while the 10 edges in between those rings
are elongated. The components which gives rise to a trigonal distortion oriented
along the C3 direction in Fig. 5 are given by:
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Q5;1 D 1p
6
.rAB C rAF C rBF � rCD � rCE � rDE /

Q4;2 D 1p
18
.2rAD C 2rBE C 2rCF � rAB � rAF � rBF � rCD � rCE � rDE /:

(38)

Here the roles are switched. Now the Q4;2 mode describes a pure trigonal squash,
which elongates the icosahedron along the C3 direction. The Q5;1 behaves differ-
ently: three sitesA;B; F are pushed away from each other while the three remaining
sites C;D;E approach each other.

6.3 4D: The Hyperoctahedron

Blount indicated that in higher dimensions the Jahn–Teller theorem not necessarily
holds [7]. We will illustrate this here for the case of the hyperoctahedron, which is a
4D polytope. The symmetry of this structure can easily be constructed by straight-
forward generalization of the octahedral group in 3D. A 3D octahedron is composed
of six vertices, arranged symmetrically around the origin along the three Cartesian
directions, i.e. at: ˙x;˙y;˙z. The 48 operations of the group Oh corresponds to
all interchanges of these six vertices that obey the following rules:

All transpositions of vertices on the same axis, e.g. .Cx/$ .�x/
All permutations of the three directions, e.g. .˙x/$ .˙y/$ .˙z/

The first rule gives rise to a group of eight elements corresponding to Z32 , where
Z2 is the cyclic group of order two. The corresponding point group is the D2h
normal subgroup of the octahedron. The second rule consists of 6 permutations of
three objects, as described by the symmetric group S3. The combination of both
gives rise to a so-called wreath product of Z32 and S3, which is isomorphic to Oh:

Oh D Z23 � S3: (39)

The elements of the octahedral group will permute the six vertices and as such
be part of the full permutation group S6. The octahedral group is a subgroup of S6,
since not all permutations are in accordance with the rules, e.g. it is not allowed by
the rules to interchange .Cx/ and .Cz/, without simultaneously interchanging .�x/
and .�z/.

This presentation of the octahedral symmetry group can directly be extended
to the hyperoctahedron [24, 25]. This will be a 4D polytope, formed by eight ver-
tices, distributed evenly over the four Cartesian directions, i.e.˙x;˙y;˙z;˙u. The
hyperoctahedral group, commonly denoted as W4 from the German Würfel which
signifies dice, is given by:

W4 D Z24 � S4: (40)
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This group contains 384 elements. It contains 20 classes, which may be labeled
by a combination of the labels from the parent symmetry group S8 and the permuta-
tional subgroupS4. The corresponding character table is available from the literature
and will be reproduced in Table 4 for convenience [25]. In order to obtain the nor-
mal modes of the hyperoctahedron we first derive the positional representation of
the eight vertices. Since the S8 labels refer to permutations of the eight vertices, the
character of the positional representation will simply correspond to the number of
1-cycles in each class. These numbers indeed indicate how many vertices are left
invariant by the symmetry operations in that class. The symmetry of the translations
can also easily be derived, since it must correspond to a 4-dimensional irrep, which
subduces the T1u symmetry in theOh subgroup. The only irrep with these properties
is �.4/1 . The antisymmetrized square of this irrep is equal to �.6/1 and corresponds
to the symmetry of the rotational degrees of freedom. Hence one has for the normal
modes:

�� D �.1/1 C �.3/1 C �.4/1
�� ˝ �.4/1 � �T � �R D �.1/1 C �.3/1 C �.4/1 C �.6/3 C �.8/1 : (41)

There are two twofold degenerate irreducible representations, �.2/i ; i D 1; 2.
Their squares both yield the same result:

�
.2/
i � �.2/i D f�.1/3 g C Œ�.1/1 C �.2/1 �: (42)

It is immediately clear that the non-totally symmetric part of the symmetrized
square, which transforms as �.2/1 is not contained in the normal modes of the
hyperoctahedron. This simply signifies that there are no Jahn–Teller distortions in
this case. The twofold degenerate irreps of the hyperoctahedron thus constitute a
4D example of an exception, exactly as the 1D case. The subgroup structure of W4
may be invoked to explain this result. In order to obtain a twofold degenerate irrep
by a double transitive orbit one would need a subgroup of one third of the total group
order, i.e. 128. Clearly W4 does not contain such a subgroup. Since the total order
is given by 24 � 4Š, a subgroup of order 128 can only be obtained by the wreath
product of Z42 with a subgroup of S4 that would have to be of order 8. But S4 does
not contain such a subgroup, henceW4 cannot be divided in an orbit of rank 3.

Even more interesting results can be obtained for irreducible representations of
dimension three: �.3/i ; i D 1; 3. In this case the antisymmetrised and symmetrised
parts of the square are given by:

�
.3/
i � �.3/i D f�.6/1 g C Œ�.1/1 C �.3/1 C �.6/2 �: (43)

This case corresponds to the fifth possibility in (29) which does not occur in
lower dimensions and exemplifies a partial overlap between the Jahn–Teller modes
and the normal modes. In order to destroy the symmetry of this level one would need
modes of type �.3/1 and �.6/2 . A glance at the normal modes of the hyperoctahedron
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shows that only the first one of these is included in the normal modes. No distor-
tion operators exist with �.6/2 symmetry, hence the degeneracy can only be partially
lifted.

7 Epikernel Principle and Dynamic Symmetry

The permutational proof also elucidates two important general properties of JT
potentials: the epikernel principle, and the symmetry of the dynamic ground state.

The epikernel principle was originally proposed as an simple rule to predict the
preferential symmetry of a Jahn–Teller distortion [26]. Later on it was rational-
ized using the technique of the isostationary function [27]. Epikernels are those
subgroups of the point group that occur in the distortion space formed by the
Jahn–Teller active coordinates. The lowest subgroup of the epikernel set is called
the kernel. A Jahn–Teller distortion cannot lower the symmetry of a compound
below the kernel symmetry. As an example an eg vibration of an octahedron can-
not lower the symmetry below the kernel group D2h, which is a normal subgroup
of Oh. Thus any modal point in the twofold distortion space will at least have
orthorhombic symmetry. In addition the eg distortion space contains three preferen-
tial directions where a tetragonal symmetry axis is conserved. Along these directions
the symmetry is D4h which is an epikernel of the distortion space. According to
the epikernel principle stable minima on a Jahn–Teller distortion prefer epikernel
rather than kernel points. According to the present proof this principle is a natu-
ral consequence of the structure of electronic degeneracies. A degeneracy is built
on a doubly transitive orbit, and as we have seen such an orbit is based on maxi-
mal subgroups of a group. These naturally correspond to the maximal epikernels.
The Jahn–Teller coordinates correspond to the intersite interactions between these
epikernel directions.

When dynamics is taken into account the Jahn–Teller distortion starts to move
inside the nuclear frame, and the complex gradually runs through all equivalent sites
of the orbit on which the degeneracy is built. According to Bersuker and Pollinger
the ground state of such a system has a dynamic symmetry which as a rule exhibits
the same type of degeneracy as the electronic symmetry which was at the origin
of the Jahn–Teller effect [28]. The connection with the present proof is obvious:
an electronic n � 1-fold degeneracy is based on an orbit of n sites, which corre-
spond to the stable minima of the JT potential. In the symmetric group based on
permutations of these minima, the eigenvectors span the positional representation
of these minima, and thus will transform as the totally symmetric representation,
and the .n� 1/ basic vector irrep, which is precisely the symmetry of the electronic
degeneracy. When the coupling to the .n�2; 2/modes becomes more important the
symmetry of the dynamic ground state may change, and this behavior indeed may
occur in the icosahedral quintuplet case, with dominant trigonal coupling [29]. (See
also [30])
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8 Conclusion

In this treatment we have searched the underlying common structure that unites all
Jahn–Teller problems. The starting point has been the important theorem by Hall,
which relates the existence of an .n � 1/-fold degeneracy to a doubly transitive
orbit of n elements. This yields a simple permutational proof for nearly all cubic
and icosahedral degeneracies as well for the degeneracies in a triangle. Exceptional
cases are the T1 and T2 irreps in an icosahedron for which no doubly transitive orbit
exist, since there is no subgroup of rank 4 in the icosahedral group. Apart from
the triangle, higher order polygons, which all belong to subgroups of cylindrical
symmetry, also do not contain doubly transitive orbits.

The induction processes which we have used in the present treatment were
mainly limited to inductions from totally symmetric roots in the subgroups. Induc-
tion from non-totally symmetric subgroup irreps sometimes give rise to interesting
alternative constructions of degeneracies, which may clarify the kaleidoscope struc-
ture [31] of the icosahedral T irreps, and allow extensions into spin degeneracies.
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Appendix

In this appendix we prove the corrolary to the theorem of Hall that the orbit of the
cosets of a subgroup H of group G can only be doubly transitive for H a maximal
subgroup of G. To this end we consider a further subgroup S � H , and examine
if the orbit of cosets of S can be doubly transitive. Let gr and h� denote cosets
representatives of H in G, and S in H resp., i.e.:

G D
jGj=jH jX

r

grH

H D
jH j=jS jX

�

h�S: (44)

The cosets of S in G may then be generated by the product of both types of
generators:

G D
jGj=jS jX

r; �

grh�S: (45)
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Elements of this orbit are thus labeled by double labels .r; �/. If we want this orbit
to be doubly transitive the elements of G should be able to effectuate any mapping
between pairs of such labels. It can easily be shown that this is not the case. Take
for example the case where gr is the unit element e, and consider the initial pair
.e; �/; .e; �/. Both these cosets thus belong to H. Now we wonder if there would
exist an element gx that maps this pair onto a pair .e; �0/; .r; � 0/. In this target pair
the first coset stays in H, but the second is outside H.

‹ 9 gx W gxh�S D h�0S ^ gxh�S D grh� 0S (46)

Clearly such an element cannot be found. Indeed from the first requirement it fol-
lows that gx must be in H, while the second condition places gx outside H. Hence
only maximal subgroups can have doubly transitive cosets.
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Group-Theoretical Analysis of Jahn–Teller
Systems

Martin Breza

Abstract The problem of searching the stable structures obtained by the symmetry
descent of high-symmetric non-linear parent systems in a degenerate electronic state
(except an accidental and Kramers degeneracy) due to Jahn–Teller effect is solved
by a group-theoretical treatment. The basic terms of group theory (especially of
point groups of symmetry) and potential energy surfaces are explained. The meth-
ods of epikernel principle (based on Jahn–Teller active coordinates obtained by the
first order perturbation theory) and step-by-step descent in symmetry (based on a
consecutive split of the degenerate electronic state due to a symmetry descent) are
explained. Both methods are illustrated by several examples and their results are
compared with the structures obtained by high-level quantum-chemical calculations.
The method of step-by-step descent in symmetry seems to be more complete.

1 Introduction

In the history of modern science there are many examples that the physical interpre-
tations of the formulas obtained by the mathematical formalism of quantum physics
need not be straightforward. Therefore new attempts to their reinterpretation are
unavoidable. The original complete formulation of Jahn–Teller (JT) theorem [1, 2]
is somewhat lengthy (and thus not well-known):

A configuration of a polyatomic molecule for an electronic state having orbital
degeneracy cannot be stable with respect to all displacements of the nuclei unless
in the original configuration the nuclei all lie on a straight line. : : : if the total
electronic state of orbital and spin motion is degenerate, then a non-linear configu-
ration of the molecule will be unstable unless the degeneracy is the special twofold
one (discussed by Kramers in 1930) which can occur only when the molecule con-
tains an odd number of electrons. The additional instability caused by the spin
degeneracy alone, however, is shown to be very small and its effect for all practical
purposes negligible. The possibility of spin forces stabilizing a non-linear configura-
tion which is unstable owing to orbital degeneracy: : : is not possible except perhaps
for molecules containing heavy atoms for which the spin forces are large.
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Therefore its shortened formulation “any nonlinear arrangement of atomic nuclei
in degenerate electron state (except Kramers degeneracy [3]) is unstable” is of
general use. The authors evidently supposed that this degeneracy is caused by
the nuclear configuration symmetry as manifested by the published proofs of JT
theorem [4–8] as well. On the other hand, the recent extended understanding of
Jahn–Teller effect (JTE) includes both degenerate and pseudodegenerate states
(pseudo-JTE), both non-linear and linear (Renner–Teller effect) nuclear arrange-
ments, as well as all the conical intersections of energy hypersurfaces corresponding
to various electronic states. Within such a treatment “: : : the JT theory is an
approach to (a tool for) general understanding and solving of molecular and crys-
tal problems, which is in principle applicable to any system with more than two
atoms.” [9].

Our study is based on the original formulation of JT theorem and deals with the
symmetry conditioned orbitally degenerate electronic states – i.e. without consid-
ering the accidental and Kramers (or spin) degeneracy. As a consequence of this
theorem a stable nuclear configuration of lower symmetry in nondegenerate elec-
tronic state is formed. It is evident that this nondegenerate electronic state is obtained
by splitting the parent degenerate electronic state. The problem of obtaining the sta-
ble geometries of JT systems can be solved analytically using perturbation theory
treatment for small systems only. For large systems a group-theoretical treatment is
necessary which can be based either on the distortion (JT active coordinate) or on
the electronic state symmetry.

2 Point Groups of Symmetry

Symmetry properties of a molecule (molecular ion) are described by its symmetry
point group. This group is a collection of its symmetry operations R (group ele-
ments) which must satisfy group postulates. There are several types of the symmetry
operations [10]:

1. The identity E
2. Rotation Cnk through an angle 2 k=n about the n-fold rotation axis Cn (Cn

with maximal n denotes a principal axis which should be coincident with a carte-
sian z axis, the rotational axes perpendicular to the principal axis are denoted by
primes).

3. Inversion i of all points through the origin of coordinates.
4. Reflection � of all points in a mirror plane � (�v - a mirror plane containing

the principal axis, ¢h - a mirror plane normal to the principal axis, ¢d - a dihe-
dral mirror plane containing the principal axis and bisecting the angles between
C2
0 axes).

5. Improper rotation-reflection operation Snk is the rotation about the improper axis
Sn through an angle 2 k=n, combined with reflection k times in a plane normal
to this axis.

where n and k are integers (for k D 1 the superscript is omitted).
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Table 1 Character table of D3h; C3v; C2v and C2 point groups [10]

D3h E 2C3 3C2
0 �h 2S3 3�v

A1
0 C1 C1 C1 C1 C1 C1

A2
0 C1 C1 �1 C1 C1 �1

E 0 C2 �1 0 C2 �1 0

A1
00 C1 C1 C1 �1 �1 �1

A2
00 C1 C1 �1 �1 �1 C1

E 00 C2 �1 0 �2 C1 0

C3v E 2C3 3�v

A1 C1 C1 C1
A2 C1 C1 �1
E C2 �1 0

C2v E C2 �v �v
0

A1 C1 C1 C1 C1
A2 C1 C1 �1 �1
B1 C1 �1 C1 �1
B2 C1 �1 �1 C1

Cs E �h

A0 C1 C1
A00 C1 �1

The number of elements (operations) in a group is known as the order of the
group (symbol h). A subgroup consists of a set of the elements within a group
which, on their own, constitute a group. The order of the parent group (supergroup)
is an integer multiple of the orders of each of its subgroups [10].

Each symmetry point group is represented by a Schönfliess symbol consisting of
a capital letter and usually one or two suffixes [10]. Its properties are described by
a character table (see Table 1 for D3h; C3v; C2v and C2 point groups). The table
headline contains group operations R (more exactly - the corresponding symmetry
elements R). The first column contains the symbols of irreducible representations
(IRs) describing the symmetry of molecular orbitals, electronic states, symmetric
coordinates, vibrations and so on (usually the electronic states are denoted by cap-
ital letters and the remaining quantities by small letters). The effect of symmetry
operations R on IRs is described by their characters �.R/ in the remaining columns.
The first line under the headline belongs to full-symmetric IR which is not changed
by any symmetry operation (all characters equal to C1). Thus the full-symmetric
vibration cannot change the point group of a molecule. One-dimensional (or non-
degenerate) IRs are denoted by symbols A (symmetric to the rotation about the
principal axis, ¦.Cn/ D C1/ or B (antisymmetric to the rotation about the princi-
pal axis, ¦.Cn/ D �1/. Degenerate (multidimensional) IRs are denoted by symbols
E for two-dimensional IRs, T (or F ) for three-dimensional, G (or U ) for four-
dimensional IRs, H (or V ) for five-dimensional IRs and so on (see their characters
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for the identity operation E). Their characters are the traces (the sums of diag-
onal elements) of multidimensional transformation matrices of their components.
Where appropriate, primes .0/ and double primes .00/ indicate symmetry .0/ or anti-
symmetry .00/with respect to a horizontal mirror plane ¢h; g and u subscripts denote
symmetry .g/ or anti-symmetry .u/ with respect to an inversion center, etc.

By removing two C3 rotations (2C3, implying both the 2S3 improper rotations,
2C20 rotations and 2�v reflections removal) of D3h group (dimension h D 12) we
obtain the point group C2v of lower dimension .h D 4/ which is a subgroup of
D3h (be careful - C3 principal axis of D3h and C2 principal axis of C2v must be
coincident with cartesian z axis, ¢h mirror plane ofD3h is transformed into ¢v

0 plane
of C2v). The relations between their IRs may be obtained by the comparison of the
characters in E; C20; ¢v and ¢h headed columns of D3h with the corresponding
values for C2v. We may see that the double-degenerate E 0 .E 00/ type IR of D3h is
split into A1 and B2 (A2 and B1/ type IRs of C2v as may be seen from the sum of
their characters. On the other hand, the C3v group obtained by removing C20; �h

and S3 operations from D3h group preserves the double degeneracy (an analogous
characters comparison shows that E 0 and E 00 type IRs of D3h correspond to E type
IR of C3v).

We may see that all A200 characters ofD3h which are in the E; C3 and �v headed
columns (the corresponding operations constitute the C3v group) are equal toC1. It
means that these symmetry operations are conserved during any nuclear displace-
ment (such as vibrations) described by IR A200 of D3h group. The subgroup formed
in this way is called kernel or kernel subgroupK.G; ƒ/whereG is the parent group
andƒ denotes the IR of this displacement [11]. In our case this relation is described
by the formula

C3v D K.D3h; a2
00/ (1)

For full-symmetric IRs the kernel group is identical with the parent group

D3h D K.D3h; a1
0/ (2)

A degenerate (multidimensional) representation describes the symmetry of a set of
coordinates (such as vibrations). The elements of this set are called the components
of the representation and span a multidimensional distortion space [10]. Because
the degeneracy leaves the direction of the distortion unspecified, one has to scan
all directions of the distortion space. A minimal subgroup of symmetry elements,
which must be conserved in any case, consists of those symmetry operations that
leave all distortions invariant and is said to form the kernel K.G;ƒ/ of the degen-
erate representation ƒ. The kernel of the degenerate mode may be obtained from
the character tables by collecting all symmetry operations with the same charac-
ters as the identity operation [11]. In the case of D3h group for E 0 type IR with all
characters equal toC2 we obtain

Cs.�h/ D K.D3h; e
0/ (3)

.Cs.�h/ denotes the kernel subgroup with ¢h mirror plane ofD3h being preserved).
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Such a subgroup, which is preserved in a part of distortion space only, is termed
an epikernelE.G; ƒ/ of degenerate representationƒ in parent groupG [11]. Hence

C2v D E.D3h; e
0/ (4)

Clearly epikernels are intermediate subgroups between the parent group and the
kernel group.

G � E.G;L/ � K.G;L/ (5)

There are often several epikernels corresponding to the same G and ƒ [11]. Rep-
resentations of higher dimensions may give rise to a chain of subgroups between
the parent group and its kernel (lower and higher ranking epikernels). These epi-
kernels can represent independent ways of symmetry lowering, leading to the kernel
group along different paths. Kernels and epikernels of selected point groups and
degenerate IRs are presented in Table 2.

Analogously the reducible representations (consisting of several IRs) may be
treated [11]. The kernels of individual IRs become epikernels of the sum (reducible)
representation. In our case

C1 D K.D3h; e
0 ˚ a2

00/ (6)

and C3v; C2v and Cs.�h/ are epikernels, E.D3h; e
0 ˚ a2

00).
Finally it must be mentioned that cyclic groups such as Cn; Sn; Cnh; n > 2, and

the tetrahedral groups T and Th contain non-degenerate complex representations
which always occur in degenerate pairs with conjugate characters and hence form a
reducible space of dimension two [10, 11]. Their kernel may be easily determined
from their character sets. However, since both irreducible components have complex
conjugate transformational properties, it is impossible to find an epikernel subgroup
which leaves one component invariant while transforming the other one.

3 Potential Energy Surface

The conception of potential energy surface (PES) is used in physics and chem-
istry for the description of structures, dynamics, spectroscopy, and reactivity [13].
It is generally connected with the adiabatic or Born–Oppenheimer approximation
(APES). For an atoms arrangement (molecules or ions) it may be understood as the
total energy (i.e. the electronic energy with an internuclear repulsion contribution)
function of its nuclear coordinates. There are several PESs corresponding to the
same molecular/ionic system in various charge, electronic and spin states (usually
denoted as ground and excited states). This treatment is based on the picture of
the molecules/ions movement on a PES and their transitions between various PESs
depending on the system temperature and external fields.
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Table 2 Kernel, K.G;ƒ/, and epikernel, E.G;ƒ/, subgroups of some parent groups, G, for
degenerate representations, ƒ. [11, 12]

G ƒ K.G;ƒ/ E.G;ƒ/

Doubly degenerate representations
C3v e C1 Cs
C4v e C1 Cs.�v/; Cs.�d /

C5v e1; e2 C1 Cs
C6v e1 C1 Cs.�v/; Cs.�d /

e2 C2 C2v

D3 e C1 C2

D4 e C1 C2.C2
0/; C2.C2

00/

D5 e1; e2 C1 C2

D6 e1 C1 C2.C2
0/; C2.C2

00/

e2 C2.C6
3/ D2

D7 e1; e2; e3 C1 C2

D3h e0 Cs.�h/ C2v

e00 C1 C2; Cs.�v/

D4h eg Ci C2h.C2
0/; C2h.C2

00/

eu Cs.�h/ C2v.C2
0/; C2v.C2

00/

D5h e1
0; e2
0 Cs.�h/ C2v

e1
00; e2

00 C1 C2; Cs.�v/

D6h e1g Ci C2h.C2
0/; C2h.C2

00/

e1u Cs.�h/ C2v.C2
0/; C2v.C2

00/

e2g C2h.C6
3/ D2h

e2u C2.C6
3/ C2v.�v/; D2

D2d e C1 C2.C2
0/; Cs.�d /

D3d eg Ci C2h

eu C1 C2; Cs
D4d e1; e3 C1 C2.C2

0/; Cs
e2 C2.C4

2/ C2v; D2

D5d e1g; e2g Ci C2h

e1u; e2u C1 C2; Cs
Td e D2 D2d

O e D2.C4
2/ D4

Oh eg D2h.C4
2/ D4h

eu D2.C4
2/ D4; D2d

Triply degenerate representations
T t C1 C2; C3

Th tg Ci C2h; S6

tu C1 C2v; C3

Td t1 C1 C3; S4; Cs
t2 C1 C3v; C2v; Cs

O t1 C1 C4; C2; C3

t2 C1 D3; D2; C2

Oh t1g Ci S6; C4h; C2h.C2/

(continued)
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Table 2 (continued)

G ƒ K.G;ƒ/ E.G;ƒ/

t2g Ci D3d; D2h.C4
2; C2/; C2h.C2/

t1u C1 C3v; C4v; C2v.C2/; Cs.�d /; Cs.�v/

t2u C1 D3; D2d.C4
2; C2/;

C2v.C2/; C2.C2/; Cs.�h/

Fourfold degenerate representations
Ih gg Ci Th; D3d; S6; C2h

Fivefold degenerate representations
Ih hg Ci D5d; D3d; D2h; C2h

PES extremal points are of special interest. The stable structure of atomic nuclei
corresponds to a PES minimum whereas its first order saddle point corresponds to a
transition state for the transition between neighboring minima. At low temperatures
and if the energy barriers between PES minima are sufficiently high, a single struc-
ture may be observed. This is the case of a static JTE. Dynamic JTE corresponds to
the situation when the structure is permanently changed along the pathways between
several minima and as a result only the averaged structure of higher symmetry is
observed.

The type of any PES extremal point may be determined by the corresponding
energy Hessian (the matrix of cartesian second derivatives of the energy). All its
eigenvalues must be positive for PES minima whereas its single negative eigenvalue
corresponds to the 1st order saddle point. As we will show later, the group theory is
able to predict the symmetry of these extremal points of PES.

4 Jahn–Teller Active Coordinate

JT active coordinate originates in the 1st order perturbation theory with the Taylor
expansion of the perturbation operator being restricted to linear members [13]. For
the nuclear coordinate Qk we demand non-zero value of the 1st order perturbation
matrix element

Hij
.1/ D h‰0i j@H=@Qkj‰0j iQk ¤ 0 (7)

in the space of non-perturbed wavefunctions ‰0i . If we denote �i ; �k and �j the
representations of ‰0i ; Qk and ‰0i , respectively (H operator is full-symmetric), the
integral ˝

‰0i j@H=@Qkj‰0j
˛

(8)

may be non-zero only if the direct product �ikj (reducible representation, in general)

�ikj D ��i ˝ �k ˝ �j (9)
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contains full-symmetric IR within the point group of the unperturbed system (the
asterisk denotes the complex conjugated value) [10]. Alternatively �k must be
contained in the direct product of the representations of both wavefunctions.

�k � �i ˝ �j (10)

In the case of degenerate perturbation theory both wavefunctions ‰0i and ‰0j
correspond to the components ��i and ��j of the same multidimensional �
representation. If accounting for hermicity of this matrix element,

Hij
.1/ D Hj i .1/ (11)

the�k representation of JT active coordinateQk must be contained in the symmetric
direct product of the IRs of the degenerate wavefunction [10].

�k � Œ� ˝ ��C D Œ�2�C (12)

The characters of the representation �ij D �i ˝ �j are obtained by multiplying the
corresponding characters of the contributing representations for the same symmetry
operation R [10]

Øij .R/ D Øi .R/:Øj .R/ (13)

The characters of the symmetric direct product representation Œ�2�C of dimension
n.n C 1/=2 (where n is the dimension of �) for the symmetry operation R are
defined as

��
C D fŒ�� .R/�2 C ��.R2/g=2 (14)

where ��.R2/ is the character of the R2 operation (see Table 3) [10].
Analogously, the characters of antisymmetric direct product Œ�2�� of dimension

n.n � 1/=2 is defined as follows [10]

��
� D fŒ�� .R/�2 � ��.R2/g=2 (15)

Using perturbation theory treatment the analytical formula for APES of a JT system
may be obtained. Its extremal points are determined by the extrema condition

Table 3 Symmetry operations R and their squares R2 [10]

R R2 R R2

E E � E

C2 E i E

C3 C3
2 S3 C3

2

C4 C2 S4 C2

C5 C5
2 S5 C5

2

C6 C3 S6 C3
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@E=@Qk D 0 k D 1; 2 : : : (16)

where E is the total energy of the perturbed system. The energy difference between
the energy of the unperturbed system and the energy of PES minimum (stable con-
figuration) is called the JT stabilization energy. Here it must be mentioned that at
least two JT active coordinates are necessary for the adequate description of the PES
of JT systems (at least two energy minima must be obtained).

Alternatively, the method of Öpik and Pryce [14] using eigenvectors may be used
to obtain PES extremal point coordinates.

The problem of obtaining the stable geometries of JT systems can be solved
analytically for small systems only. For large systems a group-theoretical treatment
is necessary. This may be based on JT active coordinates or a degenerate electronic
state split.

5 Epikernel Principle

Several theoretical methods ranging from simple model treatments to extensive ab
initio calculations have been used to calculate the JT stabilization energies and JT
distortions for a variety of JT systems. Based on these results Liehr [15] conjectured
that the symmetry of the stable JT geometry would be the highest which is yet
compatible with the loss of the initial electronic degeneracy. A more general and
more precise description of the symmetry characteristics of JT instabilities is based
on the concept of kernels and epikernels. Ceulemans et al. [10, 16, 17] formulated
the following epikernel principle for theƒ representations of JT active coordinates:

Extremum points on a JT energy surface prefer epikernels; they prefer maximal
epikernels to the lower ranking ones. As a rule stable minima are to be found with
the structures of maximal epikernel symmetry.

For double electronic degeneracy it may be further specified:
Extremum points on a JT PES for an orbital doublet will coincide with epikernel

configurations. If the distortion space conserves only one type of epikernel, minima
and saddle points will be found on opposite sides of the same epikernel distortion.
If the distortion space conserves two types of epikernels, minima and saddle points
will be characterized by different epikernel symmetries.

Since kernel K.G;ƒ/ is a subgroup of epikernel E.G;ƒ/, kernel extrema (if
they exist) will be more numerous than epikernel extrema of a given type. In order
to be stationary at all these equivalent points, the JT PES must be of considerable
complexity. Only higher order term in the perturbation expansion (7) are able to
generate non-symmetrical extrema. However – from a perturbational point of view –
the dominance of higher order terms over the first (and second) order contributions
is (extremely) unlikely. This rationalizes the epikernel principle as well.
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6 Step-by-step Descent in Symmetry

An alternative treatment to PES extrema of JT systems is based on their electronic
degeneracy removal with a symmetry decrease [13, 18–22]. This method has been
developed for PES minima but it is applicable to PES saddle points as well (e.g.
the double electronic degeneracy of ideal ŒCuX6�4� octahedron is removed in both
elongated and compressed ŒCuX6�4� bipyramids of D4h symmetry independent of
corresponding to PES minima or saddle points). This treatment also uses the above
mentioned Liehrs’s principle [15] that the symmetry of the stable JT geometry
would be the highest which is yet compatible with the loss of the initial electronic
degeneracy.

The method of step-by-step descent in symmetry supposes that the driving force
of JT distortion is the (geometry conditioned) electronic degeneracy (more exactly –
the lifting of the degeneracy in the first order of the nuclear displacements, analo-
gously to the “repulsion” of pseudodegenerate electronic states) and its removal is
connected with an energy decrease. During this process, some symmetry elements
of the system are removed and a new symmetry group arises which is an immediate
subgroup of the original (parent) group before the distortion. If the electronic state
(described by its IR) of the system in the immediate subgroup is non-degenerate
(one-dimensional IR), the symmetry descent stops because the distortion mode is
not coupled with electronic degeneracy anymore (there is no driving force). Other-
wise further symmetry elements are to be removed and the JT symmetry descent
continues till a non-degenerate electronic state is obtained. The relations between
IRs describing the electronic states within the same symmetry descent path are
determined by group-subgroup relations. As several ways of symmetry descent (due
to different symmetry elements removal) are possible (the parent group has several
immediate subgroups), several symmetry descent paths may exist for the system in
a degenerate electronic state.

This problem is relatively simple in the case of double electronic degeneracy
where only the complete degeneracy removal is possible. Consequently, the JT sta-
ble groups may correspond to both PES minima and saddle points (and other PES
extremal points as well). On the other hand, a partial degeneracy removal is possible
in the systems with higher than double electronic degeneracy (e.g. the triple degener-
ate electronic state of ideal ŒCuX4�2� tetrahedron is split into the double degenerate
and the non-degenerate ones in ŒCuX4�2� pyramids of C3v symmetry). The sign of
the splitting (the energy difference of the electronic states after splitting) is inverted
when the distortion mode is applied in the opposite direction (e.g. elongated or
compressed ŒCuX4�2� pyramids of C3v symmetry). If either the non-degenerate or
degenerate electronic states may be obtained within the same symmetry descent
(depending on the direction of the distortion mode only) then the same symmetry
group may be either JT stable or JT unstable, respectively, for various chemical sys-
tems. JT unstable groups cannot correspond to PES minima but might correspond
to other PES extrema types. Consequently, two types of PES saddle (or extremal)
points may be distinguished – JT stable and JT unstable.
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Schemes 1–6 contain the possible JT symmetry descent paths for the most impor-
tant point groups of symmetry. The symbols in each rectangle denote a point group
(upper line) and the IR describing the electronic state (bottom line). The paths con-
nect the bottom side of rectangles with the upper side of the rectangles in the next
level. The rectangles corresponding to JT stable groups and IRs are the end points
of these paths (no path at the rectangle bottom side). For the JT unstable group the
path continues at the bottom side of its rectangle. The arrows at these lines indicate
that the path continues in another Scheme containing the rectangle with the same
group and IR symbols.

7 Applications

7.1 Cyclopropenyl Radical

A very simple JT system of cyclo-C3H3 has been frequently studied till the 1980s
at various levels of theory but its more sophisticated studies including electron cor-
relation are very rare. Unfortunately, it is a typical system with electronic structure
and optimal geometry depending on fine effects. Recent B3LYP geometry optimiza-
tion of cyclopropenyl radical [23] leads to planar structures of C2v symmetry. The
“obtuse” triangular structures in 2A2 electronic state are stable whereas the “acute”
ones in 2B1 electronic state of higher energy correspond to the PES saddle points
between them (Table 4).

The existence of these structures may be explained by the JT distortion of a
parent D3h structure in 2E 0 or 2E 00 electronic states. The symmetry of JT active
coordinates may be obtained from the symmetric direct product within D3h group

Œ.E 0/2�C D Œ.E 00/2�C D A1 ˚E 0 (17)

According to the epikernel principle for e0 distortion (see Table 2)

E.D3h; e
0/ D C2v (18)

K.D3h; e
0/ D Cs.�h/ (19)

Table 4 Symmetry, electronic state, relative energy .�E/ and number of imaginary vibrations
.Nimag/ for MP2/cc-pVTZ optimized structures of cyclo-C3H3 radical [23]

Symmetry El. state �EŒkJ=mol� Nimag Remark

D3h
2E 00 0 2

C2v
2B1 �68:2 1 “acute”

C2v
2A2 �69:2 3 “obtuse”

Cs
2A00 �81:2 1 “obtuse”, two H out-of-plane

Cs
2A0 �104:6 0 “acute”, single H out-of-plane
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Scheme 1 JT symmetry descent paths of Oh parent group and its subgroups (upper lines in rect-
angles) for IRs (bottom lines in rectangles) Eg (a), T1g and T2g (b). Analogous schemes may be
obtained for ungerade IRs .Eu; T1u; T2u/ replacing subscripts g by the u ones where appropriate.
For continuation see Schemes 2 (Td and T groups), 4 (S6 group) and 6 (D3d and D3 groups)

Thus the B3LYP obtained C2v structures are epikernels of the parent group in
agreement with the epikernel principle.

According to the method of step-by-step descent in symmetry, C2v is a JT stable
immediate subgroup of D3h parent group for 2E 0 or 2E 00 electronic states (Scheme
6b). The above mentioned 2A2 and 2B1 electronic states of C2v structures [23] are
obtained by splitting the 2E 00 degenerate one of the D3h parent group. A symmetry
descent to other JT stable groups such asCs; C2 orC1 mediated by some JT unstable
groups containing C3 rotation axis is possible as well.
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We performed MP2/cc-pVTZ geometry optimization of cyclo-C3H3 radical using
Gaussian03 software [24]. We have found Cs stable structure (2A0 electronic state)
and PES saddle points ofC2v (2B1 and 2A2 electronic states) andCs (2A00 electronic
state) symmetries (see Table 4 and Fig. 1) in agreement with step-by-step descent
method (because the original �h plane of the parent D3h group is not conserved in
the non-planar cyclopropenyl radical). Two symmetry descent paths of Scheme 6b
may be employed:
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D3h.E
00/! C2v.A2/ or C2v.B1/ (20)

D3h.E
00/! C3v.E/! Cs.A

0/ or Cs.A
00/ (21)

It must be mentioned that C2 structures have been obtained using MP2/cc-pVDZ
treatment which are not predicted by epikernel principle for the e0 type JT coordinate
(these are possible for the e00 one only). Nevertheless, further theoretical studies
using larger basis sets and more exact methods are desirable.
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C2v (
2B1) C2v (

2A2)

Cs (
2A”) Cs (

2A’)

Fig. 1 MP2/cc-pVTZ optimized structures of cyclopropenyl radical (electronic states in
parentheses)

7.2 Coronene Anion

Sato and coworkers [25–27] investigated the electronic and geometric structure of
the coronene monoanion, C24H12

� (Fig. 2). ESR observation in solution exhibited
no JT effect down to 183 K. JT distorted structure was obtained using HF/6–31G��
calculation. The optimized structure of the monoanionic state has C2h symmetry
(2Bg electronic state) for the energy minimum (JT stabilization energy of 297 meV)
and D2h for the transition structures (energy barrier of ca 0.2 meV between C2h

minima).
The symmetric direct product within D6h symmetry group

ŒEij
2�C D A1g ˚ E2gi D 1 or 2; j D u or g (22)

indicates JT active coordinates of e2g symmetry for any degenerate electronic state.
According to the epikernel principle

E.D6h; e2g/ D D2h (23)

K.D6h; e2g/ D C2h.C6
3/ (24)

It has been mentioned [25–27] that the optimized structure of the monoanionic state
of coronene does not have (epikernel) D2h symmetry expected from the epiker-
nel principle but has (kernel) C2h symmetry. Hence the JT distortion of coronene
monoanion is an exception for the epikernel principle. This is because the epikernel
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Fig. 2 Structure of coronene

principle does not take higher-order terms into consideration. It is necessary to
extend the epikernel principle to include higher-order anharmonic terms (the anhar-
monic terms up to sixth order are necessary to obtain the minimum structure with
C2h symmetry).

The application of the method of step-by-step descent in symmetry to the D6h

parent symmetry group for all the possible degenerate electronic states may be seen
in Scheme 4 [21]. Among its immediate subgroups, only the D2h one is JT stable.

D6h ! D2h (25)

The remaining groups preserve double electron degeneracy and are subjects to
further JT symmetry descent (moreover, the D6 symmetry group is not feasi-
ble for coronene). There are two possible ways to JT stable C2h group in 2Bg
electronic state:

D6h.
2E1g or 2E2g/! C6h.

2E1g or 2E2g/! C2h.
2Bg/ (26)

D6h.
2E1g or 2E2g/! D3d.

2Eg/! C2h.
2Bg/ (27)

More detailed analysis of the PES of coronene monoanion is desirable. It is evident
that at least JT stable structures ofD2h and C2h groups in alternate electronic states
should be found (compare cyclo-C3H3 in Chap. 7.1).
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7.3 Spirobifluorene Anion

The lowest unoccupied molecular orbital of neutral spirobifluorene (Fig. 3) of D2d

point group is of e symmetry. Consequently, the single electron addition leads to
an anion in double degenerate 2E electronic state and the system undergoes to a
symmetry descent [22, 28]. B3LYP/6–31 C G� geometry optimization leads to a
C2v stable geometry in 2B2 electronic state with two perpendicular non-equivalent
planar fluorene units. Within additional investigations, a transition structure of D2

symmetry in 2B2 electronic state (the fluorene units are non-planar but equivalent)
has been found and further geometry optimizations are in progress.

The symmetric direct product

ŒE2�C D A1 ˚ B1 ˚B2 (28)

indicates JT active coordinates of b1 or b2 symmetries. According to the epikernel
principle

K.D2d; b1/ D D2 (29)

K.D2d; b2/ D C2v (30)

K.D2d; b1 C b2/ D C2 (31)

Fig. 3 Structure of spirobifluorene
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The method of step-by-step descent in symmetry indicates two descent paths to JT
stable immediate subgroups of D2d (see Scheme 5d) [22]

D2d.
2E/! C2v.

2B2/ (32)

D2d.
2E/! D2.

2B2/ (33)

The remaining descent path consists of two steps

D2d.
2E/! S4.

2E/! C2.
2B/ (34)

but the final C2 structure has not been found yet.
Finally, an absolute agreement between the results of epikernel principle and

step-by-step symmetry descent method may be concluded.

7.4 B4C

Yang and coworkers [29] performed a QCISD/6–311G� study of B4C isomers.
For this cation, the D2h (rectangle and rhombus), D4h; C2v (planar and nonpla-
nar) andD3h structures were fully optimized. The obtained structures are presented
in Table 5 (for atom numbering see Fig. 4). Calculated harmonic vibrational fre-
quencies indicate that D4h and rectangleD2h structures (i.e. B2 and B3 models) do
not correspond to stable configurations (single imaginary frequency of b3g and b1g

symmetry, respectively) and they should be PES saddle points of B4C. However,
it must be mentioned that their energies as well as geometries are so similar that
they might be equal within the calculation errors. Unfortunately, there have been
presented no data on optimization procedure accuracy and this problem cannot be
resolved.

Yang and coworkers [29] suppose that the optimal B4C geometries are a con-
sequence of a JT distortion of their parent structures of D4h or Td symmetries in
degenerate electronic states. The authors explain both non-planar and planar C2v

structures (A and C models) as a consequence of JT distortions of the ideal B4C
tetrahedron in triple degenerate electronic state as the epikernel for t2 JT active
coordinate (see Table 5).

ŒT1
2�C D ŒT22�C D A1 ˚E ˚ T2 (35)

and for JT active coordinate of t2 symmetry we obtain

E.Td ; t2/ D C2v (36)

Similar conclusions on rhombic and rectangularD2h structures as JT perturbedB4C
squares (D4h group) in double degenerate electronic state (B1–B3 models) as the
kernel of b1g or b2g JT active coordinate have been done.



72 M. Breza

T
ab

le
5

T
he

sy
m

m
et

ri
es

,g
eo

m
et

ri
es

an
d

en
er

gi
es

of
th

e
B
4
C

st
ru

ct
ur

es
op

ti
m

iz
ed

at
Q

C
IS

D
/6

–3
11

G
�

le
ve

lo
f

th
eo

ry
[2

9]

M
od

el
Sy

m
m

et
ry

E
le

ct
ro

ni
c

st
at

e
B

on
d

le
ng

th
s

(Å
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Model A
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B3B4

B1

B2
B3

B4

Fig. 4 High-symmetric structures of BC4

ŒEg
2�C D ŒEu

2�C D A1g ˚B1g ˚ B2g (37)

For b1g and b2g JT active coordinates we obtain the kernel groups

K.D4h; b1g/ D D2h.C2
0/ (38)

K.D4h; b2g/ D D2h.C2
00/ (39)

which are not in full agreement with the corresponding energies in Table 5 (B2 and
B3 models).

However, the above explanation cannot be fully correct [20]. Non-linear B4C
clusters of the highest symmetry (before JT distortion) may be divided into three
groups (see Fig. 4):

1. Non-planar tetrahedral (Td symmetry group) – A model
2. Square planar (D4h symmetry group) – B model
3. Regular triangular (D3h symmetry group) – C model

Because no group-subgroup relations hold for these groups, no JT distortion can
transform between them and they must be treated separately (different parent groups
for JT descent paths).

Possible symmetry groups originating in JT symmetry descent of parent Td
group with triple electron degeneracy (2T1 or 2T2 electronic state for B4C clus-
ter) in (36) formally agree with the epikernel principle but it does not hold for the
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corresponding electronic states implied by symmetry descent paths (Scheme 2b).
C2v symmetry group with 2B1 electronic state is JT stable as the end-point of the
symmetry descent path via JT unstable D2d group

Td .
2T2/! D2d.

2E/! C2v.
2B1/ or C2v.

2B2/ (40)

Thus the planar C2v structure (C model) in 2A1 electronic state cannot be explained
by JT symmetry descent from parent Td group.

It is evident that 2Ag electronic state ofD2h symmetry group cannot arise due to
JT effect (by splitting 2Eg electronic state of D4h group) because it is not allowed
by the symmetry descent path (see Scheme 5c)

D4h.
2Eg/! D2h.

2B2g/ or D2h.
2B3g/ (41)

Alternatively, possible 2Eu electronic state of D4h can be split into the ungerade
ones of D2h group (subscript u).

Moreover, 2A1g electronic state of D4h symmetry group is non-degenerate
(despite being a saddle point and not a PES minimum) and thus JT inactive.
Consequently, B1–B3 model structures cannot be explained by JT effect.

Planar C2v structure with 1A1 electronic state (C model) cannot be explained by
JT symmetry descent from parent Td group and must be explained by JT symmetry
descent of parentD3h symmetry group (see Fig. 4) with double electron degeneracy
by the symmetry descent path (Scheme 6b)

D3h.
2E 0 or 2E 00/! C2v.

2A1/ or C2v.
2B2/ (42)

This is in agreement with the epikernel principle since

Œ.E 0/2�C D Œ.E 00/2�C D A1 ˚E 0 (43)

and for JT active coordinate of e0 symmetry we obtain

E.D3h; e
0/ D C2v (44)

Finally it may be concluded that only non-planar (A model) and planar (C model)
C2v structures of B4C may be explained by JT effect. The electronic states of the
remaining structures indicate that they cannot originate in a degenerate electronic
state of the parent JT group. Their existence should be explained by other effects
(probably also of vibronic character such as pseudo-JT effect). It has been clearly
demonstrated that the treatment based on JT active coordinates may often lead to
incorrect results and accounting for electronic state symmetry is necessary.
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8 Conclusions

This study deals with group-theoretical analysis of JT systems, especially with
the prediction of the symmetries of the structures caused by JTE. Two alternative
treatments based on JT active coordinates and on the step-by-step splitting degen-
erate electronic states are explained and their results are compared within several
examples. Despite producing equal results for some low-dimensional groups, both
treatments have their advantages and shortages.

The method of epikernel principle seems to be incomplete due to its restriction to
the 1st order perturbation theory and linear extension of the perturbation potential.
Using more complete perturbation may produce the results comparable with the
other method on account of higher elaborateness. The JT caused loss of planarity or
of symmetry center in JT systems can be explained by pseudo-JT mechanisms only.
Another problem is the applicability to the groups with complex characters (Cn; Sn,
and Cnh for n > 2; T and Th).

The method of step-by-step symmetry descent does not explain the mechanisms
that are responsible for JT distortions. Some opponents argue that its predictions
are far too wide on account of selectivity (“all is possible”). On the other hand,
this treatment is based exclusively on group theory and does not account for any
approximations used in the recent solutions of Schrödinger equation. Chemical ther-
modynamics does not solve the problems of chemical kinetics but nobody demands
to do it as well. Thus we cannot demand this theory to solve also the mechanistic
problems despite the epikernel principle solves it. The problem of too wide predic-
tions can be reduced by minimizing the numbers and lengths of symmetry descent
paths (see the applications in this study).

Finally it may be concluded that both the above mentioned treatments should be
used jointly in all studies dealing with JTE problems. The group-theoretical treat-
ments enable to extend the applications from molecular systems (described by point
groups) up to crystals and phase transitions (described by space groups). Further
studies in this field should bring valuable results and solve the recent theoretical
problems as well.
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Spin–Orbit Vibronic Coupling in Jahn–Teller
and Renner Systems

Leonid V. Poluyanov and Wolfgang Domcke

Abstract A systematic analysis of spin–orbit coupling effects in Jahn–Teller and
Renner systems is presented. The spin–orbit coupling is described by the micro-
scopic Breit-Pauli operator. In contrast to most previous work for molecules and
crystals, the spin–orbit operator is treated in the same manner as the electrostatic
Hamiltonian, that is, the Breit-Pauli operator is expanded in powers of normal-
mode displacements at the reference geometry, matrix elements are taken with
diabatic electronic states, and symmetry selection rules are used to determine the
non-vanishing matrix elements. Choosing trigonal systems, tetrahedral systems
and linear molecules as examples, it is shown how the generalized symmetry
group of the spin–orbit operator can be determined. The vibronic Hamiltonians
including spin–orbit coupling up to first order in the vibrational displacements are
derived. It is shown that there exist linear vibronic-coupling terms of relativistic
origin which are particularly relevant in systems where the vibronic coupling by
the electrostatic Hamiltonian arises in second (or higher) order in the vibrational
coordinates.

1 Introduction

The term “vibronic coupling” subsumes all phenomena which arise from the mix-
ing of degenerate or nearly degenerate electronic states by nuclear displacements
from a reference geometry. The most well-known examples of vibronic coupling
are the Renner effect in linear molecules and the Jahn–Teller (JT) effect in non-
linear molecules. In these cases, the electronic degeneracy arises as a consequence
of symmetry. The basic concepts of vibronic coupling in molecules and crystals,
including the Renner and JT effects, have been worked out by the pioneers of molec-
ular and solid-state spectroscopy during the first half and around the middle of the
20th century [1–8].

The basic ingredients of vibronic-coupling theory can be summarized as follows:

(a) Representation of the (non-relativistic) electronic Hamiltonian in a basis of
diabatic electronic states.

77
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(b) Expansion of the electronic Hamiltonian in powers of normal-mode displace-
ments at the reference geometry.

(c) Use of symmetry selection rules for the determination of the non-vanishing
matrix elements.

Diabatic electronic states (previously termed “crude adiabatic states”) are defined
as slowly varying functions of the nuclear geometry in the vicinity of the reference
geometry [9–11]. The final vibronic-coupling Hamiltonian is obtained by adding
the nuclear kinetic-energy operator which is assumed to be diagonal in the diabatic
representation.

Spin–orbit (SO) coupling lifts, in general, the degeneracy of electronic states in
open-shell systems. It is therefore essential to take SO-coupling effects into account
in molecules and complexes containing second-row or heavier atoms.

Herein, we shall be concerned with systems for which the SO interaction can be
considered as a relatively weak perturbation of the non-relativistic Hamiltonian. In
this case, the electronic Hamiltonian can be written as the sum of the electrostatic
HamiltonianHES and the SO operatorHSO

H D HES CHSO (1)

HES may be chosen, for example, as the restricted open-shell Hartree-Fock (ROHF)
Hamiltonian of the many-electron system.

SO coupling is a relativistic effect. The theory of the interaction of the magnetic
moments of the electron spin and the orbital motion in one- and two-electron atoms
has been formulated independently by Heisenberg and Pauli [12,13], shortly before
the advent of the four-component Dirac theory of the electron [14]. Breit later has
added the retardation correction [15]. The resulting Breit-Pauli SO operator, which
can more elegantly be derived from the Dirac equation via a Foldy-Wouthuysen
transformation [16], was thus well known for atoms since the early 1930s [17].

Surprisingly, the theoretical analysis of the extensive spectroscopic data for
molecules and crystals in the 1940s and 1950s did not make use of the microscopic
Breit-Pauli operator, but rather relied on various empirical effective SO operators.
For impurity centers in crystals, for example, atom-like SO operators

HSO D AL � S (2)

have exclusively been employed, assuming atomic Russell–Saunders coupling and
an empirically adjustable effective SO constantA. For linear molecules, on the other
hand, the empirical SO operator introduced by Pople [18]

HSO D ALzSz (3)

is in widespread use until today. These empirical expressions treat SO coupling
as an atomic property and neglect any dependence of the SO interaction on the
nuclear geometry. While this approximation may be justified for partially occupied
inner shells of an impurity atom in a rigid crystal, it is expected to be inadequate
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for valence orbitals of molecules, atomic clusters and multi-center transition-metal
complexes, in particular when large-amplitude nuclear motions are involved. In
quantum chemistry, on the other hand, all-electron treatments of the SO operator
have been in use since the 1970s [19]. Matrix elements of the Breit-Pauli operator
with non-relativistic electronic wave functions can nowadays routinely be calculated
with several ab initio electronic-structure packages [20–22]. This is another motiva-
tion to base the description of SO coupling on the Breit-Pauli operator rather than
empirical expressions like (2) or (3) [23, 24].

Having said this, it is obvious that the SO operator should be treated in exactly
the same manner as the non-relativistic Hamiltonian, that is,

(a) Representation of the Breit-Pauli operator in a basis of (non-relativistic) diabatic
electronic states.

(b) Expansion of the Breit-Pauli operator in powers of normal-mode displacements
at the reference geometry.

(c) Use of symmetry selection rules (including time-reversal symmetry) to deter-
mine the non-vanishing matrix elements.

The use of non-relativistic basis functions in (a) requires that the SO interac-
tion can be considered as a relatively weak perturbation of the non-relativistic
Hamiltonian, which typically is the case for second- and third-row atoms and
transition metals. For systems with heavier atoms, two-component relativistic elec-
tronic basis functions should be employed or the analysis should be based on the
four-component Dirac-Coulomb Hamiltonian.

2 Symmetry Properties of the Spin–Orbit Operator: A Tutorial

The symmetry operations which commute with the non-relativistic (electrostatic)
HamiltonianHES of a given system do not necessarily commute with the Breit-Pauli
operatorHSO. It is therefore appropriate to analyse the group of symmetry operators
of HSO for each particular point-group symmetry of the electrostatic Hamiltonian.

In this section, we discuss, as a tutorial, the simplest example of the JT effect,
that is, a single unpaired electron in the field of three identical nuclei which form an
equilateral triangle (D3h symmetry).

For the purpose of symmetry analysis, the electrostatic Hamiltonian can be
written as (in atomic units)

HES D �1
2
r2 � eˆ.r/ (4)

where

ˆ.r/ D
3X

kD1

q

rk
(5)
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and
rk D jr �Rk j : (6)

Here r is the radius vector of the single unpaired electron, Rk ; k D 1; 2; 3, denote
the positions of the nuclei, and q is the effective charge of the three identical nuclei.

The Breit-Pauli Hamiltonian of this system is [17]

HSO D �igeˇ2eqS
3X

kD1

1

r3
k

.rk � r/ (7)

where

S D 1

2

�
i�x C j�y C k�z

�
; (8)

�x; �y ; �z are the Pauli spin matrices,

ˇe D e�

2mec
(9)

is the Bohr magneton, ge D 2:0023 is the g-factor of the electron, and i; j;k are the
Cartesian unit vectors.

It is seen that the Breit-Pauli operator has the structure of (2) for each atomic
center, but depends explicitly on the distances rk of the unpaired electron from the
atomic centers, defined in (6). While the magnetic interaction energy is �r�2

k
and

thus of shorter range than the electrostatic interaction, it can nevertheless result in
a non-negligible dependence of the SO operator on the nuclear coordinates. This
effect is neglected when the empirical SO operators (2) or (3) are employed.

It is useful for the symmetry analysis to write the Breit-Pauli operator (7) in
determinantal form

HSO D 1

2
igeˇ2e

ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ

�x �y �z

ˆx ˆy ˆz
@
@x

@
@y

@
@z

ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
; (10)

where ˆ is given by (5) and

ˆx D @ˆ

@x
; etc. (11)

Since HSO contains the Pauli spin matrices, each of the usual spatial symmetry
operations of theD3h point group has to be supplemented by a unitary 2� 2 matrix
which operates on the spin matrices. Let Xn denote one of the symmetry operations
of D3h; the corresponding operation in the extended symmetry group is defined as

Zn D XnU 	n (12)

where
UnU

	
n D 12 (13)
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and 12 denotes the two-dimensional unit matrix. The invariance condition of the
Hamiltonian is

ZnHSOZ
�1
n D HSO: (14)

The task is to find the appropriate 2 � 2 matrix Un for each of the twelve Xn of
the group D3h and to verify the group axioms for the set fZng. Equation (14)
is evidently fulfilled for HES if the Xn are the operations of the point group of
HES.

As is outlined in Appendix A, the Un can straightforwardly be determined, mak-
ing use of the determinantal form (10) of HSO. In particular, an associated unitary
2 � 2 matrix can be found for each of the 12 elements of D3h. The resulting group
of order 24, the so-called spin double group D0

3h
, is the symmetry group of the SO

operator (10).
In addition,HSO is time-reversal invariant. The time-reversal operator for a single

electron is the antiunitary operator (up to an arbitrary phase factor) [25]

� D �i�y Occ D
�
0 �1
1 0

	
Occ; (15)

where Occ denotes the operation of complex conjugation. The full symmetry group
G of HSO of (10) is thus

G D D03h ˝ .1; �/ (16)

of order 48. The operations of D0
3h

commute with � .

3 Jahn–Teller and Spin–Orbit Coupling in Trigonal Systems

The E � E JT effect, where a doubly degenerate vibrational mode lifts the degen-
eracy of a doubly degenerate electronic state, is presumably the most extensively
investigated vibronic-coupling problem in molecular and solid-state spectroscopy,
see [26–28] for reviews.

We consider a single unpaired electron in the field of three equivalent nuclear
centers forming an equilateral triangle (D3h symmetry). A pair of electronic basis
functions transforming as x and y in D3h symmetry is

 x D 6�1=2 Œ2� .r1/� � .r2/� � .r3/� (17a)

 y D 2�1=2 Œ� .r2/� � .r3/� ; (17b)

where the � .rk/ are atom-centered basis functions. Introducing the spin of the
electron, we have four non-relativistic spin–orbital basis functions
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 Cx D  x˛
 Cy D  y˛ (18)

 �x D  xˇ
 �y D  yˇ

where ˛.ˇ/ represent the spin projection 1=2.�1=2/ of the electron. The time-
reversal operator � acts on these spin orbitals as follows:

� Cx D  �x Occ; � �x D � Cx Occ; (19)

� Cy D  �y Occ; � �y D � Cy Occ:

The representation of the operator � is thus the 4 � 4 matrix

� D

0

B
B
@

0 0 1 0

0 0 0 1

�1 0 0 0

0 �1 0 0

1

C
C
A Occ: (20)

Note that �2 D �14, as is required for an odd-electron system [25].
The vibrational displacements are described in terms of dimensionless normal

coordinatesQx; Qy of a degenerate vibrational mode of E symmetry. The electro-
static Hamiltonian is expanded at the reference geometry in powers of Qx; Qy up
to second order

HES D H0 CHxQx CHyQy C 1

2
HxxQ

2
x C

1

2
HyyQ

2
y CHxyQxQy (21)

where

H0 D HES.0/

Hx D
�
@HES

@Qx

	

0

(22)

Hxy D
�
@2HES

@Qx@Qy

	

0

:

H0 transforms totally symmetric,Hx.Hy/ transforms asQx.Qy/, Hxy transforms
as QxQy , etc.

The electrostatic vibronic matrix is obtained by taking matrix elements of the
Hamiltonian (21) with the electronic wave functions x ;  y . The well-known result
is [26–28]
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HES D 1

2
!.Q2

x CQ2
y/12 C

 
�Qx C 1

2
g.Q2

x �Q2
y/ �Qy � gQxQy

�Qy � gQxQy ��Qx � 1
2
g.Q2

x �Q2
y/

!

(23)
where ! is the vibrational frequency of the E mode and �.g/ denotes the lin-
ear (quadratic) JT coupling constant. Obviously, HES is independent of the spin
projection.

To obtain the SO vibronic matrix,HSO is expanded in analogy to (21).

HSO D h0 C hxQx C hyQy C : : : (24)

Assuming that the SO coupling is weak compared to the electrostatic interactions,
we terminate the expansion after the first order. The individual SO operators in (24)
can be written as

h0 D hx�x C hy�y C hz�z

hx D hxx�x C hyx�y C hz
x�z (25)

hy D hxy�x C hyy�y C hz
y�z

with

hx D igeˇ2eq

�
@ˆ

@y

@

@z
� @ˆ
@z

@

@y

	

hy D igeˇ2eq

�
@ˆ

@z

@

@x
� @ˆ
@x

@

@z

	
(26)

hz D igeˇ2eq

�
@ˆ

@x

@

@y
� @ˆ
@y

@

@x

	

and

hxx D
�
@hx

@Qx

	

0

hxy D
�
@hx

@Qy

	

0

; etc. (27)

Using the results of Sect. 2 and Appendix A, it is straightforward to calculate the
matrix elements of HSO with the basis functions (18). The result is

HSO D i

0

B
B
@

0 �z 0 �x � i�y
��z 0 ��x C i�y 0

0 �x C i�y 0 ��z

��x � i�y 0 �z 0

1

C
C
A (28)
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where �x; �y ; �z are real constants. It can easily be verified that HSO of (28)
commutes with the time-reversal operator of (20).

When transformed to complex-valued spatial electronic basis functions

 ˙ D 1p
2

�
 x ˙ i y

�
(29)

and expressed in terms of complex-valued normal-mode displacements

Q˙ D %e˙i
 D Qx ˙ iQy; (30)

HES takes the more familiar form

HES D 1

2
!%212 C

�
0 X

X� 0

	
(31)

with

X D �%ei
 C 1

2
g%2e�2i
 : (32)

HSO of (28) becomes

HSO D

0

B
B
@

�z 0 �x � i�y 0

0 ��z 0 ��x C i�y
�x C i�y 0 ��z 0

0 ��x � i�y 0 �z

1

C
C
A : (33)

The SO vibronic matrix (33), which does not depend on the nuclear geometry
(within first order in %), can be transformed to diagonal form by a unitary 4 � 4
matrix S [29], yielding

S	HSOS D

0

B
B
@

� 0 0 0

0 �� 0 0

0 0 �� 0

0 0 0 �

1

C
C
A (34)

with
� D

q
�2x C�2y C�2z : (35)

The electrostatic vibronic matrix is invariant with respect to S . The final form of
the 2E � E JT Hamiltonian is thus [29]

H D
�
TN C 1

2
!%2

	
14 C

0

B
B
@

� X 0 0

X� �� 0 0

0 0 �� X

0 0 X� �

1

C
C
A : (36)
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Equation (36) agrees with previous results, which have been derived in a more
heuristic manner [30–32]. The adiabatic electronic potential-energy surfaces (that is,
the eigenvalues of .H � TN 14/ are doubly degenerate (Kramers degeneracy). The
adiabatic electronic wave functions carry nontrivial geometric phases which depend
on the radius of the loop of integration [29–32].

It should be noted that the SO operator is nondiagonal in the diabatic spin–orbital
electronic basis which usually is employed to set up the E �E JT Hamiltonian, see
(28, 33). The (usually ad hoc assumed) diagonal form of HSO is obtained by the
unitary transformation S which mixes spatial orbitals and spin functions of the elec-
tron. In this transformed basis, the electronic spin projection is thus no longer a good
quantum number.

When electronic states with more than one unpaired electron (triplet states, quar-
tet states, etc.) are considered, the two-electron part of the Breit-Pauli operator
becomes relevant. For a many-electron system with D3h symmetry, the complete
Breit-Pauli operator reads

HSO D
X

k

H
.k/
SO C

X

k<l

H
.kl/
SO ; (37)

H
.k/
SO D �igeˇ

2
eqSk

3X

nD1

1

r3
kn

.rkn � rk/ ; (38)

H
.kl/
SO D igeˇ

2
e

1

r3
kl

ŒSk Œrkl � .rk � 2rl/�C Sl Œrkl � .rl � 2rk/�� (39)

with

Sk D 1

2

�
i� .k/x C j� .k/y C k� .k/z

�
: (40)

The two-electron terms arise from the magnetic interaction of the spin of electron
k with the orbital angular momentum of electron l . It should be noted that HSO

is a two-electron operator in the electronic coordinate space, but is a one-electron
operator in spin space. H .kl/

SO can be written in determinantal form analogous
to (10).

The generalization of the time-reversal operator for the case of several unpaired
electrons is

� D
Y

k

�
0 �1
1 0

	

k

Occ: (41)

where the index k enumerates the electrons. Starting from (37–41), the JT–SO
Hamiltonians of 3E; 4E and 5E states of trigonal systems have been elaborated
in [33].
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4 Jahn–Teller and Spin–Orbit Coupling
in Tetrahedral Systems

The well-known JT selection rules for tetrahedral systems are [2]

ŒE�2 D ACE (42)

ŒT1;2�
2 D ACE C T2: (43)

In electronic states of T1 and T2 symmetry, the E mode as well as the T2 mode
are JT active. In electronic states of E symmetry, only the E mode is JT active.
The vibrational modes of a four-atomic tetrahedral system (X4) are of A, E and T2
symmetries.

The most common JT effects in tetrahedral systems are of the type 2T1;2 � T2
and 2E � E [26–28]. In this section, we consider the novel problem of SO induced
JT activity of the T2 mode in a 2E state.

According to (42), the T2 mode is not JT active (in first order) in 2E states.
However, the matrix elements of the SO operator with non-relativistic electronic
wave functions vanish for a 2E state in Td symmetry. It is then essential to take
account of the leading nonvanishing terms in the Taylor expansion of the matrix
elements of the SO operator. As shown below, these are of first order of vibrational
displacements of T2 symmetry, which implies the existence of a purely relativistic
E � T JT effect [34]. Linear E � T vibronic coupling is not accounted for by the
JT selection rules [2]; it is, therefore, a novel type of JT effect.

Let Rk; k D 1; 2; 3; 4, denote the radius vectors from the origin to the four
corners of the tetrahedron, and Rkm D jRk �Rmj the length of the four edges.
Symmetry-adapted displacements transforming as x; y and z in the Td point group
are

Sx D 1p
2
.R12 �R34/

Sy D 1p
2
.R14 �R23/ (44)

Sz D 1p
2
.R13 �R24/ :

Let us define

rk D r �Rk ; (45)

rk D jrkj ;

where r is the radius vector of single electron under consideration. Defining atomic
p orbitals at the four centers
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�.k/x D xkf .rk/
�.k/y D ykf .rk/ (46)

�.k/z D zkf .rk/;

where f .r/ is an arbitrary radial function, two degenerate molecular orbitals trans-
forming as the E representation can be constructed with the projection-operator
technique [25]

 a.r/ D 1p
23

�
� �.1/y C �.1/z C �.2/y � �.2/z C �.3/y C �.3/z

�

 b.r/ D 1

2
p
6

�
2�.1/x C 2�.2/x � 2�.3/x � 2�.4/x � �.1/y C �.2/y

C�.3/y � �.4/y � �.1/z C �.2/z � �.3/z C �.4/z

�
: (47)

Taylor expansion of the electrostatic Hamiltonian

HES D �1
2
r2 � eˆ.r/; (48)

ˆ.r/ D
4X

kD1

q

rk
; (49)

up to second order in the T2 normal coordinates Qx; Qy ; Qz at the tetrahedral
reference geometry and evaluation of the matrix elements with the electronic basis
functions (47) yields the electrostatic vibronic matrix

HES D 1

2
!R212 C 1

2
g

 
�2Q2

x CQ2
y CQ2

z

p
3
�
Q2
y �Q2

z

�
p
3
�
Q2
y �Q2

z

�
2Q2

x �Q2
y �Q2

z

!

(50)

where
R2 D Q2

x CQ2
y CQ2

z : (51)

As predicted by the JT selection rule (42), the electrostatic JT coupling is zero in
first order of Q. Equation (50) describes the quadratic JT coupling of the T2 mode
in an electronic state of E symmetry.

The Breit-Pauli Hamiltonian for a single unpaired electron in the field of four
identical atomic centers reads

HSO D �igeˇ2eS
4X

kD1

q

r3
k

.rk � r/ (52)

in analogy to (7). The Breit-Pauli operator (52) can be written in compact form as
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HSO D igeˇ
2
eS
h
rˆ � r�

D 1

2
igeˇ

2
e

ˇ
ˇ
ˇ
ˇ
ˇ̌

�x �y �z

ˆx ˆy ˆz

@=@x @=@y @=@z

ˇ
ˇ
ˇ
ˇ
ˇ̌ (53)

where ˆ.r/ is given by (49) and

ˆx D @ˆ=@x; etc:

HSO is time-reversal invariant. The time-reversal operator for a single electron is
the anti-unitary operator (up to an arbitrary overall phase factor) [15]

� D �i�y Occ D
�
0 �1
1 0

	
Occ; (54)

where Occ denotes the operation of complex conjugation of spatial wave functions.
Using the methods discussed in the tutorial (Sect. 2), the group of symmetry

operations of HSO can be constructed explicitly. As is shown in Appendix B, the
symmetry group ofHSO of (53) is T 0

d
, the spin double group of the tetrahedral rota-

tion group. T 0
d

is of order 48. T 0
d

also is the symmetry group of the total Hamiltonian
H D HES CHSO.

Expansion of HSO in powers of Qx; Qy ; Qz up to first order, analogous to
(24–27) and calculation of the matrix elements with the basis of spin orbitals

 Ca D  a.r/˛
 C
b
D  b.r/˛ (55)

 �a D  a.r/ˇ
 �b D  b.r/ˇ

yields (see [34] for more details)

HSO D i�

0

B
B
@

0 Qz Qx � iQy 0

�Qz 0 0 �Qx C iQy

�Qx � iQy 0 0 Qz

0 Qx C iQy �Qz 0

1

C
C
A : (56)

Including the nuclear kinetic-energy operator TN , the final JT Hamiltonian of the
2E state (up to second order in Q for the electrostatic part and up to first order in Q
for the SO part) is thus given by
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H D .TN C 1

2
!R2/14C (57)

0

B
B
B
B
@

1
2
g.�2Q2

x CQ2
y CQ2

z / i�QzC

p

3

2
g.Q2

y �Q
2
z / i�.Qx � iQy/ 0

�i�QzC

p

3

2
g.Q2

y �Q
2
z /

1
2
g.2Q2

x �Q
2
y �Q

2
z / 0 �i�.Qx � iQy/

�i�.Qx C iQy/ 0 1
2
g.2Q2

x �Q
2
y �Q

2
z / i�QzC

p

3

2
g.Q2

y �Q
2
z /

0 i�.Qx C iQy/ �i�QzC

p

3

2
g.Q2

y �Q
2
z /

1
2
g.�2Q2

x CQ2
y CQ2

z /

1

C
C
C
C
A
:

The adiabatic electronic potentials (the eigenvalues of .H � TN 14/) are given by

V1;2 D 1

2
!R2 �W (58a)

V3;4 D 1

2
!R2 CW (58b)

where

W D


�2R2 C 3

4
g2
�
Q2
y �Q2

z

�2 C 1

4
g2
�
2Q2

x �Q2
y �Q2

z

�2
� 1

2

: (59)

The adiabatic potentials (58) are doubly degenerate, as it must be for a spin
1=2 system (Kramers degeneracy). For small displacements from Q D 0, (58)
simplifies to

V1;2 D 1

2
!R2 � �R (60a)

V3;4 D 1

2
!R2 C �R: (60b)

Equation (60) represents a “Mexican Hat” in four-dimensional space (the energy as
a function of three nuclear coordinates). The JT splitting parameter � is of purely
relativistic origin, that is, it arises from the SO operator, see (56). The adiabatic elec-
tronic eigenfunctions carry nontrivial geometric phases which have been discussed
in [34].

5 Renner and Spin–Orbit Coupling in Linear Molecules

As is well known, linear molecules represent an exception of the JT theorem. The
degeneracy of… electronic states is lifted in second order of the bending amplitude,
the degeneracy of � electronic states is lifted in fourth order, etc., see [35–38] for
reviews.

The electrons of a linear molecule move in an electrostatic field which has
cylindrical symmetry. Therefore, the electronic Hamiltonian commutes with the
projection of the sum of the orbital and spin angular momenta on the symmetry
axis

ŒHES CHSO; jz� D 0 (61)
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where

jz D �i
@

@�
C 1

2
�z: (62)

Here � is the azimuthal angle in electronic space and �z is the corresponding Pauli
matrix. As a consequence of (61, 62), the symmetry group of HSO is a continuous
group with group parameter " and the symmetry operations

J" D ei"jz D exp

�
"
@

@�

	
ei"�z=2 D C"U�1" ; (63)

where C" is the rotation by the angle " around the z axis and

U�1" D
 

e
i"
2 0

0 e� i"
2

!

: (64)

Note the analogy of (63) with the definition (12) in the case of a discrete symmetry
group.

In addition to the cylindrical symmetry, the Hamiltonian is time-reversal invari-
ant, that is, it commutes with the time-reversal operator � of (15). The symmetry
group of HSO is C 01� , the spin double group of C1� .

Let us consider a single unpaired electron in the field of the three nuclei of a
linear triatomic molecule,

HES D �1
2
r2 � eˆ .r/ (65)

with

ˆ.r/ D
3X

kD1

qk

rk
(66)

where the qk; k D 1; 2; 3, are effective nuclear charges. The SO operator HSO is
given by (10) with ˆ.r/ of (66).

For a 2… state, the appropriate spin-orbital basis functions are

 3
2
D � .%; z/ ei�˛

 � 1
2
D � .%; z/ e�i�˛ (67)

 1
2
D � .%; z/ ei�ˇ

 � 3
2
D � .%; z/ e�i�ˇ

where %; z; � are the cylindrical coordinates of the electron and it assumed that
� .%; z/ is real.

The derivation of the relativistic Renner Hamiltonian of a 2… state has been
described in detail in [39]. The result is
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H D .TN C 1

2
!%2/14 C

0

B
B
@

0 d%ei� 1
2
g%2e2i� 0

d%e�i� � 0 1
2
g%2e2i�

1
2
g%2e�2i� 0 � �d%ei�

0 1
2
g%2e�2i� �d%e�i� 0

1

C
C
A : (68)

Here % and � are radial and angular components of the dimensionless bending coor-
dinate, respectively, ! is the harmonic bending frequency, � is the SO splitting of
the 2… state and g is the well-known non-relativistic Renner coupling constant. The
new result of this analysis is the linear (in the bending amplitude) coupling constant
d , which arises from the Breit-Pauli operator and is therefore of relativistic origin.
This coupling term is absent when the approximate SO operator (3) is employed.

The adiabatic potential-energy surfaces and adiabatic electronic eigenfunctions
of the Hamiltonian (68) have been analyzed in detail in [39]. Since the degeneracy
of the 2… state is lifted already in zeroth order in % by the SO splitting �, the linear
coupling term does not lead to a JT-like conical intersection of the adiabatic energy
surfaces. The linear coupling term has a significant effect, however, on the adiabatic
electronic wave functions which acquire nontrivial geometric phase factors [39].

The experimentally observable effects of the linear relativistic Renner coupling
are perturbations in the vibronic spectra of 2… states. Since d%ei� couples zero-
order energy levels which differ by one quantum of the bending mode, the effects
are maximal for � 	 !. These perturbations have previously been observed in the
Renner spectra of triatomic radicals, such as NCO, NCS and GeCH [40–42] and
have been termed “Sears resonances” [42]. Another signature of the linear relativis-
tic vibronic coupling is intensity transfer to vibronic levels with an odd number of
quanta of the bending mode [43, 44].

The analysis of the relativistic Renner coupling has been extended to 3… states,
including the two-electron part of the Breit-Pauli operator, thus generalizing previ-
ous result of Hougen [45, 46]. Other extensions of the theory are † �… coupling
in the doublet manifold [47] and SO coupling in a half-filled � shell, as found, for
example, in carbenes [48].

6 Summary

It is the intention of this chapter to point out that it is feasible and worthwhile to treat
the SO coupling operator on an equal footing with the non-relativistic Hamiltonian
in JT and Renner systems. Considering tetrahedral systems and linear molecules
as examples, it has been shown that the microscopic SO operator can give rise to
novel vibronic-coupling terms which are linear in the vibrational coordinates. These
relativistic coupling terms are particularly relevant in systems where the vibronic
coupling by the electrostatic Hamiltonian arises in second (or higher) order in the
vibrational coordinates, as is the case for the Renner effect in linear molecules or
the E � T JT effect in tetrahedral systems. These interesting phenomena are dis-
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carded when the SO coupling is approximated by an atom-like operator which is
independent of the nuclear coordinates.

There exists a rich variety of essentially untouched vibronic-coupling phenomena
in molecules and clusters containing heavy atoms. Since the SO-induced vibronic-
coupling parameters can conveniently be computed with ab initio electronic-
structure methods, these novel phenomena can be explored irrespective of the
availability of experimental spectroscopic data.

Acknowledgements The collaboration of the authors has continuously been supported by the
Deutsche Forschungsgemeinschaft since 8 years.

Appendix A: Symmetry Group of the Spin–Orbit Operator
of Triangular X3 Systems

Consider, as an example, the operation C 23 D C�13 (rotation by 4�=3) of the D3h
point group:

0

@
x0
y0
z0

1

A D C 23
0

@
x

y

z

1

A D

0

B
B
@

�1
2
x �

p
3
2
y

p
3
2
x � 1

2
y

z

1

C
C
A : (69)

The partial derivatives transform as follows:

@

@x0
D �1

2

@

@x
�
p
3

2

@

@y

@

@y0
D
p
3

2

@

@x
� 1
2

@

@y
(70)

@

@z0
D @

@z
:

With the definition (12), the invariance condition (14) takes the form

ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ

�x �y �z

ˆx ˆy ˆz
@

@x

@

@y

@

@z

ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ

D

ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ
ˇ

U�1�xU U�1�yU U�1�zU

�1
2
ˆx �

p
3

2
ˆy

p
3

2
ˆx � 1

2
ˆy ˆz

�1
2

@

@x
�
p
3

2

@

@y

p
3

2

@

@x
� 1
2

@

@y

@

@z

ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ
ˇ

: (71)

Expansion of the determinants and comparison of left and right sides yields the
equations
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�zU D U�z

�xU D �1
2
U�x �

p
3

2
U�y (72)

�yU D
p
3

2
U�x � 1

2
U�y:

The general nontrivial solution is

U D e�2i

�
1 0

0 "

	
(73)

where " D e2� i=3 and 
 is an arbitrary phase phactor. The generalization of the C 23
point-group operation is thus

Z23 D e2i
C 23

�
1 0

0 "�
	
: (74)

The analogous calculation for C3 yields

Z3 D ei
C3

�
1 0

0 "

	
: (75)

A rotation by 2� around the z-axis must change the sign of the electronic wave
function [49]:

Z33 D Z23Z3 D Z3Z23 D �12 (76)

which yields


 D ˙�
3
: (77)

The generalized operator of reflection on the horizontal plane .�h/, Zh, must fulfill
[49]

Z2h D �1; (78)

which has the solution

Zh D ˙i�h

�
1 0

0 �1
	
: (79)

With (74, 75, 79) we have the generalization of improper rotations

NZ3 D ZhZ3 D .˙i/e˙i�=3S3

�
1 0

0 �"
	

(80)

NZ.2/3 D ZhZ23 D .˙i/e˙2i�=3S
.2/
3

�
1 0

0 �"�
	
: (81)
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Table 1 The symmetry operations of the spin double group D03h. Abbreviation:  D e
2�i
3

1. I D E12 (the identity)

2. Zh D i�h

�
1 0

0 �1
	

3. Z3 D e�i�=3C3

�
1 0

0 "

	

4. Z2
3 D e�2i�=3C 2

3

�
1 0

0 "�

	

5. NZ3 D ZhZ3 D ie�i�=3S3

�
1 0

0 �"
	

6. NZ.2/
3 D ZhZ

2
3 D ie�2i�=3S

.2/
3

�
1 0

0 �"�
	

7. Za
2 D Ca

2

�
0 �1
1 0

	

8. Zb
2 D ei�=3C b

2

�
0 1

�"� 0
	

9. Zc
2 D ei�=3C c

2

�
0 �"�
1 0

	

10. Za
v D i�av

�
0 1

1 0

	

11. Zb
v D e�i�=6�bv

�
0 1

"� 0

	

12. Zc
v D e�i�=6�cv

�
0 "�

1 0

	

The generalized C2 rotations and reflections on vertical planes .�v/ are obtained
analogously. The final list of generalized symmetry operators is given in Table 1.
The other 12 symmetry operators are defined as

Z12Ck D �Zk ; k D 1 � � �12: (82)

The signs (˙) in (79, 80, 81) have been chosen to obtain a closed group multiplica-
tion table.

Appendix B: Symmetry Properties ofHSO in Tetrahedral
Systems

For simplicity and brevity, we consider the pure rotational subgroup T of the
tetrahedral point group Td . The extension of the analysis to Td is straightforward.

We want to find the complete set of symmetry operatorsZn for which

ZnHSOZ
�1
n D HSO: (83)
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The general form of symmetry operators of spin 1=2 systems is

Zn D CnU 	n (84)

where Cn are spatial operations and the Un are unitary 2 � 2 matrices acting on the
spin functions ˛; ˇ.

The invariance condition for HSO is

ZnHSOZ
�1
n D

D 1

2
igeˇ

2
e

ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ

U�1n �xUn U
�1
n �yUn U

�1
n �zUn

Cnˆx Cnˆy Cnˆz

Cn
@
@x

Cn
@
@y

Cn
@
@z

ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ

D 1

2
igeˇ

2
e

ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ

�x �y �z

ˆx ˆy ˆz
@
@x

@
@y

@
@z

ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
: (85)

By straightforward, although lengthy, calculations one can verify that the 12 sym-
metry operators given in Table 2 fulfill (85). The set NT of the operators in Table 2 is

Table 2 The set NT of symmetry operators of H D Hes C HSO in tetrahedral symmetry.
Abbreviations: � D 2�1=2, e˙ D e˙

i�
4

1. I D E12 (identical transformation)

2. Zx
2 D iC x

2

�
0 1

1 0

	
Zx
2
2 D �I

3. Zy
2 D iC

y
2

�
0 �i
i 0

	
Z
y
2

2 D �I

4. Zz
2 D iC z

2

�
1 0

0 �1
	

Zz
2
2 D �I

5. Za
3 D eCCa

3

�
� �

i� �i�
	

Za
3
3 D �I

6. Zb
3 D e�Cb

3

�
� ��
i� i�

	
Zb
3

3 D �I

7. Zc
3 D eCCc

3

�
� ��
�i� �i�

	
Zc
3
3 D �I

8. Zd
3 D e�Cd

3

�
� �

�i� i�
	

Zd
3

3 D �I

9. Za
3
2 D iC a

3
2

�
�eC �e�

�eC ��e�

	
D �.Za

3 /
�1

10. Zb
3

2 D �iC b
3

2
�
�e� ��eC

��e� ��eC

	
D �.Zb

3 /
�1

11. Zc
3
2 D iC c

3
2

�
�eC ��e�

��eC ��e�

	
D �.Zc

3 /
�1

12. Zd
3

2 D �iC d
3

2
�
�e� �eC

�e� ��eC

	
D �.Zd

3 /
�1
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not closed with respect to multiplication. To obtain a group of symmetry operators,
we need the additional element �I .

The direct product set
T 0 D NT ˝ .I;�I / (86)

is a group of order 24. It is the pure rotational double group of tetrahedral spin 1=2
systems [25, 49].

The full rotational symmetry group includes the time-reversal operator � . It is
given by

G D T 0 ˝ .I; �/ D NT ˝ .I;�I /˝ .I; �/: (87)

G is of order 48.
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Vibronic Coupling Constant and Vibronic
Coupling Density

Tohru Sato, Ken Tokunaga, Naoya Iwahara, Katsuyuki Shizu,
and Kazuyoshi Tanaka

Abstract The definition of vibronic coupling is given with empasis on its difference
from non-adiabaric coupling. We present one of the methods for calculation of the
vibronic coupling constant and vibronic coupling density analysis that enables us to
investigate the local properties of vibronic coupling. Some applications of vibronic
coupling density are presented. Vibronic couplings in fullerene ions still contain
some unresolved problems as targets for the calculations. Studies on vibronic
couplings in fullerene ions are reviewed.

1 Introduction: Definition of Vibronic Coupling Constant

The Jahn–Teller effect [7–9, 25] originates from vibronic coupling [19]. In this
chapter, we discuss the definition of vibronic coupling with emphasis on its differ-
ence from non-adiabatic coupling.

1.1 The Vibronic Hamiltonian

We consider a molecule that consists ofM nuclei whose configurations are denoted
by R D .R1; : : : ;RA; : : : ;RM / and N electrons whose configurations are denoted
by r D .r1; : : : ; ri ; : : : ; rN /, where RA D .XA; YA; ZA/ and ri D .xi ; yi ; zi / in the
Cartesian coordinate system. Masses of an electron and a nucleus A are denoted by
me andMA, respectively.

A Hamiltonian is written as

H.r;R/ D Tn.R/C Te.r/C Uee.r/C Une.r;R/C Unn.R/; (1)

D Tn.R/C Te.r/C U.r;R/; (2)

where, using

r2A D
@2

@X2A
C @2

@Y 2A
C @2

@Z2A
; (3)

r2i D
@2

@x2i
C @2

@y2i
C @2

@z2i
; (4)
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Tn is a kinetic energy operator

Tn.R/ D
MX

AD1
� �

2

2MA

r2A; (5)

and Te is an kinetic energy operator

Te.r/ D
NX

rD1
� �

2

2me
r2r : (6)

Uee.r/ is an potential energy operator

Uee.r/ D
NX

iD1

NX

j>i

e2

4�0rij
; (7)

where e is the elementary charge, 0 the permittivity of vacuum, and rij D jri �rj j.
Une.r;R/ is a potential energy operator

Une.r;R/ D
MX

AD1

NX

iD1
� ZAe

2

4�0RiA
; (8)

where ZA is the nuclear charge, RiA D jri � RAj. Unn.R/ is a potential energy
operator

Unn.R/ D
MX

AD1

MX

B>A

ZAZBe
2

4�0RAB
; (9)

where RAB D jRA �RB j.
We assume the molecular system is in a state R with a stationary nuclear con-

figuration R0. We call the state R and nuclear configuration R0 reference state and
reference configuration, respectively. A change in the state R!S , for example, an
ionization or excitation, gives rise to a vibronic interaction that results in a struc-
tural change R0!R. The structural change�RDR�R0 can be expressed by the
mass-weighted normal coordinates of vibrational motions Q D .Q1; : : : ;Q˛; : : : ;

Q3M�5or 3M�6/. Normal coordinates are defined in the Appendix.
If �R is small, the Hamiltonian of a deformed molecule S , or Hamiltonian can

be expanded around the reference configuration R0 as a Taylor series in terms of the
normal coordinates as
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H.r;Q/ D Tn.Q/C Te.r/C U.r;R0/C
X

˛

�
@U
@Q˛

	

R0

Q˛

C1
2

X

˛

X

ˇ

�
@2U

@Q˛@Qˇ

	

R0

Q˛Qˇ C � � � ; (10)

D
X

˛

��
2

2

�
@2

@Q2
˛

	
C Te.r/C U.r;R0/C

X

˛

V˛Q˛

C1
2

X

˛

X

ˇ

W˛ˇQ˛Qˇ C � � � : (11)

This is called the Herzberg–Teller expansion. The fourth term in the last line
describes a vibronic coupling. The electronic part of the vibronic operator is defined
by

V˛ D
�
@U
@Q˛

	

R0

: (12)

The fifth term in the last line describes a vibronic coupling. The electronic part of
the vibronic operator is defined by

W˛ˇ D
�

@2U
@Q˛@Qˇ

	

R0

: (13)

Furthermore, the l th order vibronic coupling can be written as

1

lŠ
U .l/˛1���˛l

Q˛1
� � �Q˛l

D 1

lŠ

 
@lU

@Q˛1
� � � @Q˛l

!

R0

Q˛1
� � �Q˛l

: (14)

1.2 Electronic Bases and Adiabatic Approximations

We will discuss an electronic basis, the electronic basis on which the Jahn–Teller
theory is based, and compare it with another electronic basis, the electronic basis.
Since non-adiabatic coupling in Jahn–Teller effect has a different meaning from
that in the Born–Oppenheimer basis, we will also discuss adiabatic approximations
in these electronic bases.

A wavefunction or vibronic wavefunction‰.r;Q/ is a solution of the Schrödinger
equation for the molecular Hamiltonian

H.r;Q/‰.r;Q/ D E‰.r;Q/; (15)

where E is the total energy of the system. To obtain the exact ‰ is very diffi-
cult. However, because MA is much larger than me, me=MA 	 10�3, the motion
of electrons can be regarded as being in a fixed nuclear framework R0. In other
words, when one is concerned with the electronic motion, the kinetic energy can be
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neglected. This is called the adiabatic approximation. As we will discuss later, some
adiabatic approximations are possible, depending upon the choice of the electronic
basis used to expand the vibronic wavefunction.

The electronic basis is obtained from the eigenvalue problem of an Hamiltonian
which is defined as

He.rIR/ D Te.r/C U.r;R/ D Te.r/C Uee.r/C Une.r;R/C Unn.R/: (16)

Note that the nuclear-nuclear potential is included in the electronic Hamiltonian in
this chapter. In the electronic Hamiltonian, the nuclear coordinates are given from
outside the problem.

An electronic wavefunction '.rIR/ is a solution of the electronic Hamiltonian
He.rIR/:

He.rIR/'m.rIR/ D Em.R/'m.rIR/; (17)

whereEm is the electronic energy of an electronic statem. For the reference nuclear
configuration, the wavefunction 'm.rIR0/ satisfies

He.rIR0/'m.rIR0/ D Em.R0/'m.rIR0/: (18)

The two Hamiltonians in (17) and (18) have the following relationship:

He.rIR/ D Te.r/C U.rIR/ D Te.r/C U.rIR0/C�U.rIR/;
D He.rIR0/C�U.rIQ/; (19)

where

�U.rIQ/ D
X

˛�

V˛�Q˛� C 1

2

X

˛�

X

ˇ�
0


0

W˛�ˇ�
0


0Q˛�Qˇ�

0


0 C � � � ; (20)

where the mode ˛ is expressed along with its representation � and line � .
If a single e mode .QE� ;QE�/ is considered, for instance, fQE � QE gA1

D
Q2
E�
C Q2

E� transforms as the A1 representation, and .fQE � QEgE� ; fQE �
QE gE�/ D .Q2

E�
�Q2

E�; 2QE�QE�/ as the lines � and  of the E representation,
respectively. Thus the quadratic terms in (20) can be rewritten as

1

2

n
WE�E�QE�QE� CWE�E�QE�QE� CWE�E�QE�QE�

CWE�E�QE�QE�

o

D 1

2

n
WA1

�
Q2
E� CQ2

E�

�CWE�

�
Q2
E� �Q2

E�

�CWE� .2QE�QE�/
o
;

(21)

where

WA1
D 1

2
.WE�E� CWE�E�/ D fWEEgA1

; (22)
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WE� D 1

2
.WE�E� �WE�E�/ D fWEEgE� ; (23)

and
WE� DWE�E� DWE�E� D fWEEgE� : (24)

Using tensor convolutions
˚
Q�1
�Q�2

�
�

and
˚
W�1�2

�
�

, (20) is written in a
general form as

�U.rIR/ D
X

˛�

V˛�Q˛�

C1
2

X

˛�

X

˛
0

�
0

X

˛
00

�
00

˚
W˛
0

�
0

˛
00

�
00

�
˛�

˚
Q˛
0

�
0�Q˛

00

�
00

�
˛�
C � � � :

(25)

The wavefunction can be represented using the two electronic bases f'.rIR/g
and f'.rIR0/g. One is

‰.r;Q/ D
X

m

�CAm .Q/'m.rIR0/: (26)

In this representation, the molecular wavefunction is expanded using the elec-
tronic wavefunctions with the configuration fixed at the reference configuration R0.
This representation is called a crude adiabatic (CA) representation and the basis
f'm.rIR0/g the electronic basis. The other representation, the Born–Oppenheimer
(BO) representation, is defined as

‰.r;Q/ D
X

m

�BOm .Q/'m.rIR/; (27)

where the electronic basis f'm.rIR/g is obtained from the electronic Schrödinger
equation (17). It should be noted that the dependence of nuclear coordinates is
included both in the nuclear function �BOm .Q/ and in the electronic function
'm.rIR/. Furthermore, as long as each basis is complete, these expansions are
equivalent. The Hamiltonian is based on the CA representation.

1.2.1 Crude Adiabatic Approximation

In the CA representation, the wavefunction �CAm .Q/ satisfies the following coupled
equations

ŒTn.Q/C Em.R0/C h'm.rIR0/j�U.rIQ/j'm.rIR0/i� �CAm .Q/

C
X

n¤m
h'm.rIR0/j�U.rIQ/j'n.rIR0/i�CAn .Q/ D �CAm .Q/: (28)

It should be noted that the kinetic energy
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Tn.Q/ D
 
X

˛

��
2

2

@2

@Q2
˛

!

ınm (29)

is diagonal in this representation, since the electronic wavefunction 'm.rIR0/ is
independent of Q˛. This is an advantage of the CA representation.

When the off-diagonal coupling, the last term in the left-hand-side of (28), can
be neglected

h'm.rIR0/j�U.rIQ/j'n.rIR0/i D 0; (30)

the coupled equations (28) may be decoupled as

ŒTn.Q/CEm.R0/Ch'm.rIR0/j�U.rIR/j'm.rIR0/i� �CAAm .Q/D CAm �CAAm .Q/;

(31)
which is equivalent for the molecular wavefunction to be put as a simple product

‰.r;Q/ 	 ˆCAm .r;Q/ D �CAAm .Q/'m.rIR0/: (32)

This is called a crude adiabatic (CA) approximation. The CA approximation is
valid if

�! 
 jEn �Emj; (33)

which is not fulfilled when the electronic state is degenerate or pseudo-degenerate.
The degenerate case, or the Jahn–Teller case, will be discussed later.

1.2.2 Born–Oppenheimer Approximation

In the BO representation, the nuclear kinetic energy matrix is not diagonal because
of the nuclear coordinate dependence of the wavefunction. The off-diagonal ele-
ments of the nuclear kinetic energy are non-adiabatic couplings. In order to discuss
the relationship between vibronic coupling and non-adiabatic coupling, we present
the Born–Oppenheimer approximation.

Since Tn.Q/ acts on �BOm .Q/'m.rIR/ as

Tn.Q/
h
�BOm .Q/'m.rIR/

i
D
h
Tn.Q/�BOm .Q/

i
'm.rIR/C ŒTn.Q/'m.rIR/��BOm .Q/

��
2
X

˛



@�BOm .Q/
@Q˛

� 

@'m.rIR/
@Q˛

�
; (34)

the equation for the wavefunction is

ŒTn.Q/C Em.Q/C h'm.rIR/jTn.Q/j'm.rIR/i� �BOm .Q/

C
X

n¤m

"

h'm.rIR/jTn.Q/j'n.rIR/i � �
2
X

˛


'm.rIR/

ˇ
ˇ
ˇ
ˇ
@

@Q˛

ˇ
ˇ
ˇ
ˇ 'n.rIR/

�
@

@Q˛

#

��BOn .Q/
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D �BOm .Q/: (35)

When the off-diagonal couplings in (35) can be ignored

h'm.rIR/ jTn.Q/j'n.rIR/i D 0 (36)

and 
'm.rIR/

ˇ
ˇ
ˇ
ˇ
@

@Q˛

ˇ
ˇ
ˇ
ˇ 'n.rIR/

�
D 0; (37)

the coupled equations in (35) can be decoupled as

ŒTn.Q/C Em.Q/C h'm.rIR/jTn.Q/j'm.rIR/i� �BHAm .Q/ D �BHAm .Q/: (38)

The approximation with (36) and (37) is called a Born–Huang (BH) approximation.
In this approximation, the molecular wavefunction is written as

‰.r;Q/ 	 ˆBHm .r;Q/ D �BHAm .Q/'m.rIR/: (39)

When the diagonal element of the nuclear kinetic energy in (38) can be neglected

h'm.rIR/jTn.Q/j'm.rIR/i D 0; (40)

the decoupled (38) is

�
Tn.Q/CEBO

m .Q/
�
�BOAm .Q/ D �BOAm .Q/: (41)

This is a BO approximation. The BO vibronic wavefunction is written as

‰.r;Q/ 	 ˆBOm .r;Q/ D �BOAm .Q/'m.rIR/: (42)

It should be noted that the BO potential EBO .Q/ does not contain information on
the CA potential h'm.rIR/j�U.r;Q/j'n.rIR/i.

The off-diagonal couplings neglected in (36) and (37) are non-adiabatic cou-
plings [16]

ƒmn.Q/ D ��
2
X

˛



A.˛/mn.Q/

@

@Q˛

C 1

2
B.˛/mn.Q/

�
; (43)

where

A.˛/mn.Q/ D

'm.rIR/

ˇ
ˇ̌
ˇ
@

@Q˛

ˇ
ˇ̌
ˇ 'n.rIR/

�
; (44)
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and

B.˛/mn.Q/ D

'm.rIR/

ˇ̌
ˇ
ˇ
@2

@Q2
˛

ˇ̌
ˇ
ˇ 'n.rIR/

�
: (45)

Although the nuclear kinetic part in the CA representation is diagonal, an adi-
abatic approximation is possible for Jahn–Teller systems, as we will discuss later.
Therefore, a non-adiabatic coupling can also be defined in the CA representation.
The meaning of the non-adiabatic coupling depends upon the adiabatic approxi-
mation assumed. In the CA representation, we should distinguish between vibronic
couplings and non-adiabatic couplings.

The CA basis is usually employed in the vibronic coupling theory. The remaining
sections of this chapter are based on the CA representation.

1.3 Vibronic Coupling Constant and Jahn–Teller Hamiltonian

From (20) and (28), the coupled equations for the nuclear wavefunction are



Tn.Q/CEm.R0/C

X

˛

.V˛/mmQ˛ C 1

2

X

˛;ˇ

.W˛ˇ /mmQ˛Qˇ C � � �
�
�CAm .Q/

C
X

n¤m


X

˛

.V˛/mnQ˛C1
2

X

˛;ˇ

.W˛ˇ /mnQ˛Qˇ C � � �
�
�CAn .Q/D �CAm .Q/;

(46)

where the vibronic coupling is defined by

V˛ D .h'm.rIR0/jV˛j'n.rIR0/i/ D
�Z

d 3N r'�m.rIR0/V˛.r/'n.rIR0/
	
; (47)

and the vibronic coupling is defined by

W˛ˇ D
�h'm.rIR0/jW˛ˇ j'n.rIR0/i

�
(48)

D
�Z

d 3N r'�m.rIR0/W˛ˇ .r/'n.rIR0/
	
: (49)

These matrix elements are called the vibronic coupling, respectively.
These matrix elements can be reduced with the aid of group theory. To show

the symmetry species of the vibrational mode and electronic state explicitly, we
express the normal coordinate and electronic states as Q˛� , jm��i, and jn� 0� 0i,
respectively. Equation (47) is rewritten as

.V˛� /n� 0 0 ;m� D hn�
0

�
0 jV˛� jm��i: (50)
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This integral is nonzero if and only if � 2 � 0 � � . Furthermore, according to the
Wigner–Eckart theorem, the matrix element (50) can be reduced as

hn� 0� 0 jV˛� jm��i D hn�
0 jjV˛� jjm�ih�

0

�
0 j����i D Vn�

0

;m�

˛�
h� 0� 0 j����i;

(51)
where h� 0� 0 j����i is the Clebsch–Gordan coefficient, which depends only on the

symmetry, and Vn�
0

;m�

˛�
D hn� 0 jjV˛� jjm�i is the reduced matrix element, which is

independent of � , �
0

, or � . Thus, if .V˛�1
/
n�
0


0

1
;m�1

is known, one can calculate

another constant .V˛�2
/
n�
0


0

2
;m�2

using the table of Clebsch–Gordan coefficients.

For the diagonal element, the vibronic coupling constant Vm�
˛�
; m� is nonzero if and

only if the symmetric product of �; Œ�2� contains � . For a non-degenerate state, � �
� D A1, where A1 is a totally symmetric representation. Therefore, the distortions
are totally symmetric in a non-degenerate electronic state. As for a degenerate state,
the symmetric product contains some non-totally symmetric representations that
cause Jahn–Teller distortions.

The diagonal part of the linear vibronic coupling constants has a clear physi-
cal meaning: the force along the normal mode � from the field produced by the
electronic state � .

When the electronic statem is neither degenerate nor pseudo-degenerate, the CA
approximation is valid; neglecting the higher order terms,

h
Tn.Q/ C Em.R0/C

X

˛

.V˛/mmQ˛ C 1

2

X

˛;ˇ

.W˛ˇ /mmQ˛Qˇ

i
�CAAm .Q/

D �CAAm .Q/: (52)

After making a rotation of the normal coordinates, (52) can be separated to remove
the cross terms Q˛Qˇ as follows:

h
Em.R0/ C

X

˛

�
��

2

2

@2

@Q2
˛

C .V˛/mmQ˛ C 1

2
.W˛˛/mmQ

2
˛

� i
�CAAm .Q/

D �CAAm .Q/; (53)

where the matrix elements and the normal coordinates are redefined. The solution is
a collection of the displaced harmonic oscillator the potential of which is written as

V˛Q˛ C 1

2
!2˛Q

2
˛ D

1

2
!2˛

�
Q˛ C V˛

!2˛

	2
� V 2˛
2!2˛

; (54)

where V˛ D .V˛/mm and !2˛ D .W˛˛/mm. Therefore, because of the vibronic
couplings, the potential minimum is shifted by f: : : ;Q˛ D �V˛=!2˛ ; : : :g, and the
total energy is stabilized by
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� D
X

˛

V 2˛
2!2˛

: (55)

As mentioned previously, V˛ is non-zero if the mode ˛ is totally symmetric. This
stabilization energy is sometimes called the reorganization energy.

When the electronic state � is n� -fold degenerate, ignoring the couplings bet-
ween the electronic states outside the degenerate manifold and the higher order of
Q˛ in (46), we obtain

�
Tn.Q/ı 0 C E�.R0/ı 0 C

X

˛

.V˛/ 0Q˛ C 1

2

X

˛;ˇ

.W˛ˇ / 0Q˛Qˇ

�

�
�CAA

0

.Q/
�
D 

�
�CAA

0

.Q/
�
; .�; �

0 D 1; : : : ; n�/: (56)

For example, in a triangular molecule X3, if the electronic state belongs to an E
representation and only a doubly degenerate e mode is considered, we can obtain
the following Jahn–Teller effect with the quadratic vibronic coupling

"(

EE .R0/� �
2

2

 
@2

@Q2
�

C @2

@Q2
�

!

C 1

2
WA1

�
Q2
� CQ2

�

�
) �

1 0

0 1

	

CVE
�
Q� �Q�

�Q� �Q�

	
CWE

�
Q2
�
�Q2

� 2Q�Q�

2Q�Q� �.Q2
�
�Q2

� /

	��
�� .Q� ;Q�/

��.Q� ;Q�/

	

D 
�
�� .Q� ;Q�/

��.Q� ;Q�/

	
: (57)

When the quadratic couplingWE is negligible, we obtain

"(

EE .R0/� �
2

2

 
@2

@Q2
�

C @2

@Q2
�

!

C 1

2
WA1

�
Q2
� CQ2

�

�
) �

1 0

0 1

	

CVE
�
Q� �Q�

�Q� �Q�

	��
�� .Q� ;Q�/

��.Q� ;Q�/

	
D 

�
�� .Q� ;Q�/

��.Q� ;Q�/

	
: (58)

This is the dynamic linear E ˝ e problem.

1.4 Adiabatic Approximation in Dynamic Jahn–Teller System

In some situations, especially in the BO approximation, the term vibronic coupling is
identical to non-adiabatic coupling. In the Jahn–Teller theory, however, the concept
of vibronic coupling is different from that of non-adiabatic coupling. To clarify the
difference, we discuss the adiabatic approximation in the E ˝ e dynamic Jahn–
Teller problem [27] in the strong coupling limit [32]. In this subsection, we employ
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dimensionless quantities k D VE=
q

�!3E . Equation (58) is rewritten in the complex
basis

jCi D 1p
2
.j�i C i ji/ ; j�i D 1p

2
.j�i � i ji/ (59)

as



�1
2

( 
@2

@Q2
�

C @2

@Q2
�

!

� �Q2
� CQ2

�

�
)

O�0 C k
�

0 Q� � iQ�

Q� C iQ� 0

	#

‰

D ‰; (60)

where O�0 is the 2 � 2 unit matrix, and

‰ D
�
�C.Q� ;Q�/

��.Q� ;Q�/

	
D �C.Q� ;Q�/jCi C ��.Q� ;Q�/j�i: (61)

Transforming the equation into the polar coordinateQ� D � cos
 andQ�D � sin 

yields


�
� 1
2�

@

@�

�
�
@

@�

	
� 1

2�2
@2

@
2
C 1

2
�2
�
O�0 C k�

�
0 e�i 

ei 
 0

	�
‰ D ‰: (62)

Substituting ‰ D ˆ=p� to remove the first derivative, we obtain

"(

�1
2

@2

@�2
� 1

8 �2
C
OL2z
2 �2
C 1

2
�2

)

O�0 C k�
�
0 e�i 

ei 
 0

	#

ˆ D ˆ; (63)

where OLz D �i @=@
 is a vibrational angular momentum operator. The potential
matrix can be diagonalized using a unitary transformation

OS D 1p
2

�
exp.�i 


2
/ exp.�i 


2
/

exp.i 

2
/ � exp.i 


2
/

	
: (64)

We obtain the transformed equations as

"�
�1
2

@2

@�2
C 1

2
�2 � 1

8 �2

	
O�0 C 1

2 �2

�
OLz � 1

2
O�x
	2
C k �

�
1 0

0 �1
	#

ˆ
0 D ˆ0 ;

(65)
where O�r .r D x; y; z/ is a Pauli matrix,

ˆ
0 D OS	ˆ: (66)
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After a variable separation

ˆ
0

.�; 
/ D 1p
2 �

ei j 
� .�/ ; (67)

where j is an eigenvalue of the vibronic angular momentum operator OJ D OLz C
O�z=2, j D ˙1=2;˙3=2;˙5=2; : : :, we obtain the equations for the radial function
�.�/, 
�

�1
2

d 2

d�2
C j 2

2 �2
C 1

2
�2
	
O�0 � j

2�2
O�x C k � O�z

�
� D �: (68)

In the strong coupling limit, neglecting the off-diagonal coupling � j

2�2 O�x , the
equations are decoupled as

�
�1
2

d 2

d�2
C j 2

2 �2
C 1

2
�2 � jkj �

	
�� D � ��;

�
�1
2

d 2

d�2
C j 2

2 �2
C 1

2
�2 C jkj �

	
�C D C �C: (69)

This is an adiabatic approximation in the dynamic Jahn–Teller problem. The wave-
function is expressed by

j˙; n; j >D  ad
˙ .r/ e

i j 
 �˙;n .�/p
2 � �

: (70)

The analytical solution of the decoupled equation (69) is discussed in reference [32].
The non-adiabatic coupling between the lower sheet � and upper sheet C is

calculated from

h��j
�
� j

2�2

	
j�Ci: (71)

We can find that the non-adiabatic coupling in the BO approximation is different
from that in the dynamic Jahn–Teller theory.

2 Calculation Method

Vibronic coupling constants have been evaluated from the BO potentials [8]. Here,
we present another calculation method employing (47). This method has an advan-
tage: we can analyze a local property of vibronic coupling using the vibronic
coupling density, which we will define in Sect. 3.

In this section, before we present the calculation method, we will discuss the
spatial symmetry breaking of wavefunctions (Sect. 2.1) and the violation of the
Hellmann–Feynman theorem (Sect. 2.2). We will define an atomic vibronic coupling
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constant (Sect. 2.4) which is useful for the vibronic coupling density analysis, and
summarize other forms of vibronic coupling (Sect. 2.5).

2.1 Symmetry of Electronic Wavefunction
at the Degenerate Point

The eigenfunctions of the electronic Hamiltonian (16) is usually obtained from the
variational method

ıE Œ'.rIR/� D 0; (72)

where
E Œ'.rIR/� D h'.rIR/jHe.rIR/j'.rIR/i: (73)

When the electronic state is degenerate at R0, the spatial symmetry of the wave-
functions are destroyed which gives rise to artificial level splitting [10, 34]. For
example, for the X2E

00

1 state in cyclopentadienyl radical C5H5, the two states
that should be degenerate give rise to an energy splitting of 6.9 meV using the
ROHF method [34]. The DFT calculation also yields an energy splitting of 0.8 meV
(ROB3LYP). Furthermore, the symmetry of the ROHF wavefunction is broken,
which results in a wrong symmetry of the vibronic coupling matrix in the atomic
unit as

V
e
0

2
.3/�
D
�
0:0009413247 0:0000000000

0:0000000000 �0:0009764159
	
; (74)

where the absolute values of the diagonal elements should be the same because
of the Wigner–Eckart theorem and Clebsch–Gordan coefficients [34]. In the Jahn–
Teller problem, symmetry of the wavefunction is crucial. The wavefunction without
the symmetry breaking should be employed to calculate the vibronic coupling.

The symmetry breaking originates from the expectation value (73). If the wave-
function '.rIR0/ is one of the degenerate states under the symmetry of the point
group G, the integrand '�.rIR0/He.rIR0/'.rIR0/ is reducible as, for example,
E � A1 � E D A1 C A2 C E for doubly degenerate wavefunctions. This sig-
nifies that the integrand is not totally symmetric and has a coordinate dependence
under the symmetry operationR 2 G, which is an artifact that causes the symmetry
breaking.

In order to recover the correct symmetry in the integrand for the degenerate case,
we apply the projection operator of the totally symmetric species for the integrand.
The projection operator is defined by

PA1 D 1

jGj
X

R2G
R; (75)

where jGj is the order of the point group G, which yields
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PA1 W E �'�
� 7!

X


0

;
00

 
1

jGj
X

R2G
D�

 
0

.R/�D�


00


.R/

!

h'� 0 jHej'� 00 i; (76)

D 1

n�

X


0

;
00

ı 0 ; 00 h'� 0 jHej'� 00 i; (77)

D 1

n�

X


0

E
h
'� 0

i
; (78)

where D�.R/ is the matrix representation of R in the irreducible representation � ,
and the orthogonality theorem of the matrix representation is applied [24]. The result
is the state-averaged energy with equal weights. This form of the expectation value
is a starting point of the general restricted Hartree–Fock (GRHF) method [13] and
state-averaged multi-configuration self-consistent field (SA-MCSCF) method [23].
The GRHF and SA-CASSCF calculations for the cyclopentadienyl radical yield the
wavefunction with the correct symmetry [5, 34].

2.2 The Hellmann–Feynman Theorem

According to the Hellmann–Feynman theorem [18,22], when a Hamiltonian depends
on a parameter �, the derivative of the energy with respect to � is equal to the
expectation value of the derivative of the Hamiltonian with respect to �,

@E.�/

@�
D

'.�/

ˇ
ˇ
ˇ
ˇ
@H.�/
@�

ˇ
ˇ
ˇ
ˇ'.�/

�
: (79)

In the formal derivation of this chapter, we apply this theorem taking Q˛ as a
parameter � in the following form,

�
@E.R/
@R

	

R0

D
*

'.rIR0/
ˇ̌
ˇ
ˇ
ˇ

�
@He.rIR/

@R

	

R0

ˇ̌
ˇ
ˇ
ˇ
'.rIR0/

+

: (80)

Although this theorem can be applied for exact wavefunction, conventional LCAO
wavefunctions do not satisfy this theorem. There are two methods for deriving wave-
functions that fulfil the Hellmann–Feynman theorem: (1) Gaussian basis set with
their derivatives [30] and (2) a floating basis [40]. Figure 1 shows the l.h.s and
r.h.s. of (80) for the hydrogen molecule anion using (a) 6-31G and (b) 6-31G with
their first derivatives. It is found that the wavefunction using the conventional basis
function does not satisfy the theorem.

Sometimes the Hellmann–Feynman theorem has been assumed for wavefunc-
tions with the conventional basis functions to evaluate vibronic coupling constants.
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Fig. 1 Vibronic coupling constant (solid line) and energy gradient (dotted line) of hydrogen
molecule anion using the ROHF method with the basis set (a) 6-31G and (b) 6-31G with their
first derivatives. The electronic energy (dashed line) is shown against the displacement from the
equilibrium geometry of the neutral molecule

Such an approach has two pitfalls: one is the symmetry breaking of wavefunction,
and the other is the violation of the Hellmann–Feynman theorem [35].

2.3 Calculation of Vibronic Coupling Constants

In this subsection, the electronic wavefunction '.rIR0/ is denoted by

j'i D
X

K

jKiCK; (81)

where jKi is a Slater determinant, and K designates the occupation of spin orbitals
jmi. The vibronic coupling constant can be calculated from the diagonal element

h'jV˛j'i D
X

K;L

C �LCKhLjV˛jKi: (82)

Since the vibronic coupling is a sum of the one-electron operators v˛.ri /,
the matrix element over Slater determinants can be deduced using the following
rule [36]:

1. jKi D j � � �mn � � � i

hKjV˛jKi D
X

m2K
hmjv˛jmi;

2. jKi D j � � �mn � � � i; jLi D j � � �pn � � � i .m ¤ p/

hKjV˛jLi D hmjv˛jpi;
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3. jKi D j � � �mn � � � i; jLi D j � � �pq � � � i .m ¤ p; n ¤ q/

hKjV˛jLi D 0:
The diagonal vibronic coupling constant over the Slater determinant jKi is given

by a sum of vibronic coupling [7] as

hKjV˛jKi D
X

j2occ

qj h j jv˛j j i; (83)

where  j is a space orbital and qj an occupation number. In some cases, for
Jahn–Teller modes, the summation over fully occupied degenerate orbitals does not
contribute to vibronic coupling because of the symmetry of the Clebsch–Gordan
coefficients. On the other hand, it should be noted that for totally symmetric modes,
all the occupied orbitals contribute to vibronic coupling [34, 35, 37].

The orbital vibronic coupling constant is calculated from

h j jv˛j j i D
X

r

X

s

cr�j csj hr jv˛jsi D
X

A

X

r

X

s

cr�j csj .Mu˛/A �hr jvAjsi; (84)

where csj denotes a molecular orbital coefficient, r; s denote basis functions,

v˛.ri / D
MX

AD1
.Mu˛/A � vA.ri /; (85)

vA.ri / D
"

@

@RA

 
MX

BD1

ZBe
2

4�0jri � RB j

!#

R0

D


�ZAe

2.ri �RA/
4�0jri � RAj3

�

R0

: (86)

Mu˛ is defined in the Appendix.

2.4 Atomic Vibronic Coupling Constant

An atomic vibronic coupling constant (AVCC) [33] is defined by

V A˛ D
( *

'.rIR0/
ˇ
ˇ
ˇ
ˇ
ˇ

�
@Une
@RA

	

R0

ˇ
ˇ
ˇ
ˇ
ˇ
'.rIR0/

+

C @Unn
@RA

)

� uA˛p
MA

; (87)

which gives the vibronic coupling constant as the summation over A,

V˛ D
MX

AD1
V A˛ : (88)
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The AVCC has been applied for the vibronic couplings in a carrier-transport mate-
rial of organic light-emitting diodes (OLED) [33]. We can explain the reason why
that material has small vibronic couplings. In one of the phenyl amines, e.g. TPD,
although the vibronic coupling density is strongly localized on the nitrogen atoms,
the large distributions around the nitrogen atoms are cancelled, because they are
distributed almost symmetrically around the atoms with opposite signs [33].

2.5 Other Forms of the Vibronic Constant and Their Units

The vibronic coupling constant is expressed in other forms depending upon the
definition of the variables or operators of vibrations.

Here we consider the simplest Hamiltonian

H D E0 � �
2

2

@2

@Q2
˛

C !2

2
Q2
˛ C V˛Q˛ D E0 C 1

2
P 2˛ C

!2

2
Q2
˛ C V˛Q˛: (89)

In the form, the Hamiltonian can be written as

H D E0c	c C �!˛

�
b	˛b˛ C

1

2

	
C �˛c	c.b	˛ C b˛/; (90)

where c	 and c are the creation and annihilation operators of the one-electron state,
respectively. b	˛ and b˛ are the creation and annihilation operators of the vibrational
state with vibrational energy �!, respectively. �˛ is the electron-vibration coupling
constant, the dimension of which is in energy. Since b	˛ and b˛ have the following
relationship

Q˛ D
�

�

2!˛

	 1
2 �
b	˛ C b˛

�
; P˛ D i

�
�!˛

2

	 1
2 �
b	˛ � b˛

�
; (91)

�˛ D
�

�

2!˛

	 1
2

V˛: (92)

The vibronic coupling is defined by

g˛ D �˛

�!˛
D V˛p

2�!3
; (93)

which is a measure of the strength of the vibronic coupling. The Hamiltonian
becomes

H D E0c	c C �!˛


�
b	˛b˛ C

1

2

	
C g˛c	c.b	˛ C b˛/

�
: (94)
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The Rys–Huang factor is another measure of the coupling strength, which is
defined by

S˛ D �E˛

�!˛
D V 2˛
2�!3

D 1

2
g2˛; (95)

where�E˛ is the reorganization energy of the mode ˛, which is equal to the Jahn–
Teller stabilization energyEJT in the degenerate state. S˛ signifies the stabilization
energy measured by the vibrational energy.

The atomic unit of the linear vibronic coupling constant V˛ is Eh=.m
1
2
e a0/ D

m
3
2
e e

6=.32�330�
4/ , where a0 is the Bohr radius, a0 D 4�0�

2=mee
2, and Eh is

the Hartree energy Eh D e2=4�0a0. �˛ in (91) is in the energy unit. The atomic
unit of �˛ is Eh.

3 Vibronic Coupling Density

We will now define the vibronic coupling density [34, 35, 37] which enables us to
analyze a local property of vibronic coupling.

The vibronic coupling is defined by

V˛ D
�
@U.r;R/
@Q˛

	

R0

D
�
@Une.r;R/
@Q˛

	

R0

C
�
@Unn.R/
@Q˛

	

R0

: (96)

Note that, for a non-totally symmetric mode,

�
@Unn.R/
@Q˛

	

R0

D 0 .non-totally symmetric mode/: (97)

The nuclear-electronic part is
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@Une.r;R/
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!#

R0

D
X

i

v˛.ri /; (98)

where the one-electron operator v˛.ri / is defined by

v˛.ri / D
X

A
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@Q˛

�
ZAe

2

4�0jri � RAj
	�

R0

: (99)

The reference nuclear configuration R0 satisfies

*

'R.r;R0/

ˇ̌
ˇ
ˇ
ˇ

�
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@Q˛

	

R0

ˇ̌
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�
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R0

D 0 (100)
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for the electronic wavefunction 'R.r;R0/ of the reference state R. Thus,

V˛ D
D
'S .r;R0/ jV˛j'S .r;R0/

E
; (101)

D
*

'S .r;R0/

ˇ̌
ˇ
ˇ
ˇ

�
@Une.r;R/
@Q˛

	

R0
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ˇ
ˇ
ˇ
'S .r;R0/

+
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*

'R.r;R0/

ˇ
ˇ
ˇ̌
ˇ

�
@Une.r;R/
@Q˛

	

R0

ˇ
ˇ
ˇ̌
ˇ
'R.r;R0/

+

: (102)

Since V˛ is a sum of the one-electron operators v˛,

h'.r;R0/ jV˛ j'.r;R0/i D 1

N

NX

i

Z
d 3ri�.ri /v˛.ri / D

Z
d 3ri�.ri /v˛.ri /;

(103)
where �s.r1/ is the electron density of the electronic function 'S .r;R0/ with NS -
electrons:

�s.r1/ D NS
Z
d 3r2 � � �

Z
d 3rN'S�.r;R0/'S .r;R0/: (104)

Therefore

V˛ D
Z
d 3ri �S .ri /v˛.ri /�

Z
d 3ri �R.ri /v˛.ri / D

Z
d 3ri ��.ri /v˛.ri /;

(105)
where

��.ri / D �S .ri /� �R.ri / (106)

is the electron density difference between the systems S and R. We define vibronic
coupling density as

�˛.ri / D ��.ri / v˛.ri /: (107)

The integration of the vibronic coupling density over the three-dimensional space
yields the vibronic coupling

V˛ D
Z
d 3ri �˛.ri /: (108)

4 Applications of Vibronic Coupling Density Analysis

4.1 Structures

The physical meaning of the diagonal element of vibronic coupling is a force. A
change in the electronic state causes a force to act between nuclei and gives rise to a
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(a)

(b)

(c) (d)

Fig. 2 Vibronic coupling density analysis for hydrogen molecule anion (ROHF/6-31G with first
derivatives). (a) Vibrational mode, (b) vibronic coupling density �, (c) electron density difference
�� and (d) potential derivative v. The blue and grey surfaces denote negative and positive densities,
respectively

geometry change. Therefore, we can understand the structural change by analyzing
the vibronic coupling density.

As an example, the vibronic coupling density for a hydrogen molecule anion is
shown in Fig. 2. It is well-known that when a neutral hydrogen molecule acquires an
electron, the chemical bond will be elongated, since the additional electron occupies
the anti-bonding LUMO. The vibronic coupling density analysis reveals this driving
force. From Fig. 2(b), it is seen that most of the negative vibronic coupling density
occurs in the bond region. The vibronic coupling density is a product between the
electron density difference �� and the potential derivative v. In Fig. 2(c), it should
be noted that small negative�� occurs in the bond region. This is because the addi-
tional electron distribution, which is represented by the grey surfaces in Fig. 2(c),
polarizes orbitals occupied by the other electrons. The negative�� couples with the
positive potential derivative v. The orbital polarization due to anionization or orbital
relaxation plays a crucial role in vibronic coupling.

The importance of orbital relaxation can be observed in � electron systems.
Figure 3 shows the vibronic coupling density analysis for the ethylene anion. Since
ethylene has 12 vibrational modes, the results are shown for a reaction mode, which
we will define later. Anionization of ethylene also gives rise to an elongation of the
double bond. The additional electron occupies the anti-bonding� LUMO. However,
as shown in Fig. 3 (a), a negative vibronic coupling density occurs near the carbon
atoms in the molecular plane as well, which means that the � electrons also couple
with the bond-elongation motion (Fig.3 (c)). The additional � electron polarizes the
other � orbitals. This results in the negative�� as shown in Fig. 3 (b).

These simple examples clearly show that orbital relaxation is crucial in vibronic
coupling. Therefore, variationally optimized wavefunctions should be employed for
vibronic coupling calculations. The frozen orbital approximation is not suitable for
calculation [35].
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a b c

Fig. 3 Vibronic coupling density for the reaction mode of ethylene anion (ROHF/6-31G+ first
derivatives). (a) Vibronic coupling density, (b) electron density difference, and (c) potential
derivative

4.2 Relationship to Fukui Function and Nuclear
Fukui Function

In this subsection, we consider an N -electron system as system R and an .N C 1/-
electron system as system S .

According to the Hohenberg–Kohn theorem, a ground state electronic energy
within the BO approximation is a functional of the electron density �.ri / and the
potential u.ri /:

EŒ�; u� D F Œ��C U Œ�; u�; (109)

where

u.ri / D
MX

AD1
� ZAe

2

4�0jri �RAj ; (110)

F Œ�� D h'jTe C Ueej'i D TeŒ��C UeeŒ��; (111)

and
U Œ�� D Une Œ�; u�C UnnŒu� (112)

with

UneŒ�; u� D
Z
�.ri /u.ri /d 3ri (113)

and

UnnŒu� D 1

2

X

B

0

Z
u.ri /ZBı.ri �RB /d 3ri : (114)

P
0

B signifies a summation of B avoiding RB � RA D 0 in the denominator.
The total differential of EŒ�; u� is
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dE D
Z �

ıE

ı�

	
d�.ri/d 3ri C

Z �
ıE

ıu

	
du.ri /d 3ri ; (115)

D �dN C
Z
�.ri /du.ri/d 3ri : (116)

The chemical potential � is defined by

� D
�
@E

@N

	

u

: (117)

The total differential of the chemical potential � D �ŒN; u� is

d� D
�
@�

@N

	

u

dN C
Z 


ı�

ıu.ri /

�

N

du.ri /dri : (118)

An absolute hardness � and Fukui function f .ri / are defined by

2� D
�
@�

@N

	

u

(119)

and

f .ri / D


ı�

ıu.ri /

�

N

D


@�.ri /
@N

�

u

: (120)

Therefore,

d� D 2�dN C
Z
f .ri /du.ri /d 3ri : (121)

The Fukui function is approximated by the electron density difference using the
finite difference method,

f .ri / D


@�.ri /
@N

�

u

	 �S .ri / � �R.ri / D ��.ri /: (122)

Furthermore, if the frozen orbital approximation is applicable,

f .ri / 	 �f rontier.ri /; (123)

where �f rontier.ri / is the frontier electron density.
Since a deformation of the potential ıu can be expressed in terms of a set of

changes of the normal coordinates fdQ1; : : : ; dQ˛; : : : ; dQ3M�5or3M�6g, the total
differential of energy can be written as

dE D �dN C
X

˛

�
@U

@Q˛

	

N

dQ˛: (124)

Furthermore, for the chemical potential
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d� D 2�dN C
X

˛
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dQ˛: (125)

From the mixed derivative of E with respect to N andQ˛, the Maxwell relation
can be obtained. Assuming E is continuous with respect to N and Q˛,
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For the left-hand-side, according to the Hellmann-Feynman theorem,
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Thus we obtain the Maxwell relation as
�
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N

: (128)

The left-hand-side can be approximated using the finite-difference method,

�
@V˛

@N

	

R0

	 V˛.N C 1/� V˛.N / D V˛; (129)

since R0 is a reference stationary point. Therefore,

�
@�

@Q˛

	

N

D V˛ D
Z
�˛.ri /d 3ri : (130)

Thus, the vibronic coupling constant V˛ can be regarded as a change in the chemical
potential against the deformation dQ˛.

From (125), we obtain

d� D 2�dN C
X

˛

Z
�˛.ri /d 3ridQ˛: (131)

Instead of the normal modes, when we concentrate on a certain reaction path mode
that can be expressed as

dQ˛ D �˛ds; (132)

�˛ D V˛=

sX

˛

V 2˛ ; (133)

where �˛ describes the contribution of the mode ˛ to the reaction path s. Equation
(131) can be written as
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d� D 2�dN C
Z
�s.ri /dsd 3ri ; (134)

where
�s.ri / D

X

˛

�˛�˛.ri /: (135)

Comparing (134) with (121), we can again obtain

�s.ri / D f .ri /du

ds
	 ��.ri /vs.ri /: (136)

In order to predict a reactive region that gives a large jd�j, it is necessary but not
sufficient condition for Fukui function f .ri / to take a large value in the reactive
region. The potential derivative vs.ri / also plays an important role in jd�j. Con-
sequently, the vibronic coupling density for the reactive mode s can be a chemical
reactivity index that can predict a large jd�j region.

For example, Fig. 4 shows the vibronic coupling density of the naphthalene
cation for the reaction mode s, which is defined by the steepest direction. We can
find that the vibronic coupling density has a large value near the ˛-carbons. This
means that the motion of the ˛-carbon couples with the hole. This is consistent with
the prediction of the frontier orbital theory.

Using the nuclear Fukui function [6, 15] defined by


XA D �
�
@U

@XA

	

N

; 
YA D �
�
@U

@YA

	

N

; 
ZA D �
�
@U

@ZA

	

N

; (137)

Fig. 4 Vibronic coupling density of the naphthalene cation. Blue and grey surfaces denote negative
and positive densities, respectively
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the total differential of the chemical potential is written as

d� D 2�dN �
X

A

.
XAdXA C 
YAdYA C 
ZAdZA/ : (138)

The mass-weighted normal coordinate (see Appendix) is expressed in terms of the
nuclear coordinate R as

Q˛ D
X

A

A˛XA
XA C A˛YA

YA C A˛ZA
ZA: (139)

Therefore,

d� D 2�dN C
X

˛

V˛
X

A

�
A˛XA

dXA C A˛YA
dYA C A˛ZA

dZA
�
; (140)

and


XA D �
X

˛

V˛A˛XA
; 
YA D �

X

˛

V˛A˛YA
; 
ZA D �

X

˛

V˛A˛ZA
:

(141)
The relationship between the Jahn-Teller system and the Fukui function has been
discussed by Balawender et al. [6].

5 Vibronic Coupling in Fullerene Ions and Future Prospects

Since C60 has Ih symmetry with fivefold degenerate hu HOMO levels and three-
fold degenerate t1u LUMO levels, the Jahn-Teller effect occurs in the anionic or
cationic states. For example, as the electronic state of C�60 has T1u symmetry, two
ag and eight hg vibrational modes couple to the T1u state. In the case of CC60, the
electronic state has Hu symmetry and the vibrational modes that couple to the Hu

electronic state are two ag , six gg and eight hg modes [14]. To understand the Jahn-
Teller effect in C60 ions, the vibronic coupling constants have been estimated using
experimental and theoretical methods [20].

Gunnarsson et al. measured photoemission spectra of C�60 in the gas phase and
extracted the vibronic coupling constants (Tables 1 and 2) [21]. To estimate the
vibronic coupling constants, they diagonalized the model Hamiltonian numerically
and calculated the photoemission spectrum [9, 27]. The wavefunction of the har-
monic oscillators were used as a basis. The cut-off of the occupation number of
each harmonic oscillator state was five. Their model Hamiltonian included the
vibronic couplings of two ag modes and eight hg modes. The diagonalization
of the model Hamiltonian was performed with some approximations. First, they
assumed T D 0 because the vibrational temperature �200 K is lower than the
temperature of the lowest-frequency vibrational mode�400K. Then they neglected
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the emitted electron by using the sudden approximation and assuming that the
dipole matrix elements do not depend on the final state. The Gaussian function
was used to take the width of the spectrum into consideration. In addition, because
of the difficulty in determining all vibronic coupling with no ambiguity, they also
used the calculated vibronic coupling constants of the two ag modes using the
LDA [4]. Their fit agrees well with the photoemission spectrum in low energy
region.

Using a similar method, Alexandrov and Kabanov also estimated the vibronic
coupling constants from the photoemission spectrum obtained by Gunnarsson
et al. (Tables 1 and 2) [1]. Their Hamiltonian includes the linear vibronic coupling of
the ag .2/ mode and eight hg modes. The cut-off of the occupation number of each
harmonic oscillator state was four. They considered not only vibronic coupling but
also polaron-exciton coupling by adding a spectral function shifted by the energy of
an exciton (' 0:5 eV) to the spectral function:

I.!/ D Ipol.!/C ˛Ipol.! C !ex/; (142)

where I.!/ is the total spectral function, Ipol is a spectral function derived by diag-
onalizing the model Hamiltonian, ˛ is the polaron-exciton coupling constant and
!ex is the energy of an exciton. A Gaussian function was used for the width of the
spectrum. Furthermore, they include the damping of an exciton �ex ' 580 cm�1 in
the second term.

They found that the fit to the low and high energy regions of the photoemission
spectrum was good. They concluded that the vibronic coupling of the ag .2/ mode
is stronger than the value given by Gunnarsson et al. and, contrary to the results
by Gunnarsson et al., the vibronic coupling of the high-frequency hg.7/ and hg.8/
modes is negligible. However, this difference is due to the ambiguity in determin-
ing the coupling constants. Alexandrov and Kabanov might have overestimated the
coupling constant of the ag.2/ mode.

The photoemission spectra of C60 have also been measured [11, 12] and calcu-
lated [29] using the calculated coupling constants [28]. Manini et al. used a model
Hamiltonian that includes the linear vibronic coupling of two ag , six gg and eight
hg modes. They used the sudden approximation and assumed a thermal equilibrium
and performed a DFT calculation using the LDA [28] to obtain the vibronic coupling
constants in CC60. The calculated photoemission spectrum was in good agreement
with the experimental spectrum.

Manini et al. also calculated the vibronic coupling constants in C�60 using the
same method (Tables 1 and 2). Although their results for CC60 agreed with the
photoemission spectrum, the stabilization energy of C�60 was smaller than the
experimental value [1, 21].

The vibronic coupling constants have been estimated from the Raman spectra of
K3C60 [42] and neutron spectroscopy [31] using Allen’s formula [2, 3]. However,
the Jahn-Teller effect is not considered in Allen’s formula [21], and the density of
states at the Fermi level per spin and molecule used in the formula is not precisely
known.
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As described above, there are two problems in determining the vibronic coupling
constants in C60 ions. The first problem involves the analysis of experiments, where
ambiguity remains. Second, the agreements of the vibronic coupling constants and
Jahn-Teller stabilization energies derived from experiments and theoretical calcula-
tions are not good. Therefore, the calculation of the vibronic coupling constants in
C60 ions is still an unsolved problem.

Better experimental spectra should be used to estimate the vibronic coupling con-
stants. Recently, a high resolution photoemission spectra has been obtained by Wang
et al. [41]. However, these authors did not estimate the vibronic coupling constants.
Since they measured the spectrum at low temperature, its widths are narrower than
those obtained by Gunnarsson et al., and the fine structures can be clearly observed.
These results show that a better estimation of the coupling constants is possible.

Experimental values should be compared with reliable calculated values. From
our point of view, as presented in the previous sections, the following three impor-
tant points are involved in the calculation of vibronic coupling constants in Jahn-
Teller molecules. (1) Symmetry of the wavefunction: when the spatial symmetry
of the wavefunction is broken, the Wigner-Eckert theorem is no longer satisfied. In
addition, potential surfaces split at the Jahn-Teller crossing point. As a result, the
absolute values of the vibronic coupling constants become smaller. (2) Hellmann-
Feynman theorem: when the wavefunction is not variationally optimized, it does
not satisfy the Hellmann-Feynman theorem. Accordingly, the energy gradient is
not equal to the vibronic coupling constant. (3) Orbital relaxation: frozen orbital
approximation is not valid for vibronic coupling calculations.

Table 1 Vibronic coupling k D v=
p

�w3 in C60 anions. The coupling constant V, is same as IE
defined in [26]

Mode [21]a [1]a [28]b [4]c [42]d [39]e [17]f

ag.1/ 0.14 0.000 0.157 0.14
ag.2/ 0.42 0.806 0.340 0.42
hg.1/ 0.82 0.852 0.412 0.32 1.31 0.33 0.20
hg.2/ 0.94 0.925 0.489 0.36 0.67 0.15 0.41
hg.3/ 0.42 0.506 0.350 0.20 0.17 0.12 0.10
hg.4/ 0.47 0.474 0.224 0.19 0.19 0.00 0.31
hg.5/ 0.33 0.283 0.193 0.16 0.09 0.22 0.10
hg.6/ 0.20 0.028 0.138 0.25 0.09 0.00 0.12
hg.7/ 0.34 0.000 0.315 0.37 0.16 0.45 0.28
hg.8/ 0.38 0.000 0.289 0.38 0.14 0.25 0.21

a Extracted values from the photoemission spectra in C�60.
b Calculated values in C�60 using LDA.
c Calculated values of ag modes in C�60 and of hg modes in K3C60 using LDA.
d Raman scattering experiment in K3C60.
e Calculated values in C�60 using MNDO.
f Calculated values in C3�60 using LDA.
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Table 2 Vibronic coupling and Jahn-Teller stabilization energy in C60 anions (10�4 a.u.). The
relationship between the dimensionless vibronic coupling constant k and the vibronic coupling
constant V in a.u. is k D V=

p
�!3 . EJT is defined as EJT D V 2=2!2

Mode [21]a [1]a [28]b [4]c [42]d [39]e [17]f

ag.1/ 0.15 0.000 0.171 0.14
ag.2/ 2.33 4.419 1.942 2.31
hg.1/ 0.36 0.370 0.169 0.15 0.57 0.14 0.07
hg.2/ 0.84 0.822 0.423 0.36 0.58 0.14 0.33
hg.3/ 0.77 0.931 0.655 0.39 0.30 0.22 0.13
hg.4/ 0.99 0.993 0.479 0.41 0.41 0.00 0.62
hg.5/ 1.15 1.003 0.703 0.57 0.33 0.93 0.34
hg.6/ 0.85 0.122 0.611 1.10 0.38 0.00 0.49
hg.7/ 1.78 0.000 1.702 1.88 0.86 2.82 1.42
hg.8/ 2.29 0.000 1.779 2.08 0.82 1.73 1.20
EJT 32.4 23.13 14.06 15.0 18.1 12.3 8.21

a Extracted values from the photoemission spectra in C�60.
b Calculated values in C�60 using LDA.
c Calculated values of ag modes in C�60 and of hg modes in K3C60 using LDA.
d Raman scattering experiment in K3C60.
e Calculated values in C�60 using MNDO.
f Calculated values in C3�60 using LDA.

6 Conclusion

Vibronic coupling density analysis provides a local picture of vibronic coupling.
With help of this analysis, we can design a new molecule with desired vibronic
couplings, e.g. a small vibronic coupling in the case of carrier-transport materi-
als. The precise calculation of the vibronic coupling constant and vibronic coupling
density analysis will enable us to realize the engineering of vibronic coupling:
vibronics [38].

Appendix: Normal Mode

The displacement from the equilibrium geometry R0 is written as

�R D �: : : ; XAx; XAy; XAz; : : :
� D .: : : ; XAr ; : : :/ D X; .r D x; y; z/: (143)

The conjugate momentum is defined by PAr D �i�@=@XAr . The Hessian matrix is
the second derivatives of E.R/ with respect to the displacement,

KAr;Bs D
�
@2E.R/
@XAr@XBs

	

R0

: (144)
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The Hamiltonian is written as

Hvib D 1

2

"
MX

AD1

X

rDx;y;z

P 2Ar
MA

C
MX

AD1

X

rDx;y;z

MX

BD1

X

sDx;y;z
XArKAr;BsXBs

#

: (145)

Passing from X to the mass-weighted coordinate X
0 D .: : : ;

p
MAXAr ; : : :/, the

Hamiltonian becomes

Hvib D 1

2

h
P
0tP
0 C X

0tK
0

X
0

i
; (146)

where P
0 D .: : : ; PAr=

p
MA; : : :/, and .K

0

/Ar;Bs D KAr;Bs=
p
MAMB .

Since Hessian K
0

is a real symmetric matrix, its eigenvalue problem

K
0

u˛ D !2˛u˛ (147)

yields real eigenvalues !2˛ and orthonormal eigenvectors, or normal modes u˛; u˛ �
uˇ D ı˛ˇ . The displacement can be expressed by

X
0 D

X

˛

u˛Q˛; (148)

where Q˛ is a mass-weighted normal coordinate. Using the normal coordinate, the
potential term becomes

X
0tK
0

X
0 D

X

˛

.u˛/tQ˛K
0

X

ˇ

uˇQˇ D
X

˛;ˇ

ı˛ˇ!
2
ˇQ˛Qˇ D

X

˛

!2˛Q
2
˛: (149)

The kinetic term becomes

X

Ar

P
02
Ar D

X

˛

��
2 @2

@Q2
˛

; (150)

since u˛ is orthonormal. Thus the vibrational Hamiltonian is written as

Hvib D 1

2

X

˛



��

2 @2

@Q2
˛

C !2˛Q2
˛

�
: (151)

In the X coordinate,
X D MX

0 D
X

˛

Mu˛Q˛; (152)

where M is a diagonal matrix with .M/Ar;Ar D 1=
p
MA. The displacement for the

mode ˛ can be rewritten as
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Mu˛Q˛ D v˛Q˛ D v˛

jv˛j jv
˛jQ˛ D v˛

jv˛jq˛; (153)

where v˛ D Mu˛ is not normalized, and q˛ D .1=p�˛/Q˛. The reduced mass �˛
is defined by

�˛ D 1

jv˛j2 D
1

jMu˛j2 : (154)
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A New Method to Describe the Multimode
Jahn–Teller Effect Using Density Functional
Theory

Matija Zlatar, Carl-Wilhelm Schläpfer, and Claude Daul

Abstract A new method for the analysis of the adiabatic potential energy surfaces
of Jahn–Teller (JT) active molecules is presented. It is based on the analogy between
the JT distortion and reaction coordinates. Within the harmonic approximation the
JT distortion can be analysed as the linear combination of all totally symmetric
normal modes in the low symmetry minimum energy conformation. Contribution
of the normal modes to the distortion, their energy contribution to the JT stabil-
isation energy, the forces at high symmetry cusp and detailed distortion path can
be estimated quantitatively. This approach gives direct insight into the coupling of
electronic structure and nuclear displacements. Further more, it is reviewed how
multideterminental DFT can be applied for the calculation of the JT parameters. As
examples the results for VCl4, cyclopentadienyl radical and cobaltocene are given.

1 Introduction

The Jahn–Teller (JT) theorem states that a molecule with a degenerate electronic
ground state spontaneously distorts along non-totally symmetric vibrational coordi-
nates. This removes the degeneracy and lowers the energy. At the point of electronic
degeneracy the Born–Oppenheimer (BO) [18], or adiabatic, approximation breaks
down and there is vibronic coupling between electronic states and nuclear motion.
The theory underlying the JT and related effects, is well known and documented
in detail [15]. It is based on a perturbation expression of the potential energy sur-
face near the point of electronic degeneracy. The coefficients in the expression of
potential energy are called vibronic coupling coefficients, and they have a physical
meaning. One of the goals in the analysis of JT systems is the determination of these
parameters, and rationalizing the microscopic origin of the problem.

Despite the big advance in various experimental techniques used to study the
JT effect, it is not sufficient to understand the latter based only on experimental
data. Computational methods are, thus, necessary to get deeper insight into the sys-
tem under study and to predict the properties of unknown ones. Traditional first
principles methods can still be used even where non-adiabatic effects are impor-
tant, if the BO approximation is reintroduced by the perturbation approach. Density
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Functional Theory (DFT) is the most common theoretical method in quantum chem-
istry today, but there are still erroneous beliefs that it is not able to handle degenerate
states. E.g. Bersuker [14] and Kaplan [49] emphasised that DFT techniques are not
adequate to reproduce vibronic effects. In contrary, DFT can be applied to both,
degenerate and excited states, as formally proved by the reformulation of the origi-
nal Hohenberg–Kohn theorems—constrained search method and finite temperature
DFT [63]. Further more, Kohn–Sham (KS) DFT, as the most common practical way
of using DFT, is based on the equations equivalent and fully compatible with equa-
tions used in wave-function based methods. Conventional single determinant DFT
has been extended to handle the multiplet problem [27,84]. A method based on this
multideterminental DFT, for the study of the JT systems was developed in our group
[21] and reviewed in this article. The theory behind the DFT is well elaborated and
will not be presented in this review. The reader interested in this subject is referred
to a several good and comprehensive reviews or books e.g. [31, 51, 63] and to the
references therein.

The JT effect is dictated by the molecular symmetry. Group theory allows iden-
tifying the symmetry of the JT distortion, which is for simple molecules usually
determined by one single normal coordinate that satisfies the symmetry require-
ments. In complex molecules, the JT distortion is a superposition of many different
normal coordinates. In the JT semantics this is called the multimode problem. In
this review the treatment of this problem using DFT recently proposed by us [86]
is presented. The essence of our proposition is to express JT active distortion as a
linear combination of all totally symmetric normal modes in the low symmetry min-
imum energy conformation. It is based on the fact that JT distortion is analogous
to a reaction coordinate. The reaction coordinate belongs to the totally symmet-
ric irreducible representation of the molecular point group of the energy minimum
conformation, as proved by Bader [9–11] and Pearson [64, 65]. This is so even if a
complicated nuclear motion is considered for the reaction coordinate. The JT distor-
tion can always be written as a sum of totally symmetric normal modes. A detailed
analysis of the different contributions of the normal modes is of interest, because it
gives direct insight into the coupling of electronic structure and nuclear movements.
This is of a particular interest in various fields of chemistry, e.g. in coordination,
bioinorganic, material chemistry, or in discussing reaction mechanisms.

This review is organized in the following way. In Sect. 2 the vibronic coupling
theory used in this work will be presented, with an emphasise on the different
aspects and meaning of vibronic coupling constants. Several simple examples are
given to show how the group theory is used for a qualitative discussion. In Sect. 3
we show how DFT can be applied for the calculation of the JT parameters. Sec-
tion 4 contains some particular examples from our work as illustration of the
concepts discussed in Sects. 2 and 3. They are tetrachlorovanadium(IV) (VCl4) in
4.1, cyclopentadienyl radical (C5H:5) in 4.2, and cobaltocene (CoCp2) in 4.3. In the
Sect. 5 our model for the analysis of the multimode JT effect is described in detail.
Finally, conclusions and perspectives are given in Sect. 6. In Sect. 7 computational
details are reported.
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2 Relevant Theory of JT Effect

Vibronic coupling theory has been applied to explain Electron Paramagnetic Res-
onance (EPR), Raman and UV/VIS spectra of some JT-active molecules. Model
Hamiltonians were used to fit to the experiments. Some of the early work on var-
ious aspects of the vibronic coupling was done by e.g. van Vleck [77], Öpyk and
Pryce [62], Longuet-Higgins [25, 56, 57], Liehr [55, 60], Herzberg [41, 42], etc. For
the historical development, details about vibronic coupling theory and various appli-
cation until year 2006 reader is referred to the book by I. B. Bersuker [46] and to
the references therein. We would like to emphasize the works of Bader [9–11] and
Pearson [64, 65] on the symmetry of reaction coordinates in addition, because it is
crucial in our discussion of the multimode problem, as shown in our recent paper
[86] and in Sect. 5 of this review.

Consider aN -atomic molecule in the high-symmetry (HS) nuclear configuration,
RHS, in point-group GHS. HHS is the electronic Hamilton operator, which defines
the electronic structure. The molecule has 3N � 6 normal coordinates QHSk, k D
1; : : : ; 3N � 6 (3N � 5 in the case of linear molecules),1 which can be classified
according to the corresponding irreps, �vib

HSk, of the point-group GHS.2 In order to
discuss the potential energy surface, the electronic Hamiltonian, H, is expanded as
a Taylor series around the HS point RHS, along the orthonormal QHSk:

H D HHS C
3N�6X

kD1
.
@V

@QHSk
/HSQHSk C 1

2

3N�6X

k;lD1
.

@2V

@QHSkQHSl
/HSQHSkQHSl C : : : (1)

H D HHS CW : (2)

W represents vibronic operator (JT Hamiltonian) and is a perturbation on
the HHS.

Next, consider that the ground state eigenfunction of HHS with energy, E0, is
f-fold degenerate, ‰HS;0

i D j�electHS mii. �electHS is irrep of the ground state and mi

the component, i D 1; : : : ; f. This leads to an f-fold JT effect. The matrix elements,
Hij, of H within the basis functions‰HS;0

i , are given, according to the conventional
second-order perturbation theory, where 0 designate the ground state, and p excited
states:

1 As it will be described in Sect. 5 our analysis of the multimode JT effect is based on the normal-
coordinate analysis from the low symmetry points, contrary to the conventional vibronic-coupling
theory. Therefore we distinguish between the normal coordinates in the HS conformation, QHSk,
and the normal coordinates in the stable low symmetry (LS) conformation Qk.
2 In general discussions label of the irreducible representation is � . To differentiate between the
symmetry of electronic states and vibrations, irreps of point groups GHS and GLS we add subscript
and superscript, e.g. �electHS , �vib

HS etc. In particular examples Mulliken symbols are used, e.g. A1,
B2 etc. Electronic states are labelled with upper-case letters, e.g. 2E , while one-electron orbitals
with lower-case, e.g. configuration e0:5e0:5. Symmetry of the normal modes are denoted also with
lower case letters, e.g. a1 vibration, or in general as � .
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Hij D E0ıij C
fX

i;jD1
h‰HS;0

i jWj‰HS;0
j i C

fX

iD1

X

p¤0

jh‰HS;0
i jWj‰HS;pij2
E0 �Ep

C : : : (3)

This formulation defines potential energy surface around RHS (or in general
around any point RX) and allows a discussion of the Jahn–Teller (JT) effect [47],
the pseudo-Jahn–Teller (PJT) effect [9–11,46,64,65], the Renner–Teller (RT) effect
[46, 66] as well as the chemical reactivity [9–11, 64, 65], with the same formalism
[46]. Keeping the terms up to second order in QHSk:

Hij D E0ıij C
3N�6X

kD1

fX

i;jD1
h‰HS;0

i j. @V

@QHSk
/HS j‰HS;0

j i
„ ƒ‚ …

F k
ij

QHSk

C1
2

3N�6X

kD1

fX

iD1
h‰HS;0

i j. @
2V

@Q2
HSk

/HSj‰HS;0
i i

„ ƒ‚ …
K0

Q2
HSk

C1
2

3N�6X

k;lD1Ik¤l

fX

i;jD1Ii¤j

h‰HS;0
i j. @2V

@QHSkQHSl
/HS j‰HS;0

j i
„ ƒ‚ …

Gkl
ij

QHSkQHSl

C
3N�6X

kD1

fX

iD1

X

p¤0

jh‰HS;0
i j. @V

@QHSk
/HS j‰HS;pij2

E0 � Ep
„ ƒ‚ …

Rip

Q2
HSk: (4)

The matrix elements in (4) are vibronic coupling constants, thus (4) can be
rewritten as:

Hij D E0ıij C
3N�6X

kD1

fX

i;jD1
F k

ij QHSk C 1

2

3N�6X

kD1

fX

iD1
K0Q2

HSk

C1
2

3N�6X

k;lD1Ik¤l

fX

i;jD1Ii¤j

Gkl
ij QHSkQHSl C

3N�6X

kD1

fX

iD1

X

p¤0
RipQ2

HSk (5)

The definition of the vibronic coupling constants is given in (6), (7), (8) and (9):

The terms F k
ij D h‰HS;0

i j. @V

@QHSk
/HS j‰HS;0

j i (6)
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are the linear vibronic coupling constants;

The terms Gkl
ij D h‰HS;0

i j. @2V

@QHSkQHSl
/HS j‰HS;0

j i (7)

are the quadratic vibronic coupling constants;

The terms Gkk
ii D K0 D h‰HS;0

i j. @
2V

@Q2
HSk

/HSj‰HS;0
i i (8)

are the harmonic force constants at HS point;

The terms Rip D 1

2
Kv D

jh‰HS;0
i j. @V

@QHSk
/HS j‰HS;pij2

E0 �Ep
(9)

are the electronic relaxation.
The complexity of (4) is reduced by symmetry rules, which allow identify-

ing the non zero vibronic coupling constants. The Hamiltonian is invariant under
all symmetry operations of the corresponding point group. Therefore, the opera-
tor @V=@QHSk is transforming according to the irreducible representation �vib

HSk of
the normal coordinate QHSk. The operator @2V=@QHSkQHSl represents a basis for the
reducible representation obtained by direct product �vib

HSk ˝ �vib
HSl � �r. 3 Hence, the

matrix elements in (4) are only different from zero for �vib
HSk � �electHS ˝ �electHS

or in the case of the quadratic vibronic coupling constants for �vib
HSk ˝ �vib

HSl �
�electHS ˝ �electHS .

The slope of the potential energy along the direction QHSk, is given by the diag-
onal linear vibronic constant, F k

ii . F k
ii represents the force, which moves the nuclei

and leads to a change of the structure. These terms are zero at any stationary point
on the potential energy surface. If the ground state is nondegenerate the integral
will vanish unless QHSk is totally symmetric. Therefore for a system with a non-
degenerate ground state, the potential energy surface shows only a gradient along
totally symmetric distortions. As a consequence, for any non stationary point, the
point group does not change along any reaction path [65]. If the ground state is
degenerate, QHSk might be a basis for a non-totally symmetric representation. This
is a case if QHSk belongs to one of the irreps which is a component of the direct
product �electHS ˝ �electHS . The spontaneous distortion along these non-totally sym-
metric normal coordinates, QHSks, leads to a descent in symmetry and removes the
degeneracy of the ground state. When the symmetry is lowered, ‰HS;0

i is no longer
degenerate, and the F k

ii will be zero unless the QHSk becomes totally symmetric in
the new point group. The movement of nuclei that were non-totally symmetric in the
GHS, must now become totally symmetric. The point groupGLS of the minimum on

3 Totally symmetric component of the direct product �vib
HSk ˝ �vib

HSl yields the harmonic force
constant, K0, which is separate term in (4).
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the potential energy surface, can be predicted by looking at the correlation tables
for the symmetry descent, e.g. in [7]. The point group GLS is the one in which
the mode becomes totally symmetric. If there are several possibilities for a descent
in symmetry, GLS of the minimal energy conformation is the highest one with
lifted degeneracy according to the epikernal principle [23, 24, 46]. Jahn and Teller
[47] examined all degenerate terms of the symmetry point groups of non-linear
molecules, and showed that there is always at least one non-totally symmetric vibra-
tion for which the F k

ij ¤ 0. This holds even for double groups, in this case ‰HS;0
i

is a Kramers doublet. This is the physical basis of the (first order) JT effect. The JT
problems are classified according to the symmetry types of the electronic states and
the vibrations that are coupled, �˝� [46]. For example,E˝e JT problem denotes,
coupling of the degenerate electronic state of irrep E, by a degenerate vibration
of irrep e. Since the slope of the potential surface at the high symmetry configu-
ration, RHS, is nonzero, this conformation corresponds not to a stationary point. It
represents a cusp of the potential energy surface obtained in conventional DFT.

The curvature of the potential energy surface in the direction QHSk at RHS, is
measured by the force constant, Kk D K0 C Kv [46]. The diagonal matrix ele-
ments of the second derivative of the potential energy operator, are the primary or
nonvibronic force constants, K0 [46]. K0 is always different from zero and positive
[46,70]. It represents a restoring force that tends to bring the system back to the more
symmetrical situation. HS configuration represents the most stable configuration of
the molecule, if the vibronic coupling is ignored, as it minimizes electron–electron
repulsion.

The electronic relaxation, Rip D 1
2
Kv, depicts the coupling of the ground state

with excited states. This term is always negative, due to the nominator E0 � Ep.
Generally it is different from zero, because there is always some excited states,
of the same irrep as the ground state. It becomes increasingly important when the
ground and the excited states are close in energy. It is referred to as the vibronic
force constant, Kv [46]. It is responsible for: (1) the negative curvature along the
reaction coordinate of the potential energy surface at a transition state [65] (2) for the
pseudo-Jahn–Teller effect [46,65], configurational instability of polyatomic species
with nondegenerate electronic states; (3) for the avoided crossing between the states
of the same symmetry; (4) for the softening of the ground state curvature at the
energy minimum conformation; and (5) it contributes to the anharmonicity of the
vibrations. In practice, in the analysis of JT systems, this term is usually neglected,
or added to the total, observed force constantKk .

The quadratic constants, Gkl
ij , in non linear molecules influence the shape of the

potential energy surfaces. This is true for the higher order terms, e.g. cubic, and
termsRip (PJT terms) also. Discussion of the various terms contributing to the warp-
ing of the potential energy surface can be found in e.g. [39]. For linear molecules the
linear vibronic constants are always zero because the non-totally symmetric vibra-
tions are odd and the degenerate states are even. The quadratic terms however are
nonzero, and this may lead to instability of the linear configurations in case of a
sufficiently strong coupling. This is physical basis of the RT effect [46, 66].



DFT and the Multimode Jahn–Teller Effect 137

As we see, the complexity of (4) is already reduced by symmetry rules, which
allow us to identify the non zero vibronic coupling constants. Moreover, the appli-
cation of the Wigner–Eckart theorem [33, 81] yields a further reduction of the
complexity for degenerate irreducible representations.

h‰HS;0
i j. @V

@QHSk
/j‰HS;0

j i D C
 
�electHS �vib

HSk �
elect
HS

mi mk mj

!

h‰HS;0
�elect

HS
jj. @V

@Q�HSk

/jj‰HS;0
�elect

HS
i

(10)

where C

�
�electHS �vib

HSk �
elect
HS

mi mk mj

	
are the coupling coefficients of the point group of

the molecule at the high symmetry point, GHS, and h‰HS;0

�elect
HS
jj. @V
@Q�HSk

/jj‰HS;0

�elect
HS
i is

reduced matrix-element that only depends upon irreps and not upon their compo-
nents.

In the case of the quadratic matrix elements, Gkl
ij , the Wigner–Eckart theorem

[33, 81] might be applied similarly to the previous case, where the summations run
over all �r and their componentsmr:

h‰HS;0
i j. @V 2

@QHSk@QHSl
/j‰HS;0

j i Dh‰HS;0
�elect

HS
jj. @V 2

@Q�HSk@Q�HSl

/jj‰HS;0
�elect

HS
i

X

�r;mr

C

 
�electHS �r �

elect
HS

mi mr mj

!

C

 
�vib

HSk �r �
vib
HSl

mk mr ml

!

:

(11)

Thus, only one reduced matrix element has to be calculated or determined
experimentally, because the coupling coefficients are known. This simplifies the
interpretation considerably. E.g. in the case of a E ˝ e JT problem the potential
energy surface is determined by only three reduced matrix elements, corresponding
to the parameters F , G, K [46].

In order to show how the theory given above can be applied, few simple examples
are shown. Numerical results obtained from the DFT calculation on these systems
are given later, Sect. 4.

The ground electronic state of eclipsed cobaltocene (CoCp2) or cyclopentadienyl
radical (C5H:5), withD5h symmetry is 2E 001 , with a single electron (hole) in the dou-
bly degenerate orbital, e001 . Using group theory it is easy to show that the distortion
coordinate is e02 (E 001 ˝ E 001 � A01 C ŒA02�C E 02), and the descent in symmetry goes
to C2v. The electronic state will split into A2 and B1, while the degenerate JT active
distortion e02 splits into a1 and b2. Let us analyse the problem in the space of the
two components Qa and Qb of e02 (Qa is of a1 symmetry in C2v, and Qb is of b2
symmetry). The JT active distortion is the totally symmetric reaction coordinate, a1,
in C2v. The modes of b2 symmetry allow mixing of the two electronic states emerg-
ing from the degenerate ground state. The second order vibronic coupling constant,
Gkl

ij is zero, because in the direct product E 02 ˝ E 02 � A01 C ŒA02�C E 01 there are no
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Table 1 Coupling coefficients for the D5 group

el.state E1 � E1
vib. component AA AB BA BB

e2 b 0 � 1
p

2
� 1
p

2
0

a 1
p

2
0 0 � 1

p

2

terms of E 02 symmetry able to interact with the E 001 electronic wavefunctions. There
is no warping of the Mexican hat. The totally symmetric component of E 02 ˝ E 02
representation yields the harmonic force field constant, K . Using Wigner–Eckart
theorem [33,81] and the coupling coefficients for theD5h point group, Table 1. it is
easy to see that the following integrals vanish:

h‰Aj @V
@Qa

j‰Bi D h‰B j @V
@Qa

j‰Ai D h‰Aj @V
@Qb

j‰Ai D h‰B j @V
@Qb

j‰Bi D 0
(12)

and the remaining integrals are:

F D h‰Aj @V
@Qa

j‰Ai D �h‰B j @V
@Qa

j‰Bi D �h‰Aj @V
@Qb

j‰Bi D �h‰B j @V
@Qb

j‰Ai

D 1p
2
h‰E 00

1
jj @V
@QE 0

2

jj‰E 00
1
i: (13)

Potential energy as a function of a distortion along Qa and Qb is:

E D E0 C 1

2
K.Qa

2 CQb
2/˙ F Œ.Qa

2 CQb
2/�

1
2 : (14)

The energy change along Qa, or Qb or along any linear combination is the same.
In this expression only quadratic forms of Qa and Qb are present, thus the energy
of a distortion along �Qa is the same energy as along Qa, thus only the other
component of the degenerate state is stabilized. The potential energy surface has a
Mexican-hat shape, without any warping. Energy change is the same in all directions
in the two dimensional space spanned by these two coordinates.

In the case of CoCp2 there are six different e02 modes and in the case of C5H:5
four and each of them will be characterized with one pair of parameters F and K .

The quadratic vibronic constants of the e01 normal coordinates are not zero even
if the linear ones are zero because in the D5h point groupE 01˝E 01 � A01 C ŒA02�C
E 02. In HS, thus the first order and the second order JT effect are separated. As
one component of e01 becomes in LS totally symmetric too, they will also mix and
contribute to the totally symmetric JT coordinate. Thus, we see that considering
only one normal coordinate is not enough to describe the JT effect even in this
simple case. In the subsequent sections we will address this problem again, and
propose how to analyse which is the contribution of the different vibrations to the
total distortion of a molecule, and which of them are the most important driving
force for the distortion.
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Next, let see how group theory can be used in determining the symmetry proper-
ties of the JT distortions in a tetrahedral, Td , molecule with an E ground electronic
state, e.g. VCl4, Sect. 4.1. The symmetry of the JT active vibration is determined as
E˝E � A1CŒA2�CE. This is another example of anE˝e JT problem. Symmetry
lowering is Td ! D2d . In lower symmetry e vibration splits into a1Cb1. Only one
component of the degenerate vibration is JT active. JT distortion is along the totally
symmetric reaction coordinate, a1, in D2d . The potential along the direction of the
JT inactive vibrations is parabolic with a minimum for the high symmetry confor-
mation. In this case quadratic vibronic coupling constant is different from zero, as
there is always E terms present in the direct product of E ˝ E, and the potential
energy surface has a famous Mexican-hat-like form, with three equivalent minima
and three equivalent transition states. The distortion alongCQa1

and �Qa1
are not

identical. The energy of the two different states is not the same.

3 DFT Calculation of the JT Ground State Properties

As seen in the Sect. 2, JT effect is governed by the symmetry properties of GHS and
GLS point groups of the studied molecule. The information from group theory can be
used for a qualitative discussion. This does not tell anything about the degree of the
distortion or how big the energy gain is due to the descent in symmetry. These ques-
tions are of fundamental importance to characterize JT systems. To answer them
it is necessary either to perform the experiment, and fit the results to the proposed
model, or to carry out a computational study.

The vibronic coupling constants discussed in Sect. 2 define the potential energy
surface. A qualitative cut through the potential energy surface, along JT active vibra-
tion Qa is given in Fig. 1. The figure indicates how the parameters EJT (the JT
stabilization energy), � (the warping barrier), RJT (the JT radius) and EFC (the

EJT

EFC

Qa

E

}

RJT

ELS,min

EHS

ELS,TS

HS

min TS
Δ

Fig. 1 Qualitative cross section through the potential energy surface, along JT active vibration
Qa; Definition of the JT parameters – the JT stabilisation energy, EJT, the warping barrier, �, the
JT radius, RJT, the energy of the vertical Frank–Condon transition, EFC
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Frank–Condon transition) define the potential energy surface. The meaning of the
parameters is clear – energy stabilization due to the JT effect is given by the value of
EJT (or alternatively by EFC D 4EJT), and direction and magnitude of the distortion
by the RJT.

Using non-empirical methods it is, at least in principle, easy to calculate this
alternative set of parameters. They are connected to the set of parameters discussed
in previous Sect. 2, e.g. for the E˝ e JT problem using following expressions, (15),
(16), (17):

EJT D F 2

2.K � 2jGj/ : (15)

� D 4EJTjGj
K C 2jGj ; (16)

Rmin
JT D

jF j
K � 2jGj RTS

JT D �
jF j

K C 2jGj ; (17)

Similar expressions, for other type of JT problems can be found in [46].
DFT is the modern alternative to the wave-function based ab initio methods

and allows to obtain accurate results at low computational cost, that also helps to
understand the chemical origin of the effect. DFT, like Hartree–Fock (HF) meth-
ods, exploit molecular symmetry which is crucial in the case of computational
studies of the JT effect. It also includes correlation effects into the Hamiltonian
via the exchange-correlation functional. HF and many-body perturbation methods
are found to perform poorly in the analysis of JT systems for obvious reasons, at
contrast to the methods based on DFT, or multiconfigurational SCF and coupled
cluster based methods [73]. The later are very accurate but have some drawbacks,
mainly the very high computational cost that limits the applications to the smaller
systems only. Another drawback is the choice of the active space which involves
arbitrariness.

In order to get the JT parameters, it is necessary to know geometries and ener-
gies of HS and LS points. For the LS points, as they are in non-degenerate electronic
ground state, at least formally, this is straightforward. Electronic structure of the HS
point, on the other hand, must be represented with at least two Slater determinants,
consequently, using a single determinant DFT is troublesome. Wang and Shwarz
[79], or Baerends [69] pointed out that a single determinant KS–DFT is deficient
in the description of (near) degeneracy correlation. In a non-empirical approach to
calculate the JT distortion using DFT [21] it was proposed to use average of config-
uration (AOC) calculation to generate the electron density. This is a SCF calculation
where the electrons of degenerate orbitals are distributed equally over the compo-
nents of the degenerate irreps leading to a homogeneous distribution of electrons
with partial occupation, in order to retain the A1 symmetry of the total density in
the HS point group. E.g. for e1 configuration this will mean to place 0.5 electrons
into each of the two e orbitals. This calculation yields the geometry of the high
symmetry species.
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The idea of fractional occupation numbers was introduced by Slater [71], already
in 1969. This approach is not limited for the JT systems, e.g. it was explored by
Dunlap and Mei [32] for molecules, by Filatov and Shaik [36] for diradicals, and
is also used for calculations of solids and metal clusters [8]. It rests on a firm basis
in cases when the ground state density has to be represented by a weighted sum of
single determinant densities [53, 79]. One should remember that molecular orbitals
(MO) themselves have no special meaning. Thus, using partial occupation is just a
way of obtainning electron density of a proper symmetry (HS).

Although, AOC calculation gives us geometry of a HS point, using simply the
energy obtained in this way would be erroneous. AOC calculation is giving too low
energy. The JT stabilization energy is not simply the energy difference between the
HS and the LS species. This is due to the self interaction error (SIE) present in
the approximate exchange-correlation functionals used in practical DFT (approxi-
mate DFT), unless special forms are taken into account. This is sometimes referred
as overestimation of the delocalisation by approximate DFT. Zhang and Yang [83]
showed that SIE in case of delocalized states with non integer number of electrons,
e.g. in HS point, is much bigger than in case of localized ones, where an integer
number of electrons is present, e.g. in LS point. SIE will always artificially stabilize
the energy of systems having fractional number of electrons compared to the corre-
sponding ones with integer number of electrons. It is also worthwhile to stress that
relative stability of the states with partial occupation relative to the ones with integer
occupation (delocalized vs. localized) is of interest not only in study of JT systems
as such, but also in the field of chemical reactivity or mixed valence compounds.

To solve this problem and to obtain EJT, a multideterminental DFT approach
is applied. We need two types of DFT calculations: (1) a single-point calculation
imposing the high symmetry on the nuclear geometry and the low symmetry on the
electron density. This is achieved by introducing an adequate occupation scheme
of the MOs. This gives the energy of a Slater determinant with an integer elec-
tron orbital occupancy. (2) A geometry optimization in the lower symmetry. EJT

is the difference in these two energies. To obtain the energies of the degenerate
states at HS one needs to evaluate the energies of all possible single determinants
with integer occupations in HS geometry. Thus, both steps will be repeated for
all the possible combinations of electronic states in GLS. The energy of vertical
(Franck–Condon) transition EFC, is easily obtained in promoting the unpaired elec-
tron from the ground state to the first excited state for the ground state geometry.
Our computational recipe, for the case of VCl4 is schematically drawn in Fig. 2.

In order to discuss the JT distortion on the adiabatic potential surface we define
a vector RJT as the vector given by the displacements of the atoms from the high
symmetry point defined by the RHS. The JT radius, RJT is given by the length
of the distortion vector between the high symmetry and the minimum energy
configuration.

RJT D RHS � RLS D RJTu (18)
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Fig. 2 Schematic representation of the calculation recipe in Td point group – VCl4

Let us summarize our calculation recipe:

1. AOC geometry optimization with fractional orbital occupation. This yields the
HS geometry RHS

2. Geometry optimization with the different LS electron distributions. This yields
the different LS geometries RLS;min and RLS;TS, and the different energiesELS;min

and ELS;TS that correspond to the minimum and to the transition state on the
potential energy surface respectively

3. Single point calculation with fixed nuclear geometry RHS and different LS
electron distributions with an integer SD occupations, resulting the energies
EHS;LS;min and EHS;LS;TS. Energies for the different distributions should be equal

4. Single point calculation of the excited states with RLS to obtain EFC.

Combination of the calculated energies yield the JT parameters, EJT, �, EFC.

EJT;min D EHS;LS;min � ELS;min; (19)

EJT;TS D EHS;LS;TS � ELS;TS; (20)

� D ELS;min �ELS;TS D EJT;min �EJT;TS: (21)

Within a harmonic approximation the JT distortion is given as a linear combina-
tion of displacements along all, Na1

, totally symmetric normal coordinates in the
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LS conformation. The linear coefficients, or the weighting factors, wHSk, define the
contribution of each of these normal modes, Qk, to the distortion.

RJT D
Na1X

kD1
wHSkQk: (22)

Each of the totally symmetric normal modes contributes the energyEk to the JT
stabilisation, and EJT can be expressed as the sum of these energy contributions,
(23). Force at HS point, which drives the nuclei along Qk to the minimum is given
by FHSk (24). 4

EJT D
Na1X

kD1
Ek D 1

2

Na1X

kD1
w2HSkQ2

k�k; (23)

FHSk D wHSk�kM
1=2Qk: (24)

Detailed discussion of this analysis is given in the Sect. 5.

4 Applications

In this section we present the applications of DFT to discuss JT distortions. The
results demonstrate that the computational recipe, described previously, Sect. 3,
allows the calculation of the JT parameters, which are in good agreement with the
experimental results. In this section, results of the analysis of the multimode JT
effect are presented too.

4.1 Tetrachlorovanadium(IV), VCl4

Among the simplest of the JT molecules is VCl4, a tetrahedral molecule with a d1

configuration. It is characterized by a small JT effect. The method of calculation of
the JT parameters using DFT was first developed on this system in our group [21]
and it shows some important features.

In Td point group, a single electron occupies e orbital. The electronic ground
state is 2E. After the symmetry descent to D2d the later splits into 2A1 and 2B1.
In order to obtain JT parameters calculation recipe discussed in Sect. 3 is applied.
Calculation method is summarized in Fig. 2 and results are given in Table 2.

4 In (23) and (24) eigenvectors Qk, of the Hessian obtained in the LS minimum are expressed
in generalized (mass–weighted) displacement coordinates, with eigenvalues �k; M is a diagonal
3N � 3N matrix with atomic masses in triplicates as elements (m1;m1;m1;m2; : : : ; mN ).
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Table 2 Results of the DFT calculations performed to analyse the JT effect of VCl4; energies
(LDA) are given in eV; the JT parameters EJT and � are given in cm�1 and RJT in (amu)1=2Å

Occupation State Geometry Energy

e0:5e0:5 2E Td �21.7470
b01a

1
1

2A1 Td �21.6074
a01b

1
1

2B1 Td �21.6084
b01a

1
1

2A1 D2d �21.6137
a01b

1
1

2B1 D2d �22.6134

EJT
2A1 50.8

EJT
2B1 40.3

� 10.5
RJT

2A1 0.10
RJT

2B1 0.10

As a starting point the geometry of VCl4 has been optimized in Td symmetry
using an AOC calculation. This means that both e orbitals carry 0.5 electron lead-
ing to a totally symmetric electron distribution. The second step is to carry out a
calculation with fixed Td geometry occupying selectively one of the two degenerate
orbitals. Finally a geometry optimization in D2d symmetry is performed, corre-
sponding to both 2A1 and 2B1 electronic ground states, leading to two different
geometries and energies. Only due to the imposal of different electron distribution
in two D2d cases, the calculations give rise to the simulation of the JT distortion.
The results of this calculation are shown in Table 2.

We notice that the energies E.2A1; Td / and E.2B1; Td / are not equal. This
inequality is due to the nature of the numerical integration grid involved in DFT
calculations [28]. This is generally observed also if symmetry arguments impose
equal energy. In this cases energy difference between two is negligible, e.g. in the
case of cobaltocene (see Sect. 4.3). From the Table 2 it is evident why the two calcu-
lations with Td nuclear geometries andD2d electron densities have been performed.
Comparing the final energies in LS with the one obtained from AOC calculation in
Td would give a misleading result, that there is no JT effect. The electron distribu-
tion in the nondistorted VCl4 is different from that in distorted one. The electron
interaction term in the total energy is also different. In order to compare the two LS
geometries with one in the HS, the unpaired electron needs to be distinguishably
placed in one of the two e orbitals, as done in our calculation scheme.

Within 3N � 6 D 9 normal modes only one pair of e and one a1 modes have
non zero linear vibronic coupling constant. Thus this can be the simplest case of the
multimode problem, with possibly two JT active vibrations. Applying our method
for the analysis of the different contributions of the normal coordinates, Sect. 5, we
find that the contribution of the e mode to the distortion is more than 99%, which
is in agreement with usual consideration of VCl4 system as an ideal, single mode
problem. This also justifies full potential energy surface calculation along the JT
active component of the degenerate vibration, Qa for both electronic states. In the
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case of simple molecules, e.g. tetrahedral VCl4, it is possible to have analytical
expression for the displacements, which can be found in e.g. [46].

This vibration is illustrated in Fig. 3, potential energy surface calculation along it
on Fig. 4, and the Mexican-hat-like plot on Fig. 5.

In summary this shows that DFT calculations for this simple molecule, with a
relatively small JT effect, yields results in good agreement with the experiments
[4, 16, 48, 61]. EJT D 50:8 cm�1 is obtained by the DFT calculation and the

Fig. 3 Vibrational energy distribution representation of the JT active vibration of VCl4. The dif-
ferent colours indicate the direction of the displacement vector; the volume of the spheres is
proportional to the contribution made by the individual nuclei to the energy of the vibrational
mode
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Fig. 4 VCl4 potential energy surface calculation along the JT active vibration Qa (Å) (times) and
least square fitting of the data (minus); energies are given in cm�1 relative to the HS point
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Fig. 5 VCl4 Mexican-hat-like contour plot of the adiabatic potential energy in the space of Qa

and Qb components of the JT active e vibration

experimental value lies between 30 and 80 m�1 [4,16,48,61]. These results confirm
the dynamic character of the JT effect.

4.2 Cyclopentadienyl Radical

Cyclopentadienyl radical is one of the most studied JT active molecules, both exper-
imentally and theoretically. Theoretical works trace back to Andy Liehr in 1956
[54]. They span many different methods [5, 12, 17, 26, 43, 45, 50, 54, 59, 72, 85] dur-
ing the years. The values of EJT obtained are summarised in Table 3. The JT effect
was discussed using various models, (1) the classical perturbation model as in the
work of Liehr [54] (2) models based on the analysis of spectra as in the works of
Miller et al. [5, 6] or Stanton et al. [45], (3) Valence Bond (VB) model [85], or
(4) vibronic coupling density analysis [67]. Somehow surprisingly there was to our
knowledge no attempt to use DFT to analyse the JT effect in this system up to now.
As it can be seen from the Table 3 our multideterminental DFT approach gives
the value of 1,253 cm�1 for EJT which is in excellent agreement with the experi-
mental one of 1,237 cm�1 [6]. The various other theoretical methods give different
results ranging from 495 to 5,072 cm�1. Studies of Miller et al. [5, 6] who used
complete active space methods (EJT D 2147cm�1) and dispersed fluorescence spec-
troscopy (EJT D 1237cm�1), as well as fitting of ab initio calculations to the spectra



DFT and the Multimode Jahn–Teller Effect 147

Table 3 Summary of various computational methods used to study the JT effect in C5H:
5; EJT is

given in cm�1

Methoda /Basis set EJT

Semiempirical-MO [54] 560
Semiempirical-MO [72] 728
Semiempirical-MO [43] 495
HF/STO-3G [59] 5,072
CI/STO-3G [17] 2,484
HF/6-311+G* [26] 1,452
MP2/6-311+G* [26] 3,065
MP4/6-311+G* [26] 2,581
CCSD/6-311+G* [26] 1,613
CCSD(T)/6-311+G* [26] 1,613
CASSCF/cc-PVDZ [12] 2,139
CASSCF/6-31G* [5] 2,147/1,463
CASSCF/cc-PVDZ [50] 1,665
CISD/cc-PVDZ [85] 2,553
EOMIP-CCSD/DZP [45] 1,581
DFT(LDA)/TZPb 1,253
DFT(PW91)/TZPb 1,326
Exp. [6] 1237

aAcronyms used for the calculation methods: HF Hartree–Fock; CI Configuration Interaction;
MPN Møller–Plesset Perturbation Theory of order N for electron correlation; CCSD(T) Coupled
Cluster Single, Double (Triple) excitations; CASSCF Complete-Active-Space SCF; CISD Single
and Double excitations, single reference CI method; EOMIP–CCSD Equation-of-motion ionization
potential coupled-cluster single, double excitations; LDA Local Density Approximation; PW91
Generalized Gradient Approximation in the form given by Perdew–Wang
bMultideterminental DFT – this work

(EJT D 1;463cm�1) are considered to be benchmark results for the determination
of the JT parameters. They also identified three dominant normal modes neces-
sary to explain their results. These were recently confirmed by Stanton et al. using
Equation-of-motion ionization potential coupled–cluster (EOMIP–CCSD) calcula-
tions [45]. Thus, this system is a good test case for both our multideterminental
DFT approach in studies of the JT effect and for our model of the analysis of the
multimode JT effect.

The ground electronic state of C5H:5 in D5h symmetry is 2E 001 , with three elec-
trons occupying the doubly degenerate orbital (one hole). Using group theory it is
easy to show, see Sect. 2 that the distortion coordinate is e02. The descent in sym-
metry goes to C2v. The electronic state 2E 001 splits into 2A2 and 2B1 and the JT
active distortion e02 splits into a1 and b2. The results of the DFT calculation are
summarised in the Table 4.

The difference in the JT energies for the different electronic states is only
3:2 cm�1. This confirms results of the analysis by group theory, see Sect. 2, that
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Table 4 Results of the DFT calculations performed to analyse the JT effect of C5H:
5; energies

(LDA) are given in eV; the JT parameters EJT and � are given in cm�1 and RJT in (amu)1=2Å

Occupation State Geometry Energy

e0:75e0:75 2E D5h �64.6740
b21a

1
1

2A1 D5h �64.6529
a21b

1
1

2B1 D5h �64.6523
b21a

1
1

2A1 C2v �64.8079
a21b

1
1

2B1 C2v �64.8077

EJT
2A1 1,250.2

EJT
2B1 1,253.4

� 3.2
RJT

2A1 0.17
RJT

2B1 0.18

Table 5 Analysis of the JT multimode problem in C5H5 radical by LS totally symmetric normal
modes in harmonic approximation. Frequencies of normal modes are in cm�1 as obtained from
ADF [1, 40, 76] calculations; contribution of the normal mode Qk to the RJT is given by wk (linear
coefficients in (22)); ck linear coefficients (wk) normalized to 1; Ek energy contribution of Qk to
the EJT calculated in harmonic approximation, (23) in cm�1 ; Fk force along Qk at HS point,
calculated in harmonic approximation, (24) in 103N; experimental value Eexp

k , and two theoretical
values Et1

k and Et2
k in cm�1 from [5, 6]. EJT.DFT/, in cm�1, from multideterminental DFT, this

work

Qk Q�k in C2v Assignement HS-irrep wk ck Ek Fk E
exp

k Et1
k Et2

k EJT.DFT/

1 831 C-C-C bend e02 0.0738 0.2419 247.5 28.5 166 155 245
2 937 C-C-H bend e01 0.0374 0.0621 30.9 9.9
3 1040 C-C-H bend e02 0.1083 0.5218 247.9 29.0 594 360 509
4 1127 C-C stretch a01 0.0043 0.0008 1.6 2.6
5 1349 C-C stretch e01 �0.0276 0.0339 43.8 19.1
6 1482 C-C stretch e02 0.0560 0.1393 665.3 73.0 477 959 1387
7 3120 C-H stretch e02 0.0020 0.0002 0.5 2.9
8 3140 C-H stretch e01 �0.0012 0.0001 0.1 2.1
9 3165 C-H stretch a01 0.0014 0.0001 0.1 2.5
EJT 1,238 1,237 1,474 2,141 1,253

the quadratic coupling constant,Gkl
ij is zero, and there is no warping of the Mexican

hat. In order to analyse multimode character of the JT distortion in C5H:5 we express
the distortion as a linear combination of all totally symmetric normal modes in the
LS energy minimum. Details of the procedure will be given later in Sect. 5, and only
the results are presented in Table 5.

We are able to identify the three most important vibrations contributing to the
JT distortion, vibrations 1, 3 and 6, in agreement with previous studies [5, 6]. Com-
paring our results to the experimental one we may note that vibrations 3 and 6 are
contributing approximately the same amount to the EJT. While the other authors
considered only those three normal modes, in our model all vibrations that can con-
tribute to the JT distortion are included. Our model is completely theoretical without
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Fig. 6a vibration 1 (C-C-C bend) Fig. 6b vibration 3 (C-C-H bend)

Fig. 6c vibration 6 (C-C stretch)

Fig. 6 Vibrational energy distribution representation of the three most important a1 vibrations
in C2v symmetry of C5H:

5, corresponding to the three e02 JT active vibrations in D5h symmetry.
The different colours indicate the direction of the displacement vector; the volume of the spheres
is proportional to the contribution made by the individual nuclei to the energy of the vibrational
mode

any fitting to the experimental data. Three most dominant vibrations are presented
in the Fig. 6.

Vibrations 1, 3, 6 contribute 90% to the JT distortion. Vibrations 2 and 5, which
correspond to the e01 irreps in D5h around 10%. They are JT active in the second
order, and accordingly not negligible. This is because the vibrations are all of the
same type, in plane ring deformation, as the ones corresponding to the e02, C-C-C
bend and C-C stretch, thus influencing the C-C bonding in a similar way.
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4.3 Cobaltocene

The high symmetry conformation of metallocenes can be eitherD5h if the two rings
are eclipsed or D5d if the two rings are staggered. In both cases the symmetry
arguments are the same as for an intermediate structure ofD5 symmetry. The ground
electronic state of cobaltocene inD5h symmetry is 2E 001 , 2E1g inD5d , with a single
electron in the doubly degenerate orbital. Using group theory it is easy to show,
see Sect. 2 that the distortion coordinates are of e02 irreps in the eclipsed and of e2g
in the staggered conformation, and the descent in symmetry goes to C2v and C2h
respectively. The electronic states will split in D5h E 001 into A2 and B1, inD5d E1g
into Ag and Bg . Respectively, the JT active distortion e02 splits into a1 and b2 and
e2g into ag and bg .

This system is more complicated than the previous ones, because an internal
rotation of the rings is present. Our study [86] showed that this rotation does not
influence the JT distortion. In the low symmetry, C2v for the eclipsed, C2h for the
staggered conformation, the structure of the rings is nearly identical. This strongly
suggests that the energy barrier for the rotation of the rings is small compared to
the EJT. This was verified calculating the energy profile for the ring rotation. The
energy barrier for the internal rotation of the rings, from eclipsed to staggered con-
formation, is estimated to be around 240 cm�1 in both high and low symmetries,
similar to the energy for the rotation of the rings in ferrocene [13]. Cobaltocene
in D5h symmetry is approximately 160 cm�1 more stable than in D5d . This is in
agreement with results of previous DFT calculations on metallocenes [75, 82]. The
energy difference between the low symmetry conformations C2v and C2h obtained
by descent in symmetry from D5h and D5d is similar. This is summarised in the
Fig. 7.

Cobaltocene has been subject of wide research [3, 4, 22, 34, 52, 58, 74, 80], but
only recently a detailed analysis [86] of the JT distortion has been carried out. Cal-
culations were done for both the eclipsed and the staggered conformations, giving
similar results. In this paper we will present only the results for the more stable of
the two, i.e. for the eclipsed case. Details for both eclipsed and staggered conforma-
tion can be found in [86]. As already indicated in previous Sect. 3, DFT produces a
totally symmetric electron distribution if each e001 orbital carries 0.5 electrons. There
are two distinct ways to accommodate the single electron in C2v symmetry, i.e. a12b

0
1

(2A2 electronic state) or b11a
0
2 (2B1 electronic state). One of the states is stabilized

by a distortion along CRJT, the other along �RJT. Thus, DFT calculations corre-
sponding to both of these occupations, as well as to the GHS D D5h and GLS D C2v

geometries, are carried out, leading to the values of JT stabilization energies,EJT.A/

and EJT.B/. Results are tabulated in Table 6.
The JT stabilization energy is 814.2 cm�1 in good agreement with the value

of 1050cm�1 estimated from the solid state EPR [4, 22]. The experimental results
strongly depend on the diamagnetic host matrix, thus making experimental deter-
mination of the JT parameters difficult. The JT energies for the different elec-
tronic states are almost exactly the same, the difference is only 0:7 cm�1, smaller
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Fig. 7 Summary of the JT effect in cobaltocene. Symmetries of the corresponding geometries,
electronic states and normal coordinates, numbering of C atoms in the cyclopentadienyl rings, as
well as the relative energies of the different structures is given

Table 6 Results of the DFT calculations performed to analyse the JT effect of cobaltocene;
energies (LDA) are given in eV; the JT parameters EJT and � are given in cm�1 and RJT in
(amu)1=2Å

Occupation State Geometry Energy

e0:5e0:5 2E D5h �142:28971
a02b

0
1

2A2 D5h �142:26105
b11a

0
2

2B1 D5h �142:26113
a12b

0
1

2A2 C2v �142:36200
b11a

0
2

2B1 C2v �142:36199
EJT

2A2 814:2

EJT
2B1 813:5

� 0:7

RJT
2A2 0:35

RJT
2B1 0:35

then the precision of the calculations. As expected, based on group theoretical
considerations, Sect. 2, there is no warping of the potential energy surface.

Cobaltocene is an another example of the multimode JT system. There are six
pairs of e02 vibrations which are first order JT active, four a01 and six pairs of e01
vibrations which are second order JT active. They become all totally symmetric in
C2v symmetry (one component of each pair in the case of the degenerate vibrations).
Thus in C2v symmetry we have 16 totally symmetric vibrations. As already pointed
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Table 7 Analysis of the JT multimode problem in cobaltocene by LS totally symmetric normal
modes in harmonic approximation. Frequencies of normal modes are in cm�1 as obtained from
ADF [1, 40, 76] calculations; contribution of the normal mode Qk to the RJT is given by wk (linear
coefficients in (22)); ck linear coefficients (wk) normalized to 1; Ek energy contribution of Qk

to the EJT calculated in harmonic approximation, (23) in cm�1 ; Fk force along Qk at HS point,
calculated in harmonic approximation, (24) in 103N;EJT.DFT/, in cm�1, from multideterminental
DFT [86]

Qk Q�k in C2v Assignment HS-irrep wk ck Ek Fk EJT.DFT/

1 153 skeletal bending e01 0:0035 0.0003 0:02 0:1

2 292 ring–metal stretch a01 �0:0172 0.0080 1:95 1:6

3 405 ring tilt e01 0:0097 0.0025 0:03 4:2

4 587 out-of-plane ring deformation e02 �0:1550 0.6495 475:49 48:2

5 762 C-H wagging a01 �0:0147 0.0058 2:11 2:0

6 825 C-H wagging e01 �0:0181 0.0082 4:12 3:8

7 830 in-plane ring distortion e02 �0:0621 0.1044 118:86 32:4

8 869 C-H wagging e02 �0:0657 0.1166 66:22 17:4

9 976 C-H bending e01 0:0084 0.0019 1:44 3:1

10 1031 in-plane C–H bending e02 0:0547 0.0809 55:77 15:5

11 1126 ring breathing mode a01 0:0002 0.0000 0:00 0:3

(C-C stretch)
12 1367 C-C stretch e02 0:0209 0.0118 47:86 35:9

13 1397 C-C stretch e01 0:0185 0.0093 34:15 30:0

14 3136 C-H stretch e02 �0:0017 0.0001 0:46 3:5

15 3148 C-H stretch e01 �0:0009 0.0000 0:13 1:9

16 3166 C-H stretch a01 �0:0002 0.0000 0:00 0:4

EJT 808:6 814.2

out in order to analyse JT distortion in terms of the contribution of different normal
coordinates, we express the distortion as a linear combination of all totally symmet-
ric normal modes in the low symmetry (C2v) minimum energy conformation. The
result is given in Table 7. Assignment of the vibrations is given according to the
normal coordinate analysis of the ferrocene and ruthenocene [2, 13, 20, 68].

The main contribution to the JT distortion arises from the four e02 type vibra-
tions (labelled as 4, 7, 8 and 10 in Table 7). They contribute to about 95% of the
total JT distortion vector. The four vibrations are: the out-of-plane ring distortion, 4,
the in-plane ring distortion, 7, the C-H wagging (the out-of-plane C-H bending), 8,
and in-plane C-H bending, 10. These vibrations are illustrated in Fig. 8, using the
vibrational energy distribution representation [44]. The analysis shows, that the
contribution of low energy skeletal vibrations (1 to 3) and the high energy vibra-
tions (C-H stretch 14 to 16) is almost negligible. The JT important e02 vibrations,
and hence the JT distortion, is predominantly located in the five–member rings. The
main contribution is the out-of-plane deformation of cyclopentadienyl ring (vibra-
tion 4). This is expected because this normal coordinate minimizes antibonding
interactions between the cyclopentadienyl ring orbitals and the single occupied
metal d orbital. The symmetry of the electronic ground state in HS point directs
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Fig. 8a vibration 4 (out-of-plane ring defor-
mation)

Fig. 8b vibration 7 (in-plane ring distortion)

Fig. 8c vibration 8 (C-H wagging) Fig. 8d vibration 10 (in-plane C-H bending)

Fig. 8 Vibrational energy distribution representation of the four most important a1 vibrations
in C2v symmetry of cobaltocene, corresponding to the four e02 vibrations in D5h symmetry. The
different colours indicate the direction of the displacement vector; the volume of the spheres is
proportional to the contribution made by the individual nuclei to the energy of the vibrational
mode

the distortion in a way of perturbing the aromaticity of the two rings. The multi-
mode analysis gives a direct insight into microscopic origin of the distortion and
into counterplay between the energy gain due to the JT effect and energy loss due
to the out-of-plane distortion of the ligands.
e01 vibrations, that are JT active in second order only are almost not contributing,

except the C-C stretch, vibration 13. The situation is different when comparing to
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the C5H:5, 4.2. This is due to the fact that in cobaltocene e02 and e01 vibrations are
of different type, e02 are located in the ligands, while e01 are mainly skeletal defor-
mations. In C5H:5 they are of the same kind, thus influencing bonding in a analo-
gous way.
EJT calculated from the LS normal coordinate analysis is in the excellent agree-

ment with previously calculated one using multideterminental approach. In C5H:5
both the JT electronic deformation and nuclear displacements are localized in the
rings, while in CoCp2 the first is localized on the central metal ion and the latter
on the Cp rings. In C5H:5 contributions originating from the second order JT active
vibrations, e01, are consequently not negligible.

The mixing of the totally symmetric vibrations in lower symmetry is expected to
increase with increasing deviation from the high symmetry geometry. It is interest-
ing to see how the composition of the distortion vector changes along the minimal
energy path. The later is defined as the steepest descent path [37, 38], down from
the JT, HS, cusp to the local energy minimum, LS. The former is easily calculated
using the Intrinsic Reaction Coordinate (IRC) algorithm as implemented by Deng
and Ziegler [29, 30] in the ADF program package [1, 40, 76]. There is a complete
analogy between the JT distortion and chemical reaction paths, thus it is possible to
use the same algorithms previously developed for the analysis of reaction paths. The
JT distortion path is totally symmetric reaction path in the LS potential energy sur-
face, connecting HS, JT cusp, and LS energy minimum. The high symmetry point
has a nonzero gradient, thus, the first step is computed in direction of the steepest
descent and not in the direction of a negative Hessian eigenvector as usually in IRC
calculations starting from the transition states. The path is than computed by taking
steps of adequate size and by optimizing all atomic coordinates orthogonal to it.
During the calculation C2v symmetry is conserved, and it is taken into account that
one electronic state corresponds to the forward path, and the other to the backward
path. IRC calculations for the eclipsed conformation of the rings are summarized
in Fig. 9 together with the direct path. It can be seen that these two ways are not
significantly different. Changes of the contributions of the four dominant vibrations
along the IRC path are represented in Fig. 10.

The significance of different normal coordinates is not the same at the beginning
step and at the minimum. Figure 10 shows that the composition of the distortion
vector changes along the minimal energy path. In the beginning, the contribution of
in-plane C-H bending, 10, is also important, but as the distortion deviates from the
high symmetry point its contribution decreases. The opposite is true for the lowest
energy e02 vibration 4, the out-of-plane ring deformation, which is indeed the most
important one. The contribution of C-H wagging is also becoming more important.
On the first sight, it might be surprising, that the softest of the four modes makes
the largest contribution. This indicates that the distortion along the corresponding
normal coordinate is larger than for any other one. One can see that the first point
along the IRC path is already giving 2=3 of the JT stabilisation. Thus, although IRC
calculation gives the information that different contributions change along the reac-
tion path, the information from the first, infinitesimally small, step is missing. This
is due to the fact that IRC algorithm is implemented to locate the minima, reactants
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Fig. 9 IRC calculation (filled squares) and direct path (open circles) from the high symmetry
cusp, in C2v symmetry (eclipsed conformation of the rings); forward direction correspond to the
2B1 electronic state and backward direction to the 2A2 electronic state; energies are given in cm�1

relative to the HS point

Fig. 10 Changes in the composition of the distortion vector – contribution of the four most impor-
tant vibrations to the RJT, given as ck (linear coefficients in (22) normalized to 1) along the minimal
energy (IRC) path

and products, in the fastest way, and due to the fact that in chemical reactions there
is bond formation and bond breaking, thus the distortions are much bigger than in
the JT cases. This information is obtained from the calculation of the forces at the
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HS point as done by our multimode analysis, Table 7. Vibration 4 is clearly dom-
inating one, while forces along harder vibrations 7, 8 and 10 are smaller and of
comparable size. This can be also seen from the values ck, Ek and IRC calculations.
The importance of the vibration 12 (also corresponding to the e02 irrep in HS) and 13
(corresponding to the e01 irrep in HS) is small but still contributing to the distortion.
They contribute each around 1% to the distortion, and each around 5% to the EJT,
but with not negligible forces at HS point.

5 Analysis of the Multimode JT Effect at the Stationary
Point of Low Symmetry

As shown in the Sect. 2, the JT theorem predicts a spontaneous distortion of the high
symmetry configuration. Group theory allows finding the irreducible representation
of the non-totally symmetric vibrations in the HS conformation, which are JT active
and remove the degeneracy and lead to a stabilization of the system by lowering the
symmetry. The irreducible representations of the active modes, �vib

HS are given by
the direct product �electHS ˝�electHS � A1C�vib

HS in GHS. GLS, the point group of the
minimum energy conformation is defined by the requirement that the irreps of the
active modes become totally symmetric upon descent in symmetry and application
of the epikernal principle [23, 24, 46].

JT distortion, RJT represents a displacement of the nuclei from the HS conforma-
tion to the LS energy minimum on the 3N �6 dimensional potential energy surface.
The minimum is localized by energy minimization constraining the structure to
GLS, using well developed algorithms as implemented in standard computational
chemistry program packages. The difference between the HS cusp and the LS
conformation of minimal energy defines the RJT. The path from the cusp to the
minimum conformation is a reaction coordinate. This has been often overlooked.
Therefore, the symmetry rules developed by Bader [9–11] and Pearson [64, 65]
can be applied. The JT distortion is defined by the symmetry of the electronic
states, as pointed out above and represents a totally symmetric reaction coordi-
nate in GLS. Any displacement on the potential energy surface, also RJT, has to be
totally symmetric and consequently a superposition of the totally symmetric normal
coordinates. The number of the later is Na1

, in general smaller than 3N � 6.
Within the harmonic approximation, 3N � 6 dimensional potential energy sur-

face has a simple mathematical form. Because the displacement of the nuclei must
be totally symmetric in the GLS, the potential energy surface is defined as a super-
position of Na1

� 3N � 6 totally symmetric orthogonal oscillators in LS. In other
words the JT distortion is given as a linear combination of displacements along all
totally symmetric normal modes in the LS minimum energy conformation. Using
this approach it is possible to estimate the contribution of the different normal modes
to the RJT in a complex system. Na1

is in general larger than the number of JT
active, �JT, vibrations, which spans �vib

HS . Because they are of the same symmetry
they contribute all to the JT distortion. Especially the a1 modes in GHS mix into
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the �JT vibrations, because they never change upon descent in symmetry and they
are always present in the direct product �electHS ˝ �electHS . An example is the E ˝ e
problem in Td point group discussed for VCl4 in Sect. 4.1. In this case only one
component of the angle deformation of e symmetry is JT active. It changes to a1
in D2d . In the lower symmetry it might mix with the a1 stretch vibration which
is not JT active in Td . In many situations other irreps, which are not JT active in
HS become totally symmetric upon descent in symmetry, and therefore contribute
also to the JT distortion. This is found in the case of the JT D5h ! C2v distortion 5

already discussed for C5H:5 radical and CoCp2, Sects. 4.2 and 4.3. The normal coor-
dinates that are basis of the e02, e01 and a01 irreducible representations inD5h become
a1 in C2v. e02s are JT active in first order, while e01 are active in second order.

The choice of the LS geometry as the reference point is in contrast to the usual
treatment of the JT effect. This point corresponds to a energy minimum and has
the property that the Hessian of the energy is positive semi-definite 6 and thus can
be used to obtain the harmonic vibrational modes without any complications. As
already pointed, the totally symmetric subset of vibrations is used to represent
potential energy surface of the JT distortion in a harmonic approximation. The
HS point in contrary is a cusp on the potential energy surface, the gradients—
first derivatives of energy over nuclear displacements, are discontinuous and not
zero, hence this point is inappropriate for a normal coordinate analysis. Conven-
tional quantum chemistry program packages do not allow to use other points than
stationary ones as a reference point in the frequency calculations. Thus, frequency
calculations in the HS point will need the implementation of special algorithms into
the conventional quantum chemistry packages, e.g. ADF. Of course one can use the
results of the normal coordinate analysis of a similar JT–nonactive molecule (e.g.
with one electron more or less), but this is an unnecessary approximation. Such a
calculation, however, yields no gradients along the JT active modes, which are the
essential ingredient of the JT distortions, the force, which drives the molecule out
of the high symmetry conformation. In the HS point a1 and �JT normal coordinates
do not interact, which is not the case in the LS point, as they are then all of the
same symmetry. This allows us to obtain different contribution from the simple lin-
ear equation, (29). Furthermore, it is always possible to correlate normal modes of
LS to HS ones, thus having connection to the usual treatment based on perturbation
theory in HS.

Based on this consideration it is straight forward to analyse the multimode prob-
lem using generalized displacement coordinates, qk (k D 1 : : : 3N ), around the low
symmetry (LS) energy minimum as a origin (qLSk D 0; k D 1 : : : 3N ):

q1 D pm1�x1; q2 D pm1�y1; : : : ; q3N D pmN�zN (25)

5 This can be applied of course also for the D5d and D5 point groups.
6 The square matrix of second-order partial derivatives of a potential energy over the nuclear
displacements, Hessian, H, is positive semi-definite if QT

HQ � 0 for any arbitrary vector Q.



158 M. Zlatar et al.

�xn, �yn, �zn are Cartesian displacements from the origin, and mn are masses
of atoms. Every point X in our conformational space can be represented using this
generalized coordinates relative to the origin, by a 3N dimensional vector RX:

RX D

2

6
6
6
6
66
6
6
6
6
4

qX1

qX2

qX3
:::

qX3N�2
qX3N�1
qX3N

3

7
7
7
7
77
7
7
7
7
5

D

2

6
6
6
6
66
6
6
6
6
4

p
m1 p

m1 p
m1

0
::: 0p

mN p
mN p

mN

3

7
7
7
7
77
7
7
7
7
5

2

6
6
6
6
66
6
6
6
6
4

�x1
�y1
�z1
:::

�xN
�yN
�zN

3

7
7
7
7
77
7
7
7
7
5

(26)

RX DM
1=2�rX (27)

The HS point is given by the vector RHS:

RHS D

2

6
4

qHS1
:::

qHS3N

3

7
5 (28)

Consider qHS1; qHS2; : : : ; qHS3N . This is equivalent to say that the JT distortion
is equal to RHS, RJT D RHS, with elements qHSk.

As the result of the DFT frequency calculations in LS, we haveNa1
totally sym-

metric normal coordinates Qk (k D 1 : : : Na1
), which are the eigenvectors of the

Hessian. The corresponding eigenvalues are �k D .2��k/
2, �k is a frequency of a

normal mode which is connected to the wave numbers, Q�k, that are usually used, by
a simple relation �k D Q�kc, where c is the speed of light. The normal modes are
displacement vectors in generalized displacement coordinates, i.e.:

Qk D

2

6
4

�qk1
:::

�qk3N

3

7
5 (29)

Within the harmonic approximation it is possible to express the JT distortion in
terms of LS totally symmetric normal coordinates:

RJT D
Na1X

kD1
wHSkQk (30)

In matrix form this yields:
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RJT D

2

6
6
4

qHS1

:
:
:

qHS3N

3

7
7
5 D

2

6
6
4

�q11 : : : �qNa1 1
:
:
:

�q13N : : : �qNa1 3N

3

7
7
5

2

6
6
4

wHS1

:
:
:

wHSNa1

3

7
7
5 D

h
Q1;Q2; : : : ;QNa1

i

2

6
6
4

wHS1

:
:
:

wHSNa1

3

7
7
5

(31)

RJT D QwHS (32)

This linear problem can be easily solved to get weighting factors wHSk. They
represent the contribution of the displacements along the different totally symmetric
normal coordinates to the RJT.

wHS D .QT
Q/�1QTRJT (33)

The weighting can be normalized to 1, which is more informative as ck are giving
the information of the percentage contribution of each normal mode to the RJT:

ck D w2k
w21 C w22 C : : :C w2Na1

(34)

The same treatment is possible for any point RX on the potential energy surface:

RX D QwX (35)

Alternatively to the method described in Sect. 2, in this harmonic model, EJT is
expressed as the sum of the energy contributions of the totally symmetric normal
modes.

EJT D
Na1X

kD1
Ek D 1

2

Na1X

kD1
w2HSkQ2

k�k (36)

Thus each normal mode contributes the energyEk to the JT stabilisation.

Ek D 2�2w2HSk�
2
k jQkj2 (37)

Similarly one can get the potential gradient along each normal coordinate at any
point RX, which is the force, FXk, which drives the nuclei along each coordinate
to the minimum. FXk is defined as derivative of energy over Cartesian coordinates
which yields (38).

FXk D wXk�kM
1=2Qk (38)

In the HS point this will lead information which normal mode has the steepest
descent indicating the main driving force for the JT distortion from the HS to the
LS. The total distortion force at a given point is given as the sum of the individual
forces, which allows determination of the minimal energy distortion path.

FX D
X

k

FXk (39)
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As a conclusion, the simple analytical form of the potential energy surface allows
to calculate the minimal energy path, step by step from HS to the LS energy mini-
mum. It is obvious that along the path the contributions of the different modes will
change. At HS only JT active modes contribute. After the first step the symme-
try is lowered and the other modes as mentioned will mix in. This allows getting
very detailed picture on the interaction between the deformation of the electron
distribution and the displacements of the nuclei.

It must be mentioned that the 3N � 6 normal coordinates in LS are not identical
with the normal coordinates in HS. The correlation between the two systems is
however straight forward. There is a unitary transformation between the normal
coordinates of HS and LS points:

h
Q1HS;Q2HS; : : : ;QNa1

HS

i
D
h
Q1;Q2; : : : ;QNA1

i
2

6
4

r11 : : : r1Na1

:::
:::

r3N1 : : : r3NNa1

3

7
5 (40)

The visual inspection can be used for small molecules, but for larger molecules
this is impossible. Alternatively, it is possible to use the method developed by
Hug [44], for the comparison of nuclear motions of structurally similar fragments
of molecules. We applied it for the correlation of the normal modes of the same
molecule in different conformations belonging to different point groups. Using the
idea of similarity of the two normal coordinates it is possible to correlate the HS
and LS normal coordinates quantitatively. Furthermore it allows using as a refer-
ence molecule (HS) a similar molecule which is not JT active, e.g. cyclopentadienyl
anion or ferrocene, thus bypassing difficulties in obtaining the normal coordinates
of the HS cusp. Hug’s program allows pictorial representation of the unitary trans-
formation matrix as shown in Fig. 11 for C5H:5, or in matrix form with numerical
values of the similarities, as shown in Table 8 for CoCp2. Identical modes have the
value of 1, while orthogonal value 0. In schematic representation a circle with a
diameter equal to the square which contains it means a value of 1.

6 Conclusions and Perspectives

In this paper a new DFT based method for the qualitative and quantitative analysis
of the adiabatic potential energy surfaces of JT active molecules is presented. It is
shown how DFT can be successfully applied for the calculation of the JT parameters,
and thus be a useful tool in understanding the JT effect and related phenomena. The
performance of the model has been evaluated for tetrachlorovanadium(IV) (VCl4),
an example of ideal, single mode problem; cyclopentadienyl radical (C5H:5) and
bis(cyclopentadienyl)cobalt(II) (cobaltocene, CoCp2) as examples of the multimode
problems. The JT parameters obtained using DFT are in excellent agreement with
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Fig. 11 Representation of
the similarities of the
vibrations in cyclopentadienyl
anion (rows), D5h, and radical
(columns), C2v; A circle with
a diameter equal to the square
which contains it means a
value of 1; vibrations are
ordered by increasing energy

C2v

D
5h

e2′

e2′

e2′

a1′

a1′

e2′

e1′

e1′

e1′

a1 a1 a1 a1 a1 a1 a1 a1 a1

experiment. In addition the importance of the analysis of the multimode JT effect is
shown.

JT effect is controlled by the molecular symmetry. Displacements of the nuclei
from the JT unstable HS configuration to the LS minimum on the potential energy
surface is a totally symmetric reaction coordinate in the GLS point group. This
aspect was often neglected so far. This analogy allows application of the fundamen-
tal symmetry rule for reaction coordinates, that it belongs to the totally symmetric
irreducible representation of the LS point group of the molecule. Thus, within the
harmonic approximation, the distortion can be analysed as the linear combination
of totally symmetric normal modes of the LS minimum. This model allows quanti-
fying the contribution of all possible normal modes, their energy contribution to the
EJT, the forces at the HS cusp and the detailed distortion path.

