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Preface

Light scattering media optics is a special branch of physical optics devoted to
studies of light propagation and scattering in inhomogeneous media. The subject
has a number of important applications including remote sensing of planetary
atmospheres and surfaces, medical diagnostics and image transfer in ocean and
atmosphere, to name a few.

Different aspects of light scattering are studied by physicists, chemists,
astronomers, biologists, and geophysicists. Often they use very different ap-
proaches, methodology, and even journals to present their results. Also different
notations are used (see Appendix). However, all light scattering optics (LSO)
studies have a single theoretical basis. This is the electromagnetic Maxwell
theory. In particular, the vector integro-differential radiative transfer equation
(RTE), often used as a way to solve the LSO problem at hand, can be derived
from the Maxwell theory under some simplifying assumptions. Parameters of this
equation like absorption and scattering coefficients and also the phase function
can be either measured directly or calculated using Maxwell equations.

The main problem is to understand how light interacts with inhomogeneous
media (e.g., with oceanic water or atmospheric air) and also to develop tech-
niques for monitoring properties of intervening media from the analysis of scat-
tered light.

There are a number of unsolved important physical problems in light scat-
tering media optics. They include, for instance, light scattering by nonspherical
scatterers and also light propagation in closely-packed media. The problem of
light propagation through inhomogeneous media with sparsely distributed spher-
ical scatterers has been solved in past century resulting in a number important
technological and remote sensing advances.

LIGHT SCATTERING REVIEWS aims to facilitate better collaboration
and interaction among researchers working with different applications of the
phenomenon of light scattering in random media.

This first volume of series is devoted mostly to fundamentals. It composed
of three sections: single light scattering, multiple light scattering, and also a
small section devoted to applications of light scattering in marine research and
combustion.

The first section starts with a paper by Olga Muñoz and Hester Volten pre-
senting experimental studies of intensity and polarization of light scattered by
irregularly shaped particles. This is a hot topic of modern light scattering media
optics research. Theoreticians must concentrate on the explanation of results
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obtained. This could lead to important progress in the field. Three theoretical
chapters follow this experimental paper. The first one by Ping Yang and Kuo
Nan Liou is devoted to theoretical investigations of light scattering by crystals.
In particular, optical properties of ice crystals are the main concern of their
work. However, techniques reviewed (e.g., geometrical optics and finite domain
difference method) can be also used in other branches of light scattering media
optics (e.g., in optics of photo-layers, luminiscent screens, and mineral aerosols).
Subodh Sharma concentrates on studies of optical properties of particles im-
mersed in media having refractive index similar to that of scatterers. In this
case light scattering occurs mostly in the forward direction and correspondent
theoretical derivations considerably simplify. The described theory has a number
of important applications in oceanic and medical optics. The section is closed
by the theoretical work of Victor Farafonov and Vladimir Ili’n devoted to the
review of three most popular methods used in modern light scattering theory,
namely: the separation of variables method (SVM), the extended boundary con-
ditions method (EBCM), and the point matching method (PMM). SVM was
used successfully for the solution of light scattering by a spherical particle more
than one century ago. This solution (so called Lorentz–Mie theory) is widely
used in many laboratories world-wide nowadays. Both SVM and EBCM were
used in the past to study the optical properties of spheroids and also particles of
more complex shapes. Correspondent programs are available over INTERNET.
Authors provide valuable hints for the understanding of interrelations and dif-
ferences between the computational methods. This helps to understand what
method is better suited for the problem at hand.

The second section is devoted to multiple light scattering theory. Anatoli
Borovoi reviews wave scattering theory. Also he demonstrates how the radia-
tive transfer equation routinely used in studies of multiple light scattering in
atmospheric and oceanic optics can be derived from first principles. Alexander
Kokhanovsky considers the asymptotic solution of the radiative transfer equa-
tion valid for optically thick media (e.g., terrestrial clouds). Corresponding equa-
tions have a number of important technological and remote sensing applications.
Gorodnichev, Kuzovlev, and Rogozkin consider the problem of polarized light
propagation through light scattering media with large particles. The influence
of the polarization state on the light beam propagation in a scattering medium
is studied in great detail. In conclusion of this section, Vladimir Rozanov intro-
duces the adjoint radiative transfer equation. He shows how this equation (in
combination with direct RTE) can be used for the solution of inverse problems
of radiative transfer theory.

The last section is devoted to applications. In particular, Alan Jones con-
siders the application of light scattering media in combustion. Vladimir Haltrin
concentrates on resent results obtained in marine optics. He gives comprehensive
tables of measured in situ phase functions. Corresponding tables are of a great
importance for a better understanding of image and radiative transfer in oceanic
water.

In conclusion, I would like to thank all contributors for the preparation of
brilliant work for this first volume of Light Scattering Reviews. This is especially
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valued because all authors are actively involved in modern light scattering media
optics research and hardly have any time to make substantial reviews as pre-
sented here. I also indebted to Clive Horwood, Publisher, for advice, patience,
and encouragement.

This work is dedicated to the memory of outstanding Russian mathematician
Tatyana A. Germogenova (10.04.1930-27.02.2005), who made extremely valuable
contributions to modern radiative transfer theory.

Bremen, Germany Alexander A. Kokhanovsky
October, 2005
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Single Light Scattering



1 Experimental light scattering matrices from
the Amsterdam Light Scattering Database

Olga Muñoz and Hester Volten

1.1 Introduction

In recent years a considerable number of experimental single scattering matrices
as functions of the scattering angle obtained with the light scattering facility lo-
cated at the University of Amsterdam [1], [2], have become available for samples
of randomly oriented small mineral particles in air with broad ranges of sizes
and shapes [3–8]. The particles samples are relevant in particular for astronomy
and studies of the Earth atmosphere, but the light scattering results may also
be applicable, e.g. in the paper and paint industry, or in the fields of chemistry
or biology.

To provide an incentive for further research and applications we have made
our experimental data more easily available for the light scattering community by
storing them in digital form in a database freely accessible through the Internet
in the Amsterdam Light Scattering Database (http://www.astro.uva.nl/scatter).
The heart of the database is the collection of tables of the measured scatter-
ing matrix elements listed as functions of the scattering angle at two different
wavelengths [9].

Scattering matrices contain all polarizing properties of the samples of ran-
domly oriented particles and play an important role in radiative transfer pro-
cesses. If the incident light is unpolarized only a few elements of the scattering
matrix (the first column) suffice to fix the flux and state of polarization of the
light scattered once by the sample. But the complete scattering matrix is in-
dispensable for accurate multiple scattering calculations, since even unpolarized
light becomes polarized after being scattered.

In this chapter we summarize the main concepts of light scattering by mineral
aerosols and of the experimental setup located at the University of Amsterdam.
Afterward we present the light scattering database and a summary of some of the
main results obtained with our measurements until now. All measurements pre-
sented in this chapter can be found in the Amsterdam Light Scattering Database.
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1.2 Light scattering theory

The intensity and state of polarization of a beam of light can be described by
a column vector I = {I,Q, U, V }, the so-called Stokes vector (see, for example,
[10], Sect. 5.12, and [11]). The Stokes parameter I is proportional to the total
flux of the beam. The Stokes parameters Q and U describe the state of linear
polarization and V describes the state of circular polarization.

The Stokes vector of the incident beam and scattered beam are related by a
4× 4 matrix, the so called scattering matrix, for each scattering angle as follows
([10], Sect. 5.22):⎛

⎜⎜⎝
Isc
Qsc
Usc
Vsc

⎞
⎟⎟⎠=

λ2

4π2D2

⎛
⎜⎜⎝
F11 F12 F13 F14
F21 F22 F23 F24
F31 F32 F33 F34
F41 F42 F43 F44

⎞
⎟⎟⎠
⎛
⎜⎜⎝
Iin
Qin
Uin
Vin

⎞
⎟⎟⎠ , (1.1)

where the subscripts in and sc refer to the incident and scattered beams, λ is
the wavelength, and D is the distance from the sample to the detector.

The 16 elements of the scattering matrix, Fij , with i, j = 1 to 4, depend on
the physical properties of the particles, the wavelength of the radiation and the
direction of the scattered light, which, for randomly oriented particles, is suffi-
ciently described by means of the scattering angle, θ. When randomly oriented
particles and their mirror particles are present in equal numbers in the ensemble
the scattering matrix has the simple form [10]:

F(θ) =

⎛
⎜⎜⎝
F11(θ) F12(θ) 0 0
F12(θ) F22(θ) 0 0

0 0 F33(θ) F34(θ)
0 0 −F34(θ) F44(θ)

⎞
⎟⎟⎠ . (1.2)

For convenience, we divide all scattering matrix elements (except F11(θ) itself)
by F11(θ), i.e., we consider Fij(θ)/F11(θ), with i, j = 1 to 4 except for i = j = 1.
Further, the values of F11(θ) are normalized so that they equal one at θ = 30
degrees.

For unpolarized incident light, F11(θ) is proportional to the flux of the
scattered light and is called scattering function or phase function. The ratio
−F12(θ)/F11(θ) equals the degree of linear polarization of the scattered light if
the incident light is unpolarized and F13(θ) = 0. Note further that we must have
|Fij(θ)/F11(θ)| ≤ 1 [see, for example, [12]].

1.3 Experimental method

An schematic picture of experimental setup used to measure the scattering ma-
trix elements of the aerosol samples is shown in Fig. 1.1. The setup is similar to
that developed by [13] and is a revised and improved version of that described
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Fig. 1.1. Schematic picture of the experimental setup; P, polarizer; A, polarization
analyzer; Q, quarter-wave plate; EOM, electro-optic modulator.

by [14], [15], and [16]. Here we briefly summarize the main characteristics of the
setup. A more comprehensive description can be found in [1].

Light from a linearly polarized continuous wave He-Ne laser (λ = 632.8 nm,
5 mW) or He-Cd laser (λ = 441.6 nm, 40 mW) passes through a polarizer
oriented at an angle γP and an electro-optic modulator oriented at an angle γM

(angles of optical elements are angles between their optical axes and the reference
plane, measured counterclockwise when looking in the direction of propagation
of the light). The modulated light is subsequently scattered by randomly oriented
particles located in a jet stream produced by an aerosol generator. The particles
of a particular mineral sample are brought into the jet stream as follows. A
compacted mass of powder is loaded into a cylindrical feed stock reservoir. A
piston pushes the powder onto a rotating brush at a certain speed. An air stream
carries the aerosol particles of the brush through a tube to a nozzle above the
scattering volume. In Fig. 1.2 we present a schematic picture of the aerosol

Fig. 1.2. Schematic picture of the aerosol generator. A piston in the cylindrical feed
stock reservoir with a diameter of 10 mm pushes powder onto a rotating brush at a
certain speed expressed in mm/h. An air stream carries the aerosol particles of the
brush through a tube to a nozzle right above the scattering volume.
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generator. Thus, no vials, vessels, or cuvettes are needed to contain the sample
at the point where the scattering takes place. This is a great advantage, since
anything between the particles and the detector decreases the accuracy of the
measurements and limits the angular range. The scattered light passes through a
quarter-wave plate oriented at an angle γQ and an analyzer oriented at an angle
γA (both optional) and is detected by a photomultiplier tube that moves along
a ring in steps of 5 degrees, or less if a higher angular resolution is required. The
detector covers a scattering angle range from approximately 3 degrees (nearly
forward scattering) to 175 degrees (nearly backward scattering).

The modulator introduces a modulation in time of the polarization of the
light before scattering. The modulator in the setup, in combination with lock-in
detection, increases the accuracy of the measurements and allows determination
of several elements of the scattering matrix from the detector signal. For this
purpose, we use the linear Pockels effect, that is, the phenomenon that certain
crystals become birefringent when an electric field is applied. In our case, the
voltage over the crystal varies sinusoidally in time. Since the response to voltage
of the birefringent crystal is also sinusoidal, the resulting phase shift function is a
sine of a sine and can be described by Bessel functions of the first kind (JK(x)).
If the amplitude φ0 of the varying phase shift is chosen appropriately, the flux
reaching the detector is [1].

Idet(θ) = c[DC(θ) + 2J1(φ0)S(θ) sinωt+ 2J2(φ0)C(θ) cos 2ωt+ ...], (1.3)

where J1(φ0) and J2(φ0) are known constants, and c is a constant that depends
on the optical arrangement. The modulation angular frequency ω is 1 kHz. The
coefficients DC(θ), S(θ), and C(θ) contain elements of the scattering matrix (see
Table 1.1) [1, 16].

By using lock-in detection the constant part of the detector signal containing
cDC(θ) and each of the varying parts containing cS(θ) and cC(θ) are separated.
Subsequently, we divide cS(θ) and cC(θ) by cDC(θ), belonging to the same
configuration, which eliminates c for these ratios. A detailed description on how

Table 1.1. Configurations of the orientation angles, γP , γM , γQ, and γA of respectively
the polarizer, the modulator, the quarter-wave plate, and the analyzer used during the
measurements. The coefficients DC(θ), S(θ), and C(θ) correspond to the dc, sin ωt and
cos ωt component of the photomultiplier signal, respectively.

Configuration γP γM γQ γA DC(θ) S(θ) C(θ)

1 0o -45o – – F11 −F14 F12

2 0o -45o – 0o F11 + F12 −F14 − F24 F12 + F22

3 0o -45o – 45o F11 − F13 −F14 − F34 F12 − F23

4 0o -45o 0o 45o F11 + F14 −F14 − F44 F12 + F24

5 45o 0o – – F11 −F14 F13

6 45o 0o – 0o F11 + F12 −F14 − F24 F13 + F23

7 45o 0o – 45o F11 − F13 −F14 − F34 F13 + F33

8 45o 0o 0o 45o F11 + F14 −F14 − F44 F13 − F34
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Fig. 1.3. Photograph of the experimental setup.

to obtain the different scattering matrix ratios is given in [1]. In Fig. 1.3 we
present a photograph of the experimental setup. On the left we can see the
detector that moves along the ring. The detector on the right remains on the
same spot and is called the monitor. In the middle we see the nozzle of the
aerosol generator, and the bright spot is where the dust particles cross the laser
beam from the HeNe laser visible at the back.

1.3.1 Calibration measurements

The alignment of the experimental setup is tested by comparing results of wa-
ter droplet measurements at 441.6 nm and 632.8 nm to results of Lorenz–Mie
calculations [17] for homogeneous spherical particles. The water droplets are
produced by a nebulizer. For the Lorenz–Mie calculations we used a lognor-
mal number distribution having reff = 1.1 µm, veff= 0.25 (see section 1.4.4 and
[18] for the definition of reff and veff), and a complex refractive index equal
to 1.33 − i0.00. Since the values for reff and veff of the water droplets are not
known, they are chosen so that the differences between measured and calculated
scattering matrix elements as a function of scattering angle are minimized.

In Fig. 1.4 we present the measured and calculated scattering matrices as
functions of the scattering angle for water droplets at 441.6 and 632.8 nm. The
results of the F11(θ) measurements and calculations are plotted on a logarithmic
scale. The measured and calculated phase functions are normalized to 1 at 30◦.
The other elements shown in Fig. 1.4 are normalized to F11. We refrained from
showing the four element ratios F13(θ)/F11(θ), F14(θ)/F11(θ), F23(θ)/F11(θ),
and F24(θ)/F11(θ), since we verified that these ratios do not differ from zero by
more than the error bars, as is in accordance with Lorenz–Mie theory.
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When the results of the water droplet measurements are compared with the
results of Lorenz–Mie calculations (see Fig. 1.4), we find that there is excellent
agreement over the entire angle range for most scattering matrix elements. Note
that the measured ratios F33(θ)/ F11(θ), and F44(θ)/F11(θ) are found to be
identical, which is in accordance with Lorenz–Mie theory. The largest systematic
deviation from Lorenz–Mie theory, albeit only of a few percent, is found for
F22(θ)/F11(θ). This may be due to an accumulation of small alignment errors in
the experiment [19]. We note that systematic errors, for example due to small
inaccuracies in the alignment of the optical elements, are not accounted for in
the error bars.
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Fig. 1.4. Measured scattering matrix elements as functions of the scattering angle
for water droplets. Circles denote the measurements at 632.8 nm, squares those at
441.6 nm, together with their error bars. Solid and dashed lines are results of Lorenz–
Mie calculations for 632.8 nm and 441.6 nm, respectively.
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1.4 Database

All data in the database have been previously published in scientific journals
predominantly in graphical form. The database contains the following data for
several samples of mineral aerosols in random orientation:

– Tables and figures of scattering matrix elements as functions of the scattering
angle from 5 to 173◦ at two wavelengths, 441.6 nm and 632.8 nm.

– Tables and figures of size distributions as measured with a laser diffraction
method.

– Scanning electron microscope (SEM) images of the particles that are indica-
tive of their shape characteristics.

– Information about the origin, color, composition and/or the complex refrac-
tive index of the samples, when available.

We provide information on the accuracy of the data whenever available. We
update this database regularly with new measured scattering matrix results.

1.4.1 Samples

As mentioned in the Introduction, the studied samples comprise a wide range in
origin, sizes, particle shapes, and composition. Some have been collected from
the ground in powdered form such as the volcanic ashes. These were all collected
after the eruption at variable distances from their corresponding volcano. Others
were obtained by crushing larger rocks (e.g. feldspar, quartz, olivine, allende
meteorite particles, Pinatubo volcanic ash). Several samples have been sieved to
obtain different size distributions (e.g. olivine) or to remove particles larger than
about 100 µm in radius (e.g. Mount St. Helens volcanic ash). Here we use the
data concerning the Mount St. Helens volcanic ash to illustrate the contents of
the database.

1.4.2 Scanning electron microscope images

To give an indication of the shapes of the particles we provide one or two SEM
images in the database per sample. For example, Fig. 1.5 shows two scanning
electron microscope images of the Mount St. Helens sample. Such images may
for example be compared to images of particles collected directly from the at-
mosphere or in space [20] or be used for shape analysis, e.g., [21–25]. We like to
note that the SEM images per sample in the database are not necessarily rep-
resentative of the sizes of the particles, mainly because they range over several
orders of magnitude, in most cases, so that images with lower magnification will
be biased toward showing only larger particles, and vice versa.
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Fig. 1.5. Scanning Electron Microscope Picture of Mount St. Helens. The white bars
denote the scale of the pictures.

1.4.3 Particle composition and refractive indices

Samples of natural small particles are often composed of a variety of different
minerals. Although the refractive indices at visible wavelengths of these con-
stituent minerals may be known, the refractive index for the mixture may not
be easy to derive from these values. For cases where the refractive index is not
accurately known, we provide in the database a qualitative estimate of the min-
eral composition, and an estimate of the real part of the refractive index Re(m)
based on values found in the literature for the constituent minerals. In Table 1.2
we also list estimates of the real parts of the refractive index of all samples
mentioned in this chapter. Less information is usually available for the imagi-
nary part of the refractive index Im(m), because the natural variability within
a mineral can be quite large.

For example, the main constituent minerals of the Mount St. Helens sample
are silicate glass (SiO2), and crystallized silicate minerals phases including pla-
gioclase feldspar, pyroxenes, and amphibole. Silicate glasses with compositions
between 57% and 78% SiO2 have real parts of the refractive indices, n, at visible
wavelengths which vary inversely from 1.56 at 57% SiO2 to 1.48 at 77% SiO2
[26]. Therefore we estimate the real part of the refractive index, n, of our Mount
St. Helens sample to be between those values. Based on absorption measure-
ments on ashes from the May 18, 1980, Mount St. Helens eruption performed
by Patterson [27], we estimate the imaginary part of the refractive index at red
wavelengths to be 0.0018.

1.4.4 Size distributions

Apart from shape and composition, size is a key property in determining the light
scattering properties of small particles. For the samples of randomly oriented par-
ticles in the database, projected-surface-area distributions have been measured
to determine the sizes of the particles using a Fritsch laser particle sizer [28] based
on diffraction. This particle sizer provides projected surface-area equivalent dis-
tributions s(r), where r is the radius of a projected-surface-area equivalent
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Table 1.2. Overview of properties of the aerosol samples used in this chapter.

Sample reff veff Re(m) Color
(µm)

Mount St. Helens 4.1 9.5 1.5–1.6 light brown

Feldspar 1.0 1.0 1.5–1.6 light pink

Red clay 1.5 1.6 1.5–1.7 red brown

Quartz 2.3 2.3 1.54 white

Pinatubo 3.0 12.3 1.5–1.6 light grey
volcanic ash

Loess 3.9 2.6 1.5–1.7 yellow brown

Lokon 7.1 2.6 1.5–1.6 dark brown
volcanic ash

Sahara sand 8.2 4.0 1.5–1.7 yellow brown

Fly-ash 3.7 10.9 1.5–1.7 grey brown

Olivine L 3.8 3.7 1.62 white

Olivine M 2.6 5.0 1.62 white

Olivine S 1.3 1.8 1.62 white

Hematite 0.4 0.6 3.0 dark red

sphere. Other distributions can be derived from these projected-surface-area dis-
tributions. Number distributions, n(r), are often required for numerical applica-
tions and volume distributions v(r), are common in literature about atmospheric
particles. To plot these three size distributions in a convenient way a change of
variables from r to log r is often performed, so that three different types of size
distributions are formed. In the database as well as in this paper log r always
refers to r expressed in micrometers.

To characterize the sizes of the particles of a sample with a few parameters
we may use the effective radius reff and effective variance veff defined as follows
[18]:

reff =

∫∞
0 rπr2n(r)dr∫∞
0 πr2n(r)dr

, (1.4)

veff =

∫∞
0 (r − reff)2πr2n(r)dr
r2eff
∫∞
0 πr2n(r)dr

, (1.5)

where n(r)dr is the fraction of the total number of projected surface equiva-
lent spheres with radii in the size range [r, r+dr] per unit volume of space. In
Table 1.2 we present the reff and veff of all samples mentioned in this chapter.

In Fig. 1.6, we plot examples of the above mentioned size distributions for
the Mount St. Helens sample. In this figure, S(log r)d(log r) is the relative con-
tribution of projected surface equivalent spheres with radii in the size range from
log r to log r + d(log r) to the total projected-surface-equivalent spheres with
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Fig. 1.6. Measured normalized projected-surface distribution S(log r), and correspond-
ing normalized number N(log r), and volume distributions V (log r) of the Mount St.
Helens volcanic ash sample. The distributions are plotted as functions of r in a logarith-
mic scale, where the radius of the projected surface-area-equivalent sphere is expressed
in micrometers. The area under each curve equals unity.

radii in the size range from log r to log r+ d(log r) to the total projected area of
all particles per unit volume. N(log r)d(log r) and V (log r)d(log r) are the rel-
ative number and volume of projected-surface-equivalent spheres with radii in
the interval d log(r). These distributions were deduced from S(log r).

In the database, we present tables with the normalized size distributions cor-
responding to the size curves presented in Fig. 1.6 for the Mount St. Helens
sample as an example. The number distribution N(log r), the projected-surface-
area distribution S(log r), and the volume distribution V (log r) may be converted
to, respectively, the number distribution n(r), the projected-surface-area distri-
bution s(r), and the volume distribution v(r), as suggested in the database (see
also [9]). We note that some size distribution tables have been published in [29],
but there V (log r) was normalized to 100% instead of 1.

1.4.5 Measurements

For the majority of samples, the measurements have been performed at two
different wavelengths: 441.6 and 632.8 nm. In some cases, however, only mea-
surements at one wavelength are available. The main reason for this is that
sometimes only a small amount of sample is available for the measurements.
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Fig. 1.7. Measured scattering matrix elements as functions of the scattering angle at
632.8 nm for the Mount St. Helens sample. Errors are indicated by bars or are within
the size of the symbols.

That is the case for instance for the Mount St. Helens sample. In Fig. 1.7 we
present the complete measured scattering matrix as a function of the scattering
angle at 632.8 nm, for the Mount St. Helens sample. In the database we also
present tables of the scattering matrix elements as they are given in Table 1.3 for
the Mount St. Helens sample, corresponding to the curves presented in Fig. 1.7.
The measurements are given together with their experimental errors.

All F11(θ) functions are plotted on a logarithmic scale and are normalized
to 1 at 30 degrees. The other elements are shown relative to the corresponding
F11(θ). In all cases we refrained from plotting the four element ratios F13(θ),
F14(θ), F23(θ), and F24(θ), since we verified experimentally that these ratios do
not differ from zero more than the error bars. Measurements were performed at
intervals of 5 degrees for θ in the range 5 degrees-170 degrees and at intervals of
1 degree for θ from 170 degrees to 173 degrees. The reliability of all measured
scattering matrices presented in the database is investigated by applying the
Cloude (coherency) matrix as described by [12].
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Table 1.3. Measured scattering matrix elements as functions of scattering angle (in
degrees), corresponding to curves presented in Fig. 1.7 for the Mount St. Helens sample
at 632.8 nm. The calculated uncertainties in the measured values are also given.

θ F11 −F12/F11 F22/F11 F33/F11 F34/F11 F44/F11

3 51.060 ± 9.091 -0.001 ± 0.001 0.967 ± 0.003 0.958 ± 0.002 -0.006 ± 0.012 0.964 ± 0.086
4 32.829 ± 5.377 -0.002 ± 0.001 0.963 ± 0.002 0.957 ± 0.006 -0.008 ± 0.010 0.970 ± 0.155
5 22.560 ± 3.426 -0.002 ± 0.002 0.959 ± 0.004 0.950 ± 0.008 -0.017 ± 0.010 0.958 ± 0.066
6 16.321 ± 2.056 -0.001 ± 0.001 0.955 ± 0.004 0.949 ± 0.016 -0.015 ± 0.011 0.946 ± 0.166
7 12.425 ± 1.409 0.001 ± 0.001 0.968 ± 0.002 0.949 ± 0.007 -0.011 ± 0.010 0.943 ± 0.213
8 9.675 ± 0.908 0.002 ± 0.003 0.965 ± 0.004 0.946 ± 0.003 -0.012 ± 0.009 0.920 ± 0.066
9 7.831 ± 0.541 0.004 ± 0.001 0.963 ± 0.002 0.941 ± 0.010 -0.011 ± 0.009 0.915 ± 0.373

10 6.555 ± 0.450 0.003 ± 0.002 0.958 ± 0.003 0.935 ± 0.007 -0.012 ± 0.009 0.896 ± 0.057
15 3.245 ± 0.091 0.006 ± 0.001 0.943 ± 0.004 0.920 ± 0.007 -0.016 ± 0.009 0.831 ± 0.042
20 1.987 ± 0.017 0.008 ± 0.003 0.928 ± 0.004 0.890 ± 0.006 -0.005 ± 0.010 0.781 ± 0.030
25 1.373 ± 0.011 0.009 ± 0.004 0.904 ± 0.007 0.871 ± 0.010 -0.003 ± 0.010 0.770 ± 0.079
30 1.000 ± 0.000 0.012 ± 0.003 0.891 ± 0.010 0.845 ± 0.016 0.009 ± 0.016 0.720 ± 0.097
35 0.757 ± 0.007 0.016 ± 0.005 0.872 ± 0.011 0.815 ± 0.012 0.028 ± 0.014 0.688 ± 0.053
40 0.590 ± 0.008 0.025 ± 0.005 0.842 ± 0.011 0.769 ± 0.007 0.021 ± 0.011 0.636 ± 0.060
45 0.477 ± 0.007 0.032 ± 0.005 0.818 ± 0.007 0.732 ± 0.009 0.038 ± 0.009 0.610 ± 0.054
50 0.395 ± 0.004 0.043 ± 0.003 0.784 ± 0.004 0.685 ± 0.012 0.056 ± 0.012 0.567 ± 0.050
55 0.331 ± 0.006 0.055 ± 0.003 0.748 ± 0.005 0.639 ± 0.002 0.078 ± 0.013 0.534 ± 0.052
60 0.284 ± 0.006 0.068 ± 0.007 0.711 ± 0.011 0.581 ± 0.015 0.083 ± 0.012 0.476 ± 0.096
65 0.249 ± 0.006 0.078 ± 0.005 0.675 ± 0.008 0.538 ± 0.011 0.103 ± 0.007 0.442 ± 0.022
70 0.222 ± 0.004 0.089 ± 0.006 0.643 ± 0.009 0.469 ± 0.004 0.116 ± 0.010 0.435 ± 0.017
75 0.200 ± 0.006 0.100 ± 0.004 0.598 ± 0.011 0.426 ± 0.018 0.128 ± 0.009 0.397 ± 0.079
80 0.183 ± 0.005 0.111 ± 0.005 0.564 ± 0.010 0.363 ± 0.007 0.133 ± 0.005 0.366 ± 0.039
85 0.168 ± 0.005 0.118 ± 0.005 0.528 ± 0.011 0.277 ± 0.037 0.129 ± 0.008 0.338 ± 0.086
90 0.156 ± 0.004 0.120 ± 0.006 0.491 ± 0.011 0.250 ± 0.010 0.139 ± 0.012 0.305 ± 0.067
95 0.145 ± 0.005 0.129 ± 0.006 0.457 ± 0.008 0.177 ± 0.012 0.141 ± 0.006 0.279 ± 0.033

100 0.136 ± 0.005 0.124 ± 0.009 0.420 ± 0.010 0.137 ± 0.025 0.156 ± 0.010 0.238 ± 0.052
105 0.130 ± 0.004 0.126 ± 0.006 0.401 ± 0.007 0.057 ± 0.016 0.136 ± 0.013 0.192 ± 0.026
110 0.122 ± 0.004 0.125 ± 0.013 0.380 ± 0.014 0.002 ± 0.013 0.121 ± 0.013 0.176 ± 0.029
115 0.118 ± 0.004 0.115 ± 0.010 0.356 ± 0.011 -0.043 ± 0.016 0.141 ± 0.012 0.132 ± 0.034
120 0.113 ± 0.005 0.098 ± 0.011 0.334 ± 0.011 -0.095 ± 0.027 0.119 ± 0.015 0.112 ± 0.034
125 0.110 ± 0.003 0.090 ± 0.010 0.322 ± 0.013 -0.124 ± 0.023 0.099 ± 0.014 0.063 ± 0.035
130 0.108 ± 0.002 0.073 ± 0.016 0.312 ± 0.019 -0.176 ± 0.019 0.070 ± 0.017 0.012 ± 0.038
135 0.107 ± 0.002 0.063 ± 0.007 0.318 ± 0.008 -0.217 ± 0.003 0.057 ± 0.013 0.012 ± 0.024
140 0.106 ± 0.002 0.043 ± 0.010 0.315 ± 0.011 -0.221 ± 0.019 0.067 ± 0.011 -0.018 ± 0.020
145 0.107 ± 0.003 0.034 ± 0.007 0.325 ± 0.008 -0.282 ± 0.022 0.043 ± 0.013 -0.035 ± 0.050
150 0.108 ± 0.004 0.013 ± 0.009 0.342 ± 0.019 -0.306 ± 0.020 0.037 ± 0.022 -0.062 ± 0.023
155 0.107 ± 0.005 0.010 ± 0.009 0.363 ± 0.010 -0.353 ± 0.008 0.025 ± 0.019 -0.086 ± 0.028
160 0.111 ± 0.008 -0.006 ± 0.008 0.392 ± 0.012 -0.346 ± 0.024 0.008 ± 0.008 -0.103 ± 0.040
165 0.114 ± 0.009 -0.020 ± 0.015 0.412 ± 0.027 -0.364 ± 0.022 0.001 ± 0.006 -0.160 ± 0.026
170 0.120 ± 0.009 -0.018 ± 0.010 0.412 ± 0.012 -0.365 ± 0.024 -0.014 ± 0.042 -0.144 ± 0.029
171 0.122 ± 0.010 -0.023 ± 0.011 0.418 ± 0.014 -0.388 ± 0.011 -0.005 ± 0.014 -0.151 ± 0.035
172 0.124 ± 0.011 -0.019 ± 0.010 0.423 ± 0.013 -0.394 ± 0.007 -0.029 ± 0.013 -0.153 ± 0.039
173 0.126 ± 0.011 -0.017 ± 0.008 0.425 ± 0.012 -0.418 ± 0.021 -0.016 ± 0.031 -0.152 ± 0.025

1.5 Applications and examples

From the experimental data it has become clear that particle shape is highly
important in determining the overall light scattering behavior of these samples.
This has important implications. For example, it confirms that the use of Mie
[17] calculations to interpret data involving light scattering by irregular particles
in such different media as comets, circumstellar and interstellar matter, or the
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Earth atmosphere, is often unlikely to give accurate results (see, for example, [30–
34]). In this section we present first a summary of experimental results that show
us the typical scattering behavior of irregular compact mineral particles with
moderate refractive indices. Also the refractive indices and sizes of the particles
play a role in determining the scattering behavior of irregular mineral particles.
Some of our experiments have been devoted to distinguishing the size effect on
the scattering behavior from the shape and color effects and vice versa. In the
last three subsections of this chapter we give a summary of those experiments.
All measurements presented in this chapter are included in the Amsterdam Light
Scattering Database.

1.5.1 Mineral aerosol particles with moderate refractive indices

Volten et al. [3] presented measured scattering matrices as functions of the scat-
tering angle for seven distinct irregularly shaped mineral aerosol samples in
random orientation. The measurements were performed in the scattering angle
range 5–173 degrees and at wavelengths of 441.6 nm and 632.8 nm. The aerosol
samples, i.e., feldspar, red clay, quartz, loess, Pinatubo and Lokon volcanic ash,
and Sahara sand, represent a broad range in size distributions with effective
radii varying between 1.0 and 8.2 µm. In Table 1.2 we present the reff and veff

a b

c d

Fig. 1.8. SEM photographs of (a) feldspar, (b) Sahara sand, (c) fly-ash, and (d)
hematite White bars in photographs (a) and (d), denote 10 µm, and 100 µm in (b)
and (c).
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Fig. 1.9. Scattering matrix elements F11(θ), normalized to 1 at 30 degrees, and element
ratios −F12(θ)/F11(θ), F22(θ)/F11(θ), F33(θ)/F11(θ), F34(θ)/F11(θ), F44(θ)/F11(θ) for
feldspar. Circles denote the measurements at 441.6 nm, squares those at 632.8 nm. The
measurements are presented together with their error bars.

of the seven samples. Moreover, all samples have moderate real parts of the
refractive index (1.5≤ n ≤1.7) (see Table 1.2). The imaginary parts of the re-
fractive index range between 0 and 10−3. As examples we present in Figs. 1.9 and
1.10 the measured scattering matrix elements F11(θ), as well as element ratios
−F12(θ)/F11(θ), F22(θ)/F11(θ), F33(θ)/F11(θ), F34(θ)/F11(θ), F44(θ)/F11(θ) for
feldspar and Sahara sand, the two samples with the smallest and the largest
effective radius, respectively. The measurements have been performed at 441.6
and 632.8 nm. In Fig 1.8 we present SEM pictures of these two samples (top
left and right panels). As shown in those images, these type of particles have
so-called compact irregular shapes.

In all cases the F11(θ) curves measured are smooth functions of the scattering
angle, showing a steep forward peak and virtually no structure at side-scattering
and backscattering angles. The shapes are similar for all aerosol samples and are
in agreement with the general behavior exhibited by nonspherical particles [35].

The measured element ratios −F12(θ)/F11(θ), which in our case equal the
degrees of linear polarization for unpolarized incident light, are all found to be
similarly bell-shaped and show a negative branch at very large scattering angles.
It is interesting to note that such negative polarization has also been observed
in a variety of solar system bodies such as meteorites and comets.
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Fig. 1.10. Scattering matrix elements F11(θ), normalized to 1 at 30 degrees,
and element ratios −F12(θ)/F11(θ), F22(θ)/F11(θ), F33(θ)/F11(θ), F34(θ)/F11(θ),
F44(θ)/F11(θ) for Sahara sand. Circles denote the measurements at 441.6 nm, squares
those at 632.8 nm. The measurements are presented together with their error bars.

The measured values of F22(θ)/F11(θ) for all seven samples decrease smoothly
from close to unity in the forward direction to a minimum in the side-scattering
range and then increase again toward backscattering angles. Often, F22(θ)/F11(θ)
is used as a measure of nonsphericity, because this ratio equals unity at all scat-
tering angles for homogeneous optically nonactive spheres. However, for irregular
samples, this ratio is affected not only by irregularity but also by particle size and
complex refractive index. For instance, the Sahara sand sample, which contains
the largest particles, exhibits the deepest minimum, and the feldspar sample,
which contains the smallest particles, displays the shallowest minimum of the
seven studied samples.

Unlike for homogeneous optically nonactive spheres, F44(θ)/F11(θ) and
F33(θ)/F11(θ) are substantially different from each other. Comparison of these
two ratios shows that in most cases, F33(θ)/F11(θ) is zero at a smaller scattering
angle than F44(θ)/F11(θ) and that F33(θ)/F11(θ) exhibits in all cases a lower
minimum than F44(θ)/F11(θ).

The experimentally determined scattering functions and element ratios as
functions of the scattering angle for the seven samples of irregular compact min-
eral particles with moderate refractive indices are generally found to agree well
in their overall trends and behavior, independent of the wavelength considered.
This similarity in the scattering behavior justified the construction of an av-
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erage aerosol scattering matrix for irregular particles with moderate refractive
indices. This average was obtained from the seven samples of irregularly shaped
mineral particles: feldspar, red clay, quartz, Pinatubo volcanic ash, loess, Lokon
volcanic ash, and Sahara sand at both wavelengths (441.6 and 632.8 nm). The
aerosol average scattering matrix is displayed in Fig. 1.11 by circles. The area
between the highest and lowest measured values are indicated in grey shading.
The aerosol average scattering matrix was obtained as follows. First, the aver-
age aerosol phase function, F11(θ) was determined by averaging the 14 phase
functions at 441.6 and 632.8 nm presented by Volten et al. [3]. Since no scatter-
ing cross-sections are available, the phase functions were averaged giving them
equal weights. Thus, the normalization to unity at 30 degrees also holds for the
average aerosol phase function. Second, each measured element ratio was mul-
tiplied with its corresponding normalized phase function. Third, for each pair
of indices (i, j) the elements Fi,j of the average aerosol scattering matrix were
obtained by averaging the 14 corresponding elements. Finally, division by the
average aerosol phase function yielded the element ratios of the average aerosol
scattering matrix. The resulting average matrix satisfies the Cloude test at each
measured scattering angle. The average aerosol scattering matrix may be used
for the interpretation of, for example, remote sensing results of the Earth at-

Fig. 1.11. Average aerosol scattering matrix element F11(θ), normalized to 1 at 30 de-
grees, and element ratios −F12(θ)/F11(θ), F22(θ)/F11(θ), F33(θ)/F11(θ), F34(θ)/F11(θ),
F44(θ)/F11(θ) averaged over all measurements, i.e., for all aerosol samples at both
wavelengths (circles). The domains occupied by the measurements presented here are
indicated in grey shading.
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mosphere when it is not a priori known what is the composition or size of the
irregular particles (e.g. desert dust particles) [34].

Expanding on this method, we also devised an average volcanic ash scattering
matrix, using scattering matrix elements as functions of the scattering angle of
nine volcanic ash samples presented by Muñoz et al. [6,7], and Volten et al. [3] at
a wavelength of 632.8 nm. The randomly oriented particles were taken from seven
samples of volcanic ashes corresponding to four different volcanic eruptions: the
May 18, 1980, Mount St. Helens eruption; the 1989–1990 Redoubt eruption; and
the August 18, and September 17, 1992, Mount Spurr eruption plus measured
scattering matrix elements presented by Volten et al. [3] for Lokon and Muñoz et
al. [6] for Pinatubo volcanic ashes. The measured scattering matrix elements for
the nine volcanic ash samples at 632.8 nm were found to be confined to rather
limited domains when plotted as functions of the scattering angle following the
general trends presented by irregular mineral particles. This similarity in the
scattering behavior justified the construction of an average scattering matrix for
volcanic ash particles as a function of the scattering angle.

In Fig. 1.12 we present the average volcanic scattering matrix element F11(θ)
and element ratios −F12(θ)/F11(θ), F22(θ)/F11(θ), F33(θ)/F11(θ), F34(θ)/F11(θ),
and F44(θ)/F11(θ) together with the domains occupied by the measurements
used to obtain the average.

Fig. 1.12. Average volcanic scattering matrix element F11(θ), and element ratios
−F12(θ)/F11(θ), F22(θ)/F11(θ), F33(θ)/F11(θ), F34(θ)/F11(θ), F44(θ)/F11(θ) (circles).
The domains occupied by the measurements used to obtain the average are indicated
in grey shading.
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Although detailed differences are present in the measured scattering matrices
used to construct the average volcanic scattering matrix and it is preferable to
take such differences into account in applications involving light scattering by
mineral particles, we consider it justified to construct the average for use, for
example, in studies of climatic effects of a volcanic eruption when the actual
properties of the volcanic ash are not known.

1.5.2 Shape effect

In section 1.5.1 we have considered particles with a more or less compact struc-
ture (see Figs 1.5 and 1.8) and moderate refractive indices. In this section we
present results for a sample consisting of aggregates of nearly spherical particles:
fly ash (see Fig. 1.8, bottom left panel). This sample originates from the inor-
ganic fraction, mainly clays, of the combustion of powdered coal in an electric
power plant. Its main components are SiO2 and Al2O3. This sample has a reff
of 3.7 µm and veff of 10.9 (see Table 1.2).

We present in Fig. 1.13 results of the experimentally determined scattering
matrices of fly-ash at 441.6 and 632.8 nm [5]. The fly-ash sample shows quite

Fig. 1.13. Measured scattering matrix elements F11(θ), and element ratios
−F12(θ)/F11(θ), F22(θ)/F11(θ), F33(θ)/F11(θ), F34(θ)/F11(θ), F44(θ)/F11(θ) for fly ash
at 441.6 and 632.8 nm. The data are shown together with their error bars. In case no
errors are shown they are smaller than the symbols. Solid lines correspond to the aver-
age aerosol scattering matrix as function of the scattering angle. The domains occupied
by the measurements used to obtain the average are indicated in grey shading.
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different scattering patterns when compared to the typical scattering behavior of
irregular mineral particles with moderate real parts of the refractive index (see,
for example [3, 4, 7, 35]). To illustrate this in Fig. 1.13 we show the measured
scattering matrix elements for fly-ash together with the experimentally deter-
mined average aerosol scattering matrix for irregular compact mineral particles
(see section 1.5.1 and [3]). For example, F11(θ) shows a strong increase at back-
scattering angles. Furthermore the ratio −F12(θ)/F11(θ) which in our case equals
the degree of linear polarization for unpolarized incident light, does not show the
bellshape presented by compact mineral particles. The degree of linear polariza-
tion at 632.8 nm is nearly zero at side-scattering angles and becomes negative
at angles larger than about 130◦. At 441.6 nm the behavior of −F12(θ)/F11(θ)
for fly-ash is positive at almost all scattering angles with a strong increase at
backscattering positions. The ratio F34(θ)/F11(θ) presents a negative branch at
small scattering angles, and attains a maximum at about 160◦. These matrix
elements lie partly outside the domain of the average aerosol scattering matrix
for compact irregular mineral particles. Since the main difference between the
fly-ash sample and the mineral samples used to construct the average aerosol
scattering matrix is related to the shape of its particles (see Table 1.2), we con-
clude that the characteristic scattering behavior presented by the fly-ash sample
is due to the fact that the fly-ash consists of aggregates of more or less spherical
particles.

1.5.3 Size effect

Crystalline Mg-rich olivine (forsterite) is one of the main components of cometary
dust (see, for example, [36,37]). We have experimentally obtained the complete
scattering matrices (including polarization) as a function of the scattering angle
of three Mg-rich olivine samples [5]. Here we present the measurements per-
formed at 632.8 nm. The three samples have been obtained from the same bulk
sample. They were prepared so that the measurements could be repeated for
different size distributions, i.e., the three samples have the same compositions
and shape of the particles, but each of them has a different size distribution.
In this way we can distinguish the size effect on the scattering behavior from
the composition and shape effects. The sample was ball milled and first sieved
with a 125 µm sieve. The portion of the sample that passed through the sieve
(particles smaller than 125 µm in diameter) was subsequently sieved in water
through a 65 µm sieve. Again the smallest particles (smaller than 65 µm) were
subsequently sieved through a 20 µm sieve. In such a way we produced the three
olivine samples presented in this section; L (20 ≤ d ≤ 65 µm), M (d ≤ 65 µm),
and S (d ≤ 20 µm), where d is the width of the sieving grid.

The measured projected-surface-area distributions of our samples are pre-
sented in Fig. 1.15. The calculated reff and veff of each sample are presented in
Table 1.2. According to these measurements the sieving procedure works well for
particles larger than about 1 µm. However, we did not succeed in removing all
particles with diameters smaller than 20 µm from sample L. It seems like small
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Fig. 1.14. Scanning electron micrograph of the olivine particles. The white bars denote
10 µm.
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Fig. 1.15. Measured normalized projected-surface distributions S(log r) of the olivine
samples L, M, and S. The distributions are plotted as functions of r in a logarithmic
scale, where the radius of the projected surface-area-equivalent sphere is expressed in
micrometers. The area under each curve equals unity.

particles remained stuck due to electrostatic forces, for example, on the surface
of the larger particles (see Fig. 1.14 right panel).

The exact values of the refractive indices of our samples are unknown. Ac-
cording to the measured optical constants of different types of silicates published
so far [38], we estimate the complex refractive index to be around 1.62–i0.00001
(see also Table 1.2).
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Fig. 1.16. Measured scattering matrix elements as functions of the scattering angle
for olivine L (squares), M (stars), and S (triangles) at 632.8 nm. Errors are indicated
by bars or are within the size of the symbols.

In Fig. 1.16, we present the complete scattering matrices for the olivine sam-
ples L (squares), M (stars), and S (triangles) at 632.8 nm, respectively. The
scattering matrix elements for the three olivine samples are very similar to each
other and follow the general trends presented by irregular compact mineral par-
ticles (see section 1.5.1). The measured phase functions are flat functions of the
scattering angle with a strong forward peak and almost no structure at side
and backscattering angles. The measured F44(θ)/F11(θ) for our olivine irregular
particles tends to be larger than F33(θ)/F11(θ) for θ ≥ 80 degrees. Moreover,
F22(θ) �= F11(θ) at all scattering angles, another indication of the nonsphericity
of our particles since for spherical particles these to elements are equal to each
other at all scattering angles. The measured −F12(θ)/F11(θ) curves show the
typical bell shape presented by irregular mineral particles.

Despite the high similarity of the scattering matrices for the three olivine
samples, we can still see some differences. These differences must be due to the
differences in the size distributions since the other physical parameters (i.e. re-
fractive indices, and shapes) are very similar for the three samples. The measured
−F12(θ)/F11(θ) curves show the highest maximum values for olivine samples M
and S, the sample with the smallest S(log r) beyond 10 micrometers. Moreover,
the points for F22(θ)/F11(θ) and F44(θ)/F11(θ) for olivine samples M and S are
practically on top of each other at all scattering angles. The measurements for
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F22(θ)/F11(θ) and F44(θ)/F11(θ) for the olivine L, the sample with the high-
est S(log r) beyond 10 micrometers, presents the smallest values at almost all
scattering angles.

1.5.4 Color effect

Hematite is believed to be an important component of Martian dust [39, 40]
and in addition, it is an important constituent of terrestrial aerosols [41] and
[42]. Hematite is a birefringent material with a large real and imaginary part
of the refractive index in the visible part of the spectrum. The real part of the
refractive index, n at 632.8 nm, has a value 2.9 for the extraordinary and 3.1
for the ordinary axis [41]. The imaginary part, k, ranges between 10−2 and 10−1

[41]. Our hematite sample has an reff of 0.4 µm and a veff of 0.6. In Fig. 1.8,
we present a scanning electron microscope (SEM) picture of a hematite particle
as an example of the shape of this type of particle. In that picture we can see
that the hematite particles exhibit very irregular shapes with a layered structure
(bottom right panel).

In Fig. 1.17 we show the measured scattering matrix elements as functions of
the scattering angle for the hematite sample at 632.8 nm. As usual, the scattering
function or phase function, F11(θ), is shown on a logarithmic scale and is nor-
malized to 1 at 30◦. The experimental errors are indicated by error bars. When
no error bar is shown, the value of the standard deviation of the mean value
is smaller than the plotted symbol. The hematite sample shows quite different
scattering patterns compared to the typical scattering behavior of irregular min-
eral particles with moderate real parts of the refractive index (see, for example,
[3,4,7,35]). To illustrate this in Fig. 1.17 we show the measured scattering matrix
elements for hematite [8] together with the experimentally determined average
aerosol scattering matrix for irregular mineral particles (see section 1.5.1 and
[3]).

In Fig. 1.17 we can see that the degree of linear polarization for incident un-
polarized light as a function of the scattering angle (i.e. −F12(θ)/F11(θ)) of the
hematite sample differs considerably from the average aerosol curve. It shows a
rather low double maximum around 50 and 140 degrees. In contrast, the aver-
age aerosol degree of linear polarization shows a characteristic bell shape with
a maximum around 90 degrees and a negative branch at large scattering an-
gles. Moreover, the measured F34(θ)/F11(θ) for the hematite sample is found to
differ appreciably from the average aerosol curve for irregular mineral particles
with moderate refractive indices. This ratio has negative values at all measured
scattering angles for the hematite, whereas it is positive at almost all scattering
angles for the average aerosol F34(θ)/F11(θ). In addition, the measurements for
the hematite sample show a bimodal function with a primary minimum around
60 degrees and a secondary minimum around 160 degrees.

Differences between the ratios F33(θ)/F11(θ) and F44(θ)/F11(θ) for hematite
particles compared to irregular mineral particles are not so spectacular although
they also lie out of the domains of the average aerosol curve at some measured
scattering angles. The measured F22(θ)/F11(θ) for the hematite sample shows



1 Experimental light scattering matrices 25

Fig. 1.17. Measured scattering matrix elements F11(θ), and element ratios
−F12(θ)/F11(θ), F22(θ)/F11(θ), F33(θ)/F11(θ), F34(θ)/F11(θ), F44(θ)/F11(θ) for the
hematite sample at 632.8 nm. The data are shown together with their error bars.
When error is case no bar is shown then smaller than the symbol. Solid lines corre-
spond to the average aerosol scattering matrix as function of the scattering angle. The
domains occupied by the measurements used to obtain the average are indicated in
grey shading.

the typical behavior for irregular mineral particles decreasing from almost 1 at
angles close to the forward direction to a minimum and then increasing again
at back-scattering angles. However, this ratio stays out of the domain of the
average aerosol curve at a number of measured scattering angles.

The hematite scattering functions or phase functions, F11(θ), range over lit-
tle more than one order of magnitude for the measured angles. In contrast, the
average aerosol scattering function ranges over more than two orders of magni-
tude for the angles covered in the measurements, being strongly peaked toward
smaller angles. These differences in the forward scattering peaks are probably
due to the differences in sizes between our hematite and the dust samples used
to construct the average aerosol scattering matrix (see Table 1.2), since forward
scattering peaks depend strongly on the sizes of the particles [31], [43].

Apart from the differences in the forward scattering peaks, we do not think
the differences in size between the hematite, on the one hand, and the samples
used to obtain the average aerosol scattering matrix, on the other, are strong
enough to account for the significant differences observed in almost all scattering
matrix elements as functions of the scattering angle (see, for example, [3, 5]).
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As mentioned, all samples used to obtain the average aerosol scattering matrix
have moderate real parts of the refractive index (see Table 1.2). In contrast, the
hematite sample has very high real and imaginary parts of the refractive index.
To this we attribute the main differences in scattering behavior of the hematite
sample when compared with the average aerosol scattering matrix.

1.6 Conclusions

There are several ways in which the experimental data in the database can
be useful. The data can be used in a direct manner, e.g. in comparisons with
observations of light that has been scattered only once [4] or to assess results of
numerical light scattering methods for nonspherical particles [3,21,44]. Also, the
data may be used in an indirect manner. For example, if a method is applied to
extrapolate the measured angular distributions of the scattering matrix elements
to the full scattering angle range, including forward and backward scattering, the
extrapolated functions may serve as input for multiple scattering computations
[34,45–49]. Another way to employ the data in an indirect way, is to first find a fit
to the experimental results, applying theoretical techniques using parameterized
shape distributions. Then the parameterized shape distribution constrained by
the fit can be used to obtain the scattering and absorption properties at other
scattering angles, wavelengths and/or sizes where experiments are impossible or
not practicable, e.g. in the middle and far infrared.

We like to note that a strong point of our measurements is that it provides
complete scattering matrices as functions of the scattering angle and not one
or two elements. This not only facilitates checking of systematic errors in the
data, by, for example, applying ‘eyeball’ tests or the Cloude test (e.g. [12]),
but also makes it possible to perform multiple scattering calculations including
polarization. Another advantage is that complete scattering matrices may help
in obtaining better constraints on the (model) shape parameters.
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21. Nousiainen, T., Muinonen, K., and Räisänen, P. Scattering of light by large Saha-
ran dust particles in a modified ray-optics approximation. J. Geophys. Res., 108,
10.1029/2001JD001277, 2003.

22. Hill, S.C., Hill, A.C., Barber, P.W. Light scattering by size/shape distributions of
soil particles and spheroids. Appl. Opt. 23, 1025–1031, 1984.
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2 Light scattering and absorption
by nonspherical ice crystals

Ping Yang and Kuo-Nan Liou

2.1 Introduction

The majority of ice crystals in the atmosphere exist in cirrus clouds, clouds
that normally reside in the upper troposphere in midlatitudes. In the tropics,
ice clouds associated with deep cumulus convections (Houze, 1993) can extend
to the lower stratosphere. Ice crystals have also been frequently observed in the
polar regions because of low temperatures. The global cirrus cover has been
estimated to be about 20% to 25%, but recent analysis using the 15-µm CO2
satellite channels has shown that their occurrence frequency can be larger than
50% in the tropics (Wylie et al., 1994). The inclusion of the 1.375-µm water vapor
absorption channel (Gao and Kaufman, 1995) in the recent Moderate Resolution
Imaging Spectroradiometer (MODIS) instrument on Terra and Acqua satellite
platforms (King et al. 2003) has offered an unprecedented opportunity to detect
optically thin cirrus. However, many thin and subvisual cirrus clouds could have
been missed from the implementation of various past and current passive satellite
detection techniques.

From analysis of the MODIS images acquired from the visible and 1.375-µm
channels, it has been shown that most clear-sky pixels identified by the visible
channels actually contain thin cirrus (Roskovensky and Liou, 2003; Dessler and
Yang, 2003; Meyer et al., 2004). Because of their high location in the atmo-
sphere and the complex microphysical properties of ice crystals within them,
cirrus clouds differ significantly from low and middle clouds in terms of their ra-
diative properties. High cirrus clouds reflect a portion of the incoming sunlight,
referred to as the solar albedo effect. But at the same time these clouds can also
effectively trap a significant amount of the thermal infrared radiation emitted
from the surface and lower atmosphere, referred to as the infrared greenhouse
effect (Liou, 1992). The intrinsic radiative properties of cirrus clouds determine
the competition between the solar albedo and infrared greenhouse effects (Liou,
1986; Stephens et al., 1990), essential to the discussion of the Earth’s climate and
climate change. Moreover, cirrus clouds are closely related to the water vapor
distribution near the upper troposphere and the lower stratosphere (Jensen et
al., 1996; Holton and Gettelman, 2001). The important roles of cirrus clouds in
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various atmospheric processes have been discussed by Liou (1986, 1992) as well
as in a number of recent studies (see Lynch et al., 2002).

Ice crystals in cirrus clouds are almost exclusively nonspherical particles (e.g.,
Heymsfield and Iaquinta, 2000), ranging from plates, solid and hollow columns,
bullet rosettes, and aggregates, to more irregular shapes with various complex
surface morphological conditions (e.g., surface roughness). The effect of non-
spherical ice crystals within cirrus clouds on their bulk radiative properties is
pronounced and must be accounted for in the development of remote sensing
techniques and climate analysis. Liou et al. (2000) demonstrated that the ap-
proximation of nonspherical ice crystals as equivalent ice spheres for the single-
scattering and radiative transfer processes can substantially underestimate the
albedo of the cirrus. Moreover, the single-scattering properties associated with
proper ice crystal morphologies must be used for a correct interpretation of
other bulk optical properties of cirrus clouds, particularly, the polarization con-
figuration (Liou and Takano, 2002). Mishchenko et al. (1996), Rolland et al.
(2000), and Yang et al. (2001a) also showed strong sensitivity of the cirrus cloud
albedo, bidirectional reflectance, and the accuracy of optical thickness retrieval
to the ice particle shape assumed. Consequently, it is critically important that
the nonsphericity of ice crystals be accurately modeled in radiative transfer com-
putations and remote sensing implementations involving cirrus clouds.

Because of the importance of ubiquitous cirrus clouds in remote sensing and
climate research, substantial efforts have been made in the last three decades
to understand and determine the fundamental scattering and absorption prop-
erties of ice crystals. Early research efforts to account for the nonsphericity of
ice crystals in cirrus can be traced back to the studies by Liou (1972a, 1972b)
and Stephens (1980a, 1980b) who assumed that these clouds are composed of
long circular cylinders. The analytical solution for the scattering of light by an
infinite circular cylinder at normal incidence was developed by Lord Rayleigh
(1918). Wait (1955), Kerker (1969), and Liou (1972a) extended the solutions
for oblique incidence. The single-scattering properties of ice crystals assuming
circular-cylinder shape, however, cannot be used to explain a number of opti-
cal phenomena associated with cirrus clouds, for example, the well-known 22◦

halo. The simplest habits (or shapes) of realistic ice crystals are columns and
plates with well-defined hexagonal structures. Even for this type of ice crys-
tal, it appears not to be possible to impose an appropriate coordinate system
to analytically solve the associated electromagnetic wave equation subjected to
the boundary conditions at the surface of a hexagonal particle. The difficulty
in conjunction with the application of the variable separation method to com-
plex ice crystal morphologies (e.g., bullet rosettes and aggregates) would be
more prominent. This is because proper coordinate systems for the variable sep-
aration method can only be defined in cases involving the scattering of light
by spheres (Lorenz, 1890; Mie, 1908), spheroids (Oguchi, 1973; Asano and Ya-
mamoto, 1975), and infinite cylinders (Kerker, 1969; Liou, 1972a).

From the late 1970s to the 1990s, the geometric optics method by means
of the ray-tracing technique has been extensively used to investigate the single-
scattering properties of nonspherical ice crystals (Wendling et al., 1979; Coleman
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and Liou, 1981; Cai and Liou, 1982; Takano and Jayaweera, 1985; Takano and
Liou, 1989a, 1989b; Macke, 1993; Hess and Wiegner, 1994; Macke et al., 1996a).
Note that application of the ray-tracing technique to light scattering by a sphere
and a hexagonal column can be traced back to the studies by Liou and Hansen
(1971) and Jacobowitz (1971), respectively. The research results from these ef-
forts have been used in various applications in conjunction with the study of
cirrus clouds, ranging from remote sensing (e.g. Minnis et al., 1993a, 1993b) to
the parameterization of the radiative properties of ice clouds (Ebert and Curry,
1992; Fu and Liou, 1993) for use in climate models.

Recent reviews by Wriedt (1998), Kokhanovsky (1999), Mishchenko et al.
(2000), Liou (2002), and Kahnert (2003) have enumerated various methods that
have been developed for the solution of light scattering by nonspherical particles.
These include the T-matrix method (Waterman, 1971; Mishchenko and Travis,
1998), the discrete dipole approximation (Purcell and Pennypacker, 1973; Draine
and Flatau, 1994), the finite-difference time domain (FDTD) method (Yee,
1966; Taflove and Brodwin, 1975; Holland, 1977; Kunz and Lee, 1978; Taflove,
1980; Kunz and Simpson, 1981; Umashankar and Taflove, 1982; Taflove, and
Umashankar, 1990; Yang and Liou, 1996a; Yang et al., 2000; Sun et al., 1999),
and the boundary-element method (Miller, 1988; Kress, 1990; Mano, 2000), and
various approximate methods including the geometric optics approximation. Ap-
plications of some of these methods to light scattering by ice crystals have been
shown to be useful for a better understanding of the optical and radiative prop-
erties of cirrus clouds.

In this chapter, we review the progress in the studies of the scattering and
absorption properties of nonspherical ice crystals in the Earth’s atmosphere from
the theoretical and computational perspectives. Specifically, we will highlight the
method of geometric optics and the relevant improvements based on which ray-
tracing can be performed for large ice crystals with complex geometries and the
FDTD numerical method that can be used for the solution of light scattering
by small nonspherical and inhomogeneous ice crystals. No originality is claimed
in this review; however, we have made an effort to systematically recapture the
geometric optics approach and illustrate the basic concepts of the FDTD method
and the major numerical steps associated with its application to light scattering
and absorption by ice crystals.

2.2 Geometric optics for light scattering
by large ice crystals

According to aircraft observations (e.g., Mitchell et al., 1996; McFarquhar et al.,
1999) by means of the optical imaging, high resolution video camera, and repli-
cator techniques, the ice crystal size distribution in various types of cirrus clouds
ranges from about 10 micrometers to thousands of micrometers. For visible and
near-infrared wavelengths, the size parameters (defined as πD/λ in which D and
λ are the particle’s characteristic dimension and the incident wavelength, respec-
tively) associated with these particles are large enough that we may apply the
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principles of geometric optics in terms of the ray-tracing technique. van de Hulst
(1957) and Liou and Hansen (1971) applied this technique to light scattering by
spheres. The latter authors also compared the phase function and polarization
patterns computed from the geometric ray-tracing method and the Lorenz–Mie
theory for polydisperse spheres. The solution from the ray-tracing technique is
reasonably accurate when the modal size parameter is larger than 100 for a
polydisperse system of spheres. The earliest application of ray-tracing to light
scattering by hexagonal ice prisms was first carried out by Jacobowitz (1971). In
his study, a sufficiently large number of equally spaced, parallel rays were traced
through a hexagonal ice crystal. The external reflection and two refractions after
various orders of internal reflections were summed to determine the scattering
pattern in the far field. Diffraction contribution to the scattering of the incident
radiation in the forward direction can be computed by Kirchhoff’s formula. In
Jacobowitz’s study, hexagonal prisms were assumed to be infinite by long, which
is not realistic. To circumvent this shortcoming, Wendling et al. (1979) combined
the Monte Carlo method and the ray-tracing technique to compute the phase
function of finite hexagonal columns. In these early studies, the polarization ef-
fect and phase interferences associated with the incident, internal, and scattered
rays were not accounted for in the calculation.

Cai and Liou (1982) were the first to include the polarization configuration
and phase interferences in ray-tracing to compute the single-scattering proper-
ties of hexagonal columns and plates. The theoretical foundation for the ‘con-
ventional’ geometric ray tracing and the associated computional algorithm de-
veloped by Cai and Liou (1982) were later improved and refined by a number
of researchers. Takano and Liou (1989a, 1989b) considered the effects of the ice
crystal’s birefringence property, horizontal orientation, and size spectrum in as-
sociation with light scattering calculations. The single-scattering properties of
ice crystals with horizontally orientation have also been investigated by Rock-
witz (1989) and Noel et al. (2001). The ray-tracing method has been applied to
various complex ice crystal shapes by Takano and Liou (1995), Macke (1993),
Macke et al. (1996a), Iaquinta et al. (1995), Muinonen et al. (1997), Peltoniemi
et al. (1998), and Yang and Liou (1998), and to ice crystals with inclusions (e.g.,
air bubbles and soots) by Macke et al. (1996b) and Macke (2000). Application
of the ray-tracing technique implemented with the Monte Carlo method to com-
plex geometries have also been recently reported by Nousiainen et al. (2003),
and Grynko and Shkuratov (2003). Most recently, Borovoi et al. (2002) inves-
tigated the scattering characteristics (backscattering features, in particular) of
hexagonal ice crystals with arbitrary orientations using the ray-tracing method.
Additionally, Borovoi and Grishin (2003) reported an effective ray-tracing algo-
rithm for computing the Jones scattering matrix, and subsequently, the Mueller
matrix.

Alternate approaches to the conventional ray-tracing method have been de-
veloped by Muinonen (1989) and Yang and Liou (1995, 1996b, and 1997) in
which the principles of geometric optics are applied to the computation of the
near field either on the surface of or inside the scattering particle. The near field
obtained from the ray-tracing technique is then mapped to the far field on the
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basis of either a surface-integral- or a volume-integral-based electromagnetic re-
lation. Below we systematically recast the theoretical basis of the conventional
ray-tracing technique, and follow with a concise presentation of two versions of
the improved geometric optics method for the scattering of light by ice crystals.

The ray-tracing algorithm for the scattering of polarized light by nonspherical
ice crystals that was formulated by Cai and Liou (1982) used various specific
coordinate systems. To simplify the formulation presented in this chapter, we
shall adopt a vector form (Yang and Cai, 1990; Yang and Liou, 1996b, 1997)
that is independent of specific coordinate systems. As shown in Fig. 2.1, when
the size parameter associated with the scattering particle is large, the incident
field can be thought of as consisting of a bundle of localized waves or rays. As
articulated in Cai and Liou (1982), the width of localized rays must be much
larger than the incident wavelength and yet smaller than the ice crystal size.

Consider an incident ray that passes through point Q0 and propagates along
the incident direction specified by a unit vector êi0. The ray first impinges on
the particle surface at point Q1 where external reflection and refraction occur.
For reflection and refraction at this incident point, the directions of the incident,
reflected, and refracted rays are denoted by the unit vectors êi1, ê

r
1, and êt1, re-

Fig. 2.1. A conceptual diagram for the principle of the ray-tracing technique for
computing the single-scattering properties of a particle that is much larger than the
incident wavelength.
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spectively. The first-order refracted ray then impinges on the next incident point
at Q2 where the first-order internal reflection and the corresponding refraction
occur. Note that for the incidence at the point Q2, the incident direction êi2 is
the same as that of the first-order refracted ray. Likewise, the subsequent inter-
nal reflections and refractions occur at the points Qp in which the order of the
ray, p, is larger than 2. The tracing of a ray can be terminated when the energy
carried by this ray is practically negligible.

To trace the reflected and refracted rays, let n̂p (p = 1, 2, 3, . . . ) be the unit
vectors locally normal to the particle surfaces at the incident points Qp (p = 1, 2,
3, . . . ) facing the incoming rays, as shown in Fig. 2.2. For the external reflection
at the point Q1, the incident direction êi1 and the incident angle θi1 are given,
respectively, by the following two expressions:

êi1 = êi0, (2.1)
θi1 = cos−1(−n̂1 · êi1), (2.2)

where êi0 denotes the initial incident direction (Fig. 2.1). Following Snell’s law,
the directions of the externally reflected ray and the corresponding refracted ray
are defined by

êr1 = êi1 + 2 cos θi1n̂1, (2.3)
êt1 = êi1/m+ (cos θi1/m− cos θt1)n̂1, (2.4)

where m is the refractive index of the scattering particle, and θt1 is the refractive
angle given by Snell’s law as follows:

θt1 = sin−1(sin θi1/m). (2.5)

When the refractive index, m, is a complex number, simultaneous absorption
and scattering occur and the refracted wave within the particle is an inhomo-
geneous wave (Born and Wolf, 1959; Bohren and Huffman, 1983). In this case,

Fig. 2.2. Schematic diagrams for the directions of the incident, reflected and refracted
rays. Also shown are the unit vectors for specifying the polarization configuration. Note
that v̂1 and v̂p (not shown in the diagram) point out of the paper.
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an adjusted refractive must be used to trace the refracted rays (Yang and Liou,
1995). Note that Born and Wolf (1959) only formulated the Fresnel formula
by avoiding the complex refraction angle when absorption occurs. Yang et al.
(2001b) showed that in general the electric field vector associated with the re-
fracted rays may not be perpendicular to the ray direction and developed an
improved scheme for the ray-tracing computation. For practical computations
at the visible and near-infrared wavelengths, the real part of the refractive index
may be used as an excellent approximation of the adjusted refractive index for
tracing the ray directions on the basis of eqs (2.4) and (2.5). The issue associated
with the inhomogeneous wave properties within an ice crystal involving complex
refractive index will not be elaborated further. Interested readers in this subject
may wish to consult with the work of Born and Wolf (1959), Bohren and Huff-
man (1983), Dupertuis et al. (1994), Yang and Liou (1995), Yang et al. (2001b),
Liou (2002), and Chang et al. (2005).

For internal reflection with orders of p = 2, 3, 4, . . . , the incident directions
can be defined in a likely manner and are given by the directions of either the
first-order refracted rays or internally reflected rays as follows:

êi2 = êt1, (2.6)
êip = êrp−1, p = 3, 4, 5, . . . (2.7)

With some vector algebraic manipulations on the basis of Snell’s law, it can be
shown that the propagating directions of the pth order reflected and refracted
rays are given by

êrp = êip + 2 cos θipn̂p, (2.8)

êtp = mêip + (m cos θip − cos θtp)n̂p, (2.9)

where the incident and refraction angles, θip and θtp, are defined via the following
expressions:

θip = cos−1(−n̂p · êip), (2.10)

θtp = sin−1(m sin θip). (2.11)

The total reflection occurs if the term m sin θip in eq. (2.11) is larger than 1. In
this case, a refracted ray should not be expected and the ray-tracing computation
should be continued only for the ray associated with total reflection. Equations
(2.1)–(2.11) constitute a closed set of equations for tracing the directions of all
the reflected and refracted rays associated with a given incident ray.

A localized plane electromagnetic wave is a transverse vector wave. Thus,
the vector property or the polarization configuration of the electric fields associ-
ated with localized rays in the ray-tracing computation must be accounted for.
To include the polarization configuration, we shall define various auxiliary unit
vectors. For the incident direction of an initial ray specified by a unit vector êi0,
we define two unit vector û0 and v̂0 (see Fig. 2.1) that are normal to the incident
direction and satisfy the relations as follows:
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û0 · v̂0 = 0 and v̂0 × û0 = êi0. (2.12)

The unit vectors v̂0, û0 and êi0 defined in this equation constitute a right-handed
coordinate system. To define the initial rays in practice, we may specify the
unit vectors v̂0, û0 and êi0 to point to the directions along the x-, y- and z-axis
of the incident coordinate system. Because the unit vectors êi0, û0 and v̂0 are
orthogonal to each other, the incident polarization configuration can be specified
with respect to û0 and v̂0, that is, the incident electric field Ei

0 can be written
as follows:

Ei
0 = Ei

0uû0 + Ei
0v v̂0. (2.13)

Similarly, we may define three pairs of unit vectors, (ûi
p, v̂p), (ûr

p, v̂p), and (ût
p, v̂p)

for the ray directions along êip, ê
r
p and êtp (p = 1, 2, 3, . . . ), respectively. The unit

vectors ûi
p, û

r
p and ût

p point along the directions shown in Fig. 2.2, if the unit
vectors, v̂p, p = 1, 2, 3, . . . , (not shown in Fig. 2.2) are defined as being pointed
out of the paper. These vectors can be specified via the following expressions:

v̂p = (êip × n̂p)/ sin θip, p = 1, 2, 3, . . . , (2.14)

ûi,r,t
p = êi,r,tp × v̂p, p = 1, 2, 3, . . . . (2.15)

Evidently, the unit vector v̂p is normal to the incident plane, the plane containing
the incident direction and the direction locally normal to the particle surface at
the incident point, for the pth-order reflection and refraction. The unit vectors
ûi

p, û
r
p, and ût

p are parallel to the pth-order incident plane. Note that v̂p in eq.
(2.14) cannot be uniquely specified if sin θip = 0. In this case, we select v̂p = v̂p−1.
With the aforementioned unit vectors defined, the electric fields associated with
the pth-order incident, reflected, and refracted rays can be expressed as follows:

Ei,r,t
p = Ei,r,t

pu ûi,r,t
p + Ei,r,t

pv v̂p. (2.16)

Consider now the external reflection and the first-order refraction. In order
to apply the Fresnel formulas, the electric field associated with the incident ray
impinging on the point Q1 must be specified with respect to ûi

1 and v̂1. Also,
the electric field associated with the incident ray specified in eq. (2.13) can also
be expressed in an alternative form as follows:

Ei
0 = Ei

1uû
i
1 + Ei

1v v̂1. (2.17)

Equations (2.13) and (2.17) for the incident electric vector are related via a
rotational matrix in the form(

Ei
1u

Ei
1v

)
= Γ1

(
Ei

0u

Ei
0v

)
, (2.18)

where Γ1 is a rotational matrix given by

Γ1 =
(
ûi

1 · û0 ûi
1 · v̂0

v̂1 · û0 v̂1 · v̂0
)
. (2.19)
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Because the field components on the left-hand side of eq. (2.18) are specified
with respect to the incident plane, the Fresnel formulas can be applied. The
externally reflected field (Er

1) is given by

Er
1 = Er

1uû
r
1 + Er

1v v̂1, (2.20)

where (
Er

1u

Er
1v

)
= R1

(
Ei

1u

Ei
1v

)
= R1Γ1

(
Ei

0u

Ei
0v

)
. (2.21)

In eq. (2.21), R1 is the reflection matrix for the external reflection given by

R1 =
(
R1u 0
0 R1v

)
. (2.22)

The elements of the reflection matrix in eq. (2.22) are given by the Fresnel
coefficients (Born and Wolf, 1959) as follows:

R1u =
m cos θi1 − cos θt1
m cos θi1 + cos θt1

, (2.23)

R1v =
cos θi1 −m cos θt1
cos θi1 +m cos θt1

. (2.24)

Similarly, the electric field associated with the first-order refracted ray is given
by

Et
1 = Et

1uû
t
1 + Et

1v v̂1, (2.25)(
Et

1u

Et
1v

)
= T1

(
Ei

1u

Ei
1v

)
= T1Γ1

(
Ei

0u

Ei
0v

)
, (2.26)

where the refraction matrix T1 is defined in the form

T1 =
(
T1u 0
0 T1v

)
=
(

(1 −R2
1u)1/2 0

0 (1 −R2
1v)1/2

)
. (2.27)

In eq. (2.27), the conservation of the energy carried out by the ray due to a
change in the refractive index and ray cross-section in two media is accounted
for in the refraction matrix (see eq. (48) in Cai and Liou (1982) and references
cited therein).

For the external reflection, the direction along the reflected ray is the scat-
tering direction. Thus, the scattering angle is given by

θs1 = cos−1(êi0 · êr1). (2.28)

The direction that is perpendicular to the scattering plane can be specified by

v̂s1 = êi0 × êr1/ sin θs1. (2.29)

If sin θs1 = 0 in eq. (2.29), implying the forward (i.e., θs1 = 0◦) and backward
scattering (i.e., θs1 = 180◦), the vector v̂s1 cannot be defined. In this case, we
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select v̂s1 = v̂0. After the unit vector v̂s1 is defined, the direction parallel to the
scattering plane is given by

ûs
1 = êr1 × v̂s1. (2.30)

If we express the electric field associated with the externally reflected ray with
respect to two directions parallel and perpendicular to the scattering plane, we
have

Er
1 = Es

1uû
s
1 + Es

1v v̂
s
1. (2.31)

From eqs (2.20), (2.21) and (2.31), it follows that(
Es

1u

Es
1v

)
= Γ s

1R1Γ1

(
Ei

0u

Ei
0v

)
, (2.32)

where Γ s
1 is a rational matrix, given by

Γ s
1 =

(
ûs

1 · ûr
1 ûs

1 · v̂1
v̂s1 · ûr

1 v̂s1 · v̂1
)
. (2.33)

To obtain the scattering matrix, the incident field must be specified with
respect to the directions parallel and perpendicular to the scattering plane, that
is, the incident field needs to be in the form

Ei
0 = Ei

1su(êi0 × v̂s1) + Ei
1sv v̂

s
1. (2.34)

Note that the unit vector êi0 × v̂s1 in eq. (2.34) is parallel to the scattering plane.
The expression in eq. (2.34) for the incident field is related to that in eq. (2.13)
as follows: (

Ei
0u

Ei
0v

)
= Γ i

1

(
Ei

1su

Ei
1sv

)
, (2.35)

where Γ i
1 is a 2-D rotational matrix given by

Γ i
1 =

(
û0 · (êi0 × v̂s1) û0 · v̂s1
v̂0 · (êi0 × v̂s1) v̂0 · v̂s1

)
. (2.36)

Thus, we can express the scattered field in eq. (2.32) as follows:(
Es

1u

Es
1v

)
= Γ s

1R1Γ1Γ
i
1

(
Ei

1su

Ei
1sv

)
. (2.37)

Similarly, for the refracted rays with p = 2, we have(
Es

2u

Es
2v

)
= Γ s

2T2Γ2T1Γ1Γ
i
2

(
Ei

2su

Ei
2sv

)
. (2.38)

For the orders p = 3, 4, 5, . . . , we have(
Es

pu

Es
pv

)
= Γ s

pTpΓp · · ·R2Γ2T1Γ1Γ
i
p

(
Ei

psu

Epsv

)
. (2.39)
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The definitions for Γ s
p , Tp, Γp, Rp, and Γ i

p are similar to those for the case with
p = 1. In this manner, both the incident and scattered electric field vectors
are expressed with respect to the scattering plane in eqs (2.37)–(2.39). Thus,
the contributions of the emerging or scattered rays to the amplitude scattering
matrix can be expressed in the forms

A(1) =

(
A

(1)
2 A

(1)
3

A
(1)
4 A

(1)
1

)
= Γ s

1R1Γ1Γ
i
1, for externally reflected rays, (2.40)

A(2) =

(
A

(2)
2 A

(2)
3

A
(2)
4 A

(2)
1

)
=
Γ s

2T2Γ2T1Γ1Γ
i
2,

for second-order transmitted rays,
(2.41)

A(3) =

(
A

(3)
2 A

(3)
3

A
(3)
4 A

(3)
1

)
=
Γ s

pTpΓp · · ·R2Γ2T1Γ1Γ
i
p,

for pth (p > 2)-order transmitted rays.
(2.42)

In the foregoing discussion, we have not accounted for the phase change asso-
ciated with the optical paths of rays. The rays incident on the scattering particle
at different locations must experience phase change due to different paths. Notic-
ing this feature, Cai and Liou (1982) considered the phase interference of the
emerging rays in ray-tracing computations. Most follow-on studies reported in
the literature essentially ignored the phase shifts associated with raypaths. How-
ever, it should be pointed out that the approach developed by Stamnes and Heier
(1998) and Chen and Stamnes (1998) can also be used to effectively account for
the phase inference of rays. Takano and Jayaweera (1985) showed that the phase
interference can be smoothed out when ice crystals are randomly oriented. For
practical applications, we normally assume the random orientation condition for
ice crystals in radiative transfer computations. If ice crystals are horizontally
oriented, the single-scattering properties depend not only on the scattering an-
gle but also on the azimuth of the scattering plane. In this case, the radiative
transfer calculation can be quite involved (Takano and Liou, 1989b). In addition
to random orientation, the integration over the size spectrum will smooth out
the fluctuations produced by phase interferences in the scattering pattern for
one size.

For randomly oriented particles, the corresponding phase matrix has only
six independent elements (van de Hulst, 1957). Thus, for the pth-order emerging
ray, its contribution to the phase matrix is given by the following expression
(Takano and Jayaweera, 1985):

F (p) =⎛
⎝(M(p)

1 +M
(p)
2 +M

(p)
3 +M

(p)
4 )/2 (M(p)

2 −M
(p)
1 )/2 0 0

(M(p)
2 −M

(p)
1 )/2 (M(p)

2 −M
(p)
3 −M

(p)
4 +M

(p)
1 )/2 0 0

0 0 S
(p)
12 +S

(p)
34 −D

(p)
12

0 0 D
(p)
21 S

(p)
12 −S

(p)
34

⎞
⎠,

(2.43)

where the matrix F (p) transforms the incident Stokes parameters to the scattered
Stokes parameters associated with the pth-order outgoing localized wave. In eq.
(2.43), the phase matrix elements are defined by
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M
(p)
i = |A(p)

i |2, (2.44)

S
(p)
ij = S

(p)
ji = (A(p)

I A
(p)∗
j +A(p)∗

i A
(p)
j )/2, (2.45)

D
(p)
ij = −D(p)

ji =
√−1(A(p)

i A
(p)∗
j −A(p)

i A
(p)
j )/2, (2.46)

where the subscripts i and j range from 1 to 4, and the asterisk indicates complex
conjugate. Thus, the scattering matrix associated with the various orders of
external reflections and transmissions of all the incident rays is given by

Fray =
N∑

j=1

∞∑
p=1

∆σjF
(p)
j /

∞∑
p=1

∆σj , (2.47)

where j denotes that the external reflection and the various orders of transmis-
sion are associated with the jth initial ray, N is the total number of incident
rays, and ∆σj is the cross-section of the jth initial ray. To speed up the com-
putation, the foregoing ray-tracing algorithm can be implemented by using the
Monte Carlo method. Interested readers may wish to consult with the papers by
Wendling et al. (1979), Takano and Liou (1995), Macke (1993), and Yang and
Liou (1998). More recently, an efficient algorithm for specifying the incident rays
in the Monte Carlo ray-tracing technique implemented for convex geometries has
been reported by Zhang et al. (2004).

In addition to the contributions from the reflected and refracted rays, diffrac-
tion also contributes to the scattering of the incident wave. According to Babi-
net’s principle (Born and Wolf, 1959), the diffraction pattern associated with an
object is the same as that for an aperture with a shape identical to the projection
of the object on a plane normal to the incident direction. The diffraction matrix
obtained by the scalar Fraunhofer diffraction theory for a scattering particle has
been extensively employed in the previous ray-tracing studies. Yang and Liou
(1998) showed that the scattering matrix associated with diffraction is given in
the form

Adif =
k2

2π
D

[
(cos θ + cos2 θ)/2 0

0 (1 + cos θ)/2

]
, (2.48)

where
D =

∫∫
projected

area

exp(−ikr̂ · ξ̄) d2ξ. (2.49)

From eqs (2.48) and (2.49), the contribution of diffraction to the scattering
phase matrix, denoted as Fdif , can be evaluated. To sum the contributions due
to diffraction and Fresnel rays, proper weighting factors must be accounted for,
particularly, in the case when the scattering particle is absorptive.

If the scattering ice crystal is absorptive, i.e., the imaginary refractive index
is nonzero, the total absorption can be accounted for by considering the absorp-
tion of individual rays. In general, the absorption cross of a particle depends
on the polarization configuration of the incident light. However, for randomly
oriented particles, their absorption cross-section is the average of the absorption
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cross-sections for two orthogonal polarization cases. Consider a case where the
polarization of the incident light is specified as follows:

(Ei
0u,E

i
0v) = (1, 0). (2.50)

The intensity of the first-order refracted field can be obtained from eq. (2.26) in
the form

(Et
0u,E

t
0v)(Et

0u,E
t
0v)∗,+

∣∣∣
(Ei

0u,Ei
0v)=(1,0)

= (1, 0)(T1Γ1)+(T1Γ1)∗(1, 0)+, (2.51)

where the superscript symbol + denotes the transpose of a matrix, and ∗ in-
dicates the complex conjugate. The intensity given by eq. (2.51) is essentially
the amplitude of the Poyting vector (Born and Wolf, 1959) in which the re-
fractive index and change in the ray cross-section due to refraction have been
implicitly accounted for in the refractive matrix given by eq. (2.27). A similar
expression can be derived for the case when the polarization of field is given by
(Ei

0u,E
i
0v) = (0, 1). Therefore, the contribution of the first-order refracted rays

to the absorption cross-section is given by

σabs,1 =
N∑

j=1

2−1∆σj [1 − exp(−4πmidj1/λ)]

×
[
(Et

pu,E
t
pv)(Et

pu,E
t
pv)

∗,+
∣∣
(Ei

0u,Ei
0v)=(1,0)

+(Et
pu,E

t
pv)(Et

pu,E
t
pv)∗,+

∣∣
(Ei

0u,Ei
0v)=(1,0)

]

=
N∑

j=1

2−1∆σj [1 − exp(−4πmidj1/λ)]

· [(1, 0)(T1Γ1)+(T1Γ1)∗(1, 0)+ + (0, 1)(T1Γ1)+(T1Γ1)∗(1, 0)+
]
,

(2.52)

where subscript j denotes the jth initial ray, dj1 is the distance between the first
incident point (i.e., Q1 in Fig. 2.1) and the second incident point (i.e., Q2 in
Fig. 2.1), ∆σj is the cross-section of the jth initial ray, mi is the imaginary part
of the refractive index, and λ is the incident wavelength in a vacuum. Likewise,
the contribution by the pth-order reflected rays is

σabs,p =
N∑

j=1

2−1∆σj [1 − exp(−4πmidjp/λ)] exp

(
−4πmiλ

−1
p−1∑
L=1

djL

)

×
[
(1, 0)(TpΓp · · ·R2Γ2t1Γ1)+(TpΓp · · ·R2Γ2T1Γ1)∗(1, 0)+

+(0, 1)(TpΓp · · ·R2Γ2T1Γ1)+(TpΓp · · ·R2Γ2T1Γ1)∗(0, 1)+
]
, (2.53)
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Thus, the absorption cross-section of the scattering particle can be expressed as
follows:

σabs =
∞∑

p=1

σabs,p. (2.54)

In practice, the summation in eq. (2.54) can be truncated for the terms with
p > 10, because the amount of the energy carried by the higher-order rays is in-
significant. Equations (2.52)–(2.54) provide the explicit formulations for absorp-
tion cross-section within the framework of the ray-tracing technique in which the
polarization configuration is fully accounted for. In the conventional ray-tracing
method, the extinction cross-section is twice the projected area of the scattering
particle, that is

σext = 2σp, (2.55)

where σp is the particle’s projected area on a plane normal to the incident
direction. The contribution of diffraction to the extinction cross-section is equal
to that associated with the externally reflected rays and the transmitted rays
that experience two refractions and various orders of internal reflections.

One of the shortcomings of the conventional ray-tracing method is the pro-
duction of the delta-transmission associated with the refraction of rays through
two parallel faces of the pristine ice crystals. The delta-transmission phenomenon
has been discussed in detail by Takano and Liou (1989a) and Mishchenko and
Macke (1998). Let the portion of the scattering cross-section associated with the
delta-transmission be σδ. Then, the scattering cross-section can be separated
into three terms as follows:

σsca = (σp − σabs − σδ) + σδ + σp, (2.56)

The first term (σp−σabs−σδ) corresponds to the contribution from the externally
reflected rays and the various transmitted rays excluding the delta-transmitted
rays, the second term (σδ) denotes the contribution from the delta-transmitted
rays, and the third term (σp) is associated with diffraction. Let fδ be the ratio
of the delta-transmitted energy to the total scattered energy defined by

fδ = σδ/σsca = σδ/(2σp − σabs) = σδ/(σext − σabs). (2.57)

Using the standard notation, the scattered Stokes vector can be expressed as
follows: ⎛

⎜⎜⎝
Is
Qs
Us
Vs

⎞
⎟⎟⎠ =

σsca

k2r2
P

⎛
⎜⎜⎝
Ii
Qi
Ui
Vi

⎞
⎟⎟⎠ , (2.58)

where (Ii, Qi, Ui, Vi) and (Is, Qs, Us, Vs) are the incident and scattered Stokes
parameters, respectively, and P is the normalized phase matrix. Based on Fray
in eq. (2.47), Fdif that is defined on the basis of Adif in eq. (2.48), the expressions
in eqs (2.56) and (2.57), and the associated physical meanings of these quantities
and expressions, the normalized phase matrix is given by
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P (θ) =
[(2σp − σabs)(1 − fδ) − σp]aFray+2(2σp − σabs)fδδ(cos θ − 1) ¯̄I+σpbFdif

2σp − σabs

= 2fδδ(cos θ − 1) ¯̄I +
[
(1 − fδ) − 1

2ω̃o

]
aFray +

1
2ω̃o

bFdif , (2.59)

where ω̃0 = σsca/σext is the single scattering albedo. In eq. (2.59) θ is the scat-
tering angle, ¯̄I is a unit 4 × 4 matrix, and the two parameters, a and b, are
normalization factors given, respectively, by the following two equations:

a =
2∫ π

0 Fray,11(θ) sin θ dθ
, (2.60)

b =
2∫ π

0 Fdif,11(θ) sin θ dθ
, (2.61)

where the subscript 11 indicates the first element of the associated matrix. With
the normalization factors given in eqs (2.60) and (2.61), it can be shown that
the phase matrix in eq. (2.59) is normalized in the sense that the first phase
matrix element P11 (i.e., the phase function) satisfies the following normalization
condition:

1
2

∫ π

0
P11(θ) sin θ dθ = 1. (2.62)

The conventional ray-tracing technique utilizes the assumption that the en-
ergy attenuated by a scattering particle is equally divided into two parts: ex-
tinction associated with diffraction and extinction due to Fresnel reflection and
refraction. In this case, the extinction efficiency (i.e., the ratio of extinction
cross-section to particle projected area) is 2 regardless of the size and shape
of the scattering particle, referred to as the optical theorem. In addition, the
computation of far field by directly applying the ray-tracing technique leads to
the delta-transmission (Takano and Liou, 1989a) in the forward direction, as is
evident from the presence of a delta function in eq. (2.59). To overcome these
shortcomings, Yang and Liou (1995, 1996a, 1996b, 1997) have developed two
improved geometric optics methods.

According to the fundamental theory of classic electrodynamics, the far field
can be exactly computed if the tangential components of the electric and mag-
netic fields on the surface of a scattering particle are known (Jackson, 1998,
p. 485) in the form

Es(r)
∣∣
kr→∞ =

eikr

−ikr
k2

4π
r̂ × ©
∫∫

{n̂s × E(r′) − r̂ × [n̂s × H(r′)]} e−ikr̂·r′
d2r,

(2.63)
where the integral domain is the surface of the scattering particle. In essence,
eq. (2.63) is derived on the basis of the electromagnetic equivalence theorem
(Schelkunoff, 1943). Thus, the geometric ray-tracing technique can be used to
compute the near field on the particle’s surface, which can be subsequently
mapped to the far field on the basis of eq. (2.63). The mapping idea within
the framework of the ray-tracing computation was first employed by Muinonen
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(1989) who developed an algorithm known as the modified Kirchhoff approxima-
tion (MKA) to solve the scattering by nonspherical ice crystals based on an elec-
tromagnetic equation similar to eq. (2.63). To simplify numerical computations,
a constant extinction efficiency of 2 was assumed in the MKA and the strong
forward-scattering maximum was approximated by the Fraunhofer diffraction.
Yang and Liou (1995, 1996b) considered the phase interference and the polar-
ization state of the rays in the near-field computation (hereafter, this method is
referred to as GOM2). In GOM2, the extinction cross-section is computed from
the fundamental extinction formula (van de Hulst, 1957) or the so-called optical
theorem (Bohren and Huffman, 1983) given by

σext =
2π
k2 Re

[
A‖(êi0) +A⊥(êi0)

]
, (2.64)

where k = 2π/λ in which λ the incident wavelength. A‖(êi0) and A⊥(êi0) are
the amplitude scattering matrix elements in the forward scattering direction for
parallel and perpendicular polarization configurations, respectively. In eq. (2.64),
the symbol, Re, denotes the real part of the associated quantity. In GOM2, the
absorption cross-section of an ice crystal is computed via a rigorous electromag-
netic relation (Hage et al., 1991) given by

σabs =
kεi

|Ei|2
∫∫∫

v

E(r) · E∗(r) dr, (2.65)

where εi is the imaginary part of the permittivity, Ei is the incident electric
vector, and the integration is carried out for the volume of the particle. When
eq. (2.65) is applied to the ray-tracing computation, a semi-analytical expression
can be derived for the absorption cross-section, as shown by Yang and Liou
(1996b).

Similar to the case in eq. (2.63), the far field can be computed if the internal
electric field within the scattering particle is known, as is given by the following
electrodynamic relation (Saxon, 1973; Goedecke and O’Brien, 1988; Mishchenko
et al., 2002):

Es(r)
∣∣
kr→∞ =

k2 eikr

4πr
(ε− 1)

∫∫∫
v

{E(r′) − r̂[r̂ · E(r′)]} e−ikr̂·r′
d3r′, (2.66)

where ε is the permittivity. The advantage of using eq. (2.66) is that only the
electric field is involved, whereas both electric and magnetic fields are included
in eq. (2.64). In the limit of geometric optics, the incident wave consists of a
bundle of rays each of which propagates along a rectilinear path determined
by Snell’s law. With this assumption, the volume integration in eq. (2.66) can
be carried out along the ray paths, and at the same time a semi-analytical
solution for the far-field can be derived (Yang and Liou, 1997). This method is
referred to as the ray-by-ray integration (RBRI) method in the authors’ previous
work. Yang and Liou (1997) also showed that RBRI reduces to the anomalous
diffraction approximation (ADA) developed by van de Hulst (1957) when the
scattering particle is optically tenuous (i.e., the refractive index is close to 1).
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The GOM2 and RBRI methods are essentially the same within the context that a
hybrid algorithm based on the principles of geometric optics and the near-to-far-
field electromagnetic wave theory are employed to compute the single-scattering
properties of an ice crystal.

2.3 The finite-difference time domain method

For size parameters less than about 20–40, the geometric optics method breaks
down (Yang and Liou, 1995; 1996b; Macke et al., 1995; Mishchenko and Macke,
1999). Although various methods (see Mishchenko et al. 2000) have been devel-
oped to solve for the single-scattering properties of nonspherical particles, the
finite-difference time-domain (FDTD) method pioneered by Yee (1966) is quite
attractive for the computation of light scattering and absorption by small non-
spherical and inhomogeneous ice crystals. The FDTD method has been known to
be a flexible and robust approach for solving various electromagnetic problems.
Publications related to the FDTD method in the literature surveyed by Shlager
and Schneider (1998) illustrate the popularity of this method. In particular, sev-
eral books have been entirely devoted to this particular numerical technique for
various applications, ranging from the signal propagation in circuits to the study
of the electromagnetic hazard in bioscience (Kunz and Luebbers, 1993; Taflove,
1995; Taflove and Hagness, 2000).

The FDTD method can be technically considered as a ‘brute force’ approach
to solve the time-dependent Maxwell curl equations. Unlike the conventional
approach of solving Maxwell’s equations in the frequency domain in which an
electromagnetic scattering process is posed as a boundary-value problem, the
FDTD method solves an electromagnetic problem as an initial-value problem.
Mathematically, a boundary-value problem is normally more difficult than its
initial-value counterpart. To illustrate the basic concept of the FDTD method for
those who do not have any experience on this numerical technique, here we first
recapture the FDTD solution for the propagation of a plane electromagnetic wave
in free space, which is a typical 1-D wave-propagation problem. Then, we outline
the other major numerical aspects (namely, the absorbing boundary condition,
the transform of the field from the time domain to the frequency domain, and the
mapping of the near field to the far field) involved in the implementation of the
FDTD technique for computing the scattering properties of dielectric particles.
A comprehensive discussion on the 1-D scalar wave equation in the framework
of the finite-difference technique has been presented by Umashankar and Taflove
(1982), Taflove (1995) and Taflove and Hagness (2000) who also discussed the
1-D electromagnetic wave propagation for the implementation of the incident
wave condition in the FDTD numerical computation.

As shown in Fig. 2.3, a wave propagates along the z-axis of a Cartesian
coordinate system. The electric and magnetic vectors associated with this wave
are specified along the x- and y-axis of the coordinate system. This is a typical 1-
D wave propagation problem and the governing equations for the electromagnetic
wave can be written as follows:
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Fig. 2.3. The grid for the one-dimensional finite-difference analog of Maxwell’s equa-
tions. The propagation of a plane electromagnetic wave is defined as propagating along
the z-axis of the coordinate system. The electric and magnetic fields are specified in
a staggered manner, i.e., Ex is defined at grid points k = 0, 1, 2, . . . , K whereas Hy

specified at grid points k = 1/2, 3/2, . . . , k − 1/2.

1
c

∂Ex(z, t)
∂t

= −∂Hy(z, t)
∂z

, (2.67)

−1
c

∂Hy(z, t)
∂t

=
∂Ex(z, t)
∂z

, (2.68)

where c is the speed of light in vacuum. To solve variation in the electromagnetic
wave, the finite-difference technique is used in the FDTD method, i.e., both
electric and magnetic fields are specified in terms of their discrete values in time
and space. Following Yee (1966) and Taflove (1995), we define the discrete values
of the fields as follows:

En
x,k = Ex(k∆z, n∆t), (2.69)

H
n+1/2
y,k+1/2 = Hy [(k + 1/2) ∆z, (n+ 1/2) ∆t] , (2.70)

where ∆z and ∆t are the grid size and time increment, respectively, and the
indices k and n are integers. The electric and magnetic fields are defined on a
stagger grid, i.e., the electric field is specified at grid points with integer indices
(k = 0, 1, 2, . . . ), whereas the magnetic field is defined at the middle points of
adjacent grid points. Similarly, the electric field is defined at time steps n∆t,
whereas the magnetic field is defined at time steps (n+1/2) ∆t. Using the discrete
values of the fields defined in eqs (2.69) and (2.70), the derivatives of the electric
and magnetic fields in Maxwell’s equations can be expressed in terms of the
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standard ‘leapfrog’ or central difference scheme as follows (Yee, 1966; Taflove,
1995):

∂Ex(z, t)
∂t

∣∣∣∣
z=k∆z
t=(n+1/2)∆t

≈ Ex[k∆z, (n+ 1) ∆t] − Ex[k∆z, n∆t]
∆t

=
En+1

x,k − En
x,k

∆t
, (2.71)

∂Hy(z, t)
∂z

∣∣∣∣
z=k∆z
t=(n+1/2)∆t

≈ Hy[(k + 1/2) ∆z, (n+ 1/2) ∆t] −Hy[(k − 1/2) ∆z, (n+ 1/2) ∆t]
∆z

=
H

n+1/2
y,k+1/2 −Hn+1/2

y,k−1/2

∆z
, (2.72)

Upon substitution of eqs (2.71) and (2.72) into eq. (2.67), the finite-difference
analog of eq. (2.67) is given by

En+1
x,k = En

x,k +
c∆t
∆z

[
H

n+1/2
y,k−1/2 −Hn+1/2

y,k+1/2

]
. (2.73)

Similarly, we can derive the finite difference analog of eq. (2.68) as follows:

H
n+1/2
y,k+1/2 = H

n−1/2
y,k+1/2 +

c∆t
∆z

[
En

x,k − En
x,k+1

]
. (2.74)

The selection of the time increment ∆t in the finite analog of Maxwell’s equations
is not arbitrary because of the stability condition required by the difference
equations in numerical computation (Yee, 1966; Taflove and Brodwin, 1975).
In the case for 1-D electromagnetic wave, the stability condition requires that
c∆t/∆z ≤ 1.

Equations (2.73) and (2.74) constitute the difference equations for comput-
ing variation in the fields. In practice, if the initial values of the fields, say, E1

x,k

and H1/2
y,k+1/2 are defined at grid points indicated by indices 0, 1, 2, . . . and 1/2,

3/2, 5/2, . . . , respectively, this variation can be simulated by a time-marching
iteration based on eqs (2.73) and (2.74). However, the computational domain in
the numerical simulation must be truncated. For the 1-D case, let the computa-
tional domain be the spatial regime bounded by grid point k = 0 and k = K.
From eqs (2.73) and (2.74), the electric fields at k = 0 and k = K cannot be
computed by these two finite difference equations because H1/2

y,−1/2 and H1/2
y,K+1/2

are defined at the locations outside the computational domain. Thus, to update
the electric fields at the boundary points, appropriate boundary conditions must
be provided. For simplicity in calculating the field values at the boundary grid
points, the grid configuration can be specified as follows:
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c∆t/∆z = 1/2. (2.75)

The preceding relation implies that the wave propagates half grid size every time
step. Thus, the equations for updating the boundary values can be written as
follows:

En
x,1/2 = En−1

x,1 , (2.76)

En+1
x,0 = En

x,1/2, (2.77)

En
x,K−1/2 = En−1

x,K−1, (2.78)

En+1
x,K = En

x,K−1/2, (2.79)

where En
x,1/2 and En

x,K−1/2 are two auxiliary quantities introduced for updating
the electric fields at the two boundary points, respectively. Equations (2.76) and
(2.77) constitute the boundary condition for the grid point for k = 0, whereas
eqs (2.78) and (2.79) constitute the boundary condition for the grid point of
k = K. Using the finite difference equations (2.73) and (2.74) and the bound-
ary conditions given by eqs (2.76)–(2.79), one can compute variation in the
electromagnetic fields within the region between k = 0 and K. The computed
electromagnetic fields are the same as those in the case where the computational
domain is not bounded. Note that if En

x,0 = 0 and En
x,K = 0, the boundary

grid points constitute the reflecting boundaries. In this case, the electromag-
netic wave, when impinges on the boundary grid points, is reflected back to the
computational domain and contaminate the numerical simulation. The preced-
ing 1-D finite-difference equations and the associated boundary conditions have
been employed to implement the incident wave conditions in various applications
of the FDTD technique (e.g., Sullivan et al., 1988).

The discretization of Maxwell’s equations in the 3-D case is similar to that
in 1-D case. For example, the Maxwell curl equations in the scalar component
form for Ex and Hx can be written as follows:

∂Ex(r, t)
∂t

=
c

ε

(
∂Hz(r, t)
∂y

− ∂Hy(r, t)
∂z

)
, (2.80)

∂Hx(r, t)
∂t

= −c
(
∂Ez(r, t)
∂y

− ∂Ey(r, t)
∂z

)
. (2.81)

For simplicity in this discussion, we assume that the permittivity is a real num-
ber. Using the standard definitions for the electric and magnetic fields on a grid
cell shown in Fig. 2.4 (Yee, 1966), it is straightforward to derive the difference
analog of eqs (2.81) and (2.82) on the basis of the central-difference scheme in
both time and space as follows:
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Fig. 2.4. Locations of the electric and magnetic field components on a cubic grid cell,
defined by Yee (1966).

En+1
x,i,j+1/2,k+1/2 = En

x,i,j+1/2,k+1/2

+
1

εi,j+1/2,k+1/2

[
c∆t
∆y

(Hn+1/2
z,i,j+1,k+1/2 −Hn+1/2

z,i,j,k+1/2)

+
c∆t
∆z

(Hn+1/2
y,i,j+1/2,k −Hn+1/2

y,i,j+1/2,k+1)
]
, (2.82)

H
n+1/2
x,i+1/2,j,k = H

n−1/2
x,i+1/2,j,k +

[
c∆t
∆y

(En
z,i+1/2,j−1/2,k − En

z,i+1/2,j+1/2,k)

+
c∆t
∆z

(En
y,i+1/2,j,k+1/2 − En

y,i+1/2,j,k−1/2)
]
. (2.83)

The finite-difference equations for other components of the electric and magnetic
fields can be determined in similar forms. In the 3-D case, the stability condition
has been derived by Taflove and Brodwin (1975) given by

c∆t ≤ 1√
1/∆x2 + 1/∆y2 + 1/∆z2

. (2.84)

In the 3-D case, the boundary condition is a major issue in the FDTD com-
putation because the analytical boundary equations cannot be constructed due
to the unknown propagating directions of the outgoing waves. In the past two
decades, various numerical techniques (Blaschak and Kriegsmann, 1988; Moore
et al., 1988; Berntsen and Hornsleth, 1994) have been developed to update the
field values at the boundary grid points. The commonly used approaches are
the absorbing boundary condition developed by Mur (1981), the transmitting
boundary condition developed by Liao et al. (1984), and the perfectly matched
layer (PML) boundary condition pioneered by Berenger (1994, 1996). The PML
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is particularly efficient and popular in the implementation of the FDTD nu-
merical scheme (e.g., Katz et al. 1994). In the following we briefly outline the
principle of the PML boundary condition.

The essence of PML is to introduce an artificial absorbing medium within
the boundary layers that impose absorption on the partial electromagnetic field
components. For implementing the PML absorbing boundary condition, a field
component needs to be split into two parts in the forms

(Ex, Ey, Ez) = [(Exy + Exz), (Eyx + Eyz), (Ezx + Ezy)], (2.85)
(Hx, Hy, Hz) = [(Hxy + Exz), (Hyx +Hyz), (Hzx +Hzy)]. (2.86)

The PML boundary condition equations for Ez and Hz components at a bound-
ary perpendicular to the x-axis are given by

exp[−τx(x)t]
c

∂

∂t
{exp[τx(x)t]Ezx} =

∂(Hyx +Hyy)
∂x

, (2.87)

1
c

∂Ezy

∂t
= −∂(Hxy +Hxz)

∂y
, (2.88)

exp[−τx(x)t]
c

∂

∂t
{exp[τx(x)t]Hzx} = −∂(Eyx + Eyz)

∂x
, (2.89)

1
c

∂Hzy

∂t
=

∂(Exy + Exz)
∂z

, (2.90)

where τx(x) is defined for the boundary layers near x = 0 as follows:

τx(x) = τmax|(x− δx)/δx|p, (2.91)

where τmax denotes the maximum absorption at x = 0, which can be determined
by specifying the reflectance of the boundary layers at a normal incidence. In
eq. (2.91), δx denotes the thickness of the boundary layer and p is usually se-
lected between 2 and 3 (Lazzi and Gandi, 1996). In numerical computations,
the PML boundary condition is applied to outgoing scattered waves. To do so,
the FDTD computation is usually divided into an inner domain enclosed by an
outer domain. Within the inner domain, the total field (incident plus scattered
fields) is simulated, and only outgoing or scattered field is simulated otherwise.
In practice, an interface known as the Huygens surface (Merewether et al., 1980)
is introduced to connect the fields in the two domains. Note that, to avoid
the Huygens surface, an alternative approach for which the scattered field is
defined for the entire computational domain has been developed (e.g., Britt,
1989; Yang and Liou, 1995). However, this approach is not computationally ef-
ficient, particularly, for the implementation of the FDTD method in the 3-D
case.

With the finite difference analog of the Maxwell equations and the absorbing
boundary condition, the electromagnetic field within or near a scattering parti-
cle (i.e., the near field) in the time domain can be obtained. The corresponding
signal in the frequency domain can be obtained via the discrete Fourier trans-
form. For example, if the time series of electric field at a given grid point say,
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En+1
x,i,j+1/2,k+1/2, are known, the corresponding signal in the frequency domain

can be obtained as follows

Ex,i,j+1/2,k+1/2(k) =
N∑

n=0

En+1
x,i,j+1/2,k+1/2 exp(i2πcn∆t/λ), (2.92)

The discrete Fourier transform is more efficient than the fast Fourier transform
for application to the FDTD computation, as illustrated by Furse and Gandhi
(1995).

After the near field in the frequency domain is obtained, the scattered far
field can be obtained from either eq. (2.63) or eq. (2.66). Although these two
equations are physically equivalent, the far-field values computed from eqs (2.63)
and (2.66) differ in terms of accuracy (Zhai et al., 2004). The near-to-far-field
transformation in both the frequency and time domains has been discussed by
Taflove and Hagness (2000) and references cited therein.

2.4 Numerical examples

The FDTD technique has been applied to the investigation of the scattering
properties of small ice crystals (Yang and Liou, 1995, 1996a; Sun et al., 1999;
Sun and Fu, 2000; Yang et al., 2004a) and its accuracy has been extensively
studied in reference to the results computed from the ‘exact’ Lorenz–Mie theory
for spheres. Also, Baran et al. (2001) compared the FDTD solution and T-
matrix results for the single-scattering properties of hexagonal ice crystals. In
general, the relative errors of the FDTD solutions are typically less than 1%
for computing the extinction and absorption cross-sections and on the order of
10% for computing the phase function if the grid size is less than 1/20 of the
wavelength within the scattering particle of interest. The accuracy of the FDTD
solution can be further improved if a finer grid size is used, but at the expense of
the computational CPU time. In practice, application of the FDTD technique to
the light scattering by ice crystals is limited to size parameters less than about 20
because enormous computational efforts are required. Sun et al. (1999) applied
this method to the solution to the scattering of light by a single ice sphere with
a size parameter of 40 at a wavelength at which the refractive index of ice is
small. Application of the FDTD technique to the scattering of light by particles
with a large refractive index (e.g., the real part of the refractive index is on the
order of 8) has been recently reported by Sun and Fu (2000) and Yang et al.
(2004a). The latter authors also applied this method to complex bullet rosette ice
crystals with various branches (Yang et al., 2004a). As an example, Fig. 2.5 shows
comparison of the phase matrix elements computed from the FDTD technique
and the Lorenz–Mie theory for an ice sphere with a size parameter of 20 at a
wavelength of 0.6328 µm. A surface-integral based approach (Zhai et al., 2004)
with a grid resolution of λ/∆s = 40 is used to map the near field to far field
for the FDTD resolute shown in Fig. 2.5, where λ and ∆s are the incident
wavelength and grid size, respectively. Excellent agreement between the FDTD
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Fig. 2.5. Comparison of the phase matrix elements computed from the Lorenz–Mie
theory and the FDTD method for an ice sphere with a size parameter of 20 using a
wavelength of 0.6328 µm.

and Lorenz–Mie results is evident. The FDTD solution for the phase function is
more accurate than for the other phase matrix elements because former is less
sensitive to phase variation in the scattered waves.

It has been commonly assumed that a small quasi-spherical ice crystal may
be approximated by an equivalent sphere, defined by (1) the same diameter
(D), (2) the same surface area (A), (3) the same volume (V ), or (4) the same
ratio of V to A. Fig. 2.6 shows comparison of the phase functions computed
for these four definitions of spherical equivalence for Platonic solids (i.e., tetra-
hedron, hexahedron, octahedron, dodecahedron, and icosahedron). It is inter-
esting to note that the study of the Platonic-solid shape has a rich history,
which goes back to the beginning of recorded human civilization. For example,
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Fig. 2.6. The phase function of an ice sphere with a size parameter of x = 5. The
wavelength and refractive index are 0.6328 µm and 1.3085 + il.09 × 10−8, respectively.
Also shown are the phase functions of the five Platonic shapes with the same radius
(the first column), projected area (the second column), volume (the third column) and
V/A (the fourth column) as those for the ice sphere (after Yang et al., 2004b).

the polyhedron was extensively used/investigated in ancient Egyptian, Baby-
lonian, Chinese, and Greek cultures associated with the study of architecture,
art, mathematics, and even the philosophy regarding the early understanding
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of the universe. Historically, it was believed that matter was composed of a
few elemental substances combined in different ways. Influenced by Aristotle
(384–322 BC), ancient wisdom assumed that the basic elements (fire, air, earth,
water, and celestial matter) were related to the five regular polyhedra. A re-
view of the history of the study of polyhedron can be found in a monograph
by Cromwell (l997) and also in a review article by Field (1979). Although the
polyhedron has been studied for millennia from various perspectives, it is still a
challenging topic for modern mathematicians. In fact, many mathematical theo-
rems related to the polyhedron have only recently been proved (e.g., Grunbaum,
1967). The numbers of the faces for a tetrahedron, a cube, an octahedron, a
dodecahedron, and an icosahedron are 4, 6, 8, 12, and 20, respectively. The faces
of a Platonic solid are equilateral polygons with the same number of sides. The
number of faces, the number of vertices, and the number of edges of a polyhe-
dron satisfy the famous Euler’s theorem (Euler, 1758) that can be expressed as
follows:

f + v + e = 2, (2.93)

where f is the number of polygon faces, v the number of vertices, and e the
number of edges. The five platonic solids approach spheres in an orderly man-
ner and, therefore, they are ideal for investigating the asphericity effect on the
scattering properties. It is evident from Fig. 2.6 that a systematically optimized
definition for ‘spherical equivalence’ does not exist. It is seen that the ‘spherical
equivalence’ based on the particle dimension leads to the best approximation in
the case for dodecahedron, whereas the volume-based ‘equivalence’ is more ac-
curate than the other three definitions in the case of the icosahedron. It is clear
that the extent of nonsphericity of a particle in the context of light scattering
computation depends on a specific geometry. This implies that a general opti-
mal ‘spherical equivalence’ cannot be defined to minimize the errors associated
with the spherical approximation for a variety of nonspherical geometries in light
scattering computations.

The simplest ice crystal shape can be represented by the pristine column
and plate that normally have a basic hexagonal symmetric structure. Using the
geometric ray-tracing technique, the scattering properties of hexagonal ice crys-
tals have been extensively investigated in the past. The pristine ice crystal types
produce the well-known 22◦ and 46◦ halos, as well as a number of fascinating
arcs and sundogs that have been observed in cirrus cloud conditions (see for
example, Greenler, 1990).

The upper panels of Fig. 2.7 show the nonzero phase matrix elements for
randomly oriented hexagonal ice columns at a wavelength of 0.6328 µm. For the
scattering of light by large particles with a size parameter on the order of those
shown in Fig. 2.7, the conventional and improved geometric optics methods
produce about the same results. The peaks at 22◦ and 46◦ scattering angles in
the phase function are responsible for the halos observed in the atmosphere. The
scattering maximum between 150◦ and 160◦ is produced by the rays undergoing
two internal reflections (Takano and Liou, 1989a). The lower panels in Fig. 2.7



2 Light scattering and absorption by nonspherical ice crystals 57

Fig. 2.7. The scattering phase matrix of randomly oriented hexagonal ice columns
and droxtal ice crystals computed from the geometric optics method for large size
parameters.
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show the nonzero phase matrix elements for randomly oriented droxtal, an ice
crystal term introduced by Thuman and Robinson (1954) and Ohtake (1970).
The droxtal geometry with a 20-face structure has been suggested as a better
representation of small quasi-spherical ice crystals observed in ice clouds. It has
been speculated that the formation of droxtal ice crystals is associated with the
freezing of supercooled water droplets and subsequent growth by water vapor
deposition (Zhang et al., 2004). From Fig. 2.7, it is evident that the single-
scattering properties of droxtal ice crystals are substantially different from those
of well-defined pristine hexagonal ice crystals. For the former, the phase function
is quite flat at large scattering angles from 100◦ to 180◦. Additionally, droxtals
scatter less energy than hexagonal ice crystals in the scattering directions around
60◦. A strong peak at the 11◦ scattering angle in the phase function of droxtals is
produced by rays undergoing two sequential refractions through the trapezoidal
and rectangular faces.

Fig. 2.8 illustrates the phase matrix for randomly oriented small hexagonal
ice crystals and droxtals computed from FDTD. Based on laboratory and aircraft
observations, small ice crystals tend to have unit aspect ratio (Auer and Veal,
1970), i.e., L/2a ∼ 1 in which L and a are the length and semi-width of an ice
crystal, respectively. The pronounced scattering peaks corresponding to halos are
not observed in the phase function. However, a scattering maximum is shown
for both small hexagons and droxtals that are randomly oriented in space. We
also note that the phase function for droxtals shows fluctuations in the side
and backscattering directions, which cannot be smoothed out through random
orientation averaging. Although the overall geometry of a droxtal is close to
a sphere, significant nonsphericity effect is noted from the phase matrix. For
a sphere, the ratio P22/P11 is one. It has been argued that the deviation of
P22/P11 from unity is an index of nonsphericity effect (Bohren and Huffman,
1983; Mishchenko et al. 2002). From Fig. 2.8, the P22/P11 values for droxtals
for the scattering angles larger than 60◦ are substantially deviated from unity,
indicating the prominent nonspherecity effect. Yang et al. (2003) and Zhang et
al. (2004) have proposed that small quasi-spherical ice crystals in ice clouds may
be approximated as droxtals in light scattering computations.

To compare the single-scattering properties for various ice crystal shapes,
Figs. 2.9 and 2.10 show the phase functions for six ice crystal habits with small
and large size parameters, respectively. For large aggregates, their surfaces are
assumed to be moderately rough in the phase function computation on the basis
of the Gram–Charlier distribution (Cox and Munk, 1954) following the method
described in Yang and Liou (1998). It is evident from Fig. 2.9 that the scattering
of light by small ice crystals does not produce halo peaks. For small plates
and columns (the panels in the second row) the phase functions are smooth
for scattering angles from 90◦ to 180◦. On the contrary, the overall feature of
the phase function for large ice crystals illustrates pronounced peaks, except
in the case of aggregates because surface roughness smooths out the scattering
peak.
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puted from the FDTD method.
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Fig. 2.9. Comparison of the phase functions computed from the FDTD method for
ice ice crystal shapes that are commonly observed in ice clouds. The parameter, D,
is the maximum dimension for a droxtal, a bullet rosette, or an aggregate ice crystal.
For plates and columns, a denotes the half-width and L is the length (for columns) or
thickness (for plates). K = 2π/λ is the wavenumber.

To demonstrate the improvement in GOM2 (Yang and Liou, 1995) as com-
pared to the conventional ray-tracing approach for moderate size parameters,
Fig. 2.11 shows the phase function computed by the two methods and FDTD in
a 2D case. In the computation, ice crystals were assumed to be infinitely long
hexagonal columns with normal incidence. Halo peaks are noticed in the conven-
tional ray-tracing solution, but not in the FDTD result. The scattering patterns
produced by the improved geometric optics are similar to those shown in FDTD
for both size parameters, but its accuracy is degraded in scattering angles larger
than ∼100◦.

Fig. 2.12 shows the extinction efficiency and single scattering albedo com-
puted from FDTD, GOM2 based on eq. (2.63), RBRI based on eq. (2.66), and
the conventional ray-tracing technique. The limitation of the conventional ray-
tracing method is evident in the evaluation of the extinction efficiency, which is
equal to 2 regardless of the size parameter. At a size parameter of about 20, the
results computed from RBRI, GOM2, and FDTD converge. Owing to the limi-
tations of the geometric optics approximation and computational requirements



2 Light scattering and absorption by nonspherical ice crystals 61

Fig. 2.10. Comparison of the phase functions computed from the geometric optics
method for six ice crystal shapes. For aggregates, surface roughness is included in the
light scattering computation.

in the FDTD method, they can be applied to large (>20) and small (<20) size
parameters, respectively. However, by combining GOM2 and FDTD, calculation
of the single-scattering properties for various ice crystal shapes and sizes can be
carried out. This is the essence of the unified theory concept developed by Liou
et al. (2000) in the sense that the accurate FDTD solution can be used for small
size parameters and at the same time an approximate geometric optics approach
can be applied to large size parameters.

2.5 Summary

In this chapter, we have reviewed the theoretical development and numerical
computation for the single-scattering properties of atmospheric ice crystals. Ap-
plication of two numerical methods, the geometric optics approach and the
FDTD technique, to the scattering of light by ice crystals have been highlighted.
Specifically, we recaptured the ray-tracing methodology originally developed by
Cai and Liou (1982), which is systematically formulated in a vector form in the
present presentation. The vector formulation of the ray-tracing procedure is in-
dependent of specific coordinate systems and can be implemented in numerical
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Fig. 2.11. Normalized phase functions computed by the FDTD, conventional ray-
tracing, and GOM2 methods for the scattering of light by randomly oriented 2-D
hexagonal ice crystals (after Yang and Liou, 1995).

computations effectively. The weightings of diffraction, Fresnel refraction and
reflection, and the delta-transmission have been explicitly given in the formula-
tion of the phase matrix. Moreover, the absorption cross-section of ice crystals
under the randomly oriented condition is also presented within the framework
of the geometric optics approach in which both polarization configurations are
accounted for.
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Fig. 2.12. Comparison of the extinction efficiency and the single scattering albedo
computed by FDTD, RBRI, GOM2, and the conventional ray-tracing methods at the
0.55-µm and 3.7-µm wavelengths (data taken from Yang and Liou, 1997).

