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Preface 

Project scheduling, generally speaking, concerns problems of allocating 
scarce resources over time to perform a given set of activities in a way tak
ing into account a given performance measure (or measures). The resources 
are meant here as arbitrary means which activities compete for. Thus, project 
scheduling problems appear in a large spectrum of real-life situations, and, 
consequently, they have been intensively studied for over fourty years. 

In 1999, the multi-author monograph: J. W^glarz (ed.) Project Scheduling -
Recent Models, Algorithms and Applications, was published by Kluwer, Since 
that time several valuable books have appeared in the field, being however of 
a rather methodological than state-of-the-art character. Thus, we decided to 
accept the proposal to edit a new book, continuing, in a conceptual sense, the 
previously cited one. 

Although already ancient projects like building the pyramids in Egypt or 
the Maya temples in Central America definitely required solving non-trivial 
resource allocation problems, the first general methods like PERT (Program 
Evaluation and Review Technique) and CPM (Critical Path Method) were de
veloped (or documented) in the late fifties. Since that time a lot of research 
has been done in this area including optimization techniques as well as other 
decision support tools helping to define goals, calculate costs, manage risk 
and motivate people involved in the realization of the project. Many software 
packages have been developed as well. 

The aim of this book is to present the perspectives of this dynamically devel
oping research area. The content is divided in three parts. In Part I a survey of 
new models of the project management process are proposed. They include an 
alternative to the well known PERT technique, consideration of disturbances 
during the project realization, introduction of new constraints like due dates or 
setup times, as well as a general discussion on classification of resources. 

In Part II new algorithms developed to solve the strongly NP-hard resouce 
constrained project scheduling problem efficiently with acceptable accuracy are 
presented. New lower bounds for the RCPSP are proposed, followed by smart 
justification technique and a series of metaheuristics. Finally, a neural network 
approach is introduced. 
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Part III is devoted to new areas of applications of the project management 
models and algorithms, like pharmaceutical research, grid computing, factory 
pick-up of new cars, batch scheduling in process industries and make-to order 
(project driven) manufacturing. 

The monograph is addressed primarily to researchers (including PhD. and 
graduate students), educators, and professionals in the field of: operations man
agement, business administration, system analysis, and applied mathematics. 
However, specialists in other disciplines like civil, computer and industrial en
gineering in which resource management problems are of vital importance, can 
also benefit from it. 

We thank all the authors for their valuable contributions and fruitful co
operation. 

JOANNA JOZEFOWSKA AND JAN W^GLARZ 
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Chapter 1 

A PRACTICAL AND ACCURATE ALTERNATIVE 
TO PERT 

Bajis Dodin 
A. Gary Anderson Graduate School of Management 
University of California, Riverside, CA. 92521 
bdodin @ aucegypt.edu 

Abstract Many real world projects can be represented by stochastic activity network (SAN) 
models, where the duration of some or all of the project activities are, at best, 
known in probabilistic sense. These models are known in the literature as PERT 
networks and they are analyzed using the PERT procedure. It has been known 
for many years that the Project Evaluation and Review Technique (PERT) pro
vides inaccurate information about the project completion time. Quite often this 
inaccuracy is large enough to render such estimates as not helpful. As a result 
of this inaccuracy, many improvements since the introduction of PERT in 1959 
have been developed. However, in spite of this inaccuracy and the many improve
ments, PERT procedure continues to be taught and presented in most text books 
on Project Management. This is due, perhaps, to its simplicity, and ease of its 
application. In this paper a new alternative is developed that addresses the issues 
of accuracy and practicality simultaneously in analyzing SAN models. The new 
procedure is based on a more accurate representation of the distribution function 
of the project completion time. We first show that the project completion time 
can in certain instances be accurately represented by a normal distribution, but 
in many other instances it can not. In these other instances we show that the 
project completion time can be more accurately represented by an extreme value 
distribution. Hence, SAN is first characterized as to when we can use the normal 
distribution and when we can use extreme value distribution. In the first case, 
PERT estimates are accurate and will be used; however, in the second case a new 
procedure is developed that is easy to use, and results in more accurate estimates 
of the project completion time and its statistics. In this paper examples are also 
provided that illustrate the above characterization of SANs and the accuracy and 
practicality of the new procedure. 

Keywords: Stochastic activity networks, extreme value distribution, normal distribution, 
project completion time, estimation. 



4 PERSPECTIVES IN MODERN PROJECT SCHED ULING 

1.1 Introduction 

In project management many real world projects can be modeled as acyclic 
activity networks. In routine type projects with mostly known requirements, the 
duration of each activity and/or its required resources can be deterministic. In 
these kinds of projects, the completion time of the project and each of its activi
ties can be easily determined through the use of the longest path method, known 
also in Project Management (PM) literature as Critical Path Method (CPM), that 
was introduced and used in 1959. The duration of the project is given by the 
realization time of the last node in the network, which is the time/duration of 
the longest path. By contrast, in non-routine projects, such as those of high 
technology projects, new product development, behavioral networks and many 
service oriented projects such as communication or transportation networks, 
the duration of most, if not all, of the activities may not be known (uncertain); 
at best they may be known in probability. Similarly for the amount of resources 
required. For a discussion of the nature of the uncertainty the reader is referred 
to Elmaghraby (2005). 

Uncertainty in the duration of some of the activities of the project, such as 
those of developing a new product, is the norm rather than the exception. The 
first step in managing such projects is to represent the duration of each such 
activity by a random variable (r.v.). The second step is to characterize the r.v.. 
The ideal case is to characterize the r.v. by a probability distribution function 
(PDF); this allows for calculating the statistics of the r.v. such as the mean value 
and variance, and hence the calculation of the statistics of the project completion 
time and its PDF. However, due to the uniqueness of some activities, and lack 
of experience or historical data with such activities, management relies on the 
judgment of the experts in that kind of activities. 

Judgments come in different forms. Sometimes short of specifying a PDF for 
the r.v., the judgment is given as a single quantity representing the mean value 
of the r.v.; sometimes a range between a specified minimum and maximum 
(two point estimate) is given, and in case of PERT it is given as three point 
estimate. The use of a single estimate ignores the chance element associated 
with the realizations of the r.v.. Similarly the use of more than one estimate 
ignores the chances of the realizations in between these estimates. This led to 
the need of selecting a PDF to characterize the realizations of the r.v.. In case 
of two point estimate, the Uniform PDF was suggested; and in case of three 
point estimate. Beta and Triangular PDF's were suggested; see for example 
Elmaghraby (2005), Kamburowski (1997), Elmaghraby (1977), and Malcolm 
et al (1959). Lack of precision in such judgments has led some researchers 
to reject the use of PDF and, as an alternative, model the activity durations 
using fuzzy numbers that are normally used to model imprecise information; 
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see Herroelen and Leus (2005) and Dubois and Prade (1987), Dubois and Prade 
(1989). 

In project management where the activity is uncertain, most of the literature 
model the activity duration as a random variable with a known probability dis
tribution or with known mean value and variance. These networks are known 
as Stochastic Activity Networks (SAN). Then they proceed to determine or ap
proximate the project completion time represented by the realization time of the 
last node in the stochastic activity network, the completion time of any of the 
project's milestones, or their respective probability distributions. Such a deter
mination can be a problem in most non-trivial SAN's. This problem has led to 
many investigations that resulted in the development of some practical proce
dures. For a review of this literature see Herroelen and Leus (2005), Chapter 9 of 
Demeulemeester and Herroelen (2002), Krishnan and Ulrich (2001), Adlakha 
and Kulkami (1989), and Chapter 4 of Elmaghraby (1977). One of these proce
dures was developed in 1959; it is known in the literature as Project Evaluation 
and Review Technique (PERT); see Malcolm et al (1959). 

PERT procedure assumes that the project activities are independent of each 
other, and all what it requires is to characterize the activity duration by the 
derivation of three time estimates. These are the most optimistic duration, 
denoted by a, the most pessimistic duration, denoted by p, and the most likely 
duration, denoted by m. These estimates are normally provided by experienced 
professionals in the kind of work the activity represents. Then these three values 
are used to determine the mean value of the activity and its variance. The mean 
is given by the quantity 

/i == (a + 4m + p)/6, 

and the variance is given by 

a'^ = ( p - a ) V 3 6 . 

PERT does not require the user to specify a PDF for the r.v. representing the 
activity duration. The Beta distribution that was specified in the original work 
on PERT, is believed to have been added for the convenience of developing for
mulas to derive the mean value and variance for the activities; see Elmaghraby 
(2005), Kamburowski (1997), Williams (1995), and Donaldson(1965). PERT 
procedure then moves on to determine the critical path, known also as the 
longest path, exactly as it is in CPM, using the mean values derived above as 
the duration of the activities. Hence the mean of the longest path is the sum of 
the mean values of the activities on the critical path, known also as the critical 
activities. It is clear that the variances of the activities do not play any role 
in determining the critical/longest path or it's mean. PERT procedure returns 
to probability and assumes that the completion time of the project is normally 
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distributed. It makes use of the Central Limit Theorem as the completion time 
of the project is reduced to the sum of the independent random variables on the 
longest path. The approximating normal distribution has a mean value equal to 
that of the longest path and a variance equal to the sum of the variances of the 
activities on that path. Consequently, standard normal distribution table is then 
easily used to assess the risk of completing the project at any given time. 

Since its inception PERT procedure has come under heavy scrutiny and 
criticism. It is easy to prove that PERT procedure approximations are not 
accurate: It underestimates the average completion time of the project, and 
overestimates its PDF. This has led to the development of various alternatives 
that provide more accurate estimates; see the above reviews. In spite of the 
inaccuracies in many of PERT estimates, and the existence of these alternatives, 
PERT procedure continues to be used and taught in business and engineering 
schools and presented in many text books. The reason perhaps is its simplicity 
and the availability and familiarity of the standard normal tables. These two 
factors make many of the alternative methods harder to use for some researchers 
and most practitioners. In fact many of these alternatives can not be applied 
to large activity networks. However, in PERT accuracy has been compromised 
for practicality. This paper deals with the issues of accuracy and practicality in 
SAN's simultaneously. It is assumed that the mean and variance of the duration 
of each activity are given. It presents a procedure that provides a more accurate 
approximation to the mean, variance, and PDF of the project completion time 
and it is relatively easy to use. This is achieved by using the Extreme Value 
theory that was first introduced to project management literature by Dodin and 
Sirvanci(1990). 

The paper is organized as follows. In the next section theoretical discus
sion of the longest path in SAN's is presented, as its duration represents the 
completion time of the project. Then the problems of PERT are highlighted 
and used to introduce the rational of the alternative procedure. In Section 16.3 
the relationship between the PDF of the project completion time and the struc
ture of the project network and also the underlying PDF's of the activities are 
discussed. We show that in many instances, this PDF is closer to an extreme 
value (EV) distribution than it is to a normal distribution. In Section 16.4 we 
borrow from Dodin and Sirvanci (1990), David (1981) and Galambos (1978) 
the properties of the EV distribution and how it can be used to approximate the 
mean value of the project completion time, its variance and PDF. In Section 
16.5 we present the new procedure. Section 15.6 is devoted to some computa
tional experiences and a comparison between PERT estimates, those of the EV, 
and what is obtained from Monte Carlo sampling. Recommendations are the 
subject of Section 15.7. 
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1.2 Theoretical discusion and PERT problems 

The following notation will be used throughout the paper: 

A 

M 

N 

Y--

Set of activities in the project network. 

Number of activities (arcs) in the project stochastic activity network. 

Number of nodes in the stochastic activity network. 

A random variable denoting the duration of arc (i, j ) G A which starts 
in node i and ends in node j . 

P: The set of all paths in the network. 

Z{k): The duration of path k e P. 

T: The duration of the longest path which designates the realization time of 
the last node in the network and also designates the project completion 
time. 

From the definition of T we notice that 

T-max{Z(fc)}. 
keP 

Therefore the longest path is not unique. In fact each path k E P can be 
the longest path but with certain probability. This probability is known in the 
literature as the criticality index of the path and it is used to rank the paths; see 
Dodin and Elmaghraby (1985). The PDF of the r.v. T is 

F{t) = PR{T <t) = PR{Z{k) < t for all kG P). 

Hence, 
F{t) < PR{Z{k)) for any one path keP including the PERT critical path. 
This shows that, independent of the PERT assumption of normality for the 

PDF of T, approximating F{t) by the PDF of the duration of only one path is an 
overestimation, i.e. it forms an upper bound on F{t), Examples can be given 
to show that such an approximation is grossly optimistic. It can be shown that 
the joint PDF of any combination of paths continues to form an upper bound 
on F{t), Therefore, the mean value of the duration of any individual path, or 
a surrogate stochastic activity network consisting of any combination of the P 
paths of the original SAN continue to form a lower bound on E{T)\ see Feller 
(1968), and EsaryetaU 1967). 

It is clear from the above that the inaccuracies embedded in the PERT pro
cedure emanate from: 
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• Representing the original project network by a surrogate network con
sisting of a single path; it is the critical path and the use of its mean as the 
mean of the longest path. This resulted in shifting the location of F{t) 
downward. Therefore, involving more than one path in estimating the 
parameters of T should result in more accurate estimates. 

• The variances of the activities on this path or any other path play no role 
in identifying this path or its mean value; consequently, it is desired to 
involve the variances in estimating the parameters of T. 

• The assumption that the approximate PDF of F{t) is normally distributed 
with mean value and variance equal to those obtained by PERT procedure. 
It is shown below that PDF of T is not normally distributed as it is the 
maximum of many random variables. 

Table 1.3 shows an illustration of the underestimation of the PERT mean 
for E{T). Since calculation of the exact value of E{T) for non-trivial SANs 
is not possible, we used simulation (Monte Carlo sampling) to generate E{T) 
given in Table 1.3. The table examined networks generated at random; each is 
simulated using four different sets of distribution functions for the underlying 
activities. The activities are not identically distributed as the parameters of each 
activity are generated at random from a specified range for each of the three 
distributions: normal, uniform and exponential. In all instances the PERT 
mean underestimated E{T), and sometimes the downward shift is more than 
one standard deviation. The downward shift in the location of the PDF of T is 
the main source of error in PERT procedure estimation of F{t), For instance, in 
the SAN(40,120) under mixed distributions, and assuming normality for PDF 
of r , under PERT estimate PR{T < 175) = 0.755, but according to the 
simulated result PR{T < 175) = 0.44. This error in estimating F{t) can also 
be influenced by the assumption of normality. 

In the above example it is remarkable that even though the distribution of T 
is almost normal, the error caused by underestimating the location of the distri
bution is even worse. Since inaccurate estimates of the mean and the variance 
cause large errors, accurate determination of these parameters is of primary 
importance. These led to many improvements on the original PERT estimates; 
see for instance Elmaghraby (2000), Soroush (1994), Downey (1990), Devroye 
(1979), Clingen (1964) and Fulkerson (1962). Estimating the mean and vari
ance of T from many of these procedures is not an easy task where in practice, 
even before probabilities concerning T are computed, estimates for its mean 
and variance are needed. In this paper extreme value theory, where EV theory 
is based on the maximum of independent and identically distributed random 
variables, is applied to obtain better estimates for the mean and variance of the 
random variable T. It allows for the use of more than one network path and 
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the variances as well. Improvements in estimating fir alone provides more 
accuracy in estimating F{t), 

1.3 Probability distribution function of project duration 

The PDF of T may not be normally distributed. It depends on the structure 
of the network and on the underlying distributions. It was first observed by Van 
Slyke (1963), as he simulated some SANs, that the PDF of T is right skewed; 
it has a short left tail and a long right tail. The recognition that PDF of T 
is not normal has led to many studies to calculate, approximate or bound the 
exact PDF; see for instance Schmidt and Grossman (2000), lida (2000), Dodin 
(1985), Sculli (1983), Sigal et al (1979), Shogan (1977), Kleindorfer (1971), 
Burt and Garman (1971), Martin (1965) and Clark (1961). Dodin and Sirvanci 
(1990) showed that such a distribution is between a normal and an extreme 
value (EV) distribution. They showed that for large networks the distribution 
of T is affected by two convergences: convergence to a normal distribution as 
the number of activities on each path increases, and convergence to an EV as 
the number of paths increases and more of them become more independent and 
identically distributed. As a result it is desirable to be able to characterize the 
project network as to when the normal or the EV approximation can be used. 

To illustrate the dependency of the PDF of T on the network structure and on 
the underlying distributions of the activities we investigate two extreme cases. 
The first shows convergence to normal, while the second shows convergence to 
an EV. The first network consists of one path with M activities. In this case of 
completely series network, the longest path duration is equivalent to the length 
of the only path in the network and the Central Limit theorem, as M increases, 
is applicable. Therefore, 

T - Eij ^ij^ MT - Eij ^ij^ and 4 - X]zj ^^(^i)-

This is an extreme case where the PERT method is clearly valid, and F{t) 
can easily and accurately be determined from the standard normal table. Table 
1.1 shows that PERT estimates for the mean and variance of T are identical 
to those obtained from simulation. Furthermore, the simulation results show 
that PDF of T converges to normal as M increases regardless the underlying 
distribution of the activities. 

In the second case, assume that there are M activities, all in parallel, i.e. 
all activities start at the same node and all end at the same node and P — M. 
Therefore we have the case of completely parallel paths, where the longest path 
duration is equal to the longest activity. 

The Central Limit theorem is not applicable for this case even if each Z{k) 
is normally distributed. It follows from the definition of T — max^^p Z{k) 
and the independence of the P paths that 
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Table 1.1. Simulation of SAN's where each consists of one path. 

Arcs 

10 

20 

40 

M 
<7 

/̂  
a 
M 
(J 

Normal 
/ iG[5 :15] 
a = 0.2/i 

PERT 
104.44 

6.82 
208.31 

9.70 
414.46 

13.49 

Sim 
104.42 

6.82 
208.17 

10.15 
414.19 

13.34 

Uniform 
ae[0 
b — a 

PERT 
80.97 
5.48 

170.25 
7.75 

281.08 
10.95 

:10] 
+ 3 

Sim 
80.85 
5.61 

170.36 
7.67 

280.74 
11.00 

Exponencial 
AG [0. 

PERT 
7.61 
2.50 

42.45 
13.86 
56.81 
11.22 

1:2] 

Sim 
7.45 
2.46 

42.33 
13.77 
56.83 
11.25 

Mixed 

PERT 
52.93 
11.76 

124.45 
8.30 

292.85 
11.92 

Sim 
53.11 
11.88 

124.34 
8.44 

293.12 
11.82 

F{t) = PR{Z{k) < t for all k e P) = U},epFt,{t) 

which is not normally distributed. If the Z(/c)'s are independent and identically 
distributed (iid), then the PDF of T is equal to [Fk{t)]^. If the P parallel paths 
are iid, then PDF of T converges to EV distribution. 

Table 1,2 shows the simulation results for seven structures where P ranges 
from 5 to 90 parallel and iid paths. Each is simulated for the three specified 
distributions: Exponential with A = 1, gamma with /c ~ 5 and A — 1, and 
normal with /x = 4 and a = 1. For each case in Table 1.2, four numerical 
results are calculated; the simulated mean value of T, the standard deviation 
of T and, as a measure for goodness-of-fit for the distribution of T, two chi-
square test statistic values, x^ for normal and for EV, are computed for each 
case. It is very clear that as P increases, PDF converges to an EV regardless 
the underlying distribution of the individual path. In case of exponential and 
gamma distributions the convergence is immediate, where in case of normal it 
is slow. 

Figure 1.1 shows a simulated PDF for an activity network with with 40 nodes 
and 100 activities where each activity has an exponential distribution with A 
generated at random from the interval [0.2, 5.0]. It is also observed from Table 
1.2 that E{T) shifts to the right if compared with the mean of each path which 
stays constant. The amount of shift increases as P increases; for P = 90 the 
amount of shift can exceed four times the standard deviation. 

Most real world problems fall between the above two extremes. The ade
quacy of normal approximation in case of a network with one path depends 
on the number of activities in series and their corresponding PDF's. This is 
also true for the adequacy of the EV approximation for the PDF of T in the 
completely parallel network. For most real world projects, the corresponding 
network may have several paths close in duration competing for the longest path. 
As a result, the probabilistic mechanism which gives rise to the extreme value 
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I 

Figure 1.1. Probability density function of T for a SAN with 40 nodes and 100 activities with 
un-identical exponential distributions. 

theory will be in effect for such networks. In the following section properties 
of the EV distribution are presented. 

1,4 Properties of extreme value distribution 
The asymptotic distribution of T^ as m -^ oo where the T^ is the maximum 

of m iid random variables with a PDF F{t) and a density function f{t) has 
been studied in probability theory; see David (1981) and Galambos (1978). 
The following theorem is adapted from David (1981). 

THEOREM 1.1 Suppose F{t) is less than 1 for every finite t, is twice dijfer-
entiable at least for all t greater than some value r and is such that 

lim — 
t—^oo at 

then, 

lim PR{hm{Tm - a„0 <t} = G{t), 
m—^oo 

holds uniformly for every t G (—00, co), where 

G{t) — exp{~e~^) and 

F{am) ^ {m-l)/m and bm = rnf{am)' 
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It can be shown that a large class of underlying PDF's, including such distri
butions as the normal and the exponential, satisfies the conditions of the above 
theorem. The limiting PDF, G{t), given above is known as the standard extreme 
value distribution. The graph of it's probability density function, g{t), is given 
in Figure 1.2. 

Figure 1.2. Standard extreme value density function where g{t) = exp[—t — e *]. 

The general form of the two-parameter EV distribution function is 

where a is the location parameter (mode) and h is the scale parameter. The 
mean and the variance of G{t) can be written in terms of a and h as follows: 

/̂  = a + 0.57722/6 and a^ - T?I{^\?). 

The parameters of the limiting EV distribution, location parameter a and 
scale parameter 6, can be estimated from the above theorem where, 

F{p^m) = {m- l)/m and bm = mf{am), 

and F{t) is now assumed to be a normal PDF with mean /i and variance a'^. 
The mean value // and variance a'^ are those of one of the iid parallel paths in the 
network that are competing for the longest path. Thus the location parameter, 
a, can be approximated by am, and the scale parameter, b, can be approximated 
by bm- Therefore, from the normal probability distribution function we have, 

-(am-/i)^/2a-2 1 

y^27T{am " /i)/^-) 

From Cramer (1964), it follows that 

m 
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am^ f^ + (r[{2lnmy/^ - {l/2){\nlnm + lnA7r)/{2lnmy/% 

and 

V2l^ m 
a 

where m is the number of paths competing for the longest path, i.e. dominating 
paths, in the network. Therefore, the mean of the limiting EV distribution can 
be approximated by 

I^EV =" Cim + 0.57722/bm 

and the standard deviation can be approximated by, 

CTEV =7T/{2A5bm)> 

It is clear from the expressions for am and bm that the estimations of fiEv and 
aEv involve the standard deviation of the longest path, and hence the standard 
deviations of the activities on that path. The PDF can be approximated by, 

PR{T <t) = G{t) = exp[-e-^-(^"^-)]. 

Extreme value theory has been applied successfully to many practical prob
lems; see, for example, Galambos (1978). In its applications, frequently the 
conditions sufficient for the validity of the limiting extreme value distribution 
cannot all be verified. Among the conditions which are usually difficult to sat
isfy are the independence and identically distributed properties of the underlying 
random variables. Even in these instances, extreme value theory has provided 
insights and useful results for the problems considered. In many stochastic 
networks, the distributions of paths are not identical, and since paths may have 
arcs in common, they are not independent of each other. However, as the size 
of the stochastic network increases the number of paths increases, dependency 
between the paths is weakened, and more paths compete for the longest path, 
i.e become almost iid. As a result, we expect the PDF of T to deviate from 
normal and move toward the EV distribution. 

The theoretical analysis presented above is in agreement with the conclusion 
derived from the empirical results presented in Dodin and Sirvanci (1990), 
where it was concluded that when the number of paths competing for the longest 
path in a network is relatively large and/or the underlying arc distribution is 
right-skewed, the EV distribution gives a better fit than the normal distribution. 
Application of the EV approximation may further be justified since, in practice, 
the distribution of the duration of most activities tends to be right-skewed, i.e. 
the probability of completing an activity after the most likely time is usually 
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greater than the probability of completing it before that. In the next section the 
above approximations are used in developing an alternative procedure to PERT. 

1.5 Alternative procedure to PERT 

It was conclude above that in large stochastic activity networks the PDF of 
the completion time of the project is influenced by two convergences. The first 
is convergence to the normal distribution emanating from the fact that each 
single path consists of many activities; hence it's duration converges to normal 
distribution. The second is convergence to EV distribution emanating from 
having many paths in the network competing for the longest path, that are close 
in duration and close to being independent. If the first influence is stronger, 
then PERT procedure provides accurate estimates and it will continue to be 
used; however, if the second influence is stronger, then estimates using extreme 
value theory are more accurate and they will be used. Consequently, the first 
step in this procedure is to characterize the stochastic network as to when to 
use each of the two estimates. The second step in the procedure is to carry 
out the corresponding estimation for the statistics of T: its mean fir, standard 
deviation ar, and PDF, F{t). The following are the steps of the procedure: 

1 If the mean and standard deviation of every activity in the network are 
not given, then calculate them form the given information. 

2 Apply CPM method or any of the labeling methods given in Glover 
et al (1992), using the mean values of the activities, to calculate the 
means of the two longest paths (in mean) and the corresponding standard 
deviations. Denote these by /^i, cri, /i2, and ^2, respectively. 

3 If the first longest path dominates the second longest path, then the number 
of dominating paths m = 1, and the influence of convergence to normal 
distribution is stronger; go to 4. Otherwise m = 2 and go to 5. In theory 
we say path p dominates path q if 

PR[Z{p) > Z{q)] > PR[Z{q) > Zip)] = 1 - PR[Z{p) > Z{q)]. 

Calculating the above expression is difficult. Therefore we consider the 
first longest path as dominating if/xi — /X2 > max{0.05/ii, 0 .20(JI}, i.e. 
they are not close in mean. 

4 The PDF of T, completion time of the project, is assumed to be normally 
distributed with mean /XT approximated by /^i, and ax approximated by 
cTi, exactly as it is in PERT, then terminate. 
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5 Apply Step 2 above, repeatedly if necessary, to determine the value of m, 
the number of dominating paths (that are close in mean and they compete 
for the longest path). In this step, first the mean and standard deviation 
of the third longest path are determined and compared with that of the 
first longest path for dominance exactly as it is in Step 3. If the new path 
is dominated, then got to 6'; otherwise set m = m + 1 and repeat. 

6 The average completion time of the project fxr is approximated by (J^EV, 

and ar is approximated by CTEV as they are stated in Section 16.4. To 
calculate fiEV and aEv^ we use the values of m, /ii and ai. 

In this case the approximation of PDF of T, F{t), as discussed above, de
pends on the value of m, number of dominating paths, and on the underlying 
distributions of these paths. For m > 2, F{t) is expected to be between normal 
and EV. For small values of m, such as m < 5, and with each path consisting 
of many activities we expect F{t) to be closer to normal; hence we use the 
normal distribution to approximate F{t) but with fir and ar as calculated in 
this procedure. Otherwise we use G{t) specified above to approximate F{t). 

1.6 Computational experience 
As a benchmark, the above procedure was first applied to the stochastic net

works presented in Figures 3 and 4 of Dodin and Sirvanci (1990) and for the 
same distributions. In these SAN's all the activities are identically distributed. 
The value of m for the network of Figure 3 was 3, and in Figure 4 it was 
12. As a result, the procedure derived the same values for /i^ and ar- Simi
larly, the procedure was also applied to the seven networks of Table 1.2 where 
all paths are iid; EV estimates were identical to those of simulation. In most 
stochastic project networks, activities are not identically distributed or have 
the same distribution type, and project networks can have various structures 
(precedence relations). Therefore the procedure was also tested using activity 
networks generated at random, and also assigned durations with different prob
ability distribution functions where their parameters are randomly generated 
from specified ranges for each distribution type. 

The procedure was applied to the nine network structures presented in Table 
1.3 where the number of nodes range from 10 to 40, and the activities range from 
16 to 120. Each network was tested for four different underlying distributions: 
Normal, uniform, exponential and a mixture of the three. The most realistic 
(practical) among these is the mixed distribution case. In all 36 combinations 
the activities are not identically distributed as the corresponding parameters for 
each activity are generated at random from the ranges specified in Table 1.3. 
First, in each combination of (network, distribution) each activity is assigned 
its own parameter/s for that distribution type; for instance in the combination 
of [network (10, 16) and normal distribution], each of the 16 activities have its 
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 

- Simulation -PERT -EV 

Figure 1.3. Cumulative distributions for the estimates of PERT, simulation and extreme value. 

/i generated at random from the interval [5, 15], and a — 0.2/i. Second, the 
PERT critical path was identified and its estimates of fir and ar were derived 
and recorded using CPM. Third, the above procedure was applied and estimates 
of fiT and ar were recorded. Fourth, to be able to verify the accuracy of the 
estimated parameters and the resulting F{t) we used Monte Carlo sampling 
to generate the corresponding parameters and probability distributions for all 
the combinations. In this case each combination was simulated using a sample 
of size n, where n is between 1000 and 5000, and estimates of fir and ar 
are recorded along with the approximation of F(t). Estimates obtained from 
simulation are considered the actual (accurate) values of these parameters. 

Table 1.3 shows the three estimates for the mean, /J^T and variance, ar ' 
PERT, simulation, and new procedure (NP); Table 1.4 shows the number of 
the m dominating paths as a result of using the above dominance criterion. If 
in Table 1.4, m — 1, then the corresponding values for JUT and ar under the 
column of NP in Table 1.3 are set equal to those of PERT; otherwise they are 
calculated using extreme value estimates given in Section 16.4. It is clear from 
Table 1.3 that PERT estimates for ^j^ always bound the actual fir from below. It 
is also clear that whenever m > 2, extreme value gives more accurate estimates 
for /i^ than PERT. Consider for instance the cases for 40 nodes and exponential 
distribution; estimates of EV are superior to those of PERT. Similarly for many 
others combinations; naturally, some estimates are more accurate than others. 
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Table 1.4. Number of dominating paths determined by the new procedure. 

Network 
(10, 16) 
(10, 20) 
(10,30) 
(20, 30) 
(20, 40) 
(20, 60) 
(40, 75) 

(40, 100) 
(40, 120) 

Normal 
3 
2 
1 
1 
1 
1 
3 
1 
2 

Uniform 
2 
2 
1 
1 
1 
1 
3 
2 
2 

Exponential 
2 
1 
1 
1 
1 
2 
2 
3 
5 

Mixed 
2~~ 
2 
2 
1 
2 
2 
2 
2 
3 

Examination of Tables 1.3 and 1.4 shows that more than 60% of the cases 
have more than one dominating path; hence EV estimation for IJLT and GT was 
used. Most of the cases where EV estimation was used are in the large activity 
networks, such as those of networks with 40 nodes; and also in the cases with 
mixed distributions. Both cases, very large networks and networks with mixed 
distributions, tend to produce more paths with close durations that also are close 
to being independent. Smaller size networks tend to produce one dominating 
path. This path may share with other paths the same set of activities, hence 
they are very dependent, and differs from them by only one or few activities 
with larger duration; hence it remains always dominating. The structure of the 
networks with 20 nodes produced one strong dominating path; hence PERT 
estimates were mostly accurate regardless the underlying distributions. 

As for the estimate of F(t), this is more sensitive to the underling distribu
tions than the estimates of IIT or GT- If the activity network possesses many 
probability distributions with large right hand tails, then extreme value esti
mates are more accurate than normal. Similarly, if the network has large m 
dominating paths that are very much independent of each other, i.e. do not 
have many activities in common. Table 1.5 and Figure 1.3 have an example of 
the three estimates for F{t)\ Normal based on IIPERT^ and GPERT^ extreme 
value with fiEV^ and GEV, and simulation for the activity network with 40 nodes 
and 100 activities and different exponential distributions for the activities. It is 
clear from Figure 1.3 that EV estimates are very close to the simulated F{t), 
and PERT estimates of F{t) forms a very loose upper bound. 

The above estimates are very sensitive to the assumptions of the extreme 
value theory: existence of many paths that are iid. Therefore, the estimates 
are sensitive to the number of dominating paths m, their independence and 
durations. The dependence on m, is clear from the expressions for am and bm-
However, the value of m depends on the dominance rule stated in Step 3 of 
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Table 1.5. Three estimates of F(t): PERT, simulation and extreme value. 

t 
26.35 
31.79 
37.23 
42.67 
48.11 
53.55 
58.99 
64.43 
69.87 
75.31 
80.75 
86.19 
91.63 
97.07 
102.51 
107.95 
113.39 
118.83 
124.27 
129.71 
135.15 

Simulation 
OOO 
0.02 
0.07 
0.19 
0.35 
0.52 
0.68 
0.79 
0.88 
0.93 
0.96 
0.98 
0.99 
0.99 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 

PERT 
0.16 
0.26 
0.39 
0.54 
0.68 
0.80 
0.89 
0.94 
0.97 
0.99 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 

EV 
0.00 
0.00 
0.03 
0.12 
0.30 
0.50 
0.67 
0.79 
0.87 
0.93 
0.96 
0.97 
0.99 
0.99 
0.99 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 

the procedure. If the difference /ii - /i2 is enlarged, m may increase; however 
the m paths will deviate from being identically distributed, and extreme value 
theory will not apply. Similarly, if the paths are very dependent such sharing 
many activities, extreme value assumptions will not be satisfied. Therefore, in 
the above procedure extreme value estimates work well for large networks with 
many parallel paths that are close in duration. 

1,7 Conclusion 

This paper deals with the problem of providing an accurate and easy to cal
culate estimates to the statistics of the project completion time in stochastic 
activity networks. It demonstrates that the probability distribution function 
of the project completion time may under certain conditions be normally dis
tributed; but in general it is not, and the estimates for its mean and standard 
deviation obtained by the PERT procedure are in general not accurate. It also 
shows that such a probability distribution function may under certain condi
tions converge to an extreme value distribution. The paper then characterizes 
the project network as to when the normal or extreme value distributions can 
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be used to estimate the probability distribution of the project completion time 
and its parameters. 

A certain form of stochastic dominance is introduced and used in the above 
characterization. It uses the mean and standard deviation of the longest path, 
in mean, in this characterization. If the network has only one dominating path, 
then PERT procedure continues to provide accurate estimates and it is easy to 
use. If, however, the network has more than one dominating path, then extreme 
value theory is used to estimate the mean and standard deviation of the project 
completion time. Extreme value estimates involve the number of the longest 
(most dominating paths), mean of the longest path, and its standard deviation. If 
the number of the dominating paths is large, or the underlying distributions are 
very rightly skewed, then extreme value distribution is also used to approximate 
the probability distribution function of the project completion time. Calculation 
of these statistics using extreme value distribution is relatively easy. 

The above procedure was applied to several stochastic networks and was 
found to be of merit. It provides accurate estimates to fir, CTT, and F{t), and 
it is relatively easy to apply. The issue that may require further investigation 
is the development of a more precise and easy to apply method to determine 
when a certain path in the network dominates another. 
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Abstract The vast majority of the research efforts in project scheduling over the past several 
years have concentrated on the development of exact and heuristic procedures for 
the generation of a workable baseline schedule assuming complete information 
and a static and deterministic environment. During project execution, however, 
a project may be subject to considerable uncertainty. Proactive-reactive project 
scheduling deals with uncertainty by creating a baseline schedule that is as much 
as possible protected against disruptions and by deploying reactive scheduling 
procedures to revise or reoptimize this schedule when necessary. This chap
ter focuses on the main principles of proactive-reactive scheduling and dwells 
on schedule robustness and its measurements. A number of recently developed 
proactive and reactive scheduling heuristics are described and their working prin
ciples are illustrated on a problem example 

Keywords: Project scheduling, uncertainty, robustness 

2,1 Introduction 

The vast majority of the research efforts in project scheduling over the past 
several years have concentrated on the development of exact and heuristic pro
cedures for the generation of a workable baseline schedule (pre-schedule or 
predictive schedule) assuming complete information and a static and determin
istic environment. Most often the baseline schedule is constructed by solving 
the well-known deterministic resource-constrained project scheduling problem 
(RCPSP). This problem (problem (m, l\cpm\Cmax) in the notation of Herroe
len et al (2000)) involves the determination of a baseline schedule that satisfies 
both the finish-start, zero-lag precedence constraints between the activities and 
the renewable resource constraints under the objective of minimizing the project 
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duration (for recent comprehensive overviews of the literature, we refer to De-
meulemeester and Herroelen (2002) and Neumann et al (2003)). 

A baseline schedule serves a number of important functions (Aytug et al 
(2005), Mehta & Uzsoy (1998), Wu et al (1993)). One of these is to provide in
ternal visibility within the organization of the planned activity execution periods 
reflecting the requirements for the key staff, equipment and other resources. The 
baseline schedule is also the starting point for communication and coordination 
with external entities in the company's inbound and outbound supply chain: 
it constitutes the basis for agreements with suppliers and subcontractors (e.g. 
for planning external activities such as material procurement and preventive 
maintenance), as well as for commitments to customers (delivery dates). 

During execution, however, a project may be subject to considerable uncer
tainty, which may lead to numerous schedule disruptions. Activities can take 
shorter or longer than primarily expected, resource requirements or availabili
ties may vary, ready times and due dates may change, new activities might have 
to be inserted in the schedule, etc. In this chapter, we limit ourselves to the 
treatment of time uncertainties caused by the fact that actually realized activity 
durations during project execution may deviate from the durations that were 
planned in the baseline schedule. 

In general, there are two approaches to dealing with uncertainty in a schedul
ing environment (Davenport and Beck (2002), Herroelen and Leus (2005)): 
pure reactive scheduling and proactive-reactive scheduling. 

Pure reactive scheduling does not rely on a predictive schedule; the use of 
schedules is eliminated altogether. Dynamic scheduling decisions are made 
during project execution at stochastic decision points, usually corresponding 
to the completion times of activities. The decisions are made by deploying 
so-called scheduling policies or scheduling strategies for determining which 
activities to dispatch throughout time. The policies rely on the observed past 
and the a priori knowledge of the distribution of the activity and resource char
acteristics. An extensive characterization of scheduling policies and subclasses 
can be found in Mohring et al (1984, 1985). We refer to Part 2 of Pinedo 
(2002), Chapter 9 in Demeulemeester and Herroelen (2002), Stork (2001) and 
Herroelen and Leus (2005) for a project scheduling setting. 

Pure reactive scheduling lies outside the scope of this chapter. We focus on 
proactive-reactive project scheduling, i.e. the creation of a proactive baseline 
schedule that is as much as possible protected against disruptions and the de
ployment of reactive scheduling procedures during project execution to revise 
or reoptimize the schedule when necessary. 

The remainder of this chapter is organized as follows. Section 2.2 focuses on 
the main principles of proactive-reactive scheduling and dwells on schedule ro
bustness and its measurement. Section 2.3 focuses on the development of proac
tive project schedules, A number of recently developed proactive scheduling 
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heuristics are described and their working principles are illustrated on a problem 
example. Section 2.4 describes and illustrates reactive procedures on the same 
problem example. Section 2.5 gives an overview of the experimental results on 
the makespan-stability trade-off. 

2.2 Proactive-reactive project scheduling 
Proactive-reactive scheduling involves a proactive and a reactive phase. Dur

ing the proactive phase, a baseline schedule is constructed that accounts for 
statistical knowledge of uncertainty and anticipates disruptions. The under
lying idea is to protect the schedule as well as possible from the disruptions 
that may take place during the execution of the project. When disruptions do 
occur during actual project execution, it may be necessary to call upon reactive 
scheduling procedures to modify the baseline schedule in response to these dis
ruptions. The schedule that is obtained after these modifications is called the 
realized schedule (Aytug et al (2005)). 

In general terms, a baseline schedule that is rather 'insensitive' to disruptions 
that may occur during project execution is called robust. The robustness concept 
has been used in many disciplines (see e.g. Kouvelis and Yu (1997), Roy (2002), 
Billaut et al (2005)). Many different types of robustness have been identified in 
the literature, calling for rigorous robustness definitions and the use of proper 
robustness measures. 

2.2.1 Robustness types and measures 

A robustness measure can be single or composite. Two often used types of 
single robustness measures have been distinguished: solution and quality ro
bustness (Herroelen and Leus (2005); for other typologies we refer to Sanlaville 
(2004)). 

2.2.1.1 Solution robustness or schedule stability. Solution robustness 
or schedule stability refers to the difference between the baseline schedule and 
the realized schedule. The difference ox distance A{S, S) between the baseline 
schedule S and the realized schedule S for a given execution scenario can be 
measured in a number of ways: the number of disrupted activities, the difference 
between the planned and realized activity start times, etc. 

For example, the difference can be measured by the weighted sum of the 
absolute deviation between the planned and realized activity start times, i.e. 

Z\(5,S) = E j ^ i | s i - « i l , [1] 
where Sj denotes the planned starting time of activity; in the baseline schedule 
5, Sj is a random variable denoting the actual starting time of activity j in the 
realized schedule S, and the weights Wj represent the disruption cost of activity 
j per time unit, i.e. the non-negative cost per unit time overrun or underrun 
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on the start time of activity j . This cost reflects either the difficulty in shifting 
the booked time window on the required resources (internal stability, or the 
difficulty in obtaining the required resources) or the importance of on-time 
performance of the activity (external stability). The objective of the proactive-
reactive scheduling procedure is then to minimize ^ WjE |sj — Sj\^ with E 
denoting the expectation operator, i.e. to minimize the weighted sum of the 
expected absolute difference between the planned and realized activity start 
times. It should be observed that the analytic evaluation of this objective is 
very cumbersome. For A^P-hardness proofs of several cases of the scheduling 
problem for stability subject to a deadline and discrete disturbance scenario, we 
refer to Leus and Herroelen (2005). 

Sanlaville (2004) suggests to measure solution robustness as 
max/Zl(5,S), [2] 

the maximum difference between the baseline schedule S and the realized sche
dule S over the set of execution scenarios / . The objective of the proactive-
reactive scheduling procedure then is to minimize this maximum distance. 

2.2.1.2 Quality robustness. Quality robustness refers to the insensi-
tivity of some deterministic objective value of the baseline schedule to distor
tions. The ultimate objective of a proactive-reactive scheduling procedure is 
to construct a baseline schedule for which the objective function value does 
not deteriorate when disruptions occur. The quality robustness is measured in 
terms of the value of some objective function z. In a project setting, commonly 
used objective functions are project duration (makespan), project earliness and 
tardiness, project cost, net present value, etc. 

When stochastic data are available, quality robustness can be measured by 
considering the expected value of the objective function, such as the expected 
makespan E [Cmax]» the classical objective function used in stochastic resource-
constrained project scheduling (Stork (2001)). 

It is logical to use the service level as a quality robustness measure, i.e. to 
maximize P(z < z), the probability that the objective function value of the 
realized schedule stays within a certain treshold z. For the makespan objective, 
we want to maximize the probability that the project completion time does not 
exceed the project due date (5̂ , i.e. P(s^ < 5^), where s,̂  denotes the starting 
time of the dummy end activity. Van de Yonder et al (2005a) refer to this measure 
as the timely project completion probability (TPCP). It should be observed that 
even the analytic evaluation of this measure for a given schedule and in the 
presence of ample resource availability is very troublesome, the PERT problem 
being #P-complete (Hagstrom (1988)). 

Quality robustness can also be measured by comparing the solution value z of 
the realized schedule obtained by the proactive-reactive scheduling procedure 
and the optimal solution value z* computed ex-post by applying an exact proce-



Proactive-reactive project scheduling - Trade-offs and procedures 29 

dure on the basis of the realized activity durations. Leus and Herroelen (2001), 
for example, have used the percentage deviation of Cmax, the project duration 
of the realized schedule, from the ex-post optimal makespan C^^^ computed 
by applying a branch-and-bound procedure on the basis of the actually realized 
activity durations, as a measure of quality robustness. 

2.2.1.3 Composite robustness measures. The robustness measures 
described above are all single measures. It is also possible to use composite 
objectives (Hoogeveen (2005)). Van de Yonder et al (2005b) use the bi-criteria 
objective F(P(s^ < 5n)^ X̂  WjE \sj — Sj\) of maximizing the timely project 
completion probability and minimizing the weighted sum of the expected abso
lute deviation in activity starting times. The authors assume that the composite 
objective function F(.,.) is not known a priori and that the relative importance 
of the two criteria is not known in the initial schedule development phase, i.e. 
the decision maker has no knowledge of e.g. a linear combination that reflects 
his preference. Analytic evaluation of a composite objective function is usually 
very cumbersome (as mentioned before, the PERT problem is #P-complete 
(Hagstrom (1988)) and the scheduling problem for stability is A^P-hard in the 
ordinary sense (Leus and Herroelen (2005))). A natural way out is to evaluate 
the composite objective function by means of simulation. 

2.3 Proactive project scheduling procedures 

The development of proactive project scheduling procedures is still in its 
bum-in phase. A common characteristic of the proactive project baseline 
scheduling procedures in the sparse open literature is the insertion of time 
buffers in the schedule (Herroelen and Leus (2005)). For the alternative ap
proach of generating multiple schedules (contingent scheduling), we refer to 
Billaut and Roubellat (1996ab) and Artigues et al (1999, 2005). Contingent 
scheduling is based on the generation of multiple baseline schedules (or base
line schedule fragments) before and/or during project execution that respond 
to foreseen disruptive events, or are equivalent in performance. Responding to 
anticipated events during schedule execution is then simply done by switching 
to the schedule (fragment) that corresponds to the events that have occurred. 
The approach focuses on flexibility rather than robustness, and is especially 
designed for time-critical reactive scheduling. 

2.3.1 Critical chain scheduling 

The critical chain methodology (Goldratt (1997)) has resulted in a number of 
commercial software packages (ProChain® (www.prochain.com), cc-Pulse® 
(www.sphericalangle.com), CCPM+® (www.advanced-projects.com), PS Suite® 
(www.sciforma.com)) allowing to generate buffered baseline schedules. The 
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idea is to remove the safety that is normally included in the individual activity 
duration estimates by using aggressive estimates based on the mean or median 
duration and to concentrate the safety into project and feeding buffers. The 
critical chain (CC) is defined on a precedence and resource feasible schedule 
as the chain of precedence and/or resource dependent activities that determines 
the project duration. If there is more than one candidate critical chain, an arbi
trary one is chosen. A project buffer is inserted at the end of the CC to protect 
the project due date against variation in the CC, Feeding buffers are inserted 
wherever non-critical chains meet the CC in order to prevent distortions in the 
non-critical chains from propagating throughout the CC. The default buffer size 
is fifty percent of the length of the chain feeding the buffer. Alternative buffer 
sizing procedures have been presented in the literature (Newbold (1998), Tukel 
et al (2005)). 

The potentials and pitfalls of the CC-methodology have been discussed by 
Herroelen and Leus (2001), Elmaghraby et al (2003) and Herroelen et al (2002). 
The main conclusion that can be drawn from these studies is that the project 
buffer may overprotect the project makespan and may lead to unnecessarily high 
project due dates, while the feeding buffers may fail to prevent propagation of 
schedule disruptions throughout the baseline schedule. 

2.3,2 Generating stable project schedules with ample 
resource availability 

Herroelen and Leus (2004) develop mathematical programming models for 
the generation of stable baseline schedules in a project environment. The 
authors make abstraction of resource usage, assuming that a proper allocation of 
resources has been performed. They use the concept of pair-wise float, defined 
as the difference between the start time of activity; and the finish time of activity 
/ in a schedule S. The pair-wise float is only defined for activities (i, j) G TA, 
where TA denotes the transitive closure of A, meaning that (i, j ) G TA if 
and only if a path from i to j exists in the activity-on-the-node project network 
G = {N^ A). The authors select a project due date Sn and assign a probability of 
disruption pj to every activity j (j=0,l,... ,n), with Yl^=oVj = 1- The dummy 
end node has disruption probability pn = 0, while po denotes the probability 
that the dummy start node, i.e. the entire project, starts later than initially an
ticipated. They use a random variable Lj to denote the disturbance length of 
activity j if it is disturbed, and a non-negative cost Wj per unit time overrun on 
the start time of activity j . 

The authors propose to use the expected weighted deviation in start times 
in the realized schedule from those in the pre-schedule as stability measure. 
They set up a linear program that can be rewritten as the dual of a minimum 
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cost network flow problem and report on very promising computational results 
obtained on a set of randomly generated test instances. 

Van de Vonder et al (2005a) investigate the potential trade-off between quality 
robustness (measured in terms of the timely project completion probability 
P{^n - ^n)) ^nd solution robustness, measured by X]?^o ^j^l^j ~ ^jl- Using 
simulation, they analyze the quality and solution robustness of critical chain-
based schedules discussed above (as representatives of makespan protecting 
schedules) and the activity dependent float factor model (ADFF), shown by 
Leus (2003) to produce good solution robustness results when the number of 
disruptions (activity duration increases) is rather high. The procedure is an 
adaptation of the float factor model that was originally introduced by Tavares 
et al (1998) to generate a schedule S in which the start time of activity j is 
obtained as Sj{S) ~ Sj{ESS) + aj{sj{LSS) - Sj{ESS)), where aj G [0,1] 
is the so-called float factor, Sj(ESS) denotes the earliest possible start time of 
activity j and Sj(LSS) represents the latest allowable start time of activity j . 
Both start times are derived from critical path calculations for a given project 
deadline. Instead of using a single float factor a for all the activities, ADFF 
adopts an activity dependent float factor that is calculated as aj = (3j / {13j + Aj), 
where /3j is the sum of the weight of activity j and the weights of all transitive 
predecessors of activity j , while Aj is the sum of the weights of all transitive 
successors of activity j . In doing so, ADFF inserts longer time buffers in front 
of activities that would incur a high cost if started later than originally planned. 

The conclusions reached by the authors are counterintuitive. While the pio
neers of the critical chain methodology focus on due date performance and the 
critical chain scheduling procedures basically aim at due date protection, the 
critical chain scheduling approach was found to be outperformed by ADFF on 
the instances where the timely realization of the project (expressed in terms of 
a large Wn) is deemed important. 

2.3.3 Restricted resources and robust resource allocation 
If the unrestricted resource availability assumption is dropped from the ana

lysis, Leus and Herroelen (2004) use a so-called resource flow network to repre
sent the flow of resources across the activities of the project network and study 
the problem of generating a robust resource allocation under the assumption 
that a feasible baseline schedule exists and that some advance knowledge about 
the probability distribution of the activity durations is available. The authors 
explore the fact that checking the feasibility of a resource allocation can easily 
be done using maximal flow computations in the resource flow network. As 
such, the search for an optimal allocation is reduced to the search for an as
sociated resource flow network with desirable robustness characteristics. The 
authors propose a branch-and-bound algorithm that solves the A^P-hard robust 
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Table 2,1. Data for the problem instance 

j 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

E{dj) 

0 
4 
5 
2 
4 
5 
4 
2 
2 
0 

'w;̂  

0 
2 
1 
3 
1 
8 
1 
3 
6 

30 

rj 

0 
5 
3 
4 
4 
3 
5 
3 
6 
0 

far 

none 
medium 

low 
medium 

high 
medium 

low 
high 
low 

none 

dis 

+0 
+3 
+0 
+0 
+ 1 
-2 
- 1 
+2 
+ 1 
+0 

resource allocation problem (Leus (2003)) in exact and approximate formula
tions. The procedure heavily relies on constraint propagation during its search. 
The authors report on promising results obtained on a set of problem instances 
that were generated using the problem generator RanGen (Demeulemeester et 
al (2003)). 

2.3.4 Proactive scheduling procedures 

In order to illustrate the working principles of a number of recently develo
ped proactive project scheduling procedures, we use the well-known RCPSP 
as our vehicle of analysis. The activity-on-the-node project instance of Figure 
2.1 represents 10 activities (activity 0 and activity 9 are dummy activities repre
senting the project start and finish) subject to finish-start, zero-lag precedence 
constraints and a single renewable resource constraint. The availability of the 
single renewable resource type is 10 units per period. 

Figure 2.1, Problem Instance 

The data for the problem instance are shown in Table 2.1. The first column 
shows the activity numbers. The mean duration E(dj) of each activity is shown 
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in the second column. The activity weights Wj are shown in the third column. 
The next column contains the per period requirements TJ of the single renew
able resource type. The column labelled var gives an indication of the activity 
duration variability. High duration variability means that the real activity du
rations are discretized values drawn from a right-skewed beta distribution with 
parameters 2 and 5, that is transformed in such a way that the minimum duration 
equals 0.25 the expected duration, the mean equals the expected duration and 
the maximum duration equals 2.875 times the expected duration. Low duration 
variability means that the realized activity durations are also discretized values 
drawn from a beta distribution with parameters 2 and 5, but with the mean equal 
to the expected activity duration and with minimal and maximal values equal to 
0.75 times and 1.625 times the expected activity duration, respectively. Medium 
duration variability means that the realized activity durations are drawn from 
a beta distribution with parameters 2 and 5, but with minimum and maximal 
values equal to 0.5 times and 2.25 times the expected activity duration, respec
tively. Obviously, none refers to a deterministic activity duration. The column 
labelled dis denotes the disturbance in the activity duration that is assumed to 
occur during the realization of the project. The actual duration of activity 1, for 
example, will exceed its planned duration by 3 time periods, while the actual 
duration of activity 5 will be 2 time periods smaller than its planned duration. 

2.3.4.1 An exact procedure for generating quality robust baseline sche
dules. Figure 2.2 shows the minimum makespan schedule obtained by the 
branch-and-bound procedure of Demeulemeester and Herroelen (1992, 1997) 
for the RCPSP defined on the problem instance of Figure 2.1, using the expected 
activity durations given in Table 2.1. The project duration equals Cmax = 15. 
This schedule can be used as the baseline. Assume that the project due date 
is set 30% above this minimum makespan, i.e. 6Q — [1.3 x Cmax] ~ 20. The 
five-period time interval between the minimum project completion time and the 
due date acts as a protective time cushion during project execution, inducing 
quality robustness into the schedule. 

resaucef 
u i ts 

10 

10 15 time 

Figure 2.2. Minimum makespan schedule 
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2.3.4.2 A suboptimal procedure for generating quality robust baseline 
schedules. The RCPSP is strongly A^P-hard (Blazewicz et al (1983)) so that 
solving it to optimality may entail a large computational effort. That explains 
why commercial software packages generally rely on simple priority-based 
scheduling heuristics for generating a baseline schedule. The experimental 
study by Kolisch (1996) revealed that the well-known Late Start Time (LST) 
priority rule ranks among the best priority-rule based procedures. 

Relying on the critical path based latest allowable start times for the ex
ample project of Figure 2.1, the LST-heuristic creates the priority list L=(0, 
2,1,3,4,5,6,7,8,9) with the activities ranked in increasing order of their latest 
allowable start time. Applying a serial schedule generation scheme yields by 
lucky coincidence the minimum duration schedule of Figure 2.2. 

2.3.4.3 Suboptimal procedures for generating solution robust baseline 
schedules. Solution robust scheduling procedures insert time buffers in 
the baseline schedule to absorb expected distortions. In the remainder of this 
section, we discuss and illustrate several procedures for inserting time buffers 
into the minimum duration schedule of Figure 2.2. During project execution, 
activities will never be allowed to start earlier than planned in order to preserve 
the stability advantage of the idle times in the schedule. This execution policy 
is commonly referred to as railway scheduling, because of its comparability 
with the scheduling of trains in a railway station. 

The resource flow dependent float factor heuristic (RFDFF). The re
source flow dependent float factor (RFDFF) heuristic has been developed by 
Van de Vonder et al (2006) as an extension of the activity dependent float factor 
(ADFF) heuristic mentioned earlier. This heuristic completely relies on the 
activity weights, but does not exploit the available information offered by the 
activity duration distributions in making its buffering decisions. 

The starting time of activity j in the RFDFF schedule is calculated as 
Sj{S) := Sj{BkB) + aj{float{j)), where Sj{BkB) denotes the starting 
time of activity j in the minimum duration baseline schedule and aj now de
notes the resource flow dependent float factor. The total float, float{j), is 
the difference between the latest allowable starting time of activity j given 
the project due date (i.e. its starting time in the right-justified version of the 
minimum duration schedule) and its scheduled starting time in the minimum 
duration schedule. 

To calculate the float factors aj, we first need to construct a resource flow 
network (Artigues and Roubellat (2000), Leus (2003)) for the minimum dura
tion schedule. The resource flow network is a network with the same nodes as 
the original project network, but with arcs connecting two nodes if there is a 
resource flow between the corresponding activities. It thus identifies how each 
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single item of a resource is passed on between the activities in the schedule. A 
schedule may allow for different ways of allocating the resources so that the 
same schedule may give rise to different resource flow networks. We use the 
(one-pass) algorithm of Artigues & Roubellat (2000) to construct a resource 
flow network. We have redrawn in Figure 2.3 the minimum makespan sche
dule of Figure 2.2 to illustrate the resulting use of the individual resource units 
along the horizontal bands. Figure 2.4 shows the corresponding resource flow 

rescurDB 
Lrits 

10 

Figure 2.3. Minimum makespan schedule 

network. Activity 8, for example, has a per period resource requirement of six 
units. It uses three resource units released by its predecessor activity 5, two 
units passed on by activity 7, and one unit released by activity 6. The float fac-

Figure 2.4. Resource flow network 

tors aj are again calculated as aj — Pj/{Pj + Aj), where Pj now is the sum of 
the weight of activity j and the weights of all its transitive predecessors in both 
the original network and the resource flow network, while Xj is the sum of the 
weights of all transitive successors of activity j in both networks. The weights 
of activities that start at time 0 are not included in these summations because 
it is assumed that these activities can always start at their planned start time 
and thus do not need any buffering to cope with possible disruptions of their 
predecessors. The RFDFF heuristic consequently inserts longer time buffers 
in front of activities that would incur a high cost if started earlier or later than 
originally planned and resource constraints will always remain satisfied in the 
resulting schedule. 
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Table 2.2. Values for the RFDFF heuristic 

J 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

Sj{BkB) 

0 
0 
0 
4 
5 
6 
9 
6 
13 
20 

float{j) 

5 
6 
5 
6 
5 
7 
5 
6 
5 
5 

^ j 

0 
0 
0 
3 
1 
8 
1 
3 
6 
30 

Pj 

0 
0 
0 
3 
1 
11 
8 
6 

22 
52 

A, 

52 
52 
38 
48 
37 
36 
36 
37 
30 
0 

« j 

0 
0 
0 

0.059 
0.026 
0.234 
0.182 
0.140 
0.423 

1 

Sj 

0 
0 
0 
4 
5 
8 
10 
7 
15 
20 

Table 2.2 lists for each activity of the example project the values needed for 
the computation of the resource flow dependent float factor aj and the scheduled 
starting time Sj. Note that we set wi = W2 = 0 because activities 1 and 2 start 
at time 0. Activity 6 has activity 4 as direct predecessor in the project network 
of Figure 2.1 and activities 4 and 7 as direct predecessors in the resource flow 
network of Figure 2.4. Activities 0, 1, 2 and 3 are its transitive predecessors 
in these networks. This results in PQ = WQ + ws + W4 + w^ = 8. Similarly, 
summing the weights of all direct and transitive successors of activity 6 in the 
networks of Figure 2.1 and Figure 2.4 gives XQ = WS + WQ = 36. We thus find 
ae =^ 8/(36 + 8) - 0.182 and SQ = 9 + 0.182 x 5 - 9.91, which is discretized 
(rounded to the nearest integer) to 10. The starting times of the other activities 
can be calculated in the same way, resulting in the RFDFF schedule of Figure 
2.5. 
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Figure 2.5. RFDFF schedule 

The virtual activity duration extension heuristic (VADE). The virtual 
activity duration extension (VADE) heuristic, developed by Van de Vonder 
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et al (2005c), starts from a different point of view. The standard deviations 
Gr^ of the activity durations, assumed known, are used to iteratively compute 
virtual duration extensions for the non-dummy activities. These virtual activity 
durations are used to update the activity start times and, by doing so, insert time 
gaps in the baseline schedule. The updated activity starting times are then used 
to generate the buffered baseline schedule using the original expected activity 
durations. 

The iterative procedure works as follows: 
For j = 1,2, ...,n - 1 do d* = £^(dj) and Vj = 1; 
Compute Sj, j = 1, 2,..., n; 
While Sn < 6n do 

Findj* : - ^ - m i n . | ^ ) 

(tie-break: max5^^ = Ili=succ{j) ^i)'^ 
^;*-^* + l; 
d* - c/* + 1; 
Compute Sn\ 

Generate the buffered baseline schedule. 
Initially each non-dummy activity duration d*, j = 1,2, ...,n — 1 is set 

equal to its expected value E{dj) and all Vj — 1. The initial activity start times 
Sj, j — 1,2, ...,n, are computed by creating an early start schedule for the 
resource flow network using the activity durations d*. As long as the project 
duration stays within the due date, the activity start times are iteratively updated 

as follows. Determine the activity j * for which ^ — minj \^\' Ties are 
broken by selecting the activity for which the sum of the weights of all its 
non-dummy successors is the smallest. Set i;* = '̂ * + 1 and d* == (i* + 1. If 
necessary, update the schedule and reiterate. 

The standard deviations of the activity durations of our project example are 

calculated as shown in Table 2.3. A s ^ = 1.19 == minj \^\,d\ — A+l — b 

diVidvl — 1+1 == 2, so that ^ == 2.38. The virtual duration extension of activity 
4 generates a one-period delay in the starting times of its successor activities 
6 and 8 in the resource flow network, so that SQ = 10 and sg — 14. Next, 
^ = 1.59 - minj | g } so that d̂  =. 5 + 1 - 6, i;̂  - 1 + 1 - 2 and 

^ = 3.17. The current schedule does not need to be modified because of the 
two-period gap between the completion time of activity 5 and the starting time 

of activity 8. Now we have that ^ = 1.69 = min^ | ^ | , d̂  == 2 + 1 = 3 and 

'i;̂  — 1 + 1 = 2, so that ^ =• 3.39. Activity 7 has a two-period float, so there 

is no need to update the schedule. Now ^ = 1.79 — minj i ^ I d* =: 5, 

i;* = 2 and ~ = 3.57. Continuing the procedure in this manner leads to the 
virtual duration updates d\ = Q^d^ — 3, dl — 7, ^2 == 6, and d"^ — 4. Now we 
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Table 2.3. Values for the VADE heuristic 

j 

1 
2 
3 
4 
5 
6 
7 
8 

^ ( d , ) 

4 
5 
2 
4 
5 
4 
2 
2 

aj 

0.56 
0.31 
0.40 
0.84 
0.63 
0.28 
0.59 
0.20 

SWi 

1 
1 

11 
1 
6 
6 
7 
0 

have - 3 . 5 7 \^\' Invoking the tie-break rule (see = - ^ = —^ == c>,oi = miixo 
ai* (74* erg* J 

column SWi in Table 2.3) leads to the update d^ — 6. Subsequently, dg — 5, 
^4 = 7 and 0̂5 = 8. At this juncture, updating d\~% would move the expected 
project duration beyond the project due date. The algorithm terminates. The 
use of the updated start times and the original activity durations ^(d^) yield 
the buffered baseline schedule of Figure 2.6. Observe that the planned project 
completion time Jg ~ 20 is not directly protected. Because activity 8 has 
low variability, the procedure prefers to protect its starting time rather than 
protecting the project completion time against disruptions of activity 8. 

units 

O 5 

Jt"^ 

Figure 2.6. VADE schedule 

The starting time criticaiity (STC) heuristic. The starting time criticality 
heuristic (STC) exploits information about both the weights of the activities and 
the variance structure of the activity durations (Van de Yonder et al. (2005c)). 
The basic idea is to start from a minimum duration schedule and iteratively 
create intermediate schedules by inserting a one-time period buffer in front of the 
activity that is the most starting time critical in the current intermediate schedule, 
until adding more safety would no longer improve stability. The starting time 
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criticality of an activity j is defined as 5tc(j) — P{s{j) > s{j))xwj = ^jXWj, 
where 7j denotes the probability that activity j cannot be started at its scheduled 
starting time. 

The iterative procedure runs as follows. At each iteration step (see pseu
docode below) the buffer sizes of the current intermediate schedule are updated 
as follows. The activities are listed in decreasing order of the stc{j). The list is 
scanned and the size of the buffer to be placed in front of the currently selected 
activity from the list is augmented by one time period and the starting times 
of the direct and transitive successors of the activity are updated. If this new 
schedule has a feasible project completion (sn < 6n) and results in a lower 
estimated stability cost {J2jeN -^^^O))' ^^^ schedule serves as the input sche
dule for the next iteration step. If not, the next activity in the list is considered. 
Whenever we reach an activity j for which stc{j) — 0 (all activities j with 
Sj — 0 are by definition in this case) and no feasible improvement is found, a 
local optimum is obtained and the procedure terminates. 

Iteration step 
Calculate all stc(j) 

Sort activities by decreasing stc(j) 

While no improvement found do 

take next activity; from list 

if stc(j)=0: procedure terminates 

else add buffer in front of; 

update schedule 

if improvement & feasible do 

store schedule 

goto next iteration step 

else 

remove buffer in front of; 

restore schedule 

The iteration step of the STC heuristic 

Regrettably, the probabilities 7j are not easy to compute. We define fc(i, j) as 
the event that predecessor i disturbs the planned starting time of activity j . The 
probability that this event occurs can be expressed as P{k{i^ j)) = P{si + d̂  + 
LPL{i^j) > Sj) in which LPL{i^j) is the length of the longest path between 
activity i and activity j in the resource flow network defined on the minimum 
duration schedule, jj can then be calculated as 7̂  = PiUiex ^ihj))^ ^i^^ X 
being defined as the set of all direct and transitive predecessors of j in the original 
network and the resource flow network. STC makes two assumptions in approx
imating 7 :̂ (a) predecessor i of activity j starts at its originally planned starting 
time when calculating /c(z, j) and (b) only one activity at a time disturbs the start
ing time of activity j . Assumption (b) means that we estimate ^(Uiex ^(^' ^)) 
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Table 2.4. The longest path lengths from i to j 

LPL{i, 

1 
2 
3 
4 
5 
6 
7 
8 

J) 1 2 3 

0 

4 

0 
0 

5 

2 

0 

6 

4 
4 
2 
0 

0 

7 

2 

0 

8 

8 
8 
6 
4 
0 
0 
4 

9 

10 
10 
8 
6 
2 
2 
6 
0 

by X^^^x P{k{iJ)), i.e. we assume that P{k{il^j) fl /c(i2, j)) = 0 for each 
il,22 G X. Assumption (a) boils down to setting si = si. Combining both 
assumptions yields 7̂  — X^iex ^(^^ ^ ^j ~ ^i ~ ^P^ihj)) such that 
stc{j) = 7̂  X 16'j. Because 5̂ , 5̂  and LPL{i^j) and the distribution of d̂  
are all known, we can now easily calculate all values of 7' and stc{j) for every 
activity j . 

The application of STC to the problem example runs as follows. First, the 
LPL{i^ j) values need to be calculated for all predecessors i for every activity j . 
For illustrative purposes, we calculate LPL(1,3), LPL(1, 5) and LPL(1,8). 
A glance at the minimum duration schedule of Figure 2.2 and the resource 
flow network of Figure 2.4 reveals that activity 3 is immediately preceded by 
activity 1 and thus LPZ/(1,3) = 0. The resource flow network of Figure 2.4 
shows a unique path < 1,3,5 > leading from activity 1 to activity 5. This 
results in LPL(1,5) = E{d^) = 2. Multiple paths exist between activity 1 
and 8, namely < 1,3,5,8 >, < 1,3,7,8 >, < 1,3,7,6,8 >, < 1,7,8 >, 
< 1, 7,6, 8 > and < 1,4, 6, 8 > with a corresponding path length of 7, 4, 8, 4, 
2, 6 and 8, respectively. Thus, LPL(1, 8) = 8. Table 2.4 shows all LPL{i,j)-
values. If i is no transitive predecessor of j in either the original network or the 
resource flow network, the corresponding cell in the table is left blank. 

The -̂rc-values are first calculated for the initial minimum duration schedule 
of Figure 2.2 with Sn — 5n — 20. For example stc{Q) is calculated as w^ x 
(fc(l, 6) + fc(2,6) + fc(3,6) + fc(4,6) + fc(7,6)) with 
A:(l, 6) - P(di > SQ-si- LPL{\, 6)) - P(di > 9 - 0 - 4) - P(di > 
5) = 0.11 
A:(2,6) - P(d2 > 56 - 52 - LPL(2, 6)) - P(d2 > 5) - 0.23 
fc(3,6) - P(d3 > 56 - 53 - LPL(3,6)) = P(d3 > 3) = 0.01 
/c(4,6) - P(d4 > 56 - 54 - LPL(4,6)) = P(d4 > 4) - 0.34 
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/c(7,6) - P(d7 > SQ-S7- LPL{7,6)) - P{dr > 3) - 0.05 
This results in stc{6) - 1 x (0.11 + 0.23 + 0.01 + 0.34 + 0.05) - 0.74, All 
the -̂fc-values for the starting solution are shown in column Initial in Table 2.5. 
J2 stc{i) — 13.25 denotes the total cost of the schedule and provides a good 
measure for the stability of the schedule. Ordering the activities by decreasing 
stc gives (8, 5, 7, 3, 6, 4, 9, 1, 2). Adding a one-time period buffer in front 
of activity 8 yields the feasible starting time ss — 14 and provides the input 
schedule for Step 1. 

The newly inserted buffer in front of activity 8 requires a recalculation of 
its stC'WSiluQ and the -̂̂ c-value of its successor activity 9. However, observe 
that stc{9) does not change although the buffer between activities 8 and 9 is 
reduced in size by one time period. Indeed, activity 8 has a very low variability 
and P(A:(8,9)) = 0, indicating that the buffer size between activity 8 and 9 
does not need to be increased. Table 2.5 shows the new values in the Step 1 
column. Activity 5 now has the largest ^rc-value, yielding the ordered list (5, 
8, 7, 3, 6, 4, 9, 1, 2). Delaying the starting time of activity 5 by one time period 
is feasible and leads to a reduction in the total schedule cost. 

In Step 2, stc{5) will decrease while stc{8) will increase because of the 
delay of 55. Activity 8 has the largest 5'rc-value and will be delayed by one time 
period in the input schedule of Step 3. The buffer size in front of activity 8 now 
equals two time periods. 

Similar to Step 1, the buffer in front of activity 9 is large enough and thus 
only stc{8) drops in value, resulting in the new ordered list (7, 5, 3, 6, 8, 4, 9, 
1, 2). Inserting a one-time period buffer in front of activity 7 will not cause any 
feasibility problems and will improve the total schedule stability cost. 
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Figure 2.7. The input schedule for step 4 

The input schedule for Step 4 is given in Figure 2.7. Obviously, the insertion 
of the buffer in front of activity 7 will affect P(/c(7, 6)), the probability that the 
highly variable activity 7 delays the starting time of activity 6, which will result 
in an increase of stc{Q). Also stc{8) will slightly increase. It is no surprise that 
activity 6 becomes the most time critical activity and will thus be delayed. 

For the input schedule of Step 5, we have that SQ = 10. However, because 
the buffer size in front of activity 8 was previously fixed at two time periods. 



42 PERSPECTIVES IN MODERN PROJECT SCHED ULING 

Table 2,5. Computational steps of the STC procedure 

Act 

1 
2 
3 
4 
5 
6 
7 
8 
9 

Tot 

Initial 

0 
0 

0.90 
0.34 
3.91 
0.74 
1.47 
5.86 
0.03 

13.25 

Step 1 

0 
0 

0.90 
0.34 
3.91 
0.74 
1.47 
1.57 
0.03 

8.96 

Step! 

0 
0 

0.90 
0.34 
0.93 
0.74 
1.47 
1.79 
0.03 

6.2 

Step 3 

0 
0 

0.90 
0.34 
0.93 
0.74 
1.47 
0.58 
0.03 

4.99 

Step 4 

0 
0 

0.90 
0.34 
0.93 
0.94 
0.35 
0.60 
0.03 

4.09 

Step 5 

0 
0 

0.90 
0.34 
0.93 
0.29 
0.35 
0.20 
0.03 

3.04 

Step 6 

0 
0 

0.90 
0.34 
0.18 
0.29 
0.35 
0.26 
0.03 

2.35 

Step 7 

0 
0 

0.33 
0.34 
0.02 
0.14 
0.09 
0.11 
0.06 

1.09 

also ss will be delayed by one time period. This results in the positive side 
effect that also stc{8) will decrease. The ordered list becomes (5, 3, 7, 4, 6, 8, 
9, 1,2) and the total schedule cost has decreased in value to 3.04. 

In Step 6 the buffer size in front of activity 5 will be set to two time periods. 
Alongside the positive impact on stc{5) itself, this will have a slightly negative 
impact on stc(8) due to a larger value of P(/c (5, 8)). Observe the difference with 
the previous step. Here the buffer size in front of activity 8 remains respected 
by delaying a predecessor, while in Step 5, ss had to be delayed in order to 
respect the two-time period buffer with an inverse impact on stc{8) as a result. 
Table 2.5 again shows the updated ^rc-values. Activity 3 is now the most time 
critical and will be delayed. 

Inserting a buffer in front of activity 3 results in a major shift in the schedule. 
The starting times of activities 5, 6, 7 and 8 will all be delayed by one time 
period in order to keep their previously allocated buffer sizes fixed. All the 
corresponding -̂rc-values will decrease and ^ stc{i) = 1.09, A small increase 
of stc{9) is the only drawback. The Step 7 column in Table 2.5 shows the new 
ordered list (4, 3, 6, 8, 7, 9, 5, 1, 2). The algorithm continues by trying to 
delay activity 4. By doing so 5tc(4) would decrease from 0.342 to 0.050, but 
5tc(6), stc{8) and stc{9) would increase by a combined 0.436 resulting in a 
higher total schedule cost. Delaying activity 4 is thus infeasible and we proceed 
with the next activity in the list, namely activity 3. However, activity 3 and all 
other activities in the list can also be proven to be non-improving moves. The 
procedure terminates and Figure 2.8 represents the schedule found by the STC 
heuristic for our example project. 



Proactive-reactive project scheduling - Trade-offs and procedures 43 

reaxiCB' 
units 

10-

10 15 2D tirro 

Figure 2,8. STC schedule 

Tabu search. Van de Yonder et al (2005c) also introduce a tabu search 
procedure (Glover (1989, 1990)) for solution robust buffer allocation. The tabu 
search procedure departs from the VADE-schedule described in Section 2.3.4,3. 
At each iteration step, the neighborhood of the current solution contains at most 
2 X (n — 2) solutions. For each non-dummy activity of the project, we have 
two possible neighborhood solutions. One is obtained by increasing the buffer 
in front of the activity in the schedule by one time period, if possible (plus-
move). The other is obtained by decreasing the buffer size of this activity by 
one unit, if possible (minus-move). The buffers in front of all other activities 
are left unchanged. For every neighborhood solution the expected stability cost 
will be estimated by simulation. Two tabu lists are kept, both of length n/3. 
The first list stores all recent plus-moves, while the second one stores all recent 
minus-moves. Before allowing a new plus-move, we have to check whether this 
activity is not in the second list. If a buffer size decrease (minus-move) delivers 
the best solution in the neighborhood, the first tabu list has to be checked. The 
best non-tabu move is selected and executed. By doing so, we avoid cycling, 
but we do allow an activity to be consecutively selected more than once if the 
considered moves have the same direction. The aspiration criterion defines that 
a move that would yield a new best solution will be accepted even if it would 
normally be prohibited by the tabu list. The overall best found solution is stored 
throughout the whole procedure. The tabu search stops after a fixed number of 
iterations. 

Contrary to all previous heuristics, the outcome of the procedure is dependent 
on the simulated disruptions. In general, the tabu search will lead to more robust 
schedules than the ones obtained by the other heuristics, but suffers from a higher 
computational cost. An extensive simulation-based comparison of the results 
can be found in Van de Vonder et al (2005c). 

2.4 Reactive scheduling procedures 

Proactive-reactive scheduling implies that the buffered baseline schedules 
generated by the proactive procedures discussed above should be combined with 



44 PERSPECTIVES IN MODERN PROJECT SCHEDULING 

reactive procedures that are deployed during project execution when disruptions 
occur that cannot be absorbed by the buffered schedule. Van de Vonder et 
al (2005b) have recently developed a number of reactive project scheduling 
procedures. We will illustrate them using the disruption scheme shown in the 
last column of Table 2.1 to be applied to the unbuffered minimum duration 
schedule of Figure 2,3. 

2.4,1 The fix flow procedure 
The fix flow procedure applies an early start policy at the schedule breakage 

point, while maintaining the resource allocation decisions made in the baseline 
schedule, as reflected in its resource flow network. 

The disruption scenario shown in Table 2.1 reveals that activity 2 is not 
disturbed while activity 1 suffers from a duration increase of three time periods, 
changing its planned finish time from time instant 4 to time instant 7. At time 
instant 5, activity 2 is finished while activity 1 still has a remaining duration of 
two periods. Activity 4 is a direct successor of activity 1, and is now planned 
to start at time instant 7. Maintaining the resource flow of two resource units 
from activity 1 to 3 (see Figure 2.4) results in the fact that activity 3 is also 
delayed up to time instant 7. Planning the remaining activities as early as 
possible for the given resource flows yields the projected schedule of Figure 
2.9. Such a projected schedule describes how the project will execute if no 
further disruptions occur, given all available information at the current time 
instant 5. Taking into account all the disruptions of the disruption scenario 
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Figure 2.9. Projected schedule generated by the fix flow reactive procedure at time instant 5 

shown in Table 2.1, the final 19-period realized schedule generated by the fix 
flow reactive procedure is shown in Figure 2.10. Denoting the realized and 
scheduled start times of activity 7 by Sj and Sj, respectively, the stability cost 
can be computed as J2^j\^j — Sj\ = 66, 

2.4.2 The weighted earliness-tardiness procedure 
The weighted earliness-tardiness (WET) reactive procedure sets the due date 

for an activity equal to its projected finish time in the baseline schedule. The 
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Figure 2.10. Fix flow reactive schedule 

due date for the dummy end activity is set to the project due date 5^. The 
unit earliness and tardiness costs of a non-dummy activity j are assumed to be 
identical and are set equal to its weight Wj, The earliness cost of the dummy 
end activity is set to zero, because we do not punish the project for finishing 
earlier than planned. The tardiness cost for the dummy end activity n is set 
to Wn- Upon schedule breakage we invoke the branch-and-bound algorithm 
developed by Vanhoucke et al (2001) for the resource-constrained earliness-
tardiness project scheduling problem (m, l\cpm\early/tardy) in the notation 
of Herroelen et al (2000)). The idea is to construct at each rescheduling point 
a new projected schedule with minimum stability cost. 

The WET procedure does not keep the resource flows fixed. The application 
of the procedure to the problem example and the disruption scenario of Table 2.1 
changes the resource flow at time instant 5 when activity 2 finishes (see Figure 
2.11). Since activity 1 suffers from a three-period duration increase, activity 3 
will no longer wait for activity 1 to finish, but will instead receive its resources 
from activity 2. In doing so, activity 3 only starts one time period later than 
originally planned. Also, the heavily weighted activity 8 (ws = 6) now jumps 
in front of activity 6 (WQ — 1), so that activity 8 can start as originally planned. 
Observe that all resource units are kept idle in time period 13. Continuing the 
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Figure 2.11. WET projected schedule at time instant 5 

procedure for the disruption scenario of Table 2.1 yields the 19-period realized 
schedule of Figure 2.12 with a stability cost equal to 23. 
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Figure 2,12. Realized schedule generated by the WET procedure 

2.4,3 Complete rescheduling: The RCPSP procedure 

The RCPSP procedure solves at each decision point the resource-constrained 
project scheduling problem associated with the projected remainder of the sche
dule. For the disruption scenario of our example problem, Figure 2.13 shows 
the realized schedule that was obtained by applying the branch-and-bound pro
cedure originally used to derive the baseline schedule. It can again be observed 
that activity 8 is scheduled in front of activity 6, but this is not done in order to 
decrease the stability cost but to be able to finish the project as soon as possible. 
Activity 6 cannot start at time instant 11 due to the one-period disruption in 
activity 4, its predecessor in the network. Activity 5 finishes earlier than orig
inally planned, creating the possibility for activity 8 to start at time instant 11. 
The project finishes at time 17 with a stability cost of 33. 
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Figure 2.13. Realized schedule obtained by the RCPSP procedure 

2.4.4 Activity-based priority rule 

The activity-based priority rule (ABP) relies on an activity list deduced 
from the baseline schedule, i.e. the schedule shown in Figure 2.3. Ordering the 
activities in increasing order of their scheduled start time, the baseline sche
dule yields four possible activity lists (0,1,2,3,4,5,7,6,8,9), (0,1,2,3,4,7,5,6,8,9), 
(0,2,1,3,4,5,7,6,8,9) and (0,2,1,3,4,7,5,6,8,9). Using decreasing activity weights 
as tie-break rule yields the list (0,1,2,3,4,5,7,6,8,9). Applying a serial schedule 



Proactive-reactive project scheduling - Trade-offs and procedures 47 

generation scheme at each decision point generates the reactive schedule shown 
in Figure 2.14. The realized ABP schedule has a makespan of 18 time periods 
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Figure 2.14. Realized schedule obtained by the ABP procedure 

and a stability cost of 31. It differs from the schedule generated by the RCPSP 
procedure in that activity 6 which precedes activity 8 in the activity list, is 
scheduled as soon as possible at time instant 12 upon completion of activity 
4. This prohibits activity 8 from starting before activity 6, although starting 
activity 8 before activity 6 results in a better makespan (see Figure 2.13) and 
lower stability cost (see Figure 2.12). 

2.5 Experimental results on the makespan-stability 
trade-off 

The above proactive-reactive procedures have been programmed in Microsoft 
Visual C-f+ 6.0 and tested on a set of eighty 30-activity networks generated 
by Van de Vonder et al (2005b) using the RanGen generator developed by 
Demeulemeester et al (2003). For an extensive description of the computational 
results we refer to Van de Vonder et al (2005bc, 2006). Here we limit ourselves 
to a summary of the main conclusions that can be drawn from these experiments. 

Among the simple proactive baseline scheduling heuristics presented in this 
chapter, the STC heuristic ranks best on stability. Apparently, relying on the 
information provided by both the activity weights and the activity duration 
variability pays off. Improvement heuristics, such as tabu search, will typically 
yield better results but are subject to overfitting and will need substantially more 
computational effort. 

Combining an exact procedure for generating a minimum makespan baseline 
schedule with an exact procedure for complete quality robust rescheduling when 
schedule breakage occurs excels in the best makespan performance in terms of 
the timely project completion probability P(s^ < 5^), but is clearly outper
formed in terms of stability cost measured by ^ WjE\sj — Sj\. Combining 
exact procedures for generating a minimum duration schedule with the reactive 
Fix Flow or ABP procedure is computationally far less demanding while yield
ing comparable makespan performance at smaller stability cost. Combining a 
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minimum duration baseline schedule with a solution robust reactive procedure 
such as WET allows for acceptable makespan performance at still smaller sta
bility cost, but requires again a high computational effort. Only when activity 
duration variability is very high and due dates are tight, the combination of 
minimum duration schedules and stability-improving reactive policies such as 
WET might result in unsatisfying makespan performance. 

Activity duration variability has a strong impact on the obtained results. 
The lower the variability in the duration of the project activities, the more 
attractive solution robust baseline scheduling becomes. A project manager who 
anticipates only minor schedule disruptions and therefore decides to go for a 
deterministic quality robust baseline schedule, runs into a serious misconception 
of the impact of activity duration variability. Pure quality robust scheduling is 
inadequate when activity duration variability is low. 

The very promising results obtained by the proactive baseline scheduling 
procedures that aim at generating solution robust (stable) baseline schedules, 
hold an invitation to continue the research on the development of stable baseline 
schedules. Especially when timely project completion is deemed important, 
when the activity duration variability is not too high and when the predefined 
project due dates are not too tight, leaving adequate room for buffer insertion, 
the use of proactive scheduling procedures that aim at generating solution robust 
(stable) schedules pays off. 
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Abstract In the chapter we consider two different scheduling models for stochastic net
work projects. Models of the first type consider several simultaneously realized 
stochastic network projects of PERT type. Resource scheduling models of the 
second type also cover PERT type projects, but with two different kinds of re
newable resources: 

1 extremely costly resources (A-resources) which have to be 
obtained for a short time within the project's time span. Such 
resources have to be prepared and delivered externally at 
planned moments, 

2 renewable resources (B-resources) which are at the company's 
disposal. 

In all types of models each projects' activity utilizes several non-consumable 
related resources with fixed capacities, e.g. machines or manpower. For each 
operation, its duration is a random variable with given density function. The first 
problem centers on determining: 

• the earliest starting moment for each project's realization, 

• the limited resource levels for each type of resources to be 
stored during the projects' realization, 

• the moments when resources are fed in and projects' activities 
start, 

in order to minimize the average total expenses of hiring and maintaining re
sources subject to the chance constraints. 

For the second class of developed models the problem boils down: 
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• to predetermine in advance, i.e., before each project starts to 
be realized, a deterministic delivery schedule for A-resources 
which are not at the project's disposal, 

• to determine both the starting times and the resource capacities 
to be utilized for activities which require limited renewable 
B-resources which are at the project's disposal, 

• to determine the starting moment of each project's realization, 

in order to minimize average total projects' expenses subject to the chance con
straint. 

Problems of resource project scheduling are solved via simulation, in combi
nation with a cyclic coordinate descent method and a knapsack resource reallo
cation model. 

Keywords: Resource constrained project scheduling; Cyclic coordinate descent method; Re
source reallocation; Resource delivery schedule; Non-consumable resources. 

3.1 Introduction 
In modem stochastic project management a company is usually faced with 

realizing several projects under random disturbances. The total amount of re
sources (usually the budget) at the company's disposal to carry out the projects is 
limited. The hierarchical control model at each level provides optimal decision
making as follows: 

• at the company level decision-making boils down to optimal budget reas
signment among the projects (Problem I, which is a planning procedure), 

• at the project level optimal decision-making results either in optimal 
budget reallocation among the project's activities (Problem IIA serves 
as a control action) or in determining the optimal speed of the project's 
realization (Problem IIB which is a control action as well); thus, solving 
Problems IIA and IIB results in optimizing the progress of the project 
towards its goal, in order to reorient the project in the desired direction, 

• at the inspection level, on-line control is carried out, i.e., optimal control 
points to inspect the progress of the project are determined (Problem III), 

• at the lowest, the scheduling level, resource constrained project schedul
ing is realized by reallocating, if necessary, non-consumable resources 
among the project's activities (Problem IV, which is a scheduling proce
dure). 

In the chapter we deal mostly with developing new models at the scheduling 
level. Several types of models are considered. Models of the first type consider 
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several simultaneously realized stochastic network projects of PERT type. Re
source scheduling models of the second type also cover PERT type projects, 
but with two different kinds of renewable resources: 

1 extremely costly resources (A-resources) which have to be obtained for 
a short time within the project's time span. Such resources have to be 
prepared and delivered externally at planned moments, 

2 renewable resources (B-resources) which are at the company's disposal. 

In all types of models each projects' activity utilizes several non-consumable 
related resources with fixed capacities, e.g. machines or manpower. Each type 
of resource at the management's disposal is in limited supply, with a resource 
limit that is fixed at the same level throughout the projects' duration, i.e., until 
the last project is actually completed. For each operation, its duration is a 
random variable with given density function. Processing costs per time unit to 
hire and to utilize all the total available resources are pregiven. The problem is 
to determine: 

• the earliest starting moment for each project's realization, 

• the limited resource levels for each type of resources to be stored during 
the projects' realization, 

• the moments when resources are fed in and projects' activities start, 

in order to minimize the average total expenses of hiring and maintaining re
sources subject to the chance constraints. 

For the second class of developed models the problem boils down: 

1 to predetermine in advance, i.e., before each project starts to be realized, 
a deterministic delivery schedule for A-resources which are not at the 
project's disposal, 

2 to determine both the starting times and the resource capacities to be 
utilized for activities which require limited renewable B-resources which 
are at the project's disposal, 

3 to determine the starting moments of each project's realization, 

in order to minimize average total projects' expenses subject to the chance 
constraint. 

Problems of resource project scheduling are solved via simulation, in com
bination with a cyclic coordinate descent method and a knapsack resource real
location model. The simulation model comprises three optimization cycles and 
can be used for small - and medium-size projects only. Otherwise aggregation 
has to be applied. 
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3.2 Notation 

3.2.1 The company level (several controlled projects) 

C - total budget at the company's disposal to realize a group 
of projects, 

Gi {N, A) - the l-ih stochastic network project of PERT or PERT-COST 
types, I < I < n, 

n - number of projects, 
Git{N, A) - project Gi{N, A) observed at moment t > 0, 
Di - the due date of the l-th project (pregiven). 
Si - the actual moment project Gi{N^ A) starts to be realized, 
El - the earliest moment for project G/ (A ,̂ A) to start functioning 

(to be optimized and determined in advance), 
Fi - the actual moment project Gi{N^ A) is completed, 
pi - desirable probability that in practice enables completion of 

the /-th project on time, i.e., pi < Pr{Ft < Di] (pregiven). 

3.2.2 Project level 

G{N, A) - activity-on-arc network project, 
D - the project's due date (pregiven), 
p - desirable probability that in practice enables completion of 

the project on time (chance constraint), 
Gt - project G{N, A) observed at moment t>0,Go = G{N, A), 
S - time moment the project starts to be realized, 
F - time moment the project is accomplished, 
Smin-, Smax - lowcr and upper bounds of the moment the project may 

actually start (pregiven). 

3.2.3 Activity level 
(i, j ) C G{N, A) - the project's activity, 
tij -random duration of activity (i, j ) with density function 

Sij -the moment activity {ij) actually starts, 
Fij = Sij + tij -the actual moment activity (i, j ) is finished, 
aij -lower bound of tij (pregiven), 
hij -upper bound of tij (pregiven), 
jjLij -average value of tij (pregiven), 
p(i, j) -conditional probability of activity (i, j) to be on the 

critical path in the course of the project's realization. 
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h -number of activities entering the project, 
{i^j)l -activity (i, j ) entering the /-th project, 
Siji - t h e m o m e n t activity {i^j)i actual ly starts , 
Fiji - the moment activity (i, j ) / is finished, 
tiji - r a n d o m dura t ion of activity ( i , j ) / , 
aiji -lower bound of value tiji (pregiven), 
hiji -upper bound of value tiji (pregiven), 
IJLiji -average value of tiji, 
Vij I -variance of tij i, 
P{i^j)i -conditional probability of activity {i^j)i to be on the 

critical path in the course of the project's Gi{N^ A) 
realization (dependent on the decisions already taken), 

T{i) - the moment event (node) i is realized, i.e., the earliest 
moment when all activities entering i are completed 
(a random value), 

D{i) - the subset of nodes which directly precedes node i, i.e., 
i* G D{i) means that activity (i*, i) enters G{N, A). 

3,2,4 Resource parameters 

Tijq - capacity of the g-th type non-consumable resource(s) 
allocated to activity ( ,̂ j ) , I < q <m, 

m - number of different resources, 
Rq - total available non-consumable resources of type q at the 

disposal of the project management throughout the 
planning horizon, satisfying Rq rnin < Rq < Rq max, 

Rq mm5 Rq max " lowcr and Upper bounds of the resource level Rq, 
1 < q < m, (determined by the project management and 
externally pregiven), 

Cq - cost per time unit to hire and to utilize the q-th resource 
unit, 

£̂ 0 - the moment for resources {Rq} to be hired and delivered, 
i.e., the moment the system starts functioning, 

Rq{t) - free available non-consumable resources of type q 
at moment t > 0, 

Rq{t\Siji) - maximal value of the q-th resource profile at moment t 
on condition that activities {i^j)i start at moment Siji, 

T{Gi\Siji) - random duration of project Gi(A^, A) on the same 
condition, 

(HA^MA) ~ activity which utilizes A-resources, 1 < ^ < HA < h 
HA - number of activities which have to be supplied with 



UJQ ) J W J 5 ^Q 

5 8 PERSPECTIVES IN MODERN PROJECT SCHED ULING 

A-resources, 
{^UB^LOB) " activity which utilizes B-resources, I <u; < hs < h, 
hs - number of activities which have to be supplied with 

B-resources, 
- capacity of the g-type B-resources to be allocated to 

activity {IUJB^JUJB)^ 
Tijiq - capacity of the ^-type resources allocated to activity 

(i, j ) entering project Gi{N^ A), 
T{i^^, j^^) - time moments A-resources have to be delivered to process 

activity (i^^,i^^) (an optimal deterministic schedule to be 
determined in advance), 

'^(HA ? MA ) "" ^™^ moments activity {i^^, j^^) actually starts, 
^(HA ^ MA ) ~ pcî alty cost per time unit for the idleness of A-resources 

(incase S{i^^J^^) > T{i^^J^J). 

3.3 Scheduling several stochastic network projects of 
PERT type 

3.3.1 The system's description 

It can be well-recognized that there is a lack of literature on resource sup-
portability models (see Bell and Han (1991), Golenko-Ginzburg and Gonik 
(1997), Golenko-Ginzburg and Gonik (1998), Golenko-Ginzburg et al (2000), 
Golenko-Ginzburg et al (2000a), Golenko-Ginzburg et al (2001), Gonik (1995), 
Gonik (1999), Kolisch (1995), Luss (1991), Sitniakovski (2002), Toker et al 
(1991), Voropajev et al (1999), Zhan (1994). Besides (see Golenko-Ginzburg 
and Gonik (1997), Golenko-Ginzburg and Gonik (1998), Golenko-Ginzburg et 
al (2000), Golenko-Ginzburg et al (2000a), Golenko-Ginzburg et al (2001)), no 
published resource constrained project scheduling algorithm considers stochas
tic network projects, e.g. PERT-type projects. Since, in practice, PERT projects 
are usually carried out with limited resources, the need for proper resource sup-
portability models for PERT network projects is very high. 

In papers Golenko-Ginzburg and Gonik (1997), Golenko-Ginzburg and Go
nik (1998), Golenko-Ginzburg et al (2000), Golenko-Ginzburg et al (2000a), 
Golenko-Ginzburg et al (2001) a network project of PERT type with random 
activity durations and several non-consumable limited resources is considered. 
For each type of resource q, its limit remains unchanged throughout the project's 
duration. A project's activity requires resources of various types with either 
constant (see Golenko-Ginzburg and Gonik (1997)) or variable capacities (see 
Golenko-Ginzburg and Gonik (1998)) and is operated at a random speed. The 
problem is to determine for each activity (i, j ) its starting time Sij, i.e., the 
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timing of feeding-in-resources for that activity. The objective is to minimize 
the expected project's duration. 

It can be clearly recognized that both resource supportability models (see 
Golenko-Ginzburg and Gonik (1997), Golenko-Ginzburg and Gonik (1998)) fit 
only certain project management scenarios. Those models do not include cost 
objectives, i.e., the costs of hiring and maintaining resources throughout the 
project's realization. The models do not deal with projects' due dates as well 
as with chance constraints of meeting the projects' deadlines on time. Those 
models can be used for one project only. 

The chapter under consideration considers a more generalized resource sup-
portability model in project management (see Golenko-Ginzburg et al (2000), 
Golenko-Ginzburg et al (2000a), Golenko-Ginzburg et al (2001), Gonik (1995), 
Gonik (1999), Sitniakovski (2002)). 

