


Lecture Notes in Computer Science 4302
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany



Josep Domingo-Ferrer Luisa Franconi (Eds.)

Privacy in
Statistical Databases

CENEX-SDC Project International Conference, PSD 2006
Rome, Italy, December 13-15, 2006
Proceedings

13



Volume Editors

Josep Domingo-Ferrer
Rovira i Virgili University of Tarragona
Dept. of Computer Engineering and Mathematics
Av. Països Catalans 26, 43007 Tarragona, Catalonia, Spain
E-mail: josep.domingo@urv.cat

Luisa Franconi
ISTAT, Servizio Progettazione e Supporto Metodologico
nei Processi di Produzione Statistica
Via Cesare Balbo 16, 00184 Roma, Italy
E-mail: franconi@istat.it

Library of Congress Control Number: 2006936080

CR Subject Classification (1998): H.2.8, H.2, G.3, K.4.1, I.2.4

LNCS Sublibrary: SL 3 – Information Systems and Application, incl. Internet/Web
and HCI

ISSN 0302-9743
ISBN-10 3-540-49330-1 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-49330-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11930242 06/3142 5 4 3 2 1 0



Preface

Privacy in statistical databases is a discipline whose purpose is to provide so-
lutions to the conflict between the increasing social, political and economical
demand of accurate information, and the legal and ethical obligation to protect
the privacy of the individuals and enterprises to which statistical data refer. Be-
yond law and ethics, there are also practical reasons for statistical agencies and
data collectors to invest in this topic: if individual and corporate respondents
feel their privacy guaranteed, they are likely to provide more accurate responses.

There are at least two traditions in statistical database privacy: one stems
from official statistics, where the discipline is also known as statistical disclosure
control (SDC), and the other originates from computer science and database
technology. Both started in the 1970s, but the 1980s and the early 1990s saw little
privacy activity on the computer science side. The Internet era has strengthened
the interest of both statisticians and computer scientists in this area. Along
with the traditional topics of tabular and microdata protection, some research
lines have revived and/or appeared, such as privacy in queryable databases and
protocols for private data computation.

Privacy in Statistical Databases 2006 (PSD 2006) was the main conference of
the CENEX-SDC project (Center of Excellence in SDC), funded by EUROSTAT
(European Commission) and held in Rome, December 13–15, 2006. PSD 2006 is
a successor of PSD 2004, the final conference of the CASC project (IST-2000-
25069), held in Barcelona in 2004 and with proceedings published by Springer
as LNCS vol. 3050. Those two PSD conferences follow a tradition of high-quality
technical conferences on SDC which started with “Statistical Data Protection–
SDP 1998”, held in Lisbon in 1998 and with proceedings published by OPOCE,
and continued with the AMRADS project SDC Workshop, held in Luxemburg
in 2001 and with proceedings published in Springer LNCS vol. 2316.

The Program Committee accepted 31 papers out of 45 submissions from 17
different countries in four different continents. Each submitted paper received
at least two reviews. These proceedings contain the revised versions of the ac-
cepted papers, which are a fine blend of contributions from official statistics and
computer science. Covered topics include methods for tabular data protection,
methods for individual data (microdata) protection, assessments of analytical
utility and disclosure risk, protocols for private computation, case studies and
SDC software.

We are indebted to many people. First, to EUROSTAT for sponsoring the
CENEX project and PSD 2006. Also, to those who made the conference and
these proceedings possible: the Organization Committee (Xenia Caruso, Jordi
Castellà-Roca, Maurizio Lucarelli, Jesús Manjón, Antoni Mart́ınez-Ballesté and
Micaela Paciello). In evaluating the papers we received the help of the Program
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Committee and the following external reviewers: Lisa Dragoset, José Antonio
González, Krish Muralidhar, Bryan Richetti and Monica Scannapieco.

We also wish to thank all the authors of submitted papers and apologize for
possible omissions.

September 2006 Josep Domingo-Ferrer
Luisa Franconi
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A Method for Preserving Statistical Distributions  
Subject to Controlled Tabular Adjustment 

Lawrence H. Cox1, Jean G. Orelien2, and Babubhai V. Shah2 

1 National Center for Health Statistics, 3311 Toledo Road 
Hyattsville, MD  
LCOX@CDC.GOV 

2 Scimetrika, LLC, 100 Capitola Drive 
Research Triangle Park, NC 27713 USA 

Abstract. Controlled tabular adjustment preserves confidentiality and tabular 
structure. Quality-preserving controlled tabular adjustment in addition preserves 
parameters of the distribution of the original (unadjusted) data. Both methods 
are based on mathematical programming. We introduce a method for preserving 
the original distribution itself, a fortiori the distributional parameters. The 
accuracy of the approximation is measured by minimum discrimination 
information. MDI is computed using an optimal statistical algorithm—iterative 
proportional fitting. 

Keywords: minimum discrimination information; iterative proportional fitting; 
entropy; Kolmogorov-Smirnov test. 

1   Introduction 

Statistical disclosure limitation (SDL) in tabular data aims to prevent the data user (or 
snooper) from inferring with accuracy 1) small cell values in categorical data (cell 
values based on counts of units) or 2) the contribution of any respondent to a cell total 
in magnitude data (cell values based on aggregates of quantities pertaining to units).  
SDL in tabular data is driven by a disclosure rule (known as a sensitivity measure) 
that quantifies notions of “accurate estimate”, “safe value”, etc. ([1]).  SDL can be 
achieved in categorical data by several methods including rounding ([2]) and 
perturbation ([3]) but until recently only cell suppression ([4], [5], [6]) was suitable 
for SDL in tabular magnitude data.  Cell suppression is undesirable for several 
reasons but especially because it thwarts data analysis for the casual user by removing 
cell values from the tabulations (leaving “holes” in the data) and for the sophisticated 
user because the removal process is not at random. 

Controlled tabular adjustment (CTA) is a method for SDL in tabular data.  CTA is a 
perturbative method, viz., replaces unsafe (sensitive) values by safe values and replaces 
selected nonsensitive values with nearby values to restore additive structure.  For 
magnitude data in particular, this is an important improvement over cell suppression 
because it provides the user a fully populated table for analysis.  CTA methodology 
heretofore has been based on mathematical (mostly, linear) programming. Introducing 
suitable linear objective functions ([7]) and linear constraints to the CTA model ([8]) 



2 L.H. Cox, J.G. Orelien, and B.V. Shah 

enables quality-preserving controlled tabular adjustment (QP-CTA)--CTA that in 
addition approximately preserves distributional parameters such as means and 
(co)variances and regressions. 

In this paper, we introduce a new form of CTA aimed at preserving the distribution 
of original data, based on a well-known statistical algorithm for achieving minimum 
discrimination information (MDI) or Kullback-Leibler distance ([9]).  MDI is aimed 
at preserving the overall distribution and, a fortiori, preserves the distributional 
parameters.  In Section 2, we summarize the CTA problem.  In Section 3, we present 
the new method, MDI-CTA, and in Section 4 examine its computational and 
statistical performance.  Section 5 offers concluding comments. 

2   The SDL Problem for Tabular Data 

A tabular cell is considered sensitive if the publication of the true cell value is likely 
to disclose a contributor’s identity or data to a third party. Confidentiality protection 
for tabular data is based on assuring that all released tabular cells satisfy an 
appropriate disclosure rule. Cells failing to satisfy the rule, called sensitive cells, are 
assigned protection ranges defined by lower and upper bounds on the true cell value.  
Values lying between the bounds are treated as unsafe; those at or beyond either 
bound are safe. The bounds are computed from the disclosure rule, assuring a  
framework for SDL that is equitable across respondents and sensible mathematically.  
See [1], [3], [6] for details and examples.  Controlled tabular adjustment assigns a safe 
value to each sensitive cell (often, but not necessarily, one of its bounds) and the 
original or a nearby value to each nonsensitive cell.  This is accomplished via linear 
programming (LP) to assure that tabular structure is preserved (Note:  our method is 
not LP-based).  Keeping adjusted nonsensitive data close to original data appeals to 
intuitive notions of data quality.  It is possible to quantify and enable a number of 
these notions ([7]), as follows.  If each nonsensitive adjustment can be restricted to lie 
within two multiples of the cell value’s estimated standard error, then arguably the 
adjusted nonsensitive values are indistinguishable statistically from original values.  
These conditions, when feasible, are enforceable via LP capacity constraints.  
Capacities can in addition be parameterized to avoid infeasible problem statements.  
The Euclidean distance between adjusted and original data can be further restricted by 
choice/manipulation of the LP objective function.  Euclidean concepts are related to 
statistical concepts, but often imprecisely, and consequently Euclidean reasoning goes 
only so far to address statistical data quality.  Cox et al. ([8]) investigate this problem 
and provide additional linear constraints aimed at approximately preserving 
distributional parameters and regressions for normal distributions.  We take this 
further and provide a method for  preserving arbitrary distributions, a fortiori the 
distributional parameters.  

Each sensitive cell may be adjusted to (or beyond) one of two values: upper or 

lower safe value. This results into 2n  combinations for n  sensitive cells. A 
rigorously mathematical optimal solution to CTA requires solving a binary integer 
linear program.  Integer programming works well when n  is small, but requires 
computing resources growing exponentially with n . One of two approaches, or a 
combination, is needed for quality-assured CTA: a heuristic for selecting 
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combinations that are most likely to lead to the optimal solution and/or a stopping rule 
based on distributional distance (MDI) between adjusted and original data which 
indicates when a sufficiently good solution has been reached.   We examine these 
issues next. 

3   MDI-CTA 

We propose an algorithm based on Kullbak-Leibler minimum discrimination 
information (MDI) and the iterative proportional fitting procedure (IPFP).  MDI is a 
measure of distance between two statistical (distribution) functions.  Other measures 
of distance such as conditional Chi-square or Kolmogorov-Smirnov distance were 
considered but MDI was preferred for computing the adjustments because it achieves 
minimal distance and has other desirable properties.  We define MDI in Section 3.1 
and provide an algorithm to apply MDI to CTA in Sections 3.2-3.3.  The MDI 
solution is evaluated via three standard statistical tests in Section 4.   

3.1   Definition of MDI 

Kullback and Leibler [9] proposed a statistic denoted discrimination information to 
measure the “distance” or “divergence” between two statistical populations.  A 
special case of this statistic is Mahalanobis distance.  Discrimination information is 
also referred to as expected weight of evidence, Renyi’s information gain, entropy, 
entropy distance or cross-entropy.  The key points of [9] are summarized below. 

Consider a set of points ω  in a space Ω .  Suppose, the hypotheses 1H  and 2H  

imply two functions 1( )f ω  and 2 ( )f ω  over Ω .  One way to choose 1H  over 2H  

given that 1H  is true is defined by the mean discrimination information: 

I( 1f : 2f )= 1
1

2

( )
( ) log

( )

f
f d

fΩ

ωω ω
ω

 when the space Ω  is continuous and 

I( 1f : 2f )= 1
1

2

( )
( ) log

( )

f
f

fΩ

ωω
ω

 when Ω  is discrete. 

Given a probability distribution ( )π ω  over the set of cells or space Ω  such that 

( ) 1
Ω

π ω = , assume a family of distributions { }( )P p ω  which satisfies certain 

constraints (e.g., ( ) 1p
Ω

ω = ).  The density function *( )p ω  of P that is closest to 

( )π ω  minimizes (over P ) the expression: 

( )
( : ( ) log

( )

p
I p p

Ω

ωπ) = ω
π ω
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Some properties of the MDI are: 

• ( : )I p π  is a convex function hence the procedure yields a unique minimum 

• If *( )p ω  is the MDI estimate, it can be shown that for any member ( )p ω  

of P  ( : ) ( *: ) ( *: )I p I p I p pπ = π +  

• ( : ) 0I p π ≥  with equality if and only ( ) ( )pπ ω = ω  

3.2   Applying MDI to CTA 

The CTA problem for a 3-dimensional table can be stated as follows. Given a table 
with values drcO  (with the indices d, r, c representing depth, row and column)  

in which there are sensitive cells, we want to find the set of adjusted values drcA   

with which to replace values in the sensitive cells so that 
log( / )r c drc drc drcd

K A A O=  is minimized subject to the constraints that all 

marginals are preserved.  For a sensitive cell, drcA  is either the lower or upper bound 

and for the nonsensitive cells drcA  correspond to adjustment made to preserve the 

marginals.  Because, as the number of sensitive cells increase, it is not possible to find 
the minimum by computing  K for all possible combinations, we propose an 
algorithm that consists of initial heuristic steps to select binary up/down directions for 
change for the sensitive cells, followed by IPFP steps to preserve the marginals and 
achieve (optimal) MDI subject to the binary choice, and subsequent attempts to 
improve the solution or confirm global optimality, viz., an adjusted table closest in 
distribution to the original table conditional on safeness of the sensitive adjustments.  
This obviates the need to have separate constraints such as preservation of mean, 
variance or having correlation between the values in the two tables being close to 1.  

The first heuristic step finds a local solution for each level of depth, row and 

column.  Assume that there are rn  rows and denote by ir  the number of sensitive 

cells within the thi  row  ( 1,  2,  . . . )ri i n=  .  Within each row, for each of the possible 

2 ir combinations, we adjust the value of the nonsensitive cells so that the sum of the 
adjusted values for the non-sensitive cells in that row equal the sum of the original 
values for the non-sensitive cells.  Let 1 igrT  denote the adjusted values over the 

sensitive cells for the thg of the possible 2 ir  combinations, 2 ir
T denote total of the 

original values over the non-sensitive cells and 
ir

T+ +  denote the sum of all original 

values in that cell.  Adjusted values drcA for the non-sensitive cells for that 

combination are given by: 

1

2

( )
i ig

i

r r

drc drc
r

T T
A O

T

+ + −
=   Next, we compute the Kullback-Leibler MDI value for the 

row, log( / )ri drc drc drc
row i

K A A O
=

= , select the combination that produced the minimum 

value for riK , and save that combination.  For this combination, define drc drcu C=  
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where 1drcC =  if the value of the sensitive cell was adjusted up and 0 if the value of 

the cell was adjusted down.   
Implementing the steps described above across columns and depths, define binary 

values drcv  and drcw  that come respectively from the combination that produced the 

lowest MDI for each depth and column.  Each sensitive cell is replaced by either a 
lower or upper safe value independently in each of three steps (by searching for a 
local solution across row, depth or column).  For a given sensitive cell, we assign the 
lower safe value if and only if at least two of the above steps prefer a lower safe value 
for that cell; otherwise we assign the upper safe value to that cell.  Our preliminary 
solution for the sensitive cells is obtained by majority rule, we assign: 

                                     0,drcC =  if 1drc drc drcu v w+ + ≤  
                                     1,drcC = otherwise. 
 

The method for 2-dimensional tables (which can be generalized to tables of even 
dimension) breaks the tie by comparing the change in entropy and accepts the one that has 
smaller change in the entropy function η defined as ( ) log( )P P Pη = , and (0) 0η = .  

Specifically for a 2-dimensional table, we find the binary value rcv  and rcw  for each cell 

using best combination based on the MDI for each row and column.  When the values of 

rcv  and rcw  disagree, we break the tie with values rcu  assigned as follows: 

                    1rcu = , if and only if   | ( ) ( ) | | ( ) ( ) |rc rc rc rcU O L Oη η η η− ≥ −  

                    0rcu = , otherwise 

where Urc and Lrc represent the upper and lower safe value for the cell. 
The steps described above yield a preliminary solution for the sensitive cells.  Our 

next step is to adjust values of the nonsensitive cells so that the marginal totals are 
preserved, using the iterative proportional fitting procedure (IPFP).  Let dA ++ , rA+ + , and 

cA++  denote the marginal totals respectively for each of the d  depths, each of the r  

rows and each of the c  columns.  The target marginal totals for IPFP are d dO A++ ++− , 

r rO A+ + + +−  and c cO A++ ++−  corresponding respectively to a) total of the original values 

in depth nd  minus total of the sensitive values in that depth, b) total of the original values 
in row nr  minus total of the sensitive values in that row, and c) total of the original values 
in column nc minus total of the sensitive values in that column, respectively.  In what 
follows, we describe how the IPFP algorithm for 2-dimensional tables with r  rows and 
c  columns.  Generalization to higher dimension is straightforward. 

3.3   IPFP Algorithm 

For a non-sensitive cell with value  Orc, let  

, 1,
1,

m r m rr r
rc rcm r

r

O A
P P

P
−+ +

−
+

−
=  and   1, 1,m r m r

r rc
c

P P− −
+ =    

with summation over original non-sensitive values in a row.  For m = 1: 
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1,m r
rc rcP O− = , , 1,

1,
m c m cc c

rc rcm c
c

O A
P P

P
−+ +

−
+

−
=  ,  1, 1,m c m c

c rc
r

P P− −
+ =  , 1,1. rnm c

rc rcP P− =      

wherein the starting values for columns are those obtained after the first iteration in 
the last row nr.   The algorithm stops when 

,| | 0.25m r
r rO P+ +− <   ,| | 0.25m c

c cO P+ +− <  

for all r and  c or  if m, the number of iterations, equals 25. 
After this IPFP, we now have adjusted values for both sensitive and non-sensitive 

cells and compute log( / )r c drc drc drcd
K A A O= .  We now select one of the 

sensitive cells and reverse the safe value from upper to lower or lower to upper for 
that cell and use IPFP to obtain adjusted values for the nonsensitive cells.  If the result 
is a smaller value for MDI, then we accept the revision.  We repeat this process for 
each of the sensitive cells. This is equivalent to a stepwise search one cell at a time. 

There is no guarantee that we may find the optimal solution. Let us assume that at 

least proportion p of the 2n possible combinations is better than the one finally 

found above. If we select a random set of m  combination of sensitive cells  
for replacement by upper or lower safe values, then the chance of finding at least  
one improved solution is given by 1 (1 )mpα = − − .  Solving for m, we obtain: 

log(1 ) / log(1 )m pα= − − .  If  p = 0.001, to obtain 99% confidence we need to test 

4,603 random combinations. If we do find a better solution then we can repeat the 
process with a new set of random combinations. The number of random combinations 
to check will depend on available resources and the desired level of confidence.  Note 
that for each random combination of sensitive values, IPFP needs to be applied to 
preserve the marginals. 

4   Evaluation of MDI-CTA 

To evaluate whether the solution from MDI-CTA preserves statistical distribution, we 
computed correlation and simple linear regression coefficient between the original 
and adjusted values.  If statistically insignificant changes are made to the original 
data, then one would expect a simple linear regression to yield a y-intercept 0 0b =  

and a regression coefficient 1 1b = . Also, we use statistical testing to ascertain 

whether the original and adjusted values come from the same statistical distribution. 
To perform this evaluation, we used randomly generated data and tables, a 4x9 table 
(7 sensitive cells) and a 13x13x13 table (approximately 200 sensitive cells) from Cox 
et al. [8] and a 30x30 table (105 sensitive cells).  Cox provided optimal QP-CTA 
solutions for the last three tables.  

4.1   Change in Distributional Parameters and Regression Coefficient 

Table 1 shows high correlation values were obtained between adjusted and original 
values for randomly generated tables.  Regression parameters b0  and b1  were close to 
0 and 1 in each case.  5000 random repetitions were performed, except for 20x20x20, 
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20 percent sensitive (100 repetitions).  For the 4x9, 30x30 and 13x13x13 tables, 
results are nearly identical to the (perfect) results of optimal QP-CTA solutions and 
are not reported below. 

Table 1. Results of simulation experiments 

Table 
     size 

Percent 
sensitive  

MDI from 
 random sample 

  (or all 
 combinations) 

(Q2.5, Q97.5) 

0b

mean
 

regression 
of adjusted 
on original  1b  

Corr-
elation

Mean pct. 
change 

to 
nonsensitive 
(min, max) 

10x10 5% 
67.82 

 (67, 85) -0.02 1.02 0.99 
-0.00 

(-0.04, 0.03) 

10x10 10% 
1617.17  

(1695, 2131) 0.02 0.98 0.99 
-0.00 

 (-0.03, 0.04) 

10x10 10% 
103.083 

 (106, 146) 0.00 1.00 0.99 
-0.01 

 (-0.06, 0.04) 

10x10 30% 
181.13 

 (198, 309) 0.00 1.00 0.95 
-0.01 

 (-0.11, 0.13) 

5x5x5 5% 
104.94  

(104, 170) -0.01 1.01 0.99 
-0.00  

(-0.08, 0.04) 

5x5x5 10% 
678.4 

 (724, 1277) -0.02 1.02 0.98 
-0.01  

(-0.17, 0.09) 

5x5x5 10% 
373.33 

 (430, 889) 0.01 0.99 0.98 
-0.00 

 (-0.18, 0.17) 

5x5x5 30% 
          3469.44 
  (4603,13618) -0.13 1.12 0.79 

-0.01  
(-0.34, 0.33) 

10x10x10 5% 
3173.66 

 (3307, 3455) -0.02 1.02 0.95 
-0.00 

 (-0.06, 0.04) 

10x10x10 10% 
5469.14 

 (5725, 6424) -0.03 1.03 0.93 
-0.00 

 (-0.08, 0.07) 

10x10x10 20% 
5832.39 

 (6064, 6908) -0.02 1.02 0.92 
-0.00 

 (-0.06, 0.07) 

10x10x10 30% 
15948.72 

 (21071, 26255) 0.06 0.94 0.78 
-0.00 

 (-0.11, 0.15) 

20x20x20 5% 
11858.12 

 (12033, 12390) 0.00 1.00 0.99 
-0.00  

(-0.045, 0.035) 

20x20x20 10% 
26790.78 

 (27177, 28003) -0.01 1.00 0.97 
-0.00 

 (-0.06, 0.05) 

20x20x20 20% 
27750.5 

 (27824, 28679) 0.00 1.00 0.97 
-0.00 

 (-0.05, 0.05) 

20x20x20 30% 
85086.48 

 (86221, 89708) 0.01 0.99 0.92 
-0.00  

(-0.09, 0.09) 
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4.2   Goodness-Of-Fit (GOF) Statistics to Compare Adjusted vs. Original 

GOF test were used to ascertain whether the adjusted values have the same 
statistical distribution as the original values.  The comparison of the statistical 
distribution of original and observed values was performed using Kolmogorov-
Smirnov (K-S), Kuiper and Chi-square.  Because any CTA solution is conditional 
on net adjustments to sensitive values that are prespecified (in the case of 
symmetric protection) or at least lower-bounded, the question arises whether it is 
appropriate to compare original and adjusted distributions on all cells or only on the 
nonsensitive cells, viz., conditional on the sensitive adjustments.  It is known that 
the Chi-square GOF can lead to rejection of the null hypothesis even when there are 
small insignificant departures from a specified theoretical distribution (Pederson 
and Johnson [14]; Laren et al. [15]).  So, if sensitive values (representing larger 
deviations, in general) were included in the analysis, one could only expect large 
values for the Chi-square test statistic leading to rejection of the null hypothesis that 
the distributions are equal.  Similarly, one might expect a Chi-square GOF test 
based only on the nonsensitive cells to lead to rejection of the null hypothesis for 
large samples.  The K-S and Kuiper tests are not likely to be affected by these 
problems.  So, we test conditionally on Chi-square and unconditionally on the other 
two.  Below we describe the K-S GOF test. 

The Kolmogorov-Smirnov (K-S) test is widely used to assess whether two 
samples come from the same distribution.  K-S is non-parametric and makes no 
distributional assumptions on the data.  The test uses the empirical distribution 

function (EDF).  Consider two samples 1 2 n,   . . .x x x  and 1 2,   . . . ny y y  (equal 

number of observations not required).  For any sample { }jx , EDF is given by: 
n

i=1

1 1
( ) (number of   )= ( )X j jF x x x I x x

n n
= ≤ ≥ . We compute the test statistic as:  

max | ( ) ( ) |,  1,  2,  . . .j X j Y jD F x F y j n= − = .  The p-value is obtained by computing 

the probability of observing a larger D  value.  This test is carried out using the 
SAS System version 9.1 (SAS Institute, Cary, NC).  These p-values are based on 
asymptotic distribution the quality of which was investigated by Hodges  [10].    
Several authors (for example Shmidt and Trede [11] or Shroer and Trenkler [12) 
have shown that K-S test tends to be less powerful than similar tests such as 
Cramer-von Mises when the two samples differ only with respect to a location 
parameter.  However, when the underlying distributions have extreme values, 
outliers or are asymmetric the K-S test is preferred ([12], [13]).  Because we are 
dealing with nonnegative magnitude data and no restriction on the upper bound, we 
believe that the use of the K-S test is justified to assess if the original and adjusted 
values have the same statistical distribution. 

Table 2 reports on change to the original distribution, measured by (unconditional) 
K-S and Kuiper statistics and a (conditional) Chi-square statistic.  Results are 
encouraging. 
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Table 2. p-values for comparing original and adjusted values 

Table 
       Size 

Percent 
Sensitive  

Kolmog-Smir 
 p-values: 

 adjust & orig 
 from same distrib

(unconditional) 

Kuiper 
 p-values: 

adjust & orig from 
same distribution 
(unconditional) 

 
 
 Chi-square 

p-values: 
adjust & orig 

from same 
distribution  
(conditional) 

    10x10 5% 1.00 1.00 1.00 

10x10 10% 1.00 1.00 0.00 

10x10 10% 0.97 0.98 1.00 

10x10 30% 0.97 0.91 0.87 

5x5x5 5% 1.00 1.00 0.99 

5x5x5 10% 1.00 1.00 0.00 

5x5x5 10% 0.99 0.97 0.00 

5x5x5 30% 0.0587 0.00 0.00 

10x10x10 5% 0.79 0.66 0.00 

10x10x10 10% 0.72 0.40 0.00 

10x10x10 20% 0.65 0.34 0.00 

10x10x10 30% 0.019 0.00 0.00 

20x20x20 5% 0.98 0.95 1.00 

20x20x20 10% 0.60 0.16 1.00 

20x20x20 20% 0.51 0.21 1.00 

20x20x20 30% 0.056 0.00 0.00 
Conditional         = distributional distance computing using only  
 nonsensitive cells (distance conditional on sensitive values) 
Unconditional     = distance computing using all cells 

Table 2 demonstrates that MDI-CTA achieves its objective of modifying sensitive 
values while preserving the original distribution.  Note that the hypothesis that 
original and adjusted values came from the same population was rejected under K-S 
or Kuiper only for simulated tables with more than 30% of sensitive cells. As 
expected, Chi-square results are extreme for large tables and tables with a higher 
proportion of sensitive cells, even when restricted to the nonsensitive deviations.  

5   Concluding Comments 

Key features and benefits of MDI-CTA are: 

• the solution leads to a distribution close(st) to the original 
• the optimization criterion is consistent with the statistical objective 
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• the heuristics are based on partial evaluation of the criterion making 
computing more efficient 

• IPFP is a simple but effective and well-proven technique for tables 
• a stepwise approach provides additional chance for improvement 
• we provide statistical evaluation for confidence in the final solution  
• the algorithm is easily expandable to many dimensions 

 

The algorithm is based on Kullback information that has excellent properties:  K = 0, 
if and only if two distributions are identical. In all other cases K is greater than 0. 

Further more, K is finite, 0rcA =  whenever 0rcO = . It is convex and hence has 
unique minimum. Since, MDI is a good measure of closeness between two 
distributions, by minimizing it, we are keeping overall statistical information as close 
to the original as feasible. It has been proven that IPFP minimizes Kullbak-Leibler 
discrimination information subject to the specified constraints. The solution is also a 
maximum likelihood solution under a log-linear model.  Computational results on 
change to distributional parameters and distributional distance are encouraging.  

Next steps for research include incorporating changes to (selected) zero cells and to 
marginal totals (normally held fixed by MDI) and enhancing, improving or replacing 
the binary heuristic.  Issues surrounding goodness-of-fit testing—conditional vs. 
unconditional—selection of the most appropriate test—also need to be considered. 
 

Disclaimer. This paper represents the work of the authors and is not intended to 
represent the policies or practices of the Centers for Disease Control and Prevention 
or any other organization. 
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Abstract. Methods for the protection of statistical tabular data—as
controlled tabular adjustment, cell suppression, or controlled rounding—
need to solve several linear programming subproblems. For large multi-
dimensional linked and hierarchical tables, such subproblems turn out
to be computationally challenging. One of the techniques used to reduce
the solution time of mathematical programming problems is to exploit
the constraints structure using some specialized algorithm. Two of the
most usual structures are block-angular matrices with either linking rows
(primal block-angular structure) or linking columns (dual block-angular
structure). Although constraints associated to tabular data have intrin-
sically a lot of structure, current software for tabular data protection
neither detail nor exploit it, and simply provide a single matrix, or at
most a set of smallest submatrices. We provide in this work an efficient
tool for the automatic detection of primal or dual block-angular struc-
ture in constraints matrices. We test it on some of the complex CSPLIB
instances, showing that when the number of linking rows or columns is
small, the computational savings are significant.

Keywords: statistical disclosure control, cell suppression, controlled
tabular adjustment, linear constraints, multilevel matrix ordering algo-
rithms.

1 Introduction

From an algorithmic point of view, one of the main differences between disclo-
sure control techniques for microdata and tabular data is that the latter must
deal with many linear constraints, associated to total and subtotal cells. Cur-
rent methods for tabular data protection, such as, e.g., cell suppression [4,9,14],
controlled tabular adjustment [6,12] and controlled rounding [10,20], deal with
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those linear additivity constraints through mathematical programming technol-
ogy. Unfortunately, the resulting optimization problems turn out to be compu-
tationally expensive, even for continuous variables. For instance, the simplex
algorithm, which is the preferred option for many linear programming prob-
lems [2], has shown to be inefficient compared to polynomial-time interior-point
algorithms [21] when dealing with tabular data constraints [6,20].

One of the most used techniques in mathematical programming for reducing
the computational cost of a problem is to exploit its structure, either through
decomposition or partitioned basis factorization. Two of the most relevant struc-
tures are primal block-angular

A =

⎡
⎢⎢⎢⎢⎢⎣

A1
A2

. . .
Ak

L1 L2 . . . Lk

⎤
⎥⎥⎥⎥⎥⎦ , (1)

where k is the number of diagonal blocks, A ∈ IRm×n, Ai ∈ IRmi×ni , Li ∈
IRl×ni , i = 1, . . . , k, and dual block-angular

A =

⎡
⎢⎢⎢⎣

A1 L1
A2 L2

. . .
...

Ak Lk

⎤
⎥⎥⎥⎦ , (2)

k, A, Ai being as before, and Li ∈ IRmi×l. Structures (1) and (2) appear in prob-
lems with l linking constraints and l linking variables, respectively, and have been
extensively studied in the literature [3, Chapter 12]. Classical decomposition
procedures, based on the simplex method, are Dantzig-Wolfe for primal block-
angular structures [13], and Benders for dual block-angular ones [1]. Specialized
interior-point approaches for structured problems have also been recently sug-
gested [8,15]; these are promising approaches for tabular data protection, since,
as noted above, interior-point methods outperform simplex implementations in
this class of problems. It is worth noting that homogeneous sizes for diagonal
blocks Ai benefit the performance of any decomposition approach, mainly if
some sort of parallelism is going to be applied.

Unfortunately, current methods and software for tabular data protection do
not exploit constraints structure in general tables. Structure has only been ex-
ploited for two-dimensional tables with at most one hierarchical variable, whose
constraints are modeled as a network [7,9], and for three-dimensional tables,
that provide multicommodity network models [5]. For general tables, state-of-
the-art protection software, as τ -Argus [17], provide a single constraints matrix,
or at most a set of linked submatrices, without detailing each matrix structure.
Indeed, the constraints structure is particular to each kind of table, and it is
not clear that fully exploiting such structure would be worthy for an optimiza-
tion algorithm. In addition, writing software for the detection of the particular



14 J. Castro and D. Baena

structure of any table would be a cumbersome task. The purpose of this work
is to overcome such difficulties, i.e., to develop and test a tool for automatic
detection of structures (1) and (2) in constraints matrices derived from tabular
data. The tool developed is based on the multilevel matrix ordering algorithm
for unsymmetric matrices of [16]. Unlike other highly recognized and efficient
algorithms, such as that implemented in METIS [18], the former is tailored for
unsymmetric matrices, which is the case for tabular data constraints. The pro-
cedure is applied to a set of standard tabular data instances, being its behaviour
instance dependent: for most instances and k = 2 a small linking block (i.e.,
l/m (l/n) for primal (dual) block-angular structures is less than 0.2), whereas
for others the relative size of the linking block can be up to 0.4 (for k > 2 these
relative sizes of the linking block grow). When the relative size of the linking
block is small it makes sense to apply a decomposition approach, and we pro-
vide preliminary computational results comparing the performance of a linear
programming solver depending on whether structure is exploited.

The paper is organized as follows. Section 2 outlines the multilevel matrix re-
ordering algorithm and gives details about its implementation. Section 3 reports
results using this algorithm on a standard set of tabular data instances. Finally,
Section 4 analyzes the computational savings due to using the reordered matrix
in a mathematical programming solver.

2 The Matrix Reordering Algorithm

Given any matrix, obtaining the optimal reordering that transforms the matrix
into either the primal block-angular structure (1) or the dual one (2) is a difficult
combinatorial optimization problem (in this context, “optimal” means “with the
smallest linking block”). Several heuristics have been provided in the past for
this problem. We have chosen the recent multilevel approach of [16], which is
among the most efficient ones for unsymmetric matrices, and it is implemented in
commercial libraries (e.g., in routine HSL MC66L of the HSL archive, formerly
the Harwell Subroutine Library). A comprehensive description of such algorithm
is out of the scope of this work, and it will just be outlined; details can be found
in [16] and references therein.

We first define some concepts to be used later in the overview of the algorithm.
Given a sparse matrix A ∈ IRm×n, the net of column j is the number of rows
associated to such column, i.e, {i ∈ {1, . . . , m} : aij �= 0}. A row partition is a
partition of the set of rows {1, . . . , n}, i.e., R1, R2 such that R1 ∩ R2 = ∅ and
R1 ∪ R2 = {1, . . . , m}. A net is cut by a row partition if there are rows of the
net in both R1 and R2. The net-cut of a row partition is the number of nets cut
by this row partition. Note that in a block-diagonal matrix, i.e, without neither
linking constraints nor linking columns, the net-cut is zero. Therefore this is the
value to be reduced by any heuristic in order to obtain close-to-block-angular
structures. The gain is the decrement of the net-cut obtained after moving a
row from R1 to R2 or vice-versa; the gain is negative if the net-cut is increased.
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The edge-weight of rows (i1, i2) is the number of columns shared by these rows,
i.e, the cardinality of {j ∈ {1, . . . , n} : ai1,j �= 0 and ai2,j �= 0}.

(0)A
(0)A

A(1)
A(1)

A(2)
A(2)

A(3)
A(3)

A(4)

C
oa

rs
en

in
g 

ph
as

e
U

ncoarsening phase

Initial partitioning

Fig. 1. The three stages of the multilevel ordering algorithm: coarsening, partitioning,
uncoarsening; example with 4 levels

The multilevel ordering algorithm of [16] is made of the three following stages,
which are shown in Figure 1:

Coarsening phase. Matrix A = A(0) is successively transformed in a sequence
of smaller matrices A(1), A(2), . . . , A(r), r being the deepest level, such that
the number of rows is reduced at each transformation, i.e., m = m(0) >
m(1) > m(2) > . . . > m(r). The procedure successively collapses the “closest
rows” in a single one using the notion of edge-weight defined above. In our
particular implementation we used the heavy-edge matching criterion of [18]
(see that reference for details).

Partitioning phase. It is based on the classical Kernighan-Lin (KL) heuristic
[19] for partitioning graphs. Graphs are known to be associated to symmetric
sparse matrices, i.e., aij �= 0 and aji �= 0 if there is an edge joining nodes
i and j in the graph. The KL heuristic can be extended for unsymmetric
matrices if we use the notion of net-cut and gain, instead of the original one
of edge-cut (i.e., number of edges in a graph cut by a node partition) of
the KL algorithm. In short, the KL algorithm is an iterative procedure that
starting from an initial row partition R

(0)
1 , R

(0)
2 , performs two nested loops.

The inner iterations successively look for the row with the largest gain. This
row is obtained from the set R

(0)
1 or R

(0)
2 with the maximum cardinality, in

an attempt to guarantee similar dimensions for diagonal blocks. This row is
moved to the other subset of rows, subsets R

(i)
1 , R

(i)
2 are updated, and the

row is locked. This is performed until all rows have been locked. This ends
the inner iterations. The outer iterations repeat the above sequence of inner
iterations, unlocking all rows at the beginning, until there is no improvement
in the overall net-cut. The procedure records the best partitioning up to now
obtained, which is returned as the solution.
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If one needs more than two diagonal blocks (i.e., k > 2 in (1) or (2)), the
KL algorithm can be recursively applied to any resulting submatrix defined
by R1 or R2, thus eventually obtaining a row partition R1, R2, . . . , Rk.

Uncoarsening phase. During this phase the partitioning of A(r) is projected
to the original matrix through matrices A(r−1), A(r−2), . . ., A(1), A(0). Two
rows i1 and i2 collapsed in a single one in Ah belonging to Rp, 1 ≤ p ≤ k,
will appear as two different rows of Rp in Ah−1 . Optionally, any new matrix
Ah can be refined with the KL algorithm.

The KL algorithm itself can be applied to the matrix A (i.e., as if we had a
single level algorithm, or equivalently with a coarsening phase with r = 0). How-
ever, as it will be shown in Section 3, it is computationally expensive, because of
the large number of rows m of A, and can provide unsatisfactory partitionings.
On the other hand, applied in combination with a multilevel approach (i.e, coars-
ening and uncoarsening phases) it is extremely efficient, and the partitioning is
significantly improved. Note that the coarsening phase collapses rows with the
largest edge-weight, and such rows are expected to be in the same subset Rp in
a solution, which is exactly what the uncoarsening phase does.

The multilevel algorithm above described has been implemented in C, in
a library named UMOA (unconstrained matrix ordering algorithm), which is
roughly made of 3100 lines of code. The package can be freely obtained from the
authors. It has been optimized using efficient data structures for the coarsening
and uncoarsening phases (i.e., AVL trees), as well as for the computation and
updating of gains and net-cuts in the KL algorithm. Among the several features
of the package, we mention that: (i) when k > 2 the package allows full control to
the user about how to recursively obtain the additional subsets Rp from R1 and
R2; (ii) it can be used to obtain both primal and dual block-angular structures
(1) and (2). (We note that the reordered matrix in primal block-angular form
is not equivalent to the transpose of the reordered matrix in dual block-angular
form.)

3 Reordering Tabular Data Instances

We applied the multilevel reordering algorithm of Section 2 to a subset of the
CSPLIB test suite, a set of instances for tabular data protection (Fischetti
and Salazar 2001), plus to additional large instances (“five20b”, and “five20c”).
CSPLIB can be freely obtained from http://webpages.ull.es/users/casc/-
#CSPlib:. CSPLIB contains both low-dimensional artificially generated prob-
lems, and real-world highly structured ones. Some of the complex instances were
contributed by National Statistical Agencies—as, e.g., Centraal Bureau voor de
Statistiek (Netherlands), Energy Information Administration of the Department
of Energy (U.S.), Office for National Statistics (United Kingdom) and Statistis-
ches Bumdesant (Germany).

Table 1 shows the features of the instances considered. The small CSPLIB
instances were omitted. Column “Name” shows the instance identifier. Columns
“n”, “m” and “N. coef” provide, respectively, the number of columns (cells),
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Table 1. Dimensions of the largest CSPLIB instances

Name n m N.coef
bts4 36570 36310 136912
five20b 34552 52983 208335
five20c 34501 58825 231345
hier13 2020 3313 11929
hier13x13x13a 2197 3549 11661
hier13x7x7d 637 525 2401
hier16 3564 5484 19996
hier16x16x16a 4096 5376 21504
jjtabeltest 3025 1650 7590
nine12 10399 11362 52624
nine5d 10733 17295 58135
ninenew 6546 7340 32920
targus 162 63 360
toy3dsarah 2890 1649 9690
two5in6 5681 9629 34310

rows (additivity constraints) and nonzero coefficients of the constraints matrix
A to be reordered.

Tables 2, 3 and 4 show, respectively, the results obtained reordering the matri-
ces in dual block-angular form for k = 2, in primal block-angular form for k = 2,
and in dual-block angular form for k = 4 and 8. Last two columns of Tables 2
and 3 provide information for the single level algorithm (i.e., KL algorithm was
applied to the whole matrix). Columns “m1”, “n1”, “m2” and “n2” of tables 2
and 3 provide the number of rows mi and columns ni of the two diagonal blocks.
Columns “100·l/n” (“100·l/m”) of Tables 2 and 4 (Table 3) give the relative size
of the linking columns (constraints) block. Columns “CPU” of the three tables
report the seconds of CPU time required to compute the reordering. The runs
were carried on a standard PC running Linux with an AMD Athlon 1600+ at
1.4GHz and 320 MB of RAM. Therefore, the reordered matrix can be efficiently
obtained without the need of sophisticated computational resources.

From Tables 2–4 it can be concluded that:

– The multilevel approach is instrumental in reordering tabular data con-
straints. It is not only one order of magnitude faster that the single level
approach, but also provides much better reorderings (i.e., the linking block
becomes much narrower). In particular, all the matrices could be reordered
in few seconds on a desktop computer.

– The sizes of the diagonal blocks are similar, which may be a benefit for an
optimization solver. This is also instrumental if parallel computations want
to be exploited.

– The size of the linking block is instance dependent (from 7.4% in instance
“bts4” of Table 2 to 59.8% in instance “hier16” of Table 3). Thus, in principle,
not all the reordered matrices are appropriate for a specialized solver for
structured problems.
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Table 2. Results for dual block-angular ordering with k = 2

Multilevel Single level
A1 A2

Name m1 n1 m2 n2 100 · l/n CPU 100 · l/n CPU
bts4 17838 16898 18472 16937 7.4 2 21.4 53
five20b 25196 14343 27787 15586 13.3 6 48.4 597
five20c 28820 14034 30005 15093 15.5 7 54.3 416
hier13 1656 583 1657 563 43.2 0 45.0 0
hier13x13x13a 1890 774 1659 526 40.8 0 46.0 0
hier13x13x7d 792 419 651 218 46.1 0 37.8 0
hier16 2486 740 2998 1069 49.2 1 55.2 1
hier16x16x16a 2614 1074 2762 1138 45.9 0 45.2 0
jjtabeltest 849 1269 801 1383 12.3 0 15.1 0
ninenew 3007 2115 4333 3085 20.5 0 40.5 1
nine5d 9007 4568 8288 4303 17.3 1 47.1 9
nine12 5880 4249 5482 4098 19.7 3 35.5 3
targus 19 26 44 92 27.1 0 21.6 0
toy3dsarah 741 1118 908 1389 13.2 0 24.7 0
two5in6 5344 1749 4285 1502 42.7 0 56.7 3

Table 3. Results for primal block-angular ordering with k = 2

Multilevel Single level
A1 A2

Name m1 n1 m2 n2 100 · l/m CPU 100 · l/m CPU
bts4 16307 18389 16137 18181 10.5 2 21.7 37
five20b 26006 17735 22576 16817 12.7 4 57.9 50
five20c 26693 17286 26218 17215 17.1 5 60.3 41
hier13 1375 1091 1076 929 42.6 0 53.7 0
hier13x13x13a 1320 1075 1428 1122 36.4 0 51.6 0
hier13x13x7d 483 562 510 621 38.0 0 36.8 0
hier16 1674 1732 1676 1832 59.8 0 60.4 0
hier16x16x16a 1989 2118 1676 1978 41.7 0 44.6 0
jjtabeltest 737 1457 686 1568 7.5 0 16.8 0
ninenew 3181 3239 2721 3307 21.9 1 46.8 1
nine5d 7111 5383 7975 5350 20.5 1 40.5 2
nine12 4846 5206 4666 5193 17.7 1 45.6 2
targus 22 82 22 80 11.7 0 19.1 0
toy3dsarah 534 1446 529 1444 20.2 0 20.2 0
two5in6 3630 2816 3817 2865 38.4 0 37.1 0

– In general, the size of the linking block increases with k, the number of diag-
onal blocks. Although the more diagonal blocks, the more “decomposable”
becomes the solution of linear systems of equations involving that matrix
(see Section 4), the overall solution procedure can become very inefficient
due to a large linking block. This tradeoff is usually optimized by small
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Table 4. Results for dual block-angular ordering with k = 4 and k = 8

k = 4 k = 8
Name 100 · l/n CPU 100 · l/n CPU
bts4 15.4 3 22.9 3
five20b 34.0 7 43.8 9
five20c 26.8 9 44.9 11
hier13 66.9 0 82.8 0
hier13x13x13a 64.1 0 80.8 0
hier13x13x7d 71.7 0 88.6 0
hier16 73.2 1 85.4 0
hier16x16x16a 69.4 0 83.7 0
jjtabeltest 24.6 0 36.9 0
ninenew 34.1 0 54.3 0
nine5d 44.3 1 70.6 1
nine12 31.0 1 47.6 1
targus 53.7 0 54.3 0
toy3dsarah 45.6 0 68.9 0
two5in6 73.9 0 87.2 0

values of k (e.g., k = 2, 3 or 4), unless the information about the data allows
specific larger ones.

– Primal and dual block-angular structures provide linking blocks of different
size. The best (primal or dual) ordering is instance dependent, and it seems
not to be a clear trend.

The above conclusions are consistent with those obtained in [16] for other types
of matrices (for the dual block-angular structure, the only one considered in
[16]).

Figures 2–5 of Appendix A show the original matrix, 2-blocks dual, 2-blocks
primal, and 4-blocks dual reorderings for the four largest instances tested.

4 Using the Reordered Matrices

The numerical kernel of any optimization algorithm is to deal with linear systems
of equations derived from the constraints matrix. If the block bordered structure
of the constraints matrix is exploited, significant savings can be obtained. This is
valid for both simplex and interior-point methods, which have been extensively
used for cell-suppression, controlled tabular adjustment, and controlled round-
ing. We will focus on the use of primal block-angular matrices in interior-point
methods (which have shown to be the most efficient option for tabular data),
and will test them for the controlled tabular adjustment problem.

The main computational burden of an interior-point method [21] is to solve
systems of equation with matrix AΘAT , where Θ is a diagonal positive definite
matrix. For our purposes, and without loss of generality, we will assume Θ = I,
thus, the system to be solved is
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(AAT )Δy = g. (3)

This system is named the “normal equations” and it is usually solved by a sparse
Cholesky factorization. If A has the structure of (1), we can recast the matrix
of system (3) as

AAT =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

A1A
T
1 A1L

T
1

. . .
...

AkAT
k AkLT

k

L1A
T
1 . . . LkAT

k

∑k
i=1 LiL

T
i

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=
[

B C
CT D

]
, (4)

B, C and D being the blocks of AAT . Appropriately partitioning g and Δy in
(3), the normal equations can be written as[

B C
CT D

] [
Δy1
Δy2

]
=
[

g1
g2

]
. (5)

By eliminating Δy1 from the first group of equations of (5), we obtain

(D − CT B−1C)Δy2 = (g2 − CT B−1g1) (6)
BΔy1 = (g1 − CΔy2). (7)

Therefore we have reduced the solution of system (3) to the solution of systems
with matrix B (which is made of k smallest subsystems AiA

T
i , i = 1, . . . , k)

and with one system with matrix (D − CT B−1C), which is named the “Schur
complement” of (3). In general, if the solution of systems with AiA

T
i , i = 1, . . . , k

are not too expensive, and the sparsity (the number of nonzero elements) of the
Schur complement is not degraded (i.e, decreased too much), we can obtain
significant computational savings by solving (6)–(7) instead of (3). Moreover,
there are efficient procedures for (6) based on iterative linear solvers [8].

The above procedure, using a preconditioned conjugate gradient (i.e., itera-
tive solver) for (6) with a specialized preconditioner (see [5,8] for details), has
been implemented in an interior-point package for primal block-angular prob-
lems [8]. Such procedure can be used for the efficient solution of controlled tab-
ular adjustment (CTA) problems, once the tabular data constraints have been
previously reordered as shown in Section 3. Table 5 reports preliminary compu-
tational results with an early implementation of CTA based on the specialized
interior-point algorithm of [8]. For each of the instances of Table 1—but the
two largest ones, that failed with the iterative solver—we solved systems (6)–
(7) from some interior-point iterations with a sparse Cholesky factorization (the
standard procedure used by general interior-point solvers, such as CPLEX) and
with the specialized procedure of [8]. Column “Ratio time” of Table 5 show the
ratio between both solution times, i.e., how many times faster is the specialized
procedure compared to the standard one. We note that the problems were not
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Table 5. Ratio time for the solution of CTA by an interior-point method without and
with exploitation of structure

Name Ratio time
bts4 1.5
hier13 12.7
hier13x13x13a 11.6
hier13x13x7d 3.9
hier16 43.5
hier16x16x16a 43.2
jjtabeltest 0.7
ninenew 7.5
nine5d 2.8
nine12 5.1
targus 1.0
toy3dsarah 6.0
two5in6 10.9

solved up to optimality with the approach of [8], since that procedure has still to
be tuned for problems like CTA (which has, for instance, equality linking con-
straints instead of the inequality ones considered in [8]). However those figures
are a good indicator of the expected overall performance in the solution of CTA
by exploiting the constraints structure in an interior-point method.

5 Conclusions

The structure detection tool used in this work for constraints of tabular data
can provide significant computational savings for CTA, and, in general, for any
tabular data protection method that has to solve a sequence of linear program-
ming subproblems. Many additional tasks have still to be done. Among them,
the main one is to tune the specialized approach of [8] for fully exploiting the
reordered matrix, and for obtaining an optimal solution to CTA in a fraction of
the time needed by a general solver.
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A Sparsity Pattern of Original and Reordered Matrices

a) b)

c) d)

Fig. 2. Results for instance bts4: a) original matrix; b) reordered matrix in dual 2-
blocks-angular form; c) reordered matrix in primal 2-blocks-angular form; d) reordered
matrix in dual 4-blocks-angular form

a) b)

c) d)

Fig. 3. Results for instance five20b: a) original matrix; b) reordered matrix in dual 2-
blocks-angular form; c) reordered matrix in primal 2-blocks-angular form; d) reordered
matrix in dual 4-blocks-angular form
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a) b)

c) d)

Fig. 4. Results for instance five20c: a) original matrix; b) reordered matrix in dual 2-
blocks-angular form; c) reordered matrix in primal 2-blocks-angular form; d) reordered
matrix in dual 4-blocks-angular form

a) b)

c) d)

Fig. 5. Results for instance nine5d: a) original matrix; b) reordered matrix in dual 2-
blocks-angular form; c) reordered matrix in primal 2-blocks-angular form; d) reordered
matrix in dual 4-blocks-angular form
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Abstract. Controlled Rounding is a technique to replace each cell value
in a table with a multiple of a base number such that the new table
satisfies the same equations as the original table. Statistical agencies
prefer a solution where cell values already multiple of the base number
remain unchanged, while the others are one of the two closest multi-
ple of the base number (i.e., rounded up or rounded down). This solu-
tion is called zero-restricted rounding. Finding such a solution is a very
complicated problems, and on some tables it may not exist. This paper
presents a mathematical model and an algorithm to find a good-enough
near-feasible solution for tables where a zero-restricted rounding is com-
plicated. It also presents computational results showing the behavior of
the proposal in practice.

1 Introduction

Statistical agencies publish information in tabular form called tables. A table is
a collection of values located in cells. Some cell values are obtained by adding
other value values, and are called marginal cells. The cells containing values
which cannot be computed by adding other cell values in the table are called
internal cells. Then, each marginal cell is associated to a mathematical equation
defining its value by a sum of values in internal cells. Figure 1 shows an example
of a table.

Before publication, in many cases, statistical agencies need to round each
cell value to a multiple of a given number. This number is called base number.
Standard examples of base numbers are 1, 3, 5 or 10. In particular, 1 may be used
when the values in the original table are floating numbers, and the statistical
agency desires to publish only integer values. This decision can be motivated
for cosmetic reasons, as decimal values could be irrelevant. Another motivation
for rounding values could be to limit the disclosure risk. Indeed, publishing too
much details could reveal private information about the contributors of the data,
which should be protected by national laws.

The difficulty of rounding values in a table is based on the existence of math-
ematical equations. The rounded values in marginal cells should coincide with
the sum of rounded values of the associated internal cells. Depending on the
table structure, this aim could lead to a complex mathematical problem, known
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Unrounded data total male female young adult thin fat
North East 60593 29225 31368 13856 46737 34565 26028
North West 174414 78129 96285 25673 148741 3432 170982
Yorkshire and Humberside 108769 46119 62650 2342 106427 32223 76546
East Midlands 93346 43201 50145 23443 69903 23434 69912
West Midlands 131817 61046 70771 23878 107939 432 131385
East 107060 47376 59684 24532 82528 34233 72827
London 110811 49053 61758 17635 93176 3423 107388
South East 123359 50949 72410 34223 89136 4567 118792
South West 119863 44718 75145 35980 83883 56356 63507
England 1030032 449816 580216 201562 828470 192665 837367
Wales 95388 49579 45809 34989 60399 6454 88934
Scotland 124678 61327 63351 36789 87889 5643 119035
Great Britain 1250098 560722 689376 273340 976758 204762 1045336

Fig. 1. Number of inhabitants (dummy data)

as Controlled Rounding Problem (CRP). The rounded value should be as close
as possible to the original (unrounded) value, but then the CRP is an opti-
mization problem. To be more precise, the statistical offices use to require that
values which are already multiple of the base number should remain unchanged;
otherwise, the original value can be either rounded up or down to the closest
multiple of the base number. Then the aim of CRP is to look for rounded values
for all the cells such that the distance between the unrounded and the rounded
tables is minimized. This distance is traditionally defined by the sum of the ab-
solute difference between each rounded and unrounded cell value. Potentially,
each term of this addition can be weighted with a different parameter to con-
sider the importance of the cell in the tabular form. This restricted CRP problem
is known as zero-restricted CRP. On tables with a 2-dimensional structure the
zero-restricted CRP consists of solving a network flow problem on a bipartite
graph, and it is always feasible. However, on more complex tables (including a
3-dimensional table with 2 × 2 × 2 internal cells) a rounded table may not ex-
ists. Checking if a feasible solution exists is a NP -complete problem (see, e.g.,
Moravek and Vlach [9]), and therefore finding an optimal zero-restricted CRP is
a very difficult combinatorial problem. Some early articles have addressed this
problem; see e.g. Bacharach [1], Dalenius [6], Cox and Ernst [3], Cause, Cox and
Earns [2], Fagan, Greenberg and Hemmig [7], and Cox and George [5].

To overcome the drawbacks of the zero-restricted CRP, some relaxations have
been addressed. The most widely used by statistical offices is the so-called
Random Rounding (see, e.g., Fellegi [8]). In this case, values which are mul-
tiple of the base number remain unchanged. Otherwise, each cell value is re-
placed by one of the two closest multiple of the base number, no matter if
the output table satisfies or not the mathematical equations. The replacement
is conducted by using a random procedure that takes into account the orig-
inal value ai of a cell and the two closest multiples of the base number, de-
noted by �ai	 and 
ai�. More precisely, if the base number is β, the procedure
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A B C Total
Activity I 20 50 10 80
Activity II 8 19 22 49
Activity III 17 32 12 61
Total 45 101 44 190

Fig. 2. Investment of enterprises by activity and region

selects �ai	 with probability (
ai�−ai)/β, and �ai	 with probability (ai−�ai	)/β.
Let us denote the random value by ξ(ai). This methodology has the advantage
of being easy to be applied on all type of tables. Another advantage of using
random rounding is that the rounded values are, by construction, statistically
unbiased. When solving the above defined CRP, due to the objective function,
the probability distribution is not linearly proportional to ai−�ai	 as happens in
the random rounding. This biased behavior is undesired by experts (see Cox [4]),
and therefore support the use of random rounding. However, random rounding
has the disadvantage of producing non-additive tables, and this is a fundamental
drawback that motivates new research on CRP.

Salazar [11] has described a mathematical model and implemented an algo-
rithm to find optimal solutions of the CRP on tables with general structures.
The code has been able to find rounded tables to real-world instances with up
to 1,000,000 cells. Still, it is possible to build small and artificial tables where
this code cannot find even a feasible solution in a reasonable computing time.
The current paper presents a new relaxed version of CRP, and discusses compu-
tational results.

In this paper we consider the CRP as above defined, without protection level
requirements that make the optimization problem more difficult. This relaxation
is still of interest in practice because experts in statistical office tend to accept
rounded tables as protected by construction. We also discard here the concept
of loss of information, which in Salazar [11] is the objective function to be mini-
mized. A reason for discarding this concept is that a user can never measure the
utility of the rounded values by the difference to the unrounded value, as he/she
will never receive the unrounded value. The objective function in this paper will
be used to conduct the approach to feasible solutions. More precisely, in this
paper the CRP consists in choosing if an internal cell should be rounded up or
down so the worst different between the rounded and the rounded values of a
marginal cell is minimum. Because this combinatorial problem remains difficult,
a near-optimal approach is proposed and tested.

2 The Optimization Problem

Most of the tabular data are created by initially having a set of cells containing
unrelated numbers. These cells are called internal cells. Then, the values of some
internal cells are aggregated and create the so-called marginal cells. Although
some marginal cells can be seen as the aggregation of other marginal cells, the
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recursive definition shows that any marginal cell is always the sum of marginal
cells. (For instance, the grand total is the sum of all the marginal cells.) In this
case, each marginal cell corresponds to a mathematical equation where one cell
of the table is equal to the some of other (internal) cells of the table. This is the
case of, for example, the tiny table in Figure 2, where we find nine internal cells
and seven marginal cells. In this simple table one could see eight mathematical
equations because there are four rows and four columns, but one of the equations
is redundant (it is linearly dependent of the other seven equations). Not all tables
have this property, and the table in Figure 1 is an example. Indeed, the marginal
cell with the value 60593 in North East is defined by three equations, and no
one of the three is redundant. In other words, if forget one of the three equations
defining this marginal cell during the rounding process, then the final table may
not be additive. However, this type of tables where more than one equation
is needed to define the same marginal cell is unusual in practice. This section
sets the notation for a table with the above property and defines the rounding
problem. An approach to solve this problem will be presented in the next section.

Let I be the index set of all the internal cells of a table, and J the index set of
all the marginal cells. To write a mathematical model for the precise definition
of the problem, we associate each cell i ∈ I with a 0–1 variable xi. The variable
is 1 if the cell value ai should be rounded up to 
ai�β , and 0 if the cell value
ai should be rounded down to �ai	β. We keep the zero-restricted assumption on
the internal cells, thus xi = 0 when ai is a multiple of the base number.

Regarding marginal cells, we do not associate variables. We associate con-
straints, instead. More precisely, if a marginal cell j ∈ J contains a value aj

which is the sum of values related to a collection Sj of internal cells, i.e.

aj =
∑
i∈Sj

ai

then an ideal CRP solution x∗ for the internal cells would satisfy

�aj	β ≤
∑
i∈Sj

�ai	β + βx∗
i ≤ 
ai�β .

Since such a solution may not exist, we introduce a new variable y to measure
the violation of these constraints. This variable will the objective function to
be minimized in our combinatorial problem, hence the aim is to find the “most
feasible” CRP solution. It is possible to consider other objective functions to also
select with a second criteria among all the most feasible solutions. For example, it
could be the minimization of λy+

∑
i∈I wixi, where λ := |I|β gives priority to the

feasibility, and where wi := 
ai�β + �ai	β − 2ai measures the cost of rounding
up instead of rounding down. Alternatively, as mentioned in Salazar [10], the
parameter wi could also be selected as the random value 
ai�β + �ai	β − 2ξ(ai)
to reduce the implicit bias of a deterministic procedure.

To simplify notation and without loss of generality, we can assume that 0 ≤
ai < β for all i ∈ I, and β = 1. This transformation replaces aj by other numbers
that will be denoted by a′

j , for all j ∈ J , whose closest integer values are denoted
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by �a′
j	 and 
a′

j�. Then the CRP is equivalent to round fractional numbers to
integer numbers, and a mathematical model is:

minimize |I|y +
∑
i∈I

wixi (1)

subject to

�a′
j	 − y ≤

∑
i∈Sj

xi ≤ 
a′
j�+ y for all j ∈ J, (2)

xi = 0 for all i ∈ I : ai = 0, (3)
xi ∈ {0, 1} for all i ∈ I : ai > 0. (4)

A solution with y = 0 defines a zero-restricted CRP output. Some statistical
agencies would prefer to replace constraint (3) by xi ∈ {0, 1} even when ai = 0
to increase the probability of finding a CRP solution x with y = 0. The model
corresponds to an NP-hard optimization problem because the particular case
with a′

j = 1 for all j ∈ J and appropriate values wi can be used to solve instances
of the Set Partitioning Problem.

Note that the problem presented in this section is different to the problem
addressed in [11]. Both problems are related with the rounding methodology, but
they do not aim at finding the same solutions. The problem in [11] looks for a
rounded table taking into account protection level requirements and minimizing
the loss of information. It is a complex combinatorial problem, not only in theory
but also in practice. Indeed, for highly structured tables even finding a feasible
solution may be difficult. As an alternative, this paper present a different problem
where the protection levels are not considered, and where the aim is to provide
a “good” rounded table. The goodness of the solution is based on ensure that
internal cells are rounded either up or down the original values; then, the impact
on the marginal cells is minimized.

The fact that the problem presented in this paper does not consider protection
levels seems to be reasonable as the methodology is oriented to solve complex in-
stances where the full problem presented in [11] does not work at all. These in-
stances tend to be large and highly structured tables, and the first aim of the sta-
tistical agencies under this situation is to have at least a “good” rounded table.

3 Algorithms

Although the theoretical complexity of the problem introduced in the previous
section is still NP-hard, as the problem addressed in [11], it is in practice much
simple to be solved. To support this claim, note that finding a feasible solution for
the problem introduced in this paper is trivial: fixing the internal cells first, and
then recomputing the marginal cells with the table structure, will always give a
feasible solution. To this end y in (2) must be calculated as the last step, and the
quality of the solutions depends directly on the value of y. Clearly, bad decisions
when rounding the internal cells may lead to large values of y, and therefore
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bad solutions. However, the additivity of the solution is ensured in all instances
where the property that each marginal cell is related only one mathematical
equation hold. The same simple heuristic procedure cannot be applied to the
problem in [11], and indeed finding a feasible solution is NP-complete.

To solve the 0-1 Integer Linear Programming model (1)–(4) we use a branch-
and-bound algorithm. At each node of the branch-and-bound search, the bound
is computed by solving the Linear Programming relaxation of the model. When
the solution is not integer, a branching is performed by fixing a fractional variable
either down or up. This means that an internal cell is either decided to be
rounded down or up. The optimal objective value of the Linear Programming
relaxation is a lower bound of the objective value of the rounded tables with
such decision on this internal cell. For that reason, the smallest lower bound is a
global lower bound LB on the optimal integer solution. To get an upper bound,
each fractional solution x∗ is used to heuristically create an integer solution. To
this end, a decision is taken by rounding up each internal cell i with probability
x∗

i , and then the marginal cell are computed by using the equations defining
the table. The largest difference between the rounded and unrounded marginal
values is defined as the upper bound, and the smallest upper bound is saved
on UB. The branch-and-bound search stops when LB ≥ UB or when the time
limit is achieved. Further technical details on this algorithm are not explained
due to the page limitation of this paper.

4 Computational Experiments

As mentioned in the introduction, the new proposal was motivated by the result
of using the controlled rounding approach in [11] to some instances at the Office
of National Statistics (U.K.). Table 1 shows the number of cells, the number of
equations, the existence of a hierarchical variable defining the table and the type
of final solution. When the solution type is ”Feasible” it means that the proce-
dure was interrupted due to the time limit (10 minutes) and a zero-restricted
solution was available. When the solution type is ”infeasible” it means that the
procedure was interrupted due to the time limit and no zero-restricted solution
was available.

To test the model and algorithm described in this paper we have implemented
the approach in C programming language on a notebook Pentium Centrino 1.7
Ghz. This implementation is compared with the code implementation described
in [11]. A fundamental difference between the two implementations is that the
code in [11] considers protection levels and looks for a zero-restricted feasible
solution minimizing the loss of information. Instead, the approach presented in
this paper does not take into account protection levels in the set of constraints,
and the loss of information is a secondary criterion in the objective function.
The requirement of the approach presented in this work is the additivity and the
fact that internal cells must be rounded either up or down. The main objective
function of the approach is to minimize the worst distance between rounded and
unrounded marginal values.
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Table 1. Experiments using the code described in [11]

dim cells equa hierar S-Type
cutTwoDimlarge50 AllGors LSoa(100K) 2 102051 2052 No Optimal
cutTwoDimlarge50 AllGors LSoa(200K) 2 204051 4052 No Optimal
cutTwoDimlarge50 AllGors LSoa(400K) 2 408051 8052 No Optimal
cutTwoDimlarge50 AllGors LSoa(450K) 2 459051 9052 No Optimal
cutTwoDimlarge50 AllGors LSoa(500K) 2 510051 10052 No Optimal

TwoDimLarge100 GorG LSoa 2 437532 83314 Yes Optimal
TwoDimLarge100 GorW LSoa 2 118932 24568 Yes Optimal

DWP LSoas GorA 3 46396 18255 No Optimal
DWP LSoas GorB 3 124880 49088 No Optimal
DWP LSoas GorG 3 99428 39089 No Optimal
DWP LSoas GorH 3 133448 52454 No Optimal
DWP LSoas GorJ 3 148960 58548 No Optimal

cutDWP LSoas GorA 3 38922 15318 No Optimal
cutDWP LSoas GorG 3 38922 15318 No Optimal

DWP LSoas GorJ-hiera 3 181804 104295 Yes Feasible
DWP LSoas GorW-hiera 3 65296 37860 Yes Feasible
DWP Oas GorA-hiera 3 297388 173447 Yes infeasible
DWP Oas GorB-hiera 3 787780 461385 Yes infeasible

Table 1 shows the results of running the code described in [11] on a collection
of benchmark instances from different statistical agencies. The base number
for these experiments was 3. Column “dim” shows the dimension of the table,
column “cells” shows the number of (internal and marginal) cells, “equa” is
the number of marginal cells, “hierar” tells is the table has or not hierarchical
structure, and “S-Type” is the type of solution found by the code described in
[11]. Although 2-dimensional tables have always integer solutions, depending on
the size of the table, an implementation may find or not a solution in a given
time limit. An interesting observation from Table 1 is that the approach was able
to find an optimal zero-restricted solution for all 2-dimensional tables, and for all
the 3-dimensional tables without hierarchical variables. Only on two large tables
the approach did not find a feasible zero-restricted table. Finding alternative
and good rounded tables for these instances was the motivation of this paper.

Table 2 shows the results of running the code solving the mathematical model
(1)–(4). From this table, one observe that the new implementation was able to
find optimal zero-restricted solutions on three of the four unsolved instances.
Only the last table remains unsolved in a time limit of 300,000 seconds, but the
procedure found a rounded table where a modified cell value differs in at most 5
times the base number respect to the unrounded cell value. This is a very good
solution for this table, as by simply rounding down the original internal cells
in this table, a marginal cell value goes to 135,120 times the base number far
from the original value. By rounding up all the original internal cells, a marginal
cell value goes to 269,515 times the base number far from the unrounded value.
Rounding each internal cell to the closest multiple of the base number in this
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Table 2. Times on a Notebook Pentium Centrino 1.7 Ghz

name time nodes UB
cutTwoDimlarge50 AllGors LSoa(100K) 2.7 1 0
cutTwoDimlarge50 AllGors LSoa(200K) 7.5 1 0
cutTwoDimlarge50 AllGors LSoa(400K) 15.9 1 0
cutTwoDimlarge50 AllGors LSoa(450K) 20.8 1 0
cutTwoDimlarge50 AllGors LSoa(500K) 23.5 1 0

TwoDimLarge100 GorG LSoa 39.5 1 0
TwoDimLarge50 GorW LSoa 6.1 1 0

DWP LSoas GorA 8.2 1 0
DWP LSoas GorB 23.4 1 0
DWP LSoas GorG 33.7 1 0
DWP LSoas GorH 26.7 1 0
DWP LSoas GorJ 57.0 1 0

cutDWP LSoas GorA 6.0 1 0
cutDWP LSoas GorG 9.6 1 0

DWP LSoas GorJ-hiera 48700.5 280 0
DWP LSoas GorW-hiera 3655.8 119 0
DWP Oas GorA-hiera 206740.7 370 0
DWP Oas GorB-hiera 300000.0 1+ 5

table will move a marginal cell value to 1,148 times the base number. Therefore,
having a way of rounding the internal cells such that the worst marginal differs
in at most 5 times the base number is a very good solution for this instance.

To further test the new approach, we have generated random instances. They
are k-dimensional tables, and the base number has been fixed to β = 5. To control
the effect of the density of a table, we have used a parameter δ ∈ {25, 50, 75, 100}.
A cell value is fixed to 0 with probability 1− δ/100, and it is a random integer
number in [1, β − 1] with probability δ/100. For each k ∈ {2, 3, 4, 5, 6, 7, 8} we
have created 10 tables. Table 3 summarizes some findings from our experiments,
and each line gives the average result over the 10 generated tables. The column
type gives the number of internal cells and the structure of the table (thus also
the number of equations). The time are given on seconds on a notebook with a
Pentium Centrino 1.7 Ghz., and the time limit was set to one hour. The column
UB shows the value of y of the best found solution, and the column LB shows the
value of the best LP-relaxation. All the instances associated to a raw of the table
were optimally solved when both bounds coincides. A value 0 in these bounds
means that an optimal zero-restricted solution was found. When the LB bound
is 1, it means that a zero-restricted rounding has been proved to do not exist.

When considering 2-dimensional tables, the new approach trivially solves the
optimization problem. Indeed, a zero-restricted solution always exists, and it
can be found by solving the first linear-programming model with a network flow
algorithm. Using the general purpose simplex algorithm available in CPLEX, it
is done in less than 10 minutes when there are 1000 rows and 1000 columns.
The difficulties of the problem appears on k-dimensional tables with k > 2. For
instances, on average, the code cannot find in 1 hour an optimal zero-restricted
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Table 3. Times on a Notebook Pentium Centrino 1.7 Ghz using base 5

type δ time UB LB
2000x1000 25 146 0 0
2000x1000 50 440 0 0
2000x1000 75 980 0 0
2000x1000 100 2047 0 0
30x30x30 25 340 0 0
30x30x30 50 1060 0 0
30x30x30 75 1646 0 0
30x30x30 100 2538 0 0
3x3x3x3x3 25 1 1 1
3x3x3x3x3 50 2 1 1
3x3x3x3x3 75 6 1 1
3x3x3x3x3 100 3600 1 0

28 25 1 1 1
28 50 10 1 1
28 75 49 1 1
28 100 288 1 1

36x22 25 3600 3 1
36x22 50 3600 4 0
36x22 75 3600 12 0
36x22 100 3600 15 0

table for a 8-dimensional table with structure 36x22 internal cells, all of them
not multiple of the base number. The best that it can find is a solution where a
marginal cell differs respect to the original cell in 15 times the base number. This
is a good solution if one observes that rounding up (or down) all internal cells
gives a marginal that differs in about 1,450 times the base number; rounding
each internal cell to the closest multiple creates a marginal cell which differs
from its unrounded value in about 30 times the base number. Very unfortunately,
the lower bound remains zero for most of the instances, which means that the
existence of a zero-restricted solution is not discard.

5 Conclusion

This paper has proposed a different mathematical model to find rounded ta-
bles on complex and large tables. It decides where to round each internal cell
in order to reduce the impact on the marginal totals. An advantage of this
approach is that it keeps the control on the internal cells, so all of them are
either rounded up or down. A branch-and-bound algorithm has been imple-
mented to solve the mathematical model, and it has been tested on benchmark
and randomly-generated instances. The preliminary results show that the new
code can find better solutions on larger tables than previous approaches. This
work opens new research questions as finding new lower bounds to reduce the
final gap when the problem is unsolved.
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Abstract. The paper reports results of a study aimed at the development of 
recommendations for harmonization of table protection in the German statistical 
system. We compare the performance of a selection of algorithms for secondary 
cell suppression under four different models for co-ordination of cell 
suppressions across agencies of a distributed system for official statistics, like 
the German or the European statistical system. For the special case of 
decentralized across-agency co-ordination as used in the European Statistical 
System, the paper also suggests a strategy to protect the data on the top level of 
the regional breakdown by perturbative methods rather than cell suppression. 

1   Introduction 

Some cells of the tabulations released by official statistics contain information that 
chiefly relates to single, or very few respondents. In the case of establishment data, 
given the meta information provided along with the cell values (typically: industry, 
geography, size classes), those respondents could be easily identifiable. Therefore, 
traditionally, statistical agencies suppress a part of the data, hiding some table cells 
from publication. Efficient algorithms for cell suppression are offered f.i. by the 
software package τ-ARGUS [10]. 

When tables are linked through simple linear constraints, cell suppressions must 
obviously be coordinated between tables. This paper addresses problems that are 
connected to a situation where those tables are provided by different statistical 
agencies, as in the case of the European statistical system, and also in the case of the 
German statistical system. 

We give an account on a study aimed at the development of recommendations for 
harmonization of table protection in the German statistical system, considering 
turnover tax statistics as a first, pilot instance. The study compared the performance of 
a selection of algorithms for secondary cell suppression under four different models 
for co-ordination of cell suppressions across the agencies. For a detailed report on the 
study see [9]. 

One of those models, the standard model adopted by Eurostat, leads to extremely 
many suppressions at the Union level. The situation might be improved substantially 
by replacing cell suppression on that level of aggregation by interval publication. We 
report on results of an experiment to protect data on the top level of the breakdown by 
region by publishing intervals as alternative to cell suppressions. 
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2   Methodological Background 

Cell suppression comprises two steps: In the first step the disclosure risk connected to 
each individual cell of a table is assessed by applying certain sensitivity rules. If a cell 
value reveals too much information on individual respondent data, it is considered 
sensitive, and must not be published. We consider this to be the case, if the cell value 
could be used, in particular by any of the respondents, to derive an estimate for a 
respondent’s value that is closer to the reported value of that unit than a pre-specified 
percentage, p ( p% rule). When cell suppression is used as disclosure limitation 
technique, in a first step sensitive cells will be suppressed (primary suppressions). In 
a second step, other cells (so called secondary suppressions) are selected that will also 
be excluded from publication in order to prevent the possibility that users of the 
published table would be able to recalculate primary suppressions. Naturally, this 
causes a loss of information. 

By solving a set of equations implied by the additive structure of a statistical table, 
and some additional constraints on cell values (such as non-negativity) it is possible to 
obtain a feasibility interval, i.e. upper and lower bounds for the suppressed entries of a 
table, c.f. [5], for instance. A set of suppressions (the ‘suppression pattern’) is called 
‘valid’, if the resulting bounds for the feasibility interval of any sensitive cell cannot 
be used to deduce bounds on an individual respondent contribution that are too close. 

The problem of finding an optimum set of suppressions known as the ‘secondary 
cell suppression problem’ is to find a feasible set of secondary suppressions with a 
minimum loss of information connected to it. The ‘classical’ formulation of the 
secondary cell suppression problem leads to a combinatorial optimization problem, 
which is computationally extremely hard to solve. For practical applications, the 
formulation of the problem must be relaxed to some degree. 

In section 2.1 we define relaxed standards for the concept of validity of a 
suppression pattern. In our study we considered only algorithms for secondary cell 
suppression that ensure validity of the suppression pattern at least with respect to the 
relaxed standards. Section 2.2 briefly describes those algorithms. 

In a situation, where different agencies publish tables providing aggregate 
information of the same underlying data, these agencies must agree on parts of the 
suppression pattern. Section 2.3 outlines four different models for co-ordination of 
cell suppressions across tables provided by one Union or Federal level agency and a 
number of agencies on the level below. 

2.1   Standards for Protection Requirements in Practice 

For a table with hierarchical substructure, feasibility intervals computed on basis of 
the set of equations for the full table tend to be much closer than those computed on 
basis of separate sets of equations corresponding to sub-tables without any 
substructure. Moreover, making use of the additional knowledge of a respondent, who 
is the single respondent to a cell (a so called ‘singleton’), it is possible to derive 
intervals that are much closer than without this knowledge. Based on the assumption 
of a simple but not unlikely disclosure scenario where intruders will deduce feasibility 
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intervals separately for each sub-table, rather than taking the effort to consider the full 
table, and that single respondents are more likely to reveal suppressed cell values 
within the same row or column using their special additional knowledge, we think the 
following minimum protection standards make sense. 

(PS1) Protection against exact disclosure: With a valid suppression pattern, it is 
not possible to disclose the value of a sensitive cell exactly, if no additional 
knowledge (like that of a singleton) is considered, and if subsets of table 
equations are considered separately. 

(PS2) Protection against singleton disclosure: A suppression pattern, with only two 
suppressed cells within a row (or column) of a table is not valid, if each of 
the two corresponds to a single respondent who are not identical to each 
other. 

(PS1*) extension of (PS1) for inferential (instead of exact) disclosure, 
(PS2*) extension of (PS2), covering the more general case where a single respondent 

can disclose another single respondent cell, not necessarily located within the 
same row (or column) of the table. 

Note, that we define these protection standards in order to be able to classify 
current state-of-the-art cell suppression software with respect to the worst cases of 
disclosure risk, not because we think it would generally be enough to only consider 
those most likely disclosure risk scenarios.  

2.2   Algorithms for Secondary Cell Suppression 

The software package τ-ARGUS offers four algorithms for secondary cell 
suppression: Hypercube, Modular, Network and Optimal. In the current state of 
development, Network and Optimal tend to provide results violating the PS2 standard, 
i.e. they do not protect against singleton disclosure. Those algorithms have therefore 
been excluded from the study which provides results for Modular and for 3 variants of 
Hypercube. Both, Modular and Hypercube subdivide hierarchical tables into sets of 
linked, unstructured tables. The cell suppression problem is solved for each subtable 
separately. Secondary suppressions are co-ordinated for overlapping subtables. While 
for Modular [4], methods based on Fischetti/Salazar Linear Optimization tools [5] are 
used to select secondary suppressions, Hypercube is based on a hypercube heuristic 
[11] (see also [6]). Note, that use of the optimization tools requires a license for 
additional commercial software (LP-solver), whereas use of the hypercube method is 
for free. While Modular is only available for the Windows platform, of Hypercube 
there are also versions for Unix, IBM (OS 390) and SNI (BS2000). 

Both, Modular and Hypercube provide sufficient protection according to standards 
PS1* (protection against inferential disclosure) and PS2 above. Regarding singleton 
disclosure, Hypercube even satisfies the extended standard PS2*. However, 
simplifications of the heuristic approach of Hypercube cause a certain tendency for 
over-suppression. The study therefore included a relaxed variant, referred to in the 
following as HyperSeq, where protection standard PS1* is slightly reduced for some 
of the subtables of a hierarchical table to the extent even of reduction to PS1 for some 
subtables. HyperSeq processes a table by processing a certain sequence of subtables 
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as explained in [7, section 3]. The method is targeted at avoiding secondary cell 
suppressions on the higher levels of a table to some degree. A much simpler approach 
to reduce the tendency for over-suppression for the Hypercube method is to reduce 
the PS1* standard generally, for all subtables, to PS1, i.e. zero protection against 
inferential disclosure. We therefore refer to this method as Hyper0 in the following. 
Hyper0 processing can be achieved simply by inactivating the option “Protection 
against inferential disclosure required” when running Hypercube from out of 
τ-ARGUS. 

Table 1. Algorithms for secondary cell suppression considered in the German harmonization 
study 

Algorithm Modular Hypercube HyperSeq Hyper0 
Procedure for 

secondary suppression 
Fischetti/Salazar

optimization Hypercube heuristic 

Interval 
disclosure 

PS1* PS1* PS1 PS1 
Protection 
standard Singleton 

disclosure 
PS2 PS2* PS2* PS2* 

2.3   Approach for Co-ordination of Cell Suppressions Across Agencies 

When different agencies publish tables providing aggregate information of the same 
underlying data, these agencies must agree on the suppression pattern for certain parts 
of those tables, in order to avoid that cells suppressed in the publication by one 
agency can be recalculated using the publications of the other agencies, referred to as 
‘disclosure across publications’ in the following. When there is a Federal or Union 
level agency and a number of agencies on the level below (the state level), we 
imagine basically two opposite approaches: 

� Secondary suppressions are selected in a decentralized fashion: Agencies on the 
lower level select secondary suppressions independently. Secondary suppressions 
that are necessary to avoid disclosure across publications are allowed only on the 
federal (or Union, resp.) level. 

� Secondary suppressions are selected in a centralized fashion. Disclosure across 
publications is avoided mostly by secondary suppressions at the state level. 

The obvious advantage of a decentralized approach, which is the standard model of 
cooperation between Eurostat and the member states, is that state agencies can act 
(and publish) independently. The disadvantage is that it leads to rather much 
suppression at the Union level. 

The German harmonization study has produced empirical results for tabulations of 
business turnover data by NACE (down to 5-digit level) and Region. We denote by 
RegionF the breakdown of the variable Region including the Federal level, and by 
RegionS a breakdown of the variable up to the state level only. 
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For empirical testing with tabulations of business turnover data the German 
harmonization study distinguished the following 4 variants for co-operation across 
agencies: 

� Centralized (central): Application of cell suppression to the tabulation by NACE 
and RegionF. 

� Decentralized (decentral): Independent application of cell suppression to the 
tabulation by NACE and RegionS for each state in a first step. In a second step, 
application of secondary suppression to the Federal level tabulation by NACE as to 
avoid the possibility of disclosure across publications. 

� Decentralized, weighted (dec-w): In a preparation step, we apply cell suppression 
to the tabulation of previous period data by NACE and RegionF . In the following 
independent application of cell suppression to the tabulation by NACE and 
RegionS making use of weighting options of the software, cells selected as 
secondary suppressions in the preparation step are preferred as secondary 
suppression. The idea of the approach is that by this procedure the final application 
of secondary suppression to the Federal level tabulation by NACE to avoid the 
possibility of disclosure across publications will lead to less suppressions on the 
Federal level, as compared to the simple decentralized approach. 

� Two blocks (block): States are grouped into two blocks: for each state of the first 
block, independent application of cell suppression to the tabulation by NACE and 
RegionS. Application of cell suppression to the tabulation by NACE and RegionC , 
where RegionC denotes the breakdown of the variable Region for the states of the 
second block including a new (artificial) Central level on top. Finally, application 
of secondary suppression to the Federal level tabulation by NACE to avoid the 
possibility of disclosure across publications. For efficiency, only those (four) states 
which did not cause any suppression on the 4-digit NACE level and above in the 
final step of the decentralized approach were admitted to the decentralized block. 

3   Empirical Results 

Within the study, any of the co-ordination models of 2.3 above has been tested in 
combination with one or more of the algorithms for secondary cell suppression 
presented in table 1. Our test data sets are tabulations of the variable ‘turnover’ of the 
ca. 2.9 mio records of the German turnover tax statistics by variables NACE, and 
Region. The NACE classification for the tabulations involves 16501 codes within a 7-
level hierarchical structure. In the first phase of the study, for Region we used 
variable Region-1 involving 496 codes at a 4-level hierarchy down to the district 
level, while in a second phase the testing of the more promising approaches was 
extended using the detailed variable Region-2 down to the community level involving 
a total of 5412 codes. 

In section 3.1 we report results of the study comparing the loss of information 
caused by secondary suppression, while section 3.2 provides results of the disclosure 
risk assessment carried out for some of the protected tables. 
                                                           
1 1133 after removing identities. 
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3.1   Information Loss 

This section compares performances of the algorithms with respect to number and 
added values of the secondary suppressions, considering especially the hierarchical 
level of the suppressed entries. Suppressions on high levels of the table are considered 
undesirable. 

Tabulations down to the district level 
Table 2 below reports the number of secondary suppressions on the federal and state 
level and the percentage of the values of the secondary suppressions. Obviously, 
results differ considerably between methods. On the state level, the range is between 
1314 and 3033, and on the federal level between 7 and 395. On the federal level, the 
result depends largely on the choice of the approach for across agency co-ordination 
(decentralized vs. centralized or two blocks approach). Decentralized approaches 
always caused a huge number of suppressions on the federal level. A first test with 
weights (the weighted decentralized method) to avoid some of the suppression on the 
federal level turned out to be not promising at all, therefore the approach was dropped 
from any further testing – although through more elaborate weighting schemes some 
improvement might eventually have been reached. 

Table 2. Number and Total Values of Secondary Suppressions on Federal and State Level 

 Secondary Suppressions 

Methodology Number Value 

State Level Federal Level (overall) 
Co-

ordination 
approach 

Algorithm 
f. Sec.Supp. abs. % abs. % % 

decentral 1,314 7.8 189 16.7 5.17 
dec-w 

Modular 
1,318 7.8 187 16.5 5.32 

Hyper0 1,907 11.4 255 22.5 4.88 
Hypercube 2,285 13.6 395 34.9 10.23 decentral 

HyperSeq 1,938 11.5 193 17 6.95 
Modular 1,675 10 7 0.6 2.73 
Hyper0 2,369 14.1 8 0.7 2.40 
Hypercube 2,930 17.4 22 1.9 5.69 

central 

HyperSeq 3,033 18.1 9 0.8 7.42 
Modular 1,621 9.7 10 0.9 2.65 

block 
HyperSeq 3,016 18 7 0.6 6.13 

On the state level, on the other hand, results are affected much stronger by the 
choice of the algorithm for secondary cell suppression, although of course with the 
same algorithm for secondary suppression there is always less suppression in the  
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result of the decentralized variant. Best results are achieved by the modular method, 
while using a variant of the hypercube method leads to an increase in the percentage 
of secondary suppressions between about 4 (Hyper0) and 8 (HyperSeq). Note that, 
even in the centralized variant, the number of suppressions selected by Modular is 
still smaller than the number of suppressions selected by any variant of Hypercube 
with a decentralized co-ordination approach. 

The same tendencies were observed in a more detailed analysis, c.f. table 3 of the 
appendix: Methods leading to more suppression overall also tend to lead to more 
suppression on the high levels of the NACE classification. Modular is the best 
performer, also on the lower regional levels. On these levels, choice of the approach 
for across agency co-ordination does not matter much. 

For a comparison between the variants of across agency co-ordination, a look at the 
percentages of the values of the secondary suppressions presented in the rightmost 
column of table 2 is quite interesting. According to this analysis, the centralized 
approach generally preserves more information, overall, than the decentralized 
approach except for the HyperSeq algorithm. Apart from the result for Hyper0 in the 
centralized variant (2.4%) which is certainly affected by the low protection standard 
provided by this method, allowing for relatively small values to be picked as 
secondary suppressions, best results (about 2.7 %) are achieved by Modular in both, 
the two blocks and centralized variant, while Hypercube in the decentralized variant 
performs worst (10.2 %). 

The conclusion from the results observed for the tabulations down to the 
department level was, neither to carry out any further experiments with the hypercube 
method in the variant that protects against inferential disclosure, nor with HyperSeq, 
because of the poor performance (on the state level and below, in case of HyperSeq) 
of these methods with respect to information loss. Although it was clearly only 
second best performer, testing with Hyper0 was to be continued, because of technical 
and cost advantages mentioned in 2.2 . 

Tabulations down to the community level 
Probably because of hardware restrictions, a run of Modular on the ca. 9 mio cells 
tabulation for Germany by NACE and Region-2 could not be carried out successfully, 
while a run of that table restricted to the 12 states or the block with centralized 
processing in the two blocks approach was no problem. Application of Hyper0 to the 
full table was no problem, either. 

Using specific control options of Modular (so called ‘frozen cells’), a splitting of 
the application proved to be feasible: it turned out to be possible to process Region-2 
tables for single states, while forcing the secondary suppressions on the state level to 
be identical to the secondary suppressions of the Region-1 table resulting from the 
centralized co-ordination approach. Such a partitioning approach is not possible for 
Hyper0. 

Note, that the additional detail in the table caused an increase in suppression at the 
district level of about 70 - 80 % with Hyper0 and about 10 – 30 % with Modular. 
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3.2   Disclosure Risk Assessment 

In order to assess the disclosure risk of a protected table, feasibility intervals were 
computed for all the sensitive cells (i.e. the primary suppressions). There are several 
options to compute those intervals, depending on the disclosure scenario that is 
considered. It makes a big difference, if we consider the full set of table equations 
‘simultaneously’, or, in correspondence to the approach taken by the secondary cell 
suppression algorithms (c.f. 2.2), if we consider only a subset of table equations 
related to a subtable without hierarchical substructure, at a time. What also matters is 
the a priori information taken into account. 

In the study, the experiments were generally based on the assumption that 
(external) users consider a lower bound of zero for all cell values and no upper 
bounds. 

In principle, there is a risk of (inferential disclosure), when the bounds of the 
feasibility interval of a sensitive cell could be used to deduce bounds on an individual 
respondent contribution that are too close according to the method employed for 
primary disclosure risk assessment. 

With this definition, and considering the full set of table equations we found 
between about 4 % (protection by Modular) and about 6 % (protection by Hyper0) of 
sensitive cells at risk looking at a tabulation by NACE and state2, and at two more 
detailed tables (down to the district level) analyzed for two of the states. Note that, 
even if there is a risk of inferential disclosure for a cell (or, for respondents to that 
cell, in fact), it is rather a risk potential, not comparable to the risk for those 
respondents, if the cell, or the intervals were published. After all, the effort connected 
to the computation of feasibility intervals based on the full set of table equations is 
quite considerable, and moreover, in a part of the disclosure risk cases only insiders 
(other respondents) would actually be able to disclose an individual contribution. 

The risk potential is certainly much higher for cells found to be at risk when only 
subsets of equations related to subtables without hierarchical substructure are 
considered for the interval computation because the effort for this kind of analysis is 
much lower. Because Modular protects according to PS1* standard, there are no cells 
at risk in tables protected by Modular. For Hyper0, we found about 0.4 % cells at risk, 
when computing feasibility intervals for equation subsets of a detailed tabulation. 

In this tabulation, about 66 % of the sensitive cells are singletons. When protected 
by Modular, for about 0.08 % of those singletons, it turned out that another singleton 
would be able to disclose its contribution. Because Hyper0 satisfies PS2* standard, no 
such case was found, when the table was protected by Hyper0. 

4   Protection Through Interval Publication 

Experience by Eurostat, and also the results of the German study presented in section 
3 prove that a decentralized approach leads to much suppression on the Union (or 
Federal) level. In a document prepared for the meeting of the steering group 
“Structural Business Statistics”[DOC 4.1, section 2a] in November 2005, Eurostat has 
                                                           
2 Use of decentralized across agency co-ordination approach increases the number of cells at 

risk for Modular by 80 %. 
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proposed to modify European level data, protecting the data by slight adjustment, 
rather than to suppress them. The idea bears some resemblance to Controlled Tabular 
Adjustment (CTA) suggested for instance in [3], [1], [2], and [8]. CTA methods 
attempt to find the closest set of adjusted cell values that make the released table safe.  

In the following, as another alternative, or rather, supplement, we discuss an 
approach to replace cell suppression by publication of intervals. A suitable, exact 
methodology for interval publication a.k.a. ‘Partial Suppression’ has been suggested 
in [12]. Unfortunately, a software implementation of that methodology is not yet 
available. So, instead of an exact methodology, we use a simple heuristic approach 
applied to the federal level data of our tabulation by NACE and state. The general 
idea of the method is, to publish the original cell value of those cells that were not 
subject to adjustment in a first CTA step, while replacing in the publication the cell 
values of the other cells by the adjusted value, released together with an interval. 
Intervals should be small enough, on one hand, to be of interest to users of the 
publication, but large enough, on the other hand, to provide sufficient protection to 
individual respondent data contributing to sensitive cells at both, the federal, and the 
state level. 

In a first step, the CTA method of [8] was applied to the federal level data, 
considering as sensitive cells those NACE positions, where either the federal level 
cell itself is sensitive, or which are suppressed in one, and only one, of the state 
publications3, protected by Modular in decentralized fashion. NACE positions, where 
all the state positions are unsuppressed, were made ineligible for adjustment. Note, 
that this simple heuristic CTA method tends to provide results where some of the 
sensitive cells are not sufficiently adjusted. For our instance, it required in fact some 
post processing of the CTA result to get to a feasible solution. Table 4 of the appendix 
presents the number of cells by ranges of relative deviation and by level of NACE 
classification. Shaded cells of this table mark combinations of NACE level and range, 
where we consider the range as so wide that from the information loss point of view 
this cell is considered as lost, just as if it had been suppressed. The total of the 
frequencies presented in those shaded cells is 11, which is much less than the 189 
secondary suppressions selected by Modular in the decentralized co-ordination 
approach. So our conclusion is that CTA has actually reduced information loss 
enormously compared to decentralized cell suppression. 

In a second step, we compute intervals in such a way that 

(1) the interval contains both, original, and adjusted value, 
(2) both bounds are multiples of 10 raised to the same power, powers of ten serving 

as a kind of a flexible rounding base, computed as log10 of the distance between 
original and adjusted value, 

(3) in about half of the cases, one of the interval bounds is the multiple of the 
corresponding rounding base closest to the original value. 

Condition (1) ensures that the intervals satisfy the protection requirements imposed 
on the federal level data. Because, due to condition (2), the interval bounds are 
rounded figures, users of the data get an immediate, rough notion of the precision of 

                                                           
3 In a real (production) application, of course some more positions have to be considered as 

sensitive, e.g. those, where the total of the suppressed state cells is sensitive. 
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the adjusted value, even if they don’t care to look at the exact interval size. Finally, by 
forcing the intervals to be wider with some probability than ‘necessary’ according to 
(1) and (2), we avoid that intruders can use the information given by (1) and (2) to 
compute (with certainty) intervals for the original value that are closer than the 
distance between original and adjusted value. 

The question is now, how much protection does this kind of interval publication on 
the federal (or European level) give to the state (or member state) level data? 
Considering the full set of table equations we found between about 4 % of sensitive 
cells at risk considering the tabulation by NACE and state, even when we consider all 
cells at the Federal level suppressed. Cell suppression with decentralized across 
agency co-ordination leads to an increase in this rate to about 7 %. When we 
computed the feasibility intervals considering those cells on the Federal level as 
suppressed that were subject to an adjustment, adding the intervals computed for 
publication to the set of constraints, we found about 7.5 % cells lacking sufficient 
protection. One might say, if agencies can put up with 7 % of under protected cells 
caused by cell suppression, they might as well be willing to put up with another 0.5 % 
cells at risk. 