The FDTD techniques pioneered by Yee (1966) and further developed by
many others (e.g., Taflove and Hagness (2000) and references cited therein) is
an attractive approach to deal with the scattering of light by small ice crystals.
We reviewed the basic principle of the FDTD technique by using the 1-D elec-
tromagnetic wave propagation process for illustration. The implementation of
FDTD in the 3-D case for the scattering of light by ice crystals was outlined,
including the discretization of Maxwell’s equations on the basis of the difference
approximation, the absorption boundary condition for truncating the computa-
tional domain, the transform of simulated signals from the time to the frequency
domain, and the near field to far field mapping.

Finally, selected numerical results were presented to illustrate the scattering
characteristics of large and small ice crystals. The overall feature for the scat-
tering of light by large ice crystals is that the corresponding phase functions
normally show strong halo peaks. However, if the surface roughness condition
is imposed in the ray-tracing computation, the scattering peaks associated with
halos are largely smoothed out. For small ice crystals, the scattering phase func-
tions are generally featureless in the side and backward scattering directions.
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Moreover, we revisited some of our previous numerical results to demonstrate
certain advantages of the improved geometric optics methods.
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3 Light scattering and absorption characteristics
of optically soft particles

Subodh K. Sharma

3.1 Introduction

Scattering techniques have been used to infer optical properties of macroscopic
particles in various scientific disciplines for many years. To be able to deduce
this information about the scatterer it is necessary to have an underlying theory
for the analysis of measurements. Unfortunately, the exact analytic solutions are
unknown, except in some simplest and most idealized cases. For a number of
shapes numerical procedures are a possibility. But in many applications even a
numerical approach still proves to be impracticable or even impossible and one
needs to resort to approximation methods.

Many particles of interest in nature are such that their refractive index m
(relative to the surrounding medium) is close to unity, i.e., |m − 1| 	 1. These
are called soft scatterers. A number of approximations have been developed for
predicting optical properties of such particles. The purpose of this article is to
review the situation regarding soft particle scattering and absorption approxi-
mations and study their optical characteristics.

Parameters often employed to describe the validity domains in light scatter-
ing approximations are the size parameter x = πd/λ and a parameter 2x|m− 1|
which can be looked upon as a measure of interaction strength. Here λ is the
wavelength of the incident radiation and d is the characteristic size of the scat-
terer (e.g., the diameter of a spherical particle). Two domains may be identified
for the purpose of this article. (i) 2x|m − 1| ≤ 1 (small phase shifts) and (ii)
arbitrary 2x|m− 1| (arbitrary phase shifts).

3.2 Small phase shifts

3.2.1 Rayleigh–Gans-Debye approximation

If we denote by Ei = E0 exp(iki.r − iωt) as the incident electromagnetic field,
the four scattering amplitudes S1, S2, S3 and S4 at a large distance r from the
scatterer may be defined by the following relation
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E‖s

E⊥s

)
=
eik(r−z)

−ikz
(
S2 S3
S4 S1

)(
E‖i

E⊥i

)
(3.1)

where Es is the scattered electric field. The components ‖ and ⊥ are defined with
respect to the scattering plane which contains the incident wave vector ki and
the final wave vector kf . Provision has been made for cross-coupling between
polarizations such that E‖s may contain both components E‖i and E⊥i. The
same holds for E⊥s. For an isotropic scatterer, the scattered vector has the
same orientation to the plane of measurement as the incident vector and hence
S3 = S4 = 0.

The Rayleigh–Gans–Debye approximation (RGDA) is designed to work in
the domain

|m− 1| 	 1, 2x|m− 1| 	 1, (3.2)

where the complex refractive index m = n + in′. The four scattering functions
defined in (3.1), take the following form in the RGDA(

S2 S3
S4 S1

)
= −ik3α

(
cos θ 0

0 1

)
R(θ, φ), (3.3)

where θ is the scattering angle (see Fig. 3.1) and α is the isotropic polarizability
of the homogeneous scatterer. The shape factor R(θ, φ) for a particle of the
volume V is

R(θ, φ) =
1
V

∫
V

ei∆(r)dV, (3.4)

where ∆(r) is the phase difference between waves arriving in a given direction
after scattering by various volume elements within the scatterer. The generaliza-
tion to heterogeneous particle can be found in Bohren and Huffman (1983). The
shape factor can be easily calculated for most simple shapes (van de Hulst, 1957;
Kerker, 1969; Bayvel and Jones, 1981; Kokhanovsky, 1999). For a homogeneous
sphere of radius a the shape factor is given by

R(qa) = 3(sin qa− qa cos qa)/(qa)3 (3.5)

Fig. 3.1. Scattering of a plane wave by a potential in the EA
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with q = |ki − kf | = 2k sin(θ/2). Also we have for spherical particles α =
(m − 1)V/(2π). For θ = 0, S1(0) = S2(0) = S(0). Further, for a non-absorbing
sphere it is clear from (3.3) and (3.5) that S(0) is a purely imaginary number
in the RGDA. Thus, the extinction efficiency factor Qext as calculated from the
optical theorem

Qext = (4/x2)ReS(0), (3.6)

gives Qext = 0, which is obviously a wrong result. The reason for this is that the
relation (3.6) is true only for amplitudes that satisfy the unitarity property. The
RGDA amplitude does not, and hence Qext in the RGDA should be calculated
as a sum of Qabs and Qsca. The scattering efficiency defined as

Qsca =
1
x2

∫
(|S1(θ)|2 + |S2(θ)|2) sin θdθ,

gives

QRGDA
sca = |m− 1|2φ(x), (3.7)

where

φ(x) =
[
5
2

+ 2x2 − sinu
u

− 7
16x2 (1 − cosu) +

(
1

2x2 − 2
)

(γ + ln(u) − Ci(u))
]
,

with

Ci(u) = −
∫ ∞

u

cos t
t
dt,

u = 4x and γ = 0.577 as the Euler’s constant. The absorption efficiency is

QRGDA
abs =

8x
3

Im|m− 1|, (3.8)

and QRGDA
ext may be obtained as sum of (3.7) and (3.8). For ρ(= 2x(n−1)) 	 1,

the errors are reasonably small. The approximation for extinction efficiency in
the domain 1.0 < m ≤ 1.25 is better than 10% for x < 1.0 (Bayvel and Jones,
1981). For a fixed value of m the accuracy decreases as x increases. If x � 1,
(3.7) gives

QRGDA
sca = 2x2|m− 1|2

This formula is known as Jobst’s approximation (Jobst, 1925).
The scattered intensity for a homogeneous sphere is

i(θ)RGDA =
1
2
[|S1(θ)|2 + |S2(θ)|2] =

2
9
x6|m− 1|2(1 + cos2 θ)|R(θ)|2, (3.9)

under unpolarized light illumination conditions. The angular variation of the
scattered intensity of optically soft scatterers is reproduced quite accurately by
eq. (3.9).
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3.2.2 Modified RGDA

Equation (3.9) tells us that the minima of the scattering pattern for a sphere are
determined by the zeros of the equation tan z = z. That is, zeros of the scattering
pattern are dependent only on the size and not on the refractive index. The zeros
zn, to a good approximation are given by z2n = (n+ 1/2)2π2 − 2, n = 1, 2, . . ..
There are however, no zeros of R(θ, φ) for any θ unless x > 2.25 (Bohren and
Huffman, 1983). Shimizu (1983) and Gordon (1985) have examined modifications
to the RGDA. Both modifications introduce refractive index dependence in R(θ).
While the modified version of Shimizu changes x to mx, Gordon argues for the
substitution x(1 +m2 − 2m cos θ)1/2 in place of x sin θ/2. The modified versions
give considerably better agreement with the Mie theory for positions of extrema
in the scattering pattern. However, the value of scattered intensity at minima
is quite different from the exact results. This discrepancy can be removed by
adding an x dependent function γ(x) to R(θ) (Gordon, 1985):

R(θ) = 3(sin z − z sin z)/z3 + γ(x).

It is found that γ(x) = x−3/2 provides reasonable agreement with Mie theory up
to about x = 30 and 1.0 < m < 1.2. That is, despite the original premise that
ρ < 1, the modified RGDA gives good results even when ρ > 1.

3.2.3 Quasistatic approximation

Another problem with the RGDA is that it does not work well for shapes which
strongly differ from the spherical geometry. To overcome this difficulty an ap-
proximation known as the quasistatic approximation (QSA) was developed for
cylinders by Burberg (1956) and for spheroids by Shatilov (1960). More recently,
Voshchinnikov and Farafonov (2000), Farafonov et al. (2001) and Posselt et al.
(2002) have further examined QSA for spheroids, infinite cylinders and multi-
layered spheroids. In this approximation the field inside the scatterer is repre-
sented by the incident plane wave (as in RGDA), while the polarizability of the
particle is taken into account as in the Rayleigh approximation. In this sense this
approximation is a generalization of the Rayleigh and the RGD approximations.
The condition for applicability of the QSA is

|m− 1|xv 	 1,

where, in case of a spheroid, xv = 2πav/λ (av is the radius of a sphere whose
volume is equal to that of the spheroid). Numerical results show that the QSA
works particularly well for small optically soft particles. In this case it is always
preferable to the RGDA. It is found that while the range of applicability of
RGDA decreases with growing asphericity, the validity range of QSA remains
practically independent of the scatterer shape. In comparison to the RGDA, its
range of applicability is nearly always greater if a/b ≥ 3. Here, a and b are
semi-major and semi-minor axes respectively.
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Paramanov et al., (1986) have studied the effect of non-sphericity and orien-
tation on scattering of light by soft spheroidal particles. The result shows that
in the Rayleigh limit light scattered by randomly oriented spheroids is almost
indistinguishable from light scattered by a collection of spheres of equal volume.

3.2.4 Shifrin and Ston approximation

A series representation of φ(x), particularly useful for polydispersions, has been
given by Shifrin and Ston (1976):

φ(x) =
∞∑

l=1

(−1)l+1 (4x)2l+2

(2l + 2)
l2 + l + 2

2(l + 2)2(l + 1)
. (3.10)

Further, it has been shown that the following approximations derived from (3.10)
can be used to within 3% accuracy:

φ(x)
= 1.185x4(1.0 − 0.4x2 + 0.096x4) x ∈ [0, 1]

= 1.92x4 − 1.084x x ∈ [1, 2]
= 2.112x2 − 1.456x x ∈ [2, 12.5]

.

3.2.5 Walstra approximation

An interpolation formula for a non-absorbing sphere, based on RGDA, has been
obtained by Walstra (1964). If for a given x, Qext is known form = a and m = c,
Qext can be computed for the intermediate value of m = b by

Qext(b) =
(b− 1)2

c− a

[
c− b

(a− 1)2
Qext(a) +

b− a
(c− 1)2

Qext(c)

]
.

The results from this formula yield less than 1% error for values of x up to at
least 8. The m range considered was m = 1.025(0.05)1.275. Walstra (1964) has
also given approximate empirical expressions for extinction efficiency. For small
particles,

QWAS
ext = (1.26m− 0.04)ρ− 2.558(m− 1)1.273 − 0.843.

This gives less than 1% error in the range 1.5 < ρ < 2.5.

3.3 Potential scattering

Some important work on the development of the theory of light scattering by
optically soft particles has been motivated by analogous work in quantum me-
chanical scattering by drawing an analogy between a potential and the refractive
index. It is, therefore, desirable to know how the eikonal approximation (EA) is



78 Subodh K. Sharma

derived in potential scattering. Some review articles on the EA in potential scat-
tering include Glauber (1959), Gerjuoy and Thomas (1974), Byron and Joachain
(1977), and Gien (1988).

Consider the non-relativistic elastic scattering of a spinless particle of mass
M by a local potential V (r) of range a. Let ki and kf be the incident and
scattered wave vectors associated with the particle and let θ be the scattering
angle between them. The particle energy E is �2k2/2M and |ki| = |kf | = k.
Here � = h/2π, where h is Planck’s constant. The problem to be considered is
the solution of the Schrödinger equation[

(−�2/2M)∇2 + V (r)
]
ψ(r) = Eψ(r), (3.11)

which when substituted in the expression

f(θ) = − 1
4π

∫
e(−ikf .r)U(r)ψ(r)dr, (3.12)

gives the scattering amplitude. In (3.12), U(r) = (2M/�2)V (r). The basic prob-
lem, thus, reduces to finding the wave function inside the scattering region. To
this end, we consider a trial solution of (3.11) in the form,

ψ(r) = exp(iki.r)φ(r). (3.13)

Choosing the z-axis along ki, substitution of (3.13) in (3.11) gives[
∇2 + 2ik∂/∂z

]
φ(r) = U(r)φ(r). (3.14)

Neglecting the term ∇2 in the left hand side, (3.14) becomes,

2ik(∂/∂z)φ(r) = U(r)φ(r), (3.15)

which, with the boundary condition φ(−∞) = 1, gives

ψ(b, z)EA = exp
(
ikz − i

2k

∫ z

−∞
U(b, z′)dz′

)
. (3.16)

This is the EA in its simplest form. It can be checked that the assumptions made
in arriving at (3.15), namely, ∇2φ(r) 	 U(r)φ(r), and ∇2φ(r) 	 2ik∂φ(r)/∂z
essentially require

|U0|/k2 	 1; ka � 1, (3.17)

where |U0| is the ‘strength’ of the potential. The physical picture, which emerges
from (3.16) may be viewed as follows. A high energy particle passes through the
scattering potential at an impact parameter b in a straight line trajectory (see
Fig. 3.1). The presence of the potential introduces a change in the phase of the
wave function of the incident particle. Its amplitude and direction of propagation
remains unaffected.
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The result (3.16) can also be obtained by substituting (3.13) in the integral
equation

ψ(r) = exp (iki.r) −
∫
G(r − r′)U(r′)ψ(r′)dr′ (3.18)

and linearizing the Green’s function G(r − r′). The linearized propagator

G(r − r′)EA = (−i/2k) exp(ik(z − z′))δ(b − b′)Θ(z − z′) (3.19)

clearly represents a straight line forward propagation. This linearized propagator
when substituted in (3.18) gives (3.16).

Substitution of the ψEA from (3.16) into (3.12) gives,

f(θ)EA =
−1
4π

∫
ei
(
q⊥.b+2kz sin2(θ/2)

)
U(b, z)e

−i
2k

∫ z
−∞ U(b,z′)dz′

dbdz, (3.20)

where q = ki − kf . For small angle scattering exp[2ikz sin2(θ/2)] � 1, and the
z-integration can be performed easily giving

f(θ)EA = − ik
2π

∫
eiq⊥.b[eiχ(b)EA − 1

]
db, (3.21)

where

χ(b)EA = − 1
2k

∫ ∞

−∞
U(r)dz. (3.22)

The amplitude (3.21) is the eikonal amplitude. Strictly speaking though, it is
a combination of the EA and an additional small angle approximation. The
angular range of the EA is governed by the relations

θ 	 1/(ka)1/2 if |U0|a/k < 1, (3.23)

and

θ 	 |U0|1/2/k if |U0|a/k > 1. (3.24)

If z-axis is chosen along the average momentum direction kn = (ki + kf )/2,
the scattering amplitude (3.20) reduces to (3.21) even without the small angle
approximation. However, |q⊥| = k sin θ now needs to be replaced by 2k sin(θ/2).
In what follows, it is this amplitude which will be referred to as the EA unless
stated otherwise.

Wallace (1971) developed an eikonal expansion in powers of k−1 for infinitely
often differentiable potentials in which the EA appears as the zeroth-order term.
The eikonal amplitude corrected to the first two orders for a spherically sym-
metric potential may be written as

f(q) = −2k
∫
dbeiq.b

[
f(b)I,II

EA − 1
]
,



80 Subodh K. Sharma

where f I
EA and f II

EA denote first and second order corrections given by

f(b)I
EA = ei

(
χ0(b)+τ1(b)

)
, f(b)II

EA = f(b)I
EAe

iτ2(b)−ω2(b),

and

τ1(b) = − 1
k3

(
1 + β1

) ∫ ∞

0
dzU2(r), ω2(b) = bχ′

0(b)∇2χ0(b)/8k2,

τ2(b) = − 1
k5

(
1 +

5
3
β1 +

1
3
β2
) ∫ ∞

0
dzU3(r) − [b(χ′

0(b)
)3
/24k2],

with βn = bn∂n/∂bn. Wallace has obtained third-order correction too. It is not
given here. The systematic improvement with each increasing order of the eikonal
expansion has also been verified by Wallace.

Chen (1984) wrote a modified linearized propagator

G(r − r′)EA = (−i/2α) exp(iβ(z − z′))δ(b − b′)Θ(z − z′), (3.25)

where the arbitrary parameters α and β are determined in such a way that the
dominant real and imaginary parts of the second Born amplitude are correctly
reproduced. The resulting approximation, termed as the generalized EA (GEA),
has been found to be accurate for angular variation of scattered intensities for
Yukawa and Gaussian potentials even at large angles.

3.4 Arbitrary phase shifts

Consider a scalar wave equation for the field ψ(r) propagating through a medium
of spatially varying relative refractive index m(r):

∇2ψ(r) + k2m2(r)ψ(r) = 0. (3.26)

A comparison of (3.26) with the Schrödinger equation (3.11) shows that

U(r) =
[
1 −m2(r)

]
k2. (3.27)

With this identification, the scalar scattering function, S(θ, φ) (related to f(θ, φ)
via the relation S(θ, φ) = −ikf(θ, φ)), can be written from (3.12) as

S(θ, φ) =
ik3

4π

∫
dre−ikf .r [1 −m2(r)

]
ψ(r). (3.28)

Various approximations can be obtained for scattering function by assuming
different approximate forms for ψ(r).
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3.4.1 Straight line approximations

In the EA, following (3.16) and (3.27), ψ(r) may be approximated as:

ψ(r)EA = eiki.r+ k
2

∫ z
−∞(m2(b,z′)−1)dz′

. (3.29)

The EA for the scattering function may then be obtained by substituting this
expression for ψ(r) in (3.28). The z integration can be easily performed. The
result is

S(θ, φ)EA = k2
∫
dbeiq.b[1 − eiχ(b)EA

]
, (3.30)

where

χ(b)EA =
k

2

∫ ∞

−∞

[
m2(r) − 1]dz,

with q.b = 2kb sin(θ/2). The two-dimensional integration in (3.30) is over the
projected particle area. The conditions (3.17) for the validity of the EA now
translate to

|m(r) − 1| 	 1, x � 1. (3.31)

For complex m (m(r) = n(r)+ in′(r)) the condition |m(r)−1| 	 1 is equivalent
to two conditions: |n(r) − 1| 	 1 and |n′(r)| 	 1. This requirement ensures
that at boundaries there is negligible deviation of the incident ray and that
the energy reflected is negligible. The requirement x � 1 ensures that the ray
travels undeviated through the scatterer as the refractive index varies slowly in
a distance of the order of the wavelength. The angular range given by (3.23) and
(3.24), now translate to

θ 	 1/
√
x for x|m2 − 1| < 1; (3.32)

θ 	 |m2 − 1|1/2 for x|m2 − 1| > 1. (3.33)

Here m may be taken as the maximum value of the refractive index.
An alternative derivation in (3.30) has been given by van de Hulst (1957). The

outline of the method is as follows. As a consequence of conditions (3.31), the in-
cident rays are assumed to pass through the particle undeviated. A ray at an im-
pact parameter b then accumulates a phase shift χ(b)ADA = k

∫∞
−∞[m(r)−1]dz.

The field not too far beyond the sphere is therefore known. A direct application
of Huygens’ principle then gives

S(θ, φ)ADA = −k2
∫
dbeiq.b[eiχ(b)ADA − 1

]
. (3.34)

The subscript ADA refers to the anomalous diffraction approximation. The only
difference between the EA and the ADA is that the term (m2−1) in the EA phase
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Fig. 3.2. Scattering geometry for a homogeneous sphere

is replaced by 2(m − 1) in the ADA. Thus, formally both approximations can
be treated on the same footing. The approximation has been termed anomalous
diffraction approximation because in addition to usual diffraction it takes into
account the refraction also.

For a homogeneous sphere of radius a and refractive index m(r) = m, the
integration over the azimuthal angle in (3.30) can be easily performed yielding

S(θ)EA = −k2
∫ a

0
bdbJ0 (2kbsin(θ/2)) [exp (iχ(b)EA) − 1] . (3.35)

The distance traveled by the ray in the scatterer at an impact parameter b is
2
√
a2 − b2 (see Fig. 3.2). Thus the function χ(b)EA can be written as

χ(b)EA = x(m2 − 1)
√[

1 − (b2/a2)
]

= ρ∗
EA

√[
1 − (b2/a2)

]
. (3.36)

The quantity ρ∗
EA is ρ∗

EA ≡ ρEA + iτEA/2 with

ρEA = x(n2 − n′2 − 1), τEA = 4xnn′. (3.37)

The quantity ρ∗
EA may also expressed as

ρEA(1 + i tanβEA), (3.38)

where the absorption parameter, tanβEA = 2nn′x/ρEA, describes amplitude
decay due to the absorption. In the ADA one has

ρ∗
ADA = ρ∗ = 2x(m− 1) = 2x(n− 1) + 2ixn′ (3.39)

≡ ρADA + iτADA/2 ≡ ρ+ iτ/2. (3.40)

Clearly as n → 1 and n′ → 0 the two approximations tend to the same limit.
For non-forward scattering the integration in (3.35) can be performed for

following special cases.

(i) For a completely absorbing sphere, S(θ)EA = x2J1(z)/z, which is nothing
but the scattering function in the Fraunhofer diffraction approximation.
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(ii) If x|m2 − 1| 	 1, one may approximate

exp[iχ(b)EA] � 1 + iχ(b)EA. (3.41)

The scattering function is then nothing but that from a homogeneous sphere
in the RDGA. This is known to be a good approximation if |m − 1| 	 1
and 2x|m− 1| ≤ 1. Clearly, despite the original premise x � 1, the EA, in
practice, can be a good approximation for arbitrary x as long as condition
|m−1| 	 1 is met. As for angular validity, it is clear from (3.32) and (3.33)
that for small particles the angular validity of this approximation can be
quite large. On the other hand, for large scatterers the angular validity of
the EA is restricted to small scattering angles.

(iii) For a non absorbing sphere, it is possible to evaluate S(θ)EA analytically in
terms of known functions by means of a series expansion for ρEA < 1 and
ρEA > z (van de Hulst, 1957).

For forward scattering, the integration in S(0) can be evaluated in a closed
form and then using the extinction theorem one obtains

QEA
ext =

[
2 − 4 cosβEA

ρEA
sin(ρEA − βEA)e−ρEA tan βEA + 4

(
cosβEA

ρEA

)2

cos(2βEA)

−4
(

cosβEA

ρEA

)2

cos(ρEA − 2βEA)e−ρEA tan βEA

]
. (3.42)

The absorption efficiency in the EA is determined by the relation

QEA
abs = (1/πa2)

∫
db
[
1 − exp(−ImχEA)

]
which for a homogeneous sphere gives

QEA
abs = 1 + 2e−τEA/τEA + 4(e−τEA − 1)/τ2

EA.

When τEA � 1, absorption efficiency is close to 1. That is, all the rays incident
on the sphere are absorbed. In addition, an equal amount of light is diffracted
(scattered) resulting in the so-called extinction paradox. It can be easily verified
that the extinction efficiency will be dominated by absorption efficiency if ρEA

and τEA are of the same order and less than unity.

3.4.1.1 The EA scattering function from the Mie solutions

The Mie solutions describe the scattering of light by a homogeneous sphere of
arbitrary size and refractive index. Two scattering functions S1(θ) and S2(θ),
corresponding to perpendicular and parallel polarizations respectively are:

S1(θ) =
∞∑

l=1

2l + 1
l(l + 1)

[alπl(cos θ) + blτl(cos θ)] , (3.43)
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S2(θ) =
∞∑

l=1

2l + 1
l(l + 1)

[alτl(cos θ) + blπl(cos θ)] , (3.44)

where

πl(cos θ) = dPl(cos θ)/d(cos θ),

τl(cos θ) = cos θπl(cos θ) − sin θ dπl(cos θ)/d(cos θ),

with Pl(cos θ) as the Legendre polynomial. The scattering coefficients are

al = (1 − e2iαl)/2 bl = (1 − e2iβl)/2,

where

tanαl = [u′
l(mx)ul(x) −mul(mx)u′

l(x)]/[u
′
l(mx)vl(x) −mul(mx)v′

l(x)],

tanβl = [mu′
l(mx)ul(x) − ul(mx)u′

l(x)]/[mu
′
l(mx)vl(x) − ul(mx)v′

l(x)],

with ul(z) = zjl(z) and vl(z) = znl(z). It can be shown (Bourrely et al., 1991)
that in the limit x → ∞, |mx| → ∞ and n′2x/n 	 1,

e2iαl = e−2i(xf−x′f ′)[1 + r⊥e2n′xe−2ix′f ′
]/[1 − r⊥e−2n′xe2ix′f ′

], (3.45)

e2iβl = e−2i(xf−x′f ′)[1 + r‖e2n′xe−2ix′f ′
]/[1 − r‖e−2n′xe2ix′f ′

], (3.46)

f = cos γ − [γ − (π/2)
]
sin γ, f ′ = cos γ′ − [γ′ − (π/2)

]
sin γ′, (3.47)

and x′ = nx. The reflection coefficients r‖ and r⊥ are

r‖(γ) =
m cos γ − cos γ′

m cos γ + cos γ′ ; r⊥(γ) =
cos γ −m cos γ′

cos γ +m cos γ′ ,

and the angle of incidence γ (see Fig. 3.2) is related to γ′ as

2x sin γ = 2x′ sin γ′ = (2l + 1). (3.48)

The expressions (3.45) and (3.46) are generalizations of corresponding expres-
sions for a non-absorbing homogeneous sphere (n′ = 0) derived in most books
on light scattering (see for example, Newton (1966) or van de Hulst (1957)).

Employing (3.47) and (3.48), (xf−x′f ′) in the limit n → 1 gives xf−x′f ′ =
−x(n2 − 1) cos γ/2. For large x and small scattering angles (θ 	 1/x) one can
approximate,

πl(cos θ) � τl(cos θ) � l(l + 1)J0
(
(l + (1/2))θ

)
/2,

and
l=∞∑
l=1

� x

∫ π/2

0
cos γ dγ.

In addition, if n → 1, r‖ and r⊥ go to zero. It is then straightforward to see that
(3.43) as well as (3.44) reduce to S(θ)EA.
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3.4.1.2 Relationship between the anomalous diffraction
approximation and the eikonal approximation

An expansion of xf − x′f ′ to order (n2 − 1)3 gives (Sharma, 1992)

−2i(xf − x′f ′) = i(n2 − 1)x cos γ
[
1 − (n2 − 1)

(
1 − tan2 γ

)
/4

+(n2 − 1)2
(
1 − 2 tan2 γ

)
/8 − (n2 − 1)2 tan4 γ/24

]
. (3.49)

The first term on the right-hand side of (3.49) is the EA phase. It is instructive
to compare (3.49) with the Wallace phase defined in section 3. When translated
to optical scattering it gives:

i(n2 − 1)x cos γ
[
1 − (n2 − 1)

4
(
1 − tan2 γ

)
+

(n2 − 1)2

8
(
1 − 2 tan2 γ

)]
, (3.50)

to order (n2 − 1)3. The first term is obviously the EA phase. The first-order
correction in (3.49) is identical to the first-order correction of Wallace. But the
second order correction agrees only partially.

Regrouping the terms, we can rewrite (3.49) as

−2i(xf − x′f ′) = 2i
[
1
2
(n2 − 1) − 1

8
(n2 − 1)2 +

1
16

(n2 − 1)3
]
x cos γ

− i
4
x(n2 − 1)2

sin2 γ

cos γ
− i

4
x(n2 − 1)3 tan γ − i

24
x(n2 − 1)3 sin γ tan3 γ. (3.51)

If the term in the square bracket is approximated as
[
[1+(n2−1)]1/2−1

] � (n−1),
the equation (3.51) becomes

−2i(xf − x′f ′) = 2ix(n− 1) cos γ + ix(n2 − 1)2 tan γ sin γ/4

−ix(n2 − 1)3 tan γ sin γ/4 − ix(n2 − 1)3 tan3 γ sin γ/24. (3.52)

The first term on the right-hand side of this equation is the ADA phase. Note
that the corrections tend to zero as either |n−1| → 0 or as γ → 0. This equation
also tells us that the ADA is valid in the domain sin2 γ/ cos γ 	 1/ρ|n − 1|.
This means that as n → 1 for fixed ρ, the domain of γ values over which this
approximation is valid increases and hence the ADA improves. Thus, while it is
true that the validity of the ADA phase improves as n → 1, nevertheless it is also
true that its validity is not limited to |n− 1| 	 1. For γ = 0 the approximation
of phase is valid for arbitrary n.

It is clear from the above discussion that the domain of γ values where the
phase approximation is good is quite small if the condition |n − 1| 	 1 is not
satisfied. But the very fact that the phase approximation is good near γ = 0 is
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significant. This is because the main contribution of the refraction term to near
forward scattering comes from the region near γ = 0 (see, for example, van de
Hulst, 1957). Contributions to θ = 0 from non-central and non-grazing rays are of
little importance and may therefore be ignored. Since −r⊥ = r‖ = (n−1)/(n+1)
for near central incidence, it may be concluded that ADA should be a good
approximation if |n−1|2 	 |n+1|2. This explains why the ADA is a reasonably
good approximation even for n as large as 2.

The derivation of the EA from the Mie theory here is limited to weakly
absorbing spherical particles. However, this is not a real limitation because sim-
ilar conclusions can be derived from (3.50) which is not restricted to a weakly
absorbing sphere.

3.4.1.3 Modifications to the EA

When translated to optical scattering, the first-order corrected scattering func-
tion of the Wallace can be written as (Sharma et al., 1982)

S(θ) = x2
∫ π/2

0
J0(z sin γ)

[
1 − eiχ0+iτ1

]
cos γ sin γdγ, (3.53)

where

τ1 = −x(m2 − 1)2 cos γ(1 − tan2 γ) cos γ/4.

At γ = π/2, the correction to the eikonal phase diverges. This is essentially a
consequence of the sharp cut-off at the boundary of the scatterer. The eikonal
expansion, derived for infinitely often differentiable potentials, thus need not
hold even at the zeroth-order level for optical scattering. But, because numeri-
cal calculations using exact electromagnetic scattering theory confirm that the
EA is a good approximation, it is customary to ignore mathematical problems
associated with the discontinuous behavior at the boundaries. Thus one may
consider only that part of the correction term which is free of the divergence
problem. Two approximate forms which are free of this problem in the domain

x|m2 − 1|2/4 	 1 (3.54)

are

S(θ)FCI = x2
∫
J0(z sin γ)

[
1 − eiχ0 (1 + iτ1)

]
sin γ cos γdγ; (3.55)

and

S(θ)FCII = x2
∫ π/2

0
J0(z sin γ)

[
1 − e2ix(m−1) cos γ

(
1 +

ix(m2 − 1)
4 cos γ

sin2γ

)]
× sin γ cos γdγ. (3.56)

The form (3.56) is essentially a modified form of the ADA based on (3.52).
Subscript FC stands for first-order correction. For forward scattering, (3.55) as
well as (3.56) can be evaluated analytically to yield
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S(0)FCI = m2S(0)EA + x2(m2 − 1)
[
e−ix(m2−1) − 1

]
/4, (3.57)

S(0)FCII = C(m)S(0)ADA, (3.58)

with

C(m) = 1 + 0.25(m+ 1)2(m− 1)(2 −m2). (3.59)

The correction (3.58) preserves the simplicity of the unmodified approximation.
A generalized EA (GEA) and a modified form of the GEA (MGEA) have

been examined by Chen (1989), and Chen and Smith (1992). The scattering
functions in the GEA and the MGEA employ a parametrized propagator (eq.
(3.25)). The parameters are determined on the basis of following two criteria:

(i) The change in phase in propagation through the medium is 2k(m−1)
√
a2 − b2

in the GEA and 2k(m− cos θ/2)
√
a2 − b2 in the MGEA.

(ii) The edge effects due to the sharp boundary are recovered.

The scattering function in the GEA then takes the following form,

S(θ)GEA = (ik/4π)(1 − δ)SB − (m2 − 1)α0δ
2 k2I, (3.60)

where the first Born term, SB , is given by

SB(θ) = −4x2(m2 − 1)a
∫ π/2

0
sin2 γ cos γJ0(z sin γ)dγ,

and

I = a2
∫ π/2

0
J0(z sin γ)

[
eiρ

∗
GEA cos γ − 1

]
cos γ sin γdγ.

The function ρ∗
GEA is ρ∗

GEA = x(m2 − 1)/α0δ, where

δ = (m+ 1)/2α0; α0 =
m+ 1

2
− 3i

8

[
1
x

− 2
ρ∗

GEA

(
a1

x2/3 − a2

x4/3

)]
,

and a1 = 2 + 2.4i, a2 = 2 + 6i. For θ = 0 (3.60) gives

S(0)GEA = −iα0δx
2(1 − δ)/3 + (α0/2)δ2x2[1 + (2i/ρ∗

GEA)eiρ
∗
GEA

+(2/ρ∗2
GEA)

(
1 − eiρ∗

GEA
)]
. (3.61)

Equation (3.61) reduces to the EA for δ = 1 and α0 = 1.
The GEA assumes, in the calculation of the phase shift, that the light passes

undeviated through the medium. The MGEA corrects it by assuming that the
light inside the medium travels along a straight line in the average direction
of incident and scattered light. It is assumed that the light scattered suffers a
deviation θ/2 at each boundary. If Z(b) is the distance traveled inside the medium
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along a straight line in the z direction, the phase accumulated is 2knZ(b). When
there is no medium, the distance traveled by the ray is Z(b) cos(θ/2). Thus, the
phase shift becomes 2k(m−cos θ/2)

√
(a2−b2) and the modified relation between

α0 and δ is δ = (m2 − 1)/
[
2α0[m − cos(θ/2)]

]
, and ρ∗

MGEA = x[m2 − 1]/α0δ.
For a large sphere (LS), that is for ρ∗

MGEA � 1, the integrals in (3.60) can be
evaluated analytically leading to (Chen, 1993),

S(θ)LS
MGEA = (m2 − 1)x3[−i(1 − δ)j1(z)/z + δJ1(z)/(zρ∗

MGEA)

+(δ/y2)
(
ieiy + (1 − eiy)/y

)]
, (3.62)

where y = [z2 + ρ2MGEA∗]1/2, and α0 is redefined as α0 = (m+ 1)/2 − (3i)/8x.
From the point of view of extending the angular domain of the validity of the

EA, Perrin and Chiappetta (1985) have proposed a modification of the EA which
is referred to as the eikonal picture (EP). The explicit small angle approximation
made for arriving at the two-dimensional scattering amplitude is not made here.
Thus, the scattering function in the EP is

S(θ)EP = − ik
3

2

∫
dbdzeiq.b[m2(b, z) − 1]

× exp
[
2ikz sin2(θ/2) +

ik

2

∫ z(b)

−∞
[m2(b, z′) − 1]dz′

]
.

For a homogeneous sphere z integration in S(θ)EP can be performed giving

S(θ)EP = −k3(m2 − 1)
∫ a

0
bdbJ0(kb sin θ)

×
[ei[qz+k(m2−1)]

√
a2−b2 − e−iqz

√
a2−b2

2qz + k(m2 − 1)

]
. (3.63)

It can be seen from (3.63) that when Im|m2 − 1| is negligible and 4 sin2(θ/2) +
Re|m2 −1| = 0, resonances are produced. But these resonances are spurious. An
alternative form in which (3.63) is sometimes, expressed is

S(θ)EP =
ix2(m2 − 1)

U

∫ 1

0
ydyJ0(yx sin θ) sin(Ux

√
1 − y2)eiUx

√
1−y2

, (3.64)

where

U = [2qz + k(m2 − 1)]/2k, (3.65)

and as before qz = 2k sin2(θ/2). Equation (3.64) may be contrasted with the
scattering function in the WKB (Wentzel–Kramers–Brillouin) approximation
(Klett and Sutherland, 1992; Shepelevich et al., 1999):
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S(θ)WKB = ix2(m2 − 1)/(m− cos θ)

×
∫ 1

0
ydyJ0(yx sin θ) sin[(m− cos θ)x)

√
1 − y2]ei(m−cos θ)x

√
1−y2

.(3.66)

Note that if (m2−1) is replaced by 2(m−1) in (3.65), U is nothing but (m−cos θ).
Equation (3.66) is then same as (3.64).

When the refractive index satisfies the condition Im(mx) ≥ 1, it is easy to
see that the first term in the square bracket in (3.63) may be neglected and the
scattering function can be written as,

S(θ)mod
EP = k2r(θ)

∫ a

0
bdbJ0(kb sin θ)e2ik sin2(θ/2)

√
a2−b2 , (3.67)

where r(θ) = k(m2−1)/(2qz+k(m2−1)). The superscriptmod indicates modified
EP. For θ close to 0 deg, (3.67) leads to diffractive scattering. For θ close to
180 deg, (3.67) gives correct geometrical optics result (Bourrely et al., 1996)
if r(θ) = r⊥(θ). With this replacement in (3.67), the formula reproduces two
main components of the scattering pattern and is valid in the forward and the
backward scattering directions.

Klett and Sutherland (1992) have examined a two wave WKB approximation.
It is obtained by approximating ψ(r) in (3.28) as

ψ(r) = eik(m−1)
√

a2−b2
(
eikmz −Reikm(2

√
a2−b2−z)

)
, (3.68)

where R = 1 − [m/(1 + m)]. The first term in the bracket is the usual WKB
approximation. The second term allows for reflection from the back face of the
particle. For unpolarized light the phase function in this approximation is

p(θ) =
2(1 + cos2 θ)|H1 + exp(iρ1)RH2|2∫ π

0 (1 + cos2 θ)|H1 + exp(iρ1)RH2|2 sin θdθ
, (3.69)

where

H1(θ) =
∫ 1

0
ydyJ0(yx sin θ) sin[x(m− cos θ)

√
1 − y2] exp[ix(m− 1)

√
1 − y2],

H2(θ) = H1(π − θ), and ρ1 = 2mx. The single wave WKB approximation is
obtained by setting H2 = 0 in equation (3.69).

For the extinction efficiency, although it has been noted that the EA as well
as the ADA lead to the correct x → ∞ limit, the rate of approach to this limit is
much faster than predicted by Mie theory. This difference can be attributed to
the effect at the edge of the particle. This edge effect is included as an additional
term in the extinction formula (Ackerman and Stephens, 1987)

QAS
ext = QADA

ext +Qedge; (3.70)

Qedge = 2x−2/3. (3.71)
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Fig. 3.3. Typical variations of extinction efficiency factor with size parameter

The superscript AS stands for Ackerman and Stephens. The edge correction
is essentially a wave optics correction to the geometrical optics result. That is,
the edge correction (3.71) applies only to large particles. A more general edge
correction also includes a term describing interference of the surface waves that
give rise to the ripple structure in the extinction efficiency curve. But this ripple
structure is not of much interest in problems relating to scattering by a collection
of particles because of averaging effects and also for particles where the condition
(n− 1) 	 1 is well satisfied. Three typical variations of Mie extinction efficiency
factor with x are shown in Fig. 3.3. Note that the extinction efficiency factor
approaches 2 as x → ∞ and the ripple structure disappears as n → 1.

Approaching the problem from a different perspective an empirical recipe to
improve the accuracy of QADA

ext has been given by Klett (1984):

QK
ext = DQADA

ext ; D = 1.1 + (n− 1.2)/3. (3.72)

The D values obtained from (3.72) agree reasonably well with C(m) values ob-
tained from (3.59).

An empirical formula for the extinction efficiency of a large dielectric sphere
has been given by Walstra (1964). The result is

QWA
ext = 2 − 16m2 sin ρ

(m+ 1)2ρ
+ 4

1 −m cos ρ
ρ2

+ 7.53
z −m
z +m

x−0.772, (3.73)

where z =
[
(m2−1)(6x/π)(2/3)+1

]1/2
. This gives values correct to within 1% for

ρ > 2.4, 1 < m ≤ 1.25. Even for higher values ofm the formula is useful provided
x > π/4(cot−1m)3. If m → 1, QWA

ext → QADA
ext and if x → ∞, QWA

ext → 2 as
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expected. A semi-empirical formula for S(0) was also derived by Walstra (1964)
on the same lines. The result is

S(0)WA =
1
2
x2 − i 2m2x exp(−iρ)

(m+ 1)2(m− 1)
+

1 −m exp(−iρ)
4(m− 1)2

+(1.88 − 1.05i)
z −m
z +m

x1.228.

This result is expected to be correct to within 1% for ρ > 3, 1 < m ≤ 1.25.

3.4.1.4 Numerical comparisons of variants of the EA and the ADA

The percent errors for a homogeneous sphere in the EA and the ADA are shown
in Table 3.1. The percent error has been defined as

percent error =
[
i(0)exact − i(0)approximate

]× 100/i(0)exact. (3.74)

The comparison shows that the EA is superior to the ADA in the domain x ≥ 1.0
and ρEA ≤ 4.0. This observation is important because it relates to intermediate
size particles. For higher values of ρEA the ADA gives more consistent results. On
the other hand, for smaller particles the Rayleigh or the RGDA approximations
are more useful. It is interesting to note that the value of ρEA � 4 corresponds
to the first maxima in the extinction curve.

As expected, the EA improves as n → 1. But as x increases for a fixed n,
the EA results do not improve continuously. The errors oscillate around the
correct value. The reasons advanced to explain this behavior are the following.
(i) The condition x � 1 is essentially a consequence of the requirement that n
varies slowly over a distance of order of wavelength. For a homogeneous sphere

Table 3.1. Percent error in various approximation methods in i(0) for a homogeneous
sphere of refractive index 1.05

x ρ ρ(m2 − 1)/4 EA FCI ADA FCII MFCI

1.0 0.1025 2.63 × 10−3 −3.07 −8.43 1.88 −7.59 0.13
3.0 0.3075 7.88 × 10−3 1.37 −3.79 6.09 −2.97 −0.69
5.0 0.5125 1.31 × 10−2 2.58 −2.56 7.20 −1.76 −0.68

10.0 1.025 2.63 × 10−2 3.67 −1.65 8.04 −0.84 −0.70
20.0 2.05 5.25 × 10−2 4.90 −1.37 8.35 −0.50 −0.89
30.0 3.075 7.88 × 10−2 6.60 −1.33 8.45 −0.39 −1.01
40.0 4.10 1.05 × 10−1 9.11 −1.31 8.55 −0.28 −1.07
50.0 5.125 1.31 × 10−1 12.65 −1.19 8.65 −0.17 −1.0
60.0 6.15 1.58 × 10−1 16.65 −0.89 8.67 −0.14 −0.73
70.0 7.175 1.84 × 10−1 15.17 −0.67 8.10 −0.77 −0.54
80.0 8.20 2.10 × 10−1 8.20 −0.67 6.80 −2.20 −1.94
90.0 9.225 2.35 × 10−1 −2.60 −3.44 6.65 −2.36

100.0 10.25 2.63 × 10−1 2.98 −3.73 7.04 −1.93
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Table 3.2. Percent error in various approximation methods in Qext for a homogeneous
sphere of refractive index 1.05

x ρ ρ(m2 − 1)/4 EA FCI ADA FCII

1.0 0.1025 2.63 × 10−3 −155.26 −155.26 −143.03 −154.48
3.0 0.3075 7.88 × 10−3 −23.41 −23.44 −17.48 −23.02
5.0 0.5125 1.31 × 10−2 −9.47 −9.55 −4.32 −9.23

10.0 1.025 2.63 × 10−2 −2.47 −2.77 2.19 −2.42
20.0 2.05 5.25 × 10−2 0.34 −0.88 4.04 −0.48
30.0 3.075 7.88 × 10−2 2.15 −0.62 4.36 −0.15
40.0 4.10 1.05 × 10−1 4.33 −0.60 4.42 −0.09
50.0 5.125 1.31 × 10−1 6.85 −0.66 4.34 −0.17
60.0 6.15 1.58 × 10−1 8.65 −0.66 4.13 −0.34
70.0 7.175 1.84 × 10−1 6.69 −0.65 3.79 −0.75
80.0 8.20 2.10 × 10−1 0.89 −0.87 3.57 −1.00
90.0 9.225 2.35 × 10−1 −1.19 −1.33 3.64 −0.90

100.0 10.25 2.63 × 10−1 −1.22 −1.68 3.71 −0.83

n is constant. Thus, increasing x need not result in increased accuracy. (ii) The
requirement of the slow variation of the refractive index is not satisfied at the
boundary, where there is a sharp cut-off.

Table 3.2 shows the percent error in the extinction efficiency factor. In com-
parison to i(0), all approximations work better for Qext when x ≥ 5.0. For
smaller values of x, the performance of the EA as well as the ADA is not good.
This is because, for small values of x neither the EA nor the ADA accurately
reproduces the real part of the forward scattering function. In fact, it is this real
part of the scattering function, which is directly proportional to the extinction
efficiency via the extinction theorem (3.6).

Inclusion of corrections improve the results considerably. The modified ap-
proximations are found to work extremely well in the domain x ≥ 5.0 and
ρEA|n2 − 1|/4 < 1 (Sharma, 1993). Tables 3.1 and 3.2 show a significant im-
provement for i(0) as well as for Qext. In particular S(θ)FCII is found to give
very good predictions. Results do not improve, rather they deteriorate, for x ≤ 5.
This is because the effect of neglect of the vector nature is significant here. Un-
fortunately it is difficult to correct the EA systematically for this type of error.
However, the difficulties associated with the region x ≤ 5 may be removed for
i(0) for non-absorbing homogeneous spheres by introducing an empirical multi-
plicative factor. Sharma et al. (1982) define a modified amplitude as

i(0)MFCI = A(x, n)i(0)FCI .

The multiplicative factor A(x, n) = 1−4(n−1)/x(n2 +1)+(n−1)/x2(n2 +2) is
not unique and has been arrived by noting that A(x, n) should be approximately
equal to i(0)Mie/i(0)scalar. The results in Table 3.1 show that this dramatically
improves the FCI results in the domain x ≤ 5.
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Not many numerical studies of the accuracy of the angular variation of i(θ)
have been performed. Whilst Chen (1988, 1989) and Chen and Smith (1992)
have compared the angular scattering patterns of the EA, the ADA and the GEA
with exact results, Perrin and Chiappetta (1985) and Sharma et al. (1988) have
examined the EP and the EA against exact results. The following conclusions
emerge from these studies:

(i) The EA works to within 25% error for x ≥ 1, 1 ≤ n ≤ 1.2 and θ ≤ 10.0.
(ii) The GEA greatly improves the EA results. More importantly, it appears

to work very well for n as large as 4.0. However, the success is only for
scattering angles up to ∼50. Its improved variant, the MGEA, is found to
work well for the perpendicular polarization. It accurately predicts positions
of minima and maxima for θ up to 600, x ≥ 5.0,n ≤ 4 and n′ ≤ 0.5.

(iii) The simplified version of the GEA, given in (3.62), is found to work as well
as the GEA for x > 10.

(iv) For a non-absorbing dielectric sphere the positions of maxima and minima
in the angular scattering pattern are determined more accurately in the EP
but the errors at the minima in the EP are much larger compared to those
obtained when the EA is used. As n′ increases the EP appears to qualify as
an all angle approximation. The modified EP (eq. (3.67)) is in much better
agreement with the Mie theory for scattering angles greater than 40o. The
model is valid for x ≥ 10.0.

Jones et al. (1996) have generated error contour charts for the two-wave WKB
approximation for a sphere in the domain 1.0 < n < 1.5 and 0 < x < 20.0. The
results showed that the two-wave WKB approximation was superior to both the
RGDA and the single-wave WKB models.

3.4.1.5 Backscattering in the EA

Although the EA has been derived as a near forward scattering approximation,
it can also serve as a useful basis to describe the backward scattering if the
conditions (3.31) for the validity of the EA are satisfied. Saxon and Schiff (1957)
assume that the backscattering is due to a single hard scattering event. When
translated to optical scattering this gives

S(π)SS = −i(1 −m2)x
[
e2ixm2

+ e−2ix
]
/8. (3.75)

A comparison of i(π)SS with the exact result for a non-absorbing sphere of
n = 1.05 show that it is in good agreement with exact results except at those
values of x for which the scattered intensity has a minimum. Interestingly, the
positions of minima are reproduced quite accurately.

The contributions of the two and three hard scattering events respectively
(in the sense of Born series) give (Sharma and Somerford, 1994)

S(π)I
SS =

x(m2 − 1)2

8

√
xπ/

√
2 e2ix

√
2+ 3ix√

2
(m2−1)− iπ

4 , (3.76)
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and

S(π)II
SS = −ix(m2 − 1)3

√
6πxe3ix+2ix(m2−1)− iπ

4 . (3.77)

If the medium is highly absorbing the main contribution comes from (3.75). In
contrast, for a non-absorbing dielectric sphere |S(π)SS |2/|S(π)I

SS |2 = x(n2−1)2,
and the contribution from two hard scattering events becomes important and
may even dominate if x > 1/|n2 − 1|2. The deep minima predicted by i(π)SS

now get filled up to give values closer to the exact values.
The positions of minima in the scattering pattern, determined by (3.75), are

given by x(n2 + 1) = pπ, where p is an integer. The separation between two
successive minima for a given n is thus

∆x = π/(n2 + 1). (3.78)

Predicted separation has been found to be in good agreement with the actual
separation. Clearly, (3.78) could be a useful relation for diagnostic purposes.

The backscatter efficiency defined as

Qback =
1
x2

∣∣∣∣∑
l

(2l + 1)(−1)l(al − bl)
∣∣∣∣
2

,

gives in the two wave WKB approximation (Klett and Sutherland, 1992):

Qback = (4x2/π)(|m− 1|2/|m+ 1|2)|I1 + exp(iρ1)I2|2, (3.79)

where
I1 =

[
i/ρ21 − (i+ ρ1)eiρ1/ρ21 − i/ρ22 + (i− ρ2)e−iρ2/ρ22

]
/2;

I2 = i
[
(iρ3 − 1)eiρ3/ρ23 + 1/ρ23 + 1/2

]
/2,

with ρ1 = 2xm, ρ2 = 2x and ρ3 = 2x(m− 1). Numerical comparisons show that
for the moderately soft case [m = (1.33, 0)], (3.79) agrees with the exact values
to within an order of magnitude.

3.4.1.6 Vector description

Attempts to incorporate the vector nature in the EA description to get access
to polarization studies have been made by Perrin and Lamy (1986) and by
Bourrely et al., (1991). Starting from Mie scattering functions Bourrely et al.,
(1991) obtain

S1(θ) = Sdiff
1 (θ)H(θmax − θ) + k

∫ a

0
db
[
e2iα(b) cot θJ1(kb sin θ)

+ e2iβ(b)[kbJ0(kb sin θ) − cos θ cot θJ1(kb sin θ)]
]
, (3.80)

where Sdiff
1 (θ) =

[
(1−cos θ) cot θ[1−J0(x sin θ)]+xJ1(x sin θ)

]
, is the diffractive

component which is zero for θ > θmax = 180/x radians and α(b) and β(b) are
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as defined in (3.45) and (3.46). The scattering function S2(θ) is obtained from
(3.80) by permuting α(b) and β(b). This approach has been tested numerically
against Mie predictions for x = 150, m = 1.3 + i0.01 and for x = 500 and
m = 1.10 + i0.01. The degree of polarization defined as

P(θ) =
[|S1(θ)|2 − |S2(θ)|2

]
/
[|S1(θ)|2 + |S2(θ)|2

]
,

is in satisfactory agreement with the Mie theory predictions for θ > θmax. Agree-
ment is better for particles of larger sizes.

3.4.2 Perelman approximation

Perelman (1978, 1991) successfully summed the Mie series for small angle scat-
tering by implementing the limit m → 1 in the denominators of the scattering
coefficients. It is convenient to write Mie scattering coefficients as

al =
h1l

h1l + ih3l
, bl =

h2l

h2l + ih4l
, (3.81)

where

h1l = mul(mx)u′
l(x) − u′

l(mx)ul(x), h2l = ul(mx)u′
l(x) −mu′

l(mx)ul(x),
h3l = mul(mx)v′

l(x) − u′
l(mx)vl(x), h4l = ul(mx)v′

l(x) −mu′
l(mx)vl(x),

and ul(x) = xjl(x) and vl(x) = xnl(x) are the Riccati–Bessel functions. In the
limit m → 1, the denominators in (3.81) can be approximated as

h1l + ih3l ∼ h2l + ih4l = i|m|−1/2. (3.82)

The summation over l in scattering functions S1(θ) and S2(θ) can now be carried
out for near forward scattering by expanding πl(θ) and τl(θ).

The main form of the Perelman approximation (MPA) is obtained by re-
expressing the scattering coefficients in the form

al = h1l(h1l − ih3l)/(h2
1l + h2

3l); bl = h2l(h2l − ih4l)/(h2
2l + h2

4l).

The MPA then consists in approximating (Perelman, 1991)

h2
1l + h2

3l ∼ h2
2l + h2

4l = |m|. (3.83)

The resulting series for S(0) can be summed for forward scattering to yield:

S(0)MPA = x2
[
(m2 + 1)2 + ω(m, ρ∗) − (ω(−m,−R))/2m

]
/8|m|, (3.84)

where

ω(m, z) = [a(m) + a0(m)z 2]ei(z) − ia1(m)e1(z) + a2(m)e2(z),

a(m) = (m2 − 1)2(m2 + 1), a0(m) = −2(m2 − 1)2(m− 1)2,
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a1 = (m+ 1)2(m4 − 2m3 − 2m2 − 2m+ 1), a2(m) = −a0(m) − a1(m),

ei(z) =
∫ z

0
dt
(
1 − exp(−it))/t, e1(z) = exp(−iz)/z,

e2(z) =
(
1 − exp(−iz))/z2,

and R = 2x(m + 1). The above result holds for all values of x > 0 and m =
n + in′. For non-forward angles, Mie series can still be summed but only for
small scattering angles giving:

Sk(µ)MPA = S(0)MPA − (1 − µ)Hk; k = 1, 2, (3.85)

where
H1 = −i(m+ 1)m2|m|−1/2x4z2u2(z),

and
H2 = −i(m+ 1)m2|m|−1/2x4[z2ψ2(z) + x2u1(z)/mz

]
.

In (3.85) the scattering functions are accurate to order θ4.
The extinction efficiency factor may be calculated either by first obtaining an

approximation to the amplitude and then following it with the use of the optical
theorem or by writing the exact analytic form of the extinction efficiency factor
and then implementing the approximation. The second approach is generally
preferable because one is then not unduly worried about questions relating to
the unitarity property. For a homogeneous sphere

QMIE
ext =

4
x2 ReS(0) =

2
x2 Re

l=∞∑
l=1

[
al + bl

]
, (3.86)

where the relations πl(0) = τl(0) = l(l + 1)/2 have been used. Perelman (1978),
starting from (3.86), and employing (3.83) has obtained the following expression
for the extinction efficiency of a non-absorbing spherical particle:

QMPA
ext = b1

[
Qh(ρ) −

(m− 1
m+ 1

)2
Qh(R)

]
+ b2

[
Q1(ρ) −Q1(R) −

∫ R

ρ

1 − cos t
t

dt

]

+
(m− 1)2

4m2x2

[
Q2(R) −Q2(ρ) +

1
2

∫ R

ρ

1 − cos t
t

dt

]
+

1
2mx2Q3(m,x),

(3.87)

where

b1 =
(m+ 1)2(m4 + 6m2 + 1)

32m2 , b2 =
(m2 + 1)(m2 − 1)2

4m2 ,

Q1(ω) =
2(1 − cosω)

ω2 +
2 sinω
ω

, Q2(ω) =
3 cosω

8
+

sinω
8

+
ω2

16
,

Q3(ω) = (m− 1)2(cosR− 1) + (m+ 1)2(cos ρ− 1),
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and
Qh(ρ) = 2 − 4 sin ρ/ρ+ 4(1 − cos ρ)/ρ2.

The extinction efficiency can also be cast in an integral representation (Gra-
novskii and Ston, 1994a, 1994b)

QMPA
ext = mx2(m2 − 1)2

∫ 1

−1
dt(1 + t2)g2(xω(t)), (3.88)

where g(ω) = (ω cosω − sinω)/ω3 and

ω(t) = (1 +m2 − 2mt)1/2. (3.89)

It can be seen that for m close to 1, (3.88) may be further approximated as

QMPA
ext = 4x4(m− 1)2

∫ 1

−1
dt(1 + t2)g2(x

√
2(1 − t)), (3.90)

by substituting m = 1 in (3.89). Equation (3.90) is the RGDA in integral rep-
resentation. We have for absorption efficiency: QMPA

abs = 4m2n|m1|2S(τ), where
S(τ) = 4((τ/2) cosh(τ/2) − sinh(τ/2))/τ2, and m1,m2 are the refractive indices
inside and outside the particle and τ = 4n′x.

It may be mentioned here that the Mie series has been summed in the Perel-
man approximation for backscattering too (Perelman, 1985).

3.4.2.1 Some special cases

If x 	 1, (3.87) can be expanded in powers of x. The leading term gives:

QMPA
ext = (8/27)m(m2 − 1)2x4.

This differs from the Rayleigh formula only in that (m2 + 1)2 in the original
Rayleigh formula is replaced by 9.

For (m − 1) 	 1, ρ 	 1, one can put b2 = 0 and the first term in Q3 also
zero. The dependence of the other terms on ρ may be specified as follows:

Qh(ρ) =
(m− 1)2R2

8
, Q1 = 3,

∫ ρ

0
dt(1 − cost)/t = 0, Q2(ρ) =

(m− 1)2

8
,

if terms of order higher than (m−1)2 are neglected. Equation (3.87) then reduces
to QRGDA

ext given by (3.7).
For m → 1, x → ∞, ρ finite, various terms of QMPA

ext are of following order:

b1

(m− 1
m+ 1

)2
Qh(R) = O(m− 1)2, b2[Q1(ρ) −Q1(R)] = O(m− 1)/x,

b2

∫ R

ρ

1 − cos t
t

dt = O(m− 1)ρ,
(m2 − 1)2

4m2x2 [Q2(R) −Q2(ρ)] = O(m− 1)2
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(m2 − 1)2

8m2x2

∫ R

ρ

1 − cos t
t

dt = O(m− 1)2/x,
1

2mx2Q3(m,x) = O(x2).

Neglecting the terms of oder (m− 1) and terms of relative order x−1, equation
(3.87) gives

QMPA
ext = b1Qh(ρ) − b2

∫ R

ρ

1 − cos t
t

dt. (3.91)

It has been shown that (3.91) does improve over the ADA extinction efficiency
factor (Perelman, 1978).

By examining the short wavelength asymptotics of the amplitude functions,
Perelman and Voshchinnikov (2002) have further improved QMPA

ext :

QIPA
ext =

[
1 − S(m) − 2

S(m)
exp
(

−0.01 exp(4m)
u

)]
QMPA

ext ,

where S(m) = limx→∞QMPA
ext , and u = x/x(m). The size parameter x(m) is

that value of x, for a given m, for which the error in QMPA
ext is less than 5%. The

superscript IPA stands for the improved Perelman approximation.

3.4.2.2 The scalar Perelman approximation

For forward scattering by a homogeneous sphere the scalar scattering function
is expressed as the following partial wave sum (Roy and Sharma, 1996):

S(0) =
∞∑

l=0

(2l + 1)bl.

A straightforward calculation using main form of the PA gives,

S(0)SPA = R2
[
2 + 4[1 − exp(iρ)]/ρ2 + 4i exp(iρ)/ρ

]
/64

−ρ2
[
2 + 4[1 − exp(−iR)]/R2 − 4i exp(−iR)/R

]
/64. (3.92)

where the superscript SPA stands for the scalar Perelman approximation. The
first term on the right-hand side of (3.92) is nothing more than the ADA scat-
tering function multiplied by a m dependent factor. The second term on the
right-hand side of (3.92) can be obtained from the first term simply by replacing
ρ ↔ −R. It is clear that the SPA constitutes considerable simplification over the
MPA. In particular, we have

QSPA
ext = (m+ 1)2

[
Qh(ρ) − ρ2Qh(−R)/R2

]
/4, (3.93)

for a non-absorbing sphere. Numerical comparison of the MPA and the SPA has
been performed by Roy and Sharma (1996). On the basis of this comparison
they proposed a modified SPA (MSPA):
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S(0)MSPA = S(0)SPA − φ(m− 1),

QMSPA
ext = QSPA

ext − φ(m− 1)

where

φ(m− 1) =
1
25

(m− 1) + 5(m− 1)2 − 12(m− 1)3 − 2(m− 1)4.

The MSPA has the simplicity of the SPA and accuracy of the MPA.

3.4.3 Hart and Montroll approximation

The Hart and Montroll approximation (HMA) (Hart and Montroll, 1951; Mon-
troll and Hart, 1951) also consists in approximating denominators of the scatter-
ing coefficients. But, while the limit considered in the PA and the MPA ism → 1,
the basic assumption underlying the HMA is l 	 x. In this limit denominators
of al and bl respectively become:

h1l + ih3l ∼ i(m+ 1)m
2

exp(−iρ/2)
[
1 − (−1)lr exp(2imx)

]
(3.94)

and

h2l + ih4l ∼ +i(m+ 1)m
2

exp(−iρ/2)
[
1 + (−1)lr exp(2imx)

]
, (3.95)

where r = (m − 1)/(m + 1). Note that in the limit m → 1, (3.94) and (3.95)
reduce to h1l + ih3l ∼ h2l + ih4l = im. The approximation is then essentially
identical with the PA. Hence the above approximation is valid under both sets
of conditions namely

|m− 1| 	 1, x � l.

The resulting infinite series for S1(θ) and S2(θ) can be summed to yield,

S1(θ)HMA =
−iπ(m− 1) exp(iρ/2)

m1/2 sin θ[1 − r2 exp(4imx)]
[
F1(θ) + r exp(2imx)F1(π − θ)],

and

S2(θ)HMA =
iπ(m− 1) exp(iρ/2)

m1/2 sin θ[1 − r2exp(4imx)]
[
F2(θ) + r exp(2imx)F2(π − θ)],

where F1 and F2 are given by equations,

(
F1
F2

)
=
(

2m
π

)1/2 mJ3/2(xω(cos θ)) sin θ
(xω(cos θ))3/2

(
1

cos θ

)
,

with ω(cos θ) as defined in (3.89). In the corresponding expression for FJ(π−θ),
ω(cos θ) is replace by ω(− cos θ). Neglecting terms of relative order r or higher,
the extinction efficiency factor in this approximation can be expressed as:



100 Subodh K. Sharma

QHMA
ext =

πx2(m− 1)2

2m

[
(m2 + 6m2 + 1)∆1 − 2(m2 − 1)

x2 ∆2 + x−4∆3

]
,

where
∆j = Ij(x(m+ 1)) − Ij(x(m− 1))

and I1, I2 and I3 are given by

I1(x)=
1
2π

− 1
8x

[
J2

1/2(2x) + J2
3/2(2x)

]
, I2(x)=

1
π

[
sin 4x

2x
− sin2 2x

4x2 − 1 + φ(4x)
]
,

I3(x) =
1
π

[
2x2 + x sin 4x− 5

2
sin2 2x+ φ(4x)

]
,

with φ(x) =
∫ x

0 (1 − cos t)dt/t. Sharma and Somerford (1996) have calculated
∆1,∆2 and ∆3 and have shown that

QHMA
ext =

4m
(m+ 1)2

QMPA
ext . (3.96)

The factor 4m/(m + 1)2 is very close to 1 for |m − 1| 	 1. For example, for
m = 1.05 and m = 1.10 its value is 0.9994 and 0.9975, respectively.

The relationship (3.96) may be understood as follows. The HMA holds for
x � l. The main contribution here comes from the rays near the central ray. In
fact, because of this, van de Hulst (1957) has suggested that this approximation
might be called ‘central-incidence approximation’. Further, it is also known (see,
for example, van de Hulst, 1957 ) that the dominant contribution to the forward
scattering for a large particle when |m−1| 	 1 arises from the near-central rays.
This is perhaps the reason for the close relationship between the HMA and the
MPA for forward scattering and hence for the extinction efficiency.

3.4.4 Evans and Fournier approximation

The Evans and Fournier approximation (EFA)(Evans and Fournier, 1990; Fournier
and Evans, 1991) was designed to modify the ADA extinction efficiency factor
in such a way that it correctly accounts for the behavior of Qext over the entire
x range. For a homogeneous sphere one obtains:

QEFA
ext = QR

ext

[
1 +
(

QR
ext

TQADA
ext

)P
]−1/P

, (3.97)

where

QR
ext =

24nn′

F1(n, n′)
x

+
[
4nn′

15
+

20nn′

3F2(n, n′)
+

4.8nn′[7(n2 + n′2)2 + 4(n2 − n′2 − 5)]
F 2

1 (n, n′)

]
x3

+
8
3

[
[(n2 + n′2)2 + (n2 − n′2 − 2)]2 − 36n2n′2

F 2
1 (n, n′)

]
x5, (3.98)
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is the extinction efficiency to order x4 in the ‘Rayleigh approximation’ (x 	 1,
|mx| 	 1). The F1 and F2 are given by the expressions,

F1(n, n′) = (n2 + n′2)2 + 4(n2 − n′2) + 4,

F2(n, n′) = 4(n2 + n′2)2 + 12(n2 − n′2) + 9.

The parameters P and T are given by the relations:

P = A+ µ/x; T = 2 − exp(−x−2/3).

When x → 0, P → ∞ and QEFA
ext becomes equal to Rayleigh formula. As the

size parameter increases, Qext
R becomes very large and QEFA

ext approaches TQADA
ext

(designed to reproduce approximately large particle formula of Nussenzvieg and
Wiscombe (1980)). However, if n′ is large, Qext

R outside the Rayleigh region may
become negative. In this case one arbitrarily sets the negative coefficient in (3.98)
to zero. This ensures a positive growth ofQext

R as x increases. The behavior of this
approximation in the intermediate region between the Rayleigh and ADA limits
is controlled by A and µ. By extensive trial and error the following expressions
for A and µ have been found:

A =
1
2

+
[
n− 1 − 2

3

√
n′ − n′

2

]
+
[
n− 1 +

2
3
(
√
n′ − 5n′)

]2
;

and
µ =

3
5

− 3
4
√
n− 1 + 3(n− 1)4 +

25
6 + [5(n− 1)/n′]

.

Obviously the above expressions are by no means unique.

3.4.5 Bohren and Nevitt approximation

In geometrical optics the absorption efficiency of a sphere with radius a and
relative refractive index m is found to be (Bohren and Huffman, 1983):

QGO
abs = 2

∫ π/2

0

T [1 − e−αξ]
1 −Re−αξ

cos θi sin θidθi, (3.99)

where θi is the angle of incidence, T and R are transmittance and reflectance

of unpolarized light obtained from Fresnel formulas, ξ = 2a
√
n2 − (sin2 θi/n)

and α is the absorption coefficient of the sphere. It is assumed that n � n′, so
that the angle of refraction is approximately real. The superscript GO stands
for geometrical optics. Making a change of variable, u = (n2 − sin2 θi)/n2, one
obtains

QGO
abs = n2

∫ 1

n2−1
n2

f(u)[1 − exp(−τ√u)]du (3.100)

where τ = 2aα = 4xn′ and f(u) = T (u)/(1 − [1 − T (u)]exp(−τ√u)). If f(u) is
set equal to 1, the integral in (3.100) is overestimated by at most a few percent
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(Bohren and Nevitt, 1983). The advantage is that the integral in (3.100) can
then be evaluated analytically. Thus, we have to a good approximation,

QBNA
abs = C1

[
1
n2 − 2

n2

[
e−τ

√
n2−1/n(1 +

τ
√
n2 − 1
n

) − e−τ (1 + τ)

]]
, (3.101)

where,
C1 = 4n3/[(n+ 1)2 − (n− 1)2exp(−τ)].

As τ is increased QBNA
abs approaches the limit 4n/(n+1)2, which is the transmit-

tance of a plane surface for normally incident light. The QBNA
abs is obviously not

correct in this limit. But it is expected to be high by perhaps only a few percent
(Bohren and Nevitt, 1983).

For a weakly absorbing sphere (τ 	 1) the right-hand side of (3.101) can be
expanded in powers of τ . The expansion up to the third order leads to

QBNA
abs = (2τ/3)n2(1 − b3), (3.102)

where b = (n2 − 1)1/2/n. Equation (3.102) may be compared with weak absorp-
tion limit of the Qabs

ADA

Qabs
ADA = 2τ/3, (3.103)

and the weak absorption limit of Qabs
R ,

Qabs
R = (2τ/3)(9n/(n2 + 2)2). (3.104)

Note that except for a n-dependent multiplicative factor, (3.102), (3.103) and
(3.104) are identical. Bohren and Nevitt (1983) have found that the value of
the functions obtained from (3.102) and (3.104) with n in the range 1.0–1.5 do
not differ appreciably from unity. The unexpected implication of this is that
subject to restrictions on the refractive index of the sphere, the formula (3.102)
is valid for geometrical optics as well as in the Rayleigh domain. That is the
formula (3.101) will yield good results for small as well as large soft particles. The
relationship between (3.102), (3.103) and (3.104) has prompted Flatau (1992)
to propose a modified ADA (ADT) in which τ occurring in the usual ADA is
replaced by a new τ defined as τnew = n2(1 − b3)τ .

An approximation somewhat similar to the BNA was obtained by Shifrin
and Tonna (1992) for weakly refracting small particles. It reads

QST
abs = 1 − exp(−2τn2(1 − b3)/3),

which coincides with (3.102) for small absorption. Simple formulas for a weakly
absorbing sphere (n′ < 0.1) have been obtained by Kokhanovsky and Zege (1997)
through the Mie computation results:

QKZA
abs = T

(
1 − n2

8n′2x2 [e−4n′xb(1 + 4n′xb) − e−4n′x(1 + 4n′x)]

−S(n)[1 − e−4n′x]2
)
, (3.105)
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where
T = 1 + (n− 1)(1 − e−1/(tρ)),

t = [21.2 − 20.1Z + 11.1Z2 − Z3]−4, Z = − log n′,

and

S(n) =
8n2(n4 + 1) lnn

(n4 − 1)2(n2 + 1)
− n2(n2 − 1)2

(n2 + 1)3
ln
n+ 1
n− 1

+
3n7 − 7n6 − 13n5 − 9n4 + 7n3 − 3n2 − n− 1

3(n4 − 1)(n2 + 1)(n+ 1)
.

An alternative expression obtained within the complex angular momentum the-
ory for weakly absorbing soft particles (n ≤ 1.2) is (Kokhanovsky, 1995)

QK
abs = QBNA

abs +Qedge
abs ,

where
Qedge

abs = 4nn′x
[
cos−1(1/n) −

√
n2 − 1/n2

]
.

3.4.6 Numerical comparisons

Perelman (1978, 1991) has examined the accuracy of QMPA
ext for a large range

of m and x values for a homogeneous sphere. The results are reproduced as
Table 3.3. The table specifies maximum of ρ values up to which the error is less
than 5% for a given m value. For m ≤ 1.06 errors are less than 5% for all values
of x, except possibly at points between 0 < x < 2. In this region this error can
be between 5–25%. Also it has been noted that (3.87) and (3.91), on the whole,
are of the same accuracy.

Table 3.3. The values of ρ below which the extinction in the MPA gives errors that
are less than 5%

m 1.00–1.06 1.08 1.10 1.12 1.14 1.16 1.18 1.20 1.22

ρ ∞ 128 60 31 25 23 18 15 14

Numerical evaluation of the IPA for extinction efficiencies show that for very
small size parameters the errors are large in comparison to RGDA. For large
phase shifts however, the IPA is seen to reproduce very well both the position
and the height of the maxima and minima of the extinction curve. In comparison,
the extinction predicted by the ADA is smaller than that given by the exact
theory. It is found that the IPA may be used for arbitrarily large values of x. For
m < 1.03 (errors are < 1%), for m < 1.10 (error are < 5% ), and for m < 1.22
(error are < 10% ) (Perelman and Voshchinnikov, 2002).

The extinction efficiency in the MPA is compared with the ADA and the
MADA in Table 3.4 for m = 1.06. The accuracy of the MSPA is noted to be
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nearly same as MPA. The errors in the MADA and the MPA increase with
increasing x tending to a constant value. The errors in the ADA decrease with
increasing x approaching zero as ρ → ∞. The ρ value above which the ADA is
most accurate approximation have been delineated by Perelman (1978). For a
given relative error, ε, the approximation is preferable in the domain 0 < x <
x(m, ε). Generally speaking the function x(m, ε) decreases as |m− 1| increases.
The rate of decrease of x(m, ε) is not uniform. For example, x(1.02, 0.002) > 100,
x(1.10, 0.01) = 55, x(1.10, 0.03) = 90, x(1.20, 0.07) = 85 and so on. Granovskii
and Ston (1994a) have compared the extinction efficiency results of their integral
representation of the MPA with those of Mie theory, RGDA and the ADA. They
considered ρ values up to 10 andm = 1.1. Their results are within 2% of the exact
Mie theory. A typical comparison for percentage errors in scattered intensities
is also shown in Table 3.4. The positions of maxima and minima as well as their
amplitudes are reproduced quite well for the first few extrema.

Table 3.4. Percent error in various approximation methods in 1.0 ≤ x ≤ 10.0 for Qext

(columns 2–5) and i(0) (columns 6–9) for a homogeneous sphere. Relative refractive
index is m = 1.06

extinction efficiency factor scattered intensity
x SPA MPA ADA MADA SPA MPA ADA MADA

1.0 −60.83 −7.83 −142.21 −155.73 −10.29 −21.03 2.25 −8.96
2.0 −42.30 −3.79 −40.93 −48.79 −6.90 −14.20 5.08 −5.01
3.0 −19.92 −0.35 −16.20 −22.69 −4.18 −8.91 7.24 −3.39
4.0 −12.53 −0.09 −7.83 −13.85 −3.39 −6.81 8.08 −2.96
5.0 −8.54 0.05 −3.21 −8.97 −2.86 −5.50 8.54 −1.95
6.0 −6.03 0.31 −0.64 −6.26 −2.38 −4.46 8.92 −1.53
7.0 −4.66 0.28 0.83 −4.70 −2.19 −3.86 9.13 −1.29
8.0 −3.70 0.26 1.89 −3.58 −2.04 −3.40 9.26 −1.15
9.0 −2.94 0.32 2.65 −2.77 −1.87 −2.97 9.39 −1.00
10.0 −2.46 0.30 3.17 −2.23 −1.78 −2.68 9.49 −0.89

Numerical computations of QMPA
ext show that it overestimates the true ex-

tinction. Generally, the same is true for QHMA
ext . But, as 4m/(m + 1)2 is less

than 1, QHMA
ext is expected to be a slightly better approximation. Indeed the

error in QHMA
ext for a homogeneous sphere is less than 5% for any x as long as

m ≤ 1.10. This may be contrasted with QMPA
ext where the corresponding upper

limit is m = 1.06.
Contour plot of maximum percent error in QEFA

ext have been given by Evans
and Fournier (1990). The real part of refractive index ranges from 1.0 to 2.0 and
the imaginary part of the refractive index ranges from 10−6 to 10. For n ≤ 1.62
the relative error in the EFA does not exceed 20%. For the same domain the
errors for typical particle size distribution encountered in many atmospheric
problems is less than 3%.
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Fig. 3.4. Absorption efficiency factor of a water droplet at λ = 2.0 µm, calculated
exactly (solid line) and approximately (dashed line). The figure has been reproduced,
with permission, from Bohren and Nevitt (1983)

A comparison of absorption efficiency from (3.101) with exact results for a
water droplet of m = 1.304 + i0.001 082 has been shown in Fig. 3.4 taken from
Bohren and Nevitt (1983). The size range is a = 0 − 100 µm at λ = 2 µm. The
BNA can be seen to be adequate over the entire size range. Flatau (1992) has
compared QBNA

abs , QADA
abs and the corrected ADA (τ replaced by τnew). The ADA

differs from the BNA in most of the τ region. The corrected ADA, however, gives
excellent agreement with the BNA up to τ ∼ 0.5.

The error in QKZA
abs given by (3.105) does not exceed 10% for x ≥ 10.0

for typical aerosol refractive indices n = 1.2 − 1.55. Kokhanovsky and Zege
(1997) have also compared absorption efficiencies obtained in the KZA, the STA,
and the BNA with the exact Mie scattering result. The parameters in these
calculations were n = 1.34 x = 20 − 200, n′ = 10−3 for 2n′x < 1 and = 10−2 for
2n′x < 1. The STA was found to be least in error.

3.5 Nonspherical scatterers

Up to this point we have considered the approximation methods for describing
light scattered and absorbed by soft spherical particles to bring out the basic
features of implementation of an approximation method and to demonstrate the
validity of the approximations in this exactly soluble model. We now briefly
consider the approximations employed in the analysis of light scattering by non-
spherical soft particles. Some of these approximations require exact solutions
for this purpose (e.g., Hart and Montroll approximation, Perelman approxima-
tion etc.) and hence are of limited utility. The most useful approximations in
this context are the ADA and the EA. General treatment of light scattering
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and absorption for non-spherical particles can be found in many books (see, for
example, Mishchenko et al., 2000, 2002).

Scattering of electromagnetic waves by an infinitely long cylinder is a two-
dimensional scattering problem and exact solutions exist for this problem. Re-
sults (angular scattering as well as scattering and absorption efficiency factors)
from a number of approximations are examined against the exact results. These
include the EA, the ADA, the MPA and the HMA (see, for example, Sharma,
1994; Sharma and Somerford, 1999).

The implementation of the EA and the ADA to scattering by an infinite long
cylinder is straightforward. For perpendicular incidence the validity of the EA
was examined by Sharma et al., (1981) for the angular scattering function and
by Stephens (1984) for the extinction efficiency factor at oblique incidence in the
framework of the ADA. For a cylinder of radius a, one obtains:

QADA
ext = πRe

[
I1(ρ′) + L1(ρ′)

]
, (3.106)

QADA
abs = πL1(τ)/2, (3.107)

where I1 and L1 are modified Bessel and Struve functions respectively, the phase
ρ′ = 2x(m − 1)/ sinΘ with Θ as the angle between the cylinder axis and the
incident ray direction and as before x = ka. Note that for Θ = π/2, i.e., for
perpendicular incidence, the phase lag suffered by the central ray is ρ′ = 2x(m−
1). A comparison of the ADA extinction efficiency factors with those obtained
from the formal solution of Maxwell’s equations shows:

(i) The agreement between the ADA and the exact results is excellent for per-
pendicular incidence (Θ = π/2).

(ii) For oblique incidence the maxima and minima in the extinction curve are
not well predicted in the ADA.

(iii) The ADA predicted absorption efficiencies are in good agreement with rig-
orous results over the entire x domain for weak to moderate absorption. For
extinction efficiency factors, Chýlek and Klett (1991a) have shown that ex-
cept for ρ < 0.6, the error in the ADA was within 8% for n = 1.1. The error is
within 10% for n = 1.2. For ρ < 0.6, the errors decrease rapidly with increas-
ing absorption. The maximum error decreases from 90% at m = 1.4 + i0.01
to approximately 7% at m = 1.4 + i0.1.

Fournier and Evans (1996) have suggested that a more appropriate expression
for the phase shift could be obtained by taking into account the refraction of
a central ray through the cylinder in the way similar to that described in the
MGEA. The difference is that instead of assuming that light suffers a deviation
θ/2 at each boundary, it is assumed here that the deviation at the first boundary
is ϑ. That is cos θ/2 is replaced by cosϑ. Thus, for a homogeneous cylinder one
writes

ρ′ = kL(m− cosϑ), (3.108)

where L is the is the distance traveled by the deviated ray through the cylinder.
After some straightforward but tedious algebra, it can be shown that ρ′ can also
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be written as (Fournier and Evans, 1991)

ρ′ = 2ka
[
(m2 − cos2Θ)1/2 − sinΘ

]
. (3.109)

The approximation (3.108) has been termed the extended ADA by Fournier
and Evans (1991). Note that for (m2 − 1) 	 sin2Θ, ρ′ can be approximated
as ρ′ = 2ka(m − 1)/ sinΘ, which is the phase shift for the central ray in the
standard ADA. A simple semi-empirical formula for edge contribution which
works well for small as well as large particles has been found to be

Qedge =
c0

(x2/3 + xcrit) sin2/3Θ
(3.110)

where

xcrit =
3.6

4|(m2 − cos2Θ)1/2 − sinΘ| (3.111)

The effect of the modification (3.108) is dramatic. Even for highly oblique inci-
dence the ADA prediction for the extinction efficiency factor are found to be in
good agreement with exact results.

The basic procedure for obtaining the main form of the Perelman approx-
imation (MPA) is same as that for the scattering by a sphere. The extinction
efficiency factor for the scattering of light by an infinitely long cylinder at per-
pendicular incidence has been found to be (Sharma et al. 1997a):

QMPA
ext =

π(m2 − 1)2x
4

∫ 2π

0
dφ
J2

1 (xω cosφ)
ω2 cosφ

. (3.112)

Numerical calculations show that the maximum error in the extinction efficiency
factor for 1 < m ≤ 1.05 and x = 2.0 is less than 2.27%.

The errors in scattered intensities have also been examined in the HMA and
the HMA1 (Sharma, 1994). These agree with exact results very well for θ ≤
60 deg except at the positions of minima. Table 3.5 shows a typical comparison
of the HMA1 with other approximations for m = 1.05 for i(0).

Table 3.5. Percent error in various approximations in 1.0 ≤ x ≤ 25.0 for i(0) for a
homogeneous sphere. Relative refractive index is m = 1.05

x HMA1 EA ADA FCEA

1.0 2.10 2.05 6.77 2.05
3.0 0.06 0.10 4.88 0.05
5.0 −0.10 0.11 4.83 0.01
10.0 −0.82 0.22 4.69 −0.17
15.0 −1.74 0.58 4.59 −0.32
20.0 −3.33 1.25 4.59 −0.37
15.0 −5.32 2.12 4.58 −0.46
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The model of coated spheres has been often used to study light scattering and
absorption from biological and phytoplankton cells. Soft particle approximations
have been extensively employed and tested for this model (Morris and Jennings,
1977; Aas, 1984; Chen, 1987; Lopatin and Sid’ko, 1987; Zege and Kokhanovsky,
1989). An interesting result noted by Quirantes and Bernard (2004) is that
the ADA compares better to exact results for a coated sphere rather than a
homogeneous sphere. Scattering in the ADA or the EA has been studied by Aas
(1984) and Huang et al., (1996) for a hollow sphere.

Chen (1995) and Chen and Yang (1996) have studied the scattering of light by
a dielectric spheroid and have shown that the scattering function for a dielectric
spheroid spheroid, Soid(a, b,m), can be related to the scattering amplitude by a
sphere, Sere(aeff ,meff ), in the following way:

Soid(a, µ0,m, θ) =
α0

β2
0
Sere(aeff ,meff , θ). (3.113)

In equation (3.113), a and b are semi-major and semi-minor axes of the spheroid,
µ0 = a/b and n is its refractive index. The radius aeff and refractive index neff

of the equivalent sphere are given by

aeff =
β0

µ0
a, and neff = 1 +

µ0

α0β0
(n− 1).

If semi-major axis is defined by coordinates (a, θ0, φ0), α0 and β0 are given by
the relations

α0 =
√
U2 + µ2

0V
2, β0 =

√
α2

0R
2 + S2,

where U2 + V 2 = R2 + S2 = 1 and U, V, R, S are related to θ0, φ0 and the
scattering angle θ as:

R =
cos(θ/2) cos θ0 cosφ0 − sin(θ/2) cos θ0

V
,

U = cos(θ/2) cos θ0 + sin(θ/2) sin θ0 cosφ0.

The scattering function for a spheroid can be thus found by calculating Sere

employing Mie theory for a sphere of radius aeff and refractive index neff .
Numerical tests for the validity of (3.113) employing T-matrix solutions show
that the relationship (3.113) is valid not only within the framework of the ADA
but is also valid for the exact scattering function for a spheroid whose size
parameter at smallest radius of curvature is at least 4. The approximation is
found to work well for scattering angles up to about 30 deg.

A formula similar to that for the extinction efficiency factor for a homoge-
neous sphere has been obtained for a spheroid (Fournier and Evans, 1991):

QEFA
ext = QR

ext

[
1 +
(

QR
ext

TQADA
ext

)P
]−1/P

, (3.114)

where P = A+ µ/(kL) as before but with
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ρ′ = kL(m− cosϑ)r,

which can also be written as

ρ′ = kb

{
2r
p

[
Ap2 +Bs

A2p2 +B2q2 + 2ABs

]}
(m− cosϑ), (3.115)

where

A =
s2 + p2∆
m(p4 + s2)

, B =
s2(p2 − ∆)2

m2(p4 + s2)2
,

∆ = [m2(p4 + s2) − s2]1/2, q = [r2A2 +B2]1/2, s = p2q2 − r2,
p = [A2 +B2r2]1/2 and r = a/b.

In the limiting cases of r → ∞ it becomes

ρ′ = 2kb
[
(m2 − cos2Θ)1/2 − sinΘ

]
,

and for r → 0 for a disk it becomes

ρ′ = 2ka
[
(m2 − sin2Θ)1/2 − cosΘ

]
.

The angles ϑ and Θ are the deflection angle of the central ray and the spheroid
orientation angle respectively. These expressions reproduce accurately the ex-
tinction efficiency factor for randomly oriented spheroids, although these need
not be good at a particular orientation. Scattering by ellipsoids in the ADA
has been studied, among others, by Lind and Greenberg (1966), Latimer (1980),
Lopatin and Sid’ko (1988), Paramonov (1994), Paramonov et al. (1986), Streek-
stra et al. (1994) and Streekstra (1994).

A general bridging technique has been developed by Zhao and Hu (2003) to
calculate the extinction efficiency factors for particles with various shapes and
sizes. The proposed expression for extinction efficiency factor is:

Qext =
(Qsmall

abs +Qsmall
sca + c6(Qsmall

sca )c7)Qlarge
ext

(Qsmall
sca + c6(Qsca

small)c7) +Qlarge
ext

(3.116)

where

Qsmall
sca = c3

9kV 2

16πP
, Qsmall

abs = c1
3kV
4P

+ c2
3k3V

4π
exp
(

−c4 3k3V

4π

)
,

with

c1 = Im
[
4(m2 − 1)
m2 + 2

]
, c2 = Im

[
4
15

(
m2 − 1
m2 + 1

)2
m4 + 27m2 + 38

2m3 + 3

]
,

c3 =
8
3

∣∣∣∣m2 − 1
m2 + 1

∣∣∣∣
2

, c4 =
∣∣∣∣ Im(m− 1)
Re(m− 1)

∣∣∣∣, c5 = c6 = |m− 1|, c7 = 2c5

and V is the particle volume. Further,
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Qlarge
ext = QADA × Z, (3.117)

with

Z = 1 +
1

2/Qedge + [|m− 1|(QADA + 1)]
, (3.118)

and

Qedge =
c0

k2/3P

∫
B

R1/3ds (3.119)

as per the prescription of Jones (1957). In (3.119), c0 is a function of refrac-
tive index in general and is approximately 0.996193 for optically soft particles
(Nussenzveig and Wiscombe 1980), R is the radius of curvature of the scattering
object profile at the edge which is perpendicular to the incident wave front, ds is
the arc length element along the boundary B and P is the projected area of the
scattering object. Numerical comparisons for spheres, spheroids, infinite cylin-
ders and finite cylinders with exact results have found the above formula to be
valid for a wide range of size parameters in the region 1 < n ≤ 2 and 0 ≤ n′ ≤ 1.
The region of applicability could be as much as n = 3 when averaging over size
or orientation is performed.

The validity of the ADA for scattering by a cube has been examined by
Flatau (1992) and Maslowska et al., (1994). The extinction efficiency factor for
side incidence show fairly good agreement with exact results. The error is of
the same order as observed for sphere. In contrast, for edge – on incidence the
deviation from exact results is much larger.

The model of columnar particles is frequently used for ice particles in clouds.
Chylek and Klett (1991a, 1991b) have studied the scattering of light by a column
with either triangular, trapezoidal, hexagonal or polygonal base and obtained
general expressions for extinction and absorption efficiencies in the framework
of the ADA. Sun and Fu (1999) have derived analytic expressions for arbitrarily
oriented hexagonal columns. The ADA results for randomly oriented hexagonal
ice crystals have been compared with FTDT calculations by Fu et al. (1999). The
accuracy of the ADA in predicting the extinction efficiency and single scattering
albedo for hexagonal column-like ice crystal particles has also been studied be
Liu et al., (1998).

For an arbitrarily shaped particle the extinction and absorption efficiency
factors in the ADA formulation can be expressed as:

QADA
ext =

2
P
Re

{∫ ∫
P

[1 − eikl(m−1)]dP
}
, (3.120)

and

QADA
abs =

1
P

∫ ∫
P

[1 − e−2kln′
]dP (3.121)

where P is the projected area of the particle on a plane perpendicular to the
incident direction and l is the geometrical length of an individual ray inside the
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particle. The integrals in (3.120) and (3.121) can be evaluated analytically for
certain shapes such as spheres, spheroids (Bryant and Latimer, 1969; Latimer,
1975) and an infinite cylinder (Cross and Latimer 1970) at an arbitrary orien-
tation. These can also be evaluated analytically at some special orientations for
a finite cylinder (Xu 2003), cube (Maslowska et al., 1994) and columns (Chylek
and Klett 1991a, 1991b). For more complex geometries a numerical method may
be used to evaluate the integrals.

The results from (3.120) and (3.121) are independent of the order in which
contributions from the ray path in the integral are accounted. By dividing the
projected area into equal-area elements and counting the resultant geometrical
paths according to their lengths, a probability function p(l)dl can be found that
gives the probability of l between l and l + dl. This probabilistic interpretation
has led Xu (2003) and Xu et al. (2003) to reformulate the conventional ADA
extinction efficiency factors (3.120) and (3.121) as:

QADA
ext = 2Re

{∫
[1 − eikl(m−1)]p(l)dl

}
, (3.122)

and

QADA
abs =

∫
[1 − e−2kln′

]p(l)dl. (3.123)

The normalization is
∫
p(l)dl = 1. The percentage of particle area that corre-

sponds to specific geometric path interval is independent of the particle’s physical
size if the shape and aspect ratio of the particle remain the same. If we denote by
p0(l) the geometrical path distribution of rays for one particle with unit size, the
ray distribution for a particle of same shape and orientation but a different size
L is given by p(l) = (1/L)p0(l/L) from scaling length. This feature of the ADA
along with the statistical interpretation of geometrical ray paths makes this ap-
proach computationally very efficient for the calculation of efficiency factors for
randomly oriented particles and polydispersions of particles. The algorithm for
the calculation of efficiency factors has been made computationally more efficient
in a recent work by Yang et al. (2004).

For a gaussian probability distribution function for l, the integration in the
expression for optical efficiencies can be easily performed. This approximation
has been termed the gaussian ray approximation (Xu et al., 2003). Numerical
comparisons of Mie results for a sphere of m = 1.05 + i0.0005 show that the
agreement of exact results with (3.120–3.123) in the intermediate size region
is excellent. The absorption efficiency factor from gaussian ray approximation
differs at most by 2% from the exact Mie calculations.

The ADA assumptions can also be applied to the rigorous relationships in
classical electrodynamics. Yang et al (2004) have shown that this leads to fol-
lowing expressions for the efficiency factors:

QADA
ext = Re

{
m+ 1
P

∫ ∫
P

[1 − eikl(m−1)]dP
}
, (3.124)
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and

QADA
abs =

n

P

∫ ∫
P

[1 − e−2kln′
]dP. (3.125)

Note that as m → 1 (i.e., n → 1 and n′ → 0), the equations (3.124) and
(3.125) and the conventional ADA efficiency factors are essentially the same.
The asymptotic extinction efficiency factor, however, approaches a value (m+1)
when the particle is large and strongly absorptive. This does not agree with the
correct value of the extinction efficiency factor which is 2. To ensure that (3.124)
and (3.125) lead to their correct asymptotic values, Yang et al. (2004) have
modified these expressions empirically and obtained the following expressions
for efficiency factors:

QADA
ext = Re

{
2
P

∫ ∫
P

[1 − e−ikl(m−1)]dP

+ e−ε1V/P̄ (m− 1)
∫ ∫

P

[1 − e−ikl(m−1)]dP
}

(3.126)

and

QADA
abs =

1
P

∫ ∫
P

[1 − e−2kln′
]dP.+

1
P
e−ε2V/P̄

∫ ∫
P

[1 − e−2kln′
]dP, (3.127)

where V and P̄ are the particle volume and orientation-averaged projected area
respectively. The constants ε1 and ε2 are tuning factors determined from a com-
parison with corresponding exact solutions. The ε1 and ε2 determined for spher-
ical particles have been used for nonspherical particles too and have been found
to work well. The errors in the efficiency factors obtained from these expressions
are much less than the errors in their conventional counterparts.

Chen et al. (2004) have introduced an approximation for the extinction effi-
ciency of light scattered by a nonspherical dielectric particle. The approximation
has been termed as equiphase approximation (EPA) and has been tested for the
scattering of light by a spheroid. In this approximation extinction efficiency is
expressed as the sum of two terms:

QEPA
ext = Qext(v) +Q(s)

where Qext(v) represents the contribution of an equivalent sphere defined as
sphere for which the phase shift suffered by the central ray is equal to the
maximum phase shift of light in passing through the nonspherical particle. The
term Q(s) represents edge correction.

For an ellipsoid of refractive index n and axes a, b and c, employing ADA,
the extinction efficiency factor can be written as (Chen et al., 2004):

QADA
ext =

4
πab

[
(πab/2)[1 − 2n sin ρb/ρb + 4n sin2(ρb/2)/ρb

]
+(πab/2)[k(ab2)1/3/2]−2/3, (3.128)
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for TE and TM modes and

QADA
ext =

4
πb2
[
(πb2/2)[1 − 2n sin ρa/ρa + 4n sin2(ρa/2)/ρa

]
+(πab/2)[k(ab2)1/3/2]−2/3, (3.129)

for TEM mode with ρa = ka(n − 1) and ρb = kb(n − 1). The validity of the
approximation requires

16b
π2λ

n2 − 1
n

(
1 − b

a

)(
1 +

a2

b2

)−1

< 1 (3.130)

for TE and TM modes and

16a
π2λ

n2 − 1
n

(
1 − a

b

)(
1 +

b2

a2

)−1

< 1 (3.131)

for TEM mode in addition to the condition (n − 1) < 1 and (n − 1)kd � 1, d
being the characteristic dimension of the scatterer. It is clear from (3.130) and
(3.131) that the validity of approximation improves as the spheroid’s curvature
decreases (a → b) or the relative refractive index approaches unity. It has been
found that the periodicity of oscillatory behavior in (3.128) and (3.129) is same
as that for extinction efficiency in the ADA for a sphere. This has led Chen et al.
(2004) to suggest the use of an equiphase sphere. Numerical comparisons show
that this approximation gives results that are in good agreement with rigorous
numerical computations.

An approximation method for the analysis of light scattered by optically soft
scatterers of arbitrary shape and size has been proposed by Rysakov (2004).
In this approximation the total field at large distances from the scatterer is
expressed as a sum of scattered field and a diffracted field. Calculations of in-
tensities and efficiencies for a sphere, spheroid, parallelepiped and cylinder are
given. The calculational error for m < 1.33 is shown to be less than 20% which
is of similar order as in the ADA.

3.6 Applications

The soft particle approximations have been extensively applied in various
branches of science engineering and medicine. Here, however, we very briefly
mention some of the applications.

Sharma and Somerford (1983) and Sharma et al., 1984) have applied the
EA to particle sizing by a measurement of the ratio of scattered intensities at
a pair of convenient angles within the forward lobe. Chen (1994) has deduced
relations between the positions of minima in the scattering pattern and the
size of a non-absorbing homogeneous dielectric spherical scatterer employing
the generalized eikonal approximation. Since the eikonal approximation and its
variants are small angle approximations, only the position of the first few minima
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will yield accurate results. Sharma et al., (1997b) have obtained similar results
employing the EA. Empirical formulas describing the distance between the first
and the jth minima ∆θj(φo

d) that occur after the boundary angle φd have been
obtained by Chernyshev et al. (1995) and by Maltsev et al. (1996) for certain
domains of particle size and refractive indices. For ∆θ3(20o), in the domain
m = 1.05 − 1.15, d = 1 − 12 µm, n0 = 1.333 (refractive index of the surrounding
medium) and λ0 = 632.8 nm is given by

d = C1 + C2
[
∆θ3(20o)

]−2 + C3
[
∆θ3(20o)

]−3 + C4
[
∆θ3(20o)

]−4
, (3.132)

where C1 = 0.127, C2 = 52.4, C3 = 190 and C4 = −660. As the separation
between the adjacent minima is π, the separation between the first and the
third minima is

z3 − z1 = x(sin θ3 − sin θ1) = 2π.

Taking into account the relation x = (π/λ0)n0d, transforming radians into de-
grees and approximating sin(θ/2) = θ/2, one obtains (Shepelevich et al., 1999)

d ∼= 54.4/∆θ3(20o). (3.133)

Equation (3.133) reproduces the principal term of (3.132) with an error less than
4%. The error in approximating sin(θ/2) by θ/2 in the angle range 20–40 deg is
less than 2%.

The turbidity σext(m, k) for light scattered by a dilute suspension of polydis-
perse spherical particles of similar optical properties is given by the relationship

σext(m, k) = πN

∫
Qext(m, ka)a2f(a)da, (3.134)

where N is the total number of particles in the suspension and Qext(m, ka) is
the extinction efficiency of a single particle when the light of wavenumber k (in
the medium of suspension) is scattered by a particle of radius a and refractive
index m (relative to medium). The simplest method is to find an empirical dis-
tribution that satisfies (3.134). However, this method does not guarantee the
closeness of the f(a) to the actual f(a). An analytic inversion of (3.134) is possi-
ble if Qext appearing as a kernel function is replaced by a suitable approximate
form. Shifrin and Perelman (1967) used this idea to invert light scattering data
of soft particles using the ADA. Analytic inversion methods based on the ADA
have also been derived by (Fymat, 1978; Box and McKeller, 1978) for spheres,
by McKellar (1982) for infinitely long cylinders, by Smith (1982) for particles
with variable complex refractive index and by Perelman and Punina (1969) and
by Klett (1984) for absorbing spheres. An analytic inversion method based on
the ADA for non-absorbing spherical particles has been developed by Wang and
Hallett (1996). This method eliminates the need for a priori knowledge of total
number of particles and their total area. Their result has the drawback that it
needs the first derivative of the spectral extinction curve. A derivation based on
complex analytic extension of the ADA for analytic inversion of spectral extinc-
tion data has been presented by Franssens et al. (2000). This paper clarifies the
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a priori information required to start the inversion and show the equivalence of
Fymat, Box and McKellar, Wang and Hallett and smith and Klett results. Roy
and Sharma (1997) have developed an approach based on the mean value theo-
rem and the method of Lagrange multipliers. It was shown that the mean value
theorem enables one to obtain easily the key parameters associated with the
distribution function f(a). Lui et al. (1996) have obtained a closed-form approx-
imation for (3.134) based on the ADA by employing the Deirmendjian modified
γ function form for the particle size distribution. Borovoi and Krutikov (1976)
have calculated, within the framework of the EA, the statistical characteristics
of the wave field propagating in the polydispersion of weakly refractive homoge-
neous spheres and have shown that the measured statistical characteristics can
be used to determine the average characteristics of individual particles.

In the context of ocean optics, the ADA has been extensively applied to
scatterers in the oceans and it has been found that it can adequately describe
the observed attenuation, absorption and total scattering of algal cells (Bricaud
and Morel, 1986). However, the homogeneous sphere model is often inadequate
to reproduce angular scattering data (Quinby-Hunt et al., 1989; Volten et al.,
1998; Vaillancourt et al., 2004). Coated sphere models have also been adopted for
some species with chloroplast as core (Quinby-Hunt et al., 1989). Two shapes
have been examined by Quirantes and Bernard (2004). (i) a coated spheroid
with concentric core and (ii) a coated sphere with non-concentric core. Results
have been compared with those obtained from a concentric sphere model. It
is noted that scattering and extinction efficiencies are very similar in all the
three models. The Qabs is also found to be nearly shape independent. Similar
results have been obtained for heterogeneous spherical scatterers by Aas (1984),
Zaneveld and Kitchen (1995), Bricaud et al. (1992) and Kitchen and Zaneveld
(1992).

Most biological scatterers are amenable to soft particle approximations. A
number of workers have used RGDA (for example, Koch, 1968; Fiel, 1970; Wy-
att, 1973; Shvalov et al., 1999) primarily for smaller cells such as bacteria. For
large particles, Fraunhofer diffraction has also been employed (Fiel, 1970). Ana-
lytic formulas relating features of scattering pattern to geometrical and physical
parameters of biological particles have also been obtained in the framework of
the EA and the ADA (Streekstra, 1994; Hammer et al., 1998; Borovoi et al.,
1998). In general, biological structures are complex and it is difficult to study
individual scatterers. One exception is the red blood cell (RBC), which can
be easily isolated and studied experimentally. Experimental measurements have
been compared with predictions of Mie theory, the ADA, the RGDA and some
empirical phase functions (Hammer et al., 1998). The experimental measure-
ments were in satisfactory agreement with the predictions of Mie theory over
the entire measured angular range 0–15 degrees. Better agreement was found
with the ADA. Borovoi et al. (1998) have developed a computer code that allows
one to calculate optical parameters of a RBC such as absorption and scattering
efficiencies and the small angle phase function in the framework of the ADA.
The difference with Mie theory calculations does not exceed 4%. More recently,
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the ADA has been used in early detection of cancer employing light scattering
spectroscopy to epithelial tissues (Perelman and Backman, 2002).

Among other applications the ADA has been extensively used in problems
related to atmospheric optics. Much of the work mentioned in the subsection
on nonspherical particles relates to atmospheric optics applications. The EA has
been applied by Sharma (1986) and Sharma and Dasgupta (1987) for plasma
density profiling. The effect of surface roughness in the context of astrophysical
particles has been studied in the framework of the EA by Chiapetta (1980) and
Bourrely et al. (1986a, 1986b, 1989). The scattering pattern reveals backward
enhancement. This is in qualitative agreement with experimental measurements.
This feature of scattering patterns is well suited to exhibiting differences between
smooth and rough particles. The EA has also been employed in the context of
optical fibres and diffraction by a volume hologram by Calvo and Juncos del
Egido, (1979, 1982). The ADA has also been applied to nonlinear medium by
Orenstein et al. (1984, 1987), to optics of fractal clusters by Khlebtsov (1993)
and to colloidal solutions of platelike kaolinite particles by Champion et al.
(1979). Anomalous diffraction approximation has also been applied to computing
scattering patterns of sharp-edged crystals in solution (Heffels et al., 1995) Linear
dichroism and complex birefringence has been studied by Meeten (1981a, 1981b)
in the framework of the ADA. Kokhanovsky (2004) studied optical rotational
dispersion spectra and also circular dichroism spectra of chiral liquids in the
framework of the ADA.
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4 Single light scattering: computational methods

Victor G. Farafonov and Vladimir B. Il’in

4.1 Introduction

The problem of light scattering by a nonspherical particle is solved today nu-
merically in many different ways. The computational methods based on single1

expansions of the electromagnetic fields in terms of certain wave functions form
an important group. This group includes the so-called separation of variables
method (SVM), the extended boundary condition method (EBCM), and the
point matching method (PMM). The methods are characterized by relatively
high accuracy and speed, but they can be efficiently applied only to scatterers
of rather simplified shapes and structures.

Earlier these methods were mostly studied separately. However, they have
much in common so we consider them together in a single context by applying
an approach that uses specific scalar potentials to solve the light scattering
problem. This provides better understanding of interrelations and differences
between the methods and brings to light the main features and properties of the
approach itself.

The chapter consists of five sections. Section 4.2 contains a formulation of
the light scattering problem, the main ideas of the methods under consideration,
some bibliography, and a description of the approach.

The difference between the three methods seems to be in many aspects less
important than that caused by the use of different wave functions employed
for the field/potential expansions. Therefore, in sections 4.3–4.5 we outline the
methods when the spherical, spheroidal or ellipsoidal wave functions are used.
In each case the applicability ranges of the methods are discussed.

We hope that our chapter will give a reader an up-to-date outlook on this very
important group of the methods widely applied today to study light scattering
by nonspherical particles.

1‘Single expansions’ herein means expansions of the fields at one point.
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4.2 Light scattering problem

The behavior of the electromagnetic field in any medium is governed by the
macroscopic Maxwell equations.

4.2.1 Maxwell equations

We write these equations in Gaussian units (Jackson, 1975)

∇ × E = − 1
c

∂B
∂t , ∇ · D = 4πρ,

∇ × H = 4π
c j + 1

c
∂D
∂t , ∇ · B = 0,

(4.1)

where E and D are the electric field and displacement, H and B the magnetic
field and induction, ρ and j the free charge and current densities, c is the speed
of light.

The Maxwell equations are supplemented by the constitutive equations that
describe the properties of the medium where the electromagnetic field is consid-
ered. We assume that the following equations are satisfied for the media which
we are going to deal with

D = ε̃E, B = µH, E = σj, (4.2)

where ε̃ and µ are the dielectric permittivity and the magnetic permeability of
a medium, σ is its specific conductivity.

Due to linearity of eqs (4.1), (4.2) no generality is lost if we consider further
only the harmonic fields, i.e. the fields with the time dependence given by e−iωt

(Bohren and Huffman, 1983). We also assume that there are no free charges
(ρ = 0).

4.2.2 Hertz vectors and scalar potentials

For a homogeneous medium, the solution to the Maxwell equations (4.1) and the
constitutive equations (4.2) can be expressed through the electric and magnetic
Hertz vectors Πe and Πm (Stratton, 1941)

E = ∇ × ∇ × Πe + ik0µ∇ × Πm,

H = ∇ × ∇ × Πm + ik0ε∇ × Πe, (4.3)

where k0 = ω
c is the wavenumber in vacuum, ε = ε̃+ i 4πσ

ω . The Hertz vectors as
well as the harmonic fields E,H satisfy the vector Helmholtz (wave) equation

∆E + k2E = 0, (4.4)

where k = k0
√
εµ is the wavenumber in the medium. Equation (4.4) is known

to have the following solutions:

L = ∇ψ, Ma = ∇ × (ψ · a), Na =
1
k

∇ × Ma =
1
k

∇ × ∇ × (ψ · a), (4.5)
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where a can be either a constant vector, e.g. a unit vector of the Cartesian
system, or the radius-vector r. The function ψ is a solution to the corresponding
scalar Helmholtz equation

∆ψ + k2ψ = 0. (4.6)

Note that for any a the solutions L, M and N satisfy

∇ · L = −k2ψ, ∇ · Ma = 0, ∇ · Na = 0. (4.7)

These equations and the transversality of the fields expressed by ∇ · E = 0,
∇ · H = 0 imply that E, H can be represented by linear combinations of the
vector functions Ma and Na, with the vector function L being excluded.

Only two components of the Hertz vectors (and the fields) are really in-
dependent. They are often called the scalar potentials. As such potentials one
can use not only the components Πx, Πy, Πz or their linear combinations, but
also the Debye potentials related to the radial components of the Hertz vectors.
Obviously, all the potentials should satisfy the scalar Helmholtz equation (4.6).

A comparison of eqs (4.3) and (4.5) shows that any choice of the vector wave
functions Ma and Na used for representation of the fields is equivalent to the
corresponding choice of the scalar potentials and vice versa.

4.2.3 Light scattering problem for a small particle

To find the field of radiation scattered by a particle, one must supplement the
equations presented above with the boundary conditions at the scatterer surface
and at infinity.

Let us denote the known field of incident radiation by Ein, H in, the unknown
fields of scattered radiation by Esca, Hsca and of radiation inside the scatterer
by Eint, H int.

Then the light scattering problem can be written as follows:

∆Esca + k2
0E

sca = 0, r ∈ R3 \ D̄, (4.8)

∆Eint + k2Eint = 0, r ∈ D, (4.9)

∇ · Esca = 0, ∇ · Eint = 0, (4.10)(
Ein + Esca)× n = Eint × n, r ∈ S, (4.11)

lim
r→∞ r

(
∂Esca

∂r
− ik0Esca

)
= 0. (4.12)

Here n is the outer normal to the surface S of the particle having the volume
D, D̄ = D ∪ S, r = |r|. For simplicity we assume that the scatterer is placed
in vacuum for which ε = µ = 1. The magnetic fields Hsca, H int are determined
from the known Esca, Eint using the Maxwell equations

H =
1
iµk0

∇ × E. (4.13)
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Sometimes it is more convenient to present the problem in the integral form
by using the Stratton–Chu formula. All solutions to the Maxwell equations inside
a particle are known to satisfy (Colton and Kress, 1984)

∇ ×
∫
S

n × E(r′)G(r, r′) ds′ − 1
ik0ε

∇ × ∇

×
∫
S

n × H(r′)G(r, r′) ds′ =
{ −E(r), r ∈ D,

0, r ∈ R3 \ D̄, (4.14)

where G(r, r′) is the Green function of the scalar Helmholtz equation (4.6) for
free space

G(r, r′) =
eik0|r−r′|

4π|r − r′| . (4.15)

For the solutions to the Maxwell equations outside D̄ that also satisfy
the radiation condition at infinity (4.12), one has integral equations similar to
eqs (4.14) with the same left side whereas the right side is equal to 0 for r ∈ D
or E(r) for r ∈ R3 \ D̄.

If one applies these integral equations to the incident (Ein) and scattered
(Esca) fields, adds the equations and takes into account the boundary condition
(4.11), the surface integral equation formulation of the light scattering problem
can be obtained

∇ ×
∫

S

n × Eint(r′)G(r, r′) ds′ − 1
ik0ε

∇ × ∇

×
∫

S

n × H int(r′)G(r, r′) ds′ =
{ −Ein(r), r ∈ D,

Esca(r), r ∈ R3 \ D̄. (4.16)

Usually the first step is to solve the integral equation for the domain D and
to determine the internal field Eint. After that the scattered field Esca can be
easily found from the equation for the domain R3 \ D̄.

4.2.4 Methods of solving the problem using field expansions

The available numerical methods to solve the light scattering problem for a
nonspherical particle are reviewed, for example, by Khlebtsov (1996), Wriedt
(1998), Jones (1999), Mishchenko et al. (2000c), and Kahnert (2003b). Here we
consider three methods (SVM, EBCM, PMM) in which the fields are expanded
in terms of certain vector wave functions. This is equivalent to expansion of
the corresponding scalar potentials in terms of orthogonal functions forming
a complete set. So far, three sets of the functions – spherical, cylindrical and
spheroidal – were employed. The choice of the basis, however, does not affect
the main ideas of the methods.

In the separation of variables method the field expansions are substituted into
the boundary conditions expressed in the ‘differential’ form given by eqs (4.11)
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and (4.12). Equation (4.11) is then multiplied by the angular functions of differ-
ent indices and integrated over all values of the angular variables. This gives an
infinite system of linear algebraic equations relative to unknown field expansion
coefficients.

In the extended boundary condition method the expansions are substituted
into the conditions presented in the surface integral form (see eqs (4.16)). Com-
pleteness of the angular functions allows one to get again a system of linear
algebraic equations to be solved.

It should be noted that for a long time the SVM and EBCM were developed
and considered separately. Only recently they were shown to be equivalent in
general (see Schmidt et al., 1998; Farafonov et al., 2003, and references therein).
Different forms of the boundary conditions used in the methods naturally lead
to different (but very probably equivalent) systems of linear equations relative
to unknown coefficients of the same expansions. The EBCM gives two systems –
one system relates the coefficients for the internal and incident fields and the
other relates the coefficients for the internal and scattered fields. On the other
hand, the SVM produces one system of a twice larger dimension2 that includes
the coefficients for all the fields. So, when the scattered field alone is to be found,
special efforts are required to reduce the dimension of this system by excluding
the internal field. Consequently, in general the EBCM appears to be preferable
in the way it provides solution.

However, in the cases of spheres, infinitely long cylinders and spheroids when
the boundary of a scatterer coincides with a coordinate hypersurface of the sys-
tem selected in accordance with the expansion functions used, at least partial
separation of variables in the boundary conditions occurs. As a result the inte-
grals in the matrix elements of the systems in both methods are simplified, in
particular the radial functions can be removed from the integrals. This simplifi-
cation changes the properties of the solutions essentially, and this approach may
be considered as a separate method.

Traditionally solutions in these cases were obtained by the SVM. That was
logical and rather convenient because the boundary conditions easily allowed re-
duction of the large systems to smaller ones for the scattered field alone. There-
fore, in further discussion we consider the SVM only for particles whose shapes
coincide with coordinate hypersurfaces. Two points should be emphasized: (i) the
EBCM can provide very similar solutions in these cases; (ii) the SVM can be ap-
plied to scatterers whose shape does not coincide with coordinate hypersurfaces
as well.

In the point matching method one substitutes the field/potential expansions
into the boundary conditions that are considered in a set of points on the particle
surface. The number of points is taken so as to obtain the number of equations
equal to the number of the expansion coefficients. In the generalized PMM one
takes many more points, obtaining thus more equations than necessary, and

2Here we mean the dimension of the truncated systems used to calculate the same
number of terms in the expansions.



130 Victor G. Farafonov and Vladimir B. Il’in

then solves an overdetermined system of linear algebraic equations by the least
squares or other technique.

The names of the methods are to a certain degree confusing and require
a few comments. The separation of variables actually means the following ap-
proach to solving the problem. One uses the solution to the scalar Helmholtz
equation (4.6) in the form φ(ξ1, ξ2, ξ3) = φ1(ξ1)φ2(ξ2)φ3(ξ3), where ξi are the
coordinates and the functions φi(ξi) are determined from ordinary differential
equations (see, for example, Kahnert (2003b) for more details). Using eqs (4.5)
and selecting the vector a, one constructs the solutions to the vector Helmholtz
(wave) equation (4.4). Further, the fields (or their scalar potentials) are ex-
panded in terms of the vector (scalar) wave functions, and determination of the
expansion coefficients occurs in any described way. Thus, as all three methods
use such expansions, they could be called the separation of variable methods.
However, traditionally the term SVM is attributed only to the technique where
the coefficients are determined from the boundary conditions presented in the
form (4.11).

Earlier the EBCM was often called the T -matrix method, where T denoted
the matrix relating the coefficients of the expansions of the scattered and incident
fields. However, now the matrix T is calculated using different methods, not
only EBCM, but also the SVM (Schulz et al., 1998), PMM (Nieminen et al.,
2003), generalized multipole technique (Doicu and Wriedt, 1999), discrete dipole
moment method (Mackowski, 2002), etc. Therefore, the term T -matrix method
should be applied rather to the technique of analytical determining the optical
properties of ensembles of (randomly oriented) particles from the elements of
the T -matrices of the particles (see, for example, Mishchenko et al., 2002).

Note also that the point matching technique can be applied to the boundary
conditions of both forms: the differential one given by eq. (4.11) and the surface
integral one represented by eqs (4.16) (see section 4.3.3 for more details). The
principal difference between the SVM or EBCM and the PMM is in the fact that
the first two techniques try to satisfy the boundary conditions in all points of
the scatterer surface, while the last does it only in a finite set of selected points.

One also often relates the PMM with the multiple multipole method and
generalized multipole techniques in which the fields are represented by a sum of
expansions at different points of a domain with the number of terms in these
expansions being usually limited (Wriedt and Doicu, 1997; Mishchenko et al.,
2000c). Such multiple expansions change the properties of the PMM (Kahnert,
2003b), and hereafter we deal only with the (generalized) PMM that exploits
single expansions.

Thus, the SVM, EBCM and PMM are alike in using the same expansions of
the fields, but differ in the way they determine the expansion coefficients. That
is why the methods have different theoretical and practical applicability ranges.
Both ranges are also essentially affected by the choice of the wave functions uti-
lized in the expansions. Therefore, we consider the solutions using the spherical,
spheroidal and ellipsoidal functions in three separate sections. The use of the
cylindrical functions is in many aspects similar to that of the spherical functions
and is not discussed.
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4.2.5 Selected bibliography

The format of our chapter allows us to mention only a few works, while important
results were definitely obtained in many others. References to them can be found
in the reviews to be mentioned, in the light scattering bibliography database
of Babenko (2004) and in special issues of the J. Quant. Spectr. Rad. Transf.
containing proceedings of the conferences on light scattering by nonspherical
particles held practically annually for the last 10 years.

Separation of variables method

The SVM solutions to the light scattering problem for homogeneous spheres
were suggested by Lorenz (1890), Mie (1908) and Debye (1909), for cylinders
by Rayleigh (1881) and Wait (1955), for spheroids by Möglich (1927), Oguchi
(1973), Asano and Yamamoto (1975) and Sinha and McPhie (1977). For ellip-
soids, only the scalar diffraction problem has been solved so far (see Abramov et
al., 1995, and references therein). The early history of the method development
was discussed by Kerker (1969), Khlebtsov (1996) and Ciric and Cooray (2000).

The ansatz of the method for spheres is well described, e.g., by van de Hulst
(1957) and Bohren and Huffman (1983) and for spheroids by Asano and Ya-
mamoto (1975), Voshchinnikov and Farafonov (1993), Ciric and Cooray (2000).
The latter paper deals with such important questions as application of the SVM
to layered spheroids, chiral spheroids, and systems of spheroids.

The recent reviews of works on the method are given by Mishchenko et al.
(2000c) and Ciric and Cooray (2000). Since publication of these reviews the
method has developed in the following main directions:

(i) multilayered scatterers: spheres (Gurwich et al., 2001; Yang, 2003; Babenko
et al., 2003), infinite cylinders (Gurwich et al., 1999, 2001), and spheroids
(Gurwich et al., 2000, 2003; Barton, 2001);

(ii) extension of the SVM for spheres to particles of other shapes (Rother, 1998;
Rother et al., 2001; Kahnert, 2003b; Schmidt et al., 2003);

(iii) applications to complicated cases (Barton, 1999, 2000, 2002; Qingan et al.,
1999; Han and Wu, 2001; Han et al., 2003; Borghese et al., 2003 and many
others).

It should be added that many new algorithms of calculation for the spheroidal
functions used by the SVM for spheroids have been suggested in recent years
(e.g., Li et al., 1998, 2002; Eide et al., 1999; Brown and Stringfield, 2000; de
Moraes and Guimaraes, 2002, 2003; Kokkorakis and Roumeliotis, 2002; Boyd,
2003; Voshchinnikov and Farafonov, 2003; Barrowes et al., 2004).

The website of Wriedt (2005) is very useful in providing links to a great
number of different codes realizing the method for homogeneous spheres (the
Mie theory) and to several codes for layered, optically active or magnetic spheres
as well as for spheres with inclusions and aggregates of spheres. A few codes for
homogeneous and layered cylinders and spheroids are also available.
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Extended boundary condition method

The method was introduced by Waterman (1965, 1969) and its useful reformu-
lation was made later by Barber and Yeh (1975). The versions of the method
using the spheroidal functions instead of spherical ones in the expansions were
developed by Farafonov (2001b), Kahnert (2003a).