There is a sophisticated counterplay between the electronic distortion due to the
JT effect, mainly localized on the central metal ion, and the distortion of the ligand
conformation in metal complexes. This can lead to a surprising result, e.g. that in
C5H:5 the JT distortion does not break the planarity in contrast to the situation in
CoCp2. In C5H:5 the ring accepts an en–allyl conformation, whereas in the complex
we find a non planar dien conformation. Similar cases are expected in various JT
active chelate complexes. Using our method for the multimode analysis presented
in this paper, one can get direct insight into the interaction between electronic
structure and the nuclear movements. This is of great significance in various fields,
not only in the larger JT systems, but also in the systems like spin–crossover
compounds, mixed valence compounds, photochemical reactions etc.

7 Computational Details

The DFT calculations reported in this work have been carried out using the Ams-
terdam Density Functional program package, ADF2007.01 [1, 40, 76]. The local
density approximation (LDA) characterized by the Vosko- Willk-Nusair (VWN)
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[78] parametrization have been used for the geometry optimizations. Triple zeta
(TZP) Slater-type orbital (STO) basis set have been used for all atoms. All cal-
culations were spin-unrestricted with strict criteria for convergence: energy 10�4
Hartrees; gradients 10�4 Hartree/Å; changes in Cartesian coordinates 10�4 Å; and
for numerical integration ten significant digits are used. Analytical harmonic fre-
quencies were calculated [19, 46], and were analysed with the aid of PyVib2 1.1
[35]. Vibrations are illustrated using the vibrational energy distribution representa-
tion [44]. The different colours indicate the direction of the displacement vector,
while the volumes of the spheres are proportional to the contribution made by the
individual nuclei to the energy of the vibrational mode. The Intrinsic Reaction Coor-
dinate method [37, 38] as implemented in ADF has been used [29, 30]. The initial
direction of the path is chosen by computing the gradient at the high symmetry
configuration. Matlab scripts for the calculation of the coupling coefficients for
any point group (Wigner-Eckart theorem) and for the calculation of the weighting
factors, wXk in (35) , can be obtained from authors upon request.
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Second-Order Analysis of Conical
Intersections: Applications to Photochemistry
and Photophysics of Organic Molecules

Lluı́s Blancafort, Benjamin Lasorne, Michael J. Bearpark,
Graham A. Worth, and Michael A. Robb

Abstract Analysis of the space of conical intersection is crucial for the under-
standing of photochemical and photophysical processes of molecules. This chapter
presents our methodology to characterize the critical points of conical intersection
and discusses applications to static and dynamic studies. The intersection space is
treated as an analog of a Born-Oppenheimer surface. When second-order effects
are taken into account (differences between the nuclear Hessians of the intersection
states), the seam of intersection lies along curved coordinates, and the critical points
are characterized with the second derivatives of the seam energy along these coor-
dinates. This methodology is presented for a simplified three-coordinate model, and
the generalization to a multidimensional problem is applied to the study of the inter-
section space in fulvene, which lies along a double bond isomerization coordinate.
Our second-order analysis can also be used for the systematic selection of nuclear
coordinates for quantum dynamics with a reduced number of modes. This selection
scheme is applied to a quantum dynamics study of the photochemistry of benzene,
where we study the competition between unreactive decay and formation of a pre-
fulvenic product. Our study allows us to propose the vibrational modes that have to
be stimulated to control the photochemistry.

1 Introduction: Conical Intersection Seams as Analogs
of Born-Oppenheimer Surfaces

The importance of conical intersections (crossings between potential energy sur-
faces of the same multiplicity) in photochemistry and photophysics has been known
for a long time [1–4]. In the last two decades, more detailed knowledge about their
role has been obtained from theoretical studies of a large number of excited-state
processes, and this progress has gone hand in hand with the development of more
sophisticated and accurate experimental techniques. However the conical intersec-
tion structures are not isolated points on the potential energy surface but belong to
the so-called intersection space, a range of nuclear geometries over which the two
surfaces intersect along a seam. The focus of this chapter is the characterization of

169
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this space to improve our understanding of excited-state processes. For this purpose
the intersection space is considered as an analog of a Born-Oppenheimer surface: it
contains minima and saddle points that can be characterized by frequency calcula-
tions and are interconnected. In this context, we will concentrate on several points:
the first one is the mathematical treatment required for the characterization of the
intersection critical points. This treatment provides the basis for the analogy with a
Born-Oppenheimer surface, because it makes it possible that different conical inter-
section structures belong to the same seam, even if the degenerate states are different
for the two structures. We will also show that second-order effects are essential to
characterize the structures, and in this respect our approach goes beyond the treat-
ment of conical intersections centered on linear effects. Moreover, the mathematical
treatment is based on the quadratic vibronic Hamiltonian approach [5, 6], and we
hope to provide a link between the study of Jahn–Teller and related systems and our
approach to photochemistry (see also several chapters in [3] for basics and applica-
tions of the vibronic Hamiltonian approach). This analysis is applied to the study of
the seam of intersection of fulvene. As a further application we will show how the
analysis can be used to generate optimal reduced sets of coordinates for quantum
dynamics studies of excited-state processes.

The signature of conical intersections in excited-state processes is usually related
to the observation of short excited-state lifetimes of tens of picoseconds or less, since
the intersection provides a funnel of fast access to the ground state. This is the case
when the conical intersection is accessible from the Franck-Condon region without
significant energy barriers. We call a seam of conical intersection “extended” when a
large portion of the intersection space is energetically accessible. This occurs when
some directions drawn from the minimum conical intersection point correspond to
a region of degeneracy with a flat energy profile. The presence of such an extended
seam of intersection favors the decay and has an influence on the quantum yields
and the branching ratios of the possible photoproducts. One early example where
the importance of the extended intersection space was studied is fulvene [7], where
there are two minimum energy intersections on the potential energy surface that
differ in the torsion of themethylene substituent: a planar intersection and one where
the methylene group is twisted by 90ı with respect to the plane of the ring (Fig. 1).
In this case, dynamics calculations showed that the decay to the ground state can
take place at intermediate geometries between the two intersections, suggesting that
they are connected by a seam. Other early examples of seams of intersection include
the triatomic systems H2ClC [8], dimethyl sulfide [9], hydroxylamine [10], ozone
[11,12], AlH2 [13], and BH2 [14], as well as ketene [15]. Seams of intersection were
also suggested to be involved in the photochemistry of ethylene [16–18] and other
alkenes [19]. More recently, seams of conical intersection were mapped in detail for
the minimal model of the retinal chromophore, the pentadieniminium cation, where
the seam lies along the torsion coordinate of the central double bond (Fig. 2) [20],
and for related polyenes [21]. In these cases and in fulvene, the intersection seam
lies along the photochemical Z-E isomerization coordinate, and the quantum yield
of the photoisomerization depends on the segment of the seam preferred for the
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Fig. 1 Schematic
representation of the S1
potential energy surfaces of
fulvene, where the S0=S1
conical intersection seam is
represented by a dashed line
(reprinted with permission
from [7])

Fig. 2 Schematic
representation of the S1=S0

conical intersection seam
along the torsion coordinate
of the central bond of the
minimal retinal chromophore
model pentadieniminium
cation (reprinted with
permission from [20])

S1

Intersection S
pace

CI0°

CI61°

CI92°

S0

decay. It is clear that a detailed characterization of the extended seam is necessary
to understand these excited-state processes.

One of the key points of our analytical approach is the concept of a ‘curved’ seam
as opposed to a straight line of intersection. The curvature is caused by second-
order effects, i.e., the differences between the Hessians of the intersecting states
(second derivatives of the energy with respect to nuclear coordinates). A treatment
of the seam curvature similar to ours has been presented recently by Yarkony [22],
focused on a global description of the seam. In our case, the curvature has to be
considered explicitly for the characterization of the critical points on the seam. To
facilitate the approach of the reader, we begin with a simplified model that includes
only three coordinates and allows us to present these concepts in a graphical way,
together with the mathematical formulation. This model will then be generalized to
multidimensional cases.

Our model starts with the well-known picture of conical intersections and their
associated branching space vectors (Fig. 3) [2, 23–26]. Thus, at a point of conical
intersection there are two coordinates along which the degeneracy is lifted (Qx1

and
Qx2

). These coordinates lie along the gradient difference and interstate coupling
vectors, which form the so-called branching space of the intersection (see below
for a definition of these vectors). The rest of the coordinates form the so-called
intersection space. The conical shape of the intersection along the branching space
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Fig. 3 First-order conical intersection picture: plot of the 3-coordinate model potential energy
surface (3) along coordinates Qx1 and Qx2 (a) and Qx1 and Qx3 (b). Parameter values: a D b D
c D 0:2I ˛ D 0:2I ˇ D 0:25

coordinates was derived in 1937 by Teller [1], who used the theorem established by
von Neumann and Wigner in 1929 [27]. According to von Neumann and Wigner,
two parameters have to be adjusted to obtain the degeneracy of two eigenvalues
for a real Hermitian matrix (the electronic Hamiltonian, when magnetic effects
can be ignored). To illustrate this result for a two-state problem, we follow Teller
and write the elements of the energy matrix W1 as a function of two branch-
ing space coordinates Qx1

and Qx2
and a coordinate Qx3

that belongs to the
intersection space:

W1 .Q/ D �aQ2
x1
C bQ2

x2
C cQ2

x3

�
IC



˛Qx1

ˇQx2

ˇQx2
�˛Qx1

�
(1)

W1 has the form of a Taylor expansion of the energy along the coordinates, and
in (1) the quadratic terms are equal for the two states. The second summand gives
rise to the energy split along the two branching space coordinates. We call this the
linear or first-order conical intersection picture (see the superscript on W1) because
the terms that lift the degeneracy are linear terms along Qx1

and Qx2
. In contrast

to this, displacements along the intersection space modes do not lift the degeneracy.
Thus, the intersection space forms an .N � 2/-dimensional subspace (also called a
hyperline) of the N -dimensional potential energy surface, where N D 3n � 6 and
n is the number of atoms. Applying the theorem of von Neumann and Wigner, the
degeneracy occurs when the two diagonal elements of the matrix are equal and the
off-diagonal term is zero:

˛Qx1
D �˛Qx1

;

ˇQx2
D 0: (2)
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Moreover, the energy eigenvalues of W1 are:

EA;B .Q/ D
�
aQ2

x1
C bQ2

x2
C cQ2

x3

�˙
q�
˛Qx1

�2 C �ˇQx2

�2
: (3)

The plot of (3) along Qx1
and Qx2

(keeping Qx3
D 0) shows the double cone

shape of the surface (Fig. 3a). At the tip of the double cone .Qx1
D Qx2

D 0/

the two conditions of von Neumann and Wigner (Eq. 2) are fulfilled, and the two
eigenvalues are equal. In turn, the seam of intersection is a straight line along Qx3

as shown by a plot of the energies alongQx1
andQx3

(Fig. 3b).
The first-order picture described up to now has some limitations. First, displace-

ments along the intersection space coordinates usually induce a small lifting of the
degeneracy between the two states. This behavior is shown schematically in Fig. 4a.
The degeneracy is lifted at second order because the two states have different second
derivatives along the intersection space coordinates, i.e., different Hessians. Second,
a conceptual difficulty appears when the relationship between the branching space
and the seam coordinates is considered. As we will show below for fulvene, differ-
ent conical intersection critical points are found for different values of a coordinate
(bond inversion in fulvene) that corresponds to one of the branching space vectors
of the intersections (the gradient difference). Thus, a rectilinear displacement along
the branching space vectors can retain degeneracy when combined with other dis-
placements. Although counterintuitive, this merely is a consequence of the curved
nature of the intersection space, which induces a continuous mixing of the branch-
ing and intersection space coordinates that have been defined at a given intersection
point. In other words, rectilinear directions where degeneracy is lifted or retained
are a first-order description only, and higher-order terms are needed to go beyond
an infinitesimal displacement.

Q
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E
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E
1

a b
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Fig. 4 Second-order conical intersection picture: plot of the 3-coordinate model potential energy
surface (5) along coordinateQx3 (a) and coordinates Qx1 andQx3 (b). Parameter values: a D b D
c D 0:2I ˛ D 0:2I ˇ D 0:25I ı� D 0:25
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Our analysis explains these observations by going beyond the first-order picture
and taking the second-order degeneracy lifting terms along the intersection space
modes into account [28–31]. Thus, we include an additional term in the energy
difference matrix (the non-diagonal matrix of (1)) which reflects the different second
derivatives of the two states along the intersection space modeQx3

:

W2 .Q/ D �aQ2
x1
C bQ2

x2
C cQ2

x3

�
IC

"
˛Qx1

C ı�Q2
x3

ˇQx2

ˇQx2
� �˛Qx1

C ı�Q2
x3

�

#

:

(4)

The term ı� corresponds to the difference between the second derivatives of the two
states along the intersection space coordinate. Similar terms can appear along Qx1

and Qx2
, but they are neglected here for simplicity. Diagonalization of W2, where

the superscript stands for degeneracy lifting up to second order, gives the following
expression for the energy of the two states:

EA;B .Q/ D
�
aQ2

x1
C bQ2

x2
C cQ2

x3

�˙
q�
˛Qx1

C ı�Q2
x3

�2 C �ˇQx2

�2
:

(5)

The plot of the energy along Qx1
and Qx3

in the second order picture is shown in
Fig. 4b. In this case, the seam of intersection is a curved line. The energy degeneracy
is kept by combined displacements along Qx1

and Qx3
, and the first condition of

von Neumann and Wigner (Equation 2) becomes:

f1
�
Qx1

;Qx3

� D 2˛Qx1
C 2ı�Q2

x3
D 0: (6)

This constrained relationship between the two rectilinear coordinatesQx1
and Qx3

defines implicitly the locus of the seam in the plane
�
Qx1

;Qx3

�
(the complementary

equation being f2
�
Qx2

� D ˇQx2
D 0, i.e., Qx2

D 0, in the full three-dimensional
space). The graph of the seam is a parabola given by the explicit equation

Qx1
D �ı�

˛
Q2
x3
: (7)

Only one degree of freedom, f3, is needed to parameterize this curve, and we call
it parabolic coordinate. Here, it is convenient to make this parameter equal to Qx3

,
such that the seam is defined parametrically as

Qx1
.f3/ D �ı�

˛
f 23 ;

Qx3
.f3/ D f3:

(8)

Substitution of f3 in (5), together with the second condition of (2) .Qx2
D 0/, gives

the same energy for the two states:
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Fig. 5 Second-order model
of conical intersection.
Projection of the seam on the
.Qx1 ; Qx3/-plane

Qx1

Qx3

t(f3)

n(f3)

Eseam .f3/ D �a
�
ı�

˛

	2
f 43 C cf 23 (9)

Although equal in value to the rectilinear coordinate Qx3
, the parameter f3 can be

treated as a curvilinear coordinate that follows the infinitesimal displacement of a
point on the seam along the local tangent vector to the curve, t.f3/. This moving
frame is completed by the normal vector, n.f3/. At the expansion point (origin of
the frame: f3 D 0), the normal and tangent vectors to the seam are parallel to Ox1
and Ox3 (unit vectors), respectively. However, away from that point, these vectors are
different and combine Ox1 and Ox3 because the seam is curved (Fig. 5).

At any point on the seam referred by f3, the local tangent vector,

t .f3/ D @Qx1
.f3/

@f3
Ox1 C @Qx3

.f3/

@f3
Ox3 D �2ı�

˛
f3 Ox1 C Ox3; (10)

gives the direction followed by the seam as the curvilinear coordinate f3 increases
its value at first order. This shows how, at the central point of the expansion, t.f3/
is parallel to Ox3, while it changes its direction and mixes with Ox1 as one moves
away from this point. The normal vector is obtained by taking the gradient of the
constraint on the energy difference (Equation (6)):

n .f3/ D @f1
�
Qx1

;Qx3

�

@Qx1

Ox1 C @f1
�
Qx1

;Qx3

�

@Qx3

Ox3 D 2˛ Ox1 C 4ı�f3 Ox3: (11)

It is orthogonal to t.f3/ and also changes its direction along the seam. Being orthog-
onal to the seam, it is one of the two vectors spanning the branching space and is
parallel to Ox1 at the origin. It is identified with the local gradient-difference vector
that thus satisfies x1.f3/ D 2˛ Ox1C 4ı� f3 Ox3. In the model defined in (4), the local
interstate coupling vector satisfies x2.f3/ D ˇ Ox2 everywhere, but this could change
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too if higher-order terms were to be added to the model. The change of direction
of t.f3/ along the seam explains how the seam can be found at finite displacements
that involve partly the direction of the branching space as calculated at the origin.
Reciprocally, because the seam usually is curved, the local branching space must
rotate with respect to the original one to stay orthogonal to the seam at any point,
possibly within the intersection space as defined at the origin.

Before we generalize the second-order picture to a multidimensional problem, it
is useful to comment on some relevant consequences of this picture for our further
analysis. The previous development gives a mathematical justification of how the
branching space vectors of the conical intersection change along the seam. There-
fore it is possible that two different conical intersections belong to the same seam,
even though they have a different branching space. Based on this, it is convenient
to consider the seam of intersection as the analog of a Born-Oppenheimer surface,
which can contain different minima that are connected to each other by transition
structures and reaction paths. Following this analogy, the optimized points of conical
intersection can be characterized as minima or ‘transition structures’ on the seam.
For this purpose we use the analog of the Hessian, the so-called intersection-space
Hessian (see details below [30]). Because of the curved nature of the seam, the dif-
ferentiation to calculate the Hessian has to be carried out along the curvilinear set
of coordinates ffi g. This procedure is the central point of the next section.

2 Intersection Space Hessian for the Analysis
of Conical Intersections

In this section we generalize the second-order analysis required to calculate the
intersection space Hessian. For further details, the reader is referred to [30]. Before
we derive the general expression, we discuss the parametrization of the Hamiltonian
with ab initio calculations (CASSCF in our case). The relationship between the
energy Hamiltonian and the ab initio calculations is not trivial because the Hamilto-
nian is usually expressed in a diabatic basis, where the states have a fixed electronic
character and are coupled by the off-diagonal elements of the Hamiltonian. In con-
trast to this, the CASSCF calculations yield adiabatic states which are optimized
for the geometry of choice. Although this issue has been discussed before (see,
e.g., [5, 24, 32–34]; see also [35] for a recent review of adiabatic-diabatic transfor-
mations), it is helpful in the present context to go through the essential points. For
the sake of simplicity, we assume for now an exact and complete, ideal two-level
model. A more general derivation is given in the Appendix.

We first define a suitable electronic basis. In what follows, Q0 represents the
geometry of a conical intersection between S0 and S1 chosen as a reference point.
The two degenerate electronic wave functions, j‰0i and j‰1i, are the result of an
electronic structure calculation at the state-averaged CASSCF level at the reference
point. For any geometry Q, the first two singlet adiabatic states will be noted jS0IQi
and jS1IQi, where the semicolon is used to emphasize that the electronic states are
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parametrized by the nuclear geometry Q. At the reference point, j‰0i D jS0IQ0i
and j‰1i D jS1IQ0i. If the adiabatic states jS0IQi and jS1IQi do not change their
character significantly in the region of interest, apart from mixing j‰0i and j‰1i
with each other, then j‰0i and j‰1i provide a suitable basis set of trivial diabatic
states (they do not vary with Q) for describing jS0IQi and jS1IQi in the vicinity of
Q0, usually called the ‘crude adiabatic’ basis set [36]. In practice, this description is
not valid because such a basis set is far from complete. More general quasidiabatic
states must be introduced to account for second-order mixing with more excited
electronic states j‰J i .J >1/ when Q varies. This point is further discussed in the
Appendix.

The matrix elements of the Hamiltonian matrix in the diabatic representation are:

HIJ .Q/ D h‰I j OH .Q/ j‰J i D hSI IQ0j OH .Q/ jSJ IQ0i ; (12)

where OH .Q/ is the clamped-nucleus Hamiltonian operator (at this stage, this is the
actual operator, not any finite matrix representation of it). At the reference geometry
Q0, where the states are known, the corresponding matrix, H .Q0/, is diagonal:

H .Q0/ D


H00 .Q0/ H01 .Q0/

H01 .Q0/ H11 .Q0/

�
D


E0 .Q0/ 0

0 E1 .Q0/

�
; (13)

where real-valued electronic wave functions are assumed. In the diabatic basis set,
a displacement ıQ from Q0 gives rise to non-zero off-diagonal elements and to
different diagonal elements:

H .Q0 C ıQ/ D


E0 .Q0/ 0

0 E1 .Q0/

�
C


ıH00 ıH01
ıH01 ıH11

�
: (14)

The energy at the displaced point can be obtained from diagonalization of this
Hamiltonian. When the reference geometry is a conical intersection, E0 .Q0/ D
E1 .Q0/, the energy splitting caused by finite displacements is:

�E .Q0 C ıQ/ D
q
.ıH11 � ıH00/2 C 4ıH 2

01: (15)

We now introduce two functions of the coordinates Q:

f1 .Q/ D H11 .Q/�H00 .Q/ ;
f2 .Q/ D H01 .Q/ : (16)

Using the generalized coordinates f1 and f2, the energy difference becomes:

�E .Q0 C ıQ/ D
q
ıf 21 C 4ıf 22 : (17)
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To second order, ıf1 and ıf2 can be expressed as energies with a Taylor expansion
of the form:

ıf1 DPi

�
@xi
f1
�
0
ıQxi

C 1
2

P
ij

�
@xi
@xj

f1
�
0
ıQxi

ıQxj
;

ıf2 DPi

�
@xi
f2
�
0
ıQxi

C 1
2

P
ij

�
@xi
@xj

f2
�
0
ıQxi

ıQxj
;

(18)

where
�
@j
�
0

stands for the local partial derivative @=@Qxj

ˇ
ˇ
QDQ0

. The derivatives
of f1 and f2 at the expansion point refer to the diabatic states (see (16)). However,
the diabatic states, j‰0i and j‰1i, are equal to the adiabatic states, jS0IQ0i and
jS1IQ0i, at that point, and because the Hellmann-Feynman theorem is valid in the
ideal two-state case (see Appendix for a more general discussion), the local first
derivatives of the energies are the same in both representations. Thus the linear
component of the gradient is:

�
@xi
f1
�
0
D �@xi

.H11 �H00/
�
0

D h‰1j
h
@xi
OH
i

0
j‰1i � h‰0j

h
@xi
OH
i

0
j‰0i

D hS1IQ0j
h
@xi
OH
i

0
jS1IQ0i � hS0IQ0j

h
@xi
OH
i

0
jS0IQ0i

D �@xi
�E

�
0
: (19)

At the same time, the derivative of the coupling can also be obtained from the ab
initio wave functions,

�
@xi
f2
�
0
D �@xi

H01
�
0

D h‰0j
h
@xi
OH
i

0
j‰1i

D hS0IQ0j
h
@xi
OH
i

0
jS1IQ0i : (20)

In practice, at the CASSCF level, the Hellmann-Feynman theorem is not valid in this
form because the basis set is truncated. However, it can be applied when the states
(kets) are replaced by the configuration-interaction vectors, and the Hamiltonian
operator by its matrix representation in the space of the configuration-state func-
tions (see Appendix). In this case, the terms in the Taylor expansion of the energy
Hamiltonian can still be obtained from ab initio calculations at the expansion point.
Moreover, the expansion can be simplified by choosing the appropriate coordinate
basis set. Here we use the so-called intersection-adapted coordinates introduced by
Ruedenberg [25]. This basis set is formed by the two branching space coordinates
and the complementary N � 2 intersection space coordinates. The first branching
space coordinate is the direction of the gradient difference vector, and the second
one that of the interstate coupling vector (also known as the gh vectors [37]). The
definition of these vectors at the center of the expansion, in Cartesian coordinates,
noted �i , is:
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x
.i/
1 .Q0/ D

�
@�i�

�E
�
0
;

x
.i/
2 .Q0/ D h‰0j

h
@�i�
OH
i

0
j‰1i : (21)

Once again, the operational application of this development to CASSCF wave
functions means that the states (kets) are replaced by the configuration-interaction
vectors, and the Hamiltonian operator by its matrix representation in the space of
the configuration-state functions (see Appendix).

We now introduce a pair of mass-weighted nuclear coordinates, Qx1
and Qx2

,
(see Section 1) that describe mass-weighted rectilinear displacements along Ox1 .Q0/

and Ox2 .Q0/, respectively. This basis set is the most convenient one for the present
analysis because it simplifies the degeneracy-lifting terms of (17). The expansions
for ıf1 and ıf2 in this basis are:

ıf1 D
�
@x1
f1
�
0
ıQx1

C 1
2

P
ij

�
@xi
@xj

f1
�
0
ıQxi

ıQxj
;

ıf2 D
�
@x2
f2
�
0
ıQx2

C 1
2

P
ij

�
@xi
@xj

f2
�
0
ıQxi

ıQxj
:

(22)

The total energy expansion is obtained by adding the terms that are equal for the
two states to (15). When finite displacements are considered, the expansion of the
energy around the intersection in intersection-adapted coordinates becomes:

E0;1 .Q/D
P
iD1;2 �iQxi C

PN
iD3 �iQxi C 1

2

PN
i;jD1 !ijQxi Qxj

˙ 1
2

r�
ı�Qx1 C 1

2

PN
i;jD1 ı�ijQxi Qxj

�2 C 4
�
�01Qx1 C 1

2

PN
i;jD1 �

01
ij Qxi Qxj

�2

(23)

where the second term is zero at an optimized point of intersection because the
gradient is zero along the intersection space coordinates [38].

In the notation introduced in (23), �i are the projections of the average gradi-
ent of the two states along the branching space coordinates and the intersection
space coordinates; ı� and �01 are the length of the gradient difference and inter-
state coupling vectors (i.e.,

�
@x1
f1
�
0

and
�
@x2
f2
�
0
/I !ij and ı�ij are the elements

of the average and difference Hessians between the two states, respectively; and �01ij
are the second-order couplings (all terms evaluated at the expansion point). If we
assume a small, but non-zero energy difference, these terms read:

�i D 1
2

�
@xi

.E1 C E0/
�
0
;

ı� D �@xi
.E1 � E0/

�
0
;

�01 D h‰0j
h
@x2
OH
i

0
j‰1i ;

!ij D 1
2

�
@xi
@xj

.E1 C E0/
�
0
; (24)
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.E1 � E0/
�
0
� 4

�
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�E .Q0/
ıi2ıj2;
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h
@xi
@xj
OH
i

0
j‰1i C �01ı�

�E .Q0/
ıi2ıj1;
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where ıij is the Kronecker symbol. The validity and practical meaning of these
expressions are detailed in the Appendix. Here we merely point out that the linear
terms come from the same derivation as (19) and (20), while the quadratic terms
contain the Hellmann-Feynman-like terms as well as additional contributions due
to second-order Jahn–Teller couplings within and from out of the two-level model
subspace (see Appendix and Section 4). Thus, the effect of second-order mixing
of the two intersecting states with higher-lying states is contained indirectly in
the state-averaged CASSCF Hessians used for the parametrization. In its turn, the
second-order mixing within the two-level subspace is included in the two terms
divided by�E .Q0/. These terms become ill-defined if�E .Q0/ tends to zero, i.e.,
at a conical intersection. However, they do not cause any problem in our analysis
because the Hessian that we consider is projected out of the branching space [30].
In other words, (24) is used in practice for ij ¤ 11, 12, 21, 22.

If the expansion of f1 and f2 is truncated at first order, one obtains the analog
of (3), and the energy splitting occurs only along the branching space vectors. If
the second-order terms are included, one obtains the analog of (5). In this case, the
conditions of von Neumann and Wigner that define the intersection space are:

ı�Qx1
C 1

2

PN
i;jD1 ı�ijQxi

Qxj
D 0;

�01Qx2
C 1

2

PN
i;jD1 �01ij Qxi

Qxj
D 0:

(25)

Following the approach described for the three-coordinate model, we now define the
curvilinear coordinates that fulfill these conditions. To simplify the mathematical
treatment, it is convenient to neglect the second-order terms that involve the branch-
ing space modes, i.e., the ı�ij and �01ij terms with i or j < 3 are set to zero (projection
out of the branching space, as mentioned earlier). In this case it is possible to define
theN�2 parabolic intersection coordinates ffi g that fulfill the following conditions:

fi D Qxi
.i � 3/ ;

Qx1
D �

PN
i;jD3 ı�ijfifj

2ı�
;

Qx2
D �

PN
i;jD3 �01ij fifj
2�01

:

(26)

Substitution of the expressions of (26) in (23) yields the following expression,
truncated to second order:

Eseam .f/ D
X

i;j�3�
�1

4ı�
ı�ijfifj � �2

4�01
ı�01ij fifj C

!ij

4
fifj (27)

Equation (27) gives the energy of the intersection seam along the N � 2 curvilin-
ear coordinates. The critical points on the seam can then be characterized with the
help of the intersection-space Hessian, the matrix of second derivatives of the seam
energy with respect to the curvilinear coordinates ffi .i � 3/g:
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�01 �
01
ij

�
(28)

The eigenvectors of the intersection-space Hessian after diagonalization form a set
of parallel vectors to the curvilinear intersection space coordinates ffi g at the expan-
sion point. These eigenvectors are called the seam normal modes. The eigenvalues
give the second derivatives of the energy along these coordinates, and with this
it is possible to calculate the intersection-space frequencies, i.e., the analogs of the
frequencies at a critical point on a Born-Oppenheimer surface. Structures with imag-
inary intersection-space frequencies are saddle points on the seam that are connected
to intersections with lower energy.

The terms that appear in the intersection-space Hessian are obtained from the
analytical, state-averaged complete active space self-consistent field (CASSCF) gra-
dients and second derivatives as they are implemented in the GAUSSIAN program
[39, 40]. The use of state-averaged orbitals requires the solution of the coupled-
perturbed multiconfigurational self-consistent field (MCSCF) equations, and this
limits the calculations to an active space of 8 orbitals or less. For the second-order
terms in (28), we use the N � 2 dimensional Hessians obtained by projecting the
branching space from the full Hessians of the two states, similar to the reaction-path
Hamiltonian [29, 41]. The !ij and ı�ij terms are the average and difference of the
projected Hessians, respectively. For the �01ij terms we make use of the fact that rota-
tion of the adiabatic states ‰0 and ‰1 by 45ı interchanges the Hessian difference
and second-order coupling terms. Thus, the rotated states are:

‰˙ D 1p
2
.‰0 ˙‰1/ (29)

Taking into account that the average Hessian of the rotated and unrotated states is the
same, the second-order couplings for the unrotated states can be obtained from the
average Hessian and the Hessian of one of the rotated states, using for example (30):

�01ij D �Cij � 1
2
!ij (30)

In the next section we will present an example of how the intersection-space
Hessian has been applied for the analysis of the seam of intersection of fulvene,
a non-fluorescent hydrocarbon. However before that we comment on some points
regarding our use of the two-state energy Hamiltonian. This Hamiltonian (or ver-
sions including a larger number of states) has been commonly used for the dynamic
treatment of Jahn–Teller and symmetry allowed intersections [3, 5]. There are two
main differences with respect to our development. First, we use intersection-space
adapted coordinates, rather than the normal modes of a related minimum, such as
the ground-state minimum in excited-state problems or the neutral system in radi-
cal cations. In the latter case there are linear degeneracy-lifting terms along all the
modes of a given symmetry, while in intersection-space adapted coordinates the
expansion is simplified because the linear terms appear by definition only along
two coordinates. The second difference concerns our use of CASSCF ab initio
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calculations for the parametrization. The dynamics calculations require a relatively
large part of the potential energy surface, and the Hamiltonian is usually fitted to
the surfaces calculated at a high level of theory. However in our analysis we are
interested in the local properties at the intersection, which are derived from the ana-
lytical CASSCF gradients and second derivatives. Our approach suffers therefore
from the limitations of this method, i.e., the lack of dynamic correlation. However
our scheme requires the analytical quantities, because some of the terms cannot be
obtained from finite-difference approaches. At present we are therefore bound to
use the CASSCF method, which gives qualitatively good results unless ionic states
are involved, to calculate the second derivatives with state-average orbitals. Still
it is possible to improve the level of theory in specific applications. For example,
quantum dynamics on benzene have been carried selecting the normal modes from
a second-order CASSCF analysis and parametrizing the surface with CASPT2 [42].

3 Second-Order Analysis at an Intersection: Intersection
Space of Fulvene

Fulvene is a non-fluorescent hydrocarbon [43]. The lack of fluorescence indicates
fast internal conversion of the excited state to the ground state via a conical intersec-
tion. In an early CASSCF study, two distinct critical points on the S1=S0 seam were
located which differed in the torsion angle of the methylene group: a planar inter-
section .CIPlan/, where the methylene group lies in the ring plane, and one where
the methylene is perpendicular to the ring .CIPerp/ (Fig. 6). The existence of a seam
of intersection that connects both structures along the methylene torsion coordinate
was suggested by semiclassical dynamics calculations with a surface hopping algo-
rithm, where the trajectories decayed to the ground states at all methylene torsion
angles. This seam has been characterized with CASSCF(6,6)/cc-pvdz calculations
and our second-order analysis [28, 44, 45].

Fulvene is a good example for our analysis because it is symmetric, and the dif-
ferent conical intersections can be located as symmetry-restricted minima with a
standard conical intersection optimization algorithm [38]. In a first approximation,
fulvene can be treated with the three-state model described in the first section. The
resulting picture is shown in Fig. 6a. Figure 6a is a qualitative plot of the energy
along two modes. The first one is the gradient difference vector at CIPlan and CIPerp

(stretching of the methylenic bond and inversion of the ring bond lengths) and
corresponds to Qx1

in (4) and (5). The second mode (Qx3
in (4) and (5)) is the

intersection space mode with a largest curvature difference between the two states,
i.e., largest ı� value, and corresponds to the methylene torsion (see the calculated
frequencies of the two states at CIPlan and CIPerp in Table IV of [28]). The two
intersections, of C2v symmetry, are therefore connected along the two coordinates
by a seam of C2 symmetry, and the minimum on this segment has a torsion angle of
63ı .CI63/. The connection between the three structures was proved by constrained
optimizations along the torsion coordinate and by the analog of intrinsic reaction
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Fig. 6 Sketch of the S1=S0 conical intersection seam in fulvene along the methylene torsion and
bond inversion coordinates (a) and energy profile along the seam (b) (adapted with permission
from [44])

coordinate calculations in the intersection space (see the energy profile in Fig. 6b).
The difference between the sketch of the fulvene surface (Fig. 6a) and the general
plot along Qx1

and Qx3
(Fig. 4b) is that Fig. 6a contains three minima of intersec-

tion, so that the local topology shown in Fig. 4 is contained three times in the global
sketch of Fig. 6a, around the minima.

The changes in the direction of the seam and gradient difference coordinates that
were discussed in Section 1 for the three-coordinate model (Fig. 5) can now be
illustrated with the help of Fig. 6a. Thus, at CIPlan and CIPerp the tangent to the
seam is parallel to the torsion, but along the seam it becomes a combination of the
torsion with the stretching, as discussed with the help of (10). At the same time, the
gradient difference vector, which is locally orthogonal to the seam, also changes its
direction. At the C2v structures it is the bond stretching coordinate, but along the
rest of the seam segment it is a combination of the stretching with the torsion mode
(see (11)). Also the topology of the intersection changes along the seam from sloped
at CIplan to peaked at CIperp.

A more detailed characterization of the intersection space is based on the
intersection-space Hessian analysis, which has guided us in the search for further
intersection minima. The picture delivered by this analysis is consistent with the one
based on the Hessian difference between the states and the three-coordinate model.
Thus, CIPlan and CIPerp, of C2v symmetry, are second-order saddle points on the
intersection space along the methylene torsion and pyramidalization coordinates. In
turn, CI63, of C2 symmetry, is a first-order saddle point in the seam with a small
imaginary frequency (methylene pyramidalization). The global intersection-space
minimum CIMin is a close-lying structure of C1 symmetry. In a similar way, follow-
ing the pyramidalization mode from CIPlan a further conical intersection, CIPyr of
Cs symmetry has been found. This intersection has an imaginary intersection-space
frequency along the torsion coordinate, and optimization of a structure distorted
along this coordinate leads to CIMin. Overall, the connection of the different critical
points (see Fig. 7) confirms the validity of the analogy between the saddle points
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on the seam and those on a Born-Oppenheimer surface. The second-order saddle
point connects two first-order saddle points with each other, and these in turn are
connected to a lower-energy global minimum.

4 Generation of Active Coordinates for Quantum Dynamics
in Non-adiabatic Photochemistry

In addition to the analysis of the topology of a conical intersection, the quadratic
expansion of the Hamiltonian matrix can be used as a new practical method to gener-
ate a subspace of active coordinates for quantum dynamics calculations. The cost of
quantum dynamics simulations grows quickly with the number of nuclear degrees of
freedom, and quantum dynamics simulations are often performed within a subspace
of active coordinates (see, e.g., [46–50]). In this section we describe a method which
enables the a priori selection of these important coordinates for a photochemical
reaction. Directions that reduce the adiabatic energy difference are expected to lead
faster to the conical intersection seam and will be called ‘photoactive modes’. The
efficiency of quantum dynamics run in the subspace of these reduced coordinates
will be illustrated with the photochemistry of benzene [31, 51–53].
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Fig. 8 Three classes of normal modes: photoactive mode (a); photoinactive mode (b); bath mode
(c) (reprinted with permission from [31])

4.1 Intuitive Definition of the Photoactive Coordinates

As mentioned in Sections 1 and 2, the degeneracy of the adiabatic PESs at a conical
intersection point is lifted at first order along the branching-plane coordinates, Qx1

and Qx2
, defined at the apex of the double cone. These coordinates can be gener-

alized to any other point where the energy gap in not zero, in order to characterize
the local variations of the adiabatic energy difference and non-adiabatic coupling
between two electronic states. In particular, Qx1

and Qx2
can be defined at the

Franck-Condon (FC) point (geometry of the ground-state PES minimum) for get-
ting information on the early stage of the dynamics of the photochemical process
after absorption of light. We call this coordinates the ‘pseudo-branching plane’.
The energy-difference Hessian projected onto the space orthogonal to the plane�
Qx1

;Qx2

�
can be evaluated to get information about the second-order variation

of the energy difference within the complementary coordinate space. The N � 2
eigenvectors of this projected energy-difference Hessian can be classified according
to the magnitude and sign of the corresponding eigenvalues. As shown in Fig. 8,
three types of projected energy-difference normal modes must be distinguished.

Three one-dimensional cuts of two PESs are plotted in the space orthogonal to
the pseudo-branching plane in Fig. 8. A generic case involving two singlet electronic
states, S0 and S1, is considered. All coordinates measure rectilinear displacements
of the nuclei with respect to the FC point along the normal modes of the projected
energy-difference Hessian. The S0 gradient is zero, and the gradient difference
reduces to the S1 gradient. The projected modes are therefore orthogonal to the
gradient of S1, and the FC point appears as an excited-state minimum along those
coordinates.

The first class of modes makes the energy difference decrease (negative eigen-
values of the projected energy-difference Hessian, using the excited-minus-ground-
state convention), and we call them ‘photoactive modes’ (Fig. 8a). The modes along
which the energy difference increases (positive eigenvalues) are called ‘photoinac-
tive modes’ (Fig. 8b). Finally, those eigenvectors where the energy difference does
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not significantly change (almost zero eigenvalues), are called ‘bath modes’ (Fig. 8c).
To reach the conical intersection point from the ground-state minimum (CoIn and
GSMin in Fig. 8, respectively) and undergo internal conversion, the system must
reduce the energy difference to access the seam of conical intersection. The most
important directions are thus x1 and the additional photoactive modes. In addition,
x2 is the direction that increases the interstate coupling, and it must be added to the
subspace to take account of non-adiabatic effects.

In a quantum dynamics picture, the center of the wavepacket starting around
the Franck-Condon region will follow mostly the negative direction ofQx1

(driving
force equal to the negative of the S1 gradient). Also, it will spread along photoactive
modes (see Fig. 8a), thus leading to an increase of the probability density for larger
absolute values of the corresponding coordinates, and contract along photoinactive
modes (see Fig. 8b). Bath modes, with a near-zero eigenvalue (see Fig. 8c), will
not play any significant role in the dynamics. The wavepacket will stay similar to
the ground vibrational state along such directions, which can be neglected in a first
approach using reduced dimensionality techniques.

4.2 Formal Definition of the Photoactive Coordinates

The analysis of the photochemical activity of nuclear coordinates is now presented
in more details. Most of the formalism has been presented in [31]. The analysis
presented in Section 2 is generalized here to the ground-state equilibrium geometry
(i.e., FC point in the excited state), where the energy difference is not zero.

Using the same notations as in Section 2, the positive difference between the
adiabatic potential energies within a two-level approximation varies with ıQ accord-
ing to

�E .Q0 C ıQ/ D
q
Œ�E .Q0/C ıf1�2 C 4ıf 22 : (31)

As opposed to a conical intersection, f1.Q0/ D �E.Q0/> 0 at the FC point. How-
ever with quasidiabatic states f2.Q0/ D 0. As a consequence, the second-order
variation of the adiabatic energy difference satisfies

ı�E D �E .Q0 C ıQ/��E .Q0/ 	 ıf1 C 2.ıf2/
2

�E0
; (32)

where �E0 D �E .Q0/. The second term in (32) characterizes a second-order
Jahn–Teller effect, also called pseudo-Jahn–Teller (see, e.g., [54] and [55]). Note
that the formula with the square-root is valid only within a two-level approximation.
In practice, additional second-order Jahn–Teller contributions can arise from other
f2-like terms involving couplings with higher electronic states (see Appendix).
Using non-degenerate perturbation theory to second order would lead to the correct
expression of (32) with all the terms that arise from an actual MCSCF calculation.
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In what follows, we assume the energy gaps with higher electronic states large
enough to neglect such contributions for the sake of simplicity.

Using intersection-adapted coordinates, the quadratic approximation, in other
words the local harmonic approximation, of the adiabatic energy difference for a
finite displacement around Q0 reads thus

�E .Q/ 	 �E0 C
�
@x1
f1
�
0
Qx1
C 1

2

X

i;j

�
@xi
@xj

f1
�
0
Qxi

Qxj

C 2
�
@x2
f2
�2
0

�E0
Q2
x2

(33)

The quadratic expansions of f1 and �E differ only by a supplementary term due
to f2, which alters the curvature along Qx2

in the Hessian of �E. As mentioned
above, this term is the signature of the second-order Jahn–Teller effect. It is always
positive and leads to the increase (sometimes referred to as exaltation) of the corre-
sponding S1 curvature along the direction of the non-adiabatic coupling at the FC
geometry. Taking the influence of higher electronic states into account would mod-
ify the second derivatives of �E with respect to the quasidiabatic f1-contribution
along other directions: those of the corresponding non-adiabatic couplings with
respect to the higher electronic states.

Neglecting bilinear couplings between branching-plane and intersection-space
coordinates as in the approximation used in the solution of (25) leads to

�E .Q/ 	 �E0 C ı� Qx1
C 1

2
ı�11Q

2
x1
C 1

2

P
i;j >2 ı�ijQxi

Qxj

C 1
2



ı�22 C 4.�01/

2

�E0

�
Q2
x2
; (34)

where the notations of (24) were used. In practice, the corresponding reduced
.N � 2/ � .N � 2/ matrix block

�
ı�ij

�
, with i; j > 2, is calculated as the mass-

weighted Hessian of f1 or �E projected out of the branching plane [29, 41].
Further, choosing the intersection-space coordinates Qxi

.i > 2/ as mass-weighted
displacements along the eigenvectors of the projected difference Hessian [56] with
eigenvalues ı�ii Dis �i leads to a simplified form:

�E .Q/ 	 �E0 C ı� Qx1
C 1

2
ı�11Q

2
x1
C 1

2

P
i>2

IS�iQxi2

C 1
2



ı�22 C 4.�01/

2

�E0

�
Q2
x2
; (35)

i.e., the equation of a paraboloid with a slope along Qx1
only. Thus, the eigenvec-

tors form the normal modes and the eigenvalues are the normal curvatures (force
constants) of the energy difference�E within the intersection space (N � 2 dimen-
sions). The classification of the modes in terms of their photochemical activity
discussed above is based on the magnitude and sign of the N � 2 eigenvalues,
IS�i .i > 2/.
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4.3 Application to Benzene

In the photochemistry of benzene, the so-called channel 3 represents a well-known
decay route along which fluorescence is quenched above a vibrational excess of
3000 cm�1 [57]. The decay takes place through a ‘prefulvenic’ conical intersec-
tion characterized by an out of plane bending [52, 58] and results in the formation
of benzvalene and fulvene. The purpose of this study is to find distinct radiationless
decay pathways that could be selected by exciting specific combinations of photoac-
tive modes in the initial wavepacket created by a laser pulse. For this, we carry out
quantum dynamics simulations on potential energy surfaces of reduced dimension,
using the analysis outlined above for the choice of the coordinates.

The numerical result of this analysis applied to benzene is illustrated in Fig. 9.
Calculations were performed with a CASSCF of six electrons spread over six �
molecular orbitals at the 6–31G� level. The special set of energy-difference-adapted
coordinates,Qxi

, was compared to the original coordinates,Q0
i , i.e., the traditional

30 normal modes calculated at the S0 equilibrium geometry .D6h/, labeled fol-
lowing the Wilson scheme of frequency numbering [59]. A common feature of the
Qxi

coordinates compared to the Q0
i coordinates is that they tend to decouple the

H motions (s CH stretching, ˇ HCC bending, and � CCCH wagging) from the
C6-ring motions. Other than that, both sets are actually quite similar. This confirms
that Duschinsky rotations are not large for them except for modes 14 and 15 [60–62].

Fig. 9 Eigenvalues of the energy-difference Hessian computed at the Franck-Condon point of
benzene in the 28-dimensional space orthogonal to the pseudo-branching plane. The labels refer to
the most similar normal modes of S0 benzene (Wilson’s convention). The dominant local motions
are indicated in boxes (reprinted with permission from [31])
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The gradient-difference mode corresponding to coordinateQx1
involves mostly

the a1g mode 1, the totally symmetric breathing (the remaining contribution being
carried only by mode 2 by symmetry). S0 is A1g and S1 is B2u at the FC point,
so the interstate-coupling mode corresponding to coordinateQx2

combines the two
b2u modes and mainly 15, the Kékulé mode, well-known for the exaltation of the
S1 frequency [63, 64]. On Fig. 9, the N � 2 Qxi

coordinates are labeled with the
corresponding main components in terms of Q0

i coordinates. Twelve modes are
of no interest (bath modes): the six s CH stretching modes and the six ˇ HCC
bending modes. As a first approximation, they involve independent motion of the
six H nuclei with respect to the C6-ring. In contrast, the photoactive modes (large
negative value of IS�i ) describe deformations of the C6-ring: three out-of-plane ı
CCCC ring-puckering modes (torsions), six out-of-plane � CCCH wagging modes
and nine in-plane modes mixing t CC stretching and ˛ CCC bending. There is
only one degenerate pair of photoinactive modes, similar to the pair 8 (e2g t CC
stretching).

This selection scheme was supported by an analysis of the evolution of the non-
totally-symmetric-mode frequencies along a totally symmetric deformation [31].
Also, chemical intuition suggests that ı CCCC ring-puckering modes are more rel-
evant than � CCCH wagging modes in order to change the shape of the C6-ring and
allow electronic configurations to become degenerate. These considerations led to
the selection of seven modes (see Fig. 10) among the 14 photoactive modes pre-
viously identified: three out-of-plane modes – the b2g mode 4 and the e2u pair 16
(ı CCCC motions) – as well as four in-plane skeletal deformations of the C6-ring –
the e2g pair 6 and the e1u pair 18. These modes were included in the quantum
dynamics calculations.

Quantum dynamics simulations were run within a nine-dimensional model sub-
space including the nine most important modes displayed on Fig. 10 and a five-
dimensional model including only the pseudo-branching-plane modes 1 and 15, and
the three out-of-plane photoactive modes 4, 16x, and 16y [31,53]. The results were
interpreted with regard to the topological features of the extended seam of coni-
cal intersection and their influence on the photoreactivity. This is illustrated with
Fig. 11.

The calculations were run using the DD-vMCG approach [65–69]. This method
uses an expansion of the wavepacket on a time-dependent basis set of Gaussian func-
tions. A local harmonic approximation of the PESs is calculated on the fly along the
trajectory followed by the center of each Gaussian function. A diabatic picture is
used to represent the pair of coupled electronic states. The dynamics code is imple-
mented in a development version of the Heidelberg MCTDH package [70] and is
currently interfaced with a development version of the GAUSSIAN program [40].
The same theoretical level as in the static analysis was used.

Simulations were started with a Franck-Condon Gaussian wavepacket placed
on S1 at t D 0 and approximated by a harmonic product of 1D Gaussian func-
tions with parameters based on a normal frequency analysis at Q0. We focused
on discriminating photophysical internal conversion (regeneration of S0 benzene)
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Fig. 10 The nine dominant motions for the photochemistry of benzene (the labels refer to the most
similar normal modes of S0 benzene following Wilson’s convention) (adapted with permission
from [31])

from photochemical internal conversion (production of S0 prefulvene) by stimu-
lating specific combinations of photoactive modes. For this, an additional mean
momentum was given to the initial wavepacket, with components of higher or lower
magnitude along the five or nine coordinates of the reduced model subspace.



Second-Order Analysis of Conical Intersections 191

Fig. 11 Schematic representation of two trajectories starting from the benzene S1 FC point with
different initial momenta. The light grey trajectory goes through a peaked region of the seam and
describes a photochemical event, whereas the dark grey trajectory goes through a sloped region
and describes a photophysical event (adapted with permission from [53])

The calculations with a minimal five-dimensionalmodel provided relevant insights
on the photoreactivity of benzene. The accessible part of the seam of conical inter-
section (see Fig. 11) has a ‘prefulvenic’ shape reached by displacements along
modes 4, 16x and 16y, and it is parallel to the breathing coordinate (mode 1). In
brief, we identified two important features that control the photochemistry. First,
a specific combination of modes 4 and mode 16x must be activated to force the
system to follow a prefulvenic coordinate (see Fig. 11) and reach the prefulvenoid
geometries that belong to the seam of conical intersection. Second, as the accessible
part of the seam is extended along the breathing coordinate, the selectivity can be
modulated by changing the excitation of this mode in the initial wavepacket. For
example, no excitation of mode 1 led to the system crossing the seam in a sloped
region, thus inducing a photophysical behavior. Choosing the excitation of mode 1
for the wavepacket to cross the seam around the lowest-energy point gave rise to
a counter-reactive bobsled effect, where the system was bounced back toward the
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reactant because of the shape of the S1 energy landscape, even if the seam is peaked
in this region. Finally, the most efficient way to induce a photochemical behavior
proved to be an intermediate case, where the wavepacket was driven to pass near
the S1 transition structure and continue toward a region of the seam still peaked
but higher than the lowest-energy point. Therefore, we have been able to prove that
various initial excitations can lead to different photochemical products. In additon
to that, inclusion of other photoactive modes improved the results by making the
system more flexible and improving the PES description in regions relevant for the
photochemical pathways.

5 Conclusions and Outlook

Our second-order analysis of conical intersections can be applied to the characteri-
zation of seams of intersection in molecules and the generation of active coordinates
for non-adiabatic quantum dynamics. For the seam characterization, we have pre-
sented one example where the relevant seam segment lies along a double-bond
isomerization coordinate, and the two degenerate states essentially retain their char-
acter along the seam. However studies on other molecules show that the concept
of the continuous seam is much broader than what we have presented for fulvene.
Along a connected seam it is possible to find conical intersections which differ in
the associated reactivity and/or in the degenerate states. One such example is butadi-
ene [30], where the seam includes two conical intersections that mediate the double
bond isomerizations and one that leads to cycloadduct formation. A further exam-
ple is o-hydroxybenzaldehyde [71], where the relevant seam of intersection contains
several conical intersections associated with hydrogen transfer, double bond isomer-
ization and cycloaddition. In this case, the change in reactivity is associated to a
change in the character of the degenerate states, i.e., the excited state changes from
 ; � to n;  �. The mathematical basis to justify the complexity of the seam in these
cases is the theoretical development outlined in Sections 1 and 2 gives. Apart from
the interest in improving our mechanistic understanding of the studied photochem-
ical processes, there are two more general questions related to the study of these
complex seams. The first one is if, as it has been shown in Section 3 for fulvene, a
simple three-coordinate model is enough to describe the seam, or at least its more
relevant part. The other question is whether all conical intersections in a molecule
may be connected [72]. The examples of butadiene and o-hydroxybenzaldehyde
shows that this is possible, although the question seems difficult to answer in a gen-
eral, rigorous way (see also recent work on disjoint intersection spaces [73, 74]).
Moreover, we have recently improved the algorithms for the study of seam seg-
ments [75], and this opens the way for a better characterization of the seams and an
improvement of our knowledge about them.

The generation of active coordinates for non-adiabatic dynamics is related with
our interest in laser-driven control. The optimal control of photochemical reac-
tions is based on shaped laser pulses designed to generate photoproducts selectively.
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Theoretical rationalization can help the preconditioning of the laser pulse by predict-
ing which vibrations have to be stimulated by an optimized laser pulse to enhance
radiationless decay and change the branching ratio in favor of a selected target. In
the context of theory-assisted optimal control, it is essential to establish systematic
methods to select such active coordinates. In this work, we have proposed a new
approach based on the local, second-order properties of the energy difference rather
than the sole energy of the excited state. We have identified the most relevant vibra-
tions that have to be excited in benzene to creating ground-state prefulvene. We have
confirmed this approach by quantum dynamics simulations, and we hope that it will
prove fruitful in the future.

Acknowledgements M. A. R. and B. L. gratefully acknowledge financial support by EPSRC
(Grant No. EP/F028296/1). L.B. acknowledges support from Projects No. CTQ2005–04563/BQU
and CTQ2008–06696/BQU from the Spanish Ministerio de Ciencia e Innovacin. G. A. W. acknowl-
edges funding from the EPSRC and thanks Irene Burghardt for her work in developing the vMCG
method.

Appendix: Quadratric Expansion for MCSCF Wavefunctions

In this appendix we generalise the expressions of the ‘diabatic’ quantities first intro-
duced in Sec. 2 for the ideal case of an exact two-level problem to a more realistic
description. In a normal situation, the Hamiltonian has an infinite number of eigen-
states, and there is no finite number of strictly diabatic states [76] that can describe
a given pair of adiabatic states [77–80]. Instead, one can define a unitary trans-
formation of the adiabatic states generating two quasidiabatic states characterised
by a residual non-adiabatic coupling, as small as possible, but never zero (see,
e.g., [5, 24, 32–35]). In practice, the electronic Hilbert space is always truncated to
a finite number of configurations. In what follows, we consider the case of MCSCF
wavefunctions and make use of ‘generalised crude adiabatic’ states adapted to this.

At Q D Q0, the adiabatic state number J is known as an MCSCF expansion:

jSJ IQ0i D
X

L

C
.J /
L .Q0/ jˆLIQ0i; (A.1)

which represents the best variational solution to the electronic problem within
the truncated Hilbert space spanned by the configuration state functions (CSFs),
fjˆLIQ0ig. In this subspace, the configuration-interaction (CI) vectors, C.J / .Q0/,
are the ‘exact’ eigenstates of the finite matrix of the clamped-nucleus Hamiltonian,
OH .Q0/, in the CSF representation:

HCSF .Q0/C.J / .Q0/ D EJ .Q0/C.J / .Q0/ ; (A.2)

where HCSF
KL .Q0/ D hˆK IQ0j OH .Q0/ jˆLIQ0i. In principle, the finite system

of secular equations, (A.2), can be solved exactly by a numerical diagonalisation
method for a given set of CSFs. No further discussion will be made here about how
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the molecular orbitals on which the CSFs are constructed are optimised. We will
just assume that the CSF Hamiltonian matrix and its first and second derivatives
with respect to Q can be calculated.

The two-level adiabatic Hamiltonian matrix is diagonal at Q D Q0:

Hadia .Q0/ D


E0 .Q0/ 0

0 E1 .Q0/

�
; (A.3)

where H adia
IJ .Q0/ D hSI IQ0j OH .Q0/ jSJ IQ0i. The first-order non-adiabatic cou-

pling vector at the reference geometry is defined as:

gIJ .Q0/ D hSI IQ0j Œr jSJ IQi�0 ; (A.4)

where Œr�0 stands for the local gradient, with components @=@Qi jQDQ0
. Differenti-

ating (A.1) and using the product rule gives rise to two contributions:

gCI
IJ .Q0/ DP

L

C
.I /�

L .Q0/
h
rC .J /L .Q/

i

0
;

gCSF
IJ .Q0/ D P

K;L

C
.I /�

K .Q0/ hˆK IQ0j Œr jˆLIQi�0 C .J /L .Q0/;
(A.5)

where the first term exhibits explicit variation of the CI coefficients, and the sec-
ond one explicit variation of the CSFs (through molecular-orbital coefficients and
atomic-orbital overlaps). Note that, in practice, the derivatives of the CI coefficients
and the orbital coefficients depend implicitly on each other when calculated. In most
MCSCF applications, the latter term is neglected because the CSFs vary smoothly,
and often less rapidly, than the CI coefficients. It may also be canceled out by a
suitable rotation of the active orbitals [81, 82].

By definition, the adiabatic states are eigenstates at any value of Q. At first-order,
this implies:

�rH adia
IJ .Q/

�
0
D ŒrEJ .Q/�0 ıIJ ; (A.6)

where ıIJ is the Kronecker delta. Using:

Œr hSI IQ j SJ IQi�0 D gCI�
JI .Q0/C gCI

IJ .Q0/ D 0; (A.7)

and (A.2) further leads to:

gCI
01 .Q0/ D

P

K;L

C
.0/�

K
.Q0/ŒrHCSF

KL
.Q/�0C

.1/
L
.Q0/

�E.Q0/
;

ŒrVJ .Q/�0 D
P

K;L

C
.J /�

K .Q0/
�rHCSF

KL .Q/
�
0
C
.J /
L .Q0/;

(A.8)



Second-Order Analysis of Conical Intersections 195

where �E .Q0/ D E1 .Q0/ � E0 .Q0/. Differentiating the secular system, (A.2),
leads to Hellmann-Feynman-like relationships in the CI space because the CI
vectors, C.J / .Q0/, are the exact eigenvectors of the truncated CSF matrix repre-
sentation of the Hamiltonian, HCSF .Q0/. Note that the Hellmann-Feynman theorem
does not apply to the states, jSJ IQ0i, since they are approximate eigenstates of the
exact operator, OH .Q0/.

Eq. (A.9) shows how the branching-plane vectors are calculated in practice from
CI difference and transition densities as well as the CSF first-derivative density:

x1 .Q0/ D Œr�E .Q/�0 D
P

K;L

h
�
.11/
KL .Q0/� �.00/KL .Q0/

i �rHCSF
KL .Q/

�
0
;

x2 .Q0/ D �E .Q0/ gCI
01 .Q0/ D P

K;L

�
.01/
KL .Q0/

�rHCSF
KL .Q/

�
0
;

(A.9)

where �.IJ/KL .Q/ D C
.I /�

K .Q/ C .J /L .Q/. At a conical intersection, the energy dif-
ference is zero. Although the first-order non-adiabatic coupling, gCI

01 .Q0/, diverges,
the interstate-coupling vector, x2 .Q0/, is a finite quantity. The ‘pseudo-branching-
space’ vectors introduced in Sec. 4 are defined as in (A.9) but at geometries
where the energy difference is not zero. As opposed to (21), in which the states
(kets) were frozen and the Hamiltonian (operator), OH .Q/, was differentiated,
here, only the CI coefficients are frozen and the Hamiltonian matrix, HCSF .Q/ Dh
hˆK IQj OH .Q/ jˆLIQi

i
, is differentiated, which involves differentiation of the

CSFs.
It is clear from (A.8) and (A.9) that the gradient difference and derivative cou-

pling in the adiabatic representation can be related to Hamiltonian derivatives in a
quasidiabatic representation. In the two-level approximation used in Section 2, the
‘crude adiabatic’ states are trivial diabatic states. In practice (see (A.9)), the fully
frozen states at Q0 are not convenient because the CSF basis set fjˆLIQig is not
complete and the states may not be expanded in a CSF basis set evaluated at another
value of Q (this would require an infinite number of states). However, generalized
crude adiabatic states are introduced for multiconfiguration methods by freezing the
expansion coefficients but letting the CSFs relax as in the adiabatic states:

ˇ
ˇ
ˇS ca.Q0/
J IQ

E
D
X

L

C
.J /
L .Q0/ jˆLIQi: (A.10)

This implies that the adiabatic states at the displaced geometry, jSJ IQi, are related
to the generalized crude adiabatic states by a mere rotation of the CI coefficients.

As a result, the generalized crude adiabatic representation of the clamped-nucleus
Hamiltonian satisfies:

x1 .Q0/ D
h
rH ca.Q0/

11 .Q/
i

0
�
h
rH ca.Q0/

00 .Q/
i

0
;

x2 .Q0/ D
h
rH ca.Q0/

01 .Q/
i

0
;

(A.11)
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At a conical intersection, the branching plane is invariant through any unitary trans-
formation within the two electronic states and any such combination of degenerate
states is still a solution. Thus, the precise definition of the two vectors in (A.9)
or (A.11) is not unique and depends on an arbitrary rotation within the space of
the CI coefficients (i.e., between the generalized crude adiabatic states), unless the
states have different symmetries (then x1 is totally symmetric and x2 breaks the
symmetry).

In this basis set, any finite displacement ıQ, such as Q D Q0C ıQ, gives rise to
non-zero off-diagonal elements and to different diagonal elements:

Hca.Q0/ .Q0 C ıQ/ D


E0 .Q0/ 0

0 E1 .Q0/

�
C
2

4
ıH

ca.Q0/
00 ıH

ca.Q0/
01

ıH
ca.Q0/
01 ıH

ca.Q0/
11

3

5 ; (A.12)

approximated at first-order as:

2

4
ıH

ca.Q0/
00 ıH

ca.Q0/
01

ıH
ca.Q0/
01 ıH

ca.Q0/
11

3

5 	
"�1

2
ıQ � x1 .Q0/ ıQ � x2 .Q0/

ıQ � x2 .Q0/
1
2
ıQ � x1 .Q0/

#

; (A.13)

where the dot denotes the scalar or dot product. Note that the electronic wavefunc-
tions are assumed to be real-valued. With respect to the kinetic energy of the nuclei,
the generalized crude adiabatic states form a quasidiabatic basis set, and their non-
fully diabatic character is attributed to the residual term gCSF

IJ .Q0/ in (A.4) and
(A.5) (see, e.g., [35] and references therein). In other words, these states cancel out
the main CI contribution to the first-order non-adiabatic coupling exactly. From now
on, we will refer to them as ‘the’ quasidiabatic basis set.

The .2 � 2/ diabatic Hamiltonian matrix, H .Q/, introduced in Sec. 2 (see (14))
is to be understood in practice as being equal to the matrix Hca.Q0/ .Q/. In addition,
the two-level square-root formula (see, e.g., (15) or (35)) is given only as a guideline
for better understanding the concepts involved here. In practice the adiabatic ener-
gies are actually obtained by diagonalising the larger CSF Hamiltonian matrix, the
CSFs being “equally optimal” for jS0IQi and jS1IQi in a state-averaged CASSCF
calculation (they actually minimize a weighted average of the eigenvalues E0 .Q/
and E1 .Q/).

The parameters for the second-order expansion of the matrix H .Q/ can be
obtained from state-averaged CASSCF calculations, provided the coupled-
perturbed-MCSCF equations can be solved for the system under study. For the
first-order terms, there is a simple correspondence between the adiabatic and qua-
sidiabatic expressions of x1 and x2, as illustrated in (A.9) and (A.11). However,
the second derivatives have to include mixing of the two states with each other
and with higher-lying electronic states. At a conical intersection this problem can
be addressed using second-order degenerate perturbation theory, as developed by
Mead [32]. Here we use a different approach. We derive the expressions for a non-
degenerate case and approximate the result for the degenerate case by projecting the
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ill-defined terms out of the Hessian. Thus, for the non-degenerate case the adiabatic
constraint at second order reads:

�r ˝ rH adia
IJ .Q/

�
0
D Œr ˝ rEJ .Q/�0 ıIJ ; (A.14)

where ˝ denotes the tensor or cross product, and Œr ˝ r�0 stands for the local
Hessian, with components @2=@Qi@Qj

ˇ
ˇ
QDQ0

(˝ transforms two vectors, u D Œui �
and v D Œvi �, into a tensor that can be represented by a dyadic matrix, u ˝ v D�
uivj

�
/. After some algebra, one gets

�r ˝ rH adia
IJ .Q/

�
0
D
X

K;L

C
.I /�

K .Q0/
�r ˝ rHCSF

KL .Q/
�
0
C
.J /
L .Q0/

C ŒEI .Q0/ �EJ .Q0/�
�r ˝ gCI

IJ .Q/
�
0

C
X

M

ŒEM .Q0/ �EI .Q0/� gCI
MJ .Q0/˝ gCI

IM .Q0/

C
X

M

ŒEM .Q0/ �EJ .Q0/� gCI
IM .Q0/˝ gCI

MJ .Q0/

C
n
ŒrEI .Q/�0 � ŒrEJ .Q/�0

o
˝ gCI

IJ .Q0/

C gCI
IJ .Q0/˝

n
ŒrEI .Q/�0 � ŒrEJ .Q/�0

o
; (A.15)

where use was made of (A.2) and:

h
r ˝ r hSI IQ j SJ IQi

i

0
D
h
r ˝ gCI�

JI .Q/
i

0
C
h
r ˝ gCI

IJ .Q/
i

0
D 0; (A.16)

with:

�r ˝ gCI
IJ .Q/

�
0
D �

X

M

gCI
IM .Q0/˝ gCI

MJ .Q0/

C
X

K

C
.I /�

K .Q0/
h
r ˝ rC .J /K .Q/

i

0
; (A.17)

��r ˝ gCI
IJ .Q/

�
0

is the matrix of elements @=@Qig
CI
IJ;j .Q/

ˇ̌
ˇ
QDQ0

	
:

In contrast with first derivatives, second derivatives involve couplings with all states
(sums overM in (A.15)) that correspond to a second-order Jahn–Teller effect. Such
contributions from higher-lying states .M � 2/ do not exist in a pure two-level
model (see Sec. 2), but they are part of the actual MCSCF calculation, where the
number of eigenstates is equal to the number of CSFs. Limiting the values of M to
0 and 1 leads to:

Œr ˝rE0 .Q/�0 D
h
r ˝ rH ca.Q0/

00 .Q/
i

0

� 2 ŒE1 .Q0/� E0 .Q0/� gCI
01 .Q0/˝ gCI

01 .Q0/ ;
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Œr ˝rE1 .Q/�0 D
h
r ˝ rH ca.Q0/

11 .Q/
i

0

C 2 ŒE1 .Q0/ �E0 .Q0/� gCI
01 .Q0/˝ gCI

01 .Q0/ ;

0 D
h
r ˝ rH ca.Q0/

01 .Q/
i

0

C ŒE0 .Q0/� E1 .Q0/�
�r ˝ gCI

01 .Q/
�
0

C
n
ŒrE0 .Q/�0 � ŒrE1 .Q/�0

o
˝ gCI

01 .Q0/

C gCI
01 .Q0/˝

n
ŒrE0 .Q/�0 � ŒrE1 .Q/�0

o
; (A.18)

which yields:

"

r ˝ rH
ca.Q0/
00 .Q/CH ca.Q0/

11 .Q/
2

#

0

D Œr ˝ rE0 .Q/�0 C Œr ˝ rE1 .Q/�0
2

;

"

r ˝ rH
ca.Q0/
11 .Q/ �H ca.Q0/

00 .Q/
2

#

0

D 1
2
Œr ˝ x1 .Q/�0�2

x2 .Q0/˝ x2 .Q0/

E1 .Q0/�E0 .Q0/
;

h
r ˝ rH ca.Q0/

01 .Q/
i

0
D Œr ˝ x2 .Q/�0 C

x2 .Q0/˝ x1 .Q0/

E1 .Q0/� E0 .Q0/
;

(A.19)

and in turn (24) and (33) if a non-zero energy difference is assumed (the degenerate
case is discussed after (24)). Second-order Jahn–Teller couplings with higher-lying
states are part of the adiabatic second derivatives. Strictly speaking, they should be
removed to define the quasidiabatic second derivatives. Here, we assume their effect
is small enough (or similar enough on both states), and we incorporate them in the
quasidiabatic Hessians to produce an effective two-level model.
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Influence of the Geometric Phase
and Non-Adiabatic Couplings on the Dynamics
of the HCH2 Molecular System

Foudhil Bouakline, Bruno Lepetit, Stuart C. Althorpe,
and Aron Kuppermann

Abstract The effects of the geometric phase and non-adiabatic coupling induced
by the conical intersection between the two lowest electronic potential energy sur-
faces are investigated for the HCH2 collision and H3 predissociation. The strongest
effect of the geometric phase at all collision energies is a significant change in the
ortho! ortho and para! para differential cross-sections, which is due to a sign
change in the interference between reactive and non reactive contributions. This
is caused by the indistinguishability of the three interacting atoms. At high ener-
gies (3.5 eV above collision threshold and more), a significant dynamical effect
appears in the differential cross-sections. This effect is related to a sign change in the
interference between two dynamical paths (direct and looping contributions) con-
necting reagents to products. Both these symmetry and dynamical effects almost
completely disappear in the integral cross-sections. Electronic non-adiabatic cou-
plings are efficient in turning the bound states supported by the cone of the first
excited electronic adiabatic potential into resonances which have significant effects
only on transitions between excited reagents and products. The study of the decay
of these resonances provides clues for the understanding of the experimental results
in the predissociation of Rydberg states of H3.

1 General Introduction

The HCH2 molecular system with its isotopic variants has been a benchmark in the
development of chemical reaction dynamics in the gas phase [1–29] and continues to
serve as a prototype in theoretical as well as experimental advances in this field [30–
41]. One particular importance of this system is its well characterized (Jahn–Teller)
conical intersection (CI) seam [42–46] connecting the electronic ground-state poten-
tial energy surface (PES) to the first excited state surface by a hyperline passing
through all the nuclear equilateral triangle geometries. Such topologies (CI) are
ubiquitous in polyatomic molecules and play a major role in their spectroscopy,
photochemistry and also reactivity [47,48]. At a CI, the Born–Oppenheimer approx-
imation stipulating that electronic and nuclear motions are separable breaks down,
giving rise to what we call non-adiabatic chemistry. Molecular systems which
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exhibit such topologies can easily hop between electronic states through the fun-
nel of the CI. As a result, the correct description of molecular spectroscopy and
dynamics in the presence of a CI requires all non-adiabatic couplings between the
conically intersecting PES to be taken into account [47–50].

Another quantum effect resulting from the presence of a CI is the geometric
phase (GP) [42,51] which occurs even if the nuclear motion is confined to the lower
electronic state and avoids the neighbourhood of the intersection. The GP is the
sign change acquired by the electronic wave function when the nuclei complete an
odd number of loops around the CI. Because the total wave function must be sin-
gle valued, the GP produces a corresponding sign change in the boundary condition
of the nuclear wave function [52, 53], which may affect the spectroscopy and the
reactivity of the system whenever the nuclear wave function encircles the CI. The
impact of non-adiabatic couplings between the degenerate electronic states and the
geometric phase on molecular spectra has been observed and is well understood.
For instance, it is well-known [54] that the GP shifts the spectrum of a bound state
system by altering the pattern of nodes in the nuclear wave function; recent calcula-
tions and experiments have reproduced such GP effects in detail [53–58]. However,
our understanding of such effects in nonbound systems, especially the GP, have only
started to become clear recently, owing to a series of calculations and experiments
on the HCH2 ! H2CH exchange reaction [7–41] and also on the predissociation
dynamics of the upper cone states of the H3 molecular system [37, 59–63].

The first work on the effect of the GP in this system was done by Mead [7],
who showed that the GP changes the sign of the interference term between the
inelastic and reactive scattering contributions to the fully symmetrized cross sec-
tions of the hydrogen-exchange reaction. His prediction was confined to nuclear
wave functions which do not encircle the CI when unsymmetrized so that the GP
effects can be predicted entirely using symmetry arguments. Later work consid-
ered more general GP effects where the unsymmetrized nuclear wave function may
encircle the CI. Kuppermann and co-workers [8–12] were the first to perform GP
quantum reactive scattering calculations on the hydrogen-exchange reaction and
its isotopologues using multivalued basis functions, predicting strong geometric
phase effects in state-to-state scattering observables. Subsequent theoretical calcula-
tions without the inclusion of the GP revealed excellent agreement with experiment
[5, 26–29]. This finding stimulated further theoretical work by Kendrick [13–15],
who performed time-independent calculations including the GP using the Mead–
Truhlar vector potential approach, where he found that the GP effects were small
and only appeared at total energies higher than 1.8 eV above the H3 potential min-
imum. However, an unexpected result was that these effects appear in state-to-state
reaction probabilities but completely cancel out on summing over all partial wave
contributions to give the corresponding state-to-state integral cross sections (ICS).
The GP effects also cancel out on summing over a limited number of partial waves
.0 � J � 10/ in the low-impact parameter state-to-state differential cross sec-
tions (DCS). Subsequent work of Juanes-Marcos et al. [30, 31], using a completely
different theoretical approach to solve the nuclear Schrödinger equation via wave
packet propagation for total energies below the energetic minimum of the CI seam,



Geometric Phase and Non-adiabatic Effects in the Dynamics of HCH2 203

confirmed these results and extended them to higher impact parameters. They found
that the fully converged DCS do show small GP effects, which cancel on integrat-
ing over all the scattering angles to give the ICS. Recently, Bouakline et al. [39]
extended these calculations to total energies up to 4.5 eV above the ground state
potential minimum. At total energies above 3.5 eV, many of the state-to-state reac-
tion probabilities show strong GP effects. These effects survive the coherent sum
over partial waves to produce features in the state-to-state DCS which could be
detected in an experiment with an angular resolution of 20ı. However, these effects
almost completely cancel out in the ICS, thus continuing a trend observed at lower
energies.

In addition to these calculations, Althorpe and co-workers [31, 32] were able to
explain these observations using topological arguments, originally introduced by
Schulman [64, 65], Laidlaw and De Witt [66] in Feynman path integral treatments
of the Aharonov–Bohm effect. Althorpe [32, 34, 35] demonstrated that the nuclear
wave function can be split into two components, each of which contains all the
Feynman paths that loop in a given sense around the CI. In HCH2, these components
correspond to paths that pass over, respectively, one and two transition states. The
interference between these two components governs the extent to which state-to-
state scattering attributes are affected by the GP. This topological approach also
predicts that the two mechanisms scatter their products into opposite hemispheres,
which causes the GP to dephase very efficiently in the state-to-state integral cross
sections. We should notice that the GP effects in H C H2 predicted by theory have
defeated any experimental measurement, as all the experiments on the hydrogen-
exchange reaction were carried out at energies below the energy minimum of the CI
seam and only on its isotopic variants.

In parallel to this work on the HCH2 reaction, bound states contained in the upper
cone on the first excited PES were investigated. It was shown that it is crucial to
include the geometric phase in this calculation to obtain correct bound state energies
[67]. These bound states turn into resonances which can predissociate by vibronic
couplings when non adiabatic couplings between the upper and lower PES are taken
into account. While the GP effect in the hydrogen-exchange reaction still awaits
experimental confirmation, strong non-adiabatic effects due to the coupling between
the two degenerate electronic states emerged from the experiment of Bruckmeier
et al. [59, 68] probing Rydberg emission spectra of H3 and its isotopomers. These
cone-states generate a broad bimodal structure in UV spectra [68], well reproduced
by time dependent wavepacket calculations involving the two coupled electronic
states [60, 61]. The vibronic coupling was shown to have a strong effect and to
provide quasi bound states with lifetimes of the order of 10 fs.

These strong non-adiabatic effects observed in the cone-states of the upper sheet
contrast with the absence of any significant effect in the HCH2 reactive collision.
For instance, Mahapatra et al. [69] examined the role of these effects in the HCH2

.vD 0; jD 0/ reaction probability for J D 0 and found negligible nonadiabatic
coupling effects in the initial state selected probability. Subsequently, Mahapatra
and co-workers [70] reported initial state-selected ICS and thermal rate constants
of H C H2.HD/ for total energies up to the three body dissociation. Again, they
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found nonadiabatic effects to be small for H C H2 and substantial for H C HD in
the case of channel specific dynamics, but to cancel in the overall reaction. Similar
results on the lack of the contribution of the upper surface to the dynamics were
obtained by Ghosal et al. [71] for the D C H2.vD 0; jD 0/ reaction. Varandas and
co-workers [72] examined these effects by looking at state-to-state dynamics of the
H C D2.vD 0; jD 0/ ! HD.v0D 3; j0/ C D for energies below the energy mini-
mum of the CI seam, and found a minor effect of the surface coupling on rotational
distributions as well as on initial state-selected total reaction probabilities and ICS.
Recent work by Bouakline et al. [39] confirmed these results and extended them to
total energies well above the lowest point of the conical intersection seam (up to
4.5 eV), yet the contribution of the excited state to the state-to-state reactive scat-
tering is found to be very small. However, recent work by Mahapatra et al. [73]
and Lepetit et al. [37] show that the importance of the non-adiabatic coupling in the
dynamics of the H3 system strongly depends on the reagent rotation and vibration,
suggesting that exciting the reagent promotes such non-adiabatic effects.

In this contribution, we review the implication of the aforementioned GP and
non-adiabatic effects in the scattering and predissociation dynamics of the H3

system.

2 Basic Concepts on Non-Adiabatic and Geometric
Phase Effects

Most of our knowledge about molecules, their spectroscopy and reaction dynamics
is due to the Born–Oppenheimer approximation, which states that the nuclear and
electronic motions are completely decoupled owing to the large ratio of the nuclear
mass to the electron mass whereas the forces exerted on them are the same (thus
ensuring that the nuclei move much more slowly than the electrons). In other words,
the electronic wave functions instantaneously adjust to the slow motion of the nuclei
leading to a distortion of the electronic states but not to transitions between them
[47–49]. As a result, the nuclear motion proceeds on the potential energy surface of
a single electronic state independently of the other electronic states. This adiabatic
approximation is based on the assumption that the nuclear kinetic energy is small
relative to the energy gap between the electronic state energies, which obviously
fails when electronic states are degenerate. In this section, we briefly summarise the
origin of the breakdown of the Born–Oppenheimer approximation in the presence
of a conical intersection, where two electronic states touch and the degeneracy is
lifted to the first order of nuclear motion distortions.

For a general molecular system, the non-relativistic molecular Hamiltonian can
be written as: H D Tn C Te C U.r;R/, where Tn and Te are the kinetic energy
operator for the nuclei and the electrons respectively, and U.r;R/ is the total poten-
tial energy operator for the electrons and nuclei. r and R denote a set of electronic
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and nuclear coordinates respectively. We start by solving the electronic Schrödinger
equation for clamped nuclear configurations

He.r;R/ˆi .r;R/ D Vi .R/ˆi .r;R/; (1)

where He.r;R/ D Te C U.r;R/. The electronic eigenvectors ˆi.r;R/ and eigen-
values Vi.R/ (usually called potential energy surfaces) parametrically depend on
the nuclear coordinates R. To solve the Schrödinger equation for the total molecu-
lar Hamiltonian, we expand the total molecular wave function ‰ in the basis of the
electronic eigenfunctions

‰.r;R/ D
X

i

ˆi .r;R/�i .R/; (2)

where �i.R/ are nuclear wavefunctions. This expansion is exact provided the elec-
tronic set ˆi.r;R/ is complete. To get the nuclear wave functions, we substitute the
total molecular wave function into the total Schrödinger equation, and after simple
manipulations, we get the Schrödinger equation governing the nuclear motion

ŒTn C Vi.R/��i .R/C
X

j

ƒij�j .R/ D E�i .R/; (3)

where the matrix elements ƒij are called non-adiabatic couplings, describing the
dynamical interaction between the nuclear and electronic motions. They are given by

ƒij D � 1

2M
Œ2Fij � r CGij �; (4)

where M is an averaged nuclear mass and Fij and Gij are given in the bra and ket
notation by

Fij.R/ D hˆi .r;R/jrˆj .r;R/i
Gij.R/ D hˆi .r;R/jr2ˆj .r;R/i; (5)

where the integration is carried out over the electronic coordinates. Neglecting the
off-diagonal nonadiabatic couplings ƒij.i ¤ j / and retaining only the diagonal
terms ƒii (called the adiabatic correction) leads to what we know as the adia-
batic approximation. In the case of H3, ƒii can be easily calculated with some
approximations using normal mode coordinates [74] giving the simple form [69]

ƒii D �
2

8mHQ2
; (6)

where mH is the mass of the hydrogen nucleus and Q is the radial coordinate of the
degenerate normal mode in the D3h point group. It turned out that the inclusion of
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this term is essential to correctly describe the dynamics at energies above the energy
minimum of the CI seam, as we can see below.

The adiabatic approximation is based on the assumption that the off-diagonal
non-adiabatic couplings ƒij are very small in magnitude compared to the nuclear
kinetic energy and the energy separation between the electronic states. However,
simple derivation of Fij leads to

Fij.R/ D hˆi .r;R/jrHejˆj .r;R/i
Vi.R/�Vj.R/

: (7)

It is very clear from this expression that if two electronic states get closer in
energy, the derivative coupling becomes substantial and the adiabatic approximation
for the involved electronic states is expected to break down. Particularly, in the case
of a conical intersection of the two PES Vi.R/ and Vj.R/, the derivative coupling
diverges at the intersection point and the adiabatic approximation is meaningless. In
this case, to correctly describe the spectroscopy and the dynamics of such molecules,
all non-adiabatic couplings must be taken into account.

Another subtle consequence of conical intersections is the geometric phase effect
[42,51], which occurs even when the dynamics is confined to low energies avoiding
the neighbourhood of the CI. It is the result of transporting the electronic wave
function on a closed loop around the CI. This leads to a sign change in the electronic
wave function when it returns to its initial position

ˆe.˛ C 2�/ D �ˆe.˛/; (8)

where ˛ is any internal angular nuclear coordinate describing motion around the CI.
Hence, as the total molecular wave function must be single valued, the GP effect
also influences nuclear dynamics by, either imposing a corresponding sign change
in the nuclear wave function upon completion of a closed loop around the CI [9,52],
or introducing extra terms in the nuclear Hamiltonian if the electronic wave function
is multiplied by a complex phase factor [52] to make it single-valued, as we can see
below. Furthermore, such a sign change must be taken into account for molecules
with two or more identical nuclei to satisfy the correct Bose–Fermi statistics under
an interchange of any two identical nuclei [7, 14] even if the nuclear wave function
does not dynamically encircle the CI as we will see in Sect. 3.1.

3 Theory and Computational Methods

In this section, we give the reader the necessary theoretical and computational ingre-
dients used to compute scattering and predissociation dynamics observables with an
emphasis on how to include the GP and non-adiabatic couplings.
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3.1 Incorporation of the Geometric Phase

To satisfy the GP boundary condition, one can proceed through three different ways,
each one suitable with the basis and coordinates used to represent the Hamiltonian
and the wavefunctions. The first one [8] requires the expansion of the wavefunction
in terms of basis functions that themselves satisfy the GP boundary condition. This
method is very efficient when using hyperspherical coordinates since they allow an
easy inclusion of the full permutation symmetries as well as the correct description
of the phase of the nuclear wavefunction in the presence of a conical intersection.
However, the double-valued boundary conditions are very difficult to implement
in Jacobi coordinates, thus making this method inefficient for the time dependent
wave packet propagation approach (usually using Jacobi coordinates) since it will
not allow the nuclear wavefunction to be represented in terms of a simple grid. The
second method uses the vector potential approach of Mead and Truhlar [52], in
which single-valued complex electronic wavefunctions satisfying the GP boundary
condition are used, and this introduces an additional vector potential in the nuclear
Hamiltonian. This method is very robust numerically and can be implemented in
both Jacobi and hyperspherical coordinates. The last method [39, 49, 50] includes
both electronic states within the diabatic representation framework, in which the
GP is implicitly taken into account through the adiabatic–diabatic mixing angle.
Among all these methods, the two diabatic surfaces method is the most exact and
numerically robust since it not only includes the GP but also all the non-adiabatic
couplings. However, it is numerically more expensive and clearly inefficient if we
are dealing with low energies where the system is confined to the lower adiabatic
surface and the coupling to the upper surface is not needed. In what follows, we
present succinctly the three different approaches mentioned above.

3.1.1 Boundary Condition Approach

A. Symmetry Considerations

Let us consider a pseudo-rotation R of the system, which we start for convenience
at an acute (principal vertex angle smaller than 60ı) isosceles triangular configura-
tion. R is defined to allow the principal vertex atom to move on a circle centered
on the vertex of the equilateral triangular configuration and finally to return to its
initial position. Application of R keeps the rovibronic wavefunction unchanged,
but in the GP case, the electronic wavefunction is changed to its opposite and so
does the nuclear wavefunction, if we allow these functions to be multivalued. This
GP requirement can be implemented simply if an appropriate coordinate system
is chosen to parameterize the system. One possible choice is the row orthonormal
hyperspherical coordinate system defined in details in [75]. We give here only a brief
account and refer the reader to this paper for more details. These coordinates are
dependent on the clustering scheme for the three particles, labelled �. These coor-
dinates consist in three Euler angles .a�; b�; c�/ which rotate a space fixed frame to
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a body fixed one attached to the principal axes of inertia of the system GxI�yI�zI�,
and in three internal coordinates .�; �; ı�/. � is the hyperspherical radius which
describes the global size of the system, whereas � and ı� are two angles which
describe the shape of the molecular triangle. � 2 Œ0; �=4� is defined such that � D 0
corresponds to collinear configurations of the three atoms and � D �=4 correspond
to equilateral triangular configurations. � does not depend on the clustering scheme
chosen (i.e. it is a kinematic rotation invariant) whereas ı� is changed by a simple
additive constant. ı� is the angle which plays the role of ˛ in (8). ı� D 0; �=3

and 2�=3.mod �/ correspond to obtuse isosceles configurations (principal vertex
angle larger than 60ı) whereas ı� D �=6; �=2 and 5�=6 .mod �/ correspond
to acute isosceles configurations. The two sets of coordinates .a�; b�; c�; ı�/ and
.� C a�; � � b�; � � c�; � C ı�/ correspond to the same physical configuration
with two body frames corresponding to opposite xI� and zI� axes. This suggests
two possible definitions for the range allowed for ı�. One possibility is to allow ı�
to be in the range Œ0; 2��, as was first suggested in [76]. If we call IR the operation
in coordinate space which corresponds to R, then:

IR W .a�; b�; c�; ı�/! .� C a�; � � b�; � � c�; � C ı�/: (9)

The presence of the GP is implemented by the condition: IR�nucl D ��nucl .
Another possibility is to restrict the range of ı� to Œ0; ��, as done in [75]. This

provides a one-to-one correspondence between physical configurations and coordi-
nates. In this case, the pseudo-rotation IR is the identity operator in the coordinate
space. However, the description of the physical pseudo-rotation R in coordinate
space is more complex. When the system subjected to R reaches obtuse isosceles
configurations, a discontinuous change of the Euler angles between .a�; b�; c�/ and
.�C a�; � �b�; � � c�/ occurs (corresponding to a change in the orientation of the
principal axes of inertia between GxI�yI�zI� and G� xI�yI� � zI�, which is also the
effect of the inversion operator), as well as a similar discontinuous change of the ı�
angle between 0 and � . In this case, the GP condition is implemented by boundary
conditions on the nuclear part of the wavefunction:

�nucl.a�; b�; c�; �; �; ı� D 0/ D ��nucl.� C a�; � � b�; � � c�; �; �; ı� ! �/:

(10)

We now consider the case of three identical atoms and we show how to compute
wavefunctions which are bases for the irreducible representations of the permutation
group S3. In addition to the identity, this group contains three binary permutations
and two cyclic permutations, but all its elements can be generated from the binary
permutation O�1 of the two atoms different from � as well as one of the two cyclic
permutations OCC.

Table 1 shows the effect of these two operations on the coordinates [77]. If the
convention ı� 2 Œ0; �� is chosen, then the action of the operations depend on the
value of ı�. However, the action of the operations become independent of ı� if
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Table 1 Action of the binary permutation O�1 and cyclic one OCC, as well as the IR operator
which corresponds to a deformation R which encircles the conical intersection, on the Euler and
ı� angles. Two possible choices for the range of the angle ı� are shown. The one dimensional
irreducible representations of the double group associated to S3 [78] can be used to label the
wavefunction in the case ı� 2 Œ0; 2��. If we now choose the convention ı� 2 Œ0; ��, the effect
of the operations depend on the values of ı�. The wavefunctions are labelled by the irreducible
representation to which they belong when extended to Œ0; 2��

O�1 OCC IR
ı� 2 Œ0; �� Œ0; �� Œ0; 2�=3� Œ2�=3; �� Œ0; ��

.a�; b�; � C c�;
� � ı�/

.� C a�; � � b�;
� � c�; �=3C ı�/

.a�; b�; c�;
ı� � 2�=3/ .a�; b�; c�; ı�/

A1 1 1 1 1
A2 �1 1 1 1
NA1 1 �1 1 1
NA2 �1 �1 1 1

ı� 2 Œ0; 2�� Œ0; 2�� Œ0; 2�� Œ0; 2��

.a�; b�; � C c�;
� � ı� mod2�/

.a�; b�; c�;
ı� � 2�=3 mod2�/

.a�; b�; c�;
ı� C � mod2�/

A1 1 1 1
A2 �1 1 1
NA1 1 1 �1
NA2 �1 1 �1

the extended range ı� 2 Œ0; 2�� is chosen. In this case, the pseudo-rotation
operation IR has to be added to the group and the double group associated to S3

has to be used. In addition to the usual one dimensional irreducible representa-
tions A1 and A2 of S3, two new one dimensional representations, labelled NA1 and
NA2, have to be considered, and the effect of the operations on the corresponding
wavefunctions is shown on Table 1. Even if the definition domain is restricted to
ı� 2 Œ0; ��, the irreducible representation labels of the double group can be kept for
the wavefunction.

In the case of H3 (three fermions with 1=2 nuclear spin), the electronuclear
wavefunction without nuclear spin part belongs to the A2 and E irreducible repre-
sentations of the permutation group of the nuclei for quartet and doublet nuclear
spin states respectively. The adiabatic electronic wavefunction subjected to the
GP condition belongs to the NA1 and NA2 irreducible representations of the double
group of S3, for the ground and first excited electronic states respectively. The
nuclear wavefunction without nuclear spin must also belong to irreducible repre-
sentations of the double group. For instance, an NA2 nuclear wavefunction combined
with the ground NA1 electronic state provides an A2 electronuclear wavefunctions
appropriate for quartet nuclear spins. The symmetry properties of the nuclear wave-
function can be implemented easily in the frame of the hyperspherical formalism,
as described now.
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B. Hyperspherical Formalism

The Hamiltonian of the system in this coordinate system reads[75]:

H D � �
2

2�
��5

@

@�
�5
@

@�
C
Oƒ2

2��2
C V.�; �; ı�/; (11)

where Oƒ is the grand canonical angular momentum, � the 3-body reduced mass
of the system, and V.�; �; ı�/ the Born–Oppenheimer electronic potential. We
will discuss in Sect. 3.2 the necessary changes to go beyond this single electronic
state formalism. The nuclear wavefunction of the system, �JM…� , is labeled by the
nuclear total angular momentum, J, its projection onto a space-fixed axis, M, the
parity under inversion through the nuclear center of mass,… (D0 or 1), and the irre-
ducible representation � of the double group associated to S3 to which it belongs.
It is obtained by expansion on a basis of Ns surface functions, 
JM…�

i (i D 1;Ns),
which are eigenfunctions of the fixed � Hamiltonian,

 Oƒ2
2��2

C V.�; �; ı�/
!


JM…�
i .	I �/ D J…

i .�/
JM…�
i .	I �/; (12)

where 	 refers to the set of five angles .a�; b�; c�; �; ı�/. The coefficients of this
expansion are solutions of a set of coupled ordinary differential equations [79]
which provide the desired scattering matrix elements once appropriate boundary
conditions are enforced.

Equation (12) is solved by expanding the surface functions on a basis of principal-
axes-of-inertia hyperspherical harmonics F…nLJ

M
D
d .	/. These harmonics [80,81] are

simultaneous eigenfunctions of the square of the nuclear angular momentum oper-
ator, its projection on a space fixed axis and the inversion operator, and are labeled
by the corresponding quantum numbers J, M and …. They are also eigenfunctions
of the grand canonical angular momentum squared, Oƒ2, as well as of an internal
hyperangular momentum operator, OL D �i� @

@ı
,

Oƒ2F…nLJ
Md

D.	/ D n.nC 4/�2F…nLJ
M

D
d .	/; (13)

OLF…nLJ
M

D
d .	/ D L�F…nLJ

M
D
d .	/: (14)

The quantum numbers n; J;L;M and … are all integers and satisfy the following
constraints:

n � 0; 0 � J � n;
�J � M � J; �n � L � n:

(15)

The integer superscript D gives the number of linearly independent harmonics
having the same values of the five quantum numbers, and the integer d indicates
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which of these degenerate harmonics is being considered. The irreducible repre-
sentation � is not an explicit index for the hyperspherical harmonics because the
irreducible representation is implicit through appropriate choices for n and L. Both
n and L are integer with the same parity dictated by … and the existence or not of
the GP : .�1/n D .�1/L D ˙.�1/…, the C corresponding to the case without the
GP and � to the GP case. Without the GP, A1 and A2 are obtained as even (for
.�1/… D 1) or odd (for .�1/… D �1) multiples of 3, the situation being reversed
in the GP case.

In practice, hyperspherical harmonics are obtained by an expansion over sim-
ple trigonometric functions. This procedure has been published in [33] for the four
body case, and can be simplified easily for the three body case. In short, the hyper-
spherical harmonics F…nLJ

M
D
d .	/ can be expanded in Wigner rotation matrices. The

coefficients of these expansions are homogeneous polynomials of degree n in cos �
and sin � [80], which can be transformed to linear combinations of basis functions
cos.m�/ and sin.m�/, m being an integer smaller or equal to n. The appropriate
choice of the trigonometric functions is dependent on the internal symmetries [33] of
the harmonics. This trigonometric basis provides a mathematically exact and finite
expansion for the harmonics. The kinetic energy operator is expressed in matrix
form in the product basis of the trigonometric functions and of the Wigner rotation
matrices. Since this basis is non orthogonal and has linear dependencies, we use
singular value decomposition to generate a smaller orthonormal basis. The expres-
sion of the kinetic energy operator in this reduced basis is diagonalized to provide
the desired harmonics. Individually, each basis function does not satisfy appropri-
ate boundary conditions at the poles of the kinetic energy operator ; however, the
numerically generated linear combination of these functions which constitutes the
harmonics does.

Although this formalism is presented here in the context of collisional problems,
it is important to notice that it applies equally well to bound state problems [82,83].

3.1.2 Vector Potential Approach

Mead and Truhlar [52] introduced an elegant way of incorporating the geometric
phase effect, namely the vector potential approach. In this method, the real elec-
tronic wave function ˆ.˛/, where ˛ is any internal angular coordinate describing
the motion around the CI, is multiplied by a complex phase factor c.˛/ to ensure the
single-valuedness of the new complex electronic wave function:

c.˛ C 2�/ˆ.˛ C 2�/ D c.˛/ˆ.˛/: (16)

A simple choice of the phase factor is given by

c.˛/ D ei.l=2/˛; (17)
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where l must be odd so that (16) is satisfied. All odd values of l take into account the
GP and give the same physical wavefunction since different wavefunctions corre-
sponding to different values of l only differ in an overall phase factor. Similarly, all
even values give the same physical wave function obeying normal (non-GP) bound-
ary conditions. By analogy with electromagnetic vector potentials, we can say that
different odd (or even) values of l are related by a gauge transformation.

When the complex phase factor takes the form of (2), the Laplacian of the nuclear
Hamiltonian is modified according to

�r2 ! .�ir � A/ � .�ir C A/; (18)

where the vector potential A is given by

A D � l

2
r˛: (19)

Thus, the vector potential approach yields single-valued nuclear wave functions
by adding a vector potential A to the nuclear kinetic energy operator, making it very
practical to include the GP effect into the wave packet calculation, since one may
use the same coordinate system and grid basis functions as in the normal boundary
conditions. Besides its easy numerical implementation, this method highlights the
analogy of the effect of the GP on a nuclear wave function with the effect of a
magnetic solenoid on an encircling electron (which does not overlap the solenoid)
called the Aharonov–Bohm (AB) effect [52–54]. Thus, one can apply the results
derived from the AB effect to explain the effect of the GP on a nuclear wave function
encircling the CI as we will see in the next sections.

It is now straightforward to include the GP in nuclear dynamics calculations by
just using (18) and adding the extra terms that result from it to the nuclear Hamilto-
nian. As in most wave packet calculations on reactive scattering, we employ a Jacobi
coordinate system defined by three coordinates (R, r and � ) where R is the length
of the A-BC molecular axis, r is the BC bond length and � is the angle between the
intermolecular axis and the BC bond. In this coordinate system, the kinetic energy
operator splits into three parts: OT D OTRC OTrC OTang, each containing a derivative term
in just one of the Jacobi coordinates .R; r; �/ and hence involves just one component
of the vector potential,

Ax.R; r; �/ D � l
2

@˛.R; r; �/

@x
; (20)

where x denotes, respectively, R, r and � . Note that the angle ˛ (describing the
motion around the CI) is a function of all three of the coordinates, and so is the
vector potential A. The first term in OT is given by:

OTR D � �
2

2�R

@2

@R2
; (21)
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where �R is the reduced mass associated with the R coordinate. Application of (18)
changes the second derivative operator (with respect to R) according to

� @2

@R2 !
�
�i @

@R � AR

� �
�i @

@R � AR

�

! � @2

@R2 C A2R C i
�
@
@R AR C AR

@
@R

�
:

(22)

This operator is diagonal in all but the R grid basis functions (denoted jki), and
its matrix elements change according to

< kjRjk0 >! < kjRjk0 > C �
2

2�R
fıkk

0AR.Rk; rl; �m/
2

Cihkj @
@R jk

0iŒAR.Rk; rl; �m/CAR.Rk0 ; rl; �m/�g;
(23)

where Rk denotes the value of R at the kth grid point; rl and �m are the values of r and
� at the lth and mth grid points respectively. Note that this expression was derived by
keeping the operator in the symmetric form of (22), and by acting outwards with the
first derivative operators, on the bra and the ket. This approach (as opposed to taking
the second derivative of the ket) yields a grid matrix which is exactly hermitian and
this is essential for keeping the unitarity of the propagator.

The second term in OTr has exactly the same form as OTR (with r in place of R) and
produces an exactly analogous change in the matrix elements between the r-grid
basis functions jli.

The most complicated changes are those produced in the angular part of the
kinetic energy operator ( OTang). This operator can further be split into three terms
[84]:

OTang D OT.1/ang C OT.2/ang C OT.3/ang; (24)

which are given by

OT.1/ang D OJ2�2 OJ 2
z

2�RR2

OT.2/ang D
�

1
2�RR2 C 1

2�rr2

� Oj2

OT.3/ang D � OJ�OjCOj�OJ2�RR2 ;

(25)

where �r is the reduced mass associated with the r coordinate. The term OT.1/ang con-

tains the total angular momentum operators OJ2 and OJz
2

which do not operate on the
internal degrees of freedom, and are thus unchanged by (18). The term OT.2/ang contains
the BC angular momentum operator, which involves a � -derivative operator. As a
result, (18) will change this operator in a similar way as it did to OTR and OTr. Thus
the matrix elements of OT.2/ang are diagonal in all but the � -grid basis functions jmi and
change according to
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hmj OT.2/angjm0i ! hmj OT.2/angjm0i C �
2
�

1

2�RR2
k
C 1

2�rr2l

�
fımm0A .Rk; rl; �m/

2

ihmj @
@
jm0iŒA .Rk; rl; �m/C A .Rk; rl; �m0 /�g:

(26)

The operator OT.3/ang contains the cross-terms that give rise to the Coriolis coupling that
mixes states with different	 which is the quantum number of the projection of the
total angular momentum operator OJ on the intermolecular axis. This term contains
first derivative operators in � , and its matrix elements change on application of (18)
according to

hmJ	j OT.3/angjm0J0	0i ! hmJ	j OT.3/angjm0J0	0i C i�2

2�RR2
k
�

�fı��0C1CC
J�0
hm	jm0	0iA .Rk; rl; �m0 /

�ı�0�C1CCJ�hm	jm0	0iA.Rk; rl; �m/g;
(27)

where the coefficients C�ab are given by C�ab D
p

a.aC 1/� b.b 1/.
To apply the above equations to H C H2, an expression of the vector potential
A.R; r;�/ is needed, this can be obtained from (19) once the angle ˛.R; r; �/ has
been specified. As mentioned before, this angle can be chosen in a free way pro-
vided that ˛ D 0! 2� describes a closed path around the conical intersection. The
angle ˛ is chosen to be the pseudo-rotation polar angle of the D3h doubly degenerate
normal mode, which is given by [30]:

˛.R; r; �/ D tan�1
�

d2R2 � r2=d2

2Rr cos �

	
; (28)

d is a dimensionless scaling factor equal to
q
2=
p
3 for HC H2. Notice that the ˛

used here is related to the angle ı� defined in Sect. 3.1.1 by a simple factor of 2.

3.2 Coupled-Surface Calculations

In this section, we describe an approach which, in addition to the implicit inclu-
sion of the GP, takes into account all the non-adiabatic couplings between the
two conically intersecting electronic surfaces. In this case, within the adiabatic
representation, the nuclear Hamiltonian has the following form:

Had D Tn1C
�
ƒ11 ƒ12
ƒ21 ƒ22

	
C
�

Vg 0

0 Vex

	
; (29)

where Vg and Vex are the ground and excited adiabatic electronic state potentials,
Tn is the nuclear kinetic energy operator, ƒij.i ¤ j/ are the derivative coupling
elements between the adiabatic electronic states and ƒii is the adiabatic correc-
tion given by (6). Wave packet propagation in the adiabatic picture is numerically
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cumbersome, because the electronic wave functions become discontinuous as the
system approaches the CI, thus introducing a singularity in the off-diagonal cou-
pling term. In addition, to account for the geometric phase effect, the GP boundary
condition must be enforced on both surfaces.

To overcome these numerical problems, one can convert to an approximately
diabatic representation of the wave function via the unitary transformation [85, 86]:

Hd D UCHadU; (30)

where the transformation matrix is given by

U D
�

cos.˛=2/ sin.˛=2/
� sin.˛=2/ cos.˛=2/

	
: (31)

The adiabatic–diabatic mixing angle ˛ must be chosen so as to remove the off-
diagonal coupling term [50]. It has been demonstrated that, with the diabatization
scheme using the angle ˛ given by (28), the singular derivative coupling terms are
eliminated and the residual derivative couplings become vanishingly small [87].
Thus the kinetic derivative couplings are removed and transformed into smooth
potential energy couplings [60, 61] giving rise to the following form of the nuclear
Hamiltonian

Hd D Tn

�
1 0

0 1

	
C
�

V11 V12
V21 V22

	
: (32)

The approximation in this quasi-diabatic approach is known to be quite accurate
[69], and the diabatic Hamiltonian is much easier to implement in the coupled-
surface wave packet propagation. In addition, apart from the inclusion of the off-
diagonal couplings, thus allowing hops between the two electronic states, the GP
is included exactly through the adiabatic–diabatic mixing angle ˛ [47]. This quasi-
diabatic approach has been used for the H C H2 scattering dynamics presented in
this contribution.

The U matrix given by (31) is in fact a low order approximation of the true
transformation matrix. A higher precision analytical model using double many-body
expansion method has been obtained in [88]. More recently, numerical ab initio first
derivative non adiabatic couplings for the conically intersecting states were obtained
by analytic gradient techniques and a fit to these results [45]. This coupling can be
decomposed into a longitudinal part (zero curl) and a transverse part (zero diver-
gence). At conical intersection geometry, the longitudinal part is singular, whereas
the transverse part is not. The longitudinal part can be expressed as the gradient of a
mixing angle between adiabatic states. This mixing angle can be obtained by solv-
ing a three dimensional Poisson equation [89]. The resulting adiabatic-to-diabatic
transformation eliminates the contribution of the longitudinal part, and minimizes
that of the transverse part which cannot be forced to vanish. This refined version
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of diabatic potentials and couplings has been used for the predissociation dynamics
study presented in the next section.

Symmetry properties of the nuclear wavefunction are different in the diabatic and
adiabatic representations. The pair of adiabatic electronic states (see (1)) belong to
the NA1 and NA2 irreducible representations of the double group of S3. The diabatic
states obtained from the adiabatic ones by applying the U matrix form a basis for
the two dimensional irreducible representation E of S3. For quartet nuclear spin
states, the electronuclear wavefunction, nuclear spin part excluded, must belong to
the A2 irreducible representation. This requires the nuclear wavefunction (without
nuclear spin) to be of the same E symmetry as the electronic one, because of the
identity: E� E D A1 C A2 C E. For doublet spin states, the E electronuclear wave-
function (nuclear spin excluded) is obtained with an A1 or A2 nuclear wavefunction,
combined with the E electronic ones.

We should note that using only the two lowest conically intersecting electronic
states in the expansion of the total molecular wavefunction as described above is a
very good approximation for the energy range considered here (i.e. below the three
body dissociation energy limit). Indeed, the first excited states above the two lowest
conically intersecting ones are Rydberg states with 2A

0

1 and 2A
00

2 symmetries and
2sa
0

1 and 2pa
00

2 outer orbitals [63]. The corresponding minima of these potentials,
occurring at equilateral triangular geometries, are close to the potential energy min-
imum of the molecular ion HC3 . The energies of these minima are approximately 0.5
and 0.6 eV above the three body dissociation energy limit and the lowest H3 rovi-
brational states for the 2sa

0

1 and 2pa
00

2 potentials have been detected experimentally
at 0.97 and 1.09 eV above this limit [63]. All results presented in this review corre-
spond to energies below the three body dissociation energy limit and thus can safely
be obtained with a two electronic state model.

3.3 Inelastic and Reactive Quantum Scattering

In this section, we summarise the necessary theoretical ingredients to compute
experimental observables in molecular collision events [2, 90]. We assume that the
reader is familiar with the concept of scattering wave functions and boundary con-
ditions. To simplify the description, we consider atom-diatom collisions of the type
AC BC.n/! AC BC.n

0

/;AC.n
0

/C B;AB.n
0

/C C, where n D .�; j; k/ is a col-
lective quantum number describing the vibration(�) and rotation(j) of the reagent
diatom (with k representing the projection of Oj on the initial relative velocity vec-
tor of the reactants), and n

0 D .�
0

; j
0

; k
0

/ is similarly defined for the products. The
nuclear wave functions describing this molecular system is expanded in terms of the
total angular momentum OJ eigenfunctions DJ

kk
0

.�; �; �/ [91] where .�; �; �/ are the
three Euler angles, and takes the following form [2, 90]:

‰n.R; r; � I �; �; �jE/ D 1

2knR

X

Jk
0

.2JC 1/DJ
kk
0

.�; �; �/FJnk
0 .R; r; � jE/; (33)
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where E is the total energy, �kn is the magnitude of the initial (A-BC) approach
momentum, and .R; r; �/ are Jacobi coordinates which can be defined in either the
reactant or product arrangements.

To calculate any scattering attribute, we must take the asymptotic limit .R!1/
of the components FJnk

0 .R; r; � jE/ of the nuclear wavefunction [2–66,69–74,76,77,
84–87, 89, 90, 92–94, 104]

FJnk
0 .R; r; � jE/!

X

j0�0

s
kn0

kn
‚j0k0 .�/ �0 .r/e

ik
n
0
RSn0 n.J;E/; (34)

where ‚j0k0 .�/ and  �0 .r/ are the rotational and vibrational wave functions of the
product diatomic molecule. The aim of the calculation is thus to find the reactive
scattering S matrix elements (Sn0 n.J;E/), which determine the J partial wave prob-
ability for a molecule to undergo a transition from its initial state (n) to its final one
(n
0

), given by Pn0 n.J;E/ D jSn0 n.J;E/j2.
However, this measure of the scattered product at a given value of J (equivalently,

at a fixed classical impact parameter) is not an experimental observable, and there-
fore one needs to sum up the different contributions of different impact parameters
leading to reaction to be able to compare theory to experiment. By coherently sum-
ming different S matrix elements corresponding to different values of J, one obtains
the scattering amplitude given by the expression

fn0 n.�;E/ D
1

2ikn

X

J

.2JC 1/dJ
kk
0

.� � �/Sn0 n.J;E/; (35)

where dJ
kk
0

.� � �/ is a reduced Wigner rotation matrix. The scattering amplitude is
all what we need to compute experimental scattering observables such as state-to-
state DCS and ICS, respectively given by

d�
n
0

 n
d� .�;E/ D 1

2jC1 jfn0 n.�;E/j2

�n0 n.E/ D 2�
2jC1

R �
0
jfn0 n.�;E/j2sin�d�;

(36)

which measure the amount of the scattered products in the direction � and in the
overall space, respectively.

Note that different scattering observables could be obtained whether we use con-
tinuity or GP boundary conditions as we will see later. So far, we have treated
the atoms as distinguishable particles, and one needs to incorporate the particle
exchange symmetry for identical particles (as in the case of H C H2) to get the
correct physically measurable cross sections. This can be done by the technique of
postantisymmetrization, by which the cross sections are calculated as if the atoms
are distinguishable to get the distinguishable atom cross sections which are then
properly antisymmetrized to obtain the physical ones. The resulting expressions for
the indistinguishable-particle differential cross sections are given by [2, 14].
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d�
n
0

 n
d� D 1

2jC1 ŒjfN
n0 n

C fR
n0 n
j2 C 2jfR

n0 n
j2�; for j and j

0

odd .i:e:; ortho! ortho/
d�

n
0

 n
d� D 1

2jC1 jfN
n0 n

� fR
n0 n
j2; for j and j

0

even .i:e:; para! para/
d�

n
0

 n
d� D 3

2jC1 jfR
n0 n
j2; for j even and j

0

odd .i:e:; para! ortho/
d�

n
0

 n
d� D 1

2jC1 jfR
n0 n
j2; for j odd and j

0

even .i:e:; ortho! para/

(37)

where fR and fN denote the reactive and the nonreactive scattering amplitudes,
respectively. The presence or absence of the GP is expected to change the rela-
tive sign of fR

n0 n
with respect to fN

n0 n
[7]. It is clear from (37) that this changes

the sign of the interference term between the reactive and nonreactive contributions,
and thus may produce different results whether the GP is included or not. Equivalent
distinguishable-particle expressions for the ICS can be obtained in the same manner
[2, 14].

3.4 Predissociation Dynamics

The upper potential sheet has a minimum for equilateral triangular configurations
of the nuclei and is known to support bound states when coupling to the lower
sheet is neglected [67]. When this coupling is included, these bound states turn into
resonances which are expected to be short lived because of the strong electronic
non–adiabatic couplings for near equilateral triangular configurations. In fact, these
resonances can be viewed from two equivalent points of view. One possibility is
to consider them as predissociating vibrational states, another to view them as col-
lisional complexes. In the latter case, their positions and widths can be obtained
from the Smith lifetime matrix formalism [95]. If we call S the scatterring matrix
for the HCH2 collision involving all inelastic and reactive open channels, then the
lifetime matrix is defined by: Q D �i�S	.dS=dE/. In the vicinity of a resonance,
one eigenvalue of the Q matrix is a Lorentzian function of energy. The energy of
its maximum is the resonance energy and the value of the maximum provides the
resonance lifetime. The corresponding eigenvector at resonance energy provides the
product state distribution of the resonance decay.

4 Applications

In this section, we report the implication of the aforementioned effects, namely the
geometric phase and non-adiabatic couplings between the two lowest coupled elec-
tronic surfaces, in the HCH2 exchange reaction as well as in the predissociation
dynamics of H3 Rydberg states.
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4.1 The Hydrogen-Exchange Reaction

Here we investigate the effect of the GP and non-adiabatic effects on state-to-
state scattering attributes of the reaction HA C HBHC ! HA C HBHC;HAHC C
HB;HAHB C HC. To compute state-to-state reaction probabilities, DCS and ICS,
we solve the time-dependent Schrödinger equation using Jacobi coordinates. To
overcome the coordinate problem relevant to reactive scattering (that is the ACCB
arrangement being difficult to represent in ACBC coordinates and vice versa), we
use the reactant-product decoupling (RPD) [96] method in its further refined parti-
tioned form [97–101]. This method will allow us to decouple the nuclear dynamics
Schrödinger equation into separate reactant, strong-interaction and product regions,
permitting different coordinates to be used in each region and using absorbing and
reflecting potentials to transform between reagent and product Jacobi coordinates.
In the single-surface calculations, we used the BKMP2 ground state potential energy
surface of Boothroyd et al. [44], and in the diabatic coupled-surface calculations we
used the same surface for the ground electronic state and the DMBE potential energy
surface [16] for the excited electronic state. A small correction term was added to
the DMBE surface to ensure that the vertices of the upper and lower cones touched
at every point along the CI seam.

The parameters used in our calculations on the hydrogen-exchange reaction can
be found in ([39]). Different tests were carried out to ensure the convergence of the
results with respect to these different parameters. The calculations were repeated
for all partial waves in the range J D 0 � 55 to yield state-to-state cross sections
converged to 5% over the whole energy range.

4.1.1 Effect of the Adiabatic Correction on State-to-State Scattering
Observables

Before exploring the effects of the geometric phase and of the off-diagonal non-
adiabatic couplings on the H C H2 exchange-reaction, we first investigate the
importance of the diagonal non-Born–Oppenheimer correction ƒii given by (6)
(which is usually ignored in single-surface calculations) on the reaction dynam-
ics. To gauge this effect, single-surface non-GP calculations were performed by
including and excluding this term.

Figures 1 and 2 illustrate this effect on state-to-state reaction probabilities and
DCS respectively. It is clear from both figures that the inclusion of ƒii has no effect
on the dynamics for total energies below about 2.3 eV, where the wave packet has
insufficient energy to approach the conical intersection and experience the adia-
batic correction which has the form of a spike centered around the CI. However,
at energies above these, the inclusion of the correction term makes a significant
contribution to the dynamics as can be seen from Fig. 1. The inclusion of ƒii not
only changes the probabilities, but even experimental scattering observables such
the DCS as illustrated by Fig. 2, in which the adiabatic correction tends to reduce
the rotational temperature of the H2 products, and the amount of sideways scattering
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Fig. 1 H C H2.v D 0; j D 0/ ! H2.v0; j0/ C H state-to-state non-GP reaction probabilities
computed without (1S-NDIAG) and with (1S-DIAG) the inclusion of the diagonal non-Born–
Oppenheimer term using the lower adiabatic PES. The dashed vertical line indicates the energetic
minimum of the CI seam. Reprinted with permission from [39]. Copyright (2008) by the American
Institute of Physics

in favour of forward and backward scattering. Comparable effects were observed for
most of the state-to-state reaction probabilities and DCS. Clearly, it is essential to
include the diagonal non-Born–Oppenheimer correction when computing scatter-
ing observables of the hydrogen exchange-reaction in single-surface calculations
at energies above about 2.3 eV. So, in the remainder of the results on reactivity,
this correction is included either explicitly when using the adiabatic single-surface
calculations (for both GP and non-GP calculations) or implicitly in the diabatic
coupled-surface picture.

4.1.2 Low Energy Regime: Particle-Exchange Symmetry Geometric
Phase Effect

To distinguish the effect of the geometric phase from that of non-adiabatic popu-
lation transfer between the two coupled electronic surfaces on the reactivity of the
H C H2 system, we first confine the dynamics to the electronic ground state by
exploring total energies below 1.8 eV (far below the energy minimum of the CI
seam occurring at 2.74 eV), where it is well known that non-adiabatic off-diagonal



Geometric Phase and Non-adiabatic Effects in the Dynamics of HCH2 221

60 900 30 120 150 180

60 900 30 120 150 180

0

0.1

0.2

0

0.04

0.08

Scattering angle (deg)

D
C

S 
(1

0–
2  

Å
2  

Sr
–1

)

E=4.0 eV

E=2.3 eV

1S-NDIAG
1S-DIAG

60 900 30 120 150 180

60 900 30 120 150 180
0

0.05

0.1

0

0.05

0.1 E=4.3 eV

E=3.0 eV

(v’=0,j’=1)

Fig. 2 H C H2.v D 0; j D 0/ ! H2.v0; j0/ C H state-to-state non-GP DCS for four different
total energies computed without (1S-NDIAG) and with (1S-DIAG) the inclusion of the diagonal
non-Born–Oppenheimer term using the lower adiabatic PES. Reprinted with permission from [39].
Copyright (2008) by the American Institute of Physics

elements vanish. Three sets of calculations, ignoring the GP effect and including it
explicitly (by artificially changing the sign of the reactive S matrix) and implicitly
with the vector potential approach, were performed. Distinguishable-particle scat-
tering amplitudes were obtained and then antisymmetrized to obtain the physical
cross sections to be compared to the experimental ones.

Figure 3 illustrates the effect of the geometric phase on Pauli-antisymmetrized
DCS for para–para transitions. From this figure, we notice that the results obtained
by including the GP either implicitly or explicitly are indistinguishable. This sug-
gest that, at these low energies, the sole effect of the GP is a change in the sign
of the reactive scattering matrix elements and of the associated scattering ampli-
tudes leaving the absolute value of their real and imaginary parts unchanged. As a
result, the DCS obtained by ignoring the GP are exactly the same as those including
this effect for para–ortho and ortho–para transitions (so are the corresponding ICS),
because only the reactive part of the wave function contributes to these transitions,
the inelastic part being zero by symmetry [2] (see (37)). However, for para–para
(and ortho–ortho) transitions, the inclusion of the GP induces significant changes in
the DCS as can be seen in Fig. 3 showing some para–para transitions, where the two
curves including and excluding the GP exhibit pronounced oscillations which are
out phase with each other. A maximum in one curve corresponds to a minimum in
another and vice versa. This out of phase behaviour in the DCS is a trivial result of
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Fig. 3 HC H2.v D 0; j D 0/ ! H2.v0; j0/C H para–para state-to-state Pauli-antisymmetrized
DCS for two different total energies computed by excluding (NGP) and including the geometric
phase explicitly (GP1), by artificially changing the sign of the reactive scattering amplitude, and
implicitly (GP2) with the vector potential approach

the interference between the reactive and nonreactive scattering amplitudes as the
GP solely changes the sign of this interference term as (37) suggests. The integra-
tion of this interference term over the scattering angle vanishes, which is why the
GP effect cancels out in the integral cross section as shown in Fig. 4. Indeed, these
oscillations come from the crossed term 2Re.fN

n0 n
fR
n0 n

/ which adds to or subtracts
from the other contributions to the DCS according to the presence or absence of the
GP. This term is a sufficiently fast function of the scattering angle to provide a negli-
gible contribution after integration. To summarise, the inclusion of the GP resulting
from particle-exchange symmetry of identical nuclei in H3, at energies far below
the energetic minimum of the CI, only introduces a sign change in the scattering
amplitude reactive part, thus leaving para–ortho (and also ortho–para) transitions
DCS unchanged, and inducing a phase shift in the oscillations of the DCS for para-
para (and ortho–ortho) transitions when compared with those computed with normal
boundary conditions.

4.1.3 High Energy Regime: Geometric Phase and Non-Adiabatic
Couplings Effects

When the total energy increases and reaches the intersection region of the CI, the
resulting GP effect is more complicated as the wave packet may encircle the CI
[7]. In the remaining parts of this section, we focus the study on reactive scattering
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by excluding (NGP) and including the geometric phase explicitly (GP1), by artificially chang-
ing the sign of the reactive scattering amplitude, and implicitly (GP2) with the vector potential
approach

and investigate the high energy regime in which the GP effect due to encircling
wave functions may become significant. To distinguish this later effect from the
one produced by symmetry, we ignore cyclic permutation symmetry of the nuclei
whose effect was studied before, and thus only para–ortho and ortho–para scattering
observables correspond to the experimentally measurable ones. In addition to the
GP, we investigate all non-adiabatic effects since at these energies the coupling to
the upper sheet of the potential energy surface must be included in the calculations.

A. State-to-State Reaction Probabilities and ICS

We compare state-to-state reaction probabilities and ICS obtained by three sets of
calculations, two of them using the ground electronic state PES in which the GP is
either included (1S-GP) or excluded (1S-NGP), and the last one includes all of the
nonadiabatic effects using the two coupled diabatic surfaces (2S-DIABATIC).

The extent to which state-to-state reaction probabilities are affected by the GP
and the off-diagonal couplings can be gauged from Fig. 5, in which the three cal-
culations for H C H2.v D 0; j D 0/ ! H2.v0 D 2; j D 1/ C H are compared.
This figure shows that the result of one surface including the GP reproduces almost
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Fig. 5 HCH2.v D 0; j D 0/! H2.v0 D 2; j0 D 1/CH state-to-state reaction probabilities com-
puted using the lower adiabatic PES including the diagonal non-Born–Oppenheimer term without
(1S-NGP) and with (1S-GP) the GP, and using the coupled diabatic surfaces (2S-DIABATIC). The
dashed vertical line indicates the energetic minimum of the CI seam. Reprinted with permission
from [39]. Copyright (2008) by the American Institute of Physics

exactly the coupled-surface result, that is the contribution of the upper surface to the
state-to-state reaction probabilities for the specified initial rovibrational state of the
reactant is very small, and may be neglected to a good approximation. Hence, the
large effects shown in this figure which appear at high energies are caused mainly
by the geometric phase, which are very strong especially for energies above 3.5 eV.
The same effects were observed for almost all the final rovibrational states of the
products [39].

However, upon summing up the different probabilities over J to obtain the inte-
gral cross sections, all the GP effects almost completely cancel out as shown in
Figs. 6 and 7 even at high energies, thus continuing a trend observed in the earlier
work of Kendrick [13–15] and Juanes-Marcos et al. [30, 31]. Some of the state-to-
state ICS do retain small GP effects (e.g. the v’D 0 ICS at 4.3 eV), but these effects
are much smaller than the GP effects in the corresponding state-to-state reaction
probabilities. The origin of this cancellation will be discussed further in Sect.5.

B. State-to-State Differential Cross Sections

Now, we examine whether the strong GP effects present in many of the state-to-state
reaction probabilities survive the coherent sum over partial waves to appear in the
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Fig. 6 HC H2.v D 0; j D 0/! H2.v0 D 2; j0 D 1/C H state-to-state ICS computed using the
lower adiabatic PES including the diagonal non-Born–Oppenheimer term without (1S-NGP) and
with (1S-GP) the GP, and using the coupled diabatic surfaces (2S-DIABATIC)

state-to-state DCS. The effect of the GP on the DCS corresponding to the probabili-
ties in Fig. 5 is shown in Fig. 8. At energies below 3.5 eV, the GP slightly shifted the
phase of the rapidly oscillating part of the DCS at high impact parameters, as we
can see in the forward part of the DCS at a total energy of 2.3 eV. However, at ener-
gies above 3.5 eV, we find that the much stronger GP effects in the individual partial
waves survive as large GP effects in the corresponding DCS. This is illustrated in
Fig. 8 for a total energy of 4.3 eV where the inclusion of the GP splits the broad sin-
gle peak centred around 80ı into a double peak producing a shift of 15ı in the DCS,
thus requiring relatively low resolution to measure it experimentally. Comparable
strong GP effects are found in most of the other state-to-state DCS [39].

4.2 Predissociation Dynamics of Rydberg States of H3

Figure 9 compares transitions probabilities for zero total angular momentum J
resulting from (2S-DIABATIC) and (1S-GP) calculations with initial and final states
chosen to be representative of two cases : (A) initial and/or final states have low
rovibrational excitation, (B) initial and final states have both high rovibrational exci-
tation. In case (A), both (2S-DIABATIC) and (1S-GP) results almost coincide, even
for energies close to the three body dissociation limit. Case (A) corresponds to the
kind of transitions already considered in Sect. 4.1 where it was shown that it is valid
to use the single rovibrational wavefunction associated to the ground electronic state



226 F. Bouakline et al.

0 5 10 15 20
0

5

10

15

1S-NGP
1S-GP
2S-DIABATIC

0 5 10 15 20 25
0

2

4

6

8

0 5 10 15 20 25 30

j’

0

1

2

3

0 5 10 15 20 25 30

j’

0

1

2

3

v’=3 v’=2 v’=1 v’=0

v’=3

v’=4

v’=2

v’=1

v’=0

v’=3

v’=4

v’=2

v’=1

v’=0

v’=3

v’=4

v’=2 v’=1

v’=0

E=2.3 eV E=3.0 eV

E=4.0 eV E=4.3 eV

IC
S 

(1
0–

2 Å
2 )

IC
S 

(1
0–

2 Å
2 )

Fig. 7 Product ro-vibration distributions for HCH2.v D 0; j D 0/ for different total energies com-
puted using the lower adiabatic PES including the diagonal non-Born–Oppenheimer term without
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Reprinted with permission from [39]. Copyright (2008) by the American Institute of Physics

even for energies well above the one of the conical intersection minimum. However,
in case (B), broad resonance profiles appear on the (2S-DIABATIC) results that
are not present on the (1S-GP) ones. In this case, for energies near and above 4eV,
the presence of the excited adiabatic potential significantly influences the reaction
dynamics and must be included in the calculation.

The main difference between (2S-DIABATIC) and (1S-GP) results is the appear-
ance of broad Fano profiles on the (2S-DIABATIC) transition probabilities, which
suggests that the upper adiabatic PES can support resonances which do not exist
in the single ground adiabatic surface calculation. This can be investigated further
with the lifetime matrix formalism described in Sect. 3.4. Smith lifetime matrices
for the (2S-DIABATIC) case differ from the (1S-GP) ones only by the appearance
of Lorentzian-shape eigenvalues near and above 4 eV.

These extra eigenvalues are shown as a function of energy for both A1 and A2
symmetries of the rovibronic wavefunction in Fig. 10. There are two maxima near
4.41 and 4.62 eV for A1 symmetry, 4.49 and 4.70 eV for A2 symmetry. They cor-
respond to resonances with lifetimes close to 15 fs for A1 symmetry and 10 fs for
A2 symmetry. Resonances with similar lifetimes have been computed in [60, 61]
and detected experimentally in [68]. The energies of the bound rovibrational states
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Fig. 9 J D 0 transition probabilities for A1 (left) and A2 (right) symmetries of the rovibronic
wavefunction. The particular transitions chosen are representative examples of two cases: (a): the
initial and/or final states have low vibrational excitation, (b): the initial and final states both have
significant vibrational excitation. Case (A) transitions are: HCH2.v D 0; j D 0/! HCH2.v D 2,
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correspond to results obtained with two coupled diabatic (2S-Diabatic) and one single adiabatic
(1S-GP) electronic states respectively
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the energies of the bound states on the upper electronic potential energy surface, with adiabatic
corrections

associated to the excited adiabatic electronic potential (and including the diagonal
adiabatic correction) are also shown on Fig. 10 as vertical arrows. There is a clear
correlation between bound and resonant state energies which allows us to inter-
pret the scattering resonances as bound rovibrational states on the excited electronic
potential coupled to the continuum by electronic non-adiabatic couplings.

These resonances can be classified using the quantum numbers v1 for the hyper-
radial motion and vl

2 for the two dimensional bending motion [67]. l is the vibra-
tional angular momentum such that .v2 � l/=2 is the number of nodes of the
wavefunction along � . Both v2 and l are half integers and integers in the cases with
and without GP respectively. The pairs of resonances appearing on Figs. 9 and 10
correspond to v2 D l D 3=2 and v1 D 0 and 1. The vibrational angular momentum
plays a crucial role for the lifetime of the resonance. Indeed, it provides an effec-
tive centrifugal potential which expels the wavefunction away from the equilateral
triangular configuration region � D �=4 [82]. It prevents the nuclear wavefunction
from being exposed to the large non-adiabatic electronic couplings in this region
which even diverge for � D �=4. The stability of the resonances is thus expected
to increase with l. This was checked by comparing the lifetimes of the resonances
extracted from a calculation performed for the E irreducible representation with
the ones performed for A1 and A2. Resonances for the E symmetry correspond to
v2 D l D 1=2 [67] and were found to have lifetimes shorter than the ones for A1 and
A2 (l D 1=2) and limited to a few femtoseconds only, as expected. This vibrational
stabilization mechanism is a particular case of Slonczewski resonances [102].

Figure 11 shows the product state distributions after decay of the A1 and A2

resonances at 4.41 and 4.49 eV respectively. In both cases, H C H2 decay prod-
ucts have significant internal energy : for the A1 symmetry, 41% of the available
energy appears as rovibrational energy, and 51% for the A2 case. Thus, these reso-
nances decay exclusively into excited rovibrational states and were not observed on
previously computed reactive scattering transitions probabilities and cross-sections
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Fig. 11 Population of the different HCH2.v; j/ channels in the decay of the A1 and A2 resonances
at 4.41 and 4.49 eV respectively

[60, 61, 70] which were performed for low excitation either of the reactants or
of the products. In our reaction probabilities, these resonances display signifi-
cant intensities only for transitions between simultaneously excited reactants and
products.

Internal energy partitioning between vibration and rotation is very different for
A1 and A2 symmetries : 18% of the internal energy goes into rotation for the A1
symmetry, in contrast with 50% for the A2 symmetry. This reflects itself in the
product state distributions of Fig. 11, which have a maximum for low rotational
quantum number j in the A1 symmetry, but for j near 15 for the A2 case.

Interpretation of these results requires the knowledge of the nodal structure of
the vibrational wavefunction which is strongly influenced by the presence of the
geometric phase. For the case without GP, A1 vibrational wavefunctions have no
nodal surface prescribed by nuclear permutation symmetry, whereas A2 vibrational
wavefunctions have nodal surfaces imposed by nuclear permutation symmetry for
both acute (principal vertex angle smaller than 60ı) and obtuse isosceles configu-
rations. For the GP case, NA1 ( NA2) vibrational wavefunctions have nodal planes for
obtuse (acute) isosceles configurations and maxima for acute (obtuse) configura-
tions, respectively [37,58]. Loosely speaking, NA1 and NA2 vibrational wavefunctions
therefore have dominant acute and obtuse isosceles characters, respectively. For near
acute isosceles configurations, the decay mechanism is an abstraction one, in which
one atom departs from the two others without providing significant rotational exci-
tation. NA1 resonances thus decay into products with little rotational excitation, in
agreement with the result of Fig. 11. On the contrary, for NA2 obtuse isosceles vibra-
tional wavefunctions, the decay mechanism is an insertion one, where the atom
initially close to the principal vertex of the isosceles triangle is pushed towards
the two others. This motion provides a bending excitation of the triatom, which
turns into rotational energy as the system departs from isosceles configurations,
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which correspond to an electronic potential crest and a saddle point for collinear
geometries. Consequently, fragments arising from A2 resonances have significant
rotational excitation, as shown in Fig. 11. The strong differences in product state
distributions are therefore the direct consequence of the nodal structure imposed on
the vibrational wavefunction by the GP. A similar nodal structure analysis is used
in [58] to explain the impact of the geometric phase on the cyclic-N3 vibrational
spectra.

5 Topological Interpretation of the Geometric Phase Effect
in the Dynamics of H3

From the results shown above, it is clear that the GP effect on the HC H2 reaction
at low energies (below 1.8 eV) is only observable for para–para and ortho–ortho
transitions due to symmetry considerations. The GP introduces a sign change in the
reactive scattering amplitude [7], thus changing the sign of the interference term
between the reactive and nonreactive parts of the total nuclear wavefunction. This is
the origin of the phase shift observed in the oscillations of the DCS computed with
and without the inclusion of the GP. The highly oscillatory behaviour of the interfer-
ence term as a function of the scattering angle is the reason for an almost complete
cancellation of the GP in the ICS. Analysing the GP effects at high energies for
para–ortho and ortho–para transitions is a different task, since the wave function
only involves a reactive part, the nonreactive one being zero by symmetry.

In this section, to explain the observed results in this later energy regime, we
summarise a topological approach originally introduced by Schulman [64, 65, 104],
and Laidlaw and De Witt [66] in Feynman path integral treatments of the Aharonov–
Bohm effect, in which an electron encircles a magnetic solenoid but does not overlap
with it, thus acquiring a geometric phase. They showed that the electronic wave
function can be split into two components, each of which contains all the Feynman
paths that loop in a given sense around the solenoid. Althorpe and co-workers [31,
32, 34] demonstrated that the nuclear wave function encircling the CI can be split,
in a similar way, into two components, the even and odd looping ones. In HCH2,
they correspond to paths that pass over, respectively, one (1-TS) and two (2-TS)
transition states, as shown in Fig. 12.

The approach is extremely simple to apply, since the non-GP and GP scattering
amplitudes are given by:

fN.�/ D 1p
2
Œf1�TS.�/C f2�TS.�/�

fG.�/ D 1p
2
Œf1�TS.�/� f2�TS.�/�

(38)
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Fig. 12 Schematic representation of the 1-TS (solid) and 2-TS (dashed) reaction paths in the
reaction HA C HBHC ! HAHC C HB. The H3 potential energy surface is represented using the
hyperspherical coordinate system of Kuppermann [103] for a fixed value of the hyper-radius �,
in which the equilateral-triangle geometry of the CI is in the centre .�/ and the linear transition
states .�/ are on the perimeter of the circle. The angle ˛ is the internal angular coordinate which
describes motion around the CI

Hence the 1-TS and 2-TS contributions to the amplitudes can be obtained from

f1�TS.�/ D 1p
2
ŒfN.�/C fG.�/�

f2�TS.�/ D 1p
2
ŒfN.�/� fG.�/�

(39)

This approach is rigorous, provided the 1-TS paths cannot be continuously deformed
into 2-TS paths. (In the language of topology, the 1-TS and 2-TS paths are then
different ‘homotopes’). At energies below about 2.5 eV, this criterion is satisfied
because there is an energetically inaccessible region of space surrounding the CI
seam. This region acts as an obstacle when one tries to deform a 1-TS path into a
2-TS path. (In the language of topology, this region makes the space occupied by
the nuclear wave function ‘multiply connected’.) At first sight, this condition would
appear to relax at energies above the CI seam (2.74 eV) since the wave packet has
enough energy to access points along the CI seam, and hence there is no obstacle
to discriminate between the 1-TS and 2-TS paths. However, we recently showed
that the topological approach originally developed for dynamics confined to the
lower surface can be easily applied to a coupled-surface system, with no essential
modifications [105]. Thus, the topological approach described by (38–39) is justified
for the whole range of energies.

Figure 13 shows the resulting direct and looping DCS for .v0 D 2; j0 D 1/ at
two different total energies (2.3 and 4.3 eV), which were obtained by substituting
f1�TS.�/ and f2�TS.�/ into the standard formula of the DCS given by (36). At the
lower of the two energies, the 1-TS products scatter mainly in the backward hemi-
sphere and the 2-TS products scatter mainly in the forward hemisphere; also, the
2-TS contribution is negligible at this energy (for clarity, the 2-TS DCS shown on
the figure is 200 times the computed one). As a result, the interference between the
direct and looping scattering amplitudes is very small and thus no appreciable dif-
ference between the GP and non-GP is observed. However, at higher energies, the
amount of the products traversing 1-TS and 2-TS are of the same order of magnitude
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and their scattering amplitudes do interfere. This is clearly shown in Fig. 13 for
a total energy of 4.3 eV, where the two direct and looping scattering amplitudes
considerably interfere for sideways-approach geometries thus leading to significant
differences between the GP and non-GP DCS as we can see in Fig. 8. The topo-
logical approach developed above can also be used to explain why the GP effects
cancel out in the ICS. To do so, we plot in Fig. 14 the phases of the 1-TS and 2-
TS scattering amplitudes corresponding to the DCS of Fig. 13 as a function of the
scattering angle � . At a total energy of 2.3 eV, the slopes of these phases depend in
opposite senses on � . From semiclassical scattering theory [94, 106], this implies
that the 1-TS and 2-TS paths scatter their products with opposite spatial angular
momentum, into positive (nearside) and negative (farside) deflection angles respec-
tively. As discussed in [30, 31, 34], this tendency is observed for most final states at
these lower energies, including those states for which noticeable GP effects appear
in the DCS. As a result, the interference term Œf1�TS.�/

�f2�TS.�/� between the two
scattering mechanisms is highly oscillatory, integrates over � to a very small value,
and thus cancels in the ICS any GP effects that did survive in the DCS. At higher
energies, as for 4.3 eV given in Fig. 14, the slopes of the 1-TS and 2-TS phases no
longer have opposite dependencies on � . However, the phase dependencies are still
sufficiently different to give efficient cancellation of the GP effects at these ener-
gies. This cancellation is not as efficient as at lower energies, and there are some
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looping (2-TS) scattering amplitudes

final states in which a very small residual GP effect remains in the ICS, as can be
seen in the v0 D 0 integral cross sections at 4.3 eV (Fig. 7).

6 Conclusions and Perspectives

In this contribution, we investigated the effects of the geometric phase and non-
adiabatic couplings between the two lowest conically intersecting potential energy
surfaces of the H C H2 system on state-to-state reactive and inelastic scattering
as well as on predissociation of the quasibound states of the upper cone. These
studies showed that non-adiabatic effects (including the GP) play a significant role
in the dynamics of this system. Neglecting these effects will sometimes lead to
incompatible results with experimentally measurable observables, especially at high
energies.

As for state-to-state reactive scattering, the first conclusion concerns the diago-
nal adiabatic correction, yet ignored in almost all quantum dynamics calculations,
where its inclusion makes an important contribution to the dynamics by changing
significantly state-to-state probabilities and also differential cross sections at high
energies (above about 3 eV). These energies are well above the lowest point on
the conical intersection seam, yet the contribution of the excited state to the state-
to-state reactive scattering is found to be very small. In fact, we obtain accurate
predictions of the state-to-state reaction probabilities and cross sections employing



234 F. Bouakline et al.

just the ground state surface, with inclusion of the diagonal non-Born–Oppenheimer
correction and the geometric phase GP. These results extend the earlier results of
Mahapatra et al. [69, 70] who found a similar lack of participation of the excited
state in the initial state-selected reaction probabilities and integral cross sections.
This result should be taken carefully as it only concerns the case where the reac-
tant H2 is initially in low excited states. For transitions involving excitation of
both reagents and products, we have shown that the resonances associated to the
excited PES play a significant role in the dynamics and should be included. On the
other hand, even for the reagent in low excited states, the geometric phase effect is
found to be very significant. At low energies, the GP effect is clearly observable for
para–para (and correspondingly ortho–ortho) transitions, a consequence of a cyclic
permutation symmetry of the nuclei leading to a sign change in the interference
of the reactive and nonreactive parts of the nuclear wave function. For these transi-
tions, inclusion of the GP produces out of phase oscillations in the DCS with respect
to those computed with normal boundary conditions. However, the GP effects for
para–ortho and ortho–para transitions on the DCS are too limited to be confirmed
experimentally, and this is due to the lack of the encirclement of the CI at these low
energies. At high energies (above 3.5 eV), GP effects are strong on state-to-state
reaction probabilities, and these effects survive in many state-to-state differential
cross sections. A low angular experimental resolution (about 20ı) would be suffi-
cient to observe them. However, for the whole energy range, the GP effects cancel
almost completely in the state-to-state ICS, owing to efficient dephasing when inte-
grating over � . Thus, state-to-state rates can be computed reliably on the ground
state Born–Oppenheimer surface, with the complete neglect of all non-adiabatic
terms except for the diagonal non-Born–Oppenheimer correction term.

The study of the predissociation mechanism of the resonances supported by the
first excited electronic potential opens the way for a theoretical interpretation of the
ongoing experiments on the predissociation of Rydberg states of H3 [62, 63]. For
the predissociation from the 2s,2A

0

1 state in its ground bending mode, most of the
available energy is equally shared by two of the three atoms. This corresponds to
three lobes with maxima for obtuse isosceles configurations on the Dalitz plots of
[62, 63]. Configurations with equal sharing of the energy between the three atoms
have a low probability of occurrence which gives a minimum at the center of the
Dalitz plot. The situation is opposite for predissociation from the 2p,2A

00

2 state in its
ground bending mode : equal sharing of energy between the three atoms now has
a high occurrence probability (maximum at the center of the Dalitz plots [62, 63]).
Configurations where one atom carries most of the energy also have a high proba-
bility of occurrence and produce secondary lobes with maxima for acute isosceles
configurations on the Dalitz plots. These systematic effects do not depend on the
choice of the symmetric stretch excitation of the predissociating state and they are
equally valid for hydrogen and deuterium. A theoretical analysis [37] has shown
that the symmetry of the different electronic states and in particular the geometric
phase plays a crucial role in the interpretation of these experimental data. The dif-
ferent computational methods described in the present paper could be used to obtain
quantitative agreement with experimental data.
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In addition to the investigation of the influence of the GP on the reactivity of
the HC H2 system, a topological approach developed by one of the authors [32] to
explain this effect was presented. This approach used a simple topological argument
to extract reaction paths with different senses from a nuclear wave function that
encircles a conical intersection. In the H C H2 system, these senses correspond
to paths that cross one or two transition states, and their interference dictates the
importance of the GP in state-to-state probabilities and DCS. These two sets of
paths scatter their products into different regions of space, which causes an almost
complete cancellation of the geometric phase effect in the ICS. The analysis should
generalize to other direct reactions and estimate the likely magnitude of GP effects
by modeling the dynamics of the even- and odd-looping reaction paths around the
CI using classical trajectories methods [107–110].
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83. L. Velilla, B. Lepetit, A. Aguado, J.A. Beswick, M. Paniagua, J. Chem. Phys. 129 084307

(2008)
84. J. Tennyson, B.T. Sutcliffe, J. Chem. Phys. 77 4061 (1982)
85. C.A. Mead, D.G. Truhlar, J. Chem. Phys. 77 6090 (1982)
86. H. KRoppel, Faraday Discuss. 127 35 (2004)
87. A. Thiel, H. KRoppel, J. Chem. Phys. 110 9371 (1999)
88. A.J.C. Varandas, F.B. Brown, C.A. Mead, D.G. Truhlar, N.C. Blais, J. Chem. Phys. 86 6258

(1987)
89. R. Abrol, A. Kuppermann, J. Chem. Phys. 116 1035 (2005)
90. S.C. Althorpe, D.C. Clary, Annu. Rev. Phys. Chem. 54 493 (2003)
91. R.N. Zare, Angular Momentum (Wiley, New York, 1988)
92. W.H. Miller, J. Chem. Phys. 50 407 (1969)
93. D. Neuhauser, M. Baer, R.S. Judson, D.J. Kouri, J. Chem. Phys. 90 5882 (1989)
94. M.S. Child, Molecular Collision Theory (Dover, New York, 1996)
95. F.T. Smith, Phys. Rev. 118 349 (1960)
96. T. Peng, J.Z.H. Zhang, J. Chem. Phys. 105 6072 (1996)
97. S.C. Althorpe, D.J. Kouri, D.K. Hoffman, J. Chem. Phys. 107 7816 (1997)
98. S.C. Althorpe, J. Chem. Phys. 114 1601 (2001)
99. S.C. Althorpe, J. Chem. Phys. 117 4623 (2002)

100. S.C. Althorpe, J. Chem. Phys. 121 1175 (2004)
101. S.C. Althorpe, Int. Rev. Phys. Chem. 121 1175 (2004)
102. J.C. Slonczewski, Phys. Rev. 131 1596 (1963)
103. A. Kuppermann, Chem. Phys. Lett. 32 374 (1975)
104. L. S. Schulman, J. Math. Phys. 12, 304 (1971)
105. S.C. Althorpe, T. Stecher, F. Bouakline, J. Chem. Phys. 129 214117 (2008)
106. A.J. Dobbyn, P. McCabe, J.N.L. Connor, J.F. Castillo, Phys. Chem. Chem. Phys. 1 1115

(1999) Phys. Rev. A 58 1115 (1998)
107. D.G. Truhlar, J.T. Muckerman, in Atom–Molecule Collision Theory, ed. by R.B. Bernstein

(Plenum, New York, 1979)
108. F.J. Aoiz, V.J. Herrero, V. SKaez RKabanos, J. Chem. Phys. 94 7991 (1991)
109. L. Bonnet, J.-C. Rayez, Chem. Phys. Lett. 277 183 (1997)
110. L. Bonnet, J.-C. Rayez, Chem. Phys. Lett. 397 106 (2004)



Multi-Mode Jahn–Teller
and Pseudo-Jahn–Teller Effects
in Benzenoid Cations

Shirin Faraji, Etienne Gindensperger, and Horst Köppel

Abstract The multi-state multi-mode vibronic interactions in the benzene radical
cation and some of its fluorinated derivatives are surveyed from a theoretical point of
view. While the parent system is a prototypical example for the multi-mode dynam-
ical Jahn–Teller effect, partial fluorination leads to a reduction of symmetry and a
‘disappearance’ of the Jahn–Teller effect. Nevertheless, strong vibronic interactions
prevail also there and lead to marked effects in the spectral intensity distributions
and to an ultrafast electronic population dynamics. These phenomena have been
analyzed theoretically in our group by means of a well-established vibronic cou-
pling scheme, combined with an ab initio quantum dynamical approach (namely, ab
initio coupled cluster calculations for the underlying potential energy surfaces and
coupling constants, and the so-called MCTDH wavepacket propagation technique
for the nuclear motion). The results are presented and discussed, putting emphasis
on their dependence on the respective system, especially the degree of fluorina-
tion. They shed new light on the substitutional effects on vibronic interactions and
demonstrate the degree of sophistication that can be achieved nowadays in their
theoretical treatment.

1 Introduction and Historical Background

The Jahn–Teller (JT) effect [1–3] and vibronic interactions [4–8] are among the
key factors governing excited-state dynamics in molecular systems. An important
aspect is the reduction in symmetry [3,6,9] occurring through the coupling between
the different potential energy surfaces. Historically, this was in fact the main per-
spective of the theorem of Jahn and Teller [1,3,5], which provided a mechanism for
structural instabilities of molecules and solids, through the incompatibility of spatial
degeneracy of the electronic wavefunction and stationarity of the associated poten-
tial energy surfaces (except for accidental degeneracy and linear molecules). This
field is still actively explored in many current investigations as is testified by several
other articles in the present volume. Another important aspect, more in the focus of
the present article, is the nonadiabatic nature of the nuclear motion near degenera-
cies of potential energy surfaces [7, 10–15], such as occur by virtue of symmetry in
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the JT case. Especially through the seminal work of Longuet-Higgins et al. [16–18],
the degeneracy was recognized to require a coupled-surface treatment of the nuclear
motion, thus taking nonadiabatic interactions into account on an equal footing with
the vibrational motion. Coupled-surface dynamics was indeed studied in numerous
papers on different JT systems from various viewpoints later on (see for example
[19–28] and references therein). In addition to the degeneracy itself, the existence
of linear coupling terms as implied by the JT theorem leads to a double-cone shape
of the JT split potential energy surfaces near the point of symmetry-induced degen-
eracy, as soon as several JT active degrees of freedom are considered. From a more
modern perspective, this makes the JT intersections a special case of conical inter-
sections [6,7,10–15,17]. Conical intersections have now emerged as paradigms for
nonadiabatic excited-state dynamics [5–7, 10, 12–15], and are considered responsi-
ble for a wide range of phenomena in areas like spectroscopy, reactive scattering,
photophysics and photochemistry.

Apart from systematic studies and individual examples, it is of considerable inter-
est to have available a set of related molecules which can serve as a means to vary
one or several system parameters and thus establish their impact on the vibronic
interactions in general and on the nonadiabatic coupling effects in particular. One
such class of systems has proven to be the radical cations of the five-membered
heterocycles furan, pyrrole and thiophene [29]. Here, the variation of the first two
vertical ionization potentials (more precisely, their difference) in the series pro-
vides a parameter to change the energetic location of the conical intersection of the
corresponding potential energy surfaces (PES). This tunes the energy range where
strong nonadiabatic coupling effects occur, which nicely shows up in their respective
photoelectron spectra [29].

Another useful class of systems in this context is provided by benzene, its radical
cation and their halo derivatives. They represent a prototype family of molecules
for the multi-mode dynamical JT effect and associated vibronic interactions [30–
42]. The relevant molecular point groups are D6h for the unsubstituted or ‘parent’
systems and D3h for the 1,3,5 symmetrically substituted derivatives, like haloben-
zenes or halobenzene cations [41–63]. This makes these systems representatives of
the E ˝ e dynamical JT effect [1,5,14], where a doubly degenerate electronic state
(E) interacts with doubly degenerate (e) vibrational modes. In addition, pseudo-
Jahn–Teller (PJT) [5, 14, 34, 64–67] interactions with nearby nondegenerate states
come into play which immediately enlarges the vibronic system beyond the most
commonly treated two-state problem and leads to multi-state vibronic interactions.
For less symmetric substitutions [41,53,62,63,68–73], there is generally no JT effect
possible ‘any more’, and the question arises how this affects the vibronic dynamics,
whether the effects vanish altogether or whether there are only quantitative (pos-
sibly minor) changes. Furthermore, for the family of fluorobenzene cations, there
is a marked dependence of their emission properties on the degree of fluorination:
the monofluoro benzene cation, like the parent cation itself [43, 74, 75], shows no
emission, while for a threefold and higher degree of fluorination generally emissive
species are obtained [43–50]. The doubly fluorinated benzene cations appear to be
at the borderline, and the emissive properties depend on the particular isomer [43].
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This is indicative of characteristic energy shifts of the relevant electronic states of
the cations similar as indicated above for the five-membered heterocycles.

In the past several years, following earlier studies more limited in scope, we have
conducted a rather comprehensive set of theoretical investigations on the benzene
cation and its mono- and difluoro derivatives [30, 31, 60–62, 68, 69]. This serves to
analyze not only the multi-mode dynamical JT and PJT effect in the unsubstituted
species, but also the changes that occur upon reduction in symmetry. In addition,
multi-state vibronic interactions with 4–5 strongly coupled PES, the energetic shifts
that occur upon fluorination and their impact on the interstate couplings, on the spec-
troscopic properties, and, also on the fluorescence dynamics, have been elucidated.
The investigations are all based on ab initio quantum dynamics, employing coupled-
cluster [76–78] calculations for the coupling constants and underlying PES, and
wavepacket propagation techniques with typically ten vibrational degrees of free-
dom for the nuclear motion (the latter relying on the powerful multiconfiguration
time-dependent Hartree (MCTDH) method [79–82]). The conceptual framework is
provided by the well-established linear vibronic coupling approach [6, 14, 83], aug-
mented by characteristic quadratic coupling terms. By a careful analysis, much of
the available spectroscopic information on these species is well reproduced, and use-
ful insight is obtained on the different fluorescence properties of the various benzene
cation derivatives.

In the present review we survey these studies and results, with special emphasis
on the relations between the various systems treated. The latter applies to the elec-
tronic structural data as well as to the dynamical behaviour and their interrelation.
We focus on the vibronic structure of various spectral bands and on the femtosec-
ond population dynamics in the coupled electronic manifolds. Preliminary data on
a trifluoro derivative are also included. As a by-product we hope to demonstrate the
types of quantum-dynamical calculations that are feasible nowadays and thus give
an idea about possible future applications and developments in the field.

2 Theoretical Framework: Vibronic Hamiltonians

We are focusing on the five lowest electronic states of the benzene cation and its
fluoro derivatives, namely the mono-, di- (three different isomers) and tri- (1,2,3-
isomer) fluorobenzene cations. These states lie, for all six cations, in the energy
range from 9 to 13–14 eV above the electronic ground state of the respective neu-
tral species. They give rise to the low energy band systems of the experimental
photoelectron spectra [70].

At the equilibrium geometries of the neutrals, the symmetry assignments of these
cationic doublet states, ordered by ascending vertical ionization potentials, are as
follows. The obvious notations BzC, F-BzC, 1; 2, 1; 3, 1; 4 and 1; 2; 3 correspond
to the benzene, mono-fluorobenzene, ortho-, meta-, para-difluorobenzene isomers
and 1,2,3-trifluorobenzene, respectively. (The numbers refer to the position of the
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fluorine atoms on the hexagonal arrangement of carbon atoms):

BzC (D6h) F-BzC (C2v) 1,2 (C2v) 1,3 (C2v) 1,4 (D2h) 1,2,3 (C2v)

QX2E1g.�/ QX2B1.�/ QX2B1.�/ QX2A2.�/ QX2B3g.�/ QX2B1.�/
QA2A2.�/ QA2A2.�/ QA2B1.�/ QA2B2g .�/ QA2A2.�/

QB2E2g.�/ QB2B1.�/ QB2B1.�/ QB2B1.�/ QB2B1u.�/ QB2B1.�/
QC 2A2u.�/ QC 2B2.�/ QC 2A1.�/ QC 2A1.�/ QC 2B1g.�/ QC 2B2.�/

QD2A1.�/ QD2B2.�/ QD2B2.�/ QD2B3u.�/ QD2A1.�/.

The symbols in parentheses refer to the character of the underlying orbitals out of
which ionization takes place. Note that the QX2E1g and QB2E2g states of the benzene
cation are both doubly degenerate by symmetry, leading to a total of five electronic
component states as well [84, 85]. These degeneracies will be lifted due to Jahn–
Teller and pseudo Jahn–Teller interactions.

In order to study the vibronic dynamics and spectra resulting from the coupled
electronic and vibrational motion of the various species we use the same approach
throughout this work: the vibronic coupling (VC) model [6,14,83]. This model relies
on the use of a (quasi-)diabatic representation of the electronic states. Contrary to the
usual adiabatic electronic basis, the off-diagonal matrix elements which generate the
couplings within the electronic manifold arise from the potential energy part of the
Hamiltonian, rather than from the nuclear kinetic energy. This has the tremendous
advantage to get rid off the singularities in the derivative couplings at degenera-
cies of electronic states. Indeed, diabatic functions are usually smooth functions of
the nuclear coordinates Q [86–91]. As a consequence, the potential energy matrix
elements in the diabatic basis can be expanded in a Taylor series in Q and only
low-order terms retained. Truncating the series after the first-order terms defines the
linear vibronic coupling model (LVC), while including second-order terms leads to
the – as a short-hand notation – quadratic vibronic coupling model (QVC), and so
forth.

The total vibronic potential energy matrix Wtot .Q/ is derived by splitting each
of its elementsW tot

˛ˇ
.Q/ into a part V0.Q/ describing the initial electronic state – the

ground state of the neutral species in our case – and the changes W˛ˇ .Q/ induced
by the ionization. Here, ˛ and ˇ labels the electronic states of the cations. We have:

W tot
˛ˇ .Q/ D V0.Q/ ı˛ˇ CW˛ˇ .Q/: (1)

Defining Q as the set of dimensionless normal coordinates fQig of the (model)
harmonic ground state potential V0.Q/ with frequencies !i , we obtain [6, 14]:

W˛˛.Q/ D E˛ C
X

i

.�
.˛/
i Qi C

X

j

g
.˛/
ij QiQj C : : :/ (2)

W˛¤ˇ .Q/ D
X

i

�
.˛ˇ/
i Qi C : : : : (3)
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In (2), E˛ corresponds to the vertical IP for the state ˛. This is due to our partic-
ular choice of the diabatic states, chosen to coincide with the adiabatic ones at the
center of the Franck–Condon zone, Q D 0. The quantities �.˛/i and �.˛ˇ/i are the
intrastate and interstate (linear) coupling constants, respectively, and similarly for
the g.˛/ij , etc.

In the present study, the LVC model has shown to be sufficient for the study of
the benzene cation. However, for its fluoro derivatives it was needed to go beyond,
and some diagonal second-order contributions (g.˛/i i ) have been included. All other
second order terms (bilinear on- and off-diagonal couplings) are not included in
the present treatment. The inclusion of the g.˛/i i couplings for some of the totally
symmetric modes has a strong impact on the energetics of the intersection seams, as
will be discussed in more details in Sect. 4.1, and their inclusion is compulsory to
properly describe the electronic population dynamics [62].

The full VC Hamiltonian is obtained by adding the kinetic energy TN DP
i P

2
i !i=2 and V0 DPi !iQ

2
i =2:

H D .TN C V0/ 1 CW.Q/; (4)

with Pi the conjugated momentum of Qi and 1 the identity matrix in the electronic
space. We note that the form of the kinetic energy is an additional assumption here
because derivative couplings cannot be completely removed in general [92], but are
nevertheless expected to be small if the quasi-diabatic basis is constructed properly.
The explicit forms of the VC Hamiltonians corresponding to the various cations of
interest are presented in the two following subsections.

2.1 E ˝ e Jahn–Teller and .E ˚A/˝ e Pseudo Jahn–Teller
Hamiltonian for the Benzene Cation

The case of the benzene cation deserves particular attention compared to its fluoro
derivatives to be presented next, because of the occurrence of JT and PJT effects
which complicate the set up of the vibronic Hamiltonian. For a detailed derivation
of the latter we refer to [30].

The benzene molecule belongs to the D6h molecular point group. Among its 30
vibrational modes, 21 are planar and 9 lead to out-of-plane motion. They belong to
the following symmetry species [93]:

BzCW �vib D 2A1g ˚ 1A2g ˚ 1A2u ˚ 2B1u ˚ 2B2g ˚ 2B2u ˚ 1E1g ˚ 3E1u

˚4E2g ˚ 2E2u: (5)

In applying the VC Hamiltonian, (4), one has the following general symmetry
selection rule for the linear (� and �) contributions:

�˛ ˝ �ˇ � �i : (6)



244 S. Faraji et al.

This equation states that the irreducible representation of the vibrational mode i
must be contained in the direct product of the irreducible representations of the
electronic states ˛ and ˇ in order to contribute. The most important modes which
have been used in the subsequent treatment of the vibronic coupling in BzC are
collected in Table 3, using the Wilson notation [94].

For the nondegenerate QC state, only totally symmetric vibrations (�1 and �2) can
possess non-vanishing �’s. For the doubly degenerate states QX and QB in addition the
four doubly-degenerate E2g modes (�6 – �9) can contribute, recovering the well-
known result that these modes are JT active in BzC.

For the off-diagonal contributions to the vibronic potential matrix, application of
group theory gives:

E1g ˝E2g D B2g C E1g I E1g ˝ A2u D E1uI E2g ˝ A2u D E2u; (7)

where, on the right hand sides, irreducible representations containing no modes of
the benzene cations have been omitted. Note that, since the QX and QC states are
antisymmetric with respect to reflections in the molecular plane ( QB is symmetric),
the off-diagonal elements involving only one of these states contain out-of-plane
vibrations, while the others not.

In order to set up the working Hamiltonian, further simplifications are done.
These regard in particular the values of the couplings and/or the energetic loca-
tion of the minimum of the intersection seam between the various electronic states.
Details about these results are given in [30] and Sect. 4, but we anticipate them here
by putting some entries to zero in the Hamiltonian. Indeed, when the minimum of
the seam of intersections is too high in energy with respect to our energy range (9–
14 eV), the intersection will not play a significant role. In this line, the 3 E1u modes
which couple the QX and QC states according to the group theory are neglected, and
the corresponding entries in the Hamiltonian are put to zero. The LVC potential
energy matrix for the benzene cation thus reads [30]:

WBzC D0

B
B
B
B
BB
B
B
B
B
BB
B
@

EX C �
.X/

A1g
QC �

.X/

E2g
Qx �

.X/

E2g
Qy �

.XB/

E1g
Qx �

.XB/

E1g
Qy C �

.XB/

B2g
Q 0

�
.X/
E2g

Qy EX C �
.X/
A1g

Q� �.X/E2g
Qx �

.XB/
E1g

Qy � �
.XB/
B2g

Q ��
.XB/
E1g

Qx 0

�
.XB/
E1g

Qx �
.XB/
E1g

Qy � �
.XB/
B2g

Q EB C �
.B/
A1g

QC �
.B/
E2g

Qx �
.B/
E2g

Qy �
.BC/
E2u

Qy

�
.XB/
E1g

Qy C �
.XB/
B2g

Q ��
.XB/
E1g

Qx �
.B/
E2g

Qy EB C �
.B/
A1g

Q� �.B/E2g
Qx �

.BC/
E2u

Qx

0 0 �
.BC/

E2u
Qy �

.BC/

E2u
Qx EC C �

.C /

A1g
Q

1

C
C
C
C
CC
C
C
C
C
CC
C
A

(8)

where
�
.˛/
�i

Q D
X

i2�i

�
.˛/
i Qi and �

.˛ˇ/
�i

Q D
X

i2�i

�
.˛ˇ/
i Qi ; (9)
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with �i being the irreducible representation to which the mode i belongs. The other
quantities entering (9) are defined in (2) and (3). In (8), the additional indices x and
y of Q identify, whenever appropriate, the two components of the doubly degener-
ate modes. For these modes, the on- and off-diagonal contributions have the same
magnitude (denoted by �), but not always the same sign. The relative signs of
these contributions are of crucial importance for the JT Hamiltonians, and require a
careful derivation. The details are given in [30].

2.2 Multi-State Vibronic Hamiltonians
for the Fluorobenzene Cations

The mono-, di- and tri- (1,2,3-isomer) fluorobenzene cations belong to the C2v or
D2h molecular point groups. They contain only nondegenerate irreducible represen-
tations, and thus no symmetry-induced degeneracies occur. The tedious analysis of
the relative signs of coupling elements required for BzC [30] is therefore absent
here. The 30 modes of the fluorinated benzene cations belong to the following
symmetry species [52, 70, 73, 95]:

F � BzC W �vib D 11A1 ˚ 3A2 ˚ 6B1 ˚ 10B2; (10)

1; 2 W �vib D 11A1 ˚ 5A2 ˚ 4B1 ˚ 10B2; (11)

1; 3 W �vib D 11A1 ˚ 3A2 ˚ 6B1 ˚ 10B2; (12)

1; 4 W �vib D 6Ag ˚ 2Au ˚ 5B1g ˚ 3B1u ˚ 1B2g ˚ 5B2u ˚ 3B3g
˚5B3u; (13)

1; 2; 3 W �vib D 11A1 ˚ 3A2 ˚ 6B1 ˚ 10B2: (14)

By using the LVC model, augmented by purely quadratic couplings only for
totally symmetric modes (thus adding QVC contributions) the symmetry-selection
rule, (6), can be directly applied to deduce the vibronic Hamiltonian matrices for the
description of the five lowest QX � QD doublet states of these fluorobenzene cations.
We shall not write down all five matrices here, but rather provide the basic features
regarding their QVC Hamiltonian. The general form of the QVC potential energy
matrix, Wf luoro, for the above mentioned fluorobenzene cations is depicted below:

H D .TN C V0/ 1 CWf luoro; (15)

Wf luoro D0

BB
B
B
B
BB
B
@

EX C �.X/QC g.X/Q2 �.XA/Q 0 0 0

�.XA/Q EA C �.A/QC g.A/Q2 0 �.AC /Q 0

0 0 EB C �.B/QC g.B/Q2 �.BC /Q �.BD/Q

0 �.AC /Q �.BC /Q EC C �.C /QC g.C /Q2 �.CD/Q

0 0 �.BD/Q �.CD/Q ED C �.D/QC g.D/Q2

1

CC
C
C
C
CC
C
A

;
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Table 1 Symmetry species (j ) of the various vibrational modes entering the elements of the 5�5
vibronic Hamiltonian matrices for the mono-fluorobenzene (F-BzC), 1; 2-, 1; 3-, 1; 4- difluoroben-
zene and 1,2,3-trifluorobenzene cations. The entries not appearing at all, e.g. �.AD/, are zero. See
text for details

Interstate coupling F-BzC 1,2 1,3 1,4 1,2,3

�.XA/ B2 B2 B2 B1g B2
�.AC / B1 A2 B1 B3g B1
�.BC / A2 B1 B1 Au A2
�.BD/ B1 A2 A2 B2g B1
�.CD/ B2 B2 B2 B2u B2

where the quantities �.˛/ and �.˛ˇ/ are given by (9), and the quadratic terms by:

g.˛/Q2 D
X

i2A1.Ag/

g
.˛/
i i Q

2
i : (16)

The details about the construction of the Hamiltonian matrices, as well as their
explicit form, can be found in [62] and [68, 69] for the mono- and di-fluorobenzene
cations, respectively. All the modes which appear in the diagonal elements of the
matrix Wx are totally symmetric modes. The symmetry of the vibrational modes
which enter in the off-diagonal elements, for all the compounds, are provided in
Table 1. As is well known [6], the nonadiabatic dynamics described by the above
vibronic coupling Hamiltonian is essentially controlled by the energies of the min-
ima of the various diabatic surfaces as well as of the various conical intersection
seams [6,14,83]. The determination of the seam minima in the presence of quadratic
couplings are discussed in the appendix of [62]. In (15), some of the off-diagonal
entries are put to zero, because the subsequent electronic structure calculations
reveal only negligible interactions between the corresponding electronic states. In
particular, some conical intersections are so high in energy (�0:5 eV higher than
the vertical IP of the highest-energy electronic state) that they are inaccessible to
the nuclear motions for the excitation energies considered here – see the discussion
in [68] and Sect. 4. Therefore, only those terms which will be found to be signif-
icant for the dynamics are included. The electronic states can be divided into two
groups: QX � QA and QB � QD, resembling in part the strongly JT coupled states of
the parent cation. These groups of states appear clearly in the experimental photo-
electron spectrum as two separated band systems exhibiting strong mixing of their
underlying states [70]. The coupling between these two groups of states is found to
be significant only for one pair of states among them, namely between the QA and QC
states.

The most important modes included in the subsequent calculations, together with
the values for the frequency and coupling constants, are collected in Table 3 below.
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3 Computational Methods

3.1 Ab initio Electronic Structure Calculations

In order to determine the various coupling parameters entering the vibronic coupling
Hamiltonian, (8), (15), and provide a solid basis for the dynamical calculations, ab
initio electronic structure calculations have been performed. In case of the parent
cation, BzC, two methods have been applied [30]. In the first method, called outer
valence Greens function (OVGF) method, the ionization potentials are determined
directly, i.e. without forming the energy difference of electronic states of ionic and
neutral species [96–98]. The OVGF method accounts for reorganisation and cor-
relation effects in a balanced way without giving up the quasi-particle picture for
ionization. It leads to an improved description of vibrational structures in PE-spectra
[96,99,100] as long as satellite lines are not important in the spectrum. The quantity
V0.Q/ has been determined, in the harmonic approximation, at the MP2 level of
theory, which thus also serves to define the normal coordinates used in the OVGF
calculations. The calculations were performed using the Gaussian program package
[101]. In addition to the OVGF calculations, the calculations at the Coupled Cluster
level using the so called EOMIP–CCSD (Equation-of-Motion Ionization Potential
Coupled Clusters Singles and Doubles) method (also known as Coupled-Cluster
Greens Function method) [76, 77] have also been performed. Here again the ion-
ization potentials are determined directly. The relation of this method to the OVGF
method was discussed in detail by Nooijen and Snijders [102]. In short: while in
EOMIP–CCSD the infinite order summations are performed by solving the Coupled
Cluster equations, in OVGF the so-called Dyson’s equations are used. EOMIP–
CCSD is considered to be less approximative than OVGF. However, EOMIP–CCSD
is more expensive since no perturbational truncation is involved. Therefore we have
also applied the second order approximation to EOMIP–CCSD known under dif-
ferent names (EOMIP–CCSD(2), EOMIP–MBPT(2) and MBPT(2)-GF) [103,104].
This approximate version has been extensively tested and it has been shown not to
introduce substantial error in the energy of ionized states, but somewhat less expen-
sive than OVGF [30, 103]. A standard DZP [105] basis set has been employed for
both sets of calculations.

For the first fluoro derivative, F-BzC, the MP2 method has been employed for
ground state geometry optimization and vibrational frequency analysis. Ionization
potentials and ionic state energies have been determined by means of the equation-
of-motion coupled-cluster (EOM–CCSD) method [76,77]. Comparison calculations
have also been performed using the perturbative treatment [104] of the double exci-
tations [EOM–CCSD(2)], and good agreement with the full CCSD results has been
obtained. For both the EOMIP–CCSD and the EOMIP–CCSD(2) surfaces, the TZ2P
basis has been employed [106]. This basis consists of the triple zeta set of Dunning
[107] augmented by polarization functions as given in [106, 108].

For higher fluoro derivatives, namely di- and 1,2,3-trifluoro derivatives we have
also employed the coupled-clusters singles and doubles (CCSD) method with TZ2P
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one-particle basis set for ground state geometry optimization and vibrational fre-
quency analysis in the ACES electronic structure package [109]. Ionization poten-
tials and ionic state energies have been determined by means of the EOMIP–CCSD
method [76, 77] implemented in the local version of the ACES program system
[109]. In all the ab initio calculations, the ground state structural parameters thus
obtained agree very well with available literature data [41, 71, 110–112].

Formally, the various coupling constants can be computed by using analytic
gradient techniques or finite displacements along the various normal coordinates
entering (8), (15). While for the totally symmetric modes first derivatives are needed,
the computation of the off-diagonal or inter-state coupling constants requires the
second derivatives, or a least-squares fitting procedure using the eigenvalues of an
appropriate coupling matrix. For the totally symmetric modes one simply has

�
.˛/
i D

@�V˛.Q/
@Qi

jQD0; (17)

where the derivative is to be taken at the Franck–Condon zone centre (reference
geometry) Q D 0 [6] and �V denotes eigenvalue of Wfluoro in (15). The quadratic
coupling terms, g.˛/i , are computed as follows;

g.˛/i D
@2�V˛.Q/

@Q2
i

jQD0: (18)

For the inter-state coupling constants, displacement along a single normal coordi-
nate Qi usually leads to a coupling of two component states only, with a 2 � 2
coupling matrix W ˛ˇ

eff
of the following form [6]:

W
˛ˇ

eff
.Qi / D

0

B
@ E˛ �

˛ˇ
i Qi

�
˛ˇ
i Qi Eˇ

1

C
A : (19)

The difference�V˛ˇ of eigenvalues of this 2 � 2 matrix is:

�V˛ˇ D
q
.E˛ �Eˇ /2 C 4.�˛ˇi Qi /2; (20)

from which one easily deduces [6]:

�
˛ˇ
i D

s
1

8

@2.�V˛ˇ /2

@Q2
i

jQD0: (21)

The above (17), (18) are evaluated numerically using finite difference tech-
nique and values of the normal coordinate displacements Qi D 0:5; 1:0; 1:5 and
2:0. Displacement along a single normal coordinate usually leads to a coupling of
two component states, as stated above. This is, however, not always the case and
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sometimes more than one electronic state couples with a particular state. In partic-
ular, we have to consider a three-states problem and consequently a 3 � 3 coupling
matrix. To this end we have used least-squares fitting for the eigenvalues of the
following coupling matrix with respect to the ab initio data points, (again we use
displacements mentioned above to reproduce the inter-state coupling constants for
all coupled states simultaneously):

W
˛ˇ

eff
.Qi / D

0

B
BB
@

E˛ 0 �
˛
i Qi

0 Eˇ �
ˇ
i Qi

�
˛
i Qi �

ˇ
i Qi E

1

C
CC
A
: (22)

This was the case for the vibrational modes of A2 symmetry in the 1,2-
difluorobenzene, B1, A2 symmetries in the case of the 1,3-difluorobenzene and
1,2,3-trifluorobenzene cations. As stated in Table 1 the interactions between some
electronic states are negligible which appear as zero entries in the off-diagonal terms
of (15), (8). But one should note that in case of a 3 � 3 coupling matrix the imper-
ceptible coupling between two electronic states may have an important effect on the
coupling of the other two electronic states.

3.2 Quantum Dynamical Simulations

To calculate numerically the quantum dynamics of the various cations in time-
dependent domain, we shall use the multiconfiguration time-dependent Hartree
method (MCTDH) [79–82, 113, 114]. This method for propagating multidimen-
sional wave packets is one of the most powerful techniques currently available. For
an overview of the capabilities and applications of the MCTDH method we refer to a
recent book [114]. Additional insight into the vibronic dynamics can be achieved by
performing time-independent calculations. To this end Lanczos algorithm [115,116]
is a very suitable algorithm for our purposes because of the structural sparsity of
the Hamiltonian secular matrix and the matrix-vector multiplication routine is very
efficient to implement [6].

3.2.1 The Multiconfiguration Time-Dependent Hartree (MCTDH) Method

The MCTDH method [79–82, 113, 114] uses a time development of the wavefunc-
tion expanded in a basis of sets of variationally optimized time-dependent functions
called single-particle functions (SPFs). A set of SPFs is used for each particle,
where each particle represents a coordinate or a set of coordinates called combined
mode. Indeed, when some modes are strongly coupled, and when there are many
degrees of freedom, it is more efficient to combine sets of coordinates together as a
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“particle” with a multi-dimensional coordinate q� D .Qi ;Qj ; : : :/ [117]. Conse-
quently, the number of particles, p, must be distinguished from the total number of
modes included in the calculation.

The MCTDH wavefunction ansatz for N modes combined as p particles is the
multiconfigurational expansion

‰.q1; : : : ; qp; t/ D
n1X

j1

: : :

npX

jp

Aj1:::jp
.t/

pY

�D1
'
.�/
j�
.q� ; t/ D

X

J

AJ
J ; (23)

where n� is the number of SPFs for the �th particle and where the third identity
defines the multi-indexJ D .j1 : : : jp/ and the configuration
J D '.1/j1

'
.2/
j2
� � �'.p/jp

.
To obtain the set of coupled equations of motion for the coefficients and SPFs,

the Dirac–Frenkel variational principle is used. Dividing the Hamiltonian into parts
that act only on a given particle (separable or correlated term),

H.q1; : : : ; qp/ D
pX

�D1
h�.q�/CHR.q1; : : : ; qp/; (24)

one obtains the equations of motion [80–82]:

i PAJ D
X

L

h
J jHRj
LiAL (25)

i P'.�/a D h�'
.�/
a C .1� P .�//

n�X

b;c

�
.�/�1

ab
H.�/

bc
'.�/c : (26)

Here H.�/

bc
D h‰.�/

b
jHRj‰.�/c i is the mean-field matrix operator, with the “single-

hole function”‰.�/a

‰.�/a D h'.�/a j‰i (27)

D
n1X

j1

: : :

n��1X

j��1

n�C1X

j�C1

: : :

npX

jp

Aj1���j��1aj�C1���jp
� '.1/j1

� � �'.��1/j��1
'
.�C1/
j�C1

� � �'.p/jp
;

(28)

which collects all the terms in the wavefunction which would contain the ath
function of the �th particle. P .�/ D P

a j'.�/a ih'.�/a j is the projector on the set
of SPFs for the �th particle, and �.�/ is the reduced density matrix defined by
�
.�/

ab
D j‰.�/a ih‰.�/b j. These equations of motion are general, and can be used to

treat the dynamics of nonadiabatic systems [81, 113, 118]. The efficiency of the
MCTDH method for vibronically coupled systems is even improved by writing
the wavefunction as a sum of several wavefunctions – one for each electronic state
[81, 117]:
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‰.t/ D
nsX

˛

‰˛.t/j˛i D
nsX

˛

X

J˛

A
.˛/
J˛


.˛/
J˛
j˛i; (29)

where ns is the number of electronic states, and J˛ is the multi-index for the config-
urations used to describe the wavefunction on the state ˛. This form of the MCTDH
wavefunction has the advantage to allow for a separate optimization of the SPFs for
each electronic state, and therefore fewer coefficients are needed in the wavefunction
expansion. This choice is employed in this work.

The solution of the equations of motion requires the computation of the mean-
fields at every time-step. The efficiency of the MCTDH method thus demands their
fast evaluation, and necessitates to avoid the explicit calculation of high-dimensional
integrals. Using the form of the Hamiltonian given by (24), we readily see that the
evaluation of the mean-fields for the separable terms needs only integrals over a
single particle at a time. However, for the correlated part of the Hamiltonian,HR of
(24), the mean-fields may involve integrals of the full dimensionality of the problem.
This correlated term can, however, be written as a sum of products of single-particle
Hamiltonians, rendering the evaluation of the mean-fields faster:

HR D
sX

rD1
cr

pY

�D1
h.�/r ; (30)

where h.�/r operates on the �-th particle only and where the cr are numbers.
Interestingly, the LVC and QVC Hamiltonians of Sect. 4 are already in this form,

allowing a powerful use of the MCTDH method and enabling us to include as many
as 10 to 13 modes in the dynamics.

3.2.2 Calculated Quantities

In this review, we shall present and discuss spectra at various resolutions, time-
dependent electronic populations and reduced densities.

Spectra, P.E/, can be obtained directly from a time-dependent treatment as the
Fourier transform of the autocorrelation function C.t/, assuming a direct transi-
tion from the initial to the final states within the framework of Fermi’s golden rule
[6, 119]:

P.E/ /
Z
eiEtC.t/dt; (31)

with:

C.t/ D h‰.0/j‰.t/i D
D
0
ˇ
ˇ
ˇ�	e�iHt�

ˇ
ˇ
ˇ 0
E

(32)

D h‰.t=2/�j‰.t=2/i: (33)
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In (32), j0i is the vibrational ground state of the initial electronic state – the ground
state of the neutral species in our case –, and �	 is the vector of individual tran-
sition matrix element �˛ between the initial state and the final electronic states
labelled by ˛. The autocorrelation function C.t/ measures the overlap between this
time-evolving wave-packet and the initial one, and its Fourier transform gives the
corresponding spectrum according to (31). The scalar product involving the vector �
of transition matrix elements implies a summation over various partial spectra, each
being proportional to j�˛j2 (different final electronic states). The total spectrum can
thus be obtained in two equivalent ways: (1) by exciting initially all electronic states,
or (2) by summing partial ‘single-state’ spectra obtained after excitation of only one
electronic state at a time. Equation (33), which is valid here because our Hamiltoni-
ans are symmetric and the initial wavepackets are real [120, 121], and allows us to
reduce the propagation time by a factor of two.

Due to the finite propagation time T of the wavepackets, the Fourier transfor-
mation causes artifacts known as the Gibbs phenomenon [122]. In order to reduce
this effect, the autocorrelation function is first multiplied by a damping function
cos2.�t=2T / [81,123]. Furthermore, to simulate the experimental line broadening,
the autocorrelation functions will be damped by an additional multiplication with a
Gaussian function expŒ�.t=�d /2�, where �d is the damping parameter. This multi-
plication is equivalent to a convolution of the spectrum with a Gaussian with a full
width at half maximum (FWHM) of 4.ln2/1=2=�d . The convolution thus simulates
the resolution of the spectrometer used in experiments, plus intrinsic line broadening
effects.

The two other quantities we shall evaluate are the time-evolving (diabatic) elec-
tronic populations,P˛.t/, and two-dimensional reduced densities �˛.Qi ;Qj ; t/ for
the electronic state ˛. These quantities are defined as follows, using the wavefunc-
tion given by (29):

P˛.t/ D h‰˛.t/j‰˛.t/i; (34)

�˛.Qi ;Qj ; t/ D
Z
‰�̨.t/‰˛.t/

Y

l¤i;j
dQl : (35)

All these quantities will be exploited in the following to decipher the dynamical
properties of the benzene cation and its fluoro derivatives.

4 Electronic Structure Results

4.1 Vertical Ionization Potentials and Coupling Constants

To provide a proper basis for the understanding of the dynamical results in Sect. 5,
we first discuss the underlying potential energy surfaces and their changes upon
fluorination. We start here with the key quantities, the vertical ionization potentials
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Table 2 Comparison of the ab initio (IPa) and adjusted data (IPb) for vertical IPs of the benzene
radical cation and its fluoro derivatives

QX QA QB QC QD
Symmetry E1g E2g A2u

Bz C IPb 9.45 11.84 12.44
IPa 9.27 12.15 12.61

Symmetry B1 A2 B1 B2 A1

F-Bz C IPb 9.435 9.83 12.295 12.34 12.85
IPa 9.45 9.85 12.82 12.57 13.25

Symmetry B1 A2 B1 A1 B2

1,2 IPb 9.4 9.8 12.3 12.6 13.1
IPa 9.39 9.81 12.84 12.88 13.40

Symmetry A2 B1 B1 A1 B2

1,3 IPb 9.6 9.9 12.5 13.1 13.3
IPa 9.44 9.82 12.79 13.06 13.50

Symmetry B3g B2g B1u B1g B3u

1,4 IPb 9.40 10.05 12.35 12.75 13.55
IPa 9.25 10.04 12.77 12.74 13.70

Symmetry B1 A2 B1 B2 A1

1,2,3 IPb : : : : : : : : : : : : : : :

IPa 9.73 9.78 12.96 13.48 13.59

(IPs) and coupling constants, and present the former in tabular form in Table 2 and as
a correlation diagram in Fig. 1. The figure displays, in addition, schematic drawings
of the molecular orbitals corresponding to the first two IPs to visualize their bonding
properties and correlation in the series.

In Table 2 are listed two sets of vertical IPs for every species (except 1,2,3-
trifluorobenzene). The set labelled IPa represents ab initio results obtained through
EOM-CCSD calculations as described above. These are considered accurate calcu-
lations which nevertheless require minor adjustment for a better comparison with
experiment [70]. The latter has been achieved in [31,62,68,69] by a careful analysis
of PE spectroscopic data, and the details are not repeated here. The adjusted num-
bers are collected as IPb in Table 2 and are seen to deviate by typically 0.1–0.2 eV
from the pure ab initio data (IPa) which is considered quite satisfactory. The B1
state (generally 3rd state according to the adjusted IPs) of the fluoroderivatives rep-
resents an exception in that larger shifts, of the order of 0.5 eV occur here, leading to
an interchange of the QB and QC states for monofluoro and 1,4- difluorobenzene. On
the other hand, these states are quite close either before or after the readjustment.
The labelling of electronic states reported in Table 2 is according to the adjusted IPs
in order to have a coherent nomenclature in the series (see scheme on p. 242 and
Eq. (15)). Note that for the QB and QC states of mono- and 1,4-difluorobenzene this
deviates from our earlier work [62, 68, 69] where we have followed the ordering of
the ab initio IPs in that labelling.
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Fig. 1 Correlation of lowest ionization potentials between the benzene, mono-, di- and trifluoro
derivatives according to the adjusted IPs for details see the text)

While the numbers of Table 2 are needed for a quantitave reference, the main
results are visualized more easily from Fig. 1. First, the underlying molecular
orbitals show a characteristic behaviour in the figure. Whereas for benzene one can
see the familiar components of the degenerate HOMO of E1g symmetry, for all
the fluoro derivatives this degeneracy is necessarily lifted, although the key features
remain similar for all cases studied. The analogous bonding properties of the vari-
ous component MOs provide the basis for the correlation lines of the corresponding
IPs. It is seen that their symmetries change owing to a different location of the var-
ious symmetry elements in the different isomers. Also, the energetic ordering of
the components of the same symmetry changes, which can be attributed to the dif-
ferent number (and strength) of the C–F antibonding interactions. For example, for
monofluoro benzene the HOMO has one, the HOMO-1 has no C–F antibonding con-
tribution. For 1,2- and 1,3-difluoro benzene both MOs have two C–F antibonding
interactions, but of different strength, as indicated by the different MO coefficients
at the F atoms. The size of the energetic splitting is considerably larger for the
1,4-difluorobenzene than for the other cases, owing to the (two) C–F antibond-
ing interactions in the HOMO and HOMO-1. Conversely, the situation is opposite
for the 1,2,3-trifluorobenzene isomer where the different numbers and strengths
compensate each other and the splitting becomes rather small.

The situation is similar for the E2g derived IPs and the underlying MOs. They
are of B2 and A1 symmetry (B1g and Ag in case of 1,4-difluorobenzene), and the
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nodal properties can similarly be related to those of the degenerate HOMO-1 of
benzene, although the details are more complicated (not shown here for the sake
of brevity). Their energetic splitting is again largest for the 1,4-difluoro isomer. As
a consequence, the higher .Ag/ state is out of the energy range under considera-
tion and has been be skipped in Table 2 and will also be ignored in the subsequent
treatment. More important proves to be their systematic increase with increasing flu-
orination. This holds in absolute energy as well as in relation to the second �-type
IP, which corresponds to the state of A2u symmetry in the benzene radical cation
and the higher one of B1 symmetry in the fluoro derivatives (B1u symmetry for the
1,4-difluoro isomer). This energetic increase is known in the literature as perfluoro-
effect [55], and seen here to lead to an interchange of the energetic ordering of
the E2g and A2u derived ionization processes. This will be seen below to play a
crucial role for the nonadiabatic interactions in the cations and their change upon
fluorination.

Before proceeding, we briefly address Table 3 which collects selected vibrational
and vibronic coupling constants. These are defined in relation to the vibronic Hamil-
tonians of (8), (15) and have been obtained ab initio without further readjustment.
Out of the many coupling constants computed in this way, we present only a few
first order couplings which are large and correspond to vibrational modes that can
be correlated between the various fluoro derivatives and the parent cation.

Mode 1 denotes the totally symmetric C–C stretching mode of BzC while the
modes 6a–8a, 6b–8b derive from the doubly degenerate E2g modes 6–8 of BzC
(they are to be considered as components of these doubly degenerate modes for the
parent cation, but distinct modes with similar displacement patterns for the fluoro
derivatives). The similarity of the vibrational frequencies throughout the series is
noted (Table 3a). The same holds for the coupling constants for the QX , QA states
(corresponding to the E1g state of BzC, see Table 3b) and also for the coupling
constants of the E2g – derived states (see Table 3c).

4.2 Potential Energy Surfaces and Conical Intersections

The sets of coupling constants and the Hamiltonians, (8), (15) define the high-
dimensional potential energy surfaces of the lowest five electronic states of the
various cations treated. Typically 6–8 totally symmetric modes and 8–10 non-totally
symmetric modes are found to have non-negligible coupling constants in the C2v

systems; in the two cases with higher symmetry these numbers apparently decrease,
e.g. to 3 relevant totally symmetric modes for the 1,4-difluoro isomer. Only few
selected constants are included in Table 3 and we refer to the original papers for full
details [62, 68, 69].

Although the multidimensional PES for the totally symmetric modes are har-
monic oscillators, we emphasize that (pronounced) anharmonicity of the adiabatic
PES comes into play as soon as non-totally symmetric modes are included [6].
The minima of the diabatic PES can be determined by retaining only the totally
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Table 3 Frequencies and coupling constants of important vibrational modes of the benzene
radical cations and its fluoro derivatives. (a) Vibrational frequencies

Mode No. BzC F-BzC 1,2 1,3 1,4

1 0.1257 – 0.097 0.0929 0.1080
6a 0.0757 0.0643 0.0722 0.0658 0.0566
7a 0.1497 0.1548 0.1586 – 0.1600
8a 0.2055 0.2021 0.2071 0.2072 0.2076

6b 0.0757 0.077 0.0688 0.0642 0.0804
7b 0.1497 – – 0.1212 –
8b 0.2055 0.203 0.2069 0.2069 0.2071

(b) The QX � QA set of electronic states ( QX state in case of BzC)

Mode BzC F-BzC 1,2 1,3 1,4
1 �.X/ 0.0888 – 0.019 0.025 0.030

�.A/ – – �0.035 �0.057 �0.022
6a �.X/ 0.0744 0.091 0.087 0.089 0.094

�.A/ – �0.055 �0.056 �0.044 �0.047
7a �.X/ 0.0764 �0.083 0.016 – �0.1390

�.A/ – �0.147 0.018 – �0.201
8a �.X/ 0.1643 0.176 0.203 �0.193 �0.205

�.A/ – �0.125 �0.120 0.136 0.098

6b �.XA/ D �.X/ 0.075 0.056 0.078 0.073
7b �.XA/ D �.X/ – – 0.024 –
8b �.XA/ D �.X/ 0.158 0.160 0.166 0.157

(c) The QC � QD set of electronic states ( QB state in case of BzC)

Mode BzC F-BzC 1,2 1,3 1,4

1 �.C / 0.0031 – �0.041 �0.107 0.076
�.D/ – – 0.022 0.053 0.049

6a �.C / 0.1163 �0.048 �0.051 �0.046 0.014
�.D/ – 0.093 0.110 0.056 0.070

7a �.C / 0.0991 �0.067 �0.085 – �0.209
�.D/ – �0.080 0.158 – �0.069

8a �.C / 0.3276 0.301 0.272 �0.298 �0.011
�.D/ – �0.257 �0.251 0.077 0.092

6b �.CD/ D �.B/ 0.086 0.070 0.051 –
7b �.CD/ D �.B/ – – 0.037 –
8b �.CD/ D �.B/ 0.273 0.199 0.275 –

symmetric modes, and the corresponding energies are listed as the diagonal entries
in Table 4. Comparing with the vertical IPs of Table 2, one can infer stabilization
energies of typically 0.2–0.4 eV for the various electronic states. These minimum
energies derive from the quadratic coupling scheme underlying (2), (15) and can
be compared with numbers obtained from a full geometry optimization. Agreement
is found to within typically 0.01–0.02 eV (with very few exceptions) and taken to
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indicate the applicability of the quadratic coupling scheme adopted [68,69]. Further
evidence comes from the potential energy curves along the various normal modes
which have been computed for various displacements to extract the coupling con-
stants. These are generally very well represented by the model curves [68], so that
the coupling scheme can be taken to faithfully represent the actual situation in these
systems.

These multidimensional PES imply a rich variety of different conical intersec-
tions in the various cations. For every pair of states (in a given system) the minimum
energy of intersection has been computed according to expressions developed ear-
lier [6], and the result is included as the corresponding off-diagonal entry in Table 4.
There are various low-energy curve crossings (conical intersections) within the QX - QA
sets of states on one hand and within the QB- QC - QD sets of states on the other hand.
The minimum energy intersections are generally high for pairs of states from dif-
ferent sets, see Table 4. However, there is always one such pair with a low-energy
curve crossing, namely the QA and QC states of the fluoro benzene cations.To test the
possible importance of higher-order coupling terms and thus be even more precise
in the location of the minimum of the intersection seams, unrestricted searches for
these minima might be useful as recently proposed in [124, 125]. A preliminary
calculation already yielded encouraging results.

Table 4 Summary of important electronic energies, for the interacting states of the fluorobenzene
radical cations including the quadratic coupling terms (QVC). The diagonal values represent the
minima of the diabatic potential energies, off-diagonal entries are minima of the corresponding
intersection seams. Three dots (: : :) indicate missing results

Benzene mono-fluorobenzene0

B
BBB
BBB
@

QX QX QB QB QC
QX 9:27 9:27 11:58 11:58 : : :
QX 9:27 9:27 11:58 11:58 : : :
QB 11:42 11:42 12:27
QB 11:42 11:42 12:27
QC 12:25

1

C
CCC
CCC
A

0

B
BBB
BBB
@

QX QA QB QC QD
QX 9:22 9:69 >16 12:84 >14
QA 9:69 >15 12:29 >14
QB 12:22 12:24 12:45
QC 11:91 12:58
QD 12:43

1

C
CCC
CCC
A

1,2-difluorobenzene 1,3-difluorobenzene0

B
BBB
BBB
@

QX QA QB QC QD
QX 9:15 9:61 >16 >13 >13
QA 9:61 >16 12:70 >13
QB 12:12 12:28 12:60
QC 12:16 12:76
QD 12:57

1

C
CC
C
CCC
A

0

B
BBB
BBB
@

QX QA QB QC QD
QX 9:35 9:70 >16 >14 >13
QA 9:69 >16 13:67 >13
QB 12:32 12:67 12:89
QC 12:64 13:04
QD 12:88

1

C
CCC
CCC
A

1,4-difluorobenzene 1,2,3-fluorobenzene0

BBB
BBB
B
@

QX QA QB QC QD
QX 9:11 9:92 >16 >14 >16
QA 9:88 >16 13:09 >16
QB 12:17 12:39 14:61
QC 12:31 13:46
QD 13:43

1

CCC
CCC
C
A

0

BBB
BBB
B
@

QX QA QB QC QD
QX 9:45 9:62 >16 >15 >16
QA 9:52 >16 14:85 >16
QB 12:76 13:14 13:22
QC 13:13 13:39
QD 13:22

1

CCC
CCC
C
A
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Fig. 2 Representative cuts through the potential energy surfaces of BzC (upper panel or a) and its
mono fluoro derivative, F-BzC (lower panel or b). The upper panel shows the results for the linear
vibronic coupling model, while in the lower one the quadratic coupling terms are also included.
In both panels the effective coordinate connects the centre of the Franck–Condon zone to the
minimum of the intersection seam between the QA and QC states of F-BzC , and between the QX andQB states of the parent cation (within the subspace of JT active coordinates)

The QX - QA conical intersections in the fluoro derivatives are the analogue of the JT
conical intersection in the QX2E1g state of the parent cation BzC (see also below).
The latter is not indicated explicitly in Table 4 because only a single data row and
column is provided for this doubly degenerate state (same as for the QB2E2g state).
We mention in passing that the diagonal entries have a slightly different meaning
for this symmetric system in that the JT stabilization energy is included there (i.e.
not only totally symmetric modes contribute).
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To better visualize the situation, we present in Fig. 2 representative cuts through
the PES of the benzene cation (Fig. 2a) as well as the monofluoro derivative
(Fig. 2b). A linear combination of the normal coordinates of the JT active modes
�6 � �8 is chosen for the benzene cation and one of the totally symmetric modes
for the monofluoro benzene cation. Both are defined to minimize the energy of
the conical intersection between the QA and QC states of the monofluoro derivative,
and between the QX and QB states of the parent cation (within the subspace of JT
active coordinates). For the parent cation one identifies a low-energy inter-state
curve crossing which is mediated by the multimode JT effect in the two degen-
erate electronic states. The latter is reflected by the symmetric crossing between the
two lowest (2E1g) potential energy curves in Fig. 2a which actually represents a cut
through the multidimensional JT split PES in this state. These are the well-known
Mexican hat PES of the E ˝ e JT effect. They are recovered also from the 2E2g
state curves in the figure.

We emphasize the analogy between the states exhibiting the QX - QB crossing in
BzC and the QA- QC crossing in the monofluoro (as well as the other fluorinated)
derivatives. This is apparent by inspecting Fig. 1 which shows that the electronic
states indeed correlate with each other, e.g. by analogous bonding properties of the
molecular orbitals. As a by-product there is indeed only one low-energy crossing
between the PES from the two different sets ( QX- QA and QB- QC - QD) of electronic states
(fluorobenzene cations), just as there is only one such pair of crossings between the
QB- QC states PES and those of the QX state surfaces of BzC.

Figure 2 illustrates two main trends in the series of molecules. First, by the
asymmetric substitution the JT effect in the parent cation ‘disappears’ in the fluoro
derivatives; nevertheless, the shapes of their lowest two PES still resemble those of
the parent cation, regarding the opposite slopes, the rather small energetic splitting
at the origin QD 0, and the presence of a low-energy conical intersection; therefore
this has also been termed a replica of the JT intersection in BzC. This topological,
or more ‘physical’ effect is complemented by the second, more ‘chemical’ effect,
caused by the energetic increase of the second �-type IP by fluorination. This trend,
already mentioned in relation to Fig. 1 above, is specially related to the substituents
(F) atom and manifests itself in a growing separation of the QX - QA and the QB- QC - QD
sets of states in Fig. 2. While the effect is rather moderate in Fig. 2b, it increases
upon increasing fluorination and thus leads to a higher energy of the correspond-
ing intersection, see Table 4 (also called inter-set crossing or intersection below).
These two trends, caused by the substitution in general and fluorination in partic-
ular, will provide useful guidelines in the discussion of the dynamical results in
Sect. 5.

Finally we point out that the results for the inter-set crossings depend crucially on
the inclusion of the quadratic coupling constants for the totally symmetric modes.
The latter lower them energetically, thus making them accessible to the nuclear
motion following photoionization. They are included in the results of the present
sub-section and also in all dynamical calculations on the fluoro derivatives reported
below.
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5 Quantum Dynamical Results

As stated above, the quantum dynamical calculations of this work focus on the
vibronic structure of electronic transitions into the interacting sets of states (time-
independent quantities) and on the electronic populations following such transitions
(time-dependent quantities).

5.1 Photoelectron and mass analyzed threshold
ionization (MATI) spectra

We start with the photoelectron spectroscopic studies on the benzene cation, and
present in Fig. 3 the theoretical [126] and experimental [85] spectral intensity dis-
tributions for the first band, corresponding to the transition to the QX2E1g ground
electronic state of BzC. The computation follows the lines described above in
Sects. 4,3, using ab initio data for the frequencies and coupling constants, and
the Lanczos scheme for the solution of the vibronic eigenvalue problem. Given
the good agreement between theory and experiment, the system is apparently very
well described by the theoretical approach. Note that the two hot bands in Fig. 3
are not covered by the theoretical spectrum which has been computed for tempera-
ture TD 0. The vibronic structure reflects the multimode dynamical JT effect in the
degenerate electronic state, as indicated by the two lowest (JT split) potential energy
curves of Fig. 2a. The a1g mode �1 (symmetric C–C stretching) and the linearly JT
active e2g modes �6-�8 are found to be noteably excited in the band. (It should be
remembered that the Wilson numbering is adopted here for easier correlation with
the vibrational modes of the fluorinated derivatives. In our earlier work we have
used Herzberg’s notation [31, 126], where, for examples, the e2g modes �6, �7, �8
are numbered as �18, �17, �16, respectively.)

We point out that similar analyses and results have been performed and obtained
also by other authors [33, 35, 38–40]. The spectral lines at 86 meV and 123 meV
excitation energy in the theoretical spectrum correspond to excitation of the modes
�6 and �1, respectively. The first spacing deviates from the harmonic frequency of
mode �6 in Table 3 because of the JT effect, while the second coincides with that
of mode �1 because of the linear coupling scheme adopted. For higher excitation
energies the lines represent an intricate mixture of the various modes because of
the well-know nonseparability of modes in the multi-mode dynamical JT effect.
Overall, the excitation of the various modes can be characterized as moderately
weak. The total JT stabilization energy amounts to �930 cm�1 and is dominated
by the contribution of mode �6. The barrier to pseudorotation is of the order
of 10 cm�1 only, consistent with the fact that the theoretical spectrum of Fig. 3
is obtained within the LVC scheme (see Sect. 2.1 above).

Because of limited space we confine ourselves here to the presentation of this
single prototypical multi-mode dynamical JT system. However, investigations along
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Fig. 3 Comparison of experimental and theoretical results for the QX band of the PE spectrum of
benzene. (a) JT spectrum (with modes �16-�18. (b) Same as (a) but with the additional mode, �2.
(c) Experimental PE spectrum. The numbering of the modes is according to Herzberg’s notation
(in Wilson notation, adopted otherwise in their work, these are the modes �8-�6, respectively, while
�2 is denoted as �1)

similar lines, though more sophisticated in detail, have been performed also for the
higher-energy bands of the photoelectron spectrum of benzene [31,126]. These com-
prise, in particular, the strongly coupled 2E2g and 2A2u states, corresponding to the
three higher-energy potential curves in Fig. 2a. Here, in addition to the multimode
JT effect in the 2E2g state, also strong PJT interactions with the nearby, nonde-
generate 2A2u state arise. The interplay between both coupling mechanisms leads
to complex triple intersections between the underlying PES and to a combination
of different types of nonadiabatic coupling effects in the corresponding PE spectral
bands. Furthermore, the crossing between the QX - and QB-type PES (see Fig. 2a) and
its implications on the nuclear dynamics have been addressed. While its impact on
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the spectral intensity distribution proves to be only minor, the time-dependent elec-
tronic populations are affected strongly, see below. Finally, we mention that similar
studies have been conducted also on the higher-energy 2E1u and 2B2u states of BzC,
and the experimental PE spectrum in this energy range could be well reproduced in
this way [31, 34, 85].

How are these features affected by the partial fluorination and the accompany-
ing symmetry reduction? Figure 4 displays in comparison the experimental [71]
MATI spectrum of 1,2-difluorobenzene and the theoretical [69] first PE band(s) of
the same species. The associated PES turn out to be represented by cuts very similar
to those in Fig. 2b. The dominating feature for low energies is the progression in
mode �6a. This agrees with experiment where this mode is labelled no. �10 accord-
ing to Mulliken. Recalling that the analogous mode �6 was seen to dominate also
the JT effect in the parent cation, we see that there is a structural similarity between
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Fig. 4 Comparison of first two calculated [69] bands of 1,2-difluorobenzene vs. experimental
MATI spectrum [71] (upper panel). The energy units are in cm�1. The two contributing bands QX
(full line) and QA (dotted line) are drawn separately
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the systems regarding the most active vibrational modes. For higher energies the
vibrational excitation strength in the MATI spectrum is generally weaker than in
the calculated spectrum. The experimental and theoretical intensities are, however,
not directly comparable because the excitation is resonant through an intermediate
state in the MATI spectrum, but assumed to be direct from the ground state of neu-
tral fluorobenzene in the calculation. The resonant excitation in the MATI spectrum
may be the reason why almost no spectral lines are observed above 77,000 cm�1
excitation energy, where the QA state spectral intensity is predicted to start in the
calculation. This is somewhat unfortunate, because the theoretical spectral profile
exhibits there marked irregularities characteristic for strong nonadiabatic couplings,
and no vibrational quantum numbers can be assigned there any more. The latter is
attributed to a low-energy conical intersection, visible as the curve crossing between
the two lowest potential energy curves in Fig. 2b. As discussed in Sect. 4.2 the latter
is the counterpart of the JT intersection in the 2E1g ground state of BzC. Due to the
resulting asymmetry of the lowest PES of the fluoro derivative, this is�3;500 cm�1
above its ground state minimum, almost four times the JT stabilization energy in
BzC mentioned above. The latter gives rise to an adiabatic energy regime (namely
below the intersection) which allows an assignment of quantum numbers in the
experimental MATI spectrum. Within the energy range of the QA state the nonadia-
batic effects dominate, and in this sense the QX - QA system of states in the 1,2-difluoro
derivative can be said to be a replica of the JT system in the parent cation. The anal-
ogy is further underlined by noting that also the dominating coupling modes �6b
and �8b (see Table 3b) correlate with the JT active modes in BzC, (more explic-
itly, with their ‘other’ cartesian component, different from the one correlating with
the totally symmetric modes �6a and �8a). Very similar situations prevail in the
monofluoro and 1,3-difluoro derivatives, which emphasizes the trend in the series
[62, 68, 69, 71, 73]. Only for the 1,4-difluoro [68, 69, 72, 73, 127] isomer there is a
larger vertical QX - QA energy gap which leads to a larger adiabatic energy regime and
weakens the analogy with the other fluorobenzene cations (see Table 4). For the
1,2,3-trifluoro case on the other hand, while the trend regarding the higher energy
states is enhanced (see below), the QX - QA energy gap is found to be very small which
renders the situation again very similar to that in the parent cation.

The nonadiabatic coupling effects manifest themselves as irregularities in the
spectal structures of Figs. 3 and 4. They are moderate because of relatively low
excitation energies involved and a resulting rather sparse level structure. The effects
are typically stronger when the excitation energies increase and so does the vibronic
level density. Under low-to-moderate resolution a diffuse spectral profile results,
because the highly irregular and very dense individual spectral lines cannot be
resolved any more. An example is given in Fig. 5 which displays all 5 PE spectral
bands of the monofluoro benzene cation [62].

The experimental and the upper theoretical panel show this diffuse structure with
typically one ‘bump’ appearing for every electronic state (although for the states
3 and 4 they overlap so heavily that only a single one emerges, that is, only four
‘bumps’ result in total for the five electronic states). The lower panel with higher res-
olution gives an impression of the highly complex, irregular and dense underlying
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Fig. 5 Comparison of theoretical[62] (lower panel) and experimental (upper panel) [70] photo-
electron spectra of fluorobenzene. The linewidths of the theoretical spectra are FWHM=132 meV
(upper curve) and 16 meV (lower curve). In the higher-resolution theoretical spectrum, the various
electronic bands are drawn separately. Their ordering is (from right to left) QX2B1, QA2A2, QB2B1,QC2B2, and QD2A1

line structure; it is not fully resolved even here because the resolution is still too
limited except for the low-energy spectral regimes. (The calculation has been car-
ried out here using the MCTDH scheme so that the spectral envelope is computed,
no individual spectral lines.) This situation has been found typical for nonadiabatic
motion on conically intersecting PES and is generalized here to multiply intersect-
ing surfaces as displayed in Fig. 2. This holds especially for the three higher lying
PES of the QB- QC - QD states. The (coupled) QX - QA state motion is affecting the coupled
QB- QC - QD state motion only weakly regarding the spectrum (as stated for benzene

above). The importance of the coupling between the QX - QA and QB- QC - QD sets of states
for the electronic population dynamics will be documented below.

5.2 Time-Dependent Electronic Population Dynamics

The theoretical studies of the spectral intensity distributions are complemented, and
the insight gained is essentially augmented, by time-dependent investigations of
the nonadiabatic nuclear dynamics. Here it should be recalled that the information
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encoded in the spectrum is basically limited by the overlap with the initial wave
packet, generated in the FC type transition at time tD 0, according to (31), (32).
Furthermore it is inversely proportional to the available spectral resolution (see
Sect. 3.2.2). In the case of photoelectron spectroscopy the latter alone amounts
to typically several tens of femtoseconds. The full time-dependent wave-packet is
apparently free of these limitations, and often the electronic populations alone carry
substantial further information on the vibronic dynamics. All the results presented
in this section have been computed using the MCTDH algorithm.

