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Foreword

For a long time, the presence of (heavy-tailed) power laws, also referred to as
Pareto distributions, has been observed in data covering all fields of science
and applications. What has been much less studied is the important question:
“What are the economic consequences of this observation?” Based on several of
the authors’ publications, it is precisely this question which is addressed in this
interesting book. Heavy-tailed models typically induce a kind of regime switching
(non-robust) behavior as a function of the tail-decay parameter; this leads to
a fundamental rethinking of important questions like portfolio diversification or
the (re)insurance of catastrophic risks. Extreme heavy-tailed behavior (possibly
infinite-mean models) should imply risk management caution on behalf of the
end-user, decision maker. The authors carefully explain where the pitfalls are in
this economically counterintuitive landscape, how best they can be avoided, but
also how to optimally structure products and markets in such an environment.
Potential applications go well beyond finance, economics, and insurance. Not only
financial crises and crashes have catapulted “thinking about extremes, the worst
that can happen” to the forefront of the political and regulatory agendas, but also
discussions about global warming and the occurrence of natural disasters call for
similar methodology.

This book adds economic thinking to statistical modeling, and as such is most
highly welcome!

RiskLab, ETH Zurich Paul Embrechts
Zurich, Switzerland
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Preface

The purpose of this book is to provide a fairly detailed introduction to the analysis
and applications of heavy-tailed distributions in a number of important problems
in economics, finance, risk management, and insurance. The target audience for
the book is graduate students in economics, finance, risk management, probability,
statistics, and insurance, although the book may also be of value for advanced
undergraduate students who have completed a graduate course in probability. It
should also be useful for professionals in the financial and insurance industries,
risk managers, and for regulators and policy makers concerned with modeling the
effects of crises, large fluctuations and extreme values of financial returns, foreign
exchange rates, and other key economic and financial indicators and variables. More
broadly, we hope that anyone who is interested in a self-contained treatment of the
topic at a post graduate level will find this book useful.

The book is based on several published articles, but much effort has been invested
into making it self-contained. Specifically, notation has been made consistent across
chapters, and we have also adjusted the language, making it less technical than in
its original form to make the results easier to digest. The cost of these modifications
is a slight loss in rigor. Especially, most proofs have been excluded. The interested
reader is referred to the original publications.

The book consists of three chapters. The first chapter provides a brief introduc-
tion to heavy-tailed distributions, and their presence and applications within finance,
insurance, and economics. The chapter begins with a literature review, followed by
a definition of what it means for a risk to have a heavy-tailed distribution. It then
discusses the empirical evidence for the presence of heavy-tailed risk distributions
in practice in the aforementioned fields. Finally, the chapter discusses the main
point of this book, namely that there are limitations to diversification with such
risk distributions. Specifically, whereas diversification is preferred by risk-averse
agents when risks are thin-tailed (the traditional case that has been extensively
studied), it may actually be hurtful for agents to diversify when risks are heavy-tailed
(the nontraditional case that this book focuses on). Two examples of heavy-tailed
distributions are discussed, namely Cauchy and Lévy distributed risks, to show the
limits of diversification in the heavy-tailed case.

ix



X Preface

Chapter 2 focuses on the theory of diversification with heavy-tailed risks, and the
implications for economics, finance, and insurance. The chapter first introduces the
important concept of majorization, which allows for a general analysis of portfolio
diversification. Specifically, several classes of risk distributions are introduced and
analyzed with respect to whether diversification decreases risk (as in the traditional
setting) or increases it (as in the nontraditional setting). The chapter then studies the
implications for econometric and statistical inference. Finally, it introduces several
models to analyze the implications of the results.

First, a model of a reinsurance market for catastrophe insurance is analyzed.
The distributions of aggregate losses due to catastrophic events are known to be
very heavy-tailed. It is shown in the model that this may explain why it has been
challenging to develop well-functioning markets for risk-sharing of catastrophic
risks. Specifically, in such markets, a coordination problem may exist where many
entities need to agree to sell insurance policies against catastrophic events for a
market to start functioning. In the outcome where no insurance is sold, there is a
so-called nondiversification trap. We show that nondiversification traps may arise
when risk distributions have heavy left tails and insurance providers have limited
liability. When they are present, there may be a coordination role for a centralized
agency, e.g., government or a regulatory authority, to ensure that risk sharing takes
place.

We next introduce a model of financial intermediaries, in which so-called
diversification disasters can occur. Specifically, if there are negative externalities
to society if multiple financial intermediaries default on their obligations at the
same time, then risk-sharing, i.e., diversification, among these intermediaries may
be suboptimal. We suggest that historical legislation, e.g., in form of the Glass—
Steagall act, may have had a role in avoiding such outcomes.

As a third example, we study the problem of optimal bundling for a multiproduct
monopolist providing goods in auctions or for profit-maximizing prices to con-
sumers with heavy-tailed private valuations for these goods. We show that several
results in the literature that hold in the traditional setting under thin-tailed valuations
are reversed under heavy-tailed valuations. Finally, we considered growth models
for firms investing into information about their markets, again showing that several
standard results in the literature are reversed when distributions of variables entering
their assumptions are heavy-tailed.

The main conclusion of the results in Chap.2 is that the presence of heavy
tails can either re-enforce or reserve the properties of many important models in
economics, finance, risk management, insurance, econometrics, and statistics, de-
pending on the degree of heavy-tailedness. This further emphasizes the importance
of having robust econometrically and statistically justified inference methods under
heavy-tailedness.

Chapter 3 deals with robust inference methods under heavy-tailedness. The
chapter discusses widely used approaches to inference on the degree of heavy-
tailedness and their main asymptotic properties. The asymptotic analysis provides
the key to developing econometrically and statistically justified correct standard
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errors (evaluation of the degree of uncertainty, so to speak) and correct confidence
intervals for the degree of heavy-tailedness.

The chapter further provides applications of the inference approaches for the
analysis of whether and how heavy-tailedness properties of emerging and develop-
ing markets such as markets for foreign exchange differ from those in developed
economies. Finally, the chapter discusses recently developed general approaches to
inference in economic and financial models under heterogeneity, dependence, and
heavy-tailedness of largely unknown form.

Kazan, Russia Marat Ibragimov
London, UK Rustam Ibragimov
Berkeley, CA, USA Johan Walden
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Chapter 1
Introduction

1.1 Background

The empirical and theoretical study of heavy-tailed distributions within economics
and finance is by now a mature area of research, dating back more than 50 years. The
first empirical study is usually attributed to Mandelbrot (1963), who noted that the
changes of cotton prices seem to be well approximated by heavy-tailed so-called
stable distributions. Loosely speaking, this means that rare events tend to happen
much more often than they would if risk distributions had standard Gaussian (or
other) thin tails. For example, the approximately 20 % drop of the stock market
on the so-called Black Monday of October 19, 1987 would occur much less often
than once in a billion years under standard assumptions of Gaussian distributions,
and has been taken as evidence that stock market returns are heavy-tailed (see, for
instance, the striking examples in Chap. 2 in Stock and Watson 2007 that illustrate
inappropriateness of Gaussian distributions as models for financial returns based on
their behavior during the Black Monday crisis).

In a theoretical study, Samuelson (1967b) formalized the intuition that when
choosing a portfolio of risks, one should diversify, and thus not put all ones
eggs in one basket, by showing that it is optimal for a risk averse expected
utility optimizing agent to choose uniform diversification with equal weights for
a portfolio of independent identically distributed (i.i.d.) risks, as long as these
risks are not too heavy-tailed, in that they have finite second moments.' However,
Samuelson (1967a) further noted that the optimality of diversification may not hold
for extremely heavy-tailed distributions, an observation also made by Fama (1965b).

'In the terminology introduced by Rothschild and Stiglitz (1970), any other portfolio is risker
than the uniformly diversified one in that its distribution is a mean preserving spread of that of
the uniformly diversified portfolio. We also note that independence of risks considered is crucial
for the result, and cannot be replaced by the weaker condition of uncorrelated risks, as shown in
Brumelle (1974).

© Springer International Publishing Switzerland 2015 1
M. Ibragimov et al., Heavy-Tailed Distributions and Robustness in Economics
and Finance, Lecture Notes in Statistics 214, DOI 10.1007/978-3-319-16877-7_1



2 1 Introduction

An example where the intuition breaks down is given, for instance, by the so-called
Cauchy distributed risks. The Cauchy distribution belongs to the class of the above
mentioned stable distributions studied by Mandelbrot (1963), and is defined through
its probability density function

or, equivalently, through its cumulative distribution function

F(x) ! + !
X) = — —_— .
2 g arctan(x)

The risk of any portfolio of i.i.d. Cauchy distributed random variables (r.v.’s)
will have the same distribution as that of an individual risk in the portfolio, so
diversification is irrelevant for such risks (the reason for equality of the distributions
is that a linear combination of i.i.d. Cauchy r.v.’s is again distributed as a Cauchy
r.v., see Sect.2.1.2).> Given the fundamental importance of risk diversification
in many models of finance, economics, and insurance (including, e.g., in the
celebrated Capital Asset Pricing Model), the conclusions that some real-world risk
distributions are heavy-tailed, and that diversification may not be optimal for such
distributions have potentially far-reaching consequences. Several challenges arise,
however, when developing models for measuring the presence of heavy tails and
understanding the consequences of their presence, which may explain why it has
taken a long while for the field to gain momentum.

Heavy-tailedness is often defined in the context of power law distributions, so
that for an r.v. (e.g., representing a risk, financial return or exchange rate) X,

C
P(X > x) ~ —%, (1.1)
X6
C
P(X < —x) ~ —=, (1.2)
x§2
as x — 4oo (throughout the book, f(x) ~ g(x) as x — +o0o means that
limx_,+oo-@ = 1). Here, {;,¢{, > 0, and C;,C; > 0, are some constants.

(x

Relations (1.1) and (1.2) imply that

c
P(IX] > x) ~ = (1.3)

2Throughout the book, the term “risk” is used as a synonym for the term “random variable,” if this
does not lead to a confusion. So that, here, for instance, we mean, in particular, that the risk (r.v.
or loss) ﬁ ZL] Z; of the portfolio of i.i.d. Cauchy risks (r.v.’s or losses) Z, Z,, . .., Z, with equal
weights has the same Cauchy distribution as does each of the r.v.’s Z;.
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with ¢ = min({y, {), and C > 0. The parameters ¢, ¢, and &, in (1.3) and (1.1)-
(1.2) are referred to, respectively, as the tail index (or the tail exponent), the right
tail index and the left tail index of the distribution of X. They characterize the
heaviness (the rates of decay) of the tails of power law distributions (1.1)—(1.3).
The more the probability mass in the tails, the smaller are the tail index parameters,
and vice versa. Heavy-tailedness (i.e., the tail index ¢) of the variable X governs the
likelihood of observing extreme fluctuations in the variable. The smaller values of
the tail index ¢ correspond to a higher degree of heavy-tailedness in X and, thus, to
a larger likelihood of observing outliers and extreme fluctuations in realizations of
this variable. The tail index may be regarded as being infinite: { = oo for thin-tailed
distributions like Gaussian or exponential ones.

A first challenge is that of empirically measuring whether a risk distribution
is heavy-tailed and, if so, how heavy-tailed it is. In the rest of this chapter, we
summarize the extensive literature that has documented the presence of heavy-
tailedness with outliers, extreme observations and large fluctuations in many
important variables in economics, finance, and insurance, and also further review
several key properties of heavy-tailed and power law distributions. We then discuss
several theoretical challenges, and introduce a simple framework that allows us to
discuss the benefits and drawbacks of diversification in value at risk models under
the presence of heavy tails. The framework will be further used, in subsequent
chapters, to study robustness of a number of important models in economics and
finance to heavy-tailedness assumptions.

Subsequently, the goal of Chap.2 is to further emphasize importance of the
analysis of heavy-tailedness in economic and financial markets. By focusing on
a number of problems in different areas in economics, finance, risk management,
and insurance, the results in the chapter demonstrate that the presence of heavy
tails can either reinforce or reverse the implications of many important models in
these fields, depending on the degree of heavy-tailedness. In particular, according
to the results discussed in the chapter, the value { = 1 is the dividing boundary
between robustness and reversals of many economic and financial models in the
case of heavy-tailed distributions.

1.2 Empirical Evidence on Heavy-Tailedness

Estimation of tail indices and inference on the degree of heavy-tailedness are in-
herently challenging, since extreme tail events—per definition—happen very rarely,
and one therefore typically has a relatively small number of relevant observations,
even in a large dataset. We will address this major challenge in Chap.3. Below
we summarize some studies that have analyzed the presence of heavy tails in
economics, finance, risk management, and insurance.

Numerous contributions indicate that distributions of many key variables of
interest in the aforementioned fields exhibit deviations from Gaussianity, including
those in the form of heavy tails (see, among others, the discussion and reviews in
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Cont 2001; Embrechts et al. 1997; Gabaix 2009; Ibragimov 2009a; Ibragimov and
Walden 2007, and the references therein). This stream of literature goes back to
Mandelbrot (1963) (see also Fama 1965a, and the papers in Mandelbrot 1997) who
pioneered the study of heavy-tailed distributions in economics, finance, and other
sciences. As was pointed out in many studies, the normal distribution paradigm
does not hold in the case of financial returns, foreign exchange rates and many other
variables of key interest in economics and finance that are increasingly prone to
extreme behavior: e.g., as discussed in the previous section, according to the striking
illustrations in Chap.?2 in Stock and Watson (2007), it is virtually impossible for
Gaussian distributions to generate the extreme downfalls and large fluctuations in
financial returns such as those observed during the 1987 Black Monday or other
economic and financial crises.

Tail indices further characterize the maximal order of finite moments of the
financial or economic variables X considered. The absolute moments of risks or
returns X satisfying heavy-tailed power laws (1.1)—(1.3) are finite if and only if their
order is less than { = min({,&) @ E|X|P < oo if p < ¢ and E|X|P = oo if
p > . In particular, the fourth moment of an r.v. X with a power law distribution
is finite and, thus, its kurtosis is defined if and only if { > 4. R.v’s X that
follow (1.1)=(1.3) have finite second moments EX?> < oo (and, thus, well-defined
variances) if and only if { > 2. The first absolute moment of X in (1.1)—(1.3) is
finite if and only if { > 1. Examples of power laws (1.1) are given by stable and
Student-7 distributions. Further examples are provided by Singh—Maddala families
and Pareto distributions (with equality in (1.1) for all x > xp) that are widely
used in income distribution modeling (see the discussion and references in Cowell
and Flachaire 2007; Davidson and Flachaire 2007; Ibragimov 2009a). Important
classes of heavy-tailed time series with power law distributions are provided by
GARCH and stochastic volatility processes that have been used in many works in
the literature for modeling a number of important economic and financial variables,
including financial returns and foreign exchange rates (see Chap. 12 in Campbell
et al. 1997; Cont 2001, and the references therein).