The ansatz of the method is well described, for example, by Barber and Hill
(1990), Mishchenko et al. (2002). It is still worth reading some sections of the
book by Varadan and Varadan (1980).

Extended bibliography on development of the method and its applications is
presented by Mishchenko et al. (2004). The review contains references to about
700 papers presented in two large sections (particles in infinite homogeneous
space and near infinite interfaces) that are divided into 52 subsections. All the
references include paper titles, which makes the review particularly helpful. This
bibliographic paper is expected to appear as an updating site on the internet.

The work of Mishchenko et al. (2004) shows that the interest in the method
has increased over the last 10 years. This fact seems to be mainly related to
a growing number of applications of the EBCM. In particular, the method has
been used for the modeling of scattering properties of mineral aerosols and soil
particles, cirrus cloud particles, hydrometeors, stratospheric aerosols, noctilu-
cent cloud particles, interstellar, and interplanetary and cometary particles, as
well as for analysing laboratory data and for biomedical, industrial and other
applications.

Among the recent works developing the method it is worth noting the paper
of Kahnert et al. (2001b) where the authors show that proper treatment of sym-
metries of a scatterer within the method can substantially reduce the calculation
volume. Another work to be mentioned is Moroz (2005). The applicability of the
EBCM was considered analytically by Il’in et al. (2004).

Wriedt’s (2005) website is useful again in providing links to several EBCM
computer codes (see them among the T -matrix codes).

Point matching method

The PMM was suggested by Mullin et al. (1965) (see also Morrison et al., 1973;
Oguchi, 1973) and the generalized PMM by Ikuno and Yasuura (1973), Davies
(1973). The early history of the method development is outlined by Bates et
al. (1973), Khlebtsov (1980), a recent review of works on the PMM is given by
Mishchenko et al. (2000c).

If one does not take into account the PMM versions that use multiple ex-
pansions, i.e. the multiple multipole method (MMM), generalized multipole tech-
niques (GMT), etc. (see, for example, Wriedt, 1998), the number of recent papers
dealing with the PMM will be very small in comparison with that of papers on
the SVM and in particular the EBCM. In our opinion it can be explained by two
factors: (i) the GMT and similar techniques give more flexible tools for solving
the light scattering problem (at least for essentially eccentric particles); (ii) the
advantages of the PMM have not been realized yet as compared to other meth-
ods using the same single expansions. However, recent papers of Al-Rizzo and
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Tranquilla (1995), Petrov and Babenko (1999), Nieminen et al. (2003), Kahnert
(2003b), Farafonov and Il’in (2005b) and others show that the interest to the
PMM can revive.

Note that the MMM, GMT and similar techniques (Hafner and Bomholt,
1993; Doicu et al., 2000) which are not considered in this chapter play an im-
portant role since they are shown to have advantages in certain cases (see, for
example, Piller and Martin, 1998; Doicu and Wriedt, 2001; Moreno et al., 2002;
Eremina and Wriedt, 2003; Eremina et al., 2005).

A few computer codes based on the PMM as well as on the GMT, MMM
and similar techniques are linked to Wriedt’s (2005) website.

4.2.6 Specific approach for axisymmetric scatterers

The standard SVM solution for spheroids is that of Asano and Yamamoto (1975).
A nonstandard solution suggested by Farafonov (1983) was found to be especially
efficient for highly eccentric spheroids (see Voshchinnikov and Farafonov, 1993,
and references therein). Here we expand the approach of Farafonov (1983) on
axisymmetric scatterers and apply it to all the methods under consideration.

For an axisymmetric scatterer, we introduce the Cartesian coordinate system
(x, y, z) in such a way that the z-axis coincides with the particle symmetry axis.
Then the equation of the particle surface can be written in the related spherical
coordinate system (r, θ, ϕ) as

r = r(θ). (4.17)

One feature of the approach is that the incident, scattered and internal fields
are represented by the sums

E = EA + EN, H = HA + HN, (4.18)

where EA, HA do not depend on the azimuthal angle ϕ, while averaging of EN,
HN over this angle gives zero.

The axisymmetric and nonaxisymmetric light scattering problems (i.e. deter-
mination of Esca

A , Hsca
A and Esca

N , Hsca
N , respectively) can be solved separately.

It follows from the commutativity of the operator T corresponding to the light
scattering problem and the operator Lz = ∂/∂ϕ (see Farafonov and Slavyanov
(1980) for more details).

Another feature of the approach is the use of scalar potentials properly chosen
for each of the field parts.

Axisymmetric problem

The axisymmetry of the corresponding parts of the fields allows one to reduce
the vector light scattering problem to a scalar one. Then the following specific
scalar potentials become useful:

p = EA,ϕ cosϕ, q = HA,ϕ cosϕ, (4.19)
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where EA,ϕ, HA,ϕ are the ϕ-components of EA, HA. Other components of the
fields can be expressed via the potentials using the Maxwell equations (Fara-
fonov, 2001b). Note that the potential p is related with the TE mode, and q
with the TM one.

Nonaxisymmetric problem

Two potentials, the z-component of the electric or magnetic Hertz vectors
U = Πz and the Debye potential V = Πr/r, are utilized to determine the
axisymmetric parts of the fields:

(a) for the TE mode

EN = − 1
iεk0

∇ × ∇ × (U iz + V r) ,
HN = ∇ × (U iz + V r) ;

(4.20)

(b) for the TM mode

EN = ∇ × (U iz + V r) ,
HN = 1

iµk0
∇ × ∇ × (U iz + V r) . (4.21)

Note that the potentials U and V are used to solve the light scattering problem
for an infinite cylinder and a sphere (the Mie theory), respectively.

Further in the approach one searches either for solutions to the scalar
Helmholtz equations corresponding to eqs (4.8) and (4.9) that satisfy the scalar
boundary conditions for the potentials produced by eqs (4.11) and (4.12), or for
solutions to the surface integral equations (4.16), which depends on the selected
method.

The advantages and disadvantages of the approach can be briefly summarized
as follows. The approach involves solution of two (axisymmetric and nonaxisym-
metric) light scattering problems instead of the initial one. Fortunately, the ax-
isymmetric problem is very simple and its solution is computationally quite fast.
Test computations indicate that the solution to the axisymmetric problem can be
used to determine the values of such parameters as the number of terms held in
the field expansions, the number of knots used to calculate integrals, etc. These
parameters are required to solve both axisymmetric and nonaxisymmetric prob-
lems, and as our experience shows are practically the same for both problems.
The simplicity of the axisymmetric problem also helps in studing analytically
the applicability ranges of the methods. Although the approach complicates an-
alytical averaging of scattering matrix elements for randomly oriented particles,
this is compensated by its ability to give reliable results for scatterers of a high
eccentricity.

4.3 Solutions using the spherical wave functions

In this section we consider solutions to the light scattering problem that use
expansions in terms of the spherical wave functions. Sometimes, it is more rea-
sonable to utilize expansions in terms of the spheroidal or even ellipsoidal wave
functions, and their use is described in the following sections.
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The methods under consideration are applied using the approach presented
above. So, further we operate with the potentials p, q, U, V (see section 4.2) rather
than with the fields.

4.3.1 Potential expansions

The potentials p and q can be represented by expansions in terms of the spherical
wave functions having the index m = 1 only, since the dependence of these
potentials on the azimuthal angle ϕ is given explicitly by cosϕ (see eq. (4.19)
where EA does not depend on ϕ by its definition)

pint

psca
=

∞∑
l=1

aint
l jl(kr)
asca

l h
(1)
l (k0r)

P 1
l (cos θ) cosϕ, (4.22)

qint

qsca
=

∞∑
l=1

bint
l jl(kr)
bscal h

(1)
l (k0r)

P 1
l (cos θ) cosϕ, (4.23)

where jl(kr), h
(1)
l (k0r) are the spherical Bessel functions and the first kind Han-

kel functions, respectively, Pm
l (cos θ) the associated Legendre functions. Calcu-

lation of the spherical functions is considered in detail, for example, by Babenko
et al. (2003). One should use jl(k0r) in similar expansions of pin,qin, and for a
plane wave incident at the angle α to the particle symmetry axis one gets

ain
l = −il 2l + 1

l(l + 1)
P 1

l (cosα), binl = 0 for the TM mode,

ain
l = 0, binl = il

2l + 1
l(l + 1)

P 1
l (cosα) for the TE mode.

Taking into account that averaging of the nonaxisymmetric parts of the fields
over ϕ must give zero, the potentials U, V are expanded as follows:

U int

U sca =
∞∑

m=1

∞∑
l=m

aint
ml jl(kr)
asca

ml h
(1)
l (k0r)

Pm
l (cos θ) cosmϕ, (4.24)

V int

V sca =
∞∑

m=1

∞∑
l=m

bint
ml jl(kr)
bscaml h

(1)
l (k0r)

Pm
l (cos θ) cosmϕ. (4.25)

Again expanding U in,V in, one should use jl(k0r) as the radial functions. For a
plane wave,

ain
ml = il−1 2(2l + 1)

k0 sinα
(l −m)!
(l +m)!

Pm
l (cosα), binml = 0. (4.26)

The expansion of the Green function G(r, r′) in terms of the spherical wave
functions is well known (Morse and Feshbach, 1953)
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G(r, r′) =
ik0
4π

∞∑
m=0

∞∑
l=m

(2 − δ0m)(2l + 1)
(l −m)!
(l +m)!

jl(k0r<)

× h
(1)
l (k0r>)Pm

l (cos θ)Pm
l (cos θ′) cos(ϕ− ϕ′), (4.27)

where r< = min(r, r′), r> = max(r, r′), and δ0m = 1 or 0 if m = 0 or m �= 0,
respectively.

When the unknown expansion coefficients are determined, the characteristics
of the scattered radiation can be easily computed. For instance, for the amplitude
matrix relating the incident field (a plane wave) and the scattered field in the
far-field zone (r → ∞) as follows:(

Esca
‖
Esca

⊥

)
=

1
−ik0r e

i(k0r−k0r)
(
A2 A3
A4 A1

)(
Ein

‖
Ein

⊥

)
, (4.28)

one has

A1 =
∞∑

l=1

i−lasca
l P 1

l (cos θ) −
∞∑

m=1

∞∑
l=m

i−(l−1) (k0asca
mlP

m
l (cos θ)

+ ibscamlP
m ′
l (cos θ)) sin θ cosmϕ, (4.29)

A3 =
∞∑

m=1

∞∑
l=m

i−lbscaml

mPm
l (cos θ)
sin θ

sinmϕ. (4.30)

The expression for A2 is obtained from that for A1 by the change of asca
l for bscal ,

the expression for A4 is identical to that for A3.
Note that the expansion coefficients that one obtains from solution of the

light scattering problem for the TE mode are used in A1 and A3, while the
coefficients for the TM mode appear in A2 and A4.

Other characteristics of the scattered (and internal) radiation such as the
elements of the scattering matrix, various cross-sections, etc. (see, for example,
Bohren and Huffman, 1983; Mishchenko et al., 2000a) can be presented in the
form of eqs (4.29) and (4.30) as well.

Thus, to solve the light scattering problem only the expansion coefficients
are to be found. As we expand the fields/potentials in terms of the functions
that are solutions to the corresponding wave equations, boundary conditions are
required to derive these coefficients.

4.3.2 Boundary conditions

Boundary conditions can be used in two forms: the differential one presented by
eqs (4.11) and (4.12) and the integral one given by eq. (4.16). Let us consider
the expressions for the conditions in the case of the scalar potentials.
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4.3.2.1 Axisymmetric part of the light scattering problem

For the potential q, the boundary conditions (4.11) are written as follows:

qin + qsca = qint,
∂(qin+qsca)

∂n = 1
ε

∂qint

∂n − (1 − 1
ε ) 1√

r2+r′2
θ

(
1 − r′

θ

r ctgθ
)
qint

⎫⎬
⎭

r∈S

, (4.31)

where r′
θ = ∂r/∂θ, n is the normal.

The integral form of the boundary conditions for q is obtained if one rewrites
eqs (4.16) in the spherical coordinates (it is natural to use such coordinates along
with the spherical wave functions) and takes into account the conditions (4.31)

∫
S

⎧⎨
⎩qint(r′)

∂G(r, r′)
∂n

−
⎡
⎣1
ε

∂qint(r′)
∂n

+
(

1
ε

− 1
)

1√
(r′)2 +

[
(r′)′

θ′
]2 (4.32)

×
(

1 − (r′)′
θ′

r′ ctgθ′
)
qint(r′)

]
G(r, r′)

}
ds′ =

{ −qin(r), r ∈ D,
qsca(r), r ∈ R3 \ D̄.

The conditions for the potential p are the same if one replaces q and ε with p
and µ, respectively.

4.3.2.2 Nonaxisymmetric part of the light scattering problem

The boundary conditions (4.11) for the potentials U ,V can be written as follows:

U in + U sca = U int,
V in + V sca = V int,
∂(U in+Usca)

∂n = ∂U int

∂n +
( 1

ε − 1
) r′

θ

r sin θ
√

r2+r′2
θ

[
r cos θ ∂U int

∂r

− sin θ ∂U int

∂θ + r2 ∂V int

∂r + rV int
]
,

∂(V in+V sca)
∂n = ∂V int

∂n − ( 1
ε − 1

) (r′
θ cos θ−r sin θ)

r2 sin θ
√

r2+r′2
θ

[
r cos θ ∂U int

∂r

− sin θ ∂U int

∂θ + r2 ∂V int

∂r + rV int
]
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

r∈S

(4.33)

where we consider the TM mode and take for simplicity µ = 1.
In the same way as above one can get the integral equations for the poten-

tial U ∫
S

{
U int ∂G

∂n
−
[
∂U int

∂n
+
(

1
ε

− 1
)

r′
θ

r sin θ
√
r2 + r′2

θ

×
(
r cos θ

∂U int

∂r
− sin θ

∂U int

∂θ
+ r2

∂V int

∂r
+ rV int

) ]
G

}
ds′

=
{ −U in(r), r ∈ D,
U sca(r), r ∈ R3 \ D̄, (4.34)
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and a similar equation for the potential V .
Note that these equations are more complicated (each includes both U and

V potentials) than eqs (4.32). For the TE mode, the boundary conditions being
similar are a bit more complex (see Farafonov and Il’in (2001) for more details).

4.3.3 Methods to determine the expansion coefficients

Now we show in more detail than in section 4.2 how the unknown coefficients
of the potential expansions are derived from the boundary conditions within
different methods.

4.3.3.1 Separation of variables method for spheres

For a spherical scatterer, the classical and highly efficient solution called the
Mie theory is provided by the separation of variables method with the field
expansions in terms of the spherical wave functions. This theory uses the vector
wave functions M r

ν and N r
ν or, which is equivalent, the Debye potentials. In

this section, we show how the problem for a sphere is solved with the use of
the scalar potentials p, q, U, V . This helps us to understand the efficiency of the
approach for scatterers being close to spheres.

The surface equation for a sphere of the radius R is r(θ) = R, and the
boundary conditions (4.31) in the axisymmetric problem are simplified as r′

θ = 0.
Substituting the expansions (4.23) into eqs (4.31) and using orthogonality of the
angular spherical functions, one can find the unknown coefficients explicitly. For
instance, for the TM mode one gets

bscan = − jn(x)(jn(x0))′ − εjn(x0)(jn(x))′

jn(x)(x0h
(1)
n (x0))′ − εh(1)

n (x0)(xjn(x))′
binn , (4.35)

where x = kR, x0 = k0R.
Substitution of the expansions (4.24) and (4.25) into the boundary conditions

(4.33) allows one to determine other unknown coefficients. The coefficients for
U sca and U int are obtained from two equations which coincide with the analogs
to eqs (4.31) for the potential p in the case of µ = 1. Those for V sca and V int are
determined from two other equations and are expressed through the coefficients
of the expansion of U int as follows:

bscamn =

[
n−m
2n−1jn(x)aint

m,n−1 + n+m+1
2n+3

(
jn(x) + 1

xjn+1(x)
)
aint

m,n+1

]
εjn(x)(x0h

(1)
n (x0))′ − h(1)

n (x0)(xjn(x))′
(4.36)

×
(

1
ε

− 1
)
kjn(x).

As usual, the solution for the TE mode is analogous.
A comparison of eqs (4.35) and (4.36) with the well known equations of the

Mie theory (see, for example, van de Hulst, 1957; Bohren and Huffman, 1983)
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shows that for spheres the approach presented in section 4.2 is practically as
efficient as the Mie theory. Note also that when a plane wave is incident on a
sphere, one can always select the coordinate system in such a way that the wave
vector will coincide with the z-axis (the particle symmetry axis). As a result the
axisymmetric parts of the fields become equal to zero and the nonaxisymmetric
parts are not equal to zero only for m = 1. This further simplifies eq. (4.36).

4.3.3.2 Extended boundary condition method for axisymmetric
particles

The method is based on the integral formulation of the boundary conditions
given, for example, by eqs (4.32) and (4.34) and uses the expansions of the
fields/potentials similar to eqs (4.22)–(4.25) as well as the expansion of the Green
function given by eq. (4.27).

For example, for the axisymmetric problem and the TM mode, substituting
the expansions (4.22),(4.23),(4.27) into the integral equation (4.32) for the do-
main D and using completeness and orthogonality of the spherical functions,
one can obtain the system

BS bint = bin, (4.37)

where b = {bn}∞
n=1 are the vector containing the expansion coefficients and the

elements of BS are integrals of the spherical functions and their first derivatives

{BS}ln = − i(2l + 1)
2l(l + 1)

π∫
0

{
k2
0r

2
[
h

(1)
l

′
(k0r)jn(kr) − k

k0
h

(1)
l (k0r)j′n(kr)

]

× P 1
l (cos θ)P 1

n(cos θ) sin θ + k0r′
θ sin2 θ

[
P 1

l
′
(cos θ)P 1

n(cos θ)

− 1
ε
P 1

l (cos θ)P 1
n

′
(cos θ)

]
h

(1)
l (k0r) jn(kr) − h(1)

l (k0r) jn(kr) (4.38)

× P 1
l (cos θ)P 1

n(cos θ)
}

dθ,

with r = r(θ) being the particle surface equation.
Substitution of the same expansions into the eq. (4.32) for the domain R3 \D̄

leads to a system for the coefficients of the scattered field expansion

BR bint = bsca, (4.39)

where the elements of BR are equal to those of BS if one replaces the singular at
the coordinate origin functions h(1)

l (k0r) by the regular ones jl(k0r), i.e. BR =
RgBS. In the case of the TE mode it is the problem for the potential p that has
to be solved. The corresponding equations are easily obtained from those given
above after replacing µ and al with ε and bl, respectively.

Thus, for both modes one gets the usual form of the T -matrix

TA = BR(BS)−1, (4.40)

which solves the light scattering problem.
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To treat the nonaxisymmetric problem, one should substitute the expansions
(4.24)–(4.27) into the integral equation (4.34) for U and into a similar equation
for V . In the way described above, it gives infinite systems of linear algebraic
equations for each index m ≥ 1

ÂS,m âint
m = âin

m, ÂR,m âint
m = âsca

m , (4.41)

where âm = {am,m, am,m+1, ..., bm,m, bm,m+1, ...} are the vectors containing the
expansion coefficients, and the elements of the matrices ÂR,m and ÂS,m are
integrals of the scalar spherical wave functions and their derivatives (Farafonov
and Il’in, 2001). The dimension of the matrices Â is twice as large as that of B
used in the case of the axisymmetric problem.

In contrast to the described approach, in the standard EBCM (see, for ex-
ample, Barber and Yeh, 1975; Mishchenko et al., 2002) the matrix elements are
integrals of the functions M r

ν and N r
ν , which is equivalent to the use of the De-

bye potentials. For a sphere, this gives the Mie theory (see, for example, Barber
and Hill, 1990), while the introduced version of the EBCM leads to the same
eqs (4.35) and (4.36) as the described version of the SVM for spheres with the
scalar potentials p, q, U, V .

The case of layered particles

The approach can be easily expanded on n-layered axisymmetric scatterers. Such
particles have the following equations of the layer boundaries:

r = r(j)(θ), j = 1, 2, ..., n. (4.42)

For a jth layer, one has the dielectric permittivity εj+1, the magnetic perme-
ability µj+1 and the wavenumber in the media kj+1 = √

εj+1µj+1k0, with the
values for j = 1 corresponding to the medium outside the scatterer (in our case
ε1 = µ1 = 1 and k1 = k0), those for j = 2 to the outermost layer (envelope) and
so on (see Fig. 4.1).

Fig. 4.1. A multilayered axisymmetric particle and the notations used.
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The potentials of the jth layer in the axisymmetric problem (the same for
the nonaxisymmetric problem) should be represented by the sums

q(j+1) = q
(j+1)
R + q(j+1)

S , j = 1, 2, ..., n, (4.43)

where the potentials q(j+1)
R have no singularities (i.e. are regular) in the domain

Dj inside the external boundary of the jth layer, while the potentials q(j+1)
S hav-

ing such singularities satisfy the radiation condition (4.12) where k0 is replaced
by kj+1. Note that the potential of the incident field qin = q

(1)
R , and the potential

of the scattered field qsca = q
(1)
S . Since the field in the innermost layer does not

have singularities, one has q(n+1)
S = 0 and q(n+1)

R is the potential of the internal
field in the particle core.

The potentials q(j)R , q(j)S introduced in such a way satisfy eqs (4.32) and
hence their sum equal to q(j) also satisfies the same equations (see Farafonov et
al. (2003), and references therein for more details)

∫
Sj

⎧⎨
⎩q(j+1) ∂Gj

∂n
−
⎡
⎣ εj
εj+1

∂q(j+1)

∂n
+
(
εj
εj+1

− 1
)

1√
(r′)2 +

[
(r′)′

θ′
]2

×
(

1 − (r′)′
θ′

r′ ctgθ′
)
q(j+1)

⎤
⎦Gj

⎫⎬
⎭ds′ =

{
−q(j)R (r), r ∈ Dj ,

q
(j)
S (r), r ∈ R3 \ D̄j .

(4.44)

Here Gj is the Green function (4.15) with the wavenumber kj instead of k0.
The potentials q(j)R and q(j)S can be expanded in terms of the spherical wave

functions as follows:

q
(j)
R

q
(j)
S

=
∞∑

l=1

b
(j)
R,l jl(kjr)
b
(j)
S,l h

(1)
l (kjr)

P 1
l (cos θ) cosϕ. (4.45)

Substitution of these expansions into the integral equation (4.44) leads to the
following system of linear algebraic equations:

b
(1)
R = B

(1)
SRb

(2)
R +B(1)

SS b
(2)
S , b

(1)
S = B

(1)
RRb

(2)
R +B(1)

RSb
(2)
S ,

... ...

b
(n−1)
R = B

(n−1)
SR b

(n)
R +B(n−1)

SS b
(n)
S , b

(n−1)
S = B

(n−1)
RR b

(n)
R +B(n−1)

RS b
(n)
S ,

b
(n)
R = B

(n)
SR b

(n+1)
R , b

(n)
S = B

(n)
RRb

(n+1)
R ,

(4.46)
where b

(j)
R = {b(j)R,l}∞

l=1, and so on. The lower indices of the matrices BSR indicate

the radial functions (h(1)
n (x) for S and jn(x) for R) to be used in the expressions

of the matrix elements that are generally similar to those given by eq. (4.38).
The system (4.46) allows one to obtain the relations

b
(1)
R = BS b

(n+1)
R , b

(1)
S = BR b

(n+1)
R , (4.47)
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where(
BS

BR

)
=

(
B

(1)
SR B

(1)
SS

B
(1)
RR B

(1)
RS

)
· . . . ·

(
B

(n−1)
SR B

(n−1)
SS

B
(n−1)
RR B

(n−1)
RS

)
·
(
B

(n)
SR

B
(n)
RR

)
. (4.48)

Taking into account that b
(1)
R = bin and b

(1)
S = bsca, one can get from eqs (4.47)

the solution in the form typical of the EBCM

bsca = BR(BS)−1bin. (4.49)

The nonaxisymmetric problem for layered particles can be solved in the same
way as the axisymmetric one. As a result one gets equations similar to eqs (4.47)–
(4.49), where the matrices Â(j)

RS and others have a dimension twice as large as
B

(j)
RS.

The form of the solution based on eq. (4.48) is in situ iterative. Using the
T -matrices, it is also possible to represent this solution in the recursive form

T (n+1) =
(
B

(0)
RR +B(0)

RS T
(n)
)(
B

(0)
SR +B(0)

SS T
(n)
)−1

, (4.50)

where T (n) and T (n+1) are the matrices for a n-layered particle and a (n + 1)-
layered particle, respectively, B(0) are the matrices for an outer (n+ 1)th layer
added as an envelope to the n-layered particle.

Equation (4.50) is analogous to that suggested earlier by Peterson and Ström
(1974). It should be noted that the iterative form looks less elegant, nevertheless
it may have a computational advantage – there is no need to invert the T -
matrices n times, but only once.

The case of randomly oriented particles

For ensembles of such scatterers, the standard EBCM provides a fast way to
determine the light scattering characteristics due to the possibility of their an-
alytical averaging (see Mishchenko et al. (2000b) and references therein). As
the described approach utilizes non-Debye potentials, which is equivalent to the
use of nonorthogonal functions, the analytical averaging becomes generally less
efficient. However, such an averaging gives an interesting result for cross-sections.

Let us denote the T -matrices for the axisymmetric (A) and nonaxisymmetric
(N) problems for an incident plane wave (bin

m = 0) as follows:

bsca = TA bin, asca
m = TN,a

m ain
m, bsca

m = TN,b
m ain

m. (4.51)

Substituting eqs (4.51) into the expressions for the extinction and scattering
cross-sections which are similar to eqs (4.29) and (4.30) and averaging over all
particle orientations, one obtains

〈Cext〉 =
4π
k2
0
Re

⎧⎨
⎩

∞∑
l=1

TA
ll + 2

∞∑
m=1

⎡
⎣ ∞∑

l=m

TN,a
m,ll + 2

∞∑
l,n=m

in−l−1 TN,b
m,ln ζ

(m)
nl

⎤
⎦
⎫⎬
⎭ ,
(4.52)
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〈Csca〉 =
4π
k2
0

⎧⎨
⎩

∞∑
l,n=1

2n+ 1
2l + 1

l(l + 1)
n(n+ 1)

∣∣TA
ln

∣∣2 + 2Re
∞∑

m=1

∞∑
i,j,l,n=m

ii−j+n−l

×
[
TN,a

m,li ω
(m)
ln TN,a

m,nj

∗
+ iTN,b

m,li κ
(m)
ln TN,a

m,nj

∗

− iTN,a
m,li κ

(m)
nl TN,b

m,nj

∗
+ TN,b

m,li τ
(m)
ln TN,b

m,nj

∗]
Ω(m)

ij

}
, (4.53)

where the asterisk means the complex conjugation and ω(m)
ln , κ(m)

ln , τ (m)
ln , ζ(m)

ln

and Ω(m)
ln are integrals of the products of the functions Pm

l (x) and their first
derivatives (Farafonov et al., 2004). For the standard EBCM, 〈Cext〉 is equal
to the trace of the T -matrix and 〈Csca〉 to the sum of squares of all T -matrix
elements (Mishchenko et al., 2000b).

It should be mentioned that one must distinguish 〈CTM,TE〉 actually given by
eqs (4.52) and (4.53) and 〈C〉TM,TE being the cross-sections for different modes
of the polarized incident radiation. For the systems of axisymmetric particles
considered, the physical meaning of the quantities leads to 〈C〉TM = 〈C〉TE,
while 〈CTM〉 = 〈C〉TM +∆C �= 〈CTE〉 = 〈C〉TE −∆C. For nonpolarized incident
radiation C = 1

2 (CTM +CTE) and hence 〈C〉 = 〈 1
2 (CTM +CTE)〉 = 1

2 (〈CTM〉 +
〈CTE〉).

It is interesting that for nonpolarized incident radiation the extinction cross-
section simplifies further (see Farafonov et al., 2004 for more details)

〈Cext〉 =
4π
k2
0
Re

[ ∞∑
l=1

T̃A
ll + 2

∞∑
m=1

∞∑
l=m

T̃N,a
m,ll

]
, (4.54)

where T̃ = 1
2 (TTE + TTM) and only the traces of the T -matrices are present.

Thus the information on the scatterer involved in all the matrices TN,b
m becomes

unimportant for the averaged cross-section. Note that TN,b
m relates the expansion

coefficients for the Debye potential V of the scattered field with those for the
potential U of the incident field.

4.3.3.3 Point matching method

In the framework of this method the boundary conditions (e.g. eqs (4.31) and
(4.33)) are considered in a set of points {rs}M

s=1 at the particle surface (rs ∈
S). If one treats an axisymmetric scatterer, all the points can be selected in
the same plane containing the particle symmetry axis, so the solutions to both
the axisymmetric and nonaxisymmetric problems become independent of the
azimuthal angle.

In the basic versions of the method, two ways of solution are possible – one
either demands the fulfilment of the boundary conditions in M selected points
and uses the number of terms in the expansions N equal to M , or minimizes
the residual of the boundary conditions. As the former way is to a large extent
similar to the EBCM (Kahnert, 2003b), we discuss here only the latter one.
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For the axisymmetric problem and the TM mode (the cases of the TE
mode and the nonaxisymmetric problem are analogous), the residual is (see
also eqs (4.31))

∆(bsca, bint) =
M∑

s=1

{∣∣qin + qsca − qint
∣∣2 +

∣∣∣∣∂(qin + qsca − 1
εq

int)
∂n

+
(

1 − 1
ε

)
1√

r2 + r′
θ
2

(
1 − r′

θ

r
ctgθ

)
qint
∣∣∣∣
2
⎫⎬
⎭

r=rs

. (4.55)

Minimization of ∆(bsca, bint) allows one to derive the unknown coefficients
for the scattered (bsca) and internal (bint) fields from a system of 2N equations

B bsca +D bint = F bin, (4.56)

where the elements of the rectangle matrices B,D,F contain products of spheri-
cal functions and their first derivatives (Farafonov and Il’in, 2005b). For example,
for l, n ∈ [1, N ] the elements of the matrix B are

{B}ln =
M∑

s=1

{
h

(1)
l

∗
(k0rs)h(1)

n (k0rs)P 1
l (cos θs)P 1

n(cos θs) +
1

r2s + r′
s
2

×
[
k0 rs h

(1)
l

∗′
(k0rs)P 1

l (cos θs) +
r′
s

rs
sin θs h

(1)
l

∗
(k0rs)P 1

l
′
(cos θs)

]
(4.57)

×
[
k0 rs h

(1)
l

′
(k0rs)P 1

l (cos θs) +
r′
s

rs
sin θs h

(1)
l (k0rs)P 1

l
′
(cos θs)

]}
,

where rs = (rs, θs, ϕs). The number of points M is usually taken essensially
larger than N , e.g. M = 2N .

It should be noted that one can always select the positions of {rs}M
s=1 so that

the sums in the elements of B,D,F can be replaced by integrals (Farafonov and
Il’in, 2005b). This is a convenient way to minimize calculations when one has no
better strategy to select the matching points at the scatterer surface.

It is worth mentioning that for axisymmetric scatterers the codes for such
different methods as the EBCM and the generalized PMM differ only by a few
operators since the GPMM determines the same expansion coefficients using the
same expansion functions as the EBCM.

Obviously, one can derive the matrices TA, TN,a
m using the GPMM described

above and utilize eqs (4.52)–(4.54) for analytical averaging of the cross-sections
for randomly oriented particles.

It is interesting that the (G)PMM can also utilize the extended boundary
conditions given by the surface integrals (4.32),(4.34) used in the EBCM. The
Huygens principle says that if the field is known at a surface, it can be found
everywhere. Taking that into account, one can consider eq. (4.32) in a set of
points {rs}M

s=1 located at a surface (for example, a sphere) lying completely
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inside a scatterer. Then the coefficients of the internal field expansion can be
determined by minimizing the residual

∆(bint) =
M∑

s=1

{∣∣∣∣
∫

S

(
qint(r)

∂G(r, rs)
∂n

− ∂qint(r)
∂n

G(r, rs)
)

ds+ qin(rs)
∣∣∣∣
2
}
.

(4.58)
The least-squares method gives a system of linear algebraic equations relative
to the unknown coefficients

B bint = f , (4.59)

where

{B}ln =
M∑

s=1

α∗
ls αns, fl =

M∑
s=1

αls q
in(rs), (4.60)

and

αls =
∫

S

(
jls(kr)P l

1(cos θ)
∂G(r, rs)
∂n

− ∂(jls(kr)P l
1(cos θ))

∂n
G(r, rs)

)
× cosϕ ds. (4.61)

The use of the system (4.59) apparently has some advantages – its dimension is
half the size of that of the system (4.56), and the integrals include the Green
function G(r, rs) and should be well calculated. In eqs (4.60) one can replace
the sum over s with an integral as has been suggested above.

With the known internal field expansion coefficients one can easily get the
coefficient for the scattered field using the second part of eq. (4.32). Obviously,
the same can be done for the nonaxisymmetric problem.

4.3.4 Applicability of the methods based on the spherical basis

Owing to the great importance and wide applications of the methods, their
ranges of applicability have been studied for a long time (see Millar, 1973; Kah-
nert, 2003b for reviews). However, there are still many unclear points.

4.3.4.1 Separation of variables method for spheres

This method, giving an explicit solution for any sphere, is known to converge
for all values of the parameters which are the radius to wavelength ratio x and
the refractive index m. Improvements of the numerical implementations of the
solution allow one to reach reliable results for huge values of the parameters (see,
for example, Wolf and Voshchinnikov, 2004).

4.3.4.2 Extended boundary conditions method

In contrast to the SVM, the question of theoretical applicability of the EBCM is
very complicated and one meets controversial conclusions till now. There have
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been generally two opinions in the literature: (i) the method is mathematically
correct for any (or only convex) particles; (ii) the method is correctly applicable
only if the field expansions converge everywhere up to the scatterer boundary.
The second assumption is known as the Rayleigh hypothesis (see Millar (1973)
and Kahnert (2003b) for more details). However, both opinions are too simplified,
and one should look at this problem from a new angle as has been done in the
recent papers of Dallas (2000), Farafonov (2002), Il’in et al. (2004).

To start with, it should be noted that convergence of the expansions (4.22)–
(4.25) with the coefficients derived within the method is tightly related to the
solvability of the systems (4.37), (4.39), etc. that are utilized to find the expan-
sion coefficients. Therefore, one needs to derive the asymptotic expressions for
the matrix elements of these systems in the case of very large indices and to
consider analytically the properties of the infinite systems (the required math-
ematical approach is described, for example, by Il’in et al., 2004). One should
look for conditions under which the infinite systems have the only solution that
could be found by the reduction method or, in other words, when the solutions
of the truncated systems one deals with in computations converge to the solution
of the infinite systems.

The analysis shows that the ranges of the EBCM applicability in the cases
of calculation of the scattered field in the near-field zone (a region close to
a particle) and in the far-field zone (a region very far from a particle) differ
in principle. Note that such often-used optical characteristics of scatterers as
different cross-sections and the scattering matrix are just the characteristics of
the scattered field in the far-field zone.

Near-field zone

The mathematically correct application of the EBCM to compute the scattered
field at any point in the vicinity of a scatterer obviously needs convergence of
the field expansions (with the coefficients derived by the method) everywhere up
to the scatterer boundary. This occurs if and only if (see, for example, Apel’tsyn
and Kyurkchan, 1990)

max{dsca} < min{r(θ)} and max{r(θ)} < min{dint}, (4.62)

where r(θ) is the equation of the scatterer surface, dsca and dint are the distances
from the coordinate origin to singularities of the analytic continuations of the
scattered and internal fields. There are several methods for localizing these singu-
larities for particles of different shapes (see, for example, Maystre and Cadilhac,
1985). As an example we show in Fig. 4.2 the location of the singularities for a
so-called Chebyshev particle. These particles have the surface equation

r(θ) = R (1 + ε Tn(θ)) , (4.63)

where R is the radius of an unperturbed sphere, ε the deformation parameter,
and Tn(θ) = cos(nθ) the Chebyshev polynomial of the degree n.
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a) b)

Fig. 4.2. Applicability of the EBCM to Chebyshev particles: (a) cross-section of a
particle with n = 8 and ε = 0.06, singularities (points) and all the quantities involved
in the conditions (4.62), (4.64) are shown; (b) maximum values of ε for which these
theoretical conditions are satisfied for different n. The dotted curve divides convex
(below) and concave (above) particles. Crosses demonstrate the maximum values of ε
for which convergence was observed in calculations of cross-sections.

Far-field zone

The condition for the applicability of the EBCM only in the far-field zone, i.e.
for calculations of the far-field zone characteristics of the scattered field, is found
to be weaker (Il’in et al., 2004)

max{dsca} < min{dint}, (4.64)

where dsca and dint are the same quantities as in eq. (4.62).
Let us consider two popular models of scatterers – spheroids and Chebyshev

particles. For spheroids, there are no singularities of the analytic continuation of
the internal field, i.e. dint = ∞, while the singularities of the analytic continua-
tion of the scattered field are located in the foci (so for an oblate spheroid they
form a ring in 3D space). Therefore, if the coordinate origin is at the particle
center, then dsca = d/2 =

√
a2 − b2, where a, b are the particle semiaxis and d is

the focal distance. From the conditions (4.62) it follows that the field expansions
with the coefficients derived by the EBCM must converge everywhere, provided
d/2 < b or a/b <

√
2 (it is not difficult to realize that such an expansion of

the internal field converges everywhere, while that of the scattered field should
converge at distances larger than d/2 (see Colton and Kress, 1984). However,
the solution given by the method should always converge when calculations of
only far-field characteristics of spheroids are performed – the condition (4.64) is
satisfied as d < ∞.

For Chebyshev particles, all four quantities involved in the conditions (4.62),
(4.64) have finite values (their dependence on ε, n is considered, for example, by
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Il’in et al. (2004)). The maximum values of ε, for which the first and second parts
of the condition (4.62), the condition (4.64) and the condition of convexity of the
particles are satisfied, are presented in Fig. 4.2 for different n. The crosses in this
figure show the maximum values of ε for which the convergence of the EBCM
computations of cross-sections was observed by Farafonov and Il’in (2005a). For
other values of the particle size and refractive index, the results were similar,
which leads to conclusion that the condition (4.64) is really the condition of
convergence for such calculations.

It should be noted that the condition (4.64) was obtained for a special version
of the EBCM designed for the far-field zone by Farafonov (2002) using ideas of
Kyurkchan (1994, 2000). This version included as unknowns not the fields but
their patterns as in the far-field zone (|r| � R) the scattered field being a
spherical wave has the standard radial dependence given by e−ik|r|/ik|r| and
therefore only the angular dependence of the scattered field is to be searched.
Subsequently the systems, both in this special version and the usual version of
the method, were demonstrated to be equivalent. It led to conclusion that the
condition (4.64) is applicable to any calculations of the far-field characteristics
by the EBCM.

The actions described above were completed only for the relatively simple
(scalar) axisymmetric problem. For the nonaxisymmetric problem, analogous
operations are much more complicated. At the moment it is found only that
eq. (4.64) is the necessary condition of convergence. However, two facts allow
one to accept it as the sufficient condition as well: (i) the behavior (convergence)
of the solutions to the axisymmetric and nonaxisymmetric problems always is
very similar; (ii) nontrivial numerical tests for Chebyshev particles of different
shape, size and composition confirmed completely this assumption.

At least, two points should be emphasized. First, the results obtained above
for our version of the EBCM must be valid for all other versions of the EBCM
in which single expansions of the fields are used and their coefficients are deter-
mined from the surface integral equations. It is also easy to expand this consid-
eration on the multiple expansions used, for example, by Iskander et al. (1983).
If one extends the SVM approach to scatterers whose shape does not coincide
with a coordinate hypersurface in the way suggested in section 2, the obtained
conditions very probably will be the necessary ones for convergence.

Secondly, the EBCM is now applied to such particles as disks, cylinders,
prisms, pyramids, etc. (see, for example, Kahnert et al., 2001a). Formally any
application of EBCM-like methods to particles with sharp edges would be im-
possible, if one could calculate the surface integrals exactly. At the edges being
nonanalytic points as the first derivative of r(θ) is not continuous, the scattered
and internal fields have singularities. As a result the conditions (4.62) and (4.64)
are not fulfilled – instead of inequalities in the conditions one has equality of the
involved quantities.

However, in practice the surface integrals are computed numerically. It is
generally equivalent to the replacement of a scatterer with sharp edges with
a smooth surface body, which makes the convergence of EBCM calculations
possible in principle (see Farafonov and Il’in (2005a) for more details).
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4.3.4.3 Generalized point matching method

We do not discuss the applicability of the ordinary (not generalized) PMM.
It should be close to that of the EBCM which we have considered above, but
requires a special investigation.

The situation with applicability of the generalized PMM is very simple. The
matrix of the system (4.56) that is solved here to determine the expansion coeffi-
cients is obviously positively determined (Ramm, 1982). Therefore, the method
must have the only solution for any parameter values. Indeed, calculations show
that solution given by the method always converges, but sometimes (in particu-
lar for scatterers of large eccentricity) its accuracy can be low (see, for example,
Farafonov and Il’in, 2005b).

In Fig. 4.3 we show the convergence of the GPMM and EBCM with a growing
number of terms kept in the expansions for several spheroids and Chebyshev
particles. The accuracy of the GPMM calculations is well seen to drop rapidly
with an increase of the spheroid aspect ratio a/b (the accuracy of the EBCM
also decreases but much more slowly). In contrast, for the concave Chebyshev
particles the EBCM quickly diverges with growing ε, while the GPMM is able
to provide a solution of satisfactory accuracy.

It should be noted that for a fixed number N of the terms considered in
the expansions, both the GPMM and EBCM determine the same coefficients,
for example, for the axisymmetric problem {bscan }N

n=1. If the EBCM solution
converges, it gives the coefficients (we denote them by bEBCM

n ) that are practically
independent of N . The coefficients derived in the GPMM essentially depend on

Fig. 4.3. Convergence of the EBCM and GPMM solutions – the relative difference
of the cross-sections in dependence on N the number of terms kept in the potential
expansions for (left panel) prolate spheroids with a/b = 1.5, 2 and (right panel) Cheby-
shev particles with n = 5 and ε = 0.07, 0.14, 0.21. The refractive index m = 1.5, the
size parameter xv = 2πrv/λ = 1 (rv is the radius of a sphere of the equal volume), the
axial incidence of radiation.
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Fig. 4.4. The coefficients bsca
n obtained with the EBCM and GPMM with the number

of terms kept in the potential expansions N = 15 and 25 for (left panel) prolate spheroid
with a/b = 1.5, and (right panel) Chebyshev particles with n = 5 and ε = 0.21. ‘The
refractive index m = 1.5, the size parameter xv = 1, the incidence angle α = 10◦.

N and with N → ∞ one has bGPMM
n (N) → bEBCM

n (Millar, 1973). From the
left panel of Fig. 4.4 we see that for any N only a few last (n ∼ N) coefficients
bGPMM
n (N) differ essentially from bEBCM

n .
A natural question arises: what occurs when the EBCM solution diverges?

This case is illustrated in the right panel of Fig. 4.4 where we consider the Cheby-
shev particles for which the condition (4.64) is not satisfied. The divergences of
the EBCM solution is well seen by comparison of the coefficients obtained for
N = 15 and 25. The GPMM solution converges, but the convergence is slow and
obviously one needs to take the value of N much larger than 25 to get results
with good accuracy. It is just what Fig. 4.3 has demonstrated.

The second scheme of the GPMM presented by eqs (4.58)–(4.61) has the
positively determined matrix as well as the first scheme. So the theoretical ap-
plicability ranges of both schemes should be the same. Accuracy and the real
applicability range of the second scheme is not quite clear, and a special consid-
eration is required.

4.4 Solutions using the spheroidal wave functions

For spheroids and some other (axisymmetric) particles, it can be more efficient
to expand the fields/potentials in terms of the spheroidal wave functions rather
than the spherical ones. This way of solution to the light scattering problem
requires its presentation in a form which in some aspects differs from that used
in the previous section.
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4.4.1 Features of the problem formulation

To start with, the problem should be formulated by using the spheroidal coor-
dinates.

4.4.1.1 Spheroidal coordinate system

For an axisymmetric scatterer, it is convenient to connect the spheroidal system
(ξ, η, ϕ) with the Cartesian system (x, y, z), whose z-axis coincides with the
symmetry axis of the particle, as follows:

x =
d

2
(ξ2 ∓ 1)1/2(1 − η2)1/2 cosϕ,

y =
d

2
(ξ2 ∓ 1)1/2(1 − η2)1/2 sinϕ, (4.65)

z =
d

2
ξ η,

where d is a parameter. For the prolate spheroidal coordinates ξ ∈ [1,∞) (see
upper sign) and for the oblate ones ξ ∈ [0,∞) (see lower sign), η ∈ [−1, 1],
ϕ ∈ [0, 2π). Further, we replace ξ2 ∓ 1 with ξ2 − f , where for the prolate system
f = 1 and for oblate one f = −1.

Then the surface equation of the particle becomes very simple (cf. eq. (4.17))

ξ = ξ(η). (4.66)

Note that if one considers a spheroid, it is reasonable to make d equal to its focal
distance (then the equation comes to ξ = const).

The light scattering problem formulation naturally includes the same equa-
tions and boundary conditions as earlier in section 4.2, but in contrast to sec-
tion 4.3 they should be formulated by using the spheroidal coordinates. The
new form of the equations can be found in standard textbooks; the boundary
conditions written in these coordinates are considered below.

To solve the problem we use the same scalar potentials p, q, U, V as earlier,
but naturally expand them in another way.

4.4.1.2 Expansions of the potentials

The potentials p, q are expanded in terms of the spheroidal wave functions with
the index m = 1 because the potential dependence on the azimuthal angle ϕ is
given explicitly by cosϕ. For the prolate spheroidal coordinates, one has

psca

qsca
=

∞∑
l=1

asca
l

bscal
R

(3)
1l (c1, ξ) S1l(c1, η) cosϕ, (4.67)

pint

qint =
∞∑

l=1

aint
l

bint
l
R

(1)
1l (c2, ξ) S1l(c2, η) cosϕ, (4.68)
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where c1 = k0
d
2 , c2 = k d

2 , Sml(c, η) are the prolate angular spheroidal functions
with the normalization factors Nml(c) (Komarov et al., 1976), R(1),(3)

ml (c, ξ) are
the prolate radial spheroidal functions of the first or third kinds. The properties
of the spheroidal functions are well known (see, for example, Flammer, 1957),
but the methods of their calculations are still being developed (see section 4.2).

The expansions of pin, qin are similar to those of pint, qint and use the coeffi-
cients ain

l ,binl and c1 instead of c2. For a plane wave,

ain
l = 0, binl = 2ilN−2

1l (c1)S1l(c1, cosα), for the TM mode,

ain
l = −2ilN−2

1l (c1)S1l(c1, cosα), binl = 0, for the TE mode. (4.69)

The expansions of the potentials U and V are

U sca

V sca =
∞∑

m=1

∞∑
l=m

asca
ml

bscaml
R

(3)
ml (c1, ξ) Sml(c1, η) cosmϕ, (4.70)

U int

V int =
∞∑

m=1

∞∑
l=m

aint
ml

bint
ml
R

(1)
ml (c2, ξ) Sml(c2, η) cosmϕ. (4.71)

To expand U in, V in, one should use the expressions for U int, V int but with the
coefficients ain

ml,b
in
ml and c1 instead of c2. For a plane wave,

ain
ml = −4il−1N−2

ml (c1)Sml(c1, cosα)
k0 sinα

, binml = 0. (4.72)

The Green function is expanded as follows (Komarov et al., 1976):

G(r, r′) =
ik0
2π

∞∑
m=0

∞∑
l=m

(2 − δ0m)N−2
ml (c)R

(1)
ml (c, ξ<)R(3)

ml (c, ξ>)

×Sml(c, η)Sml(c, η′) cosm(ϕ− ϕ′), (4.73)

where ξ< = min(ξ, ξ′) and ξ> = max(ξ, ξ′).
For the oblate spheroidal coordinates, the expansions are the same after the

replacements c → −ic and ξ → iξ, and correspondingly the oblate spheroidal
functions should be used.

Thus, the potentials are represented by linear combinations of solutions to
the scalar Helmholtz (wave) equation, and the unknown expansion coefficients
(asca

l , asca
ml , etc.) should be determined from the boundary conditions.

4.4.1.3 Boundary conditions

Axisymmetric problem

The boundary conditions (4.11) for the potential q (the TM mode) are expressed
as follows (cf. eq. (4.31)):
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qin + qsca = qint,
∂

∂n (qin + qsca) = 1
ε

∂qint

∂n +
( 1

ε − 1
) (ξ+ηξ′

η) d
2

hϕ

√
h2

η+ξ′
η
2h2

ξ

qint,

}
r∈S

(4.74)

where S is the surface of a scatterer, hξ, hη, hϕ are the metric coefficients

ds = hϕ

√
h2

η + ξ′
η
2h2

ξ dη dϕ.

The boundary conditions in the form of surface integrals are (cf. eqs (4.32))

2π∫
0

1∫
−1

{
qint ∂G

∂n −
[

1
ε

∂qint

∂n +
( 1

ε − 1
) (ξ+ηξ′

η) d
2

hϕ

√
h2

η+ξ′
η
2h2

ξ

qint
]
G

}
ds′

=
{ −qin(r), r ∈ D,
qsca(r), r ∈ R3 \ D̄. (4.75)

The conditions for the potentials p (the TE mode) are similar except for the
change of ε for µ.

Nonaxisymmetric problem

For the TM mode, the boundary conditions (4.11) transform to (cf. eq. (4.33))

U in + U sca = U int,
V sca = V int,

∂
∂n (U in + U sca) = ∂U int

∂n − ( 1
ε − 1

)
C1√

h2
η+ξ′

η
2h2

ξ

[
hη

hξ

∂
∂ξ (ηU int

+d
2ξV

int) + hξ

hη

∂
∂η (ξU int + d

2fηV
int)
]
,

∂V sca

∂n = ∂V int

∂n +
( 1

ε − 1
)

C2√
h2

η+ξ′
η
2h2

ξ

[
hη

hξ

∂
∂ξ (ηU int

+d
2ξV

int) + hξ

hη

∂
∂η (ξU int + d

2fηV
int)
]
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

r∈S

(4.76)

where C1 = (ξξ′
η + fη)/(ξ2 − fη2), C2 = (ξ+ ηξ′

η)/(ξ2 − fη2), and for simplicity
we again assume that µ = 1. The case of the TE mode is analogous.

4.4.1.4 Methods of solution

All the methods discussed in section 4.3, i.e. the SVM, EBCM, and PMM, can
be applied here as well. The only difference is that equations in the boundary
conditions are naturally multiplied by the angular spheroidal functions. Com-
pleteness and orthogonality of these functions allows one to get systems of linear
algebraic equations relative to the unknown expansion coefficients. When the co-
efficients are determined, various characteristics of the scattered (and internal)
radiation are easily found.
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4.4.1.5 Scattering characteristics

In most applications it is necessary to derive characteristics of the scattered
radiation in the far-field zone, where r → ∞ and hence ξ → ∞, η → cos θ, iη →
−iθ. Using the representation of the fields via the potentials (see section 4.2)
and the asymptotics of the radial spheroidal functions for a large argument, one
can get for the TM mode

Esca =
eik0r

−ik0rA =
eik0r

−ik0r

{
−

∞∑
m=1

∞∑
l=m

i−l bscaml

mSml(c1, cos θ)
sin θ

sinmϕ iϕ

+

[
−

∞∑
l=1

i−l bscal S1l(c1, cos θ) +
∞∑

m=1

∞∑
l=m

i1−l (k0 asca
ml Sml(c1, cos θ)

+i bscaml S
′
ml(c1, cos θ)) sin θ cosmϕ

]
iθ

}
(4.77)

and for the TE mode

Esca =
eik0r

−ik0rA =
eik0r

−ik0r

{[
−

∞∑
l=1

i−l asca
l S1l(c1, cos θ) +

∞∑
m=1

∞∑
l=m

i1−l

× (k0 asca
ml Sml(c1, cos θ) + i bscaml S

′
ml(c1, cos θ)) sin θ cosmϕ

]
iϕ

+
∞∑

m=1

∞∑
l=m

i−l bscaml

mSml(c1, cos θ)
sin θ

sinmϕ iθ

}
. (4.78)

The elements of the amplitude matrix Ai (see section 4.3.1) are equal to the
ϕ- and θ-components of the vector amplitude A and are well seen in eqs (4.77)
and (4.78). The amplitude matrix allows other characteristics of the scattered
radiation to be derived (Bohren and Huffman, 1983). For example, the extinction
and scattering cross-sections for the TM mode are

Cext =
4π
k2
0

Re
[
A, iinTM

]
Θ=0◦

=
4π
k2
0

Re

[
−

∞∑
l=1

i−l bscal S1l (c1, cosα) +
∞∑

m=1

∞∑
l=m

i1−l (4.79)

×
(
k0 a

sca
ml Sml (c1, cosα) + i bscaml S

′
ml (c1, cosα)

)
sinα

]
,
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Csca =
1
k2
0

∫ ∫
4π

|A|2dΩ

=
π

k2
0

{
2

∞∑
l=1

|bscal |2N2
1l(c1) + Re

∞∑
m=1

∞∑
l=m

∞∑
n=m

i(n−l)
[
k2
0 a

sca
ml a

sca∗
mn ω̃

(m)
ln + ik0

×
(
bscaml a

sca∗
mn κ̃

(m)
ln − asca

ml b
sca∗
mn κ̃

(m)
nl

)
+ bscaml b

sca∗
mn τ̃

(m)
ln

]
Nml(c1)Nmn(c1)

}
,

(4.80)

where Θ is the scattering angle, i.e. the angle between the directions of prop-
agation of the incident radiation and the scattered one, the vector iin shows
the direction of polarization of the incident radiation, Ω is the solid angle, and
S′

ml (c, cosα) the derivative of the spheroidal function, ω̃(m)
ln , κ̃(m)

ln , τ̃ (m)
ln are in-

tegrals of products of the angular spheroidal functions (see Voshchinnikov and
Farafonov (1993) for more details).

For randomly oriented particles, one can easily get the ‘spheroidal’ T -matrices
(the matrices relating the coefficients of expansions in terms of the spheroidal
functions) by any method and use analogs to eqs (4.52)–(4.54) for analytical
averaging of the cross-sections. Correspondingly, ζ̃(m)

ln , Ω̃(m)
ln and other integrals

should include the spheroidal functions instead of spherical ones (Farafonov et
al., 2004).

Besides, there are other ways of the analytical averaging. Following the idea
of Schulz et al. (1998), one can transform the spheroidal T -matrices into the cor-
responding spherical ones and use eqs (4.52)–(4.54) without any change. A more
complicated but useful way is to transform the spheroidal T -matrices into the
spherical ones utilized in the standard EBCM and then to use all the advantages
of the standard analytical averaging procedure (see, for example, Mishchenko et
al., 2002).

One should also keep in mind that when high accuracy is not required, a
simple numerical averaging of cross-sections may be as fast as the analytical
one. For the methods under consideration, the main part of computational time
is spent on the calculations of the elements of the matrices Â, B, Ê, F , etc. The
particle orientation appears only in the right-hand-side vectors âin, bin, and so
it does not take much time to compute these vectors, to multiply them by the
earlier calculated matrix Ê or F and to get the solutions for different scatterer
orientations. Our experience with the SVM for spheroids shows that the numer-
ical averaging of cross-section gives results to an accuracy of 3–4 digits and it
takes a time nearly equal to that required for one orientation calculation.

In Fig. 4.5 we give a few examples of analytically averaged dimension-
less cross-sections of randomly oriented spheroids calculated with the double-
precision SVM and EBCM codes. Note that the numerical averaging is inappli-
cable to computations of the absorption cross-sections for particles of materials
having the imaginary part of the refractive index smaller than 10−3, i.e. for
most dielectrics in the visual. Results of extensive calculations of different opti-
cal characteristics of randomly oriented spheroids, cylinders, etc. are presented
in the book of Mishchenko et al. (2002) and papers cited there.
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a) b)

Fig. 4.5. Dimensionless cross-sections 〈Q〉 = 〈C〉/πr2
v for randomly oriented spheroids

of different aspect ratio a/b and size parameter xv = 2πrv/λ, where rv is the radius of
spheres having the same volume as spheroids: (a) spheres, prolate and oblate spheroids
with a/b = 2; (b) spheres and prolate spheroids with a/b = 2, 4, 6. The refractive index
is m = 1.33 + 0.0001i.

4.4.2 Some details of the methods

The use of the spheroidal coordinates and functions instead of the spherical ones
does not make the methods under consideration much more complex in principle
than the standard EBCM (see, for example, Barber and Hill, 1990). Provided the
problem of computations of the spheroidal functions is solved, other calculations
are not very complicated, though the equations are lengthy.

4.4.2.1 Separation of variables method for spheroids

To find the expansion coefficients for the potential q by this method, one has to
substitute the expansions (4.67) and (4.68) into the boundary conditions (4.74).
Multiplying the equations by N−2

1n (c2)S1n(c2, η) cosϕ and integrating them over
η from −1 to 1 and ϕ from 0 to 2π, one can get an infinite system of linear al-
gebraic equations relative to the unknown expansion coefficients (Voshchinnikov
and Farafonov, 1993). For instance, for a prolate spheroid having the surface
equation ξ = ξ0 and the TM mode, one gets

B bsca = F bin, (4.81)

where the vectors containing the expansion coefficients and the radial spheroidal
functions are

bsca = {bscal R
(3)
1l (c1, ξ0)N1l(c1)}∞

l=1, (4.82)

bin = {binl R(1)
1l (c1, ξ0)N1l(c1)}∞

l=1, (4.83)
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and

B = ξ0 (ε− 1) ∆1 +
(
ξ20 − f) (ε∆1R1,1 −R1,2∆1) , (4.84)

F = −ξ0 (ε− 1) ∆1 − (ξ20 − f) (ε∆1R1,0 −R1,2∆1) . (4.85)

Here one has the diagonal matrices including the radial spheroidal functions and
their first derivatives

Rm,0 =
{
R

(1)
ml

′
(c1, ξ0)/R

(1)
ml (c1, ξ0) δ

n
l

}∞

l,n=m
,

Rm,1 =
{
R

(3)
ml

′
(c1, ξ0)/R

(3)
ml (c1, ξ0) δ

n
l

}∞

l,n=m
, (4.86)

Rm,2 =
{
R

(1)
ml

′
(c2, ξ0)/R

(1)
ml (c2, ξ0) δ

n
l

}∞

l,n=m
,

and the matrix with integrals of the angular spheroidal functions ∆m ={
δ̃
(m)
ln (c1, c2)

}∞

l,n=m
, where

δ̃
(m)
ln (c1, c2) = N−1

ml (c1)N
−1
mn(c2)

1∫
−1

Sml(c1, η)Smn(c2, η) dη (4.87)

= N−1
ml (c1)N

−1
mn(c2)

∞∑
r=0,1

′
dml

r (c1) dmn
r (c2)

2
2r + 2m+ 1

(r + 2m)!
(r!)

.

The integral is expressed using the coefficients of expansion of the angular
spheroidal functions in terms of the associated Legendre functions

Sml(c, η) =
∞∑

r=0,1

′
dml

r (c)Pm
m+r(η), (4.88)

where the prime at the sum means summation over either even or odd r in the
dependence on the evenness of (l −m).

For the TE mode, ε must be replaced by µ. For an oblate spheroid, one
should make the changes c → −ic and ξ → iξ, apply f = −1 and use the oblate
spheroidal wave functions.

The nonaxisymmetric problem is solved similarly. The exclusion of the in-
ternal field from the third and fourth equations of eqs (4.76) using the first and
second ones gives the following system for the TM mode and each m value

Âm âsca
m = Êm âin

m , (4.89)

where

Âm =

(
A

(m)
11 A

(m)
12

A
(m)
21 A

(m)
22

)
, âsca

m =
(

asca
m

bsca
m

)
, Êm =

(
E

(m)
11 E

(m)
12

E
(m)
21 E

(m)
22

)
, âin

m =
(

ain
m

0

)
,

(4.90)
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the vectors including the unknown coefficients are (a plane wave is considered,
hence bin

m = 0)

asca
m = {k0 asca

ml R
(3)
ml (c1, ξ0)Nml(c1)}∞

l=m, (4.91)

bsca
m = {c1 bscaml R

(3)
ml (c1, ξ0)Nml(c1)}∞

l=m, (4.92)

ain
m = {k0 ain

mlR
(1)
ml (c1, ξ0)Nml(c1)}∞

l=m, (4.93)

and the blocks of the matrices Âm, Êm are

A
(m)
11 = ξ0 (Rm,2∆m − ∆mRm,1) ,

A
(m)
12 = fΓm (Rm,2∆m − ∆mRm,1) ,

A
(m)
21 = Γm

(
1
ε
Rm,2∆m

)
−
(

1 − 1
ε

)
ξ0

ξ20 − f Km, (4.94)

A
(m)
22 =

1
ε

(∆m + ξ0Rm,2∆m) − (∆m + ξ0∆mRm,1) − f
(

1 − 1
ε

)
Σm

ξ20 − f ,

E
(m)
11 = −ξ0 (Rm,2∆m − ∆mRm,0) ,

E
(m)
21 = −Γm

(
1
ε
Rm,2∆m − ∆mRm,0

)
+
(

1 − 1
ε

)
ξ0

ξ20 − f Km.

The matrices Rm,0, Rm,1, Rm,2 and ∆m have been defined earlier. The ele-
ments of the matrices Γm,Km and Σm are integrals of products of the angular
spheroidal functions and can be represented by sums of the dml

r coefficients like
the elements of ∆m (Voshchinnikov and Farafonov, 1993).

4.4.2.2 The case of spheroids of large eccentricity

The asymptotics of the presented SVM solution for a/b → ∞ can be found
rather easily (see Voshchinnikov and Farafonov (1993) and references therein).
For instance, the asymptotics of the amplitude matrix elements for strongly
elongated (prolate) spheroids are

A1 =
ε− 1
ε+ 1

(
b

a

)2

T1, A2 =
(
b

a

)2(
ε− 1

2
T4 +

ε− 1
ε+ 1

T5

)
,

A3 =
ε− 1
ε+ 1

(
b

a

)2

T2, A4 =
ε− 1
ε+ 1

(
b

a

)2

T3, (4.95)

where the functions Ti(c, α, θ, ϕ) do not depend on ε, and their dependence on
ϕ is explicit: T1, T5 ∼ cosϕ, T2, T3 ∼ sinϕ, and T4 is independent of ϕ. For
strongly flattened (oblate) spheroids

A1 =
ε− 1

2

(
b

a

)
T1, A2 =

(
b

a

)(
ε− 1
2ε

T4 +
ε− 1

2
T5

)
,

A3 =
ε− 1

2

(
b

a

)
T2, A4 =

ε− 1
2

(
b

a

)
T3, (4.96)
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where as before the functions Ti(c1, α, θ, ϕ) do not depend on ε, while T1, T2, T4
are some odd functions of the argument cosα and T3, T5 are some even ones, α
is the angle between the wavevector of the incident radiation and the particle
symmetry axis.

Quite similar expressions for Aj , j = 1–4 are obtained within the Rayleigh–
Gans approximation (|ε − 1| 	 1, x|ε − 1| 	 1, see, for example, Bohren and
Huffman, 1983) for spheroids of large eccentricity. As the asymptotics of the
amplitude matrix elements must be the same, one gets the final expressions for
the functions

T1 =
2c31
3
G(u) cosϕ, T2 =

2c31
3
G(u) cos θ sinϕ,

T3 = −2c31
3
G(u) cosα sinϕ, T4 =

2c31
3
G(u) sinα sin θ, (4.97)

T5 =
2c31
3
G(u) cosα cos θ cosϕ. (4.98)

Here
G(u) =

3
u3 (sinu− u cosu), (4.99)

u = c1| cos θ − cosα| and u = c1
√

sin2 α+ sin2 θ − 2 sinα sin θ cosϕ for prolate
and oblate highly eccentric spheroids, respectively.

Table 4.1 illustrates the fact that with growing aspect ratio a/b the suggested
SVM solution quickly approaches the asymptotic one given by eqs (4.95)–(4.99)
and as a result a smaller number of the azimuthal terms and hence less calcula-
tions provide the same accuracy. It is possible to show that the accuracy drops
with an increasing parameter ka independently of a/b. Note that the standard
SVM solution for spheroids suggested by Asano and Yamamoto (1975) has ac-
curacy that decreases with a growing krv (rv is the radius of a sphere having
the same volume as the spheroid) and hence essentially depends on a/b.

Table 4.1. Scattering cross-sections divided by the geometrical cross-section for
spheroids having the refractive index m = 1.33, the parameter c1 = (k0/2)

√
a2 − b2 =

5, the aspect ratio a/b and α = 90◦ (M is the number of the azimuthal terms kept in
the potential expansions)

Oblate spheroids Prolate spheroids
M a/b = 2 a/b = 10 a/b = 2 a/b = 10

1 1.6149165 0.3384583 1.2145748 0.0605630
2 2.6773439 0.5293369 1.7178704 0.0605630
3 3.5094853 0.6186015 1.7353519
4 4.3469983 0.6314880 1.7354780
5 4.5779204 0.6322032 1.7354785
6 4.5850148 0.6322223 1.7354785
7 4.5851550 0.6322225
8 4.5851569 0.6322225
9 4.5851569
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So, the involvement of two potentials – one used in the classical solution for
spheres and another in that for infinitely long cylinders – makes the approach
very efficient for highly eccentric particles. In particular, Voshchinnikov and
Farafonov (1993) show that the approach when applied to the SVM produces
reliable results for spheroids of the aspect ration as high as 100 and more which
is practically unreachable by other versions of the SVM. Voshchinnikov and
Farafonov (2002) have even used the approach to compare in detail the optical
properties of highly elongated prolate spheroids and infinitely long cylinders.

It is interesting to note that eqs (4.95)–(4.99) coincide with the expressions
given by the quasistatic approximation. It has been known since the 1950s and
has had several names, for example, the modified RDG approximation (see dis-
cussion in Khlebtsov, 1996). The approximation is in situ generalization of the
Rayleigh–Gans and Rayleigh approximations – the field inside a particle is rep-
resented by the incident field as in the former approximation, but taking into
account the particle polarizability like in the latter one (see, for example, Posselt
et al., 2002 for more details and references). Thus, in contrast to the Rayleigh
approximation the quasistatic one succeeds in treating the light scattering by
particles of a high eccentricity (Posselt et al., 2002).

4.4.2.3 Extended boundary condition method with spheroidal
functions

This method can be efficiently applied to axisymmetric homogeneous and layered
scatterers. The corresponding equations are rather obvious after the presented
discussion of the SVM and EBCM using the spherical functions and the SVM
using the spheroidal ones. Therefore, we confine our consideration to the case of
layered spheroids. The solution to be suggested to a certain degree is similar to
that given for layered axisymmetric particles in section 4.3.2.

The case of spheroids with confocal layers

All layer boundaries of such a spheroid have the same foci. Consequently, a single
spheroidal system can be used and the boundary equations can be written as

ξ = ξj , (4.100)

where j = 1, 2, ..., n, with j = 1 and j = n corresponding to the external
boundaries of the particle and its core, respectively.

To solve the axisymmetric problem, two scalar potentials are introduced for
the jth layer as was done in section 4.3.3

q(j+1) = q
(j+1)
R + q(j+1)

S . (4.101)

Further we use an expression analogous to eq. (4.44) and written in the spheroidal
coordinates
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d

2

2π∫
0

1∫
−1

(
ξ′2 − f

){
q(j+1)(r′)

∂Gj

∂ξ′ −
[
εj
εj+1

∂q(j+1)(r′)
∂ξ′ +

(
εj
εj+1

− 1
)

× ξ′

ξ′2 − f q
(j+1)(r′)

]
Gj

}
dη′dϕ′ =

{
−q(j)R (r), r ∈ Dj ,

q
(j)
S (r), r ∈ R3 \ D̄j ,

(4.102)

where r′ = (ξ′, η′, ϕ′), ξ′ = ξj(η′), εj+1 is the permittivity in the jth layer,Dj the
domain inside the boundary Sj defined by ξ = ξj , D̄j = Dj ∪ Sj , j = 1, 2, ..., n,
and we took into account that ∂/∂n = (1/hξ)(∂/∂ξ) as ξ′

η = 0 for any Sj . So,

there are 2n integral equations to determine 2n unknown potentials q(1)S , q(2)R ,
q
(2)
S , ..., q(n)

R , q(n)
S , q(n+1)

R .
The scalar potentials are expanded as in eqs (4.45)

q
(j)
R

q
(j)
S

=
∞∑

l=1

b
(j)
R,l R

(1)
1l (cj , ξ)

b
(j)
S,l R

(3)
1l (cj , ξ)

S1l(cj , η) cosϕ. (4.103)

The potential expansions (4.103) and the Green function expansion (4.73)
are substituted into the integral equations (4.102). Taking into account the com-
pleteness (and orthogonality) of the functions Sml(c, η) cosϕ for corresponding
spheroidal surfaces, one can get an infinite system of linear algebraic equations
relative to the unknown expansion coefficients (see Farafonov, 2001a for more
details)

b
(j)
R =

(
B

(j)
SR b

(j+1)
R +B(j)

SS b
(j+1)
S

)
, (4.104)

b
(j)
S =

(
B

(j)
RR b

(j+1)
R +B(j)

RS b
(j+1)
S

)
,

where the vectors are

b
(j)
R =

{
b
(j)
R,l R

(1)
1l (cj , ξj)N1l(cj)

}∞

l=1
, (4.105)

b
(j)
S =

{
b
(j)
S,l R

(3)
1l (cj , ξj)N1l(cj)

}∞

l=1
,

and the matrices (their lower indices have the same sense as in section 4.3.3) are
similar to

B
(j)
SR = Wj

{
R

(3)
j ∆1,j − µj

µj+1
∆1,j R̃

(1)
j+1 −

(
µj

µj+1
− 1
)

ξj
ξ2j − f ∆1,j

}
P

(1)
j .

(4.106)
Here the diagonal matrices are

P
(i)
j =

{
R

(i)
1l (cj+1, ξj)/R

(i)
1l (cj+1, ξj+1)δn

l

}∞

n,l=1
,

R
(i)
j =

{
R

(i)
1l

′
(cj , ξj)/R

(i)
1l (cj , ξj)δn

l

}∞

n,l=1
,

R̃
(i)
j+1 =

{
R

(i)
1l

′
(cj+1, ξj)/R

(i)
1l (cj+1, ξj)δn

l

}∞

n,l=1
,

Wj = −
(
R

(3)
j −R(1)

j

)−1
,

(4.107)
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and ∆1,j is obtained from the matrix ∆1 by the replacements c1 → cj and
c2 → cj+1.

The system (4.104) can be easily brought to the form typical of the EBCM
(see section 4.3.3)

b
(1)
S = BR (BS)−1

b
(1)
R , (4.108)

where b
(1)
S = bsca, b

(1)
R = bin, and the matrices BR, BS can be derived from an

equation similar to (4.48) (Farafonov, 2001a).
Determination of the nonaxisymmetric parts of the fields presented by the

potentials U and V is analogous (Farafonov, 2001a).

4.4.2.4 Point matching method with spheroidal functions

The construction of the general scheme of the PMM with the use of the spheroidal
functions is similar to that of the PMM with the spherical functions discussed
in section 4.3.3.

In the generalized PMM for both the axisymmetric and nonaxisymmetric
problem, we search for a minimum of the residual. In the first case it is

∆ =
M∑

s=1

{∣∣qin+qsca−qint
∣∣2 +

∣∣∣∣∣ ∂∂n
(
qin+qsca− q

int

ε

)
(4.109)

−
(

1
ε

− 1
)

(ξ + ηξ′
η)d

2

hϕ

√
h2

η + ξ′
η
2h2

ξ

qint
∣∣∣∣
2
⎫⎬
⎭ ,

where q = q(rs) and rs = (ξs, ηs, ϕs), s = 1, 2, ...,M are the coordinates of the
selected points at the axisymmetric scatterer surface defined by the equation
ξs = ξ(ηs).

The least squares method leads to a system of 2N linear algebraic equations
relative to 2N unknown coefficients. It is generally reasonable to replace the sum
over the surface points by integration over η as was suggested for the GPMM
with the spherical basis (see section 4.3.3).

4.4.3 Applicability of the methods based on the spheroidal basis

4.4.3.1 Separation of variables method for spheroids

To study the applicability of this method, one should investigate solvability of
the infinite systems of linear algebraic equations relative to the unknown field
expansion coefficients as well as convergence of these expansions. As far as we
know these points were considered so far only by Farafonov (1983). This paper
is neither well known nor easily available, so its technique and the main results
are briefly described below.

The analysis is based on consideration of the matrix elements of the systems
(4.81) and (4.89) for large index values. The necessary asymptotics of the prolate
radial spheroidal functions Rml(c, ξ) for l � 1 (l ≥ m) are (Farafonov, 1983)
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R
(1)
ml (c, ξ) ∼

(
ξ

(ξ2 − 1)
1
2

+ 1
) 1

2

jl

( c
2

(
ξ + (ξ2 − 1)

1
2

)) [
1 +O

(
1
l

)]
, (4.110)

R
(3)
ml (c, ξ) ∼

(
ξ

(ξ2 − 1)
1
2

+ 1
) 1

2

h
(1)
l

( c
2

(
ξ + (ξ2 − 1)

1
2

))[
1 +O

(
1
l

)]
. (4.111)

For the oblate functions Rml(−ic, iξ), one should change in the expressions c for
−ic and ξ for iξ. The asymptotics allow one to estimate the diagonal elements
of the matrices for l � 1

{Rm,i}ll ∼ (−1)il

(ξ20 − f) 1
2

[
1 +O

(
1
l

)]
, i = 0, 1, 2. (4.112)

The elements of the matrices ∆m can be estimated by using the asymptotics
of the coefficients dml

r (c) of the expansions of the angular functions Smn(c, ν) in
terms of the Legendre functions Pm

m+r(ν). For the diagonal elements, one gets

|{∆m}nn| ∼ 1 +O
(

1
n

)
. (4.113)

Other elements quickly decrease with a growing difference |n− l|. For instance,
for l > n

|{∆m}nl| ≤ cl−n
2

(
n!
l!

)1/2(
1 +

2c22
l

)2

. (4.114)

For the axisymmetric problem in the case of a dielectric spheroid, the matrix
B in the system (4.81) has the main diagonal with the elements of the order
O(1). Other elements quickly decrease with moving off the diagonal. Therefore,
the system can be written as

bscal =
∞∑

i=1

cli b
sca
i + dl, (4.115)

where for the coefficients one has
∞∑

i=1

|cli| ≤ const l−1,

∞∑
l=1

|dl|2 < ∞. (4.116)

Such a system is always solvable and has a unique solution (Kantorovich and
Krylov, 1964), and hence the potential expansions converge in the region where
they are defined.

For the nonaxisymmetric problem, we first consider the system arising in
a more simple case of perfectly conducting spheroids. Taking into account the
estimates (4.110)–(4.114), one can get

aml = − 1
2ξ0

(bm,l−1 + bm,l+1) +
∞∑

i=1

c a
li(m) bmi + d a

l (m),

bml = − 1
2ξ0

(am,l−1 + am,l+1) +
∞∑

i=1

c b
li(m) ami + d b

l (m), (4.117)
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where
∞∑

i=1

|c a
li(m)| +

∞∑
i=1

|c b
li(m)| ≤ const l−1,

∞∑
l=1

|d a
l (m)|2 +

∞∑
i=1

|d b
l (m)|2 < ∞. (4.118)

The system (4.117) is quasiregular, i.e. it satisfies the conditions of the reg-
ular systems (see Kantorovich and Krylov, 1964) only for large element indices,
provided

ξ0 > 1. (4.119)

Regular systems are known to be solvable and their solution can be obtained by
a reduction method (Kantorovich and Krylov, 1964), the same is obviously true
for our quasiregular system.

The condition (4.119) is satisfied for any prolate spheroids, while for oblate
ones it means that the minor semiaxis is larger than the focal distance

b > d . (4.120)

This condition is, however, only sufficient. One can make a substitution of vari-
ables

t1,l =
[
q
(
ξ0 + (ξ20 + 1)

1
2

)]l
aml, t2,l =

[
q
(
ξ0 + (ξ20 + 1)

1
2

)]l
bml, (4.121)

where q > 1, and get the system

t1,l = β
(1)
1 t2,l+1 + β(1)

2 t2,l−1 +
∞∑

i=1

g
(1)
li t2,i + f (1)

l ,

t2,l = β
(2)
1 t1,l+1 + β(2)

2 t1,l−1 +
∞∑

i=1

g
(2)
li t1,i + f (2)

l (4.122)

with the coefficients g(i)li , f (i)
l , i = 1, 2 satisfying the conditions (4.118), and

|β(i)
1 | + |β(i)

2 | ≤ 1
q
< 1. (4.123)

Note that the system (4.117) can be transformed into a system similar to
eqs (4.122), provided the variables ti,l include either even aml and odd bml or vice
versa odd aml and even bml. The system (4.122) under the conditions (4.123)
is obviously quasiregular. Thus, the system for the nonaxisymmetric problem is
solvable for any oblate perfectly conducting spheroids, except for disks having
ξ0 = 0.3

3An algorithm to consider the plane wave diffraction on perfectly conducting very
elongated spheroids, including disks, was suggested by Farafonov (1991).
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For the nonaxisymmetric problem in the case of a dielectric spheroid, the re-
sults are analogous (see Farafonov (1983) for more details). However, for strongly
oblate dielectric spheroids no problem of their transformation into a disk arises
because scattering at the edge becomes negligible and the system gives the null
solution.

4.4.3.2 Other methods with spheroidal functions

The theoretical results presented in section 4.3.4 can be easily applied to the
versions of the EBCM and (G)PMM which use the spheroidal functions and
coordinates instead of the spherical ones.

For spheroidal particles, such a version of the EBCM is likely to have the
same range of applicability as the SVM with the spheroidal functions discussed
above, i.e. the method is applicable to any spheroid and there is no difference
whether the near-field or far-field zone is considered.

For other homogeneous particles, one should apply the results of Sect. 4.3.4,
but replace the distances to the singularities with the corresponding values of
the radial spheroidal coordinate ξ. In other words, the solution given by this
spheroidal EBCM should converge everywhere in the near-field zone provided
the conditions (4.62) written in the spheroidal coordinates is satisfied. The use of
the method in the far-field is mathematically correct under the conditions (4.64)
expressed again in the spheroidal coordinates.

These conditions are in particular useful provided one considers ‘spheroidal’
Chebyshev particles having the surface equation (cf. eq. (4.63))

ξ = ξ0 [1 + ε cos (n arccos η)] , (4.124)

where ξ = ξ0 defines the surface of an unperturbed spheroid, ε is the deformation
parameter, and n an integer number. A set of such particles (see examples in
Fig. 4.6) can be used to study simultaneously the effects of scatterer large-scale
and medium- to small-scale nonsphericities characterized by the aspect ration
a/b and by the parameters ε, n, respectively.

Fig. 4.6. Prolate spheroidal (a/b = 3) Chebyshev particles with (a) n = 2 and ε =
0.34 (the case of ε = −0.34 is shown by dashed line) and (b) n = 20 and ε = 0.06
(the symmetry axis is horizontal). The used values of ε for given n correspond to the
maximum ones for which the spheroidal EBCM solution should converge in the far-field
zone (Farafonov and Il’in, 2005b, in preparation)
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It should be noted that because of their general equivalence discussed in
section 4.2 the EBCM and SVM with the spheroidal functions when applied to
nonspheroidal particles should have the same theoretical ranges of applicability.

In the case of layered spheroidal particles, the spheroidal version of EBCM
is always mathematically correct only if all the layers have confocal boundaries.
Otherwise one should apply the results of section 4.3.4 as has been done by
Farafonov et al. (2003). For instance, for the far-field zone it can be easily found
that the condition (4.64) is to be applied to each layer boundary and besides
there arise some additional conditions. It usually makes the applicability range
of the EBCM rather narrow and the use of the (G)PMM preferable.

The applicability range of the PMM with the spheroidal functions should
be similar to that of the corresponding EBCM. For the GPMM, the matrix of
the system used to determine the unknown expansion coefficients is positively
determined and hence the method is sure always to give the only solution to the
light scattering problem.

The accuracy to be achieved in calculations with the spheroidal EBCM should
be similar to that usually obtained with the spheroidal SVM. The latter is typi-
cally very close to the curve for the EBCM in the case of spheroids with a/b = 1.5
presented on the left panel of Fig. 4.3. In a more complex case of the Cheby-
shev particles defined by eq. (4.124), the accuracy of the spheroidal EBCM and
GPMM is expected to be lower, probably similar to that presented in the right
panel of Fig. 4.3.

4.5 Solution using the ellipsoidal wave functions

Practically all light scattering methods known today potentially can be applied
to three-dimensional particles. However, the most often used techniques – the
standard EBCM, the coupled dipoles and finite difference methods – are found
to be nearly equally inefficient for nonaxisymmetric scatterers whose sizes ex-
ceed the wavelength of incident radiation (Wriedt and Comberg, 1998). Other
methods are not expected to be better. The only exception could be the meth-
ods where ellipsoidal coordinates and field expansions in terms of the ellipsoidal
wave functions would be used. Below we consider such an ellipsoidal version of
the SVM (see also Farafonov et al., 2005). For simplicity, it is applied to the case
of an axially incident plane wave.

4.5.1 Ellipsoidal coordinates

The Cartesian coordinate system (x, y, z) connected to the axes of an ellipsoid
with the semiaxes a > b > c > 0 and the corresponding ellipsoidal coordinate
system (ξ̃, η̃, ζ̃) are related as follows:
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x2

a2 + ξ̃
+

y2

b2 + ξ̃
+

z2

c2 + ξ̃
= 1, −c2 < ξ̃ < ∞,

x2

a2 + η̃
+

y2

b2 + η̃
+

z2

c2 + η̃
= 1, −b2 < η̃ < −c2,

x2

a2 + ζ̃
+

y2

b2 + ζ̃
+

z2

c2 + ζ̃
= 1, −a2 < ζ̃ < −b2.

(4.125)

One usually applies the dimensionless ellipsoidal coordinates

ξl =
νl + a2

a2 − b2 , (4.126)

where l = 1, 2, 3 and ν1 = ξ, ν2 = η, ν3 = ζ. The length element in these
coordinates is

d2s = h2
1 d2ξ1 + h2

2 d2ξ2 + h2
3 d2ξ3, (4.127)

where h2
1 = (a2 − b2) (ξ1 − ξ2)(ξ1 − ξ3)/4f(ξ1) and other coefficients are obtained

by cyclic permutations of the indices, f(ξ) = ξ(ξ−1)(ξ−ρ2), ρ2 = (a2−c2)/(a2−
b2) > 1.

4.5.2 Scalar potentials and the separation of variables

For ellipsoids, only the nonaxisymmetric light scattering problem is to be solved.
As earlier, we use the scalar potentials U, V that now should be the solutions
to the scalar Helmholtz equation written in the ellipsoidal coordinates. The
equation is known to allow the separation of variables, i.e. there exists a solution
in the form (see, for example, Bateman and Erdelyi, 1955 for more details)

U(r) = Λ1(ξ1)Λ2(ξ2)Λ3(ξ3). (4.128)

where (ξ1, ξ2, ξ3) are the coordinates of a point defined by r, and the functions
Λl(ξl) satisfy the Lamé wave equation for different intervals (0 ≤ ξ1 ≤ 1, 1 ≤
ξ2 ≤ ρ2, ρ2 ≤ ξ3 < ∞)

√
f(ξ)

d
dξ

(√
f(ξ)

dΛ(ξ)
dξ

)
+

1
4
(
λ1ρ

2 − λ2ρ
2ξ + ω2ξ2

)
Λ(ξ) = 0, (4.129)

where λ1, λ2 are the separation parameters, ω2 = k2(a2 − b2) > 0.

4.5.3 Ellipsoidal wave functions

The angular ellipsoidal wavefunctions are the eigenfunctions of the two-parameter
self-conjugate boundary problem presented by eq. (4.129) for ξ1 ∈ [0, 1] and
ξ2 ∈ [1, ρ2]. At the three boundaries defined by ξ1,0 = 0, ξ2,0 = 1 and ξ3,0 = ρ2

one of two conditions must be satisfied (l = 1, 2, 3)
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lim
ξ→ξ1,0

Λ(ξ) = 0 (4.130)

or

lim
ξ→ξ1,0

(√
f(ξ)

dΛ(ξ)
dξ

)
= 0, (4.131)

but the conditions at ξ1 → ξ2,0 − 0 and ξ2 → ξ2,0 + 0 must be the same.
The eigenvalues of this boundary problem are real and form two sequences

λ1,nm, λ2,nm, where m ∈ [0, n], n ≥ 0. The corresponding nontrivial solutions
Λnm(ξ1), Λnm(ξ2) have m zero values in the interval [0, 1] and (n − m) zero
values in the interval [1, ρ2]. Thus, there are eight different types of the angular
ellipsoidal wave functions that can be characterized by the indices (i1, i2, i3),
where il = 1 (or 0) when the first (or second) boundary condition is satisfied at
the boundary ξl,0.

The product Ψnm(ξ1, ξ2) = Λnm(ξ1)Λnm(ξ2) is called the surface ellipsoidal
wave function. For each set (i1, i2, i3), the surface ellipsoidal wave functions are
orthogonal and form a complete set. Special algorithms of numerical calcula-
tions of the eigenvalues and the corresponding angular ellipsoidal functions were
presented by Abramov et al. (1989).

The radial ellipsoidal functions are solutions to eq. (4.129) in the interval
[ρ2,∞) with the eigenvalues λ1,nm, λ2,nm and satisfy the boundary condition
(4.130) or (4.131) depending on i3. By analogy to the spherical and spheroidal
functions, the radial ellipsoidal functions are of several kinds. The Wronskian of
these functions is

W =
i

2
√
f(ξ)

, (4.132)

and an efficient algorithm of their computation was suggested by Abramov et
al. (1991).

4.5.4 Potential expansions

The scalar potentials are expanded in terms of the ellipsoidal wave functions as
follows:

U sca

V sca =
7∑

i=0

∞∑
n=0

n∑
m=0

asca
nmi

bscanmi
Ψ(i)

nm(ξ1, ξ2)Λ(3,i)
nm (ξ3), (4.133)

U int

V int =
7∑

i=0

∞∑
n=0

n∑
m=0

aint
nmi

bint
nmi

Ψ(i)
nm(ξ1, ξ2)Λ(1,i)

nm (ξ3), (4.134)

and for the incident filed the expansions are similar to eqs (4.134). In the case of
propagation of a plane wave along the x-axis one can use only the functions with
the indices (i1, i2, i3) = (0,0,0), (0,0,1), i.e. ain

nmi = −16π/(k
√
ω) exp (−i δn

m)
Ψ(i)

nm(0, 1) for i = 0,1 and 0 for i = 2–7, while binnmi = 0 for i = 0–7.
The boundary conditions for the scalar potentials at (ξ1, ξ2, ξ3) = (ξ1,0, ξ2,0,

ξ3,0) can be written for the case of the TE mode in the form
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∂P3

∂ξ2
− ∂P2

∂ξ3
=

∂P̃3

∂ξ2
− ∂P̃2

∂ξ3
,

∂P1

∂ξ3
− ∂P3

∂ξ1
=

∂P̃1

∂ξ3
− ∂P̃3

∂ξ1
,

∂P1

∂ξ2
− ∂P2

∂ξ1
= µ

[
∂P̃1

∂ξ2
− ∂P̃2

∂ξ1

]
, (4.135)

∂

∂ξ3

[
h1

h2h3

(
∂P3

∂ξ2
− ∂P2

∂ξ3

)]
=

1
ε

{
∂

∂ξ3

[
h1

h2h3

(
∂P̃3

∂ξ2
− ∂P̃2

∂ξ3

)]

+ (µ− 1)
∂

∂ξ1

[
h3

h1h2

(
∂P̃2

∂ξ1
− ∂P̃1

∂ξ2

)]}
,

where for l = 1, 2, 3

Pl =

√
ξ1ξ2ξ3
ξ2l

U +
√
ρ2(a2 − b2)V,

U = U in + U sca, V = V sca, and in P̃l one should use the expression for Pl with
U = U int and V = V int, h1, h2, h3 are from eq. (4.127).

4.5.5 Determination of the expansion coefficients

If one substitutes the potential expansions (4.133),(4.134) into the boundary
conditions (4.135), integrates them and takes into account orthogonality of the
functions, an infinite system of linear algebraic equations relative to the unknown
coefficients of the expansions is obtained

Â âsca + Ĉ âint = Ê âin, (4.136)

where â = {a000, ..., a007, a010, ..., a0n7, a100, ..., ann7, b000, ..., bnn7}∞
n=0 and the

elements of the matrices Â, Ĉ, Ê are integrals of the ellipsoidal functions and
their derivatives.

The solution to the system allows one to find the scattered field everywhere
outside the scatterer and hence any light scattering characteristic. For example,
the scattering cross-section is

Csca =
1

4k2
0

∑
νν′

ei(δn
m−δn′

m′ )
{

1
ρ2
ωνν′ asca

ν asca∗
ν′

+
2i
ρ

[
κνν′ asca

ν bsca
∗

ν′ − κν′ν a
sca∗
ν′ bscaν

]
+ 4τνν′ bscaν bsca

∗
ν′

}
, (4.137)

where ν denotes the group nmi and ν′ does n′m′i′,

ωνν′ =
∫ ∫ (√−f(ξ2)

f(ξ1)
ξ1
ξ2

+

√
f(ξ1)

−f(ξ2)
ξ2
ξ1

)
Ψν(ξ1, ξ2) Ψν′(ξ1, ξ2) dξ1dξ2

(4.138)
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and the integrals κνν′ , τνν′ are similar to ωνν′ . Note that all the integrals can be
represented by linear combinations of one-dimensional integrals over ξ1 and ξ2.

4.5.6 Comparison with a solution based on the spheroidal basis

Computational time when using the methods under consideration is mainly spent
on calculations of the matrix elements in the systems similar to eq. (4.136).
Therefore, the main difference between the ellipsoidal and spheroidal versions of
the SVM lies in calculations of the corresponding wave functions. The spheroidal
functions are computed rather quickly using the available methods. Calculations
of the ellipsoidal functions are much longer because there are eight types of the
functions and for each of them one must solve Cauchy problems many times, for
example, by a Runge–Kutta method (see Abramov et al. (1989, 1991) for more
details).

So far only preliminary calculations of cross-sections for ellipsoids and for
spheroids relatively close to them have been performed using the corresponding
SVM codes. The accuracy of the results was kept at the level of 10−7. The size
of the particles was characterized by the ratio of the radius of an equivolume
sphere to the wavelength xv = 2πrv/λ, and two values were utilized xv = 1
and 10. Prolate spheroids with a/b = 2 and 30 and ellipsoids with the same a/b
and a/c ≈ a/b were considered. Calculations of cross-sections for these spheroids
took a few seconds, while those for the ellipsoids were about 103 times longer.
The main part of time in the second case was spent on computations of the
eigenvalues and it is unlikely that it can be reduced substantially.

Even though the SVM for ellipsoids is not as fast as the EBCM for ax-
isymmetric particles or the SVM for spheroids, it will have a certain region of
applications. For nonaxisymmetric scatterers, the popular methods (EBCM; dis-
crete dipole approximation, DDA; finite different time domain method, FDTD)
seem to be slow (Wriedt and Comberg, 1998). Therefore, for ellipsoidal particles,
the ellipsoidal SVM can be their successful competitor. Besides, the EBCM is
known to meet problems for particles with large eccentricity and the DDA for
particles of large sizes. The ellipsoidal SVM should avoid these difficulties and
provide reliable, high accuracy results in an essentially larger region of parameter
values in both cases.

4.6 Concluding remarks

We have considered the main details of the three highly accurate and fast meth-
ods used to treat the light scattering by nonspherical particles – the separation
of variables, extended boundary condition and point-matching methods. These
methods employ the same single expansions of the fields in terms of spherical,
cylindrical, spheroidal or ellipsoidal wave functions. The consideration was done
within a single context provided by an approach utilizing specially selected scalar
potentials. The approach complicates the analytical averaging of some scattered
field characteristics for ensembles of randomly oriented particles but allows one
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to treat particles of a high eccentricity (when the spheroidal wave functions are
applied). Special attention was paid to theoretical consideration of the applica-
bility ranges of the methods.

The advantages of the methods are essential for scatterers of simplified shapes
and structures, in particular for homogeneous and layered axisymmetric parti-
cles. The question of how well the optical properties of such particles can rep-
resent those of real particles has been considered in a number of recent papers
(for example, Kahnert et al., 2002a, 2002b, 2004) and the answer to it seems to
depend on the concrete task to be solved.
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Part II

Multiple Light Scattering



5 Multiple scattering of short waves by
uncorrelated and correlated scatterers

Anatoli G. Borovoi

There is a large number of books dealing with the problems of either single
or multiple scattering of waves. While these waves can be of very different na-
ture: electromagnetic, acoustic, quantum mechanical, etc, the equations used
to describe them are quite similar. It is now universally recognized that these
problems could be united to form an interdisciplinary theory for both single and
multiple scattering of waves.

The books available do not completely solve the unification problem yet.
Moreover, they are generally overloaded with mathematics. We know that there
are researchers, the author being one of them, who would rather follow a differ-
ent approach: if mathematics is the skill to avoid numerical calculations, then
theoretical physics is the skill to avoid mathematics. One of the purposes of this
work is, therefore, to focus on the general equations and physical results of the
theory of wave scattering and to describe these findings by mathematics that is
as simple as possible.

Until now, the researchers have mainly restricted themselves to the cases
where size of scatterers is less than or comparable with wavelengths. Large scat-
terers as compared with wavelengths have been put aside because of extreme
demands on computer resources. Another purpose of this work is to include the
case of large scatterers in the general wave scattering approach.

In this way, we show that a number of simple results can be obtained for large
scatterers without numerical calculations. To achieve these purposes, the general
equations for the quadratic values of the fields and the conservation energy law
are widely used, along with the usual way based on the field equations.

This work does not contain a conventional survey. In brief bibliographical
comments, several well-known books are referred to where the comprehensive
bibliography can be found. As for comments on authors’ papers, they are in-
cluded simply to show that the results presented in this work have been already
published (in Russian).

This work has appeared due exclusively to Dr Alexander Kokhanovsky, who
suggested the writing of this chapter and encouraged the author in the course of
work. He also looked through a part of this work, and his remarks have been very
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valuable in improving the presentation. The author is also indebted to INTAS
(grant 01-0239) and RFBR (grant 03-05-64745) for current support.

5.1 Waves in free space

Wave motion surrounds us everywhere; it is one of the basic phenomena in the
universe. Sound, light, electromagnetic waves of other wavelengths, transverse
waves on a water surface, and even elementary particles obeying laws of quantum
mechanics are described by the similar wave equations. So, in this chapter, we
shall often prefer to pay attention to the universal feature of the wave phenom-
ena discussed instead of restricting ourselves to visible light and to the Maxwell
equations, correspondingly. The universal character of wave phenomena becomes
evident when the basic equations are written down in the compact form of op-
erator equations.

5.1.1 General equations

Propagation of a wave in a free unbounded space is described by the linear
operator equation

LΨ = 0 (5.1)

where L is the propagation operator and Ψ is the wave field. Wave sources appear
in the right side of eq. (5.1)

LΨ = q (5.2)

Then the wave field, i.e. the solution to eq. (5.2), is readily found through the
propagator L−1, i.e. the Green function of eq. (5.2)

Ψ = L−1q (5.3)

Sometimes it is expedient to consider not the unbounded space but a domain
D of finite sizes with a boundary S. In this case, an impact from the sources
located outside this domain D can be taken into account by the wave field ΨS

that is created on the boundary by those outside sources. Then the wave field
inside the domain D can be found through the surface Green function L−1

S in a
similar way to eq. (5.3)

Ψ = L−1
S ΨS (5.4)

If wave sources are present inside the domain D, too, the wave field becomes a
superposition

Ψ = L−1q + L−1
S ΨS (5.5)

Equation (5.5) is the general solution to the problem of wave propagation in the
free space.
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5.1.2 Chain of wave equations

Now, let us write down a number of explicit expressions for the values cited
above. We shall use the intuitive coordinate representation for both the fields
and the operators of eqs (5.1)–(5.5). The harmonic dependence on time t with
the frequency ω is assumed. This harmonic dependence is determined by the
factor exp(−iωt) that is always omitted in this study. For a given frequency, the
wavelength in the free space λ is the basic parameter of the problems considered.
Instead of the wavelength, the wave number k = 2π/λ will be used, as a rule.

It is known that, in electrodynamics, the Maxwell equations in free space can
be used to derive eq. (5.1) for the electric field E(r)

Ψ = E(r)
L = −rot rot + k2

L−1 =
(∇r∇r′

k2 − 1̂
)

eik|r−r′|

4π|r − r′| (5.6)

where r = (x, y, z) are Cartesian coordinates, 1̂ is the unit matrix of 3 × 3
dimensions, and ∇r∇r′ is the 3 × 3 matrix formed by the product of two 3 × 3
matrices where the left column and the upper line are the gradient-vectors ∇r

and ∇r′ , respectively, and the other elements are equal to zero.
The propagator L−1 of eq. (5.6) has an obvious physical meaning. This is the

electric field in the point r that is generated by an electric dipole located in the
point r′. In general, this vector field has three components. At large distance
from the dipole, the longitudinal component becomes negligible and the field
turns out into the outgoing transverse wave that is carrying energy out from the
source.

For scalar wave fields ψ(r), eq. (5.1) is the Helmholtz equation

Ψ = ψ(r)
L = ∆ + k2

L−1 = − eik|r−r′|

4π|r − r′|
L−1

S =
∂L−1

∂n
− L−1 ∂

∂n
(5.7)

Here, the propagator L−1 describes the isotropic spherical wave outgoing from
a point source located at the point r′, and the last expression of eq. (5.7) for the
surface Green function corresponds to the well-known Green theorem where n
is the external normal to the surface S.

In non-relativistic quantum mechanics, eq. (5.7) corresponds to the funda-
mental Schrödinger equation where the complex-valued function ψ(r) is just the
famous wave function of quantum mechanics. Also, the Helmholtz equation is
the basic equation for acoustics where ψ(r) means either the sound pressure
or the acoustic velocity potential. Sometimes, polarization of electromagnetic
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waves can be ignored. Then the Maxwell equations of eq. (5.6) are replaced by
the Helmholtz equation (5.7), too.

The next important simplification of the wave equations arises if the wave
field differs weakly from a plane wave propagating, say, along the x-axis, i.e.

ψ(r) = u(r)eikx (5.8)

where the function u(r) is assumed to vary smoothly along the x-axis as com-
pared to exp(ikx). Substituting eq. (5.8) into eq. (5.7) and neglecting certain
small quantities, we arrive at the parabolic equation

Ψ = u(r)

L = 2ik
∂

∂x
+ ∆⊥ = 2ik

∂

∂x
+
∂2

∂y2 +
∂2

∂z2

L−1 = −H(x− x′)
4π(x− x′)

exp
[
ik(ρ − ρ′)2

2(x− x′)

]
L−1

S = 2ikL−1 (5.9)

Here, H is the Heaviside function

H(x) = 1 for x > 0
H(x) = 0 for x < 0 (5.10)

and ρ = (y, z) are the transverse coordinates. The last expression in eq. (5.9)
for the surface Green function corresponds to the conventional case, where the
initial field is determined in the plane x′ = const.

The parabolic equation is widely used in numerous problems of the coherent
optics and holography where the term of the paraxial approximation is also
used. In radiophysics, the theory based on this equation is sometimes called the
quasioptics. The reason for the wide applicability of the parabolic equation is
that it accurately describes diffraction phenomena at small angles.

The simplest wave equation is obtained from the parabolic equation if the
term ∆⊥ describing diffraction is ignored. Then it follows

Ψ = u(r)

L = 2ik
∂

∂x

L−1 =
1

2ik
H(x− x′)

L−1
S = 2ikL−1 = H(x− x′)δ(ρ − ρ′) (5.11)

Within the framework of this equation, wave propagation turns out to be a sim-
ple motion along the straight rays that are parallel to the x-axis. It is readily
seen from the last expression. Equation (5.11) had been widely used in various
fields of physics by many authors, as a rule, independently. Therefore, it has a
lot of names. The names of eikonal, high-energy, and Molier’s approximations
are known in quantum mechanics. In optics, the terms of both van de Hulst
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and WKB (Wentzel, Kramers, and Brillouin) approximations are used. In the
problem of light propagation through the turbulent atmosphere, this approxi-
mation is referred to as geometrical optics; and so on. We shall call eq. (5.11) the
straight-ray approximation since this term reflects directly the physical entity of
this approximation.

5.1.3 Corpuscular treatment of short waves

Because of continuity, wave fields are rather difficult objects for the human imag-
ination since a human brain prefers to deal with discrete quantities. Fortunately,
in physics, there are many situations where wave fields can be treated from the
discrete, i.e. corpuscular, point of view. If the wavelength of a wave field occurs
to be small for a given situation, sometimes certain special efforts are undertaken
to reveal the wave nature of the radiation as it takes place, for example, in op-
tics. So, in situations where the wave phenomena are barely detected, the wave
field can be treated in the corpuscular manner, i.e. as a lot of corpuscles that are
moving according to the laws of classical mechanics. In optics, these corpuscles
are called photons. Similarly, for elementary particles in quantum mechanics,
particles such as, say, neutrons are roughly considered as corpuscles, and the
wave treatment is needed only in situations where their de Broglie wavelengths
are revealed.

We pay attention to the following two situations where it is expedient to
treat wave fields as corpuscles. The first situation arises when the scales of ob-
jects interacting with the wave fields are much larger than the wavelength. In
this case, the Maxwell equations can be reduced to the well-known geometric
optics equations and quantum mechanics is reduced to classical mechanics, re-
spectively. Geometric optics equations divide the space into a set of ray tubes
(Fig. 5.1(a)) that are associated with a curvilinear coordinate system. Here, the
longitudinal coordinate corresponds to a path along the tubes and the transverse
coordinates form the wavefront surfaces that are constructed perpendicularly to
the ray tubes. According to the geometric optics equations, the wave propagation
corresponds to motion of the radiation particles along the ray tubes.

The second situation corresponds to randomly distributed objects interacting
with the incident wave. For example, solar light entered a room is reflected by
rough surfaces of both walls and other obstacles within the room. As a result,
the eye detects a lot of photons coming from various directions (Fig. 5.1(b)). In
this situation, the ratio between the incident wavelength and sizes of the wall
inhomogeneities resulting in light scattering is of no importance. The matter is
only that, in a small volume near the observation point r, we get a lot of wave
packets with different both phases and propagation directions n. It is natural to
describe this wave field as an ensemble of a great number of corpuscles flying in
different directions in the free space (Fig. 5.1(b)).

Let us emphasize that the physical model corresponding to Fig. 5.1(b) is
widely used in physics for the description of a lot of physical objects. For ex-
ample, the dots in Fig. 5.1(b) could be associated with molecules for classical
statistical mechanics of gases and liquids, γ-quanta penetrating the protection
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Fig. 5.1. Corpuscular treatment of short-wave fields. (a) Geometric optics approxima-
tion; within a wave tube, a corpuscle has one propagation direction at a spatial point.
(b) Set of corpuscles with chaotic spatial and propagation direction distributions.

matter around a nuclear reactor, and so on. Even whole physical disciplines such
as radiometry and photometry are based on these conceptions.

Ensembles of corpuscles shown in Fig. 5.1(b) are characterized by the number
density N(r,w) that means the number of corpuscles occurred in the vicinities
of the spatial point r and of the velocity w, i.e. in the element dr dw. Instead of
the number of corpuscles, their fluxes crossing certain surfaces are often consid-
ered. These fluxes are determined by the flux density that is simply connected
with the function N(r,w). For brevity, we assume that the magnitude w of cor-
puscle velocities is a constant and consider the number density N(r,n), where
n = w/w is the propagation direction. Let us mentally separate corpuscles with
a given propagation direction n and consider the surface element dS that is per-
pendicular to the direction n. It is obvious that this element dS is crossed per
the time of dt by those corpuscles that are located in the volume of wdS (see
Fig. 5.1(b)). So, the product

I(r,n) = wN(r,n) (5.12)

is just the desired flux density of the corpuscles. Every corpuscle is associated
with a definite energy; therefore we shall prefer to call this function of five
variables the energy flux density. In photometry, the value I(r,n) is called the
specific intensity or radiance. If the propagation direction n is known and can
be omitted, the value I(r) is often called the intensity. For our study, we do
not need to consider the dimensionality of these quantities since they are usu-
ally normalized to the same values of incident fields. So, both the flux density
I(r,n) and the intensity I(r) are assumed in this chapter to be non-dimensional
quantities. In particular, the intensity for an incident plane wave is always ac-
cepted to be equal to 1. As a result, the energy fluxes through any surface will
have the dimension of area.
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Of course, both the quantitiesN and I are applicable to the wave fields shown
in Fig. 5.1(a) as well. In such cases, the dependence on the propagation direction
n is reduced to the Dirac delta-function δ(n − n0) separating the direction of a
ray tube.

The corpuscular treatment of wave fields will be often used further for clari-
fication of the results obtained.

5.1.4 Equations for quadratic values

In all fields of physics concerned, it is the wave fields that are usually calculated
both analytically and numerically. At the same time, in practice, often only
certain quadratic values of the fields are measured but not the fields directly. So,
two steps must be taken: first, to calculate the fields and, second, to calculate
their quadratic values needed for a comparison with experiments. It is natural
to bring up the question: Why not use the respective equations for the quadratic
values directly?

An obvious drawback of the equations for the quadratic values is that they
double dimensions as compared to the field equations, so they are more tedious.
Nevertheless, the quadratic values equations reveal the two following advan-
tages. The first advantage concerns stochastic sources of radiation. Within the
wave equation approach, only determinate sources are readily treated while the
case of a stochastic source demands certain special efforts. An advantage of the
equations for the quadratic values is that these equations readily include both
determinate and stochastic sources. The second advantage is that the equations
for quadratic values for the cases of stochastic sources and stochastic scattering
media can often be treated from the abovementioned corpuscular point of view.
Therefore, the quadratic values equations are widely used in this study, and they
are considered in detail in this section.

In the language of operators, the quadratic values of the fields are defined
as the direct product Ψ ⊗ Ψ∗, where the asterisk denotes a complex-conjugate
value. The direct product means that we go to a space of double dimension.
For example, for a scalar function ψ(r), the direct product Ψ ⊗ Ψ∗ is the fol-
lowing function ψ(r1)ψ∗(r2) defined in the space of six variables (r1, r2). For
electromagnetic waves, the direct product of vectors and matrices will be dis-
cussed later, in section 5.4.4. One of the main properties of the direct products
is determined by the identity: (AB) ⊗ (CD) = (A ⊗ C)(B ⊗ D) where A and
C are operators and B and D can be either fields or operators. This identity
means that if we need to find a direct product of two values, where every one
of the co-factors is an ordinary product of operators, we can construct term by
term the operators in the double-dimension space A ⊗ C and B ⊗D and then
multiply them as operators of the double-dimension space.

Thus, the initial equation (5.2) can be transformed into the following equation
for the quadratic values written down in the double-dimension space

(L⊗ L∗)Ψ ⊗ Ψ∗ = q ⊗ q∗ (5.13)
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If the wave source is stochastic, often only the average value 〈q⊗q∗〉 is of interest,
where the angle brackets mean a statistical averaging. In this case, eq. (5.13) is
readily generalized

(L⊗ L∗)〈Ψ ⊗ Ψ∗〉 = 〈q ⊗ q∗〉 (5.14)

For simplicity, we postpone the case of electromagnetic waves until section 5.4.4
and consider the quadratic values with two spatial points for the case of scalar
waves described by the Helmholtz equation (5.7). Here, the quadratic value is
as follows

Γ11(r1, r2) = Γ (R, r) = 〈ψ(r1)ψ∗(r2)〉 (5.15)

where the difference R and mean r arguments, respectively,

R = r1 − r2; r = (r1 + r2)/2 (5.16)

are introduced. The quadratic value Γ is called the spatial coherence function.
Consider the equations governing the coherence function (5.15). It obeys the

Helmholtz equation

(∆1 + k2)Γ11 = (∆2 + k2)Γ11 = 0 (5.17)

where ∆1 and ∆2 are the Laplacians relative to the both variables r1 and r2.
Hence, it obeys the following equation, too

(∆1 − ∆2)Γ11 = 0 (5.18)

By means of the identical relation

∆1 − ∆2 = ∇2
1 − ∇2

2 = (∇1 − ∇2)(∇1 + ∇2) = 2∇R∇r (5.19)

equation (5.18) is transformed to the following equation in the variables r and
R

∇R∇rΓ (R, r) = 0 (5.20)

Let us define the Fourier transform of the coherence function relative to the
difference variable R that is called the Wigner function

W (r,p) =
(
k

2π

)3 ∫
Γ (R, r)e−ikpRdR; Γ (R, r) =

∫
W (r,peikpR dp

(5.21)
Substitution of eq. (5.21) in eq. (5.20) gives the following equation for the Wigner
function

p∇rW (r,p) = 0 (5.22)

The operator p∇r is the directional derivative along the vector p. Therefore, we
get a solution to eq. (5.22) that is very simple

W (r,p) = W (r − lp,p) (5.23)

where l (l > 0) is an arbitrary number, and r − lp is a running point on the ray
until the point reaches a radiation source. If the Wigner function is given on an
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Fig. 5.2. Straight-line propagation of the Wigner function. (a) The Helmholtz equa-
tion. (b) The parabolic equation.

arbitrary surface, one can easily find the Wigner function in any point using eq.
(5.23) (see Fig. 5.2(a)).

Equation (5.22) reveals a remarkable fact. Indeed, it might seem that a wave
motion and a straight-line motion of solid particles in free space are quite differ-
ent phenomena in the universe. It is eq. (5.22) that proves that the straight-line
motion is inherent to any wave motion, too. But this property of wave motion
appears explicitly at the level of the quadratic values of the fields. So, propaga-
tion of the Wigner function in the free space is just equivalent to propagation of
classical particles or corpuscles due to eq. (5.23).

The function W (r,p) was proposed by E. Wigner in 1932 to describe the re-
duction of quantum-mechanical statistical physics to classical statistical physics.
In the classical statistical mechanics, a basic quantity is the number density of
particles N(r,w) in the point r with the velocity w as was described in sec-
tion 5.1.3. The Wigner function W (r,p) is just the wave-motion analog of the
function N(r,w). So, the vector kp corresponds to the corpuscle velocity. The
Wigner function reveals a lot of features inherent to the N -function. For ex-
ample, W (r,p) is the real-valued quantity like the function N(r,w). For the
plane wave exp(ikn0r) it results in the Dirac delta function δ(p − n0). The
main discrepancy between them is that the N function is always positive while
the Wigner function can be a negative quantity as well.

Let us consider the quadratic quantities for the parabolic equation. In this
case, the quadratic values are usually considered for two points located in the
same plane x = const. Then eq. (5.18) is transformed into the equation(

2ik
∂

∂x
+ ∆⊥1 − ∆⊥2

)
Γ11(x,ρ1,ρ2) = 0 (5.24)

where ρ1 and ρ2 are the transverse coordinates, and ∆⊥ are the Laplacians
relative to these variables. The Wigner function should be defined by the 2-D
Fourier transform
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W (x,ρ, q) =
(
k

2π

)2 ∫
Γ (x,R,ρ)e−ikqR dR;

Γ (x,R,ρ) =
∫
W (x,ρ, q)eikqR dq (5.25)

where R and ρ are the difference and mean coordinates, respectively, in the
plane x = const

R = ρ1 − ρ2; ρ = (ρ1 + ρ2)/2 (5.26)

Since the vector kp of eq. (5.22) was interpreted as the velocity of a corpuscle, the
vector kq has the physical meaning of the transverse component of this velocity.

Applying the identity (5.19) to eq. (5.24) and substituting eq. (5.25), we get
the following equation for the 2-D Wigner function(

∂

∂x
+ q∇ρ

)
W (x,ρ, q) = 0 (5.27)

Analogously to the 3-D case, the second term in eq. (5.27) is the directional
derivative in the plane x = const. A solution to eq. (5.27) is determined by a
given value of the Wigner function in a plane, say, x = 0. Then the solution is
expressed through the function W (0,ρ, q) as follows

W (x,ρ, q) = W (0,ρ − qx, q) (5.28)

Equation (5.28) can be also derived from eq. (5.23). The straight-line propagation
of the Wigner function described by eq. (5.28) is shown in Fig. 5.2(b). In this
case, the velocities of corpuscles p should obey the following restriction

p = 1̂x + q (5.29)

where 1̂x is the unit vector along the x-axis and q is an arbitrary transverse
component. It means that projections of corpuscle velocities on the x-axis should
be the same. This restriction is justified at small angles |q| 	 1. Let us recall
that the parabolic equation is an approximation to the Helmholtz equation, and
it is valid only for the case of propagation at small angles relative to the basic
direction along the x-axis.

5.1.5 Energy conservation law

Energy conservation law is a basic law for the quadratic values of wave fields. In
this section, this law is considered for all wave equations of section 5.1.2.

To make the energy conservation law more obvious, let us start from the
corpuscular treatment of wave fields described in section 5.1.3 and shown in
Fig. 5.1(b). Assume that corpuscle velocities have equal magnitudes and they
differ in propagation directions n only, where |n| = 1. According to the definition
of eq. (5.12), the energy flux, i.e. the flux of the corpuscles, through an arbitrary
surface S of the external normal M is readily written down as the integral over
all propagation directions n
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Φ =
∫∫

(nM)I(r,n) dn dS (5.30)

We emphasize that
∫
. . .dn means everywhere in this Chapter the integral over

the solid angle because of the unit modulus for the vector n, i.e. |n| = 1.
It is expedient to separate the vector field

j(r) =
∫

nI(r,n) dn (5.31)

then the energy flux given by eq. (5.30) proves to be the flux of this vector field
j(r)

Φ =
∫

S

jM dS (5.32)

In particular, if S is a closed surface, we get

Φ = P (5.33)

where P is a power of the sources that are surrounded by the closed surface S.
Equation (5.33) is just the energy conservation law. If there are no sources, we
have: Φ = 0.

Now come back to wave fields. In this case, the energy conservation law is
described by just the same equation (5.33) but the vector fields j(r) are defined
by other, not so evident, equations. In particular, for the Helmholtz equation,
the energy-flux density j(r) is determined by the following quadratic value of
the field

j = k−1 Imψ∗∇ψ (5.34)

where the normalization factor k−1 is chosen to provide the conventional nor-
malization. Namely, the intensity of the plane wave of unit amplitude exp(ikx)
is required to be equal to unity (I = |j| = 1) as was discussed in connection
with eq. (5.12). For the electromagnetic waves (5.6), the energy-flux density is
the Poynting vector

j = k−1 Im (E∗ × rotE) (5.35)

where the symbol × means the vector product.
For the cases where the Wigner function W (r,p) of eq. (5.21) coincides with

the specific intensity I(r,n) of eq. (5.12)

I(r,n) = W (r,p) (5.36)

both the wave and corpuscle approaches are equivalent.
Of course, the language of wave fields is more basic, and certain expressions

are impossible to treat from the corpuscular point of view. In particular, if a
field is decomposed in, say, two components

Ψ = Ψ1 + Ψ2 (5.37)

any quadratic values including the energy flux Φ are decomposed in three com-
ponents
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Φ = Φ1 + Φ2 + Φ12 (5.38)

where Φ1 and Φ2 are the fluxes for every component and Φ12 is the interference
term. It is the interference term that reveals the wave nature of a radiation.

For any approximations to the wave fields, the energy conservation law is not
satisfied automatically. Therefore let us consider the energy conservation law for
the cases of the parabolic equation (5.7) and the straight-ray approximation
(5.11) where the field u(x,ρ) means a weak deviation from the plane wave ψ =
exp(ikx) propagating along the x-axis.

In the straight-ray approximation, the wave is conserved along the ray ρ =
const according to the last expression of eq. (5.11)

u(x,ρ) = u(0,ρ) (5.39)

Therefore, the energy-flux density j(r) given by eq. (5.34) should be conserved
along the ray as well. So, we get

j(x,ρ) ≈ |u(x,ρ)|21̂x (5.40)

where the unit vector 1x along the x-axis corresponds to the basic plane wave
ψ = exp(ikx). Then the energy fluxes through any plane x = const are conserved,
too

Φx =
∫

|u(x,ρ)|2 dρ = Φx=0 (5.41)

The straight-ray approximation ignores diffraction phenomena. For example,
if an initial field defined in the plane x = 0 is a plane-parallel beam with the
propagation direction 1x and the transverse size of a (where ka � 1), it is well
known that, with a good accuracy, this beam conserves its transverse shape in
the near zone, i.e. at the distances x 	 ka2. At distances x ≈ ka2, the transverse
shape is distorted by the Fresnel diffraction. In the wave zone x � ka2, the beam
is transformed into a divergent spherical wave that is essential only at small
scattering angles |q| 	 1. Thus, the straight-ray approximation is just valid in
the near zone x 	 ka2 of the initial fields. Then the parabolic equation (5.9)
should describe both the Fresnel and Fraunhofer diffractions for initial fields of
large transverse dimensions ka � 1.

Generally speaking, if there are no field sources, the energy flux through any
plane x = const should always be a constant

Φx = Φx′ (5.42)

This fact is readily proven if one considers a volume V bounded by the planes
x = const and x′ = const and by an arbitrary lateral surface. Then the limit
V → ∞ at x, x′ = const leads to eq. (5.42).

Let us consider how the general equation (5.42) is satisfied within the
parabolic equation. The surface Green function L−1

S of the parabolic equation is
the unitary operator relative to the 2-D variable ρ

L−1
S (L−1

S )+ = 1 (5.43)
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where the superior sign + means the Hermitian-conjugate operator. Equation
(5.43) can be checked by a direct substitution of the explicit expression for
the propagator L−1

S . As known, a unitary operator A does not change a scalar
product

(Au,Av) = (u,A+Av) = (u, v) (5.44)

In our case, the scalar product means the integral of a product of two arbitrary
functions over a plane x = const

(u, v) =
∫
u(ρ)v∗(ρ) dρ (5.45)

Substituting u = v = u(x,ρ) and Au = Av = L−1
S u(x,ρ) = u(x′,ρ′) in eq.

(5.44), we get ∫
|u(x,ρ)|2 dρ =

∫
|u(x′,ρ′)|2 dρ′ (5.46)

Equation (5.46) is just the energy conservation law for the parabolic equation.
It is interesting that eq. (5.46) coincides completely with eq. (5.41) obtained for
the straight-ray approximation. It means that both eqs (5.40) and (5.41) are
valid at any distances from the initial plane x = 0 independently whether the
observation plane x = const is located in the near, Fresnel or wave zone of the
initial field.

5.2 Wave scattering

5.2.1 Scatterers

In general, any object distorts the initial wave that would exist in free space for
certain given sources. Such an object will be called a scatterer. If the scatterer
interacts linearly with the incident wave, as will be assumed always in this chap-
ter, the initial equation (5.2) for free space is expanded to the following operator
equation for the resulting wave

(L− V )Ψ = q (5.47)

where the operator V determines the scatterer. This is the general wave scatter-
ing equation.

