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Preface 

This book represents our effort to convey the understanding of Lattice 
Boltzmann Methods (LBM) that we have developed over the last 4 years. 
This understanding is incomplete; consultation of any of the other main 
texts and journal articles on the subject will reveal the depth of the topic 
and the level of mathematical and physical sophistication necessary for 
complete mastery. Nevertheless, we are able to accomplish remarkable 
things with LBM and we wish the same for our readers. This book is 
aimed at our peers who may be curious about the technique or simply wish 
to use it as a tool now and, like us, continue learning about it in greater 
depth in the future. Rather than the ‘last word’ on the techniques, we pre-
sent first introductions. Criticism from those more knowledgeable on de-
tails of some of the methods is probably inevitable and deserved. We take 
responsibility for all errors in the text, but cannot be responsible for any re-
sults of applying the ideas or models we present.  

MS and DT, Miami, Florida USA, July 22, 2005 

MS wishes to thank Professor Dani Or of the University of Connecticut 
and the post-doc funding from NSF and NASA he provided for creating an 
environment where a beginner could invest the time needed to build a ba-
sic knowledge of LBM. The environment and support of the Earth Sci-
ences department at Florida International University have similarly been 
essential to continuing this work and the completion of this book. I learned 
lattice gases as an aside during my Ph.D. with Professor Ed Perfect (now 
University of Tennessee) with funding from the University of Kentucky 
Research Challenge Trust Fund and the Center for Computational Sciences 
under the much appreciated guidance of Professor Craig Douglas. Dr. Lil-
iana Di Pietro graciously hosted me at Institut National de la Recherche 
Agronomique (INRA) in Avignon, France and provided me with my first 
experiences with multiphase lattice gases; funding for that trip came from 
a University of Kentucky Dissertation Enhancement Award. Jessica Chau 
(UConn), Vasile Turcu, Seth Humphries (Utah State), and Teamrat Ghez-
zehei (Lawrence Berkeley National Lab) helped by listening to me and 
contributing from their mathematics and computer sciences backgrounds. 
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Jessica Chau also contributed to my earliest multicomponent model and 
the work on cavitation. Shadab Anwar (FIU) helped by testing the codes 
and running some of the simulations presented in the book. An early single 
component multiphase LBM FORTRAN code by Louis Colonna-Romano 
(Clark University and Worcester Polytechnic Institute) that I found on the 
Internet associated with Chen (1993) was instrumental in getting me 
started; vestiges of that code may still be visible in the current codes. Dis-
cussions with Frederik Verhaeghe of the Katholieke Universiteit Leuven in 
Belgium led to the correction of an error in our earlier codes. Jessica Chau 
(University of Connecticut), Yusong Li (Vanderbilt University), C. L. Lin 
(University of Utah), and Shadab Anwar (Florida International University), 
provided peer review. Three classes of students have thus far served as a 
testing ground for the material presented here; many more will follow and 
the book will be improved. Finally, my collaboration with DT at Florida 
International University and earlier at the University of Kentucky has been 
exceptionally valuable.  

MS, Miami, Florida USA, July 22, 2005 

DT thanks MS for the opportunity to join him in lattice Boltzmann meth-
ods research. MS is an excellent mentor and through collaboration with 
him I have not only explored an exciting new frontier of fluids modeling 
but grown much as a researcher in general. In addition, DT offers thanks to 
his erstwhile thesis advisor, Prof. Craig Douglas, for support, guidance and 
inspiration during my graduate school years, without which my path 
through life would have been unimaginably different and most surely 
would not have led here. 

DT, Miami, Florida USA, July 22, 2005 
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 Review of Basic Fluid Mechanics 1

1 Introduction 

Lattice Boltzmann models (LBM) have a remarkable ability to simulate 
single and multiphase fluids. A rich variety of behaviors, including un-
steady flows, phase separation, evaporation, condensation, cavitation, sol-
ute and heat transport, buoyancy, and interactions with surfaces can readily 
be simulated. Persistent metastable states can be realized. 

This book is intended primarily as a basic introduction that emphasizes 
intuition and the most simplistic conceptualization of processes. It largely 
avoids the more difficult mathematics and physics that underlie LB mod-
els. The model is viewed from a particle perspective where collisions, 
streaming, and particle-particle/particle-surface interactions constitute the 
entire conceptual framework. The beauty of these models resides in this 
simplicity. The particular multiphase models we develop here evolved 
primarily from the landmark papers of Shan and Chen (1993, 1994). These 
models are not perfect and their shortcomings have been explored in the 
literature. Nevertheless, they are exceptionally powerful and, because of 
their largely intuitive ‘bottom up’ nature, are particularly well suited to this 
kind of introduction.  

Much of the material contained here can be extracted from the open lit-
erature and a number of pioneering books, including Succi (2001), Wolf-
Gladrow (2000), and Rothman and Zaleski (1997). Chen and Doolen 
(1998) presented a review paper. However, beginners and those with more 
interest in model application than detailed mathematical foundations 
should find this book a powerful ‘quick start’ guide. We focus on 2-
dimensional models, though extension to 3 dimensions is not particularly 
difficult. We work simultaneously with the fundamental equations and 
their computer implementation to illustrate the practical use of the equa-
tions. The reader should be aware of our approach to presenting code. 
Code is presented in small pieces throughout the text and is designed only 
to be human readable. It is pseudo-code, although it resembles C (as it is 
adapted from our actual implementation). Shortcuts in syntax (e.g., abbre-
viated variable indexing like fij for f[j][i], and the abbreviation 
foo+=bar for foo=foo+bar) are employed generously to keep the 
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code snippets brief and line-lengths short as well as to optimize for read-
ability. Our intention is to convey the nature of the implementation clearly 
so that the reader is well equipped to begin an implementation of their own 
and/or browse and modify/extend an existing implementation. Readers in-
terested in the details are encouraged to examine the working code. 

We provide code on the Internet (LB2D_Prime) and offer exercises that 
focus on confirming the code’s ability to match analytical or observed re-
sults; this helps to instill confidence and point out deficiencies in the sim-
ple LBM models we introduce. We include pertinent references to guide 
readers to more specialized sources. The field is expanding and evolving 
rapidly however and many papers have not been mentioned. Figure 1 
shows the exponential growth in the number of papers published since 
1992. 
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Figure 1. Growth in number of papers with 'lattice Boltzmann' as a ‘topic’ 
(search of article titles, abstracts, and keywords) in the Web of Science data-
base 1992 - 2004. Solid line is fitted exponential growth curve. 2004 data may 
be incomplete. 
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It is also of interest to consider the nature of the published papers. 
Figure 2 gives the Web of Science Subject Categories for the papers pub-
lished 1992-2004 that have lattice Boltzmann in their titles, abstracts, 
and/or keywords: most have appeared in physics and computer sciences. In 
our opinion, the distribution is likely to shift towards more applied areas 
(geosciences and engineering) as the power of these models is recognized. 
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Figure 2. Web of Science Subject Categories for papers published 1992 -
2004 with lattice Boltzmann as a topic. Most papers so far have been pub-
lished in Physics and Computer Science. 

We begin our introduction to lattice Boltzmann models with a review of 
basic fluid mechanics concepts that are used later in the book. Cellular 
automata and lattice gases are covered briefly in the next chapter. Then we 
give a simplified introduction to Boltzmann gas concepts; it provides a ba-
sis for the ‘stream and collide’ mechanisms that are central to lattice gas 
models (the forebears of LBM) and LBM. Chapter 4 presents the core 
equations and computational aspects of LBM including a variety of bound-
ary conditions. Chapter 5 introduces single component single phase LBM 
as the basis for extension to single component multiphase (SCMP LBM) in 
Chapter 6 and multi-component multiphase (MCMP LBM) models in 
Chapter 7. Solute transport is treated in Chapter 8 and Chapter 9 focuses 
on LBM for porous media at the macroscopic scale. Example simulations 
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are included at each stage of model extension to illustrate increasingly so-
phisticated capabilities. 

Another exciting use of LBM is for the simulation of shallow flows with 
the shallow water equations. We do not delve into this material as it has 
been covered in a recent book by Zhou (2003). We also do not touch on 
particle flows (e.g., Ladd 1993, 1994a,b; Ladd and Verberg 2001; Cates et 
al. 2004; Cook et al. 2004; Dupin et al. 2004). 

Lattice Boltzmann models serve as exceptional numerical laboratories 
for a large number of physical and physicochemical processes. The ability 
to probe the simulations in detail for density and pressure gradients for ex-
ample, has lead us to far deeper understanding of numerous phenomena 
than we would have achieved otherwise. While we expect quantitative re-
sults from lattice Boltzmann methods, the learning value of playing with 
‘toy’ models must not be underestimated.  

Here we present elementary examples of a broad range of applications 
to illustrate the enormous potential of LBM. Assimilation of LBM into 
mainstream scientific computing in geosciences and engineering will re-
quire extension of the models to larger applications that integrate databases 
and visualization as is characteristic of modern ground water models for 
example.  

1.1 Review of Basic Fluid Mechanics 

While some of our readers will need no introduction to or review of fluid 
mechanics, our experience indicates that for many it is worthwhile to re-
view the most fundamental ideas on the behavior and quantitative treat-
ment of fluids. This review is very minimalist in scope and focuses only on 
topics that are essential to basic understanding of LBM or will be the sub-
ject of LBM simulations in subsequent chapters. More advanced physical 
chemistry needed for single component multiphase models and other top-
ics are reviewed in later chapters. 

1.1.1 Momentum 

 One fundamental concept that will be needed is that of momentum. The 
momentum p is defined as p = mu with m the mass and u the velocity. 
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Conservation of mass and momentum are central to fluid mechanics and 
lattice Boltzmann models. Conservation of mass simply means that mass is 
not lost or created in the system under consideration. Conservation of mo-
mentum is well illustrated by the toy known as Newton’s Cradle (Figure 
3). Momentum attained by the moving ball just prior to its collision with 
the stationary balls is transmitted through the row of balls and converted 
back to motion of the ball on the opposite end of the row. 

Figure 3. Newton's Cradle toy illustrates momentum conservation. (Ren-
dering courtesy of Mark Hanford) 

Not surprisingly, momentum is closely related to force. Newton’s Sec-
ond Law of Motion gives the force F as F = ma, where a is the accelera-
tion. Acceleration is the time rate of change of velocity or du/dt, so force 
can be written as  

dt
d

dt
dm puF . (1) 
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1.1.2  Viscosity  

The viscosity is a measure of the resistance to flow. Air has a very low vis-
cosity relative to honey. Newton’s Law of Friction relates the shear stress 
to the velocity gradient in a Newtonian fluid: 

dx
du

. (2) 

The coefficient of proportionality is the dynamic viscosity . The kine-
matic viscosity is the dynamic viscosity divided by the fluid density . It 
is commonly denoted by  and has dimensions of L2T-1. The kinematic 
viscosity can be thought of as a diffusion coefficient for momentum since  

dx
d

dx
d

dx
d puu

(3) 

which is analogous to Fick’s First Law of diffusion where a unit volume is 
implicit in the denominator of the rightmost term. This analogy is quite 
clear in the similarities between LBM simulations of fluids and solute 
transport that we will examine later.  

1.1.3  Reynolds Number 

The Reynolds Number (Re) is a non-dimensional number that reflects the 
balance between viscous and inertial forces. It is given by Re = u L/
where u is the fluid velocity, L is a characteristic length, and  is the kine-
matic viscosity. Low velocity, high viscosity, and confined fluid conditions 
lead to a low Re, the dominance of viscous forces, and laminar flow. If Re 
<< 1, the flow is known as Stokes or creeping flow (Figure 4).  Such flow 
is traditionally thought to be common for liquids in many porous media 
due to small pore sizes.  
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Figure 4. Stokes or creeping flow at low Reynolds number, Re  0.16 (Pho-
tograph by S. Taneda, with permission of the Society for Science on Form, 
Japan).  

Higher velocities, larger length scales, or less viscous fluids lead to larger 
Reynolds numbers and the dominance of inertial forces over viscous 
forces. Under high Reynolds numbers the flow can become unstable (i.e., 
the onset of turbulence). Lattice Boltzmann models handle a range of Rey-
nolds numbers very effectively and we will illustrate this later. The first 
departure from creeping flow is accompanied by a phenomenon known as 
flow separation and the formation of eddies as seen in Figure 5.  
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Figure 5. Separation at Re = 0.020 (Taneda (1979) with permission). 

As the Reynolds number increases, unsteady and turbulent flows can en-
sue. We will investigate higher Reynolds number flows in Chapter 5. 

1.1.4  Poiseuille Flow 

An important and simple type of flow is that which occurs in a pipe or a 
slit between two parallel surfaces. These are called Poiseuille flows after 
the Frenchman Jean Léonard Marie Poiseuille (1797–1869) (Sutera and 
Skalak, 1993). In a slit or pipe, the velocities at the walls are 0 (no-slip 
boundaries) and the velocity reaches its maximum in the middle. As illus-
trated in Figure 6, the velocity profile in a slit of width 2a is parabolic and 
given by  

)(
2

)( 22
*

xaGxu (4) 

where G* can be the (linear) pressure gradient (Pin – Pout)/L or a gravita-
tional pressure gradient (for example, in a vertical pipe G* = g). We will 
consider entry length effects later. 
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Figure 6. Poiseuille velocity profile. 

It is useful to know that the average velocity in a slit is 2/3 of the maxi-
mum, or, since the maximum velocity is attained at x = 0, 

2
*

23
2 aGuaverage . (5) 

1.1.5  Laplace Law 

There is a pressure difference between the inside and outside of bubbles 
and drops. The pressure is always higher on the inside of a bubble or drop 
(concave side) – just as in a balloon.  
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Figure 7. Definition diagram for Laplace Law. The difference in pressure 
inside and outside of a drop or bubble is inversely related to the radius r. 

The pressure difference P = |Poutside - Pinside| depends on the radius of cur-
vature r and the surface tension  for the fluid pair of interest. For two-
dimensional drops and bubbles there is only one possible radius of curva-
ture and  

r
P . (6) 

This Laplace Law indicates that P is linear with respect to curvature 1/r.
We will use this later to estimate the surface tension in lattice Boltzmann 
simulations. The Laplace Law applies to both interfaces between a liquid 
and its own vapor (where  is known as the surface tension) and between 
different fluids (like oil and water; where  is referred to as the interfacial 
tension).  
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1.1.6  Young-Laplace Law 

When solid surfaces are involved, in addition to the fluid1/fluid2 interface 
– where the interaction is given by the surface/interfacial tension – we 
have interfaces between both fluids and the surface. Often one of the fluids 
preferentially ‘wets’ the surface. This phenomenon is captured by the con-
tact angle and the Laplace relationship is modified as follows:  

r
P cos

. (7) 

A zero contact angle means perfect wetting. In that case, cos  = 1 and Eq. 
(7) reduces to Eq. (6). If the contact angle is 90°, cos  = 0 and there is no 
pressure difference across the flat interface between the fluids. 
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2 Lattice Gas Models 

Lattice gas cellular automaton models were the harbingers of LBM. We 
dedicate a chapter to basic cellular automata and lattice gases in part out of 
historical interest and in part because they represent a somewhat simpler 
and possibly more intuitive framework for learning gases on a lattice. Un-
fortunately, they require a perhaps less familiar Boolean mathematics (base 
2 integers) on a less familiar triangular lattice. This material is not essential 
to applying LBM but it is interesting in its own right and might be helpful 
to developing a fuller understanding of LBM.  

2.1 Cellular Automata  

A cellular automaton (CA) is an algorithmic entity that occupies a position 
on a grid or lattice point in space and interacts with its identical neighbors.  
A cellular automaton generally examines its own state and the states of 
some number of its neighbors at any particular time step and then resets its 
own state for the next time step according to simple rules. Hence, the rules 
and the initial and boundary conditions imposed on the group of cellular 
automata uniquely determine their evolution in time.  
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Figure 8. The basic components of a cellular automaton: a tiling of space, a 
clock that ticks out time, and a transition or update rule. The tiling of space 
in this illustration is a row of cells in a 1D space. A clock is represented at the 
left of the tilings. The update rule is denoted by the arrows from the state of 
the tiling from one time to the next. The update rule in this illustration maps 
the on/off state of a cell and its two neighbors at a given time tick on the clock 
to the on/off state of the cell at the next time tick on the clock. 

The simplest cellular automata models are those that exist in one dimen-
sion on a line and consider only their own states and those of their two 
nearest, adjacent neighbors. If these automata have only two possible states 
(0 and 1, for example), then there are 256 possible rules for updating the 
central automaton. We can write the update rule symbolically as ai' = (ai-

1, ai, ai+1) where ai' is the updated state,  is one of 256 functions, and ai, ai-

1, and ai+1 are the initial states of the automaton itself and its left and right 
neighbors respectively. 

Many cellular automata can be computed using binary arithmetic.  
Wolfram (1986, 2002) presented a complete classification and analysis of 
the 265 rules for the 2-state, 2-neighbor automata. For each binary number 
from 00000000 to 11111111 (decimal 0 to 255) the update function  is 
defined as follows. 

Proceeding from right to left, each binary digit represents 20, 21, 22, … , 
27.  Hence, the binary number 00000001 is 20 = 1 while 00010010 is 24 + 
21 = 18.  We take the exponents (4 and 1 in the case of binary 00010010) 
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as a variable n and solve for n2, n1, and n0 in n = 4n2 + 2n1 + n0.  Then (n2,
n1, n0) = 0 or 1 depending on the value of the binary digit. This is best il-
lustrated by an example. The rightmost binary digit in 00010010 is 0. Its 
exponent in 20 is also 0.  Hence, n = 0 and the only solution of n = 4n2 + 
2n1 + n0 is n = 0 = 4(0) + 2(0) + (0) or n2 = n1 = n0 = 0. Finally, (0, 0, 0) = 
0. Therefore, if the central automaton and its two nearest neighbors all 
have state 0 at a time step, the central automaton will be in the 0 state at 
the next time step.  

The second binary digit is 1 and its exponent n = 1 = 4(0) + 2(0) + (1).  
Thus, (0, 0, 1) = 1. So, if the right neighbor has state 1 and the left 
neighbor and the central automaton are in the 0 state at a time step, the 
central automaton will update to state 1 at the subsequent time step. 

The third binary digit is 0 and its exponent n = 2 = 4(0) + 2(1) + (0).  
Thus, (0, 1, 0) = 0 and, if the central automaton has state 1 and the right 
and left neighbors are in the 0 state at a time step, the central automaton 
will update to state 0 at the subsequent time step. 

If we complete these computations for every combination of the 2 states 
for each of the 3 automata, we arrive at the following update table that de-
fines :

(0, 0, 0) = 0  
(0, 0, 1) = 1  
(0, 1, 0) = 0   
(0, 1, 1) = 0  
(1, 0, 0) = 1   
(1, 0, 1) = 0  
(1, 1, 0) = 0   
(1, 1, 1) = 0 

In general, for ns states and a neighborhood of nn automata (including 
the one to be updated), the update table will require nn

sn  entries.  

Despite the simplicity of this cellular automaton, it displays a complex 
evolution classed as chaotic and aperiodic by Wolfram (1986).  To visual-
ize its behavior, we can begin with a random initial condition of states, ap-
ply the update table, and show subsequent generations as a sequence of 
lines (Figure 9). This can easily be implemented on a spreadsheet. The ex-



16      Lattice Gas Models               

ercises at the end of the chapter provide some hints. These and far more 
elaborate CA are discussed in Wolfram (2002). 

Figure 9. Evolution of a 1-dimensional, 2-state, 2-neighbor cellular 
automaton. Initial condition has 50% probability of sites in state 1 (black, top 
line). Subsequent generations are shown in each line progressing from top to 
bottom.   

2.2 Two-Dimensional Lattice Gas Model of Fluid Flow 

Lattice gas cellular automata were presented as a viable means of solving 
the Navier-Stokes equations of fluid motion in a landmark paper that ap-
peared in 1986. Frish, Hasslacher, and Pomeau (Frish et al. 1986) provided 
the first lattice gas model that could properly simulate the 2-dimensional 
Navier-Stokes equations. It is commonly referred to as the 'FHP' model af-
ter these authors. This model is constructed on a equilateral triangular lat-
tice that provides an isotropic solution. Lattice points are separated by 1 
lattice unit (lu) and all particles have only one speed: 1 lu/time step (lu ts-

1). At each lattice point x, there may be up to 6 particles – one for each of 
the possible velocities defined by the particle speed and one of the six pos-
sible directions: ea = (cos a/3, sin a/3) where a = 1, 2, …, 6, and ea is the 
velocity vector pointing from the origin (0,0) to the Cartesian coordinate 
(cos a/3, sin a/3). A string of Boolean variables n = (n1, n2, …, n6) con-
tains the states (na = 0 or 1) indicating the presence (1) or absence (0) of 
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particles moving from a lattice gas site at x to a neighboring site at x + ea
(Rothman and Zaleski 1997).  

e1

e3

e2

e5

e6

e4

e1

e3

e2

e5

e6

e4

Figure 10. FHP unit velocity vectors. 

The evolution of a lattice gas model proceeds in two steps that take 
place during each time step.  The first step is a propagation, 'hopping' or 
‘streaming’ step in which the particles move to new sites according to their 
previous positions and their velocities. Next, the particles collide and scat-
ter according to collision rules. 

2.2.1  Collision Rules 

There are several possible types of collisions on the hexagonal lattice. 
Only two types are considered in the simplest FHP model; two-body colli-
sions involve 2 particles while three-body collisions involve 3. Two criti-
cal features of the lattice gas that allow it to simulate the Navier-Stokes 
equations are mass conservation and momentum conservation. Thus, it is 
essential that the microscopic-scale collisions honor mass and momentum 
conservation.  In the lattice gas, all particles have the same mass and speed 
so that momentum conservation reduces to conservation of the vector sum 
of the velocities.  Head-on collisions between 2 particles (or 3 particles ap-
proaching one another from /3 =120  separation) have no net momentum.  
Hence, the results of these collisions must also have zero net momentum.   

Figure 11 illustrates the zero net momentum, 2- and 3-particle collisions 
respectively.  The vectors shown in these figures represent velocity vectors 



18      Lattice Gas Models               

attributable to particles at the center of each hexagon just prior to and just 
after the collision step. 

Pre-collision Possible post-collision

Pre-collision Post-collision

Figure 11. Zero net momentum, head-on, 2- and 3-particle collisions. 

2.2.2  Implementation 

In practice, the directions are coded to a variable A though F as shown 
in Figure 12. 

A

B

D

FE

C

Figure 12. FHP Variable definitions 
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The variables correspond to bit strings as shown in Table 1. Note that 
only the first six bits (through a value of 32) are needed to describe the 
presence or absence of particles in all six directions. The additional bits 
play important roles however. The seventh bit signals the presence of a 
solid, while the eight bit is randomly 0 or 1 simply to decide between al-
ternative post-collision states like those at the top of Figure 11.  

Table 1. FHP model variables and their values. 

 Bit Value
 128 64 32 16 8 4 2 1 
A 0 0 0 0 0 0 0 1 
B 0 0 0 0 0 0 1 0 
C 0 0 0 0 0 1 0 0 
D 0 0 0 0 1 0 0 0 
E 0 0 0 1 0 0 0 0 
F 0 0 1 0 0 0 0 0 
S 0 1 0 0 0 0 0 0 
R 1 0 0 0 0 0 0 0 

Now consider the collision illustrated in Figure 13. There is no change 
in the pre- and post-collision velocities because no other velocity configu-
ration that is possible on the hexagonal lattice conserves the momentum 
present prior to the collision. The same is true for 2 particles that collide at 
120º and all three-particle collisions with the exception of that shown in 
Figure 11.  

Pre-collision Post-collision

Figure 13.  Pre- and post-collision velocities for 2-particle collision with ini-
tial velocities separated by 60 . No configurations other than the original con-
serve mass and momentum; the same is true for all 5- and 6-particle colli-
sions. 
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Inclusion of these 2- and 3-particle collisions completes the simplest lattice 
gas model.  More complex models that include 4-particle collisions and 
particles with zero velocity can be devised (Rothman and Zaleski, 1997).  
Five- and 6-particle collisions cannot be replaced with any other velocity 
configuration if momentum is to be conserved. 

With these considerations, we are in a position to construct a look-up ta-
ble (Figure 14) that reads the current configuration of particle velocities, 
solid presence, and random bit, and returns the new configuration. We be-
gin by filling the table with the trivial information 'new configuration  = 
old configuration' for each of the 256 possible configurations, because in 
fact we have decided many configurations will not change. For the first 64 
configurations (00000000 through 00111111) the seventh bit (which signi-
fies a solid surface) is 0 and no solid is present. The same is true for con-
figurations 128 through 191 (10000000 through 10111111). We continue 
to assume (for the moment) that no changes to these configurations will be 
needed. 