Alternatively, we suggest the following strategy for deciding on the publication of 
intervals according to PS1* standard accounting for the increase in risk potential for 
cells at risk caused by the release of intervals: In a first step, we audit the subtables 
separately, adding the corresponding intervals for publication to the set of constraints 
for each subtable. This step is followed by a final cell suppression step for the Federal 
level data, where those NACE positions, where a cell (from either the Federal or the 
state level) has been found to be under-protected in one of the subtables (we regard 
those cells as cells with a high risk potential for approximate disclosure), are 
considered as primary suppressions. In the final publication we would neither publish 
intervals nor adjusted values for cells suppressed in this final cell suppression step. At 
the time of writing, unfortunately we do not yet have any empirical experience with 
this strategy. 

5   Summary and Final Conclusions 

The paper has reported on results of a study aimed at the development of 
recommendations for harmonization of table protection in the German statistical 
system. The study has compared the performance of a selection of algorithms for 
secondary cell suppression (e.g. τ-ARGUS Modular, and three variants of the 
Hypercube method) under four different models for co-ordination of cell suppressions 
across the agencies. We considered only cell suppression algorithms that satisfy 
certain conditions related to a minimum protection standard defined in section 2.1. 

Regarding the overall loss of information due to secondary suppression the 
Modular method of τ-ARGUS in the centralized approach for across agency co-
operation gives the best results. It is, however, interesting to observe that also our 
‘two-blocks’ approach, where centralized processing of secondary suppression is 
requested not for all states, but only for a sensibly defined block of some states, gave 
results that are not much different in quality. 
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Of the variants of the Hypercube method only one gave results that might be of 
acceptable quality. Auditing the results proved that the rate of cells with a (low) 
potential risk of inferential disclosure is about 50 % larger for tables protected by this 
variant of the Hypercube method, compared to the risk rates of tables protected by the 
modular optimization method. In a table protected by this variant of the Hypercube 
method, we also found a few cells (about 0.4 %) at a fairly high potential risk of 
inferential disclosure. 

The conclusion from the study carried out so far is, first to await a decision for 
either of the approaches suggested for across-agency co-ordination of secondary 
suppressions, which we perceive to be a matter of agency policies in the first way. For 
the approach finally agreed upon by agency policy makers, the testing of the 
algorithms for secondary cell suppression might then be continued, with a focus on 
problems connected to the protection of higher dimensional and linked tables. 

For the special case of decentralized across-agency co-ordination used by Eurostat 
and the EU member states, the paper has also suggested a strategy to protect the data 
on the top level of the regional breakdown (e.g. EU level data, or in the German case: 
Federal level data) by a mix of controlled tabular adjustment, interval publication, and 
cell suppression. The paper has presented empirical results at least for a part of the 
methodology suggested. In order to make it applicable for production purposes, 
however, a more advanced implementation of the software used for controlled tabular 
adjustment and auditing would be required. 
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Appendix 

Table 3a. Number of district level secondary suppressions resulting from decentralized 
co-ordination approaches by levels of NACE classification 

Level of NACE Modular Hyper0 Hypercube HyperSeq 
0 1 1 1 1 

1 390 365 475 568 

2 479 589 785 1055 

3 2736 2996 3352 4009 

4 8438 9476 10533 12609 

5 12742 14283 15064 17328 

6 16757 19268 19789 21351 

Overall 41543 46978 49999 56921 

Table 3b. Number of district level secondary suppressions resulting from centralized and two 
blocks co-ordination approaches by levels of NACE classification 

Centralized Two blocks 
Level 

of NACE 
Modu-
lar 

Hy-
per0 

Hyper-
cube 

Hyper-
Seq 

Modu-
lar 

Hyper-
Seq 

0 1 1 1 2 1 2 
1 381 362 478 561 394 564 
2 495 584 788 1048 494 1049 
3 2738 2998 3343 3864 2738 3926 
4 8427 9482 10528 12355 8444 12466 
5 12741 14295 15072 16970 12741 17161 
6 16764 19281 19794 21165 16754 21275 

Overall 41547 47003 50004 55965 41566 56443 
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Table 4. Number of cells by ranges of relative deviation and by level of NACE classification 

Level of NACE classification Overall 
Range 

0 1 2 3 4 5 6 abs. % 
0 1 11 13 36 155 329 388 933 81.4% 
0 - 0,5 . 4 2

1
5

35 43 50 149 13.0% 

0,5 - 1 . . 1 . 3 3 7 14 1.2% 
1 - 2 . . . 2 5 5 7 19 1.7% 
 2 - 3 . . . . 2 2 1 5 0.4% 
 3 - 4 . . . 1 . 3 2 6 0.5% 
 4 - 5 . . . . 3 . . 3 0.3% 
 5 - 7 . . . . 1 2 . 3 0.3% 
 7 - 10 . . . 3 3 1 2 9 0.8% 
 10 - 15 . . . . . 1 1 2 0.2% 
15 - 20 . . . . . . . . - 
20 - 30 . . . . . . 1 1 0.1% 
> 30  . . . . 1 1 . 2 0.2% 
Overall 1 15 16 57 208 390 459 1,146 100 % 
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Abstract. Statistical data may be rounded to integer values for statistical 
disclosure limitation.  The principal issues in evaluating a disclosure limitation 
method are:  (1) Is the method effective for limiting disclosure? and  (2) Are the 
effects of the method on data quality acceptable?   We examine the first 
question in terms of the posterior probability distribution of original data given 
rounded data and the second by computing expected increase in total mean 
square error and expected difference between pre- and post-rounding 
distributions, as measured by a conditional chi-square statistic, for four 
rounding methods. 

Keywords: conventional, unbiased, zero-restricted 50/50 rounding; Chi-square. 

1   Introduction 

Rounding (base B) amounts to replacing data values x with multiples R(x) of a 
predetermined positive integer rounding base B.  Rounding to adjacent multiples of B 
is typically preferred, viz., |x – R(x)| < B, but not always possible, in which case 
suitable “neighboring” values are sought.  Controlled rounding assures that additive 
relationships between data values are preserved ([1]).  Data are rounded for purposes 
including elimination of unnecessary detail or visual clutter and for statistical 
disclosure limitation (SDL) ([2]). 

The principal questions in evaluating an SDL method are:  (1) Is the method 
effective for limiting disclosure? and (2) Are the effects of the method on data quality 
acceptable?  We examine these questions for four rounding rules and  present a 
general approach.  We evaluate (1) in terms of the posterior probability of an original 
data value given its rounded value and (2) in terms expected increase in total mean 
squared error and expected difference between pre- and post-rounding distributions as 
measured by a conditional Chi-square statistic. 

Section 2 describes the four rounding rules.  We examine questions (1) and (2) in 
reverse order.  Section 3 examines effects of rounding on total mean square error 
([4]), and Section 4 examines its effects on the original x-distribution.  Section 5 
examines rounding’s effectiveness for SDL in terms of P[x|R(x)].  Section 6 offers 
concluding comments. 
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2   Four Rounding Rules 

For a fixed integer (rounding base) B, any value can be expressed as x xx q B r= + , 

where xq  and xr  are the quotient and remainder.  If x is a random variable, then xq  

and xr  are random variables. For convenience, we assume x is an integer and, when 

the subscript x is not needed, we ignore it. We focus on adjacent rounding, so 
rounding x base B replaces x either by R(x) = qB or (q + 1)B, so that R(x) = qB + 
R(r), with  R(r) = 0 or B.  

We consider four rounding rules. The first is conventional rounding for which R(r) 
equals the multiple of B closest to r, for all r except:  if B is even and r = B/2, then 
R(r) = B, viz., round B/2  “up”.  The second rounding rule is modified conventional 
rounding which is the same as conventional rounding, except that for B even B/2 
rounds down or up each with probability ½. The third rule is zero-restricted 50/50 
rounding for which r = 0 is rounded down and any other r is rounded down or up with 
probability ½.  This rounding rule was suggested by the second author and Joe Fred 
Gonzalez, Jr.  The last rule is unbiased rounding ([3]) for which r is rounded up with 
probability r/B and down with probability (B-r)/B. 

From a stochastic viewpoint, we can distinguish two types of rounding. The first is 
unbiased for which E[R(r)|r] = r.  The other is sum-unbiased for which E[R(r)] = E[r], 
and consequently the expected value of a sum of rounded entries equals the sum of 
the original entries.  The second type is weaker than the first.  All four rounding rules 
are sum-unbiased, except conventional rounding with B even.  Only the fourth rule is 
unbiased. 

Unbiased rounding can be performed in a controlled manner (viz., preserving 
additive structure) for two-dimensional tables and other tables that can be modeled by 
a mathematical network ([1], [3]).  (Modified) conventional rounding cannot be 
performed in a controlled manner.  The theorem below demonstrates that, whenever 
unbiased rounding can be controlled, so can zero-restricted 50/50 rounding. 

Theorem. For any tabular structure that can be represented by a network (including 
two-dimensional tables), base B zero-restricted 50/50 rounding can be performed in a 
controlled manner. 

Proof: Divide all cell values by B to reduce to the case of base 1 rounding of discrete 
values.  The network consists of forward arcs (for increasing each value) and reverse 
arcs (for decreasing each value) connecting totals entries.  Arcs representing any 
integer cell value have capacity zero; arcs representing non-integer cell values have 
reverse capacity equal to v and forward capacity equal to 1-v.  Pick any non-integer 
cell value; denote its non-integer part v.  Round it up or down with probability ½.  
Assume for convenience it was rounded down.  Set the capacity on its forward arc to 
zero and compute a maximum flow through the reverse arc.  The solution will round v 
down and change the values of other cells, some of which may become integers.  
Update capacities and continue in this manner.  The algorithm terminates with a zero-
restricted base 1 rounding.  Re-multiply all values by B to obtain a zero-restricted 
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base B rounding of the original.  Values can be changed at intermediate steps, but 
under 50/50 probabilities these have no effect on the final rounded value—only the 
last probability step for that value affects its rounded value and that is a 50/50 step.  
Thus, we have described an algorithm for controlled base B zero-restricted 50/50 
rounding.                                                                                                                                                     Q.E.D. 

3   Effects of Rounding on Total Mean Squared Error 

Throughout this paper we make two distributional assumptions.  First, we assume that 
the r-distribution is uniform.  Second, we assume that the r- and q-distributions are 
independent. Consequently, E[x] = BE[q] + E[r] and P(r) = P(r|q) = 1/B. The 
assumptions imply V(x) = B2 V(q) + V(r), so that  
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Consequently, conventional rounding for B even introduces an absolute bias of ½, 
whereas for B odd the rule is sum-unbiased.  For modified conventional rounding, 
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same for modified conventional rounding and (4) holds.  Also, this rule is unbiased, 
not simply sum-unbiased.  All results are summarized below. 
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Table 1. Expected Value of r and R(r) 

                                      Rounding Method Unrounded 
Conventional  
   B Even 

Conventional 
    B Odd 

Modifed  Conv  
       B even 

50/50 Unbiased 
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Table 2.   Variance of r and R(r) 

                                     Rounding Method Unrounded 
Conventional  
    B Even 

Conventional 
     B Odd  

Modified Conv 
      B even 

50/50 Unbiased 
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With the exception of conventional rounding for B even, all rounding methods 
have equivalent effects on mean and total mean square error. 

4   Effects of Rounding on the Original x-Distribution 

A statistic that can be used to decide whether a second distribution is significantly 
different from an original (first) distribution is the conditional Chi-square.  If the x-
data are at hand, then the first distribution is the x-distribution and the second is the 
R(x)-distribution, and the Chi-square statistic conditional on the x-data is:  

x
x

Uχ 2 =  for  

 
22 [ ( ) ][ ( ) ]

x
x xR r rR x x

U
x x

−−
= =  (when x = 0, Ux = 0)  (5) 

If the rounded data are also at hand, then the data released can compute the Chi-
square statistic (5) directly, determine the degrees of freedom, and test for a 
significant difference between original x- and rounded R(x)-distributions.  For tables, 
degrees of freedom df is determined by the tabular structure. 

Our objective, and often that of the data releaser, is to test whether rounding is 
expected to alter the original distribution.  There are two scenarios:  the x-data are 
available, and, the x-data are not yet available but assumptions about the x-
distribution are available. 

In the first scenario, the conditional expectation given x of Ux over the rounding 
process is: 
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In this situation, we develop a method for determining whether rounding base B is 
expected to alter the original x-distribution.  We derive the method for unbiased 
rounding, as follows.  Let d denote the number of x-observations and e the number of 
x-observations with value less than B, viz., zeroes and confidential values.   As x > 
qB  and assumed independence of r- and q-distributions, we observe 
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For unbiased rounding, 
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The data releaser can use the x-data to estimate the last term of (8) and test the 
hypothesis of no expected distributional change due to unbiased rounding base B.  
Table 3 provides terms for (7) for all four rounding methods (henceforth, 
conventional rounding for B even is replaced by modified conventional rounding, 
which is superior).  An opposite inequality to (8) can be developed using x < (q+1)B 
yielding bounds l < E[U] < u if needed.  

Relationship (8) expresses quantitatively notions that are plausible intuitively, e.g., 
unbiased rounding base B should be avoided if the x-distribution is dominated by 
values small relative to B or if the full x-distribution is not sufficiently separated from 
B.  In this manner, (8) provides a rule of thumb that a data releaser can apply prior to 
data collection based on assumptions about the q-distribution or after collection once 
the q-distribution is available.  

In the second scenario, the x-data are not available but based on past experience, 
distributional assumptions, etc., the data releaser can make estimates concerning the 
x-distribution.  An important example is a recurring (monthly, annual) survey.  For all 
rounding methods (except conventional rounding with B even) the method is sum-

unbiased and the Chi-square statistic can take the form  [ ]
x
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Each expectation in (9) is known (Tables 1, 3), with the exception of E[q], for 
which the data releaser can estimate a (range of) value(s) from prior 
knowledge/experience or distributional assumptions.  The releaser then can compute 
the Chi-square statistic and test in advance whether a particular form of rounding to a 
particular base is expected to alter the original distribution significantly.  Note that 
because the Chi-square test is distribution-free, so are our methods. 

5   Effectiveness of Rounding for Disclosure Limitation 

In this section, we evaluate the effectiveness of rounding base B for statistical 
disclosure limitation.  Specifically, we are interested in determining posterior 
probabilities:  P[x=qB+r|R(x)=mB].  These probabilities equal zero except for m = 
q or q+1, so we may focus on P[x=qB+r|R(r)=0] and P[x=qB+r|R(r)=B].  We report 
results for all four rounding rules, but derive the method only for unbiased 
rounding.  

Except for m=q=0, a rounded value mB can be achieved in two ways under 
unbiased rounding:  by rounding down values in the range {mB, mB+1,…., (m+1)B-
1} or by rounding up values in the range {(m-1)B+1, …, mB-1}.  Thus, there are 2B-
1 possible values for x|R(x).  Now 

 P[r | R(r) = B] = 
P(r) P[R(r) B|r]

P(r) P[R(r) B|r]
r

=
=

                 (10) 

Consider first rounding up.  As P(r) =
1

B
  and P[R(r) = B | r]  =

r

B
, for r ≥ 1, 

then  
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P[R(r) = B] = P(r) P[R(r) B|r]
1

B

r

B

B-

Br=1

B-1

1

B 1

= = =
− 1

2
 and  

P[r | R(r) = B]  =  

r
B

(B-1)
2B

2 r

B(B 1)

2

=
−

                    (11) 

Probabilities depend on r.  For B=10, the range is 
1

45
 (r = 1) to

1

5
 (r = 9).  

These probabilities are the same as that for zero restricted 50/50 rounding. 

For rounding down, P(r) =
1

B
  and P[R(r) = 0 | r]  =  

B- r

B
 for all r.  Thus, 
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Hence, 
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+ +
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For B = 10, this probability ranges from 
2

11
 (r=1) to

1

55
 (r=9).  

We now evaluate P[x | R(x) = qB, q>0] for unbiased rounding.  The rounded value 
R(x) can result from rounding r up when x = (q-1)B + r or rounding r down when x = 
qB + r.  As this depends only on r, which we continue to assume is uniformly 

distributed, then  P(x) = 
1

2B-1
.  When R(x)=qB results from rounding up, q > 0 and 

P[R(x) qB|x=(q -1)B+ r] =
r

B
= . 

When R(x)=qB results from rounding down, P[R(x) qB|x=qB+ r] =
B- r

B
= .  

Hence, 

P[R(x) = qB] =  
(q 1)B B 1 qB B 1

(q 1)B 1 qB

1 r B-r

2B-1 B B

− + − + −

− +

+  
B
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=          (13) 

Thus, 

P[x |R(x) = qB] 

1 r
r(2B-1) B

(B-1) B(B-1)
(2B-1)

= =   if x is rounded up    

  viz.,  
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for (q -1)B +  1 x q -1)B + B≤ ≤ −( ( )1   , q > 0                  (14) 

These probabilities range from 
1

B(B-1)
 (r=1)  to

1

B
 (r=B-1) 

e.g., for B=10, q=1, P[x=19|R(x)=20] = 
9 1

B(B-1) 10
= . 

Similarly, for rounding down 

P[x |R(x) = qB] 
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= =   if x is rounded down 

 viz., for qB x qB + B≤ ≤ −( )1                                     (15) 

These probabilities range from 
1

B(B-1)
 (r=B-1)  to

1

B-1
 (r=0) 

e.g.,  in the preceding example, P[x = 19|R(x) = 10] = 1/90 and P[x=10|R(x)=10] = 
1/9. 

Our analysis of P[x|R(x)] is summarized in Tables 4 and 5.   
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Table 5. P[x|R(x)=0] 
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Table 5 is the focus of interest from a confidentiality standpoint for count data. 
Given our assumption that the prior r-probabilities were uniform over the set of B 
possible r-values {0, 1, …, B-1}, then from a confidentiality standpoint the optimal 
posterior probabilities would be uniform probabilities over this set or, as typically 
x=r=0 is not considered a confidential value,  uniform over its nonzero values, because 
this means that rounding has provided no additional information about an original 
confidential value x=r.   For B even, conventional rounding probabilities are uniform 
over {0, 1, …, B/2} and modified conventional rounding probabilities are nearly the 
same.  For B odd, conventional rounding probabilities are uniform over {0, 1, …, 
(B+1)/2}.  In each case, instead of B equi-probable choices for r, there are about half as 
many.  For unbiased rounding, posterior probabilities are not at all uniform, and 
rounding has provided additional information about original confidential values x=r.  
For zero-restricted 50/50 rounding, posterior probabilities are uniform over {1, …, B-
1}.  So, if x=r=0 is not confidential, the posterior probabilities are uniform over the 
confidential values, and nearly so in any case.  We conclude that zero-restricted 50/50 
rounding is the preferred rounding method from a confidentiality standpoint. 

6   Concluding Comments 

We analyzed the effects of rounding on data quality and the effectiveness of rounding 
for statistical disclosure limitation.  We provided quantitative expressions (8), (9) for 
deciding whether or how to round data based on statistical hypothesis testing for the 
conditional Chi-square statistic. 

In terms of three data quality measures:  total mean square error, preserving the 
original x-distribution, and preserving additive structure, unbiased rounding and zero-
restricted 50/50 rounding perform well overall.  In terms of statistical disclosure 
limitation, zero-restricted 50/50 rounding performs best. 

We conclude that zero-restricted 50/50 rounding is the superior rounding method 
for balancing quality and confidentiality in statistical data and tabulations.  

Disclaimer. This paper represents the views of the authors and should not be 
interpreted as representing the views, policies or practices of the Centers for Disease 
Control and Prevention. 
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Abstract. Disclosure analysis in two-way contingency tables is impor-
tant in categorical data analysis. The disclosure analysis concerns whether
a data snooper can infer any protected cell values, which contain privacy
sensitive information, from available marginal totals (i.e., row sums and
column sums) in a two-way contingency table. Previous research has been
targeted on this problem from various perspectives. However, there is a
lack of systematic definitions on the disclosure of cell values. Also, no pre-
vious study has been focused on the distribution of the cells that are sub-
ject to various types of disclosure. In this paper, we define four types of
possible disclosure based on the exact upper bound and/or the lower
bound of each cell that can be computed from the marginal totals. For
each type of disclosure, we discover the distribution pattern of the cells
subject to disclosure. Based on the distribution patterns discovered, we
can speed up the search for all cells subject to disclosure.

1 Introduction

In this paper, we focus on the disclosure problem for two-way contingency ta-
bles. The traditional disclosure problem in two-way contingency tables, which
has been formulated before (e.g., in [40, 11]), asks whether a data snooper can
infer accurate information about any protected cell values given the marginal
totals. In this context, the internal cells of a contingency table provide privacy
sensitive information, which should be protected, while the marginal totals are
the sums of cell values in a row or column, which can be released to the public
if they lead to no disclosure of any cell values. This problem has many practi-
cal applications such as medical/health statistics, national census, and student
records management. In health insurance data, for example, it is important to
protect a cell value, which represents how many times a patient undergoes a
certain treatment, against being inferred from the marginal totals, which are ag-
gregate statistics on the total number of each treatment being taken or the total
number of each patient visiting doctors. For another example, in an agent-stock
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table, where each cell indicates the volume of a stock in which an agent invests, a
commercial secret may be revealed if a snooper infers from the released marginal
totals that the agent buys more (or less) than certain amount of the stock.

Previous study on this problem has identified that the disclosure of any cell
value depends on the upper bound and lower bound of the cell value which a
snooper can derive from the available marginal information (e.g., see [21,22,6]).
If the upper bound is the same as the lower bound, the cell value is exposed.
Likewise, if the difference between the upper bound and the lower bound is
very small, the security of the table is also considered to be compromised [40].
However, there is a lack of systematic definitions on the disclosure of cell values.
Also, no previous study has been focused on the distribution of the cells that
are subject to various types of disclosure. In this paper, we define four types
of possible disclosure based on the exact upper bound and/or the lower bound
of each cell that can be computed from the marginal totals. For each type of
disclosure, we discover the distribution pattern of the cells subject to disclosure.
Based on the distribution patterns discovered, we propose two efficient methods
to speed up the search for all cells subject to disclosure.

The rest of this paper is organized as follows. Section 2 presents the prelimi-
naries for the research of disclosure analysis. Section 3 defines various types of
disclosure that are commonly used in practice. Section 4 reveals in a contingency
table the distribution patterns of the cells that are subject to different types of
disclosure. Based on the distribution patterns discovered, Section 5 investigates
how to efficiently detect all cells subject to disclosure. Section 6 reviews the
related work. Finally, Section 7 concludes the paper.

2 Preliminaries

A two-way contingency table A with m rows and n columns is denoted by {aij |
1 ≤ i ≤ m, 1 ≤ j ≤ n}, where aij ≥ 0. In tradition, the cell values in a
contingency table are usually assumed to be nonnegative integers (e.g., counts).
We extend this assumption such that the cell values can be nonnegative real
numbers. The results given in this paper hold in both integer domain and real
domain.

Denote a+j =
∑m

i=1 aij , ai+ =
∑n

j=1 aij , and a++ =
∑

ij aij , where a+j and
ai+ are marginal totals and a++ is the grand total. The marginal totals satisfy∑n

j=1 a+j =
∑m

i=1 ai+ = a++, which is called the consistency condition.
The marginal totals of a two-way contingency table can be released while the

cell values are protected. A traditional disclosure analysis question in a two-
way contingency table asks [40,11]: Can any information about protected cells be
inferred from the released marginal totals? The answer to this question depends
on the bounds that a snooper can obtain about a protected cell from the marginal
totals that are given [21, 22, 6].

A nonnegative value aij is said to be a lower bound of cell value aij if, for any
contingency table {a′

ij} that has the same marginal totals as A, the inequality
aij ≤ a′

ij holds. A value aij is said to be the exact lower bound of aij if (i) it is
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a lower bound; and (ii) there exists a contingency table {a′
ij} such that a) the

marginal totals of A′ are the same as those of A, and b) a′
ij = aij . An upper

bound or the exact upper bound aij can be defined similarly.

Definition 2.1. (Fréchet bounds) Given marginal totals {a+j} and {ai+} of a
two-way contingency table A, the Fréchet bounds for any cell value aij are

max{0, ai+ + a+j − a++} ≤ aij ≤ min{ai+, a+j}

The Fréchet bounds are exact bounds as proven in [13]. Therefore, the Fréchet
bounds give a data snooper the “best” estimate of a protected cell from the
marginal totals.

3 Disclosure Types

Based on the exact bounds, we define four types of information disclosure in
two-way contingency tables: existence disclosure, threshold upward disclosure,
threshold downward disclosure, and approximation disclosure.

Definition 3.1. Existence disclosure: The exact lower bound of a protected
cell is positive.

The concept of existence disclosure can be illustrated using a patient-treatment
table. In such table, each cell shows the number of times that a patient undergoes
a particular treatment. To protect each patient’s privacy, only the marginal totals
are released. However, from the marginal totals, a snooper can easily calculate
the exact lower bound of each cell. If an exact lower bound is positive, the
snooper may infer that a patient has suffered from certain disease. This type of
disclosure is common in privacy protection of statistical data.

Definition 3.2. Threshold upward disclosure: The exact lower bound of a pro-
tected cell is greater than a positive threshold.

Definition 3.3. Threshold downward disclosure: The exact upper bound of a
protected cell is less than a positive threshold.

The threshold upward disclosure is similar to the existence disclosure with the
difference that the threshold is a positive value rather than zero, while the thresh-
old downward disclosure is a dual to the threshold upward disclosure. In certain
applications, knowing that a cell value is positive is not harmful, while knowing
that the cell value is greater or less than certain threshold is dangerous. For ex-
ample, in an agent-stock contingency table, where each cell indicates the volume
of certain stock in which an agent invests, it is often trivial if a snooper deduces
that an agent invests in certain stock, but a commercial secret may be revealed
if the snooper infers that the agent buys more (or less) than certain amount of
the stock. These types of disclosure often occur in business and wealth related
tables.
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Definition 3.4. Approximation disclosure: The difference between the exact
lower bound and the exact upper bound of a protected is less than a positive
threshold.

This type of disclosure is defined based on not only the exact lower bound but
also the exact upper bound. If the difference between the two exact bounds for
a protected cell is small enough, one can estimate the cell’s value with a high
precision. For example, if one knows that a professor’s salary is between 90K
and 92K, then the actual salary amount is largely revealed.

Among the four types of disclosure, the definitions of existence disclosure and
approximation disclosure summarize the similar concepts discussed in some pre-
vious papers (e.g., [40,11,34]). To be more systematic, we extend these concepts
to threshold upward disclosure and threshold downward disclosure.

4 Distribution of Cells Subject to Disclosure

In the previous section, we have defined four types of information disclosure in
a contingency table. In this section, we study the distribution of the cells that
are subject to various types of disclosure. For the first time we discover that the
cells subject to disclosure demonstrate some regular patterns.

Theorem 4.1. Consider existence disclosure or threshold upward disclosure
with a fixed threshold in a two-way contingency table. The cells subject to dis-
closure, if exist, must appear in the same row or column, but not both.

Proof. Prove by contradiction. Assume there exist two cells ai1j1 and ai2j2 subject
to existence disclosure and i1 �= i2, j1 �= j2. Then

ai1+ + a+j1 − a++ > 0
ai2+ + a+j2 − a++ > 0

These two inequalities lead to ai1+ + ai2+ − a++ −
∑

j �=j1,j2
a+j > 0. A contra-

diction is committed as ai1+ + ai2+ − a++ −
∑

j �=j1,j2
a+j ≤ 0 must hold (note

that ai1+ + ai2+ − a++ ≤ 0). Thus, the theorem is proven for the existence
disclosure. Since any cell subject to threshold upward disclosure must also be
subject to existence disclosure, the theorem is proven for the threshold upward
disclosure. ♦
The above theorem reveals the distribution pattern for the cells that are subject
to existence disclosure or threshold upward disclosure. This pattern can be used
to limit the search for cells subject to existence disclosure or threshold disclosure,
which we will discuss in the next section.

Now consider the distribution of the cells that are subject to threshold down-
ward disclosure or approximation disclosure. The following lemma compares the
difference of the exact bounds for any cells that are subject to existence disclo-
sure with that for any cells that are not subject to existence disclosure.
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Lemma 4.1. The difference of the exact bounds for any cell that is subject to
existence disclosure is no less than that for any cell that is not subject to existence
disclosure in a two-way contingency table.

Proof. Assume ai1j1 is subject to existence disclosure. The difference of its exact
bounds is

min{ai1+, a+j1} − (ai1+ + a+j1 − a++) = min{
∑
i�=i1

ai+,
∑
j �=j1

a+j}

Consider any other cell ai2j2 that is not subject to existence disclosure. Because
the exact lower bound of ai2j2 is zero, the difference of its exact bounds is
min{ai2+, a+j2}. To prove the theorem, we need to prove

min{ai2+, a+j2} ≤ min{
∑
i�=i1

ai+,
∑
j �=j1

a+j}

We prove this in three possible cases: (i) i2 �= i1, j2 �= j1, (ii) i2 �= i1, j2 = j1, and
(iii) i2 = i1, j2 �= j1. Clearly, the inequality holds for case (i). In the following,
we prove the theorem for case (ii) only. The proof for case (iii) is similar to case
(ii).

In case (ii), let j1 = j2 = j′. Since i1 �= i2, we have a+j′ = ai1j′ + ai2j′ +∑
i�=i1,i2

aij′ and ai2+ = ai2j′ +
∑

j �=j′ ai2j . Because ai1j′ is subject to exis-
tence disclosure, we have ai1+ + a+j′ − a++ = ai1j′ − ∑i�=i1,j �=j′ aij > 0;
then, we have ai1j′ >

∑
i�=i1,j �=j′ aij ≥

∑
j �=j′ ai2j . Therefore, we have a+j′ >

ai2+. Since ai2j′ is not subject to existence inference, the difference of the ex-
act bounds for ai2j′ is ai2+. To prove the theorem, we need to prove ai2+ ≤
min{∑i�=i1

ai+,
∑

j �=j′ a+j}.
On the one hand, it is clear ai2+ ≤

∑
i�=i1

ai+. On the other hand, since ai2j′

is not subject to existence disclosure, we have ai2j′ ≤ ∑
i�=i2,j �=j′ aij . Adding∑

j �=j′ ai2j to both sides of this inequality, we have ai2+ ≤
∑

j �=j′ a+j. The
theorem is proven. ♦
From this lemma, one can easily derive the following

Lemma 4.2. The exact upper bound for any cell that is subject to existence dis-
closure is no less than that for any cell that is not subject to existence disclosure
in a two-way contingency table.

According to the above lemmas, we have the following theorem regarding the
distribution of cells subject to approximation disclosure or threshold downward
disclosure.

Theorem 4.2. Consider approximation disclosure or threshold downward dis-
closure with a fixed threshold in a two-way contingency table. If a cell is subject
to disclosure, the other cells in the same row or column must also be subject to
disclosure.

Proof. First, consider approximation disclosure with a fixed threshold τ > 0.
If a cell ai′j′ is subject to approximation disclosure, the difference of its exact
bounds is less than τ . The theorem is proven in the following two cases.
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Case (i): ai′j′ is also subject to existence disclosure. From Theorem 4.1, we
know that all of the cells that are subject to existence disclosure must be in row
i′ or column j′, but not both. Without loss of generality, we assume that these
cells are in row i. Therefore, all of the cells in the column j′ except ai′j′ are
not subject to existence disclosure. According to the Lemma 4.1, the differences
of the exact bounds for these cells in column j′ are smaller than or equal to
the difference of the exact bounds for aij , which is less than τ . Therefore, all of
the cells in column j′ are subject to approximation disclosure. The theorem is
proven.

Case (ii): ai′j′ is not subject to existence disclosure. According to Theorem
4.1, all of the cells in row i′ and column j′ are not subject to existence disclosure.
Since ai′j′ is subject to approximation disclosure, we have min{ai′+, a+j′} < τ .
To prove the theorem, we prove that all of the cells in either row i′ or column
j′ are subject to approximation disclosure. If min{ai′+, a+j′} = ai′+ < τ , then
for any cell ai′j where j �= j′, the difference of the exact bounds for ai′j is
min{ai′+, a+j} ≤ ai′+ < τ . Thus, all of the cells in row i′ is subject to approxi-
mation disclosure. Similarly, if min{ai′+, a+j′} = a+j′ , all of the cells in column
j′ are subject to approximation disclosure.

Then consider the threshold downward disclosure with a fixed threshold. The
theorem can be proven similarly as in the case of approximation disclosure. The
only difference is that one needs to replace the phrase “approximation disclosure”
with “threshold downward disclosure”, “the difference of the exact bounds” with
“the exact upper bound”, and “lemma 4.1” with “lemma 4.2” in the proof. ♦
Note that the distribution pattern for the cells that are subject to approximation
disclosure or threshold downward disclosure is different from that for the cells
that are subject to existence disclosure or threshold upward disclosure. The
former pattern is a single row or column, but not both, while the latter must
“fill” some rows or columns.

5 Disclosure Detection

An important task in contingency table protection is to detect all cells that
are subject to disclosure before one can eliminate such disclosure using some
disclosure limitation method. We consider disclosure detection in this section,
while disclosure limitation will be summarized in the related work section.

A naive approach to disclosure detection is to check all cells one by one. To
check whether a cell is subject to disclosure, one needs to compute its Fréchet
lower bound (two plus/minus operations and one comparison operation) and/or
Fréchet upper bound (one comparison operation), depending on what type of
disclosure is of concern. This naive approach requires checking all mn cells in an
m× n contingency table.

We improve this naive approach by reducing its time complexity from O(mn)
to O(m+n). Such an improvement is meaningful in practice especially for some
information organizations (e.g., statistical offices) which routinely process a large
number of sizable contingency tables.
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First, consider the existence disclosure and the threshold upward disclosure.
According to Theorem 4.1, the cells subject to disclosure must exist in a single
row or column, but not both. Based on this distribution pattern, we propose the
following

Procedure 1. (Disclosure detection for existence disclosure or threshold upward
disclosure)
1. Discover all i′ and j′ such that ai′+ = maxi{ai+} and a+j′ = maxj{a+j};

proceed to step (2) if ai′j′ is subject to disclosure; otherwise, output no cell
subject to disclosure.

2. Check all cells in row i′. If no cell is subject to disclosure, continue checking
all cells in column j′. Output all cells subject to disclosure that are discovered
in both step (1) and step (2).

If there exists at least one cell subject to existence disclosure or threshold upward
disclosure, ai′j′ must be one of such cells since the exact upper bound of any
other cell is less than or equal to the exact upper bound of ai′j′ . According to this
fact and the distribution pattern, it is easy to know that this procedure outputs
all and only the cells that are subject to existence disclosure or threshold upward
disclosure.

Second, consider the threshold downward disclosure and the approximation dis-
closure. According to Theorem 4.2, the cells subject to disclosure must “fill” some
rows or columns. Based on this distribution pattern, we propose the following

Procedure 2. (Disclosure detection for threshold downward disclosure)

1. Discover all i′ and j′ such that ai′+ < τ and a+j′ < τ .
2. Output all cells in the discovered rows i′ and columns j′ to be subject to

disclosure.

For threshold downward disclosure with threshold τ , a cell ai′j′ is subject to
disclosure if and only if its marginal total ai′+ or a+j′ is less than τ . According
to this fact and the distribution pattern, it is easy to know that the above
procedure outputs all and only the cells that are subject to threshold downward
disclosure.

For approximation disclosure with threshold τ , one can classify those cells that
are subject to disclosure into two categories: (i) cells that are subject to thresh-
old downward disclosure with threshold τ , and (ii) cells that are not subject to
threshold downward disclosure with threshold τ . It is clear that the cells in cate-
gory (ii) must be subject to existence disclosure (and approximation disclosure).
Procedure 2 can be used to discover all and only the cells in category (i), while
procedure 1 can be easily extended to discover all and only the cells in category
(ii). The union of the cells discovered in categories (i) and (ii) is the set of cells
subject to approximation disclosure.

6 Related Work

The problem of protecting sensitive data (e.g., privacy related information)
against disclosure from nonsensitive data (e.g., aggregations) has long been
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a focus in statistical database research [1, 19, 46, 24, 26]. The proposed tech-
niques can be roughly classified into restriction-based and perturbation-based.
The restriction-based techniques limit the disclosure of privacy information by
posing restrictions on queries [5, 45, 44], including the number of values aggre-
gated in each query [19], the common values aggregated in different queries [20],
and the rank of a matrix representing answered queries [10]. Other restriction-
based techniques include partition [9,39], microaggregation [25,46], suppression
and generalization [14, 13, 31, 43], and k-anonymity privacy protection [37, 41,
47]. The perturbation-based techniques protect/distort sensitive private data by
adding random noises without affecting the use of data significantly. The ran-
dom noises can be added to data structures [38], query answers [4], or source
data [42,2,3,35,8,36]. Recently, however, people have discovered that the origi-
nal sensitive data can be estimated accurately from the perturbed data [32,30],
indicating that the perturbation-based techniques should be examined carefully
in practice so as to protect sensitive data effectively.

For protecting contingency tables, people have developed various techniques
including cell suppression, controlled rounding, and controlled tabular adjust-
ment. Cell suppression is applied to suppress any sensitive cells as well as other
appropriately selected cells so as to prevent inference to sensitive cells from mar-
ginal totals [14,17,28,29]. The challenge is to provide sufficient protection while
minimizing the amount of information loss due to suppression [27].

Controlled rounding is another disclosure limitation method which rounds
each cell value in a contingency table to adjacent integer multiples of a positive
integer base [16,15,7]. It requires that the sum of the rounded values for any row
or column be equal to the rounded value of the corresponding marginal total.
The controlled round can be customized for limiting various types of disclosure.

Controlled tabular adjustment (or synthetic substitution) [18] uses threshold
rules to determine how cells should be modified. It replaces a sensitive cell value
by a “safe” value (e.g., either zero or a threshold value) and uses linear pro-
gramming to make small adjustments to other cells so as to restore the tabular
structure. Similar to the controlled rounding method, this method requires that
some cell values be modified, thus introducing errors to the protected data.

Our study on the disclosure analysis is complementary to the previous study
on disclosure limitation. To apply any disclosure limitation method, one needs
to first discover all cells that are subject to disclosure. Rather than applying a
naive brute-force approach, we investigate the distribution patterns for the cells
subject to disclosure and, based on the patterns, propose efficient methods to
speedup the searching process significantly.

Parallel to the development of data protection techniques for two-way tables,
an active line of research deals with protecting multiway contingency tables or
“cubes.” It has been known that the Fréchet bounds, after being extended to
high-dimensional space, may not necessarily be the exact bounds [13]. Recent
studies have been focused on estimating the exact bounds [13,12,6,33] or giving
the exact bounds in some special cases [21, 22, 23]. Once the exact bounds are
given, our definitions on various types of disclosure can be easily extended to
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multiway contingency tables. The challenge is that the distribution patterns dis-
covered in two-way contingency tables may not hold in high dimensions. There-
fore, it deserves further study on multiway contingency tables.

7 Conclusion

The major contribution of this paper can be summarized as follows. Firstly,
we defined four types of disclosure for evaluating the disclosure of cell values
in contingency tables. Secondly, for each type of disclosure, we discovered the
distribution patterns for the cells subject to disclosure in a two-way contingency
table. The discovery of the distribution patterns is important as it enables us
to speed up the search for all cells subject to disclosure. In the future, we plan
to extend our study to multiway contingency tables. The major challenge in
multiway contingency tables is that the Fréchet bounds may not be exact bounds
in general. Some recent efforts have been made to approach the exact bounds
beyond two-dimensions [21, 22, 33].
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10. Francis Y. L. Chin and Gultekin Özsoyoglu. Auditing and inference control in
statistical databases. IEEE Trans. Software Eng., 8(6):574–582, 1982.

11. S. Chowdhury, G. Duncan, R. Krishnan, S. Roehrig, and S. Mukherjee. Disclosure
detection in multivariate categorical databases: auditing confidentiality protection
through two new matrix operators. Management Sciences, 45:1710–1723, 1999.

12. L. Cox. Bounding entries in 3-dimensional contingency tables. In SDC: From The-
ory to Practice, 2001. http://vneumann.etse.urv.es/amrads/papers/coxlux.pdf.



66 H. Lu, Y. Li, and X. Wu

13. L. Cox. On properties of multi-dimensional statistical tables. Journal of Statistical
Planning and Inference, 117(2):251–273, 2003.

14. L. H. Cox. Suppression methodology and statistical disclosure control. Journal of
American Statistical Association, 75:377–385, 1980.

15. L. H. Cox. A constructive procedure for unbiased controlled rounding. Journal of
the American Statistical Association, 82:520–524, 1987.

16. L. H. Cox and J. A. George. Controlled rounding for tables with subtotals. Annuals
of operations research, 20(1-4):141–157, 1989.

17. Lawrence H. Cox. Network models for complementary cell suppression. Journal of
the American Statistical Association, 90:1453–1462, 1995.

18. R. A. Dandekar and L. H. Cox. Synthetic tabular data: An alterna-
tive to complementary cell suppression. Manuscript available from URL
http://mysite.verizon.net/vze7w8vk/.

19. D. E. Denning and J. Schlorer. Inference controls for statistical databases. IEEE
Computer, 16(7):69–82, 1983.

20. David P. Dobkin, Anita K. Jones, and Richard J. Lipton. Secure databases: Pro-
tection against user influence. ACM Trans. Database Syst., 4(1):97–106, 1979.

21. A. Dobra and S. E. Fienberg. Bounds for cell entries in contingency tables given
fixed marginal totals and decomposable graphs. Proceedings of the National Acad-
emy of Sciences of the United States of America, 97(22):11885–11892, 2000.

22. A. Dobra and S. E. Fienberg. Bounds for cell entries in contingency tables induced
by fixed marginal totals with applications to disclosure limitation. Statistical jour-
nal of the united states, 18:363–371, 2001.

23. A. Dobra, A. Karr, and A. Sanil. Preserving confidentiality of high-dimensional
tabulated data: Statistical and computational issues. Statistics and Computing,
13:363–370, 2003.

24. Josep Domingo-Ferrer. Advances in inference control in statistical databases: An
overview. In Inference Control in Statistical Databases, pages 1–7, 2002.

25. Josep Domingo-Ferrer and Josep Maria Mateo-Sanz. Practical data-oriented mi-
croaggregation for statistical disclosure control. IEEE Trans. Knowl. Data Eng.,
14(1):189–201, 2002.

26. Csilla Farkas and Sushil Jajodia. The inference problem: A survey. SIGKDD
Explorations, 4(2):6–11, 2002.

27. M. Fischetti and J. Salazar. Solving the cell suppression problem on tabular data
with linear constraints. Management sciences, 47(7):1008–1027, 2001.

28. M. Fischetti and J. J. Salazar. Solving the cell suppression problem on tabular
data with linear constraints. Management Sciences, 47:1008–1026, 2000.

29. M. Fischetti and J. J. Salazar. Partial cell suppression: a new methodology for
statistical disclosure control. Statistics and Computing, 13:13–21, 2003.

30. Zhengli Huang, Wenliang Du, and Biao Chen. Deriving private information from
randomized data. In SIGMOD Conference, pages 37–48, 2005.

31. Vijay S. Iyengar. Transforming data to satisfy privacy constraints. In KDD, pages
279–288, 2002.

32. Hillol Kargupta, Souptik Datta, Qi Wang, and Krishnamoorthy Sivakumar. On the
privacy preserving properties of random data perturbation techniques. In ICDM,
pages 99–106, 2003.

33. Yingjiu Li, Haibing Lu, and Robert H. Deng. Practical inference control for data
cubes (extended abstract). In IEEE Symposium on Security and Privacy, 2006.

34. Yingjiu Li, Lingyu Wang, and Sushil Jajodia. Preventing interval-based inference
by random data perturbation. In Privacy Enhancing Technologies, pages 160–170,
2002.



Disclosure Analysis for Two-Way Contingency Tables 67

35. Kun Liu, Hillol Kargupta, and Jessica Ryan. Random projection-based multiplica-
tive data perturbation for privacy preserving distributed data mining. IEEE Trans.
Knowl. Data Eng., 18(1):92–106, 2006.

36. K. Muralidhar and R. Sarathy. A general aditive data perturbation method for
database security. Management Sciences, 45:1399–1415, 2002.

37. P. Samarati and L. Sweeney. Protecting privacy when disclosing information: k-
anonymity and its enforcement through generalization and suppression. Technical
report, SRI International. 1998.
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Abstract. This paper discusses a disclosure risk – data utility framework for 
assessing statistical disclosure control (SDC) methods on statistical data. 
Disclosure risk is defined in terms of identifying individuals in small cells in 
the data which then leads to attribute disclosure of other sensitive variables. 
Information Loss measures are defined for assessing the impact of the SDC 
method on the utility of the data and its effects when carrying out  standard 
statistical analysis tools. The quantitative disclosure risk and information loss 
measures can be plotted onto an R-U confidentiality map for determining 
optimal SDC methods. A user-friendly software application has been developed 
and implemented at the UK Office for National Statistics (ONS) to enable data 
suppliers to compare original and disclosure controlled statistical data and to 
make  informed decisions on  best methods for protecting their statistical data. 

Keywords: Disclosure risk, Information loss, R-U Confidentiality Map. 

1   Introduction 

In order to preserve the privacy and confidentiality of statistical units, data suppliers 
need to assess the disclosure risk in statistical outputs and if required choose 
appropriate Statistical Disclosure Control (SDC) methods to apply to the data.  The 
most common forms of statistical outputs are tables containing frequency counts or 
aggregates (for example, total turnover) and microdata from social surveys usually 
released under special licence agreements. In the future, more flexibility in statistical 
outputs is envisioned through web-based user defined table generating software and 
online query systems. This will require more research and development for online 
applications of SDC methods. Statistical outputs can contain whole population counts 
from Censuses, administrative data and registers or weighted counts from survey 
samples. Census outputs are harder to protect against disclosure risk than outputs 
derived from sample data since the sampling mechanism introduces ambiguity into 
the counts.  

SDC methods perturb, modify, or summarize the data depending on the format for 
releasing the statistical outputs. Higher levels of protection through SDC methods will 
impact negatively on the utility and quality of the data.  Therefore, choosing optimal 
SDC methods involves solving a decision problem where a balance is sought between 
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managing and minimizing disclosure risk to tolerable risk thresholds and maintaining 
utility and quality in the statistical data. A third dimension is sometimes added to the 
SDC problem which involves the feasibility of implementing SDC methods in a 
production line.  

Examples of common SDC methods for statistical data are: 

- Pre-tabular methods (implemented on microdata prior to its tabulation or when 
releasing sample microdata) such as recoding, coarsening and eliminating 
variables, sub-sampling, micro-aggregation, record swapping or other 
probabilistic perturbation processes, 

- Post-tabular methods (implemented on the tables themselves) such as table 
redesign (coarsening and recoding), cell suppression, rounding or other 
perturbation processes.  

Note that some methods provide protection against disclosure risk by limiting the 
amount of information that is released (non-perturbative methods) while other 
methods actually alter the data (perturbative methods).  

Measuring disclosure risk for the SDC decision problem involves assessing and 
evaluating numerically the risk of re-identifying statistical units.  For microdata, 
disclosure risk arises from attribute disclosure where small counts on cross-classified 
indirectly identifying key variables (such as: age, sex, place of residence, marital 
status, occupation, etc.) can be used to identify an individual and further confidential 
information may be learnt. For tabular data, disclosure risk arises from small counts in 
the tables, the position of the zeros and whether they are structural or random zeros. 
In addition, when multiple tables are generated from one dataset (such as in a Census 
context) this raises the risk of being able to reveal original counts protected by SDC 
methods through linking and differencing multiple tables. Also, releasing many tables 
from one dataset increases the risk of attribute disclosure from an identification of a 
unique cell in another table.  

Measuring information loss and utility for the SDC decision problem is more 
subjective. This depends on the users, the purpose of the data and the required 
statistical analysis, and the type and format of the statistical data. Therefore it is 
useful to have a wide range of information loss measures for assessing the impact of 
the SDC methods on the statistical data. These measures include:  

- effects on the bias and variance of point estimates and other sufficient statistics, 
- distortions to the rankings of variables, and univariate and joint distributions 

between variables, 
- changes to model parameters and goodness of fit criteria when carrying out 

statistical analysis.  

When assessing SDC methods and their parameters for statistical outputs, an 
iterative process is carried out. For each method and its parameters, quantitative 
disclosure risk and information loss measures are calculated. These points can then be 
plotted on a Disclosure Risk - Data Utility (R-U) Confidentiality Map (see Duncan, 
et.al., 2001). An optimal SDC method is chosen which reduces the disclosure risk to 
tolerable risk thresholds while ensuring high quality data that is fit for purpose.  

Information loss measures can be classed into two research areas:  information loss 
measures for data suppliers in order to enable   informed decisions about optimal SDC 
methods, and information loss measures for users in order to enable adjustments to 
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statistical analysis on modified disclosure controlled statistical data. For example, 
indication of the extra variance that is added to a variable due to a stochastic rounding 
procedure would allow users to adjust their model parameters when carrying out a 
regression analysis. The difference between the two classes of information loss 
measures is that users do not have access to the original data for comparisons. 
Therefore it is the responsibility of data suppliers to inform users of the quality of the 
disclosure controlled data and the impact on statistical analysis without revealing 
confidential parameters which may be used to reveal original values. In this paper, we 
focus only on information loss measures for data suppliers who have access to the 
original statistical data and can use them to make judgements on optimal SDC 
strategies.  

In the United Kingdom, a key mechanism for disseminating statistics for small 
areas (usually tables containing Census and administrative data) is the Neighbourhood 
Statistics website (NeSS).  Data suppliers are both internal to the Office for National 
Statistics (ONS) and external in other departments of the Government Statistical 
Service. In order to allow data suppliers to make informed decisions about optimal 
disclosure control methods, we have developed a user-friendly software application 
that calculates both a simple disclosure risk measure and a wide range of information 
loss measures for disclosure controlled statistical data. The software application also 
outputs R-U Confidentiality Maps.  

Section 2 outlines information loss measures for data that have undergone SDC 
methods.  They include distance metrics which assess distortions to distributions on 
internal counts and marginal totals, the impact on statistical inference based on the 
variance, goodness of fit criteria for statistical modelling, and the order and rankings 
of the counts. Section 3 describes a basic disclosure risk measure that is used for 
whole population counts and Section 4 an example of the measures on a table from 
the 2001 UK Census. Section 5 provides a brief overview of the software application 
that has been developed at the UK ONS. Section 6 concludes with a discussion and  
future developments.   

2   Information Loss Measures  

The initial focus for developing information loss measures was on tables containing 
frequency counts.  The information loss measures are easily adapted to microdata  
since these are frequency tables with cells of size one.  Moreover,  when assessing the 
impact of SDC methods on microdata it is useful to carry out the analysis by 
tabulations and examining univariate and joint distributions.  Magnitude or weighted 
sample tables have an additional element which is the number of contributors to each 
cell of the table. In the following descriptions of the information loss measures we 
refer to the statistical data as a table.  

2.1   Basic Statistics and Information About the Statistical Data 

Summary statistics include the number of rows and columns, number of small cells 
and zeros, the total number of contributing units to the table and the total information 
content in the table (for a frequency table, the total information is the number of 
contributors and for a magnitude or weighted sample data, the total information is 
obtained by summing the  aggregates of the cell values).  Average, minimum and 
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maximum cell sizes and their standard errors are presented for the whole table, 
columns and rows. These measures give an indication of the skewness and sparsity of 
the table.  

For a table that has been suppressed, the number of suppressed cells (internal cells 
and   marginal totals)  and the number of contributors and total information that have 
been suppressed are calculated. In order to assess utility, the data supplier needs to 
decide on an imputation method for replacing suppressed cells similar to what one 
would expect a user to do prior to analyzing the data.  A naive user might enter zeros 
in  place of the suppressed cells whereas a more sophisticated user might replace 
suppressed cells by some form of averaging of the total information that was 
suppressed in a row (or a column by transposing the table).   

In this application we carry out three common types of imputation: 

• Replace each suppressed cell by a zero 
• For each row, replace suppressed cells   by the  simple average of the total 

information suppressed:  Let kjm  be a cell count in a two way table 

Kk ,...,1= rows and Jj ,...1=  columns.    Let  marginal totals be defined as: 

.km  and jm. . The margins appear in the table without perturbation unless they 

have a small value and are primary suppressed. In that case, we define the margin 

to take a value of 1 for the following imputation schemes. Let kjz  be an indicator 

taking on the value of 1 if the cell was suppressed (primary or secondary) and a 0 
otherwise.  Each suppressed  cell in  row k  is replaced by the  average of the total 

information that was suppressed, i.e.  
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Example:  Two  cells are suppressed in a row where the known marginal total is 
500. The total obtained by adding up   non-suppressed cells is 400, and therefore 
the total loss of information in the row is 100. Each of the 2 suppressed cells is 
replaced with a value of 50. 

• For each row, replace suppressed cells by the weighted average of the total 
information suppressed where the weights are obtained by the unsuppressed 
column averages. In other words, the weights are calculated as the average cell 
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Example:  Based on the above example, the column average for Cell 1 is 50 and the 
column average for Cell 2 is 10. Cell 1 is imputed by: 100*50/60 =83.33  and Cell 2 
is imputed by 100*10/60=16.67. 

2.2   Statistical Hypothesis Tests for Bias 

We carry out an exact Binomial Hypothesis Test to check if the realization of a 
random stochastic perturbation scheme follows the expected probabilities. For 

example, for a random rounding to base 3, the null hypothesis is: 32:0 =pH . The 

test is carried out using a PROC FREQ SAS procedure. Small p-values mean that we 
reject the null hypothesis and the stochastic procedure is biased.   

For other SDC methods, we  use a  non-parametric signed rank test  in the PROC 
UNIVARIATE SAS procedure to check whether the  location of the empirical 
distribution has changed. The null hypothesis for the test is no change. The test 
statistic is based on the rankings of the original minus perturbed cells. If there is a 
large deviation (small p-value), then the location of the distribution has shifted. 

2.3   Distance Metrics  

We calculate distance metrics between original and disclosure controlled internal cells 
of a distribution in a table k. When combining several tables we may want to calculate 
an overall average distance metric across the different tables. This format is 
particularly useful in the case of Census or Register based tables where the rows 
represent a geographical area and the columns define the categories of a specific table 
or distribution. For example, each row of the Employment table as described in 
Section 4 is a geographical area within which a separate 3-dimensional table is 
defined by cross classifying sex, long term illness and primary economic activity.  

Let kD  represent a row (i.e., a distribution)  k  in a table   and  let )(cDk   be the 

cell frequency  c in the row.  Let rn  be the number of   rows in the comparison.  The 

distance metrics are:   
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  These distance metrics can also be calculated for  totals or sub-totals of the tables:  

 Relative Absolute  Distance for  a Total:  
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kk cDCN )()(  is a    sub- total  for group C′ .  

2.4   Variance of the Cell Counts  

We examine the variance of the cell counts for each row (distribution) k  in the  
table and take the average across all of the rows before and after applying SDC 
methods as follows:  For each row k, we calculate: 
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average of the variances for the original table: 
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well as the perturbed table. The final information loss measure is:  
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2.5   Impact on Measures of Association 

Another statistical analysis that is frequently carried out on tabular data are tests for 
independence between categorical variables that span a table. The test for 
independence for a two-way table is based on a Pearson Chi-Squared Statistic 
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=  is 

the expected count for row i and column j. If the row and column are independent 

then   2χ  has an asymptotic chi-square distribution with (R-1)(C-1)and for large 

values the test rejects the null hypothesis in favour of the alternative hypothesis of 
association. We use the measure of association, Cramer’s V:   
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percent relative difference between the original and perturbed table:   
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We can calculate the same  for the Pearson Statistic.     
The entropy for a row k in a table is calculated as follows: 
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2.6   Impact on  Rank Correlation 

One statistical tool for inference is the Spearman’s Rank Correlation. This is a non-
parametric statistic that tests the direction and strength of a relationship between two 
variables. The statistic is based on ranking both variables from the highest to the 
lowest and testing for association. There are several other statistical analysis tools 
which are based on rankings and empirical distribution functions. Therefore, an 
important assessment on the impact of an SDC method is to determine how much the 
method distorts the rankings of the variables.  

We sort the original cell values according to their size and define groupings of size 

10 or size 20 denoted by )(cvorig . This is repeated for the disclosure controlled cell 

values  which are sorted according to both their size and the original order in order to 
maintain consistency for the tied variables. The groupings for the disclosure 

controlled cells c are denoted by )(cv pert . The information loss measure is the 

percent of cells that have changed groupings: 
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  where I  is the indicator function and is 1 if 

the statement is true and 0 otherwise, and kn   is the number of cells. 

2.7   Impact on a Regression  Analysis  

For continuous variables, we assess the impact on the correlation  and goodness of fit 

criterion 2R  of a regression (or ANOVA) analysis. For example, in an ANOVA, we 
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test whether a continuous dependent variable has the same means within groupings  

defined by categorical explanatory variables. The goodness of fit criterion 2R  is 
based on a decomposition of the variance of the mean of the dependent variable. The 
total sum of squares SST   can be broken down into two components: the “within” 
sum of squares SSW  which measures the variance of the mean of the target variable 
within  groupings which are  defined by combining explanatory variables and  the 
“between” sum of squares  SSB which measures the variance of the mean of the  

target variable between the groupings. 2R is the ratio of SSB  to SST. By perturbing 
the statistical data, the groupings may lose their homogeneity, SSB becomes smaller, 
and SSW becomes larger. In other words, the proportions within each of the groupings 
shrink towards the overall mean. On the other hand, SSB may become artificially 
larger showing more association within the groupings than in the original variable.   

We define information loss based on the “between” variance of a proportion:   Let 
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2.8   Impact on Goodness of Fit Criterion for a Log Linear Model 

Another type of statistical analysis frequently carried out on a complete contingency 
table is log linear modelling. For a 2-way table this narrows down to the test for 
independence and the Cramer’s V statistic as described in Section 2.5. For more 
variables in a contingency table, one can examine conditional dependencies and 
calculate expected cell frequencies based on the theory of log-linear models. The 
goodness of fit test for assessing the best fitting parsimonious model is the deviance 

or log-likelihood ratio 2L . This is the statistic that is minimized when calculating  
maximum likelihood estimates for the parameters of the model. The information loss 
measure is defined as the  ratio of the deviance   between the disclosure controlled 
table and the original table for a given  log-linear model as specified by the data 

supplier: 
2
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3   Disclosure Risk Measures 

When statistical data contain whole population counts, disclosure risk can be assessed 
by counting the number of small cells and calculating the proportion of those cells 
that were targeted for disclosure control, i.e., the probability that a small value in a 
cell of the table is the true value. Other methods for assessing disclosure risk for 
whole population counts include probabilistic record linkage techniques where 
protected datasets are matched back to the original datasets and the disclosure risk 
measure is based on  the proportion of correct matches (Yancy, et.al. 2002).  These 
probabilities can also be obtained using statistical models taking into account 
misclassification and perturbation probabilities.  

When the statistical data contain sample counts, global file-level disclosure risk 
measures are typically defined as follows:  the number of sample uniques that are 
population uniques on a set  of cross-classified indirectly identifying key variables 

(i.e., a key) of size 1,...,k K= :  
1

( 1, 1)
K

k k
k

I F f
=

= =  where kF    is the 

population size in cell k of the key, kf  is the sample size and I is the indicator 

function obtaining a value of 1 if the statement is true and 0 if not; or  the expected 

number of correct matches of the sample uniques to a population: 
1

1
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I f
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If the population from which the sample is drawn is known, these measures can be 
calculated directly. If the population is unknown, we  use sophisticated statistical 
modelling techniques to estimate the disclosure risk measures by inferring from the 
sample counts in the contingency table spanned by the key variables.    

4   Example on a Census Table   

The information loss and disclosure risk measures will be calculated and compared 
for a table from the 2001 UK Census containing employed individuals between the 
ages of 16 and 74. The rows consist of small geographical areas, Output Areas (OA) 
in one Estimation Area of the UK (1,472 OAs),  each OA with an average size of 
about 215  individuals between the ages of 16 and 74. The columns consist of the 
internal cells for a cross classified variable defined by sex (2), long-term illness (2) 
and primary economic activity (9).  To demonstrate the comparison of SDC methods, 
the table underwent two methods of disclosure control:  

• Semi-controlled random rounding to base 3 – Each cell is stochastically rounded 
as follows:  counts with a residual of one from the base are rounded up to the 
nearest base with a probability of 1/3 and down with a probability of 2/3. Counts 
with a residual of two from the base are rounded up to the nearest base with a 
probability of 2/3 and rounded down with a probability of 1/3. The process is 
semi-controlled which means that the expected number of cells to be rounded up 
are selected without replacement from the table and only those cells are rounded 



 Statistical Disclosure Control Methods Through a Risk-Utility Framework 77 

up, the remaining cells are rounded down. This ensures that there is no bias in the 
total since the sum of the perturbations equals zero.  

• 10% random record swapping - The microdata underlying the table is perturbed 
by random record swapping as follows: within each broad geographical area, a 
10% random selection of households are paired with other households having the 
same household size (households of  8 persons and over are banded), broad age 
sex distribution and a “hard-to-count” index. The geographical variables are 
swapped between the households. 

Table 1 presents  results for the measures that were detailed in Sections 2 and 3 for 
the  Census employment table. Note that these measures were obtained as output from 
the SDC software application described in Section 5.  

As observed in Table 1, the two SDC methods behave quite differently on the 
statistical data in the Census employment table. The main conclusions are:   

• Disclosure risk is much greater for the 10% random record swapping with only 
38.4% of the small cells actually being targeted for disclosure control. Rounding 
on the other hand masks all of the small cells.   

• Because of the benchmarking and the control placed on the totals for the 
rounding and swapping procedures, these are not distorted. This is evident also in 
the results of the statistical tests for bias. On the other hand, the rounding had 
greater distance metrics between the original and protected distributions of the  
internal cells than the record swapping.   

• Rounding introduces more association between the variables (by placing more 
zeros in the table), as can be seen by the variance of the cell counts, the between 
variance, the impact on the deviance of the log linear model and Cramer’s V. 
Those measures are all positive or greater than one.  

• Record swapping attenuates the relationship between variables.  This is seen in 
the flattening of the cells counts through the variance, the between variance, and 
less association in Cramer’s V and the deviance of the log linear model. Those 
measures are all negative or less than one.  

• Because the table is sparse,  the impact on the rankings of the cell counts was 
great. Every column in the employment table had more than  20% movements  
between the 20 groupings after carrying out the record swapping, where only 25 
(69%) of the columns were affected by the rounding.  

Based on the results of Table 1, the needs of the users and the purpose of the data, 
data suppliers need to choose which SDC method is preferable. R-U confidentiality 
maps for comparing SDC methods may be useful for this purpose and these are 
outputted in the software application described in Section 5. For example, if we 
compared the SDC methods for the employment table on an R-U confidentiality map 
where the risk measure is the percent of  small cells that are unprotected and the 
utility measures is the HD distance metric, then the optimal SDC method would 
depend on the tolerable risk threshold set by the data supplier. If the tolerable risk 
threshold is above 65% then  record swapping with the least distortion to the 
distribution of internal cells would be preferred. However if the tolerable risk 
threshold is below 65%, then rounding would be preferred.  
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Table 1. Results of a Disclosure Risk-Data Utility Analysis for two SDC Methods on the 2001 
UK Census Employment Table in an Estimation Area 

Summary Statistics 
Number of cells 52,992 
Number of small cells (one,twos) 14,684 (27.7%) 
Number of zeros 17,413 (32.9%) 
Total information (no. of  individuals) 317,064 
Average cell size 6.0 ( ± 0.12) 
Range of average cell size in row 1.0 – 13.2 
Range of average cell size in column 0.1 – 67.1 
  10% Random 

Record Swap across 
Geography 

Semi-Controlled 
Random Rounding 

to Base 3 
Disclosure Risk Measure  
Small numbers changed 5,713 14,686 
Small numbers not  changed 8,973 0 
Percent small numbers not changed 61.1% 0% 
Information Loss Measures 
Statistical tests for bias  ( p-values) 0.338 0.494 
Distance metrics 
     Internal cells    AAD 

 
0.662 

 
0.678 

                               HD 1.405 2.043 
     Totals               AAD 0.001 0.003  
Change in average variance         RAV -1.31% 0.51% 
Change in  Cramer’s V                 RCV -3.66% 11.66% 
No. of columns with more than 20% 
movements between groupings of 20 

 
36 (100.0%) 

 
25 (69.4%) 

Ratio of between variance   BVR
(proportion of males with no long term 
illness who are retired) 

 
0.959 

 
1.061 

Ratio of deviance                            LR  
(model: 2 interactions:  sex*OA  , long 
term illness*economic activity) 

 
0.963 

 
1.172 

5   Software Application for the SDC Problem 

5.1   Brief Overview 

The software application is written in SAS and computes information loss  measures  
by comparing  two output tables (or microdata), the original output and the disclosure 
controlled output. The program has been designed to deal with tables that have been 
protected with pre-tabular methods or post-tabular methods such as: cell suppression, 
any form of rounding and small cell adjustments. When the tables are protected using 
cell suppression, the data supplier must define a method for imputing suppressed cells 
as described in Section 2.1.  
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5.2   Preparing Input and Running the Program 

Both the original and the protected outputs are imported from Excel files in the 
application. Data suppliers need to prepare the tables in a standard format, leaving 
only internal cells for the original table and the internal cells and margins for the 
disclosure controlled table. This is because margins in disclosure control tables can be 
protected separately from the internal cells and tables may not be additive.  When 
defining the variables that span the tables, data suppliers must understand the 
hierarchies and input the variables in that order, starting with the column variables 
and then the row variables.  

The program is run through a batch file. Users do not need to know how to use 
SAS to be able to run the program. Error messages pop up at all stages of the program 
to inform the data supplier if an error has been detected in one of the procedures. For 
example, if the tables are incorrectly imported into SAS from Excel, an error message 
will pop up immediately specifying the problem causing the error and the program 
will be stopped.   

5.3   The Windows of the Program 

Windows pop up during the course of running the program where the data suppliers 
are asked to fill in details. The first window asks about the location of the datasets and 
the variables of the table.   

 

The second window will open a dialogue and ask if the table was protected by cell 
suppression and to define the imputation method, or rounding and to specify the 
rounding base.  
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The next windows that pop up ask which information loss measures will be 
calculated, what are the variables that will undergo analysis and whether to calculate 
disclosure risk measures. Note that although the data is inputted as a two-dimensional 
table, data suppliers define flexible distributions and choose the variables that they are 
interested in. For example, the windows that pop up for the information loss measures 
are the following: 
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If all the information has been entered correctly, a final window will appear to 
inform the data supplier that the program has ended. An ‘html’ file is produced under 
the name that was  specified  by the user in the first window. In addition, the program 
outputs  R-U confidentiality maps to provide data suppliers with a visual tool for 
choosing optimal SDC methods.  

6    Future Developments 

The software application has completed its first phase of development and is 
undergoing testing. New information loss measures and the probabilistic disclosure 
risk assessment for sample data with unknown populations will be included in the 
next version. More flexibility will be introduced into the program with respect to 
different rounding bases, choosing which measures to plot on the R-U confidentiality 
map and more.  

As mentioned, the SDC software tool is designed for data suppliers who have 
access to the original data and want to make informed decisions on best SDC methods 
for their statistical data. However, the key next stage of this project is to develop and 
disseminate information loss measures for the users who do not have access to the 
original data. These information loss measures should allow the users to take into 
account the impact of the SDC methods on the statistical data and  to make 
adjustments when carrying out  statistical analysis and inference.  
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Abstract. We deal with the issue of risk estimation in a sample fre-
quency table to be released by an agency. Risk arises from non-empty
sample cells which represent small population cells and from population
uniques in particular. Therefore risk estimation requires assessing which
of the relevant population cells are indeed small. Various methods have
been proposed for this task, and we present a new method in which esti-
mation of a population cell frequency is based on smoothing using a local
neighborhood of this cell, that is, cells having similar or close values in
all attributes.

The statistical model we use is a generalized Negative Binomial model
which subsumes the Poisson and Negative Binomial models. We provide
some preliminary results and experiments with this method.

Comparisons of the new approach are made to a method based on
Poisson regression log-linear hierarchical model, in which inference on a
given cell is based on classical models of contingency tables. Such models
connect each cell to a ‘neighborhood’ of cells with one or several common
attributes, but some other attributes may differ significantly. We also
compare to the Argus Negative Binomial method in which inference on
a given cell is based only on sampling weights, without learning from any
type of ‘neighborhood’ of the given cell and without making use of the
structure of the table.

1 Introduction

Let f = {fk} denote an m-way frequency table, which is a sample from a pop-
ulation table F = {Fk}, where k = (k1, ..., km) indicates a cell, and fk and Fk

denote the frequency in cell k in the sample and population, respectively, and
the number of cells is denoted by K. Formally, the sample and population sizes
in our models are random and their expectations are denoted by n and N re-
spectively. We formally assume that n and N are known, but in practice they are
usually replaced by their natural estimators: the actual sample and population
sizes, assumed to be known, and without further comment.
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The m attributes in the table are considered to be key variables, that is, vari-
ables which are to some extent accessible to the public or to potential intruders.
Disclosure risk arises from cells in which both fk and Fk are positive and small,
and in particular when fk = Fk = 1 (sample and population uniques). An in-
truder who locates a sample unique in cell k, say, and is aware of the fact that
in the population the combination of values k = (k1, ..., km) is unique (Fk = 1)
or rare (Fk small) but matches an individual of interest, can identify this indi-
vidual on the basis of these m attributes. If the sample contains information on
the values of other attributes, then these can now be inferred for the individual
in question, and his privacy is violated.

Individual risk measures will be briefly discussed in Section 2 and we start
with global risk measures which quantify an aspect of the total risk in the file
by aggregating risk over the individual cells. For simplicity we shall focus here
only on two global measure, which are based on sample uniques:

τ1 =
∑

k

I(fk = 1, Fk = 1) , τ2 =
∑

k

I(fk = 1)
1
Fk

,

where I denotes the indicator function. Note that τ1 counts the number of sample
uniques which are also population uniques, and τ2 is the expected number of
correct guesses if each sample unique is matched to a randomly chosen individual
from the same population cell. These measures are somewhat arbitrary, and one
could consider measures which reflect matching of individuals that are not sample
uniques, possibly with some restrictions on cell sizes. Also, it may make sense
to normalize these measures by some measure of the total size of the table, by
the number of sample uniques, or by some measure of the information value of
the data.

Various individual and global risk measures have been proposed in the litera-
ture, see e.g. Franconi, and Polettini (2004) and references therein, Skinner and
Holmes (1998), Elamir and Skinner (2006), Rinott (2003).

In Sections 2 and 3 we propose and explain a new method of estimation of
quantities like τ1 and τ2, using a generalized Negative Binomial model, and local
smoothing of frequency tables, Simonoff (1998). The method is based on the
idea that one can learn about a given population cell from neighboring cells, if a
suitable definition of closeness or neighbors is possible, by standard smoothing
techniques, without relying on complex dependence structure modeling. This
method differs from that of Elamir and Skinner (2006), in which one uses classical
hierarchical log-linear models, which means inferring on a given cell by using
cells that could be very different in many attribute values. For example, in the
independence model, inference on a cell uses all cells which have at least one
common attribute with the given cell, but all others may be very different. Thus
neighborhoods formed by the classical log-linear model theory seem to be too
large for our purposes. This point is explained in detail in Rinott and Shlomo
(2005). On the other hand, the Argus approach, see, e.g., Franconi, and Polettini
(2004), uses no neighborhoods at all and ignores the table structure. We consider
the smoothing approach simple conceptually but not necessarily in terms of the
computations required.
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In this paper it is assumed that f is known, and F is an unknown parameter
(on which there may be some partial information) and the quantities τ1 and
τ2 should be estimated. Note that they are not proper parameters, since they
involve both the sample f and the parameter F.

The methods discussed in this paper consist of modeling the conditional distri-
bution of F|f, estimating parameters in this distribution and then using estimates
of the form

τ̂1 =
∑

k

I(fk = 1)P̂ (Fk = 1|fk = 1), τ̂2 =
∑

k

I(fk = 1)Ê[
1
Fk
|fk = 1] , (1)

where P̂ and Ê denote estimates of the relevant conditional probability and
expectation. For a general theory of estimates of this type see Zhang (2005) and
references therein. Some direct variance estimates appear in Rinott (2003).

2 The Model

For completeness we briefly introduce the Poisson and Negative Binomial models.
More details can be found, for example, in Bethlehem et al. (1990), Cameron
and Trivedi (1998), Rinott (2003).

We assume Fk ∼ Poisson(Nγk), independently, with
∑

γk = 1. Binomial
(or Poisson) sampling from Fk means that fk|Fk ∼ Bin(Fk, πk), πk being the
(known) sampling fraction in cell k. These are common assumptions in the fre-
quency table literature, where it is convenient for log-linear modeling to assume
that all πk’s are equal, an assumption not made here. However, we assume that
the inclusion probabilities πk are fixed within cells. In certain cases such an
assumption may not hold, and more complex models may be required.

By standard calculations we then have

fk ∼ Poisson(Nγkπk) and Fk | fk ∼ fk + Poisson(Nγk(1 − πk)) , (2)

leading to the Poisson model (see references below).
We now add the Bayesian assumption γk ∼ Gamma(α, β) independently.

(Later we assume a common value for α and β in some neighborhoods of cells,
rather than the whole table.)

Then
fk ∼ NB(α, pk =

1
1 + Nπkβ

), (3)

the generalized Negative Binomial distribution, defined for any α > 0 by

X ∼ NB(α, p) if P (X = x) =
Γ (x + α)

Γ (x + 1)Γ (α)
(1 − p)xpα, x = 0, 1, 2, . . . , (4)

which for a natural α counts the number of failures until α successes occur in
independent Bernoulli trials with probability of success p. For this distribution
we have μ = EX = α(1 − p)/p, VarX = α(1 − p)/p2 = μ + μ2/α, and the
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probability generating function is g(t) = EtX = pα/[1− (1−p)t]α, see Cameron
and Trivedi (1998, p 375).

With the above parametrization μk ≡ Efk = Nπkαβ, and for b > 0

E[1/(b + X)] =
∫ 1

0
tb−1g(t)dt. (5)

Further calculations yield

Fk | fk ∼ fk + NB(α + fk, ρk =
Nπkβ + 1
Nβ + 1

), (6)

and clearly Fk ≥ fk.
This is the generalized Negative Binomial model used in this paper.
As α → 0 and β → ∞ we obtain Fk | fk ∼ fk + NB(fk, πk), which is exactly

the Negative Binomial assumption used in the Argus method. See Franconi and
Polettini (2004) and references therein for details. If α→∞ and αβ → constant,
the Poisson model used in this context by Skinner and Holmes (1998) and Elamir
and Skinner (2006) is obtained. Therefore the generalized Negative Binomial
subsumes both models.

Using (5), (6) and setting ρk = (Nπkβ + 1)/(Nβ + 1), it is easy to compute
individual risk measures for cell k, defined by

P (Fk = 1|fk = 1) = ρ1+α
k , E[

1
Fk
|fk = 1] =

ρk(1− ρα
k )

α(1 − ρk)
. (7)

3 Smoothing Polynomials and Local Neighborhoods

Our goal in this section is to estimate the parameters of the model so that we can
estimate the quantities in (7). The global risk measures will then be estimated
as indicated in (1).

The estimation question here is essentially the following: given, say, a sample
unique, how likely is it to be also a population unique, or arise from a small
population cell. If a sample unique is found in a part of the sample table where
neighboring cells (by some reasonable metric, to be discussed later) are small
or empty, then it seems reasonable to believe that it is more likely to have
arisen from a small population cell. This motivates our attempt to study local
neighborhoods, and compare the results to those obtained by using model-driven
neighborhood arising in hierarchical log-linear models, where it seems that the
neighborhoods may be too large, and the Argus method which uses no neigh-
borhoods.

Consider frequency tables in which some of the attributes are ordinal, and
define closeness between categories of an attribute in terms of the order, or more
generally, suppose that for a certain attribute one can say that some values of
the attribute are closer to a given value than others. For example, Age and
number of Years of Education are ordinal attributes, and naturally the age of
16 is closer to 15 than to 20, say, while Occupation is not ordinal, but one can
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try to define reasonable notions of closeness between different occupations. The
attribute values of variables which are purely categorical will be kept fixed within
a neighborhood, and ordinal variables will vary within a range that defines the
neighborhood.

Classical log-linear models do not take such closeness into account, and there-
fore, when such models are used for individual cell parameter estimation, the
estimates involve data in cells which may be rather remote from the estimated
cell. On the other hand, as mentioned above, the Argus method bases its esti-
mation only on the sampling weights in the estimated population cell. There is
no learning from other cells, the structure of the table plays no role, and each
cell’s parameter is estimated separately.

Our approach consists of using local neighborhood smoothing which will be
described in (10) below, along with the generalized Negative Binomial model
of (3)-(6). We thus assume that fk ∼ NB(α, pk = 1

1+Nπkβ ), and therefore
μk ≡ Efk = α(1− pk)/pk = Nπkαβ, see (3) and the subsequent relations.

We describe the proposed estimation method for μ and α. These estimates
will be transformed to estimates of the parameters appearing in the individual
risk measures (7), which in turn lead to estimates of the global risk measures
using (1).

For each fixed cell k we define a neighborhood of cells M = Mk (where k ∈M)
and estimate the values of μk and αk using neighboring cells k′ ∈ Mk and the
assumption

fk′ ∼ NB(αk, pk′ =
1

1 + Nπk′βk
), (8)

where αk and βk are fixed in the neighborhood and do not depend on k′, while
pk′ actually depends also on k. Since we now fix k we suppress it as an index
in α, β or pk′ , and write Efk′ = μk′ = α(1 − pk′)/pk′ . For the fixed k, set
μ = {μk′ : k′ ∈ M}, so the index k is suppressed also in μ. We consider the
likelihood of the observations {fk′ : k′ ∈ M} in a neighborhood M = Mk

of k based on (8), and using different parameterizations which include μ and
a = 1/α

L(a, μ) ≡ L(a, μ; {fk′ : k′ ∈M}) =
∏

k′∈M

Γ (x + α)
Γ (x + 1)Γ (α)

(1− pk′ )fk′ pα
k′

=
∏

k′∈M

Γ (x + α)
Γ (x + 1)Γ (α)

[1− α/(μk′ + α)]fk′ [α/(μk′ + α)]α . (9)

We emphasize again that although in the above formulas only dependence on k′

is shown, it should be noted that α, β and μ depend on k, and therefore pk′ and
μk′ depend both on k and k′.

For each k we will estimate α = αk and μk′ for k′ ∈ M = Mk using the
likelihood (9) and a smoothing model described next, and then use the estimates
of αk and μk (not using the μk′ estimates for k′ �= k) for further risk estimates,
as discussed below.
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Following Simonoff (1998), see also references therein, we use a local smoothing
polynomial model.

For convenience of notation we now assume m = 2 (a two-way table); the exten-
sion to any m is straightforward. For each fixed k = (k1, k2) separately, we write
the log-linear model below for μk′ in terms of the parameters θ=(θ0, θ1, ϑ1, . . . ,
θt, ϑt), with k′ = (k′

1, k
′
2) varying in the neighborhood M = Mk of k :

log μk′(θ) = θ0 + θ1(k′
1 − k1) + ϑ1(k′

2 − k2) + . . . + θt(k′
1 − k1)t+ϑt(k′

2 − k2)t,

(10)

for some natural number t. One can hope that such a polynomial, with a suitable
t, provides a reasonable approximation to logμk′ if k′ = (k′

1, k
′
2) is in a small

neighborhood of k = (k1, k2). Substituting (10) into the likelihood function (9)
using the relations between parameterizations as described above we obtain the
likelihood function L(a, θ).

Our next goal is to maximize it as a function of a = 1/α and θ. This max-
imization takes place in principle for each cell k (although it may suffice for
our purposes to carry it out for sample uniques only, that is, for cells such that
fk = 1). A source of difficulty here is that log L(a, θ) is concave in θ, but not
jointly in (a, θ), and therefore local maxima may occur, Hessians are not nec-
essarily positive definite, and standard algorithms may not converge to the real
MLE. This difficulty does not arise in the Poisson case of log-linear models of
this type, where the log-likelihood is concave, see Rinott and Shlomo (2006), for
a detailed discussion of the Poisson model. There are several options for max-
imization. SAS uses a Newton-Raphson Ridge Optimization (NRRIDG) which
adds a multiple of the identity matrix to the Hessian when the latter is not pos-
itive definite, and also the Fisher Scoring Algorithm which replaces the Hessian
by its expectation which is the information matrix, (using the parameter esti-
mates of the current iteration), thus making it positive definite. We used our
own program of the latter algorithm.

The components of the gradient of the log-likelihood function are obtained by
differentiation and some manipulations as in Cameron and Trivedi (1998 p. 71),
taking the form:

∂ log L(a, θ)
∂a

=
∑

k′∈M

⎧⎨
⎩ 1

a2

⎛
⎝log(1 + aμk′ )−

fk′−1∑
υ=0

1
υ + a−1

⎞
⎠+

fk′ − μk′

a(1 + aμk′)

⎫⎬
⎭

∂ log L(a, θ)
∂θ�

=
∑

k′∈M

fk′ − μk′

(1 + aμk′)
(k′

1 − k1)�, � = 0, . . . , t

∂ log L(a, θ)
∂ϑ�

=
∑

k′∈M

fk′ − μk′

(1 + aμk′)
(k′

2 − k2)�, � = 1, . . . , t.

Note that in the solution to the related normal equations, the resulting vector
(a, θ) depends on k.
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The Hessian is calculated as follows:

∂2 log L(a, θ)
∂a2 =

∑
k′∈M

⎧⎨
⎩−2

a3

⎛
⎝log(1 + aμk′ )−

fk′−1∑
υ=0

1
υ + a−1

⎞
⎠

+
1
a2

⎛
⎝ μk′

1 + aμk′
−

fk′−1∑
υ=0

1
(aυ + 1)2

⎞
⎠− (fk′ − μk′)(1 + 2aμk′)

a2(1 + aμk′)2

⎫⎬
⎭ ,

∂2 log L(a, θ)
∂θ�∂a

= −
∑

k′∈M

(fk′ − μk′)μk′

(1 + aμk′)2
(k′

1 − k1)�, � = 0, . . . , t,

and

∂2 log L(a, θ)
∂θi∂θj

= −
∑

k′∈M

(1 + afk′)μk′

(1 + aμk′ )2
(k′

1 − k1)i+j i, j = 0, . . . , t.

∂2 log L(a, θ)
∂θi∂ϑj

=−
∑

k′∈M

(1+afk′)μk′

(1 + aμk′)2
(k′

1 − k1)i(k′
2 − k2)j , i=0, . . . , t, j=1, . . . , t.

∂2 log L(a, θ)
∂ϑi∂ϑj

= −
∑

k′∈M

(1 + afk′)μk′

(1 + aμk′)2
(k′

2 − k2)i+j , i, j = 1, . . . , t.

With argmax L(a, θ) = (â, θ̂), and θ̂0 denoting the first component of θ̂, we
finally obtain our estimate of μk = μ(k1,k2) in the form

μ̂k ≡ μk(θ̂) = exp(θ̂0), (11)

where the second equality is explained by taking k′ = k = (k1, k2) in (10).
To summarize, we obtain the estimates âk, θ̂ both depending on k by a sepa-

rate maximization for each k as explained above, leading to the estimates âk, and
μ̂k of (11). For the risk measure discussed in this paper, it suffices to compute
these estimates for cells k which are sample uniques, that is, fk = 1

Having estimated âk, μ̂k for each cell k separately on the basis of a neighbor-
hood Mk, we use them to estimate the quantities ρk and α = αk which are ob-
tained by tracing back the reparameterizations. Using the relations ρk = Nπkβ+1

Nβ+1 ,
and μk = Nπkαkβk we readily obtain

ρk =
μk + αk

μk/πk + αk
, αk = 1/ak.

We plug our estimates âk, μ̂k in the latter formula, and then plug the resulting
estimates of αk and ρk into (7), to obtain the individual risk estimates. The
global risk measures are estimated as indicated in (1).
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4 Experiments with Neighborhoods

We present a few experiments. Our results are preliminary as already mentioned
and more work is needed on the approach itself and on classifying types of data
for which it might work.

For the computations we used our versions of the Argus and log-linear mod-
els methods, programmed on the SAS system. The weights wi for the Argus
method in all our examples were computed by post-stratification on Sex by Age
by Geographical location (the latter is not one of the attributes in any of the
tables, but it was used for post-stratification). These variables are commonly
used for post-stratification, other strata may give different, and perhaps better
results.

In the experiments below we compare results of our NB smoothing method
with the Argus estimates and with Poisson hierarchical log-linear models (Elamir
and Skinner 2006), with two log-linear models: one of independence, the other
including all two-way interactions.

We defined neighborhoods M of k by varying around k coordinates correspond-
ing to attributes that are ordinal, allowing in each coordinate a fixed maximal
distance, which is equivalent to using a ball in the sup-norm, or intersection
of sup-norm and �1 balls (see below). In principle we would use close values in
non-ordinal attributes when possible (e.g., in Occupation). Attributes in which
closeness of values cannot be defined, such as Sex remain constant in the whole
neighborhood and therefore in our experiments neighborhoods always consist of
individuals of the same Sex.

In all experiments we took a real population data file of size N given in
the form of a contingency table with K cells, and from it we took a simple
random sample of size n, so that always πk = n/N . Our approach and formu-
las have the advantage of allowing for variable πk’s, but taking them all equal
enables us to compare to the log-linear models method, where equal πk’s are
required. Since the population and the sample are known to us, we can compute
the true values of τ1 and τ2 and their estimates by the different methods, and
compare.

Example 1. Population : an extract from the 1995 Israeli Census. N = 37, 586,
n = 3, 759, K = 11, 648. Attributes (with number of levels in parentheses):
Sex(2) * Age Groups (32) * Income Groups(14) * Years of Study (13).

In this small experiment we tried our proposed smoothing polynomial model
of (10) for t = 2. We considered one type of neighborhood here, constructed by
fixing Sex and varying each of the other attribute value in k by at most c values
up or down, that is, the neighborhood of each cell k (with a fixed Sex value) is
of the type

M = {k′ : k′
1 = k1, max

2≤i≤m
|k′

i − ki| ≤ c}. (12)

With m = 4 and one variables fixed we vary three variables, each over a range
of five values for c = 2, , so we have |M | = 53 = 125, and taking c = 3 we have
|M | = 73 = 343.
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For cells near the boundaries some of the cells in their neighborhoods do not
exist; here we set non-existing cells’ frequencies to be zero, but other possibilities
can be considered.

The table below presents the true τ values and their estimates by the methods
described above.

Model τ1 τ2

True Values 187 452.0
Argus 137.2 346.4
Log Linear Model:
Independence 217.3 518.0
Log Linear Model:
2-Way Interactions 167.2 432.8
NB Smoothing t = 2 |M | = 125 181.9 461.3
NB Smoothing t = 2 |M | = 343 179.6 449.8

Example 2. Population : an extract from the 1995 Israeli Census. N = 746, 949,
n = 14, 939, K = 337, 920. Attributes: Sex (2) * Age Groups (16) * Years of
Study (10) * Number of Years in Israel (11) * Income Groups (12) * Number of
Persons in Household (8). Note that this is a very sparse table.

We applied the smoothing polynomial of (10) for t = 2 and neighborhoods
obtained by varying all attributes except for Sex which was fixed. Neighborhoods
are of the type

M = {k′ : k′
1 = k1, max

2≤i≤m
|k′

i − ki| ≤ c,
∑

i

|k′
i − ki| ≤ d}, (13)

with c = 2; d = 4 and 6, and |M | = 581 and 1, 893, respectively. The results are
given in the table below.

Model τ1 τ2

True Values 430 1,125.8
Argus 114.5 456.0
Log Linear Model:
Independence 773.8 1,774.1
Log Linear Model:
2-Way Interactions 470.0 1,178.1
NB Smoothing t = 2 |M | = 581 300.7 999.4
NB Smoothing t = 2 |M | = 1, 893 461.9 1,179.6

Example 3. Population : an extract from the 1995 Israeli Census. N = 746, 949,
n = 7, 470, K = 42, 240. Attributes: Sex (2) * Age Groups (16) * Years of Study
(10) * Number of Years in Israel (11) * Income Groups (12).

We applied the smoothing polynomial of (10) for t = 2 and neighborhoods
obtained by varying all attributes except for Sex which was fixed. Neighborhoods
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are as in (13) with c = 2 and d = 4 and |M | = 257; c = 2, d = 6, and |M | = 545,
and c = 2, d = 8 and |M | = 625 . Smaller neighborhoods did not yield good
estimates. The results are given in the table below.

Model τ1 τ2

True Values 42 171.2
Argus 20.7 95.4
Log Linear Model:
Independence 28.8 191.5
Log Linear Model:
2-Way Interactions 35.8 164.1
NB Smoothing t = 2 |M | = 257 24.7 147.5
NB Smoothing t = 2 |M | = 545 39.3 174.8
NB Smoothing t = 2 |M | = 625 45.8 184.4

Discussion of examples. The log-linear model method was tested in Skinner
and Shlomo (2005, 2006) and references therein, and based on model selection
techniques and goodness of fit criteria, yields good estimates for disclosure risk
measures for the types of experiments done here. Di Consiglio et al. (2003)
presented experiments for individual risk assessment with Argus, which seems
to perform less well than the log-linear method in many of our experiments with
global risk measures. Our new method still requires fine-tuning. At present the
results seem comparable or somewhat better than the Poisson hierarchical log-
linear method. In Rinott and Shlomo (2006) we performed experiments of this
kind on a smoothing method based on the Poisson rather than the Negative
Binomial distribution. So far the present Negative Binomial model improves all
the results, and seems potentially promising.

Naturally, more variables and sparse data sets with a large number of cells are
typical and need to be tested. Such files will cause difficulties to any method,
and this is where the different methods should be compared. In sparse multi-way
tables, model selection will be crucial but difficult for the log-linear method, and
perhaps simpler for the smoothing approach.

Our proposed method is at a preliminary stage and requires more work. Par-
ticular directions are the following:

1. Adjust the parameter estimates to fit known population marginals obtained
from prior knowledge and sampling weights, and vary the sampling fractions πk.
In all our experiments so far we used constant πk’s but unlike methods based on
log-linear models, the formulas given here allow for variables πk’s, and we intend
to try variable πk’s obtained by sampling design or post-stratification.
2. Use goodness of fit measures and information on population marginals and
sampling weights to select the type and size of the neighborhoods, and the degree
of the smoothing polynomial in (10).

The examples show a typical monotonicity phenomenon discussed also in the
papers of Rinott and Shlomo (2005, 2006): the risk measure estimates decrease
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as a function of the size of the log-linear model (that is, with one exception of τ1
in Example 3, the two-way models always yield lower estimates than the inde-
pendence model). In the present smoothing approach the risk estimates always
decrease with the size of the neighborhood. These two facts can be explained
in the same way: the better the fit to the sample data, the smaller the risk
estimates. A larger log-linear model or a smaller smoothing neighborhood corre-
spond to a better fit and therefore yield smaller risk estimates. In the presence
of such monotonicity, a study of suitable goodness of fit measures to choose the
right model is critical.
3. We intend to test this method also for individual risk measure estimates,
which are important in themselves, and may also shed more light on efficient
neighborhood and model selection. Our preliminary experiments suggest that
the smoothing approach performs relatively well in estimating individual risk.
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Entry Uniqueness in Margined Tables

Shmuel Onn�

Technion - Israel Institute of Technology, 32000 Haifa, Israel

Abstract. We consider a problem in secure disclosure of multiway table
margins. If the value of an entry in all tables having the same margins
as those released from a source table in a data base is unique, then the
value of that entry can be exposed and disclosure is insecure. We settle
the computational complexity of detecting whether this situation occurs.
In particular, for multiway tables where one category is significantly
richer than the others, that is, when each sample point can take many
values in one category and only few values in the other categories, we
provide, for the first time, a polynomial time algorithm for checking
uniqueness, allowing disclosing agencies to check entry uniqueness and
make learned decisions on secure disclosure. Our proofs use our recent
results on universality of 3-way tables and on n-fold integer programming,
which we survey on the way.

1 Introduction

It is a common practice in the disclosure of a multiway table containing sensitive
data to release some of the table margins rather than the table itself (see e.g.
[2,3,9] and references therein). Once the margins are released, the security of any
specific entry of the table is related to the structure of the set of possible values
that can occur in that entry in any table having the same margins as those of
the source table in the data base. In particular, if this set consists of a unique
value, that of the source table, then this entry can be exposed and security can
be violated.

This raises the following algorithmic problem.

Entry Uniqueness in Margined Tables. Given consistent disclosed margin
values, and a specific entry index, is the value that can occur in that entry in
any table having these margins, unique ?

An efficient algorithm for this problem allows the disclosing agency to check
possible collections of margins before disclosure: if an entry value is not unique
then disclosure may be assumed secure, whereas if the value is unique then
disclosure may be risky and fewer margins should be released.

A less desirable situation occurs when this problem is computationally in-
tractable: then the disclosing agency may not be able to check for uniqueness;
however, in this situation, some consolation is in that an adversary will be com-
putationally unable to identify and retrieve a unique entry either.
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In this article we show the following contrasting statements, settling the com-
plexity of the problem. The first theorem concerns the intractability of “short”
3-way tables, that is, tables of size r × c× 3.

Theorem 1. It is coNP-complete to decide, given r, c and consistent 2-margins
(line-sums) for 3-way tables of size r × c × 3, if the value of the entry x1,1,1 is
the same in all tables with these margins.

This statement concerns tables with two large sides - r rows and c columns -
which are considered varying part of the input. This result is sharpest possible:
2-way tables are easy; 3-way tables of size r × c × 2 with fixed line-sums are
equivalent to 2-way tables and hence are easy as well; and, as follows from our
second theorem below, d-way tables with only one side varying can be efficiently
treated. This strengthens an earlier result of [10] on tables of format r × c × n
with all sides variable, see also [4]. Related work on so-called Markov bases for
random walks on tables can be found in [1,6].

The second theorem concerns the efficient treatment of “long” tables of any
dimension d, that is, d-way tables of size m1 × · · · × md−1 × n with one long,
variable, side n, and all other sides fixed.