The operator V in the coordinate representation is often reduced to a product
of the field Ψ by a scalar function v(r), i.e.

〈r|V |r′〉 = δ(r − r′)ν(r) (5.48)

Thus, the function v(r) determines deviation of the space covered by the scat-
terer from the free space.

Let us go to the specific cases. In particular, eq. (5.6) in appearance of scat-
terers are turned out into the macroscopic equations
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[−rot rot + k2 − v(r)]E(r) = q(r) (5.49)

where the function v(r) is connected with the dielectric permittivity ε(r) by the
following expression

v(r) = k2[1 − ε(r)] (5.50)

Here, for simplicity, the magnetic permeability is assumed to be equal to 1.
Instead of the dielectric permittivity, scatterers are often characterized by

the refractive index n(r). The refractive index is usually determined as

n2 = ε (5.51)

Note that eq. (5.51) is valid if absorption of waves is absent. In the case of
absorption, both the dielectric permittivity ε = Re ε + iIm ε and the refractive
index m = n + iκ become the complex values. Generalizing eq. (5.51) for the
complex quantities

m2 = ε (5.52)

we get the following relations between their real and imaginary parts

Re ε = n2 − κ2; Im ε = 2nκ (5.53)

Similar equations are also valid for the scalar waves determined by the chain of
wave equations (5.7), (5.9), and (5.11) . Thus, the Helmholtz equation (5.7), for
example, can be written as

[∆ + k2n2(r)]ψ(r) = q(r) (5.54)

Equation (5.54) shows obviously that the refractive index has the physical mean-
ing of the local change for the wave velocity that appears as the local change of
the wavelength.

In quantum mechanics, eq. (5.47) is the Schrödinger equation where the
operators L and V correspond to eqs (5.7) and (5.48), respectively. In particular,
the Schrödinger equation is equivalent to eq. (5.54) where the local refractive
index is determined by the equation

n2(r) = 1 − U(r)/E (5.55)

Here, E is the energy of an elementary particle in free space and U(r) is the
interaction potential.

As for acoustics, there are not one but two local quantities characterizing a
scatterer. For instance, they may be the compressibility β and the density ρ of
the matter. The refractive index is determined by the following equation

n2(r) =
β(r)ρ(r)
β0ρ0

(5.56)

where β0 and ρ0 are the same quantities as β and ρ except for the free space. If
two characterization parameters of the matter are chosen as n(r) and ρ(r), the
equation of scattering for the acoustic waves can be represented by eq. (5.47) as
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well. However, eq. (5.50) for the scattering potential must be changed. Namely,
we have

v(r) = k2[1 − n2(r)] + ∇ ln ρ(r)∇ (5.57)

Sometimes, the last term of eq. (5.57) is negligible, and we arrive at the full
unification of acoustic, quantum mechanics, and electromagnetic waves.

In conclusion of this section, let us emphasize that the scattering wave equa-
tion (5.47) is quite general. It embraces numerous problems in various fields of
physics which use the terms of scattering, diffraction, or propagation. For ex-
ample, if a scatterer occupies a rather small volume and an observation point is
outside of the scatterer, the problem is conventionally called the scattering prob-
lem. As for diffraction, the terms of scattering and diffraction are used sometimes
as synonyms in radiophysics while, in optics, the term of diffraction is reserved
for small angle scattering by large scatterers as compared to wavelength. Fur-
ther, if an observation point is located inside a scatterer we arrive at a wave
propagation problem, etc.

5.2.2 General wave scattering equation

The general wave scattering equation (5.47) is readily solved at the level of
operator equations. Indeed, let us rewrite eq. (5.47) as

LΨ = q + VΨ (5.58)

and act on the equation from the left by the operator L−1. We get

Ψ = Ψ0 + L−1VΨ (5.59)

Here Ψ0 = L−1q is the incident wave according to eq. (5.3), i.e. it is the field
created by a given source in the free space. The total field in eq. (5.59) is rep-
resented as the superposition of the incident wave and the additional field ΨS

created because of appearance of a scatterer. This term is called the scattered
field. So, we get

Ψ = Ψ0 + ΨS ; ΨS = L−1VΨ (5.60)

Equation (5.59) is just the general wave equation (5.47) written down as the
integral equation. In quantum mechanics, it is called the Lippmann–Schwinger
equation. The formal solution of this equation is readily obtained. For this pur-
pose, we rearrange the terms of eq. (5.59) as

(1 − L−1V )Ψ = Ψ0 (5.61)

and the solution required is as follows

Ψ =
1

1 − L−1V
Ψ0 (5.62)

If we expand the fraction in eq. (5.62) as the well-known geometric series, the
solution is represented by the series
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Ψ = Ψ0 + L−1VΨ0 + L−1V L−1VΨ0 + . . . (5.63)

In mathematics, eq. (5.63) is called the iteration expansion or the Neumann
series for the integral equation (5.59). In the scattering theory, it is called the
Born series, and the first iteration

ΨB = L−1VΨ0 ≈ ΨS (5.64)

is called the Born approximation for the scattered field.
In the solutions (5.62) and (5.63), the incident wave Ψ0 is included as a

factor. It is convenient to separate this factor, and the remaining part will be
the general solution not depending on the explicit form of the incident field. For
this purpose, the scattering field is represented as

ΨS = L−1TΨ0 (5.65)

where all scattering processes are combined in the matrix T . This matrix is
called the transition matrix in quantum mechanics. In general, the term of the
T -matrix is conventional.

The T -matrix in the series representation is readily obtained from eq. (5.63)

T = V + V L−1V + V L−1V L−1V + . . . (5.66)

This series corresponds to the following equation

T = V + V L−1T (5.67)

and to its explicit solution as the fraction as in eq. (5.62)

T = V
1

1 − L−1V
(5.68)

Thus, any scattering wave problem is fully solved because of eq. (5.65), if the
T -matrix is found. In practice, an explicit form of the T -matrix is obtained
either from numerical solution of the integral equation (5.67) or by numerical
summation of the series (5.66).

5.2.3 Scattered field in the wave zone

If a scatterer is a 3-D object, the scattered field at large distances from the
scatterer transforms into a divergent spherical wave as shown in Fig. 5.3. This
fact follows directly from eq. (5.65) taking into account the explicit expressions
for the propagators L−1. The domain where the scattered fields are the divergent
spherical waves is called the wave zone.

Let us consider scattering of scalar waves. In the wave zone, the total field
as given in eq. (5.60) is the superposition of the incident plane wave and the
divergent spherical wave

ψ(r) = ψ0(r) + ψs(r) = eikn0r + f(n,n0)
eikr

r
(5.69)
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Fig. 5.3. Wave scattering to the wave zone.

Here n0 is an incident direction, r is a distance from the scatterer, and the
complex-valued function f(n,n0) of both the incident n0 and scattering n = r/r
directions is called the scattering amplitude. Thus, the solution to any scatter-
ing problem is reduced to finding the scattering amplitude only. The generality
of the scattering amplitude can be also confirmed by the fact that the scat-
tering amplitude is just the T -matrix of eqs (5.65)–(5.68) written down in the
momentum representation T (kn, kn0).

For the electromagnetic waves, the similar superposition of plane and spher-
ical waves takes place

E(r) = E0eikn0r + Es(n,n0)
eikr

r
= E0eikn0r + S(n,n0)E0 eikr

r
(5.70)

where the complex-valued 2-D vector E0 with unit amplitude (|E0| = 1) deter-
mines the polarization state of the incident wave. The scattered field is also a
transversal wave, and its vector scattering amplitude Es is convenient to deter-
mine by means of the 2 × 2 scattering matrix S.

5.2.4 Optical theorem

The energy conservation law applied to a wave scattering action is reduced to
the so-called optical theorem. This term was introduced in quantum mechanics
when it was understood that the obtained theorem was already known in optics.
In this section, we consider this theorem by use of the wave-zone scattered field.

Let us consider the energy flux through a closed surface surrounding a scat-
terer. The flux for the superposition of the incident Ψ0 and scattered Ψs waves
is decomposed into three terms according to eq. (5.38)



198 Anatoli G. Borovoi

Φ = Φ0 + Φs + Φ0s (5.71)

where the last term corresponds to interference between the incident and scat-
tered waves. The flux of the incident wave through a closed surface is always
equal to zero: Φ0 = 0. The flux of the scattered field Φs is a conserved value, i.e.
its magnitude does not depend on either the shape of the surrounding surface or
the distance from the scatterer. Consequently, the interference flux Φ0s, as well
as the flux of the total field Φ, prove to be the similar conservative values.

It is important to emphasize that the conservation of the interference fluxes
is a quite general conclusion that is valid for any superposition of wave fields.
This fact will be often used in our further study.

Now go to the spherical surface surrounding a scatterer at r → ∞ that
is shown in Fig. 5.3. For the scalar scattered field ψs, the energy-flux density
defined by eq. (5.34) is directed normally to the spherical surface at r → ∞

j(r) =
|f(n,n0)|2

r2
n (5.72)

So, the flux Φs is equal to

Φs =
∫

|f(n,n0)|2 dn = σs(n0) (5.73)

where dn is an element of the solid angle of scattering directions (dS = r2 dn).
This flux is called the scattering cross-section since it has dimensionality of area.
For nonspherical scatterers, the cross-section depends on the incident direction.

If there is no absorption of energy inside the scatterer, i.e. the refractive index
is real-valued, the flux of the total field is equal to zero, too, and the interference
flux proves to be the negative value Φ0s = −σs. Thus, we get the obvious physical
conclusion that the energy of the outgoing spherical wave is extracted from the
energy of the incident wave as a result of interference between these waves.

If there is absorption inside a scatterer, an energy sink appears, and the flux
of the total field becomes non-vanishing and negative. Its modulus is called the
absorption cross-section σa

Φ = −σa(n0) (5.74)

The sum of these cross-sections is called the extinction cross-section σe, and eq.
(5.71) is reduced to the following

Φ0s = −[σs(n0) + σa(n0)] = −σe(n0) (5.75)

i.e. the interference flux should include absorption as well. As a consequence, we
conclude that even an absolutely absorbing scatterer creates a scattered wave
otherwise the energy conservation law would be violated.

The essence of the optical theorem is the fact that the interference flux Φ0s

is determined by the value of the scattering amplitude f(n,n0) that is taken in
the single scattering direction only, namely, in the forward scattering direction
f(n0,n0). This fact is easily understood. Indeed, the energy-flux density cor-
responding to interference between the plane and spherical waves given in eq.
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(5.69) is a quickly oscillating function at any point n on the sphere shown in
Fig. 5.3 at r → ∞. So, in average, it results in zero. Only in the forward scatter-
ing direction n0 the phase difference between these waves does not depend on
the sphere radius r, and the interference results in a nonvanishing contribution
that is simply calculated. The analytical derivation of the flux Φ0s results in the
desired optical theorem

σe(n0) =
4π
k

Im f(n0,n0) (5.76)

We do not represent the calculation of eq. (5.76) here since similar integrals are
calculated later (see eq. (5.134)).

The optical theorem is directly generalized for electromagnetic waves as well.
Here, the scattered wave is the transversal spherical wave determined by the
vector scattering amplitude Es(n,n0). In this case, the interference between
the scattered wave in the forward direction and the incident wave of the vector
amplitude E0 (where |E0| = 1) takes place only for a projection of the scattered
wave onto the vector of the incident wave that is described by the scalar product
(E0Es(n0,n0)). Therefore, the optical theorem (5.76) for electromagnetic waves
is generalized as the following

σe(n0) =
4π
k

Im
(
E0Es(n0,n0)

)
(5.77)

So, the scattering cross-section of eq. (5.77) depends not only on the incident
direction but on the polarization of the incident wave as well.

5.2.5 Scattering of waves by small scatterers

If a 3-D scatterer is small as compared to the incident wavelength (ka 	 1,
where a is a characteristic size of a scatterer), its scattered field outside the
scatterer is similar to the wave emitted by a point source that is described by
the propagator or Green function L−1. Indeed, if the scattered field L−1VΨ
given by eq. (5.60) is considered in the coordinate representation, it is seen that
the Green function does not practically oscillate during the integration over the
scatterer volume because of the condition ka 	 1. Hence it can be replaced by
the Green function originated from the scatterer center.

So, in quantum mechanics, the small scatterers are monopoles producing the
isotropic scattering. It means that the scattered wave is described by eq. (5.69)
at any distance from the scatterer (r > a), and the scattering amplitude does
not vary with the scattering directions. In electrodynamics, monopoles are im-
possible. Therefore, small scatterers in electrodynamics are similar to the electric
dipoles. In acoustics, if the compressibility of a scatterer differs from that of the
surrounding medium but its density is the same, such a scatterer is a monopole,
too. But if an acoustic scatterer differs from the surrounding medium by its den-
sity only, such a scatterer is the scalar dipole. For instance, the scattered field
of a scalar dipole is given by
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ψs(r) = d(nn0)
(
ik − 1

r

)
eikr

r
(5.78)

where d is a constant depending on scatterer shape. For the dipole, at the dis-
tance

r � λ (5.79)

the second term in eq. (5.78) becomes negligible as compared with the first term.
So, the inequality (5.79) determines the area of the wave zone where the field
is described by eq. (5.69). Note that the scattering amplitude f(n,n0) for the
dipole is not isotropic as for monopoles but it is described by the rather smooth
angular function (nn0).

In the near zone
a < r < λ (5.80)

conversely, the second term of Eq, (5.78) decreasing with distance as r−2 be-
comes predominant. It is interesting that this near-zone term describes only a
redistribution of energy near the scatterer not contributing to the total energy
flux of the scattered field carried out from the scatterer. Indeed, owing to the
energy conservation law, the flux over any closed surface surrounding a scatterer
must be the same. This flux calculated through the wave-zone term in eq. (5.73)
results in the scattering cross-section. Therefore, if the energy flux over a closed
surface located near the scatterer is calculated, the predominant near-zone term
will give zero contribution but the weak first component of eq. (5.78) will result,
as in the wave zone, in the scattering cross-section. All these peculiarities are
valid for the electromagnetic waves, too.

Similarly, when the parameter ka is increasing, new components resembling
the fields emitted by quadrupoles, octopoles, and higher-order sources are ap-
pearing in the scattered field. In the near zone, the components of the higher-
order K contain terms with various powers of (1/r) up to r−K . Analogously to
the dipoles, these terms are predominant in the near zone but they do not con-
tribute to the energy carried out by the scattered wave. In the wave zone, these
terms are presented in the scattering amplitude f(n,n0) by more complicated
and quickly oscillating functions of the scattering directions n as compared with
the dipoles. Roughly, the necessary number of these multipole components is es-
timated as K ≈ ka. Therefore the scattered fields for the scatterers of moderate
sizes a ∼ (5 − 10)λ can be calculated only numerically for both near and wave
zones.

5.2.6 Large scatterers

5.2.6.1 Geometric optics approach

For large scatterers (ka � 1), the conventional series that are widely used for
scatterers of moderate sizes are scarcely applied since they demand much com-
puter time. Fortunately, this limit case is well described by the intuitive equations
and conceptions of geometric optics. The geometric optics can be derived from
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a) b) c)

Fig. 5.4. Wave scattering by large scatterers to the near zone. (a) Optically hard
crystal. (b) Optically hard scatterer of irregular shape. (c) Optically soft scatterer.

the Maxwell equations, for example, as the asymptotic limit k → ∞. Of course,
the term geometric optics is used here for brevity. Classical mechanics is the
same asymptotic limit of quantum mechanics at k → ∞, etc.

In Fig. 5.4, wave scattering by certain typical scatterers within the geometric
optics approach is shown. Let us emphasize that the geometric optics approach
is valid only inside the scatterer and in its near zone. A qualitative justification
of the geometric optics approach can be tentatively explained as follows.

Consider, for specificity, light scattering by an ice crystal particle in cirrus
clouds (Fig. 5.4(a)). Here the condition ka � 1 is usually valid, where a is the
typical size of a crystal facet It is obvious that the scattering action consists of
successive reflections and refractions of plane-parallel beams by crystal facets.
In the first step, every illuminated facet creates a plane-parallel beam reflected
by the facet and a refracted beam transmitted into the crystal. Then any trans-
mitted plane-parallel beam crosses one or several other facets and these facets
divide the beam into reflected and refracted plane-parallel beams again, and so
on. As a result, the outgoing scattered field at the crystal surface consists of a
set of plane-parallel beams of various sizes and shapes propagating in various
directions.

As known, any plane-parallel beam with the transverse size of a(ka � 1)
propagating in free space reveals three propagation regimes:

r 	 ka2; near zone, straight-ray approximation
r ≈ ka2; Fresnel zone, parabolic equation (5.81)
r � ka2; wave (Fraunhofer) zone, parabolic equation

In the near zone, the beam conserves its transverse shape. Then, in the
Fresnel zone, its shape is distorted by the Fresnel diffraction. Finally, the beam
is transformed into a divergent spherical wave in the wave zone.

Therefore, if a rather narrow beam of the size b obeying the condition kb2 < a
appears inside a crystal particle, geometric optics is not valid to describe its
propagation inside the crystal, and we should take into account diffraction. For-
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tunately, this case is quite exotic and it can be usually ignored. Indeed, such
narrow beams can occur if very small facets exist in crystal shape. As a rule,
the pristine crystals have rather simple shapes without these small facets. As
the second possibility, these narrow beams should appear after a great number
of reflection actions inside the crystal because of multiple transverse divisions of
an initial transverse size. But the energy of such narrow beams is usually neg-
ligible because of essential energy loss in the early reflection/refraction actions.
Also, there is the third possible objection to geometric optics that should be
considered. Namely, from the wave point of view, the sharp vertexes and edges
of a crystal are sources of certain additional waves that are not described by ge-
ometric optics. But these fields are weak on the background of the plane-parallel
beams and they can be ignored in a majority of practical problems, too.

The same arguments in favor of the geometric optics approach can be ex-
panded for scatterers with smooth surfaces like the scatterer in Fig. 5.4(b).
Indeed, any essential inhomogeneity of the smooth surface plays the same role
as a crystal facet and all the abovementioned arguments are valid. Moreover,
diffraction for beams with curved phase surfaces distorts the beam shapes to a
lesser degree than for plane-parallel beams.

Figs 5.4(a) and 5.4(b) correspond to the case where the refractive index of
scatterers differs essentially from that of the free space. Conversely, Fig. 5.4(c)
corresponds to the case of so-called optically soft scatterers having the refractive
index n close to that of the surrounding space

|n− 1| 	 1 (5.82)

The case of optically soft scatterers is important in various fields of physics. For
example, the turbulent inhomogeneities of refractive index in the atmosphere are
just the optically soft scatterers, and they result in both the stellar scintillations
and the wandering of laser beams propagating in the atmosphere. As for particu-
late media, biological liquids such as blood and biological tissues are also typical
examples of optically soft scatterers for visible light. In quantum mechanics, the
case of optically soft scatterers corresponds to high-energy particles, and so on.
Thus, the term ‘optically’ is used by convention only and it does not refer to
visible light. The opposite case, shown in Figs 5.4(a) and 5.4(b) where eq. (5.82)
is not valid, will be called optically hard scatterers.

5.2.6.2 Scattered fields in the near and wave zones

A remarkable feature of wave scattering by large scatterers is that the scattered
field Φs can be effectively decomposed into two parts. One part is determined by
the shape of a scatterer only, while the second part depends on both the shape
and the magnitude of the refractive index. These components will be called the
shadow-forming Ψh and refracted Ψr fields, respectively

Ψs = Ψh + Ψr (5.83)

The appearance of the shadow-forming field is evident in the case of an absolutely
absorbing scatterer. In this case, the total field in the near zone disappears behind
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the scatterer. Remembering that the total field, due to the general equation
(5.60), is the superposition of the incident and scattered fields, we conclude that
the scattered field behind the scatterer is equal to the incident wave field with
the opposite sign. In particular, for the incident electromagnetic plane wave E0,
we have

Eh(x,ρ) =

{
−E0 if ρ is inside the shadow
0 otherwise

(5.84)

Thus, the shadow-forming field Ψh in the near zone is a plane-parallel beam
with the transverse shape of scatterer’s shadow, and it propagates in the same
direction as the incident wave. Note that eq. (5.84) is valid for the near zone
only but the superposition given in eq. (5.83) is quite general and it is valid
everywhere. Therefore, at arbitrary distance from the scatterer, the shadow-
forming field evolves as shown in eq. (5.81).

This shadow-forming field is expedient to consider as a component of the scat-
tered fields for arbitrary large scatterers. The physical reason for the appearance
of this field is the break in amplitude of the incident wave along the scatterer
contour as shown in Fig. 5.4. For example, it is obviously seen in Fig. 5.4(a) that
the plane-parallel beam of the shadow-forming field is one of the superpositions
of the plane-parallel beams of the scattered field.

The remaining part of the scattered field, i.e. the refracted field Ψr, is defined
in the near zone by the conventional laws of geometric optics that are illustrated
in Fig. 5.4. Then its propagation from the near zone to larger distances is gov-
erned by the wave propagation equations.

It is interesting to distinguish the shadow-forming field in the case of optically
soft scatterers shown in Fig. 5.4(c). Here, the refraction of the geometric optics
rays can be ignored. As a result, the straight-ray approximation of eq. (5.11)
is applicable both inside the scatterer and in its near zone. In this approxima-
tion, the total field in the near zone behind a scatterer u(x,ρ) is readily found.
This field corresponds to shadowing the incident field u0 = 1 by the equivalent
amplitude-phase screen A(ρ)

u(x,ρ) = eiA(ρ) = eiϕ(ρ)−χ(ρ) (5.85)

A(ρ) = ik

∫ ∞

−∞
[m(x′,ρ) − 1] dx′ (5.86)

Here m is the complex-valued refractive index of eq. (5.52), ϕ is the additional
phase shift in the wave caused by appearance of the scatterer, and exp(−χ) is
amplitude of the transmitted wave if absorption takes place inside the scatterer.
Here the condition (5.82) of optical softness is used to approximate the expression
of eq. (5.50) as follows: v = k2(1 −m2) ≈ 2k2(1 −m).

Now the scattered field is found by subtraction of the incident field u0 = 1
from the total field

us(ρ) = [eiA(ρ) − 1]η(ρ) (5.87)

This scattered field equals to zero outside the scatterer shadow. Therefore we
have set in eq. (5.87) the additional factor η(ρ) that does not distort the equation.
This factor is the shadow function defined as follows
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η(ρ) =

{
1 inside the scatterer shadow
0 otherwise

(5.88)

Equation (5.87) proves to be a particular case of the general equation (5.83).
Here, the shadow-forming field for the case of optically soft scatterers

uh(ρ) = −η(ρ) (5.89)

appears analytically as a component of the scattered field. The remaining part
of the scattered field is the refracted field

ur(ρ) = eiA(ρ)η(ρ) (5.90)

Now the scattered field can be found at arbitrary distances from the optically
soft scatterer. In particular, in the wave zone, the scattering amplitude of eq.
(5.69) can be determined by the classical Fraunhofer diffraction equation for the
amplitude–phase screen of eq. (5.87)

f(n,n0) =
k

2πi

∫
us(ρ)eiknρ dρ (5.91)

where (ρn0) = 0. In the forward scattering direction, it results in the simple
integral

f(n0,n0) =
k

2πi

∫
us(ρ) dρ (5.92)

The superposition given by eq. (5.87) splits the scattering amplitude into the
refracted fr and shadow-forming fh parts

f(n,n0) = fr(n,n0) + fh(n,n0) (5.93)

fr(n,n0) =
k

2πi

∫
eiA(ρ)η(ρ)eiknρ dρ (5.94)

fh(n,n0) = − k

2πi

∫
η(ρ)eiknρ dρ (5.95)

Let us consider the optically hard scatterers shown in Figs 5.4(a) and 5.4(b). In
the near zone, the scattered fields should be found by means of the ray patterns
shown in Figs 5.4(a) and 5.4(b), where the transverse polarization of electro-
magnetic waves along the rays can be included as well. It is interesting that
there is also an intermediate regime of scattering appearing at the distance rg,
where a 	 rg 	 ka2. Here, all geometric optics rays coming to a point nrg
on the sphere of the radius rg are concentrated within a narrow cone with the
angles θ ≤ a/rg. We can replace this narrow cone by the normal n to the sphere
(Fig. 5.5(a)) resulting approximately in a divergent spherical wave. The angular
dependence of this field on the sphere of scattering directions n will be called the
geometric optics scattering amplitude fg(n,n0). It is obvious that the geometric
optics scattering amplitude is similar to the exact one

fg(n,n0) ≈ f(n,n0) (5.96)
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Fig. 5.5. Geometric optics scattering. (a) Geometric optics rays, at large distances,
approach a divergent spherical wave. (b) Scattering of light by an ice crystal of cirrus
clouds; the dots are the Dirac delta functions for scattering directions, and the dot
brightness shows the energy scattered in this direction.

but fg depends on the scattering directions n more sharply. After propagation
of the scattered wave from the distance rg to the wave zone, diffraction smooths
out the sharp angular structure resulting in the exact scattering amplitude. For
example, the shadow-forming plane-parallel beam of the near zone should be
included in the geometric optics scattering amplitude by the means of the Dirac
delta function δ(n − n0). In the wave zone r � ka2 � rg, this singularity is
transformed into the regular function given by eq. (5.95). Analogously, every
plane-parallel beam of the near zone created by a crystal scatterer is represented
in the geometric optics scattering amplitude by the Dirac delta function factors
at other directions as illustrated in Fig. 5.5(b). For the optically hard scatterers
with smooth surfaces as in Fig. 5.4(b), the function fg(n,n0) is mainly a regular
function of the scattering directions. Note that to avoid certain mathematical
difficulties, it is preferable to use the Dirac delta function not for the field but
for its quadratic values such as |fg|2.

Thus, the refracted field for the optically hard scatterers is characterized by
either geometric optics frg or exact fr scattering amplitudes that are originated
by the ray patterns of the near zone. This is in contrast to the simple ana-
lytical equations (5.90) and (5.94) in the case of optically soft scatterers. But
the shadow-forming field is the same for both optically hard and optically soft
scatterers, and it is described analytically by eqs (5.84), (5.89) and (5.95).

5.2.6.3 Scattering and extinction cross-sections

A great advantage of these simple expressions obtained for scattered fields in
the near zone is that they can be effectively used for the calculation of the
scattering cross-sections. Let us begin from the case of optically soft scatterers
where the scattered field is described analytically by eq. (5.87). Propagation of
the field given by eq. (5.87) obeys the parabolic equation outside the near zone.
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Therefore its energy flux Φs through any plane x = const is conserved due to
eq. (5.46). This flux is just equal to the scattering cross-section presented by
eq. (5.73) since the scattered field does not exist in the backward hemisphere of
scattering directions for optically soft scatterers. So, we get

σs = Φs =
∫

|us(ρ)|2 dρ (5.97)

If there is absorption inside a scatterer, a difference between the energy flux for
the incident wave u0 = 1 and for the total field u behind the scatterer defined
by eq. (5.85) results in the absorption cross-section

σa = Φ0 − Φ =
∫

(1 − |u(ρ)|2) dρ (5.98)

The sum of these values is the extinction cross-section

σe = σs + σa =
∫ (|u(ρ) − 1|2 + (1 − (|u(ρ)|2) dρ

= −
∫

[us(ρ) + u∗
s(ρ)] dρ (5.99)

Note that, according to the energy conservation law (see eq. (5.75)), the same
expression for the extinction cross-section can be obtained as the interference
flux Φ0s between the incident and scattered fields

−σe = Φ0s =
∫

(u0u
∗
s + u∗

0us) dρ = 2Re
∫
us(ρ) dρ (5.100)

The integrands of eqs (5.97)–(5.100) are nonzero only inside the scatterer
shadow, and every ray ρ = const crossing the scatterer contributes to all cross-
sections independently of each other. Therefore the corresponding scattering,
absorption and extinction coefficients for the rays ρ = const can be defined as

Qs(ρ) = |us(ρ)|2; Qa(ρ) = 1 − |u(ρ)|2; Qe(ρ) = −[us(ρ) + u∗
s(ρ)] (5.101)

Then any cross-section of eqs (5.97)–(5.99) can be represented as the product of
the shadow area

s =
∫
η(ρ) dρ (5.102)

by the corresponding coefficients Q

σ = s〈Q〉 (5.103)

where the angle brackets mean an average over the shadow area.
These coefficients defined by eq. (5.101) have an elegant geometric interpre-

tation shown in Fig. 5.6. For this interpretation, the conventional 2-D plane of
the complex-valued numbers is considered where the axes correspond to the real
and imaginary parts of the numbers. The incident wave u0 = 1 is represented
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Fig. 5.6. Extinction and scattering coefficients for large scatterers.

by the point (1, 0) in this plane. The total field u given by eq. (5.85) for the
ray with ρ = const is represented by a point situated on a circular curve of
the unit radius if there is no absorption, and it is situated inside the unit circle
otherwise. The scattered field as given by eq. (5.87) is represented in this circle
as a difference of two vectors u and u0 shown in Fig. 5.6. Namely, the scattered
wave us is represented by the vector with the origin in the point (1, 0) and with
the end in any point within the unit circle. In general, this unit circle and the
vector representation of the scattered field demonstrate quite general geometric
restriction for all possible values of the scattered fields. The quadratic values of
the vectors u and us correspond to the absorption and scattering coefficients due
to eq. (5.101). But the most useful quantity is the linear characteristic of the
vector us since the length of the projection of the vector us on the horizontal
axis demonstrates all possible values for the extinction coefficient.

So, it is readily seen geometrically in Fig. 5.6, that the extinction coefficient
is restricted by the number 4, and, as a result, the extinction cross-section for
any large scatterer cannot exceed the shadow area by more than four times

Qe ≤ 4; σe ≤ 4s (5.104)

The sign of equality takes place for a ray with ρ = const when absorption is
absent and the total field has the phase of π, i.e. u = exp(iπ) = −1; us = −2;
Qe = 4. In other words, the maximum extinction (and scattering) cross-section
σe = 4s is reached only by a transparent plane-parallel plate producing the phase
shift of (2N + 1)π, where N is an integer.

Let us prove that this diversity of the extinction cross-sections from zero
to the quadruplicate shadow area is caused by interference between the shadow-
forming and refracted fields. For this purpose, the decomposition of the scattered
wave into the shadow-forming and refracted fields given by eq. (5.83) should
be inserted in the initial decomposition of the fluxes given by eq. (5.71). This
insertion results in the following equations
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σs = Φs = Φh + Φr + Φhr (5.105)
−σe = Φ0s = Φ0h + Φ0r (5.106)

We recall that for any superposition of waves, both the fluxes of the wave con-
stituents and their interference fluxes are the conservative values that do not
depend on distance from a scatterer. So, calculation of the fluxes by use of the
simple analytical equations obtained for the near zone proves to be an effective
method for an analytical study.

The first terms in eqs (5.105) and (5.106) concerning the shadow-forming field
are immediately obtained. They equal to the single and double shadow area due
to eqs (5.97) and (5.100), respectively, where the scattered field is replaced by
the shadow-forming field

σh = Φh =
∫
η(ρ) dρ = s (5.107)

Φ0h =
∫

(u0u
∗
h + u∗

0uh) dρ = −2
∫
η(ρ) dρ = −2s (5.108)

Note that the result of eq. (5.108) can be also simply obtained from the wave-
zone field if the forward-scattering amplitude resulting from eq. (5.95)

fh(n0,n0) = is/λ (5.109)

is substituted in the optical theorem given by eq. (5.76).
Calculation of the interference fluxes Φhr and Φ0r is reduced to integration of

the refracted field over either the shadow domain or the whole plane, respectively.
Since the refracted field in eq. (5.90) is nonzero only in the shadow domain, we
have the same integrands but with the opposite signs. So, we obtain

Φhr = −Φ0r (5.110)

and only one new quantity should be considered

Φhr = −2Re
∫
ur(ρ) dρ = −2

∫
e−χ(ρ) cosϕ(ρ)η(ρ) dρ (5.111)

Magnitudes of this interference flux Φhr falls in the following interval

−2s ≤ Φhr ≤ 2s (5.112)

Let us go to the flux of the refracted field Φr that can also be called the
scattering cross-section for the refracted field σr. According to eqs (5.90) and
(5.97), it is equal to the shadow area s if there is no absorption. Absorption
decreases the flux by the absorption cross-section σa, and we get

Φr + σa = σr + σa = s (5.113)

where these quantities are restricted by the inequalities
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0 ≤ σr ≤ s; 0 ≤ σa ≤ s (5.114)

Substitution of eqs (5.112)–(5.114) in eq. (5.105) gives the desired intervals for
the diversities of the scattering σs and extinction σe = σs + σa cross-sections

0 ≤ σs ≤ σe ≤ 4s (5.115)

Thus, this is only the alternating-sign interference flux between the refracted and
shadow-forming fields Φhr that can either decrease the scattering cross-section to
zero or, on the other hand, increase it up to 4s. The case where the interference
flux Φh is equal to zero will be called the basic situation. Here we have

Φhr = Φ0r = 0; σe = σh + σr + σa = 2s (5.116)

In the basic situation, only the shadow-forming field interferes with the incident
wave providing the double shadow area for the extinction cross-section. Half of
this energy is carried out with the shadow-forming field, and the other half is
shared between the refracted field and absorption.

If the interference flux Φhr is not zero, it changes both the scattering cross-
section due to eq. (5.105) and, correspondingly, the extinction cross-section due
to eqs (5.106) and (5.110). Two extreme cases occur. If the scatterer is a plane-
parallel plate shifting the phase of the refracted field to (2N + 1)π, where N is
an integer, this phase coincides with the phase of the shadow-forming field. As
a result, these two waves are coherently added, the amplitude of the scattered
field is doubled, the intensity is quadrupled, and the scattering cross-section
reaches its maximum of 4s. In the opposite extreme case, the phase shift is
2Nπ. Here the shadow-forming and refracted fields are in the antiphase states,
and the scattered field and, correspondingly, the scattering cross-section become
equal to zero. This is a case of an absolutely transparent scatterer that does not
disturb the initial wave and, consequently, does not create scattering. Note that
the cases of Φhr = 0 and Φhr �= 0 were called by van de Hulst the normal and
anomalous diffraction, respectively. Therefore, the straight-ray approximation is
often referred to as the anomalous diffraction approximation.

Though we have considered above only optically soft scatterers, all these
qualitative results are valid for optically hard scatterers as well. An optically
hard scatterer of irregular shape shown in Fig. 5.4(b) creates the refracted field
that is not described by eq. (5.90). Nevertheless, it is obvious that the interference
of such a field with the shadow-forming field in the near zone must be a quickly
oscillating function within a plane x = const giving Φhr = 0 and Φ0r = 0. It
just corresponds to the basic situation described by eq. (5.116). Moreover, the
scattering cross-section for the refracted field is also equal to s without absorption
and obeys eq. (5.113) with absorption, as follows from the energy conservation
law. So, only the shadow-forming field provides the extinction cross-section for
such scatterers.

On the other hand, the crystal particles shown in Fig. 5.4(a) can create
plane-parallel beams of the refracted field that propagate in the forward direc-
tion. These beams interfere with the shadow-forming field resulting in certain
deviations from the basic situation given by eq. (5.116) as was discussed for
optically soft scatterers. These deviations obey eq. (5.115) as well.
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5.3 Multiple scattering of waves

5.3.1 General equations

Let us decompose a scatterer of the general wave scattering equation (5.47) into
an arbitrary sum

V =
∑

Vj (5.117)

and assume that the solution to the wave scattering equation for every scatterer
Vj

(L− Vj)Ψj = 0 (5.118)

is known either as a certain analytical expression for the field Ψj or as the
T -matrix of eq. (5.65) that determines the field by the equation

Ψj = Ψ0 + L−1TjΨ0 (5.119)

Within this assumption, the equation(
L−

∑
Vj

)
Ψ = 0 (5.120)

is considered as the general equation for multiple scattering of waves.
We emphasize that the decomposition into the scatterers in eq. (5.117) can

be arbitrary. For example, a scatterer of a complicated shape can be cut into a
set of its parts that do not overlap each other in space. On the other hand, a cer-
tain inclusion within a scatterer can be considered as a disturbance overlapping
the basic scatterer, and so on. However, the main applications for the multiple
scattering equations appear for the particulate media that consist of a great
number of discrete scatterers not overlapping in space. For example, they are
the numerous problems of light scattering in astrophysics, atmospheric optics,
and biomedical optics. In quantum mechanics, they are the problems of particle
propagation in the matter, and so on.

As the wave scattering equation (5.47) for one scatterer was represented in
the form of an integral equation (5.59) called the Lippmann–Schwinger equation,
eq. (5.120) for multiple scattering can be easily represented as integral equations,
too. Certain algebraic transforms result in the following system of the operator
or integral equations ⎧⎪⎨

⎪⎩
Ψ = Ψ0 +

∑
j L

−1TjΨ̃j

Ψ̃j = Ψ0 +
∑

l 
=j L
−1TlΨ̃l

(5.121)

If the number of scatterers in the decomposition of eq. (5.117) is equal to N , the
number of equations (5.121) is N + 1. In quantum mechanics, eqs (5.121) are
called the theory of multiple scattering by K. Watson.

At first glance, the system of the integral equations looks complicated. But
factually, it has a very simple physical meaning, and it is quite convenient for
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both physical interpretation and calculations. Indeed, a substitution of the sec-
ond line equations of (5.121) to the first line leads to the series

Ψ = Ψ0 +
∑

j

L−1TjΨ0 +
∑
l 
=j

∑
j

L−1TlL
−1TjΨ0

+
∑
n
=l

∑
l 
=j

∑
j

L−1TnL
−1TlL

−1TjΨ0 + . . . (5.122)

This is the series of multiple scattering of waves that represents the field as a
superposition of waves with all possible ‘histories’. The second term of eq. (5.122)
is the single scattering field that is created by scattering of the incident field on
every scatterer. The next term is the double scattering field that is created by the
scattering of every component of the single scattering field on other scatterers,
and so on. It is obvious that the neighbor indexes m of the matrices Tm in any
term of the series (5.122) should be different. But the same scatterer can appear
again after, for example, the nearest neighbor scatterer. Such terms describe the
repeated scattering of waves by the same scatterers. These terms appear in the
triple and higher-order scattering terms.

In physics, it is conventional to represent series such as eq. (5.122) by certain
diagrams. For example, in quantum mechanics, the famous Feynman diagrams
are used. A lot of different kinds of diagrams are used in both classical and
quantum-mechanical statistical physics. In this chapter, we prefer to use in par-
allel both the Feynman diagrams and the other, more intuitive, diagrams that
can sometimes be more illustrative for our purposes. So, the series of eq. (5.122)
is represented by the following diagrams

(5.123)

Here, the dots mean the scatterers, i.e. the Tj-matrices, and the lines mean prop-
agation between the scatterers described by the operator L−1. The coincidence
of scatterers, i.e. of indexes of the Tj-matrices, should be shown in the Feyn-
man diagrams by additional dotted lines, while the problem of distinguishing
the same scatterers does not appear for the second kind of diagrams at all.
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We emphasize that, in this chapter, every diagram will reflect only the struc-
ture of the terms. Any numerical coefficients and symbols depending on a context
will be omitted. For example, a given diagram can be treated either as a field
scattered by a fixed set of scatterers or as a sum of all similar fields averaged over
their spatial configuration, where the signs of sum and averaging are omitted,
etc.

The series representations of the multiple scattering field by eqs (5.122) or
(5.123) also clarify the physical meaning of eqs (5.121). Indeed, the first line
of eqs (5.121) means that the wave coming to an observation point consists of
the incident wave and a superposition of the waves leaving all scatterers. Every
wave leaving a scatterer is created by the waves coming to the scatterer. Their
superposition is called the exciting wave, and this value is denoted in eq. (5.121)
with the tilde symbol. In their turn, the exciting waves are formed by the waves
leaving other scatterers that is just written by the second line of eqs (5.121). To
clarify the conception of the exciting field in more detail, one could write down
a series for these values like the series of eq. (5.122).

By the way we note that the Born series of eq. (5.63) can be applied directly
to the original equation (5.117). Then, after gathering the terms combined by
the T -matrix of eq. (5.66) for every scatterer, we arrive at the same multiple
scattering equations of eqs (5.121) or (5.122).

The quadratic values for the multiply scattered fields defined by eqs (5.13)
and (5.14) are readily obtained by termwise multiplication of the series of (5.122)

Ψ ⊗ Ψ∗ = Ψ0 ⊗ Ψ∗
0 + Ψ0 ⊗

∑
j

(L−1TjΨ0)∗ + Ψ∗
0 ⊗
∑

j

L−1TjΨ0 + . . . (5.124)

This series is convenient to represent by diagrams as well, denoting the complex-
conjugate factor by the lower part. Such typical diagrams of both kinds are shown
below

(5.125)

Here, there is a simplest class of the diagrams where the complex-conjugate
co-factors do not contain common scatterers like diagrams 1 and 2. The other
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diagrams 3–6 include common scatterers that are connected in the Feynman
diagrams by the dotted lines as well.

If the complex-conjugate co-factors in eq. (5.125) are certain different fields,
the diagrams correspond factually to interference between the fields. There are
also the terms that are created by multiplication of any field by the same but
complex-conjugate field as in the diagrams 4 and 5. These diagrams correspond
to the quadratic value of the given fields. So, they describe multiple scattering
as successive scattering acts within only quadratic field values. Interference is
not accounted for in these diagrams at all. For short waves, where the interfer-
ence phenomena are often negligible, these terms become predominant. Thus,
diagrams such as number 4 will play a main role hereinafter. Because of their
specific Feynman diagram views, terms such as diagram 4 are called ladder dia-
grams.

5.3.2 Two limiting cases for multiple scattering of waves

In this chapter, scattering media consisting of a great number of scatterers non-
overlapping in space will be of main interest. We consider two limiting cases that
are most intuitive.

In the first limiting case shown in Fig. 5.7(a), the re-scattering among the
scatterers is carried out by means of the divergent spherical waves. This situation
arises for both small (ka 	 1) and large (ka � 1) scatterers. In particular, if
the scatterers are small, the scattered waves are transformed into the spherical
wave of eq. (5.69) at rather short distances from the scatterers r � λ � a. So,
the distance between the scatterers, d, should obey the inequality kd � 1. For
large scatterers, the distance between the scatterers, d, should satisfy the more
severe condition: d � ka2.

The second limiting case corresponds to large scatterers situated in the near
zones of each other. This case is subdivided by Figs 5.7(b) and 5.7(c) for optically
soft and optically hard scatterers, respectively. It is instructive to consider the

a) b) c)

Fig. 5.7. Limiting cases of multiple scattering of waves. (a) Scatterers are positioned
in each others’ wave zones. (b) Large optically soft scatterers are positioned in each
others’ near zones. (c) The same for large optically hard scatterers.
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case of optically soft scatterers, where the problem of multiple scattering is solved
analytically in the straight-ray approximation. Within this approximation, a set
of optically soft scatterers is equivalent to a set of the amplitude–phase screens
overlapping each other in a projection onto an observation plane x = const

u(x,ρ) = ei
∑

Aj(ρ) (5.126)

according to eqs (5.85) and (5.86). Following the ideology of multiple scattering
of waves, we have to introduce the field scattered by the single jth scatterer

usj(ρ) ≡ ωj(ρ) = eiAj(ρ) − 1 (5.127)

where the new notation ωj for the scattered field is used to avoid double indexes.
A substitution of eq. (5.127) into eq. (5.126) results in the following sum

u(x,ρ) =
∏

(1 + ωj(ρ))

= 1 +
∑

j

ωj(ρ) +
∑
l>j

∑
j

ωl(ρ)ωj(ρ)

+
∑
m>l

∑
l>j

∑
j

ωm(ρ)ωl(ρ)ωj(ρ) + . . . (5.128)

This sum is just the series of multiple scattering given by eq. (5.122) for this
specific case. Indeed, every term is easily interpreted if the longitudinal positions
of the scatterers xj are taken into account. Thus, the scattered field ωj is nonzero
only in the shadow domain behind the jth scatterer, i.e. only for x > xj . Then
this field is incident on the next scatterers, producing the double scattered field
ωlωj . This double-scattered field appears and propagates behind the lth scatterer
for x > xl > xj , and so on.

Of course, all diagrams of eq. (5.123) represent these multiple scattering
waves of eq. (5.128) as well, but the specificity of this case leads to certain pecu-
liarities. In particular, the waves with repeated scattering by the same scatterer
become impossible, so the last diagram of eq. (5.123) vanishes. Also, the number
of addends in eq. (5.128) is limited by the number of scatterers. For example,
two scatterers produce here only single- and double-scattered waves, while in
the case shown in Fig. 5.7(a), two scatterers create waves of arbitrary scattering
multiplicities because of repeated scattering by them.

For optically hard scatterers shown in Fig. 5.7(c), eq. (5.128) is valid only
for the shadow-forming fields determined by eq. (5.89). In this case, the total
field u(x,ρ) is equal to zero if a ray ρ = const is crossed by one or by several
scatterers, and equals 1 otherwise. Formally, the substitution of uj = −ηj into
eq. (5.128) turns out every constituent of the sum into ±1 that leads to the final
total value of zero or one.

Thus, we have obtained an important physical conclusion: in the language
of wave scattering theory, a shadowing by a large scatterer is just a scattering
action. Consequently, a shadowing by N large scatterers corresponds to multiple
scattering of waves, N being the maximum multiplicity of the scattering.
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5.4 Multiple scattering by uncorrelated scatterers

5.4.1 Uncorrelated scatterers

One of the most important objects considered in physics is an ensemble of a great
number of particles. In particular, matter consisting of molecules is an obvious
example of such ensembles. Various particulate media consisting of macroscopic
particles surround us as well. They are the interstellar dust in astrophysics,
droplets of clouds in the atmosphere, powders used in technologies, and so on.
These particles play the role of scatterers for a wave incident on the ensemble.

The main characteristics of such scatterer ensembles is their number density c

c = N/Q = d−3 (5.129)

where N is a number of scatterers in a volume Q. Instead of the number density,
the average distance between the scatterers, d, defined by eq. (5.129) will be often
used. Usually centers of scatterers are not situated in space closer than a certain
distance a because of certain repulsive forces. This distance will be treated as
a scatterer size. In addition, other long-distance forces can exist, resulting in
long-distance correlations of scatterer centers. If the long-distance correlations
are negligible and the scatterer sizes obey the condition a 	 d, i.e.

ca3 	 1 (5.130)

the scatterers can be considered as spatially independent or uncorrelated objects.
For example, a rarefied gas in physics corresponds to the uncorrelated objects.
On the contrary, the theory of dense gases demands taking the short-distance
correlation into consideration, and the theory deals with the values of the order
of ca3.

Turning to the problem of multiple scattering of waves, we note that the
multiple scattering of waves for a fixed configuration of a large number of scat-
terers is of no interest. On the one hand, such a numerical solution for a large
number of scatterers is hardly feasible, even for modern computers. On the other
hand, the solution obtained would be overloaded with the details that are of in-
terest for this given configuration only, and it would be scarcely useful for both
theoretical consideration and practical applications. Therefore, the usual proce-
dure in statistical physics is to consider the values that are averaged over all
configurations.

In statistical physics, an ensemble of N scatterers is determined by the prob-
ability density P (rN ) for its configurations rN = (r1, r2, . . . , rN ), where rj are
the scatterer centers. The term of uncorrelated scatterers means their statistical
independence, i.e.

P (rN ) = p(r1)p(r2) . . . p(rN ) (5.131)

where p(rj) = 1/Q for the homogeneous distribution within the volume Q.
It is worth noting that in an averaging over scatterer positions according to eq.
(5.131), it is formally assumed that the scatterers can freely penetrate each other.
Sometimes, calculations accounting for such fictitious penetration can result in
certain artifacts.
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5.4.2 Average or coherent field

Now, the averaged multiple scattering field 〈Ψ〉 for the ensemble of uncorrelated
scatterers can be calculated by averaging the series (5.122) term by term. The
averaging of the single-scattering field is reduced to the following integral

〈Ψ〉1 =

〈∑
j

L−1TjΨ0

〉
=
N

Q

∫
L−1T (rj)Ψ0 drj (5.132)

Here, the integrand is the field scattered by the jth scatterer with the center
position rj , and the averaging is written down relative to all its positions in the
volume Q. Then, if the scatterers reveal a distribution over their sizes, shapes
and internal structure, this averaging can be readily taken into account after the
integral of eq. (5.132) is calculated.

To begin with, a scalar plane wave ψ0 = exp(ikx) is assumed to be incident
on a scattering medium occupying the half-space x > 0. We consider the first
limiting case shown in Fig. 5.7(a) where the scattered wave is the divergent
spherical wave of eq. (5.69)

〈ψ(r)〉1 = c

∫
eikxj+ik|r−rj | f(n,n0)

|r − rj | drj (5.133)

Similar integrals over a surface are often considered in the diffraction theory
both in optics and radiophysics, when one calculates diffracted fields according
to the Huyghens principle. For our purpose, consider the plane xj = const and
use the new variables: |r − rj |2 = (x− xj)2 + (ρ − ρj)2 = p2 and φ is the polar
angle in the plane, so that dρj = pdpdφ. Then the integral of eq. (5.133) over
the plane xj = const is taken analytically

∫
eik|r−rj | f(n,n0)

|r − rj | dρj =
∫ 2π

0
dφ
∫ ∞

|x−xj |
eikpf(n,n0) dp

= −2π
ik

eik|x−xj |f(±n0,n0) (5.134)

A justification of the final expression is as follows. The internal integral of the
second part of eq. (5.134) is well interpreted in the classical diffraction theory
by contributions from the Fresnel zones of various orders. As known, these zones
compensate each other, and only a contribution from the central zone is of impor-
tance. Mathematically, it corresponds to the procedure where the antiderivative
from the function exp(ikp) should be taken only at the lower limit of integration
p = |x − xj|. In our case, the scattering amplitude f can be considered as a
constant within the central Fresnel zone. So, the function f does not prevent us
from this procedure, and the final result of eq. (5.134) is justified.

It is worth noting that the same procedure can also be used for any curved
surface. As a rule, such integrals are calculated both in optics and radiophysics
by the method of stationary phase. But the stationary phase method is rather
cumbersome for the 2-D case, unlike our procedure resulting in eq. (5.134). Also,
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it is interesting to note that it is just eq. (5.134) that proves the optical theorem
of eq. (5.76).

Substitution of the expression (5.134) into eq. (5.133) yields

〈ψ(r)〉1 = cµxeikx +O(cλ2f(−n0,n0)) (5.135)

where
µ = iλf(n0,n0) (5.136)

and the scattering amplitude f in the forward direction is averaged over any
scatterer distribution of their internal parameters: sizes, shapes, orientation, etc.

The first term of eq. (5.135) takes into account contributions from the for-
ward part of the scattering medium xj < x. Here, the exponential factor in
the integral of eq. (5.133) disappears and all layers xj = const yield the same
contributions. For the backward part of the scattering medium x < xj , on the
contrary, the exponential factor is not compensated. The quickly oscillating ex-
ponential function sharply decreases the magnitude of the integral resulting in
the factor of order of the wavelength λ instead of the macroscopic factor x for
the previous case. So, the contribution from the backward part of the scattering
medium is very small and it is denoted in eq. (5.135) only by its order.

Remembering that statistical physics of sparse particulate ensembles is based
on the small parameter ca3, we see that another dimensionless parameter appears
for the scattered waves. Since the scattering amplitude in the backward direction
appearing in eq. (5.135) is of the order of either the wavelength λ for small
scatterers or the scatterer size a for large scatterers, it is expedient to introduce
a new small parameter

cλ3 	 1 (5.137)

The inequality (5.137) is equivalent to the condition λ 	 d. It will be called
the condition of short waves in contrast to the case of the long waves λ � d.
Thus, the conditions both of uncorrelated scatterers (5.130) and of short waves
(5.137) allow us to throw away the last addend in eq. (5.135).

Then an application of these procedures to higher multiplicities of scattering
is reduced to the integration over the longitudinal coordinate within the forward
part of the scattering medium

〈ψ(r)〉2 = eikxcµ

∫ x

0
(cµx′) dx′ = eikx(cµx)2/2! (5.138)

and so on, where the condition N � 1 is also used. The series of these terms
forms the exponential function

〈ψ(r)〉 =
∑

〈ψ(r)〉n = eikx
∑

(cµx)n/n! = eikx+cµx (5.139)

In this series, the terms with the repeated scattering by the same scatterer like
the last diagram of eq. (5.123) are not included. But it is easily seen from these
diagrams that the integrands of such terms contain additionally the exponential
functions quickly oscillating with the distance between the scatterers. So, such
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terms prove to be negligible under the conditions of eqs (5.130) and (5.137) like
the last term of eq. (5.135).

These results are directly generalized for the incident electromagnetic wave
E0(r) = E0 exp(ikx). Indeed, the scattered electromagnetic field of eq. (5.70)
is included in the previous calculations by its vector scattering amplitude in the
forward direction Es(n0,n0). A transformation of polarization of the incident
wave E0 into polarization of the scattered field Es is defined by the 2 × 2
scattering matrix S

Es(n,n0) = S(n,n0)E0 (5.140)

In eqs (5.133)–(5.135), the scalar scattering amplitude in the forward direction
f(n0,n0) is replaced by the vector scattering amplitude S(n0,n0)E0 that does
not change the calculations. For the nth order of scattering, the matrix factor
Sn(n0,n0) appears in the terms of the sum (5.139) instead of the factor fn. As
a result, the sum of eq. (5.139) is replaced by the similar matrix equation

〈E(r)〉 = eikx+icλS(n0,n0)xE0 (5.141)

Thus, the averaged electromagnetic field changes during its propagation not only
its phase and amplitude as the scalar field of eq. (5.139) but also its polarization
state.

Now we go to the second limiting case where large scatterers are situated in
the near zones of each other as shown in Fig. 5.7(b). Here, an averaging termwise
of the series of eq. (5.128) is much simpler. Indeed, the single scattered field is
equal to

〈u(x,ρ)〉1 = cx

〈∫
ωj(ρ − ρj) dρj

〉
= cx

∫
ωj(ρ) dρ = ciλf(n0,n0)x

(5.142)
where eq. (5.92) is used to get the final expression. It is remarkable that the
analytical expression for the single scattered field proves to be the same for both
eqs (5.135) and (5.142). Analogously, the higher-order terms completely coincide
for the both limiting cases, including the average field of eq. (5.139).

For evidence, let us distinguish the important case of the shadow-forming
fields ωj = −ηj . In accordance wiht the straight-ray approximation, the averaged
field is obtained as a result of shadowing a ray by statistically independent and
absolutely absorbing screens corresponding to scatterer projections. As a result,
the series (5.128) yields

〈u(x,ρ)〉 = e−csx (5.143)

Here, s is the shadow area averaged over the statistical ensemble. Equation
(5.143) is valid both for optically soft scatterers with chaotic phase shift in the
interval [0, 2π] and for optically hard scatterers. If such scatterers are situated
in the near zone of each other as shown in Figs 5.7(b) and 5.7(c), the refractive
fields are quickly oscillating functions in the transverse direction as compared to
the shadow-forming fields. Consequently, the contribution of the refracted fields
to the averaged field is negligible according to the integrals such as (5.142). On
the other hand, if these scatterers are situated in the wave zones of each other,



5 Multiple scattering of short waves 219

as shown in Fig. 5.7(a), the scattering amplitudes of the refracted fields in the
forward direction are also negligible as compared to that of the shadow-forming
fields as seen from eqs (5.91)–(5.95). Then eq. (5.143) can be obtained as a
particular case of eq. (5.139) by substitution of eq. (5.109) for the scattering
amplitude of the shadow-forming field. We recall that the same possibility for
neglecting the refracted fields was discussed also in section 5.2.6.3 in detail.

The complete coincidence of the results obtained for two opposite limiting
cases shown in Figs 5.7(a), 5.7(b) and 5.7(c) allows us to state that the analytical
solution for the averaged field given by eq. (5.139) is quite general and it does
not depend on either scatterer sizes or distances between the scatterers.

5.4.3 Multiple scattering of short and long waves

The independence of the analytical equations for the averaged field on sizes,
refractive indexes and distance among scatterers can be explained by means
of more general physical concepts. We can state that any scattering medium
proves to be a continuous medium relative to the averaged field. This averaged-
field-continuous medium is described by an effective refractive index that can be
derived from the individual properties of scatterers. This value will be called the
bulk refractive index.

In particular, we see that the averaged field of eq. (5.139) corresponds to the
following bulk refractive index

m = n+iκ = 1+cµ/ik = 1+c2πk−2Re f(n0,n0)+ic2πk−2Im f(n0,n0) (5.144)

It is important that this continuous medium proves to be optically soft and
absorbing. The optical softness (|c2πk−2 Re f(n0,n0)| 	 1) is provided mainly
by the condition of short waves λ 	 d. In addition, the condition of uncorre-
lated scatterers a 	 d is accounted for since the inequality |Re f(n0,n0)| ≤ a
is valid for both small and large scatterers. The imaginary part of the bulk re-
fractive index describing absorption of incident waves in the scattering medium
is, however, essential. We emphasize that this absorption is presented for both
absorbing and non-absorbing scatterers since it corresponds to an extraction of
energy from the averaged or coherent wave for creation of divergent scattered
waves.

It is important that eq. (5.144) allows us to generalize all the results obtained
for a particular case of the incident plane wave and of the half-space scattering
medium to any kind of incident waves and any shape and internal structure of
scattering media. Indeed, because of the optical softness of such effective media,
the straight-ray approximation (5.11) or its generalization for other kinds of
incident waves can be applied to calculate the averaged field inside a scattering
medium of any shape and internal structure. In particular, the averaged field
for a point source of radiation will be described by the same divergent spherical
wave where the additional complex-valued phase appears along a ray due to
eq. (5.144). This result could be obtained by the previous procedures of eq.
(5.134) applied to the incident spherical wave, but the conception of the effective
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scattering medium allows us to avoid these calculations. So, the averaged field
can be readily written inside the scattering medium for any radiation source.
As for the observation points outside the scattering medium, the standard laws
of wave propagation in free space can be applied, as we used this approach to
describe scattering by large optically soft scatterers in section 5.2.

The averaged field is also called the coherent field. In general, if the scattered
waves of the series of eq. (5.122) do not change the phase shifts among them when
a configuration of the statistical ensemble is changed, they are added coherently.
Otherwise, when the phases among them are chaotically shifted in the interval
[0, 2π], we get incoherent adding. In the case shown in Fig. 5.7(a), the phases of
the scattered waves would only not shifted at scattering in the forward direction.
This fact was discussed in detail in section 5.2 when the optical theorem was
derived. So, we conclude that, for the incident plane wave, the coherent field
at a spatial point r = (x,ρ) is formed only by a superposition of those waves
that are coming from the scatterers positioned along a ray ρ = const at xj < x.
Factually, eqs (5.135), (5.138), and (5.139) prove this fact mathematically.

In the case of large scatterers shown in Figs 5.7(b) and 5.7(c), the forward
scattering appears because of the shadowing of the incident wave that is demon-
strated by eqs (5.142) and (5.143). It is curious to discuss the following paradox:
if, say, large scatterers of the refractive index of n are closely packed in space
resulting in a large volume density of the scatterers, one can suppose that the
bulk refractive index should approach the same magnitude of n. On the other
hand, eq. (5.144) states that this continuous medium should be optically soft.
To overcome this discrepancy, consider the case shown in Fig. 5.7(b). Here, if
the phase shifts along the rays ρ = const crossing one or more scatterers are
chaotically distributed within the interval [0, 2π], these scattered waves do not
contribute to the coherent field independently of the volume density of the scat-
terers. Only the rays ρ = const that are not crossed by scatterers contribute
to the coherent wave resulting in eq. (5.143) for the shadow-forming fields. The
velocity of these waves coincides with the velocity in free space, so the real part
of the bulk refractive index of eq. (5.144) is equal to 1. Thus, these effective
media prove to be optically soft in full accordance to eq. (5.144).

It is interesting to compare multiple scattering of short (cλ3 	 1) and long
(cλ3 � 1) waves. For the long waves, the terms of the series of eq. (5.122)
corresponding to repeated scatterings by the same scatterer become, on the
contrary, essential. Indeed, the phase shifts between the waves rescattered by
any neighbor scatterers are small, and these waves are added coherently. The
repeated scattering by the same scatterers results in a considerable delay of the
initial incident wave inside the medium. Thus, this continuous medium is not
already optically soft and its real part of the refractive index can essentially
deviate from the magnitude of 1. The repeated scattering by the same scatterers
is determined by the scattering amplitude in the backward direction f(−n0,n0).
This is the reason that the both values f(n0,n0) and f(−n0,n0) appear in the
known equations for the bulk refractive index that are not considered here.

In any averaged quadratic value of fields, one can separate a part formed by
only the averaged or coherent field
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〈Ψ ⊗ Ψ∗〉c = 〈Ψ〉 ⊗ 〈Ψ∗〉 (5.145)

called the coherent part. Then the quadratic value is divided into its coherent
and incoherent parts

〈Ψ ⊗ Ψ∗〉 = 〈Ψ ⊗ Ψ∗〉c + 〈Ψ ⊗ Ψ∗〉ic (5.146)

For example, compare an interaction of visible light with either a pane of glass
or a cloud in the sky. Here, the scatterers are either atoms in the glass or water
drops in the cloud, and they correspond to the conditions of long and short
waves, respectively. For the glass, we watch only well-ordered light reflected from
or transmitted through the glass. It is just the coherent part; here incoherent
scattering is too small to be detected. On the contrary, we watch a quite different
chaotic pattern for the light reflected from the cloud that is formed by incoherent
scattering. It is easy to find a lot of similar examples distinguishing multiple
scattering of long and short waves in acoustics, quantum mechanics, etc.

5.4.4 Exponential extinction law

In this section, we consider the coherent part for the energy flux density defined
by eqs (5.34) and (5.35). For the averaged scalar field of eq. (5.139), its Wigner
function can be replaced by the specific intensity (see Eq. 1.36). The specific
intensity is directed only along the x-axis, and it is conventionally called the
intensity Ic(x). Thus, eq. (5.139) yields the exponential decrease of the intensity
with distance

Ic(x) = 〈|j(r)|〉c = |〈ψ(r)〉|2 = ec(µ+µ∗)x = e−cσex = e−τ(0,x) (5.147)

where the optical theorem given by eq. (5.76) is used. The exponent τ is called
the optical depth. In general, the optical depth is defined as the integral over
the straight segment between two points r and r′

τ(r, r′) =
∫ r′

r

cσe dl (5.148)

where the both values c(r) and σe(r) can be certain spatial functions if a scat-
tering medium is inhomogeneous.

Equation (5.147) is the fundamental exponential law for extinction of any
short-wave radiation in scattering media. For example, it is true for penetration
of high-energy elementary particles such as electrons, neutrons, etc. in matter.
In optics, it is connected with the names of Bouguer, Lambert, and Beer.

The exponential extinction law obeys the following differential equation(
d
dx

+ α
)
I(x) = 0 (5.149)

where α = cσe. In this equation, the value α can be treated as a probability
to cross the ray in any point of the observation path x by a scatterer with the
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transversal area of σe. So, the intensity I has a physical meaning of the proba-
bility for a corpuscle to reach the point x without a collision with scatterers. In
other words, the value I describes the flux of the corpuscles that did not undergo
any collisions. So, the value 1/α is called the averaged free path. From the point
of view of the wave scattering theory, on the other hand, the exponential law is
the result of interference of the incident wave with a lot of waves scattered in
the forward direction along the ray.

We would like to emphasize that the differential equation (5.149) implies
that scatterers cover the ray independently of each other. This independence is
provided, on the one hand, by the condition of uncorrelated scatterers ca3 	 1
of eq. (5.130). On the other hand, the additional condition a 	 x is necessary,
otherwise scatterers with sizes larger then the observation path x will not result
in the extinction cross-section. Thus, the exponential extinction law is true if
the scatterers covering a propagation ray are not only statistically independent
but they are also small as compared to the observation path.

For the transverse electromagnetic plane waves, the quadratic values describe
not only energy–flux density called intensity but also three additional parameters
accounting for polarization. To begin with, we indicate the definition of the
direct products for 2-D vectors and matrices. We remind that the direct product
results in 4-D vectors and matrices because of the doubling dimensionality that
was discussed in section 5.1.4

a ⊗ b∗ =
(
a1
a2

)
⊗
(
b∗1
b∗2

)
=
(
a1b

∗

a2b
∗

)
=

⎛
⎜⎜⎝
a1b

∗
1

a1b
∗
2

a2b
∗
1

a2b
∗
2

⎞
⎟⎟⎠

A ⊗ B∗ =
(
A11 A12
A21 A22

)
⊗
(
B∗

11 B∗
12

B∗
21 B∗

22

)
=
(
A11B

∗ A12B
∗

A21B
∗ A22B

∗

)
=

=

⎛
⎜⎜⎝
A11B

∗
11 A11B

∗
12 A12B

∗
11 A12B

∗
12

A11B
∗
21 A11B

∗
22 A12B

∗
21 A12B

∗
22

A21B
∗
11 A21B

∗
12 A22B

∗
11 A22B

∗
12

A21B
∗
21 A21B

∗
22 A21B

∗
21 A22B

∗
22

⎞
⎟⎟⎠ (5.150)

For the transverse electromagnetic waves determined by the complex-valued 2-D
vectors E = (E1, E2), the 4-D vectors defined by eq. (5.150) will be denoted as
J = E ⊗ E∗. Now the coherent part of this quadratic value Jc can be obtained
from the 2-D matrix equation (5.141) for the averaged field. In this way, the
general property of the direct products (AB)⊗(CD) = (A⊗C)(B⊗D) discussed
in section 5.1.4 is used. Besides, we use the equation

(exp A) ⊗ (exp B) = exp[(A ⊗ 1) + (1 ⊗ B)] (5.151)

where 1 is the 2-D unit matrix (1jl = 1 for j = l and 1jl = 0 for j �= l). Equation
(5.151) can be checked, for example, by the Taylor series. So, we get

Jc(x) =
(
eiλcxS0E0)⊗

(
e−iλcxS∗

0E0∗)
=
(
eiλcxS0 ⊗ e−iλcxS∗

0

)(
E0 ⊗ E0∗)

= eiλcx(S0⊗1−1⊗S∗
0)
(
E0 ⊗ E0∗)

= eiλcx(S0⊗1−1⊗S∗
0)J0 (5.152)
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Here S0 = S(n0,n0) is the 2-D scattering matrix given by eq. (5.140) that is
taken in the forward scattering direction.

Instead of the complex-valued 4-D vectors J , the real-valued 4-D vectors are
more convenient. In particular, the well-known Stokes vector-parameters I =
(I1, I2, I3, I4) are conventional that are determined by the following equations

I = DJ

where

D =

⎛
⎜⎜⎝

1 0 0 1
1 0 0 −1
0 −1 −1 0
0 −i i 0

⎞
⎟⎟⎠ D−1 =

1
2

⎛
⎜⎜⎝

1 1 0 0
0 0 −1 i
0 0 −1 −i
1 −1 0 0

⎞
⎟⎟⎠

I1 = 〈|E1|2 + |E2|2〉
I2 = 〈|E1|2 − |E2|2〉
I3 = −〈E1E

∗
2 + E∗

1E2〉
I4 = −i〈E1E

∗
2 − E∗

1E2〉 (5.153)

For the Stokes vectors, any matrix A transforming the vectors J should be
replaced by the matrix: A′ = DAD−1. So, the coherent part of the Stokes
vector is found from eq. (5.152) as the following 4-D matrix equation

Ic(x) = e−cxNI0 (5.154)

where the 4-D matrix N called the extinction matrix, describes both extinction
and transformation of polarization by one scatterer. The extinction matrix is
determined by the elements S0jl of the 2-D scattering matrix S0 as follows

N= −D[iλ(S0⊗ 1− 1⊗ S∗
0)]D

−1 =

= λ

⎛
⎜⎜⎝

Im (S0
11 + S0

22) Im (S0
11 − S0

22) −Im (S0
12 + S0
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12)
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22)

⎞
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(5.155)

Generally speaking, the scalar exponential extinction of eq. (5.147) for the
intensity is not already true for the intensity I1 of the electromagnetic waves.
The reason for this is that the extinction cross-section depends on the polariza-
tion state according to eq. (5.77), but the polarization state is changed during
propagation. Nevertheless, the matrix equation (5.154) written in the differential
equation form (

d
dx

+ cN
)

Ic(x) = 0 (5.156)

is similar to the scalar differential equation (5.149).



224 Anatoli G. Borovoi

5.4.5 Radiative transfer equation

As was shown in section 5.2, every scattering action of a wave consists of two
phenomena. First, the energy is extracted from the incident wave by means of
interference between the incident wave and the wave scattered in the forward
direction. In the case of an ensemble of scatterers, a lot of the multiply scattered
waves take part in the interference. This phenomenon, called coherent scattering,
was studied above. Second, the extracted energy is redistributed over all possible
scattering directions. This is the incoherent scattering. In quantum mechanics,
the terms of the elastic and inelastic scattering are used, respectively. Equation
(5.146) just represents the decomposition of the quadratic values of the fields on
the coherent and incoherent parts.

The incoherent quadratic values of the multiple scattered waves are expedient
to study in the language of the diagrams of eq. (5.125). In eq. (5.125), those
Feynman diagrams that have no links between the upper and lower lines, such
as the diagrams 1 and 2, belong to the coherent part. They have been considered
above. Other diagrams concerning the incoherent part are studied below.

For the beginning, we consider the case shown in Fig. 5.7(a) where at least
a majority of scatterers are positioned in the wave zone of each other. It is
important that in this case any scattered wave-zone fields coming to a next
scatterer can be assumed in the vicinity of the scatterer as plane waves. Then
two ways for calculation of the diagrams are possible. In the first way, any
diagram of eq. (5.125) can be readily written down analytically in the coordinate
representation due to the following approximation

(L−1Tj)rr′ ≈ eik|r−rj |

|r − rj | fj

(
r − rj

|r − rj | ,n0

)
δ(r′ − rj) (5.157)

where rj is the center of the jth scatterer, fj is its scattering amplitude, n0
is a propagation direction of an incoming wave, and δ is the Dirac δ-function.
Then the analytical expression for any diagram containing n scatterers should be
averaged over their configurations rn = (r1, r2, . . . , rn). A number of the waves
described by the same diagram is equal to N !/(N − n)!. In the limit N → ∞,
Q → ∞ at c = const, this factor is reduced to cn. Thus, every scatterer of a
diagram is associated after the averaging with the dimensional factor c.

There is another way to calculate the diagrams of eq. (5.125). Any piece of
a diagram cut out by two vertical lines can be treated as a certain operator in
the six-dimensional space. This space is either two spatial coordinates r1 and r2
for the coherence function or spatial r and velocity p variables for the Wigner
function W (r,p) as was discussed in section 5.1.4. Since multiple scattering in
this case is reduced to re-scattering of plane waves only, the Wigner function
is reduced to the Wigner function W (r,n) depending on five variables, i.e. one
variable can be excluded, and the variable n is treated as a velocity direction.
This Wigner function is similar to the specific intensity I(r,n) defined by eq.
(5.12). Both the specific intensity and Wigner function mean the flux density of
the corpuscles at the point r with the propagation direction n, except the Wigner
function can possess negative values. In such an interpretation, it is obvious that
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a vertical dotted bar of the Feynman diagrams of eq. (5.125) corresponding to
scattering by one scatterer is equal to

〈r,n|Tj ⊗ T ∗
j |r′,n′〉 = δ(r − rj)|fj(n,n′)|2δ(r′ − rj) (5.158)

and the horizontal segments of the Feynman diagrams describe the straight-line
propagation of the quadratic values for a divergent spherical wave given by eq.
(5.69)

〈r,n|L−1 ⊗ L−1∗|r′,n′〉 = δ(n − n′)/|r − r′|2 (5.159)

So, eqs (5.158) and (5.159) give us another way to write down the analytical
expressions for any diagram.

Now let us consider only the sum of the ladder diagrams like diagram 4 of
eq. (5.125). As a first step, we introduce the auxiliary series

〈Ψ ⊗ Ψ∗〉 = (5.160)

According to eqs (5.158) and (5.159), this series, except for the first term, can be
interpreted as multiple collisions of corpuscles. In other words, these diagrams
represent the series of multiple incoherent scatterings. To satisfy the energy
conservation law, the coherent scattering must be included in this series, too.
For this purpose, every diagram of eq. (5.160) is expanded by adding an arbi-
trary number of independent scatterers along all horizontal segments of these
Feynman diagrams. A statistical averaging of such ‘loaded’ horizontal segments
corresponds to the calculation of the coherent field worked out in section 5.4.2.
These calculations summarize the terms with various multiplicities of scattering
that can be also represented by the following diagrams

(5.161)

Thus, the thick horizontal segment means either the coherent field given by eq.
(5.139) or the similar coherent field obtained for a spherical incident wave that
is originated by the jth scatterer with the fixed location rj of its center

〈ψ(r|rj)〉 = e(ik+cµ)|r−rj |/|r − rj | (5.162)

Finally, the series (5.161) expanded for inclusion of the coherent scattering is
represented by the following operator equation

〈Ψ ⊗ Ψ∗〉 = 〈Ψ ⊗ Ψ∗〉 (5.163)

In this equation, the vertical dotted bar corresponds to the operator of eq. (5.159)
as before. The first thick horizontal segments describe the coherent part that is
equal to

〈ψ ⊗ ψ∗〉c = 〈ψ〉 ⊗ 〈ψ∗〉 = e−τ(0,x)δ(n − n0) = I0(r,n) (5.164)
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The second pair of thick segments corresponds to the coherent part obtained
from the spherical wave of eq. (5.162)

〈L−1〉 ⊗ 〈L−1〉∗ = δ(n − n′)e−τ(r,r′)/|r − r′|2 (5.165)

Here, eq. (5.165) differs from the previous eq. (5.159) only by the additional
exponential extinction where the optical depth τ(r, r′) is defined by eq. (5.148).

In an analytical form, eq. (5.163) is written as the integral equation

I(r,n) = I0(r,n) + c
∫
K(r,n|r′,n′)I(r′,n′) dr′ dn′ (5.166)

where the kernel K is readily obtained by multiplication of the operators given
by eqs (5.165) and (5.158)

K(r,n|r′,n′) = δ

(
n − r − r′

|r − r′|
)

e−τ(r,r′)

|r − r′|2 |f(n,n′)|2 (5.167)

This is the fundamental radiative transfer equation in the form of the integral
equation in the space of five variables. Here we have substituted the conventional
specific intensity I(r,n) though the general Wigner function W (r,n) can be
used in this equation as well. Also, the sign of statistical averaging 〈. . . 〉 is
conventionally omitted for the averaged specific intensity.

The kernel K describing the incoherent scattering has a transparent physical
meaning on the level of the corpuscular treatment of radiation. The kernel means
that a corpuscle undergoing a collision with a scatterer changes its propagation
direction with the probability determined by the function |f |2. Then it propa-
gates along a straight ray from the scatterer where the exponential determines a
probability of the next collision, and the factor |r − r′|−2 describes the decrease
of the flux density for a point source.

In practice, the radiative transfer equation is used in other forms that can
be obtained by exclusion of the Dirac delta function from the kernel. For this
purpose, the spherical coordinates originated in the observation point r are intro-
duced. In these coordinates, the current point r’ is determined by the direction
n = (r − r′)/|r − r′| from the current to observation points and by the distance
between the points l = |r − r′| (see Fig. 5.8). The substitution dr′ = l2 dl dn
transforms eq. (5.166) into the integral equation along the straight ray r − ln
where l ≥ 0

I(0,n) =
∫ ∞

0
dle−τ(0,l)q(l,n) + c

∫ ∞

0
dle−τ(0,l)

∫
dn′|f(n,n′)|2I(l,n′)

(5.168)
The first term of the right side of eq. (5.168) is the coherent part where q(l,n)
means the density of radiation sources in the point r′ = (l,n) emitting corpuscles
in the direction n. So, in eq. (5.168), two spatial variables have been excluded,
and only the integrals along a ray account for a spatial coordinate.

In practice, both radiation sources and scattering media are bounded by cer-
tain surfaces, and, moreover, they are inhomogeneous. Our calculations did not



5 Multiple scattering of short waves 227

Fig. 5.8. Conservation of specific intensity along a ray.

forbid us to include these inhomogeneities in both the coherent and incoherent
parts. It was only for the sake of brevity that we did not include them. For the
further study, we shall imply that the scattering medium and radiation sources
are inhomogeneous. In particular, both the scatterer number density and scat-
tering amplitude will be certain spatial functions c(r) and f(n,n′, r). So, the
number density c(r) or c(l) should be inserted under the integral signs in eqs
(5.166) and (5.168), respectively.

We note that the length of the ray r − ln where l ≥ 0 is unrestricted.
Therefore, every piece of the ray crossing a source contributes to the coherent
part. Similarly, the second term of the right side of eq. (5.168) is the incoherent
part that is formed by the corpuscles incoming to the point r′ = (l,n) with
various propagation directions n′ and then scattered from a vicinity of this
point to the direction n along the same ray.

The standard form of the radiative transfer equation is obtained if the in-
tegrals along a ray in eq. (5.168) are replaced by the differential extinction law
along the ray given by eq. (5.149)

dI
dl

+ αI = β

∫
dn′p(n,n′)I(l,n′) + q (5.169)

Here the coefficients α = cσe and β = cσs are called the extinction and
scattering coefficients, respectively, and the normalized angular function

p(n,n′) = |f(n,n′)|2/σs (5.170)

is conventionally called the phase function, though this name could be criticized.
For the transverse electromagnetic waves, eq. (5.169) is directly generalized

into a matrix equation. Here the specific intensity is replaced by the Stokes
vector, the extinction law given by the left side of eq. (5.169) is replaced by eq.
(5.156) and the value |f |2 is replaced by the 4 × 4 phase matrix P = S ⊗ S∗

that is derived from the 2× 2 scattering matrix S of eq. (5.140) by means of the
direct product defined by eqs (5.150). So, we get

dI

dl
+ cNI = c

∫
dn′P (n,n′)I(l,n′) + Q (5.171)
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The radiative transfer equation was originally obtained about a century ago
in the form of eq. (5.169) as an equation for a local balance of corpuscles incoming
and leaving an elementary volume. At the same time, the physical nature of the
elementary volume was not clearly understood and that led to a lot of confusion.
We emphasize that the approach of multiple scattering of waves does not need
such a terminology. We see that for the uncorrelated scatterer, it is an individual
scatterer that produces scattering actions, and the conception of a mysterious
elementary volume is not needed at all.

At present, the radiative transfer equation is widely used in various fields of
physics. In particular, it describes the propagation of light in astrophysics and
Earth’s atmosphere optics, in the neutron multiplication in nuclear reactors, and
so on. Even in nuclear physics, the scattering of high-energy elementary particles
in heavy atomic nuclei is described by the radiative transfer equation.

By the way, let us discuss also two imaginary discrepancies that could appear
under a consideration of the radiative transfer equation. First, on the one hand,
eqs (5.168) and (5.169) look to be obvious if one considers a corpuscle emitted
by a source or scattered in this direction that is flying along the ray. Due to
these equations, this corpuscle is conserved along the ray except for the possible
extinction described by the exponential. On the other hand, the flux density for
a corpuscle emitted or scattered by a point source should decrease with distance
as |r − r′|−2 due to eqs (5.159) and (5.165). The question is how to join these
conceptions. To answer this question, let us go to Fig. 5.8. We note that the
specific intensity I(r,n) has the physical meaning of density relative to the solid
angles n, i.e. it is always included in the measured quantities as the product
I(r,n) dn. In other words, the narrow cone ∆n should be considered. We see
that the number of the point sources contributing to the cone ∆n is increased as
l2 when the distance l is increased. This factor l2 compensates the factor |r−r′|−2

resulting in the desired conservation of the specific intensity along a ray given by
eqs (5.168) and (5.169). So, we conclude that the conservation law along a ray
is true only for spatially distributed scattering media (or radiation sources) that
are described by regular spatial functions. If we have, for example, a singular
source positioned at the distance l0, its contribution to the observation point is
proportional to the factor 1/l20. Indeed, such a singular source is described by
not a regular spatial function but the Dirac delta function. This function in the
spherical coordinates has the form

δ(r − r0) = δ(l − l0)δ(n − n0)/l2 (5.172)

Substitution of eq. (5.172) in eq. (5.168) results in the desired decrease of the
specific intensity along the ray.

The second imaginary discrepancy is as follows. Let us consider the specific
intensity at large distances R � L from a scattering medium (or a radiation
source) of the finite size of L as shown in Fig. 5.8. On the one hand, for every
ray crossing this volume, the specific intensity does not decrease due to eq.
(5.168) when an observation point is running far from the volume. Indeed, new
sources of radiation do not appear in this action. On the other hand, all this
volume can be considered from large distances as a point source where its specific
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intensity should decrease as R−2 due to eq. (5.159). This imaginary discrepancy
is overcome as follows. Though a specific intensity does not decrease along a
ray crossing the volume, all the rays in an observation point are gathered in
a narrow cones ∆n of the solid angle of about L2/R2. If we want to replace
this narrow cone by the Dirac delta function in the radial direction, this delta
function should be accompanied by the integral of the specific intensity over this
cone. This integral can be replaced by a product of the averaged intensity by
the solid angle of the cone that gives the desired factor of R−2.

5.4.6 Assessment of remaining diagrams

In section 5.4.5, only the ladder diagrams loaded by the coherent fields were cal-
culated. Let us show that all other diagrams of eq. (5.125) can be asymptotically
neglected. We recall that even in the calculation of the single-scattered coherent
field in eq. (5.135), there was a negligible term. This term corresponded to a
contribution from the backscattering part of the scattering media, and a quickly
oscillating exponential containing in the integrand caused its smallness. Just the
same quickly oscillating exponential appears in the integrands for the diagrams
with repeated scattering by the same scatterer such as the last diagram of eq.
(5.123). These oscillating exponentials are seen more obviously if the intuitive
kind of diagram is considered and eq. (5.157) is used for their analytical repre-
sentation. In these diagrams, the repeated scattering is drawn as a loop. If the
first scatterer in the loop of, say, the diagram 2 of eq. (5.125) is fixed, an aver-
aging over position of the second scatterer will result in a small nondimensional
factor of the following order

cv1v2v3 	 1 (5.173)

instead of the factor τ of the ladder diagrams. Here vi means either the wave-
length λ or scatterer size a remembering that the scattering amplitude in the
backward direction does not exceed these quantities. The inequality (5.173) com-
bines the both conditions of independent scatterers and short waves defined by
eqs (5.129) and (5.137), respectively. It is also seen that the loops in the dia-
grams for incoherent scattering, as in the diagram 3 of eq. (5.125), also contain
the quickly oscillating exponential and, consequently, they contain one or more
factors given by eq. (5.173).

If the exact sum of the diagrams of eq. (5.125) was known explicitly, this
solution could be expanded into a power series relative to the small parameter
given by eq. (5.173). Therefore, a neglect of all diagrams containing the factor
given by eq. (5.173) can be treated as a separation of the zero-order term in an
asymptotic expansion of the exact solution relative to this small parameter. This
is a conventional approach used in various fields of physics.

We note that there are also other diagrams, such as diagram 5 of eq. (5.125),
that have a loop on the level of the quadratic values of the field. They correspond
to repeated scattering of the specific intensity by the same scatterers, and their
integrands are not the oscillating functions. But these integrands are a quickly
decreasing function at large distances. Application of eq. (5.157) to these dia-
grams shows that the magnitude of these integrals over space depends on only
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the lower integration limit. If the lower limit is formally taken as zero, it leads
to divergent integrals. This is just an artifact. Factually, we have to restrict the
distance between two scatterers by their sizes. In this case, these integrals are
again small values of the order of the parameter (5.173).

Finally, there is a class of diagrams, such as diagram 6 of eq. (5.125), that are
called the cyclical diagrams. In these diagrams, the complex-conjugate partner
shown by lower lines corresponds to the same scatterers as for the direct partner,
but the complex-conjugate wave passes these scatterers strictly in the inverse
order. For the backward scattering direction, these diagrams are not negligible.
They describe the so-called coherent backscattering that has been studied both
theoretically and experimentally for the last 20–30 years. However, it is a rather
difficult to measure phenomenon, and we omit this problem.

In this section, the limiting case corresponding to Fig. 5.7(a) has been consid-
ered. In the next sections 5.4.7 and 5.4.8, we shall expand the operator equation
(5.163) to other limiting cases shown in Figs 5.7(b) and 5.7c.

5.4.7 Spatial coherence function for random media
with large scatterers

For any ensembles of large scatterers, there is a strong small-angle scattered
field that is described by the parabolic wave equation (5.9). Within this equa-
tion, there is no scattering in the backward hemisphere of scattering directions.
So, this is the operator equation (5.163) that describes the case of large scat-
terers except for the refracted fields appearing for optically hard scatterers. Thus,
the operator equation (5.163) proves to be the radiative transfer equation that
is applicable to both small and large scatterers independently of distances be-
tween scatterers. Only the conditions of short waves (λ 	 d) and uncorrelated
scatterers (a 	 d) should be kept.

Within the framework of the parabolic equation, certain analytical solutions
to the radiative transfer equation (5.163) can be obtained. These analytical ex-
pressions are obtained not for the specific intensity but for the spatial coherence
function that is the Fourier counterpart of the specific intensity. Therefore, in
this section, the spatial coherence function is discussed.

Let us consider a very simple scattering geometry where a plane wave is in-
cident normally on a layer consisting of large scatterers. This layer is assumed
to be unbounded and homogeneous in the transversal direction but its parame-
ters can vary along the longitudinal axis x. For the beginning, it is expedient to
consider propagation of the wave in free space behind the layer after the wave
has been multiple-scattered inside the layer. The equations describing propaga-
tion of the average field 〈u〉 and of the averaged coherence function 〈Γ (x,R,ρ)〉
(defined by eq. (5.25)) behind the layer are as follows(

2ik
∂

∂x
+ ∆⊥

)
〈u(x,ρ〉 = 0 (5.174)(

2ik
∂

∂x
+ 2∇R∇p

)
〈Γ (x,R,ρ)〉 = 0 (5.175)
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Since the average field of eq. (5.174) for a statistically homogeneous layer
does not depend on the transverse coordinates ρ, the Laplacian gives zero, and
it can be thrown out. So, the averaged field proves to be the same, as it would be
calculated in the straight-ray approximation (5.9). Analogously, the coherence
function < Γ (x,R,ρ)〉 = 〈Γ (x,R)〉 does not depend on the mean coordinate
ρ = (ρ1 + ρ2)/2 of eq. (5.26). Therefore, the gradient relative to ρ also results
in zero, and eq. (5.175) can also be replaced by the equation of the straight-
ray approximation. We see that either the Fresnel or Fraunhofer diffractions
described by the parabolic equations are compensated because of the averaging
in the transversal direction. This compensation takes place for any thin layer
inside the scattering medium. Therefore, we conclude that both the averaged
field and the coherence function can be calculated both inside and behind the
scattering medium in the straight-ray approximation. These solutions are true
independently of whether the scatterers are in each other’s near or wave zones.

The averaged field for ensembles of large scatterers was calculated in sec-
tion 5.4.2. The coherence function is also readily found by use of the explicit
expression (5.126) for the multiple scattered field in the straight-ray approxima-
tion. We get

Γ11(x,ρ1,ρ2) = 〈u(x,ρ1)u∗(x,ρ2)〉 =
〈
e
∑

[Aj(ρ1)−Aj(ρ2)]
〉

=

=

〈
n∏

j=1

(
[1 + ωj(ρ1)][1 + ω∗

j (ρ2)
)〉

=
∞∑

n=0

pn

〈
1 + ωj(ρ1) + ω∗

j (ρ2) + ωj(ρ)ω∗
j (ρ2)

〉n
= e〈n〉〈ωj(ρ1)+ω∗

j (ρ2)+ωj(ρ1)ω∗
j (ρ2)〉 (5.176)

where the sign of statistical averaging 〈. . . 〉 is omitted for the coherence function.
In the straight-ray approximation, multiple scattering of waves is reduced to
shadowing two rays ρ1,2 = const by the scatterers described by the functions
ωj(ρ) of eq. (5.127). Let us comment the procedure used in eq. (5.176). The
number of scatterers crossing a given ray is a random value that should be
accounted for in the averaging over the statistical ensemble. For this purpose,
an auxiliary volume of the longitudinal length x and of arbitrary large transverse
domain of the area P can be considered. The number of scatterers in this volume
n obeys the Poisson law

pn = 〈n〉ne−〈n〉/n! where 〈n〉 = cxP (5.177)

that is used in eq. (5.176), 〈n〉 is the average number of scatterers in this volume.
So, the first term in the exponent of eq. (5.176) proves to be equal to

〈n〉〈ωj(ρ1)〉 = 〈n〉
〈∫

ωj(ρ1 − ρj) dρj

〉
/P = cxµ (5.178)

where the constant quantity µ was defined by eqs (5.136) and (5.142). Here the
diversity of scatterers relative to their sizes, shape, orientations, etc. is accounted
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for by the angle brackets in addition to the integral producing the averaging over
the center positions. So, the quantity µ has a simple geometrical meaning. In
particular, for the shadow-forming field we get µ = −s where s is he average
area for projections onto the plane x = const.

The last term in the exponent of eq. (5.176) differs from zero if the jth
scatterer crosses simultaneously the both rays ρ1 and ρ2. So, the averaging
over positions of the jth scatterer creates the function Dj(R) depending on the
difference variable R = ρ1 − ρ2

Dj(R) =
∫
ωj(ρj)ω∗

j (ρj − R) dρj (5.179)

The main features of this function are as follows. This function differs from zero
only at the distances that are less than the diameter: |R| < 2a, where a is a
transverse size of the scatterer. In the center R = 0, it is equal to the scattering
cross-section owing to eq. (5.97)

Dj(0) = σjs (5.180)

and its Fourier transform (5.25) gives a distribution of this energy flux σs over
the 2-D scattering directions q(

k

2π

)2 ∫
Dj(R)e−ikqR dR = σjspj(q),

∫
pj(q) dq = 1 (5.181)

The indexes j in all these values will be omitted after their averaging over the
internal parameters of the scatterers such as sizes, etc.

Substitution of eqs (5.178) and (5.179) into eq. (5.176) yields the remarkably
simple closed expression for the coherence function

Γ (x,R) = e−cx|σe−D(R)| (5.182)

where σe is the extinction cross-section. We recall that this solution is valid
independently of whether the scatterers are positioned in each other’s near or
wave zones.

This solution has the following features

Γ (x, 0) = I(x) = 〈|u(x,ρ1)|2〉 = e−cσax (5.183)
Γ (x,R) = Γc(x,R) = 〈u(x,ρ1)〉〈u∗(x,ρ2)〉

= Γ (x, 0)e−cσsx = e−cσex, for |R| > 2a (5.184)

that are obvious from the point of shadowing these two rays by the amplitude–
phase screens The coherence function is maximal at R = 0 where it corresponds
to the averaged intensity of the field along any ray ρ1. Then, for |R| > 0, the
coherence function decreases reaching its limit at |R| > 2a where a is the trans-
verse size of scatterers. This limit is just the coherent part of this quadratic value
of the field since the rays ρ1 and ρ2 are crossed by the scatterers independently
of each other. At the distances |R| > 2a, the coherence function is decreased, as
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compared to its magnitude at |R| = 0, by the factor exp(−cσss) where σs is the
scattering cross-section.

In particular, for optically soft non-absorbing scatterers, the coherence func-
tion decreases from 1 to exp(−cσsx). Absorption, if exists, multiplies these values
by the factor exp(−cσax). We remind that for optically hard scatterers, we have
to substitute σa = s, where s is the averaged area of their projections.

The coherence function obtained in eq. (5.182) obeys the differential equation(
d
dx

+ cσe − cD(R)
)
Γ (x,R) = 0 (5.185)

This equation means that the propagation of the coherence function can be
treated as a transmittance through a lot of statistically independent infinitesi-
mally thin screens described by the correlation function

C = c(σe −D(R)) (5.186)

Thus, the mathematical procedure presented by eq. (5.176) has allowed us to
get the analytical solution (5.182) quickly. Of course, this expression could be
also obtained by summation of the diagrams of the operator equation (5.163).

5.4.8 Small-angle radiative transfer equation

It is instructive to consider in parallel the Fourier counterpart of the coherence
function, i.e. the Wigner functionW (x,ρ, q) defined by eq. (5.25). Remembering
that all equations are valid for the more general value W (x,ρ, q), we shall use
the conventional specific intensity I(x,ρ, q) for clarity.

We decompose the analytical expression of eq. (5.182) into the Taylor series

Γ (x,R) = e−cσex

[
1 + cxD(R) +

(cxD(R))2

2!
+ . . .

]
(5.187)

where the exponential is the coherent part due to eq. (5.184) and the series
is just the sum of incoherent scatterings of various multiplicities given by the
diagrams of eq. (5.160) since the multiplicity m is determined by the exponents
of the factors cm. In the language of the specific intensity I, it looks as follows

I(x, q) =
(
k

2π

)2

e−cσex

∫
ecxD(R)−ikqR dR

= e−αx

[
1 + βp(q) +

β2

2!

∫
p(q′)p(q − q′) dq′ + . . .

]
(5.188)

Here α and β are the extinction and scattering coefficients, respectively, defined
in eq. (5.169), and p(q) is the transversal phase function determined by eqs
(5.170) and (5.181). So, the series of eq. (5.188) is the specific case for the
general radiative transfer equation given by eqs (5.163) and (5.166).

Equation (5.188) emphasizes the equivalence of multiple shadowing and mul-
tiple scattering for the averaged values. This equivalence has already been noted
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for a fixed scatterer configuration in section 5.3.2. Here, the mth order of the
incoherent scattering is described by either the term (cxD)m for the coherence
function or the convolution of the mth order from the phase function of eq.
(5.181) that correspond to the natural, from the corpuscular treatment, spread-
ing of angular distribution because of multiple scattering.

So, we can state that both eqs (5.182) and the integral in eq. (5.188) are just
the closed analytical solution to the radiative transfer equation for this specific
case. Moreover, we state that the both expressions (5.182) and (5.188) are valid
independently of whether scatterers are positioned in each other’s near or wave
zones.

If the incident wave or scattering media are not homogeneous in the transver-
sal directions, the diffraction is not compensated and the parabolic wave equa-
tion should be used instead of the straight-ray approximation. The large ka � 1
scatterers can be treated as the infinitesimal thin screens of eq. (5.186) as be-
fore, but the operator d/dx describing propagation in the free space should be
supplemented with the operator ∆⊥1 − ∆⊥2 = 2∇ρ∇R like eq. (5.175). Taking
into account the spatial inhomogeneities of the scattering media by the depen-
dence of the number density on the spatial coordinates c(x,ρ), we arrive at the
following equation for the coherence function(

∂

∂x
− 1
ik

∇ρ∇R + c(x,ρ)(σe −D(R))
)
Γ (x,ρ,R) = 0 (5.189)

This equation also admits a simple analytical solution if the scattering medium
is inhomogeneous only along the x-axis. To get this solution, let us go to the
specific intensity I(x,ρ, q) by means of eq. (5.25). It yields the following equation(

∂

∂x
+ q∇ρ + c(x)σe

)
I(x,ρ, q) = c(x)σs

∫
dq′p(q − q′)I(x,ρ, q′) (5.190)

Equation (5.190) is the well-known small-angle radiation transfer equation. Let
us indicate the differences between the exact and small-angle equations defined
by eqs (5.169) and (5.190), respectively. First, the derivative along an arbitrary
ray d/dl in eq. (5.169) is replaced in eq. (5.190) by the derivative along the
vector 1x + q defined by eq. (5.29) that is a bit different procedure. Second,
extinction for a corpuscle that has undergone, say, m collisions depends on the
whole length of its trajectory in the exact equation (5.169), while in eq. (5.190)
it depends only on the projection of this trajectory onto the x-axis. Third, for
the corpuscles coming to a scatterer, the phase function in the right side of eq.
(5.190) ignores a deviation of propagation directions from the forward direction
All these differences are acceptable, of course, only at small angles |q| 	 1.

To obtain the analytical solution to eq. (5.190), the Fourier transform from
the coherence function of eq. (5.189) over the variable ρ is taken

B(x,Q,R) =
(
k

2π

)2 ∫
e−ikQρΓ (x,ρ,R) dρ

=
(
k

2π

)2 ∫
e−ikQρ+ikqRI(x,ρ, q) dρ dq (5.191)
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This function obeys the equation(
∂

∂x
+ Q∇R + c(x)σe

)
B(x,Q,R) = c(x)σsD(R)B(x,Q,R) (5.192)

that has the solution in the form of the product

B(x,Q,R) = B0(x,Q,R)Bs(x,Q,R) (5.193)

Here the first factor is formed by the left side of eq. (5.192), and it describes
propagation of the quantity B0 in the absorbing medium along the straight rays

B0(x,Q,R) = B0(0,Q,R − Qx)e−τ(0,x) (5.194)

The quantity Bs describes a spreading of one ray over the transversal variables
Q and R because of scattering by means of the function D(R). It is equal to

Bs(x,Q,R) = exp
∫ x

0
c(ξ)D[R − Q(x− ξ)] dξ (5.195)

The validity of the solution (5.193) can be checked by its direct substitution
into eq. (5.192). Turning back to the specific intensity in eq. (5.191), we obtain
the desired closed solution to the small-angle radiative transfer equation as the
convolution of the proper specific intensities I0 and Is over the both variables ρ
and q

I(x,ρ, q) = I0(x,ρ, q) ∗ρq Is(x,ρ, q)

=
(
k

2π

)2 ∫
I0(x,ρ′, q′)Is(x,ρ − ρ′, q − q′) dρ′ dq′ (5.196)

where the asterisk denotes the convolution.
Equation (5.196) has a transparent physical meaning. Here I0 is the coherent

part of the specific intensity, i.e. it describes the corpuscles coming to an obser-
vation point ρ′ with the propagation direction 1x + q′. These corpuscles were
emitted from the point (0,ρ′ − q′x) on the initial plane x = 0. On the way to
the observation point, a part of the corpuscles are extracted because of scatter-
ing that is accounted for by the exponential exp(−τ). The scattered corpuscles
are situated near this ray considered. The second factor Is of eq. (5.196) just
describes a distribution of the scattered corpuscles around this ray. Indeed, we
have

Is(x,ρ, q) =
(
k

2π

)2 ∫
eikQρ−ikqRe

∫ x
0 c(ξ)D[R−Q(x−ξ)] dξ dQdR (5.197)

An expansion of the last exponential into the Taylor series results in the incoher-
ent multiple scattering series such as eq. (5.188). In the case of eq. (5.197), the
corpuscles scattered at the distance ξ from the initial plane x = 0 are distributed
over the scattering directions by the same phase function as in eq. (5.188). But
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we have to account for their spatial distribution over an observation plane. This
distribution depends on the distance x − ξ that is just reflected by the shifted
argument for the D-function.

So, we conclude that eq. (5.197) gives a closed expression for the solution
to the small-angle radiative transfer equation (5.190). This expression describes
the Green function of this equation, i.e. the angular-spatial distribution arising
around any ray of the coherent part I0. In its turn, the coherent part I0 is
originated by radiation sources.

5.5 Multiple scattering by correlated scatterers

5.5.1 Correlated scatterers

For ensembles of a great number of scatterers, the case of uncorrelated spatial
positions of scatterers considered above is an idealized model. Usually, the scat-
terers interact with each other forming certain regularities in their positions. The
limiting case is a crystal structure. Here we consider only the cases where corre-
lations among scatterer positions are rather weak. So, their positions are chaotic
in space but the correlations create certain spatial statistical inhomogeneities.
In classical statistical physics, it corresponds to dense gases and liquids.

Such a statistical ensemble occupying a volume Q and consisting of N parti-
cles is fully characterized by the probability density P (rN ) for its configurations
rN = (r1, r2, . . . , rN ), where rj are the particle centers. The conventional nor-
malization is as follows:

∫
P (rN ) drN = 1. The probability densities to find one

particle in the point r, two particles in the points r and r′, and so on, are
determined by the s-particle probability densities ps(rs). In particular, we have

p1(r) =
Q

N

∫ N∑
j=1

δ(r − rj)P (rN ) drN (5.198)

p2(r, r′) =
Q2

N(N − 1)

∫ ∑
l 
=j

∑
j

δ(r − rj)δ(r′ − rl)P (rN ) drN (5.199)

These s-particle probability densities are normalized as
∫
p(rs) drs = Qs. In this

study, we consider only cases where interaction among the particles reveals at a
finite distance b that is much less than sizes of the volume Q(b3 	 Q). This value
b is called the correlation length. In this case, the s-particle probability densities
ps(rs) approach constants when the distance between the observation points
exceeds the distance b. Therefore, it is more convenient to use such functions
that are zero beyond the domains of the size b. Such functions are called the
correlation functions, and the following chain of equations defines them

p1(1) = g1(1)
p2(1, 2) = g1(1)g1(2) + g2(1, 2)

p3(1, 2, 3) = g1(1)g1(2)g1(3) + g1(1)g2(2, 3) + g1(2)g2(1, 3)
+g1(3)g2(1, 2) + g3(1, 2, 3) (5.200)
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and so on. Here the spatial coordinates are replaced by their indexes for brevity.
This chain of equations is visualized by the diagrams

(5.201)

and so on.
Here the wavy lines denote the correlation functions of various orders. These

diagrams are easily drawn by separation of all groups with a different number
of particles. Therefore, a correlation function of the s-order turns into zero if
only one of these particles becomes spatially independent, i.e. it is farther on b
from other particles of this group. We note that these correlation functions are
normalized to zero ∫

gs(rs) drs = 0 (5.202)

These ensembles with a fixed number of particles called the canonical ensembles
are not applicable to practice. A subsystem of the particles occupying a small
part q of the volume Q is usually considered. In this case, a number of the
particles n in the volume q is a random quantity. Usually the limit N → ∞ and
Q → ∞ at c = N/Q = const called the thermodynamics limit is introduced.
In the thermodynamics limit, the normalization of eq. (5.202) is not already
valid. Moreover, the integral of the pair correlation function g2 becomes a basic
thermodynamic quantity characterizing the variance of the particle number n
by means of the equation

〈n2〉 − 〈n〉2
〈n〉 = 1 + c

∫
g2(R) dR ≡ F (5.203)

where R = r−r′ is the difference coordinates. For isotropic systems, the function
g2 depends on only the module |R|, and g2 is called the radial function. In
statistical physics, eq. (5.203) is called the Ornstein–Zernike theorem. We see
that the factor F in eq. (5.203) is equal to 1 for the statistically independent
particles, and its deviation from unity characterizes particle correlations.

Theoretical calculation of the radial function is a difficult problem of statis-
tical physics that is not strictly solved yet even for the simplest case of rigid
spheres with equal radii. However, Wertheim and Thiele in 1963 obtained an ap-
proximate expression of the radial function for the rigid spheres. In particular,
their solution determines the factor F as follows

F (η) =
(1 − η)4
(1 + 2η)2

(5.204)

where η = 4πcr3/3 is the volume fraction for the spheres of the radius r.
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5.5.2 General equations

Let us average the general series of multiple scattering of waves (5.122) for both
the field and its quadratic values in the case of correlated scatterers. Here every
term of the series containing s scatterers should be averaged by means of the s-
particle probability density discussed in section 5.5.1. Since correlations among
the scatterer positions are assumed to be restricted by the finite correlation
length b, the s-particle correlation functions given by eqs (5.200) and (5.201)
become more convenient to use instead of the probability densities. As a result,
every term is decomposed into a sum of the terms that are averaged by means of
the correlation functions. For visualization of these terms, the Feynman diagrams
are used in this section.

In particular, the coherent field is represented by the following series

(5.205)

In this series, every part of a diagram connected by wavy lines, i.e. by the
correlation functions, can be interpreted as an additional scatterer with the size
of b. All these scatterers can be combined into one effective scatterer by means
of the series

(5.206)

In quantum electrodynamics, such a value is called the mass operator. By means
of the mass operator, the initial series (5.205) is represented as iterations of the
following integral equation

(5.207)

that is written down analytically as follows

〈Ψ〉 = Ψ0 + L−1M〈Ψ〉 (5.208)

Substituting Ψ0 = L−1q and rearranging the terms of eq. (5.208), we get the
equivalent equation

(L−M)〈Ψ〉 = q (5.209)

Equations (5.207)–(5.209) are various forms of the so-called Dyson equation.
All diagrams of the series (5.206) are called the irreducible diagrams since it

is impossible to divide them into a product of the similar diagrams connected
only by the straight-line segment, i.e. by the propagator L−1. So, the mass
operator determines an effective scatterer and the Dyson equation describes
multiple scattering among these effective scatterers by means of the propagator
L−1.
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As seen from eq. (5.209), if the mass operator can be reduced to the local
operator like the operator of eq. (5.48), the problem of calculation of the mass
operator is equivalent to the problem of finding the bulk refractive index for the
scattering medium as it was discussed in section 5.4.3 for the case of uncorrelated
scatterers.

Just the same procedure used to get the Dyson equation is applicable for
the quadratic values of the field drawn by the diagrams of eq. (5.125). Like
eq. (5.163), the sum of these averaged diagrams is represented by the operator
equation

〈Ψ ⊗ Ψ∗〉 = 〈Ψ ⊗ Ψ∗〉 (5.210)

where the kernel called the intensity operator is the sum of all irreducible dia-
grams

(5.211)

Equation (5.210) is the Bethe–Salpeter equation. So, the intensity operator de-
scribes an effective scatterer for incoherent scattering while the mass operator de-
termines the scatterer relative to coherent scattering. The conventional method
for solutions to either the Dyson or Bethe–Salpeter equations is to account for
a few first terms in the series (5.206) and (5.211) for the kernel of these integral
equations. If these terms are checked to provide the energy conservation law for
one scattering event, a solution to the Bethe–Salpeter equation will satisfy the
energy conservation law, too.

5.5.3 Transparency for ensembles of correlated scatterers

The effective scatterers appeared for the ensembles of correlated scatterers are
determined relative to coherent and incoherent scattering, respectively, by the
series (5.206) and (5.211) where the first terms correspond to uncorrelated scat-
terers. We recall that only ensembles with weak correlations among scatterers
are considered in this study. It means that the correlations produce only the spa-
tial inhomogeneities of finite sizes of b. In this case, the next terms of both the
series (5.206) and (5.211) can be treated as the desired corrections accounting
for the scatterer correlations.

One can put a question: What is influence of the spatial correlation of scat-
terers on both the coherent and incoherent parts of radiation as compared to
the same but uncorrelated scatterers? If we restrict ourselves to the coherent
radiation only, the question is: Do the correlations increase or decrease the
transparency of the scattering media as compared to the same but uncorrelated
scatterers?

To answer the questions, we have to introduce certain new parameters since
the new parameter b characterizing the correlation length appeared. For un-
correlated scatterers, we distinguish the cases of short and long waves by the
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inequalities λ 	 d and λ � d, respectively, where λ is the wavelength and d
is the average distance between the scatterers. For the correlated scatterers, we
refer to the case of short waves if the additional condition λ 	 b is satisfied. The
case λ � b is referred to long waves and this case is beyond the present study.

It is worth noting that, for the last 20–30 years, a considerable number of
researchers have considered both theoretically and experimentally the problem
of transparency for a particular case of ensembles of rigid, i.e. non-penetrable,
spheres. Usually this transparency has been investigated as a function of the
volume fraction η defined after Eq. (5.204). At present, the majority of the
researchers have agreed that, for the case of long waves, these short-distance
correlations appearing because of the repulsive forces among the rigid spheres
result in an increase of the transparency. As for the case of short waves, a number
of conflicting opinions are known.

For the case of short waves, basing on the conclusion that coherent scattering
is equivalent to shadowing by scatterers, we propose the following rules:

Rule 1: Any change in scatterer configuration resulting in additional shadowing
of the incident field will decrease the transparency of the scattering medium,
and vice versa.

In particular, for the correlated scatterers, we get

Rule 2: The correlations that increase shadowing of scatterers by each other
should increase the transparency of the ensembles, and vice versa.

For instance, let us consider two scatterers interacting by isotropic forces.
Their projection onto a plane perpendicular to the incident wave gives two
shadows on the plane. For the spatially independent scatterers, these projec-
tions are independent, and they freely penetrate each other. If the forces are
repulsive, the probability for these projections overlapping decreases, resulting,
correspondingly, in a decrease of the transparency, and vice versa.

A plausibility of rule 2 follows, for example, from the series (5.206) for the
mass operator. We note that, for the short waves, a part of the terms in the mass
operator like the third diagram of eq. (5.206) describing the repeated scattering
by the same scatterer can be neglected, as was done for uncorrelated scatterers.
So, the mass operator is represented for the short waves by the more simple
diagrams

(5.212)

The first term of the series corresponds to the bulk refractive index for uncor-
related scatterers given by eq. (5.144). So, the next diagrams give the desired
corrections accounting for correlation of scatterers as the series relative to pow-
ers of the number density c. In particular, the extinction coefficient α can be
represented as the series

α = α0(1 +Ac+Bc2 + . . . ) (5.213)
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where α0 = cσe corresponds to uncorrelated scatterers, the coefficient A is deter-
mined by the two-particle correlation function g2, B by the function g3, and so
on. Our knowledge of the higher-order correlation functions is poor, since only
the radial function g2(R) is of importance for thermodynamics, and practically
all papers in statistical physics are devoted to this function. Therefore, a cal-
culation of the higher-order diagrams of eq. (5.212) is a difficult problem. But
for weak correlations, a restriction to the second term of the series (5.213) is
acceptable where the coefficient A can be calculated analytically.

For the calculation of the coefficient A, we consider two cases. The first case
occurs when certain long-distance forces among the scatterers exist. It means
that the correlation length b is much larger than the scatterer sizes a. Also we
assume b � ka2 that allows us to use the wave-zone scattered field like eq.
(5.133). In this case, the second term of eq. (5.212) is calculated analogously to
the double-scattered field considered in section 5.4.2. Taking a position for the
second scatterer to be fixed and averaging over positions of the first one, we get,
like eqs (5.135) and (5.138),

A = 2Reµ
∫ 0

−∞
g2(R) dR = −σe

∫ ∞

0
g2(R) dR (5.214)

The radial function g2 at a given distance R is either negative or positive if
repulsive or attractive forces, respectively, are dominant in this point. So, due
to eq. (5.214), the repulsive forces increase the extinction coefficient and the
attractive forces decrease it in full accordance with rule 2.

The second case corresponds to the second limiting case of multiple scattering
shown in Fig. 5.7(c) where large ka � 1 scatterers are situated in the near zone
of each other. If the large scatterers are rigid, i.e. non-penetrable, the conditions
of short waves λ 	 d and λ 	 b are satisfied automatically.

We consider the correction coefficient A from eq. (5.213) for the large (ka �
1) rigid spheres of the radius a. The spheres are assumed to be optically hard,
so only the shadow-forming fields are taken into consideration. For the weak
correlations, the radial function can be taken in the simplest approximation
corresponding to pair collisions

g2(R) =

{
−1 for R ≤ 2a
0 for R > 2a

(5.215)

The second diagram in eq. (5.212) is calculated in the straight-ray approximation
as it was applied in eq. (5.142). As a result, we get

A = −
∫ 0

−∞
dx
∫
ω(ρ1)ω(ρ2)g2(x,ρ2 − ρ1) dρ1 dρ2/s = −

∫
S(ρ)w(ρ) dρ/s

(5.216)
where s = πa2 is the area of a circle, S is the area of intersection of two circles
shifted at the vector ρ
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S(ρ) =

⎧⎪⎨
⎪⎩

2a2

[
arccos

ρ

2a
− ρ

2a

√
1 −
( ρ

2a

)2
]

for ρ ≤ 2a

0 for ρ > 2a

(5.217)

and w is the integral of the radial function over the longitudinal coordinate

w(ρ) =
∫ 0

−∞
g2(x,ρ) dx =

{
−2a

√
1 − (ρ/2a)2 for ρ ≤ 2a

0 for ρ > 2a
(5.218)

Substitution of eqs (5.217) and (5.218) in eq. (5.216) gives the desired correction

A = −2
∫ ∞

0
S(ρ)w(ρ)ρdρ/a2 = 32a3

∫ 1

0

(
arccos ξ − ξ

√
1 − ξ2

)√
1 − ξ2ξ dξ

= 32a3
(
π

6
− 16

45

)
≈ 5.38a3 (5.219)

Thus, this correction decreases transparency in accordance to rule 2.
We have considered the transparency corrections that are factually caused

by double-scattered waves for two correlated scatterers in the mass operator.
Let us turn to the kernel of the general Bethe–Salpeter equation (5.211). There
is the second term in the series (5.211) that is caused by not double- but single-
scattered fields created by a pair of the correlated scatterers. Because of the
single scattering, there is no shadowing in this term. Therefore, it might seem
that this term violates the proposed rule 2. Let us show that it is not true. A
magnitude of this term in arbitrary scattering direction is proportional to the
Fourier transform of the radial function. We recall that scattering in only the
forward direction forms transparency. In the forward direction, the Fourier trans-
form becomes the integral of the radial function. For the ensembles with a fixed
number of scatterers, this integral is equal to zero owing to the normalization of
eq. (5.202). For the ensembles with variable number of scatterers, this integral
is also small as compared to other scattering directions since not interaction but
only the variable number of scatterers determines this nonzero value. Thus, this
diagram does not impact on the transparency.

Since this diagram is essential in other scattering directions but its integral
over scattering directions is negligible, we conclude that this term is alternating-
sign. Thus we see that the certain effective scatterers listed in the series (5.211)
have the zero scattering cross-section, and their role is only to redistribute the
scattered energy over scattering directions.

5.5.4 Transparency of monolayers

Let us imagine an ensemble of rigid, i.e. non-penetrable, scatterers that are
initially uncorrelated. For example, these scatterers create a 3-D low-density
scattering medium. Then the scatterers are pressed in one direction forming a
closely packed layer. Such a situation is easily modeled experimentally if, for
example, a suspension of polystyrene particles creates a bottom sediment in a
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vessel. One can put a question: Is transparency of the layer smaller or larger
than that of the initial uncorrelated ensemble?

If the scatterers are large (ka � 1), we have the case of short waves, and
the answer follows from our rules 1 and 2. Namely, the layer should be less
transparent as compared to the initial ensemble.

If the number of scatterers is rather small, the layer is turned into a monolayer
where the scatterer projections on a plane substrate do not overlap each other.
The problem of wave scattering by a monolayer of large (ka � 1) scatterers can
be solved exactly. So, this monolayer proves to be a useful theoretical object
to verify the rules formulated in the previous section. Besides, certain physical
objects in nature and technologies, for example, the cornea in the eye, correspond
to the monolayers. This is a reason to consider the problem of wave scattering
by monolayers in this section.

The field transmitted through a monolayer of large rigid scatterers is de-
scribed by the single-scattering term of the general series (5.128) since multi-
ple scattering can appear only because of overlapping projections. So, we have
strictly

u(ρ) = 1 +
∑

ωj(ρ) (5.220)

The monolayer is assumed to be unbounded in the transversal direction and
statistically homogeneous. For the unbounded layer, the statistical averaging
over an ensemble can be replaced by the averaging over the plane for the fixed
scatterer positions according to the ergodicity. Though both methods of averag-
ing are almost equivalent, we prefer to use the averaging over the plane that is
simpler for interpretation.

We recall that though the field of eq. (5.220) is written down for the near
zone of scatterers the averaged field and the averaged quadratic values calculated
by means of eq. (5.220) are quite universal quantities that are conserved at any
distance from the scattering medium, as was proven in section 5.4.7 (see eqs
(5.174) and (5.175)). Besides, eq. (5.220) is applicable to both optically soft and
optically hard scatterers. If the scatterers are optically hard, only the shadow-
forming component defined in section 5.2.6.2

ωj(ρ) = −ηj(ρ) (5.221)

should be used in eq. (5.220). As was shown, it is a strict replacement. Indeed,
a creation of the refracted scattered field should be considered as an effective
absorption within the framework of the parabolic equation. So, eq. (5.221) allows
us to calculate correctly all averaged values of interest since interference between
the refracted and incident fields is negligible.

Now it is expedient to define two quantities characterizing the scatterer en-
semble. The first is the fraction of the plane covered by the scatterers called the
shadow fraction

ν =
Area of the shadowed part

Total area
(5.222)

The second quantity is the scattered field of eq. (5.220) that is averaged only over
the shadowed part of the plane. This quantity will be denoted by the tilde, ω̃.
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The quantity ω̃ is complex-valued, so it determines two real-valued parameters,
say Re ω̃ and Im ω̃.

An averaging of the field of eq. (5.220) over the plane with fixed positions of
scatterers readily yields

〈u〉 = 1 + νω̃ (5.223)

We emphasize that these three parameters ν, Re ω̃ and Im ω̃ completely describe
the coherent field and, consequently, the transparency of the monolayer. It is
interesting to emphasize that neither the shapes of the scatterer projections nor
any spatial correlations of the projection within the plane x = 0 impact the
monolayer transparency.

In the language of the individual scatterers, these three parameters can also
be chosen as 2-D number density denoted as c2 and two parameters character-
izing a scatterer, say, the complex-valued scattering amplitude in the forward
direction f0. Indeed, the averaging of eq. (5.220) gives

〈u〉 = 1 +N〈ωj〉 = 1 + c2
∫

〈ωj(ρ)〉dρ = 1 + c2iλf0 (5.224)

where the scattering amplitude in the forward direction f0 appears due to eq.
(5.92). The quantity f0 also includes the averaging over all kinds of scatterers
presented in the monolayer.

Thus, the density of a monolayer is determined by either the shadow fraction
ν or the 2-D number density c2 that are connected by the simple equation:
ν = c2s, where s is the area of one scatterer projection averaged over all scatterers
in the ensemble. In addition to the density, two parameters characterize the
internal properties of scatterers. These parameters are either ω̃ introduced in eq.
(5.223) or the scattering amplitude in the forward direction f0 that are connected
by the equation: ω̃ = iλf0/s.

So, the transparency of the monolayer is determined by two equivalent equa-
tions

t = |1 + νω̃|2 = 1 + ν2Re ω̃ + ν2|ω̃|2 (5.225)
t = |1 + c2iλf0|2 = 1 − c2σe + c22λ

2|f0|2 (5.226)

In eq. (5.226), the optical theorem given by eq. (5.76) is used, where σe is the
extinction cross-section for one scatterer. In particular, these equation are sim-
plified for optically hard scatterers

〈u〉 = 1 − ν = 1 − c2s (5.227)
t = (1 − ν)2 (5.228)

Though eqs (5.223) and (5.224) are equivalent, the presentation of eq. (5.223) is
much more preferable for the geometric interpretation that is presented below.