000000000

…

11111111255

110000003

010000002

100000001

1
A

2
B

4
C

8
D

16
E

32
F

64
S

128
R

Bit Value

Figure 14. Collision “look up” table. 256 entries. Start with all unchanged. 
‘new configuration’ =  ‘old configuration’ 

In contrast, for configurations 64 through 127 and 192 through 255 
(01000000 through 01111111 and 11000000 through 11111111), there are 
solids present. The particles cannot pass through the solids. One of the 
simplest boundary conditions to apply at the surface of the solid is the 
'bounce back' condition. This consists of sending the particle directly back 
where it came from. So, for instance (referring to Figure 12), an A particle 
becomes a D particle, B becomes E, C becomes F, and so on. These are the 
first modifications we make to the table (see Figure 15).  
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…

11111110127

0100001066

1000001065

0000001064

1
A

2
B

4
C

8
D

16
E

32
F

64
S

128
R

In-State Bit Value

…

11111110127

0000101080

0001001072

0000001064

1
A

2
B

4
C

8
D

16
E

32
F

64
S

128
R

Out-State Bit Value

Figure 15. In-State/Out-State bit values with solids present (S = 1). 

Next we take into account the collisions considered in Figure 11. There 
are three obvious possibilities for the two-particle, head on collision: AD, 
BE, and CF. Actually however, because of the eight bit and because there 
are two possible outcomes that must be equally likely, there are really two 
sets of these; one set has the eight bit = 0 and the other has it equal to 1.  
Now, for example, say we have the configuration AD with bit 8 = 0 
(00001001 or 9). The new table configuration is BE (00010010 or 18).  If 
the eight bit is 1, AD is 10001001 (= 137). Now the other configuration – 
CF (10100100 = 164) is selected. Bit 8 remains unchanged.  

The randomness introduced by this procedure is essential to the ability 
of the lattice gas to simulate fluids. 

10010001137
(AD)

100100009
(AD)

1
A

2
B

4
C

8
D

16
E

32
F

64
S

128
R

In-State Bit Value

00100101164
(CF)

0100100018 
(BE)

1
A

2
B

4
C

8
D

16
E

32
F

64
S

128
R

Out -State Bit Value

Figure 16. In-State/Out-State Bit values for two-particle head-on collisions. 

Changing all of the zero-momentum, 3-particle collisions (ACE, BDF, 
and their bit 8 = 1 counterparts (Figure 17)), completes the definition of the 
model. Each of the 256 unique combinations of the 8 bits is accounted for.  
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01010101170
(BDF)

10101001149 
(ACE)

0101010042
(BDF)

1010100021 
(ACE)

1
A
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B

4
C

8
D

16
E

32
F

64
S

128
R

In-State Bit Value

10101001149 
(ACE)

01010101170
(BDF)

1010100021
(ACE)

0101010042 
(BDF)

1
A

2
B

4
C

8
D

16
E

32
F

64
S

128
R

Out -State Bit Value

Figure 17. In-State/Out-State Bit Values for three-particle head-on colli-
sions. 

Because there are relatively few in-state => out-state changes in our ta-
ble, it is easy to implement this in computer code. The following is from 
code provided by Rothman and Zaleski (1997). A ‘table’ array is indexed 
with the possible in-states from 0 to 255 and the out-states are the values 
contained in the array.  

Figure 18. Code fragment from Lgapack Version 0.98 for the simulation of 
flow with lattice gas automata. Copyright (C) 1997 D.H. Rothman and S. Za-
leski. This code is freely available under GNU General Public License from 
ftp://ftp.jussieu.fr/jussieu/labos/lmm/Lgapack/. EPS refers to the random bit 
R. 

Three additional details are needed to implement a FHP model. First, the 
need to select randomly among the two possible configurations for the 
head-on two-particle collisions interjects a great deal of ‘noise’ into the 
simulations. In fact, this ‘noise’ is crucial to the ability to simulate hydro-
dynamics with a lattice gas and may even be viewed as an advantage in 
certain circumstances. But to obtain the smooth flow fields we expect in 
fluids at macroscopic scales under many conditions from a lattice gas 
simulation, a significant amount of temporal and/or spatial averaging is 
needed. Next, the equilateral triangular lattice is not particularly amenable 

table[A + D]       = B + E; 
table[B + E]       = C + F; 
table[C + F]       = A + D; 
table[A + D + EPS] = C + F; 
table[B + E + EPS] = A + D; 
table[C + F + EPS] = B + E; 

table[A + C + E]       = B + D + F ; 
table[B + D + F]       = A + C + E; 
table[A + C + E + EPS] = B + D + F + EPS; 
table[B + D + F + EPS] = A + C + E + EPS; 
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to computer computation (instead of the four or eight neighbors of a Carte-
sian point, there are six) and a remapping scheme is needed (Figure 19). 
The vertical separation of node points is 2

3 .

even rows

odd rows

even rows

odd rows

Figure 19. One possible scheme for remapping the equilateral triangular 
grid onto a more 'computer-friendly' system. Alternate rows are shifted left 
or right in the scheme. 
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Finally, a driving force is needed. The simplest approach is to ‘flip’ the 
momentum of some randomly selected fraction of the particles; for exam-
ple, a fraction of the D direction particles become A direction. This corre-
sponds to the addition of A-direction momentum to the system. 

2.2.3  Example 

With these pieces in place, we can compute reasonable hydrodynamics. 
Figure 20 shows the results of an early lattice gas simulation (see Rothman 
(1988) for a similar simulation). As noted by others (Rothman and Zaleski 
1997; Succi 2001; Wolfram 2002), the model is remarkable for its great 
simplicity. That fluid flows can be computed on the basis of only 6 particle 
momenta and a handful of collisions attests to an amazing underlying sim-
plicity in nature. 

Figure 20. Crude lattice gas simulation of flow in a periodic 2-D network. 



Exercises  25

2.3 Exercises 

1. Implement Wolfram’s (1986, 2002) Rule 18 CA on a spreadsheet. In 
Microsoft Excel®, the 2nd row, 2nd column formula is:  

=IF(OR(AND((A1=1),(B1=0),(C1=0)),AND((A1=0),(B1=0),(C1=1))),1,0).

It needs to be copied throughout the domain except on row 1, which is 
the initial condition. Try different initial conditions by seeding the first line 
with different patterns of 0s and 1s. 

2. Download LGAPACK from the ftp site 
ftp://ftp.jussieu.fr/jussieu/labos/lmm/Lgapack/. Read the README file 
and study the code fhp6_simp4.c and the associated header (.h) files. De-
lete the original fhp6_simp.c and rename fhp6_simp4.c to fhp6_simp.c, 
then type ‘make clean’ and ‘make’ to compile the code. Modify the pa-
rameters.h file so that FORCING_RATE = 0.0001 and TPRINT, TMAX, 
and TAVG all equal 100000. Run the code and use the following 
MATLAB® code to visualize the results: 

clear('all') 
load x_mom 
load y_mom 
load mass 
x_vel=x_mom./(2*mass) 
y_vel=sqrt(3)*y_mom./(2*mass) 
quiver(x_vel',y_vel')
axis equal 

You should obtain a Poiseuille velocity profile. Reduce TPRINT, 
TMAX, and TAVG to 1000. What is the effect on the results and why?  

3. Find the maximum x velocity in the simulation and use the velocity, 
FORCING_RATE (g), and channel width in Eq. (4) to estimate the kine-
matic viscosity of the simulated fluid. (Note that the densities in G* and the 
bulk viscosity cancel, leaving g and the kinematic viscosity.) Compare 
your estimate to the theoretical density-dependent kinematic viscosity of 
the lattice gas model value given by (Rothman and Zaleski, 1997) 

8
1

)1(12
1

3ff
, (8) 
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where f is the ‘reduced density’ (average number of particles per lattice 
link) as given in the parameters.h file. Can you improve your estimates by 
changing the simulation?  
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3 Basic Boltzmann Gas Concepts 

Ludwig Boltzmann was born in Austria in 1844. 
He took his own life in 1906 probably at least in 
part as the result of despondency over the diffi-
culty of having his ideas accepted. Shortly after his 
death, his notions of gases and the atomic theory of 
matter in general were broadly embraced by the 
scientific community and continue to play impor-
tant roles (Harris 1971). His “Lectures on Gas 
Theory” (Boltzmann 1964/1995) are useful read-
ing.

The basic idea of Boltzmann’s work is that a gas is composed of interact-
ing particles that can be described by classical mechanics, and, because 
there are so many particles, a statistical treatment is necessary and appro-
priate. The mechanics can be extremely simple and encapsulated by just 
the notions of streaming in space and billiard-like collision interactions. As 
we will see, lattice Boltzmann models simplify even further and yet, like 
lattice gas models, still reproduce the behavior of real fluids. 

We will introduce some basic concepts from the kinetic theory of gases 
and statistical mechanics and ‘derive’ a simplified form of the Boltzmann 
equation. Readers interested in complete treatments are referred to the 
classic texts “Molecular theory of gases and liquids” by Hirchfelder et al. 
(1954/1965) and Chapman and Cowling’s “The mathematical theory of 
non-uniform gases” (1990). Books by Kittel (1958/2004) and Mattis 
(2003) may also prove helpful. 

3.1  Kinetic Theory 

Consider a dilute gas consisting of hard spherical particles moving at great 
velocity (~300 ms-1). We limit their interaction to elastic collisions. Hypo-
thetically, it would be possible to know the position vector (x) and momen-
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tum (p) of each individual particle at some instant in time. Such informa-
tion would give the exact dynamical state of the system which, together 
with classical mechanics, would allow exact prediction of all future states.  

We could describe the system by a distribution function f (N)(xN,pN,t)
where N is the number of particles. Here the distribution is thought of as 
residing in a ‘phase space’, which is a space in which the coordinates are 
given by the position and momentum vectors and the time. Changes in 
f(N)(xN,pN,t) with time are given by the Liouville equation (6N variables). 
However, this level of description is not possible for real gases, where 
~1023 (a mole of) particles are involved in just 20 liters of gas at atmos-
pheric temperature and pressure. Fortunately we are usually interested only 
in low order distribution functions (N = 1, 2).  

3.2  First Order Distribution Function 

Statistical Mechanics offers a statistical approach in which we represent a 
system by an ensemble of many copies. The distribution f (1)(x,p,t) gives 
the probability of finding a particular molecule with a given position and 
momentum; the positions and momenta of the remaining N-1 molecules 
can remain unspecified because no experiment can distinguish between 
molecules, so the choice of which molecule does not matter. This is the 
‘Single particle’ distribution function. f (1) is adequate for describing all gas 
properties that do not depend on relative positions of molecules (dilute gas 
with long mean free path). 

The probable number of molecules with position coordinates in the 
range x ± dx and momentum coordinates p ± dp is given by f(1)(x,p,t)dxdp.
Say we introduce an external force F that is small relative to intermolecu-
lar forces. If there are no collisions, then at time t + dt, the new positions 
of molecules starting at x are x + (p/m)dt = x + (dx/dt)dt = x + dx and the 
new momenta are p = p + Fdt  = p + (dp/dt)dt = p + dp.

Thus, when the positions and momenta are known at a particular time t,
incrementing them allows us to determine f(1) at a future time t + dt:

pxpxpxppxx ddtfdddttddf ),,(),,( )1()1( . (9) 

This is the streaming process.  
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There are however collisions that result in some phase points starting at 
(x, p) not arriving at (x + p/m dt, p+F dt) = (x + dx, p+ dp) and some not 
starting at (x, p) arriving there too. We set (-)dxdpdt equal to the number 
of molecules that do not arrive in the expected portion of phase space due 
to collisions during time dt. Similarly, we set (+)dxdpdt equal to the num-
ber of molecules that start somewhere other than (x, p) and arrive in that 
portion of phase space due to collisions during time dt. If we start with Eq. 
(9) and add the changes in f(1) due to these collisions we obtain 

.),,(
),,(

)()()1(

)1(

dtddddtf
dddttddf
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pxppxx

(10) 

The first order terms of a Taylor series expansion of the LHS of Eq. (10), 
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give the Boltzmann equation 
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or  

)()(
)1(

)1()1(

t
fff px Fv . (13) 

Note that this can be derived for an arbitrary number of different chemical 
components as well. 

In its complete form with the collision operator written more explicitly, 
the Boltzmann equation is a nonlinear integral differential equation and is 
particularly complicated. According to Harris (1971), 50 years elapsed 
from the time that Boltzmann derived the equation before an approximate 
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solution was found. With lattice Boltzmann methods, we approximately 
solve the equation from the particle perspective and focus on an equation 
strongly akin to Eq. (10); it explicitly contains the ‘collide and stream’ no-
tion central to LBM. 
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4 Lattice Boltzmann Models (LBMs) 

4.1  Basic LBM Framework and Equations 

Lattice Boltzmann models vastly simplify Boltzmann’s original conceptual 
view by reducing the number of possible particle spatial positions and mi-
croscopic momenta from a continuum to just a handful and similarly dis-
cretizing time into distinct steps. Particle positions are confined to the 
nodes of the lattice. Variations in momenta that could have been due to a 
continuum of velocity directions and magnitudes and varying particle mass 
are reduced (in the simple 2-D model we focus on here) to 8 directions, 3 
magnitudes, and a single particle mass. Figure 21 shows the Cartesian lat-
tice and the velocities ea where a = 0, 1, …, 8 is a direction index and e0 = 
0 denotes particles at rest. This model is known as D2Q9 as it is 2 dimen-
sional and contains 9 velocities. This LBM classification scheme was pro-
posed by Qian et al. (1992) and is in widespread use. Because particle 
mass is uniform (1 mass unit or mu in the simplest approach), these micro-
scopic velocities and momenta are always effectively equivalent. The lat-
tice unit (lu) is the fundamental measure of length in the LBM models and 
time steps (ts) are the time unit. 
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Lattice Unit, lu
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Figure 21. D2Q9 lattice and velocities. 

The velocity magnitude of e1 through e4 is 1 lattice unit per time step or 
1 lu ts-1, and the velocity magnitude of e5 through e8 is 2 lu ts-1. (While 
this is probably the most common velocity indexing scheme, be aware that 
others are in use.) These velocities are exceptionally convenient in that all 
of their x- and y-components are either 0 or ±1 (Figure 22).   
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Figure 22. D2Q9 x, y velocity components. 

The next step is to incorporate the single-particle distribution function f,
which is essentially the one that appears in Eq. (10), except that it has only 
nine discrete ‘bins’ instead of being a continuous function. The distribution 
function can conveniently be thought of as a typical histogram representing 
a frequency of occurrence (Figure 23). The frequencies can be considered 
to be direction-specific fluid densities.  Accordingly, the macroscopic fluid 
density is 

8

0a
af (14) 
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Figure 23. On-lattice and histogram views of the discrete single particle 
distribution function/direction-specific densities fa.

The macroscopic velocity u is an average of the microscopic velocities 
ea weighted by the directional densities fa:

8

0

1
a

aaf eu . (15) 

This simple equation allows us to pass from the discrete microscopic ve-
locities that comprise the LBM back to a continuum of macroscopic ve-
locities representing the fluid’s motion.  

The next steps are streaming and collision of the particles via the distri-
bution function. The simplest approach uses the Bhatnagar-Gross-Krook 
Approximation for collision. 

4.2 Single Relaxation Time BGK 

The BGK (Bhatnagar-Gross-Krook) Approximation is used in the simplest 
LBM. Succi (2001) provides excellent discussions of more complex mod-
els and the path to BGK. 
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Streaming and collision (i.e., relaxation towards local equilibrium) look 
like this: 

Collision
Streaming

,,,, tftftftttf
eq

aa
aaa

xxxex (16) 

where fa(x+ea t,t+ t)=fa(x,t) is the streaming part and (fa(x,t)-fa
eq(x,t))/  is 

the collision term. Although they can be combined into a single statement 
as they are in Eq. (16), collision and streaming steps must be separated if 
solid boundaries are present because the bounce back boundary condition 
is a separate collision. 

Collision of the fluid particles is considered as a relaxation towards a lo-
cal equilibrium and the D2Q9 equilibrium distribution function f eq is de-
fined as 
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where the weights wa are 4/9 for the rest particles (a = 0), 1/9 for a = 1, 2,
3, 4, and 1/36 for a = 5, 6, 7, 8, and c is the basic speed on the lattice (1 lu 
ts-1 in the simplest implementation). Note that if the macroscopic velocity 
u = 0, the equilibrium fa are simply the weights times the fluid density. 

Implementing Eqs. (14) through (17) is relatively straightforward, and 
we provide details in the following sections. In the pseudo-code included 
in the text, the major axis weights wa are referred to as WM and the diagonal 
weights are referred to as WD.

4.2.1  Macroscopic Variables 

Computation of the macroscopic fluid density and velocity via Eqs. (14) 
and (15) simply involves looping through a = 0, 1, …, 8 and computing the 
appropriate sums: 

  // Computing macroscopic density, rho, and velocity, u=(ux,uy). 
  for( j=0; j<LY; j++) 
  { 
    for( i=0; i<LX; i++) 
    { 
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      u_x[j][i] = 0.0; 
      u_y[j][i] = 0.0; 
      rho[j][i] = 0.0; 

      if( !is_solid_node[j][i]) 
      { 
        for( a=0; a<9; a++) 
        { 
          rho[j][i] +=       f[j][i][a]; 
          u_x[j][i] += ex[a]*f[j][i][a]; 
          u_y[j][i] += ey[a]*f[j][i][a]; 
        } 
        u_x[j][i] /= rho[j][i]; 
        u_y[j][i] /= rho[j][i]; 
      } 
    } 
  } 

4.2.2  Streaming 

In streaming, we move the direction-specific densities fa to the nearest 
neighbor lattice nodes. The scheme (originally due to Louis Colonna-
Romano) shown in Figure 24 provides a convenient neighbor address rela-
tive to the point from which the fs are being streamed. The ip, in, jp,
and jn are computed at the beginning of their respective loops. 

i, jn

ip, jin, j i, j

i, jp
ip, jp

ip, jn

in, jp

in, jn

Figure 24. Neighbor referencing following Louis Colonna-Romano. 
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  // Streaming step. 
  for( j=0; j<LY; j++) 
  { 
    jn = (j>0   )?(j-1):(LY-1) 
    jp = (j<LY-1)?(j+1):(0   ) 
     
    for( i=0; i<LX; i++) 
    { 
      if( !is_interior_solid_node[j][i]) 
      { 
        in = (i>0   )?(i-1):(LX-1) 
        ip = (i<LX-1)?(i+1):(0   ) 

        ftemp[j ][i ][0] = f[j][i][0]; 
        ftemp[j ][ip][1] = f[j][i][1]; 
        ftemp[jp][i ][2] = f[j][i][2]; 
        ftemp[j ][in][3] = f[j][i][3]; 
        ftemp[jn][i ][4] = f[j][i][4]; 
        ftemp[jp][ip][5] = f[j][i][5]; 
        ftemp[jp][in][6] = f[j][i][6]; 
        ftemp[jn][in][7] = f[j][i][7]; 
        ftemp[jn][ip][8] = f[j][i][8]; 
      } 
    } 
  } 

4.2.3  Equilibrium Distribution Function 

Coding of the equilibrium distribution function is more involved due to the 
vector dot products (Eq. (17)). The implementation of these requires work-
ing with the individual x- and y-components of the velocity vectors.  

Note that f eq is computed in terms of a new velocity ueq. This is an adjusted 
velocity that incorporates external forces as will be discussed later. For 
now, suppose there are no external forces acting on particles, and so ueq = 
u. We still want to put the ueq mechanism in place now to avoid having to 
rewrite the computation of f eq for such a minor (in terms of implementa-
tion) adjustment later when external forces are introduced. 

  // Compute the equilibrium distribution function, feq. 
  f1=3.; 
  f2=9./2.; 
  f3=3./2.; 

  for( j=0; j<LY; j++) 
  { 
   for( i=0; i<LX; i++) 
   { 
    if( !is_solid_node[j][i]) 
    { 
      rt0 = (4./9. )*rhoij; 
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      rt1 = (1./9. )*rhoij; 
      rt2 = (1./36.)*rhoij; 

      ueqxij =  uxij; 
      ueqyij =  uyij; 

      uxsq   =  ueqxij * ueqxij; 
      uysq   =  ueqyij * ueqyij; 

      uxuy5  =  uxeqij +  uyeqij; 
      uxuy6  = -uxeqij +  uyeqij; 
      uxuy7  = -uxeqij + -uyeqij; 
      uxuy8  =  uxeqij + -uyeqij; 

      usq    =  uxsq + uysq; 

      feqij[0] = rt0*( 1.                              - f3*usq); 
      feqij[1] = rt1*( 1. + f1*ueqxij + f2*uxsq        - f3*usq); 
      feqij[2] = rt1*( 1. + f1*ueqyij + f2*uysq        - f3*usq); 
      feqij[3] = rt1*( 1. - f1*ueqxij + f2*uxsq        - f3*usq); 
      feqij[4] = rt1*( 1. - f1*ueqyij + f2*uysq        - f3*usq); 
      feqij[5] = rt2*( 1. + f1*uxuy5  + f2*uxuy5*uxuy5 - f3*usq); 
      feqij[6] = rt2*( 1. + f1*uxuy6  + f2*uxuy6*uxuy6 - f3*usq); 
      feqij[7] = rt2*( 1. + f1*uxuy7  + f2*uxuy7*uxuy7 - f3*usq); 
      feqij[8] = rt2*( 1. + f1*uxuy8  + f2*uxuy8*uxuy8 - f3*usq); 
    } 
   } 
  } 

4.2.4  Collision 

Collision is the last key element of an LBM. Traverse the domain and im-
plement Eq. (16) at each node: 

  // Collision step. 
  for( j=0; j<LY; j++) 
    for( i=0; i<LX; i++) 
      if( !is_solid_node[j][i]) 
        for( a=0; a<9; a++) 
        { 
          fij[a] = ftempij[a] - ( ftempij[a] - feqij[a])/tau; 
        } 

Note that we include a statement to skip this collision if the site at (i,j) is 
occupied by a solid (obstacle). 

4.3 Viscosity 

Fluid kinematic viscosity  in the D2Q9 model is given by  
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)( 2
1

3
1 . (18) 

Its units are lu2ts-1. Note that  > ½ for positive (physical) viscosity. Nu-
merical difficulties can arise as  approaches ½. A value of = 1 is safest 
and leads to  lu2ts-1.

4.4 Boundary Conditions 

Boundary conditions are necessary before we can compute any meaningful 
results. Since the early 1990s, many papers have proposed and investigated 
the behavior of various boundary conditions (Ziegler 1993; Skordos 1993; 
Inamuro et al. 1995; Noble et al. 1995; Ginzbourg and d'Humieres 1996; 
Maier et al. 1996; Zou and He 1997; Fang et al. 1998; Verberg and Ladd 
2000; Zhang et al. 2002; Ansumali and Karlin 2002; Chopard and Dupuis 
2003). This work continues, though workable boundary conditions for 
many types of simulations are now available. In this chapter, we will give 
details for periodic, bounceback, and, following Zou and He (1997), con-
stant pressure and constant velocity boundaries. Readers wishing to ex-
plore more advanced work on boundary conditions are referred to Yu et al. 
(2003), Ginzburg and d’Humières (2003), Zhou et al. (2004), and the open 
literature. In Chapter 8 we present boundary conditions for solute transport 
simulation.  

In general, we have a great deal of temporal/spatial flexibility in apply-
ing boundary conditions in LBM. In fact, the ability to easily incorporate 
complex solid boundaries is one of the most exciting aspects of these mod-
els and has made it possible to simulate realistic porous media for exam-
ple. 

4.4.1  Periodic Boundaries 

The simplest boundary conditions are ‘periodic’ in that the system be-
comes closed by the edges being treated as if they are attached to opposite 
edges. Most early papers used these boundaries along with bounceback 
boundaries. In simulating flow in a slit for example, bounceback bounda-
ries would be applied at the slit walls and periodic boundaries would be 
applied to the ‘open’ ends of the slit. Figure 25 illustrates the resulting to-
pology of the computational domain using such ‘wrap-around’ boundaries.  
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Figure 25. Cylindrical topology of computational domain when periodic in 
one direction. Note that the gap in the cylinder is just for illustration pur-
poses to emphasize how the domain wraps around on itself. 

Fully periodic boundaries are also useful in some cases (for example, 
simulation of an infinite domain of multiphase fluids). In this case the 
computational domain topology is that of a torus (Figure 26). 