Many recent studies argue that the tail indices ¢ in heavy-tailed models (1.3)
typically lie in the interval ¢ € (2,4) for financial returns and foreign exchange
rates in developed economies (see, among others, Gabaix 2009; Gabaix et al. 2006;
Ibragimov 2009a; Ibragimov and Walden 2007; Loretan and Phillips 1994a, and
the references therein). These estimates imply that the above variables have finite
variances and finite first moments; however, their fourth moments are infinite.

Heavy-tailed power law behavior is also exhibited by such important economic
and financial variables as income and wealth (with { € (1.5,3) and { ~ 1.5,
respectively; see, among others, Gabaix 2009, and the references therein); city
sizes and firm sizes (power laws with { &~ 1 referred to as Zipf’s law; see Axtell
2001; Gabaix 1999); financial returns from technological innovations, losses from
operational risks and those from earthquakes and other natural disasters (with
tail indices that can be considerably less than one, see Ibragimov et al. 2009;
Neslehova et al. 2006; Silverberg and Verspagen 2007, and Sect.2.3.5.1 in this
book, and references therein). Ozsoylev and Walden (2011) study asset pricing in
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markets where agents share information among themselves through a network, and
specifically cover power law distributed networks with low tail indices.

The characteristics of heavy-tailedness such as tail indices in models (1.1)-
(1.3) are of key interest for professionals in financial and insurance industries,
risk managers, financial regulators, financial stability analysts, and policy makers
concerned with the likelihood of large fluctuations or extreme values of financial
returns, risks or foreign exchange rates, and the related risk measures. In particular,
the estimates of the models are important in the analysis of loss exceedance
probabilities and in assessing commonly used risk measures such as the value at
risk and expected shortfall relatively far in the tails of heavy-tailed distributions
considered.

Naturally, finiteness of variances for economic and financial indicators like
financial returns and exchange rates is crucial for applicability of classical statistical
and econometric approaches, including regression and least squares methods. In
a similar fashion, the problem of potentially infinite fourth moments of eco-
nomic and financial time series needs to be taken into account in applications of
autocorrelation-based methods and related inference procedures in their analysis
(see, among others, the discussion in Granger and Orr 1972, and in a number of more
recent studies, e.g., Chap. 7 in Cont 2001; Davis and Mikosch 1998; Embrechts et al.
1997; Mikosch and Starica 2000, and the references therein).

1.3 Diversification Under Heavy-Tailedness

How reasonable is it to use models with heavy-tailed distributions in economics
and finance? We recount some objections against such modeling that may be made.
One may argue that there are natural constraints on how large the changes in many
of these variables can be. For example, the argument may be that the price of one
unit of cotton could never increase beyond the point where the unit would cost
more than the total amount of wealth in the world, the latter being bounded by the
amount of resources on Earth. Consequently, decision rules that hold for all thin-
tailed variables, the argument would go (as, e.g., laid out in Samuelson 1967b),
would then hold in general.

Another objection that is related to the previous one, and applicable to many
financial markets, is that even if real risk distributions are heavy-tailed, usually
contracts come with some type of limited liability. For example, the owners of a
publicly traded firm that faces heavy-tailed operational risks are not necessarily
exposed to such heavy tails, because firms in the USA have limited liability,
bounding the potential downside. Again, this leads to a bound on losses. Other
examples include explicit and implicit government guarantees, e.g., in banking and
insurance.

One may argue that seemingly heavy-tailed risk distributions arise because of
our limited knowledge about the true underlying structure of the risks under study,
and that a model that takes this structure into account may be able to correct
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for extremes without assuming heavy tails. That is, with additional information
about the structure of uncertainty, risk distributions may not be heavy-tailed. As
an example, consider a stochastic process that is normally distributed at each point
in time, but with stationary random volatility in each period, so that its unconditional
distribution is heavy-tailed. Conditioning on full information about the current
volatility, the distribution is thin-tailed and normally distributed. But without any
information about current volatility, the unconditional distribution must be used,
which is heavy-tailed. Heavy-tailedness thus arises because of lack of information.
This argument may indeed suggest that future—better—models will mitigate the
need for using heavy-tailed risks distributions. However, until such superior models
are developed, we will have to rely on models with heavy-tailed risks. We think it
is unlikely that drastic improvements in the modeling of, for example, catastrophic
events will mitigate the need for using heavy-tailed risk distributions in the near
future.

Finally, there is a theoretical question of in what sense one can say that diver-
sification increases riskiness when tails are heavy. For thin-tailed and moderately
heavy-tailed risks, the theory in Rothschild and Stiglitz (1970) provides a tight link
between portfolio riskiness and the utility of agents: The distributions of individual
risks are less concentrated around their mean than the risk distributions of diversified
portfolios of i.i.d. risks with equal weights, and therefore inferior to any risk-averse
expected utility optimizing agent. For extremely heavy-tailed risks, however, the
expected utility argument may break down since expected values of utility functions
may not be defined in this case. Consequently, a justification for the meaning of
increased risk is needed.

In the next chapter, we will introduce a theory that is applied to a large class
of risks and their portfolios and is further used, in subsequent chapters, to study
robustness of a number of important economic and financial models to heavy-
tailedness. To keep things simple and intuitive, however, we first consider specific
risk distributions in this section, and introduce a simple framework that allows us to
discuss these theoretical concerns.

We focus on the (reflected) Lévy distribution, which is extremely heavy-tailed,
with the tail index of 0.5. The pdf of the distribution is

o) = { Vare P =0T x <,
Oa

x> U,

where u© > 0 and o > O are, respectively, the location and spread parameters. Its
cdf is given by

F(x) = { Bif (J56=5) 3 < (1.4)

1, x> .

Here, Erf(y) = % fo. e~ dt is the error function; see Abramowitz and Stegun
(1970). We denote by L, , the class of r.v.’s with the above Lévy distributions and
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f(x)

Fig. 1.1 P.d.f. of heavy-tailed Lévy distribution (solid) and thin-tailed normal distribution (dotted)

write X ~ L, , if the distribution of the r.v. X belongs to the class. It is easy to see
thatr.v’s X ~ L, , are extremely heavy-tailed: The tails of their distributions satisfy
power law relations (1.2)—(1.3) with the tail index { = 0.5 < 1. InFig. 1.1, we show
the p.d.f. of a risk with the above heavy-tailed Lévy distribution and that of a risk
with the standard normal distribution. Since the Lévy distribution is one-sided, we
focus on the negative half-line. As seen in the left panel, the p.d.f. of the normal
distribution is indistinguishable from zero for x < —5, whereas it is significantly
different from zero for the Lévy distribution, and only slowly decreasing beyond
x < —5. In the right panel, the decay is shown in logarithmic scale. Again,
the difference between the two distributions is striking: The normal distribution
decreases faster than linearly as x decreases, whereas the Lévy distribution seems to
be almost flat.

Given that negative values of x represent losses, it is clear that a larger value of the
spread parameter, g, for a Lévy distribution implies a worse situation (for a fixed
1), using any reasonable definition. In fact, as is seen from Eq. (1.4), increasing
o for a loss variable X ~ L, , leads to a loss whose magnitude (the absolute
value) dominates that of X in the sense of first-order stochastic dominance. Here,
arisk X, (e.g., the loss magnitude) is said to first-order stochastically dominate X,
if P(X, > x) > P(X; > x) for all x: So that, in particular, the magnitude of the
loss X, is more likely to be larger than for X;. If the inequality is strict for some
x, the dominance is said to be strict. Equivalently, first-order stochastic dominance
can be defined in terms of cdf’s F| and F, of the risks X; and X, : F>(x) < F;(x)
for all x. Clearly, first-order stochastic dominance is a very strong concept. The only
behavioral assumption needed for an expected utility maximizing agent to prefer
risk X over Xj, is that she prefers smaller losses to larger losses.

Diversification of losses in the Lévy class L, ; increases the distribution spread
o. This follows from the fact that distributions of such losses are particular cases of
stable distributions considered in the next chapter. Stable distributions are closed
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under portfolio formation and, in particular, for i.i.d. losses Xi,X, ~ L., the
loss Z = (X; + X»)/2 from their portfolio with equal weights also belongs to the
same class: Z ~ L, 5, but with the spread parameter of 2¢. This follows from the
following uniform diversification rule for portfolios of n i.i.d. losses from the class
L, » with equal weights (here and throughout, for risks or losses Z, Z,, ..., Z,, as
usual, we denote by Z, = (1/n) Z:’=1 Z; their sample mean, that is, the risk or loss
of the most diversified portfolio of Z/s with equal weights):

XieLM’g,l.Zl,...,n — XneLpL,mTv
or, equivalently,
Xi€L,, i=1..n = X,='nx, (1.5)

where, throughout the book, for twor.v.’s Y and Z, we write Y =9 7 if Y and Z have
the same distribution (see also relation (2.3) for general stable distributions in the
next chapter). Therefore, uniform diversification of 7 i.i.d losses from the extremely
heavy-tailed class L, , increases the spread parameter from o to no in line with the
example above, and is therefore sub-optimal.

Now consider a financial market in which there are n publicly traded firms. Each
firm has limited liability, so that if it generates profits X, the value of the firm to
shareholders is 7(X), where [ is the indicator function

I(x) = x, x >0,
0, x<0.

Consider first the situation, where each firm, i, has invested in one L, ;
distributed risk, X;, where we for simplicity assume that ; and o are the same across
firms, and the risks are i.i.d. The distribution of /(X;) is, of course, thin-tailed, being
bounded below by 0, so the classical results on diversification of thin-tailed risks
apply, and a portfolio investor will choose a uniformly diversified portfolio when
investing in the market.

Now consider instead the situation where uniform diversification occurs within
the firm, in which case one firm chooses to allocate its investment equally across
the multiple risks. In this case, the firms choose a portfolio with equal weights and
the risk X,,, and the payout to a shareholder is then I ()_(n) Now it is clear from
the previous argument on diversification of heavy-tailed risks that X; strictly first
order dominates )_(n, and since the indicator function preserves first-order stochastic
dominance, it is optimal for the firm to only invest in one risk, i.e., any diversification
is suboptimal.

From these two examples we see that limited liability does not necessarily restore
the optimality of diversification: it depends on whether the limited liability operator
acts on the individual risks, as in the first example, or on the portfolio of risks,
as in the second. Note that the second example is extremely robust to assumptions
about agents’ preferences: They could be risk-neutral, risk-averse, etc.; any expected
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utility maximizing agent who prefers more to less will agree that the least diversified
outcome is optimal.

The second example also shows that these results are robust even if the risks are
not heavy-tailed asymptotically. Indeed, it is straightforward to show that similar
results are obtained for risks Y;, which have the same pdf as Lévy distributed risks
until some negative point far out in the domain, x << 0, but then the tails of their
distributions decrease faster. For such risks, / (7 ,,) will have a distribution very
similar to that of / ()_(n) . The optimal outcome is therefore very close to the one for
X-risks: Again, the optimal decision is basically to avoid any type of diversification.

This example demonstrates that it is indeed possible to compare portfolio
riskiness for heavy-tailed risks, that sub-optimality of diversification may also hold
in situations of limited liability, and that the results may also hold in situations
where the risks are not heavy-tailed asymptotically. In the next chapter, we expand
our analysis to a much broader class of risks, and then study in detail a number
of important models in economics, finance, and insurance, where heavy-tailedness
may lead to radically different outcomes than what classical theory predicts.



Chapter 2
Implications of Heavy-Tailedness

2.1 Diversification Analysis Via Majorization

2.1.1 Majorization Relation

This chapter demonstrates how majorization theory provides a powerful tool for the
study of robustness of many important models in economics, finance, econometrics,
statistics, risk management, and insurance to heavy-tailedness assumptions. The
majorization relation is a formalization of the concept of diversity in the components
of vectors. Over the past decades, majorization theory, which focuses on the study
of this relation and functions that preserve it, has found applications in disciplines
ranging from statistics, probability theory, and economics to mathematical genetics,
linear algebra, and geometry (see Marshall et al. 2011, and the references therein).

A vector v € R” is said to be majorized by a vector w € R”, written v < w, if
Yiivig < Yimgwis k= 1...on—Land Y vy = Yo, wyg, where vy >

. > vy and wyyp > ... > wy, denote components of v and w in decreasing order.
The relation v < w implies that the components of the vector v are less diverse than
those of w. In this context, it is easy to see that the following relations hold:

(1/n,...,1/n) < Wiy W) < (1,0,...,0),
for all w; > O such that ) ;_, w; = 1, and
1/ (n+1),....1/(n+1),1/(n+1)) <(A/n,...,1/n,0), n>1.
A function ¢ : A — R defined on A € R” is called Schur-convex (resp., Schur-

concave) on A if (v < w) = (¢p(v) < p(w)) (resp. (v < w) = (p(v) > p(w))
for all v, w € A.If, in addition, ¢ (v) < ¢(w) (resp., p(v) > ¢(w)) whenever v < w

© Springer International Publishing Switzerland 2015 11
M. Ibragimov et al., Heavy-Tailed Distributions and Robustness in Economics
and Finance, Lecture Notes in Statistics 214, DOI 10.1007/978-3-319-16877-7_2
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and v is not a permutation of w, then ¢ is said to be strictly Schur-convex (resp.,
strictly Schur-concave) on A.

Examples of strictly Schur-convex functions ¢ : R% — R are given by
dwi,...,w,) = Y i, w? and, more generally, by ¢,(wi,...,w,) = Y W/

for p > 1. The functions ¢, (w1, ..., w,) are strictly Schur-concave for p < 1 (see
Proposition 3.C.1.a in Marshall et al. 2011).!
Denote Z, = {w = (Wi,...,wy) € Ry : Y, w; = 1}. Consider two vectors

of portfolio weights v,w € Z,. Further, denote w = (1/n,1/n,...,1/n) € Z, and
w=(1,0,...,0) € Z,.

If v < w, it is natural to think about the portfolio with weights v as being more
diversified than that with weights w. That is, for example, the portfolio with equal
weights w is the most diversified and the portfolio with weights w consisting of one
risk is the least diversified among all the portfolios with weights w € Z, (in this
regard, the notion of one portfolio being more or less diversified than another one
is, in some sense, the opposite of the majorization ordering for vectors of weights
for the portfolio).