The Benzene Radical Cation

In the preceding section we discussed the nonadiabatic coupling effects associated
with the JT intersection in the QX2E1g state, and with the JT and PJT intersections
within/between the QB2E2g and QC 2A2u states. Figure 2a reveals the further intrigu-
ing feature of a low-energy curve crossing between the QX2E1g and QB2E2g JT split
PES of BzC. While this was found to have little impact on the spectral intensity dis-
tribution, it proves to be crucial for the time-dependent electronic populations [31].
Figure 6 shows the probability of being located on either the QX , QB or QC states
of BzC after an initial vertical excitation to the highest of the PES in Fig. 2a. All
five PES in the figure, that is, the JT effects in the two degenerate states and the
PJT couplings between them, are included in the calculation. Given the degenera-
cies of the vibrational modes, this amounts to 10 nonseparable degrees of freedom
and a size of the underlying ‘primitive grid’ (see Sect. 3.2 for more details) of 1012

basis functions. This is reduced to �106 time-dependent single particle functions
by the MCTDH contraction effect [81], thus rendering the calculations numerically
feasible at all.
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Fig. 6 Population dynamics of the coupled QX - QB - QC states of BzC for an initial wavepacket
located on the QC surface
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The figure displays a femtosecond QB/ QC population dynamics with an initial
QC - QB nonradiative transition (i.e internal conversion driven by the nonadiabatic

interaction) of the order of 20 fs. This is roughly the same as that of the subse-
quent oscillations (30 fs) which in turn almost coincides with the period of the
C–C stretching mode 1 (33 fs). This behaviour is typical for 2-state systems with
conically intersecting PES, and reflects their ‘tuning’ behaviour along the normal
coordinate of the C–C stretching mode. Nevertheless, the initial population decay
is particularly fast here owing to the proximity of the intersection to the FC-point
QD 0. It turns out to be even faster when monitored in the adiabatic representation
rather than in the diabatic one as done here [128].

The aforementioned features remain indeed the same when restricting the treat-
ment to the two excited ( QB2E2g and QC 2A2u) states. Including the coupling to the
ground state leads additionally to an increase of the QX state population on the order
of 100–200 fs (and apparently to an accompanying decrease of the excited-state
population). This directly reflects the QB- QX intersection visible as the curve cross-
ing in Fig. 2a. We emphasize that this occurs (in this energy range) only by virtue
of the multi-mode JT effect in the two degenerate electronic states, and the totally
symmetric modes �1 and �2 are insufficient in this respect. This was a novel finding
when first established in the literature [31, 129].

The time-scale in question (100–200 fs) does not render these nonadiabatic
coupling effects of major importance for the photoelectron spectrum, see above.
However, the associated nonradiative decay mechanism is crucial in understand-
ing the fluorescence behaviour of BzC, which does not exhibit emission although
the QC - QX transition is dipole-allowed. The sub-picosecond decay QB / QC - QX docu-
mented in Fig. 6 is so fast that fluorescence cannot compete and the quantum yield
is reduced below the detection threshold of �10�4. Further details on the fluo-
rescence properties and their dependence on fluorination will be discussed in the
Sect. 5.3 below. The details of the high-dimensional, multi-state dynamics under-
lying Fig. 6 are still far from understood, and their investigation is to be pursued
in future work. Some aspects have been explored in [128], such as a comparison
between adiabatic and diabatic electronic populations or the inspection of nuclear
probability densities in suitable subspaces. Interestingly the suppression of the elec-
tronic and vibrational degeneracies does not affect the electronic populations very
much. Also, the difference between the oscillatory QC / QB electronic populations on
one hand and the monotonously increasing QX state population on the other hand is
noteworthy in the figure. This can be traced back to the different movement of the
time-dependent wave packet regarding the various seams of conical intersections.
Figure 7 shows suitable snapshots (contour lines) of the wave packet moving on the
QB state PES after the initial QC - QB nonradiative transition. The seams of intersection

with the QC and QX state PES are indicated as straight lines, and the energy con-
tours for the various PES are also included. As one can see, the wave packet crosses
(at least partly) the QB- QC seam of intersections several times during its movements.
The QB- QX seam, on the other hand is only approached, not crossed, and the distance
from the seam changes only weakly during the movement of the wave packet. The



Multi-Mode Jahn–Teller and Pseudo-Jahn–Teller Effects in Benzenoid Cations 267

–4 –3 –2 –1 0 1 2 3 4
–6

–4

–2

0

2

4

6

–4 –3 –2 –1 0 1 2 3 4
–6

–4

–2

0

2

4

6

–4 –3 –2 –1 0 1 2 3 4
–6

–4

–2

0

2

4

6

–4 –3 –2 –1 0 1 2 3 4
–6

–4

–2

0

2

4

6

–4 –3 –2 –1 0 1 2 3
–6

–4

–2

0

2

4

6

4 –4 –3 –2 –1 0 1 2 3 4
–6

–4

–2

0

2

4

6

Q2

Q16

Fig. 7 Diabatic reduced densities on the QB and QX surfaces (left and right panels, respectively) at
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oscillatory behaviour of the electronic populations has indeed been correlated in
earlier work with analogous oscillations of the adiabatic-to-diabatic mixing angle,
and the latter in turn with those of the energy gap of the (diabatic) potential energy
surfaces. Figure 6 shows nicely, indeed, that the QB- QC energy gap is a strongly oscil-
latory function of time whereas the QB- QX energy gap is not. This provides a simple
rationale for the different behaviour of the electronic populations. For more details
and further aspects of this entangled electronic and nuclear motion we refer to the
original work [128].
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The Fluorobenzene Radical Cations

A further avenue of analysis is opened by partial substitution of hydrogenes by
fluoro-atoms, here mono-, di- and 1,2,3-fluorobenzene cations. Through the reduc-
tion of the molecular symmetry (without any symmetry-enforced degeneracies of
the electronic states or vibrational modes) the JT effect formally disappears in these
systems. One question of immediate interest is, whether in the absence of the JT
effect in these derivatives, nevertheless some signatures of the JT-related dynamics
remain. We recall first of all, that according to Fig. 2b there is a grouping of the elec-
tronic states into two sets, the first set comprising the QX and QA states, the second
comprising the QB- QC - QD states. This splitting has been also found for the difluoro
isomers and 1,2,3-trifluorobenzene and correspond to the QX and QB- QC states in the
parent cation, respectively. To avoid an excessive number of drawings, we confine
ourselves to the results of the wavepacket located initially in a coherent superposi-
tion of the three higher excited, QB- QC - QD, electronic states. This again amounts to a
broadband excitation, of sufficiently large coherence width to equally excite all PE
spectral bands in the 12–14 eV energy range. The details about the initial preparation
of the wavepacket on different intermediate states can be found in [62] and [68, 69]
for the mono- and di-fluorobenzene cations, respectively. Results are presented in
Fig. 8. As for the BzC we see a reach population dynamics proceeding on the fs time

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 100 200 300 400 500 600

P
op

ul
at

io
n

mono-fluorobenzene

B1(X)

B1(B)

A2(A)

A1(D)

A1(C)

A1(C)

A2(A)

A2(X)

B2(C) B1(B)

B2(D)

B1(X)

B1u(B)

B1g(C)

B2g(A)
B3g(X)
B3u(D)

~
~

~

B1(B)

B1(A)

~

~
~
~

~

~

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0 100 200 300 400 500 600

P
op

ul
at

io
n

Time (fs)

m-difluorobenzene

B2(D)~

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 100 200 300 400 500 600

o-difluorobenzene

~
~
~

~

~

0

0.1

0.2

0.3

0.4

0.5

0.6

0 100 200 300 400 500 600

Time (fs)

p-difluorobenzene

~
~

~

~

~

Fig. 8 Electronic population dynamics of fluorobenzene isomers for initial preparation of the
cation in a coherent superposition of the three higher excited electronic states. Results obtained
with the adjusted IPs reported in Table 2
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scale. Generally all five states become populated to a significant extent owing to the
higher initial energy of the wave packet. The QD state always becomes least likely
populated as expected from its high energy. Its decrease in the series 1,2-, 1,3- and
1,4-difluorobenzene cations can be rationalized by density of states arguments and
the increase of the diabatic minimum of this state in the same series (see Table 4).
The diabatic minima for the QB and QC states also help to understand their different
populations in Fig. 8: it is always the lower-energy state (at the diabatic minimum)
which is more likely populated for long propagation times. This explains the differ-
ent relative QB and QC state populations in the mono, 1,3- and 1,4- isomers, and their
near equality in the 1,2- case. (Regarding the state numbering for the monofluoro
and 1,4-difluorobenzene, we adhere to the ordering defined by the adjusted vertical
IPs according to Table 1. For the ab initio values of the IPs the labelling QB and QC
should be interchanged)

Of further interest is the transfer of population from the QB- QC - QD to the QX - QA
group of states. As pointed out above, these two sets of states are far apart ener-
getically in the center of the FC zone, but nevertheless interconnected through
one conical intersection (namely QA- QC states) which is low (mono, 1,2- and 1,4-
isomers) or moderately high (1,3- and 1,2,3- isomers) in energy. This energetic
trend, seen in Table 4, is again reflected in the population curves of Fig. 8. There
the combined QX / QA population after �500 fs propagation time amounts to only
�3 % for 1,3-difluorobenzene, but to � 50, �10 % and �25 % for the mono,
1,2- and 1,4-difluorobenzene cations, respectively. Preliminary results of 1,2,3-
trifluorobenzene reveal no population transfer to QX - QA sets. The minimum ener-
gies of the intersections seams are 13.67, 12.29, 12.70 and 13.09 eV in the same
series. Thus the difference between the 1,3- isomer, on one hand, and the mono,
1,2- and 1,4- isomers, on the other hand, is well reflected by these energetic data.
The average populations stay fairly constant after �100 fs in the case of 1,2- and
1,3-difluorobenzene, but show a gradual decrease ( QB/ QC ) and increase ( QX / QA) for
the mono and 1,4-difluorobenzene cations. The reason for this difference remains
unclear at present, as is the case for the different oscillatory or fluctuating time
dependences of the various populations. Apparently, the underlying complex and
multidimensional dynamics still awaits a more detailed analysis and understand-
ing. Some of this was explored recently for the parent cation, BzC [128]. The
general trends of the electronic populations, and their relations to the respective
energetic quantities, remain the same also for state-specific preparation of the initial
wave-packet, and also for the purely ab initio vertical IPs.

5.3 Relation to fluorescence dynamics

Another more chemical line of reasoning is related to the ‘re-appearance’ of fluores-
cence for most of the fluoro derivatives with three or more fluorine atoms. There has
been a plethora of work on emission spectra of halobenzene cations, with a goal of
disclosing structural and dynamic properties of these species to a higher resolution
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than is possible with PE spectroscopy. Emission spectra revealed many details on
the electronic and geometrical structure, e.g. of trifluoro and hexafluoro benzene
cations and their deuterated isotopomers [32, 43–51]. (For sufficiently symmetric
structures this included, in particular, the study of the Jahn–Teller effect as an impor-
tant vibronic phenomenon). Clear emission, nevertheless, is only observed for at
least threefold fluorination of the parent cation, BzC. Only one of the three diflu-
orobenzene cations, the 1,3-isomer, has been found to emit weakly [43]. For the
monofluoro derivative, as for BzC itself [74, 75], no emission could be detected
[43], imposing an upper limit for the quantum yield of fluorescence of 10�4–10�5.
Given typical radiative lifetimes of 10�8 s, these low quantum yields imply a sub-
picosecond timescale for the radiationless deactivation of the electronically excited
radical cations. The question arises whether and how the expected weakening of
the inter-state coupling effects shows up in these species. For the parent system
BzC itself, a detailed mechanism could be established in terms of the multimode
dynamical JT effect in the QX and QB electronic states, which leads to a low-energy
conical intersection between the corresponding potential energy surfaces (see sub-
section 5.2). Also it has been conjectured that the stabilization of the e2g (�) orbital
by fluorination leads to an increase of the corresponding ionization potential and a
corresponding increase of the (minimum energy of) conical intersection, thus weak-
ening the vibronic interactions and rendering the excited states long lived to make
emission eventually (i.e., for a sufficient degree of fluorination) observable [43].

This earlier conjecture is fully confirmed, regarding the general trends upon fluo-
rination, by the present mechanism and results. The radiationless deactivation in the
BzC is not a direct one (from the state where dipole-allowed transitions are possible,
the QC state, to the ground state) but involving the QB state as an intermediate [30,75].
Already for the monofluoro derivative, the two IPs deriving from the � orbital of
benzene (the QB and QD states of monofluoro benzene) are sufficiently high in energy
so that their energetic ordering with the �-type IP is interchanged [53, 61, 62, 70].
For the three difluoro isomers and 1,2,3-trifluorobenzene, the shifts in energy are
correspondingly more pronounced (see Table 2 and Fig. 1). Note that for the ab ini-
tio values of the IPs the labelling QB and QC should be interchanged for F-BzC and
1,4-difluorobenzene cations. Correspondingly, already for the monofluoro derivative
the QD- QX internal conversion, competing with the strongly dipole-allowed transi-
tion, is much slower than in the parent cation [61, 62]. In the difluoro isomers and
1,2,3-trifluorobenzene this decay is further slowed down owing to the higher-energy
vertical IPs and conical intersections as discussed above. A quantitative determi-
nation of the fluorescence quantum yield would require detailed consideration of
longer time dynamics, which is beyond the scope of the present work. It should also
be pointed out that the difluoro isomers represent a difficult case in that they are at
the ‘borderline’ of either fluorescing or not, and differences between them will be
quantitative rather than qualitative [69].

Nevertheless, the present electronic populations allow to draw important conclu-
sions on the different emission properties of these six systems. As seen from Fig. 8
the internal conversion to the QX C QA states is indeed slowest, and inefficient also on
an absolute scale, for the 1,3- isomer. We find it intriguing that emission has indeed
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been observed for this species, but not for the others. For the F-BzC and 1,4 iso-
mer, on the other hand the QX C QA populations keep increasing after 500 fs and may
be expected to dominate after several ps. This behaviour is expected to suppress
fluorescence, in accord with the experimental results. Only for the 1,2- isomer the
situation is somewhat less clear. However, other modes, not included in the present
treatment, may further enhance the QX C QA populations and thus be consistent with
the absence of fluorescence in the ortho isomer.

Additional evidence comes from the consideration of the dipole transition matrix
elements. As mentioned above, the transition from the �-type state of the benzene
cation to the ground state is dipole forbidden [30,75]. For the difluoro derivatives the
molecular symmetry is reduced and the selection rules are relaxed [69]. Given that
the components of the electric dipole operator transform (in the C2v point group) as:

�� D A1 C B1 C B2; (36)

one sees that there is always one component of the �-type ( QC C QD) states that
has a finite dipole matrix element for transitions to one component of the lower
�-type ( QX C QA) states, at least for the C2v molecular point group. All relevant
dipole transition matrix elements for the states in question and all fluoro deriva-
tives considered in the present study, using the same method (EOM-CCSD/TZ2P)
are listed in Table 5. One sees that there are indeed nonzero entries due to the reduc-
tion in symmetry. However they are all smaller by 2–3 orders of magnitude than
those for the QB – ( QX C QA) transition corresponding to the dipole-allowed transi-
tion in the case of BzC. Thus, the �-type electronic state is the ‘emitting’ state also
for the fluorobenzene cations. Its total oscillator strength is almost the same for all
five systems. Comparing again the various populations of Fig. 8 we find that the QB
state of 1,3-difluorobenzene is indeed more populated after 300–500 fs (probabil-
ity 0.75–0.8) than the QB state of 1,2-, 1,4-difluorobenzene and F-BzC (probability
�0:35, �0.45–0.5 and �0.1, respectively). Thus, according to both criteria (dipole
matrix elements and purely energetic grounds) we find that the conditions to find
emission are most favorable for the 1,3- isomer. According to our preliminary results
of 1,2,3-trifluorobenzene, there is no population transfer to the QX - QA set regarding
the high energy seam minima of the conical intersections connecting the QX - QA and
QB- QC - QD sets. This agrees with the observations [43]. It demonstrates that the inter-

nal conversion mechanism considered here, namely multiple conical intersections
involving one of the �-type electronic states of benzene and its fluoro derivatives, is
of key importance to the fluorescence dynamics in this family of compounds.

6 Summary and Outlook

In this article we have given an overview over our theoretical studies on the multi-
mode multi-state vibronic interactions in the benzene cation and several of its fluoro
derivatives. These are all associated with multiple conical intersections between the
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Table 5 Oscillator strengths of electronic dipole transitions between the five lowest electronic
states of the fluorinated benzene cations. An empty entry (�) means that the quantity vanishes by
symmetry

QB QC QD
Mono QX 0.0935 � 0.000

QA 0.0552 0.000 �
1; 2 QX 0.0999 0.0001 �

QA 0.0644 � 0.0001

1; 3 QX 0.1002 � 0.0002
QA 0.0641 0.000 -

1; 4 QX 0.1282 � �
QA 0.0474 � 0.000

1; 2; 3 QX 0.0889 � 0.000
QA 0.0907 0.0002 �

underlying PES, which are in turn related to the JT effects in degenerate states (in
the parent cation), to the PJT effects involving degenerate and nondegenerate states
(in the parent cation) or to vibronic coupling effects involving nearby nondegener-
ate states (in the – less symmetric – fluoro derivatives). Typical nonadiabatic effects
like complex spectral structures and an ultrafast electronic population decay have
been identified and thus been generalized from the familiar case of two to several
interacting states, with multiple conical intersections. We point out that in such sit-
uations the coupling modes are generally different for different pairs of interacting
states, and the topologies of the high-dimensional conical intersections become also
correspondingly complex.

Apart from the multi-state nature of the vibronic coupling, it is their evolution
in the series of related molecules that has been of considerable interest in this
work. The more physical and more chemical effects of partial fluorination have
been distinguished. The former consist in the reduction of symmetry which leads
to the disappearance of the JT effect in the mono- and difluoro, and in the 1,2,3-
trifluoro derivatives. Here we have demonstrated that this leads to quantitative,
rather than qualitative, changes and transforms the JT effect in the parent cation
to more generic vibronic coupling problems, with strong interactions and nona-
diabatic effects remaining, at least for higher vibronic energies. The latter, more
chemical effect consists in a systematic increase of the �-type vertical IPs in the
fluorinated derivatives which leads to a corresponding increase of the conical inter-
section between the two lower and the three higher electronic states of the radical
cations. This weakens the accompanying interactions and the strength of the elec-
tronic population transfer of these higher states to the two lowest states. It nicely
correlates with the appearance of emission for increasing fluorination of the cations.
It also corroborates the present mechanism for the interaction of the emissive (�)
state with the electronic ground state: there is no significant direct coupling between
these states, which could indeed not explain the dependence on fluorination, but only
an indirect coupling through the � states which explains the observed trends.
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Computationally, the present approach rests on the QVC coupling scheme in
conjunction with coupled-cluster electronic structure calculations for the vibronic
Hamiltonian, and on the MCDTH wave packet propagation method for the nuclear
dynamics. In combination, these are powerful tools for studying such systems with
10–20 nuclear degrees of freedom. (This holds especially in view of so-called multi-
layer MCTDH implementations which further enhance the computational efficiency
[130, 131].) If the LVC or QVC schemes are not applicable, related variants of
constructing diabatic electronic states are available [132, 133], which may extend
the realm of application from the present spectroscopic and photophysical also to
photochemical problems. Their feasibility and further applications remain to be
investigated in future work.
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30. M. Döscher, H. Köppel, P. Szalay, J. Chem. Phys. 117 2645 (2002)
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W. Domcke, D.R. Yarkony, H. Köppel (World Scientific, Singapore, 2004), pp. 429–472
65. M.H. Perrin, M. Gouterman, J. Chem. Phys. 46 1019 (1967)
66. J.H. van der Waals, A.M.D. Berghuis, M.S. de Groot, Mol. Phys. 13 301 (1967)
67. M.Z. Zgierski, M. Pawlikowski, J. Chem. Phys. 70 3444 (1979)
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83. H. Köppel, W. Domcke, in Encyclopedia of Computational Chemistry, ed. by P. von

Ragué Schleyer (Wiley, New York, 1998), p. 3166
84. L. Karlsson, L. Mattsson, R. Jadrny, T. Bergmark, K. Siegbahn, Physica Scr. 14 230 (1976)
85. P. Baltzer, L. Karlsson, B. Wannberg, G. Öhrwall, D.M.P. Holland, M.A. Mac Donald, M.A.
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On the Vibronic Interactions in Aromatic
Hydrocarbon Radicals and Radical Cations

V. Sivaranjana Reddy and S. Mahapatra

Abstract The study of the fate of electronically excited radical and radical cation of
aromatic hydrocarbons is an emerging topic in modern chemical dynamics. Obser-
vations like low quantum yield of fluorescence and photostability are of immediate
concern to unravel the mechanism of ultrafast nonradiative internal conversion
dynamics in such systems. The radical cations of polycyclic aromatic hydrocarbons
(PAHs) have received considerable attention in this context and invited critical mea-
surements of their optical spectroscopy in a laboratory, in striving to understand the
enigmatic diffuse interstellar bands (DIBs).

The Born–Oppenheimer (BO) approximation breaks down owing to the feasibil-
ity of crossings of electronic states of polyatomic molecules. These crossings lead
to conical intersections of electronic potential energy surfaces (PESs), which are
proved to be the bottleneck in the photophysical/chemical processes in those sys-
tems. Understandably, a concurrent treatment of electronic and nuclear motions is
required to explore the excited state dynamics of polyatomic systems. Motivated
by the new experimental measurements, we recently carried out ab initio quan-
tum dynamical studies on phenyl radical (Ph	) and phenylacetylene radical cation
(PA	C) and established nonadiabatic interactions in their low-lying electronic states.
These are the derivatives of the Jahn–Teller active benzene molecule, and are pre-
cursors of formation of PAHs. Employing a general vibronic coupling scheme, the
ultrafast decay of their electronic states through successive conical intersections was
studied by us recently. More specifically, the electronic ground eX2A1 state of Ph	 is
energetically well separated from its excited eA2B1 and eB2A2 states, and the nuclear
dynamics in this state follow the adiabatic BO mechanism. In contrast, the eA2B1 and
eB2A2 states are very close in energy (�0:57 eV spaced vertically at the equilibrium
configuration of the reference phenide anion) and low-lying conical intersections
are discovered which drive the nuclear dynamics via nonadiabatic paths. An ultra-
fast nonradiative decay rate of �30 fs of the eB state is estimated. In PA	C both
the long-lived and short-lived electronic states are discovered. The resolved struc-
tures of the vibronic bands are compared with the experimental photoelectron, mass
analyzed threshold ionization and photoinduced Rydberg ionization spectroscopy
data. The diffused structure of vibronic band for the eA state of the radical cation is
attributed to an ultrafast decay (�20 fs) to the electronic ground state.
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Benchmark ab initio quantum dynamical studies are carried out for the proto-
typical naphthalene and anthracene radical cations of the PAH family aiming to
understand the vibronic interactions and ultrafast decay of their low-lying electronic
states. The broadening of vibronic bands and ultrafast internal conversion through
conical intersections in the D0 � D1 � D2 electronic states of these species is
examined in conjunction with the experimental results. The results demonstrate the
crucial role of electronic nonadiabatic interactions to understand their low quantum
yield of fluorescence and photostability and adds to the understanding of DIBs.

1 Introduction

Understanding the fate of excited electronic states continues to be a challeng-
ing problem in the current research in the photo-physics/chemistry of aromatic
hydrocarbons. The crossing of electronic states of diatomic molecules is generally
restricted by the von Neumann and Wigner’s “non crossing rule” [1]. However, the
same does not apply to polyatomic molecules due to the availability of two or more
nuclear degrees of freedom. Unraveling the crossings of polyatomic molecular elec-
tronic states is a notoriously difficult task and has been considered in contemporary
chemical dynamics with renewed vigor [2]. These crossings lead to the vibronic cou-
pling of molecular electronic states and open up numerous pathways for the nuclei to
move. A crucial and immediate consequence of this coupling is a breakdown of the
founding adiabatic Born–Oppenheimer (BO) approximation of molecular quantum
mechanics [3], endowing a concurrent motion of electrons and nuclei in polyatomic
molecular systems.

The vibronic coupling, a coupling of electron and nuclear motion, is inherent
to the Jahn–Teller (JT) active molecular electronic states. In this case the symme-
try enforced electronic degeneracy is split by suitable symmetry-reducing nuclear
vibrations [4]. The JT-split component electronic states form, what is popularly
known as conical intersections (CIs) at the original undistorted equilibrium configu-
ration of the molecule [5]. Besides the JT systems, symmetry allowed and accidental
CIs are ubiquitous in polyatomic molecular systems [2,6–8]. CIs of electronic PESs
are established to be the paradigm of triggering strong nonadiabatic effects leading
to various ultrafast molecular processes [2].

In recent years aromatic hydrocarbon radicals and radical cations occupy the
center stage in the research on the structure and dynamics of excited electronic states
[9–14]. In particular, the benzenoid systems and polycyclic aromatic hydrocarbons
(PAHs) have received considerable attention by experimentalists because of their
fundamental and practical importance in the chemistry of the earth and interstellar
media. Striking efforts are being made to unravel their electronic state ordering,
life time of excited electronic states and the vibrational energy level spectrum at
higher energy resolution using a variety of energy and time-resolved experimental
techniques [11–16].
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Benchmark theoretical studies to elucidate the complex vibronic coupling in
the low-lying electronic states of these systems and the mechanistic details of the
nuclear dynamics are also emerging in recent years [17–21]. The large number of
electronic and nuclear degrees of freedom often makes it impossible to carry out an
accurate and complete theoretical study. Furthermore, owing to a mixing of differ-
ent vibronic symmetries, the precise details of the vibronic bands are often difficult
to decipher for strongly coupled electronic states of a large polyatomic system.

In this article we mainly focus on the central issue of vibronic coupling in the
benzenoid systems viz., the phenyl radical (Ph	) and phenylacetylene radical cation
(PA	C) and the lowest members of the family of the PAH radical cations viz.,
naphthalene (N	C) and anthracene (AN	C) radical cations. Consequences of this
coupling for the nuclear dynamics of these systems are studied at length. The diffi-
culties faced in the quantum mechanical treatments of these large systems are also
discussed. Dynamical observables like the rich vibronic spectrum are calculated and
assigned. The ultrafast nonradiative dynamics of the excited states is also studied.
These observables are compared with the available experimental data to validate the
established theoretical model [19–22].

Novel signature of vibronic coupling of electronic states is often borne by
the observed lack of fluorescence emissions of electronically excited polyatomic
molecules. Broad and diffuse vibronic spectra can finally be related to this obser-
vation. The electronic mechanism of photostability is connected to the decay of a
strongly ultraviolet (UV) absorbing electronic state via a non-emissive path. Such a
process is notably of immense importance in biological molecules and greatly con-
tributes to life. A nonradiative dissipation of the absorbed UV radiation prevents the
initiation of hazardous and dangerous photoreactions, particularly important for the
relevant molecules constituting the DNA of living beings [23–26].

Sobolewski and Domcke have made pioneering contributions to elucidate the
mechanism of photostability considering a wide variety of molecular systems of
chemical and biological importance [26–30]. CIs of PESs are established to be the
bottleneck in such photochemical processes [2,31,32]. A schematic diagram shown
in Fig. 1 illustrates the mechanism of photostability. The UV photon promotes the
molecule to its electronic excited state as indicated by the vertical long arrow in
the diagram. The excited electronic state j1i meets a second one j2i (may or may
not be optically bright and depends on the molecular system) which links j1i and
the electronic ground state jgi via successive CIs. Therefore, once excited to the
UV absorbing state j1i, the molecule can return to its electronic ground state jgi
traversing through the CIs and nonradiatively dissipating the absorbed UV radiation
[25, 33, 34]. Experimental evidence of negligible yield of photoproducts supports
this mechanism [35].

Structural and dynamical studies have been carried out on chromophores of
aromatic amino acids and bases [27, 30, 33, 36]. These aromatic biomolecules pos-
sess strongly UV absorbing short lived 1��? state. Short lifetime of this state
is established to be caused by an optically dark 1��? state which connects it to
the S0 ground state via two successive CIs as illustrated in the diagram of Fig. 1.
Extensive studies have also been carried out on DNA base pairs validating such a
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Fig. 1 Schematic diagram of the potential energy surface crossings to illustrate the mechanism of
photostability. The electronic ground state is indicated by jgi and the excited states by j1i and j2i

mechanism of photostability of the strongly UV absorbing state [37, 38]. In case of
2-aminopyridine dimer (a mimetic model of DNA base pair), enhanced deactivation
of a locally excited 1��? state is found to be caused by an optically dark 1��?

excited charge transfer state connecting it to the S0 ground electronic state via CIs
[34]. A discussion on the photostability and the femtosecond time-resolved exper-
iment to measure ultrafast deactivation of excited states of biologically important
molecules was reviewed recently [23].

Besides above developments, photostability of electronically excited radical
cations of PAHs has received increasing attention in recent years [39]. These cations
are most abundant in the interstellar space, and an understanding of their UV pho-
tophysics/chemistry has become a major concern [40, 41]. The lack of fluorescence
emission and the enigmatic diffuse interstellar bands (DIBs) are indicative of com-
plex vibronic coupling and ultrafast nonradiative decay of electronic excited states
of these systems. Aided by the availability of various experimental data [16,42–47]
we recently studied the photophysics/chemistry of the prototypical naphthalene and
anthracene radical cations quantum mechanically [20, 22]. The complex vibronic
coupling in their low-lying electronic states was established and its impact on the
vibronic dynamics with regard to their photostability and possible contribution to
the DIBs was discussed.

The rest of the article is organized in the following way. The basic concept of
vibronic coupling is reviewed in Sect. 2. The theoretical and computational method-
ologies to treat the static and dynamic aspects of vibronic coupling are outlined in
Sect. 3. The important findings on the vibronic dynamics of Ph	, PA	C, N	C and
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AN	C are highlighted in Sect. 4. Finally the summarizing remarks are presented in
Sect. 5.

2 Vibronic Coupling: General Perspective

The concept of “vibronic coupling” perhaps dates back to the seminal and thought
provoking paper of von Neumann and Wigner on the “non crossing rule” [1]. With
this discovery the validity of the celebrated Born–Oppenheimer (BO) approximation
of separation of electronic and nuclear motions in molecular quantum mechanics [3]
became questionable. The huge difference in the electron and nuclear masses was
the sole justification of this pioneering approximation. However, when molecular
electronic states approach to within a quantum of vibrational energy this justification
seems to become futile. To begin the discussion, let us consider a general molecular
Hamiltonian written in terms of the set of electronic and nuclear coordinates q and
Q, respectively, as

H.q;Q/ D Te.q/C TN .Q/C U.q;Q/; (1)

where Te.q/ and TN .Q/ are the kinetic energy operators of the electrons and nuclei,
respectively. The quantity U.q;Q/ is the total potential energy of the electron-
electron, electron-nuclear and nuclear-nuclear interactions. The BO adiabatic elec-
tronic states are obtained by setting, TN .Q/ D 0, and solving the resulting electronic
eigenvalue equation for fixed nuclear configuration [48]

ŒTe.q/C U.q;Q/� ˆn.qIQ/ D Vn.Q/ ˆn.qIQ/; (2)

where ˆn.qIQ/ and Vn.Q/ are the BO adiabatic electronic wavefunction paramet-
rically depending on the set of nuclear coordinates Q and the adiabatic electronic
PES, respectively. The full molecular wavefunction ‰.q;Q/ can now be expressed
in terms of the above adiabatic electronic functions as

‰.q;Q/ D
X

n

�n.Q/ ˆn.qIQ/: (3)

Substitution of (1–3) in the eigenvalue equation leads to the following coupled
differential equations for the expansion coefficients �n.Q/ [48]

fTN .Q/CVn.Q/� Eg�n.Q/ D
X

m

ƒnm.Q/�m.Q/; (4)

where

ƒnm.Q/ D �
Z
dqˆ�n.qIQ/ ŒTN .Q/; ˆm.qIQ/� ; (5)
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describes the coupling of electronic states n and m through the nuclear kinetic
energy operator and defines the nonadiabatic coupling matrix of the adiabatic elec-
tronic representation. Notice that the nuclear kinetic energy operator is non-diagonal
in this representation. The quantityƒnm.Q/ can be recasted as [7, 49]

ƒnm.Q/ D �
X

i

�
2

Mi

A.i/nm.Q/
@

@Qi

�
X

i

�
2

2Mi

B.i/nm.Q/; (6)

where Mi are nuclear masses and

A.i/nm.Q/ D hˆn.qIQ/jri jˆm.qIQ/i; (7)

and
B.i/nm.Q/ D hˆn.qIQ/jr2i jˆm.qIQ/i; (8)

are the derivative coupling vector and scalar coupling, respectively.
In the BO approximationƒnm.Q/ is set to zero which holds for widely separated

electronic PESs. Using the Hellmann–Feynman theorem the elements of Anm.Q/
can be expressed as [7]

A.i/nm.Q/ D
hˆn.qIQ/jriHel.qIQ/jˆm.qIQ/i

Vn.Q/� Vm.Q/ ; (9)

where Hel represents the electronic Hamiltonian for fixed nuclear configuration. At
the intersection of the two surfaces Vn.Q/ D Vm.Q/, and the derivative coupling
elements of (9) exhibit a singularity. As a result, both the electronic wavefunction
and the derivative of energy become discontinuous at the point of intersection mak-
ing the adiabatic representation unsuitable for the numerical simulation of nuclear
dynamics. Therefore, when different electronic PESs closely approach or even inter-
sect the derivative coupling, Anm.Q/, becomes extremely large and supersedes
the large nuclear to electronic mass ratio and hence the BO approximation breaks
down.

To circumvent the singularity problem the concept of complementary diabatic
electronic representation was introduced [50–52]. In this representation, the diverg-
ing kinetic energy coupling is transformed into smooth potential energy couplings
through a suitable unitary transformation. As a result, the nuclear kinetic energy
operator assumes a diagonal form and the coupling between the electronic states
is described by the off-diagonal elements of the potential energy operator. In
this representation the coupled equations of motion (as compared to (4)) read
[53, 54]

fTN .Q/C Unn.Q/� Eg�n.Q/ D
X

m¤n
Unm.Q/�m.Q/; (10)

where Unn.Q/ are the diabatic PESs and Unm.Q/ are their coupling elements. The
latter are give by
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Unm.Q/ D
Z
dq �n.q;Q/ ŒTe C V.q;Q/� m.q;Q/; (11)

where  represents the diabatic electronic wavefunction obtained from the corre-
sponding adiabatic ˆ.qIQ/ ones via a unitary transformation

 .qIQ/ D S ˆ.qIQ/; (12)

with the aid of an orthogonal transformation matrix

S.Q/ D
�

cos �.Q/ sin �.Q/
� sin �.Q/ cos �.Q/

	
: (13)

The matrix S.Q/ is called the adiabatic-to-diabatic transformation (ADT) matrix
and �.Q/ defines the transformation angle. The required condition for such trans-
formation is the first-order derivative couplings of (7) vanishes in the new represen-
tation for all nuclear coordinates [55, 56] i.e.,

Z
dq �n.q;Q/

@

@Qi

 m.q;Q/ D 0: (14)

This requirement yields the following differential equations for the transformation
matrix [55, 57, 58]

@S
@Qi

C A.i/S D 0; (15)

where the elements of the first-order derivative coupling matrix A.i/ are given by
(7). A unique solution of the above equation can be obtained only when the curl
of the derivative coupling matrix vanishes [55, 57, 58] which is difficult to achieve
in practice starting from a finite subspace of electronic states [56]. Therefore, for
polyatomic molecular systems rigorous diabatic electronic states do not exist [56].
For a survey of some approximate schemes to construct diabatic electronic states
the readers are referred to the articles in [58–60].

In order to review the basic aspects of PES crossings let us recall a two-state
electronic Hamiltonian in a diabatic representation

Hel .Q/ D
�
H11.Q/ H12.Q/
H21.Q/ H22.Q/

	
; (16)

where H11 and H22 represent the potential energies of the two diabatic electronic
states and, H12 D H21, describes their coupling potential. We also assume that
all the elements of (16) are real. On diagonalization using the ADT matrix S, the
electronic Hamiltonian of 16 yields the adiabatic potential energies

V1;2.Q/ D †˙
q
�2 CH 2

12; (17)
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where † D .H11 C H22/=2 and � D .H11 �H22/=2. The transformation angle
�.Q/ of the ADT matrix depends on the set of nuclear coordinates and can be
obtained from

�.R/ D 1

2
arctan Œ2H12.Q/=.H22.Q/�H11.Q//� : (18)

It can be seen from (17) that the two adiabatic surfaces exhibit a degeneracy when,
� D 0 and H12 D 0. The latter quantities depend on two independent set
of nuclear coordinates, not available for a diatomic molecule leading to the non
crossing rule [1] unless H12 vanishes on symmetry ground. On the other hand,
due to the availability of more than one nuclear degrees of freedom, the PESs of
polyatomic molecules generally cross. It can be seen that V1;2.Q/ resembles the
equation of a double cone intersecting at their vertex. This topography of intersect-
ing PESs is popularly known as conical intersections (CIs) [5–8, 31, 32, 61–65].
By expanding H11, H22 and H12 in a first-order Taylor series, the quantities �
and H12 can be equated to a gradient difference and nonadiabatic coupling vectors,
respectively [66]. The space spanned by these vectors defines the two-dimensional
branching space in which the degeneracy of the two surfaces is lifted except at the
origin. Whereas, the surfaces remain degenerate in the remaining N � 2 dimen-
sional space (when spin is not included, N is the number of nuclear degrees of
freedom). The locus of the degeneracy of the two surfaces defines the seam of
the CIs.

The evidence of CIs of PESs perhaps emerged from the Jahn–Teller (JT) active
molecular systems [5]. In this case the symmetry required electronic degener-
acy is lifted by symmetry reducing nuclear coordinates. The classic example in
this category is lifting of the degeneracy of a doubly degenerate E electronic
state upon distortion along a doubly degenerate e nuclear vibration and is known
as .E ˝ e/-JT effect [67]. The two JT split states form CIs at the undistorted
molecular configuration. For example, the electronic degeneracy of a equilateral
triangular molecular system (like cyclopropane) in D3h symmetry splits upon dis-
tortion to C2v. The system develops new minima at the latter configuration of
reduced symmetry and the JT split component states form CIs at the original D3h
configuration.

The CIs of a .E ˝ e/-JT system are sketched in Fig. 2. The one-dimensional cut
on top is plotted along a JT active e vibrational mode. It can be seen that the degen-
eracy of the two surfaces is split and they form CIs at the original undistorted D3h
configuration. In two dimensions the CIs is an isolated point indicated by a circle
around it. However, in multidimension, as illustrated by the contour diagram at the
bottom plotted along a symmetric and an e vibrational mode, the surface remain
degenerate at a set of points and form seam. The line drawn on the contour diagram
represents such a seam and the point marked on it defines the energetic minimum
on this seam.
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Qa1,

C2v
C2v D3h

Qe,

Fig. 2 Schematic plot of .E � e/-JT CIs of a system with D3h equilibrium symmetry. Upon
distortion the equilibrium symmetry breaks to C2v as shown by the development of new minima
on the lower adiabatic component of the JT split surface. The contour diagram is plotted along the
coordinates of a JT active (Qe0 ) and totally symmetric (Qa01

) vibrational modes to reveal that CIs
are not isolated points in space, rather the surfaces remain degenerate along a seam (see text for
further details)

3 Outline of Theoretical and Computational Methodology

The vibronic coupling in the radical and radical cation of aromatic hydrocar-
bons is studied by photoionizing the corresponding anion and neutral molecules,
respectively. The vibronic Hamiltonian of the final states of the ionized species
is constructed in terms of the dimensionless normal coordinates of the electronic
ground state of the corresponding (reference) anion or neutral species. The mass-
weighted normal coordinates (�i ) are obtained by diagonalizing the force field and
are converted into the dimensionless form by [68]

Qi D .!i=�/ 1
2 �i ; (19)

where !i is the harmonic frequency of the i th vibrational mode. These actually
describes the normal displacement coordinates from the equilibrium configura-
tion, Q D 0, of the reference state. The vibronic Hamiltonian describing the
photoinduced molecular process is then given by [7]
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H D .TN C V0/1n C�H: (20)

In the above equation .TN C V0/ defines the Hamiltonian for the unperturbed
reference ground electronic state, with

TN D �1
2

X

i

!i



@2

@Q2
i

�
; (21)

and

V0 D 1

2

X

i

!iQ
2
i ; (22)

describing the kinetic and potential energy operators, respectively. All vibrational
motions in this reference electronic state are generally, to a good approximation,
assumed to be harmonic. The quantity 1n is a .n � n/ (where n is the number of
final electronic states) unit matrix and �H in (20) describes the change in the elec-
tronic energy upon ionization. This is a .n � n/ non-diagonal matrix. A diabatic
electronic basis is utilized in order to construct the above Hamiltonian. This is to
circumvent the stated shortcomings of the adiabatic electronic basis in the numeri-
cal application. The diagonal elements of the electronic Hamiltonian,�H, describe
the diabatic potential energy surfaces of the electronic states and the off-diagonal
elements describe their coupling surfaces. Possible coupling between the states is
assessed by employing the symmetry selection rule in first-order

�m � �Qi
� �n � �A; (23)

where �m; �n and �Qi
refer to the irreducible representations (IREPs) of the

electronic states m; n and the i th vibrational mode, respectively. �A denotes the
totally symmetric representation. According to this prescription, the totally sym-
metric vibrational modes are always active within a given electronic state. The
elements of �H are expanded in a Taylor series around the reference equilib-
rium geometry (Q D 0) and the series is suitably truncated to best fit the ab
initio computed electronic energies. A truncation of the series at the first-order term
results the pioneering linear vibronic coupling (LVC) model of Köppel, Domcke
and Cederbaum [7].

The derivatives of the electronic energies appearing in the Taylor expansion
describe the coupling parameters of the vibronic Hamiltonian (see later in the text).
These are determined by calculating the adiabatic potential energies as a function
of the dimensionless normal coordinates by a suitable ab initio method. Several
new developments in the electronic structure calculations of vibronically coupled
systems have emerged in recent years. An exhaustive discussions on this is out of
the scope of this review and the readers are referred to the [69–75]. For the refer-
ence molecule, the equilibrium geometry and the harmonic force field of the ground
electronic state are routinely calculated by electronic structure methods in which
the analytic gradients of energy are available. In the present case, a second-order
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Møller-Plesset perturbation theory (MP2) based method is used for the purpose. For
molecules which possess a closed-shell ground electronic state, the outer valence
Green’s function (OVGF) method has been found to be very successful in estimat-
ing the energies of their ionized states [76,77]. In this method the vertical ionization
energies (VIEs) are calculated along the normal coordinates of a given vibrational
mode. These VIEs plus the harmonic potential of the reference state are equated
with the adiabatic potential energies (V) of the final electronic state. The latter are
then fitted to the adiabatic form of the diabatic electronic Hamiltonian of (20)

S	.H � TN 1n/S D V: (24)

Once the Hamiltonian is constructed, first principles nuclear dynamical simulations
are carried out by solving the Schrödinger eigenvalue equation numerically. The
spectral intensity in the photoinduced process is described by Fermi’s golden rule

P.E/ D
X

v

ˇ
ˇ
ˇh‰fv j OT j‰i0i

ˇ
ˇ
ˇ
2

ı.E �E f
v CE i

0/; (25)

where j‰i0i is the initial vibronic ground state (reference state) with energy E i
0

and j‰fv i corresponds to the (final) vibronic states of the photoionized molecule
with energies E f

v. The reference ground electronic state is approximated to be
vibronically decoupled from the other states and it is given by

j‰i0i D jˆ00ij0i; (26)

where jˆ00i and j0i represent the electronic and vibrational components of the initial
wavefunction, respectively. The quantity OT represents the transition dipole operator
for the photoionization process.

Use of the Fourier representation of the Dirac delta function, ı.x/ = 1
2�

R C1
�1

eixt=�, in the golden rule equation transforms (25) into the following useful form,
readily utilized in a time-dependent picture

P.E/ 	 2Re
Z 1

0

eiEt=�h‰f .0/j�	e�iHt=��j‰f .0/idt; (27)

	 2Re
Z 1

0

eiEt=� Cf .t/ dt: (28)

In (27) the elements of the transition dipole matrix �	 is given by, �f D hˆf j OT jˆi i.
These elements are slowly varying function of nuclear coordinates and generally
treated as constants in accordance with the applicability of the Condon approxima-
tion in a diabatic electronic basis [7, 78]. The quantity Cf .t/ D h‰f .0/j‰f .t/i, is
the time autocorrelation function of the wave packet (WP) initially prepared on the
f th electronic state and, ‰f .t/ D e�iHt=� ‰f .0/.
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The vibronic spectrum is calculated by numerically solving the eigenvalue equa-
tion of the vibronic Hamiltonian. In a time-independent approach, the latter is
represented in a direct product basis of diabatic electronic state and one-dimensional
harmonic oscillator eigenfunctions of the reference Hamiltonian (TN C V0) [7].
The number of latter in a given application is roughly estimated from the coupling
strength of the vibrational modes. The final number is however, fixed by examin-
ing the convergence behavior of the eigenvalue spectrum. The vibronic Hamiltonian
expressed in a direct product harmonic oscillator basis has a sparse structure, which
is then diagonalized by using the Lanczos algorithm [79]. The diagonal elements
of the resulting eigenvalue matrix give the location of the vibrational levels and the
relative intensities are obtained from the squared first component of the Lanczos
eigenvectors [7, 54].

The matrix diagonalization approach becomes computationally impracticable
with increase in the electronic and nuclear degrees of freedom. Therefore, for
large molecules and with complex vibronic coupling mechanism this method often
becomes unreliable. The WP propagation approach within the multi-configuration
time-dependent Hartree (MCTDH) scheme has emerged as a very promising alter-
native tool for such situations [80–82]. This is a grid based method which utilizes
discrete variable representation (DVR) combined with fast Fourier transformation
and powerful integration schemes. The efficient multiset ansatz of this scheme
allows for an effective combination of vibrational degrees of freedom and thereby
reduces the dimensionality problem. In this ansatz the wavefunction for a nonadia-
batic system is expressed as [80–82]

‰.Q1; : : : ;Qf ; t/ D ‰.R1; : : : ; Rp ; t/ (29)

D
�X

˛D1

n
.˛/
1X

j1D1
: : :

n
.˛/
pX

jpD1
A
.˛/
j1;:::;jp

.t/

pY

kD1
'
.˛;k/

jk
.Rk; t/j˛i; (30)

Where, R1,. . . , Rp are the coordinates of p particles formed by combining f

vibrational degrees of freedom, ˛ is the electronic state index and '.˛;k/
jk

are the
nk single-particle functions for each degree of freedom k associated with the elec-
tronic state ˛. � represents the number of electronic states. Employing a variational
principle, the solution of the time-dependent Schrödinger equation is described by
the time-evolution of the expansion coefficients A.˛/j1;:::;jp

. In this scheme all multi-
dimensional quantities are expressed in terms of one-dimensional ones employing
the idea of mean-field or Hartree approach. This provides the efficiency of the
method by keeping the size of the basis optimally small. Furthermore, multi-
dimensional single-particle functions are designed by appropriately choosing the
set of system coordinates so as to reduce the number of particles and hence the
computational overheads. The operational principles, successes and shortcomings
of this schemes are detailed in the literature [80–82] and we do not reiterate them
here. The Heidelberg MCTDH package [83] is employed to propagate WPs in the
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numerical simulations discussed below. The spectral intensity is finally calculated
using (27) from the time-evolved WP.

To reproduce the inherent broadening of the experimental vibronic spectrum, the
stick vibronic lines obtained from the matrix diagonalization calculations are usually
convoluted [7] with a Lorentzian line shape function

L.E/ D 1

�

�
2

E2 C .�
2
/2
; (31)

with a full width at the half maximum (FWHM) � . In the time-dependent calcu-
lations, the time autocorrelation function is damped with a suitable time-dependent
function before Fourier transformation. The usual choice has been a function of type

f .t/ D expŒ�t=�r �; (32)

where �r represents the relaxation time. Multiplying C.t/ with f .t/ and then
Fourier transforming it is equivalent to convoluting the spectrum with a Lorentzian
line shape function (cf., (30)) of FWHM, � = 2/�r .

The mechanistic details of the nonadiabatic dynamics can be best extracted from
the motion of the WP in a time-dependent study, by creating a movie. The “ultra-
fast” dynamics of the excited electronic states is examined by recording the diabatic
(“adiabatic”) electronic populations during the entire course of the dynamics.

4 Representative Examples

4.1 Vibronic Coupling in the Phenyl Radical and Radical
Cation of Phenylacetylene

The benzenoid systems, Ph	 and PA	C are derived from the parent benzene
molecule. The JT effect in the benzene radical cation (BZ	C) is well studied in
the literature [84–94]. The D6h equilibrium point group symmetry of benzene
breaks to C2v in the phenide anion and phenylacetylene. As a result, the lowest
degenerate molecular orbitals (MOs) of benzene split into a set of nondegenerate
MOs in phenide anion and phenylacetylene. The highest occupied molecular orbital
(HOMO), and three lower ones viz., HOMO-1, HOMO-2 and HOMO-3 are plotted
in Fig. 3 in order to understand how the canonical MOs of benzene, phenide anion
and phenylacetylene correlate with each other. It can be seen from Fig. 3 that the
HOMO and HOMO-1 form the degenerate electronic ground JT state of benzene.
These correlates to the HOMO-1 and HOMO-2 of phenide anion and HOMO and
HOMO-1 of phenylacetylene, respectively. The HOMO-2 and HOMO-3 form the
first excited JT state of benzene and the second correlates to the HOMO-3 of phenide
anion. However, these two MOs do not correlate to the HOMO-2 and HOMO-3 of
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Fig. 3 Schematic diagram of the canonical MOs of benzene, phenide anion and phenylacetylene.
The highest occupied molecular orbital (HOMO) and three lower ones HOMO-1, HOMO-2 and
HOMO-3 are shown along with their symmetry representations

phenylacetylene. The latter MOs are predominantly acetylenic �-orbitals parallel
and perpendicular to the phenyl ring in phenylacetylene. The HOMO of phenide
anion describes a nonbonding type of orbital in which the negative charge is local-
ized. Within Koopman’s theorem in the MO picture, ionization from the above MOs
would result the MOs of the ionized molecules keeping their nature same. The com-
ponents of the ground JT state (eX2E1g) of BZ	C would therefore correlate with the
eA2B1 and eB2A2 electronic states of Ph	 and eX2B1 and eA2A2 electronic states of
PA	C. These describe situations where the JT degeneracy is lifted by perturbations
caused by the deprotonation of and substitution to the benzene ring, respectively.
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Phenyl radical (Ph	) is a prototype reactive intermediate in the chemistry of
aromatic hydrocarbons. It plays an important role in combustion chemistry and
also in the formation of PAHs [95, 96]. The spectroscopy of the low-lying elec-
tronic states of Ph	 was studied experimentally. Gunion et al. [9] recorded 351 nm
photodetachment spectrum of phenide anion (conjugate base of benzene). The spec-
trum revealed a well resolved vibronic structure of the electronic ground (eX2A1)
state of Ph	 and a broad (unresolved) and diffuse hump at high energies. The elec-
tronic absorption spectrum recorded by Radziszewski [97] revealed the vibronic
structure of the eA2B1 and higher excited electronic states (2A1 and 2B2) of Ph	.
Subsequent theoretical calculations by Kim et al. [98] did not reproduce the rich
vibronic structure observed in the experiment, and possible 2B1–2A2 vibronic cou-
pling was speculated to be the reason behind the disagreement between the theory
and experiment [98]. Furthermore, the well resolved detachment spectrum of the
eX2A1 state of Ph	 revealed an anomalous intensity distribution, and the assignment
of the progression due to the �968 cm�1 vibrational mode was ambiguous as there
are three vibrational modes of approximately the same frequency in the phenide
anion [9].

As shown in Fig. 3, the negative charge in the HOMO of phenide anion is
localized in a nonbonding type of orbital, where as it is delocalized over the �
type of bonding in HOMO-1 and HOMO-2. The eX2A1 electronic ground state of
Ph	 results from the detachment of an electron from the HOMO, where as eA2B1 and
eB2A2 excited electronic states result from HOMO-1 and HOMO-2. The 27 vibra-
tional modes of phenide anion decompose into 10 a1 (�1– �10) ˚ 5 b1 (�11– �15)
˚ 9 b2 (�16– �24) ˚ 3 a2 (�25– �27) IREPs of the C2v point group [19]. Symme-
try selection rule allows a coupling of the eX�eA, eX�eB and eA�eB electronic states
(in first-order) of Ph	 through the vibrational modes of b1, a2 and b2 symmetry,
respectively.

The eX state of Ph	 is well separated from its eA and eB states. The vertical ioniza-
tion energies �1:007, �2:862 and �3:433 eV, respectively, are estimated for these
three states [19]. Furthermore, the coupling of the eX state with the eA and eB states
occurs at much higher energies and is found to be irrelevant for the photodetach-
ment spectrum. The eA and eB states on the other hand are energetically close and
the coupling between them is found to have considerable impact on their vibronic
spectrum [19].

To analyze the vibronic structures of the eX , eA and eB electronic states Ph	 we
constructed a vibronic Hamiltonian in a diabatic electronic basis which treats the
nuclear motion in the eX state adiabatically, and includes the nonadiabatic coupling
between the eA and eB electronic states. The Hamiltonian in terms of the dimension-
less normal coordinates of the electronic ground state (eX1A1) of phenide anion is
given by [19]

H D .TN C V0/13 C�H (33)
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where,

�H D
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Here 13 represents a 3�3 unit matrix. (TN CV0) represents the zeroth-order Hamil-
tonian of unperturbed electronic ground state of phenide anion given by (21–22).
The elements of the electronic Hamiltonian �H are expanded in a Taylor series as
follows
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i

�
. eA�eB/
i Qi ; (36)

where Ek0 represents the vertical ionization energy of the kth electronic state of
the phenyl radical, k2 eX /eA/eB , measured from the reference equilibrium geometry
(Q D 0) of the ground electronic state of phenide anion. �.k/i , � .k/i and � .k/ij defines
the linear and diagonal second-order coupling parameters for the i th vibrational
mode in the kth electronic state. The intermode (i th and j th) bilinear coupling
parameters are denoted by �

.k/
ij . The interstate linear coupling parameters are

denoted by �i for the i th vibrational mode. These parameters are calculated by per-
forming ab initio calculations of vertical ionization energies by the OVGF method
and utilizing the strategy described in Sect. 3. The bilinear coupling parameters
were found to be very small (�10�3 or less) and are excluded from the dynamical
simulations.

One dimensional potential energy cuts of the eX , eA and eB electronic states along
the coordinates of most relevant totally symmetric (a1) vibrational modes �1, �2,
�5, �6 and �7 are shown in Fig. 4. It can be seen and as pointed out above that the
eX state does not undergo low-energy crossings with either eA or eB state. Whereas,
the latter two exhibit such crossings particularly along �1 and �5– �7 vibrational
modes. These crossings transform to CIs in multidimensions. Within a linear cou-
pling scheme the global minimum of the seam of eA–eB CIs is estimated to occur
at �3:28 eV. This intersection minimum is found to be only �0:01 eV above the
eB state equilibrium minimum. Therefore, the vibrational structure of the eB state is
expected to be strongly perturbed by the associated nonadiabatic coupling.

The vibronic structure of the eX state of Ph	 is shown in Fig. 5. Both the exper-
imental results of Gunion et al. [9] and our theoretical results [19] are shown in
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Fig. 4 Adiabatic potential energies of the eX , eA and eB electronic states of Ph� along the coordi-
nates of the most relevant a1 vibrational modes: �1 (586 cm�1), �2 (964 cm�1), �5 (1,192 cm�1),
�6 (1,453 cm�1) and �7 (1,584 cm�1). A sketch of the vibrational modes is also shown

the diagram. The theoretical stick spectrum is obtained by including four a1, five
b1 and three a2 vibrational modes employing the matrix diagonalization approach.
The resulting stick vibrational spectrum is convoluted with a Lorentzian function
of 20 meV FWHM to obtain the spectral envelope. It can be seen that the theo-
retical results are in fair accord with the experimental data. Somewhat anomalous
intensity distribution in the two is attributed to the possible contamination of the
benzyne anion spectrum in the experimental data [9]. The dominant progressions in
the theoretical band are confirmed to be formed by the �1 and �2 vibrational modes
[19]. These modes describe deformation of the benzene ring and are shown at the
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Fig. 5 The eX2A1 vibronic spectrum of Ph�. The experimental [9] and present theoretical results
are shown (see the text for details). The two a1 vibrational modes which form the dominant
progression in the spectrum are also shown at the top of the figure

top of Fig. 5. Peak spacings of �0:0727 eV and �0:1196 eV corresponding to the
frequency of these modes, respectively, are estimated from the theoretical data [19].

The eA and eB electronic states are vertically�0:57 eV spaced. Coupling between
these states are primarily caused by the b2 vibrational modes of viz., ring defor-
mation, C=C stretching and C-H bending type. The vibrational bands for the eA–eB
coupled electronic states are calculated by including 21 relevant vibrational modes
(6a1 C 4b1 C 9b2 C 2a2) [19]. The diagonalization approach was found to be
computationally impracticable for a matrix involving two electronic states and 21
vibrational modes in each. The task is accomplished by propagating WPs using the
MCTDH algorithm [83]. The calculated theoretical results are shown in Fig. 6a.
While the vibronic structure of the eA state is recorded in an electronic absorption
measurement [97] (which is shown at the top of Fig. 6a), the eB state is optically dark
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Fig. 6 The eA2B1–eB2A2 vibronic bands of Ph�. The present theoretical results without (uncou-
pled) and with (coupled) the eA–eB coupling are shown in the bottom and middle of the panel (a),
respectively. The experimental UV absorption spectrum of [97] is also shown at the top of the panel
(a). In the panel (b), the time dependence of eB state population (diabatic) in the eA–eB coupled state
dynamics is shown

and could not be probed in such measurements. Very sketchy information about the
eB state spectrum is perhaps obtained from the broad and extremely poor signal
observed in the photodetachment spectrum [9]. The difference in the theoretical and
experimental spectral intensity of the eA band results from the fact that experimental
absorption band is recorded from the neutral ground electronic state, where as, the
theoretical photodetachment spectrum is calculated from the ground electronic state
of the anion. Therefore, only the position of the vibronic energy levels can be com-
pared to the experiment. Comparison calculations were carried out for the uncoupled
eA and eB states individually to assess the impact of the nonadiabatic coupling on
the vibrational structures of these bands. The uncoupled state spectra are obtained
by the matrix diagonalization method and including the relevant vibrational modes
(see, [19] for details). These results are shown at the bottom of Fig. 6a. It can be
seen that the nonadiabatic coupling causes only a partial demolition of the vibronic
structures in the high energy wing of the eA band, whereas, it has huge impact on
the vibronic structures of the entire eB band. The dominant progressions in the eA
band are formed by the symmetric �1, �2, �3, and �5 vibrational modes, the peaks
are�0:072,�0:113,�0:12 and�0:14 eV spaced corresponding to the frequency of
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these modes, respectively. Progressions due to �1, �2, �3, and �6 vibrational modes
are obtained from the uncoupled eB band.

To this end we mention that the JT active eX2E1g state of BZ	C correlates to
the eA–eB coupled states of Ph	. The JT effect in the eX state of BZ	C is very weak
[93, 94] and therefore, resolved vibronic structures of this state was observed in the
experiment [99]. The JT activity in the eX state of BZ	C is mostly caused by the
e2g vibrational modes �6 (skeletal deformation) and �8 (C=C stretching). Each of
these modes splits into a1 and b2 components in Ph	. The b2 components cause a
coupling of the eA and eB states while the a1 components act as Condon active tuning
modes. The b2 components have coupling constants �0:074 and �0:147 eV simi-
lar in magnitude to the JT coupling constants �0:077 and �0:152 eV in BZ	C for
�6 and �8, respectively [19, 100]. However, the coupling constants of the corre-
sponding a1 components in Ph	 are �� 0:081 and �� 0:128 eV in eA and �0:069
and �0:160 eV in the eB states which cause a larger tuning activity. In addition, the
vertical energy gap of the eA and eB states of Ph	 is �0:57 eV and the energetic min-
imum of the eA–eB CIs occurs below the zero-point energy level of the eB state [19].
This causes a considerable mixing of the vibrational continua of the eA state with the
low-lying vibrational levels of the eB state and results in the observed blurring (cf.,
Fig. 6) of the vibrational structure of the latter state.

The time-dependence of the electronic (diabatic) populations of the eB state in the
eA–eB coupled state dynamics is shown in Fig. 6b. The WP is initially .t D 0/ located
on the eB state and therefore, its population starts from 1.0. Since the equilibrium
minimum of the eB state nearly coincides with the minimum of the eA–eB CIs, the
population of this state decays (nonradiatively) rapidly to the eA state through the
CIs, and reaches to a value of �0:05 at longer times. The initial fast decay of the
population relates to a decay rate of �30 fs for the eB state.

The vibronic coupling in the PA	C is bit more involved than in Ph	 [21]. The D6h
equilibrium symmetry of benzene breaks to C2v upon acetylene substitution. The
degenerate eX2E1g JT state of BZ	C splits into eX2B1 and eA2A2 electronic states
in PA	C as revealed by Fig. 3. Contrary to the phenide anion, where removal of a
proton splits the JT degeneracy of benzene, in phenylacetylene (PA), perturbation
caused by substitution breaks the JT symmetry.

The 36 vibrational modes of PA decompose into 13a1 ˚ 3a2 ˚ 8b1 ˚ 12b2
IREPs of the C2v point group. The eX2B1, eA2A2, eB2B2 and eC 2B1 electronic states
of PA	C are found to be energetically close lying. The vertical ionization ener-
gies of these states relative to the electronic ground state of PA are estimated to
be �8:5, �9:15, �9:98 and �10.75 eV, respectively [21]. Symmetry rule allows
a coupling in first-order of the eX�eA, eX�eB , eA�eB , eA�eC and eB�eC electronic
states of PA	C through the vibrational modes of b2, a2, b1, b2 and a2 symmetry,
respectively. To investigate the detailed vibronic dynamics in the eX�eA�eB�eC cou-
pled electronic states of PA	C we constructed the following diabatic Hamiltonian in
terms of dimensionless normal coordinates of 36 vibrational modes of the electronic
ground state of PA [21].
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In the above 14 represents a 4 � 4 unit matrix. As before, the kinetic and potential
energy operators of the zeroth-order Hamiltonian are denoted by TN and V0, respec-
tively. The non-diagonal matrix Hamiltonian in (37) describes the diabatic electronic
PESs (diagonal elements) of the eX , eA, eB and eC electronic states of PA	Cand
their coupling potentials (off-diagonal elements). These elements are expanded in a
Taylor series around the equilibrium geometry of the reference state at (QD 0) as [7]
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The parameters of the electronic Hamiltonian are calculated by performing exten-
sive ab initio calculations [21]. Results of calculations of static aspects of the
electronic PESs, viz, the equilibrium minimum of the states and energetic mini-
mum of the seam of the CIs within a LVC model are summarized in Table 1. It can
be seen from the data that the minimum of the eX�eA CIs occurs�0.02 eV above the
equilibrium minimum of the eA state. The same for the eA–eB CIs occurs at�0.84 eV
and �0.06 eV above the equilibrium minimum of the eA and eB states, respectively.
The minimum of eB-eC CIs occurs �1.10 eV above the equilibrium minimum of
the eC state. The minimum of the eX�eB CIs occurs �2.5 eV above the equilibrium
minimum of eB state. The eX and eC CIs occur at much higher energy and are not
considered here. Analysis of the coupling parameters of all 36 vibrational modes
revealed the importance of 9 a1 (�13 � �5), 9 b2 (�36 � �27), 2 a2 (�16 and �14)
and 4 b1 (�20� �17) vibrational modes in the nuclear dynamics in the eX�eA�eB�eC
electronic states of PA	C [21].

The adiabatic potential energy cuts of the eX�eA�eB�eC electronic states
of PA	C are plotted along two representative symmetric vibrational modes �5
(acetylenic C�C stretching) and �6 (C=C stretching of the phenyl ring) in Fig. 7,
to reveal various low-energy curve crossings. These curve crossings lead to CIs
when distorted along the nontotally symmetric vibrational modes. From the ener-
getic locations of eX�eA and eA�eB intersections, the vibronic structure of the eA state
is expected to be severely affected by the associated nonadiabatic coupling.

The eX�eA�eB�eC coupled state vibronic spectra are calculated by including
the 24 vibrational modes mentioned above, by propagating WPs employing the
MCTDH scheme. The theoretical results obtained are plotted in Fig. 8 along with
the experimental photoelectron spectroscopy results of [101]. It can be seen that
theoretical results are in excellent accord with the experimental findings.
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Table 1 Energetic equilibrium minima (diagonal entries) and minima of the seam of various CIs
(off-diagonal entries) of the PESs of PA�C, N�C (AN�C). All quantities are given in eV
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Fig. 7 The eX , eA, eB and eC adiabatic potential energy surfaces of PA�C along the �5 (C
C
stretching) and �6 (C=C stretching) vibrational modes

Nonadiabatic coupling among the four electronic states results the complex vibra-
tional structures of the bands in Fig. 8. In particular, the eX and eA states are strongly
coupled through the b2 vibrational mode �36 [21]. Furthermore, since the minimum
of the eA state occurs only �0.02 eV above the minimum of the eA–eB CIs, the low-
lying vibrational levels of the eA state strongly mix with the quasi continuum levels
of the eX state. As a result, although low-lying vibronic structures of the eX state are
not much affected by this coupling, the entire eA band is strongly perturbed starting
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Fig. 8 The vibronic spectrum of the coupled eX�eA�eB�eC states of PA�C. The experimental
(from [101]) and present theoretical results are shown. The coupled state spectra calculated by the
MCTDH wave packet propagation method is shown at the middle of the panel. The uncoupled eA
and eB spectrum of PA�C are also shown at the bottom

from its origin. In addition, the eA state is also moderately and weakly coupled with
the eB and eC state, respectively, which also cause a clustering of the higher vibra-
tional levels of the eA state. The impact of the latter couplings is however, less than
compared to the eX�eA coupling. The low-lying vibrational structures of the eB band
are also affected by eX�eB and eA–eB CIs. However, the nonadiabatic coupling due
to these CIs is weaker compared to the same due to eX�eA CIs. Therefore, the vibra-
tional structure of the eB state is not perturbed as much as that of the eA state. The eC
state is very weakly coupled with the eA state through the b2 vibrational mode �29
and this coupling does not have any noticeable impact on its vibronic structure [21].
The uncoupled eA and eB bands obtained by the matrix diagonalization approach
in reduced dimensions are also shown at the bottom of Fig. 8 to clearly reveal the
impact of nonadiabatic coupling on them.

A detailed analysis of the vibrational progressions in the eX , eA, eB and eC states is
reported in [21]. Such a discussion is out of the scope and we therefore highlight the
main findings here. Extended progressions due to the a1 vibrational mode �13 (6a in
Wilson’s notation) have been observed in the eX , eA and eB states. Peak spacings of
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� 429 cm�1,�467 cm�1 and�484 cm�1 have been attributed to this mode in these
electronic states, respectively. Apart from this, short progressions due to �8 (13) and
�9 (9a) in the eX state, �8 and �6 (8a) in the eA state and �5 (�CC ) and �8 in the
eB state are also observed. The strong excitation of the �2,050 cm�1 �5 vibration
(acetylenic C�C stretching) in the eB state reveals that this state originates from a
MO mainly localized on the acetylenic moiety on par with the nature of the HOMO-
2 plotted in Fig. 3. In contrast to above, �13 is weakly excited in the eC state. We find
that among the symmetric vibrational modes �12, �11, �10, �7 and �5 are excited
in the eC state spectrum. The stronger JT active e2g vibrational modes �6 and �8 of
BZ	C transform to �6a (a1), �6b (b2) and �8a (a1), �8b (b2) modes in PA	C. The
�6b and �8b modes in PA	C have similar coupling constants�0.050 and�0.158 eV,
respectively, as �6 and �8 (as mentioned above) in BZ	C [100]. However, what
seems to be more novel in PA	C is strong coupling due to the bending b2 vibrational
modes �36 and �33. These modes involve the acetylenic moiety and are absent in
BZ	C, as well as in Ph	.

Apart from the photoelectron spectrum, the vibronic structures of the eX and eC
state were also compared with the mass analyzed threshold ionization (MATI) [12]
and photoinduced Rydberg ionization (PIRI) [13] spectrum recorded for these two
states, respectively. For this purpose precise locations of the vibronic lines are cal-
culated by the matrix diagonalization approach including the relevant vibrational
modes and interstate coupling. Comparison calculations were also carried out to
reveal the excitation of the nontotally symmetric modes in the spectrum. The fore-
going discussions on the photoelectron spectrum reveal that eX�eA CIs play some
role in the high energy tail of the eX band. The experimental MATI spectrum of the
eX state is recorded up to an energy �2,100 cm�1 below the minimum of the eX�eA
CIs. In the final theoretical simulations of this spectrum, we considered 7 a1 and
4 b2 vibrational modes selected based on their dominant linear coupling strength
and obtained the best match with the experiment [21]. A careful examination of
the vibronic lines reveals very weak excitation of the b2 vibrational modes. The
fundamental of the b2 mode �36 appears at �115 cm�1. This line is observed at
�110 cm�1 in the experiment and attributed to a vibrational mode of b1 symmetry.
Apart from this, the fundamentals of other b2 modes �34, �33 and �27 are found at
�602, �658 and �1,624 cm�1 in accordance with their experimental locations at
�561,�658 and�1,505 cm�1, respectively. Very weak excitations of the overtones
and combinations of �13 and �36 are also observed from the theoretical data. We,
however did not discover any excitation of the b1 vibrational modes in the eX state
spectrum as noted in the MATI results [12].

Xu et al. have reported the PIRI spectrum of the eC state up to an energy
�2,200 cm�1 above its origin at �17,834 cm�1 [13]. The dominant progression in
the spectrum is reported to be formed by the totally symmetric modes. In order
to corroborate to these experimental results, we performed reduced dimensional
calculations of the vibrational energy levels of the eC state. The present electronic
structure data reveal a weak coupling of the eC with the eA state via b1 vibrational
mode �32 [21]. In the dynamical simulations we considered 6 a1, 3 b1 and 3 b2
vibrational modes and calculated the spectrum of the eC state both by including as
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well as excluding the eA–eC coupling [21]. An analysis of all these results reveal
the following. The a1 mode �13 is reported to be strongly excited at �448 cm�1 in
the experiment [13]. Transitions up to its third overtone level have been reported.
In contrast, we find only weak excitation of its fundamental at �456 cm�1 and
its first overtone is hardly found at �913 cm�1. Our observation is in accordance
with the laser photodissociation spectroscopy results of Pino et al. [102]. We find
a strong excitation of the a1 vibrational mode �12 at �751 cm�1 [21]. Lines up to
its second overtone level are found. Apart from these, the fundamentals of a1 vibra-
tional modes �11 at �1,028 cm�1, �10 at �1,046 cm�1, �8 at �1,232 cm�1, �7 at
�1,528 cm�1 and �5 at �2,280 cm�1 are found from the theoretical data. The fun-
damentals of �10, �8 and �7 are observed at �996 cm�1, �1,147 cm�1 and �1,467
cm�1, respectively, in the experiment. The weak eA–eC vibronic coupling however
does not induce any excitation of the nontotally symmetric modes in the lower part
of the eC state spectrum [21].

It is clear from the broad and structureless vibronic band of the eA state shown in
Fig. 8 that the nonradiative decay of this state occurs through the CIs in an ultrafast
time scale. The diabatic population of this state is recorded in Fig. 9a, and a decay
rate of �20 fs is estimated from the rapid initial decay of the population. The eB
state has been generally predicted to be long lived in the experimental studies of
monosubstituted benzene cations [14]. A long lived state should devoid of any effi-
cient nonradiative decay channel. But as discussed above, this state is moderately
coupled with the eA state in PA	C and eA–eB coupling has significant effect on the
eB band starting from its origin. The decay of the eB state population is shown in
Fig. 9b. The initial decay of population relates to a nonradiative decay rate of �88
fs of this state. It therefore, emerges from the present analysis that the eB2B2 state of
PA	C is not a very long lived state which deviates from the experimental prediction
[14]. A sub-picosecond lifetime is also predicted for the eB2B2 state of C6H5FC
[18]. The eC state of PA	C seems to be a long-lived state.

4.2 Vibronic Coupling in Naphthalene and Anthracene Radical
Cations: Implications in the Interstellar Chemistry

Naphthalene and anthracene radical cations are the two simplest members in the
family of the PAH radical cations. Investigation of the photophysics and photo-
chemistry of the latter are of major concern in contemporary chemical dynamics.
The radical cations of PAHs are of fundamental importance in the chemistry of the
interstellar space, environmental, biological processes and combustion [103–106].
Radical cations of PAHs are most abundant in the interstellar and extragalactic envi-
ronments [41]. They absorb strong UV radiation emitted by the young stars and get
electronically excited. Examination of the fate of electronically excited PAH radical
cations invited critical measurements of their optical spectroscopy in the laboratory
in recent years [42–44]. Attempt is made to understand the important issues like, (1)
photostability and lack of fluorescence emission and (2) the origin of the enigmatic
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DIBs. Both these issues seem to be intertwined and originate from the same fun-
damental aspects of ultrafast nonradiative decay of electronically excited states as
discussed above in the case of aromatic biomolecules.

Motivated by these and facilitated by the availability of ample amount of exper-
imental data [16, 42–47], we attempted to investigate the electronic structure and
nuclear dynamics of N	C and AN	C by ab initio based quantum dynamical meth-
ods. The main thrust in these studies was to uncover the complex vibronic coupling
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mechanism in the low-lying electronic states of these “large” molecular systems and
to examine the mechanistic details of their ultrafast nonradiative decay.

The electronic ground D0 (eX2Au) and excited D1 (eA2B3u) and D2 (eB2B2g )
electronic states of N	C results from ionizations from the valance�-type au, b3u and
b2g MOs of the equilibrium ground electronic configuration of neutral naphthalene
(N) of D2h symmetry. The latter possesses 48 vibrational modes which decomposes
into 9 ag (�1 � �9) ˚ 4 au (�10 � �13) ˚ 3 b1g (�14 � �16) ˚ 8 b1u (�17 � �24)
˚ 4 b2g (�25 � �28) ˚ 8 b2u (�29 � �36) ˚ 8 b3g (�37 � �44) ˚ 4 b3u (�45 � �48)
IREPs of the D2h symmetry point group. Symmetry allowed coupling between the
D0 � D1, D0 � D2 and D1 � D2 electronic states of N	C can be caused by the
vibrational modes of b3g , b2u and b1u symmetry, respectively.

The vibronic spectra of D0 � D1 � D2 electronic states recoded by da Silva
Filho et al. [45] revealed resolved vibrational structures of the D0 and D2 elec-
tronic states and a broad and structureless band for the D1 state. A slow (	3–20
ps) and fast (	 200 fs) relaxation components are estimated for theD0 D2 transi-
tion in a (femto)picosecond transient grating spectroscopy measurements [16]. The
fast component is attributed to theD0 D2 transition and a nonradiative relaxation
time of 	 212 fs is also estimated from the cavity ringdown (CRD) spectroscopy
data [42]. Electronic structure results of Hall et al. [107] suggest that the nonradia-
tive D0 D2 relaxation occurs via two consecutive sloped type CIs [66, 108]. We
developed a global model PESs for theD0 �D1 �D2 electronic states and devised
a vibronic coupling model to study the nuclear dynamics underlying the complex
vibronic spectrum and ultrafast excited state decay of N	C[20].

The model diabatic vibronic Hamiltonian of the D0 � D1 � D2 electronic
manifold can be expressed in terms of dimensionless normal coordinates of N
as [20]

H D .TN C V0/13 C
0

@
UD0 UD0�D1 UD0�D2

UD1 UD1�D2

h:c: UD2

1

A : (40)

As before TN and V0 refers to the kinetic and potential energy operators of the
unperturbed electronic ground state of N and the elements U are expanded in a
Taylor series as
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i

�
.j�k/
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(42)

Again the parameters are derived by fitting the adiabatic form of the electronic part
of the above Hamiltonian to the ab initio calculated energies of the three electronic
states. Analysis of various coupling parameters revealed the importance of only 29
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vibrational modes in the coupled state dynamics of the D0 � D1 � D2 electronic
states [20].

TheD0, D1 andD1, D2 states are vertically�0.70 and�1.27 eV apart, respec-
tively. The stationary points of the D0 �D1 �D2 PESs are given in Table 1. The
data reveal that the minimum of the D0 � D1 CIs occurs only �0.1 eV above the
minimum of the D1 state. The minimum of the D1 � D2 CIs on the other hand,
occurs �1.72 and �0.48 eV above the minimum of the D1 and D2 states, respec-
tively. The minimum of the D0 �D2 CIs occurs at �4.0 eV above the minimum of
the D2 state and plays no role in the vibronic dynamics studied here [20].

The nuclear dynamics in theD0�D1�D2 electronic states are simulated includ-
ing the 29 relevant vibrational modes and employing the MCTDH WP propagation
algorithm [83]. In the following, we only discuss the details of the results rele-
vant for the understanding of photostability of N	C and its possible contribution
to the DIBs. It was already mentioned that the experiment reveals a well resolved
vibrational structure of the D0 state, and we find only minor nonadiabatic coupling
effects due to theD0�D1 andD0�D2 CIs in the energy range of theD0 band [20].
The D1 band on the other hand is severely affected by the D0 �D1 and D1 �D2
nonadiabatic coupling. We recall that the minimum of the seam of theD0�D1 CIs
occurs within the zero-point vibrational level of the D1 state and hence the vibra-
tional structure of this state is perturbed from its onset. The vibrational structure of
the uncoupledD1 state revealed largest deviation from the experiment and the cou-
pled states results. TheD1 band obtained from the present theoretical simulations is
shown in Fig. 10 along with the experimental photoelectron spectroscopy results of
[45]. Both the uncoupled and coupled surface results obtained from the theoretical
simulations are shown. Note that the uncoupled surface results are obtained by the
matrix diagonalization approach while the coupled surface results are derived from
the WP propagation method. It can be seen that the coupled surface results are in
excellent agreement with the experiment [20].

To interpret the observed findings we show the potential energy cuts of the D0,
D1 and D2 electronic states along the most important symmetric C=C stretching
vibrational mode �7. It can be seen clearly that theD1 state exhibits very low-energy
crossing along this mode. The decay of the D1 electronic population is also shown
in Fig. 10. A nonradiative decay rate of �29 fs is derived from the time dependence
of the D1 electronic populations. The D1 state is optically dark and could not be
probed in the electronic absorption experiment of N	C. The D2 state on the other
hand, is optically bright and have been investigated by the CRD experiment [42].
Examination of the D2 electronic population in the present theoretical treatment
reveals a decay rate of �217 fs which agrees very well with the experimental data
[20]. The time dependence of the D2 electronic population is also shown in Fig. 10
and the vibrational spectrum of this state is also shown along with the experimental
results.

We now briefly compare the above findings with an analogous study carried
out for AN	C [22]. Three lowest doublet electronic states of AN	C belong to the
eX2B2g (D0), eA2B1g (D1) and eB2Au (D2) symmetry species. These result from
ionization from the b2g (HOMO), b1g (HOMO-1) and au (HOMO-2) �-type orbital
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Fig. 10 The vibronic bands of the D1 and D2 states of N�C are shown in the left and middle of
the figure, respectively. The present theoretical results are compared to the available experimental
results of [45]. The decay of the diabatic population of the D1 and the D2 electronic states in the
D0�D1�D2 coupled states dynamics is shown in the right side of the figure. TheD0,D1 andD2

adiabatic potential energy surfaces of N�C along the �7 (symmetric C=C stretching) vibrational
mode is also shown at top of the diagram

of neutral anthracene (AN). The coupling of theD0 �D1, D0 �D2 and D1 �D2
electronic states of AN	C is caused by the vibrational modes of b3g , b2u and
b1u symmetry, respectively. Low-energy curve crossings are established along the
totally symmetric C=C stretching vibration (�1,601 cm�1) in case of AN	C also.
It can be seen from Table 1 that in this case the equilibrium minimum of the D2
state occurs only �0.1 eV below the minimum of the D1 �D2 CIs. The minimum
of the D0 � D1 and D0 � D2 CIs occurs �0.72 and �6.6 eV above the equilib-
rium minimum of the D1 and D2 state, respectively. Examination of the vibronic
structure of the coupled D0 �D1 �D2 electronic states reveals that the D2 band
is strongly perturbed by the nonadiabatic coupling in this case [22]. Nonradiative
relaxation times of �185 and �29 fs have been estimated for the D1 and D2 states
of AN	C in good accord with the available experimental data [16, 22, 47, 109].

To conclude, we have established the role of intricate nonadiabatic coupling in
the dynamics of electronically excited radical cations of PAH. The theoretical results
presented above support the experimental data on ultrafast nonradiative decay and
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provide a general understanding of the lack of fluorescence emission and photosta-
bility of these species. The mechanism of photostability is also on par with that
discussed for aromatic biomolecules [23]. Observation of the broad and diffuse
vibronic bands caused by the strong nonadiabatic coupling effects also adds to the
understanding of the DIBs in the interstellar environments. Finally, we mention that
one requires to go beyond the LVC coupling approach for these complex molec-
ular systems to interpret the modern experimental data. Although the intermode
and further higher order coupling terms are found to be insignificant for the above
four systems, importance of such terms is increasingly realized recently for other
polyatomic molecular systems (see for example, [110–116]).

5 Summarizing Remarks

A brief overview on the recent developments in the photoinduced dynamics of the
low-lying electronic states of organic hydrocarbon radical and radical cations is pre-
sented in this article. The complex vibronic coupling phenomena are discussed in
particular, and their consequence in spectroscopy and nonradiative decay of elec-
tronically excited molecular systems are delineated. The basic concept of vibronic
coupling leading to the conical intersections of electronic states is reviewed. The
theoretical treatment of vibronic coupling employing state-of-the art quantum chem-
istry and first principles quantum dynamical methods is discussed at length.

The complexity in the assignment of molecular spectra is addressed by showing
recent results on four representative examples viz., Ph	, PA	C, N	C and AN	C. The
first two are directly derived from the JT active benzene system. Manifestation of
the JT activity in these substituted benzenoid systems is also discussed. The mech-
anistic details of the observed photostability in the PAH radical cations, N	C and
AN	C are examined. The discussions in this article reveal the need of understand-
ing the complex vibronic coupling mechanisms while dealing with the electronically
excited molecules in particular, and the recent advancements in the experimental and
theoretical techniques to observe and treat them.
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59. T. Pacher, L.S. Cederbaum, H. Köppel, Adv. Chem. Phys. 84, 293–391 (1993)
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The Jahn–Teller Effect in Binary Transition
Metal Carbonyl Complexes

Russell G. McKinlay and Martin J. Paterson

Abstract Transition metal carbonyl complexes exhibit a wide-range of vibronic
coupling induced phenomena, some of which have only recently begun to be under-
stood via state-of-the-art spectroscopic, as well as theoretical and computational
investigations. Historically the Jahn–Teller effect has been used to explain struc-
tural information such as ground-state geometries and the lowest energy spin-state.
We will review important early work on understanding structural aspects of binary
transition metal carbonyl complexes, and then move on to discuss the most recent
time-resolved work, and computational studies aimed at explaining these results.
The recent time-resolved experiments of have shown that a variety of unexpected
features arise from photodissociation of metal carbonyls of the first, second and
third rows of the periodic table, and also multiply metal–metal bonded carbonyls.
These experiments show that an unsaturated metal carbonyl is produced in the
singlet spin-state; the radiationless relaxation being so fast as to preclude a spin–
orbit induced change to the high-spin manifold. Such unsaturated metal carbonyls
may have accessible geometries that are Jahn–Teller degenerate, and these coni-
cal intersections are believed to be the key to ultrafast radiationless decay. This is
an exciting development as these systems naturally bring together aspects of the
Jahn–Teller effect with photochemistry. Such low-spin degeneracies are not nor-
mally found in classical inorganic chemistry; here they are reached photochemically,
the exact mechanism from excitation to photoproduct still not fully understood. In
relation to modern computational work we discuss current state-of-the-art compu-
tational methodologies required to correctly describe metal–carbonyl bonding in
the ground and excited states, the resulting potential energy surfaces, and mecha-
nisms of ultrafast photodissociation and subsequent radiationless decay (including
conical intersections). We discuss in detail the Jahn–Teller effect in relation to
the photochemistry of Cr.CO/6, and Fe.CO/5. Throughout these examples useful
group theoretical tools such as the epikernel principle will be exemplified. Several
new results will be included at various appropriate points throughout this tutorial
review.
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1 Introduction

The purpose of this tutorial review is to introduce the reader to an important class of
transition metal complexes, namely binary metal carbonyls, and aspects of their
structure, spectroscopy and photochemistry that necessitate the consideration of
vibronic coupling and Jahn–Teller effects. This will include historical justification
of geometrical structure, through to modern time-resolved spectroscopy and pho-
tochemistry in which Jahn–Teller conical intersections play vital roles and provide
wonderful links between theory and experiment in these areas. Important experi-
mental results will be highlighted along with some of the first theoretical studies
of the spectroscopy and excited states of these carbonyls. Modern time-resolved
studies on their photochemistry will then be summarised. Finally as well as mod-
ern experimental work, we will focus extensively on state-of-the-art computational
methodologies which are needed to correctly describe metal–carbonyl bonding in
the ground and excited states, electronic spectroscopy, the resulting potential energy
surfaces, and mechanisms of ultrafast photodissociation, and subsequent radiation-
less decay (including Jahn–Teller conical intersections). We hope that case studies
of Cr.CO/6 and Fe.CO/5 will highlight the scope and power of modern computa-
tional methods applied to inorganic photochemistry in general, and stimulate further
work in this area where there is a fascinating and diverse range of vibronically
induced chemistry and photochemistry.

1.1 Some Fundamentals of M–CO Bonding

To begin a brief overview of the qualitative factors that govern the reactive chem-
istry of metal carbonyls will be given. In the so-called covalent model, transition
metal complexes are considered as metals, bonded to a number of ligands, in their
neutral state. Ligands are considered as x- or l-type according to their electronic
structure, or can be a mixture of the two types. An x-type ligand coordinates to a
metal through a covalent bond, donating one electron, and accepting one electron
from the metal in order to complete the octet on the bonding atom of the ligand. An
l-type ligand normally has eight electrons in its valence shell, and so coordinates
to the metal by donating a lone pair of electrons. There are other l-type ligands
that coordinate in different ways than through a lone pair, such as ethylene ligands,
which can donate two electrons to a metal through a  -bond. It should be noted
also that x-type ligands may also possess a lone pair of electrons but coordinate
as an x-type ligand since that is energetically favourable. The ligand we shall be
focussing exclusively on in this review is the carbonyl ligand, CO. Carbonyl is an
l-type ligand that bonds via the lone-pair on the carbon. This mode of bonding intro-
duces some complications for multi-configurational wavefunction approaches (vide
infra).

Transition metal bonding to ligands is primarily governed by their valence elec-
trons in the respective d -shell and neighbouring s-shell orbitals (to a lesser extent
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Fig. 1 Qualitative MO diagram for Cr.CO/6. There are two forbidden ligand-field (LF) excited
states (a1T1g and a1T2g) arising from .2t2g/

6 ! .2t2g/
5.6eg/

1, and a manifold of metal–ligand
charge-transfer (MLCT) states (A – D), which give rise to two one-photon dipole allowed
transitions to a; b1T1u

p-orbitals). See for example the qualitative MO digrams for Cr.CO/6 and Fe.CO/5
in Figs. 1 and 2. When ligands bond to a metal to form a complex, MLn, the total
number of electrons around the metal centre in the valence shell are then counted.
Electron contributions are added to the metal d -orbital count with each x-ligand
adding one electron, and each l-ligand adding two electrons, and the overall charge
of the complex .q/ taken into account, according to the formula:

Ne D Nm C 2Nl CNx � q;
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Fig. 2 Qualitative MO diagram for Fe.CO/5. There are many allowed ligand-field (LF) and metal–
ligand charge-transfer (MLCT) transitions that can occur. Selection rules mean that one-photon
population of 1A02 states is allowed, two-photon population of 1A01 and 1E 00 states is allowed,
while both one- and two- photon population of 1E 0 states is allowed and the spectra may overlap

Table 1 Examples of covalent electron counting in a selection of saturated and unsaturated binary
transition metal carbonyls

Binary complex Nm 2Nl Nm�m q Ne
Cr.CO/6 6 12 0 0 18

Cr.CO/5 6 10 0 0 16

Mn2.CO/10 7 10 1 0 18

Mn.CO/5 7 10 0 0 17

Fe.CO/5 8 10 0 0 18

Fe.CO/4 8 8 0 0 16

Ni.CO/4 10 8 0 0 18

Ni.CO/3 10 6 0 0 16

where Ne is the number of electrons around the metal, and Nm the electron count
from the metal. Stable transition metal complexes generally have Ne D 18: the
famous 18-electron rule. Examples of the electron counts of some binary metal
carbonyl complexes are given in Table 1. From a simple ligand-field perspective
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the structure of stable 18 electron saturated metal carbonyls is relatively straight-
forward to deduce (see for example [1]). If the metal carbonyl is co-ordinately
unsaturated and the 18-electron rule is not obeyed the species tend to be very reac-
tive, for example the unsaturated species in Table 1, which as we discuss below
are the species formed in the ultrafast photodissociation of the parent binary metal
carbonyl. It should also be noted that some transition metal carbonyls are most
stable in their dimeric form, such as Mn2.CO/10. This is due to having an odd
number of electrons in the valence shell of the metal, e.g., for manganese it is
seven. Therefore in order to achieve Ne D 18, an extra electron is gained through
metal–metal bond formation .Nm�m/. Such systems provide examples of metal car-
bonyl complexes where the photochemistry gains an extra layer of complexity and
may proceed through several channels, including metal–ligand dissociation, and
metal–metal bond dissociation [2, 3].

Unsaturated metal carbonyls provide excellent examples of Jahn–Teller related
phenomena. The position of the coordinate “hole” (determined by the leaving
ligand) subsequently gives several possible structural models. As we discuss in
detail below it is frequently found that some structures give rise to degenerate
electronic states and are therefore Jahn–Teller active. For example in the verti-
cally excited region most metal carbonyls have allowed transitions to degenerate
and/or quasi-degenerate states. This means that they tend to have complex initial
dynamics, for example in octahedral Cr.CO/6 the initially populated MLCT state
is Jahn–Teller degenerate and undergoes antisymmetric M–L stretching to remove
the degeneracy, and eventually ends up on a dissociative ligand field surface. Also
of particular prominence in the low-spin manifold generated in modern femtosec-
ond spectroscopy are Jahn–Teller degeneracies caused by non-filled degenerate
d -orbitals, often giving rise to multiple possible electronic states (see the discussion
on Cr.CO/5 and Fe.CO/4 below). These Jahn–Teller regions are not often encoun-
tered in classical inorganic chemistry as they involve higher energy low-spin states
(e.g., open-shell singlets). In the examples we discuss in the latter part of this review
it is due to the ultrafast nature of the dissociation that that the system is able to
reach these Jahn–Teller geometries and undergo radiationless decay to the ground
electronic state (also on an ultrafast timescale).

2 Early Spectroscopy

Binary transition metal complexes have been the subject of a wide range of stud-
ies regarding their structure and spectroscopy for many years beginning with Mond
et al. [4] who first reported Ni.CO/4 whilst investigating the “Action of Carbon
Monoxide on Nickel” in 1890. A wide range of spectroscopic methods and tech-
niques has subsequently been utilised, including X-ray and electron diffraction,
IR, and UV/Vis spectroscopy. In almost all cases the Jahn–Teller effect has been
invoked to explain certain spectroscopic features. Due to a wide breadth of stud-
ies reported in the literature, this review will not be comprehensive. Instead it is
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designed to give the reader a flavour of what has been done in this area, where
before the advent of computational studies there were often several competing geo-
metrical interpretations possible. Most work covered is concerned with the metals
of groups 6 and 8.

2.1 Diffraction Studies

Early investigations into the structure of binary group 6 metal carbonyls were
conducted by Rüdalt and Hofmann in 1935 [5] who studied the structures of
chromium, molybdenum and tungsten hexacarbonyls by X-ray diffraction, and
by Brockoway, Ewens and Lister in 1938 [6], who studied the structures of the
same species, but by electron diffraction from a vapour. The investigation by
X-ray diffraction was not overly successful in reporting an accurate structure, so
the study using electron diffraction looked to improve the accuracy of the bond
length values. These early studies were fundamental in the understanding of these
paradigm complexes in organometallic chemistry, and they concluded that the struc-
ture of all three carbonyls is a rectangular octahedron. The crystal structure of
Cr.CO/6 was reported by Whitaker and Jeffery in 1967 [7]. They also concluded
that the monomer was of octahedral symmetry with mean Cr–C bond distances of
1.916 Å.

The structures of iron pentacarbonyl .Fe.CO/5/ was investigated by electron
diffraction of a vapour by Ewens and Lister [8]. Photographs of Fe.CO/5 were col-
lected at �10ı C, and from these it was concluded that the structure of the Fe.CO/5
was a trigonal bipyramid (TBP). Hanson further analysed the X-ray data in detail
and concurred that the structure was indeed TBP [9]. Around the same time, Dahl
and Rundle [10] reported the structure of the unsaturated (i.e., less than 18 elec-
tron) iron tetracarbonyl .Fe.CO/4/ by X-ray diffraction, and on the basis of their
results considered previous works on the structure Fe.CO/4 incorrect. They dis-
cuss a trimetric structure of Fe.CO/4 whose unit cell is B-centred with space group
P21=n, which is consistent with several possible molecular point groups includ-
ing C3v and C2v (see for example [11] for discussion on the somewhat complicated
procedure for determining whether a given molecular point group is compatible
with a space group). A refinement of the crystal structure of Fe.CO/5 was carried
out by Donohue and Caron [12] in order to correctly assign the space group as
C2=c, and to confirm definitively whether the carbon or oxygen was bonded to the
metal. They concluded that Fe.CO/5 conforms to a TBP structure. Braga et al. [13]
also looked again at Fe.CO/5 since the older data was by then considered rather
imprecise, and highly accurate structural data was needed in order to calibrate with
quantum mechanical electronic structure methods which had been carried by then
(vide infra).
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2.2 IR Spectroscopy

Infrared spectroscopy has been used for many years in order to investigate metal car-
bonyl structure, and more importantly for this review, photochemical intermediates.
For a description of the typical apparatus used for the study of photo-intermediates
of transition metal carbonyls using time-resolved IR spectroscopy, see the paper by
Dixon et al. [14] and the recent review by Leadbeater [15].

It was suggested by Garrat and Thomson [16] as far back as 1934 that the ini-
tial step in the photochemistry of a metal carbonyl is the loss of a CO ligand. They
measured the rate of the photodecomposition of Ni.CO/4 in both gas and solution
phases, together with the thermal recombination of Ni.CO/3 with CO. These sug-
gestions were initially thought of as radical when they were first published, but are
now cornerstone features of this field and are today taken for granted.

In 1950 Sheline and Pitzer [17] reported the infrared spectra of Fe.CO/5 and
Fe2.CO/9, starting the paper with the phrase “The metal carbonyls are a class of
compounds which are by no means fully understood”, a phrase which is very much
true today, as we discuss in detail in relation to their time-resolved spectroscopy and
photochemistry later. This report showed that the IR bands recorded for Fe.CO/5
are consistent with the D3h structure of Fe.CO/5. A triple carbonyl bridged struc-
ture of Fe2.CO/9 is supported by the strong carbonyl band at 1828 cm�1 along
with the band for the other carbonyl groups around 2000 cm�1. The IR spectrum
of Fe3.CO/12 has also been reported by Cotton and Wilkinson [18]. The IR spec-
trum of Fe.CO/5 was reported in matrices of xenon and argon at 20 K by Swanson
and co-workers [19] in which the spectra they obtain have five carbonyl stretching
peaks, and three decrease upon annealing. They assign the two bands that persist to
E 0 and A20CO stretching modes from the D3h symmetry of the complex.

There have also been a number of IR spectra of metal carbonyls using flash pho-
tolysis to investigate unsaturated intermediates. Three such papers are mentioned
here. A paper by Church et al [20] looked at flash photolysis of Cr.CO/6 in a solu-
tion of cyclohexane, showing proof of a C4v Cr.CO/5 photoproduct, another [21]
looked at flash photolysis in cyclohexane solution saturated with H2, showing pro-
duction of Cr.CO/5.H2/, and a third looking at flash photolysis of Fe.CO/5 in a
solution of benzene [22].

In 1962 and 1963 a pair of papers by Stolz, Dobson and Sheline [23, 24] looked
at the IR spectra of the then suspected pentacarbonyl intermediates of the group 6
metals chromium, molybdenum and tungsten. These papers provided early support
for the idea that one CO ligand is initially lost in the first step of the photoreactions
of these carbonyls. Analysis of the CO stretching vibrations managed to rule out
other possible species such as the W2.CO/10 anion and the W.CO/5 anion. Analo-
gous results were found for the pentacarbonyls of chromium and molybdenum. The
chromium result is particularly relevant for the photochemistry discussed later.

The photochemistry of chromium carbonyl intermediates was also investigated
by Graham and co-workers via IR spectroscopy [24, 25] and looked to disprove
the possibility that Cr.CO/5 forms a structure of D3h symmetry that is more sta-
ble than one of C4v symmetry, but they make mention that there could be a “rapid
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C4v ! D3h equilibrium lying towards C4v” in their suggested photochemical reac-
tion schematic. These conclusions are in agreement with the arguments of Black
and Braterman [26] which sought to disprove that a stable D3h structure is possible
for Cr.CO/5.

The mid 1970s saw a brace of investigations into the photochemistry of the group
6 carbonyls via spectroscopic investigation in low temperature matrices by Turner
and co-workers [25, 27–29]. One paper looked at the hexa- and pentacarbonyls of
Cr, Mo and V at 20K in matrices of argon and methane. These papers were some
of the first to try to understand the nature of the initial photoproducts of these three
carbonyls, and the procedure of analysing these species in a low temperature matrix
produces very sharp bands in the spectra, making it easier to analyse fine struc-
ture. They found that all three pentacarbonyls had a C4v ground state structure,
ruling out a possible D3h TBP geometry. A later paper looked at the interaction
of these pentacarbonyls with a variety of matrices. It was shown that these species
are very matrix sensitive, and that changes in the visible band of the spectra are
due to interaction between the matrix and the sixth empty coordination site of the
pentacarbonyl. They go on to discuss from these results the implications of using
low temperature matrices to study the photochemistry of unstable intermediates.
They advised caution but believed more in-depth studies would reveal new prop-
erties of these species, and that the C4v structure may not be the only possible or
most stable geometry of these carbonyls. The last of these papers looked at the
possible routes to chromium pentacarbonyl from the hexacarbonyl in a variety of
matrices. Using UV photolysis in CO doped argon matrices, the UV and IR spectra
collected show evidence of the formation two weak adducts, that of Cr.CO/5 � CO
and Cr.CO/5 � Ar. The authors looked at altering the concentration of the matri-
ces and of reacting Cr and CO in the argon matrices. All matrices were considered
mixed due to the high concentration of CO, and broad bands in the spectra and CO
blocking in the high frequency region made interpretation of these spectra very dif-
ficult. Wavelength dependent IR studies of the photoproducts of Cr.CO/6 [30] and
Fe.CO/5 [31] have also been reported by the Seder et al. and show the appearance
of unsaturated carbonyls missing one CO ligand on a short timescale.

2.3 UV and Electronic Spectroscopy

Early work on the electronic spectra and structure of binary metal carbonyls was
fundamental in discovering the nature of electronic transitions that govern the pho-
tochemistry of these species. Some of the most well known work in this area is that
carried out by Gray and co-workers, in the 1960’s. A seminal paper from 1963 by
Beach and Gray [32] studied the bonding of octahedral metal carbonyls and made
the first qualitative attempt to explain the spectroscopic results in of terms molec-
ular orbital theory. It was the first discussion of the molecular orbital structure of
d 6 octahedral metal hexacarbonyls in an attempt to generalise isoelectronic species
in this regard. They suggested a molecular orbital energy level scheme for such
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species (see Fig. 1 for a modern representation of the qualitative MO diagram for
Cr.CO/6/. They also provided the first discussion of the competition between elec-
tronic states of widely different character such as ligand-field (LF) excited states and
metal–ligand-charge-transfer (MLCT) states. Beach and Gray correctly assigned the
dominant MLCT bands and also rationalized that the observed photodissociation
probably took place on a LF state since the 6eg orbital is primarily anti-bonding
in character between the metal and the ligand. Therefore they assigned a shoulder
on the MLCT band to this state and verified that irradiation on the shoulder did
indeed result in CO loss. As discussed below we now understand that the initial
excitation is much more complicated, and indeed is still not fully understood. The
UV/Vis absorption spectra of W.CO/5 has been reported by Graham and co-workers
[33]. The spectra were obtained in an inert matrix and included bands at 44700 and
34900 cm�1 that were assigned to 1A1g ! 1T1u MLCT states, assuming an octahe-
dral geometry. This result agrees with the earlier ones of Beach and Gray that the
most intense transition is of MLCT type.

These ideas were further extended in a subsequent paper by Beach and Gray from
1968 [34]. Here electronic spectra of hexacarbonyls of chromium, molybdenum and
tungsten were recorded in both vapour and solution phases at 77 and 300 K. The
spectral findings were again discussed in terms of transitions between qualitative
molecular orbitals. Amongst their assignments were that in the first charge transfer
band the shoulder of highest intensity on the low energy side in the neutral group
6 species is 1A1g ! 1T1g (a LF state, Fig. 1). They also discussed the importance
of � back-donation in describing the bonding in all the hexacarbonyls. Gray and
co-workers then looked at the electronic and vibrational spectra of binuclear metal
carbonyls, of which an example is Mn2.CO/10 [35]. Similar LF vs MLCT issues
arise in the assignment of bands here as well, an issue again at the forefront of cur-
rent research. For the binuclear carbonyls an extra metal–metal dissociation channel
becomes available which further complicates things.

Two papers looking at the photochemistry of iron carbonyls touching upon
aspects of their photochemistry that are central to the work below are discussed
now. The paper of Hubbard and Lichtenberger [36] from 1981 examined the photo-
electron spectrum of Fe.CO/5 in the gas phase. This paper is of relevance as they
claimed to have evidence of Jahn–Teller distortions in the Fe.CO/5

C cation. Here
for the first time it is explicitly mentioned that highly symmetrical transition metal
complexes in general have good potential for observable Jahn–Teller activity with
regards to their photochemistry after ionization and/or dissociation. They found that
ionization into the 2E 0 state showed Jahn–Teller activity and discussed this in terms
of non-Berry pseudo-rotation.

Fe.CO/5 state-resolved photofragmentation dynamics have been reported by
Waller and Hepburn [37] at a range of wavelengths. They used Fe.CO/5 in a
supersonic molecular beam, and the photofragments were detected using vacuum
ultraviolet laser-induced fluorescence. By using this method properties such as rota-
tional and vibrational distributions of the photoproducts were found. They proposed
a reaction that involves sequential loss of all CO ligands, and noted that after irra-
diation at a wavelength of 193 nm a minor channel opens which produces Fe.CO/4
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on a very fast timescale. This links in with the earlier mentioned paper by Seder and
co-workers [31] which suggests the role of Fe.CO/4 involved in the photodissoci-
ation process. This is an important initial finding as it relates to results that will be
discussed later regarding the use of modern time-resolved spectroscopic and com-
putational techniques relating to how the unsaturated carbonyl with a single ligand
coordination hole can channel the system back to the ground electronic state.

3 Early Computational Studies

Examples of early computational work [38, 39] involved the use of semi-empirical
molecular orbital methods, based on extended Hückel type molecular orbital cal-
culations. The study by Schreiner and Brown [38] used this method to study the
qualitative molecular orbitals of Cr.CO/6; Fe.CO/5 and Ni.CO/4. They reported
the importance of the 3d and 4s orbitals in both �- and �-bonding for the three
species. They also proposed partial molecular orbital energy level diagrams for each
metal carbonyl. Their results differ from the earlier experimental study by Beach and
Gray [32] with regards to the spectroscopic assignment in the electronic spectrum of
Cr.CO/6, in which a t2g ! eg transition is assigned to a low-intensity, low-energy
shoulder in the spectrum.

A method to assign bond enthalpies .E/ to metal–metal and metal–ligand bonds
in various clusters of binary metal carbonyls was proposed by Housecroft and co-
workers in 1978 [40], which involves using as a basis the known lengths .d/, and
forming the relationship: E D Ad�k , where A and k are molecule dependent con-
stants. This method was used to conclude that metal–metal bonds are weaker than
metal–ligand bonds, and that the metal–ligand bond strength increases with increas-
ing number of metal atoms in the cluster. This method was used again [41] for
study of Fe2.CO/9, specifically to look at the energies of terminal and bridging
M–C and C–O bonds, and of the axial and equatorial bond energies of Fe.CO/5
which afforded Fe–C bond energies of 230˙ 10 and 220˙ 10 kJ mol�1 for axial
and equatorial bonds respectively. These results were at odds with the earlier spec-
troscopic work. Note how close these values are, indeed it is still an open-question
which ligand is primarily lost in the initial stages of photodissociation.

With regards to structures of metal carbonyls it has been established that hybrid
density functional approaches are generally accurate to within 0.03 Å. Although it
has been noted that relativistic effects are important for M–L bondlengths in the
second and third rows. This is also the accuracy obtained from the more computa-
tionally expensive MP2 and CCSD(T) methods [42]. Of course all of these methods
rely on a single-reference framework, which thus limits their use in studies on the
reactive chemistry of co-ordinately unsaturated species, due to the preponderance
of near and actual degeneracies. The main use of single-reference methods is in
benchmarking certain appropriate features of the Jahn–Teller surface such as barrier
heights between closed-shell unsaturated photoproducts [43].
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In the 1980’s more sophisticated computational methodologies could be applied
to first row metal carbonyls. Early examples include the work of Veillard and co-
workers that utilise multi-configurational methods, applied to such systems for the
first time, to study the excited states of Fe.CO/5 [44]. They used truncated con-
tracted configuration interaction (CCI) methods to analyse the excited electronic
states and photodissociation. Two CI spaces were investigated, one with 15 active
orbitals to construct potential energy curves (the orbitals 3e0�13a01 shown in Fig. 2),
and a larger one with 47 active orbitals to study the energetics of the photoreac-
tion; both CI spaces contain the eight 3d electrons from iron, and include all single
and double excitations relative to reference states. They calculated that the ground
state of Fe.CO/5 is 1A01, with the first excited state a 3E 00 ligand field (LF) state
at 33; 850 cm�1. They proposed a reaction mechanism for photodissociation which
includes intersystem crossing from a initially excited singlet state to the 3E 00 state
followed by dissociation of a CO ligand along the potential energy surface to the 3B2

ground state of Fe.CO/4. As will be discussed below this assignment has proven
inconsistent with ultrafast spectroscopic work of the last decade. This procedure
was reinvestigated 3 years later in 1987 [45], again using CCI calculations, but using
CASSCF reference states rather than SCF reference states as in the previous study.
They did this to attempt to justify the findings of a photolysis study of Fe.CO/5
using transient IR spectroscopy by Seder et al. [31]. For Fe.CO/5 an (8,9) active
space was used for the 1A01 ground state. The resulting orbitals generated were then
used to perform CI calculations for the lowest excited states. It was concluded that
the values for the excitation energies were overestimated by 5000 cm�1 due to the
use of CASSCF orbitals optimised for the ground state. It was also estimated that
the 1E 00 LF state lies between 28000 and 29000 cm�1, which differs significantly
from the value assigned in the previous study.

CASSCF CCI methods (combined with experimental investigations) were once
again used to study the spectroscopy of Fe.CO/5, this time focusing on Rydberg
states in the vacuum far-UV .47000–90900 cm�1/ [46]. A mixture of (8,9) and
(8,10) active spaces were used to provide reference wavefunctions for the CI cal-
culations. It was concluded that the first Rydberg series is within the range of
49600–61800 cm�1, and relates to a 3d� electron excited to 4s; 4p, and 4d orbitals,
with the second Rydberg series within the range of 64100–71800 cm�1 describing
3d� excitations.

Studies of the M–CO bond energies for a range of carbonyls using more mod-
ern computational methodologies have also been reported. Examples of such work
include the report by Ziegler and co-workers [47] in which the mean bond energies,
and the first dissociation energies of the CO ligand were calculated for group 6,
8 and 10 metal carbonyls of the first three rows. The method used was relativistic
X’ density functional theory, with correction terms for electron correlation between
electrons of different spins, and non-local corrections to the exchange energy. It was
found that the order of the bond strength decreased with increasing d -orbital shell
number 3d > 4d > 5d without the inclusion of relativistic effects, while with the
inclusion of relativistic effects the order changed to 3d > 5d > 4d as these effects
are most important in the 5d metal carbonyls.
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A study by Barnes et al. [48] used ab initio methods to look Fe.CO/n .n D 1–5/
carbonyl dissociation energies for multiple ligands. This is quite important in rela-
tion to the photochemistry discussed below, as it is now believed that only a single
ligand is lost by photolysis, and the remainder are lost on a longer timescale by
thermal processes. They used a modified coupled-pair functional, and basis sets
larger than double-zeta size. In particular they found dissociation energies of 39,
31, 25, 22 and >5 kcal mol�1 for the iron series, and note that the first disso-
ciation energy relates to both the singlet states of Fe.CO/5 and Fe.CO/4, while
the second dissociation energy is relative to the accepted triplet ground state of
Fe.CO/4, and subsequent dissociations are relative to the lowest energy spin state
of the unsaturated species.

A further study looking at the bond-lengths and first dissociation energies of the
group 6 hexacarbonyls was carried out by Ehlers and Frenking [49] using high level
ab initio calculations. For this study MP2 was used to optimise the geometries,
followed by coupled-cluster theory with singles, doubles and perturbative triples
(CCSD(T)) used to calculate the energetics. The calculated dissociation energies
were found to be agreement with experimental values [50]. Similar studies have also
be carried out for Ni.CO/4, [51] and again show that correlated electronic structure
methods are required for accurate geometry optimisation, and even higher order
correlated methods needed for quantitative energetics.

It is fair to say that transition metal carbonyl complexes have been some of the
most extensively researched species by computational methods due to their impor-
tance in organometallic chemistry. We have attempted here to give a flavour of
previous computational work on structural aspects, though the reader is directed to
[52–55] for more comprehensive accounts. The most recent computational studies
aimed at accurate spectroscopy and photochemical reaction dynamics are discussed
in the final section below.

4 Modern Time-Resolved Studies: Photodissociation
and Ultrafast Relaxation

As hopefully will be evident by now much work has been carried out on the struc-
ture and photochemistry particularly over the latter half of the last century, up to
the present day, with ever more sophisticated methods being used, from early spec-
troscopic detection using various matrices, to pure gas and liquid-phase work, to
modern time-resolved spectroscopy and state-of-the-art theoretical studies. Here we
concentrate on the spectroscopic work that has revived interest in these paradigm
systems over the last few years. This will then link up with theoretical studies,
including our own continuing work, in the final section.

Matrix isolation experiments (vide supra) can provide information on metal
carbonyl fragments where absorption data are well defined, and they can resolve
structural features due to the long timescale of the experiments and the sensitivity
of the spectroscopic methods. In order to remove matrix or solvent effects when
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probing the excited states of saturated metal carbonyls, and subsequent photochem-
istry of the evolving unsaturated photoproducts (which are extremely reactive even
with the most inert matrix compound), much effort has been expended to study the
gas-phase spectroscopy and dynamics of these systems.

Near UV and Vacuum UV spectra have been reported for Fe.CO/5 [46, 56]. The
gas phase near-UV optical spectrum of Fe.CO/5 was reported by Kotzian et al. [56],
while Marquez and co-workers reported the vacuum UV spectrum of Fe.CO/5,
supported by a CASSCF/CI theoretical study of the Rydberg states [46]. Semi-
quantitative agreement between experiment and theory has been reached although
the precise details of the photoexcitation process are still not completely settled.

Initial work with respect to Fe.CO/5 photodissociation includes the work men-
tioned previously by Waller [37] and Seder [31] who studied the state-resolved
photochemical breakdown. A number of studies have been reported which looked at
the ultrafast (i.e., sub-picosecond) photodissociation dynamics of Fe.CO/5. Exam-
ples of such studies include that of Bañares et al. [57], which looked at the
photodissocation dynamics of Fe.CO/5 in a molecular beam using femtosecond
laser pulses via two-photon pumping at 400 nm followed by non-resonant ionisa-
tion at 800 nm. Detection of the photoproducts was by means of a time-of-flight
mass-spectrometer. The timescale for the dissociation of the CO ligands was mea-
sured, and it was found that Fe.CO/4 was formed after 20 ˙ 5 fs, Fe(CO) formed
after 100 fs, and complete dissociation of the metal and all ligands sometime after
230 fs.

Two papers by Rubner and co-workers [58, 59] also look at the fragmentation
dynamics of Fe.CO/5. In the first they propose a simple time-dependent statis-
tical model for CO loss following femtosecond excitation, looking to see if the
dissociation mechanism is either concerted or sequential, i.e., whether or not each
subsequent CO ligand is lost from an electronically excited species, or whether the
first is lost from an electronically excited state and all subsequent ligands ther-
mally lost from the electronic ground state. They applied the model to results
given by Zewail and co-workers [60], which are themselves discussed below. The
model supports a sequential CO loss mechanism. In a second study [59] they used
an experimental setup similar to that of Bañares [57] along with a more detailed
time-dependent theoretical model, concluding that there are both sequential and
concerted dissociation pathways that can compete with each other.

Work by Zewail and co-workers [60,61] used ultrafast electron diffraction meth-
ods to study in detail the transient Fe.CO/4 system formed by photodissociation.
This study indicates that in less than 10 ps the dissociation of all ligands is complete.
The major conclusion of the Zewail study is that after UV irradiation of Fe.CO/5
the major product formed within 200 fs is Fe.CO/4 in its ground singlet state. This
is based on the structural information in the diffraction data that indicated more
open pair-wise L-M-L angles (vide infra). For this data to be consistent with high-
level quantum chemical calculations the transient had to be in the singlet state, the
most obtuse angle being 169˙ 2ı, and the other 125˙ 3ı (see below for our own
electronic structure results on this system). This work is an important paper in the
field of ultrafast electron diffraction as the resolution of the structural information
is great enough to distinguish between two states of a molecule, each with similar
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geometries in the same molecular point group .C2v/. Clearly then the system is able
to relax from an upper excited state manifold on an ultrafast timescale and does not
undergo an intersystem crossing to the more stable triplet state. By analogy to the
multitude of examples in ultrafast organic chemistry (for example see [62–64]) this
is highly indicative of a conical intersection connecting the excited products with
the ground electronic state. Given the wealth of Jahn–Teller phenomena in struc-
tural transition metal carbonyl chemistry this then became the focal point for further
research into the nature of the ultrafast relaxation and subsequent events.

Some of the first work that discusses Jahn–Teller activity in Fe.CO/4 came in the
form of two reports from Poliakoff and co-workers [65, 66]. They reported the first
experimental observation of a non-Berry pseudo-rotation in Fe.CO/4 at a C2v geom-
etry [65]. The experiments combined Ar matrix isolation with IR lasers to look at the
mechanism of laser induced ligand exchange after enrichment of the species with
13CO. The results were compared to theC2v structure of SF4 whose ligands can ther-
mally exchange via a Berry pseudo-rotation. The fundamental difference between
a Berry and a non-Berry process is intimately related to whether the maximal sym-
metry (central) point about which the pseudo-rotation takes place is a maximum
on the potential surface, or is a conical intersection. This result is further explained
by the same authors [66] whereby they reassess the pseudo-rotation using a dis-
torted octahedron topological model which they describe as a qualitative application
of the Jahn–Teller theorem. This rationalises the non-Berry pseudo-rotation previ-
ously observed by proposing axial-axial, and equatorial-equatorial ligand exchange
to axial-equatorial, or equatorial-axial, but crucially not direct exchange between
axial-axial and equatorial-equatorial. This model is discussed in more detail in the
next section in relation to our own ab initio data. Fe.CO/4 was the first system where
this effect could be observed spectrocopically via time-solved IR studies as other
systems underwent either rapid ligand interconversion to all distorted structures, or
all interchange was frozen out at the lower temperature of the experiments.

The use of femtosecond lasers (broad in the frequency domain) can be used to
“pump” the system under study and create a non-stationary excited state vibrational
wavepackets by simultaneously and coherently exciting several vibrational levels
on the upper excited surface. This can then be probed by further time-delayed laser
pulses (e.g., multi-photon ionisation), which can give detailed information on the
evolving excited state dynamics (i.e., time-constants for each sequential process)
and on the nature of the ultimate photoproducts. Further work continued in this vein
to study the Jahn–Teller distortion in Fe.CO/4 by Fu“ and co-workers [67] in 2000
who utilised time-resolved ultrafast methods to look at the photolysis of gas-phase
Fe.CO/5 at 267 nm using femtosecond UV laser excitation. A time-of-flight mass
spectrometer was used to monitor the resulting ion signals generated. They con-
cluded that near the Franck–Condon region the dissociation proceeds via a series
of Jahn–Teller induced conical intersections due to the very small time-constants
for several sequential processes, and a rationalization that the initially populated
state is probably MLCT and must somehow reach a LF state before full dissociation
occurs. Also, given that there is a manifold of degenerate states that can be populated
(Fig. 3(a)) Jahn–Teller conical intersections in this region are almost guaranteed.
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They proposed a Jahn Teller conical intersection in Fe.CO/5 of E ˝ e nature due
to population of the 2E 0 electronic state coupled to e0 symmetry vibrational coor-
dinates, corresponding to stretching of the equatorial Fe-C and C–O bonds reached
within 21 fs. This is followed by relaxation to the 1A20 state, then again proceeding
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back to the path of the 2E 0 state components by distorting along an e00 coordinate.
They also predicted a further conical intersection related to the 1E 0 state which
paves the way to change to a LF state leading to ligand dissociation. Obviously the
experimental data fits to kinetic models is less reliable over such small time periods
as <20 fs, but this work has shown the complex nature of the initial photochemical
dynamics. The previously mentioned work by Poliakoff and co-workers [65, 66] is
referenced here to explain a time constant of 47 fs which is attributed to the internal
conversion from the 1B2 first excited state to the 1A1 ground state of C2v Fe.CO/4
via a Jahn–Teller induced conical intersection at a tetrahedral geometry. The authors
assumed a triply-degenerate state at the Jahn–Teller geometry, and therefore a possi-
ble T ˝ .t˚ e/ intersection; giving several candidate vibrational modes responsible
for the vibrational coherence observed in the Fe.CO/4 photoproduct.

There has been a large body of work carried out over the years on the Fe.CO/5
system (for a concise highlight of work carried out until 2001 see [68]). The advent
of modern ultrafast experimental techniques has shown that this important system
is far from simple and displays a complex variety of phenomena, the majority of
which highlight the importance of strong vibronic coupling effects.

The Fu“ group has pioneered the ultrafast time-resolved study of metal car-
bonyls. They have studied a wide variety in addition to Fe.CO/5 discussed above.
[67, 69–72] We will discuss further both Fe.CO/5 and Cr.CO/6 in the next section
in relation to our own theoretical results. Here we note that all the systems stud-
ied by the Fu“ group show a general trend, the initial excited state populated is a
charge-transfer state, and ultrafast vibronic interactions cause the system to relax
to a dissociative state. A CO ligand is then lost on the order of a few hundred fem-
toseconds. If a metal carbonyl can obtain a structure which is Jahn–Teller degenerate
in the singlet-spin manifold it will relax to the ground electronic state in less than
100 fs. The unsaturated photoproduct then displays coherent ion signals after being
probed by time-resolved ionisation and mass-spectrometry (see the group 6 data
in Fig. 4 taken from [72]). In less than a picosecond the ground electronic state
of the single-ligand dissociated photoproduct is formed, which undergoes thermal
ligand loss on a much longer timescale. This has been experimentally observed in
the photodissociation of Cr.CO/6;Mo.CO/6;W.CO/6;Fe.CO/5, and Mn2.CO/12

[67, 69–72]. An interesting exception is the case of Ni.CO/4 which has a long
lived intermediate excited state and undergoes radiative (fluorescence) decay. This
has been explained by noting that the Ni.CO/3 photoproduct does not have any
Jahn–Teller geometry, since it has a full d 10 configuration.

5 Modern Computational Studies: Electronic Structure
Aspects, Conical Intersections, and Photochemical
Reaction Dynamics

A great deal of work in recent years has been carried out with the goal of gaining
a better understanding of the electronic absorption spectra in metal carbonyl com-
plexes. A plethora of methods have been calibrated and applied to these systems
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Fig. 4 Coherent oscillations observed by Fu“ and co-workers after ultrafast photodissociation of
group 6 metal carbonyls. The Fourier transform of the oscillatory part shows a peak at 96 cm�1,
which compares to 98 cm�1 found for equatorial L–M–L bending in Jahn–Teller “moat” using
semi-classical direct dynamics [43] (reused from [70] with permission)

[42, 54, 73–82]. For Cr.CO/6 one major achievement has been that it is now estab-
lished that the initially populated state in the ultrafast photodissociation is not a
ligand-field state as was initially believed [34, 73, 77]. Even this paradigm system
is not completely understood however, and questions remain regarding the vibronic
interactions at very short timescales in the vertically excited region, and exactly
how the system evolves onto the ultimate dissociative potential surface. The exper-
imental spectrum is very dense (Fig. 5 from [72]) due to the very high density of
(coupled) vibronic states and accurate quantum dynamical modelling of the vibronic
excitation in the UV remains a challenging problem. For other carbonyls such as
Fe.CO/5 similar problems exist at present. Below we present our own recent cou-
pled cluster response calculations for one- and two-photon absorption in Fe.CO/5.
Multi-nuclear systems are even more challenging due to the system size, and the
most accurate results to date push the boundaries of the current applicability of the
CASPT2 method [75].

Following the time-resolved results of Fu“ et al in the previous section, we shall
presently describe computational efforts to describe and explain the ultrafast relax-
ation phenomena and dynamics inferred by experimental study. We shall focus on
two paradigm systems of chemical importance, namely Cr.CO/6 and Fe.CO/5 (both
18 electron complexes). The photodissociation, and subsequent ultrafast relaxation
to the singlet electronic ground state surface are fundamental to the photochemistry
of these species.
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As discussed above the Cr.CO/6 system has received a great deal of attention.
In particular the electronic spectroscopy has undergone considerable attention in
recent years [73, 76, 77, 82, 83] and the spectrum is still not completely assigned. In
Fig. 5 we show the experimental UV/vis spectrum taken from [72] which includes
recent theoretical results at the CASPT2 and MS-CASPT2 levels [73, 76]. Note
that there is a very large density of states contributing to each band, and that the
results are very sensitive to the theoretical method and basis set used. For example
in multi-reference methods like CASPT2 the size of the zero-order reference space,
and the degree of state-averaging can affect the accuracy of the band origins by
over 1 eV.

Recently it has become possible to apply coupled-cluster methods to the excited
states of such relatively large molecules [82]. This is encouraging as such meth-
ods treat all excited states on an equal footing, allow excited state mixing, and
treat multi-configurational excited states. Coupled-cluster (CC) methodology can
be applied to excited states via equation of motion CC (EOM-CC), or the related
CC response theory (e.g., linear response CC (LR-CC)). Note that these two meth-
ods give exactly the same excitation energies for the “pure” methods like CCSD and
CCSDT, although different excitation energies may result using different approxi-
mate CC models, such as CC2 or CC3. In general the transition moments from
EOM-CC and LR-CC may differ, but usually only by a very small amount [84].
Coupled-cluster response theory is probably the most accurate method available
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today to study the electronic absorption spectra of first row binary mono-metallic
carbonyls, and can set benchmarks to calibrate other methods, in addition to aiding
spectral assignment [73]. In the case of Cr.CO/6 EOM-CC (including approximate
triple excitations) has proven to be the most accurate and consistent computational
method across the entire spectral range [82].

One particular advantage of the CC response methodology is that both single-
and multi-photon transitions can be considered [85]. For example the two-photon
absorption transition strength is obtained as the first residue of the quadratic
response function, while the one-photon absorption transition strength (i.e., oscil-
lator strength) is the residue of the linear response function. Note that the linear and
higher-order response functions all give the same excitation energies, as they have
the same pole structures.

In Fig. 3 we have shown the pure electronic one- and two-photon absorption spec-
tra obtained from CC theory for Fe.CO/5. The excitation energies were obtained
with the non-iterative triples model CCR(3) [86], while the transition strengths
were obtained at the CCSD level. An all electron basis set was used [87]. As dis-
cussed in detail in [15, 57] dissociative photochemistry of Fe.CO/5 is possible by
two-photon excitation at 400 nm. Our results clearly show that the one- and two-
photon absorption spectra do not strongly overlap, and that there are some strongly
allowed low-energy MLCT transitions in the two-photon absorption spectra, not
present in the one-photon spectra. It is important to note that when the molecule
is non-centrosymmetric, the one- and two-photon absorption spectra may or may
not overlap, and that different photochemistry can subsequently result [88–90]. For
the gas-phase photochemistry of transition metal carbonyls we expect two-photon
(or in generally multi-photon) techniques to be used more frequently as exper-
imental techniques advance. Also note the number of degenerate states that will
undergo Jahn–Teller interactions in the vertically excited region for Fe.CO/5. Sim-
ilarly to Cr.CO/6 quantum dynamical simulation of the molecule in this region is
an extremely challenging problem and will require coupled multi-state, multi-mode
dynamical treatments.

In considering the reactive photochemistry of metal carbonyl species one needs
to use multi-configurational methods in order to obtain a balanced description of the
potential energy surfaces over a range of geometries, including seams of degener-
acy. We shall discuss in detail chromium and iron carbonyls in this section as these
systems have seen the most sophisticated computational and theoretical approaches
aimed at them. We have previously shown that CASSCF can give reliable potential
energy surfaces [43,91]. Naively one may imagine that ground state structural infor-
mation can be obtained by using an active space consisting of the metal d -orbitals
and the appropriate number of metal-based d-electrons. Therefore for chromium 6
electrons in 5 orbitals, and for iron 8 electrons in 5 orbitals. However such an active
space is gives rather poor M–L bond lengths and more worryingly such wavefunc-
tions can display spurious symmetry breaking. To understand why this active space
gives poor results we have to remember that CO is a l-type ligand, primarily a lone
pair donation from the carbon to the metal. Since these bonds are dative, intra-orbital
dynamic correlation will be important, and must be included for even qualitative
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Fig. 6 Schematic of “orbital doubling” procedure for multi-configurational wavefunctions as
applied to transition metal photochemistry. On the left a predominately 3dxz orbital is shown (in
phase combination of smaller and larger exponent metal centred basis functions). To account for
the dative nature of the M–CO bond any active space needs to be augmented with further orbitals
containing extra nodes in the M–L region, here a 4dxz orbital is shown (out of phase combina-
tion of smaller and larger exponent metal centred basis functions). In the subsequent configuration
interaction this 3d -4d dynamic correlation generates qualitatively reliable wavefunctions

results. This is relatively simple to include in CASSCF: one expands the active space
to include higher lying orbitals with nodes in the internuclear M-L regions. This
method was introduced by Persson et al. [92] and was shown to give an accurate
and robust description of metal carbonyl bonding. As introduced by Persson [92],
and subsequently used by Pierloot et al. [76] using CASSCF and CASPT2 to study
the optical spectra of Cr.CO/6, the orbitals for a minimal active space for Cr.CO/6
are the 2; 3 t2g and 5; 6 eg in Fig. 1. In our previous studies we altered this approach
slightly: we used the 2 t2g and 6 eg orbitals (i.e., those primarily metal “3d” atomic
orbitals), and we doubled the active space by including a higher lying set of primar-
ily “4d” atomic orbitals. The extra “4d” orbitals are the out of phase combinations
of the smaller and larger exponent basis functions in (at least) a double-zeta sized
basis set, while the “3d” orbitals are the in phase combinations. In Fig. 6 we show
a pair of such orbitals. When the CASSCF wavefunction is optimised one finds
that in the electronic ground state the occupation number (as given by the diagonal
elements of the one electron density matrix) of the formally doubly occupied “3d”
orbitals is�1:8, while that of the corresponding “4d” orbital is�0:2. Thus inclusion
of the extra orbital in the active space introduces an amount of dynamic electron cor-
relation into the wavefunction. This approach to constructing active spaces appears
to be very promising, and in general very good energetics and barrier heights can
be obtained. For example, for the barrier to pseudo-rotation between square planar
C4v minima, via a C2v transition state, one can use accurate single reference meth-
ods like CCSD since these structures are closed-shell, and one finds that this barrier
height is within 2 kcal mol�1 for CASSCF with the enhanced active space. There-
fore, one can be confident that energy differences between Jahn–Teller degenerate
points, minima, and saddle-points are also well represented.

The ultrafast spectroscopic results of Fu“ et al. [2,70–72] for Cr.CO/6 indicated
that a conical intersection between the ground and first excited singlet state may be
responsible for the femtosecond quenching of the electronically excited Cr.CO/5
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Fig. 7 Orbital correlation diagram for singlet Cr.CO/5 between trigonal bipyramid (TBP), D3h,
and square planar (SP), C4v, geometries. All intermediate geometries have C2v symmetry. D3h and
C4v, are both supergroups of C2v

photoproduct. A change in spin state (i.e., from singlet to triplet) was discounted
due to the longer timescales involved in spin-crossover. It is relatively straightfor-
ward to see from a simple ligand-field splitting diagram for the unsaturated Cr.CO/5
where such conical intersections must exist from symmetry arguments. Thus, when-
ever we can generate an electronically degenerate state, we know that this molecular
structure is but one point on a seam on conical intersections [93,94], and further we
know from the Jahn–Teller theorem [95] the symmetries of the vibrational modes
which will couple the component states. Of course identification of molecular struc-
tures with degenerate states does not necessarily mean that such geometries can be
dynamically reached, and further, several different seams of intersection may exist.

To use Cr.CO/5 as a concrete example: it is clear that trigonal bipyramid (TBP)
geometries can give rise to degenerate open-shell states (see left side of Fig. 7).
Occupying the degenerate e0 orbitals with two electrons gives rise to the following
possible electronic states: e0˝e0 D 1E 0˚1A01˚3A02 [96], and we would expect the
triplet state to be a stable TBP structure. Note that the triplet spin state will always
be given by the antisymmetrized direct product since the spin function is symmetric.



332 R.G. McKinlay and M.J. Paterson

However, since we are in the singlet manifold we are interested in the 1E 0 and 1A01,
states and the only way to determine the lowest one is via computation. We indeed
find that the lowest singlet state at TBP geometries is 1E 0.

Therefore TBP D3h geometries are on a seam of intersection between the com-
ponents of the 1E 0 state, i.e., the 1A1 and 1B2 states in the largest Abelian subgroup
of D3h � C2v. An excellent tool for detailing the Jahn–Teller surface is the epik-
ernel principle of Ceulemans and Vanquickenborne [97]. Here one evaluates the
kernels .Ki / and epikernels .Ei / for a given irreducible representation in a point
group, where the nomenclature Ki .G;ƒ/ and Ei .G;ƒ/ stands for the i -th ker-
nel/epikernel of the irreducible representation ƒ in the group G. The kernels are
groups of symmetry elements preserved by distortion along a vector spanning the
irreducible representation ƒ, while the epikernels are selected preserved groups of
higher symmetry that are only preserved in part of the (degenerate) distortion space.
The seminal theorem of Ceulemans and Vanquickenborne [97] is that given a linear
Jahn–Teller distortion the highest ranking epikernels will correspond to the point
groups of minima, while lower ranking epikernels and kernels will correspond to
saddle-points. For example in Cr.CO/5, one finds that the largest epikernel of e0
in D3h is E.D3h; e0/ D C2v. The number of equivalent epikernel distortion direc-
tions is given by the quotient between the orders of the non-Abelian Jahn–Teller

point group, and the epikernel sub-group. Thus, nE.D3h;e
0/ D jnD3h

j
jnC2v j D

12
4
D 3.

In Fig. 8 we have labelled the 3 equivalent C2v epikernel distortion directions as
E1.D3h; e

0/; E2.D3h; e0/ andE3.D3h; e0/, with the direction of distortion (forward
or reverse) given by the sign, i.e., E1.D3h; e0/ labels a distortion along the forward
direction of epikernel 1, while �E1.D3h; e0/ labels the same epikernel but with the
distortion in the reverse direction. In this particular case (anE˝e Jahn–Teller), for-
ward epikernels lead to minima, while reverse epikernels lead to saddle-points of the
same symmetry (or vice-versa). The three equivalent epikernels are the three inde-
pendent ways of distorting the TBP L-M-L angles from 120ı by keeping two angles
the same and allowing the third to differ (the total summing to 360ı - see Fig. 7).
Thus forward motion corresponds to two angles closing from 120ı, while the third
opens up; and reverse motion corresponds to two angles opening up from 120ı,
while the third closes. One interesting thing to occur in Cr.CO/5 is that although
the entire Jahn–Teller “trough” in Fig. 8 maintains C2v symmetry, there are points
of higher (accidental symmetry). Thus, if two TBP angles are closed to be 90ı (the
remaining one becomes 180ı), then we accidently have a structure of C4v symmetry
(i.e., a square planar geometry). Thus C4v is a supergroup of C2v and we have to be
mindful of accidently reaching isolated points of a supergroup symmetry since the
epikernel principle cannot predict the presence of these. The Jahn–Teller surface for
singlet Cr.CO/5 is therefore as shown in Fig. 8 with three equivalent SP minima of
C4v symmetry, connected by 3 equivalent saddle-points of C2v symmetry.

For Cr.CO/5 it is interesting to consider the epikernel extrema of C2v symme-
try which correspond to saddle-points for pseudo-rotation (Fig. 8). Generally one
imagines such features to be associated with second-order coupling terms in the
degenerate intersection space of the conical intersection [94,98]. However this is by
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Fig. 8 Cr.CO/5 lowest adiabatic potential around E ˝ e Jahn–Teller conical intersection at trig-
onal bipyramid (TBP) D3h geometry. There are three equivalent epikernel distortion directions for
a vibrational coordinate pair spanning e0; Ei .D3h; e

0/. Motion in the forward direction leads to
one of three equivalent square planar (SP) C4v minima, indicated by �; while motion in the reverse
direction leads to C2v saddle-points (transition states for the interconversion of SP structures via
non-Berry pseudo-rotation). The barrier is around 12 kcal mol�1

no means the only mechanism for the “Mexican hat” to become a “tricorn”. A dia-
batic vibronic coupling Hamiltonian constructed to study the quantum dynamics
of Cr.CO/5 radiationless relaxation (vide infra) indicated that strong pseudo-Jahn–
Teller coupling between a component of the degenerate E 0 state and a higher
non-degenerate state was operative [91, 99]. A very useful tool to assign and ratio-
nalise the pseudo-Jahn–Teller effect has emerged in recent years based in symmetry
restrictions to CASSCF Hessians [100]. Briefly the pseudo-Jahn–Teller effect is a
lowering of the symmetry of a non-degenerate state, via a non-degenerate vibra-
tional mode, to stabilise an adiabatic electronic state by mixing with an excited
state of the appropriate symmetry [94, 98, 100–102]. In state-specific CASSCF
obviously the gradient vector is totally symmetric in an Abelian sub-group. For
the Hessian however, non-totally symmetric contributions are important. Such CI
vector rotation contributions are obtained from solution of the coupled-perturbed
MCSCF (CP-MCSCF) equations, and one can exclude certain symmetry classes
by only using configuration state functions (CSFs) of a given symmetry in the
Hessian evaluation. Thus one can in affect “switch off” the contribution of non-
totally symmetric (derivative) couplings. If one obtains a different Hessian with
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those couplings included then one can deduce that a pseudo-Jahn–Teller interac-
tion is present [100]. As an example for Cr.CO/5 we have performed this analysis
at the C2v saddle-points using CAS(6,8)/cc-pVDZ (all electron basis for chromium
from [103]). Using only CSFs of A1 symmetry all vibrational frequencies are real,
and the lowest frequency mode has b2 symmetry, and � D 51:1 cm�1. If all CSFs
of all irreducible representations are included then the lowest mode again has b2

symmetry, but now � D 95:6 i cm�1. Therefore the pseudo-Jahn–Teller coupling
causes a mixing of the closed-shell non-degenerate ground-state (Fig. 7) with an
excited state causing the adiabatic potential energy surface to have negative curva-
ture along this mode. The coupling is between the : : :

�
dxy
�2 �

dyz
�2 �

dxy
�2 � 1A1,

and the : : :
�
dxy
�2 �

dyz
�2 �

dxy
�1 �

dx2�y2

�1 � 1B2 adiabatic states. In C2v symme-
try a mode of b2 symmetry can couple these states since A1 ˝ B2 ˝ B2 D A1.
Thus this method is very insightful and clearly shows the origin of a pseudo-Jahn–
Teller effect. Such analytical CASSCF Hessian computation is unfortunately rather
expensive, and is currently only possible for active spaces up to around (8,8) due to
the fact that the complete CP-MCSCF equations need to be solved. Never the less
this indeed a promising tool to differentiate between real second-order Jahn–Teller
effects, and pseudo-Jahn–Teller effects and will surely be used a great deal in future
studies.

Having an understanding of the potential energy surfaces is of course only
half the story regarding photochemical modelling. One must also try to model
dynamics via either a classical or quantum description of the nuclei. Molecular
dynamics in coupled electronic states is currently a subject of much current research
[99,104–106]. Metal carbonyl complexes are large and challenging targets for such
simulations although direct comparison with the most recent experimental results
makes them very promising systems. We note that Daniel et al have performed a
wide variety of 2D quantum wavepacket calculations on inorganic systems ([54,74]
and references therein). However for the relaxation of metal carbonyl complexes
multi-mode effects are prominent, and dynamics of much higher dimensionality are
required. Recently the MCTDH methodology [107] has been applied to such a prob-
lem, and such software advances (with concomitant hardware advances) mean that
first principles dynamical simulation of such systems is within reach as exemplified
by two recent studies on Cr.CO/5 relaxation.

In [43] a semi-classical surface hopping study was performed using on the fly
CASSCF potentials. Here the purpose of the dynamics was not to provide any sta-
tistical convergence of some observable, but rather to give mechanistic insight, and
determine if the system can dynamically reach a conical intersection, and subse-
quently decay to the ground state on a sub-picoseond timescale. Note that the active
space was reduced slightly in that one “3d” and “4d” orbital pair was not included
in the standard (6,10) active space discussed above. By inspecting Fig. 7 it can be
seen that across all geometries of interest one d -orbital remains unoccupied (dz2

at TBP, and dx2�y2 at SP). The virtue of the orbital optimization in CASSCF is
that a balanced set of orbitals connecting these two extremes is generated by allow-
ing the dz2 and dx2�y2 to mix at intermediate geometries. Thus, the active space
was reduced to (6,8) generating 1176 singlet configuration state functions, meaning
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that the computation of analytical gradients, Hessians, and derivative-couplings was
possible.

Initially a dissociation trajectory for Cr.CO/6 was run on the first excited singlet
ligand field (LF) state .S1/. This showed that a CO ligand was ejected in around
90 fs (the absolute value here should be treated with caution as the initially populated
state is undoubtedly not a LF state [77,82]). The ejected CO leaves in a rotationally
excited state consistent with observations on W.CO/6 (a similar group 6 carbonyl)
by Holland [108]. A subtle effect is that the remaining ligands in the same plane
as the leaving ligand slowly start to bend inwards to fill coordination hole left by
the ejected CO. After 100 fs the positions and momenta for the remaining Cr.CO/5
were used to study this fragment alone.

The non-adiabatic event was treated using a surface-hopping algorithm. It was
noted that within 80 fs a pair of remaining ligands “fold” in so that the geome-
try becomes TBP, each of the in-plane L-M-L angles is 120ı (see Fig. 9). Thus
the system quickly reaches the Jahn–Teller geometry. The trajectory study shows a
downward crossing and fast recrossing to the upper state before ultimate decay to the
ground state. Here the molecular motion in the branching space of the Jahn–Teller
intersection begins to change from symmetric bending to antisymmetric bending,
and the molecule begins to vibrate along the pseudo-rotational coordinate. This is
another example of a non-Berry pseudo-rotation and should be contrasted with the
well-known Berry pseudo-rotation in for example PF5. In the trajectory study the
molecule remains trapped in the well of a square planar minimum (Fig. 9). The
Fourier transform of the angular variation of the pairwise equivalent equatorial
L-M-L angle discussed above gives a vibrational frequency of 98 cm�1, while the
experimental coherent oscillation observed by Fu“ et al. [2, 70–72] was 96 cm�1
(see Fig. 4). Care should be taken not to read too much into this result other
than to show that the mechanistic details of this photo-relaxation can be modelled
using a surface-hopping approach. It should also be noted that surface hopping
approaches are still rather non-standard, and for the Cr.CO/5 system were very
time-consuming (several CPU months per trajectory). Recent advances in surface
hopping technology (see for example [109]) however mean that this approach should
be investigated for other metal carbonyl systems in the future as the semi-classical
methods in the full space of coordinates give tremendous mechanistic insight into
the photodissociation and relaxation processes, and serve as a prelude to wavepacket
computation by highlighting the essential vibrational modes needed to construct
model Hamiltonians.

Given the encouraging results of the surface-hopping study on Cr.CO/5 a
wavepacket dynamics study was undertaken in [91]. The same level of electronic
structure theory was used as in the surface-hopping study to generate adiabatic
potentials, which were used to fit the parameters of a linear vibronic coupling model
Hamiltonian. In fitting to the linear vibronic coupling model it was found that an
E˝e model was inadequate to fit to the adiabatic surfaces. It was only when a third
(non-degenerate) diabatic state was included, via a pseudo-Jahn–Teller coupling to
the degenerate E state could a reasonable fit be made (the validity of this cou-
pling was discussed in an adiabatic basis above). This highlights the utility of such
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Fig. 9 Snapshots of sample Cr.CO/5 trajectory (viewed down axial ligand axis) through trigonal
bipyramid Jahn–Teller intersection (reached in 130 fs), followed by oscillation in square planar
(SP) well of Jahn–Teller “trough”. Saddle-point like structure is shown after 200 fs, followed by
SP like structure after 360 fs

a model Hamiltonian approach to understand complicated potential energy surface
topology in addition to obtaining suitable potentials for dynamics. By fitting adia-
batic cuts to suitable models one can readily gain an idea of the various couplings
involved as one moves away from the conical intersection. In the case of Cr.CO/5,
as discussed above, we checked the C2v barrier to pseudo-rotation in terms of a
pseudo-Jahn–Teller effect, and indeed found that that this is the dominant mecha-
nism for warping of the “trough”, rather than pure second order Jahn–Teller effects
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as were initially supposed. Indeed the pure second-order Jahn–Teller couplings are
almost negligible in this system.

From the surface-hopping study clearly symmetric and anti-symmetric bending
of the equatorial ligands are dominant modes in the relaxation dynamics. In [91] a
model diabatic vibronic coupling Hamiltonian was set-up and it was determined
that the fundamental features of the lowest adiabatic Jahn–Teller surfaces could
be obtained from a 3 state, 5 mode vibronic coupling Hamiltonian to first-order.
The vibrational modes are shown fully in Fig. 2 of [91]. The doubly-degenerate
pairs .Q1;Q2/ and .Q16;Q17/ transform as e0, and therefore give rise to a linear
Jahn–Teller coupling within each mode. These modes are qualitatively the symmet-
ric and antisymmetric bending of each ligand atom (C or O) in the L-M-L angle.
The fifth mode is the totally symmetric breathing mode .Q8/, which is usually
important in such simulation as this coordinate allows relaxation along the intersec-
tion seam itself. In the C2v Abelian subgroup of D3h the degenerate e modes split
.e ! a1˚ b2/. The pseudo-Jahn–Teller coupling can then be seen to arise from the
off-diagonal coupling to the upper diabatic state .1B2/ via the component modes
of b2 symmetry (modes Q1 and Q17). This vibronic coupling model Hamiltonian
contains 9 parameters and seems to capture the essential features of the Jahn–Teller
surfaces, therefore it is hoped that such model Hamiltonians can be similarly con-
structed for other metal carbonyl systems in the future. In the wavepacket simulation
there is a fast transfer of population out of the initially excited state resulting in 90%
population loss within 90 fs. The motion of the adiabatic wavepacket is shown in
the .Q1;Q2/ space for both the ground and first excited singlet electronic states
in Fig. 10. Population transfer to the ground state takes place after 80 fs and the
wavepacket bifurcates symmetrically at the Jahn–Teller point (D3h symmetry). Note
that the wavepacket motion is primarily radial, reaching the outer Jahn–Teller wall
after 150 fs, returning to the conical intersection after 240 fs, and crosses through
to other side of the potential wall after 340 fs. Also notice that some population
returns to the excited states after this passage across the intersection region. A time
of 340 fs corresponding to radial motion back and forth across the Jahn–Teller inter-
section matches well the experimental timescale for the coherent vibration observed
[69–72]. This motion should be contrasted with the circular motion observed in the
semi-classical dynamics (Fig. 9).

It is interesting that both dynamical methods give the same gross mechanis-
tic explanation (with very good matches for the coherent vibrational timescale),
but crucially they differ in the precise nature of the coherent vibration observed.
Both dynamics methods have their own deficiencies, and further quantum dynam-
ical simulation with better potentials, more coupled vibrational modes, and longer
simulation times are therefore desirable for this important system. Another pos-
sible fruitful method is using time-independent vibrational structure approaches,
with similar potentials expanded around the unsaturated minima in the Jahn–Teller
“moat”. Recent advances in such methodology should see this approach utilized in
the near future [110, 111].

The photodissociation of Fe.CO/5 to produce Fe.CO/4 is a much more chal-
lenging system than the chromium carbonyl system discussed above. The manifold



338 R.G. McKinlay and M.J. Paterson

Fig. 10 Snapshots of Cr.CO/5 wavepacket dynamics on the lowest and first excited adiabatic
potential surfaces (left and right panels). The contours show the two-dimensional Jahn–Teller
surface in the space of the .Q1; Q2/ pair of Jahn–Teller active coordinates, shown to the left

of states that can be populated (Figs. 2 and 3) is such that it is still not clear which
states are initially populated, nor whether an axial or equatorial CO ligand is ejected.
We have recently been studying the potential energy surfaces of Fe.CO/4. Several
possible degenerate states can arise at a tetrahedral geometry with a d 8

�
e4t42

�
con-

figuration: t2˝t2D 1A1˚1E˚1T2˚3T1. Multi-configurational wavefunctions are
necessary to describe all of these spin-adapted states [112]. Degenerate Jahn–Teller
active states exist in both the singlet and triplet spin manifolds, and electronic struc-
ture computation is in general required to determine the correct (energetic) ordering
of these states. Simple inorganic chemistry models are unable to predict correctly
the lowest energy state, including for example the method of Tanabe-Sugano [113].
Here the energies of the various metal atomic terms are correlated with molecular
terms in the correct ligand-field split molecular point group, across the domain of
ligand-field d -orbital splitting energies; the energies are always relative to the low-
est energy term, which may change at different ligand-field strengths. For Fe.CO/4
this method predicts that the first singlet state above the triply-degenerate triplet
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ground state is a triply-degenerate singlet state. It should not be surprising that in
low-spin manifolds such empirically-derived methods can sometimes fail (another
point here is that Tanabe-Sugano diagrams for non-octahedral complexes are gener-
ally very hard to find). In their experiments on this system Fu“ et al. [67] assumed
a triply-degenerate state at Td geometries. Our CASSCF results show however that
in fact the 1E state is 5 kcal mol�1 lower than the 1T2 state.

The canonical vibrational coordinates for Fe.CO/4 .Td / are Q3N�6 2 2A1 ˚
2E ˚ T1 ˚ 4T2, and clearly there are many possible Jahn–Teller models including
E˝e; T˝t; .T˚E/˝t; .T˚E/˝.t˚e/. We have investigated in detail the T˝t
Jahn–Teller intersection in the singlet manifold, in addition to the triplet manifold
(i.e., for both the 1T2 and 3T1 states). This is because in the triplet manifold there
exists a substantial amount of experimental work. However, bearing in mind that
quantum chemistry predicts a lower 1E state the more complex Jahn–Teller models
will also have to be investigated in detail as well.

Similarly to the Cr.CO/5 case it is changes in the L-M-L angles that differen-
tiate the geometrical structures. For tetrahedral Fe.CO/4 the main distinguishing
geometrical feature is choosing two pairs of ligands such that each pair changes
L-M-L angle from 109:5ı. Thus there are three distinct ligand pair choices and
the Jahn–Teller distortion corresponds primarily to L-M-L bending for one of the
pairs. In analysing the T ˝ t2 Jahn–Teller effect we can again use the epiker-
nel principle. There are various possible epikernels: Ei .Td ; t2/ D C3v; C2v; Cs
and in this case both the positive and negative distortion directions give rise to
equivalent geometrical critical points; compare with Cr.CO/5 where the positive
epikernel distortion leads to minima, while the negative epikernel distortion leads
to the saddle-point. This is a main difference in epikernels when applied to orbitally
doubly-degenerate versus triply-degenerate states. We find C2v minima separated by
Cs saddle-points. The barrier height found is 5:3 kcal mol�1 using B3LYP/SDD(cc-
pVDZ); we could not optimise theCs structure with CASSCF as analytical Hessians
were required, and these are not currently available for the (8,10) active space
needed to describe the Fe.CO/4 ground and ligand field excited states. The num-

ber of equivalent epikernels are: nE1.Td ;t2/ D jnTd
j

jnC2v j D
24

4
D 6 for C2v, and

nE2.Td ;t2/ D j
nTd
j

jnCs j D
24

2
D 12 for Cs. Thus there are 6 equivalent C2v minima,

separated by 12 Cs saddle-points. The three dimensional potential energy surface is
shown schematically in Figs. 11 and 12. In Fig. 11 the 2D distortion space for four
equivalent C2v epikernels (type 1) is shown: E11 .Td ; t2/ D C2v; �E11 .Td ; t2/ D
C2v; E

1
2 .Td ; t2/ D C2v; �E12 .Td ; t2/ D C2v where the forward and reverse epik-

ernels are distinguished by opening up one of the pair of angles, forward opens one
of the pair up, and reverse opens the other up. Orthogonal to this space is another
equivalent epikernel distortion, forward and back, to give a total of 6 equivalent C2v

minima as required (denoted by a � in Figs. 11 and 12). An alterative representation
is shown in Fig. 12 (the so-called octahedron model developed originally by Poli-
akoff and Ceulemans [66]). Here the Td structure sits at the centre of an octahedron
and the vertices represent the minima (the 6 equivalent epikernel type-1 distortions).
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Fig. 11 Representation of lowest adiabatic potential of singlet .S D 0/ and triplet .S D
1/ Fe.CO/4 around T ˝ t Jahn–Teller conical intersection at tetrahedral .Td / geometry. There are
three equivalent two-dimensional “troughs” in the space spanned by each pair-wise selection of
equal L–M–L angles (boxed vs unboxed). The topological connectivity where the “troughs” inter-
sect is indicated. There are two non-equivalent epikernel distortion directions Ei

1;2.Td ; t2/ leading
to 6 equivalent C2v minima .�/, and 12 equivalent Cs.�/ saddle-points respectively. The non-
Berry pseudo-rotation barrier is very small .� 5 kcal mol�1/. CASSCF optimised geometrical
parameters for singlet and triplet states are shown at the top left

The midpoints of the 12 edges are the type-2 Cs epikernels which are saddle-points
connecting the minima. Thus, the three loops around the Td intersection in Fig. 11
correspond to three equivalent paths from each vertex to its opposite vertex, and
back, on the octahedron in Fig. 12. The geometrical parameters from CASSCF for
each of the C2v minima is shown in the upper left of Fig. 12 for the both the singlet
and triplet spin states. It should be clear that a very similar mechanism operates in
both spin manifolds.

Our work on this very interesting system is still in progress, and we hope
to include more electronic states; it is clear that the E and T states can
pseudo-Jahn–Teller couple to each other via t vibrations. Given the Jahn–Teller
active t2 vibrations discussed above and the fact that the E and T states are very
close in energy one would expect these states to strongly pseudo-Jahn–Teller cou-
ple. The Jahn–Teller effects in singlet tetrahedral Fe.CO/4 are probably similar
to those in the P4

C cation (combined Jahn–Teller and pseudo-Jahn–Teller action
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Fig. 12 Octahedral representation of Fe.CO/4 T ˝ t Jahn–Teller surface (originally devised by
Poliakoff and Ceulemans in [66]). The non-Berry pseudo-rotation paths shown in Fig. 11 are the
paths between opposite vertexes on the octahedron, which are C2v minima (�) reached by following
the forward and reverse directions of epikernel E1. The Cs saddle-points (�) lie at the centre of
each edge

at a tetrahedral geometry [114]). We are currently constructing a vibronic cou-
pling model Hamiltonian for this system in order to subsequently perform quantum
wavepacket dynamics in a similar vein to those for Cr.CO/5.

6 Conclusions and Outlook for Future Work

We hope that this review has shown that ever more elaborate experimental and
computational techniques continue to be applied to elucidate the structure, assign
spectra, and rationalize photochemical reaction mechanisms in transition metal
carbonyl complexes. These systems provide a wealth of fascinating vibronically
induced chemistry that we are only beginning to understand, and it is expected
that as experimental and computational techniques further evolve many more stud-
ies of these systems will take place. Transition metal carbonyl systems are of
primary importance in organometallic chemistry and unsaturated complexes are of
key importance in industrial synthesis. Their photochemistry has many aspects that
require a true multi-disciplinary approach, requiring knowledge and expertise in
the fields of transition metal chemistry, ultrafast spectroscopy, computational spec-
troscopy, computational photochemistry and conical intersection theory, Jahn–Teller
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theory, semi-classical dynamics, and quantum wavepacket dynamics. They further
provide an on-going link between the Jahn–Teller and photochemical communities
since from simple symmetry arguments we can be sure that conical intersec-
tions must be present and accessible in such systems, and therefore provide direct
experimental probes of ultrafast conical intersection induced photochemistry.
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Jahn–Teller Effect for the 3d Ions (Orbital
Triplets in a Cubic Crystal Field)

M.G. Brik, N.M. Avram, and C.N. Avram

Abstract Jahn–Teller effect and related phenomena attract considerable attention
of researchers during last several decades. In the present chapter aimed at the stu-
dents and postgraduates first of all, as well as at the beginners in this field, we
review thoroughly the main mechanisms underlying the Ham effect (which means
quenching of the spin–orbit interaction due to the interaction of the electronic energy
levels with the crystal lattice vibrations). To make the chapter complete from the
educational and pedagogical points of view, all necessary mathematical equations
needed for calculations are derived and explained. It is shown how the effective
second-order spin-Hamiltonian can be used for a description of the Ham effect
and estimation of the Jahn–Teller stabilization energy. In addition, an alternative
method of determining the Jahn–Teller stabilization energy based on the harmonic
approximation and geometrical consideration of the adiabatic surfaces of the poten-
tial energy of the ground and excited electronic states is described. The chapter is
followed by an attachment with the derivation of the Ham reduction factor.

1 Introduction

As Jahn and Teller showed [1, 2], an electronically degenerate state of a nonlinear
molecule or complex is unstable (except for the case of simple Kramers degeneracy)
with respect to some asymmetric nuclear displacements, which lift the degeneracy.
If the coupling between the electrons and such displacements (which best of all
can be represented as a linear combination of normal modes) is sufficiently strong
relative to the zero-point energy of the associated vibrational modes, the complex
undergoes a static distortion to a new configuration of minimum energy [3–5]. If the
coupling is less strong, or if the zero-point vibrational energy is comparable with
the energy barrier separating equivalent configurations, no static distortion occurs,
but a complicated interaction between the electrons of the central ion and the vibra-
tional modes takes place [6–8]. All phenomena related to a further splitting of the
degenerate electronic states and symmetry lowering around a central ion as a result
of vibrations of surrounding atoms are referred to as the Jahn–Teller (JT) effect.
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Two different kinds of JT effect are distinguished in the literature: the static and
dynamic JT effects. In the static JT effect the molecule or complex remains distorted
in a particular way long enough for the distortion to be detected experimentally. In
the dynamic JT effect, the molecule or complex resonates between two or more
equivalent modes of distortion, and the distortion is not directly observable [9].

Although the JT effect has been discovered in 1937 as a very general phe-
nomenon, it had to wait until 1952 for its first evidence by EPR (electron-
paramagnetic resonance) [10]. In the first period, soon after this experiment, the
phenomenon was detected in only a very limited class of systems and the main
effort in this field has been theoretical. This has led to mainly mathematical devel-
opments and sophistications rather than to the analysis of the experimental results.
In last 40 years the situation has been completely changed and the JT effect is being
investigated both experimentally and theoretically [11].

In the present chapter we focus on the optical spectra of the transitional metal
ion impurities, as the point defects in insulating crystals. The reasons are because
the JT effect is most often encountered in the transitional metal complexes, and
very common in the octahedral complexes. We shall make use of the configuration
coordinate approach [12], which enables one to apply much of the theory developed
for molecules to the case of an isolated impurity in a crystal.

In the next sections we describe briefly the main interactions, which are in charge
of splitting of the 3d ions energy levels in crystals. These interactions include the
Coulomb interaction, the crystal field interaction, the spin–orbit interaction and the
JT interaction. As it was pointed out by Ham [13], the observed spin–orbit and
trigonal field splittings of the orbital triplet states are significantly affected by the
dynamic JT effect.

We shall make use of the “effective Hamiltonian” formalism [14] that enables us
to isolate effects of interest from irrelevant complications. We divide the electronic
Hamiltonian into a “strong” part H0 and a “weak” part H0, and we shall suppose that
H0 is simple enough to be solved exactly. The Hamiltonian including the cubic field
and interelectronic repulsion only is the usual choice for H0 in the case of the 3d
group ions. Then H0 should include all other interactions (spin–orbit coupling, lower
symmetry fields, electron–phonon interaction, external fields, strain etc). The most
important assumption is that the perturbations, described by the H0 Hamiltonian (in
particular the JT interaction) must be smaller relative to the initial splitting due to
H0. In the case of the 3d metal ions the assumption is usually well justified.

In the present chapter aimed at the students and postgraduates first of all, as
well as at the beginners in this field, we consider thoroughly the dynamic Jahn–
Teller effect for the 3d3 .3d7/ ions in the octahedral (tetrahedral) impurity centers.
Energy level structure of the orbital triplet 4T2 and interaction of its states with the
˛1g ; "g ; �2g normal modes of the octahedral center (˛1; "; �2 normal modes of
the tetrahedral center) form the main subject of the chapter.

Another orbital triplet 4T1, which appears in the energy level schemes of the
chosen ions, represents somewhat more sophisticated case. The matter is that there
are two 4T1 states arising from two different LS terms (4F and 4P) of the d3 .d7/
electron configurations. These states are mixed up by both crystal field Hamiltonian
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and spin–orbit interaction, which makes the whole story more complicated. How-
ever, if such a mixture of both triplets can be neglected (as a first approximation or,
which is more realistic, when the crystal field splitting is small and the 4P term is
positioned energetically much higher than the 4F term), there will be no difference
in a way of considering the JT effect in the 4T1 state too.

The chapter contains a detailed description of two methods of determining the
JT energy: (1) the spin–orbit splitting quenching (the Ham effect) and (2) analysis
of the potential energy surfaces in the excited electronic state.

2 A General Picture of the Energy Levels of 3d Ions
in a Cubic Crystal Field Without and with Interaction
with Normal Vibrational Modes

The energy levels of a 3d ion in a crystal field are generally described by the
following Hamiltonian (we assume that no external fields act upon a considered
crystal):

H D HFI CHCF CHSO CHJT; (1)

where HFI is a free ion Hamiltonian (which describes electrostatic interaction
between electrons of the unfilled electron shell giving rise to different LS terms),
HCF is a crystal field Hamiltonian (which splits the LS terms into a definite
number of sublevels, with the overall pattern of splitting being determined by
the symmetry of crystal field and interactions between a 3d ion and its envi-
ronment), HSO is a spin–orbit (SO) interaction Hamiltonian (which produces a
further splitting of the crystal field terms), and HJT is a JT Hamiltonian (which
characterizes interaction of the 3d ion electronic states with crystal lattice vibra-
tions).

The magnitude of these terms is approximately as follows: �104 cm�1 for
HFI; 10

4 cm�1 forHCF; 10
2–103 cm�1 for bothHSO andHJT. TheHFI; HCF; HJT

operators mix only the terms with the same spin, whereas theHSO operator can have
nonzero matrix elements between the states with different spin.

It is not a problem to diagonalize the Hamiltonian (1) with the first two or three
terms (neglecting the JT interaction would correspond to the so called rigid lattice
approximation). All necessary matrix elements required for these calculations can
be readily found in the literature [15–20].

In a cubic crystal field neglecting the SO interaction would yield the set of
the orbitally degenerated energy levels, with the degeneracy not greater than three
(which is the maximum dimension of irreducible representations in the Oh point
group); the states with different multiplicity can be mixed up only by the SO inter-
action. Since some states with different spins can be rather close to each other, these
“nondiagonal” matrix elements of SO interaction can be quite important. The SO
splitting can be analyzed by employing the Oh double group; an immediate conclu-
sion is that only states transforming as the �6; �7; �8 irreducible representations
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Table 1 Splitting of the LS terms of the d3 .d7/ electron configuration in a cubic crystal field
without (the third column) and with (the fourth column) spin–orbit interaction

LS term Degree of
degeneracy of
LS term

Splitting of
LS terms in a
cubic crystal
field

Splitting of the
crystal field terms
by spin–orbit
interaction

4A2g �8
4F 28 4T1g �6 C �7 C 2�8

4T2g �6 C �7 C 2�8
4P 12 4T1g �6 C �7 C 2�8
2P 6 2T1g �6 C �8

2Eg �8
2D1 10 2T2g �7 C �8

2Eg �8
2D2 10 2T2g �7 C �8

2A2g �7
2F 14 2T1g �6 C �8

2T2g �7 C �8
2A1g �6
2Eg �8

2G 18 2T1g �6 C �8
2T2g �7 C �8
2Eg �8

2H 22 2T1g (two states) �6 C �8 (twice)
2T2g �7 C �8

Total
number of
states: 120

(the first two are two-dimensional, whereas the third one is four-dimensional) will
appear in a general scheme of energy levels.

Table 1 shows how the LS terms of a free d3 .d7/ ion split in a cubic crystal field
and how these crystal field states are split by the SO interaction.

The mixture of states with the same symmetry implies that in this case the
Hamiltonian matrix can be transformed into a three sub-blocks’ matrix, correspond-
ing to the �6; �7; �8 irreducible representations. In the case of a 3d3 .3d7/ ion the
total number of states for such an electronic configuration is 120, and the sizes of
the sub-blocks are 9 for both �6; �7 and 21 for �8 (which gives 120 in total, if the
twofold degeneracy for the �6; �7 and fourfold degeneracy for the �8 is taken into
account).

The orbital triplet states (transforming as the T1 or T2 irreducible representa-
tions) interact with crystal lattice vibrations, and this interaction affects also the
SO splitting of these states. From the computational point of view, the effects of
interaction between the electronic levels arising from the orbital triplet and sur-
rounding ions can be modeled easier if each orbital triplet would be considered
individually, without explicit treatment of mixture with electronic states from other
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triplets. Also from the computational point of view, this means that the SO splitting
of the 12-fold degenerated 4T2g state can be successfully modeled by consider-
ing its own 12 � 12 matrix only. However, even in this case of a smaller matrix
there is an elegant way of taking into account the mixture of all other states from
all other multiplets. This method is based on the concept of an effective first-
and second-order SO Hamiltonian [21–23] and the quantum-mechanical theory of
the orbital momentum, which allows to consider three orbital states of the orbital
triplet as three components of a state with an effective (“effective” means that not
all properties of the quantum mechanical operator of orbital momentum are hold
true for this operator; see below) orbital momentum L D 1. The set of three real
functions �; �; � transforming according to the T2 irreducible representation of the
Oh group can be obtained from five d -orbital j22i ; j21i ; j20i ; j2 � 1i ; j2 � 2i as
follows [24]:

� D ip
2
.j21i C j2 � 1i/ � yz; � D � 1p

2
.j21i � j2 � 1i/ � xz;

� D 1

i
p
2
.j22i � j2 � 2i/ � xy (2)

It is convenient to introduce another three functions j11i ; j10i ; j1 � 1i (which cor-
respond to the above mentioned effective orbital momentumLD 1 and its three pro-
jections; these should be distinguished from the j22i ; j21i ; j20i ; j2 � 1i ; j2 � 2i
functions, which are related to the real orbital momentum of the d electrons). These
functions are as follows: j11i D j2 � 1i, j10i D 1p

2
.j22i � j2 � 2i/ ; j1 � 1i D

� j21i. In terms of these functions of effective orbital momentum the �; �; � func-
tions can be written as follows:

� D ip
2
.j11i � j1 � 1i/ ; � D 1p

2
.j1 � 1i C j11i/ ; � D �i j10i : (3)

The effective second-order SO Hamiltonian

Heff D �
�!
L � �!S C �

��!
L � �!S

�2 C � �L2xS2x C L2yS2y CL2z S2z
�
; (4)

is defined in the space of all 12 wave functions of the 4T2g state with LD 1
and S D 3

2
. The parameters �; �; � have dimension of energy,

�!
L;
�!
S are the oper-

ators of the orbital and spin momenta, respectively, with their components
Lj ; Sj .j D x; y; z/. Namely the second and the third terms in the last equation
take into account the influence of other states on the overall SO splitting of the
4T2g state. The matrix elements of the above Hamiltonian can be easily calcu-
lated using the raising and lowering operators LC; L�; SC; S�. In terms of these
operators: Lx D L

C

CL
�

2
; Ly D L

C

�L
�

2i
(similar expressions – with changing

L into S – can be written for the Sx; Sy operators). The action of these rais-
ing/lowering operators upon the jlmi wave functions is given by the following
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expression:

L˙ jlmi D
p
l.l C 1/�m.m˙ 1/ jlm˙ 1i ; Lz jlmi D m jlmi : (5)

The matrices of the Lj ; Sj .j D x; y; z/ operators in the basis set defined by the
functions from (3) are then as follows (for the spin operators the set of the four spin
functions

ˇ
ˇ3
2
3
2

˛
;
ˇ
ˇ3
2
1
2

˛
;
ˇ
ˇ3
2
� 1
2

˛
;
ˇ
ˇ3
2
� 3
2

˛
was used):

Lx D
0

@
0 0 0

0 0 i

0 �i 0

1

A ; Ly D
0

@
0 0 �i
0 0 0

i 0 0

1

A ; Lz D
0

@
0 i 0

�i 0 0
0 0 0

1

A ;

(they coincide with the matrices given by (7.3)–(7.5) in the book by Sugano, Tanabe,
and Kamimura [17]. It is worthwhile to note here that the matrices of the orbital
momentum Lj .j D x; y; z/ operators in the basis set spanned by the p-wave func-
tions will have an opposite sign [17]. Therefore, theLj matrices as defined above do
not satisfy the commutation relation for the components of the orbital momentum,
and this emphasizes that in this chapter we speak about an “effective” operator L,
which turns out to be very efficient for a solution of the considered problem. How-
ever, the sign of the matrix elements in the above-given matrices is consistent with
the chosen basis set in (3)).

Sx D

0

B
BB
@

0
p
3
2

0 0p
3
2

0 1 0

0 1 0
p
3
2

0 0
p
3
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0

1
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CC
A
;

Sy D

0
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BB
@

0 �i
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3
2

0 0

i
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3
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0 �i 0

0 i 0 �i
p
3
2

0 0 i
p
3
2

0

1

C
CC
A
;

Sz D

0

B
B
@

3
2
0 0 0

0 1
2
0 0

0 0 �1
2
0

0 0 0 �3
2

1

C
C
A : (6)

The general expressions of the 12 wave functions of the 4T2g (represented as the
product of the orbital and spin parts are listed below (only the projection of the
spin momentum is shown after the orbital part):

ˇ̌
� 3
2

˛
;
ˇ̌
� 1
2

˛
;
ˇ̌
� � 1

2

˛
,
ˇ̌
� � 3

2

˛
;
ˇ̌
�3
2

˛
,ˇ

ˇ�1
2

˛
;
ˇ
ˇ�� 1

2

˛
,
ˇ
ˇ� � 3

2

˛
;
ˇ
ˇ� 3
2

˛
;
ˇ
ˇ� 1
2

˛
;
ˇ
ˇ� � 1

2

˛
;
ˇ
ˇ� � 3

2

˛
. The matrix elements of the

Hamiltonian (4), in this basis, are given in Appendix A. However, it is possible
to simplify significantly the calculations of the eingenvalues of this matrix by using
the symmetry adapted wave functions:
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ˇ
ˇ�� 0

˛ D
X

i;MS

C.i;Ms/ jiM i; (7)

where the wave functions of the “old” basis are denoted by jiM i, the wave func-
tions of the new symmetrized basis transforming in accordance with the � 0th line
of the irreducible representation �.� D �6; �7; �8/ are denoted by j�� 0i, and the
coefficients C.i;MS/ were taken from [25] (they are given in Table 2 below). In
this new basis the Hamiltonian matrix has the block-diagonal form. There are four
two by two blocks

�
17
10
� � �C � 3

5
�

3
5
� 33

10
�C 3

2
�C 9

4
�

	
; two diagonal matrix elements

25

4
� C 7

2
� � 5

2
� and two diagonal matrix elements

9

4
� C 3

2
�C 3

2
�; which yields the following eigenvaluesW

E .�6/ D 3
2
�C 9

4
� C 3

2
�

E .�7/ D �52�C 25
4
� C 7

2
�

E .�8/1; 2 D ACB
2
˙
q
1
4
.A � B/2 C 9

25
�2

9
>>=

>>;
; (8)

with A D ��C � C 17
10
�; B D 3

2
�C 9

4
� C 33

10
�.

To determine the numerical values of the effective Hamiltonian parameters
�; �; �, the least-square fitting of the energy levels from (8) to the calculated val-
ues of the SO splitting should be performed (using the complete Tanabe-Sugano,
Eisenstein or Runciman’s matrices [17–19]).

To take now into account the JT interaction, a phenomenological approach [9,26]
should be followed. It is based on substituting the crystal by an imaginary molecule
consisting of an impurity ion and its six nearest neighbors. Thus, for the 3d3 ions
(usually occupying the octahedral positions in crystals) the considered cluster is an
octahedron with one "g and one �2g JT active modes. The linear JT Hamiltonian
corresponding to the interaction of the electronic 4T2g state with the "g vibration
is [9]:

HJT D
P 2

2�
C KQ2

2
� V

2

6
4
�1
2
Q� C

p
3
2
Q" 0 0

0 �1
2
Q� �

p
3
2
Q" 0

0 0 Q�

3

7
5 ; (9)

where P;Q are the momentum and coordinate corresponding to the "g normal
mode,K is the force constant, V is the coupling constant andQ� � x2�y2; Q" �
3z2 � r2 are two different collective coordinates of the "g normal mode. It should
be pointed out that interaction of the orbital triplet states with the triply degenerated
normal modes is much smaller [9], and this will be supported below by the numer-
ical estimations. However, the situation is not always that simple; for example, in
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some cyanide complexes with very stiff chemical bonds between 3d metals and CN
ligands, interaction with the �2 mode was shown to be dominating [27]. Consider-
ing only the ground vibrational state (which, actually, corresponds to the case when
absolute temperature is zero), Sturge [22] demonstrated that the matrix elements of
the second order effective spin Hamiltonian in the first order of the perturbation the-
ory (interaction with the normal modes (9) is treated as a small perturbation to the
Hamiltonian (4)) can be written as:

D
Mi00

ˇ
ˇ̌
Heff

.I /
ˇ
ˇ̌
M 0j00

E
D �ıij C �

�
1 � ıij

�� ˝
Mi

ˇ̌
Heff

ˇ̌
M 0j

˛
; (10)

where M;M 0 are magnetic spin quantum numbers, i; j D �; �; � and � D
exp

�
�3EJT
2�!

�
is expressed in terms of the ratio of the JT energy EJT and the energy

�! of the Jahn–Teller active normal mode. Derivation of the reduction factor � is
given in Appendix B. In the new symmetry-adapted basis, defined by (7), (10) will
look like

h�� jHeff
.I /
ˇ
ˇ� 0� 0

˛ D
X

i;M

X

j;M 0

C �.i;M /C.j;M 0/
�
ıij C �

�
1 � ıij

��

� ˝Mi
ˇ
ˇHeff

ˇ
ˇM 0j

˛
: (11)

This transformation reduces the Hamiltonian Heff to the block diagonal form with
the following sub-blocks:

 
17
10
�C 17

10
� � �� � 7

10
�� 3

5
�C 3

5
� � 3

5
��

3
5
�C 3

5
� � 3

5
�� 33

10
�C 33

10
� C 3

2
�� � 21

20
��

!

.two blocks/;

7
2
�C 7

2
�� 5

2
��C 11

4
�� (two blocks) and 3

2
�C 3

2
�C 3

2
��C 3

4
�� (two blocks). The

eigenvalues of these blocks are again given by (8) but the following substitution:
� ! ��; � ! ��; � ! � C � � �� should be made in this case (this can
be easily checked out: substitution of these modified �; �; � into the matrix blocks
given before (8) immediately transforms them to the above given ones). Thus, the
matrix elements are decreased exponentially, resulting in an exponential decrease
of the relative separation between the �6; �7; �8; �80 states (which is also known
as quenching of the SO splitting [13], as schematically shown in Fig. 1). It is also
possible to proceed with the second order of the perturbation theory. In the second
order, according to [22], we have

D
Mi00

ˇ
ˇ
ˇHeff

.II/
ˇ
ˇ
ˇM 0j00

E
D �

�
fbıij C

�
1 � ıij

�
fa
�

�!
X

l;M 00.l¤i;j /

˝
Mi

ˇ
ˇHeff

ˇ
ˇM 00l

˛ ˝
M 00l

ˇ
ˇHeff

ˇ
ˇM 0j

˛
; (12)
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Fig. 1 General scheme of the origin of the 3d ion energy levels with different interactions consid-
ered. From the left to the right: (a) the LS terms (Coulomb interaction between the 3d electrons);
(b) crystal field splitting of the LS terms; (c) SO splitting of the crystal field energy levels; (d) Ham
quenching of the SO splitting (effect of the crystal lattice vibrations)

where

fa D exp .�x/G
�x
2

�
; fb D exp .�x/G .x/ ;

G.x/ D
xZ

0

1

u
.exp.u/� 1/ du; x D 3EJT

�!
; (13)

and �! was defined after (10). Again, (12) should be modified, if the symmetrized
basis functions from (7) are used. It will transform to the following form:

˝
Mi00

ˇ̌
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.II /
ˇ̌
M 0j00

˛ D �
X

i;M

X

j;M 0

C�.i;M/C.j;M 0/
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fbıij C
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fa
�

�!

�
X

l;M 00.l¤i;j /

˝
Mi

ˇ̌
Heff

ˇ̌
M 00l

˛ ˝
M 00l

ˇ̌
Heff

ˇ̌
M 0j

˛
:

(14)

The second order correction is, as a rule, much smaller then the first order one and
can be safely neglected in a vast majority of cases. If the second order correction is
considered, no analytical solution can be obtained, and the matrix diagonalization
should be performed numerically.
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Equations (8), (12), and (14) can be used to calculate the eigenvalues of the effec-
tive Hamiltonian for values of � varying from 0 (extremely strong JT interaction;
EJT !1) to 1 (complete absence of the JT interaction; EJT D 0).

3 Geometry of the Orbital Triplet States: Shift of the Potential
Surfaces Minima and Chemical Bonds Changes

As a result of different bonding properties (which arise from different interionic
separations in these electronic states) in the ground and excited states of an impurity
ion in a crystal, they may have different geometries, what is revealed in the shift
of the potential energy surfaces of the considered electron states and their different
curvature. The latter is defined by the differences of the vibrational frequencies in
these states, and, since this difference rarely exceeds few percents, can be readily
neglected. In order to perform a qualitative analysis of this phenomenon, we use the
effective Hamiltonian HVIB, which describes the interaction of the electron states
with the lattice normal modes in the form

HVIB D
X

i



P 2i
2�i
C 1

2
KiQ

2
i C

�
@V

@Qi

	

0

Qi

�
: (15)

Here �i is the effective mass of the i th vibration and Pi is the momentum conjugate
to the corresponding normal vibrational coordinate Qi . The first two terms trans-
form the electronic levels into potential energy manifolds in the coordinates of the
octahedral normal modes Qi with vibrational frequencies !i D

p
Ki=�i , and the

complete wave functions in the Born–Oppenheimer approximation can be written
as a product of the electronic and vibrational parts. The third term describes the dis-
tortions produced by the vibrations and can be interpreted in terms of a force Fi ,
which acts along the vibrational mode Qi associated with the electronic state �:

Fi D �

�

ˇ̌
ˇ
ˇ
@V

@Qi

ˇ̌
ˇ
ˇ
0

�

�
; (16)

where the subscript means that the derivative is to be found at the equilibrium con-
figuration. The third term lowers the symmetry of the octahedral complex and leads
to a new equilibrium position, which can be estimated from the condition that this
distorting force is balanced by the harmonic restoring forceKi�Qi at the distorted
geometry

�Qi D �Fi
Ki
: (17)

This distortion lowers the energy of the electronic state by an amount

Ei D 1

2
Ki .�Qi /

2 (18)



358 M.G. Brik et al.

comparing to the equilibrium position. Group theory predicts that only distortions
along the ˛1g ; "g ; �2g octahedral modes are important for the 4T2g electron state.
The Hamiltonian (15) can be rewritten in the basis consisting of the above-defined
�; �; � real orbitals:

HVIB DP
i
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2�i
C 1

2
KiQ

2
i
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E
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B
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2
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�
p
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2
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0 1
2
Q"g�

C
p
3
2
Q"g"

0

0 0 �Q"g�

1

C
A

C
D
4T2g

�
�
� @V
@Q�2g

�
�
� 4T2g

E
0

@
0 Q�2g�

Q�2g�

Q�2g�
0 Q�2g	

Q�2g�
Q�2g	

0

1

A :

(19)
In this equation the reduced matrix elements in the front of the matrices represent
the vibronic coupling constants between the triple degenerate electronic state 4T2g

and the normal vibration modes ˛1g ; "g ; �2g , respectively. They can be evaluated
using explicit expressions obtained in [28]:


4T2g

�
�
�
�
@V

@Q˛1g

�
�
�
�
4T2g

�
D � 50p

6Ro
Dq; (20)
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�
��
�
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@Q"g

�
��
�
4T2g

�
D � 25

R0
p
3
Dq; (21)
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@V

@Q�2g

��
�
�
4T2g

�
D �12

p
3

7R0
Dq

�
1

�
� 5
9

	
; (22)

where Dq is the crystal field strength, and R0 is the equilibrium distance between
the impurity ion and nearest ligands, and [28]

� D
 ˝
r2
˛
R0

2

hr4i

!�1
D 3

5
� 3 � 4e�=e�

1C e�=e� ; (23)

with the angular overlap model parameters e� and e� defined in [29]. The e�=e�
ratios are different for different complexes and can be found in the literature [29].

It also should be mentioned here that there are another ways to treat the vibronic
coupling constants in the frameworks of the crystal field theory [30, 31] and DFT
[27]. We shall not go into further details here, but advise a reader to go through these
references.

As can be seen from the structure of (19), the coupling with the fully symmetric
˛1g mode is diagonal, producing an overall shift of all three electron states in the
Q˛1g

space. The coupling with the "g normal mode is also diagonal, but it results in
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splitting of the three electron states (since the diagonal elements of this matrix are
different) and displacements of all its components along different directions in the
Q"g� ; Q"g" space. The direct comparison of the electron–phonon coupling con-
stants shows that, indeed, the coupling with the �2g normal mode is the weakest
among all the modes, and can be safely neglected, as it was done in the previous
section.

The equilibrium magnitude j�Qi jeq of the i th normal mode with energy �!i
is related to the Huang-Rhys factor Si and force constant Ki by the following
equation [32]:

j�Qi jeq D


2Si�!i

Ki

�1=2
: (24)

The force constantsKi were calculated using the FG matrix method for an octahedral
MX6 molecule [33]:

K˛1g
D 4�2c2�˛1g

2

�X C �Y ; K"g
D 4�2c2�"g

2

�X C �Y ; (25)

where �X ; �Y are reciprocal masses of an impurity ion and a single ligand, �˛1g

and �"g
are the frequencies (in cm�1) of the corresponding normal vibrations. Dif-

ferent units can be used for calculations of the force constants. If the SI system
is used – they are expressed in N m�1. It is also possible to measure the force con-
stants in mdyn Å

�1
or cm�1 Å

�2
(K (in mdyn Å

�1
/ D K.cm�1 Å

�2
//50,350).

The values of the Huang-Rhys factor can be easily estimated from the experimental
absorption and emission spectra.

It is more convenient to express the character of the ligands displacements in
terms of the interatomic bonds changes, since such a representation allows for a
visualization of the total distortion. In the T2g ˝ "g case the three potential wells
of the 4T2g components �; �; � are spatially separated, i.e., each of these three com-
ponents distorts along a different direction in the Q"g� ; Q"g" space [11]. All these
components are related by symmetry (in fact, they are rotated by 120ı with respect
to each other) and, therefore, it is sufficient to consider just one single component.
The coordinate system in the Q"g� ; Q"g" space can always be chosen in such a
special way, that the potential minimum of the considered 4T2g component (anyone
from �; �; �) lies on the Q� axis (this means, no distortion takes place along the
Q" axis). Then it is possible to consider the

ˇ
ˇ�Q"g

ˇ
ˇ
eq values as corresponding to

ˇ̌
�Q"g�

ˇ̌
eq

, whereas the
ˇ̌
�Q"g"

ˇ̌
eq

values are zero. Using the transformation matrix,
which can be easily obtained from the explicit expressions for the normal vibrations
of the octahedral complex [34] (the equilibrium subscript “eq” is suppressed in this
equation)
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the values of the
ˇ̌
�Q˛1g

ˇ̌
eq

and
ˇ̌
�Q"g�

ˇ̌
eq

can be converted into the changes in the
metal–ligand bond lengths�x;�y;�z.

After the force constants and amplitudes of the ionic displacements are found, it
is possible to draw the potential energy surface of the 4T2g excited electronic state.
In the harmonic approximation, this energy is described by the following expression:

V D 1

2
K˛1g

�
�Q˛1g

��Q˛1g;eq

�2 C 1

2
K"g

�
�Q"g

��Q"g;eq

�
2: (27)

An inverse to the (26) transformation should be used to analyze dependence of
the potential energy on the changes of the interionic distances. The contour plot
of the potential energy surface in the 4T2g state can be also used to estimate from it
the value of the Jahn–Teller stabilization energy, as will be shown below.

4 Example of Estimations of the Jahn–Teller Energy
from the Second Order Ham Effect

We shall consider in details how the above described approach can be applied to
Cr3C ion doped in KMgF3 crystal, at perfect octahedral site symmetry [35]. After
doping, Cr3C substitutes for Mg2C ions at the center of an octahedron formed by six
fluorine ions. The Cr3C � F� distance is 1.995 Å [36]. We do not discuss here the
charge compensating mechanisms required to maintain electrical neutrality of the
samples, but, instead, focus on the electronic and optical properties of the ŒCrF6�3�
units. The DFT-based treatment of the defects related to the doping and their impact
on the JT effects was given in [37].

Detailed optical studies [38] allowed to determine reliably the fine structure of the
Cr3C 4T2g state (see column 3 in Table 3), which is crucial for a correct estimation
of the JT stabilization energy.

The second column (labeled as “a” in Table 3) contains the calculated positions
of the four levels arising from the 4T2g state after it is split by SO interaction. These
energy levels were obtained by diagonalizing complete matrices of the 3d3 config-
uration with the following values of the crystal field strength Dq, Racah parameters
B; C and the SO interaction constant (all in cm�1): 1,450; 760; 3,426; 226 [38].
The 4T2g state splitting can be also obtained using the second-order effective SO
Hamiltonian with the parameters (all in cm�1): � D 29:8; � D 9:7; � D �29:2
(4). After the following substitution: � ! ��; � ! ��; � ! � C � � ��, the
best fit to the experimental energy levels is obtained if � D 0:31 (column “c” in the

Table). Since � D exp
�
�3EJT
2�!

�
and the energy of the Jahn–Teller active "g mode

is 457 cm�1 [38], the JT stabilization energy is EJT D 356:7 cm�1.
In this case the second-order correction (14) was not greater than few tenths of

cm�1 and was neglected.
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Table 3 Fine structure of the 4T2g state in KMgF3

Oh double group irreducible
representation

a b c

�7 0 0 0

�8 40 21 19:8

�8
0 93 48:5 48:5

�6 139 69:5 70:1

(a) Calculation using the full d3 matrix [19]
with the following experimental parameters [38]
(all in cm�1): DqD 1; 450; BD 760; C D 3; 426;
�SOD 226. This last value is different from that given
by formal relation �SOD 3 � for 4T2g term of Cr3C

(b) Experimentally observed relative energies [38]
(c) Calculation including the Jahn–Teller effect with
the Ham parameter �D 0:31. The experimental 4T2g

spinor splitting in column b is well reproduced by the
dashed line with filled circles in Fig. 2
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Fig. 2 Dependence of the 4T2g term fine structure for the Cr3C ion in KMgF3. The curves are the
splitting as the functions of the Ham reduction factor � calculated from the first and second order
Ham theory. The open circles correspond to the energy of spinors in a static crystal field .� D 1:0/,
and the filled circles are observed experimental energies. The best fit is obtained for � D 0:31. All
four curves are merged into two (if � D 0; extremely strong Jahn–Teller interaction) with the
separation of 2 .kC �/

Figure 2 shows how the relative energies of the four sublevels of the 4T2g state
depend on the “strength” of the JT interaction.

Since the value of the JT energy is greater than the SO constant and the second
order SO effective Hamiltonian parameters, the weak (in comparison with the JT
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effect) SO interaction approximation is readily justified. One final point, which will
be used in the next section, is worthwhile to be mentioned. Having found the value of
the JT energyEJT, the value of the Stokes shift S"g

corresponding to the "g normal
mode can be immediately evaluated as S"g

D EJT
�!

. The numerical estimations return
the value of S"g

D 0:78.

5 Example of Estimations of the Jahn–Teller Stabilization
Energy Using the Excited State Geometry Analysis

Here we show how the same problem can be analyzed by using the second approach
described above. Using (20)–(22) and the experimental crystal field strength value
Dq D 1; 450 cm�1, it is possible to estimate the constants of the electron-vibrational
interaction in Hamiltonian (19). Using the ratio e�=e� D 0:31 for the ŒCrF6�3�
cluster [29], we got for these constants the following numerical values:


4T2g

�
��
�
@V

@Q˛1g

�
��
�
4T2g

�
D �0:29mdyn;


4T2g

�
�
�
�
@V

@Q"g

�
�
�
�
4T2g

�
D �0:21mdyn;


4T2g

�
��
�
@V

@Q�2g

�
��
�
4T2g

�
D �0:051mdyn:

The constant of interaction with the �2g mode is the smallest among these three,
which allows to neglect the interaction with this mode and restrict our consideration
by the "g mode only.

With �!˛1g
D 562 cm�1 and �!"g

D 457 cm�1 the corresponding force con-

stants areK˛1g
D 2:589mdyn Å

�1
andK"g

D 1:712mdyn Å
�1

. The Huang-Rhys
factor S"g

D 0:78 has been estimated above, and neglecting the vibronic coupling
with the �2g normal mode, the Huang-Rhys factor S˛1g

for the fully symmetric mode
can be estimated as S˛1g

D S � S"g
D 2:13 � 0:78 D 1:35 (where the value of

the total Huang-Rhys factor S D 2:13 was determined in [35]). Using this data and
(24), the magnitudes of the normal modes displacements are

ˇ̌
�Q˛1g

ˇ̌
eq
D 0:108 Å

and
ˇ̌
�Q"g

ˇ̌
eq
D 0:091 Å. As previously demonstrated, the sign of the

ˇ̌
�Q˛1g

ˇ̌
eq

should be positive, whereas the sign of the
ˇ
ˇ�Q"g

ˇ
ˇ
eq

is negative [34, 39]. These
values can be easily converted into the changes of the chemical bonds lengths
in an octahedral complex (using (26)), which are �xeq; �yeq D 0:070 Å, and
�zeq D �0:008 Å.

Figure 3 visualizes the last result. As seen from this figure, the ŒCrF6�3� complex
in KMgF3 undergoes an equatorial expansion and a slight axial compression.

These distortions should not be simply understood as a static lowering of
the point symmetry from the Oh in the ground 4A2g state to D4h in the
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Fig. 3 Distortion of the ŒCrF6�3� complex in the 4T2g excited state with respect to the ground
state (directions of the displacements and their magnitudes in angstroms are shown by arrows and
numbers, respectively)

excited 4T2g state along a given z-axis in the crystal. This is dynamical dis-
tortion, which takes place along each of the three axes of the octahedral
cluster ŒCrF6�3�. Similar analysis which was performed for the Cr3C ion in the
Cs2NaInCl6; Cs2NaYCl6; Cs2NaYBr6;K2NaScF6 [40–43] and V2C ion in CsCaF3
[44], resulted in analogous character of the dynamical deformations of the octahe-
dral cluster formed around the Cr3C ion.

After the force constants and amplitudes of the ionic displacements are found,
it is possible to draw the potential energy surface of the 4T2g excited electronic
state. In the harmonic approximation, this energy is described by (27). An inverse
transformation should be used to get the dependence of the potential energy on
the changes of the interionic distances. The contour plot of the potential energy
surface in the 4T2g state is shown in Fig. 4.

In Fig. 4 the equilibrium position of the ground state is indicated by the open
circle, the equilibrium position of the excited state is shown by the black square.
Neglecting the interaction with the "g normal mode (this means that S"g

D 0), we
found the values of the�x; �y; �z displacements produced by the full-symmetric
vibration ˛1g to be�x D �y D �z D 0:044 Å. This position is shown in Fig. 4 by
the black circle. Using these coordinates, the JT stabilization energy can be readily
estimated to be 356:64 cm�1.

6 Summary of Results for the Octahedrally
Coordinated 3d3 Ions

Table 4 collects all characteristic results of analysis of the JT interaction in a
number of crystals doped with several 3d3-ions like V2C; Cr3C; Mn4C. As
seen from the table, the JT stabilization energy is always of the order of sev-
eral hundred wave numbers, varying from 257 cm�1 for Cs2NaYF6WCr3C to
584 cm�1 K2NaScF6WCr3C.
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Fig. 4 Contour plot of the 4T2g potential energy surface for the KMgF3 W Cr3C system as a
function of changes in Cr3C � F�.x; y/ and Cr3C � F�.z/ distances. The energies of individual
contours are given in hundreds of wave numbers. The open circle at the origin corresponds to the
equilibrium position of the ground 4A2g potential energy surface; the black square indicates the
equilibrium position of the 4T2g potential energy surface shifted with respect to the ground state
as a combined result of the ˛1g and "g normal vibrations. The black circle shows the hypothetical
position of 4T2g potential energy surface minimum if there were no "g normal vibration (i.e., in the
absence of the Jahn–Teller distortion).The value on the potential energy surface of the 4T2g state at
this point (between 300 and 400 cm�1 from the figure) corresponds to the Jahn–Teller stabilization
energy for the considered complex (adopted from [35])

One more common feature is that in all cases the considered octa-
hedral unit expands in the equatorial plane, as a result of the com-
bined effect of the ˛1g and "g normal modes. Regarding the axial (along
the z-axis) deformation, it should be noted that it can be of two types:
either expansion .Cs2NaYF6WCr3C; CsCaF3WV2C; Cs2GeF6WMn4C/ or compres-
sion .Cs2NaInCl6WCr3C, Cs2NaScCl6WCr3C, K2NaScF6WCr3C, Cs2NaYCl6WCr3C,
Cs2NaYBr6WCr3C, K2LiAlF6WCr3C; KMgF3WCr3C/. A simple criterion which
defines the contraction along the z-axis, is:

ˇ
ˇ�Q˛1g

ˇ
ˇ <

ˇ
ˇ�Q"g

ˇ
ˇp2 [45].
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,Å
�

z,
Å
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7 Some Results for the Tetrahedrally Coordinated 3d Ions

The above described formalism can be readily applied to the analysis of the orbital
triplets splitting and interaction of their electronic states with the local vibra-
tions in the case of the tetrahedrally coordinated 3d ions. However, the number of
publications devoted to these systems is not that large, and partly it is because the
results can not be visualized so easily. The matter is that if in an octahedral center
all normal modes are defined in one system of reference centered at the center of an
octahedron, in a tetrahedral complex all normal modes are usually expressed in the
local system of coordinates centered at each of the four ligands. Of course, conver-
sion of these modes into one system of reference is possible, but it makes the final
expressions to be quite lengthy.

One of the results obtained for tetrahedral centers formed by 3d ions is that one
for Mn2C (3d5-configuration) in ZnS [47]. The splitting of the 4T1 orbital triplet
of Mn2C ion was analyzed using the second-order effective spin-Hamiltonian and
comparing the calculated splittings with the observed ones. The lowest estimate for
the JT energy in ZnSWMn2C was obtained to be 750 cm�1 [47].

Recently several papers on JT effect in the Co2C-bearing crystals were published
[48–50]. In particular, the authors of [48] estimate the JT energy for Co2C in ZrO2
to be 1;200˙ 250 cm�1 (significantly higher that for the octahedral centers), which
is quite close to analogous values for Co2C in CaF2 and CdF2 (about 1;900 cm�1)
[49]. One of the possible reasons for higher JT energy in tetrahedral complexes can
be considerably shorter metal-ligand distance, which, obviously, leads to an over-
all enhancement of the vibronic interaction and increase of the vibronic coupling
constants.

Another example of Co2C was described in [50, 51]. Octahedrally coordinated
Co2C in the Sr2C position in SrLaGa3O7 strongly interacts with the local modes.
The important difference of this case from the previously described is that the
ground states for the octahedrally coordinated Co2C is not an orbital singlet (like
for octahedrally coordinated 3d3 ions), but the orbital triplet 4T1. The JT stabiliza-
tion energy for the ground state in SrLaGa3O7 W Co2C was estimated to be 502 cm�1
for coupling with the "g mode and 507 cm�1 for coupling with the �2g mode. The
JT stabilization energies in the excited state 4T2 was estimated to be much less –
about 1:2–1:3 cm�1 for both normal modes.

8 Conclusions

The present chapter was devoted to the detailed consideration of the dynamic JT
effect in the orbital triplet states for the 3d ions in a cubic crystal field, which
included analysis of the spin–orbit splitting quenching (Ham effect) and geometry of
the excited states (deformation of the equilibrium ligands configuration and cross-
section of the potential energy surfaces). All necessary equations involved into such
an analysis were given and explained. Theoretical description has been supported by
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several examples for real physical systems: detailed analysis of the structure of the
linear vibronic Hamiltonian, including numerical estimations of the constants of the
electron–phonon coupling, was performed. This analysis supplied with estimation
of the force constants for the Jahn–Teller active modes, gave a possibility to esti-
mate the equilibrium displacements of the ligands due to the combined result of the
˛1g and "g normal modes. It was shown that the net result of both vibrations can be
an equatorial expansion and either an axial compression or an axial expansion.

Following the literature data, for the tetrahedral centers the JT energy in the
excited state is several times higher than for the octahedral.

It is also worthwhile to note that it is also possible to establish a close relation
between the crystal field effects, covalent effects (overlap between the wave func-
tions of an impurity ion and ligands) and electron–phonon interaction and JT effects
[52–54]. It was shown in these works that it is possible to distinguish and ana-
lyze separately different contributions (arising from the point charge and exchange
interactions) to the vibronic effects.
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Appendix B Derivation of the Ham Reduction Factor

The coordinates of the potential energy surfaces minima (with respect to the ground
state) are as follows (19):

Q
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D Q� ��Qi ; Q
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�Qi ; (B.28)

where �Qi is given by (17). Assuming that only the ground vibrational state
is occupied (the wave function of the harmonic oscillator for n D 0 is ‰0 D�
˛
�

�1=4
exp

�
�˛Q2

2

�
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/, the vibration overlap S for the harmonic oscillator

wave functions centered at
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�1
‰0

�
Q"

.2/
�
‰0

�
Q"

.3/
�
dQ": (B.29)

Since, as seen from (B.28), there is no overlap between Q�
.2/ and Q�

.3/, the first
integral immediately yields unity, and the second integral can be rewritten as

S D
�˛
�

�1=2
1Z

�1

exp

0

@�˛
2

 

Q" �
p
3

2
�Qi

!21

A exp

0

@�˛
2

 

Q" C
p
3

2
�Qi

!21

A

dQ" D
�˛
�

�1=2
1Z

�1

exp
��˛Q"

2
�

exp

�
�3˛
4
�Qi

2

	
dQ" D exp

�
�3˛
4
�Qi

2

	
:

(B.30)

Since �Qi D � Fi

Ki
and, on the other hand, the force constant and frequency of

vibrations are related through the mass of the oscillator Ki D m!2 we get from
(B.30) that

S D exp

�
�3
4

m!

�

F 2i
K2
i

	
D exp

�
�3
2

EJT
�!

	
; (B.31)

where EJT D F 2
i

2Ki
D Ki�Q

2
i

2
, and S is just the reduction factor (noted in the text,

after (10), with � ).
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Constructing, Solving and Applying
the Vibronic Hamiltonian

Philip L.W. Tregenna-Piggott and Mark J. Riley

Abstract The Jahn–Teller effect is shrouded in mysticism and cynicism. To para-
phrase a remark that a colleague recently relayed, “For every anomalous spectrum,
structural distortion or novel physical property, there is a vibronic Hamiltonian and
ensuing explanation that few can appreciate or comprehend.” The aim of this arti-
cle is to provide a basic introduction to the Jahn–Teller effect, pitched at a level that
undergraduates in chemistry can understand, with an emphasis on how to calculate a
given experimental quantity. We show that armed with just a little group theory and
matrix mechanics, vibronic Hamiltonians can be readily constructed, solved, and the
molecular property of interest extracted from the eigenvalues and eigenfunctions.
The manifestation of the Jahn–Teller effect does indeed come in many shapes and
forms, three signatures of which are briefly discussed. (1) The vibronic energy spec-
trum is best revealed by spectroscopy and two examples are taken from the literature
that elucidate the intricate energy-level pattern of the E˝ e vibronic interaction. (2)
‘The Ham effect’, ‘Ham factors’ and ‘Ham quenching’ are now common parlance
in spectroscopy and the phenomenon is aptly illustrated by the magnetic and spec-
troscopic data of the titanium(III) and vanadium(III) aqua ions. (3) The plasticity of
the co-ordination sphere is the quintessential feature of transition metals exhibiting
strong Jahn–Teller coupling. We show how a concomitant description of structural
and spectroscopic data can be obtained employing a model in which the potential
energy surface resulting from the cubic Jahn–Teller Hamiltonian is perturbed by
anisotropic strain.

1 Setting Up and Solving the E˝ e Vibronic Hamiltonian

1.1 Vector Coupling Coefficients

Consider the direct product of two irreducible representations within the O point
group,

E˝ E! A1 ˚ ŒA2�˚ E: (1)

371
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Following Sugano, Tanabe and Kamimura [1] the vector coupling coefficients
(otherwise known as Clebsch–Gordan coefficients) shown in Table 1 inform us how
the decomposition products are constructed from the initial functions.

Reading down the columns, we obtain,

A1 D 1p
2
.�1�2 C "1"2/ ;

A2 D 1p
2
.�1"2 � "1�2/ ;

E� D 1p
2
.��1�2 C "1"2/ ; (2)

E" D 1p
2
.�1"2 C "1�2/ :

Where � and " denote the two components of the E irreducible representation of
the O point group with transformation properties,

� � 2z2 � x2 � y2; (3)

" � x2 � y2:

The irreducible representations on the right hand side of (1) are divided into those
which are symmetric (unbracketed) and anti-symmetric (bracketed) with respect to
the interchange of indices as can be seen explicitly in (2).

1.2 The Wigner Eckart Theorem

An important use of vector coupling coefficients lies in the calculation of matrix
elements of the operators in the vibronic Hamiltonian. Knowing the symmetry prop-
erties of the basis functions and of the operators, the ratio of the matrix elements can
be deduced by inspection of the vector coupling coefficients. Without resorting to
complicated formulae, a restricted use of the Wigner Eckart theorem may be illus-
trated as follows. First let us reduce Table 1 to those columns involving only the
decomposition products of E symmetry (Table 2).

Under the column labelled �1 are listed the symmetries of the operators, in this
case E� and E". Under the column �2 are listed the symmetries of the kets and
under the columns of the decomposition productsE� andE", the symmetries of the
bras. The numbers in the cells reveal the ratios of the matrix elements. In matrix
form we may write down:

O� j�i j"i
h� j
h"j

��cE 0

0 cE

	 O" j�i j"i
h� j
h"j

�
0 cE
cE 0

	
: (4)

The constant cE is commonly referred to as a reduced matrix element.
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Table 1 E ˝ E vector-coupling coefficients with cubic bases. The symmetry labels � and " are
equivalent to u and v used by Sugano, Tanabe and Kamimura

E˝ E

� A1 A2 E
� E1 E2 ™ ©

�1 �2

™ ™ 1=
p
2 0 �1=p2 0

© 0 1=
p
2 0 1=

p
2

© ™ 0 �1=p2 0 1=
p
2

© 1=
p
2 0 1=

p
2 0

Table 2 E˝ E vector-coupling coefficients with cubic bases, showing only the E decomposition
products

� E
� ™ ©

�1 �2

™ ™ �1=p2 0
© 0 1=

p
2

© ™ 0 1=
p
2

© 1=
p
2 0

1.3 Construction of the Vibronic Hamiltonian from Group
Theoretical Principles

Let us express the potential energy of a molecule as a Taylor expansion in its normal
co-ordinates about the origin:

V D V0 C
X

i

�
@V

@Qi

	

0

Qi C 1

2

X

i;j

�
@2V

@Qi@Qj

	

0

QiQj C : : : : (5)

Consider the form of the operator
�
@V
@Qi

�

0
for a molecule with an orbitally degener-

ate ground term, forming a basis for the E irreducible representation within the O
point group. This operator has matrix elements within the E term only if it trans-
forms as one of the decomposition products in Table 1, i.e. we need only consider�

@V
@QA1

�

0
;
�

@V
@QA2

�

0
;
�
@V
@Q�

�

0
;
�
@V
@Q"

�

0
. When the molecule is displaced along the

normal co-ordinate transforming as A1, the energy of the E term is shifted, with-

out being split by the distortion. Terms containing
�

@V
@QA1

�

0
may be eliminated by

setting V0 appropriately. The operator
�

@V
@QA2

�

0
naturally transforms as A2. From

inspection of the A2˝E vector-coupling coefficients, any operator of A2 symmetry
has the following form in the cubic E basis,
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OA2 j�i j"i
h� j
h"j

�
0 cA2

�cA2
0

	
: (6)

In order for the operator to be Hermitian, the constant cA2
must be imaginary. How-

ever, the operators in the expansion (5) are a result of the movement of atoms,
and can be expressed as real numbers. For this reason, the matrix representation

of
�

@V
@QA2

�

0
must be real in a real basis. Both these considerations are satisfied only

when cA2
is set to zero. Coupling terms of A2 symmetry can only occur within an

E electronic state when the coupling is to the conjugate momentum, rather than to
the coordinate operator [2].

The terms
�
@V
@Q�

�

0
and

�
@V
@Q"

�

0
give rise to a linear splitting of the E electronic

state, as may be deduced from inspection of the matrices in (4). The extent to which
the minimum will be displaced along these co-ordinates will then depend on the
magnitudes of these terms relative to the harmonic restoring force. In 1936, Jahn
and Teller formulated their famous theorem by considering whether an asymmet-

ric normal mode Qi exists such that
�
@V
@Qi

�

0
is non-zero for molecules of all the

molecular point groups. “A group-theoretical investigation shows that except for
molecules in which all atoms lie on a straight line only undegenerate states or the
doubly degenerate states of molecules with an odd number of electrons can corre-
spond to stable configurations” [3]. Modern day formulations of the theorem invoke
ideas of “symmetry breaking” and the “lifting of degeneracy” that are as ubiquitous

as they are misleading. Returning to (5) we see that the electronic operator
�
@V
@Qi

�

0
is multiplied by Qi , a position operator of the same symmetry. The first order term
thus becomes,

X

�;"

�
@V

@Q�;"

	

0

Q�;" D A1 .U�Q� C U"Q"/ ; (7)

where A1 is a constant in the context, not a symmetry label. Q� andQ" are dimen-
sionless co-ordinates of the E vibration. U� and U" are the electronic operators,

U� D
��1 0
0 1

	
; U" D

�
0 1

1 0

	
: (8)

From inspection of (2) we note that the operator in (7) transforms totally symmet-
ric in the parent point group, which means that regardless of the strength of this
vibronic interaction, all the functions still transform as irreducible representations
of the octahedral point group; i.e. the Jahn–Teller effect alone does not give rise to a
lowering of symmetry; it can only facilitate the lowering of symmetry. Consider this
formulation of the Jahn–Teller effect by the late great Mary O’Brien [4], which is as
precise as it is opaque to the inorganic chemist: “For any set of orbitally degenerate
electronic energy levels, a term in the Hamiltonian can be found that is linear in the
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normal co-ordinates of some vibration and operates within the degenerate states, the
exception being linear molecules”.