For boundary nodes, neighboring points are on the opposite boundary. 
Using the normal referencing of neighbors (Figure 24), here are condition-
als that that check if the neighboring nodes lie outside the computational 
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domain and assign the appropriate node on the opposite boundary in that 
case to achieve periodicity: 

  ip = ( i<LX-1)?( i+1):( 0   ); 
  in = ( i>0   )?( i-1):( LX-1); 
  jp = ( j<LY-1)?( j+1):( 0   ); 
  jn = ( j>0   )?( j-1):( LY-1); 

where 

  LHS = (COND)?(TRUE_RHS):(FALSE_RHS); 

means 

  if( COND) { LHS=TRUE_RHS;} else{ LHS=FALSE_RHS;} 

Figure 26. Torroidal topology of computational domain that is periodic in 
both directions. Gaps in torus illustrate how the domain wraps around on it-
self.
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4.4.2  Bounceback Boundaries 

As already mentioned, bounceback boundaries are particularly simple and 
have played a major role in making LBM popular among modelers inter-
ested in simulating fluids in domains characterized by complex geometries 
such as those found in porous media. Their beauty lies in that one simply 
needs to designate a particular node as a solid obstacle and no special pro-
gramming treatment is required. Thus it is trivial to incorporate images of 
porous media for example and immediately compute the flow in them.  

Figure 27. Classification of solids: black nodes are surface (boundary) sol-
ids; gray checker nodes denote interior (isolated) solids.  (Often the percent-
age of isolated solids is much greater than surface solids.) 
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As indicated in Figure 27, we separate solids into two types – boundary 
solids that lie at the solid-fluid interface and isolated solids that do not con-
tact fluid. With this division it is possible to eliminate unnecessary compu-
tations at inactive nodes; this can be particularly important in the simula-
tion of fluid flow in fractured media for example, where the fraction of the 
total domain occupied by open space accessible to fluids can be very 
small.  

Bounceback boundaries come in several variants (Succi 2001) and do not 
work perfectly (e.g., Gallivan et al. 1997; Inamuro et al. 1995). Neverthe-
less, with proper consideration of the effective boundary location and for 

 1 (Chen et al. 1996), quite satisfactory results can be obtained as will be 
demonstrated below. Here we use the ‘mid-plane’ bounceback scheme in 
which the densities are temporarily stored inside the solids and re-emerge 
at the next time step. Figure 28 illustrates the process. 
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Figure 28. Illustration of mid-plane bounceback movement of direction-
specific densities fa. The effective wall location is halfway between the fluid 
and solid nodes. (Figure from Sukop and Or, 2004). 

Code to accomplish this can be included with the collision routine.  
While traversing the lattice to perform the collision step, if node (i,j) is de-
termined to be a boundary solid, the normal collision computation is omit-
ted and the densities are bounced back as illustrated in Figure 28. The sub-
sequent streaming step moves the densities back into the fluid domain.  
Here is the code for performing the bounceback step on node (i,j):

  // Standard bounceback. 
  temp   = fij[1]; fij[1] = fij[3]; fij[3] = temp; 
  temp   = fij[2]; fij[2] = fij[4]; fij[4] = temp; 
  temp   = fij[5]; fij[5] = fij[7]; fij[7] = temp; 
  temp   = fij[6]; fij[6] = fij[8]; fij[8] = temp; 
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4.4.3  Von Neumann (Flux) Boundaries 

Von Neumann boundary conditions constrain the flux at the boundaries. A 

velocity vector consisting of x and y components 
0

0
0 v

u
u  is specified 

from which density/pressure is computed on the basis of conditions inside 
the domain. 

Macroscopic density/pressure is only part of what needs to be computed.  
The unknown directional densities also need to be computed. After the 
streaming step, there are three unknown directional densities at each lattice 
node pointing from the boundary into the domain.  These unknowns can be 
solved for in a way that maintains a specified velocity at their lattice nodes. 
Because symmetry makes determination of the boundary condition on 
other boundaries almost trivial, we only derive one case – a north bound-
ary – in detail.  The other three are illustrated in pseudocode only. 

Figure 29 shows the unknowns at a north boundary after streaming.   

Figure 29. Direction-specific densities f4, f7, and f8 are unknown after 
streaming at a north surface/boundary. 

Suppose the boundary condition is that vertical velocity v = v0 and horizon-
tal velocity u = 0. That is,   

0
0

0
v

u . (19) 

The contributions from fa for a in {0,1,2,3,5,6} are already known because 
they arrived from other nodes inside the domain. We need to solve for ,
f4, f7 and f8, which means we need four equations. 
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The macroscopic density formula is one equation: 

a
af . (20) 

By considering the individual fs that can contribute to x and y velocities, 
the formula for macroscopic velocity 

a
a

af eu 1
0 (21) 

gives two equations, one for each direction: 

8765310 ffffff (22) 
and

8765420 ffffffv . (23) 

A fourth equation can be written by assuming that the bounceback con-
dition holds in the direction normal to the boundary 

eqeq ffff 4422 (24) 

as proposed by Zou and  He (1997). 

This is a system of four equations with four unknowns, and it can be 
solved as follows. 

Eqs. (20) and (23) have the directional density unknowns f4, f7 and f8 in 
common, so rewrite them with those variables on the left hand side: 

             653210874 fffffffff (25) 

             0652874 vffffff (26) 

Then equate the right hand sides 
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0652653210 vfffffffff (27) 

and solve for :

.
1

2

0

652310

6526532100

v
ffffff

fffffffffv
(28) 

Now, from equation (24), we solve for f4:

024224 3
2 vfffff eqeq . (29) 

Here is a detailed look at how most of the terms in f4
eq–f2

eq cancel out: 

0
2
0

2
0

2
00

2
0

2
0

2
00

24

3
2

6
1

2
1)1(

3
1

9
1

6
1

2
1)1(

3
1

9
1

vvuvv

vuvv

ff eqeq

.
(30) 

Eqs. (28) and (29) give the fluid density and the direction-specific den-
sity in the ‘4’ direction respectively.  

We proceed by substituting equations (22) and (29) into equation (23) to 
solve for f7.  Eq. (30) is used to replace f4, and equation (22) is used to re-
place f8:
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.
6
1

2
1

22
3
2

3
2

03157

317500

765317650220

8765420

8

4

vffff

ffffvv

ffffffffvffv

ffffffv

f
f (31) 

To solve for f8, the last unknown, we can repeat the last step except equa-
tion (22) is used to substitute for f7 this time: 

.
6
1

2
1

22
3
2

3
2

03168

318600

886531650220

8765420

7

4

vffff

ffffvv

ffffffffvffv

ffffffv

f
f

(32) 

To summarize the procedure, we specify a velocity, e.g., equation (19), 
at the boundary and solve for the macroscopic density and three unknown 
directional densities via four equations. The equations come from the usual 
macroscopic variable formulae and the assumption that bounceback is sat-
isfied in the direction normal to the boundary. 

Below we show pseudocode implementing Zou and He flux boundaries 
on all four sides. First we solve for the fluid density and subsequently use 
that to solve for the unknown direction-specific densities.  

  // Zou and He velocity BCs on north side. 
  for( i=0; i<LX; i++) 
  { 
    fi    = ftemp[LY-1][i]; 
    rho0  = (      fi[0] + fi[1] + fi[3] 
            + 2.*( fi[2] + fi[5] + fi[6])) / ( 1. + uy0); 
    ru    = rho0*uy0; 
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    fi[4] = fi[2] - (2./3.)*ru; 
    fi[7] = fi[5] - (1./6.)*ru + (1./2.)*( fi[1]-fi[3]); 
    fi[8] = fi[6] - (1./6.)*ru + (1./2.)*( fi[3]-fi[1]); 
  } 

  // Zou and He velocity BCs on south side. 
  for( i=0; i<LX; i++) 
  { 
    fi    = ftemp[0][i]; 
    rho0  = (      fi[0] + fi[1] + fi[3] 
            + 2.*( fi[4] + fi[7] + fi[8])) / ( 1. - uy0); 
    ru    = rho0*uy0; 
    fi[2] = fi[4] + (2./3.)*ru; 
    fi[5] = fi[7] + (1./6.)*ru - (1./2.)*( fi[1]-fi[3]); 
    fi[6] = fi[8] + (1./6.)*ru - (1./2.)*( fi[3]-fi[1]); 
  } 

  // Zou and He velocity BCs on east side. 
  for( j=0; j<LY; j++) 
  { 
    fj    = ftemp[j][LX-1]; 
    rho0  = (      fj[0] + fj[2] + fj[4] 
            + 2.*( fj[1] + fj[5] + fj[8])) / ( 1. + ux0); 
    ru    = rho0*ux0; 
    fj[3] = fj[1] - (2./3.)*ru; 
    fj[7] = fj[5] - (1./6.)*ru + (1./2.)*( fj[2]-fj[4]); 
    fj[6] = fj[8] - (1./6.)*ru + (1./2.)*( fj[4]-fj[2]); 
  } 

  // Zou and He velocity BCs on west side. 
  for( j=0; j<LY; j++) 
  { 
    fj    = ftemp[j][0]; 
    rho0  = (      fj[0] + fj[2] + fj[4] 
            + 2.*( fj[3] + fj[7] + fj[6])) / ( 1. - ux0); 
    ru    = rho0*ux0; 
    fj[1] = fj[3] + (2./3.)*ru; 
    fj[5] = fj[7] + (1./6.)*ru - (1./2.)*( fj[2]-fj[4]); 
    fj[8] = fj[6] + (1./6.)*ru - (1./2.)*( fj[4]-fj[2]); 
  } 

The assumption of zero velocity parallel to the boundaries is a simplifi-
cation we employ that is not essential to the method. 

4.4.4  Dirichlet (Pressure) Boundaries 

Dirichlet boundary conditions constrain the pressure/density at the bounda-
ries. The solution for these boundaries is closely related to that given 
above for the velocity boundaries. A density 0 is specified from which ve-
locity is computed. (Note that specifying density is equivalent to specify-
ing pressure since there is an equation of state (EOS) relating them di-
rectly. For the single component D2Q9 model, the relationship is simply P
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multiphase models and will be discussed later.) We assume that velocity 
tangent to the boundary is zero and solve for the component of velocity 
normal to the boundary.   

In addition to the macroscopic velocity, we need to determine a proper 
distribution function at the boundary nodes. After the streaming step, there 
are three unknown directional densities at each lattice node pointing from 
the boundary into the domain. These unknowns can be solved for in a way 
that maintains the specified pressure/density 0 at their lattice nodes. 

Due to symmetry, we only derive one case – a north boundary – in de-
tail. The other three cases are illustrated in pseudocode. 

Figure 30 shows the unknowns at a north boundary after streaming 
(which are the same unknowns as the unknowns on the north boundary in 
the velocity boundary condition derivation above).   

Figure 30. Unknowns (circled) after streaming at a north sur-
face/boundary. 

Given the boundary condition = 0 and the known directional densities fa
for a in {0,1,2,3,5,6}, we need to solve for v, f4, f7 and f8. (Recall that v is 
the y-component of velocity and is in the direction normal to the north 
boundary.) As in the velocity boundary conditions described above, this 
means we need four equations. We get them again from the macroscopic 
density formula 

a
af0 , (33) 

the formula for macroscopic velocity 
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a
a

af eu
0

1
, (34) 

which gives the two equations 

8765310 ffffff (35) 

8765420 ffffffv , (36) 

and the assumption that bounceback holds in the direction normal to the 
boundary 

eqeq ffff 4422 (37) 

as proposed by Zou and  He (1997). 

This is a system of four equations with four unknowns, which can be 
solved as follows. 

Eqs. (20) and (23) have the directional density unknowns f4, f7 and f8 in 
common, so rewrite them with those variables on the left hand side: 

             6532100874 fffffffff (38) 

             vffffff 0652874 (39) 

Then equate the right hand sides 

vfffffffff 06526532100 (40) 

and solve for v:

.21
0

652310

65265321000

ffffffv

fffffffffv
(41) 

Now, from equation (24), we solve for f4:
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vfffff eqeq
024224 3

2
. (42) 

The detailed cancellation of terms in f4
eq–f2

eq is identical to Eq. (30). 

We proceed by substituting equations (22) and (29) into equation (23) to 
solve for f7.  Eq. (30) is used to replace f4, and equation (22) is used to re-
place f8:
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8
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ffffffffvffv
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To solve for f8, the last unknown, we can repeat the last step except using 
equation (22) to substitute for f7 this time: 

.
6
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2
1

22
3
2

3
2

03168

318600

886531650220

8765420

7

4

vffff

ffffvv

ffffffffvffv

ffffffv

f
f

(44) 

To summarize the procedure, we specify a velocity, e.g., equation (19), 
at the boundary and solve for the macroscopic density and three unknown 
directional densities via four equations.  The equations come from the 
usual macroscopic variable formulae and the assumption that bounceback 
is satisfied in the direction normal to the boundary. 
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Pseudocode implementing the Zou and He pressure boundaries on all 
four sides is listed below. First we solve for the velocity and subsequently 
use it to solve for the unknown direction-specific densities.  

  // Zou and He pressure boundary on north side. 
  for( i=0; i<LX; i++) 
  { 
    fi    = ftemp[LY-1][i]; 
    uy0   = -1. + (      fi[0] + fi[1] + fi[3] 
                  + 2.*( fi[2] + fi[5] + fi[6])) / rho0; 
    ru    = rho0*uy0; 
    fi[4] = fi[2] - (2./3.)*ru; 
    fi[7] = fi[5] - (1./6.)*ru + (1./2.)*( fi[1]-fi[3]); 
    fi[8] = fi[6] - (1./6.)*ru + (1./2.)*( fi[3]-fi[1]); 
  } 

  // Zou and He pressure boundary on south side. 
  for( i=0; i<LX; i++) 
  { 
    fi    = ftemp[0][i]; 
    uy0   = -1. + (      fi[0] + fi[1] + fi[3] 
                  + 2.*( fi[4] + fi[7] + fi[8])) / rho0; 
    ru    = rho0*uy0; 
    fi[2] = fi[4] - (2./3.)*ru; 
    fi[5] = fi[7] - (1./6.)*ru + (1./2.)*( fi[3]-fi[1]); 
    fi[6] = fi[8] - (1./6.)*ru + (1./2.)*( fi[1]-fi[3]); 
  } 

  // Zou and He pressure boundary on east side. 
  for( j=0; j<LY; j++) 
  { 
    fj    = ftemp[j][LX-1]; 
    ux0   = -1. + (      fj[0] + fj[2] + fj[4] 
                  + 2.*( fj[1] + fj[5] + fj[8])) / rho0; 
    ru    = rho0*ux0; 
    fj[3] = fj[1] - (2./3.)*ru; 
    fj[7] = fj[5] - (1./6.)*ru + (1./2.)*( fj[2]-fj[4]); 
    fj[6] = fj[8] - (1./6.)*ru + (1./2.)*( fj[4]-fj[2]); 
  } 

  // Zou and He pressure boundary on west side. 
  for( j=0; j<LY; j++) 
  { 
    fj    = ftemp[j][0]; 
    ux0   = -1. + (      fj[0] + fj[2] + fj[4] 
                  + 2.*( fj[3] + fj[7] + fj[6])) / rho0; 
    ru    = rho0*ux0; 
    fj[1] = fj[3] + (2./3.)*ru; 
    fj[5] = fj[7] + (1./6.)*ru + (1./2.)*( fj[4]-fj[2]); 
    fj[8] = fj[6] + (1./6.)*ru + (1./2.)*( fj[2]-fj[4]); 
  } 
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4.5  Incorporating Gravity 

The force imparted by gravitational acceleration is incorporated in a ve-
locity term.  Consider, 

dt
dmm uaF . (45) 

Recognizing that the density is proportional to the mass and that the re-
laxation time  is the elementary time of collisions, we can rearrange Eq. 
(45) to  

Fu , (46) 

where u is a change in velocity. Finally we can write 

Fuuuueq , (47) 

where ueq is used in computation of feq and was introduced above. As we 
will see below, other forces can be added in the same way. 
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5 Single component, single phase (SCSP) LBM 

The simplest LBM models that can be implemented based on the concepts 
presented in the preceding chapter are the Single Component, Single Phase 
(SCSP) models. These are single fluid models that might represent the be-
havior of a single gas or liquid phase for example. Here we present exam-
ples of Poiseuille flows driven by gravity, pressure gradients, and fixed ve-
locity boundaries and compare them with analytical solutions. 

We also demonstrate flows at higher Reynolds numbers in a well-
studied geometry (flow past a cylinder) and show good agreement between 
classic experimental results and the LBM.  Flows in more complex geome-
tries are trivial to implement with bounceback boundaries; the geometry of 
the solids simply needs to be called into the model. 
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5.1 Poiseuille Flow 

5.1.1 Gravity 

The Poiseuille flow in a slit driven by gravity may be the simplest flow 
system that can be simulated with LBM. It requires only bounceback 
boundaries along the walls. Periodic boundaries can be used in the flow di-
rection and flow that leaves the domain reenters on the opposite end of the 
slit. The system is effectively infinite in the flow direction and there are no 
entry or exit effects. In this case, G* in Eqs. (4) and (5) is the hydrostatic 
pressure gradient g. Figure 31 show the results from such a run. Agree-
ment with the analytical solution is excellent and comparable agreement is 
obtained for channels as small as 5 lattice units wide.  

Figure 31. LBM velocity vector field and node-wise simulated velocities 
(circles) with analytical Poiseuille velocity profile (solid line) for gravity-
driven flow with bounceback and periodic boundaries at Re  4.4. Gravity g
1.102 · 10-3 and  = 1. Note that no-slip zero velocity conditions apply halfway 
between wall nodes and the interior nodes; the effective wall position lies be-
tween nodes 0 and 1 on the left hand side and between nodes 11 and 12 on the 
right. 
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It is critical that lattice velocities be restricted to less than approximately 
0.1 lu ts-1. This is a consequence of the low Mach number approximation 
that allows LBM to simulate hydrodynamics. The procedure for solving a 
Poiseuille problem driven by gravity for example can thus involve steps 
such as the following: 

Choose a Reynolds number. This will permit linkage with a given real 
flow problem (but unsteady flow may not begin at Re  1000 in a slit or 
Re  2000 in a pipe (see Succi 2001 p. 99)). We assume the Reynolds 
number will be determined by the average flow velocity. 
Choose a combination of slit width and viscosity that will give a maxi-
mum velocity < 0.1 lu ts-1; smaller is better. The maximum velocity 
will be 3/2 of the average for Poiseuille flow in a slit. Note that it is best 
to use  = 1 for the simple bounceback boundaries yielding a kinematic 
viscosity of 1/6 lu2 ts-1.
Choose a fluid density. 
Solve for the gravitational acceleration needed to drive the flow by rear-
ranging Eq. (5). 

To make this explicit, suppose we wish to simulate a Poiseuille flow 
with Re  4.4 as above. The Reynolds number is Re = u 2a/ where u is 
the average fluid velocity, 2a is the characteristic length (the channel width 
in this case), and  is the kinematic viscosity. If = 1/6 lu2 ts-1 and u = 2/3 
umax = 2/3 0.1 lu ts-1 = 0.0667 lu ts-1, then 2a = Re  /u needs to be 11 lu.

Eq. (5) can be re-written as  

2
* 3

a
u

G average . (48) 

Replacing G* with g for this gravitationally-driven problem and replacing 
the dynamic viscosity  with lead to  

2

3
a

u
g average . (49) 

For the problem at hand, g = 1.102 10-3 lu ts-2.
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5.1.2  Velocity Boundaries 

The ability to specify the velocity/fluid flux on a boundary is appealing 
and potentially useful. However, given the compressible nature of the sim-
ple LBM we have introduced here, some difficulties can arise.  

Velocity boundaries are of particular interest in examining the notion of 
entry length effects. Basically, if fluid enters a pipe from a tank for exam-
ple, the Poiseuille profile will not be developed immediately inside the 
pipe; some distance of flow in the pipe will be necessary before the 
Poiseuille flow is fully developed. This distance can be remarkably long, 
which suggests that in many applications, Poiseuille flow may not be a 
good approximation.  

Figure 32. Simplified view of entry length effects in a pipe (Reprinted from 
Tritton, 1988, with permission from Oxford University Press). x/dRe is the 
dimensionless distance from the pipe entrance with x the dimensional dis-
tance, d the pipe diameter (= 2a), and Re the  Reynolds number. 
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In Figure 32 we show a simplified version of entry length effects due to 
Smith (1960) as they were presented in Tritton (1988). We can set up a LB 
model to investigate entry length effects by placing constant velocity 
boundaries on the opposite ends of a slit. In Figure 33, we show results for 
Re  100 where we use the incompressible LBM of Zou and He (1997). 
Clearly the results differ from the simplified representation in Figure 32. 

Figure 33. Simulated entry length effects in a slit using incompressible 
LBM. Velocity profiles at dimensionless distance from inlet Z = 0, 0.016, 
0.033, 0.066, 0.1083, and 0.245 (scaled relative to slit width of 0.2). Re = 100. 
U is dimensionless velocity and R is dimensionless position relative to slit 
width of 0.2. Compare with Figure 34. 

Nouar et al. (1995) presented results for the flow in the annulus between 
two pipes based on solution of the complete Navier-Stokes equations 
(Figure 34). As the inner and outer pipe radii approach one another, this is 
comparable to flow in a slit and the agreement between the finite differ-
ence solution of Nouar et al. (1995) and the LBM model for the slit is 
good.  
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Figure 34. Entry length effects in annular space between two pipes. Veloc-
ity profiles at dimensionless distance from inlet Z = 0, 0.016, 0.033, 0.066, 
0.1083, and 0.245 (scaled relative to radius of large pipe). Re = 100. U is di-
mensionless velocity and R is dimensionless radial position relative to radius 
of large pipe. (Reprinted from Nouar et al. (1995), Copyright (1995), with 
permission from Elsevier). 

The difficulty with velocity boundaries in the simple compressible fluid 
model is that if one uses identical constant velocities at each end of the 
domain, the mass of fluid in the system will change with time. The bound-
ary-driven flow must be accompanied by a pressure gradient and hence the 
pressure must be lower at the outlet. The pressure and density are related 
through an ideal gas law of the form P = /3 in this model. Thus the densi-
ties at the input and output must be different. If the velocity boundaries on 
each end of the domain are equal, mass will accumulate in the system be-
cause the mass influx of fluid (vin in) will exceed the outflux (vout out).
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Naturally, this problem increases in severity as the pressure difference in-
creases. The incompressible model of Zou and He (1997) (which we use to 
obtain the results in Figure 33), pressure boundaries, or gravity-driven flow 
can be used to avoid this complication. 

5.1.3  Pressure Boundaries 

The Equation of State (EOS) relating pressure and density in the SCSP 
D2Q9 model is 

3
2
scP . (50)

Flows can be driven with pressure gradients of any desired magnitude 
by setting the boundary densities in accordance with this equation (pro-
vided the maximum velocity remains small relative to 1 lu ts-1. In some of 
our work, we have found it useful to begin with a real-world, non-
dimensional head gradient, convert to a real-world pure pressure gradient, 
compute the Reynolds number and then define an equivalent LBM system. 
Pressure boundaries will be used extensively in conjunction with single 
component multiphase models below. 

5.2  Flows Past a Cylinder 

Flows past a cylinder have long been a subject of interest to fluid dynami-
cists. Extensive work has been done to develop empirical charts of drag 
coefficient vs. Reynolds number (e.g., Tritton 1988 and Douglas et al. 
2001). The drag force FD is defined in terms of the drag coefficient CD as   

DD CurF 2
0 (51) 

By solving for the force exerted on the fluid by the cylinder (a disk in 2-
D), we can compute a force balance and solve for the necessary opposing 
force that will drive the fluid to a constant velocity. If we choose to use 
gravitational acceleration to drive the fluid, then the downward force will 
be given by  

2rLWgF (52) 
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where gLW is simply the weight of fluid in a domain of dimensions L W
and r2 is the disk area (which is not occupied by fluid and hence does not 
contribute to the weight). Equating this gravitational force and the drag 
force at a particular Reynolds number allows computation of g for use in 
the simulation. A potential complication arises from the discretization of 
the disk. The surface area (length) of the ‘staircase’ approximation in 2-D 
is 8r instead of the 2 r of a smooth disk. Thus the drag force may be 
higher by 8/ 2  1.27. More experimentation is required. 

Taneda photographically captured flow past a cylinder behavior for vari-
ous Reynolds numbers and his results provide an excellent means of veri-
fying LBM computations. For example in Figure 35 we simulate creeping 
flow under conditions like those shown in Figure 4. 

Figure 35. Stokes or creeping flow past a cylinder at Re = 0.16 simulated 
with LBM. Flow from left to right. Additional streamlines start near the cyl-
inder to illustrate the absence of flow separation. 

As the Reynolds number increases from a creeping flow regime, separa-
tion occurs and eddies form behind the disk. These elongate as the Rey-
nolds number increases to approximately 50 (Figure 36).  
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Figure 36. Eddies and cylinder wakes at Re  41. Top: LBM calculation; 
Bottom: (Taneda 1956 with permission.) Note that streamlines were inten-
tionally started at positions that gave patterns like those in the photograph; 
the solution itself is symmetric. 
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5.3 Unsteady Flows at Higher Reynolds Numbers  

Further increases in Reynolds number result in the development of un-
steady flows in which eddies behind the disk break free alternately from 
opposite sides of the disk (vortex shedding) and move downstream as vor-
tices. An expression that predicts the spacing of vortices in this ‘von Kár-
mán street’ is (Douglas et al. 2001): 

281.0)(sinh)/1(/ 1 llh (53) 

where h is the distance between the centers of the two ‘lanes’ and l is the 
distance between vortices in a lane. A photograph of a real flow is com-
pared with an LBM simulation of a similar flow in Figure 37; there is 
qualitative agreement.  