Theorem 2. For every fixed d, m1, . . . , md−1, there is a polynomial time algo-
rithm that, given any n, any hierarchical collection of margins for m1 × · · · ×
md−1×n tables, and any entry index (i1, . . . , id), determines whether or not the
value of the entry xi1,...,id

is the same in all tables with these margins.

The precise definition of a hierarchical collection of margins is given below; in
particular, for any k, the collection of all k-margins is hierarchical. Note again
that this result is best possible: if two sides of a d-way table with d ≥ 3 are large
and varying then, by Theorem 1, the uniqueness problem is coNP-complete.
Theorem 2 is especially reassuring in situations where one of the d categories
generating tables is significantly richer than the others, that is, when each sample
point can take many values in one category and only few values in the other
categories. Then the algorithm underlying Theorem 2 allows disclosing agencies
to check entry uniqueness and make learned decisions on secure disclosure.

In the next two sections we establish Theorems 1 and 2 respectively. Theorem
1 is proved using our recent results in [5,7] on the universality of short 3-way
tables. Theorem 2 is proved using our recent results in [8] on the polynomial
time solvability of the broad class of n-fold integer programming problems in
variable dimension. Indeed, on the way, as a secondary goal of this article, we
briefly survey our work on universality and n-fold integer programming, which
provide powerful tools for treating multiway tables (see e.g. [6] for applications to
Markov bases and walks on tables). The final section contains some concluding
discussion of approximate versus accurate bounds computation.

Before proceeding to the proofs, we give some definitions on multiway poly-
topes, margins and hierarchical margin collections. A d-way polytope is the set
of all m1 × · · · × md nonnegative arrays x = (xi1,...,id

) such that the sums
of the entries over some of their lower dimensional sub-arrays (margins) are



96 S. Onn

specified. More precisely, for any tuple (i1, . . . , id) with ij ∈ {1, . . . , mj} ∪ {+},
the corresponding margin xi1,...,id

is the sum of entries of x over all coordi-
nates j with ij = +. The support of (i1, . . . , id) and of xi1,...,id

is the set
supp(i1, . . . , id) := {j : ij �= +} of non-summed coordinates. For instance, if
x is a 4 × 5 × 3 × 2 array then it has 12 margins with support F = {1, 3} such
as x3,+,2,+ =

∑5
i2=1

∑2
i4=1 x3,i2,2,i4 . A collection of margins is hierarchical if, for

some family F of subsets of {1, . . . , d}, it consists of all margins ui1,...,id
with

support in F . In particular, for any 0 ≤ k ≤ d, the collection of all k-margins
of d-tables is hierarchical with F the family of all k-subsets of {1, . . . , d}. Given
a hierarchical collection of margins ui1,...,id

supported on a family F of subsets
of {1, . . . , d}, the corresponding d-way polytope is the set of nonnegative arrays
with these margins,

TF =
{

x ∈ Rm1×···×md
+ : xi1,...,id

= ui1,...,id
, supp(i1, . . . , id) ∈ F

}
.

The integer points in this polytope are precisely the d-way tables with the spec-
ified (disclosed) margins.

2 Intractability for Short 3-Way Tables: The Universality
Theorem

Consider 3-way polytopes of r × c × 3 arrays with all line-sums fixed, that
is, the hierarchical collection of all 2-margins, supported on the family
F = {{1, 2}, {1, 3}, {2, 3}}, and their integer points, which are precisely the
corresponding tables with all line-sums fixed (disclosed). The following strik-
ing universality of such 3-way polytopes and tables was very recently shown in
[5,7].

Theorem 3. Any rational polytope P = {y ∈ Rm
+ : Ay = b} is polynomial time

representable as a 3-way line-sum polytope of size r×c×3 for some (polynomially
bounded) r and c,

T = { x ∈ Rr×c×3
+ :

∑
i

xi,j,k = wj,k ,
∑

j

xi,j,k = vi,k ,
∑

k

xi,j,k = ui,j } .

Here representable means that there is a coordinate-erasing projection from
Rr×c×3 onto Rm providing a bijection between T and P and between the sets of
integer points T ∩Zr×c×3 and P ∩Zm. Thus, any rational polytope is an r×c×3
line-sum polytope, and any integer (respectively, linear) programming problem
is equivalent to an integer (respectively, linear) r× c×3 line-sum transportation
problem.

This result solved several open problems from [11,12], and had several im-
plications on the complexity of Markov bases for hierarchical margins and re-
lated issues; in particular, it implied the following surprising statement, see
[5,6].
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Proposition 4. For any finite set S of nonnegative integers, there are r, c and
2-margins such that the set of values occurring in the entry x1,1,1 in all r× c× 3
tables with these margins is precisely S.

The margins that realize any desired set of values S can be automatically com-
puted using the construction underlying the universality Theorem 3. Applying
this to the set S = {0, 2}, we obtain the following example where the set of
values occurring in x1,1,1 in all tables is S = {0, 2} and has a gap.

Example 1. Gap in 2-margined 3-tables: There are precisely two 3-way tables
of size 6 × 4 × 3 with the 2-margins below; in one table x1,1,1 = 0 while in the
other table x1,1,1 = 2.

2 1 2 0 2 0
1 0 2 0 0 2
1 0 0 2 2 0
0 1 0 2 0 2

,
2 1 2 3 0 0
2 1 0 0 2 1
0 0 2 1 2 3

,

2 3 2
2 1 2
2 1 2
2 1 2

.

We proceed to prove Theorem 1 using Theorem 3.

Theorem 1. It is coNP-complete to decide, given r, c and consistent 2-margins
(line-sums) for 3-way tables of size r × c × 3, if the value of the entry x1,1,1 is
the same in all tables with these margins.

Proof. The subset-sum problem, well known to be NP-complete, is the following:
given positive integers a0, a1, . . . , am, decide if there is an I ⊆ {1, . . . , m} with
a0 =

∑
i∈I ai. We reduce its complement to ours. Given a0, a1, . . . , am, consider

the polytope in 2(m + 1) variables y0, y1 . . . , ym, z0, z1, . . . , zm,

P := {(y, z) ∈ R2(m+1)
+ : a0y0 −

m∑
i=1

aiyi = 0 , yi + zi = 1 , i = 0, 1 . . . , m } .

First, note that it always has one integer point with y0 = 0, given by yi = 0
and zi = 1 for all i. Second, note that it has an integer point with y0 �= 0 if and
only if there is an I ⊆ {1, . . . , m} with a0 =

∑
i∈I ai, given by y0 = 1, yi = 1

for i ∈ I, yi = 0 for i ∈ {1, . . . , m} \ I, and zi = 1 − yi for all i. Lifting P to a
suitable r × c× 3 line-sum polytope T with the coordinate y0 embedded in the
entry x1,1,1 using Theorem 3, we find that T has a table with x1,1,1 = 0, and
this value is unique among the tables in T if and only if there is no solution to
the subset sum problem with a0, a1, . . . , am. ��

The next example demonstrates the construction of the proof of Theorem 1.

Example 2. Encoding subset-sums in 2-margined 3-tables: Given instance
m = 2, a0 = 2, a1 = a2 = 1 for subset-sum, the construction of Theorem 1
(incorporating the universality theorem) yields the line-sums below for tables of
size 10×8×3, where variables y0, y1, y2 are embedded in entries x1,1,1, x3,7,1, x4,8,1
respectively. The margins admit one table with x1,1,1 = x3,7,1 = x4,8,1 = 0 and
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one table with x1,1,1 = x3,7,1 = x4,8,1 = 1 corresponding to the subset-sum
a0 = a1 + a2 of I = {1, 2}.

1 0 0 0 1 0 1 0 0 0
0 1 0 0 1 0 0 1 0 0
0 0 1 0 1 0 0 0 1 0
0 0 0 1 1 0 0 0 0 1
0 1 0 0 0 1 1 0 0 0
1 0 0 0 0 1 0 1 0 0
0 0 1 0 0 1 0 0 1 0
0 0 0 1 0 1 0 0 0 1

,
1 1 1 1 2 2 0 0 0 0
1 1 1 1 0 0 1 1 1 1
0 0 0 0 2 2 1 1 1 1

,

1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1

.

3 Solvability for Long d-Way Tables: n-Fold Integer
Programming

It is well known that integer programming problems are generally intractable.
However, very recently, in [8], we were able to show that an important broad
class of integer programming problems in variable dimension is polynomial time
solvable. This result may seem a bit technical at a first glance, but is really very
natural and has many applications in operations research and statistics, includ-
ing clustering, partition problems and more. To state it, we need the following
definition: given an (r+ s)× t matrix A, let A1 be its r× t sub-matrix consisting
of the first r rows and let A2 be its s× t sub-matrix consisting of the last s rows.
Define the n-fold matrix of A to be the following (r + ns)× nt matrix,

A(n) := (1n ⊗A1)⊕ (In ⊗A2) =

⎛
⎜⎜⎜⎜⎜⎝

A1 A1 A1 · · · A1
A2 0 0 · · · 0
0 A2 0 · · · 0
...

...
. . .

...
...

0 0 0 · · · A2

⎞
⎟⎟⎟⎟⎟⎠ .

Note that A(n) depends on r and s: these will be indicated by referring to A as
an “(r + s)× t matrix”.

In [8] we show the following theorem on integer programming over n-fold
matrices.

Theorem 5. For any fixed (r + s) × t integer matrix A there is a polynomial
time algorithm that, given any n and any vectors b ∈ Zr+ns and c ∈ Znt, solves
the n-fold integer programming problem

max {cx : A(n)x = b, x ∈ Nnt} .

As usual, solving the integer program means that the algorithm either returns
an optimal solution x ∈ Nnt, or asserts that the problem is infeasible, or asserts
that the objective function is unbounded.

The equations defined by the n-fold matrix have the following, perhaps more
illuminating, interpretation: splitting the variable vector and the right-hand-side
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vector into components of suitable sizes, x = (x1, . . . , xn) and b = (b0, b1, . . . , bn),
where b0 ∈ Zr and xk ∈ Nt and bk ∈ Zs for k = 1, . . . , n, the equations become
A1(
∑n

k=1 xk) = b0 and A2x
k = bk for k = 1, . . . , n. Thus, each component xk

satisfies a system of constraints defined by A2 with its own right-hand-side bk,
and the sum

∑n
k=1 xk obeys constraints determined by A1 and b0 restricting the

“common resources shared by all components”.
We proceed to prove Theorem 2 using Theorem 5. In fact, we show that any

linear objective function can be maximized (and minimized) over long d-way
tables with fixed margins. In particular, the exact smallest and largest values of
any entry can be computed (as opposed to approximative lower and upper bounds
obtainable from the linear programming relaxation of the multiway polytope).

Theorem 2. For every fixed d, m1, . . . , md−1, there is a polynomial time algo-
rithm that, given any n, any hierarchical collection of margins for m1 × · · · ×
md−1×n tables, and any entry index (i1, . . . , id), determines whether or not the
value of the entry xi1,...,id

is the same in all tables with these margins.

Proof. Let F be the family of subsets of {1, . . . , d} on which the given hier-
archical collection of margins is supported. Re-index arrays x = (xi1,...,id

) as
x = (x1, . . . , xn) where, for k = 1, . . . , n,

xk := (xi1,...,id−1,k) := (x1,...,1,k, . . . , xm1,...,md−1,k)

is a suitably indexed vector of length t :=
∏d−1

i=1 mi representing the k-th layer
of x. Then the margin equations xi1,...,id

= ui1,...,id
for all tuples satisfying

supp(i1, . . . , id) ∈ F can be written as A(n)x = b with A(n) the n-fold matrix of
a suitable (r + s) × t matrix A, with r, s, A1 and A2 suitably determined from
F and with the right-hand-side b ∈ Nr+ns determined from the given margins,
in such a way that the equations A1(

∑n
k=1 xk) = b0 represent the equations of

all margins xi1,...,id
with id = + (where summation over layers occurs), whereas

the equations A2x
k = bk for k = 1, . . . , n represent the equations of all margins

xi1,...,id
with id �= + (where summation is within a single layer k at a time).

Thus, by Theorem 5, for any integer vector c ∈ Znt, we can solve in polynomial
time the following integer programming problem over the multiway polytope,

max {cx : x ∈ Nm1×···×md−1,n, xi1,...,id
= ui1,...,id

, supp(i1, . . . , id) ∈ F} =

max {cx : A(n)x = b, x ∈ Nnt}.
In particular, we can compute in polynomial time the smallest value l and largest
value u of the entry xi1,...,id

in all tables with these margins, by solving the
following two n-fold integer programs,

l := min{xi1,...,id
: A(n)x = b, x ∈ Nnt} ,

u := max{xi1,...,id
: A(n)x = b, x ∈ Nnt} .

Clearly, entry xi1,...,id
attains a unique value in all tables with the given (dis-

closed) hierarchical collection of margins if and only if l = u, completing the
description of the algorithm and the proof. ��
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Example 3. Consider long 3-way tables of size 3× 3×n with all line-sums fixed,
that is, with d = 3, m1 = m2 = 3, and the hierarchical collection of all 2-
margins, supported on F = {{1, 2}, {1, 3}, {2, 3}}. Then r = t = 9, s = 6,
and writing xk = (x1,1,k, x1,2,k, x1,3,k, x2,1,k, x2,2,k, x2,3,k, x3,1,k, x3,2,k, x3,3,k) for
k = 1, . . . , n, the (9 + 6) × 9 matrix A whose n-fold product A(n) defines the
3 × 3 × n multiway polytope as in the proof of Theorem 2 consists of A1 = I9
the 9× 9 identity matrix and

A2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1
1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Already for this case, of 3× 3×n tables, the only polynomial time algorithm we
are aware of for the corresponding entry uniqueness and integer programming
problems is the one of Theorem 2 above.

4 Discussion

Since integer programming problems are generally intractable, a common prac-
tice by disclosing agencies is to compute a lower bound l̂ and an upper bound
û on the entry xi1,...,id

in all tables with these margins, by solving the linear
programming relaxations of the corresponding multiway programs,

l̂ := min{xi1,...,id
: x ∈ Rm1×···×md−1,n

+ ,

xi1,...,id
= ui1,...,id

, supp(i1, . . . , id) ∈ F} ,

û := max{xi1,...,id
: x ∈ Rm1×···×md−1,n

+ ,

xi1,...,id
= ui1,...,id

, supp(i1, . . . , id) ∈ F} ,

that is, where the variables are nonnegative real numbers without integrality
constraints. While this can be done efficiently for tables of any size, it is only
an approximation on the true smallest value l and largest value u of that entry
in (integer) tables, and can be far from the truth; it is easy to design examples
(using again the universality Theorem 3) of line-sums for r× c× 3 tables where
there is a unique integer entry x1,1,1, while the linear programming bounds are
arbitrarily far apart, that is,

l̂ << l = x1,1,1 = u << û ,

which may lead to erroneously declaring insecure margin disclosure as secure.
Indeed, let u be any large positive integer. Consider the triangle Pu := {y ∈ R2

+ :
2y1 + (2u + 1)y2 = 4u + 1}. It has just one integer point y = (u, 1), with y1 = u,
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while l̂ := min{y1 : y ∈ Pu} = 0 and û := max{y1 : y ∈ Pu} = 2u+ 1
2 . Lifting Pu

to a suitable r × c × 3 line-sum polytope Tu with the coordinate y1 embedded
in the entry x1,1,1 using Theorem 3, we find that Tu has just one integer table,
where the entry x1,1,1 attains the unique value l = x1,1,1 = u, while the linear
programming bounds are l̂ = 0 << u << 2u + 1

2 = û.
Our Theorem 2 provides, for the first time, a polynomial time algorithm al-

lowing to compute the true smallest value l and largest value u (and moreover
optimizing any linear functional) over long d-way tables, enabling exact solution
of the entry uniqueness problem and taking accurate decisions.
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Abstract. A number of methods have been proposed in the literature for mask-
ing (protecting) microdata. Nearly all of these methods may be implemented with
different degrees of intensity, by setting the value of an appropriate parameter.
However, even parameter variation may not be sufficient to realize appropriate
levels of disclosure risk and data utility. In this paper we propose a new approach
to protection of numerical microdata: applying multiple stages of masking to the
data in a way that increases utility but controls disclosure risk.

Keywords: Statistical disclosure control (SDC), microdata, disclosure control
methods, data utility, disclosure risk, combinations of SDC methods.

1 Introduction

Often, statistical agencies disseminate information only in form of tables. But, micro-
data — records which contain information about individuals or establishments — of-
fers far greater flexibility for statistical research, especially of an exploratory nature,
than tables. As a result, there has been an increasing demand from users for such data,
and agencies would like to be able to this demand, provided that confidentiality is not
compromised. In particular, there is well-recognized need to prevent both identity and
attribute disclosure.

Before releasing microdata, agencies delete from the data direct identifiers, such as
names and addresses. However, risk of identification still exists, for example, by means
of linkage of the released data to external databases. So in addition, released microdata
are typically perturbed, in order to make disclosure more difficult. Methods of statistical
disclosure control (SDC),1 for doing so, are described in §2.

All these methods may be characterized by a quantified Data Utility (DU) repre-
senting the utility of the data for legitimate users and Disclosure Risk (DR)—the risk
to respondent confidentiality after releasing such data. Almost always, only a single
method, chosen in advance, is applied. This method is sometimes chosen by solving
an optimization problem: finding the method with maximal utility for the particular
data set subject to the disclosure risk being below some threshold. A more flexible ap-
proach consists in defining risk-utility frontiers using the partial order �RU defined by
R1 �RU R2 if and only if DR(R2) ≤ DR(R1) and DU(R2) ≥ DU(R1). When
R1 �RU R2, the R2 is preferred to R1 because it has both lower disclosure risk and

1 Or statistical disclosure limitation (SDL).

J. Domingo-Ferrer and L. Franconi (Eds.): PSD 2006, LNCS 4302, pp. 102–113, 2006.
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higher utility. Only candidate releases on the risk-utility frontier of maximal elements
of all possible releases with respect to the partial order need be considered further: for
any other candidate, some element of the frontier has lower risk and higher utility. Cal-
culation of the frontier can be done using existing algorithms for finding the maxima in
a set of vectors [KLP75].

In [KKORS06] it was shown that the methods described in §2 differ rather dramat-
ically in terms of disclosure risk and data utility. Some are good for one but not the
other, some seem not especially good for either risk or utility, and none is uniformly
good for both. So, there is no “best method,” because for each particular situation the
maximal tolerable risk and minimal utility may be different. Instead, there is a set of
undominated methods that are on the risk-utility frontier. These methods are feasible
options for the data owner.

This situation raises the intriguing possibility of combining SDC methods in such
a way, ideally, that the combined method is superior in terms of both disclosure risk
and data utility than either alone. In practice, this ideal is not always attained, but often
combined methods yield dramatic improvements in utility at the price of only modest
increases in disclosure risk.

Focusing for simplicity in combining two methods, the intuition is as follows. The
first method should be one that is good from the perspective of disclosure risk and not
necessarily good in terms of data utility, but whose utility consequences can be charac-
terized. Then, the second method should be chosen to “reverse” the utility consequences
of the first without harming disclosure risk.

In §5, we report the results of a simulation study in which the first method is a partic-
ular form of microaggregation and various second methods are employed. §2 is a brief
introduction to relevant SDC methods. In §3 we describe the disclosure risk and data
utility methods used in the paper. A general framework for combining SDC methods is
articulated in §4.

2 Summary of SDC Methods

Here we present briefly several perturbation methods for SDC.

2.1 Additive Noise

Additive noise [B02, K86, L93, SF89, TM94] consists of adding random noise to the
original data. Generally, the noise distribution has mean zero, to preserve means. The
variance of the noise distribution commonly reflects either complete independence or
the correlation structure of the original, unmasked data. Often, the noise distribution is
Gaussian. Specifically, let X be original multivariate data set with covariance matrix
Σorig. The corresponding masked data X′ are

X′ = X + E, (1)

where E ∼ N(0, cΣorig), with the constant c is selected by the data releaser. This pro-
cedure is parameterized by c. In the experiments in §5, we used a linear transformation
of noise E such that the sample mean is exactly 0-vector and sample covariance matrix
of E is exactly cΣorig.
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2.2 Rank Swapping

Rank swapping is a form of data swapping [DR82]. While originally designed for or-
dinal variables [M96], it can also be used for numerical variables. To implement rank
swapping, we first rank the values of each variable Xi in ascending order. Each ranked
value then is swapped with another ranked value randomly chosen within a restricted
range. This process is repeated for each variable.

Rank swapping leaves (univariate) means and variances unchanged but may seriously
affect the correlation structure of the data. It is parameterized by the parameter p that
specifies that ranks of two swapped values cannot differ by more then p percent of the
total number of records. Large values of p lead to greater distortions in the data whereas
the smaller ones to higher disclosure risk.

2.3 Microaggregation

Microaggregation involves clustering records into groups of size at least k, where k is a
parameter of the method [DN93]. Rather than release the original value of X for a given
record, the componentwise average of the X’s over all records in the cluster containing
the given record is released. Classical microaggregation requires that all clusters, except
perhaps one, be of size k.

Different variants of microaggregation exist, defined by the clustering method. These
include: 1) Individual ranking, in which each variable is grouped independently of other
variables; 2) Multivariate ranking, in which all the variables (or subsets of variables) are
grouped by similarity of values; and 3) z-scores projection and principal components
projection [A93, DA95, DN93], in which the multivariate data first are ranked by pro-
jecting them onto a single axis, using either the sum of z-scores or the first principal
component, and then are aggregated into groups of size k, except possibly for one group
of larger size (from k to 2k − 1 elements).

In this paper, we consider both multivariate microaggregation and projection mi-
croaggregation methods. Microaggregation with individual ranking will not be consid-
ered because recent empirical and analytical results ([DFMSOT02], [O04]) prove the
lack of security for this method.

Microaggregation leaves means unchanged but decreases variances: the variance de-
crease by microaggregation is equal to 1

N

∑p
j=1

∑kj

j=1 δ2
ij , where p is the number of

clusters, kj is number of records in the cluster j, δij is distance between the centroid of
cluster j and records i belonging to this cluster and N is the total number of records in
the data file.

Regarding higher moments microaggregated sets are usually more leptokurtic than
original data sets, especially microaggregation using sum of z-scores or principal com-
ponent projection, because microaggregation substitutes the values of the records in a
cluster by its means and produce a shrinkage of the data towards the center of mass of
the distribution, thus increasing kurtosis.

3 Disclosure Risk and Data Utility

The SDC methods described in §2 affect data in different ways. The common feature
for all SDC methods is that all of them are designed with two goals in a mind. First is
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to minimize disclosure risk, that is the risk to respondent confidentiality that the data
releaser would experience as a consequence of releasing the data. And the second one
is to maximize data utility, that is the value of the released data to a legitimate data user.

3.1 Disclosure Risk Measures

Two varieties of disclosure risk are usually considered. Identification disclosure occurs
when an intruder2 can associate a released record with the individual or establishment to
which it pertains. Typically, identification disclosure is effected by record linkage (see,
e.g., [O04]) to an external database containing identifiers. One measure of disclosure
risk, then, is the percentage of masked records that are linked “correctly” to their parent
records in the original data. This measure is used, for instance, in [KKORS06], as well
as in §5.3

An attribute disclosure occurs when the intruder’s target is an original value of a
particular attribute. Attribute disclosure risk can be measured by the tightness of bounds
for attribute values in the original data given the masked data, as in [DFKS02] in the
context of tabular data.

3.2 Transparency Risk and Utility

An important, and largely unaddressed issue in SDC is how much a statistical agency
can (from the risk perspective) or should (from the utility perspective) reveal regarding
the methods it employs to protect released microdata, a practice we term transparency.
To date, the issue has been considered solely from a risk standpoint. For example, agen-
cies are fiercely protective of swap rates when rate swapping is employed, and will
sometimes not even reveal which attributes have been swapped, or under what con-
straints [GKS06].

Less attention has been the data utility consequences of transparency. A compelling
analogy exists in cryptography, where it is almost universal not to depend on hiding
knowledge of cryptographic methods (as opposed to values of keys). In the setting of the
example, this reasoning would argue for the agency’s stating that noise had been added,
and that it had covariance that is a multiple of Σorig, but not revealing the value of c.

To illustrate, consider the masked data X′ defined by (1). An agency would not re-
lease X′, whose covariance (1 + c)Σorig is not that of the original data. One strategy
would be to withhold the value of c and release X′′ = 1√

1+c
X′, which does have the

same covariance as the original data X. A more transparent strategy would be to release
X′ and c, in which case users could calculate X′′, and could also tailor analyses to the
value of c. For example, ordinary regressions could be replaced by errors-in-variables
models. But this strategy is risky. Given knowledge of X′ and c, an intruder can con-
struct confidence ellipsoids around masked records for corresponding original records.
While these ellipsoids may not yield precise attribute disclosures, they may suffice for
identity disclosure, especially for original data points in sparse regions.

2 The generic term for an illegitimate use of the data.
3 Care must be taken because “parent” is method-specific. For microaggregation with cluster

size k, each masked record has, in effect, k parents.
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As a second illustration, consider rank swapping. Suppose the intruder is interested
in the record xi = (xi,1, . . . , xi,t). When the parameter p of rank swapping is released
together with the data, upper and lower bounds for the original value are:

xu = xi1+	N∗p
,1 · · · , xit+	N∗p
,t
xl = xi1−	N∗p
,1 · · · , xit−	N∗p
,t.

(2)

Here xu and xl are upper and lower bounds; the first index of x denotes the rank of xi,j

and the second is the index of the variable; N is the number of records in the data file.
If the algorithm used to perform rank swapping were known in detail, then intervals
narrower than those given by (2) could be obtained.

As a specific example, consider a data set of 1000 records in which variable j has a
lognormal distribution. Suppose that the range of variable j is [0.04, 25.57]. Let rank
swapping with p = 0.05 be applied to the data. Then upper and lower bounds for
every masked (swapped) value are given by (2). An intruder using this knowledge can,
by repeated simulation of the procedure, construct empirical distributions for different
ranks. For most ranks the distribution of the intervals is very close to the uniform, but
for the lowest and the largest ranks the shape of the distribution is triangular skewed
to the left or right, becoming more and more uniform-like with the growth of the rank.
The narrowest intervals are in the densest areas and could be as narrow as [0, 42, 0.58]
for this particular example.

3.3 Data Utility Measure

Proposed utility measures can be found in the recent literature regarding; see for exam-
ple, [DFMST99], [O04] and [YWW02]. Many of these are based on differences between
point estimates of the first and second moments of released data and corresponding esti-
mates for the original data. In [KKORS06], measures are proposed based on differences
between inferences based on original and released data. However, these measures are
tailored to normally distributed data and one specific linear regression analysis.

In this paper, we adopt a broader utility measure, called propensity score utility, re-
cently proposed in [WROK06]. This measure is both suitable for any distribution of the
data and not tied to a particular data analysis.

Propensity score utility measures the distance between distributions of original and
masked data by the means of classification of the pooled data in two groups: one cor-
responding to the original and other group corresponding to the masked data. We call
an assignment of a particular record to the original data as treatment 1 and an assign-
ment of the masked data, treatment 0. In symbols, let ri = 1 if record xi is assigned
to the treatment 1 and ri = 0 if it is assigned to the treatment 0. The propensity score
e(x) is the probability of being assigned to treatment 1 given the observed record x:
e(x) = P (r = 1|x). In [WROK06] it was shown that in order to test that the dis-
tribution of x is the same for treated and control records, all the records must have
approximately the same propensity scores. That is, testing the differences of two sam-
ple distributions is equivalent to testing e(x) = c for all x, where c is some constant. As
in practice the propensity scores are unknown, they should be estimated by modeling
propensity scores using logistic model or tree model.
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Then, the propensity score utility measure is
∑N

i=1(ê(xi) − c)2. We suppose that
the number of records in the original and masked files is the same, so that c = 1/2.
Methods with higher utility have smaller values of this measure.

4 Combination of SDC Methods

In §3.2, we touched upon data utility and risks of attribute disclosure and identity dis-
closure when information about masking method and its parameters is released together
with the data. While the utility benefits are clear, so is the risk.

To improve the security of the methods, and in particular to make it harder for an
intruder to estimate bounds on original values, we propose to use several stages of
masking, when different methods are used at different stages. Ideally, such combination
of SDC methods can also improve utility.

4.1 An Example

In §2 we showed that different SDC methods have different properties. For example,
data masked with noise has larger variance than the original, whereas data masked
with microaggregation has smaller variance than the original. So, we might first mask
the original data using microaggregation and then add noise to restore the “lost” vari-
ability in the data. An added benefit of doing so is that masked data values would be
unique, whereas microaggregation produces masked data with k-tuples of identical val-
ues, thereby revealing the value of k.

At least two issues ensue. First, how much noise should be added to restore the vari-
ability in the data? Second, what distribution should be used to generate the noise?

To help make these issues concrete, suppose that microaggregation using z-scores
projection was applied to the original data. Figure 1 contains scatterplot of a normally
distributed two-dimensional data set (green circles) and corresponding microaggregated
data (red circles). As it can be seen there, the microaggregated data set is a shrunk
version of the original, and the degree of shrinkage is different in different directions.
This happens because the only criterion to form a cluster for microaggregation with
z-scores projection is the closeness of the sum of z-scores of the records. Even if the
points are far away in the Euclidean sense, but have the same sum of z-scores, they can
be chosen by the algorithm to form a cluster.In case of data with two variables, points
with the same sum of z-scores are located along the line x2 = z− x1, where x2 and x1
are the scaled variables, and z is any constant. Therefore, clusters tend to be stretched
in the direction of negative correlation.

To reverse the effect of microaggregation, we therefore need to “add more varia-
tion” in the direction of negative correlation than in the direction of positive correla-
tion. One approach would be to add noise whose distribution if N(O, Cov(original)−
Cov(micz)). We tried this approach, and it worked very well for certain types of analy-
ses, such as linear regression, because in this case the released data have the same
covariance matrix as the original data.

4.2 A General Formulation for Two-Stage Masking

For data that are not normally distributed, adding normal noise obviously would dis-
tort other moments. Ideally, the noise distribution should be chosen to reproduce the
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Fig. 1. Original and microaggregated data, using microaggregation with z-scores projection.
Green circles correspond to the original data and red circles to the masked data.

distribution of the original data X. Denoting by X′ the first-stage masked data (in §4.1),
then one would want the distribution of the noise E to be chosen so that

fX′ ∗ fE = fX, (3)

where the f ’s are associated (estimated) density functions.
Computationally, solution of (3) is not feasible, especially for high-dimensional data.

First of all, densities in (3) would need to be estimated, which is not possible in even
moderately high dimensions. Second, (3) would need to be discretized and solved nu-
merically, in which case zeroes of estimated density functions become problematic. Fi-
nally, of course, there is no guarantee that (3) has a positive solution integrating to one.

In low (for example, two) dimensions, solution of (3) is possible. Discretization of
2-space, say into squares, in order to solve (3) in effect then simply allows the noise
distribution to be local; see §5 for further discussion.

One may ask, of course, why if we “knew” the density of the original data, we would
not simply use it to generate synthetic data having the same distribution as the original
data. In the context of (3), this amounts to choosing the first stage SDC method in such
a way that X′ is a constant. One way to do this is with microaggregation in which the
cluster size equals the data set size. This is a relevant criticism, to which there are at
least two rejoinders. First, reproducing the distribution of the original data is not the
only measure of utility, and it may be that two-stage masking preserves other aspects of
the original data not present in an independent replication.

Second, and more important, if one has only a poor estimate f̂X, then any version of (3),
including the synthetic data version, is not useful. Seen in this way, two-stage masking
in which the second stage consists of adding noise may be the “best of both worlds:” in
(1) readily modeled characteristics of the noise are captured in E, while hard-to-model
characteristics are retained in fX′ . There remains, of course, the central question: is this
reality or just wishful thinking? The simulation study in §5 addresses this question.

4.3 Multi-stage Masking

The paradigm of “capture the easy-to-model” in the noise and “leave the hard-to-model”
in the masked data generalizes to multi-stage masking, in which more and more subtle
features of the original data may be captured.
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Let X0 denote the original data, X1 the result of the first-stage masking, and X2 the
result of adding noise to X1. Then we can rewrite (1) as

X2 = X1 + E. (4)

The key point is that in (4), E is an approximation to X0−X1, so that an agency could
instead replace E by a masked version of X0 −X1.

Changing notation, letMj(·) denote the stage-j masking method, so that for exam-
ple, X1 =M1(X0). Then, (4) generalizes to

X2 = X1 +M2(X1 −X0) =M1(X0) +M2(X1 −X0). (5)

But then, of course, there is no need to employ only two stages, leading to a more
general version of (5):

Xk =
k∑

j=1

Mj(Xj−1 − . . .−X0). (6)

Harking back to the intuition articulate in §1, if the early stages of masking are good
from the standpoint of keeping disclosure risk, then the later stages may be chosen
to (incrementally) improve data utility. Of course, no stage should “undo” the utility
improvements resulting from earlier ones.

Full investigation of (6) remains a topic for future research. In §5, we explore some of
the possibilities, considering in particular how the selection of masking method should
reflect the statistical characteristics of X0.

5 Simulation Study

To understand the potential usefulness of the paradigms in §4, we generated a series
of non-normally distributed data sets. We emphasize non-normal data, because this is
a more complicated case in SDC in a sense that if the multivariate normal data sets,
we could simply generate synthetic data with the same mean and covariance matrix
as in the original data and the resulting data would have virtually maximal utility and
minimal disclosure risk.

So, replicates of eight of two-dimensional data set were created by crossing the fol-
lowing three cases: (1) Whether the (non-normal) data distribution is symmetric (or
not); (2) Whether the two variables in the data are highly correlated (or not); and (3)
Whether the correlation between the two variables is positive or negative.The samples
of size n = 10, 000 were drawn from various data structures.

The SDC methods we combine are those usually considered as “quite distorting,”
for example, microaggregation using projections, multivariate microaggregation, rank
swapping and noise generated approximately as X0−M1(X0). Not surprisingly, these
methods also tend to have good disclosure risk properties, so in effect we are investi-
gating whether data utility can be improved while maintaining the good disclosure risk
behavior. We did not consider SDC methods with high risk of identity disclosure, such
as microaggregation with individual ranking, or resampling.
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Specifically, as first stage method we used microaggregation with z-scores projection
with k = 3 records per cluster. The reason for this choice is that this method has the
lowest disclosure risk among the methods with relatively good utility for non-normal
data sets (see, for example, [KKORS06]). Moreover, microaggregation is a good poten-
tial candidate for combining with noise, because noise restores the variance in the data
that is diminished by microaggregation. For two-dimensional negatively correlated data
sets, microaggregation using z-scores projection is especially distorting, so improving
utility improvement in this case would be especially valuable.

Regarding second-stage methods, in principle, any method can be used that can be
described as “distortive.” In our experiments we used:

micz03-micz03: Microaggregation with z-scores projection and k = 3 the number of
records per cluster.

micz03-micpcp03: Microaggregation with principal component projection and k = 3
the number of records per cluster.

micz03-micmul10: Multivariate microaggregation with k = 10 the number of records
per cluster.

micz03-rank1: Rank swapping with p = 1 the maximal percentage difference between
ranks of swapped values.

micz03-noise100 “Coarse noise,” with p = 100 the number of partitions for density
estimation in (3).

Choices of the parameters described above were based primarily on the magnitude
of X0 − M1(X0). For example, projection microaggregation usually perturbs data
more than multivariate microaggregation. Rank swapping even with small parameter
may also perturb the data considerably ([DFMST99], [O04], [KKORS06]). So the val-
ues of k or p are based on these considerations and on values reported as the best in
[DFMST99] and [O04].

The results of our experiment are presented in Tables 1 and 2, which contain the
disclosure risk and data utility and values for all eight data sets and all five combined
methods, as well as the first-stage masking—micz03—alone.

Methods of the risk-utility frontier are indicated using boldface. It is clear from these
tables, that the combined methods significantly outperform Micz03 alone. Regarding
identification disclosure risk, we can see that in four data sets out of eight, Micz03 alone
is not on the frontier, which means that there is a combination that outperforms it in both
utility and disclosure risk! For other data sets, disclosure risk is smaller for Micz03
alone than for the combinations, however the gain in utility is in general much more
significant. Note also, that the risk remains very low for the combinations: less than
one percent of records are correctly identified. The exception is Micz03-Micpcp03,
which having high utility, also has quite high values of risk—up to 29% for some data
sets. As noted in §3, high utility and low disclosure risk are conflicting goals, in the
sense that methods leading substantially increase data utility also carry increased dis-
closure risk. So, these empirical results showed that the combinations could be very
promising as in half of the cases both goals were attained! In general, what most com-
binations accomplish is dramatic increases in utility accompanied by only modest in-
creases in risk.
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Table 1. Disclosure risk values for the simulation study. Lower values represent lower risk.

Symmetric Non-symmetric
High Correlation low Correlation High Correlation Low Correlation
Neg Pos Neg Pos Neg Pos Neg Pos

micz03 0.0025 0.0036 0.0019 0.0024 0.0011 0.0043 0.0011 0.0012
micz03-noise100 0.0044 0.0077 0.0044 0.0076 0.0079 0.0144 0.0098 0.0039
micz03-micmul10 0.0046 0.0077 0.0025 0.0203 0.0947 0.1122 0.1265 0.0071
micz03-micpcp03 0.2516 0.0198 0.0029 0.0133 0.2926 0.0806 0.18 0.0477
micz03-micz03 0.0015 0.0275 0.0023 0.0035 0.0004 0.0033 0.0009 0.0033
micz03-rank1 0.0119 0.0092 0.0067 0.0087 0.0079 0.034 0.0091 0.0096

Table 2. Propensity score utility values for the simulation study. Smaller values represent higher
utility.

Symmetric Non-symmetric
High Correlation low Correlation High Correlation Low Correlation
Neg Pos Neg Pos Neg Pos Neg Pos

micz03 281.51 128.14 233.40 132.12 639.42 592.07 639.04 463.78
micz03-noise100 26.49 9.00 16.97 9.27 15.5 5.69 7.53 28.75
micz03-micmul10 16.53 18.37 12.97 14.84 9.15 5.48 8.68 11.15
micz03-micpcp03 9.31 12.83 9.33 7.86 3.39 4.99 5.76 8.61
micz03-micz03 28.30 23.48 33.92 37.27 180.10 45.09 94.10 40.04
micz03-rank1 34.81 28.58 29.42 27.26 42.04 14.82 26.45 39.48

6 Discussion and Conclusion

In this paper we studied the possibility of combining SDC methods designed for the
protection of numerical microdata. An additive, two-stage scheme for SDC was pro-
posed. In the first stage, an SDC method is applied to the data and then some synthetic
data (“noise”), which is a function of the difference between original and first-stage
masked data is added.

Based on the simulation study described in §5, this approach seems very promising,
mainly due to its iterative increase in date utility, whereas the identity disclosure risk
remains low. Regarding attribute disclosure and transparency risk, we think that pub-
lishing the details of the masking algorithm and their parameters could be safer for the
combinations of methods than for the single methods, since the problem of finding re-
liable bounds for original data values becomes more difficult when several stages of
masking are applied. Thorough assessment of attribute disclosure of the combinations
of SDC methods and single methods are topics of current research.
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Abstract. We consider the problem of securing statistical databases
and, more specifically, the micro-aggregation technique (MAT ), which
coalesces the individual records in the micro-data file into groups or
classes, and on being queried, reports, for the all individual values, the
aggregated means of the corresponding group. This problem is known
to be NP-hard and has been tackled using many heuristic solutions. In
this paper we present the first reported Learning Automaton (LA) based
solution to the MAT . The LA modifies a fixed-structure solution to the
Equi-Partitioning Problem (EPP ) to solve the micro-aggregation prob-
lem. The scheme has been implemented, rigorously tested and evaluated
for different real and simulated data sets. The results1 clearly demon-
strate the applicability of LA to the micro-aggregation problem, and to
yield a solution that obtains a lower information loss when compared to
the best available heuristic methods for micro-aggregation.

1 Introduction

A lot of attention has recently been dedicated to the problem of maintaining the
confidentiality of statistical databases through the application of statistical tools,
so as to limit the identification of information on individuals and enterprises.
The objective in statistical databases is to guarantee the confidentiality of the
information provided, and to simultaneously provide useful (unbiased) statistical
summaries of the data to the user [1].

One of the most recent techniques proposed involves the strategy called
“Micro-aggregation”. The latter comprises of a family of statistical disclosure
limitation techniques used to protect micro-data files containing records on in-
dividual data subjects. These belong to the family of substitution/perturbation
approaches [2,3,4], where individual values are replaced by values computed on
small aggregates prior to publication.
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The Micro-Aggregation Problem (MAP ) as formulated in [3,4,5,6], can be
stated as follows: A micro-data set U = {U1, U2, . . . , Un} is specified in terms of
the n “individuals”, namely the U ′

is, each representing a data vector whose com-
ponents are p continuous variables. Micro-aggregation involves partitioning the n
data vectors into m groups so as to obtain a k-partition Pk = {Gi | 1 ≤ i ≤ m},
such that each group, Gi, of size ni, contains between k and 2k − 1 data vec-
tors. The optimal k-partition P

∗
k is defined to be the one that maximizes the

within-group homogeneity, which is defined as the Sum of Squares Error (SSE)
computed on the basis of the Euclidean distances of each individual data vec-
tor Xij to the centroid X̄i of the group to which it belongs, and is given by:
SSE =

∑m
i=1
∑ni

j=1(Xij − X̄i)T (Xij − X̄i). Analogously, the between-groups
similarity is defined as the Sum of Squares Among the groups (SSA), and is
given as: SSA =

∑m
i=1 ni(X̄i − X̄)T (X̄i − X̄). The Total Sum of Squares is de-

noted by SST = SSA + SSE. The Information Loss is quantified as: L = SSE
SST .

Contribution of the Paper
The main contribution of this paper is to demonstrate that the information loss,
which can be obtained from a MAT , can be reduced by using two criteria, namely
that of maintaining the total SSE to be as minimum as possible, and simultane-
ously by studying the relations between the individual records in the micro-data
file. This, in turn, is achieved by invoking the newly proposed Object Migrat-
ing Micro-aggregated Automaton (OMMA). The paper thus demonstrates the
power of LA in minimizing the information loss, leading to results comparable to
those obtained from the best available heuristic methods for micro-aggregation
such as the Maximum Distance to Average Vector (MDAV ) [7], and the Mini-
mum Spanning Tree Partitioning Algorithm (MST ) [6]. The observed reduction
in the information loss that can be noticed when micro-aggregating multivariate
data (which sometimes exceeds 13% compared to the MDAV and MST ) ren-
ders the contribution of this paper significant. But apart from this we argue that
the applicability of LA to the MAT provides a promising strategy to effectively
protect sensitive data in the micro-data file.

It should be mentioned that as argued in [8], the OMMA can actually be
applied to many types of attributes - continuous, ordinal or nominal.

2 State-of-Art MATs

Initial research in the field proposed “fixed ” MATs which required that the size
of each group was a fixed constant, k. These, in turn, led to the Fixed-Size Micro-
aggregation algorithm [9,10]. Recent developments [3,4,11,12] have concentrated
on further reducing the information loss by using variable-sized data-dependent
groups, leading to families of Data-Oriented Micro-aggregation algorithms. The
philosophy that is utilized is the fact that groups need to consist of at least
k data vectors. They also preserve the natural data aggregate by allowing the
group size to be between k and 2k − 1, depending on the structure of the data,
so as to lead to more homogenous groups.
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Two alternative heuristic approaches which incorporate variable-size micro-
aggregation have been presented in [3,11,13]. The authors of [3] presented a
genetic algorithm that appears as an alternative linear heuristic. It presents
the k-partitions as a binary string, and combines directed and random search
strategies to attain a global optimum. A hierarchical classification method can
be used to obtain building blocks for the heuristic MAT such as the k-Ward’s
algorithm [4,11], which was extended to a Secure-k-Ward scheme in order to
enhance the individual’s privacy [14]. In order to enhance the micro-aggregation
speed, optimized versions of the latter were proposed in [15].

An efficient polynomial algorithm to solve the univariate MAP was presented
in [5]. Here, optimal partitions were shown to correspond to the shortest path on
a graph. It is necessary to highlight that all the above described univariate MATs
can easily be extended to multivariate MATs using any projection method2. Our
aim is to develop a multivariate MAT without any projection.

The first algorithm to accomplish this was proposed in 2002 by Domingo-
Ferrer et al. [3], called the Maximum Distance to Average Vector (MDAV ). It
micro-aggregates the multivariate micro-data file based on the concept of the
diameter distance of the data set. In 2005, an enhanced version of the MDAV
appeared in [7], and was implemented as a built-in technique in the μ-ARGUS
Software tool version 4.0 [16]. The modification is based on computing the cen-
troid of the data set instead of computing its diameter, in order to increase the
micro-aggregation speed, and to reduce the information loss.

The computation of the Minimum Spanning Tree leads to another multivari-
ate MAT [6]. This yields a new clustering algorithm obtained by splitting the
minimum spanning tree using a constraint on the minimum group size. The
MST can be considered to be a potential strategy for any practical application.

3 Learning Automata (LA)

The functionality of the LA can be described as a sequence of repetitive feedback
cycles. The feedback cycle involves two entities, the Random Environment and
the LA. During each cycle the automaton chooses an action, which triggers a
response from the Environment, and uses the received response - that can be
either a reward or a penalty- with the knowledge gained from the previous cycles
to determine which is the next action to be chosen. By the process of learning,
the automaton adapts itself to the Environment and determines the optimal
action, i.e., the action which has the minimum penalty probability.

Incorporating LA in any application domain is an evidence of the power
of the philosophy. Basically, LA learn from the random environment. The ac-
tual technique involved in applying the LA philosophy in the different applica-
tions involves modeling the actions, simulating the transforming functions, and
representing the system’s output, in order to have reward or penalty responses.
This is where the creativity of the researcher becomes apparent.
2 The projection of multivariate data vectors onto a single-axis, can be done by using

either the First Principal Component, the Sum of Z-scores, or a particular variable.
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Of all classes of LA, the pioneering ones are those which belong to the Fixed
Structure Stochastic Automata (FSSA) families. These FSSA have the prop-
erty that their transition and output functions do not change with time. These
LA seem to possess powerful properties useful for solving different NP-hard
problems, as we will show in this paper.

The basic idea used to solve the MAP is based on a sub-class of LA solutions
that have been used to solve the object partitioning problem [17,18]. As docu-
mented in the literature, the object partitioning problem involves partitioning a
set of |P| objects into |N| groups, where the main aim is to partition the objects
into groups that mimic an unknown grouping. In other words, the objects which
are accessed together must reside in the same group [18]. In the special case when
all the groups are required to contain the same number of objects, the problem
is referred to as the Equi-partitioning Problem (EPP ). Many solutions involving
LA have been proposed to solve the EPP , but the most efficient algorithm is
the Object Migrating Automaton (OMA), which was proposed by Oommen and
Ma [18], and some modifications were added by Gale et al. [17].

The OMA assumes that it has a sequence of queries, where each query is rep-
resented in this form < O1, Q2 > indicating that these two objects are accessed
together. Because these two objects are more often accessed together, they are
then migrated between the different groups based on the current group of the
object set P, and the current query < O1, O2 >. The OMA tries to group the
two objects of a query on the same group. It is important for the convergence
of the OMA that the random sequence of the queries reflects an optimal parti-
tion. We refer the interested reader to [8,18] for more information regarding the
fundamentals of LA, and the OMA.

3.1 Restrictions of the OMA to the MAP

The reported instances of the OMA are not directly applicable for the MAP .
To develop our solution, we highlight the necessary enhancements which must
be added to the OMA in order for it to be useful here.

– In case of the MAP , the user does not have access to the stream of random
queries. Rather, the only available data is the micro-data file. It is apparent
that we have to artificially “generate” a sequence of “queries” which can
be used to operate on the OMA. Also, for the EPP , the placement of the
objects in the automaton and the stream of random queries, together, serve
to either reward or penalize the automaton. However, in the case of the
MAP , the question of obtaining a reward/penalty response is not provided
by the user, but it has to be inferred.

– Unlike the EPP , which has no way of penalizing “non accessed elements”,
a solution to the MAP must develop a strategy for penalizing such records
by considering how similar the records within the same groups are. In the
present problem, it is crucial that an automaton can quantify how fitting a
record is for any given group.
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– The optimal partition for the EPP yields crucial information in the stream
of random queries. As opposed to this, in the context of the MAP , the
system has no notion of how to characterize the optimal partition.

– The definition of the optimal partition for the EPP is quite different from
that of the corresponding solution for the MAP . In the case of the EPP , all
objects which are accessed together more frequently should be in the same
partition, while in the MAP all similar records should be in the same group.

– As explained in [8], the criteria which are used to reward and penalize the
automaton in the EPP is quite unlike the one used for the MAP .

– Although the EPP and MAP will utilize analogous rules for a reward phe-
nomenon, as we shall see, they differ in performing the penalty rules. In
case of the EPP , the automaton enforces the rule that the pertinent object
migrates, if and only if at least one of the accessed objects is at the bound-
ary state of the different partitions. As opposed to this, in the MAP , the
automaton enforces the rule that the records are migrated to another group
whenever migrating the object reduces the overall SSE.

– The automaton used to solve the EPP is said to have converged, when all
the objects are found in the most (or the last two) internal states of each
partition. However, we propose that the convergence in the MAP occur
when the measure of the information loss is unchanged.

4 Object Migrating Micro-aggregated Automaton
(OMMA)

In this Section, we define the Object Migrating Micro-aggregated Automaton
(OMMA) as an 8-tuple as below: (U, Φ, α, B, Q, G, D, L ), where
– U = {U1, U2, . . . , Un} is the micro-data file.
– Φ = {φ1, φ2, . . . , φhM} is the set of states.
– α = {α1, α2, . . . , αh} is the set of h actions, each representing a group into

which the records of U must fall.
– Q is the transition function, explained presently, which specifies how the

records should move between the various states.
– The function G partitions the set of states for the groups. For each action

group αj , there is a set of states {φ(j−1)M+1,...,φjM
}, where M is the depth of

memory. Thus, G(φi) = αj , where (j− 1)M + 1 ≤ i ≤ jM . This means that
the record in the automaton chooses α1, if it is in any of the first M states,
etc. We assume that φ(j−1)M+1 is the most internal state of action αj , and
that φjM is the boundary state. These are called the state of “Maximum
Certainty” and “Minimum Certainty”, respectively.

– D is the similarity distance matrix.
– L is the similarity list specifying the records deemed to be collectively similar.

It is stored as a list of triples of term < Ri, Ri+1, 1 > (where i is odd) are
stored, and where the records included are those for which the similarity
index is greater than or equal to a predefined threshold, θ.

The OMMA process (where n is a multiple of k) consists of 8 phases in-
volved to generate the micro-aggregated data file as follows: (1) Loading the
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micro-data file, (2) Standardizing the data, (3) Building the distance matrix,
(4) Constructing the similarity list, (5) Constructing the group structure, (6)
Distributing the records among the automaton groups (actions) randomly, (7)
Performing the learning cycle, which is where the MAP is solved, and (8) Gen-
erating the micro-aggregated file. The overall schematic for this application is
given pictorially in [8], and omitted here in the interest of brevity.

We now specify how the variables can be standardized after loading the data
file. The standarization process replaces the individual values xi for a specific
variable Vj , by (xi − X̄j)/σj , where X̄j and σj are, respectively, the average and
the standard deviation of the values taken by the variable Vj . The importance
of this phase is evident when we consider multivariate micro-data [8].

The next issue to be considered is that of specifying how the records them-
selves are to be compared. This depends on the type of the relevant attribute,
and whether it is continuous, nominal, or ordinal. Here, we quantify the similar-
ity between continuous attributes in terms of their “Euclidean” distance.

The next phase involves creating the symmetric N ×N matrix (with a zero
along the main diagonal). This poses no major handicap, especially since Solanas
et al. have recently demonstrated that when the number of records is very large,
the distance matrix can be stored by applying the blocking technique [19]. Each
entry in the matrix, D(Ri, Rj), is computed using the Euclidean metric between
the two records. The similarity matrix is used in constructing the similarity list.

The first step involved in building the similarity list, L, requires comparing
the elements of the distance matrix to a certain threshold, θ. The question of
determining θ is open. As it stands now, we have used a single heuristic: θ is quite
simply set as: θ = 1

2 [Maxi,j D(i, j) −Mini,j D(i, j)], and is used to make the
scheme arrive at an efficient, and hopefully optimal, grouping. The next phase
involves the migration. We migrate pairs of records between the groups based on
the following similarity metric: If D(Ri, Rj) is greater than or equal to θ, we add
an element < Ri, Rj , 1 > to the similarity list, where “1” represents the activity
of this tuple. The rationale of the activity status will be explained presently.

The learning phase is the core of the clustering, and it utilizes the philosophy
of the OMA without requiring any background knowledge of the true optimal
partition. It is important to highlight that the different states within a given
group quantify the measure of certainty that the scheme has for a given record
belonging to that group. The model is initialized by placing all the records in
the boundary state of their initially randomly-chosen groups. This indicates that
the scheme is initially uncertain of the placement of the records. As the learning
cycle proceeds, similar records will be rewarded for their being together in the
same group, and they will be penalized by either moving toward their boundary
state, or to another group.

Before starting the learning cycle, and after distributing the records randomly
among the groups, we have to crystallize the group structure by computing the
value of the SSE, and this quantity involves the summation of the values for the
records. Subsequently, we have to assign the index of each record to the group
it belong to. This will minimize the time required in the learning phase.



120 E. Fayyoumi and B.J. Oommen

The OMMA moves into its main learning loop by setting the old value of
the information loss to be equal to ∞ (a large positive number), and by then
processing the constructed similarity list, L, one tuple at a time as follows. We
first check the activity attribute in the tuple < Ri, Rj , 1 >. If this quantity is
equal to “1”, the two records will either be rewarded or penalized depending on
their states in the automaton. Otherwise, the automaton will not process this
tuple, and it will ignore it by processing the next tuple in the similarity list.
This is because, the distance between the records is, by itself, not adequate to
measure the similarity between them. Indeed, we have to also maintain the total
SSE to be as small as possible. Based on these two criteria, at the beginning, all
the tuples in the similarity list are rendered active in the first cycle, but as the
cycles proceed, some tuples are retained to be active while others are rendered
inactive. The activity of the tuple is set to “0” after being sure that, although
these two records are close to each other, their being in the same group will
lead to increasing the total SSE. Thus, if we are reasonably sure that these
two records will not be in the same group, reprocessing this tuple in the coming
cycles will merely aid to increasing the processing time.

The list L is now traversed repeatedly, and similar records in the active tuple
are processed. If they are both assigned to the same group, the automaton is
rewarded. However, if they are assigned to distinct groups, the automaton is
penalized. After L has been processed, we compare the newly computed value
of the information loss, Lnew, with the old value, Lold, produced in the pre-
vious cycle. If Lnew < Lold, the learning phase continues by entering the next
learning cycle. But, if Lnew = Lold, the learning phase terminates and the micro-
aggregated file is generated. It should be mentioned that Lnew cannot be greater
than Lold, because the records will move, if and only if, the SSE remains the
same or is reduced. Clearly, this leads to the same value of the information loss
or to a smaller value, relative to the one obtained in the previous cycle.

We now describe the actual transitions represented by Q for each of these
operations.

1. Transitions for Rewards
On being rewarded, since the elements Ri and Rj are in the same group, say,
αu, both of them are moved toward the most internal state of that group,
one step at a time. See Figure 1.a in Appendix A.

2. Transitions for Penalties
This case is encountered, when two similar records,Ri and Rj , are allocated
in distinct groups. say, αu and αv respectively (i.e., Ri is in state ζr, where
ζrε{Φ(u−1)M+1, . . . , φuM}, and Rj is in state ζs, where ζsε{Φ(v−1)M+1, . . . ,
φvM}). In this case, they are moved as follows:
– Case 1: If both ζr and ζs are not the boundary states φuM and φvM ,

respectively, Ri and Rj are moved one state toward the corresponding
boundary state. See Figure 1.b in Appendix A .

– Case 2: This occurs when at least one of Ri or Rj is in the boundary state
of Minimum Certainty, say, ζs = φuM . Studying the effect of migrating
any record Rx in αu with Rj , under the condition that Rx �= Ri, requires
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investigating the effect of the potential moves on the summation of the
SSEu and SSEv, which we shall refer to as SSEuv. Here we need to
consider the k−1 different swapping possibilities. If the new value SSEuv

is less than or equal to the previous value of SSEuv, we have to physically
swap the chosen record Rx, which leads to the minimum SSEuv value,
with Rj and proceed to update the group structure. Subsequently, we
assign both Rj and Rx to the boundary state of αu and αv, respectively.
Otherwise, the tuple < Ri, Rj , 1 > will be deactivated by setting the
active attribute to “0”. This is clarified in Figure 2 in Appendix A.

– Case 3: If both Ri and Rj are at the boundary states of their different
groups, say, ζr = φuM and ζs = φvM , we have to study all the different
possibilities of swapping any record Rx, under the condition that Rx �=
Ri and Rx �= Rj , in αu or αv with Rj or Ri, respectively, on the SSEuv.
We then choose the option that leads to reducing the value of SSEuv.
In such a case, we physically swap the records and update the group
structure, besides, assigning both records to the boundary state of the
group which they belong to. This scenario is described in Figure 3 in
Appendix A.

For sake of completeness, the discussed scheme is algorithmically described in
[8], and omitted here in the interest of brevity.

5 Experimental Result

5.1 Data Sets

The OMMA has been rigorously tested and the results obtained seem to be very
promising. We have tested them on two benchmark real data sets, which have
been used as benchmarks in previous studies [3,20]: (i) The Tarragona Data
Set contains 834 records with 13 variables [3], and (ii) The Census Data Set
contains 1, 080 records with 13 variables [20].

To further investigate the scalability of the OMMA with respect to data
size, dimensionality, and the group size, we have also tested it with two sim-
ulated multivariate data sets generated using Matlab’s built-in-functions with
the following parameters: (i) Uniform distribution (min=0; max=1000). (ii)
Normal distribution (μ=0; σ=0.05). The results for the Normal distribution
are included in Appendix A, and the related discussion can be found in [8].

5.2 Results

For a given value of the minimum group size k, we compared the percentage
value of the information loss L = SSE/SST (as defined in Section 1) resulting
from the OMMA and the MDAV 3 strategies.
3 The MDAV was implemented based on the centroid concept and not a diameter

concept. We did not program the MDAV scheme. We are extremely thankful to
Dr.Francesc Sebe for giving us his source code.
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Table 1. Comparison of the percentage of the information loss between the MDAV
and the OMMA on the Tarragona and Census data sets (Univariate Methods). In this
case the value of k was set to be k = 3.

Tarragona Data Set Census Data Set
Variable MDAV OMMA Variable MDAV OMMA

I.L. I.L. Converge I.L. I.L. Converge
Var1 7.15200 7.15199 2 Var1 0.13155 0.13155 4
Var2 0.63586 0.63586 4 Var2 0.00138 0.00138 4
Var3 0.51702 0.51702 5 Var3 0.00828 0.00828 5
Var4 1.48854 1.48854 4 Var4 0.00489 0.00489 4
Var5 1.69394 1.69394 5 Var5 0.02449 0.02449 4
Var6 0.47503 0.47503 4 Var6 0.03262 0.03262 4
Var7 1.96623 1.96623 5 Var7 0.00171 0.00172 4
Var8 0.42182 0.42182 4 Var8 0.43418 0.43418 5
Var9 1.28625 1.28627 4 Var9 0.72176 0.72176 5
Var10 1.74929 1.74929 4 Var10 0.00611 0.00611 5
Var11 2.58368 2.58367 3 Var11 0.01353 0.01353 4
Var12 4.14703 4.14703 5 Var12 0.00689 0.00689 5
Var13 5.00563 5.00563 4 Var13 0.00808 0.00808 8

Table 1 shows a comparison between the MDAV and the OMMA. In this
table, both strategies have been applied on univariate data sets, for each of the
“Tarragona” and “Census” real data sets containing 13 continuous variables,
and the value of k was set to 3 in all the experiments. The results clearly show
that the OMMA obtains values of the information loss exactly same as those
obtained by the MDAV scheme. The reason behind this agreement is the ex-
istence of only one optimal solution. It is worth mentioning, that the OMMA
reaches the minimum value of the information loss with an average of 4 succes-
sive learning cycles in the Tarragona data set, while 5 cycles are required, on the
average, to reach the minimum value of the information loss in the Census data
set. The computation time required to micro-aggregate each variable indepen-
dently was as low as 1.93 seconds (on the average) for the Tarragona data set,
while for the Census data set it was, on the average, about 2.93 seconds. Thus,
we can unequivocally conclude that for uni-variate micro-aggregation the time
required to micro-aggregate all the individual records to reach the minimum in-
formation loss increases with respect to the data size. Besides, the number of
learning cycles, required to lead to the minimum value of the information loss,
is proportional to the computation time.

But the power of the OMMA is clearly shown, when it is used on multivariate
data sets, since the OMMA has the ability to measure the similarity between
the individual records based on two different criteria. The first criterion, C1,
involves studying the relation between the records quantified in terms of the
distance between each record and the other records. As opposed to this, the
second criterion, C2, attempts to maintain the SSE as low as possible. The
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Table 2. Comparison of the percentage of the information loss and the computation
time between the MDAV and the OMMA on the Tarragona and Census data sets for
multivariate methods

Data k MDAV OMMA Improv.
Set value I.L. Time I.L. Time Converge (%)

2 9.27500 0.281 9.24351 5.438 7 0.34%
Tarragona 3 16.96611 0.203 15.12901 11.687 5 10.83%

6 26.40474 0.109 24.26087 36.078 5 8.12%
2 3.16518 0.50 3.25152 8.70 6 -2.73%
3 5.65353 0.33 5.22899 20.16 5 7.51%

Census 4 7.44143 0.25 6.76231 30.00 4 9.13%
5 8.88401 0.27 8.09004 48.84 4 8.94%
6 10.19413 0.24 9.14287 63.97 4 10.31%

power of the OMMA is that it is used to prioritize between these two criteria,
and to reflect them in the penalization and reward responses. In the reward case,
C1 is given a higher priority than C2. Similarly in the penalization rule, in Case
1, processing the active tuple and moving both records one state towards the
boundary state lends C1 a higher priority than C2. But, in Case 2 and Case
3 in the penalization rules, the OMMA forces the corresponding records to
migrate to groups that preserve the number of records in each group, and to
move towards the absolute minimum value of the SSE. This obviously awards
C2 a higher priority than C1.

Table 2 shows the results of using the OMMA on multivariate real data sets.
This time we micro-aggregate all the individual records with all the variables
simultaneously. In this case, we have tested the OMMA with different values
of k in order to determine the effect of increasing the number of records per
group. It seems to be apparent that, increasing the number of records per group
tends to increase the value of the information loss beside increasing the required
computational time. But, in this case, in spite of increasing the required time,
the number of learning cycles required to reach the minimum value of the infor-
mation loss is inversely proportional to the computation time. However, further
investigations are required to improve our understanding of the increment in the
computational time as well as the reduction in the information loss.

Table 2 shows that the values of the information loss measured by the OMMA
are less than the corresponding values measured by the MDAV . The percentage
of improvement in the information loss is as high as 10.83% in the Tarragona
data set when k = 3, requiring only 11.68 seconds. Similarly, in the Census data
set the improvement is as high as 10.31% when k = 6, requiring 63.97 seconds.
In term of comparison, we believe that, minimizing the information loss is more
important than minimizing the computational time.

Because we are using the same recommended data sets are used in [6], we
compare our information loss values with the corresponding loss values yielded
by the MST . In the Tarragona data set, the percentage improvement in the
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information loss is up to 3.02% when k = 3. But, in the Census data set, the
percentage improvement in the information loss reaches up to 3.52% when k = 3,
6.34% when k = 4, and 8.17% when k = 5. This clearly demonstrates how the
OMMA competes in a superior manner against all the state-of the art strategies.

Finally, Table 3 studies the performance of the OMMA and MDAV with
respect to other three issues.

Issue 1: To investigate the scalability with respect to the data set size, we
have tested both the schemes on the Uniform and the Normal distributions with
data set cardinalities of 1200, 2400, 300, 4500, and 5400 with 16 variables and
k = 3. The impact of increasing the size of the data set leads to minimizing
the information loss value, increasing the computational time and, in the case of
the OMMA, increasing the number of learning cycles required to reach to the
minimum value of the information loss. The percentage of the improvement in
the information loss that the OMMA obtains, ranges from 6.69% to 3.03% when
the data size equals 1, 200 and 4, 500, respectively for the uniform distribution.

Issue 2: To Investigate the scalability with respect to dimensionality, we
have also tested both strategies on the Uniform and the Normal distributions for
different numbers of variables, including 12, 14, 16, 18, 20, 22 and 24, when the
data size was set to 3, 000 and the value of k was set to 3. Again, we observe that,
the value of the information loss is proportional to the number of the variables
used in the micro-aggregation process. The interesting point here is that the
computational time required to micro-aggregate all the individual records seems
to be inversely proportional to the dimensionality in the OMMA scheme, but
proportional for the MDAV scheme. The highest percentage of the improvement
in the information loss is 4.04% when the number of variables is 16 for the
Uniform distribution.

Issue 3: The scalability of the OMMA and the MDAV regarding the group
size has also been studied for both the Uniform and the Normal distributions,
where the group sizes were 3, 4, 5, 6, 8, 10, and 12, and for the data set cardi-
nality of 2, 400, with the dimensionality of 16. Here, the value of the information
loss increases with the number of records per group. In the OMMA the compu-
tational time required to micro-aggregate the records increases with the number
of records per group, as can be justified [8]. Thus, increasing the group size leads
to increase the efficiency of the OMMA by leading to a minimum value of the
information loss, as opposed to the MDAV . In the Uniform distribution the
percentage of improvement for the information loss is as high as 13.27% which
is obtained when the group size equals 12.

6 Conclusions

In this paper we have presented, to our knowledge, the first reported Learning
Automaton (LA)-based solution to the Micro-Aggregation Problem (MAP ). We
have shown that our newly devised scheme, the OMMA can successfully be used
to micro-aggregate a multivariate micro-data file. The OMMA competes in a
superior manner to the state-of the art MDAV and MST methods in minimizing
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the loss in the information. The percentage of improvement reaches up to 13%
and 8% when compared to the MDAV and MST schemes, respectively, on real-
life data sets. The proposed strategy also scales well with respect to the size of the
data set, the dimensionality, and the group size. Preliminary tests show that the
OMMA can thus be highly recommended for advantageous micro-aggregation.

In conclusion, our work has demonstrated the intractability of the micro-
aggregation problem and presented a promising tool for solving it. We foresee
three venues for future work. First of all, we propose to extend the OMMA
for the Data-Oriented micro-aggregation, where the group size, ni, satisfies k ≤
ni < 2k. A second avenue for future work is to enhance the OMMA scheme for
other families of LA, especially those of a variable structure. Finally, we have to
investigate how much actual run time is required to carry out OMMA compared
to MDAV on data sets that are very large, typically over 50,000 records.
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Appendix A

Fig. 1. (A) The automaton is rewarded, since both Ri and Rj are similar and located
in the same group. (B) The automaton is penalized, since Ri and Rj are similar but
located in distinct groups. None of them at the boundary state.
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Fig. 2. (A) The automaton is penalized, since Ri and Rj are similar but located in
distinct groups. Rj is at the boundary state, while Ri is not at the boundary state.
After searching for the most suitable record which leads to the minimum amount of
the SSE (i.e., k = 3, we have two choices), a physical swapping between (Ru, Rj) is
done in (B), while in (C) there is no record which leads to a smaller value of SSE, the
tuple < Ri, Rj , 1 > is deactivated.

Fig. 3. (A) The automata is penalized, since Ri and Rj are similar but located in
distinct groups. However none of them is in a boundary state. After searching for the
most suitable record which leads to the minimum amount of the SSE (i.e., k = 3, we
have four choices), a physical swapping between (Ri, Rx) is done in (B) while (Rj , Rv)
in (C).
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Table 3. Comparison of the percentage of the information loss and the computation
time between the MDAV and the OMMA on simulated Uniform and Normally dis-
tributed data sets for multivariate methods

Investigating scalability with respect to data size
Data No. of No. of Dim. k MDAV OMMA Improv.
Set Records Groups value I.L. Time I.L. Time Converge (%)

1,200 400 27.67671 0.42 25.82418 0.66 6 6.69
2,400 800 24.64686 1.28 23.71665 5.13 6 3.77

Uniform 3,000 1000 16 3 23.66435 2.00 22.69465 9.88 8 4.10
Distribution 4,500 1500 22.38678 4.45 21.60147 21.64 7 3.51

5,400 1800 21.71397 6.42 21.05564 33.05 7 3.03
6,000 2000 21.38408 7.95 20.63458 40.58 8 3.50
1,200 400 27.74187 0.36 26.22697 0.65 7 5.46
2,400 800 24.80187 1.28 24.00719 3.76 6 3.20

Normal 3,000 1000 16 3 23.82211 1.99 23.06686 6.45 7 3.17
Distribution 4,500 1500 22.29773 4.45 21.57716 16.23 6 3.23

5,400 1800 21.62495 6.46 20.96986 29.97 9 3.03
Investigating scalability with respect to data dimensionality

Data No. of No. of Dim. k MDAV OMMA Improv.
Set Records Groups value I.L. Time I.L. Time Converge (%)

12 17.55012 1.61 16.92778 20.75 7 3.55
14 20.80110 1.81 20.05538 12.38 6 3.59
16 23.64962 2.00 22.69465 9.88 8 4.04

Uniform 3,000 1000 18 3 26.07906 2.23 25.23600 6.25 7 3.23
Distribution 20 28.59153 2.45 27.45749 4.17 7 3.97

22 30.51047 2.67 33.41902 1.97 6 -9.53
24 32.14988 2.84 39.14110 1.94 6 -21.75
12 17.65475 1.59 16.85623 29.66 6 4.52
14 20.93491 1.81 20.30601 18.66 9 3.00
16 23.82211 1.99 23.06686 6.47 7 3.17

Normal 3,000 1000 18 3 26.29432 2.24 25.36438 5.03 7 3.54
Distribution 20 28.62054 2.42 27.56436 3.67 7 3.69

22 30.57049 2.64 29.41102 2.97 6 3.79
24 32.11612 2.98 38.03268 1.96 6 -18.42

Investigating scalability with respect to the number of records per group
Data No. of No. of Dim. k MDAV OMMA Improv.
Set Records Groups value I.L. Time I.L. Time Converge (%)

800 3 24.64686 1.27 23.71665 5.13 6 3.77
600 4 31.39147 1.28 29.17778 7.28 7 7.05

Uniform 480 5 36.55690 1.30 33.12187 10.42 7 9.40
Distribution 2,400 400 16 6 40.37307 1.30 36.19842 15.89 9 10.34

300 8 46.01553 1.30 40.65105 19.64 7 11.66
240 10 49.91325 1.30 43.61896 28.50 7 12.61
200 12 53.22947 1.30 46.16533 37.58 7 13.27
800 3 24.80187 1.28 24.00719 3.71 6 3.20
600 4 31.68612 1.31 29.27261 8.19 10 7.62

Normal 2,400 480 16 5 36.54596 1.33 33.24953 8.23 8 9.02
Distribution 400 6 40.23421 1.31 36.30028 13.55 8 9.78

300 8 46.32321 1.30 41.14944 21.86 9 11.17
240 10 50.22509 1.33 43.99177 27.86 7 12.41
200 12 52.78059 1.32 46.64860 37.38 7 11.62
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Abstract. Microaggregation is a special clustering problem where the
goal is to cluster a set of points into groups of at least k points in such a
way that groups are as homogeneous as possible. Microaggregation arises
in connection with anonymization of statistical databases for privacy pro-
tection (k-anonymity), where points are assimilated to database records.
A usual group homogeneity criterion is within-groups sum of squares
minimization SSE. For multivariate points, optimal microaggregation,
i.e. with minimum SSE, has been shown to be NP-hard. Recently, a
polynomial-time O(k3)-approximation heuristic has been proposed (pre-
vious heuristics in the literature offered no approximation bounds). The
special case k = 2 (2-microaggregation) is interesting in privacy protec-
tion scenarios with neither internal intruders nor outliers, because infor-
mation loss is lower: smaller groups imply smaller information loss. For
2-microaggregation the existing general approximation can only guaran-
tee a 54-approximation. We give here a new polynomial-time heuristic
whose SSE is at most twice the minimum SSE (2-approximation).

Keywords: Clustering, Statistical databases, Statistical disclosure con-
trol, Privacy-preserving data mining, Microaggregation.

1 Introduction

Microaggregation [7,8] is a technique for privacy in statistical databases, a dis-
cipline also known as statistical disclosure control (SDC). It is used to mask
individual records in view of protecting them against re-identification. More
generally, microaggregation can be mathematically modeled as a special kind of
clustering problem where the goal is to cluster a set of p-dimensional points (the
records in the SDC application) into groups of at least k points in such a way
that groups are as homogeneous as possible. For the sake of concreteness, we
talk about records rather than points in what follows.

Let X be a p-dimensional dataset formed by n records, that is, the result of
observing p attributes on n individuals. Attributes will be assumed numerical
(continuous) in this paper. Microaggregation is operationally defined in terms of
two steps. Given a parameter k, the first step partitions records of X into groups
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of at least k records each. The second step replaces each record by the centroid
of its group to obtain the masked dataset X′. In a microaggregated dataset, no
re-identification within a group is possible, because all k records in a group are
identical: the best that an intruder can hope is to track what is the group where
a target individual has been masked into.

Microaggregating with minimum information loss has been known to be an
important —and difficult— issue ever since microaggregation was invented as
an SDC masking method for microdata. However, it was often argued that op-
timality in SDC is not just about minimum information loss but about the best
tradeoff between low information loss and low disclosure risk. The recent applica-
tion [11] of microaggregation to achieve k-anonymity [21,20,24,25] for numerical
microdata leaves no excuse to circumvent the problem of trying to reduce in-
formation loss as much as possible: once a value k is selected that keeps the
re-identification risk low enough, the only job left is to k-anonymize (that is, to
microaggregate) with as little information loss as possible.

A partition P such that all of its groups have size at least k is called a k-
partition [8] and microaggregation with parameter k is sometimes denoted as
k-microaggregation.

In [8], optimal microaggregation is defined as the one yielding a k-partition
maximizing the within-groups homogeneity. The rationale is that, the more ho-
mogeneous the records in a group, the less variability reduction when replacing
those records by their centroid (average record) and thus the less information
loss. The within-groups sum of squares SSE is a usual measure of within-groups
homogeneity in clustering [27,12,15,16], so a reasonable optimality criterion for
a k-partition P = {G1, . . . , Gg} is to minimize SSE, i.e. to minimize

SSE(P ) =
g∑

i=1

|Gi|∑
j=1

(xij − c(Gi))′(xij − c(Gi))

where |Gi| is the number of records in the i-th group, c(Gi) is the mean record
(centroid) over the i-th group and xij is the j-th record in the i-th group. It was
shown in [8] that groups in the optimal k-partition have sizes between k and
2k − 1.

The optimal microaggregation problem has been shown to be NP-hard in the
multivariate case, that is, when p > 1 ([19]). Therefore, algorithms for multivari-
ate microaggregation are heuristic [6,8,22,17,18].

1.1 Contribution and Plan of This Paper

In [10], the first approximation algorithm in the literature to optimal multivariate
microaggregation was described. For any integer k ≥ 2, the SSE of the k-
partition P provided by the heuristic given in [10] is shown to verify

SSE(P ) ≤ 2(2k − 1)[max(2k − 1, 3k − 5)]2SSE(P opt)

where P opt is the optimal k-partition.
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When using microaggregation to protect a dataset, the lower k, the lower SSE
and the less information loss caused. Define an internal intruder as an intruder
who has contributed one or more records to the dataset. In the presence of
internal intruders or outliers, k > 2 should be chosen, so that an internal intruder
cannot exactly guess the contribution of the other individual in her/his group.
However, if internal intruders are unlikely and there are no outliers, a value as
low as k = 2 would do for anonymity (2-anonymity): groups of records of size
between k = 2 and 2k− 1 = 3 are formed and each record in a group is replaced
by the group average record (2-microaggregation).

Thus 2-microaggregation is a relevant case deserving specific attention. For
k = 2, the heuristic in [10] guarantees a bound SSE(P ) ≤ 54 · SSE(P opt), even
though empirical results show that SSE(P ) is usually well below that bound.
We propose in this paper a new heuristic for 2-microaggregation yielding a 2-
partition P for which we can prove that SSE(P ) ≤ 2 · SSE(P opt).

Section 2 gives some background on the minimum-weight [1, 2]-factor prob-
lem and its algorithmic solution. Section 3 presents the 2-approximation heuristic
for 2-microaggregation. The 2-approximation bound is proven in Section 4. Sec-
tion 5 gives empirical results on the actual performance of the 2-approximation
heuristic. Section 6 is a conclusion.

2 Background: The Minimum-Weight [1, 2]-Factor
Problem

Given a graph G = (V, E) and a function w : E → R that assigns a weight
to each edge, the minimum-weight [1, 2]-factor problem consists of finding the
spanning subgraph Fmin of G that satisfies:

– Each node in Fmin has degree 1 or 2
– The sum of weights of edges in Fmin is minimum.

This problem can be solved in strongly polynomial time [23], i.e. in running
time bounded polynomially by a function only of the inherent dimensions of
the problem (number of edges and nodes) and independent of the sizes of the
numerical data. The graph library GOBLIN [13] solves the minimum weight
factor problem over a weighted graph G = (V, E) (with |V | = n and |E| = m)
by transforming the graph into a balanced flow network NG [14] consisting of
n′ = 2n + 4 nodes and m′ = 2m + 4n + 6 edges and solving a minimum weight
balanced flow over NG. This solution determines a minimum weight factor over
G. The Enhanced Primal Dual Algorithm [14] solves this problem in O(n′2m′)
time.

In this way, a [1,2]-factor problem over a complete graph G having n nodes
(and n(n− 1)/2 edges) is solved polynomially in O(n4) time.

3 A 2-Approximation Algorithm for 2-Microaggregation

Next, we present a 2-approximation for the multivariate 2-microaggregation
problem. Our solution adapts for 2-microaggregation a corrected version of the [1]
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and [2] approach to 2-anonymizing categorical data through partial suppression.
The algorithm in [1] and [2] could not be used as published, as it relies on [4]
to solve a minimum weight [1, 2]-factor, a problem not dealt with by [4], but by
the substantially more recent literature mentioned in Section 2.

Algorithm 1 (2-μ-Approx)

1. Given a dataset X, build a weighted complete graph G = (V,E) as follows:
(a) Each record of x ∈ X is mapped to a different vertex v ∈ V.
(b) Given two vertices v, v′ ∈ G corresponding to records x, x′ ∈ X, the edge

vv′ ∈ E (the one linking nodes v and v′) is assigned weight w(vv′) =
d(x, x′)2, where d(x, x′) is the Euclidean distance between x and x′.

2. Compute the minimum weight [1,2]-factor Fmin of graph G (see Section 2).
By optimality, Fmin consists only of connected components with a single edge
(two vertices) or two adjacent edges (three vertices).

3. The 2-partition P is obtained by mapping each connected component in Fmin

to the group in P containing the records corresponding to the vertices in the
component.

4. Microaggregate X based on P .

4 The 2-Approximation Bound

We exploit in this section the properties of Algorithm 2-μ-Approx to prove that
it yields a 2-approximation to optimal 2-microaggregation. We first give some
notation, then a preliminary lemma and finally the theorem with the approxi-
mation bound.

Given a 2-partition P = {G1, . . . , Gg} of X, such that all groups have size 2
or 3, we denote by SSE(Gi) the within-group sum of squares of group Gi, that
is, SSE(Gi) =

∑|Gi|
j=1(d(xij , c(Gi)))2, where c(Gi) is the centroid of group Gi.

Consider the complete graph G built in Step 1 of Algorithm 2-μ-Approx.
Define T (Gi) as the minimum-weight component of a [1,2]-factor of G containing
the vertices corresponding to records in Gi. If Gi consists of two records, T (Gi)
contains a single edge connecting the two corresponding vertices. If Gi consists
of three records, T (Gi) contains the minimum-weighted two edges connecting
the three corresponding vertices.

Lemma 1. For any group Gi ∈ P consisting of two or three records, it holds
that

1
2
≤ SSE(Gi)

w(T (Gi))
≤ 1

where w(T (Gi)) is the sum of weights of edges in T (Gi).

Proof

i) Consider a two-record group Gi = {xi1, xi2} and let d(xi1, xi2) be the Euclid-
ean distance between both records. When microaggregating Gi, both records
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will be replaced by their mean vector c(Gi) (i.e., the centroid of Gi). It holds
that

d(xi1, c(Gi)) = d(xi2, c(Gi)) =
d(xi1, xi2)

2

Thus,

SSE(Gi) = 2 ·
(

d(xi1, xi2)
2

)2

=
(d(xi1, xi2))2

2

On the other hand, by construction of the graph G in Algorithm 2-μ-Approx,
we have w(T (Gi)) = (d(xi1, xi2))2. Thus, for any group Gi with two records
it holds that

SSE(Gi)
w(T (Gi))

= 1/2.

ii) Let us now take a three-record group Gi = {xi1, xi2, xi3}. Its corresponding
minimum weight tree T (Gi) consists of three vertices vi1, vi2, vi3 and the
two minimum-weight edges connecting them. Let us denote d(xi1, xi2) = d1,
d(xi1, xi3) = d2 and d(xi2, xi3) = d3. It is well known that, in a triangle, the
sum of the squared lengths of the sides is three times the sum of the squared
vertex-centroid distances. In our notation, this equality can be written as

d2
1 + d2

2 + d2
3 = 3 · SSE(Gi) (1)

Without loss of generality, we consider that the edges of T (Gi) are e1 = vi1vi2
and e2 = vi1vi3. By the minimality of T (Gi) and using Equation (1), we get

w(T (Gi)) = d2
1 + d2

2 ≤ (2/3)(d2
1 + d2

2 + d2
3) = 2 · SSE(Gi)

Thus,
SSE(Gi)
w(T (Gi))

≥ 1/2

Another fact of elementary geometry is that, for any triangle, the sum of
the squared lengths of any two sides is at least one third of the sum of the
squared lengths of three sides. Using this, we can write

w(T (Gi)) = d2
1 + d2

2 ≥ (1/3)(d2
1 + d2

2 + d2
3) = SSE(Gi)

Thus,
SSE(Gi)
w(T (Gi))

≤ 1

�

Theorem 1 (2-Approximation bound). If P is a 2-partition found by Al-
gorithm 2-μ-Approx and P opt is the optimal 2-partition, then SSE(P ) ≤ 2 ·
SSE(P opt).
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Proof: Consider the minimum weight [1,2]-factor Fmin of graph G computed
at Step 2 of Algorithm 2-μ-Approx. Let us denote its cost, that is the sum of its
edge weights, as w(Fmin). By Lemma 1, for any group Gi ∈ P it holds that

SSE(Gi) ≤ w(T (Gi)) (2)

Extending Inequality (2) for all Gi ∈ P and taking into account that T (Gi) are
the components of Fmin, we get

SSE(P ) ≤ w(Fmin) (3)

Let us now take the optimal k-partition P opt for the dataset X. For each group
Gopt

i ∈ P opt, we take its corresponding vertices in G and connect them with one
edge (if Gopt

i consists of two records) or the two minimum-weighted adjacent
edges (if Gopt

i consists of three records); call the resulting graph component
T (Gopt

i ). The union of all T (Gopt
i ) is a non-minimum weight [1,2]-factor F for G.

By Lemma 1 we know that w(T (Gopt
i )) ≤ 2·SSE(Gopt

i ). Applying this inequality
to all clusters, we get

w(F) ≤ 2 · SSE(P opt) (4)

On the other hand, by definition of minimum weight [1,2]-factor

w(Fmin) ≤ w(F) (5)

If we combine Inequalities (3),(4) and (5), the 2-approximation bound of the
theorem follows. �

5 Empirical Results

We will show in this section that the new 2-approximation heuristic can perform
even better than the best microaggregation heuristics in the literature in terms
of low within-groups sum of squares SSE. We have used two reference datasets
from the European project ”CASC” [3]:

– The ”Tarragona” dataset contains 834 records with 13 numerical attributes
corresponding to financial information on 834 companies located in the area
of Tarragona, Catalonia. The ”Tarragona” dataset was used in the ”CASC”
project and in [8,18,10].

– The ”EIA” dataset contains 4092 records with 11 numerical attributes (plus
two additional categorical attributes not used here). This dataset was used
in the ”CASC” project and in [5,10] and partially in [18] (an undocumented
subset of 1080 records from ”EIA”, called ”Creta” dataset, was used in the
latter paper). For the sake of speed, we have used in our experiments reported
below a block with only the first 600 records of the ”EIA” dataset; we call
”EIA-600” the resulting dataset.

Table 1 gives the information loss under various methods for different values
of k. For each case, SSE and LSSE = 100× SSE/SST are given, where SST
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is the total sum of squares (sum of squared Euclidean distances from all records
to the dataset centroid). The advantage of LSSE is that it is bounded within
the interval [0, 100]. The methods considered in the comparison include the best
heuristics in the literature, according to the comparison in [10], namely:

– An improved version of the heuristic in [8] called MDAV (Maximum Dis-
tance to Average Vector, [11]). MDAV is the microaggregation method im-
plemented in the μ-Argus package [17] resulting from the ”CASC” project.

– The μ-Approx general approximation heuristic described in [10].
– The 2-μ-Approx heuristic proposed in this paper.

It can be seen that 2-μ-Approx yields the lowest SSE for the ”Tarragona”
dataset. For the ”EIA-600” dataset, 2-μ-Approx ranks second after MDAV. Any-
way, the differences in terms of LSSE are not really meaningful. Furthermore,
note that even if MDAV can slightly outperform the approximation heuristics
for particular datasets, the latter have the advantage of always guaranteeing an
SSE within a known multiple of the minimum SSE; this is especially valuable
when that multiple is as small as twice the minimum SSE, as is the case for
2-μ-Approx.

The price paid to get the 2-approximation is that, since 2-μ-Approx basically
requires to solve a minimum-weight [1, 2]-factor, it runs in time O(n4) (see Sec-
tion 2), whereas MDAV and the general approximation μ-Approx run in O(n2).
For example, the time needed to run 2-μ-Approx on the EIA-600 dataset is 81
minutes and 17 seconds, whereas MDAV and mu-Approx take a few seconds.
Nonetheless, this is less painful than it would appear at first sight: all heuris-
tics being at least quadratic-time, blocking attributes must always be used to
microaggregate large datasets, so the only adaptation needed to run an O(n4)
heuristic is to take smaller blocks.

Table 1. Information loss measures for the ”Tarragona” and ”EIA-600” datasets under
various microaggregation heuristics (k = 2)

Method SSE LSSE

”Tarragona” MDAV 1005.59 9.27499
μ-Approx 1148.32 10.5914

2-μ-Approx 958.496 8.84058
”EIA-600” MDAV 59.2535 1.06927

μ-Approx 66.8219 1.20585
2-μ-Approx 65.8851 1.18895

Finally, we give some experimental results on how close to optimality are the
partitions obtained using 2-μ-Approx. In order to be able to find the optimal 2-
partition by exhaustive search, we are constrained to using very small datasets.
We have taken the third reference dataset in [3], called ”Census”, which contains
1080 records with 13 numerical attributes and was used in the CASC project
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and [9,5,28,18,11,10]. From the ”Census” dataset, we have drawn 10 random
samples of n = 15 records with p = 13 attributes each. Those samples have been
2-microaggregated optimally by exhaustive search and also heuristically using 2-
μ-Approx. For each sample, Table 2 shows the optimal SSE, the SSE obtained
with 2-μ-Approx and the ratio between the former and the latter. It can be seen
that such a ratio is 1 or close to 1 in all cases. Thus, even if the approximation
bound only guarantees that the SSE obtained with 2-μ-Approx is no more than
twice the optimum, it actually tends to be very close to the optimum.

Table 2. Optimal SSE vs SSE obtained with 2-μ-Approx (k = 2) for 10 random
samples drawn from the ”Census” dataset (n = 15 and p = 13)

Sample Optimal SSE SSE 2-μ-Approx Ratio

1 12.042 12.042 1
2 12.2066 12.8186 0.9522
3 14.8156 14.8156 1
4 12.5545 12.5545 1
5 51.6481 52.0665 0.9920
6 74.1998 74.1998 1
7 15.6783 16.5705 0.9462
8 9.9702 9.9702 1
9 21.4293 22.7064 0.9438
10 33.3882 33.3882 1

6 Conclusion

The polynomial-time 2-approximation presented here improves for k = 2 on the
general O(k3)-approximation for multivariate microaggregation. Even though
2-microaggregation is not usable if internal intruders are likely or outliers are
present, it can be an interesting option to implement 2-anonymity in other cases,
because it results in low information loss and thus in high data utility. Thus,
the availability of a 2-approximation for 2-microaggregation is relevant. Sug-
gested directions for future research include: i) to devise heuristics that, for
specific values of k other than 2, provide better approximations than the general
O(k3)-approximation; ii) to adapt Algorithm 2-μ-Approx to come up with an
approximation to 2-microaggregation of non-numerical (categorical) microdata
(categorical microaggregation was defined in [26]).
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Abstract. We discuss several methods for producing plots of uni- and
bivariate distributions of confidential numeric microdata so that no single
value is disclosed even in the presence of detailed additional knowledge,
using the jackknife method of confidentiality protection. For histograms
(as for frequency tables) this is similar to adding white noise of constant
amplitude to all frequencies. Decreasing the bin size and smoothing, lead-
ing to kernel density estimation in the limit, gives more informative plots
which need less noise for protection. Detail can be increased by choosing
the bandwidth locally. Smoothing also the noise (i.e. using correlated
noise) gives more visual improvement. Additional protection comes from
robustifying the kernel density estimator or plotting only classified den-
sities as in contour plots.

Keywords: jackknife method, histogram, kernel density estimation, ro-
bustness, contour plot, noise, remote access.

1 Introduction

Although plots of microdata are doubtlessly a very useful tool both in pre-
sentations and statistical analysis, they pose special problems when the data is
confidential. This paper proposes to follow the jackknife methodology introduced
in [3] to find ways to produce high-quality plots of data which can guarantee
confidentiality. After recalling the jackknife method briefly, we first examine his-
tograms before moving on to density plots utilizing kernel density estimation.

2 The Jackknife Method of Confidentiality Protection

Assume that we want to publish the result f(M) of some statistical analysis
(e.g., a mean, a model parameter estimate, the p-value of some test statistic,
etc.) computed from confidential microdata which are contained in a matrix
M = (xij)ij , and that we want to make sure that not even a person who knows
all of M except a single individual value xij can infer anything useful about
the “target value” xij . The idea underlying the jackknife method is to achieve
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this by reducing the precision of the published result just as much as needed,
for example by publishing a small interval instead of the precise value, or by
applying some kind of noise to the result.

In [3], it was shown that the necessary amount of imprecision is proportional
to the maximal influence which the removal of a single value xij in M or the
replacement of one such value with a randomly chosen value can have on f(M).
This analogy to the jackknife method of variance estimation motivates the nam-
ing of the protection method. The maximal influence can either be determined by
actually performing the removals and replacements or by analysing the influence
function of f known from the theory of robust estimation. It was also shown in
[3] that, in general, the resulting relative imprecision is of order O(1/N) and is
thus asymptotically smaller than the relative standard error of order O(1/

√
N),

where N is the number of observations in M . For an example of highly skewed,
real-world data, Scheffler [5] showed that the quality of various kinds of numer-
ical results protected with this method can well compete with that of results
produced from traditionally anonymized microdata files, which however provide
a lower level of protection.

For single numeric results f such as sample means, correlation coefficients,
model parameter estimates or p-values, the preferred form of the published result
is an interval containing the precise value with some high probability or even
with certainty or, equivalently, an approximate result together with a certain or
confidence bound for its deviation from the precise value. Gopal et. al. [1] discuss
a slightly more complex way to produce safe results of this kind.

Graphical representations of distributions (the main interest of this paper)
can be interpreted as vectors or matrices of real numbers in the obvious way: a
histogram as a vector of frequencies, a density line plot as a vector of density
values, a greyscale-coded 2-dimensional density plot as a matrix of brightness
values. To produce a safe plot, the jackknife method can be applied to these indi-
vidual numbers, giving a vector or matrix of approximate frequencies, densities
or brightnesses.

Since the usefulness of the resulting plot does not so much depend on any
individual deviation between precise and approximate values but more on their
distribution, it will in general suffice to publish an aggregate measure of precision
together with the approximate plot instead of a vector or matrix of intervals.
This is even more so when the aim of the plot is not a quantitative but a
qualitative one, e.g. to determine modality, skewness, groups of outliers or shape
of correlation, or to find useful transformations. Still, some kinds of plots allow
us to incorporate more detailed information about the precision of the plot into
the plot itself, e.g. in the form of bands in a density line plot.

3 Histograms

For a frequency table of a numeric variable X with fixed class boundaries b0 <
b1 < · · · < bk, the jackknife method first recognizes that the frequencies fc of
any cell c can change by at most one when an individual value xi is removed,
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added or changed. Consequently, no individual value can be disclosed when from
the published result one cannot tell with sufficient certainty whether the actual
cell frequency is fc, fc − 1 or fc + 1. This can be achieved by adding a, say,
normally distributed “protection error” to all frequencies. If it is done indepen-
dently and with equal amplitude for all cells, we have added “white” (that is,
uncorrelated) noise. Note that this is quite different from such anonymization
methods as perturbation of the underlying microdata, since we add noise only to
the analysis results (i.e., the frequencies), thereby achieving much better quality
asymptotically.

In a histogram, the class boundaries bc and their number k are usually not
fixed but are determined from the data, hence we must additionally make sure
that nothing can be disclosed from that information either.

3.1 Choice of Bin Width and Boundaries

Popular choices of a constant bin width w = bc − bc−1 are ws := 3.49sN−1/3 or
wq := 2(q3−q1)N−1/3, where s, q1 and q3 are the sample standard deviation and
first and third quartile estimators, respectively (see [4]). The outer boundaries
b0 and bk are typically chosen just outside the minimum and maximum values
x(1) and x(N). It is obvious that the latter cannot be published unmodified and
that q1 and q3 often refer to individual values, too. Similarly, using ws is more
risky than using wq, even when no additional knowledge is assumed. From the
knowledge of s, N and the sample mean m alone one can infer that all values
xi are between m ± √Ns, and extreme values in skewed distributions may be
bounded too narrowly by this. For example, a simple simulation shows that in a
sample of ten values from a log-normal distribution, the upper bound m +

√
Ns

is below 11
10x(N) in more than half of all cases.