Turning now to the higher-order terms, the readers should convince themselves
from inspection of (2) that the productsQ2

�
CQ2

" ;�Q2
�
CQ2

" ; 2Q�Q";Q�

��Q2
�
C

Q2
"

� C Q" .2Q�Q"/ transform as A1; E� ; E" and A1 respectively. Each must be

combined with an electronic operator
P

i;j

�
@2V

@Qi@Qj

�

0
, of the same symmetry. The

potential energy may then be expressed as,

V D A1 .Q�U� CQ"U"/C 1=2�!
�
Q2
�
CQ2

"

�
U�

CA2
���Q2

�
CQ2

"

�
U� C 2Q�Q"U"

�C A3
��
3Q�Q

2
" �Q3

�

�
U�
� : (9)

In (9), A1 and A2 are the linear and quadratic coupling constants; �! and A3 rep-
resent the vibrational frequency and the anharmonic coupling constant respectively,
and U� denotes the .2 � 2/ unit matrix.

1.4 Potential Energy Surfaces

The potential energy surface can be readily constructed by repeated diagonalisations
of the 2 by 2 matrix in (9) for different values ofQ� andQ". With the quadratic and
anharmonic terms .A2; A3/ set to zero, the surface takes the form of the well-known
Mexican hat, shown in Fig. 1.

The distortion in the fQ�Q"g co-ordinate space is conveniently expressed in
polar co-ordinates,

1000
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Fig. 1 The E ˝ e potential energy surface calculated from (9) with �! D 250 cm�1; A1 D
�1;000 cm�1 and A2 D A3 D 0
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EJT

4EJT

Qθ

E

ρ0

Fig. 2 Cross-section through the E˝ e potential energy surface shown in Fig. 1

Q� D � cos
�;
Q" D � sin
�:

(10)

The Jahn–Teller radius, �0, is given by,

�0 D A1

�!
: (11)

A cross section through the surface is shown in Fig. 2 above. As a consequence
of the Jahn–Teller interaction, the minimum of the potential energy surface is
lowered by,

EJT D A21
2 �!

: (12)

The energy difference between the upper and lower sheets is 4EJT at the position
of the minimum �0. For copper(II) [5], chromium(II) [6] and manganese(III) [7]
complexes, the transition can be readily observed by optical spectroscopy, falling in
the near infrared/visible region of the electromagnetic spectrum.

The inclusion of either the second order or anharmonic term leads to minima
in the directions of ˙Q� ;12Q� ˙

p
3
2
Q";˙12Q� 

p
3
2
Q", corresponding to

elongations/compressions, as shown in the contour plot of Fig. 3. These are co-
kernel (or epikernel) points of D4h symmetry. All other linear combinations of the
distortion co-ordinates give rise to configurations of D2h symmetry. This result is
in accordance with the epikernel principle of Arnout Ceulemans [8], which states
that the minima in the Jahn–Teller potential energy surface will generally occur at
the points of co-kernel symmetry when these are present. A useful table detailing
the symmetries obtained when a molecule is displaced along a given displacement
co-ordinate is to be found in [9].

As both second-order and anharmonic effects give rise to a warping of the Mex-
ican hat surface, it is common practice to drop the anharmonic term, absorbing its
effect in the second-order Jahn–Teller coupling term.
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6
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0

–2

–4

–6
62 40

Qe

Q
q

–2–4–6

Fig. 3 The E˝ e potential energy surface including linear and quadratic coupling. The contour
plot was calculated from (9) with �! D 250 cm�1; A1 D �1;000 cm�1; A2 D 30 cm�1 and
A3 D 0

The degeneracy of the three potential minima is lifted by including additional
terms in the Hamiltonian:

Hst D �e�U� � e"U": (13)

e� and e" are the two components of the strain tensor ofE symmetry. Note that (13)
has a similar form to the linear Jahn–Teller coupling in (7) except that the position
operators are absent. The inclusion of the terms �e�U� and �e"U" describe low-
symmetry structural distortions, transforming as totally symmetric in the D4h and
D2h point groups respectively; and can be defined in terms of a displacement along
the Q� ; Q" modes [10]. It should be noted that the low symmetry terms in (13) are
strictly speaking not part of the E˝e vibronic Hamiltonian. However, it is important
to consider such terms in the context of the Jahn–Teller effect as we will show in
Sect. 3 that even small low symmetry terms can have a large effect on Jahn–Teller
potential surfaces and the spectroscopic observables. By analogy with (10) the strain
may be described in polar co-ordinates,

e� D ı cos
ı ;
e" D ı sin 
ı :

(14)

The sign of the parameters comprising the Hamiltonian are defined such that the
effect of strain alone is to localise the minimum at the value 
� D 
ı , whereas the
higher order terms (without strain) give rise to minima at points of co-kernel symme-
try. The form of the potential energy surface is then largely governed by the magni-
tude ı relative to the barrier height, given by 2“ D 2jA2jA1

2=
�
�!2 � 4jA2j2

�
. The

interplay between the parameters ı and 2“ is illustrated in plots shown in Fig. 4,
where the path of the minimum energy is plotted as a function of 
�.
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Fig. 4 Path of Minimum energy on the E˝ e potential energy surface for values of 2“ indicated.
For all plots, A1 D �1;000 cm�1; h! D 250 cm�1; ı D 100 cm�1; 
ı D 50ı

The surfaces in Fig. 4 were calculated with parameters corresponding to EJT

equal to 2; 000 cm�1, which is in the strong coupling limit typical of copper(II)
complexes [11]. E ˝ e coupling is also realised when the orbital degeneracy lies
in the  -antibonding t2g orbitals and the molecules are axially distorted. In this
instance the coupling is much weaker and is comparable to the first-order splitting of
the states by spin-orbit coupling. This pseudo-Jahn–Teller coupling may then only
soften the potential without giving rise to minima at distorted configurations [12].

Analytical expressions for the first-order coupling coefficients can be readily
obtained within the framework of the Angular Overlap Model (AOM) [13–15].
Numerical estimates that are in impressive agreement with experiment have been
obtained by calculating points on the potential energy surface using density func-
tional theory [16–18].

1.5 Numerical Solution of the Vibronic Hamiltonian

When the kinetic energy operators are added to (9), the Hamiltonian for the system
becomes,
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OH D 1
2
�!

�
P 2
�
C P 2" CQ2

�
CQ2

"

�
U� C A1 .Q�U� CQ"U"/

CA2
���Q2

�
CQ2

"

�
U� C 2Q�Q"U"

�C A3
��
3Q�Q

2
" �Q3

�

�
U�
� � e�U� � e"U":

(15)
The dimensionless P and Q are related to the observables for momentum . Op/ and
position . Oq/ by the relations [19],

Q D
r
�!

�
OqI P D 1

p
��!

Op: (16)

Their matrix elements are expressed as,

Q D 1p
2

�
a	 C a� ; P D ip

2

�
a	 � a� ;

a j'ni D pn j'n�1i ; a	 j'ni D
p
nC 1 j'nC1i ;

(17)

where n is the quantum number of the one-dimensional harmonic oscillator. The
Hamiltonian in (15) is most easily solved by first constructing it as a matrix in a basis
of products of the electronic states and the uncoupled states of the two dimensional
fn�n"g harmonic oscillator of dimension N D 1

2
.nv C 1/ .nv C 2/, up to the level

nv. The levels up to nv D 5 are shown in Fig. 5 below.
A worthwhile exercise is to convince oneself using (17) that the harmonic term

is diagonal within the basis jn� ; n"i with elements .n� C n" C 1/�!.
Including terms up to second-order in the distortion co-ordinates leads to a large

sparse real symmetric matrix. The eigenvalues and eigenfunctions in the energy
range of interest can be readily obtained by numerical diagonalisation and the Lanc-
zos algorithm is well suited to these types of problems. The eigenfunctions are then
expressed as,

‰ D
X

i

nvX

jCkD0
aijk

ˇ̌
 i ; n�j ; n"k

˛
; (18)

where  i spans the electronic functions and n� and n" are the quantum numbers of
the harmonic oscillators. The total size of the N � N matrix for a vibronic basis is

{5,0} {4,1} {3,2} {2,3} {1,4} {0,5}

{2,0} {1,1} {0,2}

{4,0} {2,2} {1,3}{3,1} {0,4}

{3,0} {2,1} {1,2} {0,3}

{1,0} {0,1}

{0,0}

1

2

3

4

5

nq+ne=0

Fig. 5 Levels of the two-dimensional harmonic oscillator up to n� D n� C n" D 5, expressed in
terms of fn� ; n"g, the quantum numbers of the components Q� and Q"
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given by N D 2 � 1
2
� .nv C 1/.nv C 2/ and depends on the number of vibrational

basis levels .nv/ required to converge the problem to the desired accuracy.

1.6 The Vibronic Energy Levels

The vibronic energy levels obtained from the matrix diagonalisation described
above are shown in Fig. 6 as a function of the coupling constants A1 and A2. It
can be seen that quite a complex pattern of energy levels are generated and these
can be rationalised by examining the limiting cases in each figure. In Fig. 6a the
energy levels are for linear coupling only .A2; A3 D 0/ which gives rise to the
“Mexican hat” potential surface with cylindrical symmetry as shown in Fig. 1. On
the Y axis .A1 D 0/ one find the energy levels of a two dimensional harmonic oscil-
lator as shown in Fig. 5. The levels are equally spaced and have a 2.n� C n" C 1/
degeneracy. As the first order coupling constant is increased, the levels are seen to
oscillate about a mean value before decreasing and approaching a limiting value
for large coupling on the right hand side. In the large coupling limit the levels can
be described as combinations of a radial vibration .n�/ and a pseudo-rotation with
a odd-half integer quantum number taking the values j D 1=2; 3=2; 5=2 : : : All
levels are doubly degenerate, although some are actually composed of two one-
dimensional states that are “accidentally” degenerate. As well as these accidental
degeneracies, the fact that the levels cross rather than showing avoided crossings, in
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Fig. 6a shows that there are additional symmetries at work. The vibronic matrix can
be made block diagonal using the quantum number j and thereby reducing the size
of the computational problem [20].

The accidental degeneracies are removed when the second order coupling .A2/ is
made non-zero as shown in Fig. 6b. Now only levels of different symmetries cross,
although some points where the avoided crossings are close give the appearance of
crossing. The left hand side of Fig. 6b .A2 D 0/ gives energy levels that are the same
as those of the vertical line at A1=�¨ � 1:65 in Fig. 6a. As the second-order cou-
pling is increased theA1=A2 vibronic states split, as shown by the dotted and dashed
lines respectively in Fig. 6b. As discussed in Sect. 1.4, the second order coupling
results in three equivalent minima separated by barriers, and in the limit of large
second-order coupling, the doubly degenerate and singly degenerate vibronic levels
“pair up” to approach a three fold degeneracy. This approach to three-fold degen-
eracy occurs for the lower vibronic levels before the higher levels, as the energy
separations represent a “tunnelling splitting” and it takes a higher barrier to localise
the higher vibronic levels within the minima. It should be noted that for all values
of the coupling constants, the lowest vibronic level is required to be of E symmetry
[21]. The first excited singlet is a vibronic state of A2.A1/ symmetry for minima
at the positions 
 D 0ı; 120ı; 240ı .60ı; 180ı; 300ı/ on the potential surface
and this is determined by whether the product of the first and second order cou-
pling constants is negative (positive). For an six-coordinate Cu(II) complex, the first
excited singlet is of A2.A1/ symmetry when each of the three mimima corresponds
to equivalent tetragonally elongated (compressed) geometries.

2 Calculation of the Experimental Quantities

2.1 Structural Data

The structure of a molecule that one observes will depend on the timescale of the
experiment relative to the dynamics of the molecule. Crystallography yields the
space-averaged structure. One obtains information regarding the average position
of the atoms, the dynamics are swallowed up in the temperature factors. The cal-
culation proceeds by first identifying the dominant vibrational mode(s) involved in
the coupling. For d9 and high-spin d4 complexes, this is the ¤2.ML6/ asymmetric
skeletal stretch depicted in Fig 7 below:

Displacements along these co-ordinates may be expressed in a basis of incre-
ments in the metal-ligand .M–L/ bond lengths:

Q� D 1p
12
.2r1 C 2r4 � r2 � r5 � r3 � r6/;

Q" D 1

2
.r2 C r5 � r3 � r6/;

(19)
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Fig. 7 The two components of the ¤2.ML6/ vibration. Arrows indicate the directions and relative
magnitudes of the displacements

where ri is a unit displacement along the M–Li bond vector, and the ligands are
numbered according to the scheme used in Fig. 7. The unit displacements, ri are
related to h Oq� iT and h Oq"iT by,

r1 D r4 D 1p
12
2 h Oq� iT I r2 D r5 D

.� h Oq� iT C
p
3 h Oq"iT /p

12
I

r3 D r6 D .� h Oq� iT �
p
3 h Oq"iT /p

12
(20)

where it is understood that h Oq� iT and h Oq"iT are the Boltzmann average of the expec-
tation values over the thermally populated vibronic energy levels. From (16) to (18)
the expectation value for a given level, ‰, is calculated according to:

h Oq� i D
s

�

�!
h‰j OQ� j‰i D

s
�

�!

X

i

X

i 0

nvX

jCkD0

nvX

j 0Ck0D0

� aijk
�a0i 0j 0k0hn�j j OQ� jn�j 0iıi i 0ıkk0

D
s

�

�!

X

i

nvX

jCkD0

 

ai.jC1/k�aijk

r
j C 1
2
C ai.j�1/k�aijk

r
j

2

!

(21)

and analogously for h Oq"i.
The literature is replete with examples of crystallographic studies of copper(II)

and manganese(III) complexes where the ML6 skeletal framework is reported to be
regular. In these instances it is not uncommon to read of the Jahn–Teller effect being
“suppressed”. The use of such language could be taken to mean that the potential
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energy minimum falls at the undistorted, high symmetry, configuration. Since the
linear Jahn–Teller coupling is pronounced for d9 and high-spin d4 complexes,
a Jahn–Teller radius so small as to render a Jahn–Teller distortion undetectable
would imply a force constant of heroic proportions. No structural distortion is
observed because the complexes exhibit either a dynamic Jahn–Teller effect, in
which the complexes oscillate between the tetragonal distortions depicted in Fig. 3,
or a disordered static Jahn–Teller effect, in which the complexes are randomly
localised in one of the three potential minima. In a seminal paper by Bürgi et al.
describing an EPR and crystallographic study of the Cu.tach/2 complex (tach �
cis; cis-1,3,5-triaminocyclohexane) it was shown how the Jahn–Teller radius may
be extracted from the temperature factors of complexes with seemingly regular octa-
hedra [22]. We illustrate the method by its application to the caesium manganese
alum CsŒMn.OH2/6�.SO4/2 �6H2O, which undergoes a cubic .PaN3/ to orthorhombic
(Pbca) phase transition at temperatures below 156 K due to co-operative Jahn–Teller
interactions [23]. In the high temperature phase the hexa-aqua ion lies on a site of S6
symmetry; all the Mn–O bond lengths are therefore equivalent by symmetry. Below
the transition temperature the ŒMn.OH2/6�

3C lies on a site of Ci symmetry and
exhibits the quintessential Jahn–Teller tetragonal elongation; at 5 K the Mn–O bond
lengths are 1.929(1), 1.924(1) and 2.129(2) Å. The Jahn–Teller radius, �0, may be
estimated from the deviation of the bond lengths from the mean value, .r � rmean/,
using the formula,

�0 D
 

6X

iD1
.ri � rmean/

2

!1=2

; (22)

from which �0 D 0:234.2/ Å. Now consider the fractional co-ordinates and ther-
mal parameters for the manganese and oxygen atoms obtained in the cubic phase at
170 K, tabulated in Table 3.

The Mn–O bond vector is closely aligned with the crystal X axis and the
anisotropic thermal parameters B13 and B12 are close to zero. The mean-square
amplitude of the oxygen atom along the Mn–O bond vector is then given directly by
the parameter B11, without the need for a co-ordinate transformation.

It follows that the mean-square displacement pertaining to the metal(III)-oxygen
stretching motion is,

Table 3 Fractional coordinates (X,Y,Z) and isotropic .Biso/ and anisotropic .B11; B22; B33,

B23; B13; B12/ thermal parameters .Å
2
/ for the manganese and oxygen atoms constituting the

Mn–O bond, obtained by single-crystal neutron diffraction for CsŒMn.OH2/6�.SO4/2 � 6H2O at
170 K .PaN3/ [23]

X Y Z Biso B11 B22 B33 B23 B13 B12

Mn 0 0 0 0.98(6) – – – – – –
O 0.16007(10) �0:00228.13/ �0:00051.13/ – 1.62(5) 1.59(5) 2.58(6) 0.67(5) 0.02(5) 0.11(5)
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˝
�d 2

˛ D B11 .O/� Biso .metal.III//

8 �2
Å
2
; (23)

where the quantity
˝
�d 2

˛
is composed of contributions from all the metal-oxygen

stretching vibrations. For isostructural alums formed with Ti(III), Ga(III) and V(III),˝
�d 2

˛ 	 0 [23], whereas for CsŒMn.OH2/6�.SO4/2�6H2O at 170K;
˝
�d 2

˛ D 0:0081
.10/Å

2
. A rough estimate of �0 can be obtained by setting

˝
�d 2

˛
to the quantity

.ri � rav/
2 in (22), in which case �0 � 0:22 Å, in good agreement with the value

estimated from the 5 K structural data.
The �d values can be calculated explicitly using the vibronic wavefunctions

given in (18) that result from the numerical diagonalisation and the analytic equa-
tions of the one dimensional vibrational wavefunctions [19]. It is best to consider
plots of the square of the vibronic wavefunctions as one otherwise encounters diffi-
culties with the sign change associated with the geometric (or Berry’s) phase [24].
Such a plot is given in Fig. 8, as a function of the Q� ;Q" coordinates (upper) and
the bond length displacements (lower). The later are calculated from the expressions
given in (20) appropriate for an ML6 complex. For both first order only and for first
and second order coupling, the mean geometry is the high symmetry or undistorted
octahedral configuration. For first-order coupling .A2 D 0/, the probability function
on the top left of Fig. 8 has a cylindrical symmetry corresponding to the localisation
about the bottom of the lower Jahn–Teller surface. The probability function in terms
of the �d(M-L) shows equal positive and negative displacements. If one were able
to determine the higher moments for the thermal parameters of such a system one
would find, for all six ligands, a symmetrical dumb-bell shape.

a b
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0.0
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Fig. 8 Probability functions for lowest vibronic level of an E ˝ e system. (a) A1=�¨ D
3:0; A2=�¨ D 0; (b) A1=�¨ D 3:0; A2=�¨ D 0:125. The �d(M-L) functions are identical
for all ligands
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For the case of a warped Jahn–Teller surface the probability functions, as shown
in Fig. 8b, are localised at the positions of the Jahn–Teller minima and now the
�d(M-L) values show a 2/3 and 1/3 probabilities at displacements of �1=3x and
C2=3x respectively. This structure reflects the underlying tetragonal elongation at
the minima of the potential surface. Again, for these dynamic Jahn–Teller effects
all six ligands would show the same probability distribution centred at equal bond
lengths, but now with asymmetric dumb-bell shaped thermal ellipsoids.

As discussed in Sect. 3.3 below, if the structure of the above types of systems
were determined by XAFS spectroscopy, then one would observe the “instanta-
neous” molecular structure rather than the time-, space-averaged bond lengths given
by crystallography.

2.2 Magnetic Data

The magnetic moment per ion is defined as,

Mion D
P

n

�� dEn

dB

�
exp.�En = kT/

P

n

exp.�En = kT/
: (24)

The derivative is found most elegantly by application of the Hellman–Feynman
theorem,

dEn
dB
D h‰nj d OH

dB
j‰ni D

X

i

X

i 0

nvX

jCkD0
aijk
�ai 0jk h i j d OH

dB
j i 0i: (25)

This method allows the magnetic moment at a given field to be calculated exactly
from one numerical diagonalisation of the vibronic Hamiltonian [25].

2.3 Spectroscopic Data

When the timescale of the experiment is fast compared to the internal dynamics of
the molecule, spectroscopic transitions may be calculated by assuming that during
the electronic transition the nuclei remain fixed at their positions in the initial state,
in accordance with the Frank–Condon principle.

The intensity of a transition between states ‰ and ‰0 of energy Ei and Ef , is
calculated according to:

I / exp

��Ei
k T

	
h‰j OO ˇˇ‰0˛ ˝‰0ˇˇ OO j‰i ı �Ef �Ei

�
: (26)
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where OO is the transition moment operator. From (18) we obtain:

h‰j OO ˇˇ‰0˛ D
X

i

X

i 0

nvX

jCkD0

n0vX

j 0Ck0D0
aijk
�a0i 0j 0k0 h i j OO j i 0iıjj 0ıkk0 : (27)

The electronic absorption, emission and Raman spectra presented in this chapter
were all computed from this expression.

When the timescale of the experiment is slow compared to the internal dynamics
of the molecule, the spectrum should be calculated as the thermal average over all
populated levels [6, 11].

3 Examples of the Manifestation of the Jahn–Teller Effect

3.1 The E˝ e Vibronic Energy Levels

3.1.1 Electronic Raman Spectrum of Copper(II) Doped CaO

Experimental investigations into the vibronic structure of copper(II) doped CaO
.CaO W Cu2C/ and MgO .MgO W Cu2C/, constitute some of the most rigorous and
instructive studies of Jahn–Teller active systems [26]. Foremost among these is the
Raman study on CaO W Cu2C by Guha and Chase [27]. The spectrum, shown in
Fig. 9 below, displays a plethora of bands in the �3–250 cm�1 region that were
assigned by the authors to transitions within hindered rotational levels, characteristic
of the E˝ e vibronic problem, depicted in Fig. 10.

The experimental spectrum is characteristic of the fA1; A2g first excited states
.j D 3=2/ being �10 cm�1 wavenumbers above the E .j D 1=2/ ground state,
split to appear at �4 and 26 cm�1 by a small warping term.

The zeroth-order electronic Raman cross section, I , for a transition from state i
to state f , is calculated according to [28],

I / E4s exp

��Ei
kT

	
h‰j Ǫ�

ˇ̌
‰0
˛ ˝
‰0
ˇ̌ Ǫ� j‰i ı

�
Ef �Ei � E0 C Es

�
; (28)

whereE0 andEs are the energies of the incident and scattered radiation,Ei ; Ef the
energies of the states‰ and‰0, and Ǫ� is the component of the Raman polarisabil-
ity tensor, transforming as the � th component of the �th irreducible representation
of the Oh point group.

Guha and Chase reported that an electronic Raman spectrum could be observed
only in experiments that select a component of the polarisability tensor transforming
as E� or E". The electronic matrix elements in these polarisation geometries are,
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h‰j ǪE�
j‰0i / hU�i D

nvP

jCkD0

n0vP

j 0Ck0D0

�
�a� jk

�a0
�j 0k0
C a"jk�a0"j 0k0

�
ıjj 0ıkk0

h‰j ǪE" j‰0i / hU"i D
nvP

jCkD0

n0vP

j 0Ck0D0

�
a� jk
�a0
"j 0k0
C a"jk�a0�j 0k0

�
ıjj 0ıkk0 :

(29)
The calculated electronic Raman transitions were folded with a Lorentzian band-
width, with constant width across the whole spectrum.

With �! D 216 cm�1, as deduced by O’Brien from the broad band Raman
spectrum [30], good agreement with experiment can be obtained with A1 D
�1; 030 cm�1, A2 D �1:0 cm�1. The best reproduction of the energies and intensi-
ties was found with a small directional strain corresponding to ı D 4:25 cm�1; 
ı D
45ı, which could arise from different thermal expansion coefficients of the crystal
and the glue used to afix the crystal to the goniometer head. Agreement was fur-
ther improved [28] by performing the calculation at 7 K, rather than at the reported
temperature of 4.2 K. The data may also be reproduced with alternative choices for
the effective phonon frequency, as the energy spacing is an approximate function of
�!3=A21.

3.1.2 The EPR Spectrum of Copper(II) Doped MgO

The EPR spectra of Cu(II) doped MgO single crystals have recently been re-
examined in detail within the framework of a dynamic Jahn–Teller effect [31]. The
experimental 1.8 K X-band spectra is shown in Fig. 11a as a function of the mag-
netic field direction for a rotation from Hjj.001/ to Hjj.110/. This spectrum has a
number of unusual and intriguing features.

(a) The spectrum has strain broadening reminiscent of a powder spectrum, The low
(high) field resonances having positive (negative) distortions of the derivative
lineshape.

(b) The two sets of four hyperfine lines have a complicated pattern of avoid
crossings at the Hjj.111/ direction.

(c) There is clearly more than the expected 4 hyperfine lines in the high field set at
™ � 10–30ı from (001).

The spectrum can be modelled as shown in Fig. 11b, in terms of a cubic spin
Hamiltonian operating within the set of four Kramers doublets corresponding to
the four lowest vibronic energy levels of a E ˝ e Jahn–Teller problem. This “four
state” model must also include vibronic (Ham) reduction factors (see Sect. 3.2.1
following) and a random distribution of the crystal strain. It has found to be impor-
tant to treat the Zeeman, hyperfine, tunnelling and strain terms without recourse to
perturbation theory as these terms are of a similar magnitude. However, most spec-
tral features could be reproduced with a spin Hamiltonian for an isolated 2Eg.�8/

ground state, of the form given by (36) in Sect. 3.2 below. The relevant opera-
tors transforming as the A1; E� and E" irreducible representations used to fit the
spectrum are given in Table 4.



Constructing, Solving and Applying the Vibronic Hamiltonian 389

(0
01

)

(1
10

)

(1
11

)

θ(deg) 

0

3300

3200

3100

3000

2900

2800
9060300

θ(deg) 
9060300

ba

Fig. 11 Image plot of the experimental (a) and calculated (b) X-band EPR spectrum at 1.8 K as a
function of the magnetic field direction rotated from the (001) by � to the (110) direction

Table 4 The spin Hamiltonian terms for Cu(II)/MgO

Electronic Zeeman Hyperfine Strain Nuclear quadrupole

GA1 g1�BH:S Ah1I:S – –
G™

1=2 g2�B.3HzSz � H:S/ 1=2 Ah2.3IzSz � I:S/ •s cos¥s 1=2 P2.3IzIz � I:I/
G©

1=2
p
3g2�B.HxSx �HySy/ 1=2

p
3Ah2.IxSx � IySy/ •s sin¥s 1=2

p
3P2.IxIx � IyIy/

As discussed by Ham [32], for each interaction two parameters are required,
the isotropic terms g1; Ah1 and a “cubic anisotropy” g2; Ah2. The angular depen-
dent spectrum in Fig. 11 disappears above the relatively low temperatures of 6 K,
being replaced by an isotropic spectrum characterised by the g1; Ah1 values alone
which are the same as the low temperature g1; Ah1 values. The parameters used to
reproduce the spectra in Fig. 11 are given in Table 5 together with those found for
Cu(II)/CaO.

While the main features of the Cu(II)/MgO spectrum can be reproduced using an
isolated 2Eg state, details such as the relative strain broadening between the hyper-
fine lines, requires the inclusion of the excited vibronic singlets. For Cu(II)/MgO it
is found that the first excited singlet is ofA2 symmetry, indicating that the CuO6 cen-
tre has the expected E˝e Jahn–Teller potential energy surface with three equivalent
minima at tetragonally elongated octahedral geometries. Surprisingly, the opposite
occurs for Cu(II)/CaO, and this appears to be a rare example of the three equivalent
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Table 5 Values of the spin Hamiltonian parameters for Cu(II)/MgO [31] and Ca(II)/CaO [33]

host T/K Strain �=cm�1 g1 qg2 Ah1 qAh2 qP2
.�10�4 cm�1/ .�10�4 cm�1/ .�10�4 cm�1/

MgO 6.0 – – 2.193 – ˙18:5 – –

1.8 •D 0 �2 D 4 2.190 0.110 �19:0 �42:0 C5:5
•� D 2 cm�1 �1 D 150

CaO 77 – – 2.2205 – ˙21:8 – –

1.8 •=�1 D 0:67 �1 D 3 2.2211 0.122 ˙31:2 ˙24:2 –

minima at a compressed octahedral geometry. The energy of the A1 andA2 vibronic
states above the ground E vibronic state are given by �1 and �2 respectively in
Table 5.

The small random crystal strains can be quantified and this is also given in
Table 5. It was found that the strain can be described by a Gaussian distribution
characterised by a mean value, •, of zero and a half width of ı� D 2 cm�1. The
analysis also differed from that of previous workers in both the hyperfine values
and the requirement of a nuclear quadrupole term. The transitions within the lowest
excited singlet could also be observed directly [31]. It can be concluded that the
Cu(II)/MgO system can be described as an almost pure dynamic Jahn–Teller case.

3.1.3 The S1 S0 Resonant Two-Photon Ionisation Spectrum
of Supersonically Cooled Triptycene

The molecule triptycene provides an example where the vibronic transitions to
and from a Jahn–Teller active E state can be reproduced quantitatively using the
techniques described in Sect. 2.3 [34]. Figure 12 shows the experimental spectrum
measured via two-colour resonant two photon ionisation (2C-R2PI). The high res-
olution is due to triptycene being cooled by the super-sonic expansion of an Argon
carrier gas. A tuneable dye-laser is scanned across the absorption spectrum, when
the molecules absorbs this first photon a second laser .� < 35;000 cm�1/ ionises
the molecule which is then detected by a mass spectrometer. No ion signal is detect
with either laser (colour) used alone. The rejection of 13C isomers further nar-
rows the spectral bands, the remaining 1–1:4 cm�1 vibronic line-width is due to the
blue shaded rotational envelope. In what follows we will simply call the 2C-R2PI
spectrum in Fig. 12 the absorption spectrum.

Figure 13 shows the dispersed fluorescence spectra for laser excitation directly
into the different vibronic lines labelled a–h in Fig. 12. Under the experimental
conditions there is no relaxation from these excited vibronic levels within the 20 ns
fluorescence lifetime. Figure 12 thus contains the A! E transitions from the lowest
vibrational level of the ground electronic state, and Fig. 13 contains the A  E
transitions for a number of initial vibronic E levels to the numerous vibrational
levels of the ground electronic state.
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Fig. 12 The 2C-R2PI “absorption” spectrum of triptycene

Fig. 13 The unrelaxed fluorescence from the vibronic levels labelled a–h in Fig. 12

A cursory examination of these spectra immediately reveals:

(a) There is no mirror image symmetry of the absorption/emission spectra. The
A! E spectra (Fig. 12) are distributed over�350 cm�1, while the A E fluo-
rescence from the electronic origin (Fig. 13a) is distributed over
�800 cm�1.
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(b) The ground state is very harmonic showing progressions with an energy separa-
tion of 64:2 cm�1 extending out to n > 30 for the fluorescence from the highly
excited E levels. The energy separation of the last pair is <0:5 cm�1 different
from the separation of the first pair.

(c) The excited state is extremely “anharmonic”, no single line of the spectrum can
be interpreted as a combination of any two other lines. The energy separation
of the four most intense lines a, b, d, e are irregularly spaced (32.8, 33.5, 39.0)
with an average separation of �35 cm�1.

The fact that a progression in the same 64 cm�1 vibrational mode is seen in the
fluorescence from all levels shows that the irregularly spaced vibronic lines in the
absorption spectrum must belong to the same 64 cm�1 vibrational mode that is har-
monic in the ground state. This mode can be described as a wagging of rigid benzene
rings [35]. These observations are typical of an A! E transition where the irregu-
larly spaced levels corresponds to the transitions to the coupled E˝e vibronic levels.
The parameters required to simulate the spectra are the first and second order cou-
pling constants .A1; A2/ and the harmonic vibrational energy .�!/ that would occur
in the absence of the Jahn–Teller effect. The particular values that reproduce exper-
iment are given in Table 6 and a comparison between experimental and calculated
spectra shown in Fig. 14.

Remarkably, most of the complex structure observed experimentally is given by
the simple Jahn–Teller model. At first it may seem an easy matter to arrive at these
values but in practice it is very difficult unless one is quite close to the correct ones.
Figure 6b shows the calculated E ˝ e energy levels as a function of the second-
order coupling constant A2. Since only the lowest vibrational level of the A ground
electronic state is populated, only transitions to the vibronic levels of E symmetry
have intensity. The experimental energies are marked with a–i in Fig. 6b. It can be
seen that the energy levels vary in a complicated manner as a function of A2 with
many avoid crossings. Even in this one dimensional slice with all other parameters
fixed to they “best fit” values, it would be difficult to match the calculated levels
with experiment using a least square fitting procedure.

The key to arriving at the correct fit is to understand the intensity patterns in the
fluorescence spectra. In Fig. 13 the fluorescence from level a has the usual Franck-
Condon pattern with the intensity increasing with n to a maximum .n D 5/ and
then decreasing. The fluorescence from level b goes through a maximum .n D 1/

Table 6 Potential Parameters and Derived Properties of the E˝ e surface of triptycene

Potential Parameters Derived Properties

�¨g D 64:2 cm�1 EJT D 113:4 cm�1 Jahn–Teller stabilisation energy
�¨e D 47:8 cm�1 Ebarr D 67:8 cm�1 Barrier height
A1 D 78:9 cm�1 �0 D 2:87 Radial position of the minima
A2 D 20:4 cm�1 �s D 1:16 Radial position of the saddle points

3� D 0:93 cm�1 tunnelling splitting
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Fig. 14 The comparison of experimental with the A! E spectrum calculated with the parameters
in Table 6. A plot of the E˝ e potential energy surface is shown

and minimum .n D 5/ and a second maximum .n D 9/ before decreasing for
higher n. The fluorescence from level d oscillates further, having 2 minima while
the fluorescence from level e has 3 minima.

The 0, 1, 2, 3 minima in the fluorescence intensities from levels a, c, d, e respec-
tively reflects the nodal structure of the initial state vibronic wavefunctions in the
radial direction. The paraboloid of the ground state potential energy surface does
not vary in the angular direction which results in it not being possible to observe the
angular nodal structure of the vibronic wavefunctions. As the Jahn–Teller minima of
the excited state are displaced with respect to the ground state in the radial direction,
the radial distribution of the vibronic wavefunctions is reflected in the fluorescence
intensity patterns. Thus the fluorescence intensity patterns in Fig. 13 are the pro-
jection of the excited state vibronic probability functions onto the ground state
surface. This is analogous to the semi-classical description of the Franck–Condon
intensity patterns observed in vibronically resolved electronic spectra between non-
degenerate states. The semi-classical the Franck–Condon envelope is a projection of
the initial state probability function projected onto the final state potential surface,
which will be close to linear at large displacements, resulting in a Gaussian like
intensity distribution.

We can associate the lowest levels with the approximate quantisation in radial
and angular directions, characterised by the local mode quantum numbers n�
and n
 . The levels a, b, d, e then correspond to approximate radial excitations
np D 0; 1; 2; 3 with the approximate energy separation of �35 cm�1. The flu-
orescence from the vibronic level c has a similar zero node pattern as that from
level a, indicating that it too has a np D 0, but is the first excited angular state
n
 D 1. The approximate energy of this angular mode is �56 cm�1. This immedi-
ately indicates that the second-order coupling is relatively large. The E˝ e surface
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is warped to such an extent that, within the minima below the barriers, the curva-
ture in the angular direction is larger than in the radial direction. This situation can
be contrasted with the parameters typical for alkali trimers such as Na3 where the
second-order coupling and thus barrier heights are small and the angular vibration
is better described as a hindered internal rotation [36].

As the potential energy surfaces are known to high precision, one may turn to
some of the more subtle details of the spectroscopy of this system. This includes the
coupling to a vibration of a2 symmetry peak by momentum coupling [37] and the
perturbation of the spectrum by complexation with noble gas atoms [38].

3.2 The Ham Effect

3.2.1 Theoretical Concept

In the mid- to late 1960s, Frank Ham produced two papers [10,39] and a review arti-
cle [32] on the Jahn–Teller effect that have had a profound influence on the way in
which experimentalists view the phenomena. Ham showed that the dynamical Jahn–
Teller effect, whilst not giving rise to a static distortion, can give rise to a substantial
“quenching” of the effect of certain orbital operators. “The Ham effect”, “Ham-
quenching” and “Ham-factors” are now common parlance amongst spectroscopists,
being used to describe the reduction of the orbital Zeeman effect and spin-orbit
coupling beyond that expected from covalent bonding. We introduce the theoretical
concept by first considering a simple, hypothetical example [40], before considering
the application of the theory to the E˝ e problem. Spectroscopic and magnetic data
from salts containing the titanium(III) and vanadium(III) hexaaqua cations serve to
demonstrate the experimental manifestation of the Ham-effect.

Our hypothetical molecule possesses D4h symmetry and has a valence electron in
the fpx; pyg set of orbitals. The ground term is therefore 2Eg and we assume that all
other terms are too high in energy to mix with it significantly. The fpx; pyg orbitals
may interact with the non-degenerate mode b1, depicted below (Fig. 15).

The coupling of a doubly degenerate electronic state with a single non-degenerate
vibrational mode is the simplest possible example of the Jahn–Teller effect, for
which the E˝ b1 Hamiltonian is,

OH D 1

2
�!

�
P 2 CQ2

�
U� C A1


�Q 0

0 Q

�
; (30)

where the matrix operates within the fpx; pyg orbital state basis. This Hamiltonian
can be rewritten as a pair of Hamiltonians:

OH D 1
2
�!

�
P 2 CQ2

�
U� ˙ A1Q

D 1
2
�!

�
P 2 C

�
Q˙ A1

�!

�2	
U� � A2

1

2�!

: (31)
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Fig. 15 The p orbitals fpx; pyg in a square of neighbours interacting with a single asymmet-
ric mode

Q

−

A1

EJT

A1
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A1−

Fig. 16 The potential 1=2�!Q2 ˙ A1Q of (31). Also shown is the form of the ground state
vibrational wavefunctions localised in the potential energy minima

These represent a pair of harmonic oscillators with their minima displaced by ˙A1

�!

and reduced in energy by EJT D A2
1

2�!
, as depicted in Fig. 16.

The point to emphasise concerning this example is the reduced overlap between
the ground vibronic wavefunctions associated with the two electronic states, on
account of the displacement of the potential energy minima. The expectation value
of any electronic operator connecting the two orbital electronic states will be
similarly affected. Consider the orbital Zeeman interaction about the z axis, given by

OH D Bzˇk OLz D BzˇkUA2
; (32)

where Bz is the magnetic field, ˇ the Bohr magneton and k the orbital reduction
factor. In the fpx; pyg orbital basis, the electronic operator UA2

is off-diagonal and
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Fig. 17 Energy Level diagram pertaining to the ŒTi.OH2/6�
3C cation, following the one-electron

orbital energy level scheme postulated by Best [47]. The wavefunctions of the 2Eg ground term are
defined in terms of the quantum numbers jML;MSi

imaginary,

UA2
D
�
0 �i
i 0

	
: (33)

In the basis of the ground vibronic wavefunctions  iDx;y
0, localised at positions
alongQ of˙A1

�!
in Fig. 16, an additional reduction factor is required to account for

the reduced overlap between the vibrational wavefunctions:

OH D Bzˇk pE˝b1
UA2

; (34)

where,

pE˝b1
D

 y

�
QD A1

�!

	

0

ˇ
ˇ
ˇ
ˇ OLz

ˇ
ˇ
ˇ
ˇ x.QD�A1

�!
/
0

�

h y.QD0/
0j OLzj x.QD0/
0i D

 x .QD�A1

�!
/
0

ˇ
ˇ
ˇ
ˇ OLz

ˇ
ˇ
ˇ
ˇ y.QD A1

�!
/
0

�

h x .QD0/
0j OLzj y .QD0/
0i
D exp

�
�EJ T

�!

�

(35)
The reduction in the orbital Zeeman interaction approaches zero exponentially as
EJT increases and �! decreases. Note that the quantity EJT depends solely on the
potential energy.

The beauty of Ham’s theory is its simplicity. The Ham factors for any particular
problem can be classified by symmetry. This means that any other operator which is
a function of the UA2

will be reduced by the same factor. Note that Ham’s treatment
implies that that the linear coupling is large compared to the additional terms in the
Hamiltonian that are subsequently evaluated as perturbations of the ground vibronic
energy levels.
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For the 2SC 1E˝ e problem, the Hamiltonian describing the perturbation of the
isolated 2SC 1E ground term has the form [10],

OH D GA1
U� C pGA2

UA2
C q .G�U� CG"U"/ ; (36)

where GA1
; GA2

; G� and G" are functions of the spin operators transforming as
the A1; A2; E� and E" irreducible representations respectively of the octahedral
point group and p and q are the Ham factors for the E˝ e problem.

The Hamiltonian in (36) operates on the ground state vibronic wavefunctions‰�
and‰" which can be expressed as products of electronic functions and an expansion
of the two dimensional vibrational states 'i of appropriate symmetry [41]. The lin-
ear combinations are found using the E˝ e and A2˝ e vector coupling coefficients
(the A1 ˝ e coefficients are of course trivial) following the same procedure as used
to construct the vibronic Hamiltonian in (15). It may then be readily shown that for
strong linear coupling, p ! 0 and q ! 1=2 [10, 41]. Note however, for second
order coupling q can take values less than 1/2 [42].

3.2.2 Paramagnetism of Caesium Titanium Alum

The way in which to calculate the paramagnetic susceptibility was first set out by
Van Vleck in 1932 [43], who then set about applying the theory to explain the
magnetic data from a number of inorganic salts [44]. Among these was the alum
CsŒTi.OH2/6�.SO4/2 � 6H2O, in which the titanium(III) cations are on sites of trigo-
nal symmetry and are well-separated by two water molecules and a sulphate anion
[45]. With but one unpaired electron, the ŒTi.OH2/6�

3C complex was thought to be
ideally suited for the application of the crystal field theory that had recently been
developed. A satisfactory description of this ostensibly simple system proved elu-
sive however. The breakthrough came over half a century later from the insight of
the inorganic chemist Stephen Best. From arguments based upon AOM calculations
of Daul and Goursot [46], complemented by structural and spectroscopic studies of
a host of isostructural “-alums, the trigonal field was shown to be large with the
eg component lower lying [47]. On this basis, the following energy level diagram
shown in Fig. 17 for the ŒTi.OH2/6�

3C cation follows from elementary ligand field
theory.

The key point of this energy-level diagram is that the trigonal field is large with
the orbital doublet term lower lying. The wavefunctions of the lower lying Kramers
doublet are then of the form jML;MS i D

ˇ
ˇ˙1;1

2

˛
, with corresponding g values:

gjj D 2.1� kp�/;
g? D 0; (37)

where k is the orbital reduction factor and p� is the Ham reduction factor. The
theoretical g values are seemingly in contradiction with the experimental ground
state g values of gjj D 1:25; g? D 1:14, determined below 4.2 K [48]. However, the
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Fig. 18 EPR spectra of < 1%ŒTi.OH2/6�
3C cation doped into CsŒAl.OH2/6�.SO4/2 � 6H2O with

the trigonal axis aligned parallel to the external magnetic field after [50]

g values in (37) are valid only for strict axial symmetry. The subsequent discovery
of the 13 K phase transition [49] has led to a satisfactory explanation of all the
experimental data within the framework of the energy level diagram given above.
Experiments on the ŒTi.OH2/6�

3C cation doped into diamagnetic alums isostructural
to CsŒTi.OH2/6�.SO4/2�6H2O aptly demonstrate the manifestation of the Ham effect
and are the focus of this discussion. Let us first consider single crystal EPR spectra
of the ŒTi.OH2/6�

3C cation doped into CsŒAl.OH2/6�.SO4/2 � 6H2O [50] (Fig. 18).
The spectra shown above were recorded with the crystal oriented such as to

yield gjj. The spectra are complicated, consisting of many EPR lines that can be
attributed to chemically distinct ŒTi.OH2/6�

3C cations subject to different degrees of
low-symmetry strain [51, 52]. The transition in the spectrum of the hydrate marked
with an asterisk corresponds to ŒTi.OH2/6�

3C cations in a near trigonal environment
with g? � 0. The important point to note is the dependence of the spectrum upon
isotopic substitution. As the reduced mass of the ligand increases, gjj increases, cor-
responding to a greater quenching of orbital angular momentum. This is a direct
result of the factor p� decreasing with values of decreasing �!, in this parameter
range. Note that the change in the ground state g value is far more pronounced for
deuteration than for substitution of 16O by 18O. To understand this result let us con-
sider eg asymmetric distortions of the ŒTi.OH2/6�

3C cation, components for which
are shown below.

Modes (a) and (b) involve the rigid motion of the water molecules; the increase
in the reduced mass of the vibrations upon deuteration and 18O for 16O substitution
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Fig. 19 Examples of symmetrised distortions of a hexa-aqua complex: (a) the Q� component of
the �2.MO6/; eg.Th/ stretching vibration; (b) TheQ� component of the �5.MO6/; tg .Th/ bending
vibration; (c) the Q� component of the £ŒM.OH2/6�; tg .Th/ twisting libration

is the same. This means that if the Jahn–Teller coupling was dominated by coupling
to these modes, the change in the value of gjj would also be expected to be the same,
which is clearly not the case. The librational mode of water depicted in Fig. 19c cor-
responds to a rotation of the hydrogen atoms about the metal-oxygen bond vector.
The reduced mass of the twisting libration is more or less independent of the mass
of the oxygen atom but doubles upon deuteration. If the coupling was dominated by
this mode, gjj would be independent of the oxygen isotope but would increase signif-
icantly upon deuteration. This scenario is more or less reflected in the experimental
data, though we have simplified the argument for the purpose of this discussion.
The energies of the t2g orbitals are indeed very sensitive to a displacement along
the twisting libration of water, a result predicted by AOM calculations [15, 53] and
borne out by the structural characterisation of the 13 K phase transition [23].

Now let us consider the next highest state. According to the ligand field scheme
in Fig. 17, the spin-orbit splitting of the 2Eg ground term should be of the order
�130 cm�1. However, Raman data of 1% titanium(III) doped CsŒGa.OH2/6�.SO4/2�
6H2O clearly identify an electronic transition at �18 cm�1, attributable to the
ŒTi.OH2/6�

3C impurity [54]. The origin of the 18 cm�1 peak can be understood
with reference to the energy-level scheme shown in Fig. 20 below, which begins
where the scheme in Fig. 17 ends. As a result of the Jahn–Teller interaction,
some of the electronic properties of the upper Kramers doublet are transferred to
the first vibrational excitation, and the energy gap relative to the ground state is
diminished. This is the basis for the effective quenching of the spin-orbit coupling
interaction.

Since the ground state second order Zeeman coefficient is proportional to �1=�,
this vibronic interaction has a profound influence on the magnetic properties of
the ŒTi.OH2/6�

3C cation [50, 54, 55]. With just the ground state populated, the
susceptibility and effective magnetic moment have the form:
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Quenching of the orbital Zeeman effect and spin-orbit coupling results in an
enhancement of both W

.1/
0 and

P

i¤0
W
.2/
i . This in turn yields a larger ground-

state effective magnetic moment and a steeper increase in its value with increasing
temperature, than would otherwise be expected from a ligand field model. The
experimental �eff data are shown in Fig. 21 as function of temperature, along with
theoretical curves calculated with and without the dynamical Jahn–Teller interac-
tion [50]. There are two important points to note. The first is that it is essential
to include the dynamical Jahn–Teller effect to obtain a satisfactory reproduction
of the experimental data. The second point to emphasise is that the two theoret-
ical curves converge to the same asymptotic value at high temperatures. This is
because the effect of the orbital operators that we have discussed, are not lost but are
redistributed to other states and are recovered when these states become thermally
populated.
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Fig. 21 Variation of the effective magnetic moment with temperature for 8.4% ŒTi.OH2/6�
3C

cation doped into CsŒGa.OH2/6�.SO4/2 � 6H2O. The curve labelled “ligand field theory” was cal-
culated from the basis states of the 2Eg.S6/ term only with œ D 130 cm�1 and k D 0:88. The
curve labelled Jahn–Teller fit was calculated with the same electronic parameters but allowing for
Jahn–Teller coupling to two modes with energies of 53 and 894 cm�1 [50]

3.2.3 Electronic Raman Spectrum of Guanidinium Vanadium Sulphate

The vanadium(III) cation possesses one more valence electron than titanium(III).
This means that the alum trigonal field that led to an orbitally degenerate ground
term for titanium(III), splits the vanadium(III) 3T1g .Oh/ ground term into 3A
and 3E.C3/ components with the non-degenerate term lower lying, as depicted in
Fig. 22. The Jahn–Teller effect is now manifested in the excited state as shown most
beautifully by electronic Raman spectra of ŒC.NH2/3�ŒV.OH2/6�.SO4/2 [56, 57],
presented in Fig. 23. The three prominent transitions in the Raman spectrum, cen-
tred at ca. 2; 720 cm�1, separated by ca. 70 cm�1, are assigned to the transitions
depicted in Fig. 22, between the spinor levels of the 3A .C3/ and 3E .C3/ terms, as
confirmed by the temperature dependence of the spectrum. The zero-field-splitting
parameter of the ground term, D, has been determined independently by EPR to be
3:73.5/ cm�1 [58].

If the spectroscopic data are interpreted within the confines of ligand field theory
[25], values for D; � and A� of 3.73(5), �2;720 and �70 cm�1 are respec-
tively obtained, where A is a ligand-field parameter reflecting the 3T1g .F/; 3T1g

(P) mixing. These values are, however, mutually incompatible. In the limit where
� >> A�, the parameter, D, is of the order � .A�/2 =� from ligand field the-
ory; with � and A� set to 2,720 and 70 cm�1, a value for D of �1:8 cm�1 is
then obtained, which is less than half that determined from EPR studies. On the
other hand, values for D and � of 3.73 and 2; 720 cm�1 yield a value for A� of
�100 cm�1 which is considerably larger than that suggested by the spacing of the
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Fig. 22 Ligand-field energy level diagram showing the spinor levels and energies of the 3T1g.Oh/

ground term in the limit where � >> A�. The solid arrows designate the allowed 3A!3E.C3/

electronic Raman transitions, based on the�Ms D 0 selection rule. The states are labelled accord-
ing to the zeroth-order ligand-field wavefunctions, where A is a ligand-field parameter reflecting
the 3T1g.F/; 3T1g.P/ mixing

three prominent electronic Raman bands. The poor agreement is not improved when
the ligand field basis is expanded to include all 45 states arising from the d2 elec-
tron configuration. The discrepancy between experiment and ligand field theory is a
result of a pronounced excited state Jahn–Teller effect that reduces the energy gap
between the low-lying states of the 3E term, i.e. the quantity A� cannot simply be
extracted from the electronic Raman spectrum.

In Fig. 23 are shown theoretical electronic Raman profiles [56]. The spectra were
calculated from the eigenvalues and eigenfunctions of .3A˚3 E/˝ e vibronic inter-
action [25], constructed in trigonal symmetry using the group theoretical principles
outlined in Sect. 1. The calculated spectra take no account of the additional split-
ting caused by the two crystallographically distinct ŒV.OH2/6�

3C species, and the
width of the Lorentzian bands is set to a constant value across the spectrum. With
EJT set to zero, three bands are expected, with an energy separation of �A� The
relative intensities of the bands reflect the thermal populations of the states of the
3A .C3/ ground term. The two higher lying spinor levels of the 3E .C3/ term are
split to second-order by spin-orbit coupling, as depicted in Fig. 22. The splitting is
not resolved in the calculated spectrum, though the higher energy band is visibly
broader than the other two. The curve calculated with EJT D 300 cm�1, is seen to
provide a much better reproduction of the energies of the observed electronic Raman
bands, as well as the intensity distribution across the spectrum, with the presence of
a weak vibronic sideband emerging naturally from the .3A˚3 E/˝ e vibronic cal-
culations. The zero-field-splitting of the 3A term is reduced slightly, the reduction
being facilitated by the high energy of the Jahn–Teller active vibration. With A� set
to 107 cm�1, a satisfactory account of both the Raman data and the parameter,D is
obtained.

The magnitude of the Jahn–Teller coupling in the ŒTi.OH2/6�
3C and ŒV.OH2/6�

3C
cations is weak compared to the ŒCu.OH2/6�

2C and ŒCr.OH2/6�
2C cations that we

will consider in Sect. 3.3. Nevertheless, the effect on the electronic coordinates
are no less profound since spin-orbit coupling acts to first order in orbital triplet
ground terms and is greatly affected by the Jahn–Teller interaction. The Ham effect
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Fig. 23 Experimental (a) and calculated (b) electronic Raman profiles, corresponding to the
3A !3 E.C3/ transition depicted in Fig. 22. The theoretical profiles were calculated with
A� D 107 cm�1; � D 2720 cm�1; �! D 800 cm�1 and T D 14:5K. The value of EJT used
to calculate each profile is given in the figure, along with calculated (b) and experimental (a) val-
ues of the zero-field-splitting parameter, D. The electronic Raman transitions were folded with a
Lorentzian bandshape, with constant width of 15 cm�1 across the spectrum after [56]

will be apparent for transition metal ions with orbital triplet terms whenever cer-
tain conditions are met. First, spin-orbit coupling should be comparable or less
than the strength of the Jahn–Teller interaction. Secondly, orbitals on the ligands
should be available for  -bonding and the metal-ligand  -interaction should be
highly anisotropic, as is the case for the water ligand [59]. Only in this instance
will the energies of the t2g orbitals exhibit sufficient sensitivity to a given vibration
of the complex. Great attention should be paid to magnetic data from high-symmetry
complexes of the 3d transition metals formed with ligands such as water, hydroxide,
imidazole, pyridine, imidazolate, thiophene, amides, carboxylates, oxalate, acety-
lacetonate, and porphyrins where significant Jahn–Teller coupling, involving the
librational modes of these ligands, can be expected.

3.3 Plasticity of the Coordination Sphere

3.3.1 The Copper(II) and Chromium(II) Tutton’s Salts

Tutton’s salts with the general formula MIMII.H2O/6.SO4/2 offer many iso-
morphous structures of both pure copper(II) compounds and hosts for dop-
ing Cu.H2O/2C6 impurities. These compounds show temperature dependent EPR
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spectra which can be understood in terms of the warped E ˝ e Jahn–Teller poten-
tial surface as shown in Fig. 3, together with a low symmetry rhombic field due
to the Ci site symmetry [60]. This rhombic field has a large component which cor-
responds to a tetragonal compression and the three Jahn–Teller minima become
inequivalent, but with two minima lower than the third, as shown in Fig. 4c. This
gives rise to a temperature dependent EPR spectrum as each vibronic level will
have different electronic properties. If the transitions between the Boltzmann pop-
ulated vibronic levels are fast on the EPR time scale, an averaged EPR spectrum
is observed rather than the superimposed spectra of the individually populated
vibronic levels. This averaging occurs for copper(II) systems where the symmetry
is low enough that the vibronic levels are separated by>50 cm�1. Exceptions occur
where the transition rate between close lying levels is slow. The Cu(II) doped MgO
system discussed above is an example where an anisotropic to isotropic spectrum
transition occurs at �6K. This temperature dependence results from a temperature
dependent exchange rate between the strain split ground vibronic E state and an
excited vibronic singlet state.

The g values as a function of temperature are shown in Fig. 24 for the copper(II)
ion doped into MIZn.H2O/6.SO4/2; MI D KC; RbC; CsC. The interpretation is as
follows. The Cu.H2O/2C6 ion will attempt to adopt the E˝ e Jahn–Teller potential
energy surface with three equivalent minima at the preferred tetragonally elongated
geometry. However, the orthorhombic site symmetry of the host crystal results in a
large low symmetry perturbation of the E˝e Jahn–Teller surface with 
ı ;�180ı in
(14) which stabilises two minima below a third as shown on the right hand side of
Fig. 24. The rhombic nature of the low symmetry field means that 
ı is not directed
exactly at 180ı resulting in the strain discriminating between the two lower minima.

At low temperature the molecules are in their lowest vibronic level, which is
localised in the lowest energy minimum. This minimum is shifted from the 
ı D
120ı exact tetragonal geometry so the resulting g values are slightly orthorhom-
bic at low temperature, but approximate the g values of a tetragonally elongated
complex .�g?<�gjj/. As the temperature is increased, the population of a higher
vibronic level localised in the other minimum .
s � 240ı/ occurs. Whereas the
first minimum corresponds to an approximate geometry with an elongation along
the x molecular axis, the higher energy minimum corresponds to a geometry with
an elongation along y. This approximates the swapping of x and y axes, and results
in the lowest g value oriented along the z axis being temperature independent and
the two higher g values being averaged.

There is much information that can be gained from the temperature dependent g
values. The experimental data can be fitted to the vibronic energies and wavefunc-
tions obtained from a parameterised Jahn–Teller surface with the low symmetry
strain terms. The vibronic wavefunctions can then be used to calculate the g values
and the energy levels can be used to determine the Boltzmann average. Implicit in
this approach are the assumptions:

(a) That each vibronic level can be treated as an isolated Kramers’ doublet (the
applied magnetic field does not mix the levels)

(b) There is fast averaging between vibronic levels.
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Fig. 24 The variation of the g-values for a number of Cu(II) doped Tutton’s salts, after [60].

These conditions are fulfilled for these low symmetry hosts with large strain. It
should be noted that these strain terms are much larger than those that were orig-
inally introduced for Jahn–Teller systems [32]. Strictly, such a large strain should
reduce the problem to a pseudo Jahn–Teller effect and results in many of the sym-
metry related vibronic coupling constants contained in (15) not being constrained to
be equal. However, the resulting large number of coupling constants would greatly
over parameterise the problem, and it has be found that a meaningful picture can
be obtained by retaining the high symmetry coupling constants. The model works
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because the cubic Hamiltonian C low symmetry strain still captures the physics of
the problem. Parameters which are now not required to be equal, will still have sim-
ilar values as they originate from the same electronic driving forces. It is preferable
to continue with what are now effective first and second order coupling constants
rather than introducing the 3 and 9 independent parameters respectively that the low
symmetry problem formally requires.

The trends in the experimental data that can be directly related to the fitted poten-
tials shown in Fig. 24 are as follows. At low temperature the g values become
increasingly close to tetragonal, going down the series KC; RbC; CsC. This is
because the magnitude of the strain, •, is also decreasing down the series. As •
increases the two minima at 
s D 120; 240ı are gradually shifted to a single mini-
mum at 
s D 180ı. Therefore the KC host, with the largest •, will have the largest
shift from 
s D 120ı and the most orthorhombic g values at low temperature. The
temperature dependence of the g values decreases down the series KC; RbC; CsC.
This is due to an increase in the energy difference between the two lowest minima,
which in turn is determined by the orthorhombic component of the strain or the
deviation of 
s from 180ı. The strain obtained from such an analysis can be related
to the geometry of the host lattice, the copper(II) ion acts as a probe to determine
the host geometry [61].

The deuterated Tutton’s salt .ND4/2Cu.D2O/6:.SO4/2 has been studied by a
number of groups and the structural data are collected in Fig. 25. At low temper-
ature the three independent bond lengths of the Ci site corresponds to a tetragonally
elongated octahedron with a small rhombic distortion. The bonds remain tempera-
ture independent until �150K, above which the long and medium bonds approach
each other so that, at face value, the 320 K geometry would be better described as a
tetragonally compressed octahedron. However, rather than the bond lengths chang-
ing from elongated along Cu-O(8) to compressed along Cu-O(9), the diffraction data
are actually the result of an average of two structural isomers. The situation corre-
sponds to a ground state potential energy surface similar to that given in Fig. 4c and
Fig. 24, with two minima lower than the third. At low temperature the Cu.D2O/6

2C
complex is localised in the lowest minimum, and an elongated geometry is observed.
At temperatures above 150 K, the population of the 2nd minima become appre-
ciable. The geometry at this second minimum is elongated along an axis different
to that of the lowest minimum. The diffraction experiments average Cu-O(7) and
Cu-O(8), while that of Cu-O(9) remains temperature independent.

One way to verify this is to measure X-ray absorption fine structure (XAFS)
spectra as a function of temperature [62]. Here the X-ray absorption spectrum
is essentially instantaneous from the equilibrium ground state geometry. The fine
structure appearing in the spectrum due to the scattering of the photoelectron ejected
from the Cu centre with nearest neighbouring atoms can be modelled in terms of the
distances between the atoms. The XFAS derived bond lengths are given by the lines
in Fig. 25 show no temperature dependence. Both structural isomers shown on the
right hand side of Fig. 25 look the same to the XAFS experiment.

It was pointed out by Ham [32] that one of the interesting features of the Jahn–
Teller effect in the solid state is that the high symmetry E ˝ e potential energy
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Fig. 25 The Cu–O bond lengths of .ND4/2Cu.D2O/6:.SO4/2 as a function of temperature. X-ray
and Neutron diffraction symbols, error bars and lines from the analysis of XAFS data

surface is very susceptible to low symmetry perturbations. This has been realised in
the lower symmetry environment of the .ND4/2Cu.D2O/6.SO4/2 Tutton’s salt [63].
The energy difference in the two lowest minima is quite small .�100 cm�1/ and a
relatively small value of orthorhombic strain (change in 
ı ) can reverse the energy
order. The crystal packing, when the Cu.D2O/6

2C ion has the geometry of the
higher energy minimum, results in a slightly smaller cell volume. This means that an
application of external hydrostatic pressure effectively changes 
s and reverses the
energies of the lowest two minima. A much larger geometry change is observed than
one would see in applying pressure to a non-Jahn–Teller system and is an example
of the amplification of a small perturbation that Ham has discussed [32].

The ŒCr.OH2/6�
2C ion possesses the high-spin d4 electronic configuration

and is also subject to strong E ˝ e coupling. By analogy with the ammo-
nium copper Tutton’s salts, the electronic and molecular structure of the complex
in .ND4/2Cr.D2O/6.SO4/2 exhibits an intriguing temperature dependence that
requires the explicit consideration of the vibronic interaction [6, 64, 65]. The pri-
mary difficulty in undertaking Jahn–Teller coupling calculations for high-spin d4

complexes is the size of the electronic basis. Recent work by Graham Carver and co-
workers has demonstrated the limitations of Ham’s perturbative model on account
of the close proximity of the 3T1g term to the ground 5Eg term [66]. The problem
was solved by constructing an effective 3T1 C .E˝ e/ Hamiltonian in the trigonal
point group of the molecule using the AOM. Carver showed how the model could in
principle be applied to any high-spin d4 complex where the ligand-field parameters
in the undistorted trigonal or octahedral configuration can be reliably estimated.
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3.3.2 Sterically Strained Manganese(III) Complexes

The biological activity of manganese(III) complexes is rendered by their redox-
activity and the lability of the first-order co-ordination sphere [67]. Biochemists
often depict manganese(III) enzymes as little factories with molecules approach-
ing the active site in one direction and being ejected out in another. This plasticity
of the co-ordination sphere may be appreciated by considering the effect of steric
strain on the E˝e potential energy surface. Consider the ŒMn.bpia/.OAc/.OCH3/�

�
complex, the structure for which is shown below [68] (Fig. 26).

Crystallographic [68] and spectroscopic [69] measurements are consistent with
the classification of the complex as a rare example of a compressed Jahn–Teller
octahedron. The additional stabilisation of the 3dz2 orbital via. interaction with the
4s orbital and anharmonic contributions to the vibrational potential contribute to the
stabilisation of axially elongated octahedra in manganese(III) co-ordination com-
pounds [11,70–74]. Therefore, a compression can result only if 
ı has a value close
to �60ı; 180ı or 300ı and • is large compared to 2ˇ, as illustrated by the plots
in Fig. 4. In heteroleptic complexes of manganese(III), the ligands tend to arrange
themselves so as to provide a tetragonal strain of the same sign, as this is ener-
getically more favourable. For example in manganese(III) complexes formed with
terminal and bridging fluoride ligands, the overwhelming tendency is for a tetrag-
onally elongated geometry with the bridging ligands in the axial positions [75].
The result has been rationalised in terms of the force constant for the Mn(III)–F
bond being stronger when the fluoride ligand is terminal rather than bridging. When
the co-ordination positions are largely dictated by polydentate ligands, a compres-
sion may become competitive. The strain may be regarded as having two principal

Fig. 26 Structure of ŒMn.bpia/.OAc/.OCH3/�.PF6/. The unique short axes are indicated by
means of arrows
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contributions. The first is the geometrical distortion arising primarily from the steric
constraints imposed by the polydentate ligand. The second is an electronic factor
arising from the differing ¢-bonding capabilities of the ligands. In the framework
of the AOM, the strain may be written down in terms of the angular co-ordinates
and ¢-bonding strengths of the ligands. Neglecting  -bonding, OHst in (13) has the
explicit form,

OHst D

0

B
@

P

i

ei�
�
F i�
�
dx2�y2

��2 P

i

ei�
�
F i�
�
dx2�y2

�� �
F i�
�
dz2

��

P

i

ei�
�
F i�
�
dx2�y2

�� �
F i�
�
dz2

�� P

i

ei�
�
F i�
�
dz2

��2

1

C
A ;

(39)
where the sum is over all the ligands of the complex, whose positions are described
by the polar angles � and 
. The angular overlap factors for the one-electron orbitals
are [71],

F�
�
dx2�y2

� D
�p

3
ı
4
�

cos 2
 .1 � cos 2�/ ;

F�
�
dz2

� D .1C 3 cos2�/=4:
(40)

In order to gain an appreciation of the influence of the changing ligand field envi-
ronment on the geometric structure, it is useful to break the Hamiltonian up into its
cubic and anisotropic parts. In Fig. 27 is shown the variation of the strain vector
as a function of e� for the monodentate ligands, while the e� values for the poly-
dentate ligand are fixed at 7;000 cm�1. It is seen from Fig. 27 that a strain vector
in which the e� values for the oxygen-binding ligators are �7;000 cm�1 bisects the
cubic minima that correspond to elongated octahedra, in a direction that equates to a
compression along the N2–Mn and Mn–O1 bond vectors, with ı D 1;752 cm�1 and

ı D 55ı. In fact, varying the e¢ values of all ligands between 6,500 and 7;500 cm�1
always results in a strain vector that tends to stabilise a compression along these
bond axes. It is reasonable to expect that the e¢ values of the ligands fall within
this range. We conclude, therefore, that as a consequence of the combined effects of
the pronounced geometrical angular distortion and the similar ¢-donor capacities of
the ligands, the low-symmetry strain calculated for the ŒMn.bpia/.OAc/.OCH3/�

C
complex favours a compression along the N2–Mn and Mn–O1 bond vectors, in
accordance with the observed structure. With the geometric constraints held con-
stant, the effect of substituting oxygen for a weaker ¢-donor is a shift in the angular
direction of the vector towards 
� D 0ı and a decrease in the magnitude. This
prediction is also consistent with experiment since substitution of the monodentate
ligands by chloride leads to a tetragonally elongated octahedron, with the minimum
close to 
� D 0ı. The potential energy surfaces resulting from the diagonalisation
of all terms in the Hamiltonian are shown in Fig. 28, showing clearly the shift in
the potential energy minimum on account of the identity of the monodentate lig-
ands. Note that the sensitivity of 
ı to the sigma-donor strength of the ligands is
apparent only on account of the pronounced geometrical angular distortion imposed
by the polydentate ligand, which goes some way to explaining the plasticity of the
co-ordination sphere in bio-inorganic manganese(III) complexes.
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Fig. 27 Cubic E˝ e Jahn–Teller Potential Energy Surface calculated with the parameters �! D
450 cm�1; A1 D �1;400 cm�1; A2 D 10 cm�1 in the fQ™;Q©g co-ordinate frame. The barrier
height is �193 cm�1 with the minima at angular positions of 
¡ D 0ı; 120ı and 240ı. Overlaid
are vectors representative of the magnitude and angular direction of the strain interaction obtained
from AOM calculations. The length of the arrows is proportional to ı, and the fe™; e©g co-ordinate
frame is coincident with that of fQ™;Q©g such that 
• varies from 3ı to 55ı . The AOM calcu-
lations (39 and 40) are for a complex based upon ŒMn.bpia/.OAc/.OCH3/�

C. The AOM angles
are derived from the atomic positions of the complex and the e¢ values for the nitrogen ligators
of the tripodal ligand fixed at 7; 000 cm�1. The e¢ values for the remaining two ligators are varied
between 4,000 and 7; 000 cm�1, as indicated in the figure. When ı is large compared to the barrier
height .2ˇ � 2A2.A1=�!/2/, the potential energy minimum is dictated largely by the value of 
•,
after [76]

4 Concluding Remarks

In this chapter we have endeavoured to make the vibronic calculation of observables
accessible to the reader who is not well acquainted with the Jahn–Teller effect. We
trust that by introducing simple systems studied using a wide range of experimental
techniques, the reader will gain an appreciation of the underlying physics and will
be encouraged to become engaged in this field of research. Just as a little group
theory goes a long way, the computer too can be a surprisingly good teacher. There
is no substitute for hands on calculations to explore numerically the various vibronic
Hamiltonians and their consequences for the electronic and molecular structures
of Jahn–Teller active systems. Finally there is no greater satisfaction in seeing a
signature that one recognises woven into nature’s rich tapestry.
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Fig. 28 E ˝ e Jahn–Teller potential energy surfaces of complexes resembling
ŒMn.bpia/.OAc/.OCH3/�

C and ŒMn.bpia/Cl2�
C. The parameters defining the cubic part of

the Hamiltonian are �! D 450 cm�1; A1 D �1;400 cm�1; A2 D 10 cm�1. The low-symmetry
crystal field was calculated using the AOM, as described in the text. The polar angles were
generated from the atomic co-ordinates and e¢ values of 7;000 cm�1 were used to model the
bonding interaction with both the nitrogen and oxygen ligators. The e� values of the chloride
ligands were reduced to 4;000 cm�1, all other parameters remaining unchanged, after [76]
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Instabilities in Doped Materials Driven
by Pseudo Jahn–Teller Mechanisms

P. Garcı́a-Fernández, A. Trueba, J.M. Garcı́a-Lastra, M.T. Barriuso,
M. Moreno, and J.A. Aramburu

Abstract Substitution of a host lattice ion by an impurity can produce a sponta-
neous instability lowering the initial local symmetry of the site. In some cases the
impurity remains on-centre and the distortion only involves the motion of the nearest
ions while in other cases the impurity moves off-centre along particular directions
of the lattice. In this article experimental and theoretical work on spontaneous insta-
bilities of impurities in ionic solids driven by pseudo Jahn–Teller vibronic coupling
mechanisms is reviewed. Particular attention is paid to the results of density func-
tional theory calculations addressed to understand the microscopic origin of the
instability and also to quantify the involved distortion. Particularly, we aim to help to
overcome a paradigm taken root among many researchers of physics and chemistry
of solids: that the instabilities of atoms and ions in pure and doped solids are due
to difference of atomic sizes. On the contrary, we present a great quantity of exper-
imental evidences and theoretical results showing that it is an effect of the vibronic
coupling.

1 Introduction

Doped insulating and semiconductor materials are widely investigated due to the
new optical, magnetic and electrical properties introduced by a given impurity in
a crystal lattice [1–11]. Knowledge of the geometrical and electronic relaxations
produced in the stabilization of the impurity into the host crystal is certainly a pre-
requisite for understanding all the associated physico-chemical properties due to the
impurity centres. Nowadays relevant information on this issue can be obtained by
means of several experimental techniques, but all of them have important limita-
tions [12–18]. The huge development of ab initio calculations during last years has
greatly contributed to quantify the relaxations, understand its microscopic origin
and to have some predictive control [19, 20].

Very different situations are experimentally found when truly diluted impurities
in insulators are considered. Sometimes, the impurity replaces a host lattice ion
producing a totally symmetric distortion of neighbour ions that keeps the local sym-
metry, at least in the electronic ground state [21–32]. However, there are other cases
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Fig. 1 Picture of the
off-centre <001> motion of
Cu2C in the SrF2 lattice
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where the substitutional impurity gives also rise to a spontaneous instability, that
is, not due to the presence of close defects such as vacancies, interstitials or even
foreign ions, producing a symmetry lowering from the initial high local symmetry
of the site [20]. In many cases the substitutional impurity remains on-centre in the
electronic ground state but there is a non-symmetric distortion of neighbour ions
(ligands) leading to a reduction of the local symmetry. It is well-known that this
behaviour often (but not always) appears for all systems with orbital degeneracy
(Jahn–Teller effect) [20, 33–37]. However, it is worth nothing that on-centre insta-
bilities with lowering of local symmetry can also happen for ions without orbital
degeneracy. A good example of this possibility concerns the Mn2C impurity in BaF2
[38–42] where the local symmetry is Td and notOh as is found for isomorphous lat-
tices like CaF2 or SrF2 [43–46]. On the contrary, in other cases the impurity does
not remain at the substituted ion position but undergoes an off-centre displacement
along a certain direction of the lattice. This phenomenon, responsible for drastic
changes of the coordination number and associated properties of the impurity, seems
to be very subtle. For example, it is observed for SrF2 W Cu2C [47] (Fig. 1) but
not for Cu2C-doped CaF2 [48]. Off-centre motions are also observed in cases like
KCl W LiC [49–56] and KBr W CuC [57–62] involving closed shell impurities.

To understand the microscopic origin of high-symmetry instabilities is an issue
of interest shared by many areas of physics, chemistry and materials science. Par-
ticularly, in molecular sciences it has been subject of multiple investigations during
decades beginning from the concepts of directed valences, localized electron pairs,
and valence shell electron pair repulsion (VSEPR), to the most recent vibronic inter-
action theory [20]. A fundamental step in the development of this theory was the
Bersuker’s works [20, 63, 64] proving that any instability of a high-symmetry struc-
ture in any polyatomic system (molecular and condensed matter) is related to the
coupling between electronic and nuclear motions (vibronic coupling). In systems
with an orbital degenerate state this coupling often (but not always) gives rise to a
Jahn–Teller (JT) instability (Renner–Teller in the case of linear systems) which is
necessarily driven by an even mode when there is an inversion symmetry. In the
case of systems with a non-degenerate state the instability is due to what is called
a pseudo Jahn–Teller (PJT) effect [20] which can involve odd distortion modes. It
should be remarked here that d 9 ions like Cu2C or Ag2C replacing Sr2C in the cubic
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SrCl2 lattice do not exhibit a linear JT effect but undergo an off-centre motion along
a C4 axis driven by a t1u mode [48, 65–68] (Fig. 1).

While the JT effect is today very popular among researchers working on insta-
bilities in pure and doped solids, the PJT effect is much less known. The PJT origin
of distortions in fluxional molecules that present stereochemical non-rigidity has
been subject of many studies [20, 69–72]. However, many solid state researchers
ignore or misunderstand the PJT effect as the origin of spontaneous instabilities in
non-degenerate systems. The PJT problem was formulated by first time in 1957 by
Öpik and Pryce [73] extending the JT theorem to consider instabilities associated
with almost degenerate states. This fact has led many researchers to the erroneous
conception that PJT instabilities are limited to coupling between quasi-degenerate
states [74–77]. On the contrary, the modern developments of the PJT vibronic the-
ory and many numerical calculations have clearly established that there are not a
priori limits for instabilities and so, if the coupling constant between two states is
large, excited states at considerable energies (several eV) can produce the instabil-
ity [20]. A text-book example of it is the out-of-plane displacement of the nitrogen
atom of the ammonia molecule where the principal excited state lies 6–7 eV above
the ground state [20].

A representative example of that confusion is the study of the nature of the ferro-
electric phase transitions in oxides with perovskite structure, as BaTiO3 or PbTiO3,
a subject intensely debated during last six decades. In 1966 Bersuker suggested
[78] that the spontaneous polarization has a vibronic origin and so the PJT distor-
tion may lead to dipole-moment formation and hence cooperative effects between
centres result in spontaneous polarization of the crystal. He also proposed what
is, in fact, the first order-disorder model for ferroelectrics based on an eight-well
potential [78]. This was later confirmed by the diffuse X-ray experiments of Comes
et al. [79, 80]. Nowadays, the dominant theory to explain ferroelectric transition
is Cochran’s soft-mode model [81–83] in which the Ti ion actually changes posi-
tion from the <111> direction, to <110>; <100> or to the octahedral position as
temperature rises. Even though it has experimental support there are other recent
experiments that indicate that even at high temperature the Ti ions are placed on the
<111> directions [84–86] similarly to what is predicted by the eight-site or PJT
models. Also DFT calculations indicate [87–89] that the origin of the distortion is
based on bond changes as predicted by the PJT model.

In the realm of impurities in solids the first system where the existence of an
off-centre displacement was well established corresponds to LiC-doped KCl. After
the initial work by Lombardo and Pohl [49], additional experiments [50–56] lead to
the conclusion that LiC in KCl moves in a <111> direction. Therefore, as there are
eight equivalent equilibrium positions for the LiC ion, the dipole moment formed by
this ion and the associated vacancy can change its orientation by tunneling among
equivalent minima. During the following years, the possibility of inducing some
new phase transitions in the matrix by means of off-centre impurities gave rise to
a great number of experimental and theoretical studies. In addition, diluted impu-
rities with off-centre instabilities were used as model objects for the investigation
of ferroelectric instabilities and tunnel movement of atomic particles and quantum



418 P. Garcı́a-Fernández et al.

diffusion mechanisms in solid state which were pressing problems in solid state
physics and chemistry [90–93]. Concerning the microscopic origin of the off-centre
instabilities produced by impurities in solids, it is also a controversial issue. Already
in 1965 Matthew indicated [94] that off-centre instabilities are related to the substi-
tution of a lattice ion by a smaller impurity, the classical attraction forces producing
a decrease in the ion core repulsive potential. However, in 1969 Quigley and Das
[95] noted that this explanation based on size effects was not satisfactory because
there are some exceptions to this rule along the series of known off-centre impu-
rities. Despite this experimental evidence, that will be widely discussed along the
article, this simplistic explanation has prevailed [96–109], although some authors
have noted the PJT origin of these dipolar (off-centre) distortions in a similar way
to other systems [20, 69, 70, 110–119].

In this article spontaneous instabilities in the ground state of monoatomic impu-
rities in ionic solids driven by PJT vibronic coupling mechanisms are reviewed.
Particular attention is paid to the results of recent calculations addressed to under-
stand the microscopic origin of the instability and also to quantify the involved
distortion. Although many other interesting impurities can be found in covalent
solids the number of works in this field is too large to be covered here. This article
is arranged as follow. Section 2 provides a short description of main experimental
techniques used in the characterization and analysis of PJT instabilities present in
impurities in solids. A brief review of the principal monoatomic impurity centres in
which ground state PJT instabilities have been detected is given in Sect. 3. Some
specific off-centre and on-centre instabilities are analyzed in detail in the follow-
ing sections combining DFT calculations with PJT models. Basic aspects of the
PJT theory are summarized in Sect. 4, while Sect. 5 provides with main details
of the DFT calculations. A wide study into the off-centre displacement sometimes
observed for d 9 (NiC;Cu2C and Ag2C) [19,48,65–68,120–122] and d 7.FeC/ [123–
125] impurities in crystals with fluorite structure (Fig. 1) is provided in Sect. 5.
Section 6 deals with the controversial case of FeC in the incipient ferroelectric
KTaO3, a conspicuous example showing the limitations of magnetic resonance tools
in oxides [126–129]. Section 7 is devoted to understand the microscopic origin of
the reversible tetrahedral-octahedral transition experimentally observed more than
30 years ago for BaF2 W Mn2C at T�50K, not observed for other MF2 (M D Ca,
Sr, Cd) lattices or in any fluoroperovskite [38–42]. Finally, the main conclusions of
the present work are gathered in Sect. 9.

2 Experimental Techniques for Observation
and Characterization of Instabilities

A key issue in the realm of impurities experiencing off-centre displacements is the
availability of experimental data which prove unambiguously the existence of such
a distortion. To achieve this goal a good advance comes out when selective tools
(silent for the pure host lattice) can be used a fact which allows one to explore
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Fig. 2 EPR spectrum
measured for CaF2 W NiC at
T D 20K with the magnetic
field parallel to <100> [121].
The five superhyperfine lines
seen on the right correspond
to centres whose principal
axis is either <010> or
<001>, while those
corresponding to the left
packet correspond to
“parallel” centres where the
principal axis is <100>
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in some detail the local geometry related to a particular impurity. In the case of
transition-metal impurities in insulators good information on the local structure
around the impurity is provided by magnetic resonance techniques thanks to the
observation of hyperfine interaction from unpaired electrons with nearest nuclei,
shortly called superhyperfine [130].

The power of the electron paramagnetic resonance (EPR) technique for prov-
ing that the NiC ion in the CaF2 lattice is not placed at the centre of the cube but
moves off-centre (Fig. 1) [120, 121] is well illustrated in Fig. 2. Let us assume that
the NiC impurity is surrounded by a number, NL, of chemically equivalent F� ions
(nuclear spin for 19F is I D 1=2) which are also magnetically equivalent for a
given orientation of the magnetic field, H. The number of superhyperfine lines is
just equal to 2INLC1, thus reflecting directly the number of ligands [120,121,130].
According to this simple reasoning, if NiC is placed at the centre of the cube and
H is parallel to one of the three C4 axes, then NL D 8 and thus nine superhyper-
fine lines should be observed. As shown in Fig. 2 the number of superhyperfine
lines detected experimentally for CaF2 W NiC is however equal only to five, a fact
consistent with a number of equivalent ligands equal to four. This key experimen-
tal result thus supports the off-centre motion of NiC along <001> type directions
(Fig. 1). Aside from reaching this relevant conclusion a detailed analysis of the
experimental superhyperfine tensor allows one to get a reasonable estimation of the
distance between the final position and the centre of the cube [121]. Similarly to
the results displayed in Fig. 2, the off-centre motion undergone by Cu2C; Ag2C or
FeC impurities in SrCl2 has been supported by the observation of 13 superhyperfine
lines consistent with a nuclear spin I D 3=2 for the two isotopes of chlorine [65–
68, 120–125]. In the domain of off-centre displacements it is crucial to be sure that
the instability has a spontaneous character and thus it is not driven by the presence
of another defect close to the impurity. Relevant information on this issue can be
derived through the electron nuclear double resonance (ENDOR) technique which
is able to explore beyond the first neighbours shell [130]. In the ENDOR study car-
ried out on CaF2 W NiC [121] and SrCl2 W FeC [124] no evidence of a close defect
has been encountered. The power of magnetic resonance techniques is reduced when
ligands have zero nuclear spin such as it happens for 16O. However, in these cases an
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anisotropic g tensor and the existence of a zero field splitting (for ions with S > 1=2)
point out that the local symmetry around the impurity is not cubic [126–128]. On
these basis, a recent study carried out on KTaO3 W FeC put forward that FeC is not
at the KC site but experiences an off-centre motion along <001> directions [129].

The existence of an off-centre motion for nd10 ions like CuC.n D 3/ [57–
62, 131–137] or AgC .n D 4/ [138–148] in alkali halides and CaF2 has also been
widely investigated. Although these ions are not paramagnetic in the ground state
they exhibit some optical absorption bands in the near UV where the host lattice is
transparent [57–60,133,137,138]. Thus absorption in the optical domain is a selec-
tive tool for exploring nd10 ions. Despite this fact, the optical absorption technique
provides with less detailed information on the local geometry around the impu-
rity. In particular the interaction of electronic excited states with local and lattice
vibrations gives rise to bandwidths of about 1; 000 cm�1 at room temperature which
precludes the observation of any hyperfine splitting. For this reason in the case of
nd10 ions placed in cubic lattices an evidence, though indirect, on the off-centre
motion can be reached from the integrated intensity of broad bands associated with
a nd10 ! nd9.n C 1/s transition [57–60, 133, 137, 138]. If the local symmetry is
cubic that transition is parity forbidden while such a selection rule is broken when
the ion moves off centre and thus the local symmetry is reduced. In the latter case
the nd10 ! nd9.nC1/s transition becomes allowed for the electric dipole selection
rules and the oscillator strength, directly related to the integrated intensity, is essen-
tially independent on the temperature. By contrast, if the nd10 ion remains on-centre
the oscillator strength is borrowed from the vibronic coupling involving both odd
excited states and odd vibrational modes. Calling Qu and �u the normal coordinate
and frequency of such a mode the oscillator strength depends on the thermal aver-
age <Qu

2 > and thus grows linearly with the temperature providedKBT >> h�u.
According to this reasoning, if the experimental integrated intensity is temperature
independent it can be concluded that ions have moved off-centre but it is hard to
know the actual magnitude of the motion [137].

A selective tool to study the local structure around an impurity is the Extended
X-ray Absorption Fine Structure (EXAFS) spectroscopy. Despite this fact, only
the work of Emura et al. on CuC-doped NaCl [149] and NaBr [150] has, to our
knowledge, employed this technique in the field of off-centre impurities in insulat-
ing materials. In contrast with magnetic resonance techniques, EXAFS can also be
used to explore non-paramagnetic impurities provided they can absorb X-rays, a fact
that excludes light elements like Li or C. By contrast, EPR is better to work with
low impurity concentrations below about 50 ppm and also when different oxidation
states of the same element (for instance, Fe3C and FeC [151]) are simultaneously
present in a given sample.

Let us say a few words on non-selective techniques which have been employed
in the study of LiC systems [93, 152]. If this impurity moves off-centre in a alkali
halide lattice the pair formed by the positive vacancy and the LiC ion gives rise to an
electric dipole, p. It is well known that free dipoles under an applied electric field,
E, tend to place p parallel to E while thermal disorder is opposed to this effect.
For this reason, if the average value of p at a given temperature is designated by
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<p>, the j<p>j value increases when temperature is reduced following a Curie-
Debye law. Thus, the existence of free dipoles gives a supplementary contribution
to the dielectric constant which is temperature dependent. It is worth noting that this
situation can not always be applied to the case of dipoles in insulating lattices where
they are not necessarily free for reorienting following the applied external field, E.
In other words when the dipoles are trapped in a deep well and thus they are not able
to jump to equivalent positions they can not be detected through dielectric constant
or ionic thermocurrent measurements. Even in the case when reorientation takes
place, one should not forget that these techniques give information on all formed
dipoles. In particular, the presence in the samples of unwanted impurities requiring
charge compensation leads to the formation of dipoles with the associated vacancy.
More details on non-selective techniques can be found for instance in the works by
Deigen and Glinchuk [152] and Bridges [93].

3 PJT Instabilities of Monoatomic Impurities in Solids: Survey
of Experimental Results

Dipolar instabilities of impurities in solids were discovered in 1965 by Lombardo
and Pohl in LiC-doped KCl [49]. Since then, a large amount of off-centre and
on-centre instabilities of monoatomic impurities in insulator and semiconductor
materials have been reported. In many cases the impurity centres are not well char-
acterized and the observed instabilities could be due to close defects. In this article
we only consider centres with spontaneous instabilities driven by PJT mechanisms.
An exhaustive review of all these centres is beyond the scope of this report and we
have selected representative examples based on the authors’ interest. Some early
reviews can be found in [93, 152, 153].

3.1 Off-Centre LiC Ions in Alkali Halides

In 1965 Lombardo and Pohl observed an electrocaloric effect in LiC-doped KCl
[49] suggesting that the small LiC ion might not be stable at the normal lattice site
but they would be sit off-centre in the cage of the nearest neighbours, thus leading to
a dipole moment of about 1.14 eÅ which can change its orientation. Further deter-
minations of the dipole moment were obtained from electric-field changes of the
specific-heat anomaly [50], far-infrared absorption [51, 52] and from paraelectric
resonance [53, 54]. The dipole moment of the LiC ion is equal to zero for the sta-
tionary tunneling states, the impurity being equally distributed between the potential
wells. The orientation of the dipoles was investigated by measurements of the sound
velocity [55] and nuclear magnetic resonance (NMR) [56] showing that LiC in KCl
is displaced in a <111> direction and thus eight equilibrium positions exist.
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A great number of experiments have been carried on LiC impurities in different
alkali halide lattices. However, only three other systems have shown any indica-
tion of off-centre behaviour, LiC-doped NaCl, RbCl and KBr lattices (Table 1).
Considering the case of KBr:LiC, early paraelectric cooling [154], infrared (IR)
absorption [155] and specific heat [156] measurements did not indicate off-centre
behaviour. However, later IR measurements in KBr:LiBr alloys observed a 100%
shift of the Li-activated KBr resonant mode, coherent with an incipient instabil-
ity associated with low-lying modes [157]. New IR measurements under electric
field and stress [51] were interpreted as due to an off-centre<111> instability with
a low-barrier-potential well. Similar conclusions were obtained by Narayanamurti
and Pohl [91] from paraelectric resonance spectra, but the orientation of the dipole
appeared more consistent with a <110>model. Also IR measurements under stress
by Zoller et al. [158] and sensitive paraelectric resonance measurements by Russel
and Bridges [159] and Ready et al. [160] indicate a <110>model although it could
not explain all data. Finally Greene and Sievers [161] performed a systematic study
of the paraelectric modes with far-IR Fourier transform technique, showing that the
spurious satellite modes reported by Bridges et al. [158,159] are due to LiC pairs. In
the case of NaCl:LiC, Estle and Carnes [162] reported the observation of paraelec-
tric resonance, but no electrocaloric effect has been observed in this system [163].
Moreover, IR absorption under an external electric-field by Russell and Bridges
[164] show strong paraelectric character inconsistent with a <111> model, simi-
lar a KBr:LiC. In RbCl:LiC, experiments with electrocaloric techniques [163, 165]
detected no paraelectric behaviour. However, from dielectric measurements at low
temperatures under hydrostatic pressure up to a 7 kbar Thormer and Lüty suggested

Table 1 Summary of experimental information for LiC; CuC and AgC impurities in alkali halide
lattices. All lattices present rock salt structure except CsCl and CsBr that have CsCl-type structure.
Italic letters indicate a doubtful assignment

Lattice LiC CuC AgC

NaF – On-centre –
KF – On-centre –
LiCl – On-centre –
NaCl Off-centre <110> On-centre On-centre
KCl Off-centre <111> Deep off-centre <111> On-centre
RbCl Deep off-centre <111> Off-centre Shallow off-centre <110>
LiBr – – –
NaBr – Shallow off-centre <111> –
KBr Off-centre <111> Deep off-centre <111> On-centre
RbBr – Off-centre Shallow off-centre <110>
NaI – Deep off-centre –
KI – Off-centre On-centreCoff-centre
RbI – Off-centre Deep off-centre <111>
CsCl – – Off-centre <110>
CsBr – – Deep off-centre <111>



Instabilities in Doped Materials Driven by Pseudo Jahn–Teller Mechanisms 423

[166] that an enhanced off-centre displacement can lead to drastic decreases in the
dipole mobility so that reorientation rates may freeze in at rather high temperatures
like classical dipoles.

Computations of minimum-energy configurations for some off-centre systems
were first carried out on the basis of polarizable rigid-ion models, mainly devoted
to KCl:LiC [95,167–169]. Van Winsum et al. [170] computed potential wells using
a polarizable point-ion model and a simple shell model. Catlow et al. used a shell
model with newly derived interionic potentials [171–174]. Hess used a deformation-
dipole model with single-ion parameters [175]. At the best of our knowledge, only
very limited ab initio calculations (mainly Hartree-Fock or pair potential) have been
performed on these systems [176, 177].

Concerning the microscopic origin of the local off-centre instabilities, most
common explanations are based on steric effects (differences of ionic radii and/or
electrostatic effects) [94, 100, 110, 112, 178] but it is not satisfactory because there
are many exceptions to this rule. For example, it can be observed in Table 1 that LiC
remains on-centre in NaCl, NaBr, KBr and RbCl lattices despite the smaller size
of the impurity with respect to the substituted cation. Qualitative PJT models have
been proposed by several authors [20, 110–113] considering the admixture of the
ground state with different excited states. It should also be noted that a model based
exclusively on size properties would always provide the same kind of distortion, i.e.
in the <111> direction and could not be able to explain that LiC goes in <111> or
<110> directions. We believe that this can only be explained taking into account
the chemical bond like in PJT models.

3.2 Off-Centre CuC and AgC Impurities in Alkali Halides

A second group of off-centre cation systems is formed by CuC and AgC ions (d10

configuration) in alkali halides. On the basis of the ensemble of experimental results
(Table 1) CuC ion is not at the on-centre position at low temperatures (Table 1) in
NaCl, KCl, RbCl, NaBr, RbBr, KBr, NaI, KI and RbI lattices. The best understood
system is KCl:CuC, where optical absorption [131–133], ionic thermocurrent (ITC)
[134], magnetic circular dicroism (MCD) [135], lifetime [136] and two photon
spectroscopy [134, 137] measurements have shown the characteristics of <111>-
oriented CuC dipoles at higher temperatures. This effect, however, was found [133]
to “freeze-in” at about 65 K, yielding an Arrhenius-type expression for the dipole
relaxation time with activation energy of 0.155 eV. This is in agreement with the
negative electrocaloric measurements at 4 K [165]. Haneda et al. [135] found that
diffusion coefficients of the CuC cation in NaCl and KCl lattices exceed by three or
four orders of magnitude the corresponding self-diffusion coefficients in the intrinsic
temperature regions. This fast diffusion has been explained as due to the noncentral
position of the impurities [136].



424 P. Garcı́a-Fernández et al.

In the case of AgC ions, a <111> off-centre distortion was considered in AgC-
doped RbCl from the temperature dependence of the UV absorption spectrum [138]
and later confirmed by electrocaloric [139] and paraelectric cooling [53] measure-
ments as well as calculations by means of a polarizable-ion model [140]. However,
IR results were not compatible with a <111> model but could be explained by a
<110> displacement [141]. This model was confirmed by measurements of the
electrodicroism of UV absorption [142] and UV absorption under stress [143].
Dielectric constant [132], optical absorption [132] and paraelectric resonance [144]
measurements under hydrostatic pressure have allowed observing a rapid transi-
tion from off- to on-centre near 1.35 kbar, a “localized analog” to pressure-induced
displacive phase transition in ferroelectrics. From optical absorption measurements
it has also been concluded that AgC presents a shallow off-centre distortion for
NaBr [132] while the displacements are along <110> in RbBr with reorientation
by 90ı tunneling processes at T<5K and classical thermally activated reorienta-
tion at higher temperatures [139]. However, an on-centre position was suggested for
KBr:AgC [138].

The anomalous temperature dependence of the far IR spectrum and dielectric
constant of KI:AgC has been interpreted considering two inequivalent elastic con-
figurations simultaneously available to the defect-lattice system [145–147]. At low
temperatures the AgC ion is on-centre and resonant mode absorption is observed in
the far IR [145–147]. When the temperature is increased a second elastic configu-
ration which has an energy about 24 K above the ground state becomes populated
[145–147]. The large increase in the defect contribution to the dielectric constant
indicates that the AgC ion is off-centre in this second elastic state. An <111> off-
centre configuration has also been suggested for RbI:AgC from the behaviour of
the UV absorption under stress [148] The observed freezing-in of dipole reorienta-
tion around 27 K indicated deep off-centre wells (barrier height about 50 meV) with
small mobility of AgC ions. It is worth noting (Table 1) the increasing off-centre dis-
placements (and decreasing mobility of dipoles) of AgC and CuC ions along RbCl
!RbBr!RbI series, while LiC ions presents the opposite trend in the same series.
It has been suggested [148] that the sizeable quadrupole deformability of AgC and
CuC ions might be responsible of this behaviour.

3.3 Other Off-Centre Impurities in Alkali Halides

NaBr:F� is the only system where a monoatomic anion has been found to have
off-centre distortions. From paraelectric cooling [154,165], dielectric susceptibility
[165], specific heat [165], NMR [179, 180] and nuclear magnetic double resonance
(DNMR) [112] measurements it has been well established that F� experiences a
<110> distortion with tunneling at T<15K and thermal activation above.

The existence of some off-centre neutral atoms in alkali halides has been sug-
gested in connection with singularities of the EPR spectra. EPR spectra of Cu0 .4s1/
atoms entering cationic sites of KCl and RbCl lattices show pronounced temperature
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dependence indicating an <111> off-centre position of the Cu atom at low tem-
peratures [181, 182]. The observed linewidth and hyperfine constant increase with
temperature of Ag0 .5s1/ atoms in anionic sites of KCl, at T<100K, has also been
explained by a<111> distortion [183,184]. A similar model has been suggested for
Mn0 .3d 54s2/ in NaCl [185, 186]. However, the off-centre movement of the Cu0

atom in KCl at lower temperatures has been later reanalyzed as a local second-order
phase transition, indicating that Cu0 is shifted about 0.69 Å toward one of the Cl�
ions in the <100> direction [187].

Of the various s2 ions (e.g. GaC; InC; TlC; Sn2C; Pb2C; Ge2C/ which have
used for doping potassium halide crystals, the Ge2C ion presents unique proper-
ties. The off-centrality of the Ge2C ions in KCl, KBr and KI lattices has been
suggested from optically detected magnetic resonance (ODMR) data and the tem-
perature dependence of the optical absorption and luminescence spectra [188–190].
It is worth nothing that a lot of work is being performed on s2-based ferroelectric
materials in order to get coexistence of magnetism and ferroelectricity (multifer-
roic). Examples include BiFeO3; BiMnO3 and PbVO3 materials, where the A-site
cation .Bi3C; Pb2C/ has a stereochemically active 6s2 lone-pair which causes the
Bi 6p (empty) orbital to come closer in energy to the 2p(O) orbitals. This leads to
hybridization between the 6p(Bi) and 2p(O) orbitals and drives the off-centering of
the cation towards the neighboring anion resulting in ferroelectricity [191–195].

In 1985 Badalyan et al. [196] reported the first-ever observation of the temper-
ature dependence of the configuration of energy minima of a local centre. EPR
measurements performed on MnC .3d 54s/ centres in KCl in the 300–4 K tem-
perature range revealed a sequence of two local first-order phase transitions, not
appearing in the pure KCl lattice, lowering the local symmetry from Oh ! C4h !
C3v in the course of the cooling. Near the transitions between phases, the EPR spec-
tra corresponding to different phases coexist. The microscopic origin of these local
phase transitions has recently been explained assuming a PJT effect involving a soft
quasi-local vibration [41].

3.4 Off-Centre Impurities in Alkali-Earth Oxides

Alkaline-earth oxide host lattices are isostructural with the alkali halides, and so
similar off-centre displacements might be expected to occur in suitably doped crys-
tals. However, an important difference is that the alkaline earth oxides generally
accommodate divalent rather than monovalent impurities, with the advantage for
studies of off-centre effects that divalent transition-metal cations can be studied by
spectroscopic techniques. The earliest identification of an off-centre displacement in
the alkaline earth oxides is for the case of BaO:Mn2C, for which Sochava et al. [197]
found an EPR spectrum of trigonal symmetry about a <111> axis below �140K,
but a motionally averaged, isotropic spectrum above 250 K. The authors explained
these results by postulating off-centre potential minima along <111> directions,
with adjacent minima being separated by a potential barrier of �0:04 eV. A similar
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situation to BaO:Mn2C was found by Krylov and Sochava for Ni2C-doped SrO
[198]. In the cases of d 9 ions Cu2C- and NiC-doped SrO Sochava et al. have found
[199, 200] that the impurities are also shifted along <111> directions but the sym-
metry of separate minimum is lower than C3v (Cs and C1, respectively) due to the
additional tetragonal deformation of the off-centre ion closest environment caused
by static JT effect in the 2E ground state. Also Sochava et al. [201, 202] reported
that the EPR spectrum of SrO W Co2C shows the presence of a C2v centre, tentatively
identified as arising from an off-centre motion of Co2C along a <110> direction.
However, later optical absorption, EPR, MCD [203] and visible and IR absorption
[204] measurements showed that the dominant EPR spectrum in these samples dis-
played trigonal symmetry about a <111> axis. EPR spectra of Fe2C and Fe3C ions
in single crystals of SrO have been reported by several authors [205,206], leading to
off-centre displacements in <110> and <111> directions, respectively. Edgar and
Haider [205] indicated that these experimental observations are in general agree-
ment with the intuitive notion that the instability of a substitutional transition metal
ion in the alkaline earth oxides with respect to off-centre motion depends upon the
difference of host and impurity cation radii. Thus the larger ions, V2C and Mn2C,
are stable at on-centre positions in SrO, whereas the smaller ions, Co2C and Cu2C,
undergo off-centre displacements.

All investigated off-centre ions in alkali-earth oxide lattices are in states localized
in separate wells of the multiwell potential, the situation being fundamentally dif-
ferent from the tunneling states of LiC in KCl. Hopping motion of off-centre ions
in multiwell potential reveals itself in two kinds of experiments [199]: (1) arising
of preferential orientation of off-centre displacements under the action of external
electric field; (2) motional narrowing of the EPR spectrum, i.e., transformation of
initial spectrum into a new one, exhibiting higher symmetry. It is worth noting that
the localization of the ion in separate wells essentially arises from random strains
induced by defects which are inevitably present in any real crystal. The low symme-
try detected by EPR spectra at low temperatures is thus related to the form displayed
by the random strains at a given lattice point. The key role played by random strains
in JT and PJT phenomena was firstly emphasized by Ham [207].

3.5 Off-Centre Impurities in Fluorites

Fluorite crystals MF2 (M D Ca, Ba, Sr, Cd, Pb) have a simple cubic structure in
which the divalent cation M is surrounded by eight fluorine anions located at the
corners of the unit cell. Therefore, these materials provide the possibility of inves-
tigating impurity ions in eightfold coordination, when the ions are substituted on
cation sites. Moreover, the fluorine nucleus has relatively large nuclear magnetic
moment and I D 1=2. This circumstance makes easy the observation of the super-
hyperfine interaction in EPR spectra of transition-metal impurities in fluorides, a fact
which allows to get a good knowledge on the local geometry. Various divalent and
trivalent ions of iron group elements and rare-earth elements have been introduced
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into fluorite lattices to study the local structure of the host lattice and the associated
dynamics.

Properties of hydrogen impurities in fluorite crystals have been extensively stud-
ied from the 1960s. Interstitial hydrogen centres Hi 0 were formed in hydrolysed
SrF2 and BaF2 crystals by X-irradiation [208–211]. These defects are paramagnetic
and can be studied by EPR. In order to explain the anomalous temperature depen-
dence of the hyperfine splitting parameters [208, 209] Hodby [209] suggested that
charge transfer 2p.F / orbitals are mixed in the ground state. Latter, from electron
spin echo decay results it was suggested [210, 211] that the H 0

i .I / centre con-
sists in a H atom in a <100> off-centre position which reorients among the six
equivalent minima by <100> and <110> jumps. Interestingly, although the lat-
tice parameter is smaller in SrF2 than in BaF2, it follows from the experimental
data that the displacements are larger in SrF2 than in BaF2, about 0.1 and 0.05 Å,
respectively [211].

Big off-centre motions .	 1 Å/ have been reported from EPR measurements
performed on JT d 9 (NiC; Cu2C or Ag2C) [47, 65–67, 120, 121] and d 4 .Cr2C/
[212–214] impurities in some fluorite type crystals (Table 2). Experimental results
collected in Table 2 again indicated that off-centre instabilities are not due to size
effects. In fact, NiC moves off-centre in the three CaF2; SrF2 and SrCl2 lattices [68,
120, 121], while the smaller isoelectronic Cu2C ion remains on-centre in CaF2, the
fluorine ligands suffering an orthorhombicT2g˝.t2gCeg/ JT distortion [47,48,68].

A relatively great number of papers have been reported for on Mn2C and Fe3C
centres (d 5 ions with 6S ground state) on fluorite crystals. With the possible excep-
tion of Fe3C in BaF2 [151], the two d 5 impurities remain on-centre. Nevertheless,
Roelfsema and den Hartog [215, 216] have investigated the effect of an applied

Table 2 Summary of experimental information and DFT calculations on the on-centre/off-centre
character for several impurities in fluorite type lattices [19,41,48,122]. The ground state of cations
in hexahedral geometry is shown. When available the experimental or DFT-calculated value of the
equilibrium coordinate, Z0, is also given in parenthesis. Experimental values of a/4 (a is the lattice
parameter) are also given under each host lattice. All distances are given in pm units

Impurity Ground state CaF2 SrF2 BaF2 SrCl2

118 126 155 151
NiC 2T2g.3d

9/ Off-centre Off-centre Off-centre Off-centre
(107) (121) – (157)

Cu2C 2T2g.3d
9/ On-centre Off-centre Off-centre Off-centre

(0) (33) – (106)
Ag2C 2T2g.3d

9/ On-centre On-centre Off-centre Off-centre
(0) (0) – (158)

FeC 4A2g.3d
7/ – – – Off-centre

– – (122) (131)
CuC 1A1g.3d

10/ Off-centre – – –
Cr2C 5X.3d4/ On-centre On-centre Off-centre Off-centre
Hi
0 2A1g.1s1/ On-centre Off-centre Off-centre –

(10) (5)
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electric field on the EPR signal of the cubic Mn2C centre in SrCl2. Using the
polarizable point-ion model they have shown that the potential energy curves for dis-
placements of the Mn2C impurity along the <100>; <111> and<110> directions
are flat within 0.01 eV over distances of 0.3, 0.5 and 0.4 Å, respectively. However,
electric field effect experiments on BaF2 W Mn2C gave the result that in this system
the Mn2C ion cannot be shifted by the external electric field [216]. This fact repre-
sents a new argument against the idea that the difference of the ionic radii between
the impurity ion and the replaced host ion is not the only criterion for the possi-
bility of an off-centre movement. From the experimental evidence that the non-JT
Mn2C .d 5/ ion remains on-centre in the same lattices [215,216] some authors [217]
have tried to relate the off-centre motion with the JT effect. Nevertheless, recent
experiments [123,124] carried out on SrCl2 containing the monovalent FeC .d 7/ ion
strongly suggest that the impurity undergoes a big off-centre motion along <001>
type directions, with no evidence of any close defect to FeC impurity [124]. As FeC
in SrCl2 exhibits a high spin value S D 3=2 its ground state in a perfect cubal sym-
metry would be 4A2

�
eg
4t2g

3
�

with no orbital degeneracy, a situation which is thus
different to that of d 9 ions in fluorite type lattices [125].

3.6 Off-Centre Impurities in Oxoperovskites

As it was pointed out in the Introduction, the problem of the coexistence of
displacive and order-disorder phenomena at the ferroelectric phase transitions of
BaTiO3 has met growing interest in recent time. Strong support of the order-disorder
model comes 30 years ago from EPR measurements performed on Mn4C-, Cr3C-,
and Fe3C-doped BaTiO3 [218–222] because in the low-temperature rhombohedral
phase it was observed that Mn4C, which substitutes isovalent Ti4C sites, is dis-
placed off-centre by 0.14 Å along <111> directions with a reorientational hopping
with correlation times 10�9–10�10 s.

In recent years, strong attention has been paid to the investigation of the behav-
ior of microscopic dipole impurities in incipient ferroelectrics, also called quantum
paraelectric, materials (as SrTiO3 or KTaO3) searching to induce phase transitions
and other interesting properties. A lot of experimental and theoretical work has been
performed on LiC-doped KTaO3. In 1974 Yacobi and Linz [223] carried out Raman
and fluorescence measurements ion finding that substitutional LiC ions gets sponta-
neously displaced along<100> directions from the K site. The off-centre character
of Li ions has also been indicated by electric susceptibility [224], NMR [225],
dielectric relaxation, pyroelectricity, ultrasound and birefringence [224, 226] and
photoconductivity [227] studies. Many shell models, semiempirical and ab initio
calculations have also been performed on this system [228–231]. It is worth noting
that impurity induced ferroelectricity has also observed in systems as KTaO3 W Nb5C
[232] or SrTiO3 W Ba2C [233] where impurity ions are larger than the substituted
host ions or nearly the same.
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An important experimental problem studying paramagnetic impurity centres in
oxide lattices is that magnetic resonance techniques do not always provide with a
definite characterization of paramagnetic impurity centres partially due to the lack of
superhyperfine structure coming from 16O nuclei. A conspicuous example showing
the limitations of EPR technique in oxides concerns the axial iron centre observed in
KTaO3, where models of <100> off-centre distortions of FeC .3d 7/ ion replacing
KC [126, 127] and Fe5C .3d 3/ ion located at Ta5C site [128] have been suggested.
This puzzling problem will be considered in Sect. 7, showing the usefulness of ab
initio calculations for clarifying this situation.

3.7 Off-Centre Impurities in Other Ionic Lattices

Many studies have been performed on optical properties of doped fluoroperovskite
lattices searching for new tunable lasers. Dielectric-loss and ultrasonic measure-
ments on KZnF3 W Li have revealed that the LiC impurity sits in a <100> off-centre
position approximately 0.15 Å from a normal KC site [234]. In the case of CuC in
the cubic KMgF3 lattice, from the temperature dependence of the absorption spectra
and from MCD measurements a clear indication of the off-centre configuration of
CuC ion replacing a KC ion was obtained [235].

Absorption, emission and polarized excitation spectra, as well as lifetimes, were
measured for CuC ions in the hexagonal RbMgF3 lattice [236]. From these measure-
ments it was concluded that CuC enters in two different RbC sites of the hexagonal
lattice, site I withD3h symmetry (two equivalent Mg2C ions at equidistant positions
along the c axis) and site II with C3v symmetry (a Mg2C and a RbC as neigbours
along the c axis). Moreover, it was suggested that CuC ion at site I is most likely in
an off-centre configuration lowering the local symmetry from D3h to C3v. For LiC-
doped cubic KZnF3 fluoroperovskite dielectric-loss measurements have revealed
[236] that the LiC defect possesses an electric dipole moment and, therefore, it
sits in an off-centre position approximately 0.15 Å from a normal KC site. Com-
plementary ultrasonic measurements indicate [236] that LiC constitutes a <100>
orthorhombic defect.

4 Pseudo Jahn–Teller Effect

Following the vibronic coupling theory [20] it has been proved that, for any
molecule or solid which in principle possesses a centre of symmetry, the origin of
the off-centre instability is always a PJT coupling of the ground state �0 (of energy
E0) with excited states �I (energyEI) of appropriate symmetry when the system is
distorted along the normal mode represented by Q (Fig. 3). For simplicity we will
consider here that all �0; �I and Q are singlets, but the formulation is completely
general. This mixing can easily be formulated using second-order perturbation
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Fig. 3 Schematic view of the
PJT coupling between two
singlet states separated by a
gap 2� giving rise to an
off-centre instability. Dashed
and solid lines represent
adiabatic surfaces before and
after coupling, respectively,
by a mode Q
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theory, where the energy is expanded around the (reference) equilibrium high
symmetry configuration .Q D 0/ as

E.Q/ D E0 C 1

2
KQ2 C : : : (1)

Here, K is the force constant associated to the vibration represented by Q. K can
be expressed as the sum of two terms

K D K0 CKv: (2)

If we defineW as the sum of the nuclear-electronic and nuclear-nuclear interactions
of the potential energy operator, then the primary force constant,K0, is

K0 D

�0

ˇ
ˇ
ˇ
ˇ
@2W

@Q2

ˇ
ˇ
ˇ
ˇ�0

�
(3)

and Kv is the vibronic coupling contribution

Kv D 2
X

I

jFI j2
E0 �EI ; (4)

where FI D
D
�0

ˇ
ˇ
ˇ @W@Q

ˇ
ˇ
ˇ�I

E
is the PJT coupling constant and the sum extends over

all excited states, I . K0 is equal to the force constant that a system would have if
the electron density was frozen to its value when Q D 0. According to Bersuker
[20], K0 is always positive and represents the force opposing the distortion due to
all electrons.Kv represents the contribution to the force constant partially reflecting
the actual change of the electron density to adapt to the distorted geometry. For the
ground stateE0�EI is always negative soKv is negative. SinceK0 > 0, a necessary
condition of instability is that the curvature of E.Q/ at Q D 0 is negative (Fig. 3),
then K0<jKvj.
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Direct calculation of the vibronic coupling matrix elements involved in PJT mod-
els is mathematically not easy and requires explicit knowledge of the many excited
states, which is difficult to obtain. The calculation can be greatly simplified assum-
ing that the excited state wavefunction j�I i differs from the ground state one j�0i
by just a one-electron excitation, 'i ! 'j [20]. In this case, we can approximate
the force constant in state I by

KI 	 K0 C
X

i; j

.n
.I /
i �n.I /j /

ˇ
ˇh'i j dv=dQ

ˇ
ˇ'j

˛ˇˇ2

�
.I /
ij

D K0 C
X

i; j

�
n
.I /
i � n.I /j

�
K ij

v ;

(5)
where n.I /i is the population of orbital 'i in state I, v is the interaction potential

between one electron and the nuclei, �.I /ij is the transition energy when one elec-

tron is taken from 'i and placed in 'j , and K ij
v is the vibronic contribution to the

force constant due to the coupling of orbitals i and j . What this formula tells us
is that if one electron is excited from orbital a to b, which is vibronically coupled
to the first, we would find that the force constant of the excited state has increased
by 2Kv

ab. This way, using (5) and calculating the force constants of the ground and
excited electronic configurations we can find which orbitals are more involved in
the distortion by checking when the force constant varies more strongly. Thus, using
(5) we can consider approximately the influence of each electron independently on
the nuclear framework and its dynamics, providing a more intuitive picture of the
electronic processes involved in the distortion compared to the case when full mul-
tielectronic states are used. Moreover, an interpretation in terms of orbitals means
that the results are transferable to systems with similar orbital schemes, something
not easily done through full multistate calculations. A more detailed analysis of (5)
and its consequences is given in [20, 237].

Vibronic interactions are also responsible for the JT effect which may appear
when the ground state is orbitally degenerate. If the ground state wavefunctions
are simply designated by

ˇ
ˇ�0; �

˛
(where the index � reflects the degeneracy) the

JT effect is controlled to a good extent only by the
D
�0; �

ˇ
ˇ
ˇ @W@Q

ˇ
ˇ
ˇ�0; �

E
matrix ele-

ments related to the linear vibronic term Q @W
@Q

in the Hamiltonian. For this reason
when the JT effect takes place in a system with cubic symmetry the involved
mode is always even, thus triggering an on-centre distortion of the system. Fur-
thermore, in most cases, JT distortions involve changes in distance which are much
smaller than interatomic ones [238]. For example, in the case of d 9 impurities
.Cu2C;Ag2C;NiC/ in sites with octahedral symmetry the distortion along the JT
active eg mode usually involves displacements not higher than 0.4 Å from the initial
position [33, 35, 68, 70, 238]. It is worth noting here that displacements higher than
1 Å can happen for distortions driven by a PJT mechanism [65–68, 122, 125, 129].

It should be remarked here that the presence of a d 9 ion at a cubic site does not
necessarily mean that the observed distortion must be related to the JT effect. In fact,
we can not forget that this possibility is always in competition with other distortions
driven by a PJT effect involving an odd mode. For instance all d9 impurities in
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SrCl2 do not exhibit a JT distortion but exhibit an off-centre distortion driven by an
odd t1u mode [65–68, 122, 125]. Obviously this fact requires that:(1) The inequality
jFI j2=.E0�EI / > K0 is fulfilled; (2) The energy gain due to the off-centre distor-
tion is higher than that for a JT involving an even mode. One realizes the importance
of the first condition looking at experimental data of Cu2C and Ag2C impurities in
CaF2 where such a condition is not verified, a fact which thus allows developing a
JT distortion. Additional discussion on this important issue is given in Sect. 6.

Although in the previous modelization of the PJT effect we have only consid-
ered one active vibrational coordinate Q, it is important to note that in most cases
there are many normal modes that can couple the relevant electronic states. This is
called the multimode problem. Nevertheless, in most of the problems described here
a good approximation to the complete problem can be reached using the interac-
tion mode [20], where the mode Q is written using a linear combination of all the
active vibrations and takes the system from the high-symmetry configuration to the
stable low-symmetry one. It must be noted that this approximation is only useful to
describe equilibrium geometries and have some basic notions of the dynamics of the
system. When other subtler properties are to be understood (see, for example, the
BaF2 W Mn2C problem, Sect. 7) models where individual modes and the intermode
coupling is fully accounted for have to be used.

Finally, it is worth noting that the term “second-order JT effect” sometimes used
[108,195,239,240] instead of PJT effect may be misleading [20]: there are no first-
order (JT) and second-order (PJT) effects, the two effects are described by two
different and independent vibronic coupling constants, and the PJT effect may be
very strong when the proper JT effect is zero.

5 Quantum Mechanical Calculations

The computational modelling of instabilities in doped materials is a very demanding
field. On one hand, high precision calculations are needed for obtaining the small
barriers and wells usually involved in these problems. On the other hand, calcu-
lations are expensive because it is necessary to simulate an impurity in a nearly
infinite solid. In the case of diluted impurities in solids one could obtain all the band
structure of the doped solid by means of periodic supercell calculations. However,
this procedure is computationally very expensive because very large supercells have
to be considered in order to avoid interaction between impurities. Moreover, many
impurities are charged with respect to the ion they substitute producing strong long
range interactions between supercells that in practice makes impossible the SCF
convergence. So, most of the calculations of diluted impurities in insulators are per-
formed using the cluster approximation, that is, dividing the system in two parts: (a)
A quantum-mechanical cluster including the impurity and some shells of atoms of
the lattice, that have to contain most of the active electrons of the impurity; (b) The
perturbation from the rest of the lattice ions (embedding).
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In the case of transition metal impurities M in ionic crystals electrons of the
impurity are usually localized in the MLn complex formed with the nearest neigh-
bours or ligands. For this reason a calculation of the MLn complex in vacuo at
the experimental equilibrium geometry offers a reasonable first approximation for
understanding electronic properties such as the spin-Hamiltonian parameters or the
absorption maxima. However, for calculating the equilibrium geometry itself and all
vibrational properties it is necessary to use greater clusters, including more atomic
shells. Ideally the cluster size has to be increased until good convergence of prop-
erties is reached. With respect to the embedding, two different approximations have
been used in the calculations performed in this work.

All systems analysed in Sects. 6, 7 and 8 have been explored by means of Den-
sity Functional Theory (DFT) calculations [241]. As it is well known, in this type
of calculations accuracy is combined with relatively low computational cost when
compared with highly correlated wavefunction-based calculations. All DFT calcu-
lations have been performed in its standard spin unrestricted and non-relativistic
Kohn-Sham formalism [241]. Most calculations have been carried out using the
Local Density Approximation (LDA) [242] or the Generalized Gradient Approxi-
mation (GGA) for the exchange-correlation functional [243,244] as implemented in
the Amsterdam Density Functional (ADF) code [245]. Basis sets of the best qual-
ity in the ADF code have been employed. The cluster was embedded in a infinite
array of point charges. Although this embedding procedure is only able to reproduce
long-range interactions it is the main contribution to the embedding of clusters in
the case of ionic solids.

Due to the shallow wells involved in some off-centre instabilities, the three
parameter hybrid semiempirical B3LYP functional [246] implemented in Gaussian
98 [247] has also been used in shallow well cases. These calculations use the double
zeta LANL2DZ basis, which employ Gaussian type orbitals and pseudopotentials to
simulate the core electrons. Some semiempirical Self Consistent Charge Extended
Hückel (SCCEH) calculations have also been performed in order to study the effect
of the removal of some orbitals from the basis set on the off-center instabilities.
More details about this method can be found in [248].

6 Off-Centre Impurities in Fluorite-Type Crystals:
Microscopic Origin

EPR measurements performed on transition metal impurities in fluorite lattices indi-
cate a very puzzling situation (Table 2). So, a 3d 9 cation as Cu2C remains on-centre
in the CaF2 lattice [249, 250], while undergoes a small off-centre <100> displace-
ment .�0:5 Å/ in SrF2 [47,249,251], and a huge displacement .�1:35 Å/ in SrCl2
[65]. However, the isoelectronic NiC cation gives rise to off-centre <100> dis-
placements in all these lattices [120–122] (Fig. 1), although this monovalent ion
has a bigger size than Cu2C. Moreover, the 4d 9 cation Ag2C remains on-centre in
the CaF2 and SrF2 host lattices while only in SrCl2 such an impurity experiences
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an off-centre <111> instability [65–67, 252, 253]. Although some authors have
postulated the JT effect as possible origin of the off-centre instability, the recent
experimental evidence [123, 124] of off-centre <100> distortion in SrCl2 W FeC
(3d 7 configuration with non-degenerate 4A2 ground state) discards this hypothesis.

DFT calculations were performed on clusters of different size (from 21, Fig. 4,
until 107 atoms) simulating NiC-; Cu2C-; Ag2C- and FeC-doped MF2 (M D Ca,
Sr, Ba) and SrCl2 lattices in order to reproduce these subtle phenomena and then to
explain their microscopic origin. Results of Table 2 corresponds to LDA exchange-
correlation functionals (GGA functionals lead to similar results) for NiC and FeC
impurities, while the hybrid B3LYP functional was used for Cu2C and Ag2C centres
where LDA and GGA functionals lead to poorer results [48].

In Fig. 5 the energy profile for the off-centre movement of the NiC impurity in
CaF2 as a function of the displacementZ along a <100> direction is displayed. In
this process ligands are kept at the positions corresponding to their final (relaxed)
values. It can be appreciated how an off-centre minimum of depth �E D 0:19 eV
is predicted at the equilibrium value Z0 D 1:07 Å. It can be also noted in this plot
that .@E=@Z/0 D 0, so indicating that in systems like CaF2 W NiC the origin of
the distortion is not the JT effect. From the results of Table 2 we can observe that
the off-centre distortion (and also the well depth) increases for the same impurity
when the lattice parameter of the host lattice increases. Moreover, distortions and

Fig. 4 Cluster of 21 ions
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stabilization energies are in general larger for monovalent impurities like NiC than
for divalent ones like Cu2C.

As it was previously indicated, the driving force for all spontaneous off-centre
instabilities is the PJT coupling of the ground state with excited states by means
of odd vibrational modes. Following the PJT model explained in Sect. 4, the total
energy along the distortion can be divided in two parts, �E.Z/ D •0.Z/ � •v.Z/,
where •v.Z/ and •0.Z/ represent the vibronic or bonding (force constant Kv,
favouring the distortion) and repulsive (K0, opposing) contributions, respectively.
•0.Z/ term contains the repulsion between electronic cores that only plays a role
when the ions are closely packed and, also, the electrostatic interaction between
the impurity and the rest of the lattice [48], which is displayed in Fig. 6 for some
systems. This potential allows understanding some experimental trends in Table 2.
In particular, as the potential due to the lattice on the impurity decreases when the
lattice parameter increases, the off-centre motion is favoured in large lattices as
SrCl2. On the other hand, increasing the ionic charge of the impurity gives rise to a
greater lattice potential opposing the off-centre motion. However, we find that nom-
inal charges seldom resemble real charges. Also, variation of the nominal charge of
an ion has an important effect over the electronic structure and PJT coupling and we
find that these phenomena are more relevant than the interaction of the ion’s charge
with the electrostatic potential of the rest of the lattice. In fact, the origin of the dis-
tortion is explained by the attractive term •v.Z/ coming from the PJT coupling of
the ground state with excited states.

Calculations performed in SrCl2 W FeC confirm that the instability of FeC is
spontaneous despite the ground state 4A2 .eg4t2g

3/ has no orbital degeneracy, a
situation which is thus different to that for d 9 and d 4 ions in fluorite type lat-
tices. It is found that FeC performs a big excursion of 1.3 Å from the centre
of the FeCl8

7� cube to a position close to the centre of a f001g face. Despite
this huge distortion the associated well depth is found to be only 0.28 eV, so
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indicating the subtle origin of the instability. The ground state corresponds to a
a1.3z2� r2/2 b1.x2�y2/2 e.xz; yz/2 b2.xy/1 configuration, the b2.xy/ level lying
�1 eV above e.xz; yz/, which is very close to b1.x2�y2/ and a1.3z2�r2/ orbitals.
It is worth noting that in the 4A2g ground state only the unpaired electron resid-
ing on the b2.xy/ orbital is responsible for the isotropic superhyperfine constant
well detected experimentally [123, 124]. Indeed the overlap of a xz wavefunction
of free FeC with 3s wavefunctions of four top Cl� ligands is rigorously zero when
Z D a=4. By contrast, the b2.xy/ level would be empty if the ground state has
S D 1=2.

At variance with what happens for JT distortions, off-centre displacements can-
not be understood looking only to the half filled t2g antibonding orbitals, being
related from the beginning to modifications of involved wavefunctions as described
by the PJT theory. The polarization of the electronic cloud through admixtures of
3d.FeC/ orbitals with deep fully occupied 3p.Cl�/ as well as unoccupied 4p.FeC/
orbitals is found to play a key role, while the electrostatic field of the rest of the
lattice VC acts against the distortion. Searching to gain a better insight on this issue
the orbital energy is portrayed (Fig. 7) as a function of Z for some relevant valence
levels of the FeCl87� complex. In addition to ligand levels, the evolution of anti-
bonding t2g levels which are partly filled is also depicted in Fig. 7. Under a C4v

symmetry there is a splitting between e.xz; yz/ and b2.xy/ levels emerging from the
antibonding t2g in Oh. In Fig. 7 is also plotted the Z-dependence of unoccupied
e.4px; 4py/ orbitals arising from the 4p shell of free FeC. It can be expected that
when FeC moves significantly upwards bonding is established mainly with e and b2
orbitals of top ligands while the ionic negative charge of bottom ligands increases
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Fig. 7 Energy profiles obtained from DFT calculations as a function of the distortion coordinate,
Z, for the relevant orbitals of SrCl2 W FeC
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by 0.02e, as it is well reflected in the orbital energies variation of Fig. 7. It can be
noticed in Fig. 7 that for Z > 0:5 Å the mainly top and bottom orbitals are sepa-
rated. The former orbitals have a smaller energy than the latter ones as a result of
being in the neighbourhood of the positive FeC ion. Moreover, as it could be antic-
ipated, bonding effects appear to be more important on the top ligands than on the
bottom ones. The energy variation of antibonding e.xz; yz/ and b2.xy/ levels along
the Z coordinate (Fig. 7) also reflects the influence of VC.Z/ upon the energy of
such levels. It should be remarked that VC.Z/ acts against the motion of the positive
iron ion as a whole but favours an energy decrease of mainly 3d levels.

Together with the bonding-antibonding mechanism of occupied e and b2 levels,
attention should be paid to the behaviour displayed by the unoccupied e.4px; 4py/
orbitals in Fig. 7. It can firstly be noticed that the energy of such unoccupied orbitals
increases following the distortion parameter Z. Moreover, this fact is accompanied
by the energy decrease of other partly or fully occupied e levels lying below. To
explore the importance of unoccupied 4p orbitals in the off-centre motion of FeC in
SrCl2 SCCEH calculations have also been performed. In addition to normal SCCEH
calculations, results have also been derived removing the 4p orbitals from the basis
set [125]. It was noted [125] that normal SCCEH calculations are able to repro-
duce (albeit qualitatively) the main features of the off-centre instability observed
for SrCl2 W FeC. By contrast, when the 4p orbitals are removed from the basis set
.@2E.Z/=@Z2/ZD0 is found to be positive and the on-centre position to be stable.
We have verified that if the 4s orbital of FeC is suppressed from the basis set the
off-centre instability is still encountered in SCCEH calculations. This result is not
surprising because linear vibronic coupling between 3d and 4s levels of FeC via
the t1u mode is forbidden due to parity restrictions. This simple reasoning can shed
light on the different role played by the 4s and 4p orbitals of FeC with regard to the
off-centre instability.

The present results emphasize the important role played by the 4p orbitals of
monovalent 3d ions as regards the off-centre instabilities in fluorite type lattices. It
is worth noting that the importance of this mechanism likely decreases on passing
from monovalent to divalent ions. In fact, in the latter cases the separation between
3d and 4p levels lies above 10 eV, being equal to 15 eV for free Cu2C [48]. The
hybridization between 3dyz and 4py orbitals produces a shift of electronic den-
sity from the lower part to the upper one of the orbitals. Through this mechanism
the bonding with top ligands is favoured while bottom ligands are progressively
disconnected.

Relevant information on the two rebonding (or PJT) mechanisms contributing to
the off-centre distortion of FeC in SrCl2 can be obtained by means of DFT calcula-
tions performed for different electronic configurations (Table 3). Following previous
works on d 9 impurities [48,128], in a first step calculations have been made for the
artificial .3z2�r2/7=5.x2�y2/7=5xz7=5yz7=5xy7=5 configuration with the seven elec-
trons equally distributed into the five 3d orbitals. It can be observed in Table 3 that,
in contrast to results for d 9 impurities, the off-centre distortion is not quenched for
this average configuration, although the well depth is smaller than for the actual
ground state. In a second step the influence of the xy occupation, but keeping the
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Table 3 Depth of the energy well and equilibrium value of the off-centre distortion, Z0, obtained
from DFT calculations for different C4v electronic configurations of SrCl2 W FeC, including the
ground state (GS). The corresponding cubal .Oh/ configurations are also shown

C4v electronic configuration Oh configuration Energy (eV) Z0 (Å)

a1.z2/2b1.x2 � y2/2e.xz; yz/2b2.xy/1 (GS) eg
4t2g

3 0:28 1:31

a1.z2/7=5b1.x2 � y2/7=5e.xz; yz/14=5b2.xy/7=5 eg
14=5t2g

21=5 0:16 1:13

a1.z2/2b1.x2 � y2/2e.xz; yz/1b2.xy/2 eg
4t2g

3 0 0

a1.z2/1b1.x2 � y2/0e.xz; yz/4b2.xy/2 eg
1t2g

6 0:07 0:97

a1.z2/2b1.x2 � y2/2e.xz; yz/3b2.xy/0 eg
4t2g

3 1:30 1:59

a1.z2/2b1.x2 � y2/1e.xz; yz/4b2.xy/0 eg
3t2g

4 1:73 1:56

a1.z2/2b1.x2 � y2/0e.xz; yz/4b2.xy/1 eg
2t2g

5 1:01 1:57

a1.z2/2b1.x2 � y2/1e.xz; yz/3b2.xy/1 eg
3t2g

4 0:62 1:48

eg
4t2g

3 ground state configuration (in cubal symmetry), has been explored. As it
is shown in Table 1, the FeC impurity remains on-centre when the xy orbital is
fully occupied .3z2 � r2/2.x2 � y2/2xz0:5yz0:5xy2 configuration), while the off-
centre excursion is very reinforced when the xy level is empty. These results already
evidence the crucial role of the xy orbital in the off-centre motion of FeC. It is
worth noting that on passing from the .3z2 � r2/2.x2 � y2/2xz0:5yz0:5xy2 to the
.3z2 � r2/1.x2 � y2/0xz2yz2xy2 configuration (where both xy and e.xz; yz/ levels
are fully occupied) a small off-centre instability is recovered. This result thus shows
that an increase of the population of e.xz; yz/ levels favours the off-centre motion
indeed. Calculations carried out for other electronic configurations in Table 3 do
support that the off-centre instability is favoured by decreasing the xy population
and increasing that of e.xz; yz/ levels. In particular the biggest effect is found for the
.3z2 � r2/2.x2 � y2/1xz2yz2xy0 configuration such as it is displayed in Table 3.

7 On-Centre Instability in BaF2 WMn2C at T�50K: Origin
of the Phenomenon

Seeking to clarify the microscopic origin of theOh�Td reversible instability exper-
imentally observed by EPR in Mn2C–doped BaF2 at T > Tc 	 50K [38, 39, 42],
DFT calculations on three Mn2C-doped MF2 (M D Ba, Ca and Sr) fluorites lattices
have been carried out using clusters involving up to 51 atoms. As a salient feature it
is found that while the local symmetry is cubic for CaF2 W Mn2C and SrF2 W Mn2C,
for BaF2 W Mn2C there are two equivalent tetrahedral configurations which are more
stable than the cubic one by about 50 cm�1. For the MnF86� complex with eighth
F� ligands (Fig. 8), the calculated RS D 2:33 Å and RL D 2:62 Å values for the Td

geometry are consistent with RL � RS D 0:25 Å derived from the analysis of the
two isotropic superhyperfine constants [40].

In order to understand the microscopic origin of the instability we have per-
formed a study based in the PJT model explained in Sect. 4. In our system the
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Fig. 8 Illustration of the
distortions (arrows)
corresponding to the normal
coordinates of the a2u

vibrational mode of the
MnF86� complex in
BaF2 W Mn2C. The “short”
tetrahedron of FS

� ligands
(blue atoms) moves inwards
while the “long” tetrahedron
(green atoms) moves
outwards. The z component
of the t1u mode is depicted in
Fig. 1

FL
–

FS
–

Mn2+

ground state, �0, belongs to the totally symmetric representation and the distortion
mode hasA2u symmetry so only coupling toA2u states make FI ¤ 0 and contribute
to the instability. Let us consider the valence orbitals of the cubal MnF86� complex.
When the a2u mode is switched-on symmetry is reduced and new orbital mixings
are allowed, giving rise to the energy lowering. In particular, the a2u mode destroys
the inversion symmetry existing in theOh group allowing some even and odd parity
orbitals of the same multiplicity to mix and form bonding-antibonding pairs. Using
(5) we can write a model expression for the force constantKI in an electronic state
�I along the distortion as a function of the allowed orbital contributions Kij

.v/ and
the number of electrons occupying orbital i; ni , in the �I state:

K 	 K0 �K.v/
4t2g�4t1u

�
n4t2g

� n4t1u

� �K.v/
3t2g�4t1u

�
n3t2g

� n4t1u

��
�K.v/

2t2g�4t1u

�
n2t2g

� n4t1u

��K.v/
3t1u�4t2g

�
n3t1u � n4t2g

��
�K.v/

2t1u�4t2g

�
n2t1u � n4t2g

��K.v/
1eu�2eg

�
n1eu � n2eg

�
(6)

Then, we have explored through DFT calculations which electronic configurations
favour the distortion and which ones are against it. In Table 4 we present the results
of B3LYP calculations for the position of the energy minimum, the energy stabiliza-
tion, and force constant for several electronic configurations involving the orbitals
of interest in this problem. The main conclusion that can be extracted is that the
redistribution of the Mn(3d ) electrons between the eg and t2g orbitals favour larger
distortions when the latter is depopulated and destroy it when electrons are poured
into it, indicating that the t2g orbitals play a very important role in the creation of the
new bonds. This idea is reinforced by the fact that excitation of electrons from t1u

orbitals (coupled to t2g) produce the largest force constants. Fitting through a means
square procedure the KI values calculated for the electronic configurations shown
in Table 4 with the model expression (6) the following values ofK0 andKij

.v/ were

obtained: K0 D 17:33; K
.v/
4t2g�4t1u

D �1:82; K.v/
3t2g�4t1u

D �0:20; K.v/
2t2g�4t1u

D
�0:86; K.v/

3t1u�4t2g
D �1:15; K.v/

2t1u�4t2g
D �1:24 and K.v/

1eu�2eg
D �0:44 in
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Table 4 Results of B3LYP calculations for the position of energy minima, Qmin (in Å), sta-
bilization energies, �E (in cm�1), and force constants, KI (in eV/Å2), for several electronic
configurations involving the orbitals of interest in BaF2 W Mn2C

Configuration Qmin �E KI

2t1u
62t2g

63t1u
63t2g

61eu
42eg

24t2g
3 �0:42 �52 �0:24

2t1u
62t2g

63t1u
63t2g

61eu
42eg

44t2g
1 �0:76 �593 �0:45

2t1u
62t2g

63t1u
63t2g

61eu
42eg

04t2g
5 0 0 0:17

2t1u
62t2g

63t1u
63t2g

61eu
32eg

34t2g
3 0 0 0:74

2t1u
62t2g

63t1u
63t2g

61eu
32eg

24t2g
4 0 0 0:79

2t1u
62t2g

63t1u
63t2g

51eu
42eg

24t2g
4 0 0 0:16

2t1u
62t2g

63t1u
63t2g

51eu
42eg

34t2g
3 0 0 0:11

2t1u
62t2g

63t1u
53t2g

61eu
42eg

24t2g
4 0 0 1:55

2t1u
62t2g

63t1u
53t2g

61eu
42eg

34t2g
3 0 0 1:57

2t1u
62t2g

53t1u
63t2g

61eu
42eg

24t2g
4 0 0 1:20

2t1u
62t2g

53t1u
63t2g

61eu
42eg

24t2g
3 0 0 1:19

2t1u
52t2g

63t1u
63t2g

61eu
42eg

24t2g
4 0 0 1:64

2t1u
52t2g

63t1u
63t2g

61eu
42eg

34t2g
3 0 0 1:33

eV Å
�2

. It can be observed in Table 4 that our model fits reasonably well the DFT
results. From theseKij

.v/ values it can be concluded that there are two dominant dis-
tortion mechanisms. The first one is the previously mentioned coupling between the
Mn.3d/ 4t2g orbitals and 2t1u and 3t1u orbitals with 2p.F/ character. This admixture
displaces the electronic density so that it is reinforced on the lines connecting the
metal with four fluorine neighbours forming a tetrahedron while it is weakened on
the other four, as illustrate in Fig. 8. The second mechanism induces the polariza-
tion of the electronic cloud around the manganese ion through the mixing between
4t2g and 4t1u orbitals with 3d.Mn/ and 4p.Mn/ character, respectively, in a similar
way to that found in the off-centre displacement of SrCl W FeC. The hybrid 3d -4p
orbital of manganese due to vibronic coupling is better adapted to form sigma bonds
in tetrahedral symmetry, giving rise a larger overlap with 2p ligand orbitals, and
favouring a diminution of energy along the distortion.

Another important feature of this system is the local symmetry change at
T�55K. DFT calculations indicate that the energy barrier is about 50 cm�1 which
seems consistent with the transition temperature. However, a detailed study [41] has
shown that it is necessary to take into account the anharmonic coupling between sev-
eral vibrational modes not directly involved in the distortion to obtain a reasonable
transition temperature.

Finally, we would like to discuss why the tetrahedral distortion occurs in
BaF2 W Mn2C but is not present in other cubic or octahedral centres. It should be
noted here that while in octahedral centres the force constant is dominated by the
metal-ligand contribution, this appears to be not longer true when dealing with sys-
tems like MF2 W Mn2C (M D Ca, Sr, Ba) with hexahedral coordination. In these
cases the force constant of the symmetric a1g mode has been found [41] to be dom-
inated by the ligand-ligand contribution. As the force constant for the a2u mode
is independent on this contribution this leads to !.a2u/ values which are clearly
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smaller than the corresponding !.a1g/. In addition to the independence of !.a2u/

on the ligand-ligand interaction, there are two relevant facts favouring the a2u insta-
bility observed [38,39,42] below 50 K in BaF2 W Mn2C: an unusually big Mn2C-F�
distance and the pseudo Jahn–Teller coupling of the 6A1g ground state with excited
states allowed by an a2u distortion. According to ionic radii of Mn2C and F�
and Pauling’s rule a Mn2C-F� distance of 2.22 Å is expected for Mn2C ions sur-
rounded by a cube of eight F� ions. While the measured Mn2C-F� distance [40]
for CaF2 W Mn2C is only 3% higher than this quantity such a difference is calculated
to be four times bigger for BaF2 W Mn2C and thus helps to reduce the force con-
stant of a Mn2C-F� bond. It is worth noting that for Mn2C impurities in octahedral
coordination [40] the measured Mn2C-F� distance always coincides with 2.13 Å
within 3%.

8 The Axial Centre in Fe-doped KTaO3: Results
from Calculations

The limitations of the EPR technique for characterizing paramagnetic impurities
in oxides are well exemplified by the axial iron centre observed in KTaO3 [126–
128]. This centre is described by Seff D 1=2; g?eff D 4:33 and gjjeff D 2:02 and the
principal direction associated with gjjeff is a<001> type direction of the host lattice.
Two <100> off-centre models have been proposed in the literature: a FeC .3d 7/
ion replacing a KC ion (shortly referred to as FeCK) [126, 127] or a Fe5C .3d 3/
ion located at Ta5C site

�
Fe5CTa

�
(Fig. 9) [128]. Furthermore, it has been proposed

[128] that the off-centre motion would arise from the smaller ionic radius of Fe5C
(estimated in the 40–50 pm range) when compared to that of Ta5C (64 pm).

Looking for the equilibrium geometry of the Fe5CTa centre in KTaO3 optimiza-
tions on the 21 ion FeO6K8Ta6

27C cluster at the 3A1g
�
t2g
3
�

ground state have been
carried out. Using LDA and GGA functionals the Fe5C impurity remains on-centre

Fe

K+

Ta5+

O2–
x

y

z

x y

z

Fig. 9 Left: 21 atom cluster used in the calculations of the Fe5CTa centre in KTaO3. Right: 39
atom cluster used for the FeCK centre
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in the Ta5C position. The E.ZFe/ profile obtained for this ground state has a single
minimum at ZFe D 0 and exhibits a huge barrier which precludes the existence of
any off-centre displacement along <001> directions. This big barrier comes from
the overlapping of electronic clouds of the impurity and the closest ligand (placed
at a distance equal to RML-ZFe) which increases substantially when ZFe does. This
phenomenon is described, in a phenomenological way, by the Born-Mayer repulsion
term and acts against the decrease of electrostatic energy obtained considering all
ions as point charges. The calculated equilibrium value of the Fe-O distance, RML,
was found to be equal to 206.3 pm. It is worth noting that these values are a bit higher
than the experimental Ta-O distance in the host lattice, equal to a=2 D 199:4 pm (a
is the cubic lattice parameter). This �3:5% outwards relaxation produced under the
Ta5C ! Fe5C substitution thus stresses that the size of Fe5C is certainly not sig-
nificantly smaller than that of Ta5C. This fact is partially related to covalent effects
present in every transition-metal complex with closed shell ligands, leading to a net
transfer of electronic charge from them to the central cation. In the present case
the Mulliken charge on iron for the Fe5CTa centre is found to be equal to C1:1e (e
denotes the proton charge), which is substantially smaller than the nominal value of
C5e. Interestingly, the value at equilibrium of the energy separation, 10Dq, between
eg .�x2 � y2; 3z2 � r2/ and t2g.�xy; xz; yz/ levels of the Oh FeO6

7� complex is
calculated to be equal to 1.0 eV. This figure is much bigger than the corresponding
value computed for FeC in dodecahedral coordination, a matter discussed below.

Then we have explored the FeK
C .3d 7/model for the axial centre (Fig. 9). Under

a<001> displacement of the FeC cation, t2g and eg levels of theOh FeO12
23� com-

plex split, respectively, in b2.�xy/, e(�xz, yz) and b1.�x2 � y2/; a1.� 3z2 � r2/
levels of the distorted C4v FeO4O4O4

23� complex, which has three inequivalent
groups of ligands. Total energy DFT calculations have been carried out on the 39
atom FeO12Ta8K18

47C cluster (Fig. 9) for all possible configurations with S D 3=2
corresponding to different occupations of mainly 3d.Fe/ levels with seven elec-
trons. In the on-centre geometry .ZFe D 0/ the minimum energy configuration is
b1.x

2 � y2/2 a1.3z2 � r2/2 b2.xy/1 e.xz; yz/2, using the C4v group notation, with
�E0 D �0:71 eV and ZFe

0 D 93 pm. This fact thus supports that a FeC impu-
rity at a KC site moves spontaneously off-centre. Calculated E.ZFe/ profiles of
the total energy for four electronic configurations with S D 3=2 is displayed in
Fig. 10. As a salient feature it can be seen in Fig. 10 that b1

1a1
2b2

2e2 becomes
the ground state after a relatively small off-centre displacement of the FeC impurity
.ZFe D 20 pm/. This change in the ground state is helped by the crossing of b1.�xy/
and b2.�x2 � y2/ levels which takes place during the off-centre displacement and
the small energy difference (0.06 eV) between b1

1a1
2b2

2e2 and b1
2a1

2b2
1e2 states

obtained for ZFe D 0.
In a spontaneous off-centre excursion of a given impurity there is always a

change of covalency with near ions which is behind the required diminution of total
energy. Despite this fact some insight can be obtained looking at the electrostatic
potential, VM, created by the rest of point ions on a rigid impurity. It can noticed that
VM.0; 0;ZFe/ is essentially flat in the 0 pm<ZFe<100 pm region, while it behaves
as a barrier for ZFe � 120 pm [129]. It is worth noting that the results of present
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Fig. 10 Profiles of the DFT total energy of the FeCK centre in KTaO3 W FeC as a function of
the ZFe coordinate calculated for four S D 3=2 electronic configurations. Results correspond to
GGA-BP calculations for the 39 atom cluster

calculations are consistent with the form of VM.0; 0;ZFe/. Indeed the obtained equi-
librium coordinate ZFe

0 D 93 pm places the FeC impurity in the zone where
VM.0; 0;ZFe/ is still flat [129].

The axial Fe centre is characterized by an axial g-tensor whose components for
Seff D 1=2 are g?eff D 4:33 and gjjeff D 2:02 [126–128]. If the spin of the ground
state is S D 3=2 the true values gjj D 2:02 and g? D 2:16 are thus derived. There-
fore, it turns out that g? � g0 is significantly higher than gjj � g0 a fact which is a
fingerprint of the axial centre [126–128]. In the present study this tensor has been
calculated by means of the ADF package at the equilibrium geometry correspond-
ing to the FeCK centre. The obtained values, gjj D 2:08 and g? D 2:18, are not
unreasonable.

9 Summary

In this article experimental and theoretical work on spontaneous instabilities of
impurities in solids driven by PJT vibronic coupling mechanisms is reviewed. Par-
ticular attention is paid to the results of calculations addressed to understand the
microscopic origin of off-centre and on-centre instabilities and also to quantify the
involved distortions. Especially, we aim to help to overcome a paradigm taken root
among many researchers of physics and chemistry of solids: that the instabilities
of atoms and ions in pure and doped solids are due to difference of atomic sizes.
On the contrary, we have presented a great quantity of experimental evidences and
theoretical results showing that it is an effect of the vibronic coupling.



444 P. Garcı́a-Fernández et al.

Acknowledgements Partial support by the Spanish Ministerio de Ciencia y Tecnologı́a under
Project No. FIS2006–02261 is acknowledged.

References

1. G. Blasse, B.C. Grabmaier, Luminescent Materials (Springer, Berlin, 1994)
2. R.C. Powell, Physics of Solid-State Laser Materials (Springer, New York, 1997)
3. M. Nikl, Phys. Status Solidi A 178, 595 (2000)
4. V. Babin, A. Krasnikov, M. Nikl, Nitsch K, A. Stolovits, S. Zazubovich, J. Lumin. 101,

219 (2003)
5. P. Dorenbos, Phys. Status Solidi A 202, 195 (2005)
6. M. Secu, S. Schweizer, U. Rogulis, J.-M. Spaeth, J. Phys.: Condens. Matter 15, 2061 (1993)
7. G. Corradi, M. Secu, S. Schweizer, J.-M. Spaeth, J. Phys.: Condens. Matter 16, 1489 (2004)
8. N. Kodama, N. Sasaki, M. Yamaga, Y. Masui, J. Lumin. 19, 94 (2001)
9. K. Nassau, The Physics and Chemistry of Colour (Wiley, New York, 1983)

10. R.G. Burns, Mineralogical Applications of Crystal Field Theory (Cambridge University
Press, Cambridge, 1993)

11. K. Nassau, The Science of Color, ed. by S.K. Shevell (Elsevier, Amsterdam, 2003)
12. J.H. Barkyoumb, A.N. Mansour, Phys. Rev. B 46, 8768 (1992)
13. L. Cheng, N.C. Sturchio, M.J. Bedzyk, Phys. Rev. Lett. 63, 144104 (2001)
14. G. Dalba, P. Fornasini, R. Grisenti, J. Purans, Phys. Rev. Lett. 82, 4240 (1999)
15. M.T. Barriuso, J.A. Aramburu, M. Moreno, J. Phys.: Cond. Matter 11, L525 (1999)
16. B. Villacampa, R. Cases, V.M. Orera, R. Alcalá, J. Phys. Chem. Solids 55, 263 (1994)
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The Influence of Jahn–Teller Coupling
on the High-Spin/Low-Spin Equilibria
of Octahedral MIIIL6 Polyhedra
(MIII W Mn � Cu), with NiF63�
as the Model Example

D. Reinen and M. Atanasov

The appearance of d 4–to–d 8 cations in their respective high- or low-spin ground
states is not solely a matter of the interplay between the ligand field strength � and
the Racah parameters of interelectronic repulsion B and C, but can be steered by
additional Jahn–Teller (JT) coupling – as in the d 4 and d 7 cases, where vibronic
Eg ˝ "g interactions strongly stabilise a high- and low-spin ground state, respec-
tively. Also in octahedral complexes with d 5 and d6 cations JT interactions come
into play, though only via the much weaker T2g ˝ "g coupling – here contributing
to the stabilisation of the low spin 2T2g and the high spin 5T2g state, respectively.
Ni(III) occurs, with so far only one exception, as a low spin-species – in the fluoride
case exclusively due to the large energy increment stemming from the tetragonal
ground state JT splitting. It is further shown for NiF6

3�, adopting additionally to
spectroscopic, magnetic and structural results, reliable data from DFT, that the mini-
mum positions of the alternative 2

aA1g
�

2
aEg

�
and 2

aA2g
�

2
aT1g

�
ground state potential

curves differ by only �2;4 Š 130 cm�1. The energy barrier, on the other hand,
which steers the transformation of low into high spin species with increasing tem-
perature, amounts to about 400 cm�1. O- and N-ligator atoms, which induce larger
� and smaller B and C values, considerably enhance the mentioned critical quan-
tity �2;4. Interestingly enough, the distinct tetragonal polyhedron distortion, which
accompanies the low spin ground state, vanishes in oxidic host lattices, as soon
as oxygen serves as a bridging ligand in the respective structure. Band broadening,
which suppresses JT coupling, and distinctly enhanced Ni�O bond covalency char-
acterise the bonding in such phases – for example in the K2NiF4-type compound
Nd0:8Sr1:2NiIIIO3:9 and in the perovskite LaNiO3, where even metallic conductivity
is observed. CoIII possesses a high- to low-spin energy barrier to overcome interelec-
tronic repulsion, which is similar to that for NiIII – but without the strong support
by Eg ˝ "g JT coupling. Thus, CoF6

3� is high-spin, while oxygen-ligator atoms
induce challenging high-spin/low-spin equilibria, which are discussed and analysed.
The high-spin .5Eg//low-spin .3T1g/ separation energy for MnIII bears a different
sign in comparison to NiIII, due to a larger spin-pairing energy and a pronounced
JT coupling, which both favour the high spin ground state in this case. Accordingly,
more covalent ligands, positioned higher in the spectrochemical series than fluoride
and oxygen, are needed for the high- to-low-spin flip. The d 8 configuration of CuIII,
finally, represents a unique case in so far, as here the singlet-triplet separation energy
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can only be overcome via excessively tetragonally elongated octahedra. The effect
behind is formally described as a pseudo-JT coupling in Oh between the lowest
energy excited 1

aEg and 1
aA1g states, launching considerable lowering in energy of

the 1
aA1g

�
1
aEg

�
split state – the new ground state in D4h. Indeed, while the CuF6

3�
octahedron is high-spin, the less ionic oxygen ligand usually induces a (nearly)
square-planar CuIIIO4 coordination. The CuIII-O binding properties in various host
lattices are characterised, and discussed in respect to the oxidic mixed-valence cop-
per superconductors. Basis for the discussion in all cases are available structural,
magnetic and spectroscopic (ligand field, EPR, XANES) data besides results from
theory.

1 Introduction and Outline

dn cations with n D 4–7 in octahedral ligand fields may occur alternatively in
low- and high-spin ground state configurations. The critical energy conditions at
the cross-over points, if only the diagonal energies in the ligand field matrices [1]
are considered, are listed in Table 1. It is frequently forgotten, however, that in cases
of orbital degeneracy additional energy increments due to vibronic coupling come
into play, which considerably alter these conditions. In particular, the interaction
between electronic Eg ground states and the "g vibrations (a �-antibonding effect)
is generally very pronounced and much larger than the Tg ˝ "g coupling of only
�-antibonding nature (Fig. 1). Both interactions induce tetragonal polyhedron dis-
tortions. A coupling to �2g modes, possible in the case of Tg ground states, leads to
trigonal .D3d/ and – for Tg ˝ ."g C �2g/ vibronic interactions – to orthorhombic
D2h polyhedron distortions [3]. They will not be considered here, because they are
usually significantly smaller than those aiming at a D4h symmetry – at least in the
here treated cases [2] (see the CN� ligand, however [4]). The energy conditions for
the appearance of a high- or low-spin ground state, if the stabilisation induced by
tetragonal polyhedron distortions is taken into account, are also given in Table 1.

The following equations for the Eg ˝ "g and T2g ˝ "g vibronic interaction of a
d1 cation and some definitions supply the necessary background from theory:

EJT
e.c/ D 1

2
A1�©

e.c/I �©e.c/ D A1=.K© � .C/2A2/ � 2�a=
p
3

EFC
e.c/ D 2

�
A1�©

e.c/ C .�/A2�©e.c/2
�
� 4ı1

�
ı1
0� (1)

(the upper index e and c stands for D4h, elongation and compression, respectively;
A1 .eV � Å/ andA2 .eV � Å�2/: first and second order JT coupling constants, respec-
tively; K© .eV � Å�2/: force constant; �©.Å/: radial distortion parameter; �a .Å/:
difference between long and short bond lengths),

EJT
c.e/ D 1

2
.1=4/ V©�©

c.e/I �©c.e/ D V©=.2/K©

EFC
c.e/ D 3

2
V©�©

c.e/ � 3ı2c.e/ (2)
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Table 1 The alternative high-spin and low-spin ground states of six-coordinated dn cations
.n D 4–8/ in Oh, and the energy criteria at the spin-crossover (only the diagonal energies in
the octahedral ligand field matrices [1] are listed). Furthermore, the energy criteria for the stabil-
isation of the high-spin ground state and of the low-spin alternative, are given, together with the
expected distortion symmetries (5./6. and 7./8. column, respectively), if vibronic coupling (see (1,
2), Fig. 2) is additionally taken into account. The latter expressions refer to the vertical energy
differences left and right from the spin-crossover, alternatively viewed from the high- and from the
low-spin ground state, respectively. In the d8 case a spin change is not feasible in Oh, but may
occur via a pronounced distortion according to a tetragonal elongation (pseudo-JT effect in excited
spin-singlet states; see text)

n High spin Low spin Cross-over .Oh/at

4 5Eg.t2g3eg1/ 3T1g.t2g4/ � D 6BC 5C
5 6A1g.t2g3eg2/ 2T2g.t2g5/ � D 7:5BC 5C
6 5T2g.t2g4eg2/ 1A1g.t2g6/ � D 2:5BC 4C
7 4T1g.t2g5eg2/ 2Eg.t2g6eg1/ � D 4BC 4C
8 3A2g.t2g6eg2/ 1Eg.t2g6eg2/ 0 D 8BC 2C

H- Spin ground state in LF (< Irep)1;2 L- Spin ground state in LF (> Irep)1;2

5B1g.eg2b2g
1a1g

1/ D4h
e �� 2ı1 C ı2

� 3A2g.b2g
2eg

2/ D4h
c �� 2ı1

0� C 2ı2
6A1g.t2g3eg2/ Oh � 2B2g.eg4b2g

1/ D4h
e �C ı2

5B2g.b2g
2eg

2b1g
1a1g1/ D4h

c �� ı2
1A1g.t2g6/ Oh �

4A2g.eg
4b2g

1a1g1b1g
1/ D4h

e �C 2ı1
� � 2ı2

2A1g.eg
4b2g

2a1g1/ D4h
e �C 2ı1 � 2ı2

�

3A2g.t2g6eg2/ Oh 0 1A1g.eg
4b2g

2a1g2/ D4h
e 2
p
2ı1

1ligand field energy in terms of the cubic ligand field strength and the tetragonal splitting
parameters, with respect to interelectronic repulsion in terms of the Racah parameters B, C, as
given in the 4.column (Irep).
2The ı1; ı1

0; ı2 splitting parameter are defined in (1 and 2) and in Fig. 2. The upper index .�/
indicates, that the splittings refer to excited states – with the optimised radial distortion parameters
in the respective ground states, in difference to (1, 2).

.V© .eV � Å�1/: first order coupling constant; higher order coupling is usually not
significant).

We refer to [2] concerning the derivation of these relations. The Franck-Condon
transition energies within an Eg and Tg state .EFC/ define splitting parameters
ı1
�
ı1
0� and ı2, as illustrated in Fig. 2; here, only the electronic energy changes

with respect to the Oh � t2g and eg MOs are depicted, which obey the centre-of-
gravity rule in the case of small state splittings EFC in comparison to the ligand
field strength �. If the potential energy contributions due to the restoring force�
1=2 K©�©

2
�

are included, the relevant stabilisations are the Jahn–Teller energies
EJT, as given in (1 and 2). The higher-order A2 coupling constant in (1) is mainly
due to the configuration interaction between the ndz

2-electron (a1g in D4h/ and the
totally symmetric .n C 1/ s-electron cloud, and mostly a numerically significant
quantity [5]. It depresses the a1g

�
dz

2� MO and accordingly favours the tetragonal
elongation to the compression

�
ı1 > ı1

0�. For a closer ligand-field energy analysis,
we refer to the matrices for 6-coordinated dn cations with n D 4; 6; 7, based on
this approach .�; B; C; ı1; ı2/ [2].
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Qθ=2√3 {2Δaz+2Δa–z–Δax–Δa–x–Δay–Δa–y}
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Qo(α1g)
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ϕ

ϕ

ϕ=240° ϕ=120°

ϕ=0°
ρ

ρ

Fig. 1 The adiabatic potential surface of an electronic Eg state due to the linear vibronic inter-
action with a vibrational ©g mode (top); the mexican hat-shaped curve on the left is modified by
higher order coupling terms, yielding a three minima-refinement, which is shown in a cross sec-
tion perpendicular to the energy axes on the right. The potential surface, resulting from Tg ˝ "g
coupling (amidst), leads to an analogous three-well-structure already in first order – each of these
corresponding to a tetragonal polyhedron distortion along one of the three molecular axes. The
vibrational ’1g and ©g modes are shown on the bottom (adopted from [2])
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2δ'1 2δ1

2δ2

2δ2
δ2

δ2

2δ12δ'1

Δ

↓

t2g
eg

a1g(dz2)

b2g(dxy)

b1g(dx2-y2)

b1g

a1g

eg(dxz,dyz)
b2g

Oh DC
4h De

4h

Fig. 2 Schematic energy diagrams, depicting the Jahn–Teller splittings of the antibonding t2g- and
eg-MOs according to D4h, elongated and compressed (formal assumption: ı1 D ı01I ı2

c D ı2
e)

In this contribution we will consider 3dn cations in their .CIII/ oxidation states,
which are comparatively stable up to n D 6, but easily reduced for n > 6 by
ligands, positioned high in the nephelauxetic series [6], i.a. which induce rather
small Racah parameters of interelectronic repulsion B, C in respect to the free-ion
values. Indicating such reducing properties, low-lying ligand-to-metal charge trans-
fer bands sometimes appear already in the near-UV, even in the crystal field of the
fluoride ligand with the highest electronegativity – as in the case of NiIII, and in
particular, CuIII. The d 8 configuration of the latter cation is furthermore interesting,
because – though a triplet-to singlet spin-flip is not possible in Oh – a low-spin
1A1g

�
eg
4b2g

2a1g
2
�

ground state is eventually stabilised (and indeed observed) in

D4h
e, with a near-to-square planar coordination. Here, invoked by a pseudo-JT cou-

pling in the lowest excited spin-singlet state, a strong tetragonal field can outweigh
the energy barrier due to interelectronic repulsion in favourable cases (Table 1). We
will consider this effect in a separate section. Already a short glance into Table 1,
comparing the spin-flip criteria for the d 4 and d 7 configuration, substantiates the
distinct influence ofEg˝"g JT coupling. Though interelectron repulsion favours the
high-spin in respect to the low-spin state for d 4 more than for d 7, it is clearly the pro-
nounced JT effect according to a tetragonal elongation, which creates the extreme
situation, that NiIII is generally low-spin, while MnIII is nearly always high-spin
configurated.

We will now treat the various dn cases individually in greater detail.

2 The NiF3�6 Polyhedron: High-Spin or Low-Spin?

.CIII/ is a rather unstable oxidation state for nickel and only well defined, if coun-
teranions with pronounced electronegativity, such as fluoride or oxygen and nitrogen
ligator atoms, constitute the ligand field. It is similar in this respect to CuIII, whose
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Fig. 3 EPR spectra of the elpasolite Cs2KNiF6 and of the hexagonal variant Cs2NaNiF6 (see
Fig. 5), the latter displaying signals of low-spin and high-spin NiIII side by side

optical electronegativity is even larger – easily oxidising even chloride, if combined
with this anion. In difference, the CoIII cation can be also stabilised by less elec-
tronegative ligands. The spin state of the hexafluoro-NiIII complex has long been
subject of diverging discussions. Unambiguous proof came from the EPR investi-
gation [7], performed on various elpasolites, prepared by Alter and Hoppe [8]; the
low-temperature spectra showed the typical anisotropic signal near to g D 2:0,
characteristic of a cation with an octahedral 2Eg (eg1 or eg3) ground state in the
presence of strong Eg ˝ "g Jahn–Teller coupling [9] (Fig. 3).

A low-spin ground state had been suggested already earlier by Allen and War-
ren, who assigned the weak, lowest-energy band around 6; 500 cm�1 in the d–d
spectra to a Jahn–Teller-split Eg ground state as the apparently only reasonable
explanation [10]. The ligand field calculation on the basis of the available spec-
tral data yields a vertical dublet-quartet separation energy of ı2;4

eff D 770 cm�1 –
enhanced to about 900 cm�1, when including LS-coupling [7] (Fig. 4). The upper
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Fig. 4 Energy diagram (adopted from [7]) of the NiF6
3� polyhedron in the elpasolite Cs2KNiF6

in the region of the octahedral lowest-energy 2Eg.! 2A1g;
2B1g/ and 4T1g.! 4A2g;

4Eg/

states; the relevant parameters are listed in Table 2, the LS coupling parameter is chosen as
� D 500 cm�1. The lower, left index at the term symbols indicates, that configuration interaction
has been accounted for, and counts the energetic sequence of terms with the same symmetry

index (eff) indicates that configuration interaction via interelectronic repulsion has
been taken into account. The expression for the diagonal ı2;4 energy is readily taken
from Table 1:

ı2;4 D � � 4.B C C/C 2
�
ı1 � ı2�

�
(3)

and is of the magnitude 100 cm�1.
The low-temperature structure of the considered elpasolites is shown in Fig. 5;

the polyhedron axes of tetragonal elongation are oriented parallel, exhibiting an

elastic order pattern of the ferrodistortive type. According to the
�
dz
2
�1

elec-

tronic configuration the magnetic order is hence antiferromagnetic, leading to EPR
silence at low temperatures. At higher temperatures the solids undergo second-order
tetragonal-to-cubic phase transitions, induced by the transformation of low-spin
into high-spin NiIII, on the one hand, and by the static local JT distortion becom-
ing dynamic at elevated temperatures, on the other hand; here, as common among
chemists, the terminology dynamic characterises a situation, in which a thermal
equilibration of the bond lengths leads to an Oh symmetry in the time average
(Fig. 1). The thermal averaging is nicely seen by physical methods with larger time
frames, as EPR for example, where the anisotropic transforms into an isotropic sig-
nal when increasing the temperature (Fig. 3, top). The experimental data, derived
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Fig. 5 The ferrodistortive order of D4h-elongated NiF6
3� polyhedra in elpasolites A2

0AMF6
(right) – the circles standing for the intervening AI cations – and the hexagonal Cs2NaCrF6 struc-
ture [63] (left); in Cs2NaNiF6, with the latter structure, NiIII is low-spin and high-spin, depending
on whether it occupies octahedra, corner-connected with its neighbour-polyhedra, or octahedral
sites, possessing common faces with two NaC polyhedra, respectively

Table 2 Ligand field parameters (in 103 cm�1) and vibronic coupling constants (A1; V": in eV �
Å
�1I A2 in eV � Å�2) for the NiF6

3� polyhedron (top). Structural data (in Å
�1

), energy quantities

(in 103 cm�1) and force constants (in eV � Å�2) for low-spin (amidst) and high-spin NiIII (bottom)
are also given. The data in brackets refer to effective values, with configuration interaction being
accounted for. Listed results are from experiment and DFT (see text)

� B C/B A1 A2 V©

13.1(1)a 0.78a 4.0a 2.05 Š 0:9 0:55(1)b

¡© aav EJT ı1 ı2
� ı2;4 K© �E2;4

0.189 1.881 1.60 1.70 0.4(1) 0.26 12.7 —–
[0.183]c —– [1.48] [1.60] [0.3(1)] [0.77] —– [0.4(1)]d

¡© aav EJT D ı2 ı1
� ı4;2 K©

0.07 1.915 0.16(3) 0.57 1.70 8.6
[0.06] —– ŒŠ 0:1� [0.42] Œ0:95� —–

afrom EPR and d–d spectra
bwith a larger uncertainty, discussed elsewhere [2].
cestimation from experiment: � 0:14 Å [11].
denergy barrier for the spin-flip, from magnetic measurements and potential curves (Fig. 6).

from the d–d spectra [7,10], the EPR results [7], the structure [11] and the magnetic
susceptibility measurements [2, 8] are collected in Table 2.

The diagram in Fig. 4 demonstrates, that it is the large vertical Eg ˝ "g Jahn–
Teller splitting 4 ı1

eff of low-spin NiIII, which actually stabilises the doublet ground
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state. In order to obtain knowledge about the potential energy curves for the alter-
native spin states and hence about the respective non-adiabatic energy difference
between the two minimum positions, help by reliable calculations was needed. DFT
was our method of choice; here [2, 12], our experience is, that one may confidently
use DFT results, if only Franck-Condon transitions from the ground state to lower
excited states and polyhedron structures at or near to those for the ground state are
utilised – and also, that the calculations are performed in the presence of a charge-
compensating solvent medium. One has further to note, that the Racah parameters
of interelectronic repulsion cannot be reproduced by DFT sufficiently well – they
usually come out too small in comparison to the experimental values.

Table 2 gives a survey of the DFT results supplying available experimental data.
With these additional informations from DFT, we can now sketch the ground state
potential diagrams for low- and high-spin NiIII. In particular, we use the force con-
stants and distortion parameters for low- and high-spin NiIII, as well as the force
constant K’ for the totally symmetric ˛1g mode, because there is a small but dis-
tinct average bond length difference between dublet and quartet NiIII, which has to
be accounted for. For this purpose, we define a displacement coordinate ıq, compris-
ing motions according to both, the "g and the totally symmetric ˛1g vibration, when
moving from the minimum of the low-spin to the minimum of the high-spin poten-
tial curve (Fig. 6) – following Bersukers concept [13] of a single interacting mode:

1

2
K©

hsp.ıq0/2 � 1

2
K©

hsp
�
ı�©

eff
�2 C 1

2
K’.
p
6 ıaav/

2 (4a)

ıq0 �
��
ı�©

eff
�2 C 6 �K’=K©hsp

�
.ıaav/

2

�1=2

ı�©
eff D 0:183� 0:060 D 0:123 ÅI ıaav D 0:034 Å (4b)

Fig. 6 Adiabatic potential energy surfaces for the low-spin ground state and the high-spin excited
state of lowest energy, for the NiF6

3� polyhedron in the elpasolite Cs2KNiF6, along the q
coordinate (5); �E2;4

0 is related to the thermal spin-flip barrier and �2;4 is the non-adiabatic
high-spin/low-spin separation
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(with K’=K©hsp Š 1:2, from IR data and DFT)) ıq0 D 0:153 Å

Utilising the data from Table 2, we have estimated ıq0 (4a) and can now construct
the adiabatic potential curves for the low-spin and the hypothetical high-spin ground
state via the equations:

E lsp D
�
1

2
K©

lsp �A2
�
.ıq/2I Ehsp D 1

2
K©

hsp.0:153� ıq/2 (5)

and at ıq0 D 0:153 and 0, respectively:

1

2
K©

lsp.0:153/2 D ı4;2eff C�2;4I 1
2
K©

hsp.0:153/2 D ı2;4eff ��2;4

With the precisely known doublet-quartet separation energy ı2;4
eff from experiment

(Fig. 4) we can now evaluate the stabilisation energy of the low-spin with respect to
the high-spin NiIII polyhedron; it comes out to be very small: �2;4 Š 130 cm�1.
With this value at hand, one can also – within the limit of about 250 cm�1 –
reproduce the quartet-doublet separation energy ı4;2

eff, which results from a lig-
and field calculation, if the same � and Racah parameters are employed as for
low-spin NiIII . Finally, we have determined the energy �E 02;4.Š300 cm�1/ at the
point of intersection, which should be loosely correlated with the barrier height,
steering the transformation of low-spin in to high-spin NiIII with increasing temper-
ature (Table 2). Magnetic data provide more precise information with respect to this
critical energy separation .�E2;4 D 500 cm�1/ [2, 8].

The presence of an only very small nonadiabatic energy barrier between high-
and low-spinNiF6

3� is further confirmed by the EPR spectrum of the solid
Cs2NaNiF6 (Fig. 3), which crystallises in a hexagonal variant of the elpasolite
structure (Fig. 5). The spectrum shows low-spin and high-spin NiIII side-by-side,
according to the two crystallographic sites in the mentioned hexagonal structure.
One may readily assume, that the central NiIIIF6

3�
polyhedron within the face-

connected group of three is somewhat geometrically restricted in its tendency
towards an Eg ˝ "g-type Jahn–Teller distortion, as compared to the normal elpa-
solitic site with corner-connections to its neighbours. Apparently, the mentioned
small structural strain is significant enough to prevent spin-pairing in this site. EPR
signals can here be observed down to 4 K, because the low-spin NiIII centres are too
far apart from each other in the structure to induce antiferromagnetic interactions of
noticable strength.

The NiF6
3� polyhedron is a beautiful example for a low-spin/high-spin equilib-

rium, with an only very small preference for the former spin-state. The structural
data, energy quantities and vibronic coupling parameters, listed in Table 2, origi-
nate from the experiment, supplemented by carefully selected DFT results. They
are rather precisely characterising the energetic situation near to the spin-crossover
for the NiF6

3� polyhedron. Interesting for the Jahn–Teller community is, that this
preference is the consequence of the stabilisation of the low-spin state by Eg ˝ "g
vibronic coupling; high-spin NiIII is only stabilised via a by a factor of 10 smaller
T2g ˝ "g-type coupling energy.
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3 NiIII with Oxygen and Nitrogen Ligator Atoms

Solids of the constitution La2
IIIMIII

1=2Li1=2
IO
4

were first described by Blasse [14]
and later characterised by Demazeau et al. [15–17]. They crystallise in the K2NiF4
lattice with an ordered distribution of the LiI and MIII cations on the octahedral sites
(Fig. 7). A single crystal study of the NiIII compound reveals a very pronounced
distortion of the NiIIIO6 polyhedron (�© D 0:39 Å; Table 3) according to a tetragonal
elongation [18]. In rating the extent of the distortion, one has to consider, that a
structural strain is present in the lattice in such a way, that the contrapolarising power
of La3C, parallel to c, is larger than that by LiC, perpendicular to c (Fig. 7), and is
present already in the absence of any electronic instability. It is of considerable
magnitude and can be estimated, for the solid with the non-JT cation MIII D Al
and with a similar ionic radius as (low-spin) NiIII, to cause a distortion of the AlO6-
polyhedron according to �© Š 0:19 Å. The strain influence is even more pronounced
for the larger and more polarisable 3d 10 cation GaIII.�© Š 0:34 Å), but without
coming up with the value for NiIII. Hence, there is no doubt, that the enhancement
of �© toward 0.43 Å is due to theEg˝"g JT instability of NiIII in the low-spin state.
Spectral energy effects, originating from the modification of the binding properties
of oxygen ligator atoms toward a 3dn cation by the second-sphere environment of
the ligand, has been studied elsewhere [21, 22].

The EPR spectrum [17] confirms this conclusion – showing the anisotropic low-
spin signal exclusively (gjj D 2:014; g? D 2:256; see the 77 K-spectrum of
Cs2KNiF6 in Fig. 3 for comparison), even up to 298 K. The deviation of gjj from
the spin-only value .ıgjj D 0:012/ allows an estimation of the quartet-doublet
separation energy; for large ı2;4

eff values the following equation is valid:

ıgjj Š 2
�
�=ı2;4

eff
�2

(6)

Fig. 7 The K2NiF4-type unit cell of La2
IIINiIIO4 (left) and the superstructure, induced by

cation ordering on the octahedral sites, of solids La2
IIILi1=2

IM1=2
IIIO4 (right; hatched polyhedra

predominantly, occupied by MIII D Ni, Co cations) – adopted from [18]
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Table 3 Solids crystallizing in an ordered K2NiF4-type lattice – La2
IIIM0;5

IIILi0:5
IO4, top part –

and compounds with a regular K2NiF4 structure – LaSrMIIIO4, bottom part: equatorial .a
?

/ and
averaged bond lengths .aav/ in MO6 polyhedra, radial distortion parameters (in Å) and information
from ionic radii tables

MIII a
?

.4x/a aav
b ¡© ref.

Mn 1:87 – .2:015/ 0.50c –
Co 1:86 1.91 .1:915/ 0.18 [18]
Ni 1:83 1.94 (1.93) 0.39 [18]
Cu 1:80 – – –d [18]
Al 1:85 – .1:905/ 0.19c [19]
Ga 1:89 – .1:99/ 0.34c [18]

awhen utilising a
?

.Li-O/ D 1:92 Å, as found for NiIII; CoIII [18]; MnIII is high-spin, CoIII and
NiIII are low-spin.
bvalues from ionic radii (with r.O2�/ D 1:37 Å) [20] in parenthesis.
cusing the experimental a

?

bond lengths and aav from ionic radii.
d�© looses its meaning in the case of a near-to-square-planar coordination.

M c/aa a
?

.4x/ aav ¡© Ref.

Mn 3:43 1:885 – .2:015/ 0.45b [24]
Co 3:28 1.90 1:945 .1:915/ 0.16 [38]d

3:31 1.91 1.97 (1.98)c 0.21 [38]e

Ni 3:25 1:913 1.93 (1.93) 0.06 [31]f

Cu 3:52 1.88 � 2:00g – � 0:4 [52]f

Ga 3:30 1:925 – .1:99/ 0.22b [24]
aratios from the tetragonal structure, roughly reflecting the extent of the polyhedron distortion.
busing the experimental a

?

bond lengths and aav from ionic radii [20].
chigh-spin value.
dresults for 100 k and
efor 673 K, respectively.
fstochiometric solid without oxygen deficiency, prepared under oxygen pressure.
gthe bond length, expected from ionic radii [20], is� 1:91 Å for CuIII and (see text) 2.10 for CuII.

yielding – with an LS coupling strength according to � D 400 cm�1 – a vertical
separation of Š5;000 cm�1. The optical spectrum of the greyish-brown solid [18]
is obscured by broad low-energy charge transfer bands, and accordingly one has to
estimate the ligand field parameters by other means, in order to obtain approximate
information about the energy status with respect to the spin-crossover. In Table 4, the
cubic ligand field parameters of MIII cations in an octahedral fluoride coordination
are listed, together with those for the CrIIIO6 polyhedron, as found in various oxidic
solids [21, 23]. On that basis one can roughly evaluate the ligand field strength �
and the Racah parameterB also for the cations from MnIII to CuIII in oxide matrices.
Oxygen is in many ways a chameleon in its binding properties. If combined with a
high-charged and small contrapolarising cationic species (O–PV, for example; see
Sect. 5), its apparent electronegativity is large and gives rise to comparatively small
�-values and rather large Racah parameters. On the other hand, comparatively large
�- and small B-parameters result, if oxygen is bonded to further cations of larger
size and comparable or even smaller charge [21, 22] than MIII – as in the here con-
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Table 4 Ligand field parameters (in 103 cm�1) for MIIIF6
3� complexes with various 3d-MIII

cations (MnIII; CoIII high-spin; NiIII low-spin) [2], 2. to 5.column – and for MIIIO6 polyhedra
in perovskite and K2NiF4-type host lattices – 6., 7. and 4., 5.column; the magnitudes of the param-
eters for MnIII to CuIII in the latter case are estimated on the basis of those, found for CrIII [23]

MIII � “a B0 C/B � “a

Cr 16:2 0:745 0:92 – 16.5(5) 0.65(5)
Mn 14:4 0.80 0:97 4.6 14:6 0:70
Co 12:7 0.77 1:07 4.3 12:9 0:67
Ni 13:1 0.70 1:12 4.0 13:3 0:61
Cu 14:5 0:62

b 1:2 4.2 14:8 0:54
b

anephelauxetic ratios B=B0, where B0 is the free cation value (from [10]); the ˇ-ratios for MnIII to
NiIII refer to global B parameters, those listed for CrIII and CuIII are Bte (for the nomenclature see
Sect. 3)
bthe ˇee ratio for F� as the ligand is 0.51 (Fig. 15) and for oxygen ligator atoms accordingly 0:45
(see text)

sidered cases. The data, collected in Table 4, are meant for compounds of the latter
category. We further mention, that B and C are not global parameters – which was
assumed here in a coarse approach (Table 4) – but depend on whether only weakly
�-antibonding t2g - or moderately strong �-antibonding eg-electrons are involved
within an interelectronic pair-interaction. C.K. Jorgensen has analysed this differen-
tial binding effect and distinguishes between Btt; Bte and Bee (and similarly for C )
[6]. The energetic differences are small or even vanishing in the case of weak cova-
lency, as for MII .3dn/ – F(O)-bonds, but already considerable for the considered
MIII.3dn-/ cations.

We deduce from the magnitudes of the estimated ligand field parameters for the
NiIIIO6 polyhedra in La2Ni0:5Li0:5O4, that– due to the more pronounced nephelaux-
etic effect of oxygen as compared to fluoride – the system stays rather near to the
spin-crossover already in the absence of vibronic coupling. With �;B and C=B
from Table 4 one derives ı2;4 Š �300 cm�1 in Oh (see Table 1, 4.column), and,
with configuration interaction accounted for, ı2;4

eff Š C100 cm�1. A huge JT split-
ting energy of ı1.D 3 ı�2 / 	 3:5 � 103 cm�1 has to be presupposed, in order to
reproduce in a ligand field calculation the ı2;4

eff value from EPR (6). It originates
from a very pronounced Eg ˝ "g coupling, but also from the considerable lattice
strain.

In host solids such as LaSrGaO4, with the regular K2NiF4 structure (Fig. 7),
the strain, imposed on the MIIIO6 polyhedra via the presence of contrapolarising
cations with different charge and size in the oxygen coordination sphere, is smaller
than in the previously considered ordered lattice type. It is further striking, that the
JT coupling of NiIII is obviously completely suppressed (Table 3). If one analyses
the lattice parameters of mixed crystals LaSrGa1�xNixO4�• (with oxygen defi-
ciency), one finds however [24], that tetragonally elongated NiIIIO6 polyhedra in
the low-spin state are still partly present up to x Š 0:6, which vanish only at higher
concentrations. The EPR spectra of NiIII-doped LaSrGaO4 [24] and LaSrAlO4 [25]
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show indeed the same anisotropic low-spin signal as La2Ni0:5Li0:5O4, with some-
what differing g-values .gjj D 2:044I g? D 2:250/; in addition a rather sharp
isotropic signal appears .giso Š 2:205/, which we tentatively assign to NiIII centres
with suppressed JT distortion. We follow here the arguments of Angelov, Friebel
et al. [26], who detect similar intermediate resonances in a high-resolution EPR
spectrum of NiIII doped (low-spin) LiCoIIIO2. The assignment to two kinds of
centres is straightforward: One, appearing at lower doping levels, is low-spin and
originates from isolated NiIIIO6 polyhedra; the second is ascribed to NiIIIO6 octahe-
dra, interconnected with neighboured NiIII cations via common oxygen bridges, thus
forming pairs and small clusters in advance to the final cooperative bulk properties.
The K2NiF4 lattice (Fig. 7), and the LiMIIIO2 structure-types as well, offer this geo-
metric possibility – in contrast to compounds La2M0:5

IIILi0:5IIIO4, where the cation
order in the octahedral sites impedes such an effect. The electron delocalisation
exceeds the one due to the anyhow pronounced local metal-to-oxygen covalency
within the NiIIIO6 polyhedra [27], considerably. As the consequence of this coop-
erativity, particularly the �-antibonding eg MOs broaden into a band. For such a
case, Thomas and Höck [28] predict a suppression of vibronic coupling, if the band
width distinctly exceeds the potential JT splitting energy (here 4ı1). The enhanced
NiIII-O bond covalency in LaSrNiO4�• , with respect to that in La2Ni0:5Li0:5O4, is
beautifully reflected by the lower-energy shift of the pre-edge peak in the X-ray
absorption spectrum (XAS) at the oxygen K-edge (Fig. 8, left); the increased peak-
width mirrors the cooperative electron delocalisation within the equatorial planes of
the structure (Fig. 7) [29, 30]. Furthermore, the appearance of only one absorption
also for the K2NiF4-type solid indicates low-spin NiIII in both cases. A high-spin
configuration would demand two excitations – into the eg- but also into the open
t2g -subshell. The XA spectra at the Ni � L2;3 near-edge (Fig. 8, right) of the two
solids are nearly identical; only the fine structure is distinctly broadened in the case
of NiIII �O �NiIII electron delocalisation.

From the fit to the experimental NiIII-XA spectra one can derive in-formations
about the NiIII�O bond covalency. The wave-function for the considered MIII poly-
hedron, if an electron is excited from a low-lying ligand-centred band into the open
3d-shell, is usually given as:


 D ˛oj3dn > Cˇoj3dn�1 L > .˛o
2 C ˇo

2 D 1/ (7)

where the underlined electron states refer to hole configurations at the metallic cen-
tre and the ligand. The mixing coefficients measure the extent of delocalisation in
the metal-ligand bond. For Nd2Ni0:5Li0:5O4 and Nd0:9Sr1:1NiO3::95 ˇo

2 amounts to
49% and 58%, respectively [29]. The dublet-quartet separation energy of the iso-
lated NiIIIO6 polyhedra in the LaSrGaO4- host is estimated from ıgjj D 0:042

[24, 25] via (6) to be of the magnitude ı2;4
eff Š 3;000 cm�1; it is hence smaller

than in the case of the La2M0:5
IIILi0:5O4-matrix, because of a reduced lattice strain,

though opposed by the more pronounced nephelauxetic effect. Due to its large elec-
tronegativity and a pronounced bond covalency even in combination with strongly
electronegative ligator atoms, the .CIII/ oxidation state of nickel becomes rather
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Fig. 8 O–K- (left) and Ni � L2;3- (right) XA spectra of two solids with isolated (top) and coop-
eratively embedded (amidst) NiIIIO6 polyhedra, respectively, in comparison with NiIIO (NdIII was
chosen in order to obtain Ni � L3 data, which are free of overlap with spectral structures from
LaIII[29])

unstable, if the host structure allows electron delocalisation via Ni�L�Ni bridgings
between neighboured polyhedra. A tendency towards itinary electrons and band
formation, as well as toward mixed-valence NiIII=NiII properties, develops, which
lastly leads to a suppression of Jahn–Teller coupling (see Sect. 7). In accordance,
solids La.Nd/SrNiO4�• with ı D 0 can only be prepared under oxygen pressure
[31]. If one recalls the decreased Racah-parameters B and C with respect to those
given in Table 4 and the results of the ligand field calculation for La2Ni0:5Li0:5O4,
reported above, a low-spin ground state is in fact expected even in the absence of JT
coupling .ı1; ı2

� D 0/.
NiIII can also be stabilised in isolated complexes with nitrogen ligator atoms.

Due to the enhanced ligand field strength and a slightly decreased nephelauxetic
ratio in respect to oxygen as the ligand [32], one can with certainty predict a low-
spin ground state even for vanishing vibronic coupling (Tables 1 and 4). This is
indeed the case for the two reported examples with the tridentate tri-azacyclononane
(TACN) [33] and the bidentate bipyridyl [34] as the ligand, where structural, EPR
and ligand field data are available. The g-tensor components of the

�
eg
1
�
-type EPR

spectra are nearly identical, with gjj D 2:030.4/ and g? D 2:132.5/; they indicate
the expected tetragonal elongation. ı2;4

eff amounts to 2:4.2/�103 cm�1 (see (6), with
� D 400 cm�1). The radial distortion parameter is �© D 0:16 Å .aav D 2:017 Å/ in
the former and 	0:10 Å .aav D 1:982/ in the latter case (see here the discussion in
[33]), considerably smaller than in (isolated) polyhedra with oxygen ligator atoms.



466 D. Reinen and M. Atanasov

The d–d spectrum of the brown compound ŒNi.TACN/2�.S2O6/3 � 7H2O is only
partly resolved; the lowest-energy absorption, which very probably corresponds to
the 2Eg ground state splitting 4ı1

eff, appears at 6; 500 cm�1.
After all, solids and complexes with NiIIIL6 polyhedra can be prepared with

L D F, O and N ligator atoms – but in the case of oxidic hosts as stable, sto-
chiometric compounds in general only, if the polyhedra occur isolated in the lattice.
While the low-spin state is very slightly preferred with respect to the high-spin state
for fluoride as the ligand, the quartet-doublet separation becomes large, if ligator
atoms, located higher in the spectrochemical and lower in the nephelauxetic series,
constitute the ligand sphere.

4 CoIII in Fluorides and Oxidic Solids: High-Spin
and Low-Spin, Respectively?

The d–d spectrum of a fluoridic elpasolite, with constituting colour centres CoIIIF6
3�

,
in Fig. 9, can only be understood on the basis of a high-spin 5T2g

�
t2g

4eg
2
�
-ground

state (octahedral parent symmetry) and a – distinctly JT-split – 5Eg
�
t2g

3eg
3
�

–
excited state [10, 36]. T2g ˝ "g vibronic coupling demands a distortion according

to a tetragonal compression (D4h
c ; Fig. 2) and hence a 5B2g

�
b2g

2eg
2b1g

1a1g
1
�

ground state (Table 1). The additional features, in particular in the spectrum of the –
elsewhere considered [2] – solids AICoF4, are due to spin-forbidden quintet-triplet
transitions, mainly occurring within the octahedral t2g4eg2-configuration. The lig-
and field parameters, obtained by a best fit to the spectra, but using the ground state
splitting 3ı2 as calculated by DFT, are listed in Table 5. With furthermore the poly-
hedron distortion derived from DFT at hand, also the vibronic coupling parameters
can be deduced via (1 and 2). For further details we refer to [2].

The alternatively possible 1A1g
�
t2g

6
�

low-spin ground state is here calculated to
appear as an excited state at 7:5 �103 cm�1 (diagonal energy), according to (Table 1):

ı5;1 D 5B C 8C � 2�C 2ı2 (8)

It undergoes considerable configuration interaction, however, reducing the singlet-
quintet separation in a very pronounced way (see ı5;1

eff in Table 5). It is also
interesting to analyse more closely the intermediate-spin state, i.e. the lowest-energy
many-electron split state in D4h

c , originating from the excited octahedral t2g5eg1

parent configuration. It turns out to be: 3A2g
�
b2g

1eg
4b1g

1
�

from the lowest 3T1g

state (see the section of the d 6-Tanabe Sugano diagram in Fig. 11 [1]). The cor-
responding vertical triplet-quintet separation energy – deduced from the respective
diagonal energies of the ligand field matrices in D4h, compressed [2] – is:

ı5;3 D 5B C 5C �� � 2ı0�1 C 4ı2 (9)
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Fig. 9 The d–d spectra of the rhombohedral elpasolite Cs2NaCoIIIF6 and of compounds ACoIIIF4

(adopted from [2, 35]). The assignment and fitting of the quintet-quintet and of the spin-forbidden
quintet-triplet (top-listing) transitions –better resolved in the case of the ACoF4-solids – is accord-
ing to tetragonally compressed CoIIIF6-octahedra; the ligand field parameters �; B; C and ı1

�

(ı2 was taken from DFT), derived for the elpasolite-type solids, are listed in Table 5

and – with the parameter values in Table 5 and configuration interaction included –
of the magnitude ı5;3

eff D 7:0 � 103 cm�1. 3
aA2g is hence located about 2;000 cm�1

above the 1
aA1g state. We will come back to the problem, whether an intermedi-

ate spin-state might eventually appear as the ground state, when discussing oxygen
as the ligator atom. While this is strictly excluded in Oh symmetry (Fig. 11), the
strong vibronic coupling in the eg1 subshell possibly supplies a large enough JT
stabilisation in D4h symmetry.

We now turn to oxygen as the ligand. In Fig. 10 we display the O-K-XA spec-
trum of La2Co0:5

IIILi0:5O4 [30,37]; one narrow pre-edge feature is observed, which
is compatible only with just one open d-subshell and hence a low-spin 1A1g

�
t2g

6
�

ground state. The same conclusion holds for the perovskite LaCoO3, where the
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Fig. 10 O–K-XA spectra of oxide ceramics with CoII (1), CoIII (2, 3) and of a solid with 60 and
40 mole % CoIII and CoIV, respectively (4); adopted from [30]

Table 5 Ligand field energy parameters (in 103 cm�1), vibronic coupling constants .A1; V"W
in eV � Å

�1IA2; K"Win eV � Å
�2
/ and structural data from DFT (in Å) for the tetragonally

compressed CoIIIF6
3�

polyhedron. ı5;1
eff; ı5;3

eff are the seperation energies between
5B2g.b2g

2eg
2b1g

1a1g
1/ and 1

aA1g.� b2g
2eg

4/; 3
aA2g.� b2g

1eg
4b1g

1a1g
0/ (in 103 cm�1), respec-

tively

� B C/B A1 A2 V© K©

12:7 0:825 4:3 2:00 0:8 0:65 8:1

¡© aav ı2 D EJT ı�1 ı5;1
eff ı5;3

eff

0:081 1:927 0:21 0:625 4:8 7:0

CoIIIO6 centres are corner-connected with each other in a 3-dimensional network,
and we may confidently anticipate, that this should be also true for the com-
pound LaSrCoO4, where the bridging-network is 2-dimensional (Fig. 7). Reported
structural data (Table 3) are in line with polyhedron distortions, which are not
supported by vibronic coupling. It is possible to partly transform CoIII into CoIV

by increasing the Sr/La-ratio in the ordered K2NiF4-type compound beyond unity.
EPR and O–K-XAS evidences the expected t2g5 configuration for CoIV (see [37]
and Fig. 10 for details). Single crystal X-ray data for the mixed-valence com-
pound Sr1:2La0:8Co0:5Li0:5O4 with 40 mole% CoIV indicate a slightly enhanced
.�© D 0:21 ÅI aav D 1:93 Å/ polyhedron distortion with respect to the parent
CoIII solid, possibly caused by T2g ˝ "g JT-coupling of low-spin CoIV.
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Fig. 11 Section from the Tanabe-Sugano diagram for an octahedral d 6 configuration (with
C=B D 4:8) [1]. The diagonal energies for the 5T2g;

3T1g;
3T2g states in respect to the 1A1g

ground state are specified – as well as the energy additions for the lower energy split terms of
these, in D4h

e (in brackets; see Table 6)

The magnetic �M
�1-versus-T measurements of Demazeau et al. [16] are in

accord with a 1A1g ground state as well. The authors deduce from the distinct
temperature dependence with a maximum at about 200 K, that admixtures not only
due to spin-quintet, but also according to spin-triplet states occur via Boltzmann
population, involving energy barriers of about 1;500 cm�1. In order to get some
understanding for such a possible energetic situation, we have, to begin with, esti-
mated the Franck-Condon energy separations ı1;5

eff and ı1;3
eff via a ligand field

calculation, where we used the parameters for oxygen ligands in Table 4; however,
a slightly enhanced ligand field strength was chosen, because a two-electron jump
is involved when switching from the high-spin configuration in fluorides to t2g6

in oxide coordination (Table 6). In a second step we attempted to fix the approx-
imate position of the potential energy minimum of the lowest intermediate-spin
t2g

5eg
1 state. It is expected to undergo a distinct shift along the q.	�©/ coordi-

nate in respect to the 1A1g minimum (see the discussion in Sect. 2), because a
pronounced eg ˝ "g -type vibronic stabilisation via the singly occupied eg MO is
involved; hence, the non-adiabatic�1;3eff energy separation (see Table 6) might be
considerably smaller than ı1;3

eff, and provide a more appropriate magnitude for the
energy barrier, steering the thermal equilibrium. From model ligand field calcula-
tions in Oh and D4h, with tentatively chosen ı1- and ı2-energies – but adjusted
to the energetic landscape as occurring for oxygen as the ligand – one obtains the
triplet-singlet and quintet-singlet separation energies, listed in Table 6. Explicitly,
�1;3

eff is the (estimated) non-adiabatic separation energy between the minimum of
the 3

aA2g or 3
aEg potential curve at qmin 	 �©min.tripl/ and the minimum of the 1

aA1g
potential curve at qmin.singl/ D 0, where we have approximately made allowance
for the involved change of the restoring energy. �1;5eff was coarsely assumed to
also refer to the �©min.tripl/ coordinate. The result forOh indicates close neighbour-
hood to the spin-singlet/spin-quintet cross-over (Fig. 11), but also signalizes a rather
large vertical ı1;3

eff separation energy. However, if one looks at the minimum posi-
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Table 6 Adiabatic (in Oh) and non-adiabatic (in D4h) quintet-singlet- .ı1;5
eff; �1;5

eff/ and triplet-
singlet- .ı1;3

eff; �1;3
eff/ separation energies for low-spin CoIIIO6 polyhedra, with� D 13:6; B D

0:725 � 103 cm�1 and C=B D 4:3, as for La2Co0:5Li0:5O4 (Table 4 and text) – from model lig-
and field calculations, in Oh and D4h, compressed and elongated (in 103 cm�1). In D4h; �1;3

eff

is defined as the energy difference between the minimum position of the lowest spin-triplet (at
�©

min(tripl)) and the minimum of the 1A1g potential curve; for �1;5
eff; �min

© (tripl) is also the (here
coarsely supposed) point of reference (on the lowest spin-quintet potential curve)

�
eff a
1;5 �

eff a
1;3 Involved states

Oh 0.85 5:05
1
aA1g;

5 T2g;3a T1g
D4h

c 0:25
b 4.0bd 1

aA1g;
5 B2g;3a A2g

�0:1b 3.5bd

D4h
e 0:55

c 3.8ce 1
aA1g;a

5Eg
�
5T2g

�
,

0.4c 3.0ce 3
aEg

�
3
aT1g

�

ain Oh W ı1;5
eff and ı1;3

eff

bwith ı1
0 D 2:5 ı2 D 1:6 and 2.5, respectively

cwith ı1 D 3 ı2 D 2:0 and 3.0, respectively
dthe triplet-term, next in energy to 3

aA2g, is 3
aEg

�
3
aT2g

�
, at by 0.9 (top) and 0.3 (bottom) higher

energies
ethe triplet-term, next in energy to 3

aE
�

3
aT1g

�
, is 3

aB2g

�
3
aT2g

�
, at by 2.0 (top) and 1.2 (bottom) higher

energies

tion of the lowest-energy potential curve, originating from the intermediate t2g5eg1

configuration, the (non-adiabatic) triplet-singlet energy difference is much smaller,
particularly in D4h

e . With ı1 D 3;000 cm�1, magnitudes of �1;3eff and �1;5eff

are estimated, which are coarsely in the range of the energy barriers, suggested
by the magnetic measurements. The splitting parameters of the model calculations
were chosen in the limits of those found for NiIII, neighboured in the number of d-
electrons to CoIII. A significant conclusion from the calculations is, that a cross-over
between the lowest singlet 1

aA1g and the lowest triplet 3
aA2g or 3

aEg
�

3
aT1g

�
term in

D4h is not within reach, even if unrealistically large ı1 or ı1
0 parameters are chosen.

The magnetic �m
�1=T -data for LaSrCoO4 [38] show only a weak deviation

from linearity above 600 K, and thus indicate rather a large high-spin/low-spin
separation energy in respect to La2Co0:5Li0:5O4 with isolated CoO6 octahedra. In
analogy to NiIII, this can be traced back to a larger overlap covalence in the case
of CoIII � O � CoIII bridges in the structure; the correspondingly reduced Racah
parameters enhance ı1;5

eff and ı1;3
eff (Table 6, Fig. 11). The respective delocal-

isation phenomena are nicely documented by a red-shift and an increase of the
half-width of the pre-edge peak in the O-K-XA spectra of the perovskite LaCoO3,
where all oxygen-ligator atoms of the CoO6 octahedra are in bridging functions
(Fig. 10; spectra 2, 3). The mentioned effects are less pronounced than for NiIII

(Fig. 8), however, due to the larger ionicity of CoIII. Referring to (7), a delocali-
sation according to ˇo

2 D 0:28 is reported for La2Co0:5Li0:5O4 [39], considerably
less than for NiIII in the same host. If the CoIIIO6 octahedra are embedded in a
3-dimensional bridging O�CoIII�O network, ˇo

2 increases to 0.38 [40]. In ligand
fields of more covalent ligator atoms the 1A1g ground state is progressively further
stabilised; the same effect is observed, if � becomes larger. We keep in mind, that
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isolated CoIIIO6-polyhedra, as occurring in La2.Nd2/CoIII
0:5Li0:5O4 for example,

represent cases not too far from the singlet-quintet spin-crossover.

5 Remarks on MnIII and FeIII

Fe(III) is usually found to be high-spin in octahedral complexes. According to
the large interelectronic repulsion energy increments and the small electronic sta-
bilisation by T2g ˝ "g coupling (Table 1), a low-spin 2T2g ground state is only
found with ligands, positioned high in the spectrochemical series; one prominent
example is the ferricyanide anion Fe.CN/6

3�, where the T2g˝"g Jahn–Teller inter-
action has recently been analysed [4]. Prussian Blue, FeIII

4
�
FeII.CN/6

�
3 � nH2O �

.H2O/2�•
�
FeIII

�
Fe0:75

II
��
.CN/4:5.OH2/1:5, a mixed valence compound with an

elpasolite-type structure, is a beautiful model example, where the analysis of the
structural, of various spectroscopic and of the magnetic properties has lead to
a rather complete understanding of the binding situation within this fascinating
pigment [41]. However, FeIII is high-spin here, because it is ligated to the nitrogen-
atoms of the bridging CN� anions, which exert an even weaker ligand field on the
central cation than NH3, for example; carbon, is bonded to FeII.

Figure 12 displays the optical spectra of FeIII in the octahedral position of the
spinel ZnGa2O4, where the weak, spin-forbidden sextet-to-quartet d–d transitions
appear in the low-energy range. The ligand-to-metal electron transfer region starts
at about 25;000 cm�1 for small doping levels, i.e. where the FeIIIO6 octahedra
occur isolated in the lattice. They extend into the visible spectral region down to
	 15;000 cm�1 in the case of ZnFe2O4, caused by electron-delocalisation along the
FeIII � O � FeIII-bridges. As expected, the d–d band positions change only slightly
with x; the increase of the FeIII � O bond covalence by electron delocalisation is
hence small. The shift of the charge-transfer bands into the higher-energy visible
region with increasing x – causing striking colour-changes from yellowish to ochre
and finally to brown – exemplarily illustrates the palette of hues, with brownish red,
yellow and even black, which is found in iron-bearing rocks in nature and in indus-
trial pigments on iron-oxide basis. The derived ligand field parameters fit well into
the sequence of those, estimated for oxygen ligated to 3dn MIII cations with n near
to 5 (Table 4). The d–d transitions in the spectrum of NH4FeP2O7 show a distinct
blue-shift in respect to those, just discussed; the accordingly very different� and B
parameters are the result of the strongly contrapolarisingP V centres, which enhance
the apparent electronegativity of the oxygen ligator atoms and hence the ionicity of
the FeIII-O bond. We refer here to the discussion in Sect. 3 in connection with the
data in Table 4.

Proceeding to nitrogen as the ligator atom, one usually observes a spin-flip
from t2g

3eg
2 to t2g5; though thorough studies are scarce [42], small spin sextet-

to-doublet separation energies can be suggested (vide infra). We refrain to go into
details, because the d 5 cross-over is only weakly influenced by JT forces.
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Fig. 12 Absorption spectra of FeIIIO6 octahedra in spinel mixed crystals ZnGa2�xFex
IIIO4 (top)

and in the solid NH4FeIIIP2O7 (bottom); the best-fit band positions with respect to the 6A1g.t2g
3eg

2/

ground state are obtained with the parameters � Š 15:8; B Š 0:625 (for x D 0:1) and � D
12:35; B D 0:70 � 103 cm�1 – nephelauxetic ratios: 0.61 and 0.69 – respectively .C=B D 4:9/.
The shoulder at �17;000 cm�1 in the spinel spectra is presumably due to tetrahedral FeIII on the
Zn2C-site

d–d spectral and magnetic data for various solids with MnIIIF6 polyhedra have
been reported [43], and were recently supplemented by DFT results [12]. The
derived ligand field and Racah parameters, the structural distortion and the vibronic
coupling constants are collected in Table 7. It is clear from these findings, that MnIII

occurs in the high-spin state, with a pronounced stabilisation of the 5Eg
�
t2g

3eg
1
�

ground state by a tetragonal elongation of the MnIIIF6
3�

-polyhedron, initiated by
Eg ˝ "g vibronic interactions; the ground state splitting is considerable, with
4 ı1 Š 9;000 cm�1. Recently, the first hyperfine-EPR spectrum of an MnF63�
complex was reported [44], which nicely mirrors the .S D 2/-ground state.
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Table 7 Ligand field parameters (in 103 cm�1), vibronic coupling constants .A1; V"W in eV �
Å
�1I A2; K"W in eV � Å

�2
/ and structural data (in Å) for the MnIIIF6

3� polyhedron from
experiment and DFT, after [35, 43]

� B C/B A1 A2 V© K©

14.4 0.78 4.6 2.00 0.70 0.6(1) 9.1

¡© aav: EJT ı1 ı2
�

0.26(2) 1:93 0:26 2:3 0:65.1/

9000 13000 17000 21000 cm–1

v
A

bsorption

II. NH4MnIII
0.1FeIII

0.9P2O7

I. NH4MnIIIP2O7
2B2g,

2A1g (2Eg)

blue

red

violet

–

Eg (
2T2g)

Fig. 13 The d–d spectra of the MnIIIO6 colour centres in the NH4FeIIIP2O7 host-structure, indi-
cating a distinct polyhedron distortion according to a tetragonal elongation (4 ı1 Š 9:0 and 11.0,
respectively, with � � 12:5 � 103 cm�1/; the excited state’s splitting .3 ı2

�/ is not or only faintly
visible. The solids are transparent in the spectral ranges of the minima

Figure 13 displays the d–d spectra of MnIII in the NH4FeIIIP2O7 host structure;
the spin-forbidden transitions due to FeIII (Fig. 12, bottom), which lend only a faint
pinkish colour to the FeIII compound, are dominated by the MnIII absorption. The
ground state JT-splitting of the doped solid is about equal to that of the MnIIIF6

3�

polyhedron, but – due to cooperative-elastic JT forces – considerably enhanced in
NH4MnIIIP2O7. Interestingly enough, one can control the colour of the solids by
varying the polyhedron distortion, which is sensitively mirrored by the energy of, in
particular, the lowest-energy absorption band. The hues are, depending on the posi-
tions of the minima in the spectra, violet-blue in the doped case and red-violet for
the FeIII-free solid. The �-value – which can be only estimated, because the split-
ting of the 5T2g-excited state is not resolved – amounts to 	 12;500 cm�1, similar
to the ligand field strength of FeIII in the same host lattice.

Structural data for various other oxide host compounds confirm, that MnIII

always induces pronounced polyhedron distortions according to a tetragonal elonga-
tion, as in La2Mn0:5

IIILi0:5O4, but in LaSrMnIIIO4 as well (Table 3). The,
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in comparison to the NiIII �O� bond, much less covalent MnIII �O-bond impedes
extended electron delocalisation via MnIII�O�MnIII bridges in the latter solid and
thus suppression of the JT-coupling. Interesting results are reported for the solid-
solution compounds Sr2

III
�
Zn1�x

IIMnx
III
� �

Te1�x
VISbx

V
�

O4 [24], which crystallise
in the elpasolite lattice, with an order on the octahedral sites between the di- and
trivalent cations, on the one hand, and the Te- and Sb-atoms with the oxidation states
six and five, on the other hand. While the solids are (pseudo-) cubic up to x D 0:5,
they undergo a first-order phase transition into a structural modification with tetrag-
onally elongated MnIIIO6 octahedra in ferrodistortive order (Fig. 5, right) above this
critical concentration. At x < 0:5 the polyhedra are dynamically distorted – where
we use this terminology for a thermally induced oscillation between the three min-
ima of the ground state potential surface (Fig. 1, top to the right), which leads to an
apparent Oh symmetry, if observed via physical methods with larger time frames.
At x � 0:9 the cation order on the octahedral sites breaks down and reduces the
magnitude of the polyhedron distortion due to intra-lattice strain effects.