The dependence of the monolayer transparency on the three characterizing
parameters is readily visualized in Fig. 5.9(a) that is similar to Fig. 5.6. Here
two parameters characterizing shapes, internal structure, etc. of scatterers are
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denoted by the complex-valued number ω̃. Instead of this number ω̃, another
complex number ũ can be used

ũ = 1 + ω̃ (5.229)

All possible complex numbers ũ are represented by the points within a circle of
unit radius as was used in Fig. 5.6, where the real and imaginary parts correspond
to the horizontal and vertical axes, respectively. The numbers ũ and ω̃ are also
represented by the vectors ũ and ω̃ in Fig. 5.9(a) originated from the circle center
and the point (1, 0), respectively. Then, whereas the density of a monolayer is
increasing, the averaged field is represented due to eq. (5.223) by a point sliding
along the vector ω̃. At any shadow fraction ν, this sliding point separates that
part of the vector length that is just equal to the fraction ν. When fully covering
the plane with this kind of scatterers, the averaged field would arrive at the
point ω̃. Of course, the limiting situation ν = 1 is reachable only, for example,
for aligned rectangular scatterers. For other shapes, this upper limit is variable.
For example, ensembles of circles with the same radii have the maximum fraction
of π/2

√
3 ≈ 0.9.

Now the dependence of the transparency on the shadow fraction ν is obtained
geometrically in Fig. 5.9a as the modulus squared for the vector 〈u〉. The vector
ω̃ determines the point ω̃0 marked by the dotted line in Fig. 5.9(a) where the
vectors 〈u〉 and ω̃ are perpendicular. For this point, the transparency possesses
its minimum value along the vector ω̃ that is equal to

t0 = (Im ω̃/|ω̃|)2 (5.230)

In Fig. 5.9(a) we see that in the beginning, at small shadow fraction ν 	 1, the
transparency t(ν) decreases for any kind of scatterers. Then, if the point ω̃ is

Fig. 5.9. Transparency of monolayers. (a) Geometric interpretation of the monolayer
transparency; the hatched domains are the anomalous scatterers. (b) transparencies
for various scatterer parameters ω̃ =: (1) exp(i3π/8) − 1; (2) 0.76 exp(i3π/8) − 1; (3)
exp(iπ) − 1 = −2; (4) −1; the dotted curve – uncorrelated scatterers with ω̃ = −1.
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located to the left from its point ω̃0, the transparency passes its minimum value
t0 and steadily increases on the remaining part of the interval of the variable
ν. If the point ω̃ is located to the right from its point ω̃0, the transparency is
a steadily decreasing function that does not reach the value t0. In particular, if
the point ω̃ is situated on the circle border that corresponds to non-absorbing
scatterers, the minimum transparency t0 defined by eq. (5.230) is observed at ν =
0.5. Absorption shifts the point ω̃ inside the circle, and the same transparency
minimum t0 takes place at ν > 0.5. The position of this minimum ν0 is readily
found by putting the derivative of the expression (5.225) to zero, and we get

ν0 = −Re ω̃/|ω̃|2 (5.231)

These regularities obtained geometrically are easily explained. Indeed, the aver-
aged field (5.223) is equivalent to the field when a part of ν of the total plane is
covered by a homogeneous plane-parallel plate with the constant transmission
ũ = exp(iϕ). Let us denote the fields transmitted through uncovered and covered
parts as u1 and u2, respectively

〈u〉 = u1 + u2 (5.232)

As an example, assume that the scatterers are transparent plane-parallel plates
with the phase ϕ that is equal to π (or to multiple π), i.e. ω̃ = −2. Then these two
waves u1 and u2 occur in the antiphase states. At ν = 0.5, these waves cancel
each other, resulting in zero transparency. Thus, the monolayer becomes an
absolutely opaque screen relatively to the coherent scattering. Then, at ν > 0.5,
the second field u2 corresponding to the wave transmitted through scatterers
becomes dominant. It leads to an increase of the monolayer transparency with
an increase of the shadow fraction. At ν = 1, the field u1 disappears, and the
field u2 covers the total plane resulting in the transparency of 1 (see curve 3 in
Fig. 5.9(b)). The same regularities take place for another values of ω̃. In all cases,
an increase of transparency with ν demonstrated by curves 1 and 3 in Fig. 5.9(b)
is also explained by prevalence of the field u2 over the field u1. Of course, this is
a rather exotic situation. It takes place, for example, if the scatterers are plane-
parallel plates. Besides, the phase shifts for the plane-parallel plates should be
the same.

By the way we note that, as seen from either Fig. 5.9(a) or eq. (5.230),
the absolutely opaque monolayers can be obtained only under the condition:
−2 ≤ ω̃ < −1. This condition is satisfied by only the same plane-parallel plates
with the phase shift of π but absorption inside the scatterers or reflection from
them are acceptable. Then the full darkness of the monolayers is reached at the
area fraction ν0 = 1/|ω̃| ≥ 0.5. Of course, the incoherent part is nonzero behind
such screens.

Now we can switch on the initial question: If a system of initially uncorrelated
scatterers precipitates into a monolayer, will the transparency be greater or less?
To answer the question, now we can compare their transparencies. In the notation
of this section, the transparency for uncorrelated scatterers determined by eq.
(5.147) is represented as follows
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tun = e−cσex = ec2s(ω̃+ω̃∗) = 1 − c2σe + [c2s(ω̃ + ω̃∗)]2 /2! + . . . (5.233)

where x is the initial depth of the 3-D scattering medium and the 2-D and 3-
D number densities are connected as c2 = cx. Comparing eqs (5.225), (5.226),
and (5.233), we see that the linear terms relative to the number density c2
coincide completely. We recall that this term describes interference of the single
scattered field with the incident wave. As for the quadratic term relative to
the number density, it corresponds to interference of the single-scattered fields
among each other in the case of the monolayer. For the uncorrelated scatterers,
an additional term corresponding to interference of double-scattered fields with
the incident wave appears. So, expressions (5.225) and (5.233) are different in
the quadratic term not saying that the higher-order terms appear only in the
case of uncorrelated scatterers. This difference between the quadratic terms is
equal to

∆t = tun − t = Re (ω̃2) +O(c3) = |ω̃|2 cos 2φ+O(c3) (5.234)

where ω̃ = |ω̃| exp(iφ) and the phase φ is determined in the interval (π/2, 3π/2)
giving, for example, φ = π for ω̃ = −1.

According to the rules 1 and 2 formulated in section 5.5.3, the difference ∆t
should be positive. Let us show that these rules are valid only in a majority of
situations, but certain exclusions can take place.

Indeed, the alternative-sign cosine in eq. (5.234) divides the scatterers into
two parts that will be called the normal and anomalous scatterers for brevity.
The normal and anomalous scatterers possess the parameters ω̃ that are situated
in the non-hatched and hatched parts of the circle in Fig. 5.9(a), respectively.
At small density ν 	 1, a monolayer consisting of the normal scatterers is less
transparent than the ensemble of the same but uncorrelated scatterers that is in
accordance with rules 1 and 2 of section 5.5.3. On the other hand, a monolayer
consisting of the anomalous scatterers proves to be more transparent. We see in
Fig. 5.9(a) that the normal scatterers have an overwhelming majority. Moreover,
the normal scatterers include the prevailing class of optically hard scatterers
ω̃ = −1 as well.

The conclusions based on eq. (5.234) are valid only for small 2-D density for
monolayers ν 	 1. As for monolayers with arbitrary shadow fraction ν, we can
use the fact that the exponential of eq. (5.233) and the parabola of eq. (5.225)
either do not intersect each other on the interval ν = [0, 1] or they are inter-
sected once. For the anomalous scatterers, the parabola goes higher at ν 	 1
than the exponential; therefore these curves do not intersect each other at all.
So, the monolayer of anomalous scatterers proves to be always more transparent
than the medium of uncorrelated scatterers. As for the normal scatterers, the
parabola goes lower than the exponential that corresponds to the rules of sec-
tion 5.5.3. However, if the parabola has the minimum determined in eqs (5.230)
and (5.231), it increases at ν > ν0. Sometimes, it leads to an intersection of these
curves producing an anomalous situation. However, such situations are rare. In
particular for the optically hard scatterers, the transparency of the monolayer
(1 − ν)2 is always less than the transparency of these uncorrelated scatterers
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exp(−2ν) that are represented by curve 4 and the dotted curves in Fig. 5.9(b),
respectively.

In this section, we have discussed only the coherent field or the transparency.
By the way, let us indicate certain properties of the incoherent part of the inten-
sity in the case of monolayers. Only two diagrams of eq. (5.210) determine the
incoherent part where two horizontal lines are connected by both the dotted and
wavy lines corresponding to the first terms in the series (5.211). The first term
describes the incoherent scattering corresponding to uncorrelated scatterers, and
the second term accounts for spatial correlations among them. Unlike the coher-
ent part, the incoherent part depends explicitly on shapes of scatterers. For the
large uncorrelated scatterers, the scattered intensity is concentrated within the
cone of the angle θ ≤ λ/a where λ is the wavelength and a is the transverse size of
scatterers. The second term accounting for spatial correlation only redistributes
the scattered energy over scattering directions without changing the amount of
the energy. In the forward direction, its contribution should be negligible, as was
discussed in section 5.5.3.

Thus, the case of the large scatterer monolayers solved exactly has shown that
rules 1 and 2 formulated in section 5.5.3 are satisfied in a majority of situations,
but certain exotic exclusions are possible.

5.5.5 Transparency of random media in the framework
of the stochastic radiative transfer theory

In previous sections, we considered statistically homogeneous scattering media
where spatial inhomogeneities were caused by interaction among the scatterers.
In practice, scattering media are always spatially inhomogeneous because of
certain external forces, surface bounds, etc. In this section, such macro-inhomo-
geneous scattering media will be taken into consideration.

For simplicity, we assume that scatterers do not interact with each other, i.e.
they are statistically independent. But their positions will be determined by not
the constant single-particle probability function but by the certain spatial func-
tion p1(r). So, the number density of scatterers becomes a spatial function c(r)
that has been used already in section 5.4.5 when the radiative transfer equation
was discussed. Generally speaking, if the mathematical procedure used before for
deriving the radiative transfer equation is applied to such media, these spatial in-
homogeneities turn out to be new effective scatterers. But they are too weak un-
der the conditions of multiple scattering of short waves given by eqs (5.130) and
(5.137). So, the quadratic values of the multiple scattered waves can be described
by the conventional radiative transfer equation (5.169) where the coefficients of
extinction α and scattering β become certain spatial functions α(r) and β(r).

Sometimes the scattering medium described by its coefficients α(r) and β(r)
can be treated as a random medium. For example, it arises when the functions
α(r) and β(r) are rather chaotic. Then a solution for a given medium realization
is of no interest, and only averaged quantities are needed. In these cases, we
arrive at the stochastic radiative transfer equation where the coefficients α(r)
and β(r) are treated as random functions. In such an approach, no additional
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wave phenomena are included, so the corpuscular treatment of radiation is quite
reasonable.

Putting aside the incoherent scattering, we consider only the coherent part,
i.e. the transparency of the inhomogeneous scattering media. Let us imagine
a layer of a scattering medium where the scatterers fill up this volume homo-
geneously. Then external forces redistribute the scatterers into certain spatial
inhomogeneities. The traditional question is: Is the layer with spatial inhomo-
geneities more or less transparent as compared with that of the homogeneous
scatterer distribution?

To answer the question, we have to average the exponential extinction law
of eq. (5.147) over realizations of the random extinction coefficient α(r). For
generality, consider the transparency between two arbitrary spatial points r and
r′, determined by the optical depth τ(r, r′) of eq. (5.148)

t(r, r′) = e−τ(r,r′) = e− ∫ r′
r

α(l) dl (5.235)

For the random function α(r), the optical depth τ is a random number with its
average magnitude

〈τ(r, r′)〉 =
∫ r′

r

〈α(l)〉 dl (5.236)

In mathematics, there is the general Jensen inequality. The inequality states
that an average of a concave function is always larger than the magnitude of
this function taken for the averaged argument. Thus, we get immediately the
following inequality

〈e−τ 〉 ≥ e−〈τ〉 (5.237)

In spite of mathematical triviality, eq. (5.237) gives two physically important
conclusions:

A: Any scattering medium with a fluctuating number density c(r) is, on average,
more transparent along any ray than is the same medium with the averaged
number density 〈c(r)〉.

B: A layer having a finite longitudinal size but infinite transversality exhibits
lowest longitudinal transmittance in the case of uniform distribution of scat-
terers inside the layer. Any redistribution of the scatterers in space form-
ing transversal inhomogeneities will result in an increase in the longitudinal
transmittance of the layer.

Thus, the statement B gives the answer to the initial question: an appearance
of spatial inhomogeneities in scattering media always increases transparency of
the media. This increase of transparency can also be calculated analytically.
For this purpose, let us use the well-known equation from probability theory
that expresses an average from an exponential through cumulants or correlation
functions



250 Anatoli G. Borovoi

〈t〉 = 〈e−τ 〉 = exp
∞∑

n=1

(−1)nκn/n!

= exp
∞∑

n=1

(−σe)n

∫ r′

r

gn(r1, r2, . . . , rn) dl1 dl2 . . .dln (5.238)

Here the numbers κn are the cumulants or semi-invariants of the random optical
depth τ that are connected with the moments of the optical depth mn = 〈τn〉
by the same chain of equations as the correlation functions gn are connected
with the moment functions 〈α(r1)α(r2) . . . α(rn)〉. This chain of equations is
completely equivalent to eq. (5.200) connecting the correlation functions with
the n-particle probability densities. In the integral of eq. (5.238), the extinction
cross-sections σe are assumed to be constant, for simplicity, and the correlation
functions gn of the number density c(r) are present.

The spatial inhomogeneities described by the correlation functions gn have
a certain characteristic size that is called the correlation length b. In the case of
small inhomogeneities b 	 L as compared to the observation path L = |r − r′|,
the integrals in eq. (5.238) taken over the difference spatial coordinates l2 − l1,
l3−l1, etc. result in certain constants cn owing to the vanishing of the correlation
functions beyond the distance b

(−σe)n−1
∫ L

0
gn d(l2 − l1) d(l3 − l1) . . .d(ln − l1) = cn(l1) (5.239)

These constants can be treated as corrections to the averaged number density
〈c(l1)〉 forming the effective number density

c̃ = 〈c〉 +
∞∑

n=2

cn/n! (5.240)

In this case, the transparency has the conventional form of the exponential ex-
tinction law

〈t〉 = e−σe

∫ L
0 c̃(l) dl (5.241)

where the inequality (5.237) leads to the inequality c̃(l) ≤ 〈c(l)〉. This result is
easily explained. Indeed, these small inhomogeneities can be treated as certain
effective and uncorrelated scatterers. An intersection of the observation ray by
these small spatially independent scatterers results in the exponential law. As
known in mathematics, the exponential law just describes a probability for a
corpuscle to collide with statistically independent objects.

In the opposite case of large inhomogeneities b � L, we can consider the
number density c as a random constant along the observation path L that is
distributed with the probability density p(c). Here the averaged transparency
corresponds to the Laplace transform Λ of the function p(c)

〈t〉 =
∫ ∞

0
p(c)e−cσeL dc = Λp(c)(σeL) (5.242)

As we see, this function of the distance L is not exponential.
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6 Asymptotic radiative transfer

A.A. Kokhanovsky

6.1 Introduction

Light propagation in turbid media such as the atmosphere and the ocean is usu-
ally studied in the framework of radiative transfer theory. In particular, solutions
of the integro-differential radiative transfer equation (RTE) are analysed for me-
dia having different shapes and internal microstructure. A number of numerical
and analytical techniques have been developed to date (Chandrasekhar, 1950;
Sobolev, 1975; van de Hulst, 1980; Nakajima and Tanaka, 1988; Thomas and
Stamnes, 1999; Siewert, 2000; Liou, 2002).

A popular technique for a numerical algorithm is based on the iteration
approach (Liou, 2002). Then the single scattering solution is used to obtain the
result for the first iteration. The obtained solution is substituted in the integral
term of RTE to find the next iteration and the procedure is repeated until the
convergence is reached. This technique is of a special importance for studies of
radiative transfer in turbid media with complex shapes (Nikolaeva et al., 2005).
However, the iteration technique requires quite large computational time for
optically thick media.

Therefore, yet another approach has been developed to treat a special case of
optically thick turbid media. In particular, this technique allows us to represent
the turbid layer reflectance as a combination of the reflectance for the case of a
semi-infinite turbid medium minus the correction term, which accounts for the
finite thickness of a layer under consideration. The correspondening asymptotic
radiative transfer theory (ARTT) has been developed by Germogenova (1961),
Rozenberg (1962), Sobolev (1968, 1975), van de Hulst (1968a, 1968b), Minin
(1988), Zege et al. (1991), and Yanovitskij (1997).

The task of this chapter is to make a review of recent results obtained in the
framework of ARTT. We hope that this work will stimulate the application of the
theory to the solution of various applied problems related to light propagation
in turbid media.
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6.2 Radiative transfer equation

Light scattering by a single macroscopic particle can be studied in the frame-
work of electrodynamics of continuous media. The same applies to clusters of
particles or scattering volumes, where multiple light scattering does not play an
important role. This is not the case for optically thick light scattering media.
Here multiple scattering dominates the registered signal. Therefore, generally
speaking, techniques of multiple wave scattering should be used in this case.
However, they are quite complex and do not always lead to results, which can
be used as a base for the numerical algorithm.

Moreover, electromagnetic fields E cannot be measured in the optical range.
This is mostly due to their high oscillations (≈ 1015 oscillations per second).
Clearly, a measuring device makes temporal and spatial averaging of the regis-
tered signal. Also optical instruments measure quantities quadratic with respect
to the field. This is similar to quantum mechanics, where the amplitude ψ is the
main notion of the theory, but it is |ψ|2, which is measured.

Therefore, it is of importance to formulate multiple light scattering theory,
not in terms of field vectors but in terms of quadratic values, which can be easily
measured. The Stokes-vector parameter I with components I,Q,U,V (Stokes,
1852) is usually used in this case. Of course, this leads to the omission of a
number of theoretical details (e.g., related to the phase effects). However, such
an approach allows an interpretation of most optical measurements. Also light
beams having the same values of I,Q,U,V (but in principle different values of
E) cannot be distinguished by optical instruments, which measure quadratic
values. Therefore, the main point is to force multiple light scattering theory to
deal with intensities rather than fields from the very beginning. Then we do not
need to make corresponding averaging procedures at the end of calculations to
bring calculated values into correspondence to the measured ones. The main aim
of this section is to introduce an equation, which governs the transformation of
the light intensity due to multiple scattering processes in turbid media.

For the sake of simplicity, we consider the transformation of light intensity
and ignore other components of the Stokes vector. Clearly, if the process of
scattering is ignored we can write in the linear approximation for the change of
the light intensity I:

dI = −KextI dl .

This underlines the experimental fact that the reduction of light intensity on the
length dl is proportional to this length and the value of I itself. The coefficient of
proportionality Kext is called the extinction coefficient. Actually Kext coincides
with the absorption coefficient Kabs in this simple case. It follows that

I = I0 exp(−Kextl)

for a homogeneous (Kext = const) layer, which is the well-known extinction law.
Here I0 is the incident light intensity at l = 0. This formula should be modified
for light scattering media to account for light scattering from all other directions
Ω′ to a given direction Ω. Then we have:
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dI(Ω) = −KextI(Ω)dl +
∫

4π

Ksca(Ω,Ω′)I(Ω) dΩ′ dl ,

where the differential scattering coefficient Ksca(Ω,Ω′) describes the local scat-
tering law. This formula can be written in the following form:

dI(Ω)
dl

= −KextI(Ω) +
∫

4π

Ksca(Ω,Ω′)I(Ω′) dΩ′ ,

which is called the radiative transfer equation. The radiative transfer theory is
concerned with the solution of this equation for scattering volumes (e.g., clouds),
having different shapes, types of illuminations, and microstructure.

We will consider with solutions of RTE for a plane-parallel homogeneous tur-
bid layer illuminated by a wide light beam. The interaction of solar radiation
with extended cloud fields is well-approximated by the solution of this idealized
problem. The geometry of the problem is given in Fig. 6.1. The wide light beam
uniformly illuminates a plane-parallel scattering layer from above. We will as-
sume that properties of the layer do not change in the horizontal direction. Then
the light field changes only along the vertical coordinate Z (see Fig. 6.1). The
intensity of light field also depends on the direction Ω, specified by the zenith
angle ϑ and the azimuth ϕ. The main task of the radiative transfer theory is
to calculate distributions I(ϑ, ϕ, z). Usually only measurements of I(ϑ, ϕ, 0) at
the top of the turbid layer (reflected light) and I(ϑ, ϕ, z0) at the base of the
turbid layer (transmitted light) are performed (see Fig. 6.1). Therefore, we will
be concerned mostly with these two angular distributions.

Z

O

z=z
0

z=0

Fig. 6.1. The geometry of the problem

RTE for a plane-parallel light scattering vertically and horizontally homoge-
neous layer is reduced to the following simpler form:

cosϑ
dI(ϑ, ϕ)

dτ
= −I(ϑ, ϕ) +

ω0

4π

∫ 2π

0
dϕ′
∫ π

0
dϑ′p(ϑ′, ϕ′ → ϑ, ϕ)I(ϑ′, ϕ′) ,
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if the polarization effects are ignored. Here we introduced the optical depth

τ = σextz ,

the phase function

p(ϑ′, ϕ′ → ϑ, ϕ) =
4πKsca(ϑ′, ϕ′ → ϑ, ϕ)

Ksca
,

the scattering coefficient Ksca = Kext −Kabs, and the single scattering albedo

ω0 =
Ksca

Kext
.

It is useful to make a separation of diffuse I and direct (or coherent) Ic =
Aδ(cosϑ− cosϑ0)δ(ϕ− ϕ0) light in the general solution I(ϑ, ϕ). The value of A
is determined below and δ(x) is the delta function.

It is assumed that the layer is illuminated in the direction defined by the
incidence zenith angle ϑ0 = arccos(µ0) and the azimuth ϕ0. The density of the
incident light flux on the area perpendicular to the beam is equal to F at the top
of a scattering layer. The multiply scattered light is observed in the direction
specified by the zenith observation angle ϑ = arccos(µ) and the azimuth ϕ.
Namely, we write: I(ϑ, ϕ) = I(ϑ, ϕ) + Ic(ϑ, ϕ). The substitution of this formula
in RTE gives

cosϑ
dI(ϑ, ϕ)

dτ
= −I(ϑ, ϕ) +

ω0

4π

∫ 2π

0
dϕ′
∫ π

0
dϑ′p(ϑ′, ϕ′ → ϑ, ϕ)I(ϑ′, ϕ′)

+
ω0

4π
p(ϑ0, ϕ0 → ϑ, ϕ)F exp

(
− τ

cosϑ0

)
.

The solution of this equation under boundary conditions stating that there is
no diffuse light entering the turbid layer from above and below allows us to find
I(ϑ, ϕ). Ic(ϑ, ϕ) is given simply by

Ic(ϑ, ϕ) = Fδ(cosϑ− cosϑ0)δ(ϕ− ϕ0) exp
(

− τ

cosϑ0

)
.

The solution of RTE for the diffuse intensity I is simpler than that for the
total intensity I because we avoid the necessity to deal with the divergence in
the direction of incident light.

6.3 Reflection and transmission functions

Reflectance and transmittance of light by turbid layers is usually defined in terms
of reflection R and transmission T functions. They relate incident light inten-
sity I0(ϑ0, ϕ0) with reflected IR(µ, ϕ) and transmitted IT (µ, ϕ) light intensity.
Namely, it follows by definition:
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IR(µ, ϕ) =
1
π

∫ 2π

0
dϕ′
∫ 1

0
R(µ, ϕ, µ′, ϕ′)I0(µ′, ϕ′)µ′ dµ′ ,

IT (µ, ϕ) =
1
π

∫ 2π

0
dϕ′
∫ 1

0
T (µ, ϕ, µ′, ϕ′)I0(µ′, ϕ′)µ′ dµ′ .

Reflection and transmission functions allow to find the intensity of reflected and
transmitted light for arbitrary angular distributions of incident light with the
intensity I0(µ′, ϕ′).

If incident light is azimuthally independent, these formulas simplify:

IR(µ, ϕ) = 2
∫ 1

0
R(µ, ϕ, µ′)I0(µ′)µ′ dµ′ ,

IT (µ, ϕ) = 2
∫ 1

0
T (µ, ϕ, µ′)I0(µ′)µ′ dµ′ ,

where

R(µ, ϕ, µ′) =
1
2π

∫ 2π

0
R(µ, ϕ, µ′, ϕ′) dϕ′ ,

T (µ, ϕ, µ′) =
1
2π

∫ 2π

0
T (µ, ϕ, µ′, ϕ′) dϕ′ .

The general equations given above can also be simplified for unidirectional illu-
mination of a turbid layer by a wide beam (e.g., solar light). Then we can assume
that

I0(µ′, ϕ′) = Fδ(µ′ − µ0)δ(ϕ′ − ϕ0) ,

where F is the incident light flux density at the top of a layer as introduced
above and δ(x) is the delta function, having the following property:

f(x0) =
∫ ∞

0
δ(x− x0)f(x) dx

for arbitrary f(x). Using this relation and equations for reflection and transmis-
sion functions given above, we arrive at the following results:

IR(µ, ϕ) =
Fµ0R(µ, ϕ, µ0, ϕ0)

π
,

IT (µ, ϕ) =
Fµ0T (µ, ϕ, µ0, ϕ0)

π
,

and, therefore,

R(µ, ϕ, µ0, ϕ0) =
πIR(µ, ϕ)
Fµ0

,

T (µ, ϕ, µ0, ϕ0) =
πIT (µ, ϕ)
Fµ0

.
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These equations allow us to make the physical interpretation of reflection
and transmission functions. Indeed, we have for an absolutely white Lambertian
surface by definition:

PL
R (µ, ϕ) =

∫
2π

IL
R(µ, µ′, ϕ, ϕ′)µ′ dΩ′ =

∫ 2π

0
dϕ′
∫ 1

0
IL
R(µ, µ′, ϕ, ϕ′)µ′ dµ′

=
∫ 2π

0
dϕ′
∫ 1

0
Cµ0µ

′ dµ′ = πCµ0 ,

where PL
R (ϑ, ϕ) is the total power scattered by a unit area of a Lambertian

surface into the upper hemisphere and we have used the fact that intensity of
light reflected from a Lambertian surface is proportional to the cosine of the
incidence angle µ0(IL

R = Cµ0). The constant C can be found from the condition
that the scattered (PL

R (ϑ, ϕ)) and incident (P0) powers are equal in the case of
the absolute white Lambertian surface by definition. We have for the incident
power:

P0 =
∫

2π

I0(µ′, µ0, ϕ
′, ϕ0)µ′ dΩ′

= F

∫ 2π

0
dϕ′
∫ 1

0
δ(µ′ − µ0)δ(ϕ′ − ϕ0)µ′ dµ′ = Fµ0

and, therefore: C = F/π. It means that intensity of light reflected from an
absolutely Lambertian surface is given by:

IL
R(ϑ0, ϑ, ϕ) =

F

π
µ0 .

We conclude that R(µ, ϑ, µ0, ϑ0) is equal to the ratio of light reflected from a
given surface IR to the value of IL

R:

R = IR/I
L
R .

It means that R ≡ 1 for a Lambertian ideally white surface.
Accordingly, it follows that

T = IT /I
L
R .

The results of calculations will be mostly presented in terms of functions R
and T in this work. These functions do not depend on the intensity of incident
light, and characterize inherent properties of a turbid layer. The integration of
reflection and transmission functions with respect to angles allows us to find the
cloud plane rd and spherical r albedos, the diffuse td and global t transmittances,
the absorptance ad and the global absorptance a as specified in Table 6.1.
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Table 6.1. Radiative transfer characteristics (R and T are azimuthally averaged re-
flection and transmission functions, respectively)

Radiative characteristic Symbol Definition

Plane albedo rd(µ0) 2
∫ 1

0
R(µ0, µ)µ dµ

Spherical albedo r 2
∫ 1

0
rd(µ0)µ0 dµ0

Diffuse transmittance td(µ0) 2
∫ 1

0
T (µ0, µ)µ dµ

Global transmittance t 2
∫ 1

0
td(µ0)µ0 dµ0

Absorptance ad(µ0) 1 − rd(µ0) − td(µ0)

Global absorptance a 1 − r − t

6.4 Asymptotic theory

6.4.1 Auxiliary functions and relationships

Let us find the solution of RTE valid for optically thick turbid media (z0 � K−1
ext,

see Fig. 6.1). It is known that light intensity in deep layers of optically thick
light scattering media is azimuthally independent. Then the radiative transfer
equation can be written in the following form:

η
dI(τ, η)

dτ
= −I(τ, η) +B(τ, η) +B0(τ, η) ,

where

B(τ, η) =
ω0

2

∫ 1

−1
p(η, η′)I(τ, η′) dη′ ,

B0(τ, η) =
ω0F

4π
p(η, ξ)e−τ/ξ ,

ξ = cosϑ0, η = cosϑ, and

p(η, ξ) =
1
2π

∫ 2π

0
p(η, ξ, ϕ) dϕ

is the azimuthally averaged phase function. This result can be obtained from
RTE (see section 6.2) performing integration with respect to the azimuth.

Let us assume that τ → ∞. Then it follows that B0(τ, η) → 0 and (Sobolev,
1975)

I(τ, η) = i(η)e−kτ .
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The last equation corresponds to the so-called deep-layer regime, when param-
eters η and τ are decoupled. Then the light field intensity decreases with the
distance from the illuminated boundary preserving the scattered light angular
pattern given by the function i(η). The value of I decreases in e times at the
optical depth τe = 1/k. Both the function i(η) and the diffusion exponent k
play an important role in the theory considered here. It is interesting that these
characteristics of the deep-layer regime also define the intensity of transmitted
and reflected light of optically thick layers as will be shown below.

It is easy to derive, using equations given above, that

(1 − kη)i(η) =
ω0

2

∫ 1

−1
p(η, η′)i(η′) dη′ ,

which is called the deep regime radiative transfer equation (DRTE). This integral
equation is usually solved numerically. Let us assume that p = 1. Then we have:

i(η) =
ω0

2(1 − kη)
∫ 1

−1
i(η′) dη′

or
i(η) =

D

1 − kη ,

where

D =
ω0

2

∫ 1

−1
i(η′) dη′

does not depend on the angle. Note that i(η) satisfies DRTE for any constants
D and, therefore,

i(η) =
1

1 − kη ,

where we used the normalization condition: D = 1. The diffusion constant k can
be found substituting the last equation in DRTE. Then we have:

ω0

2k
ln
(

1 + k
1 − k

)
= 1

at p = 1. This equation allows to find k at arbitrary ω0 and p = 1.
We can also write:

(1 + kη)i(−η) =
ω0

2

∫ 1

−1
p(−η, η′)i(η′) dη′

or

(1 + kη)i(−η) =
ω0

2

∫ 1

−1
p(η, η′)i(−η′) dη′ ,

where we used the property: p(−η,−η′) = p(η, η′).
Let us establish now the relationship between the intensity i↓(η) for light

propagated downwards and the intensity i↑(−η) for light propagated upwards.
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Arrows and signs before η indicate the direction of light propagation. For this we
consider a cut parallel to the upper boundary but at a large optical depth. The
correspondent plane at τ � 1 is illuminated not only by light coming from above
and having the intensity ia but also by light coming from below and reflected
from the layer above the plane of cut. We denote this contribution to the total
intensity as ib. Then we have:

i↓(η) = ia(η) + ib(η) .

So the function i↓(η) can be presented as a sum of two terms. Clearly, ia(η) is
proportional to the angular distribution u(η) of light transmitted by the upper
layer:

ia(η) = Mu(η) ,

where M is the unknown proportionality constant. We will find this constant at
later stages of our derivations. Also it follows for the intensity ib(η) by definition
(see section 6.3) that

ib(η) = 2
∫ 1

0
R(η, η′)i(−η′)η′ dη′ ,

where R(η, η′) is the azimuthally averaged reflection function of the upper layer
under illumination from below (η > 0, η′ > 0). This layer can be chosen to be
arbitrarily thick. So we will assume that R(η, η′) coincides with the azimuthally
averaged reflection function of a semi-infinite layer R∞(η, η′).

Summing up, it follows that

i↓(η) = Mu(η) + 2
∫ 1

0
R∞(η, η′)i(−η′)η′ dη′ .

Let us find M . We multiply the last equation by ηi↓(η) and integrate it from
0 to 1 with respect to η. Then we have:∫ 1

0
i↓

2
(η)η dη = M

∫ 1

0
u(η)i↓(η)η dη + I

where the two-dimensional integral

I = 2
∫ 1

0
i↓(η)η dη

∫ 1

0
i↑(−η′)R∞(η, η′)η′ dη′

can be simplified. For this we note that it follows by definition (see section 6.3)
that

i↑(−η′) = 2
∫ 1

0
i↓(η)R∞(η, η′)η dη

and, therefore,

I =
∫ 1

0
i↑

2
(−η′)η′ dη′
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or

I = −
∫ 0

−1
i↑

2
(η′)η′ dη′ .

Therefore, it follows, omitting arrows, that

M = C

∫ 1

−1
i2(η)η dη ,

where

C =
[∫ 1

0
u(η)i(η)η dη

]−1

.

We will use the normalization condition: C = 2. Then it follows:

M = 2
∫ 1

−1
i2(η)η dη .

We present the equation for M together with other important relations in
Table 6.2. The constant N defined in the property 6.8 (see Table 6.2) will be
used in further derivations devoted to studies of relationships between auxiliary
functions

P (τ) =
∫ 1

−1
ηi(η)I(τ, η) dη

Table 6.2. Main equations and constants

No. Property

6.1 (1 − kη)i(η) =
ω0

2

∫ 1

−1
p(η, η′)i(η′) dη′

6.2 (1 + kη)i(−η) =
ω0

2

∫ 1

−1
p(η, η′)i(−η′) dη′

6.3
ω0

2

∫ 1

−1
i(η) dη = 1

6.4 i(−η) = 2
∫ 1

0
i(ξ)R∞(ξ, η)ξ dξ

6.5 i(η) = 2
∫ 1

0
i(−ξ)R∞(ξ, η)ξ dξ + Mu(η)

6.6 2
∫ 1

0
u(η)i(η)η dη = 1

6.7 M = 2
∫ 1

−1
i2(η)η dη

6.8 N = 2
∫ 1

0
i(−η)u(η)η dη

6.9 η
dI

dτ
= −I + B + B0
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and

Q(τ) =
∫ 1

−1
ηi(−η)I(τ, η) dη .

The relationships between functions P (τ) and Q(τ) are of importance for the
derivation of asymptotical equations for reflection and transmission functions
valid as the optical thickness τ0 = Kextz0 → ∞. Let us show this.

First of all, we note that it follows after multiplication of eq. (6.9) in Table 6.2
by i(η) and integration from −1 to 1:

dP (τ)
dτ

= −kP (τ) + P0(τ) ,

where

P0(τ) =
∫ 1

−1
i(η)B0(τ, η) dη

and we used the equality

−kP (τ) =
∫ 1

−1
B(τ, η)i(η) dη −

∫ 1

−1
i(η)I(τ, η) dη .

This equality can be obtained from eq. (6.1) in Table 6.2. Let us show it.
We have after multiplying eq. (6.1) in Table 6.2 by I(τ, η) and integrating this
equation from −1 to 1 with respect to η:∫ 1

−1
I(τ, η)i(η) dη − kP (τ) =

ω0

2

∫ 1

−1
dη
∫ 1

−1
I(τ, η)p(η, η′)i(η′) dη′

or ∫ 1

−1
I(τ, η)i(η) dη − kP (τ) =

∫ 1

−1
B(τ, η)i(η) dη ,

where we used the property: p(η, η′) = p(η′, η). This completes the proof.
The next step is to find P (τ) from the differential equation given above. For

this we use the following substitution:

P (τ) = f(τ)e−kτ .

Then it follows that
df(τ)

dτ
= P0(τ)ekτ

or
fτ

τ1
=
∫ τ

τ1

P0(t)ekt dt .

It means that
f(τ) = f(τ1) +

∫ τ

τ1

P0(t)ekt dt .



264 A.A. Kokhanovsky

So we have:
P (τ) = f(τ1)e−kτ + e−kτ

∫ τ

τ1

P0(t)ekt dt .

The value of τ1 can be found from boundary conditions. In particular, we inter-
ested in the diffuse light. Diffused light does not enter the medium from above or
below of a turbid slab (I(0, η) = 0 for η > 0 and I(τ0, η) = 0 for η < 0). There-
fore, we have: τ1 = 0. Then the boundary condition at the upper boundary is
satisfied. Finally, it follows that

P (τ) = P (0)e−kτ +
∫ τ

0
P0(t)ek(t−τ) dt .

A similar relationship can be obtained for Q(τ, η). Namely, we have after multi-
plication of eq. (6.9) in Table 6.2 by i(−η) and performing the integration from
−1 to 1:

dQ(τ)
dτ

= kQ(τ) +Q0(τ) ,

where

Q0(τ) =
∫ 1

−1
i(−η)B0(τ, η) dη .

This equation differs from the corresponding equation for P (τ) only in the sign
before k. So it follows that

Q(τ) = ψ(τ∗
1 )ekτ + ekτ

∫ τ

τ∗
1

Q0(t)e−kt dt ,

where it was assumed that
Q(τ) = ψ(τ)ekτ .

The value of τ∗
1 can be found from the boundary condition at the lower boundary

of a medium. Namely, we have: τ∗
1 = τ0. Therefore, it follows that

Q(τ) = Q(τ0)ek(τ−τ0) +
∫ τ

τ0

Q0(t)e−k(t−τ) dt .

This equation gives an identity at τ = τ0 due to the accurate account for the
boundary conditions.

Summing up, we have the following important relationships:

P (τ) = P (0)e−kτ + V (τ) ,
Q(τ) = Q(τ0)e−k(τ−τ0) +W (τ) ,

where

V (τ) =
∫ τ

0
P0(t)ek(t−τ) dt ,

W (τ) =
∫ τ

τ0

Q0(t)e−k(t−τ) dt .
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These fundamental relationships are valid for any τ and for any light sources
represented by B0. They can be used for the derivation of a number of important
results of light scattering media optics.

We will use a particular case at τ = τ0 in the first equation and a case τ = 0
in the second equation. Then it follows that

P (τ0) = P (0) exp(−kτ0) + V (τ0) ,
Q(0) = Q(τ0) exp(−kτ0) +W (0) ,

where

V (τ0) = e−kτ0

∫ τ0

0
dt
∫ 1

−1
i(η)

ω0F

4π
p(η, ξ)e−t( 1

ξ −k) dη

=
1
2π

(
e−kτ0 − e− τ0

ξ

)
ξi(ξ)F ,

W (0) =
∫ 0

τ0

e−kt dt
∫ 1

−1
i(−η)ω0F

4π
p(η, ξ)e−t/ξ dη

=
1
2π

(
e−(k+ 1

ξ )τ0 − 1
)
ξi(−ξ)F ,

where we used properties 1 and 2 in Table 6.2. Therefore, neglecting small num-
bers proportional to e−τ0/ξ, it follows that

P (0) = P (τ0)ekτ0 − ξi(ξ)F
2π

,

Q(0) = Q(τ0)e−kτ0 − ξi(−ξ)F
2π

.

These are auxiliary relations we were bound to establish from the very start.
They can be also written in the following form:

i(ξ) =
2πekτ0

ξF

∫ 1

−1
I(η, τ0)i(η)η dη − 2π

ξF

∫ 1

−1
I(η, 0)i(−η)η dη ,

i(−ξ) =
2πe−kτ0

ξF

∫ 1

−1
I(η, τ0)i(−η)η dη − 2π

ξF

∫ 1

−1
I(η, 0)i(−η)η dη .

Now we take into account that

I(−η, 0) =
ξF

π
R(ξ, η)

at η > 0 and I(−η, 0) = 0, otherwise. Also it follows that

I(η, τ0) =
ξF

π
T (ξ, η)

at η > 0 and I(η, τ0) = 0, otherwise. This means that we can write:
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−
∫ 1

−1
I(η, 0)i(η)η dη = −

∫ −1

1
I(−η, 0)i(−η)η dη = −

∫ 0

1
I(−η, 0)i(−η)η dη

and

−
∫ 1

−1
I(η, 0)i(−η)η dη = −

∫ −1

1
I(−η, 0)i(η)η dη = −

∫ 0

1
I(−η, 0)i(η)η dη .

Similar relationships can be written for integrals containing I(η, τ0). Then one
obtains:

i(ξ) = 2ekτ0

∫ 1

0
T (η, ξ, τ0)i(η)η dη + 2

∫ 1

0
R(η, ξ, τ0)i(−η) dη ,

i(−ξ) = 2e−kτ0

∫ 1

0
T (η, ξ, τ0)i(−η)η dη + 2

∫ 1

0
R(η, ξ, τ0)i(η)η dη .

6.4.2 Asymptotic equations

The general form of functions R(η, ξ, τ0) and T (η, ξ, τ0) can be obtained using
physical arguments. In particular, T should be proportional to u(η) (and, actu-
ally, due to the reciprocity principle also to u(ξ)). Therefore, we have:

T (η, ξ, τ0) = α(τ0)u(η)u(ξ) ,

where α(τ0) is the unknown function.
Let us consider now a semi-infinite layer and take a cut at a large optical

thickness τ0. Then we can represent R∞(η, ξ) as a sum of reflection from upper
layer R(η, ξ, τ0) and light transmitted by the upper layer and reflected back. The
angular distribution of the transmitted light should be proportional to u(η)u(ξ)
as was specified above. So we have:

R∞(η, ξ) = R(τ, η, ξ) + β(τ0)u(η)u(ξ) .

Let us find unknown functions α(τ0) and β(τ0) using expressions for i(±ξ) de-
rived above and also properties specified in Table 6.2. Then it follows that

i(ξ) = 2ekτ0

∫ 1

0
α(τ0)u(η)u(ξ)i(η)η dη

+2
∫ 1

0
(R∞(η, ξ) − β(τ0)u(η)u(ξ)) i(−η)η dη ,

i(−ξ) = 2e−kτ0

∫ 1

0
α(τ0)u(η)u(ξ)i(−η)η dη

+2
∫ 1

0
(R∞(η, ξ) − β(τ0)u(η)u(ξ)) i(η) dη .

One obtains, using properties given in Table 6.2:
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i(ξ) = ekτ0α(τ0)u(ξ) + i(ξ) −Mu(ξ) − β(τ0)u(ξ)N ,
i(−ξ) = i(−ξ) − β(τ0)u(ξ) + α(τ0)Ne−kτ0u(ξ) ,

where we introduced the integral

N = 2
∫ 1

0
u(η)i(−η)η dη .

Therefore, it follows that

α(τ0) −Me−kτ0 − βNe−kτ0 = 0 ,
β(τ0) = α(τ0)Ne−kτ0 .

So one obtains:

α(τ0) =
Me−kτ0

1 −N2e−2kτ0
, β(τ0) =

MNe−2kτ0

1 −N2e−2kτ0

Finally, we have, as τ0 → ∞ at arbitrary ω0 and p(θ):

R(ξ, η) = R∞(ξ, η) − T (ξ, η)Ne−kτ0 ,

T (ξ, η) =
Me−kτ0

1 −N2e−2kτ0
u(η)u(ξ) .

These formulas are central equations of the light scattering media optics. The
importance of these equations is due to the fact that the dependence of radiative
characteristics on τ0 is given explicitly. Our next task is to derive approximate
equations for constants k,M,N and functions u(η), R∞(ξ, η) in a number of
particular cases.

The dependence of the transmitted light on the azimuth is weak. So we may
write:

R(ξ, η, ϕ) = R∞(ξ, η, ϕ) − T (ξ, η)Ne−kτ0 ,

T (ξ, η) =
Me−kτ0

1 −N2e−2kτ0
u(η)u(ξ) ,

where we have accounted for the fact that the reflection function of a semi-infinite
turbid medium does depend on the azimuth.

The choice of the normalization condition for the function i(η) and also for
the function u(η) is arbitrary. We have followed the notation of Sobolev (1975).
It differs from that in the corresponding equations used by van de Hulst (1980).
For instance, van de Hulst’s diffusion pattern P (η) must be divided by ω0 to
yield i(η). His escape function K(η) must be multiplied by ω0 to yield u(η), and
his M equals that used by Sobolev multiplied by ω2

0 . These differences do not
lead to extra factors in main equations given in this section. They are also of no
importance at ω0 = 1.

6.4.3 Weak absorption

Equations given above can be simplified considerably for the case of values of ω0
close to unity. Therefore, we need to find approximate expressions for functions
R∞(ξ, η), u(η) and also for parameters k,M,N as ω0 → 1. Let us concentrate
on this problem now.
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6.4.3.1 The constants k, M and the diffuse light field in deep layers

The parameter M depends on the diffuse light intensity i(η) in deep layers of a
turbid medium:

M = 2
∫ 1

−1
i2(η)η dη .

So we need to study functions i(η) as ω0 → 1. The radiative transfer equation
for the normalized light intensity i(η) deep inside of a turbid medium has the
following form:

(1 − kη)i(η) =
ω0

2

∫ 1

−1
p(η, η′)i(η′) dη′ ,

where p(η, η′) is the azimuthally averaged phase function, ω0 is the single scat-
tering albedo and k is the diffusion exponent. The normalization condition for
i(η) has the following form:

ω0

2

∫ 1

−1
i(η′) dη′ = 1 .

We use the following expansions:

p(η, η′) =
∞∑

n=0

xnPn(η)Pn(η′)

and

i(η) =
∞∑

n=0

σnPn(η) .

The task is to find σn from the set of xn. Substituting these expressions in
DRTE, we have:

B =
∞∑

n=0

σnPn(η) − kη
∞∑

n=0

σnPn(η) ,

where

B =
ω0

2

∞∑
l=0

∞∑
n=0

∫ 1

−1
xlσnPl(η)Pl(η′)Pn(η′) dη′

or

B = ω0

∞∑
l=0

∞∑
n=0

σnxlδnl[2n+ 1]−1Pn(η)

and after simplifications:

B = ω0

∞∑
n=0

xnσn[2n+ 1]−1Pn(η) ,

where we used the fact that Legendre polynomials are orthogonal. This means
that
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−1
Pn(η)Pl(η) dη = 2δnl[2n+ 1]−1 ,

where δnl is the Kronecker symbol.
Therefore, it follows that

1
k

∞∑
n=0

σn

{
1 − xnω0

2n+ 1

}
Pn(η) =

∞∑
n=0

σn

{
n+ 1
2n+ 1

Pn+1(η) +
n

2n+ 1
Pn−1(η)

}
,

where we have used the property:

ηPn(η) =
n+ 1
2n+ 1

Pn+1(η) +
n

2n+ 1
Pn−1(η) .

The expressions for

ζ(η) =
∞∑

n=0

σn
n+ 1
2n+ 1

Pn+1(η)

and

υ(η) =
∞∑

n=0

σn
n

2n+ 1
Pn−1(η)

can be written as:

ζ(η) =
∞∑

l=0

σl−1
l

2l − 1
Pl(η)

and

υ(η) =
∞∑

s=0

σs+1
s+ 1
2s+ 3

Pl(η) ,

where l = n+ 1, s = n− 1.
Therefore, we have:

∞∑
m=0

[
1
k
σm − xmω0

(2m+ 1)k
σm − m

2m− 1
σm−1 − m+ 1

2m+ 3
σm+1

]
Pm(η) = 0

at arbitrary η. This means that

1
k
σm − xmω0

(2m+ 1)k
σm − m

2m− 1
σm−1 − m+ 1

2m+ 3
σm+1 = 0

or

σm+1 =
(2m+ 3)(2m− ω0xm + 1)

(2m+ 1)(m+ 1)k
σm − (2m+ 3)m

(2m− 1)(m+ 1)
σm−1 .

We have at m = 0:

σ1 =
3σ0(1 − ω0)

k
.
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Let us derive the expression for the value of σ0 now. It follows that

σm =
2m+ 1

2

∫ 1

−1
i(η)Pm(η) dη

and, therefore,

σ0 =
1
2

∫ 1

−1
i(η) dη .

Comparing this result with property 6.3 in Table 6.2, we derive: σ0 = ω−1
0 ,

and, therefore,

σ1 =
3(1 − ω0)
kω0

.

This allows us to obtain the following expansion for i(η) as ω0 → 1:

i(η) = ω−1
0

{
1 + 3k−1(1 − ω0)η

}
,

where we neglected higher-order terms with respect to the probability of photon
absorption β ≡ 1 − ω0. So it follows, as ω0 → 1, that

i(η) = 1 + 3k−1(1 − ω0)η .

Recurrence relations allow us to find σm and i(η) at any k. We will not consider
this problem here, however, but rather concentrate on the derivation of the
approximate equation for k valid as ω0 → 1.

For this we introduce:
Υm =

σm

σm−1
.

Then it follows that

Υm+1 =
(2m+ 3)(2m− ω0xm + 1)

(2m+ 1)(m+ 1)k
− (2m+ 3)m

(2m− 1)(m+ 1)Υm

and

Υm =
(2m+ 3)m

(2m− 1)(m+ 1)
[
(2m+ 3)(2m− ω0xm + 1)

(2m+ 1)(m+ 1)k
− Υm+1

]
or

Υm =
(2m+ 3)(2m+ 1)mk

(2m+ 3)(2m− 1)(2m+ 1 − ω0xm) − εm ,

where
εm = (4m2 − 1)(1 +m)kΥm+1 .

We are interested in the asymptotic solution valid as k → 0. So we can ignore
εm and derive at m = 1:

Υ1 =
3k

(3 − ω0x1)
.
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Therefore, it follows that

σ1 =
3k

(3 − ω0x1)
σ0

or
σ1 =

3k
(3 − ω0x1)ω0

.

This formula must produce the same result as the expression for σ1 derived
above. It means that

k =
√

3(1 − ω0g)(1 − ω0) ,

where g = x1/3 is the asymmetry parameter. This important equation shows
that the intensity in the deep layers of optically thick weakly absorbing media
clouds decreases more quickly for smaller values of the asymmetry parameter g
(less extended in the forward direction phase functions). Our derivations are valid
as ω0 → 1 only. So we can also write: k =

√
3(1 − ω0)(1 − g). The approximate

expression for i(η) given above can be written using the similarity parameter

s =
√

1 − ω0

1 − ω0g
.

Namely, we have:
i(η) = 1 +

sη√
3
.

Note that it follows as ω0 → 1: s ≈
√

1 − ω0

1 − g .

The angular pattern i(η) does not depend on the choice of a particular light
scattering medium if s kept constant. The function i(η) is completely determined
by the similarity parameter s as ω0 → 1. Therefore, light scattering media having
different values of ω0 and g but the same s have very similar light angular
distributions in the deep-layer regime.

The parameters k and s are of a crucial importance for the theory considered
here. We must expect that constants and functions in asymptotic equations
must depend on these values. In particular, taking into account property 6.7 in
Table 6.2, we obtain:

M =
8s√
3

as k → 0.

6.4.3.2 The constant N and the escape function

The expansion of u(η) with respect to the diffusion coefficient k can be presented
as

u(η) =
∞∑

n=0

knun(η) .

We are interested only in the case of weak absorption. Then it follows that

u(η) = u0(η) + ku1(η) .
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The task is to calculate the function u1(η). This will be performed in two steps.
First of all we note that the weak absorption of light does not alter the sin-
gle scattering law considerably. The angular distribution of emerging light u(η)
is determined largely by the scattering processes. So it is safe to assume that
u(η) ≈ u0(η) as k → 0 or u1(η) = bu0(η), where the constant b should be de-
termined. Clearly, due to physical reasons we should have: u(η) < u0(η) and
b < 0. Therefore, absorption plays the role of a veil in this case. It reduces the
contrast but it does not change details of the scattering pattern. We start from
the expression:

2
∫ 1

0
u(η)i(η)η dη = 1 .

Let us substitute the following expansions in this formula:

u(η) = u0(η)(1 + bk)

and
i(η) = 1 + akη ,

where we assume that ω0 → 1 and, therefore,

k =
√

3(1 − g)(1 − ω0) , s =
√

1 − ω0

1 − g , and a = (1 − g)−1 .

Then it follows that

2
∫ 1

0
u0(η)η dη + 2bk

∫ 1

0
u0(η)η dη + 2ak

∫ 1

0
u0(η)η2 dη = 1 ,

where we neglected high-order terms. So we have:

b = −2a
∫ 1

0
u0(η)η2 dη ,

where we have accounted for the fact that (see property 6.6 in Table 6.2 at
ω0 = 1, i ≡ 1)

2
∫ 1

0
u0(η)η dη = 1 .

Finally, it follows that

b = − 2ν
1 − g ,

where we have accounted for the fact that a = (1 − g)−1 and

ν =
∫ 1

0
u0(η)η2 dη

is the second moment of the escape function. Therefore, one finally derives:

u(η) =
(

1 − 2νk
1 − g

)
u0(η) .
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This equation together with expression for i(η) allows to find the constant N
(see Table 6.2). Namely, we arrive at the following result:

N = 2
∫ 1

0
dηu0(η)η

{
1 − 2νk

1 − g
}{

1 − kη

1 − g
}

or
N = 1 − 4νk

1 − g ,

where we have neglected terms of the second order with respect to k. We can
also write:

N = 1 − 4
√

3νs .

Note that functions u(η) enter asymptotic formulas in the combination:
Ψ(η, ξ) = Mu(η)u(ξ). This means that one can use the following approxima-
tion, valid as k → 0:

Ψ(η, ξ) =
8s√
3
u0(η)u0(ξ) .

6.4.3.3 The reflection function of a semi-infinite layer

The last point in our derivations of asymptotics as ω0 → 1 is to derive the weak
absorption approximation for the reflection function of a semi-infinite medium
R∞. This will be done in two steps.

Step 1

The expression for a plane albedo of a semi-infinite medium is written by a
definition as

rp(ξ) = 2
∫ 1

0
R∞(ξ, η)η dη .

We will use the following expansion of R∞(ξ, η) with respect to k:

R∞(ξ, η) = R0∞(ξ, η) − kR1∞(ξ, η) ,

where R1∞(ξ, η) is the function we need to find. The minus sign signifies the
fact that R∞(ξ, η) ≤ R0∞(ξ, η) by definition. One can see that

rp(ξ) = 1 − kJ(ξ) ,

where

J(ξ) = 2
∫ 1

0
R1∞(ξ, η)η dη ,

and we used the property:

2
∫ 1

0
R0∞(ξ, η)η dη = 1 .
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Step 2

We now derive the asymptotic equation for rp(ξ) as k → 0 using another set of
equations. This will allow us to give a relationship between J(ξ) and u0(ξ). We
start from the following equation (see Table 6.2):

i(−ξ) = 2
∫ 1

0
i(η)R∞(ξ, η)η dη .

Substituting expansions with respect to k in this expression and ignore high-
order terms, we obtain:

1 − kξ

1 − g = 2
∫ 1

0

(
1 +

kη

1 − g
)

(R0∞(ξ, η) − kR1∞(ξ, η)) η dη .

This means that (see Table 6.2)

1 − kξ

1 − g = 1 − kJ(ξ) +
2k

1 − g
∫ 1

0
R0∞(ξ, η)η2 dη

or

J(ξ) = (1 − g)−1
{
ξ + 2

∫ 1

0
R0∞(ξ, η)η2 dη

}
,

where

J(ξ) =
1 − rp(ξ)

k

as was shown above. Therefore, it holds that

(1 − g)(1 − rp(ξ))k−1 = 2
∫ 1

0
R0∞(ξ, η)η2 dη + ξ

or

rp(ξ) = 1 − k

1 − g
{
ξ + 2

∫ 1

0
R0∞(ξ, η)η2 dη

}
.

On the other hand, we have:

i(ξ) = Mu(ξ) + 2
∫ 1

0
i(−η)R∞(ξ, η)η dη .

Therefore, it follows, as k → 0, that

1 +
kξ

1 − g =
8ku0(ξ)
3(1 − g) + 2

∫ 1

0

(
1 − kη

1 − g
)

(R0∞(ξ, η) − kR1∞(ξ, η)) η dη .

This means that

1 +
kξ

1 − g =
8ku0(ξ)
3(1 − g) + 1 − 2k

1 − g
∫ 1

0
R0∞(ξ, η)η2 dη − kJ(ξ)
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or

ξ =
8
3
u0(ξ) − 2

∫ 1

0
R0∞(ξ, η)η2 dη − (1 − g)J(ξ)

and

J(ξ) = (1 − g)−1
{

8
3
u0(ξ) − 2

∫ 1

0
R0∞(ξ, η)η2 dη − ξ

}
.

Comparing this expression with the formula for J(ξ) given above, we derive
that

8u0(ξ)
3

= 2ξ + 4
∫ 1

0
R0∞(ξ, η)η2 dη .

This allows us to establish the following important relationship:

u0(ξ) =
3
4

[
ξ + 2

∫ 1

0
R0∞(ξ, η)η2 dη

]
.

The expression in brackets is equal to (1 − g)J(ξ). So we have:

J(ξ) =
4u0(ξ)

3(1 − g)
and, therefore,

rp(ξ) = 1 − 4ku0(ξ)
3(1 − g) .

The function R1∞(ξ, η) must be symmetric with respect to the pair (ξ, η). There-
fore, it follows, using the expression

J(ξ) = 2
∫ 1

0
R1∞(ξ, η)η dη =

4u0(ξ)
3(1 − g) ,

that
R1∞(ξ, η) = cu0(ξ)u0(η) .

Substituting this formula in the equation given above, we derive the analytical
expression for the constant c:

c =
4

3(1 − g) ,

where we used the property

2
∫ 1

0
u0(ξ, η)η dη = 1 .

Finally, we have:

R(ξ, η) = R0∞(ξ, η) − 4k
3(1 − g)u0(ξ)u0(η)
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or
R(ξ, η) = R0∞(ξ, η) − 4√

3
su0(ξ)u0(η) .

All asymptotic equations derived as k → 0 are given in Table 6.3. It follows
that the case of weak absorption can be studied analytically if the function
R0∞(ξ, η) is known. The escape function u0(ξ) is calculated by the integration
of R0∞(ξ, η) with respect to η as was shown above. Let us study the functions
R0∞(ξ, η) and u0(ξ) in more detail now.

Table 6.3. Asymptotic equations valid as

k → 0
(

ν =
∫ 1

0
u0(ξ)ξ2 dξ, g =

1
4

∫ π

0
p(θ) sin 2θ dθ

)

R∞(ξ, η, ϕ) R0∞(ξ, η, ϕ) − 4k

3(1 − g)
u0(ξ)u0(η)

u(ξ)
(

1 − kν

2

)
u0(ξ)

M
8k

3(1 − g)

N 1 − 4kν

1 − g

Mu(ξ)u(η)
8k

3(1 − g)
u0(ξ)u0(η)

k
√

3(1 − ω0)(1 − ω0g)

rd(ξ) 1 − 4ku0(ξ)
3(1 − g)

r 1 − 4k

3(1 − g)

6.4.4 Nonabsorbing media

6.4.4.1 General equations

We assume that there is no absorption in a scattering medium (e.g., clouds
in the visible). Then it follows, using general asymptotic equations and results
presented in Table 6.3 at ω0 = 1:

R(ξ, η, ϕ) = R0∞(ξ, η, ϕ) − tu0(ξ)u0(ξ)

and
T (ξ, η) = tu0(ξ)u0(ξ) ,
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where
t =

1
0.75(1 − g)τ0 + b

and b = 3ν. The plane albedo rp(ξ), the spherical albedo r, the diffuse trans-
mittance td(ξ) and the global transmittance t are defined in Table 6.1. We have,
using results presented in Table 6.1:

rp(ξ) = 1 − tu0(ξ), r = 1 − t, td(ξ) = tu0(ξ)

at ω0 = 1 and also we confirm that t coincides with the global transmittance.
It follows that the calculation of reflection and transmission functions of op-

tically thick light scattering layers is reduced to the calculation of the reflection
function of a semi-infinite layer. The function R0∞(ξ, η, ϕ) can be used to cal-
culate u0(ξ) and the parameter

ν =
∫ 1

0
u0(ξ)ξ2 dξ .

Generally speaking, the functions u0(ξ) and R0∞(ξ, η, ϕ) can be derived from
the numerical solution of the corresponding integral equations (Dlugach and
Yanovitskij, 1974; Sobolev, 1975; Mishchenko et al., 1999). Now we introduce
useful approximations for the calculation of u0(ξ), R0∞(ξ, η, ϕ). The important
property of these functions that they do not depend on the pair (ω0, τ0) by
definition. They are completely determined by the phase function. Moreover,
the dependence on the phase functions is rather weak because functions u0(ξ),
R0∞(ξ, η, ϕ) are related to the problems involving semi-infinite non-absorbing
media. So multiple light scattering is quite important in this case. It leads to the
averaging of the scattering features chracteristic for a single scattering event.
This also means that a good starting point for the derivation of approximate
solutions valid at arbitrary g is the case of g = 0 (e.g., isotropic scattering,
p ≡ 1).

6.4.4.2 Auxiliary functions

We start the consideration of auxiliary functions from the well studied case of
isotropic scattering. Then the nonlinear integral equation for the reflection func-
tion of a non-absorbing semi-infinite medium (de Rooij, 1985) can be presented
in the following form:

R0∞(ξ, η) =
1 + 2ξ

∫ 1
0 R0∞(η, η′) dη′ + 2η

∫ 1
0 R0∞(ξ, η′) dη′ +G(ξ, η)

4(ξ + η)
,

where

G(ξ, η) = 4ξη
∫ 1

0

∫ 1

0
R0∞(ξ, η′)R0∞(η, η′′) dη′′ .

The inspection of this equation shows that it can be reduced to the following
more simple form:
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R0∞(ξ, η) =
H(ξ)H(η)
4(ξ + η)

with

H(ξ) = 1 + 2ξ
∫ 1

0
R0∞(ξ, η) dη .

The last two equations allow us to formulate the integral equation for the
function H(ξ):

H(ξ) = 1 + 0.5ξH(ξ)
∫ 1

0

H(η)
ξ + η

dη .

It follows immediately that H(0) = 1.0. Numerical calculations show that the
function H(η) can be approximated by the linear function H(η) = 1 + 2η. This
approximation can be used as a first-guess value under the integral in the equa-
tion given above to solve the integral equation for the function H(ξ) by the
iteration technique. The substitution of this linear equation into the expression
for R0∞(ξ, η) presented above gives:

R0∞(ξ, η) =
1 + 2(ξ + η) + 4ξη

4(ξ + η)
.

This is a rather good approximation for the isotropic scattering case. Further,
we note that the value of R0∞(ξ, η) can be separated into two parts:

R0∞(ξ, η) = Rs
0∞(ξ, η) +Rm

0∞(ξ, η) ,

where the first term is due to single scattering (Rs
0∞(ξ, η) = 0.25(ξ+η)−1 (Chan-

drasekhar, 1950)) and the second term
(
Rm

0∞(ξ, η) = [0.5 + ξη(ξ + η)−1]
)

is due
to multiple scattering at p = 1.

We make the same separation for the nonisotropic scattering case. Then,
however, we have (Chandrasekhar, 1950; Kokhanovsky, 2004a):

Rs
0∞(ξ, η) = 0.25p(θ)(ξ + η)−1

and we assume that it holds for multiple nonisotropic light scattering:

R0∞(ξ, η) =
A+B(ξ + η) + Cξη

4(ξ + η)
,

where A, B, and C are constants to be determined. There are different ways to
get these constants. In particular, integral relationships involving the function
R0∞(ξ, η) can be used (Sobolev, 1975).

Constants can be also found using the following fitting technique. The
function R0∞(ξ, η, ϕ) is calculated using the exact radiative transfer equation
(see, for example, Mishchenko et al., 1999) and then functions Ξ(ξ, η, ϕ) =
4(ξ+η)R̃0∞(ξ, η, ϕ), where R̃0∞(ξ, η, ϕ) = R0∞(ξ, η, ϕ)−Rs

0∞(ξ, η, ϕ), are fitted
by linear functions of the argument assuming, for example, η = 1. This technique
gives: A = 3.944, B = −2.5, C = 10.664 for water clouds (Kokhanovsky, 2004b)
and A = 1.247, B = 1.186, C = 5.157 for ice clouds (Kokhanovsky, 2006).
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The next point is to derive the corresponding equation for the function u0(ξ).
This can be done in the following way.

It was shown above that the following relationship holds:

u0(ξ) =
3
4

[
ξ + 2

∫ 1

0
R0∞(ξ, η)η2 dη

]
.

Let us substitute R0∞(ξ, η) for the isotropic scattering case derived above in this
equation. Then it follows that

u0(ξ) =
3
4

[
ξ +

1
2

∫ 1

0

H(ξ)H(η)
ξ + η

η2 dη
]
.

We substitute H(η)(1 − ξ(ξ + η)−1) for H(η)η(ξ + η)−1. Then one derive:

u0(ξ) =
3
4

[
ξ +

1
2
H(ξ)

∫ 1

0
H(η)η dη − ξH(ξ)

2

∫ 1

0

H(η)
ξ + η

η dη
]
.

This can be written as

u0(ξ) =
3
4

[
ξ +

1
2

CH(ξ) − Λξ
]
,

where

C =
∫ 1

0
H(η)η dη

and

Λ = 2
∫ 1

0
R0∞(ξ, η)η dη .

Due to the conservation of energy law we have: Λ ≡ 1 (see Table 6.2) and,
therefore,

u0(ξ) =
3C

8
H(ξ) .

This means that the function u0(ξ) is proportional to H(ξ) at ω0 = 1. The
constant C can easily be derived for the isotropic scattering. For this we multiply
the last equation by 2ξ and integrate with respect to ξ. Then it follows that

C =
2√
3

where we have used the property 6.6 in Table 6.2 (i ≡ 1 at ω0 = 1). Therefore,
we establish an important relationship:

u0(ξ) =
√

3
4
H(ξ) .

Surprisingly, two completely separate radiative transfer problems (for the de-
termination of H(ξ) and u0(ξ)) have shown themselves to be interrelated. This
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important theoretical result, valid for isotropic scattering, allows us to derive
approximate equations for u0(ξ) using the corresponding equations for H(ξ) at
ω0 = 1. A number of parameterizations and approximations can be derived in
such a way.

We will use the fact that H(ξ) is well approximated by the function 1 + 2ξ.
Then it follows that

u0(ξ) = Q(1 + 2ξ) ,

where Q =
√

3/4 ≈ 3/7. We use the approximate equality (the error is under 1%)
here to satisfy the normalization condition (property 6.6 at i ≡ 1 in Table 6.2).
So finally, we have:

u0(ξ) =
3
7
(1 + 2ξ) .

Although this result is strictly valid only for isotropic scattering, we find that the
error of this approximation is below 2% as ξ ≥ 0.2 for arbitrary phase functions.
We also obtain that ν = 5/14 and b = 15/14 ≈ 1.072. This completes our
derivations for the case ω0 = 1.

6.5 Exponential approximation

6.5.1 Semi-infinite light scattering media

Asymptotic solutions for weak absorption derived above allow us to study the
influence of light absorption on radiative characteristics of turbid layers for small
values of the probability of photon absorption β = 1 − ω0 if corresponding
characteristics are known for the non-absorbing case. The results are limited to
a very narrow range of β (typically, β < 0.0001). There are two possibilities for
avoiding this problem. One is related to the derivation of higher-order corrections
to the results given above (generally, following the same path (Minin, 1988;
Yanovitskij, 1997; Melnikova and Vasyliev, 2005)).

Yet another approach is based on the exponential approximation often used in
diffusion theory (Rozenberg, 1962). To demonstrate this technique, we consider
the case of a semi-infinite medium. Then the spherical albedo depends on the
phase function p(θ) and the single scattering albedo ω0 only. We represent the
spherical albedo as a series with respect to ω0:

r(ω0) =
∞∑

n=1

anω
n
0

with

r(1) =
∞∑

n=1

an .

However, it also follows by the definition: r(1) = 1, which is due to the energy
conservation law. Thus, one obtains that
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∞∑
n=1

an = 1

and numbers an can be interpreted in terms of probability theory. In particular,
the value of a1 gives us the probability that a photon will be singly scattered
before escaping a turbid medium. Let us substitute the following exact expansion
in the expression for r(ω0):

ωn
0 ≡ (1 − β)n =

n∑
j=0

(−1)j

(
n

j

)
βj ,

where (
n

j

)
≡ n!
j!(n− j)! .

Then it follows that

r =
∞∑

n=1

an

n∑
j=0

(−1)j

(
n

j

)
βj

or in the explicit form:

r =
∞∑

n=1

an

[
1 − βn+

β2n(n− 1)
2

− β3n(n− 1)(n− 2)
6

+ . . .
]
,

where we accounted for equalities:(
n

0

)
= 1,

(
n

1

)
= n,

(
n

2

)
=
n(n− 1

2
,

(
n

3

)
=
n(n− 1)(n− 2)

6
.

So we have:

rs = 1 − βn+
β2nn(n− 1)

2
− β3n(n− 1)(n− 2)

6
+ . . . ,

where we used the normalization condition and defined the following averages:

n =
∞∑

n=1

nan, n(n− 1) =
∞∑

n=1

n(n−1)an, n(n− 1)(n− 2) =
∞∑

n=1

n(n−1)(n−2)an

and so on. Here n is the average number of scattering events in the medium.
The derived expression for r is an exact formula. We have not made any

approximations so far. Now we should make some assumptions so that we have
the possibility of summing up the series. First of all, we assume that the value
of n is large and, consequently, n(n− 1) ≈ n2, n(n− 1)(n− 2) = n3 and so on.
Clearly, such an approximation is valid as β → 0. This gives us:

r = 1 − βn+
β2

2
n2 − β3

6
n3 + . . .
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or
r = exp(−βn) ,

where we have used the expansion

exp(−βn) =
∞∑

k=0

(−1)k(βn)k

k!
.

Thus, the value of r is given by

r =
∞∑

n=1

exp(−βn)an .

Applying the sum formula, we have:

∞∑
n=1

f(n) =
∫ ∞

0
f(x) dx ,

and
r =

∫ ∞

0
exp(−βx)a(x) dx .

One obtains, using the mean value theorem:

r = exp(−βx) ,
which is called the exponential approximation. We have also used the integral
form of the normalization condition:∫ ∞

0
a(x) dx = 1 .

The problem we face now is the determination of the parameter x. For this
we will use the well-known asymptotic result of the radiative transfer theory
derived above (see Table 6.3):

r = 1 − 4s√
3
,

which is valid as β → 0.
The exponential approximation takes the following form as β → 0:

r = 1 − βx .
So, comparing these equations, we have:

x =
4
k
,

where
k =

√
3(1 − gω0)β
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is the diffusion exponent of the radiative transfer theory.
Therefore, we have:

r = exp
(

− 4s√
3

)
.

We notice that the combination of local optical characteristics, given by

y = 4

√
1 − ω0

3(1 − gω0)

completely determines the spherical albedo. The value of y = 4s/
√

3 can be also
easily measured experimentally (y = ln(1/r)).

By analogy, relationships similar to the derived expression for r must be
valid also for other asymptotic parameters and functions (Zege et al., 1991;
Kokhanovsky, 2004a). This allows us to obtain equations for the reflection func-
tion R∞(ξ, η, ϕ), the plane albedo rd∞(ξ), and the spherical albedo r∞ of a semi-
infinite weakly absorbing plane-parallel light scattering layer. They are shown
in Table 6.4 together with correspondent equations for auxiliary constants.

Table 6.4. Asymptotic equations valid as k → 0 in the framework of the exponential

approximation
(

ν =
∫ 1

0
u0(ξ)ξ2 dξ, s =

√
1 − ω0

1 − gω0

)

R∞(ξ, η, ϕ) R0∞(ξ, η, ϕ) exp
{

− 4su0(ξ)u0(η)√
3R0∞(ξ, η, ϕ)

}

M 1 − exp
{

− 8s√
3

}

N exp
{

−4
√

3νs
}

Mu(ξ)u(η)
[
1 − exp

{
− 8s√

3

}]
u0(ξ)u0(η)

rd∞(ξ) exp
{

−4su0(ξ)√
3

}

r∞ exp
{

− 4s√
3

}

6.5.2 Optically thick light scattering layers

The substitution of results given in Table 6.4 in general asymptotic equations
presented in section 6.4.2 allows us to obtain the following analytical formula for
the reflection function of an optically thick finite turbid layer valid as ω0 → 1:

R(ξ, η, ϕ, τ0) = R0∞ exp(−yB(ξ, η, ϕ)) − te−x−yu0(ξ)u0(η) ,
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where we introduced a new parameter x = kτ and

B(ξ, η, ϕ) =
u0(ξ)u0(η)
R0∞(ξ, η, ϕ)

.

Also we have:
T (ξ, η) = tu0(ξ)u0(η) ,

where the global transmittance t is given by:

t =
sinh y

sinh(x+ by)
.

Other radiative transfer characteristics calculated in the framework of this ap-
proximation are given in Table 6.5 (Kokhanovsky, 2004a).

Table 6.5. Radiative transfer characteristics in the framework of the exponential ap-
proximation

(rd∞(ξ) = exp [−yu0(ξ)] , u0(ξ) =
3
7
(1 + 2ξ),

r∞ = e−y, x = kτ, y = kτ, k =
√

3(1 − ω0)(1 − g), b = 15/14 ≈ 1.072).

Radiative Symbol Equation
characteristic

Plane albedo rd(ξ) rd∞(ξ) − (r∞ − r)u0(ξ)

Spherical albedor r r∞ − t exp(−x − y)

Diffuse transmittance td(ξ) tu0(ξ)

Global transmittance t
sinh(y)

sinh(x + by)

The exponential approximation can be used for the rapid estimations of light
reflection from cloudy media and also for speeding up cloud retrieval algorithms
(Kokhanovsky et al., 2003). The range of the applicability of the exponential ap-
proximation with respect to smaller values of τ0 and ω0 can be extended using
correction terms derived from the numerical solution of the radiative transfer
equation. In particular, Kokhanovsky and Rozanov (2003) found that the accu-
racy of the exponential approximation for cloudy media can be increased using
following substitutions: B → (1 − 0.05y)B, t → t− ∆, where

∆ =
a1 + a2ξη + a3ξ

2η2

τ3 exp(x)

and a1 = 4.86, a2 = −13.08, a3 = 12.76. Therefore, the final equation for the
reflection function can be written as

R(ξ, η, ϕ, τ0)=R0∞(ξ, η, ϕ) exp(−y(1−0.05y)B(ξ, η, ϕ))−(t−∆)e−x−yu0(ξ)u0(η) .
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This formula gives the so-called modified exponential approximation (MEA)
for the reflection function of weakly absorbing optically thick turbid layers. MEA
can be used at much larger values of β as compared to the linear approximation
presented in section 6.4.3. We show the accuracy of MEA in Figs. 6.2 and 6.3
for the nadir observation conditions, the solar zenith angle 60◦ and wavelengths
550 nm and 1550 nm. It was assumed that the light scattering medium is com-
posed of water droplets with the effective radius 4, 6, and 16 µm (Kokhanovsky
and Rozanov, 2003). The gamma particle size distribution with the effective
variance 38% (Kokhanovsky, 2004a) was used to model the polydispersity of
droplets in clouds.

One concludes from Figs. 6.2 and 6.3 that the top-of-atmosphere reflectance
over cloudy scenes can be accurately modeled in the framework of the MEA
in the visible and also in the near-infrared for optically thick clouds having
different microstructure. The accuracy of MEA decreases with β = 1−ω0. Then
general asymptotic formulas valid at arbitrary β (see section 6.4.2) must be
used. However, calculations become much more involved as compared to the
case of weak absorption considered in this section (King and Harshvardhan,
1986; Nakajima and King, 1992; Wauben, 1992).

Fig. 6.2. Dependence of the reflection function of a cloud on the solar zenith angle for
several values of cloud optical thickness τ and effective radius of droplets aef = 4, 6,
and 16 µm for the nadir observation and wavelength λ = 0.65 µm (Kokhanovsky and
Rozanov, 2003)
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Fig. 6.3. The same as in Fig. 6.2 except at λ = 1.55 µm (Kokhanovsky and Rozanov,
2003)

6.6 Conclusion

We have reviewed here the asymptotic radiative transfer theory as applied to
the calculation of light reflectance and transmittance by optically thick turbid
media. Derivations as presented by Sobolev (1984) are closely followed. This
theory has a number of important applications in atmospheric remote sensing
as described by Danielson et al. (1969), Zege and Katsev (1974), Melnikova and
Minin (1977), Zege (1982), King (1987), Zege et al. (1991), Kokhanovsky et al.
(2003), and Kokhanovsky (2004a). We hope that this review will lead to a much
wider spread of this theory for the solution of direct and inverse problems of
modern light scattering media optics and spectroscopy.

A historical comment must be added. Asymptotic equations for reflection
and transmission functions of optically thick layers were derived for the first
time by T. A. Germogenova (1961) using a different set of arguments compared
to those given here. Later main equations were re-derived by van de Hulst (1968a,
1980) and also independently by Sobolev (1968, 1975, 1984). The vertical inho-
mogeneity of a scattering layer in the framework of ARTT was considered by
Germogenova and Konovalov (1974), Ivanov (1976), Minin (1988), and Yanovit-
skij (1971, 1997).

The exponential approximation was initially developed by Rozenberg (1962)
and improved by Bushmakova et al. (1971) and Zege et al. (1991). Kokhanovsky
and Rozanov (2004a, 2004b) extended the theory to the case of radiative transfer
in the gaseous absorption band. Kokhanovsky (2003) used ARTT to study light
reflection and transmission by horizontally inhomogeneous turbid media.
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The account for the vector properties of light has been performed by Domke
(1978a, 1978b) (see also Hovenier et al. (2005)).

Numerical aspects of the problem were thoroughly treated by van de Hulst
(1968b), Dlugach and Yanovitskij (1974), Konovalov (1974, 1975), Nakajima and
King (1992), and Wauben (1992).
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7 Multiple scattering of polarized light in turbid
media with large particles

Evgenii E. Gorodnichev, Alexander I. Kuzovlev, and Dmitrii B. Rogozkin

7.1 Introduction

In the recent years, the polarization effects in multiply scattering media with
large-scale (size a is larger than wavelength λ) inhomogeneities has been of
special interest in connection with many applications. A large number of ex-
perimental and theoretical studies have been devoted to this problem [1]–[31].
New effects were revealed, in particular, the difference in the depolarization rates
between linearly and circularly polarized beams of light [7]–[10],[13, 31].

In most theoretical studies dealing with multiple scattering of polarized light
in turbid media [14]-[31], methods of numerical calculations are generally dis-
cussed. A Monte Carlo approach is the main tool in computational investigations
of light polarization in multiply scattering media [14, 22–24, 28, 30, 31]. Simple
analytical results that could explain basic experimentally observed effects were
not available until recently. Within the framework of simplifying assumptions,
the first results along this line were obtained in Refs [18,25],[32]–[39].

In this study, we consider the depolarization of light in optically isotropic
turbid media with large inhomogeneities. Single scattering of light by large-scale
inhomogeneities occurs predominantly through small angles. In this case, two
different mechanisms of depolarization, viz-, the ‘geometrical’ mechanism and
the ‘dynamical’ one [33, 34, 36], can be distingnished. The ‘geometrical’ mech-
anism is due to the Rytov rotation [40–42]. The plane of polarization turns
simultaneously with the ray of light. The wave remains linearly polarized along
the overall path of propagation. The depolarization observed in multiple scat-
tering of linearly polarized light results from superposition of randomly oriented
polarizations of the different rays. The ‘dynamical’ mechanism [43] is due to the
difference between the amplitudes A‖ and A⊥ of the cross-polarized scattered
waves (A‖ and A⊥ are the scattering amplitudes of waves polarized, respectively,
parallel and perpendicularly to the scattering plane). For small angles, the am-
plitudes A‖ and A⊥ differ weakly [44]. This permits us to develop a procedure
for decoupling the vector radiative transfer equation. This procedure is based on
selecting the basic and additional modes. In the case of single scattering through
small angles the interaction between the basic polarization modes appears to be
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weak. To a first approximation we can neglect this interaction. In the succeeding
approximation, the interaction between the basic modes results in the excitation
of the additional modes (or overtones). Allowance for the overtones makes it pos-
sible to describe in detail the polarization state of multiply scattered light deep
in the medium. With the method proposed, the polarization state of multiply
scattered light is calculated for two limiting cases (namely, diffusive propagation
and small-angle multiple scattering). Most attenuation is concentrated on the
presentation of explicit analytical results that describe the polarization state of
scattered light.

7.2 General relations

Let a wide polarized beam of light be incident on a medium normally to its
surface. The medium is assumed to be a statistically isotropic disordered ensem-
ble of large-scale scatterers. The polarization state of scattered light is generally
described by the four Stokes parameters

Ŝ =

⎛
⎜⎜⎝
I
Q
U
V

⎞
⎟⎟⎠ (7.1)

which obey the vector radiative transfer equation [45–47],{
µ
∂

∂z
+ σtot

}
Ŝ(z,n) = σ

∫
dn′d̂(n,n′)Ŝ(z,n′) (7.2)

Here, σtot is the coefficient of total attenuation, σ is the scattering coefficient,
and σa = σtot − σ is the absorption coefficient.

The Stokes parameters in eq. (7.2) are defined in the system of unit vectors
{e‖ = ∂n/∂θ, e⊥ = [e‖,n], n}, n = (sin θ cosϕ, sin θ sinϕ, cos θ) [47]. The
vector e‖ lies in the plane formed by the vectors n0 and n (n0 is the internal
normal to the surface); the vector e⊥ is perpendicular to this plane (Fig. 7.1).
The plane {n,n0} is usually used as the reference plane for the description of
the polarization state of light.

The matrix d̂(n,n′) in (7.2) is related to the scattering matrix d̂(nn′) in the
scattering plane (i.e., in the plane formed by the vectors n and n′) as follows:

d̂(n,n′) = L̂(π − β)d̂(nn′)L̂(−β′) (7.3)

The matrix

L̂(−β′) =

⎛
⎜⎜⎝

1 0 0 0
0 cos 2β′ − sin 2β′ 0
0 sin 2β′ cos 2β′ 0
0 0 0 1

⎞
⎟⎟⎠ (7.4)

describes the transformation of the Stokes parameters of the incident light in
going from the system of unit vectors (e′‖, e′⊥, n′) to the scattering plane (see
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Fig. 7.1.

Fig. 7.1). The matrix L̂(π − β), corresponding to the inverse transformation
from the scattering plane to the system of unit vectors (e‖, e⊥, n) related to the
direction of propagation of the scattered light, is defined similarly to (7.4). The
angles entering into eq. (7.3) are defined by the formulas

cos 2β = 1 − 2(1 − µ′2)(1 − cos2 ψ)
1 − (nn′)2

sin 2β =
2
√

1 − µ′2(µ′√1 − µ2 − µ
√

1 − µ′2 cosψ) sinψ
1 − (nn′)2

nn′ = µµ′ +
√

(1 − µ2)(1 − µ′2) cosψ, µ = cos θ, µ′ = cos θ′, ψ = ϕ− ϕ′.

Functions cos 2β and sin 2β differ from functions cos 2β and sin 2β by the sub-
stitution of µ for µ′.

For an optically isotropic medium, the scattering matrix d̂(nn′) appearing in
eq. (7.3) has the form (see, for example, [1]):

d̂(nn′) =

⎛
⎜⎜⎝
a1 b1 0 0
b1 a2 0 0
0 0 a3 b2
0 0 −b2 a4

⎞
⎟⎟⎠ (7.5)

For the forward scattering (n = n′), the matrix d̂ is diagonal: d̂(nn′ = 1) =
diag(a1, a2, a2, a4); for spherical particles, d̂(1) = a1diag(1, 1, 1, 1) [1]. Quantity
a1(nn′) is the phase function of single scattering; it is normalized by condition∫

dn′a1(nn′) = 1 (7.6)
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The vector radiative transfer equation for the other Stokes parameters (I, Q,
U) can be transformed as follows.

The intensity I(r,n) and the fourth Stokes parameter V (r,n) are a scalar
and a pseudoscalar, respectively [48]. Under rotations, they are transformed
via themselves. In contrast, the second and third Stokes parameters (Q and U ,
respectively) are expressed in terms of each other under spatial rotations. This
fact is essential for description of the scattering process, because matrix (7.3)
includes two rotations (these rotations are described by the L̂ matrices entering
into eq. (7.3)). These rotations transform the system of unit vectors (e′

‖, e
′
⊥, n

′),

in which the Stokes vector Ŝ(r,n′) is defined, to the system (e‖, e⊥, n), to which
the Ŝ(r,n) vector is related. Therefore, even if we assume the scattering matrix
(7.5) to be diagonal and neglect the difference between the diagonal elements a2
and a3, the Stokes parameters Q and U are transformed via each other.

In order to avoid coupling between the Stokes parameters Q and U we intro-
duce new quantities [49,50]:

I±2 =
1√
2
(Q∓ iU) (7.7)

Unlike the Stokes parameters Q and U , either quantity defined by equality (7.7)
is transformed via itself under rotations.

With regard to the preceding, in order to describe the polarization state of
light, we will use the vector

Î =

⎛
⎜⎜⎝

1√
2
(Q− iU)
I
V

1√
2
(Q+ iU)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
I2
I0
I−0
I−2

⎞
⎟⎟⎠ (7.8)

The radiative transfer equation for Î has the form{
µ
∂

∂z
+ σtot

}
Î(z,n) = σ

∫
dn′ ˆ̃d(n,n′)Î(z,n′) (7.9)

where the scattering matrix ˆ̃
d(n,n′) is given by (a± = (a2 ± a3)/2)

ˆ̃
d(n,n′) =⎛
⎜⎜⎜⎝
a+ exp(2iχ+) b1√

2
exp(−2iβ) ib2√

2
exp(−2iβ) a− exp(2iχ−)

b1√
2

exp(−2iβ′) a1 0 b1√
2

exp(2iβ′)
ib2√

2
exp(−2iβ′) 0 a4 − ib2√

2
exp(−2iβ′)

a− exp(−2iχ−) b1√
2

exp(2iβ) − ib2√
2

exp(−2iβ) a+ exp(−2iχ+)

⎞
⎟⎟⎟⎠ (7.10)

Angles χ± appearing in matrix (7.10) are defined by formula

χ± = π − (β ± β′),
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Let us clarify the transformations from eq. (7.1) to eq. (7.8). The transfor-
mation from eq. (7.1) to Î

⎛
⎜⎜⎝

1√
2
(Q− iU)
I
V

1√
2
(Q+ iU)

⎞
⎟⎟⎠ = M̂

⎛
⎜⎜⎝
I
Q
U
V

⎞
⎟⎟⎠

is performed with the unitary matrix

M̂ =
1√
2

⎛
⎜⎜⎝

0 1 −i 0√
2 0 0 0

0 0 0
√

2
0 1 i 0

⎞
⎟⎟⎠ (7.11)

Therefore the matrix ˆ̃
d(n,n′) is related to the matrix d̂(n,n′) (7.3) as follows:

ˆ̃
d = M̂d̂M̂−1 (7.12)

Instead of formula (7.3), we have

ˆ̃
d(n,n′) = ˆ̃L(π − β) ˆ̃

d(nn′) ˆ̃L(−β′) (7.13)

where

ˆ̃
d(nn′) =

⎛
⎜⎜⎜⎝
a+

b1√
2

ib1√
2

a−
b1√
2
a1 0 b1√

2
ib2√

2
0 a4 − ib2√

2
a− b1√

2
− ib2√

2
a+

⎞
⎟⎟⎟⎠ (7.14)

and

ˆ̃L(−β′) =

⎛
⎜⎜⎝

exp(−2iβ′) 0 0 0
0 1 0 0
0 0 1 0
0 0 0 exp(2iβ′)

⎞
⎟⎟⎠ (7.15)

Note, that eq. (7.13) coincides with eq. (7.10).
Expression (7.10) shows clearly the advantage of representation (7.8). Single

scattering from large-scale inhomogeneities occurs mainly through small angles.
In this case, the off-diagonal elements of matrix (7.10) are much smaller than
the diagonal elements of this matrix (see, for example, [18, 34]). In the first ap-
proximation, we can neglect the off-diagonal elements. In this approximation,
vector equation (7.9) decomposes into the independent equations for each com-
ponent of the Î vector (7.8). The mutual coupling of Q and U under rotations in
space is already excluded because we use representation (7.7). Coupling between
the equations for the quantities In (n = ±0,±2) arises only in the succeeding
approximation, where the off-diagonal elements of matrix (7.10) are taken into
account.
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7.3 Polarization mode approximation

The further approximations in eq. (7.9) are based on the properties of the scat-
tering matrix of large-scale inhomogeneities.

The properties of the scattering matrix of large inhomogeneities (spherical
and nonspherical) have been discussed in many publications in the last few years
(see, for example, [1, 25, 51]). The interest in this problem is caused by wide
applications of optical methods for studying natural scattering media (aerosols,
seawater, biological tissues, etc.). On the basis of measurements and numerical
calculations, the most properties of the elements ai and bi were determined [1].

For spherical scatterers of a given size, the matrix elements ai and bi are ex-
pressed in terms of the amplitudes A‖ and A⊥ of single scattered cross-polarized
waves [44]

a1(cos γ) = a2(cos γ) =
n0

2σ
(|A‖(cos γ)|2 + |A⊥(cos γ)|2) (7.16)

a3(cos γ) = a4(cos γ) =
n0

σ
ReA‖(cos γ)A∗

⊥(cos γ) (7.17)

b1(cos γ) =
n0

2σ
(|A‖(cos γ)|2 − |A⊥(cos γ)|2) (7.18)

b2(cos γ) =
n0

σ
ImA∗

‖(cos γ)A⊥(cos γ) (7.19)

where n0 is the number of scattering particles per unit volume. According to
eqs (7.16)–(7.19), the off-diagonal elements of matrix (7.14) are determined by
eq. (7.18) and by

1
2
(a2(cos γ) − a3(cos γ)) =

n0

2σ
|A‖(cos γ) −A⊥(cos γ)|2 (7.20)

As single scattering by large inhomogeneities occurs predominantly through
small angles (1 − cos γ 	 1), the difference between amplitudes A‖ and A⊥
is much less than each of them [44]. Therefore the off-diagonal elements b1 and
a− in eq. (7.10) (or in eq. (7.14)) appears to be small as compared to the diag-
onal elements of the corresponding scattering matrix. In many practical cases,
the off-diagonal matrix element b2 that is responsible for interaction between the
linear and circular polarizations can be neglected [1].

The order of ratio between the off-diagonal elements and the diagonal ones
can be estimated as follows.

In the case of weak scatterers (it is the case of the Born or Rayleigh–Gans
approximation [44] ka|n − 1| 	 1, where k = 2π/λ, n is the relative refractive
index of the scattering particles, a is their radius), the amplitudes A‖ and A⊥
are related by the following equation [44]

A‖(cos γ) = A⊥(cos γ) cos γ (7.21)
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In accordance with eq. (7.21), the off-diagonal element b2 is equal to zero,
b2 = 0. The elements b1 and a− are of the following order of magnitude [1, 44]

b1/a1 ∼ γ2, (a2 − a3)/a1 ∼ γ4 (7.22)

The estimations (7.22) hold also true in the general case of a statistically
isotropic ensemble of strong (‘non-Born’) inhomogeneities. This can be easily
verified by expanding the scattering matrix elements in generalized spherical
functions [1, 49]. In the ‘non-Born’ case, as follows from the abovementioned
expansions,

b2/a4 ∼ γ2 (7.23)

The angular dependence of the scattering matrix elements for various media
is the subject of a large body of experimental and theoretical works [1,24,44–46,
51,52]. The effects associated with sizes and shapes of scattering particles, their
refractive index and the spread in these parameters are studied with a number
of numerical methods [1,24,51]. For spherical particles, the matrix elements can
be calculated with the use of eqs (7.16)–(7.19) and the Mie formulas for the
scattering amplitudes A‖ and A⊥ [44].

The results of numerical calculations of the matrix elements for several scat-
tering systems are presented in Figs 7.2–7.4. These results confirm the validity
of eq. (7.22). In the region of small angles the off-diagonal elements of the scat-
tering matrix eq. (7.14) are small as compared with the phase function a1(cos γ);
the value of the diagonal elements are close to a1(cos γ) (for spherical particles,
a1 − a+ = (a1 − a4)/2 = a−). The results derived from eq. (7.21) are shown in
Figs 7.2–7.4 as well.
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a-(γ )/a1(γ )

Fig. 7.2. Ratio a−(cos γ)/a1(cos γ)) as a function of scattering angle γ. Latex spheres
in water (n = 1.19, ka = 10 (dashed line)); cloud 1 [52] (�); sea water [2] (•). Solid
line corresponds to the case of weak scattering (see eq. (7.21))
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Fig. 7.3. Ratio (b1(cos γ)/a1(cos γ)) as a function of scattering angle γ. Latex spheres
in water (n = 1.19, ka = 10 (dashed line)); cloud 1 [52] (�); sea water [2] (•). Solid
line corresponds to the case of weak scattering (see eq. (7.21))
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Fig. 7.4. Ratios (a1(cos γ) − a+(cos γ))/a1(cos γ)) (•) and (a1(cos γ) −
a4(cos γ))/(2a1(cos γ)) (◦) as functions of scattering angle γ. Sea water [2]. Solid line
corresponds to the case of weak scattering (see eq. (7.21))

There are a great deal of numerical and experimental data concerning the
phase function of large-scale inhomogeneities [1, 2, 45, 51, 52]. In particular, the
phase function of particles of a given radius and a given refractive index may be
approximated by [35,44,53]
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a1(cos γ) =
α

(γ2
0 + 2(1 − cos γ))2

(7.24)

where γ0 is a characteristic angle of single scattering; for weak scatterers (ka|n−
1| 	 1), γ0 ≈ 1/(ka), otherwise γ0 ≈ 2|n−1|. Under the assumption that γ0 	 1,
the coefficient α entering into eq. (7.24) is equal to

α ≈ γ2
0

π

The results of numerical calculations of a1(cos γ) with the Mie formulas and
the approximate dependence (7.24) are shown in Fig. 7.5.
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Fig. 7.5. Phase function of latex spheres in water (solid line, ka = 10). The dashed
line is the result of calculations with eq. (7.24)

The relationship between the elements of matrix (7.10) allows us to develop
an iterative procedure for solving the vector radiative transfer equation (see
eq. (7.9)). As a first approximation, we neglect the off-diagonal elements of scat-
tering matrix (7.10). Then eq. (7.9) falls into four independent equations,{

µ
∂

∂z
+ σtot

}
Î(z,n) =

σ

∫
dn′

⎛
⎜⎜⎝
a+ exp(2iχ+) 0 0 0

0 a1 0 0
0 0 a4 0
0 0 0 a+ exp(−2iχ+)

⎞
⎟⎟⎠Î(z,n′) (7.25)

The first and fourth equations in eq. (7.25) are different from each other only
by the sign of their complex conjugation.
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The scalar mode, the intensity Iscal, obeys the conventional radiative transfer
equation {

µ
∂

∂z
+ σtot

}
Iscal(z, µ) = σ

∫
dn′a1(nn′)Iscal(z, µ′) (7.26)

The transfer equation for the circularly polarized mode V has the form{
µ
∂

∂z
+ σtot

}
V (z, µ) = σ

∫
dn′a4(nn′)V (z, µ′) (7.27)

The third equation following from eq. (7.25) describes the basic mode of linear
polarization. Separating out the phase factors in the angular dependence of I±2
(these factors are responsible for the transformation of I±2 under rotations),

I±2 =
1√
2
W (z, µ) exp(±2iϕ)

we arrive at the following equation for W [34]{
µ
∂

∂z
+ σtot

}
W (z, µ) = σ

∫
dn′ a2(nn′) + a3(nn′)

2
exp(2i(χ+ − ψ))W (z, µ′)

(7.28)
The equations for V and W (see eqs (7.27) and (7.28)) differ from the scalar

transfer equation (eq. (7.26)) by the form of the phase functions. The phase func-
tions appearing in eqs (7.27) and (7.28) are a4 and (a2 + a3) exp(2i(χ+ −ψ))/2,
respectively. The difference between these phase functions and phase function a1
entering into eq. (7.26) gives rise to nonzero effective ‘absorption’ in eqs (7.27)
and (7.28) (even in the absence of true absorption). The effective ‘absorption’ in
eqs (7.27) and (7.28) is responsible for the additional attenuation of V and W
as compared to the intensity Iscal and describes the effect of depolarization of
circularly and linearly polarized light.

There are two different mechanisms of wave depolarization in a random
medium. These mechanisms were first pointed out by Kravtsov [41] within the
framework of the study of wave propagation through a turbulent atmosphere.

The ‘geometrical’ mechanism of depolarization is due to Rytov’s rotation of
the polarization plane [40]. According to [40], the plane of polarization turns, as
the ray of light propagates along a nonplanar curve. The depolarization observed
in multiple scattering of linearly polarized light results from superposition of the
polarizations of the waves propagating along different random paths. There-
fore, depolarization by the ‘geometrical’ mechanism occurs simultaneously with
isotropization of the beam of light over directions [8,33]. Note that a character-
istic length of isotropization coincides with the transport length ltr (ltr = σ−1

tr ,
where σtr = σ(1 − 〈cos γ〉) is the transport scattering coefficient, 〈cos γ〉 is the
mean cosine of single scattering angle γ).
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The pure geometrical depolarization can be obtained in the limit A‖ = A⊥.
In this case, the single scattering matrix entering into eq. (7.9) (or eq. (7.25))
can be written as

ˆ̃
d = a1

ˆ̃L(π − β − β′) = a1

⎛
⎜⎜⎝

exp(2iχ+) 0 0 0
0 1 0 0
0 0 1 0
0 0 0 exp(−2iχ+)

⎞
⎟⎟⎠ (7.29)

Matrix (7.29) gives rise to depolarization due to multiple turns of the polarization
plane as the direction of wave propagation changes randomly. The ‘geometrical’
mechanism contributes to depolarization of linearly polarized light, but has no
effect on circular polarization.

The difference between the scattering amplitudes A⊥ and A‖ (or, in the
general case, nonzero elements b1, b2 and the differences between diagonal ele-
ments ai, i = 1 ÷ 4) is responsible for the ‘dynamical’ depolarization. Physically
the depolarization of this kind occurs as the difference between amplitudes of
cross-polarized fields increases [43]. The ‘dynamical’ depolarization occurs inde-
pendently of the initial polarization of light. In particular, circularly polarized
light depolarizes only due to the ‘dynamical’ mechanism (the difference between
a1 and a4 is a single reason for depolarization of circularly polarized waves).
Depolarization of circularly polarized light is described by the additional ‘ab-
sorption’ appearing in the equation for the Stokes parameter V (see eq. (7.27)).
The additional ‘absorption’ coefficient is equal to [33,37,38].

σ
(4)
dep = σ

∫
dn′(a1(nn′) − a4(nn′)) (7.30)

In the case of the linearly polarized incident beam, the role of one or the
other mechanism depends on the optical properties of the scattering particles,
their size and shape. As shown below the geometrical mechanism can be either
dominant [33,34] or as important as the dynamical mechanism of depolarization.

In the range of small angles the scattering-matrix elements a1÷3 differ little
from each other (see, for example, [44]), and it is instructive to represent the
phase function appearing in eq. (7.28) in the form

a2 + a3

2
exp(2i(χ+ − ψ)) = a1 + a1[exp(2i(χ+ − ψ)) − 1] +(

a2 + a3

2
− a1

)
+
(
a2 + a3

2
− a1

)
[exp(2i(χ+ − ψ)) − 1] (7.31)

Each term in equality (7.31) has its own physical meaning.
If we neglect the difference between the diagonal elements of the scattering

matrix a1÷3 and disregard the deviation of the spherical triangle ABC shown
in Fig. 7.1 from a planar one (i.e., we assume χ+ = ψ), equality (7.31) contains
only the first term. In this approximation, the equation for W does not differ
from the scalar transfer equation (eq. (7.26)) and W coincides with Iscal. There
is no depolarization of light in this approximation.
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Depolarization is described by the second, third, and fourth terms in eq. (7.31).
The second term in eq. (7.31) is responsible for the geometrical depolarization.
This term is due to the deviation of the spherical triangle ABC (Fig. 7.1) from
a planar triangle. The difference between the angles

χ+ − ψ = π − β − β′ − (ϕ− ϕ′) (7.32)

is the difference between the sum of angles in the spherical triangle and the sum
of angles in the corresponding planar triangle [54].

The third term in eq. (7.31) is due to the difference between the diagonal
elements a1÷3. This term decribes the dynamical depolarization.

The mutual influence of the geometrical and dynamical mechanisms is de-
scribed by the fourth term in eq. (7.31).

In scattering by large inhomogeneities, the second, third, and fourth terms
in eq. (7.31) are small as compared with the first term. Therefore, the depolar-
ization process occurs slowly, as a result of many acts of scattering. For large
inhomogeneities, the fourth term in eq. (7.31) is of minor importance. The re-
lationship between the contributions from the geometrical and depolarization
mechanisms depends on the specific angular dependence of the matrix elements
a1÷3(cos γ).

Independent propagation of the basic polarization modes I, W , and V repre-
sents the first approximation. In the succeeding approximation, one must account
for off-diagonal elements of the scattering matrix.

In what follows, we assume that b2 = 0. This approximation corresponds to
the most of practical situations [1]. Under this assumption there is no interaction
between the circular and linear polarizations, and the equation for V appears to
be separated from the other equations for the Stokes parameters.

The calculations of the linear polarization state can be represented in the
compact form by introducing the polarization Green matrix of the third rank,

Ĝ =

⎛
⎝ G22 G20 G2−2
G02 G00 G0−2
G−22 G−20 G−2−2

⎞
⎠ (7.33)

This matrix allows one to express the scattered light through parameters Î(0) of
the incident beam,

Î = ĜÎ(0)

Similarly to the vector Î, the matrix Ĝ obeys the vector radiative transfer equa-
tion (7.9). The matrix Ĝ has the same symmetry as the scattering matrix ˆ̃

d (see
eq. (7.10)). The complex conjugation of elements Gmn is equivalent to changing
the sign of the index:

G0±2 = G∗
0∓2, G±20 = G∗

∓20, G±2±2 = G∗
∓2∓2 (7.34)

In the first approximation, the matrix Ĝ describes independent propagation
of the basic modes and has the diagonal form
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Ĝ ≈
⎛
⎝W exp(2iϕ) 0 0

0 Iscal 0
0 0 W ∗ exp(−2iϕ)

⎞
⎠ (7.35)

In the succeeding approximation, allowance for nonzero off-diagonal elements
of the scattering matrix (see eq. (7.10)), generates the off-diagonal elements of
the matrix Ĝ. These quantities can be termed additional modes (or overtones).

In the explicit form the equation for the elements Gkm can be written as{
µ
∂

∂z
+ σtot

}
Gkm(z,n) = σ

∫
dn′d̃kk(n,n′)Gkm(z,n′) +Qkm(z,n) (7.36)

where the sources Qkm have the form

Qkm(z,n) =
∑
l 
=k

σ

∫
dn′d̃kl(n,n′)Glm(z,n′) (7.37)

The terms involving the basic modes make the main contribution to the
sources (7.37),

Qkm(z,n) ≈ σ

∫
dn′d̃km(n,n′)Gmm(z,n′) (7.38)

In the case of normal incidence, the non-zero off-diagonal elements G02, G20
and G2−2 have the following azimuth dependence:

G02(z,n) =
1√
2
QW (z, µ) exp(2iϕ), G20(z,n) =

1√
2
Qun(z, µ),

G2−2(z,n) = w(z, µ) exp(−2iϕ) (7.39)

where the functions QW , Qun and w obey the following equations:{
µ
∂

∂z
+ σtot

}
QW (z, µ)

= σ

∫
dn′a1(nn′) exp(−2iψ)QW (z, µ′)

+σ
∫
dn′b1(nn′) exp(−2i(β′ + ψ))W (z, µ′) (7.40)

{
µ
∂

∂z
+ σtot

}
Qun(z, µ)

= σ

∫
dn′
[
a2(nn′) + a3(nn′)

2

]
exp(2iχ+)Qun(z, µ′)

+σ
∫
dn′b1(nn′) exp(−2iβ)Iscal(z, µ′) (7.41)
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µ
∂

∂z
+ σtot

}
w(z, µ)

= σ

∫
dn′
[
a2(nn′) + a3(nn′)

2

]
exp(2i(χ+ + ψ))w(z, µ′)

+σ
∫
dn′
[
a2(nn′) − a3(nn′)

2

]
exp(2i(χ− + ψ))W (z, µ′) (7.42)

At relatively small depths of penetration, where the scattered waves do not
forget the initial polarization of the incident beam, the contribution of the over-
tones to the polarization state of light has a small effect. With increasing depths,
the depolarization of the incident beam continues to escalate and the contribu-
tion of the overtones becomes significant.

Note the special role of the overtone G20 = Qun/
√

2. For unpolarized incident
beam the basic polarization modes W and V are nil and the polarization state
of scattered light is governed only by the the second Stokes parameter Q = Qun

[45, 47].

7.4 Diffusive propagation

In the case of diffusive propagation of light, the solutions of the transfer equations
for the basic modes (see eqs (7.27), (7.26), and (7.28)) can be presented in the
form of the expansions in the corresponding spherical functions. In the scalar
transfer theory this approach is well-known as the Pl(µ) approximation [55].

In the case of normal incidence of a wide beam, the intensity of light and
the basic mode of circular polarization can be presented as expansions in the
Legendre polynomials:

Iscal(z, µ) =
∑
l=0

2l + 1
4π

Iscal(z, l)Pl(µ), V (z, µ) =
∑
l=0

2l + 1
4π

V (z, l)Pl(µ)

(7.43)
The coefficients Iscal(z, l) and V (z, l) obey the following equations

l

(2l + 1)
∂Iscal(z, l − 1)

∂z
+

l + 1
2l + 1

∂Iscal(z, l + 1)
∂z

+ [σ(1 − a1(l)) + σa]Iscal(z, l) = 0 (7.44)

l

(2l + 1)
∂V (z, l − 1)

∂z
+

l + 1
2l + 1

∂V (z, l + 1)
∂z

+ [σ(1 − a4(l)) + σa]V (z, l) = 0 (7.45)
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where

a1,4(l) = 2π

1∫
−1

dµa1,4(µ)Pl(µ)

The basic mode of linear polarization is expanded in terms of the generalized
spherical functions [56]

W (z, µ) =
∑
l=2

2l + 1
4π

W (z, l)P l
22(µ) (7.46)

Substitution of eq. (7.46) into eq. (7.28) gives

l2 − 4
l(2l + 1)

∂W (z, l − 1)
∂z

+
4

l(l + 1)
∂W (z, l)
∂z

+
(l + 1)2 − 4

(l + 1)(2l + 1)
∂W (z, l + 1)

∂z
+

[σ(1 − a+(l)) + σa]W (z, l) = 0 (7.47)

where the coefficient a+(l) appearing in eq. (7.47) is defined by equality

a+(l) = 2π

1∫
−1

dµ

[
a2(µ) + a3(µ)

2

]
P l

22(µ) (7.48)

The explicit expressions for several first generalized spherical functions have the
form

P 2
22(µ) =

1
4
(1+µ)2, P 3

22(µ) =
1
4
(1+µ)2(3µ−2), P 4

22(µ) =
1
4
(1+µ)2(1−7µ+7µ2)

(7.49)
The coefficients Iscal(z, l), V (z, l) and W (z, l) can be easily calculated in the

case of the asymptotical state of propagation. This limiting case is of practical
importance for many applications (see, for example, [8, 9, 11]).

Substituting Iscal(z, l), V (z, l) and W (z, l) in the exponential form (e.g.
Iscal(z, l) ≈ Iscal(l) exp(−εIz)) into eqs (7.44), (7.45), and (7.47), we arrive
at an eigenvalue problem. A minimal eigenvalue gives the attenuation coefficient
of the corresponding mode in the asymptotical state. For the scalar transfer
equation this case has been discussed in detail [55].

For diffusive propagation of light the contribution from the higher terms
to expansions (7.43), (7.46) appears to be small. Several first terms in these
expansions have a dominant role.

The asymptotic state of the basic polarization modes is determined by the
following expressions:

Iscal(z, µ) ≈ CIΦI(µ) exp(−εIz)
≈ CI

4π
(P0(µ) + αIP1(µ) + βIP2(µ) + . . .) exp (−εIz) (7.50)
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V (z, µ) ≈ CV ΦV (µ) exp(−εV z)
≈ CV

4π
(P0(µ) + αV P1(µ) + βV P2(µ) + . . .) exp (−εV z) (7.51)

W (z, µ) ≈ CW ΦW (µ) exp(−εW z)
≈ 5CW

4π
(
P 2

22(µ) + αWP
3
22(µ) + βWP

4
22(µ) + . . .

)
exp (−εW z) (7.52)

where εI,V,W and ΦI,V,W are the corresponding eigenvalues and angular eigen-
functions. The eigenvalues εI,V and the coefficients αI,V , βI,V entering into
eqs (7.50)–(7.52) can be approximated by formulas

εI ≈
√

3(σtr + σa)σa, αI ≈
√

3σa

σtr + σa
, βI ≈ 2σa

σ(1 − a1(2)) + σa
(7.53)

εV ≈
√

3(σ(4)
tr + σ(4)

dep + σa)(σa + σ(4)
dep), αV ≈

√√√√ 3(σa + σ(4)
dep)

σ
(4)
tr + σ(4)

dep + σa

βV =
2
(
σa + σ(4)

dep

)
σ(1 − a4(2)) + σa

(7.54)

where

a1(0) = 1, σtr = σ(1 − a1(1)), σ(4)
tr = σ(a4(0) − a4(1)), σ(4)

dep = σ(1 − a4(0))
(7.55)

Equations (7.53), (7.54) are valid in the limit σa 	 σtr and σa, σ
(4)
dep 	 σ

(4)
tr ,

respectively.
Within the leading approximation the corresponding parameters entering

into eq. (7.52) are determined by more complicated expressions:

εW ≈ 7
6
(
σ(3 − 2a+(3) − a+(2)

)
+ 3σa −√

(σ(3−2a+(3)−a+(2))+3σa)2− 36
7

(σ(1−a+(3))+σa)(σ(1−a+(2))+σa)

)

αW ≈ 21
5

(
σ(1 − a+(2)) + σa

εW
− 2

3

)

βW ≈ 63
5

(
σ(1 − a+(2)) + σa

εW
− 1

3

)(
σ(1 − a+(2)) + σa

εW
− 2

3

)
− 1 (7.56)

where the coefficients a+(l) are calculated with eq. (7.48).
Equation (7.56) permits us also to calculate the values εW , αW , βW within

the framework of the ‘geometrical’ approximation in the scattering matrix. This
approximation is in substitution of the approximate scattering matrix (7.29)
for the exact matrix (7.10). The values εgeom

W , αgeom
W , βgeom

W can be obtained
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from eq. (7.56), if we replace (a2(µ) + a3(µ))/2 by a1(µ) in definition (7.48).
The difference between εW and εgeom

W is a measure of the contribution from the
‘dynamical’ mechanism to depolarization of a linearly polarized beam.

As follows from eqs (7.54), (7.56), depolarization of light manifests itself as
additional effective ‘absorption’ of the basic modes V and W . The coefficient of
the additional ‘absorption’ equals σ(4)

dep for V . ForW the corresponding coefficient
should be estimated as ε2W /(σ(a+(2)−a+(3))−σa (or, roughly, as (ε2W /3(σtr)−
σa) ∼ σtr).

In the case of normal incidence the coefficients CI,V,W can be calculated by
the following approximate formula [39]

CI,V,W =
ΦI,V,W (µ = 1)

2π
1∫
0
µdµΦ2

I,V,W (µ)
(7.57)

For an absorbing medium eq. (7.57) gives a good agreement with numerical
calculations (see, for example, [45]). As applied to CI the difference between
eq. (7.57) and the numerical results of [45] is less than 10% for σa > 0.1σtr and
falls off with increasing ratio σa/σtr.

Within the considered approximation, where only the basic modes Iscal, V
and W are taken into account, the degree of polarization of circularly (PC) and
linearly (PL) polarized beams are determined by

PC =

√
Q2 + V 2

I
≈ V

Iscal
≈ CV

CI
[1 − µ (αI − αV )] exp (−z (εV − εI)) (7.58)

PL =

√
Q2 + U2

I
≈ W

Iscal
≈

5CW

4CI
(1 + µ)2 [1 − 2αW − µ(αI − 3αW )] exp (−z (εW − εI)) (7.59)

According to eqs (7.58) and (7.59) the degree of polarization depends primarily
on the difference in the attenuation coefficients of the basic modes Iscal, V and
W .

The numerical values of the scattering matrix parameters entering into
eqs (7.50)–(7.59) are presented in Table 7.1. For latex particles in water and
water droplets in air the numerical results were obtained with the Mie formulas
[44]. The scattering matrix elements for clouds and sea water were taken from
Refs [2, 52].

The numerical values of the attenuation coefficients and the other parameters
appearing in the expressions for the basic modes V and W can be found in
Tables 7.2 and 7.3. For comparison, the values εgeom

W that correspond to the
‘geometrical’ approximation (see eq. (7.29)) are also presented in Table 7.2. In
our calculations, the scattering medium is assumed to be virtually nonabsorbing
(σa 	 σdep, σtr). Therefore our result obtained with the seawater scattering
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Table 7.1. Integral parameters of the diagonal matrix elements for large scattering
inhomogeneities (x = 2πa/λ)

σtr/σ 1 − a+(2) 1 − a+(3) σ
(4)
dep/σ σ

(4)
tr /σ

Latex spheres (x = 5, n = 1.19) 1.1·10−1 9.4·10−2 2.9·10−1 1.7·10−2 8.4·10−2

Latex spheres (x = 10, n = 1.19) 6.7·10−2 5.8·10−2 1.7·10−1 9.8·10−3 5.6·10−2

water droplets (x = 5, n = 1.33) 1.5·10−1 1.3·10−2 3.5·10−1 3.4·10−2 1.1·10−1

water droplets (x = 10, n = 1.33) 2.9·10−1 2.3·10−1 5.1·10−1 8.4·10−2 1.9·10−1

Cloud 1 1.5·10−1 1.1·10−1 2.7·10−1 4.9·10−2 8.5·10−2

sea water 7.0·10−2 8.1·10−2 1.7·10−1 5.8·10−2 2.6·10−2

Table 7.2. Attenuation coefficients of the basic polarization modes

εV /σ εW /σ εgeom
W /σ εV /εW

Latex spheres (x = 5, n = 1.19) 7.1·10−2 1.32·10−1 1.29·10−1 5.4·10−1

Latex spheres (x = 10, n = 1.19) 4.3·10−2 8.13·10−2 7.95·10−2 5.3·10−1

water droplets (x = 5, n = 1.33) 1.2·10−1 1.81·10−1 1.75·10−1 6.6·10−1

water droplets (x = 10, n = 1.33) 2.1·10−1 3.09·10−1 2.93·10−1 6.8·10−1

Cloud 1 1.3·10−1 1.59·10−1 1.52·10−1 8.2·10−1

sea water 1.0·10−1 1.10·10−1 0.80·10−1 9.1·10−1

Table 7.3. Parameters of the basic polarization modes in the asymptotic state

CV CW αV αW

Latex spheres (x = 5, n = 1.19) 3.08 1.55 0.74 0.18
Latex spheres (x = 10, n = 1.19) 3.13 1.55 0.69 0.19
water droplets (x = 5, n = 1.33) 2.95 1.56 0.87 0.22
water droplets (x = 10, n = 1.33) 2.51 1.56 1.38 0.27
Cloud 1 2.70 1.56 1.14 0.25
sea water 2.30 1.56 1.68 0.30

matrix should be considered as a modeling example, because natural seawater
possesses rather great absorption (σa > σtr) [2].

The additional modes QW , Qun and w are governed by the basic modes Iscal

and W (see eqs (7.40)–(7.42)). In the asymptotic state the additional modes can
be easily expressed in terms of the coefficients of the basic mode expansions (see
eqs (7.50) and (7.52)) [39]

QW (z, µ) ≈ 5CW

4π
σb1(2)

σ(1 − a1(2)) + σa
P 2

20(µ) exp (−εW z) (7.60)

Qun(z, µ) ≈ 5CIβI

4π
σb1(2)

σ(1 − a+(2)) + σa
P 2

20(µ) exp (−εIz) (7.61)

w(z, µ) ≈ 5CW

4π
σa−(2)

σ(1 − a+(2)) + σa + 2
3εW

P 2
2−2(µ) exp (−εW z) (7.62)
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where

b1(2) = 2π

1∫
−1

dµb1(µ)P 2
20(µ),

a−(2) = 2π

1∫
−1

dµ
a2(µ) − a3(µ)

2
P 2

2−2(µ) (7.63)

P 2
20(µ) = −

√
3
8
(1 − µ2), P 2

2−2(µ) =
1
4
(1 − µ)2

With the overtones QW , Qun and w taken into account, the Stokes vector
has the form ⎛

⎝ IQ
U

⎞
⎠ =

⎛
⎝ Iscal +QW cos 2ϕ

(W + w) cos 2ϕ+Qun

(−W + w) sin 2ϕ

⎞
⎠ (7.64)

As follows from eqs (7.60)–(7.62), the contributions of the overtones to
the polarization state involve the small factors, b1(2)/(σ(1 − a1(2)) + σa),
b1(2)/(σ(1−a+(2))+σa) and a−(2)/(σ(1−a+(2))+σa +2εW /3) (see Table 7.4
and Fig. 7.6). Hence, the overtone contributions to the transmitted intensity I
and the Stokes parameter U are always small quantities. The contribution to the
Stokes parameter Q becomes evident only at large depths, where the incident
beam completely depolarizes.

Table 7.4. Integral parameters of the off-diagonal elements of the scattering matrix

b1(2) a−(2)

Latex spheres (x = 5, n = 1.19) 1.0 · 10−2 4.0 · 10−3

Latex spheres (x = 10, n = 1.19) 2.0 · 10−3 2.0 · 10−3

water droplets (x = 5, n = 1.33) −2.0 · 10−3 8.0 · 10−3

water droplets (x = 10, n = 1.33) −2.3 · 10−2 1.8 · 10−2

Cloud 1 1.4 · 10−2 4.8 · 10−2

sea water 1.6 · 10−2 4.0 · 10−2

With allowance for the overtones, the degree of polarization can be written
as

PL ≈
√
W 2 + 2Ww cos 4ϕ+ 2WQun cos 2ϕ+Q2

un

Iscal

(
1 − QW

Iscal
cos 2ϕ

)
(7.65)

As depth z increases, the incident light depolarizes (Qun � W ) and PL tends
to the degree of polarization of unpolarized light, PL ≈ Pun = Qun/Iscal.
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Fig. 7.6. Ratios b1(2)/(σ(1 − a1(2))) (curve 1), b1(2)/(σ(1 − a+(2)) (curve 2) and
a−(2)/(σ(1 − a+(2)) + 2εW /3) (curve 3) as functions of radius a of the scattering
particles. Latex spheres in water, no absorption

7.5 Small-angle multiple scattering

The spread of multiply scattered waves over the directions of propagation de-
pends on the absorption properties of the medium. Propagation of light is dif-
fusive provided that the absorption coefficient is much less than the transport
scattering coefficient (σa 	 σtr). In the case of strong absorption (σa > σtr) the
situation reverses. The prevailing attenuation of the waves scattered through
relatively large angles prevents the propagation regime from being diffusive and
results in retaining the small-angle distribution of radiation at any depth z. The
average cosine of multiple scattering angle is close to unity (1 − 〈cos θ〉∞ 	 1)
in the asymptotic state (see, for example, [32,45,55,58,59]. Below the condition
of strong absorption is assumed to be fulfilled.