High Reynolds number flows are of great interest in many disciplines 
and are the subject of considerable LBM research. Succi (2001) includes a 
chapter that addresses turbulence modeling with LBM.  



 Flows in More Complex Geometries 65

Figure 37. Top: Vortex shedding and von Kármán street at Re = 105. (Pho-
tograph by S. Taneda, with permission of S. Taneda and the Society for Sci-
ence on Form, Japan; black and white inverted from original.) Bottom: Vor-
ticity magnitude from LBM simulation at Re = 105. 

5.4  Flows in More Complex Geometries 

One of the most appealing aspects of LBM is that any geometric arrange-
ment of obstacles and open areas can be easily incorporated into simple 
models that use bounceback. Our code reads the locations of obstacles 
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from bitmap files. Currently we support 24-bit ‘truecolor’ BMPs with 
black corresponding to obstacles and white signifying open space. The file 
naming convention is based on the lattice size and one pixel corresponds to 
1 lattice unit. Thus, the input file for a domain 100 lu long in x by 25 lu in 
y would be ‘100x25.bmp’. Keep in mind the rule of thumb that 4 or 5 lat-
tice units in an open flow channel are the minimum for the simulation of 
realistic hydrodynamics (Succi, 2001). 

5.5 Exercises 

1. Run a simulation of Poiseuille flow in a slit driven by gravity. Choose 
a slit width, fluid density, viscosity, and gravitational acceleration. Esti-
mate the maximum and average velocities a priori using Eqs. (4) and (5) 
and ensure that they will not exceed 0.05 lu ts-1. Compare the results to the 
analytical Poiseuille velocity profile.  

2. Modify the input solids file to include a square obstacle like that in 
Figure 5 and induce separation. Note that a longer flow domain or different 
boundary conditions may be necessary to maintain approximately uniform 
velocities at the boundaries. 

3. Look up the drag coefficient for a cylinder at a particular Reynolds 
number. Compute the drag force and design a LBM model to solve the 
flow field. MATLAB® or any program capable of generating streamlines 
or pathlines can be used to produce figures similar to those shown above. 

4. Use constant velocity boundaries at x = 0 and x = Lx. Choose a slit 
geometry, viscosity, and average velocity (equal to the boundary velocity) 
that will lead to a Reynolds number greater than 50. Specify all parameters 
and include units. Run the model and plot u/uaverage at 1/16, 1/8, 1/4, and 
1/2 the total length of the domain in the x direction. Plot the expected 
Poiseuille velocity profile for fully developed flow on the same graph. 



 Exercises 67

6 Single Component, Multiphase (SCMP) LBM  

In the previous chapter we demonstrated that LBM is useful for simulating 
the flow of a single fluid. The true strengths of LBMs however lie in their 
ability to simulate multiphase fluids. Both single and multi-component 
multiphase fluids can be simulated. ‘Component’ refers to a chemical con-
stituent such that a ‘single component’ (say H2O) multiphase system would 
involve the liquid and vapor phases of water. These are particularly rich 
systems to consider as surface tension, evaporation, condensation, and 
cavitation are possible. Liquid-vapor behavior in partially saturated porous 
media can be simulated. In contrast, a multi-component system can consist 
of separate chemical components such as oil and water; such systems have 
been studied more extensively because of their economic importance. For 
example, Darcy’s law-based relative permeability concepts for multicom-
ponent oil/water-like systems have been investigated using LBM (Buckles 
et al. 1994; Soll et al. 1994; Martys and Chen, 1996; Langaas and Papat-
zacos, 2001). 
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Figure 38. Conceptual framework for LBM models. 
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Figure 38 gives a conceptual framework for thinking about the various 
LBM models to be considered in this book. At the upper left we have the 
simple single fluid models discussed in the last two chapters: these involve 
a single chemical component whose molecules are not subjected to any 
‘long-range’ interaction forces. Adding a long-range attractive force makes 
phase separation into a liquid and its own vapor possible as discussed be-
low (upper right, single component multiphase).  

If we add a second chemical component, we have the possibility of 
simulating completely miscible fluids (basically chemical solutions) in the 
absence of long range interactions (lower left), and completely immiscible 
fluids (oil and water for example) when there are long range repulsive in-
teractions (lower right). Finally, note that the widely acclaimed inherent 
parallelism of LBM is lost when long range interactions are included. 

This chapter focuses on Single Component Multiphase (SCMP) models. 
Early examples of lattice gas SCMP models can be found in Rothman 
(1988) and Appert and Zaleski (1990). The lattice Boltzmann implementa-
tion of these models began with Shan and Chen (1993, 1994). There are 
also so-called ‘‘free energy’’ approaches proposed by Swift et al. (1996), 
and ‘‘finite density’’ models that use the Enskog equation for dense gases 
(Luo 2000; He and Doolen 2002). Zhang and Chen (2003) have also pro-
posed an approach based on tracking an energy (temperature) component. 
Such finite density or energy models seem to hold the key to the ultimate 
development of the LBM for practical applications due to the more realis-
tic and consistent treatment of the equation of state that preserves the es-
sential (molecular) physics of the process. Here we work with the Shan 
and Chen (1993, 1994) model extended for solids interactions. Although 
this model has numerous shortcomings, it is exceptionally versatile, and 
problems that have long defied quantitative treatment can now be exam-
ined. 

First we recall basic physical chemistry theory relevant to these models. 
Then we provide details on incorporating long-range forces into the LBM 
model and on the resulting LBM equation of state. The determination of 
surface tension in the model is illustrated. Simulation of homogeneous and 
heterogeneous cavitation with the model are presented. Then interactions 
with surfaces are included and contact angles, capillary rise, adsorption, 
and capillary condensation are discussed.   
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The principal distinguishing characteristic of single component multi-
phase LBMs is the incorporation of an attractive force between fluid ‘par-
ticles’. This notion is part of the foundation for the famous van der Waals 
equation of state, which we now review. 

6.1 Non-ideal Equation of State 

The ‘ideal’ or ‘perfect’ gas law characterizes the behavior of gases at low 
density. Such gas laws are also known as Equations of State (EOS). The 
ideal gas law is commonly written as 

V
nRTPnRTPV or  (54) 

where 

P is pressure (atm)
V is volume (L)
n is number of mols 
R is gas constant (0.0821 L atm mol-1 K-1)
T is temperature (K). 

Vm = V/n is the volume occupied by one mol of substance. The gas laws 
can be re-written to eliminate the number of mols n

mV
RTP . (55) 

Eqs. (54) and (55) are linear relationships between pressure and density 
(which is proportional to n/V).

The van der Waals EOS was developed to account for behaviors ob-
served in real gases while retaining conceptual simplicity. It is given by 

2

V
na

nbV
nRTP . (56) 
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The second term on the right accounts for attractive forces between 
molecules. Note that because a, n, and V are all positive, this term results 
in a reduction of the pressure relative to that of a perfect gas.  

The –nb term in the denominator accounts for the non-negligible vol-
ume of molecules. If the ‘hard sphere’, closest packed volume of one mol 
of molecules is b, then the minimum volume that can be occupied by n
mols of molecules is nb. As the pressure increases, the volume of the gas V
may approach nb. This will cause the denominator to approach zero and 
the pressure will rise very rapidly, effectively preventing further compres-
sion.   

The van der Waals gas law can also be rewritten in terms of the molar 
volume: 

2
1

mm V
a

bV
RTP

.
(57) 

6.1.1  P–Vm, and P–  Presentations 

The gas laws are typically presented graphically in one of two formats: in 
P–V space, pressure is plotted against volume while in P–  space, pressure 
is plotted against density. P– plots are more intuitive and useful in gen-
eral, but there is one very important manipulation that requires use of P–V
plots.  

Figure 39 shows the P–Vm plot for CO2. In this plot, the perfect gas law 
is non-linear (like y = 1/x, because P is inversely proportional to Vm). The 
van der Waals EOS at various temperatures with parameters a and b taken 
from Atkins (1978) was used to plot the other curves. Temperatures were 
selected to illustrate supercritical, critical, and subcritical behaviors. At 
high temperature (373K) CO2 is supercritical and no distinct liquid and va-
por phases can be discerned. As the temperature is decreased, a critical 
temperature is reached; below this temperature phase separation into liquid 
and vapor is possible. The key difference in the EOS curves above and be-
low the critical temperature is that above the critical temperature the 
curves decrease monotonically. Below the critical temperature the curves 
are no longer monotonic and this allows the coexistence of different molar 
volumes (different densities) of the substance at a single pressure. 
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Figure 39. P–V plot of perfect and van der Waals equations of state for 
CO2. van der Waals constants a = 3.592 l2 atm mol-2 and b = 0.4267 l mol-1

(Atkins, 1978). R = 0.0821 l atm mol K-1.

If we zoom in on a subcritical curve (Figure 40) we see that the EOS is in-
tersected 3 times at the vapor pressure of CO2 at 293K. Projecting the first 
intersection at small molar volume (high density) down to the x-axis gives 
the molar volume of the liquid. The second intersection is in what is re-
ferred to as a ‘non-physical’ portion of the EOS because the positive slope 
here indicates that increasing the pressure would cause the vapor to ex-
pand. The final intersection gives the molar volume of the equilibrium va-
por phase. It is important to note that the vapor pressure applies only to flat 
liquid-vapor interfaces; we will explore the impact of curvature later. 
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Figure 40. Detail of subcritical EOS for CO2 illustrating liquid-vapor coex-
istence (293K). The molar volumes of the liquid and vapor and the vapor 
pressure can be determined from the Maxwell Construction. 

6.1.2  Maxwell Construction and its Solution 

In the context of LBM, the key reason for using P–V representations of the 
EOS is the Maxwell Construction. The Maxwell Construction allows the 
vapor pressure and the densities of the liquid and vapor phases to be found 
analytically when a functional form of the EOS is available. Boltzmann 
(1964/1995) discusses the Maxwell Construction and Figure 40 illustrates 
its use. 

The Maxwell Construction can be stated as 

)( ,,
,

,
lmvm

V

V m VVPPdVvm

lm

. (58) 

So the area under the curve (use caution if the EOS goes below P = 0) must 
equal the area of the rectangle defined by the liquid and vapor molar vol-
umes and the vapor pressure. This is equivalent to specifying that the areas 
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A and B shown on Figure 40 must be equal. Despite its apparent simplic-
ity, the Maxwell construction can be challenging to solve. One approach is 
simply to estimate the vapor pressure from the plot. For example, the inte-
gral PdVm where P is given by the van der Waals equation (57) is  

m
mm V

abVRTPdV )ln( . (59) 

Based on inspection of the EOS curve in Figure 40, suppose we estimate a 
vapor pressure of 63 atm. For T = 293.15K we can estimate Vm,l = 0.095 li-
ters and Vm,v = 0.206 liters (by looking at a table or graph of values of 
P(Vm) for example) and evaluate the integral between these limits to obtain 
a value of approximately 7.09. For P = 63 atm the right hand side of Eq. 
(58) is 63(0.206-0.095) = 6.99; comparing this with the 7.09 from the left 
hand side indicates that improvement is possible. Increasing the vapor 
pressure to 64 atm we can estimate Vm,l and Vm,v = 0.93 and 0.194 liters re-
spectively. Then the integral value is 6.45 and the right hand side is 6.46, 
which is considerably better than the initial guess. Further refinements can 
be made. We will revisit the Maxwell Construction after the LBM EOS is 
introduced. 

6.1.3  EOS for Water/Water Vapor and P–  Presentations 

Water is of particular interest to a broad range of scientists and engineers 
but it is also more complex than can be adequately described by the stan-
dard van der Waals EOS. We explore water in some additional detail here 
and use it to introduce P–  plots. 

Figure 41 shows the perfect gas and van der Waals equations of state for 
water at 298K. There are significant differences between the CO2 and wa-
ter equations of state. Perhaps most striking is that the curve extends into 
strong negative pressures. Figure 42 shows the same information plotted as 
P( ). The virtues of such a plot are immediately apparent. The perfect gas 
law plots as a straight line through the origin and the low and high density 
(vapor and liquid) portions of the curve are clear and in familiar units. 
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Figure 41. P–Vm representation of perfect and van der Waals EOS for wa-
ter. 

It is also clear however that the van der Waals equation fails to quantita-
tively reproduce the known density (1000 kg m-3) of water. Finally, the 
known compressibility of liquid water is not well matched. Truskett et al. 
(1999) incorporated directional hydrogen bonds in a model to estimate the 
water EOS and achieved good success (Figure 43). 

One additional feature of the non-linear equations of state discussed 
here is the bottom of the valley; it is referred to as the spinodal and repre-
sents the maximum tension that a pure liquid can sustain. So, referring to 
Figure 43 for example, we can imagine beginning with pure liquid water in 
a cylinder at its familiar density of 1000 kg m-3 and then withdrawing a pis-
ton that stretches the water to a density somewhat less than 800 kg m-3. The 
pressure in the water will follow the EOS and be approximately -2000 atm.
If the density is reduced beyond the minimum of the EOS curve, the liquid 
will catastrophically phase separate into liquid and vapor in the process 
known as cavitation. For pure liquids this will occur at the spinodal and is 
called homogeneous cavitation. Heterogeneous cavitation is much more 
common and occurs at much lower tension when the structure of the liquid 
is disrupted by pre-existing bubbles or particles. We will examine both 
homogeneous and heterogeneous cavitation with LBM below.  
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at 298K. There is a gross underestimation of the density of liquid water. 
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6.2  Interparticle Forces and their Incorporation into LBM 

Lattice Boltzmann models presented thus far in this book were based ex-
clusively on streaming and collision. To simulate multiphase fluids, we 
need long range interactions between fluid ‘particles’. For our purposes in-
teractions with nearest neighbor particle densities f will be sufficient to 
simulate the basic phenomena of multiphase fluid interactions. For single 
component multiphase fluids (e.g., water/water vapor) an attractive (cohe-
sive) force F between nearest neighbor fluid particles is needed and, for 
the D2Q9 model, is induced as follows: 

8

1

),(),(),(
a

a ttwtGt aa eexxxF (60) 

where G is the interaction strength, wa is 1/9 for a = {1, 2, 3, 4}, is 1/36 for 
a = {5, 6, 7, 8}, and  is the interaction potential: 

0
0 exp . (61) 

0 and 0 are arbitrary constants. This interaction potential is special in 
that its ‘‘…behavior is consistent with that of an isothermal process...’’ 
(Shan and Chen 1994; see also He and Doolen 2002). According to Shan 
and Chen (1993), the interaction potential function must be monotonically 
increasing and bounded. Other forms of the interaction potential are com-
monly used and include for example = 0[1-exp( 0)] (Shan and 
Chen 1993; Raiskinmäki et al. 2000 and 2002; Hyväluoma et al. 2004), 

= (Martys and Chen 1996; Pan et al. 2004), and 
= g 0

2 2/[2( 0+ 2] (Qian et al. 1995).  

Figure 44 shows the Eq. (61) interaction potential function with 0 = 4 
and 0 = 200. These parameters were selected arbitrarily, but will be used 
consistently in SCMP LBM simulations in this book for convenience be-
cause the model behavior with these values has been explored more thor-
oughly. G < 0 for attraction between particles and the force is stronger 
when the density is higher. Thus, dense regions (liquid) experience a 
stronger cohesive force than vapor, which leads to surface tension phe-
nomena. 
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Figure 44. 'Isothermal' interaction potential function of Shan and Chen 
(1994) with 0 = 4 and 0 = 200. Other forms of the interaction potential are 
in common use. We use 2-D densities and pressures throughout the text. 

The attractive force is included in the model the same way that gravity 
was incorporated earlier (Eqs. (45), (46), and (47)). 

It is important to note that we have incorporated only the molecular at-
traction aspect of the van der Waals gas model described above; the repul-
sive forces that dominate the van der Waals gas model when a gas is com-
pressed to near its ‘hard sphere’ volume are neglected in this simplest of 
SCMP models. Enskog developed theory for dense gases that has been in-
corporated in more advanced LBM models (e.g., He and Doolen, 2002; 
Martys 2001; Luo 2000; Luo, 1998). Ignoring these effects here has impor-
tant ramifications for the equations of state of the simulated gases that will 
be introduced below. At the present time, the ability of LBM to simulate 
any desired EOS is severely limited. The work of He and Doolen (2002) 
may hold the key to resolving EOS limitations (and also allow non-
isothermal flows) but requires decoupling of velocity and space discretiza-
tions and has not been explored. The approach of Zhang and Chen (2003) 
may be similarly profitable. Nevertheless, the simple Shan and Chen 
(1993, 1994) model is capable of simulating rich SCMP behaviors includ-
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ing surface tension/capillarity, evaporation, condensation, and homogene-
ous and heterogeneous cavitation.  

6.2.1 The SCMP LBM EOS 

Application of Eqs. (60) and (61) leads to a non-ideal EOS for the simu-
lated fluids (He and Doolen, 2002): 

   
2

2
GRTRTP . (62) 

The first term on the right hand side is the ideal gas law, which applies 
to the single component, single phase model discussed above. The value of 
RT is fixed for both the SCSP and SCMP models: 

.
3
1RT (63) 

The second term on the right hand side of (62) is the non-ideal part that 
accounts for the attractive force between the molecules and leads to a re-
duction in pressure (when G < 0) and the non-linear form of the EOS. 
When G is adequately negative that the EOS is subcritical (non-
monotonic), phase separation can occur. 

After incorporating RT, Eq. (62) becomes  

).(
63

2GP (64) 

This is plotted for a series of G values in Figure 45. This EOS is qualita-
tively similar to the van der Waals EOS and is useful in simulating Laplace 
Law and capillary phenomena. The lack of a repulsive force in the model 
however has led to unfortunate (and generally not physically correct) be-
havior where the liquid phase is actually more compressible than the vapor 
phase. (The slope dP/d  of the curve is lower in the liquid density region 
than it is in the vapor region.) This does not affect equilibrium liquid-vapor 
configurations but makes certain types of simulations more challenging 
and one always needs to be aware of it.  
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Figure 45. SCMP EOS for 0 = 4 and 0 = 200 at 5 values of G.

Eqs. (60) and (61) are implemented as follows: 

  // Compute psi, Eq. (61). 
  for( j=0; j<LY; j++) 
    for( i=0; i<LX; i++) 
      if( !is_solid_node[j][i]) 
      { 
        psi[j][i] = 4.*exp( -200. / ( rho[j][i])); 
      } 

  // Compute interaction force, Eq. (60) assuming periodic domain. 
  for( j=0; j<LY; j++) 
  { 
    jp = ( j<LY-1)?( j+1):( 0   ); 
    jn = ( j>0   )?( j-1):( LY-1); 

    for( i=0; i<LX; i++) 
    { 
      ip = ( i<LX-1)?( i+1):( 0   ); 
      in = ( i>0   )?( i-1):( LX-1); 

      Fx = 0.; 
      Fy = 0.; 

      if( !is_solid_node[j][i]) 
      { 
        Fx+= WM*ex[1]*psi[j ][ip]; 
        Fy+= WM*ey[1]*psi[j ][ip]; 
        Fx+= WM*ex[2]*psi[jp][i ]; 
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        Fy+= WM*ey[2]*psi[jp][i ]; 
        Fx+= WM*ex[3]*psi[j ][in]; 
        Fy+= WM*ey[3]*psi[j ][in]; 
        Fx+= WM*ex[4]*psi[jn][i ]; 
        Fy+= WM*ey[4]*psi[jn][i ]; 
        Fx+= WD*ex[5]*psi[jp][ip]; 
        Fy+= WD*ey[5]*psi[jp][ip]; 
        Fx+= WD*ex[6]*psi[jp][in]; 
        Fy+= WD*ey[6]*psi[jp][in]; 
        Fx+= WD*ex[7]*psi[jn][in]; 
        Fy+= WD*ey[7]*psi[jn][in]; 
        Fx+= WD*ex[8]*psi[jn][ip]; 
        Fy+= WD*ey[8]*psi[jn][ip]; 

        Fx = -G * psi[j][i] * Fx; 
        Fy = -G * psi[j][i] * Fy; 
      } 
    } 
  } 

Beware of the assumption about a periodic domain (see the note in the 
comment at the top of the code snippet). When using boundary conditions, 
the interaction force must be computed differently at those boundaries be-
cause the density is not necessarily continuous across the periodicity then. 
Hence, the three terms in Eq. (60) associated with nodes across the peri-
odic boundary are unavailable. We find that replacing those three terms 
with duplicates of the three terms in the other direction (towards the inte-
rior of the domain instead of across the boundary of the domain) gives 
good results. 

6.3  Phase (Liquid-Vapor) Separation and Interface 
Minimization

The preceding model development is enough to simulate phase separa-
tion and its dynamics. In Figure 46, we show the results of a simulation 
initialized with an average density of 200 mu lu-2 with a random variation 
incorporated via the ‘static’ initial condition included in our code. For the 
standard parameter values ( 0 = 4 and 0 = 200) and  function we adopt, 
this initial density falls on the negatively-sloped, non-physical part of the 
G = -120 EOS (Figure 45) and hence is unstable and leads to phase separa-
tion. In this case, the phase separation ultimately leads to a single droplet 
in a vapor atmosphere. Whether liquid drops or vapor bubbles are formed 
depends on the total mass in the domain and consequently on the initial 
density selected.  
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Figure 46. Time series of liquid-vapor phase separation dynamics in a 
200 200 lu2 domain. Gray scale proportional to normalized density. G = -
120, 0 = 4, 0 = 200, and  = 1. Initial density 200 mu lu-2 plus a random 
number in the interval [0,1]. Results shown at time = 0, 100, 200, 400, 800, 
1600, 3200, 6400, 12800, and 25600 ts.

When phase separation occurs, there is a strong tendency for the inter-
faces formed to minimize their total area (or length in 2-D). This is a 
straightforward consequence of free energy minimization and occurs in 
part by geometric rearrangement into the minimum surface area volume (a 
sphere or in 2-D, a circle). Depending on the initial conditions, this rear-
rangement may also involve a significant amount of coalescence of ‘blobs’ 
of each phase. In liquid-vapor systems, there can also be condensation and 
evaporation; bubbles can simply fill in or grow at the expense of mass 
elsewhere in the domain. The relatively high vapor density in the simple 
simulations described in this book indicates a potential excess of transport 
in the vapor phase relative to many real liquid-vapor systems.   

6.3.1  Spurious Interface Velocities 

Examination of the velocity fields in SCMP simulations reveals high ve-
locities perpendicular to phase boundaries. These are non-physical. They 
are present at equilibrium and there appears to be no mass exchange asso-
ciated with them. Some papers that focus on or mention these velocities 
include Wagner (2003), Lishchuk et al. (2003), Nourgaliev et al. (2003), 
and Raiskinmäki et al. (2000).   
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6.3.2  Estimating Surface Tension 

The surface tension can be estimated simply by simulating a series of 
drops and bubbles of various sizes and measuring their radii and 
inside/outside densities. The densities must be converted to pressures via 
the EOS and the difference P computed. Then the slope of a plot of 
1/radius vs. P will be the surface tension in accordance with the Laplace 
law (Eq. (7)). Figure 47 presents results leading to a surface tension of 14.3 
lu mu ts-2. Readers are encouraged to develop such a plot on their own (see 
Exercises).  
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Figure 47. Plot of curvature (1/r) vs. pressure difference used to determine 
surface tension in SCMP lattice Boltzmann model. Simulated drops and bub-
bles shown adjacent to data points at relative scale. Bubbles consistently fall 
below line and drops are consistently above; this may be due to the selection 
of a density cutoff value for measuring radii. 

6.3.3  Flat Interfaces: Maxwell Construction for SCMP LBM 

Curved interfaces are common and the relationship between radii of curva-
ture and pressure differential across them can be predicted when the sur-
face tension is known. Flat interfaces are exceptionally important however 
because the vapor pressure above them at equilibrium is the saturation va-
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por pressure, which is used in scaling many vapor pressure-dependent 
processes. At equilibrium, the pressure difference across a flat interface 
must be zero, which is consistent with the Laplace law, and the Maxwell 
Construction should apply. We have already illustrated a trial-and-error 
approach to solving the Maxwell Construction for the van der Waals equa-
tion of state. From more sophisticated numerical solutions of the Maxwell 
Construction on the SCMP LBM EOS with 0 = 4, 0 = 200, and G = -
120, we compute l = 514.64 mu lu-2 and v = 79.705 mu lu-2. These values 
differ appreciably from those observed in flat interface simulations that 
yield l = 524.39 mu lu-2 and v = 85.704 mu lu-2. The observed vapor and 
liquid densities give very similar pressures of 25.5599 and 25.5605 respec-
tively from the EOS, while the optimal Maxwell solution densities lead to 
pressures of 24.45172 and 24.45166. The reasons for this discrepancy are 
unknown and this represents a significant outstanding problem from our 
perspective. It may account wholly or in part for the less than quantitative 
results we obtain in certain types of simulations.  