Many further MnIII compounds and complexes with oxygen and nitrogen lig-
ator atoms have been studied, all of them characterised by distinct JT-distortions
[42]. Also octahedral complexes with the more covalent chloride anion have been
prepared and optically investigated; in spite of the pronounced nephelauxetic effect
with estimated B parameters of about 500 cm�1 .� Š 13;000 cm�1/, the optical
spectra still indicate a high-spin 5B1g.

5Eg/ ground state.There is a tendency, to
repel one axial ligand, leaving an MnCl52� polyhedron with a strongly elongated
(approximate) C4v structure; the formation of the 5-coordinated species – spectro-
scopically and structurally well characterised [45, 46] – is evident, if the additional
JT stabilisation caused by the loss of one axial ligand is considered [2].

To our knowledge, the only low-spin complex, for which spectral data are
reported, is the Mn.CN/6

3� anion [42]. A rough estimate of the ligand field param-
eters for the latter polyhedron yields, if one utilises the factorisations according to
the nephelauxetic and spectrochemical series of ligands [6] in relation to the known
� and B parameters for fluoride (Table 4):

� 	 27:0; B 	 0:46 � 103 cm�1 .C=B D 4:6/ (7a)

With these data at hand, a (diagonal) 3T2g  5Eg -separation energy in Oh of
the magnitude ı5;3 	 13:500 cm�1 is obtained, which cannot be overcome by any
realistic value for the JT energy increment 2 ı1 � ı2� due to vibronic coupling (see
Table 1). Applying an analogous consideration to NH3 as the ligand, however:

� 	 20:0; B 	 0:63 � 103 cm�1 .C=B D 4:6/ (7b)

one calculates an energy separation of ı5;3.Oh/ 	 1;700 cm�1, which is easily
overcompensated by the vibronic coupling contribution.

The cross-over condition for FeIII in Oh is close to that for MnIII (Table 1), but
lacks the additional stabilisation of the high-spin state by JT coupling. This ener-
getic situation causes (usually) low-spin properties of FeIIIN6 polyhedra, but renders
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a 3
aT1g ground state exceptional in the d 4 case. After all, the best chance for the

preparation of a six-coordinate MnIII-complex with a 5B1g ground state in D4h
e

and a nearby 3A2g potential energy minimum is probably to select nitrogen-bearing
ligands with donor properties. Polydentate ligands offer the additional possibility to
steer the magnitude of 2 ı1 � ı2

� via steric ligand strains.

6 The Jahn–Teller-Introduced High-Spin-to-Low-Spin
Transition of CuIII

The oxidation state .CIII/ is rather unstable for copper and can only be stabilised
in an environment of highly electronegative ligands. CuIIIF6

3�
occurs in the elpa-

solite matrix, a structure-type with a large lattice energy, and the d–d spectrum
has been analysed [10]. Its appearance is cubic, according to a 3A2g ground state.
Table 8 summarises the derived magnitudes of the ligand field parameters as well
as the vibronic coupling constants, estimated by DFT – here utilising excited states’
optimisations [2].

At the first sight surprisingly, the CuIII centres in La2Cu0:5Li0:5O4 are low-spin,
as the diamagnetism caused by spin-pairing of the two eg-electrons in the t2g 6eg

2

ground state configuration indicates [15]. Single crystal X-ray studies further show,
that the structure is the same as for the solids with CoIII and NiIII (Fig. 5, right) –
but that the polyhedron distortion is very pronounced, near to square-planar [18]
(Table 3, top). Analogously, in KNa4

�
CuIII.HIO6/2

� � 12H2O [47], the underly-
ing CuIIIO4.OH2/2 polyhedron has a similar square-planar structure with equatorial
Cu-O bond lengths of 1.838(4) Å and axial Cu-OH2 distances at >2.7 Å.

We proceed to present a model, appropriate to understand the conditions, which
steer the alternative appearance of CuIII in the cubic high-spin 3A2g

�
t2g

6eg
2
�

ground state, and in the diamagnetic 1A1g
�
eg

4b2g
2a1g

2
�

electronic configuration.

The d–d spectra of the CuIIIF6
3� polyhedron in an elpasolite matrix, and of an hexa-

coordinated complex with the isoelectronic Ni2C cation in a fluoridic host solid,
are displayed in Fig. 14. The lowest-energy

�
3A2g ! 1

aEg
�

triplet-singlet transition
occurs at	1:9 eV for Ni2C, but this energy is substantially lowered to about 1:25 eV
in the case of CuIII – due to an enhanced nephelauxetic effect by the pronounced
CuIII �O bond covalence.

Table 8 Ligand field parameters (in 103 cm�1) for the CuIIIF6
3�

polyhedron in elpasolites
A2
0ACuF6 (A0, A: alkaline ions), as well as the CuIII-F bond length (in Å) and the vibronic cou-

pling parameters .A1; V" W in eV � Å�1I A2; K" W eV � Å�2/, derived by DFT from excited
electronic sates [2]

� B C/B A1 A2 V© K© a

14:5 0:75 4:2 1:15 0:7 0:2 5:3 1:91
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Basically, the 1A1g split term of 1Eg
�
t2g6eg2

�
can be stabilised as the new

ground state in a ligand field with a strong tetragonal D4h
e component. How-

ever, inspecting the orbital compositions of the states originating from eg
2 in

Oh.! 3A2g ;
1Eg ;

1A1g ; see Table A24 in [1], for example), one immediately
recognises, that the degeneracy of 1Eg in Oh can only be lifted via a pseudo-JT
interaction, which encloses the 1A1g state as well. Fernandez, Bersuker and Boggs
[48] have worked out the

�
1Eg C 1A1g

�˝ "g coupling model for d 8, and we fol-
low their basic arguments – though in the diction of ligand field theory. The optical
transition to the before-mentioned 1

aA1g
�	t2g6eg2

�
state is usually not resolved in

the d–d spectra, but is calculated to occur at a by 	 1 eV higher energy than 1
aEg

(see caption of Fig. 14).
The ligand field matrix for d 8 in D4h

e , which includes the two 1A1 states,
originating from eg

2, and the two further 1A1g states, stemming from 1A1g and
1Eg

�
t2g

4eg
4
�

in Oh and connected with the former two via non-diagonal B- and
C -terms, is listed in Table 9a. The energies are in respect to a 3B1g

�
3A2g

�
ground

state inD4h
e; the additionally listed energy increment has to be added to each diag-

onal element. The significant (non-diagonal) vibronic coupling term is 4ı1 between
1Eg and 1A1g , both from t2g

6eg
2. The small ı2 energy, originating from t2g

4eg
2, is

only significant in higher order. Neglecting in a first step the latter interactions, one
obtains for the energy of the lowest energy spin-singlet term:

E.1aA1g/ Š 12B C 3C � 4ı1f1C ..4B C C/=4 ı1/
2g1=2 (8a)

The critical condition for stabilising a spin-singlet ground state .E.1aA1g <E.
3B1g/;

see Table 1) is, accordingly:

4 ı1 � 2p2.4B C C/ (8b)

The energy of the 1B1g split state of 1Eg
�
t2g

6eg
2
�

is not affected perceptibly by
the vibronic interaction (see the respective matrix in Table 9b). The Franck-Condon

Table 9 The energy matrices for 1A1g and 1B1g , restricting from the octahedrae 1A1g
1E1g parent

terms in D4h
e

a:
1A1gmatrix

1Eg.t2g
6eg

2/ 1A1g.t2g
6eg

2/ 1Eg.t2g
4eg

4/ 1A1g.t2g
4eg

4/

.8BC 2C/ 0 �4 ı1 2B
p
3 0

C �4 ı1 8BC 2C 0 .2BC C/
p
6

2B
p
3 0 BC 2�� 2ı2 2

p
2ı2

0 .2BC C/
p
6 2

p
2ı2 10BC 3CC 2�

b:
1B1gMatrix 1Eg

�
t2g

6eg
2
�

1Eg

�
t2g

4eg
4
�

.8BC 2C/ 0 �2p3B
C �2p3B BC 2�C 2ı2
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energy within 1
aEg is, after (8), of the approximate magnitude:

E
�

1
aA1g ! 1

aB1g
� Š 4 ı1

˚
1C ..4B C C/=4 ı1/

2
�1=2 � .4B C C/ (8c)

In order to complete the vibronic treatment, we have to supplement the electronic
energies by the restoring energy increment. This is coarsely done by replacing 4 ı1 in
(8b) by half of this value – see EJT in (1) and the electronic ground state stabilisation
of the eg -MO in Fig. 2 – which stiffens the condition for the high-to-low-spin cross-
over. With the parameter set for CuIIIO6-polyhedra from Table 4 – but utilising the
smaller Bee D 540 cm�1, valid for the here involved singlet-states – one estimates
ı1 	 6;300 cm�1; if the non-diagonal matrix elements are additionally taken into
account, this value is lowered to ı1

eff 	 5;800 cm�1.
More information were deduced from a DFT calculation for the charge-compen-

sated Cu.OH/6
3� polyhedron in D4h (Table 10). The complex is clearly low-spin,

with a huge tetragonal elongation and a bond length a?, which is near to that,
reported for La2Cu0:5Li0:5O4 (Table 3). The splitting parameter ı1 is close to the one
estimated for an energetic landscape, where the 1

aA1g
�

1
aEg

�
– inD4h

e – and 3A2g –
in Oh – potential curves possess nearly identical energetic minimum positions. The
minima are separated, however, by a very pronounced shift along the displacement
coordinate q (see Sect. 2 and Fig. 6 for definitions). The Franck-Condon excitation
energy ı1;3

eff between the two states, at the D4h
e minimum, is accordingly very

large, with about 12; 000 cm�1 (Table 10).
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Fig. 14 The d–d spectra of NiII and CuIII in octahedral fluoride coordination. The spectra are
fitted with: � D 7;500; B D 950 cm�1; C=B D 4:2 (CsNiGaF6, pyrochlor type) and � D
14;500; Bet � 750; Bee D 610 cm�1; C=B D 4:2 (CuIII-elpasolite) – after [2]. The calculated
positions of the usually not resolved 3A2g !1

a A1g transition are Š 23;700 cm�1 for the NiIIF6

andŠ 17;500 cm�1 for the CuIIIF6 polyhedron
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Table 10 Results from a DFT calculation for a Cu.OH/6
3� polyhedron (charge compensated by a

polarisable solvent medium, as described elsewhere [35]), within the electronic t2g
6eg

2 ground state
manifold (! 1A1g.2x/; 1B1g; 3A2g in D4h) – energies in 103 cm�1.C=B D 4:2/, bond lengths
in Å; the listed state energies (D4h nomenclature) are in respect to the a

1A1g

�
a

1Eg
�

ground state

ı1 ı2 B a
?

a
jj

5:8 � 0 0.51 1.77 2.78

E
�
3B1g

�
E
�
a
1B1g

�
E
�
b
1A1g

�

12.3 21:0 49:8

The lowest-energy spin-allowed transition is that within the octahedral 1Eg .t2g
6

eg
2/ state and predicted to occur at 	 21;000 cm�1. This is well in line with the

optical spectrum of La2Cu0:5Li0:5O4, which is – in accord with the red colour of the
compound – empty up to 17;000 cm�1 [18], the onset of the charge-transfer region.
Figure 15 surveys the electronic effects of the pseudo-JT .Eg C A1g/˝ "g interac-
tion for an octahedrally coordinated d 8 cation, with the eventual stabilisation of a

1A1g


�
dz
2
�2�

ground state. The results of the respective ligand field calculations

on the basis of the matrices in Table 9 are depicted in dependence on the splitting
parameter ı1, and using the parameter set for the CuIIIO6 polyhedron in Table 3. The
spin–flip ocurs at ı1 	 3;000 cm�1, as presumed half in magnitude of the critical
value, if the restoring force is accounted for.

The ligand field matrices, applied in the context of this contribution, are con-
structed on the basis of the validity of the centre-of-gravity rule for the tetragonal
splitting. In view of the, for CuIII, very large deviation from octahedral, the ligand
field strength� largely looses its meaning; however, because this parameter is only
involved in the energies displayed in Fig. 15 and in Table 10 in higher order, one
may confidently use the results in good approximation.

Instead of making use of a .Eg C A1g/ ˝ "g pseudo-JT interaction in Oh one
may alternatively start from an ML4 tetrahedron [49] and follow the distortion path-
way toward a square-planar coordination. The advantage of an alternative T ˝ "
and/or (E C A1) ˝" coupling model in Td is, that the bond length (nearly) and the
coordination number remain unchanged and that the active mode is of pure bending
type. We have to remark here, that a square-planar coordination of a d 8 cation is not
necessarily connected with diamagnetism, as found for the NiIIO4-slice in Li2NiO2,
for example [50].

The decrease of the nephelauxetic ratio, when proceeding from the CoIIIO6

and NiIIIO6 to the CuIIIO6 polyhedra in solids La2M0:5
IIILi0:5O4, amounts to 20%

(Table 4). The correspondingly enhanced bond covalence is also seen by XAS [39]
via a dramatic percentage increase of ˇo

2 (7) from 28% to 70%. The latter value
matches with the one for Cu.OH/6

3�, derived from DFT. The dominating partici-
pation of ligand electrons in the ground state wave-function has consequences for
the relative energetic positions of the metal-3d and ligand-2p parent wave-functions
in the respective MO-schemes (Fig. 16). Even for the (high-spin) CuF63� polyhe-
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Fig. 15 Energy diagram of the electronic states, originating from the electronic t2g
6eg

2 configu-
ration of a CuIIIO6 polyhedron in D4h

e symmetry, in dependence on the splitting parameter ı1 –
results of a ligand field calculation (matrices in Table 9) with: � D 14:8; B D 0:54 � 103 cm�1

and C=B D 4:2 (Table 3), with respect to a (high-spin) 3B1g

�
3A2g

�
and a (low-spin) 1

aA1g

�
1
aEg

�

ground state, respectively. The energy sketch has no mirror symmetry when extending toward
negative values of the splitting parameter, because ı1

0 (in D4h
c) is distinctly smaller due to the

higher-order A2 parameter (1)

dron ˇo
2.Š 0:6/ is already larger than the metalc�3d participation ˛o2 [51]. In

the following section we will discuss the binding properties of CuIIIO6 polyhedra
in oxide solids, where these entities don’t occur isolated in the lattice anymore.
We expect here an even more pronounced CuIII � O bond-covalence, which further
stabilises a spin-singlet ground state.

7 The CuIII=CuII Ambivalence in Oxidic Host Solids:
A Prepositon for Superconductivity?

LaSrCuIIIO4 can be prepared as a pure compound under oxygen pressure, and
approximate bond-length data have been reported .a? D 1:88; ajj 	 2:23 Å/ [52].
The large c/a ratio – even in comparison to MnIII – and the coarsely estimated radial
distortion parameter indicate a pronounced polyhedron distortion (Table 3). This is
not necessarily expected, because the analogous change from the La2M0:5

IIILi0:5O4-
to the LaSrMIIIO4- host leads to a complete suppression of the JT coupling in the
case of NiIII. The obvious reason is, that the splitting of the 1

aEg state is by a factor
of about 1.8 larger than for NiIII. Thus, for a quenching of vibronic coupling, a fur-
ther increase of the b1g

�
dx

2�y2
�
-band width is needed, in order to meet the critical

condition of having a .1aB1g�1
aA1g/ splitting, which is less than the mentioned band

width. In the rhombohedral perovskite LaCuO3, where electron delocalisation along
CuIII � O � CuIII bridges occurs along each octahedral bond direction, the electron
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Fig. 16 Schematic MO diagrams for six-coordinate MIIIO6 polyhedra (indices �; n: antibonding
and nonbonding; hatched and uniform black: half-filled and fully occupied, respectively): (a) local,
predominantly ionic binding scheme in Oh symmetry (MIII: low-spin d 6 cation); (b) section, dis-
playing only the non-bonding ligand-centred (lig) and the � -antibonding eg�-split MOs in D4h

e –

as for the JT distorted MnIIIO6 polyhedron in La2Mn0:5
IIILi0:5O4.eg

�2b2g
�1a1g

�

1
b1g
�0/; (c) and

(d) sections illustrating the binding situation in low-spin CuIIIO6 polyhedra ofD4h
e symmetry, with

a near-to square planar coordination and a filled narrow a1g
� band, which is nearly non-bonding

with respect to 3d; (c) approximately valid for La2Cu0:5
IIILi0:5O4 and (d) for LaSrCuIIIO4, but here

with very probably an overlap between the filled ligand and the empty b1g
�.dx

2
�y

2/ band (see
text)

delocalisation is apparently enhanced to such an extent, that the CuO6 polyhedra are
forced into a regular structure, with bond length of 1.95 Å [15]. Figure 16 illustrates
the energetic situation in the region of the JT-split �-antibonding eg-level via sec-
tions of MO-diagrams. The sketch (b) refers to approximately the bonding situation
in La2Mn0:5Li0:5O4 (Tables 3 and 4), where the metal-to-oxygen bonds possess a
high degree of ionicity and the electron-transfer from the non-bonding ligand to the
predominantly metal centred eg MOs lies in the UV.

Figure 16c sketches the relative locations of the involved MOs for the CuIIIO6

polyhedra in La2Cu0:5
IIILi0:5O4. In the case of a (near-to) square-planar coordination

the energies of the �-antibonding b1g and a1g levels are, in the diction of the angular
overlap model (AOM):
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E.b1g/ D 3 e�? E.a1g/ D e�? � Eds (9a)

Here, 3e�? and e�? are the metal-oxygen overlap energies (3d contributions) for
dx

2�y2 and dz
2, respectively, in the x�y plane. Eds stands for the, already dis-

cussed, repulsive energy reduction of a1g

�
3dz

2
�

by a1g (4s), and can be shown to

render a nearly non-bonding character to the dz
2-MO, at least in the case of extreme

tetragonal distortions [5]. We adopt this finding here, and give the splitting energy
�E under this assumption:

�E D E.b1g/ �E.a1g/ 	 3e�? (9b)

Having further in mind, that the ligand orbitals are positioned higher in energy than
the metal 3d-orbitals, the ligand-to-metal charge transfer E.I/ is expected at lower
energy than the a1g ! b1g

� transition E(II), which reflects exactly the experimental
observation (vide supra).

Figure 16d depicts an MO-scheme, which approximately refers to the binding
properties of the CuO6 polyhedra in the deep reddish-brown coloured LaSrCuIIIO4.
Electron delocalisation via the CuIII�O�CuIII bridges in the equatorial plane further
broadens particularly the empty b1g

�
dx

2�y2
�

band in respect to La2Cu0:5
IIILi0:5O4.

One may even suggest an overlap of the empty antibonding b1g- with the non-
bonding oxygen band, located at the upper edge of the lower-energy filled band.
This would allow a ligand-to-metal charge flow or, in a single-bond terminology,
the partial formation of CuII, with an electron hole at the ligand. Such a supposition
is supported by some bond-length considerations. Cu2C possesses a by about 0.2
Å larger ionic radius than Cu3C in octahedral coordination [20]; in fact, a distinct
increase of the average bond length is indeed indicated for the CuO6 polyhedron
in LaSrCuO4 (Table 3 bottom, footnote g). Apparently, the suggested overlap of
the (non-bonding) ligand by the �-antibonding, partly metal-centred b1g

� band has
enhanced the mobility of electrons within the equatorial plane of the K2NiF4-type
lattice of LaSrCuO4, thereby initiating the partial formation of CuII, according to:

Cu2C �O� � Cu3C $ Cu3C �O� � Cu2C (10)

Electron delocalisation of such a type is a necessary qualitative condition for the
observation of superconductivity in oxidic mixed valence copper compounds [53]. A
further mandatory presupposition is, however, that the CuIII ! CuII transformation
can occur without an essential change of the polyhedron structure. This is granted,
because octahedrally coordinated CuII also undergoes a strong Eg ˝ "g vibronic
coupling, leading to a large tetragonal elongation or frequently even to a square-
planar ligand environment [9] – similar to CuIII. Thus, for example in La2CuO4 with
the K2NiF4-structure, CuII�O bond lengths of a? D 1:905 and ajj D 2:46 Å .�" Š
0:65 Å/ are observed [54], and the c/a ratio (3.46) is similar to that for LaSrCuIIIO4

(Table 3). More specifically, the subsequent survey illustrates by X-ray data of well
defined mixed crystals the nearly equal increase of the c/a-ratio – by 0.18(2) – for an
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intervalence CuII=CuIII and a pure CuII phase (with the same total copper content)
in comparison to the host solid [53]:

solid (K2NiF4 structure) a (Å) c=a

La1:8
IIISr0:2

II �Ga0:04
IIICu0:8

IICu0:16
III�O4 3:782 3:505

La1:96
IIISr0:04

II �Ga0:04
IIICu0:96

II�O4 3:804 3:460

LaIIISrIIGaIIIO4 3:848 3:305

For a further discussion of also symmetry aspects, possibly involved in the mech-
anism of superconductivity in oxide CuII=CuIII-solids, we refer to the literature
[21, 53, 55].

We conclude by stating, that the spin cross-over in the case of hexa-coordinated
CuIII – which is accompanied by a drastic structural change from octahedral to
nearly square-planar – occurs at ligand field parameters in the range of those
valid for oxygen as the ligand (Table 4). The employed considerations indicate,
that high-spin CuIIIO6 polyhedra might eventually be stabilised in host structures,
which impose a strain on the guest-octahedron, opposing its tendency toward
square-planar. Besides the here discussed oxide compounds with CuIII, we men-
tion KCuO2 with a chain structure of side-connected square-planar CuIIIO4 entities
and CuIII � O bond lengths of 1.84 Å [56], and furthermore refer to a review
by Müller-Buschbaum, surveying the structures of copper, specifically in a planar
four-coordinate oxide environment [57].

8 Final Remarks

Usually the spin cross-over of six-coordinated transition metal complexes is grossly
discussed in Oh symmetry, without referring to the significant energy modifications
by vibronic coupling, particularly if �-antibonding Eg ground states are involved.
Thus, in the d 7 case, theEg˝"g Jahn–Teller interaction is large enough to stabilise
a spin-doublet ground state even for fluoride as the ligand; only by structural strains
in the host lattice, opposing the tendency towards a tetragonal distortion of the
NiF6

3� polyhedron, one succeeds to create a high-spin t2g
5eg

2 configuration of low-
est energy – as for one NiIII site in Cs2NaNiF6. In difference, for the d 6-configurated
CoIII centre, lacking a vibronic support by JT coupling, the quintet-to-singlet spin-
flip occurs only, if one proceeds from fluoride to the less electronegative oxygen
ligand. Here, as analysed, interesting high-spin/low-spin correlations are frequently
observed.

Though vibronic effects may play an important role in high-spin/low-spin equi-
libria, another determinant exerts also significant influence, specifically in the here
considered series of MIII .3dn/ cations: the considerable increase of the electroneg-
ativity from MnIII toward CuIII (Table 11). It parallels the nephelauxetic effect of
decreasing ˇ-ratios and is a significant particular in the understanding of high-to-
low spin interrelations. Thus, it is the low value of the relevant Racah parameter
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Table 11 Electronegativity .�/ data for MIII.3dn/ cations [2] and for fluoride and oxygen [58];
global nephelauxetic ratios ˇ for MIIIO6 polyhedra are also given, for the case that if the oxygen
ligator atoms possess approximately � values around 3.0 (as in Table 3)

MIII ¦ “ Ligator ¦

Mn 2.5 0:70 F� 3:9

Fe 2.6 .0:61/
c PV: : :O2� 3:5

Co (2.8)a 0:67 CaII: : :O2� 3:0

Nib 2:95 0:61 CsI: : :O2� 2:2

Cu 3.5 0:54
d

aEstimated value
bThe corresponding values for the isoelectronic Co2C ion are: � D 2:0I ˇ D 0:86 .B0 D
970 cm�1/ and (in comparison to 13:3, Table 3) � Š 9:2 � 103 cm�1
cCoarse value from spin-forbidden bands
dˇee is 0.45

Bee.Cee D 4:2 Bee/ of about 540 cm�1 for CuIII (Table 3) when proceeding from
fluoride to oxygen as the ligand, which – though with the very large JT split-
ting parameter ı1 	 6;000 cm�1 as the predominant energy contribution – finally
stabilises a singlet 1A1g

�
eg
4b2g

2a1g
2
�

ground state. The respective expansion of
the 3d-electron cloud toward the ligands may be taken from the MO diagrams
in Fig. 16c, d. The 3d-AOs are located below the ligand 2p atomic orbitals and
give rise to a pronounced shift of ligand electron density toward the metal ion. The
change from the octahedral high- to the near-to-square planar low-spin configuration
is quite spectacular and occurs in the case of oxygen ligator atoms at Bee and �
parameters of 0.58(3) and	 14:7 � 103 cm�1, respectively. The underlying vibronic
phenomenon is elegantly analysed by utilising a pseudo-JT-type symmetry concept.
Oxygen is, due to its formal (2-) charge, a very versatile ligator toward MII and
MIII transition metal ions, because its electronegativity can be steered via a widely
varying cationic higher-sphere environment [21]. Highly charged and small cations,
such as P V , induce large-electronegativity properties, while voluminous cations
of low charge lend soft properties to the binding toward a considered probe M-
cation (Table 11) – see the discussion in [58], Chapt. 6. The covalence within the
M–O bond is small in the former, but pronounced in the latter case, reflected by the
respective nephelauxetic and spectrochemical effects in the case of 3d–M cations,
for example. An illustrating example offers Fig. 12, where the FeIII � O bond is
rather ionic in NH4FePO4 and more covalent in the case of a second-sphere coordi-
nation constituted by the larger and less-charged Ga3C;Fe3C;Zn2C cations; here the
�-value is enhanced and theB-parameter reduced – by about 25% and 15%, respec-
tively. We learn, that the covalence effects offer a further steering instrument to the
experimental inorganic chemist, interested in the synthesis of complexes, which are
innocent in respect to the adoption of a high-, low- or even intermediate-spin ground
state at first sight. Higher-sphere environmental effects are equally of importance in
the case of nitrogen ligators .N3�/, where a rich complex chemistry, involving 3d–M
cations is well established.
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We supplement our survey with a side-glance into the complex chemistry of
CoII, iso-electronic with NiIII. Mainly due to the much larger Racah parameter and a
distinctly reduced ligand field strength (Table 11) in comparison to the latter cation,
the 4T1g .Oh/! 2A1g.D4h/ spin-flip occurs in the wide range of nitrogen as the lig-
ator atom, positioned higher in the spectrochemical and lower in the nephelauxetic
series than oxygen. Complexes with these ligands are usually high-spin; however,
the tridentate ligands 1, 4, 7-triazacyclononane (TACN) and terpyridine, for exam-
ple, generate high-spin [32] and low-spin ground states [59, 60], respectively –
apparently caused by a small increase of � by 	10% and a slight decrease of
ˇ by about 5% in the latter case. Interesting is, that in the terpyridine case the
high-spin/low-spin separation energy can be varied by changing the counteranions,
the water content and, via these parameters, also details of the crystal structure –
thereby even obtaining compounds, where high percentages of high-spin coexist
besides low-spin CoII at ambient temperatures. The interplay between the imposed
steric strain of the tridentate ligand and the JT coupling, as well as the disturbances
introduced by the partial presence of high-spin species, have been analysed in com-
parison with corresponding NiII complexes, where only the strain-influence, and
with CuII compounds, where the spin-state is definite and hence exclusively the
vibronic coupling/strain interference could be studied [61]. A binding strain (vide
infra) – if chosen correctly for supporting the JT distortion – may also eventually
stabilise a low-spin ground state via an enhancement of the splitting parameter ı1;
for example, the substitution of the axial ligator atoms in TACN by oxygen in the
above mentioned CoII complex straight-forwardly transforms the spin-quartet into a
spin-doublet ground state [32].

The side-leap was meant to demonstrate, that basic and semi-empirical theory
has the potential to provide means and rules, how to prepare high- or low-spin
complexes in an aimed way; we again emphasize, that – if orbitally degenerate,
in particular Eg , ground states are involved – Jahn–Teller coupling and (eventu-
ally) energetic strain contributions come into play, in addition to the ligand field
parameters� and B, C.

We are still left to define precisely, what we understand by strain. The strain
concept was introduced into vibronic theory by Ham [62], as a quantity, closely
related to the first order vibronic coupling constant; this is termed binding strain in
our diction [2]. It can be of significant influence, if complexes with slightly or even
distinctly differing ligator atoms are considered. There is, however, a second strain
increment, not considered in the concept of Ham, which models the force constant
in a similarly symmetry-dependent way. This component is related to the elastic
properties of a polyhedron, embedded into a specific host lattice, and designated
structural or steric strain in our notion [2]; it mirrors distortion effects imposed on
the guest polyhedron by the low symmetry of the host structure or of rigid poly-
dendate ligands, for example. Structural and binding strain components [2] are of
perceptible energetic influence on the spin-cross over only in the case of orbitally
degenerate ground sates, and may enhance or reduce the ground state JT splitting
in a coarsely predictive way. In particular, CoII and NiIII with the d 7 configuration,
in oxygen and nitrogen ligand fields, are fascinating in this respect, because the
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quartet-dublet spin-flip can be induced here via a great manifold of chemical param-
eters, such as the choice of various macrocyclic ligands of biochemical interest or
of ligator atoms with different binding properties, as discussed.

We finally note, that the preference of the tetragonal elongation in respect to the
compression is only a second order energy effect in the Eg ˝ ©g coupling case
(1), though very significant for large polyhedron distortions. The respective energy
barrier can be overcome by an appropriately chosen strain – as has been shown by
a few model examples [9].

Acknowledgements The authors are indebted to thanks to Prof. Dr. Horst Köppel, Heidelberg,
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Part IV
Fullerenes and Fullerides



Following Jahn–Teller Distortions in Fulleride
Salts by Optical Spectroscopy

G. Klupp and K. Kamarás

Abstract C60 salts represent perfect model systems for the Jahn–Teller effect, in
particular for the interplay between the molecular dynamics and the distorting crys-
tal field. In this paper, after a brief introduction to the theoretical background, we
review experimental results on salts with fulleride anions containing different charge
states in the solid state. Mid-infrared (MIR) and near infrared (NIR) spectroscopic
measurements and their conclusions are reported in detail, while the results obtained
by nuclear magnetic resonance (NMR), electron spin resonance (ESR) and X-ray
diffraction are briefly summarized. The following questions are addressed: Are ful-
leride ions distorted in various solids? Is the distortion dominated by the molecular
Jahn–Teller effect or by the potential field of the environment? What is the shape of
the distortion? Is the distortion static or dynamic, is there a pseudorotation, are there
transitions between static and dynamic JT states? How do these effects manifest
themselves in vibrational and electronic excitations? The experimental difficulties
one has to face when studying Jahn–Teller distortions in solids are also discussed.
These limitations originate not only in the performance of the spectroscopic meth-
ods used, but also in the chemistry of some of the compounds, which can lead to
segregation and polymerization.

1 Introduction to the Theory of the Jahn–Teller
Effect in Fulleride Ions

The neutral C60 molecule possesses the highest symmetry point group found in
nature, the icosahedral Ih group (see Fig. 1). This high symmetry leads to degen-
eracies of both the electronic and vibrational energy levels. Its HOMO (highest
occupied molecular orbital), LUMO (lowest unoccupied molecular orbital) and
LUMO+1 (next lowest unoccupied molecular orbital) belong to the hu, t1u and t1g
representation, respectively [1]. The LUMO can be partially or completely filled
with electrons upon reacting C60 with suitable electron donors, e.g. alkali metals.
This way a Cn�60 (n < 6) molecular ion with degenerate electronic states is formed,
which is subject to Jahn–Teller distortion. The t orbital can couple to vibrational
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Fig. 1 The icosahedral symmetry of the C60 molecule. The atoms above the plane of the paper are
marked black, those under it grey. In the left figure one of the C5 and S10 axes is perpendicular to
the plane of the paper. This is the axis along which the C�60, the C2�60 and the C4�60 molecules are
elongated or compressed by a D5d distortion. In the figure in the middle, one of the C3 and S6 axes
is perpendicular to the plane of the paper. This is the axis along which the above molecules are
distorted in a D3d symmetry. In the right figure a C2 axis is perpendicular to the plane of the paper,
another C2 axis is horizontal, and the third one is vertical. In this figure one of the mirror planes
of the molecule coincides with the plane of the paper, the other two are perpendicular to it and to
each other. [4] Copyright (2006) by the American Physical Society

modes of Hg and Ag symmetry [2]. Since the Ag vibrations do not change the
symmetry of the molecule, we will only consider Hg vibrations in the following.
As we will see below, the fulleride ions have a spherical APES (adiabatic potential
energy surface) in the first approximation. Thus the notation commonly used for the
fulleride ions as Jahn–Teller systems is pn ˝ H in analogy with the pn electron
configuration of atoms [3].

The Hamiltonian of the pn˝H system for linear coupling can be written as [3]:

OH D �1
2

5X

iD1

@2

@Q2
i

C 1

2

5X

iD1
Q2
i C OM.Qi /; (1)

where OM.Qi / is the vibronic interaction energy and Qi are the five normal coordi-
nates spanning a five dimensional space containing the APES. The different energy
terms are in �! units, where ! is the frequency of the coupled vibration.

After a change of variables in the potential energy OV , it becomes apparent that
the APES has a minimum not only at a single point, but in a three dimensional
spherical subspace of the five dimensional Q space [3, 5]. The smallest eigenvalue
of the M matrix is ��kQ, where k is the vibronic coupling constant and � is a
constant depending on the charge state of the fulleride ion [5]. Substituting this into
OV we get

OV D 1

2
Q2 � �kQI (2)

and a minimum at Q D �k. The result is the same if we take into account all of
the 8 Hg modes of Cn�60 [6]. Thus the minimum of the APES is a three dimensional
spherical surface with a radius of �k [3, 7].
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If a molecule with Ih symmetry is distorted by the JT effect in the direction of
an Hg vibration, its point group will become D2h, D3d or D5d [5, 8]. The distor-
tion corresponding to the minimum of the APES is a prolate in the p ˝H and the
p2 ˝ H system and an oblate in the p4 ˝ H and the p5 ˝ H system [7]. The
different points of the APES correspond to different directions of the main axis of
these spheroids. As all points corresponding to the minimum of the APES are equiv-
alent, all distortions corresponding to these points are equally probable. This leads
to a continuously wandering main distortion axis: the molecule performs pseudoro-
tation [3, 7]. In the course of the pseudorotation the point group of the molecule
changes, but it remains icosahedral on the average.

For the p3˝H system one possible shape of the distortion is depicted in Fig. 2b.
It can be seen that the distortion is not symmetric about any axis in this case [7].
Although the shape is not the same as in the other anions, this molecule will also
perform pseudorotation.

If nonlinear terms of the vibronic coupling are also taken into account or we
allow for anharmonic interatomic forces, the spherical symmetry of the minima of
the APES will be lost [5,9]. The distortions corresponding to the new minima on the
APES have to bear the highest possible symmetry [9]. Depending on the parameters,
this scenario can be achieved if the lowest energy configurations belong to the D3d ,
D5d , or D2h configurations [5, 6, 10].

The isolated Cn�60 molecule can be distorted into six different directions with
D5d symmetry and ten directions with D3d symmetry. In the isolated molecule the
distortions belonging to the same point group but pointing in different directions
have the same energy [6]. The barrier between these distortions is small, so the
molecule can move from one distortion to the other via pseudorotation [11, 12].

Relatively few theoretical works have attempted to determine the exact distortion
where the APES of the isolated molecule has minima. An early Hartree–Fock cal-
culation by Koga and Morokuma on C�60 found no significant energy difference

a b

q
~ q

~
f~ f~

Fig. 2 One possible shape of the Jahn–Teller distortion of Cn�60 (a) for n D 1, 2, 4, 5 and (b) for
nD 3. [7] Copyright (1994) by the American Physical Society
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between D2h, D3d and D5d geometries [13], but resulted in the correct prolate
shape. Green et al. performed DFT (density functional theory) calculations on iso-
lated Cn�60 anions [14]. They also found very small energy differences between
different distortions in most of the anions. The lowest energy configuration was
D3d in the case of C�60. The triplet and singlet state of C2�60 were also very close
in energy, with D3d and D2h geometry, respectively. The C3�60 had an icosahedral
quartet ground state. The C4�60 ion and the C5�60 ion are the electron-hole analogues
of the C2�60 and the C�60 ions concerning their frontier MOs. Despite this fact, the
calculation led to a D5d configuration of the triplet C4�60 .

In real fulleride salts we also have to consider the potential field generated by
the environment in a solid. In alkali fullerides containing cations larger than NaC,
the dominating interaction is the repulsion between the cation and the anion aris-
ing from wave function overlap, i.e. the steric crowding [15]. This potential field
generated by the alkali metal ions is the crystal field (a strain) which can lower the
potential energy of a specific distortion. If the barrier to other minima on the APES
of the molecule is high, a static distortion appears [3]. If the barrier is lower than the
thermal energy, the distortion is still dynamic.

Going from the molecular picture to that of collective properties in a solid means
adding translational symmetry to the point group symmetry. The theoretical descrip-
tion does this by introducing a phase of the distortion throughout the material, which
is determined by the spatial variation of the variously distorted molecules. If, as is
usual in a classical crystal, the phase of the distortion shows the translational sym-
metry of the solid, the so-called cooperative Jahn–Teller effect appears where the
shape of one molecule and the space group determines the shape of all the others.
If the distortions are not correlated, however, the phase is random and the situation
is not different from that of isolated molecules. This is the dynamic Jahn–Teller
effect where the distortions cannot be detected but the solid-state consequences still
appear in the electronic structure [16].

Thus in fulleride solids, depending on the interplay of several parameters, multi-
ple phases are possible and phase transitions can occur when varying the cation size
or the temperature or pressure. Dunn [11] has investigated these effects in detail
for the cooperative Jahn–Teller effect in solids and gave a general description for
icosahedral systems.

Fabrizio and Tosatti introduced the idea of the Mott-Jahn-Teller insulator and
performed a model calculation for an E

N
e system. Dunn [11, 17] extended this

model to the pn
N
h system for fullerenes and determined the properties of various

cooperative JT distorted phases.

2 Experimental Methods Used in the Detection
of Jahn–Teller Distortions

In this section, we briefly summarize the principles of the measurements which can
be applied to detect the consequences of the JT effect on physical properties. We
will start with a short summary of the most widely applied methods, and then give



Jahn–Teller Effect in Fulleride Salts 493

a detailed description on vibrational and optical spectroscopy of fullerene solids,
where to our knowledge no comprehensive review exists. On other topics, excellent
overviews have been written, e.g. by Reed and Bolskar [18] on structural and spec-
troscopic (near infrared, nuclear magnetic resonance and electron spin resonance)
investigations on discrete fulleride anions, by Brouet et al. [19] on collective mag-
netic properties detected by nuclear magnetic resonance spectroscopy, and by Arcon
and Blinc [20] on the detection of pseudorotational dynamics by nuclear resonance.

We have to state right away that the experimentalist trying to determine the con-
sequences of the JT effect in fullerides has no easy task. Part of the difficulties
stem from the material and part from the complicated and intertwined phenomena
which occur in most systems containing fullerene balls. The first step is to prepare
the appropriate materials in homogeneous and stable form; the second, once the
measurements are done, to isolate the effects of Jahn–Teller origin from the vast
amount of exotic phenomena caused by the environment or physical conditions as
temperature and pressure. The complexity of the problem is matched by the array
of sophisticated state-of-the-art techniques which have been applied recently (e.g.
free-electron laser [21], scanning tunneling microscopy (STM) [22], and storage
ring spectroscopy [12]).

2.1 General Description of Applied Methods

To investigate the Jahn–Teller effect appearing in isolated fulleride ions experimen-
tally, the most straightforward method would be spectroscopy in the gas phase.
However, according to calculations, only C�60 and C2�60 ions exist in the gas phase,
the other ions emit electrons spontaneously [14]. C�60 [12,21] and C2�60 [23,24] have
indeed been prepared in an electron storage ring with long enough lifetime to study
their spectroscopic properties.

In solution, all six possible fulleride anions can be prepared and have been stud-
ied by various methods. The results are summarized in the review by Reed and
Bolskar [18]. The most common reduction methods are the reaction with alkali
metals or electrochemistry. In these cases, marked solvent dependence is observed
indicating that the effect of the environment is not negligible even in dilute solutions.

In solids, the situation is further complicated by external strain originating from
both steric crowding and Coulomb interactions. Roughly two types of fulleride
salts can be distinguished: the ones containing bulky organic cations where the
ions can be regarded as isolated, but the geometry of the counterions results in
a low-symmetry environment which coexists with the Jahn–Teller type symmetry
lowering; and the ones with simple cations (the prime examples being the alkali
salts) where the principal interaction is steric crowding when the ions get close.

Since Jahn–Teller distortions involve the deformation of the molecules, struc-
tural studies are expected to provide the most straightforward results. These include
X-ray and neutron diffraction and tunneling microscopy. Diffraction studies are hin-
dered by the scarcity of suitable single crystals, which would give exact atomic
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coordinates. On powder samples, Rietveld refinements indicate the deviation from
the symmetric shape in one or the other direction, but these results have to be treated
with caution because the static or dynamic nature cannot be distinguished. With
exceptional care and experimental effort, fulleride monolayers can also be prepared
and studied with STM at low temperature where the motion of the fullerene balls is
stopped [22].

Inelastic neutron scattering (INS) is suitable to detect librations, low-energy rota-
tional motions in solids. It was used to follow molecular reorientations as a function
of temperature [25]. These reorientations should not be confused with pseudorota-
tion as they involve actual displacements of atoms in the crystal; they correspond
to an abrupt change in the crystal field [4] and their intensity scales with the crystal
field strength.

Vibrational spectra are very sensitive to symmetry changes in a molecule. The
splitting of bands in infrared (IR) and Raman spectra correlates with the point group
of the molecule which changes when distortions appear. The nature of the splitting,
i.e. the number of resulting bands in the distorted state, can be predicted from simple
group theory considerations.

Likewise, the electronic transitions between frontier orbitals show characteristic
splitting when the symmetry is lowered. These transitions fall into the near infrared
(NIR) range in fulleride ions, and are therefore studied by NIR spectroscopy [4,18].

A special type of measurement is that of ions in the gas phase by intense radiation
which causes electron detachment and the absorption spectrum is detected through
the deionized molecules it produces. Such radiation sources are either a high-
intensity near-infrared laser [12] or infrared radiation from a free-electron laser [21].

High-resolution electron-energy loss spectroscopy (EELS) yields similar infor-
mation as optical spectroscopy but extends to a much wider frequency range (albeit
with lower resolution). Transmission EELS spectra have contributed significantly to
our knowledge of fulleride salts [26, 27]. EELS spectra have the advantage with
respect to optical spectroscopy that the momentum of the particles and thereby
momentum transfer can be controlled; however, since the momentum transfer is
always finite, in principle the results cannot be directly compared with those of
optical spectroscopy. In practice low-momentum transfer results yield the dielectric
loss function with high enough accuracy that it can be subjected to Kramers–Kronig
transformation and the complex dielectric function can be derived.

Nuclear magnetic resonance (NMR) spectra can yield information on magnetic
properties, rotational states and of the symmetry of both the molecules and their
environment. Mostly, 13C is used as a probe, but in alkali salts, alkali atoms as
Na or Li have also been applied. The effect of molecular dynamics, including
pseudorotations, on the NMR line shape is thoroughly discussed in [20, 28].

Electron spin resonance (ESR) is extensively used in the study of fulleride ions,
as the magnetic characterization of these molecular ions yields fundamental infor-
mation on the electronic structure. An ESR signal can in principle appear in any
system containing fulleride ions, as the configuration can involve unpaired spins
even in systems with an even number of electrons. In solids, the Pauli susceptibility
indicates a metallic state.
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Indirect but important data on molecular symmetry are provided by transport and
magnetic measurements in solids. These properties reflect the collective behavior of
electrons in the system, and are indicative of the band structure.

The dynamic nature of the distortion is not always detected by spectroscopy [3].
If the lifetime of the excited state generated during the measurement is shorter than
the time it takes the molecule to transform from one distortion to the other, then the
molecule can be excited several times while in a single potential minimum. Thus
we will measure the spectrum of a distorted molecule. If, on the other hand, the
molecule adopts a different distortion faster than the time scale of the measurement,
the molecule will take up different distortions during a single excitation event. In this
case the spectrum will show the time average of the distortions. As a consequence,
it can happen that the molecule is found to be distorted by one measurement and
undistorted or even spherical by another; in the solids, where the spatial average
is measured as well, different methods can come to different conclusions regard-
ing whether the material consists of identically distorted molecules (cooperative
Jahn–Teller effect) or whether the spatial average is symmetric while the individual
molecules perform random motions (dynamic Jahn–Teller effect) [16].

Despite the difficulties mentioned above, by now a critical mass of data has been
compiled enabling us to formulate a concise picture of the nature of the JT effect in
these fascinating materials. In the rest of this paper we would like to summarize such
experimental data with respect to the following questions: Are the fulleride ions
found in various compounds distorted? Is the distortion dominated by the molecular
Jahn–Teller effect or by the potential field of the environment? In which direction
is the molecule distorted and what is the shape of the distortion? Is the distortion
static or dynamic? The way we approach these questions is the study of symmetry
change through vibrational and electronic transitions. The fundamental concepts of
these methods will be summarized in the next section.

2.2 Vibrational and Electronic Spectra of Fulleride Solids

C60 has four infrared allowed vibrations, all of which belong to the T1u represen-
tation. The correlation table (Table 1) lists the possible splitting in various point
groups describing the molecule when the icosahedral symmetry is lost. Since the
LUMO of the molecule which accommodates the extra electrons in the anions, is
also a t1u orbital, the same correlations hold for the electrons as well. The result-
ing schemes are shown in Fig. 3 for different occupation numbers 0–6 [29]. These
schemes are based on the calculations of Auerbach et al. [7] for isolated anions
with correlations between electrons neglected. This calculation resulted in low-spin
states for all ions which, because of the full occupation of the lowest levels, are not
subject to further JT activity.

It is apparent from Table 1 that while D3d and D5d symmetries retain a double
degeneracy, in D2h all representations are one-dimensional, thus the entire degen-
eracy is lifted. In practical terms, this means that in an infrared spectrum the four
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Table 1 Correlation table for the T1u representation. The correlation table for the T1g representa-
tion is identical, with the indexes u changed to g

Ih D5d D3d D2h

T1u A2u C E1u A2u C Eu B1u C B2u C B3u

Fig. 3 Jahn–Teller splitting of the t1u orbitals of Cn�60 [29]. Copyright (2002) by the American
Physical Society

allowed modes would show two- or threefold splitting depending on the symmetry
resulting from the distortion. Because of the usually small structural changes, the
split infrared bands are expected in the immediate vicinity of the original T1u fre-
quencies. Upon symmetry lowering, silent modes also become activated, but for the
purpose of identification the splitting pattern of the T1u modes is the least ambigous.
Among these, the highest-frequency T1u(4) mode is the most characteristic; this
mode is not only sensitive to symmetry through splitting, but also to the charge of
the anion through its downshift in frequency from the 1429 cm�1 position in neutral
C60 [30].

Further symmetry reduction can happen as a result of strain from the crystal field
of the cations in crystals. If the site symmetry of the fulleride ion is a subgroup
of the Ih icosahedral point group, with lower symmetry than the JT distorted shape
(e.g. C2h), a simple symmetry lowering occurs to the shape dictated by the site sym-
metry. If the site symmetry is not a subgroup, the distortion happens into the highest
common subgroup of the site symmetry and the icosahedral group. Examples of
such distortions will be given when discussing the specific materials.

It is worth mentioning that although the Ih point group shows a very high sym-
metry, it lacks a fourfold axis. The structure of many fulleride salts, though, which
contain the ions in a tetragonal cation environment, can be described as tetragonal
based on diffraction data. This can only happen when the fullerene cages are disor-
dered with respect to the C2 axis which is parallel to the principal axis of the crystal.
Formally, the picture is often described as the sum of two perpendicular orientations
(the so-called “standard orientations”), but from structural data it cannot be decided
what exactly the shapes are, or even whether the disorder is static or dynamic. We
will show examples of mono- and tetravalent salts where this orientational disorder
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occurs. It is expected that in such cases vibrational spectroscopy yields more precise
information on the shape of the molecular ion and thus the type of the disorder.

The splitting of the electronic orbitals (Fig. 3) also gives rise to additional
structure in the electronic spectra. The transitions between levels in the figure
are dipole-forbidden and thus cannot be detected by optical methods; however,
excitations to the LUMO C 1 t1g level, which will also split in a lower symme-
try environment, will show characteristic structure depending on the shape of the
fullerene cage. We will give an example of such analysis in Sect. 3.2.1.

3 Results on Fulleride Salts

In this section we present the results on fulleride salts in various charge states. The
grouping is not strictly in the order of increasing charge, for both fundamental and
practical reasons. The main practical reason is the scarce availability of some groups
of the fulleride family. Of the alkali salts, A2C60 (except for Na2C60) and A5C60
were found to phase separate, and could not be prepared even in a segregated form.
Na2C60 is a nanosegregated mixture at room temperature and the JT features can
only be studied in its high-temperature phase [31].

We will not cover the optical properties of superconducting A3C60 salts, either,
both because the theoretical implications of the Jahn–Teller effect on superconduc-
tivity has been extensively discussed [32] and because experimental spectra in these
compounds concentrate on electronic effects [33] and vibrational spectra have not
been discussed in detail, partly because of the interference with the background of
free electrons.

We will concentrate on the monovalent and tetravalent systems where enough
data exist to present a consistent picture based on optical spectra but in accordance
with other experimental results.

3.1 C�
60

In the C�60 anion in the gas phase the presence of the dynamic Jahn–Teller effect has
been shown by sophisticated measurements in both the NIR [12] and the MIR [21]
spectral range. In both cases, it was found that the pseudorotation of the molecules is
fast enough to yield the spectrum of an undistorted ion. The multiple pattern found
in the NIR spectra[12] was attributed to transitions between pseudorotational levels.

In solutions or in frozen matrices the effect of the environment is not negligi-
ble any more. The NIR spectra of C�60 were measured in various frozen noble gas
matrices [34] and D3d or D5d distortions were found. The result was the same
in the apolar methylcyclohexane matrix, while the distortion was D2h in the polar
2-methyltetrahydrofuran (2-MeTHF) matrix [35]. One might expect the same polar-
ity dependence in solutions, but electrochemically generated C�60 ions showed a
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NIR spectrum consistent with D5d and D3d symmetry both in benzonitrile and in
dichloromethane [36]. These findings indicate that the symmetry of the environ-
ment has to be taken into account besides simple polarity considerations in frozen
matrices [37] and in solutions.

A static-to-dynamic transition was also observed in Na(dibenzo-18-crown-6)C60
in frozen 2-MeTHF solution [37]. The ESR spectrum showed an ellipsoidal distor-
tion of the C�60 ion at low temperature, and heating lead to an isotropic signal.

Another possibility to measure nearly isolated fulleride ions is the investigation
of solid fulleride salts with bulky cations. The large cations separate the fulleride
ions but in many cases they are capable of lowering their symmetry at the same
time. In Ni(C5Me5)2C60 the C�60 ion was found by X-ray diffraction to be oblate
shaped and to have roughly D2h symmetry [38]. This results probably from the
enhanced � � � interaction between the C5Me5 and the fullerene units.

In (TDAE)C60 (TDAE=tetrakis-dimethylaminoethylene) the Jahn–Teller effect
has an intriguing consequence [20]: it results in a ferromagnetic ground state with a
Curie temperature Tc D 16 K [39]. The temperature dependence of the correlation
time of pseudorotation from 5–20 K was obtained from 13C NMR measurements
[28] and was found to decrease from 10�6 s to 10�7 s.

Salts formed with the metalloorganic cations tetraphenylphosphonium and tetra-
phenylarsonium can be prepared as relatively large crystals by electrochemical
methods and are not air sensitive, contrary to the other monoanionic fullerides
mentioned above; as a consequence, they have been extensively studied by several
methods [40–44]. The composition of the crystals is always two counterions to one
fulleride monoanion, and charge neutrality is preserved by one halide ion (Cl�, Br�
or I�) per fulleride ion. The type of the halide ion depends on preparation conditions
and can be homogeneous or a mixture of two kinds of halides. This fact introduces
an additional disorder into the structure, but as we will see, its impact is relatively
weak.

The most thorough structural study has been performed by Launois et al.[40] by
single-crystal X-ray diffuse scattering and diffraction. Above 130 K, the structure
was identified as tetragonal (I4=m), arising from a superposition of two orienta-
tions of the fulleride anion. (As the icosahedral C60 molecule has no fourfold axis,
this is the way to explain its presence in a tetragonal environment.) Below 120 K,
the model which could explain diffuse scattering was that of separate domains of
I2=m symmetry, which is consistent with a C2h distortion of the fulleride anion.
This is another example of Jahn–Teller distortion complemented by external strain:
interaction of the electrons with vibrations of h symmetry should result in no lower
than the D2h point group [3], but since the C�60 ions occupy sites of 2=m (C2h)
symmetry, their point group has to be lowered accordingly.

The situation is illustrated in Fig. 4. In part (a), the structure is the dynamic aver-
age of two standard orientations, differing in the direction of one of the fullerene
axes (it is easiest to associate this direction with that of the bond separating
two hexagons, intersected by a C2 axis, depicted on the right of Fig. 1). In part
(b) the structure is envisaged to consist of independent domains, including ful-
leride ions of C2h symmetry but of different orientations. Within the domains, the
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Fig. 4 Schematic models of (Ph4)2PBrC60 at (a) high temperature and (b) low temperature.
Reprinted from [40]. With kind permission of The European Physical Journal (EPJ)

cooperative Jahn–Teller effect is realized; however, the whole crystal is not uniform
but disordered.

Bietsch et al. [43] determined the g-factor anisotropy of (Ph4P)2P(As)C60(I,Cl)
as a function of temperature. Their results complement perfectly the structural data:
the g-factor is isotropic above a specific temperature (As: 125 K, P: 142 K) where it
becomes anisotropic and the principal axes of the g-tensor do not coincide with the
crystal axes.

Infrared spectra also show line splittings indicating a deformation in both tetra-
phenylphosphonium [42] and tetraphenylarsonium [44] salts. The main conclusion
of the first paper is that in contrast to ESR spectra, infrared lines still show a splitting
due to deformation at room temperature, indicating a dynamic JT state; nevertheless,
some of the lines, including counterion modes, exhibit anomalies in their temper-
ature dependence around the ordering transition temperature (Fig. 5). A thorough
combined experimental and theoretical study has been performed in the second
paper, concluding that the most probable deformation of the C�60 anion is either C2h
with the principal axis connecting the centers of two opposite pentagons (C2h;5)
(according to the D5d symmetry undergoing further distortion to C2h) or Ci . C2h
symmetry is compatible with both the site symmetry 2=m and the result from the
g-factor anisotropy [43], but the calculated vibrational fine structure assuming Ci
symmetry agrees more with the experiment. A further reduction in symmetry can
of course easily happen in such a complicated crystal and since both point groups
contain one-dimensional representations, more subtle effects have to be taken into
account in both theory and experiment.

Likewise, room-temperature Raman spectra of single crystals of tetraphenyl-
phosphonium salts with all three halide ions [45] showed a broadening of Hg lines
which can be fitted with five oscillators. This indicates the lifting of the fivefold
degeneracy, which is the case in C2h (or lower) symmetry.
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Fig. 5 Temperature dependence of (a) the (Ph4P)2IC60 multiplet and (b) the pristine C60 and
Ph4PI absorbances which contribute to it. The inset in (a) shows frequency versus temperature
for the high � side of the T1u(1)-derived doublet (open diamonds) and the 530 cm�1 counterion
feature (solid circles), with solid lines to guide the eye. Reprinted from [42]. Copyright (1998) by
the American Physical Society

The exact temperature of the phase transition in the experiments above is sub-
ject to some uncertainty, which we attribute to the stoichiometric variations in both
the central atom of the counterion (P,As) and the type of the halide. The picture
that emerges, however, is compatible with the full scope of experimental results:
a dynamic Jahn–Teller effect at high temperature, a structural phase transition in
the 120–150 K range, and a distortion of the molecular ion in the low-temperature
phase, arising from the positive synergy of the cooperative Jahn–Teller effect and
the low symmetry of the environment. The static-to-dynamic transition does not
coincide with the structural transition and its temperature depends on the detection
method: whereas ESR spectra are isotropic at room temperature, infrared lines are
still split, indicating a distorted state on the time scale of the measurement. This
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phenomenon puts the time scale of the pseudorotation between 10�9 and 10�13 s,
respectively.

We can compare the above results to those of TDAE-C60 investigated by nuclear
magnetic resonance [20, 28]. In these studies, based on NMR line shape analysis, a
static-to-dynamic transition has been found in the ferromagnetic phase, below 10 K.
The time scale at this temperature of the pseudorotation was estimated as 3 ns, some-
what higher than the higher limit of the room-temperature range mentioned above.
Even though the systems are not identical, the qualitative picture that emerges is in
accordance with the transition occurring in the order of characteristic frequencies
(NMR ! ESR ! IR). An attractive model has been proposed for the magnetic
ordering of fulleride monoanions in this salt, based on Jahn–Teller distorted states
[20]: according to the calculations of Kawamoto [46], ferromagnetic order develops
if the principal axes of neighboring C�60 ions are perpendicular, whereas antiferro-
magnetic order results from parallel ordering of the principal axes. A cooperative
but complex Jahn–Teller state consisting of molecular ions ordered perpendicularly
thus could show ferromagnetism which would disappear at the temperature where
the system becomes dynamic due to increased pseudorotation frequency.

Unfortunately, the simplest fulleride salts, the monovalent AC60 (A D K,Rb,Cs)
alkali fullerides, exist in a polymerized phase at room temperature (see Sect. 4.2) and
depolymerize only above 400 K where the rotation of the balls averages out any dis-
tortion. Infrared spectra of monoanions at this high temperature show unperturbed
icosahedral symmetry [47, 48].

3.2 C4�
60

and C2�
60

We begin this section with the discussion of C4�60 systems, because these are the ones
where experimental results are abundant. Among the non-superconducting systems,
the tetravalent salts were studied most thoroughly both experimentally and theoret-
ically. Several factors contributed to this fortunate situation. On the materials side,
the full series of A4C60 (A D Na, K, Rb, Cs) could be prepared as single-phase
powders, and except for Na4C60 which is a polymer at room temperature, proved to
be similar in structure and properties. On the theory side, the controversy between
band structure calculations predicting metallic behavior [49] and the insulating char-
acter found experimentally has been noticed early on and has led to extensive effort
to resolve it.

C2�60 was thought to be the electron-hole analogue to C4�60 and studies on these
materials could have complemented the C4�60 results with valuable information.
Unfortunately, only Na2C60 could be prepared so far and that material is not sin-
gle phase at all temperatures, either. We will report our results regarding the JT
effect and the other intriguing properties of this system after discussing the tetrava-
lent alkali salts, which are the most complete series for conclusions about the JT
effect to be drawn.
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3.2.1 C4�
60

Both in solutions [36] and in a solid with large organic cations [50] the C4�60 ions
were shown to be distorted. A low temperature STM study on K4C60 monolayers
also showed distorted fulleride ions. The ground state of both [Na(crypt])4C60 [50],
K4C60 [51] and Rb4C60 [52] was shown to be singlet (Fig. 3), with a close-lying
triplet excitation, in accordance with the distortion.

The molecular Jahn–Teller effect plays an important role in determining the elec-
trical and magnetic properties of solid A4C60 and A2C60 salts. This is because
electron correlation localizes the electrons on the fulleride ions; these solids can
be described as nonmagnetic Mott–Jahn–Teller insulators [16]. Intersite electron
repulsion (U) localizes the electrons and leads to the observed insulating behavior
[53–55], while the Jahn–Teller splitting leads to a nonmagnetic ground state [51]
pairing the electrons in contempt of Hund’s rule.

In contrast to the A4C60 salts, monomeric Na4C60 – stable above about 500 K –
is a metal. The reason is that the shorter interfullerene distances of this compound
reduce the Hubbard U and increase the bandwidth W, leading to an U/W value lying
in the metallic domain [56]. Li4C60 also has a metallic monomer phase above 470 K
[57, 58]. The presence of distorted fulleride ions has not been investigated in these
phases yet.

KC, RbC and CsC form salts with C4�60 which contain monomeric fulleride ions
at all temperatures. The structure of these salts is I4/mmm body centered tetragonal
(bct) structure at all temperatures [4,59,60], except Cs4C60 at room temperature and
below, which is Immm orthorhombic (bco) [61]. According to our present knowl-
edge, the fulleride ions in these phases are not rotating [4,60]. Thus the effect of the
crystal field must be taken into account.

In the bct phase the nearest cations surrounding a C4�60 ion form a D4h structure
(see Fig. 6). As the fulleride ion does not have a fourfold rotation axis, it cannot
distort into this point group (see Sect. 2.2). In this case the molecule has to distort
into the largest common subgroup of D4h and Ih, which is D2h. The three twofold
rotation axes of the D2h distorted molecule can then coincide with those of the
crystal. The overall tetragonal structure is realized in a way similar to (Ph4P)2C60,
with two standard orientations (Fig. 4a), but in this case the angle 
 is zero.

In the bco phase of Cs4C60 the cations show a similar arrangement as in the bct
A4C60 phases, but they form a D2h structure, i.e. they allow only one orientation
of the fulleride ions. Thus the molecular point group caused by the crystal field is
D2h in both the bct and the bco structure and we would expect identical molecular
spectra.

As we have seen in Sect. 2. the molecular Jahn–Teller effect distorts the molecule
into either D3d or D5d symmetry. It is not impossible to place such distorted anions
in a lattice so that the overall symmetry remains tetragonal, but the main axis of these
distortions cannot coincide with the principal crystallographic axis of the A4C60
crystals. In line with the suggestions by Fabrizio and Tosatti [16], the main distortion
axis of the molecule could be disordered or ordered in some way, but the average
structure has to be that found by diffraction.
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Fig. 6 A C4�60 ion (in light grey) and its nearest neighbor KC ions (in black) in the bct A4C60
salts (based on [59]). The fourfold c axis of the crystal is perpendicular to the plane of the paper,
whereas the a axis is horizontal and the b axis vertical. The size of the spheres denoting the atoms
is not to scale

The competition between the strain caused by the crystal and the molecular
degrees of freedom producing the JT distortion results in several phases in A4C60
salts. In the following sections we will discuss these different phases and their phase
transitions.

Orthorhombic A4C60 Phases

No single crystals were grown from these materials, and only powder diffraction
experiments could be performed. From these measurements the distortion of the
C4�60 ion could only be determined in bco Cs4C60 [60]. The point group of the ful-
leride ion was found to be D2h in accordance with the symmetry of the crystal field.
Nevertheless, the C atoms which were the most further apart from the icosahedral
geometry were not found in the direction of the longest crystallographic axis. Thus
the distortion is dominated by the crystal field, but the role of the Jahn–Teller effect
is also significant [60].

The MIR spectrum of Cs4C60 contains a threefold split T1u(4) peak below 400 K
(Fig. 7c) [4]. This also corresponds to a D2h distortion (see Table 1.). Magic angle
spinning (MAS) NMR experiments could also detect the distorted geometry of the
C4�60 ion in Cs4C60 at room temperature [62]. In the NIR spectrum of the fulleride
ions we find peaks corresponding to transitions between the split t1g  t1u orbitals
[27]. The number of detected transitions correlates with the point group of the
molecule (see Fig. 8). As the NIR spectrum of the bco phase of Cs4C60 contains
four peaks (Fig. 9b), the point group of the C4�60 ion cannot be higher than D2h [4],
in agreement with the above explained measurements.
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a

b

c

Fig. 7 MIR spectrum of (a) K4C60, (b) Rb4C60, and (c) Cs4C60 at selected temperatures. The
T1u(4) mode can be fitted with three Lorentzians at low temperature and two Lorentzians at high
temperature (black lines). These splittings indicate a molecular symmetry change with temperature
[4]. Copyright (2006) by the American Physical Society
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Fig. 8 Upper panel: schematic representation of fulleride ion orientation in various Jahn–Teller
states. The arrow indicates the crystallographic c-axis, the bars in the ovals the orientation of
a hexagon-hexagon double bond. Lower panel: The split frontier MOs of the C4�60 ions and the
dipole allowed transitions indicated by arrows. For comparison we depicted these MOs for the Ih
C60, as well. The ordering of the b1�3u and of the b1�3g orbitals is arbitrary. [4] Copyright (2006)
by the American Physical Society

Under pressure Rb4C60 undergoes a phase transition to an orthorhombic phase
similar to that of Cs4C60 [63]. Previously it was believed that Rb4C60 transforms
into a metallic phase under pressure [64]. In a recent thorough study, though, no
such transition has been found up to 2 GPa [65]. The nature of the fulleride ion
distortion in the orthorhombic Rb4C60 is as yet unknown.

K4C60 and Rb4C60 at Low Temperature

In the static 13C NMR spectrum of K4C60 and Rb4C60 a continuous broadening
from about 15 ppm to about 200 ppm was found on cooling [51, 64]. According to
Kerkoud et al. the low temperature broad peak arises from the superposition of the
9 inequivalent C atoms of a D2h distorted molecule [64].

The D2h distortion of the fulleride ions was also confirmed by MIR and NIR
spectroscopy in K4C60 below about 270 K and in Rb4C60 below about 330 K [4].
Both the MIR and NIR spectra show similar splittings as in Cs4C60, although the
crystal structure is different (see Figs. 7 and 9) [4]. As we have seen above, this
symmetry can be regarded as proof for crystal-field dominated distortion.
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a b

Fig. 9 Baseline-corrected NIR spectrum of (a) K4C60, and (b) Cs4C60 at selected temperatures.
The spectra were fitted with Gaussians, with the exception of the lowest frequency peak of Cs4C60
at 151 K and 298 K where a Lorentzian produced a better fit. These fits are shown with black lines.
[4] Copyright (2006) by the American Physical Society

A4C60 at High Temperature

In K4C60 at room temperature the positions of the C atoms could not be derived
from diffraction measurements, but it was shown that the distortion is quite small:
the difference between the axial and the equatorial axis of the molecule is smaller
than 0.04 Å [66].

The detection of a dynamic distortion is complicated by the fact that measure-
ments with a short characteristic time scale will detect the molecule to be symmetric,
therefore they will not prove the presence of the distortion. This can be the situa-
tion of NMR at room temperature. Both in K4C60 and in Rb4C60 all C atoms of
the C4�60 molecule were found to be identical by 13C MAS NMR, i.e. the molecule
was detected to be icosahedral [67]. Above 350 K MAS NMR also detected a single
C line in Cs4C60, although this was explained by the starting of the rotation of the
fulleride ion [62].

The Raman spectrum of the A4C60 materials did not show a splitting, which
would have shown the symmetry lowering of the fulleride ion [61,68], although the
lines were found to broaden.

The timescale of infrared spectroscopy is such that it is capable of detecting
dynamic distortions. This method is sensitive to the local structure, so that it detects
the distortions of the single molecules and not their average. The MIR spectra of the
A4C60 compounds at high temperatures show a twofold split T1u(4) mode (Fig. 7)
corresponding to either a D3d or a D5d distortion (see Table 1.) [4, 69]. The NIR
spectra contain two peaks (Fig. 7), which also correspond to D3d or D5d structures
(see Fig. 8) [4]. These are the distortions favored by the molecular Jahn–Teller
effect. It has been shown that at high temperatures these distortions are dynamic [4].
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Static-to-Dynamic Transition

We propose the following explanation for the transition between the static and
dynamic state [4,70]: At low temperature the distorting potential field of the cations
is strong, leading to an APES where the lowest minimum has D2h symmetry. As at
low temperature only the lowest energy states are occupied, no transition can take
place to other higher lying minima. On heating two processes have to be taken into
account. The first is caused by the thermal expansion: the steric crowding decreases
and the potential energy minimum created by the crystal field will become more
shallow. The other effect is that more higher lying states will become thermally
accessible. These two factors lead to the gradual appearing of D3d /D5d distortions
and disappearing of the D2h distortions, until only the former will be present. Of
course if there is a phase transition, like in Cs4C60 on heating, that overrides the
gradual nature of this scenario.

D3d /D5d distortions in different directions have different energy in the solid,
due to an additional anisotropic term from the crystal field. The appearance of
the D3d /D5d distortions starts with the lower energy ones, connected by possible
pseudorotation. On heating the confinement of the pseudorotation relaxes as more
and more D3d /D5d distortions become accessible, until at high temperatures the
pseudorotation will become free.

The main process which emerges is that the fulleride ion can be thought of as
an independent entity, which undergoes a distortion even in the absence of external
strain. If we put this ion into a crystal with a given symmetry, a competition between
the molecular degrees of freedom and the constraints of the environment will result.
The molecular degrees of freedom will gain in importance when the kinetic energy
is higher (at higher temperature) or when the constraint is lower (the lattice is less
crowded). The increase of the transition temperature with cation size is in agreement
with this picture.

3.2.2 C2�
60

The geometry of the C2�60 ion in its benzonitrile and dichloromethane solution was
found by NIR spectroscopy to be D3d or D5d [36]. A D3d distortion was also found
in (ND3)8Na2C60 by diffraction measurements [71]. This latter distortion must be
static, since diffraction can only detect such distortions.

In contrast to these findings probably the symmetry lowering effect of the
counterions is reflected in the Ci distortion found in (PPN)2C60 (PPNC D bis-
(triphenylphosphine)iminium ion) by X-ray diffraction. The shape of the deforma-
tion is an axial elongation with a rhombic squash [72].

To study the Jahn–Teller effect of fulleride ions in the condensed phase a sym-
metric environment would be ideal. Na2C60 was reported to be cubic: simple cubic
below 319 K and face centered cubic (fcc) above [73, 74]. In the fcc phase the C2�60
ions are rapidly rotating [73, 74], thus the crystal field acting on the fulleride ion is
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spherical. Unfortunately, though, Na2C60 shows nanosegregation below 460 K and
the phase containing C2�60 ions appears only at high temperature [31].

The Jahn–Teller effect overrides Hund’s rule and the ground state of the C2�60
molecules is a singlet with a low lying excited triplet state [18, 51] (Fig. 3). Thus
Na2C60 is nonmagnetic [51].

We have studied the Jahn–Teller effect in this phase by MIR spectroscopy [31,
70]. The T1u(4) mode shows a twofold splitting and modes that are silent in C60
appear, indicating a D3d or D5d distortion of the molecule (Fig. 10). As the C2�60
ions are rotating in this phase [73,74], the distortion cannot be caused by the crystal
field but must be due to the molecular Jahn–Teller effect. As there is no crystal field
to lock the C2�60 into a single potential well, the distortion is dynamic, with the rate
of pseudorotation smaller than that of the infrared measurement.

This latter result proves beyond doubt that fulleride anions can be regarded as
preserving their molecular identity. To show lower symmetry without a constraining
crystal field cannot be explained by any other mechanism.

From the data on divalent and tetravalent salts, a consistent picture emerges
which is in perfect agreement with the Mott–Jahn–Teller insulator model of Fabrizio
and Tosatti [16]. The Jahn–Teller distortion, even if dynamic, can be unambigously
detected from vibrational and low-energy electronic spectra and proves that the
molecular JT effect causes the nonmagnetic insulating behavior in these materials.
Systems with smaller cations are on the metallic side of the U/W diagram; it would
be of interest to study these systems by vibrational spectroscopy as well.

Fig. 10 MIR spectrum of Na2C60 at 487 K. The twofold splitting of the T1u(4) mode due to the
Jahn–Teller effect is shown by arrows. Reprinted from [70]. Copyright (2007) Elsevier Science
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3.3 C3�
60

In the work of Lawson et al. a NIR spectroscopic evidence was found for the dis-
tortion of C3�60 ions in benzonitrile and in dichloromethane solution [36]. The point
group of the molecule is not known, but it is such that its irreducible representations
are all nondegenerate. The ground state of the C3�60 molecule is S D 1/2 [18] also
indicating the splitting of the t1u orbitals (Fig. 3.) This low-spin state was found in
Li3(NH3)6C60 [75] as well, despite the fact that the fulleride ions are surrounded
by a bcc lattice, where no crystal field splitting of the t1u orbitals is expected. This
shows the Jahn–Teller origin of the splitting in C3�60 .

In contrast to the above results, no Jahn–Teller distortion was found in metallic
A3C60 compounds. The geometry of the fulleride ion was measured in K3C60 by
neutron powder diffraction at room temperature, and it was found to belong to the
Th point group [76]. The low-temperature STM study on monolayers of K3C60 by
Wachowiak et al. [22] found undistorted molecules in the topographic image and
a metallic band structure by tunneling spectroscopy. No splitting was found in the
MIR and NIR spectra of these compounds, either [30, 69]. Careful comparison of
several C3�60 -containing salts by Iwasa and Takenobu [77] led to the conclusion that
high-spin orbital degeneracy can prevail in these systems, provided the anions are
sufficiently close and the environment is symmetric enough. The degeneracy breaks
down when ammonia molecules are inserted into the structure and either increase
the distance or lower the symmetry; in this case, the metallic behavior is also lost
and the system becomes an insulator without a superconducting transition.

To understand the coexistence of metallicity and symmetry, we can look at
the Mott–Jahn–Teller picture starting from a collective electron system, instead of
building up the solid from individual JT distorted molecular ions. (Such a reasoning
is given very clearly by Dahlke et al. [60].) If we imagine a metallic solid where
the atomic cores are replaced by C60 molecules and all extra electrons are delocal-
ized, the closed-shell cores will not be subject to distortion. As soon as localization
occurs, the t1u LUMO’s will be occupied and the usual JT effect takes place. The
borderline between the two scenarios is the critical U/W value between the metal-
lic and Mott–Hubbard insulating state. It seems that in fullerides this critical value
depends on both the charge of the anion and the cation-anion distance and A3C60
salts with A D K and Rb are already on the metallic side, whereas even-charged
systems are on the insulating side; however, the boundary seems to be very close
as the example of Na4C60 and Li4C60 shows. Further details could be provided by
combined spectroscopic and theoretical efforts.

Since there is near consensus about the mechanism of superconductivity in these
compounds being related to electron–phonon coupling, there were many attempts
to relate this mechanism to the Jahn–Teller effect. The topic is summarized exten-
sively in the work of Gunnarson [32]. Han, Gunnarson and Crespi [78] presented
a particularly appealing model of the connecting superconducting pairing with the
Jahn–Teller effect. In their picture, the electron pairs formed by the JT effect in
C3�60 are mobile and constitute the pairing mechanism required by superconductiv-
ity. Since the JT stabilization energy for anions with even-numbered electrons is
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much larger, the pairs there will be localized and superconductivity will not occur.
A further advantage of the model is that it is also in accordance with other special
properties of fulleride superconductors as, e.g. the short coherence length.

4 Unusual Phases: Why do we Not See Isolated Fulleride
Ions in Alkali Salts?

We have seen above that close-lying thermally accessible orbitals can give rise to
many unusual phenomena in fulleride solids. We now briefly discuss two further
consequences of the presence of such states: possible chemical reactions (as, e.g.
polymerization) and the coexistence of several phases in a solid at the same tem-
perature (segregation). Both are a source of new information but unfortunately they
also prohibit a full systematic investigation of the monomeric alkali fulleride salts
series.

4.1 Segregation

The first example of segregation in fullerides was the so called intermediate phase
of KC60 [79]. In this material the KC ions are not homogeneously distributed in the
C60 lattice: there are regions of pure neutral C60 and regions with a composition
of K3C60. Synchrotron X-ray diffraction measurements showed the different lattice
constant of the regions with different compositions [79]. It was found that the lattice
of the C60 region, which has smaller lattice parameter, expands (aD 14.18 Å instead
of 14.14 Å) and the lattice of K3C60 contracts (a D 14.22 Å instead of 14.25 Å).
The MIR spectrum shows vibrational lines characteristic of C60 and of C3�60 (Fig. 11)
On heating the material above 460 K, the segregation disappears and a KC60 phase
with C�60 ions appears [79].

A similar segregated structure is present in Na2C60 at room temperature [31].
This structure consists of C60 and the Na3C60 regions with the size of about
3–10 nm. X-ray diffraction could not distinguish the two lattice constants in this
case, probably because of the closeness of the two lattice parameter values of the
parent lattices (a(C60)D 14.15 Å and a(Na3C60)D 14.19 Å). The presence of C60
and Na3C60 was proven by a combined effort using 13C NMR, ESR and MIR spec-
troscopy and neutron scattering (Fig. 11). On heating the NaC ions start to diffuse
and the composition of the whole material becomes homogeneous. This is the phase
where Jahn–Teller distorted C2�60 ions were found [31].

Segregation was also proposed in Na3C60 based on the presence of C60 seen
by 13C NMR. This material was also detected to be single phase by x-ray diffrac-
tion [80].
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Fig. 11 Baseline-corrected MIR spectrum of KC60 and Na2C60 compared to the spectrum of C60.
The line positions characteristic of neutral C60 and of C3�60 molecules are shown. Amorphous
carbon impurity in the KC60 sample is denoted by an asterisk

4.2 Polymerization

For the fulleride ions to polymerize two conditions have to be met: the molecules
have to be close enough to each other, and they have to be in adequate orientation.
The type of bonding depends on the charge of the fulleride ion [81]. Neutral C60
and C�60 favor chains with [2+2] cycloadditional bonds. The former can be found in
the C60 photopolymer [82], and the latter in AC60 polymers [83]. AC60 (Fig. 12a)
were the first ionic polymers discovered and were extensively studied due to their
stability in air. They undergo reversible depolymerization between 450 and 480 K
and can be quenched into a metastable dimer phase [84] with bonds similar to those
in Fig. 12b [85].

The most stable bonding pattern of (C3�60 )n is a linear chain with single inter-
fullerene bonds (Fig. 12b) [81], which can be found in Na2AC60 salts [86]. The
affinity of these compounds to polymerize depends on the interfullerene distance,
which can be controlled by choosing metal A. Na2KC60 polymerizes already below
310 K [87], while Na2RbC60 only below around 230 K [86], and Na2CsC60 does
not polymerize on cooling [88]. Both the Na2RbC60 and the Na2CsC60 polymer
can be prepared on applying pressure [88, 89]. Polymeric Na2KC60 and Na2RbC60
were shown to be metallic [90, 91].

Na4C60 was the first fulleride polymer containing single bonds and the first one
which is two dimensional and can be synthesized at ambient pressure [92]. The
structure agrees with the one calculated to be the most stable for polymers, which
are built from C4�60 ions (Fig. 12c) [81]. Polymeric Na4C60 was found to be metallic
[92], and transforms to an also metallic monomer phase around 500 K [56].

Li4C60 is also a two dimensional polymer, but it has a bonding pattern contain-
ing both cycloadditional and single interfullerene bonds (see Fig. 12d) [93]. This
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Fig. 12 Bonding of fulleride ions in various polymers. a: AC60, b: Na2AC60, c: Na4C60, d: Li4C60

material has an insulating ground state, but is an ionic conductor due to the high
mobility of the LiC ions above 200 K [58].

5 Conclusions

In the present paper, we have tried to show how the Jahn–Teller effect, an inherently
molecular property, influences exotic solid-state phenomena as superconductivity
and magnetism in fulleride salts; and how spectroscopy can amplify the effect of
distortions which are minuscule at the structural level. Vibrational and electronic
spectra in the solid state can unambigously prove the dynamic character of the
Mott–Jahn–Teller insulating phase, as predicted by Fabrizio and Tosatti [16]. The
characteristic time scale of optical spectroscopy being much shorter than that of
magnetic resonance methods, it has the advantage of detecting dynamic distortions
even at room temperature. Despite the existing experimental difficulties, it would be
worthwile extending the scope of measurements to more fulleride salts.

Acknowledgements Financial support was provided by the Hungarian National Research Fund
and the National Office for Research and Technology under grant no. NI 67842 and T 049338.

References

1. R.C. Haddon, L.E. Brus, K. Ragavachari, Chem. Phys. Lett. 125 459 (1986)
2. H.A. Jahn, E. Teller, Proc. R. Lond. Soc. Ser. A 191 220 (1937)



Jahn–Teller Effect in Fulleride Salts 513

3. C.C. Chancey, M.C.M. O’Brien, The Jahn-Teller Effect in C60 and Other Icosahedral
Complexes (Princeton University Press, Princeton, 1997)

4. G. Klupp, K. Kamarás, N.M. Nemes, C.M. Brown, J. Leao, Phys. Rev. B 73 085415 (2006)
5. M.C.M. O’Brien, Phys. Rev. B 53 3775 (1996)
6. J.L. Dunn, C.A. Bates, Phys. Rev. B 52 5996 (1995)
7. A. Auerbach, N. Manini, T. E, Phys. Rev. B 49 12998 (1994)
8. A. Ceulemans, D. Beyens, L.G. Vanquickerborne, J. Am. Chem. Soc. 106 5824 (1984)
9. A. Ceulemans, J. Chem. Phys. 87 5374 (1987)

10. J.L. Dunn, unpublished
11. J.L. Dunn, Phys. Rev. B 69 064303 (2004)
12. S. Tomita, J.U. Andersen, E. Bonderup, P. Hvelplund, B. Liu, S.B. Nielsen, U.V. Pedersen,

J. Rangama, K. Hansen, O. Echt, Phys. Rev. Lett. 94 053002 (2005)
13. N. Koga, K. Morokuma, Chem. Phys. Lett. 196 191 (1992)
14. W.H. Green, Jr., S.M. Gorun, G. Fitzgerald, P.W. Fowler, A. Ceulemans, B.C. Titeca, J. Phys.

Chem. 100 14892 (1996)
15. J.E. Fischer, P.A. Heiney, J. Phys. Chem. Solids 54 1725 (1993)
16. M. Fabrizio, E. Tosatti, Phys. Rev. B 55 13465 (1997)
17. J.L. Dunn, J. Phys.: Condens. Matter. 17 5499 (2005)
18. C.A. Reed, R.D. Bolskar, Chem. Rev. 100 1075 (2000)
19. V. Brouet, H. Alloul, S. Garaj, L. Forró, Struct. Bonding 109 165 (2004)
20. D. Arcon, R. Blinc, Struct. Bonding 109 231 (2004)
21. P. Kupser, J.D. Steill, J. Oomens, G. Meijer, G. von Helden, Phys. Chem. Chem. Phys. 10 6862

(2008)
22. A. Wachowiak, R. Yamachika, K.H. Khoo, Y. Wang, M. Grobis, D.H. Lee, S.G. Louie, M.F.

Crommie, Science 310 468 (2005)
23. B. Liu, P. Hvelplund, S.B. Nielsen, S. Tomita, Phys. Rev. Lett. 92 168301 (2004)
24. S. Tomita, J.U. Andersen, H. Cederquist, B. Concina, O. Echt, J.S. Forster, K. Hansen,

B.A. Huber, P. Hvelplund, J. Jensen, B. Liu, B. Manil, L. Maunory, S.B. Nielsen, J. Rangama,
H.T. Schmidt, H. Zettergren, J. Chem. Phys. 124 024310 (2006)

25. D.A. Neumann, J.R.D. Copley, D. Reznik, W.A. Kamitakahara, J.J. Rush, R.L. Paul,
R.M. Lindstrom, J. Phys. Chem. Solids 54 1699 (1993)

26. M. Knupfer, J. Fink, J.F. Armbruster, Z. Phys. B 101 57 (1996)
27. M. Knupfer, J. Fink, Phys. Rev. Lett. 79 2714 (1997)
28. P. Jeglic, R. Blinc, T. Apih, A. Omerzu, D. Arcon, Phys. Rev. B 68 184422 (2003)
29. V. Brouet, H. Alloul, S. Garaj, L. Forró, Phys. Rev. B 66 155124 (2002)
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52. I. Lukyanchuk, N. Kirova, F. Rachdi, C. Goze, P. Molinie, M. Mehring, Phys. Rev. B 51 3978

(1995)
53. R.F. Kiefl, T.L. Duty, J.W. Schneider, A. Macfarlane, K. Chow, J.W. Elzey, P. Mendels,

G.D. Morris, J.H. Brewer, E.J. Ansaldo, C. Niedermayer, D.R. Noakes, C.E. Stronach, B. Hitti,
J.E. Fischer, Phys. Rev. Lett. 69 2005 (1992)

54. P.J. Benning, F. Stepniak, J.H. Weaver, Phys. Rev. B 48 9086 (1993)
55. Y. Iwasa, S. Watanabe, T. Kaneyasu, T. Yasuda, T. Koda, M. Nagata, N. Mizutani, J. Phys.

Chem. Solids 54 1795 (1993)
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Jahn–Teller Effects in Molecules on Surfaces
with Specific Application to C60

Ian D. Hands and Janette L. Dunn, Catherine S.A. Rawlinson,
and Colin A. Bates

Abstract Scanning tunnelling microscopy (STM) is capable of imaging molecules
adsorbed onto surfaces with sufficient resolution as to permit intra-molecular fea-
tures to be discerned. Therefore, imaging molecules subject to the Jahn–Teller (JT)
effect could, in principle, yield valuable information about the vibronic coupling
responsible for the JT effect. However, such an application is not without its com-
plications. For example, the JT effect causes subtle, dynamic distortions of the
molecule; but how will this dynamic picture be affected by the host surface? And
what will actually be imaged by the rather slow STM technique? Our aim here is to
present a systematic investigation of the complications inherent in JT-related STM
studies, to seek out possible JT signatures in such images and to guide further imag-
ing towards identification and quantification of JT effects in molecules on surfaces.
In particular, we consider the case of surface-adsorbed C60 ions because of their
propensity to exhibit JT effects, their STM-friendly size and because a better under-
standing of the vibronic effects within these ions may be important for realisation
of their potential application as superconductors.

1 Introduction

The scanning tunnelling microscope (STM), invented by Binnig and Rohrer in the
early 1980s [1,2], has developed into a powerful tool for probing surfaces at atomic
resolution. The construction and principles of operation of STMs have been amply
described in the literature, and for a full account the reader is referred to any one
of several texts on the subject (see, e.g. [3, 4]). There are three main components
to these devices: the surface under investigation, the probe ‘tip’, which is placed in
close proximity to the surface, and the positioning and control mechanism, which
acts as a means of measuring and regulating the tunnelling current between the tip
and surface as their relative positions are altered. Tunnelling across the tip-surface
gap occurs when a potential difference is applied. Using positive sample bias, elec-
trons tunnel from the tip into unfilled surface states or, for molecular species, the
lowest unoccupied molecular orbitals (LUMOs). Conversely, negative sample bias
reverses the direction of the flow, from occupied surface states to the tip, and so an
image builds up of the surface’s highest occupied molecular orbitals (HOMOs).
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Data is usually collected in one of two modes. In constant-height mode, the
tip-surface distance is fixed and the tip moved parallel to the surface. By recording
the tunnelling current as this scan proceeds, an image of the surface is generated.
The other mode uses a feedback mechanism to adjust the tip-surface distance to
maintain a fixed tunnelling current. In this constant-current mode, an image is pro-
duced from the height adjustments measured as the surface is scanned. In both
modes, the STM can respond to molecules adsorbed onto the surface, and this
produces an image of the adsorbate itself.

In 2005, Wachowiak et al. [5] used the technique to obtain remarkable images
of C60 molecules co-deposited onto a gold surface with potassium. They found
that K doping produced discrete domains corresponding to monolayers with stoi-
chiometries K3C60 and K4C60. Furthermore, the latter were electrically insulating
whilst the former were conducting in nature. This behaviour was attributed to the
Jahn–Teller (JT) effect. Wachowiak et al. went even further and suggested that their
images could be explained by assuming the C4�60 ions in the insulating phase had
been distorted by the JT effect into species of D2h symmetry. The C3�60 ions in
the conducting phase, however, were not showing signs of a JT effect of any kind,
according to their interpretation.

These results are extremely interesting in light of the discovery made in 1991 that
alkali-doped A3C60 compounds exhibit superconductivity with transition tempera-
tures Tc �18–28 K [6,7]. Since then, these fullerides have been the subject of great
interest and other compounds with even higher Tc values have been synthesized [8].
Superconductivity in fullerides [9] may, in part, be due to vibronic coupling and so
observation of the JT effect in fulleride ions in various charge states using STM is
particularly attractive. If correctly interpreted, the STM results should permit quan-
titative data on the degree of coupling in these ions to be ascertained. This, in turn,
should allow an assessment to be made of the contribution vibronic coupling makes
to superconductivity in these compounds.

It is apparent, therefore, that methods of interpreting the ways in which the
JT effect affects the images produced using tunnelling microscopy need to be
developed. Currently, it would seem, experiment outstrips theoretical work as little
appears to have been written about the JT effect in a specifically surface-adsorbed
environment. There may be good reasons for this. The JT effect is a rather subtle
effect. At its core, is a spontaneous loss of symmetry driven by the ensuant lowering
of the energy of the system. However, there is always more than one way in which
this JT distortion can be achieved. Subsequently, quantum mechanical tunnelling
between these differently distorted forms restores the original symmetry provided
we consider a sufficiently long period of time. How will this dynamic picture be
affected by the presence of a surface? Are there other complications that need to be
considered? One of our aims here is to give recognition to some of the problems that
may complicate observation of the JT effect via STM.

In Sect. 2, we give a general discussion of some of the problems that need to
be considered when a JT-active molecule is adsorbed onto a surface, with specific
application to C60. Then, in Sect. 3 we give an overview of the C60-related STM
images that have been published in the literature. Some of these images can be
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readily accounted for without invoking a JT effect; this is the main thrust of Sect. 4.
In Sect. 5, we try to concentrate on what features could be produced in an STM
image by the JT effect. Finally, in Sect. 6 we draw our considerations to an end with
a summary of our most important findings.

2 General Considerations

For an isolated system, treatment of the intramolecular Jahn–Teller effect is rel-
atively simple. As the system is isolated, we may ignore molecular rotation and
consider a molecule-fixed coordinate system. Within this frame of reference, the
electronic and vibrational states can be formulated in terms of the irreducible repre-
sentations (irreps) of the reference configuration. Overall, the system Hamiltonian
is generally written in the form

H D H0 CHJT; (1)

where HJT constitutes the JT interaction Hamiltonian and H0 is the vibrational
Hamiltonian.

Now consider a system that is not isolated but interacts with a surface. We now
need to add an additional term HS to (1) that represents the interaction with the
surface. In general, the surface interaction will lead to distortion of the system and
so HS could be written as an expansion in terms of the normal modes Q� of the
system, such that

HS D H.0/
S C

X

�;

W �
 Q

�
 : (2)

In this expression, H.0/
S represents a purely electronic interaction between an

undistorted system and the surface, and W � are electronic operators determining
the interaction between a vibration (irrep � , component � ) and the surface. These
latter operators must therefore have transformation properties dictated by the sym-
metry of both the adsorbed molecule and the surface. The form of (2) is suggestive
of the standard method by which JT theory is developed, and this may be a desir-
able approach for future work. As a first approximation, however, we ignore the
additional complication of surface-induced distortion and concentrate on the zeroth
order term H.0/

S .
Unlike the isolated molecule case, the presence of a surface defines a reference

set of coordinates so that molecular orientation cannot be ignored. In other words,
the interaction between the molecule and the surface depends on the orientation of
the molecule with respect to the surface so that

H.0/
S D H.0/

S .R;�/; (3)
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Fig. 1 Plan view of a C60
molecule (black ring) on a
hexagonal surface. In this
figure, the C60 is chosen to be
on top of a surface atom with
a five-membered ring (black
pentagon) directed towards
that atom. The PES depends
on their relative orientations
as given by the azimuthal
angle 
a

with R a vector specifying the location of the molecule with respect to a surface-
fixed frame and � D .
; �;  / a set of Euler angles specifying its orientation. For
C60, the interaction will therefore depend on whether a pentagonal, hexagonal, or
other characteristic site (e.g. a double or single bond, or even a single atom) is ori-
ented towards the surface and the symmetry of the surface involved. For example,
consider a scenario in which a pentagonal face of the C60 molecule binds prefer-
entially to a surface of C6v symmetry, as in Fig. 1. The interaction energy in this
case will clearly depend on the separation between the C60 and the surface and an
azimuthal angle 
a defined as the angle between a surface-fixed (�d ) and molecule-
fixed (�v) mirror plane. In this case, the surface interaction is subject to the condition
H.0/

S .Z; 
a C �=3/ D H.0/
S .Z; 
a/ and six local minima in the potential energy

surface (PES) are to be expected.
For a very strong interaction, the freedom of the molecule to rotate around the

surface normal will be diminished, perhaps to the point where the molecule will
be ‘locked’ into a particular potential well. For weaker interactions, the system can
tunnel from one well to another making the system dynamic and restoring a higher
degree of symmetry to the system. These possibilities are analogous to the con-
cept of static vs. dynamic JT effects but they will be present even if the adsorbed
molecule is not JT-active. Note that if this system happened to be in a dynamic
state, and was subsequently observed via STM, then the molecule’s fivefold sym-
metry would not be apparent, even though it must still be present as the molecule is
rigid.

The foregoing discussion raises the question of temperature. At low tempera-
tures, the C60-surface interaction has a greater ability to lock the adsorbed molecule
into a fixed orientation. Therefore, intramolecular detail is most likely to be appar-
ent in STM images at low temperatures. Raising the temperature will give greater
freedom for the molecule to rotate about the surface Z-axis and therefore the STM
image will be more likely to show features indicative of the substrate symmetry.
For example, in Fig. 1 the STM image of the molecule would be expected to have
sixfold symmetry. Adsorption at an interstitial site could similarly result in STM
images having threefold symmetry if the rotational freedom is great enough. At even
higher temperatures, full rotational freedom could result in spherically symmetric
STM images. In this respect, what constitutes a ‘high’ or ‘low’ temperature will
depend on the strength of interaction with the surface. Therefore, it is possible that
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for a given temperature and surface, STM images of individual C60 molecules could
appear different simply because they are adsorbed at sites with different degrees of
C60-surface interaction. We shall look more closely at the effect of temperature later
in Sect. 2.1.

Another problem encountered due to the presence of the surface is that of charge
transfer (CT). This is especially so in light of the fact that C60 is a good electron
acceptor with an electron affinity of 2.689 eV [10]. Thus, CT is likely to occur
whenever C60 is adsorbed onto a metallic surface. The donated electrons will be
accommodated in the T1u orbitals of C60, and this will render them susceptible to a
JT effect. In Sect. 2.2, we tabulate some values for the CT found or calculated for
some surfaces commonly used in STM.

Whenever CT occurs, we can expect it to engender a strong interaction with the
surface as the ions will interact strongly with their cationic counter-images induced
within the metal. Subsequently, the LUMO could be strongly split due to the pres-
ence of a metallic surface alone. Of course, any such splitting will be governed by
the symmetry of the interaction as well. Multiple occupancy of the T1u orbitals also
brings with it the problem of electron–electron interactions. These issues are dealt
with more thoroughly in Sect. 2.3. Finally, we shall also give a brief discussion in
Sect. 2.4 of another surface related problem, viz. the formation of monolayers.

2.1 Time-Scales and Temperature

Existing STM techniques are undoubtedly slow, with the fastest machines having
a millisecond time resolution. This has lead to attempts to develop techniques of
improving temporal resolution 100-fold [11]. However, even with the limited time
resolution currently available there have been some useful time-dependent STM
studies. For example, compilation of several series of static images into video clips
has provided valuable insight into catalytic activity and diffusion of molecules on
surfaces [12]. A typical, nominally ‘fast’, scan rate used in the latter work suggests
that an area 140�140 Å2 can be imaged in�13 s. C60 has a diameter of�7 Å, which
gives a dwell time per C60 of roughly 33 ms. This limitation arises from the elec-
tronics used and not the tunnelling process [11]. We can therefore safely assume that
any motion faster than this is not currently detected in STM experiments. In fact, as
electrons injected or removed by the STM tip will create excitations in the vibronic
states, tunnelling could be induced by the STM tip itself. Hence JT tunnelling is
likely to remain fast compared to STM measurements, even with potential future
improvements in electronics. Nevertheless, we can proceed to estimate upper limits
on survival times of static distortions by ignoring the effect of the STM measurement
process itself.

Many of the STM images involving C60 are obtained at low temperatures (�5 K).
It is pertinent to consider what the time-scales are for typical molecular motions
at these low temperatures. Repp et al. [13] recorded STM images of copper clus-
ters, comprising 1–3 atoms on a Cu(111) surface, at a variety of temperatures. The
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copper dimer appears as a circular object via STM, even at 5–7 K. The dimer is so
imaged because the copper atoms have enough energy to diffuse locally between
face-centred cubic (fcc) and hexagonal close-packed (hcp) sites. The authors mea-
sured the rate at which fcc–fcc dimers converted to fcc–hcp dimers as a function of
temperature. Above�6 K, the measured conversion rate r conforms to the classical
Arrhenius equation,

r D r1 exp.�Eb=kT / (4)

where Eb is the barrier to conversion and r1 is the ‘attempt frequency’. From the
experiments, it was found that r1 D 8 � 1011˙0:5 s�1 and the barrier to diffusion
was Eb D 18 ˙ 3meV. At 6 K, this implies a conversion rate of 6:1 � 10�4 s�1.
Therefore, the time taken to jump from one configuration to another is �103 s. This
slow process would obviously be easy to measure using STM.

At 7 K, the conversion rate has increased 100-fold to �0.1 s�1, so that it takes
about 10 s to hop between configurations. Even the fastest scanners take about this
time to capture their data and so slower systems could be expected to see the dimer
as a circular blur. It is interesting that a relatively modest change in temperature
of 1 K should make the difference between observation of Cu2 as a ‘dumb-bell’ or
something more isotropic. Clearly, for ‘small’ barriers, even a small temperature
change can have a significant effect on the STM image.

Treating the Cu2 dimer as a rigid rotor (bond length�2.6 Å), results in a moment
of inertia of ICu2 D 3:6 � 10�45 kg m2, corresponding to a rotational constant
of BCu2 D 1:0 � 10�2 meV. A direct calculation of the rotational energy gives a
mean value of hEJ i D 0:52meV at 6 K. If we equate this with the kinetic energy
for a classical rotor

�
1
2
I!2

�
, we get a measure of the mean angular velocity !.

We suppose that an attempt to cross the barrier has occurred if the dimer rotates
by the angle sufficient to take the dimer from a fcc–fcc well minimum to a barrier
maximum. Simple geometry shows the angle to be 16:1ı, which combines with the
rotation speed to yield r1.Cu2/ D 7:8 � 1011 s�1. This is in very good agreement
with the observed rate.

We can repeat this rough calculation for C60 which has a much larger moment of
inertia than the dimer (1:0 � 10�43 kg m2). At 6 K, we estimate the angular veloc-
ity to be !C60 D 4:1 � 1010 rad s�1, leading to an estimated attempt frequency
of r1.C60/ D 7:8 � 1010 s�1. This is ten times smaller than in the copper dimer
case. At this stage, we can use (4) to calculate a critical barrier height Ecrit for low
temperature STM. For r � 10�3 s�1 and kT D 0:52meV (6 K), we find

Ecrit � 17meV: (5)

If the barrier energy is lower than this critical value, rotational motion will be
fast at 6 K and the STM image will be smeared out and STM simulations will need
to include time averaging. If the barrier is larger, then the image may have threefold
or sixfold symmetry depending on the energies of the local minima.

Repeating the above steps for a general temperature yields
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Ecrit � 1

2
kT .ln kT C 64:6/ .Ecrit; kT in meV/ : (6)

(This assumes the attempt frequency has a temperature dependence. If instead
we assume that r1 D 7:8 � 1010 s�1 irrespective of temperature, then (6) becomes
Ecrit � 32:0 kT .)

A recent density functional theory (DFT) study [14] of C60 on Cu(111) indi-
cates that the adsorbate is most energetically stable when localized over a hcp site
(although the fcc site is only 20 meV higher in energy). A barrier to rotation of
300 meV is predicted. According to (5), this barrier would be sufficient to prevent
rotation on an STM time-scale at 6 K. However, at room temperature (6) suggests
that the critical barrier should be nearer to 855 meV, and so rotation may not be
suppressed.

The overall conclusion is that provided T � 7–10K we should be fairly con-
fident that C60 adsorbs onto metallic substrates with a fixed orientation, with little
rotational freedom. Of course, the observation of intramolecular detail in STM is a
reliable indicator that rotation has been suppressed to some degree. However, as we
have tried to emphasise, even this observation may not mean that motion has been
completely stifled.

2.2 Charge Transfer

As C60 has a high electron affinity (2.689 eV [10]), charge transfer will be a distinct
possibility whenever C60 is adsorbed onto a metallic surface. The T1u LUMO of
C60 can accept up to six electrons, but there is no reason to believe, a priori, that
such a large CT should be sustainable on a metallic surface. In fact, a calculation by
Burstein et al. [15] suggests that a maximum CT of two electrons to each C60 is to
be expected, regardless of the work function of the metal.

The problem of charge transfer from metals to C60 molecules adsorbed on their
surfaces has been addressed by several authors using both experimental [16–19]
and theoretical approaches [15,20,21]. A (non-exhaustive) summary of their results
is given in Table 1, which also lists the work functions of the substrates involved.
As can been seen from the table, a larger CT generally correlates with a smaller
work function, as might be expected. It is also interesting that even relatively inert
metals such as gold are thought to transfer � 1 electron to the C60. Also note that
the tabulated CT values appear to support Burstein’s calculation of a maximum CT
of 2 e=C60 [15].

Charge transfer to the C60 molecule will lead to occupation of the T1u LUMO
of the neutral molecule and this should be sufficient to render the molecule liable to
distortion via the JT effect. Therefore, if it is possible to observe signatures of the
JT effect using STM, then these signatures should be apparent in even the simplest
experiments involving C60 on metal surfaces, provided CT occurs.
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Table 1 A selection of substrate work functions and the charge transfer that occurs from them to
adsorbed C60 molecules. Numbers in italic font are calculated values and references are in square
brackets

Surface Work functiona (eV) Charge transferb (e=C60)

Ag(polycr.) 4.3˙ 0.1 [18] 1.7˙ 0.2 [18]
Ag(001) 4.64 1.7˙ 0.08 [19]
Ag(110) 4.52
Ag(111) 4.74 0.75 [17]
Au(polycr.) 5.2˙ 0.1 [18] 1.0˙ 0.2 [18]
Au(110) 5.37 1˙ 1 [16]
Au(111) 5.31
Cu(polycr.) 4.5˙ 0.1 [18] 1.8˙ 0.2 [18]
Cu(111) 4.94 0.8 [14], 1.6 [22]
Pt(110) 5.84 �0.07 [21]
Rh(111) 5.4 [23] � 1 [24]
Si(100)–(2�1) 4.91 0 [25]
Si(111)–(7�7) 4.60 (0.7 to 3)c ˙ 1 [25]

a From [26], unless otherwise referenced.
b Mean number of electrons transferred from the surface to each C60.
c Dependent on coverage.

In a certain sense, the simple C60–metal system provides the ‘purest’ test cases
in which to seek the JT effect. Additional doping by co-deposition of, say, potas-
sium has the benefit of creating more highly charged ions, e.g. C3�60 , which may be
subject to stronger vibronic coupling. This could increase the likelihood of observ-
ing the JT effect via STM, but there is also the possibility that the dopant may have
other hidden effects that could unwittingly affect the image and lead to erroneous
conclusions being drawn.

As a final comment on this aspect of the problem, it is worth mentioning that even
in situations where C60 can be effectively decoupled from the surface, JT effects
may still be apparent. This is because of the tunnelling nature of STM which neces-
sarily involves electron transportation through the molecule. Thus, vibronic signa-
tures have been recently recorded in differential tunnelling-current vs. bias (dI=dV )
spectra in single C60 molecules supported upon 1,3,5,7-tetraphenyladamantane
nanostructures on a gold substrate [27].

2.3 Surface Interactions and Symmetry

There are 17 two-dimensional space groups arising from five Bravais nets associated
with translation over a surface [28]. A C60 molecule adsorbed onto a surface will
therefore be subject to a local symmetry belonging to one of ten possible site sym-
metries: C6v, C6, C4v, C4, C3v, C3, C2v, C2, Cs , and C1. None of these site groups
support triply degenerate irreps and so the T1u LUMO will be split whenever C60
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Fig. 2 Electron distribution
associated with the T1uz

orbital. The lighter lobes
correspond to wave functions
with a positive sign. The
other orbitals are identical
apart from their orientation
(obtained by cyclic
permutation of the axes)

is adsorbed onto a surface. If the symmetry is C3 or higher (i.e. one of the first
six symmetries in the list above), the LUMO will split into a doublet and a singlet.
If the symmetry is C2v or lower, it will split into three singlets. C60 on a surface
will therefore be subject to a Jahn–Teller effect involving one of these states, or to a
pseudo-JT effect involving more than one of these states.

Consider the case of C60 adsorbed onto the (111) surface of a fcc lattice as exem-
plified by Au(111), Ag(111) and Cu(111), surfaces that are commonly used in STM
studies. These surfaces belong to the C3v factor group, which has irreps A1, A2
and E. When the C60 molecule is oriented so that it is subject to this C3v environ-
ment, the correlations fT1u; T2ug ! fA1 C Eg and fHug ! fA2 C 2Eg apply.
Therefore, the T1u LUMO will be split into two sets of molecular orbitals. Exami-
nation of the distributions associated with the T1u orbitals shows that the electrons
occupy an ‘equatorial’ belt around the molecule with respect to the associated axis.
For example, Fig. 2 shows the T1uz orbital in a frame in which the Cartesian axes
pass through carbon–carbon double bonds. This suggests that upon adsorption in a
C3v environment, the A1 orbital should be associated with the direction normal to
the surface and the degenerateE orbitals should be associated with two orthogonal
directions parallel to the surface.

The energy difference�S D EA1
�EE between the .A1; E/ pair is determined

by the interaction with the surface, and the sign of�S could be positive or negative.
In general, we need to consider three cases, referred to as p1.� p5/, p2.� p4/,
and p3, corresponding to the number of electrons which would occupy the unsplit
p-like T1u orbitals in the absence of surface interaction. However, we must include
electrons transferred as a result of charge transfer to reflect the C60 species that
is present on the substrate. Thus, the p1 case accounts for a nominally C�60 ion (or
C5�60 ion using electron-hole symmetry). This situation could arise if C60 is adsorbed
onto a metal which subsequently donates one electron to it, or if an adsorbed but still
neutral C60 molecule is chemically doped using an adsorbate such as an alkali metal.

Like the JT effect, the surface interaction will tend to favour low spin config-
urations. On the other hand, electron–electron Coulombic repulsion will favour
high spin arrangements. Therefore, we need to derive correlation diagrams for the
electronic interactions that will arise in each of the three pn cases. In Fig. 3, we
show the simple term splitting diagram for the p1 case with C3v surface splitting.
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Fig. 3 Correlation diagram
for p1 (C�60) or p5 (C5�60 ). The
central term is that
appropriate to free
icosahedral ions, the right
hand side for positive C3v

surface splitting�S > 0, and
the left hand side for
equivalent negative splitting

The central part of the diagram represents the case of a free C�60 ion and the right
hand side shows the behaviour to be expected if a positive surface splitting occurs.
Conversely, the left hand side applies to negative splitting. The same diagram applies
to the p5 case provided we reflect the diagram horizontally (or change the sign
of �S) because of electron-hole symmetry. Thus, a p5 configuration with positive
splitting gives rise to a 2A1 ground state.

The same format used in Fig. 3 is adopted in the multielectron cases shown
in Figs. 4 and 5. In the absence of surface interaction (centre of each diagram),
electron–electron repulsion gives rise to three possible electronic terms, whose sep-
arations are determined by an exchange parameter J [29]. For p2, the terms are˚
3T1g ;

1Hg ;
1Ag

�
with energies f�J; J; 4J g, and for p3 the terms are

˚4
Au;

2Hu;
2

T1u
�

with energies f�3J; 0; 2J g. Calculated values of J vary considerably, with
the actual value likely to be somewhere in the range 30–110 meV (see [29] and ref-
erences therein). These terms will be split if the surface interaction is included as
a perturbation, producing (in C3v surface symmetry) singly and doubly degenerate
orbitals as shown to the left and right of the centre of the diagrams. Note that the
splitting shown here has only qualitative significance. On the extreme left and right
of Figs. 4 and 5, the configurations that exist in the case of infinitely strong surface
interaction are shown. For a strong but finite interaction, these configurations will
be split by the electron–electron interaction which is now considered to be a weak
perturbation.

The term diagrams in Figs. 3–5 allow the expected pattern of electronic excitation
to be predicted for a surface splitting of C3v symmetry, provided the strength of the
interaction with the surface is known. Conversely, we might hope to deduce the
magnitude of the surface interaction from knowledge of excitation spectra, if these
can be obtained from adsorbates.

In this section, we have considered the specific example of a C60 ion subject to a
C3v surface splitting. Analysis for lower symmetries can be performed in a similar
way, where for all symmetries C3 or higher there is still a doublet and a singlet, and
for symmetries of C2v or lower there will be three singlets.

2.4 C60 Monolayers

A further complication to the picture already presented arises when the concen-
tration of C60 molecules on the surface increases. Clearly, the greater the surface
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Fig. 4 Correlation diagram for p2 (C2�60 ) or p4 (C4�60 ) with C3v surface splitting. Terms arising
from positive splitting are on the right and from negative splitting on the left with magnitudes that
increase with distance from the centre of the figure. At the extreme edges of the diagram, the strong
field (i.e. strong surface interaction) configurations are shown. The order of the terms for the free
ion is taken from ab initio calculations [29]. In C3v symmetry, only A1 $ A2 transitions are not
allowed

Fig. 5 Correlation diagram for p3 (C3�60 ) with C3v surface splitting. The structure of the dia-
gram is as in Fig. 4 and once again the order of the terms for the free ion is taken from ab initio
calculations [29]

concentration, the greater the importance of intermolecular interactions between
adjacent C60 units. Of particular importance is when the concentration corresponds
to monolayer (ML) coverage. Due to their sphericity, C60 MLs adopt close-packing
arrangements. This, in itself, exposes each C60 to a local environment that is
approximately C6v or C3v in symmetry. As before, this interaction will remove the
degeneracy of the T1u LUMO. In this case, however, we might expect the sign of
the splitting to be opposite to that caused by the surface.

Referring to Fig. 2, let us suppose the surface is located in the negative
z-direction. Electrons located in the T1uz orbital are in an equatorial location and
are therefore ideally located to interact with neighbouring C60 molecules, but not
with the surface. Conversely, electrons in the T1ux and T1uy orbitals are in equatorial
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Fig. 6 Net splitting �S�ML

of the T1u LUMO in C60 due
to a C3v interaction with a
surface and subsequent
monolayer formation

belts that point toward the surface. These, therefore, are expected to interact more
strongly with the surface but be less inclined to interact with neighbours. In some
respects, then, ML formation negates the surface interaction, as shown in Fig. 6.
Even a very strong surface interaction could be cancelled by strong interactions
within the monolayer. There may be evidence in the literature for this splitting
cancellation. Photoemission spectra obtained from an increasingly K-doped mono-
layer of C60 on Ag(111) shows a triply degenerate LUMO progressively filling with
electrons, but no splitting [17]. In contrast, a study [30] using STM techniques to
sequentially K-dope an individual C60 molecule on a Ag(001) surface showed a
clear splitting in the dI= dV spectrum of the undoped C60, as shown in Fig. 7. This
splitting could be an indication that the interaction of a single C60 molecule with
the silver surface is non-zero, i.e. �S ¤ 0.

Provided the monolayer interaction splits the LUMO into a singlet and a dou-
blet, and the surface does the same, then there will be an effective, overall splitting
which we call �S�ML. The correlation diagrams in Figs. 3–5, therefore, will still
be applicable. On the other hand, it is clearly conceivable that the combination of
all the interactions affecting any particular C60 may completely lift the degener-
acy of the LUMO. In this case, STM images matching individual components of the
LUMO may be obtainable depending on the bias used. Thus, STM should provide an
ideal technique for experimentally determining the order and energy of any splitting
present. This, in turn, should provide evidence for the local symmetry experienced
by the molecule on the surface.

3 STM Imaging of Fullerenes: An Overview

The first paper to report an STM image of C60 molecules on a surface [of Au(111)]
was published in 1990 [31], where the tendency of C60 to form hexagonally close-
packed monolayers is apparent. In this early work, the fullerene molecules look little
more than spherical blobs. Since then refinements to the STM technique, including
the ability to record images at liquid helium temperatures, have greatly increased
the quality of the images and the data therein. Subsequently, a large body of knowl-
edge has been accumulated. It is not our purpose to give a thorough review of this
body here. Instead, we will pick out a limited number of the most relevant papers
in order to illustrate the most important features that have been observed. Subse-
quently, we will attempt to rationalise these features using theoretical simulations.
A more general review of STM imaging as applied to fullerenes up to 1996 can be
found in [32].



Jahn–Teller Effects in Molecules 529

Fig. 7 Tunnelling spectra
from a single C60 molecule
on Ag(001) subject to
progressive K-doping. The
spectra have been off-set to
improve clarity. The LUMO
appears to be split differently
in each trace; possibly due to
the influence of KC ions.
Note, however, that the
undoped trace also shows
signs of splitting, implying
�S ¤ 0. Reprinted figure
with permission from R
Yamachika, M Grobis, A
Wachowiak and MF
Crommie, Science 304, 281
(2004) [30]. Copyright (2004)
by The American Association
for the Advancement of
Science

One of the earliest works showing clear evidence of intramolecular detail within
individual C60 units is that of Motai et al. [33], as shown in Fig. 8. These images are
striking because it strongly suggests that the C60 adsorbs to the copper surface with
a hexagonal face pointing downwards and that each C60 cooperatively aligns itself
with its neighbours. It also exemplifies the tendency of C60 to form close-packed
monolayers. These bias-dependent images can be explained in terms of the electron
distributions associated with the LUMO and HOMO of C60 [34], as we illustrate in
Sect. 4.2.

Further internal electronic structure arising from the HOMO orbitals was obser-
ved by Tsuchie et al. [35], who studied C60 monolayers on a Si(111)–

p
3�p3–Ag

surface at room temperature and at 60 K using a fixed sample bias of �2 V. Fig-
ure 9 shows the images obtained from a plain C60 monolayer and one that has been
doped with potassium. It is readily seen that doping has a significant effect on the
resulting images. The reason why doping has such a marked effect on the image
does not seem to have been explained or thoroughly investigated. One would expect
K-doping to alter the energies of the imaged orbitals as a result of charge transfer to
the fullerene cage. This would bring different orbitals ‘into view’ at the fixed bias
used. Another possibility is that doping affects the molecule’s electronic structure
to such an extent that the molecule rotates into a different orientation upon doping.
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Fig. 8 STM images of a C60 monolayer on Cu(111) showing intramolecular detail. (a) images the
HOMO (sample bias �2V) and (b), the LUMO (atC2V). Reprinted figure with permission from
K Motai, T Hashizume, H Shinohara, Y Saito, HW Pickering, Y Nishina and T Sakurai, Jpn. J.
Appl. Phys. 32(3B), L450 (1993) [33]. Copyright (1993) by the Japan Society of Applied Physics

Fig. 9 STM images of C60 on a Si(111)–
p
3 � p3–Ag surface at 60 K and sample bias �2V.

(a) Shows the undoped monolayer which consists of molecules presenting two different kinds of
striped image, labelled A and B. In (b), a K-doped monolayer is imaged, which results in a com-
pletely different set of images; bright ‘U’ and dim ‘X’ shaped molecules now dominate. Reprinted
figure with permission K Tsuchie, T Nago and S Hasegawa, Phys. Rev. B 60, 11131 (1999) [35].
Copyright (1999) by the American Physical Society

This could, in fact, be evidenced by Fig. 9 as the structures shown in Fig. 9a are
consistent with molecules oriented with a C2 rotational axis perpendicular to the
surface, whereas this does not appear to be the case in Fig. 9b. Of course, the pres-
ence of additional atoms on the surface could also affect orientation due to simple
steric effects.

Hou et al. [36] observed similar striped HOMO-derived images at a sample bias
of �1.8 V on a Si(111)–(7�7) surface (at 78 K). These workers, however, also cap-
tured other images at a variety of biases, obtaining different images at each bias
used. To explain the observed images, the authors used DFT and found that, depend-
ing on adsorption site, the C60 molecules adsorb onto the surface with either a single
bond or individual atom pointing downwards towards the surface.

Further proof that orientation can be unequivocally assigned on the basis of high-
resolution STM images has been provided by Schull et al. [37]. This work shows
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Fig. 10 Low temperature STM image of C60 on Au(111) recorded using a bias of 1.5 V. This
excerpt, from the original image of a (7�7) superstructure, shows a strip of eight molecules in
which the orientation changes progressively from left to right. Reprinted figure with permission
from G Schull and R Berndt, Phys. Rev. Lett. 99, 226105 (2007) [37]. Copyright (2007) by the
American Physical Society

Fig. 11 STM images of K4C60 on Au(111) at small biases: (a) �0:1V and (b)C0:1V. Reprinted
figure with permission from A Wachiwiak, R Yamachika, KH Khoo, Y Wang, M Grobis, DH Lee,
SG Louie and MF Crommie, Science 310, 468 (2005) [5]. Copyright (2005) by The American
Association for the Advancement of Science

that long-range orientational ordering of C60 molecules adsorbed onto a Au(111)
substrate can produce a (7�7) superstructure of adsobates in which each C60 has a
slightly different orientation, as shown in Fig. 10. This image, recorded at a sample
bias of 1.5 V, corresponds to visualising LUMO orbitals and can be reproduced quite
easily by imaging the T1u orbitals of C60.

Other workers have realised that the charge state of a C60 molecule has important
implications with regards electron-vibration interactions and have actively sought to
use STM to study the effects of doping. Of particular merit is the work of Crommie
and co-workers who, in a series of papers [5, 30, 38, 39], have recorded some very
intriguing images and spectra of a series of doped C60 molecules. In one experi-
ment [on Ag(111)], these workers were able to use the STM tip to progressively
attach/detach potassium atoms to individual C60 molecules and subsequently record
the scanning tunnelling spectroscopy data shown in Fig. 7. In a later work [5], they
studied an insulating phase K4C60 and compared it to a conducting layer K3C60.
For small biases, the images of the former are shown in Fig. 11. The authors argue
that as the images shown in Fig. 11 are different from each other, there must be a
JT effect present in the doped layer. However, as doping fills the LUMO of C60,
we would expect the images to derive from the T1u orbitals, and, as we show later,
it is possible to obtain identical images to those shown provided we take certain
combinations of the molecular orbitals. The reasons why those particular combina-
tions must be made could be due to the JT effect. However, it could also be due to a
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surface and/or monolayer interaction or, indeed, some other perturbation. We do not
believe that the experiments made to date provide concrete proof that it is possible
to directly observe the JT effect in STM images. This is a subject we will return to
later. First, though, we will look at a simple way of modelling STM images using
molecular orbitals.

4 STM Simulations and Comparison with Experiment

We will base our simulations on a simple Hückel molecular orbital (HMO) picture
of C60. This approach may not embody the rigour inherent in more sophisticated
methods of calculation, such as DFT, but is capable of demonstrating the under-
lying physical principles without incurring the additional computational cost of
methods such as DFT. Where appropriate, we will make comparisons with other
theoretical results in the literature, most notably DFT, in order to note similarities or
discrepancies.

4.1 Hückel Molecular Orbital Theory for C60

The starting point for our simulations is the analytical treatment of the HMO prob-
lem for C60 as given by Deng and Yang [40]. These workers used group-theoretic
techniques to reduce the 60 � 60 Hückel Hamiltonian for C60 to ten 6 � 6 sub-
matrices, each describable in terms of their parity, p (D ˙ 1), and an angular
momentum-type quantum number,m (D 0;˙1;˙2). The net result is that the form
of the HMOs belonging to any particular irrep can be found in terms of 6 constants.

Deng and Yang [40] tabulate expressions for the HMOs that are appropriate to
the case where single and double carbon–carbon bonds are equivalent (in the sense
that their respective resonance integrals ˇs and ˇd are equal). However, the theory
is sufficient to allow easy extension to a picture in which ˇs ¤ ˇd . To this end,
the authors introduce a parameter ˛ D �ˇs which requires that ˇd D ˛ � 2.
In an earlier work [41], we introduced a similar parameter to account for this
bond ‘alternation’, as it is often termed, � D ˇd=ˇs. Thus, the two treatments are
related by

˛ D 2 .1C �/�1 ; (7)

with the simple, equal-bond picture corresponding to ˛D � D 1. In [41], the value
� D 1:433 was derived in order to explain the experimentally observed bond alter-
nation of r.C D C/ D 1:391 Å and r.C � C/ D 1:455 Å. This implies ˛D 0:8220,
which is the value of ˛ that we will use when generating our images.

We are interested in generating simple pictures of the molecular orbitals. To do
this, we form the required combinations of the sixty radially disposed 2p orbitals
localized at the carbon nuclei in C60. We assume that the wave functions drop off as
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Fig. 12 Definition of the
molecular axes and angle 

needed to orient the molecule
towards the viewing plane
(black square)

e�kr , where, for hydrogen-like atoms, k D Zeff=2a0, withZeff the effective nuclear
charge and a0 the Bohr radius. In keeping with our simple approach, we take the
effective nuclear charge to be 3.14, as determined by Clementi and Raimondi [42],
corresponding to k 	 3:0.

We take our standard molecular axes to pass through the centres of a set of
orthogonal carbon–carbon double bonds in the manner shown in Fig. 12. We then
set up a fixed ‘viewing plane’ at a given distance away from the centre of the
molecule, as shown Fig. 12. Rotation of the molecule around the y-axis by the
correct amount then presents the desired face to the STM tip. Alternatively, we
could consider moving the viewing plane in the opposite direction by an equiva-
lent amount. Three important axes are highlighted, each labelled according to the
symmetry type: C2 images the molecule when a double bond is pointing down-
wards towards the surface, whilst C5 (
 D 31:72ı) and C3 (
 D 69:09ı) present
pentagonal and hexagonal faces for viewing. Note, however, that we can also view
in this way the two other important orientations, namely over a single bond and an
individual atom.

If the orbitals within each irrep are degenerate, then the sums of the squares of the
electron densities for the LUMO (T1u) and HOMO (Hu) have the appearances given
in Fig. 13 (also see Fig. 2 for the shape of one of the components of the T1u irrep).
For neutral C60 this means that the filled orbitals are characterised by electrons being
localised near the CDC bonds and so these bonds should be prominent at negative
STM biases. On the other hand, at positive bias electrons should, at least initially,
tunnel into the regions of space associated with the LUMO. In such images, the
pentagonal faces (i.e. the C–C single bonds) will appear ‘bright’.

4.2 Simulating STM Images

In common with most workers, we use the simple tunnelling theory developed by
Tersoff and Hamann [43] to provide the final link between the available orbitals and
predicted STM image. Their work, which by their own admission contains many
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(a) T1u LUMO (b) Hu HOMO

Fig. 13 Isoelectronic density surfaces for (a), the LUMO (� D 0:0050 e Å�3) and (b), the HOMO
(� D 0:0083 e Å�3) in the case when orbital degeneracy is present

approximations, suggests that the tunnelling current I measured during STM is such
that

I /
X

�

j �.r0/j2ı.E� � EF /; (8)

where  � is the wave function of a surface state of energy E� , r0 determines the
position of the STM tip, EF is the Fermi energy and � runs over all the available
surface states. In imaging the LUMO, therefore, we assume that sufficient positive
bias is applied to the surface so that

ILUMO.r0/ / �LUMO.r0/ D
X

˛Dx;y;z
jT1u˛.r0/j2; (9)

where �LUMO.r0/ is the electron density evaluated at r0, which is some position
vector located within the viewing plane shown in Fig. 12. It is a simple matter to
evaluate this expression in a given plane and hence generate a ‘constant height’
STM image. It is also relatively easy to extend the calculations to create plots which
show the tip height required to maintain a constant tunnelling current, i.e. to produce
‘constant current’ simulations.

Of course, (9), and its obvious extension to the negative bias case involvingP
˛ jHu˛.r0/j2, would only be appropriate if all the orbitals involved are degen-

erate. Thus, we can use the the density functions shown in Figs. 13b and 13c to
simulate simple constant height STM images for this degenerate case. Some specific
results are shown in Fig. 14.

Although simple, some of these simulations bear a strong resemblance to real
STM images observed experimentally. Thus, the LUMO and HOMO pictures
obtained by viewing along the C3 axis are very similar to those shown in Fig. 8.
The LUMO picture viewed along the C2 axis also gives a good match to Fig. 11a.
Figure 14b also shows that we can account for the long-range ordering observed by
Schull et al. depicted in Fig. 10. However, it is clear that the six images shown in
Fig. 14a do not account for all the different STM features that have been observed.
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Fig. 14 Simulated, constant-height STM images of C60. In (a), we show the expected appearance
of the LUMO and HOMO orbitals when viewed along specific axes (each image is 10�10Å2).
(b) Shows a simulation of the orientational effect shown in Fig. 10. The starting orientation corre-
sponds to 
 D 69:09ı. Additional rotation of �
 ' 2:6ı is subsequently added up to a critical
rotation after which the subsequent molecules return to orientations close to the original one

One simple extension would be to vary the orientation to cover the possibil-
ity that adsorption occurs with a low-symmetry axis pointing towards the surface,
e.g. a C–C single bond or individual C atom could be prone to the surface. However,
the most serious omission is, perhaps, the treatment of the LUMO and HOMO as if
they retain their three- and five-fold degeneracies in the adsorbed environment. This
is certainly not something that would be expected for C60 molecules adsorbed onto
a surface.

4.3 Effects of Surface Interaction on STM Images

Let us suppose that the interaction with the surface is sufficiently strong to cause
a loss of degeneracy in the frontier orbitals. Furthermore, assume that the split
combinations require different biases for imaging by STM. It is possible that the
degeneracy could be lifted completely depending on the symmetry of the surface.
Hence, we need a general method of finding which orbitals remain degenerate when
exposed to the influence of a surface interaction of a given symmetry.

Here, we describe a simple method of probing degeneracy involving the charac-
ters of the orbitals under the group operations associated with the surface symmetry.
As (111) surfaces are commonly used in these studies, we shall use as an example
a surface symmetry of C6v, as depicted in Fig. 15. We consider the molecule to
have a CDC bond pointing towards the surface so that the LUMO basis functions
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Fig. 15 Diagrammatic
representation of the
C60-surface system. The
surface (dark-grey,
close-packed spheres)
imposes C6v symmetry on the
adsorbed molecule’s orbitals
(white lobes). Here, a pz

orbital represents the T1uz

orbital of C60 and the
light-grey square is the
viewing plane for STM

fT1ux; T1uy ; T1uzg transform as the .x; y; z/-axes themselves or, for illustration pur-
poses, a set .px; py ; pz/ of p-orbitals. Actually, as the T1u orbitals form a basis for
the spherical harmonics with angular momentum L D 1, this basis can be used
whatever orientation is chosen. However, the same cannot be said for the HOMO
orbitals as the L D 5 harmonics decompose as T1u ˚ T2u ˚ Hu in icosahedral
symmetry.

In Fig. 15, we can see that when exposed to an environment of C6v symmetry, the
pz orbital, and hence equivalently the T1uz orbital, will have a character of 1 under
any of the group operations of the C6v group and so it transforms as the totally
symmetric A1 irrep. Similarly, we can show that the px and py orbitals have the
same characters and form a basis for the doubly degenerateE1 irrep. Therefore, this
surface interaction will split the LUMO into two parts: a doubly degenerate pair�
T1ux; T1uy

�
and a singly degenerate T1uz orbital. These two sets of orbitals would

be expected to produce two distinct STM images (at different biases).
We can repeat the above process for the HOMO orbitals by considering the trans-

formation properties of a set of Hu orbitals. However, as already mentioned, this
is more difficult than for the LUMO as these orbitals derive from spherical har-
monics with L D 5. For any given orientation, an orthogonal basis must be found
and then the transformation properties examined. Finally, combinations of orbitals
must be constructed which have the same transformation characteristics. The over-
all result is that the fivefold degenerate HOMO splits into three parts: one singly-
and two doubly-degenerate combinations. Details of these calculations will be left
for a subsequent publication. We do, however, present the resulting STM images to
be expected for the configuration currently being considered (i.e. CDC prone to the
surface), in Fig. 16.

The simulated STM images in Fig. 16 have been generated in constant current
mode using a large tunnelling current in order to give a clear view of the elec-
tron densities associated with the images. Note that these ‘enhanced’ pictures are
not realistic simulations of what might be observed in practice. However, they still
allow the regions of electron density ‘nearest’ to the observer to be determined
and so it is easy to imagine what the corresponding real STM image might look
like. Thus, for the HOMO, two of the combinations (one A, one E) will produce
STM images having a striped appearance. These bear a strong resemblance to the
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Fig. 16 High-resolution, constant-current simulated STM images for a surface-adsorbed C60
molecule. The distribution of the orbitals into doublets and singlets has been induced by a surface
with C6v site symmetry

experimentally-obtained STM images for ‘A’ and ‘B’ species shown in Fig. 9a,
although a direct correspondence is unlikely as our simulated images would be
expected to require two different biases for visualisation. The image of the A-type
HOMO orbital in Fig. 16 is also interesting because it is identical to a simulation
made using DFT by Pascual et al. [44]. In fact, the simple methods used here are
able to reproduce all the images obtained using sophisticated DFT calculations in
[44] and this fact gives us confidence in the procedures we have used.

The LUMO–derived images in Fig. 16 should also be compared with the picture
of the T1uz orbital shown in Fig. 2. This orbital becomes the A-type orbital in the
presence of the surface (in the �z direction) and as the electron density is held in
an equatorial belt lying in the .x; y/ plane, the corresponding STM image would be
weak. On the other hand, the E-type combination is strong and produces an image
very similar to that shown in Fig. 11a. In Fig. 2, this image corresponds to the sum
of the images obtained looking down the x- and y-axes, as highlighted in the upper
right part of Fig. 16. In fact, the strong, two-lobed STM image in Fig. 11a can be
accounted for using the T1ux orbital alone. The T1uy orbital, in isolation, produces a
weak STM image that matches very closely those seen in Fig. 11b. The implication
of this observation is that the STM images are consistent with a complete loss of
degeneracy in the T1u orbitals in the K4C60 monolayer – in other words, the sym-
metry must be C2v or lower. A schematic representation of the overall energy level
scheme is shown in Fig. 17.

If the C60 is positioned at a substrate site of C6v symmetry, then the additional
lowering of symmetry must be due to an interaction that has been so far neglected.
One possibility is that the KC counter ions, whose whereabouts are unknown, could
reduce the site symmetry beyond that considered. With 4 counter ions to accommo-
date per C60, it is not difficult to imagine a configuration in which the assumed C6v

symmetry could be reduced to C2v, in which degeneracy must be absent. Another
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Fig. 17 Illustration of the
envisaged energy changes
occurring in the LUMO
orbitals of K-doped C60 (not
to scale). The final order is
consistent with the STM
images of Wachowiak et al.
[5]

possible mechanism, as can be inferred from Fig. 17, is that the doubly occupied
E-type orbitals could be responding to a JT interaction of the kindE˝e. If this were
the case, then a strong JT interaction could result in distortion of the molecular cage.
However, even though the STM images show remarkable detail, it is very doubtful
that the technique is sufficiently detailed enough to resolve the small changes in
the shape of the very rigid C60 molecule that would accompany JT interaction. The
interesting question, considering that STM responds to electronic information and
the JT effect affects both vibrational and electronic wave functions, is whether the
JT effect can manifest itself in an STM image purely electronically. This is an issue
we seek to address in Sect. 5.

In summary, we have seen that using quite primitive methods of visualising
molecular orbitals, we can reproduce most of the STM images of C60 presented
in Sect. 3 without necessarily invoking the JT effect. The images that have eluded
reproduction, interestingly enough, are the ones from C60 molecules that have been
K-doped. The lack of an ability to describe these images could be due to the JT
effect, although the anticipated electron transfer that occurs even in the absence of
doping would preclude reservation of the K-doped derivatives for special treatment.
It is fairly likely that the added KC ions influence the STM image through steric
effects and, if these ions are located preferentially on the surface itself, it would be
easy to envisage that doping could cause a change in the orientation of the adsorbed
C60 molecules, as appears to be the case in Fig. 9.

Overall, the evidence to support suggestions that JT effects have been unequiv-
ocally observed in STM images [5] seems very thin. One problem with a JT
interpretation of these images is that real STM images are influenced by many fac-
tors, some of which may be considerably more significant than the rather subtle JT
interaction. In contrast, theoretical simulations can be specifically tailored to con-
sider only the effects of a JT interaction, the results of which can be used as a guide
to what may appear in actual experiments.

5 Jahn–Teller Effects in Surface-Adsorbed Molecules

In this section we shall consider some general aspects of the central problem of
interest here. Let us suppose that a JT-active molecule is adsorbed onto a surface
in preparation for imaging via STM. In as simple a way as possible, we want to
discover what JT-related effects might appear in the captured image under ideal
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conditions. By ‘ideal’, we mean ignoring all complications that are present in real
images, such as the effect of finite tip size, low resolution, molecule-tip interactions,
and even the surface interaction itself. The intention is to concentrate on what arises
purely on the basis of the JT effect. Even here, it must again be noted that the very act
of performing STM will excite molecules into vibronically-coupled electronic states
which may promote dynamical tunneling processes which, in turn, could influence
the recorded STM image. Such complications are also ignored here.

5.1 A hypothetical E ˝ e Example: X3

We shall initially dispense with the fullerene molecule itself because of the compli-
cated nature of the JT effects that are possible in this large and highly symmetric
molecule (see Sect. 5.2.1). Instead, we consider a simple E ˝ e JT system exem-
plified by a hypothetical triatomic molecule of the form X3 of the kind exemplified
by Na3, i.e. one constructed from atoms whose valence electrons reside in s-type
atomic orbitals. The molecule is adsorbed onto a similarly hypothetical, atomically
flat surface so that each atom is equidistant from the surface. The surface, therefore,
is merely a platform to support the molecule so that it can be imaged via STM.
In this way, we attempt to isolate, using simple STM simulations, the features of the
image that can be attributed solely to the JT nature of the molecule.

The X3 molecule constitutes an example of the well-known E ˝ e JT problem,
a textbook vibronic coupling problem [45] whose low dimensionality permits the
consequences of vibronic interaction to be appreciated using simple pictorial meth-
ods. The coupling occurs between doubly degenerate orbitals fEx; Eyg which are
occupied by a single electron and have the form

Ex D . b �  c/=
p
2 ;

Ey D .2 a �  b �  c/=
p
6 ;

(10)

where  a is the s-orbital centred at atom ‘a’, etc.
In the absence of a JT effect, the atoms will be arranged in the high-symmetry

D3h configuration and the electron density sampled will correspond to
jExj2CjEy j2 for some particular bias. A simulation of the STM image produced by
this electron density is shown in Fig. 18, which also shows the doubly-degenerate,
in-plane normal modes of vibration of interest

Qx D .2xa � xb �
p
3yb � xc C

p
3yc/=

p
12 ;

Qy D .2ya C
p
3xb � yb �

p
3xc � yc/=

p
12 ;

(11)

where xa is the displacement from equilibrium of atom ‘a’ in the x direction, etc.
The simulation in Fig. 18a shows the characteristics that might be expected from

this symmetrical arrangement of anti-bonding orbitals, namely, threefold symmetry
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(a) STM simulation (b) Qx mode (c) Qy mode

Fig. 18 A simulated, constant-current STM image of a hypothetical X3 molecule in its high-
symmetry D3h configuration is shown in (a). The .x; y/-axes are arranged so that atom ‘a’ lies on
the y-axis and the centre of mass is at the origin. The corresponding degenerate normal modes of
vibration are shown in (b) and (c)

Fig. 19 A graphical
depiction of the variation
in the energies of the upper
(excited) and lower (ground)
potential energy surfaces in
normal-mode or Q-space
for the quadratic E ˝ e JT
problem. The origin
corresponds to the system
in its degenerate,
high-symmetry D3h

configuration shown
in Fig. 18

and nodes between atoms. The next step is to add in a JT effect. In general, the
system Hamiltonian can be expressed in the form

H D H0 C V 01H1 C V 02H2; (12)

where H1 is the linear JT interaction Hamiltonian involving terms linearly depen-
dent on the normal mode coordinates Qi , H2 is the quadratic interaction Hamil-
tonian dependent on products of the form Qi Qj , H0 is the Hamiltonian in the
absence of coupling and V 0i (i D 1 or2) are dimensionless coupling constants. The
explicit form of this Hamiltonian and its solutions are well known [45].

The most obvious effect of the JT interaction is that the electronic orbitals are
no longer degenerate, as shown in Q-space in Fig. 19. This implies that we will
observe two different STM images at different biases; one from the ground PES and
another from the excited PES. Therefore, for imaging purposes, we shall assume
that the two biases required are sufficiently large that each electron density can
be imaged with negligible interference from the other. Note that this splitting also
suggests that STM, if properly calibrated, should be capable of directly measur-
ing energies related to the JT stabilisation energy which, in turn, can be related to
coupling strengths.
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Fig. 20 STM simulation of an X3 molecule subject to a strong JT effect (to the extent that each
configuration has an internal angle of 110ı)

In Fig. 19, we have illustrated the consequences of a general quadratic JT interac-
tion, viz. the ground PES possesses 3 discrete, isoenergetic minima symmetrically
placed around the origin. If the vibronic coupling is very strong, then the system
will become trapped in one of these potential minima or ‘wells’ – i.e. there is a
static JT effect. The probability of finding the system in each well will be the same
and so 3 equivalent images would be expected to be observed using STM, as indi-
cated in Fig. 20, in which the minima have been arbitrarily associated with an obtuse
geometry. Of course, each pair of images are identical but for orientation, and con-
version between them corresponds to the unique dynamical motion referred to as
pseudorotation [46].

It is clear from Fig. 20 that the presence of a strong JT effect has had a signifi-
cant effect on the original, unperturbed image shown in Fig. 18a. The ground state
image clearly shows a reduction in symmetry fromD3h to C2v and the excited state
appears to have an atom missing. This latter facet arises as the ‘missing’ atom lies
on a nodal plane. Figure 20 also allows us to visualise the effects of accounting for
the corrugation of the surface, which has so far been assumed to be flat. Depending
on the symmetry of the corrugation (and we notably except C6v and C3v here) the
energies of the three configurations shown will become different. Thus, the surface
interaction, in the first instance, will have the effect of favouring a subset of the
available wells; in other words, the molecule may become locked into one partic-
ular well. Or, if two or more wells remain isoenergetic, it may jump between the
remaining equivalent configurations. In fact, this is actually the behaviour that we
would expect to occur in reality in the ‘static’ case itself shown in Fig. 20. It is only
because we have chosen to consider the vibronic interaction to be arbitrarily large
that we have assumed the rate of pseudorotation to be so slow as to be negligible
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Excited
state

Ground
state

(a) Static effect (b) Strongly warped PES (c) Weakly warped PES

Fig. 21 STM simulations for systems subject to a static vs. dynamic JT effect. The top row cor-
responds to the excited state and the bottom to the ground state. In (a), infinitely strong coupling
locks the molecule into one particular well. Finite but strong coupling (so that the system jumps
between three wells) is shown in (b). Further reduction in localisation leads to essentially free
pseudorotation, producing the time-averaged images in (c)

on the time-scale used to capture the STM images. As this time-scale itself is very
slow, this suggests that an extremely large vibronic coupling would be required to
produce the results shown in Fig. 20.

If we now allow the system to jump between wells, what effect would this have on
the image? We can do this by simulating STM images at particular points inQ-space
and then taking weighted averages. As we are only interested in first approxima-
tions, we can consider two types of behaviour. If the PES is strongly warped (large
but finite coupling), then we can expect the system to spend most of its time localised
in the wells. Taking the average of the three images in Fig. 20, we arrive at the image
shown in Fig. 21b. If the warping is further reduced, so that the PES becomes essen-
tially a flat trough in Q-space, then the system can freely pseudorotate around the
trough. Thus, we take an average over 100 equally-spaced points in the trough to
obtain the time-average shown in Fig. 21c.

We can see from Fig. 21 that if the JT effect is dynamic on the time-scale associ-
ated with STM capture, then the recorded image takes on a much more symmetrical
(D3h) appearance than when the effect was considered static. However, even if the
pseudorotation rate is very fast compared to the response rate of the STM imag-
ing apparatus, there will still be residual effects due to the JT interaction. The most
apparent effect is that the circular orbits traced out by the nuclei are imaged by
STM in both the ground and excited states. It is interesting that in the image shown
in Fig. 21c, the ground state electron density appears to be preferentially localised
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inside the equilateral triangle formed by the average nuclear positions, whereas the
converse is true for the excited state.

The occurrence of blurred ‘rings of motion’ like those shown in Fig. 21c in real
STM images would provide novel confirmation that pseudorotation is occurring
and that the system is actively avoiding the high symmetry configuration. However,
this would only be observed if a strong enough JT interaction was present because
the diameter of the blurred ring depends on the JT coupling strength; too small a
diameter and the vestiges of the JT effect in the image will vanish. This is particu-
larly true for C60, where the molecular bonds are very strong and so the expected
displacement of the atoms from their high-symmetry position is very small.

5.2 Jahn–Teller Effects in Surface-Adsorbed Fullerenes

The simple E ˝ e JT system discussed in the previous section is useful as it allows
one to explore the sort of features that may occur in STM images of JT-active
molecules. The same general arguments developed there can also be applied to
more complicated systems, such as surface-adsorbed C60. The high symmetry of
C60 means that a multitude of interesting electron-vibration coupling systems can
be formed when the molecule is doped. A brief review of these systems follows in
Sect. 5.2.1. When C60 is adsorbed onto a metallic substrate, the most likely doping
event to occur will be transferral of electron density into the T1u LUMO. This will
be further enhanced if additional doping is carried out using electropositive metals
such as potassium. Therefore, we concentrate for the rest of this section on images
derived from the LUMO.

We have seen in Sect. 3 that the resolution of the STM images of fullerenes
is sufficient to show up some intramolecular detail. However, as the bonding in
the fullerene cage is strong, the resolution will not be great enough to show up
small changes in shape due to the JT effect. Therefore, we shall ignore the small
distortions in our simulations and look for purely electronic effects.

5.2.1 A review of Jahn–Teller effects in discrete fullerene systems

A comprehensive assessment of the JT effect in icosahedral systems may be found
in the book by Chancey and O’Brien [47]. Together with the references therein, this
book gives a good introduction to the possible JT effects expected in C60. Therefore,
only a brief discussion of these systems is given here.

Hückel theory, as we have seen, indicates that the neutral molecule has a fully-
filled, fivefold degenerate HOMO ofHu symmetry. The JT effect is therefore absent
in the neutral molecule itself. The LUMO, with T1u symmetry, lies about 2 eV higher
in energy and is readily available to the molecule leading to a high electron affinity
of �2:7 eV [10].
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Reduction of C60, most commonly achieved by reaction with highly
electropositive Group 1A metals, will thus produce several JT-active species of the
form Cn�60 (1�n� 5) possessing a set of partially filled T1u orbitals. The latter can
couple to vibrations with hg symmetry. Single occupation of the LUMO leads to
the well-studied T1u ˝ hg JT system. Higher LUMO occupancies are written in the
form pn ˝ h. It is also possible, but more difficult, to oxidise C60. Removal of a
single electron (or, equivalently, addition of a single ‘hole’) produces the CC60 ion
which is subject to aHu˝ .g˚ h/ JT effect. Once again, further doping is possible
leading to the general coupling problem hnu˝.g˚h/, but the corresponding ions are
less likely to be of practical importance due to their difficult preparation and high
reactivity.

It quickly becomes clear that there is a rich variety of vibronically coupled sys-
tems that may be present in compounds containing doped C60. There are other
complications that arise that further complicate the theoretical description of these
problems. One such complication is that each of these coupling problems is actually
a multimode problem. That is, there are several modes of vibration of C60 that can
simultaneously couple to the aforementioned electronic states (6gg and 8hg , to be
precise). Although this complication can be dealt with (see, e.g. [48]), it is often
easier to work in terms of a single, effective mode as this is far simpler and repro-
duces most of the important aspects of the problem. In fact, in the current context,
even the details of some effective mode of vibration are effectively irrelevant as we
are ignoring the distortion of the C60 cage.

Another complication that warrants mention here is that multiply-doped
molecules will be susceptible to electron–electron interactions in addition to vibronic
coupling. Once again, this complication can be dealt with, especially if we are inter-
ested in numerical results only (see, e.g. [49, 50]). Unsurprisingly, in light of the
coarseness of our method of simulation, this is another aspect of the problem that
will be neglected here. Similarly, we will neglect any intermolecular charge transfer
processes and effectively treat the ions as individual entities, with a fixed position
on the surface and a fixed charge state.

5.2.2 The LUMO-Surface Interaction

Let us now concentrate on the T1u LUMO of C60. Referring to Fig. 12, we want to
let the molecule have an orientation 
 with respect to the surface-tip arrangement.
Thus, we make new combinations of the basis functions to be associated with lab-
oratory axes .X; Y;Z/. The Z-axis will be taken as the normal to the surface, i.e.
along the orientation axis and so we take

T1uZ D cos
 T1uz C sin
 T1ux; (13)

to be the molecular orbital associated with the Z-axis. For different values of 
, the
y-axis remains static and so we take the Y -axis to be coincident with its molecular
counterpart, so that:
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T1uY D T1uy ;

T1uX D � sin 
 T1uz C cos
 T1ux :
(14)

If the effect of adsorption is to split the triply degenerate T1u level into a singlet
A and doubletE, then we can write the effect of the surface interaction Hamiltonian
HS as

HS T1uX D 1
2
ı T1uX

HS T1uY D 1
2
ı T1uY

HS T1uZ D �ı T1uZ

(15)

so that the magnitude of the surface splitting is j�Sj D 3
2
jıj. We also allow ı to

be positive or negative to give the required splitting order. Combining (13)–(15),
the expression for the interaction Hamiltonian in this case, written in the usual
fT1ux; T1uy ; T1uzg electronic basis, is

HS D � ı
4

0

@
1 � 3 cos 2
 0 3 sin 2


0 �2 0

3 sin 2
 0 1C 3 cos 2


1

A : (16)

It should be noted that this form of HS will only be true for specific orientations

 which result in a symmetry of C3 or higher, which we expect to correspond to
alignment of the Z axis with a C2, C5 or C3 axis. For more general orientations,
corresponding to lower symmetries, the T1u level will be split into three singlets and
a modified form of HS will be required involving an additional parameter.

If we treat HS in (16) as an additional perturbation to the dynamic JT system, we
can find first order corrections to the energies of the wells involved. For orientations
away from those which split the LUMO into a doublet and a singlet, this is an
approximation. However, we proceed this way to avoid introducing an additional
parameter. The results are shown in Fig. 22. In D5d symmetry, for example, the
contribution to the energy of well C [which is in the .x; z/-plane] is,

hECi D .1; 0; '/HS.1; 0; '/
T

.1; 0; '/.1; 0; '/T
D � ı

4



1C 3p

5
.cos 2
 C 2 sin 2
/

�
;

where the label used and its definition follow those used previously1 [51, 52] and
' D 1

2
.
p
5C 1/ is the golden mean.

As we might have expected, the energy of well C is a minimum when the
angle 
 is such that the well is oriented towards the surface. Naturally, the other
5 wells are isoenergetic for this arrangement. The inference is that, if the molecule

1 The electronic states for theD2h wells in [52] apply to the .hu/
2˝hg JT system, as is appropriate

for C2C60 ions. Hence, they involve a 10-dimensional electronic basis fT1g; T2g; Ggg. For use here,
only the T1 part is required.
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(a) D5d

(b) D3d

(c) D2h

Fig. 22 Pictorial representations of some of the potential wells of various symmetry appropriate
to molecules with Ih symmetry. The labels used to identify the potential minima match those used
in earlier work [51, 52]. The graphs on the right show the corresponding surface-induced splitting
of the wells. As used in Fig. 12, 
 specifies the angle at which the surface is oriented with respect
to the wells

is experiencing a D5d distortion due to the JT effect and subsequently becomes
adsorbed onto a surface with a pentagonal face prone to the surface, then the
molecule could become locked into the particular well associated with that face.
Or, if ı < 0, the molecule could become preferentially locked in one of the other 5
wells, but pseudorotation between all 5 may also occur. We could use this informa-
tion to predict what might be seen via STM. However, the resulting images would
exhibit fivefold symmetry.
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With Fig. 11 in mind, in which twofold symmetry is apparent, we consider
instead the case when 
 D 0 and the molecule is adsorbed with a CDC bond prone
to the surface. The combinations of the wells that need to be considered are appar-
ent from Fig. 22. For example, for aD2h-distorted molecule, there are two preferred
configurations. One possibility is that when ı > 0, well A, with electronic state
T1uz, has the lowest energy; the other is that wells N (�T1uy) and O (�T1ux) form
a degenerate pair (i.e. when ı < 0). We do not need to simulate pictures for these
cases as they would be virtually indistinguishable from those in the upper part of
Fig. 16. The latter scenario is the most interesting: if the system was pseudorotating
between wells N and O, then we could generate a ground state image to match the
negative bias result in Fig. 11. The positive bias image requires knowledge of the
excited electronic states, which requires further work that will be left for another
publication.

Now consider a D5d -distorted system. We can see from Fig. 22a that wells
C and D are related to each other by a C2 rotation about the z-axis. As we are
viewing the molecule along this axis, these two wells will appear identical to each
other but inverted. The same applies to the other pairs (A, B) and (E, F). Therefore,
we only need to simulate one of each degenerate pair, plus the time-average that
would result if the system hopped from one of the wells to its ‘twin’. For brevity,
let us denote pseudorotation or hopping between two or more wells using the nota-
tion A$B. We collect the resulting images in Fig. 23, together with a picture of the
electron distribution associated with a single well (well C). Comparing these simu-
lations with Fig. 16, we see that two of the pseudorotating pairs, C$D and E$F,
produce images that match the double-lobe negative-bias image shown in Fig. 11.
Interestingly, the other pair, A$B, produces an image very similar to the fourfold
symmetric positive-bias image in Fig. 11.

However, the (A, B) pair cannot be directly responsible for producing this image
in the real STM data. This is because the states derived from combinations of the
wells are all part of the ground electronic state and, as Fig. 11 images C4�60 ions,
these combinations must correspond to filled states. As already mentioned, further
consideration of the excited state manifold is required in order to explain the positive
bias images.

Finally we consider the case of D3d -distorted ions. Using Fig. 22 as a guide,
we consider the well pairs (a, b) and (e, f) and make comparable simulations, as
shown in Fig. 24. These pairs were chosen because they correspond to the lowest and
highest energies (depending on ı). The simulated images in this case very closely
match those in Fig. 16 and, therefore, the images obtained assuming the presence of
D2h wells.

The overall conclusion is that it is possible to generate STM simulations of fea-
tures that have been found in real images starting from molecules that areD2h,D5d
or D3d distorted. If a particular type of distortion is chosen, then there are always
several ways in which that distortion can be applied to C60. One cannot simply
pick one particular distorted form; rather, it is necessary to look for other forms
that are equal in energy (even if adsorbed onto a surface) and to then account for
interconversion by hopping or pseudorotation, as this is likely to be fast on the STM
time-scale.
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well C (D5d distortion)

static, well E

static, well A

static, well C

dynamic, E$ F

dynamic, A$ B

dynamic, C$ D

Fig. 23 Plot to show the electronic orbital associated with a D5d minimum (well C). Light-grey
lobes represent wave functions with a positive polarity. The adjacent STM simulations show the
images expected for the different cases discussed in the text, as viewed along the z-axis

6 Summary and Conclusions

It is undoubtedly an exciting proposition to study vibronically coupled molecules at
the molecular level using tunnelling microscopy. In this article, we have attempted
to draw attention to the many complications that may influence the appearance and
interpretation of the images obtained via STM. We have used a simpleE˝e system
to illustrate what might be visible in ideal circumstances, but our main goal has been
to simulate what might be observed when C60 molecules are imaged. C60 molecules
are an especially exciting choice of JT system to study using STM because they
are relatively large and highly symmetric. Thus, the doped molecules can display a
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well c (D3d distortion)

static, well e

static, well a

dynamic, e$ f

dynamic, a$ b

Fig. 24 As for Fig. 23, but illustrating the images produced by D3d -distorted molecules

diverse and rich variety of JT effects and the resulting distortion has a reasonable
chance of making itself apparent in the STM image.

We have tried to distinguish between static and dynamic JT effects. However,
the difference between these two regimes is really the time-scale with which the
molecule is observed. Data capture in STM is undoubtedly ‘slow’ and this must be
seen as one drawback of this method of study. For a JT-active molecule, there is
usually a set of distorted configurations that are isoenergetic (or, perhaps, nearly
isoenergetic if the host surface has a weak effect on them) and interconversion
between them is to be expected. The interconversion rate is expected to be rapid
on the STM time-scale and so its effect on the recorded STM image needs to be
addressed.

In C60, the intramolecular bonds are strong and it is thought that the distortion
caused by the JT effect will be small. If this is the case, then current STM equip-
ment may not have the resolution required to directly detect the change in shape that
results. In any case, as outlined above, the dynamic nature of the JT effect may pro-
duce a time-averaged shape that is essentially icosahedral. Our best hope seems to
be that the electronic components of the vibronic states alone will provide sufficient
evidence for unequivocal identification of the JT effect present.

To this end, we have used the electronic states associated with the ground state
wells of D5d , D3d and D2h symmetry to provide a first attempt at simulating what
might be observed via STM. In each case, we can produce images to match those
observed by Wachowiak et al. [5]. We can also do this without invoking a JT effect,
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provided we assume that the surface or some other interaction (e.g. neighbouring
C60 molecules) splits the T1u orbitals. Therefore, we do not think that the STM
results currently available in the public domain constitute conclusive evidence to
justify claims that the JT effect has been observed using this technique. However,
this does not preclude the possibility that features have been observed which are,
in fact, due to the JT effect – simply that the case is not proven. A more thorough
investigation is called for which examines both ground and excited states and takes
into account coupling strengths and the corresponding time-scales.

There is still much work to be done if we are to fully understand the complicated
interplay between the JT effect, surface interaction and the dynamic processes that
are inevitably present. Further experimental work will doubtless follow, and has the
potential to reveal much. Consequently, it is essential that theoretical work keeps
apace so that the information revealed is correctly interpreted.
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Jahn–Teller Effect in Molecular Magnetism:
An Overview

Boris Tsukerblat, Sophia Klokishner, and Andrew Palii

Abstract In this article we review applications of the concepts of the Jahn–Teller
effect in molecular magnetism. The scope of the contemporary field of molecular
magnetism and its fascinating applications are shortly described. The theoretical
background of molecular magnetism as well as the applications of molecular mag-
nets are closely related to the basic concepts of the Jahn–Teller effect through their
structural properties affecting magnetic anisotropy, interaction with light, photo-
induced magnetism, co-operative behavior of molecule-based magnetic systems,
and dynamical properties affected by relaxation processes and spin coherence times.

We show that a wide class of symmetric spin-frustrated systems are orbitally
degenerate, and the Jahn–Teller effect plays an important role in the description
of their properties. In high-nuclearity magnetic clusters (single molecule magnets)
the Jahn–Teller coupling stabilizes a specific alignment of the local magnetic axes,
giving rise to a global anisotropy and consequently to a spin reorientation barrier.
The problem of the double exchange in mixed-valence systems is considered, with
the emphasis on the underlying role of the pseudo Jahn–Teller coupling in local-
ization/delocalization of the mobile electron. Under certain conditions the latter
gives rise to a reduction of the double exchange and, in particular, reduces the
magnetic anisotropy in the presence of orbital degeneracy. The properties of mixed-
valence systems are closely related to a complicated interplay between the pseudo
Jahn–Teller interaction, isotropic exchange and double exchange. Manifestations
of the Jahn–Teller effect are discussed for a wide class of photoactive (photo-
switchable) systems. Pseudo Jahn–Teller models are employed for the description
of the tautomeric transformations and extremely long living metastable states in
photochromic compounds. Finally, we review the problem of co-operative phenom-
ena in molecule-based extended mixed-valence systems, for which the Jahn–Teller
mechanism is shown to result in the charge and structural ordering. The concept of
the Jahn–Teller effect combined with the so-called quasidynamical approach allows
to describe the intervalence optical bands and to reveal the underlying physical
mechanism (quantum resonances of the vibronic levels) of the intricate quantum
phenomena of the coexistence of localized and delocalized states in crystals based
on interacting mixed-valence units.
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Abbreviations

JTE Jahn–Teller effect
JT coupling Jahn–Teller coupling
SMM Single molecule magnets
MV Mixed-valency
AS exchange Antisymmetric exchange
HDVV model Heisenberg-Dirac-Van Vleck model
ITO Irreducible tensor operator
PKS model Piepho-Krausz-Schatz model
P-model Piepho model
SNP Sodium nitroprusside

1 Molecular Magnetism: Diversity of the Field

Contemporary molecular magnetism originates from classical magnetochemistry
and represents an interdisciplinary field of science that incorporates basic concepts
of physics, chemistry and material sciences. The objects of molecular magnetism
are molecular metal clusters and/or organic molecules, i.e., molecular assemblies
consisting of a finite number of exchange-coupled ions (spins), which represent the
so-called class of zero-dimensional magnets [1–21]. These systems are of current
interest in many areas of research and applications, like material science, biophysics,
biochemistry and have prospective applications as single molecule magnets (SMM)
[1,2,8–10] and multifunctional nanomaterials. As was recently demonstrated, coex-
istence of ferromagnetism and metallic conductivity can be reached in one molec-
ular material [22, 23]. Organic molecules of increasing sizes and large numbers of
unpaired electrons are also being explored as building blocks for molecular-based
magnets [24, 25]. The modern trend in molecular magnetism is focused on the
possibility to use molecular clusters as magnets of nanometer size, which exhibit
magnetic bistability and quantum tunneling of magnetization at low temperatures.
This kind of molecular nanomagnets, so-called SMMs can be placed on the border
line between quantum and classical physics. Indeed, on one side they show slow
relaxation of magnetization and magnetic hysteresis as a bulk magnet, and on the
other side they are still small enough to exhibit important quantum effects.

The first ten years of activity summarized in [3] showed that the fundamentals of
molecular magnetism are well established (at least the main concepts), and molecu-
lar magnets are expected to provide many important nano-technological applica-
tions. SMMs based on large metal clusters with significant magnetic anisotropy
resulting in a barrier for spin reorientation are promising in the design of the new
memory storages at the molecular level, and at the same time open a new interesting
area of physics within the nanoscopic scale [1, 2]. In this regard, special attention
has been paid to molecular magnets [4–7] that have been proposed as the leading
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candidates for use as carriers of quantum information, nanoscale qubits, due to a
number of vitally important advantages. This opens a novel route to a spin-based
implementation of quantum information processing [26–41]. The first observation
of Rabi oscillations in a molecular nanomagnet has now been reported [33] (see
also detailed discussion in [34, 35]); this is expected to make an impact on the
development of this area of research and applications. An attractive class of mate-
rials is represented by the photoswitchable compounds that are suggested to have
promising applications in the hot area of energy and information storage [42–44].
The theoretical backgrounds of molecular magnetism, as well as the applications of
molecular magnets, are closely related to the basic concepts of the Jahn–Teller effect
(JTE) [45–47] through the structural properties affecting magnetic anisotropy, inter-
action with light, photo-induced magnetism, co-operative behavior and dynamical
properties affected by the relaxation processes and spin coherence times.

In this review article we will summarize the application of the JT concepts to
the field of molecular magnetism. The article is organized as follows. In Sect. 2
we consider metal clusters based on the orbitally non-degenerate ions excluding the
on-site JTE. Nevertheless, if the overall symmetry is high enough, the collective
spin-frustrated states prove to be degenerate, and therefore exhibit JT coupling that
affects magnetic properties and spectroscopic phenomena. Section 3 is devoted to
the double exchange in the so-called mixed valence (MV) systems, in which the
“extra” electron can move among spin cores. Description of the vibronic models
are given with the emphasis on the problem of localization that is closely related
to the magnetism and spectroscopy of MV systems. Section 4 is devoted to mixed-
valency and double exchange in isolated systems, with the emphasis on the magnetic
properties and localization through the vibronic mechanisms. In Sect. 5 we shortly
review a wide area of co-operative phenomena in extended MV systems comprising
dimeric and trimeric MV subunits, like charge and structural ordering, coexistence
of localized and delocalized states and their spectroscopic manifestations. These
interesting phenomena have JTE at the heart of the basis. A wide class of photo-
switchable coordination compounds exhibiting light-induced long-living metastable
states, like in the case of the photochromic effect, which is closely related to the JT
structural transformations, are considered in Sect. 5. Finally, in Sect. 6 the pseudo
JT mechanism of valence tautomeric transformation in cobalt compounds is briefly
considered in connection with their magnetic properties and charge transfer optical
absorption bands.

2 Jahn–Teller Instability in Spin-Frustrated Metal Clusters

2.1 Introductory Remarks

In this Section we focus on the manifestations of pseudo JT coupling in the magnetic
anisotropy of exchange-coupled frustrated systems, in which the antisymmetric
(AS) exchange is the main source of the magnetic anisotropy. We will demonstrate
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the role of AS exchange [48,49] in the magnetic anisotropy of spin-frustrated system
and reveal how the vibronic JT interaction affects the magnetic anisotropy caused
by the AS exchange. Spin frustration in highly symmetric systems with triangu-
lar faces is shown to be closely related to the orbital degeneracy in the total spin
states. Understanding of the special role of the AS exchange in spin frustrated
systems, particularly in trinuclear transition metal clusters, dates back to the sev-
enties (see [13, 14] and references therein). AS exchange was shown to result in a
zero-field splitting of the frustrated ground state of the half-integer triangular spin
systems, magnetic anisotropy, essential peculiarities of the EPR spectra and wide
range of phenomena related to hyperfine interactions [50–55] closely related to JTE.
We shortly summarize the manifestations of the AS exchange in the cluster anion
present in K6ŒVIV

15As6O42.H2O/� � 8H2O (hereafter V15 cluster) containing a spin-
frustrated trinuclear unit, in which the role of the JTE [45–47] becomes crucially
important.

2.2 Exchange Interactions, Analysis of the Degeneracy

The V15 cluster was discovered more than 15 years ago [56], and has since attracted
continuous and increasing attention as a unique molecular magnet based on a unique
structure exhibiting layers of different magnetization [57–59]. Studies of the adi-
abatic magnetization and quantum dynamics of the V15 cluster with an SD 1=2
ground state proved that this system exhibits the hysteresis loop of magnetization of
molecular origin and can be referred to as a mesoscopic system [60–65]. Recently,
the long living coherent quantum oscillations have been discovered in the molecu-
lar magnet V15 [33]. This finding creates a strong hope to employ nanomagnets in
a spin-based quantum information processing (spin-based qubits) that is expected
to provide a revolutionary development in the implementation of quantum com-
puting [34, 35]. The magnetic properties of the V15 cluster are inherently related
to spin frustration effect in the layered quasispherical arrangement of vanadium
ions, and from this point of view V15 represents a system for which the manifesta-
tions of the AS exchange are especially interesting, and the vast amount of available
experimental data does allow to find out precisely the key parameters.

The molecular cluster V15 has a distinctly layered quasispherical structure within
which fifteen VIV ions .si D 1=2/ are placed in a central triangle sandwiched by two
hexagons [56]. At low temperatures two hexanuclear VIV

6 are spin-paired, so that
only the excitations within the frustrated antiferromagnetic VIV

3 triangle affect the
magnetic properties [57, 58, 66–69]. The isotropic superexchange can be described
by the Heisenberg-Dirac-Van Vleck (HDVV) Hamiltonian:

H0 D 2J .S1 S2 C S2 S3 C S3 S1/ ; (1)

where S1; S2 and S3 denote the spin operators on the sites 1, 2 and 3, Si D 1=2,
and for the antiferromagnetic case the exchange parameter J >0. As usually the
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following spin coupling scheme S1 S2.S12/ S3S � .S12/ S is assumed, with S12
being the intermediate spin, so that in our case .S12/S D .0/1=2; .1/1=2 and
.1/3=2. The energy levels "0.S/ D J ŒS.S C 1/� 9=4� are independent of S12. An
equilateral spin triangle with the antiferromagnetic exchange represents an example
in which exchange coupling in the ground state forces spins to be aligned antipar-
allel in each pair while this condition can not be satisfied. This situation is usually
referred to as spin frustration. The analysis of the HDVV Hamiltonian revealed that
the degeneracy with respect to the intermediate spin within the spin coupling scheme
in the ground manifold .S12/S D .0/1=2; .1/1=2 is associated with the exact orbital
degeneracy in the triangular system, so that the ground term is the orbital doublet 2E
of the trigonal point group, while the excited one is the orbital singlet 4A2 [14]. The
orbital doublet 2E proves to be the ground term for all symmetric triangular systems
which are composed of half-integer spins [14]. One can see that spin-frustration in
general is inherently related to the orbital degeneracy and therefore leads to the JT
instabilities. At the same time the ground state is split by a spin-orbital interaction
that appears as AS exchange term in the spin-Hamiltonian.

The AS exchange is responsible for the magnetic anisotropy of the system
[14] (see full discussion in [13, 14, 66–69]). The main results of the study of
the AS exchange are the following: (1) a zero-field splitting of two spin dou-
blets .S12/S D .0/1=2; .1/1=2. This splitting is the first order effect with respect
to the “normal” component of AS exchange (parameter Dn) and contains sec-
ond order corrections arising from the mixing of different spin states through an
“in-plane” contribution, parameterDl ; (2) a zero field splitting of the S D 3=2 state
that is a second order effect arising from the mixing of different spin states through
“in-plane” contributions; (3) a magnetic anisotropy resulting in a strong reduction
of the magnetic moments in a weak perpendicular field due to a reduction of the
Zeeman interaction by the AS exchange; (4) a restoration of the pure spin magnetic
moments in a strong field due to the reduction of the AS exchange under strong
field conditions; (5) special rules for the crossing/anticrossing Zeeman levels based
on the pseudoangular momentum representation, resulting in the special shape of
magnetization vs. field; (6) special selection rules in EPR, including specific rules
for the line intensities.

Three peculiarities of the energy pattern that are closely related to the magnetic
behavior should be noticed: 1) the ground state involving two degenerate S D 1=2

levels shows zero-field splitting into two Kramers doublets separated by the gap
� D p3Dn; 2) at low fields gˇH � � the Zeeman energies are doubly degener-
ate and show a quadratic dependence on the field, like in a van Vleck paramagnet.
This behavior is drastically different from that in the isotropic model and from the
linear magnetic dependence in parallel field and can be considered as a breaking of
the normal AS exchange by the perpendicular field (see [5, 8] and literature cited
therein). It is evident that the magnetic moments associated with the ground state
are strongly reduced at low fields; 3) the magnetic sublevels arising from S D 3=2

(M D �1=2 and M D �3=2) cross the sublevels belonging to S D 1=2 spin lev-
els; no avoided crossing points are observed. At high perpendicular field the levels
exhibit again linear magnetic dependence [69].
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In the framework of the isotropic model, the magnetization exhibits two sharp
non-broadened steps, one at zero field and the second one at the field H D 3J=g ˇ
when the level with S D 3=2; M D �3=2 crosses the degenerate pair of the levels
(S12 D 0 and S12 D 1) S D 1=2; M D �1=2, so that the S D 3=2 level becomes
favorable against S D 1=2. As one can see, the normal part of the AS exchange
results in the broadening of the low field step in �.H/; meanwhile, the high field
step remains non-broadened. The broadening of the first step is closely related to the
magnetic anisotropy of the AS exchange that gives rise to a quadratic Zeeman effect
in the low perpendicular field. It can be said that the normal part of AS exchange
reduces perpendicular magnetization at low field and allows only second order mag-
netic splitting and van Vleck paramagnetism. The model that includes AS exchange
interaction gives a perfect fit of the field dependence of magnetization in the whole
range of fields for all temperatures, including extremely low temperature [69].

2.3 Vibronic Interaction in a Spin-Frustrated Triangular System

The symmetry-adapted vibrations A1.QA1
� Q1/ and doubly degenerate E type

.QEx � Qx;QEy � Qy/ of an equilateral triangular unit are shown in Fig. 1 along
with the molecular coordinate system. The vibronic interaction arises mainly from
the modulation of the isotropic exchange interactions by the molecular displace-
ments and can be expressed as:

Hev D � . OV1Q1 C OVxQx C OVyQy/; (2)

where � � p6.@Jij.Rij/=@Rij/0 is the vibronic coupling parameter associated with
the modulation of HDVV exchange, and the expressions for the operators OV˛ are the
following:

OV1 D
q
2
3
.S1S2 C S2S3 C S3S1/;

OVy D 1p
6
.S2S3 C S3S1 � 2S1S2/; OVx D 1p

2
.S2S3 � S3S1/:

(3)

1

3

2

Q1 QY QX

X

Y

Fig. 1 Full symmetric .A1/ and double degenerate .E/ modes of a triangular unit
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Evaluation of the vibronic matrices can be performed with the aid of the irreducible
tensor operators (ITO) approach [4, 16]; the results are given in [70].

2.4 Ground State and Adiabatic Surfaces

It is reasonable to assume that the gap 3J exceeds considerably the vibronic cou-
pling and AS exchange, and therefore the basis set comprises only four low lying
spin 1/2 states. Since the system has axial magnetic anisotropy one can assume
that the field is applied in a ZX plane .Hy D 0/. The vibronic interaction leads to
a complicated combined JT and pseudo JT problem. The following dimensionless
parameters are introduced: vibronic coupling parameter � D .�=�!/.�=M!/1=2,
zero-field splitting of the ground state ı D p3Dn=�! � �=�!, applied field
� D gˇH=�! and coordinates q˛ D .M!=�/1=2Q˛; Hz D H cos � . Finally, � is
the radial component in the plane qx qy defined as qx D � cos'; qy D � sin '.

The mixing of S D 1=2 and S D 3=2 levels through “in-plane” AS exchange re-
sults in a small warping of the low-lying surface that is neglected here. In the case of
ı D 0 and � D 0 one faces a two-mode pseudo JT problem (Q1 mode is excluded),
and one obtains simple expressions for a pair of doubly degenerate surfaces that
are quite similar to those in the pseudo JT 2E ˝ e problem taking the spin-orbital
interaction into account (here the signs “C” and “�”are related to the upper and
lower surfaces, respectively):

U˙.�/=�! D �2=2˙
p
ı2 C 3�2�2=2=2: (4)

One can see that in the limit of the isotropic exchange model the surface represents
a “Mexican hat”, with a conical intersection at � D 0 that corresponds to the basic
JT E ˝ e problem [45–47]: U˙.�/=�! D �2=2˙ .p3=2p2/j�j�. In general, the
shape of the surfaces depends on the interrelation between the AS exchange and
vibronic coupling that proved to be competitive. In the case of weak vibronic cou-
pling and/or strong AS exchange �2 < 4jıj=3, the lower surface possesses its only
minimum at qx D qy D 0.� D 0/, so that the symmetric (trigonal) configuration
of the system proves to be stable. In the opposite case of strong vibronic interac-
tion and/or weak AS exchange, �2 > 4jıj=3, the symmetric configuration of the
cluster is unstable, and the minima are arranged at the ring of a trough of radius
�0 D .1=2/

p
3�2=2� 8ı2=3�2. The radius �0 decreases with the increase of AS

exchange and vanishes at jıj D 3�2=4. These two types of pseudo JT surfaces are
shown in Fig. 2a, b. The depth of the minima ring in the second type (respectively to
the top in the low surface) depends on the interrelation between the JT constant and
AS exchange and is found to be "0 D .3�2 � 4ı2/2=48�2, while the gap between
the surfaces in the minima points 3�2=4 is independent of the AS exchange.

The nuclear motion in the bottom of the trough for the JT E ˝ e problem is
described in [46, 47]. The metal sites of a distorted triangle move along circles,
so that the phases of the ions 2 and 3 are shifted by the angles 2�=3 and 4�=3,
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Fig. 2 Adiabatic potentials for the ground state of a triangular exchange system in the space of
the double degenerate vibrations: (a) weak vibronic interaction and/or strong AS exchange .ı D
1:0; � D 1:0/; (b) weak AS exchange and/or strong vibronic interaction .ı D 1:0; � D 3:0/

Fig. 3 Rotation of the
distorted configurations (solid
triangle) in the bottom of the
trough - illustration for the
elimination of spin frustration
through the JT instability.
Symmetric configuration is
shown by the dashed line
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2π/33
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respectively, to the phase of ion 1. Figure 3 shows an instant nuclear configuration
in the course of this motion in which the side 12 is elongated, while the sides 13
and 23 are compressed, taking advantage from the new exchange network. In this
geometry of the system two antiferromagnetic pathways 13 and 23 are energetically
favorable, while the connection 12 is ferromagnetic. One can see that the system
possesses a definite spin alignment, so that spin frustration is eliminated by the JT
distortion with the instant isosceles configuration corresponding to S12 D 1 in the
ground state.

2.5 Influence of the Jahn–Teller Interaction on the Magnetization

In order to reveal the effects of the JT vibronic interaction [74]–[76] one can employ
the adiabatic approximation that was proved to provide a quite good accuracy in the
description of the magnetic properties of MV clusters [77] and allowed to avoid
numerical solutions of the dynamic problem. According to the adiabatic approach
the magnetization can be obtained by averaging the derivatives �@Ui .�;H/=@H˛
over the vibrational coordinates. In the case of an arbitrary � ¤ 0 the gap between
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Fig. 4 Section of the
adiabatic potentials in the
case of JT instability,
illustration for the zero-field
splitting of the ground state in
the vibronically distorted
configurations
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spin 1=2 levels is increased, and at H D 0 the zero-field is ı.�/ Dp3�2�2=2C ı2,
as illustrated in Fig. 4. The Zeeman sublevels in an arbitrary configuration � in a
weak field range up to the second order terms with respect to the field � defined by
the angle � can be found as:

"1;3.�; �/=�! D �ı.�/=2 ˙ �1.�/ �=2� �2.�/ �2 ;
"2;4.�; �/=�! D Cı.�/=2 ˙ �1.�/ �=2C �2.�/ �2 ; (5)

where gjj D g? D g and the first and second order van Vleck coefficients [78]
�1.�/ and �2.�/ in the Zeeman energies are the functions of the angle � and the
JT coupling parameter. They can be directly related to the JT splitting and AS
exchange:

�1.�/ D
q
.E2JT C ı2 cos2 �/=.E2JT C ı2/ ;

�2.�/ D ı2 sin2 �=4.E2JTC ı2/3=2:

One can see that with the increase of the JT interaction the coefficient �1.�/
becomes independent of the angle � .�1.�/ 	 1 � ı2 sin2 �=.2E2JT// and tends to
unity, while �2.�/ disappears .�2.�/ D ı2 sin2 �=.4E3JT//, so that in the limit of
strong vibronic coupling we arrive at the isotropic linear Zeeman splitting that is
obtained within the HDVV model. The suppression of the magnetic anisotropy [14]
is a quite general conclusion that is closely related to the reduction of the physical
quantities of the orbital nature by the JT interaction (Ham effect) [45–47]. In the
case of a parallel field .HjjC3/ one finds �1.0/ D 1 and �2.0/ D 0, so we have the
following Zeeman pattern:

"1;3.�/=�! D �
q
E2JT C ı2=2˙ �=2 ;

"2;4.�/=�! D C
q
E2JT C ı2=2˙ �=2 : (6)

Equation (13) exhibits linear Zeeman splitting in a pair of spin doublets in the paral-
lel field, but the zero-field splitting is now represented by a combined effective gap
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Fig. 5 Influence of the JT interaction (defined by the vibronic coupling parameter �) on the
Zeeman energy pattern in a perpendicular magnetic field .HjjC3/

q
E2JT C ı2 instead of the initial one jıj related solely to the AS exchange. This does

not affect the magnetic moments of the ground manifold, so that neither the JT inter-
action nor the AS exchange do manifest themselves in the magnetic characteristics
in the case of HjjC3.

In the case of a perpendicular field H?C3 one obtains that �1.�=2/ D
EJT=

q
E2JT C ı2 ; �2.�=2/ D ı2=4.E2JTC ı2/3=2, and therefore the Zeeman

energy in this case is given by:

"1;3.�/=�! D �
q
E2JT C ı2=2˙ �EJT=2

q
E2JT C ı2 � �2ı2=4.E2JTC ı2/3=2;

"2;4.�/=�! D C
q
E2JT C ı2=2˙ �EJT=2

q
E2JT C ı2 C �2ı2=4.E2JTC ı2/3=2;

(7)
where the eigenvalues are denoted as "i .�/ � "i .�

0
0; �/. Equation (7) shows that

the Zeeman pattern contains both linear and quadratic contributions. The role of the
JT coupling can be understood by comparing the Zeeman picture so far obtained
with that provided by � D 0. In the absence of the JT coupling the linear Zeeman
terms disappear, and the Zeeman energies contain only quadratic terms. Thus Fig. 5a
illustrates two degenerate pairs of Zeeman levels in a perpendicular field in the
symmetric nuclear configuration. In a weak-field range they are given by:

"1.�/=�! D "3.�/=�! D �jıj=2� �2=4 jıj ;

"2.�/=�! D "4.�/=�! D Cjıj=2C �2=4 jıj: (8)

This can be referred to as the effect of the reduction of the magnetization in a low
magnetic field that is perpendicular to the axis of AS exchange. A reduction of the
Zeeman energy by the AS exchange gives rise to a small van Vleck-type contribution
to the magnetic susceptibility at low field gˇH 
 Dn. An essential effect is that the
JT interaction leads to the occurrence of linear terms for the Zeeman energies at low
field. This is shown in Fig. 5b that illustrate the transformation of the Zeeman levels
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under the influence of vibronic coupling. As a result, the JT coupling essentially
increases the magnetic moments of the system at low perpendicular fields when
magnetization in the symmetric configuration is reduced by the AS exchange. The
range of the linear Zeeman splitting increases with the increase of the JT coupling,
and the crossing point moves into the high field region. This can be considered as
the effect of the reduction of the AS exchange by the JT distortions accompanied by
the restoration of the magnetic moments.

Figure 6 illustrates the influence of the JTE on the field dependence of the mag-
netization. The magnetization vs. perpendicular field at T D 0 is presented as a
function of the vibronic coupling parameter � that is assumed to satisfy the con-
dition of instability �2 > �20 � 4jıj=3. One can see that provided that � D �0
(and of course � < �0, which corresponds to a symmetric stable configuration)
the magnetization slowly increases with the increase of the field (due to reduction
of the Zeeman interaction in the low field), then reaches saturation when the mag-
netic field is strong enough to break the AS exchange. Increase of the JT coupling
leads to the fast increase of the magnetic moments in the region of low field and
formation of the step in magnetization caused by the reduction of the magnetic
anisotropy (appearance of the linear terms in the Zeeman levels). The height of the

step M.H D 0/ D gˇEJT=2

q
E2JT C ı2 increases with the increase of the vibronic

coupling. Finally, when the JT coupling is strong enough one can observe staircase
like behavior of magnetization, with a sharp step in which M.H/ jumps from zero
toM.H D 0/ D gˇ=2 at zero field (and T D 0) that is expected for a magnetically
isotropic system.

3 Vibronic Interaction in Mixed-Valence Clusters

3.1 Overview of the Vibronic Models of Mixed Valency

Mixed-valence (MV) clusters contain ions in different oxidation states. The delo-
calization of the extra electron gives rise to the so-called double exchange that
couples the localized magnetic moments through an itinerant electron that can travel
between the magnetic centers. Since the itinerant electron keeps the orientation of
its spin in course of transfer, double exchange results in a strong spin polarization
effect, which favors a ferromagnetic spin alignment in the system. This mechanism
of electron-spin interaction was suggested [79–81] to explain the ferromagnetism
observed in the mixed-valence (MV) manganites of perovskite structure, such as
.LaxCa1�x/.MnIIIMnIV

1�x/O3. MV oxides are a focus of solid state chemistry, as
they exhibit colossal magnetoresistance, a property that has been attributed to double
exchange.

Along with the electronic interactions (double exchange, HDVV exchange, etc.)
the coupling of electronic and vibrational motions (vibronic coupling) plays a cru-
cial role in MV systems. One of the main characteristics of MV compounds is the
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presence of the intense (in most cases, featureless) intervalence absorption bands
in the near-infrared or visible regions, which result from the transitions within a
ground vibronic manifold of the MV system. Earlier simplified vibronic models of
MV systems [82,83] were aimed to provide an explanation of the main aspects of the
intervalence absorption bands (energy and width), and they were quite successful in
explaining the features of MV dimers in which the ions are very weakly coupled
electronically. Although in such compounds there is some delocalization, different
distinct oxidation states are still identifiable on the two centers. Robin and Day [82]
term these class II MV compounds.

Piepho, Krausz and Schatz (PKS) formulated a vibronic model [84] that includes
pseudo JT coupling to the vibrations localized on the constituent metal centers and
proposed a classification of MV compounds according to the degree of localiza-
tion (classes I, II and III) [82, 84]. This PKS model has been used to analyze MV
dimeric [85–87], trinuclear [88–90, 92], tetranuclear [93, 94] and higher nuclear-
ity [95–98] MV compounds. Later on, Piepho [99] demonstrated that, along with
the PKS modes, the multi-center vibrations are also important participants in the
vibronic coupling. Within the model including both these types of vibronic modes
(we will refer to this model as the Piepho model) it was possible to describe in more
detail the features of intervalence absorption bands for MV dimers. In the subse-
quent studies [100–103] the model was extended to the analysis of many-electron
MV clusters of higher nuclearity.

3.2 Double Exchange in Mixed-Valence Clusters

Let us consider a MV dimer dnC1 � dn in which for the sake of definiteness we
assume that n � 4 (less than half-filled d-shells). The main features of the phe-
nomenon can be understood in the framework of the classical spin model [77]. As
distinguished from a quantum spin, a classical spin represents the infinite spin limit
for which all the directions in the space are allowed. From the classical point of view,
for Hund’s configuration of the dnC1 ion the extra electron lines up its spin, se , par-
allel to the spin s0 of the dn ion (spin core). In the classical limit, s0 � 1=2, so that
Smax 	 2s0 and Smin 	 0. These two extremes correspond to parallel and antiparal-
lel orientations of the core’s spins (Fig. 6), while the intermediate spin values are to
be correlated with the intermediate angles between the core’s spins. One can see that
the transfer is most efficient when both core’s spins are parallel .� D 0/. The corre-
sponding maximum value of the transfer integral will be denoted by t . On the other
hand, the transfer is suppressed when the core’s spins are antiparallel .� D �/. Con-
sidering the spins of the metal ions (s1 and s2) as classical vectors, one can express
the total spin as S D s1 C s2, where s1 D s2 D s0. Now one can express t in terms
of s0 and S as t.S/ D t S=.2s0/. This expression confirms that the rate of transfer is
spin-dependent and increases with the increase of the total spin S . Thus, for parallel
s1 and s2 we have S D Smax D 2s0, and the rate of transfer achieves its maxi-
mum value t ; meanwhile, in the antiparallel case .S D Smin D 0/ the transfer rate
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Fig. 6 Influence of the JT
interaction on dependence
magnetization vs.
perpendicular field .HjjC3/
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vanishes. One can see that the energy levels of a MV dimer form a continuous band
of width 2t , in which each sublevel corresponds to a definite angle between classi-
cal spins s1 and s2, and the the double exchange gives rise to a strong ferromagnetic
effect. The quantum-mechanical expression for E˙.S/ can be obtained from the
classical one with the aid of substitutions S ! S C 1=2; s0 ! s0 C 1=2 [77]:

E˙.S/ DD ˙tS D ˙t.S C 1=2/=.2s0 C 1/;

This result proves to be valid for all MV dnC1� dn pairs with n � 4, provided that
the spin core is defined as an ion without extra electron. It is also valid for n > 4

but in such case the spin core must be defined as an ion without extra hole. The
ferromagnetic effect of the double exchange is illustrated by Fig. 7. Along with the
double exchange, the isotropic exchange interaction plays an important role in MV
clusters. This interaction is described by the HDVV spin Hamiltonian:

Hex D �2J s1 s2 (9)
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Fig. 8 Effect of the double
exchange on the energy
pattern of mixed valence
d2 � d1 dimer t
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that is operative within each configuration, so that one can find the energies:

E˙.S/ D �J S .S C 1/˙ t.S C 1=2/=.2s0 C 1/ : (10)

Providing J > 0 both interactions produce a ferromagnetic effect, and a ground
state of an MV dimer will always possess a maximal S value. In the presence of
an antiferromagnetic exchange the ground spin state will be the result of the com-
petition between the exchange and double exchange interactions, as illustrated by
Fig. 9 for the d 4 � d 3 dimer. When double exchange is weak enough, the HDVV
exchange dominates, and the S D 1=2 state is the ground one. When the ratio t=jJ j
increases, the ground state becomes successively S D 3=2 ; 5=2 and, finally, 7=2
in the strong double exchange limit. Consequently, the magnetic properties are the
result of the interplay of the HDVV exchange and double exchange.

3.3 Piepho-Krausz-Schatz Model and Robin and Day
Classification of Mixed-Valence Compounds

Let us denote the coordinates of the full-symmetric displacements of ligand sur-
roundings as Q1 and Q2 (breathing modes); then two new collective coordinates
can be constructed, which refer to the in-phase .QC/ and out-of-phase .Q�/
vibrations of the two moieties 1 and 2:

QC D
�
1=
p
2
�
.Q1 CQ2/; Q� D

�
1=
p
2
�
.Q1 �Q2/: (11)

Nuclear displacements corresponding to the QC vibration (both coordination sphe-
res are expanded or compressed simultaneously) decrease or increase the poten-
tial energy of the system independently of the site of localization. Interaction of
the moving electron with the in-phase vibration can be eliminated. On the con-
trary, the out-of-phase vibration, Q�, is relevant to the electron transfer. When
Q� < 0 the coordination sphere of moiety “1” is compressed, while that of “2”
is expanded. This nuclear movement increases the energy of the electron located on
1, promoting thus the electron transfer 1 ! 2. In the opposite phase .Q� > 0/ the
extra electron jumps back. The adiabatic potential comprises two branches UC and
U� (Fig. 10):

U˙.q/ D .!=2/ q2 ˙
p
t2 C v2q2: (12)
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Fig. 9 Correlation diagram
for a d4 � d3 dimer showing
the combined effect of double
exchange and
antiferromagnetic HDVV
exchange interactions
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where v is the PKS vibronic coupling parameter, � D 1; ! is the vibrational
frequency for the out-of-phase mode, and q D Q�=

p
�=.MPKS !2/ is the corre-

sponding dimensionless normal coordinate (MPKS is the effective mass). In absence
of electronic interaction between the sites .t D 0/, one obtains two independent
potentials associated with the 1� 2 and 1 2� configurations (Fig. 10a). In this case
the system is fully localized (Class I in Robin and Day classification). When the
vibronic interaction is strong compared with transfer t.�2=! > jt j/, we obtain a
double well potential curve U�.q/ (Fig. 10b) so that the transfer requires activation
energy (Class II). Finally, in the case of weak vibronic interaction .�2=! < jt j/ both
branches have a minimum at q D 0 (Fig. 10c), and the electron is fully delocalized
(Class III).

The main spectroscopic consequence of the combined action of electron transfer
and vibronic interaction is the occurrence of the so-called electron transfer optical
absorption (intervalence band), which is shown by the arrows in Fig. 10. The shape
and intensity of the intervalence band in the PKS model is defined by the ratio
jt j=.v2=!/. In the case of weak transfer the Franck-Condon transitions are almost
forbidden, and at the same time, the Stokes shift can be significant. Therefore the
MV dimers of Class I are expected to exhibit weak and wide intervalence bands. On
the contrary, in the Class III compounds the Franck-Condon transition is allowed,
and the Stokes shift is zero. For this reason, intervalence optical bands in delocalized
MV dimers are strong and narrow. When the extra electron jumps over the spin
cores in a multielecton MV dimer dn � dnC1.n � 1/ [85–87] we are dealing with
independent vibronic problems for each total spin value, so the two branches of the
adiabatic potential corresponding to the total spin S are given by:

U S˙.q/ D .!=2/ q2 ˙
q
t2S C v2q2; (13)
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where tS is the effective (many-electron) spin-dependent double exchange param-
eter. Since tS increases with the increase of S , the condition for localization will
be more favorable for the states with smaller spin values, whereas delocalization
will be favored for the larger S . Figure 11 illustrates the effect of the vibronic inter-
action on the magnetic properties of a MV dimer d2 � d 1 in the case when the
HDVV exchange can be neglected. The vibronic interaction gives an antiferromag-
netic contribution to the adiabatic energy pattern, because the states with S D 1=2

undergo stronger vibronic stabilization than those with S D 3=2. In the limit of
strong vibronic coupling the electron proves to be fully trapped in one of the two
wells, and the S D 1=2 and S D 3=2 energies coincide, giving thus a paramagnetic
mixture of the initial s1 D 1=2; s2 D 1 and s1 D 1; s2 D 1=2 states. Therefore,
in this limit the ferromagnetic effect of the double exchange is suppressed in the
ground manifold, whereas the excited states are very high in energy and cannot be
populated at reasonable temperatures. For this reason, the system will exhibit the
magnetic behavior specific for the valence-localized d 2 � d 1 system. The HDVV
exchange is the only interaction effectively operating in the strong vibronic cou-
pling limit. In this case the HDVV scheme of levels proves to be restored in the
minima of the lower sheets of the adiabatic potential. The semiclassical approxima-
tion (that allows to avoid diagonalization of the vibronic matrix [84–87]) was shown
to describe the temperature-dependence of the magnetic moment with very high
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Fig. 11 Vibronic reduction of the double exchange splitting for the d2 � d1 dimer

accuracy [77]. Figure 12 shows the effect of suppression of the double exchange by
the PKS vibronic coupling for a MV d 4 � d 3 dimer. For a relatively weak coupling
(� D 2! and 2:6!) the system is ferromagnetic, since double exchange dominates
over HDVV exchange and vibronic coupling; meanwhile, for � D 3! the system is
antiferromagnetic, because the double exchange is strongly reduced. This example
shows that the reduction of the double exchange due to the pseudo JT coupling can-
not be simply represented as an effective decrease of the transfer parameter. In terms
of the correlation diagram (Fig. 9) one can imagine that, passing from the right side
(strong double exchange) to the left side (weak double exchange), the domain of
Sgr D 5=2 and 3=2 is missed.

3.4 Effect of Multicenter Vibrations

The vibronic coupling of this type appears as a result of modulation of the trans-
fer integral by the changes in the intermetallic distances R � R12. The value
Q D R � R0 (R0 is the equilibrium intermetallic distance) plays the role of a
vibrational coordinate. The transfer integral can be expanded in the series: t.R/ D
t.R0/ � �.R � R0/ C � � � , where � D �.@ t=@R/RDR0

is the vibronic interaction
parameter, and t.R0/ is the transfer parameter. The adiabatic potential (Fig. 13) has
two branches, corresponding to two delocalized states  C and  �:

U˙ D .	=2/ .QQ0/
2 ˙ t � �2=.2	/; (14)

where Q0 D �=	;	 is the vibrational frequency, and Q D .R �R0/=p
�=.MP	2/ (MP is the effective mass). Both states are stabilized by the value
��2=.2	/, and the branches U˙ possess minima at ˙Q0. In the bonding state,
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Fig. 12 Effect of the PKS
vibronic coupling on the
effective magnetic moment of
d4 � d3 MV dimer:
t=! D 3:5, J=! D �0:2
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 �, the transfer is effectively increased .t.�Q0/ D t C �2=	/; meanwhile, in
the antibonding state,  C, the transfer is decreased .jt.CQ0/j D t � �2=	/.
One can see that the P -vibration produces a strong detrapping effect, i.e. stabilizes
delocalized states.

3.5 Robin and Day Classification in Generalized Vibronic Model:
Localization-Delocalization, Hyperfine Constants

The adiabatic surface of a MV dimer has two sheets in the q Q-space [100, 101]:

U S˙.q;Q/ D �J S.S C 1/C .1=2/ .! q2 C	Q2/˙
p
.tS � �SQ/2 C v2q2:

(15)
For the sake of simplicity we assume that t; � and � are positive. Depending on the
relative values of the key parameters, several qualitatively different cases should be
distinguished.

Case 1. PKS-coupling exceeds P-coupling, that is v2=! > �2S=	. Within case
1 there are two different situations: comparatively weak transfer (Case 1a), defined
by the inequality tS < v2=! � �2S=	, and comparatively strong transfer (Case 1b),
for which tS � v2=! � �2S=	.

Case 2. P-coupling exceeds the PKS-coupling .v2=! � �2S=	/. Two different
situations should be considered: comparatively weak transfer (Case 2a), defined by
tS < �2S=	 � v2=!, and the case of comparatively strong transfer (Case 2b), for
which tS � �2S=	 � v2=!.

In Case 1a, the lower sheet, U S� .q;Q/, possesses two equivalent minima

(Fig. 14a, b) at the points f˙q0.S/;Q0.S/g, where q0.S/ D .�=!/
q
1 � �2S ;

Q0.S/D � .�S=	/�S , and �S D tS=.�
2=! � �2S=	/. These two minima are

separated by one or two saddles located at the points f0;Q�.S/g (lower saddle)
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and f0;QC.S/g (upper saddle), with Q�
.C/
.S/ D �

.C/�S=	. Under the condition

tS > �2S=	 the upper saddle point disappears. One obtains the following expres-
sions for the electronic densities on the sites 1 and 2 in the minima points of
U S� .q;Q/:

�1 Œ� q0.S/; Q0.S/� D �2 ŒCq0.S/; Q0.S/� D �S ;
�1 ŒCq0.S/; Q0.S/� D �2 Œ� q0.S/; Q0.S/� D 1 � �S ; (16)

where �S D .1=2/
�
1C

q
1 � �2S

�
. Providing �S D 0, the system is fully local-

ized .�S D 1/. With the increase of �S , the two minima f˙q0; Q0g move toward
the deeper saddle point f0;Q�.S/g, and the system in these minima becomes more
and more delocalized. The discussed localized minima can be detected experimen-
tally from the analysis of the hyperfine structure of Mössbauer, EPR, ENDOR and
NMR spectra of MV clusters, which provide direct information about the degree of
localization of the moving electron [102,105–108]. This analysis is performed with
the aid of the following expressions for the effective “vibronic” hyperfine constants
related to the minima [102]:

AS Œ� q0.S/; Q0.S/� D BS Œ q0.S/; Q0.S/� D 1
2
Œ �S .a

� � a/C a �
˙ s0 C 3=4
2 S .S C 1/ Œ�S .a

� C a/ � a� ;

AS Œ q0.S/; Q0.S/� D BS Œ�q0.S/; Q0.S/� D 1
2
Œ �S .a � a�/C a��

 s0 C 3=4
2 S .S C 1/ Œ�S .aC a

�/� a�� :

(17)

Here, the effective hyperfine constants AS and BS discribe the interaction of the
total spin OS of the dimer with the nuclear spins OI1 and OI, respectively. a� and a are
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the hyperfine constants for dnC1 and dn ions; the upper (lower) sign relates to the
case n � 4.n > 4/.

At the limit �S D 1 the two minima are merged, and instead of a deeper sad-
dle point the surface U S� .q;Q/ possesses a single delocalized minimum in the
f0;Q�.S/g position (�S D 1=2/, Fig. 13c. Further increase of �S leads to the stabi-
lization of the minimum located at the point f0;Q�.S/g. In Case 1b the system is
fully delocalized, irrespectively of the relative values of the transfer integral and the
vibronic parameters, and the hyperfine constants are averaged:

AS Œ0;Q�.S/� D BS Œ0;Q�.S/� D 1

4
.a� C a/˙ s0 C 3=4

4 S .S C 1/ .a
� � a/: (18)

Providing weak transfer (Case 2a), the adiabatic surface U S� .q;Q/ possesses two
minima with different energies shown in Fig. 13d. These minima are located in the
same positions f0;Q�.S/g and f0;QC.S/g in which the saddle points are located
in the Case 1a. At the same time now f˙q0.S/; Q0.S/g are the coordinates of two
energetically equivalent saddles. The adiabatic wave-functions in the minima points
are  C.S/ (deep minimum) and  �.S/ (shallow minimum) so that in the Case 2a
the system proves to be fully delocalized. The localized states correspond to the
saddle points, and hence they are unstable. Increase of t leads to the transformation
of the adiabatic surface in such a way that the saddle points move toward the shallow
minimum f0;QC.S/g, until it disappears when the transfer is strong enough (Case
2b). Independently of the key parameters defining the position of the minima and
that of the saddle points (as well as the heights of the barriers), the system remains
fully delocalized in the Case 2, and the hyperfine interaction is described by the
averaged hyperfine constants.

The results obtained shows that only one kind of minima can exist in each par-
ticular case: these can be either the minima in which the system is partially or fully
localized (delocalized states are unstable) or the minima in which the system is
delocalized (localized states are unstable). The coexistence of the localized and
delocalized minima proves to be impossible. This is similar to the well-known situ-
ation in the classical Jahn–Teller T2˝ .e C t2/ problem, for which either tetragonal
or trigonal minima can exist but never both of them simultaneously [46, 47].

Let us discuss the Robin and Day classification scheme from the point of view
of the generalized vibronic model. In the case of strong PKS - coupling (Case 1),
depending on the magnitude of the electron transfer parameter, MV compounds
can belong to Classes I, II or III. So, when tS 
 v2=! � �2S=	 the system is
strongly localized and belongs to Class I. Providing tS < v2=! � �2S=	 the system
can be assigned to Class II. Finally, for tS � v2=! � �2S=	 we arrive at the fully
delocalized system (Class III). These conditions are formally similar to those used
in the PKS-model for the classification of the MV compounds. However, there is
an essential difference between these two kinds of criteria: in the Piepho model,
instead of pure PKS vibronic contribution v2=!, we are dealing with the combined
parameter v2=! � �2S=	. This leads to the suppression of the vibronic trapping
effect. In fact, the tunneling of the system between the two minima is expected to



Jahn–Teller Effect in Molecular Magnetism: An Overview 575

occur through the saddle point (that is shifted alongQ) rather than along the q-axis,
where the barrier is higher. As a result the MV system can belong to Classes II or
III, even providing weak electron transfer (or strong PKS- coupling). On the other
hand, strong localization (Class I) is achieved only for weak transfer and/or weak
P-coupling.

If P -coupling dominates (Case 2) the system is fully delocalized independently
of the relative values of t and �2=!. This means that in the Case 2 the system always
belongs to Class III, even providing small t . This result is in striking contradiction
with the prediction of the PKS model in which the degree of the delocalization in
the symmetric MV dimers is determined only by the interplay between the electron
transfer and the PKS - vibronic coupling. Figure 15 illustrates two vertical sections
of the adiabatic potential shown for the Case 2a. One can see that within the PKS
model the system could be assigned to Classes I or II, becauseU S� .q;Q0/ possesses
two minima. However, as a matter of fact, these minima prove to be the saddle
points in the two-dimensional Q-q space, and the minima correspond to the fully
delocalized states (Class III).
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In view of these results, the correlation between the degree of localization and
the parameters of the intervalence bands (width, position and intensity) established
in the PKS model is to be reconsidered. Particularly, in the contrast to the con-
clusion based on the PKS model, a fully delocalized system (Class III) can now
exhibit a strong and broad (instead of narrow) intervalence band, if the P-coupling
is dominant. In fact, the Frank-Condon transition in the Case 2a is intense (allowed
 C !  � transition), and a large Stokes shift, 2Q0 gives rise to a broad band. In
the description of the magnetic properties of MV clusters one can use the semiclas-
sical approximation that assures a very good accuracy [86]. Figure 16 illustrates the
combined effect of two types of vibrations in the case when the PKS - coupling is
strong as compared to the double exchange. At the same time the double exchange
is much stronger than the Heisenberg exchange .t D 10 jJ j/. In this case in the
absence of the P-coupling .� D 0/ the double exchange is strongly reduced by
the PKS-interaction, and hence even weak antiferromagnetic exchange proves to be
able to stabilize the state with S D 1=2. When � ¤ 0 the P-coupling competes
with the PKS-coupling and for �=v � 1 the ferromagnetic S D 3=2 state becomes
the ground one. One can see that the case of strong P-coupling in the generalized
vibronic model is equivalent to the case of strong double exchange (or/and weak
PKS - interaction) in the PKS model. This conclusion is also in agreement with the
fact that a delocalization of the extra electron produces a ferromagnetic effect, and
in this sense, double exchange and vibronic P - coupling act similarly.

3.6 Vibronic Effects in Mixed-Valence Dimers Containing
Orbitally Degenerate Ions

The extension of the theory of the double exchange to systems containing orbitally
degenerate metal ions with unquenched orbital angular momenta is given in [109–
111]. As an example we will consider the corner-shared bioctahedral dimer
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Fig. 16 Combined effect of
the two types of vibrations on
the effective magnetic
moment of d2 � d1 MV
dimer: t=! D 1,
J=! D �0:1, �=! D 2,
	 D !
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Fig. 17 Illustration for the
transfer pathways in a MV
dimer involving orbitally
degenerate ions
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3T1 .t
2
2 /�4A2.t32 / (overallD4h-symmetry). In this case all transfer integrals except

t� � D t� � � t (Fig. 17) vanish. The total spin of the dimer takes on the values
S D 1=2; 3=2; 5=2. Besides that the 3T1.t22 / - ion (orbital triplet state) possesses
an unquenched orbital angular momentum l D 1; meanwhile, for the 4A2.t

3
2 / -

ion l� D 0, so the total orbital angular momentum of the dimer is L D 1. It is
important that the orbitally-dependent double exchange produces a strong magnetic
anisotropy of the system [110]. The energy pattern is shown in Fig. 18, in which the
corresponding wave-functions

j˙; SMS ; LMLW i D
�
1=
p
2
�
.jŒs�l��1 Œsl�2 SMSLML i

˙ jŒsl�1 Œs�l��2 SMSLMLi / (19)

are also displayed in order to explicitly indicate the orbital contribution. The central
level with E D 0 involves all S values and corresponds to ML D 0, while all the
states with the energies˙.1=3/ t .S C 1=2/ possess ML D ˙1. All energy levels
depend on jMLj (axial magnetic symmetry).

Let us analyze the principal components of the magnetic susceptibility tensor (�jj
and �?). The spin part of the magnetic susceptibility is isotropic, so the anisotropy
arises from the orbital part �� D �orb

jj � �orb
? . At low temperatures �orb

jj is evi-
dently large because it appears as a first-order Zeeman splitting of the ground state
with ML D ˙1. On the contrary �orb? is relatively small and arises from the Zee-
man mixing (second-order effect) of the ground j�I 5=2;˙1i and excited j�I 5=2; 0i
states. Therefore the magnetic anisotropy is expected to be strong, with �� being
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positive. The influence of the vibronic coupling on the magnetic anisotropy caused
by the orbitally dependent double exchange was discussed in the framework of the
Piepho model[110]. This model can be applied when the vibronic coupling with the
PKS and P modes exceeds the interaction with the local JT vibrations. The inter-
action with the PKS – type vibration q mixes the states with the same quantum
numbers S; MS ; ML and opposite parity, thus leading to the pseudo-Jahn–Teller
effect. On the other hand, the interaction with the P - type Q mode is diagonal in
the j˙; S;MLi basis. In fact, this interaction leads to a modulation of the trans-
fer integral due to the changes of the metal-metal distances. In the case when only
the interaction with the PKS - vibrations is nonvanishing .� ¤ 0; � D 0/ the cen-
tral electronic level .E D 0/ comprising all S states with ML D 0 gives rise to
two intersected paraboloids shifted along the q axis toward the points ˙�=.!p2/.
The remaining surfaces belong to definite S values, and their shapes are quite sim-
ilar to those found for spin-clusters. Figure 19 represents the adiabatic potentials
corresponding to S D 5=2 (these levels are extracted from the full set of the levels
depicted in Fig. 18). Due to the preference of the JT stabilization of theML D 0 cen-
tral level with respect to those with ML D ˙1, the initial (at q D 0) gap t between
the ground level with j�I 5=2I ˙1i and the first excited j˙; 5=2; 0i-level proved to
be compressed in the deep minima. The resulting state in each minimum comprises
all ML values belonging to L D 1 .ML D 0;˙1/, and hence it can be regarded as
6P atomic level that is fully magnetically isotropic. We thus arrive at the conclusion
that the vibronic PKS-coupling reduces the magnetic anisotropy of the system. This
conclusion can be illustrated by plotting �jj��? as a function of the vibronic param-
eter and temperature. The dependence of the magnetic anisotropy on the strength of
the PKS vibronic coupling calculated at different temperatures with the aid of a
semiclassical approach [111] are shown in Fig. 19. At a given temperature �jj � �?