For these reasons, the outer boundaries and the bin width must also be chosen
in a “safe” way, and this can be done by first applying the jackknife method
to s or q3 − q1, and to x(1) and x(N), as described in [3], before using them
in the histogram. This kind of “plug-in” mechanism is a typical way to apply
the jackknife method to all kinds of complex tasks such as automatic variable
selection in regression models or reweighting observations in robust estimation.
For such tasks one often uses fairly robust auxiliary estimators which are not
much affected by single values, hence the imprecision introduced by the jackknife
method at the plug-in stage is quite small. This motivates the use of the robust
bin width wq instead of the considerably non-robust ws. Even more so, the outer
boundaries x(1) and x(N) are extremely non-robust functions of the sample, hence
we should instead use either a fixed or user-specified range or a function of some
more robust statistics such as x(3) and x(N−2).

Figure 1 shows a histogram of a Normal(0,1)-distributed sample with N =
100, q1 = −0.71, q3 = 0.61, x(1) = −2.43 and x(N) = 2.05 which was pro-
tected by adding white noise of amplitude a = 1 (i.e., uncorrelated Normal(0, 1)-
distributed errors) and using fixed outer boundaries of ≈ ±3 and the jackknife-
protected bin width w′

q = 0.64 instead of the true wq = 0.57. In addition, a
confidence interval of size ±2a and the normal density function are shown.
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Fig. 1. Histogram of a standard normal sample of size 100, protected by using a
jackknife-protected bin-size of 0.64 and adding white noise of amplitude 1, with 95%-
confidence intervals and underlying density function

3.2 Choice of Protection Amplitude

One way to assess the level of protection attained with noise of some amplitude a
would be to compute something like the worst-case ratio between the likelihood
of fc and the larger of the likelihoods of fc − 1 and fc + 1, given the published
f ′

c = fc +εc with εc ∼ Normal(0, a2) and known a. Such cell-based measures can
in fact be determined for all kinds of frequency tables. This worst-case ratio is
e1/2a2

and it is attained for εc = 0. In other words, even when some individual
random error value is actually zero, the frequencies fc − 1 and fc + 1 still have
e−1/2a2

times the likelihood of the true frequency fc. For a = 1, this ratio is 0.61.
In our case of histograms, we can alternatively study how accurately a recip-

ient could estimate from (f ′
c)c a single individual value xi if she knew all other

values xj (j �= i). The maximum likelihood estimator of xi given (f ′
c)c, (xj)j �=i

is the centre of the bin c for which f ′
c − gc is maximal, where the gc are the

bin frequencies of the known values xj . The solid line in Figure 2 shows the
standard error of this estimator for samples of the kind of Figure 1, with xi = 0
and different choices of a.

So far, both considerations show that an amplitude of a = 1 can be considered
a safe choice. However, Figure 1 indicates that we should also be concerned about
the accuracy of the resulting histogram.

3.3 Accuracy of the Resulting Distribution Function

As our published histogram might be used to assess quite different aspects of
the underlying distribution, let us evaluate its accuracy by comparing the fol-
lowing distribution functions: the underlying normal distribution function F ,
the empirical distribution function Fe of the sample, the distribution function
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Fu that corresponds to the unmodified histogram, and finally that of the pub-
lished histogram Fp, the latter two evaluated at the bin borders and interpolated
linearly within. In particular, we examine the ratio between the average squared
L2-distances ||Fu − F ||22 and ||Fp − F ||22, and the ratio between the averages of
||Fu − Fe||22 and ||Fp − Fe||22.

The dotted lines in Figure 2 show these quotients for 10,000 simulated sam-
ples of the kind of Figure 1, keeping the bin width at w = 0.64 but varying a.
With a = 1, for instance, these “efficiency”-type measures are about 0.86 and
0.69, respectively. That is, seen as an estimate of the underlying distribution,
the jackknife-protected histogram is 0.86 times as efficient as the original, un-
protected, histogram, while as an estimate of the empirical distribution of the
sample, it is 0.69 times as efficient. For a = 1

2 , which still ensures that a single
value xi cannot be estimated more accurately than up to ±2, these efficiencies
are much better (0.96 and 0.90).

4 Plots Using Kernel Density Estimation

A usual way to improve the information given by a histogram is to smooth it
by averaging neighboured bin counts while simultaneously increasing the bin
number. In the limit, this gives a function f which estimates the density at x
as the average of the values K(x−xi

hi
)/hi over all sample values xi, where K is

some standardized symmetric density function, called the kernel, and hi is some
positive bandwidth which specifies the amount of smoothing. In the typical case
where K is the Gaussian kernel (i.e., the standard normal density function), we
thus have

f(x) =
1

N
√

2π

N∑
i=1

1
hi

exp

(
−
(

x− xi

hi

)2

/2

)
.

Most simply, hi can be chosen equal for all i and determined somewhat sim-
ilarly to the bin width of a histogram, but shrinking more slowly as N in-
creases, e.g., hi = hs := 1.06sN−1/5 (the “simple normal reference rule”) or
hi = ht := 0.9 min{s, q3−q1

1.34 }N−1/5 (Silverman’s rule of thumb, see [6]). The
bottom three lines in Figure 4 show such kernel density estimates for the sample
{−21, −15, −11, −9, −7, −3, 3, 7, 9, 11, 15, 21, 51}, with either hi = ht = 8.32,
hi = 2ht = 16.64 or hi = 1

2ht = 4.16. Only with the smallest choice of constant
bandwidth, both the seeming bimodality of the distribution and the outlier are
clearly visible. With Silverman’s rule of thumb (which is said to “oversmooth”
often), the bimodality gets obscured. The outlier, on the other hand, is smoothed
out only for the largest bandwidth. Before considering non-constant bandwidths,
let us study how safe this is.

4.1 Still, Confidentiality Is an Issue

At first glance, one may think that, if only the bandwidth is large enough, such
a density line plot discloses no individual value xi since no individual peaks
are seen. But, unfortunately, at least when the bandwidth is constant and the
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Fig. 2. Standard error (solid line, right scale) and corresponding efficiencies (dotted
lines, left scale, higher is better) of the ML-estimator of xi = 0 given a protected
histogram of the kind of Figure 1, for varying noise amplitude a

Fig. 3. Required noise amplitude a (solid lines, right scale) and resulting efficiencies
(dotted lines, left scale, higher is better) for kernel density estimation of 100 normally-
distributed values, for varying constant bandwidth h. In addition, the squared L2-
distance of the estimated from the true distribution is shown (dashed line, right scale).
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Fig. 4. Different kernel density estimates for the sample shown at the bottom. The
bottom three lines have constant bandwidths of 2ht, ht and 1

2ht, respectively. The
top two have local bandwidths proportional to the distance to the nearest neighbour,
the lower one being robustified additionally by subtracting the highest influence kernel
contributions at each point.

Fig. 5. Comparison of the standard errors of the ML-estimators for the rightmost
value x13 = 51 of the sample from Figure 4, given the non-robustified (dotted line) or
robustified (solid line) local-bandwidth density line diagram shown in the top two lines
in the other figure, after protection with noise of amplitude a, assuming knowledge of
the other values xj and of the bandwidth h = 2
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kernel is known, the theory of integral transforms tells us that the transforma-
tion (xi)i �→ f can be inverted easily by using an “inverse” kernel. Applying a
Fourier-transform, dividing by the Fourier-transform of the kernel and Fourier-
transforming again gives the original values. This means that we have to add
noise here, too. However, because of the smoothing, we can hope to need less
noise than in the case of a histogram.

In practice, the density plot to be published will only use the values f(yc) for
a number of k equidistant grid points yc, so that we may treat it in analogy to a
histogram with k bins. Doing so, the published density line diagram corresponds
to the values

f ′
c :=

1
N
√

2π

N∑
i=1

1
hi

exp

(
−
(

yc − xi

hi

)2

/2

)
+

εc

N
, εc ∼ Normal(0, a2)

or to their non-negative and normalized version max(f ′
c, 0)/

∑
c max(f ′

c, 0).
As above, let us look at how accurately a recipient could estimate from (f ′

c)c a
single individual value xi if she knew the (possibly constant) bandwidths hj and
all other values xj (j �= i). Because of the smoothing, the maximum likelihood
estimator of xi given (f ′

c)c, (hj)j , (xj)j �=i is now approximately the grid point yd

for which the log-likelihood

L(yd) ∝ −
∑

c

(
g′c −

1
N
√

2πhi

exp

(
−
(

yc − yd

hi

)2

/2

))2

is maximal, where

g′c := f ′
c −

1
N
√

2π

∑
j �=i

1
hj

exp

(
−
(

yc − xj

hj

)2

/2

)
.

For the same samples as in Figure 2, the solid lines in Figure 3 show what
noise amplitude is needed in order that the standard error of this estimator is
1 (lower line) or 1.5 (upper line), depending on the chosen constant bandwidth
h. For these amounts of noise, again the accuracy of the resulting density line
plots was assessed by computing the ratio (dotted lines) between the averages of
||Fu − F ||22 and ||Fp − F ||22, where Fu and Fp are now the distribution functions
of the unmodified and protected density estimates f and f ′. Here the upper line
corresponds to a target standard error of 1, the lower one to a target of 1.5.

As we see, the necessary amplitudes are not zero but generally much smaller
(about 1

10 ) than those needed with histograms. This is in accordance with the
jackknife method’s result since when one xi is changed, added or removed, f(x)
can change by at most 1/(N − 1)

√
2πh, so the necessary amplitude should be of

that order. At the same time, the efficiency of the resulting distribution functions
are comparable to those for histograms. For the choice of h which minimizes
||Fu − F ||22 (dashed line), h ≈ 8, the protected plot has again an efficiency of
about 0.85.
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Instead of adding noise one could draw a synthetic sample of size N from
the estimated density and publish a scatterplot of that sample instead of the
density line, as is done in some resampling approaches to anonymization (e.g.
[2]). That, however, would reduce the quality of the information not only more
than adding noise to the results but even more than perturbing all microdata
points individually.

4.2 Better Trade-Off with Local Bandwidths

As the discussion of Figure 4 exemplified, it is generally not optimal to use con-
stant bandwidths since either outliers are too clearly visible, or detail in more
populated areas of the plot is smoothed out. Obviously and in accordance with
the rationale behind the simple normal reference rule and Silverman’s rule of
thumb, one should increase bandwidth in less populated areas and decrease it
in dense regions. This is even more essential when we want to produce bivari-
ate density plots. Moreover, the factor N−1/5 leads to a too slow decreasing
bandwidth in our case where protection is the main purpose and not density
estimation in itself, since it smoothes out too much detail that could safely be
shown for larger values of N .

Although the literature (e.g. [8]) contains quite sophisticated adaptive and
iterative methods to determine local bandwidths hi which are in some sense
optimal for estimation, let us here, for simplicity’s sake, only look at a simple
heuristic way to choose bandwidths locally: we put

hi := max{β min
j �=i
|xi − xj |, h0},

that is, we use a constant multiple of the distance to the nearest value, but
bounded below by some minimal bandwidth h0. This is somewhat similar to
the generalized nearest neighbour estimates discussed in [6]. The topmost line in
Figure 4 shows this for β = 2 and h0 = 2. The bimodality is clearly visible but
the outlier is smoothed out. Because of the latter effect, using local bandwidths
increases both quality and safety of the plot. In addition, one should expect that
even less noise needs to be added since the ML-estimators for single values (and
also the algebraic back-transformation) loose their simple form so that disclosure
would be much harder even without noise. However, the simulations in 5.1 will
show that still some noise is needed for protection although no visible peak shows
the outlier directly.

Analysing this with the jackknife method is somewhat more difficult than for
constant bandwidths. How much f(x) can change when adding, removing or
changing a single xi now also depends on how much all the hj can change in
this. For one- or two-dimensional density plots, removing xi can only increase
at most two or five of the remaining hj , respectively (namely those having xi

as their nearest neighbour). Analogously, adding some new xi can only decrease
at most that many bandwidths. Consequently, an upper bound for the maximal
change of f(x) is (γ+1)/(N−1)

√
2πh0, where γ is 2 or 5 according to dimension.

Hence it is important to choose h0 not too small.
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4.3 Visual Improvement by Posterior Smoothing

The lower line in Figure 6 shows a local bandwidth density line plot for real-
world data from a typical skewed sample of N = 439 magnitudes between 0 and
1 million, using k = 201 grid points at multiples of 5000, with a bandwidth factor
of β = 10 and a minimal bandwidth of h0 = 50,000, protected by adding white
noise of amplitude a = 3/

√
2πh0 ≈ 0.000024. Although the shape of the distri-

bution is clearly visible, the upper line in that figure is much more appealing
because of its calmer appearance. That plot was produced by simply smoothing
the noise-protected graph a second time with a small constant bandwidth. This
does not remove the uncorrelated noise that we just added but only converts it
into correlated, less “visible” noise. The calmer plot contains exactly the same
information as the restive one since the smoothing is a bijective transforma-
tion. In particular, the same level of protection is attained by both! In Figure
6, the posterior smoothing was done by simply averaging the values at three
neighboured grid-points and repeating this five times.

5 Improving the Protection

5.1 Robust Estimation

Obviously, the less a result depends on single values the smaller the protection
amplitude needs to be. In other words, the more robust the estimator, the better
the precision we can publish it with. Many point estimators can be “robustified”
by either trimming (e.g. for the mean), switching from squared to absolute val-
ues (e.g. using Gini’s mean absolute difference instead of standard deviation),
replacing values by their ranks (e.g. using Spearman instead of Pearson correla-
tion), or by plugging in robust ingredients for non-robust ingredients (e.g. using
the median absolute deviation from the median instead of the mean squared
deviation from the mean).

Similar things can be done with the kernel density estimator f(x) since it
is just the mean of individual kernel contributions. A radical idea would be to
replace the mean by the median, but that would reduce the efficiency of the es-
timator dramatically since the distribution of the individual kernel distributions
is highly skewed at each position. A more suitable approach is trimming, that
is, we just leave out the largest contribution for instance:

fr(x) :=
1

(N − 1)
√

2π

(
N∑

i=1

zi − N
max
i=1

zi

)
, zi =

1
hi

exp

(
−
(

x− xi

hi

)2

/2

)
.

The second line from the top in Figure 4 shows such a robustified plot, while
Figure 5 shows how this robustification affects the standard error of the ML-
estimator for the rightmost value x13 = 51 of that same sample, given knowledge
of the other values xj (j �= 13) and of h = 2, for varying noise amplitude a. While
for small values of a, there is a significant improvement, for larger values of a
there does not seem to be one.
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Fig. 6. Example of a local bandwidth density line plot for real-world data with N =
439, with a bandwidth factor of β = 10 and a minimal bandwidth of h0 = 50,000,
protected by adding white noise of constant amplitude (lower line). The second line
is derived from this by posterior smoothing, the upper graph shows the corresponding
95%-confidentiality bands.

Fig. 7. Example of a 101×101-grid contour plot of a robustified, local-bandwidth, bi-
variate kernel density estimate based on a large real-world sample, protected by adding
white noise of constant amplitude with posterior smoothing, and densities classified into
10 groups. Bandwidth factor was 8, minimal bandwidths were 50 (income) and 1 (age).
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For larger samples, one could even afford to trim the largest γ +1 (see above)
contributions zj , so that the upper bound on how much fr(x) can change by
adding, removing or changing a single xi becomes smaller in less populated areas:
since at most γ+1 of the zj are affected by such a modification, fr(x) can change
by at most the sum of the largest γ +1 values among the zj, which is noticeably
less than (γ + 1)/(N − 1)

√
2πh0 in sparsely populated areas. This would imply

that one also needs less noise there. However, one has to be careful when using a
noise amplitude depending too much on local data since the amplitude can quite
accurately be estimated from the published plot by studying the variance in a
small region, and then the trimmed values could also be estimated too accurately
from this. In a separate study, one should therefore examine the possibility of
using for such higher-trimmed kernel density estimates a local noise amplitude
determined by smoothing the sum of the trimmed values over a sufficiently large
region, so that the resulting amplitude cannot reveal local detail.

5.2 Classification of Densities: Contour Plots

Often, specifically in the bivariate case, one does not plot the actual estimated
density but rather draws only a number of meaningful contour lines, thereby
classifying the density values into groups. The choice of contour levels can for
instance be such that the enclosed density mass represents specific proportions
of the whole population, as in the real-world example in Figure 7. In order that
the contours be sufficiently continuous and scattered noise-induced “islands” be
avoided, posterior smoothing is again essential, even more than for non-classified
densities.

Since classification reduces the information profoundly while preserving most
of the interesting features of the distribution, it will obviously also decrease the
risk of disclosure. From a contour plot of the type of Figure 7 one cannot as
easily proceed with a maximum-likelihood estimation of a single value as we
did in the case of histograms and univariate density line plots. This should help
reducing the level of noise further.

6 Conclusion

As we have seen, addition of noise not to the underlying microdata but to re-
sults (frequencies, densities), as suggested by the jackknife method’s approach
to confidentiality protection, allows us to produce various kinds of high-quality
but safe plots of microdata. Because in principle this requires no manual inter-
vention, such plots could not only be valuable in publications but could also be
used in statistical databases or other kinds of remote access facilities.

Further research should address in more detail the exact amount of necessary
noise and the usefulness of the resulting plots for different tasks such as assess-
ment of modality or skewness, identification of clusters or groups of outliers,
classification of shapes of correlation, finding useful transformations of the data,
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deciding on homoscedasticity, et cetera. It will also be interesting to evaluate
how these are affected by the described possibilities to robusitify or classify the
densities, or by the use of adaptive ways to choose bandwidths locally.
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Abstract. Statistical disclosure limitation is widely used by data col-
lecting institutions to provide safe individual data. In this paper, we
propose to combine two separate disclosure limitation techniques blank-
ing and addition of independent noise in order to protect the original
data. The proposed approach yields a decrease in the probability of rei-
dentifying/disclosing the individual information, and can be applied to
linear as well as nonlinear regression models.

We show how to combine the blanking method and the measurement
error method, and how to estimate the model by the combination of
the Simulation-Extrapolation (SIMEX) approach proposed by [4] and
the Inverse Probability Weighting (IPW) approach going back to [8]. We
produce Monte-Carlo evidence on how the reduction of data quality can
be minimized by this masking procedure.

Keywords: disclosure limitation technique, error-in-variables, blanking,
SIMEX, IPW.

1 Introduction

During the last twenty years, we are witnessing an increasing demand for micro-
data carried away by the advances in computer technology and the development
of econometric softwares. In this time, data collecting institutions have faced a
double difficulty because they have not only to find a way to provide a maximum
amount of information to the data user, but also to guaranty confidentiality and
privacy to the respondents in this case firms or households. Therefore, data col-
lecting institutions become interested in the provision of scientific-use-files that
optimally combine both these interests.

Statistical offices can apply various disclosure limitation techniques,1 such as
noise addition, blanking, local suppression, imputation, data swapping, microag-
gregation, ... in order to protect the confidentiality of the data.2 However, each
1 We relate the reader back to [12] [13] and [1] who provide a description of several

statistical disclosure limitation techniques.
2 See, for example [5] and [10] for the effects of some disclosure limitation techniques

on the estimation properties.
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anonymization technique has its protection limits, such that the probability of
reidentifying/disclosing the individual information for some observations is not
minimized. For example, additive measurement errors modify only slightly the
original value, especially when the original value is high, and data blanking only
protects specific observations.

This paper is concerned with the combination of two disclosure limitation
techniques: blanking and addition of independent noise. To our knowledge, the
combination of both approaches has not been analyzed before. The idea behind
the proposed method is that observations with high original values, which are
not optimally protected by noise addition, are finally protected by data blank-
ing. Therefore, our proposed approach has the advantage of guaranteeing more
disclosure protection than the application of both methods separately. How-
ever, from the perspective of the researcher, an appropriate estimation method
is needed in order to get consistent parameter estimates for linear or nonlinear
regression models. Therefore, the basis of combining both disclosure limitation
methods lies in the combination of two estimation methods. On the one hand,
we apply the Simulation-Extrapolation (SIMEX) method developed by [4] which
is well suited for estimating and reducing the bias due to additive measurement
error. On the other hand, the Inverse Probability Weighting (IPW) estimator
due to [8] is applied to account for the blanking process.

The outline of the paper is as follows. Section 2 introduces both disclosure
limitation techniques, blanking and addition of independent noise, separately,
and shows how to combine them in order to get consistent estimates of the
parameters of interest. Section 3 presents evidence on the power of this approach.
Based on the results of a Monte-Carlo experiment, we show that the SIMEX
method combined with the IPW approach nicely corrects for the estimation
bias introduced by data masking through noise addition and blanking. Finally,
Section 4 summarizes the main results and addresses further research questions.

2 The Model

In the following we propose an approach that can be applied to data that are
masked by blanking and additive measurement error. First we present a blanking
method. Second we briefly explain masking by additive noise in order to finally
present a proposed combination of both methods.

2.1 Blanking as a Data Disclosure Limitation Method

Identification Problems Caused by Blanking. Blanking constitutes a data
disclosure limitation technique where observations with sensitive information are
blanked out of the sample. This, however, creates severe identification problems
for the researcher. For expositional purposes, and in order to show the identifi-
cation problems in a very general form, we rely on the M-estimation setup. The
interest lies in estimating parameters of the conditional expectation function,
E[Yi|Xi] = μ(Xi, θ0), where θ0 is the true k× 1 parameter vector. In the case of
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the linear regression model μ(Xi, θ0) = X ′
iβ0 with θ0 = β0. Let Zi = (Yi, X

′
i)

′

and q(Zi, θ) be an objective function, where θ ∈ Θ. For the linear least squares
case q(Zi, θ) = (Yi − X ′

iβ)2, where θ = β. It is now assumed that θ0 uniquely
solves the following minimization problem:

min
θ∈Θ

E[q(Zi, θ)] (1)

Based on this assumption, the M-estimator θ̂ of θ0 is defined as the solution
to the problem

min
θ∈Θ

n−1
n∑

i=1

q(Zi, θ) (2)

Under specific regularity conditions, the M-estimator can be shown to be
consistent and asymptotically normally distributed (see for example [14], chapter
12). The sample average of q(Zi, θ) is an estimator for the population objective
function, E[q(Zi, θ)].

Now, if the data set contains blanked values for some variables, E[q(Zi, θ)] is
not identified without additional assumptions. To formalize the blanking process,
let Di be a dummy variable taking the value 1 if the realization of Zi is not
blanked and 0 otherwise. The M-estimator based on a complete case analysis
solves the problem

min
θ∈Θ

n−1
n∑

i=1

Diq(Zi, θ) (3)

The corresponding estimator θ̂ is only consistent for θ0 if θ0 is the solution to

min
θ∈Θ

E[Diq(Zi, θ)]. (4)

However, without further assumptions, the solutions of (4) and (1) are not the
same. One approach to encounter this problem is to assume that the missing
data mechanism is ignorable:

Zi⊥Di|Wi, (5)

where ⊥ stands for independence. Wi is a vector of observable random variables,
which determine both the blanking process and Zi. This assumption is also
known as the Missing at Random (MAR) assumption, [11]. Based on the MAR
assumption, [15] and [16] analyze the Inverse Probability Weighting (IPW) going
back to [8]. This method weights the observed moment function by the inverse of
the individual probability of being in the sample given the vector of covariates,
P(Di = 1|Wi). It can easily be shown that

E
[

Diq(Zi, θ0)
P(Di = 1|Wi)

]
= E[q(Zi, θ0)]. (6)

and the weighted M-estimator is the solution for

min
θ∈Θ

n−1
n∑

i=1

Diq(Zi, θ)
P(Di = 1|Wi)

(7)
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[15] shows consistency and asymptotic normality for the weighted M-estimator
if in a first step P(Di = 1|Wi) is estimated by a parametric model.

The results show so far that in order to identify and consistently estimate the
conditional expectation function under M-estimation, the researcher needs to
observe the factors which determine both the blanking process and the outcome
variable.

A Blanking Method. The identification issues caused by a blanked data set,
discussed in the previous section, lead to the consideration that if the data col-
lecting institution would blank the data on the basis of a stochastic process
that fulfills these identifying assumptions, the researcher could apply the pro-
posed methods for estimation of linear and nonlinear models. This means that
a way has to be found to create blanked data consistent with the selection on
observables assumption, and at the same time to minimize the risk of disclosing
certain observations by the researcher. In the following we propose a combina-
tion of data masking by noise addition and weighting methods. The model setup
follows closely [9].

Let Zi be the vector of all L variables in the data set for observation i. An
observation will not be masked if all variables Zi lie between the quantiles θl and
θu. An indicator Di for non-blanking can therefore be defined in the following
manner:

Di =
{

1, if qθl
(Z1j , ..., Znj) < Zij < qθu(Z1j , ..., Znj) ∀j = 1, ..., L

0, otherwise.

where qθ(.) is the θ-quantile of the variables Zj with θl < θu. Since missing data
on the dependent variable cause the selection bias in estimating the model, we
distinguish between Dyi and Dxi where

Dyi = 1l { qθl
(Y1, ..., Yn) < Yi < qθu(Y1, ..., Yn)} (8)

Dxi = 1l {qθl
(X1j , ..., Xnj) < Xij < qθu(X1j , ..., Xnj)} ∀j = 1, ..., Lx (9)

Let vi and ωij , j = 1, ..., Lx, be zero mean iid variables. Then, define Y ∗
i = Yi+vi

and X∗
ij = Xij + ωij , j = 1, ..., Lx. Hence, the variables Y ∗

i and X∗
ij are created

by noise addition on the original values. Define the indicator function to be

D∗
yi

= 1l {qθl
(Y1, ..., Yn) < Y ∗

i < qθu(Y1, ..., Yn)} (10)
D∗

xi
= 1l {qθl

(X1j , ..., Xnj) < X∗
ij < qθu(X1j , ..., Xnj)} ∀j = 1, ..., Lx (11)

Therefore, the conditional probability of observing a non blanked observation,
given Yi is:

P(D∗
yi

= 1|Yi) = P(qθl
(Y1, ..., Yn)− Yi < vi < qθu(Y1, ..., Yn)− Yi). (12)

Let P (Yi) ≡ P(D∗
yi

= 1|Yi). This is a valid weighting probability for the M-
estimation problem since

E
[
D∗

xi
D∗

yi
q(Zi, θ)

P(Yi)

]
= E

[
E
[
D∗

xi
D∗

yi

q(Zi, θ)
P(Yi)

∣∣∣∣Yi

]]
= E[D∗

xi
q(Zi, θ)] (13)
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Under the additional assumption that θ0 solves

min
θ∈Θ

E[q(Zi, θ)|Xi], (14)

the solutions of (13) and (1) are the same. Hence, if the researcher would know
or dispose of estimates of P (Yi), he could carry out M-estimation by minimizing
the following empirical objective function:

n−1
n∑

i=1

D∗
xiD

∗
yiq(Zi, θ)

P̂(Yi)
, (15)

where P̂ (Yi) is an estimator for P (Yi). This result gives rise to the following data
protection method for the data releasing institution:

1. Create a blanked data set by removing the observations lying outside the
critical quantile range following (10) and (11).

2. Compute the corresponding conditional probabilities.
3. Provide the researcher with the blanked data set and the conditional prob-

abilities.

The drawback of this method is that since the error term vi is introduced in
the blanking process, observations lying outside but at the margin of the critical
quantile range may be kept in the sample. To what extent this is the case depends
on the variance of the simulated errors vi. A high variance would increase the risk
of disclosure since more sensitive observations are not blanked, but on the other
hand, this would raise the quality of the estimation results since the amount of
randomness in the selection process is larger. Another tradeoff between disclosure
risk and estimation quality is faced in the choice of the θ-quantiles. The more
observations are blanked, the lower the risk of disclosure, but the lower also the
efficiency of the estimators due to a larger loss of observations.

2.2 Noise Addition as Disclosure Limitation Technique

Measurement Error in the Explanatory Variable. A very simple way
to protect data is to add some independent noise to the covariates. This leads
then to the well known error-in-variables problems, discussed by [7] for the lin-
ear regression model. Without loss of generality, suppose that the explanatory
variable Xi contains sensitive information, which should be protected against
disclosure. Rather than observing Xi, we observe a masked explanatory variable
Xm

i defined as:
Xm

i = Xi + ui, (16)

where ui is an independent random variable with E[ui|Xi] = 0 and V[ui|Xi] =
σ2

u, that is added to the original variable in order to mask it.
It is standard textbook wisdom that in the bivariate linear regression model,

the ordinary least squares (OLS) estimate of β is inconsistent because the error
term and the regressor are correlated, when measurement error occurs. Using
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the Weak Law of Large Numbers (WLLN), one can easily show that instead of
obtaining an estimate of the parameter of interest, OLS estimates the product
of the reliability ratio and the true parameter value consistently, i.e:

plim β̂naive =
σ2

x

σ2
x + σ2

u

β = κxxβ, (17)

where σ2
x is the variance of Xi and the reliability ratio κxx ≤ 1. 3

The advantage of this method is that the data generating process is known
in the case of disclosure limitation, so that a correction of the asymptotic bias
of the OLS estimator can easily be implemented for the linear regression model.
Therefore, if the data collecting institutions provide the data user with the value
of the reliability ratio, or at least with the variance of the measurement error,
V[ui], it is possible to construct an unbiased OLS estimator of the parameter
of interest. On the other hand, data collecting institutions complain that this
disclosure limitation technique does not protect enough the confidentiality of the
data, so that there exist a non negligible probability that a ”data attacker” is
able to re-identify one unit in the scientific use file. Indeed, additive measurement
errors modify only slightly the original value, especially when the original value
is high. This means that the probability of reidentifying/disclosing the individual
information for those observations is not minimized.

In this paper, we apply the SIMEX approach in order to correct the estimates
because this method does not depend on the functional form of the model and
is quite general.

SIMEX for Additive Measurement Errors
The SIMEX method is a two step simulation based method of estimating and
reducing the bias due to additive measurement error. In the simulation step of
the SIMEX algorithm, additional measurement errors are added to the covariate
measured with error. We generate B new covariates Xm

i,b(λt) by the rule:

Xm
i,b(λt) = Xm

i +
√

λtui,b, b = 1, . . . , B, t = 1, . . . , T, i = 1, . . . , n, (18)

where 0 = λ0 < λ1 < λ2 < . . . < λT = 2, are given parameters controlling for the
variance of the measurement error4, and {ui,b}Bb=1 are iid computer simulated
normal random numbers with mean zero and variance σ2

u. This means that
for each λt the simulation step creates B additional datasets with the same
dependent variable Yi and the explanatory variable Xm

i,b(λt) whose variance

V[Xm
i,b(λt)] = σ2

x + (1 + λt)σ2
u. (19)

Given the B estimates for each λt, we compute an average estimate
β̂(λt) = 1

B

∑B
b=1 β̂b(λt) of the vector of naive estimates, β̂b(λt), obtained by

regression of Y on {Xm
b (λt)} for each λt.

3 For more explanations about measurement error in linear models, we relate back to
[7]. If we consider a multivariate regression model, the reliability ratio is a little bit
more complex, see [3].

4 The value λT = 2 is recommended by [3].
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In the extrapolation step, each component of the vector β̂(λt) is modelled
as a function of λt for λt ≥ 0. The SIMEX estimator is finally defined as the
extrapolation of β̂(λt) to β̂(λt = −1), which represents the bias free estimate of
β.5 The standard errors of the parameter of interest are estimated with the boot-
strap method.6 [2] derive the asymptotic distribution of the SIMEX estimator
for parametric models.

2.3 Blanking and Noise Addition

The idea of combining these data disclosure methods described above is based on
compensating the drawbacks of both methods. However, from the researcher’s
perspective an appropriate estimation method is required in order to analyze
such an anonymized data set.

Consider a masked data set by noise addition. If in addition we would blank
the data set by the method proposed in (10) and (11), estimation methods
have to take account of both the blanking process and the addition of noise.
A consistent estimate of the parameter of interest can be obtained by applying
the SIMEX procedure to the IPW-estimator. The proposed estimation method
would imply the following data disclosure limitation protocol for the data col-
lecting institution:

1. Add independent noise to the sensitive variables.
2. Create a blanked data set from the masked data by removing the observa-

tions lying outside the critical quantile range following (10) and (11).
3. Compute the corresponding conditional probabilities.
4. Provide the researcher with the blanked data set, the conditional probabili-

ties, and the variance of the measurement error term ui.

Then the researcher can combine SIMEX with IPW. Since he disposes of the
conditional probability estimates, P̂(Yi), and the variance of the measurement
error ui, he can apply the empirical objective function in (15) as objective func-
tion in the SIMEX-procedure. The main advantage of our method is an increase
in data protection while keeping the flexibility of the methods described above
in estimating a variety of model specifications.

3 Monte-Carlo Experiment

The Monte-Carlo experiment illustrates the quantitative effect of our proposed
approach, i.e, blanking and measurement errors. In order to get a better un-
derstanding on the impact of our proposed method on the properties of the
estimates, we focus on the linear regression model.7 Without loss of generality,
5 The estimates of all parameters in the model are obtained in the same way.
6 See [6] for more details.
7 One can argue that we don’t need the SIMEX method as an estimation procedure

because we consider a linear regression model and are able to correct directly the
estimated parameters. However, our future work will be concerned with analyzing the
finite sample properties of the proposed method when estimating nonlinear models.
Therefore, a more generalized estimation procedure is needed.
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let us consider a multivariate linear regression model given by:

Yi = α + βX1i + γX2i + εi, i = 1, · · · , n, (20)

where εi ∼ N(0, 1). We suppose that the two explanatory variables X1 and X2
follow a multivariate normal distribution:[

X1
X2

]
∼ N

([
0
0

]
,

[
1 0.25

0.25 1

])
.

For each simulation we suppose that the true values for the parameters of in-
terest are α = 0.5, β = 1, and γ = −1. As masked variable we consider Xm

1i ,
which is created by adding an iid noise ui drawn from a N(0, σ2

u) distribution
to X1i. We base our blanking procedure on Yi and Xm

1i by computing first the
θ-quantiles qθ(Y1, ..., Yn) and qθ(Xm

11, ..., X
m
1n), respectively.8 The indicator for

non-data protection is generated as

Di = 1l {Xm
1i + υ1i < qθu(Xm

11, ..., X
m
1n)} × 1l {Yi + υ2i < qθu(Y1, ..., Yn)}, (21)

where υ1i and υ2i ∼ N(0, σ2
υ). Our Monte-Carlo results are based on two different

samples of size n = 100 and n = 1000, which are replicated R = 1000 times. For
the SIMEX approach, we suppose that the λt’s are equidistant in the interval
[0, 2], so that 0 = λ0 < λ1 = 0.5 < λ2 = 1 < λ3 = 1.5 < λ4 = 2, and generate
for each value of λ, B=50 samples.

We consider 4 Monte-Carlo designs for different specifications of the blanking
and noise parameters.

Table 1. Different Monte-Carlo designs

Design σ2
υ σ2

u qθu

1 1.0 0.01 0.95
2 1.0 0.01 0.90
3 1.0 0.5 0.95
4 1.0 0.5 0.90

Tables 2 to 5 contain the results of the Monte-Carlo simulations for all 4
different designs listed in Table 1. α̂true, β̂true and γ̂true correspond to the esti-
mates obtained with the original dataset. These estimators show how close our
estimates come to the estimates of the original data. In order to have a bench-
mark how strongly our proposed approach bias the estimates, we also report the
naive OLS-estimates α̂naive, β̂naive and γ̂naive on the blanked and mismeasured
data. Finally, α̂BSIMEX , β̂BSIMEX and γ̂BSIMEX represent the estimates of the
model where the combined approach is used in order to correct the estimates.

8 Usually the risk of disclosure is particularly high only for large values, such that
blanking of values below θl can be neglected.
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Table 2. Estimation results for Design 1. This table contains the results of the Monte-
Carlo simulations for sample size n = 100 in the left part and the results for sample
size n = 1000 in the right part of the table.

n = 100 n = 1000
Mean Bias RMSE RELSE Mean Bias RMSE RELSE

α̂true 0.500 0.000 0.101 1.001 0.501 0.001 0.033 1.002
β̂true 1.000 0.000 0.110 0.958 0.998 -0.000 0.033 0.997
γ̂true -0.997 0.003 0.104 1.009 -0.999 0.001 0.032 1.005

α̂naive 0.392 -0.108 0.162 0.927 0.404 -0.096 0.103 0.911
β̂naive 0.910 -0.090 0.159 0.963 0.913 -0.087 0.096 0.967
γ̂naive -0.917 0.083 0.148 0.957 -0.920 0.080 0.089 0.960

α̂BSIMEX 0.482 -0.018 0.139 0.892 0.500 0.000 0.049 0.873
β̂BSIMEX 0.982 -0.018 0.155 0.900 0.997 -0.003 0.062 0.803
γ̂BSIMEX -0.980 0.020 0.140 0.906 -0.994 0.006 0.054 0.841

% risky obs. dropped ry = 80 rx = 78 ry = 80 rx = 74
Obs. dropped 19.827 185.193

Table 3. Estimation results for Design 2. This table contains the results of the Monte-
Carlo simulations for sample size n = 100 in the left part and the results for sample
size n = 1000 in the right part of the table.

n = 100 n = 1000
Mean Bias RMSE RELSE Mean Bias RMSE RELSE

α̂true 0.494 -0.006 0.101 1.002 0.501 0.001 0.032 0.988
β̂true 0.998 -0.002 0.104 1.007 0.998 -0.002 0.032 1.006
γ̂true -1.004 -0.004 0.110 0.959 -0.999 0.001 0.032 1.015

α̂naive 0.328 -0.172 0.216 0.931 0.343 -0.157 0.162 0.920
β̂naive 0.881 -0.119 0.180 1.006 0.884 -0.116 0.123 0.994
γ̂naive -0.896 0.104 0.170 0.924 -0.889 0.111 0.117 0.982

α̂BSIMEX 0.468 -0.032 0.175 0.815 0.497 -0.003 0.062 0.829
β̂BSIMEX 0.971 -0.029 0.182 0.858 0.994 -0.006 0.069 0.819
γ̂BSIMEX -0.978 0.022 0.167 0.832 -0.990 0.010 0.068 0.774

% risky obs. dropped ry = 82 rx = 80 ry = 82 rx = 77
Obs. dropped 28.879 277.964

The relative standard error, RELSE, is defined as the ratio of the average stan-
dard error of the estimator over the number of completed MC replications to the
empirical standard deviation of the estimator. When the number of replications
tends to infinity, the standard error of the estimates converges to the true stan-
dard error, for a finite number of observations n. A deviation of RELSE from 1
provides information about the accuracy of the estimation of the standard error
based on the asymptotic distribution.
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Table 4. Estimation results for Design 3. This table contains the results of the Monte-
Carlo simulations for sample size n = 100 in the left part and the results for sample
size n = 1000 in the right part of the table.

n = 100 n = 1000
Mean Bias RMSE RELSE Mean Bias RMSE RELSE

α̂true 0.497 -0.003 0.093 1.081 0.498 -0.002 0.033 0.969
β̂true 0.997 -0.003 0.103 1.007 0.998 -0.002 0.032 1.027
γ̂true -1.001 -0.001 0.103 1.008 -1.002 -0.002 0.032 1.006

α̂naive 0.362 -0.138 0.187 0.993 0.373 -0.127 0.133 0.926
β̂naive 0.582 -0.418 0.432 1.013 0.586 -0.414 0.415 1.035
γ̂naive -0.818 0.182 0.223 0.995 -0.822 0.178 0.182 1.024

α̂BSIMEX 0.531 0.031 0.160 0.943 0.543 0.043 0.072 0.887
β̂BSIMEX 0.906 -0.094 0.220 0.946 0.920 -0.080 0.107 0.887
γ̂BSIMEX -0.948 0.052 0.169 0.936 -0.966 0.034 0.072 0.825

% risky obs. dropped ry = 80 rx = 38 ry = 78 rx = 32
Obs. dropped 17.970 167.944

Table 5. Estimation results for Design 4. This table contains the results of the Monte-
Carlo simulations for sample size n = 100 in the left part and the results for sample
size n = 1000 in the right part of the table.

n = 100 n = 1000
Mean Bias RMSE RELSE Mean Bias RMSE RELSE

α̂true 0.505 0.005 0.098 1.031 0.500 0.000 0.031 1.023
β̂true 1.002 0.002 0.103 1.020 0.999 -0.00 0.033 0.984
γ̂true -1.000 0.000 0.106 0.985 -1.000 0.000 0.033 0.983

α̂naive 0.301 -0.199 0.247 0.922 0.299 -0.201 0.206 0.952
β̂naive 0.563 -0.437 0.455 0.986 0.563 -0.437 0.439 0.992
γ̂naive -0.787 0.213 0.255 0.980 -0.786 0.214 0.218 0.951

α̂BSIMEX 0.549 0.049 0.191 0.910 0.567 0.067 0.108 0.724
β̂BSIMEX 0.909 -0.091 0.246 0.939 0.931 -0.069 0.115 0.837
γ̂BSIMEX -0.937 0.063 0.192 0.906 -0.960 0.040 0.100 0.669

% risky obs. dropped ry = 81 rx = 49 ry = 81 rx = 45
Obs. dropped 27.455 261.851

As one can see from the tables, the bias and the RMSE are considerably re-
duced for all models compared to the case when applying the naive estimator. As
expected, the bias is somewhat larger for the small sample than for n = 1000.
The same can be said about the RMSE which decreases considerably with a
larger sample size. The results also show that a higher variance of the measure-
ment error ui (Tables 4 and 5) yields less precise and more biased estimates
which would be of little use for the data user in order to get information about
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the true data generating process. Considering the RELSE for small sample sizes
the standard errors cannot be estimated with sufficient precision which was to
be expected. However, what is surprising, is that the estimates of RELSE for
n = 1000 become worse. We think that this is due to the low number of bootstrap
replications we chose in order to reduce the computational burden.9 We will in-
crease the number of replications in future work. Overall we can conclude that
the quality of the BSIMEX estimates comes close to those for the original data.

In order to analyze the degree of protection we give in addition the percent-
age of risky observations dropped for Yi and Xm

1i which is denoted as ry and
rx, respectively. For example, if the data collecting institution wants to blank
sensitive observations above the 90%-quantile for a sample of size n = 100, the
total amount of risky observations is 10. Then the measure gives the percentage
of how many of the 10 risky observations are really dropped from the sample.
Due to the random component vi in the blanking process, data below the 90%
quantile are also dropped while some risky data above but close to the 90%-
quantile are retained in the sample. As can be seen from Table 2-5, we actually
blank about 80% of the risky observations in the corresponding quantiles for the
dependent variable. The protection due to the blanking process is therefore rela-
tively high. Regarding the masked variable Xm

1i , for σ2
u = 0.01 the percentage of

risky observations dropped is also relatively high. For the designs with σ2
u = 0.5,

the amount of protection is lower. However, the additional protection due to the
blanking procedure relatively to the protection due to the masking procedure is
still considerable.

4 Conclusion

In this paper we propose a method for data disclosure limitation which combines
blanking and masking by noise addition. In order to correct the estimates for
the missing data and the presence of measurement errors we apply the SIMEX-
method to the IPW-estimator. The user only needs the variance of the measure-
ment error term and the conditional probability that the observation is blanked,
in order to apply the proposed estimation method. The method can be applied to
the estimation of both linear and nonlinear models. Monte Carlo evidence shows
that the proposed method seems to be appropriate to yield estimates sufficiently
close to those based on the original data set, even if the estimated variances are
a little bit higher. The simulation results also reveal that the proposed data dis-
closure limitation method behaves well in protecting the sensitive observations
and in offering additional protection relatively to the case when applying only
blanking or masking by noise addition.

However, there remain further research topics. First, an extension of the Monte
Carlo Study to investigate the finite sample properties in estimating nonlinear
models is in progress. Second, a trade-off analysis between bias and efficiency for
different specifications of the blanking error and the measurement error should
be carried out. This would shed light on the relation between disclosure risk and
9 We used only 50 bootstrap replications.
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estimation quality. Finally, it would be worth to investigate if other combina-
tion of statistical estimation methods like for example SIMEX and imputation
methods yield better results.
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Abstract. The rank based proximity swap has been suggested as a data masking 
mechanism for numerical data.  Recently, more sophisticated procedures for 
masking numerical data that are based on the concept of “shuffling” the data 
have been proposed.  In this study, we compare and contrast the performance of 
the swapping and shuffling procedures.  The results indicate that the shuffling 
procedures perform better than data swapping both in terms of data utility and 
disclosure risk.  

Keywords: Confidentiality, Data masking, Privacy, Shuffling, Swapping. 

1   Introduction 

The need for protecting numerical data from disclosure has gained considerable 
importance in recent years.  Government agencies which release data have always 
been interested in this problem.  However, with the increase in the ability of 
organizations to gather, store, analyze, disseminate, and share data, there has also 
been a growing demand for commercial organizations to secure sensitive data from 
disclosure.  Recent legislation worldwide has made this an important issue for all 
organizations that gather and store any sensitive information. 

A host of techniques are available for protecting numerical data from disclosure.  
These include rounding or coarsening, perturbation, micro-aggregation, data 
swapping, and more recently, data shuffling.  Muralidhar and Sarathy [13] provide a 
comprehensive discussion of the different techniques for protecting numerical data.  
With the exception of swapping and shuffling, most other data masking techniques 
involve the modification of the original values of the confidential variables.  Many 
users find such modification of values to be objectionable [17] and hence are less 
likely to use the modified data.  By contrast, by swapping or shuffling the original 
values, these two techniques leave the original data unmodified.  Hence, these 
techniques are more likely to be accepted by users who find “data modification” 
objectionable.  In addition, it is also easier to explain the concept of swapping or 
shuffling compared to other advanced techniques.   
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Of the two techniques, data swapping has a longer history while the shuffling 
procedure is relatively new.  Hence, there is a need to compare the contrast the 
performance of the two techniques in terms of disclosure risk and data utility.  In this 
study, we perform such a comparison using simulated data.  The remainder of this 
paper is organized as follows.  In the next section, we present a brief description of 
data swapping and data shuffling.  In the third section, we present the data utility and 
disclosure risk measures used in this study.  In the fourth section, we describe the 
results of simulation experiments conducted to evaluate the relative performance of 
the two techniques.  The final section presents the conclusions.    

2   A Brief Description of the Techniques 

2.1   Data Swapping 

Data swapping was originally proposed by Dalenius and Reiss [3] for masking 
confidential categorical, rather than numerical, variables.  Fienberg and McIntyre [6] 
provide an excellent discussion of the history of data swapping and its relationship to 
other methods.  In this section, we focus on methods for swapping numerical 
variables.  Reiss et al. [14] swapped numerical data using an optimization approach to 
maintain the first and second order moments.  This approach is computationally 
difficult and its disclosure risk remains to be evaluated.   

Moore [10] describes the best known procedure for swapping numerical data based 
on the data swapping algorithm proposed by Brian Greenberg in an unpublished 
manuscript. Let X represent the original, confidential numerical variables and Y, the 
masked variables (swapped or shuffled). The rank-based proximity swap (hereafter 
referred to simply as data swapping) for numerical variables can be described as 
follows [10].  Sort the data by the kth confidential variable Xk  X. Let x(i),k 
represent the observation with rank (i) of the sorted variable Xk. Replace x(i),k with 
the observation whose rank is (j) (which now becomes y(j),k). Correspondingly, 
replace the observation with rank (j) (whose value is y(i),k) with x(j),k.  Repeat the 
process for every i and k to result in Yk and repeat the process of every k to result in 
Y. The choice of ranks (i) and (j) in the swapping process depends on a masking 
parameter.  For a confidential variable “a” (Xk, in our case) Moore [10] uses a 
masking parameter called the “swapping distance”, defined as follows: 

Determine a value P(a), with 0 < P(a) < 100.  The intent of the procedure is to swap 
the value of ai with that of aj, so that the percentage difference of the indices, i and j, 
is less than P(a) of N. That is |i – j| < P(a)*N/100 (Moore 1996, 6). 

The larger the value of P(a), the larger the value of |i – k|, and the greater the 
distance between the swapped values, and vice versa.  The biggest advantage of data 
swapping is that the marginal distributions of the individual confidential variables are 
identical to those of the original variables.  Assuming a uniform distribution, Moore 
[10] also shows an inverse relationship between swapping distance and data utility, 
and a direct relationship between swapping distance and disclosure risk, resulting in a 
trade-off between data utility and disclosure risk.   
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2.2   Data Shuffling 

Unlike data swapping where the values of the confidential attributes are “exchanged” 
between records i and j, in data shuffling the value of the confidential variable of 
record i are assigned to that of j, the value of the confidential variable of record j is 
assigned to k, and so on, in a specific manner so as to maintain certain characteristics 
of the data.  Currently, there are two approaches that can be used to shuffle the data, 
namely, based on Latin Hypercube Sampling (LHS) [4] and post perturbation reverse 
mapping approach [11, 13].    

The LHS approach proposed by Dandekar et al. [4] uses Latin Hypercube 
Sampling [9] and the rank correlation refinement [8] to generate a new synthetic 
dataset that reproduces both the univariate and multivariate structure of the original 
dataset.  The multivariate structure is reproduced in the sense that the rank order 
correlation of the masked dataset is the same as that of the original dataset.  This 
approach also uses an iterative refinement approach to reduce the difference in the 
rank order correlations of the original and shuffled data.  For a complete description 
of the procedure and its performance, please see [4].  Dandekar et al. [4] suggest 
generating the shuffled values using the inverse cumulative distribution function of 
the confidential variable.  However, this procedure can be easily modified so that the 
original values are directly used in the newly generated dataset.   

Muralidhar and Sarathy [11] independently proposed “data shuffling” as a data 
masking approach.  The procedure proposed by Muralidhar and Sarathy [11, 13] 
involves two steps.  The first step involves the generation of perturbed values of the 
confidential variables from the conditional distribution of the confidential variables, 
given the non-confidential variables.  Once the perturbed values have been generated, 
the second step reverse maps the rank ordered values perturbed values to the rank 
ordered original values.  For a complete description of the data shuffling procedure 
and its performance, please see Muralidhar and Sarathy [13].   

In the absence of non-confidential variables, the two procedures reduce to two 
different approaches for generating an independent dataset with the same joint 
distribution (in the sense of rank order correlation) as the original dataset for the 
following reason.  When there are no non-confidential variables, then the conditional 
distribution of the confidential variables given the non-confidential variables reduces 
to the generation of an independent dataset with the same joint distribution as the 
confidential variables.  It is possible that the iterative refinement proposed in LHS 
could yield better results.   

The major difference between the two procedures lies in the manner in which 
they address non-confidential variables.  Data shuffling explicitly accounts for the 
presence of the non-confidential variables and generates the perturbed values based 
on the conditional distribution of the confidential variables given the non-
confidential variables.  Hence, in addition to maintaining relationships among 
confidential variables, data shuffling also maintains relationships between 
confidential and non-confidential variables.  By contrast, the primary objective of 
LHS is to generate a new “synthetic” dataset when the entire dataset is to be 
perturbed and does not explicitly address the issue of non-confidential variables.  
When such variables are present, they remain unmodified while the confidential  
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variables are masked, leading to attenuation in the relationship among confidential 
and non-confidential variables in the masked data.  In this sense, data shuffling can 
be considered more general than the LHS procedure.  

3   Criteria for Evaluating Performance of Data Shuffling and Data 
Swapping 

In this section, we describe the specific measures used to evaluate the performance of 
data shuffling and data swapping.  Consistent with prior studies, we use two major 
criteria, namely, data utility and disclosure risk in evaluating performance.   

3.1   Data Utility 

Data utility is the extent to which the results from analyzing the masked data are 
similar to the results from analyzing the original data.  A variety of measures have 
been proposed for this purpose.  However, both shuffling and swapping possess one 
important characteristic, namely, that the univariate distribution of the variables 
remains exactly the same.   

Given that the univariate characteristics remain unchanged, it is natural then to 
consider the extent to which shuffling and swapping maintain multivariate 
characteristics.  Both procedures rely on rank order correlation for masking the data.  
Pair-wise rank order correlation is a better measure of the relationship among 
variables since, unlike product moment correlation that captures only linear 
relationships, rank order correlation has the ability capture all monotonic 
relationships.  In situations where it can be assumed that the data has a multivariate 
normal distribution, it is adequate to consider only product moment correlation since 
all relationships in such a case will be linear.  However, in the general case 
multivariate normality cannot be assumed, it is preferable to use rank order 
correlation to measure relationships among variables.  In order to provide the high 
data utility, the rank order correlation of the masked and original data should be the 
same.  Hence, our first measure of data utility will be the extent to which the shuffling 
and swapping maintain rank order correlation.  In practice, many users of the data will 
use product moment correlation in addition to (or in place of) rank order correlation, 
even if the dataset is not normal.  For these users, it is important that the product 
moment correlation matrix for the masked data be very similar to that of the original 
data.  Hence, it is necessary to evaluate the extent to which the product moment 
correlation of the masked data is similar to that of the original data.   

Thus, a comparison of the utility of shuffling and swapping will be based on the 
comparison of the difference resulting from using the rank order or product moment 
correlation computed from the masked data, in place of the same matrices computed 
from the original data.  Note that similar measures have been suggested and used in 
prior studies [5, 13]. 

3.2   Disclosure Risk 

Disclosure risk is assessed using identity disclosure and value disclosure.  Identity 
disclosure is the ability of an intruder to identify a particular released record as 
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belonging to a particular individual.  Value disclosure is the ability of an intruder to be 
able to estimate the value of a confidential attribute using the released data.  Consistent 
with the prior literature, we will use a broad definition of disclosure to include “partial” 
disclosure where an intruder may not be able to identify an individual with certainty or 
the exact value of a confidential variable, but is able to identify an individual or 
estimate a value with greater certainty using the released data. 

In assessing disclosure risk, we use the approach found in Fuller [7]. The intruder, 
using information on certain original variables, along with the masked data, attempts 
to first re-identify a masked record as belonging to a particular individual. 
Subsequently, the intruder attempts to estimate true confidential values. We also 
assume that the intruder possess accurate information on the aggregate characteristics 
of the entire, original dataset. These assumptions imply that an intruder is able to 
develop a prediction equation of the confidential variables, using the masked 
variables.  The proportion of variability in them masked variables by the original 
variables, using this prediction equation, provides a measure of the risk of value 
disclosure. Note that this measure represents a lower bound on the risk of value 
disclosure since an intruder may use more sophisticated approaches to result in even 
greater level of disclosure [12]. 

Ideally, a masking procedure should result in masked variables that provide little or 
no information about the original variables, while maintaining the same relationship 
among the masked variables to be the same as that found in the original, confidential 
variables. 

4   Description of the Simulation Experiments 

4.1   Experiment 1 

We conducted two different simulation experiments to compare the effectiveness of 
swapping and shuffling.  The first simulation experiment consisted of generating a 
dataset of size n (= 30, 100, and 1000) generated from a bivariate normal distribution 
with a specified product moment correlation  (= 0.05, 0.25, 0.50, 0.75, 0.95).  For 
both variables, the mean and variance were specified as 0 and 1, respectively.  We 
masked the data using the shuffling procedure and three specifications of the 
proximity parameter (10%, 50%, and 100%) for the swapping procedure.  The 
product moment and rank order correlation between the two variables for the original 
data, the shuffled data, and the three swapped datasets were computed.  The 
difference in the respective correlation between the original and the masked data was 
computed and recorded.  The process was then repeated 1000 times.  The average 
difference and the variance of the difference from the 1000 replications were 
computed.  The entire simulation was then repeated for all sample sizes and specified 
population correlation combination.   

The above dataset was also used to assess value disclosure.  The correlation 
between each of the original variable and the corresponding masked variables was 
computed and recorded.  The proportion of variability explained was then computed 
as the square of the correlation coefficient.  The average proportion of variability 
explained for each variable was computed as the average of the 1000 replications.   
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4.2   Experiment 2 

The objective of the second simulation experiment was to assess the risk of identity 
disclosure.  In this experiment, we generated a dataset of size n consisting of k 
variables from a multivariate normal distribution.  The mean vector of the dataset was 
specified as 0 and the covariance matrix was specified as the identity matrix.  Four 
sets of masked data (one shuffled and three swapped) were generated for this dataset.  
Record linkage was performed on the datasets using the procedure suggested by 
Fuller [7].  The number of records that were re-identified was recorded.  The entire 
process was repeated 1000 times.  The average percentage of records re-identified 
was computed.  The experiment was conducted for four values of n (= 30, 100, 1000) 
and five values of k (= 2, 3, 4, 5, 6).   

5   Discussion of the Results 

5.1   Data Utility 

Tables 1 and 2 summarize the results of the simulation experiment conducted to 
evaluate the relative performance of shuffling and swapping.  Table 1 provides the 
results of the simulation experiment for each n and  combination, the average and 
variance in the difference in the rank order correlation between the masked and 
original variables for shuffling and the three swapping procedures.  For data shuffling, 
even for a very small dataset (n = 30), the absolute average difference in the rank 
order correlation between the masked and original data is always less then 0.006.  
When n = 100, the largest absolute average difference is even small (less than 0.002). 
For n = 300 and 1000, the average difference is practically negligible.  The variance 
of the difference is also small (no more than 0.008 for any n and  combination).  
These results indicate that, if the shuffled data is used in place of the original data, the 
rank order correlation obtained from the masked data is likely to be very close to that 
of the original data.   

Data swapping procedures do not perform as well as data shuffling.  Even when 
the data is swapped in close proximity (10%), there is a consistent attenuation (or 
reduction) in the rank order correlation for all n and  combinations.  Even when 
proximity parameter is only 10%, for n = 30 and  = 0.95, the attenuation is consistent 
and of the order of −0.05.  For the same experimental parameters, when swapping is 
performed with proximity parameter = 50% and  = 0.95, the average attenuation is -
0.69 and for proximity parameter = 100%, the average attenuation is -0.94.  For a 
bivariate normal population, when  = 0.95 the rank order correlation is of the order 
of 0.945.  If we employ swapping with proximity parameter of 50%, the resulting 
rank order correlation is like to be of the order of only 0.25.  This would lead users to 
conclude that the strength of the relationship between the two variables is much 
smaller than the actual relationship in the original dataset.  More importantly, for 
exactly the same datasets, the results indicate that rank order correlation of the 
masked data is very close to that of the original data.  Thus, if maintaining rank order 
correlation is used as the criteria for assessing data utility of the masked data, then the 
results of this experiment indicate that, in every case, data shuffling performs better 
than all three versions of the swapped data.  
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Table 1. Average and Variance of the Difference between the Rank Order Correlation of the 
Original and Masked Data 
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Table 2. Average and Variance of the Difference between the Product Moment Correlation of 
the Original and Masked Data 

 

The results of the simulation experiment to assess the extent to which the data 
masking procedures maintain product moment correlation is provided in Table 2.  As 
in the previous table, Table 2 provides, for each n and  combination, the average 
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difference in the product moment correlation of the masked data and the original data 
and the variance of the difference.  Carlson and Salabasis [2] have shown that 
replacing a related dataset with another (even independently generated) dataset results 
in attenuation of the product moment correlation.  Hence, we expect all masking 
procedures used in this study to exhibit attenuation in correlation.  However, as the 
size of the dataset increases, the attenuation should decrease and approach zero. 

Data shuffling performs extremely well in maintaining product moment correlation 
as well.  For all datasets of size 300 and 1000, the correlation attenuation is very small 
(−0.006).  For dataset of size 100, the attenuation is of the order of −0.017 when  = 
0.75 and smaller in all other cases.  The largest differences are observed for n = 30 
where for  = 0.75, the attenuation is of the order of −0.043.  The variance of the 
difference is relatively small and never exceeds 0.005 in any case.   

Among the swapped datasets, the best results are observed when the proximity 
parameter is set to 10%.  The level of attenuation ranges from a high of −0.130 (n = 
30,  = 0.95) to a low of −0.004 (n = 1000,  = 0.05).  When the proximity parameter 
is 50%, the level of attenuation ranges from −0.034 (n = 1000,  = 0.05) to a high of 
−0.722 (n = 30,  = 0.95), and for the proximity parameter value of 100%, the 
attenuation ranges from −0.050 (n = 1000,  = 0.05) to −0.957 (n = 30,  = 0.95).  In 
general, these results also support the theoretical derivations provided by Moore [10] 
regarding the reduction in correlation when data swapping is used.   

It is clear that users would be better off using shuffling as the making procedure 
instead of swapping, since based on the conclusive evidence in Table 2 where, in 
every case considered, the average attenuation in correlation from the shuffled data is 
smaller than that from the swapped data. 

In summary, when data utility is evaluated either in terms of the ability to maintain 
rank order correlation or product moment correlation, the shuffled data performs 
better than all three swapped datasets for every combination of n and .  Hence, in 
terms of data utility, the performance of data shuffling is superior to the performance 
of data swapping.  In the following section, we show that this is true for the ability to 
prevent risk of disclosure as well.   

5.2   Disclosure Risk 

Disclosure risk was evaluated using two alternate procedures, namely, risk of identity 
disclosure and the risk of value disclosure.  The results of the experiment conducted 
to assess value disclosure are provided in Table 3.  For each n and  combination, 
Table 3 provides the proportion of variability explained in the original variable (X1 or 
X2) using the corresponding masked variable (Y1 or Y2).  As discussed earlier, one 
of the attractive features of data shuffling is that it is based on the conditional 
distribution approach and hence should provide the highest possible level of security 
[12].  The results in Table 3 verify this.  Using the released variable Yi the proportion 
of variability explain in the corresponding confidential variable Xi is very small.  
Even when the size of the dataset is small (n = 30), the proportion of variability 
explained in Xi using shuffled Yi never exceeds 0.004.  For all larger datasets, the 
proportion of variability explained is practically negligible and never exceeds 0.0004.   
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Table 3. Proportion of Variability in the Original Variable Explained by the Masked Variable 

 

By contrast, the performance of data swapping is very poor.  When the proximity 
parameter is 10% (that is records within close proximity are swapped), the proportion 
of variability explained is very high.  In every case considered, the proportion of 
variability explained exceeds 0.820.  This implies that an intruder would be able to 
get a very accurate estimate of the true value of the confidential variable using the 
released data.  One interesting aspect is that, as the size of the dataset increases, the 
predictive ability of the intruder increases correspondingly.  When n = 30 and the 
proximity parameter is set to 10%, the proportion of variability explained ranges from 
(0.825 to 0.834) while that for n = 1000 is consistently around 0.887.  Similar results 
are observed when the proximity parameter is set to 50%, although the results are not 
quite as bad as those for proximity parameter = 10%.  When the proximity parameter 
is set to 100%, the proportion of variability explained in Xi using the swapped Yi 
reduces dramatically.  Another interesting aspect is that for larger sample sizes, the 
proportion of variability explained actually decreases.   

Comparing the two procedures is relatively simple.  In every case considered, the 
proportion of variability explained in Xi using the shuffled Yi is smaller than the 
proportion of variability explained in Xi using the swapped Yi.  Thus, releasing the 
shuffled data provides an intruder with less information regarding the original 
variables, thereby resulting in lower level of disclosure risk.   
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The results for identity disclosure risk are very similar and are provided in Table 4.  
This table provides, for several n and for varying number of variables, the proportion 
of records re-identified using the procedure suggested by Fuller [7].  While other 
procedures for record linkage are available [18], Fuller’s procedure is optimal for 
multivariate normal datasets that were used in the experiment.  The results indicate 
that the shuffled data provides the greatest protection against identity disclosure.  In 
almost every case, the proportion of records re-identified using the shuffled data is 
very close to the probability of re-identification by chance (1/n).  For instance, when n 
= 30, the proportion of records re-identified for any number of variables is around 4% 
whereas the probability of re-identification by chance is approximately 3.33%.  When 
n = 1000, the probability of re-identification by change is approximately 0.10% and 
the actual re-identification rate for the shuffle data is in the range 0.09% to 0.12%.  
Thus, we can conclude that the re-identification rate for the shuffled data is practically 
the same as the re-identification by chance.  This again provides empirical evidence to 
support the conditional distribution approach used to generate the shuffled data. 

The performance of data swapping varies widely.  When the proximity parameter is 
set to 10%, the proportion of records re-identified is very high.  With 6 confidential 
variables, an intruder would be able to identify at least 96% of the records (n = 30) to 
as high as 99.99% of the records (n = 1000).  Even when there are only 2 confidential 
variables, an intruder would be able to identify as much as 60% (n = 30) and at least 
37% (n = 1000).  The re-identification results when the proximity parameter is set to 
50% are a better than those observed when the proximity parameter is 10%.  When the 
proximity parameter is set to 100%, the re-identification results are, in general, low.   

Table 4. Percentage of Records Re-Identified 
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Comparing shuffling and swapping, as in the previous cases, for every combination 
of n and , the results for the shuffled data are better than those observed for the 
swapped data.  It should be noted however, that the results for the shuffled data and 
those for the swapped data when the proximity parameter is 100% are very close to 
each other (but shuffling is still better albeit by a small margin).  Thus, in terms of 
identity disclosure, we reach the same results for all other criteria, that by providing 
lower rates of re-identification resulting in lowered disclosure risk, the shuffled data 
dominates the performance of all 3 sets of swapped data.   

In summary, the conclusion that we reach from the assessing disclosure risk is that 
by both measures, namely, value disclosure and identity disclosure, releasing the 
shuffled data results in lower risk of disclosure that releasing the swapped data, 
regardless of the size of the dataset and the number of variables.   

Overall, when we consider both data utility and disclosure risk, the results are 
straight-forward.  On every criteria considered in this study, the results of the 
simulation experiments indicate that the shuffled data provide better results (better 
data utility or lower disclosure risk) than the swapped data.  Hence, we can conclude 
that data shuffling is a better data masking procedure than data swapping.   

6   Conclusion 

The objective of this study was to investigate the relative performance of data 
shuffling and data swapping.  We conducted several simulation experiments to 
perform this evaluation.  The results of the simulation experiments are consistent and 
clear.  Regardless of the characteristics of the dataset used in the experiments, and 
regardless of the criteria used for evaluation (data utility based on rank order or 
product moment correlation and disclosure risk based on value or identity disclosure), 
data shuffling provides better performance (higher data utility and lower disclosure 
risk) than data swapping.  Hence, data shuffling should always be the preferred 
approach for data masking.   

Finally, early research on disclosure control techniques, particularly those relating 
to numerical microdata seemed to imply an inherent, unavoidable trade-off between 
data utility and disclosure risk.  The implication of this trade-off was that if a 
technique resulted in higher data utility, an increased level of disclosure risk was also 
unavoidable.  However, recent studies [1, 12, 13] have provided strong evidence to 
indicate that this trade-off may not always exist and that some techniques may 
simultaneously provide higher data utility and lower disclosure risk.  Muralidhar and 
Sarathy [13] theoretically proved that data shuffling provides better (or equal) data 
utility and lower (or equal) disclosure risk compared to data swapping (with any 
proximity parameter) which is verified by the empirical evidence in this study.  
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Abstract. Statistical agencies alter values of identifiers to protect re-
spondents’ confidentiality. When these identifiers are survey design vari-
ables, leaving the original survey weights on the file can be a disclosure
risk. Additionally, the original weights may not correspond to the altered
values, which impacts the quality of design-based (weighted) inferences.
In this paper, we discuss some strategies for altering survey weights when
altering design variables. We do so in the context of simulating identifiers
from probability distributions, i.e. partially synthetic data. Using simu-
lation studies, we illustrate aspects of the quality of inferences based on
the different strategies.

Keywords: Disclosure; Multiple imputation; Swapping; Synthetic data;
Weights.

1 Introduction

Survey design variables often contain identifying information, for example race
in a survey that over-samples minorities or establishment size in a probability
proportional to size sample of businesses. To limit disclosure risks, statistical
agencies may need to alter these variables before releasing the data to the pub-
lic. It also may be necessary to alter the survey weights, which typically are
deterministic functions of the design variables. Failure to do so can leave iden-
tifying information on the file, effectively defeating the purpose of the masking
[1]. For example, an unaltered weight could reveal that a person was part of
a minority group or could disclose the size of the establishment. Not altering
weights also could affect the quality of data analysts’ estimates, because the
weights may not be appropriate for making the released sample representative
of the population.

In this paper, we discuss some strategies for adjusting survey weights when
altering design variables to limit disclosure risks. We do so in the context of sim-
ulating identifiers from probability distributions, i.e. partially synthetic data.
Using simulation studies, we illustrate aspects of the data quality and confi-
dentiality of the different strategies. We also examine the performance of the
strategies when swapping identifiers.
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2 Partially Synthetic Data and Weights

We first review partially synthetic data. Then, we describe some strategies to
adjust weights when replacing design variables with synthetic values.

2.1 Partial Synthesis

Partially synthetic data comprise the units originally surveyed with some col-
lected values, such as sensitive values at high risk of disclosure or values of
key identifiers, replaced with multiple imputations. Releasing partially synthetic
data can preserve confidentiality, since identification of units and their sensitive
data can be difficult when some released data are not actual, collected values.
Furthermore, using appropriate data generation and estimation methods [2]—
based on the concepts of multiple imputation [3] for missing data—analysts can
make valid inferences for a variety of estimands using standard, complete-data
statistical methods and software, at least for inferences congenial to the model
used to generate the data. Provided the agency releases some description of this
model, analysts can determine whether or not their questions can be answered
using the synthetic data. See [4] and [5] for genuine applications of partially
synthetic data.

Following the derivations of [2], we assume that the agency synthesizes some
design variables, X , based on the observed data, D = (X, Yobs), by drawing new
values from the Bayesian posterior predictive distribution of (X |D). Imputations
are made independently for i = 1, . . . , m times to yield m different synthetic data
sets. These synthetic data sets are released to the public.

From these synthetic data sets, some user of the publicly released data, hence-
forth abbreviated as the analyst, seeks inferences about some estimand Q. In each
synthetic data set di, the analyst estimates Q with some point estimator q and
estimates the variance of q with some estimator v. For i = 1, . . . , m, let qi and
vi be respectively the values of q and v in synthetic data set di. The analyst can
obtain valid inferences for scalar Q by using the following quantities:

q̄m =
m∑

i=1

qi/m (1)

bm =
m∑

i=1

(qi − q̄m)2/(m− 1) (2)

v̄m =
m∑

i=1

vi/m. (3)

The analyst can then use the q̄m to estimate Q and Tp = bm/m+ v̄m to estimate
the variance associated with q̄m. For large sample sizes, inferences for scalar Q
can be based on t-distributions with degrees of freedom νp = (m− 1)(1 + r−1

m )2,
where rm = (m−1bm/v̄m) [2].
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2.2 Survey Weights in Partial Synthesis

In complex surveys, it is well known that analyses that fail to account for the
survey design variables can yield biased inferences [6] [7]. To incorporate the
design, analysts can use survey-weighted estimation, where the survey weight wi

for unit i equals the inverse of the unit’s inclusion probability, multiplied possibly
by adjustments for nonresponse and calibration. For example, a common survey-
weighted estimator of the population mean of Y based on the sample S is

ȳw =
∑

i∈S wiyi∑
i∈S wi

. (4)

Weighted estimates exist for regression coefficients, as well as for the variances
of these estimators.

When synthesizing some sampling design variables X , it is necessary to adjust
weights to reflect the new values. We consider two approaches: (i) recalculate the
weights (RCAL) to be consistent with the synthetic values, effectively making
the synthetic sample representative of the population, and (ii) copy and paste
(CPP) the original weights of records whose original design variables match
the synthetic ones. The RCAL method preserves some properties of the original
sampling weights that CPP does not; for example, the sum of the RCAL weights
equals the sum of the observed weights, whereas the sums are not necessarily
equal for the CPP weights. Additionally, the CPP cannot be applied unless exact
matches are available.

3 Simulation Studies

In this section, we use simulation studies to investigate the implications for data
quality of using survey-weighted analyses based on weights from the RCAL and
CPP methods. For comparisons, we also consider using unweighted (UNW) esti-
mates and survey-weighted estimates based on the old weights (OLDW). The sim-
ulations include stratified sampling, probability proportional to size sampling, and
two stage cluster sampling. We also apply the procedures on genuine data from the
Survey ofYouth in Custody [6]. Unless stated otherwise, all estimates and standard
errors are calculated using the survey package in the R statistical software.

3.1 Stratified Sampling Simulation

We first generate a stratified population of size 20000. The four strata are formed
by crossing two binary variables, X1 and X2. There are approximately 1000,
2000, 10000, and 7000 units in stratum one through four, respectively. We gen-
erate two survey variables, Y1 and Y2, from the following distributions:

y1h ∼ N(μh, σ2
h) (5)

y2h ∼ N(αh + βhy1h, τ2
h) (6)

where μh, σ2
h, αh, βh, and τ2

h differ for each stratum h. The observed data are
a stratified sample of 250 units from each stratum, so that the weight for all
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observations in stratum one equals 4, in stratum two equals 8, in stratum three
equals 40, and in stratum four equals 28.1

For each sample, we synthesize (X1, X2, Y2) from their joint posterior predic-
tive distribution conditional on Y1, which remains unaltered. To do so, we first
simulate replacement values for X1 by using a logistic regression conditional on
Y1. Second, we simulate replacement values for X2 by using a logistic regression
on (Y1, X1), using the synthetic X1 for predictions. Third, we simulate replace-
ment values for Y2 using a linear regression conditional on (Y1, X1, X2), using
the synthetic X1 and X2 for predictions. We repeat this process independently
m = 5 times to obtain five partially synthetic datasets for each D.

We run this simulation 1,000 times. In each replication, we obtain confi-
dence intervals for the means of Y1 and Y2; the percentages of values of Y1
greater than the population 50th, 80th and 95th percentiles, and likewise for
Y2; the two regression coefficients from the linear regression of Y2 on Y1, the
four regression coefficients from the linear regression of Y2 on (Y1, X1, X2); and,
the eight regression coefficients from the linear regression of Y2 on (Y1, X1, X2)
and their interactions. The synthetic 95% confidence intervals are based on the
methods in Section 2.1, with v̄m equal to the design-based variance estimate as
computed in the R software. Because of how R computes variances, the v̄m is
the same for the RCAL and CPP methods, although the point estimates of Q
differ.

To illustrate RCAL and CPP in this setting, suppose one synthesized dataset
comprises 200 records in each of stratum one and stratum two, and 300 records
in each of stratum three and stratum four. Using RCAL, the new weight of all
records in stratum one equals 5, in stratum two equals 10, in stratum three
equals 100/3, and in stratum four equals 70/3. Using CPP, the weight of all
records in stratum one remains at 4, in stratum two remains at 8, in stratum
one remains at 40, and in stratum four remains at 28.

Figure 1 displays box plots of the percentages of the 95% confidence intervals
that contain their corresponding population quantities. As expected, the cover-
age rates based on the observed data (OBS) are around 95%. Those based on
RCAL and CPP also are near 95%. Coverage rates based on method OLDW do
not match those based on the observed data. OLDW is particularly problematic
for analyses involving Y2. Coverage rates based on method UNW are too low
for the means and proportions. This is not surprising, since unweighted means
and percentages are known to be biased in unequal probability samples. Method
UNW does provide coverage rates like those for unweighted analyses based on
the observed data (OBSUNW).

As a check on the amount of alteration in the strata, for each sample we
compare the modes of the m imputed values of the records’ synthetic stratum
indicators to their actual stratum indicators in the observed data. Approximately
45% of records can be placed in their original stratum by using this strategy,
indicating a sizeable number of re-allocations of stratum memberships.

1 The weights actually are slightly different from the integer values because the strata
sizes are not precisely 1000, 2000, 10000, and 7000.
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Fig. 1. Box plots of coverage rates for the twenty-three estimands in the stratified
sampling simulation. The coverage rates based on RCAL or CPP are closest to the
those based on the observed data.

3.2 PPS Sampling Simulation

We generate a population of size 20000 in which the design variable X is a size
variable. We generate X from a log-normal distribution and add a constant so
that all values are far from zero. The minimum size in the population equals 50,
and the maximum size equals 412. The total of the size values equals 1,328,252.
We then generate the survey variables Y1 and Y2 from

y1 ∼ N(1.3x, 322) (7)
y2 ∼ N(1.2x + 0.9y1, 322). (8)

This results in correlations between X and Y1 of 0.63, between X and Y2 of 0.76,
and between Y1 and Y2 of 0.82. We sample 1000 records from this population with
probability proportional to the size variable X using the Hartley-Rao algorithm
[8] For any observation i, the weight is wi = 1328252/(1000xi).

We synthesize (X, Y2) from their joint Bayesian posterior predictive distrib-
ution conditional on Y1, which remains unaltered. To do so, we first simulate
replacement values for X by using a generalized additive model (GAM) condi-
tional on Y1.2 Second, we simulate replacement values for Y2 by using a linear
regression on (Y1, X), using the synthetic X for predictions. We repeat this
process independently m = 5 times to obtain five partially synthetic datasets for
each D.

We run this simulation 1,000 times. In each replication, we obtain confidence
intervals for the means of X , Y1, and Y2; the percentages of values of Y1 greater
2 For more details and code to implement this procedure, contact the second author.
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than the population 50th, 80th and 95th percentiles, and likewise for X and Y2;
the six regression coefficients from the linear regression of Y2 on Y1, Y2 on X ,
and Y1 on X ; and, the three regression coefficients from the linear regression of
Y2 on (Y1, X). The synthetic 95% confidence intervals are based on the methods
in Section 2.1, with v̄m equal to the design-based variance estimate as computed
in the R software.

The CPP method is not applicable here, because the simulated sizes do not
match exactly with original sizes. The RCAL simply involves plugging in the
synthesized values of the xj in 1328252/(1000xj).
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Fig. 2. Box plots of coverage rates for the twenty-one estimands in the PPS simulation.
The coverage rates based on RCAL are closest to the those based on the observed data.

Figure 2 displays box plots of the percentages of the 95% confidence intervals
that contain their corresponding population quantities. The coverage rates based
on the observed data are slightly higher than 95%, because we did not specify the
finite population correction in variance estimates. The coverage rates based on
RCAL closely match those based on the observed data. Those based on OLDW
do not match the observed data coverage rates, especially for analyses involving
the size variable. Method UNW tends to have poor coverages for means and
proportions, producing biased estimates of the population quantities as expected.

As a check on the amount of alteration in the size measures, for each record
we compute the average of the five synthetic sizes. We then find the record
in the population with the closest actual size to that average. Using this ap-
proach, approximately 0.2% of the respondents are correctly re-identified from
the synthetic data. In contrast, releasing the old weights completely undoes the
protection of the synthesis of size, since the original size can be backed out of
the original weight.
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3.3 Two Stage Cluster Sampling

We generate a population of 20000 units in which the data are grouped in 200
clusters. Twenty clusters have size 200; forty clusters have size 150; sixty clusters
have size 100; and, eighty clusters have size 50. We generate the survey variables
Y1 and Y2 from

y1 ∼ N(20 + ωc, 32) (9)
y2 ∼ N(1.2y1 + δc, 202) (10)

where ωc and δc differ for each cluster c. We select observed data from this
population using two-stage cluster sampling. We take a simple random sample
of 40 clusters from the population of 200. For each sampled cluster, we take a
simple random sample of 25 observations.

We synthesize the observed cluster indicators X and Y2 from their joint pos-
terior predictive distribution conditional on Y1. First, we simulate replacement
values for X by using a multinomial logistic regression model conditional on Y1.
Only the observed clusters in each sample are used to fit the model. Second, we
simulate replacement values for Y2 from a normal linear regression on (Y1, X),
using the synthetic X for predictions. We repeat this process independently
m = 5 times to obtain five partially synthetic datasets for each D.

We run this simulation 1,000 times. In each replication, we obtain confidence
intervals for the means of Y1, and Y2; the percentages of values of Y1 greater than
the population 50th, 80th and 95th percentiles, and likewise for Y2; the regres-
sion coefficient of Y1 from the linear regression of Y2 on Y1; and, the regression
coefficient of Y1 from the linear regression of Y2 on (Y1, X). The synthetic 95%
confidence intervals are based on the methods in Section 2.1, with v̄m equal
to the design-based variance estimate as computed with (i) our own variance
estimation code for means and percentages and (ii) the R survey package for
regression coefficients.

For any record in cluster c, the weight equals the product of five and the
inverse of the fraction of records sampled in that cluster. To apply RCAL, only
the second term in the multiplication changes, depending on the new fraction
of records in each cluster. To apply CPP, we use the same process illustrated
in Section 3.1. As in the stratified sampling simulation, variance estimates of
means and proportions are the same for methods RCAL and CPP.

Figure 3 displays box plots of the percentages of the 95% confidence inter-
vals that contain their corresponding population quantities. The coverage rates
based on the observed data are slightly lower than 95%, whereas the coverage
rates based on RCAL and CPP are nearly 95%. The coverage rates based on
OLDW are like those based on RCAL and CPP. In this constructed population,
many weights do not change substantially after applying RCAL and CPP—even
though cluster memberships change—due to the identical second stage sampling
rate and the existence of many clusters of the same population size. This also
explains why RCAL and CPP result in similar coverage rates. Coverage rates
based on UNW are very low for means and proportions but close to 95% for the
regression coefficients.
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Fig. 3. Box plots of coverage rates for the ten estimands in the cluster sampling sim-
ulation. The coverage rates based on RCAL, CPP, and OLDW are close to the those
based on the observed data.

As a check on the amount of alteration in the cluster indicators, we compare
the units’ modal synthesized cluster indicators to their corresponding observed
indicators, like the strategy used in the stratified simulation,. Approximately
15% of units can be placed in their original cluster, indicating a sizeable number
of re-allocations of cluster memberships.

3.4 Survey of Youth in Custody

We now examine the performance of RCAL, the method that performs best across
all the simulations, on genuine data from the 1987 Survey ofYouth in Custody. The
survey interviewed youths in juvenile institutions about their family background,
previous criminal history, and drug and alcohol use. The sampling frame comprises
206 facilities. The eleven facilities (strata 6 to 16) with more than 360 youths were
treated as strata. The remaining facilities were divided in five strata (strata 1 to 5)
based on size. These facilities were sampled with probability proportional to size,
and residents within sampled facilities were sampled with predetermined sampling
fractions. The sample contains 50 facilities and 2,621 youths.

To simplify the illustration, we deleted four facilities for which size was un-
known and ignored the small amount of unit nonresponse. We re-specified the
original survey weights to reflect the smaller number of facilities and clusters in
this reduced dataset. We filled in the small number of missing item values using
univariate re-sampling.3

3 We recommend using the principled approach of multiple imputation to handle miss-
ing data, but the univariate re-sampling is adequate to illustrate the performance of
the RCAL approach.
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Table 1. Point and interval estimates based on observed and synthetic data for Survey
of Youth in Custody

Variable qobs Obs. 95% CI q̄5 Syn. 95% CI
Avg. age 16.7 (16.6, 16.8) 16.8 (16.7, 16.9)
Avg. age at first arrest: Hispanics 13.0 (12.7, 13.2) 13.0 (12.6, 13.2)
Avg. age at first arrest: non-Hispanics 13.0 (12.9, 13.1) 13.0 (12.8, 13.1)
% with age at first arrest < 15 73.4 (71.3, 75.5) 73.1 (70.8, 75.4)
% with age at first arrest > 18 .39 (.16, .62) .40 (.15, .64)
% used drugs 25.4 (23.4, 27.3) 25.2 (23.2, 27.1)
% females 7.4 (6.1, 8.6) 7.5 (6.1, 9.0)

Coefficients in logistic regression of ever violent on
Intercept 1.36 (.80, 1.93) 1.33 (.73, 1.92)
Age at first arrest −.083 (−.126, −.041) −.082 (−.127, −.037)
Black .46 (.25, .67) .48 (.27, .69)
Asian .33 (−.72, 1.38) .76 (−.28, 1.79)
American Indian −.014 (−.551, .523) −.088 (−.726, .549)
Other 1.35 (.56, 2.15) 1.21 (.42, 2.00)

We consider facility membership to be potentially identifying information.
Therefore, we generate new facility identifiers for all records in the dataset.
For strata 6 to 16, we synthesize the stratum value for each observation us-
ing a multinomial regression estimated with records in strata 6 to 16 only. For
purposes of illustration, we include main effects for all twenty-two predictors
in the regression model except for race, education, and who the youth lived
with before being institutionalized. These variables are excluded to enable the
model to be identifiable, since there is multi-collinearity in the data. For strata
1 - 5, we synthesize the facility indicators using another multinomial regres-
sion estimated with records in strata 1 to 5 only. This model excludes from the
synthesis model the youth’s race, education, who they lived with, whether any-
one in the family served time, the type of crime, and their alcohol use. More
terms are dropped because the sample sizes in these facilities are small. A po-
tentially more accurate synthesis model would incorporate informative prior
distributions on the parameters of the logistic regression with all twenty-two
predictors.

We create m = 5 partially synthetic data sets. We then recalculate the survey
weights using the RCAL method, which involves recalculations like described
in the cluster sampling simulation. Table 1 displays the observed and synthetic
point estimates and 95% confidence intervals for a variety of estimands. All
results are based on survey-weighted estimation based on the design. Generally,
the observed and synthetic point estimates and confidence intervals are similar.
The one possible exception is the regression coefficient for the indicator variable
corresponding to Asian race; however, the observed and synthetic confidence
intervals are relatively wide and overlap to an extent.

To check on the amount of alteration in the facility indicators, we apply the
strategy used in the cluster sampling simulation—place the youth in its modal
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Fig. 4. Box plots of coverage rates for swapping percentages of 5%, 30%, 50%, and
100%, going from top panel to bottom panel. None of the methods based on the
swapped data have satisfactory coverage properties.
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imputed facility—and find that approximately 17% of youths can be placed in
their original facility.

4 Extension to Data Swapping

In this section, we examine the performance of the weight adjustment proce-
dures when swapping design variables. We use the stratified sampling simulation.
Rather than synthesizing new stratum indicators, we assign some percentage of
the stratum indicators to be randomly swapped, creating one masked dataset
per observed dataset. Stratum indicators might be swapped with a like value,
resulting in no change for the unit’s stratum in the masked data.

We follow the simulation design in Section 3.1, except that we leave Y2 unal-
tered. We consider swapping rates of 5%, 30%, 50% and 100%. Figure 4 displays
box plots of the percentages of the 95% confidence intervals that contain their
corresponding population quantities. The coverage rates get progressively worse
as the degree of swapping increases. For the 5% swapping simulation, coverage
rates based on RCAL or CPP are better than those based on OLDW or UNW,
but they remain inadequate. With this version of swapping, the methods RCAL
and CPP yield exactly the same weights and hence estimates, since there always
are 250 records in each stratum.

Comparing swapping to partial synthesis, the coverage rates based on RCAL
and CPP are much closer to nominal in the partially synthetic data than in the
swapped data, even though we replaced the values of Y2 in the former but not
the latter. Using a swapping rate of 50% leaves approximately 45% of records’
stratum indicators unchanged, which is the same percentage of records that can
be placed in their correct stratum when using partially synthetic data. But, the
partial synthesis clearly is more effective at preserving the statistical properties
of the data.

5 Conclusions

The simulations in this paper illustrate the importance of survey weights when
altering design variables to limit disclosure risks. Releasing the original weights
can lead to biased inferences or compromise identity of respondents. At least for
partially synthetic data, recalculating the weights to be consistent with released
values can improve design-based estimation. Unfortunately, this approach does
not appear to improve inferences sufficiently when using data swapping of design
variables. Further research is needed to investigate the viability of the recalcula-
tion approach for more complicated multi-stage sampling schemes. Additionally,
research is needed to see how adjustments for non-response and calibration in-
teract with the recalculation approach.
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Abstract. PRAM (Post Randomization Method) is a disclosure control
method for microdata, introduced in 1997. Unfortunately, PRAM has
not yet been applied extensively by statistical agencies in protecting
their microdata. This is partly due to the fact that little knowledge is
available on the effect of PRAM on disclosure control as well as on the
loss of information it induces.

In this paper, we will try to make up for this lack of knowledge, by
supplying some empirical information on the behaviour of PRAM. To
be able to achieve this, some basic measures for loss of information and
disclosure risk will be introduced. PRAM will be applied to one specific
microdata file of over 6 million records, using several models in applying
the procedure.

Keywords: Disclosure control, post randomisation method, information
loss, disclosure risk.

1 Introduction

The Post Randomization Method (PRAM) was introduced in [1] as a method
for disclosure protection applied to categorical variables in microdata files. In [2]
and [3], the method and some of its implications were discussed in more detail.

PRAM produces a microdata file in which the scores on some categorical
variables for certain records are changed with respect to the scores in the original
microdata file. This is usually applied to identifying variables, i.e., variables
that can be used to identify the respondent that corresponds to a record. This
results in a microdata file with scores on identifying variables, that, with certain
probability, are incorrect scores. Hence, the risk of identification of respondents
is reduced: even in case one could make a link between a record in the microdata
file and an individual, the possible incorrectness of the scores yields uncertainty
on the correctness of the link.

Note that PRAM can be regarded as a form of misclassification, where the so
called transition probabilities (i.e., the probabilities of changing a score into an-
other score) completely determine the underlying probability mechanism. These
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transition probabilities are summarized in a Markov matrix called the PRAM-
matrix. Contrary to the general situation, the probability mechanism that de-
termines the misclassification is known in case of PRAM. Since the probabil-
ity mechanism is known, some statistical analyses can still be performed legiti-
mately, be it with a slight adjustment of the standard methods. See, e.g., [4], [5]
and [6]. A similar situation of misclassification with known transition probabil-
ities is the case of Randomized Response (see, e.g., [7] and [8]). In that case it
has been known for some time, that unbiased estimates of population parameters
can be obtained as well, see e.g., [9] and [10].

In order to let a user make legitimate inference, the transition probabilities
should hence be supplied to him. On the other hand, making use of the literature
on inference about misclassification mechanisms (see e.g., [10]), even without the
exact transition probabilities a user could still perform sound analyses.

When applying Statistical Disclosure Control (SDC) methods, one has to deal
with two competing goals: the microdata file has to be safe enough to guarantee the
protection of individual respondents but at the same time the loss of information
should not be too large. For a general discussion, see, e.g., [11]. Moreover, these
competing mechanisms are often the core of the discussion of SDC methods them-
selves, see, e.g., [12] and [13]. However, quantifying the loss of information and the
level of disclosure control can be done in several ways.We will introduce some basic
measures to quantify the loss of information as well as a measure to determine the
level of disclosure control in case of using PRAM.

In this paper we will apply PRAM to a microdata file of 6,237,468 records
and discuss the effect of applying PRAM on the amount of information loss and
the level of disclosure control, using different PRAM-matrices.

In Section 2 we will give a brief description of PRAM. Moreover, in this
section we will introduce the notation concerning PRAM that we will be using
throughout the rest of the paper. The aim of this paper is to investigate the effect
of different PRAM-matrices on disclosure control as well as information loss. In
Section 3 we will therefore define a measure to quantify the effect on disclosure
control. Section 4 contains the definitions of the measures of information loss we
used in our experiments. Both the effect on disclosure control and the effect on
the amount of information, in the different experiments we performed, will be
given in Section 5. Finally, in Section 6 we will briefly summarize the results and
draw some conclusions.

2 A Short Description of PRAM

In this section we will briefly describe the theory involving PRAM, mainly to in-
troduce the notation we will use throughout this paper. For details we refer to [2].

Let ξ denote a categorical variable in the original file to which PRAM will
be applied and let X denote the same variable in the perturbed file. Moreover,
assume that ξ, and hence X as well, has K categories, labeled 1, . . . , K. The
transition probabilities that define PRAM are denoted as

pkl = P(X = l | ξ = k), (1)
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i.e., the probability that an original score ξ = k is changed into the score X = l,
for all k, l = 1, . . . , K. Using these transition probabilities as entries of a K ×K
matrix, we obtain a Markov matrix P that we will call the PRAM-matrix.

Applying PRAM now means that, given the score ξ = k for record r, the score
X for that record is drawn from the probability distribution pk1, . . . , pkK . For
each record in the original file, this procedure is performed independently of the
other records.

To illustrate the ideas, suppose that the variable ξ is gender, with scores ξ = 1
if male and ξ = 2 if female. Applying PRAM with p11 = p22 = 0.9 on a microdata
file with 110 males and 90 females, would yield a perturbed microdata file with, in
expectation, 108 males and 92 females. However, in expectation, 9 of these males
were originally female, and similarly, 11 of the females were originally male.

More generally, the effect of PRAM on one-dimensional frequency tables is
that

E (T X | ξ) = Pt T ξ, (2)

where T ξ = (Tξ(1), . . . , Tξ(K))t denotes the frequency table according to the
original microdata file and T X the frequency table according to the perturbed
microdata file. A conditionally unbiased estimator of the frequency table in the
original file is then given by

T̂ ξ =
(
P−1)t T X . (3)

This can be extended to two-dimensional frequency tables, by vectorizing such
tables. The corresponding PRAM-matrix is then given by the Kronecker product
of the PRAM-matrices of the individual dimensions. Alternatively, one could use
the two-dimensional frequency tables Tξη for the original data and TXY for the
perturbed data directly in matrix notation:

T̂ξη =
(
P−1

X

)t
TXY P−1

Y . (4)

3 Measure of Disclosure Control

In this section we will define the measure we used to specify the effects of the
different PRAM-matrices on the level of (statistical) disclosure control.

A frequently used rule to determine the safety of microdata files is the so
called threshold rule: whenever a certain combination of scores on identifying
variables occurs less than a certain threshold, that combination is considered
to be unsafe. As an example consider the case that the combination of gender,
occupation and age is to be checked for the threshold rule. Moreover, assume
that the threshold is chosen to be 50. Then, if only 43 female surgeons of age
57 exist in the population, each record that corresponds to a female surgeon of
age 57 is considered to be an unsafe record. Even though the threshold rule is
defined in terms of population frequencies, in practice one often only has the
sample file at hand. In that case the rule is usually applied to that sample file,
with an appropriately adjusted threshold.
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In case of using PRAM as an SDC-method this rule does not make any sense:
since the perturbed file is the result of a probabilistic experiment, the unsafe
records would vary over each realization. To deal with this problem, an alter-
native approach was suggested in [14]. In that approach, the disclosure risk is
considered, i.e., the probability that given a score k in the perturbed file, the
original score was k as well. By Bayes rule this can be calculated using

RPRAM(k) = P(ξ = k | X = k) =
P(X = k | ξ = k)P(ξ = k)∑K
l=1 P(X = k | ξ = l)P(ξ = l)

. (5)

Assuming that PRAM is applied to (the combination of) variable(s) ξ and using
the appropriate notation, one could estimate this by

R̂PRAM(k) =
pkkTξ(k)∑K
l=1 plkTξ(l)

. (6)

Note that we used Tξ(k)/n as an estimate of P(ξ = k), where n is the size of the
original microdatafile.