6.4 Cavitation 

Cavitation is a catastrophic transition from liquid to vapor. Cavitation can 
be either ‘homogeneous’ when it occurs at the limit of the pure liquid’s 
tensile strength, or ‘heterogeneous’ when it is nucleated by preexisting 
bubbles or other disruptions in the structure of the liquid. Single compo-
nent multiphase lattice Boltzmann methods offer a virtual laboratory for 
investigation of cavitation.   

Sukop and Or (2005) conducted LB simulations of cavitation in a two-
dimensional geometry; they adapted Or and Tuller's (2002) discussion of 
three-dimensional critical bubble radius and energy cost for heterogeneous 
cavitation in 2-D. The energy cost for the creation of a vapor bubble is the 
sum of the interfacial energy needed to create the bubble and the work of 
negative pressure over the bubble area; that is, 

PrrE 22 (65)

with  = (2-D) surface tension (MLT-2), P = (2-D) pressure (MT-2), and r 
= bubble radius. This relationship is plotted in Figure 48. The energy cost 
is maximized at r* = - / P. For any given tension applied to the LB sys-
tem, r* represents a critical bubble radius. A bubble with a radius less than 
r* will be lost to condensation rather than result in cavitation because con-
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densation is more energetically favorable. Once a bubble is large enough to 
overcome the energy barrier, cavitation is the more favorable outcome. 
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Figure 48. Energy barrier as a function of seed bubble radius for different 
initial liquid pressures. Circle size proportional to critical radii. 0 = 4, 0 = 
200, and G = -120. (Sukop and Or, 2005) 

6.4.1  Homogeneous Cavitation  

Sukop and Or (2005) simulated spinodal decomposition (cavitation via 
homogeneous nucleation) in a 200 200 lu2 domain. Figure 49 shows the 
process as the change in density at two points in the domain during the 
simulation. The initial density in the liquid is 400 mu lu-2 (i.e., the liquid is 
under tension at the outset), but this simply hastens the process. The left 
and right boundaries are periodic, and constant velocity boundaries (0.005 
lu ts-1) at the top and bottom of the domain pull liquid from the domain. 
This results in increasing tension in the liquid with time until the liquid 
spinodal pressure and density are reached. Then the liquid cavitates catas-
trophically. Cavitation occurs as a linear band (lower left inset of Figure 
49) in this simulation because there is no randomness in the pres-
sure/density distribution in the domain and the vertical domain boundaries 
are periodic. In real systems, small fluctuations would result in random 
preferred loci of cavitation and bubbles would form. Severe den-
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sity/pressure fluctuations occur in the liquid phase after the onset of cavita-
tion; these eventually subside and liquid is present at density very close to 
its equilibrium, flat, free interface value of 524 mu lu-2. Smaller fluctua-
tions in the vapor phase are rapidly damped and a final density very close 
to the equilibrium value (85 mu lu-2) is attained. The relative magnitudes of 
these fluctuations are consistent with the EOS and a greater compressibil-
ity in the liquid phase.  
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Figure 49. Density as a function of time for two points inside a 200  200 
lu2 domain. The fine line follows density at a point in the domain (100,100) 
that ultimately becomes vapor, while the heavy line gives the density near the 
boundary at a point (100,1) that is ultimately liquid. Insets show density dis-
tributions in domain. (Sukop and Or, 2005) 

6.4.2  Heterogeneous cavitation 

Sukop and Or (2005) also produced results that closely match heterogene-
ous cavitation theory (Or and Tuller, 2002). Periodic boundaries were used 
on the vertical edges of the 200 200 lu2 domain and pressure boundaries 
were applied on the top and bottom. Based on the equation of state (Figure 
45), the density of the vapor and liquid phases of the fluid can be calcu-
lated for any given pressure. A density corresponding to a liquid pressure 
below that of the experimental flat free interface was used on both bounda-
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ries. (The difference between the boundary pressure and the pressure of a 
flat, free liquid-vapor interface is represented by P in Figure 48.) These 
boundary conditions effectively stretch the fluid, creating a situation favor-
able for cavitation. 

Sukop and Or (2005) inserted vapor bubbles of various sizes into their 
simulations. As shown in Figure 48, a bubble with radius just below the 
critical value cannot overcome the energy barrier and eventually con-
denses. However, a bubble with radius just above the critical value acts as 
a seed for cavitation. The LBM’s proper simulation of these phenomena at 
two different liquid tensions is demonstrated in the following figures. In 
Figure 50, for P = -1 mu ts-1, the critical radius is 13.85 lu and the radii of 
the seed bubbles are 12 and 15 lu.

Figure 50. Effect of initial seed bubble size on evolution for P = -1 mu ts-2.
Top: r = 12 lu bubble dissipates due to condensation.  Bottom: r = 15 lu bub-
ble nucleates cavitation. 

Similarly, in Figure 51, for P = -5 mu ts-1 the critical radius is 2.77 lu
and the radii of the seed bubbles shown are 2 and 4 lu. Clearly, much 
smaller seed bubbles can nucleate cavitation at higher liquid tensions 
(more negative P).
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Figure 51. Effect of initial seed bubble size on evolution for P = -5 mu ts-2.
Top: r = 2 lu bubble dissipates due to condensation.  Bottom: r = 4 lu bubble 
nucleates cavitation. 

6.5  SCMP LBM with Surfaces 

6.5.1  Fluid-Surface Forces 

In order to extend our capability to include simulation of SCMP fluids in 
porous media and other containers, it is essential that we incorporate an 
adhesive interaction between fluid particles and surfaces. The original 
method is due to Martys and Chen (1996) and is elegant in its simplicity. 
The idea is to create an analogue to the particle-particle interaction force 
used to induce phase separation. The only difference is that instead of 
summing the  functions of neighboring nodes (Eq. (60)), we sum an indi-
cator variable denoting a solid. The strength of the force contribution is 
specified by a Gads ‘adsorption’ coefficient. The equation describing this is  

a
aaaadsads tswtGt eexxxF )(),(),( , (66) 

where s is a ‘switch’ that takes on value one (1) if the site at x + ea t is a 
solid and is zero (0) otherwise. The wa are the same direction-dependent 
weighting factors used before. The C implementation of Eq. (66) is 
straightforward. The is_solid_node array is used to evaluate if a node 
neighboring the fluid node under consideration is a solid; if so, a contribu-
tion is made to the surface force.  
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  // Compute psi, Eq. (61). 
  for( j=0; j<LY; j++) 
    for( i=0; i<LX; i++) 
      if( !is_solid_node[j][i]) 
      { 
        psi[j][i] = 4.*exp( -200. / ( rho[j][i])); 
      } 

  // Compute interaction force, Eq. (66). 
  for( j=0; j<LY; j++) 
  { 
    jp = ( j<LY-1)?( j+1):( 0   ); 
    jn = ( j>0   )?( j-1):( LY-1); 

    for( i=0; i<LX; i++) 
    { 
      ip = ( i<LX-1)?( i+1):( 0   ); 
      in = ( i>0   )?( i-1):( LX-1); 

      if( !is_solid_node[j][i])  
      { 
        sum_x=0.; 
        sum_y=0.; 

        if( is_solid_node[j ][ip]) // neighbor 1 
        { sum_x = sum_x + WM*ex[1]; 
          sum_y = sum_y + WM*ey[1]; } 
        if( is_solid_node[jp][i ]) // neighbor 2 
        { sum_x = sum_x + WM*ex[2]; 
          sum_y = sum_y + WM*ey[2]; } 
        if( is_solid_node[j ][in]) // neighbor 3 
        { sum_x = sum_x + WM*ex[3]; 
          sum_y = sum_y + WM*ey[3]; } 
        if( is_solid_node[jn][i ]) // neighbor 4 
        { sum_x = sum_x + WM*ex[4]; 
          sum_y = sum_y + WM*ey[4]; } 
        if( is_solid_node[jp][ip]) // neighbor 5 
        { sum_x = sum_x + WD*ex[5]; 
          sum_y = sum_y + WD*ey[5]; } 
        if( is_solid_node[jp][in]) // neighbor 6 
        { sum_x = sum_x + WD*ex[6]; 
          sum_y = sum_y + WD*ey[6]; } 
        if( is_solid_node[jn][in]) // neighbor 7 
        { sum_x = sum_x + WD*ex[7]; 
          sum_y = sum_y + WD*ey[7]; } 
        if( is_solid_node[jn][ip]) // neighbor 8 
        { sum_x = sum_x + WD*ex[8]; 
          sum_y = sum_y + WD*ey[8]; } 

        sforce_x[j][i] = -Gads * psi[j][i] * sum_x; 
        sforce_y[j][i] = -Gads * psi[j][i] * sum_y; 
      } 
    } 
  } 
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We seem to have flexibility in the choice of the pre-sum factor (x,t);
Martys and Chen (1996) originally used while Raiskinmäki et al. 
(2000; 2002) and Hyväluoma et al. (2004) used the function = 1 - 
exp( ). For consistency with the cohesion force, we use the function 
Eq. (61) here.  

Next we introduce a few studies that used the same basic Shan and Chen 
model we develop in this book and then give more detailed discussions of 
various phenomena in the following sections. Raiskinmäki et al. (2000) 
considered the spreading dynamics of three-dimensional droplets on sur-
faces with the Shan and Chen SCMP lattice Boltzmann model. They 
showed that the simulated rate of droplet spreading on a smooth surface 
was consistent with Tanner’s Law, which states that the radius of the liq-
uid/surface interface increases as a power function of time, r ~ tq.

Raiskinmäki et al. (2002) investigated capillary rise dynamics using the 
same model.  This work showed that the Washburn Equation, which pre-
dicts the rate of capillary rise, was satisfied by the SCMP LBM simula-
tions. These authors concluded that relatively large capillary tubes – at 
least 30 lattice units across – would be needed to properly simulate the hy-
drodynamics. They also noted a discrepancy between the analytical 
Poiseuille velocity profile and the velocities of the liquid phase in an 
SCMP simulation; apparently the cohesive and adhesive forces imposed on 
the liquid affect its properties. Additional work needs to be done to assess 
this phenomenon.   

Hyväluoma et al. (2004) also used the Shan and Chen SCMP LBM in an 
investigation of mercury intrusion porosimetry.  In a similar study, Sukop 
and Or (2004) simulated contact angles, adsorption, capillary condensa-
tion, and wetting and drying of angular pores. 

6.5.2  Contact Angles 

Varying the Gads parameter allows simulation of the complete range of 
contact angles. In Figure 52, we show SCMP simulations that yield 3 spe-
cial contact angles: 0, 90, and 180 degrees.  

We compute the necessary Gads parameter for the three special contact 
angles by balancing the cohesive and adhesive forces in different ways. 
Assume that we are at points of either pure liquid or pure vapor. Then the 
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point’s neighbors all have the same density as found at the point itself. 
From Eq. (60), the forces can then be written as 

8

1

2

a
aawG eF , (67) 

where the s are all equal and can be combined. So, for the vapor and liq-
uid phases respectively, we have 

8

1

2

a
aav

v wG eF (68) 

and
8

1

2

a
aal

l wG eF . (69) 

A fluid node completely surrounded by solid surfaces would experience 
a different force. From Eq. (66) we obtain for vapor and liquid respec-
tively: 

8

1a
aavads

v
ads wG eF (70) 

and

8

1a
aalads

l
ads wG eF . (71) 

Note that the  factors are not squared here because the indicator variable 
s appears inside the summation rather than the  values.  

We also consider the forces at points that have the average  value to 
represent the interface between liquid and vapor: 

8

1

2

a
aawG eF (72) 

and
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8

1a
aaadsads wG eF , (73) 

where 

v2
1 . (74) 

Note that all of the equations [(68) through (73)] contain the same summa-
tion term.  

On a surface that is completely wetted by the liquid yielding a contact 
angle of 0 degrees, the adhesive force between the solid and the liquid is 
equal to the cohesive force of the liquid. Setting 

adsFF (75) 

gives  
8

1

8

1

2

a
aalads

a
aal wGwG ee , (76) 

which reduces to  

lads GG , (77) 

For the usual liquid density (albeit a flat free interface value) of 524.39 mu
lu-2,  = 2.7316. The cohesion parameter has been selected as G = -120, so 
Gads = -327.79. It is easy to check if this is reasonable with simulations. 
Figure 52 shows the results. 

   
Figure 52. Simulation of 0, 90, and 180 degree contact angles based on the 

force balance rationale discussed in the text. For the cohesive interaction pa-
rameter G = -120 and the  function parameters 0 = 4 and 0 = 200, Gads = -
327.79, -187.16, and -46.534 respectively. 
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On a surface that is wetted by the liquid to an extent exactly between 
completely wettable and completely non-wettable for a contact angle of 
90°, the adhesive force of the solid on the interface between liquid and va-
por is equal to the cohesive force at the liquid-vapor interface. Setting 

adsFF (78) 

leads to  

2
)( vl

ads GGG , (79) 

which gives Gads = -187.16 for G = -120, l = 2.7316, and (with v = 85.70 
mu lu2) v = 0.38774.  

Finally, on a surface that is completely non-wettable by the liquid for a 
contact angle of 180 degrees, the adhesive force between the solid and the 
vapor must equal the cohesive force of the vapor. Setting 

v
ads

v FF (80) 

gives Gads = -46.534 by the same procedure used for the 0-degree contact 
angle except that v = 0.38774 is the proportionality constant based on v
= 85.70 mu lu-2.

Readers should carry out similar simulations (see Exercises). Our ex-
perience suggests that it is easily possible to create zones of excessive den-
sity adjacent to surfaces with the magnitude of Gads too large. This is 
probably another consequence of the lack of a repulsive interaction be-
tween the particles. The approach for selecting Gads suggested here should 
make the process more rational than the trial-and-error procedure often fol-
lowed. Our method is ad hoc however and questions remain on what is the 
most appropriate technique.  

Considerable work on dynamic contact angles using LBM has also been 
completed (especially with the free-energy LBM; e.g., Zhang and Kwok, 
2004; Raiskinmäki et al. 2002; Briant et al. 2002; Fan et al. 2001). A more 
fundamental basis and method for incorporating surface adsorption is 
needed (e.g., the various adsorption models discussed in Adamson and 
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Gast (1997) for example); nevertheless, reasonable results can be obtained. 
We demonstrate some applications in the following sections. 

6.5.3  Capillary Rise 

The SCMP LBM can be effectively used to simulate capillary rise in a 
simple capillary and by extension capillary rise phenomena in more com-
plex porous media. The use of the dimensionless Bond number Bo – which 
relates capillary and gravitational forces – allows the simulation of direct 
analogues of real systems in the same way as the Reynolds number al-
lowed the simulation of equivalent flow regimes.  

We can adjust the surface adhesion parameter Gads so that the desired 
contact angle is attained. For simplicity, we make the contact angle zero 
and we can use the 2-D Young-Laplace equation with a zero contact angle 
term to determine the pressure difference across a curved (2-D) interface: 

r
P . (81) 

With zero contact angle (and assuming there is no adsorbed liquid film), 
the interface radius of curvature is identical to the half-width of the 2-D 
capillary tube (a slit). For small capillaries in 3-D, Hyväluoma et al. (2004) 
have demonstrated that the ratio of capillary cross-sectional area to perime-
ter can account for discretization and is preferable to the radius for use in 
Eq. (81). 

The hydrostatic pressure difference between the top and bottom of a 
column of incompressible liquid of height h in a gravitational field g is 

ghP . (82) 

Equating the right hand sides of (81) and (82) gives 

r
gh , (83) 

which can be rearranged as the capillary rise equation: 
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gr
h . (84) 

The dimensionless Bond number reflects the balance between gravita-
tional and capillary forces and is  

grBo
2

. (85) 

Bo is effectively r/h. To illustrate its use in defining an LBM capillary rise 
arrangement equivalent to a real capillary system, we consider a real capil-
lary slit 0.002 m in width (‘radius’ = 0.001 m) in contact with a pool of wa-
ter with density 1000 kg m-3 and gravity g = 9.8 m s-2. The surface tension 
of water is 72.13 10-3 Nm-1. Solving for the capillary rise we obtain 

m
smmkgm

Nmh 3
233

13

1036.7
  9.8  10  001.0

1013.72
. (86) 

Now we can compute the Bond number for the real system: Bo = r/h = 
1/7.36. Defining an analogous LBM system can begin with a domain size. 
Say that the maximum capillary length and rise we wish to simulate is on 
the order of 300 lu. From the Bond number, r = h Bo, and in our specific 
case the radius r = 300 lu/7.36 = 41 lu.

We still need to incorporate the density of the LBM liquid and deter-
mine a gravity value to use in the simulation. Rearranging Eq. (84) we can 
solve for g as   

hr
g (87) 

or g = 2.222 10-6 lu ts-2 for our model problem. We chose a domain size of 
1000 600 lu2 with a wall on the bottom and  = 1 (preliminary observa-
tions suggest that the rise might be affected by , but we have not investi-
gated this). To expedite the computer run we begin with the capillary filled 
to the approximate rise height from an initially flat liquid/vapor interface at 
y = 180 lu. The results are shown in Figure 53. The simulated rise of 334 
lu is about 10% greater than the target value of 300 lu computed analyti-
cally above. In part this is due to the presence of a non-negligible wetting 
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film (Langmuir 1938) with a thickness of approximately 3 lu on the capil-
lary walls. Recomputing the expected rise with Eq. (84) and a effective 
capillary radius of 38 lu together with the observed average liquid density 
in the capillary (523.5 mu lu-2) yields 324 lu – still an approximation. 

Figure 53. Capillary rise in a 1000 600 lu2 domain at 81,000 ts. Density of 
fluid shown as gray scale. Capillary walls in white. Dark edges show wetting 
film. 

As discussed in relation to the SCMP EOS, the model we use simulates 
compressible liquid and gas phases. The liquid phase is actually more 
compressible than the gas phase.  

The hydrostatic pressure difference between the top and bottom of a 
column of compressible fluid of height h in a gravitational field g under 
isothermal conditions is approximately (Halliday and Resnick, 1978) 

10
0

0
P

gh

ePP . (88) 

Here 0 and P0 are the density and pressure at some reference level in the 
fluid. We can set the P on the left side of Eq. (88) to the P from the 
Young-Laplace equation (81) and rearrange to have a capillary rise equa-
tion for compressible fluids: 
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where a zero contact angle has been assumed. If the reference density is 
the flat, free interface value of 524.39 mu lu-2 inside the capillary slit at the 
level of the free liquid pool outside the slit, then the reference pressure is 
24.66 from the EOS. Considering again the effective half-width of the slit 
due to the adsorbed liquid film, we compute a capillary rise of 329 lu,
which is reasonably close to the simulated result.  

Thus we have several possible strategies; we can ensure that g remains 
small and that fluid compression is negligible or we can account for the 
compressibility. The first approach was used by DiPietro et al. (1994) in an 
early lattice gas simulation of capillary phenomena. Hyväluoma et al. 
(2004) used an integrated density through the liquid to remove the effect of 
the compressibility. The above analysis incorporating the compressibility 
is probably more fundamental and should apply to a broader range of pa-
rameters, but we have not investigated it further.  

6.5.4  Adsorption/Capillary Condensation 

Important phenomena that occur when a vapor phase interacts with a sur-
face include adsorption and capillary condensation. Adsorption is the ac-
cumulation of the vapor phase chemical on the solid surface. This accumu-
lation will commonly result in surface condensation and the formation of a 
liquid film. Numerous physicochemical processes can be responsible for 
the formation of such films, but if one limits consideration to ubiquitous 
van der Waals interactions (Tuller et al. 1999), then as a first approxima-
tion the thickness of the film formed is a function of the vapor pressure and 
a Hamaker constant Aslv that quantifies the interaction of the solid surface 
with vapor through a liquid film.  

3
6

)( slvAh . (90) 

Here  is the disjoining pressure (P relative to flat, free interface).  
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When films on opposing surfaces grow towards one another – such as 
on opposite walls of a pore – a critical film thickness is reached beyond 
which the pore spontaneously fills completely.  The critical thickness is 
approximately H/3 where H is the aperture width. The equation governing 
the   simultaneous growth of the films on opposing surfaces is an extension 
of Eq. (90): 

,
6266 333 hH

A
hH

A
h

A slvlvlslv (91) 

where Alvl is a new Hamaker constant that governs the interaction of liquid 
with liquid through an intervening vapor phase. It is possible to estimate 
the values of the Hamaker constants by fitting Eqs. (90) and (91) to simu-
lations. With 1 or 2 adjustable parameters these are rather inflexible equa-
tions however and good fits using the current LBM are elusive. Simula-
tions of film adsorption and capillary condensation with the SC LBM 
model have not been widely reported in the literature – probably because 
of difficulties in obtaining satisfying results. Sukop and Or (2003) pre-
sented some promising preliminary results using a different form of the 
adhesive force (Figure 54), but our current, presumably improved code 
does not seem to simulate these particular phenomena as well. More de-
tailed analysis of the nature of the approximation of surface forces in LBM 
is needed.  
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Figure 54. Simulation of film adsorption and capillary condensation from 
Sukop and Or (2003). The surface force Eq. (66) used the density rather than 
the  function and was not divided by the density as Eq. (47) requires. 

6.5.5  Hysteretic Wetting/Drying of Porous Media 

Despite challenges with the detailed surface adsorption and capillary con-
densation simulations, LBM has been used successfully to simulate the 
hysteretic wetting and drying of porous media. We refer readers to Pan et 
al. (2004) and Vogel et al. (2005) for 3-D examples. 

6.5.6  Fluid Displacement in Porous Media 

The displacement of one fluid by another in porous media leads to a rich 
variety of behaviors depending on the properties of the fluids, the rate of 
displacement, gravitational effects, and the structure of the medium. 
Lenormand (1988) condensed the fluid properties and displacement rate 
into two parameters and showed the variety of behaviors experimentally. 
As we have seen previously for other fluid phenomena, such observations 
present opportunities for validation of lattice Boltzmann methods. We pre-
sent Lenormand’s results and some early attempts at simulating such be-



 SCMP LBM with Surfaces 99

havior with LBM here (Sukop and Or 2003); more advanced efforts should 
follow.

Figure 55. Fluid displacement phase diagram and displacement patterns 
adapted from Lenormand et al. (1988) with permission of Cambridge Univer-
sity Press. The displacement fronts have different characteristic shapes de-
pending on the Capillary number Ca and the viscosity ratio M. The inset on 
the lower left shows that the 'stable displacement' field expands as the Bond 
number increases (Berkowitz and Ewing, 1998).  

The Capillary number (Ca) is a dimensionless number that gives the rela-
tive magnitude of viscous and capillary forces.  It can be stated as (Fried-
man, 1999): 

cos
uCa (92)

with u the inlet/outlet velocity,  the viscosity of injected fluid, porosity ,
interfacial tension between fluids , and contact angle  Under many con-
ditions, the other variables are fixed and the Capillary number can be con-
sidered a measure of velocity.  
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The second key variable considered by Lenormand is the ratio (M) of 
the viscosities of the injected and displaced fluids: 

displaced

injectedM (93) 

While this ratio can be varied freely in experimental work by choosing 
appropriate fluid pairs, this is less straightforward in simple LBM models.  
For the D2Q9 SCMP model, we find 
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which indicates that the viscosity ratio is controlled by the density ratio 
when  is held constant. For the parameters used for SCMP throughout this 
text, the ratio of vapor to liquid density is on the order of 0.1; far greater 
density contrasts are generally the norm in the physical world. Similarly to 
the non-physical relative compressibilities of the liquid and vapor phases 
noted above, these fixed density and viscosity ratios are not a significant 
drawback for the computation of equilibrium interface configurations; in 
fact equilibrium conditions may be attained more quickly due to significant 
mass transport in the vapor phase. These ratios can affect numerous other 
phenomena of interest however, and the desire to vary the viscosity ratio to 
simulate these displacement processes is a good example. 

A few strategies are available for varying the viscosity ratio. Ultimately, 
incorporation of a real equation of state would give the true density con-
trast. A more immediate approach would be to simply change the EOS pa-
rameters to increase the density contrast. This can lead to numerical insta-
bilities however. A second approach is to vary  as a function of density 
(Tölke et al. 2002; Nie et al. 1998). We have not experimented with this in 
the context of SCMP models yet, but successfully use it to simulate the 
flow of immiscible fluids below. 