Several simultaneously realized stochastic network projects Gi{N^A) of 
PERT type are considered. The durations of all projects' activities are random 
and the corresponding probability density functions are pregiven. Each activity 
requires various types of renewable resources with fixed capacity. Resources 
are stored and maintained at one central warehouse; each type of resources is in 
limited supply and is fixed at the same level throughout the projects' realization. 
Resources are to be hired and delivered to the central store before the moment 
the first project starts to be realized. They are released at the moment when the 
last project is completed. Each activity starts at the moment when it is ready 
to be processed and when free available resources can support it. The cost of 
hiring and monitoring a resource unit per time unit (for each type of resources) 
is pregiven. Each project has its due date and the least permissible probability 
of accomplishing the project on time, i.e., its chance constraint. The problem 
is to determine: 

• the earliest starting moment Ei for each project's realization, 1 < / < 

• the limited resource levels i?g, 1 < g < m, for each type of resources to 
be stored during the projects' realization, 

• the moments Siji, that resources are fed in and projects' activities start, 

in order to minimize the average total expenses of hiring and maintaining re
sources subject to the chance constraints. 

Thus, the developed resource supportability model covers a flexible project 
management system. The model minimizes the average operational expenses 
subject to the chance constraints, for each project separately. The problem is 
solved via simulation. Two optimization cycles are imbedded in the model. 
The external cycle deals with optimizing both the projects' earliest starting 
moments together with the resource levels. Those parameters serve as the input 
values for the internal cycle. The latter uses heuristic decision-making rules 

n; 
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to reallocate free available resources among the projects in order to meet the 
projects' chance constraints. Note that models (see Golenko-Ginzburg and 
Gonik (1997), Golenko-Ginzburg and Gonik (1998)) are based on knapsack 
resource reallocation problems which are applied at decision points when at least 
one activity is ready to be operated and there are free available resources. If, at a 
certain point of time, a set of more than one activity is ready to be operated but the 
available amount of resources is insufficient, a competition among the activities 
is carried out in order to choose a subset of those activities which has to be 
operated first and can be supplied by the available resources. Determining such 
an optimal subset of activities is carried out via a knapsack problem. However, 
for several stochastic network projects the corresponding knapsack problem 
becomes too complicated. We have substituted it by a heuristic decision-making 
procedure. Note that the developed resource supportability model is a very 
complicated stochastic optimization problem which cannot be solved in the 
general case and allows only a heuristic solution. 

3-3-2 The problem 

The problem is to determine values Ei^l < I < n, J?^, 1 < q < m, and Siji 
to minimize the expected total resource expenses (see Notations 3.2.1, 3.2.2, 
3.2.3 and 3.2.4) 

C — min E 
El,Rq,Sijl 

(maxF^-minS'/) } (3.1) 

subject to 
P{Fi<Di}>pi,l<l<n, (3.2) 

Rqit\Siji) < Rq{t) < Rq,\^t> 0,1 <q<m. (3.3) 

Model (16.1-16.3) is a very complicated stochastic optimization problem 
which cannot be solved in the general case; the problem only allows a heuristic 
solution. 

The most widely used PERT techniques (see, e.g. Golenko (1972)) are based 
on assumptions that each activity duration tiji follows either a normal probabil
ity density distribution with parameters {jj^iji, Viji) or an uniform distribution 
in the interval (a^j/, bjji), or a beta probability density function 

12 
•̂ ^̂ •̂ ^̂ ) "" (I).. _ ^ . . )4^^ ~ ^u0(^2j/ - ^)^' (3.4) 

Note that obvious relations 

maXTijlq ^ Rq^ 1 £ ^ ^ ^ , (3.5) 
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hold, otherwise the projects cannot be operated. 
The basic idea of the heuristic solution is as follows. Two levels are incor

porated in the model - the upper (external) level and the lower level. At the 
upper level an approximate search algorithm is used to determine the optimal 
values El and Rq-,! < q < m^l < I < n. We suggest to use the cyclic 
coordinate descent method (see Luenberger (1973)) which is simple in usage 
and has been realized in various production control and project management 
problems (see Gonik (1999), Sitniakovski (2002)). Parameters {Ei^ Rq] serve 
as the input values for the lower level where values Siji are determined via 
simulation. Decision-making is carried out at essential moments t, either 

• when one of the activities (z, j)i is finished at moment Fiji and additional 
amount of resources rijiq^ '^ < q < m, becomes available, or 

• when all activities (i, j ) belonging to one and the same project Gi (N^ A) 
and leaving node i are ready to be processed, or 

• when several subsets of activities ready to be processed belong to different 
projects. 

If one or more activities are ready to be processed at moment t and all of them 
can be supplied with available resources, the needed resources are fed in and the 
activities start to be operated at moment t, i.e. Sjji = t. If at least for one type 
q of resources there is a lack of available resources at moment t, a competition 
among the activities has to be arranged to choose a subset of activities that 
will start to be operated at moment t and can be supplied by resources. The 
general idea of decision-making, i.e., the sub-problem of choosing activities to 
be operated, will be outlined below. 

3.3,3 Heuristic decision-making 
Assume that at a certain moment t a set of 7 > 1 activities (ii, j i ) / i , . . . , 

{h'>h)ii '̂  ready to be operated. Two cases will be considered: 

1 All 7 activities under consideration enter one and the same network graph 
with one and the same index, i.e., equality /̂  = . . .= : /^ holds. 

2 Activities {ii^j\)i^,..., {ij^j^)i^ refer to more than one network graph, 
i.e., for at least one couple of activities [{iv^jv)iy^ {iw)jw)i^^]) 1 < ^,'^ < 
7, inequality v ^ w holds. 

Let us examine both cases in greater detail. 
Case A. To simplify the problem, cancel parameter / since the latter remains 

unchanged in the course of decision-making. Assume (see Golenko-Ginzburg 
and Gonik (1997)), that at moment t, 7 activities ( n , j i ) , . . . , (^7, J7), 7 > 1, 
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are ready to be processed, and at least for one type q of resources there is a lack 
of available resources, i.e., relation 

7 

, > Rq{t) (3.6) 

holds. Here Rijq is a simplified modification ofvijqi for a fixed /. A competition 
among the activities is arranged following the heuristic (see Golenko-Ginzburg 
and Gonik (1997)). According to that heuristic, the subset, which provides 
the maximal total contribution to the expected project duration subject to 16.6, 
has to be chosen. Each activity (z, j) contributes to the expected project du
ration value dij = jiij ' p{i^j), where p{i^j), being a simplified version of 
p{i^j)i, is the conditional probability for the activity (i, j ) to be on the critical 
path. At any decision point t values p{i,j) are calculated via simulation (see 
Golenko-Ginzburg and Gonik (1997), Golenko-Ginzburg and Gonik (1998)). 
After obtaining values p(i^, j^) , 1 < <̂  < 7, for all competitive activities at mo
ment t, the optimal subset is chosen by solving a zero-one integer programming 
problem as follows: determine integer values rji^j^, 1 < ^ < 7, to maximize 
the objective 

max 
K^c> ^^=1 

E VHJ^ -WeJc 'P(k^k) 

subject to 

where 

(3.7) 

(3.8) 

_ 0 if activity (i^, j^) will not obtain resources 
^Hk "~ I 1 otherwise (3.9) 

Problem 16.7-16.9 is a classical zero-one integer programming problem, 
which provides a precise solution. However, the problem's parameters, e.g. 
1?̂^ j ^ , are obtained via heuristic assumptions. 

Case B. This case makes unable decision-making 16.7-16.9 since the latter 
does not take into account at moment t different projects Git{N^ A) with dif
ferent due dates Di and different chance constraints pi. Assume that at moment 
t a set of activities which are ready to be processed and which belong to ip 
different projects Gi^ti^.A), 1 < ^ <(/:?, is given. This set of activities can 
be subdivided into 99 subsets {{ie,Q'>he)ie}o^ 1 < -̂  < 7 each subset of volume 
76> entering the project Gi^ti^^ A). Assume, that there is a lack of available 
resources, i.e., at least for one type q of resources relation 
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^ Id 

HJ^'^keke^e, > Riii) (3.10) 
6=1 C = l 

holds. 
In order to undertake a reasonable decision-making, i.e., to choose a quasi-

optimal subset of activities, we suggest a heuristic step-by-step procedure. The 
procedure is realized as follows: 

Step 1. For each project Gi^ti^N^ A) separately, reorder the activities entering 
the subset {{iiQ,j^Q)iQ]e in the descending order of their corresponding values 

"^Heke =f'Heke'P(keJ^e)le' 
Step 2. An assumption is introduced that: 

• project Gi^t will not obtain at moment t the needed resources for any of 
the qi activities {(i^^, j^^ )/^} ready to be processed; 

• the needed resources will be fed in for all activities {{i^i,j^i)ii} at the 
next decision moment t*. Value t* can be calculated as the minimal value 
of the average finishing times of all activities which at moment t undergo 
processing; 

• in future, i.e., at all decision points t' > t, all the remaining activities 
(z, j)i-^ belonging to that projects will not wait for resources in lines until 
the end of the project's realization. 

Via simulation calculate the project's random duration T{Gi^ \Siji) honoring 
the outlined above assumptions. 

Step 3. Realize step 2 M times in order to obtain a representative statistics. 

Call the random finishing times for project G/̂  {N, A): F^ \ FJ^ \ ..., FJ^ \ 
Step 4. Calculate the statistical frequency Qi^ of completing project Gi-^ {N^ A) 

on time: 

Qk - ^ " ^ ; ^ '' (3.11) 

where 

.(a) ^ I 1 if F f ^ < Di, 
Wr = < 1̂ '' (3.12) 

^ [ 0 otherwise 
Step 5. Calculate the relative deviation 

Zi, - (.Qu-Ph) • Y (3.13) 

Step 6. Repeat steps 2—>5 for all projects GIQ{N^A)^ ^ < 0 < (f, under 
competition. 
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Step 7. Choose the project with the lowest value ZQ . Let it be Gi^ (A ,̂ A), 1 < 

Step 8. For project Gi^ (A ,̂ A), all the sorted activities (z^ ,̂ j ^ ^ )/^ (see step 
1) are examined one after another, in the descending order of their priorities, 
from top to bottom, to determine the first activity, which can be supplied with 
available resources. If, for such an activity (̂ ^ ,̂ j^<^)/^, 1 < <̂  < 7(̂ , relations 
'^i^^j^^,iu,q ^ Rq{t)A ^ Q ^ '^^ hold, the needed resources are passed to the 
activity while the available resources Rq(t) are updated, Rq{t) — vi^^ j^^ ^i^^q => 
Rq{t)A <q<m. 

If such an activity can be obtained, go to step 10. Otherwise apply the next 
step. 

Step 9. If no activity {i^^d^^^)i^ can be chosen in the course of realizing 
step 8, take the next project with the lowest value ZQ (besides Z^) in order 
to examine that project as well, etc., until a certain activity {i^Q',Je,e)ie ^''^ ^e 
determined. If no activity can be found by examining all the projects, go to step 
11. Otherwise apply the next step. 

Step 10. Exclude the determined activity from the set of competitive activi
ties; update the available resources. Go to step 1, i.e., start realizing decision
making anew. 

It can be well-recognized that the procedure terminates either when all 
the available resources are reallocated among activities or all the competitive 
projects are examined in the order of their emergency parameters ZQ, 

Step 11. Calculate the next decision point t' > t. Determine the set of 
activities ready to be operated. Go to step 1. 

A conclusion can be drawn that in case B decision-making centers on choos
ing and operating first the activities which enter the "weakest" projects, i.e., the 
projects being late with meeting their corresponding due dates on time subject 
to their chance constraints. As to case A, the project management operates 
first the optimal subset of activities that provides minimization to the expected 
project's duration. 

3.3.4 The structure of the resource supportability model 

The initial data of the model is as follows: 
at the company level: resource cost parameters Cq^i < q < m\ 
at the project level: due dates Di and chance constraints p/, 1 < / < n; 
at the activity level: upper and lower bounds biji and a^j/, average values 

lj,iji, resource capacities Vijiq. 
Decision variables i?g, I < q < m, and£^/, 1 < ^ < n, have to be determined 

beforehand, i.e., before the projects will actually start to be realized. Note that 
moment EQ resources Rq have to be hired, delivered and stored at the company's 
central warehouse satisfies EQ = min/ Ei and coincides with the beginning of 
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the projects' realization. However, certain projects may start to be realized later 
that at moment EQ. 

Thus, the resource supportability model is realized at two stages: 

• at ihQ planning stage, i.e., before the projects' realization, when deter
mining optimal planning parameters Ei and Rq^l < I < n^l < q < m. 
Those parameters are input values for the stage of monitoring which is 
performed in the course of projects' realization. 

• at the stage of monitoring the resource feeding-in-moments Siji are deter
mined. Those parameters cannot be predetermined since they are random 
values conditioned on our future decisions. At the stage of monitoring 
resource supportability model can be realized in real time; namely, all 
activities can be operated only after obtaining necessary resources. How
ever, if we want to evaluate the efficiency of the resource supportability 
model, we can simulate the algorithm's work by random sampling of the 
actual duration of activities. By simulating the algorithm's work many 
times, all the projects' cost and probability parameters can be evaluated. 

The structure of the resource supportability model and its algorithm is based 
on the assertion, that the cost objective C is a complicated non-linear function 
of decision variables Ei and Rq^l < I < n^l < q < m, and, by introducing 
the outlined above decision-making rules for cases A and B, is fully determined 
by those decision variables. Thus, it is reasonable to arrange two optimization 
cycles for the model: 

• the external cycle to realize an optimal search for values {Ei} and {Rq} 
by using the cyclic coordinate descent method and 

• the internal cycle to realize mutual simulation runs of the projects' re
alization with input values {£?/} and {Rq} obtained from the external 
cycles. It goes without saying that decision-making rules for both cases 
A and B are incorporated in the simulation model at the internal cycle. 
At each simulation run objective C is calculated. 

The combination {Rq^Ei} which provides the minimal average objective 
C calculated by (16.1), subject to all chance constraints (16.2) is taken as 
an optimal combination which has to be predetermined before the projects' 
realization. Needed resources {Rq } are hired at the moment EQ = min/ Si, after 
which the projects' realization actually starts. Feeding-in resource moments 
Siji are determined either for real-time projects, or by simulating the projects' 
realization. 

3,3,5 Heuristic algorithm 
The enlarged step-by-step procedure of the algorithm is as follows: 
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Step 1. Set the initial (minimal) values of {Ei} and {Rq}. Note that {Rq} 
are restricted from below: 

Rq > uidixrijiq^ ^ < q < rn^ (3.14) 

Otherwise the problem has no solution. For most practical cases values Ei,l < 
I < n, can be set equal zero. Thus, the optimal search method has to be arranged 
in the {m + n) - dimensional area. Denote the initial {m + n)- dimensional 
search point by X^^\ 

Step 2. Realize a cyclic coordinate search method with a positive search 

step increment At (or ARq), beginning from the initial search point X^^\ 
Undertaking a search means shifting one of the coordinates, beginning from Ei 
(the first group of n coordinates {Ei} has to precede the second group {Rq}) 
to the right with step At or AR. If, e.g., from the search point X^^^ the search 
^(T-) —^ x '̂̂ "̂ )̂ results in changing the A-th coordinate, 1 < A < m + n, 
then all other coordinates remain unchanged. If in the course of a search step 
objective C becomes less than it has been before, at point X^'^\ the search 
proceeds in the same direction, i.e., an additional increment At (or ARq) is 
realized. If the objective does not decrease, then we examine the next, (A + 1)-
th coordinate, while all A preceding coordinates remain unchanged with the 
values they have already received. The routine iteration of the search terminates 
when all (m + n) coordinates {Ei} and {i?g}are examined. Thus, each decision 
variable is optimized separately, while all the previous coordinates have already 
been optimized. 

Step 3. At each routine search point X^^) with decision variables {S^ , Rq^ } , 
numerous simulation runs using the simulation model at the internal cycle have 
to be undertaken to obtain representative statistics for value C. The simulation 
model comprises three submodels as follow: 

Submodel I simulates most of the procedures to be undertaken in the course 
of the projects' realization, namely: 

• determines decision points (essential moments); 

• singles out (at a routine decision point) all activities that are ready to be 
operated; 

• if possible, supplies all those activities with available resources and later 
on simulates the corresponding activities' durations; 

• returns the utilized non-consumable resources to the company's central 
warehouse (at the moment an activity is finished); 

• updates the remaining projects (if necessary) at each routine decision 
point. 
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Submodel II calculates via simulation values p{i^j) to realize decision
making for the case of one project (case A), as well as values p(z, j) for the case 
of several projects (case B). Submodel II calculates as well the forecasted value 
t* of the next adjacent decision point (see step 2 of the decision-making model 
outlined in Section 3.3). For each activity (z, j) which at moment t is realized 
but has not been completed as yet, the average finishing time Fiji is calculated. 
Given the starting time Siji, the probability density function of random value 
tiji and decision point t under consideration, a precise determination of value 
Fiji can be obtained. 

Note that simulation of activity durations by using Submodel II is carried 
out to solve auxiliary forecasting problems, but not to simulate actual activity 
realizations. The latter is carried out only by Submodel I. 

Submodel III solves, at a routine decision point t, the zero-one integer pro
gramming problem (16.7-16.9) to undertake decision-making in the case of one 
project. Submodel III also simulates steps 3-9 of the decision-making model 
in case B of several projects (see 4.3.3). 

The outcome value of the simulation model at step 3 is calculated as follows: 

^ = Xf E E ( ^ ? • C'?)KaxF/̂ ) -Eo]\ + J2{A • Xi). (3.15) 
< 5 = 1 ^ 9 = 1 ^ 1 = 1 

Here A is an essentially high value (for numerical examples we usually set 
A equal 10^^), while Xi satisfies 

Xi = i l '[^^<P^ (3.16) 
^ [ 0 otherwise, ^ ^ 

where Qi is calculated by (3.11) and F^ is the simulated moment project 
Gi{N^ A) is finished in the S-th simulation run, I < 6 < M. 

Thus, relations (3.15-3.16) enable undertaking search for routine (m + n)-
dimensional points X^ honoring chance constraints (16.2). If at least one value 
Xi — 1, the corresponding combination X '̂̂ ^^^^ '̂̂ ^l is withdrawn from the 
cyclic coordinate search process. 

Step 4. After optimizing all (m + n) coordinates {Ei} and [Rq], i.e., un
dertaking a routine search iteration, the search process is carried out anew, 
beginning from the first coordinate Ei. The search process terminates when, 
for two adjacent iterations / and / + 1, the relative difference between &f^ 
and C^̂ "̂ )̂ is less than the pregiven accuracy e > 0. 

Extensive experimentation for medium size network projects have illustrated 
the efficiency of the developed two-level algorithm. Two iterations are usually 
enough to realize the optimization process. 
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3.4 Resource delivery schedules for PERT type network 
projects 

3,4.1 The system's description 

A number of recent papers have demonstrated the advantage of developing 
the planning and control models on resource constrained project scheduling (see 
3.3.1), including a variety of publications on stochastic network projects (see 
Golenko-Ginzburg and Gonik (1997), Golenko-Ginzburg and Gonik (1998), 
Golenko-Ginzburg et al (2000), Golenko-Ginzburg et al (2000a), Golenko-
Ginzburg et al (2001), Gonik (1995), Gonik (1999), Sitniakovski (2002)). Since, 
in practice, many projects, especially in R & D, are carried out under random 
disturbances, developing new models on resource constrained project schedul
ing with indeterminacy, remains an important problem in project management 
(PM), both from the theoretical and applied points of view. 

A stochastic network project of PERT type is considered. The duration of 
each activity is random and the corresponding probability density function is 
pregiven. Certain activities entering the project require extremely costly and 
rare resources (A-resources) which are usually delivered externally and are 
available for short periods within the time span of the project (e.g. technical 
experts, test-benches, special and unique facilities, heavy duty equipment and 
cranes, etc.). A-resources should be strictly monitored because shortages might 
significantly affect the project schedule. Although it is unknown in advance 
when a certain activity which utilizes A-resources, will actually be ready to start, 
A-resources have to be delivered at a pregiven date that has to be determined 
in advance. Thus, for activities, which utilize A-resources, a deterministic 
schedule of delivering resources is to be predetermined before the project starts 
to be realized. 

Other activities require constrained renewable resources (B-resources) which 
are at the disposal of the project management and are in limited supply for 
each type of resources. Assume that a resource limit is independent on time, 
i.e., is fixed at the same level throughout the project's duration. Various B-
resources, e.g. skilled workers, special equipment, etc., for projects under 
random disturbances require flexible, but not close, monitoring. Since each 
activity entering the project is of random duration, the corresponding feeding-
in resource moment to be determined is a random value too. 

Note, that an activity may utilize several non-consumable (renewable) B-
resources of various types with fixed (pregiven) capacities. 

B-resources have to be hired in advance, in order to be delivered to the project 
management's store at the moment the project actually starts. B-resources are 
released at the moment when the project is completed. The B-resource limits 
for each type of resources are problem's variables to be optimized as well as 
the moment the project starts to be realized. 
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The cost objective of the control model comprises the following expenses: 

1 The costs of hiring and maintaining B-resources within the project's du
ration i.e., between the moment the project starts to be realized and the 
moment of the project's completion. 

2 The cost penalties paid for the A-resource idleness when an A-resource 
was delivered at the planned moment but not utilized since it had to wait 
for the moment the corresponding activity was ready to be operated. 

3 The project has it's due date D and the penalty cost (7* (paid to the 
customer) for not accomplishing the project on time. In addition a penalty 
cost C** has to be charged for each time unit of delay after the due date. 
If the project is accomplished before D, it has to be stored until the due 
date with a C*** penalty charge for each time unit of storage. 

Note that the operational costs of processing project's activities are not imple
mented in the cost objective. This is done deliberately since all operational 
expenses remain unchanged and do not depend on the control model. 

Besides papers Golenko-Ginzburg and Gonik (1997), Golenko-Ginzburg and 
Gonik (1998), Golenko-Ginzburg et al (2000), Golenko-Ginzburg et al (2000a), 
Golenko-Ginzburg et al (2001), Gonik (1999), all publications on managing 
resources for stochastic network projects are not generalized and fit only specific 
project scenarios. However, even models developed by Golenko-Ginzburg and 
Gonik (1998), and Gonik (1999) comprise several drawbacks as follows: 

1 The generalized resources constrained scheduling model (see Gonik (1999)) 
deals with two different types of renewable resources which are consumed 
by the project's activities: 

• rare and costly resources (call it henceforth A-resources) which 
have to be delivered from outside for a relatively small group of 
project activities; 

• restricted renewable resources which are feed in at random moments 
when the resources are available and at least one project activity 
has to be supported with resources in order to start processing (B-
resources). Those resources are in limited supply at the project's 
disposal throughout the planning horizon. 

The model (see Gonik (1999)) honors the assumption that the total B-
resource capacities for the project management store are fixed and pre-
given externally. However, since the cost of hiring and maintaining B-
resources is an essential part of the total expenses in the course of the 
project's realization, the problem of determining the optimal restricted 
B-resource capacity limits is reasonable for many projects' scenarios. 
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2 Minimizing the total project's expenses to meet the target on time, i.e., at 
a given due date, has not to be the only PM's goal in the course of a long-
term cooperation with various customers. To honor the company's good 
name, an additional requirement has to be implemented in the model: 
the project has to meet its due date on time with a pregiven confidence 
probability. Thus, a chance constraint has to be introduced in the resource 
constrained model. 

3 The cost objective for both outlined above models is to minimize the 
budget for the resource consumption within the planning horizon. How
ever, it would be more reasonable to take into account additional factors 
connected with the project's total expenses within the planning horizon, 
e.g.: 

• the starting time of the project's realization, which refers to the 
optimized variables as well, 

• various penalty costs for not meeting the project's target on time 
and storage costs for the project's completion before the due date. 

Thus, developing a generalized resource supportability model under a chance 
constraint and comprising al the additional parameters outlined above results 
in raising the model's flexibility. Such a model covers a broad spectrum of PM 
systems. 

Let us formulate the essence of the developed resource supportability models 
(see Golenko-Ginzburg et al (2000), Golenko-Ginzburg et al (2000a), Golenko-
Ginzburg et al (2001)) which is a further extension of recent publications (see 
Golenko-Ginzburg and Gonik (1997), Golenko-Ginzburg and Gonik (1998), 
Gonik (1999), Sitniakovski (2002)). 

Given: 

• the project's due date D; 

• the least permissible probability p of accomplishing the project on time; 

• the cost per time unit for hiring and maintaining a B-resource unit (for 
each type of resources); 

• the penalty cost c(i, j) per time unit for the idleness of A-resources (for 
each activity (z, jf) which utilizes those resources) (see Notation); 

• the penalty cost for the project's delay (a single payment to the customer); 

• the penalty cost for each time unit of delay; 

• storage charges per time unit for the project's completion before the due 
date. 
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the problem is to determine : 

• the starting moment S of the project's realization, together with 

• the resource delivery schedule for A-resources, and 

• the restricted resource levels for each type of B-resources, in order to 
minimize the average total project's expenses subject to the chance con
straint. 

The problem is solved via simulation, in combination with a cyclic coordinate 
descent method and a knapsack resource reallocation model. The simulation 
model comprises two optimization cycles. 

3.4.2 The problem 
The general problem is as follows: 
to determine ma<ivaî c^ optimized deterministic variables 5, i?g, 1 < q < m, 

and T(z^^,j^^),l < ^ < HA, and, within the project's realization, actual 
starting times Sij for all activities (ij) G G (random values), in order to 
minimize the average project's expenses 

min C (3.17) 

subject to 

Pr{F <D} >p, (3.18) 

S^,^j,^>T{^^Ju)^^<^<hA. (3.19) 

S^J>T(i)\/{^J)eG, (3.20) 

7 

C J = 1 

(3.21) 
where random value C satisfies 

m 

+ ^[c,-i?,.(F-S)] 
q = l 

+ [C* + C**{F - D)]5 + C***{D - F)( l - 5) (3.22) 
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and 

'^^>^ (3 23) 
otherwise. to c 

Restriction (3.19) means that an activity which utilizes A-resources, cannot 
start before its corresponding delivery moment. Restriction (3.20) means that 
any activity (i, j ) entering G, cannot start before the moment T{i), i.e., that 
(see Notation) 

Sij > max {Si^i + ti*i} (3.24) 

holds. Restriction (15.1) means that if at a certain decision-point t B-
resources are reallocated among 7 < /is activities, the summarized value of 
supplied resources (for each q-typt of B-resources) must not exceed the corre
sponding value Rq{t), i.e., the total capacity of free available g-type resources 
at moment t,l < q < m. 

Problem (3.17-3.23) is a complicated stochastic optimization problem, which 
cannot be solved by applying efficient optimal algorithms (see Taha (1997)), 

3.4.3 The problem's solution 
We suggest to solve the general problem (3.17-3.23) as follows. Two hierar

chical optimization levels (cycles) are imbedded in the model. At the external 
upper cycle the problem (call it henceforth Problem I) is as follows: 

Determine optimal values 5, {Rq}, 1 < q < m, io minimize the average 
project's non-operational conditional costs subject to the chance constraint 

mm {C'P'\S, {Rq} + {p{p - p)} • K} (3.25) 
S,{Rq} 

and subject to restrictions 

Rqmin ^ Rq ^ Rqmaxi 1 < ^ < ^ , (3.26) 

^min S *-5 S ^max' (3.27) 

Here: 

• C^^^[S\{Rq}] is calculated via simulation in order to obtain a represen
tative statistics and by solving the internal optimization problem PII (see 
below); 

• p is the simulated statistical frequency to meet the project's due date on 
time, i.e., to satisfy F < D\ 
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• K is a very large number (in the course of experimentation we took it to 
be equal to 10 '̂̂ ); 

• P{x) is a zero-one function 

"f̂ * = { I otherwise. ( « « 

Thus, objective (3.25) automatically prohibits cases p < p, i.e., honors the 
chance constraint (3.18). 

To solve problem PI, we use a cyclic coordinate descent algorithm which 
minimizes(3.25)cyclically with respect to coordinate variables 5, {Rq} . Value 
S is optimized first, then Ri with fixed new (optimized) S, and so forth through 
Rm (honoring (3.26) and (3.27). The process is then repeated starting with 
S again (second iteration) until the relative difference between two adjacent 
iterations becomes less then the pregiven tolerance e > 0. Thus, realizing the 
algorithm results in undertaking a search in a (m +1)-dimensional space which 
isacombinationofvalues5and{i?g}, 1 <q< m, subject to restrictions (3.26-
3.27). After obtaining a routine search point (S', i ? i , . . . Rm) = X, the internal 
optimization problem PII at the lower level has to be applied. Thus, values 
Sj {Rq}^ 1 < g < m, are input values for problem PII. 

Problem PII is, in essence, a non-essential modification of the general prob
lem (see Gonik (1999)). The problem boils down to determine the quasi-
optimum resource delivery schedule T{i^^,j^^), I < ^ < HA , '^n order 
to minimize the average project duration by means of solving the resource 
constrained project scheduling problem via the knapsack resource reallocation 
problem. The general idea of the problem is as follows: 

Given the due date D, the starting moment S of the project's realization 
and the resource levels {Rq}^ 1 < ^ < ^ , determine resource delivery sche
dule T{i^^,j^^), in order to minimize the project's duration by reallocating 
B-resources among the project activities. Thus, the problem is as follows: 

min . {C\{T{^^J^^),S,{Rq}} + [(3{t-f)]^K} (3.29) 
{Sij},{T{i^^,j^^)} 

subject to (3.17-15.1). 
The model (see Sitniakovski (2002)) considers the detailed description of 

the heuristic algorithm for a modified version of problem (3.18-15.1, 3.29). 
The algorithm is, in essence, a unification of a coordinate search subalgorithm 
to develop a deterministic A-resource delivery schedule (see Gonik (1999), 
Sitniakovski (2002)) and a heuristic B-resource reallocation subalgorithm based 
on numerous applications of the knapsack resource reallocation problem in 
order to diminish the average project's duration. 
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The combination of 1 + /i^ + m optimized variables 5, {Rq], T{i^^, j^^) , 
which results in the minimal average value of the non-operational project's 
costs C\S^ {Rq}^T{i^^^j^^), has to be taken as the solution of the general 
problem (3.17-3,23). After determining beforehand (i.e., before the project 
starts at moment S) all optimized variables, the project has to be monitored 
with fixed and hired B-resources {Rq}^ 1 ^ ^ < ^ , and with the A-resource 
delivery schedule T{i^^^j^^), Such a methodological approach can be used 
both for monitoring real-time projects and by undertaking experimentation via 
simulation in order to testify the efficiency of the general problem's solution. 

Note that if solving problems PI and PII results in realizing, in the average. 
Ml and M2 search steps, correspondingly, and obtaining representative statis
tics to calculate C results in undertaking M3 simulation runs to monitor the 
project, then determining optimized parameters S, {Rq},T{i^^,j^^), requires 
in the average Mi • M2 • M3 simulation runs. Thus, we recommend to apply the 
newly developed control model for small- and medium-size network projects. 
In the case of large projects we suggest to reduce the amount of the project's 
activities via aggregation. 

3.4.4 Monitoring stochastic network projects via resource 
reallocation simulation model 

Values S, {Rq}, and T{i^^J^^), obtained by solving problems PI and PII, 
serve as the income parameters for the simulation model at the lower level. 

The simulation model (see Golenko-Ginzburg and Gonik (1997), Golenko-
Ginzburg and Gonik (1998)) comprises two submodels: 

• the knapsack resource constrained reallocation to allocate B-resources 
among the project activities at decision points and to simulate the project's 
realization; 

• the submodel to simulate the project's realization. 

The knapsack resource reallocation problem is realized at the so-called deci
sion points t when at least one activity {i^j^, j^^J^) utilizing B-resources is ready 
to be operated but the available amount of resources is limited. A competition 
among the activities has to be carried out in order to chose those activities which 
can be supplied with resources and which have to be operated first. Assume 
that at a certain moment t, 7 < /i^ activities (̂ u;̂ , jcj^), 1 < ^ < 7, are ready 
to be processed, but at least for one type of resource there is a lack of available 
B-resources. 

In case of fixed B-resource capacities r̂ ^ j ^ ,g, we suggest (see Golenko-
Ginzburg and Gonik (1997)) to solve the zero-one integer programming problem 
by determining zero-one integer values p^J, to maximize the objective 
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S.t. 

7 

E PiO ' ^iuBJ^B^ < Rq{t),l <q<m, (3.31) 

where p{iujB, JUB ) is the probability for activity {i^^^, jct;^) to be on the critical 
path in the course of a simulation run, and 

_ J 1 if activity (i^g, j^^) is supplied with resources 
1̂  0 otherwise. 

Thus, product W^ = p{i^^, j^j^) -/̂ (̂ ĉ s ^ J^JB ) is the value activity {i^^ , j,^^) 
contributes to the expected project's duration. The subset of activities which 
being supplied with resources, results in minimizing the project's duration, has 
to be chosen. All activities entering that subset start operating at moment t. 
Problem (3.30-3.32) is solved by a zero-one integer programming algorithm 
with a precise solution. Values p{iujB'>3^B) ^̂ ^ obtained via simulation, by 
taking into account values T{i^^Q^j^Q), 

The simulation submodel: 

1 determines decision points t to reallocate B-resources; 

2 singles out activities which are ready to be processed; 

3 reallocates B-resources among activities by solving the knapsack re
source reallocation problem (3.30-3.32); 

4 supplies activities with resources; 

5 simulates the actual time durations for activities which have been supplied 
with A-or B-resources; 

6 returns the utilized B-resources to the project's store at the moment an 
activity was completed; 

7 calculates values W^ for the knapsack reallocation problem at decision 
point t\ 

8 determines for all activities (z, j) their starting moments Sij by using 
(3.24). 
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3,5 Conclusions 
The following conclusions can be drawn from the study based on various 

numerical examples (see Gonik (1999), Sitniakovski (2002)): 

1 The developed resource supportability model can be used in project man
agement as a decision support model for planning and monitoring several 
stochastic network projects. The model has been successfully used for 
small and medium size projects of PERT type. 

2 The developed optimal planning parameters {Ei, Rq] (see 3.5) result in 
minimizing the resource average expenses for hiring and maintaining 
non-consumable resources. For a medium size network project with 
random activity durations, two cycle iterations resulted in a decrease of 
more than 50% in the initiated average expenses and were enough to 
realize the optimization process. 

3 The developed resource supportability model is suitable for resource 
scheduling in stochastic network projects, when processing certain activ
ities is based on delivering resources, e.g. in high technology projects, 
defense related industries, opto-electronics, aerospace, etc. 

4 Two resource delivery models are imbedded in the project scheduling: 

• for extremely costly and rare resources the corresponding resource 
delivery moments have to be predetermined and calculated before
hand, i.e. before the project actually starts; 

• for limited resources which are at the disposal of the project and 
have to be hired at a predetermined time. 

5 The objective of the resource delivery model are the total average ex
penses of the resource consumption within the planning horizon. Min
imizing the objective is solved via simulation, in combination with a 
cyclic coordinate descent method and a knapsack resource reallocation 
model. The developed algorithm performs well and enables the model's 
flexibility. 

6 The problems under consideration, as far as we are concerned, have not 
been solved yet by using other approaches. This is why it is impossible 
to undertake any computational comparison regarding the efficiency of 
the proposed heuristic models. However, it can be well-recognized that 
the scheduling problems comprise two sequential models: 

Model 1 centers on determining basic optimal parameters E,Rq, T{i^^, j ^^ ) , 
by means of a lookover algorithm which is a NP-complete problem (see 
Taha (1997), Garey and Johnson (1979)). Due to the high number of 
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combinations we reduce the computational amount by means of imple
menting a heuristic coordinate descent method. 

The obtained parameters serve as input values for Model 2 which is ac
tually a decision-making simulation model. The latter comprises either 
classical knapsack or zero-one integer programming models in combi
nation with heuristic decision-making rules. The computational time of 
the model's algorithm depends on the number of simulation runs. 
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Abstract Due dates are an essential feature of real projects, but little effort has been made 
in studying the RCPSP with due dates in the activities. This paper tries to bridge 
this gap by studying two problems: the TardinessRCPSP, in which the objective is 
total tardiness minimization and the DeadlineRCPSP, in which the due dates are 
strict (deadlines) and the objective is makespan minimization. The first problem is 
NP-hard and the second is much harder, since finding a feasible solution is already 
NP-hard. This paper has three objectives: Firstly to compare the performance 
on both problems of well-known RCPSP heuristics - priority rules, sampling 
procedures and metaheuristics - with new versions we have developed that take 
due dates into consideration. Secondly, to present an instance generator that can 
generate instances with loose, medium, and tight due dates for computational 
study. And, finally, to adapt the technique of justification to deal with due dates 
and deadlines and to show its profitability. 

Keywords: Project management; due dates; heuristics. 

4,1 The RCPSP with due dates 
The objective of the classical Resource Constrained Project Scheduling Prob

lem is to schedule the set of activities of a project in the minimum time and is 
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subjected to two types of restrictions. Firstly, some activities must end before 
others can start due to the precedence relations. Secondly, processing each ac
tivity requires several types of resources, which are available at a constant and 
fixed rate throughout the project duration. Nevertheless, the emergence of new 
restrictions in the practice forces the extension of the classical model. One of 
the most common additional restrictions is that some activities must end before 
a given due date. 

Due dates in project scheduling first appear in the literature in Vanhoucke et 
al (1999), where the WETPSP (weighted earliness-tardiness project scheduling 
problem) is solved. In this problem, only precedence restrictions are considered 
and the objective is to finish activities as near as possible to their due dates. There 
is a cost associated with both the earliness (an activity finishes before its due 
date) and the tardiness (an activity finishes after its due date) of each activity. 
In a later paper, Vanhoucke et al (2001) work with a generalisation of the 
WETPSP, the RCPSPWET (resource-constrained project scheduling problem 
with weighted earliness-tardiness costs), in which resource restrictions are also 
present. 

The interest for problems involving due dates in the field of machine schedul
ing dates back to 1955, in a paper by Jackson. Gordon et al (2002) survey the 
literature concerning the models involving machine scheduling and due dates. 
The large number of referenced papers shows that the machine scheduling prob
lems including due dates are of permanent interest. 

This paper deals with RCPSP and due dates and deals with two different 
problems. In the first problem (TardinessRCPSP) the objective is total tardiness 
minimization. In the second problem (DeadlineRCPSP) the due dates are strict 
(deadlines) and the objective is makespan minimization. The later problem is 
much harder, since finding a feasible solution is already NP-hard (Garey and 
Johnson (1979). 

Koulamas (1994) provides a unified framework for the total tardiness prob
lem by surveying the related literature in machine scheduling. 

One of the ways proposed in the literature in which deadlines can be mod
elled, namely by using maximum time lags. A maximum time lag 5 between 
the beginning of activities i and j means that j must begin at most 5 units of time 
after the beginning of i. Therefore, a maximum time lag between the source 
and the end of activity i is equivalent to imposing a deadline in this activity. 
Neumann et al (2003) describe several procedures for the RCPSP with time 
lags that can be applied to the DeadlineRCPSP. However, they cannot be used 
to solve the TardinessRCPSP 

TardinessRCPSP and DeadlineRCPSP are denoted by PS | prec \ T and PS 
I temp I Cmax respectively in the notation of Brucker et al (1999) or m, l\cpm\T 
and m, l\cpm, Sj \ Cmax in the notation of Herroelen et al (1998). Being 
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T — 2_\ ^^^(O^ ^3 + d>j — ddj) 

where n is the number of activities and Sj, dj and ddj the starting time, 
duration, and due date of activity j , respectively. 

The main objective of this paper is to compare the performance on both 
problems of well-known heuristics (priority rules, sampling procedures and 
metaheuristics) developed for the RCPSP with new versions we have develo
ped that take due dates into consideration. The computational study is carried 
out on instances we have generated by assigning due dates to the instances in 
the standard set j 120 (Kolisch et al (1995)) in such a way that instances with 
loose, medium, and tight due dates are obtained. Section 16.2 describes the new 
procedure developed to assign due dates in these instances. Sections 16.3 and 
16.4 deal with the TardinessRCPSP and DeadlineRCPSP, respectively. First of 
all, the performance of priority rules, sampling procedures and metaheuristics 
developed for the RCPSP is compared with new versions of the algorithms that 
take due dates into account. We have also adapted the technique of justification 
and studied whether the efficiency of this procedure (Vails et al (2005a)) is 
applicable to the newly studied problems. The results for the DeadlineRCPSP 
have been compared with those obtained by a state-of-the-art heuristic algo
rithm for the RCPSP with maximum time lags. Finally, a summary and some 
concluding remarks appear in Section 16.5. 

4,2 Generation of instances 
Our purpose is to generate test instances by introducing due dates in the 

standard set j 120 for the RCPSP generated using ProGen (Kolisch et al (1995)). 
The set j 120 consists of 600 projects with four resource types and 120 activi
ties. These instances were generated under a full factorial experimental design 
with the following three independent problem parameters: network complexity, 
resource factor, and resource strength. Details of these problem instances are 
given in Kolisch et al (1995) and Kolisch and Sprecher (1997). 

Vanhoucke et al (2001) assign due dates to projects to use them as test 
instances for the RCPSPWET. The due dates are generated as follows: first, 
they obtain a maximum due date for the project by multiplying the critical path 
length by a factor from the set {1, 1.25, 1.5, 1.75, 2, 2.25 and 2.5}. Then they 
randomly generate numbers between 1 and the maximum due date. Then the 
activities are ordered topologically. Finally, they sort these numbers and assign 
them to the activities in increasing order, i.e., activity 1 has the lowest due date, 
activity 2 the second lowest, etc. In a later work, Vanhoucke (2002) studies how 
to assign due dates to a particular project, basing the assignment on negotiation 
arguments between contractor and client. 
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Neumann et al (2003) assign due dates randomly, according to a uniform 
distribution in 

[0, [1.5 X ESn]], 

where ESi is the earliest starting time of i. Problem instances are generated 
in a computational study of a branch and bound algorithm for the RCPSPWET 
with maximum time lags. 

Our approach is different. We want to differentiate between: 

1 Instances with loose due dates, when it is easy to fulfil most of the due 
dates at the same time and only a limited subset of activities are going to 
be tardy in any schedule. 

2 Instances with tight due dates, when many activities are going to be tardy 
in any schedule. 

3 Instances in between, which we will put in the so-called medium set. 

Therefore we want to create three sets, loose, medium and tight. We will 
see later that some algorithms offer a different behaviour in these sets, thus 
supporting the partition we have made. 

Given an instance / in the j 120 set the due date assignment is made in such 
a way that Tardiness(S(I)) belongs to a prefixed interval [a, 6]. S{I) is the 
sequence generated by applying the parallel schedule generation scheme with 
the due date priority rule (the shorter the due date the larger the priority value). 
A formal description of the parallel schedule generation scheme can be found, 
e.g., in Kolisch et al (1995). For simplicity Tardiness(S(I)) will be denoted by 
Tardiness(I). 

After a preliminary study with instances belonging to j 120 we have associated 
the following intervals with each of the sets. If Tardiness(I) belongs to the 
interval [1, 199], [200, 999] or [1000, 9999] the instance / belongs to the loose, 
medium or tight set, respectively. 

An instance where Tardiness(I) is equal to 0 or more than 10000 is considered 
to fit in other sets which we could call very loose and very tight respectively. In 
the first case, the resulting instances are too easy for the algorithms considered 
in this paper. On the other hand, no due date assignment can transform many 
jl20 instances into instances in the very tight set. Furthermore, we believe that 
the inclusion of the very tight instances in the test set would not add further 
insights into the computational analysis. 

Given a jl20 instance / , the algorithm Generate_Instance(/, a, 6, e, nso/) 
generates an instance with Tardiness(I) in the interval [a, h] where e and nsol 
are parameters that will be introduced later. For simplicity, the generated in
stance will be also denoted by / . The algorithm makes calls to the function 
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DueJDates(/, a, (3^pc), which assigns due dates to the activities in the follow
ing manner: to a percentage pc of the activities the sum of their earliest finishing 
time EF plus a random integer number in [a, b] and to the rest of activities their 
EF. Figure 16.1 shows the algorithmic scheme of the DueJDates(/, a,/?,pc) 
function. 

Figure 16.2 shows the algorithmic scheme of Generate_Instance(/, a, 6, e, nsol). 
Step 1 ends the procedure if the impossibility of generating an instance with 
tardiness in [a, b] is discovered. Step 2 checks whether the procedure is able to 
generate instances with tardiness greater than a. If not, the instance DueJDates 
(7,0,0,1) is returned. 

In step 3, first the variable end is fixed as the minimum integer number for 
which the assignment ddi = EFi + end * e * CP results in Tardiness(/) = 0. 
Then, the procedure repeatedly calls the function Due_Dates to compute due 
dates for the 100% of the activities and considering all the intervals included in 
the interval [0, end * e * CP] with extremes multiples of e * CP. This variety 
of intervals leads to a variety of instances all with tardiness in the interval [a, b]. 
In some instances, the due dates of all activities are similarly tight, or loose; in 
others, the due dates are much tighter for some activities than for others. 

If step 3 fails to generate an appropriate instance, then step 4 tries to generate 
one by still computing due dates for all activities and considering intervals [0, h] 
with decreasing values of h, starting with h — e^ CP. 

If step 4 also fails, then step 5 tries to generate an appropriate instance by 
setting ddi — EFi + 1 to decreasing percentages of activities. 

We have applied this procedure to the 600 instances in j 120 with nsol = 10 
and e -: 0.05 and the intervals [1, 199], [200, 999], and [1000, 9999] thus 
obtaining 600, 600, and 470 instances in the loose, medium, and tight sets, 
respectively. For the other 130 instances, Tardiness(Due_Dates (1,0,0,1)) < 
1000 so they cannot lead to instances in the tight set. 

4.3 The TARDINESSRCPSP 

4.3.1 Priority rules 
The first attempts to heuristically solve the RCPSP were done by using prior

ity rules to decide the order in which activities are considered for the allocation 
of scarce resources. 

Since then, new and more elaborate priority rules have been proposed even 
when higher quality algorithms had been proposed (see Kolisch (1996), Oz-
damar and Ulusoy (1996), Thomas and Salhi (1997)). The reason is that they 
are still believed to be important (see Kolisch and Hartmann (1999)), since they 
can provide good initial solutions for other algorithms at a low computational 
cost. 
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for (i = I ',i ' 

{ 
Let p be a 
Let g' be a 
if p < pc 

set ddi 
else 

set ddi 
\ 

< n;i = z+1) 

L random numbei 
random integer 

= EFi + q 

= EFi 

s 
let / be the instance after assi 
return / 

Mn[0,l]. 
number in [a,/?]. 

gning the due dates 

Figure 4.1. Due_Dates(/, a, p, pc) function. 

Priority-rule based scheduling is made up of two components, a schedule 
generation scheme (SGS) and a priority rule. The basic SGSs are the Serial 
SGS (S-SGS) and the Parallel SGS (P-SGS). S-SGS yields active schedules and 
P-SGS yields non-delay schedules (see Kolisch et al (1995)). 

According to Kolisch et al (1995), who made experiments in j30, the best 
priority rule for the S-SGS is the LFT (Latest Finishing Time) rule, while WCS 
(Worst Case Slack) is the best for the P-PGS. MINSLK is another popular 
priority rule. We are going to observe the performance of these rules in the 
TardinessRCPSP and compare it to that of their 'natural' adaptations to the 
TardinessRCPSP, obtained by just changing LP to dd. 

The adapted rules are: 

1 The EDD rule, which schedules first the activities with the earliest due 
date; this rule can be applied with the S-SGS and P-SGS. This rule can 
be seen as an adaptation of the LFT rule and it is a well-known priority 
rule in machine scheduling. 

2 The MINSLK_dd rule. In each iteration of the S-SGS, the activity i with 
minimun slack ddi — ESTi is scheduled. ESTi is the earliest starting 
time of i if i is scheduled in this iteration. 

The WCS_dd rule, which is an adaptation of the WCS rule. WCS is used 
only with the P-SGS. At each schedule time t, it selects the activity i with 
minimum LFi — di — max{£'(j, i)/i , j eligible at t}. LFi is calculated 
as in the rule LFT, with backward recursion and the critical path length 
as the latest finishing time of the entire project. J5'(j, i) is the earliest 
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1 If (Tardiness(Due_Dates (7,0,0,1)) < a) no instance can be generated. 
STOP. 

2 If(Tardiness(Due_Dates (7,0,0,1)) = a) store 7. Go to 6. 

3 end = 1. 

while (Tardiness(Due_Dates (7, end * e, end * 6,1)) 7̂  0) end + + 

fov(i = 0\i < end\ i + +) 

for(j ^ z + 1; J < end; j + +) 

for(fc — 0 ; A; < nso/ ; /c + +) 

if(Tardiness(Due_Dates (7, i * e * CP, j * e * CP, 1)) G [a, 6]), 

store 7 

If at least one instance has been stored, go to 6. 

4 for(j = 0; e * (7P - j > 0;j + +) 

for (k = 0; k < nsol\ k + +) 

if(Tardiness(Due_Dates (7,0, e * C P - j , 1)) G [a, 6]), store 7. 

Go to 6. 

5 fov(percentage — 0.9; percentage > 0; percentage = percentage — 
0.1) 

for (fc =: 0 ; A: < 10 * n^o/; fc + +) 

if(Tardiness (DueJDates (7,1,1,percentage)) G [a, 6]), 

store 7. Go to 6. 

6 Choose one of the stored instances at random and return it. STOP. 

Figure 4.2. Generate_Instance(/, a^b^e^nsol). 

Starting time to schedule activity i if j is started at t. The WCS_dd rule 
uses ddi instead of LFi. 

Table 16.1 shows the results. The first column indicates the rule and the SGS 
used (P: parallel and S: serial). The three remaining columns show the average 
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total tardiness for each of the three considered sets. The best result obtained in 
each set is shown in bold. The position of each procedure in the relative ranking 
for each set is shown in parenthesis. 

Table 4,1, Average total tardiness and ranking with priority rules. 

LFT+S 
LFT+P 
WCS+P 
EDD+S 
EDD+P 
MINSLK_dd+S 
WCS_dd+P 

loose set 
367 
182 
208 
246 
73 

663 
87 

(6) 
(3) 
(4) 
(5) 
(1) 
(7) 
(2) 

medium set 
802 
512 
556 
808 
498 

1269 
520 

(5) 
(2) 
(4) 
(6) 
(1) 
(7) 
(3) 

tight set 
2060 
1633 
1723 
2224 
1742 
2803 
1810 

(5) 
(1) 
(2) 
(6) 
(3) 
(7) 
(4) 

It seems that, as in the RCPSP, the Parallel SGS behaves better than the Serial 
SGS, because LFT and EDD are better with Parallel. Besides, the two worst 
(best) priority rules in every set use the Serial (Parallel) SGS. 

The best rules in the loose set are EDD+P and WCS_dd+P, the best in the 
medium set are WCS_dd+P and LFT+P, whereas the best rules in the tight set 
are LFT+P and WCS+P 

Concerning the use of the Serial SGS (LFT+S, dd+S and MINSLK_dd+S), 
the adapted rule EDD is the best in the loose set, whereas LFT+S is the best in 
the medium and tight sets. 

It seems that the best adapted rules outperform the RCPSP rules in the loose 
set, and are at least as good as those in the medium set. However, in the tight 
set the best RCPSP rules are better than the adapted ones. This may be so 
because the RCPSP rules find an early beginning for all the activities, since 
they are good in minimising the makespan. Adapted rules, such as EDD+P and 
WCS_dd+P, seem to be better in finding a very early beginning for a subset of 
activities. Therefore they are better in the first two sets, where only a subset of 
activities have problems with their due dates. 

We can see that some algorithms perform differently depending on the set. 
For instance, there is a big difference between WCS_dd+P and LFT+P, in favour 
of the former in the loose set and against it in the tight set. This behaviour of the 
algorithms supports the partition of instances we have made. The differences 
among sets observable in the following sections also corroborate the partition, 
but we will not repeat the argument again. 

4,3,2 Sampling procedures 

Sampling methods are natural generalisations of priority rules. They gen
erally use one priority rule and one SGS, and calculate different schedules by 
biasing the selection of the priority rules through a random device. We are go-
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ing to use the regret-based biased random sampling, which is the best RCPSP 
sampling method (see Kolisch et al (1995), Schirmer and Riesenberg (1997)). 
Specifically, we use the best five priority rules according to Table 16.1: LFT+S, 
LFT+P, WCS+P, EDD+P and WCS_dd+R B+priority rule denotes the proce
dure regret-based biased random sampling with the priority rule. 

We are also going to run the procedures Random-t-S and Random-HP. They 
simply randomly generate activity lists and then schedule them with the S-SGS 
or the P-SGS, respectively. The output of the algorithm is the best schedule 
obtained. With these algorithms we can analyse the quality of active and non-
delay schedules. We may also use them to assess the quality of the other 
algorithms according to how much the other algorithms outperform them. All 
algorithms will be run until 5000 schedules are generated. This is usually the 
upper limit imposed when comparing state-of-the-art heuristic algorithms for 
the RCPSP Table 16.2 shows the results. 

Table 4.2. Average total tardiness and ranking with sampling procedures. 

Random+S 
Random+P 
B+LFT+S 
B+LFT+P 
B+WCS+P 
B+EDD+P 
B+WCS_dd+P 

loose set 
101 
28 

104 
33 
35 
17 
18 

(6) 
(3) 
(7) 
(4) 
(5) 
(1) 
(2) 

medium set 
493 
305 
446 
287 
298 
282 
292 

(7) 
(5) 
(6) 
(2) 
(4) 
(1) 
(3) 

tight set 
1723 
1385 
1598 
1321 
1353 
1368 
1398 

(7) 
(4) 
(6) 
(1) 
(2) 
(3) 
(5) 

As happens in the RCPSP (see Kolisch et al (1995)), priority rules which 
perform good for single-pass approaches do so for biased random sampling 
approaches and vice versa. Besides, we obtain approximately the same ranking 
as for the single-pass case. Again, the P-SGS performs much better than the 
S-SGS. This is also true in the case of the RCPSP, at least in j 120 (see Kolisch 
and Hartmann (1999)). One of the most astonishing aspects of the table is the 
behaviour of Random+P, especially in the loose set. It outperforms all the other 
samplings but two, B+EDD+P and B+WCS_dd+P. In the other two sets it is 
worse than most of the rest of algorithms, but the difference is not as large as it 
was expected. 

4.3.3 Metaheuristic procedures 
In recent years, as in many other optimisation problems, several metaheuristic 

algorithms have been developed for the RCPSP, having outperformed other 
types of algorithms. One of the most important of these algorithms is the activity 
list genetic algorithm of Hartmann (1998), which has been the best heuristic 
algorithm for the RCPSP, until recently. It outperforms, among others, the best 
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sampling procedures (see Kolisch and Hartmann (1999)). We have programmed 
this algorithm and run it with a limit of 5000 schedules. We have changed only 
the evaluation of the fitness of a solution; in the original algorithm, it was the 
makespan, now, it is the total tardiness. The results can be seen in the third line 
of Table 16.3. The second line of the table contains the best results so far, those 
obtained by the sampling procedures. 

Table 4,3. Average total tardiness. 

loose set medium set tight set 
best results so far 17 282 1321 
Hartmann 30 272 1292 

As was predictable, the Hartmann algorithm obtains better results in the 
medium and tight sets. However, the difference is not as great as it could 
be expected. Besides, its results in the loose set are worse than the best three 
samplings (B+EDD+P, B+WCS_dd+P and Random+P). Taking everything into 
account, it seems that the performance of the Hartmann algorithm is not as good 
as in the RCPSP. One of the reasons for the bad performance in the loose set 
seems to be the initial solutions, which are obtained with B+LFT+S. As we 
have seen before, the non-delayed schedules are much better on average that 
the active schedules. Bearing this in mind, we have changed the procedure to 
generate the initial population in the Hartmann algorithm, allowing it to employ 
B+EDD+P to obtain initial solutions. Table 16.4 contains the results obtained. 
The percentages of columns 1-2 refer to the % of solutions calculated by each 
procedure written at the head of these columns. 

Table 4.4. Average total tardiness with Hartmann algorithm changing the initial solutions. 

B+LFT+S B+EDD+P loose set medium set tight set 
T00% 0% 30 272 1292" 
0% 100% 11 245 1297 
50% 50% 11 238 1271 

The best algorithm, which we will call Hartmann(2) from now on, is the one 
that calculates the 50% of the solutions of the initial population with B+EDD+P 
and the other 50% with B+LFT+S. Note that the number of solutions that this 
algorithm calculates with the P-SGS is 50, whereas the samplings with this SGS 
calculate 5000. So, the genetic algorithm is capable of taking advantage of these 
few non-delay solutions - and the active solutions calculated with LPT - to finally 
provide a better solution. Hartmann(2) improves the best heuristic averages by 
54.5%, 18.5% and 3.93% in the loose, medium and tight set respectively. 
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4.3.4 The justification 

The justification (by extremes) of a schedule S to the right (left) consists of 
scheduling every activity as late (early) as possible in decreasing (increasing) 
order of their ends (beginnings) without changing the schedule period of the 
other activities. This technique was introduced in 1964 by Wiest and has not 
been used to its full potential until recently. It is a very easy and fast procedure 
that never increases the makespan of a schedule when applied to it and in many 
cases shortens it. It has been used, among others, by Li and Willis (1992), 
and Tormos and Lova (2001). Vails et al (2005a) have proved that it can be 
easily incorporated into a wide range of algorithms for the RCPSP, increasing 
the solution quality and maintaining the number of schedules calculated. The 
justification was able to improve well-known priority rule based procedures 
and random sampling methods, as well as to transform several middle quality 
heuristic algorithms into algorithms that outperform state-of-the-art heuristic 
algorithms for the RCPSP 

We want to check whether the justification (by extremes) can also improve 
algorithms for the TardinessRPCPS. We have added it to the algorithms we 
have seen until now, so that the double justification (DJ) is applied to every 
schedule calculated by the original algorithm. The DJ of a schedule S consists 
of, firstly, justifying S to the right, and then justifying the resulting schedule to 
the left. We still impose the limit of 5000 schedules in every algorithm - 1666 
schedules generated by the original algorithm and 3332 schedules generated by 
DJ - except in the case of the single-pass algorithms. The DJ versions of these 
algorithms calculate three schedules instead of one. It is important to remark 
that the application of DJ to a schedule in the TardinessRCPSP can worsen its 
evaluation, contrary to what happens in the RCPSP. As an example. Figure 4.3 
shows a project and two feasible schedules S and S'. There is only one type 
of resource (K — 1) and vn is the quantity of the resource required by the 
activity i, S' is the result of double justifying S. If activity 6 has assigned a 
due date equal to 4, the total tardiness is 0 before justifying and 1 after DJ. The 
makespan is one unit less after DJ. This is the first application of the justification 
to a problem with an objective function different from the makespan. 

Table 16.5 contains the results of the best algorithms we have seen up to now, 
with and without DJ, as well as the improvement percentage that DJ produces. 
This percentage is calculated as 

. . .. average(algorithm)—average(algorithm+DJ) 
Average total tardmess — j - ^^, 

average(algoritnm + DJ) 

DJ improves all the single-pass algorithms in all the sets. These improve
ments are large in some cases, even in cases of good priority rules. DJ greatly 
improves the sampling methods that use the S-SGS, which are significantly 
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Figure 4.3. Schedules before and after DJ 

Table 4.5. Average total tardiness with and without double justification and the improvement. 

LFT+S 
LFT+P 
WCS+P 
EDD+P 
WCS_dd+P 
Random+S 
Random+P 
B+LFT+S 
B+LFT+P 
B+WCS+P 
B+EDD+P 
B+WCS-dd+P 
Hartmann 
Hartmann(2) 

367 
182 
208 
73 
87 
101 
28 
104 
33 
35 
17 
18 
30 
11 

loose set 
+DJ 
311 
170 
194 
61 
69 
70 
30 
89 
34 
36 
18 
19 
31 
12 

imp. 
18% 
7% 
7% 
20% 
26% 
44% 
-7% 
17% 
-3% 
-3% 
-6% 
-5% 
-3% 
-8% 

medium sel 

802 
512 
556 
498 
520 
493 
305 
446 
287 
298 
282 
292 
272 
238 

+DJ 
715 
488 
531 
423 
448 
379 
298 
389 
285 
294 
272 
281 
240 
213 

imp. 
12% 
5% 
5% 
18% 
16% 
30% 
2% 
15% 
1% 
1% 
4% 
4% 
13% 
12% 

tight set 

2060 
1633 
1723 
1742 
1810 
1723 
1385 
1598 
1321 
1353 
1368 
1398 
1292 
1271 

+DJ 
1928 
1592 
1680 
1612 
1677 
1512 
1371 
1482 
1311 
1342 
1332 
1361 
1178 
1179 

imp. 
7% 
3% 
3% 
8% 
8% 
14% 
1% 
8% 
1% 
1% 
3% 
3% 
10% 
8% 

worse than those that use P-SGS. These good sampling procedures are not sig
nificantly affected positively by DJ. In fact, B+EDD+P and B+LFT+P perform 
better without DJ, since the losses in the loose set are bigger than the amount of 
improvement in the other sets. It could be thought that DJ is only useful for the 
most basic algorithms, but this is not the case. Although DJ worsen Hartmann 
and Hartmann(2) in the loose set, the improvements in the medium and the tight 
sets make up for the losses. 

Several remarks should be made: 

1 The results in the medium and tight set are never worse when DJ is 
applied. In section 3.5 we will give a possible explanation for this. 
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2 In the Hartmann algorithms, S is changed to DJ(S) only if DJ(S) is bet
ter. This might be an important issue because the algorithm performs 
differently if DJ(S) always replaces S. We have chosen the first approach 
because it yields better results in this case. 

3 We have also calculated the percentage of solutions improved and wors
ened by DJ (and the amount of improvement) in each set for the random 
samplings. Table 10.6 offers this information. 

Table 4.6. Effect of DJ on randomly generated schedules. 

loose set medium set tight set 
%imps %wor avimp %imps %wor avimp %imps %wor avimp 

Random+S 68 22 258 91 8 91 99 1 18 
Random+P 22 45 77 50 46 43 56 44 6 

where, 
% imps = percentage of schedules improved by DJ. 
% wor = percentage of schedules worsen by DJ. 

^ f{S)-f{DJiS)) 
Z^Selmp^iDJ) f{DJ{S)) 

""^'"^ = \Imp*{DJ)\ 

where Imp * (DJ) = {S/f{DJ{S)) < f{S),fiDJiS)) + 0} and / = 
Tardiness. 

The effect of adding DJ to Random+S and Random+P is quite different. 
First of all, many Random-S schedules are improved by the DJ, whereas the 
percentage drops to 22-56% in the case of Random-P schedules. Besides, the 
average improvement among the improved solutions in the Random-S case 
is more than twice that of the Random-P case. Moreover, the percentage of 
schedules worsened by DJ is several times bigger in the latter case. Anyway, 
the figures for the Random-P schedules are very good, especially if we bear in 
mind that DJ does not improve much the Random+P procedure. 

There are however similarities in the behaviour of the DJ in both sampling 
methods. As the difficulty of the instances increases, the percentage of im
provements increases, whereas the average improvement among the improved 
solutions decreases. 

4.3.5 Justification by eligibles 
The justification by extremes has been proved to decrease the makespan of a 

great percentage of schedules. The justification changes the beginnings of many 
activities, some of them are advanced and others are postponed. However, the 
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total amount of units that the former activities advance is bigger (in general) that 
the amount in which the latter are postponed. This is endorsed by an experiment 
carried out by Ballestin (2002). In each of the 600 instances of j 120, the DJ was 
applied to 1666 random active schedules (so that no more than 5000 schedules 
were calculated in total). In every of the 600*1666 schedules, the following 
relative improvement was calculated, 

YH=:1 i^i ~ DJ{S)i) J2ieAdv{S) i^i ~~ iePost{S) 

where Si is the beginning of activity i in the initial schedule S, DJ{S)i is 
the beginning of activity i after the DJ, Adv(S) (Post(S)) is the set of activities 
that are advanced (postponed) after the DJ, The average of these ratios was 
6.86%. 

In the medium and tight sets, there are usually many tardy activities in every 
schedule S. Therefore it is easy for some or many of them to belong to Adv(S). 
Although some of them may also belong to Post(S), the bigger cardinality of 
Adv(S) and the more units that Adv(S) activities are moved mean that many 
schedules are improved with respect to total tardiness objective function after 
the DJ. In fact, the percentage is so big that algorithms with DJ outperform 
those without it. 

In the loose set, there are few tardy activities in most schedules. It is easier 
than in the previous cases that Adv(S) does not contain any of them. In this 
situation, if Post(S) contains some tardy activities, DJ(S) will have a worse total 
tardiness evaluation than S, no matter how positive the above ratio is. We have 
indeed seen that the percentage of schedules worsened by D J in the loose set 
is the biggest. 

It is obvious that with the justification by extremes we may be advancing 
and/or postponing the 'wrong' activities, i.e., advancing non-tardy activities, 
postponing tardy ones or changing non-tardy activities into tardy ones. Thus, 
we obtain a worse solution, or not as good as it could be. For these reasons, it 
seems clear that we may obtain better results if we adapt the justification we use 
for the problem at hand, changing the order in which activities are justified. For 
example, when we are justifying to the left, it seems sensible to justify first the 
tardy activities, to try to advance them and hence improve the objective function. 
Unfortunately, it is not as easy as that, because justifying them first might 
mean not finding gaps in the schedule to move them at all. Anyway, it seems 
interesting to study a more general type of justification than the justification by 
extremes, the justification by eligibles (see Vails et al (2006)). The justification 
by eligibles of a schedule to the right (left) consists of scheduling every activity 
as late (early) as possible in a specified order. In order to completely specify the 
justification by eligibles, we only need to specify this order, the rule to choose 
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the activity that is going to be justified either to the right or to the left in each 
iteration. The activity to be justified is selected among the so-called eligible 
activities. When justifying to the right (left), an activity is eligible if all its 
successors (predecessors) have been already justified. In all rules we are going 
to justify each activity once, even if later on it could be further justified. With 
this condition we can still count each justification of a schedule as one schedule, 
since in total we make n activity justifications. Therefore we can still impose 
the limit of 5000 schedules as a basis to compare the algorithms. We will test 
the following rules: 
Justification to the right: 

• Rl: max{5i + di^i eligible} 

• R2: max{(i(ii,i eligible} 

• R3: max{nei6;_en(i^,i eligible} 

• R4: maxj^i -\- di^i eligible and non-tardy} 

• R5: iRax.{new-endi^ i eligible and non-tardy} 

where new-endi is the end of activity i if it was justified in the current iteration. 
Justification to the left: 

• LI: mm{5i,i eligible} 

• L2: min{ddi — di^i eligible} 

• L3: rnin{newJbegi^i t\\g\\)\t} 

• L4: min{si^ i eligible and tardy} 

• L5: min{newJ)egi^i eligible and tardy} 

• L6: max{impi^ i eligible and with the minimun new-begi} 

• L7: max{impi^ i tVigihlt} 

where newJbegi is the beginning of activity i if it was justified in the current 
iteration and impi is the improvement the total tardiness function would have 
xfi began in newJbegi, 

Notice that the justification by eligibles with the combination LRl, RRl is 
equivalent to the justification by extremes. 

If we combine these rules and use them in the Hartmann(2) algorithm, we 
obtain the results shown in Table 10.7. 

The results are very rule dependent. Hartmann(2) with the combination Rl-
L6 is capable of outperforming the best results so far in the medium and tight 
sets, without worsening the results in the loose set. 
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4,4 The DEADLINERCPSP 
From now on we are going to deal with the DeadlineRCPSP, the version of the 

problem in which due dates take the form of strict restrictions for the activities. 
That is, we consider the RCPSP with n added constraints, si + di < ddi, 
i ~ 1 , . . . , n. Note that the objective of this problem is makespan minimization. 

The most important difference between this problem and the TardinessR-
CPSP is that the first one may have no feasible solutions (and even the feasi
bility problem is NP-hard) whereas the second one is always feasible and it is 
very easy to find a feasible solution to it. Therefore, one way to evaluate the 
quality of an algorithm for the DeadlineRCPSP is the percentage of instances 
for which it obtains a feasible solution. We will call this iht first measure of 
quality. However, it should also be taken into account how well an algorithm 
minimises the makespan in the instances where it finds feasible solutions. We 
will call this measure the second measure of quality. Both measures should be 
taken into account to compare algorithms. 

Given the unfeasibility of most instances in the medium and tight sets we have 
restricted the computational results to instances in the loose set. We have not 
considered priority rules in this study, as they rarely produce feasible solutions. 

4.4.1 Sampling procedures and the Hartmann algorithm 
First of all, we are going to compare the results of the sampling procedures 

and the Hartmann algorithms in the DeadlineRCPSP. In Table 10.8 we can 
observe the number of instances for which these algorithms obtain a feasible 
solution. The number of instances for which at least one of the algorithms 
considered in this paper has obtained a feasible solution is 399. The best result 
obtained is shown in bold. The position of each procedure in the relative ranking 
is shown in parenthesis. 

Table 4.8. Number of feasible solutions and ranking. 

# feasible solutions (ranking) 
Random+S 
Random+P 
B+LFT+S 
B+LFT+P 
B+WCS+P 
B+EDD+P 
B+WCS_dd+P 
Hartmann 
Hartmann(2) 

55 
210 
44 

148 
143 
281 
280 
187 
322 

(8) 
(4) 
(9) 
(6) 
(7) 
(2) 
(3) 
(5) 
(1) 
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Table 4.9. Average deviation in percentage with respect to the best solution known. 

B+WCS+P 
B+LFT+P 
Hartmann 
Random+P 
B+WCS_dd+P 
B+EDD+P 
Hartmann(2) 

113 
6.14(3) 
6.33 (4) 
4.96 (1) 
7.05 (7) 
6.86 (6) 
6.85 (5) 
5.41 (2) 

123 

6.55 (3) 
5.01 (1) 
7.23 (6) 
6.86 (4) 
6.86 (4) 
5.51 (2) 

152 

5.21 (1) 
7.81 (5) 
7.18(4) 
7.07 (3) 
5.63 (2) 

199 

7.96 (4) 
7.13(3) 
6.96 (2) 
5.73 (1) 

252 

6.93 (3) 
6.85 (2) 
5,59 (1) 

268 

6.87 (2) 
5.55 (1) 

The worst algorithms are B+LFT+S and the Random+S algorithm, which 
obtain very few feasible solutions. The best algorithms are Hartmann(2), 
B+EDD+P and B+WCS_dd+P. These results are in accordance with those ob
tained in the loose set in the previous section. 

To compare some algorithms with respect to the second measure we have 
to restrict ourselves to the instances where these algorithms obtain feasible 
solutions. We proceed as follows. We compare all algorithms but the two 
worst ones, 7 in total. We make 6 comparisons; in the first one we compare all 
7, then the 6 best, then the 5 best, etc. This way we will be able to have several 
comparisons between most algorithms without having to compare them in pairs. 
We have ordered the algorithms according to the number of instances for which 
they obtain feasible solutions. The results are shown in Table 10.9 where the 
numbers in italics stand for the number of instances taken into account to make 
the comparisons. The results show the average deviation in percentage with 
respect to the best solution known for these instances. To obtain the deviation 
at an instance i from a particular algorithm we calculate the quotient 

alg(i) — best(i) 

best(i) 

where alg(i) is the makespan obtained by this algorithm and best(i) is the best 
known solution. The best known solution has been obtained considering all the 
algorithms in this paper. The numbers in parenthesis show the ranking. 

The most important conclusion is that the ability to obtain feasible solutions 
does not imply the ability to minimise the makespan. We can notice several 
things: 

1 The ranking of the algorithms is essentially the same in all columns. 

2 The worst algorithm is Random+P though it is in a middle position in the 
ranking in relation to the first measure. 

3 The best algorithm in the first three columns is Hartmann. However, 
where more instances are included into the comparison, presumably more 
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Table 4.10. Algorithm comparison with and without double justification. 

Random+S 
Random+P 
B+LFT+S 
B+LFT+P 
B+WCS+P 
B+EDD+P 
B+WCS_dd+P 
Hartmann 
Hartmann (2) 

sols. 
55(8) 

210(4) 
44(9) 

148 (6) 
143 (7) 
281 (2) 
280 (3) 
187(5) 
322 (1) 

sols. 
+ D J 
81(8) 

186(4) 
57(9) 

153(6) 
148 (7) 
272 (2) 
264 (3) 
183 (5) 
327 (1) 

diffe
rence 

26~ 
-24 
13 
5 
5 

-9 
-16 
-4 
5 

sols 
in both 

48~ 
172 
33 

127 
128 
256 
253 
147 
205 

avr_dev 
9.29 
7.66 
8.54 
6.25 
6.32 
6.81 
6.84 
5.34 
5.74 

avr_dev 
199 
5.90 
4.24 
4.92 
5.34 
5.56 
5.57 
2.30 
3.19 

difficult ones, Hartmann(2) is the best. Considering both measures of 
quality, it seems that Hartmann(2) is the best algorithm. 

4.4.2 The justification 

The DJ (by extremes) has been successful in most algorithms for the Tar-
dinessRCPSP. However, the set where it has been less successful has been the 
loose set, precisely the one used in the computational study for the DeadlineR-
CPSP. Nevertheless, the DJ is very useful in the RCPSP when minimising the 
makespan. So, it is not clear in advance how its application to the DeadlineR-
CPSP is going to work. Table 4.10 compares the algorithms with and without 
DJ, For any algorithm given in column 1, the number of instances where this 
algorithm (this algorithm with DJ) obtains a feasible solution is given in col
umn 2 (3). The ranking is shown in parenthesis. The fourth column displays 
the difference between columns 2 and 3. Column 5 shows the instances where 
both algorithms obtain a feasible solution. Column 6 (7) contains the average 
deviation in percentage between the makespan calculated by the algorithm (al
gorithm + DJ) with respect to the best solution known. Only instances where 
both algorithms obtain a feasible solution have been considered. • 

The DJ improves 5 algorithms and worsens 4 with respect to the first measure 
of quality. If we consider the second measure, all algorithms are improved if the 
DJ is applied. So, globally speaking, the DJ is useful in the DeadlineRCPSP. A 
very important fact is that DJ improves the best heuristic algorithm, Hartmann 
(2) in both measures. So, DJ is also able to improve good (metaheuristic) 
algorithms. 

In Table 4.11 we compare with respect to the second measure all algorithms 
considered in Table 4.10 but the two worst according to this table. The meaning 
of the entries in Table 4.11 is the same as in Table 10.9. 
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Table 4.1L Average deviation in percentage with respect to the best solution known. 

B+WCS+P+DJ 
B+LFT+P+DJ 
Hartmann+DJ 
Random+P+DJ 
B+WCS-dd+P+DJ 
B+EDD+P+DJ 
Hartmann(2)+DJ 

114 
5.47 (6) 
5.10(4) 
2.14(1) 
5.70(7) 
5.00(3) 
5.17(5) 
2.63 (2) 

119 

5.18(5) 
2.13(1) 
5.76(6) 
5.02(3) 
5.17(4) 
2.67(2) 

140 

2.20(1) 
6.01 (5) 
5.35(3) 
5.42(4) 
2.80(2) 

179 

5.94(4) 
5.22(3) 
5.21(2) 
3.04(1) 

245 

5.50(3) 
5.42(2) 
3.42(1) 

258 

5.48 (2) 
3.42(1) 

Table 4.12. Number of feasible solutions and ranking. 

combinations of rules Rl-Ll R1-L6 R3-L3 R2-L3 R4-L2 R4-L6 
Hartmann + DJ 183(12) 282(9) 231(11) 277(10) 304(8) 336(5) 
Hartmann(2) + D J 327(7) 342(3) 341(4) 344(2) 333(6) 348(1) 

The analysis of Table 4.11 leads to the same conclusions as those obtained 
from Table 10.9. 

4,4.3 Justification by eligibles 
We have applied the DJ by eligibles to the Hartmann and Hartmann(2) 

algorithms. We have chosen 6 of the best combinations of rules for the loose 
set according to Table 10.7 including the combination Rl-Ll (DJ by extremes). 
Table 4.12 contains the results obtained concerning the first measure and the 
ranking. 

We can observe that Hartmann(2) + DJ outperforms Hartmann -f- DJ for all 
combinations of rules; the justification by eligibles outperforms the justification 
by extremes, and the best algorithm is Hartmann(2)+D J R4-L6 as far as the 
first measure of quality is concerned. 

Table 4.13 takes into account the second measure, for the best 10 algorithms 
of the 12 considered in Table 4.12. 

The best heuristic algorithms for the second measure are Hartmann+DJ Rl-
L6, Hartmann+DJ R4-L6, Hartmann(2)+DJ R1-L6 and Hartmann(2)+DJ R4-
L6 if we do not take into account the fact that different instance sets are con
sidered when evaluating the algorithms. The rest of the algorithms are not 
attractive, because Hartmann(2) + DJ R4-L6 improves them in both measures. 

We have compared these 4 algorithms in twos. Table 4.14 shows the results. 
Numerical entry ij shows the percentage average deviation of the makespan 
of the algorithm in column j with respect to that of the algorithm in row i. 
The average is computed over the set of instances for which algorithms obtain 
feasible solutions. 
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Table 4.14, Algorithm comparison. 

H+DJ R1-L6 
H+DJ R4-L6 
H(2)+DJR1-L6 
H(2)+DJ R4-L6 

H+DJ 
R1-L6 

-1.03% 
-0.98% 
-1.44% 

H+DJ 
R4-L6 
1.12% 

0.04% 
-0.42% 

H(2)+DJ 
R1-L6 
1.05% 
0.03% 

-0.43% 

H(2)+DJ 
R4-L6 
1.56% 
0.46% 
0.51% 

Table 4.15. Justification by eligibles versus justification by extremes. 

sols 
+DJ 

sols.+DJ 
eligibles 

sols, 
in both 

avr_dev 
DJ 

avr_dev 
eligibles 

Hartmann 183 282 176 2.18 0.90 
Hartmann(2) 327 342 309 3.27 2.06 

It is clear that algorithm Hartmann+DJ R1-L6 outperforms the other algo
rithms and algorithm Hartmann(2)-t-DJ 4-6 is worse than the other three again, 
if any consideration to the first quality measure is disregarded. 

In Table 4.15, we compare the algorithms Hartmann and Hartmann(2) with 
justification by extremes and with justification by eligibles with the combination 
R1-L6. The first column shows the considered algorithm. The second and 
third columns show the number of instances for which the algorithms with 
justification by extremes and by eligibles obtain feasible solutions respectively. 
The number of instances where the two types of justification reach a feasible 
solution is displayed in the fourth column. The two last columns show the 
average deviation with respect to the best solution known. We can observe that 
the algorithms with justification by eligibles outperform the algorithms with 
justification by extremes with respect to both measures of quality. 

4.4.4 Comparison with a state-of-the-art GA 
In section 2.8 of Neumann et al (2003), several procedures for the RCPSP 

with minimum and maximum time lag temporal constraints are compared. Tak
ing into account all the instances considered, the best algorithm in quality is a 
genetic algorithm (GA_Max), followed by a tabu search. As already commented 
upon in the introduction, due dates can be modelled as temporal constraints with 
maximum time lags. In order to compare our results with GAJVIax, we have 
programmed it and run it in the loose set. Our codification reaches different 
results than those obtained by the authors. In their computational experiment 
4 instance sets with 90 instances each are considered, with 10, 20, 50 and 100 
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Table 4.16. Number of feasible solutions. 

Algorithm GA_Max H-HDJ H+DJ 
1-6 4-6 

# feasible solutions 153 

Table 4.17. Algorithms! 

GA_Max 
H+DJ 1-6 
H+DJ 4-6 
H(2)+DJ 1-6 
H(2)-HDJ 4-6 

comparison. 

GA_Max 

4.36% 
3.99% 
3.32% 
3.43% 

282 336 

H+DJ H+DJ 
1-6 4-6 

-4.04% -3.73% 

H(2)+DJ 
1-6 
342 

H(2)+DJ 
1-6 

-3.11% 

H(2)+DJ 
4-6 
348 

H(2)+DJ 
4-6 

-3.22% 

activities respectively. An average deviation with respect to the lower bound of 
6.9% is obtained, whereas we reach 7.2%. 

GA_Max is, up to a certain point, a generalisation of the GA of Hartmann. 
Instead of using one population, GAJVIax works on several populations or 
islands (see, e. g., Dorigo and Maniezzo (1993), each of them created by 
sampling with a different priority rule. Each subpopulation evolves separately, 
until, after a given number mig of iterations, an individual migrates from one 
island to another. Another difference is the use of the one as well as the two-
point crossover - an adaptation of those in order not to break the cycles that 
arise from having minimum and maximum time lags. 

GA_Max performs a pre-processing phase before the proper evolution algo
rithm starts and then calculates at most 5000 schedules. It has two other ways 
of stopping the search, if several iterations have passed without improving the 
best solution, or if no feasible solution has been found in the first iterations. 
We have skipped these stopping criteria, so that the algorithm needs more time 
on average, but it is capable to obtain a feasible solution in more instances 
and better solutions. Since it generates a maximum of 5000 schedules, we can 
compare this algorithm with ours, although the pre-processing phase may need 
a significant amount of time. 

The following tables compare GAJVIax with our best algorithms. 
We can see that any of the four algorithms with justification by eligibles 

outperforms GAJVIax with respect to both quality measures. 

4.5 Conclusions 
In this paper we have studied two extensions of the RCPSP when due dates 

and deadlines are considered. The paper centres on the application of well-
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known RCPSP heuristics (and their adaptations) to both problems. Specifi
cally, we have tested one or more representatives of three of the most important 
RCPSP heuristic types: priority rules, sampling procedures and metaheuristics. 
Also, we have analysed the effect of the double justification, nowadays used in 
most heuristics for the RCPSP. The double justification can worsen solutions 
for the TardinessRCPSP and make unfeasible a given feasible solution for the 
DeadlineRCPSP. Nevertheless, we have been able to outperform previous re
sults through its incorporation. To further increase the improvements obtained 
with the application of double justification we have also applied a more general 
type of justification -justification by eligibles - recently proposed by the authors 
of this paper (Vails et al (2006)). The computational results show that the jus
tification by eligibles outperforms the type of justification applied up to now -
at least in these two newly studied problems. With this type of justification we 
have been able to outperform the results of state-of-the-art algorithms that can 
be applied to the DeadlineRCPSP. 

We have also proposed an instance generator that assigns due dates to RCPSP 
instances, in particular to those in the standard set j 120. It is able to generate 
three types of instance sets: (1) the loose set, with instances where it is easy 
to fulfil most of the due dates, (2) the tight set, with instances where many 
activities are going to be tardy in any schedule, and (3) the medium set, with 
instances in between. The different performance of the tested algorithms on 
the three sets supports the partition we have made. 
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Abstract This paper presents a branch-and-cut based exact solution algorithm for schedul
ing of projects with variable intensity activities connected by feeding precedence 
constraints the objective being to minimize the violation of resource constraints. 
Feeding precedence constraints allow some overlap in the execution of the con
nected activities and capture the flow of material or information between them. 
New polyhedral results are obtained and computational results are summarized. 

Keywords: variable intensity activities, branch-and-cut. 

5.1 Introduction 
Project scheduling with variable intensity activities aims at the allocation 

of continuously divisible resources to activities over time in varying quantities 
such that a set of temporal and resource constraints are satisfied and an objective 
function is minimized. In this model there is a finite set of activities, Â , to 
be performed using a finite set of continuously divisible resources, R. The 
time horizon is divided into discrete time periods [t, t + 1), t E { 1 , . . . ,T} . 
The intensity of each activity i e N may vary over time: it is bounded from 
below by 0, and from above by a constant â  < 1. If xj denotes the chosen 
intensity of activity i in time period [t, t + 1), then 0 < x̂  < a* has to hold. 
Each activity i has a release time r̂  and a deadline d\ Namely, r̂  and (f 
refer to the first and last time periods, respectively, in which activity i may be 

*This research was supported by the Janos Bolyai research grant BO/00380/05 and by OTKA T046509. 
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processed, that is, xl = 0 for all t < r̂  and for all t > d\ and J2t=r^ ^t = 1-
Notice that r* > 1 and d} < T for all i e N. In the basic model there 
are finish-to-start with zero time lags precedence constraints between pairs of 
activities meaning that the predecessor activity has to be completed before the 
successor activity may be started. Each activity requires a constant mix of some 
renewable and/or non-renewable resources during its execution and the demand 
from every resource is proportional to the intensity of the activity in every time 
period. That is, if the total demand of activity i from resource /c is g ,̂ then it 
requires q^ • x] units of resource k in time period [t, t +1). For simplicity in this 
paper we consider only renewable resources, where the capacity of resource k 
in time period [t^t + 1) is constant b^. It is permitted that the total demand 
from a resource /c in a time period [t^t + 1) exceeds its capacity b^, that is, 
y^ = max{0, (X^̂ ^̂ v ^k ' ^t) ~~ ^X\ ^^Y be greater than zero. The cost of 
over-using resource k in time period t is c^. The objective is to minimize the 
cost of violating the resource constraints, min YlkeR ^t ^t ' Vt^ subject to the 
intensity and the precedence constraints of the activities. 

As already mentioned, in the basic model there are finish-to-start precedence 
constraints between pairs of activities. However, in applications it may be 
desirable to allow some overlap in the execution of two activities connected by 
a precedence constraint. For instance, activity j may be started only if, say, 
30% of activity i has been completed. Then x;̂  == 0 has to hold for all t such 
that YliKl ^t < ^'^' I^ addition, to model the flow of material or information 
between i and j it is also required that the fraction of activity j done by time 
t is never greater than that of activity i by time t, for any time point t, i.e., 
Ylt<i^t — Ylt<£^v f̂^ ^^y iî teger ^ > 0. We will also say that activity i 
feeds activity j . In general, a feeding precedence constraint is given by a triple 
(i^j^fij), where i and j are activities and 0 < fij < 1. Such a constraint 
specifies that xj — 0 has to hold for all i with J2^^£ x\ < fij, and i feeds j . 
The special case with fij = 1 corresponds to the well-known finish-to-start 
precedence constraint. The other extremity, fij = 0, means that activities i and 
j may be started simultaneously, and i feeds j . 

The partial overlap between successive activities may, in principle, be mod
eled by splitting the predecessor activity into two parts, and then introducing 
appropriate finish-to-start precedence constraints. For instance, to model the 
feeding precedence constraint (z, j , 0.3), one could split activity i into two parts, 
one representing 30%, another representing 70% of activity i. Denoting by ii 
and 12 these two parts, we add finish-to-start precedence constraints between 
zi and 12, and between ii and j . Such a model would have two major disad
vantages. On the one hand, the number of activities would grow considerably, 
increasing the computational complexity of the problem. On the other hand, 
since the time horizon is divided into discrete time periods, it is not possible in 
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general to divide an activity into two activities representing exactly, say, 30% 
and 70% percent of the original activity. To avoid these anomalies, we model 
feeding precedence constraints in a different way by generalizing some of the 
results in Kis (2004). We will model the problem by a mixed-integer linear 
program and solve it by cutting plane techniques. 

Typical applications of this model are project planning in a shipyard (Leach-
man et al (1990)), or production planning in a make-to-order manufacturing 
environment, where each customer order is a project and the company resources 
are aggregated at a high level (Markus et al (2003)). With feeding precedence 
constraints we can model situations where the output of the predecessor activity 
is fed into the successor activity after some initial quantity is produced. 

In the following we describe a new problem formulation (Section 5.2), sum
marize previous work (Section 5.3), introduce new cutting planes (Section 5.4), 
and provide computational results (Section 5.5). We draw some conclusions in 
Section 5.6. 

5,2 Problem formulation by mixed-integer program 

We assume that the time horizon is divided into T periods, minr^ = 1 
and maxd^ — T. For any i e N, let A(i) be the set of those precedence 
constraints {k,j,fkj) with k = i. Clearly, A{i) may contain distinct con
straints (ijjij) and (i.kjik) with j :^ k and fij = fn,. Let F' = {f e 
[0,1] I 3(i, j , fij) G A{i) with / = fij} be the set of distinct fij values as
sociated with the precedence constraints in A{i). Let p*-̂  denote the smallest 
integer such that p'^-^ - CL^ > f- Notice that p̂ -̂  > 1 when / > 0, otherwise, 
when / = 0, p̂ -̂  == 0. In order to model feeding precedence constraints, for 
each activity i, and / E F* we introduce bunches of binary decision variables 
zi^,t=-r'+p'f,.,,,d\ 

{ 1 if less than an / fraction of activity i is processed up to time 
t 

0 otherwise. 

Since the earliest time point when at least an / fraction of activity i is processed 
is r̂  -f- p̂ -̂ , we do not include the variables zl"^ with t E {r^ . . . , r̂  + p̂ -̂  - 1} 
into our model. 

In addition, the decision variables xl represent the intensity of activity i in 
time periods [t, t+1), t G {r\ . . . , d̂  —1}, whereas the variables yf measure the 
violation of the capacity constraints associated with resource k in the periods 
t G { 1 , . . . ,T} . The mixed-integer program (MIP) for our problem is the 
following: 
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T 

mm Y.J^'^tyt (5.1a) 
keRt=i 

subject to 

e-1 

x\ - 1, i^N, (5.1b) 

4 < a^{l-zi^), ieN,{i,j,f)eA(i), (5.1d) 

V r ^ > Va:^' ihJj)eA(i), 

i=r* t=r-? 

^i - ^^+1' / ^ / J^_ . r ) ^ / ' ẑ -.1 (5.If) tG { r^+p^^ , . . . , r f^ - l} 

X ] g ^ x j < 6,̂  + yf, A : G i ? , t G { l , . . . , r } , (5.1g) 

0 < x j < a\ ieN, te{r\..,,d'}, (5.1h) 

0 < y f < 6f, fcGi?, t G { l , . . . , T } , (5.1i) 

^̂  ^ ^ ° ' ^ ^ ' t G { r ^ + p ^ / , . . . , d n , ^̂ -̂ Ĵ  

where Â /̂  = {i G Â  | (̂ ^ > 0, r̂  < t < d^} is the set of activities that 
may require resource k in time period t. The objective (5.1a) is to minimize 
the penalty cost of violating the resource capacity constraints. Equations (5.1b) 
express that all activities must entirely be processed between their release date 
and deadline. The precedence constraints are expressed by constraints (5.1c) 
through (5. If)' Namely, consider any ( i , j , / ) G A{i). (5.1c) ensures that 
zY — 1 for all £ with X t̂̂ r* ^t < /• ^^ ^̂ ^ ^^^^^ hand, (5.Id) guarantees 
that x\ — Q for all £ with z\^ — 1, while (5.1e) yields that i feeds j . Finally, 
by (5.If) there is a time point £ such that z^ — 1 for all t < £ and z^ — 0 
for all t > L These constraints also ensure that the differences z\^ — z\i^^, 
t e {r̂  + p^*^,..., d̂  — 1} are all non-negative, which will be important for 
our separation algorithms. The violations of resource capacity constraints are 
measured in (5.1g). The domains of the variables are given in the last three 
constraints. The upper bounds b^ on the variables y^ may take the value +oo, 
in which case yf is unbounded. 
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5.2.1 Preprocessing 

Preprocessing is part of the computations done on a problem instance and is 
usually discussed in the algorithmic part of a paper. However, the material below 
influences our polyhedral investigations by determining certain parameters of 
the polytopes studied. Therefore, we do preprocessing prior to theory. 

First, when 0 e F\ there is no need for the variables zl'^, and these variables 
along with all constraints involving any of them can be eliminated. A further 
reduction is possible by using the earliest and latest start times of the activities, 
respectively. These parameters can be computed, as usual, by first determining 
a topological order of the activities with respect to the precedence constraints 
and then scanning the list forward and backward, respectively. In the forward 
pass the earliest start time, est{j), of activity j is determined by the recursive 
formula: 

est{j) — max{r-^,max{e5t(z) +p^'^ | 3i G Â , (hj^f) ^ ^(Oi l -

Let p^ be the smallest integer with p^ • â  > 1. The latest start time, lst{i), 

of activity i is computed in the backward pass as follows: 

Istii) = mm{d' -p' + l,mm{lst{j)-p'^ \3ieN, {iJJ) G A{{)}}, 

Using the values computed above, the release times and the deadlines of the 
activities can be tightened. Namely, for any activity i, r* can be increased to 
est{i). Moreover, d'^ can be decreased to lst{i) + p̂  — 1, provided that there 
exists (i, j , / ) G A{i) with / = 1.0, in which case p'^^ = p^ and the activity 
must complete by lst{i) +p\ In addition, the variables 2:̂ ^ need be defined only 
for t G {r'f,..., d'f}, where r'^ - est(i)+p'f and d'f - lst{i) +p'f - 1. If 

/ < 1.0, we add the constraint Yji^r-^ xl> f to the model. 
Since est{i) and lst{i) can be computed in linear time, the time complexity 

of the reduction is linear in the size of the problem. 
A necessary condition for the existence of a feasible solution is that est{i) < 

lst{i) for all i e N, This condition is also sufficient when all yf are un
bounded. Therefore, preprocessing may provide important information about 
the feasibility status of the problem at hand. 

We close this section with one more check for eliminating some variables 
and constraints. Namely, for any resource k and time point t, the variable 
y^ can be set to 0, and therefore it can be eliminated from MIP, whenever 
EzGiV,̂  ̂ ' 4 < ^t holds. 

5.3 Previous work 

The first papers on project scheduling with variable intensity activities studied 
models with complex relationships between the intensities of the activities and 
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the amount of resources allocated to them over time. Weglarz defined a very 
general model consisting of n activities characterized by equations 

dxjjt) ^ r filnit)] if t e [U,T,], . ̂  ^ ^ 
dt \ 0 otherwise, ' * " ' ' 

where Xi{t) and ri{t) are the state and resource usage of activity i at time 
point t, respectively, Xi{ti) = 0, /i(') is a continuous, increasing function, 
fi{0) — 0, and U^ Ti are the starting and finishing times of activity z, unknown 
in advance (see Weglarz (1976) and Weglarz (1979)). The final state of activity 
i is Xi, that is, 

rT rT, 

/ fi[ri{t)]dt= fi[ri{t)]dt = Xi, i = l,...,n. 
Jo Jti 

Here, T is the project duration. 
The value ofxi is an objective measure of work needed to complete activity i, 

such as total number of working hours to perform i. As can be seen, the process 
is driven by the allocation of resources to activities, ri(t), i == 1 , . . . , n, over 
time, that we have to determine. The resource usage is related to the progress 
of activity i through the function / i ( ) . In the simplest case there is only one 
resource, which is assumed to be doubly constrained: 

n 

E ri{t) <B for every ^ > 0 , 

and 

ri(t)dt < M, 

where B , M are known constants, bounding the resource usage in any time 
point t, and the total usage over the entire project duration, respectively. 

The solution to the above problem is a vector function r{t) =^ (ri(t), 
• • •) ̂ n(O)' n ( 0 ^ 0' which fulfills the above two types of resource constraints 
and minimizes the project duration T. Weglarz determined necessary and suf
ficient conditions as well as the optimal r*() under the assumption that all the 
fi{') are convex or all the / i ( ) are concave. Furthermore, using an activity-
on-arc network, Weglarz extended his results to dependent activities. However, 
the method is impractical for larger projects. 

When fi is linear, Xi can be expressed in [resource x time] units such as 
man-days. Models of this type has been studied in Leachman et al (1990) 
(see also Leachman (1983)). It is assumed that resources are of finite capacity, 
non-renewable and arbitrarily divisible among activities. Moreover, in each 
moment of time the mix of applying the different types of resources required 
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by an activity is exactly proportional to the mix of total resource requirements 
to complete the activity. Therefore, the intensity of an activity at time t is the 
rate of utilization of the required resources. The intensity of any activity i 
can be 0, i.e., the activity is not started or already finished, or it can take any 
value from a continuous interval [a\a^], where 0 < â  ^ ô  < 1. Notice 
that unlike in the model studied in the present paper, time is continuous in 
the model studied by Leachman et al The authors proposed a single-phase and 
a two-phase algorithm for minimizing the project duration. Both algorithms 
build a resource-feasible schedule forward in time by adjusting the intensities 
of the activities at decision points. A computational evaluation revealed the 
superiority of the latter heuristic. The methods were tested on problem instances 
up to 3000 activities served by 50 resources, but without any comparison to some 
lower bound on project duration. 