In order to link this PRAM-risk to the traditional threshold rule, we suggest
to use the following definition: a record is considered to be safe, whenever

R̂PRAM(k) ≤ Tξ(k)
τ

, (7)

where τ is the threshold used in the threshold rule for the original microdata file.
Note that a safe record according to the original threshold rule applied to the
original file, will be considered to be safe according to this rule as well. Hence,
we need to verify this inequality for unsafe combinations only. Moreover, the
number of unsafe records according to (7) only depends on the PRAM-matrix
used and the original frequencies, i.e., is independent of the realization.

4 Measures of Information Loss

In this section we will briefly define the measures of information loss we will use
in our experiments.

4.1 Entropy Based Information Loss

In [12] two measures of information loss, based on entropy arguments were in-
troduced, EBIL and IL. The major difference between the two is that the latter
measure makes use of both the original file and the perturbed file.

We can write these measures in the following way:

EBIL(P,G) = −
K∑

l=1

K∑
k=1

TX(l)p←lk log p←lk (8)

IL(P,F ,G) = −
K∑

l=1

K∑
k=1

Tξ,X(k, l) log p←lk (9)
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where Tξ,X(k, l) denotes the number of records with score ξ = k in the original
file F and X = l in the perturbed file G and p←lk = P(ξ = k | X = l). Since
intuitively Tξ,X(k, l) should be close to TX(l)p←lk , we see that EBIL and IL will
not differ much whenever the number of records is large enough, relative to the
number of categories K.

Using similar arguments as in the derivation of the estimator of the PRAM-
risk, the probabilities p←lk can be estimated by

p̂←lk =
pklTξ(k)∑K

m=1 pmlTξ(m)
. (10)

4.2 Frequency Table Based Information Loss

Often frequency tables are calculated for certain (crossings of) variables, as a
first step in investigating a microdata file. Applying PRAM obviously effects
these frequency tables, whenever one of the variables to which PRAM is applied
is part of such a frequency table. Therefore, some measures of information loss
will be defined, based on comparison of the original frequency tables with the
estimated frequency tables, using an estimate that corrects for the fact that
PRAM has been applied.

The first measure is the median of the relative differences between the counts
in the table T ξ based on the original file and the counts in the estimate T̂ ξ based
on the perturbed file:

RDd = Median

{∣∣∣∣∣Tξ(k)− T̂ξ(k)
Tξ(k)

∣∣∣∣∣ , k = 1, . . . , K

}
, (11)

where d denotes the dimension of the frequency table. In this paper we will
only consider d = 1, 2. We used the median as a summarising measure of the
information loss, since small cell counts and empty cells may lead to extreme
situations when adjusting for PRAM.

Note that the relative difference is infinite whenever Tξ(k) = 0 and T̂ξ(k) �= 0.
In our experiments, this only occurred in case of two dimensional tables, with
large numbers of categories for both variables. Hence, for d = 2, we will addi-
tionally calculate the maximum relative difference mRDd over all finite relative
differences and count the number of occurrences of infinity.

Another way to measure information loss, is to use the additional variance
introduced by applying PRAM, when estimating one-dimensional frequency ta-
bles, i.e., the variance of the estimator (3). Obviously, the conditional variance-
covariance matrix of T̂ ξ in equation (3) is given by

Σ
∣∣

T̂ ξ
= Var(T̂ ξ | ξ) = Var

(
(P−1)tT X | ξ

)
=
(
P−1)t Var(T X | ξ)P−1. (12)

We will use the formulas to calculate Var(T X | ξ) as given in [2]. To obtain
a single figure as a measure of information loss, we will use the median of the
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coefficients of variation of the categories of the one-dimensional frequency table.
I.e., we will use

CV = Median

⎧⎨
⎩
√

Σ
∣∣

T̂ ξ
(k, k)

Tξ(k)
, k = 1, . . . , K

⎫⎬
⎭ . (13)

Additionally, we will calculate the maximum coefficient of variation mCV over
the K categories. In our experiments we have that Tξ(k) > 0 for all categories k
of all one-dimensional variables ξ, i.e., the coefficients of variation we consider,
are all finite.

4.3 Linear Regression Based Information Loss

A second type of statistical analysis that is often used to explore a microdata file,
is linear regression. Since PRAM effects categorical variables, a way to measure
the loss of information, is to consider a linear regression on a categorical variable
and to compare the regression coefficients estimated using the original file with
those estimated using the perturbed file.

In this paper we will consider a linear regression model, with income as the
dependent variable and a perturbed variable as explanatory variable. I.e., we
will use the model

Y = E

(
K∑

k=1

βkδ(k)

)
, (14)

with Y the dependent variable income and δ(k) a dummy variable corresponding
to the k-th category of variable ξ on which PRAM is applied. The regression
coefficients β = (β1, . . . , βK)t are estimated, based on the original microdata
file, by

β = [diag (Tξ(1), . . . , Tξ(K))]−1
T y

ξ , (15)

where T y
ξ (k) =

∑
r∈F Yrδξ,r(k), the sum of the response on income over all

records with score ξ = k. When PRAM is applied to ξ, the regression coefficients
βk can be estimated using

β̃ =
[
diag

(
T̂ξ(1), . . . , T̂ξ(K)

)]−1 (
P−1)t T y

X , (16)

where T̂ ξ is given in (3) and T y
X is the analogous of T y

ξ based on the perturbed
file. The measure for the loss of information is then given by

LRD = Median

{∣∣∣∣∣βk − β̃k

βk

∣∣∣∣∣ , k = 1, . . . , K

}
. (17)

Additionally, we will calculate the maximum relative difference mLRD over the
K regression coefficients.
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5 The Empirical Results

In our experiments we used one microdata file of 6 237 468 records, representing
a complete population and containing the categorical variables Gender (with 2
categories), Marital status (with 8 categories of which one is ‘unknown’), Year
of birth (with 89 categories), Place of Residence (with 130 categories of which
one is ‘unknown’) and the continuous variable Income.

To check the effect of the different PRAM-matrices on the disclosure control,
we will use the notion of unsafe records as given in (7), with τ = 100. We will
check two instances of combinations of identifying variables: ‘Place of Residence
× Marital status × Gender’ (RMG) and ‘Place of Residence × Marital status
× Year of birth’ (RMY). RMG consists of 1 806 combined categories (excluding
the codes ‘unknown’), of which 535 occur less than 100 times in the original
microdata file (i.e., are rare combinations), whereas RMY consists of 80 367
combinations, with 20 072 rare occurrences.

5.1 Univariate PRAM

Firstly, we will apply PRAM to one categorical variable at a time. Appendix A
shows the PRAM-matrices that we used for each categorical variable.

To measure the effect on disclosure control, we will count the number of
unsafe combinations, as defined in (7), that will be left after applying each
PRAM-matrix. Obviously, in case of applying PRAM to the variable Gender,
we will not consider RMY, since the number of unsafe combinations in RMY
will not be changed in that case. Similarly, we won’t consider RMG in case of
applying PRAM to Year of birth. In Tables 1 and 2 the results for the different
PRAM-matrices are given.

The results on applying PRAM to Gender show that the number of unsafe
combinations left after applying PRAM, increases with the transition probability
pkk. Indeed, since a large value of pkk yields a high probability that an observed
score equals the original score, this is what one would expect. The same effect
is apparent comparing M2 with M3, M5 with M6, and Y1 with Y4 and Y8.

In most cases, increasing the number of nonzero elements in the PRAM matrix
decreases the number of unsafe combinations. Except in case of M3, M4 and M6,
where the number of unsafe combinations in RMY increases. Moreover, in case
of fully filled matrices, the exact distribution of the probability mass over the
off-diagonal elements does not seem to matter much. See e.g., R1 and R2: they
only differ in the distribution of the mass over the off-diagonal elements within
each block, whereas the number of unsafe combinations is virtually the same.

In Tables 3–6 the results concerning the measures of loss of information as
given in Section 4 are given. In the columns marked ‘# Inf’, the number of infinite
relative differences is shown. The results showed that, indeed, the measures EBIL
and IL did not differ very much (maximum difference of 0.15%). Therefore, we
will only state one of them (IL) in the following tables.
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Table 1. Number of unsafe combinations after applying G- and R-matrices

RMG-unsafe
Matrix τ = 100
G1 464
G2 472
G3 481
G4 489
G5 506
G6 522
G7 528

RMG-unsafe RMY-unsafe
Matrix τ = 100 τ = 100
R1 482 18 797
R2 480 18 780

Table 2. Number of unsafe combinations after applying Y- and M-matrices

RMY-unsafe
Matrix τ = 100
Y1 18 277
Y2 18 236
Y3 17 844
Y4 19 086
Y5 19 054
Y6 17 907
Y7 19 295
Y8 19 309
Y9 17 122
Y10 17 116
Y11 16 651
Y12 17 971
Y13 16 642
Y14 17 971
Y15 17 971

RMG-unsafe RMY-unsafe
Matrix τ = 100 τ = 100
M1 236 12 821
M2 52 11 628
M3 136 16 475
M4 130 16 951
M5 4 16 531
M6 9 17 634
M7 432 16 124
M8 433 15 805
M9 432 15 805

From the results it is also clear that the stated median relative differences
are quite small. However, very large maxima are found as well. These extreme
values are linked with cells with very small original frequency counts: for these
cells a small absolute difference can be a large relative difference.

To put the number of infinite relative differences shown in the results into
perspective, the number of empty cells in the frequency tables concerned, are 3
in G× Y , 232 in Y ×M and 2 547 in Y ×R.

Increasing the number of nonzero elements in the PRAM matrix, does not
have a clear effect on the measures of loss of information: in some instances of
the PRAM-matrices, the loss of information increases, whereas in other cases
it decreases for the same measure of loss of information. Moreover, using one
instance of a PRAM-matrix, the effect on the different measures is not the same
either.
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5.2 Multivariate PRAM

In order to observe the effect of applying PRAM to several categorical vari-
ables at the same time, we applied certain combinations of the previously ment-
ioned PRAM-matrices simultaneously. The combinations we used are given in
Appendix A.

In Table 7 the number of unsafe combinations after applying PRAM to three
categorical variables at the same time are given. Again, only two combinations
of identifying variables are considered: RMG and RMY. On average we see that
applying PRAM in a multivariate way, the number of unsafe combinations that
is left, is smaller compared to the univariate applications. However, we would
like to stress the notion that only comparing the unsafe combinations is not fair:
this should always be related to the amount of information that is lost.

Table 7. Number of unsafe combinations after applying PRAM

RMG RMY
Name τ = 100 τ = 100
PRAM1 429 13 365
PRAM2 100 12 442
PRAM3 22 9 189
PRAM4 127 14 046
PRAM5 427 11 656
PRAM6 429 13 135
PRAM7 0 14 102

We will not consider all measures of loss of information in case of multivariate
PRAM, but only state the results concerning the measure IL, and the results on
two-dimensional relative differences in case PRAM is applied to both variables.
I.e., in case of PRAM1 (PRAM applied to Year of birth, Gender and Marital
Status), we will consider the two-dimensional frequency tables Y × G, Y ×M
and G×M . Tables 8 and 9 show the numerical results.

As we expected, the loss of information according to IL is larger compared to
the univariate results. This is due to the fact that there are many more categories
to consider. Since the definition of IL consist of sums of terms including log p←lk ,
this yields a large value for this measure.

If we want to compare univariate PRAM with multivariate PRAM, we will
have to take both the level of disclosure control as well as the amount of infor-
mation that is lost into account. We expect that applying multivariate PRAM
with the same level of information loss as a univariate application, will yield a
higher level of disclosure control.

The closest values for IL in case of univariate and multivariate PRAM are
the ones corresponding to Y3 and PRAM4. If we then look at the number of
unsafe RMY-combinations, we see that PRAM4 has 3 798 unsafe combinations
less (about 21%), even though the IL value is 12% larger than in case of Y3.
I.e., even though the loss of information is larger, the level of disclosure control



200 P.-P. de Wolf

Table 8. Measures of loss of information for multivariate PRAM, part 1

M × G
Name IL RD2 (%) mRD2 (%)
PRAM1 5 825 419 2.11 672
PRAM2 6 241 220 3.40 3 725
PRAM3 6 683 416 4.34 25 977
PRAM4 4 927 149 0.70 4 088
PRAM5 5 932 505 2.90 2 036
PRAM6 5 197 464 1.39 1 019
PRAM7 5 751 979 5.70 78 263

Table 9. Measures of loss of information for multivariate PRAM, part 2

Y × M Y × G
Name RD2 (%) mRD2 (%) # Inf RD2 (%) mRD2 (%) # Inf
PRAM1 62.99 39 439 232 1.44 1 841 3
PRAM2 126.10 16 464 232 3.69 2 824 3
PRAM3 198.05 27 607 232 2.72 4 906 3
PRAM4 97.18 17 503 232 0.77 310 3
PRAM5 18.00 22 939 148 1.73 2 086 3
PRAM6 14.67 17 967 148 0.99 962 3
PRAM7 280.55 28 459 232 7.22 225 259 3

is higher as well. Moreover, since the univariate application with Y3 has no
effect on the unsafe combinations in RMG but the multivariate application with
PRAM4 does have, PRAM4 outperforms Y3 in that sense as well. Similarly,
considering the information loss according to the relative differences, the overall
loss of information is larger for the multivariate cases. This is not surprising:
both variables in the frequency tables have been perturbed in the multivariate
setting, whereas in the univariate setting only one of the spanning variables is
perturbed. Hence, more cells are affected more seriously.

However, if we take, e.g., the table G×M in case of G2 and PRAM4, the median
relative differences are 0.71 and 0.70 respectively, whereas the number of unsafe
combinations in RMG is reduced from 472 for G2 to 127 for PRAM4. Additionally,
in case of PRAM4 the number of unsafe combinations in RMY is reduced as well
(from 20 072 to 14 046), whereas in case of G2 there is no effect on the number of
unsafe combination in RMY. So, with more or less the same loss of information the
multivariate case has a much higher level of disclosure control.

6 Summary and Conclusions

PRAM is a method to deal with disclosure control when disseminating micro-
data. This method was introduced in 1997, but has not yet been applied exten-
sively. This is partly due to the fact that there is little knowledge available on
the effect of PRAM on disclosure control or on the loss of information it induces.
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The method is defined in terms of transition probabilities, summarized in a
PRAM-matrix. In this paper we investigated the effect of different distributions
of the transition probabilities, on the level of disclosure control as well as on
the amount of information that is lost when applying PRAM. Several instances
of PRAM-matrices have been applied to a specific microdatafile, both in a uni-
variate as well as a multivariate setting. Several measures of loss of information
have been calculated along with a measure for the level of disclosure control.
The different instances resulted in different effects. In most cases, increasing
the number of non-zero elements resulted in a decrease of unsafe combinations.
However, its effect on the measures of loss of information was not unambiguous:
some measures gave rise to an increase of loss of information, whereas others
yielded a decrease. This indicates that it might be desirable to let the choice of
PRAM matrix (or matrices) depend on the intended use of the microdatafile. To
compare the results of the univariate and the multivariate application of PRAM,
we should take into account both the effect on the level of disclosure control as
well as on the loss of information. Indeed, one should only compare situations
with either a comparable level of disclosure control or a comparable amount of
loss of information. The results indicate that it seems possible to achieve the
same level of disclosure control, with a lower loss of information, when applying
PRAM in a multivariate way. Or, equivalently, to achieve the same amount of
loss of information, with a higher level of disclosure control.

In our experiments, we used block matrices, with equal diagonal elements
within each block. An obvious alternative would be to allow for a variation
in the diagonal elements within each block. These diagonal elements might be
chosen depending on the disclosure risk associated with that category. However,
since that risk is related to combinations of categories of several variables, this
becomes quite complicated, especially when applying PRAM in a multivariate
way. This is a topic for further research.
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Appendix A: PRAM-Matrices

In this appendix we first define the notation that we used to describe the PRAM-
matrices of our experiments.

– Band matrices nB(p; b), with p the value of the diagonal elements, b the
bandwidth (i.e., the number of entries pkl with |k− l| < b) and n the size of
the square matrix. Note that we should choose b ≤ n − 1. The probability
mass (1 − pkk) is distributed equally over the off-diagonal elements in the
band. E.g., a 4B(0.6; 2) matrix would look like

⎛
⎜⎜⎝

0.6 0.4 0 0
0.2 0.6 0.2 0

0 0.2 0.6 0.2
0 0 0.4 0.6

⎞
⎟⎟⎠

– Fully filled matrices, with equal off-diagonal elements, denoted by nE(p),
with n the size of the square matrix and p the value of the diagonal elements.
E.g., a 3E(0.8) matrix would look like

⎛
⎝0.8 0.1 0.1

0.1 0.8 0.1
0.1 0.1 0.8

⎞
⎠
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Table 10. PRAM matrices for Gender (G) and Place of Residence (R)

Name Description Name Description
G1 2E(0.55) R1 Block(14; 1l;7E(0.8); 8E(0.8); 4E(0.8); 10E(0.8);
G2 2E(0.6) 2E(0.8); 15E(0.8); 6E(0.8); 17E(0.8);
G3 2E(0.65) 24E(0.8); 6E(0.8); 18E(0.8); 11E(0.8); 1l)
G4 2E(0.7) R2 Block(14; 1l;7F(0.8); 8F(0.8); 4F(0.8); 10F(0.8);
G5 2E(0.8) 2F(0.8); 15F(0.8); 6F(0.8); 17F(0.8);
G6 2E(0.9) 24F(0.8); 6F(0.8); 18F(0.8); 11F(0.8); 1l)
G7 2E(0.95)

Table 11. PRAM matrices for Year of birth (Y) and Marital status (M)

Name Description Name Description
Y1 89B(0.6; 2) M1 Block(2; 1l; 7B(0.6; 3))
Y2 89B(0.6; 3) M2 Block(2; 1l; 7B(0.6; 4))
Y3 89B(0.6; 7) M3 Block(2; 1l; 7B(0.8; 4))
Y4 89B(0.75; 2) M4 Block(2; 1l; 7B(0.8; 5))
Y5 89B(0.75; 3) M5 Block(2; 1l; 7F(0.75))
Y6 89B(0.75; 21) M6 Block(2; 1l; 7F(0.8))
Y7 89B(0.8; 1 1

2 )∗ M7 Block(3; 1l; 4E(0.8); 3E(0.6))
Y8 89B(0.8; 2) M8 Block(3; 1l; 4F(0.8); 3F(0.6))
Y9 89E(0.75) M9 Block(3; 1l; 4F(0.8); 3E(0.6))
Y10 89F(0.75)
Y11 Block(3; 24E(0.6); 61E(0.75); 4E(0.6))
Y12 Block(3; 24B(0.6; 5); 61B(0.75; 21); 4B(0.6; 2))
Y13 Block(3; 24F(0.6); 61F(0.75); 4F(0.6))
Y14 Block(3; 24E(0.6); 61B(0.75; 21); 4E(0.6))
Y15 Block(3; 24F(0.6); 61B(0.75; 21); 4F(0.6))
∗ Non-zero elements at pkk, pkk+1, k = 1, . . . , K − 1, pKK and pK−1K .

– Fully filled matrices, with the off-diagonal elements depending on the corre-
sponding frequencies in the original microdata file, denoted by nF(p), with n
the size of of the square matrix and p the value of the diagonal elements. The
off-diagonal elements are determined using a method defined in [14] (note
that this formula requires that n ≥ 3):

pkl =
(1− pkk)

(∑K
i=1 Tξ(i)− Tξ(k)− Tξ(l)

)
(n− 2)

(∑K
i=1 Tξ(i)− Tξ(k)

) (18)

E.g., with T ξ = (5576, 24, 632)t, the matrix 3F(0.6) would look like⎛
⎝0.6000 0.3854 0.0146

0.0407 0.6000 0.3593
0.0017 0.3983 0.6000

⎞
⎠
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Table 12. Combinations of PRAM-matrices

Name Combination
PRAM1 Y6 G5 M7
PRAM2 Y11 G2 M3
PRAM3 Y14 G2 M2
PRAM4 Y12 G7 M4
PRAM5 Y13 G4 M9
PRAM6 Y15 G6 M8
PRAM7 Y10 G1 M6

Note that 1E(1) is a special case that we will denote by 1l. The three basic
types can be combined into block-matrices. We will denote these block matrices
by Block(m; type1; · · · ; typem), with m the number of blocks and following m
the matrix type for each block. Note that, using this construction, the diagonal
elements of a PRAM-matrix will be constant within each block, but may vary
between the blocks.

Finally, tables 10, 11 and 12 show the PRAM matrices that we used in our
experiments, using the notation given above.



Distance Based Re-identification for Time
Series, Analysis of Distances

Jordi Nin1 and Vicenç Torra2
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Universitat Politècnica de Catalunya,

Campus Nord UPC, C/Jordi Girona 1-3
08034 Barcelona, Catalonia, Spain

nin@ac.upc.edu
http://www.dama.upc.edu

2 IIIA-CSIC
Campus UAB s/n

08193 Bellaterra Catalonia, Spain
vtorra@iiia.csic.es

Abstract. Record linkage is a technique for linking records from dif-
ferent files or databases that correspond to the same entity. Standard
record linkage methods need the files to have some variables in common.
Typically, variables are either numerical or categorical. These variables
are the basis for permitting such linkage.

In this paper we study the problem when the files to link are formed
by numerical time series instead of numerical variables. We study some
extensions of distance base record linkage in order to take advantage of
this kind of data.

Keywords: Re-identification algorithms, time series, privacy statistical
databases, time series distances, record linkage.

1 Introduction

Everyday, thousands of data about specific entities, such as people or business,
are stored in databases. The integration of two or more databases or files is of
increasing importance, and difficulty, due to the growth of these stored data.

In the last years, many researchers have developed methods for schema and
record matching [9]. One of them is e.g. record linkage [13,14], a technique for
linking records of different files or databases that correspond to the same entity.

An important use of record linkage algorithms is for risk assessment in privacy
preserving data mining (PPDM) [1] and statistical disclosure control (SDC) [12].
In this case, record linkage methods permit to evaluate whether a protection
mechanism provides enough protection to providers of sensitive information (to
know whether a protection method guarantees avoids the disclosure of sensitive
information to data providers).

An increasing percentage of this stored information has an implicit or explicit
time component. This is the case of e.g., income or stock prices. Similarly, data
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accumulation through consecutive years (e.g., economical data from companies
or census data from individuals) can also be considered from this point of view.
Standard record linkage algorithms have been designed for non-temporal vari-
ables and they need to solve some key questions for their application to time
series as e.g. data normalization and distance selection.

In the setting of risk assessment for PPDM, we can consider the scenario of
an attacker (a person who should have no access to the sensible information)
that obtains different files from the same population but corresponding to the
same information in different years. Joining these files the attacker would obtain
a new file where variables are time series instead of non-temporal variables. So,
the attacker can exploit the (explicit) time information of this new file to obtain
sensible information.

In this paper we study the record linkage methods for this kind of scenario.
More specifically, we consider that the files to link are defined in terms of nu-
merical time series (variables are time series) instead of numerical non-temporal
variables. We study some extensions of distance base record linkage in order to
take advantage of this kind of data.

The structure of the paper is as follows. In section 2 we describe some of the
preliminaries required in the rest of the paper. In particular, this section describes
standard re-identification methods and some distance functions for time series.
Then, in Section 3, we propose our method for time series re-identification, in
this section we describe our method to normalize time series and our method for
re-identifying time series. In Section 4 we describe the experiments done and the
results obtained. The paper finishes with some conclusions and research lines for
future work.

2 Preliminaries

2.1 Re-identification Methods

Two main approaches have been used for re-identification in the case of numerical
and categorical variables. See [10,13,14] for more details:

Probabilistic Record Linkage: For each pair of records (a,b), where a is a
record of file A and b is a record in file b, an index is computed using some
conditional probabilities. Then, this index is used to classify each pair (a,b)
as either a linked pair (LP) or a non-linked pair (NP).

Distance-based Record Linkage: Records of two files A and B are compared
with respect to a given distance measure, and then each record in A is linked
to the nearest record in B using such distance measure.

Our research on record linkage for time series follows the second approach.
That is, it is a method extending distance-based record linkage.

2.2 Time Series

In this section we focus on numerical time series. Formally speaking, numerical
time series are defined by pairs {(vk, tk)} for k = 1, . . . , N where tk corresponds



Distance Based Re-identification for Time Series 207

to the temporal variable and vk is the numerical variable that depends on time
(dependent variable). Naturally, tk+1 > tk. Income and sport statistics are ex-
amples of time series, as they depend on time.

We can define in the same way ordinal or categorical time series replacing vk

for a categorical or ordinal variable. Weather forecast (e.g. sunny, cloudy, raining)
and restaurant category (e.g. one Michelin star, two Michelin star, three Michelin
star) over time are examples of categorical and ordinal time series respectively.

In the literature we can find a great variety of time series distances measures.
See [11,6,3] for more details.

In the remaining part of this section we describe the time series distances used
in this paper.

Minkowski distance. The Minkowski distance, that is a generalization of the
Euclidean distance, is defined as

dMK(x, v) = q

√√√√ N∑
k=1

(xk − vk)q

In the above definition, q is a positive integer. We can define a normalized
version if the measured values are normalized via division by the maximum value
in the time series.

Short time series distance. The short time series distance (STS distance),
was defined by Möller-Levet et al. in [6]. This distance corresponds to the square
root of the sum of the squared differences of the slopes, and is defined as follows:

dSTS(x, v) = 2

√√√√ N∑
k=1

(
vk+1 − vk

tk+1 − tk
− xk+1 − xk

tk+1 − tk

)2

Two cross correlation based distance. Pearson’s correlation coefficient is
defined as

cc =
∑N

k=1 (xk − μx)(vk − μv)
SxSv

where μ is the mean of each time series and S is the standard deviation.
Two cross correlation based distances are defined below

dcc =
(

1− cc

1 + cc

)β

Dynamic Time Warping distance. Now, we review the Dynamic Time
Warping algorithm, or DTW algorithm in short. Suppose we have two numerical
time series x and v, of length n and m respectively.

{(xk, tk)} for k=1, . . . , n

{(vk, tk)} for k=1, . . . , m
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Fig. 1. An example of wrapping path between goals for of F.C. Barcelona and Real
Madrid since 1982 to 2006

For aligning these two time series using the DTW algorithm, we construct
a bi-dimensional n × m matrix where the element (ith,jth) contains the dis-
tance between the two points xi and vj . To compute the distance between these
two points, the Euclidean distance is often used (d(xi ,vj)=((xi − vj)2)). Then,
each matrix element (i,j) corresponds to the alignment between the points xi

and vj .
A warping path, w, is a route from element (0,0) to element (n,m) formed by

contiguous cells with some particular constraints. In general, the path represent
a relation between x and v and has several constraints:

Boundary conditions: w0=(0,0) andwk=(n,m).Awarping path requires start-
ing and finishing in opposite diagonal corners of the matrix.

Continuity: Given wk=(i,j) then wk+1=(i′,j′), where i′− i ≤ 1 and j′− j ≤ 1.
This fits the allowable steps to adjacent cells including diagonally adjacent
cells.

Monotonicity: Given wk=(i,j) then wk+1=(i′,j′), where i′− i≥0 and j′−j≥0.
This avoids cycles in the warping path.

There are many warping paths that satisfy the above restrictions, the warping
paths grow exponentially with respect to their length, but we are interested only
in the path which minimizes the following warping cost
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DTW (x, v) = min

⎛
⎝ 1

K

√√√√ K∑
k=1

wk

⎞
⎠

β

K is used to compensate the fact that warping paths may have different
lengths. The path with minimum warping cost can be calculated very efficiently
using dynamic programming. Euclidean distance (for time series) can be consid-
ered as a particular case of DTW when time series have the same length.

Example 1. An example of warping path is illustrated in Figure 1. The warp-
ing path represents the distance between the number of goals of F.C. Barcelona
and Real Madrid. In this case, we obtain a DTW distance equal to 2021. This
value represents the distance of an optimal alignment between goals for of F.C.
Barcelona and Real Madrid. We understand an optimal alignment as the align-
ment that makes the smallest distance between the two teams.

3 Re-identification for Time Series

3.1 Time Series Normalization

It is usual to normalize data files before applying record linkage methods. This
is so to avoid the scale problems of raw data. The following two alternatives are
usually considered:

– Ranging: Raw Data are translated into the [0, 1] interval using this expression
x′ = (x−min(v))

(max(v)−min(v)) where x is the original value and max(v) and min(v)
are the maximum and minimum values for the corresponding variable.

– Standardization: Raw data are normalized by translating mean equals zero
and the standard deviation equals one: x = (x−μv)

Sv
(where μv and Sv are,

respectively, the mean and the standard deviation of the corresponding vari-
able v).

This kind of pre-processing when applied independently for each component of
the time series causes the lost of the temporal information of the series. For this
reason, we apply another type of normalization using all the elements included
into the time series. In our experiments we had used the following normalization

v′k =
(vk − μv)

Sv

where μv and Sv are the mean and the standard deviation of the elements of the
corresponding time series.

Now we illustrate with a simple example (uses index prices for some food
products) the impact of the normalization of the time series, comparing the
normalization by component (each component treated as a variable) and the
normalization of the series as a whole. As it is shown in the example, the nor-
malization by component can distort completely the shape of the time series.
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Table 1. Data extracted from Spanish National Statistics Institute

Index of prices
1993 1994 1995 1996 1997 1998 1999 2000 2001

Bread 106,5 110,3 114,9 117,9 119,3 121 122,2 124,1 129
Oil 102,7 119,8 147,8 178,7 130,8 116,2 133,6 123,5 114,4

Fruits and vegetables 95,6 101,9 110,8 116,4 114,2 119 124,6 126,4 133,9
Potatoes 101,1 133,6 162,8 123,8 121,3 140,4 149,8 148,6 177,6

Table 2. Data normalized with the standard component-wise procedure

Index of prices
1993 1994 1995 1996 1997 1998 1999 2000 2001

Bread 1,00 0,26 0,08 0,02 0,31 0,20 0,00 0,02 0,23
Oil 0,65 0,56 0,71 1,00 1,00 0,00 0,41 0,00 0,00

Fruits and vegetables 0,00 0,00 0,00 0,00 0,00 0,12 0,09 0,12 0,31
Potatoes 0,50 1,00 1,00 0,12 0,43 1,00 1,00 1,00 1,00

Example 2. Let us consider the price index of four different foods in nine years.
We can observe in Table 1 the original raw values and their tendency in the
period 1993 - 2001 and in Tables 2 and 3 the normalized data values after stan-
dard (component-wise) and time series (data altogether) normalization process,
respectively.

Figure 2 shows that different normalizations produce different outcomes, and
that the standard component-wise normalization causes important divergences
on the tendency of the time series between the original time series and the
normalized one. For example, in the case of the bread, when comparing charts
(a) and (b), we observe that in the original data the bread price tendency was to
increase every year but that after normalization the bread price has a decreasing
tendency. This is a negative effect of normalization over the data.

To avoid this effect of component-wise normalization, we propose the use of
specific normalization procedures for time serie: normalization of all the series.

3.2 Approach

As we have explained in the introduction, we consider in this paper the re-
identification problem when the files include time series and not only simple
variables. In this case the application of the methods outlined in Section 2.1 is
problematic. To solve these situations, we extend distance-based record linkage
to this kind of variables.

From now on, we will consider that we have two files A and B, and that these
files have one or more time series. Then, if we want to apply distance-based
record linkage methods we need to change traditional distance function to the
ones for time series.
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Fig. 2. Graphical representation of the effects of time series normalization, (a) Top: it
represents the original data without normalization, (b) bottom left: it represents nor-
malized data with independent normalization, (c) bottom right: represents normalized
data with time series normalization

Table 3. Data normalized with the time series procedure

Index of prices
1993 1994 1995 1996 1997 1998 1999 2000 2001

Bread 106,5 110,3 114,9 117,9 119,3 121 122,2 124,1 129
Oil 102,7 119,8 147,8 178,7 130,8 116,2 133,6 123,5 114,4

Fruits and vegetables 95,6 101,9 110,8 116,4 114,2 119 124,6 126,4 133,9
Potatoes 101,1 133,6 162,8 123,8 121,3 140,4 149,8 148,6 177,6

In short, our approach works as follows:

1. Apply time series normalization in both files.
2. Select a time series distance function D with a particular parameter p.
3. Apply record linkage to normalized files, with the selected time series distance.

4 Experiments

4.1 Data

In order to check our approach we have done some test with real data that
can be obtained freely from different data sources. First we have downloaded
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Table 4. Details of time series examples

Forecasters Ibex35 Soccer
Records 3003 35 176

Time series 1 2 8
Time series size 10 220 25

Record size 10 440 200
Series description Financial information opening prices years

Volume transactions FIFA points
League position

Goals for
Goals against
Matches win
Matches dice
Matches loose

from [5] a file (the so-called forecasters problem) with 3003 time series of dif-
ferent lengths between 14 and 64 elements, we have re-sampled all time series
to 10 elements. Secondly, we have used the Stock Exchange information of the
thirty five most important Spanish companies. These companies are ranked in
the so-called Ibex35 stock market. We have downloaded the information about
prices from June, 21Th 2005 to April, 28Th 2006 from [2]. And finally, we have
downloaded information about all soccer teams of the nine most important Euro-
pean domestic leagues from [7]. As said, information about these three testbeds
is publicly available. Data details are given in Table 4.

4.2 Time Series Masking

For applying our approach, we have protected the original data with a time
series masking method based on microaggregation procedures described in [8].
We have applied this method with k ∈ {2, 3, 6, 9, 12}.

We have applied time series microaggregation method splitting the original
time series in n masked series to check if our method improve its results when
the number of time series grows.

Forecasters problem: We have split original time series in n ∈ {1, 2} time
series. So, in this case we have two different problems, one with one time
series and other with two time series.

Ibex 35 problem: We have split original time series in n ∈ {2, 4, 20} time
series. So, in this case we have three different problems with 4, 8 and 40 time
series.

Soccer problem: We have not split original time series, in this case we have
one problem with eight time series.

Once we have made protected files, we apply our time series DBRL method.
We have tested four Minkowski distances with parameters q from the set Q =
{2, 3, 4, 5}, four cross correlation based distance with parameter β from the set
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Table 5. Results of forecasters problem

number of time series 1 2
k 2 3 6 9 12 2 3 6 9 12

DBRL Standard 1180 850 421 283 215 348 253 207 174 223
Minkowski q = 2 1291 780 325 224 162 218 153 155 165 206
Minkowski q = 3 552 315 140 95 55 53 53 29 25 25
Minkowski q = 4 1240 750 300 205 159 176 130 131 149 192
Minkowski q = 5 633 394 174 112 65 59 46 20 23 23

Cross correlation β = 1 533 216 73 46 33 105 66 27 22 21
Cross correlation β = 2 0 1 0 0 0 0 0 0 0 0
Cross correlation β = 3 533 216 73 46 33 105 66 27 22 21
Cross correlation β = 4 0 1 0 0 0 0 0 0 0 0

STS 1000 531 185 106 78 282 165 133 125 80
DTW 1271 754 300 189 139 164 114 97 115 127

β = {1, 2, 3, 4}, short time series distance and Dynamic Time Warping distance
in the forecasters test. In the case of DTW, the DBRL has not been computed
for Ibex35 and Soccer time series as the computational time was very high.

4.3 Results

In this section we compare our method with standard DBRL (all variables in the
series treated separately for both normalization and computing the distance), if
we observe the results in Tables 5,6 and 7 we observe that in most of the cases
we can find a time series distance, like STS distance, that equals or improves the
results obtained from standard DBRL. This result is strengthened because the
standard DBRL with the standard component-wise normalization might change
the shape of the series (as shown in Example 2).

In the case of the soccer problem, we can observe improvements between
17% and 39% if we compare standard DBRL with the method based on STS or
Minkowski distances.

With the Ibex35 problem, we obtain similar results with both approaches. We
think that the main reason for this situation is because the problem has very
few records to re-identify.

Finally, in the forecasters problem we obtain similar or worst results with our
approach than with standard DBRL. In our opinion this is reasonable because
all time series are increasing and the difference between points t and t+1 is very
large. In this kind of series a standard normalization is possible because we can
understand every point of a time series as a stand alone variable.

4.4 Analysis of Distances for Time Series

Although the best distance is the one that re-identifies more records, other as-
pects should be taken into account when selecting a distance as e.g. computa-
tional cost, number of records to be compared, size of the time series. We analyse
below the distances we have considered.
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Table 6. Results of Ibex35 problem

number of time series 4 8 40
k 2 3 6 9 12 2 3 6 9 12 2 3 6 9 12

DBRL Standard 19 11 10 7 7 20 10 10 10 10 18 11 9 12 13
Minkowski q = 2 20 13 6 4 2 19 13 6 4 2 18 15 7 7 6
Minkowski q = 3 10 6 2 1 1 12 3 2 2 1 13 4 2 4 2
Minkowski q = 4 20 12 8 4 2 19 13 9 4 2 18 15 10 7 9
Minkowski q = 5 11 4 5 2 1 15 3 4 3 1 14 5 3 6 5

Cross correlation β = 1 0 0 1 1 1 0 0 0 3 3 1 0 0 0 0
Cross correlation β = 2 0 0 0 0 0 1 2 1 1 3 17 17 6 5 5
Cross correlation β = 3 0 0 1 1 1 0 0 0 2 3 2 0 0 1 0
Cross correlation β = 4 0 0 0 0 0 2 3 2 1 2 16 12 4 4 4

STS 21 14 10 4 3 20 14 9 4 3 20 19 10 7 8

Table 7. Results of Soccer problem

number of time series 8
k 2 3 6 9 12

DBRL Standard 144 123 83 64 54
Minkowski q = 2 154 142 134 133 123
Minkowski q = 3 6 2 3 6 5
Minkowski q = 4 140 117 91 88 81
Minkowski q = 5 14 6 11 9 6

Cross correlation β = 1 0 0 0 1 0
Cross correlation β = 2 0 2 7 9 4
Cross correlation β = 3 0 0 0 1 0
Cross correlation β = 4 0 5 7 9 3

STS 174 168 121 86 62

In the case of having time series of different length, we can not use Minkowski
or STS distances and we have to use DTW distance. However, this distance,
even in the case of using dynamic programming, has a computational cost that
is higher than the one of Minkowski, STS or Two cross correlation based. For
this reason, when all time series have the same length we do not recommend to
use DTW distance.

When there are time series with the same shape as e.g. food prices (prices with
similar inflation), it is more reasonable to use the Minkowski distance instead
of the STS distance. This is so because the Minkowski distance is based on
the distance between data components while the STS distance is based on the
shape of the time series. If all time series have the same shape, e.g. they are all
increasing, STS distance is not a good election. Correct links would be hidden
among incorrect ones as the degree of similarity between series will be similar.

When all time series have similar values, as e.g. prices of different brands of
a single product, it is more appropriate to use the STS distance instead of the
Minkowski distance. This is so because the Minkowski distance will obtain values
near to zero for all time series pairs.



Distance Based Re-identification for Time Series 215

In all the experiments done so far, Minkowski, STS and Two cross correlation
based distances have been applied to all scenarios. Instead, the DTW distance
has only been applied to some of them because its computational cost is very high
with large time series. We have only calculated this distance in the forecasters
problem that has the shortest time series.

5 Conclusions and Future Work

In this paper, we have introduced a method for re-identification time series based
on specific distances for this type of data.

We have tested our method in three different problems and we have obtained
for most of the cases better results than those obtained using the standard
method.

The comparison between time series distances shows that the best distances
for our problems are STS, Minkowski distance and DTW if we can afford its
computational cost. In addition, we have considered the problems related with a
bad normalization process, using a specific time series normalization procedure.

As future work we include the analysis of more time series distances and make
more test with other kind of problems (other data).
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Abstract. An important issue any organization or individual has to
face when managing data containing sensitive information, is the risk
that can be incurred when releasing such data. Even though data may
be sanitized, before being released, it is still possible for an adversary to
reconstruct the original data by using additional information that may
be available, for example, from other data sources. To date, however, no
comprehensive approach exists to quantify such risks. In this paper we
develop a framework, based on statistical decision theory, to assess the
relationship between the disclosed data and the resulting privacy risk.
We relate our framework with the k-anonymity disclosure method; we
make the assumptions behind k-anonymity explicit, quantify them, and
extend them in several natural directions.

1 Introduction

The problem of data privacy is today a pressing concern for many organizations
and individuals. The release of data may have some important advantages in
terms of improved services and business, and also for the society at large, such
as in the case of homeland security. However, unauthorized data disclosures can
lead to violations to the privacy of individuals, can result in financial and business
damages, as in the case of data pertaining to enterprises; or can result in threats
to national security, as in the case of sensitive GIS data [6]. Preserving the
privacy of such data is a complex task driven by various goals and requirements.
Two important privacy goals are: (i) preventing identity disclosure, and (ii)
preventing sensitive information disclosure. Identity disclosure occurs when the
released information makes it possible to identify entities either directly (e.g., by
publishing identifiers like SSNs) or indirectly (e.g., by linkage with other sources).
Sensitive information typically includes information that must be protected by
law, for example medical data, or is required by the subjects described by the
data. In the latter case, data sensitivity is a subjective measure and may differ
across entities.
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To date, an important practical requirement for any privacy solution is the
ability to quantify the privacy risk that can be incurred in the release of certain
data. However, most of the work related to data privacy has focused on how
to transform the data so that no sensitive information is disclosed or linked to
specific entities. Because such techniques are based on data transformations that
modify the original data with the purpose of preserving privacy, they are mainly
focused on the tradeoff between data privacy and data quality (see e.g. [9,2,3,5]).
Conversely, few approaches exist to quantify privacy risks and thus to support
informed decisions. Duncan et al. [4] describes a framework, called Risk-Utility
(R-U) confidentiality map, which addresses the tradeoff between data utility and
disclosure. Lakshmanan et al. [8] is an approach to the risk analysis for disclosed
anonymized data that models a database as series of transactions and the at-
tacker’s knowledge as a belief function. Our model is fundamentally different
from both works; indeed, we deal exactly with relational instances, rather than
with generic files or data frequencies; also, we incorporate the concept of data
sensitivity into our framework and we consider generic disclosure procedures,
not only anonymization like in [8].

The goal of the work presented in this paper is to propose a comprehensive
framework for the estimation of privacy risks. The framework is based on sta-
tistical decision theory and introduces the notion of a disclosure rule, that is a
function representing the data disclosure policy. Our framework estimates the
privacy risk by means of a function that takes into account a given disclosure
rule and (possibly) the knowledge that can be exploited by the attacker. It is
important to point out that our framework is able to assess privacy risks also
when no information is available about the knowledge, referred to as dictionary,
that the adversary may exploit. The privacy risk function incorporates both
identity disclosure and sensitive information disclosure. We introduce and ana-
lyze different shapes of the privacy risk function. Specifically, we define the risk
in the classical decision theory formulation and in the Bayesian formulation.We
prove several interesting results within our framework: we show that, under rea-
sonable hypotheses, the estimated privacy risk is an upper bound for the true
privacy risk; we analyze the computational complexity of evaluating the privacy
risk function, and we propose an algorithm for efficiently finding the disclosure
rule that minimizes the privacy risk. We finally gain insight by showing that
the privacy risk is a quantitative framework for exploring the assumptions and
consequences of k-anonymity.

2 Privacy Risk Framework

As private information in databases is being disclosed, undesired effects occur
such as privacy breaches, and financial loss due to identity theft. To proceed
with a quantitative formalism we assume that we obtain a numeric description,
referred to as loss, of that undesired effect. The loss may be viewed as a func-
tion of (i) whether the disclosed information enables identification and (ii) the
sensitivity of the disclosed information. The first argument of the loss function
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encapsulates whether the disclosed data can be tied to a specific entity or not.
Consider for example the case of a hospital disclosing a list of the ages of patients,
together with data indicating whether they are healthy or not. Even though this
data is sensitive and if there is a little chance that the disclosed information
can be tied to specific individuals, no privacy loss occurs as the data is anony-
mous. The second argument of the loss function, the sensitivity of the disclosed
information, may be high as is often the case for sensitive medical data. On the
other hand, other disclosed information such as gender, may be only marginally
private or not private at all. It is important to note that a precise quantifica-
tion of the sensitivity of the disclosed information may depend on the entity
to whom the data relates. For example, data such as annual income and past
medical history may be very sensitive to some and only marginally sensitive to
others.

Let T be a relation with a relational scheme T (A1, . . . , Am), where each at-
tribute Ai is defined over the domain Domi ∪ {⊥, §}, with the only exception of
A1 as detailed later. The relation T stores the records that are considered for
disclosure and has some values either missing or suppressed for privacy preser-
vation. Specifically, a null value is denoted by ⊥ whereas a suppressed value is
denoted by §. Furthermore, we denote the different attribute values of a specific
record x in T using a vector notation (x1, . . . , xm). The first attribute x1 corre-
sponds to a unique record identifier that can be neither ⊥ nor §. The set of all
possible records may be written as

X = (Dom1)× (Dom2 ∪ {⊥, §})× · · · × (Domm ∪ {⊥, §}).

If T has cardinality n, it can be seen as a subset of Xn which we may think
of as a matrix whose rows are the different records. We refer to the ith record in
such a relation as xi and its jth attribute as xij . 1

2.1 Disclosure Rules and Privacy Risk

Statistical decision theory [10] offers a natural framework for measuring the
quantitative effect of the information disclosure phenomenon. The uncertainty
is encoded by a parameter θ abstractly called “a state of nature” which is typ-
ically unknown. However, it is known that θ belongs to a set Θ, usually a finite
or infinite subset of Rl. The decisions are being made based on a sample of ob-
servations (x1, . . . , xn), xi ∈ X and are represented via a function δ : Xn → A
where A is an abstract action space. The function δ is referred to as a deci-
sion policy or decision rule. A key element of statistical decision theory is that
the state of nature θ governs the distribution pθ that generates the observed
data.

Instead of decision rules δ : Xn → A, we introduce disclosure rules defined as
follows.

1 Note that throughout the paper, records and vectors are denoted by bold italic
symbols whereas variables and attributes are denoted by only italic symbols.
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Definition 1. A disclosure rule δ is a function δ : X → X such that

[δ(z)]j =

⎧⎪⎨
⎪⎩
⊥ zj = ⊥
§ the jth attribute is suppressed
zj otherwise

The state of nature θ that influences the disclosure outcome is the side infor-
mation used by the attacker in his identification attempt. Such side information
θ is often a public data resource composed of identities and their attributes,
for example a phone book. The distribution over records pθ is taken to be the
empirical distribution p̃ over the data that is to be disclosed x1, . . . ,xn, defined
below.

Definition 2. The empirical distribution p̃ on X associated with a set of records
x1, . . . ,xn is

p̃(z) =
1
n

n∑
i=1

1{z=xi}

where 1{z=xi} is 1 if z = xi and 0 otherwise.

The empirical distribution is used for defining the risk associated with a disclo-
sure rule δ using the mechanism of expectation. Note that the expectation with
respect to p̃ is simply the empirical mean Ep̃(f(x, θ)) = 1

n

∑n
i=1 f(xi, θ). The

loss and risk functions in the privacy adaptation of statistical decision theory
are defined below.

Definition 3. The loss function � : X ×Θ → [0,∞] measures the loss incurred
by disclosing the data δ(z) ∈ X due to possible identification based on θ ∈ Θ.

Definition 4. The risk of the disclosure rule δ in the presence of side in-
formation θ is the average loss of disclosing the records x1, . . . ,xn: R(δ, θ) =
Ep̃(z)(�(δ(z), θ)) = 1

n

∑n
i=1 �(δ(xi), θ).

Definition 5. The Bayes risk of the disclosure rule δ is R(δ) = Ep(θ)(R(δ, θ))
where p(θ) is a prior probability distribution on Θ.

It is instructive at this point to consider in detail the identification process and
its possible relations to the loss function. We use the term identification at-
tempt to refer to the process of trying to identify the entity represented by the
record. We refer to the subject performing the identification attempt as the at-
tacker. The attacker performs an identification attempt based on the disclosed
record y = δ(xi) and additional side information θ referred to as a dictionary.
The role of the dictionary is to tie a record y to a list of possible candidate
identities consistent with the record y, i.e. having the same values on common
fields. For example, consider y being (first-name,surname,phone#) and the
dictionary being a phone book. The attacker needs only considering dictionary
entities that are consistent with the disclosed record. Recall that some of the at-
tributes (first-name,surname,phone#) may be replaced with ⊥ or § symbols
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due to missing information or due to the disclosure process, respectively. In this
example, if all the attribute values are revealed and the available side informa-
tion is an up-to-date phone book, it is likely that only one entity exists in the
dictionary that is consistent with the revealed information. On the other hand,
if the attribute value for phone# is suppressed, by replacing it with § symbol,
the phone-book θ may or may not yield a single consistent entity, depending on
the popularity of the (first-name,surname) combination. From the attacker’s
stand point, missing values are perceived the same way as suppressed values.
Thus, in the rest of the paper and for the sake of notational simplicity, both
missing and suppressed values will be denoted by the symbol ⊥.

Note that the loss function �(δ(xi), θ) measures the loss due to disclosing
δ(xi) in the presence of the side information – in this case the dictionary θ.
Specifying the loss is typically entity and problem dependent. We can, however,
make some progress by decomposing the loss into two parts: (i) the ability to
identify the entity represented by δ(xi) based on the side information θ and (ii)
the sensitivity of the information in δ(xi). The identification part is formalized
by the random variable Z defined as follows.

Definition 6. Let ρ(δ(xi), θ) denote the set of individuals in the dictionary θ
consistent with the record δ(xi). Moreover, let the random variable Z(δ(xi)) be
a binary variable that takes value 1 if δ(xi) is identified and 0 otherwise.

Assuming a uniform selection of entries in the dictionary by the attacker, we
have

pZ(δ(xi))(1) =

{
|ρ(δ(xi), θ)|−1 ρ(δ(xi), θ) �= ∅
0 otherwise

and pZ(δ(xi))(0) = 1− pZ(δ(xi))(1).

2.2 Sensitivity

The sensitivity of disclosed data is formalized by the following definition.

Definition 7. The sensitivity of a record is measured by a function Φ : X →
[0, +∞] where higher values indicate higher sensitivity.

We allow Φ to take on the value +∞ in order to model situations where the
information in the record is so private that its disclosure is prohibited under any
positive identification chance.

The sensitivity Φ(δ(xi)) measures the adverse effect of disclosing the record
δ(xi) if the attacker correctly identifies it. We make the assumption (whose re-
laxation is straightforward) that if the attacker does not correctly identify the
disclosed record, there is no adverse effect. The adverse effect is therefore a ran-
dom variable with two possible outcomes: Φ(δ(xi)) with probability pZ(δ(xi))(1)
and 0 with probability pZ(δ(xi))(0). It is therefore natural to account for the
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uncertainty resulting from possible identification by defining the loss �(y, θ) as
the expectation of the adverse effect resulting from disclosing y = δ(xi)

�(y, θ) = EpZ(y)(Φ(y)Z(y))

= pZ(y)(1) · Φ(y) + pZ(y)(0) · 0 =
Φ(y)
|ρ(y, θ)|

where the last equality holds if the dictionary selection probabilities are uniform
and ρ(y, θ) �= φ.

The risk R(δ, θ) with respect to the distribution p̃ that governs the record set
x1, . . . ,xn becomes

R(δ, θ) = Ep̃(x)(�(δ(z), θ)) =
1
n

n∑
i=1

Φ(δ(xi))
|ρ(δ(xi), θ)|

and the Bayes risk under the prior p(θ) becomes (if Θ is discrete replace the
integral below by a sum)

R(δ) = Ep(θ)(R(δ, θ)) =
1
n

n∑
i=1

Φ(δ(xi))
∫

Θ

p(θ)dθ

|ρ(δ(xi), θ)| .

We now provide more details concerning records xi and their space X , that
will be useful in the following. As introduced, a record xi ∈ X has attribute
values (xi1, . . . , xim) where each attribute xij , j = 2, . . . , m either takes values
in a domain Domj or is unavailable, in which case we denote it by ⊥. The first
attribute is xi1 ∈ Dom1. We assume that [δ(xi)]1 = xi1, i.e. [δ(xi)]1 cannot have
⊥ values. This assumption is for notational purposes only and in reality the
disclosed data should be taken to be [δ(xi)]2, . . . , [δ(xi)]m. Notice also that the
primary key of the relation can be distinct from the introduced record identifier,
and can be one or more attributes defined over Dom2, . . . ,Domm. We make the
assumption [δ(xi)]1 = xi1 in order to allow a possible dependency of Φ(δ(xi)) on
the identifier xi1 = [δ(xi)]1 which enables the flexibility needed to treat attribute
values related to different entities differently. For example, a certain entity, such
as a specific person, may wish to protect certain attributes such as religion or
age that may be less private for a different person. Possible expressions for the
Φ function are provided in the Appendix.

3 Tradeoff Between Disclosure Rules and Privacy Risk

In evaluating disclosure rules δ we have to balance the following tradeoff. On
one hand, disclosing private information incurs the privacy risk R(δ, θ). On the
other hand, disclosing information serves some purpose, or else no information
would ever be disclosed. Such disclosure benefit may arise from various reasons
such as increased productivity due to the sharing of commercial data.

We choose to represent this tradeoff by specifying a set of disclosure rules Δ
that are acceptable in terms of their disclosure benefit. From this set, we seek to
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choose the rule that incurs the least privacy risk δ∗ = argminδ∈Δ R(δ, θ). Notice
that this framework is not symmetric in its treatment of the disclosure benefit
and privacy risk and emphasizes the increased importance of privacy risk in the
tradeoff.

It is difficult to provide a convincing example of a set Δ without specifying in
detail the domain and the disclosure benefit. Nevertheless, we specify below sev-
eral sets of rules that serve to illustrate the decision theoretic framework of this
paper. The basic principle behind these rules is that the more attribute values are
being disclosed, the greater the disclosure benefit is. The details of the specific
application will eventually determine which set of rules is most appropriate.

The three sets of rules below are parameterized by a positive integer k. The
set Δ1 consists of rules that disclose a total of k attribute values for all records
combined

Δ1 =
{δ : δ(x1), . . . , δ(xn) contain a total of k non ⊥ entries}.

The second set Δ2 consists of rules that disclose a certain number of attribute
values for each record

Δ2 = {δ : ∀i δ(xi) contains k non ⊥ entries}.
The third set Δ3 consists of rules that disclose a certain number of attribute
values for each attribute

Δ3 = {δ : ∀j {[δ(xi)]j}ni=1 contains k non ⊥ entries}.
The set Δ1 may be applicable in situations where the disclosure benefit is

influenced simply by the number of disclosed attribute values. Such a situation
may arise if there is a need for computing statistics on the joint space of repre-
sented entities-attributes without an emphasis on either dimension. The set Δ2
may be applicable when the disclosure benefit is tied to per-entity data, for ex-
ample discovering association rules in grocery store transactions. A rule δ ∈ Δ2
guarantees that there are sufficient attributes disclosed for each entity to obtain
meaningful conclusions. Similarly, the set Δ3 may be useful in cases where there
is an emphasis on per-attribute data.

Disclosure rules δ ∈ Δ are evaluated on the basis of the risk functions R(δ, θ),
R(δ). In some cases, the attacker’s dictionary is publicly available. We can then
treat the “true” side information θtrue as known, and the optimal disclosure rule
is the minimizer of the risk

δ∗ = arg min
δ∈Δ

R(δ, θtrue). (1)

If the attacker’s side information is not known, but we can express a prior belief
p(θ) describing the likelihood of θtrue ∈ Θ, we may use the Bayesian approach
and select the minimizer of the Bayes risk

δ∗B = argmin
δ∈Δ

Ep(θ)(R(δ, θ)). (2)
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If there is no information concerning θtrue whatsoever, a sensible strategy is to
select the minimax rule δ∗M that achieves the least worst risk, i.e. δ∗M satisfies

sup
θ∈Θ

R(δ∗M , θ) = inf sup
δ∈Δ θ∈Θ

R(δ, θ). (3)

Notice that in all cases above we try to pick the best disclosure rule in terms
of privacy risk, out of a set Δ of disclosure rules that are acceptable in terms of
the amount of revealed data. The rules δ∗, δ∗B, δ∗M are useful, respectively, if we
know θtrue, we have a prior over it, or we have no knowledge whatsoever.

An alternative situation to the one above is that the database is trying to
estimate (or minimize) the privacy risk R(δ, θtrue) based on side information
θ̂ �= θtrue available to the database. In such cases we can use R(δ, θ̂) as an
estimate for R(δ, θtrue) but we need to find a way to connect the two risks above
by leveraging on a relation between θ̂ and θtrue.

A reasonable assumption is that the database dictionary θ̂ is specific to the
database while the attacker’s dictionary θtrue is a more general-purpose dictio-
nary. We can then say that θtrue contains the records in θ̂ as well as additional
records. Following the same reasoning we can also assume that for each record
that exists in both dictionaries, θ̂ will have more attribute values that are not
⊥. For example, consider a database of employee records for some company.
θ̂ would be the database dictionary and θtrue would be a general-purpose dic-
tionary such as a phone-book. It is natural to assume that θtrue will contain
additional records over the records in θ̂ and that the non-⊥ attributes in θtrue

(e.g. first-name,surname,phone#) will be more limited than the non-⊥ at-
tributes in θ̂. After all, some of the record attributes are private and would not
be disclosed in order to find their way into the attacker’s dictionary (resulting
in more ⊥ symbols in the θtrue).

Under the conditions specified above we can show that the true risk is bounded
from above by R(δ, θ̂) and that the chosen rule argminδ∈Δ R(δ, θ̂) has a risk that
is guaranteed to bound the true privacy risk. This is formalized below.

We consider dictionaries θ as relational tables, where θi = (θi1, . . . , θiq) is a
record of a relation Tθ(A1, . . . , Aq), with A1 corresponding to the record identifier.

Definition 8. We define the relation � between dictionaries θ = (θ1, . . . ,θl1)
and η = (η1, . . . ,ηl2) by saying that θ � η if for every θi, ∃ηv such that ηv1 =
θi1 and ηvk �= ⊥ ⇒ θik = ηvk. The relation � constitutes a partial ordering on
the set of dictionaries Θ.

Theorem 1. If θ̂ contains records that correspond tox1, . . . ,xn and θ̂ � θtrue,
then

∀δ R(δ, θtrue) ≤ R(δ, θ̂).

Proof. For every disclosed record δ(xi) there exists a record in θ̂ that corresponds
to it and since θ̂ � θtrue there is also a record in θtrue that corresponds to it. As
a result, ρ(δ(xi), θ̂) and ρ(δ(xi), θtrue) are non-empty sets.
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For an arbitrary a ∈ ρ(δ(xi), θ̂) we have a = θ̂v for some v and since
θ̂ � θtrue there exists a corresponding record θtrue

k . The record θtrue
k will have

the same or more ⊥ symbols as a and therefore θtrue
k ∈ ρ(δ(xi), θtrue). The

same argument can be repeated for every a ∈ ρ(δ(xi), θ̂) thus showing that
ρ(δ(xi), θ̂) ⊆ ρ(δ(xi), θtrue) or |ρ(δ(xi), θtrue)|−1 ≤ |ρ(δ(xi), θ̂)|−1.

The probability of identifying δ(xi) by the attacker is thus smaller than the
identification probability based on θ̂. It then follows that for all i, �(δ(xi), θtrue) ≤
�(δ(xi), θ̂) as well as R(δ, θtrue) ≤ R(δ, θ̂).

Solving (1) in the general case requires evaluating R(δ, θtrue) for each δ ∈ Δ
and selecting the minimum. The reason is that the dictionary θ controlling the
identification distribution pZ(δ(xi))(1) = |ρ(δ(xi), θ)|−1 is of arbitrary shape. A
practical assumption, that is often made for high dimensional distributions, is
that the distribution underlying θ factorizes into a product form

|ρ(δ(xi), θ)|
N

=
∏
j

|ρj([δ(xi)]j , θ)|
N

or

|ρ(δ(xi), θ)| =
∏
j

αj([δ(xi)]j , θ)

for some appropriate functions αj . In other words, the appearances of yj for all
j = 1, . . . , m in θ are independent random variables. Returning to the phone-
book example, the above assumption implies that the popularity of first names
does not depend on the popularity of last names, e.g.,

p(first-name = Mary|surname = Smith) =
p(first-name = Mary|surname = Johnson) =
p(first-name = Mary).

The independence assumption does not hold in general, as attribute values may
be correlated, for instance, by integrity constraints; we plan to relax it in future
work.

First we analyze the complexity of evaluating the risk function R(δ, θ). This
would depend on the complexity of computing Φ, denoted by C(Φ), and the
complexity of computing |ρ(δ(xi), θ)| which is O(Nm), where N is the number
of records in the dictionary θ. Solving argminδ∈Δ R(δ, θ) by enumeration requires
O(n)

(
C(Φ) + O(Nm)

) · |Δ| computations.

We have |Δ1| =
(

nm
k

)
, |Δ2| =

(
m
k

)n

, |Δ3| =
(

n
k

)m

and C(Φ) typically

being O(m) for the additive and multiplicative forms. In a typical setting where
k ! m we have for Δ2 and a linear or multiplicative Φ, a minimization com-
plexity of O(nNmkn+1).

The complexities above are computed for the naive enumeration algorithm.
A much more efficient algorithm for obtaining argminδ∈Δ R(δ, θ) for Δ2 and Φ5
under the assumption of dictionary independence is described below.
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If we define C1(y) = {j : j > 1, yj = ⊥}, C2(y) = {j : j > 1, yj �= ⊥} we have

�(y, θ) =

∏
j∈C2(y) ewj,y1

|ρ(y, θ)| =

∏
j∈C2(y) ewj,y1∏
k>1 αk(yk, θ)

=
∏

j∈C2(y)

ewj,y1

αj(yj , θ)
·
∏

l∈C1(y)

1
αl(⊥, θ)

=
∏

j∈C2(y)

ewj,y1
αj(⊥, θ)
αj(yj , θ)

·
m∏

l=2

1
αl(⊥, θ)

.

To select the disclosure of k attributes that minimizes the above loss it remains
to select the set C2(y) of k indices that minimizes the loss. This set corresponds
to the k smallest {ewj,y1

αj(⊥,θ)
αj(yj ,θ)}mj=2 and leads to the following algorithm.

Algorithm 1. MinRisk

(1) foreach i = 1, . . . , n
(2) foreach j = 2, . . . , m

(3) set γj := e
wj,xi1

αj(⊥,θ)
αj(xij ,θ)

(4) identify the k smallest elements in {γj}m
j=2

(5) set δ(xi) to disclose the attributes corresponding to these k ele-
ments

Theorem 2. The algorithm MinRisk for solving arg minδ∈Δ R(δ, θ) requires
O(nNm) computations.

Proof. For each record y = xi we compute the following. The set {γj = ewj,y1

αj(⊥,θ)
αj(yj ,θ)}mj=2 can be obtained in O(Nm). Moreover, the set corresponding to
the k smallest elements in {γj}mj=2 can be obtained in two steps: (i) Get the
kth-smallest element in {γj}mj=2, γ′ (this requires O(m) computations), then (ii)
scan the set {γj}mj=2 for elements < γ′ (again, this requires O(m) computations).
Hence the overall complexity of the above procedure is O(n)

(
O(Nm)+O(m)

)
=

O(nNm).

4 Privacy Risk and k-Anonymity

k-Anonymity [9] has recently received considerable attention by the research
community [11,1]. Given a relation T , k-anonymity ensures that each disclosed
record can be indistinctly matched to at least k individuals in T . It is enforced
by considering a subset of the attributes called quasi-identifiers, and forcing
the disclosed values of these attributes to appear at least k times in the data-
base. k-anonymity uses two operators to accomplish this task: suppression and
generalization. We ignore the role of generalization operators in this paper as
our privacy framework is cast solely in terms of suppression at attribute-level.
However, it is straightforward to extend the privacy risk framework to include
generalization operators leading to a more complete analogy with k-anonymity,
and we plan to do it in future work.
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In its original formulation, k-anonymity does not seem to make any assump-
tions on the possible external knowledge that could be used for entity identifi-
cation and does not characterize the privacy loss. However, k-anonymity does
make strong implicit assumptions whose absence eliminates any motivation it
might possess. Following the formal presentation of k-anonymity in the privacy
risk context, we analyze these assumptions and possible relaxations.

Since the k-anonymity requirement is enforced on the relation T , the anonym-
ization algorithm considers the attacker’s dictionary as equal to the relation
T = θ. Representing the k-anonymity rule by δ∗k we have that the k-anonymity
constraints may be written as

∀i |ρ(δ∗k(xi), T )| ≥ k. (4)

The sensitivity function is taken to be constant Φ ≡ c as k-anonymity considers
only the constraints (4) and treats all attributes and entities in the same way. As
a result, the loss incurred by k-anonymity δ∗k is bounded by �(δ∗k(xi), T ) ≤ c/k
where equality is achieved if the constraint |ρ(δ∗k(xi), T )| = k is met. On the
other hand, any rule δ0 that violates the k-anonymity requirement for some xi

will incur a loss higher (under θ = T and Φ ≡ c) than the k-anonymity rule

�(δ0(xi), T ) =
c

|ρ(δ0(xi), T )| ≥ �(δ∗k(xi), T ).

We thus have the following result presenting k-anonymity as optimal in terms
of the privacy risk framework.

Theorem 3. Let δ∗k be a k-anonymity rule and δ0 be a rule that violates the
k-anonymity constraint, both with respect to xi ∈ T . Then

�(δ∗k(xi), T ) ≤ c/k < �(δ0(xi), T ).

As the above theorem implies, the k-anonymity rule minimizes the privacy loss
per example xi and may be seen as arg minδ∈Δ R(δ, T ) where Δ is a set of rules
that includes both k-anonymity rules and rules that violate the k-anonymity
constraints. The assumptions underlying k-anonymity, in terms of the privacy
risk framework are

1. θtrue = T
2. Φ ≡ c
3. Δ is under-specified.

The first assumption may be taken as an indication that k-anonymity does
not assume any additional information regarding the attacker’s dictionary. As
we showed earlier, the resulting risk R(δ∗k, T ) ≤ c/k may be seen as a bound
on the true risk R(δ∗k, θtrue) under some assumptions. Alternatively, the privacy
framework also introduces the mechanisms of the minimax rule and the Bayes
rule if additional information is available such as the set Θ of possible dictionaries
or even a prior on Θ. Moreover, the attacker’s dictionary θ is often a standard
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public resource. In such cases the constraints (4) should be taken with respect
to θ, rather than T .

The second assumption Φ ≡ c is somewhat questionable. The privacy risk
framework measures the loss as the expectation of the data sensitivity, as mea-
sured by Φ, with respect to the identification probability. Taking the sensitivity
function Φ to be a constant ignores the role of the sensitivity of the disclosed
data in the framework. The loss measured would depend only on the identifi-
cation probability and not on the types of attributes that are being disclosed.
In other words, privacy loss becomes synonymous with identification. This leads
to the paradoxical situation where the disclosure of a sensitive attribute such as
the type of medical situation diagnosed (e.g. HIV positive) may lead to lower
risk than the disclosure of a less sensitive attribute such as the precise date of
the most recent doctor visit (assuming that the precise date of the most recent
doctor visit leads to greater identification chance).

The third assumption implies that the set Δ may be specified in several ways.
Recall that the risk minimization framework is based on the assumption that
there is a tradeoff in disclosing private information. On one hand the disclosed
data incurs a privacy loss and on the other hand disclosing data serves some
benefit. The risk minimization framework argminδ∈Δ R(δ, θ) assumes that Δ
contains a set of rules acceptable in terms of their disclosure benefit, and from
which we select the one incurring the least risk. k-Anonymity ignores this tradeoff
and the set of candidate rules Δ may be specified in several ways, for example
Δ = Δ0∪{δ∗k} where Δ0 contains rules that violate the k-anonymity constraints.

In light of the above, k-anonymity may be modified in several directions. If
we possess some information concerning the attacker’s dictionary we can do a
better job using δ∗, δ∗B, δ∗M , as well as upper-bound the true risk using θ̂ (see
Section 5 for an explanation of these concepts). We can alter Φ to account for
the different sensitivities of different attributes, perhaps even allowing Φ to be
entity-dependent. Finally, a more careful consideration of the disclosure benefit
may lead to a better definition of the rule set Δ allowing the preference of some k-
anonymity rule over others. As mentioned earlier, our discussion is in terms of the
suppression operator alone. Nevertheless, the same arguments and conclusions
apply to k-anonymity using both suppression and generalization operators.

5 Conclusion

In this paper we have described a novel framework for assessing privacy risk in a
variety of situations. We consider optimal disclosure rules in the contexts of exact
knowledge, partial knowledge, and no knowledge with respect to the attacker’s
side information. We discuss several forms for expressing the largely ignored
role of data sensitivity in the privacy risk. We have shown that the estimated
privacy risk is an upper bound for the true privacy risk, under some reasonable
hypotheses on the relationships between the attacker’s dictionary and the data-
base dictionary. We have also provided a computationally efficient algorithm for
minimizing the privacy risk under some hypotheses. Finally, we have proved the
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generality of our framework by showing that k-anonymity is a special case of it,
and we have highlighted, in our decision theory based formulation, the particular
assumptions underlying k-anonymity.

At first glance it may appear that the privacy risk framework requires knowl-
edge that is typically unavailable or somewhat undesirable assumptions. After
all, it seems possible to use k-anonymity without making such compromising
assumptions. This is a misleading interpretation as any attempt at forming a
sensible privacy policy or characterizing the result of private data disclosure
requires such assumptions. In particular, assumptions have to be made concern-
ing the attacker’s resources and the data sensitivity. Existing algorithms such
as k-anonymity typically make such assumptions implicitly. However, in order
to obtain a coherent view of privacy it is essential to make these assumptions
explicit, and discuss their strengths and weaknesses.
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Appendix

Possible Expression for the Φ Function
In the following, we review several possible expressions for the function Φ, which
models the sensitivity of a record that is involved in a disclosure process, if the
attacker correctly identifies it. Since Φ is defined on X , the set of all possible
records, defining it by a lookup table is often impractical. We therefore consider
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several options leading to compact and efficient representation. Given a disclosed
record y = δ(xi), the simplest meaningful form for Φ is a linear combination of
non-negative weights wj over the disclosed attributes

Φ1(y) =
∑

j>1:yj �=⊥
wj

where wj represents the sensitivity associated with the corresponding attribute
Aj . A weight of +∞ represents the most sensitive information that may only be
disclosed if there is zero chance of it leading to identification (we define 0·∞ = 0).

Alternatively, we may assume that attributes sensitivities vary from record to
record, but are identical for each record. In this case a linear form would yield

Φ2(y) =
∑

j>1:yj �=⊥
wy1 = wy1 × (# of disclosed attributes)

where wy1 is the weight associated with the release of each attribute value of
the record y. Incorporating different weights for different attribute values and
different records yields the linear form

Φ3(y) =
∑

j>1:yj �=⊥
wj,y1

where wj,y1 represents the sensitivity of attribute j in record y. These weights
may be represented by a two dimensional table of numbers. A possible spe-
cial case is to assume the decomposition of attribute-record weights wj,y1 =
wjw

′
y1

leading to a representation of the weight table as two vectors of weights
(w1, . . . , wm), (w′

1, · · · , w′
n).

An extension of the linear representation of Φ is accomplished through k-
order interactions. In k-order interaction we use additional weights to capture
interactions of k attributes that are not accounted for in the linear forms above.
k-order interactions take into account cases in which the simultaneous disclosure
of multiple attribute values needs to be weighted differently when compared to
the independent disclosure of each single value. An example of k = 2-order
interaction yields the form

Φ4(y) =
∑

j>1:yj �=⊥
wj,y1 +

∑
j>1:yj �=⊥

∑
h>j:yh �=⊥

wj,h,y1 .

As k increases in magnitude, the class of functions represented by Φ becomes
richer. Reaching k = m would provide arbitrary flexibility with respect to the
functional form of Φ (however, as mentioned above, the representation and com-
putation are impractical for large m). If the simple linear form is not sufficient
to capture the user-specified privacy values, it is likely that increasing k to 2 or
3 will bring the functional form of Φ quite close to the user-specified values.
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In some cases, a multiplicative rather than linear form is preferred. In this
case, a convenient form is

Φ5(y) = exp

⎛
⎝ ∑

j>1:yj �=⊥
wj,y1

⎞
⎠ =

∏
j>1:yj �=⊥

ewj,y1

or its k-order extensions analogous to the linear forms above. The multiplicative
form Φ5 has the advantage that if we increase one privacy weight wij while
fixing the other weights, Φ increases exponentially rather than linearly. Since
the disclosure of extremely private information should not be considered even if
the remaining attributes are non-private, the multiplicative form Φ5 is the most
appropriate in many settings.

Experiments
The goals of our experiments are 3-fold: (i) to validate the risk associated with
different dictionaries, (ii) to assess the impact of different parameters on the
privacy risk, and (iii) to use the proposed framework to assess the relationship
between the estimated risk and the true risk.

We conducted our experiments on a real Wal-Mart database: An item
description table of more than 400,000 records each with more than 70 at-
tributes is used in the experiments. Part of the table is used to represent the
disclosed data whereas the whole table is used to generate different dictionary.
Throughout all our experiments, the risk components are computed as follows.
First, the identification risk is computed with the aid of the Jaro distance
function[7] that is used to identify dictionary items consistent with a released
record to a certain extent (we used 80% similarity threshold to imply consis-
tency.) Second, the sensitivity of the disclosed data is assessed by means of
random weights that are generated using a uniform random number generator.

The impacts of the number of disclosed attributes per record, k, and the
dictionary size on the privacy risk are reported in Figure 1 (left). As k increases
(i.e. extra data is being disclosed) and by fixing the dictionary size, the possibility
of identifying the entity, to which the data pertain, increases, thus increasing the
privacy risks. We increase k from 25% to 100% of the total number of attributes.
On the other hand, by fixing the number of data attributes that are disclosed,
the relation between the risk and dictionary size is inversely related. The larger
the size of the dictionary the attacker uses, the lower the probability that the
entity be identified. Different dictionaries are generated from the original table
with sizes varying from 10% to 100% of the size of the whole table. Moreover, the
experimental data show that the multiplicative model for sensitivity is always
superior in terms of the modeled risk to the additive model.

The relationship between the true risk R(δ, θtrue) and the estimated risk R(δ, θ̂)
is reported in the scatter plot in Figure 1 (right). As we proved before, R(δ, θ̂) is
always an upper bound of R(δ, θtrue) (all the points occur above the line y = x).
Note that, as the size of the true dictionary becomes significantly larger than the
size of the estimated dictionary, the points seem to trace a steeper line which means
that the estimated risk becomes a looser upper bound for the true risk.
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Fig. 1. The risk associated with different dictionaries and k values (left) and the rela-
tionship between the true risk and the estimated risk (right)
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Abstract. Distance-based record linkage (DBRL) is a common approach
to empirically assessing the disclosure risk in SDC-protected microdata.
Usually, the Euclidean distance is used. In this paper, we explore the po-
tential advantages of using the Mahalanobis distance for DBRL. We illus-
trate our point for partially synthetic microdata and show that, in some
cases, Mahalanobis DBRL can yield a very high re-identification percent-
age, far superior to the one offered by other record linkage methods.

Keywords: Microdata protection, Distance-based record linkage, Ma-
halanobis distance.

1 Introduction

A microdata set V can be viewed as a file with n records, where each record
contains p attributes on an individual respondent. The attributes in the original
unprotected dataset can be classified in four categories which are not necessarily
disjoint:

– Identifiers. These are attributes that unambiguously identify the respondent.
Examples are passport number, social security number, full name, etc. Since
our objective is to prevent confidential information from being linked to
specific respondents, we will assume in what follows that, in a pre-processing
step, identifiers in V have been removed/encrypted.

– Quasi-identifiers. Borrowing the definition from [3,13], a quasi-identifier is a
set of attributes in V that, in combination, can be linked with external in-
formation to re-identify (some of) the respondents to whom (some of) the
records in V refer. Examples of quasi-identifier attributes are birth date, gen-
der, job, zipcode, etc. Unlike identifiers, quasi-identifiers cannot be removed
from V . The reason is that any attribute in V potentially belongs to a quasi-
identifier (depending on the external data sources available to the user of V ).

J. Domingo-Ferrer and L. Franconi (Eds.): PSD 2006, LNCS 4302, pp. 233–242, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



234 V. Torra, J.M. Abowd, and J. Domingo-Ferrer

Thus one would need to remove all attributes (!) to make sure that the dataset
no longer contains quasi-identifiers.

– Confidential outcome attributes. These are attributes which contain sensi-
tive information on the respondent. Examples are salary, religion, political
affiliation, health condition, etc.

– Non-confidential outcome attributes. Those are attributes which contain non-
sensitive information on the respondent. Note that attributes of this kind
cannot be neglected when protecting a dataset, because they can be part of a
quasi-identifier. For instance, “Job” and “Town of residence” may reasonably
be considered non-confidential outcome attributes, but their combination can
be a quasi-identifier, because everyone knows who is the doctor in a small
village.

Disclosure risk assessment is needed to measure the safety in a masked micro-
data being considered for release. The standard procedure is to use quasi-identifier
attributes to perform record linkage between the masked dataset and an external
identified data source. Each correctly linked pair yields a re-identification. To be
more specific, the disclosure model considered in this paper is depicted in Figure 1
and is described next:

– We assume that the released microdata set (on the right-hand side in Fig-
ure 1) contains records with quasi-identifier attributes Y ′ and confidential
outcome attributes X . Attributes Y ′ are masked, synthetic or partially syn-
thetic versions of original quasi-identifier attributes.

– A snooper has obtained an external identified microdata set (on the left-hand
side in Figure 1) which consists of one or several identifier attributes Id and
several quasi-identifier attributes Y . Attributes Y are original (unmasked)
versions of attributes Y ′ in the released dataset.

– The snooper attempts to link records in the external identified dataset with
records in the released masked dataset. Linkage is done by matching quasi-
identifier attributes Y and Y ′. The snooper’s goal is to pair identifier values
with confidential attribute values (e.g. to pair citizens’ names with health
conditions).

1.1 Contribution and Plan of This Paper

We offer here an empirical comparison of various record linkage methods for
re-identification. The masked datasets have been generated using the IPSO fam-
ily of partially synthetic data generators [2] in the same way described in [9].
The range of record linkage methods tried is broader than in [9] and includes
distance-based record linkage (DBRL) based on the Mahalanobis distance. This
latter method yields surprising good results when there are strongly correlated
attributes among in the quasi-identifiers.

Section 2 describes the record linkage methods used. The IPSO synthetic
data generators are briefly recalled in Section 3. Section 4 specifies the two test
datasets used as original datasets in the empirical study. Section 5 describes the
experiments that were carried out. Conclusions are drawn in Section 6.
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Identifiers Quasi−
identifier
attributes
(original)
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identifier
attributes
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Fig. 1. Re-identification scenario

2 Record Linkage Methods Used

We list below the record linkage methods implemented. For additional details and
notation see [9,8]. In what follows, when the distance between pairs of records
(a, b) where a ∈ A and b ∈ B is considered, we assume that files A and B are
defined, respectively, on attributes V A

1 , . . . , V A
n and V B

1 , . . . , V B
n . Accordingly,

the actual values of a and b are, respectively, a = (V A
1 (a), . . . , V A

n (a)) and b =
(V B

1 (b), . . . , V B
n (b)). The following record linkage methods were considered:

DBRL1: Attribute-standardizing implementation of distance-based record
linkage. The Euclidean distance was used. Accordingly, given the notation
for a and b given above, the distance between a and b is defined by:

d(a, b)2 =
n∑

i=1

(V A
i (a)− V̄ A

i

σ(V A
i )

− V B
i (b)− V̄ B

i

σ(V B
i )

)2
DBRL2: Distance-standardizing implementation of distance-based record

linkage. The Euclidean distance was used. Therefore, the distance between
a and b is defined by:

d(a, b)2 =
n∑

i=1

(V A
i (a)− V B

i (b)
σ(V A

i − V B
i )

)2
DBRLM: Distance-based record linkage using the Mahalanobis distance. That

is:

d(a, b)2 = (a− b)′[V ar(V A) + V ar(V B)− 2Cov(V A, V B)]−1(a− b)

where V ar(V A) is the variance of attributes V A, V ar(V B) is the variance
of attributes V B and Cov(V A, V B) is the covariance between attributes V A

and V B.
The computation of Cov(V A, V B) poses one difficulty: how records in A

are lined up with records in B to compute the covariances. Two approaches
can be considered:
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– In a worst case scenario, it would be possible to know the correct links
(a, b). Therefore, the covariance of attributes might be computed with
the correct alignment between records.

– It is not possible to know a priori which are the correct matches between
pairs of records. Therefore, any pair of records (a, b) are feasible. If any
pair of records (a, b) are considered, the covariance is zero.

The re-identification using Mahalanobis distance with the first approach for
computing the covariance will be denoted by DBRLM-COV. The second
approach will be denoted by DBRLM-COV0.

KDBRL: Distance-based record linkage using a Kernel distance. That is, in-
stead of computing distances between records (a, b) in the original n dimen-
sional space, records are compared in a higher dimensional space H . Thus, let
Φ(x) be the mapping of x into the higher space. Then, the distance between
records a and b in H is defined as follows:

d(a, b)2 = ||Φ(a) − Φ(b)||2 = (Φ(a) − Φ(b))2 =

= Φ(a) · Φ(a)− 2Φ(a) · Φ(b) + Φ(b) · Φ(b) = K(a, a)− 2K(a, b) + K(b, b)

where K is a kernel function (i.e., K(a, b) = Φ(a) · Φ(b)).
We have considered polynomial kernels K(x, y) = (1 + x · y)d for d > 1.

With d = 1, the kernel record-linkage corresponds to the distance-based
record linkage with the Euclidean distance.

Taking all this into account, the distance between a and b is defined as:

d(a, b)2 = K(a, a)− 2K(a, b) + K(b, b)

with a kernel function K.
PRL: Probabilistic record linkage. The method is based on [10] and [11]. Our

implementation follows [14].

3 The IPSO Synthetic Data Generators

Three variants of a procedure called Information Preserving Statistical Obfus-
cation (IPSO) are proposed in [2]. The basic form of IPSO will be called here
Method A. Informally, suppose two sets of attributes X and Y , where the for-
mer are the confidential outcome attributes and the latter are quasi-identifier
attributes. Then X are taken as independent and Y as dependent attributes. A
multiple regression of Y on X is computed and fitted Y ′

A attributes are com-
puted. Finally, attributes X and Y ′

A are released in place of X and Y .
In the above setting, conditional on the specific confidential attributes xi, the

quasi-identifier attributes Yi are assumed to follow a multivariate normal distri-
bution with covariance matrix Σ = {σjk} and a mean vector xiB, where B is
the matrix of regression coefficients. Let B̂ and Σ̂ be the maximum likelihood
estimates of B and Σ derived from the complete dataset (y, x). If a user fits a
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Table 1. Re-identification experiments using dataset ”Census” and methods IPSO-A,
IPSO-B and IPSO-C

Quasi-identifier in external A Quasi-identifier in released B

v7, v12 v7S1
A , v12S1

A

v4, v7, v11, v12 v4S1
A , v7S1

A , v11S1
A , v12S1

A

v4, v7, v12, v13 v4S1
A , v7S1

A , v12S1
A , v13S1

A

v4, v7, v11, v12, v13 v4S1
A , v7S1

A , v11S1
A , v12S1

A , v13S1
A

v1, v3, v4, v6, v7, v9, v11, v12, v13 v9S1
A , v11S1

A , v12S1
A , v13S1

A , v1S1
A , v3S1

A , v4S1
A , v6S1

A , v7S1
A

v7, v12 v7S2
A , v12S2

A

v4, v13 v4S2
A , v13S2

A

v7, v12, v13 v7S2
A , v12S2

A , v13S2
A

v4, v7, v12, v13 v4S2
A , v7S2

A , v12S2
A , v13S2

A

multiple regression model to (y′
A, x), she will get estimates B̂A and Σ̂A which,

in general, are different from the estimates B̂ and Σ̂ obtained when fitting the
model to the original data (y, x). IPSO Method B, IPSO-B, modifies y′

A into y′
B

in such a way that the estimate B̂B obtained by multiple linear regression from
(y′

B, x) satisfies B̂B = B̂.
A more ambitious goal is to come up with a data matrix y′

C such that, when a
multivariate multiple regression model is fitted to (y′

C , x), both sufficient statistics
B̂ and Σ̂ obtained on the original data (y, x) are preserved. This is done by the
third IPSO method, IPSO-C.

4 The Test Datasets

We have used two reference datasets [1] used in the European project CASC:

1. The ”Census” dataset contains 1080 records with 13 numerical attributes
labeled v1 to v13. This dataset was used in CASC and in several other
papers. [5,4,15,12,7,6,9].

2. The ”EIA” dataset contains 4092 records with 15 attributes. The first five
attributes are categorical and will not be used. We restrict attention to the
last 10 numerical attributes, which will be labeled v1 to v10. This dataset
was used in CASC, in [4,6,9] and partially in [12] (an undocumented subset
of 1080 records from ”EIA”, called ”Creta” dataset, was used in the latter
paper).

5 Experiments

We have considered the datafiles “Census” and “EIA”, with the same scenar-
ios and the same re-identification experiments we used in [9]. In short, re-
identification experiments are applied to pairs of external and released files us-
ing subsets of quasi-identifiers. In scenario S1 for the dataset “Census” there are
nine quasi-identifiers; in scenario S2 for “Census” there are four quasi-identifiers.
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Table 2. Re-identification experiments using dataset ”EIA” and methods IPSO-A,
IPSO-B and IPSO-C

Quasi-identifier in external A Quasi-identifier in released B
v1 v1A

v1, v7, v8 v1A, v7A, v8A

v1, v2, v7, v8, v9 v1A, v2A, v7A, v8A, v9A

v1 v1B

v1, v7, v8 v1B , v7B , v8B

v1, v2, v7, v8, v9 v1B , v2B , v7B , v8B , v9B

v1 v1C

v1, v7, v8 v1C , v7C , v8C

v1, v2, v7, v8, v9 v1C , v2C , v7C , v8C , v9C

Table 3. Re-identification experiments using dataset ”Census” and method IPSO-
A. Results in number of correct re-identifications over an overall number of 1080
records. DBRL1: attribute-standardizing implementation of distance-based record link-
age (DBRL); DBRL2: distance-standardizing implementation of DBRL; DBRLM-COV
and DBRLM-COV0: distance-based record linkage using Mahalanobis distance (covari-
ances computed using the appropriate alingment or covariances set to zero); KDBRL:
distance-based record linkage with kernel distance (polynomic kernel with d=2); PRL:
probabilistic record linkage.

DBRL1 DBRL2 DBRLM-COV0 DBRLM-COV KDBRL PRL
145 133 135 123 146 133
91 75 126 60 89 82
95 87 137 66 94 103
98 87 129 62 97 86
23 40 123 67 24 97
104 92 93 84 100 92
59 65 63 57 61 65
94 85 89 68 91 86
109 104 106 44 106 103

For “EIA” there is a single scenario with five quasi-identifier attributes highly
correlated with the rest of attributes. Released files (see [9,8] for details) were
generated using the synthetic data generators IPSO-A, IPSO-B and IPSO-C.
Table 1 lists the sets of quasi-identifiers considered for the “Census” data in the
case of data generated using IPSO-A. Analogous sets of quasi-identifiers (viS1

B

and viS1
C instead of viS1

A ) were considered for the other IPSO-B and IPSO-C
methods. Table 2 contains similar information corresponding to “EIA” datasets.

Note that in this paper only experiments with files sharing attributes have
been considered.
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Table 4. Re-identification experiments using dataset ”Census” and method IPSO-
B. Results in number of correct re-identifications over an overall number of 1080
records. DBRL1: attribute-standardizing implementation of distance-based record link-
age (DBRL); DBRL2: distance-standardizing implementation of DBRL; DBRLM-COV
and DBRLM-COV0: distance-based record linkage using Mahalanobis distance (covari-
ances computed using the appropriate alingment or covariances set to zero); KDBRL:
distance-based record linkage with kernel distance (polynomic kernel with d=2); PRL:
probabilistic record linkage.

DBRL1 DBRL2 DBRLM-COV0 DBRLM-COV KDBRL PRL
146 133 135 123 133 133
89 75 126 61 73 81
95 86 138 66 87 103
97 85 130 62 86 86
23 40 123 63 5 94
104 92 93 83 92 92
59 65 63 57 65 65
94 85 89 68 85 86
109 104 106 44 103 103

Table 5. Re-identification experiments using dataset ”Census” and method IPSO-
C. Results in number of correct re-identifications over an overall number of 1080
records. DBRL1: attribute-standardizing implementation of distance-based record link-
age (DBRL); DBRL2: distance-standardizing implementation of DBRL; DBRLM-COV
and DBRLM-COV0: distance-based record linkage using Mahalanobis distance (covari-
ances computed using the appropriate alingment or covariances set to zero); KDBRL:
distance-based record linkage with kernel distance (polynomic kernel with d=2); PRL:
probabilistic record linkage.

DBRL1 DBRL2 DBRLM-COV0 DBRLM-COV KDBRL PRL
34 34 34 34 33 34
37 37 42 19 39 32
24 24 24 11 23 23
39 39 44 17 40 36
24 24 50 11 25 43
47 47 47 44 49 48
19 19 20 20 19 18
40 40 34 34 41 37
35 35 41 41 32 33

The results of the experiments considered for the “Census” data for methods
IPSO-A, IPSO-B and IPSO-C are given in Tables 3, 4 and 5. The results of the
experiments using the file “EIA” are given in Table 6.
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Table 6. Re-identification experiments using dataset ”EIA” and methods IPSO-
A, IPSO-B and IPSO-C. Results in number of correct re-identifications over an
overall number of 4092 records. DBRL1: attribute-standardizing implementation of
distance-based record linkage (DBRL); DBRL2: distance-standardizing implementa-
tion of DBRL; DBRLM-COV and DBRLM-COV0: distance-based record linkage using
Mahalanobis distance (covariances computed using the appropriate alingment or co-
variances set to zero); KDBRL: distance-based record linkage with kernel distance
(polynomic kernel with d=2); PRL: probabilistic record linkage.

DBRL1 DBRL2 DBRLM-COV0 DBRLM-COV KDBRL PRL
14 9 9 9 14 8
16 15 18 9 16 16
65 121 3206 143 63 159
14 9 9 9 14 8
17 15 18 8 17 16
65 120 3194 135 62 159
11 11 11 11 11 10
6 6 14 8 6 5
53 53 773 46 54 93

6 Conclusions

Conclusions in [9] with respect to distance-based and probabilistic record linkage
are also applicable here. In relation to the additional methods considered here
we should point out that:

– Distance-based record linkage based on Mahalanobis distance achieves the
highest number of re-identifications (3206 over 4092 records) in the case
of the EIA datafile when the synthetic data generator is IPSO-A and all
quasi-identifiers are considered. This corresponds to the re-identification of
78.3% of the records. Similarly, 3194 (78.05%) re-identifications are obtained
for IPSO-B data. In the case of IPSO-C, the best performance is 773 re-
identifications (which corresponds to 18.9% of the records).

– With respect to distance-based record linkage based on Mahalanobis dis-
tance, DBRLM-COV0 (i.e., covariances between attributes V A and V B are
set to zero) has a better performance than DBRLM-COV.

– The distance-based record linkage based on the kernel distance leads to re-
sults equivalents to the other distance-based methods. Only in one experi-
ment does this method outperform the other ones. This experiment corre-
sponds to “Census” data with synthetic data generated with IPSO-A (first
experiment with two variables). In this case, 146 records are re-identified.

One possible explanation for the different behaviour of DBRLM-COV0 in
”Census” and ”EIA” is that quasi-identifiers in the latter dataset are more highly
correlated.

In the experiments performed here, re-identification consists of finding the
links between the original and the synthetic data. This corresponds to the
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assumption that the snooper knows a subset of the original data and tries to link
such data with the synthetic data in order to disclose sensitive attributes. This re-
identification is directed following the scheme in Figure 1. This re-identification
scheme differs from the scheme considered in [9]. There, synthetic data was re-
identified back to the original source data. The change in the scheme does not
reveal any substantial differences among the methods already considered in [9].
The following results illustrate the minor differences:

– DBRL1 for “Census” data in scenario S1 on the data generated with IPSO-A
leads to 144, 85, 104, 79 and 36 records re-identified when using the scheme
in [9]. Instead, the current scheme leads to 145, 91, 95, 98 and 23, respectively.

– DBRL1 for “EIA” data on the data generated with IPSO-A, the previous
scheme leads to 10, 23 and 65 re-identifications while the new one yields 14,
16 and 65 re-identifications, respectively.
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Abstract. The release of survey microdata files requires a preliminary
assessment of the disclosure risk of the data. Record-level risk measures
can be useful for “local” protection (e.g. partially synthetic data [21],
or local suppression [25]), and are also used in [22] and [16] to pro-
duce global risk measures [13] useful to assess data release. Whereas
different proposals to estimating such risk measures are available in
the literature, so far only a few attempts have been targeted to the
evaluation of the statistical properties of these estimators. In this pa-
per we pursue a simulation study that aims to evaluate the statisti-
cal properties of risk estimators. Besides presenting results about the
Benedetti-Franconi individual risk estimator (see [11]), we also propose
a strategy to produce improved risk estimates, and assess the latter by
simulation.

The problem of estimating per record reidentification risk enjoys many
similarities with that of small area estimation (see [19]): we propose to
introduce external information, arising from a previous census, in risk
estimation. To achieve this we consider a simple strategy, namely Struc-
ture Preserving Estimation (SPREE) of Purcell and Kish [18], and show
by simulation that this procedure provides better estimates of the indi-
vidual risk of reidentification disclosure, especially for records whose risk
is high.

Keywords: Bayesian hierarchical models, disclosure, per record risk,
SPREE, simulation study.