Single component multiphase lattice Boltzmann methods were applied to 
invasion percolation in simplified porous media by Sukop and Or (2003). 
They demonstrated the invading fluid’s selectivity for the largest available 
pore and showed how this is affected by Ca. These abilities are crucial to 
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simulation of behavior in larger networks. To simulate these displacement 
processes, Sukop and Or (2003) induced interface movement from a 
phase-separated initial condition with fixed velocity (uy = constant, ux = 0) 
boundary conditions at the vapor inlet and liquid outlet in keeping with the 
typical experimental practice of constant flow rate. They maintained con-
stant equal volumetric fluxes at the inlet and outlet. Since the (2-
dimensional) volume of the fluid injected per unit time is the velocity mul-
tiplied by the inlet length, equal volumetric fluxes in the vapor and liquid 
correspond to equal velocities in the two phases. Implementation of the 
constant velocity boundary conditions followed the approach proposed by 
Zou and He (1997).  

Figure 56 shows invasion of injected vapor phase through a perforated 
plate with holes of varying size. In the upper time sequence of images at 
low Ca; only the largest pore is invaded. In contrast, the bottom sequence 
shows invasion of the 2 largest pores at larger Ca when viscous effects be-
come more important. These results are similar to those obtained by An-  

Figure 56. Time series (left to right) of invasion of vapor through plate 
with perforations of 16, 14, and 11 lu. Ca = 10-3 (top) and Ca = 10-2 (bottom). 
Liquid black, vapor gray, solids dark gray. (Sukop and Or, 2003) At low 
Capillary number, capillary forces dominate and only the largest pore is in-
vaded by vapor. Increasing the Capillary number (displacement velocity in 
this case) causes a second pore to be invaded despite its smaller size. 
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gelopoulos, et al. (1998) with the free energy lattice Boltzmann model; se-
lectivity for the largest pore was demonstrated but the effect of Ca was not 
investigated in that work.  

Figure 57 illustrates the effects of changes in Ca in a network of pores. 
Each simulation is carried out on a 200 200 lattice with the same random 
arrangement of disks of three different sizes. For the disks, r = 2.5, 3.5, or 
4.5 lu. The domains are periodic in the x direction, although disks at the 
left and right edges of the domain are fixed at large size and effectively 
bound the invasion process. Results near breakthrough for two Ca are 
shown. There are significant differences in the invasion patterns as a func-
tion of Ca. 

Figure 57. Vapor invasion into a porous medium consisting of random 
disks at two Capillary numbers. Ca = 10-3 (left) and Ca = 10-2 (right). Liquid 
black, vapor gray, solids white. 

As noted in the caption of Figure 55, gravity can play a role in stabiliz-
ing (flattening) a fluid invasion front at certain Bond numbers when the 
displaced fluid is denser and tends to collect at the bottom of the domain. 
Figure 58 illustrates the effect. 
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Figure 58. Effect of gravity on displacement front. The front is ramified in 
the absence of gravity (left). Gravity stabilizes front when the invading fluid 
is less dense (right). Liquid black, vapor gray, solids white. 

6.6 Exercises 

1. Plot a family of curves of  vs. P for different G (0, -80, -100, -120, 
and -140). Use 0 = 4, 0 = 200 mu lu-2.

2. Use the Maxwell Construction to estimate the equilibrium vapor pres-
sure from an equation of state with G = -120 and the  function parameters 

0 = 4 and 0 = 200 mu lu-2.

3. Simulate a flat interface in a fully periodic domain by beginning with 
an initial condition with density 500 mu lu-2 in half of the domain and den-
sity 80 mu lu-2 in the other half. Use the same parameters as in Exercise 2. 
Run the model to equilibrium and measure the equilibrium densities. 
Compute the pressure in each phase using the EOS and comment on your 
results.

4. Simulate drops and bubbles of various sizes in a fully periodic do-
main by starting with different initial densities in the unstable portion of 
the EOS (seeds or randomness in the initial density distribution may be 
necessary to prevent a metastable situation). Measure the drop and bubble 
diameters and the inside and outside densities. Convert the densities to 
pressures using the EOS. Plot the pressure difference (high – low) as a 
function of the inverse radii (the curvature), fit a line and estimate the sur-
face tension. Track and report all units.  
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5. Compute the critical radius for heterogeneous cavitation under an ini-
tial fluid tension of -2 mu ts-1. Use the LBM model to simulate the fate of 
bubbles of size greater than and less than the critical radius. 

6. Simulate different contact angles by adding a surface and varying 
Gads. It is helpful to start with a liquid ‘blob’ near the surface. Plot the den-
sity profile through the vapor, liquid, and solid. 

7. The water-water vapor surface tension is 72.13 10-3 N m-1 at 25C. 
Compute the capillary rise in a clean glass slit of radius 0.001 m in the 
Earth’s gravitational field. We choose a slit to reduce the problem to a 2 
dimensional one, in which there is only one possible radius of curvature. 
Assume the contact angle is zero. Show all units. 

8. Compute the Bond number for the capillary rise problem above. 

9. Propose and run a lattice Boltzmann model illustrating capillary rise 
at the Bond number found in Exercise 8.  Remember that r should be at 
least 5 or so lattice units and that the ‘pool’ of liquid that the capillary will 
be immersed into should be wide enough that a pool height unaffected by 
capillary rise can serve as a reference level for measuring the liquid rise in 
your capillary. What is the expected capillary rise in your model? Show all 
calculations and units. Remember to use a surface adhesion parameter that 
corresponds closely to the desired contact angle; too big or too small may 
cause problems. Plot the steady-state result of your model. What is the ob-
served capillary rise? Compare the ratio h/r for the case on Earth, the pre-
dicted LB case, and the simulated case. 
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7 Multicomponent Multiphase (MCMP) LBM 

Multicomponent, Multiphase (MCMP) LBM is shown at the bottom right 
corner of the chart in Figure 38. Multiple chemical components (two for 
our purposes) such as oil and water are combined with interaction forces 
between them to yield immiscible fluids. The nature of the interaction 
forces is repulsive, which is opposite to the attractive forces that bring 
about van der Waals-like phase separation in SCMP; in MCMP, the phase 
separation can be thought of as a hydrophobic interaction. 

MCMP fluids are of tremendous economic importance because petro-
leum is often found with water and of considerable environmental impor-
tance because non-aqueous phase liquids (NAPLs) in the subsurface often 
act as long-lived sources of ground water contamination. Our treatment is 
brief as this topic has not yet been a research area for us and it has been 
covered in more detail than SCMP in the open literature (e.g., Buckles et 
al. 1994; Soll et al. 1994; Martys and Chen 1996; Langaas and Papatzacos 
2001; Martys and Douglas 2001).  

In much of the LBM algorithm, adding a second component requires 
only introducing a new index to the relevant arrays and a new loop to trav-
erse both components. We call this the ‘substance’ or subs loop and, fol-
lowing standard C, we index the first substance by 0 and the second by 1 in 
the code but generally refer to them as first and second in the text. An im-
portant exception to simply including a subs loop is the equilibrium dis-
tribution function computation. The equilibrium distribution function is 
computed from a composite macroscopic velocity 
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u , (95) 

which differs from the macroscopic uncoupled velocities u
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of the individual fluids. The densities  for each component are as usual 
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The composite velocity u  represents the flow of the bulk fluid and, as 
such, is the more meaningful velocity to view and analyze for the overall 
fluid flow of the system. 

Here is pseudo-code for Eqs. (95), (96), and (97): 

  // Compute density, Eq. (97), and the sums used (below)  
  // in the velocities. 
  for( subs=0; subs<NUM_FLUID_COMPONENTS; subs++) 
    for( j=0; j<LY; j++) 
      for( i=0; i<LX; i++) 
      { 
        rhoij[subs] = 0.; 
        u_xij[subs] = 0.; 
        u_yij[subs] = 0.; 

        if( !is_solid_node[j][i]) { 
          for( a=0; a<9; a++) { 
            rhoij[subs] += ftemp_ij[a]; 
            u_xij[subs] += ex[a]*ftemp_ij[a]; 
            u_yij[subs] += ey[a]*ftemp_ij[a]; } } 
      } 

  // Compute the composite velocity and individual velocities. 
  for( j=0; j<LY; j++) 
  { 
    for( i=0; i<LX; i++) 
    { 
      if( !is_solid_node[j][i]) 
      { 
        ux_sum =  u_xij[0]/tau0 + u_xij[1]/tau1; 
        uy_sum =  u_yij[0]/tau0 + u_yij[1]/tau1; 

        if( rhoij[0] + rhoij[1] != 0) 
        { 
          // Composite velocity, Eq. (95). 
          uprime_x = ( ux_sum) / ( rhoij[0]/tau0 + rhoij[1]/tau1); 
          uprime_y = ( uy_sum) / ( rhoij[0]/tau0 + rhoij[1]/tau1); 
        } 
        else { uprime_x = 0.; uprime_y = 0.; } 
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        // Individual velocities, Eq. (96), x-direction. 
        if(  rhoij[0] != 0) { u_xij[0] = u_xij[0] / rhoij[0]; } 
        else                { u_xij[0] = 0.;                  } 
        if(  rhoij[1] != 0) { u_xij[1] = u_xij[1] / rhoij[1]; } 
        else                { u_xij[1] = 0.;                  } 

        // Individual velocities, Eq. (96), y-direction. 
        if(  rhoij[0] != 0) { u_yij[0] = u_yij[0] / rhoij[0]; } 
        else                { u_yij[0] = 0.;                  } 
        if(  rhoij[1] != 0) { u_yij[1] = u_yij[1] / rhoij[1]; } 
        else                { u_yij[1] = 0.;                  } 

      } 
    } 
  } 

Note that we allow the macroscopic density to be zero, though both com-
ponents cannot have zero density simultaneously at the same location. This 
is discussed in more detail in the next section. 

As in the single component case, we add terms for gravity and interac-
tion forces to u' to obtain ueq. The interaction force term is different, as 
shown in the following section. 

7.1 Interparticle Forces 

The force on fluid component  is 

a
aaa ttwtG eexxxF ),(),()( , (98) 

where  indicates the other fluid component.  and  are commonly 

taken as the densities, and . The interaction force term 
F  is added to the momentum u  as before to obtain the velocity for use in 
the computation of f eq:

Fuu 'eq , (99) 

or 

F
uu 'eq . (100) 
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The magnitude of G and the fluid densities will determine the magnitude 
of F , which in turn will determine the magnitude of the velocity incre-
ment in Eq. (100), which needs to be kept small. This requirement places 
limits on the value of G while the desire for sharp, non-diffusing interfaces 
calls for G as large as possible. 

In the case of two fluid components, pseudocode for the interaction forces 
looks like 

  // Compute fluid-fluid interaction force, equation (98),  
  // (assuming periodic domain). 
  // 
  // We begin by computing psi even though in this implementation 
  // it is the same as rho. A different function of rho could 
  // be substituted here. 
  for( subs=0; subs<NUM_FLUID_COMPONENTS; subs++) 
    for( j=0; j<LY; j++) 
      for( i=0; i<LX; i++) 
        if( !is_solid_node[j][i]) 
        { 
          psi[subs][j][i] = rho[subs][j][i]; 
        } 

  // Compute the summations in Eq. (98). 
  for( subs=0; subs<NUM_FLUID_COMPONENTS; subs++) 
  { 
    for( j=0; j<LY; j++) 
    { 
      jp = ( j<LY-1)?( j+1):( 0   ); 
      jn = ( j>0   )?( j-1):( LY-1); 

      for( i=0; i<LX; i++) 
      { 
        ip = ( i<LX-1)?( i+1):( 0   ); 
        in = ( i>0   )?( i-1):( LX-1); 

        Fxtemp = 0.; 
        Fytemp = 0.; 

        if( !is_solid_node[j][i]) 
        { 
          if( !is_solid_node[j ][ip]) // neighbor 1 
          { Fxtemp = Fxtemp + WM*ex[1]*psi[subs][j ][ip]; 
            Fytemp = Fytemp + WM*ey[1]*psi[subs][j ][ip]; } 
          if( !is_solid_node[jp][i ]) // neighbor 2 
          { Fxtemp = Fxtemp + WM*ex[2]*psi[subs][jp][i ]; 
            Fytemp = Fytemp + WM*ey[2]*psi[subs][jp][i ]; } 
          if( !is_solid_node[j ][in]) // neighbor 3 
          { Fxtemp = Fxtemp + WM*ex[3]*psi[subs][j ][in]; 
            Fytemp = Fytemp + WM*ey[3]*psi[subs][j ][in]; } 
          if( !is_solid_node[jn][i ]) // neighbor 4 
          { Fxtemp = Fxtemp + WM*ex[4]*psi[subs][jn][i ]; 
            Fytemp = Fytemp + WM*ey[4]*psi[subs][jn][i ]; } 
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          if( !is_solid_node[jp][ip]) // neighbor 5 
          { Fxtemp = Fxtemp + WD*ex[5]*psi[subs][jp][ip]; 
            Fytemp = Fytemp + WD*ey[5]*psi[subs][jp][ip]; } 
          if( !is_solid_node[jp][in]) // neighbor 6 
          { Fxtemp = Fxtemp + WD*ex[6]*psi[subs][jp][in]; 
            Fytemp = Fytemp + WD*ey[6]*psi[subs][jp][in]; } 
          if( !is_solid_node[jn][in]) // neighbor 7 
          { Fxtemp = Fxtemp + WD*ex[7]*psi[subs][jn][in]; 
            Fytemp = Fytemp + WD*ey[7]*psi[subs][jn][in]; } 
          if( !is_solid_node[jn][ip]) // neighbor 8 
          { Fxtemp = Fxtemp + WD*ex[8]*psi[subs][jn][ip]; 
            Fytemp = Fytemp + WD*ey[8]*psi[subs][jn][ip]; } 

        } /* if( !is_solid_node[j][i]) */ 

        Fx[subs][j][i] = Fxtemp; 
        Fy[subs][j][i] = Fytemp; 

      } /* for( i=0; i<LX; i++) */ 
    } /* for( j=0; j<LY; j++) */ 
  } /* for( subs=0; subs<NUM_FLUID_COMPONENTS; subs++) */ 

  // Compute the final interaction forces of Eq. (98) using 
  // the summations computed above. 
  for( j=0; j<LY; j++) 
  { 
    for( i=0; i<LX; i++) 
    { 
      if( !is_solid_node[j][i]) 
      { 
        Fxtemp = Fx[1][j][i]; 
        Fx[1][j][i] = -G*psi[1][j][i]*Fx[0][j][i]; 
        Fx[0][j][i] = -G*psi[0][j][i]*Fxtemp; 

        Fytemp = Fy[1][j][i]; 
        Fy[1][j][i] = -G*psi[1][j][i]*Fy[0][j][i]; 
        Fy[0][j][i] = -G*psi[0][j][i]*Fytemp; 
      } 
    } 
  } 

Based on Eqs. (96), (95), and (100), it appeared that zero density of ei-
ther component was inadmissible; however simple checking for the condi-
tion and defaulting to zero-valued velocities and force terms when either 
density is zero seems to work very well. 

As in the SCMP cohesion force, beware of the assumption about a peri-
odic domain (see the parenthetical note in the comment at the top of the 
code snippet). When using boundary conditions, the interaction force must 
be computed differently at those boundaries because the density is not nec-
essarily continuous across the periodicity then. Hence, the three terms in 
Eq. (98) associated with nodes across the periodic boundary are unavail-
able. We find that replacing those three terms with duplicates of the three 
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terms in the other direction (towards the interior of the domain instead of 
across the boundary of the domain) gives good results. 

7.2 Phase (Fluid-Fluid) Separation 

The Laplace law (6) is also satisfied by two-fluid MCMP systems. 
Figure 59 shows several LBM data points and a linear fit. The interfacial 
tension is given by the slope of the line. 

y = 2.003x - 3E-05
R2 = 0.9983

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

1/r (lu-1)

P 
(m

u 
ts

-2
)

Figure 59. Pressure difference between inside and outside of drops as a 
function of 1/r for immiscible fluids. Simulated drops of component 1 inside 
component 2 shown adjacent to data points at relative scale. Linear trend 
confirms simulation agrees with Laplace law. Interfacial tension given by 
slope.

Our Laplace results for MCMP fluids are based on fairly low resolution 
runs. These runs take a long time to equilibrate, even when the domain is 
initialized with a round drop. The relatively low resolution (about 200 200 
lu2) means that the thickness of the interface is non-negligible relative to 
the diameter of the drop. This leads to the question of how to distinguish a 
drop from the surrounding fluid. In other words, what density should be 
used as the cut-off at the edge of the drop? The most naive choice is half-
way between the density inside the drop and the density in the bulk of the 
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surrounding fluid.  This gives a non-zero Laplace plot intercept on the or-
der of 0.001 in our experiments. A more intelligent choice might be the 
point at which the density profiles of the two fluids cross – the point 
where, when moving from the interior of the drop towards the exterior, the 
density of the drop component becomes lower than the density of the sur-
rounding fluid. This does not substantially improve the results however. 
Another idea is to consider the drop to extend all the way to its lowest den-
sity; the area of the drop corresponds to the entire region where the drop 
component density is higher than its density in the bulk of the surrounding 
fluid component. This improves the Laplace intercept dramatically in our 
experiments to an order of about 0.00001. We find this choice mildly dis-
tasteful because it includes as part of the drop a region where the density of 
the ambient fluid is higher than that of the drop.  

Another issue related to low resolution experiments is that larger drops 
can begin to interfere with themselves across the periodic domain bounda-
ries. This would be expected to affect data points corresponding to larger 
radii in our measurements where the domain size was held constant. How-
ever, data points associated with larger radii follow the trend of the other 
data points closely. 

7.3 Metastable States 

The fluids can be initialized as a metastable emulsion; any tiny perturba-
tion will lead to catastrophic phase separation. The phase separation pro-
ceeds via an exsolution-like process (Figure 60). 

Figure 60. Catastrophic phase separation initiated by a seed of separated 
fluid (left) in an emulsified binary mixture that is metastable in the absence of 
perturbations. 

Quasi-metastable (kinetically frustrated) states can also be obtained by 
initializing a desired condition. 
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7.4 MCMP LBM with Surfaces 

Each fluid component can interact with solids independently via separate 
interaction parameters. This is as expected considering that there are inter-
facial tension values between the two fluids ( 12) and between each fluid 
and the surface ( S1 and S2) that appear in Young’s equation,  

12

12cos SS , (101) 

which determines the contact angle measured in fluid 1 (Adamson and 
Gast 1997).  

Surface forces are incorporated into the multicomponent model much the 
same way as in the single component model (Eq.  (66)) except that now 
separate forces are computed for each component and  is used directly 
because ) = :

a
aaaadsads tswtGt eexxxF )(),(),( . (102) 

The following pseudocode illustrates how the surface adhesion forces for 
each fluid substance (subs index 0 or 1 in the code) are computed. Note 
that the multiplication by x,t  is omitted because incorporation of the 
forces into the model by Eq. (100) requires division by . This also makes 
the sforce below independent of time so it needs to be computed just 
once. 

  for( j=0; j<LY; j++) 
  { 
    jp = ( j<LY-1)?( j+1):( 0   ); 
    jn = ( j>0   )?( j-1):( LY-1); 

    for( i=0; i<LX; i++) 
    { 
      ip = ( i<LX-1)?( i+1):( 0   ); 
      in = ( i>0   )?( i-1):( LX-1); 

      if( !is_solid_node[j][i])  
      { 
        sum_x=0.; 
        sum_y=0.; 
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        if( is_solid_node[j ][ip])  // neighbor 1 
        { sum_x = sum_x + WM*ex[1]; 
          sum_y = sum_y + WM*ey[1];} 
        if( is_solid_node[jp][i ])  // neighbor 2 
        { sum_x = sum_x + WM*ex[2]; 
          sum_y = sum_y + WM*ey[2];} 
        if( is_solid_node[j ][in])  // neighbor 3 
        { sum_x = sum_x + WM*ex[3]; 
          sum_y = sum_y + WM*ey[3];} 
        if( is_solid_node[jn][i ])  // neighbor 4 
        { sum_x = sum_x + WM*ex[4]; 
          sum_y = sum_y + WM*ey[4];} 
        if( is_solid_node[jp][ip])  // neighbor 5 
        { sum_x = sum_x + WD*ex[5]; 
          sum_y = sum_y + WD*ey[5];} 
        if( is_solid_node[jp][in])  // neighbor 6 
        { sum_x = sum_x + WD*ex[6]; 
          sum_y = sum_y + WD*ey[6];} 
        if( is_solid_node[jn][in])  // neighbor 7 
        { sum_x = sum_x + WD*ex[7]; 
          sum_y = sum_y + WD*ey[7];} 
        if( is_solid_node[jn][ip])  // neighbor 8 
        { sum_x = sum_x + WD*ex[8]; 
          sum_y = sum_y + WD*ey[8];} 

        for( subs=0; subs<NUM_FLUID_COMPONENTS; subs++) 
        { 
          sforce_x[subs][j][i] = -Gads[subs]*sum_x; 
          sforce_y[subs][j][i] = -Gads[subs]*sum_y; 
        } 
      } 
    } 
  } 

A rationale similar to that applied above in the section on contact angles 
for SCMP models can also be fruitfully applied to MCMP. Suppose we 
wish to ensure that fluid A near a solid surface experiences a force envi-
ronment similar to the one it feels when it is surrounded by like fluid. This 
will prevent excess compression by surface forces for example. Consider-
ing Eq. (98), we have FA = A BG for fluid A surrounded by itself, while 
Eq. (102) leads to Fads

A = AGads
A for the fluid surrounded by solids on all 

sides. Equating these gives  

GG B
A
ads (103) 

and by symmetry  

GG A
B
ads . (104) 
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The significance of these relationships is that when the complementary 
density is low, Gads should be small relative to G. As discussed below how-
ever, it is other constraints on the G, Gads

1 and Gads
2 values that determine 

the relative wetting of the fluids. 

It is expected that there is a direct relationship between the interfacial 
tension values in Young’s equation (101) and the G, Gads

1 and Gads
2 values. 

When the densities of each fluid substance are identical and Gads
1 = Gads

2, it 
is reasonable to expect S1 = S2 and a 90° contact angle. Figure 61 shows 
the results of such a simulation. 

Figure 61. Multicomponent fluids interacting with a surface when G = 0.1
and Gads

1 = Gads
2 = -0.01. The density of the first substance (with index 0) is 

show in gray scale. Contact angle is 90°. Simulation domain 100  100 lu2.
Image represents 6000 time steps from an initial condition of a 20  20 lu2

square of the first substance (with density 1 and complementary density 0) 
surrounded by the second substance.  = 1 for both fluids. 

Examining Young’s equation (101) further and assuming that we can 
simply replace the interfacial tension values 12, S1 and S2 by G, Gads

1

and Gads
2 , we can rearrange Eq. (101) as 

adsadsads GGGG 12cos . (105) 

This makes it clear that it is the difference in the adhesion strength parame-
ters that determines the relative wetting. Consider the following example 
in which we desire a 45° contact angle. In this case, Gads = 2 /2 G from 
Eq. (105). If G = 0.1, then Gads  0.0707. And, if Gads

1 = -0.02, then Gads
2

= Gads  Gads
1 = 0.0507. Note that the wetting fluid (here 1) must have the 

lower Gads. The result of applying these values is shown in Figure 62. 
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Figure 62. Multicomponent fluids interacting with a surface when G = 0.1,
Gads

1 = -0.02, and Gads
2 = 0.0507. The density of the first substance (with index 

0) is show in gray scale. Line indicates 45° contact angle. Simulation domain 
1000  200 lu2. Image represents 38,000 time steps from an initial condition of 
a 200  50 lu2 rectangle of the first substance (with density 1 and complemen-
tary density 0) surrounded by the second substance.  = 1 for both fluids. 

7.5 Two-Phase Flow 

Ginzburg (1994) presented simulations and analytical solutions for two 
phase flow in a channel where the phases have different viscosities. These 
types of flows can be simulated with LBM by setting separate  for each 
fluid. Figure 63 shows results for immiscible fluids with for substance 0 
= 1.2 and for substance 1 = 0.6.  The gravitational acceleration applied to 
each substance is -10-6 lu ts-2. The fluid-fluid interaction parameter is given 
a value of G = 0.05 and the domain is periodic in y and bounded by walls 
at x = 0 and x = 99. The initial densities are 1 and 0 mu lu-2 and the domain 
is initialized with substance 0 on the left half and substance 1 on the right. 
Figure 63 shows the velocity profile. There is some noise presumably re-
lated to the spurious interface velocities at the interface between the fluids, 
but overall the profile is as expected.  

In accordance with Eq. (2), more viscous substance 0 presents a lower 
overall du/dx. It is interesting that substance 0 has been compressed and 
substance 1 has been rarefied so that the interface is found at x = 39 instead 
of its initial position of x = 50. Further, the concentration of substance 0 
‘dissolved’ in substance 1 has increased on the right hand side of the do-
main. All of these phenomena deserve further exploration. 



116      Multicomponent Multiphase (MCMP) LBM               

-0.012

-0.01

-0.008

-0.006

-0.004

-0.002

0

0 10 20 30 40 50 60 70 80 90 100

x (lu)

u 
(lu

 ts
-1

)

Figure 63. Velocity profile for flow of two immiscible fluids in a 100 lu 
channel. More viscous fluid is on left. Downward flow driven by gravity. 