Leachman et al also discussed a model with overlapping execution of activi
ties, that they call "production-like workflow dependencies". In that model, for 
certain pairs of activities i and j there is given a progress lag fij, 0 < fij ^ 1, 
which is to be interpreted as follows: while less than an fij fraction of activity 
i is completed, activity j cannot be started. Then until activity i is completed, 
the fraction of activity j completed by time t is at most the fraction of activity 
i done by time t minus fij. Once activity i is completed, there is no additional 
restriction on the progress of activity j . 

In the remainder of this section we review several approaches for solving the 
same model with the following characteristics: (1) the time horizon is divided 
into discrete time periods, 1 , . . . , T, each of the same length, (2) the intensity 
of each activity i may vary continuously between 0 and a\ where â  < 1 is 
a constant, and (3) there are finish-to-start precedence constraints between the 
activities. 

Tavares modeled the precedence constraint (z, j ) e Ahy a, set of constraints 
equivalent to the following (Tavares (1998), Tavares (2002)): 

< - 0 , V^oG{r^. . . ,d^•}. 

Tavares showed that the project duration can be minimized by defining new 
auxiliary variables zt with 0 < 2:̂  < 1, t G { 1 , . . . ,T} , and adding the con
straints 

( E E ^ U ^ ^ O - 0 , VtoG{l,...,T}. 
\ieNt=tQ J 

to the model. Notice that if ztQ > 0, then no activity can be performed after 
to. Therefore, the above constraints along with the objective min(T — Ylt ^t) 
express the makespan minimization problem. Since the constraints are clearly 



112 PERSPECTIVES IN MODERN PROJECT SCHED ULING 

non-linear in the variables x and z, Tavares used a non-linear optimization 
software for solving the problem w.r.t. the makespan objective. 

Branch-and-price based exact solution approaches are described in Hans 
(2001) for several variants of the problem with finish-to-start precedence con
straints and a slight relaxation thereof. Here we focus on the rough cut capacity 
planning problem, which is the same model as ours, except that there can be 
no overlap between activities connected by a precedence constraint. For this 
problem, Hans devised an efficient pricing algorithm to be used in his branch-
and-price algorithm. He obtained an initial upper bound by various constructive 
heuristics and by local search. In his approach, the precedence constraints are 
modeled by a set of binary vectors {(3^ G {0, l}\^\^^ \ h G H}, H being a 
suitable set of indices, consisting of the supports of all feasible intensity assign
ments to the activities. Albeit Hans considered distinct projects among which 
there were no precedence constraints, to simplify notation we assume that all ac
tivities belong to the same project. Notice that a binary vector f3 G {0,1}I^I >̂ ^ 
is the support of a feasible intensity assignment if and only if Yld=i A,t ^ p \ 
min{t I Pi^t == 1} ^ ^ \ max{t | [3i^t = 1} < d\ and if (i, j ) G A, then 
max{t I j3i^t = 1} < min{t | /3j,t = 1}. For solving the problem, precisely one 
vector (3^ must be chosen. To this end, Hans introduced new binary variables 
Zfi, /i G n, together with the following constraints: 

zn G {0,1}, / iGE , 

0 < 4 < a M ^ A ^ . ^ J , zGiV, t G { r \ . . . , r } . 

The first two constraints ensure that exactly one vector (3^ is chosen. The third 
one specifies that x\ is either 0, or is between 0 and a\ depending on whether 
(3^^ is 0 or 1. Hans' model incorporates resource constraints similar to ours, 

although instead of (5.1i) it has y^ > 0, and J2k Vt ^'^ ^ ^^^ ^1' -̂ ^^ ^ ê size 
of n can be enormous, column generation is the only viable approach to handle 
this formulation. 

The primary advantage is that any objective function which depends linearly 
on the cost associated with the vector (3^, whatever this cost be, can be opti
mized, provided that the pricing problem can be solved efficiently. The main 
drawback is that a huge number of columns must be handled, and enlarging all 
activity deadlines by only one time period may multiply the size of H which 
may increase considerably the running time of the pricing algorithm. 

Linear programming based heuristics are proposed in Gademann and Schut-
ten (2005). It is assumed that there are no limitations on the violation of resource 
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capacities (b^ — oo). The authors classified the heuristics into three categories: 
(1) constructive, (2) repair, and (3) iterative improvement using shadow prices 
from LP solution. A central notion is the allowed to work time window (ATW), 
which is merely an interval of time periods in which an activity may be pro
cessed. A collection of ATWs (one for each activity) is feasible if it respects 
the release times and deadlines of the activities, and the ATWs of activities con
nected by a precedence constraint are disjoint and are in the right order. The 
constructive heuristics first determine a feasible ATW for each activity, then 
solve the linear program in which activities can only be processed in their re
spective ATWs. The repair heuristic algorithm starts with a collection of ATWs 
which are not feasible, but give the best objective function value. Then it fixes 
the infeasibilities by processing one-by-one those pairs of activities connected 
by a precedence constraint and with overlapping ATWs. For each such pair, 
it selects the best way (giving the smallest objective function value) to sepa
rate the ATWs of the two activities by enumerating all possible time points for 
separation. Finally, the iterative heuristic method first determines a feasible 
collection of ATWs, then it tries to change the windows in a local search algo
rithm. By combining the second and third approach, Gademann and Schutten 
obtained the currently best heuristic approach, which first seeks a feasible col
lection of ATWs by repair, then performs a limited local search by exploring 
the neighborhood of the solution returned by repair. 

In Chapter 3 of Wullink (2005), a new constructive heuristics is proposed 
for the problem that seems to outperform all other constructive heuristics. The 
advantage of his approach to other methods is its speed as it obtains good 
results much faster than e.g., the powerful heuristic approach of Gademann and 
Schutten. 

In Kis (2004), the author obtained polyhedral results for non-over-lapping 
precedence constraints. In the following overview we adapt the notation to the 
present paper and discuss only those results that are enhanced in the next section. 
A complete description of the polytope K'^^ of feasible intensity assignments to 
a pair of activities (z, j ) e A is established along with fast separation algorithms. 
That is, K'^ is the convex hull of all points {x' ,x^,z') e w' x W' x {0,1}^'-^', 
where s* = d^-r^ + l ands-^ — d-^-r-^H-l, satisfying the following constraints: 

(5.2) i:-i 
t=r'' 

o<4 
o<xi 

— 

< 

< 

1, 

a' 

a' 

te{r\...,r'+p'-l}, (5.3) 

4, te{r' + p\...,d'}, (5.4) 

(5.5) 
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A > 4+1, te{r'+p\...y-l}, (5.6) 

4 > 4+1, teW,...,d'-i}, (5.7) 

J24 = 1. (5-8) 

0<xi < 0? . (1 - ;^j), t G {W,... , d^}, (5.9) 

0<x^' < 0?, t G {d̂  + l , . . . , d ^ } . (5.10) 

To facilitate the analysis of K^^, the polytope K is defined as the convex hull 
of those points (x, ^) G M'̂  x {0,1}^"^, where q<n satisfies g • a > 1 ((̂  • a 
may be much bigger than 1): 

Y^xt - 1, 
i^\ 

xt < azt, t G {g + 1 , . . . , n} , (5.11) 

xt < a, t G { l , . . . , g } , 

zt > zt-i-i, t G {(? + l , . . . , n - 1}, 

Xt > 0, t G { l . . . , n } . 

Notice that z is indexed from g + 1 to n. For stating the next result, define 
the vectors z^ G {0,1}^"^: 

r 1 ifte{q + h..,^i}^ 
^'~\0 i f t G { £ + l , . . . , n } , ^^U^"'^rif, 

LEMMA 5.1 Let {x,z) be any point in W x R^~^. Then {x,z) G K if and 
only if the numbers Â  — 1 — ^g+b Â  == z^-i — Zi{£ E { g + 1 , . . . , n — 1}) and 
An = -̂ n ̂ ^^ ^^' non-negative and there exist vectors x^ G M ,̂ ^ G {g',..., n}, 
5'wc/z r/ia^ X]̂ =(7 ^^^^ — ̂  ^^^ every (x^, z^) belongs to K, 

It can be shown that in general a minimal linear representation of K consists 
of the defining inequalities and also the following set of inequalities: 

X ; ^^+ E xt>l-a\S2l (5.12) 
teSi\{ti] iG{l, . . . , t i}\(5iU52) 

where a(p — 1) < 1 < ap, â^ = 1 — (p — l)a, 0 7̂  5i C {g + 1 , . . . , n} and 
5'2 ^ {1, • • •, g} are such that l^i| + |52| — p and ti is the greatest element of 
5i. 
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K'^^ can be decomposed into two smaller dimensional polytopes, /C *̂ and 

î ^* - conv I (x\ z )̂ G M ' ' X {0,1}^'-^' I (x\^^) satisfies (5 .2 ) - (5 .7 )} , 

ir* '̂ - conv [[x^,z') e M '̂ X {0, l}^^-^^+i | (x^5^) satisfies (5.7) - (5.10)} 

It is easy to show that both of the above polytopes can be obtained from K 
by reindexing variables and by appropriate substitutions. K'^^ has the following 
characterization: 

LEMMA 5.2 Let {x\ x^ ,z^) be any point inW'xW^ xW'~^\ Then {x\ x^, z^) G 
K'^^ if and only if{x\z^) G î ^* and {x^.z'^) G K* ,̂ where zl =^ zl for all 

It can be shown that most of the facets of /C *̂ and /C*-̂  will be facets of K^^. 

5.4 New polyhedral results 
In Kis (2004), various polyhedral results are presented for the polytope of 

feasible intensity assignments to a pair of activities connected by a finish-to-start 
precedence constraint. Below we extend these results to feeding precedence 
constraints. 

5.4,1 Feasible intensity assignments to a pair of activities 
connected by a feeding precedence constraint 

Consider a precedence constraint (i, j , / ) G A{i). In this section we study 
the polytope KV of feasible intensity assignments to i and j satisfying the prece
dence constraint (z, j , / ) . K\^ is the convex hull of those points (x\ x^\ z^ )̂ 
with x\ x^ non-negative, 2:̂ -̂  a 0/1 vector that satisfy the following system of 
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inequalities: 

Y^xl - 1, (5.13) 

i-l 

Y.x\ > f'{l~z\fl £G{r^^, . . . ,d^^}, (5.14) 

Y.< ^ / ' (5.15) 
t=r ' 

x\ < a\ tE{r\...,S}, (5.16) 

zl^ > 4 i ' i e { r ^ ^ . . . , r ^ - l } , (5.17) 

z\^ > 4 i . i € { r ^ . . . , d ^ / - l } , (5.18) 
d̂ ' 

^ x l = 1, (5.19) 
t=r3 

xl < a^(l - z'/), t e {r^,..., d'^}, (5.20) 

4 < «̂ ) te{r^,...,d^}, (5.21) 
e e 

J24 > ^ 4 ^ ie {m8ix{r\r^},...,mm{d^,d^}}. (5.22) 

In the definition of KV , z'^^ is restricted to 0/1 vectors. We will give a 

system of linear inequalities with set of solutions XV along with corresponding 
separation algorithms. These inequalities can be used to strengthen our MIP 
(after preprocessing) in a branch-and-cut algorithm. To this end, we define 
two lower dimensional polytopes. KJ-* is the convex hull of vectors (x\ z'^^) G 
Tod -̂r̂ +i ^ |Q^ i|d^/-r^/+i ^j^^^ ĝ îgfy tî ^ constraints (5.13) through (5.18). In 
H 

turn, Ky is the convex hull of vectors (x^ z'^) e R f "^'+^ x {0, i}d^^-r^+i 
satisfying (5.18) through (5.21). In KV any vector {x\ z'^^) with integral z'^^ 
corresponds to a feasible intensity assignment in which at least an / fraction 
of activity i is completed by the end of period [£, £ + 1), where £ G {r'^^ — 
1 , . . . , d̂ "̂ } is such that z]^ — 1 for all t G {r^^,..., ^} (this interval is empty 
if £ :=. r'f - 1), and z'J - 0 for all t G {£ + 1 , . . . , d^^} (this interval i IS 

empty when £ = d}^). In contrast, any vector [x^ ̂ z^^) G î !"̂  with integral 
z'^^ represents a feasible intensity assignment to activity j such that j starts not 
sooner than time ^ + 1 (assuming that z^ = z\^ for t G {r-^,..., c?̂ }̂). 
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Next, we characterize the members of Kf and KV , respectively. First notice 
that KV is equivalent to î *-̂  (defined in the end of the previous Section), the 
only difference being that we use z'^^ instead of z^ in the definition. On the 
other hand, Ky can be obtained from the following polytope Kf by reindexing 
variables, and appropriate substitutions. Let n > m > p > l b e positive 
integers, 0 < a < l , 0 < / < l positive numbers, and suppose {p — 1) - a < 
f < p- a hold. Kf is the convex hull of points {x,z) e R"" x {0,1}^~^ 
satisfying the following linear system: 

(5.23) 

G { p + l , . . . , m } , (5.24) 

n 

m 

zt 
0<xt 

— 

> 

> 

> 

< 

1, 

f'{l-ze)^ ie-

/ , 

^^+1, t G { p + l , 
a, t G { 1 , . . . ,n} 

(5.25) 

, m - l } , (5.26) 

(5.27) 

In any vertex (x, z) of Kf, z is equal to precisely one of the following vectors 
in {0, I p - P ; 

z; = 
r 1, te{p+i,...J}, . . 
\ 0, te{e+l,...,m}, « e i p , . . . , m | . 

A generalization of Lemma 5.1 can be easily derived: 

LEMMA 5.3 A vector (x, z) e W^ x R^~^ belongs to Kf if and only if the 
scalars 

{ 1 - Zp^i £ = p, 

ze~zi^i, £ e { p + l , . . . , m ~ 1}, (5.28) 
Zm, e =^ m. 

are all non-negative, and there exist vectors x^ G [0, a]^, (̂  G {p , . . . , m}), 

such that Ylt=^i ^i — f' X^r=i ^i ~ 1' ^^^ Y^T=p ^^{^^•> z^) — (^' z)' 
Analogously to Lemma 5.2, one can prove the following, more general, 

result: 
LEMMA 5.4 {x\x^,z'f) G K)^ if and only if{x\z'f) G Kf, {x^.z'f) G KV, z\^ = z\^ for t G {r-^,..., d*-̂ }, and {x\ x-̂ , z'^^) satisfies ineq. (5,22), 

Therefore, the linear representations of Kf and KV together give a linear 

representation of KV. 
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5.4,2 A linear representation of Kf 

Recall that p is the least integer with p - a > f. Let ar = f — {p — I) - a. 

THEOREM 5.5 i^/ equals the set of vectors (x, z) in [0, aY" x [0,1]^-^ that 
satisfy the following linear constraints: 

xt > f-'a\S2l (5.29) arZt^ +a Y^ ^t+ ^Yl 
teSi\{ti} tG{l,...,ti}\(5iU52) 

for every ^ i^ Si C {p + 1, . . . ,m}, ^2 C {I,,,, ,p} and\Si\ + \S2\ = p, h 
being the greatest element of Si; 

(/ - l)z^ + ^ az, + ^ az^ + Y. ^̂  ^ / ' (5.30) 
teu} teuf ie{i,...,n}\(t/^iu[/2) 

for£e { p + l , . . . , m } , [// C { p + ! , . . . , £ } , /7 | C {£ + 1, . . . ,n}, a |[//U 
[/|| < landap^l < 1 - / ; 

X](:̂ '̂  - a ,̂) > 1 - A (5.31) 
teu 

forU C {p+l,,.,,m}witha\U\ < 1. 

Proof DtfinQ a capacitated network Â^̂^̂  with source s and sink r, and two nodes 
t"], t;| for each i =^ p^,.. ,m, and one node wt for each t — 1 , . . . , n. There is 
an arc from source s to each node vj with capacity c(5, vj) = X^^i = p^... ̂ m. 
There is an arc from vj to each t(;t with 1 <t < i, having capacity c{vj ,wt) — 
a' Xi, and an arc {vj^vj) with capacity c{vl,vj) = A^(l - / ) . vj is connected 
to each i(;t with £+1 <t< n with an arc of capacity c(i'̂ ,iL'̂ ) — a-Xi. Finally, 
each Wt is connected to sink r with an arc of capacity xt. A fragment of the 
network is show in Figure 5.1. Using Lemma 5.3, we can show the following 
result: 

LEMMA 5.6 (x, z) e Kf if and only ifx e [0, a]^, the X^ (defined by (5.28)) 
are all non-negative, and the minimum capacity of an s — r cut in Nx^z i^ •̂ 

Proof By Lemma 5.3, (x, z) G Kf if and only if the scalars A ,̂ £ = p , . . . , m, 
are non-negative and there exist vectors x^ G [0, a]^, £ — p , . . . , m, such that 

E t i 4 > f^ YTt=i 4 = 1̂  and ZT^p ^K^^ ̂ 0 = (^. ^). The vectors X^x' 
give rise to a compatible flow of value 1 in Â ;̂̂ .̂ To see this, let ̂ (5, vj) = A ,̂ 
givj.wt) = Xexf for 1 < t < i, givl.v}) -=: E^^^+i ^^4^ di^h'^t) = Xixf 
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Figure 5.1. A fragment of Nx,z 

for t = £ + 1, . . . ,n, and g{wt^r) = xt. Since Ylit^(- = 1 by definition, 
x^ G [0, a]^, Ylt ^i — 1' ^^d J2i ^i^^ = X by assumption, it follows that g is 
a compatible s — r flow in Nx^z- Finally, note that by the Max-Flow Min-Cut 
Theorem of Ford and Fulkerson (1956), the value of a maximum s — r flow in 
Â :̂ ^̂  is 1 if and only if the minimum capacity of an s — r cut is 1, from which 
necessity of the conditions follows. 

Conversely, if the conditions of the lemma hold, then there exists a compatible 
s — r flow g of value 1 in iV̂ ;̂ .̂ If Â  > 0, define xf as g{vj,wt)/Xi for 
t e {! , . . . ,£}, and g{vj,wt)/X^ for t G {£ + 1 , . . . , n]. When Â  ^ 0, 

choose any x^ G [0,a]^ such that ^ix[ = I and X)Li ^t - /• ^^^^ choice 
of the x^ satisfies the conditions of Lemma 5.3, as one may verify. Therefore, 
{x,z) G Kf. D 

The capacity of an 5 — r cut [5, S] can be expressed as follows. First notice 
that s e. S and r ^ S. In addition, S my contain some of the nodes vj,v'^, and 
wt, and the rest of the nodes are in S. The capacity c([S^ S]) of the cut is 

Y,^e+ Yl '̂̂ +̂ Yl ^Kl-/)+ Y aXi+Y^t^ 
vies ivl,wt)e[s,s] {vlvj)E[S,S] {vlwt)e[s,s] wtes 

In order to show the validity of the inequalities (5.29) consider the 5 — r cut 
with S = {s}U{vl\i=-p,..,,ti-l}U{wt\te{l,.,.,ti}\{SiU S2)}. 
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The capacity of this cut can be expressed as follows: 

m ti-l e ti-1 

c{[sM - E ^̂  + E E^^^ + E ^̂ (1 - /) + E 

To simplify the above expression, for t G { 1 , . . . ,p} introduce new symbols 
zt each of value 1. Observe that Yl^ti ^^ ~ ^h ^^^ S^L^^ Â  = 1 - 2:̂ .̂ 
Therefore, we obtain 

zti+ E ci{zt - Zt,) + {1 - zt,){l - f) + E ^t' 
wteS,t<ti te{i,...,ti}\{SiuS2) 

After simplification we get 

l-f + a[S2\ + {f-ip-l)a)zt,+a E ^̂  + E ^ •̂ 
teSi\{ti} te{h...M}\{SiUS2) 

For any (x^z) G Kf, the capacity of the cut [S^S] is at least 1, and since 
f — {p — l)a = ttr, our claim is proved. 

To show the validity of(5.30), choose 5== {s}U{vl,vl \k G {£, . . . , m}}U 
{wt \ t e {l,,..,n}\ \u} U U^)]. As for (5.31), consider S - {5} U 
{vp^..., Vm] U {wt I t G { 1 , . . . , m} \ [/}. The details are omitted. 

Conversely, suppose there exists {x^z) G P\ Kf, where P is the poly tope 
consisting of the vectors {x, z) satisfying the conditions of the theorem. Since 
(x, z) ^ Kf, by Lemma 5.6 the minimum capacity of an s — r cut in Â^̂^̂  
is strictly smaller than 1. We argue there exists a minimum capacity s — r 
cut [S,S] equivalent to one of the inequalities (5.29), (5.30) or (5.31). Let 
W = {wi,.,.,Wn}. _ 

Clearly, there exists vj G S, otherwise the capacity of [5, S] is at least 
Z^^p Â  :== 1, a contradiction. 

Now suppose there exists £ G {p , . . . , m — 1} with vj^v'^ G S. Then we 
may add t*̂ , t;̂  to 5 for all A: G {£ + 1 , . . . , m} without increasing the capacity 
of the cut. Namely, since vj^v'} G S, the cardinality of the stiU ~ W D S 
(the neighbors of vjjv'j not in S) satisfies a\U\ < 1, otherwise removing vj 
and v'^ from S would yield a cut of smaller capacity which is not possible. 
One similarly shows that the cardinality of the set [/| == {t^£+i,... ,Wn} H S 
(the neighbors of v'^ not in S) is bounded by a\Ul\ < 1 ~ / . Consider any 
/c G {£ + 1 , . . . , m}. Ifvl G 5, then we can add '̂̂ , t)̂  to 5 without increasing 
the capacity of the cut, because the set of neighbors of t'^, v^ not in S is precisely 
U, On the other hand, when vl G S, but î̂  G 5, then adding v^ to 5 cannot 
increase the capacity of the cut, since \U^\ > |i7||. 

Still assuming there exists £ with v}^vj G S, choose i the smallest with this 
property. Since azt — a for all t e { 1 , . . . ,p} and x̂  < a as (x,z) G P, we 
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may assume that [/ C { p + 1 , . . . ,n} . We claim that for all k E {p, . . . ,£— 1}, 
v\ G S. To the contrary, suppose v\ e S and k < i — 1. If we add vl^vl 
to S, the capacity will change by — A/e + a|[/|A/c, which is at most 0 as we 
have already seen. Hence, we can set i to k and repeat the above argument. 
Now we compute the capacity of [5, S] under the above conditions. If £ = 
p, i.e., vl^vl e S for all k e {p, . . . , m } , then €([5,5]) -= ci\U\Y,k^k + 
Ylwtew\u^t = o.\U\ + Y^ujtew\u^t > 1, a contradiction. Now suppose 
£ > p. Let Ul = {t^p+i,..., wi} n S. 

c([5,5]) = ( l - ^ ^ ) ( l - / ) + ^ azt+ Yl ^^e+ Yl ^^ 
wteul wteuf wtew\u 

Since c{[S, S]) < 1 by assumption, we obtain that (5,30) is violated by (x, z), 
therefore, (x, z) ^ P, 3. contradiction. (Here we slightly abused notation, by 
using Ul^Uj for denoting sets of nodes and sets of corresponding indices, 
respectively.) 

From now on we assume that v'j E S for all i. We claim that if vj G S, 
then for all /c G {p, . . . ,£ - 1}, vl G S, Since v} G 5, a\Ul\ < / , otherwise 
removing vj from 5 would decrease the capacity of the cut by (a|C//| + (1 — 
f))^k — A/e > 0, which contradicts that [S^S] has minimal capacity. Now if 
k < i, \Ul\ < \Ul\, therefore, a|[/^| < / , implying our claim. 

To summarize, i satisfies that either p < £ < m and a|f7̂ ^ | < / < a(|[//1 + 
1), or£ — manda | t /^ | < 1. In the former case, p - 1 == |C/̂ |̂ must hold by the 
definition of p. Moreover, letting ti — £ + 1, a simple calculation shows that 
the cut is equivalent to (5.29) with Si ^ {t e {p+1,,.. J} \wt e Ul}U{ti}, 
S2 — {t e {1,,.. ,p} \wt E Ul), Hence, (5.29) is violated by (x, z) implying 
that (x, z) ^ P, a contradiction. Finally, when i = m, the cut is equivalent to 
(5.31), again, a contradiction. No more cases are left, P C Kf is proved. • 

5.5 Preliminary computational results 

In order to assess the appropriateness of the MIP formulation and the power 
of the cutting planes developed in the present paper, we implemented a Branch-
and-Cut based solver for our problem, for a general introduction to this method 
see Padberg and Rinaldi (1987), and Junger et al (1995). 

5,5.1 The Branch-and-Cut algorithm 

Branch-and-Cut is a general technique for solving mixed-integer programs. 
It is a branch-and-bound algorithm using the continuous relaxation of the prob
lem in which all integrality restrictions are dropped. In addition, cuts are gen
erated during the search. A cut is an inequality valid for the convex hull of 
feasible solutions of the original problem, but violated by the (fractional) solu-
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tion corresponding to a node of the search-tree. When applying the method to 
a problem, firstly classes of valid inequalities must be identified, and for each 
class a separation routine must be supplied. Given a (fractional) solution to 
the problem, the separation routine aims at finding a violated inequality in the 
class. 

Since the inequalities (5.29), (5.30) and (5.31) are valid for Kf, they are 
valid for KV, too (after reindexing variables and setting p to p^ and m to d^-^). 

On the other hand, (5.12) is valid for KV . A separation algorithm for (5.12) 
is described in Kis (2004). In fact, the same algorithm can be used to separate 
(5.29). For the sake of completeness, we describe the algorithm for separating 
the (5.29) inequalities. 

By adding ^^^^^\^^^}Xt + E^^5^^i + EtG{ii,...,n}^^ to both sides of (5.29) 
we get: 

J2 azt + l^ f~a\S2\+ Yl ^t+Y^Xt+ J2 ^^' 
teSi\{ti} teSi\{ti} teS2 te{tu...,n} 

Rewriting gives the following, equivalent inequality: 

Y^ {azt - x^ + ^ (a - x^ ^ / - arZt^ - ^ x^ 
teSi\{ti} teS2 tG{i,...,ti-i} 

For a fixed ti it is easy to verify whether the above inequality is violated for 
some^i C {p+ l , . . . , t i }wi th t i E S'i,andS'2 C { 1 , . . . ,p}, |S'i| + |S'2| -=-p. 
Namely, define ti — 1 items e i , . . . ,e^^_i with weights w{et) = a — xt if 
t ^ p, and w{et) =^ azt — xt, when p+l^t^ti~l. Take the first p — 1 
smallest weight items, and define the sets ^i and 5*2 with them (ti belongs ^i 
by definition). Clearly, the sets ^i and ^2 defined above gives the smallest left 
hand side. The right hand side can easily be calculated, as it does not depend 
on ^i and 82- Comparing the left and right hand sides, we can decide whether 
(5.29) is violated for a given ti. 

For a fixed ti the calculation takes 0 (n log n) time. Surprisingly, the total 
time needed to verify all possible ti can also be done in 0{n log n) time. Notice 
that we can start with ti — n, in which case we sort all items e i , . . . , e^-i. 
Then, when decreasing ti, we just modify the left hand side and the right hand 
side in 0(1) time on average, using appropriate data structures. 

As for (5.30) and (5.31), these inequalities can be separated by, e.g., solving 
the maximum flow problem defined in Lemma 5.6 (though it is a slow sepa
ration procedure). However, preliminary computations had shown that these 
inequalities had been violated only very rarely, therefore, in the following tests 
they were not separated. 

In our tests we compared two algorithms: B'^ and B~, The algorithm B'^ 
separates the following cuts: 
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(i) for each iCV, the inequalities (5.29) for i^l*, and the inequalities (5.12) 

adapted to î *^ = K^^. 

(ii) Flow Cover inequalities, as defined by Padberg et al (1985), 

(iii) Gomory's fractional cuts, see e.g., Nemhauser and Wolsey (1988), 

The cuts (5.29) and (5.12) will be called {SuS2) cuts. 
The algorithm B~ separates only the inequalities (ii) and (iii) above. 
Both algorithms were implemented in C++ using the ILOG MIP Library 

ver. 7.5 through the ILOG Concert Technology interface (these are products of 
ILOG). Each algorithm started with preprocessing that sometimes eliminated 
hundreds of rows and columns. The inequalities in class (i) were separated by 
our procedure, while those in classes (ii) and (iii) were separated automatically 
by the solver. Moreover, we used the built-in heuristic to find feasible solutions 
during the search. 

5.5.2 Test instances 
Being not aware of any benchmark instances to the problem at hand, we have 

modified the instances of De Boer (1998). These instances were devised for 
the problem with finish-to-start precedence constraints (cf. Section 5.3). The 
most important parameters are the following: 

• number of activities, n, 

• number of resources, r, 

• average slack, s, which is computed as s = Y^^=i{d^ _ -̂̂  _̂  1 _ p^)/n, 
where p^ is the minimum time to complete activity i. 

The processing times and the precedence relations were generated at random. 
De Boer obtained a total of 450 instances by generating 10 random instances 
for each combinations of the above parameters, where n G {10,20, 50}, r G 
{3,10, 20} and s e {2, 5,10,15,20}. We modified each instance by setting 
fij — 0.5 for each pair of activities (i, j ) connected by a precedence constraint. 
That is, we replaced each finish-to-start precedence constraint by a feeding 
precedence constraint with an overlap of 0.5. 

5.5.3 Results 
We run each of the algorithms B'^ and B" on each instance for 420 seconds 

of CPU time on a PC with a 2.4GHz Pentium 4 processor and Windows 2000 
operating system. When the time limit was hit, the search terminated and 
the algorithms returned the best upper and lower bounds found so far. Let 
ub~^ and Ib'^ denote the best upper and lower bounds, respectively, found by 
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algorithm B^. Similarly, let uh~ and lh~ denote the best upper and lower 
bounds determined by B~. 

Table 5.1 summarizes the average uh /lb values for both algorithms. Averages 
are taken over the ten instances in each class defined by the parameters (n, r, s). 
For each class there are two numbers, the first one gives the performance for 
algorithm B+, whereas the second one gives that of algorithm B~. A value of 
1 indicates that all instances in the class were solved to optimality within the 
given time limit. As can be seen, algorithm B^ performs slightly better than 
algorithm B~, except in the class with (n — 50,r = 20, s = 20). In fact, in 
this class B^ did not obtain a feasible solution for 3 out of the 10 instances 
within the 420 CPU seconds time limit. 

Table 5.1. Average ub/lb values for algorithm B'^ (first row), and B (second row), respec
tively, in each class (n, r, s). 

s 

2 

5 

10 

15 

20 

n== 10 
r - 3 10 20 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

3 
n - ^ 2 0 

10 

1 
1 
1 
1 
1 
1 
1 
1 
1 

1.01 

20 

1.01 
1.01 

3 

1.02 
1.01 
1.01 

n - 5 0 
10 

1.02 
1.03 
1.37 
1.5 

20 

1 
1 
1 
1 
1 
1 

1.06 
1.07 
1.17 
1.16 

Table 5.2 compares the upper and the lower bounds obtained by the two 
algorithms. Notice that in each class (n, r, s), the first row contains the average 
ratio uh'^/uh~~, while the second row comprises the average lb'^/lb~ value. 
When ub^/ub~ < 1, the algorithm B^ found a better feasible solution than 
B~ on average. In contrast, when Ib^/lb~ < 1, then algorithm B~^ proved a 
weaker lower bound than algorithm B~ on average. Again, in most cases the 
two algorithms found the same lower and upper bounds, and in a few classes 
B'^ outperformed B~, while the converse essentially happened only in the class 
(n - 50, r = 2 0 , 5 - 2 0 ) . 

Finally, Tables 5.3 and 5.4 summarize the most important aspects of the 
computations with algorithm B+ and B~, respectively. For B^ we provide the 
average CPU time (in seconds), the average number of search-tree nodes, and 
the average number of Flow Cover, Gomory's fractional and the (^i, ^2) cuts 
generated over the ten instances in each class (n, r, 5). For the algorithm B~, 
only average CPU times and average number of search-tree nodes are provided. 
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Table 5.2. Average ub'^ 

s 

2 

5 

10 

15 

20 

r = 3 

1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 

n - 10 
10 

1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 

/ub (first row), and Ib^/lb 

20 

1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 

3 

1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 

71-= 20 
10 

1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
0.996 
0.999 

(second row). 

20 

1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
0.999 

n 
3 

1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
0.981 
1.000 
0.998 
1.003 

- 5 0 
10 

1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
0.999 
1.001 
0.952 
1.013 

20 

1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
0.994 
1.001 
1.010 
0.998 

Observe that adding our problem specific cutting planes is not always ad
vantageous. The difference between the performance of the two algorithms 
is minor. In contrast, for the special case with finish-to-start precedence con
straints treated in Kis (2004), there was a clear cut between the results obtained 
with and without problem specific cutting planes: it was evident that by adding 
problem specific cuts we got better results. A partial explanation can be the 
differences between the MIP formulations of the two problems: 

• The formulation for the problem with finish-to-start precedence con
straints contains the inequalities xl < a^zj. These inequalities are not 
valid for the problem with feeding precedence constraints. 

• The inequalities X^̂ Z î xl > fij{l — z\) in the formulation of the problem 
with feeding precedence constraints are strong enough for the MIP solver 
to find good solutions quickly. 

Note however that we also run the two algorithms presented in this paper 
on the instances with finish-to-start precedence constraints and found that the 
results were inferior to those obtained in Kis (2004) using a different MIP for
mulation and problem specific cuts. On the other hand, we got better results in 
terms of the ratio of the upper and lower bounds for the problem with feeding 
precedence constraints. This hints that project scheduling with feeding prece
dence constraints is an easier problem than that with finish-to-start precedence 
constraints. 

5.6 Conclusions 
In this paper we have investigated an extension of RCPSP with variable 

intensity activities and feeding precedence constraints. We have devised a MIP 
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formulation that proved effective in a branch-and-cut approach. We have also 
obtained new polyhedral results that can be used to strengthen the formulation. 

The model with feeding precedence constraints seems easier to solve than that 
with finish-to-start precedence constraints. Finding the core of this phenomenon 
is subject to future research. 

Another way of extending this work is to devise new cutting planes that 
reduce the computation time significantly. 
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Chapter 6 

MODELLING SETUP TIMES 
IN PROJECT SCHEDULING 
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Poland; Poznan Supercomputing and Networking Center, Noskowskiego 10, 61-704 Poznaii, 
Poland 

Abstract In this chapter project scheduling problems with setup times are considered. 
Some practical applications justifying considering setups separately from ac
tivities are described. An extensive classification of setup times adapted from 
machine scheduling is proposed, including activity vs. class setup, separable 
vs. inseparable setup, as well as sequence-independent and sequence-dependent 
setup times. A new category of setup times - schedule-dependent ones - is dis
cussed. The main part of the paper shows how to model setup times in the pres
ence of particular project components, such as: precedence constraints, resource 
availability constraints, multiple resource units requests, multiple resources, etc. 
Some possible extensions of the presented models are given. 

Keywords: project scheduling; setup; setup time; setup cost. 

6.1 Introduction 

In many production processes, where a set of jobs is assigned to a facility 
to be processed in a given sequence, the facility has to be shut down after fin
ishing one job to prepare it for the next job in the sequence. The operations 
between processing two consecutive jobs are generally referred to as setups or 
changeovers. In this context, these two terms are used synonymously. In gen
eral, a setup includes work to prepare a machine, process, or bench for product 
parts or the cycle (Allahverdi et al (1999)). This includes, but is not limited to: 
obtaining tools, positioning work in process material, return tooling, cleanup, 
fastening required jigs and fixtures, adjusting tools or machines, loading and 
unloading work pieces, inspecting material, transporting resources of different 
types, and so on. The time and cost required by setup operations are known as 
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setup time and setup cost, respectively. The costs per unit time for a setup may 
not be the same for different machines. However, if they are identical for all 
machines then minimizing the setup cost is equivalent to minimizing the total 
setup time. 

Over the years, in most of the classical machine scheduling research setup 
times have been considered negligible or as parts of the processing times of 
jobs. However, while this may be justified for some scheduling problems, in 
many practical applications this simplifying assumption may lead to solutions of 
poorer quality, in contrast to solutions obtained by considering setups separately 
from processing of jobs. Many practical situations require explicit treatment 
of setups. Moreover, from the point of view of productivity, the jobs requiring 
the same setup should be processed simultaneously or consecutively in order 
to reduce the setup time. However, it may not only increase work-in-process 
inventory but may make the delivery of completed goods late. This trade-off is a 
real challenge since reducing setup time to zero is impossible even by applying 
a flexible manufacturing system (FMS). Therefore, the research on production 
scheduling problems with setup times has grown significantly during the last 
three decades (Yang and Liao (1999)). 

While setup times have been widely considered in machine scheduling, in 
particular in shop environments (see e.g. Allahverdi et al (1999) or Yang and 
Liao (1999) for a survey), there is not much literature concerning setup times 
in the context of project scheduling, although the interest in that area grows. 
The first publication dealing with setup times in project scheduling was (Kaplan 
(1991)), since then only a few papers on that subject have been published. They 
are named and shortly commented in a literature review given in Section 16.4 
of this paper. 

There are numerous examples of setup times in project scheduling problems. 
They include situations where resource units must be adjusted or transported 
in order to perform some activities. Adjusting may mean equipping, resetting, 
changing, positioning, cleaning, warming up, etc. Examples given in (Kolisch 
(1995)) include construction projects, where excavators need to be equipped 
with different types of scoops to perform certain classes of activities, or heavy 
equipment in general (like trucks, cranes, excavators) might be requested at 
different construction sites - the operation of moving them from one site to 
another can be viewed as a setup, etc. Generally, in project scheduling a setup 
has been defined as a preparation of all the required resources for processing 
an activity. The time needed for this preparation is then called a setup time. 
However, the preparation must be, in fact, considered with respect to particular 
resource units rather then resources alone. Indeed, the resource units of a 
particular resource have the same functionality, and the preparation of each of 
them for processing a given activity is identical. Nevertheless, a setup has to be 
performed on each unit separately, and - even more importantly - the activity 
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must use exactly these resource units that are prepared for processing it, i.e. 
the ones on which setups have been done. The remaining units of the given 
resource are simply not ready for processing the activity, since setups have not 
been performed on those units. Of course, it is possible to treat each resource 
unit of a particular resource as a separate resource itself, but it is not justified 
since, as it has been mentioned, they have the same functionality. As a result, in 
project scheduling setups have to be considered in reference to resource units, 
not just resources as a whole. 

In the area of project scheduling, the assumption that the duration of an activ
ity reflects both setup and processing times has also been made throughout the 
years. This common assumption can be justified as long as setup times are rel
atively small in comparison to processing times. But if some activities require 
the same considerable setup, the makespan can be reduced by batching these ac
tivities. In this case, modelling and solving such a problem as a classical project 
scheduling problem may lead to poor solutions (Kolisch (1995)). Moreover, 
there are some practical situations where the setup of a given resource for the 
particular activity can be performed simultaneously with the execution of direct 
predecessors of this activity. In such a case, the makespan of the project may be 
decreased at least by the value of the setup time. On the other hand, the concept 
of treating setups as separate activities has a serious drawback. It follows from 
the fact that precedence constraints can not be used to model such a situation. 
Let us consider an example (Figure 6.1) where there is one scarce resource r, 
two precedence-unrelated activities i and j which are to be executed on resource 
r, and each of the two activities requires some preparation (setup) of resource 
r for its execution. The setup for activity i is denoted as Si, and for activity j 
as Sj. Now, there are only two possible feasible schedules: Si — i — Sj — j or 
Sj - j - Si - i. However, treating setups Si and Sj as separate activities, and 
defining precedence relations as 5̂  —> z and Sj -^ j , incorrect schedules may 
occur such as: si — Sj ~i — j , si — Sj — j — i, Sj — Si — i — j or Sj — Si — j — i 
(Figure 6.1). These schedules are precedence- and resource-feasible but are not 
correct since in each case one of the activities can not be performed because 
the resource is not prepared for its execution. 

The motivation of this paper is to show how to model different types of 
setup times in static, discrete, and deterministic project scheduling. The re
mainder of the paper is organized as follows. In Section 16,2 an extensive 
classification of setup times in project scheduling is presented. In Section 16.3 
the definitions of the classical project scheduling problems, i.e. unconstrained, 
resource-constrained, and multi-mode resource-constrained problems, are pre
sented. Section 16.4 contains a literature review on setup times and costs in 
project scheduling. Section 16.5 is to show how some project components 
influence setups. In this section we discuss how to model setup times in vari
ous project scheduling problems, taking into account the classification given in 
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correct schedules: 

s/ /• Ĵ J 

Ĵ i Si i 

incorrect schedules: 

s/ ^J / j 

s/ ^J ;' i 

^j s/ / J 

^ 
Si J i 

Figure 6.1. Setups treated as activities - an example. 

Section 16.2. In Section 15.6 possible extensions of the presented models are 
commented. Finally, some conclusions are given in Section 15.7. 

6.1 Classification of setup times 
In this section a classification of setup times adapted from machine schedul

ing problems is presented. Firstly, the difference between activity setup and 
class setup is explained. Next, two other types of setups, namely separable 
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and inseparable, are presented. And finally, both sequence-independent and 
sequence-dependent setup times are discussed, as well as a new category de
noted as the schedule-dependent setup time is introduced. 

6.2.1 Activity vs. class setup 
A setup needed for a resource to switch between two consecutive activities is 

referred to as the activity setup. However, sometimes activities can be grouped 
into distinct classes according to the similarity of their operations so that all 
activities in a particular class need the same or similar setup. In other words, 
the same setup is needed for performing a class of activities. A setup required 
to change over from one class to another is referred to as the class setup (Yang 
and Liao (1999)). The class setup is also known as the batch or family setup. 

Let us recall the previously discussed example with excavators. If this heavy 
equipment is requested by several activities executed at different construction 
sites and each such activity requires a different type of scoop, then each setup 
has to be considered separately as an activity setup. On the other hand, if there 

activity setups: 

S/ / ^J j % k 

class setup: 

^J.k i J k 

Figure 6.2. Activity and class setups. 

are some activities executed at the same site using the same type of scoop, 
and they can be executed sequentially respecting the precedence and resource 
constraints, then an excavator may be set up once before the execution of the 
first activity at the considered construction site. This activity belongs to the 
class of activities performed with the same settings of resources (the excavator 
in the considered example). It is not justified to execute any other activity within 
the sequence of activities from a given class, because it implies at least double 
execution of some work associated with the setup of a given resource. 
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6.2.2 Separable vs. inseparable setup 
In general, a setup does not have to be performed directly before the activity 

requiring this setup, there can be other activities or setups performed in between 
on this resource, provided that none of them destroys the settings required for 
the relevant activity. Sometimes, before a new activity (class) is ready to be 
processed on a resource, the setup required for this activity (class) may be 
completed in advance. In this case, we have the so-called separable setup. 
Otherwise, when a setup must not be performed in anticipation, we call it the 
inseparable setup. In other words, in the case of the inseparable setup, an 
activity must be started immediately after its setup is finished, whereas in the 
case of the separable setup any slack greater than zero is allowed between the 
end of the setup and the start of the corresponding activity. As an example of the 

separable setup: 

inseparable setup: 

s/ i 

Figure 6.3. Separable and inseparable setups. 

resource for which the separable setup can be applied, the previously considered 
heavy equipment is used. If the setup consists in moving the requested resource 
from one construction site to another, then it can be done some time periods 
before starting the corresponding activity in a new location to which this heavy 
equipment has been moved. So, there is a slack between performing the setup 
and the activity. 

Inseparable setups often occur when some chemical ingredients have to be 
poured into a grinding, blending, or mixing machine, in order to set up this 
machine. For example, if an activity is to prepare concrete using a concrete
mixer then a setup of this machine can be to pour into it materials of which the 
concrete is composed. Sand, gravel, and water can be poured into the concrete
mixer at any time period, but cement and some other specific ingredients have to 
be poured into this machine just before starting it. So, the process of setting up 
the concrete-mixer for preparing concrete can be treated as inseparable setup. 
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6.2.3 Sequence-independent, sequence-dependent, and 
schedule-dependent setup times 

In the next two subsections, two categories of setup times already known from 
the literature: sequence-independent and sequence-dependent are discussed, as 
well as a new category called the schedule-dependent setup time is defined. 

6.2.3.1 Sequence-independent and sequence-dependent setup times. 
There have been two types of setup times considered in the project scheduling 
literature so far: sequence-independent setup timessind sequence-dependent 
setup times. In the first case (Kolisch (1995)), setup times depend only on 
the activity and the resource on which the activity will be processed, but do not 
depend on the sequence of activities on a particular resource. This case is typical 
for situations when, e.g., a machine has to be set up for processing some activity 
but the time needed for this setup is fixed and independent of which activity has 
been processed previously on this machine. An examples of such situations are 
given, e.g., in (Conway et al (1967)), where the process of producing different 
colours on the same machine is considered, and setup times occur for cleaning 
the machine. In (Bruno and Downey (1978); Monma and Potts (1989); Chen 
(1993)) a computer system application is described in which computer jobs 
require different compilers. A setup is not incurred if the next job requires a 
compiler that is already resident in memory, but if the next job requires a non
resident compiler then a setup time is incurred which depends only on the time 
needed to load the new compiler. Both abovementioned examples refer to the 
class setup. Of course, there are numerous examples of sequence-independent 
setup times referring to activity setup. For example, the time necessary to 
mounting a material or tool in a mount of a machine tool, as well as time 
for loading a batch into blast furnace in a steel factory, or pouring cement, 
water, gravel, sand and other ingredients of concrete into concrete-mixer can 
be treated as sequence-independent setup times. These examples are activity 
setups, because, e.g., ingredients used to prepare the concrete or alloy can not 
be used once more for preparing another concrete or alloy. Several similar 
examples for sequence-independent setup times can be given as well. 

In the second case (Neumann et. al (2003)), setup times depend not only on 
the activity and the resource, but also on the sequence of activities processed 
on this resource. For example, if there are three activities z, j , k such that z, j 
are direct predecessors of /c, which are to be processed on the same resource, 
the setup time needed for processing activity k may be different, depending on 
whether activity k is executed immediately after activity i (i.e. the sequence 
is (j, i, k)) or immediately after activity j (i.e. the sequence is (i, j , k)). Such 
situations are typical, e.g., in industry processes, where processing units, like 
reactors or filters, have to be cleaned after the completion of certain activities. 
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In general, the cleaning time will be larger when switching from a low- to a 
high-quality product then vice versa. Similar situation appears in the context 
of research and development projects, where the resources represent staff of 
the same skill working jointly on specific tasks in different interdisciplinary 
teams, and each task requires a certain lead time necessary to the training of 
the staff. Since the training of a person moving from one task to another 
depends on the difference between the two tasks, the lead times and thus the 
setup times between tasks are sequence-dependent (Neumann et. al (2003)). A 
further application of project scheduling with sequence-dependent changeover 
times is given in (Schwindt (2005)). Here, several subprojects sharing common 
resources are performed in parallel at different sites. The time needed to transfer 
resource units from one site to another clearly depends on both locations. Such 
a transfer is required each time a resource unit consecutively processes two 
activities belonging to different subprojects. Thus, the transfer times can be 
modelled as sequence-dependent setup times between activities. Generally, 
sequence-dependent setups are typical for the situations with multi-purpose 
resources. Other examples include (i) auditing of clients at several places or 
giving classes and lectures at schools and universities in rooms that are located 
far apart - a problem of audit-staff scheduling, e.g., was considered in (Dodin and 
Elimam (1997)), (ii) chemical compounds manufacturing, where the extent of 
the cleansing depends on both the chemical most recently processed and the next 
chemical to be processed, (iii) printing industry, when the cleaning and setting of 
the presses for processing the next job depend on its difference from the colour 
of ink, size of paper, and the types used in the previous activity, (iv) many 
other industrial systems like: stamping operations in plastics manufacturing, 
die changing in metal processing, roll slitting in paper industry, and so on. 

6.2.3.2 Schedule-dependent setup times. However, a more general 
situation than described in the previous subsection is also possible, where setup 
times do not depend only on the sequences of activities on particular resources, 
but - more generally - on the assignment of resources to activities over time. 
It means that not only activities and their sequences on resources affect setup 
times, but also the fact on which resources predecessors of particular activities 
have been scheduled. In such a case, the setup times are not just sequence-
dependent, but they are schedule-dependent (Mika et al (2003)). Let us now 
explain such situations in more detail. 

Assume that we have a classical situation when a set of activities are to be 
performed on a set of resources. The activities apply for the resources to be 
executed. Let us call the resources capable of executing different activities 
multi-purpose resources. Apart of multi-purpose resources, there may exist 
resources dedicated for particular activities, more precisely, resources needed 
to prepare multi-purpose resources for executing activities. These are resources 
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which the activities do not apply for, they are only necessary for executing 
particular activities on multi-purpose resources. They can be available from 
the beginning, or they can be produced by some activities. Let us call such 
resources setup-required resources since they are, in fact, needed for setting up 
multi-purpose resources for executing activities. 

As an example, let us consider a problem of scheduling workflow applications 
on a computational grid. The problem consists in assigning grid resources to 
tasks of a workflow job across multiple administrative domains. Workflow ap
plications can be viewed as complex sets of precedence-related various transfor
mations (tasks) performed on some data. The precedence constraints between 
tasks usually follow from data flow between them, i.e. data files generated by 
one task are needed to start another task. These data files can be treated as 
setup-required resources since a node (resource unit) is prepared for processing 
a task only when all input files required for this task are stored on the local discs 
of this node. As a result, setup-required resources (data files) are only used for 
preparing multi-purpose resources (nodes) for executing tasks of a workflow, 
but tasks do not compete for data files - it is known in advance which data files 
are dedicated to which tasks, and these files can not be replaced by any other 
data files. Now, as it is easy to see, the transmission times of these files depend 
on which nodes the files are transferred between, and the transmission times 
define the times of multi-purpose resource preparation, i.e. setup times. In 
other words, the transmission times (setup times) depend not only on the node 
to which the files are transferred, but also on the nodes where they are located, 
i.e. on the locations where the preceding tasks have been executed and from 
which they will be transferred. In consequence, setup times in this problem 
do not depend only on the sequences of tasks on particular resource units, but 
- more generally - on the assignment of nodes to tasks over time, so they are 
schedule-dependent. For more detailed description of the presented example 
see (Mika et al (2003)). 

Thus, schedule-dependent setup times occur when setup-required resources 
have to be transported or transmitted from one location to another in order 
to prepare a resource unit in the latter location for executing an activity. The 
setup-required resources may be available in some locations from the beginning, 
or they can be an outcome of executing some activities, usually preceding 
activities, mostly direct predecessors. In consequence, the times needed for 
providing the setup-required resources (i.e. setup-times) depend on where (in 
which location, i.e. on which resource unit) the activities producing those 
resources have been executed, and when. Thus, the setup times clearly depend 
on the schedule and therefore we call them schedule-dependent. 

Examples from other areas can be given as well. For instance, an enterprise 
has several geographically distributed plants and makes products according 
to the assembly-to-order, make-to-order, or engineer-to-order scenarios. Re-
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sources of the enterprise are distributed among the plants, so that some resources 
may not be available in each plant. In consequence, it is not possible to com
plete the whole production process within one plant, and specific plants make 
semi-finished products only which have to be transported between some plants. 
The semi-finished products are setup-required resources and are dedicated to 
particular production processes making final products. The transportation times 
can be then clearly treated as setup times, and depend on the whole produc
tion schedule of semi-finished and final products over the distributed plants. 
One can notice some similarity between the schedule-dependent setup times, 
especially in the context of the presented grid example, and scheduling with 
communication delays. The study of scheduling problems with interproces-
sor communication delays started to be a new research area some years ago, 
interest in which was rapidly increasing with the development of distributed 
memory computers. In fact, to get good performance from such computers, 
the best compromise between parallelism and communication delays has to be 
found. For a given task graph to be executed, this problem is a scheduling 
problem where, in addition to the constraints of a classical scheduling problem, 
communication times between dependent tasks assigned to distinct processors 
must be taken into account. For a comprehensive survey on scheduling with 
communication delays see (Chretienne and Picouleau (1995)). 

Let us recall briefly the formulation of the problem of scheduling non-
preemtable, dependent tasks on parallel, identical processors with communi
cation delays. In this problem, each task has to be assigned a processor, and 
with each precedence relation of the form i -^ j (which means that task i must 
be finished before the start of task j) a communication time Cij is associated, 
where QJ ~ 0 if tasks i and j are executed on the same processor, and Cij > 0 
otherwise. The objective is the minimization of the makespan. 

One of the main classifications for these problems is based on the fact whether 
task duplication is allowed or not. Since task duplication is not a realistic as
sumption in the context of project scheduling, we will only consider problems 
with no duplication. For such problems, some similarity between communica
tion delays and schedule-dependent setup times can be observed. Let us now 
comment on this issue. 

Firstly, let us distinguish between project scheduling and machine schedul
ing. In project scheduling an activity (a task) can require several units of a given 
resource, whereas in machine scheduling a task requires only a machine, i.e. 
one resource unit. However, even if we limit our project scheduling problems 
to ones with single-unit resource requests, an important difference still occurs, 
making our problem much more general. It consists in the fact that in the case 
of communication delays, they can only take two values: 0 or Cij, i.e. if there 
is a communication delay following from executing precedence-related tasks 
on distinct processors, its value is always the same. This is not the case in 
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our problem, where schedule-dependent setup times can take many different 
values, depending on which resource units the successive tasks have been exe
cuted. It generally depends on the locations of those resource units, e.g. in the 
grid example the bandwidth between two nodes, between which data files are 
transmitted, defines the transmission time and, consequently, the setup time. As 
a result, we can state that schedule-dependent setup times are a generalization 
of communication delays already known from the literature. 

6,2.4 Removal times 

Removal operations are operations which always occur after completing the 
corresponding activity. Although these operations are executed quite often in 
practice, they are rarely taken into account in scheduling problems. 

There are numerous examples of removal operations like: disengaging tools 
for a job, releasing a job from jigs and fixtures, dismantling fixtures, jigs and 
tools, inspecting and sharpening the tools, returning tools to the central depos
itory, cleaning machines and adjacent areas, etc. 

Removal operations similarly to setups can be separable or inseparable, and 
activity or class related. Although removal times can be sequence-independent, 
sequence-dependent, or schedule-dependent, it is assumed that only sequence-
independent removal times are explicitly taken into account. The sequence-
dependent as well as schedule-dependent removal times are not considered 
explicitly, because they are usually included in the setup time of the next activity, 
that uses the same resources. 

When inseparable removal operations are considered for activities, then the 
removal and processing times of an activity can be aggregated and, in conse
quence, the removal times can be ignored. 

The separable and sequence-independent removal times can be modelled 
using time lags. 

6,3 Classical project scheduling problems 

In this section we define the classical unconstrained, resource-constrained, 
and multi-mode resource-constrained project scheduling problems. The prob
lems are defined mathematically, and all the parameters are presented. 

6.3.1 Unconstrained project scheduling problem 

The classical unconstrained project scheduling problem (PSP) can be defined 
as follows. The project consists of a set V of t' non-preemptable and precedence-
related activities, and a set E of precedence constraints between activities. 
The strict finish-to-start precedence constraints with zero minimum time lags 
between some pairs of activities are defined by relations of the type: i —> j , 
where i —^ j indicates that activity i must be finished before the start of activity 
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j . The structure of the project is represented by a so-called activity-on-node 
(AoN) graph G{V, E) (an alternative representation is called activity-on-arc 
AoA) which is a directed, acyclic, and transitively reduced graph, where the 
set of nodes V corresponds to the set of activities, and the set of arcs E — 
{{hj) ' i,j ^ V]i -^ j} represents the finish-to-start precedence constraints 
with zero minimum time lags. It is assumed that the nodes of graph G are 
topologically ordered, i.e. a node has always a higher number than all its 
predecessors. Moreover, it is assumed that there is exactly one starting and 
exactly one finishing node in the graph. If this condition is not fulfilled (i.e. there 
are more than one starting and/or finishing nodes), some special additional nodes 
representing so-called dummy activities have to be inserted at the start and/or at 
the end of the graph. These dummy activities are usually called the supersource 
and the supersink, respectively. The processing times dummy activities are 
equal to 0, and the supersource has no predecessors whereas supersink has no 
successors. Each activity of the project is characterized by its processing time, 
and precedence relations with other activities. The processing time (duration) 
of activity j is denoted by pj. The precedence relations of activity j with other 
activities may be defined by two sets: a set Precj of direct predecessors of 
activity j , and a set Succj of direct successors of activity j . Once started, an 
activity may not be interrupted, i.e. preemption is not allowed. It is assumed 
that all activities are available from the start of the project. The objective is 
to find a schedule S that minimizes the project duration (makespan) satisfying 
all precedence constraints. A schedule assigns a start time Sj to each activity 
jeV, 

It has been proved that the project scheduling problem in the absence of 
resource constraints can be solved to optimality in polynomial time, using the 
Critical Path Method (CPM - Kelley (1961)). Thus, no heuristic approaches 
need to be develop in this case. 

Using the classification proposed by Herroelen et al (1999), the defined 
problem is denoted as cpm\Cmax' 

The PSP parameters are summarized in Table 6.1. All information on the 
project is assumed to be deterministic and known in advance. All numerical 
parameters of the project are assumed to be non-negative and integer valued. 

6.3.2 Resource-constrained project scheduling problem 

In the resource-constrained project scheduling problem (RCPSP) activities 
have to be executed using some scarce resources. Thus, there is additionally 
a set KR of R renewable resources which are used to execute all activities of 
the project. Renewable resources are available at any time in limited numbers 
of units, i.e. an available amount of such a resource is renewed from period to 
period. The number of units of renewable resource /c, /c = 1,..., i?, available at 
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Table 6.1. Notation for the PSR 

Symbol Definition 

G{V,E) 
V 
v = \V\ 
i-^ j 
E 
Precj 
Succj 
Pj 
S = {Si, 
Sj 

,Sv} 

directed AoN graph representing the structure of the project 
set of activities 
number of activities 
precedence constraint between activities i and j 
set of precedence constraints between activities 
set of direct predecessors of activity j 
set of direct successors of activity j 
processing time of activity j 
schedule 
starting time of activity j 
completion time of activity j 

each time period is Rj^. Activity j requires rjk units of resource k G KR in each 
period of its processing. As a result, each activity of the project is characterized 
by its processing time, resource requests, and precedence relations with other 
activities. Ail resources, as well as activities, are available from the start of 
the project. The objective is to find a schedule S that minimizes the project 
duration (makespan) satisfying all precedence and resource constraints. The 
RCPSP is strongly NP-hard, as a generalization of the well-known job shop 
problem (Blazewicz et al, 1983). 

Using the classification proposed in (Herroelen et al (1999)), the defined 
problem is denoted as m, l\cpm\Cmax, and PS\prec\Cmax according to the 
classification by Brucker et al (1999). 

The additional parameters for the RCPSP are summarized in Table 6.2. 

Table 6.2. Additional parameters for the RCPSP. 

Symbol Definition 

set of renewable resources 
number of renewable resources 
number of units of renewable resource k available in each time period 
request for resource k by activity j 
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6.3.3 Multi-mode resource-constrained project scheduling 
problem 

The classical RCPSP assumes that each activity can only be executed in a 
single way which is determined by a fixed duration and fixed resource requests. 
But there are many practical situations in which the duration of an activity can 
be decreased at the expense of providing additional resources. In such a situa
tion, an activity may be executed in one of several modes. A mode represents 
alternative ways of execution of an activity, and is a combination of an activity 
duration and resource requests. In such a case, the resulting problem is called 
the multi-mode resource-constrained project scheduling problem (MRCPSP). 
The main differences between the MRCPSP and the RCPSP are such that for 
each activity j e V, 3. set Mj of possible execution modes is defined, and two 
additional categories of resources: non-renewable and doubly constrained are 
introduced. Let us remind that the availability of a renewable resource is once 
defined and renewed from period to period. For non-renewable resources, total 
consumption of the resource units is limited for the entire project. In the case 
of doubly constrained resources, both total and per period availabilities are lim
ited. However, under discrete resources, the doubly constrained resources need 
not be taken into account explicitly since they can be incorporated by proper 
enlarging the sets of the first two categories of resources. Thus, we assume an 
additional set Kpj of N non-renewable resources which can be consumed by 
the activities of the project. The number of available units of non-renewable 
resource 1,1 — 1,..., Â , is Ni. The duration of activity j e V executed in 
mode ruj G Mj is denoted by pjm- Moreover, activity j ^ V executed in 
mode rrij G Mj requires for its processing Vjmk units of renewable resource 
fc, fc = 1,, jR, and rijmi units of non-renewable resource /, / — 1,, Â . A mode 
chosen for an execution of an activity may not be changed, i.e. an activity 
j,j = 1,, V, started in mode mj^rrij G {1,, |Mj |}, must be completed in mode 
rUj without preemption. The objective of the MRCPSP is to find an assignment 
of modes to activities, as well as precedence- and resource-feasible starting 
times of all activities, such that project duration is minimized. The MRCPSP 
is also strongly NP-hard, as a generalization of the RCPSP. Moreover, for more 
than one non-renewable resource, the problem of finding a feasible solution of 
the MRCPSP is already NP-complete (Kolisch (1995)). 

Using the classification proposed in (Herroelen et al (1999)), the problem 
is denoted as m, lT\cpm, disc, mu\Cmax^ and MPS\prec\Cmax according to 
the notation by Brucker et al (1999). 

All the MRCPSP parameters are summarized in Table 6.3. 
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Table 6,3, Parameters of the MRCPSP. 

Symbol Definition 

G{V,E) directed AoN graph representing the structure of the project 
V set of activities 
f — |V| number of activities 
i —^ j precedence constraint between activities i and j 
E set of precedence constraints between activities 
Precj set of direct predecessors of activity j 
Succj set of direct successors of activity j 
KR set of renewable resources 
R = \KR\ number of renewable resources 
Rk number of units of renewable resource k available 

in each time period 
KN set of non-renewable resources 
N — \KN number of non-renewable resources 
Ni number of units available of non-renewable resource / 
Mj set of execution modes of activity j 
ruj execution mode of activity j 
Pjm processing time of activity j executed in mode rrij 
Tjkm request for renewable resource k by activity j executed 

in mode rrij 
rijim request for non-renewable resource / by activity j executed 

in mode rrij 
S ~ {Si,S2,...,Sv} schedule 
Sj starting time of activity j 
Cj completion time of activity j 

6A Literature review 
Lots of papers concerning setup times have been published throughout a few 

recent decades. Most of them are devoted to single or parallel machine schedul
ing problems, as well as to job shop and flow shop problems (see Allahverdi 
et al (1999) or Yang and Liao (1999) for a survey). Unfortunately, only a few 
papers have been dedicated to project scheduling problems with setup times. 
It is mainly caused by the fact that in many cases either setup times are not 
taken into account explicitly (for example they do not occur in the problem or 
are relatively small and therefore can be neglected), or it is assumed that setup 
times are sequence-independent and included in the activity duration. 

In the classification presented by Herroelen et al (1999), where notation 
a|/3|7 is used to describe project scheduling problems, the parameter /Jg E 
{o^Sij} denotes setup times: f3^ — o - no setup times, /Jg — Sij - sequence-
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dependent setup times. In (Demeulemeester and Herroelen (2002)) this clas
sification has been further extended to Pg e {o, 5ij,Sij, 5ij}, where Pg = sy 
denotes stochastic sequence-dependent setup times, and /Jg = ŝ j denotes fuzzy 
sequence-dependent setup times. In another classification of project scheduling 
problems proposed by Brucker et al (1999) setup times are not considered. 

Most papers in the area of project scheduling have been dedicated to develop
ing efficient algorithms and generalizing models. Only a few papers describe 
how to generate problem instances, but most of them consider the classical 
RCPSP. The paper by Drexl et. al (1999) is the only one where a procedure of 
generating data for setup times occurring in the MRCPSP has been described. 
It is assumed that setup times are sequence-dependent and mode-dependent. 
For each activity j e V, SL set Wj is defined, containing those activities for 
which setup times have to be considered. For every activity f E Wj, a mode-
dependent and sequence-dependent setup time Wjmj'm' is defined, which de
notes a minimal time that must lapse between the finishing of activity j per
formed in mode m and the beginning of activity / performed in mode m'. 
Moreover, it is assumed that j G Wj' => f E Wj and Wjfrn'jm = 'Wjmj'm'^ 
as well as that setup times may be defined for a subset of all possible pairs of 
project activities, depending on the parameter CTS E [0,1]. If CTS' == 0, then 
no setup times are defined. If CTS = 1, then setup times are defined for each 
pair of activities. The pairs of jobs, for which setup times are defined, are drawn 
randomly and the length of the corresponding mode-dependent setup time is 
also drawn randomly from the interval [MinST^ Max ST], where MinST and 
MaxST are input parameters. 

The first research on the project scheduling with setups has been made by 
Kaplan (1991), who considers a single-mode problem with preemptable activ
ities. Whenever a preempted activity is restarted, a setup time is incurred. A 
dynamic programming procedure is proposed to solve this problem optimally 
using a unit-time duration model of the RCPSP, where each activity j e V is 
split into pj unit-time-duration activities. Unfortunately, the algorithm based 
on an incorrect theorem might fail to find the optimal solution, as it has been 
shown by Demeulemeester (1992). 

Kolisch (1995) presents a zero-one programming formulation for the RCPSP 
with setup times. Two modes representing the processing including and exclud
ing a setup, respectively, are defined for every activity requiring a setup. These 
two modes differ in the duration of activities only while the resource requests 
are identical. The renewable resources, which should be appropriately set up 
in order to process a certain activity, are called setup-resources and the states 
of these resources after different setups are called setup-states. It is assumed 
that each setup-resource is available with one unit per period only, and can 
therefore process only one activity at a time, as well as each activity can use 
at most one setup-resource. If setup-state u on setup-resource k is required to 



Modelling setup times in Project Scheduling 147 

perform a certain activity j , the resource request Vjku is equal to 1 (0 otherwise). 
A continuous variable y^ut is used to check if setup-resource k has setup-state 
u at the end of period t (ykut — !)• Moreover, a setup time heuristic (STH) 
algorithm based on the parallel schedule generation scheme (SGS), where the 
concepts of the presented model are used, is proposed to solve the problem. 

The general production scheduling problem (GPSP) which is an extension of 
the job shop scheduling problem is considered by Demeulemeester and Herroe-
len (1996). The GPSP differs from the job shop scheduling problem mainly in: 
(i) the existence of more than one machine of a certain type, (ii) the existence 
of sequence-independent setups when a machine switches from one product to 
another, and (iii) the existence of precedence constraints between activities, as 
well as several other features. Thus, the GPSP looks similar to the RCPSPST. It 
is assumed that batch splitting is not allowed, and a batch has to be completely 
processed on a machine before it can be moved to the next machine. Under 
this assumption a sequence-independent setup time can be overlapped with a 
production time of the same batch on the preceding machine. An AoN network 
and time lags are used to model the sequence-independent setup times. The 
nodes (activities) of the network correspond to production batches, while the 
arcs represent the finish-to-start precedence relations between two activities i 
and j , where FSij is not less than —Sj. 

Dodin and Elimam (1997) consider an audit scheduling problem with the time 
and cost of the auditor's travel, as he or she changes the assignment from one 
engagement to another. If an auditor switches from activity i in engagement 
g to another activity j in engagement g\ then this switch may require some 
travel time and expense, which depend on the location of g^ in relation to g 
or to the home base. It is assumed that the travel occurs during non-working 
hours and its monetary value is included in the travel cost, that hence is treated 
as auditor- (resource-) dependent. The travel cost and other expenses incurred 
during the auditor's change of assignments from one engagement to another 
are captured by a sequence-dependent setup cost. An ILP model is proposed, 
where the objective function minimizes the total cost including both tardiness 
and setup costs as well as the costs of mismatching auditors and audit activities. 
The precedence constraints are added to this model in order to avoid the TSP 
formulation of the problem, which can arise when sequence-dependent setup 
times are considered and lead to a strongly NP-hard problem. 

The RCPSP with time windows and sequence-dependent changeover times 
is considered by Neumann et. al (2003). The set of all renewable resources that 
must be set up for processing certain activities are called changeover resources. 
The resource requests by activities and setups may be greater than one, and they 
must not exceed the respective resource capacities at any time. If this constraint 
is fulfilled, the resulting schedule is called changeover-feasible. The authors 
show how to detect whether or not a generated schedule is changeover-feasible. 
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They also propose a resolving resource conflicts procedure for changeover-
infeasible schedules. 

Recently, Mika et al (2003) propose a new category of setup times to model 
times necessary, e.g., to transfer some very huge data files from one compu
tational node to another one in a computational grid. This new category is 
called schedule-dependent setup times. The problem concerns the scheduling 
of workflow jobs, which consist of several precedence-related tasks running 
on certain computational nodes of a grid. Tasks process huge data files and 
leave them on corresponding nodes or send them to other computational nodes. 
Transportation times are treated as setup times, and strongly depend on the 
locations of both nodes: the first one from which the file is transferred, and the 
second one to which it is uploaded. 

6.5 Modelling setup times in the context of project 
components 

As we have already mentioned, the classical unconstrained project schedul
ing problem can be solved optimally using the CPM, but when resources are 
available in limited amounts then the resulting problem, known as the RCPSP, is 
NP-hard. When setup times are involved in the PSP, the problem in most cases 
can not be solved optimally in polynomial time, even if there are no resource 
constraints (Baker (1974)). The unconstrained project scheduling problem with 
setup times is usually denoted as the PSPST, whereas the RCPSP with setup 
times as the RCPSPST, and the MRCPSP with setup times as the MRCPSPST. 
Let us remind that in project scheduling with setup times, resources usually can 
not be treated as sets of identical units to which activities can be assigned arbi
trarily. As it was discussed in Section 16.1, all resource units requiring setups 
should be in most cases considered separately. In Section 16.2 some prop
erties of setups adopted to project scheduling from machine scheduling have 
been presented, except for the schedule-dependent setups which is a new cate
gory of setups arose in the area of project scheduling. Now we will show how 
some project scheduling components influence setup times. The influence of 
the precedence constraints, resource availability constraints, multiple resource 
units requests, multiple resources, multiple modes, and auxiliary resources on 
setup times will be discussed. 

6.5.1 Precedence constraints 

While modelling setup times in the presence of precedence constraints, at 
least 3 different cases can be distinguished: the first one where setups depend on 
the precedence constraints, the second one where setups do not depend on the 
precedence constraints, and the last one where setups are partially dependent 
on precedence constraints. 
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Figure 6.4. A sample project. 

In order to explain these three cases we use the following simple example of 
the RCPSPST. A sample project consists of three activities and two renewable 
resources Ri and R2. The processing times and resource requests are as follows: 
pi = 2, p2 = 4, p3 =: 3, ri i := 2, r22 = 2, rai = 2 and ru = r2i =^ 
3̂2 = 0. The resource availabilities are: Ri — 2 and R2 — 2. All setup 

times are equal to 2. The structure of the project is represented by the AoN 
network presented in Figure 6.4. It is assumed that all setups are inseparable 
and sequence-independent. 

A — I — I — I — h -i 1 1 1 1 1 1 1 1 1 r 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 time 

^max ~ -^^ 

Figure 6.5. A schedule for the sample project with precedence-dependent setups. 

In the first case, where setups depend on precedence constraints, no setup 
associated with activity j can be started before the completion of all direct 
predecessors of j . For the considered sample project it results in the schedule 
presented in Figure 6.5, where gray boxes represent setups and white boxes 
correspond to activities. 



150 PERSPECTIVES IN MODERN PROJECT SCHEDULING 

Such a situation occurs, e.g., when a resource that does not need any setup 
has been used by the preceding activity and is required for setting up a resource 
necessary for the succeeding activity. 

9 ~ 
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i 

1 1 — ^ \ 1 \ 1 1 1 k^ 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 time 
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Figure 6.6. A schedule for the sample project with precedence-independent setups. 

In the second case, where setups do not depend on precedence constraints, 
they need not to wait for the completion of the preceding activities. These 
setups can be executed in parallel with the preceding activities. In this situation 
the resulting schedule for the sample project is presented in Figure 6.6. 

Such a situation occurs, e.g., when setups require only resources necessary 
for their execution and do not require any auxiliary resource (see section 6.5.6). 
In the last case setups partially depend on precedence constraints. It means 
that a determined part of a setup can be executed before the completion of the 
preceding activities. Let us assume that in the considered example a part of 
each setup equal to one time period can be executed before the completion of 
the preceding activity. Then the resulting schedule is presented in Figure 6.7. 

Such a situation can occur, e.g., when some resources are modified during 
the execution of the preceding activity, and then they must be transported or 
transferred to another place where they are necessary for setting up some re
sources required by the succeeding activity. A setup may start as early as the 
first set of resources is ready to be transported. 



Modelling setup times in Project Scheduling 151 

9 _ 

1 -

i 

1 1 \ 1 1 I 1 \ 1 h ^ 

«2 

2 4 -

1 4- c* = 11 

H \ \ \ h 1 1 1 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 time 

Figure 6.7. A schedule for the sample project with partially precedence-dependent setups. 

6,5,2 Resource constraints 

In the classical unconstrained project scheduling problem (PSP) it is assumed 
that all renewable resources are available in amounts (numbers of units) suffi
cient to perform all activities in parallel. In consequence, the schedule is build 
taking into account the precedence constraints only. However, under resources 
constraints the resulting RCPSP problem becomes much more complex. 

Let us consider another sample project (with v = 6 activities and one re
newable resource), represented by the AoN graph shown in Figure 6.8. The 
durations and resource requests of all activities are presented in Table 6.4. 

Table 6.4. Paranneters of the sample project no. 2. 

Activity - j 

1 
2 
3 
4 
5 
6 

Duration - pj 

2 
1 
4 
3 
4 

Resource request - Vji 

1 
2 
2 
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Figure 6.8. A sample project no. 2. 

The schedule obtained using the CPM is presented in Figure 6.9. One can 
notice that if resource Ri is available in at least four units, the considered 
problem is a resource-unconstrained project scheduling problem. 

Rl 

time 

Figure 6.9. A schedule for unconstrained project no. 2. 

Now, let us assume that each activity requires a setup time. Moreover, 
let us also assume that each setup time is separable, sequence-independent, 
precedence-independent, and is equal to one time unit. In the next two figures 
schedules obtained for the sample project no. 2 with setups assuming that 
i?i — 4 (Figure 6.10) and Ri = 8 (Figure 6.11) are presented. 

It is easy to observe that increasing the number of available units of a renew
able resource results in shortening the project duration. This observation leads 
to the next conclusion which can be formulated as follows. There are possible 
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Figure 6.10. A schedule for project no. 2 with setups and Ri — 4. 

f 
6 i- I 1 1 

5 4- 3 

4 -h I 1 1 1 
5 

3 4~ 1 1 1 1 

2 -J- 2 
6 

1 4 1 ' 

_J , ^__^ \ 1 ^ 

7 8 9 10 11 
time 

Figure 6.11. A schedule for project no. 2 with setups and Ri = 8. 

situations where projects are not resource-constrained, but in the presence of 
setups the resource availabilities can not be neglected because they may restrict 
the possibilities of execution some activities and setups in parallel. 

Let us examine the schedule presented in Figure 6.10. The setup associated 
with activity 3 could be executed in the 4-th time period together with activities 
2 and 5, as well as with the setup for activity 4, but - unfortunately - in this 
time period there are not enough idle resource units available which could be 
used to perform the setup for activity 3. Similar situation occurs for the setup 
associated with activity 6. So, this is a case where resources are not constrained 
with respect to the possibilities of the execution of all activities, but they are 
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constrained for the execution of some setups. We call such constraints soft 
resource constraints, in opposition to the classical resource constraints which 
we call hard resource constraints. 

( V ] 
Let r^^^ = max^ < ^ Tjf^ • Xjt >, where Xjt is equal to 1 if activity j 

is executed at time period t and 0 otherwise, and C^^^^ is the project duration 
calculated using the CPM for the problem with neglected setups and resource 
constraints. In other words r^^^ denotes the maximal total temporal request 
for renewable resource k assuming that the schedule is build according to the 
CPM. If Rj^ < r^"^ then the constraints on resource k are hard, if r^^^ < 6 
then they are soft. S < 2 - r^^^ is a value that denotes the maximal temporal 
request for resource k that depends on the structure of the project with regard 
to setups. Finally, if i?/c ^ ^ then resource k is unconstrained. 

6.5,3 Multiple resource units 
The next difference between machine scheduling and project scheduling is 

the number of resource units. In machine scheduling each machine is treated 
separately as a single unit resource, even if these are identical parallel machines. 
In project scheduling such a situation occurs rather seldom. More frequently 
resources contain more than one unit, and all units are treated equally. In this 
section the influence of the multiplicity of resource units on setup times is 
discussed. 

6.5.3.1 Single-unit renewable resource. Single-unit renewable re
sources occur rather seldom in project scheduling but, of course, their existence 
is possible in practice, especially when there are no other resources and the con
straints on those resources are hard. An example of such a resource may be a 
skilled worker or an expert, who can not be substituted by other workers. If a 
setup is necessary to prepare a single unit resource for the execution of a given 
activity, then it is known in advance on which resource unit the activity will be 
executed. Thus, it is also known in advance which resource unit requires the 
setup. This property allows to use models and methods adapted from single 
machine scheduling with setup times. 

6.5.3.2 Renewable resource with multiple units. When the number 
of units of a given renewable resource is greater than one then the problem 
becomes more complex. In such a problem two cases can be distinguished: 
the first one where resource requests of all activities are equal to one, and the 
second one where there are also activities with resource requests greater than 
one. 
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In the first case, some models and methods developed for parallel machine 
scheduling problems with setup times can be easily adapted to project schedul
ing problems with single constrained resource (with Ri > 1) and unary resource 
requests. 

In the second case, more than one requested resource unit have to be set up in 
order to execute some activities on these resource units. First of all, the decision 
on which units the setup will be prepared has to be made. It is a very important 
decision because the corresponding activity has to be executed on exactly the 
same resource units. Now, there are two further possibilities: 1) an undivided 
setup, where all requested resource units should be set up at the same time 
(Figure 6.12), 2) a divided setup, where each requested resource unit can be set 
up at an arbitrary time before starting the associated activity (Figure 6.13). The 
first situation is typical for inseparable setups but is also possible for separable 
ones, while the second one occurs only for problems with separable setups and, 
for example, with strongly constrained auxiliary resources (see section 6.5.6) 
necessary to set up the requested resources. 

Figure 6,12. Undivided setup for a multiunit resource. 

Moreover, when sequence-dependent or schedule-dependent setup times are 
considered together with divided setups, it is possible that setup times for par
ticular requested units of the very same resource will differ among themselves. 
For example, if at least two auditors are necessary in one place to execute a given 
activity, then they must travel from the current location to the place where the 
activity will be executed. Thus, the setup times for particular units may differ 
and in this case depend on the current location of these units (auditors). 

6.5.4 Multiple resources 

In many project scheduling problems there are more than one resource avail
able. Activities may require for their processing one resource only, and then the 
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Figure 6.13. Divided setup for a multiunit resource. 

problem of scheduling activities and setups of the project reduces to a problem 
similar to that described in the previous section. But, of course, it is also pos
sible that activities request for more than one resource, and setups are required 
for all these resources. In such a case, each setup Sj, necessary to prepare 
all the required resources for the execution of activity j , consists of a set of 
setups a^, where a^ is the setup concerning particular resource k. It is obvi
ous that different resources require different setups which, of course, may take 
different amounts of time. This observation leads us to the next categorization 
of setups, where synchronous, semi-synchronous, and asynchronous setups are 
distinguished. In order to explain these terms, it is assumed that a given activity 
requests for several resources and each requested resource requires a setup. The 
time needed to set up is different for each resource. 

In the case of the synchronous setup (Figure 6.14), all setups G^ necessary 
to set up all requested resources for the execution of activity j have to be 
performed in parallel. The time needed to perform the entire setup Sj is equal 
to the execution time of the longest setup a^. Of course, the duration of the 
parallel execution of setups a^ is at most equal to the execution time of the 
shortest setup from among all of them. Moreover, each resource required by 
a setup is exclusively allotted to this setup over the whole setup time, and is 
not available for other setups or activities during this time interval. In other 
words, the entire synchronous setup must be performed as shortly as possible, 
and all resources used for it may not be assigned to other activities or setups at 
the same time. 

The semi-synchronous setup (Figure 6.15) is very similar to the synchronous 
one. The main difference is that the resources are not exclusively allotted to a 
setup. They can be used by other setups within the setup time, because they are 
not blocked for this time interval. 
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Figure 6.14. An example of the synchronous setup. 

time 
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Figure 6.15. An example of the synchronous setup. 

An example of a situation in which semi-synchronous setup occurs is making 
a rib-and-slab floor of a building, where an activity is to place a concrete on 
a previously prepared floor of the building. There are at least two constrained 
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resources necessary to complete this activity: a concrete pump and a truck 
concrete mixer. Both machines need a setup which consists in moving them 
from the concrete-mixing plant to the construction site. Both trucks should 
arrive at the destination almost at the same time. Otherwise, either the concrete 
may become useless if the concrete pump comes too late, or we have to pay 
additional money for the working hours of the concrete pump waiting for the 
truck concrete mixer. 

In the case of the asynchronous setup (Figure 6.16) each particular setup a^ 
can be performed independently of the other ones comprising the same setup 
Sj. In other words, they do not need to be performed simultaneously. 

As an example of a situation where asynchronous setup may occur, a ma
chining of a detail made of some metal may be used. These activity usually 
requires setting up at least two constrained resources: a machine tool and a 
cutting tool. The detail must be mounted in a proper chuck of the machine tool, 
whereas the cutting tool must be mounted in a given fixture. Both setups may 
be performed sequentially by one person. 
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Figure 6.16. An example of the asynchronous setup. 

6.5.5 Multiple modes 

All previously discussed models of setups can also be considered in the 
multi-mode resource-constrained project scheduling problem with setup times 
(MRCPSPST). Moreover, each execution mode for an activity of the MRCPSP 
usually requires its own combination of resources, which is different from the 
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resource combinations for other execution modes. Thus, it is obvious that 
different setups have to be associated with different modes. We call them setup 
modes. 

Moreover, it is possible that there are more than one alternative ways of 
performing a setup for a given execution mode of an activity. Such a situation 
occurs usually when auxiliary resources are used for a setup. As a result, the 
number of setup modes can be greater than the number of execution modes. 

On the other hand, it is also possible that the number of feasible execution 
modes can be reduced because of the feasibility of setup modes. Such a case 
appears when constrained auxiliary resources are necessary to set up some 
resources. 

6.5.6 Auxiliary resources 
In some situations, in order to perform a setup on a given resource, one or 

more auxiliary resources are needed. These auxiliary resources are used only for 
setting up other resources, and are not used during the execution of any project 
activity. An example of such an auxiliary resource is a group of skilled workers 
who are capable of and responsible for proper setting up specialized machines. 
These additional resources can be neglected if they are available in numbers of 
units sufficient to perform all possible setups in parallel. Otherwise they must 
be explicitly taken into account as one of the parameters of the problem. 

Moreover, if the number of auxiliary resources is greater than one, it is 
possible in some cases to perform a setup in one from two or more alternative 
ways, which may differ between themselves in the duration of the setup and 
resources necessary to perform it. In other words, setups can be executed in 
one from multiple setup modes. 

As an example illustrating the setup modes we use workers (a typical exam
ple of auxiliary resources) who are necessary to set up machines, computers, 
robots, and other resources. Usually workers can be divided into several groups 
according to their skills. Let us assume that there are at least three groups of 
workers: usual workers, skilled workers, and experts. Workers from all the 
three groups are able to set up some resources for executing some activities. 
For example, a certain machine may be set up for executing a given activity 
by two experts, one expert and two skilled workers, one expert and four usual 
workers, or by four skilled workers. In consequence, four different setup modes 
have been obtained. 

6.6 Possible extensions of the presented models 
In the previous section the influence of project components on setup times 

has been discusses. On this basis a few models of setup times have been de
scribed, including introducing some new categories of setups, like: precedence-
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independent, precedence-dependent, and partially precedence-dependent se
tups, divided and undivided setups, synchronous, asynchronous, and semi-
synchronous setups, and also multiple setup modes. However, in this paper 
we only consider a certain class of project scheduling problems, and the goal 
of this section is to show possible extensions of the presented models, as well 
as other directions of further research in this area. 

Let us first recall that we consider static, deterministic, and discrete project 
scheduling. It means that similar analyses can be performed for dynamic project 
scheduling (on-line scheduling), stochastic project scheduling, where the pa
rameters of the problem may have stochastic settings, or continuous project 
scheduling, where time is not discretized and has continuous nature (there is no 
scheduling period). However, since static, deterministic, and discrete project 
scheduling is the subject of most research, we will now focus on possible ex
tensions of this class. 

Let us start with the optimization criterion. We have only considered the 
minimization of the makespan (i.e. project duration) as the scheduling criterion. 
It is obvious, that other criteria can be considered as well, both regular (e.g. 
minimizing the mean flow time, the project lateness or tardiness, etc.), and non-
regular (e.g. minimizing the weighted earliness-tardiness of the project). From 
among the non-regular criteria, the financial ones seem to have strong practical 
justification in the context of setup costs, for example the maximization of the 
net present value (NPV). But also time/cost trade-off problems with setup costs 
have not been extensively studied yet, to the best of our knowledge. Many 
other criteria can be given too, as well as multi-objective project scheduling 
with setup times (costs) which could be a big challenge for the researchers. 

Next, preemption may be allowed on activities and/or setups which leads us 
to the preemptive resource-constrained project scheduling problem with setup 
times. Another extension can be imposing ready times on activities, and/or 
duedates on activities or the entire project. Ready times and duedates (or even 
deadlines) may be imposed on setup operations as well. Moreover, other types 
of precedence constrains than finish-to-start with no time lags could be analyzed, 
which leads us to the resource-constrained project scheduling problem with 
generalized precedence constraints and setup times. 

Besides, other resource categories may be taken into account, e.g. non
renewable resources or partially renewable resources, and their influence on 
setup times. Also, constant or variable resource requests can be considered, as 
well as continuous resources where the processing rate (or processing time) of 
an activity depends on the amounts of the continuous resources allotted to this 
activity at a time. The time/resource trade-off problem with setup times could 
be another case to consider. 

All the above extensions may be also studied in the context of multiple 
modes. Especially, the so-called mode identity constrains should be analyzed 
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in combination with class setups. The case of mode identity constraints is a 
generalization of the multi-mode case where the set of all activities is partitioned 
into disjoint subsets, while all activities forming one subset have to be processed 
in the same mode. Time and cost incurred by processing a subset of activities 
depend on the resources assigned to it. The connection to the case of class setup 
is obvious, but the resulting problem needs further attention. 

Finally, project scheduling with setup times can be also approached from the 
sensitivity and robustness point of view, which is a direction in project schedul
ing intensively studied in recent years because of great practical importance. 
Also other aspects, concepts, and models in project scheduling, which we have 
not been able to mention here, may be used as possible extensions. Certainly, 
project scheduling problems with setup times (costs) require extensive further 
research because of a huge number of practically justified cases. 

6.7 Conclusions 

In this chapter project scheduling problems with setup times have been con
sidered. An extensive classification of setups in project scheduling has been 
presented. The definitions of a new category of setups - schedule-dependent 
setups, as well as precedence-independent, precedence-dependent, and par
tially precedence-dependent setups, divided and undivided setups, synchronous, 
asynchronous, and semi-synchronous setups, and also multiple setup modes 
have been given. Modelling setup times in the context of various project 
scheduling components has been widely discussed. Some possible extensions 
of the presented models have been pointed out. 

Let us finally stress that we have attempted to consider the title issue as 
comprehensively as possible. However, we are aware of the restrictions of this 
research, as well as of the complexity of the undertaken subject, in general. We 
have tried to propose possible extensions not considered in this paper, but even 
so, we could not mention all the cases which might appear in practice. Certainly, 
project scheduling problems with setup times require further attention, because 
of their interesting theoretical properties, as well as of a great variety of practical 
applications. 
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Abstract We review the most recent lower bounds for the makespan minimization variant 
of the Resource Constrained Project Scheduling Problem. Lower bounds are 
either based on straight relaxations of the problems (e.g., single machine, parallel 
machine relaxations) or on constraint programming and/or linear programming 
formulations of the problem. 

Keywords: Resource Constrained Project Scheduling Problem, lower bounds, constraint pro
gramming, linear programming. 

7.1 Introduction: bounding RCPSP 
In the Resource Constrained Project Scheduling Problem (RCPSP), non-

preemptive activities requiring renewable resources subject to precedence and 
resource constraints have to be scheduled to minimize makespan. Our aim is 
to review recent advances in lower bounding techniques for this fundamental 
problem. 

For a description of exact or heuristic resolution methods, we refer to the 
recent general state-of-the art surveys on the RCPSP, e.g., (Brucker et al (1999)) 
and (Demeulemeester and Herroelen, 2002). 

Most of the bounds described in this paper are "destructive" bounds (Klein 
and Scholl, 1999). The mechanism of such bounds is rather simple: a trial value 
D is fixed for the makespan. If we are able to prove that the corresponding 
problem has no feasible solution, then D + 1 is a valid lower bound. A binary 
search is performed on the trial value D to find the largest value for which we 
can prove that no feasible solution exists. Of course the key component of a 
destructive bound relies on the way we can prove that there is no solution. 

This chapter is organized as follows: 

• Section 7.2 is dedicated to classical relaxations of the RCPSP to sin
gle resource problems, they are based on the single machine problem, 
the identical parallel machine problem and the Cumulative Scheduling 
Problem. Bounds presented in this section may not be the most efficient 
ones but they are fast to compute. 

• Section 7.3 presents constraint propagation techniques used to strengthen 
the problem. These techniques are useful especially if they are used as 
preprocessing for more complex lower bounds such as the ones based on 
some linear programming formulation. 

• In Section 7.4 we present more sophisticated lower bounds that take into 
account simultaneously the precedence constraints and several resources. 
Most of these bounds are efficient but highly time consuming. 

We do not develop in this chapter the description of the classical lower bounds 
based on longest paths computations in the project network and their extensions. 
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We refer to (Demeulemeester and Herroelen, 2002) for a complete description 
of these bounds. 

Notation used in this chapter are recalled in Table 7.1. 

Table 7.1. Notation 

Notation 
Activity related data 

A 
n 

G{A,E) 

Pi_ 

Resource related Data 

n 
m 

ri,k 
Rk 

Other Notation 
ESi 
LFi 
EFi 
LSr 

Sr 

a 
D 
Qi 

Definition 

set of activities 
number of activities: n — \A\ 
activity-on-node graph used to model classical precedence 
processing time of activity i 

set of renewable resources 
number of resources: \1Z\ 
number of units of resource k required by activity i 
capacity of resource k 

earliest starting time of activity i (release date) 
latest finishing time of activity i (deadline) 
earliest finishing time of activity i {ESi + Vi) 
latest starting time of activity i {LFi — Vi) 
starting time of activity i 
completion time of activity i 
trial value used to compute destructive lower bound 
tail of activity i: qi = D — LFi 

relationship 

7.2 Single resource problems 

In this section, we present classical methods for bounding single resource 
problems that arise as relaxations of the RCPSP. Basically these new problems 
are obtained either by relaxing the precedence relations to time-windows for 
activities and/or by relaxing partially the resource constraints. Namely these 
problems are (1) the single machine problem, (2) the identical parallel machine 
problem and (3) the Cumulative Scheduling Problem (CuSP). All these prob
lems involve release dates and tails (or deadlines). For these three relaxations, 
we first describe how they can be get from an initial RCPSP instance, and then 
we describe lower bounds and time-bound adjustments methods that can be 
used in turn to get lower bounds for the initial RCPSP. 
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7.2,1 Disjunctive based bounds 
In the single machine problem, a set of activities has to be processed on a 

single machine. Each activity,z has a release date ESi, a processing time pi, 
a tail (qi) or a deadline LFi. This problem is known to be A/̂ T -̂Hard in the 
strong sense. It plays a central role for solving the RCPSP as (1) we can derive 
release dates and tails of activities from the precedence constraints and (2) we 
can compute sets of activities that, due to machine or to precedence constraints, 
cannot be processed in parallel and can thus be "puf'on a Active single machine. 

In this part we present both a method to build such single machine problems 
from an initial RCPSP and classical techniques either to compute lower bounds 
of the makespan (maxi((7i + qi), where Ci denotes the completion time of 
the activity i) or to derive satisfiability tests, and time-windows adjustments of 
activities. 

7.2,1.1 Maximum clique computation. Consider the decision variant 
of the RCPSP. The aim of this section is to build a set of single machines (a 
machine is a resource with unit capacity), on which some activities have to be 
processed. 

Such redundant machines are useful: on each redundant single machine, 
edge-finding constraint propagation can be applied (see Section 7.2.1.3) and 
thus, the time-windows of activities can be tightened. 

To generate redundant single machines, we look for sets of activities that are 
known not to overlap in any feasible solution. Note that two activities i and 
j never overlap in time (1) if there is a precedence constraint between i and j 
or (2) if there is a resource such that the total amount of capacity required by 
i and j on the considered resource exceeds its capacity. In the following, two 
activities meeting conditions (1) and/or (2) are said to be "compatible". Any 
set of activities in which all activities are pairwise compatible is a candidate 
redundant machine. 

We associate a binary variable T^ E {0,1} with each activity i (T^ equals 
1 when i belongs to the single machine under construction, 0 otherwise). A 
vector T corresponds to a valid redundant machine if for all activities ij that 
are not compatible, T^ + Tj < 1. 

Since the edge-finding constraint propagation algorithm is costly in terms 
of CPU time, very few redundant machines can be generated. Hence, we have 
to heuristically select some of them. Our intuition is that "good" redundant 
machines are heavily loaded. So, we try to find a vector T that maximizes 
Y^Pi ' Ti. The resulting problem is a MIP with n variables and at most n^ 
constraints (much less in practice). In (Baptiste and Le Pape, 2000), a greedy 
heuristic is used to build a solution to a similar MIP. Initial experiments have 
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shown that, in terms of final reduction of time-windows, it is much better to 
solve the MIP to optimality. 

More precisely, we build one global redundant machine according to the 
above MIP and one redundant machine per initial RCPSP resource. For each 
cumulative resource, a redundant machine is created in which all the activities 
requiring more than half of the resource are put (such activities never overlap in 
time). We then try to add some extra activities on this redundant machine. To do 
so, the MIP is modified by replacing variable corresponding to activity h, i.e., 
Tfi the variable corresponding to activity that is already put on the redundant 
machine by is replaced by 1. Then a "reduced" MIP, that is solved to optimality, 
is get. 

7.2.1.2 One machine problem lov^er bound. Several lower bounds 
have been proposed for such one machine problem, i.e., with release dates and 
tails or deadlines. The commonly used lower bound of the Cmax for the single 
machine problem is 

^(^X{h,l)eA'^ESh + qi-\- ^ Vi-
i:ESi>ESh.qi>qi 

This maximum can be computed in 0{n log n) steps thanks to Jackson Preemp
tive Schedule, the preemptive schedule associated with the Largest Tail First 
dispatching rule. 

7.2.1.3 Edge-finding and time-bound adjustments. Now, we con
sider the decision variant of the single machine problem as defined earlier. So, 
we have time-windows [ESi, LFi] (release date / deadline) in which activities 
have to be processed. 

Edge-Finding and time-bound adjustments (Carlier and Pinson, 1989, Ap-
plegate and Cook, 1991) consist of deducing that some activities from a given 
set Q. must, can, or cannot, be executed first (or last) in Vt. Such deductions 
lead to new ordering relations ("edges" in the graph representing the possible 
orderings of activities) and new time bounds, i.e., strengthened release dates 
and deadlines. The edge-finding algorithm is one of the most well known OR 
algorithm integrated in CP (Baptiste et al., 1999). It is a very efficient global 
constraint propagation algorithm for disjunctive non-preemptive scheduling. 