Fig. 18 Energy diagram for
3T1.t

2
2 /� 4A2.t

3
2 / MV dimer

of D4h symmetry. A short
notation j˙IS;MS ILD 1I
MLi 
 j˙ISIMLi is used

+; ;±1

E/t
5
2

+, ;±13
2

+; ;±11
2
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–; ;±11
2

–; ;±13
2

–; ;±15
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Fig. 19 Suppression of the
magnetic anisotropy by PKS -
vibrations ⏐p ;S ;ML〉
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decreases with the increase of the vibronic parameter, in accordance with the above
qualitative arguments. The anisotropy is more pronounced at low temperatures when
the population of the ground level with ML D ˙1 significantly exceeds the popu-
lation of the first excited level with ML D 0. At high temperatures when these two
levels are almost equally populated, the anisotropy disappears (Fig. 20).

In general, the interactions with both PKS- and P-vibrations are nonvanishing
.� ¤ 0; � ¤ 0/. Depending on the relative values of the vibronic constants and the
double exchange parameter we can have either partially localized minima (case 1a)
or fully delocalized ones (cases 1b,2a,2b). Let us assume for the sake of definiteness
that we are dealing with the fully delocalized situation (the only minimum, cases 1b,
2a and 2b) for the ground spin state with S D 5=2 and consider the section q D 0 of
this adiabatic surface (Fig. 21). One can see that the intercenter vibration stabilizes
the ground state with ML D ˙1 with respect to the state with ML D 0. In fact,
in the deep minimum associated with ML D ˙1 the corresponding gap �Emin is
strongly increased with respect to the initial (at Q D 0) gap t produced by the dou-
ble exchange. This can be regarded as an increase of the effective anisotropic double
exchange by the intercenter vibrations. As a result, the magnetic anisotropy of the
system is strongly increased. Note that this conclusion is valid not only in the delo-
calized case but also providing double-well surface (case 1) that is, the enhancement
of the anisotropy due to the intercenter vibration is a rather general phenomenon.
This effect is illustrated by Fig. 22 showing �jj � �? at different temperatures as a
function of the strength of the vibronic coupling, with the intercenter vibration cal-
culated at fixed values of t and �, which correspond to the vertical section (dashed
line) in Fig. 19.



580 B. Tsukerblat et al.

Fig. 20 �
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3.7 Multimode Jahn–Teller Problem in Mixed-Valence Trimers:
Vibronic Localization-Delocalization

In the one-electron triangular cluster of C3v symmetry the one-electron transfer
results in the energy pattern consisting of two levels A1 and E separated by the
gap 3jt j, with the orbital doublet (singlet) being the ground state, provided that
t > 0 .t < 0/. Both PKS and P-vibrations are operative within the E-term and also
mix A1 and E. The PKS and P -vibrations a1 and e for the triangular cluster are
schematically shown in Figs. 23 and 1, respectively. The interaction with the full-
symmetric PKS mode can be eliminated by shifting of qa1

. On the contrary, the
interaction with the full-symmetric P -vibration modulates the gap between the
electronic A1 and E levels, thus affecting the shape of the potential surface. For
this reason the multicenter a1-vibration cannot be eliminated, and in general we
are dealing with the vibronic .A1 CE/ ˝ .a1 C 2e/-problem. Since the study of
the surface in the five-dimensional vibrational space is rather complicated, we will
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Fig. 22 �
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Fig. 23 PKS-vibrations of a triangular cluster

only discuss two limiting cases � � � (strong PKS-coupling) and � 
 � (strong
P -coupling), which provide clear insight into the physical role of these two types
of vibrations.

1. Case of � � �: vibronic .A1CE/˝ e –problem. Providing t > 0 (ground state
E) and strong transfer, the lower sheet of the adiabatic surface represents the
so-called “Mexican hat” characteristic of the E ˝ e-JT problem [46, 47]. In this
case the electronic distribution is dynamically averaged, and the system behaves
as fully delocalized. The decrease of the electron transfer and/or the increase of
the vibronic coupling results in the appearance of three minima (pseudo-JTE),
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Fig. 24 Lower sheet of the potential surface for d1�2d0-cluster in the strong PKS-coupling limit
.� D 0/: (a) t > 0, (b) t < 0

in which the extra electron is mainly localized on the sites 1, 2 and 3 (Fig. 24a).
In the strong PKS coupling limit (accidental A1 C E-degeneracy), the system
becomes fully localized, so that the electronic densities .�1; �2; �3/ in the three
minima are (1,0,0), (0,1,0) and (0,0,1).
In the case of negative t (ground state A1) and strong transfer the system is fully
delocalized in the only minimum at qX D qY D 0. On the contrary, providing
weak transfer and/or strong PKS-coupling, the pseudo JTE leads to an adiabatic
surface with three minima (Fig. 24b), in which the extra electron is mainly local-
ized on the sites 1, 2 and 3. Finally, providing intermediate vibronic coupling
one can find four minima in the lower sheet. The shallow central minimum cor-
responds to a fully delocalized state, while the other three minima correspond to
the localized states. The above consideration shows that, for a trigonal trimeric
cluster containing the extra electron, one can have either a fully delocalized
state or a state in which the extra electron is localized (fully or partially) on
one site.

2. Case of � 
 �: vibronic .A1CE/˝ .a1C e/ –problem. The adiabatic problem
for a trigonal d1�2 d 0 cluster in the strongP -coupling limit has been considered
in [103]. Providing positive t (ground doublet) and strong transfer we arrive at
the dynamically averaged electronic distribution that is peculiar to the E ˝ e-JT
problem. An increase ofP -coupling shiftsQA1

so that the triangle is compressed
absorbing the energy of transfer, and in addition three minima appear at the bot-
tom of the ring in QX QY -space. In the minimum on the QY axis the side 1–2
is elongated; meanwhile, the sides 1–3 and 2–3 are compressed. The maximum
localization degree corresponds to the following electronic wave-functions:

ˆ1 D
�
1=
p
6
�
.2  1 �  2 �  3/ ;

ˆ2 D
�
1=
p
6
�
.2  2 �  1 �  3/;

ˆ3 D
�
1=
p
6
�
.2  3 �  1 �  2/: (20)
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In this case the degree of localization in the minima can be represented (approxi-
mately) by the vector .�1; �2; �3/ D(4,1,1), (1,4,1), (1,1,4). An increase of
P -coupling and/or decrease of t leads to a more uniform distribution of the elec-
tronic densities in the minima. If the electron transfer is small enough, the lower
sheet of the adiabatic potential contains also an excited minimum, for whichQa1

¤
0, QX D QY D 0. For the electronic wave-function in this minimum we find the
following full-symmetric superposition of the localized states:

ˆ0 D
�
1=
p
3
�
. 1 C  2 C  3/; (21)

which corresponds to the full delocalization of the extra electron. Finally, in the
limit of strong P - coupling and/or weak transfer the electronic wave-functions in
the three minima arranged at the bottom of the ring become the following:

ˆ1 D
�
1=
p
6
�
. 1 �  2 �  3/;

ˆ2 D
�
1=
p
6
�
. 2 �  1 �  3/;

ˆ3 D
�
1=
p
6
�
. 3 �  1 �  2/: (22)

In this limit four minima (three minima at the bottom of the ring and the “cen-
tral” minimum) possess the same energy. Although in each minimum located at
the bottom of the ring the triangle is distorted, the electronic density is uniformly
distributed. This unusual type of the electronic density distribution in the distorted
system is reached providing an accidentalA1CE- degeneracy. Providing t D 0 the
adiabatic potentials calculated within the model of multicenter vibrations are shown
in Fig. 25. Both minima are equivalent and correspond to the delocalized states
 � and  C of the distorted system (compressed and elongated). In the case of neg-
ative t (ground state A1) the lower sheet of the adiabatic potential shows the only
“central” minimum in which the system is fully delocalized.

Fig. 25 Adiabatic potential
of the d1 � d0 system in
strong P-coupling limit:
t D 0, �=	 D 1 Q
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3.8 High-Nuclearity Mixed-Valence Clusters: Localization vs.
Delocalization of the Electronic Pair in the Double Reduced
Polyoxometallates with Keggin Structure

In recent years large MV systems containing many electrons shared over a network
metal ions have been in the focus of research. In this view an important class of
so-called polyoxometallates should be mentioned. These compounds present dis-
crete structures of definite sizes with highly symmetric networks of metal ions in
octahedral and tetrahedral surroundings. The structure of a representative example,
namely, the Keggin structure is shown in Fig. 26 (see [15] for the details). It was
found that the reduced polyoxometallates containing a delocalized electronic pair
are strongly antiferromagnetic, and this phenomenon cannot be explained with a
model assuming coupling of electrons via multi-route superexchange. An explana-
tion based on the concept of delocalization that can stabilize the spin-paired ground
state without implying a direct exchange interaction was worked out in [96,98]. The
vibronic problem in the high-nuclearity systems is very complicated due to the large
number of the active vibrations.

Here, we will briefly discuss the results of the adiabatic vibronic approach devel-
oped for the bielectronic problem in the twelve-site Keggin structure [15, 97]. This
provides a basic picture of the different ways of electron delocalization in this kind
of clusters. The vibronic problem involves a considerable number of electronic
states and twelve vibrational PKS coordinates. This problem can be simplified if
the electronic basis set is restricted to the wavefunctions of the most distant electron
pairs (when the Coulomb repulsion in the electronic pairs is minimized), neglect-
ing the mixing of these low-lying groups of levels with those belonging to other
kinds of configurations. Accordingly, the electronic structure of the system consists
of two spin triplets 3T1 and 3T2, and three spin singlets 1A1, 1E and 1T2, which
are split by the effect of the double transfer processes (see detail in [96, 97]). As
distinguished from the case of one itinerant electron, only the in phase (symmetric)

Fig. 26 Keggin structure
of a ŒXM12O40� cluster
.M D Mo; WI XD
BIII; SiIV; PV; CoII;

CoIII; FeIII; CuII, etc.) with
delocalized electronic pair
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a b

c d

Fig. 27 Possible types of the delocalization of the electronic pair in the Keggin structure

PKS mode changes simultaneously the potential energy of both electrons. In turn,
the antisymmetric (out-of-phase) displacement does not change the common poten-
tial energy of the electron pair, since it has the effect of increasing the energy of
one electron (compressed site), while the energy of the second electron decreases
(expanded site). For this reason only the six symmetric vibrational coordinates are
involved in the transfer processes. These are of the type a, e and t2, but only the
e and t2 vibrational modes have been proved to be relevant in the vibronic problem
under consideration. Therefore, this vibronic problem will finally involve the cou-
pling of these two modes with the two electronic spin subsets: i.e., the JT and pseudo
JT problems, and .3T1 C3 T2/˝ .e C t2/ and .1A1 C1 A2 C1 T2/˝ .e C t2/. Sev-
eral kinds of spatial electronic distributions have been found to correspond to stable
points of the energy surfaces. Thus, for spin-triplet states, weak vibronic coupling
in the space of e-modes restricts electron delocalization to two of the three metal
sites of each M3O12 triad in such a way that each electron moves over a tetrameric
unit in which the metal sites are alternatively sharing edges and corners (shaded
octahedra in Fig. 27a); in the limit of strong coupling, the electron delocalization is
restricted to one of the three metal octahedra (Fig. 27b), but since these four sites
are not connected through oxygen bridges the system is expected to be fully local-
ized. In the space of t2-modes the electronic pair can be either delocalized over two
opposite M3O12 triads (case of weak vibronic coupling; Fig. 27c), or be completely
localized (case of strong vibronic coupling, Fig. 27d). In all these cases the JT cou-
pling leads always to a partial delocalization, or even to a full localization of the
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electron pair. By no means one can obtain from the coupling with the spin-triplet
states a full delocalization of the electronic pair over twelve sites. This is possible
only when the vibronic coupling with the spin-singlet states is considered. Thus,
it has been found that, for both positive and negative values of the transfer param-
eter and weak enough vibronic coupling, the system possesses a stable point in
the high-symmetrical nuclear configuration, corresponding to a uniform electronic
distribution of the electron pair in the Keggin cluster.

4 Vibronic Problem of Cooperative Phenomena
in Mixed-Valence Crystals

4.1 Introductory Remarks

The phenomena of charge and structural ordering in crystals based on the JT ions
have been discovered long time ago [107–109] and became an important part of
solid state physics. Studies of electron transfer in solid-phase coordination com-
pounds have led to the discovery of the effect of charge ordering in crystals
comprising MV clusters as structural units [110–127]. This discovery made this
field of research an inherent part of molecular magnetism. A number of spectro-
scopic and thermodynamic measurements revealed charge ordering in a series of
biferrocenium derivatives (Fig. 28), e.g. dialkylbiferrocenium triiodide crystals with
substituent ions X D H;CH2CH3; .CH2/2CH3; .CH2/3CH3, dihalobiferrocenium
triiodide, and dibromoiodide crystals with substitute ions X D Br; I [120–124]. The
phase transition in biferrocene triiodide crystals has been proved experimentally by
Mössbauer spectroscopy and variable temperature heat capacity. Charge ordering
has also been revealed in crystals containing trinuclear metal acetate compounds
ŒM3O.O2CCH3/6.L3/S, where M is a transition metal element such as iron or man-
ganese, L is a ligand and S is a solvate molecule [120–124]. Vast experimental
material gave rise to a new trend within the theory of mixed valency, namely the

Fig. 28 Structural unit of
MV Fe(II)-Fe(III) biferrocen
crystals
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study of cooperative phenomena in extended MV systems. In the first papers deal-
ing with the phase transitions in binuclear and trinuclear MV systems [130–132] a
phenomenological description has been done.

A qualitative consideration behind the concept of charge ordering [133–171]
is the following. In states with fixed valence clusters possess significant dipole
moments exceeding those for ordinary ferroelectrics. Tunneling leads to the station-
ary states in which the dipole moment vanishes. A sufficiently strong inter-cluster
dipole-dipole interaction can stabilize the charge-ordered phase of a crystal. On
the other hand, the deformation of the lattice by the migrating electron stabilizes
the state of the cluster with fixed oxidation degrees and simultaneously leads to
intercluster coupling via the phonon field. The competition between these two mech-
anisms of intercluster interaction leads to different types of structural and charge
ordering. Since the magnetic properties of the cluster are dependent on the migra-
tion rate of “extra” electrons such type of phase transitions are accompanied by
a modification of magnetic properties. Hereunder we summarize the main results
obtained in the field of phase transitions in systems of interacting MV clusters.

4.2 Charge and Structural Ordering in Crystals Comprising
Mixed-Valence Clusters

The electronic spectrum of an isolated binuclear MV dn � dnC1 cluster consists of
pairs of levels belonging to the same spin value and possessing different parity:

".2SC1A1g.2u// D �J.S.S C 1/� Sa.Sa C 1/� Sb.Sb C 1//˙ .�1/SC1
.S C 1=2/ t.2S0 C 1/: (23)

Here, S is the total spin of the cluster, J is the parameter of the HDVV exchange
interaction, t is the parameter of double exchange, Sa and Sb are the spins of the
cluster ions, and S0 is the minimal of these spins. For the sake of definiteness the
orbitals are assumed to be spherical, and the symmetry labels of D4h point group are
employed. The presence of these levels in the electronic spectrum of MV dimers
and their mixing by the out-of-phase mode q .q D .Qa � Qb/=

p
2I Qa and

Qb are the full symmetric vibrational modes of the cluster fragments (Fig. 29a))

a
b

a b*

a
b

c

Fig. 29 Charge and structural ordering in dimeric mixed-valence systems: a) structural unit in the
ab�state; b) ferro-distortional ordering; c) antiferro-distortional ordering
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produces a JT situation [143]. Due to the dispersion of crystal modes, the interaction
of the clusters via the phonon field appears, and this interaction induces structural
phase transitions, which will be first shortly described for the d 1� d 2 systems. The
consideration is based on the Hamiltonian

H D
X

l

Hl � 1
2

X

l;l 0

K.l � l 0/d 20 � z
l
� z
l 0
CHL C

X

kl

�k�
z
l
Exp.�ikl/.aC

k
C a�k/;

(24)
where the first term describes the system of non-interacting clusters, the second
term is the dipole-dipole interaction, the third term describes the free phonons, and
finally, the fourth term represents the electron-phonon coupling. d0 is the dipole of a
dn � dnC1 cluster with a fully localized electron, l numbers the clusters in crystal,
K.l � l 0/ D .3 cos2 �ll0 � 1/R�3ll0

aC
k

and ak are the phonon operators, � � ��

numbers the wave vectors and branches of the vibrations, !�� is the frequency of
the vibration �. In the basis of the isolated cluster states 2SC1A1g.2u/ the matrix � z

l

has the form:

� z
l
D
�
0 � lx
� lx 0

	
(25)

A canonical shift transformation QH D exp.R/H exp.�R/ where R is a matrix
operator of the form

R D
X

k;l

.�!/�1� z
l

�
exp.ikl/��k ak � exp.�ikl/�ka

C
k

�
; (26)

is proposed in theory of structural ordering in solids [107]. This transformation diag-
onalizes the phonon part of the Hamiltonian. The transformed Hamiltonian takes on
the form:

QH D
X

l

QHl CHL ��E � d
2
0

2

X

l ;l 0

K.l � l 0/� z
l
� z
l 0
� 1
2

X

l ;l 0

ƒ.l � l 0/� z
l
� z
l 0
; (27)

ƒ.l � l0/ D 2
X

k

j�kj2
�!k

expŒik.l � l0/�

Here, �E is the energy of JT stabilization connected with odd cluster vibrations
q; the fifth term in the Hamiltonian, (27), describes the intercluster interaction
through the phonon field. The Hamiltonian of an isolated cluster QHC .C DA;B/
after transformation contains phonon variables, because the odd coordinate q mixes
the exchange-resonance multiplets with the same spin. Then, the crystal is subdi-
vided into two equivalent sublattices A and B; the clusters of these sublattices are
numbered by letters n andm. The interaction between the nearest neighbors is only
taken into account; the interaction Hamiltonian is the following:

Hint D �d
2
0

2

X

n;m

KAB.n �m/� z
n�

z
m � 1

2

P

n;m

ƒAB.n �m/� z
n�

z
m: (28)
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Then, the mean field approximation is to be applied. The thermal averages �A D
h�An i and �B D h�Bn i describing simultaneously the dipole moments and the distor-
tions in sublattices A and B serve as the order parameters. For the low temperature
range �!k > kT the problem reduces to the static one. The magnitude

DAB D
X

m

.d 20K
AB.n�m/CƒAB.n �m//C

�
�

0
(29)

plays the role of a molecular field parameter; in the case of structural phase transi-
tions accompanied by a homogeneous crystal deformationDAB includes the param-
eter � of intercluster electron-deformational coupling [114]. The transfer parameter
t in this case is substituted for the reduced one, Qp D t exp

� � 2P
k

j�kj2=.�!k/2
�
.

The parameter Qp represents the tunnel splitting of the ground vibrational level.
For DAB > 0 both the dipole moments and the structural distortions have parallel
alignment, i.e. charge and structural ordering of the ferro-distortional type occurs
(Fig. 29b). A structural phase transition forDAB > 0 leads to a homogeneous defor-
mation of the crystal, as well as to the reduction of the crystal symmetry. In the
opposite situation, DAB < 0, the antiparallel arrangement of the structural distor-
tions and dipole momenta of the A and B sublattices takes place. In this case, the
macroscopic deformation of the crystal does not arise; but the symmetry of the crys-
tal, as for DAB > 0, becomes lower. The antiferro-distortional structural ordering is
accompanied only by doubling of the unit cell of the crystal and the appearance of
antiferroelectricity (Fig. 29c). If the contributions from the intercluster dipole-dipole
interaction and interaction of the clusters through the phonon field to the parameter
DAB are of the same sign, then the electron-phonon coupling promotes stabiliza-
tion of a charge-ordered phase. For different signs of these contributions, the charge
and structural ordering destabilize one another. From physical considerations, it is
clear that delocalization of the electron leads to a gain in the energy of the cluster
by Qp=2 or Qp for states with S D 1=2 and S D 3=2, respectively. In a charge and
structurally ordered crystal, the states of a single cluster should stabilize with the
loss of the corresponding energies. If in this case the energy gain due to intercluster
interaction exceeds the destabilization energy, the ordering proves to be energeti-
cally favorable. Thus, the distribution of the electron density in the ground state of
the crystal is determined by the competition between the double exchange leading
to the delocalization of the extra electron, intercluster dipole-dipole interaction and
interaction of the clusters via the phonon field. The system behavior is described by
two dimensionless parameters x D J=j Qpj; y D j Qpj=DAB.

Figure 30a shows three qualitatively different types of the temperature depen-
dences of the order parameter j N� j D jN�Aj D jN�B j in the case of antiferromagnetic
intracluster exchange [133–135]: a) the monotonic decrease of the order parameter
(Fig. 30a, curves 1, 2 and 4); b) the nonmonotonic temperature dependence of j N� j
when it initially increases and then decreases with temperature increase (Fig. 30a,
curve 3); c) the case of the two phase transitions, when the order parameter is non-
zero in the limited temperature ranges (Fig. 30a, curves 5 and 6). In this way the
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Fig. 30 Temperature dependence of the order parameter for J < 0: (a) the case of d1�d2 system:
1) y D 0:5; jxj D 0:3; 2) y D 0:8; jxj D 0:3; 3) y D 0:8; jxj D 0:05; 4) y D 0:9; jxj D 0:25;
5) y D 1:1; jxj D 0:2; 6) y D 1:1; jxj D 0:1. (b) The case of d2 � d3 system, x D 0:08:
1) y D 1:4; 2) y D 1:444; 3) y D 1:448; 4) y D 1:458

system is disordered not only at high temperatures T � Tc2 but also at low tem-
peratures T � Tc1. This unusual phenomenon can be explained as follows. At
low temperatures, when only the ground level 4A1g. Qp > 0; jxj < 1=6/ is pop-
ulated for 1 < y < 4=3, the electron localization in the system with the tunnel
parameter 2 Qp is impossible, the population of the 2A2u softens the conditions of
charge-ordered phase stabilization. Further rise of temperature leads to the popula-
tion of the 2A1g level, and the thermal fluctuations destroy the molecular field; as
a result the crystal again becomes disordered. The theory of charge and structural
ordering was generalized to the case of crystals consisting of many-electron dimeric
clusters d 2 � d 3; d 5 � d 6 [141, 142]. It was shown that in crystals comprising
these clusters (high-spin ions) the case of three phase transitions can be put into
effect as well. In such a way the system can be ordered at low 0 < T < Tc1 and
high Tc2 < T < Tc3 temperatures, while disordered in the range of intermediate
Tc1 � T � Tc2 and high T � Tc3 temperatures (Fig. 30b).

A remarkable manifestation of charge and structural ordering in crystals com-
prising interacting MV clusters is the anomalous behavior of the magnetic moment
caused by the crossover of levels and change of the ground state spin in the molec-
ular field [133–135] (Fig. 31). Curve 3 in Fig. 32 describes the magnetic moment
�.T / for the system of interacting binuclear d 1�d 2 clusters. The low-temperature
limit of the magnetic moment is �.0/ D 1:73�B ; meanwhile, for the system of non-
interacting clusters �.0/ D 3:87�B . This behavior of the magnetic moment arises
from the dipole-dipole interaction and interaction of clusters via the phonon field.
The phase transition from the disordered to the structurally and charge-ordered state
of the crystal is accompanied by a transition between two paramagnetic states of the
crystal.
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Fig. 31 Temperature
behavior of the energy levels
of the cluster in the molecular
field approximation for
J < 0; Qp > 0; y D
0:2; jxj D 0:2
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The spectrum of elementary excitations of molecular crystals comprising MV
d1�d 2 clusters has been studied in [159]. In these crystals the phase transitions are
associated with the condensation of the soft (or low frequency) mode in the spec-
trum of elementary excitations as well as by the softening of the elastic modulus. At
the same time MV systems reveal peculiarities distinct from those of ferroelectrics
with perovskite structure and rare-earth zircons. In ferroelectrics and rare-earth com-
pounds the softening of the collective mode frequency usually takes place for a
single temperature, while in MV crystals in the case of two phase transitions a
branch of elementary excitations may exist, the frequency of which proves to be
zero in the finite temperature range T < Tc1. Moreover, for the same range of intra-
and intercluster parameters, the elastic modulus falls to zero at two points. Charge
and structural ordering in crystals based on trimeric MV clusters, as well as the
related phenomena, have been discussed in detail in [120–134, 153–167].

4.3 Quasidynamical Model for the Cooperative Jahn–Teller
Effect. Vibronic Intervalence Optical Bands

MV clusters usually exhibit characteristic absorption bands within the infrared
or visible spectral ranges. These bands are related to light-induced transfer of
the “extra” electron between metal ions. This absorption is called intervalence,
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while the corresponding bands are denoted as electron transfer bands. Since a
mononuclear complex cluster moiety does not exhibit intervalence absorption,
the latter is one of the most important features of the phenomenon of mixed
valency. A classical example is represented by the so-called Creutz-Taube ion
Œ.NH3/5Ru-N-N-Œ.NH3/5�

5C.
The “extra” electron creates a deformation of the crystal surroundings, and

therefore gives rise to the vibronically assisted charge transfer bands that have an
appreciable width and a characteristic shape. The quantum-mechanical approach
to band shape calculations based on the numerical solution of the pseudo JT
problem in a finite molecular system cannot be applied to the description of many-
particle system of interacting clusters. To overcome this fundamental difficulty,
an approximate quasidynamical approach was proposed [131, 138, 144, 146] to
describe electron transfer bands in MV charge-ordered systems. The idea of this
approach lies in the use of the adiabatic approximation in the calculation of the
order parameter of a charge-ordered crystal. The second stage within the frame-
work of the molecular field approximation method consists in solving the dynamical
(quantum-mechanical) vibronic problem for a single cluster affected by the molec-
ular field produced by the charge-ordered crystal. Then the vibronic wavefunctions
are utilized for electron transfer band shape calculation.

Let us consider a crystal, whose structural units are MV d 0�d 1 dimeric clusters.
The Hamiltonian of the crystal can be presented as:

H D H0 C �!�
X

l

ql�
l
x C

X

l

H l
L;

H l
L D

X

l

�!

2

 

q2l �
@2

@q2
l

!

(30)

where the Hamiltonian H0 includes the Hamiltonian of isolated non-interacting
clusters and the intercluster dipole-dipole interactions; the second term describes the
interaction of each cluster with the out-of-phase mode ql ; � is the dimensionless
(in units of �!) vibronic coupling constant, the third term describes the free vibra-
tions of the clusters. The mode ql is assumed to be local, and the dispersion of the
vibrations is not taken into account. In the molecular field approximation, the total
Hamiltonian of the crystal can be expanded as a sum of single-cluster Hamiltonians
QHl QHl D H l

L C �! t� lz C �!� ql�
l
x � Ld 20 N�� lx (31)

where t is the dimensionless transfer parameter, N� D Nd=d0. Within the frame-
work of the quasidynamical approach, at the first stage the kinetic energy of
the nuclei is neglected, and one obtains a self-consistent equation for the order
parameter in the adiabatic approximation. A family of curves N� D Nd=d0 is pre-
sented in Fig. 33 in order to illustrate the effect of the vibronic interaction on the
temperature-dependence of the order parameter. Calculations of the temperature-
dependence of the mean dipole moment performed in the semiclassical approxi-
mation have shown that: (1) for weak vibronic coupling the temperature behavior
of the order parameter does not differ from that in the rigid lattice. The phase
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Fig. 33 Temperature-dependence of the order parameter a) t D 1:0; t=� D 0:8: 1) � D 0:1;
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transition temperature is determined by the competition between the stabilizing
effect of intercluster interaction and tunnel intracluster interaction; (2) with increase
of the vibronic coupling the phase transition temperatureTc and the maximum value
of the mean dipole moment increase. The vibronic interaction leads to an addi-
tional localization of the extra electron, as well as to the expansion of the range
of parameters for which charge ordering can be observed; (3) for strong vibronic
coupling the electron transfer is suppressed, and the phase transition temperature
is only determined by the intercluster interaction energy. Thus, from the physical
point of view, the order parameter determined in the semiclassical approximation
reveals physically correct peculiarities of the temperature behavior in the cases of
strong, intermediate and weak vibronic coupling. At the following stage, the single
cluster vibronic problem with the Hamiltonian (31), wherein the order parame-
ter is determined semiclassically, is solved. The vibronic wave functions of the
crystal are written as the expansions over unperturbed electronic and vibrational
states:

ˆ�.r; q/ D
1X

nD0
.u�n'b.r/�n.q/C a�n'a.r/�n.q// (32)

Here, �n.q/ denotes the harmonic oscillator wave-functions, 'a.r/ and 'b.r/ cor-
respond to the states of electrons localized on a and b ions, the index � numbers
the hybrid cluster states in the molecular field. It should be noted that, within the
scope of the adopted approach, the quantum properties of the vibronic states in
a self-consistent field are taken into account. Therefore, it is reasonable to call
the proposed approximation quasidynamical. The vibronic states obtained within
the scope of the quasidynamical approach are hybrid, i.e. retaining the quantum
properties of both electronic and vibrational states. In the case of strong vibronic
coupling, i.e. in the case of adiabatic potentials possessing deep minima both the
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Fig. 34 Temperature-dependence of the absorption coefficient (in arbitrary units)
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ordered and disordered states, the band has two maxima (Fig. 34a) at high tem-
peratures T �Tc . The high-frequency maximum is related to the Franck-Condon
transition. This transition can be associated with the vertical transition from the
minimum of the adiabatic potential lower sheet to the upper sheet. The temperature-
dependence of this band maximum is related to two physical factors: (1) explicit
temperature- dependence of the cluster band shape that takes place in the case of
the fixed shape of the adiabatic potential sheets; (2) temperature-dependence of the
order parameter, which determines the temperature-dependent shape of the clus-
ter adiabatic potentials. When temperature decreases, the band narrows and shifts
to the high-frequency range. When the vibronic coupling parameter decreases, the
low-frequency maximum of the optical curves (in the vicinity of Tc) disappears
and turns into a shoulder (Fig. 34e). If the coupling is further reduced, this maxi-
mum is absent at any temperature. For all parameters and temperatures the charge
transfer bands remain essentially asymmetric and possess a long tail in the high-
frequency range. It is to be noted that in the intermediate and weak coupling range
the semiclassical approach does not describe adequately the contour of absorption
band, both in the cases of low and high temperatures. In this case the quasidynam-
ical curves are bell-shaped, and significant absorption takes place in the classically
forbidden region �	 < 2t . At high temperatures the semiclassical approximation
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can hardly be applied to the case of moderate vibronic coupling. The elucidated
intervalence band features corroborate the existence of the charge-ordered state
and provide unique information about the key parameters of interacting clusters
in crystal charge-ordered state and phase transitions.

4.4 Pseudo Jahn–Teller Problem of Mössbauer Spectra
of Charge-Ordered Biferrocenium Crystals:
Coexistence of Localized and Delocalized States

The charge-ordering characteristics and attributes are exhibited most of all in
Mössbauer spectra of biferrocenium derivatives crystals containing interacting dim-
eric MV iron clusters. It will be shown that an intricate feature of the Mössbauer
spectra of these compounds can be attributed to a pseudo JTE in the quantum
regime. Reviewing briefly the experimental results [117, 119–123, 173–176] at
least three types (I,II,III) of Mössbauer spectra can be distinguished: (a) in type I
Mössbauer spectra at low temperatures there are two doublets with isomeric shifts
and quadrupole splittings that are typical for Fe2C and Fe3C ions. When the tem-
perature is raised, the lines corresponding to the two doublets draw together, and
eventually, at high temperatures beginning with a certain critical value, there is only
one Mössbauer doublet with averaged parameters; (b) The low-temperature type II
spectrum is composed of two doublets, corresponding to Fe2C and Fe3C ions. In
the intermediate temperature range simultaneously with the two doublets of local-
ized Fe2C and Fe3C ions there is also observed the averaged spectrum. The overall
spectrum in this intermediate temperature range contains three doublets. When tem-
perature rises, the intensity of the central doublet lines increases. At the same time
the two Fe2C and Fe3C doublets draw together and eventually, at high tempera-
tures, the overall spectrum is transformed into the averaged spectrum. This was
observed in 1060-dibromobiferrocenium dibromoiodate [121], biferrocenium triio-
date [117]. (c) Type III spectra contain over two doublets within a wide temperature
range [119, 120].

The qualitative explanation [153,155] of the Mössbauer spectra is the following.
Under the assumption that the orbitals 'a.r/ and 'b.r/ overlap relatively weak, the
spatial distribution of the electronic density, both for the ground and excited states
of the binuclear cluster of low-spin iron in biferrocenium derivative crystals case, is
given in the static .� D 0/ case by the function:

�sym.r/ D
�j
a.r/j2 C j
b.r/j2

�
=2 (33)

One can see that the electronic density at ions a and b is the same (Fig. 35a), not
only in the isolated cluster, but also in the symmetric cluster in the charge-ordered
crystal when T � Tc . In the charge-ordered state each cluster is under action of an
averaged molecular field produced by the adjacent clusters; therefore, the localized
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Fig. 35 Schematical picture
of the distribution of the
electronic density in a
MVcluster: a-disordered
phase, b-ordered phase
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states 'a.r/ and 'b.r/ energies are not identical (Fig. 35b). The cluster energy in a
molecular field is the following:

"1;2 D ˙.p2.�!/2 C .Ld 20 N�/2/1=2 (34)

The electronic density distribution for the ground state with the energy "2 is
found as:

�asym.r/ D .1=2/
�
1CLd 20 N�="1

� j
a.r/j2C .1=2/
�
1 � Ld20 N�="1

� j
b.r/j2 (35)

The molecular field causes an asymmetric distribution of the electronic density, both
in the ground and excited states (Fig. 35b). This distribution results in two doublets
in Mössbauer spectrum. When the temperature rises, the molecular field Ld20 N� tends
to zero, and the Mössbauer spectrum amounts to a single averaged doublet (delo-
calized spectrum). The static model explains thus only type I spectra and cannot
explain in principle the coexistence of localized and delocalized spectra.

If one refers to the vibronic PKS model and introduces the cluster adiabatic
potential in the molecular field, it becomes asymmetric and looks like:

U1;2 D .�!=2/ q2 ˙ �!
�
p2 C �� q �Ld 20 N�=�!

�2�1=2
(36)

Consequently, the distribution of the electronic density in the inequivalent min-
ima becomes asymmetric (Fig. 36b, c). When vibronic coupling is strong .�2>p/
and the intercluster interaction L Ndd0 is appreciable, the upper and lower adiabatic
potential branches have minima at

q1.2/ 	 ˙�; q3 D �Ld 20 N�=�!�: (37)

The corresponding values of U2.q1.2// and U3.q3/ are approximately the following:

U2.q1.2// 	 �!
���2=2˙ Ld 20 N�=�!

�
; U3.q3/ 	 �!

�
Ld 20 N�

�2
=2�2 .�!/2:

(38)
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Fig. 36 Cluster adiabatic potential in disordered (a) and charge-ordered (b,c) crystal states

In the case under consideration, i.e. when the vibronic coupling is strong, at T D 0
only the deepest minimum of the lower adiabatic potential sheet is populated (see
Fig. 36c). In this case the system state is well localized . 2.q1/ 	 'a.r/;  2.q2/ 	
'b.r//, which gives rise to two doublets in the Mössbauer spectrum. As the temper-
ature is increased, the energies of the minima draw together. At the same time the
higher minimum of the lower sheet is being populated, as well as the minimum of
the upper sheet (Fig. 36b). Both lower sheet minima correspond to the asymmetric
distribution of the electronic density, i.e. they yield two doublets (originating from
Fe2C and Fe3C) in the spectrum. The upper sheet corresponds to the symmetric dis-
tribution of the electronic density . 1.q3/ 	 .'a C 'b/=

p
2//, and its population

produces a delocalized component of the spectrum. This physical picture provides
a qualitative condition for coexistence of localized and delocalized spectra. For the
observation of a delocalized spectrum there must take place an appreciable popula-
tion of the upper adiabatic potential sheet. This can occur if the vibronic interaction
is not too strong. Otherwise, the gap between the upper and lower sheets is large,
even for small values of Ld20 N� . On the other side, an increase of Ld20 N� is accom-
panied by the growth of the temperature allowing the population of the symmetric
minimum. In [153,155] the quantitative explanation of different types of Mössbauer
spectra (especially those of type III) was given in the framework of the quasidynami-
cal model. In this model the quadrupole splitting on the ion a and the nuclear isomer
shift ı.�/a for a cluster in the � th vibronic state looks as follows

�E.�/a D
1

2
e2Qn

 

q
�
Fe3C

� 1X

nD0
u2�n C q.Fe2C/

1X

nD0
a2�n

!

;

ı.�/a D ı.Fe3C/
1X

nD0
u2�n C ı.Fe2C/

1X

nD0
a2�n; (39)

Here, Qn is the nuclear quadrupole moment; q.Fe3C/; ı.Fe3C/ and q.Fe2C/,
ı.Fe2C/ are the mean values of the electric field gradients and isomeric shifts for
Fe3C and Fe2C ions. The coefficients u�n and a�n are found from the solution of
the dynamic vibronic problem for the arbitrary values of N�.T /. The expressions for
�E

.�/

b
and ı.�/

b
can be obtained by means of the substitution u�n $ a�n. The total

Mössbauer spectrum F.	/ was obtained summing the spectra yielded by different
cluster vibronic states in the molecular field, taking into account their equilibrium
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populations and F.	/ D Fa.	/ C Fb.	/. The form-function of the Mössbauer
doublet produced by each cluster nucleus is described by the superposition of the
Lorentz curves:

Fc.	/ D 1

Z

X

˙

X

�

exp.�E�=kT / �

�2 C .	 � ı.�/c ˙ .�E.�/c =2//2
: (40)

The spectra are calculated (Fig. 37) using the following parameters characteristic
of low- spin Fe2C; Fe3C ions e2Qnq.Fe2C/=2 D 2mm s�1; e2Qnq.Fe3C/=2

a b

c d

Relative contributions from the vibronic levels:
0: 40.175% 1: 24.229% 2: 14.437% 3: 8.712% 4: 5.196%
5: 3.141%      6: 1.879% 7: 1.139% 8: 0.682% 9: 0.411%

Relative contributions from the vibronic levels:
0: 50.272% 1: 16.798% 2: 16.624% 3: 5.749% 4: 5.418%
5: 2.039%      6: 1.689% 7: 0.691% 8: 0.512% 9: 0.208%

Relative contributions from the vibronic levels:
0: 51.585% 1: 18.184% 2: 15.665% 3: 6.618% 4: 4.189%
5: 1.863%      6: 1.006% 7: 0.426% 8: 0.309% 9: 0.155%

Relative contributions from the vibronic levels:
0: 50.322% 1: 23.913% 2: 13.877% 3: 6.140% 4: 2.901%
5: 1.210%      6: 0.868% 7: 0.437% 8: 0.219% 9: 0.115%

Fig. 37 Mossbauer spectra of charge-ordered MV dimers of low-spin iron in the case of a) � D
3:0; p D 0:5; � D 1; T D 0:9750Tc ; b) � D 2:5; p D 0:5; � D 1; T D 0:9000Tc ;
c) � D 2:0; p D 1:0; � D 1; T D 0:9005Tc ; d) � D 1:5; p D 1:0; � D 1; T D 0:9348 Tc .
The low curve is the full spectrum obtained by the summation of partial spectra. The numbering of
the partial spectra from separate vibronic levels � D 0; 1; : : : from the bottom to up is accepted in
Figures a, b, c, d. The relative contributions from the vibronic levels are indicated in each case
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D 0:4mm s�1; �.Fe2C/ D �.Fe3C/ D 0:14mm s�1; ı.Fe2C/ D ı.Fe3C/ D
0:486mm s�1 [112]. These spectra are conventionally referred to as the cases of
strong, moderate and weak vibronic coupling. In the case of strong vibronic cou-
pling .� D 3/ and a relatively weak transfer .t D 0:5/ even at temperatures
close to the transition temperature Tc , the spectrum consists of two doublets, and
all significantly populated vibronic levels give rise to the same quadrupole split-
ting peculiar to Fe2C and Fe3C ions (Fig. 37a). At the phase transition temperature
the spectrum is completely averaged; all vibronic levels provide delocalized con-
tributions to the summary spectrum. In such a way in the case of strong vibronic
coupling the model reproduces type I spectra. For lower value of the vibronic cou-
pling constant .� D 2:5/ and t D 0:5 the spectrum at low temperatures consists, as
in the previous case, of two doublets. At T D 0:9000 Tc (Fig. 36b) only the ground
vibronic level provides two doublets corresponding to a localized spectrum. The
Mössbauer spectrum lines originating from the first and second excited vibronic lev-
els have quadrupole splittings different from�EQ.Fe2C/ and�EQ.Fe3C/. Finally,
the partial spectra originating from excited states .� � 3/ belong to the delocalized
spectrum type, i.e. they have averaged parameters. The delocalized spectrum com-
ponent has an appreciable intensity and is clearly visible in the total spectrum. The
spectrum consists of three doublets, two of them localized and one delocalized. At
T D Tc the spectrum is averaged. Thus, the Mössbauer spectrum of type II is fea-
sible under intermediate vibronic coupling. In the case of weaker coupling .� D 2/
and a not too large electron transfer parameter .t D 1/ and intercluster interaction
.Ld20=�! D 1/, the total spectrum at relatively low temperatures approximates a
superposition of Fe2C and Fe3C spectra, because the contribution of delocalized
states is small. When the temperature rises, the contribution of delocalized states
significantly increases. When summing up all delocalized partial spectra along with
the two doublets originating from the ground vibrational state, beginning with cer-
tain temperatures at which the excited vibrational levels are effectively populated,
there obviously appears also an averaged spectrum of a delocalized type. This effect
of coexistence of localized and delocalized spectra is very clearly seen in Fig. 37c.
At T D 0:9005 Tc the delocalized component becomes more intensive, its intensity
making up about a half of the whole spectrum intensity. Since the localized spec-
trum portion is concentrated in two doublets, the delocalized portion seems visually
much more intensive, this effect becomes more pronounced due to the fact that the
delocalized component is slightly broadened and is distinctly resolved against the
background of two doublets. Therefore, the vibronic theory of phase transitions pro-
vides a precise physical explanation of the coexistence of localized and delocalized
spectra discovered in experiments of Hendrickson’s group. We can also see that
there is a full theoretical confirmation of the possibility to observe a strong delo-
calized spectrum component, which is resolved as it is stated in [112, 115, 116].
The vibronic coupling constant, for which the Mössbauer spectrum contains three
doublets, is close to that � D 1:8 determined from the JT energy and the energy
of the vibrational quantum characteristic for biferrocenium derivatives. At T D Tc

and higher temperatures the calculations lead to the delocalized spectrum experi-
mentally observed. In the case of intermediate coupling � D 1:5; t D 1 (Fig. 37d)
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the partial spectra with � � 2 become delocalized at relatively low temperatures.
However, their contribution to the total spectra is small, and, therefore, at low tem-
peratures the total spectrum is split into two doublets. With the temperature rise
two additional doublets appear in the spectrum; their intensity is comparable with
the localized spectra intensity. The spectrum of a localized type is mainly due to
the contribution of the ground vibronic level .� D 0/. The first vibronic state with
� D 1 gives two doublets with close quadrupole parameters, which differ essen-
tially from those of Fe2C and Fe3C. Therefore, the partial spectrum lines belonging
to � D 1 can be resolved against the background of two spectrum doublets with
� D 0. On the other hand, the delocalized spectrum originating from excited levels
with � � 2 is not intensive enough to prevent the resolution of doublets arising from
the state with � D 1. Thus, in the total spectrum there are observed not three but
four doublets. This treatment explains the spectra of the compounds biferrocenium
hexafluorophosphate [119, 120] and exo,exo-1.12-dimetyl 1.1-ferrocenophanium
triiodide [119], for which the best fit procedure gives not two or three but four
doublets (spectra of type III). The results obtained within the scope of quantum
theory can be qualitatively explained in terms of adiabatic potentials. In the case of
strong vibronic coupling under consideration, the lower sheet of the adiabatic poten-
tial has two deep minima at all temperatures. The system states near these minima
may be regarded with a good accuracy as localized, and close to the levels of a har-
monic oscillator. When the temperature changes in the range T < Tc the levels in
two potential wells shift relative to each other, and at T D 0:9 Tc the 0-th vibra-
tional level of the shallow well resonates with the first vibrational level of the deeper
minimum (Fig. 38). The spectrum of localized states of the shallower well may be
visualized as being shifted towards higher energies relative to the deep well spec-
trum. Thus, the excited vibronic states come to resonance. However, due to a large
barrier width, tunneling is suppressed, and the partial Mössbauer spectra possess a
localized character. When the vibronic coupling constant decreases, the width and
height of the barrier between the potential wells diminishes, and for excited states
localized in different wells, the tunnel effect becomes possible. The magnitude of

Fig. 38 Adiabatic potentials
in the molecular field
approximation: � D 3; t D
0:5; � D 1; T D 0:9000Tc
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the tunnel splitting increases with the increase of the quantum number of the local-
ized state. Correspondingly, the excited vibronic states become partially or totally
delocalized. Depending on the degree of delocalization of the excited vibronic state,
the partial spectrum will contain two doublets with quadrupole splittings which dif-
fer from �EQ.Fe2C/ and �EQ.Fe3C/, or one doublet with averaged parameters.
It should be emphasized that the coexistence of localized and delocalized spectra is
essentially a quantum phenomenon closely related to the resonances of the vibronic
levels that cannot be explained in the framework of a semiclassical approach.

5 Pseudo -Jahn–Teller Problem of the Photochromic
Compounds

5.1 Photochromic Effect

During last decade the fascinating phenomenon of the photochromic effect, closely
related to JTE, became a hot problem of molecular magnetism and spectroscopy,
due to its promising application in the design of new memory storage systems at
the molecular level. This phenomenon has been discovered and studied in sev-
eral nitrosyl complexes of transition metal ions [177–182]. At low temperatures,
the most extensively studied sodium nitroprusside Na2ŒFe.CN/5.NO/�:2H2O (SNP)
demonstrates two excited metastable states (MS1 and MS2), induced by visible light
in the region 350–600 nm. At temperatures below 150K, the metastable states are
extremely long-living and do not show any indications of spontaneous and thermal
decay. Both metastable states can be depopulated by temperature rise, or reversibly
converted back to the ground state (GS) by red light irradiation. During the thermal
decay of the metastable states, no emission of radiation could be observed in the
energy range 0.3–5 eV. Calorimetry experiments [183] show that the MS1 state is
higher in energy than the MS2 state. Above 160K, the decay of the metastable states
in SNP obey the Arrhenius law, with the activation energies 0.7 and 0.5 eV for MS1
and MS2, respectively [184]. The change in color exhibited with the generation of
the excited MS1 and MS2 states has been proposed as the basis for an information
storage system, since information can be written and erased reversibly using light
of two different wavelengths [184]. An essential advance in the study of the pho-
tochromic effect came from X-ray diffraction experiments [185, 186], with the aid
of which the geometries of the ground and the two excited metastable states have
been determined. The atomic rearrangements were proved to be far from those that
usually accompany optical excitation in molecules. The Fe-(NO) group was found
to be linear in the GS. The diffraction evidences a bent geometry of the system in the
MS2 state in which NO is sideways bound, while in the MS1 state an interchange
of N and O takes place so that the NO group is connected with Fe through oxygen.
Mössbauer [187] and electron-spin resonance measurements [188] proved that the
GS and both metastable states are diamagnetic. The downshift of the NO stretch
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and Fe-(NO) stretch frequencies suggests weaker bonds for MS1 and MS2 [191].
The metastable states with similar properties have been found in several nitrosyl-
ruthenium and nitrosyl-osmium complexes so that, in fact, the phenomenon is quite
general.

Earlier theoretical studies were focused on the origin of the metastable states.
DFT calculations of the energy of the SNP [192–194] as a function of the angle
∠FeNO revealed that three minima of the ground term correspond to three possi-
ble configurations of the Fe-NO fragment: linear, bent and inverted. At the same
time DFT calculations gave a correct order of the energies of the GS, MS1 and
MS2 states. In detailed ab initio calculations [195] the number of variable structural
parameters was extended, and along with the consideration of the ground potential
surface of the SNP, the consideration in [195] takes into account the transition states
connecting the states GS with MS2 and MS2 with MS1, which elucidates the effect
of the transition states on the photo-isomerisation. The JT coupling mechanism is
discussed as an origin of the structural rearrangement.

A model of the photochromic effect based on the concept of the pseudo JTE
was suggested in [ 196– 197]. This vibronic model allows us to examine the micro-
scopic physical origin of the nuclear rearrangement and the underlying mechanism
of the photochromic effect at the electronic level. At the same time the pseudo
JTE approach can be considered as a background for the dynamical (quantum-
mechanical solution) of the problem of light absorption and emission including the
crucial question of interpretation of the anomalous lifetimes for the excited states
and shape-functions of the optical bands.

5.2 Pseudo Jahn–Teller Vibronic Model
for Sodium Nitroprusside

At the first step we consider the FeNO fragment of the whole SNP that is really
involved in the photochromic reorganization. Following the idea of the PJT effect
we start with the triangular “reference” configuration of the FeNO fragment. For
the sake of simplicity the differences in the masses of N and O is neglected, so
the symmetry is supposed to be C2v (Fig. 39). Although the atomic displacements
in the photochromic reorganization cannot be considered small, we will exploit a
consideration based on normal coordinates. This difficult problem is common for

Fig. 39 Vibrations of the
Fe-(NO) fragment:
1� O; 2� Fe; 3� N;
a - “reference” configuration,
b - non-symmetric
B1 - vibration,
c - full-symmetric
A1 - vibration
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JT systems with strong coupling, and some efficient approaches have been formu-
lated in the theory of so-called non-rigid molecules. The triangular molecule has
two normal vibrational coordinates that span two irreducible representations, A1
and B1. The normal vibrational modes QB1

and q.1/A1
� qA1

of the FeNO fragment

are shown in Fig. 39. Further on, the second fully symmetric vibration q.2/A1
of the

triangular moiety will not be taken into account insofar as its effect is similar to
that of qA1

. Starting from the accepted idealized C2V symmetry of the FeNO frag-
ment of the nitroprusside ion, one can assume that the metastable states are formed
upon a light-induced charge transfer from the highest occupied molecular orbital
(Fe, mainly a2) to the lowest unoccupied orbitals a1 and b1 of mostly �� NO char-
acter [195]. Hereunder, small letters are used for labeling the symmetry of single
orbitals, while capital letters denote the states of the whole FeNO moiety. The basis
includes the states of the system with the following fixed oxidation degrees of the
fragments:

1A1.Fe2C.a21b21a22//; 1B2.Fe3C.a21b21a2/b1.��xNO//;
1A2.Fe3C.a21b21a2/a1.�yNO//:

These states (Fig. 40) are coupled by the electron transfer from the Fe2C-ion to
the �� level of the NO ligand. The PJT problem arises from the mixing of the
1A2 and 1B2 states by the B1 – vibration of the triangle. The coupling of the
states 1A1; 1A2; 1B2 with the fully symmetric vibration of the FeNO fragment
is taken into account as well. In such a way we face a two-mode-three level
pseudo JT problem of the type: .A1 C A2 C B2/ ˝ .A1 C B1/. The non-diagonal
matrix elements h1A2jHej1A1i and h1B2jHej1A1i of the electronic Hamiltonian

Δ1 Δ2

πx, πy

πx
 πy

dxy ,dxz ,dyz

1A1(Fe2+(d6))

1B2(Fe3+(d5) πx
*NO)1A2(Fe3+(d5) πy

*NO)

Fig. 40 Scheme of the electronic states of the Fe-(NO) fragment
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He represent parameters describing the electron transfer from the Fe2C-ion to the
�� level of the NO ligand. At the first step these parameters were put equal to
h1A2jHej1A1i D h1B2jHej1A1i D t . In the model under consideration three
vibronic parameters are involved. The parameter V D h1A2jVB1

j1B2i character-
izes the coupling of the states 1B2.Fe3C.d5/��xNO/ and 1A2.Fe3C.d5/��yNO/ by
the B1-mode. The parameters �1 D h1A2j�A1

j1A2i�� and �2 D h1B2j�A1
j1B2i�

�; � D h1A1j�A1
j1A1i describe the interaction of the states 1A2 and 1B2 with

the fully-symmetric .A1/ mode. The vibronic matrix in the basis of the states
1A2;

1B2;
1A1 can be represented in the following form:

H D
0

@
�2 C �2q
VQ

t

VQ

�1 C �1q
t

t

t

0

1

A : (41)

To reveal the nature of the strongly localized states it is worthwhile to employ the
adiabatic approximation, neglecting thus the nuclear kinetic energy.

5.3 Adiabatic Potentials: Formation of Metastable States Through
the Pseudo Jahn–Teller Mechanism

The shapes of the adiabatic potential sheets are governed by eight parameters:
V; �1; �2; �1; �2; t; !B1

; !A1
. In order to elucidate the conditions which favor

the photochromic effect, the values of the above-mentioned parameters are to be
discussed. For a reasonable value of k 	 105 dyn=cm the frequencies !B1

and !A1

are estimated as 340 and 400 cm�1, respectively. The energy gaps �2 and �1 can
be approximately identified with those between the HOMO and the split compo-
nents of LUMO in the MS2 state. These values are calculated in [195] by the DFT
method and prove to be equal to �2 D 21;185 cm�1 and �1 D 15;850 cm�1. The
vibronic coupling parameter V was roughly evaluated under the assumption that
�1 D �2 D 0; t D 0. If the energy

Ea D �!B1
.�1 C�2/2=8V 2 C V 2=2�!B1

� .�1 C�2/=2 (42)

of the thermally activated transition from the sheet u2.q D 0;Q/ to the sheet u1.q D
0;Q/ is set to be equal to the value of 0.5 eV estimated by the calorimetry meth-
ods [183] for the MS2 state, one can estimate the parameter V as V D 9:65!B1

.
The parameter t was taken in the range 0 � t � 10 !B1

. Insofar as the energy
gap �2 exceeds significantly the gap �1, the parameter �2 was taken bigger than
�1. In Fig. 41 the ground adiabatic potential sheet is shown for an appropriate set
of parameters. One can see that the lower adiabatic potential branch has three min-
ima; the energies of these minima are successively increased, so that the energy
of the ground minimum is �1:93 �!B1

, whereas the energies of the excited minima
are equal to �1:15 �!B1

and �0:84 �!B1
. In such a way, at temperatures below
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Fig. 41 The lower adiabatic
potential sheet U1.q;Q/,
V D 9:8�!B1 ; t D 5:5�!B1 ,
�2 D 6:2�!B1 ; �1D1:5�!B1 ,
�1 D 15850 cm�1;

�2 D 21185 cm�1,
!B1 D 340 cm�1,
!A1 D 400 cm�1
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Table 1 Angles (degrees) for the ground, first and second excited minima of the lower adiabatic
potential sheet (the parameters are the same as in Fig. 41)

Minimum Qi qi Angle ˇ (theor.) Angle ˇ (exp.[9])

Ground �9:63 �3:21 146 176

First excited �0:21 �0:06 74:8 82

Second excited 9:83 �3:28 0:1 3

180K the thermal population of both excited minima is negligible. At the same
time Fig. 41 demonstrates that the potential barrier separating the ground and first
excited minima is lower than that separating the excited minima. A quantitative
estimation of the barrier heights can be made with the aid of Fig. 41, wherein the
adiabatic potential wells are cut by horizontal planes separated by the gaps �!B1

.
The height of the barrier between the ground and the first excited minima is about
7:3�!B1

	 0:3 eV. The barrier between the first and the second excited minima
attains the value 13:7 �!B1

	 0:6 eV. At the next stage the geometrical struc-
ture of the Fe-(NO) cluster corresponding to the minima of the ground adiabatic
potential surface is determined. In the Table the calculated values of the angle ˇi
corresponding to the lowest .ˇ1/ and the excited minima .ˇ2; ˇ3/ of the ground
adiabatic potential sheet are given, together with the experimental values of these
angles determined by X-ray diffraction studies. In Table 1 the dimensionless coor-
dinates Qi and qi of the adiabatic potential minima are also listed. For the set of
parameters so far defined, the obtained values of the angles ˇi are in quite good
agreement with experimental data [186]. So, the lowest minimum corresponds to the
usual bonding of the Fe- ion with NO-group and can be identified with the ground
state. The first excited minimum describes the bent geometry and can be assigned to
the MS2 state. The highest minimum relates to a linear configuration in which the
NO-ligand has rotated by �180ı compared to the GS. Such an arrangement of the
NO-group is characteristic of the MS1-state.

Finally, let us briefly discuss the heights of the barriers separating GS, MS1, MS2
states and the mechanism of population of the metastable states by photoexcitation.
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Fig. 42 The adiabatic
potentials
U1.q;Q/; U2.q;Q/; U3.q;Q/

(the parameters are the same
as in Fig. 41)
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The first excited adiabatic potential sheet U2.q;Q/ has two minima; the high-
est sheet U3.q;Q/ is cone-shaped and possesses one minimum. The light-induced
Franck-Condon transition from the lowest minimum (GS) of the ground adiabatic
potential sheet U1.q;Q/ to the sheet U3.q;Q/ leads to the population of the sin-
gle minimum of this sheet; then the relaxation can be followed by a radiative (or
non-radiative) de-excitation onto the ground adiabatic potential surface, populating
thus with a significant probability the local minimum MS2. Another way of depop-
ulation of the minimum of the branch U3.q;Q/ passes through two minima of the
middle adiabatic potential sheet U2.q;Q/. In this case GS, MS2 and MS1 may be
populated. The light-induced transition of the system from GS to the U2.q;Q/ sur-
face results in the population of the highest minimum of this surface. The decay
of this excitation may lead to the population of GS and MS2. The optical transi-
tions from MS1 and MS2 to U2.q;Q/ have lower energies than that from GS to
U3.q;Q/. However, the transition MS1 ! U2.q;Q/ populates MS2, whereas the
transition MS2! U2.q;Q/, in its turn, transfers the system to MS1. In such a way,
the consideration carried out shows that, in the framework of the adiabatic potential
scheme, it is possible to pass from GS into MS1 and MS2, from MS1 into MS2, and
vice versa, in qualitative agreement with experiment.

The calculated barrier heights are of the same order of magnitude as the exper-
imental values of the activation energies for the metastable states MS1 and MS2
[184]. The obtained relation between the barrier heights (Fig. 41) separating the GS-
state and the metastable states seems to be also correct. At the same time the order
of the minima of the ground potential sheet, the higher barrier between the MS1
and MS2 states along with the absence of a direct contact between the potential
wells corresponding to GS and MS1 leads to the conclusion that the model gives a
decay temperature for the MS2-state lower than that of the MS1-state, and this is in
agreement with experimental data [183, 184]. In spite of the fact that the calculated
barriers are smaller than the experimental values of the activation energies these bar-
riers are sufficiently large to explain the long lifetimes of the MS1 and MS2 states
(Fig. 42).
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6 Dynamic Vibronic Problem of the Valence-Tautomeric
Interconversion in Cobalt Compounds

6.1 Tautomeric Compounds [Low-Spin
Co(III)(N^N)(SQ)(CAT)]$[High-Spin Co(II).N^N/.SQ/2]

The concept of valence tautomerism was introduced to define the properties of a
molecular adduct A�DC (AD acceptor, DD donor) whose electronic ground state
is described by two or more isomers with different charge distributions. The inter-
conversion between different valence tautomers is accomplished by an intramolec-
ular electron transfer according to the following equation A-.DC/, .AC/-D. To
obtain molecular adducts characterized as valence tautomers, two conditions must
be simultaneously satisfied: the degree of covalency in the interaction between
A and D must be low, and the energy of the frontier orbitals of the two coun-
terparts must be similar. The transition metal complexes of Co, Mn, Fe, Rh, Ir
and Cu with ligands derived from substituted o-benzoquinones show valence tau-
tomerism [191–211]. Large changes in optical and magnetic properties are found
to associate with valence tautomeric transformation. The most pronounced effects
in spectroscopic and thermodynamic properties have been identified for Co com-
plexes with two o –quinone derived ligands, for which the interconversion can be
described by the equation: [low-spin(ls)-Co3C .N^N/sq1�cat2�]$[high-spin(hs)-
Co2C.N^N/.sq�1/2], where N^N is a chelating diiminimum ligand; the ligands
semiquinone (sq) and catecholate (cat) can be obtained from o-quinone by an
addition of one and two electrons to the empty �� molecular orbital [218]. The
dynamical processes in a valence tautomeric cobalt complex are schematically
shown in Fig. 43.

For a complex in solution the valence tautomeric interconversion occurs grad-
ually over a large temperature range of about 100K, and the magnetic moment
increases from 1:73 �B at low temperatures to 4–4:4�B at higher temperatures. With
temperature growth, the visible absorption spectrum characteristic of the ls-Co(III)-
tautomer completely converts to that belonging to the hs-Co(II)-tautomer [214]. At
low temperatures in the near infrared region of spectrum of complexes in solution
a band appears at 2,500 nm [214]. The intensity of this band decreases significantly
as the temperature is increased from 15 to 295 K. In the present section we discuss
the magnetic properties of the valence tautomeric Co-complex, the role of JTE in
the formation of the optical band in the near infrared range, the nature of this band,
and the reasons of its temperature transformation. The dynamic vibronic JT problem
appears in the description of the magnetic and optical properties of the Co valence
tautomeric complex due to the coupling through electron transfer of the localized
molecular states arising from configurations [ls-Co(III),cat,sq] and [ls-Co(II),sq,sq]
of the complex. The description of the magnetic properties of valence tautomeric
systems based on the adiabatic approximately has been carried out in [212]. The
model developed in [212] involved electron transfer processes, magnetic exchange,
vibronic and cooperative interactions. The validity of the adiabatic approximation
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Fig. 43 Possible intramolecular electron transfer processes present in a cobalt complex with two
semiquinone anion ligands

for the evaluation of the optical JT band is restricted to the case of strong vibronic
coupling and/or high temperatures. Detailed studies also show that in JT systems
some regions of the absorption spectrum for visible light for whose calculation
the non-adiabatic effects are important cannot be described, even in the favorable
case of high temperatures and strong vibronic coupling [225]. Similar problems
also appear in the description of optical bands of tauotomeric systems arising in
the infrared region and are related to light-induced electron transfer within a single
valence tauotomeric molecule, so far as in this case the mixing of the tunnel states
of the molecule by molecular vibrations results in the pseudo JTE. An adequate
description requires quantum-mechanical consideration that takes also the kinetic
energy of the nuclei into consideration.

6.2 Dynamic Vibronic Problem for a Valence Tautomeric System

A vibronic dynamic problem of valence tautomerism in a single molecule was dis-
cussed in [221,222]. As a basis set we take the following states of the molecule with
localized electrons arising from its four configurations:

I. ls-Co(III)(a),cat(b),sq(c);
II. ls-Co(III)(a),sq(b),cat(c);

III. ls-Co(II)(a),sq(b),sq(c);
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IV. hs-Co(II)(a),sq(b),sq(c);

In the molecular states arising from configurations I and II the total spin of the
molecule is 1=2. For states arising from configuration III the spin values are 1/2,1/2
and 3/2. Configuration IV gives rise to spin states 1/2, 3/2, 3/2, 5/2. States of con-
figurations I, II possessing the spin 1=2 are connected by electron transfer with same
spin state of configuration III. The electron transfer between states I and II is also
included in the model owing to the mixed-valence structure of ligands. The key
parameters of the problem are the multielectronic exchange parameters J3 and J4
for states of configurations III and IV, the parameters t1 and t2 that describe the
electron transfer from the cat2� ligand to the ls-Co(II)-ion and from the cat2� to
sq1� ligand. The interaction of the Co-ion with the breathing A1 mode is taken
into account. Correspondingly, two vibronic parameters �3 and �4 which describe
the interaction of the Co-ion in the states ls-Co2C and hs-Co2C with the A1 mode
appear in the problem. For numerical calculations of the eigenvalues and eigenvec-
tors of the vibronic dynamic problem 60 unperturbed oscillator states were taken
into account (general dimension of the vibronic matrix 360 � 360).

6.3 Magnetic Moments and Absorption Bands

The Van-Vleck equation [78] and the vibronic levels are used for the calculation
of the magnetic moment of the valence tautomeric molecule. The following val-
ues of the key parameters were utilized in calculations: �3 D 1;050 cm�1; �4 D
1;575 cm�1; J3 D 40 cm�1; J4 D 30 cm�1; �3 D 1;145 cm�1; �4 D 2;018 cm�1;
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Fig. 44 Plot of the magnetic moment versus temperature for the parameters: �3 D
1;145 cm�1; �4 D 2;018 cm�1; �3 D 1;050 cm�1; �4 D 1;575 cm�1; J3 D 40 cm�1; J4 D
30 cm�1; �! D 390 cm�1; t2 D 73 cm�1; (1), (2) t1 D 1;075 cm�1; (3) t1 D 850 cm�1; (4)
t1 D 800 cm�1. The curves 1 and 2 were calculated in the dynamic and semiclassical models,
respectively
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Fig. 45 Temperature-dependence of the absorption coefficient for the parameters: �3 D
1;145 cm�1; �4 D 2;018 cm�1; t1 D 1;075 cm�1; t2 D 73 cm�1; J3 D 40 cm�1; J4 D
30 cm�1; �3 D 1;050 cm�1; �4 D 1;575 cm�1; ' D 130ı; �! D 390 cm�1; T D 295K:
dashed line - contribution to the band shape of the optical transitions between the ground vibronic
state and excited ones.

t1 D 1;075 cm�1; t2 D 73 cm�1; �! D 390 cm�1 (Fig. 44, curves 1, 2), where �3
and �4 are the energies of the states arising from configurations III and IV with
allowance only for crystal-field splitting and intra- and intercenter Coulomb inter-
actions, these energies are counted off from the energy of the configurations I and
II. The values of the parameters �j ; Jj ; �j ; .j D 3; 4/; t1; t2 are close to those
estimated in [212] from the crystal field model and experimental data. The magnetic
moment (Fig. 44) increases gradually from 1:73 �B to 4:34�B with the increase of
temperature. The valence tautomeric interconversion takes place in the temperature
range of about 100 K. The obtained values of the magnetic moment at low and high
temperatures, as well as the width of the temperature range wherein the transforma-
tion occurs, are close to experimental ones. Curves 3 and 4 in Fig. 44 are calculated
with the same parameters �j ; �j ; Jj ; t2 as curves 1 and 2, but smaller values for
t1 are taken. For t1 D 850 cm�1 the magnetic moment increases abruptly (Fig. 44,
curve 3). For the parameter t1 D 800 cm�1 (Fig. 44, curve 4) the low-temperature
limit of the magnetic moment corresponds to the total spin S D 5=2. For all tem-
peratures the band K.	/ � 	F.	/ (Fig. 45) remains essentially asymmetric and
possesses a shoulder in the high-frequency range .� D 2;000 nm/ and a long tail
in the low-frequency range. The position of the band at �m D 2; 500 nm remains
unchanged with temperature rise. The intensity of the charge transfer band dimin-
ishes with temperature rise. The peculiarities of the temperature behavior of the
charge-transfer band can be explained as follows. In the temperature range 15–70K
the lowest two vibronic levels with � D 0 and � D 1 corresponding to S D 1=2

are mainly populated. Therefore, at these temperatures the charge-transfer band has
its maximum intensity, while the magnetic moment acquires its minimum value
1:73 �B . The obtained temperature-dependence of the charge transfer band is in
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accordance with that of the magnetic moment and qualitatively agrees with the
experimental data [214].

7 Final Remarks

In this review we have presented a brief outline of the applications of the JT con-
cepts in molecular magnetism. A general conclusion that can be derived from this
review is that the JTE is one of the most general concepts that allows to comprehend
a wide class of phenomena closely related to the main trends in molecular mag-
netism. Essential results were elucidated in the study of so-called spin-frustrated
metal clusters possessing orbitally degenerate states. In these systems JT coupling
produces a dynamical symmetry lowering and thus reduces the anisotropy caused
by AS exchange, giving rise to a specific field and temperature dependence of mag-
netization. The problem of spin-frustration and consequences of orbital degeneracy
are shown to have deep consequences in the topical areas of solid state physics
[223]. It was shown that all aspects of the problem of mixed valency are closely
related to the JTE. JT coupling was shown to determine the degree of localization
of the mobile electron in MV clusters, and it thus directly affects all spectroscopic
and magnetic properties of MV compounds. It is also demonstrated that the con-
cept of pseudo JTE lies in the background of the cooperative phenomena, like
charge and structural ordering in extended systems comprising MV units as building
blocks. It is remarkable that the quantum properties of the JT vibrations in extended
systems, like quantum resonaces, have a clear signature in the experimental observa-
tion (Mössbauer spectra) and can be described within the so-called quasidynamical
approximation. It was demonstrated that a JT-based approach allows one to under-
stand the microscopic origin of the photochromic transformation and formation of
the extremely long-living metastable states in photochromic systems. Finally, a cru-
cial role of the pseudo JT coupling mixing metal-ligand orbitals is indicated as a
microscopic origin of tautomeric transformations and the origin of the magnetic
properties and intervalence absorption in this class of optically active compounds.

In this article we have not discussed an important problem of exchange inter-
actions in magnetic clusters based on orbitally degenerate metal ions inherently
related to the magnetic manifestations of JTE. This issue (which is a key issue for the
problem of structural and charge ordering in crystals [112, 113]) deserves a special
review, which is why here we give only some general comments and references.
If the constituent ions are placed in a high-symmetric (octahedral) surrounding,
their ground states can be orbitally degenerate, so that the electronic shells carry
not only spin but also orbital angular momentum contributions. Under this con-
dition the conventionally accepted HDVV Hamiltonian is inapplicable even as a
rough approximation. A general form of the effective Hamiltonian for the systems
containing ions with the unquenched orbital angular momenta has been proposed
in [113] and deduced in the general form in [224–230]. The exchange interaction
in clusters comprising orbitally degenerate ions can not be expressed in terms of
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spin operators only, like for the HDVV Hamiltonian supplemented by relatively
small anisotropic contributions. The Hamiltonian in the case of degeneracy becomes
orbitally dependent, which means that it includes along with the HDVV contribution
also orbitally-dependent terms that are, in general, of the same significance as spin-
spin coupling. The main magnetic manifestations of these new kinds of interaction
is a strong magnetic anisotropy of orbital nature. Since the electronic shells are
orbitally degenerate, the JT coupling should be taken into account along with the
orbitally dependent terms in the effective Hamiltonian. Since the JTE can be con-
sidered (in terms of the adiabatic approach) as a symmetry lowering, a significant
reduction of the magnetic anisotropy by the JTE is expected, like it was observed
in the degenerate spin-frustrated systems so far discussed. Quantum-mechanical ab
initio calculations of orbitally dependent exchange interactions in a series of cyanide
bridged systems, as well as the microscopic approach to the evaluation of the JT
coupling parameters, are given in [231–236].

In the limit of strong JTE the distortions become stable so that the degeneracy
is removed. In the adiabatic limit the ground states are orbital singlets so the mag-
netic interactions can be treated within the HDVV Hamiltonian. This case of strong
JT coupling is observed in the so-called Mn12-acetate that was the first SMM dis-
covered [1,2]. The system is composed of a tetrahedral core of oxygen-coordinated
Mn4C ions, which are surrounded by a ring of eight Mn3C ions with oxo and acetate
coordination. Antiferromagnetic interactions between the Mn4C and Mn3C ions lead
to an S D 10 ground state. The Mn3C coordination environment is JT distorted [71–
73] and the distortions are correlated within the molecule to give a structure with the
specific axes of local anisotropic contributions. The concerted action of the result-
ing Mn3C single-ion anisotropies leads to an overall easy-axis-type anisotropy of
the S D 10 cluster ground state. It is just this anisotropy that creates a barrier for the
reversal of magnetization in SMM Mn12-acetate. As was demonstrated in [91], the
situation of a strong JTE resulting in static distortion occurs in a ferromagnetically
coupled Mn19 aggregate with a record S D 83=2 ground spin state. This shows that
the JT based “cooperativity” at the molecular level is a quite common (at least for
Mn compounds) phenomenon for high-nuclearity magnetic clusters that is closely
related to a general problem of interplay between orbital ordering and cooperative
JTE [104, 112–114].

Finally, an interesting area of magnetoelastic instability resulting in field-induced
cooperative phenomena in molecule-based magnets has recently been opened [189,
190]. This area is expected to be promising in the control of the properties of
molecular magnetic materials by means of external fields.

Acknowledgements This review article is partially based on our papers published in coauthor-
ship with M. Belinsky, J.J. Borrás-Almenar, J.M. Clemente-Juan, E. Coronado, A. Müller, S.
Ostrovsky, O. Reu, A. Tarantul. B.T. thanks Israel Science Foundation for the financial support
(grant no. 168/09). We thank our colleagues for the long-term collaboration and many fruitful
discussions. Financial support from the German-Israeli Foundation for Scientific Research and
Development (grant G-775–19.10/2003) and USA-Israel Binational Science Foundation (Grant
No. 2006498) is gratefully acknowledged. Financial support from the Supreme Council for Science
and Technological Development of Moldova is also appreciated.



Jahn–Teller Effect in Molecular Magnetism: An Overview 613

References

1. D. Gatteschi, R. Sessoli, Angew. Chem. Int. Ed., 42, 268 (2003)
2. D. Gatteschi, R. Sessoli, R.J. Villain, Molecular Nanomagnets (Oxford University Press,

Oxford, 2006)
3. D. Gatteschi, R. Sessoli, J. Mag. Mag. Mat. 272–276, 1030 (2004)
4. A. Bencini, D. Gatteschi, Electron Paramagnetic Resonance of Exchange Coupled Systems

(Springer, Berlin, 1990)
5. O. Kahn, Molecular Magnetism (VCH, New York, 1993)
6. R. Willett, D. Gatteschi, O. Kahn (eds.), Magneto-structural Correlation in Exchange

Coupled Systems, NATO ASI Series C140 (Dordrecht, Kluwer, 1985)
7. J. Miller, A. Epstein, MRS Bull. 21 (2000)
8. G. Christou, D. Gatteschi, D.N. Hendrickson, R. Sessoli, MRS Bull. 25, 66 (2000)
9. R. Sessoli, H.-L. Tsai, A.R. Schake, S. Wang, J.B. Vincent, K. Folting, D. Gatteschi, G.

Christou, D.N. Hendrickson, J. Am. Chem. Soc. 115, 1804 (1993)
10. R. Sessoli, D. Gatteschi, A. Caneschi, M.A. Novak, Nature 365, 141 (1993)
11. J.M. Clemente-Juan, E. Coronado, Coord. Chem. Rev. 193–195, 361 (1999)
12. M. Verdaguer, A. Bleuzen, J. Vaissermann, M. Seuileman, C. Desplanches, A. Scuiller, C.

Train, G. Gelly, C. Lomenech, I.V.P. Rosenman, C. Cartier, F. Villian, Coord. Chem. Rev.
190–192, 1023 (1999)

13. B.S. Tsukerblat, M.I. Belinsky, Magnetochemistry and Radiospectroscopy of Exchange
Clusters; Pub. Stiintsa (Acad. Sci. Moldova), Kishinev, 1983 (Rus)

14. B.S. Tsukerblat, M.I. Belinskii, V.E. Fainzilberg, Magnetochemistry and Spectroscopy of
Transition Metal Exchange Clusters, in Soviet Sci. Rev. B, vol. 9, ed. by M.E. Vol’pin
(Harwood Academic, New York, 1987), pp. 337–481

15. J.J. Borras-Almenar, J.M. Clemente-Juan, E. Coronado, A.V. Palii, B.S. Tsukerblat, in
Magnetoscience-From Molecules to Materials, ed. by J. Miller, M. Drillon (Wiley, New York,
2001), pp. 155–210

16. B.S. Tsukerblat, Group Theory in Chemistry and Spectroscopy (Dover, Mineola,
New York, 2006)

17. V.Ya. Mitrofanov, A.E. Nikiforov, V.I. Cherepanov, Spectroscopy of Exchange-Coupled
Complexes in Ionic Crystals (Nauka, Moskow, 1985) (Rus)

18. E. Coronado, R. Georges, B.S. Tsukerblat, in Localized and Itinerant Molecular Magnetism:
From Molecular Assemblies to the Devices, NATO ASI Series, ed. by E. Coronado, P.
Delhaes, D. Gatteschi, J. Miller (Kluwer, Dordrecht, 1996), pp. 65–84

19. J.M. Clemente, R. Georges, A.V. Palii, B.S. Tsukerblat, Exchange Interactions: Spin Hamil-
tonians, ibid., pp. 85–104
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204. C. Roux, D. Adams, J.P. Itié, A. Polian, D.N. Hendrickson, M. Verdaguer, Inorg. Chem. 35,

2846 (1996)
205. C.G. Piepont, C.W. Lange, Progr. Coord. Chem. 41, 381 (1993)
206. D.M. Adams, B. Li, J.D. Simon, D.N. Hendrickson Angew. Chem. Int. Ed. Engl. 34,

1481 (1995)
207. D.M Adams, D.N. Hendrickson, J. Am. Chem. Soc. 118, 11515 (1996)
208. P. Guetlich, A. Dei, Angew. Chem. Int. Ed. Engl. 36, 2734 (1997)
209. C.G. Pierpont, R.M. Buchanan, Coord. Chem. Rev. 38, 45 (1981)
210. D.N. Hendrickson, D.M. Adams, in Magnetism: A. Supramolecular Function, ed. by O. Kahn

(Kluwer, Dordrecht, 1996), p. 357
211. D.M. Adams, L. Noodleman, D.N. Hendrickson, Inorg. Chem., 36, 3966 (1997)
212. S. Klokishner, Chem. Phys. 269, 411 (2001)
213. Yu.E. Perlin, B.S. Tsukerblat, in The Dynamical Jahn–Teller Effect in Localized Systems, ed.

by Yu.E. Perlin, M. Wagner (North-Holland, Amsterdam, 1984), p. 251
214. S.I. Klokishner, O.S. Reu, Chem. Phys. 286, 115 (2003)
215. S.I. Klokishner, O.S. Reu, Polyhedron, 22, 2401 (2003)
216. L.N. Bulaevskii, C.D. Batista, M.V. Mostovoy, D.I. Khomskii, Phys. Rev. B, 78,

024402 (2008)
217. J.J. Borras-Almenar, J.M. Clemente-Juan, E. Coronado, A.V. Palii, B.S. Tsukerblat, J. Phys.

Chem. 102, 200 (1998)
218. J.J. Borras-Almenar, J.M. Clemente-Juan, E. Coronado, A.V. Palii, B.S. Tsukerblat, J. Chem.

Phys. 114, 1148 (2001)
219. J.J. Borras-Almenar, J.M. Clemente-Juan, E. Coronado, A.V. Palii, B.S. Tsukerblat, Chem.

Phys. 274, 131 (2001)
220. J.J. Borras-Almenar, J.M. Clemente-Juan, E. Coronado, A.V. Palii, B.S. Tsukerblat, Chem.

Phys. 274, 145 (2001)
221. V. Palii, A.B.S. Tsukerblat, E. Coronado, J.M. Clemente-Juan, J.J. Borrás-Almenar, J. Chem.

Phys 118, 5566 (2003)
222. A.V. Palii, S.M. Ostrovsky, S.I. Klokishner, B.S. Tsukerblat, J.R. Galán-Mascarós, C.P.

Berlinguette, K.R. Dunbar, J. Am. Chem. Soc., 126, 16860 (2004)
223. B.S. Tsukerblat, A.V. Palii, S.M. Ostrovsky, S.V. Kunitsky, S.I. Klokishner, K.R. Dunbar, J.

Chem. Theory & Computation 1 (2005)
224. D. Reinen, M. Atanasov, P. Kohler, J. Mol. Str. 838, 151 (2007)
225. M. Atanasov, P. Comba, C.A. Daul, J. Phys. Chem. A, 110, 13332 (2006)
226. M. Atanasov, C. Busche, P. Comba, F. El Hallak, B. Martin, G. Rajaraman, G. Rajaraman, J.

van Slageren, H. Wadepohl, Inorg. Chem. 47, 8112 (2008)
227. M. Atanasov, P. Comba, C.A. Daul, Inorg. Chem. 47, 2449 (2008)



Jahn–Teller Effect in Molecular Magnetism: An Overview 619

228. M. Atanasov, P. Comba, C.A. Daul, A. Hauser, J. Phys. Chem. A 111, 9145 (2007)
229. M. Atanasov, P. Comba, this volume, p: : :(to be inserted)
230. A. Sieber, R. Bircher, O. Waldmann, G. Carver, G. Chaboussant, H. Mutka, H.-U. Güdel,
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The Effect of Jahn–Teller Coupling
in Hexacyanometalates on the Magnetic
Anisotropy in Cyanide-Bridged Single-
Molecule Magnets

Mihail Atanasov and Peter Comba

Abstract The factors that govern the nature of the lowest spin-states and the mag-
netic anisotropy in mono- and oligonuclear cyanide complexes of 3d-metal ions are
analyzed on the basis of a combination of density functional theory (DFT) and lig-
and field theory (LFT), the ligand field density functional theory approach (LFDFT).
In this chapter we analyze first the factors that govern the magnetic anisotropy in
the low-spin ŒFe.CN/6�

3� .2T2g/ complexes - the Jahn–Teller activity (vibronic
coupling) within the triply degenerate ground states as well as unquenched orbital
momenta which influence the spin subsystem via spin–orbit coupling. In a sec-
ond step we derive the parameters of the spin-Hamiltonian in a general form of
a binuclear f.L/CuII–NC–FeIII.CN/5g unit and discuss on this basis the factors that
govern its magnetic anisotropy. The nature of the lowest spin multiplet and the spin
anisotropy gap are analyzed for this system using first principles.

1 Single-Molecule Magnetism

Much effort has been directed to the synthesis and characterization of oligonu-
clear transition metal complexes with single-molecule magnetic behavior (SMM)
[1–22]. These are high-spin molecules with two-fold degenerate states (implying
axial three- or fourfold symmetries) with maximum spin ˙S, separated in energy
from the states of lower spin by an energy gap, quantified by the zero-field split-
ting parameter D. With an applied magnetic field oriented along the easy axis of the
magnetization, one of the two Ms components becomes stabilized with respect to
the other (Fig. 1). An induced magnetic moment is created, and, if temperature is
below the blocking temperature .T<TB/, relaxation is slow and the moment per-
sists when removing the field. This can be used to record and read information at
a molecular level. It follows that in order to increase the thermal activation energy
.U D D:S2/, the anisotropy D and/or the total spin S need to be increased. How-
ever, quantum tunneling leads to effective energy barriers Ueff which are usually
smaller than U [23].

Prominent examples with SMM properties are cyanide complexes of the 3d-
transition metals [18]. Due to the occupied ¢ and empty or occupied  -orbitals

621
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Fig. 1 Energy levels for a
spin state S with easy axis
magnetic anisotropy. (a) Zero
magnetic field, theCM levels
(left) and �M levels (right)
are equally populated; (b)
application of a magnetic
field (bias) leads to a selective
population of the right well;
(c) equilibration after
removing the magnetic field
by quantum tunneling or
thermal activation (adopted
from [23])

Ms=S–1

a

b

c

Ms=–S+1

Ms=S

Ms=S

Ms=–S

Ms=–S

quantum
tunneling

thermal
activation

Δ=DS2

the cyanide ligand provides particularly efficient pathways for magnetic exchange
(Fig. 2). Prussian blue type solids .MŒM0.CN/6� � zH2O/ with the properties of bulk
magnets up to room temperature have been reported [24, 25].

Based on the experience with Prussian-blue-compounds, oligonuclear com-
plexes with CN- bridged subunits and various nuclearity have been pre-
pared [14, 22]. It is remarkable that even for the small trinuclear complexes
MnIII–NC–M–CN–MnIII .M D Cr3C; Fe3C/ significant effective energy barriers
Ueff of 16 and 9 cm�1, leading to slow magnetic relaxation, as shown by the out-of-
phase component of the AC susceptibility, have been observed (Fig. 3). Focusing
on ŒFe.CN/6�

3�, we have analyzed the effect of spin–orbit and Jahn–Teller cou-
pling (first order effects within the 2T2g ground state of FeIII) on the magnetic
anisotropy, in the mononuclear ŒFe.CN/6�

3� subunit alone [26] and in exchange
coupled complexes of various nuclearity [27, 28].

Experimental [1–22] and theoretical [29–39] work in this field is quite extensive,
and several review articles with experimental [32] and theoretical data [40] have
been published. The aim of the present account is to summarize our own experi-
mental and theoretical activities in the field [28, 41–44] with special emphasis on
our theoretical studies. First, using a DFT computational scheme, we will discuss
the Jahn–Teller activity in the triply degenerate ground states of cyanide complexes
of the 3d-metals, specifically ŒFe.CN/6�

3� [26]. Second, based on the known Jahn–
Teller distortions and geometrical or bonding strain, we will discuss in a simple
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Fig. 2 Orbital interaction diagrams for a dinuclear M0–CN–M unit with octahedral coordination
at the metal centers (adopted from [18])

dinuclear CuII–NC–FeIII unit their effects on the magnetic anisotropy [27]. Special
emphasis will be placed on detailed derivations of most expressions in order to make
the approach described here generally accessible.

2 Electronic Structure of 3d Transition Metal Complexes
with Triply Degenerate Ground States

2.1 Jahn–Teller Coupling

The Hamiltonian matrix of the Tg ˝ ."gC�2g/ vibronic coupling problem up to
first order vibronic coupling terms set up within the �.˛/; �.ˇ/ and �.�/ basis
functions of the Tg D T2g.T1g/ electronic state is given in (1) [45, 46]. Q� ; Q"
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(NEt4)[Mn2(salmen)2(MeOH)2(Fe(CN)6] (1)

MeOH HOMe

NEt4
+

–

Mn  N  C  Fe C  N

 N  N

 N
O N

O N

ON

ON

 N

CC

CC
Mn

Fig. 3 Temperature dependence of the imaginary part .�00/ of the alternating cur-
rent (ac) susceptibility of .Net4/ŒMn2.salmen/2.MeOH/2Fe.CN/6� (salmen: rac-N,N0-
(1-methylethylene)bis(salicilideneiminate)), measured under various oscillating frequencies
(1–1500 Hz). Solid lines are a guide for the eyes (adopted from [22]); S D 9=2 spin-ground state
with relaxation time following an Arrhenius law ln £ D ln �o C�eff=.kBT / with �o D 2:5:10�7 s
and �eff D 9:3 cm�1I �o saturates at T < 0:3K to a value around 470 s, i.e. quantum tunneling
becomes the dominant process of relaxation; further parameters: J.Mn–Fe/ D 3:5 cm�1 and
D D �0:86 cm�1 (from field dependence of the magnetization for 0:04K < T < 1:1K; with
J D 3:5 cm�1, an S D 9=2 ground state and S D 7=2 and S D 5=2 excited levels at J=2 D 1:75

and J D 3:5 cm�1 are deduced; with D � 1 cm�1 strong mixing of corresponding S levels is
calculated. An analogous compound with CrIII � KŒ.5-Brsalen/2.H2O/2MnIII

2CrIII.CN/6�:2H2O
[5-Brsalen D N;N0-ethylene bis(5-bromosalicylidene) aminato dianion] behaves as an S D 5=2

ground state magnetic cluster with J D �12:6 cm�1 (antiferromagnetic Mn–NC–Cr coupling,
�eff D 16 cm�1; �o D 610:10�10 s; D D �2:67 cm�1), reported in [14] (adopted from [22])

and Q� ; Q�; Q& are the "g and �2g vibrations visualized in Fig. 4. V" and V� are
the linear JT coupling constants for the Tg ˝ "g and Tg ˝ �2g problems andK" and
K� are the harmonic force constants for the "g and �2g vibrational modes; I is the
3�3 identity matrix
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Fig. 4 The "g and �2g

vibrational modes and their
components and shapes
(adopted from [26])
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Coordinates of the stationary points on the ground state potential energy surface
can be derived with the method of Öpic and Price [47]. Instead of diagonalizing
the Hamiltonian matrix of (1) directly, this method makes use of paths of high-
symmetry on the ground state potential energy surface. There are three, four and
six symmetry-equivalent stationary points of D4h; D3d and D2h symmetry, which
can be visualized as the axes, corners and edges of a cube, respectively. Restricting,
in accordance with the Jahn–Teller theorem, to the non-degenerate ground states in
these high symmetry configurations, the electronic eigenfunctions with D4h; D3d
and D2h geometries are given by:

cD4h D
0

@
0

0

1

1

AI cD3d D

0

B
@

1p
3
1p
3
1p
3

1

C
AI cD2h D

0

B
@

1p
2

˙ 1p
2

0

1

C
A (2)

Using these eigenvectors, energy expressions for the ground state for the geome-
tries of D4h; D3d and D2h symmetry are obtained according to (3), (4), and (5),
respectively.
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Fig. 5 Energy profile for the components split from the Tg D T2g ground states for d1;5 (and
similarly for d2;4) transition metal ions due to Tgx"g .Tgx�2g/ JT coupling along a distortion
pathway which preserves the highest possible symmetry (epikernel symmetry) D4h .D3d / and
lifts the orbital degeneracy. The basic model parameters, i.e. the JT stabilization energy, EJT

m,
the energy of the vertical (Franck-Condon) transition at the D4h .D3d / minimum EFC

m, and the
distortions of the active mode Qvib

m; Qvib
s .vib D "g; �2g/ for the minima .m/ and saddle points

.s/ are illustrated (adopted from [26])
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These represent electronic states of B2g.A2g/; A1g.A2g/ and B2g.B3g/ symme-
try in the case of the low spin t2g1;5.t2g2;4/ electronic configurations, respectively.
In a similar way, excited state geometries are also obtained. An energy diagram
with a single configurational coordinate (Fig. 5) illustrates the basic geometric
and energetic parameters of the model. These are the tetragonal .D4h/ or trigonal
.D3d / elongations or compressions of an octahedron [tetragonal: Q� > 0 (elon-
gation),Q�<0 (compression); trigonal:Q� DQ� DQ�DQ� ;Q�<0 (elongation),
Q� > 0 (compression)] with the Jahn–Teller stabilization energy .EJT

m/ and the
energy of the vertical electronic transition from the minimum of the non-degenerate
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Fig. 6 (a) Geometric parameters to describe the JT distortions of Tgx"g.D
z
4h/; Tgx£2g.D

xyz
3d /

and Tgx."g C �2g/.D
xy
2h/ type, and deduced from DFT geometry optimizations with

electronic configurations with correct spin and space symmetries in D4hŒ
2B2g.d

1;

low-spin d5/;3 A2g.d
2; low-spin d4/�;D3d [2A1g.d1, low-spin d5/;3 A2g.d

2 , low-spin d4/]
and D2hŒ

2B2g.d
1; d5/;3 B2g.d

2; d4/�; (b) JT stabilization energies in hexacyanometalates of the
3d series in orbitally degenerate octahedral ground states in their D4h; D3d and D2h minima of
the ground state potential energy surface (adopted from [26])

ground state to the doubly degenerate excited state (EFC
m; Franck-Condon, FC). A

procedure to obtain these parameters from DFT has been developed [26]:

1. A geometry optimization in D4h is performed by using the orbital occu-
pations appropriate for the non-degenerate ground state of interest [2B2g
(d 1, low-spin d 5), 3A2g (d 2, low-spin d 4)]; these are the configurations
b2g

1.TiIII/; eg2.VIII/; b2g
2eg

2.MnIII;CrII/; eg
4b2g

1.FeIII;MnII/. As a result, the
metal-ligand bond distances for the axial and equatorial bonds (Rtt

ax; R
tt
eq, Fig. 6a)

are obtained and used to calculate Qm
™

.
2. Based on the geometry obtained in step 1, one calculatesEm

FC.D4h/ as the differ-
ence between the energy of the excited state (2Eg or 3Eg ) and the ground state
(2B2g or 3A2g ) for d 1;5 or d 2;4.

3. A geometry optimization in D3d is then performed to yield the geom-
etry of the non-degenerate ground states of interest [2A1g (d 1, low-spin
d 5), 3A2g (d 2, low-spin d4)]; more explicitly, these are the configurations
a1g

1 .TiIII/; eg2 .VIII/; a1g
2eg

2 .MnIII; CrII/; eg
4a1g

1 .FeIII; MnII/. The dis-
tance Rtr and the angle ™ (Fig. 6a) quantify the trigonal distortion and are used to
calculateQm

� .
4. Based on the geometry of step 3, one calculates Em

FC .D3d / as the difference
between the energy of the excited state (2Eg or 3Eg) and the ground state (2A1g
or 3A2g ) for d 1;5 or d 2;4.

From these data one can deduce V"; K"; V� ; K� (6, 7). In terms of these parameters
the JT stabilization energies Em

JT .D4h/ and Em
JT .D3d / and Em

JT .D2h/ are obtained
by the expressions given in (8–10). A more elaborate treatment, which includes
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Table 1 Linear (V© and V£, in cm�1=Å) and quadratic (L© and L£ in cm�1=Å
2
) vibronic

coupling parameters, Jahn–Teller stabilization energies ŒEJT.D4h/ and EJT.D3d/ in cm�1] and
vibronic coupling strengths Œœ© D EJT.D4h/=�¨©; œ£ D EJT.D3d/=�¨£�

b of the 2T2g ˝ "g and
2T2g˝ �2g Jahn–Teller problems in ŒFe.CN/6�

3� as deduced from DFT calculationsa on a charge-
compensated model complex, using water as a solvent and a LDA(VWN) functional as well as a
triple zeta basis set)c

2T2g ˝ "g
2T2g ˝ �2g

V" D �855 L" D 8235 K" D 65882 V� D 1052 L� D 1584 X� D 449 K" D 6069

EJT.D4h/ D 5 �!" D 292 �" D 0:017 EJT.D3d / D 135 �!� D 93 �� D 0:965

asee [26] for the recipe of deducing vibronic coupling constants from DFT calculations and about
the computational procedure
bvibrational frequencies due to the "g and �2g vibrational modes �!" and �!� , respectively, have

been computed from the corresponding harmonic force constants K" and K� (in cm�1=Å
2
) and

their effective masses
cThe vibronic coupling constant due to simultaneous activation of the "g and �2g vibrations, i.e.
W of the combined 2T2g ˝ ."g C �2g/� coupling problem is zero

second order vibronic terms .L"; L� ; X� ; W / and technical details on the DFT
procedure is given elsewhere [26]. Table 1 shows the values of the parameters for
ŒFe.CN/6�

3�. From these, we conclude that, with the exception of ŒTi.CN/6�
3�D3d

stationary points are stable minima of the ground state potential surface (Fig. 6b).

V" D 2

3

Em
FC.D4h/

Qm
�

I K" D 2

3

Em
FC.D4h/

.Qm
�
/2

(6)

V� D 1

3

Em
FC.D3d /

Qm
�

I K� D 2

9

Em
FC.D3d /

.Qm
�
/2

(7)

Em
JT.D4h/ D

1

2

V 2"
K"

(8)

Em
JT.D3d / D

2

3

V 2�
K�

(9)

Em
JT.D2h/ D 1

4
Em

JT.D4h/C 3

4
Em

JT.D3d / (10)

2.2 Spin–orbit Coupling

The 2T2 ground state of ŒFe.CN/6�
3� is split by spin–orbit coupling into an E 00

ground state and an U 0 excited state at .3=2/& . g-tensor value expressions show
significant orbital contribution to the low-temperature magnetic behavior (Table 2).
Similarly, the 3T1 ground state of ŒM.CN/6� .M D MnIII; CrII/ splits into an A1
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Table 2 Effect of spin–orbit coupling on the splitting of the 2T2g and 3T1g ground states of
octahedral ŒFe.CN/6�

3� and ŒMn.CN/6�
3� complexes, with expressions for the g-tensors and val-

ues of the spin–orbit coupling constants from relativistic zero-order regular approximation DFT
calculationsa

FeIII.t2g
5/�2 T2! E 00.�—/ U0.�=2/

g D .�1=3/.2C 4k/ .1=3/.2 � 2k/
�ŒFe.CN/6

3�� D 347 cm�1

MnIII;CrII.t2g
4/�3 T1! A1.��/ T1.��=2/ T2; E.�=2/

J 0 D 0 1 2
g D 0 1� .3=4/k 1� .3=4/k
�ŒMn.CN/6

3�� D 243 cm�1

ak- orbital reduction factor

Table 3 Effects of configuration interaction on the Jahn–Teller coupling energies EJT.D3d / (in
cm�1) in the 3T1g and 2T2g ground states of ŒM.CN6/�

3�MIII D VIII.t2g
2/, low-spin MnIII.t2g

4//

and FeIII; MnII (both in a t2g5 configuration), respectivelya

ŒM.CN/6�
3�VIII MnIII FeIII MnII

M D .t2g
2/ .t2g

4/ .t2g
5/ .t2g

5/

EJT.D3d/

No CI 46 98 135 314
With CI 74 147 262 387
�E.SOC/ 95.T2; E/ 284.A1/ 347.E 00/ 243.E 00/
astabilization of the lowest split components (specified in parenthesis) of the triply
degenerate ground terms due to spin–orbit coupling only is shown for the sake of
comparison

ground state and T1 and T2, E excited states with energies of (1/2) & and (3/2) & .
Spin–orbit coupling energies deduced from relativistic DFT calculations are col-
lected and compared with Jahn–Teller stabilization energies in Table 3. It emerges
that spin–orbit and Jahn–Teller coupling for this ion are comparable in magnitude
and should therefore be accounted for on the same footing.

The operator OHSO D &1Ol1Os1 of the spin–orbit coupling interaction of ŒFe.CN/6�
3�

is represented within the t2g .�; �; �/˛ and .�; �; �/ˇ spin–orbital basis in (11) (the
spin–orbit coupling constant — is defined as positive for FeIII); see Sect. 3.1 for its
further use.

�˛1 �˛1 �˛1 �ˇ1 �ˇ1 �ˇ1

HSO D

2

66
6
6
6
66
6
6
4

0 � i
2
� 0 0 0 1

2
�

i
2
� 0 0 0 0 � i

2
�

0 0 0 �1
2
� i
2
� 0

0 0 �1
2
� 0 i

2
� 0

0 0 � i
2
� � i

2
� 0 0

1
2
� i

2
� 0 0 0 0

3

77
7
7
7
77
7
7
5

(11)
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2.3 Configuration Interaction

We have considered the 2T2g and 3T1g ground states and focus here on a single
t2g

n configuration. Strictly, this is only valid for t2g1.TiIII/, and it is an approxi-
mation for the d 5 and d 2;4 electronic configurations. The 2T2g and 3T1g ground
states of ŒFe.CN/6�

3� and ŒMn.CN/6�
3� are mixtures of as much as ten .T2g/

and seven .T1g/ species of the same symmetry, which differ in their electron
configurations of the MOs of d-character. These terms mix with each other via
interelectronic repulsion (CI) and are split because of excited state JT coupling,
due to  -type vibronic mixing (via the �2g mode, splitting of the t2g orbitals).
For ŒFe.CN/6�

3� and ŒMn.CN/6�
3� (strong ligand field), the t52g and t42g config-

urations are expected to dominate the ground state wave function but the excited
state configurations might still be important for the ground state vibronic coupling.
Unfortunately, there are no DFT methods for the explicit geometry optimiza-
tion of electronic states of multiconfigurational character. In DFT, one assumes
that a single configuration dominates the electronic and geometric structure. To
trace the effect of CI on the ground state JT effect of these ions, we resort to
ligand field theory (LFT) and focus on the D3d minima of the ground state
potential energy surface. For some of the complexes studied here, approximate
values of 10Dq, B and C are known [48]. They have been used in a CI calcu-
lation of the ground state 2T2g.FeIII; MnII/ and 3T1g .VIII; MnIII/ terms. From
the known values of the trigonal distortion angle � , the energy Em

FC and the value
of 10Dq, we deduce the angular overlap parameters from one electron calcula-
tions and then switch to a many-electron CI treatment. The ground state split-
ting, which results from such a calculation is ECI

FC. Since the energies EFC and
EJT are interrelated, we can use (12) to obtain the approximate JT stabilization
energy.

ECI
JT D Em

JT.E
CI
FC=E

m
FC/ (12)

The results in Table 3 show that CI mixing is essential and leads to an enhancement
of the ground state splitting and an increase of the magnitude of EFC by about a
factor of 2 for ŒFe.CN/6�

3� and ŒV.CN/6�
3�. For hexacyanovanadate the effect of

CI is opposite to complexes with  -donor ligands .VF63�/, where, on the basis of
structural and spectroscopic data, it was found that CI reduces the 3T1 ground state
JT coupling [49].

2.4 Interpretation of Magnetic and EPR Data
of Low-Spin ŒFe.CN/6�

3�

ŒFe.CN/6�
3� has been studied by single crystal EPR and susceptibility measure-

ments and these data have been interpreted by a ligand field model, assuming
tetragonal distortions within a D4h symmetry description [50–57]. We have shown
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that another interpretation, based on a D3d distortion, is possible. With this concept
and the known extent of the geometrical distortions from the reported crystal struc-
ture of K3ŒFe.CN/6�

3� we have reproduced the single crystal g- and susceptibility
¦-tensors [26]. The impressive result from this interpretation is that the magnetic
anisotropy of ŒFe.CN/6�

3� in both crystallographic forms of K3ŒFe.CN/6� (the
monoclinic and the orthorhombic structure) are very similar and only compatible
with a trigonally compressed geometry, as indicated by the vibronic Jahn–Teller
coupling model. A change of the octahedral angle � D 54:735ı (i.e. the angle
between the Fe–C bond direction and the C3 axis) by only 1ı is large enough to
account for the observed anisotropy of the g- and the ¦-tensors.

3 Analysis of the Magnetic Anisotropy
in the FeIII–CN–CuII Pair

3.1 Theory

Exchange coupling in oligonuclear cyanide-bridged complexes L1M1–NC–M2L2

depends on the geometry and the electronic ground state of the L1M1.NC/ and
.NC/M2L2 paramagnetic subunits, the electronic structure of the cyanide bridging
ligand and the geometry of the M1–NC–M2 bridge. An analysis of the dependence
of the magnetic exchange across the cyanide bridge on the nature of the metal
ions and, in particular, of its electronic configuration in CuII–NC–MIII (MDCr,
Fe, Mn, see Fig. 7) metal pairs based on spin-polarized DFT calculations has been
reported and a study of the same effects within the Valence Bond CI model [58–
62] allows to link the DFT data with meaningful chemical concepts [63–66]. We
now consider a dinuclear CuII–FeIII complex with ŒFe.CN/6�

3� subunits, and ana-
lyze the exchange as a function of the multiplet structure and Jahn–Teller coupling
of the FeIII unit. Due to the closely spaced energy levels (Jahn–Teller splitting

Fig. 7 Dinuclear model
complex of C4v symmetry,
used for the calculation of the
anisotropic exchange
coupling (adopted from [27])
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dyz

π π δ

dxz dxy

t2g t2g t2g

Fig. 8 Pathways for the exchange between CuII and NiII with fully occupied t2g �-orbitals and
FeIII in dependence of the symmetry of the singly-occupied t2g orbital of FeIII

and distortions observed in the crystal lattices included), no SCF convergence was
achieved on this model complex with programs such as ADF [67] and ORCA,
[68] which have been found to be very efficient in other examples. Therefore,
an approximation based on first using high-symmetry .D4h/ and then accounting
for symmetry lowering by virtue of a vibronic coupling approach, turned out to
be necessary for the analysis. With published results on ŒFe.CN/6�

3�, the mag-
netic anisotropy in M–NC–Fe exchange pairs with MDCuII and NiII (S D 1=2
and S D 1, respectively, with ¢-antibonding ground states in both cases) could be
analyzed (Fig. 8). The lowest four and six spin states of the Fe–CN–Cu .2 � 2/
and Fe–CN–Ni .2 � 3/ pairs, respectively, were calculated independently, with
all orbital effects of CuII and NiII included in the effective g-tensors. Two dif-
ferent forms of the Hamiltonian were used, the effective spin-Hamiltonian of
(13–15), and the real ligand field plus exchange model Hamiltonian of (16). In
(13) J is the isotropic exchange coupling constant, D12 (14) and A12 (15) are
the traceless tensors for symmetric and antisymmetric exchange, respectively, D2

is the single center zero-field splitting tensor (e.g. for NiII; S D 1) and g1 and
g2 are the effective g-tensors for the ŒFe.CN/6�

3� and CuII or NiII sites, respec-
tively.

Hsph D �J s
0

1s2 C s
0

1D12s2 C s2D2s2 C s
0

1A12s2

C �Bs
0

1g1BC �Bs2g2B (13)

D12 D
2

4
Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz �Dxx �Dyy

3

5 D
2

4
�2
3
D C 2E Dxy Dxz

Dxy �2
3
D � 2E Dyz

Dxz Dyz
4
3
D

3

5 (14)

A12 D
2

4
0 Az �Ay
�Az 0 Ax
Ay �Ax 0

3

5 (15)
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OH D � OOsM � sFe C &FeOlFe � OsFe C OHFe
JT (16)

OO D
2

4
J�� J�� J��
J�� J�� J��
J�� J�� J��

3

5 D Ja1 OTa1 C Je� OTe� C Je" OTe" C Jt2� OTt2�

C Jt2� OTt2� C Jt2� OTt2� (17)

OTa1 D O1 D 1

2
OL2 Ja1 D 1

3
.J�� C J�� C J�� / (18)

OTe� D . OL2
z �

2

3
O1/ D . OL2

z �
1

3
OL2/ Je� D 1

2
.J�� C J��/� J�� (19)

OTe" D OL2
x � OL2

y Je" D 1

2
.J�� � J��/ (20)

OTt2� D OLy OLz C OLz OLy Jt2� D �J�� (21)

OTt2� D OLx OLz C OLz OLx Jt2� D �J�� (22)

OTt2� D OLx OLy C OLy OLx Jt2� D �J�� (23)

Equation (16) includes an orbital-dependent exchange operator (first term), spin–
orbit coupling (second term) and Jahn–Teller coupling (third term). A restriction
to the 2T2g ground state of ŒFe.CN/6�

3� allows to factorize the orbital-dependent
exchange operator into irreducible tensors which are based on products of orbital
momentum operators and symmetry-related coefficients. Based on (17) we can
deduce the symmetry-independent coupling constants, which emerge when lower-
ing the symmetry fromOh to its subgroups. Only terms which are totally symmetric
in a given point group are non-zero. Therefore, in Oh (i.e. when the Fe3C and
Cu2C centers collapse) only one parameter .Ja1�J / is allowed by symmetry.
Upon lowering the symmetry towards an axial Cu–NC–Fe pair .D4h/ there are
two parameters, Ja1 and Je� (in D4h the term with Je� is totally symmetric). One
more term, i.e. Je" emerges for Cu–NC–Fe with orthorhombic geometry .D2h/. A
deviation of the Cu–NC–Fe fragment from linearity (Cs or C1 symmetry) would
induce five or six parameters. From a comparison of the lowest four and six
eigenvalues and eigenfunctions of the Hamiltonian of (16) and that of the spin
Hamiltonian of (13) (see below for a detailed description of this procedure), the
isotropic exchange energy J and the symmetric .D12/ and antisymmetric .A12/

exchange tensors can be obtained (see Table 5, columns 5–7). The zero-field split-
ting tensor for the single centre anisotropy parameter of Ni .D2/ can also be taken
into account. An essential point here is the use of DFT to approximate the diago-
nal terms of the orbital-dependent exchange operator OO:Os1:Os2 (Table 4) [27]. There
is strong ferromagnetic coupling between the singly occupied orbitals of FeIII, dxz

or dyz, and CuII (or NiII), dz2; the interaction energy with the dxy orbital is much
smaller.
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Table 4 Values of the exchange coupling energies of the FeIII–CN–NiII.dx2�y2
1; dz2

1/ exchange
pair, using the B1LYP functional with spin projection, in comparison with the corresponding
energy obtained for the FeIII–CN–CuII.dz2/ exchange pair

Fe.2E/ Fe.2B2/

J�� D J�� D JE J�� D JB2

Cu
�
d1z2
�

19:4 1:6

Ni
�
d1z2d

1
x2�y2

�
12:9 0:0

Table 5 Spin levels .Ei; i D 1–4/; ¦T (in cm3:K=mol) values at Tmax (in ıK) correspond-
ing to maximum anisotropy of the main values of the susceptibility �ii.ii D xx; yy; zz/ tensor,
�avT Œ¦av D .1=3/.¦xx C ¦yy C ¦zz/� and anisotropic D12 and A12 tensor parameters of a
FeIII–CN–CuII model complex with and without trigonal Jahn–Teller distortions from model cal-
culations accounting for the difference of JE and JB2 exchange coupling parameters (exchange
anisotropy) or alternatively, assuming an isotropic Heisenberg exchange .J D JE D JB2/

Parameter seta E1 .�zzT /max
b J Dxz Ax

E2 ŒTmax� .�avT /max D Dyz Ay

E3 .�xxTmax/
b ŒTmax� E Dxy Az

E4 .�yyTmax/
b

JE D 19:4 0:00 1.199b 0.801 �4:13 0:00 0:00

JB2 D 1:6 0:52 [3] [8] 6:20 0:00 0:00

Q� D 0 6:34 0.495b 0:00 0:00 0:53

6:34 0.495b

JE D 19:4 0:00 1.485b 0.999 �4:02 0:83 0:40

JB2 D 1:6 0:29 [3] [5] 6:10 �0:40 �1:63
Q� D 0:128 2:56 1.054b �2:93 �5:87 �0:04

10:46 0.355b

JE D 13:5 0:00 0.87b 0.87 �1:50 0:00 0:00

JB2 D 13:5 4:42 [4] [4] 2:25c 0:00 0:00

Q� D 0 4:42 0.87b 0:00 0:00 4:50c

4:42 0.87b

JE D 13:5 0:00 1.35b 1.05 �3:78 �2:95 1:74

JB2 D 13:5 1:79 [3] [4] 3:53 �1:74 �0:53
Q� D 0:128 1:79 0.36b �2:78 �5:55 1:42

9:80 1.40b

aJ parameters (in cm�1) and trigonal (Jahn–Teller distortions, Q� in Å) are listed,
other parameters adopted in these calculations are as follows: vibronic coupling
parameters from Table 1 (second column), &Fe D 345 cm�1; kFe D 0:79; g-tensor
values for Cu: gxx D gyy D 2:18; gzz D 2:00
bDirections corresponding to the main-values of the susceptibility tensor have been
taken to coincide with those of the g-tensor (see Table 6)
cDue to the threefold degeneracy of the T2 spin state these values are not be taken
literally
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The matrix of the exchange Hamiltonian �JijOsi Osj (i and j are the magnetic
orbitals on center 1 and 2) within the spin only basis ˛i˛j ; ˇi˛j ; ˛iˇj and ˇiˇj
is given by (24). The combination of (11) and (24) with the Jahn–Teller Hamilto-
nian of (1) leads to the total Hamiltonian (25), represented by the product of the
spin–orbit basis of FeIII and the spin-only basis functions of CuII ˛0; ˇ0 W Œ.�; �; �/
˛1I .�; �; �/ˇ1� ˛0 and Œ.�; �; �/˛1 .�; �; �/ˇ1�ˇ0.

˛i˛j ˇi˛j ˛iˇj ˇiˇj

Hexc.i; j / D

2

6
6
66
6
4

�1
4
Jij 0 0 0

0 1
4
Jij �12Jij 0

0 �1
2
Jij

1
4
Jij 0

0 0 0 �1
4
Jij

3

7
7
77
7
5

(24)

We now focus on the specific case of a FeIII–CN–CuII pair with C4v symmetry (no
Jahn–Teller distortion at the ŒFe.CN/6�

3� center). We use the eigenfunctions of HSO

in as given in [69], which transform as E 00.˛00; ˇ00/ and U 0.�; �; �; �/ in the octa-
hedral double group, defined by the column vectors c(i) .i D ˛00; ˇ00; �; �; �; �/,
given in (26). The transformed matrix T0HSOT is diagonal with eigenvalues
��ŒE 00.˛00; ˇ00/� and �=2ŒU 0.�; �; �; �/�, and with a Zeeman Hamiltonian in z
direction [i.e. OHZ2 D �B .sz1 C klz1/Bz], given by (27), and with an effec-
tive Ms

0 value of each of the components of E 00.˛00; ˇ00/ and U 0.�; �; �; �/ as
indicated.

The FeIIIŒE 00.˛00; ˇ00/;Ms
0D ˙ 1=2; U 0.�; �; �; �/IMs

0D ˙ 3=2;˙1=2; � �
CuIIŒ˛0; ˇ0.msD ˙ 1=2/� pair states, can be classified according to the total
MsDMs

0 ˙ ms value. Using (26), H of (25) can be reduced to a block diago-
nal form, and in C4v symmetry we obtain the symmetry-adapted functions of the
Fe–Cu pair states and the corresponding energy expressions (28–31). As follows
from these expressions, there is configurational mixing between the pair of states
of lowest energy B1.E 00/; B2.E 00/ and B1.U 0/; B2.U 0/. With perturbation theory
we obtain (32, 33) for the second order energy change, where exchange terms in the
denominator have been neglected. With the values of J.2E/D 19:4; J.2B2/D 1:6
and �D 345 (all in cm�1) we obtain �EŒB1.E 00/�D � 0:008 cm�1 and �EŒB2
.E 00/�D � 0:106 cm�1, i.e. a negligible influence on the ground state spin lev-
els from the FeIII.U0/ � CuII excited spin states. The energies of the lowest four
spin states, which arise from FeIII.E00/ � CuII exchange coupling, are given by
(34), with ıJ.2E/ to account for the possible decrease of symmetry, C4v !
C2v (35).
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J.2E/ D J�� C J��
2

(36)

The parameters J, D and E of the spin Hamiltonian OHsph (37), i.e. a simplified form
of (13) are derived by comparison of (34) with the representation of OHsph in the
basis ˛00˛0; ˇ00˛0; ˛00ˇ0; ˇ00ˇ0 (38). From (37) to (38), the substitutions described
in [32, 39, 40] were made, and these are derived, using the direct products si ˝
sj .i; j D x; y; z/ of the spin matrices for 1

2
(42).
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From a comparison between (34) and (38) we get expressions (43–45), which relate
the parameters of the spin-Hamiltonian �J; D and JE; JB2 (DFT).

� 1
4
J C 1

3
D D 1

6
J
�
2E
�� 1

12
J.2B2/ (43)

� 1
2
J � 1

3
D D 1

6
J.2B2/ (44)

E D �1
3
ıJ.2E/ (45)

It is not always possible to directly derive the parameters of the spin Hamiltonian
from first principle calculations. As seen from (29) to (31), there is a configura-
tion mixing between the spin multiplets due to the E00–CuII and the multiplets due
to the U0–CuII interaction via exchange coupling terms. In the example discussed
above, � >> J

�
2E
�
; J.2B2/ and the parameters J, D and E (43–45) are unique

and can easily be determined. However, starting from the FeIII–CN–CuII pair in C4v

symmetry (octahedral ŒFe.CN/6�
3� fragment), and introducing a D3d Jahn–Teller

distortion, U0 splits into E00 and E0, and the later start mix with E0 (originating from
E00 in Oh). In Fig. 9, we plot the electronic energy levels of ŒFe.CN/6�

3� in depen-
dence of the ratio V�Q�=� [this is obtained by diagonalization of the Hamiltonian of
(25), with setting J.2E/ D J.2B2/ D 0]. It follows, that the electronic ground state
is well separated from the excited states, both in Oh and in distorted D3d geometries.
One can understand this result if one transforms the spin–orbit coupling matrix into
the trigonal basis given by (46). Here, HJT is diagonal with the energies of 2A1 and
2E, given by �2V£Q£ and V£Q£, respectively.
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Fig. 9 Electronic levels of ŒFe.CN/6�
3� in dependence of the vibronic coupling energy in units

of �

'.A1/ D 1p
3
.� C �C �/

'.Ey/ D 1p
2
.� � �/

'.Ex/ D 1p
6
.�� � �C 2�/

(46)

While 2A1 is the ground state for trigonally compressed geometries, it is of 2E
symmetry in elongated geometries. However, the 2E term splits to first order by
spin–orbit coupling with an energy difference between the E0.1/ ground state and
the E00 lowest excited state, given by —. The splitting is again much larger than
J.2E/ and J.2B2/. Therefore, one can apply the spin-Hamiltonian (13) and deduce
its parameters by comparison with the eigenvalues of (25) in the whole range of
Jahn–Teller-distorted geometries betweenQ� D �0:256 and�0:256Å. In the given
example (Table 5, second row, columns 5 to 7, Q� D 0:128 Å) one first diag-
onalizes HSO C HJT, including the Zeeman matrix with a small magnetic field
.Bz D 0:0001T/, to obtain the proper components ’00 and “00 of the ground state
Kramers doubletE 0.1/ (Fig. 9). With the resulting eigenvectors, one transforms the
Hamiltonian (25) to yield the following traceless matrix (with energies in cm�1) of
the ground state spin levels:

˛00˛0 ˇ00˛0 ˛00ˇ0 ˇ00ˇ0

Hsph D

2

66
4

3:038 0:615 0:200.�1C i/ �2:933.1� i/
0:615 �3:038 0:020.�1C i/ 0:200.1� i/

0:200.�1� i/ 0:020.�1� i/ �3:038 �0:615
�2:933.1C i/ 0:200.1C i/ �0:615 3:038

3

77
5 (47)
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Simple manipulations, described by (37–42) show that within the ˛00˛0; ˇ00˛0; ˛00ˇ0
and ˇ00ˇ0 basis, the spin-Hamiltonian of (13) leads to the matrix representation given
by (48).

Hsph D
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1
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4
J

3

7
777
77
77
5

(48)

From the comparison of the matrix of (47), obtained by a numerical calculation and
(48), the following general equations for the spin-Hamiltonian parameters (13) of
the CuII–FeIII pair result:

J D �.4=3/ŒHsph.1; 1/C real.Hsph.2; 3//�
D D 2ŒHsph.1; 1/�� real.Hsph.2; 3//
E D real.Hsph.1; 4//
Dxy D �2imag.Hsph.1; 4//
Dxz D 2Œreal.Hsph.1; 2//C real.Hsph.1; 3//�
Dyz D �2Œimag.Hsph.1; 3//C imag.Hsph.1; 2//�
Ax D 2Œimag.Hsph.1; 3//� imag.Hsph.1; 2//�
Ay D 2Œreal.Hsph.1; 3// � real.Hsph.1; 2//�
Az D �2imag.Hsph.2; 3//

Within the spin-only basis and without distortions on ŒFe.CN/6�
3�, the Zeeman

operator OHZ1 is represented by the matrices given in (50–52), which directly show
the coupling of the local g-tensors of FeIII and CuII.
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Hz
Z1 D �BBz

˛00˛0 ˇ00˛0 ˛00ˇ0 ˇ00ˇ0
2

6
6
4

�1
3
� 2
3
k C 1

2
g2z 0 0 0

0 1
3
C 2

3
k C 1

2
g2z 0 0

0 0 �1
3
� 2
3
k � 1

2
g2z 0

0 0 0 1
3
C 2

3
k � 1

2
g2z

3

7
7
5(51)

3.2 Effect of Spin–Orbit Coupling at the Regular
Octahedral Subunits

As has been shown in Sect. 2.2, the 2T2g ground state of ŒFe.CN/6�
3� splits by spin–

orbit coupling into a ground state doubletE 00.˛00; ˇ00/ and an excited U 0.�; �; �; �/
Kramers quartet, separated by .3=2/�. In the C4v symmetry of the linear Fe–CN–Cu
unit, the E 00.˛00; ˇ00/ state couples via spin-exchange with the E 0.˛0; ˇ0/ spin state
of CuII to give rise to a B1 ground state and to B2 and E excited spin states (52),
which are visualized in Fig. 10, where spin eigenfunctions are also included. The
spin ground state .B1/ is non-magnetic. However, the B2 � B1 energy separation
Œ1=3J.2B2/� is small, the singly occupied a1 orbital .dz2/ of Cu interacts weakly
with the b2.dxy/magnetic orbital of •-type of Fe, resulting in a very small exchange
energy J.2B2/ of 1:6 cm�1. This can be compared with the much larger energy of
the a1.dz2/ Cu e .dxz; dyz/ Fe  -interaction J.2E/ of 19:4 cm�1. The latter places
the E spin state at 6:47 cm�1 above the ground state. Analytical expressions and
numerical values of the parameters of the spin-Hamiltonian J, D and g1.Fe/ and
g2.Cu/ have been derived (53). It is remarkable that in the dinuclear complex, the
g1.Fe/ and g2.Cu/ local tensors couple with a different sign. This leads to the
interesting and unexpected result that the E-term, which usually is assigned to the
magneticMs D ˙1 pair in a ferromagnetically coupled complex with two s D 1=2
ions and with a negative zero-field splitting D, is now highest in energy with small
(for gz.E/) or vanishing (for gx;y.E/) g-tensor components.

E.B1/ D �1
6
J.2E/� 1

12
J.2B2/

E.B2/ D �1
6
J.2E/C 1

4
J.2B2/ (52)

E.E/ D 1

6
J.2E/� 1

12
J.2B2/

J D �2
9
J.2E/� 1

9
J.2B2/ D �4:49 cm�1

D D 1

3
J.2E/� 1

3
J.2B2/ D 5:94 cm�1 (53)

g1x D g1y D g1z D �2
3
� 4
3
k D �1:72 g2x D g2y D 2:18Ig2z D 2:00
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Fig. 10 Spin energy levels and spin functions for the FeIII–CN–CuII exchange pair of C4v sym-
metry; ˛0; ˇ0 .˛00; ˇ00/ are the spins (effective spins) of CuII .FeIII/; parameters used for the C4v

energy levels: J.2E/ D 19:4 cm�1I J.2B2/ D 1:6 cm�1I �.Fe/ D 345 cm�1; energy levels
of the pair in Oh symmetry (collapsing CuII and FeIII nuclei) and the effect of an additional C2v

orthorhombicity are shown schematically (adopted from [27])

In contrast, the B1 and B2 states are composed of an equal admixture of Ms D C1
andMs D �1 functions and are non-magnetic. However, an external magnetic field
.Bjjz/ leads to mixing of these states and thus tends to induceMs D 1 (orMs D �1)
magnetic moments.

gz.E/ D g2z C g1z D 0:28Igxy.E/ D 0 (54)

Because the B2 � B1 energy separation is small and the local g1.Fe/ and g2.Cu/
tensors couple with the same sign in the off-diagonal Zeeman term ((55), weak
magnetic fields can already induce magnetic behavior as shown by the dependence
of the energies of these states on the magnetic field parallel and perpendicular to
the z-axis of the dinuclear model (Fig. 11). A strong anisotropy is predicted with an
easy axis along the z-direction. Therefore, if the rate of magnetic relaxation is small
[i.e. when mediated by phonons (phonon bottleneck)] a single-molecul magnetic
behavior in a given time frame and in an applied external magnetic field may result.

OH.B1; B2/ D



0 �B.�g1z C g2z/B

�B .�g1z C g2z/B
1
3
J.2B2/

�
(55)

Due to the unusual coupling of the g1.Fe/ and g2.Cu/ tensors, the calculated val-
ues of J and D are opposite in sign compared to those conventionally assumed
.J>0;D<0/.

The zero-field splitting energy ofD D 6 cm�1 exceeds the value of the isotropic
coupling parameter J . As follows from the expression for D this arises from the
high difference between the exchange coupling parameters J.2E/ and J.2B2/, and
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Fig. 11 Energies of the spin states of the FeIII–CN–CuII pair in a magnetic field parallel (a) and
perpendicular (b) to the bridging z axis; parameters: k.Fe/ D 0:79I gxy.Cu/ D 2:18I gz.Cu/ D
2:000 (other parameters as in Fig. 10, adopted from [27])

Fig. 12 The �T vs T .H D 0:5T/ dependence for a FeIII–CN–CuII model complex with
ŒFe.CN/6�

3� in an octahedral field without distortions. �T vs T curves are plotted along direc-
tions coinciding with the large .gzz D 3:745/ and small (approximately zero) components of the
g-tensor. The �T curve, after averaging along all directions, is also shown. Calculations have
been done with the following set of parameters: JE D 19:4 cm�1; JB2 D 1:6 cm�1; � D
345 cm�1; k D 0:79; gxy.Cu/ D 2:18; gz.Cu/D 2:00 (z along the Cu–NC–Fe tetragonal axis)

therefore represents an anisotropy of the exchange type (two-center or exchange
anisotropy). We can conclude that the rather large D in the given model examples
is due to the unquenched orbital momenta on FeIII, resulting from the lowest spin
multiplet by an orbital dependent exchange mechanism. The rather large zero-field
splitting D leads to the anisotropy of the g-tensor shown in Fig. 11 and is found
to be exclusively of the Ising type. The rather large magnetic anisotropy manifests
itself in the susceptibily tensor (Fig. 12 .�T /xx;yy;zz).
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3.3 Effect of Combined Spin–Orbit and Static
Jahn–Teller Coupling Along Trigonal Modes

We now discuss the added effect of Jahn–Teller distortions at the FeIII center of the
FeIII–CN–CuII pair. As has been shown in Sect. 2.1, distortions along the angles
(T ˝ �2 coupling) rather than along the bonds (T ˝ " coupling) are those ener-
getically preferred in the systems discussed here. A plot of the dependence of the
spin-energy levels on the angle ™ of trigonal distortion is given in Fig. 13. As
expected, the lowering of symmetry leads to a quenching of the orbital momenta,
and this leads to a strong decrease (increase) of the anisotropic (isotropic) exchange
energies D and J , which are quantified in Fig. 13 by the energies ED and EJ,
respectively. Therefore, a trigonal compression of an octahedral ŒFe.CN/6�

3� com-
plex with changes of � by 2 to 3ı is calculated to lead to a reduction of D by one
order of magnitude. Such a structural pattern is frequently found in structural data
on exchange coupled cyanide complexes. The lowering of the magnetic anisotropy
leads to specific changes in the main values of the susceptibility tensor (Fig. 14),
which becomes off-axial with a large splitting between the components along the x
and y directions, perpendicular to the easy axis and therefore creates a transversal
anisotropy.

We now discuss these results in the context of an approximation adopted in
some theoretical studies [70–74], which only assumes isotropic exchange (i.e. the
first term in (17), J D .2JE C JB2/=3; see however [75, 76] as exceptions to this
approximation). As follows from a symmetry analysis (see (17–23)) and the related
discussion in Sect. 3.2), this is strictly valid in Oh symmetry with collapsing Cu
and Fe centers. A calculation for such a hypothetical case (Table 5, fourth row;
the Cu–Fe coupling is ferromagnetic but the ˛” pseudo-spins of Fe behave as real
spins ˇ, resulting in a negative g-value of Fe) yields the result that the spin ground
state is non-degenerate .A1/ and is separated by a gap of 4:42 cm�1 from the excited
T2 state. It follows, that for a linear Fe–CN–Cu fragment with an undistorted octa-
hedral ŒFe.CN/6�

3� subunit, the exchange anisotropy (i.e. the difference between JE

and JB2) is the only source of the magnetic anisotropy. Therefore, not one .J / but

Fig. 13 Effect of the trigonal
.�2g/ Jahn–Teller distortions
along (1,1,1) (Q� > 0,
trigonal compression) and
.�1;�1;�1/ (Q� < 0,
trigonal elongation) on the
spin energy levels of
FeIII–CuII (adopted
from [27])
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Fig. 14 The �T vs T .H D 0:5T/ dependence for a FeIII–CN–CuII model complex with a JT-
distorted ŒFe.CN/6�

3� site (trigonal distortions corresponding to the minimum of the ground state
potential energy surface, Q� D 0:128 Å). �T vs T curves are plotted along directions coinciding
with the large (zz) and small (approximately zero) components of the g-tensor. The �T curve after
averaging along all directions is also shown. Calculations have been done with all other parameters
specified in Fig. 12

two parameters (Ja1 and Je™) need to be used. Both low-temperature maxima of the
magnetic susceptibility and exchange tensor parameters are calculated to be essen-
tially different under the assumption of a single J, compared to the case, where, in
addition to J; D is also accounted for (Table 5, compare second and fourth rows).
The lowering of symmetry due to Jahn–Teller distortions leads to essentially off-
diagonal D12 and A12 tensors. Owing to the difficulty to approximate all parameters,
they have been neglected in the interpretations of the magnetic data in many exper-
imental [1–22] and theoretical [70–74] studies on systems with degenerate ground
states (see however a recent study with inelastic neutron scattering and a theoret-
ical analysis [77]). The lowering of symmetry due to Jahn–Teller activity and/or
geometrical or bonding strain in solids also leads to the fact that in oligonuclear
complexes, the zero-field and g tensors are generally not collinear. To illustrate this
point, in Table 6 we include the main (diagonal) values of the D12; D12 C A12 and
g tensors and their eigenvalues (cosine functions of the angles between the easy
and hard axes, and the cartesian X,Y,Z axes of the molecules), based on a trigo-
nal distortion of Q� D 0:128 Å (see Sect. 2.1). While the main values of D12 and
D12 CA12 are found in a good approximation to be mutually collinear and oriented
parallel to the directions X; Y and Z of the molecule (i.e. along the initial D4h
axes coinciding with the Fe–CN directions), the molecular g-tensor is not, taking
in this case the orientation due to the anisotropy of the ŒFe.CN/6�

3� itself, with an
easy axis along the .�1;�1; 2/ direction, i.e. perpendicular to the C3 axis of the
Jahn–Teller distorted ŒFe.CN/6�

3� subunit (Table 6, second row, with JE D 19:4

and JB2 D 1:6 cm�1). As in Table 5, a large difference between D12 and D12CA12,
obtained in the two treatments is found. We conclude that an elaborate model which
takes the anisotropic and off-diagonal character of the exchange coupling tensors
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Table 6 Main (diagonal) components of the symmetric .D12/ and the total .D12CA12/ exchange
anisotropy tensors and the g tensora, corresponding to the lowest two pair states of a CuII–NC–FeIII

complex and their orientations in the adopted molecular coordinate system (X,Y,Z) with the Z
axis coinciding with the Cu–NC–Fe bridge, assumed to be linear and with a Jahn–Teller distorted
geometry .Q� D 0:128 Å/, corresponding to the trigonal minimum of the ground state potential
energy surface of ŒFe.CN/6�

3� with .JE D 19:4 cm�1; JB2 D 1:6 cm�1, second row) and without
(JE D JB2 D 13:5 cm�1, third row), taking anisotropic exchange coupling into account

D12-tensor .D12 C A12/-tensor g

�12:38 4:12 8:26 �12:28 4:30 7:98 0:00 0:00 4:35b

0:92 �0:37 0:09 0:92 �0:37 0:23 0:71 0:61 �0:36
0:38 0:91 �0:14 0:40 0:93 �0:32 �0:71 0:61 �0:36
�0:03 0:17 0:98 0:04 �0:04 0:92 0:00 0:51 0:86

�10:94 5:00 5:94 �10:70 5:35 5:35

0:90 �0:41 �0:15 0:86 0:26d 0:26d –c

0:38 0:57 0:73 0:48 0:79d 0:79d

0:21 0:71 �0:67 0:17 0:55d 0:55d

adiagonal g-tensor values are given for pseudo-spin 1=2
bnon-degenerate ground state with an excited spin-state only 0:29 cm�1 apart, which can mix in a
magnetic field
cnon-degenerate ground state separated by a larger gap .1:79 cm�1/ from the excited, accidentally
degenerate spin state
dwith eigenvectors components, being complex numbers only absolute values are given

D12 and A12 into account, is mandatory to correctly interpret magnetic data from
experiment.

In our studies thus far we have assumed a C4v pseudo-symmetry for a given
FeIII–CN–MII .M D CuII;NiII/ pair along the FeIII–CN–MII bridge to define two
exchange parameters JE D J�� D J�� and JB2 D J�� . This allowed us to use DFT
and the broken symmetry approach to calculate these parameters from first princi-
ples. In the general case of a low-symmetric bridge with violated linearity, all six
independent parameters of (17) have to be taken into account. In such a situation and
in the presence of closely spaced orbitals (near degeneracy) SCF procedures in DFT
and ab-initio calculations usually break down. A new and user oriented ab-initio
based method to allow the calculation of all symmetry-independent exchange cou-
pling energies for a coupled pair of transition metal ions as well as other examples
of exchange coupled pairs containing ions in orbitally degenerate ground states will
be published separately [66].

4 Conclusions

With a combined DFT and ligand field approach we have analyzed the magnetic
anisotropy in ŒFe.CN/6�

3� and we have shown that, due to symmetry lowering,
very small distortions are able to induce magnetic anisotropy. The analysis of this
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symmetry-induced increase of the magnetic anisotropy shows that the combination
of Jahn–Teller coupling and spin–orbit coupling, which are otherwise competitive
and lead to a stabilization of an orbitally non-degenerate ground state in regular
and distorted octahedral geometries, respectively, contribute to an increase of the
magnetic anisotropy of a single center ŒFe.CN/6�

3� complex. Trigonal compres-
sions induce an orbitally non-degenerate ground state and lead to an anisotropy
of the gz < gx;y type (i.e. to an anisotropy with an easy plane), while trigonal
elongation, with an orbitally degenerate 2Eg ground state, leads to an anisotropy
of the type gz > gx;y (i.e. to an anisotropy with an easy axis). The situation
changes completely when ŒFe.CN/6�

3� is part of a dinuclear complex with a
common CN bridge in a MII–NC–FeIII unit .M D CuII;NiII/. Here, with a reg-
ular ŒFe.CN/6�

3� complex with a four fould symmetry .C4v/ with respect to the
Cu–NC–Fe bridge, a large anisotropy of the exchange-type emerges. Orbital contri-
butions, which affect the spin-subsystem via the mechanism of spin–orbit coupling
(orbital dependent exchange), results in an anisotropy of the Ising type. Geometri-
cal distortions, leading to a quenching of spin–orbit coupling, lead to a reduction
of the magnetic anisotropy. Therefore, trigonal distortions of only 1–2ı are able to
completely destroy the magnetic anisotropy. A similar anisotropy of the Ising-type
has been reported in theoretical studies of MnII–NC–MoV [30,78] and M–NC–OsIII

.M D CrIII;MnII;NiII/ [79] exchange-coupled pairs.
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Part VI
The Cooperative Jahn-Teller Effect and

Orbital Ordering



Cooperative Jahn–Teller Effect: Fundamentals,
Applications, Prospects

Michael Kaplan

Abstract Keeping in mind the pedagogical goal of the presentation the first third of
the review is devoted to the basic definitions and to the description of the cooperative
Jahn-Teller effect. Among different approaches to the intersite electron correlation
in crystals the preference is with the most fundamental and systematic Hamiltonian
shift transformation method. Order parameter equations and their connection to the
crystal elastic properties and to the orbital ordering are considered. An especial
attention is paid to the dynamics of Jahn-Teller crystals based on the coupled elec-
tronic, vibrational, and magnetic excitations which are of big interest nowadays in
orbital physics.
In the next part of the review some of the most important applications of coopera-
tive Jahn-Teller effect and related new phenomena in materials are under discussion.
Ferro- and antiferroelectricity are considered using a dielectric zircon structure
antiferroelectric as an example. The relative roles of different phonon modes are
analyzed. Giant dynamic and static magnetostriction and electrostriction as typi-
cal properties of Jahn-Teller crystals are discussed. Qualitative analysis of these
properties and the results of numerical calculations and experimental data for
different materials are presented. The new phenomena of metaelasticity and meta-
magnetoelasticity and their experimental observation and theoretical description are
demonstrated. These phenomena are discussed in connection with the giant mag-
netoelectricity found in Jahn-Teller crystals and the relation of these phenomena
to the magnetoelectricity of modern multiferroics. The review is ending with some
suggestions on possible development in the field.

1 Introduction

The cooperative Jahn–Teller effect (CJTE) as a viable mechanism of structural trans-
formations in solids was mentioned for the first time in 1957 by Dunitz and Orgel [1]
and McClure [2]. Relatively soon after that Kanamori [3] published a fundamental
paper defining the basic approach to the problem. In 1966 Bersuker [4] sug-
gested a Jahn–Teller model for formation an electric dipole moment of a molecule
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(structural unit). Simultaneously he made the next step offering a mechanism of
ferroelectricity – ordering of the electric dipole moments in a crystal.

Despite these early landmark efforts, the systematic study of cooperative vibronic
systems began much later. Not until early 70s, prompted by studies at Oxford involv-
ing scientists from various countries (see [5]; [6]) did comprehensive experimental
and theoretical research begin on compounds with CJTE. The first most impressive
experimental and theoretical results were obtained for rare-earth oxides with zircon
structure. Vanadates, phosphates, and arsenates of this class of materials became
model systems in the field. Later inspired by these results scientists returned back
to the transition metal compounds with which the studies in the field started and are
continuing nowadays. Several very interesting and important reviews on the sub-
ject were written. Among them we have to mention first of all excellent articles by
Gehring and Gehring [7] and Reinen and Friebel [8]. While the books by Englman
[9] and Bersuker and Polinger [4] contained chapters on cooperative phenomena, the
first book by Kaplan and Vekhter [10] devoted entirely to the analysis of properties
of crystals with CJTE appeared in 1995.

The physics of CJTE looks very simple and clear. Because of the vibronic
(electron-vibrational) interaction each Jahn–Teller (JT) molecule (center) is char-
acterized with several energetically equivalent minima corresponding to a possible
distortion of the initial (at the absence of the vibronic interaction) symmetry. In
case of many JT centers in a crystal matrix an effective interaction caused by lattice
strains around the centers takes place. This interaction breaks the equivalence of
the minima. The preference of the specific distortions around each of the JT centers
leads to the ordering of the local distortions – structural phase transitions. As each
distortion is related to a specific electronic state (orbital) the JT structural transi-
tion is at the same time an ordering of orbitals. The last is a central question of the
modern orbital physics.

As the quantum mechanics language is more general and as a rule more appro-
priate in discussions of the JT effect, the interaction between JT centers should
be considered as a virtual phonon exchange between the electrons in orbitally
degenerate states.

It is worthy to give a direct definition of CJTE. CJTE is virtual phonon exchange
at electron orbital degeneracy, leading to the correlation of local distortions and
selfconsistent correlation of electrons. The virtual phonon exchange is the result of
electron-phonon (vibronic) interaction and of phonon dispersion.

On the Fig. 1 different “packing” possibilities for two JT squared molecules
with orthorhombic distortion are shown. Depending upon the sign of the interac-
tion between the molecules the .CC/ or .��/ and .C�/ or .�C/ combinations
are possible. The adiabatic potential U(Q) of one JT center in the presence of a JT
molecular field is shown on Fig. 1 below the squared molecules. This molecular
field is the reason of the non-equivalence of the minima and the possibility (at low
enough temperatures, as it will be discussed below) of the structural phase transition.
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Fig. 1 Packaging of local distortions for a pair of JT centers and their adiabatic potential [10]

2 Hamiltonians

The CJTE system will be considered as a crystal containing a lattice (or one of
the sublattices) of JT ions (structural units). A typical Hamiltonian should describe
the JT effect at each of the corresponding centers plus the elastic energy related
to the appearance of the homogeneous strain as a result of the structural phase
transition.

Such a Hamiltonian could be written like that

H D Hph CHel�ph CHstr CHel�str CHcryst CHmagn
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X
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(1)

where the first two terms describe the free phonon energy and the electron-phonon
interaction, next two are the elastic energy of the strained crystal and the electron-
strain interaction, and, finally, the last two terms are related to the crystal field
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electron energy splitting and the magnetic interactions (external magnetic fields,
exchange interactions and so on).

In this Hamiltonian k is the wave vector of the phonons, ” is the phonon
mode branch, g0 and Vmk are the electron-strain and the electron-phonon interac-
tion constants. It is important to remind that as it was noted for the first time by
Kanamori [3], the electron interaction with the homogeneous strain U should be
considered separately from the electron-phonon interaction as that type of strain
can not be represented by phonons. The introduction of the last ones depends
upon the Born-Karman conditions that are changing at the structural phase tran-
sition.

As it was mentioned in the Introduction, the central part of the CJTE is the
virtual phonon exchange interaction. There are different methods to get this effec-
tive interaction starting with the Hamiltonian (1). Sugihara [11] was first (1959) to
show that this interaction could be obtained considering the vibronic interaction as
a perturbation (week JT effect).

In the second order of perturbation theory the effective intercenter interaction has
a form of

Heff D �
X

mn���1

m¤n

V
�

m��V 
1

n�

�!�
OmO

1

n

V m� D � .�/ exp.i�Rm/

(2)

where Om
” are the electron operators and Rm is the radius-vector of the m site of

the crystal lattice.
Kanamori in his seminal work [3] suggested a more general approach called

the displacement operator method. According to this method the initial bk phonon
operators are replaced in the Hamiltonian (1) with the ak new ones like that
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As a result of this replacement the linear vibronic interaction in Hamiltonian (1)
is cancelled, and the effective virtual phonon interaction operator appears. How-
ever the use of this method that formally could be applied to any Hamiltoninan
is related to some practical difficulties. These difficulties take place in case of
the presence of some non- commuting electron operators in the initial Hamilto-
nian. They are especially serious when the dynamics of the JT system is under
discussion.

Slightly a different method to analyze the intersite electron correlation was sug-
gested by Thomas [6] (in more detail it was discussed by Bersuker and Polinger [4]).
In their works the lattice Hamiltonian is described as a bilinear distortion interac-
tion. Together with the regular vibronic interaction it leads to the electron-electron
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correlation. When this Hamiltonian is treated exactly the corresponding results are
not different from the approach by Kanamori [3]. However in most of the articles
where the last method was employed, several approximations (simplifications of
the lattice Hamiltonian) had been used leading to less general results. Neverthe-
less in case the local vibronic dynamics is of primary interest this method has its
advantages.

The most general approach to the formation of the effective operator of the
intersite virtual phonon exchange interaction is based on the canonical shift trans-
formation of the Hamiltonian

Heff D .exp iR/H.exp.�iR/
R DP

m

gmOm

gm D iP
�

�
V �m��bC�� � Vm�b�

� �
�!�1�

� (4)

As a result of this type of Hamiltonian transformation the linear electron-phonon
interaction disappears, an effective interaction between the JT centers is created, but
the Hamiltonian may become very complicated. The transfer of the mixing of the
phonon and electron operators to the other Hamiltonian terms is the price for the
accuracy of the canonical transformation. Of course, in this case also the problem
can not be solved exactly and some approximations should be applied.

While the transformed Hamiltonians with the intercentral interactions as it was
mentioned above, are complicated, an especially difficult situation takes place in the
case of a double degenerate vibrational e-mode active in the JT effect. Here different
approximations could be involved depending upon relationship between parameters
characterizing the JT effect.

If the vibronic coupling is week (in comparison with the phonon energy) the
second order perturbation theory for the local Exe problem will give
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where the last term describes the mixing of the electrons and vibrations in the higher
(than second) order in V coupling. The ™- and ©-components of the pseudospin oper-
ator ¢ (correspondingly to the components of the double degenerate E-mode) often
are represented by ¢z and ¢x operators.

However, if, just oppositely, the vibronic interaction is strong (much stronger
than phonon quantum), the lowest adiabatic potential only could be taken in consid-
eration.

The lowest state of the local electrons could be represented as a combination of
two degenerate states

‰ D cos �m
2

'u C sin
�m

2
'v (6)
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where ™m is the angle in the plane of the local coordinates of the e-mode. At T D 0
it could be shown that

N�zm D cos �m N�xm D sin �m (7)

and the energy of the interaction between the JT centers can be written like
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(8)

In case of the quadratic vibronic interactions are taken into account three minima
appear on the lowest sheet of the adiabatic potential. The tunneling between them
leads to a complicated local dynamics that in its turn significantly influences the
cooperative problem interaction. If the lowest ground state is a vibronic doublet
and the first excited state is a vibronic singlet well separated from the higher energy
levels, Thomas and Muller [12] had shown that the Hamiltonian of the CJTE system
can be described as
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where the pseudospin operator S D 1 corresponds to three vibronic states, and 	 is
the gap separating the ground doublet from the excited singlet.

3 Structural Phase Transitions and Orbital Ordering

The correlation of the electrons at different JT centers caused by the virtual phonon
exchange leads at some temperatures to the ordering of the local distortions and of
the self consistently coupled to them electronic states (orbitals). This happens when
the loss in the elastic energy and entropy at the ordering is compensated by the gain
in the energy of the crystal electronic subsystem. At this case the electronic order
parameter (an average of a pseudospin operator) of the phase transition becomes
different from zero and because of that the spontaneous lattice (sublattice) strain is
also not zero.

In case of the ferroelastic ordering in the crystal (for example, for a ground
doublet state of the JT center)

N�mz D N�z

U D .C0	/�1ŒP C g0.C0	N/1=2 N�z�

N�z D T r exp.�ˇH�z/=T r exp.�ˇH/
(10)
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where the spontaneous crystal strain U at the external pressure P D 0 is propor-
tional to the electronic order parameter – the difference in the populations of the
electronic doublet components). The order parameter ¢z could be calculated in the
molecular field approximation, random phase approximation, or any higher level of
approximation.

If the structural ordering is of the antiferrodistortive type, the crystal lattice could
be divided in two sublattices (with different principal axes of the sublattice strains).

Correspondingly two order parameters are characterizing the system, and the
total crystal strain is zero

N�zI D �N�zII

U D NUI C NUII D 0 (11)

Similarly to the situation in magnetism CJTE can lead to ferrielasticity with

N�zI ¤ N�zII
NUI ¤ NUII
NU ¤ 0

(12)

or to even more complicated helicoidal structure, glass, or incommensurate phase
transitions.

The preferred type of ordering in the JT crystal depends upon the interaction
between the centers that has the form (2) where, in general, k is the phonon wave
vector and the branch of the phonon mode. The crystal ordering occurs corre-
spondingly to the wave vector k for which the Fourier transform of the interaction
constant is a maximum. It leads to the occupation by the electrons of the certain
preferred components of the electron degenerate term at different crystal sites and
correspondingly to the preferred orientation of local JT distortions.

The interaction Hamiltonian and the Fourier transform of the interaction constant
can be written as [7]
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where the last expression for the Fourier transform in (13) is correct for some spe-
cific crystal forms only. The last formula in (13) is conclusively showing that in the
absence of the phonon dispersion the virtual phonon exchange is zero and there is
no any CJTE in the system.

As it is seen from (13), all crystal phonon modes contribute to the interaction
between JT centers. However analysis of the concrete crystal structure and of the
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specific experimental data allows for the differentiation of the different phonon
modes contribution.

Rewriting the vibronic interaction operator in the form
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that is correct for the acoustic modes (for the optical modes it would include k D 0
term in the sum), the vibronic constant expression can be used as
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Then the Fourier transform takes the form of
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The last term in (16) is the self energy term corresponding to the sum of the local
JT stabilization energies. It can be shown that the limit of the first term taken in a
specific space direction that corresponds to the contribution in the interaction of the
homogeneous spontaneous strain at k D 0 is

limK.�/ D g20 (17)

It is easy to see from formula (16) that the interaction constant can be of any sign
depending upon concrete situation. If the interaction with strain is very big the
constant at k D 0 is positive and the ferrodistortive ordering is favorable.

For the optical modes as it was mentioned above in the operator (16) k D 0 is
included.

However if the JT ion is located in the center of inversion, only odd optical modes
are active in the JT effect (in case of pseudodegeneracy this could be not true). For
the odd optical modes V.k D 0/ D 0 and

J.0/ D
X

n¤m
J.m � n/ D � 1

N

X

�

2V 2.�/

�!�
< 0 (18)

In this case the interaction constant at k D 0 is negative, i.e. the phonons tend to
establish the antiferrodistortive ordering.
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4 Elastic Properties of Jahn–Teller Crystals

While the elastic properties of JT crystals could be an example of possible appli-
cations of the CJTE theory for microscopic description of the materials properties,
these properties are analyzed in advance and separated from others. It is related
to the fact that strain and elastic susceptibility are the principal characteristics of
structural phase transitions.

Here the elastic properties are briefly considered for several concrete crystals.
The TmVO4 crystal undergoes a structural D4h

19� > D2h
24 phase transition at

around 2.1 K. The spontaneous orthorhombic strain symmetry is B2g.D4h/ and the
local Tm3C ion symmetry in the paraphrase is D2d. The ground state of the JT ion
is a spin-orbital doublet well separated from higher lying levels.

In this case the spontaneous strain U, the order parameter �z, and the elasticity
constant C D C66 are described by the following formulae and the graph presented
in the Fig. 2.

As we see from these formulae the elasticity constant C66 (the reciprocal of elas-
tic susceptibility) tends to zero at T D Tc. The experimental dependence of the
modulus of elasticity upon temperature is measured at T > Tc only because of the
strong domain wall related ultrasound attenuation. The agreement between the MFA
theory (the continuous line in the Fig. 2) and experiment is very good.

Another good example of successful acoustic properties description based on
CJTE is DyVO4 – a crystal from the same zircon structure family. While this
crystal has the same structure that TmVO4 and undergoes a similar tetragonal-
orthorhombic structural phase transition, the symmetry of the ordered phase is
different and correspondingly different are the acoustic properties. All this is well
understood in the framework of CJTE taking into account the difference in the elec-
tronic structures for the JT ion Tm3C. On the Fig. 3 the order parameter temperature
dependence as it was found from the Raman light scattering [5] and the temperature
dependence of the soft modulus of elasticity C1 D 1=2.C11 � C12/ (ultrasonic
measurements [14]) are shown.

The anomalous temperature dependence of elastic constants found from the
CJTE calculations is shown for transition metal compounds of the NiCr2O4 and
CuCr2O4 type crystals on the Fig. 4. As in this case the soft acoustic mode is double
degenerate there is a splitting of the high symmetry modulus of elasticity C1 of the
cubic crystal phase in C2 and C3 constants of the tetragonal phase.

5 Dynamics of JT Crystals

The coupling of the electron and vibrational variables is a characteristic property of
JT systems. Nevertheless in analysis of thermodynamics of the JT crystals every
effort was made to develop an approximation separating the variables and sim-
plifying the calculations. However the situation is fundamentally different in the
dynamics of the CJTE. The dynamic spectrum of CJTE crystals is represented by
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Fig. 2 Experimentally found temperature dependence of C66 (T) for the TmVO4 crystal (ultra-
sound measurements) [13]

the elementary excitations that are dynamically coupled vibron-phonon (or even
vibron-phonon-magnon) modes. The importance of the elementary excitation spec-
trum of the JT crystals is related to the fact that only analysis of the temperature
dependence of the elementary crystal excitations answers the question about the
soft mode responsible for the phase instability in the system and the order-disorder
transformation.

Let’s consider as an example the elementary excitations of the TmVO4 crystal in
the external magnetic field H parallel to the crystal tetragonal (at T > Tc) c-axis.
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The convenience of this example consideration is related to the possibility to control
the dynamic vibron-phonon coupling by the external H parameter.

The Hamiltonian of the crystal after the shift canonical transformation is [10]
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2
C0	U

2 � g0
r
C0	

N
U
X

m

�mz C
X

�

�!�

�
bC� b� C

1

2

	
�
X

mn�
m¤n

V �m�Vn�
�!�

��mz �nz � gˇH
X

m

.�my cos 2gm C �mx sin 2gm/ (19)

The last term describes the coupling of the electron and phonon variables. Its com-
plication is the price for the accuracy of the intersite interaction operator and the
crystal Hamiltonian overall.

Using the Green function method and some decoupling approximations corre-
sponding to the RPA and the Zeeeman reduced splitting smaller than Debye phonon
quantum, it is possible to get the dispersion equation
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” is the vibronic reduction factor.
This spectrum of elementary excitation in case of the week vibronic coupling was

obtained first by Elliott, Harley, Hayes, and Smith [5] and in case of the arbitrary
vibronic interaction (including the strong one) by Kaplan and Vekhter [16].

Analysis of the (20) shows, in part, that the electron and vibrational modes are
coupled and in some parts of the Brillouin zone that lead to dramatic changes in the
excitation energies. These results schematically are shown on Fig. 5.

In TmVO4 crystal the external magnetic field can be of order of the JT molec-
ular field and significantly influence the structural phase transition. As a result of
that at low enough temperatures the structural phase transition can be induced by
magnetic field.
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Fig. 5 Schematical presentation of the electron-phonon excitations in the Jahn–Teller crystals at
different temperatures [7]

Figure 6 demonstrates the results of the neutron scattering measurements by
Kjems, Hayes, and Smith [17] that clearly show the coupled electron-vibrational
modes in TmVO4.

As it follows from the (26) and Fig. 6, at the absence of the magnetic field
.H D 0/ the dynamic coupling does not exist and the unrenormalized acoustic
phonon mode active in the CJTE linearly depends upon the wave vector. However
when H is not zero the dynamic coupling drastically changes both the phonon and
the electronic mode.

It is important to note that the electronic mode (see (28) is not the soft one (it
does not go to zero at T� > Tc). However the renormalized phonon mode does.
That means that the phonon mode is responsible for the instability in the crystal
what should be expected at the structural phase transition caused by the CJTE.

The fundamental role of the dynamic electron-phonon coupling in the Jahn–
Teller crystals was clearly demonstrated by the Raman light scattering experi-
ments [18].

Harley, Hayes, and Smith [18] had measured the zone-center vibron energy
h!.0/ of the TmAsO4 crystal under external magnetic field. In that crystal, like
in TmVO4, the dynamic coupling is not zero in the presence of the external mag-
netic field only. As it is shown on the Fig. 7 the electronic excitation is the soft mode
at the absence of the electron-strain interaction only (g02 D 0, dashed line). How-
ever when the electron-strain constant is not zero (all other lines on the Fig. 7) the
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Fig. 6 Spectrum of coupled electron-phonon modes in the TmVO4 crystal under external
magnetic field Hz according to neutron scattering data [17]

electronic excitation energy is not zero and the acoustic mode becomes the soft one
as it is supposed to be at the structural phase transition.

6 Examples of Applications of CJTE Theory

6.1 Structural Transitions. Ferro- and Antiferroelectricity

Among different applications of the CJTE structural phase transitions are the most
important one. However as they already were briefly discussed above now we will
focus the attention on ferroelectricity. The first general ideas in the field belong to
Bersuker [4]. The development of these ideas went in two directions: a) systems
with local pseudo-JT effect characterized by wide energy gaps and local center of
inversion; b) systems with small energy gap between the ground and excited states
(JT or pseudo-JT effect) in crystals without local center of inversion.
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Fig. 7 The zone-center electronic excitation h!.0/ by Raman scattering in TmAsO4 at T D 2:5K
as a function of magnetic field [7]

The first direction was explored in the works of many different research groups
[19] (also see [19] for a complete review of these results and their experimental
confirmation).

Here the second direction will be considered in more detail for an example.
Experimentally ferro- and antiferroelectricity of this type was discussed for rare

earth compounds in [20–22]. Unoki and Sakudo [20] were the first who found the
antiferroelectric anomaly in the DyVO4 crystal that is simultaneously ferroeleastic
and antiferroelectric.

Microscopic theory of this phenomenon was suggested by Vekhter and Kaplan
[23] and then developed in many studies (see references in [10]).

The coupling between the distortion and electric dipole moment structures is
very tight and unusual. Both these orderings are the result of the virtual phonon
exchange. The absence of the local center of inversion is the reason why the JT
distortion is responsible for the formation of the electric dipole moment (see Fig. 8).
At this situation the ordering of the distortions is accompanied by the ordering of
the dipole moments.

The Hamiltonian of the crystal with possible ordering of the electric dipole
moments [24] additionally to the traditional terms discussed above contains the
energy of the polarized crystal, the electron-polarization interaction (similar to the
electron-strain interaction), and the interaction with the external electric field. After
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the canonical Hamiltonian transformation the crystal could be divided in two sublat-
tices in which the electric dipole moments are directed oppositely (this is the only
ordering possibility for the electric dipole moments as the DyVO4 crystal is still
keeping its center of symmetry after the structural phase transition).

On the Fig. 9 the results of the theoretical calculations of the dielectric con-
stant without external pressure .P D 0/ and in its presence are compared with the
experimental data for DyVO4.

The calculations are based on the following formulae:
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A D 3:9 cm�1; B D 7:2 cm�1; f2 D 2:4 cm�1;
�0 D 1:48; and� D 4:5 cm�1 (24)

where A and B are the intra- and intersublattice molecular field constants, f is the
electron-polarization interaction constant, and ¦0 is the initial (unrenormalized)
electrical susceptibility, ˛ D I; II is the index of the sublattices of the Dy3C ions.
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Fig. 9 “Longitudinal” dielectric constant of DyVO4 vs. temperature, experimental (solid curve)
and theoretical (dot-dash curve). The influence of the external pressure P D 10 cm�1 is shown by
the dashed curve

It is important to mention that from the analysis of the elastic and dielectric
measurements and of the A and B molecular field constants the relative contribution
of the acoustical and optical vibrations to the structural ordering could be estimated.

7 Magnetoelasticity and Electroelasticity

Giant static and dynamic magneto- or (and) electrostriction is a characteristic prop-
erty of crystals with CJTE [25]. It is clear that striction effects are attributable to the
mixing of electronic states by the external field (magnetic or electric). The striction
coefficients are large in systems with degenerate or pseudo-degenerate electronic
states (then their mixing is strong), with big vibronic constants (then the magneto-
or electroelastic forces are big), and with small (“soft”) elastic coefficients (so that
the strain of the lattice under the field is maximal). The first two conditions point at
the JT effect situation, and the third one takes place in crystals with the CJTE.

On the Fig. 10 the experimental and calculation data are presented for different
crystals. It is seen that both static ((a), top left corner of the Fig. 10) and dynamic
((b), c), and d) of the Fig. 10) striction in JT crystals are big. The dynamic striction
is characterized by a strong maximum near the critical temperature (Fig. 10d) (or
critical magnetic field (Fig. 10c)) of the structural phase transition. The dynamic
striction coefficient D is defined as a derivative of the spontaneous strain U upon
the external field (magnetic or electric). As the spontaneous strain in CJTE systems
is proportional to the electronic order parameter average, D is proportional to the
derivative of this average upon the field (see Fig. 10c, d).
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Fig. 10 Static and dynamic magnetostriction in the DyVO4 (a,b), TbVO4 (c), and Tb1�xGdxVO4

(d) Jahn–Teller crystals. (a) and (b) are the experimental results by V. Sokolov, Z. Kazey e.a.
(c) and (d) are the theoretical data by M. Kaplan, B. Vekhter e.a. [10]

8 Metamagnetism and Metamagnetoelasticity

The strong magnetostriction of the JT crystals is responsible for their unusual
metamagnetism and a new phenomenon called metamagnetoeleasticity [26].

The metamagnetism of the non-magnetic JT crystals was observed in KDy
.MoO4/2 crystal by Leask, Tropper, and Wells [27], and Kazey and Sokolov [28].
The detailed discussion of the phenomenon was presented by Kaplan [29]. Approxi-
mately at the same time (in 1982) a new phenomenon of metamagnetoelasticity was
predicted.

It is convenient to start the explanation of these phenomena with the another
property of the CJTE crystals that is called metaelasticity (the term was suggested in
[26]). Due to strong anisotropic character of the ordering of the local JT distortions
this phenomenon is a direct analogy of the Ising metamagnetism. However in the
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ordered JT crystals the external uniaxial pressure leads to the overturn of one of the
distortion sublattices in the antiferroelastic system.

The strong electron-phonon coupling causes the dramatic change in the sublat-
tice electronic structure related to the crystal structure change. At the same time
the vibronic coupling through the magnetostriction can allow the overturn of the
distortion sublattice by the external magnetic field. The result of that is the dra-
matic increase of the homogeneous crystal strain at the critical magnetic field –
metamagnetoelasticity. At the same time the change of the electronic structure
supports the dramatic increase of the induced magnetic moment of the total system –
metamagnetism (Figs. 11–13).

Similar phenomena of metamagnetoelasticity and metamagnetism were observed
in colossal magnetoresistance manganites by Nojiri, Kaneko, Motokawa, Hirota,
Endo, and Takahashi [30].

They additionally had (Figs. 12, 13) demonstrated that these phenomena corre-
late with the anomalies of the magnetoresistance.

In colossal magnetoresistance manganites the metamagnetoelasticity is con-
nected with the XY-ordering of the elongated octahedra surrounding the Mn3C
cations. As a result of this type of ordering the crystal lattice is increasing the ele-
mentary cell size in the ab-plane and decreasing along the tetragonal axis
z-direction. If the magnetic field is applied in the ab crystal plane the metamag-
netism and metamagnetoelsticity caused by magnetostriction could be expected.
The magnetic field that is directing along z-axis and supporting the elongation of the
crystal cell along z-axis could be responsible for a similar phase transition when the
Zeeman energy is of the order of the intersublattice JT molecular field. This situation
was analyzed by Kaplan and Zimmerman [31]. Some examples of their calculations
are shown on the Fig. 14. The Fig. 15 shows that at the magnetic field induced
structural transition the magnetic susceptibility has an anomalous behavior while
the crystal is paramagnetic at all temperatures.

The lowest curve corresponds to the lowest temperature T D 0:1 (the magnetic
field is much smaller than the Jahn–Teller ordering molecular field). If the molec-
ular field is much smaller than Zeeman interaction the metamagnetoelastic jump
disappears.

The lowest curve does not show any anomaly in the susceptibility behavior as the
temperature .T D 4:0/ is too high in comparison with the magnetic field.

Similarly there are no susceptibility anomalies for very low temperatures (T D
2:2 and lower; three highest curves at small Hz) as at this case the strong molecular
field is suppressing the Zeeman interaction.

As it could be seen from the Fig. 14 the anomalous jump of the magnetic moment
disappears when the temperature is higher than the critical temperature of the struc-
tural XY-ordering in the crystals (for T D 0:1 the magnetic field value is not
big enough for the sublattice overturn, T-units are dimensionless). Similarly the
susceptibility anomaly is maximum at T D Ts D 2:6.

It is clear that the metaelasticity similar to the observed one in the rare-earth
compounds is present in the colossal magnetoresistance systems. The results of the
corresponding behavior of the uniaxial spontaneous strain depending upon the uni-
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Fig. 11 Experimental and theoretical data demonstrating the metamagnetism and metamagne-
toelasticity of the Jahn–Teller crystals with structural transitions: M(B) – metamagnetism of
KDy.MoO4/2 [27]; M=M0.h=2/ – theory .h D 1=2g�BH/; U(h/2) – metamagnetoelasticity of
an antiferroelastic (theory) [29]

axial stress as well as of the dynamic magnetostriction calculation are shown on the
Figs. 16 and 17.

When the Pz magnitude is bigger than 3.0 the lowest curve corresponds to T D
0:1 (the sharpest jump of the order parameter) and the highest curve is related to
T D 4:0 (there is no phase transition at this case).
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Fig. 12 Metamagnetoelasticity of the colossal magnetoresistance La0:88Sr0:12MnO3 manganites
(at all temperatures the phase is ferromagnetic) [30]

9 Orbital-Magnetic Structure at Orbital Degeneracy

While the virtual phonon exchange as a rule is the major electron correlation mech-
anism in CJTE crystals, there is no doubts that in different situations other electron
interactions could play an important role. In JT compounds the structural phase
transitions very often are followed, preceded, or accompanied by magnetic tran-
sitions. These magnetic transitions as a rule are due to the superexchange at the
orbital degeneracy of the JT centers. The effective Hamiltonian describing this type
of interaction was suggested by Kugel and Khomskii [33, 34]. They had demon-
strated that the orbital and real spin operators are coupled so that the ordering of
spins depends upon the ordering of the orbitals. A typical Hamiltonian of superex-
change interaction in the simplest case of the symmetrical model (transfers between
similar orbitals only are not zero and all are equal) for orbital doublets on the site
looks like

Hse D
X

ij

.J1
!
Si
!
Sj CJ2!�i !�j C4J3

!
Si
!
Sj
!
�i
!
�j / (25)
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Fig. 13 Correlation of the metamagnetomagnetism, metamagnetoelasticity, and colossal mag-
netoresistance in manganites. The vertical shifts of the magnetization curves are given for
convenience only; the curves of strain L and resistivity R are normalized by their values at zero field
[30]
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Fig. 14 Metamagnetism at XY-ordering in Jahn–Teller crystals [31]
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Fig. 15 Magnetic susceptibility anomalies in paramagnetic XY-ordered JT crystals

Fig. 16 Metaelasticity in JT crystals with XY-ordering [32]. Pz is the uniaxial stress along the
z-axis of the crystal; x is the octahedron elongation along the x-axis

where £ are orbital operators and S are real spin operators. Using this approach
Kugel and Khomskii were able to explain and predict several very interesting
magnetic structures in crystals. An example of these is the KCuF3 crystal with ferro-
magnetic ordering in the plane and antiferromagnetic ordering between the planes.
It can be shown that this magnetic ordering is the direct result of the antiferrotype
ordering of the d-orbitals of the Cu2C ion. That is, of course, simultaneously coupled
to the antiferrodistortive ordering of the octahedron distortions around these ions.

The orbital structure of the KCuF3 crystal is shown on the Fig. 18.
It should be mentioned that while in the Hamiltonian of the superexchange

interaction at orbital degeneracy there are no vibrational operators, the vibronic
interaction as a rule plays a decisive role in the ordering of the orbitals in the JT
crystals.

As it was discussed above in these systems the virtual phonon exchange is the
leading interaction responsible for the structural phase transition and for the cor-
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Fig. 17 Magnetic and temperature dependences of giant dynamic magnetostriction in JT crystals
with the structural XY-ordering [32] (x is the octahedron elongation along the x-axis)

z

y
x

Fig. 18 Ordering of electronic states in KCuF3 crystal [34]

responding ordering of the orbitals. That orbital ordering in its turn influences the
magnetic ordering.

Nowadays these questions are in the focus of attention in the studies of the mag-
netic properties of the transition metal oxides and of the colossal magnetoresistance
compounds in part. For the LaMnO3 crystals the most consistent approach based
on taking into account both the CJTE and the superexchange Hamiltonians was
developed by Ishihara, Inoue, and Maekawa [35].

10 Magnetoelectricity

As it was shown in section VI, as a rule the JT crystals are characterized by com-
bination of big magnetostriction and electrostriction effects. However Mitsek and
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Smolenskii [36] were the first who had proved that the combination of such a phe-
nomena will lead to strong magnetoelectricity: the dependences of the polarization
and the dielectric crystal constant upon the external magnetic field and of the mag-
netization and magnetic susceptibility upon the external electric field. Vekhter and
Kaplan [10, 26, 37] noted that as the magneto- and electrostriction effects are big
in JT crystals and can be successfully understood in the framework of the CJTE
theory, it is natural to expect big magnetoelectric effects in the JT systems and their
complete microscopic description.

Additionally, as it was predicted in [10], in these types of materials some meta-
magnetoelectric effects (for example, sharp increase of the polarization with the
external magnetic field) should be observed.

The phenomenological and microscopic theory of the JT paramagnetic and para-
electric ferroelastics was discussed in detail in [10]. An example of such a material
is the crystal of TmAsO4 that is undergoing a ferroelastic transformation from the
tetragonal to the orthorhombic phase at 6.1K. Taking into account the lowest elec-
tronic states of the Tm3C ion – the ground doublet and the excited singlet – it is
possible to calculate the magnetoelectric coefficients in this compound using their
connection to the electronic structure and concrete phonon spectrum.

As among the JT ferroelastics there are materials with the magnetic and ferro- (or
antiferro-) electric orderings, it is interesting to take a look at their magnetoelectric-
ity description. Examples of materials with the coexisting structural, magnetic, and
electric dipole moments are DyVO4 (ferroelastic, antiferroemagnetic, antiferroelec-
tric), KDy.MoO4/2 (antiferroelastic, antiferroelectric, “tilted” magnetic), TbPO4
(ferroelastic, antiferroelectric, “canted” magnetic), and others.

Among these materials the record big magnetoelectric effect is related to TbPO4
as it was experimentally discovered by Rado, Ferrari, and Maish [38] and later dis-
cussed in more detail by Bluck and Kahle [39]. Theory of this phenomenon was
discussed in [10, 26, 37, 39, 40]. The Hamiltonian describing the CJTE in TbPO4
crystal with the ferroelastic (simultaneously antiferroelectric) and antiferromag-
netic phase transitions is based on the on the lowest three (ground non-Kramers
doublet and the first excited singlet) electronic states. The energy gap between the
ground and excited states is � D 2:2 cm�1. The electron-phonon and electron-
strain interactions after standard shift transformation of the Hamiltonian H described
in section II (eqn. (4)) yield an effective intersite interaction (second term of H
in Fig. 19) and causes a structural transition at T D Ts D 2:15K. The orbital
(rather spin-orbital due to strong spin-orbital interaction) JT center Pm operators
are describing the mixture of the doublet and singlet ion states and are coupled
with the local monoclinic distortions. The third term in H of the Fig. 19 corre-
sponds to the isotropic in plane magnetic intersite interaction and is responsible for
a paramagnetic-antiferromagnetic transition at TN D 2:28K. The A1;2 and J1;2 con-
stants are the inter- and intrasublattice parameters of the virtual phonon exchange
and magnetic exchange correspondingly. As the local symmetry of the Tb3C ion
is D2d (has no center of inversion) and the unit cell contains two formula units,
the spontaneous monoclinic strain produces local dipole moments (because of local
piezoelectric effect).
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Fig. 19 Hamiltonian, definition of magnetoelectric coefficients ˛, and theoretical calculations of
the magnetoelectric coefficients temperature dependences (simplified model) [37]
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Fig. 20 The experimental and theoretical data for the magnetoelectric coefficients of TbPO4

crystal according to [39]

As the crystal cell below the structural transition remains centrosymmetrical one,
the dipole moments in the cell are antiparallel. Thus, the magnetostructural phase
transition at T D Ts is simultaneously an antiferroelectric transition (Fig. 20).

Lately the interest to the magnetoelectricity was revived in connection with the
discovery [41–44] of new magnetoelectric properties in multiferroics – materials
with the magnetic and electric dipole orderings. Among them the probably most
“fashionable” material is TbMnO3. This compound has a colossal magnetoresis-
tance, but mostly is known for its magnetoelectricity. Some experimental results for
TbMnO3 crystal by Kimura, Goto, Shintani, Ishizaka, Arima, and Tokura [41] are
presented on the Figs. 21–23.

The crystal has a spiral magnetic ordering and some peculiar ferroelectric order-
ing. As it could be seen from the Figs. 21–23 this compound is characterized
by a tight connection between the magnetic and the lattice subsystems, by a
magnetic field induced structural transition, by some metamagnetism and metam-
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Fig. 21 Crystal structure (a) and temperature dependences of magnetization (b), modulation
wavenumber (c), dielectric constant (d), and polarization (e) in TbMnO3 crystal [38] (modulations
of magnetic moment and lattice displacement are shown at the bottom left)
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Fig. 22 Temperature dependences of dielectric constant (a, b) and of polarization (c, d) in
TbMnO3 crystal [38]
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Fig. 23 Magnetic and magnetoelectric properties of TbMnO3 crystal [38]

agnetoelectricity, and by the presence of the return phase transition (return to the
phase without the polarization at lowering the temperature or external magnetic
field).

It should be noted that almost all new multiferroic materials contain a spiral
magnetic structure. In connection with that, trying to explain the mechanism of the
strong connection between the magnetic and electric dipole moments in them, many
new interesting theoretical concepts were developed [41–48 and references therein].
Almost all of them are more or less related to the following ideas: (a) magnetic non-
collinearity leads to the loss of the crystals center of inversion; (b) the exchange
striction will induce the polarization that could be modified by the external magnetic
field – magnetoelectricity.

However it should be mentioned that all peculiarities of the new multiferroic
materials are typical for the JT crystals. In each of the multiferroics there is a Mn3C
or another JT (or pseudo JT) ion with the orbital electronic degeneracy (or pseudo
degeneracy). In this situation it is possible to speculate that CJTE is leading in this
type of materials to some structural transitions with helicoidal distortional structure
(such a transitions were first discussed by Maaskant and Haije [49]). The helicoidal
distortional structure is inducing the magnetic helicoidality and the corresponding
electric dipole ordering [50].
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It is important to note that the exchange striction as a rule is very week and
can not explain the strong magnetoelectric effect. However the JT crystals – mate-
rials with significant electron-vibrational interaction – are able to provide strong
coupling between magnetic moments and distortions (electric dipole moments).
Such an approach to the magnetoelectricity of the multiferroics was discussed in
[50, 51].

11 Further Development

When talking about the prospects in the CJTE field it should be clearly under-
stood that a lot of work has been started already. With this in mind the first as
one of the most important, I think, should be mentioned the problem of conduc-
tivity in JT crystals. The progress in this direction could lead to the understanding
of high Tc superconductivity, colossal magnetoresistance, properties of buckyballs
and other phenomena. Theory of CJTE should be extended to new types of struc-
tural transitions in transition metal compounds, polymers, metalloorganics, systems
with “rotational transitions”. Basing on the complete analysis of both superexchange
and virtual phonon exchange interactions new types of magnetic and orbital order-
ings should be discussed. It is very probable that in the future a lot of attention
will be paid to the microscopic analysis of CJTE of materials with new anomalous
thermodynamic properties like crystals with negative Poisson ratio, unusual ther-
mal expansion, new type of adiabatic cooling and others. Nowadays it is already on
the way the development of physics of multiferroics and connected to it chirality.
The vibronic interactions based approach could be very fruitful in studies of self
assembly (stripes are a simple example), Berry phase in CJTE systems, JT clusters.
All these problems are of huge importance for physics, chemistry, and biology. Of
course, the semiconductor industry of the future and electronics in general could be
very much interested in properties of JT nanocrystals.

Overall it should be mentioned that the CJTE field is well developed, but a lot of
big problems in the field still need to be resolved.
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Orbital Ordering Versus the Traditional
Approach in the Cooperative Jahn–Teller
Effect: A Comparative Study

Victor Polinger

Abstract In Jahn–Teller crystals, at low temperatures, symmetry-breaking lattice
distortion creates an ordering of otherwise degenerate atomic orbitals. In the the-
ory of cooperative Jahn–Teller effect, the traditional approach includes solving the
complex problem of coupled dynamics of the respective electron-vibrational system.
During last two decades, an alternative way of treating the cooperative Jahn–Teller
effect attracts increasing attention. It replaces ligand-mediated intercell coupling by
an effective intersite orbital exchange of electron-degenerate atoms. Known as the
orbital ordering approach, it explores stable ordered patterns due to the exchange
coupling of orbital pseudo spins. The respective symmetry break of crystal lat-
tice structure is treated as a secondary effect resulting from the orbital ordering.
This paper examines some approximations implicitly included in the orbital order-
ing approach and compares it to the traditional theory of the Jahn–Teller effect.
As the orbital ordering approach replaces ligand-mediated intersite coupling by an
orbital exchange, the fundamental effect of dynamic strengthening chemical bonds
with low-symmetry lattice distortions is lost. This may bring to a wrong conclu-
sion about possible bond-ordered structures. On the other hand, a number of cases
are outlined when both approaches yield close results. Based on these estimates,
conclusions regarding applicability of the orbital ordering approach are derived and
some general recommendations are given.

1 Introduction

Crystal structure is determined by chemical bonds between elementary cells, as
well as by the conditions under which the crystal is formed. This paper is focused
on bonding-structure relationship in Jahn–Teller (JT) crystals. In simple cases (see
below), of several possible crystal structures, the one beneficial for chemical bond-
ing and steric effects actually develops. They determine molecular skeleton of
elementary cells, their geometric shape and size. Combined with the requirements
of close packing, these are the necessary conditions of growing an ideal crystal with
long-range atomic order.

685
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Except some special cases, this way of understanding crystal structures provides
reasonable results under condition that each elementary cell is in an orbital singlet
(nondegenerate) electron ground state. If the ground state is orbitally degenerate,
elementary cells are unstable with respect to low-symmetry nuclear distortions. This
degeneracy-driven instability in crystals is known as the JT effect [1–3].

At present, there are two different ways of addressing the problem of coop-
erative JT instability in crystals. One was introduced in 1970 by Englman and
Halperin [4]. Here we call it the traditional approach. It is based on the concept
of intercell elastic1 correlation of JT-unstable elementary cells. The JT effect deter-
mines symmetry-breaking local (one-site) distortion of each elementary cell. In the
case of a structural phase transition of order-disorder type, in the high-temperature
phase, the intercell elastic coupling is averaged out. Still, there may be a disor-
der of distorted elementary sells. At lower temperature, due to the intercell elastic
coupling, local distortions form an ordered pattern of a low-symmetry crystal lat-
tice [5–7]. In the case of a displacive phase transition, in the high-temperature
phase, neither local, nor global lowering symmetry takes place. (Obviously, these
are just the two limiting cases. In real crystals, there is a nontrivial combination of
both, the order-disorder and the displacive character.) In the traditional theory of
the cooperative JT effect, the low-symmetry orbital and magnetic (if any) arrange-
ment is believed to follow the respective low-symmetry crystal structure of ordered
elementary cells.

Another way of treating the cooperative JT effect was introduced in 1960 by
Kanamori [8]. Extensively developed by the Oxford team (see review by Gehring
and Gehring [5]) and in Kishinev (see Kaplan and Vekhter’s book [7]), it was
successfully applied to rare-earth JT compounds with extremely weak JT and rel-
atively strong magnetic coupling. Adopted by Kugel and Khomskii [9] to explain
some cooperative properties of transition metal compounds, today it is known as
the Kugel-Khomskii model, and, also, as the orbital ordering approach (OOA).
It explores rotational degrees of freedom of degenerate one-electron orbitals of
undistorted elementary cells [9]. Treated in terms of the respective pseudo spins,
they are believed to be oriented by the intersite orbital exchange coupling, quite
similar to spin ordering due to magnetic exchange coupling in magnetic materi-
als. With an additional effect of real spin ordering, if any, pseudo spin ordering
determines a variety of different low-symmetry orbital and magnetic crystal-lattice
patterns. The respective low-symmetry crystal (atomic) structure is believed to fol-
low the orbital ordered structure of spin-electron states. As distinguished from
the traditional approach, the OOA reduces the manifold of wave functions to a
finite (usually, relatively small) number of orbitally degenerate electron states. The
OOA looks simpler and, therefore, is more attractive than the traditional coop-
erative JT effect. In both approaches, the OOA and the traditional theory, the
question of which real structure manifests itself is answered in the usual way.

1 In this review, the term “elastic” is applied to inter-atomic forces of chemical bonding treated in
harmonic approximation, to be distinguished from bulk elasticity in solids (see Kanamori [27]).
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Free energy of the crystal is minimized with respect to the corresponding order
parameter.

The key feature distinguishing the OOA from the cooperative JT effect is the
way the chemical bonding effects are included. This will be an important part of the
present study. In Sect. 2, we present a simple qualitative description of the coop-
erative JT effect. First, in Sect. 2.1, we demonstrate the chemical nature of the JT
instability. In Sect. 2.2, the cooperative JT effect is presented as interplay of short-
range chemical bonding effects with the long-range intercell elastic coupling. To
reveal the most important differences of the two approaches from one another, in
Sect. 3 we present a simplified version of the OOA. In Sect. 4, we discuss some
additional effects that are closely related to JT instability in crystals.

In most cases, the OOA is an approximation (see Sect. 5). It has its limits of
applicability and, therefore, has to be applied with some caution. As it follows from
the seminal review paper on the OOA [9], its originators, Kugel and Khomskii, were
well aware of the imminent limitations of this approximation. However, in some
papers the important assumptions of the OOA are forgotten or just ignored. Among
other goals of this comparative study is underlying cases when the OOA can and
when it cannot be applied. Finally, in Sect. 6, we cumulate the concluding remarks
and provide some general recommendations.

Both the cooperative JT effect in its traditional form and the OOA has a reach list
of applications discussed in many related publications. Numbered in thousands, they
all cannot be reviewed in one paper. Therefore, in no way the present work can be
considered as a comprehensive review of either one of these two approaches. Fortu-
nately, some JT crystals, mostly perovskites, were considered by different authors in
both ways, applying the OOA and the traditional approach. This provides an oppor-
tunity to compare their results using as example a relatively short list of JT crystals.
Regarding the cooperative JT effect, an updated review is provided by Kaplan in
the present book [6]. For the OOA, its most important details can be found in the
fundamental review by Kugel and Khomskii [9]. Recent results were reviewed by
Khomskii [10] and Khaliullin [11].

2 Cooperative Jahn–Teller Effect: The Traditional Approach

The cooperative JT effect is one of multiple manifestations of JT instability in ele-
mentary cells with degenerate ground state. In what follows in this section, we
provide examples demonstrating chemical nature of JT distortions. When elemen-
tary cells undergo a low-symmetry distortion, their potential energy lowers. This is
the so-called JT stabilization energy,EJT. Covalent bond strength is measured by the
energy required to break the bond. Therefore, one can interpret EJT as a cumulative
effect of strengthening the respective covalent bonds.

Sometimes, this chemical origin of the JT effect is lost behind complex group-
theoretical reasoning usually present in every book or review paper on the JT effect.
Compared to standard texts of quantum mechanics [12] or inorganic chemistry [13],
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or monographs on the JT effect [1–3], the way we present the JT instability in this
paper is somewhat different.

Less general in some respect2, it emphasizes the chemical-bonding nature of the
JT effect. Most important, in every JT case, its chemical nature can be revealed in
a similar way. In any JT molecule, its symmetry-breaking instability is due to an
energy stabilization of the respective chemical bonds.

2.1 Chemical Nature of the Jahn–Teller Effect

For symmetry-breaking JT instability, its chemical nature is illustrated below using
two simple examples of a transition metal in a sixfold coordinated octahedral
surrounding. In this example, we assume a strong tetragonal component of the
respective crystal field. The octahedron is elongated or compressed by the tetrag-
onal crystal field, so the local symmetry group is D4h. Consider the simplest case
of orbital electron degeneracy, an electron doublet (E term) ground state in high-
symmetry configuration of each tetragonal elementary cell. For example, it can be a
first-row transition metal compound with electron configuration 3d 1 [as for Ti(III)]
or 3d 2 [as for V(III)].

Octahedral component of the crystal field splits fivefold one-electron energy level
of 3d orbitals into the ground-state threefold t2g and the excited twofold eg. The
tetragonal component of the crystal field lifts the threefold degeneracy of the ground
state. The t2g level splits into a tetragonal singlet b2g, transforming as xy, and a
tetragonal twofold degenerate energy level eg, transforming as xz and yz. The sign
of tetragonal crystal field is assumed to be such as to make the eg orbital to be the
ground state.

The c-axis (z-axis) view of the tetragonal elementary cell with the respective
ground-state orbitals of the central atom is provided in the top part of Fig. 1. Only
upper lobes of the xz and yz orbitals, above the equatorial plane (above the ab
plane, xy plane), are shown. The ones beneath the ab plane have the same shape
but opposite sign.

Also, for simplicity, we include just the valence-shell 2s and 2p orbitals of
the six ligand atoms. Most interesting are four 2pz orbitals of equatorial ligands.
They combine into symmetry-adapted group orbitals including twofold eg.2p/

orbital with components ex .2p/ D 1p
2
.p1z � p3z/ and ey .2p/ D 1p

2
.p2z � p4z/.

The respective overlaps are not zero (dashed areas in the upper part of Fig. 1),
h3dxz j ex .2p/i D

˝
3dyz

ˇ
ˇ ey .2p/

˛ ¤ 0. Therefore, eg.2p/ orbitals form coordina-
tion chemical bonds with the central atom. In high-symmetry nuclear configuration
(tetragonal, local group D4h), the two overlap integrals are equal. Even with these
chemical bonds included, the ground state remains degenerate.

2 This discussion is based on approximated one-determinant Hartree-Fock presentation of the
respective electron configuration. In its general formulation, the JT theorem does not require orbital
structure of the electron wave functions. Its only condition is electron degeneracy due to a high
symmetry of the molecular frame.
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Fig. 1 Rhombic distortion of a tetrahedral elementary cell increases overlap of highest occupied
orbitals, 3dxz (a) and 3dyz (b), of the central atom with respective symmetry-adapted ligand orbitals,
ex.2p/ and ey.2p/. The c axis view. Only upper lobes (above the ab plane) are shown

As we can see in Fig. 1, rhombic distortion of ligands provides a better over-
lap and, therefore, a stronger chemical bond with the central atom. Depending on
the sign of the respective distortion, positive in Fig. 1a and negative in Fig. 1b, the
rhombic distortion lowers energy of one or another component of the eg.2p/ orbital,
ex.2p/ or ey.2p/. Respectively, the rhombic distortion lifts the above-mentioned
degeneracy. For one of the orbital states, its energy is lifted up and the other one
drops down in energy by exactly the same amount.

If there is just one electron [as, say, in the case of Ti(III)] or one hole [as in
the case of V(III), with this low-symmetry distortion, the elementary cell low-
ers its total energy (Fig. 2a). This energy benefit for the respective chemical
bonds is the chemical origin of the symmetry-breaking JT instability in elec-
tron degenerate elementary cells [1, 2]. Essentially, this is what we call the JT
effect.

In the symmetry groupD4h, the rhombic distortion transforms as the irreducible
representationB1g. Therefore, for this case, the commonly used notation is E˝ b1.
HereE stands for the ground-state orbital doublet, the E term. Without the rhombic
distortion, atQD 0, it is degenerate. We use its energy as the reference energy level
(zero energy). At small rhombic distortion, Q¤ 0, the respective overlap integrals
can be expanded in powers of Q. Keeping just the linear term, we describe the
energy splitting by the following JT Hamiltonian:
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3d

2s

t2g

b2g

b2g

Oh D4h

a b

D2h

E

EJT Q1

b3g

Fig. 2 Energy stabilization of chemical bonds in a tetragonal elementary cell with rhombic JT
instability. (a) Ground-state splitting due to symmetry reduction, Oh ! D4h ! D2h, followed
by formation of the coordination bond of the central atom with equatorial ligands (cf. Fig. 1).
Rhombic distortion splits the ground-state energy level eg into b2g and b3g. This lowers energy of
the populated state and lifts the nonpopulated one resulting in a stabilization of the total energy.
(b) Adiabatic potential energy versus distortion coordinateQ. The symmetry-breaking energy gain
is EJT

HJT D VQ
jExi jEyi�
1 0

0 �1
	
D VQ�z: (1)

Here �z is one of Pauli matrices operating in the manifold of the two states, jExi and
jEyi, and

V D d

dQ
hExjH jExijQD0 (2)

is the so-called vibronic coupling constant. The latter is rate of change of the respec-
tive matrix elements with the symmetry-breaking distortion coordinateQ. Added to
one-cell elastic energy, 1

2
KQ2, eigenvalues of the JT matrix (1),˙VQ, determine the

two branches,E.Q/ D 1
2

KQ2˙VQ, of the adiabatic potential energy graph shown
in Fig. 2b.

Another example is a cubic crystal (local symmetry group Oh) with a twofold
degenerate ground state, anEg orEu term, as in octahedral ŒCuO6�with Cu2C at the
center (Fig. 3). Its highest occupied orbital is eg with components � D j3z2 � r2i
and " D jx2 � y2i populated with three electrons or, in other terms, one hole.
Linear coupling to symmetry-adapted tetragonal distortions, local Eg modes, Q�

and Q", lifts the orbital degeneracy (Fig. 3d). Populated with two electrons, one of
the component orbitals, a1g, lowers its energy. The other component, b1g, populated
with one electron lifts its energy up by exactly the same amount. In this way, total
energy drops down.

Thus, the resultant energy stabilization is due to a strengthening the respective
chemical bond. This is the so-called E ˝ e case. The respective JT Hamiltonian
is [cf. (1)]
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Fig. 3 The JT instability in octahedral elementary cell ŒCuO6� with a twofold degenerate ground
energy level 2Eg. (a) Nonzero overlap of the central-atom 3d orbital, � D j3z2 � r2i, with
symmetry-adapted ligand group orbital, j�.2s/i. (b) and (c) Twofold degenerate tetragonal dis-
tortion, Q� and Q". (d) Tetragonal distortion Q� lifts the orbital degeneracy. Double populated
orbital, a1g, lowers in energy and single populated orbital, b1g, goes up in energy lowering the total
energy

Qe

Qq

E

Fig. 4 Adiabatic potential energy surface of a cubic elementary cell with an orbitalE term linearly
coupled to tetragonal distortions, Q™ and Q". With the circular trough at its bottom, it resembles a
Mexican hat (after Longuet-Higgins et al. [14])

HJT D V
j�i j�i�
Q� Q�

Q� �Q�

	
D V .Q��z CQ��x/ : (3)

Added to one-cell elastic energy, 1
2
KE.Q�

2 C Q"
2/, the two eigenvalues of this

matrix represent adiabatic potential energy surfaces (APESs) shown in Fig. 4. Its
shape resembles the Mexican hat. At the no-distortion point,Q� DQ"D 0, the two
sheets coalesce in the electron-degenerateE term.
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Compared to the standard presentation of the JT effect in other books and mono-
graphs, this approach is somewhat different. However, it can be transformed into
the standard formulation of the JT effect if the above arguments are applied to the
d -shell projected angular-overlap model.

2.2 Inter-Cell Coupling in the Cooperative Jahn–Teller Effect

For a crystal with JT instability in its every elementary cell, in the case of cou-
pling E ˝ b1 as in (1), the JT Hamiltonian is just a sum over different elemen-
tary cells:

HJT D V
X

i

Q .i/ �z .i/: (4)

Here Q.i/ is the rhombic distortion in i th elementary cell (Fig. 1). In the simple
case, when different elementary cells do not share common atoms, without the JT
effect, the relevant part of the elastic energy is

Uelast D 1

2

X

i;j

Q.i/K .i � j /Q .j /: (5)

Here K.i � j / is the ij matrix element of the respective dynamical matrix of force
constants. Combined with the JT coupling (4), the potential energy is:

U D 1

2

X

i;j

Q.i/K .i � j /Q .j /C V
X

i

Q.i/ �z .i/: (6)

At relatively high temperature, the elastic intercell coupling is averaged out. There-
fore, at different elementary cells, geometric shapes and amplitudes of the JT
distortions are independently random. In other words, there is some distortion-
magnitude disorder in the crystal lattice. At average, the respective X-ray crystal
structure looks perfectly tetragonal.

With kinetic energy of JT active vibrations, the Hamiltonian is:

H D 1

2

X

i

P 2 .i/C 1
2

P

i;j

Q.i/K .i � j /Q .j /C V P
i

Q.i/ �z .i/ (7)

Here P.i/ is linear momentum conjugated to the distortion coordinateQ.i/.
In the theory of the JT effect, the linear-coupling case E ˝ b1 described by the

Hamiltonian (7) is the easiest one. Its matrix part includes just diagonal matrices,
�z.i/. As distinguished from this simple case, the general JT case is a tough prob-
lem of complex dynamics of electrons coupled to crystal lattice vibrations. The
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usual approach is based upon the mean field approximation [4]. In what follows, we
illustrate this approximation in a typical sequence of steps applicable to any other
JT case as well.

In the low-symmetry phase, every operator can be presented as its temperature
average plus a deviation (fluctuation) from the mean:

Q.i/ D NQC q .i/ ; �z .i/ D N� C s .i/ : (8)

For simplicity, consider the so-called ferrodistortive ordering pattern. We assume
that all elementary cells are distorted in exactly the same way. Therefore, explicitly,
the averages, NQ and N� , do not depend on the elementary cell number, i . Assuming
the fluctuations, q.i/ and s.i/, much smaller than the respective averages, NQ and
N� , we can neglect terms of second-order in q.i/ and s.i/ and keep just the linear
ones. The JT Hamiltonian (7) decouples into the following sum of translationally
identical one-cell terms,

H D 1

2
P 2 C 1

2
KQ2 CWQC VQ�z; (9)

with the low-symmetry mean-field,

W D Q
X

m¤n
K .m � n/ D Q

X

m¤0
K .m/ (10)

Compared to the high-symmetry one-cell JT Hamiltonian, 1
2
.P 2 C KQ2/C VQ�z,

the only difference of (9) is the low-symmetry term with the mean field W .
According to (10), the latter is due to intercell elastic coupling. It is propor-
tional to the average distortion NQ of all other elementary cells in the crystal. In
general, even without the mean-field term, solving the respective one-center JT
problem requires a nontrivial effort [1]. Including the symmetry-lowering term
with W makes it even more difficult. In the cooperative JT effect, eigenstates and
eigenvalues of one elementary cell are used to evaluate the respective averages,
NQ and N� .

Self-consistent nature of the mean-field approximation is in averaging Q and �
simultaneously with solving the eigenvalue problem (9). Moreover, the averaging
includes temperature population of excited vibronic states. This gives temperature
dependence of NQ and N� . In particular, it provides an estimate of the temperature of
the respective phase transition, an option that goes beyond the imminent limitations
of the OOA (see below, Sect. 3.2).

Developed by Englman and Halperin [4], the above steps represent the traditional
way in the cooperative JT problem. It’s conceptual advantage and important part is
solving the respective one-cell JT problem (9) including the low-symmetry mean
field (10) of all other distorted cells. In this way, both effects, the dynamic strength-
ening chemical bonds with low-symmetry lattice distortions and the intercell elastic
coupling, are included.
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3 The Orbital Ordering Approach and its Basic Assumptions

The problem of cooperative JT effect can be reformulated in a slightly different
way. So far, for a JT crystal, the general setup is quite accurate. Considered above
in Sect. 2.2, the particular case of E ˝ b1 coupling does not represent any signif-
icant difficulty. In what follows, we are going to demonstrate an alternative route
of getting to this point. In a way, it is misleading (see the respective discussion
in Sect. 5.1). However, its attractive simplicity demonstrates the origin and basic
approximations of the OOA and explains the popularity of the latter.

Although in their review [9], to derive the OOA, Kugel and Khomskii general-
ized the original setup suggested by Kanamori [8], in what follows, we use the way
suggested by Ghering and Gehring [5]. Formally, it brings us to the same Hamilto-
nian and, at the same time, clearly demonstrates its relation to the JT effect. As in
Sect. 2.2, we limit the consideration with the simple case, when different elemen-
tary cells do not share common atoms. This limitation allows a simpler derivation of
the symmetry-correct electron Hamiltonian. Below, in Sect. 3.2, we will see that the
general form of the electron Hamiltonian is based upon symmetry only and remains
true in the most general case when next-neighbor elementary cells share common
atoms as well.

3.1 Two Simple Examples of the Orbital Ordering Approach

In the OOA, its general idea is in shifting the vibrational variables, Q.n/, to new
reference position, the minimum point of the potential energy (6). To find the min-
imum, set the derivatives of U to zero, @U=@Q.n/ D 0. This brings us to the
following system of linear equations,

X

j

K .i � j /Q .j / D� V�z .i/ : (11)

Its solution is
Q.i/ D �V

X

j

hi jK�1 jj i �z .j /: (12)

Here K�1 is the inverse of the dynamical matrix K with elements K.i � j /
introduced in (5). As in (8), we introduce new coordinates, q.i/, such that

Q.i/ D Q.i/C q .i/ (13)

with the “equilibrium” coordinates, Q.i/, from (12). Plugging the shifted coor-
dinates (13) into the Hamiltonian (7), we separate the phonon variables from the
electron ones,

H D Hph CHel: (14)
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HereHph describes free phonons, andHel is the Hamiltonian of the orbital–electron
part,

Hel D �
X

hi;j i
J .i � j / �z .i/ �z .j /; (15)

with

J .i � j / D 1

2
V 2 hi jK�1 jj i : (16)

In (15), the symbol hi; j i means summation over next neighbors only. In (14), the
two terms, Hel and Hph, commute with one another, ŒHel; Hph� D 0. In other
words, the Hamiltonian (14) is a sum of two independent terms. Electron motion
is decoupled (!!) from lattice vibrations.

The electron Hamiltonian (15) describes the so-called orbital exchange coupling
in a three-dimensional (3D) crystal lattice. The Pauli matrices, �z.i/, have the same
properties as the z-component spin operator with S D 1

2
. As �z.i/ represents not

a real spin but orbital motion of electrons, it is called pseudo spin. For the respec-
tive solid-state 3D-exchange problem, basic concepts and approximations were well
developed in physics of magnetic phase transitions. The key approach is the mean-
field approximation. Similar to (8), it is based on the assumption that fluctuations,
s.i/ D �.i/ � � , are small enough, so terms quadratic in s.i/ can be neglected.
We do not go into details here because the respective solution is well-known and
discussed in many basic texts of solid state physics (e.g., see [15]).

At low temperatures, similar to real-spin magnetic exchange, the orbital exchange
coupling results in an ordered phase. It corresponds to a minimum of the free energy
with respect to an order parameter. Equal for all n in the case of the so-called ferro
type ordering, the latter can be the average value of �z.n/. Another ordering pattern
is alternating-sign values of �z.n/ for next-neighbor elementary cells in the antiferro
ordering (Fig. 5). Also, depending on which type of ordering provides the absolute
minimum of free energy, there may be even a more complex type of pseudo spin
ordering pattern. The determining factor is the parameter, J.i � j /, its sign and the
way it depends on i and j .

When averages of �z.i/ have certain values, pseudo spin ordering corresponds to
a particular orientation of the respective orbitals arranged into an ordering pattern.
In other words, the pseudo spin ordering is equivalent to an orbital ordering [9]. As
it follows from (12), average values of �z.i/ determine respective average values of
Q.i/. So, in other words, the ordering pattern of pseudo spins, �z.i/, determines the
resultant structure of the crystal lattice.

In the traditional theory of the cooperative JT effect, its significant part is one-
center JT problem in a low-symmetry mean field (see the last paragraph of Sect. 2.2).
In particular, it includes the eigenvalue problem for the Hamiltonian, similar to (7),
operating in an infinite manifold of vibrational one-center states. Compared to this
relatively complex step, in the OOA, the mean-field approximation is much simpler.
In the OOA, one has to solve just a finite-size matrix (2�2 in this case) or, for other
JT cases, a somewhat larger matrix but finite anyway. In the theory of the coopera-
tive JT effect, this important advantage of the OOA allows to proceed farther than
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a b

Fig. 5 Antiferrodistortive ordering of tetragonal elementary cells with rhombic JT instability of
E˝b1g type (z axis view of the xy plane). (a) The case when elementary cells do not share common
atoms. (b) Same when elementary cells share common vertices. (From [16, 17])

is usually done in the traditional approach. In addition to orbital exchange, it makes
possible including the intersite electron hopping (Sect. 4.1), intersite magnetic
exchange coupling of real spins (Sect. 4.2), on-site Hund exchange, etc.

The above-listed steps of the OOA represent an approximation and, therefore, in
some respect are misleading (see the discussion in Sect. 5.1). However, formally, the
same sequence of steps can be applied to any JT case. This is an attractive advan-
tage of the OOA. As another example, consider a cubic crystal with JT instability
E ˝ e described by the JT Hamiltonian (3). Similarly to (11)–(16), we come to the
decoupled Hamiltonian (14) with

Hel D �
X

i;j

X

;�

J� .i � j / � .i/ �� .j /; �; � D x; z (17)

and
J� .i � j / D 1

2
V 2 hi; � jK�1 jj; �i : (18)

Here K�1 is inverse of the respective dynamical matrix. In (17) it describes elastic
coupling of tetragonal distortions, Q� .n/ and Q".n/, the ones active in the JT case
E˝ e. Obviously, the only important contribution comes from the orbital exchange
of close neighbors. In cubic symmetry, (17) simplifies to

Hel D �J
X

hi;ji
Œ�x .i/ �x .j /C �z .i/ �z .j /�: (19)

As in (15), hi; j i means summation over next neighbors only.



Orbital Ordering Versus the Traditional Approach 697

3.2 Basic Assumptions of the Orbital Ordering Approach

The electron Hamiltonian (17) represents the essence of the OOA. Qualitatively, one
can interpret it in the following way. Considered separately from other elementary
cells, one-cell degenerate electron states have the well-known phase uncertainty.
Any orthogonal linear form of degenerate wave functions has the same energy.
Therefore, degenerate orbitals are free to rotate about the JT center. Without the
exchange coupling (17), there is an orientation orbital disorder. If, as in (17),
pseudo spins are coupled to one another, they tend to order into a low-symmetry
pattern, “ferromagnetic”, “antiferromagnetic”, or a more complex pattern, bring-
ing the free energy of the system to a minimum. This is what we call the orbital
ordering.

As it follows from (12), ground-state averages of orbital pseudo spin operators
determine the numeric values of Q.i/ and, thereby, the respective symmetry-
adapted distortion of every elementary cell of the crystal. Instead of “ferromag-
netic”, “antiferromagnetic”, etc., the appropriate name to use is “ferrodistortive”,
“antiferrodistortive”, etc.

Now we can formulate basic assumptions of the OOA. Although in some papers,
their authors mean to include underlying effects (JT distortions, temperature
sequence of phase transitions, etc.), the following list represents what is actually
done in a large number of papers applying the OOA to particular crystals.

1. The Hamiltonian (17) includes order parameters with the position numbers i and
j of just the JT sites. Considering a transition metal compound, they determine
position of transition metal atoms, a regular component of the respective crystal
lattice. Ligand sites are missing in (17). Therefore, instead of a real crystal, the
OOA considers its simplified version, the sublattice of JT active sites. Explicitly,
ligands are omitted. (Fig. 6b); implicitly, metal-to-ligand chemical bonding is
hidden in the respective parameters, Jij, of orbital exchange.

2. Usually, in a transition-metal compound, metal atoms are located at sites of
the respective primitive lattice. As the basis of all other atoms is omitted, the
only ones left are crystal symmetry axes of the primitive lattice. They determine
directions for possible low-symmetry ordering patterns.

3. Parameters (18) include vibronic coupling constant, V , and phonon band-
structure factors, hi; � jK�1jj; �i. For a particular crystal, finding these factors is
a laborious problem of crystal lattice dynamics. Instead, in the OOA, Jij are used
as free parameters of the theory. Still consistent with the fundamental theory of
the JT effect, in this form the OOA is not directly derived from the theory. In other
words, in the theory of cooperative JT effect, the OOA is a phenomenological
approach.

4. The OOA is not designed for and cannot consider temperature dependence of
any observable of the bulk crystal. The main goal of the OOA is determining the
low-temperature (0 K) symmetry pattern of the orbitally ordered ground state.

The Hamiltonian of orbital exchange, (15), or (17), is invariant of the respective
symmetry group of the undistorted crystal in its high-symmetry phase. Similarly to
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Fig. 6 Antiferrodistortive order of tetragonal elementary cells with rhombic JT instability of the
E ˝ b1g type (similar to Fig. 3b). (a) In the traditional approach, ligands are explicitly included.
Orientation of central-atom orbitals is determined by formation of chemical bonds with nearest-
neighbor ligands. (b) In the OOA ligands are omitted. Central-atom orbitals point toward next-
neighbor sites

what we usually do in EPR to derive the effective Hamiltonian, one can present (17)
as a finite sum of scalar convolutions of the respective pseudo-spin orbital operators.
In the case of a twofold degenerate ground term (the E-term case), these are Pauli
matrices, �x; �y, and �z. In the case of a threefold degenerate ground term (the
T -term case), they are 3 � 3 orbital matrices, Lx; Ly, and Lz, or pseudo-spin
matrices of higher dimension if local symmetry is icosahedral, as in the case of
fullerides. In the OOA, coefficients of different scalar convolutions, the respective
reduced matrix elements, are free parameters of the theory. In the form of a trial-
and-error numeric experimentation, assuming a particular type of ordering, varying
these parameters within a reasonable range of numeric values, and comparing total
energy of the crystal, it is possible to derive some conclusions about existence and
stability of different orbital-ordered patterns. At the same time, one has to keep in
mind that the OOA is an approximation. It has its range of applicability and has to
be applied cautiously (Sect. 5).

An interesting example is KCuF3, a pseudo-cubic perovskite crystal. Its parent
crystal lattice, KZnF3, is cubic with metal-ligand octahedrons ŒZnF6�4� sharing
common vertices (Fig. 7). In high-symmetry lattice, local symmetry group is Oh.
In the case of ŒCuF6�4�, its electron configuration is eg

3.3d 9/ with the ground-state
electron term 2Eg, a JT doublet. Above T 	 800K, the crystal lattice of KCuF3
is cubic. Due to the JT instability, at T 	 800K; KCuF3 undergoes a structural
phase transition to a low-symmetry phase reducing its local symmetry to D4h. The
cubic degeneracy of the highest occupied electron orbital eg is lifted by the sponta-
neous JT distortions, Q� and Q", (Fig. 3b and c). Octahedrons ŒCuF6�4� elongate
along two of the three fourfold symmetry axes. At room temperature, two different
polytypes have been identified experimentally, which differ in their atomic-plane
stacking along the c axis, ferro- and antiferrodistortive (Fig. 8).