1 Introduction

The release of microdata files requires a preliminary assessment of the risk of
disclosure of the data to be released. Sometimes a record-level measure of risk
can be useful, that can be exploited to protect the data selectively; moreover
(e.g. [16,22]) such a measure can be used to build an overall measure of risk for
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the whole data file. Whereas different proposals to estimating the risk of disclo-
sure are available in the literature, so far only a few attempts have been targeted
to the evaluation of the statistical properties of the estimators adopted. Giving
at least an idea of the bias and MSE of the risk estimators is clearly crucial
for risk assessment and subsequent data protection. In this paper we pursue a
simulation study to evaluate the statistical properties of the Benedetti-Franconi
individual (BF) risk estimator (see [11]). Such estimator is a function of the
sample frequency of the cells in the contingency table built by cross tabulating
the key variables that permit reidentification under a certain disclosure scenario
(see [11] or [16] for details). We anticipate that the BF estimator exhibits ap-
preciable underestimation of small population cells and negligible bias for large
ones.

The problem of estimating record level measures of reidentification risk enjoys
many similarities with that of small area estimation (a comprehensive account on
the subject is in [19]). For this reason we believe that improvements in risk assess-
ment can be achieved by exploiting these analogies. Especially when observing
very low sample cell frequencies, etc., in order to obtain improved estimators
it is often convenient to introduce external information. Given the type of key
variables that typically characterize the disclosure scenario, we exploited the in-
formation conveyed by a previous census. As the census questionnaire usually
collects this kind of variables, it is possible to consider the census contingency
table built by cross classifying the key variables as external information. We
consider a simple strategy, namely Structure Preserving Estimation (SPREE)
(Purcell and Kish, 1980, [18]), to produce improved risk estimators.

Our simulation study is organized as follows: we simulate 1,000 synthetic sam-
ples from the population collected at the 2001 Italian population census, using
the previous one (carried out in 1991) as a source of auxiliary information.
Specifically, the information that we borrow from the 1991 census refers to the
structure of association in the contingency table based on the variables that we
use to estimate the individual risk. The same contingency table is therefore con-
sidered at two different time occasions. We also use available information about
the margins of the above mentioned contingency table at current time, consist-
ing in standard design-unbiased estimators of population cell frequencies and in
population counts that are usually available from administrative sources.

The procedure analysed in the paper is shown to provide better estimates
of the population cell frequencies that we try to infer from the sample in the
process of risk estimation, and by consequence we expect it to lead to improved
risk estimates. In Section 4 we propose different strategies for risk estimation
and compare them by simulation.

2 The Reidentification Risk

The definition of disclosure that we adopt is based on the concept of reidentifi-
cation (e.g. [4,9,7]) and is appropriate for the release of data arising from social
surveys. A disclosure is a correct reidentification achieved by matching a target
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individual in a sample with an available list of units which contains individual
identifiers, such as name and address (see [25]). The variables that can be used
for reidentification are referred to as key variables. These are a major ingredi-
ent of the disclosure scenario defined by the Agency that is releasing the data.
For social surveys, a scenario under which the key variables represent informa-
tion available in the public registers collected under the current legal regulation
is sometimes defined. In this case the key variables are selected among public
variables that are available for the population and also present in the file to
be released. These are usually categorical key variables (region of residence, sex,
age, marital status, and so on), that can also be derived from brief social contact
with records. It is assumed that potential intruders do not have any further in-
formation about records, for instance, whether or not they belong to the sample.
If the sampling weights are released, under some circumstances these might give
additional information for reidentification; for instance, very large enterprises
are usually sampled with probability one. For social surveys on individuals, the
latter is true if the sampling design weights are approximately constant at a ge-
ographical detail finer than the one defined by the corresponding key variables;
however the effect of calibration and editing will act as a confounder. We also
remark that sampling weights could be protected prior to data release. For the
above reasons, we adopt a definition of risk that does not take this aspect into
account.

In such a framework, the risk can be defined as a function of the cells of the
contingency table built by cross-tabulating the key variables in the population.
Records presenting combinations of key variables that are unusual or rare in
the population have clearly a high disclosure risk, whereas rare or even unique
combinations in the sample do not necessarily correspond to high risk individ-
uals. The risk measure is thus defined at the record level; more precisely, it is
a cell-specific measure, as it only depends on cells or combinations of the key
variables introduced in the disclosure scenario.

To measure the disclosure risk under this framework we therefore focus on
the K cells C1, . . . , CK of the contingency table above. We will consider the
frequencies F = (F1, . . . , FK) and f = (f1, . . . , fK) in the population and sample
table, respectively. In particular, the population counts F are usually unknown.
In estimating most risk measures, inference about F is made, possibly only for
the cells Ck with small sample frequency: for instance, [24] and [23] focus on
sample uniques, while [3,8,10,20] also consider non unique cells in the sample.

The problem of risk estimation is closely related to that of estimating the
elements of the vector F of population cell frequencies. In the next sections we
consider different approaches to risk estimation and exploit the interplay between
the two estimation problems.

3 The Benedetti-Franconi Risk Estimator

Benedetti and Franconi [2] introduced a framework to estimate the reidentifica-
tion risk. A routine for computing the Benedetti-Franconi (BF) individual risk is
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currently implemented in the software μ-Argus, developed under the European
Union project CASC on Computational Aspects of Statistical Confidentiality
(see for instance [12]).

If one assumes, as described in Section 2, that individuals belonging to the
same cell Ck are exchangeable for the intruder, then the probability of reidenti-
fication of individual i in cell Ck when Fk individuals of the population known
to belong to it is 1/Fk, k = 1, . . . , K.

In order to infer the population frequency Fk of a given combination from
its sample frequency fk, a Bayesian approach is pursued, in that the posterior
distribution of Fk given f is exploited. The risk is then defined as the expected
value of 1/Fk under this distribution. For a general Bayesian formulation of
reidentification, see [9,15,10].

As shown in [22] and [16], the model originally proposed by Benedetti and
Franconi [2] corresponds to the following hierarchical model:

Fk|πk ∼ Poisson(Nπk), Fk = 0, 1, . . . , (1)
fk|Fk, πk, pk ∼ binom(Fk, pk), fk = 0, 1, . . . , Fk ,

independently across cells. Furthermore, πk in (1) above is assumed to follow an
improper prior distribution, proportional to 1/πk, k = 1, . . . , K.

The parameters pk, each one representing the probability that a member of
population cell Ck falls into the sample, are not further modelled. Following a
kind of Empirical Bayesian approach, Benedetti and Franconi propose plugging-
in the quantity

p̂k =
fk

F̂D
k

(2)

in the final modelling step,
F̂D

k =
∑
i∈Ck

wi

representing the direct design unbiased estimator of the population counts Fk

based on the sampling design weights wi. Under model (1), the posterior distri-
bution of Fk given f only depends on the corresponding sample cell frequency
fk (see [10]), and is of negative binomial type [22,16]:

Pr (Fk = h|fk = j) =
(

h− 1
j − 1

)
pj

k (1− pk)h−j , h ≥ j .

Consequently [2,16,11],

r̂BF
k = E

(
1
Fk

∣∣∣∣ fk

)
=
∫ ∞

0

{
p̂k exp (−t)

1− q̂k exp (−t)

}fk

dt

=
p̂fk

k

fk
2F1(fk, fk; fk + 1; q̂k), (3)

where q̂k = 1− p̂k and 2F1(a, b; c; z) is the Hypergeometric function (see [1]).
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The estimator (3) only makes use of the sampling cell frequency fk and the
sampling design weights wi of units belonging to cell Ck. Given the marginal
nature of model (1) on which it is based and the way the hyperparameters are
treated, the structure of the contingency table that produces the cells on which
the risk is estimated is not exploited. This is partially attenuated when calibrated
sampling design weights [5] are used in (2), which is the case with most ISTAT
surveys. Calibration (see [5]) ensures that estimates over certain domains return
the corresponding known population totals. The variables on which calibration
is normally performed are typically a subset of the key variables introduced in
the disclosure scenario. Therefore partial account of the structure of association
exhibited in the population by the key variables is made when calibration weights
are used.

4 Alternative Estimators

As mentioned, the BF estimator (3) makes use of a calibration estimator, F̂D
k , as

a first-step estimate of the population cell frequency Fk. The calibration estima-
tor may be very poor, especially for those classes whose population is very low.
Being characterised by a potentially high risk of disclosure, these cells are clearly
the ones of main interest in our framework. In [6] an experiment was conducted
over 600 simulated samples to assess the performance of the individual risk of
disclosure. However only the cells that are present in all samples were assessed;
the highest risk cells, corresponding to small population frequencies, were there-
fore excluded from the study. In Section 5 we pursue a simulation experiment to
assess the BF risk estimator. In particular we consider the behaviour of the BF
risk estimator in small population cells.

Small area estimators have been extensively applied to reduce the MSE of di-
rect estimators by means of external information and explicit or implicit models
for the relationship between the variable of interest and the auxiliary variables.
The definition of disclosure risk in terms of cells of a certain contingency ta-
ble suggests using the structure preserving estimators (SPREE) proposed by
Purcell and Kish [18]. For tabular data arising from cross-classification of cat-
egorical variables, Purcell and Kish [18] propose that the association structure
obtained from an administrative or a census source can be exploited to improve
the estimation of counts. The association structure derives from a frequency
table known at a previous time t0 = t − L that completely describes the rela-
tionship among the variables that define the cross-tabulation. The given asso-
ciation structure is then updated on the basis of current information at time
t on the (partial) association between the variables present in the allocation
structure.

The allocation structure is usually represented by margins of the current fre-
quency table; these are estimated from the survey data or, when auxiliary vari-
ables are available, obtained from administrative sources. Typically, counts on
classes defined by sex and age can be obtained by administrative records, so that
these are often used as auxiliary variables.
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Aiming to improve the BF estimator especially for low counts, we propose two
alternative risk estimators, both based on the SPREE of Fk. These are described
in Section 4.2; in the next section we first introduce the SPREE.

4.1 The Structure Preserving Estimator

Any multi-way table can be reduced to three-way by properly re-defining the
classification. Let us denote by d the geographical or administrative domain (or
partition), by h the classification given by the auxiliary variables (sex and age
in the above example) and by i the classification given by the survey-variables.
Let Xdhi be the association structure, i.e. the known table at previous time
t0 = t − L. Finally, define by Fdhi the current table to be estimated and by m
the allocation structure, i.e. the updated margins.

Note that while in small area estimation problems Fdhi is usually only a means
to allow estimation of parameters of interest, that consist of margins Xd.i, in
disclosure estimation Fdhi itself is the ultimate inferential goal.

The SPREE method consists in adjusting the Xdhi to agree with the updated
information in m, while preserving the relationship among variables present in
Xdhi as much as possible. The aim is to obtain estimates of the current counts
Fdhi that minimize the χ2 distance between Xdhi and Fdhi with constraints given
by m. As mentioned in [18], explicit solutions exist only in trivial cases. In the
general case, Iterative Proportional Fitting (IPF), which consists in iteratively
adjusting the marginal constraints until convergence, is applied to obtain an
approximate solution, denoted by F̂ SPREE, to the above problem.

Depending on the information available, different specifications of m can be
given. Here we consider the specification used in our application (See Section 5),
namely m = ({F̂.hi}, {Fdh.}), where F̂.hi are direct estimates and Fdh.come from
administrative registers.

In our case the IPF has the following structure: at the first step the starting
values are set equal to values in the association structure

0F̂ SPREE
dhi = Xdhi .

At step k, cell counts are adjusted to the marginal constraints in two stages:

(1)kF̂ SPREE
dhi =

k−1F̂ SPREE
dhi

k−1F̂ SPREE
.hi

× F̂.hi ,

and
kF̂SPREE

dhi =
(1)kF̂SPREE

dhi

(1)F̂ SP REE
dh.

× Fdh. ;

step k is repeated until convergence.
It can be shown (see [18]) that this methodology preserves all the interactions

of Xdhi but those redefined by the allocation structure, so that the higher order
interactions of Fdhi are set equal to that of Xdhi . The bias of F̂ SPREE depends
on the extent to which this equality holds for the data. For further details on
SPREE see [18] and [26].
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4.2 Two SPREE-Based Risk Estimators

Having observed that the estimand is rk = 1/Fk for nonempty sample cells, our
first proposal simply estimates rk by

r̂SPREE
k =

1
F̂ SPREE

k

. (4)

The naive estimator (4) is assessed by simulation in Section 6.
For our second proposal we refer to model (1), however replacing F̂D

k by the
small area estimator F̂ SPREE

k in (2) to obtain a first-step estimator of the cell
probability pk. For the first-step we propose using

ˆ̂pk = fk/F̂ SPREE
k ,

thus obtaining the risk estimator

r̂BF SPREE
k =

ˆ̂pfk

k

fk
2F1(fk, fk; fk + 1; ˆ̂qk) . (5)

We expect that both (4) and (5) represent an improvement over the “standard”
BF estimator (3). We also want to compare the naive estimator (4) with the
model-based estimator (5).

5 Simulation Plan

To evaluate the statistical properties of the three estimators (3), (4) and (5), a
simulation study was performed, in which samples were selected from a known
real population.

In order to mimic as closely as possible a real situation, we applied a real-
istic sample strategy, namely Labour Force Survey (LFS); LFS is a very large
survey whose sampling scheme is a standard design commonly applied to the
main Italian social surveys. A total of 1,000 samples has been selected from the
2001 Italian Census data, comprising 6 Italian regions (Val d’Aosta, Piemonte,
Toscana, Umbria, Campania, Molise). The population amounts to over 15 mil-
lions, whereas the effective sample size in terms of individuals is over 80,000.
Choice of the above mentioned regions was motivated by several reasons: their
different geographical position (North, Center and South), the differences they
exhibit in the distribution of the key variables, their variability in the number
of inhabitants (Val d’Aosta and Molise are small regions where we expect larger
risks of disclosure) and finally the substantial variation of their sampling rates.
Note that sampling rates do vary highly among regions (ranging approximately
from 0.004 to 0.03) since sample size is planned to guarantee a given target level
in the precision of the estimates disseminated with the survey results. For Labour
Force Survey, in particular, sample sizes are set to ensure stable regional quar-
terly estimates of the unemployment rates and to guarantee pre-fixed precision
for yearly estimates at province level.
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The LFS is based on a complex sample design with stratification of munici-
palities which are primary sampling units (PSU). In each sample municipality
a systematic sample of households (secondary sampling units or SSU) is se-
lected; each member of sampled households is included in the LFS sample. The
stratification of PSU is carried out in each province (administrative areas inside
regions) according to their dimension in terms of residents; municipalities whose
size is bigger than a benchmark1 represent one member-strata and are classified
as Self-Representing Areas (SRA); these PSU are selected with probability one.
For the other strata, containing Not Self-Representing Areas (NSRA), one mu-
nicipality is selected with probability proportional to its size by means of the
randomized systematic procedure first introduced by Madow [14].

The final weights, that are released to allow estimation of LFS quantities of
interest, are obtained by applying to the basic weights (inverse selection proba-
bilities) a calibration process that controls on known totals of sex and ages (see
[5]). The main totals involved in the calibration process are defined by: sex by
14 age-classes at the regional level, sex by 5 age-classes at the province level, sex
by 5 age-classes for the bigger municipalities. To reduce the simulation burden,
we have calibrated only on sex by age at regional level.

The variables that we selected as key variables are region of residence, sex,
age (in 20 classes), marital status (in 4 classes), education (in 5 classes). Ac-
cording to the Italian legislation, these variables contain information available
from external registers; besides easy to get from brief social contact with the
record.

Note that planning of sample size, which is not based on the characteristic of
the individuals in the sample, is such that the sample dimension for the 4 800
cells of the classification on the key-variables under analysis may be very small
or even empty. As the cell of the cross-tabulation does not represent a planned
domain for LFS, we expect that especially the cells with smaller counts, i.e.
higher risk of identification if selected in the sample, will be present in a small
subset of the universe of all samples.

For the application of the risk estimators based on SPREE, we needed also
an association structure at a previous time. Complete information on it could
be derived only from the previous census, relative to year 1991. The temporal
lag is large, but we can study the performance of the method almost in its worst
condition since we expect that the stability in the association structure decreases
with time.

In the terminology of Section 4.1, the allocation structure has been defined as
m = ({F̂.hi}, {Fdh.}), Fdh. being the 2001 census counts of the marginal cross-
table defined by: sex by age (classes indicated with h) by region (classes indicated
with d). In practice these counts would come from updated administrative source.
F̂.hi , instead, represents the calibration estimate of marginal cross-table defined
by: education by marital status (classes denoted with i) by sex by age (classes
denoted with h).

1 Function of the sampling rate and the minimum number of interview to be performed
in each PSU.
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The availability of the target population from which to extract our samples
allows us to assess the performance of the estimators, as clearly the estimand is
known and equals 1/Fk for each k. Performance of risk estimates has been based
on bias and relative root mean square error over the samples where the cell has
been observed, as the risk is not defined (and not of interest) when sample cell
is empty. A conditional analysis of the above measures has also been performed
for given cell sample size (fk = 1, 2).

For the smaller cells, particularly for regions with lower sampling rates, the
performance criteria have sometimes been evaluated on a very small number of
samples. In this case, conclusions must be drawn with due care. As remarked
in Section 7, 1,000 samples are likely too few for a definite assertion of the
performances for the smaller cells, but can be useful to outline the expected
pattern.

6 Results

We expected the BF estimator r̂BF
k to behave poorly for small population fre-

quencies, that are the risky ones. Indeed r̂BF
k is based on a direct estimator of

population cell size that is calibrated on much larger domains (see Section 5)
than the ones we are using. We observed that the estimator depends mainly on
the observed cell sample size fk, so that risky cells cannot be effectively distin-
guished from the safe ones. As compared to the BF, the SPREE introduces a
much larger variation of the estimates across cells, which makes the alternative
estimators appealing to discriminate between safe and risky records. Fig. 1 re-
ports an overall graphical assessment of the conditional behaviour of the three
estimators over sample unique cells for all samples. To avoid plotting all the
replications of sample uniques across the simulations, for each cell we plotted
a summary of the estimates over our 1,000 samples. We show the minimum
and maximum (grey dots) and the median (black dots) of the estimates over
all eligible samples. Fig. 1 shows that both r̂BF SPREE

k and r̂SPREE
k are success-

ful in differentially detecting risky and safe sample uniques, although r̂BF SPREE
k

shows overestimation of risk for the sample unique records that correspond to
large population cells. As already remarked, the BF estimator has not enough
variation to allow for discrimination of sample uniques.

Fig. 2 shows that the BF estimator is also unconditionally largely biased for
small cells in the population. In this case, the alternative estimates are also neg-
atively biased, but the distribution is skewed toward zero. The bias decreases
with Fk, as large cells in the population are likely to produce large cells in the
sample. When we focus on very small population cells (up to 10-15 records), the
BF estimator tends to underestimate the true risk (See table 1 in the Appen-
dix for Fk = 2 and 5); the alternative estimators only have negative bias for
population uniques, although they exhibit a very large variation. For moderate
population cell size, both the BF and the BF SPREE estimators have positive
bias, which is negligible for the SPREE estimator. All the estimators have neg-
ligible bias as the population cell size gets larger. The bias for all the estimators
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Fig. 1. Assessment of the three estimators for sample unique cells over all the simulated
samples. Per cell minimum and maximum (grey dots) and median (black dots) of the
estimates over all samples are plotted.

shows dependence, especially noticeable for the BF, on the sampling rates. As
mentioned in Section 5, the sampling fractions vary across regions, being higher
for Molise and Val d’Aosta than for the other regions.
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Fig. 2. Bias of the three estimators vs population cell frequency. Darker grey levels
indicate regions with smaller sampling fractions.

We next evaluated the relative root MSE of the estimators,

RRMSE (r̂k) =

√
E (r̂k − rk)2

rk
,

for which the same dependency on the sampling fraction can be observed (see
Fig. 3). We also notice a clear decreasing pattern of the RRMSE of the proposed
estimators with increasing population cell frequencies.

The unconditional evaluation of the RRMSE tends to favour the SPREE esti-
mator which is particularly well behaved for moderate to large population cells.
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Fig. 3. Plot of root relative MSE for the three estimators. Darker grey levels indicate
regions with smaller sampling fractions.

The same conclusions are suggested by the conditional analysis of the RRMSE
for the sample unique cells. The figures analysed so far contain very small as
well as larger cells; we then conditioned on both fk and Fk: for such cells the
alternative estimators r̂BF SPREE

k and r̂SPREE
k are comparable with respect to

RRMSE.
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Fig. 4. Conditional assessment of RRMSE of the three estimators for sample uniques

7 Comments

In this paper we presented a comparative analysis of the BF estimator (3) and
two alternative proposals (4.1) and (5), both based on the SPREE methodol-
ogy. As far as the two SPREE based estimators are concerned, no one emerges
as clearly superior to the other. The naive estimator, that is obtained as the
reciprocal of F̂ SPREE

k , should not be appropriate for small cells, as it results
in overestimating the risk. We saw however that for very small population
cells, namely the extremely risky ones, all the estimators, although to differ-
ent extents, underestimate the true risk. We also remark that since the risk
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is a bounded parameter, use of the MSE to assess estimators’ performance
is perhaps not the best choice, other loss functions being perhaps more
appropriate.

Both (4) and (5) require an iterative estimation procedure. In our experience
the computational effort associated with the SPREE estimator is not an issue,
as a straightforward iterative proportional fitting algorithm is used. Once an
estimate of the population cell frequencies has been obtained, the risk can be
easily computed in a single step via an approximation that has shown to be
satisfactory even with small frequencies [17]. The feasibility for the person who
is in charge of the data release to have access to census data might be an is-
sue. The process of building the appropriate table is an important step that
requires at least some insights about the available information and the classes
in which estimates with sufficient precision can be obtained from the sample
at hand. First, the population table from which the association structure is
borrowed must be organized in an appropriate way. Secondly, the margins of
the above table must be computed from the available sources such as admin-
istrative archives and the sample on release. Finally, in order for the variables
collected at a census to be compatible with the key variables available in the
survey microdata to be released, some treatments, such as recoding, are usually
needed.

Such a process is nontrivial and might also be computationally demanding,
depending on the size of the population. An advantage is that the association
structure between the key variables in the population enjoys stability over time.
This implies that the same association structure can be considered at subsequent
releases, the only change being the update of the margins of the table. In our
simulation plan we purposely chose a ten years lag and observed that this does
not affect the estimates to a large extent, the only necessary adjustment being
the update in the margins.

A major difficulty with the SPREE is that it does not satisfy the natural
requirement that estimates F̂ SPREE

k > fk, so that sometimes even frequencies
less than one might be obtained. This undesirable behaviour, not shared by
the BF estimator, turns into estimated risks outside the natural [0, 1] inter-
val, and clearly affects the overall performance of the estimators to a large ex-
tent. In the experiment presented here, we simply adjusted our estimates, but
we believe that the presented estimators can be improved in several respects.
We will show results of modifying the proposed estimators in a subsequent
paper.

Acknowledgments. The empirical study was conducted under a joint research
project agreement between Istat and Università di Napoli Federico II (Proto-
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Appendix

Table 1. Summaries for the bias of the three proposed estimators for Fk = 2 and 5

Min. 1st Qu. Median Mean 3rd Qu. Max.

Fk = 2 r̂BF SPREE
k −0.48 −0.26 0.19 0.07 0.36 0.50

r̂SPREE
k −0.50 −0.40 0.02 −0.01 0.30 0.50

r̂BF
k −0.49 −0.47 −0.41 −0.42 −0.37 −0.37

Ck : ns > 0 3 9 44 38.92 67 87

Fk = 5 r̂BF SPREE
k −0.18 0.03 0.19 0.22 0.39 0.78

r̂SPREE
k −0.20 −0.11 0.05 0.11 0.25 0.78

r̂BF
k −0.19 −0.17 −0.11 −0.12 −0.08 −0.06

Ck : ns > 0 7 29 108 105.70 174 200
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Abstract. This paper presents an overview of the current single-database private
information retrieval (PIR) schemes and proposes to explore the usage of these
protocols with statistical databases. The vicinity of this research field with the
one of Oblivious Transfer, and the different performance measures used for the
last few years have resulted in re-discoveries and contradictory comparisons of
performance in different publications. The contribution of this paper is twofold.
First, we present the different schemes through the innovations they have brought
to this field of research, which gives a global view of the evolution since the
first of these schemes was presented by Kushilevitz and Ostrovsky in 1997. We
know of no other survey of the current PIR protocols. We also compare the most
representative of these schemes with a single set of communication performance
measures. When compared to the usage of global communication cost as a single
measure, we assert that this set simplifies the evaluation of the cost of using PIR
and reveals the best adapted scheme to each situation. We conclude this overview
and performance study by introducing some important issues resulting from PIR
usage with statistical databases and highlighting some directions for further re-
search.

1 Introduction

Privacy is a major concern in the cyberspace. In statistical databases, much work has
been done to protect private data from statistical inference, but to the best of the authors’
knowledge, no attention has been given to the protection of the privacy of the users
requesting the statistical data. Still, limiting the information about the users that the
database administrators can obtain from the requests can be a major issue. For example,
statistics collected by a medical research facility can reveal a lot of critical information
on which are its privileged research axes, and the leakage of this information can lead
to unfair competition.

To protect his privacy, a user accessing a non-statistical database may want to retrieve
an element without revealing which element he is interested in. A trivial solution is
for the user to download the entire database and retrieve locally the element he wants
to obtain. Private Information Retrieval (PIR for short) schemes aim to provide the
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same confidentiality while reducing the communication cost with respect to the trivial
solution. If users retrieve blocks of bits from the database, we talk of Private Block
Retrieval (PBR). Both PIR and PBR were introduced by Chor, Goldreich, Kushilevitz,
and Sudan in 1995 [1]. In their paper, they proposed a set of schemes to implement PIR
through replicated databases, which provide users with information-theoretic security
as long as the database replicas do not collude against the users.

A user of a statistical-database is not supposed to request single elements of the data-
base. We will not deal in this paper with how to transform the existing PIR schemes into
schemes allowing users to make statistical requests. It is for example trivial to obtain
a mean value with a PIR scheme based on an homomorphic encryption scheme (see
section 2), but evaluating which statistics can be realized with which scheme, and how,
is beyond the scope of this paper. Security issues raised from the usage of PIR schemes
in statistical databases will be commented in the conclusion, as well as directions for
further research in this field.

In this paper, we will focus on PIR schemes that do not need the database to be repli-
cated, which are usually called single-database PIR schemes. Users’ privacy in these
schemes is ensured only against computationally-bounded attackers. It is in fact proved
that there exists no information-theoretically secure single-database PIR scheme with
sub-linear communication cost [1]. The first of these schemes was presented in 1997 by
Kushilevitz and Ostrovsky, and since then improved schemes have been proposed by
different authors [2,3,4,5,6,7].

All of these schemes follow a similar approach, but it is difficult to understand which
are the innovations brought by each of them, and the impact that the different innova-
tions have on communication performance. We present in this paper the fundamental
approach that all of these schemes follow, and indicate why each of them has meant a
step forward and how this approach can be pursued to develop future schemes.

Single-bit and block retrieval notions are often mixed together in single-database
PIR research. The seminal papers on PIR evaluated the schemes’ performance through
the communication cost to obtain a single bit. For block retrieval, the query size and
the expansion factor on the information sent by the database to the users would be
far more comprehensive measures than the global communication cost generally used.
Some authors just add remarks on what are the communication rate, or the evolution of
the relative cost when retrieving large blocks.

Such an approach has a negative impact on clearness. For example, the titles of the
papers [5,6,7] indicate respectively logarithmic, log-squared, and constant evaluation of
their communication performance but each of them uses a different measure. Another
major example is the one of the quest for the single-database PIR with logarithmic
communication cost. To retrieve a single bit in a n bit database without privacy con-
cerns a user must send a log(n)-bit query (the index of the bit) and the database has to
send back one single bit. This has a total communication cost of (log(n) + 1) bits and
therefore whether it is possible to privately retrieve a bit with a communication cost of
O(log(n)) bits would be an interesting result. This approach is clearly not adapted for
block retrieval in which case the fundamental issue would be whether it is possible to
retrieve blocks of bits with queries of O(log(n)) bits and a constant expansion factor for
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the database replies1. Even if PIR schemes are more likely to be used for block retrieval,
their asymptotic performance is generally evaluated by the proximity to the O(log(n))
limit of their total communication cost which is not only unpractical, but also theoreti-
cally less interesting than comparing them to the O(log(n)) and constant limit for block
retrieval.

For these reasons we propose a set of measures to evaluate PIR schemes which take
into account block retrieval, and is independent of the application which the scheme is
used for. We give some examples of applications to illustrate how this set of measures
gives a clear notion of which would be the communication costs when using a given
PIR scheme instead of a non-private retrieval.

In Section 2 we present the overview and analysis of the existing single-database
PIR schemes, and in Section 3 we introduce the set of measures and compare their
performances.

2 Analysis of the Existing Single-Database PIR Schemes

In [8], Kushilevitz and Ostrovsky created the first single-database PIR scheme, by us-
ing quadratic residues. What exactly are quadratic residues is not as important as their
properties:

– the user can efficiently generate numbers which are quadratic residues (QRs) and
numbers which are quadratic non residues (QNRs),

– the user can efficiently test if a number is a QR or a QNR,
– the user can send sets of such numbers to a database which will be unable to distin-

guish QRs from QNRs
– there is an operation OP, computable by such a database, that from a set of QRs

and QNRs gives a QNR if and only if the number of QNRs in the initial set is odd.

The idea behind this PIR scheme is for the query to be constituted of one QR number
for each bit of the database except for the bit to be retrieved and a QNR number for that
bit. The database computes the operation OP over the set of numbers associated with
the bits in the database’s string set to one (and ignores the others), and sends the result
to the user. If the bit the user is interested in is set to one the database will have selected
a QNR among the numbers and the result will be a QNR. If the bit the user is interested
in is set to zero, the database will have selected only QRs and the result of the operation
will be a QR number. Figure 1 resumes this idea.

With such a scheme the user has to send n numbers and the database replies a single
number. The communication cost is thus O(n). To reduce this cost, the basic scheme
presented by the authors integrates a load balancing technique presented in the seminal
paper about PIR [1]. The principle is to see the n-bit database as a matrix of s lines and
t columns (with s× t = n). The user sends t numbers and the database sends s numbers,
one for every line in the matrix. As Figure 2 shows, the user retrieves a full column of
data, containing the bit he is interested in.

1 For instance, a scheme with log(n)-bits long queries and a reply expansion factor of log(n)
would satisfy the O(log(n)) requirement for single-bit retrievals but not constant expansion
one for block retrievals.
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Fig. 1. QRs and PIR schemes

The first use of quadratic residues is to make the database give the users an informa-
tion without knowing which. The second recursive use is made for the user to extract
the expected result from the database output. This technique enables to reduce the com-
munication cost to an expansion factor of t numbers for the query and s numbers for the
reply, i.e. a communication cost of O(n1/2).

This approach is effective for two reasons. First, a user does not need to retrieve all
of the data sent by the server when using the load balancing technique, but only the
number associated with the bit he is interested in. Second, PIR schemes are meant to
provide sub-linear communication and therefore the output generated by the database
is smaller than the database itself, and therefore using twice the scheme will result on
a communication improvement. The maximum number of recursions will be given by
the initial dimension of the representation of the database. If we represent the database
as an s × t rectangle only two levels of recursion will be possible, if more generally the
database is seen as a L-dimension hyper-rectangle, L levels of recursion are possible, to
reduce the communication to O(n1/L).

The article by Kushilevitz and Ostrovsky led to two other works. The first is Eran
Mann’s master thesis [3] that gives a theoretical framework and generalizes the quadratic
residues scheme to any family of trapdoor predicates with properties similar to those
achieved by the quadratic residues (he calls them homomorphic trapdoor predicates).
The second work is a paper by Julien P. Stern [2], which made a major outbreak. Stern
proposes exactly the same scheme than Kushilevitz and Ostrovsky, except that, instead
of using a trapdoor predicate that can only encode one bit of information (for example
being a QR or a QNR), he proposes to use homomorphic encryption algorithms that
have all the properties needed, but can encode many bits of information in every number
resulting from the OP operation. When users try to retrieve blocks, this is of course
very interesting, since every number sent back by the database can encode many bits
contained in the database. However, even if the user is not interested in receiving a block
of information, the possibility to encode many bits in each number is very interesting.
The reason for this is pretty simple: the database reply can be a single number, instead of s
numbers when using load balancing, or O(L×n1/L) when using the maximum recursion.

One year later, Cachin, Micali, and Stadler presented a new scheme [4] based on a
new trapdoor predicate that they called the φ-assumption. Whereas this may seem as a
step backwards after Stern’s work on homomorphic encryption scheme, it is not. The
main reason is that this assumption has a very interesting property: a user can create
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Fig. 2. Kushilevitz and Ostrovsky basic scheme

a compact generator, out of which the database can obtain the numbers forming the
query. This causes a spectacular drop in the query size and even if the system is not
practically implementable, when database size increases this approach beats asymptot-
ically all the previous schemes. The basic idea is to create first a number generator, and
afterwards create a trapdoor predicate such that the number associated with the index
interesting the user has special properties. This approach in fact has led recently to a
very interesting variation described below.

In 2004 there was a rediscovery of Stern’s proposal [5], and a proposition by Lipmaa
[6] which is basically Stern’s construction with the recently discovered length-flexible
homomorphic encryption scheme of Damgärd and Jurik [9]. In his paper Lipmaa twists
Stern’s construction, taking profit of the length-flexible cryptosystem to provide PIR
schemes that are both practical and asymptotically interesting.

Finally, last year, Gentry and Ramzan presented a Scheme [7], which like Lipmaa’s
scheme is practical and presents an asymptotical improvement, even if for many appli-
cations Lipmaa’s construction is better, as shown in the next section. In their paper, the
authors present a construction that generalizes the proposal of Cachin et al., and their
scheme can be implemented using a slight variation of the φ-assumption. Aside from
the generalization, two major modifications are done with respect to the initial scheme.
The first modification is pretty much the same as Stern did with respect to Kushilevitz
and Ostrovsky’s scheme: modifying the trapdoor predicate to encode more than a sin-
gle bit. The second modification is very simple and consists on using the same numbers
(which are associated with the database bits) for all the queries. This is almost trivial but
was not proposed by Cachin et al., and it allows to make very small queries that just de-
scribe the structure in which the desired numbers will have special properties. However
the cost reduction applies only to all the queries except the first one, since the numbers
must be exchanged at least once. If users send only one query (or a small number of
queries) to a given server,the communication cost per query may be unaffordable.

3 Performance Comparison

In PIR protocols, database contents are usually described as n-bit strings. With such a
representation it is not possible to say whether a database contains n one-bit elements or
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n/l l-bit elements. For example, a database of one million user profiles of 10 Kbits each
cannot be distinguished from another one with one thousand songs of 10 Mbits each.
To obtain a more intuitive representation, we prefer to describe the database as a set of
n l-bit elements. If l = 1 we obtain of course the classic n-bit string representation.

The set of measures we will use to compare the schemes is: setup cost, query size,
reply size, and maximum number of encodable bits by PIR reply that we will call the
chunk size. When a scheme is implemented with a chunk size greater than α × l, α
being an integer constant, a trivial improvement can be done: the database can be seen
as composed of n/α elements of size α × l. This does not increase the size of the data-
base reply, but lowers either the setup cost or the queries size. As this improvement is
common to all schemes and is database dependent, we will not include it on the results,
letting the reader evaluate it for her/his own application.

Table 1. Performance comparison

Algorithm KO Stern CMS Lipmaa GR

Setup cost k 3 × k 0 3 × k n1/L × k

Query size L × k × n
1
L L × (s + 1) × k × n

1
L K4 + 2 × K5 L ×

(
s + L+1

2

)
× k ×

(
n

1
L − 1

)
2 × L × k

Reply size kL s ×
(

s+1
s

)L × k K5 (s + L) × k k × 5L−1

Chunk size 1 s × k 1 s × k k/5

The use of the recursive construction proposed by Kushilevitz and Ostrovsky will
be represented by a parameter noted L, L = 1 meaning that no recursion is done. The
integer k represents a factorization-type security parameter, which for practical appli-
cations should not be lower than 1024. We have taken a different notation for Cachin
et al.’s security parameter, K, as the authors fixed K > log2(n), even if their only non-
factorizable integer had K5 bits. This gives a much stronger constraint than k > log3(n),
i.e., the usual asymptotic estimation against factorization, and therefore, as the security
assumptions are different, we use different notations for the security parameters. Fi-
nally, s represents an integer parameter that can be fixed by the user. The computational
cost of the schemes having this parameters is at least in O((sk)2) and therefore s must
be kept close to one, in order to reduce computational cost.

The performance results presented in Table 1 for the scheme proposed by Kushilevitz
and Ostrovsky (that we have noted KO) are not exactly the same as the one presented
in their paper. These authors stayed with some load balancing, instead of pushing the
recursive scheme to its maximum level. This strategy has been abandoned on current
schemes and therefore to give a better comparison we have provided the results for
the maximum recursive scheme rather than for the scheme with load balancing. Stern’s
and Lipmaa’s schemes can be implemented with various encryption algorithms. The re-
sults presented in the table represent an implementation with the Damgärd-Jurik cryp-
tosystem, which is the most effective and versatile homomorphic cryptosystem to date.
Gentry and Ramzan (GR) did not propose the usage of the recursive construction of
Kushilevitz and Ostrovsky. Maybe this is the best example of why we think the tools
that have been used to improve existing schemes are unclear and need to be explicitly
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presented. There is no reason why Gentry and Ramzan’s scheme should not use the
recursive construction and its versatility is greatly improved with its usage. For Cachin
et al. (CMS), we have not included L in the performance results, since it was designed
as a theoretic scheme. The reason it has been included in Table 1 is to make visible the
impact on asymptotic performance resulting from the innovations they introduced.

Indeed, the results illustrate the impact of the innovations presented in the previous
Section. The drastic reduction of the reply size in recursive schemes that can be ob-
served between the first and the second columns is the result of Stern’s introduction of
chunk sizes greater than unity. Query size in columns three and five does not depend
on n, which is the result of Cachin et al.’s approach of generating the trapdoor pred-
icates after defining the numbers forming the queries, which are associated with the
database entries. Lipmaa’s usage of length-flexible cryptosystems lowers from geomet-
ric to linear the increase of Stern’s replies as L grows. Finally, the possibility of block
retrieval, and the replacement of Cachin et al.’s number generators by a fixed set of
numbers chosen on the setup step by Gentry and Ramzan, gives the first PIR scheme
with a communication cost independent of n and efficient in practice2.

The total communication cost for single-bit retrievals and retrievals of blocks smaller
than the chunk size will be Query size + Reply size. Retrievals of blocks larger than the
chunk size will result in a database reply expansion factor of Reply size/Chunk size.
These figures give some basic information on how the schemes can apply. Retrieval of
large elements should be done with Lipmaa’s scheme, which has always the best ex-
pansion factor. When retrieving small elements Gentry and Ramzan’s scheme should
be used. But the setup cost induced by this scheme can be unaffordable for large data-
bases if used with only few queries, or even impossible to deal with, for example for a
user with a hand-held device. In this case Stern’s scheme will often be a better choice
than Lipmaa’s since its queries are much smaller for large values of L. To illustrate this
we give three examples:

– an online video-club with ten thousand movies of one hundred Gigabits,
– a global stock exchange database with one hundred thousand entries, each of two

kilobits,
– a governmental database on citizens with two hundred million entries of five kilo-

bits.

To limit computational cost we will consider that s = 2 for Lipmaa’s and Stern’s
schemes. The size of the elements in the first example render inapplicable Gentry and
Ramzan’s scheme. Users should use Lipmaa’s scheme with L = 1 to minimize their
communication costs, sending 30 Mbits requests and receiving the movies with an ex-
pansion factor of 1.5. On the second example, Gentry and Ramzan’s scheme is clearly
the best choice. It can be used with L = 1, with which queries and downloads will be
respectively of two and ten kilobits for each entry. Without recursion, the setup scheme
needs however that the users exchange and stock one hundred megabits of data, and

2 In an asymptotic evaluation we must suppose k > O(log3(n)) [7]. Furthermore this scheme is
based on the existence of enough prime numbers lower than 2k/5, however for any practical
parameters there is no need to increase k above the factorization limit we have fixed. Indeed,
if k = 1024, the results presented here are valid for n < 1058.
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therefore it can be used with L = 2 in which case the users will just have to stock
320 kilobits of data. With this level of recursion, the queries and downloads will be
respectively of four and fifty kilobits. The third example is a case in which Gentry and
Ramzan’s scheme is unusable without recursion. The setup cost would be of 200 Giga-
bits. With L = 2 this scheme becomes interesting, since users have to stock 14 Mbits of
data, send 4 kilobit queries and retrieve the information from the database in 125 kilobit
downloads. Some users may prefer to use Stern’s scheme with queries of 170 kilobits
and downloads of 150 kilobits, avoiding in this way the 14 Mbit exchange. Lipmaa’s
scheme cannot provide such a good performance, since requests are larger than 512
kilobits for any value of L.

4 Conclusion

Trapdoor predicates with homomorphic properties allowed Kushilevitz and Ostrovsky
to design the first single database PIR scheme. Two major improvements followed, the
possibility to encode many bits in a single answer [2], and the possibility to create trap-
door predicates over given sets of numbers [4]. The use of length-flexible homomorphic
cryptosystems [6] has reduced the size of the database replies for a given level of re-
cursion. On the other side the schemes which are based on creating trapdoor predicates
do not seem to have used all the possibilities explored on other papers. Versatility is
improved in Gentry and Ramzan’s schemes when they are used recursively following
the construction of Kushilevitz and Ostrovsky. Other improvements may be possible,
such as efficient prime number generators to further reduce the setup cost.

The usage of PIR schemes with statistical databases raises many research issues. In-
ference protection techniques often need the database to retrieve some information on
the users queries. But, it is possible for a user to prove that a query respects a given pat-
tern without revealing the query itself [2]. These zero-knowledge proofs are much used
in cryptography, and whether they can be used to provide users with the possibility to
obtain complex statistics while giving enough information to the database to ensure that
no statistical inference can be done, is a challenging and most interesting issue. Some
inference protection techniques like fixed perturbation [10] do not require the database
to obtain any information on the user queries and will therefore be more interesting
than query-based perturbation techniques [11] if used together with PIR protocols. A
new performance parameter need therefore to be introduced (the amount of information
needed by the database) and its evaluation for the different existing techniques is also an
important issue to deal with in our context. We hope this paper will motivate research
in these directions.
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Abstract. This paper describes a cryptographic protocol for merging
two or more data sets without divulging those identifying records; tech-
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for this protocol arise, for example, in data analysis for biomedical appli-
cation areas, where identifying fields (e.g., patient names) are protected
by governmental privacy regulations or by institutional research board
policies.
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1 Introduction

The analysis of data collected from multiple sources presents a variety of spe-
cial challenges. Since more data generally yield better and/or more meaningful
results, it is often desirable to apply statistical analyses to the union of multi-
ple data sets. Such is the case, for example, when clinical data on a particular
disease and its treatment are collected independently in the context of multiple
research studies.

When privacy regulations, such as HIPAA [3], prohibit the sharing of identi-
fying patient information, it is no longer possible to openly calculate the union
of the data sets. Since the replicated records cannot be identified, the usual pro-
cedure is to simply concatenate the data sets to produce an approximation of
their set-theoretic union. If there are no records present in more than one data
set, then the approximation is exact; but if any records are shared, the result is
usually a violation of the assumptions underlying whatever statistical analysis
is to be performed.
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Our motivating application is to apply genetic linkage analysis tools to geno-
typic data collected from multiple clinical sites. Genetic linkage analysis de-
scribes a set of statistical genetics techniques used to locate on the genome the
genes responsible for an inherited trait or disease (see, for example, [11]). A char-
acteristic of such studies is unsystematic recruitment of families with multiple
members affected with the disease under investigation; and as a result, it is not
uncommon for motivated families to enroll themselves in multiple studies, that
is, to be represented redundantly in data sets collected at different sites. When
the data are then combined for analysis across sites, the presence of duplicated
individuals appearing in more than one subset of the data violates a key assump-
tion of the statistical analysis – that each family be considered only once – and
can distort the results, even if there are only a small number of duplicates. This
can be particularly problematic in studying rare genetic disorders, for which
data sets tend to be small.

What is needed is a mechanism that identifies the overlapping records so that
they won’t be used twice. The difficulty is that identifying overlapping records
entails comparing identifying information, which, by law, cannot be shared. In
this paper, we present cryptographic protocols that allow two parties to negotiate
the true set-theoretic union of their privately-held data sets without revealing
restricted identifying information.

2 Background and Related Work

Let a data set consist of multiple records, where each record corresponds to a real-
world entity we wish to model. Each record consists of a number of attributes or
fields, where each attribute’s value consists of a single typed datum; for example,
“birthdate,” “social security number,” or “diagnosis” might be attributes in a
patient information database, and “04/01/1947,” “484-11-1991,” and “asthma”
might be the respective values of these attributes for a given record, which in turn
represents a real-world person. Assume that Alice and Bob each possess data
sets, A and B, with identical format, consisting of |A| and |B| records, respec-
tively. Assume also that the attributes divide into two disjoint attribute subsets,
denoted I and D, where I consists of the protected “identifying” attributes and
D consists of the unprotected “data” attributes. In the terminology of relational
databases, we expect that no combination of “data” attributes could serve as
a candidate key, that is, could uniquely determine a real-world entity modeled
by a data set record. But more to the point, the distinction between which at-
tributes are protected “identifying” attributes and which are unprotected “data”
attributes is really a matter of policy. These are fixed by the regulatory context
(e.g., HIPAA) in which the parties are operating.

More formally, Alice owns data set A = {Ia, Da}i for 0 ≤ i < |A|, Bob owns
data set B = {Ib, Db}j for 0 ≤ j < |B|, and we wish to compute Dab = ΠD(A∪I

B), where ∪I is the set-theoretic union operation that considers two records equal
if and only if their identifiers are equal, and Π is a multiset relational algebra
project operation (here ΠD is used to filter out identifying fields leaving only the
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data fields from each record in the resulting union). Note that we fully expect
that the data fields, at least, will be subject to noise or measurement error.

An obvious and convenient solution to this problem is to take advantage of a
mutually trusted third party, Ugo. Since Alice and Bob both trust Ugo, it is a
simple matter for them to send him A and B, so that he can compute A ∪I B.
In fact, the existence of a trusted third party is not unusual in modern multisite
clinical studies, where the data analysis site may be disparate from the data
collection sites. In these situations, the data analysis site can be assigned to act
as the trusted third party from the outset. Indeed, using a trusted third party
should be the preferred solution, by virtue of its simplicity, in situations where
it is permissible to do so. Unfortunately, the more normal situation is that no a
priori agreement to share data exists, and so legal and policy issues may actually
preclude selecting and using any sort of trusted third party a posteriori. Thus,
in this paper, we consider the more interesting question of whether the union
can be negotiated after the fact, without violating privacy concerns, and without
resorting to a trusted third party.

There is a significant amount of related work in this area, which generally
goes by the name privacy-preserving data mining. This work divides roughly
into two categories; approaches that rely on sharing perturbed versions of each
participant’s data, and those that rely on cryptographic techniques. Here, we
briefly summarize these approaches and explain why they are inadequate for our
problem.

Distortion approaches assume that participants can disclose appropriately
perturbed versions of their data without violating whatever privacy restrictions
are in force. The core idea is that appropriately randomized records will be hard
to identify: the trick is to ensure that the computation on the collected distorted
data yields the same outcome – or at least close enough to the same outcome –
as the computation when applied to the set-theoretic union of the original data
[6,7]. There are two shortcomings with this approach that make it unsuitable
for our problem. First, successful randomization strategies depend on intimate
knowledge of the analysis algorithms which will be applied to the distorted data.
In practice, these algorithms have typically been statistical algorithms such as
sum, average, and max/min [1], or e.g., , decision tree [13] construction algo-
rithms [2], neither of which approach the complexity of genetic linkage-analysis
algorithms [9,4]. Second, and more important, distortion strategies work by cam-
ouflaging the individual and reasoning about statistical distributions: no attempt
is made to remove duplicated data points or account for any bias such replicated
data points – distorted or not – may introduce.

In contrast, cryptographic techniques for the privacy-preserving database
union have their basis in work introduced over 20 years ago on secure two-party
computation [14]; Yao’s work was later extended to multiple parties [5], hence
the more usual name secure multiparty computation, or SMC. The idea is to de-
vise a protocol that governs how two or more parties can exchange information
in order to allow one (or both) of the parties to compute a function based on
inputs held privately by each without revealing their own inputs. The general
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solution is based on circuit evaluation: the specified computational problem is
first represented as a combinatorial circuit, then the participating parties run a
short protocol for every gate in the circuit. The protocols generated depend on
the size of the circuit, which in turn depends on the size of the input domain
and on the complexity of the specified computation when expressed as a com-
binatorial circuit. In general, the solution to SMC is too inefficient to be useful
in real applications, with the notable exception of some very simple cases, such
as comparing the magnitude of two integers, where the computation remains
tractable.

To get around the prohibitive costs associated with SMC, one approach is to
combine SMC calculations with an inherently less secure but more cost-effective
wrapper. This approach trades off divulging more information than the full SMC
implementation for more efficiency; a good example is the ID3 decision tree con-
struction protocol of [10]. By divulging intermediate results as they are com-
puted, participants can construct the decision tree in tandem, at much lower
cost by repeatedly using an SMC primitive to compute the information gain at
each node, rather than trying to use SMC to compute the entire tree in one cal-
culation. This approach works particularly well for ID3 tree construction, since
the intermediate results divulged are explicitly part of the final solution anyway.
Nonetheless, the protocol is cumbersome, and is not readily generalized to other
types of data mining algorithms, and, once again, since the data mining algo-
rithms employed are not as sensitive to replicated records as our linkage analysis
algorithms, most solutions simply ignore the problem of replicated records and
opt to work on the concatenation of data sets rather than their set-theoretic
union.

One notable exception is the work of Kantarcioglu and Clifton on distributed
data mining of association rules [8]. Since their work addresses a problem very
similar to ours, it is not surprising that they explicitly consider the removal
of duplicate records. Kantarcioglu and Clifton rely on a commutative cipher to
blind records as they are exchanged among three or more participants in order
compute the true set-theoretic union.1 Ultimately, however, their solution still
falls short in two ways.

First, at the end of the protocol, all records are revealed to the participants;
the protocol is designed only to protect the identity of the original owner of
each record, rather than the identifying attributes of the individual records (this
also explains why their protocol is not suitable for use by only two parties:
clearly, any record Alice does not recognize must have belonged to Bob). We

1 A commutative cipher is an encryption algorithm having the property that a message
encoded twice using two different keys must also be decoded twice, once with each
key, but with decoding operations occurring in either order. Several, but not all,
encryption algorithms in common use have this property (such as, for example, the
RSA public-key encryption algorithm). For technical reasons having to do, at least in
part, with RSA’s vulnerability to chosen plaintext attacks, Kantarcioglu and Clifton
rely on Pohlig-Hellman encryption [12], but the choice of cipher is not important
to understanding their protocol, or, for that matter, the protocol introduced in this
paper.
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might try to get around this problem by using, e.g., a one-way hash function2 to
obscure the identifying attributes prior to the union operation. But this doesn’t
really work as intended, because once the identifying attributes’ one-way hash
postimages are revealed, it is an easy matter for one participant to mount a
dictionary attack on the other participant’s data sets (i.e., to “generate and
test” candidate records to see if they are present). A second problem is that
their protocol requires that matching records match completely, and does not
account for noise or measurement error in at least some of the fields.

This paper presents a general solution to the two-party privacy-preserving
data set union problem. Our protocol allows Alice to compute Dab = ΠD(A ∪I

B) with help from Bob, while Bob only learns |A| and |Uab|, the size of the
resulting union Uab = A ∪I B. Neither Alice nor Bob learn which of their own
records are replicated in the other participant’s data set, nor are their own
records’ identifying attributes ever disclosed to the other party. Our protocol is
robust to noise and measurement error in data fields, and, in cases where the
“data” attributes of replicated records (i.e., records in multiple data sets having
identical “identifying” attributes) diverge, our protocol ensures that none of the
divergent data values ever “leak” to other participants. The same protocol is
easily extended to the multiparty case.

3 A Two-Party Privacy-Preserving Database Union
Protocol

Our two-party protocol relies on several underlying assumptions. First, we as-
sume that communication between parties is secure; that is, that no one but the
originator and intended recipient can read any message sent as part of the pro-
tocol. This assumption is easily met, either by traditional means (e.g., a trusted
courier service) or by electronic/cryptographic means (e.g., secure sockets, Open
SSH, etc.). Second, we assume that the parties have been properly authenticated,
that is, no one can pass themselves off as somebody else. This second assumption
is typically met in a network environment by using a password-based authenti-
cation mechanism, and in a traditional environment by using a token-based au-
thentication mechanism (e.g., having the courier check the recipient’s ID card).
Third, we assume that all participants are basically honest and cooperative, yet
still curious, an assumption commonly referred to as the semihonest model. Thus
all participants will follow the rules of the protocol, but are still expected to try
to discover what we are intent on keeping secret.

2 A one-way function is a mathematical function that is easy to calculate in one
direction (i.e., calculating the output from the input) but infeasible to calculate in
the other (i.e., calculating the input from the output). Cryptographic systems make
extensive use of a special kind of one-way function, called a one-way hash function,
where a hash function maps its input, or preimage (which may be of arbitrary length)
onto an output, or postimage (which is of fixed length). A hash function is also
one-way if it is computationally hard to derive a preimage from the corresponding
postimage.
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Like Kantarcioglu and Clifton, our protocol uses a commutative cipher, but,
in addition, it uses a keyed commutative one-way hash function. We’ll let Ka(M)
denote encryption of message M with Alice’s key Ka, and let Ka represent the
decryption operator (so that KaKa(M) = M). Further, let Ha(M) denote the
postimage of Alice’s keyed commutative one-way hash function Ha applied to
message M . Similarly defining Kb and Hb for Bob’s cipher and hash, respectively,
we can describe our protocol as follows.

1. Alice provides Bob with copies of her records, where the identifier is hashed
using Alice’s one-way keyed hash function and a random hash key Ha of her
own choosing, and the data fields are encrypted using a commutative cipher
with a random encryption key Ka of Alice’s own choosing.

Alice→ Bob : {Ha(Ia), Ka(Da)}i 0 ≤ i < |A|
The hash and cipher keys Ha and Ka are Alice’s secrets, and should never
be revealed.

2. Bob retains a copy of Alice’s hashed identifiers and their associated encrypted
data fields “in escrow” for later use. He then rehashes copies of Alice’s hashed
identifiers using the same commutative one-way hash function with a new
random hash key Hb of his choosing and shuffles the result, returning the
now doubly-hashed identifiers to Alice in some random order.

Bob→ Alice : {HbHa(Ia)}i 0 ≤ i < |A|
The hash key Hb is Bob’s secret, and should never be revealed.

3. Bob next provides Alice with copies of his records, where the identifiers are
hashed using the same commutative one-way hash key Hb of the previous
step and the data fields are encrypted using a commutative cipher with
random key Kb of Bob’s own choosing.

Bob→ Alice : {Hb(Ib), Kb(Db)}j 0 ≤ j < |B|
The encryption key Kb is also Bob’s secret, and should never be revealed.

4. Alice uses her one-way hash function key Ha to rehash Bob’s hashed iden-
tifiers, and her encryption key Ka to encrypt the associated data fields. At
this point, Alice knows both

Alice: {HbHa(Ia)}i 0 ≤ i < |A|
{HaHb(Ib), KaKb(Db)}j 0 ≤ j < |B|

and recall that, because we are using a commutative cipher and a commuta-
tive one-way hash function, KbKa(x) = KaKb(x) and HbHa(x) = HaHb(x).

5. Alice now computes the union of the doubly-hashed identifiers and their
associated data, if any, and then fills out the missing data fields with random
bit strings, R. Each R must be identical in size to the encrypted data fields,
so that all the records in the union have like format and size. She then shuffles
the result, and returns it to Bob in some random order.
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Alice→ Bob : {HbHa(Iab), {KaKb(Db) ∨R}}l 0 ≤ l < |Uab|
where Iab = Ia ∪ Ib and each doubly-hashed identifier HbHa(Iab) is paired
with either its doubly-encrypted data field KaKb(Db), if available, or else
some random pattern R.

6. Bob decrypts, using Kb, the data fields, producing:

Bob:
{
HbHa(Iab),

{
Ka(Db) ∨Kb(R)

}}
l
0 ≤ l < |Uab|

Since the random fillers R are just random bit sequences, Kb(R) is also a ran-
dom bit sequence, and remains indistinguishable, to Bob, from KbKbKa(Db)
= Ka(Db).

7. Next, Bob applies his hash Hb to the identifiers in Alice’s original records
(which he had previously, in step 2, retained “in escrow”), and then merges
the resulting records with those just received from Alice in the previous step,
overwriting any existing data fields in the latter.

Bob: {HbHa(Iab), Ka(Dab)}l 0 ≤ l < |Uab|
where Dab denotes the data attributes associated each record in Iab with
Da taking precedence over Db for records in the intersection of the two
data sets. Note that the overwritten fields are either just random bit strings
or encrypted, and therefore unrecognizable, versions of Bob’s own data for
records that appear in both data sets.

8. Bob discards the doubly-hashed identifiers, then shuffles and returns the
remaining now singly-encrypted data fields to Alice:

Bob→ Alice : {Ka(Dab)}l 0 ≤ l < |Uab|
9. Alice decrypts, using Ka, the data fields received from Bob, to produce the

set-theoretic union of the two original data sets:

Alice: {Dab}l 0 ≤ l < |Uab|
As we shall soon see, Alice should not share this result with Bob in any
form; the result is for Alice and Alice alone.

Having established that Alice is indeed able to compute ΠD(A∪I B), we next
consider whether the protocol permits either Bob or Alice to acquire additional
information which should instead have been protected.

4 Discussion

Recall that, while we are primarily interested in safeguarding identifying infor-
mation (i.e., Ia and Ib), we must also safeguard other aspects of the union,
such as the number and/or identity of any records in the intersection of A and
B. Clearly, both Alice and Bob learn |Uab|, the size of the union. Alice learns
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|B|, the size of Bob’s data set, in step 3, so it is a simple matter to compute
|A ∩ B| = |A| + |B| − |Uab| once she computes the union in step 5. Similarly,
Bob can also compute the size of the intersection in step 5 when Alice sends the
shuffled union back to him for decryption (he learns |A| in step 1).

It is possible, with some effort, to obscure the exact value of |A| from Bob and
|B| from Alice by having both parties introduce extraneous records (selected from
a predetermined illegal data attribute distribution) which are then filtered out by
Alice at the end of the protocol. But such inflationary masking still reveals loose
bounds on |A| and |B| and, moreover, is not a critical element of our protocol:
in our application, the data set sizes per se are never confidential information.
In the end, our data analysis will lead to publication in the medical/scientific
literature, where the sizes of the data sets are generally revealed.

Leaving aside the size of the intersection, the whole point of the protocol is not
to reveal any Ia to Bob or any Ib to Alice. Alice obtains Hb(Ib) in step 3, while
Bob obtains Ha(Ia) in step 1. Of course, these values are only as secure as the
chosen keyed one-way hash function; since one-way hash functions cannot easily
be inverted (indeed, that’s the definition of a one-way hash function), neither
Alice nor Bob can reconstruct an identifier from its postimage. Furthermore, as
long as Alice cannot determine Bob’s hash key Hb and as long as Bob can not
determine Alice’s hash key Ha, it is also impossible for either party to engage in
a dictionary attack to reveal the other party’s identifiers.

Note that even if both Alice and Bob learn how many of their original records
were replicated in each others’ data set, they can not know which of their records
were actually replicated3. From Alice’s perspective, this is because the end prod-
uct of the algorithm is ΠD(A) + ΠD(B \I A) where + is the concatenation op-
erator and \I is the set difference operator that considers two records equal if
and only if their identifiers are equal. In other words, all of Alice’s original data
fields are present in the result, and the only time she could have matched her
own identifiers to Bob’s identifiers (step 4) they were blinded by Hb. From Bob’s
perspective, while he was ultimately responsible for overwriting his own repli-
cated data attributes while restoring Alice’s data from escrow (step 7), he was
not able to recognize them or their identifiers because they were blinded by Ha.
Note further that it is clearly in Bob’s interest to use Alice’s data from escrow
and not deviate from the protocol described, since doing so could only be to
Alice’s, and not Bob’s, advantage.

The protocol also precludes the sort of dictionary attack alluded to in Section
2, since neither party has access to the other party’s hash function key. Even if
Alice adds additional “probe” records to her data set a priori, by overwriting his

3 More precisely, Prob({Ib, Db} ∈ A ∩ B) = |A∩B|
|B| = |A|+|B|−|Uab|

|B| , which goes to 1
when |Uab| = |A| and goes to 0 when |Uab| = |A| + |B| (a symmetric formulation
holds for Prob({Ia, Da} ∈ A ∩ B). So in the special cases where all or none of one
participant’s records are replicated in the other participant’s data set, the extent
of the overlap is clear once |Uab|, |A|, and |B| are known. In other cases, random
guessing about whether a particular record is in the intersection of the data sets is
the best anyone can hope to do.



274 A.M. Segre et al.

own data in step 7, Bob ensures that Alice will only ever see the “probe” data
attributes she provides for records in the intersection. And since Bob does not
return the doubly hashed identifiers to Alice, there is no means for Alice to probe
the intersection after the fact; all probe records need to be added before the proto-
col starts (for Alice and Bob to collude here makes no sense, since if they’re willing
to collude they may as well share data openly). There is still one relatively weak
form of dictionary attack available to Alice: by submitting only “probe” records
(along with, optionally, some randomly-generated “distractor” records) as A, Al-
ice can determine whether all of her probe records are also in Bob’s database once
she learns |B| and |Uab|. Of course, this will only work once, since Bob would have
to be stupid not to wonder why Alice is repeatedly asking to engage in comput-
ing the union of her data sets with his: also, it violates our previously assumed
semihonest model since Alice’s actions violate the rules of the protocol.

It is important to note that Alice should never share her computed union Uab

with Bob. This is because the Dab attributes in Uab may not necessarily be the
same as the Dba attributes in Uba, the union computed if Bob and Alice replay the
protocol with roles reversed. To see why this is so, consider what happens when
Alice and Bob share a record with identifiers Ia = Ib, but with Da �= Db. Since
the union computed by Alice contains Da, and not Db, Bob would immediately
recognize the missing Db and deduce that that particular record is replicated in
both data sets. If, on the other hand, the protocol is replayed with roles reversed,
Bob would see his own data attributes for any record in the intersection, and
not those originally belonging to Alice.

5 Conclusion

We have presented a solution to the two-party privacy-preserving database union
problem. Our solution allows an initiating participant to compute the true set-
theoretic union (i.e., without duplicated subjects) of a collection of data sets
without obtaining identifying information about records belonging to other par-
ticipants or divulging identifying information about one’s own records. Our solu-
tion operates under the standard semihonest model, which assumes cooperating,
yet still curious, participants, and precludes a participant from learning exactly
which of his or her own records are present in the other participant’s data set.
Although in this paper we have assumed a horizontal partitioning of the data
(i.e., all parties have data sets with an identical collection of attributes), our
protocol is equally suitable for vertically partitioned data or even mixed data,
where some attributes are present in only some of the participants’ data sets (in
such cases, the escrow process ensures that values for unshared attributes are
not acquired in the case of a record in the intersection of the data sets).

Moreover, unlike the existing work in secure multiparty computation, which
is notoriously inefficient in practice, our protocol is quite efficient. Since each
participant encrypts and decrypts a record at most once with each key in their
possession, and since each participant hashes each identifier at most once, the
cost of the protocol is O(n) where n = |A|+ |B|.
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In short, our protocol is cheap to execute, easy to implement, and does not
require a trusted third party. The protocol is easily extended to multiple parties
with some minor modifications. Our protocol is therefore suitable for use in the
analysis of data obtained from multisite clinical studies, where prior arrange-
ments for sharing data have not been made, and, therefore, the sharing of iden-
tifying record information is precluded by law. This problem is also encountered
in practice when data mining in a commercial setting, where data set owners
are willing to cooperate to a certain extent, yet are keen to protect identifying
values of their own records.
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Abstract. The machine learning community has focused on confiden-
tiality problems associated with statistical analyses that “integrate” data
stored in multiple, distributed databases where there are barriers to sim-
ply integrating the databases. This paper discusses various techniques
which can be used to perform statistical analysis for categorical data,
especially in the form of log-linear analysis and logistic regression over
partitioned databases, while limiting confidentiality concerns. We show
how ideas from the current literature that focus on “secure” summa-
tions and secure regression analysis can be adapted or generalized to the
categorical data setting.

1 Introduction

There are many scientific or business settings which require statistical analysis
that “integrate” data stored in multiple, distributed databases. Unfortunately,
there can be barriers to simply integrating the databases. In many cases, the
owners of the distributed databases are bound by confidentiality to their data
subjects, and cannot allow outsiders access. This paper discusses various tech-
niques which can be used to perform statistical analysis for categorical data, es-
pecially in the form of log-linear analysis and logistic regression over partitioned
databases, while limiting confidentiality concerns. The technique used depends
on how the database is partitioned, either horizontally (with the same variables
but different cases) or vertically (with the same cases but different variables),
and also whether log-linear or logistic regression analysis is the goal. This paper
will focus primarily on horizontally partitioned databases, and especially on the
fully categorical data situation in which case the minimal sufficient statistics
are marginal totals and logistic regression is effectively equivalent to log-linear
model analysis (e.g., see [1,3,7]).

Much of the literature on privacy-preserving data mining and secure com-
putation has focused on regression problems. A subset of the technical issues
relevant to those problems are of interest in this paper. In the vertically parti-
tioned case the concern remains the same, that is specifying a full model based
on all of the variables. But in the the horizontally partitioned case there is a new
element, whether any single owner actually has enough data to get maximum
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likelihood estimates (MLEs)! For regression problems this is primarily an issue
of identification and we usually require that the sample size n is greater that the
number of variables p, although as n increases we get greater accuracy for our
regression coefficients and our inferences. But for categorical data problems we
will often need to deal with a different form of degeneracy due to sparse data—
that associated with patterns of zero counts which yield MLEs on the boundary
of the parameter space and thus “do not exist” (for details on existence see es-
pecially [6,9,23]). Thus a very important reason for entering into arrangements
to do secure computation is that pooled sufficient statistics and tables may well
produce existence when no single party has sufficient data to assure the same.

While this paper will focus primarily on log-linear modeling and logistic re-
gression for horizontally partitioned databases, there has been a lot of recent
work on broader literature related to partitioned databases. The National Insti-
tute of Statistical Sciences (NISS) has produced much work for securely com-
bining a horizontally partitioned database and on performing linear regression
analysis on a horizontally partitioned database without actually integrating the
data (e.g., see [15,16,21]). Theory regarding performing linear regression on ver-
tically partitioned databases has also been devoloped (e.g., see [14]). There has
also been work exploring some broader issues of the privacy impact of data min-
ing methods and their work is related to the literature on secure multi-party
computation (e.g., see [27]). Specifically, Kantarcioglu and Clifton [13] discuss
mining of association rules on horizontally partitioned database, while the work
of Vaidya et al. [25] relates to mining for association rules on vertically parti-
tioned database.

The paper is organized in the following manner. In the next section we present
a formulation of the general problem. Then, in Section 3, we turn to the prob-
lem of secure computation for log-linear models (and logit models) over horizon-
tally partitioned databases and we relate some of the ideas to the literature on
disclosure limitation for single databases involving such data. In Section 4 we
present a technique for dealing with logistic regression over horizontally parti-
tioned databases and we contrast it with the approach from section 3 in the case
of categorical predictors. We conclude with a discussion of distributed database
techniques and other ongoing work.

2 Problem Formulation

Consider a “global” database that is partitioned among a number of parties
or “owners.” These owners could be thought of as companies or people who
have distinct parts of the global database. In a statistical context, these owners
are referred to as agencies. These agencies may want to perform log-linear or
logistic analysis on the global database, but are unable or unwilling to combine
the databases for confidentiality or other proprietary reasons. The goal is to
share the statistical analysis as if the global database existed, without actually
creating it in a form that any of the owners can identify and utilize.
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2.1 Partitioned Database Types

There are two types of partitioned databases discussed in this paper, horizon-
tally and vertically partitioned databases. We are going to assume there are K
agencies with K ≥ 2, but note that a case with K = 2 is often trivial for security
purposes. Horizontally partitioned data is the case such that agencies share the
same fields but not the same individuals, or subjects. Assume the data consist
of vectors X and Y, such that:

X′ = [X(1),X(2), · · · ,X(k)] and Y′ = [Y(1),Y(2), · · · ,Y(k)], (1)

and X(k) is the matrix of independent variables, Y(k) is the vector of responses,
and n(k) is the number of individuals, all that belong to agency k, k = 1, . . . , K.
Let N =

∑K
k=1 n(k). Each X(k) is an n(k)×p matrix and we will assume that the

first column of each X(k) matrix is a column of 1’s. We will refer to X and Y
as the “global” predictor matrix and the “global” response vector respectively
([22]). For horizontally partitioned databases it is assumed that agencies all have
the same variables, and that no agencies share observations. Also, the attributes
need to be in the same order.

In vertically partitioned data, agencies all have the same subjects, but different
attributes. Assume the data looks like the following:

[YX] =
[
Y X(1) . . . X(k−1)

]
, (2)

where X(k) is the matrix of a distinct number of independent variables on all
N subjects, Y is the vector of responses, and p(k) is the number of variables for
agency k, k = 1, . . . , K. Note that each X(k) is an N × p(k) matrix and we will
assume that the first column of the X(1) matrix is a column of 1’s. For vertically
partitioned database it is assumed that agencies all have the same observations,
and that no agencies share variables. In order to match up a vertically parti-
tioned database, all agencies must have a global identifier, such as social security
number. We are currently working on the problem of vertically partitioned data
in the categorical data setting but do not report on any results here.

There is a third possible kind of partitioning which goes well beyond the
two special cases and corresponds more closely to real-world settings, namely
horizontally and vertically overlapping data, perhaps with measurement error.
Kohnen et al. [19] treat a special case of this in the form of vertically partitioned,
partially overlapping as an incomplete data regression problem, and use the EM
algorithm to estimate values of the “missing” data.

3 Secure Computation for Horizontally Partitioned
Categorical Databases

Karr et al. [16] outline an approach that allows for secure maximum likelihood
estimation for a density belonging to an exponential family. This technique can
be used for log-linear model analysis in fully categorical data situations, where
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the minimal sufficient statistics are sets of marginal totals. This secure maximum
likelihood technique uses a process called secure summation, which we describe
first and then point out how this fits with the exponential family formulation.
We then discuss the implementation for log-linear models as well as a possible
way to simply combine the tables securely.

Secure Summation. Consider agencies which all have a single number, and
would like to know the sum of all their numbers. However, the agencies do not
want to reveal their individual number to any other agency. Secure summation is
a process where the sum of all the agencies can be securely computed. The basic
idea is that one agency adds a random number R to their number v1 and then
reports to the next agency in line R + v1. The second agency adds their number
v2 to the number received and sends R+v1 +v2 to the third agency. The pattern
continues until agency k has computed R + v1 + . . . + vk and gives the number
to agency 1. Agency 1 then subtracts R from the total, and shares the number
with all of the other agencies. As long as multiple agencies are not colluding,
secure summation is a very secure process. For a more detailed description of
this process, consult Karr et al. [16]. There are other techniques that have been
suggested to eliminate collusion but we do not consider them here.

3.1 Secure Maximum Likelihood Estimation for Exponential
Families

Consider a global database {xi} modeled as independent samples from an un-
known density f(θ, ·) belonging to an exponential family:

log f(θ, x) =
L∑

�=1

c�(x)d�(θ). (3)

Here the {d�(θ)} are known as canonical parameters and the {c�(x)} are the
corresponding minimal sufficient statistics (MSSs). Then under the assumption
of independence of L rows, the global log-likelihood function is

log L(θ, x) =
L∑

�=1

d�(θ)

[
K∑

k=1

∑
xi∈Dk

c�(xi)

]
, (4)

where Dk is the database of owner k.
If the database owners can agree in advance on the model (3), e.g., the log-

linear model with no second order interaction, they can use secure summation
to compute each of the L terms in (4). Then each agency can maximize the
likelihood function however they choose. There remains serious potential con-
fidentiality problems once L ≥ 2 since the MSSs are not independent of one
another and they jointly contain information about the full table. We thus need
to check the extent to which this information is sufficient to seriously compro-
mise the confidentiality of any individual in the database — i.e., if one party can
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identify with sufficiently high probability an individual in another party’s data-
base. In what follows we exploit the fact that log-linear models have a discrete
exponential family structure.

3.2 Secure Maximum Likelihood for Log-Linear Models

The secure maximal likelihood technique can be used for fitting a log-linear
model. Consider a three-dimensional model coming from simple multinomial
sampling. We are therefore assuming that the total sample size n is fixed. In this
situation, the p.d.f. for the multinomial distribution of {nijk} is

n!∏
i,j,k

nijk!

∏
i,j,k

(mijk

n

)nijk

, (5)

where {mijk} are the expected cell counts. The log-likelihood of the multinomial
is readily obtained from the p.d.f. (5) as

constant +
∑
i,j,k

nijk log(mijk)− n log(n). (6)

Since the first and third term do not depend on the expected cell counts mijk,
we need only to consider the remaining middle term, the kernel of this function.
The saturated log-linear model for the expected cell count mijk is

log(mijk)=u + u1(i) + u2(j) + u3(k) + u12(ij) + u13(ik) + u23(jk) + u123(ijk). (7)

Substituting for mijk from (7) into (6), we obtain for the kernel∑
i,j,k

nijk log(mijk) = Nu +
∑

i

ni++u1(i) +
∑

j

n+j+u2(j) +
∑

k

n++ku3(k)

+
∑
i,j

nij+u12(ij) +
∑
i,k

ni+ku13(ik)

+
∑
jk

n+jku23(jk) +
∑
i,j,k

nijku123(ijk). (8)

Since the multinomial distribution belongs to the class of discrete exponential
family densities, the minimal sufficient statistics (MSSs) are the observed count
n-terms adjacent to the unknown parameters, the u-terms. If we consider an
unsaturated model the nijk terms fall out of expression (8), and those terms
that remain give the MSSs. These marginal tables can then be used to estimate
the cell expectations {m̂ijk} under the model. In fact, it is in general multi-way
tables that the MSSs correspond to the highest order u-terms in the model and
the likelihood equations are found by setting them equal to their expectations
(e.g., see [1,3,8,12]). Further, since the multinomial distribution is in the expo-
nential family, working with log-linear models allows us to use the general secure
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maximum likelihood equation (4). Similarly, if the sampling model was “Pois-
son” or product-multinomial, the MSSs are essentially the same once we add in
any margin fixed by the sampling scheme, and so the same secure computation
idea works. In the product-multinomial situation, the log-linear model can be
re-expressed as a logit model and this provides a way for dealing with the secure
logistic regression computation problem in the fully categorical data case.

Now consider a horizontally partitioned categorical database. Since (4) is satis-
fied for log-linear models, it is possible to use secure summation to find the global
sufficient statistics, which are marginals that correspond to the highest order u-
terms in the model. The agencies will use multiple secure summation processes
to create the global marginal statistics. The first agency adds a random number
to each marginal value agreed to be summed, and then passes the values to the
next agency. The second agency adds their numbers to the marginals, and passes
them along. Once the first agency receives these it removes the random values
and shares the marginals with all the agencies. If only necessary marginals for
a specific model are computed through secure summation, the downside of this
process is limited model comparison. If we wish to assess the fit of the model,
then we can compare it to a larger log-linear model with additional u-terms.
Thus we need to compute additional marginal tables in order to estimate the
expected values under the larger model. The two models could be compared to
see whether the more parsimonious provides an adequate fit to the data.

As we noted above, the MSSs, i.e., the marginal tables, carry information
about the full table. This can come in the form of bounds for cell counts, or actual
distributions over possible tables, for example see [5,8,10,11,24]. Computing and
thus revealing additional combined marginal totals increases the information
known about the individual cell in the overall combined table, possibly to an
unacceptable level. Thus to protect individual level confidentiality in this setting
we need to go beyond secure computation to incorporate methods from the more
traditional disclosure limitation literature. There is also related literature on
association rule mining, e.g., see [13,27], but it either focuses on the release of
a single marginal or the form of the rule without the relevant data which turns
out to be marginal totals [11]. Since using the association rule requires data to
allow one to make predictions, releasing just the rule is rarely ”useful.”

3.3 Secure Contingency Table Analysis

Depending on the level of confidentiality, agencies may be willing to create a
global contingency table, as long as the sources of data elements remain pro-
tected. Once a global contingency table is created, statistical analysis can be
performed normally on the full database. A secure contingency table of counts
or sums can be created using multiple secure summations. The general process
is as described earlier in the paper, but instead of the first agency creating just
one random number, the agency will create a random number for each cell in
the table. Then the secure summation pattern applied to every cell in the table
continues until the first agency gets the table back, removes all of the random
cell values, and reports the full contingency table to the other agencies.
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Often a categorical database is too large and sparse for this secure summation
process to be efficient enough to use. If that is the case, then a secure data
integration process can be used to get a list of cells which have non-zero cell
counts, c.f., see discussion in [4] on issues with large sparse contingency tables.
This general process is summarized later in this paper. The only adjustment
for secure contingency table analysis is that the “data” being inserted into the
growing database is really a list of non-zero cell counts. Once a list of non-zero
cell counts is created, the multiple secure summation process can be used to get
the complete table. This way, the agencies only need to use secure summation
for a possibly very small subset of cells in a given table.

The secure contingency table process is only effective if the data elements
themselves do not reveal from which party they come. This problem of the
data revealing their source is one faced by other methodologies on secure data
integration, e.g., see [17,27].

Secure Data Integration. Secure data integration is the process of securely
combining observations of horizontally distributed databases into one data set.
The basic secure data integration process consists of agencies incrementally con-
tributing data into a growing database until the full database is complete. The
goal of SDI is to combine these databases in a way so that the agencies will not
be able to tell which agency a particular observation came from, except of course
for the agency which originally had that observation. Karr et al. [16] lay out the
secure data integration process in a reasonably complete fashion.

The growing database is passed from agency to agency in a round robin order,
but in an order unknown to the agencies. Therefore, a trusted third party must
be used, but the data can be encrypted so that only agencies can read the
data. As the growing database is passed around, the agencies input a random
number of observations into the database. This pattern continues until all the
observations are into the growing database. Using this secure data integration
process, a database can be securely combined.

4 Logistic Regression over Horizontally Partitioned Data

In this setting, logistic regression over a horizontally partitioned database is de-
sired. We first explain that logistic regression can be considered as a specific form
of the log-linear modeling. Later in the section we explain a specific technique
for performing logistic regression over a horizontally partitioned database, which
is not related to log-linear modeling.

4.1 Logistic Regression from Log-Linear Modeling

It is possible to use the approach above for log-linear models to do secure logistic
analysis if all the explanatory variables are categorical. Consider simple logistic
regression case with a single binary response variable. We can represent the data
in contingency table form. The linear logistic regression model for this problem is
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essentially identical to the logit model found by differencing the log expectations
for the two levels of the response variable, c.f. [3,7].

We illustrate for a logistic regression model with two binary explanatory vari-
ables (variables 1 and 2) and a binary response variable (variable 3). The data
form a 2× 2× 2 table. We work with the no second-order interaction model and
construct the logit, i.e.,

logitij = log
(

mij1

mij2

)
= log(mij1)− log(mij2)

=
[
u + u1(i) + u2(j) + u3(1) + u12(ij) + u13(i1) + u23(j1)

]
− [u + u1(i) + u2(j) + u3(2) + u12(ij) + u13(i2) + u23(j2)

]
= (u3(1) − u3(2)) + (u13(i1) − u13(i2)) + (u23(j1) − u23(j2)). (9)

Since we may place zero-sum constraints over the k index, the logit model in
equation (9) simplifies to

log
(

mij1

mij2

)
= 2u3(1) + 2u13(i1) + 2u23(j1) = β0 + β1x1 + β2x2, (10)

where x1 = 1 for log(m1j1/m1j2) and x1 = 0 for log(m2j1/m2j2) and similarly
for x2. Therefore, performing logistic regression over a horizontally partitioned
database can be acheived through the techniques discussed in Section 3.

4.2 Secure Logistic Regression Approach

We now turn to a more general approach for logistic regression over a horizontally
partitioned databases using ideas from secure regression (e.g. see [15],[16],[22]).
In ordinary linear regression, the estimate of the vector of coefficients is

β̂ = (XtX)−1XtY. (11)

To find the global β̂ vector, agency k calculates their own ((X(k))tX(k)) and
(X(k))tY(k) matrices. The sum of these respective matrices are the global XtX
and XtY matrices. Since the direct sharing of these matrices results in a full
disclosure, the agencies need to employ some other method such as secure sum-
mation described earlier in the paper. In this secure summation process, the
first agency adds a random matrix to its data matrix. The remaining agencies
add their raw data to the updated matrix until in the last step the first agency
subtracts off their added random values and shares the global matrices. Reiter
[22] discusses some possibilities of a disclosure with this method.

We are suggesting to use the developed secure matrix sharing techniques and
apply them to the logistic regression setting. We wish to fit a logistic regression

log(
π

1− π
) = Xβ (12)

model to the global data, X and Y. In logistic regression, the vector of coeffi-
cients, or β, is of interest, but since the estimate of β cannot be found in closed
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form, we use Newton-Raphson or a related iterative method. At each iteration
of Newton-Raphson, we calculate the new estimate of β̂ by

β̂(s+1) = β̂(s) + (XtW(s)X)−1Xt(Y − μ(s)) (13)

where W(s) = Diag(njπ
(s)
j (1 − π

(s)
j )), μ(s) = njπ

(s)
j and π

(s)
j is the probability

of a ”success” for the jth observation in the iteration s, j = 1, · · · , N . The
algorithm stops when the estimate converges. Note that we require an initial
estimate of β̂ (e.g., see [1] for more details).

Now we can apply the secure summation approach to our logistic regression
analysis. We can choose an initial estimate for the Newton-Raphson procedure
in two ways: (i) the parties can discuss and share an initial estimate of the coef-
ficients, or (ii) we can compute initial estimates using ordinary linear regression
of the responses and predictors using secure regression computations. In order
to update β, we need the parts shown in (13). We can break the last term on the
right-hand side up into two parts: the (XtW(s)X)−1 matrix and the Xt(Y−μ(s))
matrix. At each iteration of Newton-Raphson, we update the π vector, and thus
update the W matrix and the vector μ. We can easily show that

XtW(s)X = (X(1))t(W(1))(s)X(1) + (X(2))t(W(2))(s)X(2)

+ · · ·+ (X(1))t(W(k))(s)X(k) (14)

and

Xt(Y − μ(s)) = X(1)(Y(1) − (μ(1))(s)) + X(2)(Y(2) − (μ(2))(s))
+ · · ·+ X(k)(Y(k) − (μ(k))(s)) (15)

where (μ(k))(s) is the vector of n
(k)
l π̂

(k)
l values and (W(k))(s) = Diag(n(k)

l π̂
(k)
l (1−

π̂
(k)
l ) for agency k, k = 1, · · · , K, l = 1, · · · , n(k) and for iteration, s. This means

that for one iteration of Newton-Raphson, we can find the new estimate of β by
using secure summation as suggested by Reiter [22].

One major drawback of this method is that we have to perform secure matrix
sharing for every iteration of the algorithm; every time it runs, we have to share
the old β̂ vector with all of the agencies so they may calculate their individual
pieces. When all variables are categorical, this method involves more computa-
tion than using the log-linear model approach to logistic regression, where only
the relevant marginal totals must be shared among the agencies. In the more
general setting, we also have no simple way to check on potential disclosure of
individual level data and thus we are providing security only for the parties and
not necessarily for the individuals in their databases, e.g., see discussion in [22]
for the linear regression secure computation problem.

Diagnostics. Finding the coefficients of a regression equation is not sufficient;
we need to know whether the model has a reasonable fit to the data. One way to
assess the fit is to use various forms of model diagnostics such as residuals, but
this can potentially increase the risk of disclosure. As with the log-linear model
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approach we can compare log-likelihood functions of the larger model and the
more parsimonious model. The log-likelihood for the logistic regression is:

N∑
j=1

yj{log(πj) + (1 − yj) log(1− πj)}. (16)

We can rewrite the equation in terms of the K agencies and use secure summation
to find this value

K∑
k=1

n(k)∑
j=1

{y(k)
j log(π(k)

j ) + (1− y
(k)
j ) log(1− π

(k)
j )}, (17)

as well Pearson’s χ2 statistic or the deviance:

X2 =
K∑

k=1

n(k)∑
j=1

⎛
⎝ y

(k)
j − n

(k)
j π

(k)
j√

n
(k)
j π

(k)
j (1− π

(k)
j )

⎞
⎠

2

(18)

G2 = 2
K∑

k=1

n(k)∑
j=1

{
y
(k)
j log

(
y
(k)
j

μ̂
(k)
j

)
+ (n(k)

j − y
(k)
j ) log

(
n

(k)
j − y

(k)
j

n
(k)
j − μ̂

(k)
j

)}
. (19)

If the change in the likelihood is large with respect to a chi-square statistic with
(d.f.) degrees of freedom, we can reject the null hypothesis and conclude that
the simpler model provides a better fit to the data.

4.3 Comparison of “Secure” Log-Linear Regression Methods

To demonstrate the difference in computation between the log-linear method for
logistic regression and the secure logistic regression method, we will go through a
simple example. The example is not intended to show how secure the processes
are, but only to demonstrate the difference between computation in the two
methods. Any use of secure summation between just two agencies is useless,
because both agencies can simply subtract their number from the final result to
find the other agency’s data.

The data in Table 1 come from a randomized clinical trial on the effectiveness
of an analgesic drug for patients in two different centers and with two different
statuses reported on in [18], c.f. Fienberg and Slavkovic [11]. Treatment has 2
levels: Active=1 and Placebo=2. The original response had 3 levels: Poor=1,
Moderate=2, and Excellent=3, but for the purposes of this example we combine
the last two levels so the response variable is binary: Poor=1 and Not Poor=2.

The data from the first center correspond to Agency 1 and those from the sec-
ond center to Agency 2 (see Table 1). Consider the possibility that the two cen-
ters would like to do statistical analysis over their combined data (see Table 2),
but are unwilling to share their individual cell values.
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Table 1. Clinical trial data by Agency

Agency 1 Data Agency 2 Data
Response Response

Status Treatment 1 2 Status Treatment 1 2
1 1 3 25 1 1 12 12
1 2 11 22 1 2 11 10
2 1 3 26 2 1 3 13
2 2 6 18 2 2 6 12

Table 2. Combined clinical trial data over the clinical center

Response
Status Treatment 1 2

1 1 15 37
1 2 22 32
2 1 6 39
2 2 12 30

Log-Linear Approach for Logistic Regression. We first consider logistic regres-
sion from log-linear modeling. We fit the log-linear model with no second order
interaction which corresponds to the logistic regression model with no interac-
tion (c.f. Section 4.1, and equation (10)). Note the i index relates to variable
Status, the j to Treatment, and the k to Response. The two agencies first use
secure summation to compute the 12 marginal totals, i.e., MSSs, nij+, ni+k,
and n+jk. For example, to find n11+, Agency 1 adds some random number to its
n11+ value of 28, and sends the number to Agency 2. Agency 2 adds their n11+
value of 24 and sends the updated value to Agency 1, who subtracts the ran-
dom number and reveals the total n11+ value of 52 (see Table 3 for the relevant
marginals.)

Table 3. Relevant marginal values computed through secure summation

ind val nij+ ni+k n+jk

11 52 37 21
12 54 69 76
21 45 18 34
22 42 69 62

Next, we fit the desired log-linear model in Splus via loglin function that uses
iterative proportion fitting (IPF); it converged in 3 iterations. Table 4 reports 4
relevant log odds values.

Secure Logistic Regression Approach. In the secure logistic regression approach,
we consider the data in a database form instead of a contingency table. We use
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the Newton-Raphson algorithm to fit the logistic regression model presented in
Equation (12). We used 0s for the initial β̂(0) values. Since we know the response
variable must be 0 or 1, we would not expect the β̂ values to be very far from the
(−1, 1) interval. The algorithm converged in 4 iterations, and Table 4 reports 4
relevant log odds values.

Table 4. The estimated log odd ratios from the two different models

Log-Linear Model Logistic Regression

log m̂111
m̂112

= −0.989228 log π̂11
1−π̂11

= −0.989230

log m̂121
m̂122

= −0.305730 log π̂12
1−π̂12

= −0.305717

log m̂211
m̂212

= −1.707879 log π̂21
1−π̂21

= −1.707895

log m̂221
m̂222

= −1.024381 log π̂22
1−π̂22

= −1.024382

Comparison of the Two Approaches. The results for the two approaches as re-
ported in Table 4 agree as expected, but there is a significant computational
difference. In the log-linear approach to logistic regression the agencies only
need to perform one round of secure summation during this entire process to
compute the relevant marginal values. After the relevant marginals have been
revealed, the agencies can perform the analysis with them, and do not need to
share any information again, thus reducing computations.

The secure logistic regression approach is computationally more intensive than
the log-linear method since the agencies need to do secure summation at each
iteration of the Newton-Raphson algorithm. Also, in real life settings, the data
are likely to be more complex, meaning more iterations needed. This would make
the secure logistic regression approach relatively even slower.

5 Conclusion

We have outlined a pair of approaches to carry out “valid” statistical analysis
for log-linear model logistic regression of horizontally partitioned databases that
does not require actually integrating the data. This allows parties (e.g., statis-
tical agencies) to perform analyses on the global database while not revealing
to one another details of the global database beyond those used for the joint
computation. For the fully categorical data case we noted that log-linear mod-
els provided an alternative approach to logistic regression and one which also
allowed us to respect the confidentiality of the data subjects. We also outlined a
possible way to securely create a contingency table for horizontally partitioned
categorical databases.

We are still developing ideas for logistic regression and log-linear models for
strictly vertically partitioned databases and we would like to move towards prob-
lems involving partially overlapping data bases with measurement error.
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Abstract. Despite the fact that much empirical economic research is based on 
public-use data files, the debate on the impact of disclosure protection on data 
quality has largely been conducted among statisticians and computer scientists.  
Remarkably, economists have shown very little interest in this subject, which 
has potentially profound implications for research.  Without input from such 
subject-matter experts, statistical agencies may make decisions that 
unnecessarily obstruct analysis.  This paper examines the impact of the 
application of disclosure protection techniques on a survey that is heavily used 
by both economists and policy-makers: the Survey of Consumer Finances.  It 
evaluates the ability of different approaches to convey information about 
changes in data utility to subject matter experts. 

1   Introduction 

Data collectors face a complex problem.  Usually substantial sums of money often 
public money are expended to collect data for research and policy purposes.  There is 
an assumed obligation to make those data as fully and freely available as possible.  
Moreover, data collectors often create elaborate structures to create high quality data.  
However, ethical and often legal considerations force the collectors to take some set 
of actions to limit the ability of data users to identify respondents. During a time of 
rapidly improving technology for data linkage, like the present, public data sets are 
potentially increasingly vulnerable to intrusions.  The most natural response of the 
most benign data collector would be to alter the data and to do so progressively over 
time in ways that seem likely to limit the possibilities of intrusion.  In the absence of 
guidance by subject-matter experts, there is no reason to think that such changes 
would be in any way optimal for analytical purposes. 

Despite the fact that much empirical economic research is based on public-use data 
files, the debate on the impact of disclosure protection on data quality has largely 
been conducted among statisticians and computer scientists.  Remarkably, economists 
have shown very little interest in this subject, which has potentially profound 
implications for research.  Without input from such subject-matter experts, statistical 
agencies may make decisions that unnecessarily obstruct analysis.  The impact can 
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range from simply reducing the precision of parameter estimates to biasing results or, 
in the worst case, closing down entire areas of research.   

The practical consequences of such unguided data alterations are often quite 
substantial.  For example, if data changes driven by disclosure protection are 
broadened over time, the true precision (as opposed to the precision computed from 
straightforward use of altered data) of parameter estimates is reduced.  Thus, 
economists might incorrectly con-clude that an economic phenomenon like race or 
sex discrimination was no longer an issue, even though the result is purely as an 
artifact of disclosure limitation techniques.  Similarly, biased coefficients could lead 
to incorrect evaluation of the benefits and costs of different policies.  Even if 
distortions that are employed preserve the first moments of a distribution, the second, 
third and fourth moments of a distribution can be distorted.  Moreover, some 
techniques that may relatively harmless in a static context, can be very harmful in a 
dynamic context.  Despite the potential consequences, few, if any, statistical agencies 
inform researchers about the potential consequences of disclosure protection 
techniques on the quality of their analysis. 

This paper examines the impact of the application of disclosure protection 
techniques on a survey that is heavily used by both economists and policy-makers: the 
Survey of Consumer Finances.  It discusses different approaches to convey 
information about changes in data utility to subject matter experts.  We begin by 
reviewing the current literature on definitions and measures of data utility. 

2   Data Utility 

2.1   Definitions 

Developing a definition of data utility for disclosure-protected microdata is relatively 
straightforward conceptually, but much more difficult to implement in a meaningful 
way.  The emerging consensus appears to be based around the utility of the data for 
inference.  Duncan et al. [4], for example, describe data utility as “a measure of the 
value of information to a legitimate data user”. Karr et al. [7] define data quality, 
which is the precursor to data utility, as “the capability of data to be used effectively, 
economically and rapidly to inform and evaluate decisions.  Necessarily, DQ is multi–
dimensional, going beyond record level accuracy to include such factors as 
accessibility, relevance, timeliness, metadata, documentation, user capabilities and 
expectations, cost and context-specific domain knowledge”. Karr et al. [8] then define 
data utility as the ability to preserve the same inferences from released microdata as 
for the protected data. Statistical agencies define the concept slightly less formally, 
although the basic concept is the same.  For example the OMB definition of utility is 
the “usefulness of the information for the intended audience’s anticipated purposes.”1   
Similarly, Haworth et al. [6], writing for the European statistical system, define utility 
as "the totality of features or characteristics of a product or service that bear on its 
ability to satisfy stated or implied needs of customers".  

                                                           
1 The Office of Management and Budget (OMB) Guidelines for IQ (Office of Man-agement 

and Budget, 2002), cited in Karr et al. [8]. 
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Implementing this consensus is more difficult.  As Duncan et al. [4] point out, 
early measures of information loss (the opposite of data utility) for tabular data were 
quite primitive, and included the percentage of suppressed cells, the total number or 
number of categories suppressed.  Domingo-Ferrer and Torra [3],  attempted to 
develop measures on the principle that user analyses (e.g. regressions, means, etc.) on 
released data and on the original data should yield the same or at least similar results.  
A similar approach has been taken by Winkler [12],  who defines a dataset as 
analytically valid if the following is approximately preserved (some conditions apply 
only to continuous variables): Means and covariances on a small set of subdomains; 
Marginal values for a few tabulations of the data.  Winkler goes further in stating that 
a microdata file is analytically interesting if six variables on important subdomains 
are provided that can be validly analyzed. 