In the following, ESQ, denotes the smallest release date among the activities 
in VL. Similarly, L F Q is the largest deadline among activities in Vt. Finally, let 
PQ be the sum of the processing times of the activities in f]. Let i <. j (i '> j) 
means that i is executed before (after) j and i <^ Q (i ^ ft) means that i is 
executed before (after) all the activities in ft. Once again, variants exist (see 
Baptiste et al., 1999 for a review) but the following rules capture the "essence" 
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of the Edge-Finding bounding technique: 

Vf7, Vi ^ n, [LFnu{i} - ESQ <pn+ Pi] ^[i^n] 

Vfi, Vz ^ n, [LFn - ES^u{i} <PQ+ Pi] =>[i:^^] 
VJ7, Vz ^n,[i<^Q]^ [LFi = mm{LFi, min (LF^/ - p^/))] 

Vf7, Vz ^ n J i » f7] -^ [E^̂ i - max(£;5i, max (E;^^/ + PQ/))] 

0/n^cn 
If n activities require the resource, there are a priori 0 (n • 2^) pairs (z, J7) to 

consider. An algorithm that performs all the time-bound adjustments in 0(n'^) 
is presented in (Carlier and Pinson, 1990). Another variant of the Edge-Finding 
technique is presented in (Carlier and Pinson, 1994). It runs in 0{n log n) but 
requires much more complex data structures. 

7.2.2 Cumulative problem based lower bounds 

One simple way to extend single machine based lower bounds for the RCPSP 
is to consider that more than one activity can be in process at a time point. Then 
several lower bounds based on either identical parallel machine problem or 
Cumulative Scheduling Problem have been proposed in the literature. Some of 
these bounds are presented in this section. 

7.2.2.1 Deducing identical parallel machine problems. In the iden
tical parallel machine problem, a set A of activities has to be processed on n 
identical parallel machines. Each activity, i e A, has a release date ESi, a 
processing time pi and a tail qi or a deadline LF^, These problems are known to 
be A^T -̂Hard in the strong sense. Preemptive or semi-preemptive (see Section 
7.2.2.2) relaxations can be solved efficiently and then used to compute lower 
bounds for the RCPSP. Thus building relevant identical parallel machine prob
lem, considering that release dates and tails of activities are deduced from the 
precedence constraints of the initial RCPSP, is useful for bounding RCPSP. 

To build such 7r-machine problems, let us consider a resource k and a set 
J C ^ of activities of the initial RCPSP such that I J | = Tr+landX^-^^r r̂ ,A; > 
i?/c, then at most n activities of J can be in process at the same time. Thus J 
defines a yr-machine problem, and the optimal makespan of this identical parallel 
machine problem is a lower bound of the makespan of the initial RCPSP 

In (Carlier and Latapie, 1991) 7r-machine problems are built such that: 

• any activity satisfying ^̂  ^^ '̂'̂  \ - I > Vi^ (Vi ^ N)' is replaced by r]i 
identical activities in J, 

• activities such that X^^^i^j^]/. > R^, (where r[̂ ]/j, the i — th smallest 
resource requirement of the activities of J) are added to J. 
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7.2,2,2 Bounding identical parallel machine problem. Here we con
sider lower bounds and satisfiability tests for the decision variant of the identical 
parallel machine problem with release dates and tails or deadlines. Satisfiabil
ity tests are used to prove that there exists no solution in which activities are 
processed within their time-windows [ESi, LFi], without violating the machine 
constraint. Then they can be used to compute destructive lower bounds for the 
initial RCPSP instance. 

Preemptive and semi-preemptive relaxations for identical parallel machine 
problem. In this section, we focus on two satisfiability tests for identical 
parallel machine decision problem: the first one is based on the preemptive 
relaxation, that can be solved in polynomial time, the second one uses the 
notion of mandatory parts of activities into the classical max-flow formulation. 
These methods are presented through an example. 

Table 7.2. Instance of identical parallel machine problem 

z G ^ , 7 r == 2 
ESi 

Pi 
LFi 

1 
23 
14 
37 

2 
0 

45 
46 

3 
0 
74 
89 

It is well known that preemptive relaxation of the identical parallel machine 
problem is polynomially solvable and that an optimal solution can be found us
ing a max-flow formulation (Horn, 1974): there exists a flow equal to X^^^^ Vi, 
in graph G if and only if there exists a preemptive feasible schedule. We refer 
to (Brucker, 2002) for a formal description of the graph construction. 

The figure 7.1 presents the graph associated with the instance presented in 
figure 7.2. The computation of this satisfiability test can be done in 0{v?) time. 

In a recent paper (Haouari and Gharbi, 2003) propose to build semi-preemptive 
schedule. It is based on a technical result to enforce some parts of an activ
ity to be processed into a given time-interval. They proved that, if an activity 
i ^ A verifies LFi — ESi < 2 - pi, then one machine processes activity i 
during [LFi - pi, ESi + Pi]- This constraint can be simply taken into account 
by adding minimum flow constraints on arcs between those activities and cor
responding time-intervals, once relevant time-points (LFi — p^, ESi +Piyi G 
A s.t. LFi — ESi < 2 ' Pi) have been added. Such a graph is presented below. 
If it does not exist a flow equal to J2ieA P^ ^̂  graph G, then there does not exist 
a non-preemptive feasible schedule. The computation of this satisfiability test 
is still in 0{n'^) time, due to the fact that the number of nodes is still in 0{n). 
Such a graph corresponding to our previous example is presented in Figure 7.2. 
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capacity 

Figure 7.7. Graph for preemptive relaxation of 7r-machine problem 

Finally, (Tercinet et al., 2004) prove that the semi-preemptive relaxation can 
be replaced by mixing energetic reasoning and preemptive relaxation. The ap
proach is quite similar to the one proposed by Haouari and Gharbi but works 
of activities for time-interval (see 7.2.2.4, for formal description), that are the 
mandatory parts of the activities that must be processed during this time-interval, 
are used as minimum capacities on the edges between activities and correspond
ing time-intervals. Notice that the authors also prove that this approach may be 
better than the separate use of preemptive relaxation and energetic reasoning 
based satisfiability tests. 

Jackson Pseudo Preemptive Schedule (JPPS). (Carlier and Pinson, 1998) 
present a lower bound for the identical parallel machine problem, called Jackson 
Pseudo Preemptive Schedule (JPPS), (see example of Figure 7.3, for the 
instance with 2 machines given in the table below), in which the preemption 
of any activity is also allowed, and in which we assume that a machine can be 
shared by several activities (see machine 1 on [4; 5]) and that an activity can be 
processed on several machines at a time (see activity 3 on [3; 4]). 

Table 7.3. Instance of identical parallel machine problem 

i e A 
ESi 

Pi 

Qi 

1 
0 
3 
4 

2 
1 
2 
4 

3 
2 
3 
1 

4 
3 
1 
0 

5 
3 
1 
0 
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min capacity = t2 - ti if [ti, t2 [C [LFi ~ pi, ESi + Pi[ 
max capacity = t2 — ti 

arcs s.t. mm capacity = max capacity 

Figure 7.2. Graph for semi-preemptive relaxation of yr-machine problem 

^ Activity 1 

Figure 7.3. Example of JPPS for a 2-machine problem 

Note that if deadlines rather than tails are associated with activities, we 
can rely on a destructive bound (see Introduction). Furthermore, (Carlier and 
Pinson, 2004) propose adjustments of release dates for this problem, that will 
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be not retranscribed in this chapter. 
To build JPPS, a list scheduling algorithm is used whose priority dispatching 
rule at time t is the dynamic complete tail Ci{t) = qi + ^i{t), where ^i{t) is the 
remaining processing time of activity i at time t in the current schedule. They 
divide the available activities in two classes: tht partially available activities, 
whose part executed on [ESi]t] has been as large as possible (^i{t) = Pi- {t — 
ESi)), so that they can be processed at a rate â  (t) < 1, and the totally available 
activities, for which £^i{t) > Pi — {t — ESi), so that they can be processed at 
a rate ai{t) < n. Note that in this schedule we must respect at any time t, 
^^{t)>Pi-{t~ESi), 
The computation of the schedule blocks and of the next decision time are now 
presented. At time t, the algorithm schedules first the available activities with 
maximal complete tail at a maximal rate consistent with their status (partially 
or totally available). The events that can modify the current schedule block are 
one of the following types: 

• a not in-process activity simply becomes available, 

• an in-process activity is completed, 

• a not in-process activity gets a higher priority than an in-process activity, 

• a totally available activity, which is processed at a rate greater than 1, 
becomes partially available, 

• a partially available activity, which is processed at a rate lower than 1, 
becomes totally available. 

Several properties of JPPS are presented in (Carlier and Pinson, 1998) and ( 
earlier and Pinson, 2004). The makespan of JPPS can be computed in 0{n log n+ 
n IT log TT) {0{II? + n TT^), for building JPPS). So that it allows its intensive 
use in an enumerative process. JPPS does not systematically match the optimal 
preemptive solution. Then, the McNaughton schedule issued from JPPS where 
the activities have a rate lower than or equal to 1 at any time t, is not a lower 
bound of the problem, 
(Carlier and Pinson, 1998) propose a simple adaptation of JPPS for the CuSP 
(see Section 7.2.2.3 for a formal description), without additional computational 
effort, that confirms the interest of JPPS for computing lower bounds for the 
RCPSP 

7.2.2,3 Deducing redundant Cumulative Scheduling Problem. This 
section is dedicated to techniques used to build redundant Cumulative Schedul
ing Problem (CuSP) from an initial RCPSP. These methods are based on the 
notion of Linear Lower Bound and Redundant Resources. Lower bound for 
CuSP is presented in the next section. The method that we present is based on 
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a sub-problem where release dates and deadlines are not taken into account: 
we focus on specific linear forms that are lower bounds of the makespan when 
exactly part KI of the activity i has to be processed. These linear forms are 
used to compute Cumulative Scheduling Problem, that can be used to compute 
efficient lower bounds. 

The CuSP is made up of a set A of activities that has to be processed on a 
single renewable cumulative resource of capacity R, Each activity, i G v4, has a 
release date ESi, a processing timep^ and a deadline LFi, and it requires ri units 
of the resource to be processed. These problems are known to be A/'P-Hard in 
the strong sense. Getting relevant CuSP, considering that release dates and tails 
of activities are deduced from the precedence constraints of the initial RCPSP, 
is useful for bounding RCPSP: CuSP can be seen as an extension of identical 
parallel machine problem where activities need more than one machine to be 
processed. 

Linear Lower Bound definition. A Linear Lower Bound (LLB) is based 
on the relaxation of the RCPSP instance to one resource Cumulative Scheduling 
Problem (CuSP). A CuSP can be obtained from a RCPSP and a trial value D by 
ignoring all the resources but one, and by relaxing the precedence constraints 
to release dates and deadlines of activities, computed according to precedence 
relationship. 

DEFINITION 7.1 The linear form: (p i , . . . ,pn) —̂  ^leA ^^ ' P^ ^^ ^ Linear 
Lower Bound if for any Ki (0 < Ki < pi), YlK • tZi is a lower bound of the 
makespan when exactly part Ki of the activity i has to be processed. (Carlier 
and Neron, 2003). 

We present here some of the classical lower bounds that can be expressed as 
Linear Lower Bound. 

The basic bound. (l/R) YlieA ^̂  '̂ ^ ^̂  ^ ^^^ of the makespan of the CuSP. 
This basic bound is very useful due to energetic reasoning (see 7.2.2.4) that can 
be applied with it for getting adjustments of release dates and deadlines. We 
will see in the next paragraph, that any LLB is the basic bound of the redundant 
resource it is associated with, which explains the interest of redundant resources. 

The critical path. Let F ~ {ii, Z2,..., v } a path in the conjunctive graph 
of the initial RCPSP, that is: ii precedes 22,12 precedes i^ ..., etc. X^ZGF^^' ^̂  
a LLB. Moreover, if the path is optimal, it is equal to the value of the critical 
path. 

The bound of Mingozzi et al. Let us recall the linear programming technique 
of Mingozzi et al (Mingozzi et al., 1998) in the case of a CuSP Let J be a subset 
of activities that can be processed simultaneously, i.e., YlieJ'^i — ̂ ' ^^ ^̂ ^̂  
we associate with J the {0,1} column vector defined by ^j{j) — 1 if j G J. 
The bound of Mingozzi et al is obtained by solving the linear program below 
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where P is the vector of the processing times and r the vector of the rj, {TJ 
represents the duration in the schedule during which J is the subset of activities 
processed), ^ is the matrix whose columns are the vector ipj 

mm ^ r j , * - r > P A T > 0. 

This bound can be improved by taking into account release dates and deadlines 
for defining J (Brucker and Knust, 2000). Indeed, this bound corresponds to 
the optimal makespan when preemption is allowed. The dual of the previous 
linear program is : 

max t;̂  • P , u • ^ < 1 A t; > 0. 

Let V satisfying ;̂ • ̂  < 1, ^ > 0, then 'f-̂  • P is a LLB. Moreover when 
V — v"" (the optimal solution of the dual), it is equal to the Mingozzi bound. 
The corresponding LLB is a very strong one, although it is very difficult to 
compute it due to the large size of the linear program. An interesting property 
is that the polyhedra of the dual is independent of P. This property is used to 
get the Multiple Elastic Preemptive Bound. 

The multiple elastic preemptive bound (Carlier and Neron, 2000). In the 
Multiple Elastic Preemptive (MEP) Relaxation, preemption is allowed, and 
several parts of the same activity can be processed simultaneously. At first, 
all the activities having the same resource requirement are merged. Thus, 
Pr is defined as the sum of the processing times of the activities that re
quire r units of the resource during their processing: Pr — Y^i^j^/r^^rPi-
Congif^ — {ci, C2,..., CK]Ck G N*} is called a feasible configuration for R 
if- E L I C ^ < i^andci > C2 > ... > c^. {Config^;h G { l , . . . , i 7}} 
denotes the set of feasible configurations for a resource capacity of P units, and 
Configj^[r] is the number of resource requirements equal to r G { 1 , . . . , P} 
in Config^. Note that the number H of feasible configurations depends on P 
and can be very large. Figure 7.4 presents a non optimal schedule illustrating 
these notions. To simplify the presentation we have only considered four con
figurations, which are reported on the figure. According to the configuration 
constraints, it can been stated (Carlier and Neron, 2000), that an optimal solu
tion of the preemptive problem where several parts of the same activity can be 
processed simultaneously, is given by the solution of (7.1): Xh is the duration 
of the configuration Config^, and then E/i=i Xh is the makespan. 

H H 

rmnJ2xh s.t. Vr G { 1 , . . . , P} ^Config^[r] - Xh > Pr ; Xh > 0 (7.1) 
U 1 U 1 
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R = 8 
Configi = {3, 2, 2} 
Config2 = {3,3} 
Configs = {8} 

Constraints due to configurations 

2 • XI + 2 • X2 = Ps 
X3 = -Pa 

Solution associated with the schedule 
Xi = 3, X2 = 3, X3 = 2. 

3 5 7 

F/^wre 7.4. A schedule for /? == 8, P2 =- 3, P3 =- 12 and Ps == 2 

(7.2) is the corresponding dual formulation. Its matrix depends only on the 
value of R. 

R 
m a x ^ P ^ 'Or s.t. V/i G { l , . . . , i / } Y^Config^[ 

r = l 

R 
Ô  < 1 (7.2) 

(7.1) and (7.2) are solved in (Carlier and Neron, 2000) for any value of R 
smaller than or equal to 10, i.e, all corresponding LLBs have been explicitly 
enumerated by hand. The method for solving this linear program is based on 
the enumeration of the optimal solutions of the dual linear program for any P. 

Indeed, let S^p^{R), g G { 1 , . . . , G} denote the g-ih optimal solution of 
the dual LP for a given value of R, Then its associated cost MEPB^{R) is 
a LLB on P,. Let Af • Pi + Af • P2 + ... + Af̂  • P/?, ^ E { 1 , . . . , G} be 
these LLB. Due to linear programming properties, max^ MEPB^{R) is the 
optimal value of (7.1) and (7.2), and so a valid lower bound of the makespan. 
The main advantage of this MEP relaxation is to take into account, the idle 
time that may occur due to the configurations involved in addition of the global 
work. Moreover all the LLBs are independent of P and can be tabulated, as 
explained in (Carlier and Neron, 2000). 

Redundant functions and redundant resources. Recently the works 
dealing with the MEP relaxation, have been generalized to enumerate the sets 
of valid LLB. This enumeration is based on the notion of redundant functions 
and maximal redundant functions (MRFs), and some fundamental properties of 
these MRF. We now present the notion of Redundant Resources that is used to 
get relevant one-resource instances from one initial RCPSP instance restricted 
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to one of its resources and one Redundant Function. Let us recall that n is the 
resource requirement of activity i. 

DEFINITION 7.2 A Redundant Function (RF) f is a discrete mapping of 
{0 , . . . , i?} -> {0 , . . . , R'} (R G N, i?' G N ; such that: n + 2̂ + • • • + /̂c < 
R => f{h) + /fe) + ... + f{ik) < R'^ 

RFs and LLBs are strongly linked: let Yl/i^A ^^' Pi be a LLB, and let us assume 
that all ai are rational which ai — a[/R\\/i G A, Then an associated RF, / 
can be defined by / : {0 , . . . , i?} -> {0 , . . . , R'}, f{ri) = a[. 

The authors present the link between this approach and the dual feasible 
solution introduced in (Johnson et al., 1974) for the bin-packing problem and 
used recently in (Fekete and Schepers, 1998), and (Martello and Toth, 1990). 

DEFINITION 7.3 Let f be a redundant function {0 , . . . , i?} —> {0 , . . . , R^}, 
The associated redundant resource has a capacity of R', Moreover, activity i 
needs f{ri) units of the redundant resource. 

So the basic bound on this redundant resource is now equal to YlieA RT 'P'^-
This new bound can be larger than the one computed on the initial resource, 
which confirms the interest of Redundant Resources. 

Table 7.4. An Example of Redundant Resources 

/ i : { 0 , . . 
/ 2 : { 0 , . . 

i e A 
Ti 

Pi 

. , 5 } ^ { 0 , . . 

. , 5 } ^ { 0 , . . 

1 2 3 4 5 6 
3 5 1 4 2 2 
2 1 1 1 1 2 

. , l } , / i ( r i ) 1 1 0 1 0 0 
• ,2},/2(ri) 1 2 0 2 1 1 

Figure 7.5 shows how redundant resources are built for two MRFs. 
Unfortunately, there are a lot of redundant functions for each couple (i?, R'). 

To restrict the search to the most relevant ones we introduce the notion of 
Maximal Redundant Function: a Maximal Redundant Function (MRF) is a 
redundant function such that there exists no redundant function f with f > / , 
i.o.,Wie{o,...,R},f'{i)>fi{)^f' = f. 

Both an enumeration scheme to compute all MRF for fixed (i?, R') and a 
linear programming formulation to detect the ones that are dominated, have 
been proposed. The notion of non-dominated MRFs corresponds to MRFs 
that may lead to interesting lower bounds. The fact that / is a non-dominated 
MRF corresponds to the existence of a set of processing times of activities such 
that the best lower bound for these processing times is given by the redundant 
resource corresponding to / . 
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Initial resource with capacity equal to 5 

i ^ - 5 

Resource deduced from / i 

^oooooooc^//.^: 
Resource deduced from the linear from fi 

R2==2-

Mii MfiiW'^m^ 

181 

Ti = 3 

Figure 7.5. Example of feasible schedules for redundant resources, R = 5 

7.2.2.4 Energetic reasoning for Cumulative Scheduling Problem. 
At first, we present a brief overview of the energetic reasoning adapted to the 
CuSP. Energetic reasoning aims to develop satisfiability tests that are used to 
prove that there exists no solution in which activities are processed within their 
time-windows [ESi^ LFi], without violating the machine constraint. It can be 
used to compute destructive lower bound for the initial RCPSP instance. This 
approach has been originally developed by (Erschler et al., 1991) and (Lopez 
et al., 1992) to solve Cumulative Scheduling Problems. Recently (Baptiste et al., 
1999), aim to develop satisfiability tests and time-bound adjustments to ensure 
that either a given schedule is not feasible or to derive some necessary conditions 
that every feasible schedule must satisfy. Further details and improvements can 
be found in (Schwindt, 2005). 

Given a time-interval [̂ 1,̂ 2], satisfiability tests are based on the computation 
of the part of the activity i, that must be processed between ti and 2̂ where, 
without loss of generality, we assume that h <t2. The mandatory part of ac
tivity i is called its work in the time-interval [ti, t^] • To compute it, the activities 
are either left-shifted or right-shifted on their time-windows [ESi, LFi], i.e., an 
activity either starts at ESi or ends at LFi (see Figure 7.6). 

Using Figure 7.6, we formally define the work in interval [̂ 1, 2̂] as follows: 

Wieft{i,ti,t2) = Ti •min(t2-ti,pi,max(0,jE;S'i + pi -h)), 

ght{hh,t2) = ri •min(i^2 - ti,pi,max(0, 2̂ -LFi +Pi)), 

W{i, ti,t2) = mm{Wright{h,t2), WieftihM)) 
^ Ti •min(t2 - ti,pi,m^yi{Q,ESi +Pz - t i ) , 

Wright 

- Ti ' min(t2 

max(0,t2 - LFi +Vi))' 
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Figure 7.6. Work of an activity through [ti, 2̂]. 

PROPERTY 7.4 Satisfiability Test: If there exists some time interval [ti, t2], 
^i^A ^ ( ^ ' ti^t2) > R ' (̂ 2 — ti) /̂ẑ ;̂  ?/ẑ  Cw5P /ia5' no solution. 

Based on the same idea, (Baptiste et al., 1999) propose a method to adjust 
the time-bounds of activities. We assume without loss of generality that the 
satisfiability tests have been done for all time-intervals. Let us now introduce 
Sl{jjti^t2), the slack of j G A over [ti,t2]. Roughly speaking, this slack 
corresponds to the available energy that can be used to process j . Following 
the notation previously introduced, the slack can be defined as: 

Sl{j,ti,t2)^ 
R'{t2-ti)-EieA,i^jW{i.tut2) 

If the right-work of the activity j E Ais strictly greater than Sl{jj t i , ^2), the 
activity cannot be right-shifted, i.e., it cannot end at its deadline. Hence, only 
a part of j , smaller than or equal to the slack Sl{jj ^1,^2) can be processed on 
[tut2]. 

PROPERTY 7.5 Release Date Adjustments. For any activity j G A 

[Wieft{j.tut2) > Sl{jMM)] => [ESj^im.x{ESj,t2--Sl{j,tut2)] 

PROPERTY 7.6 Deadline Adjustments. For any activity j G A 

[WrightU.tut2) > Sl{j,ti,t2)] => [LFj ^ mm{LFj,ti + Sl{j,ti,t2)] 

One crucial point to apply efficiently energetic reasoning is to determine what 
are the relevant time-intervals on which the above properties have to be applied. 
It is proved (see Baptiste et al., 1999) that for classical energetic reasoning there 
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are only 0{in?) relevant time-intervals, that are the breaking points of the work 
of activities depending on ti and t2^ 

h e {ESi,ieA}u {LFi -pi,ieA}u {ESi +Pi,ie A} 
t2 e @{ti) with G(t) = ESi + LFi-t 

t2 G {LFi,ieA}U {ESi +Pi,ieA}U {LFi -Pi.ie A} 

h e e(t2) with e(t) = ESi + LFi-t 

7.3 Using constraint propagation to tighten the problem 

This part is devoted to constraint programming based approaches that can be 
applied both to compute destructive lower bounds for the RCPSP and to adjust 
time-windows of activities. Three families of constraint propagation algorithms 
can be distinguished for dealing with renewable resources: timetabling tech
niques are based on the computation of an aggregation of the resource demand 
at every time-point; edge finding and activity intervals techniques rely on the 
analysis of the resource demand over time intervals whereas conjunctive reason
ing with temporal constraints are based on an analysis of the current temporal 
constraint network. Those three families of techniques are described below 
more in detail. 

7.3.1 Timetabling 

Timetabling relies on the computation for every time-point t of the minimal 
resource usage at this time-point by the current activities in the schedule (Le 
Pape, 1994). This aggregated demand profile is maintained during the search 
and allows to restrict the domains of the start and end times of activities by 
removing the time-points that would necessarily lead to an over-consumption 
of the resource. Note that timetabling is also sometimes referred to as resource 
histograms (Caseau and Laburthe, 1996). Suppose a resource requirement ri^k 
on a given renewable resource k such that LSi < EFi, then we know surely 
that activity i will at least execute over the time interval [LSi, EFi). Thus, it 
will surely require Vi^k units of resource k all along this time interval. For each 
resource fc, a curve Reqk{t) is maintained that aggregates all these demands: 

Reqk{t) -̂  Yl ^̂ '̂  
i/LSi<t<EFi 

It is clear that if there exists a time-point t such that Req^ {t) > Rk, the current 
schedule cannot lead to a feasible solution. Thus if D is the trial value (see 
Introduction) that has been used to compute deadline then D + 1 is a valid lower 
bound. Furthermore, if there exists a resource requirement ri^k and a time-point 



184 PERSPECTIVES IN MODERN PROJECT SCHED ULING 

to such that: 

EF^ <to< LFi and Vt G [to, LFi), Reqk{t) + ri^k > Rk 

then, activity i cannot end after time-point to. It would otherwise over-consume 
the resource. Indeed, remember that, as EFi < tQ,i\s never taken into account 
in the aggregation on the time interval [to, LFj). Thus, to is a new valid upper 
bound for the end time of activity i. Similar reasoning can be applied to find 
new lower bounds on the start time of activities. 

7.3.2 Edge finding and activities intervals 
This section presents a variant of the edge-finding adjustments described in 

section 7.2.1.3 that works on cumulative machines rather than on one machine 
problem. Let Q C A a. subset of activities that require a given resource k of 
capacity Rk. In addition to the notation introduced in section 7.2.1.3, let us 
denote: 

• EF^ — minj^Q EFj, the earliest finishing time of all activities in ft, in 
a similar way, let us define LFQ ~ maxjeo ^ ^ j , FSQ^ — minj^Q ES^^, 
and LSQ == maxj^Q LSj 

^ WQ — YljenPj ' ^ j , ^ ' ^̂ ^ global energy required by Q (on resource Rj^). 

The basic idea of edge-finding and activity interval techniques is to ensure 
that for any subset of activities fi, resource Rk provides enough energy over the 
time interval [ESQ^ LFQ) to allow the execution of all the activities of Jl, that 
is: WQ < Rk ' {LFQ — ESQ). Constraint propagation is usually performed by 
applying the three following deduction rules, where i E A\ft: 

• If Rk ' [LFci — ESQU^IJ] < Wfiu^i^, then i must finish after all activities 
in f], in particular EFi <— max(J5Fj, EFQ). 

m HESQ < ESi < EFQmdRkiLFn-ESQ] < wn+ri^k'[mm{LFn,EFi] 
ESQ], then at least one activity j in Q must precede i, in particular 
ESi ^ EFn. 

m If ESi < ESn < EFi and Rk • [LFQ - ESQ] < WQ + n^k ' [EF^ -
ESQ], then i must finish after all activities in ft, in particular EFi —̂ 
mSix{EF,,EFn), 

These rules allow to update the earliest start or completion times of activities 
and symmetrical rules allow to update the latest start and completion times. 
Edge finding (Nuijten, 1994) and activity intervals propagation (Caseau and 
Laburthe, 1996) are very similar techniques that mainly differ in the way the 
propagation rules are triggered: edge-finding algorithms are global algorithms 
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that perform all updates on a given resource whereas activity interval approaches 
are performed incrementally as soon as the time bound of an activity changes. 

The propagation of edge-finding and activity interval can be strengthened by 
considering other time intervals than the one related with the time-bounds of 
activities as described in 7.2.2.4. 

133 Distances between activities and shaving 
(Brucker and Knust, 2000) and recently (Demassey et al., 2005) take advan

tage of the deductions performed by constraint propagation to preprocess linear 
programs, by fixing variables and strengthening constraints. In this paragraph 
B is the distance matrix between all couple of activities, and 6̂  j denotes the 
minimal distance between i and j (i,e, Sj ~ Si > bij) 

The CP algorithm includes the classical filtering techniques described such 
as edge-finding, immediate selection (both are described in the previous subsec
tion) and symmetric triples rules, but is run on an alternative CSP formulation 
based on sequencing variables: for each couple of activities (i, j ) , variable Xij 
denotes the difference between the starting times Si and Sj. Such a variable 
corresponds to the distance between activities i and j in the activity-on-node 
graph. Its domain is an interval [6^j, — ̂ j,i]. By ensuring bound consistency, 
constraint propagation allows to increase values bij but also to identify new 
disjunctions i — j which are couples of mutually incompatible activities (i.e. 
forbidden sets of size 2, ^^2). 

Additionally, Demassey et al perform global filtering with a suited shav
ing technique, which follows the general principle of consistency enforcing 
techniques based upon probing: a new constraint c is temporarily added and 
constraint propagation is performed. If it leads to an infeasibility, then the op
posite constraint ]c is consistent with the problem. In this implementation, the 
validity of the three following constraints is tested, for each pair of activities 
{z, j } : i -^ j (j follows i), j —^ i (i follows j) and i || j (i and j are both 
executed in parallel during at least one time period). Shaving aims to prove 
if such sequencings are infeasible or necessary. To achieve this goal, it uses 
intermediate results that may be very helpful to deduce informations on the 
problem. For example, after fixing constraint z —> j , constraint propagation 
computes the minimal distance matrix B'^~^^ and a set ^2"̂ "̂  of disjunctions that 
can be identified among all the feasible schedules such that i precedes j . Some 
of these informations can easily be exploited to derive valid linear inequalities. 

The approach of (Demassey et al., 2005) which is described in section 7.4.2.1, 
is successfully applied to two well-known integer linear formulations for the 
RCPSR 
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7.3,4 Conjunctive reasoning with temporal constraints 
The propagation algorithms described above only reason on the time bounds 

of activities (ESi, LSi, EFi, LFi) and do not directly take into account the 
precedence constraints that may exist between activities. Some constraint prop
agation algorithms have been recently proposed that exploit the current temporal 
constraint network and proved to be very efficient especially when used in con
junction with a branching scheme that solves the scheduling problem by adding 
precedence constraints (see section 7.4.1). 

These algorithms require that a temporal network representing the relations 
between the time-points (start and end) of all activities using the point algebra 
of (Vilain and Kautz, 1986) is maintained during the search. We denote {0, -< 
,::<,=,>-,>:, 7̂ , ?} the set of qualitative relations between time points. The 
temporal network is in charge of maintaining the transitive closure of those 
relations. If Si and Ci respectively denote the start and end time-point of 
activity i, the initial set of relations consist of the precedences Si -< Ci for each 
activity i and Ci •< Sj for each precedence constraint (i, j ) G E. During the 
search additional precedence relation can be added as decisions or as the result 
of constraint propagation. 

The energy precedence propagation (Laborie, 2003) for an activity z on a 
resource k ensures that for each subset Vt of predecessor activities of activity i 
the resource provides enough energy to execute all activities in Vt between ESQ^ 
and Si. More formally, it performs the following deduction rule: 

Vf̂  C {j e A, Cj ^ Si],ESi ^ max{ESi,ESQ + \wn/Rk]) 

The propagation of the energy precedence constraint can be performed for all 
the activities i, on a resource and for all the subsets Q with a total worst-case 
time complexity of 0{n{p + log n)) where n is the number of activities on the 
resource and p the maximal number of predecessors of a given activity in the 
temporal network (p < n). 

On a renewable resource, the balance constraint (Laborie, 2003) can be 
defined as follows. The basic idea of the algorithm is to compute, for each 
activity i on a resource fc, a lower bound on the resource usage at the start time 
of i (a symmetrical reasoning can be applied to perform some propagation based 
on a lower bound on the resource usage at the completion time of i). Using the 
temporal network a lower bound on the resource utilization at time-point Si + e 
, i.e., just after the start time of z can be computed assuming that all the activities 
requiring the resource that do not necessarily overlap Si will not overlap it: 

j/{Sj:<Si)A{CjySi) 

Given this bound, the balance constraint is able to discover three types of in
formation: 
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• Dead ends. Whenever L/.(z) > i?/., the resource will surely be over-
consumed just after time-point Si so the search has reached a dead end. 

• New bounds on time variables. If Lk{i) < Rk, ^{i) = Rk - Lxii) 
represents a slack of capacity that must not be exceeded by all the re
source requirements that, currently, do not necessarily overlap Si but 
could overlap it. Let U{i) = {j/{Sj •< Si) A -^{Cj y Si)}, We sup
pose the activities ( j i , . . . , j \ x , . . . , jp) in Il{i) are ordered by decreasing 
earliest completion time EFj. Let v be the index in { 1 , . . . ,p} such that: 

v—l V 

If event Si occurs at a time-point Si < EFj^, not enough activity will 
be able to be completed strictly before Si in order to ensure the resource 
is not over-consumed just after Si as in this case, the consumed quantity 
will be at least Lj^{i) + YZ=i '^ju.k > Rk- Thus, EFj^ is a valid lower 
bound of S'̂ . 

• NeM̂  precedence relations. Suppose that there exists activity h in n(z) 
such that: 

Then, if we had Si -< Ch, we would see that again there is no way to 
avoid a resource over-consumption as it would consume at least: 

Lk{i) + Yl ^^^^ ^ ^^ 
ieu{i),CiyCh 

Thus, the necessary precedence relation: C^ :< Si can be deduced and 
added to the current temporal network. 

The balance algorithm can be executed for all the activities i with a global 
worst-case complexity in 0{'n?) if the propagation that discovers new prece
dence relations is not turned on, in 0{n'^) for a full propagation. In practice, 
there are many ways to shortcut this worst case and, in particular, it is noticed 
that the algorithmic cost of the extra-propagation that discovers new precedence 
relations is in general negligible. 

7,4 Multi-resource based lower bound 
In this Section, we describe lower bounds based on relaxations that take 

the multi-resource context into account. They are based on several possible 
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representations of the resource constraints. In Section 7.4.1, the forbidden 
set representation is discussed and lower-bounds based on this structure are 
introduced. In Section 7.4.2, the resource constraints are tackled explicitly by 
different integer linear programming formulations. The lower-bounds are then 
derived by LP relaxation of these programs and cooperation between constraint 
programming and cutting-plane generation. Last, in Section 7.4.3, linear and 
constraint programming are used to compute lower bounds on the basis of the 
feasible configuration representation of the resource constraints. 

7.4,1 Using forbidden sets for bounding RCPSP 

7.4.1.1 Forbidden sets. A subset of activities can be considered as a 
forbidden set (also called minimal critical set) if the activities could be executed 
simultaneously and if there exists a resource k such that the sum of resource 
requirement of these activities for resource k over-consumes the resource ( 
Bartusch et al., 1988). Forbidden sets are a simple generalization to cumulative 
scheduling of the pairs of activities competing for the same unary resource 
in disjunctive scheduling. If 0 is a subset of activities, we denote rk{(l)) = 
Yliecp '^i.k the global consumption of resource k by 0. 

DEFINITION 7.7 (FORBIDDEN SET) A forbidden set on a resource k is a 
subset of activities (/) Q A such that: 
1, Rk < rk{(t)) 
2, V(/? C (l),rk{(f) < Rk 
3, V(̂  j)̂ (̂ X(/)*S'i •< Cj is consistent with the current temporal network 

Informally, the different ways to resolve a forbidden set consist in fixing a 
precedence constraint between any two of its activities. 

DEFINITION 7.8 (RESOLVERS OF A FORBIDDEN SET) If(f)CA is a for
bidden set, the resolvers ofcj) consist of the set of temporal constraints Res{(j)) — 

Forbidden sets can be exploited to compute lower bounds on the RCPSP 
considering a relaxation of the problem or directly be used in a complete search. 

7.4.1.2 Relaxations based on forbidden sets. Starting from the remark 
that most of the forbidden sets in the hard instances of the PSPLIB benchmark 
(Kolisch (1996)) are of size 2 or 3, some relaxations are proposed in (Garaix 
et al., 2005) that only take into account those forbidden sets. 

More precisely, when only forbidden sets of size 2 are considered (disjunc
tive relaxation P{J^2)) and all the other ones are relaxed, the problem can be 
reformulated using unary resources only (disjunctive resources of capacity 1). 
Each maximal clique in the graph whose edges represent the forbidden sets 
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corresponds to a unary resource in the relaxation. This relaxed problem can be 
solved using a complete classical disjunctive search. If the relaxed problem is 
shown to be unfeasible for a maximal makespan D, then, it means that D + \ 
is a legal lower bound of the original RCPSP. 

This relaxation can be made tighter by considering forbidden sets of size 
3 (relaxation P{J^2>)) and using a resource of capacity 2. Each activity in 
a forbidden set of size 3 requires 1 unit of the resource. From a modeling 
perspective, this resource of capacity 2 is represented as two unary resources 
and each activity in the forbidden set requires one of the two possible unary 
resources. In practice, as the number of forbidden sets of size 3 is very large, 
these forbidden sets are used as successive cuts to tighten the relaxation: a first 
try is performed using the disjunctive relaxation P{J-^2) and in case a solution 
is found, only the forbidden sets of size 3 that are violated in this solution are 
added to the relaxed problem formulation. This process is repeated until a time 
limit is reached. 

This approach allows improving several lower-bounds of the KSD instances 
reported on the PSPLIB web page together with some improvement reported in ( 
Baptiste and Demassey, 2004) on the instances with 60 activities. The approach 
described in (Garaix et al., 2005) improves 13 lower bounds for the instances 
with 60 activities and 26 lower bounds for the instances with 90 activities. 

7.4.1.3 Complete search based on forbidden sets. In the approach 
described in (Laborie, 2005), a complete search tree exploration is performed 
by selecting at each search node a forbidden set (j) and branching on its possible 
resolvers in the children nodes until there is no more forbidden sets. This 
approach is clearly complete and can be used to compute lower bounds on 
the RCPSP by performing a complete search to prove the infeasibility of a 
particular makespan value and then used to compute destructive lower bounds 
(see Introduction). 

As described in (Laborie and Ghallab, 1995), the set of resolvers i?es(0) of 
a forbidden set (j) can be simplified so as to remove those resolvers p E Res{(t)) 
for which there exists another resolver p^ G Res{(l)) such that p => p' given the 
current temporal network. Indeed, in such case, the resolver p is redundant. In 
what follows, it is assumed that the set of resolvers of a forbidden set has been 
simplified. 

As all the resolvers consist of temporal constraints of the form Ti :<T2 where 
Ti and 72 are two time-points (variable start or completion time of an activity), 
the estimation of the size of the search space after posting such a precedence 
constraint is particularly interesting to choose which forbidden set to solve at 
a given search node. The fraction of the search space that is preserved when 
adding a precedence constraint is estimated using the complementary of the 
commitment measure introduced in Laborie, 2003. 
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Let 7i and T2 be two time-points with respective lower and upper bound for 
time value: [T^™ ,̂ T^^^ ]̂ and [T^''', Ts^^^]. The size of the search space is 
estimated by the Cartesian product of the domain of the two variables, that is, 
the area of the rectangle [T^^^ ,̂ T^^^^j, [T^^'"', T^^"^], The size of the search 
space that is preserved when adding the constraint Ti :< T2 is the part of that 
rectangle above the line Ti = T2, The fraction of the search space that is 
preserved (preserved{Ti :< T2)) can thus be estimated as the ratio between 
those two areas. 

If a; is the size of the search space below the current search node, the size of 
the search space after posting a temporal constraint T\ -<T2 can be estimated 
by u • preserved{Ti •:< T2), If 0 is the forbidden set that is selected to 
be resolved at the current search node, the size of the search space to explore 
below the current node can thus be estimated as the sum of the sizes of the search 
space below each child node, that is: LO • YlpeResU) P^eserved(p). Therefore, 
'preserved{(j)) — Yl,peResicf)) P^eserved{p) estimates the fraction of the search 
space that is preserved when choosing (p as the next forbidden set to solve. The 
heuristic proposed in (Laborie, 2005) chooses to resolve next the forbidden set 
0* that minimizes preserved{(p) that is, the one that minimizes the estimation 
of the size of the explored search space. Once such a forbidden set has been 
selected, it is simplified and the search explores all of its resolvers p G Resi^cj)'') 
in the child nodes by decreasing order of preserved{p). This order has no effect 
when the schedule is not feasible as in this case the complete search tree needs 
to be explored but it helps finding a solution quicker when a solution exists. 

The above approach is implemented on top of ILOG SCHEDULER 6.1 
using the timetable, edge-finding, precedence energy and balance constraints 
described in section 7.3. The approach is benchmarked on the KSD instances 
with 60, 90 and 120 activities (Kolisch (1996)) using the lower and upper bound 
reported on the PSPLIB web page as of May, 1st, 2005 together with some 
improvement reported in (Baptiste and Demassey, 2004) on the instances with 
60 activities. Within a time-limit of 1800s CPU time, out of the 617 previously 
open instances, 197 lower-bounds are improved (that is more than 31% of the 
previously open instances) and 97 instances are closed (that is more than 15% of 
the previously open instances). Furthermore, for all the 943 previously closed 
instances but two, the approach finds and proves the optimal solution. On the 
instance set with 60 activities, the critical path lower bound is improved by 
8.57% in average, on the instance set with 90 activities this lower bound is 
improved by 7.40% in average and on the instance set with 120 activities by 
22.97%. 

The same approach is used to close with a time-limit of 5s CPU time all the 
open instances of the open-shop benchmark of (Gueret and Prins, 1999). 
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1A2 Linear programming relaxations and cutting plane 
generation 

Earliest exact solution methods for the RCPSP were mainly branch-and-
bound procedures based on linear programming formulations of the problem. 
A lower bound is usually obtained by omitting the resource constraints and 
then by computing the longest path problem in the precedence graph. In order 
to improve this lower bound, some research has been carried out to solve less 
drastic linear program relaxations. 

Unfortunately, the resource constraints for the RCPSP are not only hard 
to handle but also hard to model as linear inequalities. For example, the well-
known time-indexed linear formulations for the RCPSP mostly contains numer
ous variables and have poor linear relaxations. In order to enhance such a lin
ear relaxation, some cutting-planes were previously described by (Christofides 
et al., 1987) and (Sankaran et al., 1999). Recent approaches integrate linear re
laxations, cutting plane generation and constraint programming to derive strong 
lower bounds. 

7.4.2.1 Time-Indexed Linear Formulation. The most encountered 
integer linear formulation of the RCPSP was first given by Pritsker et al (Pritsker 
et al., 1969) and is based on time-indexed 0-1 variables of the type: yj^t = 1 if 
activity j starts at time t and yj^t = 0 otherwise. 

T 

min ^ t - y(n+i),t 

T 

t=0 
T 

Y^ t • {yj,t - yi,t) > Pi 

yjeA 

V ( i , j ) e i ? 

(DO) 

(Dl) 

(D2) 

t 

I]^j,^ Yl yjM<Rk vfcG7e,vtG{o,...,r} (D3) 

yue{0,i} V j E A V t e { o , . . . , T } (D4) 
Constraints (Dl) state that each activity must be started exactly once over 

the planning horizon T. Inequalities (D2) and (D3) represent precedence and 
resource constraints, respectively. The size of this formulation is proportional 
to the value of the time horizon T and then may be very large. Furthermore, the 
optimal solutions of its linear relaxation are usually very fractional and their 
values give then weak lower bounds. 
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Preprocessing. To speed up the resolution of such a program, a good pre
processing is necessary. An efficient constraint propagation algorithm allows 
for example to drastically reduce its size by fixing numerous variables. Indeed, 
for each activity j in A, a variable yj^t has to be defined only if t is a possible 
starting time for j . Hence, variables i/j^t can be fixed to 0 for any t lower than 
the earliest starting time ESj = boj of j , or greater than its latest starting time 
LSj = -bj^o. 

LS • 

Since Sj = YIIJES^ ' Vj.t^ precedence constraints may also be enhanced by 
taking into account the known minimal distances: 

I^j LSi 

t=E)Sj t=^ESi 

Disaggregated precedence constraints. In (Christofides et al., 1987), 
Christofides et al introduce a disaggregated variant of the precedence con
straints. Constraints (D2) can be replaced by: 

LSi t-}-bij-l 

to=t tQ=ESj 

(D2rf) 

Despite of their larger number, these inequalities have two advantages. On 
one hand, they are together tighter than constraints (D2), giving then enhanced 
linear relaxation. On the other hand, the linear program obtained by replacing 
constraints (D2) by (D2d) and by dropping resource constraints (D3) has the 
unimodularity property: its optimal fractional solutions are then integer. 

Clique cuts. Clique cuts are well-known packing inequalities stating that if 
C is a maximal set of mutually incompatible activities (clique of disjunctions) 
then, at any time t, at most one activity of C is in process. Since additional 
disjunctions and conjunctions are likely to be detected by constraint program
ming, these clique cuts are expected to be stronger, after such a preprocessing, 
than the one used in classical implementations. 

Shaving cuts. In this LP model, many informations deduced by shaving 
may be translated as linear inequalities. For example, the following relation is 
obviously valid: Sj — Si > pi =^ Si — S^ > Ĵ̂ "̂̂  (^M'^ *̂  ̂ ^^ distance 
between h and Hf z —> j is fixed). Furthermore, it is not dominated if the 
relative sequencing between activities i and j is yet unknown and if sequencing 
j after i improves the minimal distance between h and /. As for the precedence 
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constraints (D2) and (D2s), such a relation can be written according to both 
formalisms, aggregated or disaggregated. In the aggregated way, this can be 
modeled by the following inequality: 

7.4.2.2 Computational experiments. We illustrate the quality of the 
lower bounds that can be obtained with the time indexed linear programming 
formulation by reporting the results of the constraint propagation based cutting 
plane procedure of (Demassey et al., 2002, Demassey et al., 2005) and the 
lagrangean relaxation approach proposed by (Mohring et al, 2003) on the 480 
instances of (Kolisch (1996)) with 60 activities which is the smaller instance 
set with still open instances. 

As reported by (Mohring et al, 2003) with their experiments on a Sun Ultra 
2 with 200 MHz clock pulse and 512 MB of memory, solving the aggregated 
discrete LP relaxation without CP preprocessing nor cuts takes in average 3 
seconds (279 seconds max) and improves on average the critical path lower 
bound by 5.2%. Adding the clique cuts gives an average deviation of 5.54% 
with an average CPU time of 6.4 seconds. To speed up the resolution of the 
linear relaxation (Mohring et al., 2003), following (Christofides et al., 1987), 
propose to dualize the resource constraints so as to obtain a lagrangian subprob-
lem equivalent to a project scheduling problem with start-time dependent cost. 
They show that such a problem can be solved in polynomial time by minimum 
cut computations. Using a standard subgradient optimization to compute the 
optimal lagrangian multpliers, they reduce the computational time to 1.7 sec
ond in average (35 seconds max) without any loss of quality. (Demassey et al., 
2002) show the benefit of incorporating constraint programming preprocessing 
and the above described shaving cuts by obtaining a deviation of 6.73% with, 
as a counterpart, an important increase of CPU times (45 seconds on average on 
an Pentium III cloked at 800 MHz). The results are still improved in Demassey 
et al, 2005 reaching a deviation of 7.72% by computing the lower bound in a 
destructive way. The CPU times however increase to 168 seconds on average 
(1963 max). 

7.4.2.3 Continuous-time linear formulation. The classical Balas 
disjunctive formulation for the job-shop problem (Balas, 1970) is based on 
variables Sj modeling the starting time of activities j and mainly on disjunction 
variables x̂  j , stating if activity j starts or not after the completion of activity i. 
This formulation was extended to the RCPSP by Alvarez-Valdes and Tamarit ( 
Alvarez-Valdes and Tamarit, 1993) making use of the concept of forbidden sets 
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^ ( c :f. definition 7.7): 
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(C5) 
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Constraints (CI) give the precedence relations within the project. Constraints 
(C2) and (C3) ensure that no cycle will occur. Constraints (C4) model impli
cations Xij — I => Sj > Si+ Pi where M is a constant large enough to let Si 
and Sj unrelated when Xij — 0. The resource constraints (C5) state that in any 
minimal forbidden set F, at least one sequencing decision must be taken. 

Sequencing constraints and cuts. The implementation of this program 
is not realistic in general because of the possible exponential number of con
straints (C5). In (Demassey et al., 2005), the authors tackle a relaxation of this 
program by dropping integrality constraints (C6) as well as constraints (C5) 
corresponding to minimal forbidden sets of cardinal strictly greater than 3. 
Nevertheless, their preprocessing algorithm described above, allow to identify 
much forbidden sets of size 2 which can directly be linearized as constraints 
(C5). 

The CP formulation used in (Demassey et al, 2005) is close to this LP 
formulation. Indeed, distances bij are directly related to variables Xij: 

bij > Pi =^ Xij = 1 (j starts after the completion of i) 

bj4 > I — Pi ^^ Xij — 0 (j starts before the completion ofi) 

Such conditions are then useful to fix variables in the linear program. 
Some shaving informations can also be efficiently used to derive valid linear 

inequalities. For instance, condition b^^^^ > ph means that / follows h in 
any feasible schedules such that j follows i. In turn, such a relation may be 
formulated by the valid linear inequality: 

Xh,i > Xij V(z, j , h, I) eA"^ \ b'^i^ > Ph. 

Distance constraints and cuts. Another lack of the continuous-time for
mulation is the presence of "big-M" values which are well known to provide 
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poor relaxations. Here again, the precomputed minimal distances are good es
timations to refine M values, since M can obviously be replaced by —h^j in 
inequality (C4). 

According that the optimal schedule duration is the length of a path made of 
arcs (z, j) such that x̂  j == 1, it is tempting to generate "path cuts" of type: 

Si-Si>a + f3xij + -fXj^i V(z, j , /) G A^ 

where coefficients a, /?, 7 correspond to default evaluations of the distance 
Si—Si according to the different possible values of Xij and Xji. Such evaluations 
can easily be deduced from distances bu computed by shaving on the sequencing 
of (z, j) and (j, /). Demassey et al described how to obtain the deepest 3- or 
4-activity path cuts according to any given evaluations. 

Edge-finding cuts. Another kind of linear inequalities is closely related 
to the edge-finding rules described in section 7.2.1.3. They are also defined 
for any cliques C of activities pairwise in disjunction and aim at updating the 
starting time of one activity j E C with respect to the other activities in the 
clique. Inequalities of that kind have already been proposed for the job-shop 
problem by Dyer and Wolsey (Dyer and Wolsey, 1990) and Applegate and 
Cook (Applegate and Cook, 1991) and can easily be adapted to the RCPSP. 
Demassey et al proposed two variants based on the minimal distances in place 
of the earliest/latest starting times. 

Pi ' ^i,j \ Y^ k,i' Xi,i Vj, / e C 
ieC\{j} iec\{l} 

As an example, the above cut states that the distance between two activities j 
and / of clique C is greater than the sum of the durations of the activities in C 
which are scheduled between j and /. 

7,4.2.4 Computational experiments. The linear programming relax
ation of the continuous time formulation is known to be extremely poor if the 
cuts are not used. The only experiments using this formulation are reported by 
(Demassey et al., 2005) on 264 non trivial KSD instances with 30 activities, 
i.e., on whose the critical path lower bound is not feasible. The lower bound is 
computed in a constructive way. The complete constraint propagation process, 
including shaving, yields a lower bound of 3.6% from the optimal solution on 
average and finds 155 optimal solutions. The cutting plane generation proce
dure on the continuous time formulation reduces the gap to 3.2% and finds 160 
optimal solutions. In comparison, the discrete time formulation without cuts 
reduces the gap exactly to the same value. 
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7A3 Feasible configuration and linear programming 
methods 

A subset of A is said to ht feasible if neither precedence nor resource con
straints are violated. 

DEFINITION 7.9 A subset a of A is a feasible subset if and only if: 

I Resource constraints: XliGa '^hk ^ ^k> V/c G TZ. 

2 Precedence constraints: for all pairs {i^ j) E a x a, there is no path in 
G from i to j or from j to i. 

Activities of a feasible subset can be processed simultaneously. As described 
in Introduction, if we pretend to have an upper bound D of the makespan, 
constraint propagation techniques can be used to detect the infeasibility of any 
schedule of makespan lower or equal to Z?, and also to reduce the set A of all 
feasible subsets, as these techniques create new disjunctions between activities. 

7.4.3.1 Initial formulation and relaxation. In (Mingozzi et al., 1998) 
a new exact formulation of the RCPSP is presented. This formulation uses 0—1 
discrete variables C^i^t that equal 1 if and only if activity i starts at time t, and yi^t 
that equal 1 if and only if the activities of the feasible subset a/ are in execution 
on time period [t; /; + 1[. Thus, precedence and no-preemption constraints can 
be simply formulated in spite of a very large number of variables (depending on 
the value D and on the cardinality of A). The resource constraints are included 
in the calculation of the feasible subsets. This formulation is used to derive new 
lower bounds. 

By evading the non-preemption constraints and partially the precedence con
straints (treated as disjunctions), (Mingozzi et al., 1998) also formulate several 
interesting LP-relaxations of the RCPSP. To do that, they introduce the contin
uous variable zi which represents the total amount of time of execution of the 
activities of a/ in parallel, zi — X^^^Q VUt- One of their relaxation called (M) is 
presented below. Let us first define the subset AM AX of the "undominated fea
sible subsets" of ^ such that ai G AM AX if and only if Va// G A\ai, ai (/: aii. 
With each set a/ is associated an incidence vector A^ G {0,1}^ {A\ = 1 iff 
i G ai). 
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min z{M) — Y^ zi 

s.t, Y2 -^^i^^ -P^ yie A 

zi>0 Mai G AM AX 

Due to the still very large number of variables (one for each undominated 
feasible subset) Mingozzi et al approximate the optimal value of this LP by 
computing heuristic solutions of the dual program, that can be transformed into 
the weighted node packing problem of a non-oriented graph G — {A^ E) where 
(i, j ) G (7 if and only if a feasible subset exists, containing both activities i 
and j . It actually consists in finding in G an independent set of activities of 
maximum total processing time. 

7.4.3.2 Column generation techniques and further improvements. 
In (Baar et al., 1998) and (Brucker and Knust, 2000), a new lower bound based 
on a destructive approach is presented (see Introduction). To detect infeasibility 
of trial value D, they first use constraint propagation techniques, including 
interval consistency, immediate selection, edge-finding and symetric triples ( 
Brucker et al (1998)). If it is not sufficient to prove infeasibility, they try to prove 
that the solution of a LP-formulation called {BK) inspired from (M) (through 
a specific column generation algorithm) does not lead to a feasible schedule 
with makespan lower or equal to D, Note that the time window [ESi, LFi] of 
each activity i £ A has been strengthened. 
To present this LP-formulation, they first divide the time horizon [0; D] into 
several contiguous subintervals: let to < ^i < ••• < ^L denote the ordered 
sequence of all different events ESi and LFi. For all / G { 1 , . . . ,1/}, 7/ 
denotes the total number of feasible subsets of [t/_i,t/] and aj^i (1 < j < 7/) 
denotes all feasible subsets of the interval. They also associate with each set 
aj^i an incidence vector A^'^ G {0, l}'^ {A\' — liffi G aj^i). We have one 
variable Zjj per feasible subset in an interval [t/_i,t/]. It denotes the number 
of time units where all activities in aj^i are processed simultaneously. Non-
negative artificial variables ui, I G { 1 , . . . , L} are also introduced in order to 
turn the decision problem into an optimization problem. If precedence and 
non-preemption constraints are relaxed, it is easy to see that the scheduling 
problem is feasible if and only if the following linear program has the optimal 
value zero. 
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L 

min z{BK) = y ^ui 
1=1 

1=1 3 = 1 

11 

Zj^l>0 V / G { l , . . . , L } , V i G { l , . . . , 7 j 
^/ > 0 V/E {1 , . . . ,L} 

The pricing subproblem consists in scanning iteratively through the inter
vals [ti^i^ti]^ I < I < L and searching for feasible subsets a^/ of executable 

activities in the current interval such that X ÎLi ^i ^i ~ ^i ^ 0' where 9i and 
Q are the dual variables of the n first and the L next constraints of (BK), re
spectively. This involves the multidimensional knapsack-stable problem, that 
Brucker and Knust compute with a branch-and-bound procedure. This process 
generates several improving columns, and the solution of the restricted master 
problem is computed, before restarting it. If no improving column is found in 
each interval, then the optimal solution is found. 
Baptiste and Demassey introduce in (Baptiste and Demassey, 2004) several cuts 
to be added to this linear formulation (the pricing subproblem is still the same, 
although they model it through a mixed integer program solved by CPLEX). 
As a matter of fact, this interval decomposition of [0; D] allows some reflexions 
on the duration time an activity will be executed on each interval, because of 
energetic, non-preemptive or precedence reasons. 
The "energetic reasoning" (Erschler et al., 1991) (Lopez et al., 1992), described 
in section 7.2.2.4, gives the minimum duration time of an activity i on an interval 
[t/; t//], /, /̂  G { 1 , . . . , L}, / < I': it is the minimum of: 

1 the length of the interval; 

2 the number of time units during which i is processed after time ti if i is 
left-shifted, i.e. scheduled as soon as possible; 

3 the number of time units during which i is processed before time t// if i 
is right-shifted, i.e. scheduled as late as possible. 

Then the non-preemption constraints can give an upper bound of the duration 
of an activity on several non-overlapping time intervals. For example, let i be 
an activity with ESi — 1, LFi — 12, and pi = 5 and consider two intervals 
[1,4] and [9,11]. In a non-preemptive schedule, % cannot overlap with both 
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[1,4] and [9,11] since 9 — 4 > p^. Hence, i is processed during at most 3 time 
units in [1,4] U [9,11]. 

Finally, Baptiste and Demassey use this interval decomposition (a sort of 
discretization) to deduce some consequences of the precedence constraints be
tween activities. This involves the mid-points midi^i of the activity i on each 
interval [ti^i^ti], that can be related to the Zj^i variables, where the feasible 
subsets aj^i contain activity i As the global mid-point midi of activity i is 
the weighted average of all the mid-points of i, we have for each (z, j) G E, 
midj — midi ^ ^ ^ ^ . 

These three remarks are modeled as inequalities involving the current vari
ables of (BK), They can be used as cutting planes in the LP-formulation, 
and will improve the first results of (Brucker and Knust, 2000) which were 
known as the best lower bounds of the RCPSP. Note first that Baptiste and 
Demassey perform more constraint propagation: they solve initially a mixed 
integer linear program where single redundant machines are added. Such a 
machine contains activities that cannot overlap in time, through precedence or 
resource constraints. Edge finding and specific branching schemes are designed 
and applied to this redundant machines model, in order to strengthen even more 
the disjunctions between activities. 

The impact of these single constraint propagation techniques is important, 
insofar as 12 of the 119 still open instances of (Kolisch (1996)) with 60 activities 
are closed in an average CPU-time of 1 s, and the solution of the linear relaxation 
(BK) with this preprocessing step improves 34 other lower bounds. The new 
cutting planes presented above improve then 21 lower bounds of these instances, 
closing 4 of them. 

7.4.3.3 Feasible configuration and Redundant Resources. In (Car-
lier and Neron, 2003), the authors present a linear programming scheme for 
computing a lower bound for the RCPSP. It uses a set of K LLBs: {LLB\,..., 
LLBK] (see section 7.2.2.3) and a segmentation of the time horizon into suc
cessive intervals. These LLBs are those associated with the initial resources, 
redundant resources and paths in the conjunctive graph. All the LLBs associated 
with the redundant resources are taken into account. Indeed, if (zi, Z2,..., v ) 
is such a path, the LLB given by pi^ + pi^ + ... + pi^ is valid. The LLBs 
corresponding to the 10 longest paths are used in the tests. 

In the linear program below, the time horizon [0, t^+i] is divided into L 
intervals: [ti = 0,^2], [̂ 2̂  3̂] . • • •, [^L^^L+I]- ^L-+-I is the makespan of the 
schedule, /î /̂ is that part of activity i which is processed in [ti, t/+i]: 
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min ti+i 
L 

s.t, ^^11^1= Pi Vi G yl, 

/^i,/ < tw -ti V/ G { 1 , . . . L}, Vz G ^ , 

LLBhi^iu, Â 2,̂  ...Mn,0 < {ti+i - ti) V/ G { 1 , . . . , L}, V/i G { 1 . . . , i^} 

Mi,/>0 V / G { l , . . . , L } , V i G ^ 

ti - 0 < t 2 < t 3 < ... <ti^i 

For these tests, authors have considered a set of time-points: T = {ESi^LFi^i G 
-4} = {^1, 2̂> • • • 5 ^L+i}- They assume that T is sorted in a non-decreasing 
order and that all time-points are different. So we add the two following linear 
constraints: 

V/ G { 1 , . . . ,i^}, Vi G ̂ , if LF^ < ti then /x̂ ,̂  -: 0 

V/ G { 1 , . . . ,L}, Vz G A, if ESi > ti^i then iii^i - 0 

This linear program has some similarities with that presented by (Brucker 
and Knust, 2000), including the segmentation of the time horizon. Brucker and 
Knust generate subsets of activities that cannot be processed simultaneously 
because of resource and precedence constraints. Their model appears slightly 
more efficient than the one presented above for a small number of activities, 
but its drawback is that it is based on column generation, so its complexity 
may become exponential. This method, on the other hand, is polynomial and 
therefore scalable. 

Experiments prove the efficiency of this bounding method. It is benchmarked 
on the 480 KSD instances with 120 activities (Kolisch (1996)) using the lower 
and upper bound reported on the PSPLIB web page as of October, 1st, 2004. 

• the average gap between the lower bound and the best reported one is 
very small (smaller than 0.34%) 

• the average and maximum computation times are still reasonable even 
for large instances (average time: 14.4s max time: 99.5s). Moreover this 
time can be decreased if only a subset of LLB that are used to get these 
results is kept: our bound is scalable. 

• the redundant resources are useful for both computing energetic satis
fiability tests and energetic time bound adjustments: the gap between 
the best known lower bound and the destructive energetic lower bound 
decreases from 4.4 % to 0.75% if the redundant resources are used. 
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• the number of instances where the bound is worse than the best known 
bound decreases significantly from 156 to 145, if the linear programming 
formulation based on MRF is used. 

7.5 Conclusion and further research directions 
In this state-of-the-art survey, we have arbitrarily divided the lower bounds 

proposed in the literature for the RCPSP according to the way the resource 
constraints are considered. 

Another classification has to be underlined. On one hand there are fast 
computable lower bounds that do not give the best relaxations but that can 
be included inside branch-and-bound exact methods. These are longest-path 
based lower bounds, one machine and identical parallel machine relaxations, 
constraint propagation techniques such as edge-finding and energetic reason
ing, the node-packing bound of Mingozzi et al On the other hand, there are 
more time-consuming methods that give better relaxations mainly based on the 
cooperation between linear and constraint programming and that can be applied 
only at the root node. 

An important issue for future research is to close the gap between these two 
categories. This can be done by developing branch-and-cut or branch-and-
price methods. Some interesting alternative recent work have been carried in 
this direction : lagrangean relaxation which significantly accelerates the LP 
resolution. Linear programming based on MRF, analysis of the forbidden set 
structure. 
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Abstract The justification technique was introduced various decades ago for the resource-
constrained project scheduling problem, although it has rarely been used with 
the problem. Justification is a simple and quick technique which when applied to 
schedules produces a new schedule that is, at most, as long as the original schedule 
- and often shorter. A recent article (Vails et al, 2005), showed that incorporating 
justification in heuristic algorithms can produce a substancial improvement in 
the results obtained. These results have motivated us to generalise this technique 
in order to study it in greater depth. This paper proposes distinct forms and 
generalisations for the justification technique and studies the relation existing 
among sets of obtainable schedules. The obtained results show that the proposed 
generalisations are worthwhile. Several computational tests have been performed 
to ascertain the impact of the generalisations on algorithmic efficiency. 

Keywords: resource constrained project scheduling, justification, heuristics 

8.1 Introduction 

Wiest introduced the concepts of left-justified and right-justified schedules in 
1964 with the objective of later defining the concepts of activity slack and crit-
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ical schedule in the case of the resource-constraint project scheduling problem 
(RCPSP). Nevertheless, the applicability of justification is much wider; it can 
be used to significantly improve schedules generated by other methods. Vails 
et al (2005) show that justification - more specifically, double justification - is a 
simple and quick technique that can be incorporated in very diverse algorithms 
for the RCPSP and generates significant improvements in the quality of the 
schedules generated. They perform a set of experimental computations to com
pare the quality of 22 diverse algorithms (quick and simple, medium quality, 
state-of-the-art) with and without double justification. As test instances, they 
use the standard j 120 set generated using ProGen (Kolisch et al (1995)) for the 
RCPSP. The number of generated schedules is limited to 5000 for all algorithms. 
In all the cases, the inclusion of double justification significantly improves the 
quality of the original algorithms. In total, some 14 of the new algorithms 
produce significantly better solutions than the state-of-the-art algorithms that 
do not use justification. To be more specific, the percentage deviation from the 
lower bound critical path for the best of the new algorithms with double jus
tification, improves by more than 2 percent on the best quality state-of-the-art 
algorithms that do not use double justification. In addition, the improvement 
in quality is always obtained without an increase in computing time - and in 
some cases with a significant reduction in computing time. Based on the ob
tained results, the authors conclude that double justification should always be 
considered when designing an algorithm for the RCPSP. 

Vails et al (2005) use a specific form of schedule justification that differs from 
that proposed by Wiest (1964) and in this paper we have termed this form of 
justification as justification by extremes. Although we give a formal definition 
in Section 16.3, for the purposes of the introduction we can say that right (left) 
justifying a schedule consists in moving the activities to the right (left) as much 
as possible in decreasing (increasing) order of their finishing (starting) times. 
Justification by extremes has been used by Li and Willis (1992), Tormos and 
Lova (2001), and Vails et al (2003a), Vails et al (2003b), Vails et al (2004), Vails 
et al (2005). 

The good results obtained using justification by extremes open a new area of 
research interest. It seems worthwhile investigating other more general forms 
of justifying a schedule that could lead to further improvements. Notice that the 
result of right (left) justifying by extremes of a schedule S may not be unique 
if there is a tie in the starting (finishing) time of the activities. It is possible that 
different tie-breaking rules produce different schedules. Given a schedule 5, 
we discuss the set of schedules XRJ [S) {XL J {S)) that may be obtained by 
right (left) justifying S by extremes. In other words, XRJ (S) {XLJ {S)) is 
the set of reachable schedules from S using right (left) justification by extremes. 

One way of generalising the technique of justification by extremes consists 
in, firstly, extending the set of reachable schedules XRJ {S) {XL J {S)) with a 
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new set of schedules i? J {S) {LJ{S)) in such a way that their elements maintain 
the 'essential' properties of the schedules obtained by right (left) justification by 
extremes. Later, procedures must be designed that generalise the justification 
by extremes technique and can reach all of the RJ (S) (LJ (S)) set - or at least 
parts of it. 

The rest of the paper is organised as follows: Section 16.2 introduces a set of 
previous definitions necessary for the development of the paper. Section 16.3 
defines the new reachable sets of schedules RJ {S) {LJ (S)) and presents two 
strict generalisations of justification by extremes: justification by eligibles and 
general justification. It also studies the inclusion relations - mutually and with 
the sets of RJ (5) and LJ (S) - of schedules reachable by each of the three 
techniques. As schedules exist where these inclusions are strict, Section 16.4 
proposes a new generalisation, which we will term shift, and also shows that 
any schedule of RJ (S) {LJ (S)) can be obtained from S by right (left) shift. 
Section 16.5 shows and comments on the results of the computational tests. 
Finally, the paper ends in Section 15.6 with some comments and concluding 
remarks. 

8.2 Definitions 

The resource-constrained project scheduling problem (RCPSP) may be stated 
as follows: A project consists of a set of n activities numbered 1 to n, where 
each activity has to be processed without interruption to complete the project. 
The dummy activities 1 and n represent the beginning and end of the project. 
The duration of an activity j is denoted by dj where di = dn = 0. There 
are K renewable resource types. The availability of each resource type k in 
each time period is Rk units, k = 1, . . . , i^ . Each activity j requires rjk 
units of resource k during each period of its duration where vi^ = Vnk — 0, 
fc — 1 , . . . , iC. All parameters are assumed to be non-negative integer valued. 
There are precedence relations of the finish-start type with a zero parameter 
value (i.e., FS - 0) defined between the activities. In other words, activity i 
precedes activity j - if j cannot start until i has been completed. The structure 
of a project can be represented by an activity-on-node network G — (V,^), 
where V is the set of activities and A is the set of precedence relationships. 
Sj {Pj) is the set of successors (predecessors) of activity j . It is assumed that 
1 E Pj, j === 2 , . . . , n, and n G Sj , j = 1 , . . . , n — 1. A schedule 5 is a set 
of starting times (51,52, ...,5^), Si > 0, where the precedence and resource 
constraints are satisfied. The length of S is defined as L{S) = Sn -- si. The 
objective of the RCPSP is to find a schedule S where the schedule duration 
T{S) = Sn is minimised. 

Note that if S is an optimal schedule then 5i — 0. Given a schedule S = 
(51, 52,..., Sn) with 5i > 0 then the schedule S^ = (0, 52 ~ 5 i , . . . , 5^ — si) is 
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such that s[ — 0, has the same length as S, and a duration of T{S') = s'^ = 
Sn ~ si. Therefore, minimising the duration is equivalent to minimising the 
length. 

8.3 Generalizing the justification by extremes 
This section is devoted to the generalisation of the justification by extremes 

technique. It is divided into two subsections. In the first, the new reachable sets 
are defined. In the second subsection, we propose and study two generalisations 
of the justification by extremes procedure: justification by eligibles and general 
justification. 

8.3.1 New reachable sets 
Let S ^ (51 , 52 , . . . , 7̂7̂) be a given schedule. 
Justify an activity i ^ n to the right in S consists in scheduling the activ

ity as late as possible without violating the precedence relations or resource 
restrictions and leaving the remaining starting times fixed. 

Justify an activity i ^ 1 to the left in S consists in scheduling the activ
ity as soon as possible without violating the precedence relations or resource 
restrictions and leaving the remaining starting times fixed. 

A schedule where no activity can be justified to the left is termed left justified 
or left active. Note that in this case 5i = 0. In the same way, a schedule where 
no activity can be justified to the right is termed as right justified or right active. 

A schedule S' is a schedule justified to the right of S if this is justified to the 
right, s'^ — T{S) and Mi s[ > Si, If s[ > si, S^ is s[ — si units shorter than S. 

A schedule S' is a schedule justified to the left of S if this is justified to the 
left, s[ = 0 and Vi s[ < s^ If s'^ < T{S), S' is T{S) - 5^ units shorter than 
S, 

We denote by RJ (S) {LJ (S)) the set of right (left) justified schedules of 
S. 

Below, we propose two examples that show two extreme cases. In the first, 
by justifying a schedule to the right we obtain the optimal solution. In the 
second, we show a schedule that is justified to the right and left and yet, in 
contrast, is not optimal. 

Example 1. - Let us look at the project in Figure 16.1. 5 is an active schedule. 
If we justify in S the activities 1 and 2 to the right we obtain S^= (0,2,1, 2, 3), 
a schedule justified to the right with s[ — 1 and length 2. The schedule S^^ = 
(0, 2 — 1,1 — 1,2 — 1, 3 — 1) is justified to the right and left and is optimal. 

Example 2. - Let us study the project shown in Figure 16.2. No S activity 
can be justified to the right or left, therefore, the schedule is justified to the right 
and left. Nevertheless, it is not optimal as the optimal length is 5, as shown 
in S\ This example illustrates that the intersection between the set of right 
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Figure 8.1. Schedule justified once to the right and is optimal. 

justified schedules and the set of left-justified schedules (RJ {S) fl LJ (S)) of 
a given schedule may not be empty and may not contain any optimal schedule 
- even if S is an active schedule. 
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Figure 8.2. Schedule S is right and left justified yet it is not optimal. Schedule S' is optimal. 

83.2 Two generalisations 

Right justification by extremes of a schedule S consists in obtaining a sche
dule S' justified to the right, justifying all the activities in decreasing order of 
finishing times. The jth justification is carried out on a schedule obtained after 
undertaking j — 1 earlier justifications. 

We will term XRJ (S) the set of schedules obtainable using right justifica
tion by extremes of a schedule S. 

Note that if there are no two activities that finalise at the same moment, the 
set XRJ (S) is formed by a single schedule. 
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Analogously, we can define left justification by extremes of a schedule, jus
tifying the activities in growing order of the starting times and the set XLJ 
(S). 

Right justification by eligibles of a schedule S consists in obtaining a schedule 
right justified S', applying a finite number of right justifications of the activities 
in S in such a way that the following condition is satisfied: an activity is 
eligible for justification if its successors and any activity that finishes after 
any successors are right justified. This condition implies that no successor of 
an eligible activity can be justified to the right - independently of the right 
justifications later undertaken. The jth justification is carried out on a schedule 
obtained when undertaking the j — 1 previous justifications. 

We term ERJ (S) the set of schedules obtainable by the right justification 
by eligibles of a schedule S. 

Analogously, left justification by eligibles of a schedule S and the set EL J 
(S) can be defined. In this case, an activity is eligible for justification if its 
predecessors and any activity that starts before any predecessors are left justified. 

General right justification of a schedule S consists in obtaining a schedule 
S' justified to the right, applying a fixed number of right justifications of the 
activities in S, The jth justification is carried out on a schedule that reflects the 
jf — 1 previous justifications. 

We term GRJ (S) the set of schedules obtainable by general right justifica
tion of a schedule S. 

Analogously, we can define general left justification of a schedule S and set 
GLJ (5). 

Given that justification by extremes is a particular case of justification by 
eligibles and general justification, the following proposition is obvious. 

PROPOSITION 8.1 All schedules S fulfil: 
XRJ {S) C ERJ {S) C GRJ {S) C RJ (S) 
mm{L{S')/S' G XRJ (S)} > mm{L {S')/S' e ERJ (S)} 
> mm{L iS')/S' G GRj{s)] > mm{L{S') /S' G RJ {S) } 

The following result shows that justification by eligibles and general justifi
cation are strict generalisations of justification by extremes. In particular, these 
generalisations enable us to obtain, at least sometimes, better quality schedules 
than could be obtained using justification by extremes. 

PROPOSITION 8.2 For each inclusion and each inequality in proposition 8.1, 
there is a schedule where the inclusion and inequality are strict. • 

The proof of the proposition can be divided into the following parts. 
Part 1 - 3S/XRJ {S) C ERJ (S) and mm{L{S')/S' G XRJ (S)} > 

mm{L{S')/S' G ERJ {S)}. 
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Figure 16.3 shows a project and three schedules: S', S' and S", There are 
only two ways to justify the active schedule S by extremes, given that the only 
activities that finish at the same time are 3 and 5. Both ways lead to schedule 
S', of the same length as S, It is obvious that if we left justify S^ by extremes 
then the schedule S will be obtained, and therefore justifying by extremes will 
not improve S - even when applied repeatedly. Nevertheless, justification by 
eligibles enables activity 2 to be justified first and this activity can be selected 
at the first iteration. In this way S" is obtained, which is right justified and has 
a length 3 units shorter than S, 
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Figure 8.3. Example for part 1. 

Part 2 - 3S/ERJ {S) c GRJ (S) and mm{L{S')/S' e ERJ (5) } > 
mm{L{S')/S' G GRJ {S) }. 

Figure 16.4 shows a project and three schedules 5, S' and S". We can see 
that the only solution that can be obtained from active schedule S by using 
justification by eligibles is S". The activities 11, 9, 8, 7, 5 and 3 cannot be 
justified to the right even though other activities are justified to the right. After 
fixing the fictitious activity 13 in T{S) = 9, the eligible activities are 12 and 
10. Activity 12 cannot be moved to the right, so activity 10 is justified to the 
right and subsequently scheduled at [8, 9]. The eligible activities are now 12 
and 6, the first of which is justified to the right. We must now choose activity 
6 and after justification it is scheduled at [7, 8]. The eligible activities are now 
12 and 2. Both can be justified to the right and so two possibilities exist. Let 
us assume that we justify activity 2 first. In this case, activity 2 is scheduled at 
[1,2], and therefore the only eligible activity is 12, which will be scheduled at 
[4, 7] when justified. The only remaining eligible activity is then 4, which is 
already justified to the right and the resulting schedule is 5"^ If on the other 
hand, we initially choose activity 12 it would be scheduled at [4, 7] and the 
eligible activities are 2 and 4. The last activity cannot be moved to the right 
and so we justify activity 2 to [1, 2]. Now just one activity is eligible and it 
cannot be justified, and so we also arrive at S^\ This shows that S cannot be 
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improved by using justification by eligibles. We will now see that it is possible 
to improve S by using general justification. To do this we must first justify 
activity 6, which will then be scheduled at [6, 7]. Then we justify activity 10 
until [8, 9], and then 12 until [5, 8]. This will leave a space in [3, 5] sufficiently 
large for the justification of activity 4. Justifying activity 2 to [1, 2] creates a 
schedule S', which is justified to the right and whose length is 1 unit smaller 
than S, 

?H3 

42t 

n — I — I — r 
1 2 3 4 5 6 7 8 9 

1 2 3 4 5 6 7 8 9 

S" 

1 2 3 4 5 6 7 8 9 

Figure 8.4. Example for part 2. 

Part 3 - 3S/GRJ (S) c RJ {S) and mm{L{S')/S' e GRJ {S) } > 
mm{L{S^)/S' E RJ {S) }. 

Figure 16.5 shows a project and three schedules S, S^ and S^\ We are going 
to show that GRJ (S) = {S^^}, S^^ being the same length as S. Activities 11, 
10, 9, 8, 7, 5 and 3 cannot be right justified even though other activities were 
justified to the right. At the beginning, only activities 6 and 2 could be moved to 
the right. Activity 3 is the successor of activity 2 and activity 3 cannot be moved 
to the right, so then activity 2 can only be moved to the interval [1, 2]. Once 
activity 2 is justified, the only unjustified activity is 6, and so we must select 
this activity and schedule it at [7, 8], Once done, activity 12 remains the only 
activity that has changed from being justified to the right to not being justified 
- and so we select this activity and justify it until [4, 7]. This action leads 
to S" which is right justified and the only schedule obtainable using general 
justification. Nevertheless, the schedule S^ is justified to the right of S, and its 
length is one unit shorter than that of S and S^\M 

Evidently, in the two earlier propositions, as well as the following section, 
right justification can be substituted for left justification. This can be shown 
by considering the reverse network - that is, the network that is obtained by 
simply reversing the precedence relations of the original project - and applying 
the earlier results to this network. 
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Figure 8.5. Example for part 3. 

Notice that none of the three justifications state the order in which activities 
are justified. Different orders may result in different justified schedules. 

It is also interesting to note that none of the three justifications can reduce 
the quality of a schedule. 

It is also worth noting that justification by extremes means a maximum of 
n-1 justifications of activities. This is not so with general justification and 
justification by eligibles - because in both cases an activity can be justified 
more than once. 

Also note that general justification is unable to completely generate the sets 
RJ (S) and LJ {S) in all cases. 

8.4 Shift 

Justifying an activity in a schedule to the right or left means moving it to the 
right or left as much as possible. Nevertheless, an activity can be moved in one 
of the two directions without reaching the limit. In this section we will formally 
define this new movement - which we will term shift. We will show that it is 
strictly more general than general justification and can generate all schedules 
in i?J (5) and L J (5). 

Shift to the right an activity i ^ n, with a movement /c > 0 in a schedule S 
consists in obtaining the schedule S' with Vj ^ i (s' — Sj and s • — 5̂  + k). 
Note that if S^ does not satisfy the restrictions of the resources, then we consider 
that this activity cannot be shifted to the right in S with this movement. 

Shift to the right a schedule S consists in obtaining a schedule S' justified 
to the right applying to 5 a finite number of activity shifts to the right with 
movements greater than 0. 

We term RT{S) the set of schedules obtainable using shifts to the right of 
S. 
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Analogously, we can define the left shift of an activity and the left shift of a 
schedule and the set LT{S), 

It is evident that shift generalises the concept of general justification. The 
question that needs answering is whether the shift and general justification of 
a schedule generate the same set of schedules; or if not, whether the length 
obtained by each technique is different. The following result answers these 
questions and shows how shift is better than justification. 

PROPOSITION 8.3 All schedules S fulfil: 
GRJ {S) C RT{S) andmm{L{S')/S' G GRJ (5)} > mm{L{S')/S^ G 

RT {S) }. There is a schedule whereby the inclusion and previous inequality 
are strict. • 

The proof of the first inclusion and the first inequality is trivial. We use an 
example to show that the second affirmation is true. 

Let us look at the project in Figure 16.5. The only schedule that can be 
obtained from S using general justification is S". Therefore, the schedule S' 
cannot be obtained from S using general justification. We will see if it can be 
obtained by shift. This is trivial and it is enough to shift the activity 6 to [6, 7]. 
This creates a space in [5, 8] where the activity 12 can be moved to, and this 
enables activity 4 to be moved to [3, 5]. Finally, we move the activity 2 to [1, 
2], and we arrive at S'. This shows that the second inclusion is strict. • 

This result shows that shift is not a trivial generalisation of general justifi
cation. However, the following result also shows that something else is true -
namely, that by using shift it is possible to find all the right justified schedules 
of a given schedule. Therefore, additional generalisation is unnecessary. 

PROPOSITION 8.4 RT{S) = RJ {S) is true for each schedule S.o 

The inclusion RT{S) C RJ (S) is evident from the definitions. Let us have 
a look at the other inclusion. 

Given an activity i and a schedule S, we term s(i, S) {f{i-> S)) the starting 
time (finishing time) of the activity i in the schedule 5. 

Let S* be a schedule and S' G RJ {S), Let A be the list of activities in 
decreasing order of their starting times in S'- the ties being resolved randomly. 
Notice that n is the first activity in A. We are going to prove that S' can be 
obtained from S by shifting the activities in the order indicated by A and with 
movement 5(i, 5') - 5(z, 5) > 0 for each activity i. 

Let Sp be the vector of activity starting times obtained after shifting the first 
p activities of A in the order and with the movements previously indicated. We 
want to show that Sp is a schedule, p — 1 , . . . , n. We achieve this by induction 
over p. 
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As s[n^S') — s{n^S), then Si — S and ^i is a schedule. Let us now 
assume, by induction hypothesis, that S^-i is a schedule and let us show that 
Sp is a schedule. 

Let z be the activity occupying positionp in A. Sp and Sp-i only differ in the i 
activity starting times: Vj ^ i s(j, Sp-i) = s(j, 5p), and s(z, 5p) > ^(z, Sp-i). 
For this reason, S'p satisfies the precedence relations. Let us see if they also 
satisfy the resource restrictions. As Sp-i is a schedule, it is only necessary to 
prove that Sp meets the resource restrictions in the interval [s{i^ Sp)^ f{i^ Sp)]. 

If s{i, Sp) ~ s{i, Sp-i), then Sp — Sp-.\ and, so, Sp is a schedule. 
Let us assume, on the contrary, that s{i^Sp) > s{i^ Sp-i), If j is an activity 

so that s{j,Sp) > s{i,Sp), then s{j,S') > s{j,Sp) > s{i,Sp) = s{i,S'), 
lfs{j,S^) = s{i,S'), so s{j,Sp) - s{j,S'). If 5(j,50 > s{i,S^), then the 
activity j has been shifted before activity i and, so, cannot be shifted again: 
s{j,Sp)^siJ,S'). 

So, in each time period of [s(i, Sp)^ f{i^ Sp)] S' schedules the same activities 
as Sp and, possibly more. As S^ meets the resource restrictions then Sp also 
satisfies them. Therefore, Sp is also a schedule.B 

Taking this proof into account, we can affirm that only n shifts are necessary 
in S to obtain any schedule justified to the right of S. 

8.5 Computational tests 

In the previous section we presented examples of various generalisations of 
justification by extremes that can generate better schedules than justification 
by extremes. Accordingly, research into ways of incorporating generalisations 
of justification by extremes in the design of heuristics seems promising. Nev
ertheless, it might be true that there are few instances in which improvements 
are possible, or that theoretically possible improvements could not be practi
cally realised with algorithms. Therefore, it would seem worthwhile clarifying 
this question before studying in greater depth the development of algorithms 
based on generalisations of justification by extremes. This is the objective of 
the computational tests that we present in this section. The tests are centred on 
showing the potential of improvement of justification by eligibles compared to 
justification by extremes. 

Before describing and commenting on the computational tests we will spec
ify the justification procedures that we use. In justification by eligibles each 
schedule can be justified to the right in different ways, depending on the order 
in which the eligible activities are selected. In these algorithms we use three 
rules for selecting from within the set of eligible activities that activity that will 
be next justified. Each rule produces a distinct algorithm. 

Rule 1. Randomly choose an activity. 
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Rule 2. Ri^ht justification. Choose an activity that finishes later if right justi
fied. In case of a tie, choose the activity that finishes later in the current schedule. 
Left justification. Choose an activity that begins sooner if left justified. In case 
of a tie, choose the activity that begins sooner in the current schedule. 

It is worth pointing out that when a schedule is justified following this rule, 
once an activity is justified it cannot be justified again. In this way, justification 
by eligibles with rule 2 can perform a maximum of n — 1 activity justifications. 

Rule 3. Right justification. Firstly, the instant that each eligible activity 
terminates if right justified is calculated. Then the activity that finishes later in 
the current schedule is selected from the activities with the two longest times. 
Left justification. Firstly, the instant that each eligible activity begins if left 
justified is calculated. Then the activity that begins soonest in the current 
schedule is selected from the activities with the two shortest times. 

It is worth noting that although the justification by eligibles with rules 2 and 
3 are special cases of justification by eligibles, they are still non-superfluous 
generalisations of the justification by extremes - as shown by the example in 
Figure 16.3. 

In justification by extremes, the following activity to be justified is randomly 
selected from the activities that finish (begin) at the same time. 

As test instances, we have used the standard j 120 set for the RCPSP generated 
using ProGen (Kolisch et al (1995)). The j 120 set consists of 600 projects with 
four resource types and 120 activities. These instances were generated under a 
full factorial experimental design with the following three independent problem 
parameters: network complexity, resource factor, and resource strength. Details 
of these problem instances are given in Kolisch et al (1995) and Kolisch and 
Sprecher (1997). They are available in the Project Scheduling Problem Library 
(PSPLIB) (http://www.bwl.uni-kiel.de/Prod/psplib/) along with the optimum, 
or best known, values that have been obtained by various authors over the 
years. As of May 2005, an optimum solution for jl20 instances had only 
been discovered in approximately 35% of instances. This shows the difficulty 
represented by the j 120 set for current algorithms. 

8.5.1 Justification of random schedules 
The objective of this section is to compare the quality of the ERJ (S) and 

XRJ (S) {EL J (5) and XL J (5)) sets. To do this, we have randomly gen
erated 1666 active schedules for each instance of the jl20 set, and for each 
instance we have applied ten times right justification by extremes and justifi
cation by eligibles with rule 1. To each right active schedule obtained after 
the first right justification by extremes we applied ten times left justification by 
extremes (by eligibles with rule 1). In this way, we generated approximately 
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Table 8.1. Justification by extremes and by eligibles on randomly generated schedules. 

Algorithm 
Random 1666+ XRJ 
Random 1666+10 XRJ 
Random 1666+ XRJ + XLJ 
Random 1666 +XRJ + lOXLJ 
Random 1666 + ERJrl 
Random 1666+10 ERJrl 
Random 1666 + ERJrl + ELJrl 
Random 1666 + ERJrl + 10 ELJrl 

av-imp 
12.4359 
12.4357 
1.1462 
1.1463 
7.5159 
7.5152 
1.3712 
1.3704 

max-imp 
-

12.8790 
-

1.3820 
-

10.5349 
-

3.2460 

stand _dev 
-

0.3348 
-

0.1826 
-

1.8667 
-

1.0003 

10 million (600x1666x10) schedules with each type of justification - resulting 
in approximately 40 million schedules. 

The improvement over the initial solution was calculated each time a schedule 
was calculated: being the ratio between the length of a justified schedule minus 
the length of the initial schedule and the length of the initial schedule - expressed 
as a percentage. 

Table 16.1 summarises the results. The first four rows refer to justification 
by extremes; the last four refer to justification by eligibles. The first column 
indicates the number, the type, the rule used when dealing with eligible justi
fication and the side of the justification referred to in the results shown in the 
next three columns. Random 1666 + XRJ (Random 1666 -f 10 XRJ) consists 
in generating the 1666 random schedules and right justifying by extremes only 
once (ten times). Random 1666 + ERJrl + 10 ELJrl consists in generating 
the 1666 random schedules, then right justifying them once by eligibles using 
rule 1 and then left justifying the obtained schedule ten times with rule 1. The 
remaining rows are treated similarly. The second column, avJmp consists of 
the average for all schedules and all instances of the percentage improvements 
obtained after the first justification in the Random 1666 + XRJ and the second 
justification Random 1666 + XRJ+ XLJ. In the cases of Random 1666 + 10 
XRJ and 10-XLJ, the average is the average of the ten percentage improvements 
obtained after 10 justifications. The meaning of the 4 last rows is the same but 
with justification by eligibles. The average maximal (standard deviation) per
centage improvement from the initial solution is reported in the third (fourth) 
column, labelled maxJmp (stand-dev). 

We can see that the average after the first right justification by eligibles, 
as well as after 10 justifications, is less than that of justification by extremes 
- and even the maximum after 10 justifications is less than the average after 
the first right justification by extremes. These results seem to indicate that the 
average quality of ER J {S) schedules is considerably worse than that of XRJ 
{S). It can also be seen that the standard deviation after 10 justifications by 
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Table 8.2. Justification by eligibles with rule 2. 

algorithm avJmp % improved 
Random 1666 + ERJr2 12?76 98.66 
Random 1666 + ERJr2 +ELJr2 1.73 61.16 

extremes is much less than in the case of justification by eligibles - especially if 
the difference in averages is taken into account. This clearly implies a greater 
diversity in ERJ {S) than in XRJ {S). 

Although we cannot compare the left justifications by extremes and by eli
gibles in absolute terms because they originate in solutions of differing quality, 
we can see that the average and maximum improvements are in all cases greater 
for justification by eligibles than for justification by extremes. This may be be
cause the quality of the initial schedules for justification by extremes is better 
than the initial schedules for justification by eligibles. It can also be seen that 
there is a greater dispersion in the cases of justification by eligibles than in 
justification by extremes. 

We have also applied justification by eligibles using rule 2. Firstly, we 
right justified the 1666 initial schedules and then we left justified the obtained 
schedules. The results are shown in Table 16.2. The terms have the same 
meanings as in Table 16.1. The percentage of solutions improved is reported 
in the third column, labelled % improved. 

The best average obtained by right justifying with rule 2 is 12.76%, signif
icantly greater than the maximum reached after 10 random justifications by 
eligibles (10.53%). This reaffirms the great diversity of ERJ (S). Note that 
98.66% of the schedules were improved by right justifying once; and that the 
improvements obtained are greater than those obtained with Random 1666 + 
XRJ and Random 1666 + 10 XRJ. 

With these results in hand various conclusions can be made that can be 
applied to random active schedules. Justification by eligibles with random 
selection produces, in general, worse results than justification by extremes. 
Nevertheless, applying justification by eligibles with the appropriate rule can 
produce better solutions than justification by extremes. 

8.6 A simple and efficient algorithm 
To make the potential of justification more patent we have compared the 

results obtained in the previous section with the results obtained using state-of-
the-art algorithms with the number of generated schedules limited to a maximum 
of 5000. The results obtained are shown in Table 16.3. The algorithm Random 
5000 refers to the result of randomly generating 5000 active schedules. Note 
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Table 8.3. Random schedules with and without double justification. 

algorithm CP_dev 
Random 5000 47.51 
Random 1666 +XRJ+XLJ 38.36 
Random 1666 +ERJr2+ELJr2 36.39 

Table 8.4. State-of-the-art heuristic algorithms. 

Author(s) 
Alcaraz(2001) 
Dorndorfetal(2000) 
Hartmann(1998) 
Hartmann (2002) 
Kochetov and Stoylar (2003) 
Merkle et al (2002) 
Tormos and Lova (2001) 
Vails et al (2005) 
Vails et al (2003b) 

Algorithm type 
Genetic algorithm 
Truncated B&B 
Activity list GA 
Self-adapting GA 
GA, TS, path relinking 
Ant colony optimisation 
Genetic algorithm 
DJGA 
HGA 

CP-dev 
36.57 
37.1 
36.74 
35.39 
33.36 
35.43 
34.41 
33.24 
32.54 

DJ/Justification 
No 
No 
No 
No 
Yes 
No 
Yes 
Yes 
Yes 

that the number of schedules generated by the last two algorithms is 4998 
(=1666x3). The average percentage deviations of the solutions obtained by the 
different algorithms from the critical path lower bound - which is obtained by 
computing the length of a critical path in the resource relaxation of the problem, 
are shown in the second column. 

Table 16.4 shows the results published by the authors of the different state-
of-the-art algorithms when the number of generated schedules is limited to a 
maximum of 5000. 

It is a clear sign of the power of justification that by simply randomly generat
ing 1666 schedules and justifying them doubly, the resulting algorithm improves 
three of state-of-the-art algorithms that do not use justification. 

8,6.1 Improving state-of-the-art algorithms 

We have performed two other experiments consisting in incorporating the 
justification by eligibles into the two algorithms in Table 16.4 that obtain the 
best results. 

Double justification consists in right justifying a schedule and subsequently 
justifying the obtained schedule to the left. Vails et al (2003b) incorporate 
double justification by extremes in the activity list GA of Hartmann (Hartmann 
(1998)). The new algorithm, DJGA, double justifies all schedules generated by 
the evolutionary process. The authors wrote their own implementation of the 
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algorithm of Hartmann that is denoted by GA in this paper. The objective of the 
first experiment is to evaluate the impact of substituting in DJGA justification 
by extremes for justification by eligibles with rule 3 (GA+ERJr3+ELJr3). 

The three algorithms were run with an upper limit of 5000 schedules. The 
size of the population in GA is 100 while the algorithms with justification use 
size 50. The average percentage deviations of the solutions obtained by the 
different algorithms from the critical path lower bound are 37.00, 33.24, and 
32.78 for GA, DJGA, and GA+ERJr3+ELJr3, respectively. 

GA+ERJr3+ELJr3 is an improvement on DJGA in quality, although the dif
ference is not very great. It must be remembered that DJGA already produces 
very high quality solutions; in fact it is one of the best state-of-the-art algo
rithms. Nevertheless, we can state that the average run time of the current (not 
optimised) version of GA+ERJr3+ELJr3 is much longer than DJGA. 

Justification by extremes is faster than justification by eligibles - at least in its 
current non-optimised implementation. It may be worthwhile combining both 
types of justification with the objective of obtaining a trade-off between schedule 
quality and run time. The following test offers evidence in favour of the above 
hypothesis. A recent paper (Vails et al (2003b)) shows that HGA outperforms 
all state-of-the-art algorithms for the RCPSP - at least on the standard jl20 
set. HGA is a hybrid genetic algorithm that double justifies by extremes all 
schedules generated by the evolutionary process. We have modified HGA by 
applying double justification by eligibles until 1000 schedules are generated and 
then double justification by extremes until 5000 schedules are generated. The 
modified HGA has a CP.dev value of 32.27 with an average run time of 4.74 
seconds, whereas HGA shows a CP.dev value of 32.54 with an average run time 
of 2.03 seconds. Both algorithms ran on the same computer (PC 400 MHz). 
So, the modified HGA improves the best result known for 5000 schedules in a 
reasonable run time, establishing a new gap of 3 units between the best CP.dev 
values obtained by the algorithms with, and without, justification. 