Assuming different orbital-ordering patterns, varying the parameter J of the
orbital exchange in (17) within a reasonable range of numeric values, and comparing
total energy of the crystal, Kugel and Khomskii [19] found two energy-equivalent
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Fig. 7 Cubic perovskite crystal structure of high-symmetry parent compound KZnF3. Large
spheres are cations, KC, medium-size dark spheres are anions, F�, and small black spheres are
metal ions, Zn2C. Metal-ligand octahedra share common vertices. (From [18])
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Fig. 8 Orbital ordering in pseudo-cubic perovskite KCuF3 with vertex-sharing octahedrons
ŒCuF6�4�. “Type a” is layer-antiferrodistortive and Type d is layer-ferrodistortive pattern. (After
Kugel and Khomskii [19], Reinen and Friebel [16], and Binggeli and Altarelli [20])

types of orbital ordering shown in Fig. 8. Although, in their work, ligands were omit-
ted from consideration, after the electron ordering pattern was established, Kugel
and Khomskii [19] determined the respective distortion of the fluorine sublattice.
From the two electron ordering patterns, in accordance with (12), they found the
two types of crystal lattice distortion, ferro- and antiferrodistortive, same as in Fig. 8.
Following the same route of reasoning but in the opposite direction, from distortions
to orbital ordering, based on their EPR and X-ray data, Reinen and Friebel [16]
deduced the same two ordering patterns in KCuF3. Without separating out the elec-
tron orbital system, in the so-called cluster model for the octahedron ŒCuF6�4�, the
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molecular JT instability was considered by Shashkin and Goddard [21]. In its var-
ious modifications, the OOA was applied to this case several times (e.g., see [22]).
With crystal lattice geometry optimization, based on the ab initio LDA C U elec-
tronic structure calculations for KCuF3, the cooperative JT effect was considered by
Binggeli and Altarelli [20]. In the traditional approach, the cooperative JT effect in
KCuF3, gives both at once, the two types of distortion of the fluorine sublattice and
the accompanying orbital ordering pattern [23].

In the OOA, for the orbital ordering phase transition in KCuF3, the highest theo-
retical temperature is about 350 K [24], more than twice below the measured one of
about 800 K. Attempts to bring the OOA-predicted temperature of orbital ordering
closer to the experimental value require nonrealistically high values of the parame-
ters of orbital exchange [20, 24, 25]. This is due to the way the OOA is set up. The
effective Hamiltonian of the OOA does not include vibrational degrees of freedom.
Vibrations of fluorine octahedrons are averaged out with undistorted wave functions.
This presumes high symmetry of the fluorine octahedrons and frozen nature of the
parameters of orbital exchange coupling.

At the same time, based on simple physical reasons, it is pretty obvious that these
parameters are strongly affected by position of bridge ligands. In a better version of
the theory, parameters of orbital exchange coupling and, correspondingly, electron
wave functions (eigenfunctions of the effective Hamiltonian of the OOA) should
depend on nuclear displacements. In the Hamiltonian, one can expand these depen-
dencies up to linear or second-order terms. Then crystal lattice vibrations would not
separate from electrons any longer. It would become necessary to solve the vibra-
tional part of the Hamiltonian simultaneously with the orbital electron part. In this
way we return back to the traditional approach in the cooperative JT effect and all
the advantage of the OOA is lost. Bottom line of this discussion, this is an intrinsic
weakness of the OOA. In this respect, there is nothing one can do to improve the
OOA to make its predictions more accurate.

Most discouraging is the discrepancy in temperatures of the two phase transi-
tions, structural (JT) and magnetic. According to the OOA, temperature of both
transitions should be of the same order, relatively close. However, even in KCuF3,
a good case for the OOA, experimental Néel temperature, 38 K for polytype a and
22 K for the polytype b, is more than 20 times lower than the temperature of the
structural phase transition, 800 K. In resonant elastic X-ray scattering, the resonant
signal is dominated by the JT distortion of fluorine octahedrons. As one should
expect, orbital ordering of Cu-3d orbitals is saturated already at vanishing JT distor-
tions [20]. At the same time, a change in the magnetic structure has a small influence
on the JT distortion. This brings us to conclusion that magnetic properties of KCuF3
cannot be adequately explained just in the framework of the OOA, without including
some other low-symmetry distortions of the crystal lattice frame [24].

The dramatic difference of the experimental temperature gap of structural and
magnetic phase transitions as compared to (almost) no-difference OOA-predicted
ones is a clear indication of overestimating magnetic coupling in the OOA
(Sect. 4.2). Physical reasons of this discrepancy are quite obvious. JT distortion is
not a secondary effect that follows the orbital ordering. Quite opposite, being an
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order of magnitude stronger (Sect. 5.1), the JT coupling determines the symmetry-
breaking distortion of the crystal lattice. Therefore, in transition metal compounds,
at the temperature of JT (structural) phase transition, effects of magnetic exchange
coupling can be simply ignored. Being an order of magnitude weaker than the JT
coupling, the respective intersite magnetic coupling has to be included after the
strong JT coupling lifts the orbital degeneracy in elementary cells. In the low-
temperature distorted phase, ground state of elementary cells is an orbital singlet
populated by one electron. In this case, as a rule, the magnetic coupling is dom-
inated by simple Heisenberg exchange. The respective magnetic phase transition
takes place at a much lower Curie/Néel temperature.

4 Extension and Expansion of the Orbital Ordering Approach

Most attractive advantage of the OOA is its relative simplicity and clear physical
meaning. As mentioned above, the OOA reduces the manifold of wave functions to
a finite number of degenerate electron states. Sometimes, the OOA displays phys-
ical content of the theory more explicitly than the first-principle based traditional
approach. Thanks to its relative simplicity, the OOA allows to proceed a little far-
ther. It provides an insight into intimate mechanisms of some interesting phenomena
closely related to the cooperative JT effect such as electron hopping, magnetic cou-
pling of real spins, phase separation [26–31], charge ordering [29], formation and
structure of magnetic polarons [32, 33], formation of superstructures in doped JT
crystals [34], to mention just some of them. All these applications can be considered
in terms of the traditional theory as well. In what follows, we will briefly con-
sider just two of them, intersite electron hopping (Sect. 4.1) and intersite magnetic
exchange coupling of real spins (Sect. 4.2).

4.1 Effects of Intersite Electron Hopping

In each elementary cell of a JT crystal, ground-state orbital,  �”.n/, is degener-
ate. This means it is partly populated by electrons. Therefore, at each metal site,
there is room to accept additional electrons, one at least. In other words, in high-
symmetry phase, when the intersite electron orbital overlap is included, JT crystals
can be treated as conductors. At the same time, most of these crystals (transition
metal oxides, fluorides, etc.) are well-known insulators. This dramatic difference in
their conductive properties has two reasons related to two determining effects. One
is due to relatively low temperatures of observation. In a great majority of these
compounds, temperature of the JT structural phase transition is way above room
temperature. Therefore, at normal conditions (room temperature), such a JT crys-
tal is in its low-symmetry phase. According to JT theorem, electron degeneracy is
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lifted, and the orbital “room” for the traveling electron is reduced to just one singlet
state per site.

Still, there is opposite-spin state left at each site. Hopping to one of the next-
neighbor sites requires a spin flip. Therefore, metal-insulator transitions involve
intersite magnetic exchange coupling. This is the second effect directly or indirectly
involved in conductive properties of these crystals. Magnetic effects are briefly
discussed in Sect. 4.2.

In this section, following Efremov, Sboychakov, and Khomskii [35], we con-
sider an important example of electron bands in orbitally ordered LaMnO3. It
belongs to the family of layered perovskites, interesting from both experimental and
theoretical point of view. In this compound, in its high-symmetry phase, the octa-
hedron ŒMnO6�4� has ground-state high-spin configuration t32geg, and its respective
ground-state term is 5Eg, a JT-active orbital doublet.

Let c .n/ be the operator that annihilates an electron in the orbital state 3d at
nth metal site. The ground-state energy level broadens into an energy band. The
bandwidth is proportional to the effective “overlap” integral,

tmn .�; �/ D
˝
d .m/

ˇ
ˇ d� .n/

˛ D tmn .�; �/
D
0
ˇ
ˇ
ˇc	 .m/ c� .n/ j0

E
: (20)

Actual meaning of the “overlap” parameter (20) is revealed in the first-principles
consideration [36] by including hidden effects of metal-to-ligand-to-metal hopping.

Evidently enough, next-site “overlaps” only make sense. The JT-coupling matri-
ces can be presented in terms of c .n/ and c	 .n/ as well. For example, for the

Pauli matrix �z.n/ we have: �z .n/ D c
	

�
.n/ c� .n/ � c	� .n/ c� .n/. Due to the high

symmetry of the layered perovskite LaMnO3, the hopping parameters are interre-
lated. In this case, next-neighbor overlap only makes sense. Therefore, of the twelve
parameters (20), just one parameter,

t D Œh � .m/j  � .n/i C h � .m/j  � .n/i� ; (21)

is large enough to be included. The respective term in the Hamiltonian, the one
describing the intercenter electron hopping, is

Hhopp D t
X

hm;ni

h
c
	

�
.m/ c� .n/C c	� .m/ c� .n/

i
: (22)

Here hm; ni means summation over next neighbors only. Assuming infinite on-site
Hund energy, including hopping and intersite double exchange coupling, we come
to the following Hamiltonian [35]:

H D t
X

hm;ni

h
c
	

�
.m/ c� .n/C c	� .m/ c� .n/

i
C J

X

hm;ni
SmSn: (23)
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At this point, considering the A type structure of LaMnO3 (ferromagnetic planes
stacked antiferromagnetically), we can limit consideration with just one layer,
the square-planar system ŒMnO2�. In this case, in (23), the summation is in two
dimensions.

With the Fourier transforms,

a1 .p/ D
X

m

e�ipRm
�
˛pc� .m/C ˇpc� .m/

�
;

a2 .p/ D
X

m

e�ipRm
��ˇpc� .m/C ˛pc� .m/

�
; (24)

the Hamiltonian (23) transforms to a diagonal form. Originating from the eg
orbitals, � D j3z2 � r2i and " D jx2 � y2i, its eigenvalues form the following
two electron bands [35]:

1;2 .p/ D �t
�

cospx C cospy ˙
q

cos2 px C cos2 py � cospx cospy

	
: (25)

For the doped crystal, La1�xCaxMnO3, the number of electrons, n D x�1, in these
two bands depends on doping x and can be gradually changed.

It is interesting to follow evolution of the Fermi surface with doping. Actually, in
this two-dimensional case, the Fermi “surface” is just a boundary curve separating
electron-populated parts of the energy band from the unpopulated ones (Fig. 9). At
small concentration, electrons fill the bottom of the lower energy band, "1.p/, well
separated from the upper band, "2.p/. The filling starts at the center of the Brillouin
zone, close to its � point at the center, where the wave function is dominated by
jx2 � y2i states (Fig. 9a). At some points of the Brillouin zone, the two energy
bands have equal energy. This is the so-called “nesting”. When the Fermi “surface”
reaches the nesting points, at n 	 0:54, filling of the second band begins. This
creates an island (a pocket) at the center of the Brillouin zone (Fig. 9d).

At complete filling, n D 1, in the case of undoped LaMnO3, the Fermi “surfaces”
become straight lines, “flat”. Also, at n D 1, there is a perfect nesting. The energies
of two bands coincide, 1 .pCQ/ D 2 .p/, with a shift by the wave vector Q D
h�; �i. In three dimensions (3D), for the ferromagnetic case, a similar nesting takes
place with the 3D-vector, Q D h�; �; �i.

To explore the possibility of pairing, in particular, forming excitons, Efremov and
Khomskii [35] extended the band description of conductive manganites,
A1�xBxMnO3 with A D La, Pr, Nd, etc. and B D Ca, Sr. Instead of proceed-
ing farther in this interesting direction, we will discuss some concerns regarding the
abovementioned energy bands.

The basic assumption of the OOA is limiting the consideration with transition
metal sites. Ligands are omitted. In the Hamiltonian (23), the only routs for elec-
tron transfer are the ones with direct hopping from one metal site to another, one
of the close neighbors in the lattice. In real manganites, this distance is of the
order of 2.8 Å. A detailed analysis of the wave functions (24) (by returning back
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Fig. 9 Evolution of the Fermi “surface” in the two-dimensional energy band with doping (after
(Efremov and Khomskii [35]). (a) At small concentration of electrons, the central part of the lower
energy band is filled. (b) At higher concentration of electrons, the filled part of the energy band
reflects its tetragonal symmetry. (c) At a higher concentration of dopants, the lower energy band is
almost completely filled with an exception of four pockets. (d) At x � 0:54, due to nesting, filling
of the upper energy band begins. This creates the fifth pocket at the center of the Brillouin zone

Mn3+

O2–

a b

Fig. 10 Routs of conductivity in La1�xCaxMnO3 (highlighted). (a) In the OOA, ligands are omit-
ted. Electron hoping is in the directions of the primitive lattice, from one metal site to another,
about 4 Å away. (b) Same square planar crystal lattice with ligands explicitly shown. Routs of
electron transfer include ligands, about 1.5 Å away from metal sites

to coordinate representation) reveals even a longer distance of about 4 Å. In this
model, possible routs of electron conductivity are shown in Fig. 10a. For an electron
jump, 4-Å distance seems to be too long to be true.

More realistic routes must include participation of ligands, oxygen atoms in this
case. They are true mediators in the electron intersite transfer (Fig. 10b). It must
follow regions of high electron density determined by metal-ligand chemical bonds.
The latter was examined by resonant X-ray diffraction combined with XANES at
the Mn K-edge of La0:5Ca0:5MnO3 and Pr0:6Ca0:4MnO3 [37]. The observed pattern
of atom displacements suggests trapping of electrons between pairs of Mn sites,
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involving bridge oxygen atom. Combined with local distortions, it forms a polaron-
like vibronic state. Daoud-Aladine interpreted this state as a Zener polaron [37].

Correspondingly, possible routs of electron conductivity must be along bent oxy-
gen bridges. According to the abovementioned results, they are along diagonals in
the equatorial plane of manganese-oxygen octahedrons (Fig. 10b). For electron hop-
ping in this case, the respective distance is the length of the metal-ligand bond,
about 1.4 Å. This is about three times shorter than the one obtained by Efremov and
Khomskii [35].

For the system of pseudo spins, low-lying elementary excitations are described in
terms of the so-called orbitons, similar to magnons in ferromagnets [38]. Fermions
in their nature, at zero temperature orbitons are believed to form the so-called
orbiton liquid. Though this formal analogy is quite obvious, the new term, orbiton,
is misleading. First, the ground state of a JT center is not just an orbital pseudo
spin. The electron pseudo spin is coated with phonons [39, 40]. The stronger the JT
coupling, the thicker is the coat. The respective ground state is essentially vibronic.
Therefore, propagating in JT crystal, the elementary excitation is not an “orbiton”
but a low-symmetry JT polaron (Zener polaron) or, shorter, a vibron. Also, if and
when spin-orbital coupling is active and included, bounded to JT polarons are
magnons, the real spin-wave excitations. Participating in coating, they no longer
exist as a separate branches of elementary excitations. This may be the reason
why no changes due to magnetic ordering were detected in excitation spectra of
LaMnO3; KCuF3 and YTiO3 [41, 42].

With phonon coating, JT polarons are substantially heavier in their effective mass
than the orbitons or magnons. All these important details bring new physics in the
theory of JT crystals. In particular, trapped as heavy JT polarons, electric charge car-
riers in JT crystals have low mobility and manifest the tendency for a metal-insulator
transition, alternative to the Mott-Hubbard model [43]. In the ferromagnetic phase,
the carriers are still mobile, but strongly scattered due to fluctuating JT distortions
yielding a poor metal. The transition from a paramagnetic to ferromagnetic phase
is believed to be the reason of the “colossal” magneto resistance [44]. (This issue
is widely discussed in physics of highly-correlated crystals. It cumulated a broad
range of different approaches. There is not enough room here for going into details
of this interesting topic.)

Second, without ligands, disregarded in the OOA, for traveling elementary exci-
tations, the only possible routs include direct hopping from one metal site to next
neighboring another one. At the same time, quite evidently, the hopping is via lig-
ands. If, as in KCuF3, the participating ligand is collinear with the two metal sites,
including ligands does not change the direction of hopping. However, in some cases,
as, say, in layered perovskite LaMnO3 or in hexagonal perovskite CsCuF3, ligands
do not lie on the same line with metal atoms. Compared to predictions of the OOA
for the respective traveling pseudo spin waves, actual wave functions are substan-
tially different. With this in mind, the electron density described by wave functions
(23) does not seem to be correct. Then the respective eigenvalues, the energy bands
(25), are not reliable enough. There is not much reason left to trust the energy
spectrum of elementary excitations predicted by the OOA.
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In energy spectrum, the strongly damped pseudo orbital excitations (orbitons)
merge into a common continuum with vibronic and magnetic excitations [41].
Going up in energy, above the ground-state energy, we find a narrow energy gap,
�20 cm�1, between one-site ground-state (pseudo spin) energy level and the part
of the continuous energy spectrum where excited vibronic states begin to have a
significant density. This gap is due to a relatively small contribution of long-wave
acoustic phonons and magnons in local JT effect. In the system of pseudo spins,
for a realistic representation of elementary excitations, the only part of energy
spectrum to get them right is this one, “empty” of other elementary excitations.
In particular, in terms of energy, the pseudo spin wave must be way below the
tunneling splitting energy gap. At intermediate-to-strong JT coupling, the latter
one may be of the order of several wave numbers. In general, excited vibronic
states are beyond the general setup of the OOA. At any nonzero temperature,
in the OOA, elementary excitations manifest instability of any long-range spin
order [45], 46].

Included in the effective Hamiltonian of the OOA, electron-hopping terms (22)
provide an additional flexibility for electron wave functions to redistribute along
intersite “bonds” (Fig. 11a). Such a “bond-centered” electron distribution can break
the inversion symmetry and generates hopes for combining magnetism with fer-
roelectricity [10, 35, 47–50], an interesting and promising issue. This new class
of materials would provide a possible switch of magnetic memory cells with
electric field.

Without going into details of different approaches to ferroelectricity, here we
highlight the important results. The effect of spontaneous polarization is a structural
phase transition when local odd-parity distortions order in a ferroelectric pattern.

a b c

Mn3+

O2–

Fig. 11 “Bond-centered” charge ordering in layered perovskite Pr0:60Ca0:40MnO3. One layer,
MnO2, is shown. (a) In the OOA, ligands (oxygen atoms) are omitted. Electron density is partly
delocalized spreading over “bonds” Mn3C � Mn3C along axes of the primitive lattice (after
Efremov et al. [47, 48]). (b) Same with oxygen atoms shown explicitly. The effective bonds
Mn3C�Mn3C point slightly off the target. Direction of real chemical bonds Mn3C�O2� is not the
same as the directions of the primitive lattice. (c) Actual distribution of electron density includes
bridge oxygen atoms (shaded, after Daoud-Aladine et al. [37]). Broken line shows direction of the
effective bond metal-to-metal in the OOA
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The well-known Landau-Ginsburg-Cochran-Anderson theory is a phenomenologi-
cal approach. Of the first-principle theories, just one, the vibronic theory of
ferroelectricity (e.g., see [1,51]), is consistently based upon electronic structure and
chemical nature of the respective compounds.

As in other cases of vibronic coupling, in ferroelectric crystals, the electric
polarization is due to a structural instability of elementary cells with respect to
dipole-active displacements of the molecular skeleton. Usually, these are off-center
displacements of the metal atom from its site. Similar to the JT effect, the driving
mechanism is strengthening metal-ligand chemical bonds with the low-symmetry
distortions. Admixed with these distortions, the active electron states are not neces-
sarily degenerate. This is the only difference from the cooperative JT effect. The
energy gap separating the admixed electron states can be quite large. However,
the respective vibronic coupling provides even stronger stabilization energy. There-
fore, in the vibronic theory, ferroelectricity is a particular case of the more general
cooperative pseudo JT effect.

In the OOA, as it was discussed above, ligands are omitted. The vibrational
motion of low-symmetry distortions is averaged out. Electron wave functions do
not follow nuclear displacements. Therefore, in the OOA, the abovementioned
crystal-lattice mechanism of spontaneous polarization is lost. The only possibility
left in the OOA is polarization of electron wave functions. Without lattice distor-
tion involved, this pure electron-shell mechanism was discussed in literature long
ago, back about 45 years. Lacking supporting evidence from experimental data and
electron-structure evaluation, it was rejected. On the contrary, the vibronic theory
of ferroelectricity cumulated overwhelming experimental evidence. (For an updated
review, see Sect. 8.3 in Bersuker’s book [1].)

In its treatment of ferroelectricity, the OOA introduces inaccuracies and may
bring to wrong conclusions. One example is shown in Fig. 11. Applied to layered
perovskite Pr0:60Ca0:40MnO3, the OOA gives a “bond-centered” electron density
distribution. The “bonds” are directed along axes of the primitive crystal lattice,
from one metal site to another, over the distance of about 4 Å (Fig. 11a). As every
chemist knows, there are no true metal-to-metal 3d � 3d bonds that extend over a
distance of 4 Å.

One can argue that these are “effective” bonds. Real bonds include mediating
participation of ligands implicitly included in the OOA. However, there is an addi-
tional difficulty in this picture. The “bond-centered” distribution of electron density
points slightly off the target, over the empty space between ligands. This can be
seen in Fig. 11b and c, where oxygen bridge atoms are shown explicitly. Evidently,
the bond-centered distribution of electron density must point the directions of real
chemical bonds, from metal atoms to ligands. This idea is supported by resonant
X-ray diffraction combined with XANES at the Mn K-edge of La0:5Ca0:5MnO3

and Pr0:6Ca0:4MnO3 [37]. Shown in Fig. 11c, true electron density is distributed
over oxygen bridges, covers 2-Å long metal-to ligand chemical bonds, and does not
manifest breaking of the inversion symmetry.



708 V. Polinger

4.2 Magnetic Exchange of Orbital-Degenerate Centers

The greatest advantage of the OOA is its combined description of orbital and mag-
netic ordering patterns. In this case, besides orbital pseudo spin system and nuclear
distortions (phonons), we include real spins, the third participant in the nontrivial
coupling.

In magnetic materials, even without orbital ordering, the problem of magnetic
ordering is complex enough and represents a huge trend in solid state physics. In the
system of real spins, ordering patterns are determined by different contributions in
magnetic exchange coupling, from simple Heisenberg type of coupling to Kramers-
Anderson superexchange, double exchange, etc.

For the effects of possible interplay of magnetic exchange with the orbital
exchange coupling, the general review is provided by Kugel and Khomskii [9].
In JT crystals, all relevant interactions are pair-wise type. Therefore, the micro-
scopic theory of magnetic anisotropy can be borrowed from the theory of magnetic
exchange in binuclear metal clusters. A rigorous theory of magnetic anisotropy for
orbitally degenerate binuclear metal clusters can be found in [52–54]. A compre-
hensive review of the JT effect in molecular magnetism is given by Tsukerblat
et al. [55].

Here we just comment on the most important sides of this theory. For the inter-
play of magnetic and orbital ordering, the key effect is spin-orbital interaction. When
it is weak or even zero, the system of real spins orders independently form the orbital
system of pseudo spins. Usually, without the spin-orbital coupling, the dominating
mechanism of magnetic ordering is the isotropic Heisenberg exchange. With the
intra-site spin-orbital coupling included, the intersite exchange coupling in the two
systems, orbital and magnetic, is no longer independent. Coupled to the orbital sys-
tem, magnetic ordering is no longer isotropic. Energetically favorable direction of
ordering, the so-called easy axis, is determined by the relative strength of the two
ordering patterns or, in terms of quantum mechanics, by the relative energy gaps in
the energy spectrum of the two systems.

If real-spin magnetic gaps are larger (as, say, in rare earth compounds), the real-
spin order determines the easy axis and dominates over the orbital ordering pattern.
In the opposite case of larger orbital energy gaps (as in transition metal compounds),
the easy axis is determined by the pseudo spin system, and magnetic order follows
the orbital pattern.

An interesting example of this type is spin-canted zigzag-chain compound
ŒCo.H2L/.H2O/�1 with L D 4 � Me � C6H4 � CH2N.CH2PO3H2/2 (see [56]).

It includes Co(II) ions in octahedral coordination with one nitrogen and five oxygen
ligands. The respective crystal field includes a strong tetragonal component. Neigh-
boring octahedrons ŒCo.II/O5N� share one oxygen and, also, have a CPO3 bridge
connecting two other equatorial oxygen atoms. In each Co(II) octahedron, due to
a strong spin-orbital coupling, the easy axis is tilted to the common oxygen atom.
The tilting of the anisotropy axes gives rise to spin canting and, consequently, to a
nonvanishing magnetization for this compound.

One can imagine other cases, when the two kinds of exchange coupling are of
the same order of magnitude. Also, sometimes crystal field effect can be of the
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same order or even less than the spin-orbital splitting. In these cases, more complex
ordering patterns are possible. In particular, one can find canted magnetic orders or
even frustrated arrangements of real and pseudo spins.

It is interesting to follow the role of the JT effect in this picture. Dressed with
phonons, orbital states transform into the so-called JT polaron states. The orbital
pseudo spin becomes vibronic pseudo spin (a detailed discussion of this side of the
story is given below in Sects. 5.2 and 5.3). Instead of free rotations of the orbital
pseudo spin we come to hindered rotations of the vibronic pseudo spin. At each
metal site, the equipotential continuum of different orientations of the orbital spin
is transformed into alternating bumps and wells of the vibronic pseudo spin. The
latter ones correspond to favorable directions of the vibronic pseudo spin along
metal-ligand chemical bonds.

In the limiting case of very strong JT coupling, the JT polaron becomes so
heavy that no orientation dynamics is possible. Instead, we come to static orien-
tation of the vibronic pseudo spin towards one of several equivalent directions to
ligands. According to the JT theorem, the respective electron ground state is an
orbital singlet. In this case, orbital motion is completely quenched (the respective
vibronic reduction factor is zero), and real spins are released from their dependence
upon orbital motion. For magnetic ordering with no spin-orbital coupling, in singlet
orbital ground state, the dominating mechanism is the abovementioned Heisenberg
exchange coupling.

This physical picture brings us to the following two important conclusions. First,
with the spin-orbital coupling included, ligands play an important role in establish-
ing the easy axis. In the OOA, ligands are omitted from consideration. However,
some crystal symmetry imprint is still there in the effective Hamiltonian of the
OOA. It keeps the symmetry of the primitive lattice of metal sites. If the metal-
ligand bridges are collinear with the directions of the primitive lattice, the OOA can
provide a realistic magnetic ordering pattern. If, however, the metal-ligand bridges
are bent (as, say, in the hexagonal perovskite CsCuCl3 or in the layered perovskite
LaMnO3), the easy axis may point in a direction different from the directions of
the primitive crystal lattice. In these cases, the OOA can result in a wrong ordering
pattern.

Second conclusion considers the strength of the JT coupling. To observe the inter-
esting interplay of the orbital ordering pattern with the magnetic ordering, the JT
coupling should be of weak-to intermediate strength. At strong coupling, the orbital
motion is diminished by the respective vibronic reduction factor. In this case, there
is nothing left but the simple Heisenberg exchange coupling.

5 When the Orbital Ordering Approach is Correct
and When it Can Go Wrong

In the OOA, one of its basic assumptions is reducing the intercell correlation to
symmetry equivalent intersite orbital exchange coupling. This assumption simpli-
fies the physical picture of the cooperative JT effect. Ligands and all the respective
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implications of the intra cell metal-ligand chemical bonding are omitted. Most
important effect is the directional ordering of the on-site degenerate orbitals. Crystal
lattice is believed to adjust to the symmetry-breaking orbital ordered pattern.

For relatively simple crystal structures, as KCuF3 (Sect. 3.2), the OOA provides
a correct low-symmetry ordering pattern. However, due to short-range nature of
chemical bonding, the JT effect is due to strengthening chemical bonds of the central
atom, Cu(II), with close-neighbor ligands, not the second- or third-neighbor sites.
A simple example of this possible controversy is the hexagonal perovskite crystal
CsCuCl3. Its high-symmetry parent structure in CsNiCl3 is shown in Fig. 12.

In CsNiCl3, ions of CsC and Cl� form close-packed layers which are stacked
as: : :ABABAB: : : Ions of Ni2C are in between these layers. They form linear chains
of face-sharing octahedrons ŒNiCl6�. In CsCuCl3, however, each octahedron ŒCuCl6�
is in electron configuration 3d 9 with JT-unstable ground state 2Eg, quite similar to
the abovementioned example of ŒCuF6� in KCuF3 (Sect. 3.2).

The JT crystal CsCuCl3 exhibits a structural phase transition at T D 423K.
Above that temperature, the octahedrons, ŒCuCl6�4�, are dynamically disordered.
The face-sharing arrangement implements a special boundary condition for the JT-
distorted next-neighbor octahedrons. The way they can adjust to one another is
shown in Fig. 13a. Along linear chains of ŒCuCl6�, long axes of elongated octa-
hedrons form a helical pattern that triple the lattice period along the c axis. Relative
to each other, directions of elongation are in three vertical (parallel to c axis) planes
turned by about 120ı to one another forming a helical pattern. As the JT distortions
are adiabatically coupled to the respective electron wave functions, the latter align
along the elongated octahedrons as in Fig. 13a ([42, 57].

Fig. 12 Hexagonal perovskite crystal structure of the parent compound CsNiCl3. Black circles
represent transition metal atoms, Ni2C in this case. White circles are ligands. Shaded circles are
atoms of CsC. Face-sharing octahedrons ŒNiCl6� are packed in linear chains (From [57])
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Fig. 13 A fragment of the crystal lattice CsCuCl3 with JT instability E ˝ eg in each of its face-
sharing octahedrons ŒCuCl6�. JT-induced elongation of octahedrons forms a helical pattern. (a)
In traditional approach, 3d.Cu/ orbitals point toward nearest-neighbor ligands. (b) In the OOA,
ligands are omitted. 3d.Cu/ orbitals point toward Cu2C of the next-neighbor sites. A possible
orbital ordering can be “antiferro” type with orbitals oriented along symmetry axes of the primitive
lattice

Most significant, the OOA cannot explain the ordering shown in Fig. 13a. As
ligands are omitted, for possible low-symmetry ordering patterns, the only direc-
tions left are the ones of the primitive crystal lattice of the perovskite structure. One
can anticipate a “ferro”, or “antiferro”, or some other, more complex type of orbital
ordering. In the OOA, no matter what type of ordering will dominate, the ordered
orbitals are aligned along one of the crystal symmetry axes of the primitive lattice,
as in Fig. 13b. In the OOA, there is no way of getting anything even close to the
structure shown in Fig. 13 a.

The failure of the OOA in the case of CsCuCl3 reflects limitations and the
approximated nature of the OOA. In what follows in this section, we will revise
the physical background of the OOA. This will help to decide when the OOA is
going to work well or, alternatively, when it can go wrong.

For intersite orbital exchange coupling, there are several competing mechanisms.
In addition to the JT effect mediated by intercell elastic coupling, there may be a
purely electronic coupling [9,10,19], or, even a direct quadrupole–quadrupole inter-
site interaction, as in rare earths compounds. In any case, according to Khomskii
[10], even if the main driving force of an orbital ordering is purely electronic, the
lattice would relax to adjust the ordered orbitals with a corresponding lattice (JT)
distortion.

This statement includes two inaccuracies. The first one is symmetry related.
In the most interesting case of transition metal compounds, the JT-active orbitals
cannot participate in any other “purely electronic coupling” but the quadrupole–
quadrupole intersite interaction. In the JT-active electron states, the dominant contri-
bution is due to transition-metal 3d orbitals. The latter ones have even parity and do
not have dipole properties. In the multipole-multipole expansion of intersite electron
coupling, first nonzero contribution comes from the quadrupole–quadrupole term.
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Therefore, the only competitor of the cooperative JT coupling is the quadrupole–
quadrupole intersite interaction.

Another side of the story is the way this purely electron quadrupole–quadrupole
coupling operates. It can be direct or, in most cases, ligand mediated. Proportional to
the respective overlap integral, the direct coupling is of several orders of magnitude
weaker than any other reasonable type of coupling and, therefore, can be neglected.
In what follows (see below) we will provide an estimate of the ligand-mediated
quadrupole–quadrupole coupling.

The second inaccuracy is a mix-up between cause and effect. Obviously, the
two phenomena, crystal lattice distortion and low-symmetry orbital ordering, are
interrelated. However, the JT distortion can take place even without any long-range
orbital ordering. Above the temperature of structural (JT) phase transition, in each
elementary cell, the JT effect is still active. Considered separately from one another,
due to the JT effect, elementary cells can be locally distorted. These local distortions
are not ordered, and respective X-ray data provide evidence of time averaged high
symmetry lattice. However, above the temperature of structural phase transition,
disordered JT distortions manifest themselves in XAFS [58].

From another hand, in transition metal compounds (fluorides, etc.) without JT
coupling, driven by pure electron intersite interaction, orbital ordering takes place
at very low temperatures, of the order of 10–100 K. At normal conditions (room
temperature), orbital ordering can be neglected. In this sense, we can say that orbital
ordering does not happen without JT distortions. As the JT distortions can take
place without orbital ordering, and orbital ordering cannot take place without the
JT distortions, the latter cannot be the effect and the former cannot be the cause.
Unfortunately, in most papers on the OOA discussing symmetry-breaking ordering
patterns, the cause and the effect are reversed.

At this point, it is important to have a realistic estimate of the three types of cou-
pling. The intra cell JT coupling is known to vary from one compound to another.
Speaking of orders of magnitude,EJT ranges from several cm�1 in rare-earth com-
pounds to about 0:5 eV .4000 cm�1/ in some transition metal compounds [59].
The intercell elastic coupling is of the order of average optical phonon energy,
�! 	 500 cm�1.

For the orbital exchange coupling, the upper limit can occur in metals with chains
of transition metal ions bound directly to one another. For transition metal com-
pounds, this situation is relatively seldom. In most cases, transition metal ion is
surrounded by a polyhedron of ligands. In the latter case, neighboring-site metal
atoms are separated from one another by one or several bridge ligand atoms. The
respective polyhedrons can be corner sharing (Figs. 7 and 8), side sharing, face shar-
ing (Figs. 12 and 13), or even more complex, with no common atoms in neighboring
elementary cells (Fig. 5a). For the respective parameter of orbital exchange, its mag-
nitude strongly depends on the number of bridge ligand atoms and on the orientation
of the neighboring polyhedrons relative to one another.

In the simple case of corner-sharing octahedrons with first-long-period transition
metals (3d elements) bridged by one second- or third-period ligand atom, the orbital
exchange coupling can be approximated as a perturbation-theory energy correction.
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In second order, its maximum value is

Eorb:exch 	 Jij 	
h3di jH j2pimax h2pjH

ˇ
ˇ3dj

˛
max

E3d �E2p D jh3di jH j2pimaxj2
E3d � E2p : (26)

Here j3d i and j2pi are wave functions of the central atom and bridge ligand atoms
respectively, whereas E3d and E2p are the corresponding energy values. In the
numerator of (26), the matrix element, h3di jH j2pimax, is of the order of 0.1 eV,
and the energy gap in the denominator is of the order of 3 eV. This gives Jij of the
order of 3meV 	 30 cm�1. Extremely large values of Jij of the order of 200 cm�1
can be found in some systems with electron-conjugated bridges as in, say, the binu-
clear copper(II) acetate hydrate, ŒCu.OAc/2H2O�2. In this compound, a reasonable
fitting of magnetic susceptibility data is achieved with the value of Jij of about
167 cm�1 (Bersuker [59]).

From another hand, in a similar way we can estimate the JT stabilization energy,
EJT D V 2 = 2M!2. Here M is mass of one ligand atom, ! is frequency of the
JT-active vibration, and V is of the order of the derivative of the matrix element
h3d jH j2pimax [c.f. (2)]3. Assuming that the matrix element, h3djH j2pi changes
from zero to its maximum value at about 0:1a; a being interatomic distance, the
rough estimate is V 	 10h3d jH j2pi=a. The denominator, M!2, is related to the
elastic energy gainM!2Q2. At the distance of mean vibrational amplitude,

phQ2i,
it is of the order of 1=2�!. Assuming Q 	 0:1a, we find M!2 	 50�!=a2. Then
the JT stabilization energy is

EJT 	 V 2

2M!2
	 jh3di jH j2pimaxj2

�!
: (27)

Dividing (27) over (26) we find

EJT

Eorb:exch
	
ˇ̌
E3d � E2p

ˇ̌

�!
: (28)

The energy gap,
ˇ̌
E3d �E2p

ˇ̌
, is of the order of 3 eV. The one-phonon energy, �!, is

of the order of 500 cm�1 	 60meV. Then the ratio (28) is of the order or above 50.
Based on these estimates, we can formulate the following rule. In transition-metal
compounds we have EJT � Eorb:exch. The intra-cell JT coupling is much stronger
than the intersite orbital exchange interaction. In some cases, one can find extremely
large values of the parameter of orbital exchange, of the order of 100 cm�1. How-
ever, in the same compound, the respective JT stabilization energy is expected to

3 The matrix element (2) includes molecular orbital jExi. The latter is a covalent combination of
symmetry-adapted atomic orbitals, jExi D ˛ j3dxzi C ˇ jex .2p/i. Evidently, the diagonal contri-
butions, h3dxzjH j3dxzi and hex .2p/jH jex .2p/i, do not depend on the distortion coordinate, Q.
Therefore, dominant contribution in the derivative V comes from the off-diagonal matrix element,
h3dxzjH jex .2p/i.
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be no less than an order of magnitude stronger, 5;000 cm�1 or above. As pure elec-
tronic orbital exchange coupling, Horb:exch, is much weaker, it should be included
after the stronger players on the field, HJT and Helast, are taken into consideration.
Instead, in the OOA, as we could see, Horb:exch (together with the respective mag-
netic exchange and electron hopping terms) is the first and, in most cases, the only
intercell coupling included.

This point raises an important question. Why is the OOA so successful in deter-
mining low-symmetry ordering patterns in most of transition metal compounds
considered so far? One answer is pretty obvious. Taken in the form (15) and/or
(17), the so-called “orbital exchange” is not the pure electronic exchange coupling.
In fact, it is an effective intersite coupling induced by the intra cell JT coupling
mediated by the intercell elastic coupling. For transition-metal compounds, from
the point of view of real physics, there is another important question: how legiti-
mate is partitioning the pure electronic orbital system out of the coupled electron
vibrational system. Evidently, this partitioning is an approximation. It has its limits
of applicability which will be discussed in the following two sections.

5.1 The “Lucky” Case: Adiabatic Jahn–Teller Coupling

In Sect. 3, the decoupling of electrons from low-symmetry vibrations was achieved
by the change of variables (13). Though seeming to be correct, actually, this transfor-
mation is an approximation. In quantum theory, only legitimate are transformations
that conserve probability expressed by the normalization integral of any wave
function, h j i. In other words, it has to be a unitary transformation. To shift a coor-

dinate,Q, by a number a, the respective unitary transformation is S D exp
�
a d

dQ

�
.

Applying S to an operator, U.Q/, we get: SU .Q/S�1 D ea
d

dQU .Q/ e�a
d

dQ D
U .QC a/. Consider a harmonic oscillator with a shifted minimum and zero energy
at Q D 0. Its potential energy is a quadratic form U.Q/ D AQ2 C BQ. The
respective parabola has its vertex at NQ D �B= .2A/. The unitary transformation,

S D exp
�
a d

dQ

�
, with a D Q D �B=2A is a horizontal shift to the vertex of

the parabola. It gives SU.Q/S�1 D AQ2 � B2=.4A/ with no linear term. In other
words, by shifting to the minimum point, NQ D �B= .2A/, we complete the square
and eliminate the linear term, BQ.

In the simplest adiabatic case with an orbital singlet term, potential energy of the
crystal lattice is parabolic with one minimum point. At low temperatures, vibrations
of the lattice are localized at the bottom of this well, and as a rule, the so-called
harmonic approximation applies. This corresponds to the so-called polaron effect
and brings us to the concept of electrons coated with phonons.

In the JT case, electron-phonon coupling is represented by a matrix Hamilto-
nian, similar to (1), or (3). Diagonalization of HJT decouples the matrix of potential
energy into a multisheet APES. In addition to their diabatic admixture, another dif-
ficult side of the JT effect is strong anharmonicity of the APES. As a rule, it has
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not just one but several minimum points, sometimes a continuum of minima as in
Fig. 4. Usually, in the JT case, it is impossible to eliminate the linear JT coupling by
a coordinate shift transformation to several minimum points at once.

However, this limitation has a couple of exceptions, the “lucky” cases. One is the
tetragonal E ˝ b1g case discussed in Sect. 2.1 with the respective APES shown in
Fig. 2b. As the JT Hamiltonian (1) is a diagonal matrix, the distortion coordinateQ
can be shifted to the two minimum points at once. With the diagonal Pauli matrix �z

in the exponent, the coordinate-shift operator has a simple diagonal form,

S D ea�z
d

dQ D
 

ea
d

dQ 0

0 e�a
d

dQ

!

: (29)

It has simple physical meaning. Each eigenvalue is a linear-term addition to the har-
monic potential energy. Resulting from the effect of strengthening the respective
chemical bonds, it corresponds to an extra force added to the elastic force. Different
for different electron states, it shifts differently the vertex of the respective parabola.
Applied to the potential energy (4), the coordinate shift (29) transforms it to the
nonshifted form, (3), with an extra term (15). In other words, (29) performs a simul-
taneous coordinate shift to the two minimum points of the APES (Fig. 2b). This
transformation brings us to the orbital exchange Hamiltonian (15), similar to the
term – B2=.4A/ in the above example of U.Q/ D AQ2CBQ. Note that behind this
“lucky” exception we have one simplifying circumstance. The JT Hamiltonian (1)
is a diagonal electron matrix. It corresponds to two different branches of the APES
each having just one minimum (Fig. 2b).

As distinguished from this “lucky” case, in the E ˝ eg coupling, the APES has
a continuum of minimum points, a trough, shown by broken line in Fig. 4. With
higher-order terms in the JT coupling, the “Mexican hat” transforms into a “tri-
corne” with three minimum points at the bottom [1,2]. Still the number of minimum
points (three) is larger than the number of states (two). Therefore, there is no such
a unitary transformation expressed by a diagonal matrix 2 � 2 that would provide
three different coordinate shifts at once. As distinguished from (29) with two shift
operators on the main diagonal, no matrix 2� 2 has enough room for three different
shift operators. Formally, for a JT crystal with linear couplingE˝eg, the respective
shift operator could be

S D exp

(

� V
!2

X

n



�z.n/

@

@Q�.n/
C �x.n/ @

@Q�.n/

�)

: (30)

However, as distinguished from (29), it cannot be transformed to the simple diagonal
form. With noncommutative Pauli matrices �z and �x in the exponent, the operatorS
in (30) cannot be presented in analytic form as a diagonal matrix with shift operators
in its main diagonal, though it can be brought to a closed general 2� 2 matrix form,
whose matrix elements contain the above derivatives.
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Actually, for most of the well-known JT problems, the JT Hamiltonian includes
noncommutative matrices. To my knowledge, there are just three “lucky” excep-
tions. One, the so-called E ˝ b1g case, was considered above. Another one is the
E ˝ b2g case for a tetragonal E term linearly coupled to b2g mode of vibrations.
The respective Hamiltonian is [cf. (1)]:

HJT D VQ
jExi jEyi�
0 1

1 0

	
D VQ�x: (31)

It includes Pauli matrix �x . Though nondiagonal, it can be transformed to a diagonal
form with eigenvalues˙1. Formally, it coincides with (1). The rest of the solution,
including separation of the orbital exchange part (15), is the same as in Sect. 3 with
no approximations involved.

Most important, transforming (31) to a diagonal form, the unitary shift transfor-
mation commutes with the operator of kinetic energy. It remains unchanged and
does not include off-diagonal matrix elements, the ones responsible for diabatic
admixture of the two branches of the APES. Therefore, similar to the E ˝ b1g case,
the E˝ b2g case is the so-called adiabatic JT problem. With no off-diagonal matrix
elements in the Hamiltonian, the two-branch Scrödinger equation decouple into two
independent equations easy to solve.

The third “lucky” case is the so-called T ˝ eg problem in a cubic system. The
JT instability of the orbital triplet term (the T term) is due to its linear coupling to
twofold degenerate vibrations, Q� and Q", shown in Fig. 3b and c [1, 2]. As it is
similar to the tetragonal E ˝ b1g case, for this cooperative JT effect we do not go
into its details. Just note that there are three minimum points in this case and there
are three matrix positions on the main diagonal allowing the respective simultaneous
coordinate shift to these three vertices.

5.2 Weak-to-Intermediate Jahn–Teller Coupling.
Virtual Phonon Exchange

The adiabatic JT problems, tetragonal E ˝ b1g and E ˝ b2g, and cubic T ˝ eg,
are just a small minority in the large family of JT cases. If the JT Hamiltonian
includes noncommutative matrices, no unitary shift transformation can eliminate
the electron-phonon coupling. The nonseparability of electrons from phonons is
due to the diabatic nature of JT coupling. Among the diabatic JT cases, the best
known is the E ˝ eg coupling in cubic systems. The respective shift transformation
(30) cannot be transformed to the diagonal form as simple as (29). Instead, at weak
coupling, when EJT << �!, perturbation theory applies with the JT coupling term,
HJT, being its small parameter. In what follows, we discuss the simpler version of
the perturbation theory working with multielectron states. Perturbation theory in the
manifold of one-electron orbitals will be briefly discussed at the end of this section.
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As HJT is linear in phonon coordinates Q�.i/ and Q".i/, its diagonal matrix
elements equal zero and, therefore, the first-order perturbation correction equals
zero. The Hamiltonian of the second-order,

H2 D HJT

 
X

n

jni hnj
E0 �En

!

HJT; (32)

is bilinear with respect to phonon coordinates. The cumulative index n D fn� .i/,
n".i/g numbers excited states of the unperturbed Hamiltonian, H0, with phonon
occupation numbers n� .i/ and n".i/. Following [36], we will average H2 with
ground-state phonon wave functions (the so-called phonon vacuum), j0i. In this
case, for the JT coupling E ˝ eg expressed by (3), the only nonzero contributions
are [cf. (17)]:

hH2i D h0jH2 j0i D �
X

i;j

X

;�

J� .i � j / � .i/ �� .j / ; �; � D x; z; (33)

with

J� .i � j / D V 2
X

n¤0

h0jQ .i/ jni hnjQ� .j / j0i
En �E0 : (34)

In (34), the effective Hamiltonian hH2i is still a matrix in the orbital space of elec-
tron wave functions. Similar to (17), it describes intersite orbital exchange coupling.
In (34) and (35), the factor J.i � j / is the parameter of orbital exchange cou-
pling, same as in (3.7). This time it is supported by the assumption of weak JT
coupling. The matrix elements h0jQ .i/ jni are determined with zero-coupling
oscillator wave functions. They take a nonzero value for n D 1 only. In other
words, in the effective Hamiltonian hH2i, the virtual excited states are one-phonon
states. Therefore, the effective Hamiltonian (34) describes phonon-mediated orbital
exchange.

Understanding the cooperative JT effect as an orbital ordering due to exchange
of virtual phonons is only correct in the limiting case of weak JT coupling. At a
stronger JT coupling, phonons cease to exist. They are not independent elementary
excitations propagating in the crystal. Instead, one can imagine a JT polaron or,
shorter, a traveling “vibron”. In the limit of strong JT coupling, for a finite con-
centration of JT centers, due to a very strong JT-induced lattice anharmonicity, the
concept of phonons does not apply.

The expression (34) for the orbital exchange parameter, J.i � j /, can be sim-
plified. As the matrix elements h0jQ .i/ jni are not equal to zero for n D 1 only,
we have

J� .i � j / D 1

2
V 2 hi; � jK�1 jj; �i ; �; � D �; ; (35)

similar to (3.8).
Behind the OOA, the basic concept is the so-called orbital pseudo spin. For

one-center JT effect, in general the JT coupling does not change transformation
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Fig. 14 Vibronic energy levels in the linear E ˝ e case (in units of �!) versus dimensionless
coupling constant k (after Muramatsu and Sakamoto [60]). Encircled is the domain of coupling
constants where the vibronic ground state is well energy separated from excited vibronic states and
the concept of vibronic pseudo spin applies

properties of ground-state wave functions. They are the same as the original electron-
degenerate orbital states with no coupling. This provides a chance to extend the
concept of pseudo spin to the case of intermediate coupling (Fig. 14). JT centers at
each elementary cell can be treated as an ensemble of vibronic pseudo spins with
the respective exchange coupling, quite similar to orbital pseudo spins and to real
spins in conventional magnetic crystals.

As distinguished from the orbital pseudo spin, for the vibronic pseudo spin, the
mechanism of intercell coupling is different. It is dominated by the respective terms
of elastic intercell interaction,

1

2

X

i;j

X

;�

Q .i/K� .i � j /Q� .j /: (36)

Following the idea of the basis set limited with just ground-state vibronic wave func-
tions, the vibrational operators, Q .i/ can be replaced by their respective matrix
representation,

Q� .i/ D �qV
!2
�z; Q� .i/ D �pV

!2
�x : (37)

Here !2 D K�� .0/ is elastic constant of the tetragonal E vibrations in one octahe-
dron. The coefficients q and p are well-known vibronic reduction factors [1, 2, 61].
As the vibronic coupling constant, V , increases, the reduction factors, q and p,
approach their limiting values, q D 1

2
and p D 0. Therefore, at strong vibronic

coupling, the product qV in (38) increases linearly with V . Therefore, qV is known
as the factor of vibronic amplification [1, 2, 61]. At the same time, the factor pV
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approaches zero. With the replacement (38), neglecting the reduced contribution of
Q".j /, the intercell interaction (37) takes the form of “orbital exchange” dominated
by � � � coupling,

EJT

4!2

X

i;j

K�� .i � j / �z .i/ �z .j /: (38)

Here EJT D 1
2
.V 2=!2/ is the JT stabilization energy. Compared to the parame-

ters of direct orbital exchange, its magnitude is one or even two orders stronger [cf.
(28)]. This explains unusually large values of parameters of “orbital exchange” in
perovskites. Also, it is important to note that “� directions” are determined by ori-
entation of the metal-ligand octahedron and may be different from directions of the
primitive lattice.

In solid state physics, the OOA is a part of a more general trend well-known and
widely used in quantum theory. Its basic idea is partitioning the Hilbert space of
crystal wave functions into two subspaces. One (the M space) includes transition-
metal d orbitals. The other one (the L space) is the manifold of all ligand orbitals.
Matrix Hamiltonian of the system can be presented as a composition of the respec-
tive blocks: the metal part of the matrix, HMM, its ligand part, HLL, and its
metal-ligand blocks,HML andHLM, composed of the respective mixing matrix ele-
ments. For partitioning, one can apply the method of projection operator, or the
simpler version, perturbation theory with the metal-ligand matrix parts, HML and
HLM, as small parameters [36]. In molecular theory of transition metal compounds,

averaged over ligand states, the second-order Hamiltonian,
D
H
.2/
MM

E

L
, was used to

derive metal-only semi-empiric Hamiltonian of the angular overlap model [59].
Expanded up to fourth-order perturbation theory and averaged over ligand states,

the Hamiltonian
D
H
.4/
MM

E

L
becomes a fourth-degree form of metal-only 3d orbital

operators of creation and annihilation [36]. The advantage of the effective Hamil-

tonian
D
H
.4/
MM

E

L
is in operating within a relatively small manifold of metal-only

3d states. In the Hamiltonian
D
H
.4/
MM

E

L
, in terms of modern solid state theory,

same-site terms represent electron correlation. Thus, we gain in reducing the man-
ifold of relevant states, and, instead, we lose in appearance of the new terms to
deal with, the strong on-site correlation. The remaining terms describe intersite

pseudo spin exchange coupling. Therefore, the Hamiltonian
D
H
.4/
MM

E

L
is the effective

Hamiltonian of the OOA.
Actual derivation of this Hamiltonian is based on perturbation theory which is

the only solid background of its applicability. The “small parameter” is the metal-
ligand matrix part, HML and HLM. In solid state physics it is attributed to electron
hopping. In quantum chemistry, it is responsible for chemical bonding. As we can
see, in the OOA, in deriving its effective Hamiltonian, chemical bonding terms are
averaged out.

The metal-ligand matrix elements, HML and HLM, are distance dependent and
can be expanded in terms of symmetry-adapted nuclear displacements,Q�”.m/. For
a JT crystal, in this expansion the linear term is similar to the JT Hamiltonian, as (1)
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and (3). Being a part of the metal-ligand block,HML, in the fourth-order perturbation
theory, these “JT terms” generate the same type of intersite correlation as in (23).
Therefore, formally, after ligand states are averaged out, the JT contribution in
orbital exchange cannot be distinguished from direct orbital exchange [36].

5.3 The Strong Coupling Case. Tunneling Splitting
and Extended Vibronic Pseudo Spin

In the case of intermediate-to-strong JT coupling, the energy gap separating the
vibronic ground state from excited vibronic states decreases with vibronic coupling.
For one JT center, this phenomenon is well known. A detailed discussion of its phys-
ical origin and different manifestations can be found in [1, 2]. As the JT coupling
increases, second- and higher-order vibronic coupling effects become more impor-
tant. At the bottom of the trough (Fig. 4), bumps and wells grow. Rotation along the
circular trough is not free any longer. The rotation becomes hindered and, when the
potential wells are deep enough (compared to �!), the system spends relatively long
time in the wells. In the vibronic energy spectrum, this type of motion is expressed
by the tunneling splitting [1].

At normal conditions (room temperature), all components of the tunneling-
splitting vibronic multiplet are temperature populated. As a good initial approxima-
tion, the tunneling splitting can be neglected, and the vibronic states in the potential
wells can be considered degenerate.

The number of tunneling ground states equals the number of wells at the lowest
sheet of the APES. In the case of quadratic E ˝ e coupling, there are three wells
and, therefore, three tunneling states (Fig. 15).

Correspondingly, vibronic pseudo spin space has to be extended to include all
tunneling splitting components. In the case of quadratic E ˝ e coupling with three
wells, it is expressed by the vibronic pseudo spin � D 1 matrices 3 � 3. Similar to
the intermediate coupling case, the intersite vibronic exchange is dominated by the
elastic intercell interaction (36).

Vibrational operators, Q�.i/ and Q".i/, can be replaced by their respective
matrix representation,

Q� .i/ D �0C� .i/ ; Q" .i/ D �0C" .i/ ; (39)

where �0 D V=!2 is radius of the trough on the lower sheet of the APES (Fig. 4).
In (39), the 3 � 3 matrices C�.i/ and C".i/ operate in the manifold of the three
vibronic states localized at the bottom of the respective potential wells,

C� D 1

2

0

@
1 0 0

0 1 0

0 0 �2

1

A ; C� D
p
3

2

0

@
�1 0 0
0 1 0

0 0 0

1

A : (40)
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Fig. 15 Vibronic energy levels versus the warping factor ˇ (both E and ˇ are in units of 4˛,
where ˛ is rotational quantum) in a JT elementary cell with quadratic coupling E ˝ e [after
O’Brien [62]). Encircled is the domain of a very small tunneling energy gap where the concept
of extended vibronic pseudo spin applies

Plugging (39) into (36), we come to the effective Hamiltonian

H D EJT

2!2

X

i;j

X

;�

K� .i � j /C .i/C� .j / ; �; � D �; : (41)

Formally, it looks similar to the effective Hamiltonian of the OOA. However, its
physical meaning is different. First, it does not describe free rotations of the respec-
tive states. There are just three positions around each JT center. Second, these are
multielectron vibronic states, not one-electron orbitals. Third, most important, the
parameter of this intercell “vibronic exchange” coupling is enhanced by the JT
stabilization energy, a factor that can be very strong, up to an order of 0.5 eV.

The three-state extended pseudo spin model is equivalent to the Potts model well-
known in solid state physics. Its application to JT structural phase transitions was
developed by Höck et al. [63]. Also, as a useful tool, it was mentioned by Kugel and
Khomskii [9]. It was applied to hexagonal perovskites by Crama and Maaskant [64].
It has multiple applications to layered manganites (e.g., see [65]).

In the case of E ˝ e coupling, under some special conditions, including higher
orders of JT coupling can result in six wells [1, 2]. Correspondingly, in this case,
the extended vibronic pseudo spin is expressed by spin-5/2 matrices 6 � 6. In the
linear T ˝ t2 case, there are four symmetry equivalent wells [2]. Correspondingly,
the matrices of extended vibronic pseudo spin are 4 � 4, and the respective pseudo
spin value is � D 3=2.
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6 Discussion: Warnings and Recommendations

The OOA, also known as Kugel-Khomskii approach, is based on the partitioning of
a coupled electron-phonon system into an electron spin-orbital system and crystal
lattice vibrations. Correspondingly, Hilbert space of vibronic wave functions is par-
titioned into two subspaces, spin-orbital electron states and crystal-lattice phonon
states. A similar partitioning procedure has been applied in many areas of atomic,
molecular, and nuclear physics with widespread success. It’s most important advan-
tage is the limited (finite) manifold of orbital and spin electron states in which the
effective Hamiltonian operates. For the complex problem of cooperative JT effect,
this partitioning simplifies its solution a lot.

Although the effective Hamiltonian can be justified by orthogonal projection or
by the respective perturbation theory; in the OOA it is just postulated. Analysis of
the background theory reveals its physical meaning. The OOA is based on a shift
transformation to a minimum point of APES for an elementary cell in the respective
low-symmetry mean field of all other cells of the crystal. Vibrational motion of
ligands is averaged out [36].

In the “orbital” exchange coupling, actual participants are so-called pseudo
spins. In real systems, due to the JT effect, they are coated with low-symmetry
phonons. The stronger the JT coupling, the thicker the coat is, the more phonons
are involved in the formation of the JT polaron. The abovementioned shift trans-
formation strips down the phonon coat leaving the orbital pseudo spin naked. This
makes an impression of the “orbital” exchange coupling when in reality it is cou-
pling of vibronic pseudo spins. Therefore, the terms “orbital” ordering and “orbital”
exchange coupling are misleading.

In the OOA, ligands are omitted from consideration. For real crystal struc-
tures, this eliminates the so-called basis. In other words, crystal lattice with basis
is replaced by the respective primitive lattice with transition metal atoms at its
sites. Chemical bonding of the transition metal with ligands is included indirectly
in parameters of orbital exchange. Correspondingly, in the OOA, possible low-
symmetry ordering patterns follow directions of symmetry axes of the primitive
lattice. Therefore, the OOA provides reasonable results under condition that ligands
are collinear with next-neighbor metal atoms (as in KCuF3, Figs. 21.8 and 9) or, in
other words, directions of the primitive lattice coincide with orientation of chemical
bonds with ligands.

In real systems, ordering is dominated by metal-ligand chemical bonds. Com-
pared to the primitive lattice, they may point in different directions. If ligand bridges
are bent (as in CsCuCl3, Figs. 21.12 and 13a, or in LaMnO3, Figs. 10b and 11c),
the OOA fails to provide physically reasonable results. This may bring to wrong
conclusions about ordering patterns oriented along axes of the primitive lattice of
just metal sites.

Returning back to its real physical meaning, the concept of vibronic pseudo spin
has a relatively large area of applicability. It includes the case of intermediate-to-
strong JT coupling. However, the character of the intersite coupling is dominated by
elastic intercell interaction. The latter is amplified by strong JT coupling (known as
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vibronic amplification [1, 2, 61]) and has special directions of strong intersite cor-
relation. Compared to directions of the primitive lattice of metal sites, they may be
different (as in CsCuCl3 or in LaMnO3). At strong JT coupling, when the tunneling
splitting energy gap is small, the multiplicity of the vibronic pseudo spin has to be
extended to include all tunneling components of the ground-state energy level.

Parameters of orbital exchange are strongly affected by position of bridge lig-
ands. In the OOA, this dependence is lost. The only degree of freedom left is ability
of electron wave functions to turn around the respective metal atom. The wave func-
tions keep their rigid shape. In general, they do not follow nuclear displacements.
Contrary to the fundamental idea of adiabatic approximation, this makes a wrong
impression that lattice distortions follow electron ordering. From another hand, adi-
abatic approximation is well known to apply well to strongly coupled JT systems,
a large group in the family of JT crystals. Even in the case of intermediate vibronic
coupling, it is hard to believe that heavy nuclei follow light electrons. From this
point of view, interpreting JT structural changes as dominated by electrons is a
mix-up between cause and effect.

The OOA was not designed for and does not apply to temperature dependencies
of any kind in JT crystals. In particular, one cannot expect a reasonable estimate of
the temperature of phase transitions in crystal lattice (structural), electron orbital,
and/or spin system. This follows from the partitioning procedure that includes aver-
aging over vibrational degrees of freedom. One can see the same reason from
another perspective. The pseudo spin of a JT site, as the basic concept used in
the OOA, operates in the basis of degenerate ground state wave functions. Excited
vibronic states are beyond the pseudo spin setup. Therefore, in the OOA, by its very
definition, temperature population of excited states does not make sense.

Also, one cannot expect a reliable description of spontaneous polarization of
the crystal lattice. This phenomenon substantially involves strengthening chemical
bonds of the central atom with ligands. As these chemical bonds are averaged out,
ferroelectricity cannot be adequately described in the OOA.
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Frustration Effect in Strongly Correlated
Electron Systems with Orbital Degree
of Freedom

Sumio Ishihara

Abstract In a solid with orbital degree of freedom, an orbital configuration does not
minimize simultaneously bond energies in equivalent directions. This is a kind of
frustration effect which exists intrinsically in orbital degenerate system. We review
in this paper the intrinsic orbital frustration effects in Mott insulating systems.
We introduce recent our theoretical studies in three orbital models, i.e. the cubic
lattice orbital model, the two-dimensional orbital compass model and the honey-
comb lattice orbital model. We show numerical results obtained by the Monte–Carlo
simulations in finite size systems, and introduce some non-trivial orbital states due
to the orbital frustration effect.

1 Introduction

Orbital degree of freedom in strongly correlated electron system is one of the attrac-
tive and unresolved themes in recent solid state physics [1, 2]. Orbital implies the
anisotropy of the electronic cloud and the electronic wave function in the transition
metal ions, corresponding to the multiple moment. This degree of freedom often
governs the magnetic, optical and transport properties in a solid with strong elec-
tron correlation. One of the well studied materials is the manganites with perovskite
structure, R1�xAxMnO3 (R: a rare-earth ion, A: an alkaline-earth ion). At the con-
centration x D 0:5, an equal amount of Mn3C and Mn4C ions coexists, and the two
ions spatially ordered. Since the electron configuration of a Mn3C is .eg/1.t2g/3,
this ion has the eg orbital degree of freedom. In the charge ordered phase in
manganites, the orbital also shows the long range order where the d3x2�r2 - and
d3y2�r2 -type orbitals are aligned alternately in the ab plane. This orbital order con-
trols the optical anisotropy and the antiferromagnetic order. It is supposed that this
charge/orbital orders and their melting by an applying magnetic field are responsible
for the famous colossal magnetoresistance phenomena.

Although degenerate orbitals in an isolated ion are partially lifted in a molecule
and in a solid, the degeneracy often partially remains in a crystal lattice with
high symmetry. In a molecule, this degeneracy is lifted by ion distortions, i.e. the
Jahn–Teller distortion. However, in a crystal lattice, an infinite number of degrees of
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Fig. 1 A schematic view of
favored orbital configurations
and the orbital frustration
effect

z

x

y

freedom exist, and several interactions compete with each other. In particular, there
are some equivalent bonds in a crystal. One orbital configuration which minimizes a
bond energy in one direction is not always favored for other bond directions. There-
fore, the bond energies in all directions are not able to be minimized simultaneously.
This situation is schematically shown in Fig. 1. This is a certain kind of frustra-
tion, although this is not the usual geometrical frustration seen in, for example, the
antiferromagnetic Heisenberg model in a triangular lattice. We term this the intrin-
sic orbital frustration effect. This effect provides several non-trivial phenomena in
correlated system with the orbital degree of freedom.

In this paper, we review recent our theoretical studies in a viewpoint of the orbital
frustration effect [3–7]. We introduce this effect in three different orbital models,
i.e. the orbital model in a three-dimensional cubic lattice, that in a two-dimensional
square lattice and that in a honeycomb lattice. We show numerical results obtained
by the Monte–Carlo simulations in finite size systems. In some cases, non-trivial
orbital states due to the orbital frustration effect are presented.

In Sect. 2, the microscopic model which describes the inter-site orbital interac-
tions are introduced. In Sect. 3, the numerical study in the orbital model in a cubic
lattice is presented. The non-trivial orbital states in the two-dimensional orbital com-
pass model and the honeycomb lattice orbital model are introduced in Sects. 4 and 5,
respectively. The last section is devoted to the summary of this paper.

2 Model

We start from the model Hamiltonian to describe the strongly correlated electron
system with the eg orbital degree of freedom. A system of the present interest is a
Mott insulator where one electron occupies one of the doubly degenerate orbitals at
each site in a simple cubic lattice. The doubly degenerate orbital degree of freedom
is represented by the pseudo-spin operator with an amplitude of 1/2 defined by

Ti D 1

2

X

s 0

c
	
is .	 / 0 cis 0; (1)

where cis is the electron annihilation operator at site i with spin s.D";#/, and
orbital �.D d3z2�r2 ; dx2�y2/, and 	 are the Pauli matrices. The angle � of Ti in the
Tz � Tx plane corresponds to a shape of the electronic cloud.
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It is known that two dominant inter-site interactions between the orbitals in solids
are the superexchange-type and the cooperative Jahn–Teller type interactions. The
former is attributed to the virtual exchange of an electron under the strong on-site
Coulomb interaction [8–11]. The explicit form of this interaction is given by

Hexc D �2J1
X

hij i

�
3

4
C Si � Sj

	�
1

4
� � li � lj

	

�2J2
X

hij i

�
1

4
� Si � Sj

	�
3

4
C � li � lj C � li C � lj

	
; (2)

where J1 and J2 are the positive coupling constants with the relation J1>J2, and Si
is the spin operator with an amplitude of 1=2. We introduce the new orbital operator
defined by

� li D cos

�
2�nl

3

	
T z
i C sin

�
2�nl

3

	
T xi ; (3)

where l.D x; y; z/ indicates the bond direction connecting sites i and j , and
.nx ; ny ; nz/ D .1; 2; 3/. This Hamiltonian is derived from the two-orbital Hubbard
model where the intra-orbital Coulomb interaction U , the inter-orbital one U 0, the
Hund coupling I , and the electron transfer between NN sites t

0

ij are considered.
Equation (2) is derived by the second-order perturbational calculation with respect
to the electron transfer integral. The two terms in (2) correspond to the differ-
ent two intermediate states in the perturbational processes. The first (second) term
favors the ferromagnetic (antiferromagnetic) spin alignment with the antiferro-type
(ferro-type) orbital one.

The cooperative Jahn–Teller type interaction is obtained by the orbital-lattice
coupled model [12, 13]. Let us consider the Hamiltonian with the Jahn–Teller cou-
pling g, the kinetic energy and the lattice potential for the Jahn–Teller phonon
mode, the orbital-strain interaction, and the elastic-strain energy. The Jahn–Teller
distortion mode Qi around a metal site i is represented by the Jahn–Teller phonon
coordinates qk. By introduce the canonical transformation for qk, the orbital and
lattice degrees of freedom are separated. The final form of the interaction between
the inter-site orbitals given by

HJT D JJT

X

hij i
� li �

l
j ; (4)

where JJT is the positive coupling constant. Here we consider the perovskite crystal
lattice and introduce the spring constant between the NN ligand and metal ions. Dis-
tortions of the ligand ions are assumed to be parallel to the NN ligand-metal bond.
We also assume that the phonon coordinate and its canonical conjugate momen-
tum pk are commutable with each other. Since a ligand ion is common for two NN
metal ions in the perovskite crystal, this interaction favors the antiferro-type orbital
alignment between the NN orbitals.
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It is often useful to consider the orbital only model where we focus on the orbital
degree of freedom in the ferromagnetic or paramagnetic spin states. By using the
relation

P
l �
l
i D 0, a sum of (2) and (4) is given by

HO D J
X

hij i
� li �

l
j

D J
X

hij iz
T z
i T

z
j

CJ
X

hij ix

"

�1
2
Tiz C

p
3

2
Tix

#"

�1
2
Tj z C

p
3

2
Tjx

#

CJ
X

hij iy

"

�1
2
Tiz �

p
3

2
Tix

#"

�1
2
Tj z �

p
3

2
Tjx

#

; (5)

with J D 3J1=4 � J2= C JJT. A symbol hij il implies a NN pair along the direc-
tion l . This model is termed the eg orbital model in this paper. Some characteristics
in this orbital model are listed below: (1) The orbital interaction is represented by
the bond dependent operator � li . That is, the interaction explicitly depends on the
bond direction. Since J is positive, the different kinds of antiferro-type orbital con-
figuration are favored in the three directions in the cubic lattice. A schematic view
of the interaction is shown in Fig. 1. As mentioned in the previous section, it is
impossible to minimize the bond energies along the three directions simultaneously.
This implies a frustration effect which intrinsically exists in the orbital system in
solid crystals. (2) The interaction does not have a continuous symmetry which is
seen in the Heisenberg and XY spin models. (3) There is no macroscopic conserved
quantity, such as the z component of the total spin angular momentum in the Ising
model. The Hamiltonian is invariant under the simultaneous transformations of the
120ı rotation in the pseudo-spin Tx � Tz plane and the permutation of the Cartesian
coordinate in the real space.

Although the orbital model in (5) is derived in a simple cubic lattice, it is shown
that, in general, the several orbital models are represented in similar forms of the
Hamiltonian. This will be shown, in the following sections, for the orbital compass
model in a two dimensional square lattice and the honeycomb lattice orbital model.

3 Cubic Lattice Orbital Model

First we examine the eg orbital model in a simple cubic lattice introduced in the
previous section. We introduce the Fourier transform of the orbital interaction and
the orbital model in the momentum space,

HO D
X

k

 tkE.k/ k; (6)
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Fig. 2 Dispersion relation of
the orbital interaction in (7)
represented in the Brillouin
zone for a simple cubic lattice

Γ X MM

E (k)
∼ →

R

k

Fig. 3 Schematic views of
the degenerate states in the
classical ground state. Arrows
represente the orbital
pseudo-spins in the Tx � Tz

plane. (a) and (b) correspond
to the type-I and II degenerate
states (see text), respectively

x

z

Tx

Tz

a b

where  k D ŒT z
k ; T

x
k � are the Fourier transforms of the orbital pseudo-spins. By

diagonalizing the 2�2matrixEk, we obtain the following two eigen-values [14,15]:

QE.k/=J D cx C cy C cz ˙
q
c2x C c2y C c2z � cxcy � cycz � czcx ; (7)

where cl D cos akl with the lattice constant a. This dispersion relation is shown
in Fig. 2. In the conventional antiferromagnetic Heisenberg model, E.k/=J D
cx C cy C cz which has its maximum point at k D .�=a; �=a; �=a/ indicating
the antiferromagnetic long range order at this momenta. In (7), QE.k/ takes its max-
ima along k D .�=a; �=a; �=a/ (R-point) to .0; �=a; �=a/ (M -point), and along
other two equivalent lines. This result implies that, when we consider the classical
ground state, a macroscopic number of orbital states are degenerate.

This degeneracy is classified into the following two types [16,17]: (I) Let us con-
sider a staggered-type orbital alignment with two sublattices, termed A and B, and
momentum .�; �; �/. In the classical ground state, the pseudo-spin angles in the
sublattices are given by (�A; �B )=(�; � C �) with any value of � . (II) Consider an
orbital ordered state with the momentum .�; �; �/ and .�A; �B/ D .�0; �0C�/, and
focus on one direction in three-dimensional simple-cubic lattice, e.g. the z direction.
The mean-field energy is preserved by changing all pseudo-spin in each layer per-
pendicular to the z axis independently as (�0; �0 C �) ! (��0;��0 � �). These
are schematically shown in Fig. 3. To determine the stable orbital configurations
among them or examine a possibility of disordered states, further analyses beyond
the mean-field approximation are necessary. This phenomenon originates from the
directional nature of the orbital degree of freedom; the inter-site orbital interaction
explicitly depends on the bond direction connecting the sites. When thermal and
quantum fluctuations are taken into account, this degeneracy is lifted, and the long
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range order appears [16–19]. This is the so-called order-by-fluctuation mechanism
and has been studied by utilizing the spin wave analyses.

Here we demonstrate the degeneracy lifting and appearance of the long-rage
orbital order by the classical Monte–Carlo method in a finite size cluster system
[3, 7]. We calculate the staggered orbital correlation function

MOO D 1

N

*�X

i

.�1/iTi
� 2+1=2

; (8)

and the angle correlation function

Mang D 1

N

*�X

i

.�1/i cos 3�i

�2+1=2
; (9)

where h: : : i represents the Monte–Carlo average. The orbital correlation at the
momentum Q D .�; �; �/ is represented by MOO, and the angle correlation Mang

takes one, when the orbital pseudo-spin angle is 2�n=3 with an integer number n.
Therefore,MOO and Mang are monitors for lifting of the type-(II) and (I) degenera-
cies, respectively. Temperature dependences of MOO for various size L are shown
in Fig. 4a. With decreasing temperature, calculated results for all L show a sharp
increasing around T=J D 0:35. This increasing becomes sharper with the sys-
tem size L. An extrapolated value of MOO toward T D 0 is close to 0.5 which
indicates that the type-(II) degeneracy is lifted and the orbital order with the momen-
tum .�; �; �/ is realized. Temperature dependences of Mang presented in Fig. 4b
increase monotonically toward one in the low temperature limit. Therefore, the type-
(I) degeneracy is also lifted and the pseudo-spin angle is fixed. Both results indicate
the long-range orbital order where the momentum is .�; �; �/, and the pseudo-spin
angles are .�A; �B/ D .�0; �0 C �/ with �0 D 2�n=3.

The temperature at whichMOO andMang change abruptly is around T=J D 0:33
corresponding to the orbital ordering temperature TOO. In more detail, this phase
transition is determined by the finite-size scaling for the correlation length. The
scaling relation for � is

� D LF
h
L1=� fT � TOOg

i
; (10)

where � is the critical exponent for correlation length, and F is the scaling function.
The correlation lengths �=L for various sizes cross with each other at TOO. In Fig. 5,
we plot �=L as a function ofL1=� ŒT�TOO�. The scaling analyses work quite well for
L D 10, 12, and 14. The orbital ordering temperature TOO and the critical exponent
� are obtained as TOO=J D 0:344˙ 0:002 and � D 0:69� 0:81, although statistical
errors are not enough to obtain the precise value of �.
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Fig. 4 (a) Temperature
dependence of the orbital
correlation function MOO,
and (b) that of the orbital
angle function Mang for
several system sizes obtained
by the classical Monte–Carlo
simulation [3, 7]. The system
size is given by L3
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4 Orbital Compass Model

As a different kind of orbital models with the intrinsic frustration effect, we intro-
duce, in this section, the orbital compass model in the two-dimensional square lattice
[16, 17, 20–22]. This model is given by

Hcompass D �2J
X

i;`D.x;z/
T `i T

`
iC`; (11)
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Fig. 6 Dispersion relation of
the orbital interaction of the
two-dimensional orbital
compass model in (11)
represented in the Brillouin
zone for the square lattice

XΓ MY

J (k )
∼ →

k
→

Fig. 7 A schematic view of
the symmetry operation under
which the Hamiltonian is
invariant

z

where J is defined to be positive. Along the x.z/ direction in a two dimensional
square lattice, the x.z/ component of the pseudo-spin is concerned. This form of the
interaction is similar to the eg orbital model introduced in (5), when � l is replaced
by T l . The momentum representation in the orbital interaction is shown in Fig. 6.
The Fourier transformation of the effective interaction, eJ .k/, takes its maxima along
the M-X line in the Brillouin zone as seen in the eg orbital model in a cubic lattice.
Thus, the orbital compass model is recognized as a two-dimensional version of the
eg orbital model in a three-dimensional cubic lattice. This model is also studied
recently from the view point of the quantum computer and information.

This Hamiltonian is invariant under the following two-symmetry operations [16,
23]; (1) The global four-fold symmetry: the pseudo-spins at all sites and the crystal
lattice are rotated by �=2, simultaneously, with respect to the y axis. (2) The local
symmetry at each column and row: the z (x)-component of all pseudo-spins at each
column (row) along the z (x) axis are flipped, i.e. T z.x/

rx ;rz ! �T z.x/
rx ;rz for each rx .rz/.

This is schematically shown in Fig. 7.
Because of this symmetry, it is proven that the conventional long-range order is

not realized. In spite of this, a kind of orbital order, termed the directional order
[20, 23–25] is realized at finite temperature. A schematic picture of the directional
order is presented in Fig. 8. In a one-dimensional chain along the z direction, the
z component of the pseudo-spin is aligned ferromagnetically. However, there is no
correlation between the chains. A similar order is possible along the x direction.
This directional order is identified by the following order parameter,
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Fig. 8 A schematic view of
the directional order

Fig. 9 Temperature
dependence of the directional
order parameter obtained by
the quantum Monte–Carlo
simulation [4]
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iCOx � T z

i T
z
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�
: (12)

We examine the orbital compass model by utilizing the quantum Monte–Carlo
method is a finite-size cluster [4]. The simulations have been performed on a square
lattice of L � L sites with periodic-boundary conditions.

First, we note that the site-diagonal order parameter

M D 1

N

vu
ut
* 
X

r

Tr

!2+

; (13)

decreases with increasing L. This is in contrast to the eg orbital model introduced
in the previous section. Temperature dependence of

phD2i.� D.T // for several
L is presented in Fig. 9. Around T=J D 0:17, D.T / grows with decreasing T , and
is saturated to about 0.13 below T=J D 0:12. With increasing L, this dependence
becomes steep, but the saturated value ofD.T / at low T does not change much. We
also present the temperature dependence of the Binder cumulant Q in Fig. 10. The
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Fig. 10 Temperature
dependence of the Binder
cumulant for several system
size obtained by the quantum
Monte–Carlo simulation [4]
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Binder cumulant is defined by

Q D 1 � hD
4i

3hD2i2 : (14)

From this definition, we expect that, in the limit of L D 1, Q D 0 in the high
temperature limit, and Q D 2=3 in the low temperature limit. It is known that
Q � T curves for several system size L cross at the critical temperature. Thus, this
cumulant is adopted to determine the ordering temperature of the directional order
from the finite-size scaling analyses. TheQ� T curves for the several system sizes
cross around T=J D 0:15 corresponding to the temperature where D.T / grows.
That is, the directional order is realized in the quantum orbital compass model and
TDO D 0:150 ˙ 0:003. The saturated value of D at low T is about half of the
classical value of 1=4. This reduction is much stronger than that in the quantum
antiferromagnetic Heisenberg model with S D 1=2 in a square lattice. This is due
to large quantum fluctuations which induce correlations between columns or rows.

5 Honeycomb Lattice Orbital Model

In this section, we introduce another interesting orbital model with the frustration
effect, termed the honeycomb lattice orbital model. We consider the model where
the doubly degenerate orbitals, e.g. the dx2�y2 and dxy orbitals, which are described
by the pseudo-spin operator Ti , are located at each site in a two dimensional
honeycomb lattice. The explicit form of the model Hamiltonian is given by

Hhoneycomb D �J
X

i2A

�
�˛i �

˛
iCe˛
C �ˇi �ˇiCeˇ

C �i �iCe�

�
; (15)
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Fig. 11 A schematic view of
the orbital interaction in a
two-dimensional honeycomb
lattice

g

ba
Ti

b

Ti
a

Ti
g

where e� is a vector connecting the NN sites along the direction �,
P
i2A represents

a sum of sites on the sublattice A, and J is the positive exchange constant. For the
three-kinds of NN bonds, � D .˛; ˇ; �/, in a honeycomb lattice, we introduce the
new pseudo-spin operator as

�
�
i D � sin

�
2�n�

3

	
T z
i C cos

�
2�n�

3

	
T xi : (16)

A numerical factor n� is defined as .n˛; nˇ ; n / D .0; 1; 2/. The operator ��i rep-
resents a projection component of Ti on the � bond direction. A schematic view of
this interaction Hamiltonian is presented in Fig. 11. This Hamiltonian is rewritten as
a following simple form

Hhoneycomb D J

2

X

i2A;�

�
�
�
i � ��iCe�

�2 � 3
2
J
X

i2A

�
T x2i C T z2

i

�
: (17)

The second term is �3JN=16, when Ti is a two-dimensional classical spin, and
is �3JN=8 in the quantum-spin case. A total number of sites is N . This model
is proposed as a orbital state for the layered iron oxide, [5, 6, 26], and is also
recently proposed in study of the optical lattice [27–29]. A similar orbital model
in a honeycomb lattice termed the Kitaev model is recently well examined. [30, 31]

Let us introduce the Fourier transformation for the orbital pseudo-spin operator.
The Hamiltonian (15) is represented in the momentum space, [5, 27]

H D  t .�k/ OJ .k/  .k/ : (18)

We introduce a four-component vector defined as

 .k/ D �T xA .k/; T z
A.k/; T

x
B .k/; T

z
B.k/

�
; (19)

and a 4 � 4 matrix OJ .k/. We obtain the eigen values of OJ .k/ are ˙3J=4 and
˙J Œ3C 2 cos k � aC 2 cos k � bC 2 cos k � .a � b/�1=2 =4 where a and b are the
primitive translation vectors. Numerical plot of OJ .k/ is presented in Fig. 12. The
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Fig. 12 Dispersion relation
of the Fourier transformation
of the orbital interaction in
the honeycomb lattice orbital
model

Fig. 13 Two of the pseudo-spin configurations in the classical ground states

lowest eigen value is a momentum independent flat band of �3J=4. That is, the
effective dimensionality for the lowest state is zero, and, in the classical ground
state, stable orbital structures are not determined uniquely due to large fluctuation.
The second eigen value touches the lowest band at the point � .

Orbital structure in the classical ground state is obtained from the Hamiltonian
in (17). The ground state energy is �3J=16, when the pseudo-spins satisfy the
following condition in all NN bonds; [5, 28, 29]

�
�
i D ��iCe�

: (20)

This relation implies that the projection components of pseudo-spins are equal with
each other for all NN bonds. There is a macroscopic number of orbital structures
which satisfy this condition. Two of them are shown in Fig. 13.

Now we introduce the numerical results obtained by the classical Monte–Carlo
simulation [6]. First we present, in Fig. 14, temperature dependence of the specific
heat C.T / for several system sizes. There is a sharp peak around 0:005 � 0:01J
which depends on system size. With increasing a system size, the peak shifts to a
lower temperature side and becomes sharp. The peak position is denoted as TO from
now on. It is worth noting that this value of TO is much smaller than the mean-field
ordering temperature 3J=8. To elucidate the orbital state below TO, we calculate the
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Fig. 14 Temperature
dependence of the specific
heat for several cluster sizes
obtained in the classical
Monte–Carlo simulation [6]
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Fig. 15 Temperature
dependence of the angular
parameter for several cluster
sizes obtained in the classical
Monte–Carlo simulation [6]

correlation functions for the pseudo-spin defined by

S lm.k/ D 4

N 2

X

ij

hT li Tmj ieik�.ri�rj /; (21)

where l and m take x and z, and ri is a position of site i . We calculate S zz.k/’s
for all possible momenta k in a cluster. With increasing N , the values of S lm.k/
decrease rapidly, and in a 2 � 6 � 6 cluster, all S lm.k/’s are less than 3% of their
maximum value. We conclude that, below TO, there are no conventional long-range
order corresponding to the correlation functions given in (21).

Instead of the conventional orbital order, there is a remarkable enhancement of a
physical parameter q for the pseudo-spin angle �i defined by

q D 1

N

X

i

cos 3�i : (22)

When the angle �i takes one of the three angles 2n�=3 [.2nC 1/�=3], q D 1 .�1/.
In Fig. 15, we plot the temperature dependence of the correlation function of q
defined by
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Fig. 16 Two pseudo-spin
configurations where the
honeycomb lattice is covered
by the NN bonds with the
minimum bond energy

a b

Fig. 17 Cluster size
dependence of the overlap
integral between the ground
state wave function jGSi
obtained by the Lanczos
method and the trial wave
function [6]. In the variational
wave function j‰.1/i, the
variational parameters are set
to be equal, and in j‰.0/i the
variational parameters are
optimized

0 0.05 0.1
0

0.2

0.4

0.6

0.8

1

1/N

GS Ψ
(1) 2

GS Ψ
(0) 2

Q D
p
hq2i: (23)

This starts to increase around TO and is saturated to the maximum value at the low
temperature limit. With increasing the system size N , Q abruptly increases around
TO. Stability of the q D ˙1 states is attributed to the low-lying excited states around
the q D ˙1 states. The high density of the low-lying fluctuations around q D ˙1
states contributes to the entropy gain and stabilizes the q D ˙1 states at finite
temperature.

Next we introduce the analyses of the Hamiltonian in (15) where the pseudo-
spin is treated as a quantum spin operator with a magnitude of S D 1=2 [6]. We use
the exact diagonalization technique based on the Lanczos algorithm. The correla-
tion functions defined in (21) are calculated for several momenta and system sizes.
With increasingN , S lm.k/’s become almost momentum independent and all of the
values are less than 25% of the maximum. Thus, the conventional long-range order
characterized by the correlation functions does not exist, as we have shown in the
classical model. We consider the trial pseudo-spin states where a honeycomb lattice
is covered by the NN bonds with the minimum bond energy. Some examples are
shown in Fig. 16. We construct the wave function as a linear combination of these
states. This is given by
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j‰i D N
X

l

Al j l i; (24)

where N is a normalized factor, Al are variational parameters, and j l i is the
wave function for the l-th configuration which satisfy the condition explained
above. Because of the off-diagonal matrix elements among some states in j l i,
certain kinds of resonance states are realized. Figure 17 shows the overlap integral
W � jhGS j‰ij2 as a function of 1=N . In a 2 � 2 � 2 size cluster, the ground-state
wave function jGSi is almost completely reproduced by the trial function. With
increasingN , a value ofW is gradually reduced. However,W is maintained around
0.8 even in the largest size cluster. Thus, at least within the present calculation, the
ground-state wave function is well reproduced by the trial wave function where the
honeycomb lattice is covered by NN bonds with the minimum bond energy.

6 Summary

We review in this paper the intrinsic orbital frustration effects in Mott insulating
states with orbital degree of freedom. This effect is resulted from the directional
nature of the orbital degree of freedom and the interaction between the inter-site
orbitals, and is represented as a flat part of the dispersion relation in the effec-
tive orbital interaction in the Brillouin zone. As results, a macroscopic number
of the orbital states are degenerated in the classical ground state, as seen in the
frustrated magnets. In the cubic lattice orbital model, this degeneracy is lifted by
thermal/quantum fluctuations, and the conventional long-range order is realized
by the so-called order-by-fluctuation mechanism. In the two dimensional compass
model, it is mathematically proved that no conventional long-range order is sta-
bilized due to the local symmetry. Instead, the directional order occurs at finite
temperature. In honeycomb lattice orbital model, it is numerically shown that
the conventional long range orbital order does not occur. That is, the order-by-
thermal/quantum fluctuation effect does not work. We find there is a certain kind
of rule for the orbital pseudo-spin angle at each lattice site, although there is still a
macroscopic number of degeneracy in the orbital configuration.
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Ultrasonic Consequences of the Jahn–Teller
Effect

Vladimir Gudkov

Abstract Contribution of the Jahn–Teller system to the elastic moduli and ultra-
sonic wave attenuation of the diluted crystals is discussed in the frames of phe-
nomenological approach and on the basis of quantum-mechanical theory. Both,
resonant and relaxation processes are considered. The procedure of distinguishing
the nature of the anomalies (either resonant or relaxation) in the elastic moduli and
attenuation of ultrasound as well as generalized method for reconstruction of the
relaxation time temperature dependence are described in detail. Particular attention
is paid to the physical parameters of the Jahn-Teller complex that could be deter-
mined using the ultrasonic technique, namely, the potential barrier, the type of the
vibronic modes and their frequency, the tunnelling splitting, the deformation poten-
tial and the energy of inevitable strain. The experimental results obtained in some
zinc-blende crystals doped with 3d ions are presented.

1 Introduction

What is the reason to use elastic waves, acoustic or ultrasonic, for investigat-
ing the Jahn–Teller effect? An elastic wave can be represented as a number of
quasi-particles, named phonons, that can initiate electron transitions. The energy
of phonons generated in an experiment is much lower than one of photons used
in optics, � -resonance, microwave absorption experiment, and electron spin reso-
nance. Thus, the elastic wave technique broadens the facilities of the Jahn–Teller
spectroscopy in its low energy part and provides new information mostly about the
characteristics of the ground state and its tunneling splitting. Nuclear magnetic res-
onance (NMR) covers the frequency interval similar to one used in an ultrasonic
experiment but NMR is observed in an external magnetic field and requires quite
definite selection rules for the electron transitions. Acoustic waves have even lower
frequency but still they can be used for investigating the quasi-static elastic moduli,
which provide information about the symmetry of the crystal or the type of local
distortions in a diluted crystal. Most of the experimental results was obtained at fre-
quencies higher that 104 Hz, therefore we will focus our attention on ultrasonic wave
propagation and on influence of the Jahn–Teller system on their phase velocity and
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attenuation, or, in other words, real and imaginary components of the dynamic elas-
tic moduli. The most evident reasons of ultrasonic technique application relate to
structural phase transitions caused by the cooperative Jahn–Teller effect. The study
of the temperature dependence of different components of the elastic moduli ten-
sor provides information about critical temperature and the symmetry of new phase.
Ultrasonic experiments deal with the cooperative Jahn–Teller effect were reviewed
by Lüthi [1].

Another application of the ultrasonic technique is the investigation of diluted
crystals, i.e., crystals with the impurity of low concentration. In this case, we do
not observe a structural transition but we can register a tendency to it in a form
of lattice instability. The instability manifests itself in softening of definite elastic
modulus. This modulus indicates the character of the distortions of the Jahn–Teller
complex and point out the type of vibronic mode. Ultrasonic attenuation gives addi-
tional information about the character of the electron-phonon interaction: either it
is resonant, or relaxation one. The known experimental data support the statement
that the relaxation process is observed. In the case of relaxation process, the proce-
dure for reconstruction of the relaxation time was developed earlier by Sturge et al.,
described in [2] and recently it was generalized to be applicable to a low temper-
ature experiment [3]. Simulation of the temperature dependence of the relaxation
time can give us the magnitudes of the parameters of the Jahn–Teller complex, such
as the potential barrier, the vibrational frequency, the deformation potential, the tun-
nelling splitting, etc. Since the cooperative Jahn–Teller effect was reviewed already
[1], we will discuss the problems and the experimental results obtained in the diluted
crystals.

2 Elastic Moduli. Phenomenological Approach

The parameters measured in an ultrasonic experiment are the amplitude and phase
of the signal. They are determined by attenuation and phase velocity of a wave. In
turn, the attenuation and phase velocity are associated with material constants. In
our case they are elastic coefficients (or elastic moduli). These constants can be cal-
culated using quantum-mechanical approach. Finally, we will obtain the expressions
for the measured (phenomenological) parameters in terms of the microscopic ones.
In the present section we will discuss the basics of the phenomenological elasticity
theory and the microscopic description of the Jahn–Teller contribution to the elastic
moduli will be discussed later.

Classical theory of elasticity (see, for example [4, 5]) contains the fundamental
equations required to describe elastic waves propagation. Although real objects have
atomic structure, the medium in which the waves propagate is regarded as a con-
tinuum. It means that the wavelength should be large enough with respect to the
distance between molecules or atoms. Further we will discuss crystals, therefore,
most of the variables will be tensors.
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The principal equation of elasticity theory is the equation of motion, which
relates the total force per unit volume � Rui to the gradient of the thermodynamic
tensions �ij and the body force per unit volume fi :

� Rui D @�ij

@xj
C fi ; (1)

where � is the density of the medium and u is the displacement of a volume element.
�0ij is defined as the force in ei direction applied to a unit square with normal vector
parallel to ej . The thermodynamic tensions also can be defined so that the sum
�ijd"ij equals the differential of the work per unit of original volume done by the
non-dissipative part of the stress in stretching the medium [6]. Here

"ij D 1

2

�
@ui
@xj
C @uj
@xi

	
(2)

is the strain tensor also known as the deformation tensor. Very often, the strain
induces electric or magnetic fields and temperature variation. Therefore, other vari-
ables should be accounted. A complete description of a medium requires a set
of 16 independent variables; for example, temperature T , components of electric
induction Dk , magnetic induction Bk , and the strain tensor, whereas entropy S ,
components of �ij , electric field Ek , and magnetic field Hk may be regarded as
their dependant variables. Using this set of variables, the differential of �ij has the
form

d�ij D
�
@�ij

@"kl

	

DBT

d"kl C
�
@�ij

@Dk

	

�BT

dDk

C
�
@�ij

@Bk

	

�DT

dHk C
�
@�ij

@T

	

�DB

dT : (3)

The first law of thermodynamics states that the change in the internal energy of a
body equals the work done by the external forces plus the change in heat. In a more
detailed form and for unit volume it is written as

dU D �ijd"ij CEidDi CHidBi C TdS : (4)

Using the definition of the Helmholtz free energy F D U � TS , we have

dF D �ijd"ij CEidDi CHidBi � SdT : (5)

The elastic (or stiffness) coefficients (moduli) are defined as the first derivatives of
the tensions with respect to strain

cijkl D @�ij

@"kl
; (6)
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or the second derivatives of the thermodynamic potentials

cDBTijkl D
�

@2F

@"ij @"kl

	

DBT

; (7)

cDBSijkl D
�

@2U

@"ij @"kl

	

DBS

; (8)

The ordinary or the second order elastic moduli represent the derivatives (7) and (8)
calculated at "ij D 0. They enter the equations of linear with respect to deformation
theory (the zero amplitude wave).

The nth-order elastic coefficients may be defined as the nth partial derivatives
of the energy. The higher-order coefficients (n � 3) should be included when
the propagation of a finite amplitude waves (i.e., nonlinear phenomena) is under
consideration.

We will restrict ourselves with consideration of small-amplitude waves and,
therefore, use only the second-order moduli. Besides, we will discuss the phe-
nomena in the zero electric and magnetic fields. It makes it possible to omit the
superscripts and subscripts DB . In this case cS

ijkl
and cT

ijkl
will represent adiabatic

and isothermal moduli, respectively. The first one does characterize very fast pro-
cesses, while the second is a quasi-static modulus. Regardless of the definite form
of the moduli (isothermal, adiabatic or another one) the equation of motion (1) at
fi D 0 may be written in the form

� Rui D cijkl @2ul
@xj @xk

: (9)

We will seek solution in the form of running wave

uj D Uj exp Œi .!t � k � r/� ; (10)

where ! is the radian frequency of the wave, t is time, k is the wave vector, and r
is the radius-vector of the point where the wave is observed. Substitution into (9)
gives �

cijkl
kjkl

k2
� �v2ıik

	
uk D 0 ; (11)

where k2 D jkj2, and v is phase velocity defined by k � v D !.
For nontrivial solutions the determinant of the coefficients of the system (11)

vanishes ˇ
ˇ̌
ˇcijkl

kjkl

k2
� �v2ıik

ˇ
ˇ̌
ˇ D 0 : (12)

This equation determines v as function of direction. Since it is cubic in v2, there
are three velocities associated with each direction. If we introduce the symmetric
second-rank tensor
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�ik D cijkl kjkl
k2

; (13)

we see that �v2 are its eigenvalues, and the displacement vectors u associated with
distinct eigenvalues are mutually perpendicular. Thus for each direction of k there
can be three waves with mutually perpendicular displacement vectors and different
(except in degenerate case) phase velocities

vˇ D
q
cˇ=� ; (14)

where ˇ D s; f; ` are the subscripts relating to these waves known as normal or
eigen modes. If the waves propagate along the principal crystallographic axes, one
of them has longitudinal (`) polarization and two are shear polarized modes: fast (f )
and slow (s) ones. The degenerate shear modes are observed if propagation occurs
along the axis of high-order rotational symmetry (not less than three-fold). For an
non-symmetrical direction the modes are quasi longitudinal and quasi shear.

Attenuation of a wave can be accounted with the help of either complex fre-
quency ! D !1 C i!2 or complex wave vector k D RekC i Imk. We will consider
frequency as a real value, while the wave vector as a complex one and use notation
k D .!=v � i˛/ek , where ek is the unit vector of k-direction and attenuation coef-
ficient ˛ describes the reduction of amplitude by the factor exp.�˛ek � r/. Thus the
expression:

kˇ D !
p
cˇ=�

ek (15)

should be accepted as introduction of complex second-order moduli. These moduli
can be still called as elastic ones since in most of the cases

ˇ
ˇRe.cˇ /

ˇ
ˇ � ˇ

ˇIm.cˇ /
ˇ
ˇ

but we must keep in mind that the imaginary part describes the energy loss, i.e., the
anelastic behavior.

In the frames of phenomenological theory we cannot discuss the resonant effects
and will restrict ourselves with relaxation processes only. We will follow an approach
proposed by Zener [7]. For a small-amplitude wave equation (6) represents Hooke’s
law in terms of stress, strain and stiffness

cijkl D �ij

"kl
: (16)

It can be written in terms of stress, strain and compliance as well:

sijkl D "kl

�ij
: (17)

To describe the response of the medium on a stress suddenly applied to a solid and
held constant, it was introduced unrelaxed (subscript U ) and relaxed (subscript R)
stiffness and compliance coefficients. The unrelaxed quantities relate to immediate
response while the relaxed ones are the coefficients after relaxation occurs. The
process of relaxation is characterized with the relaxation time � . Proposed by Zener
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modification of the Hooke’s law represents an expansion in the time derivatives of
the stress and strain that retains only the lowest order derivatives:

"kl C � d"kl
dt
D sRijkl�ij C �sUijkl

d�ij

dt
: (18)

In the case of harmonic time-dependence of the variables (i.e., �ij ; "kl / exp.i!t/)
and assuming small difference between the relaxed and unrelaxed compliances:

sRijkl � sUijkl 
 sRijkl ; s
U
ijkl D

"kl

�ij
; (19)

solution of the (18) gives an expression for dynamic (i.e., frequency-dependent)
moduli cijkl . Written for an appropriate liner combination that can be used in the
expression (15), the solution has the form

cˇ D cUˇ �
cU
ˇ
� cR

ˇ

1C !2�2 .1 � i!�/ ; (20)

or

cˇ D cRˇ C
cU
ˇ
� cR

ˇ

1C !2�2
�
!2�2 C i!�� : (21)

In most of the cases, an ultrasonic wave propagates adiabatically, so the (20) looks
more naturally: its right-hand side represents the adiabatic (non-relaxed) modulus
and non-adiabatic contribution to the dynamic modulus. Recall that the relaxed
(or isothermal) modulus should be regarded as quasi-static one. Figure 1 shows
the frequency-dependent factor of non-adiabatic contribution as function of !� .
One can see that transformation from isothermal-like to adiabatic-like propagation
occurs in the vicinity !� D 1. The velocity of ultrasound is increased in this region,
while the attenuation reaches its maximum value.

General relation between k and cˇ given by the (15) is often simplified for small
deviation of the variables respectively certain initial reference values k0 � kˇ;0,
v0 � vˇ;0, and c0 � cˇ;0. In other words we assume kˇ;0�k0 � �kˇ;0; j�kˇ;0j 

jkˇ;0j, vˇ;0 � v0 � �vˇ;0; j�vˇ;0j 
 jvˇ;0j, cˇ � cˇ;0 � �cˇ ; j�cˇ j 
 jcˇ j. In
this case

˛ˇ D 1

2
k0

Imcˇ
c0
D 1

2
k0
cU
ˇ
� cR

ˇ

c0

!�

1C !2�2 ; (22)

�vˇ
v0
D vˇ � v0

v0
D 1

2

Re�cˇ
c0

D �1
2

cU
ˇ
� cR

ˇ

c0

1

1C !2�2 ; (23)

where k0 D !=v0 and c0 D �v20. Note, ˛ is introduced so, that it characterizes
attenuation of the amplitude, not energy: ˛ˇ D �Im.kˇ /.
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Fig. 1 The frequency-dependent factor of the real [dash curve: .�1/=.1C !2�2/] and imaginary
[solid curve: !�=.1C!2�2/] components of the non-adiabatic contribution to the dynamic elastic
modulus

3 Manifestation of the Jahn–Teller Effect in an Ultrasonic
Experiment

Because the energy state of a Jahn–Teller complex depends on the local lattice dis-
tortions, the macroscopic long-distant strain that produces an ultrasonic wave should
influence it as well. The cross effect is: initiated by the Jahn–Teller complexes (1)
the dispersion (i.e., frequency-dependent variation of phase velocity) and (2) attenu-
ation of the wave. In terms of the elastic moduli it sounds as appearance (or account)
of the Jahn–Teller contribution to the real and imaginary parts of the elastic moduli.
For a small-amplitude wave it is a summand �cˇ . Obviously, interaction between
the Jahn–Teller system and the ultrasonic wave takes place only if the wave, while
its propagation in a crystal, produces the lattice distortions corresponding to one of
the vibronic modes.

The Jahn–Teller effect requires quantum-mechanical description. Therefore, we
will discuss the results obtained in a microscopic theory and later we will compare
the expressions for ultrasonic absorption with one obtained in the phenomenological
theory.

We will consider the effect in diluted crystals (i.e., in crystals with small con-
centration of the Jahn–Teller impurity so that the complexes are located far enough
from each other and can be considered as independent).
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3.1 Quantum-Mechanical Description of the Jahn–Teller
Effect in Diluted Crystals

There are two ways in which interaction of the ultrasonic wave and the Jahn–Teller
complex can occur: by resonant transition between two electron energy levels, or by
relaxation between the different possible directions of the Jahn–Teller distortions.

3.1.1 Resonance

Resonant process was considered by Bersuker [8] (see also the book [9]) under the
assumption that �! 
 �T . We should note that the inequality is correct in most of
the cases since the energy of phonons generated in an ultrasonic experiment is low
enough. For example,!=2� D 108 Hz corresponds to the energy in the temperature
scale of	 5 mK.

The expression for ultrasonic attenuation due to E ! A transition between the
vibronic (tunnelling) levels of the E ˝ e problem for the system with a cubic-type
symmetry was obtained in the following form

˛E!A D �

6

nR2F 2E!
2

�v3
ˇ
�T

Lg.!/ ; (24)

where � is the Boltzmann constant, R is the minimal distance between the
Jahn–Teller center and ligand, FE is the linear vibronic constant, n is the con-
centration of the Jahn–Teller centers in the crystal, L is the factor accounting the
propagation direction k and the polarization of the wave U

L D 1

k2U 2

0

@
X

i

k2i U
2
i �

1

2

X

i¤j
kikjUiUj

1

A ; (25)

g.!/ is the shape factor of the line,

Z 1

0

g.!/d! D 1 : (26)

The shape factor can be expressed using the relaxation time as

g.!/ D 2

�

�

1C .! � !0/2 �2
; (27)

where �!0 is the tunnelling splitting. In our case �!0 D r� . Finally we can combine
all the expressions (24)–(27) and obtain the following:

˛E!A D 1

3
k0
nR2F 2EL

cˇ�T

!�

1C .! � !0/2 �2
: (28)
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We must point out that our expressions (24) and (28) differ from ones given in [8,9]
by factor 1=2 because we discuss attenuation of amplitude, while in the mentioned
references the expressions were obtained for the energy loss.

In this expression, the temperature dependent variables are R, vˇ , � , and � . At
low temperaturesR, vˇ , � can be regarded as temperature independent, whereas the
relaxation time has strong temperature dependence. Thus, the shape factor given by
the expression (27) has a maximum as a function of temperature. Its position, T1 ,
can be derived from

.! � !0/ �.T1/ D 1 : (29)

The temperature dependence of ultrasonic attenuation will also have a maximum
but its location, Tm , should be shifted with respect to T D T1 due to the factor 1=T
in the expression (28).

3.1.2 Relaxation

The absorption due to relaxation between the possible directions of the Jahn–Teller
distortions was observed initially in experiments done on the crystals of aluminum
oxide (corundum), yttrium aluminum garnet, yttrium iron garnet, and lithium gal-
lium spinel doped with 3d ions [10, 11].

An easy way to obtain the formula for the relaxation-origin absorption is to con-
sider the limit ! � !0 in the expression (28). However, we will follow the approach
suggested by Sturge et al. [11] and discussed in detail in [2], in which inevitable
strain of a crystal was taken into account. It was supposed that at one particular site
local strain lowered one of the adiabatic potential minima by amount u0 relative
to others. If u0 > !0D r� , the system will (at T D 0) be localized in one of the
valleys. At �T � u0, there will be thermal distribution among the minima.

Discussing the contribution of the Jahn–Teller system .�cU
ijkl
� �cR

ijkl
/ which

enters expression (20), the authors stated that it should be calculated isothermally
since adiabatic value�cU

ijkl
vanishes. Thus

�
�
�cUijkl ��cRijkl

�
D �cRijkl : (30)

Using the general expression for the relaxed (isothermal) modulus one can write

�cRijkl D
�

@2F

@"ij @"kl

	

"D0
D n�T

�
@2 lnZ

@"ij@"kl

	

"D0
; (31)

where Z is partition function of the Jahn–Teller ions.
In the case of E ˝ e problem for octahedral complex and the longitudinal wave

propagation, the partition function has the following form

Z D 2 exp .�ˇ"=�T /C exp Œ.u0 C 2ˇ"/ =�T � ; (32)
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where
ˇ2 D 2A2hQ2i ; (33)

where 2A is the splitting of theE state per unit distortion (i.e., unit displacement not
strain), hQ2i equals R2=6 for propagation of the longitudinal wave in the direction
of the [100] axis of the octahedron (in this case the splitting per unit strain b D 3ˇ)
and equals R2=24 for the [110] axis. Finally, the contribution of the Jahn–Teller
system to the modulus, which characterizes the longitudinal wave propagation in
the [100] octahedron direction can be written as

�cR` D �
2nˇ2

�T
f
� u0
�T

�
: (34)

Function f .x/ satisfies f .0/ D 1, f .˙1/ D 0. Considering small inevitable strain
u0 
 �T and assuming f .u0=�T / D 1, attenuation due to the Jahn–Teller system
was derived as

˛` D 1

2
k0

���cR
`

�

c0

!�

1C !2�2 D
k0nˇ

2

c0�T

!�

1C !2�2 : (35)

Like before, this expression describes the attenuation of the amplitude but not the
energy loss as it is discussed in [2].

In most the cases, �.T / is a monotonous function, moreover, it is reducing with
temperature increase. Keeping in mind that other variables in the expression (35)
can be assumed as temperature-independent at least at low temperatures, one can
see that the relaxation attenuation has maximum at a certain temperature T D Tm.
Similar to the resonant attenuation, its position is shifted due to the the factor 1=T
with respect to T D T1 which is defined in this case with the condition

!�.T1/ D 1 : (36)

Discussing the relaxation time origin we will also follow [2]. Three mechanisms
of relaxation can be accounted here: thermal activation over the potential barrier
V0 (described with �T ), tunnelling through the barrier accompanied by phonon
emission (�t ), and two phonon process analogous to Raman scattering (�R):

��1 D ��1T C ��1t C ��1R : (37)

The summands in the right-hand side of this expression are given by

��1T D 2�0e�V0=�T ; (38)

��1t D
6�2ˇ2

���4v50

u0
�T

.2C e�u0=�T /

.1� e�u0=�T /
; (39)

��1R D
9�2ˇ4.�T /3

��2�7v100
; (40)
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where �0 is constant. It was called as the vibrational frequency in [11]. Actually it is
the frequency of the deformations rotation which is always less than the frequency
of radial vibrations (see p.171 in [9]).

Phase velocity vˇ or corresponding real component of the dynamic modulus cˇ
can serve as object of study as well. According to the expression (23), they are also
functions of cU , cR, and !� . At low frequency or/and high temperatures (satisfying
!� 
 1) one can observe softening of the modulus, i.e., reduction the velocity
with lowering the temperature. Such a behavior is typical for an isothermal process.
If !� � 1, the process will be close to an adiabatic one. Transformation from
isothermal to adiabatic process occurs in the vicinity of T D T1. Recall that T1
is defined from the condition !�.T1/ D 1. The factor 1=

�
1C !2�2� represents a

smoothed step-function: it equals unity at !� 
 1 and vanishes at !� � 1.
Discussing contribution of the Jahn–Teller system to vˇ we may use the expres-

sion (30)–(31) as well, and for particular case of E ˝ e problem for octahedral
complex and the longitudinal wave propagation - the expressions (32)–(34). As a
result:

�v`
v0
D 1

2

�c`

c0
D 1

2

�cR
`

c0

1

1C !2�2 D �
nˇ2

c0�T

1

1C !2�2 : (41)

The ordinary elastic moduli discussed above describe propagation of a small ampli-
tude wave. In the case of large amplitude or pressure application the moduli (7), (8)
should be considered as functions of distortions.

Averkiev et al. [12] investigated the softening of the lattice in p-GaAs:Cu.
This crystal has a zinc-blende structure and the Jahn–Teller impurity is located in
tetrahedral surrounding.

Discussing a zinc-blende crystal, it is convenient to consider two types of
distortions:

"1 D


"33 � 1

2
."11 C "22/

�
(42)

and "12. The first distortions are of tetragonal type (along the h100i axes) and corre-
spond to  vibronic mode. They are produced by the slow shear mode propagating
in the h110i direction with the polarization parallel to h110i. The second - are trig-
onal distortions (along the h111i axes) corresponding to � vibronic mode. They
are initiated by the fast shear mode propagating in the same direction but polar-
ized along h100i. The phase velocities of these modes are determined by the elastic
moduli cs D .c1111 � c1122/=2 and cf D c1313, respectively. Contributions of the
Jahn–Teller system to the isothermal moduli (�cR) should be in this case

�cRs D
3

2

@2F

@"21
; �cRf D

@2F

@"212
; (43)

Note, the tetragonal distortion influence the cs modulus exclusively, the trigonal
– the cf modulus. This fact can give us an instrument to determine the type of
local distortions in an ultrasonic experiment carried out in a zinc-blende crystal:
the distortions can be pointed out with the help of temperature dependences of the
elastic moduli.
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Interaction of the impurity with the  vibronic mode was considered [12] and,
therefore, the local distortions have tetragonal type. The adiabatic potential in this
case has three minima and the energy in the minima was introduced in the following
form

E1 D �b


"33 � 1

2
."11 C "22/

�
D �b"1 ; E2;3 D b



"1

2
 3

4
."11 � "22/

�
;

(44)
where b is the appropriate component of deformation potential tensor. Contribu-
tions of the Jahn–Teller system to the isothermal moduli (�cR) those describe
propagation of shear modes in the h110i direction were written as

�cRs D
3

2

@2F

@"21
; �cRf D

3

2

@2F

@"212
; (45)

where the free energy was represented as

F D ��T n ln
�
e�E1=�T C e�E2=�T C e�E3=�T

�
: (46)

Analyzing the expressions (44)–(46) one can easily see that non-zero contribution of
the Jahn–Teller system to the elastic moduli takes place only to the cs modulus (or
to the velocity of the slow shear mode of the h110i direction) and this contribution is

�cRs D �
27

4

nb2

�T

cosh

�q
3
2
b"2

�T

	
exp

�
3
2
b"1

�T

�



2 cosh

�q
3
2
b"2

�T

	
C exp

�
3
2
b"1

�T

��2 ; (47)

where

"2 D
r
3

2
."11 � "12/ (48)

In the mentioned paper [12], this expression was used for analysis the influence of
the applied pressure on the luminosity of the p-GaAs:Cu crystal. As well, it can be
useful for consideration of a small amplitude wave propagation in such a crystal.
We should assume "1 D "2 D "3 D 0 and derive the following expression

�cRs D �
3

4

nb2

�T
; (49)

which can be used for describing attenuation and phase velocity of the shear slow
mode of the h110i direction:

˛s D 1

2
k0

���cRs
�

c0

!�

1C !2�2 D
3

8

k0nˇ
2

c0�T

!�

1C !2�2 ; (50)
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�vs
v0
D 1

2

�cs

c0
D 1

2

�cRs
c0

1

1C !2�2 D �
3

8

nˇ2

c0�T

1

1C !2�2 : (51)

3.1.3 Approach of an Experimentalist

In this paragraph, we will discuss how the presented above can be used for analyz-
ing the experimental data. We propose that we have one of the setups described, for
example, in [13] or any other device that gives us an opportunity to measure tem-
perature variation of the amplitude (A) and phase (�') of the signal after passage
of the running wave through a specimen. Some technique is based on measurement
of the phase with the help of frequency balance of a bridge.

The relative change of the phase (or frequency f ), corresponding to the bridge
balances obtained at T and T0, is determined by phase velocity of ultrasonic wave
and the distance of the wave passage ` as follows

�'

'0
D �f

f0
D �vˇ

v0
� �`
`0

; (52)

where '0 D '.T0/, f0 D f .T0/, v0 D v.T0/, and `0 D `.T0/, �f D f .T / � f0,
�vˇ D vˇ .T / � v0, �` D `.T / � `0. Temperature variation of the specimen’s
dimension can be neglected at low temperatures. Therefore, we will omit the last
term in (52) and the expression for the relative variation of phase velocity expressed
in terms of the measured parameters is

�vˇ
v0
D �'

'0
D �f

f0
: (53)

To obtain attenuation in cm�1 we should measure `0 in centimeters and use the
following expression

�˛ˇ D � 1
`0

ln



A.T /

A.T0/

�
: (54)

Whenever we obtained the temperature dependence of attenuation and found a
peak of absorption which we suppose is due to the Jahn–Teller effect, it is nec-
essary to realize whether it has resonant or relaxation origin. The corresponding
expressions are given by formulas (28) and (22), respectively.

One may see that a maximum of resonant attenuation should be observed at T D
0 for .! � !0/� ! 0. If .! � !0/� ¤ 0 and !0 is a temperature-independent
parameter, the function

f1.!�;�!�/ D !�

1C .�!�/2 (55)

has a maximum at j�!j� D 1, but not at !� D 1, as is the case for the function

f2.!�/ D !�

1C .!�/2 (56)
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which describes the relaxation attenuation given by (22). Here �! � .! � !0/.
Note that, if j! � !0j=! < 1, the peak of f1 will be located at lower temperatures
than that of f2. If j!�!0j=! > 1, the peak will be observed at higher temperatures,
but its magnitude will be appreciably reduced due to the small value of � .

First we will consider a possible resonant origin of the attenuation maximum.
It is easy to determine experimentally which of the frequencies, ! or !0, is

smaller, provided � is a monotonic function of T decreasing with temperature.
One can guess that, if ! increasing leads to a shift of the attenuation peak to

higher temperatures (what was reported in all the published papers those the author
knows and illustrated in Fig. 2), the inequality! > !0 holds true. Note that the same
shift should occur for relaxation attenuation, since it corresponds to an even stronger
condition, ! � !0. If the peak is shifted to lower temperatures, the opposite
inequality, ! < !0 should be realized.

We will discuss the experimental procedure, consisting of measurements of
˛
.1/

ˇ
.T / and ˛.2/

ˇ
.T / made with at least two fixed frequencies !1 and !2, respec-

tively. Using the expression for the resonant absorption in a more general form than
it is given by (28), namely,

˛ˇ D k0

2

cU
ˇ
� cR

ˇ

c0

!�

1C .�!�/2 ; (57)
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Fig. 2 Temperature dependences of ultrasonic attenuation for longitudinal waves propagating in
ZnSe:V2C along the [110] axis, measured at 270 MHz (open circles), 156 MHz (filled circles), and
52 MHz (triangles). �˛ D ˛.T /� ˛.T0/, T0 D 16 K. The plot for 52 MHz is shifted downward
by 0.7 dB for clarity. Concentration of the dopand nV D 5:6� 1018 cm�3. After Fig. 3 in [3]
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we will write it the first time for an arbitrary temperature T , the second time for T1,
and derive the following system:

.!1 � !0/�.T / D F1; (58)

.!2 � !0/�.T / D F2; (59)

where

Fi D
˛
.i/

ˇ
.T1/ � T .i/1

˛
.i/

ˇ
.T / � T

˙

vu
uu
t

0

@
˛
.i/

ˇ
.T1/ � T .i/1

˛
.i/

ˇ
.T / � T

1

A

2

� 1: (60)

In this expression i D 1; 2, T .i/1 corresponds to .!i�!0/� D 1. Here !0 is assumed
to be a temperature-independent parameter, or at least its temperature dependence
should be sufficiently less pronounced than that of the relaxation time.

The system (58) and (59) can be solved with respect to !0 and � :

!0 D !1F2 � !2F1
F2 � F1 ; (61)

�.T / D F2 � F1
.!2 � !1/ : (62)

One important detail of the experiment should be mentioned here. Equation (57)
describes resonant (or relaxation, if !0 ! 0) attenuation. However, total attenuation
˛.T / is measured in the experiments. Therefore, the background attenuation ˛b.T /
should be subtracted from the measured values.

The value of ˛.i/
ˇ
.T1/ T

.i/
1 can be determined from the experimental data. If we

multiply the left and right hand parts of equation (57) by T , the right hand part
will represent the function f1.!�;�!�/ [see (55)] multiplied by a temperature-
independent coefficient. Obviously, the product reaches its maximum value pre-
cisely at .! � !0/� D 1. We would outline that this procedure for determining
T1 may be applied regardless of the attenuation type: it can be either resonant or
relaxation. In the latter case T1 defines a maximum of f2.!�/, given by (56), and
corresponds to the condition !� D 1.

Such a procedure was applied for processing the data obtained in ZnSe:V2C. The
result of the application is shown in Fig. 3. Note, the measurements done in a certain
temperature interval gave a statistical distribution characterizing their accuracy.

Sometimes the temperature T1 can be determined even when the maximum of
�˛.T / is located at such a low temperature that is not accessible in the experiment.
For example, the lowest temperature in [3] was 1.4 K and the attenuation maximum
for the 52 MHz was not observed. However, the temperatures corresponding to .!�
!0/� D 1, obtained with the use of the procedure described above, was found as
1.85 K (see Fig. 4).

In the case of relaxation absorption, we can use (58) with the assumption that
!0 D 0 and solve it for the relaxation time,
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(52 MHz) frequencies used in the experiment. Concentration of the dopand nV D 5:6�1018 cm�3.
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Fig. 4 Temperature dependences of ultrasonic attenuation for fast shear mode propagating in
ZnSe:V2C along the [110] axis measured at 52 MHz (open circles). �˛ D ˛.T / � ˛.T0/,
T0 D 8K. Solid curve shows the dependence �˛.T / � T . Maximum of this curve corresponds
to �!� D 1. After Fig. 2 in [3]
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� D 1

!

2

4˛ˇ .T1/ � T1
˛ˇ .T / � T ˙

s�
˛ˇ .T1/ � T1
˛ˇ .T / � T

	2
� 1

3

5 : (63)

This form of the expression differs from the one used in by Sturge [2]. We have
replaced ˛mTm by ˛1T1, and T1 is found as the temperature corresponding to the
maximum of �˛.T / � T but not of �˛.T /. The difference is the result of taking
into account the temperature dependence of the pre-factor .cU

ˇ
� cR

ˇ
/=c0 / 1=T

in the expression (57). The necessity to account the temperature dependence of this
pre-factor was pointed out by Schad and Lassmann [14]

Whenever the dependence �.T / is reconstructed, we can simulate it and fitting
will give us the magnitudes of the potential barrier, V0, the tunnelling splitting,
r� , the vibrational frequency, �0, the deformation potential, b, and the energy of
inevitable strain, u0. For a doubly degenerate states one can use the expressions
(38)–(40).

The magnitude of attenuation measured at T D T1

˛ˇ .T1/ D k0
�cU

ˇ
��cR

ˇ

c0
	 �k0

�cR
ˇ

c0
(64)

can give us the value of of the product nb2, provided the frequency, !, density, �,
and the reference phase velocity, v0, are known: two definite expressions for relaxed
moduli are given by the (34) and (49) relating to tetragonal distortion in the octahe-
dral and tetrahedral Jahn–Teller complexes, respectively. One may propose that the
concentration of the impurities, n, is a known parameter characterizing the speci-
men. It is correct in most of the cases. However, if n is very small, the procedure
of its measurement can be not so easy. For example, the acoustic loss due to the
Jahn–Teller effect was observed in Al2O3:Ni3C with 0.004% of the dopand [10].
Therefore, concentration of the Jahn–Teller centers may be an additional parameter
which is required to define independently in an ultrasonic experiment. In this case,
the deformation potential b should be determined at the stage of �.T / fitting.

Now we will discuss a procedure of reconstruction the temperature dependence
of the relaxed and unrelaxed elastic moduli. We proposed before that the unre-
laxed modulus, which describes the Jahn–Teller contribution, vanishes. Actually,
the dynamic modulus measured in an experiment is the total one containing the
contribution of the Jahn–Teller system as a summand. So, even the dynamic mod-
ulus which contains the unrelaxed Jahn–Teller contribution should be non-zero and
can have a certain temperature dependence that is not associated with the Janh–
Teller impurities. As well, the relaxed modulus for this reason can differ from one
described with the expression (45). To deal with the impurity’s contribution only, we
can measure the temperature dependence of the dynamic modulus for an un-doped
crystal and subtract it from one obtained for the the doped crystal. But it requires
two specimens (doped and un-doped) and two experiments. More easy is to recon-
struct the relaxed and unrelaxed moduli with the help of the data relating to the
doped crystal. To derive the necessary expressions we will use the (20) and (21) and
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solve them respectively cU
ˇ

and cR
ˇ

. As a result we have

cUˇ D Re cˇ C 2 ˛ˇ
k0

Recˇ
!�

; (65)

cRˇ D Re cˇ � 2 ˛ˇ
k0

Re cˇ!� ; (66)

Accounting small variations of the dynamic modulus we can write the relative vari-
ation of cU

ˇ
and cR

ˇ
in terms of the reconstructed � and measured ˛ˇ and vˇ as

follows
cU
ˇ
� c0
c0

D 2� vˇ
v0
C 2 ˛ˇ

k0

1

!�
; (67)

cR
ˇ
� c0
c0

D 2� vˇ
v0
� 2 ˛ˇ

k0
!� : (68)

If the setup makes it possible to measure the ultrasonic velocity only (or the dynamic
elastic modulus), a similar technique can be developed for reconstruction the relax-
ation time and all other parameters characterizing the Jahn–Teller system. In this
case we need two temperature dependences vˇ .T / (or cˇ .T /): the first one (denoted
without superscript) obtained on the doped specimen and the second (superscript
(2)) – on the un-doped. At high enough temperatures these dependences should be
identical, while at low temperatures they should differ due to the Jahn–Teller effect.
So, contribution of the Jahn–Teller system to the total dynamic modulus �cˇ may
be written as

�cˇ D ıcˇ � cˇ � c.2/ˇ D �cRˇ
1

1C !2�2 : (69)

Here we used the symbol ı for indicating the difference between the moduli of dif-
ferent crystals, moreover, it is the difference between the measured moduli cˇ .T /

and c.2/
ˇ
.T /. At high temperatures�cˇ should vanish, so it is convenient to consider

the reference temperature T0 � T1 and the reference modulus c0 D cˇ .T0/ D
c
.2/

ˇ
.T0/. Accordingly, we can introduce v0 D .c0=�/

1=2 and write the relative
difference between the measured velocities in the form of

ıvˇ
v0
� vˇ .T / � v.2/

ˇ
.T /

v0
D 2ıcˇ

c0
D 2�c

R
ˇ

c0

1

1C !2�2 : (70)

We can rewrite this expression as

ıvˇ
v0
D 2 �

�T

1

1C !2�2 ; (71)

where � is a constant with dimension of energy. The temperature T1, defined by
!�.T1/ D 1, can be found as the temperature corresponding to maximum of the
derivative df=dT , where f .T / D .ıvˇ .T /=v0/ � T . One can see that
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� D ıvˇ .T1/ � �T1
v0

: (72)

The (71) can be presented in the form of

ıvˇ
v0
D 2ıvˇ .T1/T1

v0T

1

1C !2�2 (73)

and solved respectively � :

� D ˙ 1
!

s

2
ıvˇ .T1/ � T1
ıvˇ .T / � T � 1: (74)

The sign in the right hand part of this expression should be chosen so that ıvˇ .T / >
ıvˇ .T1/ at T < T1 (adiabatic regime) and the opposite inequality should take place
at T > T1 (isothermal regime for the Jahn–Teller system’s contribution to the elastic
modulus).

The next step is simulation of the relaxation time temperature dependence, the
procedure similar to what was considered by Sturge [2]. As a result, one will obtain
the magnitudes of the potential barrier, V0, the tunnelling splitting, r� , the vibra-
tional frequency, �0, the deformation potential, b), and the energy of inevitable
strain, u0.

Concentration of the dopand could be determined as well, provided the definite
form of �cR

ˇ
/ n is known. The required expression follows from the (70) and can

be derived from
�cR

ˇ

c0
D ıvˇ .T1/

v0
: (75)

In the case of the doubly degenerate states in a tetrahedral surrounding, we may use
the expressions (49) and have:

n D �16
3

ıvˇ .T1/

v0

c0�T1

b2
: (76)

Note, ıvˇ is always negative, so n will be positive by all means as it should be.
Now we will overview some experiments that reveal the specificities of the Jahn–

Teller effect in diluted crystals. First of all, we will discuss a justification of their
relaxation origin. We have mentioned before that the first experiments were done
on the crystals of aluminum oxide (corundum), yttrium aluminum garnet, yttrium
iron garnet, and lithium gallium spinel doped with a number of 3d ions [10, 11].
The main result was the discovery of attenuation maximum which was considered
to be observed at !� 	 1 and reconstruction of the relaxation time temperature
dependence. In some experiments reported later both the velocity and attenuation
of ultrasound were measured as functions of the temperature. They were done on
ZnSe and ZnTe crystals doped with transition metals. These crystals have the zinc-
blende structure with the Jahn–Teller ion in tetrahedral coordination. The following
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Fig. 5 Temperature dependences of velocity [v`.T /� v`.4:2/=v`.4:2/] (open circles) and attenu-
ation of ultrasound (filled circles) with respect to the level at T D 4:2 K obtained in ZnSe:Cr2C

at 54.4 MHz. Concentration of the impurity nCr D 1020 cm�3. Longitudinal wave, ultrasound
passage ` D 0:717 cm, propagation direction: [110]. After Fig. 1 in [17]

impurities were investigated: Ni2C [15, 16], Cr2C [17], Fe2C [18], Mn2C and V2C
[3] with concentration of 1018–1021 cm�3. All the crystals which impurity has the
orbitally degenerate states have exhibited: (1) a peak of attenuation and a step-
like variation of the velocity at low temperatures (below 20 K, shown, e.g., for
ZnSe:Cr2C in Fig. 5), (2) shift of these anomalies to higher temperatures with fre-
quency increase (Fig. 2), and (3) the lattice instability in the form of the modulus
softening (cs or cf ) in a more wide temperature interval (Fig. 6). Such a behavior
was not found for the crystal doped with Mn2C. This ion has 6A1.e2t3/ high-spin
ground state in tetrahedral environment [19], and, therefore, the Jahn–Teller effect
should not be observed in this case.

Speaking about the relaxation origin of the low temperature anomalies, it is use-
ful to show the temperature dependence of the wave number. It is useful because
Re.�kˇ /=k0 D ��vˇ=v0 and Im.�kˇ / D ��˛ˇ , while Re.�vˇ /=v0 and �˛ˇ
are the parameters measured in an experiment. One can see that, in accordance with
the expressions (15) and (20), �kˇ .T /=k0 should differ from �cˇ .T /=c0 by the
factor of 1=2:

Im�kˇ D ��˛ˇ D �1
2
k0

Im�cˇ
c0

D �1
2
k0
cU
ˇ
� cR

ˇ

c0

!�

1C !2�2 ; (77)

Re�kˇ D �1
2
k0

Re�cˇ
c0

D �1
2
k0
cU
ˇ
� cR

ˇ

c0

1

1C !2�2 : (78)
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Fig. 6 Temperature dependences of the elastic moduli in ZnSe:V2C and ZnSe:Mn2C (nV D 5:6

�1018 cm�3 and nMn D 9:4�1020 cm�3). Curves 1:�cf .T /=cf .T0/ (open circles – ZnSe:V2C,
filled – ZnSe:Mn2C, frequency 52 MHz for both plots); Curves 2: �c`.T /=c`.T0/ (open circles –
ZnSe:V2C, 52 MHz; filled – ZnSe:Mn2C, 55 MHz); and Curves 3: �cs.T /=cs.T0/ (open circles
– ZnSe:V2C, 52 MHz; filled – ZnSe:Mn2C, 55 MHz). �ci.T / D ci .T / � ci .T0/, T0 D 4:2 K.
The plots for ZnSe:Mn2C were shifted to coincide with the corresponding plots for ZnSe:V2C at
T D 100 K. After Fig. 1 in [3]

Here�kˇ D kˇ�k0,�˛ˇ D ˛ˇ�˛0, k0 and ˛0 are the initial reference parameters
determined at the lowest temperature (or as interpolation of the curve to T ! 0/.

The temperature dependence of the wave number obtained in ZnSe:Cr2C is given
in Fig. 7, and it is typical for the mentioned diluted crystals. What do we see? We
see the peak of Im�k` and the step-like variation of Re�k` in the interval of 6–20
K. The signs and the relative magnitudes of the variations correspond completely
to what should be when the relaxation-origin anomalies take place. Remind, cU �
cR 	 cR < 0. The difference of the Re�k` (Fig. 7) and Re�cˇ (Fig. 1) is in the
high-temperature region corresponding to !� < 1. This difference is due to the
temperature dependence of the relaxed modulus cR / 1=T . This dependence is
clearly seen in Fig. 8, where the result is shown of reconstruction of cU .T / and
cR.T / with the use of the formulas (67) and (68).

A typical temperature dependence of the relaxation time reconstructed according
to the expression (63) is given in Fig. 9. The experiments done with the mentioned
crystals proved that the curve �.T / for a given impurity does not depend on either
the frequency or the polarization of the wave. Plotted logarithmically, it is repre-
sented by lines whose slopes change (indicated with the arrow in Fig. 9). The change
of slope is interpreted [2] as a change in the relaxation mechanism: thermal activa-
tion over the potential barrier V0 at higher temperatures and tunnelling through the
barrier at lower temperatures. The corresponding expressions for the contributions
to the relaxation rate are given by the (38)–(40).
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Fig. 8 Elastic moduli c` D .c1111 C c1122 C 2c1313/=2 vs. inverse temperature obtained for
54.4 MHz in ZnSe:Cr2C with concentration of the dopand nCr D 1020 cm�3. Filled circles repre-
sent the real part of the dynamic modulus .c`� c0/=c0, open circles represent the relaxed modulus
.cR�c0/=c0, and open triangles represent the unrelaxed modulus .cU�c0/=c0. The initial reference
modulus c0 was taken as an extrapolation of c`.T / to T D 0 K. After Fig. 6 in [17]

The magnitudes of the some parameters of the Jahn–Teller complex determined
in ultrasonic experiments are given in Table 1. Unfortunately, simulation of the
reconstructed relaxation time was not completed for tunnelling regime of relax-
ation, and therefore, such parameters as the deformation potential b, the tunnelling
splitting � , and the energy of inevitable strain u0 are not determined yet.
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Fig. 9 Relaxation time vs. inverse temperature in ZnSe:Ni2C with concentration of the dopand
nNi D 5:5 � 1019 cm�3. Open circles show data obtained with fast shear waves at 56 MHz. The
lines are plots of � D .2�0/

�1eTB=T ; the solid line corresponds to TB D V0=� D 87 K, and the
dotted lines to TB D 87˙ 2 K, �0 D 11� 1010 sec�1 . After Fig. 7 in [3]

Table 1 Potential barriers V0, softening moduli, active vibronic modes, and vibrational frequen-
cies determined in ultrasonic experiments carried out on the zinc-blende crystals doped with 3d
ions
Crystal Ground state of

the impurity ion
[19]

Softening
modulus/active
mode

Potential
barrier,
V0, cm�1

Vibrational
frequency,
�0, 109 s�1

Reference

ZnSe:Fe2C 5E.e3t 3/ cas /  24 10 [18]
ZnSe:Cr2C 5T2.e

2t 2/ cs /  38 7.6 [15]
ZnSe:V2C 4T1.e

2t 1/ cbf / � 5.6 4.8 [3]
ZnSe:Ni2C 3T1.e

4t 5/ cf / � 60 110 [16]
ZnTe:Ni2C 3T1.e

4t 5/ cf / � 21 600 [17]
a cs D .c1111 � c1122/=2
b cf D c1313

4 Conclusion

Summarizing, we would like to say that ultrasonic technique could be very use-
ful for investigation the the electronic ground states and their tunnelling splitting.
First of all, the type of the vibronic mode (or local distortions) can be determined.
The second, the potential barrier and vibrational frequency can be obtained with
the help of the relaxation time reconstruction. The third, simulation of the recon-
structed temperature dependence of the relaxation time can give the deformation
potential, the tunnelling splitting, and the inevitable strain. The fourth, whenever
the deformation potential is known, one can calculate the impurity concentration.
Certainly, these parameters can be obtained from the experiments of another nature
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by direct measurements or indirectly – with the help of appropriate simulation.
But, anyway, ultrasonic experiment does represent one more independent source of
information, sometime providing new information. As an example, we can mention
the ZnSe:Cr2C crystal. The results of ultrasonic experiment [17] clearly indicated
the trigonal local distortions, while the optical experiment could not provide such
definite information and both trigonal and tetragonal distortions were used for inter-
pretation the absorption and emission spectra [20]. The possibility to determine the
potential barrier is of particular interest. If we look at the Table 8.2 in [9], in which a
number of the most important parameters of the Jahn–Teller system in various crys-
tals (more that 30) are collected, we will see that this parameter is defined only for
CaO:Cu23C, Al2O3:Ni3C, CdF2:Ni2C, and CaF2:Ni2C. Probably, this information
will be obtained in the nearest future with the help of ultrasonic investigations.
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Long Range Cooperative and Local
Jahn-Teller Effects in Nanocrystalline
Transition Metal Thin Films

Gerald Lucovsky

Abstract The group IVB transition metal (TM) elemental oxides, TiO2; ZrO2 and
HfO2, have emerged as candidate materials for advanced gate dielectrics for scaled
Si microelectronics. Additionally, complex oxides, comprised of TM oxides and
ordinary oxides, or TM and rare earth (RE) atom oxides are also being considered
by the microelectronics community in the context of combining microprocessor and
memory Si chip functions with additional types of functionality derived from com-
plex oxides. This functionality includes ferroelectric and/or ferromagnetic storage or
switching, which are generally enabled by Jahn-Teller (J-T) effects. The properties
and reliabilities of both elemental and complex TM oxides are closely correlated
with intrinsic TM-atom bonding defects, where J-T local bonding distortions are
expected to be important. Defect centers can also be associated with impurity atoms,
e.g., TM atoms that are not a constituent of the host TM oxide. J-T distortions in
defect centers can manifest themselves in two ways: (1) adversely, as traps and/or
charged defects that reduce carrier transport, or (2) positively, as centers which pro-
vide a pathway to control of nano-grain symmetry and thin film morphology, and
promote changes in long range order as required for ferroelectric or ferromagnetic
behavior.

This chapter will address two issues relevant to J-T structural distortions in ele-
mental oxides: (1) cooperative J-T distortions in group IVB TM elemental oxides;
and (2) localized J-T distortions in defect states in deposited thin film nanocrys-
talline TM elemental oxides. Each of these issues is addressed at two levels:
(1) experimental determination of electronic structure, including valence band and
final states, and band edge defects based on synchrotron O K edge X-ray absorption
and soft X-ray photoelectron spectroscopies, and spectroscopic ellipsometry in the
visible and vacuum UV; and (2) energy level diagrams based either on ab-initio cal-
culations, or symmetry adapted linear combinations (SALC’s) of TM and oxygen
atomic states, including “text book” models that include the SALC’s as a basis set.

1 Introduction

This chapter summarizes the research performed on group IVB TM elemental
oxides by Professor Lucovsky and his research group at North Carolina State Uni-
versity (NCSU). These oxides had been targeted by the semiconductor industry
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world wide, as candidate materials to replace non-crystalline silicon dioxide, SiO2,
and non-crystalline silicon oxynitride alloys .Si3N4/x.SiO2/1�x, as replacement
gate dielectrics for advanced metal-oxide-semiconductor (MOS) devices. These
TM atom oxide devices are designed to significantly increase levels of integra-
tion, thereby providing increased functionality in circuits and systems on a single
semiconductor integrated circuit chip. M. Houssa and M. Hyens have discussed the
motivation for the introduction of the so-called high-k gate dielectric materials in
[1]; and including the TM oxides of this chapter.

The group IVB TM oxides, in particular ZrO2 and HfO2, and their respective
silicates had initially emerged as materials of potential interest for these applications
[1, 2]. Zr silicate was the first TM oxide that my group at NCSU investigated [3],
and my introduction to the theoretical approaches to electronic structure for these
high-k oxides was in a monograph authored by P.A. Cox [4]. This text indicated the
importance of the J-T effect with respect to conduction band edge final states, and
included the motivation for the approach taken in this chapter in addressing intrinsic
monovacancy and divacancy defects.

This chapter has not been organized historically to trace research that has culmi-
nated world-wide in the introduction of high-k dielectrics into commercial advanced
semiconductor devices, but instead is organized to describe the experiments and
theory that underpin the importance of J-T effects in nano-crystalline thin film
TM oxides, most importantly in the intrinsic bonding defects that limit device
performance and reliability [1].

The majority of the experimental results presented are for nanocrystalline TiO2
and HfO2, and have utilized thin films prepared by remote plasma enhanced chem-
ical vapor deposition (RPECVD) on either Si substrates with a Si oxynitride inter-
facial transition passivation layer, or on plasma-nitrided Ge substrates [4, 5]. The
Y2O3 alloyed ZrO2 and HfO2, cubic Zirconia and Hafnia, were prepared by reac-
tive evaporation [6]. We have also studied samples of HfO2 prepared by atomic
layer deposition [7], and for the same thickness, and post deposition annealing, the
spectroscopic studies for these films yield results for conduction and valence band
states and band edge defects that are essentially the same as the electronic structures
in films prepared by RPECVD, establishing the intrinsic character of the electronic
structure in general as well as these bonding defects.

2 Jahn-Teller Effects in Nano-Grain Thin Films

2.1 The Cooperative J-T Effect

In a Solid State Supplement, “Long Range Order in Solids” [8], the authors Robert
M. White and Theodore H. Geballe, have pointed out that “in insulators comprised
of ions with orbitally degenerate ground states,”; e.g., the TM oxides of this chapter,
“it is possible to lower the electronic energy by splitting these degenerate levels
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by means of a lower symmetry distortion”, and thereby removing the degeneracy.
White and Geballe go on to state that, “such transitions are referred to as cooperative
Jahn Teller distortions”. These transitions have also been discussed at length in a
comprehensive review article [9]. It is important to note that cooperative J-T effects
in crystals, whether they are a nanocrystalline scale, �2–100 nm, or single crystals,
depend primarily on breaking local site symmetry, and as such are fundamentally
different than a Peierls distortion where the symmetry that is broken is translational.

The spectroscopic experimental evidence for cooperative J-T effects in the group
IVB TM oxides, TiO2; ZrO2 and HfO2, has been summarized in [4] and [5], in
which degeneracy removal in conduction band final states has been observed in (1)
synchrotron X-ray absorption spectroscopy (XAS) and X-ray photoelectron spec-
troscopy (XPS), and in (2) visible-vacuum-ultra-violet spectroscopic ellipsometry
as well (vis-VUV SE). This paper focuses primarily on HfO2, but includes data and
analyses for TiO2 and ZrO2, where the experimental results and interpretation in
terms of electronic structure theory, including defects, provide increased insights
into the relationships between the J-T effect and the accompanying changes in the
local site symmetries.

HfO2 (and also ZrO2) exist in three different crystallographic phases, mono-
clinic (m-) at room temperature with sevenfold coordinated Hf, tetragonal (t-) at
intermediate temperatures with eightfold coordinated Hf, and finally a cubic (c-)
CaF2 phase at high temperatures with eightfold coordinated Hf. The melting point of
HfO2 from a cubic CaF2 structure is 3887 ıC, the transition into a tetragonal phase
is at �2200 ıC, and the transition into a monoclinic phase is at �1100 ıC. The first
phase to appear after quenching from a melt is the cubic CaF2 structure [9], in which
Hf-atoms are eightfold coordinated, with the O-atoms fourfold coordinated. This
structure is often described as in terms of planes of eightfold coordinated Hf-atoms
separated by planes of fourfold coordinated O-atoms. The next phase is tetragonal
with Hf-atoms remaining eightfold coordinated and O-atoms fourfold coordinated
as well, but with local site symmetry reduced at the Hf-site by a tetragonal distortion,
as well as a J-T vibronic distortion in both basal planes. Finally, the stable room-
temperature phase is monoclinic with two significant changes in the local bonding:
(1) the coordination of the Hf-atoms is reduced from eight to seven, and (2) the
planes of O-atoms that bracket these Hf-atoms then alternate between threefold and
fourfold coordinated to balance to sevenfold coordination of Hf. Films prepared
by all of the deposition procedures identified below are inherently metastable, and
as such they may have either monoclinic or tetragonal nano-grains, or be mixtures
of monoclinic and tetrahedral nano-grains. Cubic phases have also be produced by
stabilization with Y at low concentrations,>�3%, and extending up to �20%.

The first high temperature phase transition from the CaF2 is displacive, and is
therefore a classic cooperative J-T distortion in which d-state degeneracies are lifted
when the basal plane distortions are taken into account [7, 8]. The second transition
represents a further and more significant reduction in local site symmetry. This sym-
metry is sufficiently low so that all d-state degeneracies are lifted, and in addition the
local coordination of Hf is reduced from eightfold to sevenfold [9]. The definition of
a cooperative J-T effect in [7] clearly includes the monoclinic phases of HfO2 and



770 G. Lucovsky

ZrO2, even though they are separated by another J-T phase from the parent sym-
metric and cubic CaF2 phase. In the spirit of [7], the monoclinic rutile and anatase
phases of TiO2 are also cooperative J-T phases, as well as other closely related
phases of TiO2. These will not addressed in the detail as for the HfO2 phases [9].

The electronic structures of the cooperative J-T phases of all three group IVB
transition metal oxides are always referenced to ideal structures, cubic rutile for
TiO2, and cubic CaF2 for HfO2 and ZrO2. This approach parallels the seminal elec-
tronic structure calculations of the Robertson group at the University of Cambridge
in which conduction band offset energies between Si and these TM oxides have
been addressed in the context of replacement or alternative dielectrics for SiO2 in
advanced Si microelectronic devices [1, 10].

We apply an approach based on the local site symmetry that has been used in
classic texts on molecular orbital theory [11, 12], and subsequently addressed in
a more formal way for TM bonding in octahedral and tetrahedral arrangements,
as for example in TiO2, and in cubic titanate and manganite perovskites by F.A.
Cotton [13].

Figure 1 has been constructed from Fig. 8.13 of [13], as modified by Fig. 2.8
of [14] to illustrate how this approach is applied to TiO2. The 3d, 4s, and 4p atomic
states of Ti, and the 2s and the 2p atomic states of O, are used to construct a set
of symmetry adapted linear combinations (SALC’s) of atomic orbitals that are con-
sistent with the Oh symmetry group of a regular, or undistorted octahedron as in an
ideal cubic rutile structure. It is important to understand that other atomic states, e.g.,
the Hf 5f state symmetries can be introduced as well, and that the introduction of

4p

4s

3d

2p

2s

T1u(σ*)
A1g(σ*)
Eg(σ*)
T2g(π*)

Tnon-bonding

T2g(π)
Eg(σ)
T1u(σ)
A1g(σ)

Ti4+ TiO2 SALC's 2O2–

A1g(σ), Eg(σ),

T1u(σ)

Fig. 1 Schematic molecular orbital diagram for TiO2: sixfold-coordinated T4C ions, and
threefold-coordinated O2� ions with covalent mixing of Ti and O atomic states in SALC’s. Sym-
metry designations for occupied valence band states, the empty conduction band states, and the
O-atom 2s shallow core state. Respective degeneracies for A, E and T states, are 1, 2 and 3 [13]
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such states is not restricted to the so-called valence states of the particular transition
metal atom. This is a very important distinction between ab initio molecular orbital
theory and conventional wisdom as applied to other molecular orbital methods, such
as the tight-binding LCAO method. The LCAO approach is more empirical and
generally uses occupied valence state and symmetries in the respective basis sets of
atomic wave functions for a diatomic oxide.

Figure 1 includes the 2s state of O for completeness; however, these states are
essentially nonbonding, similar to the bonding in noncrystalline and crystalline SiO2
[15]. Figure 8.13 of [13] for the ionic limit, whereas, subsequent authors, e.g., Cox
in [16] and Bersuker in [17], have modified the diagram to include covalent effects
that effectively mix the TM atom and O-atom orbitals into a basis set of molecu-
lar orbitals that provide a pathway for comparison with experiment. This mixing
underpins the discussions of new results presented later in this chapter; e.g., the
unambiguous detection of Hf 5f states virtual bound empty resonance states in O K
edge XAS spectra at X-ray energies>545 eV. It is important to note these vitural or
empty states are observed at X-ray photon energies above the energy threshold for
the vacuum continuum, and are qualitatively different in detail than the antibonding
states within the conduction band energies, that lie below the vacuum continuum
level [7].

The electronic states of neutral O-atom vacancy defects have their atomic parent-
age in the TM atoms that border on the respective monovacancies or divacancies.
The occupied and empty states of these defects fall within the forbidden energy gap,
and it has been suggested in [4] and [5], that these states could be described in the
context of trivalent ion states of the respective TM atoms. The occupied states of
these mono- and divacancy defects are then isoelectronic to the occupied states of
TM atoms in ionic states in which atomic d-states are occupied, rather than empty.
Stated differently, the group IIIB and IVB TM elemental oxides are d0 oxides in the
ionic limit [16], whereas in mono- and divacancy arrangements they are effectively
trivalent ions with partial occupancy of their respective atomic d-states, in particular
they are a d1 TM atom [14,16,17]. In addition, d-state occupancy in a vacancy bond-
ing arrangement can either (1) result in a local J-T distortion, similar to what has
been observed for divacancies in Si, where p-state, rather than d-state, degeneracy is
at issue [18], or (2) alternatively simply reflect the J-T distortion of the host material.

We will use Fig. 2 as the basis for describing defects associated with octahedral
coordination, e.g., TiO2, and complex oxide titanates and manganites as well. Fig-
ure 2 Schematic representation of d-state orbital energies for a regular octahedron,
and tetragonally distorted octahedron. The regular octahedron in (a) is first applied
to TiO2, a d0 oxide in which none of the 3d-state orbitals is occupied [14]; however,
as indicated in Fig. 1, these orbitals contribute the SALC’s of Ti and O atoms, as
required by the local Oh symmetry of the Ti atom and its six oxygen neighbors. In
this d0 configuration, the lower energy T2g state is triply degenerate, and the higher
energy Eg state is doubly degenerate. The partial removal of these degeneracies for
a tetragonal distortion in which the z-axis bonds are elongated is also a d0 state in
the ionic limit; the degeneracy is completely removed for the Eg state, and the T2g

states is split in a doubly degenerate E-state, and a nondegenerate A-state. (b), (c)
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T2g

Fig. 2 Schematic representation of d-state orbitals (a) i) regular octahedron: T2g state is triply
degenerate, Eg state is doubly degenerate, and ii) tetragonal z-axis distortion: each of these has d0
occupancy, consistent with the ionic limit. (b), (c) and (d) represent respectively: high-spin d4; d9,
and a low-spin d8

and (d) are for other atomic species, e.g., Mn and Cu, where the number of occupied
orbitals is a function of the ionic state [14, 16, 17]. (b) and (c), respectively are for
high-spin d4 ion such as Mn3C in (b), and a high spin d9 ion such as Cu1C in (c).
Finally (d) is for a low-spin d8 electron occupancy as in Cu1C.

We will follow the procedure first used by the Robertson group [10], in which a
cubic structure was used as a basis for addressing defects in HfO2 and ZrO2, even
for the thin film samples that have monoclinic, tetragonal, or a mixture monoclinic
and tetragonal nano-grain distortions, including the removal of the Eg and T2g state
degeneracies. This approximation is validated experimentally by comparing con-
duction band edge defects in HfO2 and ZrO2, with Y2O3 stabilized cubic Hafnia
and Zirconia, respectively [4, 5].

2.2 Local Bonding and J-T Effects in Mono- and Divacancy
Defects

2.2.1 Intrinsic Bonding Defects

There have been two different proposals put forth for intrinsic bonding defects in
HfO2 and ZrO2. The first of these was that the defects in the upper half of the
band gap observed experimentally [19, 20] were associated with unoccupied or
partially-occupied O-atom monovacancies [21, 22]. The majority of these calcula-
tions were based on density function theory (DFT), with semiempirical approaches
applied to estimate the band gaps, and the monovacancy energies in the forbid-
den band gap as well. It is significant to note that Professors Isaac Bersuker and
Victor Pollinger, have expressed reservations about the application of DFT to tran-
sition metal oxides in general, and specifically for studies of defect states using this
approach as well [23,24]. The calculations in references 21 and 22 do not reflect the
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strongly-correlated character of occupied TM states, and as such cannot be applied
to defect states that associated with occupied TM atom states [13, 14].

Prior to the interest in HfO2 and ZrO2 for applications for advanced microelec-
tronic devices, most of the experimental and theoretical studies dealing with defects
in TM oxides focused on chemical defects associated first and second row TM atoms
the were either octahedrally or tetrahedrally coordinated. These included applica-
tions to elemental oxides, TiO2 and NiO, as well as complex oxides such as the cubic
perovskites, e.g., SrTiO3 and other titanates and manganites [14,17]. It is important
to note that there are significant differences between the local bonding of O-atoms
in TiO2, where they are threefold coordinated, and in cubic perovskites where they
are sixfold coordinated. In SrTiO3, each O-atom has two Ti-neighbors, and 4 Sr-
neighbors at a larger bond-length. These differences are important in the local
bonding of monovacancy defects; however, the removal of an O-atom in SrTiO3
leads to two electrons being bonded three nearest-neighbor atoms. There are several
ways to describe this arrangement. Since d-state occupancy is digital, the two O-
atoms can be associated with two of the three Ti-atoms bordering on the monovancy
site. This would be designated a pari of coupled d1 states [14, 16]. Alternatively we
could represent the bonding by a d2 electronic occupancy for an equivalent Ti atom,
consistent with a Jahn-Teller distortion removing the degeneracy of these two states.
The these two presentations, a pair of d1 states, or a single d2 states, are supported
by the observation of two occupied valence band edge states in the soft XPS, SXPS
spectra of TiO2 [4,5]. The defect states in the gap for a monovacancy in SrTiO3 are
assumed to be qualitatively similar to those in TiO2.

For octahedrally-coordinated atoms such as Ti in either TiO2 or in cubic per-
ovskites, the electronic structure for the intrinsic bonding defects are consistent with
O-atom monovacancies, the concentrations of which can be varied by changing the
growth or annealing O-atom over-pressures [16].

Figure 3 is a schematic representation the local bonding coordination at (1) a
monovacancy in TiO2 in (a), (2) a monovacancy in HfO2 in (b), and (3) a diva-
cancy in HfO2 (c) that is at the face of the unit cell in contact with the fourfold
coordinated O-atoms in (c). To preserve charge neutrality after removal of a neutral

2e 2e

2e 2e

a b

c

Fig. 3 Schematic representation the local bonding coordination (a) a mono-vacancy defect in
TiO2, (b) a monovacancy defect in HfO2, and (c) divacancy defect in HfO2. Divacancy defect is
equivalent to two monovacancies that are edge connected. Darker circles are Ti- and Hf-atoms,
dashed circles are removed O-atoms: each contributes 2 electrons to defect bonding arrangements
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O-atom, each of the monovacancies has two electrons that compensate the positive
charge of the neighboring TM atoms, and thereby preserve overall charge neutrality
for the removal of neutral O-atoms. The calculations in [21] assumed this charge is
distributed over all of the TM atoms that were previously bonded to the removed
neutral bonding atom. This redistribution of charge is expected to be valid for s- and
p-states, but we suggest that is not consistent with the highly directional and local-
ized character of the 3d-states of Ti, or the 5d-states of Hf. More importantly, defect
states associated with impurity atoms that are localized in the forbidden band gap
have three occupancy states: (a) empty, (b) singly occupied or (c) doubly occupied.

In the context of an ionic bonding limit, on average two of the three Ti atoms
would be equivalent to Ti3C ions, instead of Ti4C; however, this description is not
consistent with the way the Ti3C state has been treated in Ti2O3 (see [15]). Follow-
ing the approach of [14], these two atoms are represented in Fig. 4 and the electronic
states of an equivalent Ti atom in a d2 configuration or equivalently, a pair of coupled
d1 states“ it therefore reads” configuration, or equivalently, a pair of d1 states rather
than the d0 configuration of the host crystal [14, 17]. This difference is significant,
and will be applied to the experimentally determined electronic occupied and empty
states within the monovacancy defect site in TiO2. This description also applies
to virtual bound resonance states that lie above the threshold for the vacuum con-
tinuum states [7], and will be addressed, and resolved by analysis of experimental
results.

As noted in [4] and [5], and in the discussion above, the electronic structure of
Ti3C has been addressed for both Ti2O3 [14], and the hydrated ion Ti.H2O/6

3C
complex [11]. However it is important understand these two applications are differ-
ent. The d1 description applies exactly to each hydrated Ti3C ion. In contrast, the d2

designation for the Ti-atoms in Ti2O3 is based on a SALC molecular orbital repre-
sentation of the Ti2O3 electronic structure, in particular on overall and local charge
neutrality.

An equivalent SALC molecular orbital description is also appropriate for the
monovacancy defect in HfO2 in Fig. 3(b), and applies to ZrO2 monovacancies as
well. As indicated in Fig 3(b) the equivalent Hf ion for this monovacancy is also

Ti d2 Hf d4Hf d2

ba

Eg

T2g

T2g

Eg

Fig. 4 Schematic representation of orbital energies for: (a) TiO2 monovacancy in a monoclinically
distorted octahedron with a d2 ion state; (b) HfO2 monovacancy and in a divacancy: monovacancy
is d2 occupancy state, divacancy in a d4 occupancy state. Electron occupancies are all in high spin
states
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in an equivalent d2 configuration as well. This is easily recognized by a functional
equalivance between a single d2 state, and a pair of interacting d1 states which are
at different energies due to a Jahn-Teller distortion, as in the Si divancancy [8].

Figure 3(c), indicates the local bonding in the divacancy geometry described at
the beginning of the last paragraph. This arrangement includes four charge compen-
sating electrons, and is represented by the d4 d-state occupancy in Fig. 4(b), panel
(3). As discussed above this equivalent d4 state is spectroscopically the same as 4
d1 states in an S2 representation, with respect to states detected in pre-edge and
vacuum continuum regions in O K edge XAS spectra.

It is significant to note that the same electronic state representation is basis for
J-T distortions in many technologically important cubic and hexagonal pervoskites.
e.g., La and La,Sr manganites in which all of the Mn atoms in LaMnO3, and the
La fraction of .La;Sr/MnO3, are in Mn3C ion states .d4/. For the Sr fraction of
.La;Sr/MnO3, in order to preserve local charge neutrality the Mn atoms are in
Mn4C ion states .d3/. The interesting ferroelectric and ferromagnetic properties of
(La,Sr)MnO3 in point of fact derive from this combination of Mn3C and Mn4C ion
states, that respectively balance the 3C formal charge of La, and the 2C formal
charge of Sr in this mixed valence perovskite [14]. This includes a magnetic insu-
lator to metal transition that takes place for 20% Sr []. The pre-edge, and vacuum
continuum spectra associated with this occupied Mn states above the valence band
edge are qualitatively similar to the defect states observed in the respective pre-edge
and vacuum continuum spectral.

Figure 4(a) is a schematic representation of the relative orbital energies for Ti
atoms in a d2 monoclinically distorted octahedral bonding arrangement and thereby
promotes the complete removal of the T2g and Eg state degeneracies. 4(b) indicates
respectively the local electronic structure at a monovacancy or in a divacancy in
monoclinically distorted HfO2 and ZrO2. For these sevenfold-coordinated oxides,
the symmetries are reversed, and we designate the twofold-degenerate state as Eg,
based on its cubic parentage, and the threefold degenerate as T2g. For the divacancy
structure, the four electrons are in turn bonded to the divacancy site and represented
by an equivalent Hf or Zr atom with a d4 ion high spin state or equivalently four
coupled d1 states. This configuration, whether it be in periodic crystalline structure,
or at a local defect site is a strong candidate for a J-T distortion that increases its
stability. From this point on, no distinction will be made between a divacancy with
a d4 configuration, and one or two pair of coupled d1 states. This in effect gives the
Hf and Zr oxide divacancies an electronic structure similar to Si divacancies which
display J-T distortions [18]. However, the Si divancancy has one electron/Si [18],
where as the HfO2 divacancy has two-thirds of an electron/Hf atom.

These defect state electronic structures will be compared with experimental data
in Sect. 4, and use the symmetry adapted linear combinations, SALC’s, description
of [13] as for assigning spectroscopic defect state signatures to equivalent molecular
orbital states.

Inherent for this description of intrinsic bonding defects, it is important to note
that the crystal field (C-F) splitting for a group IVB TM atom is characteristic
of the atomic species, Ti, Zr and Hf, and is always less than the band gap for
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stoichiometric oxide in the d0 state. This situation applies independent of the coor-
dination of the TM atom. We will use the designation C-F, rather than the an alter-
native ligand field (L-F) notation, even though the descriptive C-F was associated
originally with an ionic model. The ionic model is at best qualitatively correct, and
is not a reliable quantitative model for determining the C-F splittings for TM ions,
even in strongly ionic oxide bonding environments [14].

2.2.2 Electronic Structure of Alloy and Dopant Atoms

The electronic structure TM alloy, impurity and/or dopant atoms in elemental
oxides has been addressed in several classic texts that have treated TM oxides,
e.g., [14, 16, 17]. This presentation is restricted to the group IVB TM elemental
oxides, TiO2; ZrO2 and HfO2. With reference to an ionic description in which the
formal charge on Ti, Zr and Hf is C4, these atoms are in a d0 state in which two s-
electrons, and two d-electrons are removed from the atom to form theC4 ion. Thus,
there are no additional electrons in the in 3d, 4d or 5d states associated with occu-
pied d-states between the top of the valence band, and the bottom of the conduction
band; i.e., within the forbidden energy gap [14]. This same situation prevails for
isoelectronic group IVB alloys such .Hf;Ti/O2; .Zr;Ti/O2 and .Hf;Zr/O2, where
the formal ionic charges are 4C for both alloy cations. The atomic states symme-
tries available for bonding in these binary alloys include, Ti 4s, 4p, and 3d, Zr 5s,
5p and 4d and 4f, and Hf 6s, 6p and 5d, and also 5f. The respective 4f and 5f states
contribute symmetries required for sevenfold coordination as monoclinic and mono-
clinic Hafnia and Zirconia, and eightfold coordination in cubic Hafnia and Zircona.
In this regard it is important to note that the respective 5p and 6p states of Zr and
Hf, as well as the 4f and 5f states are not in the valence shell.

On the other hand, if a TM metal atom with formal ionic valence of more than
4, e.g., V, Cr, Mn, Fe, Co, Ni or Cu from the first row TM atoms, is an intentionally
added impurity or alloy atom, and if this atom is resident on a group IV atom site that
is fully-bonded to O, then additional occupied d-states can either be incorporated
into the otherwise forbidden band gap between the occupied valence band states,
and the empty conduction band states of the group IVB host and give rise to excited
bound resonance states within the vacuum continuum. Additionally, if the TM d-
states are more than half-occupied for a relevant ionic state, then occupied d-states
associated with occupancy beyond five d-states sometimes drop into the valence
band and are therefore present as bound state resonances [1]. The same description
applies to 4f states in the lanthanide rare earth series. At the beginning of the series,
there are occupied 4f states above the valence band edge. Later en the series, beyond
Gd, a portion of these states drop into the valence band. By the time the third row
of transition atoms begins, for example for Hf, the occupied 4f states are below the
valence band.

If the impurity atom state resides in the band gap, and is additionally incor-
porated into a monovacancy or divacancy defect bonding arrangement, then the
formal charge on that atom will be 3C, and this changes the occupancy of occupied
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impurity atom d-states within the forbidden band gap accordingly from incorpora-
tion into normal bonding site where the formal charge must be 4C.

Group IVB atoms with a formal charge of C3 in monovacancy and divacancy
arrangements, as well as impurity and alloy atoms with a formal valence states
greater than four, each introduce virtual bound resonance localized states in the
continuum of states above the vacuum threshold [see page 268, Ref [7]]. These
are effectively symmetry-induced antibonding states, and are qualitatively similar
to the normally empty antibonding states associated with valence bond states. The
virtual bond resonance states have been detected by a combination of (1) XAS spec-
troscopy, with SXPS and vis-VUV SE spectroscopies, and (2) discussed within the
framework of the SALC formalism of [13] in Sect. 4 of this chapter.

3 Spectroscopic Studies of TM Elemental Oxides I

This section describes spectroscopic techniques that have been utilized in the studies
of the intrinsic band edge electronic states of group IVB TM oxides by the Lucov-
sky group. These include (1) XAS, and SXPS, where the SXPS designation is used
to differentiate studies using continuously variable energy monchromatic X-rays
from a synchrotron source, with respect to discrete energy laboratory X-ray and vac-
uum ultra-violet sources used for XPS and UPS, respectively. Other spectroscopic
techniques have been applied in this chapter and include (1) vis-VUV SE, and (2)
depth-resolved cathodo-luminescence spectroscopy, or DRCLS.

These spectroscopic measurements were undertaken primarily to identify the
intrinsic electronic structure, including valence and conduction states, as well as
intrinsic bonding defects, defined here as those associated with the group IVB TM
oxide atoms, but in defect, rather than ideal crystalline bonding arrangements. For
example these measurements were used to assign the valence and conduction band
states of TiO2 in the context of Fig. 1 for regular or ideal octahedral coordination
as a basis for understanding changes in these states that are associated with the
cooperative J-T effect as described in [7] and [8] [3, 4, 25].

The XAS measurements identify final conduction band, or otherwise empty anti-
bonding states, with an emphasis on 3d states for Ti, 4d states for Zr, and 5d states
for Hf. These states have also be designated as Rydberg states, defined in the context
of the local symmetry, which is non-spherical. There is also an additional focus on
determining the J-T splittings in the context of Fig. 2. The same studies have also
revealed transitions that terminate in band edge defect states, and these have gen-
erally been identified by differentiation of the XAS spectra [4, 5]. We will continue
to make a distinction between empty antibonding states, and virtual bound state
resonances associated with occupied TM d-states in the otherwise forbidden band
gap, e.g., in dn configurations, with n > 0. These resonances occur in the vacuum
continuum and are enabled by fundamental changes in their local symmetry from
purely atomic to a symmetry that is consistent with their solid state neighbors, i.e.,
the local crystal-field, and SALC’s of available atomic states of the host structure.
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The SXPS measurements have identified the valence band bonding states, as well
as occupied defects, again in the context of Figs. 1 and 2. The synchrotron X-ray
beam lines and their relevant properties are described in [4, 5 and 25].

The visible and near ultra-violet (1–6 eV), and vacuum ultra-violet (4–8.5 eV)
spectroscopic studies focus on transitions from the occupied states at the top of the
valence band, primarily O 2p   nonbonding states to the conduction band states,
primarily O 2p   and ¢ antibonding states that are mixed TM atomic states in the
context of SLAC’s. These spectra also include intra-d-state d-d0 transitions between
occupied ground states and empty excited states of band edge defects; these are
not be confused with d-d� transitions that terminate in virtual bound resonance anti-
bonding states within the vacuum continuum. In the context of many-electron theory
as applied to X-ray measurements, these states are referred to respectively as “shake-
up” and “shake-off” states. The SE instruments used in these studies were developed
by D.E. Aspnes during his research studies at Bell Labs, and more recently at NCSU
[4, 5].

FTIR and XPS measurements were used mainly to address the phase stability
of Ti, Zr and Hf silicates, e.g., .TiO2/x.SiO2/1�x, and Ti, Zr and Hf Si oxynitrides,
e.g., .TiO2/x.SiO2/y.Si3N4/1�x�y [3,4,26,27]. These studies will not be emphasized
in this chapter, and the reader is directed to [26 and 27], which address, respectively,
the silicates and Si oxynitride alloys of Zr. The spectrometers used in these studies
were conventional laboratory instruments similar to those in most solid state and
surface science laboratories.

The DRCLS studies were performed on a state of the art instrument developed by
Professor L.F. Brillson at the Ohio State University. The instrumentation and exper-
imental details are addressed in a recent publication the focuses on defect related
DRCLS in as-deposited and annealed HfO2 [28].

This chapter provides an introduction to the way that XAS, SXPS, and vis-VUV
SE spectroscopy provide important insights for the identification of cooperative J-T
effects in group IVB TM oxides. Several specific areas are high-lighted: (1) spec-
troscopic confirmation of the length scale required for J-T distortions in nano-grain
films, with the important role of kinetic as well as dimensional constraints based
on HfO2; and (2) using TiO2 as a model TM oxide, the importance of local site
symmetry, as exemplified by the SALC’s approach of [13]. This has been used
to correlate XAS, XPS, and vis-VUV SE spectroscopic studies with electronic
structure, including degeneracy removal for the Ti 3d T2g and Eg states; and the
spectroscopic identification of (1) occupied valence band, and (2) empty conduc-
tion band edge and (3) continuum defect state features as well. In the spirit of (3)
the experimental results for TiO2 also reveal two qualitatively differentvirtual bound
types of resonance states above the vacuum continuum: (1) antibonding states asso-
ciated with occupied d-states in monovacancy d2, or equivalently pair d1, bonding
arrangements, and (2) relatively shallow core states, e.g., Ti 3p and O 2s.
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3.1 Scales of Order For Cooperative J-T Degeneracy Removal

Since all of the samples of this study are deposited thin films, typically 1.8–6 nm
thick, the concept of a cooperative J-T effect, and its role in removing d-state
degeneracies must be revisited from this perspective, and in particular to identify
both thickness dependent, and other processing dependent issues relative to the
stabilization of cooperative J-T bonding arrangement distortions. In a bulk single
crystal, or polycrystalline sample removal of d-state degeneracies must simply sat-
isfy the conditions presented in [7 and 8], which assume no dimensional or thickness
bonding constraints, and no kinetic limitations as well. However, in thin film materi-
als in general, the film must be sufficiently thick for a cooperative J-T effect to take
place in all three directions. The pathway for understanding a thickness constraint
is the quantification of a scale of order required for a J-T vibronic distortion. Even
though this associated with a local symmetry reduction, this symmetry reduction
cannot take place in a single primitive unit cell, but instead involves a larger elec-
tronic unit cell; this is implicit in the definition and discussion in [7]. For molecules
this can be linear, but for the TM elemental oxides it must be three-dimensional.

The issue of length scales was addressed in a seminal paper by Professor Isaac
Bersuker published in 1975 [29]. In this paper it was demonstrated that in a linear
chain of CuC2 atoms, d9, with a composition Cu.NH3/2X2; X D Cl or Br, a J-T
vibronic distortion was stabilized when the chain contained at least seven (7) Cu
atoms. This molecular stabilization corresponds to coupling seven primitive unit
cells of HfO2 or ZrO2 before a J-T effect vibronic distortion can be stabilized and
frozen in. Figure 2.12 of [13] provides insights in the microscopic mechanism in
HfO2 and ZrO2 for a cooperative J-T effect. This figure has been reproduced in a
modified form in this chapter as Fig. 5. Even though Fig. 5 and the length scale
addressed in [29] are for a linear molecular structure, the concept of a length scale
readily extends to three dimensions, and applies for the TM oxides. In the next
paragraph, we point out that critical length for coherent bonding that supports a
stable vibonic distortion is �3 nm. This length scale is applicable to film thickness,

M O

a

MM O O

OM M M OO

bonding

antibonding

OM MM OO

OM MM OO

Fig. 5 One-dimensional model for coherent  -bonding between metal atoms. M D Hf, and
their O-atom neighbors utilizing Hf 5d-orbitals and O 2p   orbitals. Alternating phase estab-
lishes a coherence length equal to a sequence of 7 Hf atoms for enabling a cooperative J-T effect
Hf.Zr/O2 phase
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e.g., the z-direction, but not apply for in-plane dimensions where transverse and
lateral dimensions in the most aggressively scaled field effect transistors are more
than 10–20 nm. However, it does apply to arrays of quantum dots and wires, and is
a consideration to be addressed in designing and interpreting electrical results for
quantum wire transistors.

This criterion of [29] corresponds to an electronic unit cell dimension or length
scale for coherent -bonding interactions of�3 nm [4,5] In a paper presented at the
recent XIX International Symposium in Heidelberg, DE on the J-T Effect, Professor
Victor Polinger identified “inter-”or primitive (added for emphasis) “cell coupling
as the driving mechanism for structural phase transitions in the above mentioned
crystals”; i.e., in the TM elemental and complex oxides of this chapter. This leads
to a dimensional constraint relative to thickness in thin film group IVB TM oxides
identified in [4 and 5], and will be discussed below in the context of the detection
of degeneracy removal in thin film samples of different thickness. Before this dis-
cussion, it is important to note that there is a second constraint associated with J-T
effect distortions, and this relates the kinetics of the deposition process.

All of the thin films of this paper, and in many other studies of high-k dielectrics,
are generally deposited at low temperatures, <500 ıC. In this chapter the RPECVD
process is performed at 300 ıC in order to minimize the formation, and subsequent
incorporation of OH�1 impurity groups. At this temperature, and independent of
the film thickness, the kinetics for organization of primitive unit cells into larger
electronic unit cells is effectively suppressed, and J-T distortions cannot be observed
independent of the film thickness.

Figure 6(a) indicates qualitative differences in the sharpness of spectral features
in the O K edge XAS spectra of HfO2 films, �4 nm, thick as a function of process-
ing temperature: as-deposited at 300 ıC, and after �1 min rapid thermal anneals in
Ar at 500, 700 and 900 ıC. The spectral assignments will be discussed below; at this
time, it is sufficient to note that the band edge Hf 5d, Eg (also sometimes designated
as eg) feature sharpens between the 500 and 700 ıC anneals, and in differentiated
spectra display a doublet structure indicative of a J-T splitting as well. These sym-
metry designations are referenced to a cubic system, the parentage of the phases
with cooperative J-T effects, and have therefore been designated as Eg or T2g. There
are correlated increases in the Hf 6s and 6p features, and a sharpening the Hf 5d T2g

feature as well. Studies on other TM oxides, e.g., the complex oxide, LaScO3. have
indicated similar changes in the O K edge spectra for annealing temperatures higher
than about 700 ıC as well [30].

Figure 6(b) indicates qualitative changes in the O K edge XAS spectra of HfO2
as a function of film thickness for films annealed at 900 ıC. All of the features in the
2 nm thick film are broad, and differentiation indicates no detectable J-T splittings in
either the Hf 5d Eg or T2g features. In contrast to the 2 nm thick film, all Hf features,
the 5d Eg or T2g absorptions, as well as the Hf 6s and 6p features are sharper in
the 3 and 4 nm thick films. Differentiation of the Hf 5d features indicates complete
degeneracy removal with two distinct minima for the Eg feature, and three for the
T2g feature. The major changes take place at a�3 nm film thickness consistent with
the length scale approximated on the basis of the results in [29], and mechanism of
 -bond coupling indicated in Fig. 5, and discussed in [4] and [5].
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Fig. 6 OK edge XAS spectra for empty conduction band states of nano-crystalline HfO2: (a) as
function of film thickness, and (b) for a fixed film thickness, >4 nm, and as a function of processing
temperature

3.2 Valence Band, and Conduction Band States: TiO2

Figures 7(a) and (b) display, respectively, O K edge, and Ti L3 core level spectra for
nanocrystalline TiO2, with a thickness >4 nm, and therefore not subject to dimen-
sional constraint suppression of a J-T distortion. Additionally, and unless otherwise
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Fig. 7 XAS spectra for TiO2 for films >4 nm thick, annealed in Ar at 900 ıC. (a) OK edge
spectrum for the empty conduction band states. (b) Ti L3 edge spectrum for intra-Ti transitions

indicated, all spectra displayed in this section, and the next are for nanocrystalline
thin films that have been annealed in an inert nonoxidizing ambient of Ar at a tem-
perature greater than 700 ıC, and more generally 800 ıC or 900 ıC. Based on the
discussions presented earlier, and in particular for Fig. 1, the O K spectra reflects X-
ray absorptions that originate in the O 1s core state at �543 eV (below the vacuum
level), and in the spectral range up to about 545 eV terminate in final states below
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Fig. 8 Log of epsilon 2 .©2/ from vis-VUV SE for nanocrystalline TiO2. Differentiation indicates
five spectral features indicating complete removal 3d-state degeneracies

the vacuum level continuum. These states are O 2p  � antibonding states mixed in
SALC molecular orbitals with empty, anti bonding Ti-atom 3d, 4s, and 4p states. In
contrast, the Ti L3 core level spectra are intra-atomic, with transitions originating in
relatively deep Ti 2p3=2 states, and terminating in empty Ti 3d states. Upon differ-
entiation, the O K edge and L3 spectra, indicate complete degeneracy removal for
the Ti 3d T2g and Eg features.

Figure 8 is a plot of the imaginary part of the complex dielectric constant ©2
for ©c D ©1 C i©2, as derived from the analysis of VUV SE data. The energies
above 3 eV, including the very sharp feature at �3:2 eV are associated with empty
conduction band states. The energies of the J-T term-split T2g and Eg features have
been extracted from these spectra by differentiation as well. These final 3d-state
features display the same average C-F splitting between the average T2g and Eg

states, as well as the same J-T term splittings as the O K edge spectrum in Fig. 7
[30]. The relevant d-state energies are compared in Fig. 9(a) for the O K and Ti L3
edges, and in Fig 9(b), which includes a comparison between the O K edge and the
©2 plot derived from analysis of the vis-VUV SE spectra.

Equally important, the spectral features in the conduction band states in the XAS
spectrum, and the valence band states in the SXPS spectrum in Fig. 10 are qual-
itatively and quantitatively the same as those in (1) Fig. 8.13 of [13], and (2) a
morphing of that figure into Fig. 1 of this paper. This morphed version extends
beyond the ionic limit of Fig. 8.13, and has been simplified in detail similar to
Fig. 2.8 of [14]. We will also use a more symbolic extension of Fig. 1, as a basis for
discussing the d-state features in monoclinic, tetragonal and cubic HfO2 and ZrO2.



784 G. Lucovsky

529

530

531

532

533

534

535

455 456 457 458 459 460

d-
st

at
e 

fe
at

ur
es

 -
 O

 K
1 

(e
V

)

d-state features - Ti L3 (eV)

3

4

5

6

7

8

529 530 531 532 533 534 535

ε2 vs O K1

TiO2

d-
st

at
e 

fe
at

ur
es

 -
 e

ps
ili

on
 2

, ε
2 

(e
V

) 

d-state features - O K1 (eV)

a

b

O K1 vs Ti L3

TiO2

Fig. 9 Photon energies of Ti d-state features in TiO2: (a) O K edge versus Ti L3 edge, and (b) ©2
versus O K edge



Long Range Cooperative and Local Jahn-Teller Effects 785

1000

104

0 2 4 6 8 10 12 14 16

ph
ot

oe
le

ct
ro

n 
co

un
ts

binding energy (eV)

3 π-bonds
3d3/2
T2g

6 σ-bonds

3d2
3/2 + 4s1 + 4p3

Eg + A1g + T1udefect
states

SXPS VB
60 eV
TiO2

Fig. 10 SXPS spectrum of valence band for nanocrystalline TiO2: log of photoelectron counts
versus binding energy. Also includes are two band edge defects

Eg

T2g

Egap
C-F

spitting

conduction band edge

valence band edge

Fig. 11 Ti3C d2 defect states for tetragonal (left) and monoclinic (right) distortions of cubic rutile.
Band gap of TiO2 is 3.2 eV, and C-F splitting is �2:7 eV. Arrows indicate transitions from lower
filled state to empty states. The solid lines are occupied states, and the dashed lines are empty final
states

3.3 Band Edge Defects in TiO2

Figure 11 indicates Ti3C d2 defect states for tetragonal and monoclinic distortions
of cubic rutile. The band gap of TiO2 is 3.2 eV, and the C-F splitting is �2:7 eV.
The solid arrows indicate transitions from the lower filled state to the two empty
states for the monoclinic distortion. The experimental results presented below will
be compared with the monoclinic distortion defect levels; i.e., a complete removal
of the two and threefold degeneracies of the Eg and T2g 3d-states, respectively.
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Consider first the valence band spectrum and the band edge defect state energies
based on a linear extrapolation procedure used to estimate the energy of the top the
valence band (see Fig. 10). These are J-T split states are occupied in a high-spin
configuration of Fig. 11, and are at energies of 0:5 ˙ 0:15 eV and 1:5 ˙ 0:15 eV
referenced to the linearly extrapolated valence band edge [25].

The existence of two states indicates a high spin configuration, suggests that the
occupied defect states have the same symmetry as the nano-grain cooperative J-T
effect; i.e., that these defect states do not display an additional local or molecular
scale J-T effect. The energies for (1) d-state to d-state transitions between the C-F
split J-T multiplets originating in these valence band edge occupied states, and for
(2) transitions from the same ground state occupied valence band edge defects to
states above the vacuum continuum will be determined experimentally. Following
the definition put forth by Drs. White and Geballe in [7], p. 268: “(a) If the energy
of a localized state” such as an occupied defect state at the valence band edge, “lies
below the continuum of free electron states, we have a bound state. (b) If this energy
lies within the free electron band,” what we shall call the vacuum continuum, “we
have a resonance or a virtual bound state”, italics added for emphasis. We will
designate the localized states observed spectroscopically within 30–50 eV of the
vacuum continuum threshold in O K edge XAS spectra (at �545 eV) as virtual
bound states, and underpin this definition with a description of these virtual bound
states within the framework of the SALC’s of atomic states approach of [13].

Returning to the experimental results in Figs. 7 and 8, the same relative conduc-
tion band features are present in both the XAS O K edge spectrum, and the VUV
SE spectrum as indicated in Fig. 9(a). Consider first the VUV SE e2 spectrum in
Fig. 8. The feature with a spectral peak at �2:75 eV with a shoulder detected in a
differentiated spectrum at�2 eV identifies the energies for a transition from valence
band edge defect states in the SXPS spectrum in Fig. 10, to final empty states; these
are the d-state to d-state transitions between the C-F split J-T multiplets discussed
above. The transition energy of 2.75 eV and the spectral half-width on the low eV
side of�0:5 eV are essentially the same as the those obtained for the visible absorp-
tion spectrum of the ŒTi.H2O/6�

3C and are associated with similar d-d0 transitions
for the Ti3C ion [11]. This gives an average C-F splitting of�2:5 eV, which is very
close to the value calculated for the 2.36 C-F splitting in Table 2.2 of [13], and
2.4–2.5 eV of Table II of [30].

The defect states in nanocrystalline TiO2 have been examined in greater detail
that goes beyond the scope of this article. The new experimental data and analysis
of these results are addressed in [31]. One of the most important aspects of this
study has been the possible identification of two types of monovacancy defects in
nano-grain TiO2, one associated with mono-vacancy defects that include all three
Ti-atoms, and a second defect associated with mono-vacancy defects in which one
of the three Ti-atoms is not present, e.g., on a grain-boundary or on the surface of a
nano-grain. These two types of defects are observed in both the pre-edge spectra for
X-ray energies <530 eV, and in the vacuum continuum regime for X-ray energies
>545 eV. These O K edge regimes have been addressed in more detail in [31].
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We will not address the densities of band edge defects until the discussion section
of this chapter. The remainder of Sect. 3, and all of the research results discussed
in Sects. 4 and 5 are effectively x-axis physics, the relatively easy, but yet important
aspect of this study that is addressing symmetry changes associated with J-T effect
bonding distortions that reduce the local symmetry to remove d-state degeneracies.

Returning now to spectroscopic studies of intrinsic defect states. The defect
state energies discussed above are consistent with spectroscopic studies of intrin-
sic defects that have used the second derivative of the XAS O K edge absorption to
study (1) empty band edge defects below the conduction band edge, and (2) virtual
bound state resonances above the vacuum continuum. Figure 12 presents O K edge
XAS 2nd derivative spectra for TiO2: (a) d-d0 transitions within the forbidden band
gap; and (b) for two different types of virtual bound state resonances above the edge
of the vacuum continuum. Consider first Fig. 12(a) which address the intra d-state d-
d0 transitions associated with occupied and empty bound states. Defect state features
occur over a spectral range that includes empty states at both the valence and con-
duction band edges. The lower energy feature at �522 eV is assigned to an empty
portion of higher energy state T2g d-states in Fig. 11, and the feature at �525 eV
is the lower energy 5d Eg symmetry defect state in state in Fig. 11 as well. The
energy difference between these two features,�3 eV is close to the C-F splitting of
�2:5 eV.

The two relatively narrow and sharp features in Fig. 12(b) have been assigned by
to Ti 3d virtual bound state resonances that are in effect the antibonding ionization
states associated with occupied Ti 3d states at the valence band edge (see Fig. 10).
Based on the binding energy of the O 1s state relative to vacuum,�543 eV, we place
the energy threshold for continuum states at �545 eV. The two spectral features
at �550 and 554 are at energies above the continuum threshold; therefore virtual
bound state resonances [7]. The virtual bound state resonances are enabled by the
local symmetry at the defect site. To zeroth order these are in a d2 configuration, and
their parentage are Ti 3d3=2 atomic states. However in the atomic d-states are not a
consistent with the local symmetry, and these states are hybridized/mixed within the
SALC’s approach of [13]. The mixing is the origin of an antibonding resonance or
virtual bound state [7]. Two additional features have been identified in Fig 12(b).
The transitions terminate in virtual empty resonance states. The local crystal field at
these shallow core states reduces the respective Ti 3p and O 2s atomic symmetries
by mixing them with O 2p   valence states to conform to the local site symmetry
(see Fig. 1), and this mixing makes possible a nonvanishing matrix element for the
observed transition to the virtual bound states that are marked in red in Fig. 12.

To the best of our knowledge this represents the first time these transitions to
defect and core level associated virtual states have been identified spectroscopically
using XAS from an O 1s level. As such, there was no motivation for theoretical cal-
culations to determine the anticipated virtual or empty state resonance energies. Of
more significance that the specific energies is the number of defect states detected.
For nano-grain monoclinically distorted rutile TiO2, it is equal to two the occupancy
of electrons in monovacancy. The splitting between these virtual states is increased
by about a factor of between 2.5 and 3 with respect to energy difference between the
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occupied band edge defects in the SXPS spectrum. Most importantly, the observance
of virtual absorptions associated with band edge intrinsic defect states provides
a way to settle an ongoing debate regarding the nature of the intrinsic defects in
HfO2, and ZrO2 as well; are these intrinsic bonding defects monovacancies, as in
TiO2 with two virtual bound resonance states, as proposed in [21 and 22]?, or are
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they divacancies as proposed in [4 and 5], with four virtual bound resonance states?
This question will be resolved in Sect. 4, which presents spectroscopic results that
indicates the intrinsic defect is a divacancy, rather than a monovacancy.

4 Spectroscopic Studies of TM Elemental Oxides II: Empty
Conduction Band States and Band Edge Defects

This portion of the chapter focuses on spectroscopic results for nanocrystalline
HfO2 thin films with a film thickness greater than, or equal to about 4 nm. Where
appropriate, comparisons are made with spectroscopic results for cubic Hafnia,
alloys of HfO2 with an approximate 15% atomic concentration of Y relative to
HfO2.

Figures 13(a) and (b) display respectively O K edge XAS spectra for the empty
conduction band states of two nano-crystalline samples: in 13(a) a 4 nm thick m-
HfO2 film, and in Fig 13(b) a 6 nm thick m-HfO2 film, each deposited on a nitrided
Ge substrate and annealed in Ar to a temperature of 800 ıC. The spectral features
that are labeled are for transitions to O 2p  states, mixed with Hf 5d, 6s and 6p states
to satisfy the local site symmetry, i.e., to meet the SALC criterion of [13]. We have
used symmetry designations corresponding to parent cubic CaF2, recognizing that
the symmetries in these monoclinic films, and the tetragonal films to be addressed in
Figs. 14(a) and (b) are different. These absorptions extend from the large increase in
absorption just below the respective Hf 5d, E features, at �532–533 eV, to beyond
the spectral peak assigned to Hf 6p states, and are below the vacuum continuum
threshold between 545 and 550 eV. These absorptions are then identified as bound
resonance states. The second derivative spectra of these films each indicate a com-
plete removal of the degeneracies of the Hf Eg and T2g d-states, and a C-F splitting
of �3:6 ˙ 0:2 eV consistent with a monoclinic nano-grain morphology [4, 5]. The
Hf-atom coordination is sevenfold, and the Hf contributions to ¢-bonding are the
5d3.T2/; 6s2.A1g/ and 6p3.Ti1u/ states, and the Hf contributions to  -bonding are
the 5d2.Eg/ states [4,5]. It is also likely that there are also Hf 5f contributions to the
s(�)-bonding as well.

Figure 14 includes O K edge XAS spectra for the empty conduction band states
of two other nanocrystalline thin films: (a) a 6 nm thick t-HfO2 film with a tetragonal
grain-morphology and (b) 5 nm thick cubic Hafnia, c-Y0:15 W HfO20:85 film with a
the disorder induced cubic nano-grain morphology. Each HfO2 spectrum in Fig. 14
displays only one Hf 5d Eg 

� feature, but four Hf 5d ¢� features, one Eg and three
T2g, consistent with the eightfold-coordination of Hf. The other four ¢� states are
three Hf 6p T1u states, and one Hf 6s A1g state. It is significant to note that C-
F splitting is larger for t-HfO2 than for the m-HfO2 films of Figs. 13(a) and (b).
The C-F splitting is increased from 3:6 ˙ 0:2 to �4:2 ˙ 0:2 eV for the t-HfO2
film in Fig. 14(a). The C-F splitting for cubic Hafnia is increased further to 5:2 ˙
0:2 eV in Fig. 14(b). The increased coordination from seven to eight accounts the
increases with respect to m-HfO2, but can not explain relatively large difference of
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Fig. 13 OK edge XAS spectra for empty conduction band states of two nano-crystalline thin films
(a) 4 nm m-HfO2, and (b) 6 nm m-HfO2

almost 1 eV between the t-HfO2 and c-HfO2 films. One possible explanation for
the increased C-F splitting of the cubic Hafnia film is in the increased bond ionicity
associated with the Y-atoms. A second difference relating to the alloy character of
the cubic Hafnia, and the X-ray determined cubic symmetry. This aspect of the
bonding in cubic Hafnia will be addressed below.
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Figure 15 compares second derivative O K edge XAS spectra in the spectral
regime corresponding to the vacuum continuum for m-HfO2 and t-HfO2, for two of
the samples included in Figs. 13 and 14. Paralleling the discussion for the spectral
features in Fig. 12, the four features between 545 and 547.6 eV are assigned to
antibonding states of the occupied valence band edge defects that will be displayed
later on in this chapter in Fig. 19. These states are above the estimated continuum
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threshold of �545 eV, and are therefore virtual bound resonance states in the spirit
of the definition in [7]. The symmetry induced Hf 4f core level features are also
virtual bound resonance states.

The assignments for the features marked in Fig. 15 parallel those discussed above
for the spectrum in Fig. 12(b), but include significant qualitative and quantitative
differences. First there are four, instead of two band edge defect features. Referring
to Fig. 4, this confirms that the intrinsic defects in m-HfO2 and t-HfO2 are in a d4

configuration with four occupied d-states within the forbidden band gap. This estab-
lishes that are in a divacancy bonding arrangement that is indicated symbolically in
Fig. 3(c). The divacancy defect arrangement has a distorted octahedral character,
but still displays an axial symmetry. The experiments of the Barklie group in Dublin
have studied intrinsic bonding defects in TiO2; ZrO2 and HfO2 by electron spin
resonance (ESR), and found that the line-shape of the respective ESR responses are
consistent with an axial geometry [32], and refs. therein]. Alternatively, the four
states may be associated with a monovacancy represented as a pair of couple d1

defects.
Additionally and equally significant, the spectral features assigned to the anti-

bonding state of Hf 5f electrons display seven features indicating a completely
removal of the Hf 4f5=2 and Hf 4f7=2 degeneracies of three and four, respectively.
This is consistent with the local field induced symmetries of Hf 4f orbitals that are
mixed with O 2p, and possibly O 2s states as well. This is the same mechanism that
activated the Ti 3p and O 2s virtual bound state resonance absorptions in Fig. 12.
The spectral widths of the Hf 5d4� features (4 states) and Hf 4f� features (7 states)
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are essentially the same for both samples; However the symmetries are markedly
different. O-vacancy defects and the seven Hf 4f core level shake-off states as well,
display a higher symmetry that is consistent with a t-HfO2, including distortions in
the top and bottom basal planes that derive from a J-T distortion. This is clearly
evident in the position of the sharp local minimum for the t-HfO2 traces.

The spectrum is Fig. 16 for cubic Hafnia displays a qualitatively different second
derivative spectrum. We suggest that this derives from an observation that while X-
ray diffraction (XRD) studies indicate a cubic, or CaF2 structure, the local bonding
includes monovacancy defects compensating Y atom sites that are randomly intro-
duced onto the Hf sublattice. This means that the XRD result is for a statistically
averaged structure, and therefore qualitatively different that the actual eightfold-
coordinated t-HfO2 structure. We have included markers for band edge defects, and
Hf 4f states respectively.

Figure 17 presents second derivative pre-edge O K edge XAS spectra the d-d0 for
the defect states just below the conduction band edge for nano-crystalline m-HfO2
for two different film thickness. The 4 nm film displays a J-T splitting, whereas this
is suppressed in the 2 nm thick film. Based on differences in defect densities, lower
by 10� in the 2 nm thick film, and different nano-grain sizes discussed above, the
features in the 4 nm thick film are to nanocrystallites 3 nm in size with J-T splittings,
and those in the 2 nm film to small grains 2 nm in size and therefore with different
inter-grain coupling as indicated by the absence of J-T term splittings.

Figure 18(a) is the second derivative O K edge XAS spectra for conduction band
edge defects in nano-crystalline t-HfO2 thin film 6 nm thick. The spectral features
are different in detail than those in Figs. 17(a) and (b), and this is attributed to
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the eightfold-coordination of the Hf-atoms in the tetrahedral nano-grain structure.
More importantly, the marked spectral width that includes one additional feature, not
high-lighted in Fig. 15 is about 0.3 eV larger, consistent with an increase in the C-F
splitting from about�3:6˙0:2 eV in m-HfO2 to 4:2˙0:2 eV in t-HfO2. Referring to
Figs. 19 and 20, the C-F splitting is expected to approximately equal to the spectral
width in Fig. 17(a) or (b) plus the energy difference between the occupied spectral
features at the valence band edge in the SXPS spectrum of m-HfO2. This is equal
to 2.4 eV from Fig. 17 plus �1:5 eV from Fig. 19, or 3.9 eV compared with the C-F
splitting of 3:6 ˙ 0:2 eV. In a similar way, the spectral extent of the features for
t-HfO2 are expected be increased with respect to that of m-HfO2, by the difference
in the respective C-F splittings. This scaling applies qualitatively as noted above.

The spectrum for the divacancy defect is Fig. 18(b) is qualitatively different
from that of the t-HfO2 in Fig. 18(a), as well as those of m-HfO2 in Figs. 17(a)
and (b). This attributed to differences in the local atomic nano-grain structure that
encapsulates the divacancy. In addition, the marked difference in the strength of the
dominant derivative feature in Fig. 18(b) suggests that the intrinsic defects contain
both Hf3C and Y3C atoms in the distorted octahedral arrangement that comprises
the divacancy. A closer comparison between the band edge defect spectra between
m-HfO2 and cubic Hafnia, and m-ZrO2 and cubic Zirconia, not shown in this chap-
ter, but discussed in [32], indicates that one of the features in the monoclinic oxides,
splits into a doublet in the respective cubic Hafnia and Zirconia, supported the argu-
ment for inclusion of Hf3C and Y3C atoms and Zr3C and Y3C atoms in these cubic
thin films.

Figures 19(a) and (b) contain SXPS spectrum of nano-crystalline HfO2: log of
photoelectron counts, versus binding energy for a m-HfO2 thin film. The spectrum
in Fig. 19(a) has been fit with seven Gaussian functions. The number of Gaussian
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Fig. 18 Derivative OK edge XAS spectra for conduction band edge empty defect states in (a)
nano-crystalline t-HfO2 6 nm thick and (b) Y:HfO2 5 nm thick

features is consist with (1) the four SALC molecular orbitals, one  , Hf 5d Eg, and
3¢ , Hf 5d T2g, Hf 6s .A1g/ and Hf 60 .T1u/, (2) the nonbonding O 2p   states at the
valence band edge, and (3) two band edge occupied defect states. Also included in
this figure are an expanded x-axis and y-axis plot for the spectral regime that corre-
sponds to the two band edge defects; this plot includes the corresponding portion of
the total SXPS response. On the basis of the four antibonding defect state features
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in Figs. 15(a) and (b), we would have expected to see four band edge defect fea-
tures. Since the spectral width of each of the features in the Fig. 19(b) is >1eV, we
conclude that J-T term splittings can not be resolved due to intrinsic valence band
broadening, and hence are not observed in this spectrum. This intrinsic broadening
has been noted for the d-state contributions to the valence band states in TiO2 [25],
where term-splittings are readily evident in O K edge spectra, but not in valence
band spectra.

Figures 20 presents an SXPS spectra that is run at a higher UV photon energy,
130 eV compared with 60 eV for Figs. 17(a) and (b). These spectra are taken for
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depositions of HfO2 on nitrided Ge substrates, and displayed to illustrate two spec-
tral features: (1) the width of the Hf 4f shallow core level, and (2) to verify that
a substrate chemical reaction had taken place, and that Ge had been transported
in the HfO2 film. Changes in band edge defects as function of Ge-atom incorpo-
ration in the HfO2 thin films have discussed in [32 and 33]. The most important
point relative to this discussion of spectral effects due to cooperative J-T distortions
relates the width of that feature. The energy difference between the two peaks in the
Hf 4f features in all four plots is �2 eV, consistent with the spin-orbit splitting of
�1:7 eV [34], whereas the spectral width of the features in the antibonding Hf 4f
states in Figs. 15(a), (b) and 16(a) have increased to >3 eV, and is comparable to
the maximum width of spectral features associated with intra 4f state absorptions in
lanthanide series rare earth atoms, e.g., Ce4C [16].

Conduction band edge defects have been detected in VUV SE measurements [3,
4, 20, 33]. Additionally, the peaks in these spectra correspond to transition energies,
so that it cannot be assumed that the final state energies of the transition region can
be referenced to the top of the valence band. Recent vis VUV SE by our group
place the defect state transition energies in HfO2 at �3:4 eV and 4.6 eV [35]. These
results are in excellent agreement with a recent as yet unpublished study by a group
at Sematech. The development of an energy level diagram for band edge defects is
addressed in the next section of this review.

The interpretation of this diagram, and the role it plays in differentiating between
monovacancy and divacancy defects is supported by the interpretation of the spec-
tra in Figs. 15, 16, 17 and 18, with the strongest evidence relating to the number of
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a high spin tetragonal bonding arrangement [14]; and (c) Mn d4 occupied 3d states in a high spin
bipyramidal bonding arrangement

antibonding states 5d states in the continuum energy regime >545 eV. Before pro-
ceeding to present and discuss this diagram, and we give additional support to the
interpretation of these 5d-state spectra features in Figs. 17 and 18.

Figure 21 presents, and compares energy level diagrams for the occupancy of
Ti d2 and Mn d4 transition metal atom d-states within the forbidden energy gap.
Panel (a) is for the Ti d2 occupied states in TiO2 with a distorted rutile structure and
complete removal of 3d-state degeneracies. Panel (b) is for the Mn d4 occupied 3d
states in a high spin tetragonal bonding arrangement as in a cubic perovskite, e.g.,
c-HoMnO3 [14]. Finally, Panel (c) is for the Mn d4 occupied 3d states in a high spin
bipyramidal bonding arrangement as in a hexagonal perovskite; e.g., h-YMnO3 or
h-HoMnO3.

Figure 22 presents derivative O K edge XAS spectra for d-states for the hexag-
onal perovskite, h-HoMnO3, with a bipyramidal bonding arrangement for the Mn
atoms that removes all d-state degeneracies [35]. Figure 21(a) addresses the conduc-
tion band edge occupied Mn3C d-states, and Fig. 21(b), the antibonding Mn3C3d
states in the vacuum continuum above the antibonding conduction band states. Each
of these spectra indicates four d-state features, consistent with the energy band
diagram in Fig. 21, panel (c), and the d4 occupancy of the M3Cion.

Finally, Fig. 23 presents a schematic energy level diagram that has been con-
structed on (1) the left from the experimental data from (a) the SXPS results, and
(b) renormalized XAS and VUV SE results, and (2) on the right from an interpreta-
tion to consistent with the defect models addressed in Figs. 3 and 4. These data, and
the analysis do not discriminate between mono- and divacancy models; each would
have the same average C-F splitting between the average of the J-T split E and T2
states. However, most importantly, (1) the spectroscopic data for the continuum anti-
bonding states in Figs. 12(b), 15(a) and (b), 16(a) and 21(b), and (2) the symbolic
symmetry-determined energy level diagrams in Figs. 4, 11 and 20, unambiguously
distinguish between two and four d-state occupancy, and as such resolve the issue
in favor of divacancy, rather than monovacancy bonding in HfO2, and ZrO2 as well
[4, 5, 21, 22].
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5 Jahn-Teller Effects in Complex Oxides

Cooperative J-T effects also dominate to the properties of many of the complex
oxides that have been addressed for introducing increased functionality in Si inte-
grated circuits and systems. In particular, the insights into more general aspects of
J-T effects in the group IVB elemental oxides, TiO2; ZrO2 and HfO2, serve as a
basis for identifying pathways to design and optimization of atomically engineered
complex oxides with technologically significant properties. We define complex
oxides as ternary and quaternary compound and/or alloy phases that include two,
rather than one cations. Examples include SrTiO2, where one of the cations is a
simple metal Sr, and the other is a TM ion, Ti, as well as other samples such as
GdScO3, where one cation is lanthanide series rare earth atom, Gd, and the other a
TM, Sc. These include similarities include cooperative J-T effects for host crystals
as well intrinsic impurities and intentionally added TM alloy atoms. This has been
illustrated in Fig. 21 [35], with more results forth coming shortly [36].

The advanced spectroscopic techniques that have been applied, XAS, vis-VUV
SE, and SXPS carry over directly to complex oxides, as do the generalizations of
the energy level diagrams based on SALCs. They are more complicated for complex
oxides with two cations, where the local symmetries of these cations are inherently
different. There is a further degree of freedom that involves the same TM atomic
species, but in different ion states, as in LaMnO3, where Mn is a 3C ion with a d4

occupancy, and in SrMnO3 where it is a 4C ion with d3 occupancy.
If we limit the discussion to perovskite complex oxides, then there are then two

different classes of that oxides that form a basis set for complex oxides in general.
The first and simplest class are d0 complex oxides, and this as illustrated schemati-
cally in Fig. 23 Their conduction and valence electronic structures at the respective
band edges are qualitatively similar to those of the group IIIB or group IVB TM
elemental oxides that they include. As indicated in [14], the band gaps of the group
IVB complex oxides of this class and their respective group IVB elemental oxides
do not differ significantly, with small increases in the titanates simply reflecting an
increased average bond ionicity.

As an example, in the 0001 direction the SrTiO3 persovskite structure are alter-
nating layers of SrO and TiO2. In the ionic model, the formal charges on Sr and
Ti respectively, are 2C and 4C, and these balance the formal charge of �2 on O.
This correspondence with respect to band edge electronic structure extends to the
intrinsic defect structure as well, where the important defects are O atom mono-
vacancies, each of which has two Ti neighbors, and four Sr neighbors. To a good
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approximation, the electronic states occupied and empty states at the band edges,
are qualitatively similar to the defects in TiO2, and consequently their occupied an
empty states in the band gap can also described as have d2 occupancy as in Fig. 4.
Therefore the same combinations of XAS, SXPS, and vis-VUV SE can be applied,
including the extension of the XAS studies to include the virtual bound resonance
states that effectively count the number of occupied d-states within the band gap.

The second class of complex oxides are constructed from elemental TM oxides
that do not have d0 electronic structures. The seminal 1974 paper of the Falicov
group identified the important role that occupied d-state levels play in defining the
respective and edge states of these oxides, including NiO, and other first and second
row examples [37]. Representative examples include, two different manganites, in
which the formal electronic charges of Mn differ: (1) Ho, Y and La manganite,
e.g. LaMnO3, in which the formal charge on the Mn is 3C, and (2) Sr manganite
where it is 4C as in SrMnO3. These charges combined respectively with Ho, Y and
La, or Sr simply balance the electronic charge of the O atoms.

Figure 24 includes the extension of Fig 23 to non d0 occupancy of Mn3C within
the ionic band gap in the context of [37], and Fig. 25 illustrates to the antibonding
conduction band states.

d0 complex oxides -- SrTiO3, PbZrO3, LaScO3
equivalent to respective d0elemental oxides
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6 Discussion and Summary

6.1 Discussion

This section addresses briefly the two most important points made with respect
to J-T effects: (1) the cooperative J-T effect in the group IVB TM oxides, with
an emphasis on HfO2; and (2) in band edge defects, wherein a significant issue
regarding the applicability of monovacancy and divacancy models as the canonical
intrinsic defects in HfO2 is resolved by extending XAS spectroscopy of the O K
edge into the vacuum continuum regime of X-ray photon energies. In final part of
this Section, there is a bulleted summary of the most significant results.

The spectroscopic experimental evidence for cooperative J-T effects in the group
IVB TM oxides, TiO2; ZrO2 and HfO2, has been summarized in [4 and 5], in
which degeneracy removal in conduction band final states has been observed in (1)
synchrotron X-ray absorption spectroscopy (XAS) and X-ray photoelectron spec-
troscopy (XPS), and in (2) visible-vacuum-ultra-violet spectroscopic ellipsometry
as well (vis-VUV SE). This paper focuses primarily on HfO2, but includes data and
analyses for TiO2 and ZrO2, where the experimental results and interpretation in
terms of electronic structure theory, including defects, provide increased insights
into the relationships between the J-T effect and the accompanying changes in the
local site symmetry.

Prior to doing this we presented experimental data that established that there was
a length scale for observing J-T term splittings spectroscopically (see Figs. 6(a)
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and (b). The length scale was measured in units of a primitive unit cell, and based
on a seminal paper of Professor Bersuker [29]. This scale corresponds to seven
primitive unit cells which then comprise an electronic unit cell that is �3 nm in all
directions, and defines a minimum film thickness for J-T term splitting. There is an
additional kinetic limitation. To achieve this nano-grain size, films deposited at low
temperature, e.g., room temperature to 300 ıC, must be annealed at a temperature
of at least 700 ıC in Ar for J-T term splitting to be observable.

Nanocrystalline TiO2 has been used as prototypical elemental TM oxide with a
distorted rutile phase. Most important are the spectra in Fig. 7 (XAS), Fig. 8 (VUV
SE), and Fig. 10 (SXPS), and the comparisons of 3d-state splittings in Figs. 9(a)
and (b) These assignments for Ti 3d, 4s and 4p atomic features in these specta
have been compared with the Symmetry Adapted Linear Combinations (SALC’s)
atomic states approach of F.A. Cotton in [13], and the modification of this to include
covalency effects, in. [14 and 17].

We have used the experimental studies of TiO2, and their interpretation as a basis
for assigning spectral features in HfO2, and ZrO2 as well. More importantly, the
analysis of the defect spectra features in Fig. 13, subject to the energy level diagrams
in Figs. 4 and 11 has enabled use to resolve an issue relative to the intrinsic bond-
ing defects in HfO2; i.e., whether they are at monovacancy or divacancy bonding
arrangements.

HfO2 and ZrO2 exist in three different crystallographic phases, monoclinic (m-)
at room temperature and up to �1100 ıC with sevenfold coordinated Hf, tetragonal
(t-) at intermediate temperatures,�1100 ıC–2200 ıC with eightfold coordinated Hf,
and finally a cubic (c-) CaF2 phase at temperatures>2200 ıC and up to the melting
point of 3387 ıC, with eightfold coordinated Hf [9]. Films prepared by all of the
deposition procedures identified below are inherently metastable, and as such they
may have either monoclinic or tetragonal distortions, or be mixtures of monoclinic
and tetrahedral nano-grains.