In what follows, given a loss probability ¢ € (0, 1) and ar.v. (risk) X we denote by
VaR,(X) the value at risk (VaR) of X at level ¢, that is, the negative of its g-quantile:
VaR,(X) = —inf{z € R: P(X < z) > g} (see, among others, Artzner et al. 1999,
Chap. 2 in McNeil et al. 2005, and Chap. 1 in Christoffersen 2012). For an r.v. X
with a strictly increasing cdf F(z) = P(X < z) one thus has VaR,(X) = —F~!(g).
That is, as discussed, for example, in Sect. 1.9 in Christoffersen (2012), the value at
risk VaR,(X) is defined as the number such that the risk X results in a worse loss
only with probability g.>

Let X be a certain linear space of r.v.’s X defined on a probability space (2, J, P).
We assume that X’ contains all degenerate r.v.’s X = a € R. According to the
definition in Artzner et al. (1999) (see also Frittelli and Gianin 2002; McNeil et al.
2005), a functional R : X — R is said to be a coherent measure of risk if it satisfies
the following axioms:

al. (Monotonicity) R(X) > R(Y) forall X, Y € X such that X < Y (a.s.), that is,
PX<Y)=1.

a2. (Translation invariance) R(X + a) = R(X) —aforall X € X and any a € R.

a3. (Positive homogeneity) R(AX) = AR(X) forall X € X and any A > 0.

ad4. (Subadditivity) R(X + Y) < R(X) + R(Y) forall X,Y € X.

!The functions ¢, have the same form as measures of diversification considered in Bouchaud and
Potters (2004), Chap. 12, p. 205.

2Throughout the chapter, we interpret the negative values of risks X as a risk holder’s losses. This
interpretation is similar to that in Artzner et al. (1999) and Christoffersen (2012) and is in contrast
to Chap. 2 in McNeil et al. (2005) who interpret positive values of risks X as losses. All the results
presented and discussed in the chapter can be easily reformulated in terms of interpretation of
positive values of the risks as losses (see Ibragimov 2009a,b, for details).
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In some papers (see Folmer and Schied 2002; Frittelli and Gianin 2002), the
axioms of positive homogeneity and subadditivity are replaced by the following
weaker axiom of convexity:

a5. (Convexity) RAX 4+ (1—=2)Y) < ARX)+ (1 —A)R(Y) forall X, Y € X and
any A € [0, 1]
(clearly, a5 follows from a3 and a4).

It is easy to verify that the value at risk VaR,(X) satisfies the axioms of monotonic-
ity, translation invariance, and positive homogeneity al, a2, and a3. However, as
follows from the counterexamples constructed by Artzner et al. (1999) and McNeil
et al. (2005), in general, it fails to satisfy the subadditivity and convexity properties
a4 and a5 (see Remarks 2.1.1 and 2.1.2 for implications of the results in this section
for coherency of the VaR and the asymptotic analysis in the case of distributions
with regularly varying heavy tails).

Consider risks Xi, ..., X,. Forw = (wy,...,w,) € Z,, we denote by Z, the risk
of the portfolio of X/s with weights w. The expressions VaR,(Z,,) and VaR,(Zy) are,
thus, the values at risk of the (most diversified) portfolio with equal weights w and
of the (least diversified) portfolio with weights w that consists of only one return
(risk).

In order to formulate the main results of the chapter on the effects of heavy-
tailedness on diversification analysis in the VaR framework, we need to introduce
several classes of distributions that will be dealt with throughout the book.

2.1.2 Notation and Classes of Distributions

In what follows, a univariate density f(x), x € R, will be referred to as symmetric
(about zero) if f(x) = f(—x) for all x > 0. In addition, as usual, an absolutely
continuous distribution or an r.v. X with the density f(x) will be called symmetric if
f(x) is symmetric (about zero).

An r.v. X with density f(x), x € R, and the convex support Q& = {x € R :
f(x) > 0} is log-concavely distributed if log f(x) is concave in x € €, that is, if
forall x;,x, € Q,and any A € [0,1], f(Ax; + (1 — D)x2) > (F(x)*(F(x2))'
(see An 1998; Bagnoli and Bergstrom 2005, and Sect. 18.B in Marshall et al. 2011).
Examples of log-concave distributions include the normal distribution, the uniform
density, the exponential density, the Gamma density f(x) = A’x""le™/T'(r), x >
0, with the shape parameter r > 1; the Beta distribution with the density f(x) =
[B(a,b)] 'x*'(1 —x)>"1,0 <x < 1fora > 1 and b > 1; and the Weibull density
f(x) = Aéexp(Ax + £ — E€™) with the shape parameter £ > 1.° The class of log-
concave distributions is closed under convolution. Log-concave distributions have
many other appealing properties that have been utilized in a number of works in

3Here, as usual, I'(r) and B(a, b) denote the Gamma and Beta functions.
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economics and finance (see the surveys in An 1998; Bagnoli and Bergstrom 2005;
Karlin 1968; Marshall et al. 2011). However, such distributions cannot be used in
the study of heavy-tailedness phenomena since any log-concave density is extremely
thin-tailed: In particular, if a r.v. X is log-concavely distributed, then its density has
at most an exponential tail, that is, f(x) = O(exp(—Ax)) for some A > 0, as x — oo
and all the power moments E|X|?, p > 0, of the r.v. are finite (see Corollary 1 in An
1998). Throughout the monograph, £C denotes the class of symmetric log-concave
distributions (LC stands for “log-concave”).

For 0 < @« < 2 and ¢ > 0, we denote by Sy(0) the symmetric stable
distribution with the index of stability (the characteristic exponent) o and the scale
parameter o. That is, S, (o) is the distribution of an r.v. X with the characteristic
function (cf) E(e™¥) = exp {—0%|x|*}, i* = —1, x € R. The distribution S, (o)
is a particular (symmetric) case of general stable distributions S, (o, 8, ) with
the parameterizations for cf’s that involve, in addition to @ and o, the skewness
parameter B and the location parameter pu (see Ibragimov 2009b; Uchaikin and
Zolotarev 1999; Zolotarev 1986) The distribution S, (o) is symmetric about the
location parameter ;& = 0 and has the skewness parameter 8 = 0. In the case 8 # 0,
the stable distributions are asymmetric. For instance, the stable reflected Lévy
distribution considered in Sect. 1.3 is one-sided and is concentrated on the interval
(—o0, p]; it has the skewness parameter 8 = —1. Similarly, stable distributions
with the skewness parameter B = 1 are one-sided and concentrated on the interval
[i, 00). In what follows, we write X ~ S, (0), if the r.v. X has the stable distribution
Sy (0).

A closed form expression for the density f(x) of the general stable distribution
S« (0, B, ) is available in the following cases (and only in those cases): ¢ = 2 that
corresponds to Gaussian distributions; « = 1 and 8 = 0 for Cauchy distributions
with densities

o
)= —— 2.1
AT ey
a = 1/2 and B = %1 for Lévy distributions with densities
o \1/2 o 3
— (= _ 2 ),3/2
flx) = (2n) exp( 2x)x , 2.2)

x> 0; f(x) =0, x < 0, where 0 > 0, and their shifted and reflected versions as
in the example considered in Sect. 1.3. Degenerate distributions correspond to the
limiting case with o = 0.

The index of stability « characterizes the heaviness (the rate of decay) of the
tails of stable distributions S, (o). In particular, if X ~ S4(0), 0 < o < 2, then the
distribution of X satisfies power law (1.1)—(1.3) with the tail index ¢ equal to the
index of stability « : { = «. In other words, all stable distributions except Gaussian
ones with the index of stability @ = 2 are heavy-tailed with the tail index { = «.
This implies that the p-th absolute moments E|X|” of ar.v. X ~ S,(0), @ € (0,2)
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are finite if p < « and are infinite otherwise. In particular, the second moments of
non-Gaussian stable distributions are infinite and, thus, their variances and standard
deviations are not defined. In the case o > 1 the location parameter &t = 0 is the
mean of the distribution S,(0). The scale parameter o is a generalization of the
concept of standard deviation; it coincides with the standard deviation divided by
V2 in the special case of Gaussian distributions (a = 2).

Stable distributions are closed under portfolio formation. In particular, if X; ~
Sy (0) are i.i.d. symmetric stable risks, then, for all portfolio weights w; > 0, i =
1,...,n,

n n l/a
> wix; =1 (wa‘) X1, 2.3)
i=1 i=1

or, equivalently, > i, w;X; ~ S4(5), where § = cr( Yo wf‘) e (see McNeil et al.
2005; Rachev and Mittnik 2000; Uchaikin and Zolotarev 1999; Zolotarev 1986, for
areview of properties of stable distributions).

Denote by CS the class of distributions which are convolutions of symmetric
stable distributions S, (o) with the indices of stability @ € (1,2] and 0 > 0
(here and below, CS stands for “convolutions of stable”; the overline indicates
that convolutions of stable distributions with indices of stability greater than the
threshold value @ = 1 are taken). That is, CS consists of distributions of r.v.’s X
such that, for some k > 1, X = Y; + ... + Y}, where Y¥; ~ Sy,(0;),i = 1,...,k, are
independent stable r.v.’s with o; € (1,2],0; > 0,i = 1,...,k.

Further, CS stands for the class of distributions which are convolutions of
symmetric stable distributions S, (o) with indices of stability « € (0,1) and o > 0
(the underline indicates considering stable distributions with indices of stability less
than the threshold value @ = 1). That is, CS consists of distributions of r.v.’s X such
that, for some k > 1, X = Y| + ... + Y}, where ¥; ~ Sy, (0y), i = 1,...,k, are
independent stable r.v.’s with ; € (0,1),0; > 0,i = 1,... k.

Finally, we denote by CSLC the class of convolutions of distributions from
the classes CS and £C. That is, CSLC is the class of convolutions of symmetric
distributions which are either log-concave or stable with indices of stability greater
than one (CSLC is the abbreviation of “convolutions of stable and log-concave”).
In other words, CSLC consists of distributions of r.v.’s X such that X = Y| + Y,
where Y| and Y5 are independent r.v.’s with distributions belonging to CS or £C.

All the classes £C, CSLC, CS, and CS are closed under convolutions. In
particular, the class CSLC coincides with the class of distributions of r.v.’s X such
that, for some k > 1,

X=Y +...+7Y, (2.4)

where Y;, i = 1,...,k, are independent r.v.’s with distributions belonging to CcS
or LC.
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The distributions of r.v.’s X in CSLC are moderately heavy-tailed in the sense
that, as is easy to see, as x — 00, their tails P(]X| > x) decay to zero faster than
those of power law distributions in (1.3) with the tail index { = 1. In addition, an r.v.
X ~ CSLC follows power laws (1.1)—(1.3) with the tail indices {; = {, = ¢ € (1,2)
if its convolution representation (2.4) includes at least one r.v. ¥; from the class CS.
This implies the distributions of r.v.’s X ~ CSLC have finite absolute first moments:
E|X| < oo.

In contrast, the distributions of r.v.’s X from the class CS are extremely heavy-
tailed in the sense that they follow power laws (1.1)—(1.3) with the tail indices {; =
&, = € (0, 1). Thus, the absolute first moments of the r.v.’s are infinite: E|X| = oo.

Cauchy distributions S; (o) that follow power laws (1.1)—(1.3) with the tail index
¢ = 1 are at the dividing boundary between the classes CS and CS (and between
the classes CS and CSLC).

As follows from stability property (2.3), a linear combination of independent
stable r.v.’s with the same index of stability o also has a stable distribution with
the same «. However, in general, this does not hold in the case of convolutions of
stable distributions with different indices of stability. Therefore, the class CS of
convolutions of symmetric stable distributions with different indices of stability
a € (1,2] is wider than the class of all symmetric stable distributions S, (o) with
a € (1,2]and o > 0. Similarly, the class CS is wider than the class of all symmetric
stable distributions S, (0) with ¢ € (0,1) and o > 0.

Clearly, CS C CSLC and £C < CSLC. Tt should also be noted that the class
CSLC is wider than the class of (two-fold) convolutions of log-concave distributions
with stable distributions S, (o) with @ € (1,2] and o > 0.

In what follows, we write X ~ LC (resp., X ~ CSLC, X ~ CSorX ~ CS) if the
distribution of the r.v. X belongs to the class £C (resp., CSLC, CS or CS).

2.1.3 Diversification in Value at Risk Models for Heavy-Tailed
Risks*

A simple example where diversification is preferable is provided by the standard
case with normal risks. Letn > 2, g € (0,1/2), and let Xy, ..., X, ~ S2(0,0,0) be
i.i.d. symmetric normal r.v.’s. Then, for the portfolio of X/s with the equal weights

“This section draws upon material from the following articles:
Ibragimov (2009b) “Portfolio diversification and VaR under thick-tailedness”, Quantitative
Finance, Vol. 9, No. 5, 565-580, and

Ibragimov (2009a) “Heavy-tailed densities,” “The New Palgrave Dictionary of Economics,”
Eds. Steven N. Durlauf and Lawrence E. Blume, Palgrave Macmillan, reproduced with permission
of Palgrave Macmillan. The full published version of this publication is available from: http://
www.dictionaryofeconomics.com/article?id=pde2009_H000191.
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w = (1/n,1/n,...,1/n) we have Z, = (1/n) >, X; = (1/4/n)X;. Conse-
quently, by positive homogeneity of the VaR, VaR,(Z,) = (1/4/n)VaR,(X;) =
(1/4/n)VaR,(Zz) < VaR,(Zy). That is, the VaR of the most diversified portfolio
with equal weights w is less than that of the least diversified portfolio with weights
w consisting of only one risk Z;.

Theorem 2.1.1 shows that similar results also hold for all moderately heavy-
tailed risks X; with arbitrary weights w = (wy,...,wy) € Rﬁ_.s In all these settings,
diversification of a portfolio of Xs leads to a decrease in the VaR of its return Z,, =

Z?:l wiXi.
Theorem 2.1.1 Let g € (0,1/2) and let X;, i = 1,...,n, be i.i.d. risks such that
X;~CSLC,i=1,...,n Then

(i) VaR,(Z,) < VaR,(Zy) ifv < w and v is not a permutation of w (in other words,
the function Y (w, q) = VaR,(Z,) is strictly Schur-convexinw € R’} ).

(ii) In particular, VaRy(Z,,) < VaR,(Z,) < VaR,(Zg) for all g € (0,1/2) and all
weights w € T, such that w # w and w is not a permutation of w.

Let us illustrate the settings where diversification is suboptimal in the VaR
framework. Let ¢ € (0,1) and let X;, ..., X, be i.i.d. risks with a stable reflected
Lévy distribution with 4 = 0 considered in Sect. 1.3. Using (1.5) for the portfolio
of X/s with equal weights w; = 1/n, we get Z, = (1/n) Y, X; =9 nX,.
Consequently, by positive homogeneity of the VaR, VaR,(Z,) = nVaR, (X)) =
nVaR,(Zy) > VaR,(Zz). Thus, the VaR of the least diversified portfolios with
weights w that consists of only one risk is less than the VaR of the most diversified
portfolio with equal weights w.

Theorem 2.1.2 shows that similar conclusions hold for portfolio VaR compar-
isons with arbitrary weights w = (wy,...,w,) € R’ under the general assumption
that the distributions of the risks Xi, ..., X,, are extremely heavy-tailed. In such
settings, the results in Theorem 2.1.1 are reversed and diversification of a portfolio
of the risks X; increases the VaR of its return.