In what follows we present analytical results for the Stokes parameters of
multiply scattered light. Various types of initial polarization are considered. We
restrict our calculations to the case of weak single scattering that is described
within the Born (or Rayleigh–Gans) approximation (see eq. (7.21)). The effects
of strong single scattering that are beyond the Born approximation are discussed
in [32,35,57].

7.5.1 Unpolarized light

Let a wide beam of unpolarized light be incident normally on a surface. In this
case quantities W and V are equal to zero and the polarization state of light is
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determined only by the contribution of the overtone Qun (see eqs (7.39)–(7.42),
(7.64)). To derive a small-angle version of eqs (7.26) and (7.41) we take advantage
a number of approximations. In the first place, eqs (7.16)–(7.19) and eq. (7.21)
are assumed to be valid. Second, we neglect the difference between the spherical
triangle shown in Fig. 7.1 and a planar one and put χ+ = ψ. Then, expanding
the terms appearing in eqs (7.26) and (7.41) in small angles θ, θ′, we find the
small-angle equations for Iscal and Qun [32]{

∂

∂z
+ σ +

σa

2
θ2
}
Ĩscal(z, θ) = σ

∫
dθ′a1(|θ − θ′|)Ĩscal(z, θ′) (7.66)

{
∂

∂z
+ σ +

σa

2
θ2
}
Q̃un(z, θ) = σ

∞∫
0

dθ′

⎡
⎣ 2π∫

0

dψa1(|θ − θ′|) cos 2ψ

⎤
⎦ Q̃un(z, θ′)

+
σ

2

∫
dθ′a1(|θ − θ′|)[θ′2(1 − cos 2ψ) − (θ − θ′)2]Ĩscal(z, θ′) (7.67)

where Ĩscal = Iscal exp(σaz), Q̃un = Qun exp(σaz); θ = (θ cosϕ, θ sinϕ) is a
two dimensional vector. We assume that the main contribution to the integrals
appearing in eqs (7.66) and (7.67) is determined by the range of small angles and
the upper limit of integration over θ can be extended to infinity. The boundary
conditions for eqs (7.66) and (7.67) have the form

Ĩscal(z = 0, θ) =
δ(θ)
2πθ

(7.68)

Q̃un(z = 0, θ) = 0 (7.69)

Equation (7.68) corresponds to the incident radiation of unit flux density.
Equations (7.66) and (7.67) can be reduced to the differential form. Using

the Bessel transform

Ĩscal(z, ω) = 2π

∞∫
0

θdθJ0(ωθ)Ĩscal(z, θ) (7.70)

Q̃un(z, ω) = 2π

∞∫
0

θdθJ2(ωθ)Q̃un(z, θ) (7.71)

we obtain the following differential equations [32]:{
∂

∂z
+ σ(1 − a1(ω)) − σa

2
∆ω

}
Ĩscal(z, ω) = 0 (7.72)

{
∂

∂z
+ σ(1 − a1(ω)) − 1

2
σa

(
∆ω − 4

ω2

)}
Q̃un(z, ω) = Ξ(ω)Ĩscal(z, ω) (7.73)

where
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a1(ω) = 2π

∞∫
0

γdγJ0(ωγ)a1(γ), ∆ω =
1
ω

∂

ω

[
ω
∂

ω

]
(7.74)

Ξ(ω) = −σω
2
∂

∂ω

1
ω

∂a1(ω)
∂ω

(7.75)

The boundary conditions for eqs (7.72) and (7.73) take the form

Ĩscal(z = 0, ω) = 1, Q̃un(z = 0, ω) = 0 (7.76)

In the case of multiple scattering, two inequalities are assumed to be fulfilled

z � l, θ � γ0 (7.77)

where l is the mean free path, l = σ−1, and γ0 is the characteristic angle of the
phase function (see eq. (7.24)). As applied to the ω-representation, the second
inequality implies

ω 	 1/γ0 (7.78)

Therefore, to calculate Ĩscal(z, ω) and Q̃un(z, ω) we should know the ω-dependence
of the function a1(ω) for relatively small values of ω.

As the phase function a1(γ) falls off rapidly with increasing γ, the function
a1(ω) can be written as

a1(ω) = 1 − 〈γ2〉ω2

4
+

〈γ4〉ω4

64
− . . . (7.79)

where
〈γ2n〉 = 2π

∫ ∞

0
γdγγ2na1(γ)

is the even angular moment of the scattering phase function. Within the frame-
work of this model for the function a1(ω), eqs (7.72) and (7.73) are simpli-
fied [32, 37, 58, 59]. Performing the inverse Bessel transform of the equations for
Iscal(z, ω) and Q̃un(z, ω), we obtain the following results:{

∂

∂z
+
σa

2
θ2 −D1

θ

∂

∂θ
θ
∂

∂θ

}
Ĩscal(z, θ) = 0 (7.80)

{
∂

∂z
+
σa

2
θ2 −D

[
1
θ

∂

∂θ
θ
∂

∂θ
− 4
θ2

]}
Q̃un(z, θ) = btr1

[
θ
∂

∂θ

1
θ

∂

∂θ

]
Ĩscal(z, θ)

(7.81)
where

D =
1
4
σ〈γ2〉, btr1 = −1

4
σ〈γ4〉 (7.82)

Equation (7.80) is the radiative transfer equation within the small-angle diffusion
(or Fokker-Planck) approximation [58,59].

Quantity D is the coefficient of photon diffusion in the angular domain.
Within the small-angle approximation σtr ≈ σ〈γ2〉/2, and the coefficient of
angular diffusion can be expressed in terms of the transport scattering coefficient,
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D =
σtr

2
=

1
2
σπ

∞∫
0

γ3dγa1(γ). (7.83)

The solutions of eqs (7.80) and (7.81) are given by [32,37,58,59]

Ĩscal(z, θ) =
1

πA
(I)
0 (z)A(I)

1 (z)
exp

(
− θ2

A
(I)
1 (z)

)
(7.84)

Q̃un(z, θ) =
θ2btr1

σa〈θ2〉3∞
f(z)Ĩscal(z, θ) (7.85)

where

A
(I)
0 (z) = cosh

(
z
√

2Dσa

)
, A

(I)
1 (z) = 2

√
2D
σa

tanh
(
z
√

2Dσa

)

f(z) =
1

sinh2 (z√2Dσa

) (z√2Dσa +
1
2

sinh 2
(
z
√

2Dσa

))
(7.86)

In accordance with eq. (7.84), the mean square of scattering angle θ at depth z
coincides with the function A(I)

1 (z)

〈θ2〉z = A
(I)
1 (z) (7.87)

The z-dependence of Ĩscal(z, θ) and Q̃un(z, θ) is characterized by the scale

ld =
(√

2Dσa

)−1
(7.88)

At large depths (z > ld) Ĩscal(z, θ) tends to its asymptotic state:

Ĩ
(as)
scal (z, θ) =

2
π〈θ2〉∞

exp
(

− z

ld
− θ2

〈θ2〉∞

)
(7.89)

where

〈θ2〉∞ = 2
√

2D
σa

(7.90)

is the asymptotic value of the mean square of scattering angle [58,59]. For strong
absorption (σa � σtr), we have: 〈θ2〉∞ < 1. From eq. (7.89), it follows that the
asymptotic angular distribution of radiation is invariable with z.

According to eqs (7.84) and (7.85), the degree of polarization Pun is equal to

Pun(z, θ) =
Q̃un

Ĩscal

=
θ2btr1

σa〈θ2〉3∞
f(z) (7.91)

At relatively small depths (z 	 ld), eq. (7.91) gives

Pun(z 	 ld, θ) =
1
4
btr1
σtr

θ2

σtrz
(7.92)
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As z increases the degree of polarization falls off monotonically. In the asymptotic
state (z � ld) Pun tends to its limiting value

Pun(z → ∞, θ) =
btr1
σtr

θ2

〈θ2〉∞
(7.93)

As analysis shows [32,38,60], the small angle diffusion model (see eqs (7.79)–
(7.81))) is too rough to provide qualitative results in actual experimental condi-
tions.

Let us consider a more realistic model of scattering. The phase function of
small-angle scattering by large spherical inhomogeneities of a given size can be
approximated by [35,44]

a1(γ) =
γ2
0

π(γ2
0 + γ2)2

(7.94)

where γ0 denotes a characteristic angle of single scattering, γ0 	 1 (see
eq. (7.24)). For relatively small values of ω (ω 	 1/γ0), the function a1(ω)
that corresponds to eq. (7.94) can be written as

a1(ω) = 1 − 1
4
γ2
0ω

2 ln
4

γ2
0ω

2 + . . . (7.95)

For the function a1(ω) of the type (7.95) eqs (7.72) and (7.73) can not be
solved analytically at any depth z. Ĩscal and Q̃un can be calculated only in two
limiting cases, namely, at small depths and in the asymptotic state.

At relatively small depths (z < la = σ−1
a ) we can neglect the effect of ab-

sorption on the angular divergence of the radiation and put σa = 0 in eqs (7.72)
and (7.73). With this constraint, the solutions of eqs (7.72) and (7.73) take the
form [32,61]

Ĩscal(z, θ) =

∞∫
0

ωdω

2π
J0(ωθ) exp(−σz(1 − a1(ω)) (7.96)

Q̃un(z, θ) = z

∞∫
0

ωdω

2π
Ξ(ω)J2(ωθ) exp(−σz(1 − a1(ω)) (7.97)

We can distinguish a ‘dome’ (θ < θz) and ‘wings’ (θ > θz) in the angular
dependence of intensity [32]. The value of θz can be estimated as θz ≈ √

σtrz
(for the phase function (7.94), σtr = σγ2

0 ln(2/γ0)). Within the ‘dome’ region the
angular distribution of radiation results from photon diffusion over small (θ < θz)
angles. The ‘wings’ are formed by photons which undergo multiple deflections
through small angles (θ < θz) and a single scattering through a relatively large
angle (θ > θz).

The results of calculations of Ĩscal(z, θ) and Q̃un(z, θ) with eqs (7.96) and
(7.97) are given by

Ĩscal(z, θ) =
ln(2/γ0)

πσtrz ln(σtrz/γ2
0)

exp
(

− θ2 ln(2/γ0)
σtrz ln(σtrz/γ2

0)

)
, θ < θz
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Ĩscal(z, θ) =
σtrz

πθ4 ln(2/γ0)

(
1 +

8σtrz

θ2 ln(2/γ0)
ln
θ

γ0
− . . .

)
, θ > θz (7.98)

Pun =
Q̃un

Ĩscal

= − θ2

4 ln(σz)
, θ < θz

Pun = −θ
2

2
·
(

1 − 8σtrz

θ2 ln(2/γ0)
· ln

θ

γ0
+ . . .

)
, θ > θz (7.99)

As follows from eq. (7.99), the degree of polarization Pun for relatively large
angles is close to the degree of polarization of singly scattered light [44].

In the asymptotic state, the intensity Ĩscal(z, θ) can be calculated in the
following way. We can represent Ĩscal(z, θ) as a product of two functions, one
of which describes the exponential z-dependence, the other depends on θ (see
eq. (7.50)). Substituting Ĩscal(z, θ) into eq. (7.72) we arrive at an eigenvalue
problem. A minimal eigenvalue gives the attenuation coefficient in the asymptotic
state. The corresponding eigenfunction describes the angular dependence. The
specific calculations can be perfomed, for example, with the use of the direct
variational procedure [62].

Here we consider an alternative method of calculations. This method can be
interpreted as the extension of the small-angle diffusion approximation to the
phase function of the type (7.94). We assume that a layer of the medium of a
given thickness z is characterized by a certain value of the diffusion coefficientDz.
Then, the intensity Ĩscal(z, θ) can be described by eq. (7.84) with corresponding
coefficient Dz. The value of Dz can be determined as follows. For the phase
function (7.94), the integral (7.82) diverges at the upper limit. Assuming that the
main contribution to the intensity of transmitted radiation is given by photons
that deflects through angles θ <

√〈θ2〉z, we put the upper limit of integral (7.82)
equal to the characteristic angle of multiple scattering in the layer, i.e.

√〈θ2〉z.
For eq. (7.94), we obtain the following equations [32]:

Dz =
σγ2

0

4
ln

〈θ2〉z

γ2
0
, 〈θ2〉z = 2

√
2Dz

σa
tanh(z

√
2Dzσa) (7.100)

Two equations (7.100) present the self-consistent method for calculating Ĩscal(z, θ)
within the ‘dome’ region (θ <

√〈θ2〉z).
At relatively small depths (z 	 ld) we obtain

Dz =
σtr

2
ln(σtrz/γ

2
0)

ln(4/γ2
0)

and come back to eq. (7.98). In the asymptotic state (z > ld), the diffusion
coefficient is equal to

D∞ =
σtr

2
· ln(〈θ2〉∞/γ2

0)
ln(4/γ2

0)
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and the mean square of scattering angle θ can be approximated by

〈θ2〉∞ = 2

√
σtr

σa

ln((
√

4σtr/σa)/γ2
0)

ln(4/γ2
0)

(7.101)

The ‘wings’ of the intensity Ĩscal(z, θ) (θ >
√〈θ2〉z) are governed by the

expansion of Ĩscal(z, ω) in small ω. Substituting the expansion of Ĩscal(z, ω) in
ω into eq. (7.72) and equating the coefficients before equal powers of ω, we find
the expansion of Ĩscal(z, θ) in inverse powers of θ [32, 63, 64]. With the use of a
similar procedure, we can also calculate the second Stokes parameter Q̃un(z, θ).

Combining the results outlined above, we obtain the following analytical
results [32,35]

Ĩscal(z, θ) ≈ 2
π〈θ2〉∞

· exp
(

− z

ld
− θ2

〈θ2〉∞

)
, θ <

√
〈θ2〉∞

Ĩscal(z, θ) ≈ 4σtr exp(−z/ld)
πσaθ6 ln(2/γ0)

·
(

1 + 5
〈θ2〉∞
θ2

− . . .
)
, θ >

√
〈θ2〉∞ (7.102)

Pun = −θ
2

2
· ln 2 · σγ2

0

σa〈θ2〉2∞
, θ <

√
〈θ2〉∞

Pun = −θ
2

2
·
(

1 − 4〈θ2〉∞
θ2

)
, θ >

√
〈θ2〉∞ (7.103)

where

ld =
(

1
2
σa〈θ2〉∞

)−1

(7.104)

Note that the relationship between the asymptotic length ld and 〈θ2〉∞ is a
consequence of the small-angle transfer equation and does not depend on the
specific values of a1(γ) and 〈θ2〉∞.

7.5.2 Circularly polarized light

Let us consider depolarization of right-hand circularly polarized light. The dif-
ference between eq. (7.26) for the intensity and eq. (7.27) for the circularly
polarized mode is due to the difference between the scattering functions a1(nn′)
and a4(nn′) appearing in the right-hand side of eqs (7.26), (7.27).

Assuming that the Born condition (eq. (7.21)) and the small-angle approxi-
mation are fulfilled, we can write

σ

∫
dn′ (a4(nn′) − a1(nn′))V (z, µ′) ≈ −σ

8

∫
dθ′a1(|θ − θ′|)(θ − θ′)4V (z, θ′)

(7.105)
The effect of this term depends on the form of the phase function a1(γ).
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Within the small-angle diffusion approximation, eq. (7.105) gives

−σ
8

∫
dθ′a1(|θ − θ′|)(θ − θ′)4V (z, θ′) =(

−σ〈γ4〉
8

− σ〈γ6〉
16

1
θ

∂

∂θ
θ
∂

∂θ
+ · · ·

)
V (z, θ) (7.106)

With allowance for eq. (7.106), the small-angle diffusion equation for the circu-
larly polarized mode can be written as [34]{

∂

∂z
+
σ

(V )
a

2
θ2 −D1

θ

∂

∂θ
θ
∂

∂θ

}
Ṽ (z, θ) = 0 (7.107)

where Ṽ (z, θ) = exp
(
σ

(V )
a z

)
V (z, θ) and

σ(V )
a = σa +

σ〈γ4〉
8

(7.108)

Equation (7.108) defines the effective ‘absorption’ coefficient for the fourth Stokes
parameter. The additional term in eq. (7.108) is responsible for depolarization of
circularly polarized light (see eq. (7.30)). We neglect the contribution of σ〈γ6〉/16
to the angular diffusion coefficient D.

The boundary condition for eq. (7.107) has the form

Ṽ (z = 0, θ) =
δ(θ)
2πθ

(7.109)

From eqs (7.107) and (7.109) we obtain the expression for Ṽ that differs from
eq. (7.84) only by substitution of σ(V )

a for σa.
The degree of polarization

PC =

√(
V

Iscal

)2

+ P 2
un (7.110)

is determined by the following expression:

PC ≈
(
σ

(V )
a

σa
exp

(
−2θ2

(
1

〈θ2〉(V )
z

− 1
〈θ2〉z

))
×

sinh2 (z√σtrσa

)
sinh2

(
z

√
σtrσ

(V )
a

) exp

(
−σz〈γ

4〉
4

)
+ P 2

un

)1/2

(7.111)

Equation (7.111) permits us to find the attenuation length for circularly polarized
light
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lcirc =
(
σ〈γ4〉

8
+

√
σtr(
√
σ

(V )
a − √

σa)
)−1

≈
(
σ〈γ4〉

8

(
1 +

1
2

√
σtr

σa
+ . . .

))−1

(7.112)

The length lcirc is much larger than the asymptotic length ld (see eq. (7.88)):

lcirc

ld
≈ 8

〈γ2〉
〈γ4〉〈θ4〉∞

� 1 (7.113)

Next, let us consider depolarization of light in the medium with the phase
function (7.94). In this case eq. (7.105) gives [35]

−σ
8

∫
dθ′a1(|θ − θ′|)(θ − θ′)4V (z, θ′) ≈ −σγ

2
0

8π

∫
dθ′V (z, θ′) (7.114)

As follows from eq. (7.114), the depolarization term appears to be angular in-
dependent. Treating the term (7.114) as a pertubartion, we develop an iterative
procedure for solving the transfer equation for V (z, θ). As lcirc � ld, we restrict
our consideration to the asymptotic case.

The ‘wings’ of V (z, θ)
(
θ >

√〈θ2〉∞
)

can be described as follows. The con-
tribution from the term (7.114) to V (z, θ) can be estimated as [35]

δṼ (z, θ) = −σγ
2
0

8π

z∫
0

dz′ exp
(

−σa(z − z′)θ2

2

)
Ẽ(V )(z′) (7.115)

where
Ẽ(V )(z) =

∫
dθṼ (z, θ) (7.116)

For large angles

δṼ (z, θ) = − σγ2
0

4πσaθ2
Ẽ(V )(z) (7.117)

The contribution (7.115) is the component of Ṽ (z, θ) that falls off most slowly
as θ increases. Separating out the contribution (7.115) from Ṽ (z, θ),

Ṽ (z, θ) = ṽ(z, θ) + δV (z, θ) (7.118)

we obtain the following equation for ṽ(z, θ) [35]:{
∂

∂z
+ σa

θ2

2

}
ṽ(z, θ) = σ

∫
dθ′a1(|θ − θ′|)(ṽ(z, θ′) − ṽ(z, θ)) −

−σ
∫
dθ′a1(|θ − θ′|)σγ

2
0

8π

z∫
0

dz′Ẽ(V )(z′)
(

exp
(

−σa(z − z′)θ′2

2

)
−

− exp
(

−σa(z − z′)θ2

2

))
(7.119)
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Using the expansion of ṽ(z, θ) in inverse powers of θ [32, 63, 64]) (see also
section 7.5.1) we can find the θ-dependence of ṽ(z, θ) at the ‘wings’ [35].

As a result, the ‘wings’ of the fourth Stokes parameter in the asymptotic
state are given by [35]

Ṽ (z, θ) ≈ Ẽ(V )(z)
[

2σγ2
0

πσaθ6
·
(

1 + 5
〈θ2〉z

θ2
+ . . .

)
− σγ2

0

4πσaθ2
·
(

1 +
〈θ2〉z

θ2
+ . . .

)]
,

(7.120)
The angular distributions Ṽ (z, θ) and Ĩscal(z, θ) are close to each other. The

difference between them is of the order of θ4 (see eq. (7.102) and eq. (7.120)).
In the asymptotic state the difference between Ṽ (z, θ) and Ĩscal(z, θ) is mainly
due to the z-dependence of these quantities.

To calculate Ẽ(V )(z), we consider the asymptotic equation (7.51). The an-
gular function entering into eq. (7.51) and the eigenvalue εV can be calculated
with a perturbation theory on the basis of the results for the intensity at large
depths (see section 7.5.1) [32]. Within the first approximation in small quantity
σγ2

0/σa 	 1, the eigenvalue εV is given by [35]

εV = εI +
1
4
σγ2

0〈θ2〉∞ (7.121)

where 〈θ2〉∞ is determined by eq. (7.101).
Within the ‘dome’ region (θ <

√〈θ2〉∞) the contribution from the term
(7.114) to the angular dependence Ṽ (z, θ) is of the order of 〈θ2〉2∞.

As follows from eq. (7.121), the degree of polarization decreases as

PC =

√(
V

Iscal

)2

+ P 2
un ≈ V

Iscal
≈ exp

(
−1

4
σγ2

0〈θ2〉∞z
)

(7.122)

and the attenuation length for circularly polarizaed light is equal to

lcirc ≈
(

1
4
σγ2

0〈θ2〉∞

)−1

(7.123)

Ratio between lcirc and the asymptotical length ld is proportional to
σa/(σγ2

0) � 1.

7.5.3 Linearly polarized light

In order to derive the small-angle equation for W we expand the phase factor
entering into eq. (7.28) in the small spherical excess χ+ − ψ = π − β − β′ − ψ
[54] and keep the first three terms. As a result, we have

exp(2i(χ+ − ψ) ≈ 1 − 1
2
θαθ

′
β(θαθ′

β − θβθ′
α) + ieαβθαθ

′
β (7.124)
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where eαβ is two-dimensional antisymmetric tensor

eαβ =
(

0 1
−1 0

)

With allowance for eq. (7.124) and the Born relation (7.21), the small-angle
equation for W̃ = W exp(σaz) takes the form [38]{

∂

∂z
+ σ +

σa

2
θ2
}
W̃ (z, θ) =

σ

∫
dθ′a1(|θ − θ′|)W̃ (z, θ′) − σ

2

∫
dθ′a1(|θ − θ′|)[θαθ′

β(θαθ′
β − θβθ′

α)

+ 2ieαβθαθ
′
β ]W̃ (z, θ′) − σ

16

∫
dθ′a1(|θ − θ′|)|θ − θ′)|4W (z, θ′) (7.125)

When deriving eq. (7.125), we expand the terms appearing in the right-hand
side of eq. (7.28) to terms of order θ4 and θ′4.

The boundary condition for eq. (7.125) has the form

W̃ (z = 0, θ) =
δ(θ)
2πθ

(7.126)

The second and third terms in the right-hand side of eq. (7.125) are respon-
sible for the geometrical depolarization and the dynamical one, respectively.

Equation (7.125) as well as the scalar radiative transfer equation (eq. (7.66))
can be transformed into a differential equation of the same type as eq. (7.72).
For this purpose, we perform the Bessel transfom of W̃ (z, θ),

W̃ (z, ω) = 2π

∞∫
0

θdθJ0(ωθ)W̃ (z, θ) (7.127)

As a result, we obtain the following equation for W̃ (z, ω) [38]{
∂

∂z
+ σ(1 − a1(ω)) − 1

2
σa∆ω + Ξ̂g +

σ

16
(∆2

ωa1(ω))
}
W̃ (z, ω) = 0 (7.128)

where Ξ̂g(ω) is given by

Ξ̂g(ω) =
σ

2ω
∂

∂ω

[
∂a1(ω)
∂ω

∂

∂ω

]
(7.129)

The boundary condition for eq. (7.128) has the form

W̃ (z = 0, ω) = 1 (7.130)

The small-angle version of the transfer equations for the overtones QW , Qun

and w (see eqs (7.40)–(7.42)) can be obtained as follows. As a first approximation,
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we neglect the difference between the spherical triangle shown in Fig. 7.1 and a
planar one. Then we can write

χ+ − ψ = π − β − β′ − (ϕ− ϕ′) = 0

and
exp(−2i(β + ψ)) = exp(−2i(β − ϕ′))

Assuming also the Born approximation for single scattering, we perform the
small-angle expansion of the terms appearing in eqs (7.40)–(7.42). For Q̃un, we
arrive at eq. (7.67). The small-angle equation for overtone Q̃W = QW exp(σaz)
differs from eq. (7.67) only by the substitution of W̃ for Ĩscal. The small-angle
equation for the overtone w̃ = w exp(σaz) has the following form [34]:{

∂

∂z
+ σ +

σa

2
θ2
}
w̃(z, θ) =

σ

∞∫
0

dθ′

⎡
⎣ 2π∫

0

dψa1(|θ − θ′|) cos 4ψ

⎤
⎦ w̃(z, θ′) +

σ

16

∫
dθ′a1(|θ − θ′|)[|θ − θ′|4 −

θ′2(θ′2(1 − cos 4ψ) + 4θ2(1 − cos 2ψ) − 4θθ′(cosψ − cos 3ψ))]W̃ (z, θ′) (7.131)

Using the Bessel transform

Q̃W (z, ω) = 2π

∞∫
0

θdθJ2(ωθ)Q̃W (z, θ), w̃(z, ω) = 2π

∞∫
0

θdθJ4(ωθ)w̃(z, θ)

(7.132)
we present the small-angle equations for Q̃W and w̃ in the differential form
[34,38]{

∂

∂z
+ σ(1 − a1(ω)) − 1

2
σa

(
∆ω − 4

ω2

)}
Q̃W (z, ω) = Ξ(ω)W̃ (z, ω) (7.133)

{
∂

∂z
+ σ(1 − a1(ω)) − 1

2
σa

(
∆ω − 16

ω2

)}
w̃(z, ω) = Ξw(ω)W̃ (z, ω) (7.134)

where

Ξw̃(ω) =
σ

16

[
ω4
(

∂

ω∂ω

)4

a1(ω)

]
(7.135)

The quantity Ξ(ω) has already been defined by eq. (7.75).
Let us consider now the depolarization of linearly polarized light for various

models of the phase function a1(γ) (or its Bessel image a1(ω)).
Starting from eq. (7.79), we arrive at the small-angle diffusion model. Within

the framework of eq. (7.79), we have

Ξ̂g(ω) =
1
2
σ〈γ2〉∆ω,

1
16
σ(∆2

ωa1(ω)) =
1
16
σ〈γ4〉 (7.136)
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As follows from eq. (7.136), the last term in the left-hand side of eq. (7.128) is a
negligibly small quantity as compared with other terms appearing in eq. (7.128).
Hence, the geometrical mechanism is mainly responsible for the depolarization
of linearly polarized light. Perfoming the inverse Bessel transform, we obtain the
small-angle diffusion equation for W̃ (z, θ) [34,37]{

∂

∂z
+
σ

(W )
a

2
θ2 −D1

θ

∂

∂θ
θ
∂

∂θ

}
W̃ (z, θ) = 0 (7.137)

where
σ(W )

a = σa + σtr (7.138)

is the effective ‘absorption’ coefficient for W̃ . The difference between σ(W )
a and

σa is responsible for additional attenuation of W due to depolarization.
The solution of eq. (7.137) is expressed in terms of eq. (7.84). In accordance

with eq. (7.84), the function W̃ can be written as [34,37]

W̃ (z, θ) =
1

πA
(W )
0 (z)A(W )

1 (z)
exp

(
− θ2

A
(W )
1 (z)

)
(7.139)

where

A
(W )
0 (z) = cosh

(
z

√
2Dσ(W )

a

)
, A

(W )
1 (z) = 2

√
2D

σ
(W )
a

tanh
(
z

√
2Dσ(W )

a

)

Taking into account only the basic modes Ĩscal and W̃ , we can describe the
depolarization of linearly polarized light (see eq. (7.59)). The degree of polariza-
tion of multiply scattered light is governed by the difference in attenuation of
the basic modes Ĩscal and W̃ [34, 37]

PL =

√
Q2 + U2

I
≈ W̃

Ĩscal

=

√
σ

(W )
a

σa

⎛
⎜⎜⎝ sinh

(
z
√

2Dσa

)
sinh

(
z

√
2Dσ(W )

a

)
⎞
⎟⎟⎠ exp

(
−θ2

(
1

A
(W )
1 (z)

− 1

A
(I)
1 (z)

))
(7.140)

At relatively small z (z < ld), the degree of polarization is close to unity

PL ≈ 1 − 〈θ2〉2z
24

(
1 +

2θ2

〈θ2〉z
+ . . .

)
, θ <

√
〈θ2〉z (7.141)

In the asymptotic state (z > ld), we have

PL ≈
(

1 +
〈θ2〉2∞

8

(
1 − θ2

〈θ2〉∞

))
exp
(

−1
4
σtrz〈θ2〉∞

)
, θ <

√
〈θ2〉∞ (7.142)
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As follows from eq. (7.142), the polarization degree PL decays over distance of
order

llin =
(

1
4
σtr〈θ2〉∞

)−1

The length llin is much larger than the length ld, that describes the asymptotic
state of propagation,

llin = 2
σa

σtr
ld � ld

For intermediate depths, ld < z < llin, eq. (7.142) results in the following
expression for the polarization degree:

PL ≈ 1 − 〈θ2〉2∞
8

(
z

ld
− 1 +

θ2

〈θ2〉∞

)
(7.143)

As the degree of polarization decreases to small values, the contribution of
the overtones should be taken into account. Within the framework of eq. (7.79),
equations (7.133), (7.134) can be transformed into the following form [34,37]{
∂

∂z
+
σa

2
θ2 −D

[
1
θ

∂

∂θ
θ
∂

∂θ
− 4
θ2

]}
Q̃W (z, θ) = −σ〈γ4〉

4

[
θ2
(

1
θ

∂

∂θ

)2
]
W̃ (z, θ)

(7.144){
∂

∂z
+
σa

2
θ2 −D

[
1
θ

∂

∂θ
θ
∂

∂θ
− 16
θ2

]}
w̃(z, θ) =

σ〈γ8〉
3 · 211

[
θ4
(
∂

θ∂θ

)4
]
W̃ (z, θ)

(7.145)
The corresponding equation for the overtone Q̃un has already been derived above
(see eq. (7.81)).

As follows from eqs (7.81), (7.144), and (7.145), the source in the right-hand
side of eq. (7.145) is many times smaller than the sources in eqs (7.81) and
(7.144). Therefore the quantity w̃ can be neglected as compared with Q̃un and
Q̃W .

The overtone Q̃un is given by eq. (7.85). The overtone Q̃W can be described
by a similar expression [34,37]

Q̃W (z, θ) ≈ btr1 θ
2

σa〈θ2〉3∞
f(z)W̃ (z, θ) (7.146)

With allowance for the overtones QW and Qun, the Stokes parameters can
be written as

Ĩ ≈ Ĩscal + Q̃W cos 2ϕ, Q̃− iŨ ≈ W̃ exp(−2iϕ) + Q̃un (7.147)

Equation (7.147) permits us to derive a more accurate expression for the degree of
polarization as compared with eq. (7.140). With allowance for inequality Q̃W 	
Ĩscal the degree of polarization takes the form

PL ≈
√
W̃ 2 + 2W̃ Q̃un cos 2ϕ+ Q̃2

un

Ĩscal

(
1 − Q̃W

Ĩscal

cos 2ϕ

)
(7.148)
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At depths z < llin, the contribution from overtones is responsible for the
azimuth dependence of the degree of polarization,

PL ≈ W̃ (z, θ)
Ĩscal(z, θ)

(
1 +

(
Q̃un(z, θ)
W̃ (z, θ)

− Q̃W (z, θ)
Ĩscal(z, θ)

)
cos 2ϕ

)
(7.149)

As depth z increases, the incident radiation depolarizes (Qun � W ) and PL

tends to the polarization degree Pun of unpolarized light (see eq. (7.93)).
Now consider depolarization of light in the medium with the phase function

(7.94).
As noted above, depolarization of light is a relatively slow process. Depo-

larization becomes observable at large depths (z � ld), i.e. in the asymptotical
state. The last two terms entering into eqs (7.125) and (7.128), that are respon-
sible for the depolarization, are assumed to be small as compared with the other
terms. This allows us to use a pertubation theory to solve eq. (7.128), taking as
an initial approximation the solution of the scalar transfer equation (7.72) (see
also [35]).

As a result, the polarization mode W̃ in the asymptotic state can be written
as

W̃ (z, θ) ≈ Ĩscal(z, θ)
(

1 +
〈θ2〉2∞

8

(
1 − θ2

〈θ2〉∞

))
×

exp
(

−σzγ
2
0〈θ2〉∞
8

(
ln

〈θ2〉∞
2γ2

0
+ 1
))

(7.150)

In accordance with eq. (7.150) the polarization degree of forward propagating
waves is given by

PL ≈ exp
(

−σzγ
2
0〈θ2〉∞
8

[
ln

〈θ2〉∞
2γ2

0
+ 1
])

(7.151)

From eq. (7.151) it follows that the depolarization length for linearly polarized
light can be estimated as

(
−σzγ

2
0〈θ2〉∞
8

[
ln

〈θ2〉∞
2γ2

0
+ 1
])−1

The geometrical mechanism and the dynamical one contribute additively to the
attenuation of W̃ and PL. The contribution of the geometrical mechanism to the
attenuation coefficient is equal to

1
8
σγ2

0〈θ2〉∞ ln
〈θ2〉∞
2γ2

0

and exceeds the dynamical contribution by the logarithmic factor.
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The overtones Q̃W and w̃ can be calculated in the close analogy with Q̃un

(see eq. (7.103)) [32]. In the ‘dome’ region (θ <
√〈θ2〉∞), the overtones Q̃W and

w̃ can be written as

Q̃W (z, θ) ≈ − σγ2
0θ

2

σa〈θ2〉2∞
ln 2
2
W̃ (z, θ)

Q̃un(z, θ) ≈ − σγ2
0θ

2

σa〈θ2〉2∞
ln 2
2
Ĩscal(z, θ)

w̃(z, θ) ≈ σγ2
0θ

4

144σa〈θ2〉2∞
W̃ (z, θ) (7.152)

As follows from eq. (7.152), the overtone w̃ is relatively small as compared
with Q̃W and Q̃un, and the contribution of w̃ to the polarization state can be
neglected. Equations (7.148) and (7.149) remain valid.

Expressions (7.152) allow us to determine the degree of polarization of scat-
tered light and the angle of rotation of the polarization plane. Orientation of the
polarization plane was investigated in [34,37,38].

7.6 A narrow beam of linearly polarized light

As shown above (see also [33]–[38]), the depolarization of linearly polarized light
in random media with large-scale inhomogeneities is mainly due to the geometri-
cal mechanism. This circumstance makes it possible to observe directly the Rytov
rotation of the polarization plane along the three-dimensional (nonplanar) path
of propagation.

A beam propagating in a scattering medium can be considered as the su-
perposition of random rays. A wave propagating along a separate ray remains
linearly polarized. However, the polarization planes related to the different rays
appear to be tilted with respect to each other. As the spread in orientation of
the polarization planes increases, the beam depolarizes.

For a wide beam of linearly polarized light, the average ray trajectory for any
direction of propagation is a planar curve. As a result, the average orientation
of the polarization plane coincides with the initial polarization of the incident
light.

A different situation arises in the case of a narrow beam. For a given trans-
verse displacement from the beam axis, the average trajectory of the ray propa-
gation may differ from a planar curve. Therefore, the propagation of light along
this trajectory is accompanied by deflection of the polarization plane from its
initial orientation. The tilt of the average polarization plane for an off-axis tra-
jectory is the direct manifestation of the Rytov rotation.

In this section we discuss multiple scattering of a narrow beam. The incident
light is assumed to be linearly polarized. We take advantage of the scattering
matrix within the geometrical approximation (see eq. (7.29)) and restrict our
consideration to the case of small-angle scattering [65].
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Let us consider a narrow linearly polarized beam propagating along the direc-
tion of inner normal n0 = {0, 0, 1}. In this case the equation for the polarization
Green matrix (see eq. (7.33)) can be written as{

n
∂

∂r
+ σtot

}
Ĝ(r,n|r0,n0) = σ

∫
dn′L̂({n0,n} ← {n,n′}|n) ×

× d̂(nn′)L̂({n,n′} ← {n′,n0}|n′)Ĝ(r,n′|r0,n0) (7.153)

where

L̂({n,n′} ← {n′,n0}|n′) ≡ L̂(−β′), L̂({n0,n} ← {n,n′}|n) ≡ L̂(π − β)
(7.154)

The angular dependence of the matrix Ĝ is due to both scattering of light
and transformations of the Ĝ matrix elements under rotations of the reference
plane (these rotations are described by L̂ matrices). To exclude the geometrical
factors due to rotation of the reference plane, we represent the matrix Ĝ in the
form that is similar to the single scattering matrix L̂(...|n)d̂(nn′)L̂(...|n′) (see
eq. (7.13))

Ĝ(r,n|r0,n0) = L̂({n0,n} ← {n,n′}|n)Ĝscat(r,n|r0,n′) ×

× L̂({n,n′} ← {n′,n0}|n′)

∣∣∣∣∣
n′=n0

= Ĝscat(r,n|r0,n0)L̂(ϕ) (7.155)

The matrix Ĝscat relates polarization parameters of the scattered light to those of
the incident light, which are defined with respect to the scattering plane {n,n0}.

Substituting eq. (7.155) into eq. (7.153), we derive the following equation for
the matrix Ĝscat:{

n
∂

∂r
+ σtot

}
Ĝscat(r,n|r0,n0) = σ

∫
dn′L̂({n0,n} ← {n,n′}|n)d̂(nn′) ×

× L̂({n,n′} ← {n′,n0}|n′)Ĝscat(r,n′|r0,n0)L̂({n′,n0} ← {n,n0}|n0) (7.156)

Within the geometrical approximation (see eq. (7.29)) multiple scattering of
polarized light can be considered as propagation of the scalar mode Iscal and
the linearly polarized mode W (see eq. (7.35)) [34,37,38].

The intensity obeys the well-known scalar transfer equation{
n
∂

∂r
+ σtot

}
Iscal(r,n|r0,n0) = σ

∫
dn′a1(nn′)Iscal(r,n′|r0,n0) (7.157)

The equation for the linearly polarized mode W can be written as{
n
∂

∂r
+ σtot

}
W (r,n|r0,n0) = σ

∫
dn′L22({n0,n} ← {n,n′}|n)a1(nn′) ×

× L22({n,n′} ← {n′,n0}|n′)L22({n′,n0} ← {n,n0}|n0)W (r,n′|r0,n0) (7.158)
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The product of the matrix elements L22 in the right-hand side of eq. (7.158)
yields the phase factor (see eq. (7.28))

exp(2i(π − β − β′ − ϕ+ ϕ′))

The boundary conditions to eqs (7.157) and (7.158) for a unit incident flux
have the form

Iscal(z = 0, (n) = W (z = 0, (n) = δ(r − r0)δ(n − n0) (7.159)

Within the small-angle approximation, eqs (7.157) and (7.159) can be written
as [60] {

∂

∂z
+ θ

∂

∂ρ
+ σ +

σa

2
θ2
}
Ĩscal(z,ρ,θ|θ0) =

σ

∫
dθ′a1(|θ − θ′|)Ĩscal(z,ρ,θ′|θ0) (7.160)

Ĩscal(z = 0,ρ,θ) = δ(ρ)δ(θ) (7.161)

where Ĩscal = Iscal exp(σaz) and ρ = r⊥− r0⊥ is the vector of transverse dis-
placement from the beam axis.

Perfoming the Fourier transform over variables θ and ρ, we find that

Ĩscal(z,q,ω) =
∫ ∫

dρdθ exp(−iqρ − iωθ)Ĩscal(z,ρ,θ) (7.162)

obeys by the differential equation{
∂

∂z
− q

∂

∂ω
+ σ(1 − a1(ω)) − σa

2
∆ω

}
Ĩscal(z,q,ω) = 0 (7.163)

The small-angle equation for W̃ = W exp(σaz) takes the following form (see
eq. (7.125)) [65]{

∂

∂z
+ θ

∂

∂ρ
+ σ +

σa

2
θ2
}
W̃ (z,ρ,θ) = σ

∫
dθ′a1(|θ − θ′|)W̃ (z,ρ,θ′) −

σ

2

∫
dθ′a1(|θ − θ′|)[θαθ′

β(θαθ′
β − θβθ′

α) − 2ieαβθαθ
′
β ]W̃ (z,ρ,θ′) (7.164)

W̃ (z = 0,ρ,θ) = δ(ρ)δ(θ) (7.165)

In the case of normal incidence of a wide beam, W̃ does not depend on the
azimuthal angle ϕ. As a result, the contribution of the imaginary term in the
right-hand side of eq. (7.164) is equal to zero, and we obtain eq. (7.125).
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The Fourier transform of W̃ (z,ρ,θ) over variables ρ and θ results in the
differential equation [65]{

∂

∂z
− q

∂

∂ω
+ σ(1 − a1(ω)) − σa

2
∆ω

}
W̃ (z,q,ω) = −σ

2

{[
∆ωa1(ω)∆ω −

−∂
2a1(ω)
∂ωα∂ωβ

∂2

∂ωα∂ωβ

]
+ ieαβ

∂a1(ω)
∂ωα

∂

∂ωβ

}
W̃ (z,q,ω) (7.166)

The quantities Ĩscal(z = 0,q,ω) and W̃ (z = 0,q,ω) are subject to the boundary
condition

Ĩscal(z = 0,q,ω) = W̃ (z = 0,q,ω) = 1 (7.167)

Equations (7.164) and (7.167) describe the polarization state of scattered light
within the geometrical approximation. Within the framework of this approxi-
mation, the angle δχ, that determines the deflecion of the polarization plane of
multiply scattered light from its initial orientation, is equal to

δχ = −1
2

argW (7.168)

This formula describes the Rytov rotation of the polarization plane for a wave
propagating along some average trajectory.

To understand special features of the beam depolarization it is convenient
to consider the multiple scattering process within an exactly solvable model,
namely, within the small-angle diffusion approximation. In this approximation
the function a1(ω) is assumed to be equal to a1 = 1 − (〈γ2〉ω2/4).

The small-angle diffusion equation for the intensity has the form [59]{
∂

∂z
+ θ

∂

∂ρ
+
σa

2
θ2
}
Ĩscal(z,ρ,θ) = D∆θ Ĩscal(z,ρ,θ) (7.169)

The solution of eq. (7.169) with the boundary condition (7.161) is given by [59]

Ĩscal(z,ρ,θ) =
1

π2A
(I)
0 (z)∆(I)(z)

×

exp
{

− 1
∆(I)(z)

(A(I)
1 (z)ρ2 − 2A(I)

2 (z)ρθ +A(I)
3 (z)θ2)

}
(7.170)

The functions A(I)
0,1 are defined by eq. (7.86). The functions A(I)

2,3 and ∆(I) have
the form

A
(I)
2 (z) =

2
σa

(
1 − 1

cosh(z
√

2Dσa)

)
,

(7.171)

A
(I)
3 (z) =

2z
σa

(
1 − tanh(z

√
2Dσa)

z
√

2Dσa

)

∆(I)(z) = A
(I)
1 (z)A(I)

3 (z) − (A(I)
2 (z))2 (7.172)
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The small-angle diffusion equation for the linearly polarized mode W̃ (z,ρ,θ)
can be written as [65]{

∂

∂z
+ θ

∂

∂ρ
+
σ

(W )
a

2
θ2

}
W̃ (z,ρ,θ) =

{
D∆θ + iσtreαβθα

∂

∂θβ

}
W̃ (z,ρ,θ) (7.173)

where σ(W )
a is defined by eq. (7.138).

As compared with eq. (7.169), eq. (7.173) includes two new terms. The first
term, σtrθ

2W̃/2, describes additional attenuation of W̃ . This term is responsible
for the depolarization of linearly polarized light. The imaginary term in the right-
hand side of eq. (7.173) describes a qualitatively new effect, which cannot be
observed in the case of a wide beam. This effect manifests itself as the rotation
of the polarization plane at nonzero transverse displacements from the beam
axis.

The solution of eq. (7.173) has the form [65]

W̃ (z,ρ,θ) =
1

π2A
(W )
0 (z)∆(W )(z)

exp
{

− 1
∆(W )(z)

×
(
A

(W )
1 (z)ρ2 −A(W )

+ (z)ρ+θ− −A(W )
− (z)ρ−θ+ +A(W )

3 (z)θ2
)}

(7.174)

where ρ± = x± iy, θ± = θx ± iθy, the functions A(W )
0 and A(W )

1 differ from the
functions (7.86) only by the substitution of σ(W )

a for σa. The remaining functions
involved in eq. (7.174) are given by

∆(W )(z) = A
(W )
1 (z)A(W )

3 (z) −A(W )
+ (z)A(W )

− (z) (7.175)

A
(W )
± (z) = 2la

⎡
⎣1 − cosh(2Dz) ± sinh(2Dz)

cosh(
√

2Dσ(W )
a z)

±
√

σtr

σ
(W )
a

tanh(
√

2Dσ(W )
a z)

⎤
⎦

(7.176)

A
(W )
3 (z) = −

z∫
0

dz′
[
σ

(W )
a

2
A

(W )
+ (z′)A(W )

− (z′) −A(W )
+ (z′) −A(W )

− (z′)

]
(7.177)

Substituting eq. (7.174) into eq. (7.168), we find the rotation angle of the
polarization plane

δχ =
A

(W )
+ (z) −A(W )

− (z)
4∆(W )(z)

Im(θ+ρ− − θ−ρ+) (7.178)

This expression can also be written as

δχ =
A

(W )
+ (z) −A(W )

− (z)
2∆(W )(z)

n0[r × n] (7.179)
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For relatively small depths

z < l
(W )
d = (2Dσ(W )

a )−1/2

Equation (7.179) yields

δχ ≈ 1
2z

Im(θ+ρ− − θ−ρ+) = −ρθ
z

sin(ϕ− φ) (7.180)

where φ is the azimuth of the vector ρ (tanφ = y/x). In the asymptotic state
(z > l(W )

d ), the angle δχ is halved,

δχ ≈ 1
4z

Im(θ+ρ− − θ−ρ+) (7.181)

If the azimuth angles ϕ and φ coincide with each other or differ from each
other by π, then the polarization plane does not deflect from its initial orienta-
tion. The reason is that the corresponding average ray trajectories appear to be
planar curves. As the vectors ρ and θ are orthogonal to each other, the angle δχ
reaches its maximum and the corresponding average trajectory is characterized
by the maximum degree of twisting. The orientation of the polarization plane as
a function of the difference between angles ϕ− φ is shown in Fig. 7.7.

Fig. 7.7.
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7.7 Discussion

The results obtained above allow us to understand how the parameters of in-
homogeneities and absorption in the medium influence on the depolarization of
light.

The integral parameters of the scattering matrix for various media with large
inhomogeneities are presented in Tables 7.1 and 7.4 (x = 2πa/λ). For spherical
scatterers, the numerical calculations were perfomed with the Mie formulas [1,
44]. For natural media, we used the numerical [52] and experimental [2] data.

As follows from Tables 7.1 and 7.4 the integral parameters of the off-diagonal
elements of the scattering matrix appear to be small as compared with the corre-
sponding parameters of the diagonal elements. Therefore, the contribution of the
additional modes to the Stokes parameters is relatively small in all considered
cases.

The relationship between the ‘geometrical’ and ‘dynamical’ mechanisms of
depolarization depends on the radius of scatterers, their refractive index and
the spread of inhomogeneities in sizes and shapes (see Table 7.2). As the size of
particles increases and the relative refractive index approaches unity, the role of
the ‘geometrical’ mechanism increases. The spread of inhomogeneities in sizes
and their deviation from the spherical shape (Table 7.2, sea water) enhance
the role of the ‘dynamical’ mechanism. This law can best be appreciated from
comparison of the depolarization coefficients εW and εgeom

W . As follows from
Table 7.2, the effect of slow decay of circular polarization is typical only for
large spherical scatterers. For media with inhomogeneities distributed in sizes
and shapes the depolarization coefficients for circularly (εV ) and linearly (εW )
polarized beams are of the same order of magnitude (Table 7.2, cloud 1 and
sea water).

The effect of absorption on the depolarization of multiply scattered light
in the medium is illustrated in Fig. 7.8. As follows from Fig. 7.8, the ratio of
the depolarization lengths depends nonmonotonically on single scattering albedo
σ/σtot. For strong absorbing (σa > σtr), ratio lcirc/llin increases logarithmically
with increasing σ/σtot:

lcirc

llin
≈ 1

2
+

1
2

ln
〈θ2〉∞
2γ2

0

where 〈θ2〉∞ is determined by eq. (7.101). Ratio lcirc/llin has a maximum at

σ

σtot
≈ 1 − σtr

σ

i.e. at σa ≈ σtr. In the vicinity of σ/σtot = 1, ratio lcirc/llin tends to its value
for a non-absorbing medium.

It is of interest to compare the results obtained above with the experimental
data [8, 9] and the results of numerical simulations [8].

In the case σdep 	 σtr, as follows from our calculations, the circular polariza-
tion falls off more slowly as compared with linear polarization. This effect is well
pronounced in a medium with no absorption, in particular, in a suspension of
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Fig. 7.8. Ratio of the depolarization lengths as a function of single scattering albedo
σ/σtot for latex particles in water (ka = 10)

0 2 4 6 8 10 12

0.4

0.6

0.8

1.0

1.2

1.4

 - Monte Carlo calculations

 - experiment

ε V/ε
W

ka

Fig. 7.9. Ratio εV /εW for a water suspension of latex particles as a function of their
radius

latex particles in water [8,9]. As shown in Fig. 7.9, the ratio between the attenu-
ation coefficients calculated from εV /εW with eqs (7.54) and (7.56) (solid curve)
is in good agreement with data of experiments and Monte Carlo calculations [8].

Our results for the degree of polarization also correlate well with experimental
data [9]. The degree of polarization for the circularly and linearly polarized
beams as a function of the slab thickness L is shown in Fig. 7.10. In this case,
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Fig. 7.10. Degree of polarization as a function of the normalized thickness of the
scattering slab L/ltr for a water suspension of latex particles (ka = 7)

instead of eq. (7.50) we used the formula for the intensity of light transmitted
through a non-absorbing slab [45].

In summary, we present the analytical method for solving the vector radia-
tion transfer equation. The representation for the Stokes vector that was first
proposed by Kuscer and Ribaric [49] is used. Our approach is based on the as-
sumption that single scattering of light by large-scale inhomogeneities occurs
through small angles and the off-diagonal elements of the scattering matrix are
small as compared with the diagonal ones. This approximation allows us to
decouple the vector radiative transfer equation. In the first approximation, we
derive three independent equations for the basic modes, namely, for the intensity
and for the basic modes of linear and circular polarizations. In the succeeding
approximation, allowance for the interaction between the basic modes results in
the exitation of the additional modes (overtones). Within the framework of this
approach, the Stokes parameters of multiply scattered light are calculated. Two
limiting cases, diffusive propagation of light and small-angle multiple scattering,
are disscussed in detail. The validity of our results is illustrated by comparison
with data of experiments [8, 9] and Monte Carlo simulation [8].
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8 Adjoint radiative transfer equation
and inverse problems

Vladimir V. Rozanov

8.1 Introduction

The interaction of radiation with a medium can be described in the framework
of the radiative transfer theory, which is based on the solution of the integro-
differential vector radiative transfer equation (VRTE). The solution of the VRTE
provides the radiation field inside and outside of a medium and can be fully de-
scribed by the intensity vector I(τ, µ, φ) which has the Stokes parameters as its
components. The vector I is also called the Stokes vector [12]. The intensity
vector is function of the optical coordinate τ , the direction of the propagation
which is characterized by the cosine of the polar angle, µ, measured with re-
spect to a fixed axis in space (such as the τ -axis or z-axis) and a corresponding
azimuthal angle, φ. The determination of I(τ, µ, φ) under assumption that op-
tical parameters of the medium such as phase matrix, extinction coefficient and
single-scattering albedo are known is called usually a direct (or forward) prob-
lem.

Another situation takes place if the scattered radiation can be measured
inside or at the boundaries of a medium and the optical parameters are unknown.
There usually exists a linear relationship between the measured value, Φ, for
example the first component of the intensity vector at a given position and
direction, and the intensity vector describing the radiation field. This relationship
can be written for a measurement at a single wavelength and a given position
and direction as a scalar product (also referred to as an inner product) of the
instrument response function, R, and the intensity vector, I, as follows:

Φ = (R, I) , (8.1)

where the notation ( , ) is used to define the scalar product in an appropriate
functional space. The linear functional Φ is also called the radiative effect [3], or
the observable radiative quantity [28]. The specific form of the response function
is of minor importance for our mathematical consideration. Therefore, in sec-
tion 8.2 we formulate a model of the ideal measurement and the ideal response
function which will be used throughout the chapter.
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The measured value contains information about various parameters describ-
ing the interaction of radiation with a medium. The procedure of the retrieval of
these parameters is called an inverse problem. The theory of the inverse problem
is well developed only in the case of a linear relationship between the measured
value and the parameter to be retrieved. It is the so-called linear inverse prob-
lem. In section 8.3 we demonstrate that such a linear relationship can be found
expanding the intensity vector in the functional Taylor series as follows:

δΦ = (R, δI) =

τ0∫
0

W(τ)δp(τ)dτ , (8.2)

where the variation of the intensity vector, δI, and, therefore, the variation of
the measured value, δΦ, is caused by the variation of a certain optical parameter
p(τ). The weighting function (WF), W(τ), describes a contribution of a variation
of a certain optical parameter in an infinitesimal layer having optical thickness
dτ located at the optical depth τ into a variation of the measured value, δΦ.

From the mathematical point of view, the most efficient and elegant way to
derive the weighting function is to employ the linearized direct radiative transfer
equation and adjoint radiative transfer equation written in the generalized form.
Following this way, we formulate in section 8.4 the generalized form of the direct
VRTE as follows [17]:

LI = S , (8.3)

where S is a source function and L is the generalized radiative transfer operator.
The main feature of (8.3) is that the operator L comprises all operations with
the intensity vector I including boundary conditions. Therefore, the radiative
transfer equation written in the generalized form consists of a single operator
equation.

In section 8.5, we demonstrate that the operator L has an adjoint operator
L∗ satisfying the Lagrange identity, i.e.,

(I∗,LI) = (L∗I∗, I) , (8.4)

where I∗ ≡ I∗(τ, µ, φ) we will refer to as an adjoint intensity vector.
Having defined the adjoint radiative transfer operator, we formulate in sec-

tion 8.6 the adjoint radiative transfer equation in the generalized form as follows:

L∗I∗ = W , (8.5)

where W is an adjoint source function and operator L∗ in analogy to the oper-
ator L comprises all operations with the adjoint intensity vector, I∗, including
boundary conditions.

Employing the linear perturbation theory to the direct VRTE as given by
(8.3), we find in section 8.7 the following form of the linearized direct radiative
transfer equation:

LδI = δS − δLI , (8.6)
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where variations of the intensity vector, source function and radiative trans-
fer operator are caused by the variation of a certain optical parameter. For a
given optical parameter, p(τ), the right-hand side of this equation can always
be expressed (in the linear approximation) as a product of δp(τ) and the known
function, Ψp(τ, µ, φ):

δS − δLI = δp(τ)Ψp . (8.7)

The analytical expressions for functions Ψp are given in section 8.7 for main
optical and surface parameters. Further we demonstrate that, using the adjoint
approach, the variation of the measured value δΦ given by (8.2) can be written
in the following form:

δΦ = (R, δI) = (I∗, δp(τ)Ψp) =

τ0∫
0

Wp(τ)δp(τ)dτ , (8.8)

where I∗ is the solution of the adjoint radiative transfer equation (8.5) with
the adjoint source function W = R. The general expression for the weighting
function can be formulated now as follows:

Wp(τ) =

2π∫
0

1∫
−1

I∗T (τ, µ, φ)Ψp(τ, µ, φ)dµdφ , (8.9)

where superscript T denotes an transposed vector. Therefore, WF can be found
solving the adjoint VRTE for I∗ and finding auxiliary functions Ψp.

In section 8.8, we derive, using (8.9), the weighting functions for such opti-
cal parameters as extinction, absorption, scattering coefficients, single-scattering
albedo, phase matrix, surface albedo and surface emissivity.

In section 8.9, we present other expressions for the weighting functions. In
particular, we derive weighting functions which can be calculated using diffuse
forward and/or diffuse adjoint intensity instead of total ones. We demonstrate
as well that the employing the formal solution of the direct radiative transfer
equation (the source function integration) to the derivation of the weighting func-
tion is equivalent to the general expression (8.9) written for the diffuse adjoint
intensity.

In section 8.10, we compare the obtained expressions for the weighting func-
tions with the derivations given by other authors.

8.2 Instrument response function and the mathematical
model of the ideal measurement

Let us assume that an instrument allows us to measure certain component of
the intensity vector in the spectral range characterized by the wavelength λv.
The instrument can be placed inside or at the boundaries of a medium. We will
characterize the position of the instrument using as a vertical coordinate the
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optical depth, τv, changing from 0 at the top of the plane-parallel medium to
the value τv = τ0 at the bottom and a function h(τv, τ) describing the possible
uncertainty in the instrument position. The viewing direction of the instrument
is given by the variable Ωv = (µv, φv) where µv and φv are the cosine of the zenith
angle and azimuthal angle, respectively. The spatial resolution of the instrument
can be described using the spatial slit function s(Ωv,Ω), where we will use the
variable Ω := {µ, φ} to describe the set of variables µ ∈ [−1, 1] and φ ∈ [0, 2π].
The propagation of the radiation through the instrument can be characterized
by 4 × 4 matrix, A(λ), which is very specific for each particular instrument and
can be obtained using an instrument simulator model. The spectral properties
of the instrument are usually described by the spectral slit function f(λv, λ).

Thus, a spectroscopic measurement, denoted by Φ, e.g., a radiance measure-
ment at a certain position, viewing direction and wavelength, can be considered
as a linear integral transformation of the radiation field I(τ,Ω, λ). To simplify
further consideration we introduce the function r(τv,Ωv; τ,Ω) comprising func-
tions h(τv, τ) and s(Ωv,Ω) as

r(τv,Ωv; τ,Ω) ≡ h(τv, τ)s(Ωv,Ω) . (8.10)

In the most common case the linear relationship between Φ and I(τ,Ω, λ)
can be written as follows:

Φ(!v) =
∫

V (�)

f(λv, λ)ET
i A(λ)I(!)r(τv,Ωv; τ,Ω)d! . (8.11)

Here, the variable ! represents the set of variables {τ,Ω, λ} where τ ∈ [0, τ0]
and λ ∈ [0,∞]; Ei is the four-component unity vector in the direction of the
ith component of the intensity vector, i.e., if, for example, i = 1 we have E1 =
[1, 0, 0, 0]T ; I(!) is the intensity vector of the radiation field in the direction Ω
at the optical depth τ and the spectral point λ; the integration over the volume
V (!) is given by

∫
V (�)

d! =

∞∫
0

dλ

τ0∫
0

dτ
∫
4π

dΩ =

∞∫
0

dλ

τ0∫
0

dτ

2π∫
0

dφ

1∫
−1

dµ , (8.12)

where τ0 is the optical thickness of a medium. Introducing the instrument re-
sponse function as follows:

R(!v;!) = f(λv, λ)r(τv,Ωv; τ,Ω)AT (λ)Ei , (8.13)

we obtain
Φ(!v) =

∫
V (�)

RT (!v;!)I(!)d! . (8.14)

For our mathematical consideration the specific form of the matrix A(λ) and
the spectral slit function f(λv, λ) which can be very different for the particu-
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lar instrument is of a minor importance. Thereby, we introduce here an ideal
instrument with properties defined as follows:

— the instrument response matrix is the unity matrix

A(λ) = diag{1, 1, 1, 1} ; (8.15)

— the spectral slit function is the Dirac δ function

f(λv, λ) = δ(λv − λ) ; (8.16)

— the instrument position is at the optical depth τv and the spatial slit function
is written in terms of the Dirac δ functions

r(τv,Ωv; τ,Ω) = δ(τ − τv)δ(µ− µv)δ(φ− φv) . (8.17)

Under the above assumptions, we can introduce the ideal instrument response
function as follows:

R(!v;!) = δ(λv − λ)δ(τ − τv)δ(µ− µv)δ(φ− φv)Ei (8.18)

and the measured value Φ can be written now in the following form

Φ(!v) =
∫

V (�)

RT (!v;!)I(!)d! . (8.19)

According to (8.19), Φ can be considered as a convolution of the scattered
radiation field described by the intensity vector, I(!), and the instrument re-
sponse function, R(!v;!), which projects only the part of I seen by the in-
strument. In the case of the measurement in a single viewing direction and at a
single wavelength Φ is a functional of I. For the multispectral and multi-angle
measurements, Φ is also a function of the viewing direction of the instrument
(denoted by variables with the subscript ‘v’) and of the spectral point λv. In
both cases Φ will be referred to as a measured functional.

It can be seen that the measured functional Φ for our ideal instrument is
simply the appropriate component of the intensity vector in the direction (Ωv)
at the optical depth τv and the wavelength λv.

8.3 Linearization and the variational derivative

We will assume throughout the chapter that optical parameters are functions of
the vertical coordinate (optical depth) in contrast to the surface parameters such
as, for example, surface albedo or surface emissivity which will be considered as
scalar parameters. The intensity vector I(!) and, therefore, Φ(!v) are nonlin-
ear functionals of optical parameters describing the radiation propagation in a
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medium. One is confronted with the so-called nonlinear inverse problem in this
case. However, the theory of the inverse problem is well developed for the linear
inverse problem only. The inverse problem is usually called linear if one has a lin-
ear relationship between measured values and parameters to be retrieved. Such
a linear relationship provides, for example, the expansion of the intensity vector
in a functional Taylor series around mean values of these parameters. Namely,
restricting ourselves to the linear term with respect to the variation of a certain
optical parameter, we have

I(!, p(τ)) = I(!, p̄(τ)) +

τ0∫
0

V (!, τ ′)δp(τ ′)dτ ′ , (8.20)

where δp(τ) = p(τ) − p̄(τ) denotes the deviation of a corresponding parameter
from its mean value, p̄(τ), I(!, p̄(τ)) is the intensity vector corresponding to
p̄(τ) and

V (!, τ ′) =
δI(!, p(τ))
δp(τ ′)

= lim
∆τ→0

I(!, p(τ) + δp(τ)) − I(!, p(τ))∫
(∆τ) δp(τ

′)dτ ′ (8.21)

is the variational derivative of I with respect to the parameter p(τ). A complete
discussion of functionals and variational derivatives are given, for example, by
Volterra [31].

Further, the variation of the radiation field caused by the variation of the
certain parameter, p(τ), will be denoted as

δI(!) = I(!, p(τ)) − I(!, p̄(τ)) , (8.22)

and the variation of the measured functional as

δΦ(!v) = Φ(!v) − Φ̄(!v) . (8.23)

We note that, in contrast to the measured functional, Φ(!v), corresponding to
the unknown parameter p(τ), the value of the functional Φ̄(!v) can be calculated
according to the following expression:

Φ̄(!v) =
∫

V (�)

RT (!v;!)I(!, p̄(τ))d! . (8.24)

Thus, the variation of the measured functional is the difference between the
measured value and the calculated value corresponding to the known parameter
p̄(τ).

It follows from (8.14) and (8.24) that

δΦ(!v) =
∫

V (�)

RT (!v;!)δI(!)d! (8.25)
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and from (8.20)

δI(!) =

τ0∫
0

V (!, τ ′)δp(τ ′)dτ ′ . (8.26)

The substitution δI(!) given by (8.26) into (8.25) leads to a linear integral
equation, which relates δΦ(!v) to the variation δp(τ) of the corresponding pa-
rameter:

δΦ(!v) =

τ0∫
0

∫
V (�)

RT (!v;!)V (!, τ ′)δp(τ ′)d!dτ ′ . (8.27)

We define the convolution of the variational derivative as given by (8.21) with
the response function as follows:

Wi(!v, τ) =
∫

V (�)

RT (!v;!)V (!, τ)d! . (8.28)

The introduced function, Wi(!v, τ), is called a weighting function. Substituting
it into (8.27), we obtain

δΦ(!v) =

τ0∫
0

Wi(!v, τ)δp(τ)dτ . (8.29)

Equation (8.29) is the desired linear relationship between measured value
Φ(!v) and the variation of the parameter δp(τ). The weighting function,
Wi(!v, τ), is the convolution of the instrument response function and the varia-
tional derivative. The expression for the weighting function can be considerably
simplified if we use the ideal instrument response function as given by (8.18).
Indeed, substituting R instead of R into (8.28) and using properties of the Dirac
δ function, we obtain

Wi(!v, τ) = ET
i V (!v, τ) = Vi(τ,!v) , (8.30)

where Vi(τ,!v) is the variational derivative of the corresponding component of
the intensity vector with respect to the parameter p(τ). Considering the intensity
vector as a function of a scalar parameter, the expression for the weighting
function can be derived in a way analogous to (8.30). Namely, we obtain

Wi(!v) = ET
i V (!v) = Vi(!v) , (8.31)

where Vi(!v) is the partial derivative of the corresponding component of the
intensity vector with respect to the certain scalar parameter.

Thus, in the case of the ideal response function the weighting function for
the given optical parameter coincides with the variational derivative and for the
scalar parameter with the partial derivative of the intensity vector with respect
to the corresponding parameter.
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The linear integral relationship given by (8.29) is widely used in the linear
inverse theory to analyze the information content of the experimental data, to
investigate theoretical precision of the retrieval and to estimate parameters (see
[24] for further details).

The solution of inverse problems requires knowledge of the mean value of the
measured functional Φ̄(!v), as well as the weighting functions for all relevant
parameters. The calculation of Φ̄(!v) and the Vi(τ,!v) can be carried out using
the radiative transfer model.

The variational derivative is calculated, for example, employing the numerical
perturbation technique. In this case, the following approximation is used instead
of (8.21):

δI(!, p(τ))
δp(τk)

=
I(!, p(τ) + ∆p(τk)) − I(!, p(τ) − ∆p(τk))

2∆p(τk)
, (8.32)

where ∆p(τk) is the variation of the parameter, p(τ) at the level having optical
depth τk, and the radiation fields I(!, p(τ)±∆p(τk)) are solutions of the radia-
tive transfer equation for two perturbed values of this parameter, p(τ)±∆p(τk).
Equation (8.32) provides an approximation for the variational derivative of the
intensity with respect to the parameter p(τ) at the level τk. The derivative is
constructed applying (8.32) at each discrete level.

Although the application of (8.32) to the calculation of variational derivatives
is straightforward, it requires multiple solutions of the radiative transfer equation
for the intensity vector. It is very time-consuming in many practical situations.
Therefore, our main task is to find simple analytical expressions to calculate
the variational derivatives and, also, weighting functions. The most effective and
elegant way to derive such expressions is to employ the linearized direct and
adjoint radiative transfer equations written in the generalized form. Therefore,
in the following section we formulate the basic radiative transfer equation and
rewrite it in the generalized form.

8.4 Standard and generalized forms of the vector RTE

Taking into account that the weighting functions are often used for the retrieval
of parameters from the measurements carried out on the satellite, airborne and
ground-based platforms, we formulate here our basic radiative transfer model
which can be employed to model radiation field in the atmosphere including
polarization, thermal emission and bidirectional surface reflection.

Our main restrictions are as follows:

— independent scattering by molecules and small particles such as aerosol and
cloud particles;

— scattering without changing the wavelength, i.e., an elastic scattering;
— the medium is locally plane-parallel;
— the medium is macroscopically isotropic and symmetric;
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— the medium is illuminated by a monodirectional beam of light incident at
each point of the top of the medium;

— both medium and light source are assumed to be time-independent and pos-
sible nonlinear and close-packed effects are neglected;

— thermal emission is the single internal source in the medium;
— the medium is in the local thermodynamic equilibrium.

8.4.1 Standard form of the vector RTE

Under the above assumptions the plane-parallel vector RTE for a scattering,
absorbing, and emitting medium is written as follows (see [9, 22] for details of
derivation):

µ
dI(τ,Ω)

dτ
= −I(τ,Ω) + J(τ,Ω) + Q(τ,Ω) . (8.33)

Here, τ ∈ [0, τ0] is the optical depth changing from 0 at the top of the plane-
parallel medium to the value τ = τ0 at the bottom, the variable Ω := {µ, φ}
describes the set of variables µ ∈ [−1, 1] and φ ∈ [0, 2π], µ is the cosine of the
polar angle θ as measured from the positive τ -axis and φ is the azimuthal angle,
Q(τ,Ω) is an internal emission source, J(τ,Ω) is the multiple scattering source
function:

J(τ,Ω) =
ω(τ)
4π

∫
4π

Z(τ,Ω,Ω′)I(τ,Ω′)dΩ′ , (8.34)

where ω(τ) is the single-scattering albedo, Z(τ,Ω,Ω′) is the phase matrix. We
assume here that the internal emission is due to the thermal emission only. In
this case the source function Q(τ,Ω) can be represented as

Q(τ,Ω) = (1 − ω(τ))B(T (τ))E1 , (8.35)

where B(T (τ)) is the Planck function, T (τ) is the kinetic temperature of the
medium, and the vector E1 = [1, 0, 0, 0]T shows that thermal emission is not
polarized. Taking into account that the internal emission source as defined by
(8.35) is isotropic, the argument Ω will be omitted in the remainder of this
chapter. The explicit notation of the wavelength dependence will be omitted as
well.

The components of the intensity vector I are defined as follows [10]: I = Il + Ir,
Q = Il − Ir, U = ElE

∗
r +ErE

∗
l , V = i(ElE

∗
r − ErE

∗
l ), where we neglected a com-

mon multiplier and Il = ElE
∗
l is the scattered light intensity in the meridional

plane. This plane contains the normal to a light scattering medium and the di-
rection of observation. The value of Ir = ErE

∗
r gives the scattered light intensity

in the plane perpendicular to the meridional plane. El and Er are components
of the electric vector of the scattered wave defined relatively to the meridional
plane in the same way as Il, Ir.
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As discussed by Chandrasekhar [6], the phase matrix is related to the scat-
tering matrix P(τ, cosβ) as follows:

Z(τ,Ω,Ω′) = L(π − χ1)P(τ, cosβ)L(−χ2) , (8.36)

where β is the scattering angle, and L(χ) is the matrix which is required to rotate
a meridional plane through angles π−χ1 and −χ2 before and after scattering onto
a local scattering plane. The first element of the scattering matrix, P11(τ, cosβ),
is normalized so that

1
2

π∫
0

P11(τ, cosβ) sin(β)dβ = 1 . (8.37)

We will assume that there is a surface with a spherical albedo A below the
plane-parallel medium under consideration. The medium is illuminated by a wide
unidirectional light beam at the top (τ = 0) having the flux πF0µ0.

Under these assumptions the boundary conditions for the intensity vector,
I(τ,Ω), can be formulated as follows:

I(0,Ω) = πδ(µ− µ0)δ(φ− φ0)F0E1 , µ > 0 , (8.38)

I(τ0,Ω) =
A

π

∫
Ω+

M(Ω,Ω′)I(τ0,Ω′)µ′dΩ′ + εB(Ts)E1 , µ < 0 , (8.39)

where F0 is an arbitrary constant (we assume further that F0 = 1), Ω+ is defined
by the set of variables {µ, φ} in the range of µ ∈ [0, 1], φ ∈ [0, 2π], the integration
over Ω+ is given by

∫
Ω+

dΩ ≡
2π∫
0

dφ

1∫
0

dµ , (8.40)

M(Ω,Ω′) is the matrix determining the angular reflection properties of the
boundary surface, ε is the surface emissivity, B(Ts) is the Planck function for
the surface temperature Ts. In the simplest case of Lambertian reflection, the
matrix M has the following form:

M(Ω,Ω′) = diag{1, 0, 0, 0} . (8.41)

The radiative transfer equation (8.33) along with the boundary conditions
given by (8.38) and (8.39) will be referred to as the standard form of the direct
VRTE. The formulated VRTE can be used to simulate the radiation field in the
planetary atmosphere in the spectral regions from the ultraviolet (UV) to the
thermal infrared.
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8.4.2 Operator form of the direct VRTE

It is convenient to rewrite the standard form of the direct VRTE using an opera-
tor representation. Let us define a linear differential-integral operator, Le, which
comprises all operations with the intensity vector, I(τ,Ω), in (8.33) as follows:

Le = µ
d
dτ

+ 1 − ω(τ)
4π

∫
4π

dΩ′Z(τ,Ω,Ω′)⊗ , (8.42)

where the symbol ⊗ is used to denote an integral operator, not a finite integral.
The radiative transfer equation is now written in the following operator form:

Le I = Q , (8.43)

where Q ≡ Q(τ).
The operator Le is referred to as the direct radiative transfer operator. To

rewrite boundary conditions (8.38) and (8.39) in the operator form as well, we
define two linear integral operators Lt and Lb as follows:

Lt =

τ0∫
0

dτδ(τ)⊗ , (8.44)

Lb =

τ0∫
0

dτδ(τ − τ0)
⎛
⎝⊗ − A

π

∫
4π

dΩ′λ(µ′)M(Ω,Ω′)⊗
⎞
⎠ , (8.45)

where δ(τ) and δ(τ − τ0) are the Dirac δ functions, λ(µ) = µΘ(µ) is an auxiliary
function introduced in [28] and Θ(µ) is the Heaviside step-function over µ ∈
[−1, 1] given by

Θ(µ) =
{

1, µ > 0
0, µ < 0 . (8.46)

The function Θ(µ) is used here to expand the integration range over µ in the
lower boundary condition given by (8.39) to the whole range of the variable µ.

Operators Lt and Lb operate in a way analogous to the operator Le on the
intensity vector I(τ,Ω) and have the same domain. These operators allow us to
rewrite boundary conditions given by (8.38) and (8.39) in the operator form.
Thus, the operator form of the direct VRTE alone with boundary conditions is
written as follows:

Le I = Q , (8.47)
LtI = St(Ω), µ > 0 , (8.48)
LbI = Sb(Ω), µ < 0 , (8.49)

where St(Ω) and Sb(Ω) can be an arbitrary vector functions in the general case.
In the case considered here we have according to (8.38) and (8.39):

St(Ω) = πδ(µ− µ0)δ(φ− φ0)E1 , (8.50)
Sb(Ω) = εB(Ts)E1 . (8.51)
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8.4.3 Generalized form of the direct VRTE

The operator representation of the direct VRTE and corresponding boundary
conditions formulated above describe a specific boundary value problem consist-
ing of three independent operator equations. In this section it will be demon-
strated that the boundary value problem can be rewritten in the form of a single
operator equation. Such representation will be called the generalized form of the
direct VRTE.

To derive the generalized from of the direct VRTE let us sum (8.47)–(8.49).
Multiplying (8.48) by an function t(τ,Ω)Θ(µ) and (8.49) by b(τ,Ω)Θ(−µ), we
obtain

LeI + t(τ,Ω)Θ(µ)LtI + b(τ,Ω)Θ(−µ)LbI =
= Q(τ) + t(τ,Ω)Θ(µ)St(Ω) + b(τ,Ω)Θ(−µ)Sb(Ω) . (8.52)

Here we have used functions Θ(µ) and Θ(−µ) to expand (8.48) and (8.49), re-
spectively, to the whole range of the variable µ. Functions t(τ,Ω) and b(τ,Ω) are
arbitrary at this point. The only requirement is that they are nonzero everywhere
where the right-hand side of the corresponding equation is nonzero.

Functions t(τ,Ω) and b(τ,Ω) can be found requiring (8.52) to result in the
same solution for the transmitted and reflected intensity, respectively, as the
direct VRTE given by (8.47)–(8.49). The derivation is given in Appendix A.
The result is as follows:

t(τ,Ω) = µδ(τ) , (8.53)
b(τ,Ω) = −µδ(τ − τ0) . (8.54)

We see that both functions are independent of the variable φ. Thereby, argument
µ will be used henceforth instead of Ω .

Substituting now t(τ, µ) and b(τ, µ) into (8.52) and introducing for the sim-
plification the auxiliary functions ψt(τ, µ) and ψb(τ,−µ) as

ψt(τ, µ) = t(τ, µ)Θ(µ) = µδ(τ)Θ(µ) , (8.55)
ψb(τ,−µ) = b(τ, µ)Θ(−µ) = −µδ(τ − τ0)Θ(−µ) , (8.56)

we obtain

LeI + ψt(τ, µ)LtI + ψb(τ,−µ)LbI =
= Q(τ) + ψt(τ, µ)St(Ω) + ψb(τ,−µ)Sb(Ω) . (8.57)

The derived radiative transfer equation is equivalent to (8.47)–(8.49) but
incorporate all operations with the radiance field on the boundaries, i.e., at this
point, the boundary conditions are already included in the radiative transfer
equation and do not need to be supplied separately.
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The generalized form of the direct radiative transfer operator is determined
by the left-hand side of (8.57) as

L = Le + ψt(τ, µ)Lt + ψb(τ,−µ)Lb (8.58)

and the source function, S(τ,Ω), is determined by the right-hand side of (8.57)
as

S(τ,Ω) = Q(τ) + ψt(τ, µ)St(Ω) + ψb(τ,−µ)Sb(Ω) . (8.59)

Using the operator L and the source function S, equation (8.57) can be rewritten
as follows:

LI = S . (8.60)

Equation (8.60) is the desired generalized form of the direct radiative transfer
equation containing all operations with the intensity field including boundary
conditions. It is worth to notice that the described technique of the inclusion
of boundary conditions in the direct radiative transfer operator is a standard
approach in the framework of the finite differences technique (see [16] for details).
In this case the operator L is approximated by an appropriate matrix which
contains the boundary conditions.

8.5 Generalized form of the adjoint radiative transfer
operator

To derive the adjoint radiative transfer operator, we start from the generalized
form of the direct radiative transfer operator given by (8.58). Taking into account
that the operator Le as given by (8.42) consists of three parts: the first-order
differential operator µd/dτ , the identity operator, 1, and the integral operator
with the kernel (ω(τ)/4π) Z(τ,Ω,Ω′), we have

L = µ
d

dτ
+ ψt(τ, µ)Lt + ψb(τ,−µ)Lb + 1 − ω(τ)

4π

∫
4π

dΩ′Z(τ,Ω,Ω′) ⊗ . (8.61)

Let A be a linear operator operating on the vector function I(τ,Ω). Then,
according to the definition, the adjoint operator A∗ has to satisfy the Lagrange
identity [13]

(I∗,AI) = (A∗I∗, I) , (8.62)

where ( , ) is used to define the scalar product in the appropriate functional space
and I∗(τ,Ω) is an arbitrary vector function which belongs to the domain of the
operator A∗. Throughout this chapter we will assume that a scalar product of
two arbitrary vector functions f(τ,Ω) and g(τ,Ω) is defined as follows:

(f , g) =

τ0∫
0

∫
4π

fT (τ,Ω)g(τ,Ω)dτdΩ . (8.63)
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Let us take the scalar product given by (8.63) of the functions f = I∗ and
g = µdI/dτ . Then, using the integration by parts in the integral over τ , we
obtain (

I∗, µ
dI

dτ

)
= −

(
µ

dI∗

dτ
, I

)
+R , (8.64)

where R includes values of functions I(τ,Ω) and I∗(τ,Ω) on the boundaries,
τ = 0 at the top and τ = τ0 at the bottom of a medium, namely

R =

⎛
⎝∫

4π

µIT (τ,Ω)I∗(τ,Ω)dΩ

⎞
⎠
∣∣∣∣∣∣
τ0

0

. (8.65)

Comparing (8.64) with the Lagrange identity given by (8.62), we see that the
operator A = µd/dτ has the adjoint operator, namely A∗ = −µd/dτ , in the case
of R = 0 only. This is the case, for example, for the vacuum boundary conditions
(see [10]) for the function I(τ,Ω). Indeed, inserting vacuum boundary conditions
(no incoming radiance): I(0,Ω) = 0 for µ > 0, and I(τ0,Ω) = 0 for µ < 0 into
(8.65), we have

R =
∫

Ω+

µIT (τ0,Ω)I∗(τ0,Ω)dΩ −
∫

Ω−

µIT (0,Ω)I∗(0,Ω)dΩ , (8.66)

where Ω− is defined the set of variables {µ, φ} in the range µ ∈ [−1, 0], φ ∈ [0, 2π],
and integration over Ω− is as follows:

∫
Ω−

dΩ ≡
2π∫
0

dφ

0∫
−1

dµ . (8.67)

Taking into account that I(τ,Ω) and I∗(τ,Ω) are arbitrary and independent
functions, requirement R = 0 can be satisfied assuming that I∗(0,Ω) = 0 for
µ < 0, and I∗(τ0,Ω) = 0 for µ > 0. Thus, we require no outgoing adjoint
radiance as the boundary conditions for the adjoint intensity.

Thereby, the adjoint operator can be immediately defined for the direct ra-
diative transfer operator in the case of vacuum boundary conditions. However,
the reflection from the surface is important in most atmospheric radiative trans-
fer calculations introducing a nonzero boundary condition at the bottom of a
medium.

There are different ways to overcome this obstacle. For example, Marchuk
[17] has derived the adjoint RTE for the vacuum boundary conditions. In the case
of the reflecting boundary he has found appropriate lower boundary condition
for the function I∗(τ0, µ) to ensure R = 0 in (8.64). Min and Harrison [19] have
suggested that the solution of the radiative transfer equation with a Lambertian
surface can be constructed from the solutions of two standard problems. Namely,
the standard problem with no ground reflection (vacuum conditions) and the
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solution of the problem with collimated illumination from the bottom can be
used. Box and co-authors [3] following Bell and Glasstone [1] have postulated the
adjoint operator and then determined an appropriate set of boundary conditions
on I∗(τ, µ). The generalized form of the direct radiative transfer operator has
been formulated by Ustinov [28] to derive the adjoint operator in the case of
arbitrary boundary conditions.

Here we show that the modified differential operator, namely

D = µd/dτ + ψt(τ, µ)Lt + ψb(τ,−µ)Lb , (8.68)

which includes boundary conditions operators, has an adjoint operator, D∗, sat-
isfying the Lagrange identity as given by (8.62) independently of the specific
form of the boundary conditions for the intensity I(τ,Ω). To demonstrate this
and find the adjoint operator D∗, let us consider the following scalar product:

P = (I∗,DI) =
(

I∗,
[
µ

d
dτ

+ ψt(τ, µ)Lt + ψb(τ,−µ)Lb

]
I

)
. (8.69)

Our task is to rewrite this scalar product in the form of: P = (D∗I∗, I). Details
of the derivation are given in Appendix B. The final expression for the adjoint
modified differential operator, D∗, is:

D∗ = −µ d
dτ

+ ψt(τ,−µ)L∗
t + ψb(τ, µ)L∗

b , (8.70)

where the upper and lower boundary conditions operators are:

L∗
t =

τ0∫
0

dτδ(τ)⊗ , (8.71)

L∗
b =

τ0∫
0

dτδ(τ − τ0)
⎡
⎣⊗ − A

π

∫
4π

dΩ′λ(−µ′)MT (Ω′,Ω)⊗
⎤
⎦ . (8.72)

Although the superscript ∗ is used for the integral operators L∗
t and L∗

b , we
note that it does not mean that they are adjoint operators to Lt and Lb. We
emphasize only that these operators operate on the adjoint intensity in contrast
to Lt and Lb operating on the direct intensity.

Concluding, we consider remaining operators in (8.61). The identity operator
is the self-adjoint operator. Thereby, the adjoint operator to the identity operator
is the identity operator again. The adjoint operator to the integral operator in
(8.61) can be found using the following equation:⎛

⎝I∗,
ω(τ)
4π

∫
4π

Z(τ,Ω,Ω′)I(τ,Ω′)dΩ′

⎞
⎠

=

⎛
⎝I,

ω(τ)
4π

∫
4π

ZT (τ,Ω′,Ω)I∗(τ,Ω′)dΩ′

⎞
⎠ , (8.73)
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which can be derived changing the integration order over Ω and Ω′ and after that
replacing Ω ↔ Ω′. From this equation we can see that adjoint operator to the
integral operator is the integral operator with the kernel (ω(τ)/4π) ZT (τ,Ω′,Ω).

Summing up all obtained results, we can write the desired expression for the
adjoint radiative transfer operator in the following form:

L∗ = L∗
e + ψt(τ,−µ)L∗

t + ψb(τ, µ)L∗
b , (8.74)

where L∗
e is

L∗
e = −µ d

dτ
+ 1 − ω(τ)

4π

∫
4π

dΩ′ZT (τ,Ω′,Ω) ⊗ . (8.75)

Equation (8.74) is the desired generalized form of the adjoint radiative trans-
fer operator. The adjoint operator, L∗, contains, as in the case with the direct
operator, L, all operations with the adjoint intensity field including boundary
conditions.

8.6 Adjoint radiative transfer equation

The generalized form of the adjoint radiative transfer operator has been derived
in the previous section. Here we will demonstrate how the adjoint radiative
transfer equation can be formulated. We start from the generalized form of the
direct VRTE according to (8.60):

LI = S , (8.76)

where
S = Q + ψt(τ, µ)St + ψb(τ,−µ)Sb (8.77)

is the right-hand side of the direct VRTE written in the generalized form.
Let us assume that we need to calculate a functional, say G, of the intensity

vector I
G = (W , I) , (8.78)

where W is at this point an arbitrary vector function of variables τ and Ω.
There are two ways to solve this problem [3]. One way (the forward approach)

is to find the solution I of the direct VRTE and apply (8.78) to calculate G.
Another way (the adjoint approach) is to take the scalar product of (8.76) and
the arbitrary function I∗:

(I∗,LI) = (I∗,S) , (8.79)

then employing the definition of the adjoint operator (8.62) on the left-hand side
of this equation, we obtain

(L∗I∗, I) = (I∗,S) . (8.80)

If we require now that I∗ is the solution of the following adjoint equation:
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L∗I∗ = W , (8.81)

it follows from (8.80) that

(W , I) = (I∗,S) = G . (8.82)

Thus, the functional G can be found not only using (8.78) but also as the scalar
product of the solution of the adjoint VRTE, I∗, and the right-hand side of the
direct VRTE written in the generalized form, i.e., S.

Equation (8.81) describes a certain boundary value problem for the adjoint
intensity written in the generalized form. The operator L∗ given by (8.74) in-
cludes the boundary conditions operators simular to the operator L in (8.76).
Thereby, the right-hand side of (8.81) must include the boundary conditions as
well. Thus, it must be possible to rewrite W (τ,Ω) in the following form:

W (τ,Ω) = W e(τ,Ω) + ψt(τ,−µ)W t(Ω) + ψb(τ, µ)W b(Ω) , (8.83)

where subscripts ‘e’, ‘t’ and ‘b’ stand for ‘equation’, upper (‘top’) and lower
(‘bottom’) boundary conditions for the adjoint intensity, respectively.

Substituting (8.83) into (8.81), we obtain the generalized form of the adjoint
radiative transfer equation as follows:

L∗I∗ = W e + ψt(τ,−µ)W t(Ω) + ψb(τ, µ)W b(Ω) . (8.84)

This equation can be treated in analogy to the generalized form of the direct
VRTE as a sum of three independent operator equations, namely, the operator
form of the adjoint VRTE and premultiplying by the appropriate functions the
boundary condition equations written in the operator form as well. Thereby,
(8.84) can be separated into the three independent equations as follows:

L∗
eI

∗ = W e(τ,Ω) , (8.85)
L∗

t I
∗ = W t(Ω) , µ < 0 , (8.86)

L∗
bI

∗ = W b(Ω) , µ > 0 . (8.87)

Equations (8.85)–(8.87) are referred to as the operator representation of the
adjoint VRTE.

Employing in these equations operators L∗
t , L∗

b and L∗
e as given by (8.71),

(8.72) and (8.75), respectively, the standard form of the adjoint VRTE can be
formulated as follows:

−µdI∗(τ,Ω)
dτ

= −I∗(τ,Ω) + J∗(τ,Ω) + W e(τ,Ω) , (8.88)

I∗(0,Ω) = W t(Ω), µ < 0 , (8.89)

I∗(τ0,Ω) = W b(Ω) − A

π

∫
Ω−

MT (Ω′,Ω)I∗(τ0,Ω′)µ′dΩ′, µ > 0 , (8.90)

where the multiple scattering adjoint source function, J∗(τ,Ω), is defined as
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J∗(τ,Ω) =
ω(τ)
4π

∫
4π

ZT (τ,Ω′,Ω)I∗(τ,Ω′) dΩ′ . (8.91)

Thus, we have formulated three equivalent representations of the adjoint
VRTE starting from the generalized form of the adjoint operator. We note that
there are other ways to formulate the adjoint RTE. Thus, for example, it can be
found by developing a variational principle for the integro-differential transport
equation (see [22] for details).

The adjoint and direct VRTEs are closely related. Moreover, as is demon-
strated in [1, 3, 19–21] a solution of the adjoint VRTE given by (8.88) can be
found as a solution of the direct VRTE with the appropriate right-hand side
and boundary conditions. Therefore, we do not need in fact to develop special
methods for the solution of the adjoint VRTE.

To illustrate the application of the adjoint approach we consider some simple
examples of the functionalG providing the different right-hand side of the adjoint
VRTE written in the generalized form:

— functional G is the transmitted radiance in the direction µv, φv at the optical
depth τv, then

G =

τ0∫
0

∫
4π

δ(τ − τv)δ(Ω − Ωv)ET
1 I(τ,Ω)dτdΩ ≡ I(τv,Ωv) ,

W (τ,Ω) = δ(τ − τv)δ(Ω − Ωv)E1 ≡ W e(τ,Ω) ,
W t(Ω) = 0 , W b(Ω) = 0 ; (8.92)

— functional G is the downward flux at the bottom of the medium, then

G =

τ0∫
0

∫
4π

δ(τ − τ0)Θ(µ)ET
1 I(τ,Ω)µdτdΩ ≡ Fd ,

W (τ,Ω) = δ(τ − τ0)Θ(µ)µE1 = ψb(τ, µ)W b(Ω) ,
W e(τ,Ω) = 0 , W t(µ) = 0 , (8.93)

where W b(Ω) = E1;
— functional G is the upward flux at the top of the medium, then

G =

τ0∫
0

∫
4π

δ(τ)Θ(−µ)ET
1 I(τ,Ω)µdτdΩ ≡ Fu ,

W (τ,Ω) = δ(τ)Θ(−µ)µE1 = ψt(τ,−µ)W t(Ω) ,
W e(τ,Ω) = 0 , W b(Ω) = 0 , (8.94)

where W t(Ω) = −E1.

In the next section the application of the adjoint approach to the derivation
of the weighting function will be considered. Other numerous applications of the
adjoint radiative transfer equation and the adjoint approach have recently been
reviewed by Marchuk [18] and Box [5].
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8.7 General expression for the weighting function

In this section we apply the generalized form of the direct and adjoint VRTEs as
given by (8.60) and (8.84), respectively, to the derivation of the variational and
partial derivative (or weighting function) of the intensity vector with respect to
the main optical and surface parameters of a scattering medium. The obtained
expressions contain the total forward and total adjoint intensity vectors and
related functions only. Thereby, these expressions are referred to as total-total
(TT) representation of the weighting functions. In section 8.9 the appropriate
expressions containing the diffuse forward and diffuse adjoint intensity will be
formulated.

8.7.1 Linearization of the direct VRTE with respect to the variation
of optical and surface parameters

We start from the direct VRTE written in the generalized form for the total
forward intensity as given by (8.60). Varying both sides of this equation, the
resulting operator equation for the variation of the intensity vector can be written
in the framework of the linear perturbation theory as follows [17]:

LδI = δS − δLI , (8.95)

where the variation of the source function, S, and the radiative transfer opera-
tor, L, as given by (8.59) and (8.58), respectively, are caused by the variation of
optical and surface parameters. The terms in the right-hand side of this equation
can be rewritten to contain variations of the various optical and surface param-
eters. In the most common case an atmospheric perturbation can result from
variations of the extinction coefficient, single-scattering albedo, phase matrix,
surface emissivity and surface albedo.

Let us assume at first that the variation of the radiation field is caused by the
variation of the extinction coefficient only. We note that the optical depth and
the single-scattering albedo are considered here as two independent variables.
Therefore, we assume that the variation of the extinction coefficient leads to the
variation of the optical depth only. Substituting S(τ,Ω) as given by (8.59) into
the right-hand side of (8.95), we obtain

LδeI = δe[Q(τ) + ψt(τ, µ)St(Ω) + ψb(τ,−µ)Sb(Ω)] − δeLI , (8.96)
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where δe denotes that the variation of the appropriate function caused by the
variation of the extinction coefficient. Taking into account that according to
the definition of functions Q, St and Sb as given by (8.35), (8.50) and (8.51),
respectively, they are independent of the extinction coefficient, we have

δeQ = δeSt = δeSb = 0 . (8.97)

The variation of the direct radiative transfer operator L written in the general-
ized form can be expressed using (8.58) as follows:

δeLI = δe[Le + ψt(τ, µ)Lt + ψb(τ,−µ)Lb]I = δeLeI , (8.98)

where we have taken into account that the boundary condition operators Lt and
Lb given by (8.44) and (8.45), respectively, are independent of the extinction
coefficient. The variation of the direct radiative transfer operator Le as given by
(8.42) can be now easily found. Indeed, taking into account that only τ depends
on the extinction coefficient, namely dτ = −σe(z)dz, we obtain

δeLeI = δe

[
− µ

σe(z)
d
dz

]
I =

δσe(z)
σ2

e(z)
µ

dI

dz
= − δσe(τ)

σe(τ)
µ

dI

dτ
. (8.99)

Introducing the relative variation of the extinction coefficient as ve(τ) =
δσe(τ)/σe(τ) and substituting the right-hand side of (8.33) instead of µdI/dτ ,
equation (8.99) can be rewritten as follows:

δeLeI = ve(τ)[I(τ,Ω) − J(τ,Ω) − Q(τ)] . (8.100)

Substituting (8.100) into right-hand side of (8.96) and taking into account (8.97),
we obtain the final expression for the linear radiative transfer equation describing
the variation of the intensity vector caused by the variation of the extinction
coefficient

LδeI = ve(τ)[−I(τ,Ω) + J(τ,Ω) + Q(τ)] . (8.101)

Employing the considered approach in the case of the variation of the single-
scattering albedo, we obtain

LδωI = δωQ − δωLeI , (8.102)

where we have taken into account that functions St and Sb and the boundary
condition operators Lt and Lb are independent of the single-scattering albedo.
Taking further into account that Q and Le given by (8.35) and (8.42), respec-
tively, are linear functions of the single-scattering albedo, equation (8.102) can
be rewritten as follows:

LδωI = vω(τ)[−ω(τ)B(τ)E1 + J(τ,Ω)] , (8.103)

where vω(τ) is the relative variation of the single-scattering albedo.
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The variation of the surface emissivity, ε, causes only the variation of the
function Sb describing the lower boundary condition. Thereby, using (8.51), we
obtain

LδεI = vεεψb(τ,−µ)B(Ts)E1 , (8.104)

where vε is the relative variation of the surface emissivity.
The variation of the surface albedo, A, causes only the variation of the lower

boundary condition operator, Lb, as given by (8.45). Thereby, the equation de-
scribing the variation of the intensity vector can be written as follows:

LδAI = −ψb(τ,−µ)δALbI . (8.105)

Varying (8.45) with respect to the surface albedo and substituting the result into
(8.105), we obtain

LδAI = vAψb(τ,−µ)
A

π

∫
Ω+

M(Ω,Ω′)I(τ0,Ω′)µ′dΩ′ , (8.106)

where vA is the relative variation of the surface albedo.
The phase matrix, Z(τ,Ω,Ω′), depends on the number of parameters such as

size, shape, internal structure, and refractive index of particles [12]. Even in the
simplest case of spherical isotropic homogeneous particles the dependence on the
size parameter and refractive index remains. However, for our consideration it
is only important that a linear relationship between the variation of the phase
matrix and the variation of the desired parameter can be defined. Let us assume
that such a linear relationship can be written as follows:

δZ(τ,Ω,Ω′) =
∂

∂m
Z(τ,Ω,Ω′)δm(τ) , (8.107)

where ∂Z/∂m is the partial derivative of the phase matrix with respect to a
certain parameter m(τ). Taking into account that the variation of the phase
matrix is cased only the variation of the direct radiative transfer operator Le as
given by (8.42), we obtain

LδmI = vm(τ)m(τ)
ω(τ)
4π

∫
4π

∂

∂m
Z(τ,Ω,Ω′)I(τ,Ω′)dΩ′ , (8.108)

where vm(τ) is the relative variation of the parameter m(τ).
Introducing the auxiliary vector functions Ψe,Ψω,Ψε, ΨA and Ψm as fol-

lows:

Ψe(τ,Ω) = J(τ,Ω) + Q(τ) − I(τ,Ω) , (8.109)
Ψω(τ,Ω) = J(τ,Ω) − ω(τ)B(τ)E1 , (8.110)
Ψε(τ,Ω) = εψb(τ,−µ)B(Ts)E1 , (8.111)

ΨA(τ,Ω) = ψb(τ,−µ)
A

π

∫
Ω+

M(Ω,Ω′)I(τ0,Ω′)µ′dΩ′ , (8.112)

Ψm(τ,Ω) = m(τ)
ω(τ)
4π

∫
4π

∂

∂m
Z(τ,Ω,Ω′)I(τ,Ω′)dΩ′ , (8.113)
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we can rewrite (8.95) in the case of simultaneous variations of all relevant optical
and surface parameters in the following form:

LδI = ve(τ)Ψe(τ,Ω) + vω(τ)Ψω(τ,Ω) + vεΨε(τ,Ω)
+ vAΨA(τ,Ω) + vm(τ)Ψm(τ,Ω) . (8.114)

In fact the variation of the radiation field can be caused by variations of
other parameters which are not yet included in (8.114). Thus, for example, the
variation of the kinetic temperature, T (τ), causes the variation of the Planck
function, B(T (τ)), and, therefore, the variation of the internal emission source,
the variation of the phase matrix can be caused by the simultaneous variations
of various parameters, etc. Therefore, we can rewrite (8.114) in the most general
case in the following form:

LδI =
P∑

p=1

vp(τ)Ψp(τ,Ω) , (8.115)

where P is full number of parameters which cause the variation of the radiation
field.

Equation (8.115) provides the linear relationship between the variations of
the intensity field and variations of the desired optical and surface parameters.
Thereby, this equation can be treated as the generalized form of the linearized
direct VRTE with respect to the variations of a given parameter. In the following
subsection we apply this linearized VRTE to the derivation of the weighting
function.

8.7.2 Adjoint approach and the weighting function

As pointed out in section 8.3, the variation of the measured functional δΦ can
be expressed in the form

δΦ(!v) = (R, δI) , (8.116)

where R(!v;!) is the ideal instrument response function. Equation (8.116)
provides the linear relationship between the variation of the measured functional
and the variation of the intensity vector. Taking into account that we have
already established the linear relationship between δI and the variation of the
certain parameter, vp(τ), as given by (8.115), it must exist the direct linear
connection between δΦ and vp(τ) as well. To find this relationship, we employ
the adjoint approach to the functional (8.116) as discussed in section 8.6.

Let us assume that the function I∗(τ,Ω) is the solution of the following
adjoint VRTE:

L∗I∗ = R , (8.117)

where L∗ is the adjoint radiative transfer operator and R is the ideal instru-
ment response function as given by (8.74) and (8.18), respectively. Applying the
adjoint approach, we obtain in a way analogous to (8.82):
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δΦ(!v) = (R, δI) =

(
I∗,

P∑
p=1

vp(τ)Ψp(τ,Ω)

)
. (8.118)

Thus, we have expressed the functional (R, δI) as a scalar product of the adjoint
intensity, I∗, and the right-hand side of the linearized VRTE as given by (8.115).

Introducing the short notation for the integral of two vector functions f(τ,Ω)
and g(τ,Ω) over Ω as follows:∫

4π

fT (τ,Ω)g(τ,Ω)dΩ ≡ 〈fT g〉 , (8.119)

the variation of the measured functional δΦ caused by the variation of a certain
parameter p(τ) can be written as:

δΦ(!v) =

τ0∫
0

〈
ΨT

p I∗〉 vp(τ)dτ , (8.120)

Comparing (8.120) and (8.29) we see that the weighting function for a given
optical parameter which is a function of the optical depth can be expressed as

Vp(τ,!v) =
〈
ΨT

p I∗〉 ≡
∫
4π

ΨT
p (τ,Ω)I∗(τ,Ω)dΩ , (8.121)

and as

Vp(!v) =

τ0∫
0

〈
ΨT

p I∗〉dτ ≡
τ0∫
0

∫
4π

ΨT
p (τ,Ω)I∗(τ,Ω)dΩdτ , (8.122)

in the case of scalar parameters such as the surface emissivity and the surface
albedo.

The dependence of the right-hand side of these equations on the variable !v

is due to I∗ which is the solution of the adjoint VRTE (8.117) with the right-hand
side as R(!v;!) = δ(τ − τv)δ(µ− µv)δ(φ− φv)Ei. Thus, the adjoint intensity
vector, I∗, is a function of the variables ! = {τ, µ, φ} and !v = {τv, µv, φv},
i.e., I∗(!,!v). However, for the simplicity reason we will drop the argument !v

in the adjoint intensity vector in the following discussion.

8.8 Weighting functions for main optical
and surface parameters

Equation (8.121) represents the general expression for the weighting function
for a given optical parameter p(τ). In this section we derive expressions for the
weighting functions of extinction, absorption and scattering coefficients, single-
scattering albedo, phase matrix, surface albedo and surface emissivity. We note
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that for the derivation of the weighting function we have used the ideal instru-
ment response function. Thereby, as pointed out in section 8.3 the weighting
function coincides with the variational derivative for optical parameters and
with the partial derivative for the surface parameters.

Extinction coefficient weighting function

To find the weighting function for the extinction coefficient (p(τ) ≡ σe(τ)) we
only need to replace function Ψp(τ,Ω) in (8.121) by Ψe(τ,Ω) as given by (8.109).
The extinction coefficient weighting function can be written then as follows:

Ve(τ,!v) =
〈
[J + Q − I]T I∗〉 . (8.123)

Single scattering albedo weighting function

Substituting now Ψω(τ,Ω) given by (8.110) into general equation (8.121) we ob-
tain the expression for the single-scattering albedo weighting function as follows:

Vω(τ,!v) =
〈
[J − ω(τ)B(τ)E1]T I∗〉 . (8.124)

Absorption and scattering coefficients weighting functions

The above expressions derived for the extinction coefficient and single-scattering
albedo weighting functions allow us to find weighting functions for the scatter-
ing and absorption coefficients as well. Indeed, assuming that both extinction
coefficient and single-scattering albedo are changed simultaneously we can write

δφ(!v, τ) = Ve(τ,!v)ve(τ) + Vω(τ,!v)vω(τ) , (8.125)

where δφ(!v, τ)dτ can be treated as the differential contribution of the extinc-
tion coefficient and single-scattering albedo variations in an infinitesimal layer
positioned at the optical depth τ , into the variation of the measured functional,
δΦ(!v), i.e.,

δΦ(!v) =

τ0∫
0

δφ(!v, τ)dτ . (8.126)

The relative variation ve(τ) and vω(τ) can be caused by variations of the ab-
sorption and/or scattering coefficients, namely

ve(τ) = vs(τ)ω(τ) + va(τ)[1 − ω(τ)] , (8.127)
vω(τ) = [vs(τ) − va(τ)][1 − ω(τ)] , (8.128)

where the relative variations of the scattering, σs(τ), and absorption, σa(τ),
coefficients are given by vs(τ) = δσs(τ)/σs(τ) and va(τ) = δσa(τ)/σa(τ), re-
spectively. Substituting ve(τ) and vω(τ) according to (8.127) and (8.128) into
(8.125) and introducing functions Va and Vs as follows:
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Va(τ,!v) =
[
Ve(τ,!v) − Vω(τ,!v)

][
1 − ω(τ)

]
, (8.129)

Vs(τ,!v) = Ve(τ,!v)ω(τ) + Vω(τ,!v)[1 − ω(τ)] , (8.130)

we have

δφ(!v, τ) = Va(τ,!v)va(τ) + Vs(τ,!v)vs(τ) . (8.131)

Thus, functions Va(τ,!v) and Vs(τ,!v) defined by (8.129) and (8.130) are the
weighting functions for the absorption and scattering coefficients, respectively.
Substituting now Ve and Vω given by (8.123) and (8.124), into (8.129) and
(8.130), we obtain the final expressions for the absorption and scattering coeffi-
cients weighting functions as follows:

Va(τ,!v) =
〈
[B(τ)E1 − I]T I∗〉(1 − ω(τ)

)
, (8.132)

Vs(τ,!v) =
〈
[J − ω(τ)I]T I∗〉 . (8.133)

The derived expression for the absorption coefficient weighting function,
Va(τ,!v), can be further used to find, for example, the weighting function with
respect to the variation of the number density, n(τ), of an arbitrary atmospheric
trace gas which has the absorption band in the selected spectral range. Assuming
that the variation of the absorption coefficient is caused by the variation of the
absorbing gas number density we have

va(τ) =
δσa(τ)
σa(τ)

=
σ(τ)δn(τ)
σa(τ)

= vn(τ) , (8.134)

where σ(τ) is the absorption cross-section of the trace gas, vn(τ) is the relative
variation of the number density, δn(τ)/n(τ), and we have used that σa(τ) =
σ(τ)n(τ). Thus, the weighting function for the relative variation of the number
density of the absorbing gas is the same as that for the relative variation of the
absorption coefficient.

Surface albedo weighting function

To derive the surface albedo weighting function we start from the variation of the
measured functional δΦ caused by the variation of the surface albedo. Equation
(8.120) can be written in the following form:

δΦ(!v) = vA

τ0∫
0

〈
ΨT

AI∗〉dτ , (8.135)

where we have used vp(τ) = vA = δA/A. Introducing vector function F (Ω) as
follows:

F (Ω) =
∫

Ω+

M(Ω,Ω′)I(τ0,Ω′)µ′dΩ′ (8.136)

and substituting it into (8.112), we rewrite the function ΨA in the following
form:
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ΨA(τ,Ω) = ψb(τ,−µ)
A

π
F (Ω) . (8.137)

Substituting ΨA given by (8.137) into (8.135) and taking into account that the
function ψb(τ,−µ) = −δ(τ − τ0)µΘ(−µ) as given by (8.56), we have

δΦ(!v) = −vA
A

π

∫
4π

µΘ(−µ)F T (Ω)I∗(τ0,Ω)dΩ . (8.138)

Using (8.138), we can state that the surface albedo weighting function is

VA(!v) = −A
π

∫
Ω−

F T (Ω)I∗(τ0,Ω)µdΩ . (8.139)

We note that VA(!v) is written for the relative variation of the albedo, i.e.,
δA/A. Therefore, it is proportional to the surface albedo, A.

Surface emissivity weighting function

We obtain surface emissivity weighting function writing (8.120) for the variation
of the surface emissivity, namely

δΦ(!v) = vε

τ0∫
0

〈
ΨT

ε , I
∗〉dτ , (8.140)

where vε is the relative variation of the surface emissivity, i.e., vε = δε/ε. Sub-
stituting Ψε as given by (8.111) in this equation, we have an expression for the
variation of the measured functional δΦ caused by the variation of the surface
emissivity as follows:

δΦ(!v) = −vεεB(Ts)
∫
4π

µΘ(−µ)ET
1 I∗(τ0,Ω)dΩ , (8.141)

where the function ψb(τ,−µ) is used as given by (8.56). Equation (8.141) allows
us to formulate the emissivity weighting function in the form of

Vε(!v) = −εB(Ts)
∫

Ω−

ET
1 I∗(τ0,Ω)µdΩ . (8.142)

Taking into account the fact that the thermal radiance is not polarized and,
hence, only the first component of the vector E1 is nonzero, we define the upward
adjoint flux, F ∗, at the bottom of the medium under consideration analogically
to the flux of the forward intensity, namely

F ∗ = −
∫

Ω−

I∗(τ0,Ω)µdΩ , (8.143)
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where I∗(τ0,Ω) is the first component of the vector I∗(τ0,Ω). Using the definition
(8.143), we obtain the emissivity weighting function as follows:

Vε(!v) = εB(Ts)F ∗ . (8.144)

Expression (8.144) is valid for the emissivity weighting function under the
assumption that δε and δA are independent. Following [30], let us assume that
A = 1 − ε. We have in this case δA = −δε and the emissivity weighting function
is

Vε(!v) = εB(Ts)F ∗ +
ε

π

∫
Ω−

F T (Ω)I∗(τ0,Ω)µdΩ . (8.145)

Simularly to the albedo weighting function Vε(!v) is written for the relative
variation of the surface emissivity and, therefore, is proportional to ε.

Phase matrix weighting function

The general expression for the phase matrix weighting function can be derived
substituting Ψm(τ,Ω) given by (8.113) into (8.121):

Vm(τ,!v) =
〈
ΨT

mI∗〉 = m(τ)
ω(τ)
4π

×

×
∫
4π

∫
4π

I∗T (τ,Ω)
∂

∂m
Z(τ,Ω,Ω′)I(τ,Ω′)dΩ′dΩ . (8.146)

Thus, for example, in the case of the spherical polydisperse particles either the
effective radius and effective variance of the corresponding size distribution func-
tion or a real and imaginary part of the refractive index can be used as param-
eter m(τ). If a certain parameter is chosen we need to calculate the matrix of
derivatives, ∂Z(τ,Ω,Ω′)/∂m, with respect to a given parameter to use derived
expression for the weighting function calculation.

8.9 Other representations for weighting functions

Expressions for the weighting functions derived in section 8.7 can be used for
the numerical calculations if solutions of the forward and the adjoint VRTEs are
found. However, the appropriate radiative transfer equations should be solved
in this case for the total forward and total adjoint intensity vector, respectively.
Both the forward and the adjoint VRTEs written for the total intensity include
Dirac δ functions as follows from (8.33) and (8.117). In the first case, it is the
upper boundary condition (8.38) and, in the second case, it is the right-hand
side of (8.117), i.e., the adjoint source function. As is well known, solutions of
such equations contain the generalized functions as well. The standard approach
to eliminating the generalized function in the solution of the radiative transfer
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equation is to separate the total intensity in the direct and the diffuse compo-
nent and to formulate the radiative transfer equation for the diffuse component
only [6]. Such a separation is a standard procedure in radiative transfer theory.
However, as we show in this section, the expression for the weighting function
should be rewritten appropriately if we intend to use the diffuse intensity instead
of total one.

Clearly, the radiative transfer equation can be solved for the total component
of the intensity as well and then directly used for the WF calculation. Such an
approach has been employed, for example, in [20, 25]. However, in this case
the special technique should be used to handle the singularity contained in the
direct component of the forward and adjoint intensities. Thus, in [25] the solution
for the total adjoint intensity has been derived in the framework of the finite
difference method employing the dummy nod technique (see [7] for details). In
[20] the solution for the total forward and adjoint intensities has been derived in
the framework of the spherical harmonic method employing the formal solution
(or source function integration) technique to avoid singularity.

In the following subsections it will be demonstrated that desired expressions
for the weighting functions containing the diffuse forward and diffuse adjoint
intensities can be easily found substituting the total intensities as a sum of the
diffuse and direct components. Taking into account that the expression for the
direct component of the forward intensity is well known, we derive at first the
analytical expression for the direct component of the adjoint intensity.

8.9.1 Separation of the total adjoint intensity in the diffuse
and direct components

In this subsection the analytical expressions for the direct component of the
adjoint intensity vector will be found and the VRTE for the diffuse component
of the adjoint intensity will be formulated. To do this we rewrite the generalized
form of the adjoint VRTE given by (8.117) in the operator representation (see
section 8.6) as follows:

L∗
eI

∗
− = δ(τ − τv)δ(µ+ µv)δ(φ− φv)Ei , (8.147)

L∗
t I

∗
− = 0 , µ < 0 , (8.148)

L∗
bI

∗
− = 0 , µ > 0 , (8.149)

where L∗
t , L∗

b and L∗
e are defined according to (8.71), (8.72) and (8.75), respec-

tively, and the measured functional, Φ, is the ith component of intensity vector in
the viewing direction Ωv

− = (−µv, φv). The inhomogeneous adjoint source func-
tion like the right-hand side of (8.147) will be called following Qin et al. [23] as a
parallel surface source (PSS). It means that the source illuminates at a given ver-
tical position in a given direction and extends infinitely in horizontal directions.
For reasons of simplicity we define the adjoint intensity by I∗

− ≡ I∗(τ,Ω; τv,Ωv
−)

in the case of an upward PSS (source illuminates towards the upper boundary)
and by I∗

+ ≡ I∗(τ,Ω; τv,Ωv
+) in the case of a downward PSS (source illuminates

towards the lower boundary).
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Applying the same approach as is usually used for the separation of the total
forward intensity, the total adjoint intensity vector, I∗

−, is represented by the
following sum:

I∗
−(τ,Ω) = I∗

d−(τ,Ω) + D∗
−(τ,Ω) , (8.150)

where I∗
d−(τ,Ω) and D∗

−(τ,Ω) are the diffuse and the direct component of the
adjoint intensity, respectively, and D∗

−(τ,Ω) we define as follows:

D∗
−(τ,Ω) = d∗(τ, µ)δ(µ+ µv)δ(φ− φv)Ei , (8.151)

where d∗(τ, µ) is an arbitrary nonnegative function at this point. Substituting
I∗

−(τ,Ω) given by (8.150) into (8.147), we obtain

L∗
eI

∗
d− − µ d

dτ
D∗

−(τ,Ω) + D∗
−(τ,Ω) − d∗(τ,−µv)

ω(τ)
4π

ZT (Ωv
−,Ω)Ei

= δ(τ − τv)δ(µ+ µv)δ(φ− φv)Ei . (8.152)

This equation can be considered as the sum of two following equations:

L∗
eI

∗
d− = d∗(τ,−µv)

ω(τ)
4π

ZT (Ωv
−,Ω)Ei , (8.153)

−µdD∗
−(τ,Ω)
dτ

= −D∗
−(τ,Ω) + δ(τ − τv)δ(µ+ µv)δ(φ− φv)Ei . (8.154)

The upper boundary conditions for the diffuse and direct adjoint components
follow from the upper boundary condition for the total adjoint intensity as given
by (8.148). Substituting I∗

− according to (8.150) into (8.148) and using L∗
t as

given by (8.71) we obtain

I∗
−(0,Ω) = I∗

d−(0,Ω) + D∗
−(0,Ω) = 0 , µ < 0 . (8.155)

Taking into account that both function I∗
d−(0,Ω) and D∗

−(0,Ω) are nonnegative,
equation (8.155) results in

I∗
d−(0,Ω) = 0 , µ < 0 , (8.156)

D∗
−(0,Ω) = 0 , µ < 0 . (8.157)

We note that in contrast to the forward intensity the boundary condition at the
top of the medium for the adjoint intensity is given for the outgoing radiation.

In the considered case of the upward PSS the downward direct adjoint compo-
nent does not exist. Thereby, the lower boundary condition should be formulated
for the diffuse adjoint component only. Substituting the total adjoint intensity
I∗

− as given (8.150) into (8.149) and taking into account that the operator L∗
b is

given by (8.72), we obtain the lower boundary condition for the diffuse adjoint
component as follows:

L∗
bI

∗
d− =

A

π
µvd(τ0,−µv)MT (Ωv

−,Ω)Ei . (8.158)
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Equation (8.154) contains only D∗
−(τ,Ω) as unknown function and can be

solved analytically. Indeed, substituting in this equation D∗
−(τ,Ω) as given by

(8.151), we obtain the first-order ordinary inhomogeneous differential equation
for the function d∗(τ,−µv):

µv
d
dτ
d∗(τ,−µv) = −d∗(τ,−µv) + δ(τ − τv) , (8.159)

d∗(0,−µv) = 0 , (8.160)

where we have used the following property of the Dirac δ function [13]:

δ(µ+ µv)f(µ) = δ(µ+ µv)f(−µv) . (8.161)

It is easily proved that the function d∗(τ,−µv) defined as

d∗(τ,−µv) =
1
µv
Θ(τ − τv)e−(τ−τv)/µv (8.162)

is the solution of (8.159). Indeed, substituting (8.162) into (8.159) and using the
two following properties of the Dirac δ function [13], namely,

δ(τ − τv) =
d
dτ
Θ(τ − τv) , (8.163)

δ(τ − τv)f(τ) = δ(τ − τv)f(τv) , (8.164)

we state that the function d∗(τ,−µv) given by (8.162) satisfies (8.159) and the
boundary condition given by (8.160).

Having defined d∗(τ,−µv), we obtain the following expression for the direct
component of the adjoint intensity in the case of an upward PSS:

D∗
−(τ,Ω) =

1
µv
Θ(τ − τv)δ(µ+ µv)δ(φ− φv)e−(τ−τv)/µvEi . (8.165)

Substituting now d∗(τ,−µv) as given by (8.162) into (8.153) and (8.158), intro-
ducing the inhomogeneous adjoint source function W e− as

W e−(τ,Ω) =
ω(τ)
4πµv

Θ(τ − τv)e−(τ−τv)/µvZT (Ωv
−,Ω)Ei (8.166)

and defining the right-hand side of the lower boundary condition for the diffuse
adjoint component given by (8.158) as

W b−(Ω) =
A

π
e−(τ0−τv)/µvMT (Ωv

−,Ω)Ei , (8.167)

we obtain the following radiative transfer equation for the diffuse adjoint com-
ponent in the operator form:

L∗
eI

∗
d− = W e−(τ,Ω) , (8.168)

L∗
t I

∗
d− = 0 , µ < 0 , (8.169)

L∗
bI

∗
d− = W b−(Ω) , µ > 0 , (8.170)
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and in the generalized form:

L∗I∗
d− = W e−(τ,Ω) + ψb(τ, µ)W b−(Ω) , (8.171)

where ψb(τ, µ) is given by (8.56).
Equations (8.168)–(8.170) describe the VRTE for the diffuse adjoint intensity

vector in the case of an upward PSS. Using the approach described above, the
expression for the direct adjoint component in the case of measurements in the
viewing direction Ωv

+ ≡ (µv, φv) (downward PSS) can be easily found as well.
Indeed, substituting δ(µ − µv) in (8.147) instead of δ(µ + µv), we obtain the
following expression for the direct adjoint intensity in the case of the downward
PSS:

D∗
+(τ,Ω) = d∗(τ, µv)δ(µ− µv)δ(φ− φv)Ei , (8.172)

where
d∗(τ, µv) =

1
µv
Θ(τv − τ)e−(τv−τ)/µv , (8.173)

and the diffuse adjoint component, I∗
d+, is the solution of the following boundary

value problem:

L∗
eI

∗
d+ = W e+(τ,Ω) , (8.174)

L∗
t I

∗
d+ = 0 , µ < 0 , (8.175)

L∗
bI

∗
d+ = 0 , µ > 0 , (8.176)

with the adjoint source function defined as

W e+(τ,Ω) =
ω(τ)
4πµv

Θ(τv − τ)e−(τv−τ)/µvZT (Ωv
+,Ω)Ei . (8.177)

8.9.2 Representation of weighting functions for the total forward
and diffuse adjoint intensity (TD representation)

Let us assume that for the calculation of the weighting functions we use now
the diffuse adjoint intensity, I∗

d, instead of total, I∗, one. We will refer further
to this representation as the total-diffuse (TD) one.