8,6.2 Further applicability of justification by eligibles 
In the previous computational analysis, we have used three selection rules to 

test the performance of the justification by eligibles technique in the RCPSP. 
These rules have been designed to suit the characteristics and goal of the RCPSP. 
Similarly, the justification by eligibles can be tailored to other project scheduling 
problems by defining appropriate selection rules. In fact, we have successfully 
applied the justification by eligibles to two extensions of the RCPSP which 
appear when due dates in the activities are considered. In the first problem 
(TardinessRCPSP) the objective is total tardiness minimisation. In the second 
problem (DeadlineRCPSP) the due dates are strict (deadlines) and the objective 
is makespan minimisation. We have compared the performance on both prob-
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lems of well-known RCPSP heuristics - priority rules, sampling procedures and 
metaheuristics - with new versions we have developed that take due dates into 
consideration. We have also analysed the effect of applying the justification by 
extremes and by eligibles to those algorithms. The computational results show 
that, in all cases, the justification by eligibles outperformed all other techniques 
tested. For further information, we refer to Ballestin et al (2006). 

8,7 Summary and concluding remarks 
In this paper we consider the usual concept of justification -justification by 

extremes - from a new perspective. We have broadened the usual justification 
concept by proposing that to justify a schedule S consists in generating a sche
dule in the RJ {S) {{LJ [S)) set. In this new context, justification by extremes 
is simply a basic technique for generating schedules of RJ (S) {LJ{S)). 

As justification by extremes does not always enable the generation of all the 
RJ (S) {LJ (S)) schedules the door remains open to researching more general 
forms of justification. We have proposed three generalisations of justification 
by extremes, each of which strictly generalises either: justification by eligibles, 
general justification, and shift. However, other forms are possible. We have 
also seen how when using the same justification technique it is possible to 
obtain different algorithms by simply varying the rule for selecting the following 
activity to be justified. It is also worth noting that by using shift it is possible 
to find all the right (left) justified schedules of a given schedule. Therefore, 
additional generalisation is unnecessary. 

The computational tests offer evidence to support the affirmation that the 
variability of the set of schedules reachable by justification by eligibles is con
siderably greater than the set of schedules reachable by justification by extremes. 
Therefore, it is not surprising that random justification by eligibles produces 
worse results than justification by extremes when both generate the same num
ber of schedules. Nevertheless, justification by eligibles with rule 2 improves 
justification by extremes. So it would not be strange to wonder whether a more 
intelligent rule would not offer better quality solutions. 

The obtained results also show that justification by eligibles improves ran
domly generated schedules - more than 98% of approximately one million 
random schedules - as well as those generated by quality algorithms. In fact, it 
is interesting to note that a procedure as simple as generating and justifying by 
eligibles random schedules is able to compete with state-of-the-art algorithms 
that do not use justification. As far as schedule quality is concerned, the mod
ified HGA - with justification by eligibles - ranks first in the list of heuristics 
for the RCPSP in the case of 5000 schedules. 

It is also worthwhile pointing out that the broader approach to the justifica
tion we propose enables the extension of the benefits of justification technique 
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to project scheduling problems other than the RCPSP. Justification by extremes 
works on a schedule independently of the characteristics of the problem. How
ever, justification by eligibles can be tailored to the goal of the optimisation at 
hand. An appropriate definition of the selection rule would favour, for exam
ple, moving first those activities with greater cash flow, or greater tardiness, or 
greater weight, depending on the objective function. 

In our opinion, these results indicate that the study of new forms of justifica
tion is a promising research topic that could lead to further algorithmic advances 
for solving the RCPSP and other related project scheduling problems. 
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Abstract We introduce a generalized model of the resource constrained project scheduling 
problem (RCPSP). It features that (i) the duration of an activity is not constant, but 
can vary in a specified range, and (ii) the objective is to minimize a convex func
tion of time-lag costs, where a time-lag cost is charged according to the difference 
between the start/completion times of activities. These features achieve the flex
ibility of the model. It is known that, in the RCPSP, resource constraints can be 
replaced by some precedence constraints appropriately defined between the ac
tivities that require a common scarce resource. If we remove resource constraints 
by precedence constraints, our problem can be formulated as the dual problem of 
a minimum cost flow problem, and thus can be solved efficiently. Exploiting this 
property, we design a heuristic algorithm based on local search. We conducted 
computational experiments with benchmark instances to minimize the weighted 
earliness-tardiness costs, as well as instances in which activity-crashing or relax
ation of temporal constraints are allowed. These results indicate the usefulness 
of our generalized RCPSP model and the proposed algorithm. 
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Keywords: Resource constrained project scheduling, convex objective functions, variable 
activity durations, metaheuristics. 

9.1 Introduction 
As the resource constrained project scheduling problem (RCPSP) has a wide 

range of applications, its models, extensions and algorithms have been exten
sively studied (Brucker et al (1999), Demeulemeester and Herroelen (2002), 
Klein (2000), Herroelen et al (1998), Neumann et al (2002), Weglarz (1999)). 
Although the objective functions studied in many of these models are regular 
(e.g., project duration and tardiness), the importance of non-regular ones have 
also been recognized. Among non-regular objective functions, we concentrate 
on convex objective functions in this paper. A typical example of convex func
tions is the earliness-tardiness cost, and, in order to increase applicability, we 
also allow the time-lag costs, which are charged according to the differences 
between the start/completion times of activities. Then, we consider the RCPSP 
to minimize a convex function of time-lag costs (RCPSP/conv). Another fea
ture of our model is that, in contrast to the conventional RCPSP model, activity 
durations are considered as variables, which makes it possible to deal with some 
realistic situations such as activity-crashing; i.e., the duration of an activity is 
not strictly fixed, but can be shortened by allocating an extra cost. This time/cost 
trade-off can be taken into account in our model via time-lag cost between the 
start time and the completion time of an activity. 

Among the large literature on the RCPSP, a limited number of papers deal 
with convex objective functions, oucke et al (Vanhoucke et al (2001)) have pro
posed a branch-and-bound algorithm for the RCPSP to minimize the weighted 
earliness-tardiness. However, temporal constraints allowed in their problem are 
restricted to precedence constraints. For the RCPSP subject to general temporal 
constraints, Schwindt has proposed a branch-and-bound algorithm in Schwindt 
(1999). Also, he and his co-authors have devised local search algorithms in 
Neumann et al (2002) and Neumann et al (2003), where their target is not 
restricted to a convex objective function, but is more general. 

It is known that (i) if there is no resource constraint, the RCPSP/conv can 
be formulated as the dual problem of a minimum cost flow problem, and hence 
can be solved efficiently, and (ii) resource conflicts can be removed by intro
ducing precedence constraints between those activities that require common 
scarce resources. In this paper, we propose a metaheuristic algorithm exploit
ing these two properties. In our algorithm, we try to find a collection of ad
ditional precedence constraints that replace the resource constraints when the 
total time-lag cost is minimized. To search sets of additional precedence con
straints efficiently, we employ an encoded solution-representation. We also 
incorporate an operation that often improves the schedule quality by adjusting 
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the start/completion times of activities without violating resource and tempo
ral constraints. This operation can be implemented by using a maximum flow 
algorithm. 

To evaluate the performance of our algorithm, we conduct computational ex
periments. The computational results for the following three types of instances 
are reported: (i) benchmark instances of the RCPSP to minimize earliness-
tardiness costs, (ii) instances in which activity-crashing is allowed, and (iii) 
instances in which temporal constraints can be violated with an extra cost. 

9.2 Problem formulation 

In this section, we give definitions and notations to formulate our problem, 
which we call the RCPSP to minimize convex time-lag costs, abbreviated to 
the RCPSP/conv. 

Let i? be a set of resources, and / be a set of activities. Each resource r ^ R 
is renewable in the sense that a prespecified amount K^ {> Q) is available 
in each period regardless of what amount has been used before. (Throughout 
this paper, we assume that the time horizon is discretized as in the standard 
formulation of the RCPSP.) Once activity i is initiated, it continues for di time 
periods without interruption (no preemption is allowed). One of the features of 
the RCPSP/conv is that the duration {oxprocessing time) di of an activity i is not 
a constant value, but a variable in the range [df^^^^ df^^^], where df^^^ and df^^^ 
are input data with 0 < df^^^ < d^^^. An activity i requires a constant amount 
kir of resource r while being processed, where the value of kir is independent 
of the duration di. Therefore, the total amount of resources required by activity 
i is proportional to di. 

For each activity z G / , let i^ and i^ denote the events representing the start 
and the completion of activity i, respectively. We introduce a fictitious event 
0 that represents the beginning of the project, and define the set of all events 
by E = E'UE^'U {0}, where E' =^ {i' \ i e 1} and E"" = {i'' \ i e I}. 
Let Xy denote the time at which event V occurs {v G E), and we assume that 
XQ = 0; i.e., the project begins at time zero. For convenience, we sometimes 
denote the start time Xis (resp., the completion time Xic) of activity i by xf 
(resp., xf). A solution to the RCPSP/conv, or a schedule, is represented by a 
vector X == {xy \ v e E). As the time horizon is discretized, we assume that 
the minimum and the maximum durations df^^^ and df^^^, as well as the start 
and the completion times xf and xf, of each activity i G / , are all integers. 

A schedule x is csillQd feasible if it satisfies the following constraints. 

Resource constraints 
For each resource r e R and each time period [t, t + 1), the total amount 
of the resource r required by those activities i e I being processed in the 
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period [t, t + 1) must not exceed the available amount K^: 

i\x\<,i<x\ 

Temporal constraints 
A temporal constraint between events u and v is given by an inequality: 

Xy Xii -^ (^UV \ - ^ ' t J 

on the event times Xu and Xy, where 5uv is a (possibly negative) con
stant integer. (The temporal constraint is often referred to as generalized 
precedence constraint, since (9.1) can represent a precedence relation 
between activities i and j ; i.e., x^ < x^-.) If 5uv is negative, then —5uv 
gives the maximum time-lag between the two event times Xu and Xy\ i.e., 
event u must be within —Suv time periods after event v occurs. Since 
event 0, which represents the beginning of the project, precedes all other 
events, it holds that 8oy — 0 for any v e E. 

We suppose that, in the RCPSP/conv, the minimum and maximum activity 
durations are specified via temporal constraints. More precisely, as the 
duration di of activity i is given by di = x^—xf, we describe the constraint 
that df^^^ < di < df^'^ by two temporal constraints with Sisic == d^^" 
and 5icis = —d^^'^, respectively. 

In the following, we consider 5uv = -oo if no temporal constraint with 
5uv is specified. Let T C E x E denote a set of event pairs {u, v) with 
6uv > -oo. 

Another feature of the RCPSP/conv is its objective function. We introduce 
time-lag costs, which are charged according to the difference between two event 
times. In the RCPSP/conv, SiSttC C E x E of event pairs is specified together 
with a convex function fuv{5) for each [u^ v) G C, Given a feasible schedule 
X, for each (u, v) G C, we set 5 = Xy — Xu and charge the time-lag cost fuv{8), 
where the value of fuv{^) makes sense only in the range of 5 G [Suv^ -^vu], 
since 6uv ^ Xy — Xu < —Syu holds for any feasible x. Then, the objective of 
the RCPSP/conv is to minimize the total time-lag costs: 

f{x)= Yl fuv{xy-xu). (9.2) 
(u,'u)ec 

Since event times Xy (v G E) are all integers, we suppose that every time-lag 
cost function fuv is given as a piece-wise linear convex function. 

To finish this section, we present three examples that sometimes appear in 
real situations and can be dealt with in the RCPSP/conv. 
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Earliness-tardiness 
Given the due date di of an activity z, its earliness-tardiness is defined 
by |Q — (ii|. By using event 0, the earliness-tardiness can be represented 
as a time-lag cost between the time of event 0 and the completion time 
of i. (Recall that event 0 represents the beginning of the project.) The 
time-lag cost function is given by 

kA^) ^\^-d, 

Activity-crashing 
Activity-crashing is a technique to reduce the project duration (also called 
makespan) by shortening the durations of critical activities by allocating 
an extra cost. Since activity durations are not fixed in the RCPSP/conv, 
this time/cost trade-off can naturally be described with a time-lag cost 
between the start i^ and the completion i^ of activity i. Let d^^^ and d"̂ "̂ 
denote the normal and crash duration of activity i, respectively. Suppose 
that cost Ci is required to shorten the duration of i by one time period. 
Then, the time-lag cost function for activity-crashing is given by 

Fast-tracking 
Another way to reduce the project duration is to process in parallel two 
or more activities that are supposed to be done sequentially; i.e., there is 
a precedence relation between the activities. This technique corresponds 
to relaxing the precedence constraint and penalizing for the parallel pro
cessing. If we can consider that the penalty increases convexly as the 
amount of their overlaps increases, it is described in the RCPSP/conv. 

Example. Consider a project involving one resource r and five activities i = 
1, 2 , . . . , 5, as an example. (This example will be used later to illustrate our 
algorithm.) The available amount Kr of the resource r is two. The minimum 
and maximum durations, d^̂ ^ and d^^^, and the resource requirements kir of 
the activities i are given as follows: 

C - - 1 , z - l , 2 , . . . , 5 , 

.max ^ 1, 
2, 

i = 1,4,5, 
z = 2,3. 

z = 1,2,3,4, 

Suppose that the following temporal constraints are imposed. Activity 1 
must complete no later than activities 2 and 3 complete {5ic2c = (5ic3c == 0). 
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Kr--2 

•3'y: 

time 

Figure 9.1. An optimal schedule of the example 

Activity 4 must complete before activity 3 starts (54c3s — 0). Activity 5 cannot 
start before all other activities complete (6ic^s == 0, z 7̂  5). Activity 5 must be 
initiated within two time periods after activity 4 completes (S^s^c = —2). 

As for the objective function, we consider the following time-lag costs: 

fisic{5) — 2-5, i — 2,3, 

/o5c((5)-max{0,5-4}. 

The first time-lag cost means that if we finish activity z = 2 or 3 in the crashed 
duration (i.e., d-̂ "̂ = 1), a unit cost is charged. The second cost indicates that 
it is desirable to have a longer interval between activities 4 and 5. The last one 
is to complete activity 5 (hence all the activities) within four time periods. 

As shown by the Gantt chart in Figure 9.1, there is a schedule with a zero 
time-lag cost. 

9.3 Project network 
To represent temporal relations between activities, an activity-on-nodeproject 

network N is commonly used (e.g., Neumann et al (2002)). This is a directed 
network whose node set is given by the activity set / , and whose arc set repre
sents the temporal relations on the activities. Since, in the RCPSP/conv, the start 
times xl and the completion times x^ of activities i are both decision variables 
and temporal constraints are defined on event basis, we introduce an event-on-
nodeproject network N defined by {E, T, 5) so that the event set E is associated 
with the node set, and each temporal constraint (u, v) e T corresponds to an 
arc {u, v) of length duv 

In the subsequent arguments, we assume that project network Â  contains no 
positive-length cycle, since otherwise, no schedule x can satisfy all temporal 
constraints simultaneously. Then, we can calculate the longest path length 
dist{u, v) from any node u to any node v. (\fv is unreachable from u, dist{u, v) 
is defined as -co.) Any feasible schedule x must satisfy Xy — Xu>. dist{u, v) 
for any u^v E E, It is known that if N has no positive-length cycle, there exists 
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Figure 9.2. The event-on-node project network of the example 

a schedule that satisfies all the temporal constraints (resource constraints are 
ignored in this argument); e.g., take a schedule x with Xy — dist{0^ v), v e E. 

We define a binary relation ^ on the event set E by 

u •< V ̂  dist{u^ v) > 0 and dist{v^ u) < 0. (9.3) 

(This relation is called distance order in Neumann et al (2002), although it is 
defined on the activity set there, rather than the event set, since the activity-on-
node project network is used.) \iu -< v holds, it means that event v cannot be 
prior to event u, but u can be prior to v. Relation -< is irreflexive (i.e., Mv G E, 
V yi. v) and transitive (i.e., Vî , v^w e E,u ^ v and v ^ w =^ u -< w). 

All values of dist{u^v) can be calculated, or a positive-length cycle is de
tected, in polynomial time, e.g., in 0(n^) time by the Floyd-Warshall algorithm, 
and in 0(n(m + n log n)) time by a repeated shortest path algorithm (Ahuja et 
al (1993)), where n — \E\ is the number of nodes and m — \T\ is the number 
of arcs in the network N. While the Floyd-Warshall algorithm is easy to imple
ment, it is not suited for sparse networks. Since Â  is usually sparse for practical 
RCPSP/conv instances, the latter algorithm is preferable for our purpose. 

Example (cont'd). Figure 9.2 depicts the event-on-node project network N 
of our example, where some of the arcs from event 0 are omitted. 

9.4 Algorithm 

9,4.1 Basic idea 

To design an algorithm for the RCPSP/conv, we first consider the problem 
PSP/conv, which seeks to minimize the total convex time-lag cost f{x) subject 
to only temporal constraints (i.e., no resource constraint is imposed). It is 
known that PSP/conv is reduced to the dual problem of a minimum cost flow 
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problem, and hence its optimal schedule x* can be computed efficiently; see, 
e.g., Ahuja et al (1993), Ahuja et al (1999). (Although we do not explain the 
details here, we emphasize that each temporal constraint {u^v) e T of PSP/conv 
is associated with an arc {u^ v) in the network of the corresponding minimum 
cost flow problem, and the flow on arc {u^ v) is interpreted as the dual variable 
of temporal constraint (u, v) in PSP/conv.) Of course, cc* may contain resource 
conflicts among some activities including i and j , but such conflicts can be 
resolved by introducing precedence constraints such as x^ < x^. Even after 
introducing such additional precedence constraints, PSP/conv is still tractable. 
The main idea of our algorithm is, instead of using resource constraints, to 
introduce a collection of precedence constraints defined appropriately. (We 
should note here that this idea has already been adopted in several existing 
algorithms, particularly, in branch-and-bound algorithms, e.g., Bartusch et al 
(1988), De Reyck and Herroelen (1998).) 

Let P C. E^ X E^ ht 2i set of precedence constraints to be added for the 
purpose of replacing resource constraints, where each element (i^^j^) G P is 
identified with the precedence constraint x^ < Xj. As mentioned above, the 
RCPSP/conv with P but without resource constraints is formulated as a problem 
of PSP/conv, and we denote this problem as PSP/conv(P). 

We now discuss a condition for P to replace the resource constraints. A set 
F of activities such that 

3r e R, ^ kir > Kr 
ieF 

is called ei forbidden set (i.e., the resource constraints forbid processing in 
parallel all the activities in F). If P satisfies the following condition, then any 
feasible solution x to PSP/conv(P) satisfies the resource constraints, and thus 
X is feasible for the original RCPSP/conv: 

For any forbidden set F C I, P contains at least one prece
dence constraint (i^J^) related to some i.jeF, 

In this case, we say that P is resource-feasible. On the other hand, for any 
feasible solution x to the original RCPSP/conv, there exists a resource-feasible 
set of precedence constraints P such that x is feasible for PSP/conv(P); for 
instance, P = {{i^,j^) G E^xE^ \x^ < x^} satisfies this property. Therefore, 
our problem becomes to find a resource-feasible set of precedence constraints 
P* such that PSP/conv(P*) minimizes the objective function. We try to find 
such P* by a local search based heuristic algorithm. 

9A.2 Search space 
Local search has widely been applied to solve hard combinatorial optimiza

tion problems. It starts with an initial solution and repeatedly modifies it so that 
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the solution quality is improved. To embody local search, we define below the 
search space, the evaluation function and the neighborhood. 

In our algorithm, we do not represent a solution explicitly by using a set of 
precedence constraints P , partly because 0 ( | / p ) time and space are required 
to store and manipulate a solution in this straightforward approach, and partly 
because it is not easy to achieve an efficient checking of condition (9.4) (there 
are too many forbidden sets in general). 

To overcome these difficulties, we adopt an encoded representation using an 
event-list a = (<̂ i? ^2^ • • • 5 cr|£:|_ J , which is a permutation of all events v in 
E \ {0} such that i^ <cr i^ for any % e / , where u <a v {u,v G £̂  \ {0}) 
means that event u appears prior to v in event-list cr. Then, given an event-list 
a, we decode it to a set of precedence constraints Pa as follows: 

If P(j is resource-feasible, we also say that the event-list a is resource-feasible, 
because any schedule obeying P^ is guaranteed to satisfy the resource con
straints. (In Section 9.4.3, we will explain how to check the resource-feasibility 
of Pcj>) Notice that PSP/conv(Pcr) may be infeasible; i.e., no solution satisfies 
all the original temporal constraints T and the additional precedence constraints 
P(j. This corresponds to the case that adding all arcs (i^, f) e Pa of length 0 to 
the original project network Â  creates a positive-length cycle. If an event-list 
a is resource-feasible and furthermore PSP/conv(Pcr) is feasible, then we say 
that a is feasible. Note that the problem of determining whether there exists 
a feasible event-list a is NP-hard, because it is equivalent to determining the 
feasibility of the given RCPSP/conv instance. 

This fact indicates that it should be inappropriate to define the search space of 
the local search algorithm as consisting of only feasible event-lists. Therefore, 
instead, we develop a local search algorithm operating with resource-feasible 
event-lists a that satisfy the following condition, where ^ was defined in (9.3): 

i'^f^i'<af. hjeL (9.5) 

This condition reduces the size of the search space, while retaining the exis
tence of an optimal event-list a* in the search space. In the following, we 
call a resource-feasible event-list a valid if it satisfies condition (9.5), and we 
sometimes refer to a valid event-list as a solution of our local search algorithm. 

If a solution a is feasible, it is evaluated by the total time-lag cost (9.2) of 
FSF/conw(Pa) (a smaller cost is better). To evaluate feasible and infeasible 
solutions in a unified way, we consider the (originally given) temporal con
straints T of PSP/conv(Pa^) as soft constraints, so that it always has a feasible 
solution. More precisely, for (u, v) G T, we introduce a time-lag cost with 
fuv{^) = M • max{(5^ ;̂ — 5,0}, where M is a sufficiently large value, and 
then set the 5uv of the temporal constraint to —00. Then, if an event-list a 
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Kr = 2 
^•4 

""^r 
•y-?^-: 
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0 1 2 3 
-^ time 

Figure 9.3. An optimal schedule of PSP/conv(P )̂, where a = {2\ 1\ r , 4^ 2^ 4^ 3", 3̂  
5% 5̂ ) 

is feasible (resp., infeasible), the minimum cost of PSP/conv(P(j) is less than 
(resp., greater than or equal to) M. As an exceptional rule, however, we con
sider the temporal constraints on activity durations (i.e., df^^^ < di < df^^^) 
as hard constraints as in the original RCPSP/conv. (This rule does not make 
PSP/conv(F^) infeasible.) 

Let cr be a resource-feasible event-list with i^ <o- j ^ \ i.e., (i^^j^) G Pa- If 
there is some activity k such that i^ <a k^ <a k'^ <a j ^ , then precedence 
constraint (i^, j^) is redundant in the sense that the resource-feasibility of Pa is 
ensured without (i^^j^). In evaluating a solution a, we take into account only 
non-redundant precedence constraints in P^ to reduce the computational effort 
of solving PSP/conv(Po^). 

Example (cont'd), Consideranevent-listc^-:(2^1^1^4^2^4^3^3^5^5^). 
Then, P^ consists of precedence constraints ( r , 4^), (1^ 3^), (1^ 5"), (2^ 3^), 
(2^ 5^), (4^ 3^), (4^ 5 )̂ and (3^ 5"). Since P^ satisfies conditions (9.4) and 
(9.5), this event-list a is valid. An optimal solution to PSP/conv(Po^) is illus
trated by the Gantt chart in Figure 9.3, where non-redundant precedence con
straints in Pa are shown by directed arcs. The total time-lag cost of this schedule 
i s / 2 . 2 c ( 2 - 0 ) + / 333c (4~2) + / 4 c 5 3 ( 4 - 2 ) + / o 5 c ( 5 - 0 ) - 0 + 0 + 0 + 1 - 1 . 

9.4.3 Neighborhood 
To define the neighborhood A/'(cr) of a solution a, we introduce an operation 

MovEBACKWARD(i, j). This operation is defined for a pair (i, j) of activities 
such that i^ <a j ^ and î  7̂  j ^ , and modifies event-list a by moving event 
j ^ to immediately before i^ so that precedence constraint (i^^j^) is eliminated 
from Pa. To ensure that the resultant event-list satisfies condition (9.5), events 
V (= k^ or k^, k e I) such that i^ <a v <a j ^ are also moved to the position 
immediately before i"̂  ifk^ -< j ^ holds. The relative positions among the moved 
events are preserved. 
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Example (cont'd). By applying operation MOVEBACKWARD(2, 3) to a = 
ĵ 25 p -ĵc 4s 2^ 4c 3s 3c gs 5ĉ  used in the above example, we obtain an 
event-list (4^ 4^ 3^ 2^ P , F , 2^ 3^ 5^ 5^). Notice that two events 4" and 4^ 
were moved to before 2̂  together with 3"̂ , because 4^ •< 3"̂  holds. 

Let a' denote the list obtained by applying MOVEBACKWARD(^, j) to a. 
Since a' may not be resource-feasible, we subsequently apply procedure 
MAKEVALID described below, which checks the resource-feasibility of a' and 
repairs it if necessary. While scanning events in list a' from the beginning, 
MAKEVALID constructs the set A of activities that are allowed to be processed 
in parallel under P^ji; starting with yl == 0, we add activity i into A (resp., remove 
i from A) if the next event is i^ (resp., i^). Whenever A becomes a forbidden 
set (i.e., condition (9.4) is violated), we try to introduce a precedence constraint 
{11,12) for some 11,12 E Ahy changing the position of if in a' to immediately 
before z .̂ We select as ẑ  the start event that appears last among those in A. As 
to i\ {ii ^ 12), we consider one that satisfies dist{i2,i\) < 0, since otherwise, 
a^ becomes infeasible as a result of adding precedence constraint (^1,22)- If 
there is more than one such if, we take the one that appears first in a^\ otherwise 
(if there is no such if), we change the position of i^ so that it appears before 
any other start event i^ofie A, by applying MOVEBACKWARD(J, 22), where 
j is the activity whose start event j ^ appears first among those activities in A, 

Since procedure MAKEVALID is not guaranteed to terminate in a finite num
ber of steps because of the last modification by MOVEBACKWARD, we set a 
limit to the number of applications of MOVEBACKWARD. Once this limit is 
exceeded, MAKEVALID ignores in the rest of the computation the condition 
dist{i2,i\) < 0 if no ii satisfies it. In this case, MAKEVALID outputs an in-
feasible event-list ĉ '̂  but a" is guaranteed to be valid. (We set this limit to ten, 
but it had rarely been exceeded in our experiments.) Procedure MAKEVALID 

is summarized below. 

MAKEVALID 

Input: an event-list a' on E' \ {0} 
Output: a valid event-list a" 

Step 1 (Initialization) 
Set ^ := 0 and k :— 1. Event-list a" is initially empty. 

Step 2 (Next event) 
If /c > \E\, then return a" and terminate. Otherwise, let the next event 
V :— a'{k). If'i; is a start event, say i^, go to Step 3. If î is a completion 
event, say i^, go to Step 5, 
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Step 3 (Insertion of start event) 
Update A :— AU {i}. If A is not a forbidden set, then set a^'{k) :— i^, 
k :~ k + 1 and return to Step 2; otherwise, go to Step 4. 

Step 4 (Modification of event-list aO 
Let 22 :— i, and let A^ be the set of activities j G -A \ {22} such that 
distm.f) < 0 holds. 

Case 1. If ^4' is not empty, let zi G A' be the one whose completion 
event zf appears first in a'. (Note that 12 <a' ^\ always holds here.) 
Modify a' by moving i\ to immediately before i^ (as a result of this, 
the /c-th event (j'(k) is changed from i^ to i^). Remove i^ from ^4, 
and return to Step 2. 

Case 2. If A! is empty, check if MOVEBACKWARD has been applied 
the predetermined number of times so far. If yes, let Â  \— A\ 
{22} and apply Case 1; otherwise, let j G A \ {22} be the one 
whose start event f appears first in a\ Modify a' by applying 
MOVEBACKWARD(J,22). Return to Step 1. 

Step 5 (Insertion of completion event) 
Let a"(k) :— i^, and update A\— A\ {%), Let k \—k-^\ and return to 
Step 2. 

Example (cont'd). Let us consider the process of MAKEVALID applied to 
a' = (4^ 4^ 3^ 2^ P , r , 2\ 3^ 5^ 5^), which was obtained from the event list 
G by MOVEBACKWARD(2, 3). Starting with A\^% and /c — 1, we scan the 
first event 4"̂  and add activity 4 to the set A. Since the next event is 4^, activity 4 
is immediately removed from A, and A becomes empty again. Then, by repeat
ing Steps 2 and 3, we get a forbidden set A == {3, 2,1} at Step 3 when fc = 5 
holds, and go to Step 4. Here, i^ — \ and A! = 0, because dist{V^3^) — 
dist{V^2^) ^ L Then, Case 2 of Step 4 applies, and a' is modified by 
MOVEBACKWARD(3, 1); a' becomes (4^ 4^ P , 3^ 2^ F , 2^ 3^ 5^ 5^). We 
restart the process from Step 1 with the new a', and we have a forbidden set A — 
{1, 3, 2} again when /c — 5 holds. At this time, 12 = 2 and A' = {1}, and Case 
1 applies. Then, a' becomes (4^ 4^ P , 3^ F , 2^ 2^ 3^ 5^ 5^). We remove 
activity 2 from A and continue to scan the list a' from A: == 5 with A = {1, 3}. 
In the rest of the computation. Step 4 is not executed, and A changes as follows: 
{1,3} -> {3} -> {3,2} -^ {3} -> 0 -> {5} -> 0. Finally, we obtain a valid 
event-list cĵ ' = (4^4^ 1^3^ 1^2^2^3^ 5^ 5^). An optimal schedule of 
PSP/conv(Po^//) is shown in Figure 9.4. The total time-lag cost of this schedule 
i s / 2 . 2 c ( 3 - 2 ) + / 3 s 3 c ( 3 - l ) + / 4 c 5 ^ ( 3 - l ) + / o 5 c ( 4 - 0 ) - 1 + 0 + 0 + 0 - L 

To improve the quality of a^^ further, we consider the following operation, 
which tries to reduce the number of precedence constraints in Per// (i.e., en-
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Figure 9A, An optimal schedule of PSP/conv(P;'), where a" ^ (4^ 4^ 1", 3", T , 2\ 2^ 
3 ^ 5 ^ 5 " ) 

large the feasible region of the problem PSP/conv(Pcr'0) without violating the 
resource-feasibility of a". Suppose that there is a pair of events i^ and j ^ in a" 
such that (i) f is the first start event such that i^ <a" j ^ , and (ii) i^ y^ f and 
also i^ 7̂  j ^ for any i^ {i^ <(jn i^ <c Then, we move j ^ to just before 
i^ if it does not break the resource-feasibility of ĉ '̂  By this operation, prece
dence constraint ii^^f) is removed from P(jn, Although we omit the detail, 
this operation can be incorporated within MAKEVALID. 

Example (cont'd). A validevent-lista'^ - (4^4^ P , 3^ F , 2^ 2^ 3^5^ 5̂ ) 
is improved by moving P to immediately before 4^. The resultant event-list 
(4^ P , 4^ 3^ 1^ 2^ 2^ 3^ 5^ 5 )̂ is still valid, and brings the optimal schedule 
shown in Figure 9.1. 

In a symmetric way, we define an operation MOVEFORWARD(Z, j ) , which 
moves event i^ to immediately after j ' ^ together with all events v = k^ ox k^ such 
that i^ <a V <a j ^ and i^ -< k^. In order to make the resultant event-list valid, 
we apply the reverse version of MAKEVALID, which works symmetrically to 
MAKEVALID, scanning the event-list backward from the end. 

The neighborhood M[a) of solution G is now defined as the set of event-lists 
a" that can be obtained from a by applying MOVEBACKWARD followed by 
MAKEVALID, or by applying MOVEFORV^ARD followed by the reverse version 
of MAKEVALID. Starting with an initial solution a — a^ (how to generate a^ 
will be explained in the next subsection), our local search repeats replacing the 
current solution a with a better one a" in the neighborhood M{(J), until there 
exists no better solution in Af{a). We adopt the so-called first-move strategy; 
the current solution a is replaced with the better neighbor a^^ G A (̂cr) found 
first. 

9.4.3.1 Neighborhood reduction. To evaluate each neighbor a^' e 
J\f{cr) of the current solution cj, we solve PSP/conv(P(j//) by applying a mini
mum cost flow algorithm. The networks of these neighbors have similar struc-
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tures, and therefore, we do not solve the problems from scratch each time, 
but calculate optimal values by using a re-optimization technique based on a 
primal-dual algorithm for the minimum cost flow problem. Since this compu
tation is still rather expensive, however, it is not efficient to search the whole 
neighborhood in every iteration of the local search. To make the search more 
effective, we reduce the neighborhood size as follows. 

As mentioned above, MOVEBACKWARD(Z, j) and MOVEFORWARD(Z, j) 
are designed to remove precedence constraint (i^^j^) from P^. Let x be an 
optimal solution to PSP/conv(P(j). Duality of linear programming tells us that, 
in order to decrease the total time-lag cost f{x), it is necessary to remove 
some precedence constraint {i^^f) G Pa such that the corresponding optimal 
dual variable is positive (i.e., the optimal flow corresponding to x is positive 
on arc (i^, j^)). In our local search, we apply MOVEBACKWARD(Z, j) and 
MOVEFORWARD(Z, j) only for such precedence constraints. The neighbor
hood reduced in this way is denoted by J\f{a), 

9.4.3.2 Speed up in finding a feasible solution. Our local search al
gorithm sometimes requires many replacements of the solution before reaching 
the first feasible one. (Recall that it is NP-hard to find a feasible schedule.) To 
reduce computational time spent in this phase, before reaching a feasible sche
dule, we do not take into account the time-lag cost in evaluating the quality of 
a solution a; i.e., we consider only the amount of infeasibility of the schedule. 
Once we obtain a feasible solution, we then evaluate solutions exactly by their 
total time-lag costs. This simple strategy makes the local search algorithm run 
faster in the early stage. 

9AA Initial solution 
To prepare an initial solution for the local search, we first ignore all the 

resource constraints and solve the resultant PSP/conv(0). (If this problem is 
infeasible, then we can conclude that the original RCPSP/conv instance is in-
feasible.) Let x^ be its optimal solution and a^ be an event-list obtained by 
sorting the events v e E\ {0} in non-decreasing order of their event times Xy. 
Ties are broken randomly subject to condition (9.5). Since a^ is not valid in 
general, we then apply MAKEVALID to a^ and use the output valid event-list 
as an initial solution. 

9.4.5 Further improvement by shift operations 
The local search terminates when no better solution is found in the neigh

borhood J\f{(j) of the current solution a. In this situation, we call a and the 
optimal solution x to PSP/conv(Pcr) locally optimal. In our algorithm, we 
then incorporate another type of operation, called shift operation, hoping to 
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improve a locally optimal solution x further. Contrast to MOVEBACKWARD, 

MOVEFORWARD and MAKEVALID, a shift operation modifies a schedule x 
directly rather than via modifying the encoded solution a. We say that, for a 
schedule x, we left-shift (resp., right-shift) an event v if we decrease (resp., 
increase) its event time Xy. Let £̂ ^ c £̂  be a set of events such that 0 ^ E\ 
where event 0 represents the beginning of the project. Then, shift operation 
LEFTSHIFT(£; ' ) (resp., RIGHTSHIFT(£; ' ) ) applied to x simultaneously left-
shifts (right-shifts) all events v e E' by one time period; i.e., Xy := Xy — 1 
(resp., Xy := Xy + 1), v e E'. We explain only LEFTSHIFT in the following, 
but the symmetric argument applies to RIGHTSHIFT. 

Given a feasible schedule cc, while keeping its feasibility, we try to decrease 
its total time-lag cost f{x) by applying LEFTSHIFT(£^^) for some E'. Let 
x{E') denote the schedule obtained from x by LEFTSHIFT(£^ ' ) . Schedule 
x{E') is feasible if and only if £ '̂ satisfies the following conditions: 

(CI) For each temporal constraint {u,v) e T such that Xy — Xu = Suv, E' 
satisfies v e E^ => u e E\ 

(C2) For each time t, let E^ and Ef denote the set of start events and completion 
events v such that Xy — t, respectively. For any time period [t — 1, t) and 
resource r E R, 

i^eEfnE' j^eE^\E' i: xfKKx^ 

The problem of determining if there exists an E^ such that x{E') is a feasi
ble schedule with f{x{E')) < f{x) can be proved to be NP-hard. There
fore, we solve it heuristically. Suppose that the events in Ef and E^, re
spectively, are numbered arbitrarily, say E^ — {^u^^t,2' • • • ' ^ ? L } ^^^ -^t — 
{Jt,i^Ji,2'>''' ^JtAd}' Then, we left-shift some number (possibly zero) of the 
first events in E^ and E^, say, {i^ j , . . . ,i^ J and {jfi^... dim)- ^^ other 
words, we restrict a set of events E' to those satisfying the following condition 
in addition to (CI) and (C2): 

(C3) For any t, 

ih+i ^ E'=^ il e E\ / - 1 , 2 , . . . , L - 1 , 

and 
Jt,m+i &E'=> Jl^ eE', m = 1,2,..., M - 1. 

Under this restriction, as described below, the problem of minimizing f{x{E')) 
is solvable in polynomial time. If an optimal set £̂ * in this sense satisfies 
/(cc(£^*)) < fix), we can improve x by applying LEFTSHIFT(JS*). 
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To minimize f{x{E')) subject to (C1)-(C3) for a given feasible schedule x, 
we construct a directed graph G whose node set is the event set E and whose 
arcs, each having a weight, are given as follows. 

• For each condition u £ E' ^ v ^ E' \n (CI) and (C3), arc {v, u) with 
weight w{v,u) — oo'xs introduced, 

• For each time period [t — 1, t) and / G {1 ,2 , . . . , L}, arc {ifi^Jt^rn) ^^ 
introduced for the maximum m G {1, 2 , . . . , M} (if any) such that, for 
some r e R, 

(which means that some resource constraint will be violated if we left-
shift the first / events in E^ and the first m — 1 events in Ef), The weight 
of the arc is oo. 

• For each time-lag cost/^^^ for (̂ ,̂̂ ') G C,eivc{u^v)v/iih'wtightw{uyv) ~ 
fuvi^v -Xu + 1)- fuv{xv - Xu) and arc {v, u) with weight w{v, u) ^ 
fuv{xv - Xu-l) - fuvi^v - Xu) are introduced. 

Multiple arcs are replaced with a single arc with their total weight. Let w{E') 
denote the sum of the weights of the arcs out-going from E^, i.e., w{E') — 
YjueE'.v^E' ^(^^ ^)- ^ ^^^ ^' ^f events satisfies conditions (C1)~(C3) if and 
only \fw{E') < oo holds, and in this case, it holds that w{E^) = f{x{E')) -
f{x). Therefore, our objective is to find an optimal set that minimizes w{E'), 
Although graph G contains arcs with negative weights, the problem of mini
mizing w{E') can be solved in the running time of finding a minimum cut in a 
directed graph without negative arc weights. This is because, by convexity of 
time-lag cost functions fuv, it holds that w{u^ v) + w{v^ u) >0 for any pair of 
u and V, and therefore, finding an optimal set J5* is reduced to finding a most 
positive cut in a directed graph. For more details, see, e.g., McCormick and 
Ervolina(1994), 

Example (cont'd). Let x be the feasible schedule in Figure 9.4. We con
sider applying operation LEFTSHIFT to x. To minimize f{x{E')) subject to 
conditions (C1)-(C3), we construct a directed graph G, which is depicted in 
Figure 9.5. Events in El =• {1^, 3^} and E^ — {2*̂ , 3^} are ordered according 
to the activity index. In this figure, thick solid, thick dashed and thick dotted 
arcs (all of which have a weight of infinity) correspond to conditions (CI), 
(C2) and (C3), respectively, and the other arcs represent the difference of the 
corresponding time-lag costs. An optimal set £̂ * with the minimum weight 
is {P, 1 ,̂ 2^}, as shown in Figure 9.5. Since w{E'^) — —1, we can improve 
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Figure 9.5. A directed graph G defined in LEFTSHIFT 

the schedule x, and the total time-lag cost of the resultant schedule x(£^*) is 
/(cc(£;*)) = f{x) + w{E'') = 1 - 1 = 0. (cc(£;*) is the optimal schedule 
shown in Figure 9.1.) 

In our algorithm, when a locally optimal schedule x is obtained, and if it 
is feasible, we apply LEFTSHIFT and find an optimal set £?* that minimizes 
/(x(J5*)). We check if f{x{E*)) < / (x ) , and if yes, we replace x with 
cc(E*). Then, we try RIGHTSHIFT next. We repeat this process as long as 
we can improve x by LEFTSHIFT or RIGHTSHIFT. If the locally optimal 
schedule x is improved at least once by a shift operation, we restart the local 
search from x, where, as in the preparation of an initial list a^ (Section 9.4.4), 
the encoded solution a corresponding to x is generated by sorting event times 
and applying MAKEVALID. On the other hand, if the locally optimal schedule 
X cannot be improved by this try, our local search terminates. 

9.4.6 Iterated Local Search 
Since a single run of the local search is not powerful enough to find a good so

lution, we execute local search iteratively. Whenever the local search terminates 
(after trying shift operations), we go back to the best solution a* found so far, and 
perturb it to obtain a different solution a, from which we start another run of local 
search. As an operation for the perturbation, we use MovEBACKWARD(ii, 12) 
or MovEFoRWARD(ii, 22), followed by MAKEVALID (how to select a pair of 
activities (ii, 22) will be explained below). At the first neighborhood search of 
the subsequent run of local search, we do not apply operations 
MOVEBACKWARD(Z2, ii) and MovEFoRWARD(i2, ^i) with the pair of 22 and 
ii to generate a neighbor, in order to avoid returning to the best solution a*. 
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Now we describe how to perturb a"". Among the candidates of {11,12), we 
try smaller perturbations first; we give higher priority to pairs (^1,̂ 2) such that 
the difference of the positions of if and ^ in a* is smaller. To prevent applying 
the same operation to the same solution a*, in the iterated local search, we store 
in the memory the operations tested on a*, and reset the memory whenever a 
better solution than a"^ is found. 

The entire process of our algorithm is summarized below. 

ITERATEDLOCALSEARCH 

Input: an RCPSP/conv instance 
Output: a schedule x 

Step 1 (Initialization) 
Check if the project network N has a positive length cycle (Section 9.3). 
If yes, conclude that the instance is infeasible and terminates; otherwise, 
prepare an initial event-list a (Section 9.4.4). 

During the following process, whenever a feasible schedule with zero 
total time-lag cost is found, or a predetermined computational time has 
elapsed, output the best schedule x* found by then and terminate. 

Step 2 (Neighborhood search) 
Find a better solution a'^ in the reduced neighborhood J\f{cr) (Sections 
9.4.3). If there exists no such a'\ go to Step 3. Otherwise, update the 
current solution a \= a'^ and return to Step 2. 

Step 3 (Shift operation) 
(a is now locally optimal.) Let x be an optimal solution to 
PSP/conv(Pcr)- Try to improve x by shift operations (Section 9.4.5). 
If x is improved, then generate a solution a corresponding to x and 
return to Step 2; otherwise, go to Step 4. 

Step 4 (Perturbation) 
Let a* be the best solution found so far. Perturb a* and obtain an initial 
solution a for the next run of local search (Section 9.4.6). Return to Step 
2. 

9.5 Computational experiments 
To evaluate the performance of our algorithm, we conducted computational 

experiments. Our algorithm uses a minimum cost flow algorithm and a maxi
mum flow (or minimum cut) algorithm as subroutines for evaluating solutions 
and for the shift operation, respectively. For these algorithms, we use RelaxIV 
and HIPR, respectively. RelaxIV is a C++ solver based on a primal-dual al
gorithm called RELAX (Bertsekas and Tseng (1994)) and available from the 
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Table 9.1. Computational results for the RCPSP to minimize the weighted earliness-tardiness 
cost 

Instance set | / | :^ 10 | / | = 20 | / | :^ 50 | / | = 100 
#feasible 73/73 70/70 73/73 70/78 
Comparison with BB^ 0-73-0 2-68-0 33-33-7 52-11-15 
Comparison with LS^ - - — 37-32-4 41-12-25 

t nb-rie-riw means that our result is better than, equivalent to and worse than the result of 
BB/LS for Ub, Ue and Uw instances, respectively. 

The time limit was 10 seconds on a 3.0GHz processor for our algorithm, and 100 seconds 
on a 333MHz processor for BB and LS. 

CRIFOR web site at h t t p : / / s o r s a . u n i c a . i t / . HIPR is an efficient imple
mentation of a push-relabel algorithm (Cherkassky and Goldberg (1997)) and 
copyrighted by IG Systems, Inc. (h t tp : //www. igsystems. com/). Our code 
is written in C+-H, and all experiments were conducted on a Dell Precision 470 
with dual 3.0GHz Intel Xeon processors, where the code was run on a single 
processor. 

9.5.1 Minimization of the weighted earliness-tardiness 
cost 

To compare our algorithm with other existing ones, we solved the instances 
used in Neumann et al (2002). The objective of these instances is to minimize 
the weighted earliness-tardiness cost subject to general temporal constraints 
(rather than precedence constraints), where activity durations are fixed. These 
instances are based on benchmark instances generated by a problem genera
tor named ProGen/max proposed in Schwindt (1998). (Benchmark instances 
with up to 1000 activities generated by ProGen/max are available through the 
Internet.) Since these benchmark instances contain neither the earliness and 
tardiness cost nor the due date, such additional data have been generated ran
domly for each instance. For our experiment, we take four instance sets, each 
containing 90 instances with 10, 20, 50 and 100 activities, respectively. The 
number of resources is five for all instances in all sets. Excluding those in
stances that have been proved to be infeasible (i.e., no schedule satisfies the 
resource constraints and the temporal constraints), we solved 73, 70, 73 and 78 
instances, respectively, out of 90. We set the maximum computational time to 
10 seconds for each instance. 

The results are summarized in Table 9.1. The second row (#feasible) of this 
table shows, for each instance set, the number of instances for which our algo
rithm found a feasible schedule (out of the total number of feasible instances). 
The next two rows show the comparison results of our algorithm with the (trun-
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Table 9,2. Effectiveness of the shift operation 

Instance set |/| ^̂  50 |/| ^ 100 
Comparison of ITERATEDLOCALSEARCH 
with the one not using shift operations 22-43-8 43-21-14 

cated) branch-and-bound algorithm (denoted by BB) proposed in Schwindt 
(1999) and the local search algorithm (denoted by LS) whose idea is given in 
Neumann et al (2002) and Neumann et al (2003), respectively. Each entry in 
the format of rti^-ne-n^ means that our result is better than, equivalent to and 
worse than the results of BB or LS for n^, rig and n^ instances, respectively. 
(The results of BB and LS were provided by the authors. The results of LS 
are available only for the instance sets with 50 and 100 activities.) We should 
remark that the results of BB and LS are on a personal computer with 333MHz 
Pentium II processor with the computational time limit being 100 seconds for 
each instance, while our algorithm was run on a workstation with 3.0GHz pro
cessor with 10 seconds of the time limit. According to the authors, the local 
search algorithm LS has not been polished, because the main purpose of its 
implementation was to validate the idea of its neighborhood structure proposed 
in Neumann et al (2003). 

Although a precise comparison is difficult because different processors were 
used, our algorithm is competitive to BB for instances with 10 and 20 activi
ties, if we disregard the advantage of BB that is able to prove optimality. For 
instances with 50 and 100 activities, our algorithm found better solutions than 
BB and LS for many instances. 

9.5.1.1 Effectiveness of the shift operation. To investigate the effec
tiveness of the shift operation explained in Section 9.4.5, we also solved the 
above instances with | / | > 50 by our algorithm without shift operations; i.e.. 
Step 3 is skipped in procedure ITERATEDLOCALSEARCH. Table 9.2 shows 
the performance of ITERATEDLOCALSEARCH compared with the one not us
ing shift operations, in the same manner as in Table 9.1. For some instances, 
the results are better if we do not use shift operations, but on the whole, the 
performance is improved by incorporating the shift operations. 

9.5.2 Activity-crashing 
The RCPSP/conv features variable activity durations. To see the effect of this 

flexibility, we solved instances prepared as follows. The instances are based 
on those generated by ProGen/max, which are RCPSPs to minimize the project 
duration subject to temporal constraints. Each temporal constraint is given by 
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Table 9.3. Impacts of activity crashing 

Instance set |/| ^ 10 |/| :̂  20 |/| ^ 50 |/| = 100 
Comparison with the optimum 8-65-0 15-51 -0 3-24-6 0-13-11 
#feasible with activity-crashing 6/17 8/20 8/17 2/12 

an inequality on the start times of two activities, x^, ~ xf > Sisjs, If the right 
hand side value Sjsjs equals to the duration of activity i, this temporal constraint 
represents the precedence relation between activities i and j . We first rewrite 
such a constraint by x^j ~ x^ > 0. Then, we allow activity i to be shortened by 
one time period, if and only if its duration di (specified by ProGen/max) is more 
than one; i.e., we set the minimum and maximum durations of activities i by 
^min .__ Ynax{di — 1,1} and df^^^ := di, respectively. We define the objective 
function as the project duration plus the number of crashed activities, which 
can be described by a convex function of time-lag costs. 

We used the same four instance sets as in the previous subsection. In this 
experiment, we solved only those instances whose optimal values (minimum 
project durations) are known; i.e., 73, 66, 33 and 24 instances for 10, 20, 50 
and 100 activities, respectively. We set the time limit for each run to |/ |/10 
seconds, where |/ | = 10, 20, 50 or 100 is the number of activities. 

In real situations, if a problem turns out to be infeasible, it is often required to 
modify the problem by relaxing some conditions and/or constraints so that the 
problem becomes feasible. To demonstrate that activity-crashing is sometimes 
useful for this purpose, we also solved infeasible instances (17, 20, 17 and 12 
instances in the four instance sets, respectively) by allowing shortening activity 
durations by at most one time period per activity. (Note that there is no guarantee 
that this modification makes such instances feasible.) In this experiment, the 
objective function is defined as the number of crashed activities. 

Table 9.3 summarizes the results. The second row shows the number of 
instances for which our results are better than, equivalent to and worse than 
the optimal value in the same manner as in Table 9.1. (If the solution obtained 
by our algorithm is better than the optimum, it means that we succeeded in 
shortening the minimum project duration by T time periods by crashing at 
most T — 1 activities.) The last row shows the number of infeasible instances 
for which a feasible schedule can be found by allowing activity-crashing. 

From this result, we can confirm the effect of activity-crashing, particularly 
for instance sets with |/ | < 20. On the other hand, for some instances with 
|/ | > 50, we failed to find a solution whose objective value is the same as the 
optimum, even though problems are relaxed. This observation indicates that 
there remains a need to improve the performance of our algorithm. 
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Table 9,4. Impacts of relaxing temporal constraints 

Instance set \I\ == 10 |/| = 20 |/| = 50 |/| = 100 
Comparison with the optimum 6-67-0 12-51-3 2-26-5 4-13-7 
#feasible with constraint relaxation 7/17 13/20 6/17 1/12 

9.5.3 Relaxation of temporal constraints 
As another application of the RCPSP/conv, we consider the RCPSP with soft 

temporal constraints. As in the experiment for activity-crashing in the previous 
subsection, we prepared problem instances by modifying those generated by 
ProGen/max. In this experiment, we relaxed temporal constraints imposed on 
two different activities i and j , if their durations are both greater than zero; i.e., i 
and j are not fictitious, but real activities. For each of such temporal constraints 
Xy — Xu > Suv, we replace it with a slightly relaxed constraint Xy — Xu > 
Suv — 1. and introduce a time-lag cost with fuv{S) '= m8ix{5uv — ,̂ 0}. This 
transformation allows us to violate temporal constraints by one time period 
with being charged a penalty. The objective function is the sum of the project 
duration and the number of violations of the soft temporal constraints. Also 
in this experiment, we solved the infeasible instances by defining the objective 
function as the number of violations of the soft temporal constraints. Other 
experimental settings are the same as in the previous subsection. 

The results are shown in Table 9.4. We observed that the project duration 
can be reduced (sometimes to a large extent) by violating a smaller number of 
temporal constraints. 

9.6 Conclusion 
In this paper, we have introduced a generalized model of the RCPSP and 

proposed a metaheuristic algorithm. By incorporating variable activity dura
tions and time-lag costs, it becomes possible to deal with complicated project 
scheduling problems in real applications. Since the proposed algorithm solves 
the minimum cost flow problem many times in its execution, from viewpoint 
of computation time, it may not be practical to solve instances of very large 
sizes. From the experimental results, however, we can observe that the proposed 
algorithm performs well for instances with up to around 100 activities. 
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Abstract In the last few years several heuristic, metaheuristic and hybrid techniques have 
been developed to solve the Resource-Constrained Project Scheduling Problem 
(RCPSP). Most of them use the standard activity list representation, given that 
it seems to perform best in solving the RCPSP independently of the paradigm 
employed (genetic algorithms, tabu search, simulated annealing, ...). However, 
we have designed an innovative representation, one which has not been used 
before and which includes a lot of problem-specific knowledge. Based on that 
representation we have developed a new competitive and robust hybrid genetic 
algorithm, which uses genetic operators and an improvement mechanism spe
cially designed to work on that representation and exploit, in a very efficient 
way, the information contained in it. We have compared this algorithm with the 
best algorithms published so far, using the standard benchmark of PSPLIB. The 
results show the excellent performance of our algorithm. 

Keywords: Project Scheduling, Genetic Algorithms, Hybrid Algorithms, Metaheuristic Tech
niques. 

10.1 Introduction 
The resource-constrained project scheduling problem (RCPSP) is a NP-hard 

optimization problem which has been widely studied in the literature. Since 
the first works developed to solve it in the 60s, several different optimization 
techniques have been proposed to solve this problem. Following the catego
rization of Kolisch and Hartmann (1999) these techniques can be divided into 
exact methods, heuristics, classical metaheuristics, non-standard metaheuris-
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tics and other techniques. The last heuristic methods, including metahuristics, 
are described and compared by Hartmann and Kolisch (2000) and Kolisch and 
Hartmann (to appear). One of the most important aspects to consider when 
designing an algorithm to solve this problem is how to encode the solutions. 
A study carried out by Hartmann (1998) determined that the activity list rep
resentation (ALR) performs the best to solve the RCPSP, when compared with 
other encodings, irrespective of the paradigm employed. So, the ALR and some 
of its extensions are the most commonly used encodings in the algorithms de
signed to solve the RCPSP although in the literature we can find some others 
which have obtained good results. In this paper we propose a hybrid genetic 
algorithm based on a new efficient encoding for the solutions, which incorpo
rates problem-specific knowledge. This representation is an extension of the 
ALR and combines the features of two encodings previously used by Hartmann 
(1999) and Alcaraz and Maroto (2001). We have also extended the genetic 
operators designed by the aforementioned authors to work up on this encoding 
and use, in a very efficient way, the problem-specific information contained in 
it. Moreover, we have developed two different improvement procedures; the 
first can be applied to the chromosomes in the population in order to improve 
their quality and the second permits us to introduce variability in the population 
and avoid being trapped in a local optimum. 

The outline of the remaining is as follows: section 16.2 shows the problem 
formulation. In section 16.3 the new solution representation is described. The 
new crossover and mutation operators designed to work up on that encoding are 
presented in section 16.4 and section 16.5 describes two procedures designed 
to improve the performance of the genetic process. Section 16.5 presents the 
results of the extensive computational experience carried out in order to con
figure the algorithm and compare it with the best techniques that have appeared 
so far. Finally, we draw the main conclusions and examine directions of future 
research in section 15.6. 

10.2 Problem formulation 
The problem considered in this paper is the Non Pre-emptive Single Mode 

Resource-Constrained Project Scheduling Problem (RCPSP), in which the ob
jective is to minimize the makespan or total project duration. 

This problem is concerned with a set J of N activities, J — {1, •. •, N} 
and a set R of K renewable resources, R = {1^... ^K}. For each resource 
A: E i?, we know its total amount or availability per-period which is constant 
and given by Aj^. An activity j has to be processed for dj time units. Pre
emption of activities is not allowed, that is to say, when an activity starts it must 
be executed period by period until it is completed (the dj periods of execution 
time must be consecutive). In each period of its execution time t = 1 , . . . dj. 
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activity j requires rjk units of resource k to be successfully executed, being 

Between some of the activities there are precedence relations of the finish-
start type with a zero parameter value defined between the activities. Activity 
j can not start until all its immediate predecessors, given by the set Pj, have 
completely finished. The values of Ak, dj and TJ/. (availability of resources, 
duration of activities and requirements of resources by activities) are integer 
and non-negative. 

The objective is to determine the starting time of each activity, so that the 
project makespan or total project duration is minimized, and both the precedence 
and the resource constraints are satisfied. A schedule can be presented as 
S — {Si,..., S'AT}, where Sj denotes the start time of activity j . 

This problem is noted as m, l\cpm\Cmax in the notation proposed by Her-
roelen et al (1998) and PS\prec\Cmax in the one proposed by Brucker et al 
(1998). 

10.3 Intelligent encoding 
Different representations have been proposed in the literature to encode the 

solutions of the RCPSR The standard activity list representation (ALR) is the 
most commonly used, given that, as a study carried out by Hartmann (1998) 
determined, the ALR or permutation based encoding is the best when solving 
this problem, with independence on the paradigm used (genetic algorithms, 
tabu search, simulated annealing...). Among the most recent algorithms which 
have used this standard representation we can mention the works of Bouleimen 
and Lecocq (2003), Fleszar and Hindi (2004), Hindi et al (2002), Jozefowska et 
al (2001), Klein (2000), Nonobe and Ibaraki (2002), Tormos and Lova (2003) 
and Zhang et al (2005). However, several authors have designed new repre
sentations, based on the ALR which improve its performance, adding problem-
specific knowledge (Alcaraz and Maroto (2001), Hartmann (1998)). Other 
authors have employed different representations, which are not based on the 
ALR. Some of them such as Debels et al (2006), Kim et al (2005), Vails et al 
(2003), Vails et al (2005), Zhang et al (2005) have used the random key (or 
priority value) representation or even extensions of it. Hartmann (1998) and 
Ozdamar (1999) use the priority rule representation in their genetic algorithms. 
Sampson and Weiss (1993) developed a variant of a simulated annealing algo
rithm employing the shift vector representation to encode the solutions. Other 
authors have recently used direct encodings, such as Toklu (2002) or Thomas 
and Salhi (1997), directly working on schedules. Other completely different 
encodings have been recently used by authors such as Artigues et al (2003). 

In sections 16.3.1, 10.3.2 and 10.3.3 the ALR representation and two exten
sions from it are presented. In section 10.3.4 we describe the new representation 
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designed, which is a combination of the ones presented in sections 10.3.2 and 
10.3.3. 

10,3.1 Activity list representation 

In this kind of representation, the solution is encoded as a precedence feasible 
list of the activities. Each activity can appear in the list in any position after 
all its predecessors. To construct the related schedule we could apply the serial 
method proposed by Kelley (1963). We would schedule the activities, one by 
one, in the order given by the list, so when an activity is going to be scheduled, 
all its predecessors have already been scheduled (forward scheduling). Each 
activity is assigned the earliest feasible start time. It is interesting to point out 
that the parallel method could not be directly applied to this representation to 
transform the individual into its corresponding schedule. 

N 

J 

Figure 10. L Activity List Representation 

Each individual in the population is represented by an array with as many 
positions as activities in the project. In Figure 10.1, we can observe the activity 
list representation for a project with N activities. Activity j will be the z-th 
activity chosen to be scheduled. It will be scheduled in its earliest feasible 
start time. When activity j , located in position z, is chosen to be scheduled, 
all its predecessors, which will appear in some position 1 , . . . , z — 1, will have 
already been scheduled. In this way, the related schedule will always be a 
feasible schedule. Notice that when applying this procedure, one and only one 
schedule (phenotype) can be deduced from a given sequence (genotype), but 
different sequences could transform into the same schedule. When applying the 
serial method to transform the representation into a schedule, the search space 
is formed by the set of active schedules, which always contains an optimal 
solution (Kolisch (1996), Sprecher et al (1995)). 

10.3.2 Hartmann's extended representation 

Computational studies carried out by Hartmann (1999) revealed that the ac
tivity list representation yields the most promising result in a genetic algorithm, 
when compared with other representations such as random key or priority rule 
encoding. He used the activity list representation and the serial schedule gen
eration scheme (SGS) or serial method as decoding procedure. However, the 
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author extends the activity list representation in order to allow both serial and 
parallel schedule generation schemes to be employed as decoding procedures. 
As the parallel scheduling method is not immediately applicable to deal with 
activity lists, the author adapts the activity selection mechanism in order to 
directly work up on activity lists. The extension of the representation is made 
by adding a new gene, a boolean indicator, which determines if the serial or 
the parallel SGS is employed to build up the schedule. As the author explains, 
this new representation not only determines the schedule itself, but also the 
algorithm with which it is constructed. The algorithm learns which schedul
ing method is the better choice and adapts itself accordingly. In this way, the 
algorithm is transformed into a self-adapting genetic algorithm, in which not 
only the solution of the problem but also the algorithmic structure is subject 
to genetic optimization. Computational experiments carried out by the author 
demonstrate the good performance of this encoding, when compared with the 
standard activity list representation. 

10.3.3 Activity list with scheduling mode representation 
This representation was designed by Alcaraz and Maroto (2001) and ex

tended later by Alcaraz et al (2003) to deal with the multi-mode version of 
the RCPSP. It is based on the standard activity list representation described in 
section 16.3.1. Now a solution is represented by a pair: an activity list and an 
additional gene, called forward/backward (f/b) gene, which indicates the way 
in which the schedule is built. We can observe this representation in Figure 
10.2. Given a (precedence feasible) list of activities, and applying the serial 

Activity list | f/b gene 

Figure 10.2. Activity List with Scheduling Mode Representation 

method, there are two different ways of constructing the related schedule: for
ward scheduling and backward scheduling. In forward scheduling, when an 
activity is chosen to be scheduled, all its predecessors must have already been 
scheduled (the first activity chosen to be scheduled is the first of the list), and the 
activity is scheduled in its earliest feasible start time. In backward scheduling, 
when an activity is chosen to be scheduled, all its successors must have already 
been scheduled (the first activity chosen to be scheduled is the last one in the 
list), and it is scheduled in its latest feasible start time. For a detailed descrip
tion of forward and backward scheduling readers are referred to Elmaghraby 
(1977). 
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The interest of this representation is to exploit the possibility of schedul
ing a solution in a forward/backward way, which produces left/right shifted 
schedules with possibly different makespan. Therefore, the same activity list, 
with different scheduling modes, may transform into different schedules, with 
possibly different makespan. As in the two previous representations, different 
solutions can transform into the same schedule, but an individual transforms 
into one, and only one schedule. In their study, the authors demonstrate its good 
performance. 

10,3.4 New encoding 

The new encoding combines the two representations described in subsections 
10.3.2 and 10.3.3 in a very efficient way. The extended representation proposed 
by Hartmann allows the genetic process itself to decide the schedule generation 
scheme which is used to transform the activity list into a schedule: serial or 
parallel. Computational studies carried out by Hartmann and Kolisch (2000) 
demonstrated that the parallel method obtains better results than the serial one 
when applied to large projects, because the serial SGS searches in a larger solu
tion space. However, in smaller projects where the solution space is also more 
reduced, this space could not contain the optimal solution, which is a drawback. 
So, depending on the project to be solved, the algorithm can learn and decide 
which SGS is better. This is a very good feature which will be incorporated 
in the new representation. On the other hand, the activity list with scheduling 
mode representation proposed by Alcaraz and Maroto allows the algorithm to 
employ forward or backward scheduling. By applying backward scheduling 
we can build schedules which can not be obtained by forward scheduling and 
vice-versa. 

At this point, it is interesting to point out that with Hartmann's extended 
representation, the algorithm could employ the serial or the parallel SGS, but 
always applying forward scheduling. On the other hand, with the activity 
list with scheduling mode representation the algorithm could apply forward 
or backward scheduling, but always with the serial method. The backward-
parallel schedule generation scheme could not be employed with any of these 
encodings to transform the activity list into a schedule. The purpose of the new 
representation is to make possible the four different scheduling alternatives: 
forward-serial, forward-parallel, backward-serial and backward-parallel. To 
this end, we combine the two previous encodings, adding to the standard activity 
list representation two new genes: the f/b gene used in the activity list with 
scheduling mode representation and the boolean indicator of the Hartmann's 
extended representation, called henceforth serial/parallel (s/p) gene. As the 
parallel scheduling generation scheme is not immediately applicable to deal 
with activity lists, when the forward (backward) parallel scheme is used, the 
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position number of an activity will indicate its priority to be scheduled; the 
activity with the lowest (highest) position being the activity with the highest 
priority. 

Activity list f/b gene s/b gene 

Figure 10.3. New Encoding 

This new encoding is represented in Figure 10.3. As we can see, for a project 
with Â  non-dummy activities, we have an activity list with Â  genes and two 
additional genes, in total N + 2 genes. 

(3,3) 
(4,5) rr-n 

gX VMU— 
(0.0) ^ { 2 l \ ^̂ '̂ ^ 

(3.1) \ ^ [ 5 ] X 

(4,2) 

- ^ 

jjyi^'^) 
(2,3) 

J-{1,2,3,4,5,6,7,8} 

R={1} (Resources) 

A] =6 (Availability per period) 

[dj^ Duration of activity] m 
(dj, rji) 

(3,3) 

rji=Requirement of resource 
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Figure 10.4. Project Example 

In Figure 10.4 a project example with eight non-dummy activities has been 
represented. Only one resource is required for the activities. The daily avail
ability of this resource is 6 units. The duration (in days) and the units per day 
required by each activity are also given in parentheses below the activities. 
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6 
6 
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7 
7 
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8 
8 
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f 
b 
s 

P 

Forward (serial) 

Backward (serial) 

Serial (forward) 

Parallel (forward) 

Figure 10.5. Different Solutions. A and B: Activity list with scheduling mode representation. 
C and D: Hartmann's extended representation 

In Figure 10.5 we have represented different solutions to the project instance 
given in Figure 10.4 using the encodings described in subsections 10.3.2 and 
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10.3.3. Solutions A and B use the activity list with scheduling mode repre
sentation and solutions C and D Hartmann's extended representation. The four 
solutions share the same activity list, but different fA) gene or s/p gene. Solution 
A will be transformed into a schedule applying the serial SGS in a forward way, 
and solution B with serial-backward SGS. On the other hand, solutions C and 
D will be transformed using forward scheduling, with the serial or parallel SGS 
respectively. The schedules obtained after applying the corresponding method 
are given in Figure 10.6. As we can see, solutions A, C and D transform into 
the same schedule, giving a makespan of sixteen days. Solution B has trans
formed into a different schedule, which gives, in this case, a lower makespan. 
These two schedules are completely different. However, this activity list could 
also be transformed into a different schedule if we apply the backward-parallel 
SGS, which is not possible with Hartmann's extended representation or with 
the Alcaraz and Maroto encoding. 
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Figure 10.6. Schedules for solutions given in Figure 10.5 

In Figure 10.7 a solution for the previous project instance employing the new 
encoding has been represented. This solution has the same activity list as solu
tions represented in Figure 10.5. The f/b gene indicates backward scheduling 
and the s/p gene is p, so the schedule will be built using the backward-parallel 
schedule generation scheme. This schedule is shown in Figure 10.8 and, as we 
can see, it is different from schedules given in Figure 10.6. This schedule could 
not have been obtained with the same activity list using any of the two previous 
representations. 

Solution E | l | 2 | 5 | 4 | 3 | 6 | 7 | 8 | b | p -^ Backward-Parallel 

Figure JO. 7. Solution with the new encoding 
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Figure 10.8. Schedule for Solution represented in Figure 10.7 

The new representation we propose is intelligent in the sense that it permits 
the algorithm to decide which of the scheduling possibilities is the best, depend
ing on the project characteristics, but without excluding any of the alternatives: 
forward-serial, forward-parallel, backward-serial and backward-parallel. Some 
activity list will be transformed in a better schedule using one method or the 
other, but the most adequate method does not need to be stated before applying 
the algorithm. The genetic process adapts during its execution and learns which 
of the alternatives perform best for the instance to be solved. 

In the next section we describe the genetic operators designed to work up on 
this new representation and use, in a very efficient way, the problem-specific 
knowledge which is included in it. 

10.4 Genetic operators 

The performance of a genetic algorithm greatly depends on how the genetic 
operators have been designed. Moreover, the crossover mechanism is the op
erator with the higher influence in the genetic process, as was demonstrated 
by Alcaraz (2001). We have adapted the crossover and mutation operators 
previously designed by Alcaraz and Maroto (2001), which reported excellent 
results, to work over the new representation, in order to use the problem-specific 
knowledge contained in it in an efficient way. 

10.4.1 Extended crossover 
The crossover process combines the features of two parent chromosomes 

to form two offspring which inherit their characteristics. A poorly designed 
crossover operator becomes a sort of mutation. In the crossover process, in
dividuals in the populations are mated randomly and each pair undergoes the 
operation with a given probability, creating two children by crossover. The 
parent population is replaced by the offspring population. If parents do not 
undergo the crossover operation, they remain unaltered in the next generation. 
So, the population size is always the same. 
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We have extended the two-point forward-backward crossover operator de
signed by Alcaraz and Maroto (2001) in order to manage the new representation 
presented in subsection 10.3.4. Now, the children inherit the f/b gene and the 
s/p gene from their respective progenitor: the son from the father and the daugh
ter from the mother. The parents' f/b genes determine the way in which the 
crossover operation is carried out. The mother's f/b gene indicates the way in 
which the daughter's list is built and the father's f/b gene directs the generation 
of the son's. In this way, the problem-specific information which is given in 
the encoding is used in the crossover process to generate better individuals. 
The parents' s/p genes do not influence the way the offspring are generated, 
although these are inherited by the children. 

First of all, two integer and non-negative crossover points kl and k2 are 
randomly generated (kl < k2). The offspring activity lists are generated as 
follows. If the progenitor's f/b gene indicsiiQS forward the corresponding child 
directly inherits the first kl positions of the progenitor's list, in the same order. 
The positions between kl + 1 and k2 are taken preserving their relative order 
in the other progenitor and the positions between k2 + l and Â  are again taken 
from the first progenitor, preserving their relative order. The process changes 
if the progenitor scheduling mode indicates backward. Now, the last positions 
are directly inherited in the activity list, the central positions are taken from the 
other progenitor, preserving the relative order among the activities, and the first 
genes, again form the initial progenitor, with their relative order. 

An example of this operation is given in Figure 10.9. We have eight possible 
progenitors, the mother and the father presented in the figure combining the f/b 
and the s/p genes. The two random crossover points generated are positions 
two and six, which divide each activity list into three segments. If the mother 
is forward, the daughter created is Daughter A, who inherits the f/b gene from 
her. As the daughter also inherits the s/p gene from the mother, we could have 
Daughter A with serial or parallel SGS. The two first positions in the daughter's 
list are directly taken from the mother, activities 1 and 3. The four following 
positions are inherited from the father, preserving the relative order among the 
four activities in the father. So, the first four activities in the father which 
still do not appear in the daughter are, in this order, activities 2, 4, 5 and 7. 
The last two positions are again taken from the mother, preserving again the 
relative order between these two activities. The two activities which still do 
not appear in the daughter are activities 6 and 8, which present this order in the 
mother and must preserve this relative order in the daughter. As we can see, 
the father's f/b and s/p genes do not influence the generation of the daughter, 
but they direct the creation of the son. Let us suppose now that the father is 
backward. The son generated will be Son 2, and the s/p gene will be the same 
as the father's. The generation of the son's activity list will be from the end to 
the beginning. The two last positions in the activity list are directly inherited 
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from the father, activities 8 and 6. The following activity will be the one which 
still does not appear in the son and presents a higher position number in the 
mother, activity 7. The three following positions are taken from the mother 
following this reasoning. To finish, positions two and one are again inherited 
from the father, activity 3 has a higher position number than activity 1, so this 
is the relative order between them. 

Employing this extended operator, with two parents' activity lists, combin
ing the f/b and the s/p genes, we could have up to sixteen different crossover 
combinations. This crossover operator permits all the possible combinations, 
so that the genetic process itself decides which is the most appropriate schedule 
generation scheme, without excluding a priori any of them. The computational 
results given in section 10.6.1 show that the use of this representation outper
forms the results given by the other encodings presented. 

10.4.2 Extended mutation 
After the parent population has been replaced by the offspring population, 

the mutation operator is applied to the latter. Mutation alters one or more genes 
of a selected solution to reintroduce lost genetic material and introduce some 
extra variability into the population. 

We have extended the mutation mechanism designed by Alcaraz and Maroto 
(2001) in order to work over the new representation. This extension implies 
that the s/p gene could also be altered by the mutation operator. That is, the s/p 
gene could transform from serial to parallel or from parallel to serial with a 
given probability, Pm- The mutation operator operates in two phases. First of 
all, the activity list is mutated. Later, the mutation process is applied to the f/b 
and the s/p genes. Each position of the list is mutated with a given probability 

ofPm. 
In the first phase, for each activity in the sequence, a new position is randomly 

chosen, between the highest position of its predecessors and the lowest position 
of its successors so that only precedence feasible solutions are generated. The 
activity is inserted into the new position with a probability of Pm-

In the second phase, the f/b and s/p genes could be altered with the same 
probability Pm- That is, the f/b gene could change from / to 6 or from 6 to / 
with this probability. In the same way, the s/p gene could be transformed with a 
probability of Pm- We would like to remark that by only changing one of these 
genes, the corresponding schedule could change completely, that is, the same 
activity list could transform into a completely different schedule. 

In Figure 10.10, an example of this operation is shown. In the first phase, 
the operator reviews the activity list, and each activity is replaced in a different 
position with a given probability Pm- In this example, the first phase of the 
mutation operation only alters two genes. First of all, activity 3, which is in the 
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1st phase 

1 | 3 | 4 | 2 | 6 | 5 | 7 | 8 I b I p — . | l | 4 | 2 | 3 | 5 | 7 | 6 | 8 | b | p | 
2nd phase 

r T | 4 T 2 l 3 | 5 | 7 | 6 1 ^ 1 ^ 1 ^ - > | l | 4 | 2 | 3 r 5 y 7 n 6 | 8 | f | s | 

Figure 10.10. Extended Mutation Operator Example 

second position, is inserted into a new position, position number four, so that the 
precedence relations constraints are satisfied. Then, activity 6, which is placed 
in the fifth position, is moved to position seven. After these two replacements, 
the sequence is a precedence feasible list. In the second phase, the operator can 
mutate the f/b and s/p genes with the same probability. In this example, both, 
f/b and s/p genes are altered, changing from bio f and frompto 5 respectively. 

10.5 Improving the performance of the algorithm 

10.5.1 Local search procedure 
We have hybridized the algorithm incorporating a local search procedure 

(LSP) in order to improve the quality of solutions. After the crossover and 
mutation operations, the LSP can be performed on the current population. The 
procedure is based on the mechanisms previously designed and efficiently used 
by different authors such us Tormos and Lova (2001) or Vails et al (2005). 
Activities are sorted depending on their start/finish time in the schedule. Then, 
this sorted sequence replaces the original activity list. This sorting procedure 
can be applied in one or two phases. In our procedure, the problem-specific 
knowledge incorporated into the solution is exploited again in an efficient way. 
The procedure carried out depends on the f/b gene of the solution. 

In the first phase, the solution is transformed into its schedule, applying the 
corresponding serial/parallel forward/backward schedule generation scheme. 
Then, activities are sorted with respect to non-decreasing finish times if the f/b 
gene indicates / and with respect to non-decreasing start times if it is b. Then, 
this reordered list replaces the original one and the f/b gene is changed, from 
forward to backward or vice-versa. The effect of this reordering is to right (left) 
shift the schedule if the serial SGS is applied. Thus, in this case this procedure 
can not lead to an increasing of the schedule makespan. However, if the parallel 
SGS is being applied, the LSP could worsen the quality of the solution. In this 
case, the new solution does not replace the initial one. 

The second phase, if applied, consists of repeating the procedure carried out 
in the first phase, taking into account that the f/b gene has been changed at the 
end of this phase. If in the first phase the effect of this reordering has been to 
right shift the schedule, the effect of the second phase will be to left shift it, and 
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vice-versa. It is possible that both phases lead to a decreasing of the project 
makespan, or only one of them or none of the phases. 
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Figure 10,11. Example of application of the local search procedure 

An example of the application of the first phase of the local search procedure 
described above has been represented in Figure 10.11. The initial solution 
has been transformed into its corresponding schedule, applying the backward-
serial schedule generation scheme, giving a makespan of 15 time units. Then, 
activities are sorted with respect to non-decreasing start times, the f/b gene has 
been changed to / and the schedule has been built up again employing now the 
forward-serial SGS. As we can see, the project makespan has been reduced to 
14 time units. Now, the second phase could be applied to this new solution. 

10,5.2 Random replacement procedure 
We have also included in the algorithm the random replacement procedure 

(RRP) designed by Alcaraz et al (2003) to deal with the multi-mode version of 
the problem. This operation is applied to a given population with a probability 
of Prepiac If it is performed in the current generation, each individual of the 
population is exchanged by a random generated solution with a probability of 
Pexch' A random solution consists of a solution where the activity list has been 
generated preserving the precedence feasibility and the f/b and the s/p genes 
have been randomly generated. The RRP allows us to restart the population 
or reintroduce some variability when it has prematurely converged or has been 
trapped in a local optimum. However, we use an elitist model; therefore, the 
best individual in the current population always survives in the next generation. 

10.6 Computational results 
We have carried out an extensive computational experiment which has been 

developed in two phases. First, we have calibrated the algorithm, testing the 
performance of the new encoding, the extended genetic operators developed 
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and the new procedures incorporated into the genetic algorithm. Then, in the 
second phase we have compared our hybrid algorithm with some of the best 
metaheuristics that have appeared in the literature so far. In the two following 
subsections we describe the computational experiments carried out. In our 
experiments, we have used the three standard test sets J30, J60 and J120 from 
the project scheduling problem library PSPLIB. For a more detailed description 
of these instance sets, we refer to Kolisch and Sprecher (1996). We have also 
used the number of schedules as termination criteria, computing 1,000, 5,000 
and 50,000 schedules. After each execution of the algorithm, we have measured 
the average deviation from the optimal makespan for set J30 and the average 
deviation from the critical path-based lower bound when solving the projects 
with 60 or 120 activities. 

10.6.1 Callibration of the algorithm 
Calibrating or configuring the algorithm consists of setting the genetic opera

tors (selection, crossover and mutation), parameters (population size, crossover 
probability, mutation probability...), improving procedures and encoding in or
der to get the best performance. There is not combination which always gives 
the best results, irrespective of the project characteristics or the termination 
criteria. However, we have based ourselves on preliminary experiments (Al-
caraz (2001)) to select some of the operators and parameters. Some of them 
do not greatly influence the behaviour of the algorithm. We have selected the 
2-toumament as selection procedure. That is, two individuals are randomly 
chosen from the population and compete for survival. Only the best of them 
will appear in the following generation. This procedure is repeated until the 
new population is completed. For a more detailed description of this and other 
selection mechanisms, readers are referred to Goldberg (1989). The crossover 
probability has been fixed at 80%. The mutation probability depends on the 
project size. When computing small projects (30 activities) the mutation proba
bility is fixed at 5%, but it is decreased to 1 % when the project size increases (60 
or 120 activities). The population size also varies depending on the termination 
criterion; or rather the number of schedules computed in our case. So, when 
the number of computed schedules is 1,000, the population size used is of 50 
individuals. For a larger number of computed schedules the population has a 
total of 100 individuals. 

The first step is to analyze the performance of the new encoding as well as the 
crossover and mutation mechanisms designed to work up on it. To do that, we 
have compared the algorithm developed by Alcaraz and Maroto (2001), AMOl, 
which makes use of the activity list with scheduling mode representation, the 
two-point forward backward crossover and the mutation procedure, with the 
new algorithm, which employs the new encoding and the extended crossover 
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and mutation operators specifically designed to work over it. That is, the only 
differences between the algorithms are the encoding and the crossover and 
mutation operators. The rest of the parameters are identical. We have solved 
sets J30, J60 and J120 computing 1,000, 5,000 and 50,000 schedules with both 
algorithms. Table 16.1 summarizes these results. 

As we can see in Table 16.1 the use of the new encoding and operators 
outperforms the results in all the test sets analyzed irrespective of the num
ber of schedules computed. We can also observe that the algorithm does not 
prematurely converge when computing 1,000 or 5,000 schedules because of 
increasing the number of computed schedules, from 1,000 to 5,000 and from 
5,000 to 50,000 the deviation from optimum or critical path-based lower bound 
decreases. 

Table 10.1. Performance of the new encoding and genetic operators 

Max. Schedules 
1,000 5,000 50,000 

Set 

J30 
J60 

J120 

AMOl 
0.373 
12.62 
39.36 

Encoding and genetic operators 

New AMOl New AMOl New 
0.334 0.174 
12.41 12.05 
37,17 36.67 

0.131 0.113 0.083 
11.83 11.70 11.51 
35.44 34.49 34.11 

The second step consists of analyzing the performance of the algorithm when 
applying the local search procedure described in section 10.5,1. This procedure 
can be applied in one or two phases. Moreover, we must decide when to apply 
the procedure, that is, in which generations it is carried out. We have compared 
the application of the LSP to all the generations (All) or only to the schedules 
of the last generation (Last). In each case, we have applied one and two phases 
of the mechanism. The results are summarized in Table 16.2. 

The results of this computational experiment show that this procedure im
proves the quality of the solutions if we compare these results with those pre
sented in Table 16,1. For set J30, we have reduced the deviation from the optimal 
makespan, from 0,334, 0,131 and 0.083 to 0.157, 0,087 and 0,022 respectively 
when computing 1,000, 5,000 and 50,000 schedules. For set J60 the deviation 
from the critical path-based lower bound has decreased from 12.41, 11.83 and 
11.51 to 11.67, 11,20 and 10.93 respectively. Finally, for the projects with 120 
activities, we have reduced the deviation from 37,17 to 34,97 when computing 
1,000 schedules, from 35.44 to 33.51 when building 5,000 schedules and from 
34.11 to 31.38 when the maximum number of computed schedules is 50,000. 
So, we can conclude that this local search procedure is an efficient mechanism 
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Table 10.2. Performance of the LSP 

Set 

1,000 

Last 

1 2 

All 

1 2 

Max. Schedules 
5,000 

Generation 
Last All 

Number of phases 

1 2 1 2 

50,000 

Last All 

1 2 1 2 
J30 0.297 0.314 0,157 0.216 0.158 0.167 0.090 0.087 0.098 0.108 0.022 0.088 
J60 12.28 12.30 11.69 11.67 11.80 11.85 11.20 11.27 11.61 11.58 10.98 10.93 
J120 36.63 36.25 34.97 34.97 35.22 35.19 33.51 33.69 34.16 34.11 31.81 31.38 

to be incorporated into the genetic algorithm. If we analyze the behaviour of 
the procedure, we can deduce that it is always better to apply the procedure to 
all the generations than to only the final one, although each application of the 
procedure implies the computation of one or two schedules, depending on the 
phases carried out. So, applying the procedure to all the generations implies 
reducing the number of generations because in each generation the number of 
computed schedules is much higher. With respect to the application of one or 
two phases, there do don't seem to be great differences. In order to generalize 
the configuration of the LSP irrespective of the number of schedules computed 
and the project instances solved, we will configure the algorithm incorporating 
the LSP applied to all the generations in only one phase. 

The final step of this configuration process consists of analyzing the perfor
mance of the random replacement procedure. Two parameters must be set in 
order to configure this mechanism, Prepiac ^^^ Pexch- We have established two 
different levels for the replacement probability, 5% and 15%, and three levels 
for Pexch. 50%, 70% and 90%. The results are shown in Tables 16.3, 16.4 and 
16.5. 

Table 10.3. Performance of the RRP. J30 set 

^exch 

50% 
70% 
90% 

1,000 

5% 15% 
0.148 0.164 
0.181 0.188 
0.189 0.161 

Max. Schedules 
5,000 

^replac 

5% 15% 
0.082 0.076 
0.071 0.058 
0.070 0.063 

50,000 

5% 15% 
0.018 0.019 
0.016 0.013 
0.007 0.011 
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Table 16.3 presents the deviation from the optimal makespan for the in
stances with 30 activities, when computing 1,000, 5,000 and 50,000 schedules 
combining the three exchange and the two replacement probabilities. If we 
compare these results with those shown in Table 16.2, where no replacement 
procedure has been carried out, we can deduce that this procedure has managed 
to decrease the deviation irrespective of the number of schedules constructed. 
The deviation has decreased from 0.157 to 0.148 when the maximum number 
of computed schedules is 1,000, from 0.087 to 0.058 for 5,000 schedules and 
from 0.022 to 0.007 when 50,000 schedules are generated. The J30 set is the 
easiest one to solve, and the algorithm can converge or be trapped in a local 
optimum in the majority of cases in a reduced number of generations. In those 
cases, this algorithm reintroduces variability into the population and is able to 
escape from that local optimum, improving the results obtained. 

Table 10.4. Performance of the RRP. J60 set 

^exch 

50% 
70% 
90% 

1,000 

5% 
11.74 
11.71 
11.79 

15% 
11.75 
11.80 
11.81 

Max. Schedules 
5,000 

•^replac 

5% 15% 
11.05 
11.22 
11.21 

11.25 
11.29 
11.32 

50,000 

5% 15% 
10.89 10.88 
10.86 10.80 
10.82 10.90 

The RRP is also beneficial when solving the projects with 60 activities when 
the number of schedules is medium or high, decreasing the deviation from 
the critical path-based lower bound. When the maximal number of computed 
schedules is 1,000, the procedure is not able to reduce the deviation. This is due 
to the fact that set J60 is more difficult than set J30, and most of the instances 
need more than 1,000 schedules to converge. When computing 5,000 schedules 
the deviation has been reduced from 11.2 to 11.05, and from 10.93 to 10.80 
when 50,000 schedules are built. 

Table 16.5 displays the results for the most difficult set of instances solved, 
set J120, where the deviation from the critical path-based lower bound has 
been measured. These instances, with a much larger number of activities, need 
many more generations to converge, and the extra variability introduced by 
this random algorithm is not beneficial. As we can see, the results worsen if 
compared with those presented in Table 16.2, when this algorithm is not applied. 

Therefore, we can conclude that the employment of the random replacement 
procedure is beneficial when solving sets J30 and J60 irrespective of the num
ber of schedules computed, but is not advisable when the largest projects are 
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Table 10.5. Performance of the RRP. J120 set 

•t^^exch 

50% 
70% 
90% 

1,000 

5% 15% 
34.97 35.06 
34.98 35.14 
35.06 35.29 

Max. Schedules 
5,000 

-^replac 

5% 15% 
35.06 33.64 
33,64 33.91 
33.74 34.20 

50,000 

5% 15% 
31.81 32.05 
31.94 32.23 
31.94 32.60 

solved. The random nature of this algorithm does not permit us to establish a 
configuration which always performs better, although there are no great differ
ences between the different alternatives for a given set and a specified number 
of schedules computed. 

10,6.2 Comparison with other algorithms 
We have compared our hybrid genetic algorithm with the best procedures 

that have appeared so far. We have compared with the works published in 
technical journals, books or proceedings of international conferences. Unpub
lished technical reports have not been considered. We have selected a variety 
of algorithms which are based on different paradigms, employ different rep
resentations or include different improvement mechanisms. These algorithms 
are, in alphabetical order: 

• Alcaraz and Maroto (2001), Genetic algorithm. 

• Bouleimen and Lecocq (2003), Simulated annealing. 

• Debels et al (2006), Scatter search. 

• Hartmann (2002), Genetic algorithm. 

• Kochetov and Stoylar (2003), Genetic algorithm. Tabu search. 

• Nonobe and Ibaraki (2002), Tabu search. 

• Tormos and Lova (2003), Sampling. 

• Vails et al (2005), Genetic algorithm. 

• Vails et al (2005), Sampling. 

The results given by these algorithms have been extracted from the work of 
Kolisch and Hartmann (to appear), in which they compared a great variety of 
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algorithms for RCPSP. Therefore, to obtain these results, the authors managed to 
calibrate their algorithms and execute them with the best configurations. Tables 
10.6, 10.7 and 10.8 show the results of this comparison. We have indicated 
the author of the algorithm, year of publication and type of algorithm: genetic 
algorithm (GA), tabu search (TS), scatter search (SS), simulated annealing (SA) 
or sampling (S). We have established as stopping criteria the maximum of 1,000, 
5,000 and 50,000 schedules respectively. We can assume that the computational 
effort for building one schedule is similar in these heuristics. The algorithms 
have been sorted with respect to increasing deviation when computing 1,000 
schedules. In the case of ties, the results for 5,000 schedules are used. 

Table 10.6. Comparison of heuristics. Average deviation from optimal makespan. J30 PSPLIB 

Author (Year) 

Kochetov and Stoylar (2003) 
Alcaraz and Maroto (This work) 

Debels et al (2006) 
Tormos and Lova (2003) 

Alcaraz and Maroto (2001) 
Vails et al (2005) 
Hartmann (2002) 

Bouleimen and Lecocq (2003) 
Nonobe and Ibaraki (2002) 

Vails et al (2005) 

Algorithm 

GA,TS 
GA 
SS 

s 
GA 
GA 
GA 
SA 
TS 
S 

1,000 
0.10 
0.15 
0.27 
0.30 
0.33 
0.34 
0.38 
0.38 
0.46 
0.46 

Max Schedules 
5,000 
0.04 
0.06 
0.11 
0.16 
0.12 
0.20 
0.22 
0.23 
0.16 
0.28 

50,000 
0.00 
0.01 
0.01 
0.07 
0.10 
0.02 
0.08 
-
0.05 
0.11 

Results presented in Table 10.6 show that the best algorithm when solving 
small projects (30 activities) is the algorithm of Kochetov and Stoylar, irre
spective of the number of schedules computed. The differences between this 
algorithm and the genetic algorithm presented in this work are rather small. 
The performance of the scatter search procedure of Debels et al is similar to 
previous algorithms when computing a large number of schedules, but rather 
worse when the maximum number of constructed schedules is smaller. 

For the set of projects of medium size, 60 activities, the performance of the 
three algorithms, Debels et al, Kochetov and Stoylar and Alcaraz and Maroto 
is similar. The GA of this work performs better when computing 1,000 or 
5,000 schedules, but a bit worse when the number of schedules is 50,000. The 
differences between these three algorithms and the rest are bigger. 

For the largest projects, those with 120 activities, the situation is similar to the 
previous two. Now the best algorithm when computing 1,000 schedules is the 
procedure of Kochetov and Stoylar, improved by the scatter search procedure 
for 5,000 schedules. When solving the maximum number of schedules, 50,000, 
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Table 10.7. Comparison of heuristics. Average deviation (%) from critical path lower bound. 
J60 PSPLIB 

Author (Year) 

Alcaraz and Maroto (This work) 
Kochetov and Stoylar (2003) 

Debels et al (2006) 
Tormos and Lova (2003) 

Vails et al (2005) 
Hartmann (2002) 

Alcaraz and Maroto (2001) 
Vails et al (2005) 

Bouleimen and Lecocq (2003) 
Nonobe and Ibaraki (2002) 

Algorithm 

GA 
GA,TS 
SS 
S 
GA 
GA 
GA 
S 
SA 
TS 

1,000 
11,67 
11.71 
11.73 
12.14 
12.21 
12.21 
12.57 
12.73 
12.75 
12.97 

Max Schedules 
5,000 
11.05 
11.17 
11.10 
11.82 
11.27 
11.70 
11.86 
12.35 
11.90 
12.18 

50,000 
10.80 
10.74 
10.71 
11.47 
10.74 
11.21 
11.70 
11.94 
-
11.58 

the algorithm with the best performance is the new genetic algorithm of Alcaraz 
and Maroto. 

We would like to highlight the great differences between our previous ge
netic algorithm (Alcaraz and Maroto (2001) and the new one, produced by the 
incorporation of the improvement mechanisms and the genetic operators which 
work up on the newly designed representation. 

Table 10.8. Comparison of heuristics. Average deviation from critical path lower bound. J120 
PSPLIB 

Author (Year) 

Kochetov and Stoylar (2003) 
Alcaraz and Maroto (This work) 

Debels et al (2006) 
Vails et al (2005) 

Tormos and Lova (2003) 
Hartmann (2002) 
Vails et al (2005) 

Alcaraz and Maroto (2001) 
Nonobe and Ibaraki (2002) 

Bouleimen and Lecocq (2003) 

Algorithm 

GA,TS 
GA 
SS 
GA 
S 
GA 
S 
GA 
TS 
SA 

1,000 
34.74 
34.97 
35.22 
35.39 
36.24 
37.19 
38.21 
39.36 
40.86 
42.81 

Max Schedules 
5,000 
33.36 
33.51 
33.10 
33.24 
35.56 
35.39 
37.47 
36.57 
37.88 
37.68 

50,000 
32.06 
31.38 
31.57 
31.58 
34.77 
33.21 
36.46 
34.40 
35.85 
-

Following Kolisch and Hartmann (to appear), to determine the best algo
rithms we use the concept of dominance. A heuristic a is dominated by a 
heuristic 6 if a has for at least one combination of instance set and number of 
generated schedules a higher average deviation than b without having for any 
of the other combinations a lower average deviation. 
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Table 10.9, Dominance of heuristics. 

#Alg 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Author (Year) 
Alcaraz and Maroto (This work) 

Alcaraz and Maroto (2001) 
Bouleimen and Lecocq (2003) 

Debels et al (2006) 
Hartmann (2002) 

Kochetov and Stoylar (2003) 
Nonobe and Ibaraki (2002) 
Tormos and Lova (2003) 

Vails et al (2005) 
Vails et al (2005) 

Algorithm 
GA 
GA 
SA 
SS 
GA 

GA,TS 
TS 
S 

GA 
S 

Dominated by #Alg 
-

1,4,6 
1,2,4,5,6,8,9, 10 

-
1,4,6 

-
1,4,6 
1,4,6 

4 
1,4,5,6,8,9 

In Table 10.9, the ten algorithms compared have been sorted into alphabet
ical order. Then, for each algorithm, we have represented the algorithms that 
dominate it. As we can see, the only three heuristics which are not dominated 
by any other algorithm are those of Kochetov and Stoylar (2003), Debels et al 
(2006) and the genetic algorithm of Alcaraz and Maroto (this work). There
fore, these three algorithms are the best procedures in the comparison we have 
carried out. 

10.7 Conclusions 
In this paper we have presented a new encoding for the solutions of the 

RCPSP. It is an innovative representation, which includes two features of previ
ous encodings: the possibility of employing the serial or the parallel SGS, and 
the combination of forward and backward scheduling. The joint use of these 
characteristics results in an intelligent encoding which exploits the problem-
specific knowledge in an efficient way. We have also extended the genetic 
crossover and mutation operators in order to work up on those solutions, and 
recombine in a beneficial way the parents' information to form the offspring. 

We have hybridized the algorithm incorporating in the genetic process two 
different procedures. First of all, a local search procedure, based on forward 
and backward improvement is applied to solutions in order to reduce the project 
makespan. This process is applied taking into account the additional genes of 
the new encoding. Secondly, a random replacement procedure permits us to 
randomly introduce variability into the population, in order to reintroduce lost 
genetic material and avoid being trapped in a local optimum. 

An extensive computational experience has been carried out in order to test 
the performance of the new encoding, the new genetic operators and the proce
dures proposed. Standard sets of instances of PSPLIB have been used for this 
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comparison, establishing as stopping criteria the construction of 1,000, 5,000 
and 50,000 schedules. First of all, we have analyzed the performance of the 
encoding and the genetic operators, comparing the new algorithm with our pre
vious genetic algorithm, the only differences between both algorithms being 
the encoding and the crossover and mutation operators. The results show that 
the use of the new representation and the extended operators lead to a better 
performance of the algorithm, irrespectively of the instances set solved or the 
number of schedules computed. 