Theorem 2.1.2 Let g € (0,1/2) and let X;, i = 1,...,n, be i.i.d. risks such that
Xi~CS,i=1,...,n Then

(i) VaR,(Z,) > VaR,(Z,) ifv < w and v is not a permutation of w (in other words,
the function ¥ (w, q) = VaR,(Z,,), is strictly Schur-concave inw € R, ).

(ii) In particular, VaRy(Zw) < VaR,(Z,) < VaR,(Z,) for all g € (0,1/2) and all
weights w € T, such that w # w and w is not a permutation of w.

3In particular, the results Theorems 2.1.1 and 2.1.2 and their analogues under dependence provided
by Theorems 5.1 and 5.2 in Ibragimov (2009b) substantially generalize the riskiness analysis for
uniform (equal weights) portfolios of independent stable risks considered, among others, in the
papers by Fama (1965b), Samuelson (1967a) and Ross (1976): These theorems demonstrate that
the formalization of portfolio diversification on the basis of majorization pre-ordering allows one
to obtain comparisons of riskiness for portfolios of heavy-tailed and possibly dependent risks with
arbitrary, rather than equal, weights.
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Let us consider the portfolio VaR dealt with in Theorems 2.1.1 and 2.1.2 in
the borderline case « = 1 which corresponds to i.i.d. risks Xj,..., X, with a
symmetric Cauchy distribution S (o). As discussed in Sect. 2.1.2, these distributions
are exactly at the dividing boundary between the class CSLC in Theorem 2.1.1
and the class CS in Theorem 2.1.2. Using (2.3) with « = 1 we get that, for
al w = wi,...,w,) € L, Z, = Y.i_,wiX; =¢ X;. Consequently, for all
g € (0,1), the value at risk VaR,(Z,) = VaR,(X;) is independent of w and
is the same for all portfolios of risks X; with weights w € Z,,i = 1,...,n.
Thus, in such a case, diversification of a portfolio has no effect on riskiness of
its return. Similarly, for general weights w = (wy,...,w,) € R", property (2.3)
with « = 1 implies Z, = Y i, w:X; =¢ (3'_, wi)Xi. Thus, the value at risk
VaR,(Z,) = (X_i—, wi)VaR,(X)) is independent of w so long as Y ., w; is fixed.
Consequently, VaR,(Z,) is both Schur-convex (as in Theorem 2.1.1) and Schur-
concave (as in Theorem 2.1.2) in w € R, fori.i.d. risks X; ~ S, (0,0, 0) that have
symmetric Cauchy distributions with « = 1 (see Marshall et al. 2011; Proschan
1965, p. 492, for similar properties of tail probabilities of Cauchy distributions).®

Remark 2.1.1 From Theorem 2.1.1 it follows that if X; and X, are i.i.d. risks such
that X; ~ CSLC, i = 1,2, then VaR,(X; + X») < VaR,(X;) + VaR,(X>) and
VaR,(AX; + (1 — A1)X5) < AVaR,(X;) + (1 — A)VaR,(X>) for all ¢ € (0,1/2)
and any A € (0, 1). That is, the VaR exhibits subadditivity and convexity, and is
thus a coherent measure of risk for the class CSLC (see Sect. 2.1.1 for the definition
of coherent risk measures and coherency axioms in the case of the VaR). On the
other hand, Theorem 2.1.2 implies that VaR,(X;) + VaR,(X») < VaR,(X| + X,)
and AVaR, (X)) + (1 — A)VaR,(X>) < VaR,(AX; + (1 — 1)X,) forall g € (0,1/2),
A € (0,1) and i.i.d. risks X;, X, ~ CS. Consequently, subadditivity and convexity
are always violated for risks with extremely heavy-tailed distributions. In such a
case, the VaR is not a coherent risk measure even in the case of independence which
is “the worst case scenario” for diversification failure.

Remark 2.1.2 From the counterexamples constructed in Artzner et al. (1999),
Embrechts et al. (2002) and Chap. 6 in McNeil et al. (2005) it follows that the
VaR, in general, fails to satisfy the subadditivity and convexity properties. From
the analysis similar to Examples 6 and 7 in Embrechts et al. (2002) and Chap. 12
in Bouchaud and Potters (2004) it follows that subadditivity of the VaR holds for
distributions with power-law tails (1.3) and sufficiently small values of the loss
probability ¢ if ¢ > 1. Subadditivity is violated for power-law distributions (1.3)
and sufficiently small values of the loss probability ¢ if { < 1. More generally,
let, similar to Example 7 in Embrechts et al. (2002) and Sect. 12.1.2 in Bouchaud
and Potters (2004), X; and X, be two i.i.d. risks with regularly varying heavy
tails: P(X; < —x) = L(x)/x%, & > 0, as x — oo, where and L(x) is a

SFrom the proof of Theorems 2.1.1 and 2.1.2 and this property it follows that the theorems continue
to hold for convolutions of distributions from the classes CSLC and CS with Cauchy distributions
S1(0).




2.1 Diversification Analysis Via Majorization 19

slowly varying at infinity function, that is L(Ax)/L(x) — 1, as x — o0, for
all A > 0 (see Embrechts et al. 1997; Zolotarev 1986, p. 8). Using the property
that lim,— 400 P(X; + X» < —x)/P(X; < —x/2'%) = 1 (see Lemma 1.3.1 in
Embrechts et al. 1997 and Sect. 12.1.2 in Bouchaud and Potters 2004), one gets
that lim, o VaR, (X1 + X»)/(VaR,(X1) + VaR,(X»)) = 21/6=1_ Consequently, the
subadditivity property holds for the VaR asymptotically as ¢ — 0 if { > 1 and is
violated as ¢ — 0 if { < 1 (the important paper by Embrechts et al. (2009), shows
that the above conclusions on the asymptotic, as ¢ — 0, subadditivity properties
of the VaR for ¢ > 1 and their violations for { < 1 continue to hold and are the
same as in the case of independence for all risks with general Archimedean copula
dependence structure that includes many models with contagion effects).” The
implications of Theorems 2.1.1 and 2.1.2 for the VaR coherency in Remark 2.1.1
are qualitatively different from the counterexamples available in the literature and
the above asymptotic considerations. This is because the VaR comparisons in
Remark 2.1.1 hold regardless of the value of g and are valid for the whole wide
classes of heavy-tailed risks. From the results in Sect.5 in Ibragimov (2009b) it
follows that similar VaR comparisons and conclusions, with arbitrary ¢’s, also hold
for a wide class of heavy-tailed dependent risks affected by common shocks.

Remark 2.1.3 Theorems 2.1.1 and 2.1.2 imply corresponding results on majoriza-
tion properties of the tail probabilities &(w,x) = P(}_—, w;X; > x), x > 0, of
linear combinations of heavy-tailed r.v.’s X1, ..., X,. These properties generalize
the results in the seminal work by Proschan (1965) who showed that the tail
probabilities £ (w, x) are Schur-convexin w = (wy,...,w,) € R’ forall x > 0 for
iid. rv’sX; ~ LC,i=1,...,n%° Schur-convexity of £ (w, x) for X; ~ LC implies
that the VaR comparisons in Theorem 2.1.1 hold for i.i.d. log-concavely distributed
risks. The results in Proschan (1965) have been applied to the analysis of many
problems in statistics, econometrics, economic theory, mathematical evolutionary
theory, and other fields. One should note here that applicability of these majorization
results and their analogs for other classes of distributions to portfolio VaR theory has
not been recognized in the previous literature even in the case of i.i.d. log-concavely
distributed risks.

A number of papers in probability and statistics have focused on extension of
Proschan’s results (see, among others, Chan et al. 1989; Jensen 1997; Ma 1998 and

7See also Ibragimov et al. (2014) for the analysis of the interplay of dependence modeled using
different copula structures, the degree of heavy-tailedness and the values of loss probabilities and
disaster levels in problems of portfolio diversification in VaR frameworks.

8Proschan’s (1965) results are an example of many results and inequalities in probability whose
formulation or proofs are based on majorization theory (for further examples of such inequalities,
see Chap. 3 in Marshall et al. 2011).

9The main results in Proschan (1965) are reviewed in Sect. 12.J in Marshall et al. (2011). The work
by Proschan (1965) is also presented, in a rearranged form, in Sect. 11 of Chap. 7 in Karlin (1968).
Peakedness results in Proschan (1965) and Karlin (1968) are formulated for “PF2 densities,” which
is the same as “log-concave densities.”



20 2 Implications of Heavy-Tailedness

the review in Tong 1994). However, in all the studies that dealt with generalizations
of the results, the majorization properties of the tail probabilities were of the same
type as in Proschan (1965). Namely, the results gave extensions of Proschan’s
results concerning Schur-convexity of the tail probabilities & (a, x), x > 0, to classes
of r.v.’s more general than those considered in Proschan (1965). Analogues of
Theorems 2.1.1 and 2.1.2 for the tail probabilities £ (a, x), on the other hand, provide
the first general results concerning Schur-concavity of £(a, x), x > 0, for certain
wide classes of r.v.’s. According to these results, the class of distributions for which
Schur-convexity of the tail probabilities & (a, x) is replaced by their Schur-concavity
is precisely the class of distributions with extremely heavy-tailed densities.'?

2.1.4 Implications for Econometric and Statistical Methods''

Similar to the portfolio VaR analysis, heavy-tailedness presents a challenge for
applications of standard statistical and econometric methods. In particular, as
pointed out by Granger and Orr (1972) and in a number of more recent studies
(see, among others, Chap.7 in Cont 2001; Davis and Mikosch 1998; Embrechts
et al. 1997; Mikosch and Stdricd 2000, and the references therein) many classical
approaches to inference based on variances and (auto)correlations such as regression
and spectral analysis, least squares methods and autoregressive models may not
apply directly in the case of heavy-tailed observations with infinite second or higher
moments.

An important simple illustration is provided by the failure of the Law of Large
Numbers (LLN) for observations with infinite first moments and variances. When
more information about the structure of heavy-tailedness is available, one can
obtain more refined results that point out to crucial differences between inference in
moderately heavy-tailed and extremely heavy-tailed populations.

0The analysis of tail probabilities of linear combinations of r.v.’s is related to the field of
probability and moment inequalities in probability and statistics (see, among others, Sect. 12 in
de la Pefia and Giné 1999; de la Pefia et al. 2003; Hansen 2015; Ibragimov and Ibragimov 2008;
Ibragimov and Sharakhmetov 1997, 2002; Marshall et al. 2011; Nze and Doukhan 2004; Utev
1985, and the references therein for a number of results in the field and their statistical and
econometric applications).

'This section draws upon material from the following articles:

Ibragimov (2007) “Efficiency of linear estimators under heavy-tailedness: Convolutions of -
symmetric distributions,” Econometric Theory, Volume 23(3), pp. 501-517 (2010) © Cambridge
University Press, reproduced with permission, and

Ibragimov (2009a) “Heavy-tailed densities,” “The New Palgrave Dictionary of Economics,”
Eds. Steven N. Durlauf and Lawrence E. Blume, Palgrave Macmillan, reproduced with permission
of Palgrave Macmillan. The full published version of this publication is available from: http://
www.dictionaryofeconomics.com/article?id=pde2009_H000191.


http://www.dictionaryofeconomics.com/article?id=pde2009_H000191 
http://www.dictionaryofeconomics.com/article?id=pde2009_H000191 
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Consider the problem of estimating the location parameter p in the model
Xi =+, (2.5)

where 7; are i.i.d. errors with an absolutely continuous symmetric distribution.
Given a random sample X|, ..., X, that follows (2.5) with center u, and weights
w= (wi,...,w,) € R, denote by én(w) the linear estimator én(w) =Y wiXi
and by ¥ (w, €), € > 0, its tail probability ¥ (w, €) = P(Ién(w) — | > €). As before,
we also denote Z,, = {w = (wy,...,w,) € R, : 30 w; = 1}

It is well-known that, if En? < oo, then the sample mean X,, = (1/n) Yo Xiis
the best linear unbiased estimator (BLUE) of the population mean © = EX;. That
is, X,, is the most efficient estimator of ;. among all unbiased linear estimators 9 (w)
in the sense of variance comparisons: Var(X,) < Var(@n(w)) forallw € Z,.

The definition of efficiency based on variance breaks down in the case of heavy-
tailed populations with infinite second moments. A natural approach to comparison
of performance of estimators under heavy-tailedness is to order them by likelihood
of observing large deviations from the population parameter of interest being
estimated. This approach relies on the concept of peakedness of r.v.’s and leads
to the following definition.

Let H(U) and 0(w) be two linear estimators of the parameter p in model (2.5).
The estimator 6 (v) is said to be more efficient than Q(W) in the sense of peakedness
(P-more efficient than 9(w) for short) if P(|9(v) ul > e < P(|9(w) Ul > €)
for all ¢ > 0. The property of being P-less efficient is defined in a similar way.
Roughly speaking, 60 is P-more efficient than 6@ if the distribution of §( is
more concentrated about the true parameter w than is that of 6.

In view of Remark 2.1.3, the results on portfolio VaR comparisons in Sect. 2.1.3
can be equivalently formulated in terms of efficiency comparisons for linear estima-
tors of a location parameter in heavy-tailed models (2.5). Namely, if the errors ; in
model (2.5) are moderately heavy-tailed: n; ~ CSLC, then, for v, w € Z,, the linear
estimator é,,(v) is P-more efficient than é,, (w) if v < w and v is not a permutation
of w (equivalently, ¥ (v, €) is strictly Schur-convex in v = (vy,...,v,) € R’ for
all € > 0). Also, in this case, the sample mean X, is the BLUE of the location
parameter (the population mean) u in the sense of P-efficiency: the sample mean
is P-more efficient than any other linear unbiased estimator é,, w) = Z:‘;l w; X,
w € Z,. In particular, X,, exhibits monotone consistency for j in the sense that
P(|X, — it| > €) converges to zero strictly monotonically in 7 for all € > 0.

Similar to the effects of diversification in portfolio VaR models, the above
efficiency properties of linear estimators are reversed in the case of extremely heavy-
tailed models (2.5) with n; ~ CS. In the extremely heavy-tailed case, for v,w € Z,,,
the linear estimator én(v) is P-less efficient than én(w) if v < wand v isnota
permutation of w (equivalently, the function ¥ (v, €) is strictly Schur-concave in
v = (vi,...,V,) € R’ for all € > 0). Further, under extreme heavy-tailedness in
model (2.5) with n; ~ CS, the sample mean X,, = (1/n) Y X; is P-less efficient
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than any other linear estimator én(w) = Y, wX; with w € Z,. In particular, P-
efficiency of the sample mean X, decreases with n, that is, P(|1X,+1 — | > €) >
P(|X, — | > €) > P(|X; — | > €) foralln > 1 and all € > 0.