To obtain the expression for the weighting function in the TD representation
we need only to substitute the total adjoint intensity, I∗

±(τ,Ω), as a sum of the
direct and diffuse components into the expression for the WF in TT representa-
tion as given by (8.121). It follows then that

Vp(τ,!v) =
∫
4π

ΨT
p (τ,Ω)

[
I∗

d±(τ,Ω) +D∗
±(τ,Ω)

]
dΩ , (8.178)

where I∗
d− and I∗

d+ are solutions of the adjoint VRTE as given by (8.168)–
(8.170) and (8.174)–(8.176), respectively. Substituting the direct adjoint compo-
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nent given by (8.165) or by (8.172) into this equation, we obtain

Vp(τ,!v) =
∫
4π

ΨT
p (τ,Ω)I∗

d±(τ,Ω)dΩ + d∗(τ,±µv)ΨT
p (τ,Ωv

±)Ei . (8.179)

The final general expression for the weighting function in the TD representation
is obtained using the short notation for the integral over Ω as given by (8.119):

Vp(τ,!v) =
〈
ΨT

p I∗
d±
〉

+ d∗(τ,±µv)ΨT
p (τ,Ωv

±)Ei . (8.180)

We note that variables with the subscript ‘±’ should be used for the weighting
function calculations in the case of the transmitted and the reflected radiation,
respectively.

Thus, applying (8.180), for example, to the extinction coefficient and the
single-scattering albedo WF we obtain following expressions:

Ve(τ,!v) =
〈
[J + Q − I]T I∗

d±
〉

+ d∗(τ,±µv)[J(τ,Ωv
±) + Q(τ) − I(τ,Ωv

±)]T Ei , (8.181)

Vω(τ,!v) =
〈
[J − ω(τ)B(τ)E1]T I∗

d±
〉

+ d∗(τ,±µv)[J(τ,Ωv
±) − ω(τ)B(τ)E1]T Ei . (8.182)

As can be seen, if for the calculation of the weighting function the diffuse
adjoint intensity is used, the coresponding expressions such as (8.181) and (8.182)
include additional terms which should be calculated for the viewing directions
Ωv

± only.

8.9.3 Representation of weighting functions for the diffuse forward
and diffuse adjoint intensity (DT and DD representation)

In the spectral region where direct solar radiance cannot be neglected and the
direct VRTE contains a δ function in the upper boundary condition, it is rea-
sonable to use for the WF calculation the diffuse forward intensity instead of
the total one. It is well known that in this case the total forward intensity can
be represented as follows [6]:

I(τ,Ω) = Id(τ,Ω) + D(τ,Ω) , (8.183)

where Id(τ,Ω) and D(τ,Ω) are the diffuse and direct components of the total
forward intensity. For the direct component we have

D(τ,Ω) = πδ(µ− µ0)δ(φ− φ0)E1e−τ/µ . (8.184)

Substituting (8.183) into direct VRTE for the total forward intensity vector as
given by (8.33), we obtain the following VRTE for the diffuse component:

µ
dId(τ,Ω)

dτ
= −Id(τ,Ω) + Jm(τ,Ω) + Q(τ) + Js(τ,Ω) , (8.185)
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where the multiple scattering, Jm, and single-scattering, Js, source functions
are defined as follows:

Jm(τ,Ω) =
ω(τ)
4π

∫
4π

Z(τ,Ω,Ω′)Id(τ,Ω′)dΩ′ , (8.186)

Js(τ,Ω) =
ω(τ)

4
e−τ/µ0Z(τ,Ω,Ω0)E1 , (8.187)

and Ω0 ≡ (µ0, φ0). The boundary conditions for the diffuse component of the
forward intensity are:

Id(0,Ω) = 0 , µ > 0 , (8.188)

Id(τ0,Ω) =
A

π

∫
Ω+

M(Ω,Ω′)Id(τ0,Ω′)µ′dΩ′

+ εB(Ts)E1 +Ae−τ0/µ0µ0M(Ω,Ω0)E1 , µ < 0 . (8.189)

The direct VRTE for the diffuse intensity as given by (8.185) does not contain
generalized functions and is usually used in numerical calculations [16].

Let us rewrite now the expression for the WF given by (8.180), substitut-
ing the total forward intensity as a sum of the diffuse and direct component.
This representation we will refer to as the diffuse-diffuse (DD) representation.
To obtain the appropriate expression for the weighting functions in the DD rep-
resentation, we substitute at first (8.183) instead of the total intensity I into
auxiliary functions given by (8.109)–(8.113). We obtain

Ψe(τ,Ω) = Ψd
e(τ,Ω) + Js(τ,Ω) − πδ(Ω − Ω0)E1e−τ/µ , (8.190)

Ψω(τ,Ω) = Ψd
ω(τ,Ω) + Js(τ,Ω) , (8.191)

ΨA(τ,Ω) = Ψd
A(τ,Ω) + ψb(τ,−µ)Aµ0e−τ/µ0M(Ω,Ω0)E1 , (8.192)

Ψm(τ,Ω) = Ψd
m(τ,Ω) +

ω(τ)
4
m(τ)e−τ/µ0

∂

∂m
Zm(τ,Ω,Ω0)E1 , (8.193)

where superscript ‘d’ denotes that functions Ψp have to be calculated as given
by (8.109)–(8.113) using the diffuse component of the forward intensity.

Substituting these representations for the auxiliary functions into (8.121) and
(8.178), we obtain the general expression for the WF in the DT representation:

Vp(τ,!v) =
〈
I∗T (Ψd

p + ∆p)
〉

(8.194)

and in the DD representation:

Vp(τ,!v) =
〈
I∗T

d±(Ψd
p + ∆p)

〉
+
〈
∆pD

∗
±
〉

+ d∗(τ,±µv)ET
i [Ψd

p(τ,Ω
v
±) + ∆p(τ,Ωv

±,Ω0)] , (8.195)

where d∗(τ,±µv) are given by (8.162) and (8.173), respectively, and functions
∆p(τ,Ω,Ω0) are defined according to (8.190)–(8.193) as follows:
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∆e(τ,Ω) = Js(τ,Ω) − πδ(Ω − Ω0)E1e−τ/µ , (8.196)
∆ω(τ,Ω) = Js(τ,Ω) , (8.197)
∆A(τ,Ω) = ψb(τ,−µ)Aµ0e−τ/µ0M(Ω,Ω0)E1 , (8.198)

∆m(τ,Ω) =
ω(τ)

4
m(τ)e−τ/µ0

∂

∂m
Zm(τ,Ω,Ω0)E1 . (8.199)

Thus, substituting Ψe(τ,Ω) given by (8.190) into (8.181), we obtain for the
extinction coefficient WF the following expression:

Ve(τ,!v) =
〈
[Q + Jms − Id]T I∗

d±
〉− πe−τ/µ0ET

1 I∗
d±(τ,Ω0)

+ d∗(τ,±µv)[Q(τ) + Jms(τ,Ωv
±) − Id(τ,Ωv

±)]T Ei

− πe−τ/µ0d∗(τ,±µv)
〈
δ(Ω − Ω0)δ(Ω − Ωv

±)
〉
. (8.200)

We note that the last term in this equation is nonzero for the measurement of
the transmitted radiance in the direction Ωv

+ = Ω0 only.
Substituting Ψω(τ,Ω) given by (8.191) into (8.182), we obtain for the single-

scattering albedo WF:

Vω(τ,!v) = [Jms − ω(τ)B(τ)E1]T I∗
d±

+ d∗(τ,±µv)[Jms(τ,Ωv
±) − ω(τ)B(τ)E1]T Ei , (8.201)

where Jms(Ω, τ) is

Jms(Ω, τ) = Jm(Ω, τ) + Js(Ω, τ) . (8.202)

8.9.4 Using the formal solution of the direct VRTE
for the weighting function derivation

We have obtained in previous sections the different expressions for the weighting
functions starting from the representation of the measured functional Φ as the
scalar product of the instrument response function, R(!v;!), and the intensity
vector, I(!). However, there is an another way to derive weighting functions for
optical and surface parameters, namely, starting from the formal solution of the
linearized VRTE. In the scalar case it has been suggested by Ustinov [29].

To demonstrate this and find a relationship between these two approaches,
we rewrite the linearized VRTE as given by (8.115) in the following form:

LδI = vp(τ)Ψp(τ,Ω) , (8.203)

assuming for simplicity that the variation of the intensity field is caused by the
variation of a certain parameter p(τ). Taking into account that (8.203) is written
in the generalized form, we rewrite at first this equation in the standard form
(see section 8.4) as follows:

µ
d
dτ
δI(τ,Ω) = −δI(τ,Ω) + δJ(τ,Ω) + vp(τ)Ψp(τ,Ω) , (8.204)

δI(0,Ω) = 0, µ > 0 , (8.205)

δI(τ0,Ω) =
A

π

∫
Ω+

M(Ω,Ω′)δI(τ0,Ω′)µ′dΩ′, µ < 0 , (8.206)
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where the variation of the multiple scattering source function δJ is defined as

δJ(τ,Ω) =
ω(τ)
4π

∫
4π

Z(τ,Ω,Ω′)δI(τ,Ω′)dΩ′ . (8.207)

Let us consider the reflected radiation. Then inserting Ω = Ωv
− ≡ {−µv, φv} into

(8.204), we can derive the first-order inhomogeneous differential equation and
the appropriate boundary condition for the variation of the upward radiation as
follows:

−µv
d
dτ
δI(τ,Ωv

−) = −δI(τ,Ωv
−) + δJ(τ,Ωv

−) + vp(τ)Ψp(τ,Ωv
−) , (8.208)

δI(τ0,Ωv
−) =

A

π

∫
Ω+

M(Ωv
−,Ω)δI(τ0,Ω)µdΩ . (8.209)

The solution of such kinds of equations is well known (see [2,11] for details). In
our case the formal solution of this equation at the optical depth τ = τv can be
written as follows:

δI(τv,Ωv
−) =

1
µv

τ0∫
τv

[
δJ(τ,Ωv

−) + vp(τ)Ψp(τ,Ωv
−)
]
e−(τ−τv)/µvdτ

+
A

π
e−(τ0−τv)/µv

∫
Ω+

M(Ωv
−,Ω)δI(τ0,Ω)µdΩ . (8.210)

Assuming that the measured functional, Φ, is the ith component of the in-
tensity vector at the optical depth τv in the direction Ωv

− and substituting into
(8.116) the ideal response function as R(!;!v) = δ(τ − τv)δ(Ω − Ωv

−)Ei, we
have

δΦ(!v) = ET
i δI(τv,Ωv

−) , (8.211)

where the right-hand side should be treated as a scalar product in the Euclid
space of dimension four.

Substituting further δI(τv,Ωv
−) as given by (8.210) into (8.211) and taking

into account that δJ(τ,Ωv
−) is given by (8.207), we obtain

δΦ(!v) =
ω(τ)
4πµv

τ0∫
τv

∫
4π

ET
i Z(Ωv

−,Ω)δI(τ,Ω)e−(τ−τv)/µvdτdΩ

+
A

π
e−(τ0−τv)/µv

∫
Ω+

ET
i M(Ωv

−,Ω)δI(τ0,Ω)µdΩ

+
1
µv

τ0∫
τv

ET
i Ψp(τ,Ωv

−)e−(τ−τv)/µvvp(τ)dτ . (8.212)
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In order to simplify this equation we introduce two following functions, namely,
R∗

e(τ,Ω) and R∗
b(τ,Ω) as:

R∗
e(τ,Ω) =

ω(τ)
4πµv

Θ(τ − τv)e−(τ−τv)/µvZT (Ωv
−,Ω)Ei , (8.213)

where the function Θ(τ − τv) is introduced to extend the lower integration limit
in the integral over τ in the first term of (8.212) from τ = τv to τ = 0,

R∗
b(τ,Ω) =

A

π
e−(τ0−τv)/µvδ(τ − τ0)µΘ(µ)MT (Ωv

−,Ω)Ei , (8.214)

where the function Θ(µ) is introduced to extend the lower integration limit in
the integral over µ in the second term of (8.212) from µ = 0 to µ = −1.

Substituting these functions into (8.212), we obtain

δΦ(!v) =

τ0∫
0

∫
4π

[
R∗T

e (τ,Ω) + R∗T
b (τ,Ω)

]
δI(τ,Ω)dτdΩ

+

τ0∫
0

d∗(τ,−µv)ET
i Ψp(τ,Ωv

−)vp(τ)dτ , (8.215)

where d∗(τ,−µv) is given by (8.162).
According to the definition (8.63) the first term in (8.215) is the scalar prod-

uct of the functions R∗
e + R∗

b and δI. Thereby, we can write the variation of the
measured functional, δΦ, in the following form:

δΦ(!v) = (R∗
e + R∗

b , δI) +

τ0∫
0

d∗(τ,−µv)ET
i Ψp(τ,Ωv

−)vp(τ)dτ , (8.216)

where according to (8.213) and (8.214)

R∗
e + R∗

b =
ω(τ)
4π

d∗(τ,−µv)ZT (Ωv
−,Ω)Ei

+ ψb(τ, µ)
A

π
e−(τ0−τv)/µvMT (Ωv

−,Ω)Ei (8.217)

and ψb(τ, µ) = δ(τ − τ0)µΘ(µ) as given by (8.56).
Comparing (8.216) and (8.116), we see that we have found using the formal

solution of the radiative transfer equation yet another expression for the variation
of the measured functional, δΦ(!v). The last term in (8.216) is linear to the
variation of the given parameter vp(τ). To evaluate the scalar product in (8.216)
containing unknown variation δI we use the same technique as in section 8.7.
Substituting R∗

e +R∗
b instead of R into the right-hand side of the adjoint VRTE
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written in the generalized form as given by (8.117), we obtain the following
equation:

L∗I∗ = R∗
e + R∗

b . (8.218)

Then, using the adjoint approach, the scalar product (R∗
e + R∗

b , δI) can be
written by analogy to (8.118) as follows:

(R∗
e + R∗

b , δI) = (I∗, δS) , (8.219)

where δS is the right-hand side of the linearized VRTE given by (8.203).
Substituting now the scalar product (R∗

e + R∗
b , δI) according to (8.219) into

(8.216) and taking into account that in our case δS = vp(τ)Ψp, see (8.203), we
obtain

δΦ(!v) = (vp(τ)Ψp, I
∗) +

τ0∫
0

d∗(τ,−µv)ET
i Ψp(τ,Ωv

−)vp(τ)dτ . (8.220)

The final expression for the weighting function derived employing the formal
solution of the linearized VRTE is obtained using the short notation for the
integral over Ω as given by (8.119):

Vp(τ,!v) =
〈
ΨT

p I∗〉+ d∗(τ,−µv)ΨT
p (τ,Ωv

−)Ei . (8.221)

Comparing the expression for the WF given by (8.221) with the TD represen-
tation given by (8.180), we see that the WF derived using the formal solution
of the linearized direct VRTE is equivalent to the WF in the TD representation
if the solution of (8.218) is equal to the solution of the adjoint VRTE which
has been obtained for the diffuse component of the adjoint intensity as given by
(8.171), i.e., I∗ ≡ I∗

d−. Comparing right-hand sides of adjoint VRTEs (8.218)
and (8.171) as given by (8.217) and by (8.166), (8.167), respectively, we obtain

R∗
e(τ,Ω) + R∗

b(τ,Ω) = W e−(τ,Ω) + ψb(τ, µ)W b−(Ω) . (8.222)

Thereby, (8.218) is the equation for the diffuse component of the adjoint intensity
and (8.221) is the WF in the TD representation.

Thus, we have established that the WF derived using the formal solution of
the linearized VRTE is the same as the WF in the TD representation. We note
that this equivalence is found using the formal solution of the VRTE for the
total forward intensity. Employing the same approach to the formal solution of
the VRTE for the diffuse component of the forward intensity vector, it can be
found that the WF derived using the formal solution in this case is equivalent
to the WF in the DD representation.

Concluding, we can state that the weighting functions can be presented in
the most general case using the total forward and total adjoint intensities ac-
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cording to the TT representation as given by (8.121). Other representations of
the weighting functions can be found as well:

— substituting the total forward intensity as a sum of the diffuse and direct
component we get to the DT representation as as given by (8.194);

— substituting the total adjoint intensity as a sum of the diffuse and direct
component we get to the TD representation as as given by (8.180);

— substituting both forward and adjoint intensities as a sum of the diffuse and
direct component we get to DD representation as given by (8.195).

It is very important to choose appropriate representation both for the appli-
cation of the weighting functions calculation with the existing numerical solution
of the direct and adjoint VRTEs and for a comparison of the weighting functions
derived by different authors.

8.10 Comparison with previous results

In this section we compare our expressions for the weighting functions with
results which can be found in the literature. Taking into account the fact that the
weighting functions of some authors have been derived neglecting polarization
and azimuthal dependence of the forward and the adjoint intensity, we need to
rewrite our expressions to exclude these effects.

To rewrite our expressions without polarization effects we will use the fol-
lowing transformation:

— forward and adjoint intensity

I(τ,Ω) =⇒ I(τ,Ω) , (8.223)
I∗(τ,Ω) =⇒ I∗(τ,Ω) , (8.224)

where I(τ,Ω) and I∗(τ,Ω) are the first components of the corresponding
vectors;

— phase matrix

Z(τ,Ω,Ω′) =⇒ P11(τ,Ω,Ω′) , (8.225)

where P11(τ,Ω,Ω′) is the first element of the scattering matrix, P(τ, cosβ),
as given by (8.36);

— source function

J(τ,Ω) =⇒ J(τ,Ω) =
ω(τ)
4π

∫
4π

P11(τ,Ω,Ω′)I(τ,Ω′)dΩ′ , (8.226)

— scalar product
τ0∫
0

∫
4π

fT (τ,Ω)g(τ,Ω)dτdΩ =⇒
τ0∫
0

∫
4π

f(τ,Ω)g(τ,Ω)dτdΩ , (8.227)

where f(τ,Ω) and g(τ,Ω) are the first components of the corresponding vec-
tors.
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To rewrite further our expressions neglecting azimuthal dependence of the for-
ward and adjoint intensities we will use the following transformation:

— forward and adjoint intensity

I(τ,Ω) =⇒ I(τ, µ) , (8.228)
I∗(τ,Ω) =⇒ I∗(τ, µ) , (8.229)

where I(τ, µ) and I∗(τ, µ) are azimuthal averaged forward and adjoint inten-
sities;

— phase matrix

P11(τ,Ω,Ω′) =⇒ p(τ, µ, µ′) , (8.230)

where p(τ, µ, µ′) is the phase function;
— source function

J(τ,Ω) =⇒ J(τ, µ) =
ω(τ)

2

1∫
−1

p(τ, µ, µ′)I(τ, µ′)dµ′ , (8.231)

— scalar product

τ0∫
0

∫
4π

f(τ,Ω)g(τ,Ω)dτdΩ =⇒
τ0∫
0

1∫
−1

f(τ, µ)g(τ, µ)dτdµ . (8.232)

Using these transformations we can easily rewrite our results for a non-
polarized and azimuthal independent radiation. We note that numerical appli-
cations of the derived expressions without polarization require the forward and
adjoint intensity to be solutions of the appropriate scalar RTEs.

Extinction coefficient weighting function comparison

An expression for the extinction coefficient weighting function has been presented
by Ustinov [30] in the thermal spectral range neglecting polarization effects and
assuming azimuthal independent intensity. In this case one can assume that
there is no external source of the radiation. This assumption is reasonable in the
thermal infrared spectral range for wavelength above ∼4µ and has been used in
[30]. We note that in this case the forward total and diffuse intensity coincide.

We start from the comparison of the extinction coefficient weighting function
in the TT representation. Neglecting polarization and azimuthal dependence, our
expression for the extinction coefficient weighting function in the TT represen-
tation as given by (8.123) can be written as follows:

Ve(τ,!v) =

1∫
−1

[J(τ, µ) +Q(τ) − I(τ, µ)] I∗(τ, µ)dµ , (8.233)
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where I(τ, µ) and I∗(τ, µ) are azimuthal averaged scalar forward and adjoint
intensity, respectively, and Q(τ) is the first element of the vector Q(τ) given by
(8.35). Introducing the scalar source function, Se(τ, µ), as follows:

Se(τ, µ) = J(τ, µ) +Q(τ)

=
ω

2

1∫
−1

p(τ, µ, µ′)I(τ, µ′)dµ′ + (1 − ω(τ))B(τ) , (8.234)

where p(τ, µ, µ′) is the phase function, we obtain

Ve(τ,!v) =

1∫
−1

[Se(τ, µ) − I(τ, µ)] I∗(τ, µ)dµ . (8.235)

We note that our extinction coefficient WF is given for the relative variation
of the corresponding parameter, i.e., δσe(τ)/σe(τ) and the optical depth, τ , is
used as a vertical coordinate in contrast to the geometrical height, z, employed in
[30]. Thereby, for the direct comparison of results we need to rewrite expression
(8.235) using the altitude z as a vertical coordinate. It can be done employing
the following equality:

Ve(τ,!v)
δσe(τ)
σe(τ)

dτ = Ve(z,!v)δσe(z)dz . (8.236)

Thus, using as a vertical coordinate the altitude instead of the optical depth,
we obtain the WF in the same form as given by (8.235) but for the absolute
variation of the extinction coefficient.

Taking into account the fact that the phase function used in our derivation
is normalized by one as given by (8.37) and not by the single-scattering albedo,
we conclude that the expression obtained is in agreement with the formula (43)
derived in [30]

Another expression for the extinction coefficient weighting function at the
top of a medium has been derived by Ustinov [30] using the formal solution of
the linearized RTE (also referred to as integration of the source function). To
compare our results in this case we note that, as has been proved in the previous
section, the usage of the formal solution is equivalent to the TD representa-
tion of the weighting functions. Thus, substituting into (8.235) the total adjoint
intensity as a sum of the diffuse and direct component, namely,

I∗(τ, µ) = I∗
d (τ, µ) +

1
µv
δ(µ+ µv)e−τ/µv , (8.237)

where the direct component of the adjoint intensity is used according to (8.162)
and τv is set to zero for the reflected radiance at the top of the medium, we
obtain
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Ve(τ,!v) =

1∫
−1

[Se(τ, µ) − I(τ, µ)] I∗
d (τ,!v)dµ

+
1
µv

[Se(τ,−µv) − I(τ,−µv)] e−τ/µv . (8.238)

Taking into account the fact that I(τ,−µv)e−τ/µv is the same as the intermediate
radiance, r(τ, µ), given by (5) in [30], we conclude that our expression coincides
with formula (98) derived by Ustinov [30].

Single scattering albedo weighting function comparison

An expression for the single-scattering albedo weighting function has been de-
rived by Rozanov and Kokhanovsky [26] neglecting polarization and thermal
emission. The corresponding weighting function was used for the calculation of
the average number of photon-scattering events. Taking into account the fact
that in the cited paper the linearized form of the direct RTE for the diffuse
forward intensity has been used to derive the single-scattering albedo WF, the
corresponding expression derived in the DD representation needs to be selected
for the comparison.

Equation (8.201) can be rewritten under these assumptions as follows:

Vω(τ,!v) = 〈JmsI
∗
d 〉 + d∗(τ,−µv)Jms(τ,−µv) , (8.239)

where Jms is given by (8.202) and we have restricted ourselves to the case of the
reflected radiance.

If we define, following [26]:

Sr
e (τ) = d∗(τ,−µv)Jms(τ,−µv) , (8.240)
Se(τ, µ) = Jms(τ, µ) , (8.241)

we have the following expression:

Vω(τ,!v) = 〈SeI
∗
d 〉 + Sr

e (τ) , (8.242)

which is fully equivalent to (35) presented in [26].

Absorption coefficient weighting function comparison

The weighting function for the absolute variation of the ozone number density
has recently been used by Hasekamp and Landgraf [8] in the UV-spectral range.
The thermal emission has been neglected by authors. The weighting function
is formulated for the total forward and total adjoint intensity. Thereby, the
weighting function for the absolute variation of the number density, δn(τ), in
the TT representation as given by (8.132) has to be used in the comparison.
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Dividing the right-hand side of (8.132) by n(τ), setting B(τ) = 0 and 1−ω(τ) =
σa(τ)/σe(τ) where σa(τ) is an absorption coefficient, we obtain

Vn(τ,!v) = − σa(τ)
σe(τ)n(τ)

〈
IT I∗〉 . (8.243)

As pointed out above, Vn(τ,!v) describes the contribution of the number density
variation in the infinitesimal layer dτ . For practical calculations a layer averaged
weighting function is usually employed:

V̄n(τk, !v) =

τk∫
τk−1

Vn(τ,!v)dτ , (8.244)

where τk−1 and τk denote the optical depth of the upper and lower boundary of
the kth layer. Substituting in this equation Vn according to (8.243) and changing
variable τ to z, we have

V̄n(zk, !v) = −σ(zk)

zk−1∫
zk

〈
IT I∗〉dz , (8.245)

where we have assumed, following [8], that the cross-section, σ(z), is constant
within the kth layer and σa(z) = σ(z)n(z). The derived expression is fully equiv-
alent to the formula (49) reported in [8].

Albedo weighting function comparison

The surface albedo weighting function for the Lambertian reflection has been
derived in the scalar case neglecting thermal emission by Box et al. [4] and used
by Landgraf et al. [14] in the analysis of the ozone profile retrieval.

In the case of the Lambertian surface the expression for the albedo WF as
given by (8.139) can be simplified. Indeed, the reflection matrix M as given by
(8.41) has only one nonzero element, M11 = 1, the vector F (Ω) as given by
(8.136) is independent of the Ω and has only one nonzero component as well.
Therefore, F (Ω) can be written as follows:

F (Ω) = [F, 0, 0, 0]T , (8.246)

where F is the downward flux density at the ground level for the forward inten-
sity:

F =
∫

Ω+

I(τ0,Ω)µdΩ . (8.247)

Substituting (8.246) into expression for the albedo weighting function given by
(8.139), we obtain

VA(!v) =
A

π
FF ∗ , (8.248)



8 Adjoint radiative transfer equation and inverse problems 381

where F ∗ is the upward flux for the adjoint intensity I∗(τ0,Ω) as given by (8.143).
Thus, VA(!v) given by (8.248) is the surface albedo weighting function for the
relative variation of the albedo, δA/A, in the case of the Lambertian surface.
Dividing the right-hand side of this expression by A, we rewrite the albedo
weighting function for the absolute variation of the surface albedo, δA, as follows:

VA(!v) =
1
π
FF ∗ . (8.249)

The expression (8.249) corresponds to the surface albedo weighting function
presented by Box et al. [4].

Surface emissivity weighting function comparison

An expression for the surface emissivity partial derivative neglecting polarization
has been derived by Ustinov [30] in the thermal spectral range assuming that the
forward and adjoint intensity are azimuthally independent. In the cited paper
both the expression for the case of the total forward and adjoint intensity and the
expression derived using the linearized form of the direct RTE (source function
integration) can be found.

We start from the TT representation of the emissivity weighting function as
given by (8.145). Neglecting azimuthal dependence of the adjoint intensity, the
expression for F ∗ given by (8.143) should be rewritten as follows:

F ∗ = −2π

0∫
−1

I∗(τ0, µ)µdµ . (8.250)

Neglecting polarization, azimuthal dependence of the forward intensity and as-
suming the Lambertian reflection, the expression for F (Ω) as given by (8.136)
should be replaced by

F (Ω) =⇒ 2π

1∫
0

I(τ0, µ)µdµ . (8.251)

Substituting further (8.251) into (8.145) and taking into account (8.232), we
obtain

Vε(!v) = −εB(Ts)F ∗ + 2εF ∗
1∫

0

I(τ0, µ)µdµ . (8.252)

This is the weighting function for the relative variation of the surface emissiv-
ity in the case of the Lambertian surface reflection neglecting polarization and
assuming azimuthal independence of the forward and adjoint intensities. Taking
into account the fact that in [30] the expression for the weighting function is given
for the absolute variation of the emissivity, i.e., δε, we need to rewrite (8.252) to
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have the weighting function for the absolute variation of the surface emissivity.
Dividing the right-hand side of (8.252) by ε and substituting F ∗ according to
(8.250), we obtain

Vε(!v) = −
0∫

−1

I∗(τ0, µ)µdµ

⎛
⎝Bs − 2

1∫
0

I(τ0, µ)µdµ

⎞
⎠ , (8.253)

where Bs ≡ B(Ts). Expression (8.253) is equivalent in this case to the formula
(59) presented in [30].

Replacing the total adjoint intensity, I∗(τ0, µ), in this equation by the sum of
the diffuse and the direct adjoint components as given by (8.237), the following
expression in the TD representation is obtained:

Vε(!v) = −
⎛
⎝ 0∫

−1

I∗
d (τ0, µ)µdµ− e−τ0/µv

⎞
⎠
⎛
⎝Bs − 2

1∫
0

I(τ0, µ)µdµ

⎞
⎠ . (8.254)

The derived expression is equivalent to the formula (118) given by Ustinov [30] for
the emissivity weighting function obtained using the source function integration
approach.

8.11 Conclusion

The measurements of the radiation after its interaction with a medium such as,
for example, a planetary atmosphere contain a huge amount of information about
various optical and surface parameters. Surface parameters such as the surface
albedo are considered as scalar parameters whereas optical parameters such as,
for example, the extinction coefficient are considered as parameter functions
depending on the vertical coordinate. The estimation of a certain parameter
from the measured radiation field characteristics is a subject of the inverse theory
which is well developed in the case of a linear relationship between measured
values and parameters to be retrieved. We have assumed in our discussion that
such a linear relationship can be introduced employing the expansion of the
intensity vector in the Taylor series in the case of scalar parameters or in the
functional Taylor series in the case of parameter functions, respectively.

In this case the partial or variational derivative of the intensity vector with
respect to the given parameter provides the desired linear relationship between
the variation of the intensity vector and the variation of a certain surface or op-
tical parameter, respectively. We have demonstrated that the weighting function
can be found as a convolution of the partial or variational derivative with an in-
strument response function. In the case of the ideal instrument response function
the weighting function coincides with the partial or variational derivative.

In order to derive an analytical expression for the variational and partial
derivative we proposed alternatively to the Taylor expansion representation of
the linear relationship between the variation of the measured functional and
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the variation of the optical and surface parameters. We have shown that such
a linear relationship can be found applying the linear perturbation theory to
the direct radiative transfer equation written in the generalized form and the
adjoint approach. Following this way we have formulated the generalized form
of the direct and adjoint radiative transfer operators.

Introducing the radiative transfer operator and boundary condition operators
we have rewritten the standard representation of the radiative transfer equation
in the operator form. This form describes a specific boundary value problem
consisting of three independent operator equations. We have demonstrated that
the boundary value problem can be written in the form of a single-operator
equation which is called the generalized form of the direct VRTE.

The direct VRTE written in the generalized form provides the generalized
form of the direct radiative transfer operator comprising all operations with the
intensity including boundary conditions. We have demonstrated that the direct
radiative transfer operator written in the generalized form has an adjoint oper-
ator satisfying the Lagrange identity independently of the specific form of the
boundary conditions for the forward intensity. The derived adjoint operator con-
tains, in analogy with the generalized form of the direct operator, all operations
with the adjoint intensity field including boundary conditions and is referred to
as the generalized form of the adjoint radiative transfer operator.

Aploying linear perturbation theory to the direct radiative transfer equation
written in the generalized form, we have derived the generalized expression for
the partial and variational derivative. In particular, we have presented expres-
sions for the variational derivatives of the intensity vector with respect to such
optical parameters, as extinction, scattering and absorption coefficients, single-
scattering albedo and phase matrix. The expressions for the partial derivatives
with respect to the main surface parameters such as surface albedo and surface
emissivity are presented as well.

The general expressions derived for the partial and variational derivatives
contain the total forward and the total adjoint intensities. However, for practi-
cal purposes it is more convenient to have a representation for the variational
derivative containing the diffuse forward and diffuse adjoint intensities. Thereby,
we have demonstrated that appropriate expression can be easily found substi-
tuting the total forward as well as the total adjoint intensities as a sum of the
diffuse and the direct component, respectively, into the general expression for
the partial and variational derivative. Moreover, we have demonstrated that ap-
plying the formal solution (source function integration) of the direct radiative
transfer equation to the derivation of the partial and variational derivative is
equivalent to the generalized expression written for the diffuse adjoint intensity.

It is very important to choose an appropriate representation for the partial
and variational derivative, both for the application with the existing numeri-
cal solution of the direct and adjoint VRTEs and, especially, for a comparison
of derivatives derived by different authors. Such a comparison of the partial
and variational derivatives derived by other authors with those presented here
shows that they are fully equivalent with each other after employing appropri-
ate simplifications. In particular, we have demonstrated that, neglecting thermal
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emission in our expression for the variational derivative, we obtain the expres-
sion for the variational derivative with respect to the absorption coefficient as
used by Hasekamp and Landgraf [8], and neglecting polarization and thermal
emission we get the variational derivative with respect to the single-scattering
albedo as derived by Rozanov and Kokhanovsky [26], neglecting polarization
and azimuthal dependence of the forward and adjoint intensities we obtain the
variational derivative with respect to the extinction coefficient as presented by
Ustinov [30].

Although we have not given here any examples of the numerical calculations
of the partial and variational derivatives, we note that in the scalar case the
appropriate expressions are implemented in the software package SCIATRAN
2.0 [27] which can be used for the simultaneous calculation both of the reflected
and transmitted intensity and of derivatives for the main optical and surface
parameters. SCIATRAN 2.0 is freely available for non-commercial use at the
website www.iup.physik.uni-bremen.de/sciatran.
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Appendix A: Derivation of t(τ, µ) and b(τ, µ)

The function t(τ, µ) can be found requiring the direct VRTE written in the gen-
eralized form as given by (8.52) to result in the same solution for the transmitted
intensity as the direct VRTE given by (8.33). Thereby, we find at first the solu-
tion of the direct VRTE for the transmitted radiance. For simplicity we rewrite
(8.33) as follows:

µ
dI(τ,Ω)

dτ
= −I(τ,Ω) + Se(τ,Ω) , (8.255)

where the source function, Se(τ,Ω), is defined as

Se(τ,Ω) = J(τ,Ω) + Q(τ,Ω) , (8.256)

and the boundary conditions are given according to (8.38) and (8.39).
For further discussion it is worth noticing that in (8.255) µ ∈ [−1, 1],

φ ∈ [0, 2π] and τ ∈ [0, τ0] . Inserting µ = +µ into (8.255), we can derive the
differential equation and the appropriate boundary condition for the downward
radiation as follows:

µ
dI(τ,Ω+)

dτ
= −I(τ,Ω+) + Se(τ,Ω+) , (8.257)

I(0,Ω+) = St(Ω+) , (8.258)
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where St(Ω+) is given by (8.50), µ ∈ [0, 1] and Ω+ defines the set of variable
{µ, φ}. This equation is the first-order ordinary inhomogeneous differential equa-
tion, describing the propagation of the transmitted light. The formal solution
of this equation is well known (see [2, 11] for details) and can be written in the
following form:

I(τ,Ω+) =
1
µ

τ∫
0

Se(τ ′,Ω+)e−(τ−τ ′)/µdτ ′ + Ct(Ω+)e−τ/µ . (8.259)

Here the integration constant Ct(Ω+) is found setting τ = 0 in (8.259) and then
employing the corresponding boundary condition:

Ct(Ω+) = St(Ω+) . (8.260)

Thus, the solution of the direct VRTE for the transmitted radiance satisfying
the upper boundary condition as given by (8.258) is found as follows:

I(τ,Ω+) =
1
µ

τ∫
0

Se(τ ′,Ω+)e−(τ−τ ′)/µdτ ′ + St(Ω+)e−τ/µ . (8.261)

Let us now find the solution of (8.52) for the transmitted intensity vector as
well. Substituting the operator Le given by (8.42) into (8.52), we have

µ
dI(τ,Ω)

dτ
+ t(τ, µ)Θ(µ)LtI + b(τ, µ)Θ(−µ)LbI = −I(τ,Ω)

+Se(τ,Ω) + t(τ, µ)Θ(µ)St(Ω) + b(τ, µ)Θ(−µ)Sb(Ω) , (8.262)

where the source function Se is used according to (8.256). Setting µ = +µ in
this equation, we obtain

µ
dI(τ,Ω+)

dτ
+ t(τ, µ)LtI = −I(τ,Ω+)

+ Se(τ,Ω+) + t(τ, µ)St(Ω+) , (8.263)

where µ ∈ [0, 1] and, thus, the function Θ(µ) can be omitted.
Let us assume that the solution of this equation can be found simularly to

(8.257) in the following form:

I ′(τ,Ω+) =
1
µ

τ∫
0

[
Se(τ ′,Ω+) + t(τ ′, µ)St(Ω+)

]
e−(τ−τ ′)/µdτ ′

+ C ′
t(Ω+)e−τ/µ , (8.264)

where C ′
t(Ω+) is the integration constant. Simularly to I(τ,Ω+) given by (8.259),

I ′(τ,Ω+) is the solution of the following equation:

µ
dI ′(τ,Ω+)

dτ
= −I ′(τ,Ω+) + Se(τ,Ω+) + t(τ, µ)St(Ω+) . (8.265)
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Thus, I ′(τ,Ω+) is a solution of (8.263) if

t(τ, µ)LtI
′ = 0 . (8.266)

Substituting the operator Lt given by (8.44) into (8.266), we obtain

t(τ, µ)LtI
′ = t(τ, µ)

τ0∫
0

δ(τ)I ′(τ,Ω+)dτ

= t(τ, µ)C ′
t(Ω+) = 0 =⇒ C ′

t(Ω+) = 0 . (8.267)

Thus, the solution of (8.264) is found as follows:

I ′(τ,Ω+) =
1
µ

τ∫
0

[
Se(τ ′,Ω+) + t(τ ′, µ)St(Ω+)

]
e−(τ−τ ′)/µdτ ′ . (8.268)

Requiring now that I ′(τ,Ω+) should be equal to I(τ,Ω+) given by (8.261), we
have

1
µ

τ∫
0

t(τ ′, µ)St(Ω+)e−(τ−τ ′)/µdτ ′ = St(Ω+)e−τ/µ . (8.269)

This equation is satisfied if the function t(τ, µ) is chosen as follows:

t(τ, µ) = µδ(τ) . (8.270)

Thus, the function t(τ, µ) is determined.
To find the function b(τ, µ) we should repeat the derivation used above for

the reflected radiance. The result is as follows:

b(τ, µ) = −µδ(τ − τ0) . (8.271)

Appendix B: Adjoint modified differential operator

To simplify our consideration we will use the following notation for the integral
over Ω: ∫

4π

fT (τ,Ω)g(τ,Ω)dΩ ≡ 〈
fT (τ,Ω)g(τ,Ω)

〉
. (8.272)

First, we rewrite terms containing operators Lt and Lb in the scalar product
given by (8.69). We note that according to the definition of operators Lt and Lb

given by (8.44) and (8.45) we have
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LtI =

τ0∫
0

δ(τ)I(τ,Ω)dτ = I(0,Ω) , (8.273)

LbI =

τ0∫
0

δ(τ − τ0)
⎛
⎝I(τ,Ω) − A

π

∫
4π

λ(µ′)M(Ω,Ω′)I(τ,Ω′)dΩ′

⎞
⎠dτ

= I(τ0,Ω) − A

π

〈
λ(µ′)M(Ω,Ω′)I(τ0,Ω′)

〉
. (8.274)

Substituting ψt(τ, µ) and ψb(τ,−µ) given by (8.55) and (8.56), introducing the
auxiliary function λ(µ) = µΘ(µ) and taking into account (8.273) and (8.274),
we obtain

(I∗, ψt(τ, µ)LtI) =
〈
λ(µ)I∗T (0,Ω)I(0,Ω)

〉
, (8.275)

(I∗, ψb(τ,−µ)LbI) =
〈
λ(−µ)I∗T (τ0,Ω)I(τ0,Ω)

〉 − TA , (8.276)

where the term TA is defined as follows:

TA =
A

π

〈
λ(−µ)

〈
λ(µ′)I∗T (τ0,Ω)M(Ω,Ω′)I(τ0,Ω′)

〉〉
. (8.277)

Employing further (8.64), (8.275) and (8.276), the scalar product P given by
(8.69) can be written in the form

P = −
(
µ

dI∗

dτ
, I

)
+R +

〈
λ(µ)I∗T (0,Ω)I(0,Ω)

〉
+
〈
λ(−µ)I∗T (τ0,Ω)I(τ0,Ω)

〉 − TA . (8.278)

Rewriting (8.65) for R using the notation given by (8.272) as follows:

R =
〈
µI∗T (τ0,Ω)I(τ0,Ω)

〉− 〈µI∗T (0,Ω)I(0,Ω)
〉
, (8.279)

and then substituting it into (8.278), taking into account that λ(µ)−µ = λ(−µ)
and λ(−µ) + µ = λ(µ), we have

P = −
(
µ

dI∗

dτ
, I

)
+
〈
λ(−µ)I∗T (0,Ω)I(0,Ω)

〉
+
〈
λ(µ)I∗T (τ0,Ω)I(τ0,Ω)

〉− TA . (8.280)

Taking into account that

I∗T (τ0,Ω)M(Ω,Ω′)I(τ0,Ω′) =
[
MT (Ω,Ω′)I∗(τ0,Ω)

]T
I(τ0,Ω′) , (8.281)

changing the integration order over Ω and Ω′ and replacing Ω ↔ Ω′, the term
TA given by (8.277) can be rewritten as follows:

TA =
A

π

〈
λ(µ)

〈
λ(−µ′)IT (τ0,Ω)MT (Ω′,Ω)I∗(τ0,Ω′)

〉〉
. (8.282)
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Combining last two terms into (8.280), we obtain

P = −
(
µ

dI∗

dτ
, I

)
+
〈
λ(−µ)I∗T (0,Ω)I(0,Ω)

〉
+
〈
λ(µ)IT (τ0,Ω)

[
I∗(τ0,Ω) − A

π

〈
λ(−µ)MT (Ω′,Ω)I∗(τ0,Ω′)

〉]〉
.

(8.283)

This equation is the desired representation for the scalar product P . To complete
we should only rewrite last three terms in (8.283) in the form of the scalar
product as well.

Let us define by analogy with operators, Lt and Lb, two other operators, L∗
t

and L∗
b , operating on the adjoint intensity I∗(τ,Ω) giving it values on the upper

and lower boundaries as follows:

L∗
t =

τ0∫
0

dτδ(τ)⊗ , (8.284)

L∗
b =

τ0∫
0

dτδ(τ − τ0)
⎡
⎣⊗ − A

π

∫
4π

dΩλ(−µ)MT (Ω′,Ω)⊗
⎤
⎦ . (8.285)

Substituting (8.284) and (8.285) into (8.283), we obtain

P = −
(
µ
dI∗

dτ
, I

)
+
〈
λ(−µ)I(0, µ)L∗

t I
∗〉+

〈
λ(µ)I(τ0, µ)L∗

bI
∗〉 . (8.286)

Employing functions ψt(τ, µ) and ψb(τ, µ), defined by (8.55) and (8.56), the
scalar product P can be rewritten as

P =
(
I,−µdI

∗

dτ
+ ψt(τ,−µ)L∗

t I
∗ + ψb(τ, µ)L∗

bI
∗
)

= (I,D∗I∗) . (8.287)

Thus, the Lagrange identity is satisfied and the adjoint operator for the modified
first-order differential operator D is

D∗ = −µ d
dτ

+ ψt(τ,−µ)L∗
t + ψb(τ, µ)L∗

b . (8.288)
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Part III

Applications



9 Light scattering in combustion

Alan R. Jones

9.1 Introduction

Combustion very often involves two-phase flow. This takes the form of a gas
containing fuel and/or combustion products. Mostly, the fuel is either a liquid
spray or pulverised coal, though other solids may be present such as biological
waste (biomass) and even sewerage. The products are very commonly soot, but
also ash and char. Flames are also used in the manufacture of particles such as
carbon black and pigments, and recently there has been growing interest in the
production of nanoparticles.

In research to understand combustion processes and in industry to moni-
tor combustor performance it is necessary to be able to measure the rates of
conversion of the fuel and of formation of the products. The mass flow rate of
particulate matter is also an important consideration, both in performance and
in emissions control.

Flames and combustion products are very hostile environments. The tem-
peratures involved are normally well in excess of 1000◦C. This, combined with
the high flow rates and bombardment by particles, is damaging to any probes
that are inserted into the gas stream. This is one of the reasons why optical
techniques have been developed into powerful tools for combustion diagnostics.
Apart from the windows necessary in some cases, all the optical components
are external to the combustion system. In addition, electromagnetic radiation at
moderate intensities does not significantly interfere with the object under study,
unlike, for example, the insertion of a probe.

The interaction of radiation with solid particles or liquid drops is covered
under the generic term ‘scattering’. The nature of the interaction depends upon
the particle size, shape, structure, concentration and refractive index. In prin-
ciple, therefore, scattering can be used to measure all of these variables. The
nature of the scattering process can be a simple rebound not involving a change
in frequency, other than Doppler shift. This is elastic scattering. Alternatively,
there may be frequency shifts due to absorption and re-emission or due to non-
linear effects. This is inelastic scattering. This chapter will be restricted to elastic
scattering and recent developments in this area will be reviewed.
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Although the environment cannot damage a beam of light, there are some
considerations when applying optics to combustion systems. The light will in-
teract with the gas. In most cases, for the gases typically found in combustion
systems and for visible wavelengths, it is the temperature gradients that are
problematic because they cause deflections of the light that may lead to uncer-
tainty in the position and size of the measurement space and spreading of the
incident beam. There may also be a loss of intensity due to scattering out of the
beam before it reaches the measurement point. A further difficulty in industrial
combustors is that access may be limited and often only one port is available.
Fogging of windows is also an important problem that will affect transmission
of the light in and out of the combustor, leading not only to a loss of intensity
but also to false results. For this reason, methods that do not rely on absolute
intensity are to be preferred. Another problem is the presence of thermal radia-
tion. This occurs at all wavelengths and can create difficulty in separating out
the scattered signal.

Radiative emission from flames is influenced by scattering, and the presence
of particulates can control heat transfer. The emission of radiation by particles
can also be employed to measure temperature, common methods being total
radiation and optical pyrometry and multi-colour methods. However, radiative
emission is beyond the scope of this chapter. Further information can be found,
for example, in Hottel and Sarofim (1967) and Modest (2003).

The emphasis here is to review recent work on the use of light scattering
for diagnostics of particles relevant to flames and combustion. The author has
written two earlier reviews (Jones, 1993, 1999) to which the reader is referred.
This chapter will concentrate on developments since 1999. Reference to earlier
work will be made only where necessary for reasons of clarity. In addition the re-
view will concentrate on developments in techniques, and will not discuss results
unless they are of a particularly fundamental nature.

9.2 Soot and other nanoparticles

When small particles formed in flames, such as soot, are sampled and viewed
under an electron microscope they usually appear as branched chain agglomer-
ates. Examples can be seen in Fig. 9.1. The aggregate is made up of a number
of primary particles. For soot, the size of the primary particles is typically of
the order 30–60 nm and the aggregates are up to 500 nm. The properties of the
aggregates that we would like to measure include the sizes of the primary par-
ticles and the aggregates, both as functions of size and position. We would also
like to follow the formation of the primary particles and the aggregation process,
ultimately leading to smoke formation.

Apart from soot a number of other small particle types can be formed in
flames. There is now a growing interest in the manufacture and uses of nanopar-
ticles, and flames are a common source (Pratsinis, 1998; Wooldridge, 1998)

Before we can analyse the results of experimental measurements we need a
theoretical basis to describe the scattering process. The importance of correctly
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(a)

(b)
Fig. 9.1. Typical examples of soot aggregates sampled from flames. (a) Taken from
Tian et al. (2004). (b) Taken from Wentzel et al. (2003).

treating aggregates has been demonstrated by Quinten et al. (2001). They com-
pared scattering by aggregates with that of equal volume spheres in optical
particle counters, which infer particle size from a measurement of scattered in-
tensity. They demonstrated that scattered intensity increases due to irregularity
caused by agglomeration. Models based on equal volume spheres with a variety
of effective medium approximations failed to represent the experimental results.

In the case of aggregates of small particles there are two fundamental ap-
proaches. The first of these is full interactive scattering. Here there is a rigorous



396 Alan R. Jones

theory (e.g. Xu, 1997; Xu and Gustafson, 2001; Saija et al., 2003), but it is very
complicated and very computer-intensive.

Because the monomers are so small they can be treated as Rayleigh scatterers
and this leads to the coupled dipole method (e.g. Purcell and Pennypacker, 1973;
Mulholland and Mountain, 1999; Xu and Gustafson, 1999; Shu and Charalam-
popoulos, 2000a). This is less complicated, but still involves the solution of 3N
simultaneous equations, where N is the number of monomers in the aggregate.
The advantage of the rigorous theories is that they will predict polarisation prop-
erties of the aggregates, as well as being accurate. The main disadvantage is that
the position of every particle must be known. This is not possible even for one
agglomerate, let alone a group of aggregates. Theorists get around this problem
by simulating the aggregation process so that the positions are known.

A simpler approach arises from the observation that the aggregates are usu-
ally tenuous by nature. This leads to the prospect that the incident wave may
propagate undisturbed through the structure, and that the Rayleigh–Gans–
Debye (RGD) approximation may be applied. Where this is suitable the primary
particles may be considered to scatter independently. The resulting analysis is
then much more straightforward.

The positions of the primary particles cannot be predicted in any one aggre-
gate, and all aggregates are different from each other. Overall the positions may
be considered to be random. This suggests a statistical method, which leads to
the concept of a correlation function. This is quite easily applied in the RGD
model using the fractal approach; the so-called Rayleigh–Gans–Debye–fractal-
aggregate (RGD-FA) model. Excellent reviews of this method have been given
by Sorensen (2001) and Bushell et al. (2002).

Wang and Sorensen (2002) found good agreement between RGD theory and
experiment for fractal aggregates. The materials used were TiO2 (m = 2.61) and
SiO2 (m = 1.46). The primary particle size was of the order of 20 nm with about
150 per cluster. Van-Hulle et al. (2002a) examined the validity of the RGD-
FA approach by comparison of theoretical results from the rigorous multisphere
model using translation vectors (Xu, 1997) and the coupled dipole method. For
scattering at 90◦ the two approximations were in reasonable agreement but dis-
agreed with the rigorous solution. All three were in good agreement for the
absorption and extinction coefficients, but RGD-FA was low for the scattering
cross-section. di Stasio (2002b) has also queried whether the RGD-FA method
obeys the optical theorem. Evidently these questions require further study.

In the RGD method the scattering is described in terms of the scattering
wave vector q, which has the magnitude

q =
4π
λ

sin
θ

2

where θ is the angle between the incident and scattered directions. For a set of
N scatterers the intensity becomes

I(q) =

∣∣∣∣∣
N∑

n=1

eiq·rn

∣∣∣∣∣
2

=
N∑

n=1

N∑
m=1

eiq·(rn−rm)
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where rn is the position of the nth particle. This may also be written

I(q) = F (q)S(q)

where F (q) describes the scattering by individual particles and S(q) is the struc-
ture function. For N independent Rayleigh particles F (q) ∝ N2 and so

S(q) ∝ 1
N2

N∑
n=1

N∑
m=1

eiq·(rn−rm)

A powerful method of overcoming the lack of knowledge of the positions of the
individual particles is to describe the agglomerates as fractal structures. These
are defined by

N = K

(
Rg

ap

)Df

where Rg is the radius of gyration, ap is the radius of the primary particles
and N is the number of primary particles in the agglomerate. K is a constant
prefactor and Df is the dimension. For infinite cylinders Df = 1, for flat discs
Df = 2 and for spheres Df = 3. However, for these structures Df is not found to
be an integer, rather it is some fraction; hence the term ‘fractal dimension’. For
a soot agglomerate Df is typically about 1.8.

The RGD approximation works reasonably well for Df < 2. For Df > 2
the agglomerate is too dense and the aggregate is better described by rigorous
theory. As Df approaches 3, Mie theory may be used.

It is worth noting here that the agglomerate is not a genuine fractal. For
that, the properties should be independent of scale. Clearly, this is not so for
the aggregate. If the scale is very small then individual primary particles play
the most significant role. If the scale is very large it can be outside the limits of
the actual aggregate. The correlation function has to be multiplied by a cut-off
function to allow for this. Sorensen (2001) discusses this theory in detail.

The outcome of the analysis is that there are three regimes:

1. The Guinier regime (qRg 	 1) where scattering is dominated by the large
scale of the agglomerate. Here

S(q) = 1 − 1
3

(qRg)
2

A plot of I(q) against q2 will yield the radius of gyration.
2. The power law regime (qRg � 1) where interactive scattering and the struc-

ture of the agglomerate are important. Here

S(q) ∝ (qRg)−Df

A plot of ln[I(q)] against q will yield the fractal dimension.
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3. For extremely large values of qRg there is a third regime, sometimes known as
the Porod regime, where scattering is dominated by the individual Rayleigh
sized primary particles. Here

S(q) ∝ q−4

Thus, we can see that the measurement of scattered intensity against angle
can yield both the radius of gyration of the agglomerate and the fractal
dimension.

Fig. 9.2 shows the variation of these for soot as a function of height in a
flame as measured by di Stasio (2001) and di Stasio et al. (2002). It can be seen
that initially Rg is small and Df is large, about 25 nm and 2.55 respectively.
This is the region where the primary particles are either still separate or in the
very early stages of agglomeration. Since for a sphere Df = 3, we would expect
a high value here. As agglomeration progresses Rg increases and Df becomes
smaller, eventually arriving at about 380 nm for Rg and 1.2 for Df . In this case
the agglomerates are similar to straight chains, as in Fig. 9.1(a). However, the
agglomerate then begins to change shape. Rg falls to about 160 nm before further
growth occurs taking it up to approximately 280 nm. At the same time the fractal
dimension rises to almost 1.9. At this stage the agglomerate resembles that seen
in Fig. 9.1(b). The reason for this restructuring is not clear, but the possibilities
are discussed by the authors. Sorensen et al. (2003) and Kim et al. (2004) point to
the possible formation of super-aggregates with fractal dimension as high as 2.6.
They speculate that these may be formed by percolation of smaller aggregates
with fractal dimension of 1.8, or by restructuring due to tenuous agglomerates
subjected to shear flow.

Close to the burner it would be expected that individual soot monomers
would form, and it would be of interest to detect the actual onset of agglomer-
ation. A possible technique has been suggested by di Stasio (2002b) who claims
that reciprocity is violated for very small agglomerates of about two particles.
The author shows results that imply that at a certain height above the burner
the ratio of cross-polarised intensities (IHV/IVH) can rise as high as six at a scat-
tering angle of 120◦. Higher up the burner, where the agglomerates are larger,
the ratio returns to one and reciprocity is satisfied. However, reciprocity is such
a well-established principle that the proposal should be treated with some cau-
tion1.

Of course, the numbers suggested by Fig. 9.2 are not universal. The sizes and
residence times will depend to some extent upon the fuel and the nature of the
burner. However, the variation in size is not large and the fractal dimension is
found to be reasonably universal. Also, the same kind of variation is found in
the manufacture of other nanoparticles. As an example Fig. 9.3 shows results for

1It is worth noting that for larger agglomerates Shu and Charalampopoulos (2000a)
state that previously reported violations of reciprocity arise from inappropriate orien-
tation averaging. It is not sufficient to average only over angular orientations of the
aggregate, but rotation about the axis must also be taken into account.
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Fig. 9.2. Variation of radius of gyration and fractal dimension with (a) height in
a flame (after di Stasio, 2001) and (b) and (c) residence time (after di Stasio et al.
(2002a).

aluminium oxide formed in a flame obtained by Xing et al. (1999). In contrast
to this, Kim and Choi (2003) found no evidence of rearrangement or sintering
for silica particles formed in a flame.

It will be noted that the measurement of Rg and Df is not a complete de-
scription of the aggregate. For this the size of the primary particles is needed
and the number of particles in the aggregate. These could either be measured
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Fig. 9.3. Variation of the radius of gyration and fractal dimension for Al2O3 formed
in a flame as a function of height above the burner (after Xing et al., 1999).

independently, or one could be deduced from the other if the prefactor were
known. Hu et al. (2003) used a combination of electron microscopy and laser
extinction techniques and obtained Df = 1.74±0.11 and K = 2.2±0.4. Brasil et
al. (2000) commented that the fractal dimension is reasonably well understood
with quoted values between 1.4 and 1.86, but that the prefactor can vary widely
with quoted values between 1.05 and 3.5. They made an analysis with simulated
aggregates with refractive indices typical of soot and alumina, which suggested
a conclusive result. They found a fractal dimension of 1.82 and a prefactor of
1.27 independently of aggregate size and composition. However, they noted that
experiments have yielded a dimension greater than 2. They suggested that this
might be due in part to sintering and to polydispersity of the monomers.

Mulholland and Mountain (1999) performed calculations using a coupled
electric and magnetic dipoles method, and concluded that there is a correlation
between polarisation ratio

P =
IHH(90◦)
IVV(90◦)
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and the size of the primary particles. For a fixed number of particles in the
agglomerate, their result is shown is shown in Fig. 9.4. It can be seen that there is
an increasing trend, which for a point detector is linear. As the receiving aperture
increases the linearity is corrupted. Krishnan et al. (2001) showed results for a
range of measurements of polarisation ratio against primary particle size, as seen
in Fig. 9.5. Again there is an increasing trend. In addition it will be observed
that the ratios are higher for overfire soot with 260–552 particles per agglomerate
than for underfire soot with 30–80 particles. This can be interpreted with aid of
Fig. 9.6, taken from Mulholland and Mountain (1999). The polarisation ratio is
predicted to increase or decrease with increasing number of particles depending
upon the value of xp. For small particles with xp < 0.2 there is, indeed, a
tendency to decrease.
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Fig. 9.4. Polarisation ratio versus size parameter of primary spheres for a range of
detector acceptance angles in degrees (after Mulholland and Mountain, 1999).
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Fig. 9.5. Measurements of the polarisation ratio for various fuels as a function of the
size parameter of the primary spheres (after Krishnan et al., 2001).
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Fig. 9.6. Effects of primary size parameter and number of spheres in an agglomerate
on the polarisation ratio for a detector acceptance angle of 2◦ (after Mulholland and
Mountain, 1999).

Two methods for obtaining the primary particle size were proposed by di
Stasio (2000). The first was also a linear relationship between the polarisation
ratio and the primary particle size. This is illustrated in Fig. 9.7, but it is ap-
parent that the negative gradient is in disagreement with the results presented
in Fig. 9.5. The reason for this is again lies in the fact that the number of parti-
cles in the agglomerates and the primary particle size were both increasing with
time.

Since for an isolated Rayleigh sized sphere IVV is independent of angle; the
angular variation is due to the structure function S(q). The Fourier transform
of the scattering pattern of IVV is then the auto-correlation function, G(r), of
the aggregate structure. di Stasio’s (2000) second method was to note that in
the Porod regime the first peak in G(r) corresponded to the primary particle
diameter. The second peak corresponded to twice this diameter. An example of
this function as measured by di Stasio (2000) is seen in Fig. 9.8. This technique
has the advantage that the positions of the peaks are independent of the num-
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Fig. 9.7. Measured polarisation ratio versus primary particle size as obtained by
scanning electron microscopy at corresponding heights above a Bunsen burner in an
ethylene–air diffusion flame (after di Stasio, 2000).
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Fig. 9.8. Example of a density-density function |G(r)| of fractal soot aggregates ob-
tained by Fourier transformation of the measured structure function S(q). The two
lines represent the upper and lower envelopes of a rapidly oscillating curve (after di
Stasio, 2000).

ber of particles, though that does affect the ratio of their heights. The author
makes the point that the method may be limited by the need to ensure that q
is sufficiently large (wavelength is sufficiently small) to ensure that the Porod
regime is achieved.

Mulholland and Mountain (1999) suggested that the number of particles in
an agglomerate could be obtained from the extinction cross-section provided
that the primary particle size is known. di Stasio et al. (2002a) was able to infer
this number from a measurement of the ratio of scattered intensities at 20◦ and
90◦.

Krishnan et al. (2000, 2001) made measurements on sooting flames from both
gaseous and liquid fuels. They based their analysis on RGD-FA but assumed a
prefactor of 8.5, which is probably too high. Nonetheless, the fractal dimen-
sion was universally approximately 1.8 in general agreement with other authors.
Some of their results are summarised in Table 9.1. From measurements of both

Table 9.1. A summary of some structure properties of overfire soot agglomerates (after
Krishnan et al., 2000).

Fuel dp (nm) N Df

Gas fuelled flames:
Acetylene 47 417 1.79
Ethylene 32 467 1.80
Propylene 41 460 1.79
Butadiene 42 — 1.79

Liquid fuelled flames:
Benzene 50 552 1.77
Cyclohexane 37 — 1.80
Toluene 51 526 1.79
n-Heptane 35 260 1.79
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Fig. 9.9. Measurements of the real (m1) and imaginary (m2) parts of the refractive
index of soot as reported by Krishnan et al. (2000).

scattered intensity and extinction coefficient they were able to determine both
the functions

F (m) =
∣∣∣∣m2 − 1
m2 + 2

∣∣∣∣
2

and E(m) = Im
(
m2 − 1
m2 + 2

)

so that in principle both the real and imaginary parts of the refractive index,
m, could be established. The refractive index function for absorption E(m)
agreed with previous authors, but the scattering function F (m) only agreed
up to 550 nm, but then rose faster. Their results for refractive index are seen in
Fig. 9.9. The measured values vary between approximately 1.4–i0.4 at 350 nm
wavelength and 2–i0.9 at 660 nm.

Van-Hulle et al. (2002b) examined soot refractive index in turbulent methane
flames with either air or oxygen. Soot sizes were obtained from sampling and
then RGD theory applied to calculate the optical properties of fractal aggregates
for comparison with measurement. Both extinction and IVV(90◦) were measured
at a wavelength of 632.8 nm and an inversion technique used to find the complex
refractive index. Within experimental error the refractive index was independent
of oxidiser and height above the burner and was 2–i0.5. Changing the morpho-
logical parameters was found to have important consequences on the predicted
refractive index. A sensitivity analysis found that the fractal dimension is the
most important variable overall, whereas dp and K only influence the imaginary
part. Their results are in reasonable agreement with the calculated value of 1.9–
i0.55 of Lee and Tien (1981) and of the reflectance technique of 1.94–i0.64 of
Mullins and Williams (1987). They also agree with the real part of 1.99–i0.89
given by Krishnan et al. (2000) but not with the imaginary part.

It is worth pointing out that the actual refractive index of soot is a function
of a number of parameters. It will vary with carbon to hydrogen ratio in the soot,
and this will depend upon the original fuel and oxidant combination and the age
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of the soot in the flame. Examples of the variation that may be expected occur
in the work of Charalampopoulos et al. (1989), Chang and Charalampopoulos
(1990) and Vaglieco et al. (1990).

Charalampopoulos and Shu (2003) made experimental measurements on the
fractal aggregates of Fe2O3 formed in a CO–air diffusion flame. Scattering, ex-
tinction and asymmetry were used and the measurements were combined with an
exact light-scattering theory to yield the complex refractive index, the primary
particle size parameter, the aspect ratio, and the number density and volume
fractions of the chainlike aggregates under flame conditions. The effective com-
plex refractive index was 1.96–i0.2. The corresponding primary particle size was
found to be 48 nm and the aggregate aspect ratio was in the range of 6–7. The
authors also provided an interesting discussion of the inversion procedure used
to obtain the required data.

Apart from the variation of scattered intensity with angle, the other impor-
tant variables are the scattering and extinction cross-sections. This is partly
because they can indicate the absolute scattered intensity and because of the
commonly used sizing method based on spectral extinction. In addition, how-
ever, the cross-sections are important to radiative heat transfer calculations. The
optical properties of smoke are also critical to visibility and the design of escape
routes and appropriate emergency lighting. Snegirev et al. (2001) were inter-
ested in the response of light scattering smoke detectors, and concluded that
neglecting coagulation underestimated their response times. An example of the
influence of fractal dimension on extinction is shown in Fig. 9.10. This indicates
that the well-known peak in specific cross-section for spheres is not present for
fractal agglomerates, and that the extinction increases with fractal dimension.2

For a range of gaseous and liquid fuels, Krishnan et al. (2000) measured the
dimensionless extinction coefficient defined by

κext = −λ ln(I/I0)/(Lfv)

in the overfire region of flames and found it to be 8.5 almost independently of
wavelength. However, Zhu et al. (2000) measured the dimensionless extinction
coefficient at two wavelengths for soot from acetylene and ethene. For acetylene
at a wavelength of 632.8 nm they found 8.1 and at 856 nm they obtained 8.8.
The equivalent values for ethene were 9.7 and 9.4. For JP-8 soot Zhu et al.
(2004) obtained values in the range 9.8 to 10.0 in the wavelength range 633 to
1565 nm. Widmann et al. (2003) demonstrated that the dimensionless extinction
coefficient also depends on the fuel/air ratio, as seen in Fig. 9.11. It is worth
noting that for most of these reports error values of at least ±0.5 were given.

2There is no evidence to doubt this calculation. However, it is slightly worrying
that for fractal dimensions greater than 2 fractal theory may not be applicable (Berry
and Percival, 1986; Farias et al., 1995, 1996) and it is suggested that Mie theory may
be appropriate. In Fig. 9.10 all the fractal calculations are higher than the Mie theory
result and are increasing with fractal dimension. In support, it is noted that the Mie
theory was applied to a volume equivalent sphere (not an actual sphere), and that the
results are broadly in agreement with those of Dobbins et al. (1994).
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Fig. 9.11. Dimensionless extinction coefficient of soot agglomerates as a function of
global equivalence ratio (after Widmann et al., 2003). Only the mean curves are shown
here; there is a variation of up to ±0.5 shown in the original. The sequence top to
bottom is 1.0, 0.8, 2.0 and 3.0.

Mulholland and Croarkin (2000) quoted the mass specific extinction coeffi-
cient, which is given by

Km = − ln(I/I0)/(Lρfv)

to be 8.8 ± 1.1 m2 g−1 when averaged over 29 soots. Their interest was in fire
research, and they commented that this nearly universal value means that the
mass concentration of smoke can be inferred from extinction measurements.
Mulholland et al. (2000) have described the design of a smoke concentration
meter based on these principles.

Detailed calculations using a rigorous numerical method have been under-
taken for fractal aggregates of soot by Klusek et al. (2003). Model clusters were
derived to suit a chosen fractal dimension and extensive calculations of the scat-
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tering matrix were performed. It was found that S12 and S34 are more sensitive to
fractal properties than S11. Detailed calculations were also discussed by Riefler
et al. (2004) who used the T-matrix method. Models clusters were averaged
both over orientation and over different clusters (configurational averaging). It
was concluded that configurational averaging generally gives a superior fit to
the measurements. They also emphasised that, while the T-matrix method is
exact and superior to the RGD approach, it is much more consuming of time
and effort.

Menguc and Manickavasagam (1998) also performed detailed calculations on
simulated fractal aggregates. They investigated all the elements of the scattering
matrix for soot with Df = 1.8, but with a prefactor of 5.8 which is rather
large. They observed various interesting features of the various elements, and
suggested that inversion procedures may be developed based on a library of
calculated values. In particular they note that N and dp may be obtained from
the angular variation of S11 provided that the complex refractive index is known.
They also pointed to the sensitivity of S12 to fractal dimension and S34 to N
almost independently of dp.

In the studies described above it was tacitly assumed that all the primary
particles were of the same size. An important question to be asked surrounds
the possibility that the particles and agglomerates both have a range of sizes
and what effect this may have. A detailed discussion of this has been given in
the review by Sorensen (2001). Earlier, Sorensen and Wang (1999) examined
agglomerates with large qRg and looked at the effect of polydispersity on the
constant in S(q) ≈ C(qRg)−Df . Ideally C = 1, but polydispersity can have
significant effects. Various equations have been proposed for this large size region
and these authors explored which are the most suitable. C is dependent on the
choice of cut-off function: The sharper the cut-off, the smaller the value of C.
Thus it is required to find the most suitable cut-off function, and previous work
has suggested that for polysdisperse aggregates a gaussian function is best. This
suggests that C = 1.0 ± 0.05 for Df in the range 1.7 to 2.1. From RGD theory
the authors find that

Seff =

⎧⎪⎨
⎪⎩

1 qRg,z 	 1

C
M1

M2

(
M2+2/Df

M2

)Df/2

(qRg,z)−Df qRg,z � 1

where Mn is the nth moment of the distribution

Mi =
∫
N in(N) dN

N is the number of primary particles in the aggregate and n(N) is the number
distribution function. Rg,z is an average of Rg weighted by the second moment of
the distribution. They performed experiments on two aerosols: TiO2 (Df = 1.7)
and polystyrene (Df = 2.15). Defining

CM =
M1

M2

(
M2+2/Df

M2

)Df/2
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they found CM in the range 1.53 to 1.71 for TiO2 and in the range 2.6 to 3.6
for polystyrene. There is evidence that CM increases as the width of the size
distribution increases.

For chain-like aggregates with less than 20 primary particles having size pa-
rameter less than 40 and refractive index in the range 1.8 to 2.2, Charalampopou-
los and Shu (2002) found that polydispersity of the primary particle size is more
important than that of the number of particles per aggregate. The assumption
of monodispersity tends to underestimate the real and imaginary components of
the refractive index and the number of particles in the aggregate. If the stan-
dard deviation of the distribution is greater than 0.1 the effects of polydispersity
must be included in any inversion procedure. The effects of polydispersity of
number can be neglected if the standard deviation of this distribution is less
than 0.6, otherwise the assumption of monodispersity will underestimate the
real component of the refractive index but overestimate the imaginary part.

The models used in the RGD-FA calculations normally assume that the indi-
vidual primary particles are just touching. However, micrographs of soot suggest
that there is overlap. This is probably caused by particles colliding and fresh soot
growing over the resulting combination. Brasil et al. (2001) looked at this and
allowed for overlapping by means of a penetration coefficient.

Cp = (dp − dij)/dp

where dp is the primary particle size and dij is the distance between two touching
particles. If Cp = 0 the primary particles are in point contact whereas Cp = 1
indicates total sintering; i.e., every couple of neighbours are merged into a single
particle. As a result of their modelling they suggest a fractal prefractor given by

K = 1.3 exp(2.2Cp)

Markel and Shalaev (2001) also deal with overlapping by proposing a renormal-
isation procedure that retains the radius of rotation and the total volume. This
takes the form

d′
p = dp(ξ/2)Df/(3−Df )

N ′ = N(2/ξ)3Df/(3−Df )

l′ = ξdp

where l′ is the distance between particle centres. ξ is an impact parameter equiv-
alent to Cp + 1 in the above, so that 1 < ξ < 2. Calculations suggest that the
best value for ξ in real clusters is between 1.61 and 1.69. With these changes the
authors claim that the coupled dipole method can be used as normal.

Elongated particles in a flowing fluid with velocity gradients will have a ten-
dency to align in the flow (Cerf and Scheraga, 1952). Studies on the scattering
by aligned aggregates have been made by Botet and Rannou (2003), using a
cluster–cluster model and the coupled dipole method. The results were aver-
aged over 128 different generated aggregates. The influence of alignment is to
introduce optical form anisotropy. For small aggregates the anisotropy was very
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pronounced, but it vanished in the limit of large aggregates. The polarisation
falls off because it arises from interactive scattering between the dipoles. Only
dipoles within a distance of about 30 monomer radii can interact. For larger
aggregates there are a number of such zones which are random with respect to
each other, thus resulting in isotropy.

It is a tacit assumption of the RGD-FA that the primary particles are small
enough to be in the Rayleigh scattering range. If they are not, then Mie theory
may have to be used. Lambert et al. (2000) and Thill et al. (2000) discuss some
of the consequences of this, including the need to allow for multiple scattering
within the aggregate. They propose a mean field approach to deal with this
involving an equivalent refractive index.

As mentioned above, in the early stages of the flame the primary particles
have not had sufficient time to form agglomerates. In this case, methods are
required for measurements on individual very small particles. In principle the
easiest method from a theoretical point of view is Rayleigh scattering, but here
the scattering polar diagram is independent of size. It is then necessary to infer
the size from a combination of absolute scattered intensity (with its attendant
problems) with an extinction measurement (van de Hulst, 1957).

An alternative method is dynamic light scattering, which is synonymous with
photon correlation spectroscopy. Essentially this determines the Doppler fre-
quency shifts associated with the random motion of the particles. In turn this is
a function of the diffusion coefficient and the size. Since the frequency shift is due
to a mechanical process, the method has the advantage that it is independent of
refractive index. Lack of knowledge of this parameter is a problem for a number
of optical particle sizing methods.

Usually the frequency shifts are not measured directly but are implied
through their influence on the autocorrelation function. This has been briefly
reviewed by Jones (1993, 1999). The correlation function takes the form

S(τ) ∝ exp
(−2q2Dτ − v2τ2/w2

0
)

where τ is the time delay and D is the diffusion coefficient. The second term in
the brackets is due to the Doppler ambiguity caused by the finite transit time
across the laser beam of width w0 by a particle with velocity v. For particles
suspended in a gas, Lamprecht et al. (1999) suggest that

D =
3

8ρa2

(
mkbT

2π

)1/2

provided that the particles are not too large. Here a is the hydrodynamic radius,
ρ is the gas density, m is the average mass, kb is Boltzmann’s constant and T is
the temperature. For larger particles when the concentration is not too high the
Cunningham equation

D =
kbT

6πηa

(
1 +

L

a

[
α+ β exp

(
−γa
L

)])



410 Alan R. Jones

may be used, where η is the gas viscosity, L is the mean free path and α = 0.864,
β = 0.29, γ = 1.25. When L approaches zero, this equation reduces to the
Stokes–Einstein formula.

Cecere et al. (2003) used dynamic light scattering to measure the size dis-
tribution of nanoparticles produced in the non-sooting zone of ethylene/air pre-
mixed flames. The particle sizes range from 2 to 30 nm. Also, by combining ex
situ results and the in situ scattering and extinction measurements in the ultra-
violet, the complex refractive index of the nanoparticles was determined. The
sizes obtained from DLS were independent of refractive index, and the refrac-
tive index was obtained from the ratio between extinction and vertical–vertical
scattering.

However, they assumed that the real part of the refractive index was known
from previous work, and obtained for the imaginary part 0.09.

Recently, Kroner et al. (2003) have compared static and dynamic light scat-
tering and concluded that static scattering is better as it does not rely on a
priori knowledge about the flame from diffusion measurements. They note that
the derivation of the Stokes–Einstein formula from the basic dynamical equa-
tions of viscous flow depends on the following assumptions and comment on their
applicability.

(1) Incompressibility of the medium: the compressibility of the medium starts
to have effects only at velocities comparable to the speed of sound in the
medium.

(2) Infinite extent of the medium: the conditions of infinite extent are never
observed in practice.

(3) Very small rate of movement: Stokes law is only valid for low Reynolds num-
bers. (The errors are proportional to Re: At Re = 0.1 the difference is about
1.7%.)

(4) Constant rate of movement: this is valid for laminar flow, but not for turbu-
lent.

(5) Rigidity of the particles: soot particles are not flexible.
(6) Absence of slipping at the particles surface: the Stokes–Einstein-relation re-

quires that there is no velocity step at the surface of the sphere, a thin layer
of medium at the surface must be fixed to the particle.

Not all of them are perfectly fulfilled, and requirement (6) is the most se-
vere. It is not valid for measurements in gaseous media, and the Stokes–Einstein
equation must be expanded by the Cunningham coefficient. They conclude that,
because of all the uncertainties associated with the dynamic method, Guinier
plots (as in RGD-FA) are preferable for the determination of the radius of gy-
ration.

A method of sizing for small absorbing particles that has received consid-
erable attention of late is laser-induced incandescence (LII). The concept here
is that the absorption of a pulse of radiation from a high power laser causes
heating of the particles and thermal emission. The properties are deduced from
the temporal profile of the emission, and, in particular, after the pulse the rate
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of cooling is observed. This rate is inversely proportional to the mass of the par-
ticles and thus the size may be obtained. The concept originated with Melton
(1984), and a recent mathematical model has been given by Michelsen (2003).
The first measurements based on the temporal profile appear to be due to Will et
al. (1995). The method has become a widely used diagnostic for the investigation
of soot in combustion systems, ranging from fundamental burners to practical
devices such as diesel engines.

Useful comments on the method have been given by Axelsson et al. (2000)
and Witze et al. (2001). Unique features of the technique are its apparent sim-
plicity and excellent sensitivity, estimated to be better than one part per trillion
(2 µm m−3) (Wainner et al., 1999). Studies have shown good agreement between
the LII signal and soot volume fraction in flames and combustion exhausts.

Witze et al. (2001) comment that a number of conditions need to be satisfied
for the detected LII signal to be proportional to the soot volume fraction.

(1) The probed soot should consist of single or loosely aggregated primary par-
ticles that are small compared to the wavelengths of the laser excitation
and the collected LII signal (such that absorption and emission occur in the
Rayleigh limit).

(2) The peak particle temperatures reached during the laser pulse are relatively
insensitive to the particle diameter.

(3) The soot particle mass evaporation is either negligible or largely independent
of particle diameter.

(4) The detected LII signal is dominated by thermal emission occurring during
laser excitation or shortly thereafter, so that size-dependent conductance
cooling does not influence the signal.

Some information supporting the validity of (1) has been obtained by trans-
mission electron microscopy grid sampling and analysis of soot in various envi-
ronments, and some data demonstrating the necessity of (4) have been reported.
However, little information has been gathered relative to (2) and (3).

Because the temperatures achieved by the particles can be very high (as much
as 4000 to 4500 K) evaporation can be a serious problem. Also, laser ablation
of soot particles can cause apparent plateaux in the signals. Signal integration
times and data collection starting times are important variables. Starting mea-
surements after the end of the laser pulse is used to eliminate problems of scat-
tered light and fluorescence by polycyclic aromatic species. However, this slightly
biases the result towards slower cooling larger particles. This can be minimised
by the use of short detection times (25–100 ns). A long wave cut-off filter may be
used to eliminate C2 fluorescence from the LII signal, though a laser wavelength
can be chosen to avoid this fluorescence: 532 nm or 1.06 µm are common. The
choice of detection wavelength is more complicated. Long wavelengths make de-
tection less sensitive to particle size, but short wavelengths reduce interference
from flame emission.

Lehre et al. (2003a, 2003b) made studies on sooting flames with known prop-
erties with the specific aim of improving the mathematical model of the process.
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They note that it is well established that heat loss due to radiation is a second-
order effect in LII models. Further, at temperatures below 3300 K particle–gas
heat transfer is the dominant cooling process. At later times after the laser pulse
and during LII experiments with low laser power densities, soot evaporation can
be neglected.

Measurements by Witze et al. (2001) suggested that there might be prob-
lems due to convective losses and thermal annealing (graphitisation). Significant
evaporation loss occurs for incident power densities above 0.2 J cm−2.

Axelsson et al. (2000) combined LII with scattering-extinction measurements.
Fig. 9.12 compares results by the two techniques. There is good agreement up to
about 12 mm above the burner, but then the two methods drift apart. Scattering-
extinction suggests that the particles continue to grow, but LII implies that
the sizes tend to become constant. The authors comment that problems with
scattering-extinction include variation of refractive index and polydispersity. LII
can have problems with input values to the mathematical model, changes in
morphology and evaporation. However, they conclude that the major differences
above 15 mm are due to aggregation.
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Fig. 9.12. Particle size at various heights above a burner (after Axelsson et al., 2000).
d1 is measured using a scattering-extinction method, while d2 and d3 are obtained
using LII. The flame temperatures were measured using coherent anti-Stokes Raman
spectroscopy (CARS). The point d3 illustrates the influence of varying the temperature
on the LII result.

The possibility of measuring polydispersity using time resolved LII has been
explored by Dankers and Leipertz (2004), using a method based on deviations
from the exponential in regions where the heat loss is governed by conduction.
The deviation is due to the fact that small particles have faster temperature
decay than larger ones.

Snelling et al. (2004) deliberately kept laser power densities low to restrict
soot particle temperatures to below 3500 K so that complications due to vapori-
sation could be avoided. To further ensure this, soot particle temperatures were
measured by optical three-wavelength pyrometry. Particle sizes were obtained
by sampling and electron microscopy. The fractal nature of the aggregates was
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allowed for by modifying the heat transfer model by using an effective projected
area equivalent diameter given by

da =
(
N

K

)1/2Df

dp

where K and Df are the area pre-factor and fractal dimension. From their results
they found E(m) = 0.395 without dispersion and 0.42 with linear dispersion,
which are somewhat higher than previous authors. For example, Krishnan et al.
(2000) reported E(m) to be in the range 0.24 to 0.28 across the visible spectrum,
broadly in agreement with other published values.

Another interesting technique that may prove very sensitive at low particle
volume fractions is cavity ringdown (CRD) (O’Keefe and Deacon, 1988). In this
a laser pulse is launched into a cavity formed by two mirrors that contains
a cloud of absorbing particles. The distance between the mirrors is large in
comparison to the pulse length, so that the pulse may be considered to travel
back and forth many times leaking a little intensity every time it hits a mirror.
On each pass there is some loss of intensity due to scattering and absorption, the
consequence of which is that the pulse decays in time in a manner determined
by the extinction coefficient of the particles. The CRD technique measures a
characteristic exponential decay of the signal, a reference being obtained in the
absence of the flame. The soot volume fraction, fv, is obtained from the decay
rate with the flame on, given by

kextfvL

λ
=
(

1
cτ

− 1 +R
)

where Kext = kextfv/λ and l is the spacing between the cavity mirrors of reflec-
tivity R. L is the path length in the flame, c is the speed of light and τ is the
time constant of the exponential decay.

A discussion of some aspects of CRD has been given by van der Wal and
Ticich (1999), who were interested in its use for the calibration of LII, which is
strongly dependent on experimental conditions and details of the mathematical
model. Commonly used calibration methods include extinction measurement and
gravimetric sampling, but these are not effective at low soot volume fractions.
Potentially CRD can measure down to one part in 109. Also, in CRD the laser
power densities are much less than those observed to cause soot evaporation:
typically 0.25 J cm−2 at 532 nm and 5 J cm−2 at 1.06 µm. Another advantage of
CRD is that it yields integration over path length directly. A disadvantage is that
it will not give spatially resolved results, though it gives good spatial resolution
in two dimensions. It suffers similar problems to LII in the presence of scattering
by large aggregates and fluorescence.

Moreau et al. (2004) combined LII and ringdown spectroscopy to examine
soot and fluorescence of polyaromatic hydrocarbons (PAH). At 1.064 µm there
is no PAH fluorescence, whereas at 532 nm both exist. They were able measure
soot volume fractions down to 5 ppb.



414 Alan R. Jones

Finally, it was noted above in passing that multicolour methods were em-
ployed to measure soot temperatures. The radiative emission by particles de-
pends upon the emissivity of the cloud and the temperature. To determine these
two unknowns, Hottel and Broughton (1932) devised a technique in which the
radiation was measured at two wavelengths. Since that time the method has been
widely used in a variety of ways. For two recent studies, the reader is referred
to Jenkins and Hanson (2001) and Cignoli et al. (2001). The former authors
compared absorption and emission at two wavelengths 830 and 1300 nm. The
sources were modulated diode lasers. Using their method they reduced the error
compared to normal two-colour pyrometry from ±50 K to ±20 K. The method is
most suitable for soot volume fractions greater than 10−7. Cignoli et al. (2001)
imaged a flame onto a CCD camera at two wavelengths and were able to produce
two-dimensional images of the temperature field.

9.3 Liquid fuel sprays and pulverised fuel (PF)

Both liquid and solid fuels (coal) are commonly burned in the form of small drops
or particles. This is to increase the surface per unit mass, and, so, the evaporation
and burning rates. For liquids, it is needed to understand the atomisation process
and to follow the behaviour of the spray as a function of time and space. To this
end, it is necessary to measure drop sizes and concentration (for evaporation and
combustion rates) and velocity (for mass throughput). The spatial distribution
of the drops is also important, as this will influence the way in which the fuel
vapour mixes with available oxidant.

Among the practical problems that may be encountered are high concen-
tration and particle shape. The former will influence whether a light beam can
penetrate the spray, and can result in multiple and interactive scattering. Shape
is a factor because most instruments assume that the particles are spherical.
Also, the shape of the drops may affect the combustion process.

Optically the drops in a spray or PF cloud are mostly medium to large in size.
This fact influences the techniques that can be used. The two most common are
methods based on laser diffraction and those based on laser Doppler anemometry
(LDA). A powerful version of the latter is phase Doppler anemometry (PDA).

The simple principle behind the diffraction method lies in the Airy equation

sin θ =
1.22λ
d

where d is the particle diameter and θ is the angle of the first minimum in the
diffraction pattern. There has been an extensive literature on this technique,
including direct inversion to find the size distribution, the use of Mie theory
to avoid error due to the diffraction approximation, the influence of shape and
refractive index and the limits to particle concentration and corrections for mul-
tiple scattering. Several commercial instruments are available that make use of
this fundamentally simple concept. A brief review was given by Jones (1993)
with a later update (Jones, 1999).
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There are two important limits to diffraction particle sizing. The method es-
sentially assumes single scattering and so there is an upper limit to concentration
before multiple scattering sets in. This is usually thought to be for transmissiv-
ities of the spray of less than 50%. Also, diffraction is an integral method and
requires a minimum number of particles to achieve a sensible result for the size
distribution. This is usually thought to be the concentration below which the
transmissivity of the spray is more than 90%. Otherwise, integration over a long
time may yield a result but this is not always satisfactory.

A number of studies have been conducted on ways to deal with high con-
centrations. Examples include the work of Cao et al. (1991) who divided the
scattering volume into a series of thin, single scattering slices and calculated
the progress of light through the system. They claimed to be able to extend
the applicability of the diffraction method down to transmissivities of the or-
der of 10%. Hirleman (1988) used a statistical approach to predict small angle
scattering through a dense system.

More recently, Kokhanovsky and Weichert (2001a) have reviewed a number
of small angle multiple scattering solutions and concluded that they are essen-
tially all the same. Their paper provides a good discussion of the derivation of
small angle solutions from the radiative transfer equation. On the basis of an
azimuthally independent phase function, they obtain

I(τ, θ) = C e−τ

∫ 1

0

[
exp
(
τg(z)

2

)
− 1
]
J0(bz)z dz

where b = 2xθ, C =
[
(2x2)/π

]
I0, x = πD/λ, τ is the optical depth or turbidity

and
g(z) =

2
π

[
arccos(z) − z(1 − z2)1/2

]
z ≤ 1

For monodisperse particles they find that the size can be obtained from

d =
λh(τ)
2πθ0

where h(τ) = 3.23614 + 0.0768τ + 0.00937τ2. The angle θ0 is where the relative
intensity falls to 0.5. The result is applicable for turbidities up to 6.5; that is
transmissivities down to 0.15%. The authors also suggest an analytical solution
for polydispersions with a gamma function size distribution. This equation has
been proved experimentally by Kokhanovsky et al. (2001b).

Two novel diffraction instruments have been described by Gianinoni et al.
(2003): one for very high concentrations and one for very low. In the former case
the design incorporated an insertion probe with an optical configuration that
made it suitable for the characterisation of high concentration particle laden
flows (e.g. for pulverised coal downstream of the grinding mills) in the size range
3–300 µm. The authors noted that for high concentrations there are the following
requirements:

(1) The measuring probe outer diameter must be minimised to reduce its inva-
siveness.
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(2) The test region should be sufficiently short to prevent multiple scattering,
but large enough to let the particles pass through without modifying their
trajectories.

(3) The optical windows must be kept clean.

The most crucial requirement is the first one since the multi-element array
sensor that collects the scattered light cannot be miniaturised without worsening
its technical specifications. The minimisation of probe diameter was achieved by
utilising an innovative optical scheme based on the use of a selfoc rod lens,
originally developed for endoscopic applications. This lens collects the scattered
light from the test region and brings it to the detector positioned far from the
scattering volume outside the duct. The optical scheme of the probe is illustrated
in Fig. 9.13.

Fig. 9.13. Optical scheme of the probe developed for monitoring high concentration
particle laden flows (Gianinoni et al., 2003).

For low concentrations the scattered intensity is weak and particles on win-
dows and lenses may make a significant contribution to the light received. To
minimise this problem the authors reduced the number of optical components
and used a converging illuminating beam focused onto a stop blade on the lens.
The optical system is seen in Fig. 9.14. In this way, particles on the lens surface
are no longer directly illuminated by the laser beam and do not generate unde-
sired scattered light contributions. The authors recognise that this convergent
system means that the received scattering pattern is no longer independent of
the positions of the particles and discuss means of dealing with this problem.
Their design enabled operation at extinction values as small as 10−5 in the size
range 0.9–90 µm.

A deceptively simple method of measuring particle size is to measure the scat-
tered intensity. It is expected that this will increase with volume for Rayleigh-
sized particles and with area for larger particles. This is the basic principle lying
behind particle counters, for example. Brief reviews of intensity measuring in-
struments were included in the papers by Jones (1993, 1999).

In practice, there are a number of problems with intensity measurement.
First, being absolute, calibration is needed against some standard source. Also
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Fig. 9.14. The measuring head of the particle sizer for low particle concentrations
regimes (Gianinoni et al., 2003).

the actual measured value is proportional to the strength of the illuminating
light beam, so this needs constant monitoring. In combustion systems problems
arise due to coating of input and output windows which changes the illumination
and the transmission of the scattered light. Extinction losses along the optical
paths are problematic for the same reason. Finally, there is a difficulty with the
gaussian intensity profiles of laser beams since the illumination will depend upon
which part of the beam the particle passes through.

With these considerations in mind it is preferable to use relative measure-
ments as in the methods discussed below. Nonetheless, considerable effort has
been devoted to particle counting devices and work continues. For example,
Umhauer et al. (2000) have devised an instrument to enable sizing of particles
in hot gases up to 1000◦C. Uniform illumination of the test space is achieved by
the use of a high-pressure xenon lamp as the light source. The use of a broadband
source also overcomes fluctuations in the scattered intensity due to detailed vari-
ations with size and wavelength and also minor shape effects. The instrument
also features a new scattering volume definition control system obtained us-
ing two masks with square apertures projected to have images vertical to each
other. Protection against heat and dust precipitation is provided by having a
long working distance.

A novel method of avoiding the problems associated with the gaussian pro-
file by making use of it has been proposed by Castagner and Jones (2004). In
this technique a prism was used to divide the incident beam into two parallel
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gaussian beams with orthogonal polarisations. The amplitudes of the two inten-
sities and the relative delay between them are indicative of the particle direction
and velocity. Having obtained the direction of travel of a particle, its size can
then obtained from the scattered intensity using Mie theory and a calibration
with particles of known size. A main advantage of the method is its simplicity
and lack of need of alignment. One difficulty with the method arose with non-
spherical particles that cause cross-polarisation in the scattered light. This led to
cross-talk between the two measured intensities. To avoid this, it was suggested
that the same technique might be employed using two wavelengths instead of
polarisations.

The use of LDA for particle sizing began with the papers by Farmer (1972,
1974) and Fristrom et al. (1973). It was recognised that an obstacle with circular
cross-section traversing the interference pattern formed by two crossed laser
beams would generate scattered light that oscillated in time. The frequency of
this oscillation would give the velocity of the particle. However, the visibility of
this signal varied depending upon the particle size and became zero for certain
specific sizes. Various authors pursued this method, but it was found to suffer a
number of disadvantages. The most significant of these was there are a series of
zeros and the size measurement was not unique. Eventually the technique was
supplanted by phase Doppler anemometry (PDA).

PDA was proposed by Durst and Zaré (1975) and came into prominence
following the work of Bachalo and Houser (1984) and Saffman et al. (1984). In
this technique the oscillatory signal is measured at a number (most usually three)
of closely spaced angles, normally at about 30◦ (forward) or 150◦ (backward) out
of the plane formed by the two laser beams. The phase difference between the
observed oscillations is then found to have a linear dependence on particle size.
Multiple angles are used to overcome the problem distinguishing phase changes
greater than 2π and, thus, increase the dynamic range, typically 0.5 to 3000 µm
at concentrations up to 1012 particles per cubic metre.

A possible way of eliminating the phase uncertainty and the need for a third
detector was suggested by Onofri et al. (2002) in which they use multiple laser
beams producing a range of spatial frequencies in the test space. To eliminate
complexity of the resulting fringes the authors restricted their experiments to
two overlapping fringe patterns between which interference was suppressed. This
was achieved either by introducing an additional path length into one beam pair
that was greater than the coherence length, or by cross-polarising the two beam
pairs relative to each other.

The diffraction method makes a measurement over a volume containing the
scatterers and results in a spatial average. However, PDA is a particle count-
ing method and yields a temporal average. Thus, determination of velocity is
also necessary to correct the measured size distribution. In addition, the accu-
racy of the measured distribution depends upon collecting a sufficient number
of measurements to be statistically significant. This will be of particular impor-
tance in low concentration flows, as pointed out by Widmann et al. (2001a). It
is then necessary to compromise between collecting a large number of samples
for adequate statistics and practical data acquisition times. They investigated



9 Light scattering in combustion 419

the effect of insufficient sample statistics on the calculated probe area, and the
resultant uncertainty in the volume flux measurement. From a range of experi-
mental results they were able to propose corrections that resulted in statistically
significant improvements.

A further problem is that there can be a trajectory error. This is because
the effective size of the gaussian test space grows as the particle size increases.
At the outer limits of the test space the low illumination is compensated by
the higher scattered intensity. This problem is discussed, for example, by Xu
and Tropea (1994), Hardalupas and Taylor (1994) and Albrecht et al. (1996).
Zaidi et al. (1998) found that PDA, owing to the trajectory error, consistently
gave larger drop sizes compared to those measured by the diffraction technique.
Other trajectory problems associated with large particles have been tackled by
Tropea et al. (1996) who devised a dual mode PDA, which used two orthogo-
nal PDA beam pairs to better define the test space. More recently, Aisa et al.
(2002) discussed the application to particles with three-directional paths. They
commented that accurate measurements could be achieved if an integral method
of calculation over the effective probe volume and an efficient autocalibration
process are employed.

Strakey et al. (2000) have also examined methods of reducing many of the
measurement errors. In particular, they mention the use of combined phase and
scattered intensity validation methods and discuss the importance of the ratios
of the angular spacing of the detectors. They also note that the use of small test
space volumes can greatly improve measurement reliability in dense sprays for
which multiple particle occurrences in the probe volume will affect the measure-
ment.

The shape of the test space is generally spheroidal. Thus the size of this
volume will depend upon the direction of the particle’s trajectory, as noted by
Yu and Rasmuson (1999). They developed a mathematical description of this
effect and showed it may introduce very large errors. In the case of complex 3-D
flows the projected area variation leads to a direction bias in the determination
of time-averaged values of the flow. They proposed a system employing three
colours, two producing independent LDA test volumes and one simply acting to
define the centre of the volume. They then found that errors could be made very
small.

In addition to the trajectory error there is also a slit effect, which arises from
the use of a slit in the receiving optics to define the length of the measuring
volume. This has been discussed by Zaidi et al. (1998), who pointed out that
this can cause great error because for particles passing along certain trajectories
the corresponding length of the measuring volume can be much longer than
expected.

Problems due to particle refractive index and variations in temperature in the
test space have been examined by Schneider and Hirleman (1994) and Köser and
Wriedt (1996). The influence of nonspherical particle shape has been investigated
by Doicu et al. (1996), who found that for spheroids with an eccentricity of only
0.05 there would be a phase error of 5%.
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A unique new design for a PDA instrument has been described by Blondel et
al. (2001). They note that the use of PDA in industrial environments is limited
by the need for two optical access points. To overcome this they describe a
monoblock instrument suitable for diesel fuel sprays that will operate with only
one window, and is also compact and inexpensive. They discuss three feasible
configurations, each with specific advantages and limitations:

(i) Collection in the Alexander’s dark band. In this case only reflected light
is collected. The measurement is then insensitive to the refractive index of
the particle, but the amount of collected light is the smallest among the
three possible configurations. The distance between the probe volume and
the lens is also the smallest: about equal to the lens diameter.

(ii) Collection of light at the rainbow angle. Here the refractive index must be
known for proper processing, but the signals are the most intense among the
three configurations. However, this configuration can only be used when the
particle diameter is smaller than the beam diameter. The working distance
is equal to about 1.5 times the lens diameter.

(iii) Far backward collection. In this situation scattering can be dominated by
three contributions depending on the particle location in the control volume:
externally reflected light, internally reflected light with an impact parameter
close to the edge of the particle or internally reflected light with an impact
parameter close to the particle centre. The authors selected this configura-
tion, mainly because it allows the use a large working distance: about 2–3
times the lens diameter. However, it does have the disadvantage that the
different scattering modes have to be discriminated.

The design of the instrument is illustrated in Fig. 9.15. The incident beams
were focused by a lens of 2 cm diameter with a focal length of 60 mm. The beam
waist diameter was then as small as 40 µm and the scattering angle was 165◦.
These values were chosen to optimise the instrument for measurements inside a
car engine.

A similar scheme for making LDA measurements in the backward direction
has been proposed by Tillwick et al. (1999). Here the single lens both transmits
and receives, but the detectors are on the periphery of the lens.

Another proposal for enabling PDA measurements at a single angle has come
from Yokoi et al. (2001). In their technique, light scattered by a moving particle
is divided into two rays that are detected with different polarisation angles to
transmit dominantly reflected or refracted rays. To explore the optimum polari-
sation condition, they numerically investigated the phase–diameter properties in
relation to polarisation angles by using the geometrical optics approximation and
generalised Lorenz–Mie theory. They performed experiments with polystyrene
and glass particles to verify the usefulness of the proposed method. They claim
to be able to size particles up to 50 µm, but the absorption along the refracted
ray must be extremely low to avoid unbalanced intensities.

An interesting situation arises when the drops are much larger than the
diameter of the laser beams and the test space. In this case the drop scatters
two pulses as it passes – a so-called ‘dual burst’. The reason for this is that there
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Fig. 9.15. Schematic diagram showing the geometry of the monoblock backward PDA.
The top picture shows the positions of the incident laser beams and of the scattered
light collecting optical fibres relative to the projecting lens. The lower picture shows
the incident laser beams being brought together at the focus of the lens and of the
collected scattered light originating from that point (after Blondel et al., 2001).

are effectively two ray paths, as suggested by Fig. 9.16. One ray is reflected by
the surface of the drop and the other is refracted through. This was originally
noted by Onofri et al. (1996a, 1996b), who showed that, for a known particle size,
the refractive index could be measured from the delay between the two pulses.
Further, if the drop is absorbing the extent of absorption can be obtained from
their relative heights. Thus the full complex refractive index could be obtained.

Of course, the loss of light along the refracted ray may not be caused by
absorption but due to scattering or extinction loss. Thus, Onofri et al. (1999)
proposed that the concentration of small inclusions within a drop may be de-
termined using the dual burst technique, the properties of the main drops being
obtained from reflected phase and frequency. They noted that the ratio of the
refracted to the reflected signal amplitudes changes significantly with particle
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Fig. 9.16. Ray diagram illustrating the principle of the generation of two pulses by
a spherical particle passing through a narrow laser beam (after Onofri et al., 1996a,
1996b).

location perpendicular to the expected main direction. This is a trajectory ef-
fect that needs to be corrected for, and they discuss means of correction of this
based on a gaussian laser beam. At low internal concentrations simple Beer-type
transmission may be used. However, at higher concentrations multiple scattering
occurs and a Monte Carlo model was applied. They performed experiments on
cylindrical jets to prove the method, there being no confirmation for spherical
drops.

Widmann et al. (2001b) have commented that the presence of burst splitting
will lead to false counting of particle number and, hence, to incorrect determina-
tion of particle flux. They presented several techniques to identify the occurrence
of burst splitting events, and discussed the impact of such events on the mea-
surements. They confirmed the significance to flux measurements, but found that
that the impact on size and velocity distributions was much weaker.

Damaschke et al. (2002a) have proposed a similar method to burst split-
ting to enable particle sizing in the backscatter direction at angles greater than
140◦. Because of the different path lengths between the reflected and refracted
rays there is a time delay between the two pulses that is proportional to the
particle size. The two pulses can be separated when the particle size is rather
greater than the width of the incident laser beam. Generally, the separation of
the fractional signals in time will be determined by the particle size, the relative
refractive index, the particle shape, and the particle velocity. Even for spheres
it is necessary to know the velocity to extract the size. This can be achieved
by using two laser beams in a LDA arrangement so that the velocity can be
measured from the signal modulation frequency.

When it is desirable to measure the sizes of inclusions inside drops (as in
a liquid containing fuel particles or soot, for example) there may be confusion
caused by the presence of bubbles. Thus it is necessary to have a means to
distinguish between these. Naqwi and Durst (1991) noted that the relationships
between phase and size for refraction and reflection indicate that a change in
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the relative refractive index around the value of unity will change the sign of the
phase shift. A recent paper by Ziema et al. (2001) proposes a method based on
this observation in which the interference fringes in the test space are made to
move using Bragg cells. Separate LDA optics detect the direction of motion and
velocity of the particles or bubbles. The PDA detector then monitors the sign
of the phase shift.

It was mentioned above that even quite small deviations from spherical shape
could result in significant errors when using PDA (Doicu et al., 1996). For sizing
and characterisation of solid particles, such as coal, it must be recognised that
they are rarely, if ever, spherical. A modification to PDA that is capable of
measuring velocity, size and shape is shadow Doppler velocimetry (SDV). In
this, the particle passes through the fringes formed by two laser beams as in
regular LDV and an offset detector measures the velocity from the frequency
of the signal in the usual way. In addition, however, an extra lens images the
particle onto a plane where a linear array detector is situated. As the shadow
image of the particle crosses this detector the array gives the length of cross-
section. The shape of the cross-section is then determined after the whole particle
has traversed the array. A diagrammatic representation of the equipment is seen
in Fig. 9.17.

Laser Beam 
splitter 

Probe 
volume 

Shadow 
detection 

LDV 
detection

Fig. 9.17. Diagram illustrating an optical layout for shadow laser Doppler measure-
ments (after Doicu et al., 1996).

SDV was originally developed by Hardalupas et al. (1994) and Morikita et
al. (1995). Concern over the influence of particles in out of focus planes on size
determination (Jones et al., 2002) led to a detailed analysis for two incident
gaussian beams by Ren et al. (2003). From an extensive series of numerical
computations, the behaviour of a shadow Doppler velocimeter was simulated,
including the location of the image as a function of the angle between the two
incident beams.

Morikita et al. (1995) pointed out that SDV could potentially be used to
measure some extra properties of particles, such as the trajectory angle in a
plane perpendicular to the optical axis. This information is especially important
when precise particle shape reconstruction and flux measurements are required.
However, Matsuura et al. (2004) state that the accuracy of the trajectory angle
measurement by normal SDV is not sufficient for particles passing near the
centre of the probe volume, with respect to the direction parallel to the optical
axis. These authors replaced the single line array detector with two parallel
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arrays of optical fibres. With a known separation of the two arrays and the
measured shift of particle position can be established. In addition, stereoscopic
SDV was developed by installing the arrays separately in two independent SDV
optical systems. This provided stereoscopic views of the particles and enabled
measurement of the trajectory angle in a plane parallel to the two laser beams,
which is important for accurate particle flux estimation (Morikita et al., 1997).

Rheims et al. (1999) proposed a system similar to shadow Doppler, except
that the particle was not imaged onto the detector. In their set-up the line scan
sensor covers an off-axis angular range from 30◦ to 60◦. It is arranged in this
position for two reasons: the intensity of scattered light is at maximum, and the
scattered light shows distinct modulations with a clear variation with particle
size. The authors provide examples of sizing homogeneous spheres and those
containing emulsions.

A major advantage of LDV and PDA is that there is very good spatial res-
olution. However, this implies that measurements need to be made at a large
number of different sites in order to obtain a spatial distribution of properties
of a spray. A way to partially avoid this problem while retaining good spatial
resolution in one dimension is to use a laser sheet as the illuminating source. It
is then only necessary to move the sheet along one axis in the spray.

The laser sheet is formed by the use of cylindrical lenses, one of the earliest
descriptions of its use being by Long et al. (1979). Conventional light scattering
measurements can be made out of the sheet, but to obtain results over the body
of a spray it has become common to observe images of the particles, either
directly or by inference. Evidently the image is limited by the quality of the
optical arrangement, so the method will be most suitable to particles above
some minimum size.

The image of an opaque particle can be recorded directly and image analysis
software can be used to retrieve the size. In principle the same is true for a
transparent drop, but in that case the situation is complicated by the presence
of glare spots. These arise from a reflection from the drop surface and from one
refracted path through the liquid; rather in the way that dual Doppler bursts
are produced for very narrow beams. These bright spots will dominate an image
but can also be used for sizing. For a given scattering angle and a spherical drop
the spots will always appear at the same angular position on the surface and,
so, their separation is proportional to diameter. Alternatively, the image can
be deliberately recorded in an out-of-focus plane. In this case the glare spots
act as point sources and interfere at the detector. The fringe separation is then
inversely proportional to the diameter of the drop. Fig. 9.18, after the work of
Maeda et al. (2002), shows how the two planes may be recorded.

Burke et al. (2003) have described a holographic technique that is a mixture of
both approaches. They state that larger droplets are best analysed at the image
plane where the glare spots are recorded. However, smaller droplets are easier to
analyse in the out-of-focus method and the fringe patterns are recorded. Photo-
graphic techniques allow only one of these planes to be chosen and are therefore
not suitable for a range of drop sizes, whereas holography allows recording in
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Fig. 9.18. Diagram showing the optical layout for either imaging the glare spots from
a transparent sphere, or their interference pattern (after Maeda et al., 2002).

depth. Unfortunately holography often suffers from low sensitivity, and in this
work this problem was overcome using digital recording and analysis.

Early work on the interferometric method was reported by Roth et al. (1991)
who gave an analysis for the angular fringe spacing on the form

δ =
2λ
d

1

cos
θ

2
+

m sin
θ

2√
m2 + 1 − 2m cos

θ

2

where θ is the scattering angle, d is the diameter of the drop, m is the refractive
index and δ is the angular fringe spacing. Later, for a scattering angle of 90◦,
Golombok et al. (1998) derived the approximate form

δ � 2λ
d

m

m+ 1

The full equation and the quality of the approximation were compared with Mie
theory by Mounaim-Rousselle and Pajot (1999). The result is seen in Fig. 9.19.
The authors claim that the significance of refractive index is small, especially at
large particle sizes.

Maeda et al. (2002) and Kawaguchi et al. (2002) refer to the interferometric
method as ‘interferometric laser imaging for droplet sizing’, or ILIDS. They note
that conventional ILIDS, which observes a circular image with fringes, has dif-
ficulties at high concentration in evaluating the fringe spacing accurately owing
to overlapping of the circular images. They propose a modification in which the
circular images are optically compressed using cylindrical lenses. They then have
the form of linear images that are horizontally defocused and vertically focused
keeping the information of the location and the size of droplets. Damaschke et al.
(2002a) derived limits on concentration to avoid overlapping images in ILIDS.
They expressed their result in terms of an overlap probability coefficient as a
function of number density and the parameters of the optical system.
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Fig. 9.19. Comparison of various calculations of the fringe spacing due to transparent
drops of iso-octane as a function of drop size. The refractive index of the drops is
1.39 and the illuminating wavelength is 0.532 µm (after Mounaim-Rousselle and Pajot,
1999).

A variation on imaging was originally described by Wang and Tichenor (1991)
that involved imaging particles onto a variable frequency grating. For a certain
particle size roughly equal to the grating spacing the signal fell to a minimum.
Velocity can also be determined. Card and Jones (2003a) developed the method
by using a laser sheet that was trimmed to have a ‘top hat’ intensity profile
both to provide uniform illumination and to restrict the depth of field. The
predicted response was obtained by a Fourier analysis of a circle crossing the
square wave grating, and comparison with experiment is shown in Fig. 9.20.
Using this method irregular particles down to approximately 3.8 µm could be
sized, the restriction being mainly due to the limited resolution of the optical
system. The method was successful for certain particle types that were rough or
irregular, partly absorbing or translucent. It was not successful for transparent
spheres that display glare spots in the image, or other particles that produce
localised regions of high brightness.

A technique showing promise is planar fluorescence imaging, which was orig-
inally suggested by Yeh et al. (1993). The fundamental principle behind this
is that while scattered intensity is proportional to the area of the particle
(Isca = K1d

2) the fluorescence intensity depends upon the volume (Ifl = K2d
3).

For a size distribution the average squared and cubed diameters are found and
the ratio is

Ifl
Isca

=
K2d3

K1d2
= K3d32

so that the Sauter mean diameter is measured directly. Evidently, K1 depends
upon the refractive index of the drop while K2 is a function of the particular
fluorescent dye used and its concentration. The presence of the dye may influence
the refractive index of the drop if the concentration is too large, so some care
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Fig. 9.20. Comparisons of theoretical predictions (a, c, e) and experiments (b, d, f)
for spheres (circles) crossing a variable square wave grating. The arrows indicate the
positions of the first minima (Card and Jones, 2003a).

is required. While, in principle, the functions for K1 and K2 can be calculated,
other complications mean that calibration is required to find K3. PDA has been
used for this purpose.

Using this technique, Le Gal et al. (1999) produced laser sheet images of
the distribution of Sauter mean diameter in a cross-section of a spray. Further,
Jermy and Greenhalgh (2000) found that they could successfully measure size
in a spray that was too dense for PDA. The uncertainty of the measured drop
sizes was estimated at ±7%, neglecting multiple scattering. However, it was
acknowledged that multiple scattering was a large source of uncertainty.
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An iterative correction scheme to allow for multiple scattering based on the
Beer–Lambert law was proposed by Abu-Gharbieh et al. (2000). Jermy and Allen
(2002) also explored the potential influence of multiple scattering using a Monte–
Carlo photon transport model for transmission from the laser sheet through a
half cone representing the rest of the spray. Up to 50% of the photons may be
multiply scattered, but because forward scattering dominates for large particles
the image is little affected. For smaller or absorbing particles the effects are more
serious.

Domann and Hardalupas (2001) and Domann et al. (2002) have examined
fluorescence intensity distributions within droplets both by geometrical optics
and Mie theory. The nature of the internal structure was verified by experimen-
tal observations. A quantitative comparison of volume integrated energy results
showed that for the investigated range of absorptivity Mie theory calculations
lead to results that are ≈30% higher than in the geometrical optics case. Sur-
face waves were identified as the cause for the discrepancies between the two as
they cause high energy density in the rim region of the droplet images. However,
the two methods gave good agreement on the general relationship between the
volume and fluorescence intensity, as can be seen in Fig. 9.21. In both cases the
fluorescent signal varies as d2.96 so that the difference between Mie theory and
geometrical optics can be corrected by a simple constant.
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Fig. 9.21. Relationship between the volume and fluorescence intensity from a laser
irradiated drop based both on Mie theory and ray optics. The refractive index of the
drops is 1.333–i10−5 (after Domann et al., 2002).

Measurements on heated water drops containing rhodamine 6G were made
by Duwel et al. (2004) which showed that after some initial variation due to
oxygen penetration, the fluorescence remained constant. This suggested that the
signal is independent of drop size during evaporation and that the dye totally
accumulates within the drop. In consequence, they concluded that this dye could
not be used for size measurement. However, the ratio of Mie to fluorescence signal
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is very sensitive to small changes in the drop surface. Potentially this could yield
important information about evaporation and spray break up.

Boedec and Simoens (2001) made simultaneous measurements of velocity
of droplets and ambient gas in the case of two-phase flow mixing. The basic
principle of separation was to seed the ambient gas with micrometre particles
and to add fluorescent dye to the liquid. The velocities were obtained using
particle image velocimetry (PIV), while the fluorescence yielded the Sauter mean
diameter.

An overview of fluorescence techniques in combustion systems with partic-
ular relevance to gas turbines has been provided by McDonel and Samuelsen
(2000). In spray-fired systems there is a need to discriminate between phases
in order to study fuel–air mixing. Numerous methods have been developed to
provide information on the liquid drops, as are reviewed in this chapter. The
measurement of fuel–air mixing in sprays is complicated by the need to dis-
criminate the vapour from the liquid droplet phase. One strategy for measuring
the vapour concentration in the presence of droplets is the use of light extinc-
tion. By using absorption lines at 3.39 µm for hydrocarbons in conjunction with
a non-absorbing wavelength (e.g. 0.6328 µm) the vapour concentration along a
line of sight can be deduced. Since the droplets scatter both wavelengths, but
only the 3.39 µm wavelength is absorbed by vapour, the relative transmission of
the two wavelengths yields the amount of extinction due to the presence of the
vapour alone. However, there is evidence that this method may be limited to di-
lute sprays. Some of the practical difficulties in the application of (laser induced
fluorescence) LIF in fuel–air sprays are discussed by de Sercey et al. (2002).

Apart from size, the refractive index of the drops in a spray is of interest.
This is partly to identify the constitution of the liquid, but also to determine the
temperature of the drop from the known variation of refractive index (Roth et
al., 1990). A technique that has been employed in this context for large drops is
measurement at the rainbow angle. According to ray optics the angle at which the
rainbow occurs is independent of size, which removes this variable. In addition
the intensity of the scattered light is high at the rainbow. These properties make
the rainbow method sound very attractive.

In reality the rainbow is only independent of size for diameters in excess
of 60 µm (Massoli et al., 1993). Also, a serious drawback in flames is that a
temperature gradient is likely to exist within a fuel drop that will affect the
rainbow position and can lead to very significant errors (Schneider et al., 1993).
However, Anders et al. (1996) using a geometric optics analysis suggested that
if the surface temperature was known independently, then the rainbow could be
used to measure the internal temperature gradient.

van Beeck et al. (2003) state that rainbow measurements on water sprays
yield sizes between the normal mean and Sauter mean diameters (as measured
by PDA) and temperatures correct to within a few degrees. Apart from tem-
perature gradients, they have pointed to two other problems, namely droplet
asphericity and a ripple structure that strongly perturbs the rainbow interfer-
ence pattern from which one deduces the droplet’s parameters. They resolved
these last two difficulties by the use of global rainbow thermometry (GRT),
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Fig. 9.22. Comparison of the mean size of drops in a fan-shaped water spray obtained
from rainbow measurements with mean sizes obtained using PDA (after van Beeck et
al., 2003).

which was originally proposed by van Beeck et al. (1999). In their technique the
rainbows scattered by a volume of the spray containing many drops are recorded
simultaneously. In this way the high frequency ripple structures that are super-
imposed on the Airy fringes are averaged out owing to the size distribution, as
are the effects of individual drop asphericity owing to random orientation. Their
analysis is based on the angular positions of the inflection points about the main
rainbow peak. Temperature is deduced from the first inflection, which is found
to be very close to the geometric rainbow angle. The mean size is found from
the separation between this and the second inflection. They find that the mean
size obeys the equation

drainbow = 531.6λ (θinf2 − θinf1)
−3/2

A comparison with PDA measurements is shown in Fig. 9.22.
Hom and Chigier (2002) agree that it is necessary to measure the average

over many drops. For single drops less than 30 µm errors in measured water
temperature can be almost ±18.8◦C at 50◦C and ±8.3◦C for ethanol at any
temperature. For larger particles this is reduced to ±5.7◦C for water at 50◦C and
±2.5◦C for ethanol at any temperature. van Beeck et al. (2001) found that the
temperature derivation from inflection points appears to be independent of spray
dispersion, and reported preliminary measurements in a heated water spray. The
accuracy of the temperature measurement by global rainbow thermometry was
also shown to be a few degrees Celsius.

The potential for the use of the rainbow for absorption spectroscopy was
explored by Card and Jones (2003b). By using a CCD camera and a xenon lamp
light source, two-dimensional records were made of intensity against angle and
wavelength for water sprays containing food dyes. The absorbance (A) is defined
by I = I010−A where I is the transmitted intensity and I0 is the intensity in the
absence of absorption. Provided that m2 	 m1, where m1 and m2 are the real
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Fig. 9.23. Comparison between the ray optics prediction of absorbance at the rainbow
and Mie theory for a range of size parameters, with m1 = 1.33 (after Card and Jones,
2003b).

and imaginary parts of the complex refractive index, geometric optics analysis
gives

A =
16

2.303m1

√
m2

1 − 1
3

m2x

which is a simple linear function of the size parameter (x) and m2. Comparisons
with Mie theory, as in Fig. 9.23, show that the response is linear for m2x < 0.3.
Drop sizes were estimated from the separation of the first and second rainbow
peaks. Qualitatively the agreement between the theoretical predictions and the
observed spectra was excellent. Quantitatively recovered values of m2 were rea-
sonable, though there were some discrepancies that were yet to be explained and
accurate sizing is a crucial factor.

Some considerations for the future of spray diagnostics have been reviewed
by Bachalo (2000).

In the combustion of coal the size and flux of particles is important, but so
is their nature. As coal burns away it will form chars and ash. The latter is
a particularly important product because it is non-combustible, is produced in
large quantities, can have very significant effects on radiative heat transfer and
causes slagging of furnace surfaces. Thus ash production needs to be monitored.
Its composition is also important. If it contains too much unburned carbon this
is a sign of poor combustion efficiency. Further, ash is either sold for the manu-
facture of concrete or is buried. In both cases the carbon content has important
consequences.

An optical method for measuring the mass fraction of carbon in fly-ash was
developed by Ouazzane et al. (2002). In this technique the particle cloud is
illuminated with a polarised laser beam, but owing to the irregular shape of the
particles the scattered light is partially depolarised. The extent of depolarisation
depends upon the absorptivity of the particle. If the absorptivity is more then the
depolarisation is less, because less light can penetrate, thus reducing the internal
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Fig. 9.24. Measurements of the residual carbon in fly ash from a range of coals by
means of the cross-polarisation ratio in scattered light. The solid line is a linear least
squares fit to the data, and the broken lines are plus and minus one standard deviation
(after Ouazzane et al., 2002).

reflections. Measurements on ashes from a wide range of coals demonstrated that
there was a linear relationship between depolarisation and carbon mass fraction,
as seen in Fig. 9.24.

9.4 Numerical inversion

There is a very large body of literature on the theory of direct inversion of light
scattering data to yield particle size distribution. This is really beyond the scope
of this chapter, especially as there is a whole journal (Inverse Problems) devoted
to the subject. However, for the benefit of readers who may wish to pursue the
subject, some of the more recent studies are referenced here.

A brief review emphasising biological particles has been provided by Popovici
et al. (1999). They suggest that for quasi-monodisperse systems the Phillips–
Twomey method is probably best, but for true polydisperse systems they pre-
ferred a combined Chahine–linear programming method.