2.2   Data Quality Metrics 

Not surprisingly, given the conceptual discussion above, the different metrics that 
have been developed in the literature attempt to measure the amount of information 
loss associated with the use of the data.  A few of the metrics are reviewed here, using 
the notation of the original authors. 

Duncan et al. [4] focus in on the user’s key parameters of interest, , and use the 
reciprocal of a Mean Square Error as their measure of utility: 

[ ] 12
' )ˆˆ(

−
Θ−Θ= xxEU  

Where  is the set of parameters of interest to the user, and the sub-scripts x and x’ 
referring to the masked and unmasked data respec-tively.  This approach has a 
number of advantages.  First, the measure has a direct analogue with a measure of 
risk.  Second, it penalizes large differences more than small.  In addition, the metric is 
one that is famil-iar to most statisticians, and it has intuitive appeal in that large 
numbers reflect high levels of utility, smaller number reflect lower measures.  Finally, 
the metric is measured over the outcomes of interest to users – namely the set of 
parameters of interest.  However, it has a number of disadvantages as well.  The most 
obvious is that it is not scale invariant, so that although it is straightforward to make 
comparisons across different types of disclosure techniques on the same set of 
analytical exercises, it is not straightforward to compare across different 
specifications.  In addition, there is no natural interpretation of the order of magnitude 
of the measure. 

Domingo/Torra [3] take a more catholic approach in listing a vari-ety of summary 
statistics of the information in the released dataset (denoted by a prime) and the 
original dataset, such as the variance covari-ance matrices V (on X) and V' (on X'), 
the correlation matrices R and R', correlation matrices RF and RF' between the 
original variables and the principal components factors obtained through principal 
components analysis, the commonality between each of the original variables and  
the first principal component C and C’ 2 and the factor score coefficient matrices  
 

                                                           
2 Commonality is the percent of each variable that is explained by the principal component. 
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F and F'.3 The summary statistics are listed in Table 1, and include the mean square 
error, the mean absolute error, and the mean variation of each of these measures. 
                                                           
3 Matrix F contains the factors that should multiply each variable in X to obtain its projection 

on each principal component.  F' is the corresponding matrix for X'. 
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These approaches have a different type of appeal.  The advantage is that they 
summarize the differences between the disclosure-proofed and original input data, 
rather than on a set of parameters that may be very different for different groups of 
users.  The metrics on which at least some of them are measured, like the correlations, 
are scale invariant.  They are also all based on approaches that are familiar to 
statisticians.  However, a major disadvantage is that the information that is included is 
likely to be too much to permit users to discriminate across disclosure protection 
approaches.  For example, some datasets, like the National Longitudinal Surveys of 
Youth, or the Survey of Consumer Finances, have literally thousands of variables and 
while some are much more important than others, the metrics weight each input 
variable equally.   

An alternative approach, which has not been suggested in the literature, but is 
certainly intuitively appealing, is to simply report the percent difference in key input 
variables and in parameter estimates.  This has the twin advantages of being scale 
invariant and easily understood; the disadvantage is that percent differences are not 
standard statistical measures with well defined properties. 

In any event, none of these summary statistics has been widely adopted, leaving 
researchers in the dark about the impact of disclosure protec-tions on the quality of 
their analysis.  For example, the most recent version of -Argus, the microdata 
protection package produced by the CASC project, devotes only one paragraph to 
measuring the impact of disclosure protection techniques on data quality: 

“In case of applying local suppressions only, −ARGUS simply counts the number of local 
suppressions.  The more suppressions the higher the information loss.  In case of automatic 
global re-coding −ARGUS uses an information loss measure that uses the following 
parameters: a valuation of the importance of an identify-ing variable (according to the data 
protector), as well as a valuation of each of the possible predefined codings for each 
identifying vari-able.” 

P 43, -Argus Manual 4.0, December 2004 
Similarly, the Census Bureau’s review of disclosure protection protocols, while 

providing an exhaustive list of ways to protect microdata, does not provide the impact 
on data utility Zayatz [13]. 

3   Description of Survey of Consumer Finances and Typical Uses 
of Data 

The SCF has been conducted every three years by the FRB with the cooperation of 
the Statistics of Income Division (SOI) of the Internal Revenue Service since 1983.  
NORC has performed the data collection since 1992.  This computer-assisted-
personal interviewing (CAPI) survey collects data from a nationally representative 
sample of American households using a dual-frame sample design.  One part is a 
multi-stage area-probability sample selected from the NORC National Frame. The 
other part, which is selected using statistical records derived from tax returns, is 
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stratified to over-sample wealthy households 4.   The data are used to examine cross-
sectional variation as well as to evaluate trends over time 5.   

The survey gathers detailed data on households’ balance sheets---their assets and 
liabilities---as well as collecting information on income, work, pensions, use of 
financial institutions, demographic characteristics and attitudes.  Most of this 
information is commonly viewed as highly confidential by respondents.  Thus, efforts 
to assure respondents of the measures taken to protect the confidentiality of their data 
play a central role in persuading them to participate in the survey and to provide 
reliable information.  The pledge given to respondents becomes, at the very least, a 
moral obligation for the data collectors to take every effort to fulfill it.  Furthermore, 
the data are collected under the framework of the Confidential Information Protection 
and Statistical Efficiency Act (CIPSEA) of 2002.  Under this act, when respondents 
are told that their data are being collected “for statistical purposes only,” as 
respondents in the SCF are told, there is also a strong legal obligation to ensure the 
protection of the confidentiality of the data collected.  For the SCF, there is an 
additional obligation imposed by the use tax-derived data in the sample design.  As a 
part of the agreement with SOI that makes the data available, the survey is obliged to 
develop and implement a plan for the release of micro data that passes a review by 
SOI staff. 

The public version of the SCF, which is described in more detail below, is the only 
version of the data available outside the core project group at the FRB.  Although it is 
possible for researchers within the Federal Reserve and at other institutions to request 
special estimates from the internal version of the data, the great majority of policy 
research and longer-term research is done with the public version of the data.  Data 
users in many areas—taxation, saving, retirement, personal finance, more general 
finance, financial market regulation, and other areas—depend on the reliability of 
estimates obtained from the public data set.  Thus, it is imperative that the actions 
taken to limit disclosure do not induce serious distortions of estimates obtained from 
this data set. 

The necessity of alterations to the SCF data for purposes of disclosure limitation 
also stands in contrast to the strong push in the survey to produce high-quality data.  
Large amounts of resources are devoted to training and monitoring interviewers for 
purposes of quality control.  For example, Athey and Kennickell describe a new 
procedure undertaken for the 2004 SCF to deal quickly with data quality issues during 
the field period of the survey [1].   The survey also uses great care in data processing 
and documentation to ensure that the data are handled and described in a way that that 
would ultimately be most useful for research.  For example, the survey documents the 
original content of every variable; it employs multiple imputation to provide a 

                                                           
4 This tax-based sample serves two purposes.  First, it allows the survey to obtain sufficient 

numbers of people in different wealth groups to support the estimation required of the survey.  
Second, it allows for control for nonresponse, which the data indicate is highly correlated 
with wealth.  This sample excludes people identified by Forbes as being among the wealthiest 
400  people in the U.S.  This restriction recognizes the very low probability that anyone in 
that group could be persuaded to participate in the SCF.  This Forbes group accounted for 
approximately 2 percent of total household net worth in 2004. 

5 For a description of the data, see Athey and Kenneckill [1]. For a review of the SCF metho-
dology and references to other supporting research, see [9]. 
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measurable basis for the amount of missing information, and it bases the imputation on 
a broad set of covariates to support a wide variety of multi-variate analyses of the data. 

4   Description of Disclosure Limitation Approaches 

4.1   Generally Used Approaches 

A number of different disclosure limitation techniques are used by statistical agencies: 
a good summary is provided by the Federal Committee on Statistical Confidentiality’s 
Confidentiality and Data Access Committee6.  

The list of options is quite long.  Some options can be categorized as the direct 
reduction of information -- variable deletion, recoding variables into larger categories, 
rounding continuous variables using top and bottom coding, using local suppression 
and enlarging geographic areas Zayatz [13].   

Another set of options can be described as the perturbation of information: the 
microdata set is distorted prior to its publication. In this way, unique combinations of 
scores in the original data set may disappear and new unique combinations may 
appear in the perturbed data set; such confusion is beneficial for preserving statistical 
confidentiality. Examples of these include noise addition, data swapping, blanking 
and imputation, micro-aggregation, PRAM (post randomization Method of 
Perturbation) and the use of multiple imputation/modeling to generate synthetic data7  

4.2   Approach Used in Survey of Consumer Finances (Including Changes over 
Time) 

A number of different techniques are applied for purposes of disclosure limitation in 
the SCF.8   The most basic change made to the data set for public release is that some 
cases are deleted.  If an observation is deleted if it has net worth greater than the level 
of the least wealthy person identified in the Forbes list of the wealthiest 400 people in 
the U.S.; there were three such cases in the 2004 SCF.  The view supporting this 
alteration is that too much information is available that could be matched with the 
SCF to identify extremely wealthy individuals. 

Some variables available in the internal version of the data are not released at all.  
Geographic information is generally recognized as being one of the most useful things 
to know in deducing the identity of a survey respondent.  Absence of such 
information poses a particular problem for researchers who wish to exploit variation 
in institutional and other structures across states to identify important elements factors 
in statistical models of economic behavior.  Variables related to the sample design, 
the administration of the interview and a variety of other variables noted in detail in 
the SCF codebook are also suppressed. 

Some categorical and other discrete variables are coarsened in the SCF public data 
set.  For example, the detailed 4-digit occupation codes determined from verbatim 
responses from the respondents are reduced to one of six codes.  For family members 
                                                           
6 http://www.fcsm.gov/committees/cdac/index.html 
7 Zayatz, ibid, -Argus Manual 4.0, December 2004. 
8 For more details on the procedures applied to the SCF data to protect the identity of res-

pondents, see Kennickell[10].  
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other than the household “head” and that person’s spouse or partner, their ages are 
reduced to an indicator of whether they are aged 18 or older.  For a number of other 
discrete variables, categories with small numbers of responses are combined with 
similar categories.  Again, all such changes are documented in detail in the survey 
codebook. 

Dollar variables in the SCF are all subjected to a type of rounding and the degree 
of rounding varies with the magnitude of the figure rounded.  For example, values of 
$1 million or more are rounded to the nearest $10,000 and values between $10,000 
and $1 million are rounded to the nearest $1,000.  To minimize systematic distortions, 
the data are rounded up or down with probability proportional to the value modulo the 
rounding value.  That is, a value of $1,222,221 would be rounded to $1.23 million 
with probability 2,221/10,000 and to $1.22 million with probability 7,879/1000.  A 
number of other variables are also rounded.  For example, the size of a farm or ranch 
is rounded to the nearest five acres, the proportion of pension assets held in stocks is 
rounded to the nearest five percent, and the last year that the household filed for 
bankruptcy (if it is has ever done so) is rounded to the nearest three years, an interval 
selected as appropriate for research purposes. 

Top-coding and bottom-coding are used very sparingly.  A decision to truncate the 
data in this way is usually made because the set of people affected is very small and 
very far removed from the rest of the distribution of households.  For example, the 
number of checking accounts is topcoded at 10 and the age of the respondent is 
topcoded at 95.  Negative values of certain income components and total income are 
bottom-coded at $-9. 

The only other disclosure limitation procedure applied that has at least the potential 
for causing significant distortion of the data is a type of data simulation.  This 
technique is applied to a set of cases selected systematically on the basis of their 
unusual values in terms of a set of characteristics and a random set of cases selected 
to assist in masking the primary set of cases.  In the 2004 SCF, fewer than 350 cases 
were selected for this treatment.  For the cases selected, the multiple imputation 
model developed for the SCF is used to simulate the values of all dollar variables; the 
values of all other variables are taken either as they were originally reported or as they 
were imputed in the final iteration of the iterative imputation routine.  Even though 
the multiple imputation routines used for the simulations add a random error from the 
distribution of the unexplained variance of the variable simulated, because the sample 
size is relatively small one might still expect the cases selected for their unusual 
values to exhibit some regression toward the mean, and thus induce a serious 
distortion of the right tails of a number of distributions.  Two factors help to mitigate 
this potential problem.  First, the imputation model inputs tend to sustain some of the 
unusual qualities of cases.  The imputation framework proceeds sequentially over 
variables, using as inputs covariances estimated using the final iteration of the 
imputed data and conditioning variables for the cases whose dollar values are to be 
simulated.  All of the non-dollar-denominated conditional variables are taken from the 
final imputed data.  The dollar values are initially taken from that data set as well, but 
once a value is simulated, the simulated value is used in later models in the sequence.  
Second, bounds are imposed on the outcomes of the simulations.  These ranges are set 
as a baseline percent plus a randomized addition.  The details of this process cannot 
be revealed, but the ranges are designed to provide a tight enough range to ensure that 
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values cannot become too much larger or smaller, but also to allow sufficient range 
for the true values to be effectively disguised 9. 

To further complicate the task of a potential data intruder, other unspecified 
changes are made to the data.  The number of such changes is relatively small and the 
changes are almost all of a sort that would be highly unlikely to affect any analysis 
that took account of the inherent sampling variability in the data. 

Unlike the case of changes made to the data through coding, editing, and 
imputation, changes as a result of disclosure reduction procedures are not documented 
in the shadow variables available for every case and every variable.  For example, a 
shadow variable for a simulated variable would be indistinguishable from that for an 
unaltered variable that had originally been imputed using range information. 

The procedures described here have been in place since the 1989 SCF.  However, 
changes have been made in a variety of the details of the application of the procedures.  
The main changes have been in the set of variables suppressed and the degree of 
coarsening applied to categorical and discrete variables.  Care has been taken at every 
such step to ensure as much backward continuity of measurement as possible. 

Finally, data users have been encouraged to give feedback when the disclosure 
limitation procedures have interfered with research. The overwhelmingly most common 
complaint has been the lack of geographic information noted above.  Users might also be 
concerned about the distorting effects of the disclosure limitation procedures, but they 
would be unable to make a judgment about these effect with the data available to them.  
Among other things, this paper is intended provide such an evaluation. 

5   Description of Impact on SCF Analysis 

In this section we analyse the impact of the disclosure protection approach on the 
utility of some of the most commonly used SCF variables: income, individual net 
worth and the debt to income ratio, as well as the conditioning variable, age.  We 
begin by applying the Duncan approach to comparing summary statistics derived 
from disclosure protected and original measures of net worth and debt to income; both 
overall and by income and age categories.  We then describe the same differences in 
terms of percent change. We do the same exercise to summarize the impact of 
disclosure proofing on the results of a common regression.  Finally, we summarize a 
subset of the Domingo/Torra statistics.  

Table 2 presents the first set of measures for the mean and the median summary 
statistics, with the statistic calculated from the original data presented in the first 
column.  The first interesting result is that the percent change in the statistic as a result 
of calculating the data from disclosure protected data, is quite small – less than 2% in 
all cases.  The effects are also shown quite vividly in Figures 1 and 2. The second 
result is that the Duncan measure does capture the differences in consequences on 
data utility quite well:  bigger numbers (reflecting higher utility) are consistently 
found where the percent errors are smaller.  However, a major problem is that the 
Duncan measure is difficult to interpret.  The measure for net worth is very small,  
 

 

                                                           
9 Detailed examination of the simulation results for the SCF suggests that the process does not 

cause serious univariate distortion of the data.  See [10]. 
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reflecting the large scale of the variable; the measure on the debt to income ratio is 
very large, reflecting the variable’s much smaller relative scale.  As a result, making 
cross variable comparisons is difficult, as is making a determination of whether the 
loss in utility is “big” or “small”. 

We repeated the exercise for a standard regression analysis, and report the results 
in Table 3. A major concern with the application of the type of techniques used in 
disclosure proofing the SCF is that parameter estimates will be biased down, standard 
errors will be biased up, and the consequences will be that null hypotheses will 
wrongly fail to be rejected.  A visual inspection of the parameter estimates derived 
from both the original and the disclosure proofed data suggests that these fears are 
substantially unfounded: both the parameter estimates and the standard errors are 
substantially unchanged after the application of the disclosure protection techniques.  
This is confirmed by examining the percent standard errors, which are reported in the 
next column.  However, the Duncan measures are not particularly useful in conveying 
the information to current and prospective users of the public use data. 
Finally, we calculated a subset of the Domingo/Torra metrics, but chose the one based 
on correlations matrices in view of the scale issues discussed above.  We chose a data 
matrix of four variables: financial assets, non-financial assets, debt and income. The 
MSE of the correlation matrix was effectively 0; the MAE was .05, while the MV was 
.13.  This confirms that the effect of the disclosure protection on the quality of the 
input matrix was relatively minor. 
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Table 3. Results of Standard Regression 

Original
Data

Distorted
Data

Percent 
Difference Duncan

Intercept
-11.9974 

I.4336) 
-12.0347 

(.4369)
-0.31 
-0.75

718
94,500 

Age
0.1771 
(.0166) 

0.1770 
(.0168)

0.04 
-1.56

192,901,234 
14,907,350 

Age
(squared)

-0.0931 
(.0154) 

-0.0929 
(.0157)

0.21 
-1.44

26,570,305 
20,108,990 

Income 
1.5196 
(.0266) 

1.5226 
(.0269)

-0.20 
-1.33

107,076 
8,025,102 

Dependent Variable, Log of net worth; Standard errors in parentheses  

6   Summary and Conclusion 

The creation of public use datasets has been an important factor in advancing 
empirical social science research.  National statistical institutes have rightly expended 
substantial energy to protecting the confidentiality of the respondents by using a 
variety of disclosure protection techniques.  Recently, more attention has been paid to 
creating metrics that capture the impact of those techniques on data quality.  This 
paper has demonstrated that those metrics, while possibly useful in summarizing the 
impact to the agencies themselves, are of limited use in conveying the information to 
researchers.  Simpler measures, such as the percentage change in parameters from 
commonly used analytical work, might be more appropriate. The work of Karr et al. 



 Measuring the Impact of Data Protection Techniques on Data Utility 303 

(2006) which suggests the use of the Kullback-Liebler metric is appropriate, could 
also be usefully investigated [8]. In further research, we intend to examine the impact 
of different types of protection techniques, such as topcoding and rounding, on data 
quality using these different metrics and using common estimation techniques. 
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Abstract. The Commodity Flow Survey (CFS) produces data on the movement 
of goods in the United States.  The data from the CFS are used by analysts for 
transportation modeling, planning and decision-making. Cell suppression has 
been used over the years to protect responding companies’ values in CFS data.  
Data users, especially transportation modelers, would like to have access to data 
tables that do not have missing data due to suppression.  To meet this need, we 
are testing the application of a noise protection method (Evans et al [3]) that in-
volves adding noise to the underlying CFS microdata prior to tabulation to pro-
tect sensitive cells in CFS tables released to the public.  Initial findings of this 
research have been positive.  This paper describes detailed analyses that may be 
performed to evaluate the effectiveness of the noise protection. 

Keywords: Disclosure Avoidance, Noise Protection, Tabular Data, Microdata. 

1   Background: History of Disclosure Avoidance Methods Used for 
Commodity Flow Survey (CFS) Tables  

Title 13 of the U.S. Code requires that the Census Bureau maintain the confidentiality 
of information provided by respondents. The Census Bureau has conducted the CFS 
in 1993, 1997, and 2002. Specifically, CFS data provide information on shipments 
originating from manufacturing, mining, wholesale, auxiliary warehouses, and se-
lected retail establishments in the 50 states and the District of Columbia. While it is 
an establishment survey, its focus is on the characteristics of shipments, not on the es-
tablishments or the companies who transport the goods. The survey’s goals are to es-
timate the characteristics associated with the origin and ultimate destination of ship-
ments, the distances traveled by goods, the commodities shipped, the modes of 
transportation used to transport the goods, and the volume of the shipments measured 
by weight and value. 
                                                           
* This report is released to inform interested parties of ongoing research and to encourage dis-

cussion of work in progress.  The views expressed on statistical issues are those of the authors 
and not necessarily those of the U.S. Census Bureau. 
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In 1997 and 2002, many cells in the most detailed tables were suppressed. The 
main reason for suppression was a cell exceeding a data quality threshold. However, 
complementary cell suppression disclosure avoidance methods have forced additional 
suppressions as well. Users have voiced opposition to this latter source of cell sup-
pression. In the 1993 CFS, and to a lesser extent in 1997, cell suppression affected the 
usability of the data by eliminating certain table cell information in a non-random 
fashion. For certain commodity flow models, this type of missing data renders the 
model useless. This provided motivation for exploring the use of a protection method 
that allowed publication of a larger number of cell values, even if that involved per-
turbing those values.  

2   The EZS Noise Method: General Properties, Evaluation, and 
Calibration 

2.1   General Properties 

The particular noise addition method that we chose for testing protection of CFS ta-
bles is one we call the EZS noise method. It was developed in the late 1990's by Tim 
Evans, Laura Zayatz, and John Slanta, all of whom were, at that time, mathematical 
statisticians at the U.S. Census Bureau (Evans, Zayatz, Slanta, [3]). This method has 
the following appealing properties.  

Adding Noise to Microdata. The EZS method adds noise to the microdata underly-
ing the tables rather than directly to table cell values themselves. Assuming for now 
that in all tables the cells represent values of the same magnitude variable, a single 
pure noise factor (i.e., a multiplier) is generated for each record. The perturbed value 
for the magnitude variable is computed with a simple formula that involves the single 
noise factor and the weights for the record. Tables are generated from the microdata 
using the perturbed values from each record in the same way that tables are generated 
from non-perturbed weighted values when noise is not used. Therefore the code for 
table creation does not have to be modified, and the tables generated are automatically 
additive and receive disclosure protection in a consistent way. Thus the issue of pro-
tecting linked tables, which is often difficult to achieve with other protection methods, 
is automatic for this method, at least for tables generated from a single microdata set.  

An Approximate Value Can Be Released for Every Cell. Noise methods generally 
have the property that an approximate value is produced for each cell. Often these ap-
proximate, or perturbed values, are close enough to the true values so that they are 
still useful to data users for various statistical purposes. By contrast, in tables pro-
tected by cell suppression, the suppressed cells appear to yield no information, al-
though with some effort an adept data user can exploit the additivity of the table in 
order to associate an uncertainty interval with each suppressed cell. However, the un-
certainty interval for a suppressed cell is typically much larger than the implicit uncer-
tainty interval for a perturbed cell. That is, a perturbed value conveys more informa-
tion than a suppressed cell about the true cell value. Since most tabular statistical 
procedures are designed to work with complete tables, protection methods that pro-
duce complete tables of perturbed values are generally more useful to statistical mod-
elers than methods that produce tables with suppressed cells.  
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Protection at the Company Level. The U.S. Census Bureau is required to protect 
economic data at the company level. Typically, companies consist of two or more es-
tablishments at different locations. In the CFS, each company responds to the survey 
with data for each of its establishments. Cell values often include data from only a sin-
gle establishment of a company since cell values are often defined partly by geogra-
phy. Of course, Title 13 of the U.S. Code requires that establishment values must be 
protected from disclosure, but that is not enough. In addition, the sum of values for any 
set of establishments for a given company must also be protected. This includes the 
company value, which is the sum of the values for all its establishments. Protection at 
the company level requires complicated code when implemented for cell suppression; 
however, for the EZS noise method company level protection is easy to implement.  

Ease of Implementation.  The EZS algorithm involves only a small number of for-
mulas, each of which is quite simple to code. A statistical office would probably 
choose to write a short program (only a page or two of SAS code) that generates noise 
for the relevant magnitude data variable in each microdata record.  Run time for this 
noise program is short (e.g, a few minutes for microdata that consisted of about two 
million CFS records).  Then the office runs the original table generating program 
against this ‘noisy’ microdata file for each table of interest.  

2.2   Evaluation 

Any method for protecting statistical tables should be analyzed statistically and/or 
mathematically to evaluate its effectiveness. First, one needs to define a measure that 
is applied to each cell that determines whether a cell value can be released (published) 
as is or requires modification to protect it. We call cells that require protection “sensi-
tive cells.” For economic magnitude data at the U.S. Census Bureau, sensitivity is 
usually based on the p% rule (WP22, [7]). Since the CFS is a sample survey, in con-
trast to a complete census, we need to use the generalized form of the p% rule that ac-
counts for the protection provided by weights (e.g., sampling weights or non-response 
weights) that are unknown to table users. Also, CFS cell values are rounded, and 
rounding provides additional protection. Thus we use a version of the p% rule that ac-
counts for protection due to rounding and weighting. 

Perturbation of Microdata for Protecting Table Cells.  Since the EZS method di-
rectly perturbs the microdata underlying the tables to be generated, one could say that 
the effect of noise addition in EZS on cell values is indirect. We say this because a 
pure noise factor is generated for each microdata record, and is then used along with 
weights to produce a perturbed value for that record. Finally the perturbed values for 
all the records associated with a given cell are summed to produce a perturbed table 
cell value. Since the pure noise factor is generated by a random number generator, all 
the quantities derived from the pure noise factors, including the cell value, are unpre-
dictable. The absolute value of the amount of perturbation that is required for a cell, 
based on the protection rule being used, we call the “nominal” amount. In our applica-
tions here, it is based on the same extended p% rule that determines sensitivity. The 
absolute value of the difference between the perturbed cell value and the true (unper-
turbed) cell value; i.e., the absolute value of the actual perturbation, is usually greater 
than the nominal value. That is, most cells receive sufficient protection as measured 
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by the p% rule. However, often a small percentage of cells receive perturbation that is 
less than the nominal amount. The notion of alpha error (defined below) is designed 
to measure the prevalence of these cases. Note however, that when a cell consists of 
data from a single company, the EZS algorithm ensures that the cell is perturbed by at 
least its nominal amount. This ensures that a company’s unweighted contributed value 
in a “one-company” cell will never be published without a significant modification. 

Alpha Error: Measuring Under-Perturbation. “Indirect perturbation” may have a 
drawback since it is based on (random) noise generation. It may not provide the de-
sired (or ‘nominal’) amount of perturbation for some cells. That is, some cells may be 
perturbed less than the p% rule “requires.” Of course, to be an acceptable method, it 
must provide the ‘nominal’ amount of perturbation for almost all sensitive cells. We 
may tolerate under-protection for a small percentage of sensitive cells. Even for this 
small set of cells, it is desirable that most of the cells receive a significant fraction of 
their nominal perturbation. In this context, we use the term “alpha error” to denote the 
amount of under-protection of sensitive cells. A possible formula for this will be 
given below. It involves the ratio (denoted ‘frac’) of actual perturbation to nominal 
perturbation when that ratio is less than 1. The percentage of sensitive cells with a 
value of frac less than 1 provides a global measure of under-protection and the spe-
cific values of frac provide a local measure. We currently define the alpha error as the 
sum over sensitive cells with frac less than 1 of (1-frac) divided by the total number 
of sensitive cells (#SEN). This quantity always lies in the interval [0,1].  If all sensi-
tive cells are fully protected alpha = 0. If all sensitive cells receive no protection, al-
pha = 1. The acceptable upper limit for this quantity is an agency policy decision.  
Thus, a formula for this alpha error is: 

(1/#(SEN)) times the sum over sensitive cells i of  max(0, 1 – frac (i)) . 

This formula is not applicable if there are no sensitive cells, and in this case alpha 
can be interpreted as 0 since there is no under-protection occurring. Alpha is also zero 
if all sensitive cells receive at least their nominal perturbation.  Both of these cases 
occur among the five tables discussed in section 3.  The acceptable level for alpha er-
ror is a decision for the group at an agency tasked with setting policy for disclosure 
avoidance.  

Beta Error: Measuring Over-Perturbation. In addition to measuring the degree of 
under-protection, it is helpful to measure the amount of over-perturbation as well. 
Over-perturbation does not increase disclosure risk but it is an important data quality 
issue that must be considered. Data that are greatly over-perturbed are likely to be of 
substantially lower quality than the original data, and will therefore be of less value to 
data users. If a particular application of the EZS noise method, or any other protection 
method, greatly over-protects the data, it may be possible to adjust some parameters 
so that a second application will less over-protection while still keeping the alpha er-
ror small. However, due to the inherent randomness in the EZS noise process, there 
will always be some amount of over-protection. We define the ‘relative perturbation’ 
(rel-pert) in the cell value as: (‘post’ is the post-perturbed value, and ‘pre’ is the pre-
perturbed value). 

rel-pert  =  |(post  - pre) | / pre 
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We currently define “beta error” as the weighted average of these relative changes 
over all non-sensitive cells (also called ‘safe’ cells) and over all sensitive cells that re-
ceive full protection. Actually, for such sensitive cells we use the relative over-
perturbation (‘rel-over-pert’) defined as {|(post-pre)| – |(nominal-pre)|}/ pre.  The con-
tribution of this subset of sensitive cells to the beta error will likely be very small. We 
include it since there is some data quality cost to over-perturbing sensitive cells (i.e., 
perturbing them more than their nominal amount).  Expressed in a formula, this defi-
nition of beta error is:   

{(#SAFE) * (average of rel-pert for safe cells) +  
  (#P-SEN) * (average of rel-over-pert for protected sensitive cells)} /  

(#SAFE + #P-SEN) . 

where #SAFE is the number of safe cells and #P-SEN is the number of sensitive cells 
which receive full protection. If sensitive cells comprise a small percentage of cells in 
a given table, the beta error may be approximated as the average value of rel-pert for 
safe cells or the average for all cells. We used this latter approximation to compute 
beta errors for the five tables discussed in section 3. Note that beta lies in the interval 
[0,1] and the acceptable upper bound might be based on data use considerations since 
such a  bound affects overall quality of the tabular data.  For example, a value such as 
0.05 might be low enough for certain uses.  

The Impact of EZS Perturbation on Coefficients of Variation. Data reliability is 
measured at the cell level by using Coefficients of Variation estimates (abbr. CV). A 
CV is computed by estimating a variance for the cell and dividing it by the estimated 
cell value. There are a variety of ways to estimate variances. The method of random 
groups was chosen by the branch at Census with the responsibility for selecting com-
putational algorithms for use in economic surveys. The random groups method 
(Wolter, Chapter 2, [6]) computes variances directly from the microdata rather than 
using formulas. It’s likely that no modification of the random groups procedure is re-
quired to estimate variances for EZS modified microdata. However, in general the CV 
for a pre-perturbed cell will differ from the CV for the post-perturbed cell. It is hard to 
predict how much CV’s will be modified by an application of the EZS noise method. 
In section 3, we report on the distribution of the CVs for several CFS tables after EZS 
noise has been applied to the CFS microdata. The resulting modifications to CVs are 
minimal; e.g., often over 85% of the cells in a table have CVs that differ by less than 
1% from their value based on pre-perturbed cell values. 

Overview of Operations That Contribute to Protecting the Confidentiality of 
Data in Tables.  There are several ways to protect the confidentiality of data pre-
sented as cell values in tables. The sole purpose of the EZS noise method is the pro-
tection of tabular data. There are various other operations applied to the data in both 
microdata and tabular form during production that are not explicitly designed to pro-
tect the data, but is nevertheless a positive side effect. For example, CFS tables are 
protected by weights and scaling factors that are applied to the microdata and by the 
process of rounding cell values (Massell, [5]). 

Protection Due to Weighting.  There is an extension of the p% rule that includes the 
protection provided by weights. According to Working Paper 22 on Disclosure 
(WP22, [7]), when one determines the sensitivity of a cell value one needs to compute 
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a cell total that uses all the relevant weights (e.g., sampling weights, adjustment 
weights, etc.). We denote this as ‘TA’. Then one computes the largest two company 
values contributing to a cell value, denoted X1 and X2. Usually, these values are 
computed without weights. One computes the remainder (‘rem’) as follows:  

rem = TA - (X1 + X2). 

Finally one computes the protection required (prot) where  

prot = (p/100)*X1 - rem.    

Here, ‘p’ is the value used in the p% rule; it’s chosen by the statistical office. If prot > 0, 
the cell is defined as sensitive and the amount of perturbation required equals prot.   

To see more clearly how weights protect cell values, consider a cell with contribu-
tions from only two companies. Then the expression for ‘rem’ above yields:  

rem = (w1 - 1) * X1 + (w2 - 1) * X2. 

Here, the weights w1 and w2 generally satisfy w1 1 and w2 1. For fixed X1 and X2, 
as w1 and/or w2 increase, rem increases; therefore ‘prot’ decreases. Even for small 
weights, prot may become zero; e.g., if w2 = 1, and w1 = (1 + p/100), prot = 0. 

For the CFS, there are 7 weights for each shipment. Some of these might be de-
scribed as ‘adjustment factors’. Four of these weights are generally unknown to data 
users, but 3 of these weights are often known. We believe the correct way to handle 
known weights is to multiply each shipment for company 1 by the product of its 
‘known’ weights and then sum these values to form X1, and similarly for company 2 
and X2. (Since these weights are known, table users could apply these weights to their 
own contributed values before subtracting the product from the cell value.) As before, 
TA should involve all the weights for each shipment. 

There is an interesting relationship involving confidentiality, data quality, and sam-
ple size. An agency has limited funds for conducting any survey and this generally 
limits the size of the available sample. In past cycles of the CFS, many cells were sup-
pressed due to high CVs. If sample sizes were to increase in future cycles of the CFS, 
we would expect the number of cells that have high CVs to decrease, allowing more 
cells to be published. Some of the cells that previously were suppressed due to having 
high CVs, might still have to be suppressed, but now because they are sensitive.  This 
occurs because as sampling weights decrease, cells that receive protection from those 
weights, especially one and two-company cells, now may become sensitive. 

Protection due to Rounding.  In many CFS tables, cell values are rounded to the near-
est million. This rounding prevents table users from seeing a very precise estimate of 
a company’s or establishment’s value. The exact amount of protection provided by 
such rounding is expressed in a formula derived by Laura Zayatz and described in a 
note (Zayatz, [8]).When data are to be rounded to six digits (i.e., to the nearest multi-
ple of 1,000,000), the formulas below are used. For this type of data, the rounding 
protection is added to the protection reflected in ‘rem’ (where rem = TA - (X1 + X2)); 
thus the cell is sensitive if: 

rem + |500,000 - |TA - round(TA) | | < X1 * (p/100). 
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If it is sensitive, then the following amount of additional protection is required to 
protect it: 

prot = X1 * (p/100) - [rem + |500,000 - |TA - round(TA) | | ] . 

One can view this complicated expression as the difference in perturbation required 
and the sum of uncertainties contributed by various sources. 

The Interaction of Weights and Noise in Determining Cell Value Changes.  The EZS 
method is described in a paper that appeared in a special issue on disclosure of the 
Journal of Official Statistics (Evans, Zayatz, Slanta, [3]). There is also a recent note 
on the analysis of the interaction of weight and noise in the EZS method (Massell, 
[4]). Specifically, it is important to note that even though the noise distribution always 
creates pure noise factors that involve at least a k% change (e.g., k might be in the in-
terval [5,15]) for each company’s contribution to a cell value, the weights associated 
with the company’s shipment usually lower the actual effect of the noise, sometimes 
substantially. Thus even for a cell with all its data from a single company, the relative 
change in the cell value is often less than half of the change due to the pure noise fac-
tor; this will happen if w > 2. This can be shown with simple algebra using the ex-
pression: 

joint noise-weight multiplier = { (noise multiplier) + (weight  -  1) }   

that is applied to each contribution to a cell value. Typically the noise multiplier has a 
value between say, 0.5 and 1.5, but is not very close to 1. Weights are usually 1. 

In some of our test tables, the weights fully protect many of both the one-company 
and the two-company cells. This is in contrast to census data (or more precisely, data 
for which the weights equal 1) for which cells that consist of data from only one or 
two companies always require protection. Thus, survey data in which most records 
have weights larger than (1 + p/100) are likely to have few sensitive cells assuming 
sensitivity is determined using the extended p% rule.  

2.3   Calibration 

Finding a good noise distribution to use for the EZS method may require some cali-
bration. Initially, the statistical office must select the shape and location of the noise 
distribution. Experimentation will often lead to parameter values for the distribution 
that produce acceptably small values of alpha and beta error. If an office has the time, 
it can continue experimentation to find parameters that produce an optimal distribu-
tion, such as one which minimizes some given linear combination of alpha and beta 
error. There is no theoretical reason why the same noise distribution should be opti-
mal for all surveys. Although we have done only a modest amount of experimentation 
on this problem, one would expect the optimal distribution to vary somewhat among 
even surveys involving the same type of data. In fact, the optimal amount of noise is a 
function of 1) the survey microdata, 2) the set of tables to be generated from it, 3) the 
amount of protection required for each cell, and 4) the acceptable levels of alpha and 
beta errors (or similar error measures).  For convenience, the statistical office would 
probably want to use the same distribution for different microdata sets as long as the 
errors were not far from optimal. 



 Protecting the Confidentiality of Survey Tabular Data by Adding Noise 311 

In our testing to date, we’ve used two noise distributions which we denote [D1] 
and [D2]. For some tables we used both (on different runs) to compare results. These 
two distributions have the same structure. They are “split” triangular distributions, 
such that the density function is described below and illustrated in figure 1.  

Let 1 < a < b < 2. 

 to the left of 1:     f(x) = k · (x - (2-b)) for  2-b < x < 2-a 
 around 1:             f(x) = 0   for 2-a < x < a 
 to the right of 1:   f(x) = (- k) · (x - b)  for   a < x < b.     

f(x) = 0 otherwise (i.e., for x < (2-b) and for x > b)  
Here k = (1/(b-a)2 )  since the area under the density curve must equal 1. 

 

Fig. 1. The Split Triangular Distribution 

Thus the density is piecewise linear and is symmetric about 1 ([3]). The following 
distributions were used for the pure noise multiplier on different test runs.  

 [D1] noise:    split triangular distribution on [0.8, 0.9] and [1.1, 1.2] 
 [D2] noise:    split triangular distribution on [0.85, 0.95] and [1.05, 1.15] 

One can develop approximate relationships between the noise distribution used and 
the resulting alpha and beta errors. One can show using simple algebra that if one uses 
the split triangular distribution with a  1 + (p/100), then all single company cells will 
be perturbed by an amount large enough to guarantee that they will be safe. For ex-
ample, if p=10, the [D1] distribution, since it has a = 1.1, satisfies this inequality. 
(They will be perturbed by an amount greater than the ‘nominal protection’ = sum 
over company records i of (p/100 + 1 – wi) · xi ; where wi  1 and xi  0).    Since for p 
= 10, all single company cells are safe (i.e., non-sensitive), we expect [D1] noise to 
produce a very low alpha error. The beta error may be a bit too large reflecting excess 
noise that leads to excess perturbation of safe cells, and over-protection of sensitive 
cells. Moreover, since a substantial percentage of the microdata records have large 
weights, and large weights provide inherent data protection, the perturbation required 
to protect cells that contain such data is either small or zero. Thus it likely that a noise 
distribution which modifies values by less than 10% prior to the weight adjustment 
would produce acceptably small values for both alpha and beta errors. This idea moti-
vated our selection of [D2] noise in which the pure noise multiplier modifies values 



312 P. Massell, L. Zayatz, and J. Funk 

sometimes by as little as 5%. We plan to experiment with other simple noise distribu-
tions until we are confident we have found one that produces a near-optimal combina-
tion of alpha and beta errors.  In practice, a statistical office need not find a distribu-
tion that produces near-optimal errors, but simply one that produces acceptably small 
errors. 

3   The EZS Noise Method: Results of Testing on Selected 2002 
CFS Tables  

In this section we present a summary of outputs from an analysis program (written in 
SAS) that was run on five 2002 CFS tables selected to represent a variety of levels of 
geographic detail (referred to below as CFS tables 1 through 5). 

Two of the important statistical quantities reported are defined as follows: the per-
centage change in the cell estimate and cell CV due to noise perturbation.  We define 
the change in cell estimate as (rel-pert * 100) where ‘rel-pert’, the ‘relative perturba-
tion,’ is defined above. Recall the expression for the coefficient of variation (CV) for 
a cell value, given in the section on beta error above. We compute CVs using per-
turbed values for both the numerator and denominator. 

Sensitivity of cells is determined using the p% rule; we use the version that takes 
into account weights assigned to the lowest level microdata records. For CFS data, 
these are the shipment level records. 

For each table we report the number of cells; in general, for a fixed number of di-
mensions, as the detail of the table increases so does the number of cells. We report the 
distribution of the number of companies that contribute to a cell. It is possible that there 
is more than one establishment for some companies contributing to a cell and typically 
there are many shipment records for each establishment. Because weights play a major 
role in protecting against disclosure for CFS data, it is not uncommon for a cell with 
data from only a single company not to be considered sensitive. Sparse data has been a 
major problem for the CFS, such that in tables with even a moderate level of detail the 
CV’s for cells are often so large that the cells are suppressed. Because of this high level 
of uncertainty it was not unusual for a table to have more cells suppressed due to poor 
data reliability (i.e., large CV’s) than for disclosure protection purposes.  

For those tables that contain sensitive cells, we present an analysis of the set of 
sensitive cells similar to that for all cells; e.g., we compute the number of companies 
contributing to each such cell. We also compute a ‘protection multiplier’ for each sen-
sitive cell. This we define as the ratio of the (absolute value of the) perturbation as-
signed to a sensitive cell to the desired protection. For detailed tables, there are usu-
ally a small percentage of cells that do not receive full protection; however, in most of 
those cases, they do receive at least 50% of the desired protection. We report the 
number of cells not receiving full protection and the lowest value of the protection 
multipliers. We use the alpha error as a global measure for the amount of under-
protection in a given table. We report the range of values for the protection multipliers 
that includes about 90% of the middle part of the distribution to give some idea of the 
typical amount of “over-perturbation”; i.e., perturbation that exceeds the desired pro-
tection. To assess the decrease in data quality due to perturbation we also report an 
approximated beta error for each table.  
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3.1   Analysis of Selected CFS Tables 

Table 1 above represents the changes in cell estimates and CVs for the national 2-digit 
commodity table, a relatively high level table with only 43 cells, none of which are 
sensitive.  There was very little data distortion added to the table due to noise addition 
at this level of detail.  Since the D2 noise distribution generates less noise than the D1 
distribution, one would expect changes to both cell estimates and CVs to be smaller 
under D2. This was the case in each of our five test tables. Of course, if one uses a dis-
tribution that generates very little noise, there is the risk of greatly under-protecting the 
sensitive cells. When this occurs, it may be reflected in a large alpha error.   

Table 1. CFS Table US 5a (USA by 2-digit Commodity) (43 cells, none sensitive) 

Perturbation 
Interval 

Change in Cell Estimate   
(% of All Cells) 

Change in Cell CV       
(% of All Cells) 

(% Change) D1 Noise D2 Noise D1 Noise D2 Noise 

0 to 1%    95.3%    95.3%    86.0%    93.0% 

1 to 2% 2.3% 4.7% 9.3% 4.7% 

2 to 3% 2.3% 0.0% 4.7% 2.3% 
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Fig. 2. The above plots represent approximations of the distribution of noise added to table 
cells for CFS Table 3 (Origin State by Destination State by 2-Digit Commodity), for noise dis-
tributions D1 and D2 respectively.  A point (x, y) can be interpreted as the percentage y of cells 
that received a relative perturbation that lies in the interval [x, x+1) percent.  
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Figure 2 above represents the amount of perturbation added to cell estimates due to 
the noise procedure for D1 and D2 distributions respectively.  Note the peak change 
for sensitive cells is in the range 13% to 14% for D1 noise and in the range 8% to 9% 
for D2 noise. This corresponds to the fact that the D1 distribution is shifted 5% to the 
right relative to the D2 distribution. The smaller perturbations created by D2 are 
probably sufficiently protective when p=10 is used, since only 5 of the 230 sensitive 
cells fail to receive the nominal perturbation, with the lowest protection multiplier 
(PM) being 0.8. For D1 noise, 2 PM’s are less than 1. For PM’s greater than 1, the 
range of values for D1 is roughly shifted by 1.0 compared to that for D2; this repre-
sents a significant amount of over-perturbation caused by using the D1 distribution. 

3.2   Analysis of Remaining CFS Tables 

For all cells in a given table, we looked at the distribution of the number of companies 
that contribute to the cell. We also report the percentage of cells that are suppressed 
due to having a CV value that exceeds 50%. (It turns out that CVs for these tables are 
affected very little by either [D1] or [D2] noise). We give the number of sensitive 
cells, the percentage that have CVs exceeding the threshold, and the distribution of 
the number of companies that contribute to them. For each noise distribution we pre-
sent information about the protection multipliers, which are defined as the ratio of the 
absolute value of the perturbation for a cell divided by the perturbation required for 
that cell by the (extended) p% rule. We give a middle range of values that includes 
about 90% of the distribution, the number of values less than 1, and the lowest value 
for these protection multipliers. 

We tested the EZS noise protection method on five CFS tables, each of which is 
derived from the full CFS microdata. The tables range from 2 to 4 dimensions, includ-
ing a national table with no detail and no sensitive cells to tables with much detail and 
many sensitive cells. Certain general observations can be made from an analysis of 
these five tables. First we give the structure of each table followed by the number of 
its cells to get an idea of the size and level of detail of each. Table 1 is “U.S. by 2-
digit commodity” (43). Table 2 is “Origin State by 2-digit commodity” (2,108). Table 
3 is “Origin State by Destination State by 2-digit Commodity” (61,174).  Table 4 is 
“Origin Metropolitan Area by Commodity by Mode” (31,622).  Table 5 is the largest 
and most detailed; it is “Origin State by Destination State by 2-Digit Commodity by 
Mode” (389,632). It is not surprising that the percentage of cells with a CV value ex-
ceeding the data quality threshold increases as the level of detail increases. In fact, the 
percentages of cells that exceed the CV threshold for the 5 tables, are (0, 27, 70, 58, 
75) % respectively. 

As the number of cells increases, the number of sensitive cells increases. For the 
five tables, the numbers of sensitive cells are (0, 9, 230, 224, 1197).  This phenome-
non is certainly understandable for unweighted data for which any cell with contribu-
tions from only one or two companies (“one-company” or “two-company” cells) is 
sensitive according to the p% rule.  Our results show that it appears to occur even 
when using weighted data. In fact, for the five tables, the percentages of all cells that 
are either “one-company” or “two-company” cells are (0, 8, 37, 33, 47) %.  For sensi-
tive cells, the percentages of such cells are sometimes very high; for Tables 2 through 
5, the percentages are (55, 87, 94, 93) %. 
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We performed a careful analysis of the sensitive cells. For Table 1, there were no 
sensitive cells. For Table 2 with D1 noise protection, most protection multipliers 
(PMs) were in the range (2, 4). There were none below 1, in fact the lowest = 2.3. 
Thus alpha =0. With D2 noise protection, most PMs were in the range (1.4, 2.4) but 
again there were none below 1, and the lowest was 1.2.  For Table 3 with D1 noise, 
most were in the range (2, 4) with just two PMs below 1, the lower being 0.44.  For 
D2 noise, most PMs were in the range (1.1, 2.4) with five PMs below 1, the lowest 
being 0.80.  For Table 4 with D2 noise, most PMs were in the range (1.1, 2.2) with 
only one PM below 1, its value was 0.52. For Table 5 with D2 noise, most PMs were 
in the range (1.0, 4.0) with 31 PMs below 1 with the lowest being 0.08. 

Table 2 below represents calculated alpha errors and approximated beta errors for 
all applications of the EZS noise method on our test tables.  Alpha is 0 in table 1 for 
both distributions in table due to the fact that there are no sensitive cells.  In table 2, 
all sensitive cells receive sufficient protection and so the alpha errors are both 0 here 
as well.  Since beta error is designed to measure over-perturbation we would expect it 
to increase both with increased table detail and increased amount of noise added.  
This appears to be the case in our results, such that D1 always produces larger beta er-
rors than D2, and in general the beta errors increase with the number of cells in the 
table.  It is important to keep in mind the random nature of this method, and therefore 
a simulation study involving several iterations of the random noise multipliers would 
be appropriate in order to make concrete conclusions from this type of analysis. 

Table 2.  Alpha and Beta Errors for Five CFS Test Tables 

Alpha Error Beta Error 
Approximation CFS 

Table 
D1 D2 D1 D2 

1 0 0 0.0057 0.0055 
2 0.0000 0.0000 0.0122 0.0089 
3 0.0031 0.0028 0.0164 0.0113 
4 NA 0.0021 NA 0.0103 
5 NA 0.0063 NA 0.0109 

3.3   Comparison of EZS Noise with Cell Suppression 

Certain aspects of the noise protection process are a matter of agency policy.  In par-
ticular, an agency needs to decide on what “publication rules” are suitable for the data 
at hand.  An agency may choose to publish a value in all cells, and simply put an extra 
symbol in those cells whose values have undergone a percentage change that exceeds 
some data quality threshold due to the added noise.  We say these cells have been 
‘flagged.’  Most sensitive cells would typically be in this category.  A small fraction 
of the non-sensitive cells would also.  Finally the agency would probably choose to 
include all sensitive cells in this category simply as a way to protect these values by 
discouraging their use.  Rather than flagging such cells, an agency might decide to 
suppress all sensitive cells in a noise protected table. Even in this case, there are sev-
eral differences between using a noise protected table versus one protected with cell 
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suppression.  In a suppression protected table, the sensitive cells are suppressed and 
there are usually some (and sometimes many) secondary suppressions whose role is to 
make it impossible to recover the exact value of any sensitive cell or even a good esti-
mate of any one.  There is nothing comparable to secondary suppression in noise pro-
tected tables.  In this scenario, the most obvious improvement to table users occurs 
when there are many secondary suppressions; under noise protection these are replaced 
with values.  However, the advantage to the table user is not always clear because these 
formerly suppressed cells, while available, may differ from the “true” values by several 
percent due to the noise added.  In fact, many published values in the table will typi-
cally be changed by a few percent and any small set of values of interest, even if they 
are not in flagged cells, may be changed by an amount just below the (data quality) 
threshold for flagging.  For certain technical reasons, we will not report on the secon-
dary suppressions for the set of CFS tables mentioned above.  However, in general, for 
recent CFS cycles, many of the tables have had a number of secondary suppressions 
that is of the same order of magnitude as the number of sensitive cells.  Thus, if noise 
protection is used for future CFS tables, we expect to see a significant number of cells 
with publishable values that would have been suppressed under cell suppression.  

4   Conclusions and Next Research Steps 

Based on the results from the five 2002 CFS tables that we selected for testing the ef-
fectiveness of EZS noise protection, it appears that EZS noise should be considered as 
an alternative to cell suppression for protecting future CFS table releases. We say this 
because the alpha and beta errors are quite low for both distributions tested. The cur-
rent implementation seems to produce high quality tables that protect the data and are 
still very useful to data users. 

For the CFS tables that we protected with noise, the only magnitude variable we 
considered was ‘shipment value’. There are other magnitude values that are released 
for each cell, e.g., the shipment physical weight (tonnage). The question here is how 
these magnitude variables should be treated together with noise. Currently we intend 
to generate a single noise multiplier for each microdata record and apply that multi-
plier to each magnitude variable in that record. A single multiplier suffices for the 
CFS since the ratio of these two quantities is not a sensitive value. For other surveys, 
with two or more magnitude variables in which some of the ratios need to be pro-
tected, we may need to generate separate multipliers for different variables involved 
in these sensitive ratios.  

There are various topics we need to explore. We need to decide how much to tell 
the data users about the noise procedure in order to maximize the usefulness of the ta-
bles for them while not compromising on confidentiality protection. Can users be told 
the technical details of the algorithm or just its most important aspects? We also need 
to decide whether we should publish a special symbol or flag along with the value in 
cells whose values have been perturbed by more than a certain percentage.  

We also need to explore the best way to protect longitudinal data that are generated 
from successive cycles of the CFS. Specifically, does there need to be consistency in 
the selection of a perturbation direction for each company in the CFS from one con-
duct of the survey to the next? Does this consistency need to be maintained for “all 
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time”, or could the direction be changed after a number of years? Longitudinal data 
are often used for computing trends. Along these lines, there was a careful analytical 
study carried out by Evans regarding the effect of EZS (multiplicative) noise on the 
computation of trends (Evans, [2]). This paper not only presents interesting results but 
also implicitly shows the way that additional studies on the effect of noise on various 
types of models might be carried out.  

There are some general research questions for the EZS method that are being ex-
plored currently. Some of these affect the use of EZS for CFS over time. For example, 
how do noise multipliers need to be adjusted when companies in the sample go out of 
existence or merge with other companies that have already been assigned noise multi-
pliers? Preliminary indications are that such questions can be resolved in a way that 
maintains the effectiveness and ease of use of the EZS method.  
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Abstract. In this paper we define a proposal for an alternative data dis-
semination strategy of the Italian Household Expenditure Survey (HES).
The proposal moves from partitioning the set of users in different groups
homogeneous in terms of needs, type of statistical analyses and access
to external information. Such a partition allows the release of different
data products that are hierarchical in information content and that may
be protected using different data disclosure limitation methods. A new
masking procedure that combines Migroaggregation and Data Swapping
is proposed to preserve sampling weights.

Keywords: Disclosure Limitation, Sample Survey Data, Dissemination
Policies, Risk-Utility Assessment.

1 Introduction

The Household Expenditure Survey (HES) is a sample survey on household
expenditure carried out, every year, by the Italian National Statistical Institute
(Istat). Household purchases of goods and services are the object of the survey.
The goal of data collection is to provide the structure and level of expenditure
according to the main social, economic and geographical characteristics of the
Italian households. This information is essential to a wide range of statistical
analyses of great interest for academic researchers, decision makers in the Public
Administration, marketing and consulting companies, and other users.

The current data dissemination strategy comprises a set of tables and a
masked microdata that are released to all users after completion of an appli-
cation form and signing a pledge of confidentiality. The original microdata with-
out direct identifiers and regional geographical detail may be accessed also for
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research purposes in the Data Analysis Centre at Istat. Finally, there are the
institutional users. Official statistics in Italy is organized through a system (SIS-
TAN - National Statistical System) whose entities may access, for institutional
purposes, the original microdata without direct identifiers.

This paper reports on an ongoing work aimed to define a proposal for an
alternative strategy of HES data release. The underlying idea is that HES users
are very diverse and an efficient data dissemination strategy should take full
account of this heterogeneity1. An alternative strategy could be designed by: (i)
partitioning the set of users in different groups in order to increase the degree
of homogeneity within each group; (ii) releasing a different data product to each
group.

The paper is organized as follows. Section 2 describes the HES data. In sec-
tion 3 we report on the results of a descriptive study that we realised to get
a deeper understanding of HES data users and their needs. Section 4 reviews
the current HES data dissemination strategy and explains why, we believe, this
can be improved. A possible alternative is outlined in section 5. Section 6 de-
scribes the construction of a Public Use file as a part of the general strategy
in Section 5 and a new masking procedure that preserves sampling weights es-
sential for correct data users’ inferences. Disclosure risk and data utility assess-
ment for the Public Use file is also discussed here. Section 7 summarizes the
main contributions of the paper and outlines open problems and ideas of future
work.

2 The HES Data Set

HES considers a cross-sectional sample of Italian households selected from the
current Italian Population Register. The HES relies on a two-stage sampling
design with stratification of the municipalities, and systematic selection of the
households. 479 municipalities have been selected for the year 2004 with roughly
2330 households each month for a total of around 28000 households in a year.
The final sampling design weight of each household is derived from the basic
weight by means of a calibration process in order to preserve known population
totals. In the HES such totals are the population of each macro region (first
level of the Nomenclature of Territorial Units for Statistics - NUTS1 - 5 classes)
by sex and four age-classes (0-14,15-29, 30-59, 60 and more) and the population
and number of households by administrative region (NUTS2, 20 classes). Starting
from 1997 data are collected using two different techniques: completion of a diary
reporting daily purchases on a variety of goods in a predefined seven days period
and a face to face interview where socio-demographic information on household
members are collected together with expenditures on housing, clothing, health,
transport, leisure activities, education. When needed the household is requested
to complete also another diary of goods produced by the household and used in
the given week. Along with expenditure variables (approximately 480 classified
1 The idea is not new in the statistical confidentiality literature, see for example,

[9,2,1].



320 M. Trottini, L. Franconi, and S. Polettini

according to the divisions and groups of COICOP classification - Classification
of Individual Consumption According to Purpose) sampling weights that are
needed to derive population estimates from the survey sample are also supplied.
For more information on the methodology of the survey and HES questionnaires
see [6].

3 Heterogeneity of HES Data Users

Users of HES data are very diverse. An analysis of the application forms received
by Istat in the period 2002-2004 (a total of 119) shows how HES users include
academic researchers, decision makers in the Public Administration, marketing
and consulting companies, public and private research institutes, international
organizations and individuals. Type and sophistication of statistical analyses
that need to be performed, skill and resources required to perform the analyses
as well as motivation for disclosure are very diverse across users. Typical appli-
cations of the data among researchers include definition of equivalence scales,
studies on poverty, definition and estimation of econometric models, changing of
food consumption habits to mention just a few. Aims of the analyses for Public
Administrations range from monitoring of prices to microsimulation models as
well as analysis of consumption of specific services. Marketing and consulting
companies naturally claim for marketing studies, but also for analysis of pattern
of high expenditure and financial and welfare planning.

Despite the inaccuracies in the application forms (description of the planned
analysis is often very generic), the non-exhaustive nature of the information
represented in it2, and the bias due to the reporting of analyses feasible solely
with the provided masked version of the data, we believe that the information
collected well illustrates the diversity of HES data users.

Another source of users’ heterogeneity is their permission to access external
data files for record linkage and re-identification. There are two main types of
external registers in Italy: the Population Register (Anagrafe), i.e. the collec-
tion of information on all the people and households living in the municipality,
and the electoral roll, the official list of people who are allowed to vote in the
municipality. According to the Italian legislation the whole Population Register
can be used only by Public Administrations for reason of public utility, whereas
information on the presence of a named household in the municipality and its
composition may be given to all who ask for it. Finally, the entire electoral roll
of a municipality can be released for research purposes.

Taking into account these different aspects is essential for the design of efficient
strategies of HES data dissemination, as well as for a correct evaluation and
comparison of alternative strategies in terms of the risk-utility trade-off that
these yield. The discussion of current HES data dissemination in the next section
should illustrate the validity of this proposition.

2 As we describe later there are alternative ways to access the data that do not require
completion of an application form.
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4 Current Data Dissemination Strategy of HES Data

Istat current data dissemination policy of HES data comprises:

(1) A set of marginal tables, HES1A, published in a volume [6] and available
on Istat web site, accessible by all users. The volume contains tables of spe-
cific expenditures at NUTS1 level as well as socio-demographic analyses of
expenditures showing tables on purchases per number of household compo-
nents, per type of household and per type of employment of the household
reference person. Besides these, a whole series of marginal tables is given for
monthly mean expenditure on goods and services collected in the survey by
macro regions and number of components of the household, by type of oc-
cupation of household reference person and type of household. Finally, users
may require Istat to release further ad hoc tables on specific matters; these
can be provided if disclosure control rules allow.

(2) A masked microdata (also known as File Standard), HES1B, obtained thr-
ough a combination of suppression and global recoding also accessible by all
users after completion and approval of an application form and a confiden-
tiality pledge that users must submit to Istat.

(3) A microdata, HES2, obtained by suppressing the direct identifiers in the
original microdata and maintaining only NUTS2 geographical detail, acces-
sible for research purposes in the Data Analysis Centre at Istat where the
output of the analysis is reviewed for confidentiality checks.

(4) Finally, there are the statistical institutional users. Inside SISTAN the ex-
change of microdata3 aims at the realization of direct surveys and other
projects within the National Statistical Program along with studies for in-
stitutional purposes. In this framework statistical offices may ask for the
HES microdata without direct identifiers; each request is processed centrally
by Istat.

When, in 1992, Istat started releasing masked microdata the only users were
academic researchers. Choice of transformations to be used and data dissemina-
tion strategy were intended to find an optimal balance between confidentiality
protection and quality of released data for statistical analyses of interest to le-
gitimate data users. Although the process has worked quite smoothly so far, we
believe it is not completely satisfactory for at least two reasons. The analysis
reported in Section 3 shows that, nowadays, HES data users and their needs are
very diverse. As a result, the current data dissemination procedure that relies
on a single transformed HES microdata for all users seems inefficient, since the
masked data set and the set of tables produced are likely to be of insufficient
detail for the more sophisticated data users, while disclosing information that is
perhaps unnecessary for more basic research.

In addition, the current data dissemination strategy makes a rigorous assess-
ment of disclosure risk and data utility associated with the procedure quite diffi-
cult. The set of tables, HES1A, and the masked microdata, HES1B , released to all
3 Istituto Nazionale di Statistica. Deliberazione 20 aprile 2004, n. 9, Criteri e modalità

per la comunicazione dei dati personali nell’ambito del Sistema statistico nazionale.
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users, in fact, contain different information and are obtained using different dis-
closure limitation techniques. Sophisticated users intending to take full account of
the information in the released data for the inferences of interest should combine
the information in HES1A and HES1B. Combining these two sources of informa-
tion, however, is usually a complex task due to different disclosure limitation tech-
niques that produce the two data products. As a result a rigorous assessment of
disclosure risk and data utility is usually very difficult even assuming the agency
knowledge of users’ targets, prior information, estimation procedures, etc.4.

5 An Alternative Data Dissemination Strategy

Building on the limitations of the existing procedure, we propose an alternative
strategy. In order to take account of users’ heterogeneity, we partition HES
data users into three groups: Academic Researchers (AR), Public Administration
(PA), Other Public Users (OPU) and propose to replace the current masked
microdata, HES1B, with three different releases: a Public Use File (HESPU)
accessible to all users, a Public Administration File (HESPA) accessible only to
Public Administration offices, and a Research file (HESRE), accessible only to
researchers. In proposing such partition and defining the three data user groups
we heuristically solved a decision problem with multiple objectives, where the
action space is the set of all possible partitions of data users and the best action
must be selected by taking into account the two conflicting objectives: “maximise
users’ homogeneity within groups”, and “minimise the number of groups”. The
interpretation of the first objective should be clear from the discussion in the
previous sections. The second objective reflects, instead, concerns about data
dissemination cost. Ideally Istat could provide targeted data sets for each pair of
data users and data user analyses. However, the larger the number of data sets to
be released the larger the cost of data dissemination. Given Istat resources this
partition was not further refined5. Choice of three groups reflects the existance
of three different categories of intruders and types of access.

Within our framework the three files, HESPA, HESPU, and HESRE, must be
defined hierarchically in terms of information content. We must have HESPU ⊂
HESPA ⊂ HESRE whith HESi ⊂ HESj meaning all the information in masked
data set HESi is also contained in HESj . The hierarchical structure of the three
data sets greatly simplifies assessment of the disclosure risk and information loss
associated with the proposed strategy. Because of the hierarchy, in fact, there is

4 Current Istat assessment of disclosure risk and data utility considers the two data
products HES1A and HES1B independently assuming that users do not try to combine
the information in both. This assumption seems quite realistic due to the difference
in information content of the two data products and the complexity of combining the
information in both. However, such an assessment underestimates both disclosure
risk and data utility.

5 Because of space constraints an operational definition of the three groups PA, PU
and OPU is not reported here. For details on this definition the interested reader is
referred to [10].
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no gain for a user to access data in a lower level than the one he/she is granted.
The agency can just assume that user h will use only data HESh for his/her
(legitimate or illegitimate) inferences. The next section describes a proposal for
designing the Public Use File.

6 The Public Use File

The design of the Public Use file, HESPU, was based on two general consider-
ations. First of all, although the survey covers households as well as household
members, we deemed appropriate for a public use file to release information
at household level only. All personal information about individuals belonging
to the sampled households was therefore removed from the file, except for the
household reference person.

In addition, it was recognized that HES variables have a different role and
carry different implications for both disclosure risk and data utility, given their
heterogeneity in terms of relevance for intruder’s goals, usefulness for legitimate
statistical analyses, and existence of alternative means to disclose their values.
As a result of this consideration variables in the data were partitioned into
5 homogeneous groups: direct identifiers (XDI), sensitive variables (XS), non
sensitive variables (XNS), key variables (XKEY), and sampling weights (W ).

Only those variables whose disclosure is both relevant to intruder’s goals and
harmful either to Istat or to survey respondents are defined as sensitive and col-
lected in the XS group. The extent to which a variable is “relevant” and “harm-
ful” clearly depends on the intruder’s motivations and data respondent percep-
tion of disclosure. To provide an operational classification we considered what
is expected to be the prevailing perception of these two aspects. Like sensitive
variables, non sensitive are not available to the intruder but their value is either
not relevant for him/her or not harmful. Finally, key variables are those whose
value is available from external sources of information, at least to some users.

An operational definition of key, sensitive and non sensitive variables is not
an easy task because of data users’ heterogeneity in terms of motivations for (le-
gitimate or illegitimate) inferences, and number and type of variables available
from external sources of information. As an illustration consider a target unit
in the population. The set of key variables for a journalist that has picked up
randomly the target from a list, a neighbour or a long-term friend of the target
are clearly very diverse. In addition, depending on the motivation for disclosure,
each of these potential intruders could, to a different extent, and with a differ-
ent cost, increase the set of key variables. These additional variables could be
considered as either key variables or sensitive/non sensitive variables disclosed
by alternative means. In this paper we use the latter interpretation, including
in the set of key variables, XKEY, those variables that are available from the
external registers mentioned in Section 3, or from brief social contact with the
target (i.e. household composition). Data users that are so close to the target to
be able to gather with very little effort detailed additional information on it are
not considered potential intruders. In our view, given the existence of alternative
means, motivation for disclosure is indeed very low in this group.
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The distinction between sensitive and non sensitive variables, outlined above,
reflects a precise interpretation of disclosure that combines the notion of at-
tribute disclosure and disclosure harm (e.g. [3,8]) and that takes into account
intruders’ motivations. Disclosing expenditure in bread (non sensitive), clearly,
is not the same as disclosing household income (sensitive). The difference relies
on different potential harm of the disclosure, on potential intruders’ motivations
to disclosure and, as a result of this, on efforts and amount of resources the
potential intruders would dedicate to such intent. Because of these differences,
we deemed appropriate to define different disclosure scenarios and use different
data masking procedures (and thus different risk/utility measures) for sensitive
and non sensitive variables as it is described in the next subsections.

6.1 Disclosure Scenarios for the HESPU File

Two disclosure scenarios for non sensitive and sensitive variables in XNS and
XS, are considered.

Scenario1: intruders’ attack to non sensitive variables. It is assumed
that the intruder does not know whether the target household is in the
sample and can only use the key variables for re-identification.

Scenario2: intruders’ attack to sensitive variables. Since motivation for
disclosure is high in this case we assumed a worst case scenario. To evaluate
the risk of disclosure we make the assumption that potential intruders do
know that a target household is in the sample. Moreover, they can use all
the key variables and possibly some of the non sensitive variables for re-
identification (as we commented before, a motivated intruder can obtain
additional information from external sources on values of some non sensitive
variables for the target unit).

Note that under the first scenario (for non sensitive variables) only meta-
knowledge6 about key variables is available to users. Indeed, under the Italian leg-
islation, HESPU data users can only access targeted records in the external data
files mentioned in section 3. Likewise, personal/informal knowledge about house-
holds is only available at target level. Thus, to claim a reidentification the intruder
can only resort, under Scenario 1, to common sense epidemiology, judging when
a given combination of key variables is rare by common sense social knowledge.

6.2 Disclosure Limitation for the HESPU File

In designing the HESPU file, we decided to avoid those protection techniques
that require users to adjust their inferences. Given the non sophisticated nature
of users’ analyses, global recoding was used whenever possible. Indeed global
recoding yields microdata that can be analyzed by the users with the same
statistical tools as the original data, no special care being required.
6 As defined in [4], “meta-knowledge about keys is not information about actual values

of key variables, but knowledge about the variables themself. An obvious example is
social knowledge about baselines”.
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Direct identifiers i.e. variables in XDI were clearly suppressed, whereas the
sampling weights W were released unchanged, as they are required for proper
inferences. Non sensitive variables, XNS, were not perturbed. Apart from a sub-
group of variables that were judged not relevant for the inferences of legitimate
users of the HESPU data and were therefore suppressed, most non sensitives are
released unchanged. The rationale for releasing the first set of variables unper-
turbed is that for these variables either intruder’s motivation for disclosure is
low, and/or they could be obtained with less effort by other means than the
released data. Based on these considerations we deemed that, under Disclosure
Scenario 1, a suitable masking of XKEY variables aimed to avoid rare combi-
nations was sufficient to protect confidential information in the non sensitive
variables. Key variables masking was done as follows. Key variables containing
personal information about household members were suppressed. The other key
variables were masked using global recoding. In recoding we took into account
the trade-off between analysis of legitimate data users and potential threats to
confidentiality. An additional constraint was the existence of the set of tables,
HES1A that Istat traditionally releases as one of its standard products (see sec-
tion 4). The public use file must agree with the released tables and, as discussed
in section 5, the latter cannot provide the intruder an additional source of in-
formation for re-identification. Key variables were therefore recoded in a way
that allowed users to recover, directly or by aggregation, the published tables.
As a result of the recoding the initial set of key variables, XKEY, is replaced
by a new one, XKEY′ that comprises four keys: Geography, at regional level (20
regions), Occupation of household reference person (6 classes), Household Type
(11 categories, six containing information on household reference person age in
three broad classes), and Household Size (topcoded at 5 components).

The masking procedure for key variables that we just described, is not suf-
ficient to guarantee confidentiality protection for the sensitive variable. Under
Disclosure Scenario 2, in fact, the intruder does know that a target is in the
sample and release of key variables XKEY′ would allow re-identification (and
thus exact disclosure of sensitive variables) for several respondents (which are
sample unique in terms of key variables XKEY′). As a result of these considera-
tions the sensitive variables in XS were either masked with an ad-hoc procedure
that we call Microaggregated Swapping, or completely removed from the file. In
this respect, sometimes the precision of the corresponding estimates motivated
exclusion from the HESPU file.

Due to the presence of sampling weights, special care is required in masking
sensitive variables. The technique we implemented for continuos variables, which
is discussed in detail in the Appendix, mimics swapping but also implements a
microaggregation that accounts for the presence of unmasked sampling design
weights. Our target was to let users build the same estimates as with the original
data over the subpopulations defined by the most important socio-demographic
survey variables in XKEY. Confidentiality considerations led us to define these
subpopulations according to a broader classification than the one used to produce
XKEY′ , namely: Geography, at an aggregate level (5 macro regions), Household



326 M. Trottini, L. Franconi, and S. Polettini

Type (6 categories) and Household Size (topcoded at 5 components). We refer
to these variables as XKEY′′ .

As far as disclosure risk is concerned, the above protection technique reduces
the set of variables that can be used for re-identification to the set of masked
key variables XKEY′′ and makes any intruder’s attempt to use other key or
non sensitive variables useless. Masking was performed independently for each
sensitive variable, thus producing a new set of variables that we denote by X̃S.
As anticipated, it was designed so that the marginal distribution of sensitive
variables is unaffected and so is their conditional distribution over subgroups
defined by cross-tabulating the variables in XKEY′′ . The minimum detail at
which the masked data are to be analyzed corresponds by construction to the
cells defined by cross-tabulation of XKEY′′ variables.

6.3 Disclosure Risk for the HESPU File

As described in section 6, to assess disclosure risk associated with the Public Use
File we used the interpretation of disclosure as attribute disclosure and disclosure
harm. The different scenarios adopted for non sensitive and sensitive variables
require two different approaches to disclosure risk assessment. Denote by m a
generic data masking. Let X

(s,m)
A , be the set of variables available for household

re-identification under Disclosure Scenario s, s = 1, 2 and data masking m,
and let T

(s,m)
A be the contingency table built by cross-classifying the variables

X
(s,m)
A . Consider a targeted household I∗ in the sample. Observing the value

of X
(s,m)
A variables in such an household will classify the household into a cell

of T
(s,m)
A . Denote by k

(s)
I∗ the index of the cell into which I∗ is classified based

on the values of X
(s,m)
A . Under Disclosure Scenario 2 (for sensitive variables)

the relevant distribution for attribute disclosure or disclosure harm evaluation
is the estimated sample distribution of the sensitive variable in cell k

(2)
I∗ . Under

Disclosure Scenario 1 (for non sensitive variables), instead, it is the estimated
population distribution of the non sensitive variable in cell k

(1)
I∗ . For the masking

m̄, described in the previous section, we have

X
(1,m̄)
A = XKEY′ , X

(2,m̄)
A = XKEY′′ ,

while T
(1,m̄)
A (T (2,m̄)

A ) is the contingency table formed by cross-classifying the key
variables in XKEY′ (XKEY′′). We denote the total number of cells in T

(s,m̄)
A by

Ks, s = 1, 2.
For a generic sensitive variable, Sj , disclosure risk assessment proceeds as

follows. Let Ĝ
(k)
Sj

be the estimated c.d.f. of Sj for the k-th cell of T
(2,m̄)
A that is the

empirical distribution of the un-weighted masked Sj data. Let Spread(Ĝ(k)
Sj

) and∫∞
c1k

dĜ
(k)
Sj

(
∫ c2k

−∞ dĜ
(k)
Sj

) be, respectively, measures of spread7 and tail probability

for Ĝ
(k)
Sj

, k = 1, 2, . . . , K2. We measure disclosure risk for Sj at the file level as

7 The measures of spread actually used are: variance, range, and mean variation.
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DRSj = min{Spread(Ĝ(k)
Sj

), k = 1, 2, . . . , K2} (1)

or {
DRSj = max{∫∞

c1k
dĜ

(k)
Sj

, k = 1, 2, . . . , K2},
DRSj = max{∫ c2k

−∞ dĜ
(k)
Sj

, k = 1, 2, . . . , K2}.
(2)

Choice between (1) and (2) depends on whether attribute disclosure or disclosure
harm of the type P (S(i)

j > c1k) (P (S(i)
j < c2k)) is of concern. Table 1, shows,

in bold, the values of (1) and (2) evaluated for the sensitive variable Imputed
Rent (IR). For (2) only the first expression is considered. For comparison the

Table 1. Disclosure risk for imputed rent

Variance Range Mean Variation maxk
∞
c1k

dĜ
(k)
Sj

18313 (19073) 601 (601) 58 (58) 0.13 (0.06)

table also reports (in parentheses) the value of the measures of disclosure risk
that we would obtain by using in (1) and (2) the true sample distribution i.e.
the empirical distribution of the un-weighted original data. Note as the masking
provides a poor estimate of the tails of the distribution for the un-weighted data
thus providing additional protection for attribute disclosure.

Choice of the constants c1k and c2k in (2) is not trivial and should depend on
the differences in the distribution of the sensitive variable across cells. For the
sensitive variable IR in our example we used two different values of c1k depending
on Geography.

For the non sensitive variables, given scarcity of data available to estimate
their population distribution in each cell of T

(1,m̄)
A we considered the probability

of re-identification of targeted households based on XKEY′ variables as a proxy
for attribute disclosure and disclosure harm. Let k be the k − th cell in T

(1,m̄)
A ,

and let fy
k , F y

k be the sample and the population frequency of cell k for year y,
k = 1, 2, . . . , K1. Following the re-identification scenario in [5], we define the risk
of re-identification at the household level for the HESPU 2004 file as:

DR = max{1/F 2004
k , k = 1, 2, . . . , K1}.

For HES sample frequencies fy
k are very stable over the period 2002-2004 we

estimated the population frequency F 2004
k for the year 2004 using the available

Census Data for the year 2001, i.e.

DR = max{1/F̂ 2001
k , k = 1, 2, . . . , K1} = 0.053

where F̂ 2001
k are the estimated population frequencies obtained from the 2001

Italian Population Census.
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6.4 Data Utility

The disclosure risk assessment described in the previous section constraints the
detail at which the masked non sensitive and sensitive variables are to be ana-
lyzed. As a result of these constraints, the descriptive study on the HES data
users’ needs outlined in section 3, and the additional constraints imposed by the
hierarchical structure of the proposed data dissemination procedure, we identi-
fied three data-utility goals in the dissemination of the HESPU data: GOAL 1)
preserve the joint distribution of the non sensitive variables and the key variables
XKEY′ ; GOAL 2) Preserve the mean of each of the sensitive variables within each
cell of the contingency table T

(2,m̄)
A ; GOAL 3) preserve the marginal distribution

of each of the sensitive variables within each cell of the contingency table T
(2,m̄)
A

(or, otherwise stated, preserve the joint distribution of each sensitive variable
and the key variables XKEY′′). We used measures that quantify achievement of
these three objectives as measures of data utility. Since the proposed HESPU
file achieves GOALS 1 and 2 by construction, our measures of data utility re-
duces to measure achievement of the third goal. Considering the typical queries
of HESPU data users, we defined data utility of the HESPU file as a measure
of discrepancy between decile estimates of sensitive variables under the origi-
nal data and the corresponding estimates under the MS-masked data. For each
sensitive variable Sj decile estimates of the distribution of Sj across cells of the
contingency table T

(2,m̄)
A were obtained using both the empirical distribution

function (for the original and MS-masked weighted data), and kernel density
estimators. For each cell discrepancies between decile estimates were quantified
by summary statistics of their absolute and relative differences across cells. The
MS-masking seems to perform quite well, discrepancies in decile estimates be-
ing usually very small. As expected the largest discrepancies are observed when
deciles are estimated from the empirical distribution function and the number
of observations in the cell is small (see, for example, Table 2 in the Appendix
which illustrates evaluation of Data Utility for the sensitive variable imputed
rent). To explore the effect of sampling weights in data users’ inferences, and
to appreciate the advantage of the proposed MS-masking with respect to other
procedures that do not preserve sampling weights, weighted and unweighted in-
ferences were also qualitatively compared. Fig. 1 in the appendix shows the type
of plots that we used for such an assessment. Regardless of the sensitive variable
considered, we observed that for several cells in T

(2,m̄)
A inferences that ignore

weights were misleading thus confirming that preserving sampling weights is an
essential property for masking procedures designed to allow correct data users’
inferences.

7 Conclusions and Future Work

Recent research in data disclosure limitation has recognized that users’
heterogeneity is a crucial component in designing efficient data dissemination
strategies. It is argued that, because of this heterogeneity, data dissemination
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procedures that use a portfolio of protection methods (and thus that comprise
different data products targeted to different data users and data users’ needs)
would perform better than those relying on a single protection method.

In this paper we reported on an ongoing work to define a proposal for an
alternative data dissemination strategy of the Household Expenditure Survey
carried out by the Italian National Statistical Institute that tries to implement
these ideas. Building on a descriptive study of HES data users and their needs we
propose a differentiated data dissemination strategy that comprises three differ-
ent protection methods and thus three different data products depending on the
type of user. It is argued that the standard partition of the variables in key and
sensitive, is data user dependent and, as a result, the masking procedure and the
assessment of the performance of the masking in terms of risk and utility should
be user dependent, too. We illustrated the rationales for partition, data masking
and risk/utility assessment only for the Public Use File targeted to all users but
researchers and users in the Public Administration. For such file, in order to
preserve sampling weights, we designed a new masking procedure that we called
Microaggregated Swapping. We are currently working on the implementation of
the other two files that complete the proposed data dissemination procedure and
on the definition of a global measure of disclosure risk and data utility that can
be applied to the overall procedure. This requires to take into account multi-
ple components of risk and utility that include those already described for the
Public Use File and those to be defined for the Public Administration and Re-
search file. Ranking procedures in multiple objective decision theory that do not
require formalized preference structures (see [7], chapter 3) can be useful in this
respect.

The preliminary results presented and the complete implementation of the
proposed HES data dissemination will hopefully contribute in establishing a
methodology for differentiated data dissemination procedures useful to take into
account the diverse data users and data users’ needs. Despite the convincing
arguments of the portfolio approach, in fact, data dissemination procedures tar-
geted to the different data users are still very rare in practice (an example of such
implementations can be found in [2]). This is due to the cost associated with a
differentiated data dissemination and the complexity of its implementation. Real
data examples are needed to establish a solid methodology and make portfolio
strategy the norm rather than an exception in the practice of Data Disclosure
Limitation.
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Appendix: Microaggregated Swapping (MS)

Consider a sensitive variable Y. Let lk1 , lk2 , . . . , lknk
be the set of indices corre-

sponding to those records/households in the original data whose key variables
combination belongs to the k-th cell of the contingency table T (2,m̄) formed by
cross-classifying the key variables in XKEY′′ . Let ylkd

be the value of Y for the
lkd-th record in the original data and wlk

d
be the corresponding sampling weight,

d = 1, 2, . . . , nk. Define the matrix

A(k) =

⎛
⎜⎜⎝

ylk1
wlk1

ylk2
wlk2

. . . . . .
ylknk

wlknk

⎞
⎟⎟⎠ .

The k − th step of the MS procedure for the masking of Y is as follows:

1. Sort the records of A(k) according to the value of Y . Denote by s the per-
mutation that produces the sort and by B(k) the sorted matrix

B(k) = [y(k)...w(k)]
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where y(k) is the vector of Y values obtained sorting in ascending order the
first column of A(k), and wk is the vector of the corresponding weights,

y(k) = s(ylk1
, ylk2

, . . . , ylknk
), w(k) = s(wlk1

, wlk2
, . . . , wk

lnk
).

2. Generate a random permutation, p, of the integers 1, 2, . . . , nk from the uni-
form distribution (on the set of all possible permutations of the first nk

integers).
3. Apply p to the vector of weights w(k). This will yield a new vector of weights

w̃(k),
w̃(k) = p(w(k)) = (w̃1, w̃2, . . . , w̃nk

).

4. Apply univariate microaggregation to Y in the microdata corresponding to
the “frequency” distribution B(k) using nk as the number of groups and w̃(k)

to define the groups size. This will yield a new microdata corresponding to
a new “frequency” distribution B̃(k),

B̃(k) = [ỹ(k)...w̃(k)]

where ỹ(k) = (ỹ1, ỹ2, . . . , ỹnk
) and ỹd is the average of Y in the d-th group,

d = 1, 2, . . . , nk.
5. Let p−1 be the inverse of the permutation p in step 4. Apply p−1 to the

vector ỹ(k). This will yield a new vector of Y values, ˜̃y
(k)

.
6. Let s−1 be the inverse of the permutation that defines the sort s in step 3.

Apply s−1 to ˜̃y
(k)

. This will yield a new vector of Y values, ˜̃̃y
(k)

˜̃̃y
(k)

= s−1(p−1(ỹ(k))) = (˜̃̃y1,
˜̃̃y2, . . . ,

˜̃̃ynk
).

7. In the original data replace yk
id

by ˜̃̃yd, d = 1, 2, . . . , nk.

The MS procedure for the masking of Y is then as follows:

a) Set k=1
b) Perform Step k
c) If k<K2 set k=k+1 and return to b)

else END.

Example

The Swapping and Microaggregation steps of the MS procedure might be no
apparent from the algorithm describing the procedure. An illustration of the MS
masking procedure might help to clarify. Suppose that: nk = 3, the matrix Ak

is given by:

A(k) =

⎛
⎝32 2

40 4
25 3

⎞
⎠ ,
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and the random permutation generated at step 4 of the MS procedure is p =
(2, 3, 1). Denote by A′ the “microdata” corresponding to A(k),

A′ = (32, 32, 40, 40, 40, 40, 25, 25, 25).

The MS procedure is equivalent to replace A(k) with a new matrix, Ä(k), such
that the values in the second column of A(k) (the weights) are preserved and the
values in the first column (i.e. de values of Y ) are modified as follows:

1. Create a new “microdata” shuffling the observations in A′. For this example
the shuffling induced by the permutation p is:

A′′ = (40, 40, 25, 25, 25, 32, 32, 40, 40).

2. Apply microaggregation to A′′ with number of groups equal to 3 and groups
size given by the vector of sampling weights in A(k), i.e. (2, 4, 3) and replace
the i− th value in the first column of A(k) with the average of the i-th group.

The new matrix Äk is given by: Ä(k) =

⎛
⎝40.00 2

26.75 4
37.33 3

⎞
⎠ .

Assessment of the MS Method

Table 2. Data Utility for imputed rent (IR): summary statistics for relative differences
in estimates of deciles obtained using the empirical distribution function for the original
and MS-masked data by number of observations (in the cells of T

(2,m̄)
A ). Corresponding

summaries for absolute differences (in euros) are also reported in parentheses.

Number of min 1st Quartile Median Mean 3rd Quartile max
Observations
in the Cell

0-99 0.017 (5.6) 0.039 (29.1) 0.059 (33.2) 0.078 (39.7) 0.099 (38.6) 0.216 (197.2)
100-249 0.000 (0.0) 0.017 (5.2) 0.050 (19.5) 0.044 (23.6) 0.055 (36.7) 0.148 (79.2)
250-349 0.000 (0.0) 0.000 (1.0) 0.004 (5.0) 0.027 (7.0) 0.039 (11.9) 0.091 (18.2)
≥ 350 0.000 (0.0) 0.000 (0.0) 0.000 (0.0) 0.008 (2.2) 0.010 (1.0) 0.051 (19.0)
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Fig. 1. Comparison of inferences for imputed rent (IR) using original and MS-Masked
data in a cell of the contingency table T

(2,m̄)
A (all values are in euros). Top: Com-

parison between Kernel density estimation using the original data (in gray) and the
MS-Masked data (in black). Weighted estimates are represented by dotted lines, un-
weighted estimates by solid lines. Bottom left: Original data of IR versus MS-Masked
data. Bottom right: Estimates of deciles obtained using the empirical distribution
function for the original data versus corresponding estimates using the MS-masked
data. Weighted estimates are denoted by stars, un-weighted estimates by circles.
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Abstract. In this paper we will give an overview of the CENEX project and 
concentrate on the current state of affairs with respect to the ARGUS-software 
twins. The CENEX (Centre of Excellence) is a new initiative by Eurostat. The 
main idea behind the CENEX-concept is to join the forces of the national NSI’s 
and together bring the skills of the NSI’s on a higher level. The CENEX on 
Statistical Disclosure Control is a first pilot CENEX-project both aiming at 
testing the feasibility of the CENEX idea and working on SDC. This project 
will make a start of writing a handbook on SDC, after an inventory and extend 
the ARGUS software with an emphasis on issues of practical use. Within this 
CENEX we will organise the transfer of technology via courses, a WEB-site 
and this conference. Finally a roadmap for future work will hopefully lead to a 
follow-up CENEX.  

In this paper we will summarise this CENEX-project and give a short 
overview of the current versions of ARGUS. 

Keywords: European cooperation. Statistical Disclosure Control, ARGUS. 

1   The CENEX-SDC Project 

In the recent years there has been already a lot of fruitful cooperation in Europe in the 
field of Statistical Disclosure Control. As a result of the 5th Framework project CASC 
(Computational Aspects of Statistical Confidentiality) much progress has been made, 
both in the field of research as well as the development of practical tools, i.e. the 
ARGUS software. These achievements also showed that international cooperation can 
work very well.  

Recently Eurostat has launched new initiatives to promote the cooperation between 
the NSI’s. This has led to the development of the concept of Centres and Networks of 
Excellence (CENEX). The main idea is of course that not all NSI’s in Europe have 
the same level of skills on all subjects and that NSI’s more advanced  on a certain 
topic should join the forces to both further develop these skills but also work on the 
transfer of these skills to the NSI’s that are less developed in this topic. This should 
lead to improvements in the European Statistical System. 

In order to test the CENEX-concept two pilot projects were initiated. SDC was 
selected as one of the topics. As only small groups per country are working in this 
field joining forces is a very efficient idea. The SDC-groups have showed already in 
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the past that European cooperation can work very well. This made the field of SDC an 
obvious choice for this CENEX pilot. Although only a smaller part of the CENEX has 
been completed when this paper was written, the first conclusions are very positive 
and we are looking forward to continue to cooperate in a CENEX concept in the 
future.   

As the CENEX concept is mainly aiming at cooperation between NSI’s the 
contribution from the universities is restricted. But as universities have been playing 
an important role in this field we should continue to initiate research-projects e.g. in 
the EU framework projects FP7 parallel to the CENEX-initiatives 

The work in the CENEX will be summarised in the next sections. 

1.1   The Inventory 

As a starting point of this CENEX project an inventory of existing methods and 
techniques in Europe is being carried out. A rather large ambitious questionnaire has 
been designed and sent to all NSI’s of the EU-member states. This questionnaire 
include questions on legal issues, the SDC-measures with respect to Public Use Files 
and Micro data files for researchers, the SDC-aspects of magnitude tables and 
frequency tables. At this moment the answers are being analysed. 

1.2   The Handbook 

One of the outcomes of the CENEX project is also a first version of a handbook on 
SDC. It is not to be expected that a fully completed handbook will be written within 
one year, but we will make a first version. That version will be further discussed on 
several platforms. We hope that the outcome of this process will be a useful standard 
on SDC.  

After an introduction we will summarise the regulations and then pay attention to 
SDC-methods for microdata. Risk assessment will be the starting point and then we 
will describe all the methods available. The pro’s and con’s of these methods will be 
highlighted and we will introduce the tools available, i.e. -ARGUS. The same format 
will be used for tabular data.  

After the completion of this version of the handbook we foresee discussions on this 
handbook at various platforms. These discussions could lead to improvements in the 
near future. 

1.3   ARGUS Software  

The ARGUS software is a tool in constant development. As the aim of the ARGUS 
development is to make ARGUS a control centre for all the methods available in SDC, 
this requires a continuous development process. But in the CENEX project we will 
mainly pay attention to the practical applicability in the software in the daily practice 
of the NSI’s. The extensions during this CENEX will therefore mainly focus in these 
aspects, leaving the implementation of new methodology to other future projects.  

For this several NSI’s are testing ARGUS and will provide us will their comments. 
When possible and feasible we will include these remarks in a new version of 
ARGUS during this CENEX. The more complex wishes will be input for the future 
work list (see 1.5).  
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1.4   Communication 

Communication is an essential aspect of this CENEX. Therefore we have taught a 
successful course on SDC. Thanks to the hospitality of the Hungarian Statistical 
Office this course was held in Budapest (12-14 June 2006). 25 representatives of 
almost all member states were present. The content of the course was a mix of 
theoretical subjects, manual exercises and also training sessions in the use of the 
ARGUS software packages. According to the reactions of the participants this was a 
very useful happening.  

A second activity in this topic is organisation of the conference PSD’2006 in 
Rome. This conference is more directed at the methodological aspects of SDC and 
will keep the contacts alive between the universities and the NSI’s. These contacts 
and cooperation have been very effective in the past and have led to many 
methodological improvements in the practice of SDC. 

Besides this the CENEX team will maintain a website, where the results of this 
project will be made publicly available. This website can be found at http:// 
neon.vb.cbs.nl/cenex 

1.5   Future Work 

The work on SDC will not be finished after the CENEX. We look forward to continue 
our cooperation and hopefully have the opportunity to continue the CENEX work. 
Therefore this CENEX will also draw a roadmap for the future work of cooperation. 
A two-day internal conference is planned for drawing this roadmap. 

This roadmap will pave the way for the new cooperation in this field.  

1.6   Management 

The key participants of this CENEX are the major participants in the CASC Project. 
Besides Anco Hundepool (Statistics Netherlands) as project leader Luisa Franconi 
(IStat), Sarah Giessing (DeStatis), Jane Longhurst(ONS) and Josep Domingo-Ferrer 
(University Rovira i Virgili) participate as the major partners in this project. Besides 
these partners the statistical offices of Sweden, Slovenia, Estonia and Austria 
participate as testers of the ARGUS software and will contribute to the roadmap for 
future work. 

2   The ARGUS Software 

2.1   Introduction 

The CASC-project has made a major step forward in the development of software for 
Statistical Disclosure Control. The resulting packages -ARGUS and -ARGUS have 
made the results of several research efforts of the CASC project readily available or 
the users. In the CENEX project we will concentrate not on the implementing new 
methodology in ARGUS, but mainly try to make the software more easily applicable 
in the daily routine of the users in the different NSI’s. 
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2.2   -ARGUS  

2.2.1   Introduction 
-ARGUS is based on a view of safety/unsafety of microdata that is used at Statistics 

Netherlands. In fact the incentive to build a package like -ARGUS was to facilitate 
data protectors at Statistics Netherlands to apply the general rules for various types of 
microdata easily and to relieve them from the tedious taks that producing a safe file in 
practice can involve. Not only should it be easy to produce safe microdata, it should also 
be possible to generate a logfile that documents the modifications of a microdata file. 

The aim of statistical disclosure control is to limit the risk that sensitive 
information of individual respondents can be disclosed from data that are released to 
third party users. In case of a microdata set, i.e. a set of records containing 
information on individual respondents, such a disclosure of sensitive information of 
an individual respondent can occur after this respondent has been re-identified. That 
is, after it has been deduced which record corresponds to this particular individual. 
So, the aim of disclosure control should help to hamper re-identification of individual 
respondents represented in data to be published. 

2.2.1.1   A Simple Threshold Rule. An important concept in the theory of re-identifica-
tion is a key. A key is a combination of (potentially) identifying variables. An identi-
fying variable, or an identifier, is one that may help an intruder re-identify an individual. 
Typically an identifying variable is one that describes a characteristic of a person that is 
observable, that is registered (identification numbers, etc.), or generally, that can be 
known to other persons. This, of course, is not very precise, and relies on one's personal 
judgement. But once a variable has been declared identifying, it is usually a fairly 
mechanical procedure to deal with it in -ARGUS.  

Re-identification of an individual can take place when several values of so-called 
identifying variables, such as ‘Place of residence’, ‘Sex’ and ‘Occupation’, are taken 
into consideration. The values of these identifying variables can be assumed to be 
known to relatives, friends, acquaintances and colleagues of a respondent. When 
several values of these identifying variables are combined a respondent may be re-
identified.  

2.2.2.2   The Franconi-Benedetti Risk Model. To be able to distinguish safe from un-
safe microdata, it is necessary that a disclosure risk model is specified. Disclosure 
models can differ greatly in their degrees of sophistication. The basic model in 

-ARGUS is a fairly simple such model, namely one based on a thresholding rule. The 
understanding is that a combination of values is safe only if the (estimated) frequency 
of its occurrence in the population (or in the file) is above a certain threshold value. 

An individual risk of disclosure allows one to estimate a measure of the chance of 
identification of each record in the released file on the basis of the actual values 
observed on the public variables. In the last few years a number of proposals have 
been made. Benedetti and Franconi (1998) propose a methodology for individual risk 
estimation based on the sampling weight, which is the approach used in this version 
of -ARGUS. 