Next we have tested the performance of the two improvement processes. The 
local search procedure has demonstrated its improvement power when applied 
to all the generations in the process. There are no large differences between 
applying the procedure in one or two phases, although we fixed the application 
of one phase to all the generations in order to establish a configuration irre
spective of the project characteristics. With respect to the random replacement 
procedure, the results show that it is efficient when solving small or medium-
size projects, but not so for large projects. Large projects are very difficult to 
solve and need many more generations to converge, so this procedure is not 
advisable. 

Once the algorithm has been calibrated and configured, we have compared 
its performance with some of the best and more recent algorithms, including 
other genetic algorithms, simulated annealing, tabu search, scatter search and 
sampling mechanisms. The computational results show that there are three 
algorithms which are better than the rest. These are the algorithm of Kochetov 
and Stoylar, the scatter search method of Debels et al and the genetic algorithm 
presented in this work. 

Future research could include the use of the encoding designed in this work 
in other paradigms (simulated annealing, tabu search, ant systems,...) to solve 
the RCPSP or even to solve other scheduling problems. The algorithm proposed 
in this work could be adapted to solve the multi-mode version of the problem 
or problems which consider other objectives. 
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Abstract The paper proposes applying the population-learning algorithm to solving both 
the single-mode and the multi-mode resource-constrained pro-ject scheduling 
problems (denoted as RCPSP and MRCPSP, respectively) with makespan mini
mization as an objective function. The paper contains problem formulation and a 
description of the proposed implementation of the population learning algorithm 
(PLA). To validate the approach a computational experiment has been carried 
out. It has involved 1440 instances of the RCPSP and 3842 instances of the 
MRCPSP obtained from the available benchmark data sets. Results of the exper
iment show that the proposed PLA implementation is an effective tool for solving 
the resource-constrained project scheduling problems. In case of the RCPSP in
stances the algorithm in a single run limited to 50000 solutions generated has 
produced results close to the results of the best known algorithms as compared 
with average deviation from critical path. In case of the MRCPSP instances the 
proposed algorithm in a single run has produced solutions with mean relative 
error value below 1.6% as compared with optimal or best known solutions for 
benchmark problems. 

Keywords; Project scheduling, RCPSP, MRCPSP, Population Learning Algorithm. 

11.1 Introduction 
The paper proposes applying the population-learning algorithm (PLA) to 

solving instances of the single-mode and the multi-mode resource-con-strained 
project scheduling problems (denoted as RCPSP and MRCPSP, respectively) 
with makespan minimization as an objective function. In the single-mode case 
a project consists of a set of activities, where each activity has to be processed 
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in a single, prescribed way (mode). Each activity requires some resources, 
availability of which is constrained. The discussed problem is computationally 
difficult and belongs to the NP-hard class. Because of its practical importance 
RCPSP has attracted a lot of attention and many exact and heuristic methods 
have been proposed for solving it (see for example Davis and Heidom (1971), 
Hartmann (2001), Hartmann and Drexl (1998), Hartmann and Kolisch (2005)). 
In the multi-mode case activities can be executed in one out of several modes. 
The modes reflect alternative combinations of resource quantities employed to 
fulfill the activities. As it was observed in Sprecher and Drexl (1998), in such a 
case the activity duration is a discrete function of the employed quantities, that 
is, using this concept e.g. working-off an activity can be accelerated by raising 
the quantities coming into operation (time/resource trade-off). Moreover, by 
raising the quantities of some resources and reducing the quantities of others 
resource substitution (resource/resource trade-off) can be realized. 

Exact algorithms seem suitable only for solving relatively small instances of 
the RCPSP and MRCPSP. For larger and more realistic instances an approach 
based on approximate algorithms is required. Such algorithms can be evaluated 
experimentally. Usual approach is to use the existing set of benchmark instances 
with known lower bounds, optimal solutions or upper bounds. Criteria for such 
an evaluation include, usually, two factors - quality of solutions obtained and 
computational effort required. Interesting evaluation of the heuristic and meta-
heuristic algorithms for the resource-constrained project scheduling problem 
can be found in Hartmann and Kolisch (1999), Hartmann and Kolisch (2000) 
and Hartmann and Kolisch (2005). Some recent approaches based on hybrid al
gorithms and metaheuristics yield a very competitive solutions Jozefowska et al 
(2001), Nonobe and Ibaraki (2002), Debels et al (2004), Debels and Vanhoucke 
(2005), Vails et al (2004). 

In this paper an approach based on implementation of the population-learning 
algorithm belonging to the class of population-based methods is proposed. The 
PLA has proven quite successful in solving some other difficult scheduling 
problems (for example see Jedrzejowicz and Jedrzejowicz (2002)). The paper is 
organized as follows: Section 11,2 includes problem formulation. Section 11.3 
presents main features of the population-learning algorithm. Section 11.4 con
tains details of the proposed implementations of PLA designed to solving both 
- the single-mode and the multi-mode resource-constrained project scheduling 
problems. Section 11.5 presents validating experiment and its results. Section 
11.6 includes conclusions and suggestions for future research. 

11,2 Problem formulation 

A project that belongs to the class of the single-mode resource-con-strained 
project scheduling problem consists of a set of n activities, where each activity 
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has to be processed without interruption to complete the project. The dummy 
activities 1 and n represent the beginning and the end of the project. The 
duration of an activity j , j — 1 , . . . , n is denoted by dj where di = dn = 0. 
There are r renewable resource types. The availability of each resource type 
k in each time period is fk units, k — 1 , . . . , r. Each activity j requires Vjk 
units of resource k during each period of its duration where rik ~ Vnk — 0, 
/c — 1 , . . . , r. All parameters are non-negative integers. There are precedence 
relations of the finish-start type with a zero parameter value (i.e. FS — 0,) 
defined between the activities. In other words activity i precedes activity j if 
j cannot start until i has been completed. The structure of a project can be 
represented by an activity-on-node network G — {SV^ SA), where SV is the 
set of activities and SA is the set of precedence relationships. SSj{SPj) is 
the set of successors (predecessors) of activity j , j = 1 , . . . , n. It is further 
assumed that 1 G SPj, j — 2 , . . . , n, and n G SSj, j = 1 , . . . , n - 1. The 
objective is to find a schedule Sg of activities starting times [ s i , . . . , s^], where 
5i = 0 and resource constraints are satisfied, such that the schedule duration 
T{Ss) = Sn is minimized. 

It has been shown in Blazewicz et al (1983) that the above formulated RCPSP 
as a generalization of the classical job shop scheduling problem, belongs to the 
class of NP-hard optimization problems. Therefore, heuristic solution proce
dures are indispensable when solving large problem instances as they usually 
appear in practical cases. 

In case of the multi-mode resource-constrained project scheduling problem 
each activity j , j ~ 1 , . . . , n may be executed in one out of Mj modes. The 
activities may not be preempted and a mode once selected may not change, 
i.e., a job j once started in mode m has to be completed in mode m without 
interruption. Performing job j in mode m takes djm periods and is supported 
by a set R of renewable, a set N of non-renewable and a set D of doubly 
constrained resources. Considering a time horizon, that is, an upper bound T 
on the project's makespan, one has an available amount of renewable (doubly 
constrained) resource as well as certain overall capacity of the non-renewable 
(doubly constrained) resource. Clearly, since the doubly constrained resources 
can easily be taken into account by appropriately enlarging the sets of renewable 
and non-renewable resources they do not have to be considered explicitly. The 
parameters are assumed as integer-valued. The objective is to find a makespan 
minimal schedule that meets the constraints imposed by the precedence relations 
and the limited resource availabilities. It is obvious that the multi-mode problem 
can not be computationally easier than the RCPSP. 
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11.3 Population Learning Algorithm 
Population learning algorithm introduced originally in Jedrzejowicz (1999) 

is a popula-tion-based method inspired by analogies to a phenomenon of social 
education processes in which a diminishing number of individuals enter more 
and more advanced learning stages. PLA take advantage of the following 
features common to organized education systems: 

- A huge number of individuals enter the system. 

- Individuals learn through organized tuition, interaction, self-study, trials 
and errors. 

- Learning process is inherently parallel (different schools, curricula, teach
ers, etc.). 

- Learning process is divided into stages. 

- More advanced stages are entered by a diminishing number of individuals 
from the initial population. 

- At higher stages more advanced learning and improvement techniques 
are used. 

- A final stage is reached by only a fraction of the initial population. 

In PLA an individual represents a coded solution or part of it of the considered 
problem. Initially, a number of individuals, known as the initial population, is 
randomly generated or constructed using some construction heuristics. Once 
the initial population has been generated, individuals enter the first learning 
stage. It involves applying some, possibly basic and elementary, improvement 
schemes. These can be based, for example, on some local search procedures. 
The improved individuals are then evaluated and better ones pass to subsequent 
stages. A strategy of selecting better or more promising individuals at each 
stage must be defined and duly applied. At following stages the whole cycle is 
repeated. Individuals are subject to improvement and learning, either individu
ally or through information exchange, and the selected ones are again promoted 
to a higher stage with the remaining ones dropped-out from the process. At the 
final stage the remaining individuals are reviewed and the best one represents 
a solution to the problem at hand. 

At different stages of the process, different improvement schemes and learn
ing procedures are applied. These gradually become more and more sophisti
cated and time consuming as there are less and less individuals to be taught. 
Basic PLA design elements are presented in Table 11.1. General idea of the PLA 
approach is shown in Figure 11.1. Several successful PLA applications were 
described in Czamowski et al (2001 )b, Czamowski et al (2001), Czamowski et 
al (2001a), Jedrzejowicz (1999), Jedrzejowicz and Skakowski (2000). 
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Table ILL Population learning algorithm design elements. 

Design element Comment 

Definiton of an individual 

Procedure for generating the ini
tial population of individuals 

Size of the initial population 

Number of learning and im
provement stages 

Number and size of parallel 
groups of individuals at each 
stage 

Learning and improvement al
gorithms for each stage/each 
group 

Fitness function of an individual 

Selection strategy 

An individual is a coded feasible solution or part of a solu
tion. The designer should aim at achieving ease of manipu
lation and storage, ease of transformation into a solution and 
ease of fitness evaluation. 

The designer should aim at achieving unbiased individuals, 
if possible representing all regions of the feasible solution 
space. A good construction heuristics can be used to produce 
a seed from which the initial population can be generated. 
Must be set at the PLA fine-tuning stage. Should be chosen 
as a compromise between the requirement of the sufficient 
and adequate representation assuring good quality of results 
and the available computational resources. 
Depends on availability of learning and improvement algo
rithms. Should be chosen with a view of finding a satisfac
tory compromise between quality of solutions and compu
tation time. 

Should be chosen considering the available computational 
resources, complexity of the problem at hand and complexity 
of the learning and improvement algorithms used. Another 
compromise between quality of solutions and computation 
time is involved. 

Basic and simple procedures at earlier stages should be re
placed by more complex and sophisticated at later ones. The 
designer should try to assure adequate diversity of learning 
and improvement algorithms used. 

Should be simple (easily computable) and directly related to 
the quality of the solution represented by an individual. 
Must be set at the PLA fine-tuning stage. Rules for rejection 
and promotion of individuals may differ at various stages. 
The designer should aim at achieving good efficiency of the 
algorithm not loosing, too early, representation sufficiency 
and adequacy. Another compromise between quality of so
lutions and computation time is involved. 

Figure 11.1 covers a simple, non-parallel version of the algorithm. For a 
parallel PLA the following features need to be defined: 

- A set of rules controlling how individuals are grouped into concurrent 
populations at various stages. 

- The respective rules for running learning and improvement algorithms in 
parallel at various stages. 
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START 

Set the number of learning stages L 
Set the initial population size \P\ 

Define learning improvement procedures 
LEARNi{P), i = l,...,L, operating on 

a population of individuals P 

Define selection procedures 
SELECTiiP), i = l,...,L, operating 

on a population of individuals P 

i = 1 

Generate the initial population 
Set P = initial population 

YES 

Consider the best individual from P 
as a solution 

' 
r Ê  

' 
p̂ ^ 

Figure ILL General idea of the population learning algorithm. 

- Rules for information exchange and coordination between concurrent 
processes. 

Designing population learning algorithm intended for solving a particular 
problem type allows the designer a lot of freedom (as, in fact, happens in case 
of majority of other population-based algorithms). Moreover, an effective PLA 
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would certainly require a lot of fine-tuning and experimenting. This could be 
considered as a disadvantage, at least as long as the process of setting different 
parameters of the population learning algorithm is rather based on heuristics 
instead of some theoretical or statistical rules, which, unfortunately, are not yet 
appropriately developed. Main PLA design elements are summarized in Table 
11.1. 

PLA shares some features with evolutionary programs as discussed, for ex
ample, in Michalewicz (1992). The idea of refining population of solutions 
during the subsequent computation stages is common to PLA and memetic al
gorithms Moscato (1999). The latter, however, assume a constant population 
size and a single local search procedure and relay to a greater extend on typi
cal genetic/evolutionary algorithms operators. There are also some similarities 
between PLA and cultural algorithms where an inheritance process operates at 
the micro-evolutionary levels Reynolds (1994). 

11.4 PLA implementations 

11.4.1 PLA for RCPSP 
The proposed implementation involves three learning and improvement stages. 

Value of the goal function is directly used as a measure of quality of individuals 
and hence as a selection criterion. An individual in the algorithm is a schedule 
represented as a vector of activities S = [ a i . . . , â ]̂, each activity aj being an 
object consisting of: starting time - Sj, duration - dj , set of required units of 
resources, set of predecessors - SPj and set of successors - SSj. An individual 
is represented as an ordered activity list, in which for each activity, all its pre
decessors are placed at earlier positions and all its successors at later positions 
on the list. The list serves as a starting point for generating a solution using 
heuristic known as the serial SGS (Schedule Generation Scheme) described in 
Hartmann and Kolisch (1999). 

The algorithm requires that values of the following parameters are set: 

~ p - multiplier used to calculate the size of an initial population. 

- xil - coefficient used to calculate the number of iterations at the first 
learning and improvement stage. 

- xi2 - coefficient used to calculate the number of iterations at the second 
learning and improvement stage. 

Values of the above control parameters are set at the algorithm fine-tuning 
phase. All random moves within the algorithm are drawn from the uniform 
distribution. All parameter values used in the following pseudo-code have 
been chosen by trials and errors during the fine-tuning phase. The pseudo-code 
of the proposed PLA algorithm is shown in Figure 11.2, In the pseudo-code P 
denotes population, and \P\ size of the population P, 
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PLA: 
Set size of P, \P\ = p - n\ 
Set xil, xi2\ 
Create initial population P; 
/''' the first learning stage */ 
for it \— 1 to xil ' ndo 

tori:= 1 to 40% • |P | do 
Crossover(Rm\dom{P), Random(P)); 

fori := 1 to 5%- |P |do 
iRWA(Random(P),2,0.25 • |P|); 

fori : - 1 to 5%- |P |do 
L5A(Random(P),2,6,10); 

Selection(medium_makespan); 
/* the second learning stage */ 
for it := 1 to a;i2 • ndo 

f o r i : - l t o 4 0 % . | P | d o 
Crossover(R^ndom(P), Random(P)); 

fori : - l t o 5 % - |P | do 
Mw^a^ion(Random(P)); 

for 2 best solutions 5 G P do 
EPTA(SAiy, 

fori — l t o 2 % - |P |do 
LSA(Random(P),2,6,10); 

Selection(medium_makespan); 
/* the third learning stage */ 
for each solution 5 G P do 

EPTA(SA2)\ 
L5A(5,10,2,10); 

End pseudo-code. 

Figure 11.2. Pseudocode of the PLA procedure. 

The algorithm creates an initial population by producing four individuals 
using simple construction heuristics and generating randomly the remaining 
ones. Heuristics are based on the following rules: 

~ Shortest duration first. 

- Shortest duration last. 

- Longest duration first. 

- Longest duration last. 

The first learning stage uses evolutionary operators and a simple local search 
algorithm (LSA). Three procedures: Crossover, RHIA and LSA are repeated 
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xil ' n times. The Random(P) function chooses randomly an individual from 
the population. A pseudocode of the above procedures are shown in Figure 
11.3. 

Crossover{Si,S2)'' 
Do simple (one point) crossover on two randomly chosen 
individuals 81^82 G P; 

End pseudo-code. 

RHIA{8,UN umber,iRange): 
for it \—I to UN umber do 

Choose randomly iRange homogenous intervals in solution 8 
and try to improve the resource utilisation by applying 
Resource_Utilisation_Improving function Vails et al (2004); 

End pseudo-code. 

LSA(8 ,UNumber ,i8tep,f Step): 
for U :— 1 to itNumber do 

for 5 :— i8tep to f8tep do 
for j := 1 to scheduleLength(5') - 5 do 

Exchange activity from position j with the activity 
from position j + s in 5; 
if not the new solution is better 

then recall the exchange; 
End pseudo-code. 

Figure 11.3. Pseudocode of the Crossover, Mutation and LSA procedures. 

The RHIA procedure is based on the idea of improving the resource utilisa
tion in a homogeneous intervals proposed in Vails et al (2004). The proposed 
function Resource_Utilisation_Improving is used in this part of PLA as a kind of 
mutation operator. UN umber denotes the number of iteration for the procedure 
and iRange is the number of improving intervals. 

The LSA procedure requires four variables. The first, 8 denotes an individ
ual, second (itNumber) is the number of iteration for the procedure. The last 
two indicate the initial and final distance between activities under exchange. 

The second learning stage uses Crossover, Mutation and two heuristics -
EPTA (exact precedence tree algorithm) and LSA. A pseudocode of the Mu
tation and EPTA procedures are prsented in Figure 11.4. EPTA is based on 
the precedence tree approach proposed in Sprecher and Drexl (1998). It finds 
an optimum solution by enumeration for a partition of the schedule consisting 
of some activities, which number is denoted as partExtent, In the follow
ing pseudocode variable 8 denotes an individual, l^l = n. The step variable 
denotes the distance between starting points of the considered partitions. 
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Finally, the third learning stage uses two heuristics EPTA and LSA, both with 
different values of parameters as compared with settings in the earlier stages, 
which results in more iterations and higher granularity of the neighbourhood 
explored. 

Mutation(S): 
Move an activity from randomly chosen position in the 
schedule S to another randomly chosen position in this 
schedule, in such a way that no successor of this activity 
can be found before it; 

End pseudo-code. 

EPTA(S,partExtent,step): 
i := 1; 
while i' step + partExtent < n do 

Find an optimal solution for a part of the schedule 
beginning from activity on position i - step and ending 
in activity on position i • step + partExtent, 

End pseudo-code. 

Figure J 1.4. Pseudocode of the EPTA procedure. 

11,4.2 PLA for MRCPSP 
In case of the MRCPSP an individual is represented as in RCPSP case but 

additionally for each activity on the list its mode set is remembered and the 
mode choosen to execute is considered in SGS. 

The overall scheme of the PLA implementation for solving the MRCPSP 
instances is an extension of the PLA implementation used in the RCPSP case. 
PLA-MRCPSP uses identical number of stages and similar learning/improvement 
procedures. Differences with respect to the PLA-RCPSP are summarized be
low. 

In case of the MRCPSP a preprocessing phase is carried out. It involves 
removing all non-executable modes from the project data, deleting the redundant 
non-renewable resources and eliminating all inefficient modes (for details see 
Hartmann and Drexl (1998)). Additionally, for each data set the longest chain 
of predecessors-successors is serched and remembered. The chain represents 
the longest list of subsequent activities, which are tied together through a set 
of precedence relationships. If there are more then one such chains, a new one 
combining all activities common to original chains is produced. Within the 
discussed implementation also another mutation operator has been integrated. 
It operates through randomly changing an activity mode. There are also some 
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changes within the local search procedure used at each of the stages. Local 
search procedure for the multi-mode version is shown in Figure 11.5. 

LSA-MRCPSP(S, itNumber, iStep, fStep): 
for it :=^ 1 to it Number do 

for s :— iStep to fStep do 
for j :— 1 to scheduleLength(S') - 5 do 

for kj := 1 to number of modes for activity j do 
for kj-^s •— 1 to number of modes for activity j + s do 

Exchange activity from position j with the 
activity from position j + s with eventually 
exchnging at the same time mode of the activity 
at position j for kj and at position j + s for /cj+s; 
if not the new solution is better 
then recall the exchange; 

End pseudo-code. 

Figure 11.5. Pseudocode of the LSA-MRCPSP procedure. 

Furthermore, while executing the PLA-MRCPSP, each individual emerging 
modified as a result of some random move, that is either mutation or crossover, 
or as a result of applying a heuristic, that is either LSA or EPTA, is checked 
with respect to its feasibility in terms of non-renewable resources requirement. 
After this a three stage improvement process is carried. It is aiming at: 

1. Decreasing the use of non-renewable resources. 

2. Decreasing an excessive demand for non-renewable resources. 

3. Decreasing an activity execution time through changing its mode without 
violating constraint on non-renewable resources. 

Stage 1 is based on a simple heuristic. Considering in turn all activities 
from the activity list, the activity, for which changing a mode to another one 
produces a maximum profit, is selected and the respective change is accepted. 
The notion of profit is understood here as a difference between use of non
renewable resources as required in both compared modes. 

Stage 2 is carried out only if executing stage 1 has not produced a feasible so
lution in terms of requirements for non-renewable resources. It aims at selecting 
an activity for which changing its mode produces the maximum decrease of ex
cess in demand for non-renewable resources. Search for such an activity/node 
is being repeated until there is no more excessive demand for non-renewable 
resources or all n activities on the list have been already considered. 

Stage 3 is carried out only if executing the earlier stages has produced a 
feasible solution in terms of requirements for renewable resources. It aiming at 
decreasing the execution time of an activity is based on two sub procedures: 
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- From all activities on the list the one for which changing its mode brings 
about a maximum decrease of the execution time without violating con
straint on non-renewable resources is selected. The search is repeatedly 
carried out until an activity and the respective modes, leading to a maxi
mum decrease of the processing time of all activities, is found. 

- The sub procedure described above is executed for activities from the 
longest chain of predecessors - successors. 

- If the attempt at the stage 3 is not successful a solution obtained in stage 
2 remains uchanged. 

Both sub procedures are executed and the best result in terms of time gains 
out of the all results produced is accepted and the respective individual is added 
to the population of individuals. 

11.5 Validating experiment 
11.5.1 The RCPSP case 

To validate the proposed approach computational experiment has been car
ried out using 1440 benchmark instances of single-mode RCPSP. The bench
mark data set used in the reported experiments includes 480 instances for each 
out of the three problem sizes (30, 60, 90 and 120 activities). The benchmark 
data set together with known optimal solution values/upper bounds can be found 
at http://129.187.106.231/psplib. 
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Figure 11.6. Setting value of the multiplier p (single run) 

The fine-tuning phase of the experiment has been devoted to finding by 
trials and errors values of the PLA parameters assuring acceptable compromise 
between computation time and quality of solutions. This search has been carried 
out using the subset of available benchmark instances consisting of all instances 
of the RCPSP with 30 activities. Figures 11.6 and 11.7 show example results 
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Figure 11.7. Setting value of the multiplier p (two runs) 

with respect to setting value of the multiplier p. The final settings include 
selected combination of parameter values considered in the experiment xil =^ 
xi2 — I and multiplierp == Susedtocalculate the population size (|P| =p-n) . 

Table 11.2. Experiment results, RCPSP (30 activities), single PLA run, relative deviation from 
the optimal solution. 

Max 

number of 

schedules 

single PLA run 

Avg 

re I. dev. 

Max 

re I. dev 

Equal 

opt. 

Mean 

CT[s] 

Max 

CT[s] 

1000 

5000 

50000 

0.60% 
0.19% 

0.12% 

9.52% 

4.26% 

3.45% 

79.17% 

90.42% 

92.92% 

0.20 
1.26 

2.67 

0.56 

15.78 

12.40 

The experiment involved solving all 1440 benchmark instances twice in 
two runs. The results are evaluated in terms of average and maximum relative 
deviation from the optimal makespan or, if unknown, from the critical path lower 
bound (Avg. rel. dev, Max rel. dev.), percent of solutions equal to respective 
optimal solutions (Equal opt.) as well as mean and maximum computation 
time (Mean CT, Max CT) for a single instance. Experiment results for the three 
stopping criteria (limited the number of schedules to 1000, 5000 and 50000, 
respectively) are shown in Tables 11.2 - 11.6. 

Experiment has been carried on the PC computer with the AMD XP 2600+ 
processor. 
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Table 11.7 shows average deviation from the best solutions produced by the 
best metaheuristics reported in Hartmann and Kolisch (2005). 

11.5.2 The MRCPSP case 

The experiment involving multi-mode instances has been carried on PC with 
the AMD XP 2600+ processor. Benchmark data set has been obtained from the 
PSPLIB (http://l 29,187.106.231/psplib/). About 550 instances for each out of 7 
classes of the activities sizes have been solved. Altogether 3842 instances have 
been solved for each of the investigated combinations of the PLA parameters. 
In addition to the earlier investigated parameter combinations additional one 
with p = 6 and set "b" has been added. The respective results are shown in 
Tables 11.8- 11.14. 

Single and parallel run experiment results involving all 3842 MRCPSP in
stances prove that the PLA produces good results in a remarkably short time. 
Quality of the results obtained is, however, not fully satisfactory. To remedy 
this situation it has been decided to test a parallel PLA implementation in which 

Table 11.3. Experiment results, RCPSP (30 activities), two PLA runs, relative deviation from 
the optimal solution. 

Max two PLA runs 

number of ^yg^ Max Equal Mean Max 

schedules rel, dev. rel. dev opt. CT[s] CT[s] 

1000 

5000 

50000 

0.45% 

0.13% 

0.08% 

6.90% 

3.45% 

3.45% 

81.46% 

92.71% 

95.00% 

0.21 

1.32 

2.81 

0.59 

6.07 

13.02 

Table 11.4. Experiment results, RCPSP (60 activities), relative deviation from the critical path 
lower bound. 

Max single PLA run two PLA runs 

number of Avg. Mean Max Avg. Mean Max 

schedules rel. dev. CT[s] CT[s] rel. dev. CT[s] CT[s] 

1000 

5000 

50000 

13.33% 

12.86% 

11.52% 

0.26 

0.84 

14.86 

0.74 

3.41 

74.84 

12.50% 

12.07% 

10.77% 

0.27 

0.88 

15.61 

0.78 

3.58 

78.59 
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Table 11.5, Experiment results, RCPSP (90 activities), relative deviation from the critical path 
lower bound. 

Max 

number of 

schedules 

1000 

5000 

50000 

single PLA run 

Avg. 

rel dev. 

13.32% 

13.07% 

11.92% 

Mean 

CT[s] 

0.50 

1.09 

7.98 

Max 

CT[s] 

1.53 

4.42 

31.53 

Avg. 

rel. dev. 

12.39% 

12.20% 

11.16% 

two PLA runs 

Mean 

CT[s] 

0.53 

1.15 

8.37 

Max 

CT[s] 

1.61 

4.64 

33.11 

Table 11.6. Experiment results, RCPSP (120 activities), relative deviation from the critical 
path lower bound. 

Max 

number of 

schedules 

1000 

5000 

50000 

single 

Avg. 

rel. dev. 

35.83% 

35.12% 

33.88% 

' PLA run 

Mean 

CT[s] 

1.87 

3.42 

23.71 

Max 

CT[s] 

2.69 

5.89 

53.92 

Avg. 

rel. dev. 

35.11% 

34.56% 

32.89% 

two PLA runs 

Mean 

CT[s] 

1.97 

3.59 

24.90 

Max 

CT[s] 

2.82 

6.19 

56.61 
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Table 11.7. Average relative deviation from the critical path lower bound - the best results 
presented in Hartmann and Kolisch (2005) as compared with the PLA performance. 

Number of Max number of schedules 

Algorithm 

GA, TS-path relinking 

GA-hybrid, FBI 

activities 

30 

60 

120 

30 

60 

120 

1000 

0.10% 

11.71% 

34.74% 

0.27% 

11.56% 

34.07% 

5000 

0.04% 

11.17% 

33.36% 

0.06% 

11.10% 

32.54% 

50000 

0.00% 

10.74% 

32.06% 

0.02% 

10.73% 

31.24% 

GA-forw.-backward 

PLA 

30 

60 

120 

30 

60 

120 

0.33% 

12.57% 

39.36% 

0.60% 

13.33% 

35.83% 

0.12% 

11.86% 

36.57% 

0.19% 

12.86% 

35.12% 

-

-

-

0.12% 

11.52% 

33.88% 

Table 11.8. Experiment results, MRCPSP (10 activities), relative deviation from the optimal 
solution. 

Max 

number 

of 
schedules 

1000 

5000 

50000 

Avg. 

re I. 

dev. 

3.44% 

0.71% 

0.67% 

single PLA 

Equal 

opt. 

68.56% 

88.80% 

88.81% 

run 

Mean 

CT 

[s] 

0.13 

0.33 

0.33 

Max 

CT 

[s] 

1.44 

2.24 

2.92 

Avg. 

rel. 

dev. 

2.89% 

0.39% 

0.36% 

two PLA -

Equal 

opt. 

72.39% 

92.91% 

92.91% 

runs 

Mean 

CT 

[s] 

0.13 

0.34 

0.35 

Max 

CT 

[s] 

1.51 

3.50 

3.50 
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Table 11.9. Experiment results, MRCPSP (12 activities), relative deviation from the optimal 
solution. 

Max 

number 

of 
schedules 

1000 

5000 

50000 

Avg. 

re I. 

dev. 

3.65% 

0.92% 

0.87% 

single PLA 

Equal 

opt. 

59.23% 

84.83% 

85.10% 

run 

Mean 

CT 

[s] 

0.15 

0.52 

0.58 

Max 

CT 

[s] 

0.69 

2.10 

2.10 

Avg 

rel. 

dev. 

2.99% 

0.54% 

0.50% 

two PLA , 

Equal 

opt. 

64.17% 

90.31% 

90.49% 

runs 

Mean 

CT 

[s] 

0.16 

0.55 

0.58 

Max 

CT 

[s] 

0.73 

2.20 

2.20 

Table 11.10. Experiment results, MRCPSP (14 activities), relative deviation from the optimal 
solution. 

Max 

number 

of 
schedules 

1000 

5000 

50000 

Avg 

rel. 

dev. 

4.06% 

1.24% 

0.95% 

single PLA 

Equal 

opt. 

53.09% 

77.68% 

81.40% 

run 

Mean 

CT 

Is] 

0.18 

0.66 

0.91 

Max 

CT 

[s] 

0.52 

3.65 

6.83 

Avg. 

rel. 

dev. 

3.53% 

0.81% 

0.62% 

two PLA i 

Equal 

opt. 

56.26% 

84.21% 

86.93% 

runs 

Mean 

CT 

[s] 

0.19 

0.69 

0.95 

Max 

CT 

[s] 

0.54 

3.83 

7.17 

Table 11.11. 
solution. 

Experiment results, MRCPSP (16 activities), relative deviation from the optimal 

Max 

number 

of 
schedules 

1000 

5000 

50000 

Avg 

rel. 

dev. 

4.39% 

1.51% 

1.02% 

single PLA 

Equal 

opt. 

50.18% 

71.82% 

78.45% 

run 

Mean 

CT 

Is] 

0.20 

0.75 

1.34 

Max 

CT 

[s] 

0.79 

4.03 

5.31 

Avg 

rel. 

dev. 

3.77% 

1.13% 

0.75% 

two PLA 

Equal 

opt. 

54.36% 

77.09% 

82.55% 

runs 

Mean 

CT 

[s] 

0.21 

0.79 

1.41 

Max 

CT 

[s] 

0.83 

4.23 

5.58 
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Table 11,12. Experiment results, MRCPSP (18 activities), relative deviation from the optimal 
solution. 

Max 

number 

of 
schedules 

1000 

5000 

50000 

Avg. 

rel. 

dev. 

4.51% 

1.63% 

1.06% 

single PLA 

Equal 

opt. 

48.93% 

66.82% 

76.99% 

run 

Mean 

CT 

Is] 

0.19 

0.71 

2.71 

Max 

CT 

[s] 

0.44 

2.46 

27.33 

Avg. 

rel. 

dev. 

4.56% 

1.77% 

0.75% 

two PLA 

Equal 

opt. 

50.18% 

67.51% 

82.31% 

runs 

Mean 

CT 

[s] 

0.20 

0.75 

2.85 

Max 

CT 

[s] 

0.46 

2.58 

28.69 

Table 11.13. Experiment results, MRCPSP (20 activities), relative deviation from the optimal 
solution. 

Max 

number 

of 
schedules 

1000 

5000 

50000 

Avg. 

rel. 

dev. 

4.74% 

1.88% 

1.09% 

single PLA 

Equal 

opt. 

51.54% 

68.30% 

76.45% 

run 

Mean 

CT 

[s] 

0.19 

0.73 

1.84 

Max 

CT 

[si 

0.59 

3.12 

9.36 

Avg. 

rel. 

dev. 

4.04% 

1.42% 

0.75% 

two PLA ; 

Equal 

opt. 

55.07% 

77.73% 

82.43% 

runs 

Mean 

CT 

[si 

0.20 

0.77 

1.93 

Max 

CT 

[si 

0.62 

3.28 

9.83 
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Table 11.14. Experiment results, MRCPSP (30 activities), relative deviation from the best 
known solution. 

Max 

number of 

schedules 

1000 

5000 

50000 

Avg. 

rel. dev. 

6.07% 

4.41% 

1.57% 

single '. PLA run 

Mean 

CT[s] 

0.23 

0.64 

5.67 

Max 

CT[s] 

0.66 

2.55 

22.64 

Avg. 

rel. dev. 

5.50% 

3.87% 

1.31% 

two PLA runs 

Mean 

CT[s] 

0.24 

0.67 

5.96 

Max 

CT[s] 

0.69 

2.67 

23.77 

Table 11.15. Average relative deviation from the optimal or best known solution for Simulated 
Annealing algorithm proposed in Jozefowska et al (2001) as compared with the PLA perfor
mance. 

Number 

of 

activities 

SA algorithm Jozefowska et al (2001) 

Max number of schedules 

PLA 

Max number of schedules 

1000 5000 50000 1000 5000 50000 

10 

12 

14 

16 

18 

20 

30 

5.17% 

7.55% 

10.75% 

12.05% 

12.63% 

16.00% 

17.10% 

1.16% 

1.73% 

2.60% 

4.07% 

5.52% 

6.74% 

11.76% 

0.23% 

0.37% 

0.24% 

1.06% 

0.56% 

0.80% 

3.81% 

3.44% 

3.65% 

4.06% 

4.39% 

4.51% 

4.74% 

6.07% 

0.71% 

0.92% 

1.24% 

1.51% 

1.63% 

1.88% 

4.41% 

0.67% 

0.87% 

0.95% 

1.02% 

1.06% 

1.09% 

1.57% 

each of the investigated PLA parameter variants is run as an independent agent 
on a PC within a cluster of computers. All such variants are run in parallel and 
the overall best solution is accepted. Computation time is equal to the compu
tation time of the longest run variant plus a surcharge for finding overall best 
solution. The respective results are shown in Table 11.15. In Table 11.15 the 
state of the art results obtained in Jozefowska et al (2001) are compared with 
the PLA performance. 

11,6 Conclusions 
Experiment results show that the proposed PLA implementation is an effec

tive tool for solving both single and multi-mode resource-constrained project 
scheduling problems. In case of the RCPSP instances the algorithm in a sin-
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gle run limited to 50000 solutions generated has produced results close to the 
results of the best known algorithms. 

PLA results obtained in two runs are considerably better then single run 
ones. This proves that there is a room for further improvement of the PLA 
efficiency. Obvious solution would be a parallel PLA scheme. This has been 
attempted in case of the MRCPSP instances. Independently run PLA versions 
produced satisfactory results in a remarkably short time. Future research will 
concentrate on developing a parallel PLA with possible information exchange 
between parallel processes of learning and improvement. Another worthwhile 
direction of research should be concentrated on searching for effective and 
theoretically-based procedures for setting values of the PLA parameters. The 
most critical one seems to be the initial population size. It should not, however, 
be considered in isolation to other important variables like selection criteria, 
number of iterations at learning and improvement stages and granularity of 
local search procedures employed. Identifying relations between these factors 
as well as their joint influence on the quality of results should be the subject to 
further studies. 

General conclusion of the paper can be formulated as follows: validating 
experiment results allow to consider the PLA as a useful and promising frame
work to deal with solving computationally difficult combinatorial problems 
with RCPSP and MRCPSP instances among them. 
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Abstract This study proposes, develops and tests a hybrid neural approach (HNA) for 
the resource constrained project scheduling problem. The approach is a hybrid 
of the adaptive-learning approach (ALA) for serial schedule generation and the 
augmented neural network (AugNN) approach for parallel schedule generation. 
Both these approaches are based on the principles of neural networks and are very 
different from Hopfield networks. In the ALA approach, weighted processing 
times are used instead of the original processing times and a learning approach is 
used to adjust weights. In the AugNN approach, traditional neural networks are 
augmented in a manner that allows embedding of domain and problem-specific 
knowledge. The network architecture is problem specific and a set of complex 
neural functions are used to (i) capture the constraints of the problem and (ii) 
apply a priority rule-based heuristic. We further show how forward-backward 
improvement can be integrated within the HNA framework to improve results. We 
empirically test our approach on benchmark problems of size J30, J60 and J120 
from PSPLIB. Our results are extremely competitive with existing techniques 
such as genetic algorithms, simulated annealing, tabu search and sampling. 

Keywords: Project Management, Resource Constrained Project Scheduling, Neural Net
works, Heuristics 

12.1 Introduction 

The resource-constrained project scheduling problem (RCPSP) is a well-
known NP-Hard scheduling problem (Blazewicz et al (1983)). It is a classical 
problem in operations research with broad applicability in project management 
and production scheduling. It involves minimizing the makespan of a project 
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by scheduling its activities which are subject to precedence and resource con
straints. The amounts of available resources are fixed and known in advance. 
Resource requirements and processing times for each activity are determin
istic and also known in advance and preemption of activities is not allowed. 
This problem has received the attention of many researchers for well over four 
decades. One of the recent research focuses in this area has been towards 
developing new metaheuristic approaches using artificial intelligence and/or 
biologically-inspired techniques. For solving this problem, two schedule gen
eration schemes are commonly used - serial and parallel. In this work, we 
propose, develop and test a new hybrid metaheuristic approach based on the 
principles of neural networks. We use adaptive-learning approach (ALA) for 
serial and augmented-neural-network approach (AugNN) for parallel schedule 
generation scheme. We call our approach the hybrid-neural approach (HNA). 

In the adaptive-learning approach (Agarwal et al (2005)), weighted process
ing times are used instead of the given processing times. Well-known heuristics 
are applied using these weighted processing times. An intelligent perturbation 
strategy used to adjust the weights allows non-deterministic local search. The 
AugNN approach was first applied to parallel schedule generation in the task-
scheduling problem by Agarwal et al (2003). With suitable modifications, 
the AugNN approach can be applied to the parallel generation scheme for the 
RCPSP. The AugNN approach is quite different from the Hopfield network ap
proach which has been applied to the traveling-salesman problem (Hopfield and 
Tank (1985) and job-shop scheduling (Sabuncuoglu and Gurgun (1996), Foo 
and Takefuji (1988)). In the AugNN approach, the traditional neural network 
is augmented to allow embedding of domain and problem-specific knowledge. 
The network architecture is designed to be problem specific; instead of the 
standard 3-layered network, it is a p-layered network, where p depends on the 
problem structure. Details will be explained in Section 16.4. Further, in the 
AugNN approach, the input, activation and output functions are complex func
tions, designed to (i) enforce the problem constraints, and (ii) apply a known 
priority heuristic. The AugNN approach, thus, allows incorporation of domain 
and problem-specific knowledge and affords the advantages of both the heuris
tic and iterative approaches. In this study, forward-backward improvement 
steps (Tormos and Lova (2001), Vails et al (2005) are also integrated within this 
framework of hybrid-neural approach. 

We implement and test our proposed hybrid-neural approach on some well-
known RCPS benchmark problem instances in the literature. Our results are 
very competitive with those of other techniques. Given that this approach is 
relatively new, it seems to hold a lot of promise; perhaps in future studies, it 
can be used in conjunction with other successful techniques, such as genetic 
algorithms, scatter search etc. to give improved results. 
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The rest of the paper is organized as follows. Section 16.2 presents a literature 
review for the RCPSP. We discuss how ALA is applied to the serial schedule 
generation problem in Section 16.3. The details of AugNN formulation for 
solving the parallel schedule generation for the RCPSP are given in Section 16.4. 
In Section 16.5, computational results are presented and discussed. Finally, 
Section 15.6 provides a summary of the paper and discusses future research 
ideas. 

12.2 Literature review 
The research literature for the RCPSP is quite large. We refer the readers to 

the review papers by Icmeli et al (1993), Ozdamar and Ulusoy (1995), Herroelen 
et al (1998), Brucker et al (1999), Hartmann and Kolisch (2000), Kolisch and 
Padman (2001), Kolisch and Hartmann (2005), 

The various exact methods applied to the RCPSP can be classified into 
three categories: dynamic programming, zero-one programming and implicit 
enumeration with branch and bound. Pritsker et al (1969), Patterson and 
Huber (1974), Patterson and Roth (1976) proposed zero-one programming 
methods. Exact approaches based on implicit enumeration with branch and 
bound have been widely used: Davis and Heidom (1971), Talbot and Patterson 
(1978), Christofides et al (1987), Demeulemeester and Herroelen (1992), De-
meulemeester and Herroelen (1997), Brucker et al (1998), Mingozzi et al 
(1998), Domdorf et al (2000). Blazewicz et al (1983) showed that the RCPSP 
is a generalization of the well-known job-shop-scheduling problem and is NP-
Hard. While exact solution methods are able to solve smaller problems, heuris
tic and metaheuristic approaches are needed for larger problem instances. 

Priority-rule based heuristics combine one or more priority rules and schedule-
generation schemes (serial, parallel or both) in order to construct one or more 
schedules (Hartmann and Kolisch (2000)). If only one schedule is generated, 
it is called a single pass method and if more than one schedule is generated, it 
is called an X-pass (or multi-pass) method. Some of the well-known priority 
rules are LFT (Latest Finish Time), EST (Earliest Start Time) and MTS (Most 
Total Successor). Although, priority-rule based heuristics are easy to imple
ment and fast in terms of the computational effort, they are not very effective 
with respect to the average deviation from the optimal solution. A variety of 
priority single-pass methods have been widely used to solve the RCPSP: Davis 
and Patterson (1975), Cooper (1976), Alvares-Valdes and Tamarit (1989), Boc-
tor (1990), Ozdamar and Ulusoy (1994), Kolisch (1996a), Kolisch (1996b), 
Multi-pass methods can be categorized as multi-priority rule methods and 
sampling methods. Multi-priority rule methods combine the schedule gen
eration scheme with a different priority rule at each iteration: Ulusoy and 
Ozdamar (1989), Boctor (1990), Thomas and Salhi (1998). Sampling methods 
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use a serial generation scheme and a priority rule to obtain the first schedule. 
Then they bias the order obtained by the priority rule by using a random de
vice: Cooper (1976), Al vares-Valdes and Tamarit (1989), Drexl (1991), Kolisch 
(1996a), Kolisch (1996b), Kolisch and Drexl (1996), Schirmer and Riesenberg 
(1998), Schirmer (2000), 

Many metaheuristic methods, such as genetic algorithms (GA), simulated 
annealing (SA), tabu search (TS), and ant colonies (AC), have been applied to 
solve the RCPSR Metaheuristics based on GA are the most common: Leon 
and Ramamoorthy (1995), Lee and Kim (1996), Hartmann (1998), Hartmann 
(2002), Alcaraz and Maroto (2001), Coelho and Tavares (2003), Hindi et al 
(2002), Toklu (2002), Vails et al (2003). Simulated annealing algorithms which 
can handle non-preemptive resource constrained project scheduling problem 
are presented by Boctor (1996), Cho and Kim (1997), Bouleimen and Lecocq 
(2003). Tabu search based metaheuristics are proposed by Pinson et al (1994) 
and Baar et al (1997), Nonobe and Ibaraki (2002) and Thomas and Salhi (1998). 
Merkle et al (2002) proposed an ant colony approach to the RCPSR 

In addition to applying these heuristics and metaheuristics, forward-backward 
improvement (FBI) steps are suggested by Tormos and Lova (2001), Tormos 
and Lova (2003) and Vails et al (2005). This step is also called double jus
tification technique. In FBI, a given schedule is compressed by eliminating 
unnecessary pockets of slack on a Gantt Chart. 

Surprisingly, neural network (NN) based techniques have not been applied to 
the RCPSP to the best of our knowledge. NN based approach has been applied 
to the job-shop scheduling problem (Foo and Takefuji (1988), and Sabuncuoglu 
and Gurgun (1996)), and the traveling salesman problem (Hopfield and Tank 
(1985)). Their approach is based on Hopfield networks. While this approach 
worked for smaller problem instances (up to 5x5), it failed to provide good 
solutions in reasonable time, for larger problem instances such as (10x10). 
Agarwal et al (2003) proposed a different kind of approach for using neural 
networks, called the AugNN approach, for solving task-scheduling problems. 
The performance of this alternative NN approach does not deteriorate with 
larger problem size. 

12,3 Adaptive learning approach for serial schedule 
generation 

As mentioned in Section 1, two types of schedule generation schemes are 
used in RCPSP, viz., serial and parallel. In the serial scheduling scheme, a 
priority list of activities is determined at time zero. This list is based on some 
heuristic such as latest finish time (LFT). The ordering of activities in a given 
priority list must, of course, follow precedence constraints, but is independent 
of the resource constraints. Given a priority list, activities are scheduled in the 
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given order at the earliest possible clock time at which the precedence con
straints are satisfied and the resources are available. This type of scheduling is 
similar to the permutation flow-shop scheduling in which the order of jobs is 
fixed a priori and scheduling occurs at the earliest possible clock time depend
ing on resource availability and precedence constraints. Agarwal et al (2005) 
applied an adaptive learning approach to the permutation flow-shop problem. 
Due to the similarities between these two problems, we apply the ALA approach 
to the serial schedule generation. 

The ALA is a non-deterministic local-search approach based on neural-
networks principles. In this approach, processing times of activities are pa
rameterized using a weight factor. The problem of optimally scheduling a 
given project is then posed as the problem of finding the optimal set of weights 
in the weight search space, similar to the way non-linear mapping functions are 
determined in neural networks. Reinforcement and backtracking techniques 
are applied as part of weight modification strategies. 

Notation 
A 

Aj 

z 

PTj 

W^ 

WPTj 

ESTj 

LSTj 

^max 

MSz 

RF 

TINI 

a 

BMS 

BWj 

used: 
Set of activities = {1, . . , n} 

j ^ ^ activity node, j e A 

Current iteration 

Processing time of activity j 

Weight associated with the Activity Aj 

Weighted processing time of Activity Aj 

Earliest start time of activity j 

Latest start time of activity j 

Max number of iterations 

Makespan in the z^^ iteration 

Reinforcement factor 

Tolerate iterations with no improvement 

Learning rate 

Best makespan 

Best weights 

Step 1 

Step 2 

Initialization 

Initialize Vj E A Wi 1 
Initialize the iteration counter zio \. 

Calculate weighted processing times 

Calculate Vj G A WPTj - Wj * PTj 
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Step 3 : Determine priority list 

Determine the priority list using a heuristic such as 

earliest start time (EST) or latest finish time (LFT), 

where EST or LFT are calculated using WPTj instead of 

PT^. 

Step 4 : Determine makespan 

Find a feasible schedule using the priority list. In other 

words, schedule each activity at its earliest possible time 

given precedence and resource constraints. This 

schedule gives us the makespan MSz. 

Step 5 : Apply learning strategy and modify weights 

a. If MSz is the best makespan so far, save the current 

weights as best weights (BWj) and the makespan as 

the best makespan (BMS). 

b. If z =^ Zmax, go to Step 7. 

c. If z > I, and if an improvement occurs, reinforce the 

weights as follows: 

(Wj)z = {Wj)z + RF * i{Wj)z - W ) . - i ) . 

If no improvement occurs in this iteration, continue. 

d. If z > TIN I and if no improvement has occurred in 

the past TINI iterations then 

Set Wj - BWj 

e. Modify the weights using the following strategy: 

Generate a random number RND between 0 and 1 

using uniform distribution. 

If RND > 0.5 then iWj)z^i = iWj)z + RND*a *P; 

If RND <=0.5 then iWj)z-^i = (Wj)z - RND*a *P '̂ 

Step 6 : Next iteration. 

Increment z by one and go to step 2. 

Step 7 : Display Solution 

The BMS is the solution. Take the BWj and generate 

the schedule using the heuristic. 

The learning rate (a) used in Step 5e determines the degree of weight change 
per iteration. A higher rate leads to a greater change and vice versa. One could 
therefore control the granularity of the search by varying a. The learning rate 
should neither be too low nor too high. A low a will slow down convergence and 
make it difficult to jump local minima, while a high a will render the search too 
erratic or volatile to afford convergence. With some empirical trial and error,, 
we found that a rate of 0.001 worked well for all the problems. 
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The reinforcement factor, RF, used in Step 5c is used to reinforce weights 
during iterations that show improved results. Intuitively, such reinforcement 
learning, common in neural networks, helps the search process by allowing 
the search to explore the newly discovered good neighborhood for a few extra 
iterations. Empirically, we found that an RF value of 2 gave better results 
than other RF values. Backtracking used in step 5d is used to backtrack to 
the previous best set of weights if no improvement has been found in a given 
number of iterations. 

12.4 AUGNN framework for parallel schedule generation 
In parallel schedule generation, the order in which the activities are going to 

be scheduled is not decided at time zero. The scheduling decisions are made 
on a clock timer, at times when activities can start and resources are available, 
Agarwal et al (2003) applied the AugNN approach for parallel schedule gen
eration for the task scheduling problem which is a special case of RCPSR In 
task scheduling, there is only one type of resource and each task needs only 
one unit of that resource type. We extend Agarwal et al's AugNN formulation 
of task scheduling problem to generate parallel schedules for RCPSP in which 
there are multiple resources and each activity needs multiple units of each re
source. We describe the AugNN framework with the help of a simple RCPS 
problem shown in Figure 16.1. In this problem, there are six activities plus two 
zero-time dummy activities for the initial and final activities. There are three 
renewable resource types Rl, R2 and R3. Each activity's duration and resource 
requirements are also shown in Figure 16.1. In this problem, the longest path 
(in terms of number of activities) has 5 activities - Al, A4, A6 or A2, A5, A6 
plus the two dummy activities. 

Dur: 4 
Rl: 3 
R2: 5 
R3: 2 

Figure 12.1. Example RCPS Problem 
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In the AugNN approach, the project graph of Figure 16.1 is framed as an 
n-layered neural network as shown in Figure 16.2. n, in this case is 8, which 
is 2(5-1), because 5 is the number of activities on the longest path. The set of 
activities at each level are placed in an activity layer. The p^^ activity layer is p 
activities removed from the initial dummy activity. Each activity layer, except 
the dummy activity layers, is followed by a resource layer. The resource layer 
represents all the available resources. Input, activation and output functions 
for activity and resource layers are designed to capture the constraints of the 
problem. We will briefly describe the purpose of these functions. 

Activity 
layer 

Resource Node 

Activity 
layer 

Activity 
layer 

Resource Node 

Weight on links 
between activity and 
resource layers 

Figure 12.2. AugNN Representation of the Example Problem 
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Input Functions 
The activity nodes get their input from the initial dummy node and resource 

layers. These functions are used to enforce the precedence constraints. When 
an activity node receives as many signals as the number of preceding activities, 
the activity is considered ready to be assigned. 

The resource layer gets its input from the activity nodes preceding it. When 
it gets an input, it knows that the activity is ready to start and that resources, if 
available, can be assigned. 

Activation Functions 
The activation functions of the activity nodes maintain the state of each 

activity. The activation functions of the resource layer keep track of resource 
availability and assignment of resources to activities. The priority rule is applied 
through these activation functions. 

Output Functions 
The output function of the activity node sends a signal to the resource layer 

when it is ready to be assigned. The output function of the resource layer signals 
the end of the activity. 

12.4,1 Mathematical Formulation and Algorithm Details 
Notation 

n : Number of activities 

r : Number of resource types 

A : Set of activities = { 1 , . . . ,n} 

R : Set of resource types = {7,... ,r} 

Tik : Amount of resource k required by activity /, k £R, i ^ A 

bk ' Total availability of resource type k 

k : Current iteration 

Aj : j * ^ activity node, j e A 

RLj : Node for resource layer connected from Aj ,j^A 

TSj : Total number of successors of Aj, j G A 

TRPTj : Total remaining processing time of Aj ,j £ A 

SLK : Slack for activity Aj ,j e A 

ojj : Weight on the link from A j to resource layer 

a : Learning coefficient 

Sk : Error in iteration k 

I : Initial dummy activity node 

F : Final dummy activity node 
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t 

STj 

PTj 

LSTj 

LFTj 

PRj 

SUj 

Winj 

SCP 

Threshold value of Aj = Number of tasks immediately 

precedingAj, y G A U F 

Elapsed time in current iteration 

Start time of activity^. 

Processing time of activity^ 

Latest start time of activity^ 

Latest finish time of activity^ 

Set of tasks that immediately precede tasky, j ^AD F 

Set of tasks immediately succeeding task j , y G A 

Winning status of.4j, y G A 

Set of tasks currently in process. 

Following are all functions of elapsed time t: 
lAj (t) : Input function value of activity node jJelUAUF 

IRLAj (t) : Input function value of resource layer from activity node 

AjJ G A 

IRLRLjk it) : Input function value of resource layer j from other 

resource layers for each resource type k, j ^ A, k ^ R 

OAj (t) : Output function value of activity node jJelUAUF 

ORLFjp{t) : Output of RLj to activity nodeAp in the forward direction, 

;• G A, pe SUj 

ORLRj(t) : Output of Resource layer RLj to activity nodeAj in reverse 

direction, j EA 

ORLLjp{t) : Output of Resource layer RLj to RLp in lateral direction, 

J>peAJy^p 

6Aj (t) : Activation function of activity node j , j E A 

ORLj (t) : Activation function of Resource layer RLj, j £T 

assign j (t) : Activity j assigned at time t 

S{t) : Set of activities that can start at time t, 

S{t) = {Aj\OAj(t) = 1} 

RAvk (t) : Number of resources of type k available at time t 

12.4.2 Preliminary Steps 
1 Calculate the Lower Bound, which is the same as the critical path duration 

under infinite resource availability assumption. 

2 Weights {uj) are initialized at 10.00. The value of 10 was arrived at after 
some computational experience. The value of the initial weights should 
be such that after subsequent modification to weights, the value should 
remain positive. The choice of the value of initial weight therefore also 
depends on the value of the learning coefficient used. 
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3 Calculate the threshold of each task TJ. The threshold of activity j is de
fined as the number of tasks immediately preceding task j . The threshold 
value is used to determine when a task is ready to start. 

12.4.3 AugNN Functions 
The neural network algorithm can be described with the help of the learning 

strategy and the input functions, the activation functions and the output functions 
for the task nodes and the machine nodes. 

12.4.3.1 Activity layer functions. Input functions, activation states 
and output functions are now explained for the nodes on the activity layer. 

Input function 
yjeAUF IAj(0) = 0 
y j E. I (the starting signal of the initial dummy node is 1) IAj(0) = 1 
Vg ePRjJ eTUF IAj{t) = IAj{t - 1) + E ORLFgj{t) 

Q 

lAj helps to enforce precedence constraint. When lAj becomes equal to TJ, 
the activity can be assigned. 

Activation function 
Activity nodes' initial activation state (i.e. at t=0) is I, \/j eT 

eAj{t) = 

IAj{t)<Tj 

{9Aj{t - 1) - 1 V 2) A IAj{t) = Tj 

{9Aj{t - 1) - 2 V 3) A ORLRjit) < 0 

{eAj{t - 1) - 4 V {OAjit - 1) =z 3 A ORLRjit) = 0) 

Note: For the initial dummy node, TJ — 1 
State 1 above implies that activity j is not ready to be assigned because input 

to activity j is less than its threshold r. State 2 implies that activity j is ready 
to be assigned because its input equals its threshold. State 3 implies that the 
activity is in process because it is receiving a negative signal from the resource 
layer that it is currently being processed. State 4 implies that the activity is 
complete and the negative signal from the resource layer is no longer there. 

Output function 

OAj{t) = 
1 if OAjit) = 2 

0 otherwise 

If an activity is ready to start but not assigned yet, it sends a unit signal to the 
resource layer. 
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F-Node 

OAAt) -
t\fIAF{t) = rj 
0 otherwise 

The final node outputs the makespan t, the moment its threshold point is reached. 

12.4.3,2 Resource layer functions. Input, activation and output func
tions of resource layers are now explained. 

Input function 
Vj G A IRLAj{t) = OAj{t) * LVj 
This is the weighted output from activity node j . Whenever it is positive, it 

means that the resources are being requested by activity j for assignment. 
\/jeAkeR IRLRLjk{t) - ^ ORLLpjk 

pe SOP 

Activation function 
LtiXj{t) == IRI^ji^) "^TaskHeuristicParametevj 
Let RAvj(t): Whether resources for activity] are available or not 

RAv(t) = 1 ^ if V/c G i? (6fc - IRLRLjk > rjk) 
1 0 otherwise 

1 if RAvj{t) = lA 

assigujit) = { xj{t) - max[xj(t)|A^- G 5(i)] A Vj G A Xj{t) > 0 

0 otherwise 

The assignment takes place if the product of Input of the resource layer 
and the Heuristic dependent activity parameter is positive and highest and if 
the resources are available. The requirement for highest is what enforces the 
chosen heuristic. 

TaskHeuristicParameter is a task parameter dependent on the chosen heuris
tic. 

' TRPT 

LFT 

EST 

EFT 

LST 

RND 

TaskHeuristicParameter 

for T i ? P r heuristic 

for LFT heuristic 

for £;5T heuristic 

for EFT heuristic 

for LST heuristic 

for i?AA^J90M heuristic 
If assignj{t) — 1, then STj — t. 
If \S{t)\ > Ithen Wm -̂ -= 1. 
Resource layers' Initial Activation State (i e. a t t - 0 ) i s 1. Vz G MJ eT, 
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eRLj{t) = \ ' 

if RAvj{t) = 1 

2 if 0RLj{t - 1) = 1 V 6RLj{t) = 1) A assignj{t) = 1 

3 if {eRLj{t-l) = 2\/Z)M<STj + PTj: 

4 if ORLj {t-l) = 3At^STj + PTj 

State 1 implies that the resources are available. State 2 implies that the 
resources are busy and that they were just assigned. State 3 implies that the 
resources are busy and state 4 implies that the resources were just released. 

Output function 
if ORLjit) = 4 
if ORLjit) = 1,2,3 

^̂  ̂  I 0 neRLjit) = iA 

The output of F represents the makespan and the assignj (t) gives the sche
dule. If a resource is either assigned or released during a certain time unit, all 
functions need to be recalculated without incrementing the time period. 

12.4.4 Learning Strategy 
A learning strategy is required to modify the weights. In this study we used 

the following learning strategy: 
Winning activities: 
If Vj G A Wiuj = 1 then (c<;j)/e+i = {^j)k — o; * TaskParameterj * e^ 
Non-winning activities: 
If Vj E A Wiuj = 0 then {ujj)k-^i = {ujj)k + oi ^TaskParameterj * Sk 
In addition to these weight changes in each iteration, we propose two addi

tional features that govern learning, namely, reinforcement and backtracking. 
These features are explained here briefly. 

Reinforcement: 
Neural Networks use the concept of positive reinforcement of weights if the 

network performs well. We implement this idea of reinforcement by imple
menting the following rule. If in a particular iteration the makespan improves, 
the weight changes of that iteration with respect to the previous iteration are 
magnified by a factor called the reinforcement factor (RF). 
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Backtracking: 
Sometimes it is possible to not obtain any improvement over several itera

tions. When this happens, it is best to abandon that search path and start over 
from the previous best solution weights. We can parameterize how many it
erations of no improvement to tolerate. This backtracking technique was part 
of our learning strategy. In order to do this, we store the set of weights cor
responding to the best solution obtained so far and revert back to it whenever 
solution does not improve for some iterations. 

12.4.5 End of iteration routines 
1 Calculate the gap which is the difference between obtained makespan 

and the lower bound 

2 Store the best solution so far. 

3 If the lower bound is reached, stop the program. 

4 If the number of iterations exceeds a certain specified number, such as 
1000 or 5000, stop the program. 

5 If continuing with the next iteration, modify weights using the learning 
strategy. Apply backtracking and reinforcement, whenever necessary. 

12.5 Computational experiments and results 

We now present the result of the computational tests and compare them with 
the best published algorithms. The HNA approach algorithms were coded in Vi
sual Basic 6.0 and run on a Celeron 2300 MHz personal computer. Well known 
benchmark problem instance sets (Kolisch et al (1995) and Kolisch and Sprecher 
(1996)) are used to evaluate the algorithm (PSPLIB, http://www.bwl.uni-kiel.de 
/Prod/psplib/ index.html). The sets J30 and J60 consists of 480 problem in
stances with four resource types and 30 and 60 activities, respectively. The 
set J120 consists of 600 problem instances with four resource type and 120 
activities. 

In our implementation, the learning coefficient a is set to 0.001 and the 
weights are initialized at 10. An initial solution is generated using a priority 
rules such as LFT or EST. The weights are modified after each iteration, using 
the learning strategy. The stopping criterion is to stop if the solution is equal 
to the lower bound or if a predetermined number of maximum schedules is 
reached. We set the maximum number of schedules to 1000 and 5000. 

Tables 16.1 through 16.3 display the results obtained by our algorithm and 
other tested heuristics for 1,000 and 5,000 schedules, respectively. In these 
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Table 12,1. Percent Average Deviations from the Optimum Solution: Comparative Results for 
the J30 Problems 

Algorithm 

Sampling-LFT-FBI 

GA - FBI 

HNA - FBI 

Sampling - LFT - FBI 

GA - hybrid, FBI 

Scatter Search - FBI 

GA - FBI 

GA - FBI 

GA - Self adapting 

SA - Activity List 

TS - Activity List 

Sampling - FBI 

GA - Activity List 

Adaptive Sampling 

GA 

Adaptive Sampling 

Sampling - Global 

TS 

GA - Random Key 

GA - Priority Rule 

Sampling - WCS 

Sampling - LFT 

Sampling - random 

Sampling - random 

GA 

SOS 

both 

both 

both 

both 

serial 

serial 

serial 

serial 

both 

serial 

serial 

serial 

serial 

both 

serial 

both 

serial 

serial 

serial 

parallel 

parallel 

serial 

parallel 

Reference 

Tormos and Lova (2003) 

Alcaraz et al (2004) 

this paper 

Tormos and Lova (2001) 

Vails et al (2003) 

Debels et al (2004) 

Alcaraz and Maroto (2001) 

Vails et al (2005) 

Hartmann (2002) 

Bouleimen and Lecocq (2003) 

Nonobe and Ibaraki (2002) 

Vails et al (2005) 

Hartmann (1998) 

Schirmer (2000) 

Coelho and Tavares (2003) 

Kolisch and Drexl (1996) 

Coelho and Tavares (2003) 

Baaretal(1997) 

Hartmann (1998) 

Hartmann (1998) 

Kolisch (1996b) 

Kolisch (1996b) 

Kolisch (1995) 

Kolisch (1995) 

Leon and Ramamoorthy (1995) 

# of Schedules 

1,000 

0.23 

0.25 

0.25 

0.25 

0.27 

0.27 

0.33 

0.34 

0.38 

0.38 

0.46 

0.46 

0.54 

0.65 

0.74 

0.74 

0.81 

0.86 

1.03 

1.38 

1.40 

1.40 

1.44 

1.77 

2.08 

5,000 

014 

0.06 

0.11 

0.15 

0.06 

0.11 

0.12 

0.20 

0.22 

0.23 

0.16 

0.28 

0.25 

0.44 

0.33 

0.52 

0.54 

0.44 

0.56 

1.12 

1.28 

1.29 

1.00 

1.48 

1.59 

tables we present the type of heuristics, the type of schedule generation scheme 
used, the authors of each heuristic and the average deviation from the criti
cal path based lower bound (from the optimal solution for J30 instances) for 
1000 and 5000 schedules, respectively. In each table, the heuristics are sorted 
according to descending performance with respect to 1000 schedules. 

Table 16.1 presents the percentage deviations from the optimal makespan 
for the instance set J30 in which all problem instances have been solved to 
optimality by Demeulemeester and Herroelen (1997) branch and bound pro
cedure. Our algorithm solved 448 out of 480 problems to optimality and the 
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average deviation from the optimal solution is just 0.25 and 0.11 percent for 
1000 schedules and 5000 schedules, respectively. 

Table 12.2. Percent Average Deviations from the Critical-Path-Based Lower Bound: Compar
ative Results for the J60 Problems 

#of 
Algorithm SGS Reference 1,000 

Schedules 

5,000 

GA - hybrid, FBI 

HNA - FBI 
Scatter Search - FBI 

GA - FBI 

Sampling-LFT-FBI 

Sampling - LFT - FBI 

GA - FBI 

GA - Self adapting 

GA - FBI 

GA - Activity List 

Sampling - FBI 

SA - Activity List 

Adaptive Sampling 

TS - Activity List 

GA 

GA - Priority Rule 

Adaptive Sampling 

Sampling - LFT 

Sampling - WCS 

Sampling - Global 

TS 

GA 

GA - Random Key 

Sampling - random 

Sampling - random 

serial 

both 

serial 

both 

both 

both 

serial 

both 

serial 

serial 

serial 

serial 

both 

serial 

serial 

serial 

both 

parallel 

parallel 

serial 

serial 

parallel 

serial 

Vails et al (2003) 

this paper 

Debels et al (2004) 

Alcaraz et al (2004) 

Tormos and Lova (2003) 

Tormos and Lova (2001) 

Vails et al (2005) 

Hartmann (2002) 

Alcaraz and Maroto (2001) 

Hartmann (1998) 

Vails et al (2005) 

Bouleimen and Lecocq (2003) 

SchirmerOO 

Nonobe and Ibaraki (2002) 

Coelho and Tavares (2003) 

Hartmann (1998) 

Kolisch and Drexl (1996) 

Kolisch (1996b) 

Kolisch (1996b) 

Coelho and Tavares (2003) 

Baaretal(1997) 

Leon and Ramamoorthy (1995) 

Hartmann (1998) 

Kolisch (1995) 

Kolisch (1995) 

11.56 

11.72 

11.73 

11.89 

12.04 

12.11 

12.21 

12.21 

12.57 

12.68 

12.73 

12.75 

12.94 

12.97 

13.28 

13.30 

13.51 

13.59 

13.66 

13.80 

13.80 

14.33 

14.68 

14.89 

15.94 

11.10 

11.39 
11.10 

11.19 

11.72 

11.82 

11.27 

11.70 

11.86 

11.89 

12.35 

11.90 

12.59 

12.18 

12.63 

12.74 

13.06 

13.23 

13.21 

13.31 

13.48 

13.49 

13.32 

14.30 

15.17 

For J60 problems set, some of the optimal solutions are not known, so we 
measure the average percentage deviation from the critical-path based lower 
bound for comparison purposes. Table 16.2 summarizes the results for J60 
test instances. 295 out of 480 instances are solved to critical path based lower 
bound. The average deviation from the critical path based lower bound is n.72 
and 11.39 percent for 1000 and 5000 schedules, respectively. 
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Table 12.3. Percent Average Deviations from the Critical-Path-Based Lower Bound: Compar
ative Results for the J120 Problems 

#of 
Algorithm SGS Reference 1,000 

Schedules 

5,000 

GA - hybrid, FBI 

HNA - FBI 

Scatter Search - FBI 

GA - FBI 

Sampling - LFT - FBI 

Sampling - LFT - FBI 

GA - FBI 

GA - Self adapting 

Sampling - FBI 

GA - FBI 

GA - Activity List 

Sampling - LFT 

Sampling - WCS 

Adaptive Sampling 

GA - Priority Rule 

GA 

TS - Activity List 

Sampling - Global 

Adaptive Sampling 

SA - Activity List 

Sampling - LFT 

GA 

Sampling - random 

GA - Random Key 

Sampling - random 

serial 

both 

serial 

serial 

both 

both 

both 

both 

serial 

serial 

serial 

parallel 

parallel 

both 

serial 

serial 

serial 

serial 

both 

serial 

Serial 

parallel 

serial 

serial 

Vails et al (2003) 

this paper 

Debels et al (2004) 

Vails et al (2005) 

Tormos and Lova (2003) 

Tormos and Lova (2001) 

Alcaraz et al (2004) 

Hartmann (2002) 

Vails et al (2005) 

Alcaraz and Maroto (2001) 

Hartmann (1998) 

Kolisch (1996b) 

Kolisch (1996b) 

Schirmer (2000) 

Hartmann (1998) 

Coelho and Tavares (2003) 

Nonobe and Ibaraki (2002) 

Coelho and Tavares (2003) 

Kolisch and Drexl (1996) 

Bouleimen and Lecocq (2003) 

Kolisch (1996b) 

Leon and Ramamoorthy (1995) 

Kolisch (1995) 

Hartmann (1998) 

Kolisch (1995) 

34.07 

34.94 

35.39 

35.98 

35.98 

36.32 

36.53 

37.19 

38.21 

39.36 

39.37 

39.60 

39.65 

39.85 

39.93 

39.97 

40.86 

41.36 

41.37 

42.81 

42.84 

42.91 

44.36 

45.82 

49.25 

32.54 

34.57 

33.24 

35.30 

35.30 

35.30 

33.91 

35.39 

37.47 

36.57 

36.74 

38.75 

38.77 

38.70 

38.49 

38.41 

37.88 

40.46 

40.45 

37.68 

41.84 

40.69 

43.05 

45.25 

47.61 

Table 16.3 summarizes the results for J120 set. 155 out of 600 problems 
matched the critical path based lower bound. The average deviations are 34.94 
and 34.57 percent, respectively, for 1000 and 5000 schedules. 

12,6 Conclusions 
We proposed, developed and tested a new metaheuristic approach based 

on the principles of neural networks. Augmented-neural-network approach 
was used for parallel schedule generation and adaptive-learning approach for 
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serial schedule generation scheme. We called this approach the hybrid neural 
approach (HNA), To the best of our knowledge, this is the first time that neural-
networks based metaheuristics have been applied to the RCPSP. So, research in 
this approach is still in its infancy. We tested this approach on some well-known 
RCPSP benchmark problem instances in the literature. The computational 
results are very encouraging as they compare very well with some of the best 
results in the literature from techniques such as tabu search, simulated annealing, 
genetic algorithms and scatter search. The approach, in spite of being relatively 
new, gave very good results, and therefore appears to be very promising and 
worthy of further exploration. 

Future research may focus on developing some hybrid approaches involving 
the HNA approach and some of the other successful approaches such as genetic 
algorithms and scatter search, to further improve the results. This new approach 
should also be applied to multi-mode resource constrained project scheduling 
problems with renewable and non-renewable resources. 
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Abstract This paper deals with the lead optimization phase of pharmaceutical research 
where a number of leads (molecules as a basis for potential drugs) are processed 
by different departments in order to optimize their biochemical characteristics. 
We depict each lead as a project and model the problem as a static multi-project 
selection and scheduling problem under resource constraints with the objective 
to maximize the weighted work performed. For solving the problem we propose 
two heuristics. We assess their performance in a computational study and we 
point out one dominant method. Furthermore we show the impact of problem 
parameters such as the extend to which projects can be crashed. 

Keywords: Pharmaceutical R&D, Lead Optimization, Multi-Mode Resource-Constrained 
Project Scheduling, Heuristics. 

13.1 Introduction 
A vital task of pharmaceutical companies is the research and development of 

new drugs. The latter is characterized by long lead times, expensive and thus 
scarce resources, a high attrition rate, and a strong time-based competition due 
to the fact that the company which first gets a new compound patented will have 
a time-limited monopoly to produce and market the associated drug. In this 
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context it is crucial to select the right research projects and to schedule them in 
a proper manner in order to generate value. 

The focus of this paper is twofold. First, we model the problem of selection 
and scheduling of pharmaceutical research projects. The problem arises in the 
lead optimization phase of a major European pharmaceutical company. We 
model it as a multi-project resource-constrained project selection and schedul
ing problem. Second, we propose two heuristic solution procedures. The 
heuristic methods are experimentally evaluated on a set of benchmark instances 
which has been generated based on real world data. 

The paper is organized as follows: In Section 13.2 we provide a problem 
description and a brief literature review. Section 13.3 is devoted to the devel
opment of the integer programming model. The two heuristics are proposed 
in Section 13.4 and the experimental test and its results are reported in Section 
13.5. Section 13.6 summarizes. 

13,2 Problem Description 

13.2.1 Drug Research and Development Process 

The drug research and development process can be depicted by seven phases 
(cf. Figure 13.1). The first three phases are considered as research, the next 
three phases are considered as development, and the final phase is the marketing 
phase. The first six phases may take up to 15 years. In the sequel we give a 
brief description of the phases. 

Target \ Lead \ Lead 
Identification ^/Generation •^Optimizatioi 

\ ^ Preclinicars. Clinical \vSubmission\ *i!or^^+inr/\ 
:iof)X Studies > / Studies ̂ & Approval / '^^ '^ '^^^'"9^ 

Figure 13.1. Drug Research and Development Process 

Target Identification and Lead Generation Starting point of the drug re
search and development process is a disease for which the company wants to 
discover and develop a new drug. In order to cure the disease researchers look 
first for targets, biological elements of the human body which play an important 
role in the progression of the disease or its symptoms. The target identification 
phase comprises all activities concerned with finding such targets. 

Within the next phase, lead generation, the goal is to find chemical com
pounds (molecules) which act on the target so that the disease can be treated. 
By using high-throughput technologies a large number of compounds, i.e. 
60,000, is automatically generated and tested within a time span of two weeks. 
Molecules which show promising characteristics are called leads (because they 
will lead the way to new drugs). 

Lead Optimization and Preclinical Studies The task of lead optimization 
is to optimize the characteristics of a lead in terms of its effectiveness to cure 
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the disease and its safety profile for the human body. Lead optimization is an 
iterative and evolving process where leads are altered and tested. An optimized 
lead is termed candidate because it is a candidate for a new drug. 

The lead optimization is the last research phase and the preclinical studies are 
the first development phase. Whereas in lead optimization testing is done only 
in vitro and by computational simulation studies (in silico), the preclinical phase 
does testing with animals (in vivo). The goal is to obtain enough information 
and reliability in order to proceed to human testing. In order to ensure the 
exclusive right to produce and market drugs which are based on the compound, 
a patent application for the latter is done during the phase of the preclinical 
studies or the succeeding subphase I of the clinical studies (cf. Schoffski et al 
(2002) p. 231). 

Clinical Studies Candidate testing on humans is subject to the clinical studies 
which are divided roughly into three subphases. 

Subphase I studies involve a small number (20 to 80) of healthy volunteers 
and are conducted to determine dosing levels and assess the safety, tolerability, 
dose response and metabolic properties of the compound in humans. 

In subphase II studies the drug is administered to a larger number (50 to 
500) of subjects. Phase II studies confirm the drug's safety profile in patients 
diagnosed with the disease being studied. 

Subphase III studies are much larger in scale, and gather additional informa
tion about the drug's safety and effectiveness in the intended patient population. 
Depending on the therapeutic area, thousands of patients may be enrolled in 
studies that compare the drug being tested to one or more currently available 
therapies. The objective is to show statistical superiority via either improved 
efficacy or safety over current treatments. This critical endpoint is needed to 
obtain regulatory approval to market the drug. 

Submission and Approval The data collected from the preclinical and clin
ical studies are compiled into reports for review and approval by governmental 
regulatory agencies such as the European Agency for the Evaluation of Medic
inal Products (EMEA) and the Food and Drug Administration (FDA) in the 
US. 

Marketing Once the application is approved, the company is allowed to 
market the drug. Until the end of the submission and approval phase the project 
will cause solely cost, while it will generate positive cash flows in the marketing 
phase. 

13.2.2 Cycle Concept of Lead Optimization 
The lead optimization phase is characterized by an iterative and evolving 

process where variants of the leads are altered and tested in order to optimize 
their characteristics. 
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At the start of the process, a single lead comes from the lead generation 
phase and is altered into 20 to 30 variants in the chemistry department. The 
variants are then processed in one lot in a number of different departments. 
The compatibility of the variants for the human body is tested by the early 
Administration, Distribution, Metabolism, Kinetics, Toxicology (eADMET) 
department. The effectiveness of the variants is tested in different subsections 
of the Disease Groups department. All testing is done in parallel by the use of 
copies of the variants. On account of the test results the best variant of the lead is 
selected and again altered to a number of variants in the chemistry department. 
The cycle is repeated for about 15 iterations until the lead has been optimized 
and a candidate has been found. 

13.2.3 Organizational Frame and Decision Problem 
A separate organizational function of the pharmaceutical company is respon

sible for the resources of each phase. The managers of this function team up 
with the managers of the projects to form a research committee which decides 
every three months on the selection or the termination of the projects and on 
the scheduling of the projects. Selection and scheduling is done subject to the 
limited availability of scarce resources. The overall objective of the company 
is to generate value. This objective is broken down to the functions. Due to 
organizational and management issues, the research committee of the lead opti
mization phase has the objective to maximize the weighted work performed by 
their function within the next quarter. Planning is done on the basis of a rolling 
horizon. In Section 13.3.1.3 we will detail how work is weighted in order to be 
linked to the overall objective of value generation. 

13.2.4 Brief Literature Review 
A number of contributions treat aspects of the problem described above. 

Venkatraman and Venkatraman (1995) employ a spreadsheet approach to con
sider the problem of product obsolescence when selecting and scheduling R&D 
projects. Luh et al (1999) treat the problem of scheduling a project with an 
uncertain number of cycles. Kolisch et al(2003) consider the problem of min
imizing the makespan of a single lead-project. They propose a mixed-integer 
program and a simple priority rule-based heuristic. A considerable number of 
articles suggest the selection of R&D projects based on zero-one programming 
models: E.g. Taylor et al (1982) propose a non-linear multi-criteria integer 
programming model while Fox et al (1984) model project interactions whereas 
Heidenberger, K. (1996) considers a dynamic situation under risk. Project se
lection and scheduling is performed by Coffin and Taylor (1996) employing 
a filtered beam search approach. Finally, Viswanadham and Narahari (2001) 
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propose a queuing network model in order to model the entire drug research 
and development process. 

To the best of our knowledge there has been no contribution made for select
ing and scheduling pharmaceutical research projects in the lead optimization 
phase by employing concepts of resource-constrained project scheduling. 

13.3 Integer Programming Formulation 
We model the problem of selection and scheduling of pharmaceutical re

search projects within the lead optimization phase as a zero-one optimization 
problem which is based on the concepts of multi-mode resource-constrained 
project scheduling with deadlines (cf. Neumann et al (2003)). We depict the 
processing of one lead as a single project, the set of all projects as a multi-
project network, and the chemistry and eADMET departments as well as the 
subsections of the Disease Groups departments as renewable resources. 

project 1 

cycle 1 

1 / 1 2 

chemistry^— 

2 / 3 

eADMET 

3 / 3 

DG CV B 

4 / 2 

DG CV M 

5 / 4 

DGCVP 

H i 6 / 1 2 

cycie 2 7 / 3 

chemistry^— 

eADMET 

J/3 

DGCVB 

9 / 2 

DGCVM 

1 0 / 4 

DG CV P 

cycle 12 

56/12 

chemistp/ 

57 /3 

eADMET 

58 /3 

™>̂ DG CV B 

59 /2 

-^DG CV M 

- • 

60 /4 

DG CV P 

L 

J 

61 / 0 

cycle 1 

911 / £ 

chemistry 

912/5 

eADMET 

913/2 

DG RH B 

914/5 

DG RH M 

915/4 

DG RH P 

H i 9 1 6 / 8 

cycle 2 

chemistry 

project 20 

935 / 5 

i-MDG RH B 

eADMET 

9 3 6 / 2 

9 3 7 / 5 

DG RH M 

938 / 4 

DG RH P 

cycle 15 

1028/^ 

chemisti7|-

1029/5 

eADMET 

1030 / 2 

DG RH B 

1031 /5 

DG RH M 

1032/4 

DG RH P 

i 

• M > 

033/0 

Figure 13.2. Multi-Project Network 
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13,3.1 Model Parameters 
13.3.1.1 Projects and Resources. Let V be the set of lead optimization 
projects which are available. Projects have been either just created in the lead 
generation phase or are already in progress in the lead optimization phase. Each 
project j eV consists of a set of activities Vj which depicts the tasks necessary 
to optimize the lead. Due to the cyclical structure described in Section 13.2.2, 
each project has the following special network structure (cf. Figure 13.2 where 
a box corresponds to an activity): The first cycle, and thus the project, starts 
with one activity which is processed in the chemistry department where the lead 
is altered to a number of variants. A number of parallel activities are immediate 
successors. One successor activity is processed in the eADMET department 
where the leads are tested w.r.t. tolerability for the human body. The remain
ing successor activities are processed in different subsections of the Disease 
Groups department where the leads are tested in terms of effectiveness. The or
ganization of the Disease Groups department into sections and subsections will 
be detailed below. The single start activity and the parallel successor activities 
define the first cycle. This cycle is repeated for a given number of times, usually 
10 to 15. At the end of the last cycle we add a dummy end activity which is 
the milestone for the end of the lead optimization project. The activities of the 
project are labeled consecutively. The set of all activities is denoted with V 
and the set of all precedence relations is denoted with £, Note that there are no 
precedence relations between activities of different projects. 

Due to a management policy projects have to be finished within a maximum 
time span where the lead generation is counted as the start of the project. By 
the time the project enters the lead optimization phase the lead generation has 
already been accomplished. Hence, within the lead optimization phase the 
maximum project duration becomes a deadline for the finish time of the project. 
The deadline of project j will be denoted with dj. 

The resources of the lead optimization function are chemistry, eADMET and 
the 9 resources of the Disease Groups department. The set of all resources is 
denoted with TZ. Table 13.1 gives an overview of the resources, their num
bers k, and their capacity Rk measured in the number of available laboratory 
units per week. All resources are renewable (cf. Brucker et al (1999)) , i.e. 
their capacity is available anew for each period (week). As can be seen, the 9 
Disease Groups resources are differentiated with respect to the field of therapy 
(Sections Cardiovascular, Metabolic, and Rheumatic) and the type of research 
(Subsections Biochemistry, Molecularbiology, and Pharmacology). 

13.3.1.2 Activities and Modes. Activity i has to be processed on ex
actly one resource k{i). The work content of activity i is r̂  units, i and ri are 
given in Figure 13.2 as i/ri above each activity rectangle and k{i) is written 



Selection and Scheduling of Pharmaceutical Research Projects 327 

Table 13. L Resources 
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eADMET 
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inside the rectangle. E.g., activity 1 has to be processed by resource 1 (chem
istry) and the work content is 12 laboratory week units. Note that corresponding 
activities in each cycle of one project do request the same resource and do have 
the same work content. E.g., activity 3 ,8 , . . . , 58 of project 1 do all request 
resource 5 (DG CV B) and have a work content of 3 laboratory week units. 
The processing of the activity can be done in a number of different (discrete) 
ways. Each way is termed mode (cf. Patterson et al (1990) and Talbot (1982)). 
The set of all modes which are available for activity i is denoted with Mi, 
Let di^rn be the duration of activity i when processed in mode m. Mode m is 
characterized by a resource demand profile Vi^m^t which defines the resource 
demand on resource k{i) in the processing periods 1 , . . . , di^rn- Due to techno
logical constraints and management policies the resource demand profile has to 
take the following guidelines into account: i) Once processing of an activity is 
started it has to be continued until the end of the activity, i.e. no preemption is 
allowed, ii) The resource demand of activity i in each processing period has to 
be within an interval [1, r"^^)] which depends on the resource k{i) requested by 
activity i. I.e. 1 < ri^rn.t < r^^f for t ^ 1 , . . . , di^rn- r]^^^f is the maximum per 
period capacity requirement allowed for resource k{i) where activity i has to 
be processed. The limitation to r̂ /̂ x̂  is due to the fact that splitting up the work 
content of an activity to be processed by more than r^A^ laboratory units is not 
efficient because the overall setup time increases to much, iii) The resource 
demand has to be constant where an exception can hold for the last processing 
period. 

These guidelines for the mode generation are similar to the ones of the 
discrete time/resource trade-off problem (DTRTP) in project networks where 
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a single project has to be scheduled subject to a single renewable resource (cf. 
e.g. De Reyck et al (1998)). The difference is that for the DTRTP the modes 
have the same resource demand for each processing period whereas guideline 
iii) of the problem treated here prefers a constant resource demand but does not 
strictly require it. 

In addition to real modes where work is performed by the use of resources, 
we will add a dummy mode for each activity i in its set of modes Mi where no 
resources are demanded and consequently no work is performed. The dummy 
mode will allow us to model the decision that a project is not selected. For the 
sake of brevity in notation we continue to use the same symbol to the denote 
the original set of modes plus the dummy mode; henceforth Mi := Mi U {0} 
holds for each activity i. 

Taking into account the guidelines stated above and denoting with rui the 
number of non-dummy modes of activity i, we generate for each activity i the 
modes as follows: (a similar procedure is proposed for the DTRTP in De Reyck 
etal(1998)): 

di,o = 0,mi — m\n{ri,r^^^} 
For m == 1 to mi: 

ri,m,t =^ mfort - 1 , . . . , di,m - 1 
ri,m,di,m ^Ti-m- {di,m - 1) 

The first line sets the duration of the no-selection mode to zero and calculates 
the number of non dummy modes. Line three sets the duration of mode m 
to the number of periods needed if no more than m capacity units are used in 
each period. Line 4 sets for all but the last period of the duration the resource 
demand to m. Finally, line 5 sets the resource demand of the last period of the 
duration to the demand which has not been fulfilled in the preceding periods. 

We will illustrate the mode generation with the following example. Let the 
work content of activity ibt ri — 11 on resource k{i) — 1 (chemistry). For 
chemistry, the maximum number of laboratory units which can work simulta
neously in order to perform the activity is rf̂ ^̂  — 4. We obtain four modes 
plus the dummy mode 0 (cf. Table 13.2). 

13.3.1.3 Time Horizon and Valuing of Work. The research committee 
of the lead optimization phase has to decide every quarter on the selection and 
scheduling of the projects with the objective to maximize the weighted work 
performed within the next 3 months (cf. Section 13.2.3). The point in time three 
months ahead is denoted with Ty while we denote with Tmax the point in time 
until the last project will be finished. Tmax is on average more than 2 years in the 
future. In order to obtain activity weights which link with the overall objective 
of value generation we proceed as follows. We first calculate the value of each 
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Table 13.2. Example of the Mode Generation 
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(1,1,1,1,1,1,1,1,1,1,1) 

(2,2,2,2,2,1) 

(3,3,3,2) 

(4,4,3) 

lead optimization project at the time it will be finished successfully. Next we 
determine activity weights by distributing the project value to its activities. 
Finally, we calculate the weight of each activity depending on its mode and 
start time. The weighted work accomplished until Ty will be maximized in the 
objective function. A formal description of the objective function will be given 
in Section 13.3.2. Let us now describe the three steps outlined above in detail. 

Step 1: The net present value v^ of project j is calculated based on standard 
financial theory. We employ a decision tree approach which takes into account 
technological as well as market risks, future cash flows arising in all successor 
phases of the lead optimization phase, the option to terminate the project, and 
the time value of money (cf. for a similar approach Loch and Bode-Greuel 
(2001)). 

Step 2: We distribute the value v^ of project j among its activities based on 
their work content. The weight of activity i is thus Wi = v^^^^ • Vi/r^^^. where 

r^ is the work content of project j and p[i) is the project where activity i is part 
of. 

Step 3: For each activity i we calculate Wi^rn.t the weighted work accom
plished until Ty if activity i is performed in mode m and started at time t. 

E ,7n,T—t+l 

"^um.t = m ^̂ -̂  (13.1) 

"^i.m.t is equal wi as long as activity i finishes not later than Ty, it is equal to 
a proportion of Wi if activity i iŝ  scheduled to start before Ty and finishes after 
Ty, and it is equal to 0 if activity i starts after Ty. 

Table 13.3 gives a summary of the parameters introduced in this Section. 

13.3.2 Integer Program 

We employ binary decision variables Xi^rn.t = 1, if activity i starts in mode 
m at time t, 0, otherwise, and the integer auxiliary decision variables di{x), 
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Table 13.3. Sets and Parameters 
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8 

k{{) 
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Vj 

Mi 

n 

Sets 

Set of activities 

Set of precedence 

constraints 

Resource requested by activity i 

Set of projects 

Set of activities 

in project j 

Set of modes 

of activity i 

Set of resources 

Rk 
^max 

-? 
Ti 

'^i,m,t 

di,m 

p{i) 

< 
Wi 

'Wi,m,t 

dj 

n 
-t max 

Parameters 

Capacity of resource k 

maximum per period resource demand 

of a single activity on resource k 

work content of project j 

work content of activity i 

capacity requirement of activity i 

in processing period t when 

processed in mode m 

duration of activity i in mode m 

project to which activity i belongs 

value of project j 

weight of activity i 

weighted work obtained if activity i is 

performed in mode m and started at 

time t 

deadline of project j 

time horizon of the objective function 

time horizon of the constraints 

the duration of activity i, and Si{x), the start time of activity i. The aux
iliary variables are derived from the binary variables as follows: di{x) — 

EmeM, di,m Er=o'' ^i,m,t and Siix) = EmeM, Ef^o'' t • x,,m,t. Note that 
when activity i is processed in mode m and started at time t it will be processed 
in periods t + 1 to t + di^rn- We can now formulate the optimization problem 
as follows: 

Ty 

^^^ X̂  X̂  X] ̂ '̂̂ '̂  * ̂ '̂̂ '̂  (13.2) 

subject to 

Si{x) - Si{x) > di{x) 

Si{x) + di{x) < dj 

{i,l) e£ (13.3) 

i E Vi (13.4) 
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*GV meMi r=msix{0,t-di m + U 
k{i) = k ' 

ken 

-'max 

J2 I]^^,m,t = l ^EV (13.6) 

imax 

Y ] a;i,o,t = y ] a;i,o,t . , , (13.7) 

i € V 
a:i,m,t€{0,l} meM^ (13.8) 

i = 0 , . . . ,T , max 

The objective function (13.2) maximizes the weighted work performed within 
the time window [0, Ty]. 

The precedence constraints (13.3) depict the technological precedence rela
tions between the activities of one project: Activity / can not start before each 
preceding activity i has been finished. 

The deadline constraints (13.4) force all activities of project j to be completed 
not later than the deadline dj so that the maximum project duration as given by 
management policy is kept. 

The constraints (13.5) are the resource constraints. For each resource k the 
capacity demanded by the activities processed in period t has to be less than or 
equal the available capacity. The time interval for this constraint extends from 
0 to Tmax where T^ax is the schedule horizon. That is the maximum number 
of periods needed to process all selected projects while not violating resource 
constraints. T^ax can be determined as follows: T^ax — Yliev ^̂ • 

The constraints (13.6) are the activity execution constraints. Each activity i 
has to be performed in one of the modes m e Mi which includes the dummy 
mode for not executing the project. 

The constraints (13.7) are the mode identity constraints. The modeling con
cept of mode identity has been introduced by Drexl et al (1999) and Salewski 
et al (1997). For each project constraints (13.7) force all activities to be per
formed in mode 0 if this mode is selected for at least one activity of the project. 
Thereby we model the selection decision of the projects. The dummy mode 0 
is associated with a work content of 0. Hence, in this mode no work will be 
performed on the activity, and due to constraints (13.7), on the project. Activ
ities performed in mode 0 will have no contribution to the objective function 
according to formula (13.1). 

Finally, constraints (13.8) define the decision variables. 
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The integer program (13.2) - (13.8) is a general formulation of the multi-
mode resource constrained project scheduling problem with renewable re
sources (cf. Neumann et al (2003)) and hence a hard optimization problem. 

Note that the number of variables in (13.2) - (13.8) can be reduced by in
troducing time windows for the start times of the activities (cf. Neumann et al 
(2003)). The latter are calculated for each project j by forward recursion from 
the earliest start time 0 and by backward recursion from the deadline dj, re
spectively. Also, the number of constraints (13.4) can be reduced by stating 
this constraint not for all activities of a project but only for the immediate 
predecessors of the dummy end activity. 

13.4 Solution Methods 
There are three types of decisions which have to be made. First, projects have 

to be selected, second, for each activity of a selected project the mode has to 
be determined, and third, the start time of the activity has to be set. We refer to 
the first decision as project selection and to the latter two as project scheduling. 
Project selection creates a project portfolio and project scheduling generates a 
multi-project schedule. In the following we will outline two different heuristic 
solution methods: sequential and concurrent project selection and scheduling. 
The sequential method starts with an empty project portfolio and iteratively 
selects one project which is then added to the portfolio. The concurrent method 
starts with the project portfolio comprising all available projects and iteratively 
deletes projects from the portfolio. Regardless of the particularities of the two 
approaches, both try to schedule activities as early as possible without explicitly 
taking into account the project deadlines. The latter are considered by a list-
based shift method which will be described in Section 13.4.3. 

13A.1 Sequential Project Selection and Scheduling 
The sequential method starts with an empty project portfolio and iteratively 

selects a project which is scheduled and added to the portfolio. The method 
stops after the last project has been scheduled and added to the portfolio. Note 
that in the case of a violation of the project deadline as given by constraint 
(13.4), the associated project is removed from the portfolio by assigning every 
activity of the project the mode 0. 

13.4.1.1 Project Selection. For the project selection we use the fol
lowing two straightforward criteria: i) We select the project with the highest 
project value (VAL), and ii) we select the project with the highest project value 
per work content (VPW). For the sake of being definitive we chose the the 
project with the smallest index of the start activity when there are ties. 
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13.4.1.2 Project Scheduling. In order to schedule a selected project 
we have to determine a mode and a start time for each activity of the project. 
Note that in the course of the sequential method (where some projects have 
already been scheduled) this problem is equivalent to the multi-mode project 
scheduling problem with time-varying resource availability (cf. Sprecher and 
Drexl (1998)). Hence we can employ a multi-mode adaptation of the serial 
schedule generation scheme (cf. Kolisch and Hartmann (1999)). 

The serial schedule generation scheme (cf. Kolisch and Hartmann (1999)) 
iteratively selects an activity and schedules it at the earliest precedence- and 
resource-feasible time. Once all activities are selected and scheduled we have 
obtained an activity list which gives the order in which the activities have been 
selected. A close look at the problem treated here reveals that when scheduling 
the activities of a single project any order of activities will lead to the same 
schedule. This property is caused by the series-parallel structure of the research 
project where for the parallel activities within a cycle no two activities request 
the same resource. Hence, between the parallel activities we do not have so-
called forbidden sets (cf. Bartusch et al (1988) and Brucker et al (1999)). Due 
to this property we can schedule the parallel activities of a cycle in any order. 
We choose the order given by the (consecutive) numbering of the activities. 

For an activity which is chosen we have the following two rules for selecting 
a mode: i) We select the mode which will lead to the earliest finish time (EFT), 
or ii) we choose the mode with the shortest processing time (SPT). In case of 
ties we select the mode with the highest mode number. Note that due to the 
mode generation scheme presented in Section 13.3.1.2 this implies the mode 
with the shorter duration and thus higher resource demand per time. 

13A.2 Concurrent Project Selection and Scheduling 

13.4.2.1 Project Selection. We start with a project portfolio which 
comprises all projects. For this portfolio we obtain a schedule and the associated 
objective function value by applying the schedule generation scheme described 
below. Thereafter we iteratively exclude one project from the portfolio and 
run the schedule generation scheme anew. We exclude the project with the 
smallest VAL- or alternatively the smallest VPW-figure of all projects still in 
the portfolio. In case of ties the project with the smallest index of the start 
activity is chosen. 