7.6 Exercises 

1. Run a series of simulations to determine the interfacial tension be-
tween two fluids. 

2. Set up a poised metastable system and demonstrate its persistence. 
Seed the same domain and demonstrate phase separation.  

3. In the MCMP contact angle example presented above, Gads 
0.0707,  Gads

1 = -0.02, and Gads
2 = 0.0507. Run a model to test if this is 

equivalent to Gads
1 = - Gads/2 and Gads

2 = Gads/2.  

4. Simulate the flow of two immiscible fluids between parallel plates. 
Vary the viscosity for the two fluids from where they are equal to where 
they differ by a factor of 7 or more. Plot the velocity and density profiles 
for each case.   
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8 Solute Transport 

Lattice Boltzmann methods (LBM) offer an exceptionally powerful tool 
for the computation of advective and diffusive transport in complex porous 
media. Mass and energy transport can be simulated. Unlike traditional 
models that rely on space-averaged properties that lose meaning at the pore 
scale (such as porosity, hydraulic conductivity, and dispersivity), LBM can 
compute detailed solutions to the Navier-Stokes equations for fluid flow 
and solute diffusion considering the intricacies of porous medium geome-
try. Dispersion is an outcome of solute advection and diffusion in this de-
tailed flow field and is not bound to any particular macroscopic transport 
model or conceptualization.  

The simulation of 2-D transport of dilute solutes does not require the use 
of all 9 velocity directions in the D2Q9 model; 4 perpendicular velocities 
provide adequate symmetry for the simulation of 2-D diffusive phenomena 
(Wolf-Gladrow 2000) and 6 are adequate for 3-D simulations (Stockman et 
al. 1998). For the simplicity that comes from consistency with our previous 
models, we use all nine velocities.  

This chapter is organized as follows: first we provide a brief overview 
of selected applications of LBM to solute transport. Then two different ap-
proaches for modeling solutes are introduced. Detailed boundary condi-
tions are provided for the ‘passive’ solute approach and the modifications 
required to simulate solute-induced buoyancy are given. The remainder of 
the chapter is dedicated to examples involving comparisons with analytical 
solutions to diffusion and convection-diffusion/dispersion problems, in-
cluding diffusion in infinite and bounded domains, diffusion on a propa-
gating front, Taylor dispersion, and Péclet number correlations. 
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8.1 Selected Review of Previous Applications of LBM to 
Solute Transport 

Since the early 1990s, LBM has been used to simulate solute transport. 
Examples range from simple diffusion to buoyant mixing of dense solu-
tions in 3 dimensions. Some papers and theses specifically addressing 
LBM solute transport modeling include Zhang and Ren (2003), Yoshino 
and Inamuro (2003), Zhang et al. (2002a-c), Drazer and Koplik (2001), 
Grubert (1997), and Noble (1997). Diffusion simulation capabilities of 
LBM are discussed in Flekkøy (1993), Shan and Doolen (1996), and Wolf-
Gladrow (2000) among others. Mixing (dispersion) due to density varia-
tions and resulting buoyant effects between the tracer plume and unaf-
fected solvent (Stockman 1997; Jalbert et al. 2000) can readily be simu-
lated with LBM. Low viscosity fluids and/or high velocity flow conditions 
can lead to high Reynolds number flows characterized by eddy formation 
and the additional dispersion that results. Yoshino and Inamuro (2003) re-
cently computed solute transport under such flows in simple porous media. 
A number of earlier papers used lattice gas methods to investigate solute 
transport and provide useful background for LBM studies; examples in-
clude Gutfraind et al. (1995), Perea-Reeves and Stockman (1997), Stock-
man (1997), and Stockman et al (1997a,b). 

Stockman et al. (1997b) used lattice gas methods and LBM (following 
Flekkøy (1993)) to investigate mixing at fracture intersections at varying 
Péclet numbers. Stockman et al. (2001) used a 3-D LBM in a similar study. 
Stockman et al. (1998) investigated 3-D dispersion in fractures and double-
diffusive fingering. Zhang et al. (2002a) presented a means of solving the 
2-D advection-dispersion equation with anisotropic dispersion coefficients 
and spatially variable velocities (at least variable in one dimensional flow). 
Otherwise, explicit consideration of the flow field (and simultaneous com-
putation of the flow field in a porous medium for example) was not pre-
sented. Later papers by this group (Zhang et al. 2002b and 2002c; Zhang 
and Ren, 2003) present boundary conditions applicable to their model,  a 
3-D model that can be applied to unsaturated soils (or ground water flow), 
and a 1-D kinetic sorption/transport model. The strategy presented in these 
papers is useful as an alternative to more traditional means of solving the 
anisotropic advection-dispersion equation. Our focus in this chapter how-
ever is on simultaneous solution of the advective and diffusive components 
of transport in specific geometric models of porous media. Rather than be-
ing an input parameter, the dispersion is an output of the model under these 
conditions, and long-standing questions regarding dispersion can be ad-
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dressed free from the assumption that the traditional advection-dispersion 
equation is a correct representation of the process. Perfect and Sukop 
(2001) presented a review of pore geometry-based transport models that 
offers potential test cases for this type of modeling. In our opinion, the at-
tributes of LBM – particularly its ability to simulate transport at much 
higher Reynolds numbers than are commonly encountered in ‘normal’ po-
rous media – make it the ideal tool for use well beyond the pore scale. Our 
own interests include simulating flows in caves and conduits systems in 
karstic aquifers for instance; to relegate LBM strictly to pore scale model-
ing would be unfortunate. Thus, our use of the term ‘pore’ in the solute 
transport context should be broadly interpreted. 

There are two common ways to simulate solute transport in discrete 
pore/solid systems with LBM. The second component of normal MCMP 
can be treated as a solute by eliminating or grossly reducing the non-local 
interaction between the fluids and initializing them with complementary 
densities (lower left-hand corner of Figure 38). Alternatively, a modified 
version of the second component that simulates a passive solute (or any 
scalar quantity like temperature) can be devised (e.g., Yoshino and Ina-
muro 2003). In the first approach, the solute component is coupled with the 
fluid component as usual for MCMP, albeit with small or zero non-local 
interaction. In the second approach, the solute component is passive, hav-
ing no velocity of its own, and is carried along (advected) by the back-
ground fluid. We discuss and present examples from each approach but 
emphasize the passive component approach. 

8.2 Active Solute Component 

Shan and Doolen (1996) gave a thorough analysis of the use of ‘normal’ 
multicomponent models (those capable of phase separation) for the simula-
tion of diffusion. In these models, the densities of the solute and solvent 
are ‘complementary’ (Figure 64) in that an increase of solute concentration 
is accompanied by a decrease in solvent concentration.   

We present comparisons of diffusion simulations using this active solute 
approach with analytical solutions in Section 8.5.1 below.  
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Figure 64. Complementary densities in MCMP solute model. 

8.2.1  Boundary Conditions 

Boundary conditions for the active solute component are identical to those 
for any fluid: periodic, bounceback, specified velocity, and specified pres-
sure are available and have been detailed above. 

8.3  Passive Solute Component 

In the passive solute approach, solute is simulated by a second distribution 
f  called the solute or ‘ ’ component. This corresponds closely to the nor-
mal fluid distribution function except with a simpler equilibrium distribu-
tion 

)31(, ueaa
eq

a wf . (106) 

The concentration 
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8

0
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a
af (107) 

is analogous to fluid density. 

The diffusion coefficient D  is given by  

)( 2
1

3
1D (108) 

and is analogous to viscosity. 

8.3.1  Boundary Conditions 

Yoshino and Inamuro (2003) define concentration boundary conditions on 
the surfaces of solids. Concentration boundary conditions can also be ap-
plied at inflow/outflow boundaries. We give them for vertical and horizon-
tal walls/boundaries here, although they can be generalized to solids of any 
shape. 

We derive constant concentration boundaries, constant flux boundaries, 
and zero diffusive flux boundaries in the following sections. These deriva-
tions are related in spirit to the constant velocity and constant pressure 
boundary derivations presented in Chapter 4: unknown direction-specific 
densities that arise after streaming are solved on the basis of known values 
and specified conditions. 

Constant concentration boundaries 

After the streaming step, there are unknowns pointing out of walls and side 
(non-periodic) boundaries. These unknowns can be solved for in a way that 
maintains a specified constant concentration  at these boundary nodes. 

Due to symmetry, we will only consider one case, a north boundary, in 
detail.  The other three will be stated but not derived. 

Figure 65 shows the unknowns at a north boundary after streaming.  
This could be at the north side of the full domain or at a horizontal solid 
surface on the north side of a fluid region inside the domain.  If it is the 
north boundary of the domain, it could be either a wall or an in-
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flow/outflow.  The mechanism for defining the constant concentration is 
the same in all cases. 

Figure 65. Solute direction-specific density unknowns (circled) after streaming 
at a north surface/boundary.

We require the concentration 

a
af , (109) 

to be equal to a prescribed value denoted by . The contributions to 

a
af , from f ,a for a in {0,1,2,3,5,6} are  known after streaming because 

they come from regions inside the model domain.   

Motivated by the weighting factors wa on the directional densities in the 
equilibrium distribution function, we assume that the unknown directional 
densities f ,a for a in {4,7,8} are of the form f ,a = wa , where  denotes 
the residual amount of concentration needed to satisfy the specified con-
centration condition  at the current lattice node.

Then from 

''' 4446,5,3,2,1,0,

,

wwwffffff

f
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(110) 
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we can compute the residual concentration  as 

874

6,5,3,2,1,0, )(
'

www
ffffff

. (111) 

Finally, under the assumption on the form of the unknown directional den-
sities, we solve for them as 

'' 9
1

44, wf , (112) 

'' 36
1

77, wf , (113) 

and

'' 36
1

88, wf . (114) 

To summarize the procedure, we compute the residual concentration 
needed to add to the contribution from the known directional concentra-
tions so that the total sums to the specified condition .  Then this resid-
ual concentration is distributed among the unknown directional concentra-
tions according to the weighting used in the computation of the 
equilibrium distribution function. 

Here is a pseudocode implementation of constant concentration boundaries 
on all four sides (where, on the north side, for example, the 6 factor comes 
from 1/(w4 +w7 +w8)):

  // Constant concentration on north side. 
  for( i=0; i<LX; i++) 
  { 
    fi = ftemp[LY-1][i]; 
    rho_sigma_prime = 6.*( rho_sigma_bar  
                         - ( fi[0] + fi[1] + fi[3] 
                           + fi[2] + fi[5] + fi[6])); 
    fi[4] = (1./ 9.)*rho_sigma_prime; 
    fi[7] = (1./36.)*rho_sigma_prime; 
    fi[8] = (1./36.)*rho_sigma_prime; 
  } 

  // Constant concentration on south side. 
  for( i=0; i<LX; i++) 
  { 
    fi = ftemp[0][i]; 
    rho_sigma_prime = 6.*( rho_sigma_bar   
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                         - ( fi[0] + fi[1] + fi[3] 
                           + fi[7] + fi[4] + fi[8])); 
    fi[2] = (1./ 9.)*rho_sigma_prime; 
    fi[5] = (1./36.)*rho_sigma_prime; 
    fi[6] = (1./36.)*rho_sigma_prime; 
  } 

  // Constant concentration on east side. 
  for( j=0; j<LY; j++) 
  { 
    fj = ftemp[j][LX-1]; 
    rho_sigma_prime = 6.*( rho_sigma_bar  
                         - ( fj[0] + fj[2] + fj[4] 
                           + fj[1] + fj[5] + fj[8])); 
    fj[3] = (1./ 9.)*rho_sigma_prime; 
    fj[7] = (1./36.)*rho_sigma_prime; 
    fj[6] = (1./36.)*rho_sigma_prime; 
  } 

  // Constant concentration on west side. 
  for( j=0; j<LY; j++) 
  { 
    fj = ftemp[j][0]; 
    rho_sigma_prime = 6.*( rho_sigma_bar  
                         - ( fj[0] + fj[2] + fj[4] 
                           + fj[3] + fj[6] + fj[7])); 
    fj[1] = (1./ 9.)*rho_sigma_prime; 
    fj[5] = (1./36.)*rho_sigma_prime; 
    fj[8] = (1./36.)*rho_sigma_prime; 
  } 

Constant flux boundaries 

As pointed out by van Genuchten and Wierenga (1986), maintenance of a 
true constant concentration boundary is challenging under laboratory con-
ditions. Most often it is the chemical flux that is held constant; a solution 
of known concentration C0 is pumped into a domain at constant flow rate. 
If the diffusion or dispersion coefficient is high, the velocity is low, or 
there is a strong concentration gradient near the inlet, the diffu-
sive/dispersive flux at the inlet cannot be ignored and the proper boundary 
condition is 

0
0

vCvC
x
CD

x

, (115) 

where the x = 0+ refers to just inside the domain where C denotes concen-
tration which is equivalent to  as used in the context of the Yoshino and 
Inamuro (2003) boundary conditions elsewhere in this chapter.  
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Eq. (115) can be rearranged and applied as a finite difference to the 
boundary and first interior discrete nodes of the model as follows:  

vD
DCvCCvCvCCCD 10

0
1

1
. (116) 

C1 is the concentration at the first interior node and the difference C1–C is 
the gradient since the lattice step is 1 lu. C is the concentration applied at 
the boundary. 

Zero diffusive flux boundaries 

Solute fluxes can arise from concentration gradients in accordance with 
Fick’s Law. Zero concentration gradient boundaries eliminate pure diffu-
sive fluxes into or out of a domain. Chemical engineers, hydrogeologists, 
and soil physicists use a Fick’s Law approach to treat the anisotropic dis-
persion that arises from velocity variations. In this case, zero concentration 
gradient eliminates the dispersive flux but leaves the advective flux (Cv)
unaffected. 

 After the streaming step, there are unknowns pointing out of walls and 
side (non-periodic) boundaries.  These unknowns can be solved for in a 
way that maintains a zero solute diffusive flux in the direction normal to 
the boundary. Due to symmetry, we will only consider one case, a north 
boundary, in detail.  The south, west, and east conditions will be stated but 
not derived. 

Figure 65 shows the unknowns at a north boundary after streaming.  
This could be at the north side of the full domain or at a horizontal solid 
surface on the north side of a fluid region inside the domain.  If it is the 
north boundary of the domain, it could be either a wall or an in-
flow/outflow.  The zero diffusive flux concentration procedure is the same. 

We require the diffusive solute mass flux normal to the boundary to be 
zero:

0,
a

aaf ne . (117) 
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Here n is the unit vector normal to the surface. The contributions from f ,a
for a in {0,1,2,3,5,6} are already known.   

Motivated by the weighting factors wa on the directional densities in the 
equilibrium distribution function, we assume that the unknown directional 
densities f , a for a in {4,7,8} are of the form f , a = wa , where  de-
notes the residual amount of concentration needed to satisfy the zero con-
centration gradient condition at the current lattice node. 

Next, we note that directions a = 1 and 3 are perpendicular to the surface 
normal vector n and therefore that the dot product ea·n will not contribute 
to the sum Eq. (117). The same is true of the zero velocity, a = 0 case. We 
also have ea·n = 1 for a = {4,7,8} as these vectors have components 
of magnitude 1 that are parallel to n. Finally, ea·n = -1 for a = 
{2,5,6}, where the components are parallel but opposite in direction. 
Then we can expand Eq. (117) as 
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Solving for the residual concentration  we obtain 

874

6,5,2,'
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Finally, under the assumption on the form of the unknown directional 
densities, we solve for them as 

'' 9
1

44, wf , (120) 

'' 36
1

77, wf , (121) 

and

'' 36
1

88, wf . (122) 
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To summarize the procedure, we compute the residual concentration 
needed to add to the contribution from the known directional concentra-
tions so that the zero diffusive mass flux condition is satisfied in the direc-
tion normal to the boundary. Then this residual concentration is distributed 
among the unknown directional concentrations according to the weighting 
used in the computation of the equilibrium distribution function. 

It is also possible to make this boundary condition a constant diffusive 
flux condition simply by including a prescribed flux J0 on the right hand 
side of Eq. (117). We show it that way in the following pseudocode: 

  // Constant diffusive flux boundary on north side. 
  for( i=0; i<LX; i++) 
  { 
    fi        = ftemp[LY-1][i]; 
    rho_prime = 6.*( J0 + fi[2] + fi[5] + fi[6]); 
    fi[4]     = (1./ 9.)*rho_prime; 
    fi[7]     = (1./36.)*rho_prime; 
    fi[8]     = (1./36.)*rho_prime; 
  } 

  // Constant diffusive flux boundary on south side. 
  for( i=0; i<LX; i++) 
  { 
    fi        = ftemp[0][i]; 
    rho_prime = 6.*( J0 + fi[7] + fi[4] + fi[8]); 
    fi[2]     = (1./ 9.)*rho_prime; 
    fi[5]     = (1./36.)*rho_prime; 
    fi[6]     = (1./36.)*rho_prime; 
  } 

  // Constant diffusive flux boundary on east side. 
  for( j=0; j<LY; j++) 
  { 
    fj        = ftemp[j][LX-1]; 
    rho_prime = 6.*( J0 + fi[1] + fi[5] + fi[8]); 
    fj[3]     = (1./ 9.)*rho_prime; 
    fj[7]     = (1./36.)*rho_prime; 
    fj[6]     = (1./36.)*rho_prime; 
  } 

  // Constant diffusive flux boundary on west side. 
  for( j=0; j<LY; j++) 
  { 
    fj        = ftemp[j][0]; 
    rho_prime = 6.*( J0 + fi[3] + fi[6] + fi[7]); 
    fj[1]     = (1./ 9.)*rho_prime; 
    fj[5]     = (1./36.)*rho_prime; 
    fj[8]     = (1./36.)*rho_prime; 
  }   

More testing of these various conditions is needed. 
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8.4  Solute-induced Buoyancy 

The rich behaviors of solute- and temperature-induced buoyancy are 
easily produced in these LBM simulations. This was illustrated with lattice 
gases by Perea-Reeves and Stockman (1997) and Stockman (1997). Solute 
concentration and temperature can readily be exchanged (e.g., Zhou et al. 
2004). The magnitude of the body force/gravity term acting on the main 
fluid component is modified to produce buoyancy as follows: 

geu
8

0

1

a
aaf . (123) 

At lattice nodes where the concentration  of solute is larger, the body 
force/gravity term is larger, thereby contributing more to the momentum of 
particles in the direction of the body force/gravity at that node. This in-
duces buoyancy effects based on density differences due to solute and/or 
temperature. We present some examples below. Clearly, factors relating 
concentration and/or temperature changes to density changes ( / C,

/ T) will be necessary as factors multiplying the concentration in Eq. 
(123) to insure the correct scaling of the effect. 

8.5  Examples 

8.5.1  Diffusion 

The simplest test of any solute transport model is the ability to simulate 
diffusion. For one-dimensional diffusion, Fick’s 2nd Law (also known as 
the Heat or Diffusion Equation) in 1 dimension is  

2

2

dx
CdD

dt
dC

, (124) 

where C is the concentration, t is time, D is the diffusion coefficient, and x
is the space coordinate. Numerous analytical solutions are available for 
various boundary and initial conditions; many were compiled by Crank 
(1975).  We present comparisons of several analytical solutions with LBM 
simulations below. 
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The D2Q9 LBM diffusion coefficient is known to be  

)( 2
1

3
1D (125) 

and its value is D = 1/6 lu2ts-1 for  = 1. This is directly analogous to the 
kinematic viscosity for single phase fluids (see Eq. (18)). The analytical 
solutions are of course dimensionally consistent, so we can use lattice units 
in them and compare the results directly to the LBM simulations. We illus-
trate MCMP-type simulations here, but comparable results can be obtained 
with the -component approach. The LBM simulations seem to match the 
analytical solutions well, though we have not conducted any formal error 
analysis.  

Unbounded domain, plane instantaneous source  

The analytical solution for diffusion in an infinite domain with a planar 
Dirac initial condition at the origin is (Crank 1975) 

Dt
x

i e
Dt

MCC 40

2

2
, (126) 

with uniform initial concentration Ci and initial mass M0. Figure 66 shows 
the analytical solution and the results of the lattice Boltzmann simulation 
for this problem at three different times. The agreement is excellent. 
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Figure 66. Diffusion from a plane instantaneous source in a 1-dimensional 
domain. Analytical solution shown as solid line, LBM solution as open sym-
bols. 

Extended initial condition 

An analytical solution is also available for an initial condition that extends 
a distance ±h from the origin in an infinite domain (Crank 1975):  

Dt
xherf

Dt
xherfCCC i 442

0 , (127) 

where h is half the width of the source. Figure 67 shows the LBM results 
and the analytical solution.  
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Figure 67. Diffusion from spatially extended initial condition in infinite 1-
dimensional domain. Analytical solution shown as solid line, LBM solution as 
open symbols. 

Bounded domain 

Diffusion in a bounded, finite domain of length 2l subjected to an initial 
condition of width 2h centered at the origin has the following analytical so-
lution (Crank 1975): 

n
i Dt

xnlherf
Dt

xnlherfCCC
4
2

4
2

2
0 . (128) 

The infinite series represents a superposition of the original diffusion proc-
ess and reflections at the boundaries. Figure 68 presents a comparison of 
the analytical solution with the LBM simulation. This simulation indicates 
that bounceback alone is a suitable no flux boundary condition for diffu-
sive processes. This is significant for the simulation of diffusive processes 
in porous media because it indicates that special solute boundary condi-
tions are not needed at solid surfaces and the simplicity of bounceback is 
retained.
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Figure 68. Diffusion in a bounded domain. Analytical solution shown as 
solid line, LBM solution as open symbols. Bounceback boundaries were ap-
plied to both ‘fluids’. The results indicate that these are adequate boundaries 
for simulating solute transport. 

2D test 

As a final demonstration of the LBM’s capabilities for simulating diffu-
sion, we simulate 2-dimensional diffusion from an instantaneous point 
source in an infinite domain and compare the results with the analytical so-
lution. The analytical solution is (Crank, 1975): 

Dt
r

i e
Dt

MCC 40
2

4
. (129) 
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Figure 69. Diffusion from an instantaneous point source in an infinite 2-
dimensional domain. Analytical solution shown as solid line, LBM solution as 
open symbols. 

8.5.2  Convection-Diffusion/Dispersion Equation (CDE) 

The Convection-Diffusion/Dispersion Equation (CDE) governs the 
movement of solutes in moving fluids. LBM solute transport models gen-
erally solve a form of the convection-diffusion equation consistent with the 
model’s dimensionality. The full CDE can be written 

   

CDCv
t
C

(130) 

where v (= v(x,y,z) for 3D), and D is the diffusion coefficient. We rely on 
the LBM’s ability to solve this equation for most of our transport simula-
tions in complex flows.  

For a few simplified conditions, analytical solutions of the CDE are avail-
able (e.g., Hunt 1978; van Genuchten and Wierenga 1986; Leij et al. 
1991). The solutions to the diffusion equation presented above represent 
one example of this; when velocity is zero (and the diffusion coefficient is 
constant), the 1-D CDE reduces to the diffusion equation (124). 
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In a one dimensional system where velocity v is single valued, the convec-
tion diffusion equation for constant D is 

2

2

x
CD

x
Cv

t
C (131) 

In one dimensional transport in simple Poiseuille flow and in porous 
media, the velocity is the mean channel or mean pore water velocity and D 
is the longitudinal dispersion coefficient, which quantifies variations from 
the mean water velocity and the magnitude of their effect in spreading sol-
ute concentrations. In porous media the mean pore water velocity v is 
given by the fluid flux q divided by the volumetric fluid content .

The breakthrough curve C(x,t) is the temporal and spatial variation of con-
centration. In experimental practice often aimed at determining D for use 
in the CDE, it is common to use either a step change in concentration or a 
pulse of solute at the inflow. Clearly, more complex initial and boundary 
conditions often apply in engineered, natural, and ‘accidental’ systems. 
Figure 70 schematically illustrates a laboratory column system subjected to 
step and pulse changes in boundary concentrations and their breakthrough 
curves.  

It is also common in experimental work to nondimensionalize time as 
‘pore volumes’ T = vt/L, where L is the column length. This works in both 
fully and partially saturated porous media.  
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Figure 70. Typical experimental approach for measurement of temporal 
breakthrough curves. On the upper left a step change in relative concentra-
tion from 0 to 1 occurs at time 0 (0 pore volumes relative to solute injection) 
and longitudinal dispersion transforms this into a sigmoidal breakthrough 
curve (lower left) that elutes around the time one pore volume has been in-
jected.  The upper right shows a pulse injection that transforms into a break-
through curve shaped approximately like a Gaussian probability density 
function. 