The results presented in Figs. 13(a) and (b), and Fig. 14(a) have distinguished
between the monoclinic phase in Figs. 13(a) and (b), and the tetragonal phase in
Fig. 14(a), on the basis of the multiplicity of d-state features in the respective O K
edge conduction band edge XAS spectra. The primary factor is the coordination of
Hf in the particular phase: (1) sevenfold-coordinated in m-HfO2, and (2) eightfold-
coordinated in t-HfO2. The Eg feature includes a J-T term split doublet in m-HfO2,
and in contrast a single contribution for t-HfO2. This criterion of multiplet counting
is supported by comparing the O K edge XAS spectrum of t-HfO2 in Fig. 14(a) with
the O K edge XAS spectrum of cubic Hafnia in Fig. 14(b). They discriminating fac-
tor in this comparison is presence, or absence of a J-T term splitting the band edge Eg

state. It is a single relatively narrow feature in each of these spectra simply because
of the eightfold-coordination in the tetragonal and cubic phases, independent of the
differences in the remaining d-state features; (1) the second d-state feature requires
contributions from eight Hf atomic states, 5d1Eg; 5d3 T2g C 5d1Eg; 6s2 A1g and
6p3 T1u; however (2) the degeneracy in the d-state features is removed completely
for t-HfO2, but not for cubic Hafnia.
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The majority of O K edge XAS spectra of TM elemental and complex oxides
have addressed only the dominant features of these spectra, generally in a spectral
range for X ray energies between about 525 eV and 545 eV. In point of fact the
majority of our earlier studies, identified in [4] and [5], also follow this approach.
However, in the past few years, we have also differentiated these XAS spectra,
and found (1) additional features below the sharp rise in absorption, typically
�527–528 eV for TiO2, and complex titanates, and 531–533 eV for HfO2 and ZrO2,
that correspond to final states for intraimpurity absorption, and (2) more recently,
and reported for the first time in this review, for energies greater than about 545 eV;
these absorption reveal antibonding states associated with either monovacancy or
divacancy defects, as well as Hf 4f spectral features.

The multiplicity of the antibonding defect state absorptions has provided a
basis for distinguishing between monovacancy and divacancy defect state bonding
arrangements. Based on this criterion, and compared with the energy band models
in Figs. 4 and 11, this has identified the band edge defects in TiO2 as being incor-
porated into a monovacancy, and therefore have a d2 electronic with two occupied
states at the valence band edge, and two antibonding states in the vacuum contin-
uum. The spectral resolution, and more importantly the inherent broadening valence
band states is not sufficient to reveal J-T multiplets, and two band defects are also
observed in the SXPS spectrum in Fig. 19; however, the second derivative spectra
for both m-HfO2 and t-HfO2 for (1) conduction band edge empty states in Figs. 17
and 18, and (2) antibonding states in Figs. 15 and 16 unambiguously reveal four
features, establishing a d4 electronic state in a divacancy bonding arrangement.

This approach to determining the number of occupied TM d-states in above the
valence band edge, and below the threshold for absorption to empty conduction
band states has been validated for the Mn3C d4 ion in HoMnO3 in Fig. 21. However,
recent measurements, discussed below, indicate that four transitions in the pre-edge
shake-up, and continuum shake-off regimes, can also occur for coupled d1 states
associated with a monovacancy.

6.2 Bulleted Summary

The bulleted summary of this sub-section reflects the more recent results which have
changed the interpretation of spectral data regarding the distinction between mono-
and divacancy defects.

1. The occupied valence band states, and empty conduction band states for nano-
crystalline TiO2 films with a physical thickness >4 nm, and annealed at a
temperature of at least 700 ıC (a) in qualitative and quantitative agreement with
the ionic energy level approach of Cotton in [13] using SALC’s of atomic states
as a basis set, and (b) display a complete removal of J-T d-state degeneracies.

2. The band edge intrinsic defects, identified in XAS, SXPS and vis-VUV SE in
TiO2 are consistent with monovacancy bonding arrangements, and are described
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by a d2 occupied d-state electronic structure. The d2 character has been con-
firmed by spectroscopic identification of the antibonding states of the occupied
valence bond defect states.

3. The length scale of order for observing J-T term splittings in TM elemental
oxides length has been determined in units of a primitive unit cell, and is based on
a seminal paper of Professor Bersuker [29]. This scale corresponds to seven prim-
itive unit cells defining an electronic unit cell that is �3 nm in all directions, and
defines a minimum film thickness for J-T term splitting. There is an additional
kinetic constraint for films deposited at relatively low temperature, e.g., room
temperature to 300 ıC; these require annealing in Ar or another inhert ambient at
temperature of at least 700 ıC.

4. There are two phases of HfO2 that are cooperative J-T distortions of a parent
CaF2 structure: (a) t-HfO2 with eightfold-coordinated Hf, and basal plane distor-
tions which are associated with a J-T effect distortion that removes all Hf 5d-state
degeneracies, and (b) m-HfO2 with sevenfold-coordinated Hf. These phases are
readily distinguish by number of features in the band edge Hf 5d Eg symmetry
state: one for t-HfO2 and two for m-HfO2.

5. Intrinsic defects have been observed at the conduction band edge: (a) directly
by vis-VUV SE, and (b) by differentiation of XAS; and at the valence band
edge by (b) SXPS. Confirmation of the divacancy defect state bonding geometry
was obtained from differentiation of the continuum regime of the XAS spectrum
for X-ray photon energies >545 eV; four shake-off features are observed corre-
sponding to a pair of coupled d1 states. In a complimentary manner four shake-up
features are also found in the pre-edge regime of the differentiated XAS spectra.

6. The derivative O K edge XAS spectra the hexagonal perovskite, h-HoMnO3,
has a bipyramidal bonding arrangement of the Mn atoms that removes all d-
state degeneracies [35]. The conduction band edge spectrum indicates four
occupied Mn3C d-states, and the vacuum continuum above the antibonding con-
duction band states indicates four antibonding antibonding Mn3C 3d. These are
consistent with the d4 occupancy for the Mn3C 3d-state.

7. The approximate energies of occupied d-states of HfO2 are presented in Fig. 22.
Each feature is equivalent to two states, which have not be resolved for either
occupied states in the SXPS spectrum, or for empty states in the VUV SE spectra.
The derivative XAS spectra, below and above the antibonding or empty states
associated with the valence band, each are consistent with a pair of coupled d1

states occupancy.
8. The features above the top of the valence band in the SXPS spectra, and below the

conduction band edge in the XAS and vis VUV SE spectra are associated with
localized defects in the annealed film, and band-tail defects in the as-deposited
film. There are inherent differences in the matrix elements for transitions for band
to band, and impurity to impurity absorptions that result in differences in the band
edge and defect absorption constants, ’, and e2, as deduced from SE measure-
ments. Therefore the relative strength in spectra must be adjusted according in
the context of the N-sum rule [13]. The direct spectral estimates are factors of
�20–50-fold higher than the actual defect densities, bringing the spectroscopic
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results into good agreement with electrical I-V and C-V results. Typical defect
densities in the high-temperature annealed films are in the regime of 1012 cm�2
or equivalently 1018 cm�3.

6.3 Noted added in proof

Based on recent experimental studies since the J-T conference in Heidelberg in 2008
[31], and the application of many-electron theory [14,38], the intrinsic bonding
defects in TiO2 and HfO2 have been assigned to monovacancies, with no defini-
tive evidence for divacancies in HfO2 or ZrO2. The electronic structure of Ti and
Hf atoms bordering vacancies is described by a local site symmetry many-electron
theory as applied to occupied d-states of these atoms [38]. The many electron dn

notation is used to describe the electronic states of Hf and Ti atoms that border on a
monovacancy (hereafter vacancy) in HfO2, ZrO2 and TiO2 [13]. There are several
different oxides of Ti; TiO, Ti2O3 and TiO2, that illustrate the dn notation. In the
ionic model the formal valence states for Ti atoms in these oxides are obtained by
setting the charge on O-atoms to -2. Neutral atomic states of Ti and Hf are described
by s and d-shell occupancies: Ti as 4s23d2 and Hf as 6s25d2 [13]. Since the s-states
have higher energies with respect to vacuum, they are removed first in ion forma-
tion. Formal charges on the respective Ti oxide atoms are Ti2C, Ti3C and Ti4C. TiO
is a metallic d2 oxide, Ti2O3 is a narrow band semiconductor d1 oxide, and TiO2 is
a d0 insulator oxide. The ground state strongly correlated electronic configurations
for oxides with occupied d-states, dn with n > 1, explain their markedly different
properties. Based on octahedral coordination of Ti, the ground state is a doublet 2T2g

for the d1 oxide, TiO and a triplet 3T2g for the d2 oxide, Ti2O3 [13,39]. Occupied
electron states are above the valence band edge and the basis for systematic changes
in oxide character [13].

In strongly correlated systems, the removal of a neutral O-atom reduces the aver-
age ionic charge in TiO2 and HfO2 below +4. This removal is better described by
a local model using two populated of TiT 3C ionic states per removed O. Based on
Pauli exclusion, or equivalently Hund’s rule [13,38], the lowest energy configura-
tion is a high spin d1 state with in 2T2g configuration. The formalism for treating
intra-atomic d-state transitions in dn configurations [38] is the basis for defining
the electronic spectra associated with intrinsic bonding defects in HfO2 and TiO2.
A monovacancy is represented by two inequivalent and coupled d1 states, and a
divacancy by four coupled d1 states, where the coupling removes the degeneracy
of these states. SXPS results, and more recently obtained XAS defect spectra for
HfO2 and TiO2 [39] establish that intrinsic defects in HfO2 and TiO2, and ZrO2 as
well are monovacancies. The coupling of the two d1 states generates the four fea-
tures observed in pre-edge shake-up spectra, and the continuum shake-off spectra as
well [40].
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Jahn–Teller Polarons, Bipolarons
and Inhomogeneities. A Possible Scenario
for Superconductivity in Cuprates

Joaquin Miranda Mena

Abstract Some of the early models of high temperature superconductivity (HTS)
in cuprates dismissed a pairing mechanism based on electron–phonon (e–ph) inter-
actions. One of the arguments against the e–ph theories was the negligible isotope
effect on the critical temperature, Tc. Other arguments were based on approxi-
mations performed near the strong e–ph interaction regime in which HTS might
take place1. This leads to the conclusion that an e–ph paring is inoperative. As a
result, pure electron correlations, excitonic mechanisms and spin fluctuations have
attracted most of the attention, overshadowing the e–ph approaches. However, some
of the features shown by copper oxides seem to validate the e–ph models, in par-
ticular those which concern small bipolarons and the Jahn–Teller (JT) effect. For
instance, these materials have a bandwidth within a range where the strength of JT
coupling is important. Nonadiabatic effects cannot be ignored when high frequency
phonons are coupled to itinerant charges. Therefore, theories based on on-site or
intersite bipolarons, JT bipolarons and different mechanisms of carrier dynamics,
such as Bose-Einstein condensation and tunneling-percolation, have been proposed.
However, our discussion is centered on the JT models and the intriguing possibil-
ity that HTS could be driven by JT forces. The JT models have several distinctive
features: they deal with a multidimensional electron basis coupled to symmetric
phonon degrees of freedom. Moreover, JT polarons exhibit strong anharmonicity.
The review highlights these local constraints and their consequences for the dynam-
ics of polaron formation, the appearance of an inhomogeneous state and charge
transport properties. In addition, the broken local symmetry at the thermodynamic
limit of interacting JT polarons, when it is combined with long range Coulomb inter-
actions, leads to specific macroscopic manifestations. Thus, cooperative effects go
beyond standard structural transitions, and a novel organization of nanoscopic tex-
tures is manifested. Here we also address this issue and its connection with HTS,
e.g. whether the so-called pseudogap observed in cuprates is related to the energy
scale of the JT-bipolaron formation and the phase-segregation phase.

1 See [47] regarding the isotope effect, and for a discussion of the e-ph approximation see
for example E G. Maksimov and O.V. Dolgov Physics – Uspekhi 50 (9) 933–937 (2007) and
A.S. Alexandrov Europhys. Lett. 56, 92–98 (2001).
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1 Introduction

In general it is agreed that the parent compounds of HTS copper oxides exhibit
a strong electronic correlation. But it is also known that across their entire phase
diagram various energy scales coexist. All the energy crossover regions give the
impression that this is a very intricate problem; all the energy scales could be, in
principle, a good starting point for the description of the phenomena. Then the
fundamental question arises: what is the energy scale that drives the cuprates into
superconductivity (SC)? Among these energy scales, there is one associated with
JT instabilities and charge inhomogeneity. In this chapter we address their mutual
relations and possible connection with HTS.

The chapter is organized as follows. The first section recalls that the germi-
nal idea behind the discovery of SC in oxide superconductors was the JT effect.
Afterwards we present some of the well established electronic properties of these
materials (Sect. 3). It is important to recognize that the energy scale set by the elec-
tronic interactions led a substantial part of the scientific community to believe that
HTS has its origin in purely electronic interactions. Therefore in Sect. 4 a brief
review of models derived from these features is included. In Sect. 5 we illustrate the
degree of controversy between e–ph and electron-based theories.

During the last two decades, diverse experimental techniques have provided evi-
dence that links the HTS in copper oxides to self-organized JT-polarons. At the
same time, advances in the development of powerful algorithms and solid theoret-
ical foundations support the idea of an inhomogeneous phase as a basic element
in cuprates for the SC transition. Due to the significant number of results from
both areas, the community is reaching a consistent understanding of the interplay of
inhomogeneities and lattice interactions and their key role for HTS. It is important
to comment that the works presented are some of the most representative, but this
chapter is not a detailed account of all the available literature. Rather, this chapter
must be taken as a summary or a guide to these intertwined topics. The field is quite
active and at the moment of finishing this book there are very exciting studies under
development. Although the chapter is practically a theoretical revision, it includes
an independent Sect. 6 dedicated to an experimental overview (the order of reading
is optional, it can be done after reading Sects. 7 and 8). The selection was done
on the basis of presenting information relevant for the discussion of the next sec-
tions. In this way we attempt to provide a more coherent presentation of the chapter.
Before going into the formulation of JT-polarons and JT-bipolarons in the litera-
ture (Sect. 8), we outline some of the concepts of polarons and the achievements of
bipolaron theory for cuprates (Sect. 7).

In Sect. 9 we present the JT effect as a mechanism for describing the type of
inhomogeneities observed in cuprates. Special emphasis is placed on the long range
Coulomb potential as a basic constituent of pattern formations We close the chapter
with Sect. 10 on the advances provided by JT models which use the concept of
inhomogeneity as a basic element to predict HTS in doped copper oxides.
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2 Superconductivity in Copper Oxides: The Original Concept

The strong JT distortion that perovskite oxides exhibit persuaded Bednorz and
Muller to start a search for materials with higher Tc. Perovskites, like SrTiO3
and LaAlO3 [1], had shown signs of SC, but with a rather low Tc. Such low Tc

came as no surprise, since they exhibit low carrier density, and according to the
Bardeen-Cooper-Schieffer (BSC) relation, a low temperature should be expected,

kBTc D 1:14!De1=NF V : (1)

Equation (1) is derived from the BCS theory; it relates Tc with the e–ph pairing
potential, V , of electrons near the Fermi level, with NF as their density of states
(DOS). The Debye phonon cutoff is !D and represents the average energy of the
phonons involved in the process of pairing.

Nevertheless, following Muller and Bednorz, the e–ph interaction given by the
strong JT effect in the CuO6 octahedral (Fig. 1a) in combination with a perovskite
layer, could be the right condition for increasing Tc. In 1986 they published the
highest Tc that had ever been measured .Tc D 35K Œ2�/; it was registered in a doped
LaCuO system (Fig. 1a): La1:85Ba0:15CuO4. The discovery opened a completely
new horizon, and ceramic oxides became some of the most studied materials. One
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Fig. 1 Two parent compounds of the family of ceramic oxides that under hole doping develop
HTS. (a) In LaCuO, Lanthanum is substituted by Strontium or Barium. Ion valences, AF order,
and the JT unit formed by the CuO6 octahedral are shown. (b) YBaCuO7�• reaches HTS if oxygen
is introduced into the Cu-O chains. The three lattice constants for the unit cell along the three axes
are a D 3:81 Å; b D 3:88 Å and c D 11:64 Å. Average Cu-O distances are indicated as well
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year later, due to the efforts of M. Wu, P. Shu et al. [3], Tc was increased to 93 K.
The new record was achieved by chemical substitution of Lanthanum by Yttrium,
and the newest element in the family of HTS was YBaCuO7�• (Fig. 1b); the optimal
chemical composition was Y1:2Ba0:8CuO. The highest Tc reached by 1995 [4] was
under hydrostatic pressure and belongs to the compound HgBa2Ca2Cu3O8C• , with
Tc D 168K.

3 Electronic Properties

One of the new paradigms that the copper oxides contributed to the phenomenon of
SC is the notion of strong electronic correlations. On cuprates, charges have strong
repulsive and correlated interactions, which are manifested by the failure of the
Fermi liquid theory [5]. In principle the Fermi liquid theory is valid even if elec-
trons have strong interaction; compounds like CeCu6; UBe13 and CeAl3, which
are known as heavy Fermions [6], are the best examples. These materials have
electrons localized in f -shells and conduction electrons. Both classes of charges
interact through a large Coulomb force. As a result the effective mass of the carriers
is increased by three orders of magnitude; however the Fermi liquid theory is still
valid. On the other hand, the Fermi liquid theory permitted one to deal with conven-
tional superconductors. In the early days of SC the common wisdom was to start
with a material with metallic properties (a metal or a metallic alloy). From the point
of view of band theory, metals have partially filled bands. It was the core idea of
BSC theory [7] to modify the metallic state in such a way that electrons end up in a
coherent state, which gives rise to SC.

In the case of the parent compounds of the HTS, in addition to the strong inter-
action, there is a strong correlation that leads to the breakdown of the Fermi liquid
theory. As result, band theory is no longer valid. They are referred to as Mott insu-
lators [8, 9]. The term stems from the large Coulomb energy of double electron
occupancy which blocks the possibility of having itinerant charges, even though the
conduction band should exhibit metallic character. However, under doping (Fig. 2),
this constraint is weakened, because electrons might find available sites where there
is absence of a second electron. The variable U in (2) casts the strong local correla-
tion. Another decisive factor in cuprates is the dimension where the SC takes place.
Soon after their discovery it was pointed out that the CuO2 plane and the CuO4
plaque are the relevant units for tackling the new phenomena [10]. In addition, one
of the first problems necessary to sort out was concerned with the orbital occupation
of doped holes. Indeed it was expected that holes went into the Cu(3d) orbital, but
X-ray absorption [11] confirmed that they occupy the p orbital of the in-plane oxy-
gen instead. If holes are placed on this configuration, this introduces an extra level
of energy because of the motion between copper and oxygen orbital levels. It was
pointed out by Emery that the mid-gap observed in X-ray absorption is due to the
opening of a new band created by the upper Cu and the p-O bands. According to
the Allen-Sawatzky-Zaanen classification [12], the hole motion within the unit cell
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Fig. 2 The phase diagram (temperature vs. hole doping) for the family of copper oxides. It shows
the relevant regions and crossover lines often mentioned in this chapter

makes them charge-transfer insulators rather than Mott insulators. The following
Hamiltonian reflects the rich electronic structure when the new level is taken into
account:
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It is known as the three-band Hubbard Hamiltonian [13–15] and can describe
the band structure of the parent compounds [16]. Here dC .d/ and pC .p/ are
Fermionic operators for the bands d and p with orbital energy "d and "p, respec-
tively. The energy of hopping for an electron (with spin � D";#) from site i to site
j is t . While Up and Ud are Hubbard terms which are present if the occupation
number operators (np or nd ) are nonzero, Vpd is the intraband Coulomb repulsion.
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It is common to reduce (2) into a single-band Hubbard Hamiltonian,

H1band: D t
X

i;j;�

cCi;�cj;� C U
X

i

nC
i"ni#; (3)

with effective parameters given by t 	 t2pd=U;U 	 "d � "p. Common values are
U D 2:9 eV (7 eV) and t D 0:33 (0.5 eV) for La2CuO4 and YBaCuO7�• (E. Picket
1989). Another effect of the strong Coulomb interaction is manifested by the anti-
ferromagnetic (AF) order on the CuO plane (Fig. 1a). If U is large but finite, an
additional scale of energy comes from the ability of charges to gain kinetic energy
when they hop back and forward onto the oxygen (p orbital) that bridges two con-
secutive Cu ions. The process is known as virtual hopping. Although U inhibits
doubly occupancy, this type of hopping may occur if the creation and destruction
of these states happen simultaneously at the same site. The process gives rise to an
effective AF correlation of spins (Fig. 2) with strength J , known as super exchange
[16] and values near 0.3 eV.

4 Electronic Theories of High Temperature Superconductivity

Regardless of the type of formulation applied to explain HTS, the strong on-site
repulsion set by U in (2) must be included. More puzzling could be the fact that
such a term can by itself have the ability of pairing particles and ultimately orga-
nizing them into the SC state. In this section we give an account of some of the
most influential models in the literature that have successfully surmounted these
seemingly contradictory conceptions.

The same J term we mentioned at the end of last section has been pointed out
as the dominant scale for SC. The interplay of the kinetic energy and the AF envi-
ronment, where a hole is embedded, is captured in the so-called t � J model. A
ferromagnetic background would make the problem far less complicated because
holes would move easily; there would not be a compromise between the number
of broken singlets and the gain of kinetic energy. From a descriptive view, if holes
are strongly coupled to AF configurations, then two holes prefer to occupy adjacent
sites, because it is energetically less costly: they break seven spin bounds, while two
separate holes break eight. An alternative paring is permitted if the holes are more
weakly correlated to the spins. Here, one of the holes moves, freely tossing the spin
arrangement, while the second follows the flipped path, restoring the original spin
configuration. In this case the correlation length is larger. The model is formally
derived from the Hubbard model (2) at the limit when U � t . Although there are
several ways to deduce it [17], one that is widely used is the projection method
onto a restricted Hilbert space where double occupancy is forbidden. However, any
approximations introduced to make the model more tractable must retain the fun-
damental physics of the ground state and the low-lying excitations of the original
Hubbard Hamiltonian. The traditional way to approximate the problem is to identify
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a parameter and control it in a systematic fashion. The Hamiltonian capturing these
features is:

Ht�J: D t
X

hi;ji;�
fcCi;�.1 � ni�� /.1 � nj�� /cj;� C hc:g C J

X

hi;j i
Si � Sj ; (4)

where t represents the kinetic energy of holes with spin � , moving from site i to
site j (as long as j is not occupied), cC .c/ are creation (annihilation) operators for
Fermions occupying a site with spin � , while n D cCc is the density of particles; J
is the AF interaction and S is the quantum spin operator.

Similarly, in 1987, within the framework of his resonating valance bond (RVB)
model, P. Anderson proposed an explanation of HTS, [11, 18]. The model works
also in a reduced Hilbert space of single spins whose occupation number is one per
CuO4 unit; the procedure is based on a projection technique onto a BCS-like paired
wave function. The ground state of this wave function is formed by a linear superpo-
sition of all the possible ways of making up collective spin singlets. In this way, the
paring mechanism has its source in the AF order of the parent compound. The idea
resembles the bonding mechanism of benzene molecules by electrons in a resonant
orbital state, hence the name RVB. The key property is that, upon doping, holes are
delocalized and even become SC carriers; the process involves a spin arrangement
that goes from the long range AF order to a spin liquid order.

Systems near magnetic instabilities are subject to large spin susceptibility and
thereby display a strong spin–spin interaction. The kind of AF order in cuprates
has motivated researchers to introduce a model where this type of interaction is
central for HTS. In the momentum space, k, the model takes the form (Moriya
1990, Pines (1990)):

HSF D
X

k;�

�kc
C
k;�ck;� � 1

2

X

q

v.q/Sq � Sq: (5)

The nearest neighbor tight-binding band is denoted as �, the spin fluctuation as �,
and S is the spin density contribution at momentum q. It is the second term that
marks the importance of the spin interactions, as long as � is large. Computational
simulations at a small level of doping showed that the magnetic susceptibility, �,
which measures the AF fluctuations, goes from long to short correlation as the tem-
perature is cooled down, and near q D .�; �/ a large peak appears [19]. Using a
diagrammatic technique, (random phase approximation, RPA), the relation between
� and an effective electron–electron, .e � e/ interaction, u, is given by [20]

�.q/ D �0.q/

1 � u�0.q/
: (6)

The Fourier transform to real space of the e�e interaction suggests that this interac-
tion can lead to pairing if the potential changes sign every 90 degrees, which means
that the pair potential must have a dx2�y2 symmetry. Therefore, holes must have a
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particular spatial arrangement in order to avoid the strong Coulomb repulsion; the
final shape of the potential has simultaneously attractive and repulsive regions.

An alternative approach is the Slave Boson approximation [21] where the
Fermionic operators are defined as the product of Boson and spin operators. There
is a constraint with the number of Fermions, nf , and number of Bosons, nb W
nf C nb D 1. The spin part is treated with a RVB spin model and the charge as a
Bose-Einstein condensation problem. These leads to a fractionalization of charges
(holons) and spin (spinons), where uncondensed holons exist above the SC domain.
The temperature crossover of the spinon pairing and the holon condensation, as a
function of doping, is identified as peak in the SC domain.

Most of the HTS models rely on the notion of a pairing potential as the mech-
anism to achieve SC. However, there is a class of theories that see the phenomena
from a different perspective. Generally speaking, the SC phase is achieved by low-
ering the total energy of the charges; this can be accomplished by either lowering
the pair potential energy or lowering the kinetic energy of the particles. The mod-
els we have outlined so far belong to the first situation. The second situation has
been put forward by J. Hirsch, and the dynamical Hubbard method has been the
most widely used technique to embody the idea [22–24]. The physics behind is that
carriers prefer to “bond”, because the kinetic energy is substantially reduced. This
gives charges the ability to avoid all kind of possible interactions that could increase
the sum of their individual kinetic energies. In other words, two particles traveling
together through the obstacles in a material can move easily, otherwise the bounc-
ing with the obstacles would slow them down. Some tentative predictions have been
proposed; the most intriguing one is related to the shift frequency of the optical
absorption [25].

The last electronic model we cite concerns the subject of the quantum critical
point (QCP) [26] and its possible relation with HTS in copper oxides [27, 28]. The
clue comes from the similarity between the phase diagram of the cuprates (Fig. 2)
and the phase diagram of heavy Fermi systems. The explanation relies on the devel-
oping of magnetic fluctuation as doping is increased in the cuprates [29, 30]. A
central issue in this type of models is that a well defined quasi particle (QP) must
exist, which is the case for the heavy Fermi materials. The paramagnetic phase these
materials exhibit is still a Fermi liquid, and its signatures are clearly shown in exper-
iments. On the contrary, cuprates do not have well defined Fermi states if undoped,
slightly doped, or even for optimal doping. Nevertheless, it has been proposed to
treat the strong correlation as a perturbation to the Fermi liquid region (extreme
right side of the T vs. doping phase diagram, Fig. 2). So far no evidence has been
found in the experiments that can prove this proposal. A QCP is attainable at zero
temperature by changing three of the following parameters: the level of doping, tun-
ing an external magnetic field or applying pressure. Following the pseudogap .�p/
across temperature and doping, it would desirable that some experiment showed a
signal of the QCP as one approximates optimal doping (near 0.15% of doping) at
zero temperature. However, these experiments are quite complicated and the QCP is
still elusive. One of the main reasons is the number of energy scales along the path
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where that data must be collected, making it hard to distinguish weather it is a real
quantum phase transition or a temperature crossover.

The electron-based theories presented explain two of the fundamental character-
istics of HTS oxides readily, i.e. the dx2�y2 symmetry superconductor gap and the
short correlation length of pairing, because in some way these features are built into
the formulation. The situation in e–ph models is not so straightforward and requires
a more careful formulation in order to remain compatible with the phenomenology.
Other arguments that seem to validate the electronic models can be checked within
the citations we made for each model.

5 Two Divergent Views

The electron-based models depend to a large extent on the electronic state called
Zhang-Rice (Z-R) singlet. We will not go into details regarding its important func-
tion in these theories and related experiments. But the main reason to allude to it
is because it is the point where we open the discussions about the definite issue
that concerns us, the JT effect and its role in HTS. In 1988 Zhang and Rice pro-
posed that holes occupying the O(2p) orbital are indeed delocalized around the Cu
ion, taking any of the four bonds formed by Cu dx2�y2 and O-p orbitals [31]. The
spin and the center hole at Cu is what is called Z-R singlet. Spin-polarized resonant
photoemission measurements seem to show signals of such paired hole-spin con-
figuration [32]. Despite a large number of publications supporting the existence of
this singlet, recent molecular cluster calculations suggest that the concept should be
revised. This task was performed by H. Koizumi [33], who studied the most sta-
ble configuration of a hole placed in two interacting CuO6 JT active centers. The
calculation showed that holes prefer occupy a mixture of single p-O orbital and
two d -copper orbits. As a result, a polaron is formed by the lattice distortions of
both CuO6 octahedrons. In contrast, the Z-R singlet configuration exhibits a higher
energy of stabilization. Moreover, the energy of the JT polaron was in agreement
with both the EXAFS experiments for Cu-O bond distortions and the peak measured
in photo-induced conductivity (both reviewed in the next section).

Another two subjects of controversy are the pairing symmetry and the bosonic
mode that leads to the SC paring. Since the middle of the 90s experiments with
flux quantization and studies of phase order parameters probed by magnetic field
modulations [34, 35] indicated that d -wave symmetry is present. This settled the
dispute about the origin of the symmetry observed. On the one hand this prop-
erty can easily be explained by pure electronic arguments [36, 37], but on the other
hand it was demonstrated that d -wave symmetry might also arise from a phonon
mechanism [38, 39]. Equally important is the extensive data provided by ARPES
[40, 41]. This technique directly probes the QP energy dispersion and seems to be
an ideal technique for monitoring the symmetry and energy of charges restricted to
two dimensions – as is the case for CuO sheets that hold the SC carriers. Neverthe-
less the data has been interpreted in different ways and used as a battle ground to
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test the different theories. Besides the d -wave symmetry also observed in this tech-
nique, the dispute has been extended to the ARPES amplitude and the kink observed
in the energy dispersion. The energy where the kink develops should give an idea of
the energy scale of the boson responsible pairing. But the assignation to the bosonic
mode is a matter of debate, though. Some attribute it to a spin mode [42], while
others favor a phonon mode [43].

An essential issue of debate, because it might be regarded as a precursor to the
SC phase, is the origin of an appealing energy that emerges when the SC transition
is approached above Tc at low doping (Fig. 2). The temperature range is denoted
as T � and the energy scale as �p. Some electronic theories identify �p as a spin
gap. The basic idea behind this view is that, as the doped holes are introduced,
they induce frustration on the spin alignments, and therefore break the long range
spin order, with only interactions of short length remaining. Consequently, if the
difference of energy between the ground state and the first excited state is due to the
effect of spin frustration, the gap is a spin gap. But from the viewpoint of preformed
pairs mediated by phonon interactions, the �p is related to the energy of charge
confinement by lattice distortions.

It has also been argued that the �p energy is responsible for a type of organi-
zation related to an electronic order, whose origin could be due to spin or lattice
interactions. In particular, at doping 1/8 a type of order has been a topic of intense
debate; it is the stripe phase observed in diverse experiments (see for example J.
Tranquada et al. (1995), Nature 375, 561). Although there is consensus that such
an order is present, there is no agreement whether the overall effect is in detriment
to the SC. Neither is it clear what is the nature of the interaction dominating in the
region of the phase diagram defined by T �. For example, the spin gap nature of
related kinds of orders was put forward in recent spin dynamics measurements [44]
along with the predictions of a novel order state, emerging from magnetic interac-
tions as found in the studies of Yamase et al. [45]. A comprehensive description
involving lattice interactions will be given in the next sections.

6 Experimental Evidences of Polarons, Lattice-Charge
Segregation, and the Isotope Effect: The Role of JT
Distortions

At the end of the 80s, the first reports of carriers with a polaronic nature were mea-
sured with photo-induced absorption, optical conductivity and infrared reflexivity
in LaCuO4Cx and NdCuO4�y [46, 47]. The advocate idea was that with the assis-
tance of absorbed light, polarons gain the ability to hop from one localized site
to another. The origin of the mid-infra red peak oscillations that register on these
experiments was linked to polarons. This picture was supported by related theo-
retical studies of polarons and bipolarons [48]. It is important to emphasize that
these carriers were successfully modeled by Holstein-Hubbard and Holstein t � J
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polarons, which confirm their local character. Hence, the provided data stimulated
more experiments aiming to test the importance of polaron mobility in cuprates.

At the same time, there was an improvement of the methods suited to probe the
local structure, like for example EXAFS, whose high energy helped to resolve inter-
atomic distances. This contrasts with traditional methods like X-ray diffraction that
yield an average of the crystalline structure. Together with EXAFS, inelastic neutron
scattering [49] became a primordial tool for studying the local environment of the
single CuO6 octahedral, revealing anomalies in the atomic distributions. EXAFS
analysis showed that the Cu-O apical in YBaCuO exhibits two distances, giving
structural evidence of polarons in cuprates [50, 51]. The polarized X-rays along the
c-axis found two equilibrium distances of 1.822 and 1.954 Å for the Cu(1)-O(4)
(Fig. 1b), which differs from the average of 1.84 Å. This type of results is relevant
for the JT effect. Since EXAFS can measure differences between the CuO apical and
CuO planar distances, it can help to estimate the JT splitting and to determine wether
the JT effect has to be treated as a pseudo JT effect. But, due to the time resolution
of the technique, it cannot distinguish between dynamical and static JT distortions.
Deeper conclusions from the EXAFS data came later on [52], when it was inferred
that distorted domains coexist with undistorted domains at the scale of nanome-
ters. The materials subject of study were La1:85CuO4:1 and La1:85Sr0:15CuO4, where
two double distances appeared on the Cu-O layer and c-axis. The double distances
are interpreted as the coexistence of two regions of CuO6 octahedra: one without
deformation (16 Å of widths in the La1:85CuO4:1 and 14.5 Å in La1:85CuO4:1) and
a second region with distorted octahedral (8 Å of width in the La1:85CuO4:1 and
9.7 Å in La1:85CuO4:1). All these results strongly suggest that copper oxides are not
homogenous materials. More intriguing results came when the Cu-O pair distribu-
tion showed a broadening within the SC region as the doping was increased and
the temperature kept fixed at T D 10K [53]. Similarly, the data collected at optimal
doping and variable temperature shows a diffusive amplitude as the temperature
approaches Tc, but suddenly peaks at T DTc [54].

The rich interplay among time, energy and length scales has been successfully
studied by a series of experiments using femto-second spectroscopy [55–58]. The
technique is suitable to study the process of pair formation. The advantage of the
technique resides in its characteristic time scale, which is within the time span that
a QP requires to relax from the high energy state induced by a laser pulse to the
low energy delimited by a bottom band where the QP exist, before it further relaxes
and recombines. In the results presented in [55–58], the recombination time of the
QP was attributed to the anharmonic life-time of the phonons that take part in the
process. The technique also offers the opportunity to infer the length scale within
which the process occurs and thereby exposes lattice-charge inhomogeneties, [59].
In addition, the coexistence of localized and free electronic states was confirmed.
This has particular importance, since it has revived the two-component models, first
proposed right after the discovery of HTS in cuprates. The group also extracted two
different time scales of relaxation. One appears at Tc and is associated with the SC
gap, with a life-time ranging from 0.1 to 3 ps. The second component, with a longer
life time, is attributed to �p and the emergence of charge separation.
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On another hand, the enormous improvement of scanning-tunneling microscopy
(STM) in the last years has permitted to map the electronic DOS of some copper
oxides, showing images with inhomogeneous charge distribution at the nanoscopic
scale [60–64]. Although one problem that the technique faces is that the Cu2O
planes are not directly observed (this is due to fact that the cleaved process does
not expose the CuO layers, but the Bi-O layer of Cu-O chains, for instance) How-
ever, it is considered to be one of the most influential techniques. The length scale
measured by STM has also been confirmed by ion-channeling [65].

The isotope effect remains one of the most direct criteria to discriminate whether
the vibrational modes of the ions are the constituent mechanism for supercon-
ductivity. In the case of cuprate special attention has been paid to substitution of
16O by 18O, The sign of the isotope shift detected in conventional superconduc-
tors persuaded Bardeen to establish an e–ph mechanism. In contrast, the relevance
of phonon interaction in cuprates has long been debated, because of the negligi-
ble isotope effect on Tc [66]. However, advances in experimental techniques in
recent years and carefully performed experiments have shown evidence of an iso-
tope effect, but the signatures are not the usual ones, as those found in metals or
alloys. Consequently, ceramics superconductors may also be regarded as unconven-
tional superconductors, in the sense that the isotope effect is present, but in a subtle
way. Furthermore in the BCS theory, the Tc dependence with the mass,m, of the ion
involved in the phonon pairing is Tc D m�˛ with ˛ D 0:5. It is known that devia-
tions from this value may depend on the type of interatomic potentials. This could
be, for instance, a double well minimum potential corresponding to a polaron motion
of an ion moving between two equivalent positions [67] or/and anharmonicity [68].
Hence, the JT tunneling between two degenerate or nearly degenerate states may be
intimately related to this form of polaron, and therefore deviations from ˛ D 0:5

should be expected.
One of the manifestations of the isotope effect is the huge isotope shift in the

measurements done for the pseudogap, �p, regime. INS in LaHSrCuO showed an
isotopic shift in the �p temperature of �T �D � 10K, here �T �DT �.O16/ �
T �.O18/D 60K–70KD � 10K. In the case of LaSrCuO T �.O16/D 110 and
T�.O18/D 170, with a �T �D 54:4% of isotopic shift. As a matter of fact, the iso-
topic substitution was also performed for Cu .Cu63 ! Cu65/, showing no isotopic
shift and therefore confirming that the displacements involving the oxygens are the
relevant modes [69,70]. Thus, the isotope effect that does appear at the�p is strong
evidence that the phonons, inhomogenities and preformed pairs are linked [71, 72].

Signatures of the isotope effect can be found in the studies of Kresin, Khasanov,
H. Keller and Bussmann-Holder [73]. The normalized penetration depth and the
superconducting gap show a linear tendency as a function of doping. The most
significant feature in their discoveries is the negative correlation of the penetra-
tion depth at optimal doping and overdoped samples. An equally interesting result
was given by the isotopic shift on magnetic transition temperatures at zero fields
(�SR); the experiments were performed for undoped LaSrCuO. Here, it was also
demonstrated that light polaron carriers (corresponding to O16) have the ability to
break the AF order more easily than the heavy polarons composed by O18. All
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these results fit into the particular interpretations made by Bussmann-Holder, Keller
and Muller, which are based on a two-component band model with electron-lattice
interactions [74, 75], where the nearest neighbors, second and third next-nearest
neighbor-hopping in the CuO layers, as well as hopping for interlayers, was con-
sidered. The same approached used in [74, 75] was applied for a strain analysis.
Because the effect of the strain changes the relative distance between oxygen and
copper, one way to mimic the strain is through variation of the hopping integrals.
It was found that the combination of nearest and next-nearest neighbors yields the
optimal hopping parameters for an enhancement of Tc. Thus, when the strain is
taken into account, Tc reaches a maximum for intermediate values of both values of
hopping. Based on the isotope and strain effects, they conclude that theQ2 active JT
mode, identified after the combination of such hopping parameters, has a prominent
role in the SC properties.

Concerning strain experiments, only a few reliable studies exist. This is because
strain must be tuned in a very controlled way, and the data interpretation is not
straightforward. For instance, it is the aforementioned EXAFS technique that has
proven to be a valuable tool when strain is applied to HTS samples; its impor-
tance resides in the fact that the changes in the lattice structure impinged by strain
are accompanied by a modification of Tc. The CuO6 unit, which induces the JT
effect, can be weakened or strengthened under tensile or compressive strain, respec-
tively. Subsequently, the energy levels of the b1g and a1g electronic configurations
are moving closer or further apart. Thereby, the hole motion can be tuned by the
splitting energy between both electronic levels. Based on the EXAFS experiment,
Oyanagui [76] proposed the interesting idea that can be summed up as follows: the
superfluid density of holes with b1g character is regulated by the level of inhomo-
geneties, which in turn depend on the applied strain. The details of how this occurs
must be checked in [77]. We just give the relevant figures of the data collected by
Oyanagui and coworkers. The CuO6 JT unit exhibits an elongation of 0.01 Å under
tensile strain, which stabilizes static distorted regions, while the shortening of the JT
unit, under compressive strain, makes the distorted regions dynamical. It is precisely
these structural changes that make the latent carriers more extended or localized.

7 General Considerations of Polarons and Bipolarons

Before moving on to the formulation of the JT effect in the context of HTS, we
need to briefly review some concepts regarding polarons, bi-polarons and their rela-
tion to e–ph coupling. It is of great importance to realize that the JT distortions
we will discuss are directly related to these terms. It has to be recognized at the
outset that it is necessary to have a strong e–ph coupling for an operating mech-
anism based on phonons. This is in part because of the strong on-site repulsion
(Sect. 2) that charges need to overcome in order to form bounded particles. Any pair
formation needs to meet the condition of a very short coherence length of paring,
Ÿ, present in these materials. One consequence of the strong e–ph coupling is the
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deep deformation surrounding the lattice environment of a charge, giving rise to
what is known in the literature as small polarons. In the most common definition, if
the deformed region is of the same dimension as the lattice constant .a/, the polaron
is called a small polaron. However, a proper definition is needed if one wants to
know how the physical parameters of the material are involved. According to [78],
if one defines the dimensionless coupling constant �DEp=Ea (where Ep is the
energy for lattice relaxation due to a polaron and EaD �=2ma with m as the bare
mass of the electron) then small polarons exist for values �>1. However, this crite-
rion has to be modified for the formation of stable bipolarons, in which case �>0:5
and the coupling constant can also be defined as �DEp=D (here D is used as the
bare half-bandwidth). Bipolarons can be classified by the proximity of their two
constituent charges. Generally, on-site bi-polarons refer to a situation in which the
electrons are placed near the same site, while the term bi-polaron refers to electrons
being in neighboring sites.

It is challenging to introduce a bipolaron mechanism that can achieve HTS in
cuprates. For instance, in order to develop mobility, the polarons have to overcome
the self-trapping effect. Another setback is due to the fact that the stable configura-
tion is accomplished by overcrowded regions of polarons. One of the first attempts
to use polarons as the source of pairing goes back to Ranninger and Alexandrov
[79]; they used a real space representation of on-site or intersite bi-polarons with
the purpose of generating charged bosons. The scenario proposed relies on polarons
that, after pairing, create intersite bosons, which in turn undergo to a Bose-Einstein
condensation transition. The bipolaron theory of HTS in cuprates finds solid ground-
ing in the mathematical developments of Alexandrov and the late Mott [80,81], and
some direct prediction in the normal state by Alexandrov, Mott and Kabanov [82].

The mechanism of bipolaron SC was also explored in 1981 by Y. Takada. Stimu-
lated by the possibility to increase Tc using a bipolaron formalism in ionic crystals,
he investigated the condition of pair formation in all possible spatial dimensions
[83]. In his paper, Takada drew attention to the following facts. Although these
materials display a low density of electrons, and the high lattice polarization reduces
the electron attraction even at strong phonon coupling, the factor that makes possi-
ble the pairing is the dynamical interaction. He found that bipolarons, interacting
through polar-optic phonons and repulsive Coulomb forces, are stable in one- and
two-dimensional systems. Several authors have contributed to the study of polaron
properties (for works related to cuprates, besides the ones presented in this chap-
ter, consult T. Devrese, A. Firsov, S. Aubry and A. Trugman in [84], as well as A.
Bishop).

The Holstein and the Frohlich polarons are two of the most studied types of
polarons, typically the former are used for short range interactions and the latter for
long range lattice interactions; in real space they are represented as:

Hpol: D �t
X

<i;j>

cCi cj � g
X

i

f .i; j /.bCi C bi /ni C !0
X

i

bCi bi ; (7)
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where cC .c/ are creation (annihilation) operators for Fermions at sites i and j ;
while bC .b/ are the respective operators for dispersionless phonon modes of bare
frequency !I nD cC c is the density of particles at site i and regulates the coupling
with the phonons with a strength g. The nearest neighbor hopping, t , the mode! and
coupling strength g are either in units of energy or without units. The space func-
tion f , distinguishes the Holstein phonon interaction, f D ıi;j , from the Frohlich
phonon interaction, f .i; j / D Œ.i � j /2 C 1��3=2. It is the imbalance of charge
density, given in the second term, that activates the vibration of a phonon mode b
and thereby the e–ph coupling.

The original idea that a considerable mobility of bipolarons could be realized
in cuprates by short range movements is confirmed in the work of Hague et al.
[85]. Two varieties of motion were studied for the case of Frohlich interactions on
staggered geometries by means of a continuous Quantum Monte Carlo a “crawling-
like” and a “crab-like” motion. This type of result rules out the misconceptions
that polarons might not exhibit high mobility because they are strongly bound to
distorted lattice regions. Although it is true that, in order to have very short SC
coherence lengths in cuprates, a strong e–ph interaction is needed, the presence of
the strong Coulomb repulsion helps to counterbalance it. As a result, the bipolaron
mass is reduced. In the light of these results, it is now the turn of the JT bipolarons
to clarify weather they offer a better standpoint.

8 Formulation of The Jahn–Teller Problem on Cuprates

The problem of JT in cuprates at very dilute concentrations is in essence a local
problem; conceptually, it can be seen as an impurity center embedded in a crys-
tal. In principle, various active modes are present, and in general each of the JT
active modes can be studied individually. Whether all modes need to be considered
depends in turn on the choice of the relevant mode for the problem. In the case
of cuprates it is common to deal with the three dimensional character of the oxy-
gens surrounding the Cu ion, or to take the two dimensional character of the four
planar oxygens around the Cu ion (placed along the a � b crystallographic axis,
see Fig. 1). If capital letters denote electronic states and small letters the vibra-
tional modes, according to group theory, the CuO4 cluster can be described as an
ExE D A1CB1CB2 or aE˝.a1Cb1gCb2g/ problem.E stands for the degenerate
electronic state of theD4h symmetry, and they are coupled to the asymmetric vibra-
tional terms b1g and b2g. The electronic state represents the Cu wave function with
x2 � y2 or xy symmetries, and they are coupled to the b1g mode. The b1g represents
the simultaneous motion of two opposite oxygens displacing towards the Cu center,
while the other two oxygens move away from it. This displacement is commonly
called half-breathing mode, in contrast to the breathing mode, which occurs when
the four oxygens undergo a totally symmetric displacement. The two vibrational
modes are pertinent to hybridization with the in-plane oxygen wave functions of p
symmetry. If only the half-breathing mode is the subject of study, the problem is
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referred to as an Exb problem and is the simplest model for holes with b1g charac-
ter moving along the CuO plane. Another important factor worth mentioning is the
temperature at which the cuprates are studied, since some modes can be ignored if
their phonon DOSs are low.

A more rigorous treatment is to consider the full CuO6 octahedral; then the JT
problem becomes Exe D A1CE orE˝.a1Ce/ [86]. In contrast to the CO4 cluster,
both the electronic states and the vibrational mode exhibit double degeneracy. The
E term represents the 3z2 � r2 or the x2 � y2 Cu orbital, which, together with the
p-Oxygen orbitals, form the electronic degeneration. By this approach, the effect
of the elongation along the crystallographic c axis can be added. The difference
between the 3z2 � r2 bond energy and the x2 � y2 bond energy gives the JT split
energy, which is also the scale energy that sets the problem as either a pure JT
effect, or as a pseudo JT effect. At this point it has to be said that HTS oxides
may not meet the conditions for a strict JT effect. For instance, due to the strongly
layered structure, a highly symmetric environment (one of the basic requirements
for the presence of the JT effect) might be absent [87]. Although not as strong as in
the case of manganites [88], local probes offer some indication of local instabilities
associated with a JT structure deformation in LaCuO and YBaCuO systems (see
Sect. 6). However, a pseudo JT might remain. This raises a dilemma that the JT
community often faces: how far apart need the two nearly-degenerate levels to be in
order to treat the problem as a PJT? The discussion on this issue is beyond the scope
of this review, but we refer to Bersuker in [86].

In order to address the properties of a JT-polaron, we compare it with the two
classes of polarons we have already presented. We use the phonon interaction of the
molecular Holstein or Frohlich Hamiltonian, given by (7) and we compare it with a
JT Hamiltonian,

HJT-pol D
X

hi;j i;˛;ˇ

�
cCi;˛cj;ˇ C hc:

�
� g

X

i

�
.ni;1 � ni;2/

�
aCi C ai

�

C
�
cCi;1ci;2 C cCi;2ci;1

� �
bCi C bi

�iC !0
X

i

.aCi ai C bCi bCi /; (8)

contrasting with (7), the electrons are interacting with two dispersionless degenerate
phonon modes a and b. Besides that, there are two additional electronic orbitals,
labeled as ˛ and ˇ. Mode a is coupled with the charge density at site i while mode
b couples, through hopping, to two different orbitals. The e–ph coupling g preserves
the symmetry of the interaction. It is noticed that, with this formulation, the coupling
is more complex than that described by (7). The difference of charge density in the
two orbitals activates coupling to the a modes, while the coupling to the b modes
requires an electronic transition between orbitals.

The first numerical results from a strictly quantum mechanical calculation were
given a few years ago [89]. In particular, P. Kornilovitch formulated a path integral
representation of a three-dimensional JT polaron. Applying a QMC algorithm, he
calculated the energy of the ground state, the DOS and the effective mass of a single
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JT polaron, and compared them with the computed values of a Holstein polaron. The
two types of polarons showed similar behavior, except at the intermediate and strong
coupling, where the JT polaron was lighter and developed a peaked DOS. That same
year, in 2000, Y. Takada published an analytical paper, in which he proved that JT
polarons should be lighter due to the fact that that the vertex corrections are less
effective in JT polarons than in Holstein polarons [90]. However, one year after
Takada’s publication, an analytical work carried out by H. Barentzen [91] showed
that such differences in the two types of polarons may not be as pronounced as it
is predicted in [90]. Similarly, for the one-dimensional case a comparative study of
JT polarons and Holstein polarons was made by Shawish, Bonza et al. [92]; they
used an advanced algorithm to compute the optical conductivity, the effective mass
and the spatial extension. In addition, they included the strong Hubbard term for
electrons placed either in the same orbital or in different orbitals. The results in the
strong coupling regime showed that the JT interactions reduce the effective mass
of the polarons and bi-polarons, while at weak coupling the two types of polarons
display no differences. The same tendency as a function of coupling was observed
in the radial extension of the polarons.

In summary, JT-polarons are good candidates as charge carriers in cuprates,
and their ultimate consequences for the transport properties are worth exploring.
Nevertheless, the JT polarons by themselves may not lead to SC, and some other
considerations are needed. So far we only discussed isolated JT centers; the prob-
lem is more complex when the concentration of JT active centers is increased: The
higher the doping, the larger the possibility that the JT centers start to interact, and
the assumption of two equivalent displacements in a JT center is no longer valid
[93]. In other words, the presence of JT neighbors affects the degeneracy, provoking
that one of the configurations is more likely to be present. This leads to the coopera-
tive JT effect. In the simplest case this would happen if the centers are close enough
and their respective lattice distortions overlap. Another type of cooperative interac-
tion occurs when the JT centers are viewed as sources of virtual phonons that are
being exchanged through the medium offered by the lattice. The importance of the
cooperative JT effect, for our purposes, is that it gives rise to inhomogeneity when
it is counterbalanced by long range repelling forces. Next, we discuss how these
elements are combined in such a way that they might generate the right conditions
for the SC transition.

9 From Jahn–Teller Polarons to Mesoscopic Inhomogeneities

Now we focus on the charge phase separation as an important component for the
salient physics of cuprates. The viewpoint presented here is that above a certain
temperature T � a gas of weakly interactiong polarons exists, and below this tem-
perature polarons have an energy that promotes them to form bound particles and
charge agglomerations (Fig. 3). In this manner, the �p energy coincides with the
emergence of inhomogeneties, and its scaling dependence is intimately related to
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a b

Fig. 3 (a) Favorable and (b) unfavorable stripe arrangement of JT distorted regions, as a result
of cooperative JT interactions. The ilustration corresponds to patterns on a CuO sheet of a copper
oxide. After Bersuker and Goodenough [94]

the scaling dependence of T �. The proposal is that, upon doping, the charges self-
organize due to forces exerted by lattice instabilities of the JT type. These lattice
deformations offer two features that seem suitable for the stripes and HTS: they
display anisotropic interactions, and they can create Cooper pairs of short range
order, Ÿ.

Firstly, the JT polaron concept has been used explicitly in the pseudogap physics
of the copper oxides since this scale of energy assumed a larger importance in
the 90s. For example in [95] R. Markiewicz proposed a possible explanation of
this crossover region present in the phase diagram of the cuprates (Fig. 2). He
made the observation that the temperature and doping dependence of �p could
be directly related to an intermediate step, which involves coupled JT centers, dur-
ing the structural phase transition from a high-temperature tetragonal (HTT) phase
to the low-temperature orthorhombic (LTO) phase and a low-temperature tetragonal
(LTT) phase. It would be a sort of dynamical JT coupling among different octahedra
(see Fig. 1), mediated by planar oxygens. The intermediate stage (composed of tilted
Octahedra between 0 and 45ı with respect to the Cu-O bond) would be the result
of the composition of the two phases HTT and LTO; the doping and temperature
would play the role of tune parameters to reach this mixed phase. More important is
that the transition is triggered by local dynamics which leads to modifications in the
Cu-O bond length and, at the same time, induces e–ph couplings. What is essential
to remark in this type of works is that the notion of the structural phase transition
present in cuprates might elude an ordinary classification of structural transitions,
and some valuable physics could be missed if one does not pay attention to the
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short-range order as well. Thus, the predicted curves in his calculation as a function
of these two tuned parameters are based on the identification of a scale dependence
TLTO D T �=2, where TLTO is the temperature identified as the crossover temperature
to the LTO phase.

On another hand, not long after the discovery of the cuprates, the phenomenon
of charge separation was predicted independently by J. Zaanen, V. Emery and
L. Gorkov [96]. Later on, a discussion in terms of lattice deformations was pre-
sented by Alexandrov-Kabanov-Mott, Kusmartsev, Bishop-Shenoy-Lookman, and
more recently further studieds were published by Spivak-Kivelson-Emery, Miranda-
Kabanov, Ortix-Di Castro-Lorenzana, Castro-Morais, and Boris-Egami. In these
works, minimal conditions for the phase separation were set. Some of them also
address the role of phonon interaction as a mechanism that can trigger the phase
separation. One way of clarifying this issue is being aware of what type of phonon
mechanism one has in mind when the term phonon interaction is invoked, and what
limit of coupling strength is referred to. Although an e–ph interaction could be one
of the main factors that drive the charge separation, it is necessary to make some
distinctions. For instance, in some regions of e–ph coupling Frohlich polarons (in
the adiabatic and antiadiabatic regimes) show a homogeneous phase. Similarly, a
Holstein model results in a liquid state of bipolarons.

We should also mention that, due to the character of the JT effect, one might intu-
itively anticipate that lattice instabilities might form domains with a local symmetry
breaking obeying the JT restrictions. But any attempt to formulate a microscopic
origin of JT paring should be able to reconcile different aspects, like the existence
of JT domains with mesoscopic scale, predict specific charge transport properties
in the normal state, and explain the SC itself. The possibility of an attractive poten-
tial created by the anharmonic tunneling of JT distortions was already suggested in
1987 by Johnson [97, 98], and multi-JT interacting centers as a mechanism of JT
nanostructuring in 1997 by Moskvin [99]. A proposal which includes some of these
elements is the one introduced by Bersuker and Goodenough [94]. Another work
that includes the JT effect and stripes is found in the work of R. Markiewicz, where
he supports his analysis on the Van Hove singularity [100].

In the early 90s, Shou and Goodenough explained their thermo power mea-
surements, made in a wide range of doping and temperature, through polaron
interactions. The system under scrutiny was the single layer La2�xSrxCuO4, which
facilitates the interpretation of the type of experiments they performed, because
the material is single-layered [101]. The experiments provided data that approxi-
mated the size of deformed region around the Cu ion. These clues lead Bersuker
and Goodenough [94] to establish a more elaborate model, which utilizes the JT
effect as a primordial mechanism to predict the heterogeneity, make an estimation
of the polaron mobility, predict the temperature dependence of the resistivity and
give some insights for achieving high Tc. They proposed to deal with the polaron
domains within the JT scheme as a .A1gCB1g/˝ .a01gCa1gCb1g/ problem. Thus,
the interaction matrix for a JT center located at site i is,
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Fig. 4 Schematic representation of: a) an inter-site JT-bipolaron and its two equivalent configura-
tions (white and grey circles represent cupper and oxygen sites respectively); b) two electrons (in
a doubly degenerated energy level and separated one from each other by l/ lowering their energy
by a magnitude of �JT (related to �p/, when they interact though a lattice instability of JT-type.
Here � represent the coherence length of a pair, whileE and E 0 are two lifted energies.

H�.i/ D
�
VAQA.i/C�=2 VBQB.i/

VBQB.i/ VAQA.i/��=2
	
: (9)

The vibronic constants VA and VB represent the coupling between A1g .B1g/ with
the displacements a1g .b1g/, respectively, and� is the energy splitting between elec-
tronic levels, while Q�DA;B stands for the symmetric nuclear displacements. For
i D 1; 2; : : : n JT centers surrounding a polaron, the Hamiltonian is,
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where P� is the momentum conjugated to Q� ; .!i;j /
�2 is an inverse elastic con-

stant for b1g vibrations, which has the function of coupling two JT centers. Each site
i can have two equivalent distortions, whose magnitude is given by

Q0 D ˙
"

V 2B
�
!�211 .B;B/

�2 �
�
�

2VB

	2#1=2
: (11)

Within this scheme, the energy of pairing is the difference between the energy of
two interacting multimode JT polarons and the energy of a single JT polaron. The
symmetry of the JT interaction is crucial for paring; the relative position of the two
holes gives rise to a pairwise potential which can be either attractive (pairing) or
repulsive. The vibrational mode b1g is responsible for this type of dependence; thus,
while two b1g distortions in the opposite direction lead to paring, two parallel distor-
tions lead to antipairing. If several JT centers are allowed to interact, the model leads
to cluster formation, with six polaron centers arranged in an antiferrodistortive fash-
ion. More interesting is the fact that the clusters acquire a stripe shape. The model
also predicts the most stable stripe configuration on the CuO sheet (Fig. 3). The
authors concluded their work with an analysis of the motion of polarons occupying
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the edge of the formed cluster. The type of movement that the polaron develops is a
crawling movement with a mobility of 1–10 cm2 Vs

�1
.

A step forward in the evaluation and the implications of the JT effect is found
in a series of publications by Mihailovic, Kabanov and coworkers. The theory
incorporates JT polaron interactions through the length of their lattice distortions.
A JT Hamiltonian formulated either in real space [102] or equivalently in k-space
[103] embodies these ideas. The model incorporates a k dispersion on the phonon’s
mode of coupling. This contrasts with models that set k D 0 for the interaction;
they foresee the SC emerging from a homogeneous state. The model’s aim is to
achieve an inhomogeneous state that leads to SC. Some similarities are found with
the model proposed in [94], in the sense that both consider an anisotropic interaction
of the strain type. In contrast, Mertelj et al. [104] incorporated explicitly the long
range Coulomb interaction. The La2�xSrxCuO in [102] and YBa3CuO• in [103]
are the two chosen materials to exemplify the concepts. One of the most important
results is that the most stable configurations are for clusters with even number of
particles. Quite remarkably, in [104–106] it was proven that the combination of the
anisotropic JT interaction and the three dimensional Coulomb interaction, whose
repelling force is acting among charges confined to the CuO plane, are enough ele-
ments to give rise to stripe formation. The full Jahn–Teller-Coulomb Hamiltonian
which incorporates this sort of competing forces is described by means of a lattice
gas model. Miranda et al. extracted further conclusions, e.g. the DOS [107], charge
transport properties [108] and strain effects. In the calculated DOS a suppression of
energy states (gaps) was observed as the temperature was lowered. The opening of
those gaps (up to three gaps) coincides with the emergence of stripes. The formation
of each of the gaps corresponds to the breaking of the bonds created by cooperative
JT distortions, which could be referred to as a JT-gap. Thus the lowest energy JT-gap
corresponds to the breaking of a single bond; the second gap is due to two bonds
and so on. However, the calculations never showed more than three gaps, even at
high doping [107]. This observation was attributed to the fact that stripes have an
average width of one or two sites at most; therefore charges are rarely surrounded
by more than three nearest neighbors. Further calculations confirmed that multiple
gaps are related to the energy formation of a JT bipolaron and JT domains.

10 Towards HTS

After the above considerations in the last sections, it is expected that they lead to
the ultimate goal of this review: the explanation of the HTS in cuprates. For this
purpose we end with an overview of the proposals of a few authors, whose opinion
is that the origin HTS might be found in a proper combination of the elements we
have brought into this chapter: strong e–e correlations, a significant e–ph coupling
of the JT type, and inhomogeneities.

Stimulated by the particular layered composition of the cuprates and the arrange-
ment of dopants at random, J. Philips has established a three dimensional filamentary
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theory of SC in copper oxides. The theory foresees the motion of the carriers through
distinctive paths connected by topological constraints. By all means, the theory is a
percolative picture of HTS. The segments of the filament trajectory are composed
by (Metallic path 1)-(bridge)-(Metallic path 2), where the two metallic paths are
not necessarily of the same origin. The metallic paths, for instance in YBaCuO,
could be a Cu-O chain and a CuO plane, while in ceramics like LaCuO (no Cu-O
chains) the two metallic regions would be only within the CuO planes. The model
strongly relies on the existence of metallic strings in the CuO sheets. The key point
is that JT distortions play the role of bridges, forcing the carriers to cross the two
metallic regions by resonant tunneling and doing so as an impurity state. In addi-
tion, the concentration of bridges and the number of metallic paths modulate the
location of Tc on the doping axis of the phase diagram. For the optimal Tc, it cor-
responds to a nearly perfect match between the number of metallic paths and JT
joints, the underdoped corresponds to fewer JT bridges with respect to the paths,
and the overdoped would correspond to an overpopulation of JT joints. Because the
filament current is occuring at regions connected in series, Phillips estimated that
Tc D pTBTR 	 100K, for the case of a two-temperature component contribution:
a CuO planar region, .TB	 25K/ and a Cu ion vibration near an oxygen impurity,
.TR 	 350K/. For details the original paper of 1987 should be consulted [109], and
for a more extended version and update work, the recent publication ref. [110].

A hybrid theory that combines the local nature of the JT effect and the local
character of the AF spin interactions, is the one proposed in 1989 by Kamimura and
Suwo [111]. The theory considers the lower and upper levels energies given by the
a1g wave function and b1g wave function of a hole moving in two alternate type of
environments. One environment is created by a JT deformation of the CuO6 Octa-
hedral and the other is an antiparallel spin host with respect to the moving carrier.
According to Kamimura and Suwo, the hole takes on a Zhang-Rice singlet character,
and if it is in the b1g state, it interacts though super exchange interactions with other
nearest neighbors,. When the hole is in the a1g form, it is coupled locally by Hund’s
rule, and the local spins form a triplet state. In this view, the carriers preserve the
AF order; at the same time a metallic property can be achieved. The important point
in the model is how the JT distortion is affected by doping. Introducing holes by
substitution of Sr in LSCO has the result that the apical oxygens in the CuO6 cluster
reduce their distances. This effect is called anti-JT effect, and it has consequences
for the energy splitting between the a1g and b1g levels. The interplay of the Sr con-
centration and energy splitting controls the correlation length where holes can move
at the Fermi level. According to an effective one-electron band calculation, the hole
in this coherent state couples to Hund’s state in relation to the Z-R singlet with a
magnitude of 1–5 eV. However, the model seems to be valid only at dilute concen-
trations. The way the e–ph interaction is spin dependent plus the momentum space
correlation creates zones with either pair hole attraction or pair hole repulsion. The
final shape of the pair potential is a dx2�y2 gap.

A similar strategy considered by Bussmann-Holder and H. Keller is to divide
the CuO plane into two regions, one made up of JT distortions, and the second
region of AF spins [74, 75]. The model includes explicitly the size domain of the
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Fig. 5 Tc predicted on the multicomponent SC model, and Tc measured on La2�xSrxCuO4 (inset).
After [87]

different phase separation regions. In addition, the lattice displacement lying on the
border of both areas is responsible for the coupling of charges belonging to the two
different regions. This leads to an interband interaction that appears together with a
shift in the energy due to the polaron coupling of holes and JT vibrational modes.
The result of such a type of electron interaction makes the model a multi band
treatment that facilitates an enhancement of Tc. In fact, the results of the isotope and
strain effects reviewed in Sect. 6 were deduced under these assumptions. A notable
concept in the Hamiltonian introduced in ref. [87] is the inclusion of an intraband
potential. It comprises on-site pairing and two extra terms with s and d wave pairing.
Noteworthy is the similarity of the calculated Tc dependence with the Tc observed
in experiments (Fig. 5).

In reference [112], it was [112] developed a theory that uses the inhomogenities
themselves as the primary elements for HTS. The lattice distortions, induced by the
charges, create JT regions that help the carriers to move coherently. After crossing
the paths, charges tunnel among other distorted regions in a Josephson-type of tun-
neling. In this sense the model is also a percolative description, with a threshold set
at the doping where cuprates become SC (6% of doping). The distinctive feature of
this percolative model is that JT bipolarons not only help to build the paths, but they
are also one component for the carrier dynamics, while the second component is of
Fermi character. The percolative theory explains why a maximum Tc is reached at
the optimal doping, and then decays as more charges are introduced: it is the balance
between pairs and stripes that give the optimal Tc. On the one hand stripes pave the
metallic regions, on the other hand they also reduce the number of available pairs
for SC because the carries have been used up. So, stripes enhance or hinder the SC
transition.
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A novel approach to quantum criticality in HTS in cuprates was proposed by
A. Bianconi. His view differs from the QCP driven by quantum magnetic fluctuation
whose features where briefly commented upon in Sect. 4. Following Bianconi, the
variable that would control the proximity to a QCP would be the tensile microstrain,
", and that together with the doping defines the QCP near Tc [113,114]. Two nearly
degenerate ground states fluctuate around this QCP: an inhomogeneous phase of
JT polarons arranged in stripe-like structures, and free charge carriers. The tensile
microstrain could originate in the mismatch between the CuO2 layer and the rock-
salt layer in cuprate perovskites. This mismatch depends on the variation in the sum
of the radius of the metal-ion in the rock-salt layer and the radius of O2� in the
CuO2 plane. This leads to variations of the Cu-O bond length and thus modifies
transport and other properties from those of a system that does not exhibit a micros-
train. The arguments were supported by some of the results we already reviewed
in the context of EXAFS in Sect. 6. The lattice mismatch provokes that the CuO4
plaques rotate, tilt and dimple, changing the CuO bond distance. Using this dis-
tance, the value of " can be estimated by the relation " D 197 < Cu-O > =197 and
related to Tc. The critical bond length .Cu-O D 1:89 ˙ 0:5/ gives a critical value
of "c D 4 ˙ 0:3%, while the critical value of doping, the second control parame-
ter, is 16% of the hole concentration. A very suggestive plot of Tc against the two
control parameters reaches its maximum T 	 140K (Fig. 6). Bianconi concludes
that “e–ph coupling is controlled by the chemical pressure, is the variable that drives
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the system to localization, and there is a QCP where an electronic solid with long
range order competes with the SC order”. By an exact diagonalization of the Hamil-
tonian designed for bipolaron formation, Miranda et al. [115] proved that, indeed,
parameters relevant to Tc are modified under strain. Thus, it was proved that the
polaron tunneling is importantly modified by the uniaxial strain. Secondly, there is
a maximum of isotopic shift, i.e. substitution of O16 by O18, for intermediate val-
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ues of hopping (Fig. 7). In addition, it was shown that the polaronic correlation is
strongest at similar values of hopping, where the isotopic shift is at a maximum
[116]. The results take on more relevance due to the fact that this polaron Hamil-
tonian was successfully used to model local distortion in the EXAFS experiments
performed by Mustre et al. (Sect. 6). Moreover, they might be closely related to
the type of isotopic effects mentioned in the same section and in ref [69, 70]. How-
ever, further studies should be done, either with this type of approach or in a similar
direction, in order to provide supplementary information about the properties that
link free carriers, localized JT polarons, and the SC transition.

11 Conclusions

The problem of HTS in cuprates has been resolved by no means, and there is no uni-
versal theory accepted by the scientific community. At the beginning of the chapter
we depicted this situation with the controversial analyses of experiments and the
highly debated results of calculations. Models based on the JT effect, when com-
bined with the notion of inhomogeneity, have proved that a high Tc is attainable.
Hopefully, after being exposed to this scenario, the reader has been convinced that
such models are no less legitimate than other mainstream models. It seems that the
problem of SC in cuprates is an issue of energy scale. All the models we presented,
though eloquently formulated, rely on some assumptions that can be validated only
by experiments. In this regard, we showed that there is compelling evidence that
lattice effects cannot be ignored, therefore challenging the idea proposed soon after
their discovery of ceramic oxides that phonons are not relevant. Although our expla-
nation of the experiments is unavoidably biased, what remains are the facts of the
plain data, and the clear signature of the scale energy should be free of interpre-
tations. However, the experiments are faced with their own problems, because the
possible driving forces are close in temperature and energy ranges; this makes it
difficult to distinguish which dominate and which are accidentally present. Per-
haps after 23 years of polarized debate, started by the old theories and increased
by the latest, we are still missing an ingredient that will allow us to put all the pieces
together and renovate the perspectives of HTS in cuprates.
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Polarons and Bipolarons in Jahn–Teller
Crystals

Chishin Hori and Yasutami Takada

Abstract A review is made on the developments in the last two decades in the
field of the Jahn–Teller effect on itinerant electrons in Jahn–Teller crystals. Special
attention is paid to the current status of the researches on the fullerene supercon-
ductors and the manganite perovskites exhibiting the colossal magnetoresistance.
Present knowledge about the polarons and bipolarons in the typical Jahn–Teller
model systems is also summarized, together with some original results of our own.

1 Introduction

Physics and chemistry of the Jahn–Teller (JT) effect started from the theory in
1930s [1], investigating structural instabilities of high-symmetry configurations in
molecules. The theory has been developed further and sophisticated in the next sev-
eral decades to provide a very general quantum-mechanical framework for treating
a particular type of electron-vibrational (or electron–phonon) coupling in molecules
or solids in which two or more orbitally degenerate (or pseudodegenerate) electronic
states are mixed nonadiabatically through ionic (or lattice) vibrational modes.

Due to its intrinsic complexity arising from the orbital multiplicity, the researches
in this field have been almost exclusively concerned with the JT effect in rather
simple systems like molecules, small clusters, and a single JT impurity center in
solids in which itinerant electrons do not play an important role [2,3]. Even if the JT
crystals, in which an infinite number of such JT centers occupy regular positions in
a lattice, are considered in the context of the cooperative JT effect, relevant electrons
in the system have usually been assumed to be localized [4].

A surge of a new sort of interest in the JT effect occurred in the late 1980s
when high-temperature superconductivity (HTSC) was discovered in the copper
oxides [5]. Because these compounds may be regarded as a class of the JT crys-
tals, people began to pay much attention to the JT effect on itinerant electrons. In
1990s the interest in the JT effect in metals was intensified by both the discovery
of superconductivity in the alkali-metal-doped fullerides of the type A3C60 with
A D K, Rb, Cs (or their combinations) [6] and the subsequent one of the colossal
magnetoresistance (CMR) in the manganite perovskites [7, 8].
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As for the current status of the researches on these materials, a rather compre-
hensive review was given by Bersuker in Sect. 8.4 of [3] from the standpoint of
elucidating the roles of the JT effect. Therefore it would not be necessary to reiterate
a similar kind of review here, particularly for the issue of HTSC for which Bersuker
made a very detailed account, but it might be appropriate for us to make some
supplementary comments or remarks on the issues of the CMR and the fullerene
superconductors from our perspective that is reflecting the experience of one of the
authors (Y.T.) who was engaged in the studies on those issues in 1990s.

The CMR is a technical term to indicate the phenomenon of a strong variation
of the electric resistance with the change of applied magnetic fields, as observed,
for example, in La1�xCaxMnO3 with x in the range between 0.2 and 0.4. The con-
duction electrons in these compounds are composed of the Mn eg orbitals with the
density of 1 � x electrons per Mn ion, implying that the system can be regarded
as a JT crystal of the canonical E ˝ e type. It is widely believed that the double-
exchange (DE) mechanism associated with the Hund’s-rule coupling between the
Mn t2g localized core spins and the mobile eg electrons [9–11] plays a crucial
role in making a qualitatively correct explanation of the CMR, but an important
claim was made that the JT coupling was also needed for its quantitatively accu-
rate description [12]. This claim has been confirmed by both experiment using
the state-of-the-art photospectroscopy [13] and theory based on the first-principles
calculation of the electronic band structure and the electron–phonon coupling con-
stant [14,15]. Thus the CMR can be regarded as the outcome of the interplay among
spin, charge, orbital, and phonon degrees of freedom, as emphasized in several
review articles on the manganites [16–22].

This complicated interplay has made the physics of manganites very rich and we
can enumerate several fascinating proposals of new physics in relation to these com-
pounds, including (1) the cooperative JT effect mediated by electron hopping rather
than by phonons (or lattice distortions) [14], (2) the phase-separation scenario for
the CMR in the manganites, in which the Coulomb correlation is considered to
be a more important competitor with the DE mechanism than the electron–phonon
coupling [17], (3) the concept of the complex-orbital ordering, in which linear
superposition of basic orbitals, dx2�y2 and d3z2�r2 , with complex coefficients is
suggested [23], (4) the topological-phase scenario for the formation of the stripe
and the charge-ordered states, in which the key notion is the winding number (the
Chern integers) associated with the Berry-phase connection of an eg electron par-
allel transported through the JT centers along zigzag one-dimensional paths in an
antiferromagnetic environment of the t2g core spins [24, 25], and (5) the concept
of the geometric energy which is defined as the difference in energy caused by
the change in the winding number [26]. This is a concept proposed in analogy to
the exchange energy (or the spin singlet-triplet energy splitting) in the case of spin
degrees of freedom.

This complication in the manganites, however, has also a negative side, because
it obscures the actual role of the JT effect on the CMR. In fact, what is actually
confirmed so far is that the conduction electron should not be treated as a bare band
electron but a rather small polaron in order to obtain the CMR in the experimentally
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observed magnitude, if we try to explain the CMR in terms of a one-conduction-
electron picture. This polaron motion can be realized not only through the E ˝
e coupling (or the off-diagonal vibrational coupling in degenerate electronic-state
representation) but also through the conventional Holstein model [27] in which a
nondegenerate electronic orbital (A) is coupled to a nondegenerate non-JT phonon
(a), leading to the “A˝ a” problem with the diagonal vibrational coupling. In this
respect, we do not know to what extent the JT effect is an indispensable factor in
bringing about the CMR. In order to give a definite answer to this question, we
need to know, first of all, more detailed information about the similarities and the
differences in the polaronic nature between the E ˝ e JT and the A ˝ a Holstein
models. Section 3 of this article addresses this issue by comparing the results of the
one-electron problem in various theoretical models, each of which is described by
the Hamiltonian introduced in Sect. 2.

The fulleride is an insulating molecular crystal in which narrow threefold con-
duction bands (with the bandwidth W of the order of 0.5 eV) are derived from the
triply-degenerate t1u LUMO orbitals of a C60 molecule. With the doping of three
alkali atoms per one C60, we obtain the metallic compound A3C60 in which the
conduction bands are half-filled. This compound exhibits superconductivity with
the transition temperature Tc over 30K and the short coherence length �0 of only
a few times the C60-C60 separation. The conduction electron interacts with various
intramolecular phonons (two nondegenerateag modes and eight fivefold degenerate
hg multiplets), but the high-energy (!0 	 0.2 eV) tangential hg modes couple most
strongly to the electron, as suggested by the first-principles calculations [28–31],
implying that A3C60 can be modeled as a JT crystal of the T1u ˝ hg type.

As discussed in many review articles [32–39], superconductivity in A3C60 is
generally understood in terms of a simple BCS picture of the s-wave pairing driven
by these high-energy hg intramolecular JT phonons. This understanding is based
on, among others, the observation of the isotope effect on Tc by the substitution of
13C for 12C [40–43] and also on the reproduction of the observed Tc by using the
McMillan’s formula [44, 45]

Tc D !0

1:2
exp



� 1:04.1C �/
� � ��.1C 0:62�/

�
; (1)

in which the nondimensional electron–phonon coupling constant � is evaluated to
be in the range 0:5 � 1 [28–30] and the Coulomb pseudopotential �� is taken as
about 0.2. In particular, the characteristic dependence of Tc on the lattice constant
of the crystal a0 is well reproduced in this BCS scenario [46].

A closer look at this system, however, reveals that the present situation is not
so clear and simple. In fact, it is far from being settled for the reasons given in the
following: (1) The McMillan’s formula is derived based on the Migdal–Eliashberg
(ME) theory for superconductivity [47] which is valid only when the parameter
!0=EF (with EF the Fermi energy) is small enough to neglect the vertex correc-
tions [48]. In A3C60, however, this parameter is not small, owing to the fact that
EF .	 W=2/ is about the same as !0. Thus we need to consider the contribution
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from the vertex corrections [49]. (2) In the case of EF 	 !0, the concept of �� is
not applicable, either [50], requiring that the electron–electron and electron–phonon
interactions should be treated on an equal footing. Actually, the Coulomb repulsion
between electrons U (or the Coulomb correlation) is strong in the C60 molecule,
rendering the interplay of this repulsion including the Hund’s-rule coupling J with
the phonon-mediated attraction �Uph as a matter of intense research even in a
single-site T1u˝ hg JT system [51–55]. (3) As mentioned before, the isotope effect
for the completely substituted A313C60 can be explained quantitatively well with
resort to the McMillan’s formula, but it is concluded [56] that the formula can never
explain the intriguing experiment done by Chen and Lieber who observed the large
difference in Tc between the atomically substituted Rb3(13Cx12C1�x)60 and the
molecularly substituted Rb3(13C60)x(12C60)1�x [57, 58].

In order to overcome these difficulties, Han, Gunnarsson, and Crespi have
calculated the on-site pairing susceptibility in the dynamical mean-field theory
(DMFT) [59] and claimed that the JT phonons in both E ˝ e and T1u ˝ hg sys-
tems bring about a local (intramolecular) Cooper pair which does not suffer much
from the effect of large U , in contrast to the non-JT phonons in the Holstein (A˝a)
model [60]. They have also claimed that with the change of the parameters such as
U , �, and the conduction-electron density n, the obtained Tc behaves much differ-
ently from that predicted in the McMillan formula (or in the ME theory), leading
to a qualitative explanation of the interesting Tc versus n dependence as observed
in Na2CsxC60 and K3�xBaxC60 compounds [61]. These interesting results, how-
ever, are still open to debate, partly because the effect of the Hund’s-rule coupling
J is not considered in their work, though it is evident that J works to destroy the
intramolecular (or on-site) Cooper pair, and partly because there is a completely
opposite claim that the ME theory is very robust in the JT systems [62, 63].

In relation to the Hund’s-rule coupling J , there is another controversial claim
that the dynamical feature of the JT phonons is not crucial at all in such a strongly-
correlated system as A3C60, especially in the situation near the Mott–Hubbard
transition [64,65] or the antiferromagnetic (AF) state [66]. According to their claim,
the only role that the JT phonons can play is to make J effectively negative, lead-
ing to the multi-band Hubbard model with the on-site strong repulsion U and an
additional inverted Hund’s-rule coupling, based on which superconductivity in the
fullerides is addressed [67, 68].

A further simplification of the system is pursued by arguing that even the
band-multiplicity is not crucial, either, as long as the physical parameters are cho-
sen appropriately. What really matters is only the strong competition between the
phonon-mediated attraction �Uph and the local Coulomb repulsion U . Actually,
by adopting the Hubbard–Holstein model (or the A ˝ a system with the on-site
Coulomb repulsion U ) and exploiting the fact that the coherence length �0 is very
short [70], the calculations of Tc have been done, with the electron–electron and
electron–phonon interactions treated on an equal footing, to find that the experimen-
tal results, including (a) the relations between Tc and a0 in both fcc and simple cubic
lattices [36, 69], (b) the experiment by Chen and Lieber on the anomalous isotope
effect [57, 71], and (c) the relation between Tc and n [36, 61], are all successfully
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reproduced in a coherent fashion. The point here is the consideration of the off-site
pairing (leading to the extended s-wave nature) composed of not the bare elec-
trons but the (phonon fully-dressed) polarons in order to avoid the strong on-site
repulsion [72].

To summarize, much more works, with taking various aspects into account, are
needed to obtain a full understanding of the mechanism of superconductivity in
A3C60. Even in the E˝ e and T1u˝hg model systems, setting aside the fullerides,
the JT effect on superconductivity, especially in the presence of the Coulomb effect
including the Hund’s-rule coupling, is not known well. To some extent we shall
address this issue in the model JT systems in Sect. 4 of this article.

Incidentally, in any kind of the strong-coupling electron–phonon systems, there
is always a subtle argument on the competition between the two scenarios for the
occurrence of superconductivity; one for the formation of a Cooper pair of two
polarons and the other for bipolaron superconductivity [73–78]. In the former, the
pair formation and superconductivity occur simultaneously, while in the latter, the
bipolaron is formed first and then its Bose-Einstein condensation (BEC) brings
about superconductivity. At the present stage of the theoretical investigations in this
field, there is no precise knowledge about the conditions to make the one scenario
dominate the other, but it is usually presumed that the second scenario will apply, if
the electron–phonon coupling � is large enough. Therefore we shall be mainly con-
cerned with this situation and treat the bipolaron formation and its BEC in Sect. 4.
In the rest of this article, we shall employ units in which kB D � D 1.

2 Preliminaries

2.1 Models for JT Crystals

Let us imagine a lattice composed ofN JT centers at which electronic and phononic
states are, respectively,Ne- and nph-fold degenerate. In general, we may decompose
the HamiltonianH for this system as

H D
X

j

Hj CHt CHelastic CHV ; (2)

where Hj is the part containing all the possible terms defined at site j, Ht describes
the inter-site hoppings of electrons, Helastic represents the elastic interactions bet-
ween neighboring sites (or the inter-site phonon–phonon interactions), and HV
takes care of the inter-site Coulomb repulsions. In the fullerides, we need not con-
sider Helastic from the outset and HV will not be crucial. In the manganites, on the
other hand,Helastic may be important [14] andHV may also be important in consid-
ering the nanoscale phase separation, but because we are not primarily concerned
with either the cooperative JT effect mediated by phonons or the phase-separation
scenario, we shall forget both Helastic and HV altogether in this article.
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With the assumption that electrons hop only between nearest-neighbor sites, we
may write Ht in second quantization as

Ht D �
X

hj;j0i

NeX

; 0D1

X

�

t
 0

jj0

�
c
	
j�cj0 0� C c	j0 0�cj�

�
; (3)

where t
0

jj0 is the overlap integral between the electron orbital � at site j and the

other � 0 at site j0 and c	j� (cj� ) creates (annihilates) an electron at site j with orbital

�.D 1; : : : ; Ne/ and spin �.D";#/. The actual values for t
0

jj0 can be determined
in a concrete manner [25], once the crystal structure is specified, but if we are not
concerned with some specific situation, we shall take

t
 0

jj0 D
(
t for a nearest-neighbor pair hj; j0i and � D � 0;
0 otherwise;

(4)

which is the simplest choice for this hopping matrix.
The site term Hj consists of the chemical-potential term H

.j/
e , the electron–

electron interaction term H
.j/
ee , the phononic term H

.j/
ph , and the electron–phonon

coupling term H
.j/
e�ph. (The coupling with the t2g core spins is needed in the

manganites, but it is neglected here.) The first and second terms are written as

H .j/
e D� �

X

�

nj� ; (5)

H .j/
ee DU

X



nj"nj# C 1

2
U 0

X

¤ 0

X

�� 0

nj�nj 0� 0

C 1

2
J
X

¤ 0

X

�� 0

c
	
j�c

	
j 0� 0cj� 0cj 0� C 1

2
J 0
X

¤ 0

X

�

c
	
j�c

	
j��cj 0��cj 0� ;

(6)

where� is the chemical potential and nj� .D c	j�cj� / denotes the electron number
operator. The on-site Coulomb interaction is prescribed by the parametersU , U 0, J ,
and J 0, which represent, respectively, the magnitudes of the intra-orbital repulsive,
the inter-orbital repulsive, the orbital-exchange (or the Hund’s-rule coupling), and
the pair-exchange interactions. These parameters are related to each other through

U D U 0 C J C J 0 D U 0 C 2J: (7)

In (7), rotational symmetry in the degenerate-orbital space leads to the first equality,
while we can derive the second one (or J D J 0) by comparing the concrete
analytical expressions for J and J 0 [20].
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With use of the phonon energy !0, the phononic term is given simply as

H
.j/
ph D !0

nphX

�D1
a
	
j�aj� ; (8)

with a	j� (aj�) the local-phonon creation (annihilation) operator at site j with mode

�.D 1; : : : ; nph/. Finally, the coupling term H
.j/
e�ph is described as

H
.j/
e�ph D gNe˝nph

X

�

X

 0

X

�

V
.�/
 0
c
	
j�cj 0� .aj� C a	j�/; (9)

where gNe˝nph
is the electron–phonon coupling constant characterizing the Ne ˝

nph JT center and V .�/ 0 is its coupling matrix element. Its concrete form will depend
on the type of the JT system. For example, in the E ˝ e system in which the elec-
tronic orbitals are dx2�y2 and d3z2�r2 for � D 1.D / and 2.D �/, respectively, the

results for V .�/ � .V .�/ 0 / with � D 1.D / and 2.D �/ are written as

V .1/ D
�
0 1

1 0

	
and V .2/ D

�
1 0

0 �1
	
: (10)

In the T ˝ t system, on the other hand, they are given as

V .1/ D
0

@
0 0 0

0 0 1

0 1 0

1

A ; V .2/ D
0

@
0 0 1

0 0 0

1 0 0

1

A ; and V .3/ D
0

@
0 1 0

1 0 0

0 0 0

1

A ; (11)

while in the T ˝ h system, they are obtained as

V .1/ D
p
3

2

0

@
0 0 0

0 0 1

0 1 0

1

A ; V .2/ D
p
3

2

0

@
0 0 1

0 0 0

1 0 0

1

A ; V .3/ D
p
3

2

0

@
0 1 0

1 0 0

0 0 0

1

A ;

V .4/ D
p
3

2

0

@
1 0 0

0 �1 0
0 0 0

1

A ; and V .5/ D 1

2

0

@
�1 0 0

0 �1 0
0 0 2

1

A : (12)

Of course, V .1/ D 1 for the A˝ a system.
In considering electron motion in a crystal, it is convenient to introduce momen-

tum representation which is the Fourier transform of site representation as

ck� D 1p
N

X

j

e�i j�kcj� and ak� D 1p
N

X

j

e�i j�kaj� : (13)
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In this representation, Ht can be diagonalized. In particular, under the assumption
of (4), we obtain

Ht C
X

j

H .j/
e D

X

k�

.k � �/ c	k�ck� ; (14)

with k the single-electron dispersion relation, which is given by

k D �2t
dX

iD1
coski ; (15)

for a simple cubic lattice in d dimensions. Though the results will not be given here,
other parts of the Hamiltonian can be rewritten accordingly in this representation.

2.2 Conservation of Pseudospin Angular Momentum

In the E ˝ e JT system, we can define Tj the operator to rotate pseudospin at site j
by

Tj D i
�
a
	
j�aj� � a	j�aj�

�
� i

2

X

�

�
c
	
j��cj�� � c	j��cj��

�
: (16)

As easily checked, this operator commutes withHj, leading to the local conservation
law of “pseudospin angular momentum” in the electron–phonon coupled system. If
(4) is assumed, the total pseudospin rotation operator T .� P

j Tj/ is conserved in
the entire crystal.

In order to better exploit this local conservation law, we shall change the rep-
resentation in which the one-body basis functions are the eigen functions of both
the Hamiltonian and Tj. This can be accomplished by the following canonical
transformation from the basis functions .; �/ to those .˛; ˇ/ as

�
dj˛�

djˇ�

	
D 1p

2

�
1 �i
1 i

	�
cj��

cj��

	
and

�
bj˛

bjˇ

	
D 1p

2

��i 1
i 1

	�
aj�

aj�

	
: (17)

In this new representation,H .j/
e�ph and Tj are, respectively, rewritten as

H
.j/
e�ph D

p
2gE˝e

X

�

h�
bj˛ C b	jˇ

�
d
	
j˛�djˇ� C

�
b
	
j˛ C bjˇ

�
d
	

jˇ�dj˛�

i
; (18)

Tj D b	j˛bj˛ � b	jˇbjˇ C 1

2

X

�

�
d
	
j˛�dj˛� � d 	jˇ�djˇ�

�
: (19)
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Equation (18) for H .j/
e�ph explicitly expresses the characteristic feature of the off-

diagonal electron–phonon coupling, in contrast to the the diagonal electron–phonon
coupling in the A˝ a Holstein model [27], in whichH .j/

e�ph is described as

H
.j/
e�ph D gA˝a

X

�

�
a
	
j C aj

�
c
	
j�cj� : (20)

The existence of the conserved pseudospin rotation is not a common feature
among the JT systems. In fact, we cannot define an operator corresponding to Tj

in both T ˝ t and T ˝ h systems. Mathematical analysis of the continuous group
invariances in each JT system determines the presence/absence of such an opera-
tor [79]; the SO.2/ invariance in the E ˝ e system generates the operator Tj, while
there are no such invariances in the T ˝ t system. In Sect. 3, we shall find an unex-
pected consequence of this mathematical structure of the JT system in the behavior
of the polaron mass.

2.3 Theoretical Tools

There are various theoretical tools to investigate the polaron and bipolaron prob-
lems. In the weak-coupling region, the standard method is the perturbation-theoretic
approach including the Green’s-function method. In the strong-coupling region,
on the other hand, the canonical transformation due to Lang and Firsov [80] is
commonly used. This is a method very similar to the Lee–Low–Pines unitary trans-
formation [81] developed for the Fröhlich model [82] and provides a very useful
trial wavefunction for many types of variational approaches.

These are basically analytic methods, but in recent years numerical methods play
a major role. Among them, the simplest one is exact diagonalization in which the
Hamiltonian matrix obtained with an appropriate expansion basis is numerically
diagonalized. This is very elementary, but due to the bosonic character of phonons,
the size of the Hamiltonian matrix increases exponentially as N and/orNe increase.
Thus it is not easy to treat theE˝e system with more than two sites by this method.

In order to take care of larger systems, more sophisticated methods have been
employed. For example, path-integral quantum Monte Calro (PIQMC) [83] is a
powerful method in which bosonic degrees of freedom are analytically integrated
out to provide an effective self-interaction working on an electron and the remain-
ing integral is performed through quantum Monte Carlo (QMC) simulations. Since
the polaron problem does not suffer from the notorious negative-sign problem,
we can hope to obtain accurate results for a lattice of very large N and arbitrary
dimensions by using QMC. Other advanced methods include; (1) density-matrix
renormalization group (DMRG) [84], (2) the large-scale variational method called
“variational exact diagonalization (VED)” [85,86], (3) dynamical Mean-field theory
(DMFT) [87], and (4) diagrammatic Monte Carlo (DMC) [88]. It is very fortunate
that useful textbooks on these methods have recently been published [89, 90]. We
suggest interested readers to consult them for details.
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3 Polaron: Single-Electron Problem

In the polaron problem (or the single-electron system coupled with phonons), both
spin degrees of freedom and the electron–electron interaction as described by H .j/

ee

are irrelevant. The first work on the JT polaron was done by Höck et al. [91] on the
E ˝ b system [92] which, unfortunately, possesses a too simple internal structure
to provide qualitatively different features from those of the A ˝ a system. Several
works have treated the second simplest E ˝ e system and found a quantitative dif-
ference in the polaron effective mass from that in the A˝a system [63,93–98]. The
T ˝ t JT polaron has also been studied and the difference from that in the E ˝ e
system is revealed [99–101].

Let us start with theE˝e JT polaron in the weak-coupling region (or for the case
of small gE˝e), in which the perturbation approach in momentum representation is
useful. The thermal one-electron Green’s function Gk� .i!n/ with !n the fermion
Matsubara frequency is defined at temperature T by

Gk� .i!n/ D �
Z 1=T

0

d� ei!n� hT�dk� .�/d
	
k� i: (21)

This function is related to the self-energy†k� .i!n/ through the Dyson equation as
Gk� .i!n/

�1 D i!n� kC��†k� .i!n/. In Fig. 1, diagrammatic representation
for †k� .i!n/ are given, together with the formal expansion series for the vertex
function � 0� 0;� .k0i!n0 ;ki!n/. Using the self-energy analytically continued on
the real frequency axis, we can determine the polaron (renormalized) dispersion
relation Ek by the solution of Ek D k C †k� .Ek/ � �. The bare band mass m
and the polaron effective mass m� are derived from the curvatures of k and Ek at
k D 0, respectively. Of course, the polaron stabilization energyEJT.	 �g2E˝e=!0/
is obtained as the shift of �.D �EJT/.

Σ= + Γ=Γ with

Self-energy

b

a

Vertex part

+ + ...Γ = + + ++ ++

Γ0 Γ2a Γ2b Γ2c Γ2d Γ2e Γ2fΓ1

Fig. 1 (a) Self-energy in diagrammatic representation. (b) Expansion series for the vertex � up
to g4. Thick solid, thick dashed, and thin dashed lines indicate, respectively, the electron Green’s
function, the dressed phonon, and the bare phonon propagators
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In the weak-coupling region, we may replaceGk� .i!n/ by the bare one .i!n �
k C �/�1 in Fig. 1 and take � 0� 0;�.k0i!n0 ;ki!n/ as unity or the first term �0 in
Fig. 1b. Then we obtain the result for the mass ratio m�=m, the most fundamental
quantity in the polaron physics, as

m�

m
D 1C 2

�
gE˝e
!0

	2
: (22)

Similar calculations can be done for A˝ a, T ˝ t , and T ˝ h to find

m�

m
D 1C

�
gA˝a
!0

	2
;
m�

m
D 1C2

�
gT˝t
!0

	2
; and

m�

m
D 1C 5

3

�
gT˝h
!0

	2
; (23)

from which we see that it is exactly the same mass enhancement factor in all the
cases, if we normalize the coupling constants in the following way:

gA˝a D g; gE˝e D 1p
2
g; gT˝t D 1p

2
g; and gT˝h D

r
3

5
g: (24)

In fact, there is no qualitative difference between the JT polaron and the Holstein
polaron in this region. Even quantitatively, they are exactly the same, as long as the
coupling constants are normalized according to (24).

In the strong-coupling limit, a polaron will be completely localized at a single
site, indicating m�=m D 1, and the problem is reduced to a single-site system
in which the polaron stabilization energy is a main issue [102]. For a finite but very
large coupling, the localized polaron will begin to hop between sites, but the hopping
in this case is a very rare event. Thus physics connected with such a hopping can be
well captured by just considering a two-site system. The same is true for the anti-
adiabatic case in which t is very small, implying that the hopping is a very rare event
from the outset.

Now, we need to know a formula to evaluatem�=m from the eigen-state energies
in a finite-site system. For this purpose, let us consider a one-dimensional (d D 1)
infinite chain first. By making an expansion of the bare dispersion k in (15) around
k D 0, we see that t D 1=2m D Œmaxfkg�minfkg�=4, where max=minfkg is the
maximum/minimum value of k in the entire Brillouin zone. With the introduction
of the electron–phonon interaction, t will be modified effectively into t�. Then we
can follow a similar argument to reach the relation of t� D 1=2m� D ŒmaxfEkg �
minfEkg�=4. By taking the ratio of these results, we obtain an interesting result as
m�=m D Œmaxfkg �minfkg�=ŒmaxfEkg �minfEkg�. In this derivation, we have
assumed one dimensionality, but exactly the same result can be obtained even if we
consider in both 2D and 3D, indicating that m�=m can be evaluated only through
the polaron bandwidth, maxfEkg �minfEkg, irrespective of dimensionality.

The total polaron bandwidth can be estimated by calculating Ek in finite-site
systems where some discrete values of k’s are available. In the two-site problem, if
we write the ground-state wavefunction for a polaron localized at site j as ‰j, the
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ground- and the first-excited-state wavefunctions in a two-site (j D 1 or 2) system
are well represented by ‰C D .‰1 C‰2/=

p
2 and ‰� D .‰1 �‰2/=

p
2, respec-

tively, in the region under consideration. The former corresponds to the bonding
state (k D 0) with energy EC and the latter to the anti-bonding one (k D �) with
energy E�. Then, since � � 0 D 2t in the two-site calculation, we obtain m�=m
through the relation

m�

m
D 2t

E� � EC : (25)

Note that the result m�=m obtained through (25) does not depend on the value t in
the strong-coupling and/or anti-adiabatic region.

With use of (25), a rigorous analytical result has already been obtained for the
E ˝ e JT polaron as [93]

m�

m
D I0.g2E˝e=!20/C I1.g2E˝e=!20/ 	

2p
�

!0

g
exp

"
1

2

�
g

!0

	2#

; (26)

where Ii .x/ is the modified Bessel function of i th order and (24) is used in arriving
at the last equation. Compared to m�=m D expŒ.g=!0/2� the Holstein’s famous
factor for the A ˝ a system, we come to realize that m�=m becomes much less
enhanced in the E ˝ e polaron than that in the Holstein model.

By comparing the result of m�=m for the infinite-site system obtained by
VED [96] (see, Fig. 2), we are confident that the two-site calculation provides a
reasonably good result for m�=m in the whole range of g at least in the anti-
adiabatic region of t=!0. The relevance of the two-site calculation has also been
seen in the Holstein model [78]. Thus we can expect that the same is true for the
T ˝ t JT polaron. In Fig. 3, we show the result of m=m� for the T ˝ t system
(solid curve) which is obtained in the anti-adiabatic region by implementing an

Fig. 2 Inverse of the polaron
mass enhancement factor,
m=m�, as a function of
g2=!20 for the A˝ a (HP:
Holstein polaron) and the
E ˝ e JT polaron. In the
latter, the result in the infinite
chain (d D 1) is compared
with that in the two-site
system as well as the analytic
result in (26). The
anti-adiabatic condition of
!0=t D 5 is assumed

1
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Fig. 3 Inverse of the mass
enhancement factor, m=m�,
as a function of g2=!20 with
d D 1 for the T ˝ t (solid
curve) and the E ˝ e
(dotted-dashed curve) JT
polarons in comparison with
the Holstein one (dashed
curve). All the results are
obtained by exact
diagonalization applied to the
two-site Hamiltonian in the
anti-adiabatic region

2

0.2

4 6

1

0

m
/

m
*
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0.6

0.8

0 5tω =
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: JTP ( )E e⊗

( )T t⊗

2

E e⊗

0ωg dg 2g /
2

exact diagonalization study of the two-site Hamiltonian [100, 101]. This result is
situated between the corresponding ones for the E ˝ e JT (dotted-dashed curve)
and the A˝ a Holstein (dashed curve) polarons.

Physically the polaron mass enhancement is brought about by the virtual excita-
tion of phonons. In the A˝ a Holstein model no restriction is imposed on exciting
multiple phonons, implying that all the terms in Fig. 1b for the vertex function con-
tribute, while in theE˝e JT model, there is a severe restriction due to the existence
of the conservation law intimately related to the SO.2/ rotational symmetry in the
pseudospin space. Actually, among the first- and second-order terms for the ver-
tex function, only the term �2f contributes, leading to the smaller polaron mass
enhancement factor m�=m than that in the Holstein model in which the correction
�1 is known to enhancesm�=m very much. In this way, the applicable range of the
Migdal’s approximation [48] becomes much wider in the E ˝ e JT system [63].

In order to understand the reason why the result form�=m in the T ˝ t JT system
comes between those in the A˝a and E˝ e systems, we shall rewriteH .j/

e�ph in (9)
for the T ˝ t system as [101]

H
.j/
e�ph D

r
2

3
gT˝t

h
.bCj1 C bj2/.d

C
j1�dj3� C dCj3�dj2� � 2dCj2�dj1� /

C .bj1 C bCj2/.dCj3�dj1� C dCj2�dj3� � 2dCj1�dj2� /

C .bCj3 C bj3/.2d
C
j3�dj3� � dCj1�dj1� � dCj2�dj2� /

i
; (27)

by introducing an appropriate unitary transformation. The first two terms in (27) has
a structure very similar to that in (18) representing the feature of the off-diagonal
electron–phonon coupling, which makes many terms in the vertex correction vanish.
On the other hand, the last term in (27) has the feature of the diagonal electron–
phonon coupling as in the A˝ a system. In this respect, the system T ˝ t may be
regarded as T ˝ .a˚ e/, an intermediate character.
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Fig. 4 Inverse of the mass
enhancement factor, m=m�,
for the E ˝ e JT polaron as a
function of g2=3!20 in the
simple cubic lattice, in
comparison with the
corresponding result in the
Holstein polaron [94]

0 1tω =
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0.2

1

0

m
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*
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2 4 62

0ωg dg2g /
2

The reduction of t ! a˚ e can also be ascertained by considering the adiabatic
potential energy surface for the T ˝ t system. The potential contains four equivalent
wells for sufficiently large gT˝t [103–105], but the wells are not isotropic and the
vibrational t-mode splits into an a-mode of energy !0 and two e-modes of energyp
2=3!0.
In Fig. 4,m=m� for theE˝e JT polaron in the intermediate-adiabaticity region is

given in comparison with the corresponding one for the Holstein polaron in the sim-
ple cubic lattice (d D 3/. The results are obtained by PIQMC [94] and the physical
message is just the same as the one we have already explained.

In concluding this section, we emphasize an amazing fact that the internal
mathematical structure of the JT center determines the magnitude of the polaron
effective mass. This implies that there will be an intrinsic difference in m� between
the manganese oxides La1�xSrxMnO3 with eg electrons and the titanium ones
La1�xSrxTiO3 with t2g electrons, as may be observed by the difference in the trans-
port mass or the T -linear coefficient in the low-temperature electronic specific heat
Cv.T / [101]. The experimental result on Cv.T / obtained by Tokura’s group [106]
may be relevant to this issue.

4 Bipolarons: Problems with Two or More Electrons

4.1 Bipolaron Formation

If there are two or more electrons in the system, we should take the Coulomb corre-
lation into account by consideringH .j/

ee given in (6). In the case of theE˝e system,
using (7) and (17), we can rewrite (6) into
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H .j/
ee D

�
U 0 C J �

X



nj"nj# C
�
U 0 C J �

X

�

nj˛�njˇ��

C �U 0 � J �
X

�

nj˛�njˇ� C 2J
X

�

d
	
j˛�d

	

jˇ��dj˛��djˇ�

D
NU
2
nj
�
nj � 1

�� 2J
X

�

nj˛�njˇ� C 2J
X

�

d
	
j˛�d

	

jˇ��dj˛��djˇ� ; (28)

where NU � U 0 C J and nj �P� nj� .
In addition to the Coulomb interaction, the phonon-mediated interactions Uph

work on the electrons. In the weak-coupling and anti-adiabatic region, the lowest-
order perturbation calculation provides Uph DPj U

.j/
ph with U .j/ph obtained as

U
.j/
ph D 2

g2E˝e
!0

X

�

nj˛�njˇ� � 2
g2E˝e
!0

X

�

d
	
j˛�d

	

jˇ��dj˛��djˇ� ; (29)

in the E ˝ e system. By comparing (29) with (28), we notice that the phonon-
exchange effect makes J decrease, while NU unchanged at least up to this order
of perturbation. This result is somewhat different from the one in the single-band
system. In fact, in the case of the A ˝ a system with the Hubbard-U interaction
HU .D U Pj nj"nj#/, the corresponding Uph is obtained as

Uph D �2
g2A˝a
!0

X

j

nj"nj#; (30)

indicating that the Coulomb repulsion U itself is reduced by the phonon-induced
attraction. Of course, the electron–phonon interaction shifts both the hopping inte-
gral t and the chemical potential � as well.

The formation of a bipolaron (or a bound pair of two polarons) is established, if
the ground-state energy of the two-electron system is lower than twice the ground-
state energy of a polaron. This issue has been studied rather intensively for the
Holstein bipolaron [78], but it is not the case for the JT bipolaron. In [96], the
electron–electron correlation function and the effective mass of an E ˝ e bipo-
laron was studied in one dimension in comparison with the corresponding results
for the Holstein bipolaron [107]. In Fig. 5, we plot the phase diagram for the bipo-
laron formation, from which we find that the JT bipolaron is less stable than the
Holstein one.

4.2 Two-Site Four-Electron E ˝ e System

Due to huge dimensions of the Hilbert space for JT systems, it is quite difficult
to treat many JT polarons even with state-of-the-art supercomputers. Therefore we
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Fig. 5 Phase boundary for
the bipolaron
formation [96, 107]. The
spatial dimension of the
system is indicated by d
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have to be satisfied with studying small clusters, if we resort to exact diagonalization
or its marginal refinements.

Here we present our results of the two-site E ˝ e JT model at half-filling (two
electrons per site on average) at which the competition between the Coulomb repul-
sion and the JT-phonon induced attraction becomes very eminent, because both the
Hund’s-rule coupling and the pair-exchange interaction work only if two electrons
exist at the same site. This two-site calculation is of particular relevance to the
physics of a crystal in the anti-adiabatic and/or strong-coupling region, but we may
claim that studying this system is generally the first and important step towards a
full understanding of the physics connected with the electron hopping effect in JT
crystals due to the fact that a two-site system is a minimal model containing electron
hopping terms in the presence of various kinds of competing interactions.

As a work preceding to ours, Han and Gunnarsson [108] treated three kinds of
one- and two-site JT models (E ˝ a, E ˝ e, and T ˝ h) in considering the metal-
insulator transition (MIT) in AnC60 with n D 3 or 4. They were mainly concerned
with the parameters in the region of

g 
 !0 
 W 
 U and J � g2=!0 
 W; (31)

in which the effects of the Hund’s-rule and the JT couplings manifest themselves
as merely first- and second-order perturbation, respectively. Here W denotes the
bare bandwidth. Then, as mentioned before, the effect of the JT coupling simply
cancels that of the exchange integral J , excluding more subtle physics driven by
the competition of the JT and Hund’s-rule couplings. We shall discuss this subtle
physics by relaxing the parameter space from the conditions specified in (31).

Before discussing the calculated results, let us consider the two limiting cases
first. One is the limit of g.D p2gE˝e/ ! 1, in which four electrons form two
bipolarons with each localized at a different site due to the fact that the E ˝ e cou-
pling favors the spin-singlet electron pair per site. The structure of the electronic
wave function corresponding to this situation is shown schematically in Fig. 6. Due
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Fig. 6 Structure of the electronic wave function for the two-site E˝ e system at half-filling. This
structure schematically represents “the intra-site singlet state”. Double-sided arrows indicate the
connection of the matrix elements of the wave function via the E ˝ e coupling

−−

Fig. 7 Similar schematic view of the Structure of the electronic wave function for the two-site
E˝ e system at half-filling. This structure represents the state dominated by “the inter-site singlet
state”. In this case, double-sided arrows indicate the connection of the matrix elements of the wave
function via both the E ˝ e coupling and the usual inter-site hopping

to large g, the effective hopping amplitude t� is virtually zero, making the system
insulating. In particular, in the limit of g!1, the ground state is characterized by
an orbital ordering. In the intermediate-coupling region, however, it can be an insu-
lator without the orbital ordering or a nonmagnetic JT Mott insulator, as suggested
by Fabrizio and Tosatti [109]. The detail of the orbital ordering depends on the
choice of t

0

ij : In the diagonal hopping (t
0

ij D tı 0 ), an antiferro-orbital (AFO)
ordering is more favorable than a ferro-orbital one.

Another limit is to take J !1 with keeping U 0=J fixed.1 Due to large U 0 and
J , each site is occupied by two electrons with parallel spins, but the total spin of the
ground state S is not two but zero owing to the superexchange interaction, suggest-
ing an antiferromagnetic or a spin density wave (SDW) state the structure of which
is schematically shown in Fig. 7.

1 In view of the fact that U 0 and J are, more or less, of the same order of magnitude in actual
materials, we consider this condition to be reasonable.
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Fig. 8 Schematic phase diagram for the two-site E ˝ e system at half-filling in the (g; J ) space.
AFO and SDW indicate, respectively, antiferro-orbital ordering and spin density wave states. The
electronic state is specified by either the bare electron (Bare), the single-polaron (SP), or the
bipolaron (BP). Parameters g, !0=t , and J=U 0 are, respectively, chosen as 1, 1, 0.5 along the
line I

In Fig. 8, a schematic phase diagram is shown to connect the above two limits by
changing the parameters g and J . We shall focus our attention on the intermediate-
coupling region along the line I in this figure, where a strong competition between
g and J is expected. This competition is investigated by the calculation of various
physical quantities with use of exact diagonalization. Along the line I, the parame-
ters g, !0=t , and J=U 0 are set equal to be 1, 1, 0.5, respectively. These values are
chosen in reference to the manganites.

The calculated quantities include charge density wave (CDW), spin density
wave, antiferro-orbital ordering, and electron-pairing response functions. The cor-
responding operators are the density operator Ac, the spin density operator As, the
antiferro-orbital operator Ao, and the singlet pairing operator ˆ, all of which are
defined in terms of the original orbitals of .D dx2�y2 / and �.D d3z2�r2/ as

Ac D 1

2

X

�

�
c
	
1�c1� � c	2�c2�

�
; (32)

As D 1

2

X



h�
c
	

1"c1" � c	1#c1#
�
�
�
c
	

2"c2" � c	2#c2#
�i
; (33)

Ao D 1

2

X

�

h�
c
	
1��c1�� � c	1��c1��

�
�
�
c
	
2��c2�� � c	2��c2��

�i
; (34)

ˆ D
X

k;; 0

�k.�; �
0/ck 0#ck"; (35)

where the operator ck� is defined as
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ck� D 1p
2

�
c1� C eikc2�

�
; (36)

where k is either 0 or � ,2 and �k is a complex parameter to be determined
variationally under the normalization and the antisymmetric conditions

X

k;; 0

j�k.�; � 0/j2 D 1 and �k.�; �
0/ D �k.� 0; �/: (37)

With using the operator Ac, we can define the charge response function as

�c.!/ D �i
Z 1

0

dt ei!t�0Ct hŒAc.t/; Ac.0/�i : (38)

Similarly, we can define other response functions �s and �o in terms of As and Ao,
respectively. We can also define the pairing response function by

�p.!/ D �i
Z 1

0

dt ei!t�0Ct hŒˆ.t/; ˆ	.0/�i: (39)

In calculating �p.!/ at ! ! 0C (static limit), we optimize the parameters�k.�; � 0/
so as to maximize the absolute value of �p.0/, through which we can automatically
determine a favorable types of electron pairing for given set of parameters U 0, J ,
and g. More specifically, we can find the better pairing between the two possibilities;
one is the pairing with their total electronic pseudospin T D 0 (SCP0) and the other
is the pairing with T D 1 (SCP1). We denote the former by �p0 and the latter
by �p1.

The response functions in the noninteracting two-site four-electron system are
easily calculated to give �c.0/ D �s.0/ D �o.0/ D 2�p.0/ D �1=t . We
shall normalize the static response functions by the corresponding values in the
noninteracting system; Q� � �t�.0/ for Ac, As, and Ao, while Q� � �2t�.0/
for ˆ.

Now we shall show our calculated results along the line I in Fig. 8. For the sake
of convenience, let us divide the values of J into three regions; weak-coupling
(0 � J=t � 0:5), intermediate-coupling (0:5 � J=t � 1), and strong-coupling
(J=t � 1). The ground-state and the first-excited-state energies are shown in Fig. 9.
In the entire region of the phase diagram, the ground state is always characterized
by S DT D 0. In the weak-coupling region where the effect of g dominates that of
J , the electrons form an intra-site singlet state and the first-excited state is speci-
fied by S D 0 and T D 1, suggesting the dominance of orbital fluctuations. In the
intermediate-coupling region, on the other hand, the electrons begin to form spin-
triplet states at both sites due to the Hund’s-rule coupling, but S remains to be zero

2 Note that we define k modulo 2� , indicating that �k D k.
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brought about by the electron hopping term or the superexchange antiferromagnetic
interaction. From this viewpoint, this phase should be regard as a inter-site sin-
glet state rather than a local-triplet state. Finally in the strong-coupling region, the
first-excited state changes into the one with S D 1, implying the dominance of spin
fluctuations.

The results for the response functions are plotted in Fig. 10 in which a sharp
crossover and the concomitant enhancement of SCP0 and SCP1 are seen. (The total
number of excited phonons in the system was cut off at sixteen, which is enough for
convergence.)

In the weak-coupling region, the AFO response is largest, as expected from
the result of T D 1 for the first-excited state (see Fig. 9) and the electrons form
local singlet states with either the total-pseudospin-zero state (P0) described by
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.d
	

j˛"d
	

jˇ# � d 	j˛#d 	jˇ"/=
p
2 or the total-pseudospin-one state (P1) described by

either d 	
j˛"d

	

j˛# or d 	
jˇ"d

	

jˇ#. The weight of the P0 state is larger than that of the P1
state, leading to the larger response in SCP0 than that in SCP1. As J is gradually
turning on, both AFO and SCP response functions begin to decrease, reflecting the
gradual breaking of the local singlet pairing.

In the intermediate-coupling region, SCP0 and SCP1 cease to decrease and then
increase; each has a peak in the vicinity of the crossover from AFO to SDW states.
This enhancement corresponds to the growth of the inter-site pairing, as seen by
inspecting the forms for P0 and P1. In this region, P0 is represented by either
.d
	

1˛"d
	

2ˇ# � d 	1˛#d 	2ˇ"/=
p
2 or .d 	

1ˇ"d
	

2˛# � d 	1ˇ#d 	2˛"/=
p
2, while P1 by either

.d
	

1˛"d
	

2˛# � d 	1˛#d 	2˛"/=
p
2 or .d 	

1ˇ"d
	

2ˇ# � d 	1ˇ#d 	2ˇ"/=
p
2. Then the diagonal

hopping makes SCP1 dominate over SCP0.
In the strong-coupling region, the SDW response dominates, as expected from

the result of S D 1 for the first-excited state (see Fig. 9). The decrease of the SCP0
and SCP1 responses can be understand in terms of the Lehmann representation of
�p as

lim
!!0�

p.!/ D �
X

n

jh2; njˆjGij2 C ˇˇh6; njˆ	jGiˇˇ2
E.2; n/C 2�� EG

; (40)

where jGi is the ground state, jN; ni denotes the nth excited state of the N -electron
system, E.N; n/ is its energy. (In deriving (40), we have exploited particle-hole
symmetry.) In the two-electron system, each electron becomes localized at a dif-
ferent site as J increases, leading to the saturation of the ground-state energy
E.2; 0/, but the situation is different in the four-electron system; EG does not
saturate but increases almost linearly with U 0 � J . Thus the energy denominator
E.2; n/C 2� � EG becomes large as J and U 0 increase with keeping J=U 0 fixed,
resulting in the decrease of the SCP0 and SCP1 responses. Physically, the period
of antiferromagnetic order is comparable to the coherence length of the spin-singlet
Cooper pair and these two orders do not coexist in this situation.

We have also explored the situation in which g is increased with other parameters
kept fixed. The qualitative behaviors of the response functions are almost the same
as those along the line I, except for the sharpness of the crossover, as illustrated in
Fig. 11 for the number of excited phonons associated with each electron.

4.3 Two-Band Hubbard Model with Hund’s-rule coupling

Inspired by fullerene superconductors, Capone et al. [68] studied a two-band (or
two-orbital) Hubbard model, defined by the Hamiltonian H described as
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H D� t
X

hj;j0i

X

�

�
d
	
j�dj0� C d 	j0�dj�

�

C
NU
2

X

j

nj.nj � 1/C 2 NJ
X

j�� 0

d
	
j˛�d

	

jˇ� 0dj˛� 0djˇ� ; (41)

with NU � 0 and NJ � 0. Note that (1) the sign of NJ is negative, and (2) this
Hamiltonian can be regarded as an effective Hamiltonian for the E ˝ e molecular-
crystal model in the anti-adiabatic and weak-coupling regime of g, but the effect
of g dominates over the Hund’s-rule coupling. The ground state of this model was
analyzed around half-filling by means of DMFT. Since the electrons locally form a
singlet state due to the inverted Hund’s-rule coupling, this system goes to a local-
singlet Mott insulator in the limit of NU !1 at half-filling. Attention was paid to
the physics near this Mott transition.

Using DMFT, Capone et al. calculated the s-wave superconducting gap � as
a function of NU and obtained an intriguing ground-state phase diagram in the
( NU=W; ı) space, shown in Fig. 12, where ı is the doping concentration. It is
remarkable that in the very weak-coupling region of NJ (

ˇ
ˇ NJ ˇˇ =W D 0:05 with W

the bare bandwidth), NU enhances the Cooper pairing close to the Mott transition
( NU=W � 0:8), as called the strongly correlated superconductivity (SCS). Another
DMFT analysis by Han [110], based on the E ˝ e molecular crystal model without
the usual Hund’s-rule coupling, supported the emergence of this SCS.



Polarons and Bipolarons in Jahn–Teller Crystals 863

U
/W

0.04

0.7

0.08

1.1

0

0.8

0.9

1.0

0.6

δ
0.02

Metal
PG

SCS

MI

/ 0.05J W =/

0.06

a

0.4

0.002

0.80

0.004

0.006

0.008

0
0.2

/J W = 0.05

1.0

510 −

10 −

10 −

0 0.1

/

5−

4−

3−

/W

b

Δ

0.6

/U W/

Fig. 12 (a) Ground-state phase diagram for the model with inverted Hund’s-rule coupling with
ı the doping concentration. (b) Superconducting gap at half filling as a function of NU=W [112].
MI, PG, and SCS indicate Mott insulating, pseudogap, and strongly-correlated superconducting
phases, respectively

The scenario leading to SCS is explained as follows: In the Hamiltonian (41),
there are two interactions, NU and NJ . NJ is an attraction responsible for the Cooper
pairing, while NU is a repulsive interaction to renormalize W into the narrower
effective bandwidth W �, which is given by W � D zW with z the renormalization
factor. Since NJ is not anticipated to be renormalized by NU [67], the ratio

ˇ̌ NJ ˇ̌ =W �
becomes larger as NU increases. As is suggested by studies on the attractive Hubbard
model [111], � may become large, if the effective bandwidth and the attraction
become comparable, leading to the peak structure in � as a function of NU forˇ
ˇ NJ ˇˇ =W � � 1.

In real systems, the effectively negative NJ inevitably indicates the rather strong
gE˝e in competition with the bare Coulombic orbital-exchange interaction J . Then,
as shown in Fig. 11, there would appear the effects of gE˝e that are not included in
the simple reduction leading to NJ . Study of theE˝e JT system with fully including
the dynamic phonon effects and faithfully treating the Hund’s-rule coupling is an
important challenge.

4.4 Bipolaron Superconductivity

Although the intermediate-coupling region is realistic and most interesting, it is also
most difficult to treat accurately. Before considering this difficult problem, it would
be helpful to investigate extreme situations of weak- and strong-coupling regions.

In the former region, an electron–phonon interaction brings about an attrac-
tion between electrons, leading to superconductivity in the BCS scenario. In this
sense, it is a well-explored region. In the strong-coupling region, on the other
hand, it is not the case, although the concept of bipolaron superconductivity is
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believed to be basically correct. In fact, the scenario of Bose–Einstein condensation
(BEC) of many bipolarons is not matured enough, because many issues including
the mass enhancement/renormalization and the repulsion between bipolarons are
not satisfactorily solved yet. In this subsection, we shall touch on this bipolaron
superconductivity.

Let us start with the A ˝ a Holstein model. In the strong-coupling region, it is
usually the case to employ the Lang-Firsov transformation [80], defined as

Qcj� D e�iScj�e
iS D e�.aj�a


j /cj� ; and Qaj D e�iSaje
iS D aj � �nj; (42)

where � D gA˝a=!0 and

S D i�
X

j

nj

�
aj � a	j

�
: (43)

Then the original Holstein HamiltonianHH is rewritten with these new variables by

HH D �t
X

hj;j0i�

�
c
	
j�cj0� C c	j0�cj�

�
C !0

X

j

Qa	j Qaj

� 2�2!0
X

j

Qnj" Qnj# �
�
�C �2!0

�X

j

Qnj: (44)

Treating the first two terms in the right hand side of (44) within second-order
perturbation, we obtain

Heff D �Qt
X

hj;j0i

�
B
	
j Bj0 C B	j0Bj

�
C 2 QV

X

hj;j0i
�j�j0 � 2 Q�

X

j

�j; (45)

where the the quasi-boson operator B	j and its density operator �j are defined as

B
	
j D Qc	j" Qcj#; and �j D Qnj� D 1

2
Qnj; (46)

respectively. The various parameters in (44) have been defined by

Qt D 2t2

!0
e�2�2

X

nm

.�1/nCm
nŠmŠ

�2.nCm/

nCmC 2�2 ; (47)

QV D 2t2

!0
e�2�2

X

nm

1

nŠmŠ

�2.nCm/

nCmC 2�2 ; (48)

Q� D �C 2�2!0 C 1

2
z QV ; (49)

where z is the coordination number.
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Now, by exploiting the similarity of the commutation relations of ŒBj; B
	
j0 � D

.1 � 2�j/ıjj0 and ŒS�j ; S
C
j0 � D �2S z

j ıjj0 , we can introduce the exact mapping of the

operators B	j and �j to the spin 1=2 operators through

B
	
j ! SCj ; and �j ! S z

j C 1=2: (50)

With this exact mapping, we can transform HH to the Hamiltonian HXXZ repre-
senting the spin-1=2 quantumXXZ model [113, 114], written by

HXXZ D 2
X

hj;j0i

�
J xSxj S

x
j0 C J ySyj Syj0 C J zS z

j S
z
j0

�
� h

X

j

S z
j ; (51)

where the parameters J x , J y , J z, and h are, respectively, defined by3

J x D J y D Qt ; J z D QV ; and h D 2�C 4�2!0: (52)

The spin-1=2 XXZ model has been extensively investigated, especially for
the case of one dimension by both the Bethe–ansatz approach [115] and field-
theoretic methods [116]. In Fig. 13, the ground-state phase diagram is shown in the
(h=2J x; J z=J x) space. In the regions specified by “Ferro” and “Antiferro”, the
ground state is characterized by a finite energy gap excitation, indicating that the cor-
responding state in the mapped Holstein system is an insulator. More specifically,
the former corresponds to a band insulating state, while the latter to a CDW phase.
In the region indicated by “XY ”, the gapless ground state appears, implying the

3 The sign of J x can be changed by a canonical transformation without changing those of h and
J z, and is not essential. The ratios of J z=J x and h=J x are relevant.
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appearance of a conducting state. According to Leggett [117], the conducting phase
in a pure Bose system is assumed to be always superfluid at zero temperature.

In two dimensions, the ground-state phase diagram has been obtained by quan-
tum Monte Carlo simulation [118,119]. There is a little difference in the vicinity of
the Heisenberg point (J x D J z) from that in one dimension, but they are qualita-
tively quite similar.

The XXZ model is equivalent to a hard-core Bose–Hubbard model with only
nearest-neighbor hopping and interaction. Recently the Bose–Hubbard model has
been investigated, but exact phase diagrams have not been obtained so far in three
or larger dimensions. It is hoped that DMFT will clarify the phase diagram in infinite
dimensions.

Finally we consider the JT bipolarons. In the original E ˝ e model, two vibra-
tional modes are doubly-degenerate. Instead, we treat the E˝ .b1 C b2/model, the
Hamiltonian of which reads

H D �
X

hj;j0i

X

� 0

t 0
�
c
	
j�cj0 0�Cc	j0 0�cj�

�
��

X

j

njC
X

j

X

lD1;2
!la

	

jlajl

C g1
X

j

�
nj˛�njˇ

� �
aj1 C a	j1

�
Cg2

X

j�

�
c
	
j˛�cjˇ�Cc	jˇ�cj˛�

� �
aj2Ca	j2

�
:

(53)

When g1 D g2 and !1 D !2, this model is reduced to the E ˝ e JT system. For
simplicity, we assume that g1=!1 � g2=!2 and treat the g2 term within second-
order perturbation. By adopting a similar method in treating the Holstein model, we
can map the E ˝ .b1 C b2/ model into the effective spin model as

H D 2
X

hj;j0i

X

 0

X

p

J
p
 0S

p
jS

p
j0 0 C 2

X

jp

J
p
?S

p
j˛S

p

jˇ � h
X

j

S z
j ; (54)

where h D 2� and other parameters are given as

J x 0 D J y 0 D
2t2 0

!1
e�2�2

1

X

nm

.�1/nCm
nŠmŠ

�
2.nCm/
1

nCmC 2�21
; (55)

J z
 0 D

2t2 0

!1
e�2�2

1

X

nm

1

nŠmŠ

�
2.nCm/
1

nCmC 2�21
; (56)

J x? D J y? D
2g22
!1

e�4�2
1

X

n

1

nŠ

.�1/n.2�1/2n
nC 2�21 C !2=!1

; (57)

J z
? D 4�21!1 C

2g22
!1

e�4�2
1

X

n

1

nŠ

.2�/2n

nC 2�21 C !2=!1
: (58)

Note (1) there are two kinds of spins S˛ and Sˇ per site and (2) J z
? is much larger

than the other interaction parameters.
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In one dimension, this spin model is represented by a two-leg ladder system
[120] as shown in Fig. 14 and examples of possible phases are schematically given
in Fig. 15. In two dimensions, we may think of the effective spin model as shown in
Fig. 16. As we see, those spin models are the subject of intense researches in relation
to HTSC and at present we cannot give a further reliable information.

5 Conclusions and Future Prospects

We have reviewed the recent developments in the field of the Jahn–Teller effect
on itinerant electrons in Jahn–Teller crystals. In Sect. 1, we have summarized the
current status of the researches on the fullerene superconductors and the manganite
perovskites exhibiting the colossal magnetoresistance and concluded that, although
various impressive findings have been made in relation to those oxides, there still
remain many challenging problems, reflecting the intrinsic complexities of those
materials. In Sect. 2–4, we have focused on the model JT systems, in particular, the
canonical E ˝ e model, and discussed some of the interesting features of polarons
and bipolarons in the JT crystals, including our own original contributions.

In concluding this review, we have to admit that the researches on the JT effect
on itinerant electrons are still in a very early stage, considering the richness of the
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Fig. 16 Schematic representation of the effective spin model for the E ˝ .b1 C b2/ molecular
crystal system in two dimensions. The two-leg ladders, each of which represents a one-dimensional
E ˝ .b1 C b2/ crystal, are piled in the direction of z axis

problem concerning the interplay among spin, charge, orbital, and phonon degrees
of freedom. We would presume that this field of research will pose very good chal-
lenging projects for the next-generation supercomputers and hope that such heavy
numerical works will open a new rich field of physics and chemistry.

Acknowledgements This work was partially supported by Global COE Program “the Physical
Sciences Frontier”, the Ministry of Education, Culture, Sports, Science, and Technology (MEXT),
Japan as well as by a Grant-in-Aid for Scientific Research in Priority Areas “Development of New
Quantum Simulators and Quantum Design” (No.17064004) of MEXT, Japan. We would like to
thank M. Kaplan, H. Koizumi, T. Hotta, and H. Maebashi for useful discussions for years.

References

1. H.A. Jahn, E. Teller, Proc. R. Soc. Lond. A161, 220 (1937)
2. R. Engleman, The Jahn–Teller Effect in Molecules and Crystals (Wiley, New York, 1972)
3. I.B. Bersuker, The Jahn–Teller Effect (Cambridge University Press, Cambridge, 2006)
4. M.D. Kaplan, B.G. Vekhter, Cooperative Phenomena in Jahn–Teller Crystals (Plenum,

New York, 1995)
5. J.G. Bednorz, K.A. Müller, Z. Phys. B 64, 189 (1986)
6. A.F. Hebard, M.J. Rosseinsky, R.C. Haddon, D.W. Murphy, S.H. Glarum, T.T.M. Palstra,

A.P. Ramirez, A.R. Kortan, Nature 350, 600 (1991)
7. S. Jin, T.H. Tiefel, M. McCormack, R.A. Fastnacht, R. Ramesh, J.H. Chen, Science 264,

413 (1994)
8. Y. Tokura, Y. Tomioka, H. Kuwabara, A. Asamitsu, Y. Moritomo, M. Kasai, J. Appl. Phys. 79

5288 (1996)
9. C. Zener, Phys. Rev. 82 403 (1951)

10. P.W. Anderson, H. Hasegawa, Phys. Rev. 100, 675 (1955)
11. P.-G. de Gennes, Phys. Rev. 118 141 (1960)



Polarons and Bipolarons in Jahn–Teller Crystals 869

12. A.J. Millis, P.B. Littlewood, B.I. Shariman, Phys. Rev. Lett. 74 5144 (1995)
13. N. Mannella, A. Rosenhahn, C.H. Booth, S. Marchesini, B.S. Mun, S.-H. Yang, K. Ibrahim,

Y. Tomioka, C.S. Fadley, Phys. Rev. Lett. 92 166401 (2004)
14. Z. Popovic, S. Satpathy, Phys. Rev. Lett. 84 1603 (2000)
15. C. Ederer, C. Lin, A.J. Millis, Phys. Rev. B 76 155105 (2007)
16. A.P. Ramirez, J. Phys. : Condens. Matter 9, 8171 (1997)
17. A. Mareo, S. Yunoki, E. Dagotto, Science 283 2034 (1999)
18. Y. Tokura, in Colossal Magnetoresistive Oxides, ed. by Y. Tokura (Gordon & Breach,

Amsterdam, 2000)
19. Y. Tokura, N. Nagaosa, Science 288 462 (2000)
20. E. Dagotto, T. Hotta, A. Moreo, Phys. Rep. 344 1 (2001)
21. M.B. Salamon, M. Jaime, Rev. Mod. Phys. 73 583 (2001)
22. Y. Takada, T. Hotta, Int. J. Mod. Phys. B 15 4267 (2001)
23. J. van den Brink, D. Khomskii, Phys. Rev. B 63 140416(R) (2001)
24. T. Hotta, Y. Takada, H. Koizumi, Int. J. Mod. Phys. B 12 3437 (1998)
25. T. Hotta, Y. Takada, H. Koizumi, E. Dagotto, Phys. Rev. Lett. 84 2477 (2000)
26. Y. Takada, T. Hotta, H. Koizumi, Int. J. Mod. Phys. B 13 3778 (1999)
27. T. Holstein, Ann. Phys. 8 325 (1959)
28. C.M. Varma, J. Zaanen, K. Raghavachari, Science 254 989 (1991)
29. M. Schluter, M. Lannoo, M. Needels, G.A. Baraff, D. Tomanek, Phys. Rev. Lett. 68 526 (1992)
30. I.I. Mazin, S.N. Rashkeev, V.P. Antropov, O. Jepsen, A.I. Liechtenstein, O.K. Andersen,

Phys. Rev. B. 45 5114 (1992)
31. S. Suzuki, K. Nakao, Phys. Rev. B. 52 14206 (1995)
32. A.P. Ramirez, Superconduct. Rev. 1 1 (1994)
33. M.P. Gelfand, Superconductivity Review 1 103 (1994)
34. O. Gunnarsson, Rev. Mod. Phys. 69 575 (1997)
35. L. Degiorgi, Adv. Phys. 47 207 (1998)
36. Y. Takada, T. Hotta, Int. J. Mod. Phys. B 12 3042 (1998)
37. B. Sundqvist, Adv. Phys. 48 1 (1999)
38. S. Suzuki, S. Okada, K. Nakao, J. Phys. Soc. Jpn. 69 2615 (2000)
39. O. Gunnarsson, Alkali-Doped Fullerides (World Scientific, Singapore, 2004)
40. T.W. Ebbesen, J.S. Tsai, K. Tanigaki, J. Tabuchi, Y. Shimakawa, Y. Kubo, I. Hirosawa,

J. Mizuki, Nature 355 620 (1992)
41. A.P. Ramirez, A.R. Kortan, M.J. Rosseinsky, S.J. Duclos, A.M. Mujsce, R.C. Haddon,

D.W. Murphy, A.V. Makhija, S.M. Zahurak, K.B. Lyons, Phys. Rev. Lett. 68 1058 (1992)
42. A.A. Zakhidov, K. Imaeda, D.M. Petty, K. Yakushi, H. Inokuchi, K. Kikuchi, I. Ikemoto,

S. Suzuki, Y. Achiba, Phys. Lett. A 164 355 (1992)
43. C.-C. Chen, C.M. Lieber, J. Am. Chem. Soc. 114, 3141 (1992)
44. W.L. McMillan, Phys. Rev. 167 331 (1968)
45. P.B. Allen, R.C. Dynes, Phys. Rev. B 12 905 (1975)
46. T. Yildirim, J.E. Fischer, R. Dinnebier, P.W. Stephens, C.L. Lin, Solid State Commun. 93

269 (1995)
47. G.M. Eliashberg, Sov. Phys. JETP 11 696 (1960)
48. A.B. Migdal, Sov. Phys. JETP 7 996 (1958)
49. Y. Takada, J. Phys. Chem. Solids 54 1779 (1993)
50. O. Gunnarsson, G. Zwicknagl, Phys. Rev. Lett. 69 957 (1992)
51. N. Manini, E. Tosatti, A. Auerbach, Phys. Rev. B 49 13008 (1994)
52. L.F. Chibotaru, A. Ceulemans, Phys. Rev. B 53 15522 (1996)
53. C.C. Chancey, M.C.M. OfBrien, The Jahn–Teller Effect in C60 and Other Icosahedral

Complexes (Princeton University Press, Princeton, 1997)
54. S. Wehrli, M. Sigrist, Phys. Rev. B 76 125419 (2007)
55. Y. Wang, R. Yamachika, A. Wachowiak, M. Grobis, M.F. Crommie, Nat. Mater. 7 194 (2008)
56. D.M. Deaven, D.S. Rokhsar, Phys. Rev. B 48 4114 (1993)
57. C.-C. Chen, C.M. Lieber, Science 259 655 (1993)



870 C. Hori and Y. Takada
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Vibronic Polarons and Electric Current
Generation by a Berry Phase in Cuprate
Superconductors

Hiroyasu Koizumi

Abstract High temperature superconductivity in cuprates occurs upon hole doping
in half-filled antiferromagnetic insulating parent compounds. This insulating state
is often called, a “Mott insulator” state, in which strong on-site Coulomb repul-
sion is the origin of the insulating behavior. Superconductivity occurs upon hole (or
electron) doping in this state. In addition to the strong on-site Coulomb repulsion,
a number of experimental and theoretical results indicate that strong hole-lattice
interactions are present; the interactions are so strong that doped-holes become
small polarons at low temperatures. In this review, we discuss the small polaron
formation and its consequences in the superconductivity in cuprates. First, we will
present some experimental and theoretical results that indicate the presence of strong
interactions between doped-holes and the underlying lattice; especially, it is worth
mentioning that a recent EXAFS experiment on La1:85Sr0:15Cu1�xMxO4 (MDMn,
Ni, Co) reveals a direct connection between the local lattice distortion and supercon-
ductivity. When small polarons are formed, the mobility of the holes becomes very
small; then, the system behaves as an “effectively half-filled Mott insulator (EHMI)”
to an external perturbation whose interaction time is much shorter than the hole-
hopping life-time. We argue that this EHFMI state is adequate for explaining the
magnetic excitation spectrum in the cuprate; actually, the “hourglass-shaped mag-
netic excitation spectrum” is explained due to spin-wave excitations in the presence
of spin–vortices with their centers at hole-occupied sites. The spin-wave excitations
are composed of two types: the first (Mode I) is the one exhibits antiferromagetic
dispersion for high energy excitations, and the other (Mode II), which is a novel one,
is the one has a sharp commensurate peak at the maximum excitation energy, and a
broadened dispersion at energies below; this novel spin-wave excitations explain the
Drude-like peak in the optical conductivity. Next, we will present a novel current
generation mechanism that is compatible with the small polaron and spin–vortex
formations. The unit of the current is a loop current around each spin–vortex; and a
macroscopic current is generated as a collection of loop currents. The existence of
such loop currents in the cuprate is supported by the fact that the enhanced Nernst
signal observed in the pseudogap phase is explained by the flow of the loop currents.
Lastly, we present an implication of the new current generation mechanism in the
cuprate superconductivity; we will show that the superconducting transition in the
underdoped cuprate is explained as an order–disorder transition of the loop currents.

873
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1 Introduction

High temperature superconductivity in cuprates occurs upon hole doping in half-
filled antiferromagnetic insulating parent compounds. More than 20 years has passed
since the discovery of the high temperature superconductivity in cuprates [1].
Despite very extensive and intensive researches, the mechanism for it is still not
elucidated.

A family of materials called “cuprates” contain CuO2 planes (Fig. 1); the electron
conduction for superconductivity is believed to occur in these planes.

The parent compounds (x D 0 in Fig. 2) are antiferromangetic insulators known
as Mott insulators where an insulating behavior with an antiferromagnetic spin-
order occurs due to strong Coulomb repulsion [2]. This insulating state is different
from the band insulator where the transport theory based on Bloch electrons is
applicable. Upon hole doping (x > 0), the long-range antiferromagnetic order
disappears, and an anomalous metallic phase appears between the pseudogap tem-
perature T � and superconducting transition temperature Tc (Fig. 2). This metallic
phase is called, the “pseudogap phase” since many phenomena associated with an
energy gap formation is observed, and the elucidation of anomalous behaviors in
this phase is one of the key issues to understand the cuprate.

To investigate the hole-doping effect, the optical conductivity has been measured
[3] (Fig. 3). An energy gap of about 2 eV is observed in the parent compound; it
is well understood as arising from an energy gap between the ground state and an
excited state in which charge is transfered between a Cu atom and surrounding oxy-
gen atoms (this peak is called the “charge-transfer peak”). Upon hole-doping, the
spectral weight of the charge transfer peak decreases, and two new peaks appear;
one is a Drude-like peak centered around 0 eV; the other is a mid-IR peak with its

Cu

O(1)

O(2)

La/Ba

La/Ba

Cu

O

Fig. 1 The unit cell of a cuprate superconductor La1�xBaxCuO4
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Fig. 2 A schematic phase diagram of La1�xSrxCuO4 (LSCO). TN, TC, and T � indicate the Neel,
superconducting, and pseudogap temperatures, respectively

Fig. 3 Optical conductivity of LSCO [3]

center at around 0.5 eV for the x D 0:02 sample, and shifts to lower energies as the
hole concentration is increased.

The Drude-like peak may be attributed to the coherent motion of doped-holes.
This assignment is based on the assumption that the conventional transport theory
is applicable in the cuprate although a number of experiments indicate that metallic



876 H. Koizumi

Fig. 4 The photoinduced infrared conductivity (solid line) in the insulator precursor of LSCO.
The dotted line indicates a simulation based on the small polaron transport theory [4]

phase of the cuprate is completely different from the conventional band metal; thus,
this assignment is not conclusive. Nevertheless, it is the most popular assignment at
present.

The mid-IR peak has been explained due to the small polaron formation since
the early days of the cuprate research. A support for this assignment is the pho-
toinduced conductivity measurement [4]; the photoinduced conductivity in LSCO
(Fig. 4) shows a very similar peak to the mid-IR peak of the optical conductivity in
the x D 0:02 sample. It is also qualitatively explained by the small polaron transport
theory [4]. However, this mid-IR peak assignment contradicts the assignment that
the Drude-like peak is due to the coherent motion of holes since the former assumes
that the hole-lattice interaction is so strong that doped holes become small polarons,
while the latter does opposite. Therefore, if we assign that the mid-IR peak is due
to small polaron formation, we have to abandon the assignment that the Drude-like
peak is due to the coherent motion of doped-holes.

As is explained above, even the assignment of major peaks in the optical conduc-
tivity is unsettled even today. This fact seems to indicate that we need the transport
theory that goes beyond the conventional one. Actually, there a number of other
anomalous behaviors in the pseudogap phase that strongly suggest the need for a
new transport theory. In the following, we list the four most important anomalous
behaviors:

1. The metallic conductivity much less than the Ioffe-Regel-Mott limit is observed
[5](Fig. 5).

At high temperatures, the resistivity shows a positive dependence with the
increase of temperature. This is a typical metallic behavior; however, the magni-
tude of the resistivity is much larger that the so-called, “Ioffe-Regel-Mott limit” [2].
Thus, it is suggested that the origin of the metallic behavior here may not be due to
the coherent motion of doped-holes.

2. Local spin correlation survives [6, 7] (Fig. 6).
The magnetic excitation spectrum has an “hourglass shape”. The dispersion at

high energies is very similar to the one arising from antiferromagnetic spin-wave
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Fig. 5 The temperature dependence of the resistivity in the CuO2 plane of LSCO [5]

excitation; thus, it is suggested that the antiferromagnetic spin-order remains locally
in the underdoped cuprates. At low energies, the spectrum is significantly deviated
from that of the antiferromagnetic spin-waves, where the spitting of the so-called
commensurate peak (.h; k/ D .1=2; 1=2/) into four peaks is observed.

3. Disconnected arc-shaped “Fermi surface” is observed in the angle-resolved
photoemission spectroscopy experiments [9] (Fig. 7).

It is unusual that a Fermi surface is disconnected. Besides, it appears even at a
very low doping x D 0:03 where the system is an insulator [10].

4. Large Nernst signals are observed in Nernst effect experiments [11–13] (Fig. 8).
Very large Nernst signals are usually associated with the flow of Abrikosov

vortices of superconductors. But the observed Nernst signals occur much higher
temperatures than Tc; thus, it can not be simply explained by the usual fluctuation
effect of superconductivity.

The theory of the cuprate superconductivity must explain all above experimen-
tal facts, and the mechanism of the superconductivity itself. The strong Coulomb
repulsion is certainly a very important ingredient as is manifested by the fact that
parents compounds are Mott insulators. However, we will show that, in addition
to it, strong hole–lattice interactions are also very important. In this review, we
will present explanations for some of the above anomalies by including the strong
hole–lattice interactions.
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Fig. 6 Schematic plots intended to represent neutron scattering measurement of �00.Q; !/ in
superconducting YBa2 Cu3O6Cx [8]

Fig. 7 Disconnected Fermi surface, the “Fermi-arc” observed in LSCO with x D 0:03 [10]
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Fig. 8 Left: experimental setup for the Nernst experiment. Right: the measured Nernst signals [11]

2 Vibronic Character of Doped-Holes:
Small Polaron Formation

Using the EXAFS method, Cu–O bond length fluctuations in La2�xSrxCuO4 (x D
0:15) have been measured [14] (Fig. 9). They exhibit splittings of the Cu-O dis-
tances from the average at temperatures below about 100 K (it is close to T �). The
observed peaks of the short and long Cu–O lengths in the CuO2 plane are around
1.87 and 1.96Å, respectively; those of apical Cu–O lengths are around 2.29 and
2.43Å, respectively.

The local lattice instability by the hole-doping has been studied by the molecular
orbital cluster method [15]. In this method a part of a solid, “cluster”, is embedded
in a model potential that mimics the crystal environment; and the molecular orbital
calculation is only performed on the cluster. The advantage of this method is that
strong-electron correlation is systematically handled. However, the cluster size is
rather limited, thus, a care must be taken whether it really reflects the bulk property.

Multiconfiguration molecular orbital calculations are performed on clusters with
two copper atoms, (Cu2O11)18� and (Cu2O11)17�, embedded in a crystal environ-
ment for La2�xBaxCuO4 (a crystal environment for La2�xSrxCuO4 is essentially
the same), where the former corresponds to the parent undoped cluster and the latter
to the one-hole doped cluster .

In Fig. 10 potential energy curves for R2 deformation (the definition of it is given
in the figure) are depicted. Some other deformations were also considered but this
one is the best one to explain experimental results. As is see, the parent cluster
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does not show any lattice instability, but the hole doped cluster does. The magni-
tude of the deformation is calculated as R2D 0.14 and the stabilization energy is
0:21 eV. This energy is reasonably close to the peak value observed in the photoin-
duced absorption spectra in Fig. 4 [4]; thus, the present results seem to support the
argument that the peak is the evidence that doped holes become small polarons.
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At R2D 0.14, the Cu–O lengths in the CuO2 plane are 1.82 and 1.96Å, respec-
tively; these values are comparable with the experimental values, 1.87 and 1.96Å,
respectively. At R2D 0.14, the apical Cu–O distances are 2.34 and 2.49Å, respec-
tively; they are close to the experimental values, 2.29 and 2.43Å, respectively. The
agreement between the calculated and experimental values is very good.

The charge-transfer energy gap is also obtained from the cluster calculation. The
energy difference between the ground and first excited states in the parent cluster is
about 1:6 eV, which is close to the energy gap observed in the optical conductivity
[3]. By examining the wave function, the excited state is verified to be a charge-
transferred one [15].

In the hole-doped cluster, the excitation energy from the ground state to the first
excited state is obtained as 0:97 eV at R2D 0.14. Actually, this value is close to
a peak in the energy loss function observed in the optical conductivity (Fig. 11)
[3]. Usually, a peak in the energy-loss function arises form the plasma mode exci-
tation or a mode that strongly couples with the plasma mode. The present result
suggests that it corresponds to the electronic excitation within the hole-doped clus-
ter; this mode is expected to couple strongly with the plasma oscillation since it
creates the longitudinal charge oscillation by the R2 motion in the excited potential
energy surface. The experimental result shows an almost fixed peak position; only
its amplitude increases with the increase of x. This is in accordance with the above
assignment since the number of the hole-doped clusters increases with the increase
of x; on the other hand, the peak position is fixed because the hole-doped cluster
unit is unchanged by the increase of x.

Very recently, experimental results that indicate a direct connection between
the local Cu–O bond fluctuation and occurrence of superconductivity have been
obtained (Fig. 12) [16]. The mean squared relative displacement (MSRD) of Cu–O
bond lengths in the CuO2 plane, �2Cu–Op

, shows an anomalous increase below T �
and a sudden decrease around Tc. The 5% substitution of Cu by magnetic atoms, Co
or Ni, suppresses superconductivity completely, and so does the anomalous behavior

0 0.5 1.0 1.5

0.6
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x=0.06

x=0.02

x=0
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 (

ω
)]

ω (eV)

0.4
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0

Fig. 11 x dependence of energy-loss function [3]
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Fig. 12 Temperature dependence of the in-plane Cu–O bond MSRD �2Cu–Op
and magnetic

susceptibility (B ? CuO2 plane) for La1:85Sr0:15Cu1�xMxO4 (MDMn, Ni, Co) samples [16]

in the MSRD. On the other hand, the substitution by Mn gradually suppresses the
superconductivity with keeping the onset temperature and the anomalous MSRD
behavior. This result clearly indicates a direct connection between the anomalous
MSRD behavior and superconductivity since the lattice anomaly and the occurrence
of superconductivity coincide. The lattice anomaly is most likely caused by small
polaron formation; thus, a direct involvement of small polarons in superconductivity
is strongly suggested.

3 Spin-Wave Spectrum in the Presence of Spin Vortices:
The Origin of an Hourglass-Shaped Magnetic
Excitation Spectrum

In the previous section, we have presented the evidence that the small polaron is an
important ingredient of the cuprate superconductivity. In this section, we show that
the spin–vortex is another important ingredient.

Using the inelastic neutron scattering, magnetic excitations in cuprates are mea-
sured [6, 7] (Figs. 6 and 13). They exhibit an hourglass-shaped dispersion (Fig. 6);
the high energy part is essentially that of spin-wave excitations of an antiferromag-
net; the low energy part exhibits four peaks distributed around the antiferromangetic
commensurate position at .h; k/ D .1=2; 1=2/.

In order to explain the observed spectrum, the stripe model has been extensively
used. This model assumes a phase separation of the system into charge-rich stripe
regions, and remaining antiferromagnetic insulating regions (Fig. 14). This model
explains a rough feature of the hourglass-shaped dispersion. However, the obtained
constant-energy slices show peaks with rectangular distributions in disagreement
with the experimental circular distributions. Besides, the stripe-model calculations
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Fig. 13 Constant-energy slices through the experimentally measured magnetic scattering from
La1:875Ba0:125CuO4 [7]. The h and k directions are rotated by �=4 from the usual directions



884 H. Koizumi

0.25

0.2

0.15

0.1

0.05

0.4

0.3

0.2

0.6

0.4

0.2

0.2

0.4

0.6

0.8
1

0.5

0

0.1

0.5

c g

0

1.2

1

0.8

0.6

0.4

0.2

2

1.5

1

0.5
k 

(r
.l.

u)

h (r.l.u) h (r.l.u)

–0.5

0.5
b f

e

0

k 
(r

.l.
u)

k 
(r

.l.
u)

–0.5

0.5

0

–0.5

0.5

0

–0.5

0.5

0

–0.5

d

k 
(r

.l.
u)

0.5

0

–0.5

a

a b

k 
(r

.l.
u)

0.5

0

–0.5

0.5 1 1.5

h (r.l.u)
0.5 1 1.5

h (r.l.u)
0.5 1 1.5

h (r.l.u)
0.5 1 1.5

h (r.l.u)

0.5 1 1.5
h (r.l.u)

0.5 1 1.5

0.5 1 1.5

80±10 meV

55±2 meV

200±10 meV

160±8 meV

120±8 meV

105±8 meV36 meV

Fig. 14 Left: Schematic diagrams of the stripe model (a: vertical stripes, b:horizontal stripes).
Circles indicate Cu sites in hole-doped stripes, and arrows indicate magnetic moments on undoped
Cu sites. Right: Simulations of the constant-energy slices using the stripe model [7]. The h and k
directions are rotated by �=4 from the usual directions

are performed on static stripes that are known to be insulators; thus, the stripe model
is not successful in providing a consistent explanation for the magnetic excitations.

Another model that has been used to explain the magnetic excitations is the spin–
vortex model [17]. In the following, we simulate the magnetic excitation spectra
using the spin–vortex model. We will show that it gives circular peak distributions
that agree with the experiment [18]; besides, it provides a new assignment for the
Drude-like peak in the optical conductivity [23], thus, consistent assignments are
given to the three major peaks in the optical conductivity.

The spin–vortex model assumes the existence of spin–vortices with their cen-
ters at small polarons. It is also assumed that the system response to the incident
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neutrons is that of the effectively half-filled Mott insulator (EHMI). Let us consider
the EHFMI using the Hubbard model given by

HD �
X

i;j;�

tij c
	
i�cj�CU

X

j

c
	

j"cj"c
	

j#cj#; (1)

where the first and second terms describe electron hopping and on-site Coulomb
interaction, respectively. For now, we take tij to be t if i and j are nearest-neighbor
sites, and zero otherwise. When holes are doped, we assume that they become small
polarons due to strong hole-lattice interaction. The hole-lattice interaction is not
included in the Hamiltonian in (1), but is present in the total Hamiltonian for the
electron-lattice system. The hopping rate of the small polarons are very small; thus,
the system is in an “effectively half-filled Mott insulator (EHFMI) state” where
electrons are in an effectively half-filled situation in which doped-holes can be
treated as almost immobile vacancies. If we consider the limiting case where small
polarons are immobile, the Hamiltonian in (1) can be used as an approximation for
the total Hamiltonian; in this case polaron occupied sites are removed from hopping
accessible sites. We use this approximation in the following.

In the strongly-correlated case, parameters satisfy the condition U � t . Then,
the Coulomb interaction term,

HU D U
X

j

c
	

j"cj"c
	

j#cj#; (2)

is the dominant one, and the hopping term

KD �
X

i;j;�

tij c
	
i�cj�: (3)

is a perturbation.
To describe the EHFMI state, it is convenient to introduce new annihilation

operators aj and bj that are related to the original as

�
aj
bj

	
D ei

�j
2

 
ei

	j
2 cos �j

2
e�i

	j
2 sin �j

2

�ei
	j
2 sin �j

2
e�i

	j
2 cos �j

2

!�
cj"
cj#

	
: (4)

In the zeroth order approximation, the ground state is given by

j0i D
Y

j2occ:

a
	
j jvaci; (5)

where the product runs through electron-occupied sites.
The zeroth order expectation values of electron spin is calculated as
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Sx.j /D 1
2
h0jc	

j"cj#Cc	j#cj"j0iD
1

2
cos �j sin �j ;

Sy.j /D i
2
h0j�c	

j"cj#Cc	j#cj"j0iD
1

2
sin �j sin �j ;

S z.j /D 1
2
h0jc	

j"cj" � c	j#cj#j0iD
1

2
cos �j ; (6)

thus, we may identify �j and �j as azimuth and polar angles of the spin direction.
A phase factor exp.i�j =2/ introduced in (4) is a very important one; it is added to

ensure the single-valuedness of the transformation matrix. Although �j and �j C2�
are physically equivalent, the sign-change occurs for exp.˙i�j =2/when � is shifted
by 2� . The added factor exp.i�j =2/ compensates this sign-change; we may take
� D � for this purpose, but other choices are also possible. It is also worth noting
that �=2 is a Berry phase arising from spin vortices. The Berry phase [19], (also
known as the quantum geometric phase [20]) here is similar to the one first found in
theE˝e Jahn–Teller system [21] since it also arises from two-component character
of the wave function: in the E˝ e Jahn–Teller case, the two components arise from
the doubly-degenerate E state, and a crossing point of adiabatic potential surface
is the source of a Berry phase and a fictitious magnetic field [22]; in the present
case, the two components correspond to two spin-states, and a spin vortex is the
source of a Berry phase and a fictitious magnetic field.

It is wel-known that the ground state of a half-filled system of the t 
 U Hub-
bard model is an antiferromagnetic insulator. The antiferromagnetic conditions are
given by

�i � �j D �I �i C �j D �; (7)

where i and j are nearest neighbors. In the following, we consider the spin vortex
formation that violates the condition �i � �j D � while retaining the condition
�i C �j D � . Actually, we adopt �j D �=2 for all sites and take the z-axis normal
to the two-dimensional CuO2.

Using new annihilation and creation operators, the hopping terms are written as

K D Ka CKb CKab; (8)

where

Ka D�
X

k;j

tkj e
i
2 .�k��j / cos

�k��j
2

a
	

k
aj ;

KbD�
X

k;j

tkj e
i
2 .�k��j / cos

�k��j
2

b
	

k
bj ;

Kab D�i
X

k;j

tkj e
i
2 .�k��j / sin

�k��j
2

.a
	

k
bj C b	kaj /: (9)
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Spin vortices are described by adopting the following functional form for �j ,

�j D �.jxCjy/C
X

M

W.j;M/�
X

A

W.j;A/; (10)

where the first term in the r.h.s., �j D�.jx C jy/, describes the antiferromag-
netic spin configuration, and the second and third terms are those for spin vortices
with winding number C1 (called, “meron”), and �1 (called, “antimeron”) [17],
respectively; the functionW.j;M/ given by

W.j;M/ D tan�1
jx�Mx

jy�My

(11)

is a harmonic function that describes winding of spin directions. j , M , and A,
respectively, indicate two-dimensional coordinates for the j th site, the center of a
meron, and the center of an antimeron; their coordinates are given by j D .jx; jy/,
M D .Mx;My/, and A D .Ax; Ay/, respectively. All centers of merons and
antimerons are assumed to be at hole occupied sites.

Now we construct effective Hamiltonians that act in the space of state vectors
that allow only single-electron-occupancy at every site except those occupied by
small polarons. The single occupancy means that we may use the relation

a
	
jaj C b	j bj D 1 (12)

if the j th site is not occupied by a hole. If we take HU as the zeroth Hamiltonian
and Kab as a perturbation, the effective Hamiltonian is obtained as

H
.1/
eff D �

1

U

X

k;j

t2jk sin2
�j � �k
2

�
a
	
j bk C b	jak

� �
a
	

k
bj C b	kaj

�

D 1

U

X

k;j

t2jk sin2
�j � �k
2

�
QS�k QS�j C QSCk QSCj � 2 QSZk QSZj �

1

2

	
; (13)

where spin operators, QSCj , QS�j , and QSZj are defined as

QSCj D b	jaj I QS�j D a	j bj I QSZj D
1

2

�
b
	
j bj � a	j aj

�
: (14)

The commutation relations among them are given by

h QSZj ; QSj̇
i
D ˙ QSj̇ I

h QSCj ; QS�j
i
D 2 QSZj : (15)

H
.1/
eff is basically that of an antiferromagnet; it describes the antiferrmagnetic spin-

wave dispersion observed at high energies.
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Now, let us takeKaCKb as a perturbation. The effective Hamiltonian is obtained
as

H
.2/
eff D �

1

U

X

k;j

t2jk cos2
�j � �k
2

�
a
	
jak C b	jbk

� �
a
	

k
aj C b	kbj

�

D 1

U

X

k;j

t2jk cos2
�j � �k
2

�
QS�k QSCj C QSCk QS�j C 2 QSZk QSZj �

1

2

	
: (16)

This Hamiltonian does not arise in the usual derivation of the spin Hamiltonian
from the Hubbard model since in the usual derivation �j � �k is taken to be � ,
thus, we have cos2Œ.�j � �k/=2� D 0. It gives rise to “ferromagnetic” spin-wave
excitations, in which excitations such as QSCj j0i propagates. As the number of spin–
vortices increases, the contribution from this Hamiltonian increases. This mode is
also considered as an excitation propagation mode, which probably connects to the
coherent electron motion in the overdoped region.

Finally, the total spin Hamiltonian is obtained as the sum of the two;

Hspin D H .1/
eff CH .2/

eff : (17)

There are two ways to calculate dispersions; one is the Holstein-Primakoff
method, and the other is the equations of motion method. Usually, these two meth-
ods yield similar results. However, in the presence of spin–vortices, the latter method
yields a new-type mode that is not obtained by the former method. In the following
we employ the latter method [18, 23].

In order to obtain spin-wave dispersions, we use the following approximations;

QSZk 	 h00j QSZk j00i 	 h0j QSZk j0i D �
1

2
; (18)

where j00i denotes the exact ground state to linearize equations.
Then, equations of motion are obtained as

� i PQSC
k
D ŒHspin; QSCk � 	

2

U

X

j

t2kj sin2
�j � �k
2

� QS�j C QSCk
�

� 2

U

X

j

t2kj cos2
�j � �k
2

�
� QSCj C QSCk

�
: (19)

We write spin-wave excited states as

jf iD 1p
2

X

j

.CXj .f / � iC Yj .f // QSCj j00iC
1p
2

X

j

.CXj .f /C iC Yj .f // QS�j j00i;

(20)
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where CXj .f / and C Yj .f / are parameters to be determined.
If we use (19) with Heisenberg representations of operators, we obtain

d

dt
h00j � i QSC

k
jf ie�i!f t D 2

U

X

j

t2kj sin2
�j � �k
2
h00j QS�j C QSCk jf ie�i!f t

� 2

U

X

j

t2kj cos2
�j � �k
2
h00j � QSCj C QSCk jf ie�i!f t ;

(21)

where !f is the excitation energy from j00i to jf i.
Substituting the state vector jf i in (20), the above equations provide the relations

among CXj .f / and C Yj .f /. There are two ways to couple the two components

CXj .f / and C Yj .f /. If we couple the X component to the nearest-neighbor Y
component and vice versa, we obtain a set of eigenvalue equations given by

.Mode I/

8
<

:

i!f C
X
k
.f / D 2

U

P
j t
2
kj

cos.�j � �k/
�
C Yj .f /� C Yk .f /

�

i!f C
Y
k
.f / D � 2

U

P
j t
2
kj

�
CXj .f / � cos.�j � �k/CXk .f /

� I (22)

if we connect the X component to a nearbyX , and the Y to a nearby Y component,
we obtain another set,

.Mode II/

8
<

:

!f C
X
k
.f / D � 2

U

P
j t
2
kj

�
CXj .f /� cos.�j � �k/CXk .f /

�

!f C
Y
k
.f / D � 2

U

P
j t
2
kj

cos.�j � �k/
�
C Yj .f / � C Yk .f /

� : (23)

The Mode II does not arise in the Holstein-Primakoff calculation. This is the new
mode that arises due to the existence of spin–vortices. We obtain the excited state
vector jf i and its excitation energy!f by numerically solving the above equations.

The spin-wave dispersion is calculated using the zero temperature structure factor
given by

S.k; !/ D
X

f

X

pDx;y;z
jSp
f
.k/j2ı.! � !f /; (24)

where Sp
f
.k/ are related to Spj .f / through the Fourier transformation as

S
p

f
.k/ D 1p

Ns

X

j

S
p
j .f /e

�ik�rj I (25)

Sxj .f /, S
y
j .f /, and S z

j .f / are given by CXj .f / and C Yj .f / as

Sxj .f / D sin �jC
Y
j .f /I S

y
j .f / D � cos �jC

Y
j .f /I S z

j .f / D �CXj .f /: (26)



890 H. Koizumi

b1

E
ne

rg
y 

0.5

1.0

0.0
0.0

h (rlu)

b2 b3

a1 a2 a3

c1 c2 c3

Fig. 15 Plots of magnetic excitation dispersion. Calculations are performed for a two-dimensional
16� 16 square lattice with open boundary conditions. Parameters are U D 8t , and t is the unit of
energy. a1: Spin configuration for a 10-hole case. The configuration is one gives the lowest energy
among randomly generated configurations; the energy is estimated by the classical Heisenberg
model. a2: The dispersion obtained by the Holstein–Primakoff method for the spin configuration
in a1. a3: The dispersion obtained by the equations of motion method for the spin configuration
in a1; (filled dots are for Mode I, and open circles are for Mode II). b1: The same as a1 but for a
20-hole case. b2: The same as a2 but for the spin configuration in b1. b3: The same as a3 but for
the spin configuration in b1. c1: The same as a1 but for a 30-hole case. c2: The same as a2 but for
the spin configuration in c1. c3: The same as a3 but for the spin configuration in c1

In Fig. 15, magnetic excitation spectra calculated by the spin–vortex model are
depicted. Results obtained by the Holstein-Primakoff method are also depicted. The
dispersions exhibit hourglass-shapes. As the number of spin–vortices are increased,
the peaks of the dispersion become blur. The neck energy increases with the increase
of the number of holes in agreement with experiment.

Some constant-energy slices are plotted in Fig. 16. The peak distributions are
circular in agreement with the experimental result.
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Fig. 16 Constant-energy slices of the magnetic excitation spectrum. The spin configuration is
given in Fig. 15b1. a1: Contour plot of a cross section of the energy dispersion in Fig. 15b2. It is
an average of the 100–110th states (energy range is 0:737t–0:700t ). a2: The same as a1 but it is
an average of the 200–205th states (energy range is 0:306t–0:275t ). a3:The same as a1 but of the
206th-210th states (energy range is 0:260t–0:225t ). a4:The same as a1 but the plot of the 215th
state (energy is 0:165t ). a5:The same as a1 but the plot of the 218th state (energy is 0:130t ). a6:The
same as a1 but the plot of the 222th state (energy is 0:0967t ). b1: Contour plot of a cross section
of the energy dispersion in Fig. 15b3 with open circles. It is the plot of the first state (energy range
is 0:254t ). b2: The same as b1 but the plot of the 5th state (energy is 0:1549t ). b3: The same as b1
but the plot of the 10th state (energy is 0:0438t )

The new-type spin-wave mode, Mode II, actually accounts for the Durude-like
peak observed in the optical conductivity. Let us calculate the real part of optical
conductivity given by

Re �.!/ D e2�

Ns

X

f

jhf j Ojxj00ij2
!

ı.! � !f /; (27)

where Ns is the number of sites in the system, and Ojx is the x-component of the
current operator.
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In order to use (27), the ground state vector, j00i, is needed. Instead of an exact
ground state vector, we use an approximate one given by j00i 	 j0iCj1i, where the
first-order correction in Kab to j0i, denoted as j1i, is given by

j1i D
X

m;j

itmj b
	
maj j0i
U

e
i
2 .�m��j / sin

�m��j
2

: (28)

Then, the leading-order contributions come from transitions by the current oper-
ator fromKb given by

Oj bx D it
X

l

�
e

i
2
.�lCx��l / cos

�lCx��l
2

b
	

lCxbl � h.c.

	
; (29)

where l C x denotes the nearest-neighbor site of l in the x-direction.
The final expression for the optical conductivity is given by

Re �.!/D �e2t4

2U 2Ns

X

f

X

˛Dx;y

jPl

�
CX
lC̨ .f /CCXl .f /

�
sin.�lC̨ ��l /j2

!
ı.!�!f /;

(30)

where the conductivity is averaged over in the x- and y-directions by assuming the
equivalence of the x- and y-directions.

In Fig. 18, the effective density of carriers defined by

Neff D
Z 1

0

d!0Re�II.!
0/ (31)

is plotted; optical conductivity here is calculated by including only Mode II spin-
wave excited states since the contributions of Mode I excited states are negligible.
The calculated Neff is roughly equal to the number of spin vortices. In the experi-
ment [3] (Fig. 19), the effective carrier number from the Drude-like peak is roughly
proportional to the number of doped holes [3]; thus, the present result explains the
experiment if most of the doped holes become centers of spin vortices.

4 A New Electric Current Generation Mechanism by a Berry
Phase from Spin Vortices

By now, we have identified three important ingredients in the cuprate superconduc-
tivity; strong on-site Coulomb repulsion, small polaron formation, and spin–vortex
formation. With all these ingredients, however, the conventional transport theory
based on Bloch electrons will predict that the system is an insulator. In order to
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is a two-dimensional square lattice with Ns D 16 � 16 D 256; the parameter U is 8t . Red dots
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results from nominally 5 lowest energy states among randomly generated states in which energy
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Fig. 18 Effective density of carriers Neff vs. the number of spin vortices. Error bars indicate stan-
dard deviations of Neff calculated from five nominally lowest energy states used in the calculations
for Fig. 17
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Fig. 19 Effective electron number at 1.5 eV (solid circles) as a function of x. The dashed straight
line indicates N �eff D x. The open diamond with an error bar represents a free-carrier contribution
estimated from a Drude fit to the optical conductivity [3]

explain a metallic conductivity in the underdoped cuprate, a novel current genera-
tion mechanism is necessary. Recently, the present author proposed a new current
generation mechanism that utilizes a Berry phase from spin vortices [24]. In this
section, we very briefly explain this new mechanism.

The effect of a magnetic field B D r �A, where A is an electromagnetic vector
potential, can be included in the Hamiltonian in (1) by modifying transfer integrals
as

tkj ! tkj exp

 

i
q

c�

Z k

j

A � dr

!

; (32)

where c is the speed of light and q is the charge.
Then, the appearance of factors

e
i
2
.�k��j / D e

i
2

R k
j r��dr (33)

in (9) can be interpreted that a“fictitious magnetic field”

Bfic D r � Afic (34)

with a vector potential

Afic D c�

2q
r� (35)

exists in the system.
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a
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a b
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j+x j–xj jm

b

Fig. 20 Appearance of extended single-particle states by spin–vortices. (a) An antiferromag-
netic order without spin–vortices case. Only Kab is nonzero. All electrons are localized. (b) A
spin configuration with spin–vortices. Ka and Kb become nonzero around spin–vortices; extended
single-particle states appear around spin–vortices

Although the zeroth order state j0i is currentless, states with perturbations from
hopping terms Kb and Kab are current-carrying. As is schematically shown in
Fig. 20, in the absence of spin–vortices Kb D Ka D 0, thus, only hopping by Kab
is possible. In this situation electrons are localized. When spin–vortices are present,
the hopping termKb allows extended single-particle states around the vortices. Fur-
thermore, due to the fictitious magnetic field produced by the spin Berry phase, a
state with loop currents around them becomes the minimal energy one.

In Fig. 21, the result from numerical calculations using a mean-field theory is
depicted. It indicates that the fictitious magnetic field produces current roughly
given by

j D �C�r�; (36)

where C is a constant [24]. Each spin vortex is accompanied a loop current due to
the single-valuedness condition in the unitary transformation in (4). Note that the
conservation of charge requires that � to be a harmonic function, i.e., it satisfies
r2� D 0 .

In Fig. 22a, an example of a spin configuration with two spin vortices is depicted.
Different current patterns are possible for the same spin configuration by different
�’s. Although each loop current is rather localized around each center of the vor-
tices, a macroscopic current can be generated as a collection of loop currents if the
number of loop currents is large enough (Fig. 22d).

5 Fictitious Electric Field and Enhanced Nernst Effect

In the previous section, a new current generation mechanism is presented. It is based
on the theoretical observation that loop currents should be generated around spin–
vortices as a Berry phase effect. In this section, we present experimental evidence
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Fig. 21 Plots obtained by mean-field calculations for an EHFMI [24]. Calculations are performed
for a two-dimensional 16 � 16 square lattice with open boundary conditions. Parameters used are
U D 8t and t 0 D �0:2t (t 0 denotes the second nearest neighbor transfer integrals tjk). The number
of doped holes is 8; half of them are centers of merons and the rest are centers of antimerons. (a)
Plot for spin configuration. Centers of spin vortices are indicated as “M” for a meron (winding
numberC1 spin vortex) and “A” for an antimeron (winding number �1 spin vortex), respectively.
(b) Plot for current density j (short black arrows) and r� (long orange arrows). “M” and “A” here
indicate centers of counterclockwise and clockwise loop currents, respectively; (c) Plot for D.x/,
which connects j.x/ andr�.x/ as jj.x/j D D.x/jr�.x/j; (d) Plot for 2j (thick orange line; arrows
are not attached but directions are the same as those of the black arrows) and 2D.x/r�.x/ (black
arrows)

for the existence of such loop currents; we argue that enhanced Nernst signals in the
pseudogap phase [11–13] are due to the flow of such loop currents [25].

Let us derive the formula for the Nernst signal arising from the flow of loop
currents.

When Afic is time-dependent, it gives rise to a fictitious electric field [26] given
by

Efic D �1
c

@Afic

@t
D � �

2q
r P�: (37)
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a b

c d

M A

Fig. 22 Spin vortices and current generated by them [25]. (a) Two spin vortices embedded in
the antiferromagnetic background. The spin polarization direction at j th site in the x-y plane is
given by .cos �j ; sin �j /, where �j D �.jx C jy/C tan�1

jy�My

jx�Mx
� tan�1

jy�Ay

jx�Ax
(.jx; jy/ is the

coordinate of the j th site, .Mx;My/ and .Ax; Ay/ are coordinates of centres of spin vortices at M
and A, respectively). (b) A collection of loop currents given by j D ��Cr�, where C is a positive
constant, and �j D � tan�1

jy�My

jx�Mx
C tan�1

jy�Ay

jx�Ax
. (c) The same as (b) but for the current pattern

given by �j D � tan�1
jy�My

jx�Mx
� tan�1

jy�Ay

jx�Ax
. (d) A macroscopic current flow generated by a

collection of loop currents; loop currents with winding number +1 and those with -1 are aligned
in parallel lines. The definition of the winding number is given in (58). The total number of loop
currents is 16 in the figure. Between the two lines, a directional current flow is realized with almost
zero current outside

When a temperature gradient exists, flow of small polarons occurs; then,� becomes
time-dependent, and a fictitious electric field appears.

The Nernst signal is measured by an experimental setup shown in Fig. 23a; a
temperature gradient rT is created in the x-direction, and a magnetic field B is
applied in the z-direction. Due to the flow of loop currents, Efic appears in the y-
direction and exerts force on electrons; then, a real electric field develops to balance
the fictitious electric field (E D �Efic) as in the Hall effect measurement. The Nernst
signal is defined as the developed electric field in the y-direction, Ey , divided by
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Fig. 23 Temperature dependences of magnetization M and Nernst signal eN for the underdoped
Bi2Sr2CaCu2O8Cı (Bi2212, TcD 50K) [25]. (a) Experimental setup. (b) Temperature dependence
of M ; it is fitted by (46) with c1 D 300, c2 D 10, and Wp=kB D 300 K. (c) Temperature
dependence of eN ; it is fitted by (49) with c3 D 5200. Dots are experimental results [12]

the temperature gradient in the x-direction as

eN D Ey

j@xT j : (38)

Let us consider a rectangular system shown in Fig. 23a and derive a formula for
the Nernst signal eN. The system has a length Lx in the x direction .0 � x � Lx/,
and a width Ly in the y direction .0 � y � Ly/. Using (37), Ey at x D Lx=2 is
calculated as

Ey D �

2qLy

Z Ly

0

dy
@

@y
P�
�
Lx

2
; y

	
D �

2qLy



P�
�
Lx

2
;Ly

	
� P�

�
Lx

2
; 0

	�
:(39)

Diamagnetic currents arise around spin vortices given by (36). Then, after the
vortex flow from x D 0 to x D Lx , the phase change of � for is given by

�� D �.Lx=2;Ly/��.Lx=2; 0/ D �2�Nm; (40)

where Nm is the number for loop currents.
We denote an average velocity of the small polaron flow by v; then, �t D Lx=v

will be the average time for the flow from x D 0 to x D Lx . The time-derivative of
the phase difference is approximately given by
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��

�t
D �2�Nm

Lx
: (41)

Then, substituting (41) and q D �e in (39), Ey is obtained as

Ey D hvnm
2e

; (42)

where nm is the surface density of loop currents given by nm D Nm=LxLy . Finally,
the Nernst signal is given by

eN D hvnm
2ej@xT j : (43)

A large magnetization is also observed in the Nernst effect experiment [12]. If it
is produced by loop currents around spin vortices, it should be roughly proportional
to nm. Then, the temperature dependence of M is essentially that of nm.

In order to obtain the temperature dependence of nm, we consider the situation
where small polarons coexist with “large polarons” of effective mass m� [27]. The
equilibrium condition between “large polarons” and small polarons may be given
by

x � nm
nm

D 2�m�kBT

nsh2
e�Wp=kBT ; (44)

whereWp is the polaron stabilization energy and ns is the density of sites. Here, the
lattice constant of the two-dimensional square lattice of the CuO2 plane is taken to
be the unit of distance.

A formula for M is

M D ��dnm; (45)

where � is the average magnitude of a magnetic moment for a loop current and d is
the distance between CuO2 planes. Using nm obtained from (44), the result is

�M D c1=.1C c2T e�Wp=kBT /; (46)

where c1 D x�d and c2 D 2�m�kB=.nsh
2/. In Fig. 23b, experimentally observed

M and its fit by treating c1 , c2, andWp as fitting parameters are depicted. It is seen
that the fitting by (46) follows experimental data quite well.

From (43), it is seen that the Nernst signal is proportional to a product of nm and
v. Since v is proportional to the mobility � as

v D �jrT j; (47)

eN should be proportional to a product of nm and �.
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For the activation-type small polaron hopping [2], � is expressed as

� D �0T �1e�WH =kBT I (48)

where WH is the activation energy for the polaron hopping, and �0 is a constant.
Note that WH may be related [2] to Wp asWH D 0:5Wp.

Overall, the Nernst signal is expressed as

eN D c3T �1e�0:5Wp=kBT =.1C c2T e�Wp=kBT /; (49)

where c3 D xh�0=2e is a constant.
In Fig. 23c, experimentally observed eN and its fit are depicted. The fit is very

good except at high temperatures; at those temperatures, the mobility given in (48)
is probably too simple. The good agreement between the theory and experiment
suggests that the above formula for eN captures essentials of the temperature depen-
dence of the Nernst signal. We may take this good agreement as a support for the
existence of loop currents with their centers at small polarons in cuprates.

6 Implications of the New Electric Current Generation
Mechanism in Superconductivity

When both real magnetic field B D r � A and the fictitious magnetic field Bfic D
r � Afic are present, the electric current becomes

je D �q�C

�
r�C 2q

�c
A
	
: (50)

For the gauge transformation

A0 D ACrf (51)

electron operators are modified as

cj� ! cj� exp
�
�i q

�c
fj

�
; (52)

which, according to (4), means that � is modified as

�0j D �j �
2q

�c
fj : (53)

Therefore, it is seen that

r�C 2q

�c
AI (54)
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is gauge invariant. Thus, je is gauge invariant, and should describe an observable
current.

From (50), the energy increase due to loop currents is obtained as

U D C�

4

Z
d 2r

�
r�C 2q

�c
A
	2
I (55)

it is constructed so that the electric current density is given by

je D �c ıU
ıA
: (56)

It is suggested that at temperature around Tc spin vortices are created around all
doped holes [23]. We express r� as a sum of contributions from loop currents,

r� D
X

i

r�.i/; (57)

where �.i/ is the phase introduced to compensate the sign-change caused by a single
spin vortex at the i th site.

The winding number for the i th loop current is defined by

wi D 1

2�

I

Ci

r�.i/ � dr (58)

with Ci being a closed path encircling the i th site.
Then, by setting A D 0, (55) is simplified as

U D �C�

2

X

i

w2i ln
Rc

ac
C �C�

2

X

i¤j
wiwj ln

Rc

rij
(59)

whereRc and ac are upper- and lower-cutoff-radii of each loop current, respectively;
rij denotes the distance between centers of loop currents at sites i and j .

If the magnetic field is absent, loop currents with winding number˙1 are created
with the total sum of them being zero. We consider this situation below. For sim-
plicity, we only retain adjacent pairs in the second sum

P
i¤j in (59); we replace

rij by its average value given by 1=
p
�x, and consider a square lattice of a lattice

constant 1=
p
�x. As a result, the following very simple interaction potential for

loop currents is obtained;

Uloop D �C�

2
ln
x

x0

X

hi;j i
wiwj ; (60)
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where x0 is introduced through

Rc D 1p
�x0

; (61)

and the sum is taken over nearest neighbor pairs.
The interaction potential Uloop is equivalent to an Ising model for antiferromag-

nets if the hole concentration satisfies x > x0; two loop currents wi D C1 and
wi D �1 correspond, respectively, to up- and down-spin states. Then, Tc is obtained
as the order–disorder transition temperature expressed as

Tc D T0 ln
x

x0
; (62)

where T0 D 1:14�C� is a constant.
In Fig. 24, doping dependence of Tc in the underdoped region is depicted. The

experimental data for La214 [28] shows anomalous depression of Tc around x D
1=8 and the agreement is not good around there; otherwise the formula in (62) fits
the experimental data very well.

If an applied magnetic field is present, a loop current pattern that is different
from that for the “antiferromagnetic” loop-current order mentioned above will be
realized. If we denote the wave function for the “antiferromagnetic” pattern by ‰,
the wave function for the different current pattern is given by

‰0 D exp

 

�i
NeX

kD1
gk

!

‰; (63)
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Fig. 24 Doping concentration dependence of the transition temperature Tc [25]. Experimental
data are fitted by (62) with x0 and T0 as fitting parameters. x0 is taken to be 0:05 for all. Solid
line is the result for Bi2Sr2CaCu2O8Cı (Bi2212) with T0 D 85 K. Dashed line is the result for
La2�xSrxCuO4 (La214) with T0 D 49 K. Dots are experimental results [28]



Vibronic Polarons and Electric Current Generation in Cuprate Superconductors 903

where Ne is the number of electrons; the phase g is given by

gj D
X

M 0

tan�1
jx �M 0x
jy �M 0y

�
X

A0

tan�1
jx �A0x
jy �A0y

I (64)

in the sum over M 0, sites of loop currents whose winding number is changed from
C1 to �1 are included; and in the sum overA0, sites of loop currents whose winding
number is changed from �1 toC1 are included. The flexible change of loop current
pattern by (63) and (64) will explain very sensitive response of the supercurrent
against an external magnetic field.

7 Concluding Remarks

If a long-range coherence of a collection of loop currents generated by spin vortices
is established, a macroscopic persistent current will be realized. From the fitting
to experimental data, we obtain x0 D 0:05. This value corresponds to Rc D 2:5,
which suggests that if the distance between nearby holes is less than 5 times of the
lattice constant, interaction between loop currents is strong enough to establish a
long-range order.

We may construct a nano-structure that generates persistent current from the
above observation. An example is depicted in Fig. 25, where a directional current is

a

b

Fig. 25 A macroscopic directional current generated by lines of loop currents [25]. Centers of
loop currents are marked by 16 dots in (a); the directional current flows between two lines of
loop current centers. In (b) the same directional current given in (a) is depicted with its magnitude
indicted by the gray scale
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created between two lines of centers of loop currents. The situation here is analogous
to a magnetic field produced in a solenoid; the magnetic field inside the solenoid cor-
responds to the directional current, and electric current in the wire of the solenoid
corresponds to vorticity of the loop currents.

In the cuprate, holes are expected to exist at each center of loop currents; thus, if
we arrange holes in this way artificially, a persistent current will be generated, even
if the hole concentration is x < 0:05. Instead of holes, we may use some atoms (for
example, Mn may be appropriate as is suggested by the result in [16]) as centers
of loop currents. In this way, we may obtain an enhanced stability in spin vortices.
If we find a way to construct such a spin–vortex structure that is similar to one
given in Fig. 25, and which is robust even at room temperatures, a room temperature
superconductivity may be realized.
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Density function theory (DFT), 772
Diabatic (state, representation), 242, 243, 247,

252, 255, 257, 266, 267, 269, 272,
273

Diabatic and adiabatic representation, 216
Diabatic electronic states, 283, 288
Diabatic representation, 207, 215, 216, 219,

220, 223–227
Diabatic vibronic Hamiltonian, 303
Diagonalization of Hamiltonian matrix, 283,

288, 289, 293, 295, 299, 300, 304
Differential, 202, 210, 217, 224–225, 233, 234
Difficult, 424, 428
Diffraction, 493, 496, 498, 502, 503, 506, 507,

509, 510
Diffuse interstellar bands, 277, 280
Difluorobenzene cation, 268–269
Dimensionless normal coordinates, 285, 286,

296, 303
Dipolar instabilities, 421
Dirac-Coulomb Hamiltonian, 79
Dirac equation, 78
Directional order, 734–736, 741
Direct product representation, 58, 61, 68, 70
Displacement operator method, 656
Distortions

Jahn-Teller, 743, 744, 749–751
lattice, 744, 749, 753
tetragonal, 753, 754, 759
trigonal, 753, 766

Drude-like peak, 874–876, 884, 892
Durude-like peak, 891
Dynamic, 492, 495, 497, 499, 500
Dynamical matrix, 692, 694, 696
Dynamic JT effect, 108–110, 520, 542, 549
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Dynamic vibronic problem
tautomeric compounds, 607–608
valence tautomeric system, 608–609

E˝ b1, 689, 692, 694
E˝ b1g , 696, 698, 715, 716
E˝ b2g , 716
E˝", 538–543, 549
E˝ e, 696
E˝ e case, 690, 718
E˝ eg , 711, 715–717
E˝ e Jahn–Teller system, 886
E˝ e vibronic hamiltonian, 371–372
Easy axis, 708, 709
Effective density of carriers, 892, 893
Effective involving, 431
Effectively half-filled Mott insulator (EHMI),

885
Elastic coupling, 686, 687, 693, 711, 712, 714
Elastic energy, 690–692, 713
Elastic intercell coupling, 718, 720, 722
Elasticity theory, 745
Elastic modulus

adiabatic, 746, 748, 749, 751, 754
dynamic, 744, 748, 749, 753, 759, 760, 764
isothermal, 746, 748, 751, 753, 754, 761
relaxed, 748, 751, 759, 763, 764

Elastic order, ferrodistortive, 457
Elastic properties, 661
Electron energy bands, 702, 703
Electron hopping, 696, 701–707, 714, 719
Electronically excited molecules, 306
Electronic basis, 101–103
Electronic correlations, 812, 814,

816–819, 831
Electronic coupling, 565
Electronic function, 98, 117
Electronic Hamiltonian function, 102, 111
Electronic Raman, 386–388, 401–403
Electronic spectra, 318, 319
Electronic wavefunction, 102, 104,

111–114, 117
Electron paramagnetic resonance, 630
Electron–phonon interaction, 367

coupling, 359
interaction, 348

Electron pockets, 703, 704
Electron-strain interaction, 665, 667
Elementary excitations, 662, 664
Encirclement, 234
Energy

exchange, 633, 634, 642, 645, 647
free, 745, 754
internal, 745

Energy loss function, 881
E-ph coupling, 823, 825, 826, 828, 829, 831,

834, 835
Epikernel, 332, 333, 339–341
Epikernel principle, 47, 59, 61, 62, 67–69, 71,

73–75, 311, 332, 376
Epikernel subgroup, 55
EPR spectra, 388, 398
Equations of motion method, 888, 890
Exchange

anisotropic, 631, 645–647
antisymmetric, 632, 633
ising, 644, 648
isotropic, 631–634, 643, 645–647
magnetic, 361, 622
symmetric, 632, 633, 647

Exchange coupling
double, 702, 708
Heisenberg, 701, 708, 709
Kramers-Anderson superexchange, 708
magnetic, 686, 696, 701, 702, 708–709
orbital, 686, 695, 697, 700, 708, 709, 711,

712, 714, 717, 718, 722
phonon-mediated orbital, 717
vibronic, 720, 721

Exchange interactions, 558–560
Excitons, 703
E � E Jahn–Teller effect, 81–85, 91
Extended X-ray absorption fine structure

(EXAFS), 420, 879, 880

Face sharing octahedrons, 710
Femtosecond UV laser excitation, 324
Fermi surface, 703, 877, 878
Ferro-and antiferroelectricity, 666–669
Ferrodistortive ordering, 693, 696, 698, 699
Ferroelastic ordering, 658
Ferroelectricity, vibronic theory of, 707
Ferro-electric phase transitions, 417
Ferromagnetic effect, 567
Feynman path integral, 203, 230
Fictitious magnetic field, 886, 894,

895, 900
Flat band, 738
Fluorescence dynamics, 241, 269–271
Foldy-Wouthuysen transformation, 78
Forward, 220, 225, 231
Franck–Condon factor, 17
Franck–Condon transitions, 569, 570
Frustration, 727–741
Fullerene

anions, 15
ions, 123–126
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Fulleride, 489–512
K3C60, 518, 531
K4C60, 518, 531
STM of, 518

Fulvene, 170, 171, 173, 181–184, 192
Functions to be multivalued, 207

Gauge invariant, 901
Gauge transformation, 900
Generalized gradient approximation(GGA),

433–435, 441, 443
Geometric, 201–235
Geometric phase, 85, 89, 91, 201–235
Guanidinium Vanadium Sulphate, 401–403

Ham, 347–349, 356, 360–362, 366, 368–369
effect, 347, 349, 360–362, 366, 371,

394–403
parameter, 361
quenching, 356
reduction factor, 347, 361, 368–369
theory, 361

Hamiltonian, 347–355, 357, 358, 360–362,
366, 367

crystal field, 348
diagonalize, 349
effective, 348, 357, 361
effective first- and second-order SO, 351
effective second-order SO Hamiltonian,

351
effective second-order spin, 347
eigenvalues, 357
free ion, 349
matrix, 350, 353
matrix elements, 355
parameters, 353, 361
second-order effective SO, 360
second-order effective spin, 366
second order effective spin Hamiltonian,

355
spin–orbit, 349
vibronic, 367

Harmonic function, 887, 895
Harmonics, 210, 211
Heisenberg-Dirac-Van Vleck (HDVV), 558
Helicoidality, 659, 681
Hellmann–Feynman theorem, 110, 112–113
Hidden JTE (HJTE), 3–22
Higher-order terms, 375
High-spin/low-spin, 451–485

crossover, 453, 460, 462, 463, 471
equilibrium, 451, 460

non-adiabatic seperation energy, 459, 469
vertical seperation energy, 456, 462, 466

High temperature superconductivity (HTS),
812–814, 816–819, 821, 823, 824,
826, 828, 831–836

Holstein bipolaron, 855
Holstein polaron, 852, 854
Holstein-Primakoff method, 888–890
Homotopes, 231
Hourglass-shaped dispersion, 876, 882, 890
Hourglass-shaped magnetic excitation

spectrum, 876, 882–892
Huang-Rhys factor, 359, 362
Hund energy, 702
Hund’s-rule coupling, inverted, 844, 862, 863
Hydrogen-Exchange reaction, 202, 203, 219
Hyperfine constants, 572–576
Hyperoctahedron, 44–47
Hyperspherical coordinates, 207, 231
Hyperspherical formalism, 209–211
Hyperspherical harmonics, 210, 211

Icosahedral system, 543
Icosahedron, 32, 36, 40–44, 48
Impurity

centres, 348
ion, 353, 357–359, 367
isolated, 348

Inelastic, 202, 216–218, 221, 233
Inelastic scattering, 216–218, 233
Instability, 416, 418, 419, 422, 426, 429, 430,

434–441
Instant nuclear configuration, 562
Intercell elastic coupling, 686, 687, 693, 711,

712, 714
Intermediate-spin state, 466
Intersection Space Hessian, 176–183
Intrinsic reaction coordinate, 154, 163
Ioffe-Regel-Mott limit, 876
IR spectroscopy, 317–318, 321
Isotope effect, 820–823
Isotropic exchange, 567
Itinerant electrons, 841, 867

Jacobi coordinates, 207, 212, 217, 219
Jahn–Teller

active, 360
active coordinate, 52, 57–59, 68, 70, 71,

73–75
active modes, 367
active normal mode, 355
coupling constant, 83
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distortion, 364
effect, 347–369
energy, 349, 360–362
Hamiltonian, 84, 88
instability, 686–692, 696, 698, 700,

711, 716
interaction, 349, 361, 562–565
intraction, 348
mode, 360
radius, 376, 383
selection rules, 86, 87
splittings, 777, 780, 793
stabilization energy, 347, 360, 362–365,

687, 713, 719
theorem, 26–29, 51, 89

Jahn–Teller and pseudo Jahn-Teller (PJT), 241
Jahn–Teller effect (JTE), 4, 5, 7–13, 15, 18,

20–22, 77, 78, 81, 86, 91, 277,
284, 416, 429–432, 491–493, 495,
497–503, 507–509, 512

C-F splittings, 775, 776, 783, 785–787,
789, 790, 794, 798

complex oxides, 800–802
cooperative, 768–772
distortion, 769, 771, 773, 775, 778–781,

787, 793, 797, 805
exchange interactions and degeneracy

analysis, 558–560
ground state and adiabatic surfaces,

561–562
influence, 562–565
intrinsic bonding defects, 772–776
molecular magetism, 556–557
MV cluster, 565–601
vibronic interaction, 560–561

Jahn–Teller problem (H�(gC2h)), 42
JT bipolaron, E˝ e, 855
JT polarons, 705, 709, 717, 722

E˝ e, 850, 852–854
T˝ t, 850, 852

Keggin structure, 584–586
Kernel group, 54, 55, 74
Kernel subgroup, 54
Kitaev model, 737
Kramers degeneracy, 85, 89
Kugel-Khomskii model, 686, 722

Large polarons, 899
Lattice, 415–429, 432–438, 441, 442
Lattice distortions, 819, 820, 827, 831, 833
LCAO method, 771

Ligand field
d-d spectra, 456, 458, 466, 467, 471, 473,

475–477
parameters, 458, 462, 463, 467, 471, 473,

475, 482
Ligand field theory (LFT), 630
Linear vibronic constant, 750
Linear vibronic coupling, 107, 116, 124, 286
Local density approximation (LDA), 433
Local phase transitions, 425
Loop currents, 895–904

Magnetic anisotropy, 708
Magnetic exchange, 686, 695, 701, 702,

708–709
Magnetic memory cells, 706
Magnetic ordering, 705, 708, 709
Magnetic polarons, 701
Magnetism, single molecular, 621–623
Magnetoelectricity, 676–682
Magneto-or (and) electrostriction, 669
Magnetoresistance, 671, 673, 674, 676, 682
Magnons, 705, 706
Manganites, 703, 721
Mass enhancement factor, 851–854, 864
MATI spectra, 260–264
M–CO Bonding, 312–315
Mean-field, 693, 695
Mean field approximation, 693, 695
Mean-square displacement, 383
Mean squared relative displacement (MSRD),

881, 882
Meron, 887, 893, 896
Metaelasticity, 670, 671, 675
Metamagnetoelasticity and metamagnetis,

670–674
Method, öpic and price, 625
Mexican hat, 89, 691, 715
Mid-IR peak, 874, 876
Mixed-valence (MV), 452, 465, 468, 471, 481

charge and structural ordering, 587–591
double exchange, 566–568
electronic coupling, 565
multimode Jahn–Teller problem, 580–586
Piepho-Krausz-Schatz model, 568–571
Robin and Day classification, 568–571
vibronic coupling, 565
vibronic effects, 576–580

Mobility, 899, 900
MO diagrams, 313
Molecular orbital cluster method, 879
Monofluorobenzene cation, 241, 259, 268, 270
Mössbauer spectra, 595
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Mott insulators, 874, 877
Mott-Jahn-Teller insulator, 492, 502, 508, 509,

512
Multi-configuration time-dependent Hartree

(MCTDH), 241, 249–251, 264, 265,
288, 294, 297, 299, 304

Multiferroics, 679, 681, 682
Multimode JT Effect, 132, 133, 147, 148, 152,

156–161, 432
Multi-state vibronic (coupling) Hamiltonian,

240, 241, 245–246, 271
Multivalued basis functions, 202

Nano-grain thin films, 768–777
Naphthalene radical cation, 278–280, 301–306
Néel temperature, 700, 701
Nephelauxetic effect, 464, 474, 475, 482
Nernst signals, 877, 879, 896–900
Nesting, 703, 704
Neutron, 493
Non-adiabatic coupling, 101, 104–106, 108,

110, 201–205, 282, 284, 291, 292,
295, 297–299, 304–306

Non-Berry pseudo-rotation, 319, 324, 333,
335, 340, 341

Nonmagnetic JT Mott insulator, 857
Nonradiative decay, 277, 280, 301–306
Nonreactive, 218, 222, 230, 234
Nonreactive scattering amplitudes, 218, 222
Normal coordinates, 87
Normal mode, 107, 121, 126–128
Nuclear magnetic resonance (NMR), 421,

424, 428

Off-centre displacement, 416–419, 423, 425,
426, 436, 440, 442

Off-diagonal coupling, 104, 105, 110
One-photon absorption, 325, 329
Optical absorption, 420, 423–426
Optical spectra, 348
Orbital compass model, 728, 730, 733–736
Orbital degeneracy, 25, 40
Orbital disorder, 697
Orbital disproportionation, 3, 10, 14–18,

21, 22
Orbital exchange, 686, 695–698, 700, 709,

711–717, 719, 720, 722, 723
Orbitally degenerate metal ions, 576–580
Orbital ordering, 685–723
Orbital ordering approach (OOA), 685–723
Orbital ordering temperature, 732
Orbital pseudo spin, 697, 708, 717, 718, 722

Orbiton liquid, 705
Orbitons, 705, 706
Orbit, splitting, 366
Order-by-fluctuation, 732, 741
Ordering of orbitals, 654, 673, 675, 676
Ordering patterns

antiferro, 695, 711
antiferrodistortive, 696–699
antiferromagnetic, 697
antiferromagnetically, 703
ferrodistortive, 693, 697, 699
ferroelectric, 706
ferromagnetic, 697, 703, 705
ferro type, 695, 711
helical, 710, 711
orbital, 695, 698–700, 708, 709, 711, 712
spin-canted, 708

Order parameter, 659, 661, 669, 672
Other subtler properties, 432
Outer valence Green’s functions, 287
Overlap integrals, 688, 689, 702, 712
Ozone, 3, 10–12

Pairing, 813, 816–820, 822, 824, 830, 833
Particle-exchange symmetry, 220–222
Partitioning, 714, 719, 722, 723
Partitioning the Hilbert space, 719
Pauli spin matrices, 80
Permutation groups, 44
Perovskites, 687, 698, 699, 702, 705–707,

709–711, 719, 721
Perturbation theory, 52, 57, 58, 75
PES extremal points, 57, 58, 60
Phase, 207, 211, 212, 220–222, 225,

232–234
Phase separation, 701
Phase transition, 457, 492, 500, 505, 507

magnetic, 695, 700, 701
metal-insulator, 702, 705
structural, 686, 698, 700, 701, 706, 710,

712, 721
Phase velocity, 743, 744, 746, 749,

753–755, 759
Phenide anion, 277, 289–292, 296
Phenylacetylene, 277, 279, 289–301
Phenylacetylene radical cation, 277, 279
Phenyl radical, 277, 279, 289–301
Photoactive coordinates, 185–187
Photochemistry, 169–198
Photochromic effect, 601–602
Photoelectron spectra, 240, 241
Photophysics, 169–198
Photostability, 277–280, 301, 304, 306
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Piepho-Krausz-Schatz model, 568–571
PKS vibronic coupling, 572
pn˝h, 544
Point defects, 348
Point groups

icosahedral, 496
of symmetry, 52–55, 61

Polaron effective mass, 850
Polarons

J-T polaron, 811–836
mobility, 821, 825, 829, 831

Polycyclic aromatic hydrocarbons, 277, 279
Polymerization, 510–512
Potential barrier, 744, 752, 759, 761, 763,

765, 766
Potential energy curves, 459
Potential energy surface (PES), 55–57, 349,

357, 360, 362, 364, 366, 368,
375–378, 389, 393, 394, 406,
408–411

Predissociation, 202, 204, 206, 216, 218,
225–230, 233, 234

Primitive lattice, 697, 704, 706, 709, 711, 719,
722, 723

Pseudogap, 818, 822, 828
Pseudogap phase, 874–876, 896
Pseudo Jahn–Teller (PJT) effect, 4, 333–337,

340, 416, 432
Pseudo Jahn–Teller problem

adiabatic potentials, 604–606
Mössbauer spectra, 595–601
photochromic effect, 601–602
vibronic model, 602–604

Pseudorotation, 491, 493, 494, 497, 498, 501,
507, 508, 541–543, 546, 547

Pseudo spin, 848–849, 853, 859–861
orbital, 695, 697, 705, 708, 717, 718, 722
vibronic, 709, 718, 720–723

Pseudo-spin operator, 728, 736, 737

Quadratic, 375, 377, 387
Quadrupole-quadrupole coupling, 712
Quadrupole-quadrupole intersite interaction,

711
Quantum dynamics, 278, 302, 306
Quantum geometric phase, 886
Quasidynamical model, 591–595

Radiationless transitions, 17
Radical, 132, 137, 161
Random strains, 426
Rare-earth compounds, 686, 712

Reaction paths, 231, 235
Reactive scattering amplitude, 218, 222,

223, 230
Reduction factors, 709, 718
Reference configuration, 100, 103
Reference state, 100, 117
Relaxation, 17, 18
Relaxation time, 744, 747, 750–752, 757, 761,

763–765
Renner coupling constant, 91
Renner effect, 77, 91
Renner Hamiltonian, 90
Renner–Teller effects (RTE), 4, 5
Reorganization energy, 108, 116
Resolved vibronic spectrum, 277, 291,

296, 304
Resonances, 203, 218, 226, 228–230, 234
Resonance states, 741
Rydberg states, 216, 218, 225–230, 234

Scanning tunnelling microscopy (STM),
517–525, 528–543, 546–550

Scattering
amplitudes, 217, 222, 223, 230, 233
inelastic, 202, 216–218, 221, 233
non reactive, 218, 222
reactive, 202–204, 206, 210, 212, 215–223,

227, 228, 230–233
Schrödinger equation, 101, 103
Seams

curvature, 171
intersection, 169–176, 180, 183, 184

Sears resonances, 91
Second-Order Analysis, 169–176
Segregation, 510–511
Shift operator, 715
Shift transformation, 715, 716
Side sharing octahedrons, 712
Single molecule magnets (SMM), 556
Small polarons, 876, 879–882, 884, 885, 887,

892, 897–900
Solids, 417, 418, 421, 432, 433, 443
Spectral broadening, 289
Spectroscopy

electron spin resonance, 510
energy loss, 494
gas-phase, 493
infrared, 506
mid-infrared, 505, 508
near infrared, 494, 505, 507, 509
nuclear magnetic resonance, 493
Raman, 494, 499, 506

Spin-based qubits, 558
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Spin Berry phase, 895
Spin crossover, 16–18, 22
Spin density wave (SDW), 857, 858, 860, 861
Spin double group, 81, 88, 90, 94
Spin-flip, 455, 458, 459, 471, 478, 484, 485
Spin-frustrated metal clusters, 557–565
Spin-frustrated triangular system, 560–561
Spin Hamiltonian, 888
Spin-orbit coupling, 78, 81–85, 89–91, 348
Spin-orbit interaction, 78, 347–350
Spin-orbit operator, 78–80, 83, 85, 86, 89–94
Spin-orbit splitting, 91, 348, 349
Spin ordering, 686, 695, 708
Spin vortex, 882, 884, 886, 890, 892, 895, 896,

901, 904
Spin vortices, 882–899, 901, 903, 904
Spin-wave excitations, 876–877, 882, 888
Spontaneous polarization, 706, 707, 723
Square-planar system, 703, 704
Standard orientation, 496, 498, 502
State-to-state differential cross sections, 202,

234–235
Step-by-step descent in symmetry, 71, 75
Steric strain, 408
Strain, 745, 747–749, 751, 752, 759, 761,

764, 765
binding, 484
elastic, structural, 484

Stripe model, 882, 884
Stripes, 820, 828–831, 833, 834
Structural phase transitions, 654–656,

658–661, 664–666, 668, 669,
673, 675

Superconductivity (SC), 479–482, 811–836
Superhyperfine, 419, 429, 436, 438
Superstructures, 701
Surface hopping, 334, 335, 337
Surfaces, 517–550
Susceptibility, 424, 428
SXPS, 773, 777, 778, 783, 785, 786, 789,

794–801, 803–807
Symmetry-adapted group orbitals, 688, 691
Symmetry adapted linear combinations

(SALC), 770, 771, 774, 775, 777,
778, 783, 786, 787, 789, 795,
800–804

Symmetry breaking, 7
Symmetry-breaking instability, 688, 689
Symmetry characters, 53, 54, 58, 59
Symmetry considerations, 207–209
Symmetry descent paths, 60–67, 74
Symmetry selection rule, 245

Tautomeric compounds, 607–608
Td , 339, 340
T˝ eg , 716
Tensor

exchange, 633, 646, 647
g-tensor, 628, 629, 632, 634, 641, 642, 644,

646, 647
magnetic susceptibility, 644–646
zero-field splitting, 632, 633, 644, 646

Tetrachlorovanadium(IV) (VCl4/, 132, 139,
141–146, 157, 160

Tetrahedron, 31, 32, 34, 35
T˝h, 536
Time-dependent electronic population,

264–265
Time-reversal operator, 81, 84, 85, 88, 90, 96
Time-reversal symmetry, 79
Timescale, 381, 386
TiO2, transition metal (TM)

band edge defects, 785–789
valence and conduction band, 781–785

Topological (Berry) phase, 12
Topology, 231
Transition metals, 761
Transition states, 203, 230, 231, 235
Tricorne, 715
Trifluorobenzene cation, 241, 246, 253, 254,

268, 270, 271
Triptycene, 390–394
T˝ t2, 721
Tunnelling, 417, 421, 424, 426
Tunnelling splitting, 706, 720–721, 750, 752,

759, 761, 763–765
Tutton salts, 403–407
Two-photon absorption, 325, 327, 329
T � T Jahn–Teller effect, 86

Ultrafast electron diffraction, 323
Ultrafast nonradiative dynamics, 279
Ultrafast relaxation, 322–327
Ultrasound measurements, 662

Valence tautomeric system, 608–609
Vector coupling coeffcients, 371–373, 397
Vector potential approach, 202, 207, 211–214,

221–223
Vertex corrections, 844, 853
Vertex function, 853
Vertex-sharing octahedrons, 699
Vibration 6 (C-C stretch), 149
Vibrational, 349–357, 368

energy, 347
frequencies, 357, 744, 753, 759, 765
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interaction, 362
modes, 347, 349–357
state, 355

Vibrations, 489–491, 493–499, 508, 510, 512
Vibron, 705, 717
Vibronic

amplification, 718, 723
angular momentum operator, 109, 110
coupling, 277–286, 288–306, 565
effects, 576–580
interaction, 560–561
model, 602–604
parameters
spectra, 279, 297, 303

Vibronic coupling, 416, 418, 420, 429–432,
437, 440, 443

dynamic, 457, 474
first order-JT, 452
Hamiltonian, 333, 337
higher order-JT, 453, 454
model, 242, 258
pseudo-JT, 452, 455

Vibronic coupling density analysis
Fukui and nuclear Fukui function, 119–123
structures, 117–119

vibronic energy levels, 380–382, 386–394
Vibronic Hamiltonian, 170
Vibronic Hamiltonian coupling, 99–101, 123,

124, 127
Vibronic interaction, 239–241, 270, 271
Vibronic mode, 744, 749, 753, 754, 765
Vibronic reduction factor, 709, 718
Vice-versa, 332
Vide supra, 322–326
Virtual bound resonance, 774, 777, 778, 788,

789, 792, 801
Virtual phonon exchange, 654, 656–659, 667,

673, 675, 677, 682
Virtual phonons, 716–720
von Neumann and Wigner, 172–174, 180

Wave
acoustic, 743, 759
elastic, 743, 744
longitudinal, 747, 751–753, 756, 762, 764
running, 746, 755
shear, 747, 765
ultrasonic, 743, 748–750, 755, 756

Wavepacket dynamics, 287, 335, 338, 341, 342
Wave vector, 746, 747
Wigner–Eckart theorem, 107, 111, 137,

372–373
Winding number, 887, 896, 897, 901, 903

XANES, 704, 707
X-ray, 493, 498, 507, 510
X-ray absorption fine structure (XAFS), 385,

406, 407
X-ray absorption spectroscopy (XAS), 769,

771, 775, 777, 778, 780–783,
786–795, 798–807

X-ray crystal structure, 692
X-ray diffraction, 704, 707
X-ray scattering, 700

Zeeman energy pattern, 564
Zeeman splitting, 563
Zener polaron, 705
zero-point vibrational, 17, 18
ZnSe

Cr2C, 762, 763, 766
Fe2C, 762
Mn2C, 762
Ni2C, 762
V2C, 757, 762

ZnTe:Ni2C, 765
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