In extension to the individual risk model implemented already also a risk model 
based on groups of records (holdings or households) has been introduced. 
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Fig. 1. A graph showing the risk distribution in -ARGUS 

2.2.2   Statistical Disclosure Control Measures 
To avoid re-identification several techniques are available in -ARGUS, like global 
recoding (grouping of categories), local suppression, PostRAndomisation Method 
(PRAM), adding noise and microaggregation.  

2.1.2.1   Global Recoding. In case of global recoding several categories of a variable 
are collapsed into a single one. The effect will be that the number of records with the 
same key will rise. And the risk of re-identification will diminish. On the one hand 
side it is a very powerful instrument in -ARGUS to make a safe datafile. Many 
unsafe keys/records with a high disclosure risk will disappear, but on the other hand a 
lot of detail can disappear as well. The data protector should use this method carefully 
and also keep in mind that if he cannot protect the unsafe records here, he will have to 
apply many local suppressions (i.e. impute missing values). Future users of a dataset 
might not like this perspective and prefer a more aggregated categorisation for a 
variable without all these missing values. 

It is important to realise that global recoding is applied to the whole data set, not 
only to the unsafe part of the set. This is done to obtain a uniform categorisation of 
each variable. Finding an optimal balance between global recoding and local 
suppression is not an easy task, but requires statistical insight in the needs of the users 
of the protected data sets. 
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2.1.2.2   Local Suppression. When local suppression is applied one or more values in 
an unsafe combination are suppressed, i.e. replaced by a missing value. This removes 
the possibility to use this key any longer for re-identification. As keys often consist of 
several variables there is a freedom to select one of them for local suppression. Also 
several unsafe keys can be found in one record. -ARGUS offers two methods to do 
this efficiently. One is based on the minimising of the reduction of the entropy (i.e. 
preserving as much as possible the information), but as an alternative the user can 
specify his own priorities, based on his views on the importance of preserving as 
much as possible certain variables.. 

2.1.2.3   Top and Bottom Coding. Global recoding is a technique that can be applied 
to general categorical variables, i.e. without any requirement of the type. In case of 
ordinal categorical variables one can apply a particular global recoding technique 
namely top coding (for the larger values) or bottom coding (for the smaller values). 
When, for instance, top coding is applied to an ordinal variable, the top categories are 
lumped together to form a new category. Bottom coding is similar, except that it 
applies to the smallest values instead of the largest. Top and bottom coding for 
categorical variables can be seen as special case of global recoding. 

Top and bottom coding can also be applied to continuous variables. What is 
important is that the values of such a variable can be linearly ordered. It is possible to 
calculate threshold values and lump all values larger than this value together (in case 
of top coding) or all smaller values (in case of bottom coding). Checking whether the 
top (or bottom) category is large enough is also feasible. 

2.1.2.4   The Post RAndomisation Method (PRAM). PRAM is a disclosure control 
technique that can be applied to categorical data. Basically, it is a form of deliberate 
misclassification, using a known probability mechanism. Applying PRAM means that 
for each record in a microdata file, the score on one or more categorical variables is 
changed. This is done, independently of the other records, using a predetermined 
probability mechanism. Hence the original file is perturbed, so it will be difficult for 
an intruder to identify records (with certainty) as corresponding to certain individuals 
in the population. Since the probability mechanism that is used when applying PRAM 
is known, characteristics of the (latent) true data can still be estimated from the 
perturbed data file. See De Wolf (2006). 

2.1.2.5   Microaggregation. Microaggregation is a family of statistical disclosure 
control techniques for quantitative (numeric) microdata, which belong to the 
substitution/perturbation category. The rationale behind microaggregation is that 
confidentiality rules in use allow publication of microdata sets if records correspond 
to groups of k or more individuals, where no individual dominates (i.e. contributes too 
much to) the group and k is a threshold value. Strict application of such 
confidentiality rules leads to replacing individual values with values computed on 
small aggregates (microaggregates) prior to publication. This is the basic principle of 
microaggregation. 

The method for multivariate fixed-size microaggregation implemented in -ARGUS 
tries to form homogeneous groups of records by taking into account the distances 
between records themselves and between records and the average of all records in the 
data set; this method will be called MDAV (multivariate microaggregation based on 
Maximum Distance to Average Vector). 
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2.1.2.6   -ARGUS software. All these above mentioned methods have been imple-
mented in the current versions of -ARGUS. We will continue to extend and improve 

-ARGUS, as our goal is to make all the SDC methodology easily available for the 
data-protectors. However it must be stressed that this software tools can only be 
applied by people with a basic understanding of the SDC-theory. They are not ‘black-
boxes’, which will automatically produce a safe file. 

The methods available in -ARGUS can be used to produce datafiles for different 
purposes. We make a basic distinction between datafiles that will be made available 
to established researchers at universities et al. (possibly with a contract) and datafiles 
which will be made available to the general public. It goes without saying that in this 
case the much more strict rules have to be applied. 

For more information on the -ARGUS software we refer the -ARGUS (4.0)-
manual (Hundepool et al, 2003) 

2.2.3   Recent Extension of ARGUS 
Till now -ARGUS could only read ASCII files, both fixed and free format. In 
general this is a quite flexible format that can be exported from many tools used in the 
statistical production at the NSI’s. However users do not like exporting and importing 
the data between various packages. They rather prefer to stick with one package and 
want the other tools to operate on these files. So recently we have added the option to 
protect SPSS system files, enabling -ARGUS to read and update directly the SPSS-
systemfiles. SPSS is a tool that at used in several NSI’s, a.o. Statistics Netherlands. 
This extension has proved to be quite successful. However this might lead the wishes 
to build links to other packages.  

2.2.4   Future Developments 
During the writing of this paper the process of testing -ARGUS was not yet finished. 
The outcome of this process will be input of the further development of -ARGUS. 
Possible extensions that are foreseen now are the introduction of a batch-version like 
has been introduced in -ARGUS, the investigation of linking to SAS, the inclusion of 
record linkage software as has been developed during the final phase of the CASC 
project. Also special output formats, like the one needed for the transmission of data 
to Eurostat is considered. Depending on the conclusions of the testing some parts will 
be realized during this CENEX, other parts will be left to the future work. 

2.3   -ARGUS  

2.3.1   Introduction 
Even in moderate sized tables there can be large disclosure risks. Take e.g. a cell in a 
table where there is only one contributor. The published cell value is clearly the 
contribution of one respondent/enterprise. However the situation is more complex. 
Several rules for identifying the unsafe cells have been proposed in the past. This still 
remains the easy part. The protection of the unsafe cells by suppressing so-called 
secondary cells in a table is an even more complex task. 
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2.3.2   Sensitive Cells in Magnitude Tables 
Although there is a long tradition of using the so-called dominance rule, we propose 
to use the p% rule to identify the primary unsafe cells.  

The basic idea is that a contributor to a cell has the best chances to estimate the 
contributions of competitors in a cell than an outsider and also that this kind of 
intrusions can occur rather often. The precision with which a competitor can estimate 
is a measure of the sensitivity of a cell. The worst case is that the second largest 
contributor will be able to estimate the largest contributor. If this precision is more 
than p% the cell is considered unsafe. An extension is that also the global knowledge 
about each cell is taken into account. In that case we assume that each intruder has a 
basic knowledge of the value of each contributor of q%.  

Traditionally the well-known dominance rule is still often used to find the sensitive 
cells in tables, i.e. the cells that cannot be published as they might reveal information 
on individual records. More particularly, this rule states that a cell of a table is unsafe 
for publication if a few (n) major contributors to a cell are responsible for a certain 
percentage (k) of the total of that cell. The idea behind this rule is that in that case at 
least the major contributors themselves can determine with great precision the 
contributions of the other contributors to that cell. The choice n=3 and k=70% is not 
uncommon, but -ARGUS will allow the users to specify their own choice. 

Internationally and also in the Netherlands there is a shift from the dominance rule 
towards the prior-posterior rule. The reasons for this are the more intuitive approach 
and the better numerical properties like the protection levels. Also waivers 
(contributors giving permission to publish their results) can be taken into account 
more easily. See Loeve (2001).  

With these rules as a starting point it is easy to identify the sensitive cells, provided 
that the tabulation package has the facility not only to calculate the cell totals, but also 
to calculate the number of contributors and the n individual contributions of the major 
contributors. With this information -ARGUS can apply the sensitivity rules ands also 
perform the table redesign very easily. -ARGUS can produce the tables from the 
microdata files, also calculating the necessary additional information.  

Traditionally -ARGUS could only read microdata files, but because of so many 
requests to be able to protect ready-made tables as well the next version of -ARGUS 
will have this facility. However with the restriction that the options for table redesign 
cannot be used any more and that only the sensitivity rules can be applied if also the 
largest contributions are provided. 

A problem, however, arises when also the marginals of the table are published. It is 
no longer enough to just suppress the sensitive cells, as they can be easily recalculated 
using the marginals. Even if it is not possible to exactly recalculate the suppressed 
cell, it is possible to calculate an interval that contains the suppressed cell. This is 
possible if some constraints are known to hold for the cell values in a table. A 
commonly found constraint is that the cell values are all nonnegative. 

If the size of such an interval is rather small, then the suppressed cell can be 
estimated rather precisely. This is not acceptable either. Therefore it is necessary to 
suppress additional information to achieve that the intervals are sufficiently large.  
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Several solutions are available to protect the information of the sensitive cells: 

• Combining categories of the spanning variables (table redesign). Larger cells 
tend to protect the information about the individual contributors better. 

• Suppression of additional (secondary) cells to prevent the recalculation of the 
sensitive (primary) cells.  

The calculation of the optimal set (with respect to the loss of information) of 
secondary cells is a complex OR-problem. -ARGUS will be built around this 
solution and takes care of the whole process. A typical -ARGUS session will be one 
in which the users will first be presented with the table containing only the primary 
unsafe cells. The user can then choose how to protect these cells. This can be the 
combination of categories, equivalent to the global recoding of -ARGUS. The result 
will be an update of the table with presumably less unsafe cells (certainly not more). 
At a certain stage the user requests the system to solve the remaining unsafe cells by 
finding secondary cells to protect the primary cells. 

2.3.3   Sensitive Cells in Frequency Count Tables 
In its simplest way sensitive cells in frequency count tables are defined as those cells 
that contain a frequency that is below a certain threshold value. This threshold value 
is to be provided by the data protector. This way of identifying unsafe cells in a table 
is the one that is implemented in the current version of -ARGUS It should be 
remarked, however, that this is not always the adequate way to protect a frequency 
count table. A greater risk in frequency tables is the so called group disclosure. If 
from a table it can be deduced that all contributors to a cell have a certain 
characteristic, this characteristic is revealed for contributors to a cell (even many). 
This is also an undesirable situation. Current research at Statistics Netherlands aims at 
establishing better rules for these frequency tables. 

2.3.4   Secondary Cell Suppression 
Once the sensitive cells in a table - either of magnitude or a frequency count type - 
have been identified and there are not too many of these it might be a good idea to 
suppress these values. In case no constraints on the possible values in the cells of a 
table exist this is easy: one simply removes the cell values concerned and the problem 
is solved. In practice, however, this situation hardly ever occurs. Instead one has 
constraints on the values in the cells due to the presence of marginals and lower 
bounds for the cell values (typically 0). The problem then is to find additional cells 
that should be suppressed in order to protect the sensitive cells. The additional cells 
should be chosen in such a way that the interval of possible values for each sensitive 
cell value is sufficiently large. What is “sufficiently large” is to be specified by the 
data protector by specifying the protection intervals. 

In general the secondary cell suppression problem turns out to be a hard problem, 
provided the aim is to retain as much information in the table as possible, which, of 
course, is a quite natural requirement. The optimisation problems that will then result 
are quite difficult to solve and require expert knowledge in the area of combinatorial 
optimisation.  

2.3.4.1   Information loss in terms of cell weights. In case of secondary cell supper-
ssion it is possible that a data protector might want to differentiate between the 
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candidate cells for secondary suppression. By specifying a cost-function he can 
influence the choice of the secondary suppressions. The cellvalue is a possibility, but 
also the cell frequency could be chosen or any other variable in the datafile. The aim 
of secondary cell suppression can be summarised by saying that a safe table should be 
produced from an unsafe one, by minimising the information loss, expressed as the 
sum of the weights associated with the cells that have secondarily been suppressed. 

2.3.5   Solving the Secondary Cell Suppression Problem 
Several approaches to solve this problem have been implemented in -ARGUS 
characteristics and advantages and disadvantages 

• The hypercube method 
• The optimal solution 
• The partial optimal solution 
• The network solution 

2.3.5.1   The Hypercube Method. The approach builds on the fact that a suppressed 
cell in a simple n dimensional table without substructures cannot be disclosed exactly 
if that cell is contained in a pattern of suppressed, nonzero cells, forming the corner 
points of a hypercube. 

The algorithm subdivides n-dimensional tables with hierarchical structure into a set 
of n-dimensional sub-tables without substructure. These sub-tables are then protected 
successively in an iterative procedure that starts from the highest level. Successively, 
for each primary suppression in the current sub-table, all possible hypercubes with 
this cell as one of the corner points are constructed. 

For each hypercube, a lower bound is calculated for the width of the suppression 
interval for the primary suppression that would result from the suppression of all 
corner points of the particular hypercube. To compute that bound, it is not necessary 
to implement the time consuming solution to the Linear Programming problem. If it 
turns out that the bound is sufficiently large, the hypercube becomes a feasible 
solution. For any of the feasible hypercubes, the loss of information associated with 
the suppression of its corner points is calculated. The particular hypercube that leads 
to minimum information loss is selected, and all its corner points are suppressed. See 
Giessing (2002). 

An implementation of this method by R. D. Repsilber offers a quick heuristic 
solution. The method has been implemented in -ARGUS. The advantages are the 
speed of the solution even for very large tables and the fact that this method does not 
require a licence for commercial OR-software like the other solutions. A disadvantage 
might be that the solution will not be the optimal one, leading to over-suppression 

2.3.5.2   The Optimal Solution. Fischetti and Salazar (1998) has developed complex 
optimisation models to find the optimal solution for the secondary cell suppression. 
The models take into account the primary cells to be protected but also see to it that 
the cells cannot be recalculated to a given upper and lower protection level. These 
models have the flexibility to allow for different optimisation criteria, so it is possible 
to minimise the sum of the values of the cells to be suppressed, the sum of the 
frequencies of the individual cells of merely the number of cells to be suppressed. 
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The original Salazar models could only protect simple unstructured tables, but 
recently the models and the implementation have been extended for hierarchical and 
linked tables. Due to all the sub-totals present in these tables the intruder has many 
more options to recalculate suppression pattern and so the optimisation models have 
become much more complex. 

It is to be expected that for very large tables the required computing time to find 
the optimal solution might be prohibitive in real life situations. But then alternatives 
are available in -ARGUS 

The solution of these problems requires high performance OR-solvers which are 
only available commercially. In -ARGUS we have made provisions to solve the 
Salazar models with either Cplex or Xpress, two major solvers available.  

2.3.5.3   The Modular Partitioning. In real life situation most tables of NSI’s tend to 
have one or more hierarchical spanning variable. And real life tables tend to be very 
large. Given the numerical complexity the Salazar model can only handle moderate 
sized tables. To overcome these restrictions an approximation has been built which 
breaks down the large hierarchical table into many unstructured sub-tables. This 
results in a whole tree of small sub-tables. Starting at the top this method then protects 
all these tables. As sometimes the suppression pattern influences a higher level of the 
tree a backtracking procedure will be carried out. 

At the end of this procedure the whole table is protected. It proves to be a 
reasonable quick procedure, which has enabled us to protect very large table. See De 
Wolf (2002). 

2.3.5.4   The Network Solution. Networks are often used in optimisation problems as 
an approximation of the full optimal solution. The advantages are that the solutions 
are obtained rather quickly, often at high quality. Therefore networks have been 
studied in the SDC area for a longer time. However the conclusions were that 
networks can only be used properly for 2-dimensional; tables. On the first sight this 
might be a serious drawback, but many very large tables produced by the NSI’s are 2-
dimensional, e.g. the foreign trade statistics. 

Jordi Castro (2003) has developed a network based solution, which is now 
available in -ARGUS. The first implementation only allowed for non-hierarchical 
tables, but an extension for hierarchical tables has been build as well, provided that 
only the first variable is hierarchical. 
 

2.3.6   The -ARGUS Software 
All the above mentioned solutions have been built in -ARGUS. The aim of 
-ARGUS is to make it into a control centre for tabular SDC. This will facilitate the 

users to apply the most appropriate method available for the problems he faces. Like 
with -ARGUS, -ARGUS is not a black box, which will just protect a table for you. 
-ARGUS is a control centre, which helps you to apple the appropriate SDC, 

measures and performs the complex computations involved. 
For more information on -ARGUS software we refer the -ARGUS-manual 
(Hundepool et al, 2004) 
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2.3.7   New Developments in -ARGUS  
Recently a lot of work has been done with respect to -ARGUS. Although -ARGUS 
has started as an interactive program with a GUI more and more people were asking 
for a batch version, mainly for automating the routine jobs. Secondary cell 
suppression works quite well for magnitude tables, for frequency tables often 
rounding is preferred. For users of the SuperCross tabulation package an interface 
between SuperCross and -ARGUS has been developed, making the power of 
-ARGUS directly available to the SuperCross users. 

2.3.7.1   Batch Version. Often the same tables have to be protected each month or 
quarter. This led to the need of a batch-version of -ARGUS. It has been added 
recently and now most of the functionality of is available is batch. A batch instruction 
file could look like: 

<OPENMICRODATA> "…\tau_testW.asc" 
<OPENMETADATA>  "…tau_testW.rda" 
<SPECIFYTABLE>  "Size""Region"|"Var2"|""|"" 
<SAFETYRULE>    NK(3,75)|FREQ(3,30) 
<READMICRODATA> 
<SUPPRESS>      MOD(1) 
<WRITETABLE>    (1,2,3,"… TestB.txt") 
<SUPPRESS>      GH(1,100) 
<WRITETABLE>    (1,1,3,"…\TestBGH.txt") 

This instruction will read the data, using a RDA file, make a table with a NK-rule 
and a freq. rule, protect it first with the modular version and then with the hypercube. 
These instruction file can be generated automatically form the GUI-version of 
-ARGUS  

An other advantage of the batch-version is that this enabled the users of -ARGUS 
that are not using Windows-PC’s but e.g. Linux/Unix, to use -ARGUS as a remote 
service via some Windows server in their network 

2.3.7.2   Rounding. Secondary cell suppression is a well known practice for magni-
tude tables. Rounding is often preferred for frequency tables. Thanks to a research 
project sponsored by ONS. JJ Salazar (2006) has developed a routine to controlled-
round multidimensional tables using his optimisation models, taking into account 
specified protection intervals as well. The outcome of this project has led to an 
extension of -ARGUS, making this rounding procedure available to everyone. The 
current implementation can easily handle tables up to 150K cells. But as the ONS had 
to round even larger tables, we have introduced a partitioning method, breaking down 
very large tables to smaller (< 150K) subtables. In this way we have been able to 
round tables up to 6 Million cells. 

Of course this rounding procedure can not only be used as a protection method for 
frequency tables, but also generally in all situations, when large multidimensional 
tables have to be rounding while preserving the additivity.  

2.3.7.3   Link to SuperCross. At many NSI’s SuperCross is a popular tabulation tool. 
For these NSI’s SuperCross is a standard production tool. However it lacks the 
capacity to properly protect the tables. In order to meet these needs we have 
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investigated a possible link between -ARGUS and SuperCross. This has led to a 
fruitful cooperation. SuperCross has now the capacity of exporting a table in a format 
suitable for -ARGUS. Via the batch-version the power of -ARGUS is invoked to 
protect a table. The table is then protected or rounded. The results are read back to 
SuperCross and are available in the SuperCross environment.  
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Abstract. The production of scientific-use files from economic micro-
data is a major problem. Many common methods change the data in a
way which leaves the univariate distribution of each of the variables al-
most unchanged towards the distribution of the variables of the original
data, the multivariate structure of the data, however, is often ruined.

Which method are suitable strongly depends on the underlying data.
A program system with which one can apply different methods and eval-
uate and compare results from different algorithms in a flexible way is
needed. The use of methods for protecting microdata as an exploratory
data analysis tool requires a powerful program system, able to present
the results in a number of easy to grasp graphics. For this purpose some of
the most populare procedures for anonymising micro data are applied in
a flexible R-package. The R system supports flexible data import/export
facilities and advanced developement tools for the development of such
a software for disclosure control.

Additionally to existing algorithms in other software (MDAV algo-
rithm for microaggregation, . . . ) some new algorithms for anonymising
microdata are implemented, e.g. a fast algorithm for microaggregation
with a projection pursuit approach. This algorithm outperforms existing
other algorithms for most of real data.

For all this algorithms/methods print, summary and plot methods
and methods for validation are implemented.

In the field of economics suppression of cells in marginal tables is likely
to be the most popular method to protect tables for statistical agencies.
The use of linear programming for cell suppression seems to be the best
way of protecting tables and hierarchical tables.

Some R-packages for various fields of disclosure control are being de-
veloped at the moment. It is easy to learn the applications of disclo-
sure control even with little previous knowledge because of its integrated
online-help with examples ready to be executed.

1 Using R for Disclosure Control

R [35] is a open source statistics software package subjected to the GPL and
therefore free and extendable for companies. R can be downloaded from the
following website:

http://cran.r-project.org/

J. Domingo-Ferrer and L. Franconi (Eds.): PSD 2006, LNCS 4302, pp. 347–359, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Many methods and papers have been presented on disclosure control over
the last years, but the underlying code is rarely available. The implementation
of methods in software is required to evaluate the quality of the methods. For
this purpose the free available, open-source, object-oriented, high-level language
software R seems to be perfect.

Nowadays, R has become the standard statistical software. Thousands of peo-
ple are involved in the development of R both at universities and companies and
more than 700 add-on packages have been built in the last years.

R can deal with many different data formats and have very flexible data
import/export facilities which is quite important when dealing with data from
various formats. R can also communicate with various popular software and data
bases. A major advantage of using R for disclosure control is that the facilities
of R and also already implemented algorithms and graphical tools can be used
easily. We do not need develop things new.

Applying different methods for disclosure control on data and evaluate and
compare the results is a kind of explorative data analysis. For this purpose a
object-oriented language like R is quite important.

Also very important is the reproducibility of results [28] when applying algo-
rithms for disclosure control on data and when doing a validation of the results
or comparing different results and making some nice graphics. For this, R is very
well designed and in combination with LATEX someone can produce dynamical
reports, where LATEX-code and R-code can be written and executed in/from one
document together with the help of Sweave [26, 27].

Additionally it is very easy to develop your own packages with online help-
files in R. With some developement tools of R one can make nice graphical user
interfaces (GUI) like the Argus GUI’s [21] as well.

Everybody can contribute code to the packages and help to make the project
a success. The code is freely available under GPL and legally protected for com-
mercial use of others (nobody has the right to use the code for an commercial
implementation in software). The open source status and free use of the code
should help to make the code better and better. Everybody is invited to check
and upgrade the code.

The R system provides a powerful programming language and existing Fortran
or C-code can easily embedded. R is the most powerful program system in the
statistical world and in my opinion we don’t have an alternative to R in the near
future.

2 Microdata Protection

The methods for making microdata confidential vary considerably, depending
on the scaling of the data. We will concetrate on continuous microdata only in
order to stay within the limit of pages of this paper.

We want to give data to researchers and preserve confidentiality at the same
time. There are few general concepts to do this. Some statistical agencies have
decided to design confidentiality preserving model servers. E.g. the United States
Bureau of the Census operates a number of Research Data Centers where
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researchers with special sworn status have access to specified microdata (see
e.g. [39]). Researchers can apply models on data which can not be seen and the
results of the models are checked by the Census staff. This approach preserves
confidentiality but is not flexible, and in my point of view not compatible with
a modern statistical world. When working with model servers the result of the
model is the object of interest not the underlying data. But it is really difficult
to apply methods and it is problematic to choose and evaluate models without
seeing the data. The model can e.g. be influenced by outliers. Additionally, only
very few methods are available on such model servers.

Much more flexible are remote access facilities. Researches can look at the data
and can choose a suitable method for analysing the underlying data. Finally,
the output should be checked by the staff of the statistical agencies and is,
confidentiality preserved, usually to sent per e-mail the researchers (see e.g. [20]
or [3]).

It is expensive and time-consuming to implement one of these two concepts.
The third approach for preserving confidentiality is to produce scientific use

files by perturbation of microdata. The main goal is to produce a data set from
the original data which preserves confidentiality and has a same structure as
similar to the original data set as possible.

There are some concepts for this approach. The well-established concepts
are Microaggregation [1], Adding Noise (see e.g. [24, 25]), Rank Swapping [7],
Blanking and Imputation [17] and the generation of synthetic data with the same
stucture as the original data (e.g. Latin Hypercube Sampling [23, 40, 42]).

All these methods have been implemented in various R-Packages.

3 Micoraggregation

On http://neon.vb.cbs.nl/casc/Glossary.htm we can find the “official” definition
of Microaggregation:“Records are grouped based on a proximity measure of vari-
ables of interest, and the same small groups of records are used in calculating
aggregates for those variables. The aggregates are released instead of the individ-
ual record values.” [12]. More references can be found in [1, 9, 8, 10].

While for the proximity measure very different concepts can be used, mi-
croaggregation is naturally done with the mean. Nevertheless, other measures of
location can be used for aggregation, especially when the group size for aggre-
gation has been taken higher than 3. Since the median seems to be unsuitable
for microaggregation due to it’s rather high breakdown point, other measures like
an onestep from median (see e.g. [19]) can be chosen. The breakdown point of
an estimator measures the maximal percentage of the data points that may be
contaminated before the estimates becomes completely corrupted.

3.1 Clustering at First

The package contains also a method with which the data can be clustered with
a variety of different clustering algorithms. Clustering the observations before
applying microaggregation might be useful. There is quite a lot of algorihms to
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do a clustering with, but for most of these cases Mclust [15] provides the best
results. These technique, which is not based on distance measures, usually find
the clusters by optimizing a maximum likelihood function. Avoid using hierar-
chical or classical partitioning cluster algorithms because hierarchical clustering
algorithms result in worst partitions and classical partitioning algorithms, such
as kmeans, result in spherical clusters with nearly the same size. Note that in
our approach the data should be standardised before clustering, especially when
the variables are of unequal scaling. Without standardising the data one variable
might have the highest influence in each cluster and this is not what we want.
Cluster analysis in general does not need normally distributed data. However, it
is advisable that heavily skewed data are first transformed to a more symmetric
distribution. If a good cluster structure exists for a variable, we can expect a
distribution which has two or more modes. A transformation to more symmetry
will preserve the modes but remove large skewness.

3.2 Methods Based on Sorting of Variables

We have developed a package called Microaggregationwhich contains methods
like individual ranking [8], sorting based on a single variable [9, 1] and some
related methods.

Cluster analysis can be applied before applying these methods. The clustered
data can be sorted in each cluster depending on the most important variable in
each of the clusters (in the package we call this method influence).

3.3 Projection Methods and MDAV

Package Microaggregation contains a good method called mdav Maximum
Distance to Average Vector (mdav is in turn an evolution of the multivariate
fixed-size microaggregation in [10] proposed by the same authors). This method
was first implemented in the μ-Argus software [22].

Another approach is to sort the data according to the first principal com-
ponent (see e.g. in [38]) which is a well-documented method in SDC. Classical
Principal Component Analysis (PCA) [33] is very sensitive to outlying observa-
tions since it is computed from eigenvalues and eigenvectors of the non-robust
sample covariance matrix. Therefore applying PCA to sort the observations on
the first principal component before aggregation may provide worst results in
context of microaggregation.

In addition to that, package Microaggregation contains two major types for
a robustification of this approach.

The first one calculates eigenvectors and eigenvalues based on robust estimates
of the covariance matrix. The MCD-estimation [37] is the default for the estima-
tion of the covariance matrix. Others, like M-estimation [30], the MVE estima-
tor [37], the orthogonalized Gnanadesikan-Kettering (OGK) estimator [31] and
some more can also be used. High breakdown point estimators for the covariance
matrix are to be prefered. When using classical PCA or these robustified PCA all
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principal components must be estimated, but in the context of microaggregation
we need only the first principal component.

The second approach avoids this and estimates the first (robust) principal
component without covariance estimation. [6] has developed a method based on
projection pursuit (PP) [29, 18]. With PP we search for directions with maximal
variance of the data projected on it. Instead of using the classical variance es-
timator they use a robust scale estimator Sn as projection pursuit index. For a
sequence of observations x1, . . . , xn ∈ IRp, the first “eigenvector” is defined as

vSn,1 = argmax
||a||=1

Sn(atx1, . . . , a
txn) . (1)

The associated “eigenvalue” is then, by definition,

λSn,1 = S2
n((vSn,1)tx1, . . . , (vSn,1)txn).

Li and Chen proposed working with an M-estimator of scale for Sn, and applied
a general projection-pursuit algorithm for maximizing Formula (1), leading to
an iterative and complicated computer intensive method. Nowadays there is a
renewed interest in the projection-pursuit approach to PCA. Filzmoser [14] for
instance applied it to a geostatistical problem. Perhaps the best known robust
dispersion measure is the Median Absolute Deviation (MAD). For a sample
{x1, . . . , xn} ⊂ IR it is defined as

MADn(x1, . . . , xn) = 1.486 med
i
|xi −med

j
xj | , (2)

where the constant 1.486 ensures consistency at normal distributions.
Primarily when having mixed structures in your data it is a good idea to

cluster the data and apply the projection methods on each cluster. This can
be easily done by setting up an optional parameter in a function in package
Microaggregation.

It is really easy to use the package Microaggregation and apply its methods,
because of the online-help files, the included examples and the simple handling
of objects in R.

4 Adding Noise

4.1 S4-Class Style

A S4-class R-Packages called AddNoise was developed. Normally in other statist-
cal softwares you have only few classes, like numeric, character, or data set. In
R there are much more classes and additionally one can design your own classes
(for e.g. class addNoise). The concept of S4-classes [5] in R is new and an exten-
sion of the traditional S3-class system in R [5]. Only few packages are written
in S4 style up to now. S4 style code is very formal and you can define classes,
plot-, print-, and summary methods. The advantages for the user of an S4-class
package are that the packages are really flexible in use and mostly easy extend-
able with your own code. Additionally the user gets very precise error messages
when operating the implemented functions in an incorrect way.
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4.2 Methods

Beside the implementation of simple adding normal distributed noise and cor-
related noise [24], there are an implementation of Random Orthogonal Matrix
Masking, called ROMM [41]. Note that this procedure preserve no confidential-
ity, e.g. the output of biplots [16] from the masked data and the original data
are the same.

Additional there is a another concept of adding noise. Presume that observa-
tions which can be identified with diagnostic plots are confidential, then we can
detect such observations with robust outlier detection methods. So, only these
observations should be perturbed (and of course observations which can be iden-
tified with the help of key variables as well), depending on the outlyingness of
these observations.

For the detection of critical observations, which may be identified by an data
intruder, there are some (robust) outlier detection tools, like mahalanobis dis-
tances, robust mahahlanobis distances (see e.g. in [30]), jackknifing for results
on the first 2 eigenvalues [11] and also on some univariate statistics which can
be applied on Box-Cox transformed data [4]. A very good R-package for outlier
identification is also package mvoutlier from Filzmoser [13].

5 Other Approaches for Continuous Microdata

A package called rankSwapp (rank swapping) and a few methods, like latin hy-
percube sampling and blanking and imputation have been developed.

While with the rank swapping approach the univariate structures of the data
are nearly the same as for the original data, the multivariate structure is modified
dramatically.

The results of latin hypercube sampling are not satisfactory, even not when
doing some iterations.

6 Validation of the Results from Microdata Protection

First we want to give a short overview about existing validity measures, which
are nearly almost univariate measures of information loss. After these, we want
to propose other measures of information loss, which evaluates the multivariate
structure of the original and the perturbed data.

One measure of information loss which is proposed by [32] is given by the
original and the perturbed version of a observation i

IL1 =
1
d

p∑
i=1

|xij − x
′
ij |√

2Sj

(3)

where Sj is the standard deviation of the j-th variable in the original data
set. This measure of information loss does not evaluate how well univariate or
multivariate statistics are preserved. This is a real disadvantage of this kind
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of measures and we want to show other measures which takes univariate and
multivariate statistics into account.

In [32] there is also proposed a measure of disclosure risk, which based on
distances and assumes that an intruder has additional information (disclosure
scenarios) so that one can link the masked record of an individual to its original
version [32]. Given the value of a masked variable, they check whether the cor-
responding original value falls within an interval centered on the masked value.
The width of the interval is based on the rank of the variable or on its standard
deviation [32].

Applying these measures on real data from a subset of the structural business
statistics in Austria (one economic sector and 5 variables) we will see the IL1
and disclosure risk on the following graphics resulting from a part of the imple-
mented algorithms for disclosure control. The algorithms which are chosen are
M3 - M11 (microaggregation with aggregation level from 3 to 11 on different
methods, ROMM with different parameters for the magnitude of perturbation
[41], rank swapping with different maximum rank differences, which is expressed
as a percentage of the total number of records (1%, 5%, 10%, 20%) and latin
hypercube sampling [23].
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Fig. 2. Disclosure risk resulting from
different perturbation methods

Previous Figures shows the polarity from data utility (Figure 1) and disclosure
risk (Figure 2). Unfortunately, the previous measure of information loss tells us
nothing about the quality of the perturbation, but we can anticipated that our
proposed method with the projection pursuit approach (clustpppca) e.g. is more
suitable than method mdav. Note, that we want to have anonymised data, which
have the same statistical properties as the original data.

In the following we will evaluate some methods on real data from the structural
business statistics in Austria on some statistical measures of information loss.
The results based only on microaggregation methods, because our experience
shows that only microaggregation fulfills the required amount of anonymisation
and we want to be in the limit of pages in the paper.
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> method <- c("simple", "single", "onedims", "pca", "pppca", "influence",

+ "clustpppca", "mdav")

> g <- valTable(x = x, method = method, measure = "onestep")

> g[, -c(9, 12, 13, 14)]

method amean amedian aonestep devvar amad acov acor adlm apcaload
1 simple 1.809 0.538 0.186 2.859 0.582 1.430 0.606 0.012 0.099
2 single 0.995 0.322 0.301 2.933 0.318 1.466 2.573 0.017 0.051
3 onedims 0.100 0.007 0.004 66.549 0.007 33.274 39.750 0.194 1.416
4 pca 0.782 0.289 0.225 1.676 0.239 0.838 0.285 0.035 0.101
5 pppca 1.064 0.363 0.293 1.919 0.322 0.959 0.894 0.089 0.236
6 influence 0.943 0.207 0.231 2.169 0.289 1.084 1.107 0.041 0.222
7 clustpppca 0.996 0.226 0.161 2.025 0.229 1.013 1.577 0.057 0.369
8 mdav 1.225 0.267 0.226 3.131 0.364 1.566 7.022 0.016 0.288

The three columns of the previous table represents univariate measures of
information loss, the following four columns represent multivariate measures of
information loss followed by one columns representing differences in results from
a classical regression models and followed by a mean difference of the loadings
getting from a classical principal component analysis. A detailed description
can be found in the online-help files from package Microaggregation. You can
easily see that the individual ranking method (onedims) preserves univariate
statistics quite well, but fails completely in the multivariate case. In many cases
the principal component analysis method via projection pursuit on each cluster
(found with a model based clustering algorithm) performs best.

Note that the data must not be aggregated with the mean. Sometimes it is
useful to aggregate it with an another measure of location, like onestep from
median. Observations, which are outside med(x) ± c.mad(x) have been put to
these limits and then the mean is calculated. c is a constant to be chosen as in
Formula (2). Additionally other robust measures like M-estimates [18] can be
used, where data outside an robust interval are down weighted.

To evaluate differences between the original data and the perturbed data (or
between two perturbation methods) in the univariate and multivariate structure
of these data a variety of univariate and multivariate comparison plots is im-
plemented. One plot is e.g. to compare the covariance structure of the original
data. In Figure 3 you can see the covariances of the original data (black lines)
in comparison with the covariances of the perturbed data (blue lines). Here the
perturbation is done with the pca microaggregation method. The robustified pca
with projection pursuit in each cluster are shown in Figure 4. While the results
with sorting based on first classical principal component looking not really good,
the perturbed data resulting from the robustified version of pca looks very well.

7 Protection of Hierarchical Tables

For this purpose a package called disclosure is under development.
The ordinary primary cell suppression, like dominance rules, p-percent rule,

pq-percent rule (see e.g. in [12]) are implemented and additional cells can be
easily suppressed by the user.



Software Development for SDC in R 355

on
e

tw
o

th
re

e

fo
ur

fiv
e

6783442
4596770

6524987
5276255

1084012792
738354731

26981
93373

3835421
7712557

3663049
16541191

7384883984
5909316557

1171341801515
775838564635

1123630252874
931547627465

5033432296
18063698900

covOGK

covOGK

orignial data vs. perturbed data (pca)

original

perturbed

Fig. 3. Comparison plot of original
and microaggregated data via sort-
ing on the first classical principal
component

on
e

tw
o

th
re

e

fo
ur

fiv
e

6783442
8712433

6524987
7773862

1084012792
1196693550

26981
36477

3835421
8237937

3663049
6303081

7384883984
9717135753

1171341801515
1415423331594

1123630252874
1273428344282

5033432296
4985943900

covOGK

covOGK

orignial data vs. perturbed data (clustpppca)

original

perturbed

Fig. 4. Comparison plot of original and mi-
croaggregated data via sorting on the first
robust principal component with projec-
tion pursuit in each cluster

For secondary cell suppression there is a method called disc [34] implemented.
It is similar to the Hypercube method [36]. The disadvantage of this method is
that after secondary cell suppression some primary protected cells can be com-
puted too accurately and there is sometimes a little bit of over-suppression. A
better strategy is to do a secondary cell suppression based on linear programming.
The aim is e.g. to minimise the amount of suppressed cells (or other approaches)
in (hierarchical) tables under the constraint that each primary suppressed cell
can be computed only on a predefined interval (can not be computed too ac-
curately). In R there is a wrapper function in C for the freely available (under
LGPL2) linear program solver lpSolve [2] included, which can solve general
linear/integer problems and more.

Perturbation and controlled rounding methods are not implemented yet (you
can do this with τ -Argus [21]).

The usage of this package should be very easy, but note that there is no gen-
eral solution yet been implemented for applying the tools of package disclosure
automatically on varying hierarchical structures. Even for intruding some tables
the package can be used in a very simple way. After loading data this should be
carried out in one statement with some optional arguments. The functionality
should be seen clearly from the online-help files of the package.

In the following I will show only a attacker problem from data aggregated
at European Union level. Here is an example of such an table which is already
hidden from member states and rules for suppression from Eurostat:
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[1] "Table 1: EU level"

C1 C2 C3 C4 C5 C6 EU
1 20 70 90 30 20 30 260
2 500 1 1 50 1 70 623
3 10 3 6 25 50 20 114
4 70 80 10 100 30 40 330
5 600 154 107 205 101 160 1327

[1] "Table2: Supp. from member
states + rules for agg."

C1 C2 C3 C4 C5 C6 EU
1 20 70 90 30 NA 30 NA
2 500 NA NA NA NA 70 623
3 10 3 6 NA NA 20 114
4 70 NA NA 100 30 40 NA
5 600 154 107 205 101 160 1327

We can easily attack these table with our implemented functions based on
linear programming: In the following the table on the left side shows us the
attacker solution from Table 2. On the right side we can see the solution when
all additional EU-aggregates have been hidden (note that only aggregates can
be hidden and cells from member states must not be hidden).

> library(disclosure)

> i <- c(1, 2, 4, 5)

> lp2.hier(e, e1)$lp.out2[, i]

min max nrow ncol
[1,] 18 71 1 5
[2,] 258 311 1 7
[3,] 0 53 2 2
[4,] 0 11 2 3
[5,] 0 53 2 4
[6,] 0 53 2 5
[7,] 22 75 3 4
[8,] 0 53 3 5
[9,] 28 81 4 2

[10,] 0 11 4 3
[11,] 279 332 4 7

> e1[2, 7] <- NA

> e1[3, 7] <- NA

> lp2.hier(e, e1)$lp.out2[, i]

min max nrow ncol
[1,] 0 71 1 5
[2,] 240 311 1 7
[3,] 0 81 2 2
[4,] 0 11 2 3
[5,] 0 75 2 4
[6,] 0 71 2 5
[7,] 570 808 2 7
[8,] 0 75 3 4
[9,] 0 71 3 5
[10,] 39 185 3 7
[11,] 0 81 4 2
[12,] 0 11 4 3
[13,] 240 332 4 7

You can easily compare the protection intervals (on the output of function
lp.hier you can see their row number and column number) with the true values.
We can see that the table is still not protected.

8 Conclusions

Using R for disclosure control has many advantages. The data import/export
facilities are very flexibility and powerful and this is really useful in context of
disclosure control. With R you can see the perturbation of microdata as a kind
of explorative data analysis. We have a powerful system to analyse and evaluate
the results and methods during the process of masking data. For all methods
there are print, summary and plot methods implemented. Diagnostic plots and
plots for the comparison of the original and the perturbed data are very useful
during the process of perturbation. Several methods can be evaluated on basis of
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your data, and diagnostic tools can be used at the same time. The open source
packages are highly extendable and can be well documented by use of online-help
pages, vignettes and integrated examples. When calculation time is important
the code can be written in C or Fortran and can be included in an R package
easily. Everybody is invited to contribute to these packages or to make your own
R packages for disclosure control.

The robustification of the pca approach for microaggregation with projection
pursuit on each cluster leads often to the best results compared with other mi-
croaggregation methods.
Also the extension of the single axis method by sorting in each cluster by the
most influencial variable can provide good results. Adding noise can be also pro-
vide good results and the perturbation must not be applied on all observations
but rather on observations which can be identified probalby.

While cell perturbation and controlled tabular adjustment seems to be very
good methods for protecting hierarchical tables some statistical agencies will
keep hold on traditional suppression methods for a variety of reasons.

In my point of view statistical agencies will have commercial software with
guaranteed support for disclosure control or they want to have free available
and modifiable open-source software for disclosure control. Having open source
code in an attractive software system for doing disclosure control might be a first
step forward to harmonize the application of methods for all european statistical
agencies.
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Abstract. This paper is devoted to e-healthcare security systems based on 
modern security mechanisms and Public Key Infrastructure (PKI) systems. We 
signified that only general and multi-layered security infrastructure could cope 
with possible attacks to e-healthcare systems. We evaluated security 
mechanisms on application, transport and network layers of ISO/OSI reference 
model. These mechanisms include confidentiality protection based on 
symmetrical cryptographic algorithms and digital signature technology based 
on asymmetrical algorithms for authentication, integrity protection and non-
repudiation. User strong authentication procedures based on smart cards, digital 
certificates and PKI systems are especially emphasized. We gave a brief 
description of smart cards, HSMs and main components of the PKI systems, 
emphasizing Certification Authority and its role in establishing 
cryptographically unique identities of the valid system users based on X.509 
digital certificates. Emerging e-healthcare systems and possible appropriate 
security mechanisms based on proposed Generic CA model are analyzed. 

Keywords: E-healthcare systems, Multilayered security systems, PKI systems, 
smart cards. 

1   Introduction 

The low-cost nature of the Internet coupled with the ease of making transactions has 
led to an explosive growth in e-business but trust in this medium is still a major 
concern. E-security is the foundation that enables trust in e-business [1], [2]. In this 
sense, main cryptographic aspects of modern TCP/IP computer networks are: digital 
signature technology based on asymmetrical cryptographic algorithms, data 
confidentiality by applying symmetrical cryptographic systems, and Public Key 
Infrastructure (PKI) systems. 

The Internet is also changing the way the healthcare industry does business. It 
offers astounding opportunities to share information between healthcare professionals 
and to reduce the costly paper trail. However, organizations must create secure 
architecture to protect the privacy of patient records since main security requirements 
in healthcare, as well as in emerging mobile healthcare, systems include privacy and 
integrity of information related to patients. Such information includes information 
related to person, medical service given, and e.g. social status, and should be kept out 
of reach of unauthorized persons. Healthcare security benefits are: protect patient 
confidentiality from network-based violations, securely provide information to remote 
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physicians, partners, and branch offices, and comply with government regulations on 
network security.  

This paper is devoted to e-healthcare security systems based on PKI systems. 
We signified that only a general and multi-layered security infrastructure could cope 
with possible attacks to e-healthcare systems. We evaluated security mechanisms on 
application, transport and network layers of ISO/OSI reference model and 
gave examples of the today most popular security protocols applied in each of the 
mentioned layers. These mechanisms include confidentiality protection based on 
symmetrical cryptographic algorithms and digital signature technology based on 
asymmetrical algorithms for authentication, integrity protection and non-repudiation.  

2   Multilayered Security Infrastructure in e-Healthcare Systems 

Like in all the other electronic business systems, key security features that should be 
included in modern medical computer networks are: user and data authentication, data 
integrity, non-repudiation, and confidentiality. This means that in secure e-healthcare 
systems, the following features must be realized:  

 strong user authentication both for doctors and other medical employees, as well as 
for patients,  

 integrity of medical data transferred either via wired or wireless IP networks 
should be ensured and  

 the non-repudiation function should be implemented.  

These features are to be implemented by using digital signature technology based 
on asymmetrical cryptographic algorithms. Besides, the confidentiality and privacy 
protection of transferred data must be preserved during whole transmission and they 
are to be done by using symmetrical cryptographic algorithms. Also, strong user 
authentication techniques based on smart cards are to be implemented. 

In this Section, we will give the overview of modern security mechanisms with 
particular emphasis on their use in medical electronic business systems and classical 
and mobile healthcare systems. The considered security mechanisms are based on 
PKI systems, digital certificates, digital signature technology, confidentiality 
protection, privacy protection, strong user authentication procedures and smart card 
technology. An overview of these techniques is given in [3]. 

In order to preserve the potential malicious attacks to the particular network, the 
multilayered security architecture has to be implemented. Modern computer networks 
security systems consist of security mechanisms on three different ISO/OSI reference 
model layers: 

 Application level security (end-to-end security) based on the strong user 
authentication, digital signature, confidentiality protection, digital certificates and 
hardware tokens (e.g. smart cards), 

 Transport level security based on establishment of a cryptographic tunnel 
(symmetric cryptography) between network nodes and strong node authentication 
procedure, 

 Network IP level security providing bulk security mechanisms on network level 
between network nodes – protection from the external network attacks. 
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These layers are projected in a way that a vulnerability of the one layer could not 
compromise the other layers and then the whole system is not vulnerable. 

2.1   Application Level Security Mechanisms 

Application level security mechanisms are based on asymmetrical and symmetrical 
cryptographic systems, which realize the following functions: 

 Authenticity of the relying parties (asymmetrical systems), 
 Integrity protection of transmitted data (asymmetrical systems), 
 Non-repudiation (asymmetrical systems), 
 Confidentiality protection on application level (symmetrical systems). 

The most popular protocols in domain of application level security are: S/MIME, 
PGP, Kerberos, proxy servers on application level, SET, crypto APIs for client-server 
applications, etc. Most of these protocols are based on PKI X.509 digital certificates, 
digital signature technology based on asymmetrical algorithms (e.g. RSA) and 
confidentiality protection based on symmetrical algorithms (e.g. DES, 3DES, IDEA, 
AES, etc.) [4]. Most of the modern application level security protocols, such as: 
S/MIME and crypto APIs in client-server applications are based on digital signature 
and digital envelope technology. 

In modern e-commerce and e-business systems, asymmetrical algorithms (e.g. 
RSA) are mainly used according to PKCS#1 standard. PKCS#1 standard [5] describes 
a method for encrypting data using the RSA public-key cryptosystem. Its intended use 
is in the construction of digital signatures and digital envelopes, according to the 
syntax described in PKCS#7 standard. There is a lot of work on optimization of RSA 
algorithm implementation in hardware security module (HSM) based on signal 
processor [6], [7], [8], [9]. For digital signatures, the content to be signed is first 
reduced to a message digest with a message-digest algorithm (such as MD5), and then 
an octet string containing the message digest is encrypted with the RSA private key 
operation of the signer of the content. The content and the encrypted message digest 
are represented together according to the syntax in PKCS#7 to yield a digital 
signature. For digital envelopes, the content to be enveloped is first encrypted by a 
symmetric encryption key with a symmetric encryption algorithm (such as DES, 
3DES, IDEA, AES, ...), and then the symmetric encryption key is encrypted with the 
RSA public key of the intended recipient of the content. The encrypted content and 
the encrypted symmetric encryption key are represented together according to the 
syntax in PKCS#7 to yield a digital envelope.  

Security systems on application level consist also of the user authentication 
procedure which could be one, two or three-component authentication procedure. 

2.2   Transport Level Security Mechanisms 

Security mechanisms on transport level generally include confidentiality protection of 
transmitted data based on symmetrical cryptographic algorithms. These systems are 
mostly based on establishing the cryptographic tunnel between two network nodes on 
transport level. The establishment of the tunnel is preceded by strong authentication 
procedures. In this sense, the systems are based both on symmetrical algorithms for 
realization of cryptographic tunnel and a bilateral challenge-response authentication 
procedure based on asymmetrical algorithms and PKI digital certificates for 
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authentication of the nodes and for establishing the symmetrical session key for this 
tunnel session. The transport level security system is mostly used for communication 
protection between client with Internet browser programs (Internet Explorer, 
Netscape Navigator, etc.) and WEB server, and the most popular protocols are: 
SOCKS (used earlier), SSL/TLS and WTLS. Between them, the most popular is SSL 
(Secure Sockets Layer) protocol (or Transport Layer Security (TLS)), which is used 
for protection between client browser program and WEB server. Furthermore, the 
SSL is the most popular and the far widest used security protocol today.  

SSL protocol consists of two phases: authentication phase with bilateral 
exchanging of PKI digital certificates of the WEB server and the client (optional) and 
establishing the symmetrical session key and secure communication based on 
symmetrical algorithm and established session key (cryptographic tunnel). SSL 
protocol is placed just below the application layer of the ISO/OSI reference model 
and just on top of the TCP/IP layer (transport layer). This means that the SSL is not 
necessarily used only under the HTTP protocol but could be used also under some 
other application level protocols, such as: POP3, SMTP, etc.  

WTLS (Wireless Transport Layer Security) protocol is a kind of wireless version 
of SSL protocol and serves for transport level protection between microbrowsers on 
WAP (Wireless Application Protocol) enabled GSM mobile phones and WAP 
servers, based on the same principles and functionality as the SSL protocol. This way, 
WTLS protocol is intended to use for secure communication in wireless networks 
(GSM), and is implemented in most of microbrowsers and WAP servers. WTLS 
protocol uses special digital certificates for wireless communication (WAPCerts). 

2.3   Network Level Security Mechanisms 

Network level security mechanisms include security mechanisms implemented in 
communication devices and firewalls, as well as operating system security 
mechanisms, etc. These methods represent the basis for realization of Virtual Private 
Networks (VPN). Security protection is achieved by encrypting the complete IP 
traffic (link encryption) between two network nodes. The most popular network layer 
security protocols are: IPSec (AH, ESP, IKE), packet filtering and network tunneling 
protocols, and the widest used is IPSec. Like transport level security protocols, IPSec 
consists also of network node authentication based on asymmetrical cryptographic 
algorithms and link encryption based on symmetrical algorithms. IPSec represents a 
group of protocols consisting of Authentication Header (AH), Encapsulated Security 
Payload (ESP) and Internet Key Exchange (IKE) protocols in transport and tunnel 
modes. AH is used for authentication IP packets, ESP is used for encryption and 
authentication the payload of the IP packets and IKE is used for authentication of the 
communication nodes and IPSec session key establishment. The most secure IPSec 
protocol is ESP in tunnel mode, since attacker does not know internal addresses 
(source and destination) – only addresses of IPSec gateways could be seen externally.        

Firewalls also belong to network security mechanisms and could be computers, 
routers, workstations. Their main characteristics are to define which information and 
services of internal network could be accessed from the external world and who from 
internal network is allowed to use information and services from the external network. 
Firewalls are mostly installed at breakpoints between insecure external networks and 
secure internal network. Depending of the needs, firewalls consist of the one or more 
functional components from the following set: packet filter, application level 
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gateway, and circuit level gateway. In this sense, there are four traditional examples 
of firewalls: Packet Filtering Firewall, Dual-Homed Firewall (with two network 
interface), Screened Host Firewall, Screened Subnet Firewall (with DeMilitarized 
Zone (DMZ) between internal and external networks). Nowadays, firewall devices are 
in fact multifunctional devices that include very sophisticated security mechanisms, 
such as: several firewall interfaces allowing more detailed secure separation of the 
network, antivirus, Intrusion Prevention, content filtering, VPN concentrator 
functionalities, etc. 

3   PKI Systems 

Public-key cryptography uses a combination of public and private keys, digital 
signature, digital certificates, and trusted third party Certification Authorities (CA), to 
meet the major requirements of e-business security. Before applying the security 
mechanisms you need the answers for the following questions: Who is your CA? 
Where do you store your private key? How do you know that the private key of the 
person or server you want to talk to is secure? Where do you find certificates? 

A Public Key Infrastructure (PKI) provides the answers to the above questions. In 
the sense of X.509 standard, the PKI system is defined as the set of hardware, 
software, people and procedures needed to create, manage, store, distribute and 
revoke certificates based on public-key cryptography.  

PKI system provides a reliable organizational, logical and technical security 
environment for realization of the four main security functions of the e-business 
systems: authenticity, data integrity protection, non-repudiation and data confiden-
tiality protection. PKI systems are based on digital certificates as unique cryptographic 
based electronic IDs of relying parties in some computer networks.  

PKI system consists of the following components: Certification Authority (CA) – 
responsible for issuing, renewing and revoking certificates, Registration Authorities 
(RAs) – responsible for acquiring certificate requests and checking the identity of the 
certificate holders, Systems for certificate distribution – responsible for delivering the 
certificates to their holders, Certificate holders (subjects) – people, machines or 
software agents that have been issued with certificates, CP, CPS, user agreements and 
other basic CA documents, systems for publication of issued certificates and 
Certificate Revocation Lists (CRLs), and PKI applications (secure WEB transactions, 
secure E-mail, secure FTP, VPN, secure Internet payment, secure document 
management system – secure digital archives, access control system, etc.) 

The method defined in X.509 for revoking certificates involves the use of a 
certificate revocation list (CRL). This list identifies revoked certificates and is signed 
and timestamped by the CA. Normally, each certificate is identified by a unique serial 
number that is assigned when the CA issues it. The CA publishes the CRL, at regular 
intervals, into the same public repository (e.g. LDAP) as the certificate themselves 
(only certificates with owner permissions could be published). 

There are several types of CA: corporate CAs, closed user group (CUG) CA, CA 
of vertical industries, and public CAs. Regarding the implementation approach, CAs 
could be divided to: outsourced CA – when some organization use certification 
services from the earlier established CA, and insourced CA – when some organization 
establishes its own CA services (bought on the market or inhouse developed). In all 
cases, all CA organization mostly used the CA software-hardware technology from 
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the established CA technology vendors, such as: Entrust, Cybertrust, Cryptomathic, 
Utimaco, SmartTrust, RSA Data Security, etc. 

In the following, a brief description is given of the generic model of the 
Certification Authority software-hardware system which is realized as a web multitier 
architecture. The described system is similar to the most modern and most secure PKI 
systems today. Also, some possible variants of system realization depending on the 
set of the requests that should be fulfilled are discussed. This generic CA represents a 
solution which could be fully customized to be adapted to the customer requirements.  

3.1   Main Features of the Generic CA System 

The generic CA is a WEB-based Certification Authority system which could support 
both closed PKI systems with strictly defined users of usually only one or two 
different user profiles, as well as public PKI systems with more user profiles and 
more different ways of user registration. The generic CA system represents the public 
CA system fully customizable to the particular requests of different users. Main 
features of the generic CA system are the following: 

 The system fulfils all worldwide PKI standards and could be customized according 
to both adding new features and customizing the applied cryptographic algorithms. 

 The generic CA is WEB multitier CA application which is based on smart cards for 
users.  

 Generic CA system supports different database servers, such as: MS SQL Oracle 
and IBM DB2. 

 The generic CA supports a working system with one asymmetrical keypair, with 
two keypairs and combined system. 

 The generic CA supports a hierarchical PKI structure and has the off-line Root CA 
and more on-line Intermediate CAs. As an example, each user profile should have 
its Intermediate CA server.  

 The generic CA supports different ways of the user registration, such as: through 
registration authorities (RA) and RA operators (RAO), as well as directly (for 
specific user profiles) via WEB CA server. 

 The generic CA has implemented a procedure of distributed responsibilities (secret 
sharing, necessity of presence of number of specific users) in sense of creating the 
Root CA asymmetrical private key for generating the new Intermediate CA 
certificate. 

 The generic CA has a support for life cycle certificate management (renewal, 
suspension, revocation). 

 The generic CA has possibilities for electronic personalization of the smart cards 
and this could be done by client themselves, RAO or CA Operators (CAO). 

 The generic CA system has a support for printing PIN code (lettershop) for 
accessing the cards which should be sent to the user separately from the smart card. 

 The generic CA system provides the printing of different reports depending of the 
user needs. 

3.2   System Architecture of the Generic CA System 

A system architecture of the described generic CA system is given on Fig. 1. What 
missing on the Fig. 1 are application servers from different business processes which 
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use the generic CA system. For example, WEB server in DMZ zone could be a 
business WEB server which will eventually realize strong authentication procedure of 
the users with smart cards, issued by the described generic CA system. 
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Fig. 1. A simplified network configuration of the generic CA system 

As it could be seen from the Fig. 1, the generic CA system consists of OnLine and 
OffLine parts. OffLine part represents RootCA which is used only in rare cases when 
the Root CA asymmetrical private key should be activated for a purpose of generating 
a new Intermediate CA certificate in the hierarchical structure shown on Fig. 2, which 
is the most popular PKI structure in the modern PKI systems. Root CA is located in 
totally separated room from the rest part of the CA where there exist a vault in which 
individual activation parts of the Root CA asymmetrical private key are securely 
stored. These parts are used according to the defined procedure of “distributed 
responsibilities” (or “secret sharing”) in cases of generating new Intermediate CA 
certificates (this procedure is called “CA ceremony”). Eventually, the Root CA could 
be also in the same room (if necessary) as the OnLine CA but, as mandatory request, 
outside the LAN network and with mandatory vault for storing the activation parts of 
the Root CA private key. 

In the CA ceremony procedure, it must be present a corresponding minimum 
number of special CA employees (custodians) who have access to the corresponding 
individual activation parts, stored on smart cards in special separated boxes of the 
vault, for activating the private key. Namely, a corresponding pre-defined number of 
smart cards must be present in order to activbate the Root CA private key in HSM 
device of the Root CA server, fully in accordance with General and Internal CA 
practices. After that, a new Intermediate CA asymmetrical keypair is generated and 
the Intermediate CA certificate is created (digitally signed) by a digital signature 
applying the Root CA private key in the Root CA's HSM. The encrypted private key 
and certificate of the Intermediate CA will be programmed (or generated directly onto  
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Fig. 2. Modern hierarchical structure of the Certification Authorities 

the Intermediate CA’s HSM) into the new smart card (Intermediate CA smart card) 
which will be installed into the HSM device of the new Crypto Engine server, 
intended for use as an OnLine CA for this Intermediate CA system. After that, Root 
CA private key will be deactivated from the Root CA HSM device and the smart 
cards with activation parts of the Root CA private key will be returned to the vault. As 
it could be concluded, it is possible that more Intermediate CA simultaneously work 
in OnLine working mode, i.e. that more Intermediate CA Crypto Engine servers are 
activated in the OnLine working mode for digital certificate generation (e.g. 
Intermediate CA for different kind of medical institutions). OnLine and OffLine parts 
of the generic CA system should support the use of the HSM modules, see Fig. 1.  

In DMZ zone, besides WEB server, there is a LDAP mirror server which serves for 
publishing the CRL and ARL lists, as well as for eventual publication of issued digital 
certificates. This server is a copy of the master LDAP server which is located in the 
internal zone. 

The generic CA system supports different methods for user registration, and the 
system is fully flexible to support different requests regarding ways of user 
registration according to the adopted documents (Certificate Policy and CPS) which 
defines the appropriate user profiles (both for individuals and legal persons). The 
system supports the issuing of digital certificates on different media (smart cards, 
mini CD, etc.) and enable functioning in the system with one or two asymmetrical 
keypairs. In the generic CA system, the certificate life-cycle management is 
implemented and comprises of the following procedures:  

 Certificate renewal, 
 Certificate suspension and reactivation, 
 Certificate revocation. 

These functions are implemented in accordance with Certificate Policy and 
Certificate Practise Statement of this CA system. In this case, the user will be enabled 
to make certificate renewal by himself, while the suspension and revocation will be 
done exclusively by the RAO and CA employees, according to the written procedure 
in Certificate Policy and CPS. 

It should be mentioned that described architecture of the Generic CA system could 
be one example of possible realization of modern CA system and that actual 
implementations are more or less different depending on the way of key generation 

Root  CA 

Intermediate CA Intermediate CA Intermediate CA 

Intermediate CA Intermediate CA Intermediate CA 
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for users, the way of distribution keys and certificates, as well as on ways of CRL 
publishing. However, although there are differences, basic principles and concepts of 
the modern certification authorities are the same as in the described example. In this 
sense, the described Generic CA system could be a good candidate for establishing 
some e-healthcare PKI systems.       

4   Smart Cards and Hardware Security Modules 

Software only security solutions are not safe and are very vulnerable to some attacks 
(e.g. Trojan horse). There are several reasons why SW only security systems are not 
suitable: certificate and private key are stored on conventional media which is not 
secure, consumers are tied to their PC and are thus not mobile, and consumers are to 
manage certificates, which is not simple. 

Hardware security modules (HSM) represent very important security issue of the 
modern computer networks. Main purposes of the HSM are twofold: increasing the 
overall system security and accelerating cryptographic functions (asymmetric and 
symmetric algorithms, key generation, etc.). HSMs are intended mainly for use in 
server applications and, optionally for client sides too in case of specialized 
information systems (government, military, police) [10]. For large individual usage, 
smart cards are more suitable as hardware security modules. However, for large 
usage, the best approach is in the combination of SW and smart card solutions for the 
best performance. Namely, smart card increases security and SW increases the total 
processing speed. In this sense, the most suitable large-scale solution consists of: SW 
for bulk symmetric data encryption/decryption plus hash calculations and smart card 
for digital envelop retrieval and digital signature generation. In modern and most 
secure PKI systems, two asymmetrical keypairs are used: one for digital envelope 
retrieval and the other for digital signature generation. In short, smart cards are credit-
card sized plastic card with an embedded computer chip. There are several types of 
smart cards. Regarding the processing power, smart cards could be divided into the 
following categories: memory cards – containing a memory chip only with non-
programmable logic, microprocessor’s chip card with internal memory, 
microprocessor’s chip card with internal memory including additional PKI 
capabilities (with additional RSA, 3DES, and RNG (Random Number Generator) 
coprocessors – called PKI smart cards). Regarding the physical contacts of the chip, 
smart cards could be: contact cards – chip with electrical interface, contactless cards – 
chip with electromagnetic interface, combo cards – with two chips: one with contact 
and one with contactless interface, and dual interface chip cards - with chip that have 
two interfaces: electrical and electromagnetic. Regarding the chip operating system, 
smart cards could be: proprietary operating system smart cards (with a single or 
multiple (MULTOS) application capabilities), and JAVA smart cards. Also, smart 
cards could be divided regarding the power of the implemented microprocessors (8-
bit, 16-bit or 32-bit) or regarding the amount of the available memory (EEPROM) (16 
KB – 128 KB).  

Today’s PKI smart cards are still mostly based on 8-bit microprocessors (based on 
the well-known Intel 80C51 microcontroller) with smaller amounts of 16-bit and 32-
bit microprocessors. However, it is clear that 8-bit smart card microprocessors will be 
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forgotten very soon and that the market will move toward more powerfull 
microprocessors. Also, there is a clear move toward JAVA and Multos 
multiapplicative smart cards instead of previously used proprietary OS – one 
application smart cards. JAVA and Multos smart cards enable both multiapplication 
and easier customization of the existing applications. Smart cards used in PKI systems 
provide a secure and portable way to store the private cryptographic keys and 
corresponding X.509 digital certificates. The smart card enhances the PKI security by 
enforcing an extra authentication layer at the end-user level. This extra authentication 
layer, coupled with the fact that cryptographic keys generated on the card never leave 
the card, adds an important additional security layer which increases the security of 
the overall solution. Actually, PKI smart cards with two X.509 digital certificates and 
two private asymmetric keys stored (for digital envelope retrieval/identification and 
for digital signature), where signature keypair is generated on the card, represents the 
most up-to-date security solution for large scale users which provides all four 
mentioned main security functions in modern information systems: authentication 
(X.509 digital certificate), data integrity (digital signature), non-repudiation (digital 
signature by asymmetric key generated and stored on the card), and confidentiality 
(based on asymmetric private key for digital envelope retrieval). Also, it should be 
emphasized that today mostly smart cards are certified according to the EAL4+ 
certification (certification includes: smart card (chip), chip operating system and PKI 
application on the card) which is a necessary condition for Secure Signature Creation 
Devices (SSCD) according to EU Electronic Signature legislation. 

5   e-Healthcare Security Mechanisms 

This Section deals with the basics of security mechanisms in e-healthcare systems. 
Key players in healthcare systems are: medical organizations (hospitals, clinics, 
pharmaceutical organizations), insurance organizations, healthcare professionals 
(doctors, physicians, nurses, pharmacists, etc.), and patients – end users. Most modern 
healthcare systems are information systems based on TCP/IP computer networks and 
they work fast move toward the electronic business in healthcare industry – electronic 
healthcare (e-healthcare). In this environment, security mechanisms for e-business 
must be implemented with necessary adaptation to the healthcare environments. There 
are a lot of technical and security issues for these systems that include, between the 
others: electronic patient record or electronic health record (EHR) must be fully 
private, central database of patient electronic records must be enabled for use from all 
players (medical organizations, professionals, insurance, patients), privacy protection 
of the patient records, secure communications between all players in the system, 
electronic order entry, enabling mobile healthcare, HIPAA compliance [11], etc. 
Thus, security mechanisms that are necessary to be implemented in these e-healthcare 
systems are: strong user authentication procedure, digital signature technology, 
confidentiality protection of data in the system on the application, transport and 
network layers, privacy protection of the patient personal data, strong protection of 
the central healthcare database based on multiple firewall architecture, and PKI 
systems, which issue X.509 digital certificates for all users of the system (healthcare 
professionals and patients) - digital identities (IDs) for the users. 
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5.1   Strong User Authentication 

There are several types of user authentication procedures that could be based on the 
following components: Username/Password – PIN code – something that user know, 
hardware token – something that user has, and biometric characteristic (e.g. 
fingerprint) – something that user is.  

Regarding the above components there are several types of authentication 
procedures which combine some of them, such as: 

 Username/password based authentication – weak authentication, 
 Username + dynamic password (one-time password) obtained by appropriate 

hardware token – stronger than previous one but not in the class of strong user 
authentication procedures, 

 Username + dynamic password obtained by appropriate hardware token + 
challenge-response procedure – strong user authentication procedure, 

 Username/password or PIN code + PKI smart card + bilateral challenge response 
procedure based on PKI X.509 digital certificate and asymmetrical cryptographic 
techniques – strong user authentication procedure (stronger than the previous one), 

 Username/password or PIN code + PKI smart card + biometric characteristic 
checking + bilateral challenge response procedure based on PKI X.509 digital 
certificate and asymmetrical cryptographic techniques – the strongest user 
authentication procedure.  

In other words, the class of strong user authentication procedures consists of the 
two or more component authentication procedures and a use of the bilateral 
challenge-response procedure.  

Modern e-healthcare information systems must be based on the strong 
authentication procedure.  

5.2   Digital Signature Technology 

It should be pointed again that the state-of-the-art solution for all the mentioned three 
security functions: authenticity, data integrity and non-repudiation, could be today 
achieved only by use of the PKI smart cards with digital signature generation on the 
card with signature private key generated on the card and never leaves the card. In the 
modern e-healthcare systems, healthcare professionals, as well as the patients, should 
use the smart cards as the hardware tokens for creating digital signature. More and 
more EU countries demands that the signature made with e-healthcare PKI card must 
be qualified electronic signature according to the EU Electronic Signature Legislation. 

5.3   Confidentiality Protection 

Since data that is transmitted through the particular e-healthcare system contain very 
sensitive, often personal patient’s data, its confidentiality must be fully preserved. 
This should be done by using digital envelope technology based on symmetrical and 
asymmetrical cryptographic techniques and PKCS#7 file format. This technology is 
based on digital certificate, symmetrical algorithms for encryption of data and 
asymmetrical algorithms for protection of symmetric key which is sent together with 
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encrypted data. This technology is mainly used for application level protection and it 
mainly represents the protection from internal attacks to the system.  

However, the transport and network level protections should be also used in the 
system in order to prevent external attacks. Namely, besides the application level 
protection based on digital signature and envelope technologies, that are based on the 
end users smart cards, the transport level (SSL) and network level (IPSec/VPN) 
security mechanisms should be used. In other words, it is strongly recommended that 
security mechanisms on more than one level are to be used. In this sense, the 
application level protection should be mandatory in combination with one or two 
additional level protections, transport or network based, depending of system 
characteristics, type of application and connections, required system throughput, other 
technical requirements, etc.  

5.4   Privacy Protection of the Personal Patient Data 

It is already emphasized that the main issue of the e-healthcare system is to protect 
privacy of the patient personal medical data – now processed and stored in the 
electronic form. This means that the data should be protected on the whole processing 
path in the system, i.e. from the medical professional workstation to the central 
database. In other words, unauthorized access to the data should be protected in the 
entire e-healthcare system. 

5.5   Protection of the Central Database 

As we already mentioned, the central e-healthcare database should be maximally 
protected from internal and external attacks. Normally, the new designed e-healthcare 
application should be multi-tier (three or more tiers) applications that could be WEB 
based or client-server based applications. Modern trends move toward web based 
applications with pretty thin clients [12]. Client’s part of the application should 
prepare data (e.g. offline) which includes applying of the appropriate security 
mechanisms (digital signature and digital envelope based on smart cards) and send 
this data (in online mode) through web browser interface to the web site (e.g. e-
healthcare WEB portal) on the central (or other) location. Before sending data to the 
web portal, the enduser must authenticate himself on the web portal by using the 
strong authentication PKI procedure based on smart card and digital certificates. 
Modern trends move toward establishing web portal for different medical 
organizations (or for central point) with single-sign-on capabilities of end-user 
authentication. This means that administration of the valid users should be centralized 
and that users cannot do any action if they are not strongly authenticated before 
through adequate single-sign-on function. 

A possible example of Generic model of the central e-healthcare site is proposed 
on Fig. 3. In this model, we could see four different parts of the central medical site:  

 External part for accessing the system which is on the one side of Firewall 
(connected to one particular interface of the firewall),  

 DMZ – DeMilitarized Zone with some general purpose servers, such as: mail, ftp, 
http, as well as with the WEB e-healthcare portal,  
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 Internal zone with different applications servers – middle tiers of different multitier 
medical applications, and  

 Most secure internal zone where the most sensitive parts of the system (e.g. central 
EHR database) are located.  

In this model, multiple firewall architecture is applied. Between the external part 
and one or more DMZs, the commercial firewall (mostly based on packet filtering 
techniques) could be applied. However, for the protection of the most sensitive part of 
the system – the central database, some firewall of the application proxy level 
gateway type should be applied, e.g. [13], [14]. The best protection will be achieved if 
this second firewall will be the proprietary made firewall – and not a commercial one. 

5.6   e-Healthcare PKI Systems 

To enable application of the all previously mentioned security mechanisms, the 
appropriate PKI system must be established in advance. The e-healthcare PKI system 
has the following characteristics: it is based on X.509 digital certificates as digital IDs 
for valid users of the system, central point of the PKI system is Certification 
Authority (CA), and CA issues digital certificates on smart cards (patient and 
healthcare professionals’ smart cards). In integrated e-healthcare medical systems, the 
CA could be truly centralized, centralized with hierarchical CA structure or 
decentralized. In the truly centralized system, there is only one CA (most often at 
some state healthcare authority) who issues all digital certificates for all kind of end-
users (patients, healthcare professionals, insurance employees, etc.). In this system, 
individual medical organizations are not independent in defining its own PKI policy 
but must conform to the global healthcare PKI policy.  
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Fig. 3. A generic model of the central (or other) healthcare site 

In the centralized system with hierarchical CA structure, there is a root CA at the 
healthcare authority and several levels of intermediate CAs. These intermediate CAs 
will be for different kind of end users and for individual medical organizations (e.g. 
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some clinic that has a large information system). The advantage of this architecture is 
that medical organizations are independent in creation of their own PKI subsystems 
and that each of the users group is under the one certificate management system. 
However, since all of the intermediate CAs is under the one centralized root CA, 
compatibility of communications between parties belonging to different intermediate 
CAs is completely achieved. Decentralized CA structure could be used in the case 
that all medical organizations have their own PKI subsystem, independent of some 
centralized authority. This system provides independency but there is an issue 
regarding the communications between parties that does not belong to the same CA. 
In this case, this could be only achieved by applying the cross-certification procedure 
between the CAs. The trend is that modern e-healthcare information systems are 
based on the centralized PKI system with hierarchical security infrastructure and 
digital certificates stored on smart cards. 

6   Conclusions 

In this paper, the modern computer security systems are analyzed and their possible 
application in e-healthcare systems is emphasized. It is concluded that only 
multilayered security architecture could cope with potential internal and external 
attacks to the modern computer networks and e-healthcare systems. The most 
frequently used security mechanisms on the application, transport and network layers 
are analyzed. It is concluded that more than one layer should be covered by the 
appropriate security mechanisms in order to achieve high quality cryptography 
protection of the e-healthcare system. It is also concluded that, between many specific 
conditions in the e-healthcare systems, application of security mechanisms should be 
considered on the client side, communication side and central database side, and that, 
in each of the sides, appropriate security measures should be applied. Central points 
of e-healthcare systems are smart cards for end users (citizens, healthcare 
professionals, etc.) that could be used for applying digital signature and digital 
envelope technology and the central PKI system. Smart cards must be used by doctors 
and other healthcare professionals. For patients, main point is that data should be 
protected from unauthorized use (privacy protection) and thus it is not mandatory to 
use PKI smart cards for patients. However, in order to enable some future advance 
features, as well as the qualified signature, it is strongly recommended that PKI smart 
cards be used for patients too.  
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Abstract. A breakthrough in the tradeoff between privacy and data quality has 
been achieved for restricted access to population census microdata samples.  
The IPUMS-International website, as of June 2006, offers integrated microdata 
for 47 censuses, totaling more than 140 million person records, with 13 
countries represented.  Over the next four years, the global collaboratory led by 
the Minnesota Population Center, with major funding by the United States 
National Science Foundation and the National Institutes of Health, will 
disseminate samples for more than 100 additional censuses.  The statistical 
authorities of more than 50 countries have already entrusted microdata to the 
project under a uniform memorandum of understanding which permits 
researchers to obtain custom extracts without charge and to analyze the 
microdata using their own hardware and software.  This paper describes the 
disclosure control methods used by the IPUMS initiative to protect privacy and 
to provide access to high precision census microdata samples.   

Keywords: Census microdata samples, data privacy, data quality, IPUMS-
International. 

1   Introduction 

In 1983, the legendary Charles M. Cawley offered the alumni association of his alma 
mater, Georgetown University, a deal.  In exchange for its endorsement and a list of 
members, his fledgling credit card company, MNBA, would pay a percentage of 
revenues to the association.  The offer was accepted and MNBA—by extending the 
affinity credit card offer to organizations with responsible, affluent members from the 
Association of Trial Lawyers of America to the Sierra Club—quickly established 
itself as the fastest growing, most profitable credit card company in the United States.  
Cawley became a billionaire.  Now every successful credit card company in the world 
markets affinity cards.  

The IPUMS project seeks neither profits nor popularity.  Ours is a wholly 
academic initiative, but we target an affinity group, a “restricted class of individuals” 
[1] consisting of academic and policy researchers, who have great need to use 
population census microdata, but pose a vanishingly small risk of misuse.   
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Where much disclosure control research on the privacy-quality tradeoff is focused 
on either “public access” at one extreme or “safe-harbor” at the other [2], the IPUMS-
International initiative adopts a third way, the “trusted user” approach [3].  Access is 
denied to approximately one-third of those who complete the electronic application 
form.  Four years after dissemination began in May 2002, fewer than one thousand 
researchers have been granted access to IPUMS-International census microdata.   

We restrict access to researchers who have a defined need to use the data and who 
not only agree to abide by the rigorous conditions of use license but also bind their 
institutions as enforcing agents.  With, on the one hand, the assistance of our 
statistical agency partners, as stipulated in the project memorandum of understanding, 
and, on the other, the conditions of use license, misuse will lead to punishment not 
only for the individual but also for the individual’s institution.  Indeed, in contrast to 
the record of commercial companies and government agencies, where there are 
frequent accounts of misuse of microdata for disclosing information about 
individuals, there is not a single, specific allegation of misuse of population census 
microdata in more than four decades of use by academic researchers.  By rigorously 
policing access, we expect to extend this unblemished record of responsible scholarly 
use.   

2   The Case for High Precision Samples: The USA Experience   

In recent years, scholars working with United States census microdata have come to 
rely on high-precision samples.  Beginning with the 1980 census, the Census Bureau 
has released five-percent samples as well as the one-percent samples. The five-
percent samples for the United States in 1980, 1990, and 2000 include between 12 
million and 14 million individuals in each year. 

The Census Bureau anticipated that the 1980 five-percent sample would be used 
mainly for state and local policy analysis; at the time the sample was created, it was 
prohibitively expensive for most researchers to process the entire set of five-percent 
data.  By the end of the 1980s, however, data processing costs had declined 
dramatically and were no longer a critical constraint for researchers at major 
institutions.  Social scientists soon developed research strategies that capitalized on 
the availability of very large census microdata files.  Swicegood et al. [4] published 
the first article in Demography that used a five-percent national sample, an analysis of 
language use and fertility in the Mexican-origin population.  Later that year, Odland 
and Ellis [5] published a second Demography article using the large 1980 file, a study 
of household size and regional outmigration rates between 1975 and 1980.   

From that time on, the use of high-precision census microdata files expanded 
rapidly.  The cost of computing declined dramatically during the first half of the 
1990s with the advent of inexpensive UNIX workstations.  Moreover, during the past 
several years the performance of Windows-based desktop computers has improved  
to the point that a machine costing less than $1,000 is now easily capable of 
processing the five-percent samples of 1980, 1990 and 2000.  Since 1996, the on-line 
data dissemination systems developed at Minnesota and elsewhere have provided 
easy access to large microdata extracts. Accordingly, the largest census microdata 
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files—once available to few researchers at great expense—are now accessible, at no 
cost, to virtually all social scientists and policy analysts worldwide.   

Increasingly, studies that use census microdata from 1980, 1990 or 2000 have 
turned to the five-percent files.  Since 1990, 81 percent of Demography articles based 
on recent census microdata have used the high-precision samples.1  Most of these 
analyses depend on information for small population subgroups, ranging from same-
sex couples to the grandchildren of immigrants.  In many instances, the large samples 
permit the use of innovative methods; to take just one example, these files have 
allowed demographers to carry out multi-level contextual analyses by making it 
feasible to assess the characteristics of small geographic areas. 

The five-percent samples of the 1980, 1990 and 2000 censuses have now become 
the most widely used data source in the pages of Demography., as we learned from a 
analysis of the journal’s pages in 2002.  At that time, even though the United States 
had abundant high-quality survey data and the most recent census samples were over 
a decade old, high-precision census microdata files were used by a quarter of the 
articles on the United States that appeared in Demography  in 2000 and 2001. In that 
period, the large samples were used twice as often as the next most popular data 
source. Clearly, the high-precision samples of the 1980 and 1990 censuses had 
become an indispensable component of American social science infrastructure.  In 
2003, with the addition of a five percent sample from the 2000 census, use 
skyrocketed. 

It is impossible to determine an optimal size for a general-purpose sample.  The 
number of cases needed to analyze a population subgroup depends on desired 
precision, type of subgroup, type of analysis, and population heterogeneity.  If high 
precision estimates are required, many thousands of cases of the subgroup of interest may 
be necessary.  Frequently, the relevant individuals for analysis are a small subset of 
the sample population.  Multilevel analyses of the effects of local context on 
individual behavior are especially demanding since they often require data tabulated 
for small geographic units. The experience of the U.S. demonstrates that very large 
census microdata samples are among the most powerful tools available for economic 
and demographic analysis. As such samples become available for other countries 
around the world, they are becoming key components of social science and policy 
infrastructure. 

3   The IPUMS Approach: High Precision Samples with Implicit 
Stratification   

An important technique used to protect confidentiality of census microdata is to draw 
a high precision sample from all the census microdata records and then, in addition to 
the disclosure controls discussed below in sections 4 and 5, suppress from the 
sampled records all identifying information (names, addresses, and low-level 
geographical details).  High precision samples preserve the ability to work with a 
large amount of microdata making it harder to identify any one person in the sample 
data file.  In drawing high precision samples it is also important to think about 

                                                           
1 This percentage excludes eight articles that did not specify sample precision. 
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efficient methods.  By using stratification to draw a high precision sample, gains in 
efficiency are possible [6], [7].  To the extent the strata used to draw a high precision 
sample are associated with the variables of interest (e.g., orphanhood, poverty, 
unemployment, etc.), the resulting estimates of these variables will have lower 
standard errors than what would have resulted had a simple random sample of records 
been drawn from the complete census data [6], [7]. 

One of the most important stratifying variables in survey research and in drawing 
high precision census microdata samples is geography.  Geography is related to a 
great number of variables researchers are interested in studying and therefore 
increases the efficiency of stratified samples.  Many of the IPUMS-International 
samples capitalize on implicit geographic stratification. The raw census files used to 
create IPUMS samples are typically geographically organized within districts. 
Systematic random samples of the censuses capitalize on this low-level geographic 
sorting. By ensuring a representative geographic distribution of sampled cases, they 
are equivalent to extremely fine geographic stratification with proportional weighting. 
Since many economic and demographic characteristics are highly correlated with 
geographic location, this implicit stratification yields substantially greater precision 
than would a simple random sample of households. As part of the IPUMS project, we 
are developing stratification variables that allow researchers to make reliable variance 
estimates from implicitly stratified samples. 

Almost all the statistical agency partners of the IPUMS project have endorsed the 
use of implicitly stratified samples of households (see Table 1, “sample design” 
column).  Twenty-six countries (identified by “*” in Table 1) have provided complete 
sets of census microdata to facilitate the drawing of implicitly stratified samples by 
the project.  In Europe, almost all the statistical agencies have drawn new samples 
using IPUMS specifications.  IPUMS sample densities, as can be seen in Table 1, 
typically range between 5 and 10%.  Lower densities are provided by countries where 
privacy matters are a greater issue than quality (Netherlands, United Kingdom) or, as 
in the case of 1960 round of censuses, where only low precision samples survive. 

4   IPUMS-International Access Disclosure Controls  

Access to the IPUMS-International database is governed, on the one hand, by the 
letter of understanding endorsed by the University and the National Statistical 
Authority, and, on the other by the license agreement between the University, the 
researcher, and the researcher’s institution.  Both are subject to amendment and 
enhancement as new methods are suggested.  The letter of understanding grants the 
right to the university to disseminate microdata extracts electronically for teaching 
and research purposes via the project webpage:  https://www.ipums.org/international, 
according to the authorization procedures stated in the agreement.  Data may not be 
used for commercial purposes.  Strict confidentiality of persons, households and other 
entities must be maintained.  Alleging that a person or other entity has been identified 
is prohibited.  The University is charged with assuring that users will guard against 
access to the microdata by unauthorized individuals.   
The fact that IPUMS-International distributes microdata electronically as custom 
extracts, tailored as to country(ies), census year(s), subpopulation(s), and variables, 
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according to the individual needs of the researcher, provides additional incentives for 
jealously guarding extracts.  Since complete datasets are not distributed on CD or 
other medium, the inclination to share data with unauthorized individuals is greatly 
reduced, if not completely eliminated.   

The electronic application form is designed to ascertain the bona fides of the 
applicant as well as the appropriateness of the microdata for the proposed research.  A 
stern warning is issued against fraudulent applications, and checks are implemented to 
verify the identity and affiliations of the applicant (see the project home page “Apply 
for Access”).  To confirm that the researcher understands the sensitivity of guarding 
the privacy of individuals, the application requests the name of the Human Subjects 
Protections Committee, Institutional Review Board, or similar office at the applicant’s 
institution.  A critical consideration in determining access is the proposed research.  
The statement must identify the data to be used and the purpose.  Many applicants are 
denied access for failing to demonstrate that microdata are needed to address the 
proposed research or instructional plan.  Finally the researcher must agree to seven 
restrictions on use:  no redistribution, scholarly use only, prohibition on commercial 
use, strict rules of confidentiality, data security, appropriate citation, and notification 
of errors in the data.  Approval is granted for a period of one year and may be 
renewed.  Access to the microdata is password controlled.  Remote data access is not 
offered.  While this method might allow access to higher density, virgin microdata, 
our memorandum of understanding with the national statistical agencies does not 
authorize this form of access. 

5   Technical Disclosure Controls   

Where the statistical agency entrusts the anonymization procedures to the IPUMS 
project, we impose additional technical privacy protections.  Technical controls are 
implemented on a subjective, ad-hoc basis as negotiated with each country for each 
census.  Contemporary microdata, say from a census taken less than ten years ago, 
require more technical disclosure controls than older, historical data.  

The most important technical control is the suppression of records by subsampling.  
All the values in the records outside the sample are suppressed.  Second, is the 
suppression of names and geographical detail, such as place of birth or residence.  
Each statistical authority balances the trade-off by instructing the IPUMS project as to 
the minimum threshold for identifiable geographical units for the most recent census.  
In the case of many African and Latin American countries, the threshold is commonly 
set at 20,000 inhabitants in the latest census.  Others place it as high as 100,000 
(United States) or in the most extreme case (Netherlands) all administrative 
geography is suppressed.  We are gratified that in some cases our statistical agency 
partners have reconsidered earlier decisions, offering higher precision samples 
(Mexico 1990 increased from one to ten percent) and greater detail.  In the case of 
Colombia, the geographical threshold, initially set at 100,000, was reduced to 20,000 
after Colombian geographers vigorously registered their dissatisfaction.  The 
Colombian statistical agency not only reduced the threshold, but also harmonized the 
identifiers so that all the census microdata samples for Colombia could be 
disseminated with a single set of geographical codes.   
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Table 1. IPUMS-International:  160 microdatasets entrusted by country, subsample precision 
and design For current data availability, see:  https://www.ipums.org/international 

Datasets entrusted by 
subsample precision 

10% ~5% <=4% Country 

Sub
sample
design 2000s 1990s 1980s 1970s 1960s 

Release 1, May 2003  (28 datasets) 
5 Brazil  IPUMS 2001 1991 1980 1970 1960 

1 China (only ‘82 ‘til now) 2000 1990 1982 1964 
3 1 *Colombia  IPUMS 1993 1985 1973 1964 

5 France (’99 in preparation)  IPUMS 1999 1990 1982 1975 1968, 2 
2 Kenya (’79 & ‘69 in process) IPUMS 1999 1989 1979 1969 

2 2 Mexico (’80 in recovery) IPUMS 2000 1990 1980 1970 1960 
5 United States  2000 1990 1980 1970 1960 
2 Vietnam IPUMS   1999 1989 1979   

Release 2, June 2006 (19 datasets) 
4 1 *Chile  IPUMS 2002 1992 1982 1970 1960 
3 1 *Costa Rica IPUMS 2000 1984 1973 1963 
4 1 *Ecuador IPUMS 2001 1990 1982 1974 1962 
2 South Africa 2001 1996, 1 1985, 0 1970 1960 
3 *Venezuela  IPUMS 2001 1990 1981 1971 1961 

Europe (27 datasets) 
4 Austria  IPUMS 2001 1991 1981 1971 1961 
1 Belarus  IPUMS   1999 1989  1979 1970 

Bulgaria (in process) 2001 1992 1985 1975 1965 
2 Czech Republic IPUMS 2001 1991 1980 1970 1961 

Germany (in process) 2001m 1991m 1987, 1 1970, 1 1961 
4 Greece IPUMS 2001 1991 1981 1971 1961 

4 Hungary  IPUMS 2001 1990 1980 1970 
Italy (in process) 2001 1991 1981 1971 1961 

3 Netherlands 2001m 1971 1960 
Poland (negotiating) 2001 1988 1978, 0 1960 

3 Portugal IPUMS 2001 1991 1981 1970 1960 
2 Romania (’77 in recovery) IPUMS 2001 1992 1977 1965 

Russia (negotiating) 2002 1989 1979 1970 
Slovenia  2001 1991 1981  

3 Spain  IPUMS 2001 1991 1981 1970 1960 
Switzerland (negotiating) 2000 1990 1980 1970 1960 
Turkey (in process) 2000 1990 1980, 5 1970, 5 1960, 5 

1 United Kingdom (in process) 2001 1991 1981 1971 1961 
North America and the Caribbean (27 datasets) 

3 Canada 2001 1991, 6 1981, 6 1971, 6 1961, 6 
1 1 2 *Dominican Republic  IPUMS 2003 1993 1981 1970 1960 
1 *El Salvador  IPUMS 1992 1971 1961 
2 3 *Guatemala  IPUMS 2002 1994 1981 1973 1964 
3 1 *Honduras  IPUMS 2000 1988 1974 1961 
1 *Nicaragua  IPUMS 2005 1995 1971 1963 
5 *Panama  IPUMS 2000 1990 1980 1970 1960 

4 Puerto Rico  2000 1990 1980 1970 1960 
South America (17 datasets) 

4 Argentina  IPUMS 2001 1991 1980 1970 1960 
3 *Bolivia  IPUMS 2001 1992 1976 
4 1 *Paraguay  IPUMS 2002 1992 1982 1972 1962 
1 *Peru IPUMS   1993 1981 1972 1961 
4 *Uruguay  IPUMS 1996 1985 1975 1963  



 IPUMS-International High Precision Population Census Microdata Samples 381 

Table 1. (continued) 

Africa (17 datasets) 
2 Egypt  IPUMS 1996 1986 1976 1964 
2 *Guinea, Conakry IPUMS 1996 1983 1960 

Lesotho (in process)  1996 1986 1976 1966 
1 *Madagascar  IPUMS 1993 
2 *Malawi  IPUMS 1997 1987 1977 1967 
3 *Mali  IPUMS 1998 1987 1976 
2 *Rwanda  IPUMS 2002 1991 
3 *Sudan  IPUMS 1993 1983 1973 
2 *Uganda  IPUMS 2002 1991 1980 1969 

Asia and Oceania (25 datasets) 
1 Armenia  IPUMS 2001 1989 1979 1970  

Bangladesh (in process) 2001 1991 1981 1974 1961 
1 Cambodia  IPUMS 1998 1962 
3 *Fiji Islands  IPUMS 1996 1986 1976 1966 

Indonesia (in process) 2000 1990 1980 1971 1961 
1 *Iraq  IPUMS 1997 1987 1977 1967 
4 Israel IPUMS   1995 1983 1972 1961,7 

4 Malaysia  2000 1991 1980 1970  1960 
1 *Mongolia  IPUMS 2000 1989 1979  1970 
3 *Pakistan  IPUMS   1998 1981 1973 1961 
1 Palestinian Authority IPUMS   1997 
3 2 *Philippines IPUMS 2000 1990 1980  1970 1960 
1 Turkmenistan IPUMS 1995 1989 1979  1970 

Note:  bold country = Agreement signed between University of Minnesota and National Statistical Authority 
Year = census; Bold year = microdata survive; * = 100% microdata entrusted to IPUMS; m = microcensus 
IPUMS systematic subsample design for private households: every nth household stratified by enumeration district. 

Datasets entrusted by 
subsample precision 

10% ~5% <=4% Country 

Sub
sample
design 2000s 1990s 1980s 1970s 1960s 

 

Additional protection is provided by randomly ordering the records and swapping 
the geographical identifiers of an undisclosed number of households.  This means that 
no one can state with certainty that an individual or household has been identified.  

In consultation with the national statistical office, some variables may be top-
coded, others may be subjected to global recoding, deletion of digits for hierarchical 
variables (occupation, industry, geography), or the suppression of a variable entirely.  
Decisions are made in consultation with the corresponding national statistical 
authority.  Sensitive variables, if any, may be suppressed entirely at the request of the 
statistical agency.  Weight variables are usually not an issue because most of the 
samples are implicitly stratified with a single weight.  We do not resort to either 
microaggregation or  Post Randomization (PRAM) methods.   

6   Countering Fear, Hysteria and Paranoia with Reason   

Privacy rights and statistical confidentiality of data are severely threatened by 
government, commercial firms, and individuals—but the threat to population census 
microdata is virtually nil.  Fear, hysteria and paranoia are incited among official 
statisticians by the widespread circulation of a “pizza commercial” developed by an 
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American civil liberties advocacy group [8] and advertisements offering private 
details of individuals and entities for a price.  What is striking is that none involve 
population census microdata.  Indeed, there is no market—black, grey, gold or 
otherwise—for anonymized census microdata samples for the purpose of identifying 
individuals or linking to other data sources.  Even in the United States, at a moment of 
shocking violations of individual rights by government agencies, there is not one 
allegation of access to census microdata by the Homeland Security Agency or other 
government agencies.  The reason is obvious.  Population census microdata samples, 
per se, do not contain sensitive or valuable political or commercial information, and 
without personal identifiers, statistical linkage is useless due to the high proportion of 
false positives [9]. 

7   Conclusion   

The goal of IPUMS is to restore balance to the privacy-quality tradeoff by providing 
high precision, anonymized samples to a restricted class of researchers.  In the 
IPUMS datasets identification is impossible for the vast majority of persons and 
positive identification is always impossible.  Given the wealth of information readily 
available from private sources in most countries, it would be foolhardy to turn to 
census microdata to attempt to uncover imprecise and outdated information about a 
particular individual.  We invite academics who need census microdata for research 
purposes to examine the offerings at the IPUMS website.   
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