The results and conclusions in the next sections show that, similar to the portfolio
VaR analysis and the efficiency properties of linear estimators, many models in
economics and related fields are robust to heavy-tailedness assumptions as long as
the distributions entering these assumptions are moderately heavy-tailed. However,
the implications of these models are reversed for distributions with sufficiently
heavy-tailed densities.

2.2 Diversification Analysis: Bounded Case'”

Let, as in Sect. 1.3, I(-) stand for the indicator function. For an r.v. (risk) X, we
define its a-truncated version by Y(a) = X for |[X| < a, Y(a) = —afor X < —a
and Y(a) = a for X > a. In other words, Y(a) = a - sign(X;) + XI(|X| < a),
where sign(x) is the sign of x defined by sign(x) = 1 if x > 0, sign(0) = 0 and
sign(x) = —1 otherwise."> We will also use the notation X“ instead of ¥ (a) for the
a-truncated version of X.

Let 0 < r < 1. Following the framework of Roy (1952) safety-first, given a
random loss (risk) Z, we are interested in analyzing the probability P(Z < —z) of
getting losses greater than a certain disaster level z > 0. Furthermore, as before,
given a loss probability g € (0, 1) and an r.v. (risk) Z, we denote by VaR,(Z) the
VaR of Z at level g, that is, the negative of its g-quantile.'*

Throughout this section, X, X, ... is a sequence of i.i.d. risks with distributions
from the class CS. For a > 0, denote by Y;(a) the a-truncated versions of X's, as
defined above. Let, as in Sect. 2.1, Z,, = {w = (w1, ...,w,) € R} Z?:l w; = 1},
Fora > 0 and w € 7,, denote by Y,,(a) the risk of the portfolio of bounded risks

Yi(a), ..., Ys(a) with weights w: Y, (a) = Z w;Yi(a). Evidently, the risk Y5, (a) of
i=1

the portfolio of Y1 (a), ..., Y,(a) with equal weights w, = (% % ey

.,;

) is given by

1 n
the sample mean of Y;(a)’s: Y3, (a) = — Z Yi(a).
n

i=1

2This section is based on the article Ibragimov and Walden (2007), which was published in the
Journal of Banking and Finance, Vol. 31, Issue 8, pp. 2551-2569, Copyright Elsevier (2007).
13This definition of truncation moves probability mass to the edges of the distributions. The results
in this section continue to hold for the more commonly used truncations XI(|X| < a) which move
probability mass to the center.

14That is, in the case of an absolutely continuous risk Z, P(Z < VaR,(Z)) = q.
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The problem faced by a holder of bounded risks Yi(a),..., Y,(a) consists in

minimizing the disaster probability P( Z w;Yi(a) < —z) over the portfolio weights
i=1

w € I,. Let, as in Sect. 2.1.1, wy;; > ... > wy, denote the components of w € Z, in

decreasing order. Obviously, wy;; = 1 implies that w is a permutation of the vector

(1,0,...,0). In such a case, evidently, the portfolio with weights w consists of only

onerisk, and, thus, Y5, (a) has the same distribution as Y; (a). In addition, for w € Z,,,

let (WD, w?) = (max[O.S, wp], min[0.5,1 — w[l]]).

Theorem 2.1.2 (see also Remark 2.1.3) implies that the stylized facts that
portfolio diversification is always preferable are violated for a wide class of
extremely heavy-tailed risks X; ~ CS with unbounded support. In such a setting,
diversification of a portfolio of the risks increases the probability of going over a
given disaster level.

We now expand the analysis in Sect.2.1.3 to risks with bounded support.
A summary of the results we will provide is given in Fig.2.1. The situation
with thin-tailed and moderately heavy-tailed i.i.d. risks (see the Introduction and
Theorem 2.1.1) is according to line A in the figure: Diversification is always to
be preferred, regardless of the number of risks. The opposite situation is in line
C for extremely heavy-tailed risks, where diversification will never be preferred
(Theorem 2.1.2). The intermediate case is line B for settings like bounded risks
considered in this section where diversification is suboptimal up to a certain number
of risks (similar to C), but becomes preferable when enough assets are available
(similar to A).

The following theorem is the analogue of Theorem 2.1.2 and its implications
for tail probabilities (see Remark 2.1.3) in the case of bounded risks. The theorem
shows that diversification continues to be disadvantageous for truncated extremely
heavy-tailed distributions, given a VaR-based definition of riskiness. The results
show, in particular, that for any number n > 2 and any given disaster level z > 0,

"Value" of portfolio A. Traditional situation
4

B. Situation in this paper & in
Ibragimov & Walden (2007)

\ C. Situation in Ibragimov (2004)

1 10 70 100 Number of risks in
portfolio, n

Fig. 2.1 Value of diversification. (A) Thin-tailed and moderately heavy-tailed risks: the value
increases monotonically and it is always preferable to add another risk to portfolio (Theorem 2.1.1).
(B) Bounded truncations of heavy-tailed distributions: up to a certain number of assets, value
decreases with diversification (Theorem 2.2.1). (C) Extremely heavy-tailed risks: value always
decreases with diversification (Theorem 2.1.2)
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there exist n risks with finite support with the property that a diversified portfolio is
riskier than a portfolio consisting of only one risk.

Theorem 2.2.1 Letn > 2 and let w € I, be a portfolio of weights with wyy) # 1.
For any z > 0 and all sufficiently large a > A, the following inequality holds:

P(Yw(a) < —z) > P(Yl (@) < —z).

Remark 2.2.1 The threshold value A in the length of the support of bounded
risks with suboptimal diversification in Theorem 2.2.1 depends on distributional
properties (and the degree of heavy-tailedness) of risks X;, their number n, the
portfolio weights, w and the disaster level z. Ibragimov and Walden (2007)
provide the analysis of values of the threshold levels A for different heavy-tailed
risks X;.

Remark 2.2.2 Theorem 2.2.1 shows that, for a specific loss probability g € (0, 1/2),
there exists a sufficiently large value of the length of the distributional support
a such that the VaR VaRq(Yw(a)) of Y,,(a) at level g is greater than the value
at risk VaR,(Y;(a)) of Yi(a) at the same level: VaR,(Y,,(a)) > VaR,(Y;(a)).
This inequality between the risks Y, (a) and Y;(a) holds for the particular fixed
loss probability g. In the comparisons of the values at risk VaRq(Yw(a)) and
VaR,(Y1(a)), the length of the interval needed for the reversals of the stylized facts
on the portfolio diversification depends on g. This is a crucial difference compared
with Theorem 2.1.2 and Remark 2.1.3, where the inequalities hold for all disaster
level z > 0 and all loss probabilities g € (0, 1/2).

2.3 Insurance Markets: Non-diversification Traps'’

Catastrophe insurance provides compensation for losses created by such natural
risks as earthquakes, floods, and wind damage, as well as man-created risks includ-
ing terrorism. Over the past 15 years, most private-market property and casualty
(P&C) insurance firms stopped offering coverage against catastrophe risks, usually
in the wake of a major event. Key private market failures include Florida hurricane
insurance after Hurricane Andrew in 1992, California earthquake insurance after
the Northridge quake of 1994, and, most recently, U.S. terrorism insurance after
the 9/11 attack. Catastrophe insurance markets have also failed worldwide in most
developed countries. In response, state and federal governments have been forced to
try to replace or to revive the private markets, the most recent example being the U.S.

5This section is based on the article Ibragimov et al. (2009), which was published in the Review
of Financial Studies, Vol. 22, Issue 3, pp. 959-993.
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Terrorism Risk Insurance Act of 2002 (TRIA) and its 2005 extension. Unfortunately,
the government interventions are generally considered to be quite inefficient.'®

Understanding the source of the private market failures is essential if more
effective remedies are to be found. A fundamental question is why catastrophe risks
are “uninsurable” for the private insurance firms. Asymmetric information—adverse
selection and/or moral hazard—is the common textbook explanation for insurance
market failures, but there seems to be little role for asymmetric information
with respect to natural disasters or terrorism attacks.!” Imprecision in estimating
the underlying stochastic process is also sometimes suggested as a basis for
“uninsurability,” but even if parameter imprecision raises the cost of insurance,
perhaps due to ambiguity aversion, it is unclear why it would cause the market to
fail; see Froot (2001).

A third basis for “uninsurability” is that the possible losses may exceed the
capital resources of the P&C insurance industry; see Cummins et al. (2002). For
example, the losses created by war or by terrorist use of weapons of mass destruction
(WMD) could readily exceed the capital resources of all P&C firms. The deadweight
costs of bankruptcy, including a loss in the value of the managers’ human capital,
could then motivate the unwillingness of firms to participate in the catastrophe
insurance markets. War and WMD risks, however, have long been excluded from
most insurance contracts, without jeopardizing the availability of coverage for
standard risks.

War and WMD risks aside, size alone does not appear to explain the recent
failure of so many different catastrophe insurance markets. Table 2.1 shows the
ten most costly insurance losses since 1970 as compiled by SwissRe (2006). The
losses created by the Katrina hurricane of 2005 were USD 45 billion, followed
by the Florida Hurricane Andrew of 1992 (USD 22 billion), and the 9/11 terrorist
attack (USD 21 billion). In comparison, the capital resources of the P&C insurance
industry at year-end 2005 totaled approximately USD 446 billion, and in each year
since 2001, the P&C industry has increased its capital resources (net of losses) by
at least USD 29 billion. '8

Although P&C industry resources can cover most catastrophic risks, coverage
is provided at the level of individual firms, not the industry. Furthermore, insurers
tend to specialize in geographic regions and particular lines of coverage, putting
individual firms at potentially high risk to a specific catastrophic event. Regulation
is a major cause of the geographic and insurance line specialization, since U.S.

16See Cummins (2006), Jaffee (2006a), and Jaffee and Russell (2006) for recent discussions and
references to the literature. OECD (2005a) and OECD (2005b) discuss government interventions
around the world to reactivate terrorism insurance. Kunreuther and Michel-Kerjan (2006) discuss
the specific issue of terrorism insurance in the United States.

"There is generally open access to scientific forecasts of natural disasters, much of it provided by
governments. Terrorists may be more strategic in their choice of targets, but this does not create a
moral hazard on the part of those purchasing terrorism insurance (unless the terrorists particularly
target insured properties).

3These data are from the Insurance Information Institute; see http://iii.org/media/industry/.
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Table 2.1 The world’s ten costliest insurance events

Insured losses®

Date Event (USD Billion)
2005, August 24 Hurricane Katrina 45
1992, September 23 Hurricane Andrew 22
2001, September 11 ‘World Trade Center 21
2004, January 17 Northridge Earthquake 18
2004, September 2 Hurricane Ivan 12
2005, September 20 Hurricane Rita 10
2005, October 16 Hurricane Wilma 10
2004, August 11 Hurricane Charley

1991, September 27 Typhoon Mireille (Japan) 8
1990, January 25 Storm Daria (Europe)

Source: SwissRe (2006)
2Property and Business interruption; excludes liability and life insurance

insurance firms must be chartered separately in each state in which they operate and
they face substantial fixed costs for marketing and for developing actuarial expertise
for each line and for each state.!” The result is that relatively few catastrophe
insurance firms operate in each state and for each catastrophe line. Risk-averse
executives with ties to their own firm may wish to avoid such an undiversified
position.

Reinsurance firms exist, of course, precisely to redistribute risks, allowing
individual insurers to match their retained risks with their capital resources. Thus, if
reinsurance markets function efficiently, then capital adequacy at the industry level
is in fact the relevant measure. Unfortunately, the proximate cause of the observed
failures of the primary catastrophe insurance markets has been precisely the failure
of the associated reinsurance markets. For this reason, the fundamental question is
why the reinsurance markets for catastrophe risks have largely failed.

In this section, we argue that the observed dynamic pattern of widely vary-
ing supply conditions for catastrophe insurance and reinsurance could reflect a
multiple equilibrium system, with the market sometimes reaching a coordinated
reinsurance/diversification equilibrium, but at other times falling into what we call
a nondiversification trap. The term is related to poverty traps and development

YInsurance is unique among U.S. financial services in that it is regulated in the United States
only at the state level. The structure of a catastrophe insurance market is well illustrated by
California’s earthquake risk market. As of 2005, 70 % of the coverage was provided by the
California Earthquake Authority, an entity created by the State of California following the 1994
Northridge quake. With no major quakes since then, private insurers have slowly reentered the
market, now representing about 30 % of the market. However, still only 35 private insurance groups
are offering California earthquake coverage (based on annual written premiums of USD 1 million
or more). Furthermore, the top 5, 10, and 20 firms represent 46, 66, and 89 % of the total private
market, respectively.
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traps in economic growth theory (Azariadis and Stachurski 2006; Barro and Sala-
i-Martin 2004). It denotes a situation where there are two possible equilibria: a
diversification equilibrium in which insurance is offered and there is full risk sharing
through the reinsurance market, and a nondiversification equilibrium, in which
the reinsurance market is not used, and no insurance is offered at all. A move
from the nondiversification equilibrium to the diversification equilibrium has to be
coordinated by a large number of insurers and reinsurers, which may be difficult
to achieve through a market mechanism. Therefore, there may be a role for a
centralized agency to ensure that the diversification equilibrium is reached—for
example, by mandating that insurance must be offered (as in the case of the U.S.
Terrorist Risk Insurance Act of 2002 and in the corresponding government plans in
most European countries).

Consequently, our discussion and model focus on reinsurance as the mechanism
that could be used to coordinate the diversification equilibrium. A functioning
reinsurance industry, however, requires that the primary insurers be willing to write
policies in anticipation that other insurers will do the same and that the reinsurers
will pool all the risks, to reach the global diversification outcome. Our model will
determine the conditions under which such an equilibrium can and cannot occur.

The existence of nondiversification traps depends crucially on there being
conditions under which diversification becomes suboptimal for the individual
insurers. This is contrary to the traditional framework in which diversification is
always preferred (see, e.g., Samuelson 1967b for equity investments and Froot and
Posner 2002 for insurance). The traditional framework uses concave optimization
(e.g., via expected utility), with thin-tailed risks (e.g., normal distributions), and
without distortions (unlimited liability, no frictions and no fixed costs). If any of
these assumptions fails, diversification may not always be preferred. Our discussion
focuses, in particular, on the impact of heavy left-tailed distributions (implying a
nonnegligible probability for large negative outcomes) as the defining property of
catastrophic risks.