The problem of overcoming the difficulties due to weak signals in noise and
multiple scattering in dynamic light scattering systems has been studied by
Buttgereit et al. (2001). Two scattering experiments are performed simultane-
ously in a three-dimensional geometry in such a way that the two scattering
vectors and scattering volumes are the same, but the corresponding wave vec-
tors do not coincide. Correlation measurements are then made at various points
in the scattering pattern. Ruf et al. (2000) also consider noise in DLS experi-
ments.

Inversion of diffraction measurements as in the Malvern analyser with semi-
circular photo-detectors is discussed by Wang et al. (2001). Their method begins
with a guess at the size distribution represented as an N -dimensional point. The
next guess is the projection of this point onto a hyperplane defined by the energy
received by the next ring on the detector. The solution is represented by the point
where all the hyperplanes intersect. A number of iterations of this method may
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be required, but it always converges. A cut-off is determined simply by when the
log of the residual error falls below a certain value. They claim that the method
is stable and reliable and has good performance in the presence of noise.

A number of studies consider genetic or evolutionary programming to in-
vert multi-wavelength extinction spectra. The method described by Lienert et
al. (2001) searches for lognormal size distribution parameters whose calculated
extinctions best fit the data. They show that, even in the case of a single lognor-
mal distribution, many different distributions can fit the same set of extinction
data unless the misfit is reduced below typical measurement error levels. In the
case of a bimodal distribution, they find many dissimilar size distributions that
fit the data to within 1% at six wavelengths. To recover the original bimodal
distribution satisfactorily, they found that extinctions at 10 wavelengths must
be fitted to within 0.5%. Li and Wilkinson (2001) discuss the retrieval of size
distribution both for known and unknown refractive indices. Ye et al. (1999a,
1999b) conclude that genetic algorithms are superior to Monte Carlo inversion
methods. Hodgson (2001) applied genetic algorithms to multimodal distributions
of spheres, and Hodgson (2000) extended the technique to the determination the
complex refractive index as well as size.

Li et al. (2004) examined light scattering by irregular particles based on
the modified Wentzel–Kramers–Brillouin (WKB) and equisphere (EPS) meth-
ods and their potential to address the inverse-scattering problem by means of a
spectral analysis of the total scattering cross-section of arbitrarily shaped par-
ticles. They concluded that, while EPS may be slightly better for some shapes,
the modified WKB is better overall. An advantage of the two approximations is
that they can easily be linearised for inversion schemes.

An inversion scheme for chain-like aggregates has been given by Shu and
Charalampopoulos (2000b). The method entails the selection of suitable scat-
tering quantities and their optimal measurement angles. The authors describe a
rigorous interactive theory for chains of particles and stress the importance of
correct orientation averaging.

A popular area for study is the application of neural networks to inversion.
While these techniques take a long time to train, they are very rapid otherwise.
Among the studies in this area are those by Wang et al. (1999) and Li et al.
(2002)

Other methods include adaptive numerical filtering (Hespel and Delfour,
2000) and analytical inversion of the anomalous diffraction approximation
(Franssens et al., 2000)

9.5 Inclusions

In many situations there exist liquid drops containing solid particles or smaller
immiscible drops. The combustion of slurries and emulsified fuels has received
some attention, but one of the main areas of concern is the presence of inclusions
in atmospheric aerosol. The latter may be particulates of soot, ash (either from
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combustion or volcanic sources), soil or sand. The nature of these aerosols has
influence on radiative transfer in the atmosphere and, thus, on climate.

Some prospects for the measurement of inclusions have been mentioned
above. For optically large particles there are two glare spots, one from direct
reflection from the surface and one from internal refraction. The ratio of these
two intensities can be used to indicate the internal extinction losses. It has been
proposed that the dual burst PDA method can be used for the same purpose,
and proposals were made to discriminate between bubbles and solid particles
(Naqwi and Durst, 1991; Onofri et al., 1999; Ziema et al., 2001).

Possible methods to measure the size of the host drop and the concentration
of the inclusions based on polar diagrams have been suggested by Wriedt and
Schuh (2002). Light scattering simulations showed significant changes in the
scattered intensity distribution for drops with different inclusion concentrations,
as can be seen in Fig. 9.25. Their evaluation reduced to only two parameters,
namely angular fringe spacing and the slope in the angular scattering domain
30–70◦. The fringe spacing can be used to find the size of the host particle for
concentrations below 1%.

0 30 60 90 120 150 180
Scattering angle (deg.)

-7

-5

-3

-1

1

lo
g(

in
te

ns
ity

)(
a.

u.
) fv = 0.01

fv = 0.1
fv = 0.32
fv = 1.0
fv = 10.0

(a)

0.01 0.1 1 10 100 1000
xfv

-0.1

-0.08

-0.06

-0.04

-0.02

0

Sl
op

e

Size parameter of inclusions
2.75
9.17
21.4

(b)

Fig. 9.25. Influence of the presence of inclusions on light scattering by drops. (a) Polar
diagram as a function of volume fraction. xhost = 460, xinc = 2.75, mhost = 1.334,
minc = 1.6. (b) Slope of the scattered intensity in the angular range 30◦ to 70◦ for
280 < xhost < 1670 (after Wriedt and Schuh, 2002).
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For diagnostic and radiative transfer purposes the important parameters are
the polar diagram (phase function), albedo and turbidity. For complicated com-
pound materials a simple approach has been to derive an equivalent refractive
index and perform the calculations using Mie theory. There are a number of
models, perhaps the most common being the Maxwell–Garnett and Bruggeman
equations.

The simple Maxwell–Garnett theory assumes that the inclusions are vanish-
ingly small. Lakhtia and Vikram (1993) have proposed an equation that allows
for finite particle size and volume fraction

meq = mhost

√√√√√√1 +
2αfv

3

1 − αfv
3

where

α =
(minc/mhost)2 − 1

1 − [(minc/mhost)2 − 1]
[ 2
3 (1 − imhostx)eikmhostx − 1

]
Subscripts ‘host’ and ‘inc’ refer to the surrounding medium and the inclusions
respectively. The authors claim that this equation is applicable for |mjx| ≤ π/5
where j is either ‘host’ or ‘inc’, and for 0 ≤ fv ≤ 0.2.

An approximate formula based on the geometrical optics approximation was
developed by Sharma and Jones (2000) for scattering by a sphere with highly
absorbing randomly distributed inclusions. It was assumed that the rays prop-
agated unperturbed in the weakly absorbing host medium, but on hitting an
inclusion they were completely absorbed. In this model the real part of the
equivalent refractive index is the same as that of the host medium, but the
imaginary component becomes

m2,eq =
3fv
8x

+ (1 − fv)m2

The equation was compared for dispersions of coal in water against calculations
using a program developed by Mishchenko and Macke (1997) based on a Monte
Carlo approach. This demonstrated that the approximation would be useful for
predicting the absorption efficiency, asymmetry parameter and albedo of the
sphere, as suggested by Fig. 9.26.

In a later study (Sharma and Jones, 2003) the approximation was extended
to allow for absorption in the host medium together with an empirical term that
allowed for finite particle size. Here

m2,eq =
3fv
8x

+
1

25fv(1 + x)
(1 − fv)m2

Doicu and Wriedt (2001) performed more rigorous calculations for the equivalent
refractive index of a sphere with spherical inclusions using a recursive T-matrix
method. They calculated angular scattering and then used least squares to com-
pare the results with scattering by a homogeneous sphere with equivalent re-
fractive index. Some comparisons with the approximate formula of Sharma and
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Fig. 9.26. Comparison of the albedo, absorption efficiency and asymmetry parameter
for water drops containing absorbing inclusions between the approximate theory of
Sharma and Jones (2000) and the exact theory of Mishchenko and Macke (1997).
dhost = 100 µm, dinc = 10 µm, λ = 1 µm, minc = 1.7–i0.04 (after Sharma and Jones,
2000).

Table 9.2. Equivalent refractive index for different volume fractions (after Doicu and
Wriedt, 2001). The parameters used in the calculation were xhost = 500, xinc = 25,
mhost = 1.33 and minc = 1.28–i0.04.

Volume fraction 0.025 0.05 0.075 0.1
of inclusions

Equivalent refractive 1.34–i0.000385 1.35–i0.000765 1.35–i0.00112 1.35–i0.00138
index

Refractive index from 1.33–i0.000375 1.33–i0.000750 1.33–i0.00112 1.33–i0.00150
approximate formula

Jones (2000) are seen in Table 9.2. They concluded that the equivalent refractive
index method is most accurate when the inclusions and the volume concentration
are small and the difference between the two refractive indices is also small. At
larger values the fit is much poorer and this questions the existence of a suitable
solution.

The case of agglomerated soot in water was tackled by Markel and Shalaev
(1999). One of their main conclusions was that the absorption of the agglom-
erates is enhanced. They defined the enhancement factor (G) as the ratio of
the absorption cross section of carbon particles inside the water droplet and in
vacuum. Fig. 9.27 shows the enhancement factor against fractal dimension. G
is of the order 16 for Df = 1.8. Markel (2002) also found that enhancement
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Fig. 9.27. Average enhancement of absorption due to soot in water drops (10 < xhost <
1000) as a function of the fractal dimension of the soot aggregates (after Markel and
Shalaev, 1999).

factors are mostly of the order 10, but can be in excess of 10 000 at scattering
resonances.

9.6 Conclusions

The literature on light scattering, even when restricted to the years after 1999,
is very extensive. This chapter has concentrated on experimental methods of
relevance to studies in combustion. Thus much of the recent experimental work
has been omitted, and all of the theoretical studies. Even so, it can be seen from
this restricted review that the field remains very active and lively.

It is probably true that the simple measurement of the size of homogeneous
spheres has been very well covered over the years, and a number of excellent
commercial instruments are available. As far as these spheres are concerned the
remaining problems relate to measurements in difficult circumstances. Combus-
tion is a case in point, since it presents hostile environments of high temperatures
(and often high pressures) in fast-flowing dusty gases. Also, in industrial com-
bustors such as furnaces, turbines and internal combustion engines optical access
is limited.

Beyond homogeneous spheres the field remains open and active. The areas
that have been covered in this chapter have included heterogeneous spheres. This
relates to mixed fuels such as coal–water slurries and oil–water emulsions, and to
atmospheric aerosols containing inclusions. Beyond that there remains the whole
field of nonspherical particles, including the chain agglomerates that are such a
feature of studies on soot and nanoparticles. In addition, there is the question of
characterising particles through their refractive index and composition, examples
being the measurement of temperature and quantification of residual carbon in
fly-ash.

An important aspect of combustion is control because of its implications
to efficiency and emissions, and thus to the environment. This has not been
covered in this chapter, but evidently optical techniques play an important role.
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For further information, the review by Docquier and Candel (2002) may be
consulted. It gives a general review of control techniques, including a discussion
of sensors.

In summary, therefore, light scattering is still an active and evolving field of
study. Numerous exciting developments may be expected in the years to come.

9.7 Symbols

A Absorbance
a Radius of particle
ap Radius of primary particle
c Speed of light in vacuo
D Diffusion coefficient
Df Fractal dimension
d Diameter of particle
da Projected area equivalent diameter
dij Distance between touching particles in an agglomerate
dp Diameter of primary particle
d10 Mean diameter
d32 Sauter mean diameter
F (q) Scattering function for individual particles
fv Volume fraction
G Enhancement factor
I Intensity
I0 Incident intensity
IHH Horizontal polarisation scattered and incident
IHV Horizontal polarisation scattered and vertical incident
IVH Vertical polarisation scattered and horizontal incident
IVV Vertical polarisation scattered and incident
K Premultiplier in fractal description of agglomerates
Kext Extinction coefficient
k = 2π/λ Wavenumber
kb Boltzmann’s constant
L Path length
l Cavity mirror spacing
m = m1 − im2 Complex refractive index
meq Equivalent refractive index
N Number of particles
N Average number of particles in agglomerate
PF Pulverised fuel
Rg Radius of gyration
q Amplitude of scattering wave vector
q Scattering wave vector
R Reflectivity
Re Reynolds number



9 Light scattering in combustion 439

r Position vector
Smn Elements of the scattering matrix
S(q) Structure function in RGD theory
S(τ) Correlation function
T Temperature
v Velocity
w0 Laser gaussian beamwidth
x = πd/λ Particle size parameter
δ Angular fringe spacing
θ Scattering angle
λ Wavelength
ρ Density
τ Time delay; time constant; turbidity
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Durst, F. and Zaré, M. (1975) Proc LDA Symp., Copenhagen, pp. 403–429.
Duwel, I., Schorr, J., Wolfrum, J. and Schulz, C. (2004) Appl. Phys. B-Lasers Opt. 78

127–131.
Farias, T. L., Carvalho, M. G. and Koylu, U. O. (1995) Trans. ASME-J. Heat Trans.

117 152–159.
Farias, T. L., Koylu, U. O. and Carvalho, M. G. (1996) Appl. Optics 35 6560–6567.
Farmer, W. M. (1972) Appl. Optics 11 2603–2612.
Farmer, W. M. (1974) Appl. Optics 13 610–622.
Franssens, G., de Maziere, M. and Fonteyn, D. (2000) Appl. Optics 39 4214–4231.
Fristrom, R. M., Jones, A. R., Schwar, M. J. R. and Weinberg, F. J. (1973) Proc. 7th

Faraday Symposium, Chemical Society, London, pp. 183–197.
Gianinoni, I., Golinelli, E., Melzi, G., Musazzi, S., Perini, U. and Trespidi, F. (2003)

Opt. Lasers Eng. 39 141–154.
Golombok, M., Morin, V. and Mounaim-Rousselle, C. (1998) J. Phys. D 31 L59–L62.
Hardalupas, Y. and Taylor, A. M. K. P. (1994) Exp. Fluids 17 253–258.
Hardalupas Y., Hishida K., Maeda M., Morikita H., Taylor A. M. K. P., and Whitelaw

J. H. (1994) Appl. Opt. 33 8417–8426.
Hespel, L. and Delfour, A. (2000) Appl. Optics 39 6897–6917.
Hirleman, E. D. (1988) Optical Particle Sizing: Theory and Practice (G. Gouesbet and

G. Grehan, eds.), Plenum Press, New York, pp. 135–146.
Hodgson, R. J. W. (2000) J. Colloid Interface Sci. 229 399–406.
Hodgson, R. J. W. (2001) J. Colloid Interface Sci. 240 412–418.
Hom, J. and Chigier, N. (2002) Appl. Optics 41 1899–1907.
Hottel, H. C. and Broughton, F. P. (1932) Ind. Engng. Chem. (Analyt. Edn.) 4 166–

175.
Hottel, H. C. and Sarofim, A. F. (1967) Radiative Transfer, McGraw-Hill, New York.
Hu, B., Yang, B. and Koylu, U. O. (2003) Combust. Flame 134 93–106.
Jenkins, T. P. and Hanson, R. K. (2001) Combust. Flame 126 1669–1679.
Jermy, M. C. and Greenhalgh, D. A. (2000) Appl. Phys. B-Lasers Opt. 71 703–710.
Jermy, M. C. and Allen, A. (2002) Appl. Optics 41 4188–4196.



9 Light scattering in combustion 441

Jones, A. R. (1993) Light scattering for particle characterisation in Instrumentation
for flows with combustion (A. M. K. P. Taylor, ed.), Academic Press, London,
pp. 323–404.

Jones, A. R. (1999) Prog. Energy Comb. Sci. 25 1–53.
Jones A. R., Parasram N. T. and Taylor A. M. K. P. (2002) Meas. Sci. Technol. 13

317–330.
Kawaguchi, T., Akasaka, Y. and Maeda, M. (2002) Meas. Sci. Technol. 13 308–316.
Kim, H. W. and Choi, M. (2003) J. Aerosol. Sci. 34 1633–1645.
Kim, W., Sorensen, C. M. and Chakrabarti, A. (2004) Langmuir 20 3969–3973.
Klusek, C., Manickavasagam, S. and Menguc, M. P. (2003) J. Quant. Spectrosc. Radiat.

Transf. 79 839–859.
Kokhanovsky, A. A. and Weichert, R. (2001a) Appl. Optics 40 1507–1513.
Kokhanovsky, A. A., Weichert, R., Heuer, M. and Witt, W. (2001b) Appl. Optics 40

2595–2600.
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10 Absorption and scattering of light
in natural waters

Vladimir I. Haltrin

10.1 Introduction

In this chapter we restrict ourselves to the problems of absorptionabsorption
[1–13], elastic [1, 4, 5, 10, 14–22] and inelastic Raman [23–44] scattering of light,
and fluorescence [45–62] in natural waters. Owing to the lack of clear and simple
numerical procedures that connect scattering with easily measurable environ-
mental parameters, scattering by air bubbles in water [63–65], Brillouin scat-
tering [37, 66–69], and amplification of forward scattering by water turbulence
[70, 71] are omitted from consideration. All conclusions of this chapter will be
obtained mostly from analysis of experimental data with some additions de-
rived from theory and from analysis of numerical computations. We will discuss
in detail two basic inherent optical properties of natural water, the absorption
coefficient, a, the angular scattering coefficient, β, and inelastic parameters of
Raman scattering and fluorescence that are included as input parameters in a
scalar radiative transfer equation:[

1
v

∂

∂t
+ n∇ + c(λ,x)

]
L(λ,x,Ω) = QE(λ,x,Ω) +QI(λ,x,Ω), (10.1)

here L(λ,x,Ω) is a total radiance of light in water that depends on spatial
coordinates r and time t (here x = (r, t) is a combination of spatial coordinates
and time), and solid angle Ω = Ω(θ, ϕ); v is the speed of light in water; n is a
unit vector in the direction of propagation of light; λ is a wavelength of light;
c(λ,x) is an attenuation (or extinction) coefficient which is a sum of absorption
a and beam scattering b coefficients,

c(λ,x) = a(λ,x) + b(λ,x), (10.2)

with the scattering coefficient expressed through the angular elastic scattering
coefficient β(λ,x, cosϑ) as follows:

b(λ,x) =
∫

4π

dΩ′β(λ,x, cosϑ) ≡ 2π
∫ π

0
β(λ,x, cosϑ) sinϑ dϑ, (10.3)
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where cosϑ = nn′, n′ is a unit vector in the direction of initial propagation of
light.

The right part of eq. (10.1) consists of two source parts, elastic QE and
inelastic QI .

The elastic source

QE(λ, r,Ω) =
∫

4π

dΩ′β(λ, r, cosϑ)L(λ, r,Ω′), (10.4)

describes elastic scattering of light, i.e. scattering without change in wavelength.
The inelastic source

QI(λ,x,Ω) =
∑

j=R,C,Y

∫
λ′<λ

dλ′
∫

4π

dΩ′σj(λ′, λ,x, cosϑ)L(λ,x,Ω′), (10.5)

describes an input of energy to wavelength λ from lower wavelengths λ′ due to
inelastic processes of Raman scattering, red fluorescence by chlorophyll, and blue
fluorescence by yellow substance. Here σj (j = R,C, Y ) corresponds to Raman
scattering, and chlorophyll and yellow substance emission coefficients. We ignore
here anti–Stokes (blue–shifted) components that are significantly weaker than
Stokes (red–shifted) components.

The previous eqs (10.1)–(10.5) introduce the following basic inherent optical
properties of water:

a(λ,x) – absorption coefficient;
β(λ,x, cosϑ) – elastic angular scattering coefficient (or volume scattering func-

tion);
σR(λ′, λ, cosϑ) – Raman scattering differential emission coefficient;
σC(λ′, λ,x, cosϑ) – chlorophyll fluorescence differential emission coefficient;
σY (λ′, λ,x, cosϑ) – yellow substance fluorescence differential emission coeffi-

cient.

The dependence on x of all these inherent properties (except Raman scatter-
ing emission coefficient) is due to their dependence on concentrations of dissolved
and suspended matter in water. Knowledge of these five basic inherent properties
is enough to solve any scalar radiative transfer problem in a body of water.

Let us introduce additional four auxiliary inherent optical properties that are
widely used in optics of natural waters:

elastic light scattering phase function,

p(λ,x, cosϑ) =
β(λ,x, cosϑ)
b(λ,x)

, (10.6)

2π
∫ π

0
p(λ,x, cosϑ) sinϑ dϑ = 1; (10.7)
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single–scattering albedo (= probability of elastic scattering),

ω0 =
b

c
≡ b

a+ b
; (10.8)

backscattering coefficient,

bB(λ,x) = 2π
∫ π

π/2
β(λ,x, cosϑ) sinϑ dϑ; (10.9)

probability of backscattering, or ratio of backscattering to scattering

B(λ,x) =
bB(λ,x)
b(λ,x)

= 2π
∫ π

π/2
p(λ,x cosϑ) sinϑ dϑ; (10.10)

and Gordon’s parameter,

xG =
bB

a+ bB
≡ Bω0

1 − ω0 +Bω0
. (10.11)

Parameters ω0, B, and xG are dimensionless and vary in the following range
for any possible type of absorbing and scattering media in natural water:

0 ≤ ω0 ≤ 1, 0 ≤ B ≤ 0.5, 0 ≤ xG ≤ 1. (10.12)

Solutions to eq. (10.1) are the basis of deriving various apparent optical
properties such as diffuse attenuation coefficient, diffuse reflection coefficient,
remote sensing reflection coefficient, average cosines over radiance distribution
L, lidar equation, and others. In the following sections we consider inherent
optical properties of natural, and mostly oceanic, water, in detail.

10.2 Absorption of light in natural water

Natural oceanic, marine or lake water consists of water molecules and impurities
dissolved and suspended in water. Absorption of light occurs in water molecules,
molecules of yellow substance, also known as ‘Gelbstoff’, dissolved organic matter
(DOM), or colored dissolved organic matter (CDOM), and different kinds of
chlorophyll molecules that present in phytoplankton cells that grow in natural
waters. The composition of natural water is very complex and varies from region
to region. In this section we restrict ourselves to a simplistic model that takes
into account four major ingredients of absorption: pure water, two components
of yellow substance and an average type of chlorophyll. In this approximation
the absorption coefficient of natural water at wavelength of light λ at any fixed
depth can be written as:

a(λ) = aW (λ) + 0.06a0
C(λ)C0.65 + a0

FCF exp(−kFλ) + a0
HCH exp(−kHλ),

(10.13)
here aW is an absorption coefficient of pure water in m−1; a0

C is a specific ab-
sorption coefficient of chlorophyll in 1/m, and C is dimensionless concentra-
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tion of chlorophyll, C = CC/C0, where CC is a concentration of chlorophyll in
mg/m3, and C0 = 1 mg/m3. The absorption by yellow substance or DOM is
split into two parts: absorption by fulvic acid and absorption by humic acid.
Both components of DOM, fulvic and humic acids, have similar optical prop-
erties with different absorption and fluorescence coefficients. For typical marine
water the composition of fulvic and humic acids is, approximately, constant with
ζ = CH/(CF + CH) = 0.1. By introducing the total concentration of DOM

CY = CF + CH , (10.14)

we can rewrite eq. (10.13) in the following simplified form:

a(λ) = aW (λ) + 0.06a0
C(λ)C0.65 + a0

Y CY exp(−kY λ). (10.15)

The numerical values of aW and a0
C are given in Table 10.1, and coefficients

a0
j and kj for j = F,H, Y are given in Table 10.2. The spectral behavior of all

absorption components is shown in Fig. 10.1.
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10 Absorption and scattering of light in natural waters 449

Table 10.1. Spectral absorption coefficient of pure water and specific spectral absorp-
tion coefficient of chlorophyll [8, 9]

λ, nm aw, m−1, a0
C , m−1 λ, nm aw, m−1 a0

C , m−1 λ, nm aw, m−1 a0
C , m−1

380.0 0.01137 0.538 497.5 0.01910 0.693 615.0 0.26780 0.268
382.5 0.01044 0.557 500.0 0.02040 0.668 617.5 0.27070 0.272
385.0 0.00941 0.576 502.5 0.02280 0.657 620.0 0.27550 0.276
387.5 0.00917 0.597 505.0 0.02560 0.645 622.5 0.28100 0.287
390.0 0.00851 0.618 507.5 0.02800 0.631 625.0 0.28340 0.299
392.5 0.00829 0.639 510.0 0.03250 0.618 627.5 0.29040 0.308
395.0 0.00813 0.662 512.5 0.03720 0.600 630.0 0.29160 0.317
397.5 0.00775 0.685 515.0 0.03960 0.582 632.5 0.29950 0.325
400.0 0.00663 0.687 517.5 0.03990 0.555 635.0 0.30120 0.333
402.5 0.00579 0.734 520.0 0.04090 0.528 637.5 0.30770 0.334
405.0 0.00530 0.781 522.5 0.04160 0.516 640.0 0.31080 0.334
407.5 0.00503 0.804 525.0 0.04170 0.504 642.5 0.32200 0.330
410.0 0.00473 0.828 527.5 0.04280 0.489 645.0 0.32500 0.326
412.5 0.00452 0.855 530.0 0.04340 0.474 647.5 0.33500 0.341
415.0 0.00444 0.883 532.5 0.04470 0.459 650.0 0.34000 0.356
417.5 0.00442 0.898 535.0 0.04520 0.444 652.5 0.35800 0.372
420.0 0.00454 0.913 537.5 0.04660 0.430 655.0 0.37100 0.389
422.5 0.00474 0.926 540.0 0.04740 0.416 657.5 0.39300 0.415
425.0 0.00478 0.939 542.5 0.04890 0.400 660.0 0.41000 0.441
427.5 0.00482 0.956 545.0 0.05110 0.384 662.5 0.42400 0.488
430.0 0.00495 0.973 547.5 0.05370 0.370 665.0 0.42900 0.534
432.5 0.00504 0.987 550.0 0.05650 0.357 667.5 0.43600 0.565
435.0 0.00530 1.001 552.5 0.05930 0.339 670.0 0.43900 0.595
437.5 0.00580 1.000 555.0 0.05960 0.321 672.5 0.44800 0.570
440.0 0.00635 1.000 557.5 0.06060 0.307 675.0 0.44800 0.544
442.5 0.00696 0.986 560.0 0.06190 0.294 677.5 0.46100 0.523
445.0 0.00751 0.971 562.5 0.06400 0.283 680.0 0.46500 0.502
447.5 0.00830 0.958 565.0 0.06420 0.273 682.5 0.47800 0.461
450.0 0.00922 0.944 567.5 0.06720 0.275 685.0 0.48600 0.420
452.5 0.00969 0.936 570.0 0.06950 0.276 687.5 0.50200 0.374
455.0 0.00962 0.928 572.5 0.07330 0.272 690.0 0.51600 0.329
457.5 0.00957 0.923 575.0 0.07720 0.268 692.5 0.53800 0.295
460.0 0.00979 0.917 577.5 0.08360 0.279 695.0 0.55900 0.262
462.5 0.01005 0.909 580.0 0.08960 0.291 697.5 0.59200 0.238
465.0 0.01011 0.902 582.5 0.09890 0.282 700.0 0.62400 0.215
467.5 0.01020 0.886 585.0 0.11000 0.274 702.5 0.66300 0.208
470.0 0.01060 0.870 587.5 0.12200 0.278 705.0 0.70400 0.190
472.5 0.01090 0.855 590.0 0.13510 0.282 707.5 0.75600 0.174
475.0 0.01140 0.839 592.5 0.15160 0.265 710.0 0.82700 0.160
477.5 0.01210 0.819 595.0 0.16720 0.249 712.5 0.91400 0.146
480.0 0.01270 0.798 597.5 0.19250 0.242 715.0 1.00700 0.134
482.5 0.01310 0.786 600.0 0.22240 0.236 717.5 1.11900 0.123
485.0 0.01360 0.773 602.5 0.24700 0.258 720.0 1.23100 0.112
487.5 0.01440 0.762 605.0 0.25770 0.279 722.5 1.35600 0.103
490.0 0.01500 0.750 607.5 0.26290 0.266 725.0 1.48900 0.094
492.5 0.01620 0.734 610.0 0.26440 0.252 727.5 1.67800 0.086
495.0 0.01730 0.717 612.5 0.26650 0.260
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Table 10.2. Parameters of yellow substance (‘Gelbstoff’ or DOM) absorption [2]

j → F (ζ = 0) H(ζ = 1) Y (ζ = 0.01) Y (ζ = 0.025) Y (ζ = 0.05) Y (ζ = 0.1)

a0
j , m2 mg 35.959 18.828 14.547 8.5472 6.2777 5.6797

kj , nm−1 0.0189 0.011 05 0.016 58 0.014 96 0.013 69 0.012 62

10.3 Elastic scattering of light in natural water

The light propagating in natural water elastically scatters on density fluctuations
of water molecules (Rayleigh scattering) and any kind of physical inhomogeneity
that is larger than the water molecule (Mie scattering). Such inhomogeneities
consist of any kind of suspended organic and terrigenic living or dead particles.
Terrigenic particles consist of small fractions of mineral origin that can be found
in any region of open ocean as well as in coastal areas of seas and in lakes; shallow
coastal areas also contain terrigenic fractions related to clays and suspended
quartz particles. Organic particles consist of living particles such as bacteria
[72–74], zooplankton and phytoplankton, and dead particles such as detritus and
zooplankton feces with predominant abundance of phytoplankton cells. In this
paragraph we consider Rayleigh scattering by pure water, and experimentally
measured volume scattering functions.

The elastic angular scattering coefficient and total elastic scattering coef-
ficient can be expressed as a sum of coefficients due to water molecules and
particular matter that consists of phytoplankton cells, detritus, bacteria, sus-
pended terrigenic particles of mineral origin, suspended clay particles, quartz
particles, etc.,

β(λ, cosϑ) = βW (λ, cosϑ) + βP (λ, cosϑ), b(λ) = bW (λ) + bP (λ). (10.16)

The particulate part depends on the concentration of suspended particles and
will be presented here in the tabular form of experimentally measured data and
in the form of experimentally derived optical models.

10.3.1 Rayleigh scattering in pure water

According to Morel [15] the pure water angular scattering coefficient may be
represented as:

βW (λ, ϑ) = bW (λ)pW (cosϑ), (10.17)

where

bW (λ) = (0.001 458 4 m−1)
(

550
λ

)4.34

, (10.18)

is a total natural base scattering coefficient of pure marine water with aver-
age salinity, temperature T = 20◦C, and depolarization factor δ = 0.09. The
wavelength λ in eq. (10.18) is in nm.
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The normalized according to eq. (10.7) phase function of scattering of pure
water that takes into account the depolarization effects with δ = 0.09 is:

pW (cosϑ) = 0.062 253 2 + 0.051 972 8 cos2ϑ (10.19)

10.3.2 Petzold experimental volume scattering functions

For almost three decades of the last century the experimental database of 15
angular scattering coefficients (ASC) β published by Petzold [75] was used by
ocean optics scientific community. These VSF have been measured with the
angular scattering meter with maximum sensitivity centered at 515 nm and with
the half-width of sensitivity about 60 nm. The waters that were used to measure
these angular scattering coefficients were taken in the coastal areas of the Pacific
Ocean near the shares of Southern California. The ranges of variability of integral
inherent optical properties were: 0.093 m−1 ≤ c ≤ 2.19 m−1; 0.008 m−1 ≤ b ≤
1.824 m−1; 0.082 m−1 ≤ a ≤ 0.764 m−1; 0.091 ≤ ω0 ≤ 0.906; 0.013 ≤ B ≤ 0.146.
The actual values of Petzold angular scattering coefficients with corresponding
inherent optical properties are given in Tables 10.3 and 10.4.

10.3.3 Mankovsky experimental volume scattering functions

More recently another 41 volume scattering functions with associated attenua-
tion and beam scattering coefficients that have been measured in natural wa-
ters of the Atlantic, Indian and Southern Oceans, the Mediterranean and Black
Seas, and Lake Baikal were published by Mankovsky and Haltrin [76, 77]. These
phase functions have been measured with a nephelometer (an angular scattering
meter) that has a maximum of sensitivity at 520 nm with the half-width of sen-
sitivity band about 40 nm. The ranges of variability of integral inherent optical
properties were: 0.115 m−1 ≤ c ≤ 1.105 m−1; 0.000 143 m−1 ≤ b ≤ 0.0103 m−1;
0.021 m−1 ≤ a ≤ 0.163 m−1; 0.435 ≤ ω0 ≤ 0.867; 0.0078 ≤ B ≤ 0.037. The
angular scattering coefficients and corresponding inherent optical properties are
given in Tables 10.5 and 10.6.

10.3.4 Lee experimental volume scattering functions

During the period between 2000 and 2004 more than a thousand high-resolution
angular light scattering coefficients of marine water have been measured with the
polar nephelometer that was developed and assembled by Michael E. Lee. The
maximum intensity of this nephelometer was centered at 550 nm. The complete
set of technical parameters of this probe was published in Haltrin et al., [78] and
Lee and Lewis [79]. The modified version of this nephelometer that has the ability
to measure angular scattering coefficients at six wavelengths (443, 490, 510, 555,
590, and 620 nm) was developed and tested in 2003 by M. E. Lee in waters of
Mobile Bay in the Gulf of Mexico. Some of the results of these measurements
are presented in this section.

The measurements of more than 60 angular scattering coefficients [80] have
been accomplished in 2000 in coastal waters near the shores of New Jersey in
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Table 10.5a. Mankovsky [76, 77] seawater angular scattering coefficients in m−1 ster−1

(cases 1–7). Values in parentheses represent extrapolated and interpolated values

ang, ◦ β01 β02 β03 β04 β05 β06 β07

(0.25) 146.29 56.691 32.871 57.838 23.036 43.313 22.265
(0.75) 85.333 36.418 20.961 28.243 12.411 32.249 16.673
(1.25) 50.982 23.884 13.640 14.313 6.9058 24.278 12.630
(1.50) 39.757 19.490 11.090 10.333 5.2133 21.150 11.041
(1.75) 31.197 15.985 9.0618 7.5304 3.9675 18.476 9.6787
2.0 24.267 13.032 7.3285 5.4327 2.9855 16.033 8.4143

(2.5) 15.621 9.0974 5.0994 3.0833 1.8362 12.520 6.6300
(3.5) 6.7564 4.6102 2.5452 1.0684 0.73573 7.7413 4.1669
(4.5) 3.2175 2.5352 1.3792 0.43005 0.33529 4.9982 2.7404
(5.5) 1.6866 1.5136 0.81155 0.20106 0.17387 3.3707 1.8863
(6.5) 0.97323 0.98088 0.51822 0.10915 0.10257 2.3742 1.3587
7.5 0.47634 0.55965 0.26786 0.45490E-01 0.45490E-01 1.5063 0.84706
12.5 0.12809 0.22260 0.84628E-01 0.19387E-01 0.19387E-01 0.47590 0.28676

(15.0) 0.97480E-01 0.14754 0.64404E-01 0.14925E-01 0.14925E-01 0.31183 0.17944
17.5 0.74185E-01 0.97795E-01 0.49013E-01 0.11490E-01 0.11490E-01 0.20432 0.11228
22.5 0.29855E-01 0.49547E-01 0.23715E-01 0.71617E-02 0.76739E-02 0.12735 0.73285E-01
27.5 0.21214E-01 0.32856E-01 0.13697E-01 0.42327E-02 0.47491E-02 0.62606E-01 0.44322E-01

(30.0) 0.16388E-01 0.23416E-01 0.10340E-01 0.37112E-02 0.39311E-02 0.53029E-01 0.31953E-01
32.5 0.12659E-01 0.16688E-01 0.78058E-02 0.32540E-02 0.32540E-02 0.44918E-01 0.23036E-01
37.5 0.96965E-02 0.14342E-01 0.43313E-02 0.22213E-02 0.22213E-02 0.21708E-01 0.13385E-01
42.5 0.36468E-02 0.76193E-02 0.39987E-02 0.15557E-02 0.17455E-02 0.21474E-01 0.87481E-02

(45.0) 0.29574E-02 0.59692E-02 0.29917E-02 0.13675E-02 0.13993E-02 0.13518E-01 0.71765E-02
47.5 0.23978E-02 0.46754E-02 0.22378E-02 0.12018E-02 0.11215E-02 0.85078E-02 0.58859E-02
52.5 0.17853E-02 0.32487E-02 0.16282E-02 0.89478E-03 0.89478E-03 0.59117E-02 0.43824E-02
57.5 0.12252E-02 0.24446E-02 0.13747E-02 0.70504E-03 0.70504E-03 0.43473E-02 0.30776E-02
62.5 0.93350E-03 0.16987E-02 0.10236E-02 0.51300E-03 0.57559E-03 0.34683E-02 0.21385E-02
67.5 0.64242E-03 0.15410E-02 0.10661E-02 0.47623E-03 0.47623E-03 0.24993E-02 0.20788E-02
72.5 0.55159E-03 0.11524E-02 0.77914E-03 0.39050E-03 0.39050E-03 0.17849E-02 0.14178E-02
77.5 0.44855E-03 0.89498E-03 0.56470E-03 0.35630E-03 0.35630E-03 0.15915E-02 0.11267E-02
82.5 0.39675E-03 0.90890E-03 0.49948E-03 0.28088E-03 0.28088E-03 0.13757E-02 0.11442E-02
87.5 0.36460E-03 0.69473E-03 0.57785E-03 0.25812E-03 0.28302E-03 0.13862E-02 0.91583E-03

(90.0) 0.37309E-03 0.61918E-03 0.49753E-03 0.25663E-03 0.28139E-03 0.12213E-02 0.91583E-03
92.5 0.38178E-03 0.55184E-03 0.42837E-03 0.25516E-03 0.27978E-03 0.10760E-02 0.91583E-03
97.5 0.36184E-03 0.62880E-03 0.40599E-03 0.27702E-03 0.27702E-03 0.99659E-03 0.99659E-03
102.5 0.33252E-03 0.57785E-03 0.37309E-03 0.27153E-03 0.27153E-03 0.98133E-03 0.67892E-03
107.5 0.34803E-03 0.60481E-03 0.38161E-03 0.26462E-03 0.29690E-03 0.10271E-02 0.79729E-03
112.5 0.39611E-03 0.54678E-03 0.34500E-03 0.28630E-03 0.28630E-03 0.97233E-03 0.68836E-03
117.5 0.34683E-03 0.54969E-03 0.43663E-03 0.31413E-03 0.31413E-03 0.91225E-03 0.70813E-03
122.5 0.41516E-03 0.62837E-03 0.42483E-03 0.33282E-03 0.33282E-03 0.90827E-03 0.72147E-03
127.5 0.46959E-03 0.64821E-03 0.45890E-03 0.34891E-03 0.34891E-03 0.10040E-02 0.91562E-03
132.5 0.54931E-03 0.63069E-03 0.48957E-03 0.40347E-03 0.35960E-03 0.10711E-02 0.91162E-03
137.5 0.59145E-03 0.69489E-03 0.50340E-03 0.40918E-03 0.45911E-03 0.11013E-02 0.10278E-02
(140) 0.64695E-03 0.74153E-03 0.50035E-03 0.43718E-03 0.46214E-03 0.11203E-02 0.11243E-02
142.5 0.70245E-03 0.78816E-03 0.49730E-03 0.46517E-03 0.46517E-03 0.11392E-02 0.12207E-02
147.5 0.74545E-03 0.85589E-03 0.55261E-03 0.48800E-03 0.48800E-03 0.12371E-02 0.10775E-02
152.5 0.70245E-03 0.82531E-03 0.36026E-03 0.53532E-03 0.53532E-03 0.13385E-02 0.12207E-02
157.5 0.96609E-03 0.11092E-02 0.50701E-03 0.58886E-03 0.58886E-03 0.20184E-02 0.13336E-02
162.5 0.10723E-02 0.11758E-02 0.56275E-03 0.57586E-03 0.61704E-03 0.20432E-02 0.15860E-02
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Table 10.5b. Mankovsky [76, 77] seawater angular scattering coefficients in m−1 ster−1

(cases 8–14). Values in parentheses represent extrapolated and interpolated values.

ang, ◦ β08 β09 β10 β11 β12 β13 β14

(0.25) 105.37 53.545 42.026 163.01 93.372 46.485 51.345
(0.75) 64.926 30.684 21.848 104.76 57.308 28.213 31.941
(1.25) 40.928 18.023 11.787 68.741 35.910 17.523 20.315
(1.50) 32.765 13.961 8.7804 56.133 28.656 13.929 16.335
(1.75) 26.382 10.890 6.6026 46.049 23.026 11.137 13.209
2.0 21.136 8.4143 4.9547 37.602 18.417 8.8112 10.593

(2.5) 14.240 5.3817 2.9670 26.074 12.366 5.8919 7.2180
(3.5) 6.7720 2.3121 1.1634 13.098 5.8373 2.7329 3.4840
(4.5) 3.5238 1.1074 0.52944 7.0993 3.0284 1.3901 1.8370
(5.5) 2.0064 0.59104 0.27952 4.1612 1.7227 0.77535 1.0581
(6.5) 1.2497 0.35157 0.17128 2.6255 1.0721 0.47424 0.66580
7.5 0.70456 0.16901 0.92879E-01 1.5784 0.58643 0.23330 0.35311

12.50 0.28023 0.59926E-01 0.87502E-01 0.58508 0.24390 0.70397E-01 0.12519
(15.0) 0.19450 0.42074E-01 0.47744E-01 0.45626 0.18587 0.47748E-01 0.86887E-01
17.5 0.13499 0.29540E-01 0.24571E-01 0.35499 0.14132 0.32386E-01 0.60306E-01
22.5 0.62376E-01 0.15672E-01 0.13336E-01 0.19734 0.55618E-01 0.18839E-01 0.31265E-01
27.5 0.30663E-01 0.10392E-01 0.86420E-02 0.96876E-01 0.27939E-01 0.10390E-01 0.14676E-01

(30.0) 0.24804E-01 0.84065E-02 0.67533E-02 0.74854E-01 0.22091E-01 0.88009E-02 0.11469E-01
32.5 0.20064E-01 0.68001E-02 0.52773E-02 0.57838E-01 0.17467E-01 0.74547E-02 0.89626E-02
37.5 0.14676E-01 0.41373E-02 0.37733E-02 0.40385E-01 0.11123E-01 0.41368E-02 0.59795E-02
42.5 0.98156E-02 0.34827E-02 0.27034E-02 0.34058E-01 0.79839E-02 0.31038E-02 0.41870E-02

(45.0) 0.88291E-02 0.27920E-02 0.21425E-02 0.28590E-01 0.65496E-02 0.24596E-02 0.35146E-02
47.5 0.79399E-02 0.22383E-02 0.16975E-02 0.24000E-01 0.53730E-02 0.19492E-02 0.29502E-02
52.5 0.64821E-02 0.18269E-02 0.13235E-02 0.14495E-01 0.40852E-02 0.17048E-02 0.20974E-02
57.5 0.42483E-02 0.14071E-02 0.10674E-02 0.12538E-01 0.30776E-02 0.14068E-02 0.16529E-02
62.5 0.30911E-02 0.11226E-02 0.10003E-02 0.85156E-02 0.22398E-02 0.11224E-02 0.12593E-02
67.5 0.25575E-02 0.10421E-02 0.88678E-03 0.60009E-02 0.18976E-02 0.10419E-02 0.10419E-02
72.5 0.19571E-02 0.79747E-03 0.59104E-03 0.39014E-02 0.12625E-02 0.79732E-03 0.91545E-03
77.5 0.15553E-02 0.71091E-03 0.60508E-03 0.35663E-02 0.12948E-02 0.81620E-03 0.81620E-03
82.5 0.11709E-02 0.61449E-03 0.48811E-03 0.25016E-02 0.11434E-02 0.61445E-03 0.72191E-03
87.5 0.98133E-03 0.52701E-03 0.49183E-03 0.23026E-02 0.10285E-02 0.61916E-03 0.61916E-03

(90.0) 0.89498E-03 0.51798E-03 0.48341E-03 0.21243E-02 0.94889E-03 0.56144E-03 0.56144E-03
92.5 0.81624E-03 0.50911E-03 0.47513E-03 0.19598E-02 0.87542E-03 0.50910E-03 0.50910E-03
97.5 0.79162E-03 0.57348E-03 0.45553E-03 0.18976E-02 0.84765E-03 0.57343E-03 0.57343E-03
102.5 0.76176E-03 0.46432E-03 0.30677E-03 0.18290E-02 0.81699E-03 0.46430E-03 0.46430E-03
107.5 0.64806E-03 0.43323E-03 0.28616E-03 0.14833E-02 0.77842E-03 0.43315E-03 0.50890E-03
112.5 0.68836E-03 0.40079E-03 0.37395E-03 0.16528E-02 0.73827E-03 0.37396E-03 0.40071E-03
117.5 0.64583E-03 0.43173E-03 0.34286E-03 0.17387E-02 0.77663E-03 0.43166E-03 0.43166E-03
122.5 0.67331E-03 0.38754E-03 0.32985E-03 0.15784E-02 0.99590E-03 0.45524E-03 0.45524E-03
127.5 0.72730E-03 0.40431E-03 0.34412E-03 0.14165E-02 0.89375E-03 0.46418E-03 0.46418E-03
132.5 0.70765E-03 0.46764E-03 0.35466E-03 0.15143E-02 0.91246E-03 0.35469E-03 0.46757E-03
137.5 0.69489E-03 0.39987E-03 0.39987E-03 0.15930E-02 0.89581E-03 0.39985E-03 0.46978E-03
(140) 0.76971E-03 0.42159E-03 0.39749E-03 0.16004E-02 0.95511E-03 0.36805E-03 0.48357E-03
142.5 0.84453E-03 0.44332E-03 0.39511E-03 0.16077E-02 0.10144E-02 0.33625E-03 0.49735E-03
147.5 0.74545E-03 0.48141E-03 0.40965E-03 0.17467E-02 0.98224E-03 0.36512E-03 0.48132E-03
152.5 0.86420E-03 0.52085E-03 0.48598E-03 0.18459E-02 0.88352E-03 0.48598E-03 0.48598E-03
157.5 0.96609E-03 0.66852E-03 0.58212E-03 0.23726E-02 0.94453E-03 0.44163E-03 0.58218E-03
162.5 0.91267E-03 0.75930E-03 0.69233E-03 0.21888E-02 0.11226E-02 0.57591E-03 0.69240E-03
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Table 10.5c. Mankovsky [76, 77] seawater angular scattering coefficients in m−1 ster−1

(cases 15–21). Values in parentheses represent extrapolated and interpolated values

ang, ◦ β15 β16 β17 β18 β19 β20 β21

(0.25) 30.802 41.392 30.303 29.081 34.223 29.211 78.944
(0.75) 16.977 22.554 19.393 17.419 22.874 18.136 44.589
(1.25) 9.6529 12.675 12.667 10.699 15.537 11.509 25.892
(1.50) 7.3643 9.6121 10.316 8.4637 12.882 9.2443 19.936
(1.75) 5.6622 7.3460 8.4441 6.7377 10.724 7.4656 15.457
2.0 4.3156 5.5595 6.8397 5.3093 8.8112 5.9571 11.886

(2.5) 2.6967 3.4345 4.7748 3.5294 6.3388 4.0636 7.5090
(3.5) 1.1185 1.3884 2.3978 1.6270 3.3267 1.9498 3.1594
(4.5) 0.52549 0.63503 1.3063 0.82909 1.8622 1.0212 1.4849
(5.5) 0.27963 0.32862 0.77216 0.46705 1.1117 0.58376 0.77958
(6.5) 0.16854 0.19240 0.49517 0.29084 0.70792 0.36426 0.45720
7.5 0.80894E-01 0.88698E-01 0.25581 0.14385 0.35311 0.17698 0.22280
12.5 0.39587E-01 0.36104E-01 0.80826E-01 0.53401E-01 0.75431E-01 0.50998E-01 0.80826E-01

(15.0) 0.27794E-01 0.28116E-01 0.58071E-01 0.37928E-01 0.53574E-01 0.38811E-01 0.52961E-01
17.5 0.19515E-01 0.21896E-01 0.41721E-01 0.26938E-01 0.38050E-01 0.29536E-01 0.34702E-01
22.5 0.12163E-01 0.10841E-01 0.24835E-01 0.17581E-01 0.21138E-01 0.17581E-01 0.17581E-01
27.5 0.70246E-02 0.94759E-02 0.14676E-01 0.94759E-02 0.94759E-02 0.10390E-01 0.94759E-02

(30.0) 0.57481E-02 0.70717E-02 0.10953E-01 0.75775E-02 0.80265E-02 0.88009E-02 0.75775E-02
32.5 0.47036E-02 0.52776E-02 0.81740E-02 0.60594E-02 0.67988E-02 0.74547E-02 0.60594E-02
37.5 0.31381E-02 0.37728E-02 0.59795E-02 0.35210E-02 0.47497E-02 0.47497E-02 0.37728E-02
42.5 0.23545E-02 0.23545E-02 0.34826E-02 0.31038E-02 0.34826E-02 0.34826E-02 0.23545E-02

(45.0) 0.19993E-02 0.21423E-02 0.34346E-02 0.24596E-02 0.27917E-02 0.29914E-02 0.19993E-02
47.5 0.16976E-02 0.19492E-02 0.33872E-02 0.19492E-02 0.22379E-02 0.25695E-02 0.16976E-02
52.5 0.13234E-02 0.15548E-02 0.18268E-02 0.18268E-02 0.17048E-02 0.18268E-02 0.15548E-02
57.5 0.10672E-02 0.11974E-02 0.18124E-02 0.16529E-02 0.18124E-02 0.16529E-02 0.14068E-02
62.5 0.10003E-02 0.11224E-02 0.17384E-02 0.12593E-02 0.14796E-02 0.12593E-02 0.85142E-03
67.5 0.77238E-03 0.88681E-03 0.15411E-02 0.11690E-02 0.13117E-02 0.10419E-02 0.77238E-03
72.5 0.59106E-03 0.69444E-03 0.10756E-02 0.91545E-03 0.10756E-02 0.91545E-03 0.59106E-03
77.5 0.51499E-03 0.60506E-03 0.93712E-03 0.71088E-03 0.71088E-03 0.71088E-03 0.51499E-03
82.5 0.52298E-03 0.52298E-03 0.82886E-03 0.61445E-03 0.61445E-03 0.52298E-03 0.52298E-03
87.5 0.49181E-03 0.52699E-03 0.72745E-03 0.52699E-03 0.52699E-03 0.52699E-03 0.49181E-03

(90.0) 0.48339E-03 0.51797E-03 0.65963E-03 0.56144E-03 0.56144E-03 0.56144E-03 0.40673E-03
92.5 0.47512E-03 0.50910E-03 0.59814E-03 0.59814E-03 0.59814E-03 0.59814E-03 0.33636E-03
97.5 0.45550E-03 0.48807E-03 0.48807E-03 0.57343E-03 0.67373E-03 0.48807E-03 0.45550E-03
102.5 0.46430E-03 0.46430E-03 0.43331E-03 0.64091E-03 0.46430E-03 0.46430E-03 0.43331E-03
107.5 0.40424E-03 0.43315E-03 0.40424E-03 0.43315E-03 0.43315E-03 0.43315E-03 0.40424E-03
112.5 0.40071E-03 0.37396E-03 0.40071E-03 0.47079E-03 0.55313E-03 0.47079E-03 0.37396E-03
117.5 0.36740E-03 0.43166E-03 0.43166E-03 0.58230E-03 0.50716E-03 0.36740E-03 0.36740E-03
122.5 0.38748E-03 0.45524E-03 0.45524E-03 0.60013E-03 0.45524E-03 0.45524E-03 0.38748E-03
127.5 0.40428E-03 0.46418E-03 0.40428E-03 0.62616E-03 0.40428E-03 0.46418E-03 0.40428E-03
132.5 0.40724E-03 0.40724E-03 0.40724E-03 0.46757E-03 0.46757E-03 0.40724E-03 0.35469E-03
137.5 0.39985E-03 0.39985E-03 0.39985E-03 0.46978E-03 0.46978E-03 0.39985E-03 0.39985E-03

(140.0) 0.42156E-03 0.44860E-03 0.44860E-03 0.48357E-03 0.45652E-03 0.42156E-03 0.39746E-03
142.5 0.44326E-03 0.49735E-03 0.49735E-03 0.49735E-03 0.44326E-03 0.44326E-03 0.39506E-03
147.5 0.40967E-03 0.56550E-03 0.56550E-03 0.48132E-03 0.40967E-03 0.48132E-03 0.48132E-03
152.5 0.44322E-03 0.59789E-03 0.48598E-03 0.52074E-03 0.44322E-03 0.52074E-03 0.44322E-03
157.5 0.38464E-03 0.66843E-03 0.38464E-03 0.86110E-03 0.58218E-03 0.76746E-03 0.50706E-03
162.5 0.51328E-03 0.87168E-03 0.57591E-03 0.64619E-03 0.64619E-03 0.97804E-03 0.64619E-03
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the Atlantic Ocean. The unique feature of this in situ experiment is that it was
made in coastal waters with the largest range of variability of beam scattering
coefficient known in the history of ocean optics (0.37 m−1 ≤ b ≤ 9.3 m−1). The
variability range of the probability of scattering was: 0.0058 ≤ B ≤ 0.0328. The
values of angular scattering coefficients have been measured at 590 scattering
angles between 0.6 and 177.3 degrees. The values of these VSF for a subset
of scattering angles with corresponding values of b, bB , and B are given in
Table 10.7.

10.3.5 Relationships between integral properties of experimental
light scattering phase functions

Analysis of a massive database of experimental light scattering phase functions
allows us to specify certain relationships between integral and angular properties
of phase functions that determine their shape [81]. These parameters, presented
in the decreasing order of importance, are:

B ≡ bB/b = 2π
∫ π

π/2
p(λ,x, cosϑ) sinϑ dϑ — the probability of backscattering;

p(140◦) — the value of the phase function at 140◦.

cosϑ = 2π
∫ π

0
p(cosϑ) cosϑ sinϑ dϑ — the average cosine over phase function;

cos2 ϑ = 2π
∫ π

0
p(cosϑ) cos2 ϑ sinϑ dϑ — the average square of cosine over

phase function.

The probability of backscattering B = bB/b is defined by eq. (10.10). It is
usually correlated with the total beam scattering coefficient [82]:

B = [0.5bW + 0.006 18(b− bW ) + 0.003 22(b− bW )2]/b, r2 = 0.88, (10.20)

with the scattering coefficient of pure water bW given by eq. (10.18). Relationship
(10.20) is derived for typical oceanic waters, that include a total of 101 Petzold,
Mankovsky and LEO-2000 measurements, it is valid for λ ≈ 500 ÷ 560 nm and
0.008 m−1 ≤ b ≤ 9.3 m−1.

The value of the phase function in the vicinity of 140◦ is correlated extremely
well with the probability of backscattering. According to Haltrin et al. [82] the
relationship based on more than 1000 phase functions, that include 15 Petzold
[75], 41 Mankovsky [76, 77, 83], and about a thousand Lee [80] phase functions,
is

B ≡ bB/b = 2πχp(140◦), bB = 2πχβ(140◦), χ = 1.15, r2 = 0.999,
(10.21)

with the phase function p normalized according to eq. (10.7). The similar re-
lationship for scattering at angle 120◦ was proposed earlier by Oishi [84] and
eq. (10.21) with χ = 1.08 is used currently in the backscattering probe Hy-
droScat by Hoby Labs [85].
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Table 10.7a. Total angular scattering coefficients in m−1 ster−1 measured at LEO-15
experiment in 2000 [80]

ang, ◦ β58 β59 β60 β57 β51 β16 β19

0.6 95.11 136.0 133.2 188.2 220.8 316.6 249.0
0.9 41.52 54.52 59.76 85.03 113.7 158.3 139.7
1.5 18.04 23.80 30.02 37.98 58.07 92.80 80.58
2.4 8.245 10.11 14.17 17.68 32.21 41.36 48.67
3.3 4.946 5.592 8.461 11.11 22.18 24.02 29.05
4.5 2.807 3.073 5.158 6.510 14.03 13.23 16.60
6.0 1.511 1.526 2.520 3.448 8.071 8.027 10.50
7.5 0.8835 0.8883 1.434 2.002 5.116 5.439 5.536
9.3 0.5038 0.5042 0.7735 1.048 2.931 2.796 3.120
11.4 0.2705 0.2622 0.3921 0.5267 1.517 1.594 1.727
13.5 0.1854 0.1789 0.2651 0.3763 1.042 1.150 1.162
15.6 0.1262 0.1218 0.1943 0.2550 0.7690 0.8176 0.8477
18.3 0.8264E-01 0.8177E-01 0.1287 0.1662 0.5058 0.5255 0.5498
21.0 0.6169E-01 0.6075E-01 0.9067E-01 0.1150 0.3556 0.3798 0.4029
23.7 0.4778E-01 0.4598E-01 0.6614E-01 0.8348E-01 0.2630 0.2835 0.2946
27.0 0.3321E-01 0.3248E-01 0.4682E-01 0.5951E-01 0.1849 0.1921 0.2010
30.0 0.2450E-01 0.2419E-01 0.3269E-01 0.4155E-01 0.1340 0.1447 0.1473
30.3 0.2395E-01 0.2358E-01 0.3187E-01 0.4032E-01 0.1303 0.1401 0.1440
33.6 0.1751E-01 0.1740E-01 0.2190E-01 0.2996E-01 0.9331E-01 0.1010 0.1062
37.2 0.1274E-01 0.1290E-01 0.1594E-01 0.2121E-01 0.6791E-01 0.7170E-01 0.7784E-01
41.1 0.9146E-02 0.9367E-02 0.1152E-01 0.1509E-01 0.4988E-01 0.5340E-01 0.5448E-01
45.0 0.6827E-02 0.6585E-02 0.8006E-02 0.1121E-01 0.3706E-01 0.4014E-01 0.4020E-01
49.2 0.4957E-02 0.4996E-02 0.5854E-02 0.7808E-02 0.2729E-01 0.2881E-01 0.3157E-01
53.4 0.3910E-02 0.3869E-02 0.4280E-02 0.5657E-02 0.2060E-01 0.2131E-01 0.2450E-01
57.9 0.3078E-02 0.3003E-02 0.3224E-02 0.4281E-02 0.1545E-01 0.1591E-01 0.1792E-01
63.0 0.2204E-02 0.2257E-02 0.2298E-02 0.3448E-02 0.1222E-01 0.1249E-01 0.1381E-01
67.8 0.1791E-02 0.1764E-02 0.1809E-02 0.2634E-02 0.9182E-02 0.9762E-02 0.1031E-01
72.9 0.1456E-02 0.1414E-02 0.1421E-02 0.2054E-02 0.7690E-02 0.8008E-02 0.8132E-02
78.0 0.1237E-02 0.1158E-02 0.1139E-02 0.1609E-02 0.6294E-02 0.6479E-02 0.6938E-02
83.4 0.1010E-02 0.9475E-03 0.9108E-03 0.1389E-02 0.5357E-02 0.5452E-02 0.5678E-02
90.0 0.8379E-03 0.8083E-03 0.7897E-03 0.1139E-02 0.4335E-02 0.4472E-02 0.4855E-02
95.4 0.7642E-03 0.7271E-03 0.6799E-03 0.1034E-02 0.3664E-02 0.4107E-02 0.4268E-02
101.1 0.7182E-03 0.6785E-03 0.5881E-03 0.9497E-03 0.3221E-02 0.3610E-02 0.3692E-02
107.4 0.6520E-03 0.6303E-03 0.5463E-03 0.8842E-03 0.3034E-02 0.3277E-02 0.3406E-02
113.7 0.6550E-03 0.5965E-03 0.5326E-03 0.8701E-03 0.2735E-02 0.3247E-02 0.3208E-02
120.0 0.6098E-03 0.6089E-03 0.5314E-03 0.8158E-03 0.2630E-02 0.3123E-02 0.3215E-02
127.2 0.6141E-03 0.5992E-03 0.5217E-03 0.7899E-03 0.2588E-02 0.2861E-02 0.3128E-02
127.5 0.6112E-03 0.5965E-03 0.5241E-03 0.7881E-03 0.2576E-02 0.2901E-02 0.3157E-02
134.1 0.6226E-03 0.6061E-03 0.5302E-03 0.7899E-03 0.2547E-02 0.2745E-02 0.2994E-02
148.5 0.6625E-03 0.6465E-03 0.6004E-03 0.7990E-03 0.2697E-02 0.2874E-02 0.3035E-02
140.0 0.6303E-03 0.6160E-03 0.5505E-03 0.7678E-03 0.2622E-02 0.2798E-02 0.2996E-02
156.0 0.7034E-03 0.6912E-03 0.6568E-03 0.8348E-03 0.2910E-02 0.3123E-02 0.3367E-02
163.8 0.8958E-03 0.8484E-03 0.9067E-03 0.1113E-02 0.3647E-02 0.3977E-02 0.4076E-02
172.2 0.1715E-02 0.1523E-02 0.1903E-02 0.2063E-02 0.5175E-02 0.6585E-02 0.6843E-02
177.3 0.5324E-02 0.4213E-02 0.5302E-02 0.4683E-02 0.8452E-02 0.1580E-01 0.1262E-01

b, m−1 0.3796 0.4341 0.5807 0.7823 1.631 1.822 2.012
bB , m−1 0.004352 0.004059 0.003930 0.005482 0.01879 0.02025 0.02234
B = bB/b 0.01147 0.009349 0.006768 0.007007 0.01152 0.01111 0.01110
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Table 10.7b. Total angular scattering coefficients in m−1 ster−1 measured at LEO-15
experiment in 2000 [80]

ang, ◦ β34 β53 β33 β56 β27 β42 β3

0.6 565.9 358.1 531.2 413.7 677.1 638.6 643.7
0.9 254.5 181.6 235.7 210.2 335.5 320.8 309.5
1.5 107.3 98.63 108.2 117.7 185.2 157.8 158.7
2.4 47.72 50.47 53.24 63.93 76.50 69.06 83.31
3.3 25.93 32.66 30.08 44.44 43.02 39.38 40.99
4.5 13.39 19.01 16.49 26.35 21.61 19.29 22.07
6.0 6.618 11.38 10.10 13.27 11.26 10.43 12.49
7.5 4.053 6.792 6.099 8.142 6.378 6.490 7.494
9.3 2.425 4.018 3.840 4.718 3.449 4.133 4.663
11.4 1.321 2.094 2.215 2.436 1.865 2.467 2.629
13.5 0.9544 1.265 1.601 1.555 1.308 1.829 1.962
15.6 0.6978 0.9290 1.154 1.032 0.9433 1.470 1.408
18.3 0.4642 0.5862 0.7435 0.6588 0.5980 0.9914 0.9925
21.0 0.3394 0.4121 0.5374 0.4537 0.4322 0.7590 0.7704
23.7 0.2557 0.2904 0.3956 0.3249 0.3263 0.5933 0.5884
27.0 0.1835 0.1968 0.2687 0.2222 0.2232 0.4133 0.4195
30.0 0.1386 0.1426 0.1987 0.1643 0.1606 0.3186 0.3309
30.3 0.1358 0.1387 0.1933 0.1610 0.1555 0.3099 0.3226
33.6 0.1027 0.1007 0.1446 0.1185 0.1150 0.2329 0.2499
37.2 0.7581E-01 0.7499E-01 0.1062 0.8664E-01 0.8427E-01 0.1796 0.1935
41.1 0.5751E-01 0.5598E-01 0.7839E-01 0.6306E-01 0.6481E-01 0.1365 0.1468
45.0 0.4423E-01 0.4286E-01 0.5865E-01 0.4653E-01 0.4794E-01 0.1062 0.1145
49.2 0.3402E-01 0.3013E-01 0.4308E-01 0.3410E-01 0.3433E-01 0.8208E-01 0.9010E-01
53.4 0.2623E-01 0.2323E-01 0.3260E-01 0.2569E-01 0.2568E-01 0.6520E-01 0.7026E-01
57.9 0.1994E-01 0.1778E-01 0.2451E-01 0.1922E-01 0.2012E-01 0.5096E-01 0.5659E-01
63.0 0.1509E-01 0.1318E-01 0.1920E-01 0.1475E-01 0.1458E-01 0.3911E-01 0.4273E-01
67.8 0.1215E-01 0.1040E-01 0.1501E-01 0.1134E-01 0.1163E-01 0.3071E-01 0.3465E-01
72.9 0.1009E-01 0.8223E-02 0.1192E-01 0.8969E-02 0.9113E-02 0.2479E-01 0.2791E-01
78.0 0.8313E-02 0.6715E-02 0.1010E-01 0.7307E-02 0.7123E-02 0.2033E-01 0.2370E-01
83.4 0.6962E-02 0.5445E-02 0.8134E-02 0.5858E-02 0.6091E-02 0.1668E-01 0.1949E-01
90.0 0.5926E-02 0.4345E-02 0.6596E-02 0.4696E-02 0.4816E-02 0.1368E-01 0.1647E-01
95.4 0.5126E-02 0.3855E-02 0.5852E-02 0.4053E-02 0.4204E-02 0.1203E-01 0.1482E-01
101.1 0.4696E-02 0.3468E-02 0.5167E-02 0.3604E-02 0.3554E-02 0.1092E-01 0.1320E-01
107.4 0.4323E-02 0.3090E-02 0.4606E-02 0.3249E-02 0.3489E-02 0.9711E-02 0.1238E-01
113.7 0.3997E-02 0.3105E-02 0.4398E-02 0.3131E-02 0.3196E-02 0.9359E-02 0.1169E-01
120.0 0.3808E-02 0.2729E-02 0.4039E-02 0.3004E-02 0.3039E-02 0.8897E-02 0.1098E-01
127.2 0.3765E-02 0.2723E-02 0.3920E-02 0.2984E-02 0.3074E-02 0.8735E-02 0.1056E-01
127.5 0.3773E-02 0.2742E-02 0.3911E-02 0.2916E-02 0.3109E-02 0.8755E-02 0.1054E-01
134.1 0.3679E-02 0.2686E-02 0.4039E-02 0.2943E-02 0.2997E-02 0.8775E-02 0.1061E-01
148.5 0.3906E-02 0.2938E-02 0.4162E-02 0.3117E-02 0.3109E-02 0.9252E-02 0.1081E-01
140.0 0.3722E-02 0.2825E-02 0.4108E-02 0.2925E-02 0.3027E-02 0.8863E-02 0.1059E-01
156.0 0.3988E-02 0.3133E-02 0.4338E-02 0.3402E-02 0.3324E-02 0.9644E-02 0.1098E-01
163.8 0.4642E-02 0.4131E-02 0.5239E-02 0.4653E-02 0.4006E-02 0.1080E-01 0.1204E-01
172.2 0.6291E-02 0.7727E-02 0.7133E-02 0.9094E-02 0.6319E-02 0.1391E-01 0.1454E-01
177.3 0.8684E-02 0.1503E-01 0.1080E-01 0.1814E-01 0.1137E-01 0.2204E-01 0.1598E-01

b, m−1 2.102 2.256 2.495 2.739 3.009 3.296 3.533
bB , m−1 0.02657 0.02020 0.02869 0.02078 0.02167 0.06251 0.07637
B = bB/b 0.01264 0.008952 0.01150 0.007587 0.007203 0.01896 0.02162
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Table 10.7c. Total angular scattering coefficients in m−1 ster−1 measured at LEO-15
experiment in 2000 [80]

ang, ◦ β37 β4 β47 β46 β45 β41 β48

0.6 688.0 802.8 899.9 966.8 952.4 815.5 107.1
0.9 373.8 389.6 440.7 506.2 512.7 421.1 588.6
1.5 213.1 183.5 188.4 200.1 208.9 219.5 310.3
2.4 104.9 79.92 83.40 91.90 85.87 100.3 155.2
3.3 61.04 40.89 43.17 45.01 53.07 60.45 93.51
4.5 31.59 21.91 23.18 23.51 24.54 32.99 54.30
6.0 15.54 12.04 12.06 12.77 13.06 17.92 29.91
7.5 9.049 7.774 7.856 8.557 8.069 11.39 19.45
9.3 5.053 4.804 5.072 5.424 5.246 7.201 12.56
11.4 2.544 2.683 3.070 3.179 3.168 4.309 7.868
13.5 1.635 2.045 2.340 2.428 2.437 3.261 6.121
15.6 1.137 1.526 1.771 1.834 1.819 2.451 4.763
18.3 0.7221 1.046 1.286 1.310 1.330 1.752 3.498
21.0 0.4984 0.8140 1.024 1.060 1.064 1.382 2.811
23.7 0.3553 0.6377 0.8057 0.8362 0.8548 1.085 2.207
27.0 0.2441 0.4652 0.5918 0.6185 0.6192 0.7824 1.625
30.0 0.1748 0.3553 0.4669 0.4823 0.4930 0.6158 1.273
30.3 0.1704 0.3449 0.4583 0.4681 0.4829 0.6004 1.244
33.6 0.1226 0.2622 0.3583 0.3692 0.3809 0.4639 0.9657
37.2 0.8822E-01 0.2073 0.2839 0.2926 0.3019 0.3593 0.7531
41.1 0.6377E-01 0.1584 0.2250 0.2384 0.2437 0.2776 0.5927
45.0 0.4694E-01 0.1264 0.1833 0.1894 0.1931 0.2195 0.4719
49.2 0.3424E-01 0.9764E-01 0.1446 0.1543 0.1538 0.1724 0.3697
53.4 0.2562E-01 0.7738E-01 0.1189 0.1234 0.1282 0.1385 0.2977
57.9 0.1917E-01 0.6118E-01 0.9754E-01 0.1012 0.1049 0.1108 0.2403
63.0 0.1405E-01 0.4793E-01 0.7712E-01 0.8041E-01 0.8182E-01 0.8559E-01 0.1866
67.8 0.1124E-01 0.3860E-01 0.6341E-01 0.6597E-01 0.6727E-01 0.6861E-01 0.1516
72.9 0.9007E-02 0.3088E-01 0.5202E-01 0.5474E-01 0.5519E-01 0.5552E-01 0.1216
78.0 0.7355E-02 0.2616E-01 0.4277E-01 0.4491E-01 0.4601E-01 0.4523E-01 0.9927E-01
83.4 0.6118E-02 0.2176E-01 0.3583E-01 0.3761E-01 0.3880E-01 0.3779E-01 0.8257E-01
90.0 0.4927E-02 0.1810E-01 0.2973E-01 0.3143E-01 0.3212E-01 0.3122E-01 0.6727E-01
95.4 0.4291E-02 0.1620E-01 0.2625E-01 0.2763E-01 0.2804E-01 0.2732E-01 0.5913E-01
101.1 0.3851E-02 0.1471E-01 0.2334E-01 0.2462E-01 0.2534E-01 0.2480E-01 0.5331E-01
107.4 0.3448E-02 0.1342E-01 0.2129E-01 0.2240E-01 0.2285E-01 0.2220E-01 0.4796E-01
113.7 0.3152E-02 0.1284E-01 0.2005E-01 0.2067E-01 0.2118E-01 0.2106E-01 0.4548E-01
120.0 0.3066E-02 0.1238E-01 0.1906E-01 0.2039E-01 0.2022E-01 0.2020E-01 0.4324E-01
127.2 0.2976E-02 0.1193E-01 0.1863E-01 0.1920E-01 0.1967E-01 0.1979E-01 0.4215E-01
127.5 0.2983E-02 0.1193E-01 0.1859E-01 0.1916E-01 0.1958E-01 0.1974E-01 0.4215E-01
134.1 0.2948E-02 0.1158E-01 0.1829E-01 0.1956E-01 0.1958E-01 0.1988E-01 0.4196E-01
148.5 0.3116E-02 0.1190E-01 0.1876E-01 0.1969E-01 0.2036E-01 0.2039E-01 0.4294E-01
140.0 0.2989E-02 0.1165E-01 0.1833E-01 0.1902E-01 0.1954E-01 0.1997E-01 0.4209E-01
156.0 0.3354E-02 0.1224E-01 0.1911E-01 0.1997E-01 0.2055E-01 0.2096E-01 0.4374E-01
163.8 0.4194E-02 0.1323E-01 0.2043E-01 0.2100E-01 0.2157E-01 0.2231E-01 0.4333E-01
172.2 0.7089E-02 0.1595E-01 0.2313E-01 0.2428E-01 0.2420E-01 0.2418E-01 0.3714E-01
177.3 0.8822E-02 0.1856E-01 0.3517E-01 0.3920E-01 0.3646E-01 0.3771E-01 0.4496E-01

b, m−1 3.720 3.797 4.386 4.650 4.668 5.367 9.263
bB , m−1 0.02164 0.08509 0.1330 0.1400 0.1435 0.1420 0.3034
B = bB/b 0.005818 0.02241 0.03032 0.03011 0.03074 0.02646 0.03276
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The best relationship between average cosine and probability of backscatter-
ing is given by Haltrin [86]:

cos(ϑ) = 2
1 − 2B
2 +B

, r2 = 0.999, (10.22)

This relationship is derived from experimental data by Timofeyeva [87–89], cor-
rected to match theoretical asymptotics for isotropic (B = 0.5, cos(ϑ) = 0) and
delta-shaped scattering (B = 0, cos(ϑ) = 1), and later successfully tested with
the available database of more than 1000 experimental phase functions.

The second physically correct relationship derived by Haltrin [86] from Tim-
ofeyeva’s [87–89] data,

cos2(ϑ) =
6 − 7B

3(2 +B)
, r2 = 0.999, (10.23)

did not pass as well as eq. (10.21) the applicability test on a set of newly measured
phase functions. Instead, some alternative regionally dependent ‘non-physical’
regressional relationship

cos2(ϑ) = 0.985 cos(ϑ), r2 = 0.996, (10.24)

was proposed [80].

10.4 Raman scattering of light in natural water

The model of Raman scattering is presented here according to Haltrin and Kat-
tawar [30] with corrections by Gordon [28], Faris and Copeland [27], and Bartlett
et al. [23]. The frequency redistribution is derived from the works by Walrafen
[42, 43]. To be consistent with the elastic scattering and absorption models the
Raman scattering model is presented in a wavelength representation.

The wavelength distribution of the Raman scattering coefficient is:

σR(λ′, λ, cosϑ) = bR(λ′, λ)fR(λ′, λ)pR(λ′, λ, cosϑ), (10.25)

bR(λ′, λ) = bR0
v4

(v2i − v′2)2
≡ bR0

[
λ2

iλ
′2

λ2(λ′2 − λ2
i )

]2
,

bR0 = 0.018 m−1, vi = 88.000 cm−1, λi � 113.636 nm,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(10.26)

here bR(λ′, λ) is a total Raman scattering coefficient, λ′ and λ (in nanometers)
are wavelengths of excitation and emission, ν′ = kν/λ

′, and ν = kν/λ are ex-
citation and emission wave numbers (both in inverse centimeters), kν = 1 ≡
107 nm/cm, νi and λi are frequency and wavelength of intermediate resonance
[27], pR is a Raman angular scattering phase function [28, 90]:

pR(λ′, λ, cosϑ) =
3

4π[3 + γ(νS)]
[1 + γ(νS) cos2 ϑ], (10.27)
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γ(νS) =
1 − ρ(νS)
1 + 3ρ(νS)

, νS = ν′ − ν ≡ kν(λ− λ′)
λλ′ (10.27a)

pR is normalized according to eq. (10.7), ρ(νS) is the Raman depolarization
ratio, and

fR(λ′, λ) = −dν′

dλ′σ
R
ν (ν′, ν) =

ν′2

kν
fR

ν (ν′, ν), (10.28)

∫
fR

ν (ν′, ν) dν′ ≡
∫
fR

ν (ν′, ν) dν ≡
∫
fR

ν (νS) dνS = 1, (10.28a)

is the frequency redistribution of Raman-scattered light. The Raman depolar-
ization ratio ρ(νS) is given in Table 10.8 and shown with γ(νS) in Fig. 10.2.

The Raman scattering frequency redistribution is represented according to
the data of Walrafen [42, 43], namely:
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Fig. 10.2. Raman scattering parameters as a function of frequency shift
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Table 10.8. Raman depolarization ratio ρ(νS) and parameter γ(νS); νS in cm−1

νS ρ γ νS ρ γ νS ρ γ νS ρ γ

2900.0 0.20052 0.49919 3125.8 0.084249 0.73099 3350.7 0.15928 0.56888 3575.8 0.28748 0.38257
2905.2 0.20846 0.48699 3130.1 0.081258 0.73867 3355.0 0.16076 0.56618 3580.1 0.29194 0.37747
2910.4 0.20945 0.48549 3135.3 0.078762 0.74517 3360.2 0.16274 0.56259 3585.4 0.29740 0.37131
2915.5 0.19552 0.50706 3140.4 0.076763 0.75042 3365.4 0.16471 0.55905 3590.6 0.30732 0.36040
2920.6 0.16073 0.56624 3145.6 0.074764 0.75573 3370.6 0.16669 0.55551 3595.8 0.31924 0.34773
2925.7 0.14382 0.59812 3150.8 0.072268 0.76243 3375.8 0.17016 0.54939 3600.2 0.32469 0.34209
2930.8 0.13586 0.61392 3155.1 0.071762 0.76380 3380.1 0.17363 0.54335 3605.4 0.33064 0.33604
2935.1 0.12641 0.63339 3160.3 0.071750 0.76383 3385.3 0.17660 0.53824 3610.6 0.33610 0.33058
2940.2 0.11745 0.65260 3165.5 0.072236 0.76252 3390.5 0.17907 0.53404 3615.8 0.34155 0.32522
2945.4 0.10999 0.66920 3170.7 0.073715 0.75854 3395.7 0.18253 0.52822 3620.1 0.34452 0.32233
2950.5 0.099046 0.69457 3175.9 0.075194 0.75459 3400.0 0.18551 0.52327 3625.3 0.34799 0.31899
2955.7 0.098538 0.69578 3180.2 0.075682 0.75329 3405.2 0.19146 0.51356 3630.5 0.35245 0.31475
2960.0 0.10250 0.68642 3185.4 0.076664 0.75068 3410.4 0.19492 0.50801 3635.7 0.34946 0.31759
2965.2 0.10050 0.69113 3190.6 0.079137 0.74419 3415.6 0.19889 0.50174 3640.8 0.34597 0.32093
2970.4 0.10049 0.69115 3195.7 0.081610 0.73776 3420.8 0.20236 0.49633 3645.2 0.34844 0.31856
2975.6 0.10048 0.69117 3200.1 0.082097 0.73651 3425.2 0.20533 0.49175 3650.3 0.34495 0.32192
2980.7 0.095998 0.70187 3205.3 0.085067 0.72891 3430.4 0.20830 0.48723 3655.5 0.33351 0.33316
2985.1 0.096485 0.70070 3210.5 0.087540 0.72267 3435.6 0.21077 0.48350 3660.6 0.32605 0.34070
2990.3 0.098461 0.69596 3215.6 0.087032 0.72395 3440.8 0.21374 0.47907 3665.7 0.30964 0.35790
2995.4 0.099941 0.69245 3220.8 0.086524 0.72523 3445.1 0.21820 0.47250 3670.0 0.30218 0.36601
3000.6 0.10390 0.68316 3225.1 0.086514 0.72525 3450.3 0.22465 0.46319 3675.2 0.29769 0.37099
3005.8 0.10787 0.67401 3230.3 0.087496 0.72278 3455.5 0.22961 0.45617 3680.4 0.29719 0.37155
3010.2 0.10786 0.67404 3235.5 0.088479 0.72032 3460.7 0.23506 0.44860 3685.6 0.30016 0.36824
3015.3 0.10834 0.67294 3240.7 0.089958 0.71664 3465.0 0.23903 0.44317 3690.8 0.30561 0.36226
3020.5 0.10833 0.67296 3245.0 0.091936 0.71176 3470.2 0.24299 0.43784 3695.1 0.30013 0.36828
3025.7 0.10782 0.67413 3250.2 0.094409 0.70571 3475.4 0.24745 0.43192 3700.2 0.29267 0.37664
3030.0 0.10781 0.67415 3255.4 0.097379 0.69855 3480.6 0.25191 0.42608 3705.4 0.28471 0.38578
3035.2 0.10979 0.66965 3260.6 0.10035 0.69148 3485.8 0.25637 0.42034 3710.5 0.27824 0.39339
3040.4 0.11574 0.65636 3265.8 0.10332 0.68451 3490.2 0.25835 0.41782 3715.7 0.27723 0.39459
3045.6 0.11424 0.65968 3270.1 0.10579 0.67878 3495.4 0.26182 0.41344 3720.0 0.27822 0.39341
3050.8 0.11473 0.65859 3275.3 0.10876 0.67198 3500.6 0.26727 0.40666 3725.2 0.28019 0.39108
3055.1 0.11621 0.65532 3280.5 0.11173 0.66528 3505.8 0.27074 0.40241 3730.4 0.27770 0.39403
3060.3 0.11669 0.65427 3285.7 0.11570 0.65645 3510.1 0.27321 0.39942 3735.5 0.27371 0.39881
3065.5 0.11519 0.65757 3290.1 0.11966 0.64779 3515.3 0.27618 0.39585 3740.7 0.26823 0.40548
3070.6 0.11319 0.66201 3295.3 0.12363 0.63927 3520.5 0.27866 0.39289 3745.1 0.28512 0.38531
3075.8 0.11069 0.66762 3300.5 0.12759 0.63091 3525.7 0.27964 0.39173 3750.3 0.30101 0.36730
3080.1 0.10820 0.67326 3305.7 0.13255 0.62065 3530.0 0.28062 0.39057 3755.5 0.30398 0.36404
3085.3 0.10521 0.68012 3310.9 0.13800 0.60962 3535.2 0.28310 0.38766 3760.7 0.30744 0.36027
3090.5 0.10271 0.68593 3315.2 0.14048 0.60468 3540.4 0.28159 0.38943 3765.1 0.31041 0.35707
3095.6 0.099222 0.69415 3320.4 0.14245 0.60080 3545.5 0.27761 0.39414 3770.3 0.31189 0.35549
3100.8 0.096727 0.70011 3325.6 0.14393 0.59790 3550.7 0.27412 0.39832 3775.4 0.30542 0.36247
3105.1 0.094729 0.70494 3330.8 0.14690 0.59214 3555.0 0.27411 0.39833 3780.6 0.29696 0.37181
3110.3 0.091737 0.71225 3335.1 0.14938 0.58739 3560.2 0.27708 0.39477 3785.7 0.29049 0.37912
3115.5 0.089241 0.71842 3340.3 0.15235 0.58176 3565.4 0.28055 0.39066 3790.0 0.29297 0.37630
3120.6 0.086745 0.72467 3345.5 0.15631 0.57436 3570.6 0.28302 0.38775 3797.7 0.26761 0.40624
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fR
ν (ν′, ν) = kR

4∑
i=1

αi exp
[
− (ν′ − ν − ∆νi)2

2σ2
i

]
,

fR
ν (νS) = kR

4∑
i=1

αi exp
[
− (νS − ∆νi)2

2σ2
i

]
, (10.29)

where

kR =

(√
2π

4∑
i=1

αiσi

)−1

= 5.152 · 10−3 cm.

Values of αi, ∆νi, and σi are given in Table 10.9. The Raman scattering model
presented here coincides with the Haltrin and Kattawar [30] model if we neglect
ν2 � 4 × 108 cm−2 in eq. (10.26) in comparison with ν2

i ≈ 7.7 × 109 cm−2 and
set γ in eq. (10.27) to be equal to 0.6.

Table 10.9. Raman frequency distribution parameters [30]

i αi ∆νi, cm−1 σi, cm−1

1 0.41 3250 89.179
2 0.39 3425 74.317
3 0.10 3530 59.453
4 0.10 3625 59.453

10.5 Chlorophyll fluorescence in natural water

The chlorophyll or red fluorescence is represented according to Gordon [48] in
the interpretation of Haltrin and Kattawar [30]:

σC(λ′, λ, cos γ) ≡ σC(λ′, λ) = a0
C(λ′)CCη

C(λ′, λ), (10.30)

ηC(λ′, λ) =

⎧⎨
⎩
ηC
0

4π
λ′

λ0F

1√
2πσ2

exp
[
− (λ− λ0F )2

2σ2

]
, 370 nm ≤ λ′ ≤ 690 nm

0, elsewhere,
(10.31)

here ηC
0 � 0.05 (an average value by Kiefer [51]), λ0F � 683 nm, σ = 10.6 nm.

10.6 Yellow substance (Gelbstoff, DOM or CDOM)
fluorescence in natural water

The most advanced yellow substance fluorescence model was proposed by Hawes
et al. [49]. According to this model, the yellow substance components fluorescence
emission coefficient can be expressed as follows:

χj(λ′, λ) = aj(λ′)ηj(λ′, λ) ≡ a0
j exp(−kjλ

′)ηj(λ′, λ), j = F,H, (10.32)
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with the coefficients a0
j and kj given in Table 10.2, and the spectral fluorescence

efficiency function ηj represented by the following empirical equation:

ηj(λ′, λ) = Aj
0(λ

′) exp

⎧⎨
⎩−

[
1/λ−Aj

1/λ
′ −Bj

1

0.6(Aj
2/λ

′ +Bj
2)

]2
⎫⎬
⎭ , j = F,H, (10.33)

with the coefficients Aj
0(λ

′), Aj
1, A

j
2, B

j
1, B

j
2 given in Table 10.10a and 10.10b.

This model is more advanced than the model for chlorophyll fluorescence because
the predominant part of yellow substance or DOM is dissolved in water and the
yellow substance is easier to process experimentally than the chlorophyll which
is imbedded into living phytoplanktonic cells [1].

Table 10.10a. Parameters for fluorescence model η(λx, λm) of fulvic and humic acids
[49]

λx, nm Fulvic acid Humic acid

FA7 FA8 FA9 FA11 HA1 HA2 HA4 HA6 HA8

A0(λx) 310 5.18 4.48 5.21 5.09 2.49 2.78 4.83 5.77 3.61

×105 330 6.34 5.67 6.57 6.27 2.68 3.13 5.11 6.86 4.01

350 8.00 7.23 7.93 7.93 2.95 3.73 5.94 7.27 0.46

370 9.89 9.26 9.93 9.76 3.34 4.42 7.20 8.37 5.48

390 9.39 9.06 9.93 8.72 2.77 4.03 6.53 7.08 5.06

410 10.48 9.22 9.47 7.93 2.26 3.91 6.41 7.80 5.05

430 12.59 10.14 10.21 8.15 2.63 4.41 7.66 8.90 5.66

450 13.48 9.90 10.08 7.75 2.72 4.52 7.55 9.30 5.70

470 13.61 9.70 10.11 7.70 2.65 4.75 7.88 8.41 5.32

490 9.27 7.90 8.34 5.98 2.20 4.29 6.81 6.68 4.42

A1 0.470 0.389 0.466 0.471 0.304 0.379 0.346 0.447 0.356

B1 × 104 8.077 10.073 8.340 8.204 12.169 10.043 10.891 8.594 10.694

A2 0.407 0.386 0.386 0.386 0.591 0.362 0.411 0.417 0.406

B2 × 104 −4.57 −4.20 −4.13 −4.20 −9.39 −3.17 −4.60 −4.64 −4.42

r2 0.987 0.989 0.975 0.991 0.712 0.985 0.985 0.985 0.986
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Table 10.10b. FA and HA fluorescence sample information [49]

Sample Location Sample date Sample Extraction Total Mass
name volume, Method extracted

liters (mg)

HA1 Peru upwelling — — XAD2 —
(El Niño)

HA2 Gulf of Mexico, — — XAD2 —
outside Loop Cur.

HA4 Gulf of Mexico, 12 October 1989 26 XAD2 0.156
mouth of Tampa Bay

HA6 Gulf of Mexico, 4 March, 1990 55 XAD2 0.65
mid-West Florida shelf

FA7 Gulf of Mexico, 4 March, 1990 32 C18 12.66
mid-West Florida shelf

FA8, HA8 Gulf of Mexico, 5 March, 1990 20 C18 2.24, 0.42
mouth of Tampa Bay

FA9 North Atlantic, 24 May 1991 55 C18 19.06
60◦N 20◦W

FA11 North Atlantic, 20 August 1991 55 C18 6.99
60◦N 20◦W

10.7 Diffuse reflection coefficient

The diffuse reflection coefficient (DRC), or diffuse reflectance (DR), or albedo of
the sea just below the sea surface, is defined as a ratio of upward to downward
irradiance at the level just below the sea surface. It is a very important apparent
optical property and constituent part of the remote sensing coefficient [91, 92]
that is used to extract information from remotely measured optical images of the
ocean. As an apparent optical property it depends not only on inherent optical
properties but also on conditions of illumination just below the sea surface. The
theory and experiments show that DRC depends only on two inherent optical
properties, the absorption coefficient, a, and the backscattering coefficient, bB ,
that is derived from the angular scattering coefficient. Dependence on other
properties (or moments) of angular scattering coefficient is weak and can be
neglected. The diffuse reflection coefficient of open ocean illuminated by diffuse
light can be written in a very simple way:

R = k
bB
a
, R = k

bB
a+ bB

. (10.34)

The second variant in eqs (10.34) is preferable because it does not give infinite
values for R at a = 0. According to Morel and Prieur [93] for open ocean water
k = 1/3. Equations (10.34) are widely used to describe DRC of the ocean. The
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big shortcoming of eqs (10.34) is that they do not satisfy physical conditions
that restrict values of diffuse reflection coefficient:

0 ≤ R ≤ 1. (10.35)

At zero backscattering bB = 0 the DRC should be equal to zero (no light returns
from the water depth), and at zero absorption a = 0 DRC should by equal
to 1 (all light is eventually reflected back). Both eqs (10.34) only satisfy the
first condition, but do not satisfy the second one. At zero absorption value the
first equation gives infinity, and the second one gives k < 1. This means that
eqs (10.34) are only rough approximations. The theoretical analysis shows that
they are good only for rather small values of Gordon’s parameter:

xG =
bB

a+ bB
< 0.1, or a > 9bB . (10.36)

In addition to theoretical considerations there is experimental data by Timo-
feyeva [107] who measured the DRC in a wide range of Gordon’s parameter (see
Table 10.11). The measurements have been made in marine waters for smaller
values of xG and in artificially created absorbing and scattering substances for
higher values of xG. These data together with the DRC computed with different
equations are shown in Fig. 10.3. Some authors try to improve eqs (10.34) by
representing DRC with a series over bB/a or xG, but this method is useless for
xG > 0.9. According to Gate [95], asymptotics of the DRC for xG close to one
described by the following equation:

R =
√

6xG − 2
√

1 − xG√
6xG + 2

√
1 − xG

≡ 1 −√2a/(3bB)
1 +
√

2a/(3bB)
≡
√

3bB/(2a) − 1√
3bB/(2a) + 1

, 1 − xG < 0.1.

(10.37)
It is clear that this dependence could not be described by any power series for
small xG or small ratios bB/a.

Table 10.11. Downward and upward average cosines and diffuse reflectance as a func-
tion of average cosine over radiance distribution according to in situ and modeling
experiments by V. A. Timofeyeva [107]

µ µd µu R∞

0.1 0.5249 0.4831 0.671
0.2 0.5525 0.4545 0.443
0.3 0.5834 0.4202 0.283
0.4 0.6184 0.3745 0.171
0.5 0.6566 0.3311 0.095
0.6 0.7008 0.3003 0.048
0.7 0.7536 0.2857 0.0207
0.8 0.8217 0.3610 0.0082
0.9 0.9033 0.6849 0.0016
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Fig. 10.3. Diffuse reflection coefficient of natural water basin according to experiment,
and to linear, and nonlinear theories

Fortunately, there are several equations available in the literature that sat-
isfy physical condition (10.35) and give good approximation to the DRC of the
seawater basin with arbitrary values of optical properties.

The first such equation was proposed by Haltrin [96]:

R =
1 − µH

1 + µH

(√
1 + µ2

H − µH

)2

, (10.38)

µH =
√

a

a+ (4 + 2
√

2)bB
≡
√

1 − xG

1 + (3 + 2
√

2)xG

. (10.39)

It was derived as a result of the exact solution of the radiative transfer equation
in the asymptotic regime (cz � 1, where z is a physical depth in m−1) with the
phase function approximated as:

pH(cosϑ) =
1
4π

[
2gδ(1 − cosϑ) +

1 − g√
2(1 − cosϑ)

]
, (10.40)
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here δ is a Dirac’s delta function, and g = 1 − (2 +
√

2)B is an average cosine
over phase function pH , with B = bB/b being a probability of backscattering
(see eq. (10.10)).

The exact solution of the RTE in the asymptotic regime with the phase
function (40) is given by the following equation:

L∞(z, θ) =
L0(1 − µ2

H) exp(−az/µH)
(1 + µ2

H − 2µH cos θ)3/2
, (10.41)

where L0 is determined by the boundary conditions, and µH is given by
eq. (10.39). The shape of radiance distribution (10.41) is a Henyey–Greenstein
function [97].

Another analytic equation was proposed in the framework of the self-
consistent approximation to the RTE [98, 99]:

R = R∞ =
(

1 − µ
1 + µ

)2

, (10.42)

with the average cosine µ over radiance distribution in the asymptotic regime
given by

µ =

√
a

a+ 3bB +
√
bB(4a+ 9bB)

≡
√

1 − xG

1 + 2xG +
√
xG(4 + 5xG)

. (10.43)

Equations (10.42) and (10.43) give almost the same values for R as eqs (10.38)
and (10.39) (see Fig. 10.3), but they can be generalized to the cases of finite
water depth and combined illumination of water surface by the light of the sun
and the sky.

Equations (10.42) and (10.43) and (10.38) and (10.39) seem more complex
than simple linear eqs (10.34). But they are good for any value of Gordon’s
parameter xG (or for any arbitrary pair of values a and bB : 0 ≤ a ≤ ∞,
0 ≤ bB ≤ ∞), and satisfy all physical conditions outline above, while eqs (10.34)
fail for values of xG > 0.1. The question arises, is it worth to use more complex
expressions instead of the very simple linear expressions (10.34)? The answer
can be obtained from the analysis of frequency distribution of Gordon’s param-
eter values in natural waters. Extensive in situ measurements show that in the
following three cases: (a) waters of the open ocean, (b) clear inland water basins,
like Lake Baikal, and (c) biologically stable waters of marine coastal areas and
certain lakes Gordon’s coefficient xG < 0.1 and simple linear equations (10.34)
can be used without inflicting unacceptable error. At the same time certain in-
land waters, coastal ocean waters, and even whole seas contain large number of
scattering particles such as detritus with low absorption which results in much
higher values of Gordon’s parameter. Fig. 10.4 shows a frequency distribution
(histogram) of Gordon’s parameter in the Yellow Sea [100]. It shows that about
50% of all values of xG exceed the critical value of 0.1 and some values of this
parameter are as large as 0.9. It means that for the Yellow Sea water types we
should use the nonlinear equations given above.
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Fig. 10.4. Frequency distribution of measured Gordon’s parameter in waters of Yellow
Sea

Another reason to use the nonlinear approach is that it can be generalized
to the case of shallow water depth and to the case that takes into account the
combined illumination of water surface by the direct light of the sun and the
diffuse light of the sky.

10.8 Diffuse reflection coefficient of a water basin
illuminated by direct solar light
and diffuse light of the sky

The diffuse reflection coefficient of water illuminated by the light of the sun
and the sky was considered by several authors. Here we restrict ourselves to the
solution that is valid for all optical water types and validated with experimental
data [101].

The DRC of the water body illuminated by the light of the sun and the
sky is a linear combination of DRC for diffuse illumination R∞ and the DRC
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for directed illumination Rs with the weight determined by the ratio of direct
irradiance to the diffuse irradiance just below the water surface, qw:

R =
R∞ + qwRs

1 + qw
, (10.44)

with R∞ given by eq. (10.42) and

Rs ≡ (1 − µ)2

1 + µµs(4 − µ2)
, (10.45)

where µ is an average cosine of the radiance distribution in the asymptotic
regime and is expressed through absorption and backscattering coefficients by
eq. (10.43), and µs is a cosine of the direction of solar rays just below the sea
surface:

µs =

√
1 −
(

sinZs

nw

)2

≥
√

1 − 1/n2
w ≈ 0.6656; (10.46)

here ZS is the solar zenith angle, and nw is the water refractive index.
The ratio of direct irradiance to the diffuse irradiance just below the water

surface qw can be expressed through the similar ratio measured just above the
water surface qa through the following expression [91]:

qw =
(1 − f)TS

↓ qa
f(1 −Af ) + (1 − f)(1 − qa)TD

↓ + aqTS
↓
, (10.47)

here Af is a foam albedo, f is a fraction of the water surface covered by white
caps that can be estimated from the wind speed u using the following empirical
equation [91]:

f =

{
1.2 · 10−5 u3.3, u ≤ 9 m s−1,

1.2 · 10−5 u3.3(0.221u− 0.99), u > 9 m s−1.
(10.48)

The transmittance of direct solar light penetrated to water depth through the
wind roughened surface was computed for different wind speeds and solar zenith
angles using Monte Carlo modeling of the water surface from an experimen-
tally derived spectrum of wind waves with the results converted to the following
equation [91]:

TS
↓ (ZS , u) = 1 − a0(u) −R0

F (ZS)
{
a1(u) +R0

F (ZS)
[
a2(u) + a3(u)R0

F (ZS)
]}
,

(10.49)
where R0

F is a Fresnel reflection coefficient of unpolarized light by flat water
surface:

R0
F (ZS) =

1
2

⎡
⎢⎣
⎛
⎝cosZS −

√
n2

w − sin2 ZS

cosZS +
√
n2

w − sin2 ZS

⎞
⎠
2

+

⎛
⎝n2

w cosZS −
√
n2

w − sin2 ZS

n2
w cosZS +

√
n2

w − sin2 ZS

⎞
⎠
2⎤⎥⎦,

(10.50)
and coefficients a0 through a3 expressed through the wind speed u (in m s−1):
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a0(u) = 0.001(6.944 831 − 1.912 076u+ 0.036 584 33u2), (10.51)
a1(u) = 0.743 136 8 + 0.067 978 7u− 0.000 717 1u2, (10.52)
a2(u) = 0.565 026 2 + 0.006 150 2u− 0.023 981 0u2 + 0.001 069 5u3, (10.53)
a3(u) = −0.412 808 3 − 0.127 103 7u+ 0.28 390 7u2 − 0.001 170 6u3. (10.54)

Transmission by diffuse light TD
↓ is obtained by averaging eq. (10.49) over the

sky radiance distribution. For Lambertian sky we have the following equation
for diffuse transmittance [91]:

TD
↓ (u) = 1.367 × 10−5(46.434 − u)(1410 + 20.6u+ u2), 0 ≤ u < 12 m s−1.

(10.55)
For overcast sky (cardioid distribution [4]) we have the following equation for
diffuse transmittance [91]:

TD
↓ (u) = 6.123×10−6(59.3−u)(2564+33.74u+u2), 0 ≤ u < 12 m s−1. (10.56)

The ratio of direct irradiance to the diffuse irradiance just above the water
surface is a function of atmospheric optical properties and can be evaluated using
the following equation taken from reference [91]:

qa =
(

1 +
Baτa
cosZS

)
exp
(

− τa
cosZS

)
, (10.57)

where Ba is a probability of backscattering in atmosphere, and τa is a total
atmospheric optical thickness.

Equation (10.44) for diffuse reflectance coefficient R, with values of, a, bB ,
and qw measured experimentally, was tested by E. I. Afonin [102] using in situ
measurements in the waters of Black Sea during the whole light day. The differ-
ence between predicted and measured values of R was in the range of 5%.

10.9 Diffuse reflection coefficient of shallow water body
illuminated by diffuse light

The diffuse reflection coefficient of a shallow water basin should take into account
not only multiple scattering of light inside the water, but multiple reflection of
light from the bottom and the surface. For coastal waters it is very important
that the model used to derive the DRC is valid not only for arbitrary depth but
also for any arbitrary value of inherent optical property thus covering very clear
and very turbid shallow water bodies.

According to reference [99] the diffuse reflection coefficient of shallow water
with the bottom depth zB and bottom albedo AB could be expressed as:

R =
R∞(1 −ABR0) + (AB −R∞)e−αRzB

(1 −ABR0) + (AB −R∞)R0e−αRzB
, (10.58)

with
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R0 =
(

2 + µ
2 − µ

)
R∞, αR = 2µ(a+ bB), (10.59)

and R∞ and µ are given, respectively, by eqs (10.42) and (10.43).
Equation (10.58) satisfies all limiting conditions implied by the correct

physics of light scattering:

R
∣∣
zB→∞ ≡ R

∣∣
AB=R∞

, R
∣∣
zB=0 = AB , R

∣∣
xG=0 = 0, R

∣∣
xG=1 = 1. (10.60)

Equation (10.58) can be used in algorithms to restore water depth and bottom
albedo from remotely measured multispectral optical images of water basins in
the cases when the combined nature of the illumination of water surface could
be neglected.

10.10 Diffuse attenuation coefficient

Downward and upward diffuse attenuation coefficients of light at depth z are
defined as follows:

kd(z) = − 1
Ed(z)

dEd(z)
dz

, ku(z) = − 1
Eu(z)

dEu(z)
dz

, (10.61)

where Ed and Eu are downward and upward irradiances. In the framework of
self-consistent approximation diffuse attenuation coefficients for optically deep
water can be written as follows [101]:

kd(z) = α∞
1 + qw {µ0ε(z)/µs + hRs[(2 + µ) + 1/µs]Ys(z)}

1 + qw {ε(z) + hRs[(2 + µ) + 1/µs]Fs(z)} , (10.62)

ku(z) = α∞
R∞ + qwRs {µ0ε(z)/µs + h[(2 − µ) − 1/µs]Ys(z)}
R∞ + qwRs {ε(z) + h[(2 − µ) − 1/µs]Fs(z)} , (10.63)

where
α∞ =

√
4a(a+ 2bB) + µ2b2B − µ(a+ bB), (10.64)

Ys(z) =

{
µ0µs

1−ε(z)
µ0−µs

− µ0ε(z), µs �= µ0,

αz − µ0, µs = µ0,
(10.65)

Fs(z) =

⎧⎨
⎩
(

1 − exp
[
−αz

(
1
µs

− 1
µ0

)])/(
1
µs

− 1
µ0

)
, µs �= µ0,

αz, µs = µ0,
(10.66)

α = a+ 2bB , µ0 =
1 + µ2

µ(3 − µ2)
, h =

(1 + µ)2

2(1 + µ2)
, (10.67)

ε(z) = exp
[
−αz

(
1
µs

− 1
µ0

)]
, (10.68)

with parameters R∞, µ, Rs and qw defined, accordingly, by eqs (10.42), (10.43),
(10.45), and (10.47).
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At large optical depths both kd and ku converge to the diffuse attenuation
coefficient in asymptotic regime that is given by Gershun’s equation:

kd(z), ku(z)
∣∣
cz→∞ ⇒ k∞, k∞ = a/µ. (10.69)

10.11 Optical models of scattering and absorption
of light in natural water

10.11.1 The Kopelevich physical model of elastic scattering

The physical model of elastic scattering was proposed by Kopelevich [94, 103].
The original model also included an absorption part that is now obsolete. The
scattering part satisfies contemporary criteria for all parts of marine water bod-
ies excluding shallow coastal areas contaminated with clay and sand particles
raised from the bottom. The model was based on the results of in situ measure-
ments of inherent optical properties and particle size distributions over during
several decades by the Shirshov Institute of Oceanology in the Pacific, Indian
and Atlantic Oceans.

The angular scattering coefficient in this model consists of three parts: the
angular scattering coefficient of pure water, the angular scattering coefficient
of small particles, and the angular scattering coefficient of large particles. The
angular scattering coefficients of particles have been derived by the solution
of the inverse problem to derive particle size distributions using water samples
taken in various regions of the World Ocean. Then angular scattering coefficients
were calculated using Mie scattering approach.

The large fraction represents organic particles of phytoplankton and de-
tritus with the density ρL = 1 g cm−3 and relative to water refractive index
nL = 1.03. The size distribution for the large particle fraction was found to be
Junge distribution r−v for 1.3 µm ≤ r ≤ 13 µm with v = 3. The small fraction
represents terrigenic particles with density ρL = 2 g cm−3 and relative refrac-
tive index nS = 1.15 [10]. The size distribution for the small particle fraction
was found to be represented by three Junge distributions: the Junge distribu-
tion with v = 2.5 for 0.01 µm ≤ r ≤ 0.05 µm, the Junge distribution with
v = 3.5 for 0.05 µm ≤ r ≤ 0.1 µm, and the Junge distribution with v = 4.5 for
0.1 µm ≤ r ≤ 1.3 µm. The model is represented by the following equation:

β(λ, ϑ) = βW (λ, ϑ) +
(

550
λ

)0.3

βK
L (ϑ)vL +

(
550
λ

)1.7

βK
S (ϑ)vS , (10.70)

with the pure water angular scattering coefficient βw(λ, ϑ) computed using
eq. (10.17), and the angular scattering coefficients of large βK

L (ϑ) and small
βK

S (ϑ) particles for λ = 550 nm given in Table 10.12. The volume concentra-
tions vL and vS are given in cm3 m−3. To convert them to the conventional
concentrations the following relationships are used:

CS = ρSvS , CL = ρLvL. (10.71)
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Table 10.12. Components of physical model of light scattering by sea water by O. V.
Kopelevich [94] in m−1 ster−1; small fraction of suspended matter βS ; large fraction of
suspended matter βL (the volume concentration of each component is 1 cm3 m−3)

angle, ◦ βK
S βK

L angle, ◦ βK
S βK

L

0 5.3 140 45 9.8 · 10−2 6.2 · 10−4

0.5 5.3 98 60 4.1 · 10−2 3.8 · 10−4

1 5.2 46 75 2.0 · 10−2 2.0 · 10−4

1.5 5.2 26 90 1.2 · 10−2 6.3 · 10−4

2 5.1 15 105 8.6 · 10−3 4.4 · 10−5

4 4.6 3.6 120 7.4 · 10−3 2.9 · 10−5

6 3.9 1.1 135 7.4 · 10−3 2.0 · 10−5

10 2.5 0.2 150 7.5 · 10−3 2.0 · 10−5

15 1.3 0.05 180 8.1 · 10−3 7.0 · 10−5

30 0.29 0.0028 b, m−1 1.34 0.312

This model gives very good predictions of the angular scattering coefficient
for open oceanic waters and for clean biologically stable waters with no clay or
sand particles suspended by the water movement.

10.11.2 Chlorophyll-based model of elastic scattering and absorption

This model was proposed by Haltrin [104]. The scattering part of this model is
based on a modified version of the Kopelevich [72, 103] elastic scattering model;
the absorption part of the model is taken from works by Pope and Fry [8],
Prieur and Sathyendranath [9], Morel [105], and Carder et al. [2]. The absorption
coefficient in this model is represented as follows:

a(λ) = aW (λ)+0.06a0
C(λ)

(
CC/C

0
C)0.602+a0

HCH exp(−kHλ)+a0
FCF exp(−kFλ),

(10.72)
with C0

C = 1 mg m−3, aW (λ), a0
C(λ), a0

H , a0
F , kH , and kF identical to the val-

ues given above in section 10.2. The elastic angular scattering coefficient was a
modification of Kopelevich’s model given by eq. (10.70):

β(λ, ϑ) = βW (λ, ϑ) +
(

400
λ

)1.7
βS(ϑ)
ρS

CS +
(

400
λ

)0.3
βL(ϑ)
ρL

CL, (10.73)

βS(ϑ) = (5.5870 m2 cm−3 sr−1) exp

(
5∑

n=1

snϑ
3n/4

)
,

βL(ϑ) = (190.027 m2 cm−3 sr−1) exp

(
5∑

n=1

lnϑ
3n/4

)
,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(10.74)
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Table 10.13. The coefficients to eqs (10.74) for two basic phase functions and [104]

n 1 2 3 4 5

sn −2.957 089 · 10−2 −2.782 943 · 10−2 1.255 406 · 10−2 −2.155 880 · 10−2 1.356 632 · 10−2

ln −1.604 327 8.157 686 · 10−2 −2.150 389 · 10−3 2.419 323 · 10−5 −6.578 550 · 10−8

where ϑ is the scattering angle in degrees. The coefficients sn and ln in eq. (10.74)
are given in Table 10.13.

The model given by eqs (10.72)–(10.74) depends on five different concentra-
tions of dissolved and suspended matter, CC , CH , CF , CS , and CL. Using several
experimentally derived regressions and with the use of optimization procedure
the number of independent concentrations was reduced to one – the concentra-
tion of chlorophyll CC in mg m−3. The other four concentrations of dissolved
and suspended matter are expressed through the chlorophyll concentration:

CH = 0.19334CC exp
[
0.12343

(
CC/C

0
C

)]
,

CF = 1.74098CC exp
[
0.12327

(
CC/C

0
C

)]
,

CS = 0.01739(g/mg)CC exp
[
0.11631

(
CC/C

0
C

)]
,

CL = 0.76284(g/mg)CC exp
[
0.03092

(
CC/C

0
C

)]
,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(10.75)

This chlorophyll-based model represents a modification and extension of the
Kopelevich model and, like the Kopelevich model, is valid for open ocean and
biologically stable coastal waters. The model that covers more turbid waters
should include more scattering components related, for instance, to clays and
suspended sand.

10.11.3 Empirical model of inherent optical properties

The empirical model of inherent optical properties was proposed by Haltrin [106].
It makes it possible to restore an angular scattering coefficient, diffuse reflection
and diffuse attenuation coefficients, and also total, upward and downward aver-
age cosines over the radiance distribution of diffuse light through the absorption
and attenuation coefficients at one fixed wavelength close to 520 nm. This model
is based on experimental measurements by Petzold [75] and Timofeyeva [107].
It was tested using independent measurements of the complete set of inherent
properties by Mankovsky [76, 77] and showed good agreement between measured
and predicted results.

Given, that we know the values of absorption and attenuation coefficients (a
and c) measured, for example, with the AC-9 probe by WetLabs, we can estimate
all other optical properties using the following procedure:

(1) We compute a beam scattering coefficient b and a single-scattering albedo
(probability of elastic scattering) ω0 through a and c:

b = c− a, ω0 = b/c. (10.76)
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(2) A total average cosine is computed through the single-scattering albedo using
the following equation:

µ = y{2.617 839 8 + y[−4.602 418 + y(9.004 06 + y{−14.599 94 +
y[14.839 09 + y(−8.117 954 + 1.859 322 2y)]})]}, y =

√
1 − ω0. (10.77)

(2) We compute upward and downward average cosines using the following equa-
tions:

µd =
1 − µ(1 − µ)2

{
0.0326 + µ2

[
0.1661 + µ2(0.7785 + 0.0228µ2)

]}
2 − µ ,

(10.78)

µu =
1−0.987µ(1−µ)2 exp

(
µ2
{
8.4423+

[−15.6605+µ2(21.882−11.2257µ2)
]})

2−µ ,

(10.79)
(3) We compute the backscattering probability, B, and the backscattering coef-

ficient, bB , as follows:

B =
(1 − ω0)(1 − µ2)2

2ω0µ
2(3 − µ2)

, bB = bB. (10.80)

(4) We compute the diffuse reflection coefficient using values of the average
cosines:

R∞ =
1 − µ/µd

1 + µ/µu

, (10.81)

(5) We compute the diffuse attenuation coefficient using Geshun’s equation:

k =
a

µ
≡ c

1 − ω0

µ
, (10.82)

(6) And, finally, we compute the angular scattering coefficient using the following
equation:

β(ϑ) = l−1
0 exp

[
q

(
1 +

5∑
n=1

knϑ
n
2

)]
, (10.83)

here ϑ is a scattering angle in radians, l0 = 1 m. Coefficients q and kn (n =
1, . . . , 5) are given by the following regressions:

q = 2.598 + 5.932
√
l0b(2.992 + l0b) − 16.722l0b,

k1 = 5.2077ω0 − 8.9924,
k2 = 17.59 − 10.886ω0,

k3 = 13.098ω0 − 19.863,
k4 = 10.636 − 7.386ω0,

k5 = 1.515ω0 − 2.087.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(10.84)

The FORTRAN code that implements this model is published in reference
[108].
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10.12 Conclusion

The simplified model presented here of absorption, elastic and Raman scatter-
ing, and fluorescence is written as a practical tool – to model radiative transfer
in real natural waters using either the radiative transfer approach [109] given
by eq. (10.1) or the numerical approach based on Monte Carlo or discrete ordi-
nates (Hydrolight [74]). There are certain aspects of scattering, such as Brillouin
scattering, scattering by air bubbles, and scattering by turbulent fluctuations of
natural water, that are omitted from this chapter because there is not sufficient
material in the literature to cover them quantitatively. Other more developed
areas are given in a detail that allows for reasonable representative optical mod-
eling of deep and shallow waters with wind-roughened surface.
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Appendix: Notation and definitions

A. A. Kokhanovsky

The problem of notation is considered to be of a secondary importance in sci-
entific research. However, it is easier to understand results obtained, if consis-
tent notation is used in various papers on the optics of light scattering media.
Currently, this is not the case. In particular, oceanic and atmospheric optics
communities use, for example, different notations for such basic local optical
characteristics of a light scattering medium as the extinction, scattering, and
absorption coefficients.

This book has a multidisciplinary character. Therefore, there is a need to
summarize some of the notation used in this book by various authors, reflecting,
of course, the use of corresponding symbols in their particular research field.
Corresponding notations, together with those preferred by this author, are given
in Table A1.

Table A.1. Selected notations for local optical characteristics of turbid media used in
this volume

Author Absorption, Absorption, Absorption, Phase Phase Single-
scattering, and scattering, and scattering, and function matrix scattering

extinction extinction extinction albedo
coefficients cross-sections efficiency

factors

Yang and — σabs, σsca, σext Qabs, Qsca, Qext P11 P ω̃0
Liou

Sharma σext — Qabs, Qsca, Qext p — —

Farafonov — Cabs, Csca, Cext Qabs, Qsca, Qext — — —
and Il’in

Borovoi — σa, σs, σe — p P —

Kokhanovsky Kabs, Ksca, Kext — — p — ω0

Gorodnichev, σa, σ, σtot — — — d —
Kuzovlev,
and
Rogozkin

Haltrin a, b, c — — p — ω0

Editor’s Kabs, Ksca, Kext Cabs, Csca, Cext Qabs, Qsca, Qext p P ω0
preferred
notation
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Let us illustrate the difference between efficiency factors, cross-sections, and
coefficients. For this we will consider direct light transmittance through a scat-
tering medium with spherical particles of the same radius a. It is assumed the
volumetric concentration of particles is small and spherical scatterers are ran-
domly distributed.

It follows that the direct light intensity I(z) at the depth z (counted from
the boundary of a scattering layer (z = 0)) is given by the following equation:

I(z) = I(z = 0) exp(−Kextz). (A.1)

The extinction coefficient Kext is measured in inverse meters. It can be expressed
via the extinction cross-section of a single particle Cext:

Kext = NCext, (A.2)

where N is the number of particles in unit volume measured in m−3. Therefore,
Cext is measured in m2. It is useful to introduce the dimensionless extinction
efficiency factor

Qext =
Cext

πa2 . (A.3)

Similar definitions are valid also for absorption and scattering processes. It fol-
lows for the single scattering albedo: ω0 = Ksca/Kext. Also we can introduce
the probability of photon absorption: β = 1 − ω0.

For polydispersions of spherical or randomly oriented nonspherical particles,
Cext in eq. (A.2) must be substituted by the average value of the extinction cross
section for the ensemble of scatterers.

The probability of photon scattering in a given direction θ counted from the
direction of propagation is characterized by the phase function p(θ). Different
normalizations of the phase function are used. Astrophysicists and atmospheric
scientists prefer to use the following normalization:∫

4π

p(Ω)
dΩ
4π

= 1, (A.4)

where Ω is the solid angle. It follows from this definition for the isotropic scat-
tering (p does not depend on Ω): p ≡ 1. Equation (A1) is simplified, for example,
for the case of spherical or randomly oriented nonspherical particles:

1
2

∫ π

0
p(θ) sin θ dθ = 1. (A.5)

The notion of the average cosine of scattering angle g is also often used in papers
dealing with light scattering. This parameter is defined as:

g =
1
2

∫ π

0
p(θ) cos θ sin θ dθ. (A.6)

Clearly, it follows that g = 0 for isotropic scattering (p = 1). Therefore, g is often
called the asymmetry parameter. It vanishes for symmetric scattering (e.g., for
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the symmetric with respect to the angle θ = π/2 Rayleigh phase function p(θ) =
0.75(1+cos2 θ)). One can also introduce the symmetry parameter q = 1−g. This
parameter is equal to one for isotropic scattering. However, it is close to zero for
highly extended in the forward direction phase functions. An important role in
light scattering media optics belongs to yet another two parameters. They are
the transport extinction coefficient

Ktr = (1 − g)Kext ≡ qKext (A.7)

and the similarity parameter

s =
√

1 − ω0

1 − gω0
. (A.8)

One can write for the case of weakly absorbing light scattering media: s ≈√
β/q. It is interesting that the absorption, A, of light by a semi-infinite weakly

absorbing light scattering medium is determined mostly by the parameter s.
Such media having the same values of s but possibly different values of β and q
have close values of A.

Turning to the case of the analysis of the polarized scattered light, we note
that the 4 × 4 scattering matrix F̂ (θ) relates the Stokes vectors S(I,Q, U, V ) of
scattered light with the Stokes vector S0(I0, Q0, U0, V0) of incident light:

S = (kr)−2F̂ (θ)S0, (A.9)

where r is the distance to the observation point and k = 2π/λ, λ is the wave-
length. This matrix is defined with respect to the scattering plane, which holds
directions of incident and scattering beams.

It follows from eq. (A.9) for the intensity of scattered light:

I = (kr)−2F11(θ)I0, (A.10)

where we assumed that the incident light is unpolarized. The total flux of the
scattered light Φsca is given by the integral:

Φsca =
∫

4π

I(Ω)r2 dΩ. (A.11)

Therefore, we have, for example, for a single spherical particle:

Φsca = 2πk−2I0

∫ π

0
F11(θ) sin θ dθ, (A.12)

where we performed integration with respect to the azimuth angle. Now we take
into account that Csca = Φsca/I0 by definition. This means that

Csca = 2πk−2
∫ π

0
F11(θ) sin θ dθ (A.13)

and, therefore,
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1
2

∫ π

0
P11(θ) sin θ dθ = 1, (A.14)

where

P11(θ) =
4πF11(θ)
k2Csca

. (A.15)

Both functions (F11(θ) and P11(θ)) describe the angular distribution of scattered
light. In particular, F11 is related to van de Hulst’s dimensionless Mie intensities
i1 and i2 with the following equation: F11 = (i1 + i2)/2. Also one can introduce
the differential scattering cross-section Csca(θ) = k−2F11(θ) ≡ (i1 + i2)/2k2

which is yet another way to describe the angular distribution of scattered light.
We underline that the combination v(θ) = N〈Csca(θ)〉 is called the volume
scattering function. Here brackets mean averaging with respect to the particle
size/shape distributions.

The use of P11(θ) is more convenient in theoretical studies because its nor-
malization condition coincides with that given by eq. (A.5). Therefore, we can
call P11(θ) the phase function and also introduce the phase matrix

P̂ (θ) =
4πF̂ (θ)
k2Csca

. (A.16)

The first element of this matrix coincides with the phase function. In ap-
plied light scattering optics studies the normalized phase matrix is often used:
p̂(θ) ≡ P̂ (θ)/P11. We can also introduce the normalized scattering matrix
f̂(θ) = F̂ (θ)/F11(θ). Clearly it follows that matrices f̂ and p̂ coincide.

For polydispersed media, one must use average values of Csca and F̂ (θ) in
eq. (A.16).
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