It is useful to introduce the dimensionless Péclet number Pe = vL/Dm,
where v is the velocity of the flow, L is a characteristic length, and Dm is 
the molecular diffusion coefficient. The Péclet number is a measure of the 
relative importance of transport by flow and diffusion. High Pe signifies 
the dominance of convection in the transport process while low Pe indi-
cates that diffusion is dominant. The characteristic length is usually the 
grain size in packed bed studies. 

A somewhat different Péclet number has also been applied to dispersive 
transport through porous media. We refer to this as the column Péclet 
number or the Brenner number Br. It is given by
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D
vLBr (132)

where now L is the transport distance (e.g., the column length or other dis-
tance from source to measurement point) and D is the dispersion coeffi-
cient. The impact of the Brenner number on the shape of breakthrough 
curves is shown in Figure 71. 

Figure 71. Effect of Brenner number on shape of breakthrough curves for 
step (top) and pulse (bottom) input functions.  
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Considerable effort has been devoted to evaluation of the behavior of dif-
ferent analytical solutions to the CDE at low Br where they tend to diverge 
(van Genuchten and Wierenga 1986). This is of significant practical inter-
est for the use of short laboratory columns for example and for analysis of 
‘pre-asymptotic’ solute transport in the field. Much like entry length ef-
fects for fluid flow in many applications, such effects may be more the rule 
rather than the exception.  

There are also different methods of determining concentration when the 
diffusive/dispersive flux is appreciable (Kreft and Zuber 1978). This will 
occur when there is a high concentration gradient, when the diffu-
sion/dispersion coefficient is high, and when the advective flux is low. Be-
cause the diffusive flux (and at least conceptually the dispersive flux) is 
driven by the concentration gradient dC/dx, there will be a flux in addition 
to the convective flux that cannot be accounted for by the normal ‘resident’ 
concentration Cr = (solute mass)/(fluid volume). A flux concentration Cf
defined as (solute mass flux)/(fluid flux) can incorporate the diffu-
sive/dispersive flux. If we sum the diffusive/dispersive and advective 
fluxes, Cf can be defined by  

vC
x
CDvC rf , (133) 

which implies 

rf C
x
C

v
DC . (134) 

All indications are that the macroscopic CDE is inadequate for completely 
describing solute transport in porous media (it fails to reproduce observed 
heavy ‘tails’ in breakthrough curves and the apparent change in dispersion 
coefficient with travel time and distance). LBM and its ability to solve the 
convection-diffusion equation in complex velocity fields will probably 
make substantial contributions to the development of new theories such as 
the Fractional Advection Dispersion Equation (FADE) and Continuous 
Time Random Walk (CTRW) models for solute transport. 

To explore LBM’s abilities in solute transport, first we consider the case of 
a single-valued convective velocity and diffusion of the solute front. Next, 
we examine the case of Poiseuille flow, which leads to well known Taylor 
dispersion. Finally, we demonstrate transport in a simplified porous me-
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dium for which empirical correlations allow dispersion to be predicted. 
These results establish the LBM’s ability to simulate solute transport very 
well.

8.5.3  Propagation of a Diffusing Front 

In a 1-dimensional uniform flow field, solute spreading occurs due to dif-
fusion only. These simulations are interesting in that, with no walls or 
other obstacles, the fluid merely needs to be set into motion by setting the 
initial velocity; no driving force is needed to maintain a fixed velocity. The 
solute boundary conditions can be constant concentration or constant flux, 
which for small Br will significantly affect the measured breakthrough 
curve and will require the use of different analytical solutions for compari-
son.  

For our example, we set the LBM simulation parameters to v = 0.0066 lu 
ts-1, Dm = 0.166 lu2 ts-1, and L = 25 lu, which leads to Br = vL/Dm = 1. We 
simulate four different combinations of boundary conditions and domain 
types corresponding to analytical solutions A1 through A4 of van Genuch-
ten and Wierenga (1986): A1 and A2 are semi-infinite domains with con-
stant concentration and constant flux boundary conditions respectively at x
= 0, while A3 and A4 are finite domains of length L with dC/dx|x=L = 0 (no 
diffusive flux BC described above) and constant concentration and con-
stant flux boundary conditions respectively at x = 0 as in A1 and A2. 

The results of the simulations are plotted against the appropriate analyti-
cal solutions in Figure 72. As in the comparison of the diffusion simula-
tions to their analytical solutions above, these are not fitted results: the 
simulation parameters are known and are used directly in the analytical so-
lutions. Cf is measured directly based on Eq. (134) in the form of Eq. 
(116). Agreement between the simulations and analytical solutions is ex-
cellent.
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Figure 72. Breakthrough curves for diffusion at a propagating front for 
four different combinations of boundary conditions. LBM simulation results 
shown as open symbols, analytical solutions as solid lines. A1-A4 correspond 
to analytical solutions investigated by van Genuchten and Wierenga (1986). 
Both Cf and Cr are shown for the A2 boundary conditions, where the A1 solu-
tion gives the resident concentration Cr.
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8.5.4  Taylor Dispersion 

The next simplest demonstration of the capabilities of LBM for solute 
transport in porous media is simulation of Taylor-Aris dispersion (Taylor 
1953, 1954; Aris 1956). This is dispersion in a straight-walled channel un-
der Poiseuille flow as illustrated for a pipe in Figure 73.  

Figure 73. Taylor dispersion. Assuming no diffusion, the velocity profile 
and the solute front have identical parabolic shape. (Figure from Sukop and 
Perfect 2005.) 

Here the velocity is a function of distance perpendicular to the flow direc-
tion (i.e., radial distance r in a pipe or y-coordinate in a slit oriented with 
the x-axis). Dispersion occurs as a result of the velocity variations across 
the tube or slit and due to diffusion. Taylor dispersion is of particular inter-
est because we can compute the expected dispersion coefficient a priori.

Stockman (1997) demonstrated the ability of lattice gas models to simu-
late Taylor dispersion. We illustrate similar results here with LBM. The 
equation for the dispersion coefficient in a slit is (Stockman, 1997): 

m
m D

vaDD
210
2 22

(135) 

and the variables are the width of the channel 2a, the average velocity of 
the flow v, and the molecular diffusion coefficient Dm. Note that the ratio 
(2a)2v2/Dm

2 = Pe2 so Eq. (135) can be written as D/Dm = 1 + Pe2/210. The 
divisor 210 is replaced by 48 for the cylindrical capillary case shown 
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above (Figure 73); under those conditions, the equation applies only be-
tween the limits 48 <<Pe<<L/a, but for the slit geometry we simulate 
here, the limits are 210 <<Pe<<L/a.

We exploit the LBM’s tunable diffusion coefficient and noise-free nature 
to successfully compute dispersion in much smaller channels than possible 
in Stockman (1997). Figure 74 shows the analytical model Eq. (135) and 
the dispersion estimated by fitting LBM-computed breakthrough curves to 
the CDE (Toride et al. 1995). The trend and magnitude of the analytical 
solution are well represented.  
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Figure 74. Results of Taylor-Aris dispersion simulations: Lattice Boltz-
mann (open symbols) versus analytical solution (solid line). Simulations were 
conducted in channels from 50 to 1500 lu in length and 6 to 35 lu in width 
with gravity-driven flow. Average velocity was held fixed at  0.0038 lu ts-1 by 
adjusting gravity. Reynolds numbers were <1, Dm  0.0013 lu2 ts-1,
Pe>17> 210 , Br>15. 

8.5.5  Dispersion in Packed Beds 

Numerous papers present empirical correlations between the Péclet 
number and the dimensionless relative dispersion coefficient (D/Dm) (e.g., 
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Pfannkuch 1963; Fried and Combarnous 1971; Bijeljic et al. 2004). One 
compilation of such data is presented in Figure 75. We can use such results 
to predict the dispersion coefficient based on grain size, flow velocity, and 
molecular diffusion coefficient. 
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Figure 75. Empirical correlation between Péclet number and dimensionless 
dispersion coefficient (Modified from Fried and Combarnous, 1971, with 
permission). Regions I through V represent ranges of different behavior re-
sulting from increasing relative importance of mechanical dispersion over 
diffusion. Observations mostly from packed columns, the results of LBM 
simulations as described below, and the Taylor-Aris theory predictions for 
slits and pipes are shown.  

It is of considerable interest to be able to generate comparable results 
from lattice Boltzmann simulations, although we are not aware of efforts 
that are completely successful at this. The results of Noble (1997) using a 
2-D FHP-type (triangular lattice) LBM model with specialized boundary 
conditions on the solids are perhaps the most notable; they show a consid-
erable shift towards higher Pe as porosity increases and very good agree-
ment with the observations from packed columns up to Pe 102. Here we 
work with the domain of periodic disks shown in Figure 76 and standard 
bounceback boundaries. The porosity is 0.63. The flow boundaries are set 
to fully periodic and the flow is driven with gravity so that we effectively 
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simulate an infinite flow domain. We allow the flow to equilibrate for 
1800 time steps and then initiate a step change in concentration. We com-
pute the breakthrough curves at the downstream end of the domain. The 
results of a series of simulations like those in Figure 76 are shown on 
Figure 75 as large circles where the dispersion coefficients were estimated 
by inverse fitting to the CDE (Toride et al. 1995).  The results follow the 
basic trends of the observations and the prediction of the Taylor theory for 
slits but fall short of being fully satisfactory. There are many potential rea-
sons for this that need to be evaluated more fully. One major possibility is 
that 3-D simulations are necessary; these would allow lower porosities and 
more realistic flow fields to be simulated. Also, based on the results of 
Noble (1997), we anticipate that simulations at lower porosity would more 
closely approach the theoretical and observed curves. 

Figure 76. First 300 lu of a 1200 60 lu2 simulation of solute transport after 
12000 ts. Solute concentration proportional to gray scale. Three copies of the 
simulation have been tiled along the periodic boundaries at the top and bot-
tom of the domain in this figure. The value of  is 0.503918 resulting in a 
small molecular diffusion coefficient of Dm = 0.0013 lu2 ts-1 and the ‘fingering’ 
of the solute front. 

8.5.6  Solute-induced Buoyancy 

Dissolved substances can affect the density of fluids. As discussed above 
(Eq. (123)), these density effects can readily be incorporated into LBM by 
accounting for the density in the gravity term. We have applied this ap-
proach to the simulation of spontaneous mixing in a gravitational field 
(Figure 77) and to the solution of a classic thermohydrodynamic problem 
(Elder 1967) that has been widely adapted and used as a benchmark prob-
lem for models that simulate density-dependent ground water flow (Thorne 
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and Sukop 2004).  Heroic numerical approaches using continuum equa-
tions have not resolved this problem unambiguously (eg. Frolkovi  and De 
Schepper (2001)) and far simpler LBM may offer considerable advantages; 
this has yet to be explored. 

Figure 77. Solute induced buoyancy. A fluid containing solute is placed 
above a solute-free fluid in a gravitational field. 

8.6 Exercises 

1. Use the MCMP ‘active’ solute component model to compute diffu-
sion in a bounded domain. Set the interaction parameter to zero. Compare 
the results with the analytical model Eq.(128). 

2. Repeat Exercise 1 with the ‘passive’ solute model. Discuss any dif-
ferences between the models and their agreement with the analytical solu-
tion. 

3. Use the passive solute model to solve a Taylor dispersion problem 
and compare the results to an analytical solution of the CDE. Insure that 
the Pèclet number is > 210  to satisfy Taylor’s criteria and that the 
Brenner number is greater than 20 so that the choice of analytical solution 
is not critical. 

4. Solve a density-driven mixing problem like that shown in Figure 77 
except start with an initial condition that has the solute on the left half of 
the domain.  
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9 LBM for Macroscopic Porous Media 

Although LBMs represent a significant advance in our ability to simulate 
the details of flow and transport in the complex pore spaces of natural and 
engineered channels, conduits, and porous media, the overall size of po-
rous media that can be treated remains quite small at this time (See Succi 
(2001) for a discussion). LBM as typically applied may lead to improved 
understanding of fundamental aspects of fluid flow and solute transport in 
porous media, but our ability to solve large-scale problems using this type 
of pore scale LBM is limited. Dardis and McCloskey (1998a, 1998b) pro-
posed a method that can surmount this difficulty by parameterizing a po-
rous medium in terms of its solid density ns(x), or equivalently its porosity 
since ns = 1– Freed (1998) proposed a similar method and Balasubrama-
nian et al. (1987) first applied the same concept to lattice gas models.

The method entails specifying a solid density value at each lattice node 
and simulating the porous medium by a ‘probabilistic’ bounce-back based 
on solid density. This provides a means of transcending the pore scale. Po-
rosity can be varied arbitrarily so that assigning 0 solids density, to frac-
tures and macropores for example, means that flow in those areas can still 
be simulated using full Navier-Stokes solutions. The more complex solute 
mixing phenomena that can arise in these features such as unsteady flows 
at higher Reynolds numbers and eddy diffusion can still be captured. Flow 
governed by Darcy’s Law will simultaneously – and in a fully-coupled 
manner – occur in adjacent regions where the porosity is lower. We can 
think of the method in comparison to the standard LBM approach for po-
rous media where we can take a binary image of a medium that is segre-
gated into pore space and solids; in the Dardis and McCloskey method, we 
can use a gray scale image that reflects the porosity. 

It is well known that the porosity is not the sole factor controlling the 
permeability of a medium. The Kozeny-Carman equation gives the perme-
ability as a function of particle diameter and porosity for example. In many 
porous media the permeability is anisotropic and hence must be controlled 
by additional details of grain orientation, etc. It is likely that anisotropy 
could easily be incorporated into the method proposed by Dardis and 
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McCloskey, but this has not been done to our knowledge. Finally, we are 
unaware of work other than Thorne and Sukop (2004) that considers solute 
transport under this method with LBM. In that paper we used the method 
to simulate the benchmark Elder problem for solute-induced, density de-
pendent transport in a porous medium. More testing of this method is 
needed. Yang et al. (1998, 1999) did transport simulations using probabil-
istic bounceback with a lattice gas model that probably will provide guid-
ance for similar LBM work. 

To implement the LBM for macroscopic porous media, consider the tra-
ditional collision step as a second intermediate step after streaming, de-
noted by f **

),(),(1),(),( **** tftftfttf a
eq

aaa xxxx (136) 

for 0 a 8. Then the porous medium step has the form

),(),(),(
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'
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a

xexx

x
(137) 

for 0 a 8, where a is the index of the direction opposite ea.

Note that for ns = 0 we recover the normal free-fluid model and for ns = 
1, we have a bounce-back-like condition that effectively makes the me-
dium impermeable. For values of ns between 0 and 1 we have partial or 
‘probabilistic’ bounce-back (Figure 78). 
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a´ a

xx+ea t
Figure 78. Probabilistic bounceback. A fraction ns of the density difference 

between fa fa is added to the results of the standard collision.   

Following is pseudocode for computing and applying the ns term. It is 
performed right after the core collision/bounceback loop. 

  // Macroscopic porous media mechanism.   
  // Compute the solid density term (nsterm). 
  for( j=0; j<LY; j++) 
  { 
    jp = ( j<LY-1)?( j+1):( 0   ); 
    jn = ( j>0   )?( j-1):( LY-1); 

    for( i=0; i<LX; i++) 
    { 
      ip = ( i<LX-1)?( i+1):( 0   ); 
      in = ( i>0   )?( i-1):( LX-1); 

      if( !is_solid_node[j][i]) 
      { 
        nstermij[1] = ns*( f[j ][ip][3] - fij[1]); 
        nstermij[2] = ns*( f[jp][i ][4] - fij[2]); 
        nstermij[3] = ns*( f[j ][in][1] - fij[3]); 
        nstermij[4] = ns*( f[jn][i ][2] - fij[4]); 
        nstermij[5] = ns*( f[jp][ip][7] - fij[5]); 
        nstermij[6] = ns*( f[jp][in][8] - fij[6]); 
        nstermij[7] = ns*( f[jn][in][5] - fij[7]); 
        nstermij[8] = ns*( f[jn][ip][6] - fij[8]); 
      } 
    } 
  } 

  // Apply the solid density term (nsterm). 
  for( j=0; j<LY; j++) 
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    for( i=0; i<LX; i++) 
      if( !is_solid_node[j][i]) 
        for( a=1; a<9; a++) { fij[a] += nstermij[a];} 

9.1 Analytical Solutions 

If a damping term proportional to the velocity is introduced into the Na-
vier Stokes equation, we can write (Balasubramanian et al. 1987): 

dy
dPu

dx
ud 1
2

2

. (138) 

For boundary conditions u(-a) = u(a) = 0, there is an analytical solution re-
lated to the Poiseuille equation (4) for the velocity profile in a channel con-
taining a porous medium (at least at low solid ‘scatterer’ density). Under 
these conditions,  

)cosh(
)(cosh1)(

*

ra
axrGxu , (139) 

where  is a damping coefficient proportional to the scatterer density, G* is 
the pressure gradient, and /r  (Balasubramanian et al. 1987). Al-
though it is not clear from inspection of Eq. (139), 0 returns the stan-
dard Poiseuille equation. Figure 79 compares LBM simulations using the 
macroscopic porous medium approach with Eq. (139). Similar results can 
be found in Balasubramanian et al. (1987) and Dardis and McCloskey 
(1998a).  
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Figure 79. Simulations of flows in a walled channel filled with porous me-
dia of two different porosities in a 1001 101 lu2 domain. The flow is driven by 
gravity and g = 6.67 10-6 lu ts-2. The density is  = 1 mu lu-2. Open symbols 
show simulations. Analytical solutions from Eq. (139) shown as solid lines. 

It is also possible to solve Eq. (138) for zero velocity gradient conditions 
throughout the domain: d2u/dx2 = 0; that is, there are no walls at which the 
fluid velocity must adjust to become zero. The solution is almost trivial as 
u is now a constant determined only by the pressure or head gradient 
across the domain, the damping coefficient  and the fluid density. The so-
lution is u = -G*/( ), which can be related to Darcy’s law. It still remains 
to link  with the solids density. This can be done theoretically and yields 
the result  = 2ns (Balasubramanian et al. 1987). The simple analytical so-
lution u = -G*/( ) also applies at adequate distance from a wall. So for 
example, examining the results for ns = 0.6 in Figure 79, we can compute 
the velocity away from the walls as u = -(-6.67 10-6 mu ts-2 lu-1)/(2*0.6 *1
mu lu-2) = 0.00000564 lu ts-1, which agrees with the results in the figure 
and we use the 2-D pressure and density. The dimensions of  must be T-1

in accordance with Eq. (138). 
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9.2  Relation to Darcy’s Law 

In the context of this simple analytical solution, u is the familiar Darcy 
velocity that is obtained from Darcy’s law: u = -Kdh/dx. Writing this in 
terms of pressure gradient we have u = -K/( g)dP/dx and finally, replacing 
the conductivity K with the intrinsic permeability K = kg/ , we obtain u = -
k/(  dP/dx. Equating this with the simple analytical solution above gives 
k = /  = / ns. Readers should verify this by simulating flows with dif-
ferent porosity/scatterer densities and demonstrating agreement with 
Darcy’s law (see Exercises). 

9.3  Application of Percolation Theory 

Figure 80 shows a plot of this theoretical permeability as a function of 
the scatterer density (ns = 1–  along with some simulation results. This 
function should apply only at low ns. For higher ns and for gravity-driven 
flows Dardis and McCloskey (1998a) showed that this method of simulat-
ing porous media fit the expectations of percolation theory very well. In a 
2-D domain, randomly placing obstacles on a lattice leads to a situation in 
which ‘percolation’ (pore connectivity between opposite sides of the do-
main) exists until the solids density becomes too great (the porosity be-
comes too small). For ‘site’ percolation, the percolation threshold is 
reached when the number of blocked sites reaches ½ of the total number, 
corresponding to a percolation threshold porosity c of 50 percent. Near 
the percolation threshold, the permeability changes rapidly with the poros-
ity according to  

3.1
ck (140) 

where the exponent 1.3 is a universal value for conductivity controlled by 
percolation (Stauffer and Aharony 1994). Using a gravity-driven lattice 
Boltzmann model on a triangular lattice, Dardis and McCloskey (1998a) 
observed a percolation threshold critical porosity c of 0.5 and demon-
strated agreement with this exponent. 

Our own results with the D2Q9 lattice also seem to fit a percolation model 
but do not appear to show a percolation threshold appreciably different 
from c = 0. That is, unlike Dardis and McCloskey (1998a), we can simu-
late arbitrarily low porosities. Fundamental differences in the lattice struc-
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ture may be responsible for this contrast, but this result seems intuitively 
reasonable to us; unlike the random closing of potential paths by obstacles 
in a standard percolation model, in this method of simulating porous media 
the porosity is reduced uniformly and the fluid’s motion is damped but 
nowhere blocked until ns approaches 1.  

The significant difference we observed between gravity- and pressure 
gradient-driven flows in this macroscopic porous media LBM was surpris-
ing but may be related to the interaction of gravity with the ns mechanism 
in the code or the compressibility of the LBM fluid; the density and veloc-
ity are uniform in the gravity-driven case but they vary inversely with each 
other in the pressure-driven case; this is necessary to maintain steady mass 
flux. It seems clear that there is a need for considerable additional work on 
this topic. 
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Figure 80. Theoretical intrinsic permeability following Kozeny-Carman, 
Balasubramanian et al. (1987) and percolation theory (Dardis and McCloskey 
1998a) along with simulation results. Open circles show pressure gradient-
driven results.  A pressure gradient of 10-6 was applied across a 1001 101 lu2

domain (periodic in y) with  = 1. Open squares show gravity-driven results. 
Gravity was g = 10-6.
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9.4  Dual Continuum Models 

Perhaps the most exciting aspect of this type of LBM modeling is the po-
tential for close coupling of Navier Stokes solutions in large open spaces 
such as macropores, fractures, conduits, and caves with Darcy’s Law solu-
tions in adjacent porous materials. Very little appears to have been done 
with LBM in this realm so far. Dardis and McCloskey (1998a) solved for 
the flow in a single fracture between two porous walls and determined the 
permeability tensor by rotating the domain relative to the pressure gradi-
ent.  

Figure 81 shows a simple conduit traversing a porous medium. A pres- 

Figure 81. Pressure field in fractured porous medium analog. Porosity set 
to 0.8 to accentuate behavior of porous medium.  = 0.54. The conduit (gray) 
plays an important role in determining the pressure field but there are sig-
nificant gradients across the porous domain. 

sure gradient is applied across the domain from left to right. The conduit 
exerts a strong influence on the pressure field inside the domain. In gen-
eral, there are zones of reduced pressure behind edges that protrude into 
the flow and elevated pressures where fluid impinges on a corner. 
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In Figure 82, we show the fluid velocity vectors for a portion of the do-
main. The flow is laminar with Re approaching 2. 

Figure 82. Fluid velocity vectors from the lower right part of the domain in 
Figure 81.  

Finally, Figure 83 provides an alternative view of the the flow domain 
that emphasizes flow in the porous medium. Flow that has crossed nearly 
the entire domain converges on the lower left corner, while high velocities 
develop across a thin protrusion that has a pressure shadow behind it at the 
upper right. 
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Figure 83. Same area as Figure 82 with conduit velocities masked to em-
phasize flows in the porous medium. High velocities develop across the pro-
truding edge due to the low pressure behind it and the thinness of the me-
dium at that point. Note the flows converging on the lower left corner; 
comparison with Figure 81 shows that this fluid has traversed most of the 
domain inside the porous medium. 

9.5 Exercises 

1. Plot Eq. (139) for a series of  values along with the Poiseuille equa-
tion (Eq. (4)) and demonstrate graphically that the results of the equations 
are the same as  approaches 0. 

2. Simulate Darcy velocities in a series of porous media with different 
porosities. Compare the results to Darcy’s law predictions. 

3. Use the macroscopic porous media LBM model to solve for the ve-
locity field in a domain that has a region with ns = 3/255 ( = 0.0117) in its 
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upper portion, a channel (where ns = 0) of width 10 lu in the middle, and a 
region where ns = 6/255 ( = 0.0234) in the lower portion. Use g = 5 10-6

and  = 1. (The 255 factor accounts for the 8-bit gray scale images used to 
load the variable ns data. In Microsoft Paint®, you can use Colors, Edit 
Colors, Define Custom Colors, choose 0 saturation, use the slider bar to 
choose the gray scale level, and then Add to Custom Colors. Finally, select 
the new custom color and click OK. This will make the custom color the 
current color and you can paint it into the domain. Return to the Colors op-
tions to select another custom color.) 
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10  Conclusions 

It is our hope that this book has provided a useful starting point for those 
interested in applying lattice Boltzmann models. The variety of fluid be-
haviors that can be simulated within a single conceptual framework is re-
markable. Enhancements of the basic methods and more applications are 
continually appearing and will appear in the future. LBM occupies an im-
portant niche between molecular dynamics and traditional continuum ap-
proaches in the realm of simulation models. In our opinion, LBM has an 
important advantage of simplicity. The continuing growth of computa-
tional power suggests that the future of LBM is bright; we wish our readers 
the best of success in their efforts to apply the methods and look forward to 
seeing the results of those efforts. 
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