13.4.2.2 Project Scheduling. The scheduling of the activities com
prising the active portfolio is done with a hybrid schedule generation scheme. 
Based on the adjustment of the parameter 9 the hybrid schedule generation 
scheme will function as a serial or a parallel schedule generation scheme and 
hence generate active or non-delay schedules (cf. Kolisch (1996)). The idea 
of a hybrid schedule generation scheme has originally been proposed by Storer 
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et al (1992) for the job shop problem and has been adapted by Naphade et al 
(1997) for the resource-constrained project scheduling problem 

Let us define A as the set of allowable activities. The allowable set contains 
all activities which have not yet been scheduled but can be scheduled since 
every predecessor has already been scheduled. For each activity z E v4 we can 
calculate the earliest precedence- and resource-feasible start time Si as it is 
done in the serial schedule generation scheme for selected activities (cf. Kolisch 
and Hartmann (1999)). Now we define S^^^ and S^^^ as the minimum and 
maximum precedence- and resource-feasible start time of the activities in the 
allowable set, i.e. 5"^^" - mm{Si{x) \ i e A} and 5"^^^ - max{5i(x) | i G 
A}, The decision set V is the set of all activities which can be selected for 
scheduling. Employing A it is defined as 

T:)={ieA\ 5"^^" < Si{x) < 5^^^ + e . (5"^^^ - 5"^^ )̂} (13.9) 

with e G [0,1]. For (9 = 0, activity i G A needs a start time of Si{x) = S''"^" 
in order to be in the decision set, whereas for 6̂  — 1, every activity i in the 
allowable set will be in the decision set since Si{x) < S^^^ holds for all i e A. 
Obviously, we have for 0 == 0 the parallel scheduling scheme and for 0 == 1 the 
serial scheduling scheme, respectively. 

We use the following two rules for the selection of an activity from the 
decision set: Choose the activity with the maximum VAL- or the maximum 
VPW-figure which is for an activity calculated as Wi and wi/ri, respectively. 
For the selection of the mode, we employ the same rules as for the sequential 
method. 

13,4.3 Taking into Account Project Deadlines 
Both, the sequential and the concurrent method have to take into account the 

project deadlines as given in (13.4). So far we have not addressed this issue from 
the methodical point of view. For the multi-mode RCPSP a method which takes 
into account maximum time lags which are a generalization of project deadlines 
has been presented by Heilmann (2001). Whenever the method detects the 
violation of a maximum time lag during the construction of a schedule, two 
steps are applied. The first step tries to enlarge the deadline by right shifting 
predecessors. It cannot be applied to our problem since the start of a maximum 
time lag has already been set in the lead generation phase and cannot be altered 
by the research committee of the lead optimization phase (cf. Section 13.2.3). 
The second step has a drawback since it tries to achieve the maximum time lag 
by squeezing together activities at the tail of the project which leads in our case 
to an uneven distribution of research output over time. 

To obtain an even distribution of the research output we propose a list-based 
shift method. The backbone of the method is an activity list (cf. Kolisch and 
Hartmann (1999)) which lists all scheduled activities in the order they have been 
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selected and assigned a start time. The method essentially works as follows: 
Whenever we detect a violation of a project deadline we employ the associated 
list by evenly shifting some of the scheduled activities of the project to the 
left. Afterwards we generate a new schedule by using the modified list. The 
left shifting of activities will lead to earlier start times and thus, hopefully, 
to a shorter makespan of the project under consideration. By considering the 
activities which will be left shifted in an even fashion we try to obtain an even 
distribution of the research output over time. We will now present the method 
more detailed: 

Whenever an activity i is assigned a start time Si{x) it is checked whether 
the deadline of the associated project is still observed. In case of a violation 
of the project deadline we proceed as follows: As a result of the scheduling 
which has been done so far we have a partial list of length u where u is the 
number of activities which have already been scheduled. The list gives us 
the order in which activities have been set to their earliest (precedence- and 
resource-feasible) start times. For project p{i) this list has caused a violation 
of the project deadline. We now try to shorten the duration of project p{i) by 
assigning its already scheduled activities to lower labeled positions in the list. 
We search the list for a position g which fulfills the following two conditions: 
First, the activity i(g) which is in position g belongs to project p{i) under 
consideration, i.e. i{g) G Vp(̂ ), and second, the number c(g) of consecutive 
positions following position g where no activities of project p{i) are placed is 
maximum. More formally, for all g with i{g) G Vp(̂ ) and g < uiho^ number 
c{g) of consecutive positions following position g where no activities of project 
p{i) are placed is given by 

c{g) = max lg,he{g + l,,.,,u-l}\ | J i{e) f] Vp(̂ ) == 0 - ^ 

(13.10) 
and the position g for which we have the maximum count as 

g =^ max [ g = 1^... ^u — 1 \ c{g) = max c{h) ] (13.11) 

We now shift every activity of project p{i) which is in a higher position than g + 
c{g) one position to the left. We illustrate the procedure referring to the example 
given in Figure 13.3 which consists of two projects. Project 1 comprises the 
activities 1 to 5 and project 2 comprises the grey shaded activities 6 to 9. When 
scheduling activity 9 according to the list displayed on the left side of Figure 
13.3 a violation of the deadline of project 2 is recognized. Hence u = 9. 
Applying equation (13.10) for position ^ = 2 we obtain c{g) = 3 and applying 
equation (13.11) we obtain g = 2. Performing left shifting, we obtain the new 
list displayed on the right side of the Figure 13.3. 
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\ ^ i 6 | 2 ! 3 ; 4 ! 7 l 5 ! 8 i 9 i ^"^ \ ^ ; 6 j 2 i 3 | 7 i 4 ! 8 ^ 9 J 5 | 

Figure 13.3. Example of the List-Based Shift Method 

Cycling is prevented by forbidding the execution of exactly the same shift as 
just done for the next 10 iterations. The maximum number of times we apply 
the list-based shift method is set to 1000. When this number is hit during the 
course of the sequential or concurrent method, a project which exceeds (or will 
exceed) the project deadline is immediately discarded from the portfolio and 
the sequential or concurrent method is continued. 

13.5 Experimental Evaluation 

13.5.1 Test Instances 

We have collected data from the pharmaceutical company. Because this es
sentially included only one instance, we opted to generate benchmark instances 
which are based on this instance but give a wider variety of problems. Further
more, we wanted to study the impact of parameters which can be influenced by 
management or of which management wants to know how they impact profit. 
We therefore analyzed the real world instance and filtered out relevant param
eters. We employed a full factorial test design where we differentiated into 
fixed, random, and systematically varied parameters. The test bed consists of 
270 instances. 

Fixed Parameters. The number of projects | P | is set to 100. The project 
values are normally distributed with a mean of 100. The standard deviation 
of the project values is systematically varied and will be detailed below. The 
horizon of the objective function is set to 12 (weeks). The number of renewable 
resources and their capacity is set according to Table 13.1. 

Randomly drav̂ n̂ Parameters. The following parameters were randomly 
drawn from specified distribution functions. For each project the number of 
(remaining) cycles is drawn out of the uniformly distributed interval [2,15] 
where cycle times less than 10 depict running projects. The activities of one 
project within one cycle are generated as follows: First, the single start activity 
which is processed in the chemistry department and the first parallel activity 
which is processed in the eADMET department are generated. Afterwards, 
the activities which are processed in parallel in the subsections of the Disease 
Groups department have to be determined. Table 13.4 gives the probabilities 
that a project requests the Disease Groups sections Cardiovascular, Metabolic, 
or Rheumatic, respectively. As can be seen, in 98 % of the cases a project is 
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processed in a single Disease Groups section. Only in 2 % of the cases one of 
the two sections Cardiovascular and Rheumatic or Metabolic and Rheumatic 
are requested, respectively. The ultimate request is not on the section but on 
the subsection level. Table 13.4 gives the conditional probabilities for the 
subsections Biochemistry, Molecular (Mol.) Biology, and Pharmacology for 
each section. Note that the probabilities and conditional probabilities of Table 
13.4 determine the number of activities which are processed in parallel in the 
Disease Groups department. E.g. the probability that there are four parallel 
activities which are processed in eADMET and all three subsections of the 
section Cardiovascular as for project 1 inFigure 13.2is0.32(0.370.55-0.79) = 
0.055. 

Table 13.4. Probabilites of the Request for Sections and Conditional Probabilities of the Request 
for Subsections of the Disease Groups Department 

Section 

Cardiovascular 

Metabolic 

Rheumatic 

Cardiovascular 

and Rheumatic 

Metabolic 

and Rheumatic 

Probability 

0.32 

0.38 

0.28 

0.01 

0.01 

Subsection 

Biochemistry 

Mol. Biology 

Pharmacology 

Biochemistry 

Mol. Biology 

Pharmacology 

Biochemistry 

Mol. Biology 

Pharmacology 

Conditional 

Probability 

037 

0.55 

0.79 

0.56 

0.44 

0.82 

0.67 

0.54 

0.72 

The resource demand for the activities is generated on account of the data 
given in Table 13.5. When generating the data, the interval given in the second 
column has been considered as follows: Whenever we have drawn a resource 
demand outside of the interval we have repeated the generation. Due to the 
cyclical structure of the project network (cf. Figure 13.2), each cycle of one 
project is alike. 

Systematically varied Parameters, The following parameters were sys
tematically varied: crash ratio, maximum duration factor, and standard devia
tion of project values. 
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Table 13.5. Distributions for the Generation of the Resource Demand 

Departement Distribution A E{ri) 
Chemistry uniform [2,10] 6 
eADMET exponential [1,5] 0.61 1.64 
Disease Groups exponential [1,7] 0.55 1.82 

The crash ratio CR measures the ratio between the average duration of one 
cycle and the shortest possible cycle duration. The average duration for one 
cycle is 8 weeks and it is obtained if the project is processed in a "standard" 
way. The shortest cycle duration is obtained when all activities of the cycle are 
performed in their modes with shortest duration and the resource capacity is 
not scarce. CR has been set to the levels 1.1, 1.2, and 1.3. I.e. for CR=1.3 the 
cycle duration can be crashed to 6.1 weeks. Higher CR values have two effects: 
First, the cycle duration and thus the project makespan can be shortened which 
allows to create more weighted work within the time horizon of the objective 
function. Second, due to a larger number of modes, there is more scheduling 
flexibility which additionally gives the option to improve the objective function 
value. 

The maximum duration factor MDF is the ratio of the average project 
duration if the project is processed with an average cycle duration and the 
maximum duration of the project as given by the management policy. IVIDF has 
been set to the levels 0.9, 0.8, and 0.7. For larger IVIDF-values the constraints 
(13.4) become harder and thus c.p. the objective function value should decrease. 

SD is the standard deviation of the project values employing a normal 
distribution. SD has been set to levels of 5, 10, and 15. A higher standard 
deviation gives more variability of the project values and thus the opportunity 
to increase the weighted work by performing smart selection and scheduling 
decisions. 

All random numbers were generated by employing the random number gen
erator proposed by Matsumoto and Nishimura (1998). Employing a full facto
rial design with the three independent factors crash ratio CR, maximum duration 
factor ]V[DF, and standard deviation SD and generating 10 replications for each 
combination of the factor levels we obtain 10x3^== 270 instances. 

13.5.2 Results 

13.5.2.1 Solution Methods and Bounds. First, we report on the per
formance obtained by the methods proposed in Section 13.4. We have solved 
all 270 test instances with each (variant of a) method. We always use random 
selection (RAN) as a benchmark. A good priority rule should produce consid-
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erably better results than random selection. The performance of the methods 
is measured by the average deviation from a lower bound (LB) and an upper 
bound (UB), The lower bound for each instance is the best solution obtained by 
all methods. The upper bound is calculated by solving a mixed integer program 
instead of the integer program (13.2) - (13.8). The mixed integer program is 
derived from the integer program by the following relaxations: First, we do 
not schedule activities but determine project intensities. The intensity of each 
project can vary within a range which is given by the shortest and the longest 
processing time of the project as defined by the parameters CR and MDF, re
spectively. A low (high) project intensity corresponds with a low (high) value 
in the objective function and a low (high) resource demand in the constraint. 
Second, for each resource a capacity constraint is not formulated for each period 
but for the whole planning horizon. The mixed integer program selects projects 
and sets intensities for selected projects so that the value is maximized. 

Sequential Method. Table 13.6 gives the performance of the sequential 
method if performed as deterministic single pass (DET) and as biased random 
sampling (BRS) procedure with a sample size of 10 and 100, respectively (cf. 
Kolisch and Hartmann (1999)). For the project selection decision we have the 
ranking VPW y VAL, RAN and for the mode selection we have the ranking EFT 
>- SPT >- RAN. The best results were obtained when applying the VPW-rule 
for the project selection and the EFT-rule for the mode selection. A sampling 
procedure with these two rules does not improve the performance of the method 
considerably. 

Table 13.6. Results for the Sequential Method 

Selection of Performance 
Method # solutions Project 

DET 

DET 

DET 

DET ] 

DET 

DET 

DET 

DET 

DET ] 

RAN 

RAN 

RAN 

[ VAL 

[ VAL 

VAL 

I VPW 

VPW 

VPW 

Mode 

EFT 

SPT 

RAN 

EFT 

SPT 

RAN 

EFT 

SPT 

RAN 

LB 

12.42 

12.57 

13.93 

11.54 

12.61 

14.20 

9.76 

11.82 

13.19 

UB 

19.22 

19.52 

20.61 

18.40 

19.40 

20.85 

16.76 

18.66 

19.93 

BRS 10 VPW EFT 8.78 18.56 
BRS 100 VPW EFT 8.01 15.32 
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Concurrent Method. For all test instances, the concurrent method has been 
employed with 11 runs where the portfolio size has been decreased from 100 
(which is the number of projects available) to 90. With this basic setting, we have 
first tested different values of 6 in order to adjust the hybrid schedule generation 
scheme properly. Based on the results obtained with the Sequential Method, 
the project and activity selection has been set to VPW, and the mode selection 
has been performed with the EFT-rule. Table 13.7 gives the results of this 
study. The following can be observed: The parallel scheduling scheme (6 — 0) 
clearly outperforms the serial scheduling scheme {6 — 1). The next observation 
is that the hybrid schedule generation scheme with 9 ^ 0.3 produces better 
results than the parallel scheduling scheme. This result is in line with findings 
documented in the literature for the resource constrained project scheduling 
problem (RCPSP) where a single project has to be scheduled such that the 
makespan is minimized. Leon and Ramamoorthy (1995) as well as Naphade 
et al (1997) have found out that multi-pass methods such as the concurrent 
method produce the best results with 0 < 0 < 0.3. Hence, we used the hybrid 
schedule generation scheme with Q — 0.3 for the remainder of the study. 

Table 13.7, Results of the Concurrent Method for Varying Q 

0 0.3 

LB 2.77 1.01 

UB 10.33 8.71 

(9 

0.6 

4.71 

12.12 

0.9 

111 

14.93 

1 

9.76 

16.76 

Table 13.8 shows the performance of the concurrent method for the different 
project, activity, and mode selection rules proposed. The base method is as 
follows: Q — 0.3, project and activity selection with VPW, and mode selection 
with EFT. For the project and the activity selection rule we can see that both 
rules, VAL and VPW outperform RAN and that the best method is clearly VPW. 
The same holds for the mode selection rules EFT and SPT if compared with 
RAN where EFT gives the best results. 

13.5.2.2 Problem Parameters. We will now analyze the impact of the 
problem parameters MDF, CR, and SD on the performance of the best heuristic, 
i.e. the concurrent method with d — 0.3, EFT mode selection and VPW project 
and activity selection, respectively. 

Maximum Duration Factor. Table 13.9 shows the impact of parameter 
MDF by reporting the average objective function value and the deviation from 
the average objective function value for each instance subset and for all in-
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Table 13.8. Results of the Concurrent Method for Varying Project, Activity, and Mode Selection 
Rules 

Selection 

Project 

Activity 

Mode 

LB 

UB 

LB 

UB 

LB 

UB 

Priority Rule 

VPW 

LOl 

8.71 

LOl 

8.71 

VAL 

1.99 

9.62 

3.27 

10.79 

Priority Rule 

EFT 

1.01 

8.71 

SPT 

2.33 

9.87 

RAN 

4.00 

11.47 

6.88 

14.12 

RAN 

7.13 

14.34 

Stances. It can be seen that shorter maximum project durations do not affect the 
objective function. Hence, the management policy to prevent project delay by 
setting maximum project duration can be applied without sacrificing objective 
function value. But the shorter maximum project durations force the list proce
dure presented in Section 13.4.3 to be invoked more often which increases the 
computation time by a factor of 5. Two factors might cause the observed effects. 
First, the concurrent method is capable of selecting high value projects which 
are then scheduled in a more compact manner and second, the list-based shift 
method is capable to produce feasible schedules for tighter maximum project 
duration if more computer time is employed. 

Table 13.9. Impact of the Maximum Duration Factor (MDF) 

MDF 
0.7 0.8 0.9 

Avg. Objective Function Value 3002.08 3005.56 3000.90 3002.84 

Deviation from avg. Value -0.02 0.09 -0.06 

Crash Ratio. Table 13.10 gives the impact of the factor CR. It can be 
seen that with increasing crash ratio the objective function value raises as well. 
Hence, the conjecture made above is approved: Allowing shorter cycle times 
creates more weighted work by reducing the makespan of research projects and 
increasing scheduling flexibility. The volume for improvement is 6,68 %. 
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Table 13.10. Impact of the Crash Ratio (CR) 

CR 

1.1 1.2 1.3 

Avg. Objective Function Value 2904.68 2998.13 3105.72 3002.84 

Deviation from avg. Value -3.26 -0.15 3.42 

Standard Deviation. Table 13.11 gives the impact of the standard deviation 
SD. It can be seen that a greater diversity of project values as measured by a 
higher standard deviation allows the concurrent method a better choice of high 
value projects. The volume for improvement is 2.38 %. 

Table 13.11. Impact of the Standard Deviation (SD) 

SD 
10 15 

Avg. Objective Function Value 2963.08 3010.69 3034.77 3002.84 

Deviation from avg. Value -1.32 0.26 1.06 

13.6 Summary 

We have addressed the topic of selection and scheduling of pharmaceuti
cal research projects within the lead optimization phase. The problem has 
been modeled as static multi-project multi-mode resource-constrained project 
scheduling problem. We have proposed two solution procedures: the sequential 
and the concurrent selection and scheduling method. Based on an experimen
tal evaluation we show that the concurrent method produces superior results. 
From the management point of view we can point out that a higher variabil
ity of project values and an enlargement of the mode set towards modes with 
shorter activity duration and higher resource demand open the opportunity for 
generating more objective function value. 
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Abstract 
Grids link together computers, data, sensors, large scale scientific instruments, 

visualization systems, networks and people. They can provide very large pools 
of computer resources, enable distributed collaborations and deliver increased 
efficiency and on-demand computing capabilities. The complexity of Grids on 
one hand and the requirements towards performance and capability on the other 
hand call for efficient resource management and scheduling mechanisms. Such 
mechanisms must take into account not only the hardware and software resources, 
user jobs and applications, but also policies of the resource owners. Policies usu
ally describe cost models for the resource usage, security mechanisms, quality 
of service of resource provisioning etc. The problem of scheduling jobs in real 
Grid environments is very difficult. Due to lack of time characteristics of jobs, 
and difficulties in characterizing the overall system, traditional OR techniques 
usually fail or achieve very weak results. Usually, best effort scheduling is the 
best option. There are, however, some ways to deal with the problems described 
above. 

The main goal of this paper it to present some practical issues of scheduling 
Grid jobs. Methods and techniques described in the paper are used in a Grid 
scheduling system, called GRMS (Grid Resource Management System) develo
ped at Poznan Supercomputing and Networking Center. GRMS is widely used 
in many Grid infrastructures worldwide. 

Keywords: Grid computing, Grid resource management and scheduling, multicriteria deci
sion support. 
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14.1 Introduction 

Grid computing can be defined as coordinated resource sharing and prob
lem solving in dynamic, multi-institutional collaborations. More simply, Grid 
computing typically involves using many resources (compute, data, I/O, instru
ments, etc.) to solve a single, large problem that could not be performed on any 
one resource. Often Grid computing requires the use of specialized middle
ware to mitigate the complexity of integrating of distributed resources within 
an Enterprise or as a public collaboration. 

Generally, Grid resource management and scheduling is defined as the pro
cess of identifying requirements, matching resources to applications, allocating 
those resources, and scheduling and monitoring Grid resources over time in or
der to run Grid applications as efficiently as possible. Grid applications compete 
for resources that are very different in nature, including processors, data, scien
tific instruments, networks, and other services. Complicating this situation is 
the general lack of data available about the current system and the competing 
needs of users, resource owners, and administrators of the system. 

Grids are becoming almost commonplace today, with many projects using 
them for production runs. The initial challenges of Grid computing-how to 
run a job, how to transfer large files, how to manage multiple user accounts on 
different systems-have been resolved to first order, so users and researchers can 
now address the issues that will allow more efficient use of the resources. 

While Grids have become almost commonplace, the use of good Grid re
source management tools is far from ubiquitous because of the many open issues 
of the field. Some of the issues include: 

• Multiple layers of schedulers. Grid resource management involves 
many players and possibly several different layers of schedulers. At the 
highest level are Grid-level schedulers that may have a more general 
view of the resources but are very "far away" from the resources where 
the application will eventually run. At the lowest level is a local resource 
management system that manages a specific resource or set of resources. 
Other layers may be in between these, for example one to handle a set 
of resources specific to a project. At every level additional people and 
software must be considered. 

Lack of control over resources. Grid schedulers aren't local resource 
management systems; a Grid-level scheduler may not (usually does not) 
have ownership or control over the resources. Most of the time, jobs will 
be submitted from a higher-level Grid scheduler to a local set of resources 
with no more permissions than the user would have. This lack of control 
is one of the challenges that must be addressed. 
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• Shared resources and variance. Related to the lack of control is the 
lack of dedicated access to the resources. Most resources in a Grid 
environment are shared among many users and projects. Such sharing 
results in a high degree of variance and unpredictability in the capacity of 
the resources available for use. The heterogeneous nature of the resources 
involved also plays a role in varied capacity. 

• Conflicting performance goals. Grid resources are used to improve 
the performance of an application. Often, however, resource owners and 
users have different performance goals: from optimizing the performance 
of a single application for a specified cost goal to getting the best system 
throughput or minimizing response time. In addition, most resources 
have local policies that must be taken into account. Indeed, the policy 
issue has gained increasing attention: How much of the scheduling pro
cess should be done by the system and how much by the user? What are 
the rules for each? 

• Missing time characteristics of jobs and tasks to be scheduled. In 
Grids it is not possible to know most of time characteristics of jobs a 
priori. Time characteristics depend strongly on the performance and 
workload of a resource that is finally assigned to a job. The exact times 
are known only after the job is finished. Sometimes the users are able to 
give an estimate for their jobs. However, these estimates are very often 
far from the actual execution times. Time prediction methods might be 
also used to minimize the impact of this issue on a schedule quality. 
Another issue is a job ready time parameter. The job ready time depends 
on performance of the network and size of the job in terms of data that 
has to be moved from a local resource to a destination resource. The size 
of the data is also very often not know a priori. Very often, especially 
when we deal with jobs with precedence constraints, that size of the data 
to be moved from e.g. job n to job n+1 is known after the job n is finished 
and all the files this job generates are written to a disk. 

• Lack of resource reservation mechanisms. Another issue is lack of 
resource reservation mechanisms for most of the resources in Grids. Al
though there is a lot of work being done in this area there are still huge 
limitations and technical constraints when it comes to resource reserva
tion mechanisms. We must say that most of the local resource manage
ment systems, those that are responsible for scheduling on destination 
resource, i.e. a resource which actually runs the job do not support re
source reservation for remote Grid schedulers. Usually the only way to 
make a resource reservation is to make a phone call to a resource admin. 
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In this paper we will focus on the last two issues: missing time characteristics 
of jobs to be scheduled and lack of reservation mechanism in Grid systems. 
Generally, there are a few main motivations behind an adoption of resource 
reservation and prediction mechanisms in Grid resource management. First, 
additional knowledge about job start and completion times helps to improve an 
efficiency of scheduling in Grid since a Grid resource broker can make more 
appropriate decisions. These mechanisms are also essential for providing a 
Quality of Service (QoS) for end-users. This is important especially for certain 
classes of applications and scenarios, e.g. interactive applications or scheduling 
with deadlines, and if resource usage is charged because end-users want to know 
what they are charged for. In addition, use of knowledge about job start and 
completion times enables a Grid resource broker to schedule the whole set of 
jobs at the same time that should lead to a better overall allocation of resources. 

Having the above as a main motivations behind this paper we will go further 
and will present the whole problem as a multicriteria choice problem, in which a 
scheduler, or resource broker, choses one of many schedules generated upfront, 
while scheduling some sets of jobs waiting in the system global queue. 

The issues of Grid resource management and scheduling have been addressed 
only in part by the relevant literature in the field of Grid computing. The first 
book on Grid computing. The Grid: Blueprint for a New Computing Infras
tructure by Foster and Kesselman, and its updated second edition, available in 
2004, are a good starting point for any researcher new to the field. In addi
tion, the book by Berman, Fox, and Hey entitled Grid Computing: Making the 
Global Infrastructure a Reality, presents a collection of leading papers in the 
area, including the "Anatomy of the Grid" and the "Physiology of the Grid", two 
papers that provide an overview of the shape, structure, and underlying func
tionality of Grid computing. The most complete set of approaches to resource 
management in Grids was presented in the book by J. Nabrzyski, J. Schopf and 
J. Weglarz entitled Grid Resource Management: State of the Art and Future 
Trends, Kluwer Academic Publishers, November 2003 (Nabrzyski et al (2003)). 
Research results on the topic of resource management in Grid environments are 
presented regularly in selected sessions of several conferences, including Su-
percomputing (SC), the IEEE Symposium on High-Performance Distributed 
Computing (HPDC), and the Job Scheduling Strategies for Parallel Processing 
workshop, as well as in the Global Grid Forum, a standards body for the field. 
The chapter is structured as follows: Section 2 gives an overview of resource 
reservation in Grid systems. Section 3 shows how prediction mechanisms can 
help with scheduling jobs in Grid environment. Next, in Section 4 we present 
a scenario of Grid job scheduling with predictions and resource reservations. 
We introduce a general model of multicriteria choice problem, which is one of 
the scheduling strategies in the GRMS (Grid Resource Management System) 
scheduling framework. GRMS itself is described in Section 5 and its practical 
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usage example in Section 6. We conclude with the summary section in which 
we also sketch out our future research. 

14.2 Resource Reservation in Grid Systems 

Why is resource reservation in Grids so important? Let us give an example 
showing the main issues of resource reservation in Grids. A possible Grid 
scheduling scenario is presented in the Figure 1 below. The picture is not 
very much different from classical scheduling of machines. Of course none of 
time characteristics given in the picture are known a priori in Grids, as already 
explained above. 

"iii^j 

c «ni»;ieiscy 

Figure 14.1. Most common Grid scenario: resource reservation is not supported by resources. 

In the example a resource is allocated to a job for an unspecified amount 
of time, starting at the time the job-to-resource assignment is decided. As far 
as the information available at scheduler is concerned, the resource remains 
allocated to a job until the scheduler is informed about the job completion. The 
scheduler has to wait for a release message from the resource before it can 
allocate the resource to a new job. When a release message is received at the 
scheduler, an allocation message is sent to the application informing the user-
side of where the available data for the execution of the job should be sent. The 
data are then transferred, which takes some additional communication time. 
During the transmission of the allocation message and during the transmission 
of the data to the resource, the resource remains (unnecessarily) inactive. When 
all the data are submitted the job begins execution on the resource. After 
the job is completed, the resource remains again (unnecessarily) inactive until 
the scheduler receives the release message so that it can then allocate it to 
another job. The figure shows actually the scheduling scenario when no resource 
reservation is applied. 
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We denote by 2tp the average time that elapses between the time the resource 
sends the release message to the scheduler to inform it about the completion 
of a job until the time all the data required to execute the next job arrive at 
the resource. We also denote by x the average execution time of a job. It is 
then clear that Grid scheduling without resource reservation is performed the 
efficiency with which a resource is used is at most 

e = 

Note that the efficiency factor e may be considerably smaller than 1, and it also 
gets smaller as X decreases or as 2tp increases (2tp is at least as large as the 
roundtrip propagation communication delay). In order for the Grid to be useful 
for a number of different applications, we would like to be able to use fine grain 
computation (where x is small) and also be able to use remote resources (where 
2tp is large), both of which correspond to small values for the efficiency factor 
e. 

This scenario shows also that some additional overhead must be taken into 
account when scheduling on the Grid. This overhead is caused by additional 
communication that must take place between the scheduler and the jobs that 
are to be run on potentially remote machines. 

Let us now see how the efficiency factor e would look like with resource 
reservation supported by the remote resource. In the example we assume that 
a remote resource can be reserved in advance. It means we know when the 
resource will be fully available for our job so we can send all the data to be 
placed on the resource when the time to run a job comes. 

The main idea behind advance/timed resource reservation is that the resources 
are reserved only for the time during which they are actually used for a job. 
In order to do so, the scheduler needs to reserve some execution time in the 
resources in advance. Of course we still do not know exactly how long will it 
take to run a particular job, but resource reservation maximizes the efficiency 
of the resources and the efficiency factor e can get very close to 1. 

14.3 Scheduling Grid Jobs Using Prediction Information 
Most of existing available resource management tools use general approa

ches such as load balancing (Shirazi et al (1995)), matchmaking (e.g. Condor 
Condor (www)), computational economy models (Abramson et al (2002)), or 
multi- criteria resource selection (Kurowski et al (2000b)). In practice, the eval
uation and selection of resources is based on their characteristics such as load, 
CPU speed, number of jobs in the queue etc. However, these parameters can 
be related to the actual performance of applications, which may be not known 
a priori by end users. Users usually do not know what is the exact influence of 
these parameters on job start (e.g. local queue waiting) and execution times at 
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Task 2 

Efficiency can be close to 1 Time I 

Figure 14.2. Resource reservations when advance and timed reservations are used. 

different machines. Therefore, available estimations of job start and run times 
may significantly increase a quality of scheduling and, consequently, the overall 
performance. Nevertheless, due to incomplete and imprecise information, re
sults of performance prediction methods may be accompanied by considerable 
errors (see Gibbons (1997), Smith et al (1999)). The more distributed, het
erogeneous, and complex environment the bigger prediction errors may occur. 
Thus, these errors should be estimated and taken into consideration by a Grid 
scheduler while evaluating available resources or schedules. Our approach 
to estimating job start and run times has been presented in (Kurowski et al 
(2005)). This method takes into account estimated prediction errors to improve 
decisions of the Grid scheduler and to limit their negative influence on overall 
performance. In the method, the predicted job start- and run-times are gener
ated by the Grid Prediction System (GPRES), developed in our collaboration 
with Wroclaw Supercomputing Center. Prediction techniques can be applied 
in a wide area of issues related to Grid computing: from the prediction of the 
resource performance in a near future to the prediction of the queue wait time 
(Smith et al (1999)). Most of these predictions are applied to resource selection 
and job scheduling. Prediction techniques can be classified into statistical, Al, 
and analytical. Statistical approached are based on applications that have been 
previously executed. These can be time series analysis (Dinda (2001), Wolski et 
al (1999)), categorization (Smith et al (1999), Downey (1997), Gibbons (1997), 
Kurowski et al (2000a)), and in particular correlation and regression have been 
used to find dependencies between job parameters. Analytical techniques con-
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struct models by hand (Schopf and Berman (1998)) or using automatic code 
instrumentation (Taylor et al (2001)), AI techniques use historical data and 
try to learn and classify the information in order to predict the future perfor
mance of resources or applications. AI techniques that can be used here are, 
for instance, classification (decision trees (Quinlan (1986)), neural networks 
(Rumelhart et al (1986))), clustering (k-means algorithm (Darken and Moody 
(1990))). Predicted times are used to predict resource information to guide 
scheduling decisions. Such scheduling process can be oriented to load bal
ancing when executing in heterogeneous resources (Dail (2001), Figuiera and 
Bermann (2001)), or resource selection (Kurowski et al (2000b)) or used when 
multiple requests are provided (see Czajkowski et al (1997)). For instance, in 
Liu et al (2002) the 10-second ahead predicted CPU information is provided 
by NWS (Wolski (1997), Wolski et al (1999)). Many local scheduling policies, 
such as Least Work First or Backfilling, also use user provided or predicted exe
cution time to make scheduling decisions (Lifka (1995), Feitelson and Mu'alem 
Weil (1998), Feitelson (www)). 

In the approach presented in Kurowski et al (2005) we use the GPRES Expert 
System, which uses very simple template approach for predictions (Smith et al 
(1999)). The template is the set of job attributes, which are used to evaluate jobs 
similarity. Attributes for templates are generated from historical information 
after tests. Prediction process consists of several steps: 

1 Initialize empty job category set Cz 

2 For every template Ti eT 

• generate job category Ci 

• add Ci to Cz 

3 Initialize empty decision category set Cd 

4 For every category Q to Cz 

• select categories from Knowledge Base corresponding to category 
Ci 

• add categories to Cd 

5 select best category from Cd 

Where: d - decision attribute, T - template set, C - category set. 
The method of selecting the best rule (category) can be set as a parameter 

to prediction module. Actually there are avaliable two methods in GPRES. 
The first one is based on number of condition attributes in rules. The most 
specific rule is chosen, i.e. the rule which has attributes of the job matched to 
the condition in the best way. The second strategy prefers a rule generated from 
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the largest amount of history jobs. GPRES allows to mix these two methods in 
the way that if the first one gives still several rules the second is used. If both 
methods don?t give the final selection, the rules are combined and arythmetic 
mean of decision attribute is returned. Experiments presented in Kurowski et 
al (2005) proved that use of knowledge about estimated job completion times 
may significantly improve resource selection decisions made by Grid scheduler 
and, in this way, the performance of applications and the whole Grid system. 
Nevertheless, estimated job completion times may be insufficient for effective 
resource management decisions. Results of these decisions may be further 
improved by taking the advantage of information about possible uncertainty and 
inaccuracy of prediction. In the next section we will present the multicriteria 
Grid job scheduling model in which both, resource reservation and prediction 
mechanisms are used to improve scheduling performance. 

14.4 Grid Job Scheduling with Predictions and Resource 
Reservations 

Figure 3 presents a general Grid resource management scenario with resource 
reservation and time prediction mechanisms. 

n User CUser 1 

Grid Resource 
Broker ^"' 

Performance 
Prediction 

System 

/ 
Resource 
Provider 

Ri.-.soiifcc* 

^ i 
Kosourcc 
Provider 

Figure 14.3. Grid resource management using resource reservation and performance prediction 
mechanisms 

Resource broker after receiving resource requests from users (step 1) asks 
resource providers about their offers. Offers are returned in a form of lists of 
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amounts of available resource units in various time slots (step 2). Providing an 
offer a resource provider agrees to initially reserve resources for a certain period. 
If a reservation is not confirmed before the end of this period the reservation 
is canceled. This approach guarantees that resources will not be reserved by 
other consumers. In the next step a performance prediction system provides 
knowledge about estimated job start and completion times (3). The prediction 
system calculate estimations based on historical information containing traces 
of previous job submissions. Following this a resource broker filters offers 
according to constraints defined by end-user, choses the best schedule (4) and 
returns this information to users or software acting on behalf of them (5). For 
users that have accepted a schedule given by the broker the reservations are 
confirmed with appropriate providers (6). 

14 A.1 Model of the Scenario 

In this section we define more formally a model adopted for the described 
scenario. End-users from a finite set U = ^1,^2, ••, u\u\ ^^^^ to run their jobs 
J = ji)j2) "",j\j\ on resources belonging to resource providers from the set 
RP — rpi^rp2^ "")'^P\RP\' For ^^ch job resource requirements are defined. 
They are modeled as a set of hard constraints that must be met as explained in 
the previous sections. They consist of amounts of resource units RU^^^ that 
must be reserved for a given job (e.g. 3 CPUs, 1GB of disc space, etc.) and 
required resource attributes Q^^^ (e.g. CPU speed at least ITFlops). 

In this model we assume that a scheduler has knowledge about job start 
times. Thus, each resource provider must provide information about its offers 
in a form of lists containing available resource units in certain time slots in a 
given time period (to.tf): RTi{to,tf) = rtii,rti2, . . . ,rtj/,, k = \RTi\, i ^ 
1 , . . . , \RP\,Ttii, = (^f^^S tf''^, RUik, Qik), where RUik = {ruikuruik2^ • • •, 
^^ik\RUik\)^ and ruiki is an amount of the available resource unit / for resource 
provider i and time slot k (e.g. 100MB of free memory) that can be reserved 
for an end-user. Qj^ is a set of resource attributes as described in the previous 
sections (e.g. CPU speed, operating system, etc.). 

In addition to knowledge of deterministic (guaranteed) job start times, in
formation about estimated job execution and completion times is assumed to 
be available as explained above. Therefore, the Grid scheduler can take the 
advantage of the list of estimated job execution times, which can be calculated 
by the prediction system on the basis of resource attributes provided by each 
resource provider for a certain reservation: et^^^^ where i = 1,..., | J|, j = 
1,..., \RP\j k — 1,..., \RTi\. Estimations are calculated on the basis of Qik 
- a specification of parameters describing a resource belonging to a given re
source provider. Since job execution times are available and we assume that 
reserved jobs can start earlier if there is such a possibility, real job start times 
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can also be estimated. These times, denoted as et^Jj^^ where z = l , . . . , | J | , j = 
1,..., \RP\, k — 1,..., \RTi\, may be significantly shorter than the guaranteed 
ones. They can be provided either by a prediction system if this information 
cannot be taken from resource providers or by resource providers themselves 
(in the latter a broker or prediction system should estimate possible errors of 
predictions delivered by resource providers). 

14,4.2 Multicriteria Choice Problem 
The problem to be solved is to find the best time slot (resource providers' 

offer) for each job according to end-user's requirements. Each assignment of 
a job to a time slot (j —^ rt) is a candidate solution (also called action using 
a decision support terminology) and denoted as a e A, where A is a set of all 
candidate solutions. Requirements consist of constraints that must be satisfied 
(hard constraints) and preferences concerning a choice of the best solution (soft 
constraints). 

In the first step offers of resource providers must be filtered according to hard 
constraints defined by an end-user. This step can be performed by resource 
providers themselves since they retrieve information about job requirements 
from a resource broker in order to decide according to their local policies if 
there are any offers for a job. To this end two issues are cross-checked. For 
each job k and offer rtij^i = 1,..., \RP\^j — 1,..., \RTi\ a resource broker 
(or provider) checks if requirements Q^^ ,̂ k — 1,..., | J | concerning resource 
attributes Qij are met, i.e. whether yq^^ieQij {Qiji oc q^i^)- oc denotes a relation 
between resource attribute {qiji) and a job requirement concerning this attribute 
{q^i^). This relation occurs if and only xiqiji matches q^^j^, e.g. is less, equal or 
greater than required values depending on particular attributes. In the second 
step it is checked if a sufficient amount of resource units can be reserved, i.e. 
whether yruijmeRUij{ruijm > rUff^)- It can be done again by a resource 
provider or a resource broker. 

In addition to hard constraints (C) that must be satisfied, a Grid resource 
broker needs criteria (soft constraints) that define how the best resources should 
be selected. End-user can specify more than one soft constraint, e.g. time and 
cost. To handle such requests modeling and exploitation of multi-criteria users' 
preferences is needed. 

Various models of preference modeling can be adopted in Grid resource 
management (Greco et al (1998)). In general we can distinguish two ways of 
preferences acquisition: (i) preferences are given explicitly by an end-user, e.g. 
in the form of criteria weights or criteria ranking, and (ii) end-users' prefer
ences are discovered on the basis of their decisions (comparison of potential 
solutions). Which method should be used depends on two major aspects: first, 
whether users are familiar with basic concepts of decision support theory and 



356 PERSPECTIVES IN MODERN PROJECT SCHEDULING 

Table 14.1, Criteria 

No Symbol Description 

On gt' 

Cr2 

Crz 

cost 

mean et̂ "̂ "̂" 

Cr4 stdev et^ 

Cr5 

Ore 
Cry 

Crs 

Org 

Crio 

max er"̂ "̂" 

err et^^^^ 

mean ê "*"̂ * 

stdev ê *̂̂ *̂ 

max et̂ *"^* 

err et̂ *^^* 

Guaranteed job start time (according to an 

agreement concerning advance resource reservation) 

Total cost of reservation 

Estimated mean job execution time (based on job 

description and parameters of selected resource) 

Estimated standard deviation of job execution 

time 

Estimated maximal value of job execution time 

Estimated prediction error of job execution time 

Estimated mean job start time (based on 

estimated execution times of previously scheduled jobs) 

Estimated standard deviation of job start time 

Estimated maximal value of job start time 

Estimated prediction error of job start time 

aware how to express preferences and, second, whether their preferences are 
relatively stable. If preferences change for each job submission, e.g. due to dif
ferent application requirements or certain unpredictable aspects, an automated 
learning of users' preferences is very difficult. Then methods based on utility 
theory or lexicographic order of criteria can be applied. 

In the presented model criteria considered in the decision support process are 
time and cost related. Nevertheless, in addition to the main criteria: guaranteed 
(reserved) job start time and cost, criteria that define estimated job execution 
time and start time are also taken into consideration. For both of these met
rics the imprecision measures such as standard deviation, maximal value, and 
estimated prediction error are defined (as another criteria). The estimated ex
ecution time let differentiate the quality of available resources. The estimated 
start time can be significantly less then the guaranteed one since we assumed in 
the model that resource providers can shift jobs if previous ones have finished 
earlier. These values can be returned by a prediction system but also provided 
by a resource provider itself. The complete list of criteria used in the model is 
presented in Table 1. Of course, additional criteria can be easily added without 
reducing the generality of the model. 

Although the set of criteria is quite big, in most cases only a subset of them 
is used. For instance, probably only one of prediction imprecision measures 
is relevant at the same time for an end-user. As mentioned above, different 
methods of preference modeling can be applied, however, here we present a 
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procedure of resource selection using a utility function. For each pair: a job 
and time slot a utility function is calculated according to the formula: 

\CR\ 

Fijk^rtij) = Y^ Wkifi{rtij), (14.1) 
/=o 

[maxki - miUki) 

where z = 1,..., |J?P|, j = 1,..., |i?Ti|,/c = 1,...,|J|, w^i is a normalized 
weight of /̂ ^ criterion concerning job k, and |Ci?| is a number of criteria (in 
this case \CR\ = 10) 

The maxk and miuk values are essential for appropriate scaling of criteria 
values. The function (1) is the simplest utility function consisting of one linear 
section. The advantage of this preference model is that this can be relatively 
easily and quickly defined by an end-user and calculation of utility function is 
immediate. Using this function a resource broker evaluates resources for one 
job only. 

Based on the definitions, notations, and considerations described above the 
problem can be generally defined in the form of a multi-criteria decision support 
problem as follows: 

mm{/i(a),/2(a),...,/|C7?|(tt)}, (14.3) 

s.t. 

where QijieQij, ql^'^eQl^'^, I = 1,..., |Q| 

^ruijmeRUij{rUm > rUm"^), 

where m — 1,..., \RU\ 

a = j -^ rtij.i ^ l , . . . , | i?P| , j = \,.,,,\RTi\ 

14.4.3 Scheduling of Job Sets 
Knowledge about job completion times gives to a Grid resource broker a 

possibility to schedule more that one job at the same time. Doing this a Grid 
resource broker can try to optimize a whole schedule like in classical scheduling 
approaches. Otherwise, using online scheduling, an order of jobs in a queue 
may strongly influence a quality of a schedule. Additionally, if a broker sche
dules multiple jobs at once resource providers are asked to make preliminary 
reservations of their resources only once for all jobs. Note that in the presented 
model the main goal is to maximize a total satisfaction of end-users instead of 
fixed global criteria. 
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When multiple jobs are being scheduled a resource broker must get resource 
providers' offers not only for a single job. Therefore, resource provider should 
specify jobs that can be run in given time slots. Thus, for each time slot the 
following list must be provided: JT{rtij) = {jij2j •••̂  j | j | } - Note that one 
time slot can be reserved for multiple jobs if there are enough resource units 
available in this slot. 

A consequence of scheduling sets of jobs, which have come in a certain time 
interval, is a need for solutions that satisfy in the best possible way objectives of 
multiple end-users. Therefore, a total users' satisfaction must be evaluated. To 
this end, preferences of all end-users have to be aggregated into a measure that 
allows a resource broker to select the best schedule. A method of aggregation 
depends on an approach used for modeling user's preferences. If a utility 
function is used for criteria aggregation, an evaluation of the whole schedule is 
performed according to the following formula: 

1 '^' 
FT{J,RT) - —y^FiJk^rtij), (14.4) 

where i = 1,..., \RP\^j = 1,..., |i?T^|, /c = 1,..., \J\ and rtij is a time slot 
chosen for job k. 

In order to make this aggregation fair and reasonable mirikl and maxkl 
values in formula (2) must be specified carefully. They should define very bad 
and very good values of a criterion respectively from an end-user's perspective. 
Otherwise, if for example minimal and maximal values from a set of candidate 
solutions are taken as mirikl and maxkU utility functions of different users 
are totally incomparable. In spite of the same values of these functions for two 
solutions evaluated by two different users, the real assessment of these solutions 
may significantly differ. Therefore, if mm/./ and maxkl cannot be accurately 
defined other methods of aggregation should be used instead. For instance, 
if dependencies between solutions are given in a form of partial preorder of 
solutions the aggregation procedure based on Net Flow Score (Greco et al 
(1998)) can be applied. 

The formulation of this problem differs from that defined for single-job 
scheduling described above. In this case a candidate solution is an assign
ment of jobs to time slots offered by resource providers. Generally multiple 
jobs can be assigned to one time slot. Additionally resource providers should 
return information which jobs can be assigned to a given time slot. 

min{/i(a),/2(a),...,/ |CH|(a)}, (14.5) 

s.t. 
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where QijieQij, q]^{^eQ"^"^, I ^ 1,..., \Q\ 

where ruijm^RUij.ru^^^RUl^'^, m = 1,..., \RU\ 

'^{jk-rUj)eaJkeJT{rtij) 

a = {ji -^ rtij,J2 -> rtij,..., j | j | ~> rUj], ie{l,..., |i?P|}, 
je{l , . . , | i?r , |} , fc6{l , , . , | J |} 

The set a is a candidate solution (decision action). It consists of an ordered 
list of time slots assigned to every single job that belongs to the set J. The 
first constraint ensures that all time slots meet requirements of assigned jobs 
concerning resource attributes. The goal of the second constraint is to guarantee 
that sums of resource units that have to be allocated to assigned jobs do not 
exceed those offered by resource providers. As explained earlier Qij and RUij 
mean attributes of resources and amounts of resource units offered by resource 
providers respectively. Q'^^^ and RU^^^ are corresponding job requirements 
concerning these values. 

14,5 GRMS - An Example Grid Scheduling Framework 

GRMS, (Kurowski et al (2001), Kurowski et al (2003), Kurowski et al 
(2004)), is an open source meta-scheduling system for large scale distributed 
computing infrastructures (Allen et al (2003)), developed at Poznan Super-
computing and Networking Center. Based on the dynamic resource selection, 
mapping and advanced Grid scheduling methodologies, it has been tailored to 
deal with job and resource management challenges in Grid environments, i.e. 
load-balancing among clusters, setting up execution environments before and 
after job execution, remote job submission and control, file staging, and more. 
GRMS was developed entirely in Java and thus can be installed on various 
kinds of operating systems and resources. GRMS is infrastructure indepen
dent and can be easily integrated with various Grid infrastructures, including 
all versions of Globus (Globus (www)), as well as enterprise Grids based on 
DRMAA-based infrastructures, including Condor, Sun NIGE (drmaa (www)) 
GRMS is able to take advantage of other middleware services, e.g. the Grid 
Authorization Service (GAS) or Replica Management Services, as well as to 
interoperate with infrastructure monitoring tools such as the GridLab's Mercury 
Monitoring System. One of the main assumptions for GRMS is to perform re
mote job control and management in the way that satisfies users' (job owners) 
requirements (Kurowski et al (2003)). 

The main GRMS functionality includes: queuing submitted job, finding the 
best resources according to users' preferences, staging in/out files, submitting 
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Figure 14.4. Detailed view of GRMS 

job to, potentially remote computational resources, job migration, job canceling, 
logging, supporting workflow jobs. 

Fig. 14.4 shows a more detailed view of GridLab GRMS with all its main 
modules and the Grid specific services, like Replica Management, File Move
ment and Adaptive Components. 

As it is shown on fig. 14.4, GRMS consists of a set of various modules, 
including: 

• Broker Module. The aim of the Broker Module is to control the whole 
process of resource and job management within the GRMS. This module 
steers a flow of requests to the GRMS and is also responsible for appro
priate cooperation with other modules. Broker contains basic scheduling 
and policy strategies: matchmaking and multi-criteria matchmaking. The 
first strategy is a relatively simple but in fact very efficient approach for 
managing resources on which advanced reservation is not possible. The 
second strategy allows more flexible and accurate resource selections ac
cording to both users and administrator?s requirements and preferences. 
These two strategies can be easily modified and new scheduling and pol
icy modules can be integrated as well. 

Resource Discovery Module. The Resource Discovery module monitors 
the status of distributed resources and therefore uses a flexible hierarchical 
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access to both central and local information services. This module uses 
various techniques to discover and get an efficient access to up-to-date and 
accurate (both static and dynamic) information about jobs and resources. 
The goal of Resource Discovery it to deliver all information in a form and 
on time required by the Broker and its scheduling and policy strategies. 

• Job Manager Module. The Job Manager module is responsible for mon
itoring of job status changes within the GRMS and then storing informa
tion in a database together with many additional parameters including 
resource requirements of jobs, user names, job IDs, submission times, 
pending times, execution times, jobmanagers to which jobs were sub
mitted, history of migration if jobs have been migrated, etc. Due to the 
importance of historic information, especially in multi-site or large scale 
resource management systems, the GRMS provides also the interface for 
users and administrator to receive information about past GRMS actives. 
The tracking of historic resource utilization for all users results in the abil
ity to modify job priorities, ensuring a balanced access, and optimizing 
administrator criteria (e.g. job throughput or turnaround time). 

• Job Queue All the user requests come into the Job Queue and wait 
processing. Jobs in the queue can be scheduled one by one, in a simplest 
case (first in first out), or in collections, i.e. a number of jobs, or all the 
jobs, are scheduled in parallel. The Job Queue can be distributed across 
various Grid domains to allow multi-domain scheduling. In such case 
each domain has its own Broker instance. All the Brokers can transfer 
jobs between all the domains. The overall system state is controlled by 
inter-broker communication mechanisms. 

• Job Registry is responsible for maintaining the database of all jobs sub
mitted to GRMS and all information concerning those jobs. 

External to GRMS is a prediction system. The idea here was to be able to 
communicate with external prediction services, or systems and so far GRMS has 
been integrated with GPRES Prediction Expert System mentioned in previous 
section. 

14.5,1 Resource Reservation in GRMS 

All information related to time requirements of interactive jobs is passed 
to the system during the job submission process as a part of job description. 
Every job to be submitted can have an optional section that defines in a formal 
way the time requirements for the job to be computed. This gives a user the 
possibility to build descriptions of advanced execution schedule in a simple 
and flexible way. The "execution time" section consists of three subsections 
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<grmsjob appid = "interactive_exaitiple"> 
<siinplejob> 

<executatole type="single" count="l"> 
<file naiiie= "exec-file" type="in"> 

<url>file:///${HOME}/interactive_test/interactive_exec</url> 
</file> 

</executaJDle> 
<execut ionTirtie> 

<timeSlot> 

<slotStart>10:30:00</3lotStart> 
<slotEnci>13 :15 : 00</slotEnd> 

</tiineSlot> 
<execDuration>POyOHODT2H20HOS</execDuration> 
<timePeriod> 

<periodStart>2005-05-0ITOO:00:00-00:00</periodStart> 
<periodDuration>P0Y0M10DT0H0H0S</periodDuration> 

<excluding> 
<weekDay>Saturday</weekDay> 
<weekDay>Sunday</ xjeekDay> 

</excluding> 
</timePeriod> 

</executionTirae> 
</siiwplejob> 

</grmsjob> 

Figure 14.5. Example job description with time reservations 

defining following requirements: optional slot within the day when a job must 
be executed, mandatory execution time and optional time period when a job 
must be executed. The slot within the day is specified by start time of the 
slot and optionally end time of it or time duration. Specifying this time slot a 
user can require that the job must be started after some time and not later then 
some other time of a day. Mandatory information concerning duration of the job 
execution determines length of the period when a resource reservation is needed 
for a job. It is the only time characteristic that can be changed by the user after 
the job was submitted. If it doesn't violate the schedule it is possible to extend 
the execution time of the previously submitted and running job. Planing the 
job execution a user can specify time period when a job must be executed. The 
presented job description (see fig. 14.6) illustrates usage of this functionality 
specifying liberal requirements that the job should be executed within the first 
ten days of May except Saturdays and Sundays. 

Based on dynamic resource selection and discovery, mapping and advanced 
scheduling methodology, combined with a feedback control architecture and 
support from other Grid middleware services, it deals with dynamic Grid envi
ronments and resource management challenges, such as load-balancing among 
clusters and various work-load systems, remote job control, file staging, ad
vance reservation, scheduling jobs with precedence relations etc. 

One of the main requirements for GRMS development was to perform re
mote job control and management in the way that would satisfy job and resource 
owners in terms of their preferences. Therefore, GRMS implements multicrite-
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ria procedures and optimization techniques to define and build various flexible 
resource management strategies. 

14.5.2 Multicriteria Approach in GRMS 
One of the most important modules of the broker is the multicriteria sche

dule evaluator (MCEvaluator). MCEvaluator implements various multicrite
ria models and tools that are applied to real Grid resource management and 
scheduling problems, including those with resource reservations and predic
tions. MCEvaluator is a framework that anyone can plugin into with new 
abstraction models. Main entities in GRMS include: 

• Criteria (objectives, soft constraints) 

• Hard constraints 

• Solutions (e.g. resources, schedules etc. along with description parame
ters) 

• Evaluator (decision point) 

The framework contains also some multicriteria methods that GRMS uses for 
selection of best schedule. MCEvaluator provides support for a Grid scheduler 
to: 

• Identify and select the best resource that a particular job will be computed 
on. In a workflow applications this process is repeated for every job being 
part of the workflow. 

• Assign every available resource to predefined alternatives (classifying 
or sorting problem) or to order the alternative resource, as in ranking 
problem. 

• Provide a performance tableau. In Grids, when the AI techniques are 
used it is often necessary to identify major distinguishing features of the 
resource or the whole schedule. 

In order to solve the above mentioned tasks MCEvaluator can use many 
different methods, starting from outranking ELECTRE methods, through the 
utility functions aggregating the partial preferences on multiple criteria (MAUT, 
UTA, AHP) etc and finishing on the rules based methods. The features described 
above can be used for: 

• Selecting the best resource to run a job on. This feature allows to choose 
best machine for a job, taking into account user preferences and host 
parameters, such as CPU load, total and free memory available for a job, 
number of CPUs, CPU speed, operating system etc. 
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• Select best queue at the remote resource to submit a job to. Potentially 
every resource is managed locally by the local resource management 
system (LRMS). LRMSs are usually based on queues that have different 
lengths and represent different policies of the resource owners. Selection 
of the best queue by MCEvaluator is based on the estimated job runtime 
and queue waiting time. 

• Selection of the best job to be migrated. GRMS allows to use various 
dynamic strategies to manage jobs and resources, including job check
pointing and migration. By migrating a number of small jobs a Grid 
scheduler may allow to run bigger jobs on particular resource, which 
otherwise would have to wait longer in a queue. Cost of migration and 
resource characteristics are taken into account before decision is made. 

Along with the MCEvaluator GRMS comes with a specialized multicriteria 
meta-language for expressing job descriptions and user preferences. 

14.6 GRMS in Action 
Knowledge acquired by the prediction techniques described in section 3 can 

be utilized in Grids, especially by resource brokers. Information concerning 
job run-times as well as a short-time future behavior of resources may be a sig
nificant factor in improving the scheduling decisions. A proposal of the multi-
criteria scheduling broker that takes the advantage of history-based prediction 
information is presented in this section. For our experimental considerations 
we have chosen the Minimum Completion Time algorithm, which is one of the 
simplest algorithms that require estimated job completion times. It assigns each 
job from a Job queue to resources that provide the earliest completion time for 
a particular job. 

Nevertheless, apart from predicted times, the knowledge about potential pre
diction errors is needed. The knowledge coming from a prediction system 
shouldn't be limited only to the mean times of previously executed jobs which 
fit to a template. Therefore, we also consider minimum and maximum values, 
standard deviation, and estimated error. These parameters should be taken into 
account during a selection of the most suitable resources. Mean time stays 
as the most important criterion, however, relative importance of all parame
ters depends on user preferences and/or characteristics of applications. For 
instance, certain applications (or user needs) may be very sensitive to delays 
that can be caused by incorrectly estimated start and/or run times. In such case 
a standard deviation, minimum and maximum values become considerably im
portant. Therefore, a multicriteria resource selection is needed to accurately 
handle these dependencies. In our case we used the functional model for ag
gregation of preferences. That means that we used a utility function and all 
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For each job Ji from a head of the queue 

For each resource Rj, at which this job can be 
executed 

Retrieve from the GPRES prediction system the 

estimated completion time of job CJ^^R. 

Assign job Ji to resource Rbest so that 

Figure 14.6. Algorithm MCT (Abramson et al (2002)) 

1 "" 
Fj.^Rj = — ^Wk^Ck (14.6) 

resources were ranked based on values of utility function. In detail, criteria are 
aggregated for job Ji and resource Rj by the weighted sum given according to 
formula (6). 

where the set of criteria C (n=4) consists of the following metrics: 
Ci - mean completion time 
C2 - standard deviation of completion time 
C3 - difference between maximum and minimum values of completion time 
C4 - estimated error of previous predictions 
and weights Wk that define the importance of the corresponding criteria. This 
method can be considered as a modification of the MCT algorithm to a multi-
criteria version. In this way possible errors and inaccuracy of estimations are 
taken into consideration in MCT. Instead of selection of a resource, at which 
a job completes earliest, the algorithm chooses resources characterized by the 
best values of the utility function FJ^^R.. AS described above the function 
is calculated taking as an input values of four criteria: timej^^R., errj^^R., 
stdevj.^R., maxj.^R^, -minj.^R.. 

These two algorithms have been implemented in GRMS using its multi-
criteria selection framework of MCEvaluator. 
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For each job Ji from a head of the queue 

For each resource Rj, at which this job can be 
executed 

~ Retrieve from the GPRES prediction system the 
estimated completion time of job CJ^^R. and 
errj.^R., stdevj.^R., maxj.^R^, rninj^^R.. 

- Calculate the utility function FJ^^R. 

Assign job Ji to resource Rbest so that 

F^JuRlest ^ m a x ( ^ . / ^ , / ? , ) 

Figure 14.7. Multicriteria MCT algorithm 

14.6.1 Experiment 
The system where the workload trace file was obtained from was a IBM 

SP2 System from Barcelona Supercomputing Center. The system, named 
Kadesh.cepba.upc.edu, was used with two different configurations: the IBM 
RS-6000 SP with 8*16 Nighthawk Power3 @375Mhz with 64 Gb RAM, and 
the IBM P630 9*4 p630 Power4 @ 1 Ghz with 18 Gb RAM. A total of 336Gflops 
and 1.8TB of Hard Disk are available. All nodes are connected through an SP 
Switch2 operating at 500MB/sec. The operating system that they are running 
is an AIX 5,1 with the queue system Load Leveler. The workload was ob
tained from Load Leveler history files that contained around three years of job 
executions (178.183 jobs). Through the Load Leveler API, we converted the 
workload history files that were originally in a binary format. Analyzing the 
trace file we can see that total time for parallel jobs is approximately and order 
of magnitude bigger than the total time for sequential jobs, what means that in 
median they are consuming around 10 times more of CPU time. For both kind 
of jobs the dispersion of all the variables is considerable big, however in parallel 
jobs is also around an order of magnitude bigger. Parallel jobs are using around 
72 times more memory than the sequential applications. In general these vari
ables have significant amount of variability what may result in difficulties with 
predictions. In general users are not working with a big set of applications. 
In median, users submitted 9 different applications, and, also in median, they 
executed each application around 8 times. However, from the 98 users 22 of 
them had submitted in mean same applications more than 30 times. Taking into 
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account only these users, the presented median increases until 56.11 observa
tions for user and application. Similar conclusions can be applied with user 
groups. Although same groups in general are submitting in median 22 different 
applications, they are still submitting few than 7 times the same application. 
However, there are some groups that are submitting in median more times same 
applications, from 22 groups, there are 6 groups that are submitting in median 
more than 42.2 times same applications. 

We performed two major experiments. First, we compared results obtained 
by the MCT algorithm with a common approach based on the matchmaking 
technique (job was submitted to the first resource that met user?s requirements). 
In the second experiment, we studied improvement of results of the prediction-
based resource evaluation after application of knowledge about possible predic
tion errors. For both experiments the following metrics were compared: mean, 
worst, and best job completion time. The worst and best job completion values 
were calculated in the following way. First, for each application the worst/best 
job completion times have been found. An average of these values was taken 
as the worst and best value for comparison. 5000 jobs from the workload 
were used to acquire knowledge by GPRES. Then 100 jobs from the work
load were scheduled to Job queue ofr GRMS. The results of the comparison 
are presented in figure below. In general, it shows noticeable improvement of 
mean job completion times when the performance prediction method was used. 
The least enhancement was obtained for the best job completion times. The 
multi-criteria MCT algorithm turned out to be the most useful for improvement 
the worst completion times. 

14,7 Conclusions 

In this paper we elaborated on Grid job scheduling using Grid schedulers 
with resource reservation and prediction mechanisms. We also proposed the 
multi-criteria resource evaluation methods based on knowledge of job start-
and run-times obtained from the prediction system. As a prediction system 
the GPRES tool was used. We exploited the method of multi-criteria evalu
ation of resources from GRMS. Resource reservation mechanisms were also 
used to make sure that resources are available at the moment of job staging. 
We presented how diverse end-users' requirements and preferences concerning 
time and cost can be modeled using multi-criteria decision support techniques. 
Thanks to this approach end-users can express both hard constraints that must 
be satisfied and soft constraints that help a resource broker to find the best 
offers of resource providers. Furthermore, we showed how preferences of mul
tiple end-users can be aggregated in order to find a compromise schedule. The 
hypotheses assumed in the paper have been verified. Exploitation of the knowl
edge about performance prediction allowed a resource broker to make more 
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efficient decisions. This was visible especially for mean values of job comple
tion times. Exploitation of knowledge about possible prediction errors brought 
another improvement of results. As we had supposed it improved mainly the 
worst job completion times. Thus, taking the advantage of knowledge about 
prediction errors we can limit number of job completion times that are sig
nificantly worse than estimated values. Moreover, we can tune the system by 
setting appropriate criteria weights depending on how reliable results we need 
and how sensitive to delays the application are. For instance, certain users may 
accept 'risky' resources (i.e. only the mean job completion time is important 
for them) while others may expect certain reliability (i.e. low ratio of strongly 
delayed jobs). The preliminary results show that using prediction information 
and resource reservation can bring significant results, while scheduling jobs in 
Grid environments. Of course there are many limitations to apply the approach 
in open Grid systems, but, for many users and jobs, which run frequently in par
ticular infrastructure the results may be impressive. In general, use of resource 
reservation and performance prediction mechanisms in Grids may help to im
prove performance by means of better Grid resource broker decisions (based on 
more accurate knowledge) and possibility of scheduling multiple jobs at once. 
Moreover, in certain scenarios in which QoS must be provided this approach is 
indispensable. 
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Nevertheless, there are some drawbacks and problems that must be taken 
into account when these mechanisms are used. First of all, an extensive use of 
resource reservation can deteriorate the overall job throughput. This unfavor
able influence can be limited by use of accurate job execution time predictions 
(along with estimated imprecision) and resource providers policies that allow 
starting jobs earlier than their reserved start time. Convenient ratio of num
bers of jobs with and without reservations is also a major factor that influences 
performance. The exact dependencies between these issues are a subject of 
further research. Another important issue is a need of additional steps to obtain 
offers of resource providers and estimations from a prediction system. These 
steps can also increase response time. Additionally, since we cannot assume a 
control of resource broker (and in consequence a prediction system) over local 
resources the prediction is more difficult due to limited information about re
sources. To solve this problem very advanced Grid monitoring systems need 
to be introduced. 

Acknowledgments 
The authors of this paper would like to thank Agnieszka Kwiecien, Maciej 

Dyczkowski and Marcin Wojtkiewicz from Wroclaw Networking and Super-
computing Center for integrating their GPRES systems with GRMS and making 
it available for the tests. We also wanted to thank Jesus Labarta from Barcelona 
Supercomputing Center for giving access to historical workloads of their ma
chines. 

References 
Abramson, D., Buyya, R. and Giddy, J. (2002). A computational economy for 

Grid computing and its implementation in the Nimrod-G resource broker. 
Future Generation Computer Systems, 18(8):1061-1074. 

Agrawal, R. and Srikant, R. (1994). Fast Algorithms for Mining Association 
Rules, in: Proceedings of the Twentieth Intl. Conference on Very Large 
Databases, Morgan Kaufmann, pp. 487-499. 

Allen, G., Davis, K., Dolkas, K.N., Doulamis, N.D., Goodale, T, Kielmann, 
T., Merzky, A., Nabrzyski, J., Pukacki, J., Radke, T., Russell, M., Seidel, 
E., Shalf, J. and Taylor, I. (2003). Enabling Applications on the Grid - A 
GridLab Overview, International Journal of High Performance Computing 
Applications, 17(4):449-466. 

Bode, B., Kendall, D.M. and Lei, Z. (2000). The Portable Batch Scheduler and 
the Maui scheduler on Linux clusters, in: Proceedings of 4th Annual Linux 
Showcase and Conference, October 2000. 



370 PERSPECTIVES IN MODERN PROJECT SCHEDULING 

Cemy, V. (1985). Thermodynamical Approach to the Traveling Salesman Prob
lem: An Efficient Simulation Algorithm, Journal of Optimization Theory and 
Applications, 45:41-51. 

Cheung, L.S. (2001). A Fuzzy Approach to Load Balancing in a Distributed 
Object Computing Network, in: Proceedings of the First IEEE International 
Symposium of Cluster Computing and the Grid (CCGrid'OI), pp. 694-699. 

Condor Group, Condor project, http://www.cs.wisc.edu/condor. 
Czajkowski, K., Foster, I., Kesselman, C, Martin, S., Smith, W. and Tuecke, 

S. (1997). A resource management architecture for metacomputing systems, 
JSSPP Whorskshop, Lecture Notes on Computer Science, 1459:62-68. 

Dail, H. (2001). A Modular Framework for Adaptive Scheduling in Grid Ap
plication Development Environments, Technical report CS2002-0698, Com
puter Science Department, University of California, San Diego. 

Darken, C. and Moody, J. (1990). Fast Adaptive k-means clustering: Some 
empirical results, in: Proceedings of the International Joint Conference on 
Neural Networks, vol. II, IEEE Neural Networks Council, pp. 233-238. 

Dinda, P. (2001). Online prediction of the running time of tasks, in: Proceedings 
of 10th IEEE Symp. on High Performance Distributed Computing, pp. 336-
337. 

Downey, A. (1997). Predicting Queue Times on Space-Sharing Parallel Com
puters, in: 11th International Parallel Processing Symposium, pp. 209-218. 

Global Grid Forum DRMAA WG, DRMAA Web Site, http://www.drmaa.org. 
European DataGrid Project, http://www.eu-datagrid.org. 
El-Ghazawi, T., Gaj, K., Alexandridis, N., Vroman, K, Nguyen, N., Radzikowski, 

J.R., Samipagdi, P. and Suboh, S.A. (2004). A performance study of job man
agement systems. Concurrency and Computation: Practice and Experience, 
16(13): 1229-1246. 

Feitelson, D.G. and Mu'alem Weil, A. (1998). Utilization and predictability in 
sche-duling the IBM SP2 with backfilling, Proceedings of 12th International 
Parallel Processing Symp., Orlando, pp. 542-546. 

Feitelson, D.G., Parallel Workload Archive, 
http://www.cs.huji.ac.il/labs/parallel/work-load. 

Figuiera, S.M. and Bermann, F. (2001). Mapping Parallel Applications to Dis
tributed Heterogeneous Systems, Technical report CS2002-0698, Computer 
Science Department, University of California, San Diego. 

Foster, I. and Kesselman, C. (1998). The Globus Project: A Status Report, in: 
Proceedings of the Seventh Heterogeneous Computing Workshop, pp. 4-18, 

Foster, I. and Kesselman, C. (editors) (1999). The Grid: Blueprint for a New 
Computing Infrastructure, Morgan Kauffmann, San Francisco, California. 

Foster, I. and Kesselman, C. (1999). Computational Grids, in: The Grid: Blueprint 
for a New Computing Infrastructure, I. Foster and C. Kesselman, eds, Morgan 
Kaufmann, San Francisco, California, pp. 15-52. 



Grid Multicriteria Job Scheduling with Reservations and Predictions 371 

Gibbons, R, (1997). A Historical Application Profiler for Use by Parallel Sched
ulers, Lecture Notes on Computer Science, 1297:58-75. 

Globus Team, Globus Project, http://www.globus.org. 
Glover, F. (1989). Tabu Search - part 1, ORSA Journal of Computing, 1(3): 190-

206. 
Glover, F. (1990). Tabu Search - part 2, ORSA Journal of Computing, 2:4-32. 
Glover, F. (1986). Future Path for Integer Programming and Links to Artificial 

Intelligence, Computers & Operations Research, 13:533-549. 
Goldberg, D.E., (1989). Genetic Algorithms in Search, Optimization, and Ma

chine Learning, Addison-Wesley, Reading. 
Greco, S., Matarazzo, B,, Slowinski, R. and Tsoukias, A. (1998). Exploitation 

of a rough approximation of the outranking relation in multicriteria choice 
and ranking, in: Trends in Multi-Criteria Decision Making, T.J Stewart and 
R.C van der Honert, eds. Springer Verlag, Berlin, pp. 45-60. 

Greco, S., Matarazzo, S. and Slowinski, R. (2001). Rough sets theory for 
multicriteria decision analysis, European Journal of Operational Research, 
129(1): 1-47. 

Holland, J.H. (1975). Adaptation in Natural and Artificial Systems, University 
of Michigan Press. 

Ishibushi, H. and Murata, T (1998). A Multi-Objective Genetic Local Search 
Algorithm and Its Application to Flowshop Scheduling, JEEE Transactions 
on Systems, Man and Cybernetics, 28(3):392-403. 

Jackson, D.B., Maui Admin Guide, 
http://supercluster.org/maui/docs/mauiadmin.html. 

Jaszkiewicz, A. (1998). Genetic local search for multiple objective combina
torial optimisation. Technical Report RA014 /98, Institute of Computing 
Science, Poznan University of Technology. 

Kirkpatrick, S., Gelatt, CD., Jr and Vecchi, M.R (1983)., Optimization by 
Simulated Annealing, Science, 230:671-680. 

Knowles, J.D. and Come, D. W. (2000). A Comparison of Diverse Approaches to 
Memetic Multiobjective Combinatorial Optimization, in: Proceedings of the 
Genetic and Evolutionary Computation Conference (GECCO-2000), Work
shop On Memetic Algorithms, pp. 103-108. 

Knowles, J.D. and Come, D.W. (2000). M-PAES: A Memetic Algorithm for 
Multiobjective Optimization, in: Proceedings of the 2000 Congress on Evo
lutionary Computation, pp. 325-332. 

Kurowski, K., Nabrzyski, J. andPukacki, J. (2000). Multicriteria Resource Man
agement Architecture for Grid, in: Proceedings of the 4th Globus Retreat, 
Pittsburgh, PA, July 2000. 

Kurowski, K., Nabrzyski, J. and Pukacki, J. (2000). Predicting Job Execution 
Times in the Grid, in: Proceedings of the 1st SGI 2000 International User 
Conference, Krakow, pp. 272-282. 



372 PERSPECTIVES IN MODERN PROJECT SCHEDULING 

Kurowski, K., Nabrzyski, J. and Pukacki, J. (2001). User preference driven 
multiobjective resource management in Grid environments, in: Proceedings 
of the First IEEE International Symposium on Cluster Computing and the 
Grid(CCGridVI),pp. 114-121. 

Kurowski, K., Nabrzyski, J., Oleksiak, A. and W^glarz, J. (2003). Multicriteria 
Aspects of Grid Resource Management, in: Grid Resource Management, J. 
Nabrzyski, J. Schopf, and J. W^glarz, eds, Kluwer Academic Publishers, 
Boston/Dordrecht/London, pp. 271-294, 

Kurowski, K., Ludwiczak, B., Nabrzyski, J., Oleksiak, A. and Pukacki, J. 
(2004). Improving Grid Level Throughput Using Job Migration and Reschedul
ing Techniques in GRMS, Scientific Programming, 12:(4)263-273. 

Kurowski, K., Oleksiak, A., Nabrzyski, J., Guim, F., Corbalan, J., Labarta, J., 
Kwiecien, A., Wojtkiewicz, M. and Dyczkowski, M. (2005). Multicriteria 
Grid Resource Management using Performance Prediction Techniques, in: 
Proceedings of the 2nd CoreGrid Workshop, Springer Verlag (to appear). 

Langley, P., Iba, W. and Thompson, K. (1992). in: An Analysis of Bayesian 
Classifiers, Proceedings ofAAAI'92, pp. 223-228. 

Lifka, D. (1995). The ANL/IBM SP scheduling system, in: Job Scheduling 
Strategies for Parallel Processing, D.G. Feitelson and L. Rudolph, eds. 
Springer-Verlag, Lecture Notes of Computer Science, 949:295-303. 

Liu, C., Yang, L., Foster, I. and Angulo, D. (2002). Design and evaluation of 
a resource selection framework for Grid applications, in: Proceedings if the 
Eleventh IEEE International Symposium on High-Performance Distributed 
Computing (HPDC-II), pp. 63-72. 

Nabrzyski, J., Schopf, J. and W^glarz, J., editors, (2003). Grid Resource Man
agement - State of the Art and Future Trends, Kluwer Academic Publishers. 

Nabrzyski, J. (2000). User Preference Driven Expert System for Solving Multi-
objective Project Scheduling Problems, Ph.D. Thesis, Poznan University of 
Technology. 

Pawlak, Z. (1982). Rough Sets, International Journal of Information & Com
puter Sciences, ll(5):341-356. 

Platform Computing Technical Docs, http://www.platform.com/services/support 
/docs/LSFDoc51 .asp. 

Quinlan, J.R. (1986), Induction of Decision Trees, Machine Learning, 1:81-
106. 

Rumelhart, D.E., Hinton, G.E. and Williams, R.J. (1986). Learning Represen
tations by Back Propagating Errors, Nature, 323:533-536. 

Sandholm, T.W. (1999). Distributed Rational Decision Making, in: Multiagent 
Systems: A Modern Approach to Distributed Artificial Intelligence, G. Weiss, 
ed, MIT Press, pp. 201-258. 

Schopf, J. and Berman, F. (1998). Performance prediction in production envi
ronments, in: Proceedings oflPPS/SPDP, pp. 647-653. 



Grid Multicriteria Job Scheduling with Reservations and Predictions 373 

Shirazi, B.A., Husson, A.R. and Kavi, K.M. (1995). Scheduling and Load Bal
ancing in Parallel and Distributed Systems, IEEE Computer Society Press. 

Smith, W., Taylor, V. and Foster, I. (1999), Using Run-Time Predictions to Es
timate Queue Wait Times and Improve Scheduler Performance, Proceedings 
of the IPPS/SPDP '99 Workshop on Job Scheduling Strategies for Parallel 
Processing, pp. 202-219. 

Taylor v., Wu, X., Geisler, J., Li, X., Lan, Z., Hereld, M., Judson, R. and Stevens, 
R. (2001). Prophesy: Automating the modeling process, in: Proceedings Of 
the Third International Workshop on Active Middleware Services. 

Veridian Inc. PBS: The Portable Batch System, http://www.openpbs.org/ 
Vazhkudai, S. and Schopf, J. (2003). Using Regression Techniques to Predict 

Large Data Transfers, Journal of High Performance Computing Applications 
- Special Issue on Grid Computing: Infrastructure and Application, 17: 249-
268. 

W^glarz, J., editor (1999). Project Scheduling - Recent Models, Algorithms and 
Applications, Kluwer Academic Publishers. 

Wolski, R., Spring, N. and Hayes, J. (1999). The Network Weather Service: 
a distributed resource performance forecasting service for metacomputing. 
Future Generation Computer Systems, 15(5-6):757-768. 

Wolski, R. (1997). Dynamically Forecasting Network Performance to Support 
Dynamic Scheduling Using the Network Weather Service, Cluster Comput
ing, 1(1):119-132. 

Zadeh, L.A. (1965), Fuzzy Sets, Information and Control, 8(3):338-353. 



Chapter 15 

RESOURCE-CONSTRAINED PROJECT 
SCHEDULING WITH TIME WINDOWS 

Recent developments and new applications 

Klaus Neumann^, Christoph Schwindt^, Jiirgen Zimmermann^ 
1 2 

University of Karlsruhe, Germany; Clausthal University of Technology, Germany; 

neumann@wior.uni-karlsruhe.de; {cliristoph.schwindt,juergen.zimmermann}@tu-clausthal.de 

Abstract Recent results on resource-constrained project scheduling with time windows are 
reviewed. General temporal constraints (resulting from minimum and maximum 
time lags between project activities), several different types of scarce resources, 
and a large variety of time-based, financial, and resource-based objective func
tions are considered. Emphasis is placed on an order-based structural analysis 
of the feasible region of project scheduling problems and a classification and dis
cussion of objective functions important to practice, which can be exploited for 
constructing efficient solution procedures. After those structural issues, methods 
for solving time-constrained project scheduling problems are proposed. Next, the 
resolution ofconflicts for renewable, allocatable, synchronizing, changeover, and 
cumulative resources and thus the solving of corresponding resource-constrained 
project scheduling problems are studied. Finally, new applications of resource-
constrained project scheduling are presented: factory pick-up of new cars and 
batch scheduling in process industries. 

Keywords: Deterministic project scheduling, regular and nonregular objective functions, 
types of scarce resources, exact solution methods, customer-oriented factory 
pick-up, batch scheduling. 

15.1 Introduction 
Since the appearance of the earlier Handbook on Project Scheduling (cf. 

W^glarz 1999, Neumann and Zimmermann 1999), a large number of new re
sults on resource-constrained project scheduling with schedule-dependent time 
windows have been published (see, e.g., Neumann et al 2000, Neumann and 
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Schwindt 2002, Neumann and Zimmermann 2002, Demeulemeester and Her-
roelen 2002, Neumann et al 2002b, 2003a,b, Schwindt and Trautmann 2003, 
Selle and Zimmermann 2003, Centner et al 2004, Mellentien et al 2004, Neu
mann et al 2005, Schwindt 2005). These new results concern structural ques
tions, a classification of time-based, financial and resource-based objective 
functions, different types of resources important in practice, efficient solution 
procedures, and new applications. 

This chapter gives an overview of those new results on deterministic resource-
constrained project scheduling with minimum and maximum time lags between 
activities. In Section 16.2, the basic project scheduling problem is formulated. 
Section 16.3 presents an order-based structural analysis of the feasible region of 
the basic project scheduling problem. Moreover, the classes of regular, convex-
ifiable, locally regular, and locally concave objective functions are introduced 
and examples of such functions that are important to practice are given. Ap
proaches to solving time-constrained project scheduling problems (i.e., without 
resource constraints) with the different types of objective functions introduced 
in Section 16.3 are discussed in Section 16.4. Section 16.5 deals with dif
ferent types of resources important in practice and the resolution of so-called 
resource conflicts. In particular, renewable, cumulative (or storage), synchro
nizing, allocatable, and changeover resources are studied. In Section 15.6, we 
are concerned with new applications, such as factory pick-up of new cars and 
batch scheduling in process industries. Section 15.7 presents some conclusions 
and possible future research. 

15,2 Basic project scheduling problem 
We consider a project consisting of n activities 1 , . . . , n. Let p^ G N be the 

duration or processing time of activity i, which is assumed to be carried out 
without interruption. In addition, we introduce the fictitious activities 0 and 
n + 1 representing the beginning and completion, respectively, of the project, 
where po — Pn+i — 0. Then F — { 0 , 1 , . . . , n + 1} is the set of all activities. 

Let S'i > 0 be the start time of activity i E V, where So '— 0 (i.e., the 
project always begins at time zero). Then Sn+i represents iht project duration 
or makespan. We assume that Sn-^i < d where d G N is a prescribed maximum 
project duration or planning horizon. A sequence S = (>So, S i , . . . , S'n+i) with 
Si > 0 {i e V) and ^o = 0 is called a schedule. 

A minimum time lag d^'^^ G Z>o or maximum time lag d^^^ G Z>o can be 
prescribed between the start of two different activities i and j , that is, Sj — Si> 
ci^^^ or Sj -Si< d^^^, respectively. If d^^^ - pu Sj -Si> d^^^ represents 
a precedence constraint. To ensure that the project is terminated by time d, we 
introduce the maximum time lag ĉ ô ^̂ i := d. 
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It is well-known that an activity-on-node network N can be uniquely as
signed to the project in question (cf. Neumann et al 2003a, Section 1.2). To do 
so we identify the activities i e.V with the nodes of network Â . If there is a 
minimum time lag d^^^, we introduce an arc (i, j) with weight 5ij \— d^'^^. 
If there is a maximum time lag d^^^, we introduce an arc (j, i) with weight 
5ji :— —d^^^. Due to maximum time lags, network N generally contains 
cycles. Let E be the set of arcs of network N, Then the above inequalities for 
the minimum and maximum time lags can be summarized as 

Sj-Si>5ij {{iJ)eE) (15.1) 

representing the so-called temporal constraints. A schedule S that satisfies the 
temporal constraints (15.1) is termed time-feasible. The set of time-feasible 
schedules is denoted by ST- It holds that ST J^ ^ exactly if network Â  does 
not contain any cycle of positive length. 

Assume that a set TZ^ of renewable resources (e.g., machines, manpower, 
or equipment) are required for carrying out the activities of the underlying 
project. Resource types different from renewable ones will be discussed in 
Section 16.5. Let Rj^ e N ht the capacity of renewable resource k available 
and Tik € { 0 , 1 , . . . , i?/c} be the amount of resource k used by activity i. Given 
a schedule S — {Si)i^y, 

A{S,t)~{^eV\Si<t<S^ + p^} 

is the set of activities in progress, also called the active set, at time t G [0, d]. 

rk{S,t) := Y^ Tik 
ieA{S,t) 

is the amount of resource k E TZ^ used at time t e [0, d] given schedule S. 
Then the (renewable-)resource constraints are 

rk{S, t)<Rk (ken^, 0<t< d) (15.2) 

A schedule S that satisfies (15.2) is called (renewable-)resource-feasible. The 
resource profile rj^{S, •) represents a step function on [0, d] continuous from the 
right. A schedule which is both resource- and time-feasible is itrmtd feasible. 
The set of feasible schedules is denoted by S. 

The basic project scheduling problem consists of minimizing some objective 
function / : M^^^ -^ R on the set S of feasible schedules. In detail, this 
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problem reads as follows: 

Minimize f{S) 

subject to Sj - Si> 5ij {{ij) G E) 

Si>0 (ieV) 

rk{S,t) <Rk {keUP, 0<t<d) 

> (P) 

In (P) we may delete the constraints Si > 0 {i e V) because they are satisfied 
automatically. A feasible schedule S that minimizes function / on the feasible 
region S of (P) is called optimal. We assume that / is lower semicontinuous, 
i.e., f{S) < liminf5'/_,5'/(S'') for all schedules S, Since S is compact, the 
lower semicontinuity of / ensures that / attains its minimum on S provided 
that 5 7̂  0. 

If we delete the resource constraints (15.2) from problem (P), i.e., we want 
to minimize function / on the set ST of time-feasible schedules, we speak of 
the resource relaxation of (P) denoted by (RP). An optimal solution to problem 
(RP) is referred to as a time-optimal schedule, 

15.3 Structural issues 

In Section 16,3, we present an oder-based structural analysis of the feasible 
region S of problem (P) and a classification of objectives functions / of (P) 
important in practice that will be exploited for constructing efficient solution 
procedures for problems (RP) and (P) in Sections 16.4 and 16.5, respectively. 

15.3.1 Properties of the feasible region S 

In this subsection, we often follow Neumann et al (2002b) closely. Whereas 
the set ST of time-feasible schedules represents a (convex) polytope, the set S of 
feasible schedules is generally disconnected and represents the union of finitely 
many polytopes. The decision problem whether or not 5 7̂  0 is NP-complete 
(cf. Bartusch et al 1988). 

Let O C F X y be a strict order (i.e., an asymmetric and transitive binary 
relation) in activity set V, 

ST{0) ~ {SeST\ Sj >Si+pi for all (i, j ) e 0} 

is called the order polytope of O. Trivially, for the empty strict order O — ̂  
we have 5^(0) — ST- Strict order O is termed time-feasible if 5 T ( 0 ) ^ 0 and 
feasibleif^ 7̂  ST{0) C S. Order polytope 5 T ( 0 ) is the set of all time-feasible 
schedules belonging to the order network N{0), Network N{0) results from 
the underlying project network Â  by adding arc (z, j) with weight pi for each 
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pair (i, j) eOAfN already contains arc {i, j) with weight Sij, the latter weight 
is replaced by max(5^j,p^). 

Recall that a feasible strict order O in F is termed inclusion-minimal if there 
is no feasible strict order O' in V with O^ C O. The basic structural theorem 
first proved by Bartusch et al (1988) is then as follows: 

Theorem 1. Let O be the (finite) set of all inclusion-minimal feasible strict 
orders in activity set V. Then S — UOGO ^T{0). 

For a schedule S e ST, 

0{S) ~ {(ij) eVxV\i^j,Sj> S^+p^} 

is the strict order induced by S. The corresponding order polytope ST{0{S)) 

is called the schedule polytope of S and represents the set of all time-feasible 
schedules belonging to schedule network N{0{S)). 

Theorem 1 gives a representation of feasible region S as union of finitely 
many order polytopes which generally overlap. Next, we consider a partition 
of 5 (into disjoint polytope-like sets). Given schedule S e ST, 

S^iO{S)) := {S' G ST{0{S)) I 0 ( 5 0 ^ 0{S)} 

is the set of all schedules inducing the same strict order as S and is termed the 
equal-order set for S, S^{0{S)) represents a polytope generally without a 
part of its boundary. Since S G S^{0{S)) for each S e S and there are only 
finitely many distinct strict orders 0(5) , we have S = {Jses'^ri^i'^)) ^^^ 
thus a finite partition of 5. 

As we will see in Subsection 15.3.2, special points of 5 represent possible 
optimal schedules for problem (P). Let A^ be a compact subset of R "̂̂ .̂ Recall 
that 5 G Al is a minimal point (or maximal point) of M precisely if there is 
no S' e M, S^ y^ S, with S' < S (or S^ > S, respectively) where < is meant 
componentwise. 5 G Al is an extreme point of M exactly if S does not lie on 
a line segment that joins two other points of Al. iS G A4 is a local minimizer 
of objective function / on Al exactly if for some e > 0, 5 minimizes / on 
M n Be{S) with Be{S) ~ {S' G R^+^ I \\S^ - S\\ < e}, 

15.3.2 Different types of objective functions 
In this subsection, we present a classification of lower semicontinuous objec

tive functions / important in practice, give examples of the different function 
types, and state which special points of the feasible region S are candidates for 
optimal schedules (cf. Neumann et al 2003a, Section 3.3, and Schwindt 2005, 
Section 2.3). 

Objective function / is called regular if / is nondecreasing, i.e., S < S' 
implies f{S) < f{S'). Obviously, there is a minimal point of 5 7̂  0 which 
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represents an optimal schedule for problem (P) with regular / . Moreover, 
the unique minimal point of any order polytope ST{0) is the minimizer of 
/ on ST{0). This minimal point coincides with the earliest schedule ES — 
{ESi)i^Y, where the earliest start time ESi of activity i equals the longest path 
length from node 0 to node i in order network N{0), which can be found in 
polynomial time. 

Examples of regular objective functions are (i) iht project duration or makespan 
Sn-\-i, (ii) the maximum lateness maxi^y^Si +Pi — di), where d̂  G N is a pre
scribed due date for activity i, (iii) the weighted flow time Yli^v ^[ (*S'i +Pi—n)» 
where r̂  G Z>o is a given ready time of activity i and wf > 0 is a weighting 
factor describing the importance or urgency of activity i, and (iv) the weighted 
tardiness J2i^y wf{Si +Pi — di)'^, where z'^ = inax{z^ 0) and wf > 0 is the 
tardiness cost of activity i per unit time. 

The weighted earliness Y^i^y wf{di — Si — pi)'^ with wf > 0 represents 
a so-called antiregular or nonincreasing objective function / , i.e., S < S' 
implies f{S) > /(S"). There is always a maximal point of 5 7̂  0 which is an 
optimal schedule for (P) with antiregular / . 

As mentioned above, the minimizer of a regular function / (or an antireg
ular function) on order polytope ST{0) can be computed in polynomial time. 
If function / is convex and (due to the lower semicontinuity) continuous, a 
minimizer of / on ST{0) can be found in polynomial time as well, e.g., by 
the ellipsoid method (cf. Grotschel et al 1995) or, generally more efficiently, 
by interior-point methods provided that some mild technical assumptions are 
satisfied. 

The more general convexifiable functions admit a smooth coordinate tran-
formation such that the resulting resource relaxation (RP) represents a convex 
optimization problem with linear constraints. Objective function / : 5 T —> M 
is called convexifiable if there exists a bijection (p : ST -^ X, where ip and (p~^ 
are continuously differentiable and X is some Euclidean space, such that fo(p~^ 
is a convex function and the images ( ^ ( 5 T ( 0 ) ) :== {^{S) \ S G ST{0)] of all 
order polytopes by (p are convex sets. If / o (y9~Ms linear, / is termed a lineariz-
able function. Note that all sets ( ^ ( 5 T ( 0 ) ) are compact and set X — (fiSr) 
is convex. For a convexifiable function / , there is always a local minimizer 
of / on some order polytope ST{0) with O e O that minimizes / on 5 7̂  0 
(cf. Schwindt 2005, Subsection 2.3.1). If / is linearizable, there is always an 
extreme point (or vertex) of 5 T ( 0 ) that minimizes / on SriO). 

Obviously, each linear function is linearizable and each convex function is 
convexifiable. Minimizing a linear function Yli^yVi{Si + Pi) with Vi G M, 
where we may omit the additive constant Yliev ^'^^^^ ^^y^ ^^^^ ^^^ ̂ i > 0 (or 
Vi < 0), activity i should be completed as early (or as late, respectively) as 
possible. 
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The weighted earliness-tardiness Yl,iev\y^f {d>i~Si — pi)'^ + wj{Si -\-pi — 
di)~^] is convex with respect to S and is important to just-in-time production, 
where we strive for avoiding poorly timing of the beginning of activities. Also, 
the weighted earliness-tardiness is used for rescheduling in the following sense. 
In practice, input data such as the amount of resources available and ready 
or processing times of activities are often subject to change. For example, 
machines may break down or workers are late or absent. A consequence of 
such disturbances is that a previously feasible baseline schedule often becomes 
infeasible. We then wish to find a new feasible schedule as close as possible 
to the old one because larger deviations generally cause difficulties in practice. 
This can be done by solving a project scheduling problem whose objective 
function is the weighted earliness-tardiness, where the due dates di equal the 
completion times of the activities i in the previous baseline schedule. 

The negative net present value of a project — X^ZGV cfP^'~^^' represents a 
linearizable objective function (cf. Schwindt 2005, Subsection 2.3.1). Here 
cf G M is the cash flow associated with activity i that may be positive (i.e., a 
payment received) or negative (i.e., a disbursement incurred) and is supposed 
to occur at its completion time Si + pi, and /? with 0 < /3 < 1 is the discount 
rate. 

The following two types of objective functions are important to resource-
based objectives. A (lower semicontinuous) objective function / is called lo
cally regular (or locally concave) if / is regular (or concave, respectively) on all 
equal-order sets 5^(0(5)) , S e S, For a locally regular (or locally concave) 
function / , there is always a minimal point (or extreme point, respectively) S 
of some schedule polytope ST{0{S)) which is a minimizer of / on 5 7̂  0 (cf. 
Neumann et al 2003a, Subsections 3.3.7 and 3.3.8). 

The total procurement cost Ylkeup ^^ ^^-^o<Kd^^(*^' ^)' ^here c/̂  > 0 is 
the procurement cost per unit of resource fc, represents a locally regular function, 
which is lower semicontinuous but not necessarily continuous. The project 
scheduling problem (P) or (RP) with the total procurement cost as objective 
functions is also referred to as the resource investment problem. 

The total squared utilization cost Ylkenp ^f^ lo 'f^'k{S^t)dt, where cj^ > 0 
is the cost incurred per unit of resource k and per unit time, is a locally con
cave function. Another locally concave function is the total overload cost 

Y^keup ^k /o V^i^^ )̂ "~ ^kV'dt where Y/. e N is a given supply or a threshold 
for the resource utilization of resource k. If no threshold is given, Y^ can be 
replaced by the (rounded) average resource utilization \Yl^i^yTikPi/d'\. The 
latter two objective functions are important to resource levelling, where we 
want to utilize the resources evenly over time. Additional objective functions 
related to resource levelling, which are locally concave, can be found in Neu-
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mann et al (2003a, Section 3.1) and Demeulemeester and Herroelen (2002, 
Subsection 3.1.3). 

In practice, resources required for carrying out project activities are often 
rented instead of purchased (e.g., expensive machinery), which incurs fixed 
and variable costs. For each unit of resource k e TZ^ rented, there are SL fixed 
renting cost c^, > 0 arising when bringing the unit into service and a variable 
renting cost ĉ  > 0 referring to one unit of resource k and one unit of time for 
which the resource unit is rented. 

Given schedule S, let (pkiS^ t) (or ^pj^t, for short) be the amount of resource 
k rented at time t G [0, d]. Each resource is brought into service only finitely 
many times within planning period [0, d]. Thus, we can restrict ourselves to 
right continuous step functions (pk {S^ •) with finitely many jump discontinuities. 

Given (pk[S^ •), ĉ  /Q (/:?/C(S', t)dt is the total variable renting cost for resource 
k. Let Jk be the set of jump discontinuities o{ipk{S^ •) on [0, d] (including point 
in time 0 if ^k{S, 0) > 0) and let A'^ipkt > 0 be the increase in the amount 
of resource k rented at time t e Jk- Then c;̂  J2teJ ^'^^kt is the total fixed 
renting cost for resource k. Renting policy (p{S^ •) — {(fk{S^ '))kenp is called 
feasible (with respect to schedule S) if 

^k{S, t) > rk{S, t) for all fc E 7^^ and t G [0,2] 

and is termed optimal if it is feasible and minimizes the corresponding total 

renting cost Ylikeup [̂ ^ /o Vk{S, t)dt +c[ J2teJk ^"^^^^l- ^^^ objective func
tion / of the resource renting problem represents the total renting cost belonging 
to an optimal renting policy and is given by 

f(S) ~ Y min 
,^^,^US.)>rUS.) 

rd 

ci / ipk{s,t)dt+c{y^^-^^kt 
teJk 

(15.3) 

It can be shown that function / is lower semicontinuous (cf. Neumann et al 
2003a, Subsection 3.3.8) and locally concave (cf. Nubel 2001). 