Figure 2.1 in the previous section provides an intuition for how nondiversification
traps can arise for insurance. Consider a situation in which there is a maximum
number of distinct risks that an individual insurance provider can take on—e.g.
N = 10. The constraint of the maximum number of risks that an individual firm can
accept is in line with our regulatory discussion earlier and can also be motivated by
capacity constraints, capital requirements, and segmented markets. The three lines,
A-C, in the figure describe the value (e.g., measured as a certainty equivalent) of
holding a diversified portfolio of n risks as a function of n. In this section we will
study a model in which the value is a U-shaped function of the number of risks,
corresponding to line B (also studied in the previous section). In this case, for any
individual insurance provider, diversification will clearly be suboptimal as the value
decreases in n for n < N = 10. However, if there are M insurance providers in the
market, they could potentially meet in a reinsurance market, pool the risks, and reach
full diversification with NM risks. For this to be preferred to nondiversification,
at least M = 7 insurance providers must pool the risks. This is a very different
situation compared with the traditional situation in line A, in which each individual
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insurance provider will choose maximal diversification into N risks, and in which
two insurance providers can always improve their situation by pooling their risks in
a reinsurance market. For line B, there may be a coordination problem.

2.3.1 Risk Pooling

We begin by studying the potential value of risk sharing among multiple risk-takers.
We first develop the intuition and then, in the following sections, prove the results
rigorously for a model of a reinsurance market.

We study the behavior of risk-takers. Because we focus on the context of risk-
taking insurance companies, we will refer to these risk-takers as insurers. We
assume that the number of insurers is bounded by M and that all insurers are
expected utility optimizers with identical strictly concave utility functions, u.

We assume that there is limited liability. Clearly, real-world insurance firms
have limited liability and may default in some states of the world. This case
is increasingly studied in the insurance literature; see Cummins et al. (2002),
Cummins and Mahul (2003), and Mahul and Wright (2004). For catastrophe
insurance, with heavy-tailed distributions, there is an effectively nonzero (although
small) probability that such a catastrophic event will create default. Technically,
limited liability is needed in the model, because with heavy-tailed distributions, the
expected payoffs and values are not otherwise defined. We shall, however, see that
the probability for default is small in equilibrium. Moreover, we will show that our
results are not driven by the convexity of payoffs introduced by limited liability:
For markets with large aggregate risk-bearing capacity, our results will apply only
if distributions are heavy-tailed. The assumption of limited liability is modeled by
insurers being liable to cover losses only up to a certain amount, k. If losses exceed
k, an insurer pays k, but defaults on any additional loss.?® Thus, if an insurer takes
on a random risk of X, the effective outcome for the insurer once X is realized
is

X itX > —k
X)y=4" - 7 2.
Ve —k, it X < —k. 26)
In the special case when there is no limited liability—i.e., when k = co—we have
V(X) = X for all X. If k < oo, u needs only to be defined on [—k, 00) and we can
without loss of generality assume that u(—k) = 0.

20We assume that a third party, perhaps the government, covers the excess losses to policy holders.
This avoids the complications of any impact on policyholder demand.



2.3 Insurance Markets: Non-diversification Traps 29

Assuming i.i.d. risks X, X,,..., we wish to study the expected utility of s
agents, who share j risks equally. We therefore define the random variable z;, =

(Zi:l Xi)/s, with cdf F; ;. The expected utility of such risk sharing is:

Ujs € Eu(V(z,)) = /_ Zo u(x)dF;(x). 2.7)

Firms are usually considered to be risk neutral. However, an expected utility setup
with concave utility can effectively arise if there are financial imperfections as, for
example, assumed in Froot et al. (1993). If such financial imperfections are present,
the value of the firm will be given by a concave transformation of the payoffs,
which is effectively identical to our expected utility setup. Another motivation for
risk-averse firm behavior is that executives with major financial and human capital
investments in their own firm wish to avoid risky positions.

Insurers face two constraints, one that limits the aggregate amount of their risks,
and the other that limits the size of individual risks. The aggregate limitation is
driven, for example, by capital requirements. This aggregate limit is imposed by
assuming that each insurer can bring at most N risks “to the table.” Thus, we have
1 <s <M,1 <j < Ns. The second constraint is that each risk, X;, is indivisible,
so it cannot be split between insurers in a primary insurance market. As discussed
in the introduction, real-world catastrophe insurance markets are segmented in this
way because relatively few insurers operate in each state and in each line.

When returns are independently normally distributed, it is well known that one
can always add an asset to a portfolio and strictly increase the agent’s utility via the
appropriate selection of weights. In this case, Uj ; is strictly increasing in s for each j
(an immediate consequence of Samuelson 1967b). In this situation we can expect a
reinsurance market to work well and insurance to be offered for a maximal number
of risks, NM. The argument is based on the fact that each insurer will choose to
diversify fully, regardless of what the other M — 1 insurers do. We denote this the
traditional situation.

The situation is very different when we have limited liability and heavy-tailed
distributions. We consider i.i.d. Bernoulli-Cauchy distributed risks, X,-—i.e.,

o A, with probability 1 — ¢,

" | X;, with probability g,
where X; = u + &, & ~ S1(0), are i.i.d. Cauchy r.v.’s with the location parameter
W, the scale parameter o and the density (2.1). In other words, the r.v.’s X; are

“mixtures” of degenerate and Cauchy r.v.’s. Clearly, the risks X; can be written as

Xi=A(1—e€)+Xier = A+ (u— Ve + oYie, (2.8)
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where ¢; are i.i.d. nonnegative Bernoullir.v.’s with P(¢; = 0) = 1—¢q, P(e; = 1) = ¢
and Y; € Sy are i.i.d. symmetric Cauchy r.v.’s with scale parameter o = 1 that are
independent of €'s.

For the above distributions, we say that X e Sq o . Here, A can be thought of as
the premium an insurance provider collects to insure against events that occur with
probability g. For ¢ << 1, this distribution is qualitatively similar to distributions for
catastrophic risks: There is a small probability for a catastrophe to occur. However,
if it does occur, the loss may be very large due to the heavy left tail of the Cauchy
distribution. We use the Cauchy distribution for its analytical tractability (even
though it, similar to the normal distribution—used, e.g., in Cummins 2006—has a
nonzero right tail, which does not have a meaningful interpretation for catastrophic
events). We assume limited liability (k¢ < oo) and the power utility function
u(x) = (x + k)%, o € (0,1). Clearly, under the above assumptions, the expected
utility for Bernoulli—-Cauchy risks always exists.

In Fig.2.2, we show expected utility for different total numbers of projects, j,
and numbers of agents involved in risk sharing, s, with parameters k = 100,0 = 1,
A=1Lupu=-9N=20,M =5 a = 0.0315, and ¢ = 0.05. There is a
crucial difference compared with the traditional situation. For a moderate number
of risks, there is no way to increase expected utility compared with staying away
from risks altogether. An insurer has the option of not entering the market and
must therefore earn a utility premium to be willing to take on risk (i.e., to offer
insurance). No insurer will therefore choose to invest in risks that cannot be pooled.
Moreover, if an insurer believes that no other insurer will pool risks, he will not take
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Fig. 2.2 Expected utility for insurers under different risk-sharing alternatives. s denotes the
number of insurers sharing risks. j denotes the total number of risks. U(z;,;) denotes the expected
utility of an insurer as a function of j and s. Parameters: liability £ = 100, total number of insurers
M = 5, maximum number of risks per insurer N = 20, risk parameters: 0 = 1, u = =9, =1,
a = 0.0315 and ¢ = 5 % (see Eq. 2.8)
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on risks, whether he can pool them or not. Thus, even though the situation with full
diversification and risk sharing (U ) is preferred over the no-risk situation (Uy ),
at least four insurers must agree to pool risk for risk sharing to be worthwhile.

In this situation, there may be a coordination problem: Even though all agents
would like to reach Uy yr, they may be stuck in Uy ;. Clearly, the limited liability
assumption is important: If liability were unlimited, no agent would ever take on
risk. The situation would be as in Ibragimov (2005, 2009b), where diversification
is always inferior. However, we note that the probability for default in the situation
with full pooling and diversification is small: It is approximately 0.3 %.

The expected utility assumption is not crucial. Similar results would arise in
a VaR framework—for example, with agents who trade off VaR versus expected
returns for some risk level, a. The crucial property of the U;; curves are that they
are “U-shaped” in s. In Ibragimov and Walden (2007), it is shown that similar U-
shaped curves occur as a function of diversification when the VaR measure is used.
The specification in a VaR framework would be U;, = F(A, W), A = E(V(z,)),
W = VaR,(V(z,)), with F/0A > 0, and 0F /0W < 0, and the analysis would be
similar to the analysis we carry out in this section.

Our argument so far has been informal. We next make these diversification results
rigorous by introducing a model of a reinsurance market where coordination plays
a role—the diversification game. We will show that in the traditional situation,
the only equilibrium is a diversification equilibrium, where NM risks are insured,
whereas in the situation with heavy tails there is both a diversification equilibrium
and a nondiversification equilibrium in which no insurance is offered.

2.3.2 A Reinsurance Market

We analyze a market in which insurance providers sell insurance against risks. For
simplicity, we model the market in a symmetric setting: participants in reinsurance
markets share risks equally. The setup is a two-stage game that captures the
intuitive idea that insurance has to be offered before reinsurance can be pooled.
The decision whether to offer primary insurance will be based on beliefs about how
well-functioning (the future) reinsurance markets will be. If a critical number of
participants is needed for reinsurance markets to take off, then nondiversification
traps can occur. As we have already discussed the intuition behind nondiversification
traps, Sects. 2.3.2, 2.3.3, and 2.3.4 focus on providing the theoretical foundation for
the existence of nondiversification traps.

The two-stage diversification game describes the market. In the first stage, agents
(insurance providers) simultaneously choose whether to offer insurance against a
set of i.i.d. risks. In the second stage, the reinsurance market is formed and each
agent chooses whether to participate or not. Agents who choose not to offer primary
insurance are allowed to participate in the reinsurance market. Finally, all risks of
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agents participating in the reinsurance market are pooled, outcomes are realized and
shared equally among participating agents.

2.3.2.1 Insurance Market

There are M > 2 agents (also referred to as insurance providers, insurance
companies, or insurers). We use m, 1 < m < M to index these agents. There is
a set of i.i.d. risks, X', where each risk has cdf F(x). Each agent chooses to take on
a specific number of risks, n,, € {0,1,2,...,N}, where N denotes the maximum
insurance capacity, forming a portfolio of risks p,, € P,,, where p,, = 2?21 X; and
X; € X. This is the first stage of the market. The risks are atomic (indivisible) and
each risk can be chosen by at most one agent. We assume that there are enough risks
available to exhaust capacity, i.e., | X| = NM. Here, |X| denotes the cardinality of
X. As risks are i.i.d., only the distributional assumptions of the risks matter and we
will not care about which insurance provider chooses which risk. The portfolio p,,
is therefore completely characterized by the number of risks, n,,. The total number
of risks insured is N = > -

Agents have liability to cover losses up to k, where k € (0, oo]. If losses exceed
k for an agent, he defaults and pays k, and a third party, possibly the government,
steps in and covers excess losses. The effective outcome under limited liability for
agent m, taking on risk z,,, is therefore V(z,,), where V is defined in (2.6). All agents
have identical expected utility over risks, U,,(z,,) = Eu(V(z,)), where u is defined
and continuous on [—k, 00), is strictly concave, twice continuously differentiable
on (—k, 00) and, if k < oo, satisfies u(—k) = 0. The outcome of the first stage is

summarized by p = (p1,....pu) € P S [T P

2.3.2.2 Reinsurance Market

In the second stage of the game, named the participation subgame, the reinsurance
market is formed. In this stage, agents have perfect knowledge about p. Each agent,
1 < m < M, sequentially decides whether to participate in the market or not, as
follows: First, agent 1 decides whether to participate. This is represented by the
binary variable ¢; € {0, 1}, where g = 1 denotes that agent 1 participates in
the reinsurance market and g; = 0O otherwise. Then, agent 2 decides whether to
participate, observing agent 1’s decision, etc. This is repeated until all M agents
have decided. Previous agents’ decisions are observable. If an agent is indifferent
between participating and not participating, he will not participate. Agents who offer
insurance, and participate, pool all their insurance in the reinsurance market—i.e.,
gmPm 1s supplied to the reinsurance market by agent m. The total pooled risk is
therefore P = ), gmpm and the number of risks is R = Y, gmnm € {0, ... ,NM}.
As noted, the two stages separate the choice of offering insurance from the
creation of a reinsurance market, which can occur only when the risks are already
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insured. The total number of participating agents in the reinsurance market is
t =Y, qn. Finally, the pooled risks are split equally among agents participating in
the reinsurance market—i.e., each participating agent receives a fraction 1/ of the
pooled portfolio, P, with R risks.

The outcome of the participation subgame is summarized by g =
(q1.92+ - - - . qu) € {0, 1}M and the outcome of the total diversification game is thus
completely characterized by (p, g). Moreover, the quintuple G = (u, F,k, N, M)
completely characterizes the diversification game.

We study equilibrium outcomes (p, g) of a diversification game G. As the second
stage of the market is an M-step sequential game with perfect information, it is
straightforward to calculate the unique subgame perfect equilibrium by backward
induction (existence and uniqueness being guaranteed by Zermelo’s theorem and by
imposing the assumption that indifferent agents do not participate). A detailed setup
for the participation subgame is given in Ibragimov et al. (2009). The equilibrium
mapping of the participation game, for a specific first-stage realization, p, is a vector
g = E(p) € {0, 1}M. We use this mapping to simplify the analysis of the first stage of
the diversification game. Specifically, in the first stage, all agents agree on ¢ = £(p)
as the outcome of the participation subgame, and therefore use it directly in their
value function. This reduces the size of the strategy space considerably, while not
having any effect on the (subgame perfect) equilibrium outcome. The sequence of
events is shown in Fig. 2.3.

3.Risks from participating
agents are pooled to

1. First stage of diversification portfolio, P, containing R

game: Each agent, m, risks. Risks are split equally

chooses portfolio p,. between t participating
agents.

t

‘ >

2. Participation subgame:
Reinsurance market is
formed. Agents choose
whether to participate.
Agent m submits risks

dmPm, Where gy, =1 if
agent m participates and
gm =0 otherwise.

Fig. 2.3 Sequence of events: / Agents simultaneously choose risk portfolio, p,,. 2 Reinsurance
pool P = Y, qupm is formed. Agents sequentially choose whether to participate, knowing
outcome of step 1 and decision of previous agents. 3 Pooled risk is split between s participating
agents, each taking on risk P/z. Agents who do not participate in the reinsurance market take on
tisk (1 = guw)pm
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2.3.2.3 Strategies

For elements p € P, we define the first-stage actions of all agents except agent m:

def
p—m = (pls---spm—lspm+ls---spM) € 1_[ PW!’ ; P—m-

A strategy for agent m consists of a pair: A = (P, ) € P x {0,137 where
Pm is the chosen portfolio of insurance, and 1, : P—,, — {0, 1} is the participation
choice, depending on the realization in the first stage.”!

2.3.2.4 Belief Sets
Agent m has a belief set about the other agents’ first-stage actions, B,, = p—,, €

P_n. Agent m’s strategy, Ay, = (Pm, qm), conditioned on belief set B,, = p_p, is
said to be consistent, if n,,(p—n) = (£(P))m, Where

13 = ((P—m)h cees (p—m)m—lspms (p—m)m—l—lv s (p—m)M)s (29)
and we use the notation (x); for the ith element of the ordered set x.
Rational agents will consider only consistent strategies, as inconsistent strategies

are suboptimal in the participation phase of the diversification game. The inferred
outcome of a consistent strategy, A,, = (P, ), conditioned on a belief set, By, is

Pm» if nm(p—m) = 07
- (p | ) { P/l, if nm(p—m) =1

where

i=E@). =) @w.  P=)_®w@w

and p is defined as in (2.9).

2.3.2.5 Equilibrium

An M-tuple of strategies, (A, ...,Ay) and belief sets (B, ..., By), where A,, =
(Pm> Mm) and B,, = p_,,, defines an equilibrium of the diversification game G, if

2IHere, in line with the previous discussion on reduced strategy space, g, does not need to be
conditioned on the participation choices g, of agents m’ = 1,...,m — 1. This is the case as the
equilibrium mapping ¢ = £(p) € {0, 1} is known, so g, is uniquely implied by p in equilibrium.
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1. Consistent strategies: For each agent, m, A,, is consistent, conditioned on belief
set B,,.

2. Maximized strategies: For each agent, m, p,, € argmax,¢p U, (zu(P'|Bn))-

3. Consistent beliefs: For each agent, m, for all m’ # m : (p—)w = pur-

The equilibrium outcome is summarized by p = (p1,p2,....py)andg =
(m@-1). m@-2),-..,
Ny (p—m))- This concludes the definition of the diversification game.

The diversification game, of course, presents a highly stylized view of how
primary markets and reinsurance markets for catastrophic risks work. A natural
extension would be to allow the insurance premium (4) to be defined endogenously
by demand and supply. This extension turns out to complicate the analysis severely,
so we have avoided it for analytical tractability. However, the nondiversification
traps we derive occur for ranges of (fixed) A’s, so an interpretation of our result is
that there may be no insurance premium, A, for which there is both demand from
potential insurance buyers and supply from single insurance providers.??

Another potential extension of the model would be to allow insurance providers
to be able to take on fractions of risks, x € X and not just O or 1. This type of
extension would not qualitatively change our results, except for making the model
less tractable.

2.3.3 Classification of Equilibria

We are interested in diversification and nondiversification equilibria to a diversifica-
tion game G = (u, F, k, N, M). These formalize the situations that were intuitively
described in Sect. 2.2. We define

Definition 2.3.1 A diversification equilibrium of a diversification game G is an
equilibrium in which insurance against all risks in X is offered—i.e., N = NM.

Definition 2.3.2 A diversification equilibrium of a diversification game G is risk
sharing if all risk insured is pooled in the reinsurance market—i.e., R = NM.

Definition 2.3.3 A nondiversification equilibrium of a diversification game G is an

equilibrium, in which no insurance against risk is offered—i.e., N = 0.

22For example, in a calibration to earthquake insurance (see Ibragimov et al. 2009), we arrive
at nondiversification trap arising for annual insurance premiums, A, between USD 1,840 and USD
2,300 per household. Below USD 1,840, the only equilibrium is the nondiversification equilibrium,
and above USD 2,300, the only equilibrium is the full-diversification equilibrium. The range of
A for which a nondiversification trap arises is thus about 20 % of the premium—i.e., (2,300—
1,840)/2,340. With other parameter values, we have derived ranges from a few percent up to an
order of magnitude.
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Definition 2.3.4 A nondiversification trap exists in a diversification game G, if
there is both a nondiversification equilibrium and a risk-sharing diversification
equilibrium.

We are especially concerned about cases when nondiversification traps may arise,
even though there is a large risk-bearing capacity of the market as a whole. This
might arise if the market is fragmented so coordination problems may be present—
i.e., if M is large. We therefore define

Definition 2.3.5 A genuine nondiversification trap to the quadruple (u, F, k, N)
exists if there exists an My, such that for all M > M, the diversification game
G = (u, F,k,N, M) has a nondiversification trap.

In the next section, we analyze when traps can occur in the diversification game.
It turns out that we can rigorously classify the conditions under which traps may
occur.

2.3.4 Existence of Traps

We relate the equilibrium concepts described in Sect. 2.3.3 to conditions for the Uj
as defined in Eq. (2.7).

Condition 2.3.1 U;; < Uy forallje {1,...,N}.

Clearly, under Condition 2.3.1, an agent would never offer insurance if the
reinsurance market were not available:

Condition 2.3.2 U;, < Uy forallje{l,...,Nyandalls € {1,...,M}.

Condition 2.3.2 is the stronger requirement that even if there is a reinsurance
market, there is no way to increase expected utility by risk sharing if only one agent
contributes risk to the reinsurance market. We shall see that a sufficient condition for
there to be an equilibrium in which full diversification and risk sharing is achieved
is

Condition 2.3.3

° UNM,M > Uj,lforallj € {O,,N} and
° UNM,M > Uj,Mforallj (S] {N(M— 1),...,NM— 1}

Our first set of results relates the existence of nondiversification traps to the
expected utilities {Uj s }o<j<nm,1<s<m, defined in (2.7). The results are fully in line
with the arguments in Sect. 2.2. We have:

Proposition 2.3.1 If Condition 2.3.2 is satisfied, then there is a nondiversification
equilibrium.
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The implication can be almost reversed, as shown in

Proposition 2.3.2 If Condition 2.3.2 fails strictly—i.e., if U;; > Uy for some j €
{1,...,N}ands € {1, ..., M}, then there is no nondiversification equilibrium.

Proposition 2.3.3 If Condition 2.3.3 is satisfied, then there is a risk-sharing
diversification equilibrium.

Clearly, if Uy > Uj, for all (j,s) such thatj € {1,... ,Ns} and s € {1,..., M},
then the nondiversification equilibrium is unique. Under these conditions, the risks
are by all means uninsurable, which may correspond to the “globally uninsurable”
risks mentioned in Cummins (2006). Under such conditions, we can have no
hopes for an insurance market to work: The risks are simply too large. Our
analysis applies to situations for which risks may be “globally insurable,” in
that Condition 2.3.3 is satisfied but—in the terminology of Cummins (2006)—
may be “locally uninsurable.” In our model, local uninsurability is similar to
Condition 2.3.1 being satisfied. For heavy-tailed distributions, Condition 2.3.2,
which is stronger than Condition 2.3.1 may also be satisfied, which makes the
“local uninsurability” especially cumbersome, and which may lead to coordination
problems and nondiversification traps.

We are now in a position to classify the situations when nondiversification
traps can arise. We first show that genuine nondiversification traps can indeed be
constructed. We have

Proposition 2.3.4 In the model in Sect. 2.2, with Bernoulli-Cauchy distributions
with parameters N = 20, M = 5, X € S‘i{yu’g, withdA =1, u=-90 =1and
q = 0.05, k = 100, u(x) = (x + k)%, witha = 0.0315, there is a nondiversification
trap. Moreover, the nondiversification trap is genuine.

As we shall see, the crucial point here is that the trap is genuine (the parameters
in the example were not chosen to be empirically relevant). We next move on
to classifying general distributional properties of the primitive risks that permit
traps. It turns out that traps will arise only under quite specific conditions: First,
nondiversification traps will not arise in a mean-variance framework with unlimited
liability. Thus, in the traditional situation we will never see nondiversification traps.
Second, genuine nondiversification traps can arise only with distributions that have
heavy tails (i.e., infinite second moments).

Proposition 2.3.5 If utility is of the form Eu(X) = E(X) — yVar(X), and k =
0o, then a nondiversification trap cannot occur. Moreover, depending on parameter
values, only two situations can arise: Either there is a unique nondiversification
equilibrium (N = 0, j = 0, t = 0) or there is a unique diversification equilibrium
with full risk sharing (N = NM, R = NM, t = M).

Non-genuine nondiversification traps can arise under standard conditions—
i.e., distributions do not need to be heavy-tailed for nondiversification traps
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to be possible. For example, the diversification game G = (u,F,k,N,M),
with

u(x) = xI(x <0) + log(1 + x)I(x > 0),
F(x) =1(x > =50)/2 + I(x > 70)/2,

k = o0,
N =20,
M =S5,

(where I(-) denotes the indicator function, and F(x) thus is the cdf of a discrete r.v.
X, with P(X = —50) = P(X = 70) = 1/2) has a nondiversification trap. However,
genuine nondiversification traps arise only if distributions have heavy tails, as shown
by the following proposition:

Proposition 2.3.6

i) If k = oo and the risks X € X have finite second moments, i.e., E(XZ) < 0o,
then a genuine nondiversification trap cannot occur.
i) If k < oo, the risks X € X have E(X) # 0 and E(X?) < oo then a genuine
nondiversification trap cannot occur.
iii) If k < oo, the risks X € X have E(X) = 0 and E(X**€) < oo, for some
arbitrary small € > 0, then a genuine nondiversification trap cannot occur.

Proposition 2.3.6 can also be viewed from an approximation perspective. If M is
large, but finite, then nondiversification traps can arise only with distributions that
have left tails that are “approximately” heavy—i.e., decay slowly up until a certain
point (even though their real support may be bounded). For details on this type of
argument, see Ibragimov and Walden (2007).

2.3.5 Traps in Markets for Catastrophic Insurance

We apply our results to real markets for catastrophic insurance. Obviously, risks vary
across product lines and geography, and a full investigation is outside the scope of
this monograph. Instead, we focus on one type of risk—earthquake insurance in
California. Applying the principles of seismology, we show that the distribution of
loss sizes indeed follows a heavy tailed power law and that an exponent of unity (the
Cauchy case) is by no means unreasonable. Moreover, with a simple calibration, we
estimate the value of being able to avoid a trap in residential earthquake insurance
in California to be up to USD 3.0 billion per year. This is the direct value effect of
a trap. The estimate does not include indirect effects, as, e.g., analyzed in Hubbard
et al. (2005). We also discuss how this type of analysis is valid for other types of
natural disasters. Finally, we relate our results to several recent events in markets for
catastrophic insurance.
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2.3.5.1 Loss Distribution of Natural Disasters

The fact that earthquakes are referred to as catastrophes is suggestive that they have
heavy-tailed distributions. In this section, we show more precisely that standard
seismic theory leads to loss distributions that follow Pareto laws /. (I) ~ [=% in (1.1).
Here, h;(I) = P(L > ) is the probability that the economic loss, L, is larger than
[, conditioned on an earthquake occurring. More generally, for an r.v. X, let hx(x)
denote the probability that X exceeds x, conditioned on an earthquake occurring,
P(X > x).

Pareto laws arise for the distributions of energy release from earthquakes (see,
e.g., Sornette et al. 1996). We show that economic loss also satisfies a Pareto
law. For economic loss estimates, it is more natural to work with the Modified
Merecalli Intensity (MMI) scale. Let M denote the moment magnitude Hanks and
Kanamori (1979) of an earthquake.”? A standard model for the distribution of
moment magnitudes of earthquakes is

hy(m) = Cre™Pm, (2.10)

where B = 1.84 is often used (see McGuire 2004, pp. 34—40).2* The exponential
distribution is adequate for M < 7, but for higher M, it underestimates the
probabilities (McGuire 2004, pp. 53-54; Schwartz and Coppersmith 1984), so the
distribution for high levels may in fact have heavier tails than assumed in (2.10).%

An empirical relationship between the MMI and the expected magnitude is given
by

M 13

M =13+40.6l Ib=———,
+ = 0.6 0.6

@2.11)

where [, is the epicentral intensity—i.e., the MMI at the center of the earthquake
(McGuire 2004, p. 44). For simplicity, we assume that this is a deterministic
relationship. The MMI at a specific point is directly related to the damage and losses
at that point. For example, for an MMI of 8, the estimates of losses for wooden

23The moment magnitude is almost the same as the Richter magnitude, MR, for M < 6.5, but
provides a more accurate measure for earthquakes of larger magnitudes.

24This is the moment magnitude version of the celebrated Gutenberg—Richter exponential law for
the Richter magnitude.

25 Although for very high levels, physical arguments imply that there has to be an upper bound
on the energy released; see Knopoff and Kagan (1977), and Kagan and Knopoff (1984). However,
even if there is an upper bound, say at M = 10 to 11, this still leads to an approximate Pareto
law for over 15 magnitudes of energy release. The upper bound is well beyond the limited liability
threshold of most insurance markets and is therefore not crucial for our trap argument.
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structures is 5—10 % of total value (McGuire 2004, p. 19).2° For 1, we immediately
get??

hy, (i) = Cle—ﬂ(1.3+0.6i) _ Cze—l.IOi‘

We relate the area, A, covered by an earthquake to I, through the attenuation
function. We use the estimate

Iy = I, +2.87+0.00052D — 1.25log,o(D + 10) > I, +2.87 — 1.25log,,(D + 10),

where 1; is the MMI at a point of distance D away from the epicenter; see Ho
et al. (2001).2® Let A;4(I., 1;) denote the area that experiences an MMI > [; for an
earthquake with epicentral intensity 7,. We also write A(l,) when I, is fixed and
known. Then, as A ~ D?, it is easy to see that

A(Ie,ld) > C3 X 101.6(Ie—ld) — C3 x el.oln(IO)(Ie—Id) — C4 x 6‘3'71{)',

for fixed I;. Another estimate is obtained by using the results in Hanks and Johnston
(1992), for I; =6. Their formula is

M =2.38+40.961log,,(A(l.(M), 6))
which by (2.11) leads to
A(L,, 6) = Cs x L OXNU0L/0.96 _ o 144l
Under the assumption of uniform geographical population density, it is natural
to assume that the economic loss, L, from an earthquake is at least proportional to
A(l,), as this estimate only takes into account area covered, but does not take into
account that the higher /., the more damages occur close to the epicenter. This leads

to the loss distribution?:

he(l) ~ 7%, where ¢ € [0.3,0.76].

6This estimate may be somewhat outdated, as building structures nowadays may be stronger.
However, this does not change our general conclusions, only the constants in the formulae (personal
communication with William L. Ellsworth, Chief Scientist, Western Region Earthquake Hazards
Team, United States Geological Survey).

271.10 A 1.84 X 0.6.
280ther estimates for the relation are available—e.g., in Bakun et al. (2003). However, as with
the strength of building structures, they are qualitatively similar and will not change our main

conclusions (personal communication with William L. Ellsworth, Chief Scientist, Western Region
Earthquake Hazards Team, United States Geological Survey).