For regular (and antiregular) as well as convexifiable objective functions / , 
the resource relaxation (RP) can be solved in an efficient way. The same is 
true for the computation of a minimizer of / on an order polytope ST{0) for 
any strict order O in activity set V. Thus, it is expedient to use the following 
relaxation-based approach to solving problem (P) with regular, antiregular, or 
convexifiable / . As will be discussed in Section 16.5 in more detail, resource 
conflicts (i.e., violations of the resource constraints (15.2)) can be resolved by 
introducing precedence constraints. The solving of problem (P) can then be 
replaced by solving a sequence of problems of type (RP) with ST{0) for some 
strict order O inV instead of ST-
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For locally regular and locally concave objective functions / , even the re
source relaxation (RP) is generally NP-hard. Hence, the relaxation-based 
approach is not recommended. Instead, a so-called tree-based approach is 
proposed. As mentioned above, minimal or extreme points (i.e., vertices) of 
schedule polytopes ST[0{S)), S e S, represent candidates for optimal sche
dules for locally regular or locally concave / . A vertex of polytope ST{0{S)) 

corresponds to a spanning tree of schedule network N{0{S)). The n + 1 arcs 
of such a spanning tree T, say arcs (i, j) G E^ with weights 6fj, correspond 
to n + 1 linearly independent binding temporal constraints Sj — Si = Sf, 
{{i^j) G E^), which together with ^o = 0 have a unique solution, namely 
the vertex in question. Therefore, to construct a spanning tree of N{0{S)), 
we consecutively fix start times of activities such that, step by step, temporal 
constraints Sj — Si > Sf, become binding. 

15.4 Time-constrained project scheduling 
In this section, we discuss approaches to solving time-constrained project 

scheduling problems with different types of objective functions. In particular, 
we consider regular, convexifiable, locally regular, and locally concave objec
tive functions. The problem under consideration is 

Minimize f{S) 1 ^̂ p̂̂  

subject to S e ST J 

and represents the resource relaxation of our basic project scheduling problem 
(P) briefly discussed in Sections 16.2 and 16.3. 

15.4.1 Regular and convexifiable objective functions 

For problem (RP) with regular objective function, an optimal solution is 
always given by the earliest schedule ES (cf. Subsection 15.3.2). Schedule 
ES can be found by a so-called label-correcting algorithm with time com
plexity 0(|V||£;|), cf. Ahuja et al (1993, Section 5.4). Convexifiable objec
tive functions like linear, weighted earliness-tardiness, or negative net present 
value functions are considered e.g. in Mellentien et al (2004), Neumann et al 
(2003a, Subsections 3.5.2 and 3.5.3), and Schwindt (2005, Section 3.2). In 
what follows, we show that the dual of the linear problem represents a min
imum cost flow problem and thus can be solved very efficiently (cf. Russell, 
1970). Furthermore, we present a steepest descent algorithm for the time-
constrained earliness-tardiness problem, which can also be used to solve the 
time-constrained net present value problem. 

15.4.1.1 Linear objective function. Given a real-valued weight Vi for 
each activity i ^V, the linear problem with objective function X^^^y ViSi can 
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be written as 

Maximize 

subject to 
z2iev 
Si 

Wib^ 

Sj< Sij {{^J)eE) } (WSTP) 

where Wi :— -Vi (i E V). The dual problem of (WSTP) is 

Minimize Yl —^ijXij 

subject to E /̂̂ ^ - E 
Xij 

(h,i)eE {iJ)eE 
Xij > 0 

Wi (zeV) (DWSTP) 

Note that equation 5o = 0 gives rise to an unrestricted real-valued variable in 
the flow balance constraint for activity 0. Since the corresponding coefficient in 
the objective function is equal to zero, we may omit the variable and put WQ := 
— EievXlo} '^^' which means that Yliev ^i ~ 0- Problem (DWSTP) then 
represents a minimum-cost flow problem in project network N with unit costs 
—5ij and infinite arc capacities as well as supplies —Wi at nodes i eV. Such a 
network flow problem can be solved quite efficiently by some polynomial-time 
network flow algorithm, see e.g., Ahuja et al (1993, Chapter 10) and Goldberg 
(1997). Based on a minimum-cost flow x, a time-optimal schedule S can 
readily be constructed by exploiting the complementary slackness conditions, 
from which it follows that Sj ~ Si = 5ij for all (z, j) E E with Xij > 0. 

15.4.1.2 Weighted earliness-tardiness. Exact solution procedures for 
the time-constrained earliness-tardiness problem, i.e. 

Minimize f{S) - Y^[wf{di -Si- p ^ ^ + ^RSi + Pi - di 

iev 
subject to S E ST 

have been devised by Schwindt (2000) and for the case of precedence constraints 
by Vanhoucke et al (2001). We briefly sketch Schwindt's steepest descent ap
proach, as presented in Neumann et al (2003a, Subsection 3.5.3). The algorithm 
seems to be the most efficient solution method known thus far. 

The objective function / of the earliness-tardiness problem is continuous, 
convex, but not differentiable at points S with Si — di — pi for some i e V. 
The left-hand partial derivative of function / with respect to Si at schedule 
S equals —wf if Si + pi < di and equals wf, otherwise. Analogously, the 
right-hand partial derivative equals wf, if Si + pi > di, and —wf, otherwise. 
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For the directional derivative of / at 5 in direction z, we obtain df/dz{S) = 

I —wfzi^ if either Si+ pi < di or both 

- ^ ( 5 ) := < Si+pi = di and Zi <0 

[ wfzi^ otherwise 

Given schedule S e ST, let E^ C Ehc a set of corresponding linearly inde
pendent binding temporal constraints, which can be represented by a spanning 
forest T of project network N with arc set E^ (cf. Subsection 15.3.2). Then a 
steepest descent direction z at schedule S can be found by solving the following 
steepest descent direction problem 

Minimize g{z) := df/dz{S) 

subject to Zj — Zi >0 iihj) ^ E^) 

-i<zi<i (ieV) 

} (SDD) 

If 2: = 0 is an optimal solution to (SDD), S represents a local (and global) mini-
mizer of / . Since g is piecewise linear and the coefficient matrix of (SDD) is to
tally unimodular, restrictions —l<Zi<l can be replaced by 2:̂  e {—1,0,1}. 
Moreover, starting with the earliest schedule ES, the sequence of schedules 
generated by the proposed steepest descent algorithm is componentwise non-
decreasing, i.e., we can focus on steepest descent directions z G {0,1}^"^^, 
which can be determined as follows. Let gi be the right-hand partial derivative 
of / with respect to Si at S, If there is a source i of spanning forest T with 
9i ^ 0, then there exists an optimal solution z to (SDD) with Zi = 0, and node i 
and all incident arcs (z, j) are eliminated from T. If there is a sink j of spanning 
forest T with gj < 0, then Zj — 1 holds for any optimal solution to (SDD), and 
node j and all incident arcs (z, j) are eliminated from T. Otherwise, T contains 
a source i with at most one successor j (and gi < 0) or a sink j with exactly 
one predecessor i (and gj > 0). In both cases, activity i is shifted exactly if 
activity j is shifted, i.e., Zi — Zj. Thus, nodes (activities) i and j can be merged 
into an aggregate activity with partial derivative gi + gj. We perform those steps 
until all nodes aside from 0 have been deleted or have been merged with node 
0, where from constraint 2:0 == 0 it follows that Zi = 0 for all nodes i merged 
with node 0. 

Given steepest descent direction ^ > 0, stepsize a can be determined as 
follows. We stop moving from S in direction z if some activity i is completed 
at its due date di (i.e.. Si + pi == di) or if some temporal constraint becomes 
binding. Thus, we have 

a := min [ min (di — Si — Pi), min (Sn — Si — 5in)] 
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If for the resulting schedule S' =^ S + az it holds that 2; = 0 is an optimal 
solution to the corresponding problem (SDD), then S^ is an optimal schedule. 
Otherwise, we again perform a descending step in direction z' from point S\ 

Note that each aggregate node j deleted from forest T when determining 
steepest descent direction z represents a weak component of forest T. Delaying 
any of those components j with^j == 1 uniformly (until one of the corresponding 
activities meets its due date or a temporal constraint becomes binding), results in 
a decrease in the objective function value. Thus, we can improve the efficiency 
of the steepest descent procedure by performing a sequence of descent steps, 
where in each iteration we delay all (remaining) components j with Zj = 1 until 
one of those weak components is "connected" with node 0 by a new binding 
temporal constraint or an activity of some weak component is completed at its 
due date. The corresponding weak component is then omitted in the subsequent 
descend steps. 

15.4.1.3 Net present value. The time-constrained net present value 
problem with objective function 

fiS) = -^cfl3'^+P^ 
iev 

has been widely discussed in literature, cf. e.g. Herroelen et al (1997) and Neu
mann et al (2003a, Subsection 3.5.2). As has been stated in Subsection 15.3.2, 
/ is linearizable and consequently there is an extreme point of ST that mini
mizes / on ST' Moreover, / is binary-monotone (i.e. monotone in each binary 
direction z e {—1,0,1}^"^^) and differentiable where the directional derivative 
of / at 5 in direction z is given by 

iev 

As has been shown by Schwindt and Zimmermann (2001), the steepest descent 
approach proposed for the earliness-tardiness problem is also very efficient for 
the time-constrained net present value problem. Since df/dz{S) is a linear 
function in z, the corresponding problem (SDD) represents a linear program. 
Starting with the earliest schedule ES, there is again a steepest descent direc
tion z G {0,1}^"^^, which can be determined as described above, where gi is 
initialized with - In/3 c{P^^'^^K 

Given a steepest descent direction z G {0,1}^"^^ at schedule S G ST, 
binary-monotone function / is nonincreasing on the half-line emanating from 
S in direction z. Therefore, 

^ •"" /• ..^j^ {Sj-Si-6ij) 
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is the largest stepsize such that S+az is time-feasible. This means that we delay 
all activities i with Zi = 1 until a new temporal constraint becomes binding. 
Thus, performing a sequence of descent steps until all weak components shifted 
are "connected" with node 0 again provides an extreme point of ST-

15.4.2 Locally regular functions 
For locally regular objective functions / , Neumann and Zimmermann (1999, 

2000) and Neumann et al (2000, 2003a, Section 3.6) have proposed a so-
called tree-based approach. As mentioned in Subsection 15.3.2, minimal points 
of schedule polytopes represent candidates for optimal schedules for locally 
regular objective functions. A minimal point S of schedule polytope ST{0{S)) 

can be represented by a spanning outtree T of schedule network N{0{S)) with 
root 0, arc set E'^, and arc weights Sfj, where S is the unique solution to the 
system of n + 2 linear equations SQ — 0, Sj ~ Si = 6fj ({i, j) G E^). 

To enumerate the minimal points of all schedule polytopes ST{0{S)), we 
enumerate the corresponding spanning outtrees by consecutively fixing start 
times of activities. More precisely, let set Q contain the pair (C, S^) for each 
partial schedule (subtree) S^ := {Si)i^c already constructed, where we start 
with C = {0} and So = 0. In each iteration, we remove a pair (C, S^) from 
ft. If C == V, we have found a minimal point of some schedule polytope. 
Otherwise, we extend the partial schedule S^ as follows. For each j * 6 F \ C, 
we determine the set Vj* of tentative start times t e [ESj*^LSj>^] for which 
there is an activity i e C such that 

(i) t = Si + Sij*, i.e., temporal constraint Sj* — Si> Sij* is binding or 

(ii) t — Si+ Pi, i.e., precedence constraint Sj* > Si + pi is binding. 

For each t e Pj*, we then add the corresponding extended partial schedule S^ 
with C^ = C U {j} and Sj — t to ft. Next, we take a new pair (C, S^) from 
Q and proceed in the same way until all partial schedules from Q have been 
investigated. The described tree-based enumeration scheme does not avoid 
that one and the same outtree (minimal point) is generated more then once. 
Conditions for pairs (i, j*) that avoid the latter drawback can be found in Niibel 
(1999). 

Tree-based branch-and-bound algorithms for the resource investment prob
lem (cf. Subsection 15.3.2) can be found in Niibel (1999) and Zimmermann 
(2001, Section 5.3). 

15.4.3 Locally concave functions 
The tree-based enumeration scheme sketched in Subsection 15.4.2 can be 

generalized to locally concave objective functions / . As mentioned in Sub
section 15.3.2, extreme points of schedule polytopes represent candidates for 
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optimal schedules. Such an extreme point can be represented by a spanning 
tree T of schedule network N{0{S)). To enumerate all spanning trees and not 
only all spanning outtrees, we have to take into consideration the following four 
cases when determining sets Vj*\ 

(i) t = Si + Sij*, i.e., temporal constraint Sj* ~ Si> 5ij* is binding or 

(ii) t ~ Si — Sj*i, i.e., temporal constraint Si — Sj* > Sj*i is binding or 

(iii) t — Si+ Pi, i.e., precedence constraint Sj* ~ Si> pi is binding or 

(iv) t = Si - pj*, i.e., precedence constraint Si - Sj* > pj* is binding. 

Branch-and-bound procedures exploiting the tree-based enumeration scheme 
for resource levelling problems with objective functions total squared utiliza
tion cost or total overload cost can be found in Zimmermann (2001, Section 5.3) 
and Neumann et al (2003, Subsection 3.6.2). For the locally concave objective 
function 

f(S) = y min ci / ipf,{s,t)dt + ciy2A^^kt 
^0 teJ, 

of the resource renting problem, the proposed tree-based approach can be used 
within the framework of a branch-and-bound procedure, cf. Ntibel (2001) and 
Neumann et al (2003a, Subsection 3.6.2). In this case, an optimal renting 
policy and the corresponding total renting cost must be computed for each 
partial schedule constructed by the tree-based enumeration scheme. 

Recall that ^k{S^ t) is the amount of resource k rented at time t given sche
dule S and A'^^kt denotes the increase in the amount of resource k rented 
at jump point t e Jk (cf. Subsection 15.3.2). Moreover, let A~ipkt > 0 be 
the decrease in the amount of resource k rented at time t e Jk- An optimal 
renting policy v^*(S', •) = {^1(3^ '))kenp for given schedule S can be found as 
follows. If cl = 0 for some k G 7Z^, it is optimal to rent the maximum amount 
of resource k required at the beginning of the project and to release this amount 
at the project completion. This means that (pl{S, t) — max^^rg^i T]^[S, T) for 

all t e [0, d]. For cj^ = 0, it is optimal to rent the required resource amount for 
each activity i e V ai its start time and to release it at its completion time, i.e., 
ipl{S,t) = rk{S,t) for ante [0,d]. 

Now let k e TZ^ he a resource with ĉ  > 0 and ĉ  > 0. In this case, 
(pk{S^') — rk{S^-) generally does not represent an optimal renting policy 
because it may be advantageous to rent resource units at points in time where 
they are not required for schedule S. Moreover, it cannot be optimal to increase 
or decrease the amount of resource k rented at points in time at which no activity 
is started or completed, respectively. Thus, it holds that 

A-^l^ - 0 for all t ^ CT, A^^l^ - 0 for all t ^ ST 
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where ST and CT are the sets of all start times and completion times, respec
tively, of activities i e V, Hence, the step functions (fliS, •) are well-defined 
by specifying ipl{S, t) for all keTZf" and all teDT := STU CT, 

For computing an optimal renting policy (fil{S^ •) for resource fc, we start 
with the renting policy given by (fk{Sj t) :— r/c(5', t) for all t G DT and iterate 
the decision times t G DT where new resource units are rented (i.e., where 
^'^Vkt > 0) in increasing order. In each iteration, we check whether the 
total renting cost for resource k can be decreased by extending the renting of 
min{A~ipi^t', ^~^^kt) units of k that had been released on an earlier decision 
time t\ where decision times t' < t are examined in decreasing order. Each 
time we have identified such a cost saving, we update renting policy ^k{S^ t) 
accordingly. 

15.5 Resource-constrained project scheduling 
When coping with real-life projects, various kinds of resource constraints 

may occur. In this section, we are concerned with algorithms for scheduling 
projects with different types of scarce resources. In Subsection 15.5.1 we review 
relaxation-based and tree-based algorithms for the basic project scheduling 
problem (P) with renewable-resource constraints using the methods for time-
constrained project scheduling discussed in Section 16.4. In Subsections 15.5.2 
to 15.5.4, we show how to adapt the relaxation-based approach to problems 
involving allocatable, synchronizing, changeover, and cumulative resources. 
Those new types of resources are needed when dealing with new applications 
discussed in Section 15.6. 

15.5.1 Renewable resources 

15.5,1.1 Regular and convexifiable objective functions. We consider 
a time-optimal schedule S that results from applying the minimum-cost flow 
or steepest descent methods to the resource relaxation (RP) of basic project 
scheduling problem (P) with regular or convexifiable objective function / . For 
such a schedule S, there generally exist points in time t where the amount of 
some resource k ^ TZ^ used at time t exceeds the resource capacity Rk^ If 
such a resource conflict occurs, not all activities from active set A{S^ t) can 
be processed at the same time. A set F of activities that cannot be executed 
simultaneously because 

y ^ Tik > Rk for some k eTZ^ 
ieF 

is called a forbidden set. It has been shown by Bartusch et al (1988) that a sche
dule S is resource-feasible precisely if for any inclusion-minimal forbidden set 
F there exist two activities z, j such that activity j is started at the earliest once 
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activity i has been completed, i.e., Sj > Si + pi (we then say that forbidden 
set F has been broken up). This means that in case of a resource conflict at 
time t we have to partition forbidden active set A{S^ t) into two sets A and B 
such that B contains an activity j from each inclusion-minimal forbidden set 
F Q -4(5, t). If we then introduce the precedence constraints 

Sj-Si>pi {jeB) (15,4) 

between some activity i e A and all activities j G S, we break up all inclusion-
minimal forbidden sets F C A{S^t) containing activity i e A. Since this 
property holds for any partition {A, B} of A{S^ t), without loss of generality 
we may restrict ourselves to inclusion-minimal sets B, which are referred to 
as minimal delaying alternatives in literature. An efficient recursive procedure 
for computing all minimal delaying alternatives for a given forbidden set F can 
be found in Neumann et al (2003a, Subsection 2.5.1). We note that set A is a 
non-forbidden set and thus all activities i e A may be processed jointly. 

The relaxation-based approach to the scheduling of projects with renewable 
resources and convexifiable objective function / is now as follows. We start 
by computing a time-optimal schedule S for the resource relaxation (RP). 
If S is resource-feasible, we have found an optimal schedule. Otherwise, 
we determine some activity start time t where schedule S causes a resource 
conflict. We then compute a minimal delaying alternative B for forbidden 
active set A{S, t) and refine relaxation (RP) by the corresponding precedence 
constraints (15.4) for some i G A{S, t) \ B, Subsequently, we re-perform the 
time-constrained project scheduling, which either shows the refined relaxation 
to be unsolvable because we have generated a cycle of positive length in the 
augmented project network Â  = ^{O) with O — {(i, j ) | j G B}, or which 
yields a new schedule S, We re-iterate these steps until we have reached a 
deadlock (i.e., Â  contains a cycle of positive length) or a feasible schedule S has 
been found. This schedule-generation scheme is expanded to the enumeration 
scheme of a branch-and-bound algorithm if in each iteration, we branch over 
all pairs {i^B) for which B is a minimal delaying alternative for set A{S,i) 
and i is some activity from set A — A{S^ ^)\B. 

The earliest branch-and-bound algorithm based on this enumeration scheme 
was proposed by Icmeli and Erengii? (1996) for the resource-constrained net 
present value problem with precedence constraints. Later on, De Reyck and 
Herroelen (1998), Schwindt (2000), and Neumann and Zimmermann (2002) 
have devised branch-and-bound methods for the resource-constrained makespan, 
earliness-tardiness, and net present value problems with general temporal con
straints. In the algorithms by Schwindt and by Neumann and Zimmermann, the 
re-optimization of schedule S after having added new precedence constraints 
of type (15.4) is performed by using a dual flattest ascent method. 
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For solving problem (P) with regular objective function, Franck et al (2001) 
have proposed to break up forbidden active sets A{S^ t) by adding disjunctive 
precedence constraints 

Sj-mm{Si+Vi)>Q iJeB) (15.5) 

instead of the ordinary precedence constraints (15.4). Conditions (15.5), which 
represent the disjunction of precedence constraints (15.4) over different choices 
of activity i, say that no activity j from minimal delaying alternative B can be 
started before the first activity i from set A has been completed. Accordingly, in 
an iteration of the enumeration scheme, only one child node has to be generated 
per minimal delaying alternative B. Solving the refined resource relaxation with 
disjunctive precedence constraints and regular objective function can be done 
in pseudopolynomial time, which is linear in the maximum project duration d. 

Based on the enumeration scheme with disjunctive precedence constraints, 
Franck et al (2001) have developed three different types of truncated branch-
and-bound algorithms for problem (P) with the makespan objective function. 
Those algorithms restrict the search for an optimal schedule to a part of the 
enumeration tree. The ^o-cdiW^d performance-guarantee algorithm with max
imum relative error e > 0 of the objective function value only considers enumer
ation nodes for further branching whose lower bounds are more than £ • 100 % 
below the current upper bound. In thQ filtered beam search method, the number 
of child nodes added to the enumeration tree is limited to a given maximum 
number. Those child nodes are selected in two steps. At first, applying a sim
ple filter criterion establishes a pre-selection of nodes, among which a more 
elaborate beam criterion identifies the most promising nodes to branch from. 
The decomposition method exploits the property that there exists a feasible 
schedule precisely if there is a feasible subschedule for each strong component 
of the project network. The method consists of two phases during which the 
strong components are scheduled separately and a feasible schedule for the 
entire project is determined based on the subschedules obtained for the strong 
components. 

15.5.1.2 Locally regular and locally concave objective functions. 
The tree-based enumeration scheme for solving time-constrained project schedul
ing problems with locally regular or locally concave objective functions can 
readily be generalized to the case where the limited capacity of renewable re
sources has to be taken into account. To this end we have to ensure that each 
partial schedule S^ considered in the course of the enumeration satisfies the 
renewable-resource constraints 

ieC:Si<t<Si+pi 
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This can be achieved by deleting, for each activity j * G V\Cnot yet scheduled, 
all those tentative start times t from decision set Pj* for which the scheduling 
of activity j * at time t would lead to a resource conflict, i.e., for which 

y ^ Vik + Tj^k > Rk for some k eTZ^ and some t^ G [t,t + pj* [ 
ieC:Si<t'<Si+pi 

Similarly to the relaxation-based enumeration scheme from Subsection 15.5.1.1, 
it may now happen that we reach a deadlock where we have to perform back
tracking before having obtained a feasible schedule. This occurs every time 
when the current partial schedule S^ cannot be expanded further because the 
decision set Vj* becomes void for some activity j * G F \ C not yet scheduled. 
In this case, the earliest start time t > ESj* of activity j * satisfying the resource 
constraints is greater than latest start time LSj*. 

15,5.2 AUocatable and synchronizing resources 
In this subsection, we deal with allocatable and synchronizing resources, two 

new resource types that appear in a project scheduling application from service 
operations management to be discussed in more detail in Subsection 15.6.1. 
Originally, those resource types have been introduced by Schwindt and Traut-
mann (2003) in the context of production scheduling in the metal casting in
dustry. 

An allocatable resource is a special renewable resource k for which the Vi^ 
resource units processing an activity i have to be allocated by some activity 
ak{i) starting no later than i. The Vik resource units remain occupied from the 
start of allocating activity ak{i) until the completion of activity i. For example, 
such an allocatable resource k may correspond to equipment that has to be 
installed each time before being used for executing some activity i. If setting 
up the Tik units needed also requires some scarce renewable resource k' like 
personnel or tools, the setup can be modeled as an activity i^ = a^ii) with 
positive requirement Vi/^f allocating the r̂ /̂  units of resource k. In this way we 
ensure that the units installed for processing activity i are not used by different 
activities j before i has been completed and releases the units. 

Let 7̂ *̂  be the set of all allocatable resources and let Vfc '•= {i ^V \ vik > 0} 
denote the set of all activities using resource k. We say that a schedule S is 
allocation-feasible if at any point in time t no more than R^ units of a resource 
k eTZ"^ have been allocated. By Ak{S, t) ~ {i eVk\ 5'â (̂ ) <t < Si+pi] 
we denote the set of activities i for which at time t the units of resource k have 
been allocated. The resource constraints then read 

Y^ Tik <Rk {ken"^, 0<t<d) 
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Now assume that in an iteration of the relaxation-based enumeration scheme, 
we have obtained a schedule S causing a resource conflict on an allocatable 
resource k at some time t. We then resolve the conflict by determining a 
minimal delaying alternative B for set Ak{Sy t) and introducing the precedence 
constraints 

âfc(j) - Si>Vi {j G B) 

between some activity i from set A — Ak{S^ t)\B and the allocating activities 
ak{j) of all activities j from set B, 

In certain applications of project scheduling, the parallel execution of mul
tiple activities on a renewable resource requires that the activities are started 
at the same time. We then speak of the renewable resource as a synchronizing 
resource. As an example consider staff training in a class room, where people 
from different departments are trained on computers. If the limited class room 
capacity does not allow for training all departments simultaneously, we may 
represent the teaching of each department as a single activity. Since the training 
activities of all departments following the same course must start jointly, the 
class room is modeled as a synchronizing resource. 

Let K^ be the set of all synchronizing resources. Aside from the ordinary 
renewable-resource constraints (15.2), synchronizing resources give rise to so-
called simultaneity constraints 

Si = Sj (z, j eVkH A{S, t) for some keW and some t e [0, d]) (15.6) 

requiring that the parallel execution of activities on a synchronizing resource 
must start at the same time. A schedule S satisfying constraints (15.2) and 
(15.6) is called synchronization-feasible. 

Next, we show how to remove violations of the simultaneity constraints 
occurring for some schedule S. Assume that at time t the overlapping activities 
i e VkH A{Sy t) are not started jointly. Constraints (15.6) say that for any two 
activities z, j G V/e we must ensure that Si = Sj, Sj > Si+pi, or Si > Sj +pj. 
This can be achieved as follows. We select an activity z G V/c H A{S^ t), which 
is called the synchronizing activity. For the activities j overlapping with i on 
resource k but starting before z, we introduce the temporal constraints 

Sj-S^>0 {jeVknA{S,t):Sj<Si) 

delaying the start of j to time Si, and for the activities j overlapping with i on 
k but starting after i, we add the precedence constraints 

Sj-Si>pi {jeVknA{S,t):Sj>Si) 

to prevent the parallel execution of i and j . Note that since inequality Sj — Si> 
Pi implies inequality Sj — Si > 0, it is not necessary to consider, for fixed i, the 
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case where precedence constraints Sj > Si + pi are introduced for activities 
j being started earlier than synchronizing activity i. The case where for some 
activity j being started after i, we want to introduce constraint Si > Sj is 
obtained by choosing j to be the synchronizing activity. 

15.5.3 Changeover resources 
This section is concerned with renewable resources k whose units must be 

changed over when passing from one activity i to another activity j . We assume 
that the times 'i?̂  needed for the changeovers may depend on both activities 
i and j . This situation arises, for example, when several subprojects using 
common renewable resources are performed simultaneously at different sites. 
When a unit of resource k passes from the execution of activity i at location i{i) 
to activity j carried out at a different location £{j), the unit has to be torn down 
after the completion of i, transported from i{i) to £{j), and put into service 
for processing j . Hence, the total changeover time of resource k between the 
execution of activities i and j includes a sequence-dependent transportation 
time tij from i{i) to i{j). 

We discuss an approach to project scheduling with changeover resources 
devised by Neumann et al (2003a, Section 2.14), following the presentation of 
Schwindt (2005, Section 5.2). Let TZ^ be the set of all renewable resources 
with changeovers, which are called changeover resources. For what follows 
we suppose that the weak triangle inequality 

is satisfied for all k G TZ^ and all /i,i, j G V/c. This assumption is generally 
met in practice because otherwise it would be possible to save changeover time 
by processing additional activities. For notational convenience we additionally 
assume that there are neither changeovers from the project beginning 0 to ac
tivities i E Vk nor changeovers from activities i G 14 to the project termination 
n + 1. 

To meet the resource constraints, the demand for a changeover resource by 
activities and changeovers must not exceed the respective resource capacities 
at any point in time. More precisely, let for given changeover resource k, 
^k ' Vk —^ 2^ be a mapping providing for each activity i G V/c the set of units 
of resource k processing activity i, i.e., 

\Xk{i)\^rik (ieV) (15.7) 

We call a schedule S changeover-feasible if for each resource k G 7^^, map
ping Xk can be chosen such that 

o , l : > | + « + | } ("•^'''^^^^-. x . « n x , 0 , ^ » ) (,5.8, 
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and 
Xfe(i)C{l , . , . , i?^} {ieVk) (15.9) 

Constraints (15.8) say that activities i and j (including the possible changeover 
in between) must not overlap if there is a unit of resource k processing both 
activities i and j . Condition (15.9) limits the availability of resource k to 
Rk units. Since all changeover times are nonnegative, a changeover-feasible 
schedule always observes the renewable-resource constraints (15.2). 

In the following, we develop an equivalent characterization of the changeover-
feasibility of schedules, which will serve as a basis for detecting and resolving 
resource conflicts. The analogue to schedule-induced strict order 0{S) intro
duced in Subsection 15.3.1 is the strict order 

0\S) ~ {(i, j ) G 14 X F, I i ^ j , Sj > 5, + p, + ^f,} 

Let for given schedule S and resource /c G 7?.̂ , X/. be a mapping satisfying 
conditions (15.7) and (15.8) and let r/c(S') := | ^iev^ Xk{i)\ denote the number 
ofresource units used. Clearly, 5 is changeover-feasible exactly if r/̂  (5) < Rk 
for all k G 7^^. We consider an antichain U in schedule-induced strict order 
0^{S), i.e., a set of activities U such that for any two activities i^j G U, 
neither (z, j ) G 0^{S) nor (j, z) G 0^{S), It follows from the definition of 
0^{S) that [Su Si+pi + ^fj[n [Sj, Sj + pj + i9^^[^ 0 for any two activities 
ij G U, Condition(15.8) then implies thatX/c(i)nX/c(j) = 0foranyi, j G U. 
Exploiting equation (15.7) this means that | Ui^u Xk{i)\ = Ylieu 1^^(01 = 
Yjieu'^ik' On the other hand, it is obvious that for any subset U' C I4, the 
number | Di^u' ^k{i)\ ofresource units occupied by activities from U' is less 
than or equal to the joint requirements YlieU' ^^k for resource k. Consequently, 
rk{S) equals the weight YlieUk'^^^ ^^ ^ maximum-weight antichain Uk in 
0^{S). Since all activities from set Uk pairwise overlap in time, Uk can be 
regarded as an active set Ak{S) for S. Schedule S is changeover-feasible 
precisely if none of the active sets Ak{S) belonging to a changeover resource 
k eW^ is forbidden. 

A maximum-weight antichain Uk can be determined efficiently by com
puting a minimum (0,n + l)-flow x^ of value v^{x^) — Tk{S) in the flow 
network Gk{0^{S)) with node set T4 U {0, n + 1} and arc set {(i, j) | (i, j ) G 
0^{S) U ({0} X Vk) U {Vk X {n H- 1})}, where nodes i G Vk are associated 
with lower capacities r̂ /̂ . Recall that we have assumed that d^^ — '^^^n+i ~ ^ 
for all i G Vk' As a consequence, arcs (0, i) and (i, n + 1) linking the source 
0 and the sink n + 1 to nodes i £ Vk correspond to precedence relationships 
Si>S^ + i?fo and 'S'n-hi ^ Si + pi + '&\^nj^i that are established by schedule 
5, analogously to the remaining arcs (i, j) with (i, j) G 0^{S). 

Computing the minimum (0, n + l)-flows x^ provides the answer to the 
question whether or not given schedule S is changeover-feasible. In the latter 
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case, however, the question arises how to compute a forbidden active set Ak{S) 
for resolving the resource conflict. In contrast to the resource types considered 
so far, the active set depends on the assignment of activities i to resource units 
from Xk{i). This problem can be solved by exploiting the duality relationship 
between minimum flows and maximum cuts in networks. At first, we notice that 
the lower node capacities rik can be transformed into equivalent arc capacities 
by splitting up every node i E Vk into two nodes i^ and i'^ linked by arc {i\ i") 
with lower capacity li/i" — rik and infinite upper capacity. In general, the 
network flow methods do not only provide a minimum (0,n + l)-flow x^ 
in Gk{0^{S)) but also a maximum (0,n + l)-cut [C/̂ , U'^], whose capacity 
equals the minimum flow value v^{x^). In addition, it can easily be shown 
that any maximum (0, n + l)-cut in Gk{0^{S)) only contains forward arcs. 
Thus, active set Akls) coincides with the set {i e Vk \ {i',i") G [Ul,U'^]] 
of activities i for which the arc linking the two nodes i' and i" is contained in 
cut [[/^, U'^] (or, figuratively speaking, the set of all activities whose nodes are 
broken up by [t/^, [7^]). 

Now assume that we have determined some forbidden active set Ak{S) 
for schedule S. To remove the resource conflict, we then compute a minimal 
delaying alternative B fox Ak{S), choose an activity i from set A — Ak{S)\B, 
and add the temporal constraints 

Sj-Si>pi + ^^j (jeB) 

ensuring that each activity j e B is only started when the changeover from i 
to j has been completed. 

15.5.4 Cumulative resources 
Until now we have dealt with project scheduling problems where activities 

use renewable resources such as manpower or equipment, whose availability is 
independent of their previous utilization. In practice, we may often encounter 
additional scarce resources such as investment capital, storage space, or in
termediate products, which are generally depleted and replenished over the 
execution time of the project. The availability of such cumulative resources 
at a given time t results cumulatively from all positive and negative require
ments (depletions and replenishments, respectively) that have occurred by time 
t. Since the availability of a cumulative resource k can be regarded as the in
ventory level in some storage facility, we may also speak of a reservoir or a 
storage resource (see Laborie 2003 and Neumann et al 2003a, Section 2.12). 
The inventory level in resource k is supposed to be bounded from below by 
R}. G Z>o (e.g., a safety stock) and from above by i?/. G Z>o with Rk > R^ 
(e.g., the capacity of the storage facility). 

In this paper, we restrict ourselves to discrete cumulative resources, which 
are depleted and replenished at discrete points in time like start or completion 
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times of activities. The more general case of continuous cumulative resources, 
where the depletion and replenishment rates may be finite, is treated in Neumann 
et al (2003a, Subsection 2.12.2) and Neumann et al (2005). 

Let TZ^ be the set of all cumulative resources and let rik E Z denote the 
demand of activity i for resource k. If Vik > 0, activity i replenishes resource 
k by Tik units, and if r̂ /. < 0, resource k is depleted by —rik units. We assume 
that resources k G TZ^ are depleted at start times and replenished at completion 
times of activities. To simplify writing, we also suppose that an activity cannot 
deplete and replenish one and the same cumulative resource, rok corresponds 
to the initial stock of resource k. 

Now let Vj^ ~ {i eV \ Vik < 0} and V^ ~ {i e V \ vik > 0} denote the 
sets of all activities i e V depleting and replenishing, respectively, resource /c. 
For given schedule S 

Ak{S,t) — {i G V^ \Si<t}U{ie V^ \S^+p^<t} 

is the active set of all activities that determine the inventory level 

in resource k at time t. The inventory constraints can now be written as 

Rk < rk{S,t) <^k {ken^,0<t<d) (15.10) 

A schedule S which satisfies the inventory constraints (15.10) is termed inventory-
feasible. 

For given schedule S, we distinguish between two types of resource conflicts 
and forbidden sets. We speak of an inventory shortage at time t if the inventory 
in some resource k falls below the minimum inventory level. The active set 
Ak{S, t) then constitutes a so-called k-shortage set F with 

Yl^i^ <^k 
ieF 

Conversely, we may have an inventory excess where the inventory in some 
resource k exceeds the maximum inventory level. In this case, Ak{S^t) is 
termed a k-surplus set, i.e., a set F with 

Yl Tik > Rk 
ieF 

Similarly to the approach from Subsection 15.5.1.1, we introduce the concept 
of minimal forbidden sets, which will allow us to define appropriate minimal 
delaying alternatives for resolving the resource conflicts. In contrast to the 
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case of renewable resources, our minimality concept cannot refer to inclusion-
minimality because resource demands may be positive or negative. That is why 
we define a fc-shortage set F to be a minimal k-shortage set if no depleting 
activity can be removed from F and no replenishing activity can be added to F 
without loosing the shortage property. Symmetrically, we say that a fc-surplus 
set F is a minimal k-surplus set if deleting a replenishing or adding a depleting 
activity removes the inventory excess. As has been shown by Neumann and 
Schwindt (2002), a schedule S is inventory-feasible if and only if (i) each min
imal /c-shortage set F contains a replenishing activity i G V^ and a depleting 
activity j G V^ such that activity j is not started before activity i has been 
completed (i.e., Sj > Si+pi) and (ii) each minimal /c-surplus set F contains a 
depleting activity i G Vj^ and a replenishing activity j G Vj^ such that activity 
j is not completed before activity i has been started (i.e., Sj + pj > Si). A 
minimal forbidden set F satisfying condition (i) or (ii) is said to be broken up 
in schedule S. 

Now consider an inventory shortage for some resource k G TZ^ at time t, 
A minimal delaying alternative B for active fc-shortage set Ak{S^t) is an 
inclusion-minimal subset of Ak{S, t) containing a depleting activity j of each 
minimal fc-shortage set F that can be obtained from Ak{S, t) by deleting de
pleting and adding replenishing activities. By introducing the precedence con
straints 

Sj-S^>pi ijeB) 

between some activity i e A = Vj^ \ Ak{S,t) (i.e., a replenishing activity i 
being completed after time t) and all activities j G B, we break up all those of 
the above minimal fe-shortage sets F that contain activity i. 

The case of an inventory excess can be dealt with similarly. A minimal 
delaying alternative B now contains a replenishing activity j of each minimal 
A:-surplus set F including all depleting activities of Ak{S, t) and no additional 
replenishing activities. The resource conflict at time t is removed by adding the 
temporal constraints 

Sj-Si>-pj ijeB) 

between some activity i e A = Vj^ \ Ak{S, t) (i.e., a depleting activity i being 
started after time t) and all activities j e B. We notice that those temporal 
constraints correspond to maximum time lags djl^^ — pj between activities j 
and activity i. This observation provides some insight into the fact that the 
problem of finding a time- and inventory-feasible schedule is NP-hard even if 
project network N does not contain cycles (see Neumann and Schwindt 2002). 

15.6 New applications 
In this section, we briefly discuss two practical applications of the models and 

methods for resource-constrained project scheduling discussed thus far. The 
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first application, which has been presented by Mellentien et al (2004), is located 
in the area of service operations management and deals with scheduling indus
trial event-marketing activities involving customers. The second application, 
where we are concerned with production planning in the process industries, 
will show that project scheduling techniques may also be successfully applied 
to problems that, strictly speaking, do not belong to project management. This 
application has been discussed by Schwindt and Trautmann (2000) for the first 
time. 

15.6.1 Factory pick-up of new cars 

Car manufacturers increasingly organize visit programs for the customers 
that pick up their new cars at the factory. Such a program consists of a broad 
range of event-marketing activities and is designed to establish an emotional 
relationship between the customer and the brand. We study the problem of 
scheduling all program activities of one day in such a way that the sum of the 
customers' waiting times during their visit is minimized. In service operations 
management, short customer waiting times are considered to be a key perfor
mance indicator of customer satisfaction (see e.g., Fitzsimmons and Fitzsim-
mons2004, Chapter 11). 

Let C be the set of all customers visiting the factory at a given day. We 
assume that the visitors perform their visit programs in groups. All visitors of a 
group participate simultaneously in the program items chosen. It may happen 
that a visitor does not select the full program of the group. In this case, he or 
she will leave earlier if all program items chosen have been run. Otherwise, he 
or she will have to wait for the start of the next program item. For each group 
of visitors, we introduce one activity per program item that has been chosen 
by at least one customer of the group. By Vc we denote the set of all activities 
performed by customer c ^ C. For given schedule 5, the total waiting time of 
all customers then equals 

V(max(5 i + Pi) - min Si-Y] Pi) 
^-^ ZGVC leVc : ^ 

cec leVc 
If we consider fictitious start and completion activities a(c) andcj(c) of duration 
zero for each customer c and subtract the constant sum J2ceC J2iev Pi ^^ 
activity durations, the objective function can be written as 

f(S) =^ 2-](5'u;(c) - Sa{c)) 
iec 

and represents a sum of weighted start times, i.e., a linear function Y^i^y viSi 
with Vi — 1 ox Vi — —1 \f i — ijj{c) or i = a{c), respectively, for some c e C, 
and with Vi = 0, otherwise. 
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Organizational requirements like the necessity to welcome a customer before 
starting any other program item give rise to precedence constraints between 
certain activities i E Vc in the program of a customer c G C To ensure that 
a{c) and io{c) represent the start and completion, respectively, of customer c's 
program, we also introduce the minimum time lags c!̂ /J\̂  == 0 and d^P^ — pi 
for all activities i E Vc. Finally, we have to ensure that all customer programs 
are completed within one working day. This requirement is modeled by putting 
the maximum project duration dg^^^i to be equal to the length d of one working 
day and linking the project beginning 0 and the individual start activities a(c) 
by minimum time lags c?̂ ^̂ \̂ = 0 and the individual completion activities uj{c) 

with the project completion n + 1 by minimum time lags d^/^ ^ , ^ — 0. 
For executing a program item, some staff like driving instructors and different 

kinds of facilities such as handover bays or a cinema are needed. A staff member 
can perform only one program item at a time. Moreover, according to the ''one 
face to the customer" principle, all activities of a group must be supervised by 
a customer advisor, who guides the group through the entire program. Certain 
facilities can be used by a given number of groups at the same time, whose 
activities then sometimes need to be synchronized (e.g., during a cinema show). 

Basically, each type of facilities and each staff group is modeled as a re
newable resource k whose capacity is shared among the activities of different 
groups. With respect to the temporal constraints, a customer may attend cer
tain program items simultaneously. To prevent the overlapping execution of 
items being performed by one and the same customer, we introduce an extra 
renewable resource with capacity one for each group and assign a resource 
requirement of one to each of the group's activities. In this way, we ensure 
that any feasible schedule arranges the program items of a customer into some 
sequence, possibly with waiting times in between. 

The concept of allocatable resources allows us to integrate the "one face to the 
customer" principle into our model. As a consequence of this principle, a group 
must constantly be accompanied by the same customer advisor. Accordingly, 
the customer advisors form an allocatable resource k. One unit of this resource 
is to be allocated at the start of the initial activity of each group and released 
after the group has performed all program items selected. This can be achieved 
by choosing, for each group, allocating activity ak{i) to a fictitious program 
start activity and releasing activity i to a fictitious program end activity of the 
group. In this way, the advisor remains allocated to the group during the entire 
program. 

Finally, we use a synchronizing resource k for modeling the requirement that 
certain activities have to be executed jointly for different groups. We consider 
the example of an advertising movie that is shown in a factory cinema. Of 
course, for all groups watching the movie in parallel, the projection starts at the 
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same time, or, to put it differently, the movie activities have to be synchronized 
on resource k. The capacity Rk of resource k equals the number of seats in the 
cinema. The number rik of units taken up by the movie activity z of a group 
corresponds to the number of group members that have selected this item in 
their program. 

Table 15.1 recapitulates the different features of the application and their 
counterparts in the project scheduling model. 

Table 15.1. Factory pick-up of new cars: application and model 

Scheduling of customer visit programs Project scheduling 

Program items of a group Activities 

Customers' waiting times Sum of weighted start times 

Organizational requirements Temporal constraints 

Consecutive execution of activities Single-unit renewable resources 

Facilities and staff General renewable resources 

"One face to the customer" principle Allocatable resources 

Joint execution of activities Synchronizing resources 

15.6,2 Batch scheduling 
In the process industries, final products arise from several successive chem

ical or physical transformations of bulk goods, liquids, or gases processed on 
processing units such as reactors, heaters, or filters. The transformation of in
put products into output products on a given processing unit is called a task. 
Each task may consume several input products and may produce several output 
products, whose amounts may be chosen within prescribed bounds. Perishable 
products must be consumed within a given shelf life time, which may be equal 
to zero. In addition, the storable intermediate products must be stocked in ded
icated storage facilities like tanks or silos. Further peculiarities encountered 
in the process industries are cyclic product structures and sequence-dependent 
cleaning times on processing units. 

The following material draws from Schwindt (2005, Section 6.3). Through
out this subsection we assume that the production is operated in batch mode, 
which means that at the beginning of a task, the input products are loaded into 
the processing unit, and the output becomes available at the termination of the 
task. The combination of a task and the corresponding quantity produced is 
called a batch. An operation corresponds to the processing of a batch. Since 
the batch sizes are limited by the capacity of the processing units, a task is gen
erally executed more than once, resulting in several corresponding operations. 
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In contrast to manufacturing, the processing times of operations are mostly 
independent of the respective batch sizes. 

The short-term production scheduling problem considered in what follows 
consists in allocating processing units and storage facilities over time to the 
production of given primary requirements such that all operations are completed 
within a minimum makespan. This objective is particularly important in batch 
production, where often a large number of different products are processed 
on multi-purpose equipment. In this case, the production plant is configured 
according to the set of production orders released. Before processing the next 
set of production orders, the plant generally has to be rearranged, which requires 
the completion of all operations. 

In general, this production scheduling problem is modeled as a large-scale 
mixed-integer linear program based on a discrete-time or a continuous-time 
approach (see Floudas and Lin 2004 for a review of those two model types). The 
special feature of the heuristic method by Schwindt and Trautmann (2000) is the 
decomposition of the production scheduling problem into a batching problem 
and a batch scheduling problem. The batching phase generates appropriate 
batches, which in the course of the batch scheduling phase are scheduled on 
the processing units subject to inventory constraints. Neumann et al (2002a) 
have shown that the batching problem can be formulated as a mixed-binary 
linear program. As will be explained in what follows, the batch scheduling 
problem can be modeled as a resource-constrained project scheduling problem 
with changeover and cumulative resources. 

Assume that we have obtained a feasible solution to the batching problem 
that provides us with a set of operations to be scheduled on the processing 
units. The batch scheduling problem consists in allocating the resources to the 
operations over time such that the processing of all batches is completed within 
a minimum amount of time. A variety of technological and organizational 
constraints have to be taken into account. A task generally requires different 
types of resources: processing units with sequence-dependent cleaning times, 
input products, and storage facilities for output products. The availability of 
these resources is limited by capacities and inventories. Finally, there may exist 
perishable intermediate products. 

The execution of all operations can be viewed as a project, where the makespan 
to be minimized corresponds to the project duration S'n+i. Accordingly, we 
identify each operation i with one real activity i e V, with duration pi being 
equal to the processing time of the corresponding task. Each operation is ex
ecuted on a processing unit. We combine identical processing units to form a 
pool. Each pool is modeled as a changeover resource k G TZ^, The require
ment Tik of activity i for resource k equals 1 if operation i is carried out on a 
processing unit of the pool, and 0, otherwise. The capacity Rk of resource k is 
equal to the number of processing units in the corresponding pool. The cleaning 
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times between consecutive operations on a processing unit can be interpreted as 
sequence-dependent changeover times between the activities. The changeover 
time '&^A between two activities i and j on resource k equals the cleaning time 
after operation i if passing from i to j requires a cleaning of resource k. 

Intermediate storage facilities can be modeled as cumulative resources. We 
associate one cumulative resource k e TZ^ with each intermediate product to 
be stocked. The minimum inventory level Rj^ of resource k equals zero, and 
the maximum inventory level Rj^ is set to be equal to the capacity of the storage 
facility for the product. The demands rik of activities i for resource k can be 
determined as follows. If the product is an input product of operation i, Vik 
equals the negative amount of the product consumed by z, and if the product is 
an output product of operation z, r̂ /. equals the amount of the product produced 
by i. 

Finally, we turn to perishable intermediate products. We only consider the 
case of chemically unstable products, which must be consumed immediately. 
The case of general shelf life times can be modeled by introducing auxiliary 
activities and cumulative resources (see Neumann et al 2005). The immediate 
consumption of an intermediate product can be enforced by associating the 
product with a cumulative resource k whose maximum inventory level is equal 
to zero and modeling the resource demands as described above for the storable 
intermediate products. 

In conclusion. Table 15.2 summarizes the modeling of the batch scheduling 
problem as a resource-constrained project scheduling problem. 

Table 15.2. Batch scheduling: application and model 

Batch scheduling Project scheduling 

Operations Activities 

Makespan Project duration 

Pools of identical processing units Changeover resources 

Cleaning times Sequence-dependent changeover times 

Intermediate storage facilities and Cumulative resources 

perishable intermediate products 

15.7 Conclusions 

In this chapter, we have discussed recent results on deterministic resource-
constrained project scheduling with time windows. We have presented an order-
based structural analysis of the feasible region of project scheduling problems 
and a new classification of objective functions important to practice. This 
structural analysis and classification have been exploited for developing effi-
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cient solution approaches. First, methods for solving time-constrained project 
scheduling problems have been proposed. Second, the resolution of conflicts for 
renewable, allocatable, synchronizing, changeover, and cumulative (or storage) 
resources and thus the solving of corresponding resource-constrained project 
scheduling problems have been studied. Finally, we have briefly discussed two 
applications of resource-constrained project scheduling: factory pick-up of 
new cars and batch scheduling in process industries. 

An important area of future research is the development of efficient decompo
sition methods for solving large-scale project scheduling problems, e.g., batch 
scheduling in process industries with several thousand operations. Only a few 
approaches have recently been proposed in that area (see Centner et al 2004 
and Centner 2005). 

Another field of future research is rescheduling, where due to disturbances 
in practice, a feasible baseline schedule has become infeasible and must be 
repaired (cf. Subsection 15.3.2). Instead of or in addition to repairing baseline 
schedules, robust schedules may be constructed, e.g., by inserting different 
kinds of appropriate buffers. An overview of some first results on how to deal 
with rescheduling and build robust schedules can be found in Demeulemeester 
and Herroelen (2002, Chapter 10) and Schwindt (2005, Section 6.5), and a new 
approach has been presented by Mellentien (2005). 

A third area of future research is resource-constrained project scheduling 
with given work content. Instead of prescribed processing times and resource 
requirements of activities, a work content (e.g., amount of man-days) may be 
given for each activity. In that case, the resource utilization of each activity 
may vary during its execution between certain limits. A first comprehensive 
approach to modeling and solving such project scheduling problems has been 
proposed by Fiindeling (2005). 
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Abstract Some of the most challenging issues that arise in the domain of distributed man
ufacturing technology and management include manufacturability analysis, vali
dation and evaluation of process plans, partnership in virtual enterprises, process 
design, and optimization of production plans and schedules. These issues are eas
ily unified within a framework of a project-driven manufacturing concept which 
is focusing on small and medium size enterprises (SMEs) where products are 
manufactured based on make-to-order or build-to-order principle. 

Regardless of character and scope of business activities a modern enterprise, 
has to build a project-driven development strategy in order to respond to chal
lenges imposed by growing complexity and globalization. Managers need to be 
able to utilize a modern decision support tools as to undertake optimal business 
decisions in further strategic perspective of enterprise operation. In this context 
this contribution covers various issues of project management engineering while 
focusing in the field of Project-Driven Manufacturing, particularly in domains 
regarding the development of novel constraint programming based mathematical 
models and related decision-making methods as well as their implementation 
into the task oriented decision support systems aimed at project-driven SMEs 
management. 

Keywords: Decision support, constraint logic programming, production planning, modeling, 
scheduling 

16.1 Introduction 
The key factor for companies confronting the challenge of remaining compet

itive in an era of globalization is undoubtedly the capability to fast and accurate 
decision making, especially in project management domain. Currently, the field 
of project-oriented management of manufacturing systems is driven primarily 
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by market forces. Some of the most challenging issues that arise in the domain 
of distributed manufacturing technology and management include manufac-
turability analysis, validation and evaluation of process plans, partnership in 
extended enterprises, process design, and optimization of production plans and 
schedules. These issues are easily unified within a framework of a project-
driven manufacturing concept which is focusing on small and medium size 
enterprises (SMEs) where products are manufactured based on make-to-order 
or build-to-order principle (see Kis et al (2004)). 

In that context our objective is to provide a constraint programming based 
methodology aimed at designing of task oriented decision support systems 
(DSS) in particular oriented to the project management tasks in SMEs. Two 
purposes are considered. Firstly, to contribute to the problem of DSS designing 
by providing a new modeling framework unifying a customer-producer model 
and the state space pruning strategies as well as programming languages avail
able. Secondly, to present the possible implementations of the programming 
methodology provided, i.e., showing a way enabling searching strategy evalua
tion, searching for adjustment of programming consistency (including problem 
statement and its specification, implemented constraint programming language, 
and the searching strategy applied), and showing an illustrative example of a 
software package application to a production order evaluation in the SME. 

16.1,1 Multi-project environment 

Finding an answer to the question whether a given production order can 
be accepted to be processed in a SME seems to be a fundamental from the 
customer-driven, and highly competitive market point of view. In order to 
decide whether a new production order (i.e., a new project) can be executed in a 
given production system, the producer capabilities and the customer needs have 
to be taken into account. So, the question facing a decision maker is whether 
the consumer's requirements can be balanced with the producer's capability 
(see Figure 16.1). 

In that context decision making regards to the question whether enterprise's 
capability allows to fulfill constraints imposed by the production order require
ments, i.e. whether its completion time, batch size, and its delivery period 
satisfy the customer requirements while satisfying constraints imposed by the 
enterprise configuration taking into account available resources, know how, ex
perience, and so on. In the case of the response to this question being positive, 
i.e. there exist a way guaranteeing to complete a production order, the next ques
tion regards of finding of the most efficient one (e.g. as to be competitive on the 
market) (see Banaszak et al (2005), Banaszak and Zaremba (2004a), Banaszak 
(2003)). 
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The question stated above is usually considered under assumption that in the 
enterprise several project-like production orders are executed, however some 
production capabilities are still available. So, the question is whether the pro
duction order at hand can be accepted for execution in an enterprise where some 
resources availability is constrained in time? 

The solution to such a general question faced by the decision maker will be 
either acceptance of the production order (based on production flow specifica
tions, including manufacturing and transportation routes, batch sizes, schedules, 
etc.) or negotiation of a new production order requirements that must be sat
isfied in order to balance the enterprise capability with the production order 
completion constraints. 

Can the consumer's requirements be balanced with 
producer's capability? 

Company's capability 
^ % ^ 

Consumer's requirements 

Decision Support System 

NO^ 

Constraints negotiation that 
must be satisfied in order to 
balance an enterprise 
capability with a production 
order requirements 

YES 

Production flow 
specification: manufacturing 
and transportation routes, 
batch sizes, schedules, etc. 

Figure 16.1. Decision making as a problem of balancing the consumer's requirements with the 
producer's capability. 

Most companies, particularly SMEs have to manage various projects, which 
share a pool of constrained resources, taking into account various objectives at 
the same time. Due to the surveys [Lova, et al, 2000] conducted about 80% of 
companies have to deal with multiple projects, what corresponds to the other 
data stating that about 90% of all projects occur in the multi-project context. 
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Since tools supporting fast and cheap as well as accurate and on-line decision 
making are crucial to survive producers' competition, hence the methodology 
allowing to design task oriented (i.e., encompassing SMEs needs) decision 
support systems can be seen as one of among the most challenging issues. 

16.1.2 Decision support 
The multi-mode and resource-constrained models of the project-oriented 

management problems are mostly used to develop solution methods. It means, 
they employ the assumptions under which the solutions provided can be justified 
as an efficient, optimal, rational, and so on. The resource-constrained project 
scheduling problems (see e.g. Brucker et al (1999) for a survey) focus on the 
project makespan which has to be minimized. In turn, each activity of the 
multi-mode problem can be executed in one of several modes representing a 
relation between resource requirements of the activity and its duration. The 
schedule has to be precedence- and resource-feasible, and no activity may be 
interrupted. 

The objective is to find an assignment of modes to activities as well as 
precedence- and resource-feasible starting times of all activities such that the 
makespan of the project is minimized. The problem is strongly NP-hard (see 
e.g. Blazewicz et al (1983)), so because of that commercially available software 
packages implementing the local search metaheuristics are quite costly and 
require skilful and well trained personnel. 

So, new methods and techniques aimed at real-life constraints imposing on
line decision making are of great importance (see Anavi-Isakow and Golany 
(2003), Wei et al (2002)). They have to enhance an on-line project management, 
and support a manager in the process of decision making, e.g. in the course of 
an evaluation whether a new project can be accepted for processing in a multi-
project environment of a manufacturing system at hand. They can also be 
included into DSS tools integrated into standard project management software 
like MS Project or CA-Super Project. 

The problem has been addressed using two approaches: the scheduling of a 
single project and the scheduling of multiple simultaneous projects (see Brucker 
et al (1999), Anavi-Isakow and Golany (2003)). Most of the publications 
on project management have been dedicated to a single project. In recent 
years, however, there has been a growing interest in problems related to project 
scheduling in multi-project environments. In the single-project problem, satis
fying time constraints is one of the dominant criteria. In contrast, scheduling 
of several projects with common and constrained resources takes into account 
other criteria such as idle resources, resource leveling, in-process inventory, and 
project splitting (see Lova et al (2000), Wei et al (2002)). 
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In this context it is worth to note that the currently available software tools 
allow pre-emption; however, they are not designed to cope with company pro
duction capability constraints in terms of resource and time availability, i.e., 
the schedules generated are usually infeasible if resource constraints are taken 
into account. Moreover, they do not permit to consider production planning 
in a unified way to enable an integrated approach to such different tasks as 
production and transportation routings, production and batch sizing as well as 
tasks scheduling. 

Therefore, the objective is to find a computationally effective method (i.e., 
enabling decision maker to interact in an on-line mode) aimed at project-like 
production flow planning under constraints imposed by the multi-project envi
ronment. In other words, the method should be able to cope with the problem 
defined in terms of finding of a feasible schedule that satisfies the constraints 
imposed by the duration of production order processing, the cost assumed, and 
the time-constrained resources availability 

16.1.3 Towards unified framework for dedicated 
applications 

Regardless of its character and scope of business activities a modem enter
prise, has to build a project-driven development strategy in order to respond 
to challenges imposed by growing complexity and globalization. Managers 
need to be able to utilize a modem DSS tools as to undertake optimal business 
decisions in further strategic perspective of enterprise operation. 

Often repeating requests regard the questions such as: Whether in a given en
terprise employed with the machine tools, automated guided vehicles (AGVs), 
buffers and warehouses a production order submitted can be completed due 
assumed period of time? Can the consumer's requirements regarding the final 
cost production be guaranteed? Does a given number of transportation means 
guarantee due time product delivery? Is the production capacity of the company 
sufficient to accept a new production order? Is the company able to respond? 
How to obtain such a response in an on-line mode? What strategy of production 
order processing is the most efficient one? Can the consumer's requirements be 
fulfilled within the assumed Extended Enterprise stmcture? Does the assumed 
set of SMEs guarantee a resultant Extended Enterprise to accomplish a given 
production order? 

Respond to the questions usually involve many different aspects and contexts, 
e.g., money flow, personnel and/or resources allocation, tasks scheduling, work
flows planning, and so on. The commercially available tools are just very task 
oriented, e.g., aimed at delivery planning, a layout designing, a product routing, 
etc. 
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Therefore a unified approach to such traditionally separately approached 
problems as layout designing, production and transportation routing, batch siz
ing, scheduling, and so on, enabling to integrate them into a DSS dedicated 
to the needs and requirements of particular enterprise plays a pivotal role in 
decision making. In other words, the approach required has to provide a uni
fied framework allowing one to cope with different in scope and type decision 
problems within traditionally organized (see Banaszak and Zaremba (2004b) 
as well as extended enterprises (see Banaszak and Zaremba (2004b)). 

In that context, the Constraint Programming/Constraint Logic Programming 
(CP/CLP) languages (see Wallace (2000), Rossi (2000)) by employing the con
straints propagation concept and by providing unified constraints specification, 
can be considered as a well-suited framework for development of decision 
making software aimed at supporting the SMEs in the course of the Produc
tion Process Planning (PPP). Because of their declarative nature, for a user that 
is enough to state what has to be solved instead how to solve it (see Bartak 
(2003), Bartak (2004)) the approach seems to be very friendly for modeling of 
a company real-life and day-to-day decision-making (see Bartak (1998), Bartak 
(2003)). 

16,2 Modelling framework 
The objective concerns of computationally effective approach aimed at deci

sion-making support for project-driven manufacturing in small- and medium-
size enterprises. The problem considered regards of CP/CLP-based modeling 
framework enabling to provide an interactive scheduling of a new project subject 
to constraints imposed by a multi-project environment. 

16.2.1 Customer-producer model 
In order to balance the producer's capabilities with the customer's require

ments a customer-consumer model is proposed. The model consists of a pro
duction system model, which reflects the parameters of a potential production 
system, and a production order model, which takes into account the order's 
requirements. 

The model of a production system and the model of production order include 
parameters (such as: set of constraints, sets of discrete decision variables), 
which assure the correctness of obtained solutions and their application. 

The discrete variables reflect various parameters - from the resource avail
ability periods, through the production and transportation batch sizes, to the 
deadlines and taking over prices of the particular batches, Figure 16.2, and 
Figure 16.3. 

Some of the variables may be grouped reflecting the traditional structure 
of a shop design, e.g., the transportation, and machining parts as well as may 
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Constraints 
linking 

manufacturing; 
and 

transportation 

[Transportation | 
Model of production system 

Constraints regarding transportation means, e.g., 
number of transportation mans, 
capacities of transportation means, 

I- transportation paths. 

uDecision variables of the transportation 
[subsystem, e.g., 
- beginning of transportation operations, 
- number of transportation batches, 
- transportation batch sizes. 

[""iManufacturing 

j Decision 
i variables 

Constraints regarding manufacturing, e.g., 
- beginning of machining operations, 
- number of production batches, 
- production batch sizes, 

Decision variables of the manufacturing 
subsystem, e.g., 
- resources availability, 
- production routings. 

[........]- variables and constraints 
I I- transportation and manufacturing 

subsystems 

Figure 16.2. Model of production system 

be related each other, e.g., transportation and manufacturing batch sizes. The 
relations linking particular variables can be treated than as constraints deter
mining the enterprise capabilities and/or production order requirements. So, 
the assumed model of the customer-producer consists of two standard elements: 
variables and their domains, constraints relating some subsets of variables. The 
model structure directly corresponds to so called constraint satisfaction prob
lem. It should be noted, however, that the problems specified in the model 
are the decision making ones, i.e., problems concluding in questions awaiting 
either for ''yes" or "not" response. 

The above representation can be applied to the production flows observed 
in project-driven extended enterprises (see Banaszak and Zaremba (2004b), 
Banaszak and Pisz (2003), Banaszak et al (2003), Leach (2000)) as well as in 
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Model of production order 

Constraints: 
- price 
- deadline 
- volume of production order 

Decision variables: 
- starting time of production order execution 
- cost of operation performance 

Figure 16.3. Model of production order. 

SMEs (see Lamma et al (1997), Anavi-Isakow and Golany (2003)). That is 
because the common platform provided by the workflow model (see Chin-Yin 
(2002)) describes the workflows of tasks, activities, etc., throughout the process 
of production flow planning (i.e., project management). The workflow model 
can be defined as a relationship among actions/activities treated as components 
of the considered processes. 

16.2.2 Constraint Satisfaction Problem 
The declarative character of Constraint Programming languages and a high 

efficiency in solving combinatorial problems creates an attractive alternative for 
the currently available (based on conventional operation research techniques) 
systems of computer-integrated management. 

The Constraint Satisfaction Problem (CSP) consists of a set of variables X = 
{a:i,X2,...,Xn}, their domains D == { A | A = [dii,di2,... ,dij,.,. ,dim], 
i — 1,..., n}, and a set of constraints C = {Ci\i = 1 , . . . , L}. A solution is 
such an assignment of the variable values that all the constraints are satisfied. 

It's easy to notice, that efficiency of a searching strategy can be evaluated in 
advance on the base of a given domains' sizes. In order to illustrate it let us 
considerC5P - ((X, D), C), suchthatX - {A, B}, D - {DA, DB). where 
DA - {1,2,3}, DB - {3 ,4 , . . . , 9}, and C = {ci,C2}, where ci = P[B > 
3 ' A], and C2 = P[A + B > 9], Depending on the order in which variables 
are distributed the time required to obtain a set of feasible solutions may differ 
dramatically. In the case considered, starting with variable A requires twice 
less searching than in the case when variables distribution begin from variable 
B, see Figure 16.4. 
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Constraints ^) 
propagation 

Distribution 

Constraints 
propagation 

Distribution 

Legend: 

Constraints 
pfopagatiori 

Distribution B=3 

Constraints 
propagation 

CZ^ Variables domain 
• A solution does not exist () Admissible solution 

Figure 16.4. Decision variables distribution a) B follows A, b) A follows B. 

For discussion let us consider the CSP = ((X, Z)),(7), where X = {xi, 
X2, . . . , xu}, D = {Di, Z)2, • . . , ^12}, C :== {ci, C2, . . . , cs}, and where: 
Ci =:̂  P [ x i , X 2 , X 3 ] , C2 = P[X2,X4,X5], C3 ^ P[X4,XQ], C4 = P[x7,Xs], 

C5 ^ P[X4,X7],C6 == P[xg,Xio],C7 = P[xs,Xg],Cs == P [ x i i , X i 2 ] . 

The problem in natural way decomposes into subproblems, in particular 
into elementary problems, which are not further decomposed. The elementary 
problems can be seen as problems encompassed by constraints, for instance the 
elementary problem associated to the constraint cg = Plxn^xu] can be stated 
as follows CSPs = (({xii, X12}, {dn.du}), {cs}). 

16,2.2.1 Loosely coupled Constraint Satisfaction Problems. In gen
eral case any CSP may be decomposed, either into a set of loosely coupled 
problems or into a set of strongly coupled problems (see Banaszak and Jozefczyk 
(2005), Tomczuk et al (2005)). The two problems CSP = {{X, D), C) and 
CSP' = {{X', D'), C) are loosely coupled ones if the conditions 16.1 hold. 

i) X n X' - 0 

n) yce C \D{c)nX' ^k 

in) W eC :D{c')nX = 

(16.1) 

where: D{c) - is the set of variables included in the constraint c. 
In turn, any element of a set of loosely coupled problems is a strongly coupled 

problem following the condition below 
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(16.2) vx*,x* c X*,3x:,x*,... ,x* c X* 
x ; n X * 7̂  0 A X * n X * 7̂  0 A... A X * n x * 7̂  0 

where: 
CS'P* == ((X*, J9*)C*) - a strongly coupled problem composed a set of 

elementary problems {CSP^, CSP^,..., CSP^}, 
It means, that for any two pairs of elementary problems of a strongly cou

pled problem there exists either nonempty subset of common variables or there 
exists a set of elementary subproblems constraints of which provide a chine 
of nonempty subsets of variables (following the pairs of elementary problems 
while linking the considered pair). 

16.2.2.2 Dependent Constraint Satisfaction Problems. In turn, a 
strongly coupled problem may be decomposed into a set of so called dependent 
problems which are strongly coupled ones. It is assumed, however, that any 
pair of dependent problems follows the condition 16.3. 

VXĵ , Xf C X, 3X* C X|Xj^ n Xf - 0 A ... A 
X* n (U{x'*|x'* c xj^}) ^ 0 A X* n (U{x*|x* G x f } ) / 0 

where: 
CSP^'' = {{X^,D^),C^),CSPf' - ((Xf ,Z5f),Cf) - are the strongly 

coupled subproblems of the strongly coupled problem CSP — ((X, L)),C), 
CSP'' = ((X*,!)*),^*) - elementary subproblem of the problem CSP = 

Illustration of the C 5 P — ((X, D), C) decomposition into the sets of loosely 
and strongly coupled as well as dependent subproblems is shown in Fig. 16.5. 

16.2.2.3 Constraint Satisfaction Problem Decomposition . In or
der to summarize the above considerations it should be noted that a CSP — 
((X, D), C) can be decomposed into a set of: 

• elementary subproblems, 

• loosely coupled subproblems, 

• dependent subproblems of a strongly coupled problems. 

Instead of the first two ways of possible CSP decompositions the third one 
does not lead to a unique decomposition. For instance, besides of the possible 
decomposition shown in Fig. 16.6, an alternative the more detailed one can be 
considered as shown in Fig. 16.7. 

Such observation enables to consider a tree of all the potentially available 
decompositions in a form of a AND/OR -like digraph, see Fig. 16.8. 
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loosely coupled subproblems 

dependent subproblems 
strongly coupled subproblems 

Figure 16.5. Decomposition of CSP — ((X, D), C) into loosely and strongly coupled as well 
as dependent subproblems. 

Different possibilities of CSP decomposition enable one to take into account 
the real life constraints that follow from: 

• a way of a problem specification (i.e., a set of elementary problems rec
ognized), 

• a programming language implementation (some structures of dependent 
problems may or may not be accepted by CP/CLP packages), 

• a way of a CSP resolution (e.g., the loosely coupled subproblems can 
be computed concurrently within an multiprocessor environment), 

• a searching strategy applied (the order of subproblems resolution results 
in a CSP makespan). 

The above observation leads to a concept of a reference model of a CSP 
decomposition, i.e., the model encompassing an object-like nature of the CSP 
structure (see Banaszak et al (2005), Tomczuk and Banaszak (2005)). So, since 
each subproblem corresponds to a standard constraint problem structure: (({a 
set of decision variables}, {a set of variable domains}), {a set of constraints}), 
hence some AND/OR - like graph representation can be used both in the course 
of analysis of the CSP programming (i.e. CP/CLP problem specification) and 
its resolution. 

The concept of the CSP decomposition reference model provides a well 
suited framework for preliminary evaluation of search trees pruning strategies. 
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Figure 16.6. The possible decomposition of the C-SP problem into the two loosely coupled 
subproblems CSPi , CSP2 , and decomposition of the CSPi into the two dependent subprob-
lemsC5Pi^andCS'Pi^. 

16.3 State space pruning strategies 
Consider the CSP = ((X,Z)),C), where X = {:ri,X2,X3}, D - {Du 

D2. D3}, C - {ci, C2, C3}, and where: Di = D2 = D3 =^ {1, 2}, ci - P[xi], 
C2 = P[x2], C3 = P[x^]. The C S F consists of the following three elementary 
problems: CSPi = {{{xi},{Di}),{ci}), CSP2 - (({xs}, P 2 } ) , {cs}), 
CSP, = {{{X3}AD3})AC3})^ 

The numberofpossible solutions is equal to 2*2*2 == 8, however the number 
of backtrackings required to check their feasibility is greater, and equals to 11 
(see Fig. 16.8). 

The number of backtrackings can be estimated due to the formulae (16.4). 

^o')-E(n4-i) (16.4) 
= 1 h=l 

where: 
k - the index of the k-ih elementary problem of a CSP, 
L - the number of elementary problems, 
j - the j-th permutation of the set of elementary problems. 
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CSP=(({Xl,X2,...,Xi2},{Dj,D2,...,Di2}).{Cl,C2 Cs}) 

CSPiM({xi.X2„...X6},{D,.D2 D,}),{C,,C2.C3}) 
CSP2*- (({xn,Xn}.{D„,Dn}),{cH}) 

CSP2M({X7.XH X,2},{Dy,D, D ,2}).{c,,C6,C7}) 

CSP 6* = (({X7.Xs}. {Dy,Ds}), {C4}) CSPs '^-(({X9,X,o}, {D,,D,o}), {C,}) 

Legend: 
CSP^, CSP^, CSPi - elementary subproblems, 
C5P/^, CSP2A, CSP^, CSP^, CSP^ - strongly coupled subproblems, 
CSP^ = (({xi - XIQ},{DI - Dio}),{ci - C7})jCSP^ - loosely coupled 
subproblems, 

N. ^ decomposition into dependent subproblems, 

• < ^ decomposition into loosely coupled subproblems. 

Figure 16.7. Alternative way of the CSP problem decomposition. 

/ 

CSP 1 

A 
CSP,'-

:X • • • 

csp; 

1 

i CSP 2 
1 

Figure 16.8, AND/OR-like graph representation of the CSP possible decompositions. 

h - the index of an elementary problem placed at the h-th position in the 
jĵ -th permutation of the set of elementary problem obtained from the CSP, 
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ZJ^{k)— a number of potential assignments of the decision variables of the 
fc-th elementary problem placed at the h—ih position in the j/.-th permutation. 

^ - labeled backtracking 

Figure 16,9. Searching tree encompassed by backtrackings. 

So, assuming {CSP2^ CS'Pi, CSP'^) as the j-th permutation of elementary 
problems {CSPi,CSP2, CSP^} as well as Z^(2) - 4 ( 1 ) = 4 ( 3 ) = 2, the 
number of backtrackings N{j) equals to: 1 + 2*2 — 1 + 2 * 2 * 2 — 1 — 11. 

16.3.1 Searching strategy evaluation 
In general case, however, since the cardinality of a set of possible solutions 

of each elementary problem CSPi, CSP2,..., CSPL of CSP can be seen as a 
multiple of its variables domains, hence the possible orders of CSP resolution 
are determined by L\ permutations of the set of elementary problems. Of course, 
the different permutations lead to the different results, i.e. different numbers of 
backtrackings. 

In order to illustrate this fact let us consider the CSP — ((X, D)^C), where 
X = {x i ,X2,X3,X4,X5,X6}, D = {di,d2,d3^d^,d^,dQ}, C = {01,02,04} 

and where: Di -- D2 = D3 ^^^ {1,2}, D4 = D^ = DQ ^ {1,2,3}, ci -
P [ x i , X2], C2 = P[X3, X4], C3 = P[X5, XQ], 

The CSP considered consists of the following three elementary problems: 
CSPl - {{{XUX2}ADUD2})ACI}),CSP2 = (({x3,X4},{i?3, A}),{C2}), 
CSP:^ = (({x5,X6}), {i?5,/^6})5 {03}). Among the possible 3! permuta
tions let us focus on the following two ones: {PSOi^ PS02^ PSOs), and 
(P503,P>SOi,P502). 

Since CSPi results in possible 2*2 = 4 solutions (assignments), and CS'P2 
results in possible 2 * 3 = 6 solutions, and C5P3 results in possible 3*3 = 9 
solutions, hence first permutation result in 4—1 + 4*6 — 1 + 4*6*9 — 1 = 241 
backtrackings, and the second one in 9 — 1 + 9*4—1 + 9 * 4 * 6 — 1 = 258 
backtrackings. 
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In the considered case, however, the way of backtrackings estimation suffers 
from omitting the number of possible backtrackings at elementary problem 
levels. Note, that for the case when elementary problem consists of three and 
more variables a number of required backtracking is bigger than number of 
possible solutions to the problem. 

In order to overcome this disadvantage the modified formulas are proposed 
(16.5), (16.6). 

L k 

Nij)-Y.^\{^r{Jk.k)-\) (16.5) 

where: 
L - the number of elementary problems of a CSP, 
j - the j-th permutation of a set of the elementary problems of a CSP, 
r - the index of an elementary problem placed at the r-th position in the j-th 

permutation, 
k - the index of the k-th elementary problem, 
jk - the j/c-th permutation of a set of the /c-th elementary problem variables, 
^r {jki k) the number of potential backtrackings of the fc-th elementary prob

lem resolved due to the j/.-permutation of variables, the /c-th elementary prob
lem is placed at the r-th position in the j-th permutation. 

L{k) i 

where: 
k - the index of the k-th elementary problem of a CSP, 
L{k) - the number of the variables of the A:-th elementary problem, 
i - the index of the i-th variable of the /c-th elementary problem, 
jk- the A:-th permutation of the variables of the A:-th elementary problem, 
h- the index of the variable placed at the /i-th position in the j ^ -th permutation 

of the fc-th elementary problem variables, 
Zj^{i^ k) the cardinality of the i-th variable domain, i.e., the variable placed 

at the h-the position in thej/e"th variables permutation of the /c-th elementary 
problem 

So, in order to obtain a correct evaluation of the backtrackings number re
quired to find a set of admissible solutions of a CSP, the permutation of ele
mentary problems as well as variables permutation in each elementary problem 
have to be assumed. The variables and elementary problems permutation de
termine the order of variables substitution and elementary problems resolution, 
respectively. 

In the case considered, for the set of elementary problems {CSPi, CSP2, 
CSP3} let us consider: 
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• the permutation (CSPi^ CSP2, CSPs) and the following variables per
mutation: (xi,X2) forCSPi^ (3:3, X4) fovCSP2,^nd (X^^XQ) for CSP3, 

• the permutation (CSP^,CSPi,CSP2) and the following variables permu
tation: (xi,X2) for CSPi^ (x3, X4) for CSP2, and {x^, XQ) for CSP3. 

In the first case, since CSPi results (see formulae (16.2)) in possible 1 + 2 * 
2—1 — 4 solutions (assignments), and CS'P2 results in possible 1 + 2* 3 — 1 = 6 
solutions, and CSP^ results in possible 2 + 3 * 3 - 1 = 10 solutions, hence 
due to the formulae (16.3) the number of backtrackings equals to 4 - 1 + 4 * 
6 - 1 + 4 * 6 * 10-1== 275 backtrackings. In the second case, however, the 
number of backtrackings equals to 10 — 1 + 10*4—1 + 10*4*6 — 1 = 287 
backtrackings. 

Assuming a new variables permutation: (xi,X2) for CSPi,{x3,X4) for 
CSP2, and (x5, XQ) for CSP^, the relevant numbers of backtrackings equal to: 
309, and 357, respectively. 

The above observation providing a way of pruning strategies evaluation can 
be generalized for the case of loosely and strongly coupled subproblems of 
CSP, The formulas allowing one to evaluate the pruning strategies for a given 
CSP decomposition as well as for assumed subproblems and variables permu
tation are provided, see the formulae (16.7), and (16.8), respectively. 

L L 

^Ud) -= E ( n ^r'Uk. k) - 1) (16.7) 

where: 
L - the number of the subproblems obtained due to the d-ih decomposition 

of a CSP, 
jd - the jd-th permutation of a set of subproblems obtained due to the d-ih 

decomposition of a CSP, 
r - the index of the subproblem placed in the r-th position in the ĵ ^-th 

permutation, 
k - the fc-th subproblem of a set of subproblems obtained due to the d-ih 

decomposition of a CSP, 
jk - the jk-^h permutation of a set of the /c-th subproblem variables, 
Nr'^ijk^k) the number of potential backtrackings of the /c-th subproblem 

placed at the r-th position in the jd-ih permutation 

L{k) L{k) 

i=l h=l 

where: 
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k - the fc-th subproblem of a set of subproblems obtained due to the d-\h 
decomposition of a CSP, 

L{k) - the number of the variables of the /c-th subproblem, 
i - the index of the i-th variable of the /c-th subproblem, 
j/e- the fc-th permutation of the variables of the fc-th subproblem, 
h- the index of the variable placed at the/i-th position in the jk -th permutation 

of the fc-th subproblem variables, 
Zj^{i^ k) the cardinality of the i-th variable domain, i.e., the variable placed 

at the h—ih position in the j/c-th variables permutation of the A:-th subproblem 

16.3.2 Searching for searching strategy 
In order to summarize the section it should be noticed that since with arcs of 

a AND/OR graph it is possible to bind weight factors determining the necessary 
number of searches, hence such representation provides a way to chose the best 
searching strategy, i.e. a variant with least number of backtrackings. In the case 
of a CSP decomposition into a set {CSPi, CSP2, . . . , CSPL] the relevant 
searching tree is shown in Fig. 16.10. 

1 CSP, 

i 
1 ^^^i 

• •• 

CSPu 

t 
CSP, 

CSP 1 

^ r 

1 CSP2 1 

i 
1 CSPl 
' i ' 

1 
• •• 

CSPL-I 1 

• 
CSPL 1 

^ 1 2 FL-, 
permutation of CSP^i 

variables of CSP/,. I 
L! - suboroblems oermutation 

Figure 16.10. Searching tree for CSP decomposed into the set of elementary problems. 

In the case considered the number V of possible searching strategies for the 
CSP composed of L elementary problems consisting of the /Ci, i^2) • • • > KL 
variables can be estimated due to the upper bound stated by the formulae (16.9). 
It means that for the CSP consisting of L = 10 elementary problems each of 
them containing Ki=2 variables the number of possible searching is equal to 
V = 2^^10! ^ 3.6 * 10^. Of course the formula considered does not take into 
account a number of possible CSP decompositions! 

V = {max{Ki})^L\ (16.9) 
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Therefore the problem of selection of the optimal (i.e. requiring the less 
backtrackings) state space pruning strategy seems to be at least NP-complete 
one. So, the branch and bound method can be considered in the course of the 
best searching strategy selection. The idea standing behind of this concept is 
shown in Fig. 16.11. 

1 CSPi W, 1 

1 CSP 1 

1 r 
CSP2 W2 1 

4"-̂ ' i 
CSPi WL^, I 1 

1 CSP, Wuj 

T... 

1 CSPk WiUr 

Figure 16,11. 

r 
CSPi WL^2 

1 CSPs ••• 

1 *** 

1 *** 

CSPL WL 

CSPI WL 

- 1 ^ 

^CSPL W2L.I 

Branch and bound method approach to pruning strategy sele 

For a given CS 'F decomposition, i.e.,foragivensetof subproblems {CSPi, 
CSP2, . . . , CSPL} the set of upper bound values {1^1,1^2,..., W^L} is cal
culated (due to the formulae (16.7) and/or (16.8). Then for the subproblem to 
which the lowest value of the upper bound is assigned the next subproblem is 
selected as to find the order in which the subproblems should be resolved while 
requiring the lowest number of backtrackings. 

In general case, instead of the upper bound considered till now the other 
measures (heuristics) could be taken into account. For the illustration of such 
possibility let us consider the following example. 

Given a CSP — ((X, D ) , C ) such that X — {3:i,X2,X3,X4, X5}, D = 
{DuD2,Ds,D4,D^},Di =^ D2 = Ds = D4 = D^ = {1, 2 , 3 , . . . , 100}, 
C = {Ci, C2, C3, C4}, Ci = P[2 * Xi + X2 < X3], C2 === P[2 ^ X2 =^ X4], C3 =: 
P[x4 * X5 < xi * X3], C4 — F[x3 * X4 * X5 < 300]. 

As result of constraints propagation, i.e., the reduction of the domains Di — 
{ l , 2 , . . . , 3 6 } , i ? 2 - { l , 2 , . . . , 2 4 } , i ^ 3 - { 3 , 4 , . . . , 7 4 } , D 4 - { 4 , 5 , . . . , 9 6 } , 
D^ = { 1 , 2 , . . . , 24} the state space size of 100^ is reduced to the size equal 
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to 138 848 256. The constraint influence on the state space size reduction is 
shown in the Table 16.1. 

Table 16.1. The state space size reduction influenced by constraints. 

Con

straints 

cl 

c2 

c3 

c4 

Di 

1-49 

1- 100 

1- 100 

1- 100 

Domains of decision variables 

D2 

1-98 

1 -25 

1- 100 

1- 100 

Ds 

3-100 

1- 100 

1-100 

1- 100 

D4 

1- 100 

4 - 100 

1- 100 

1 - 100 

Ds 

1-100 

1- 100 

1 - 100 

1- 100 

The rate of 

the state space 

reduction 

52,94 % 

75,75 % 

0% 

0% 

Using the results obtained one may consider a searching strategy employ
ing the order of constraints propagation. Such strategy assumes step by step 
elementary problems resolution emphasizing a dynamic of state space reduc
tion (i.e., a heuristics assuming: "faster state space reduction, shorter searching 
time"). The evaluation of the possible strategies is shown in the Table 16.2. 

The elements of the third, fifth, seventh and the last column in the Table 16.2 
are calculated as follows: 

• the third column [1 - (49 • 98 • 98 • 100 • 100)/(100^)] • 100% - 52,94% 
for the constraint ci 

• the fifth column [1 - (49 • 25 • 98 • 97 • 100)/(100^)] • 100% = 88,35% 
for the constraint C3 

• the seventh column [1 ~ (49-25-98-97 •100)/(100^)]-100%-88,35% 
for the constraint C3 

• the last column [1 - (49 • 25 • 98 • 97 • 100)/(100^)] • 100% - 88,35% 
for the constraint 04 

Note that nonlinear constraints are less effective in the state space size re
duction than the linear ones. 

16.4 Towards task oriented decision support tool 
designing 

Since the reference model, i.e. an object-like AND/OR graph framework, 
provides the possibility to estimate the number of decision variables domains 
values substitution, hence the influence of data structure, sequence of elemen
tary subproblems solution and domain size on decision making time may be 
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Table 16.2. The state space reduction pruning strategies based on the step by step constraints 
propagation. 

Searching 

strategy 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

Constraints and correspondin, 

cl 

cl 

cl 

cl 

cl 

cl 

c2 

c2 

c2 

c2 

c2 

c2 

%~ 

52,49 

52,49 

52,49 

52,49 

52,49 

52,49 

75,75 

75,75 

75,75 

75,75 

75,75 

75,75 

g state space reduction rate 

Searching strategy 

c2 

c2 

c3 

c3 

c4 

c4 

cl 

cl 

c3 

c3 

c4 

c4 

. % 

88,35 

88,35 

52,94 

52,94 

53,87 

53,87 

88,35 

88,35 

75,75 

75,75 

86,72 

86,72 

c3 

c4 

c2 

c4 

c2 

c3 

c) 
c4 

cl 

c4 

cl 

c3 

% 

88,35 

98,61 

88,35 

53,87 

98,61 

53,87 

88,35 

98,61 

88,35 

86,72 

98,61 

86,72 

c4 

c3 

c4 

c2 

c3 

c2 

c4 

c3 

cd 

cl 

c3 

cl 

% 

98,61 

98,61 

98,61 

98,61 

98,61 

98,61 

98,61 

98,61 

98,61 

98,61 

98,61 

98,61 

evaluated as well. In other words, the model considered provides a well suited 
framework for development (taking into account the ways of possible prob
lem specification, available CP/CLP languages, and searching strategies) of a 
CP-based programming methodology as well as the development of the task 
oriented software tools aimed at the SMEs decision support, e.g. regarding 
production flow planning. 

16A.1 Problem Formulation 

Many often repeating question regards of the question: Whether in a given 
shop employed with the machine tools, automated guided vehicles (AGVs), 
and buffers and warehouses a production order submitted can be completed due 
assumed period? A production order includes the type of final product to be 
manufactured, the required quantity and defined due date as well as a final cost 
a customer has to pay. The product type is usually defined as the combination 
of components that a machine toll is capable of handling. The product type is 
specified by an execution route (production routing) that includes one or more 
execution steps. In general case, however, a given final product can be produced 
differently due to alternative execution routes that differ in the execution steps. 

The question stated above is usually considered under assumption in the 
enterprise executes several project-like production orders, however some pro
duction capability are still available. So, the question is whether the production 
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order at hand can be accepted for execution in an enterprise where some re
sources availability is constrained in time? 

The typical workshop layout (see Fig. 16.12) enables to distinguish two 
kinds of flows regarding production and transportation routings, 

WAREHOUSE 

ZTx 
H VTiVAV(h\ cA lOxMSOh S\ 

ZPy ZP^ 
ZTi 

••I VT^ l - L ^ H nin] | vr^ |-| vn^ (-' 
I ZA I I ZA I 

espectively. 

^&. 2h^ 
Legend: 
ZPj~ the i-th machine tool, VIjNO-f- the i-th input/output buffer, 
ZTi-thei-thAGW. 

Figure 16.12. The workshop layout 

These flows interact each other (e.g., via production and batch sizes, AGVs, 
buffers and warehouses capacities, and so on) and falls into the following two 
main subproblems: manufacturing and transportation that may be resolved in 
two alternative orders (see Fig. 16.13). 

The possible decomposition of the production flow planning is shown in Fig 
16.14. So, the relevant CSP problem consists of two subproblems correspond
ing to the manufacturing (denoted by CSPi) and transportation (denoted by 
G) subflows. In turn, the subproblem of manufacturing falls into production 
routing (denoted by A) and production batch planning and scheduling (denoted 
by CSP2). The last subproblem falls into subproblem of scheduling (denoted 
by F), and production batch planning (denoted by CSP2^i). Finally, the pro
duction batch planning subproblems falls into the calculation of the number of 
production batches (denoted by B) and production batch sizing (denoted by E). 

There are growing needs for decision support tools capable to assist a decision 
maker in the course of a new production order evaluation. The possible approach 
based on CP/CLP paradigm assumes possibility to adjust the ways of problem 
specification, its programming language implementation as well as a searching 
strategy selection to a class of production planning problems (specified by scale, 
production type, e.g. assembly or machining, and so on) as to respond in on 
line mode. 
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Transportation 
^^MMT^^^^^^^ 

Manufacturing 

Manufacturing 
IE 

Transportation 

Figure 16.13. The possible orders of production flow subproblems resolution. 

ajG: Transportation batch sizing and 
scheduling 

Figure 16.14. Decomposition of the production flow planning problem. 

16A.2 Task Oriented Decision Support Tool Designing 
Programming methodology proposed takes into account the constraints im

posed by a programmer experience (possible problem statements), by a set of 
available software tools (CP/CLP languages), and a set of searching strategies 
(build-in the software tools as well as those proposed by programmers) (see 
Fig. 16.15). The idea standing behind of this approach assumes that a decision 
maker has to be supported in the course of a standard requests and regarding 
known in advance a class of situations that may occur in the SME at hand. 

Following these requirements a programmer has to develop a well adjusted 
CP/CLP based decision support tool encompassing a specific of an enterprise 
and production orders considered. 

The illustration of the implementation of the methodology considered into 
the task oriented software tools supporting the SME in the course of decision 
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making is shown in Fig. 16.16. The way of admissible problem resolution is 
underlined by the bold frames and arcs. 

PROBLEM STATEMENT 

.a. 
PROBLEM SPECIFICATION 

Ik 
CP/CLP LANGUAGE IMPLEMENTATION 

XT 
SEARCHING STRATEGY 

Figure 16.15. Stages of the CP-based programming methodology. 

PROBLEM 
SPFrTFTCATTON #1 

PROBLEM 

SPECIFICATION #2 

CP/CLP 
IMPLEMENTATION 

CP/CLP 
TMPT FMFNTATTON 

PROBLEM 

SPECIFICATION §n 

CP/CLP 
IMPLEMENTATION 

Figure 16.16. The tree of possible ways of a CSP programming. 

Since efficiency of programming depends on selected problem specification, 
a software tool employed and a chosen searching strategy, hence designing of 
the task oriented tools seems to be the only reasonable approach to set-up a 
CP-based decision support software. It means, for a given class of CSPs (e.g. 
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production flow planning ones) and a CP/CLP language assumed, on the base of 
an experience gathered both from the analysis of the reference model of CSP 
decomposition, and multiple experiments that is possible to develop searching 
strategy optimal in the sense of minimal number of potential backtrackings. 

16.4.3 Illustrative Example 
The methodology presented has been implemented in the course of the de

velopment of a task oriented decision support tool aimed at tasks relevant to 
project management. The software package considered (implemented in ILOG 
OPL Studio 3.7) assists the user in answering to the following questions in the 
on-line mode: Are the company production capabilities are sufficient for the ex
ecution of a production order in accordance with the customer's requirements? 
What is the planned production order execution deadline? What is the cost of 
the order execution? 

Moreover it facilitates setting a possible variant of current production organi
zation including routing, batching and scheduling. Also it enables a fast evalua
tion of production orders assuming to be processed in a system already involved 
in the currently executed production plan. So, a newly introduced production 
orders are verified according to the company's capabilities and producer's re
quirements, e.g. the transportation-warehouse capability and the customer's 
requirements (the directive deadline, the cost and the production volume). 

In order to illustrate its application (at a SME manufacturing the hydraulic 
and pneumatic equipment (see Tomczuk and Banaszak (2004), Tomczuk and 
Banaszak (2005)) let us consider the following example regarding of three 
production orders Bi, B2, and B-^ see the Table 16.3. 

Table 16.3. Specification of production orders 

Number of Suggested Completion 
Production Work Production 

operations price time 
order piece volume(pcs.) 

involved (cost units) (time units) 

Bl Filter set 10 100 2100 2600 

B2 Main body 27 25 4600 5500 

B3 Valve 7 20 1700 1800 

A specification of each production order covers subsequent operations and 
their execution times as well as resources required. For instance in the case of 
the production order Bi regarding of the filter set (consisting of a filter and a 
connector) manufacturing the relevant data are specified see the Table 16.4. 

It is assumed, after completion of each production operation a transportation 
operation to the next workstation along a given technological production route 
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Table 16.4. Specification of the operations and their operation times in production order Bi 

Number of the Execution 
Operation 

subsequent time (time tpzA^ 
name 

operation unit/pcs.) 

Resource 

Operations in the execution of the filter 

Cutting Ai 1 50 

Washing A2 1 120 

Control A3 3 20 

Rs 

R2 

Rl9 

Operations in the execution of the connector 

Cutting 

Turning 

Washing 

Turning 

Hand treatment 

Washing 

Blacking 

A4 

As 

Ae 

Ar 
A8 

A9 

Aio 

1 

1 

1 

2 

1 

1 

2 

20 

90 

60 

110 

50 

60 

60 

R12 

Rl3 

R2 

R27 

Rj 

R31 

Rl7 

Legend: 
Aj the j-th operation, j = 1 , . . . , 10, 
Ri- the i-th resource (work place), z =: 1 , . , . , 32, 
tpzAj the preparation-finishing time. 

is executed. The transportation means, their capacity, transportation routings 
and the duration times are defined as well. 

For the data included in the Table 16.4 the following sequence of execution 
of production orders B2, Bi, ^3 is considered at first. The sequence in which 
the production orders follow each other provides the priority enabling conflicts 
resolution. Due to the system's capability following from the currently realized 
production plan, all the production orders considered cannot be accepted. That 
is because the production order J5i cannot be processed see the Table 16.5. 

The next sequence Bi, B2, B^, however, facilitates acceptance of all orders 
for their execution. The plan obtained provides the time of starting the produc
tion order Bi at 1 time unit, the production order B2 at 151 time unit, and B3 
at 1 time unit see the Table 16.5. 

The solution obtained takes into account the possibility of execution of a 
production order due to the technological sequence of operations, transportation 
routings among resources and the production volume, capacity of buffers and 
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their allocation. Moreover, knowing the resources availability the cost of the 
production order execution can be easily estimated as well. 

For a given class of SMEs the software package considered enables one to 
deal with temporal constraints, priority between constraints and constraints due 
to the structure of the transportation paths in an on-line mode. Therefore, the 
example provided illustrates the versatility and adequacy of the CLP approach 
to the task oriented decision support tools designing, especially in the area of 
project management. 

16,5 Concluding remarks 
A CP/CLP - based modeling framework provides a good platform for con

sistency checking between the production order completion requirements and 
a workshop capability offered. Particularly it can be used for development of a 
project management decision support tools. The first prototype has been tested 
on the SME with very good results. In that context the CP/CLP methodology 
presented here seems to be a promising alternative for commercially available 
tools based on other technologies, such as a class of ERP systems. Their ap
plication in solving a real-life problem is quite limited (see Banaszak and Pisz 
(2003)). 

The discussion provided has shown the versatility of CP/CLP paradigm for 
the scheduling problems. In particular, CP/CLP on finite discrete domains is a 
flexible and declarative paradigm for solving many scheduling problems such 
as project-like manufacturing (e.g. a unique and/or short batch production), 
subject to many temporal, priority and resource constraints. The consistency 
techniques and the forward propagation of constraints greatly reduce the search 
space of the problem and therefore make CP/CLP an effective tool for facing 
the project-driven manufacturing. 

Therefore, the proposed approach can be considered as a contribution to 
project-driven production flow management applied in make-to-order compa
nies as well as for prototyping of the virtual enterprises. That is especially 
important in the context of a cheap and user-friendly decision support for the 
SMEs, Further research is aimed at the development of the task oriented search
ing strategies, implementation of which could interface a decision maker with 
a user-friendly intelligent support system. 
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