290.3 & 1.10/3.7, 0.76 =~ 1.10/1.44.
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The other extreme assumption is that of one-dimensional population density—
i.e., that people only live along a one-dimensional coastline. In this case it is natural
to assume that the economic loss, L, is at least proportional to \/A(I,). This leads to
the loss distribution®:

ho(l) ~ 7%, where ¢ € [0.6, 1.5].

Thus, altogether the economic loss distribution follows a power law with tails
that decay slower than { = 1.5. The corresponding tail index may be as slow as
£ =0.3.

Clearly, these calculations are rough. However, the key point is that under
standard assumptions, for many orders of magnitude, the distribution of economic
loss from earthquakes follows an approximate power law, with a very heavy tail and
that the tail exponent { = 1 by no means is unreasonable.

The crucial property for our theory is the heavy-tailed distributions, especially
power laws like in (1.1). These are generic for natural disasters. As discussed in Woo
(1999), heavy-tailedness is intimately connected to the self-similarity of the physical
processes underlying natural disasters. For example, the energy distribution released
in earthquakes satisfies a power law with an exponent between { € (0.8,1.2)
(Sornette et al. 1996). Similarly, the energy distribution of extraterrestrial impacts
(meteorites and asteroids) satisfies a power law with exponent { ~ 0.86, the size
distribution of landslides has been estimated to have an exponent of { € (1.2,1.4),
whereas the area covered by river floods scales with the exponent ¢ ~ 0.43 (Woo
1999). For hurricanes in Florida, estimates of the tail of the loss distribution of
¢ ~ 1.56 (Hsieh 1999) and ¢ ~ 2.49 (Hogg and Klugman 1983) have been made.

In each of these cases, a relationship between the heavy-tailed variable, X, and
economic loss, L, needs to be established, just like when going from moment
magnitude to economic loss for earthquakes. However, as long as this relationship
is of power-type, L(X) ~ X?, the loss distribution will also satisfy a power law, with
the tail index ¢ = ¢/, so our theory can be applied.

2.3.5.2 The Role of a Central Agency

As the private catastrophe insurance markets for earthquakes, wind damage, floods,
and terrorism have failed, one after the other over the past 15 years, in both the
USA and Europe, governments have been forced to intervene. The plans were often
created under time pressure and they differ substantially in their details; see OECD
(2005a,b) for descriptions of both the European and U.S. plans. So it is intriguing
to find that they actually share a fundamental design feature—namely, that each
government plan has, in effect, created a mechanism through which a coordinated
diversification equilibrium is established.

300.6 &~ 1.10/(3.7/2), 1.5 &~ 1.10/(1.44/2).
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For example, in the USA following the terrorism attack of September 11, 2001,
the U.S. Congress passed the TRIA, which requires all U.S. insurance firms to
offer terrorism coverage as a rider to their standard coverage for commercial
buildings. The quid pro quo is that the government provides reinsurance for the
highest layer of risk, although, as shown in Carroll et al. (2005), the actual
subsidy is very small. Thus, the primary force of TRIA is that it requires a
coordinated equilibrium in which all insurers must offer terrorism coverage. The
federal government also directly provides most U.S. flood insurance, which, of
course, automatically diversifies the risk across all U.S. taxpayers. At the state
level, Florida and California have required private firms to continue to cover
hurricane and earthquake risks respectively, while the states support some of the
reinsurance. Finally, most European countries have created national catastrophe
programs covering both natural disasters and terrorism that generally require that
catastrophe coverage be offered to all customers, while the government provide a
reinsurance facility; see OECD (2005a,b).

Thus, quite systematically, government interventions to support catastrophe
insurance markets in both the USA and Europe have, in effect, created coordinated
diversification equilibria. This supports the main conclusion of this section, that
government support to help reach a coordinated diversification equilibrium may play
an important role in maintaining functioning markets for catastrophe insurance.

2.4 Financial Intermediation: Diversification Disasters>'

Which factors determine the risks of systemic failures of financial institutions and
the benefits of diversification? When do the risks outweigh the benefits? What
are the policy implications of such a trade-off? In this section, we analyze these
questions in a parsimonious model. In the model, while individual institutions may
have an incentive to diversify their risks, diversification creates a negative externality
in the form of systemic risk. If all intermediaries are essentially holding the same
diversified portfolio, a shock may disrupt all the institutions simultaneously, which
is costly to society, since it may take time for the financial system, and thereby the
economy, to recover. Specifically, the slow recovery time creates a significant and
continuing social cost because the unique market-making and information analysis
provided by banks and other intermediaries*? is lost until they recover; see Bernanke
(1983). Indeed, Bernanke’s concern with the social cost created by bank failures
appears to have motivated many of the government bank bailouts.

31This section is based on the article Ibragimov et al. (2011), which was published in the Journal
of Financial Economics, Vol. 99, Issue 2, pp. 333-348, Copyright Elsevier (2010).

32Qur analysis applies to banks, but more broadly to general financial intermediaries, like pension
funds, insurance companies, and hedge funds.
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In our model, the costs and benefits of risk-sharing are functions of five properties
of the economy. First, the number of asset classes is crucial: The fewer the number
of distinct asset classes that are present, the weaker the case for risk-sharing. Second
and third, the dependence between risks within an asset class, and the heavy-
tailedness of the risks are important. The larger the positive dependence (i.e., higher
correlation, if defined) and the heavier the tails of the risk distribution, the less
beneficial risk-sharing is. Fourth, the longer it takes for the economy to recover
after a systemic failure, the more costly risk-sharing is and, fifth, lower discount
rates also work against risk-sharing. We define the diversification threshold to be
the threshold at which the cost to society of systemic failure begins to exceed the
private benefits of diversification, and we derive a formula for the threshold as a
function of these five properties.

The distributions of the risks that intermediaries take on are key to our results.
When these risks are thin-tailed, risk-sharing is always optimal for both individual
intermediaries and society. But, with moderately heavy-tailed risks, risk-sharing
may be suboptimal for society, although individual intermediaries still benefit
from it. In this case, the interests of society and intermediaries are unaligned. For
extremely heavy-tailed risks, intermediaries and society once again agree, this time
that risk-sharing is suboptimal.

Our analysis has implications for risk management and policies to mitigate sys-
temic externalities. We show that VaR considerations lead individual intermediaries
to diversify, as per incentives similar to those in the Basel bank capital requirements.
Within our framework, however, the diversification actions may lead to suboptimal
behavior from a societal viewpoint. It then becomes natural to look for devices that
would allow individual firms to obtain the benefits of diversification, but without
creating a systemic risk that could topple the entire financial system. In Sect. 2.4.2,
we provide a framework to develop such solutions and provide specific proposals.

This section of the book is related to the recent, rapidly expanding literature
on systemic risk and market crashes. The closest paper is Acharya (2009). Our
definition of systemic risk is similar to Acharya’s, as are the negative externalities
of joint failures of intermediaries. The first and foremost difference between the
two works is our focus on the distributional properties of risks and the number of
risk classes in the economy, which is not part of the analysis in Acharya (2009).
Moreover, the mechanisms that generate the systemic risks are different in the
two works. Whereas the systemic risk in Acharya (2009) arises when individual
intermediaries choose correlated real investments, in our model the systemic risk is
introduced when intermediaries with limited liability become interdependent when
they hedge their idiosyncratic risks by taking positions in what is in effect each
others’ risk portfolios. Such interdependence may have been especially important
for systemic risk in the recent financial crisis. This leads to a distinctive set of policy
implications, as we develop in Sect. 2.4.2.

Wagner (2010) independently develops a model of financial institutions in which
there are negative externalities of systemic failures, and diversification therefore
may be suboptimal from society’s perspective. Wagner’s analysis, however, focuses
on the effects of conglomerate institutions created through mergers and acquisitions
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and the effects of contagion. Furthermore, the intermediary size and investment
decisions are exogenously given in Wagner’s study, and only a uniform distribution
of asset returns is considered. Our model, in contrast, emphasizes the importance
of alternative risk distributions and the number of risks in determining the possibly
negative externality of diversification. The two studies therefore complement each
other.

A related literature models market crashes based on contagion between individ-
ual institutions or markets. A concise survey is available in Brunnermeier (2009).
Various propagation mechanisms have been used, typically through an externality
in which the failure of some institutions triggers the failure of others. Rochet and
Tirole (1996) model an interbank lending market, which intrinsically propagates a
shock in one bank across the banking system. Allen and Gale (2000) extend the
Diamond and Dybvig (1983) bank run liquidity risk model, such that geographic or
industry connections between individual banks, together with incomplete markets,
allow for shocks to some banks to generate industry-wide collapse. Kyle and Xiong
(2001) focus on cumulative price declines that are propagated by wealth effects from
losses on trader portfolios. Kodes and Pritsker (2002) use informational shocks to
trigger a sequence of synchronized portfolio rebalancing actions, which can depress
market prices in a cumulative fashion. Caballero and Krishnamurthy (2008) focus
on Knightian uncertainty and ambiguity aversion as the common factor that triggers
a flight to safety and a market crash. Most recently, Brunnermeier and Pedersen
(2009) model a cumulative collapse created by margin requirements and a string of
margin calls.

The key commonalities between the present section of the book and this literature
is the possibility of an outcome that allows a systemic market crash, with many firms
failing at the same time. Moreover, as in many other papers, in our model there is
an externality of the default of an intermediary—in our case, the extra time it takes
to recover when many defaults occur at the same time. The key distinction between
this section and the above literature is, again, our focus on the importance of risk
distributions and number of asset classes in an economy. Thus, a unique feature of
our model is that the divergence between private and social welfare arises from the
statistical features of the loss distributions for the underlying loans alone. This leads
to strong, testable implications and to distinctive policy implications. In our model,
these effects arise even without additional assumptions about agency problems (e.g.,
asymmetric information) or third-party subsidies (e.g., government bailouts). No
doubt, such frictions and distortions would make the incentives of intermediaries
and society even less aligned.

2.4.1 Model

We use the following conventions: lowercase thin letters represent scalars, up-
percase thin letters represent sets and functions, lowercase bold letters represent
vectors, and uppercase bold letters represent matrices. The ith element of the vector
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v is denoted (v);, or v; if this does not lead to confusion, and the n scalars v;,

i = 1,...,n form the vector [v;];. We use T to denote the transpose of vectors and

matrices. One specific vectoris 1, = (1,1,...,1)7, (or just 1 when 7 is obvious).
———

n

Similarly, we define 0, = (0,0, ...,0)".
———
n

Consider an infinite horizon economy, t € {0, 1,2,...}, in which there are M
different risk classes. Time value of money is represented by a discount factor § < 1
so that the present value of one dollar at t+ = 1 is §. There is a bond market in
perfectly elastic supply, so that at 7, a risk-free bond that pays off one dollar at # + 1
costs §.

There are M risk-neutral trading units, each trading in a separate risk class. We
may think of unit m as a representative trading unit for risk class m. Henceforth, we
shall call these trading units intermediaries, capturing a large number of financial
institutions, like banks, pension funds, insurance companies, and hedge funds. We
thus assume that each trading unit, or intermediary, specializes in one risk class. Of
course, in reality, intermediaries hold a variety, perhaps a wide variety of risks. The
key point here is that the intermediaries are not initially holding the market portfolio
of risks, so that they may have an incentive to share risks with each other.

We think of the M risk classes as different risk lines or “industries,” e.g.,
representing real estate, publicly traded stocks, private equity, etc. Within each risk
class, in each time period ¢, there is a large number, N, of individual multivariate
normally distributed risks, x”, 1 < n < N. We will subsequently let N tend to
infinity, whereas M will be a small constant, typically less than 50, as is typical
in financial and insurance applications (the results in this section also hold in the
case when the number of risks, N, in the mth class depends on m, as long as we let
the number of risks in each risk class tend to infinity). For simplicity, we assume
that risks belonging to different risk classes are independent, across time #, and risk
class, n i.e., x;™ is independent of xfl/;m/ if m £ m’ or ¢ # t. This is not a crucial
assumption; similar results would arise with correlated risk classes. For the time
being, we focus on the first risk class, in time period zero. We therefore drop the m
and ¢ superscripts.

We make some stylized assumptions about how risks within a risk class are
related. The idea is to introduce a “distance” between risks, so that some risks
are closer—and thereby more related—than others. For simplicity, we make strong
assumptions about the form of these risk dependencies, namely that they have a one-
dimensional circulant topological structure.*® These assumptions will allow us to
provide a qualitative characterization of the interactions between uncertainty, heavy-
tails, and limits to diversification.

3Circulant topological structures have been used in the economics literature to provide a simple
spatial “distance” metric without discontinuities, see, e.g., the discussion in Hennessy and Lapan
(2009) and the references therein.
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Specifically, per assumption, the individual risks have multivariate normal
distributions, related by

Xi+1 = pX;i + wit1, i=1,....,N—1, (2.12)

for some p € [0, 1).3*

Here, w; are independent and identically distributed (i.i.d.) normally distributed
random variables with zero mean and variance o2(w;) = 1 — p?. Each x; represents
cross-sectional risk, with local dependence in the sense that cov(x;, x;) quickly
approaches zero when |i — j| grows, i.e., the decay is exponential. The risks could,
for example, represent individual mortgages and the total risk class would then
represent all the mortgages in the economy. For low p, the risks of these mortgages
are effectively uncorrelated, except for risks that are very close. “Close” here could,
for example, represent mortgages on houses in the same geographical area. If p is
close to one, shocks are correlated across large distances, e.g., representing country-
wide shocks to real estate prices. This structure thus allows for both “local” and
“global” risk dependencies in a simple setting.*>

For simplicity, we introduce symmetry in the risk structure by requiring that

X1 = pxy + wi, (2.13)

i.e., the relationship between x; and xy is the same as that between x;+; and x;,
i=1,...,N—1.This choice of risk structure conveniently implies that all x;s have
standard normal marginal distributions. We can rewrite the risk structure in matrix
notation, by defining x = [x;];, w = [w;];. The relationship (2.12,2.13) then becomes

Ax = w.
Here, A is an invertible so-called circulant Toeplitz matrix,*® given by

A = Toeplitzy[—p, 1,0%_,, —p].

34We focus on multivariate normal risks, for tractability. Similar results arise with other, thin-
tailed, individual risks, e.g., Bernoulli distributions, although the analysis becomes more complex,
because other distribution classes are not closed under portfolio formation so the central limit
theorem needs to be incorporated into the analysis.

35For review and discussion of models with common shocks and modeling approaches for spatially
dependent economic and financial data, see, among others, Conley (1999), Andrews (1993),
Ibragimov and Walden (2007), and Ibragimov (2009b).

35 A Toeplitz matrix A = Toeplitzy[a—y+1.a—N+2. ..., a—1, a0, a1, ..., Ay—2,dy—1),18an N X N
matrix with the elements given by (A); = aj—;, 1 < i < N, 1 < j < N. A Toeplitz matrix is
banded if (A); = 0 for large |j — |, corresponding to a; = 0 for indices i that are large by absolute

value. When a; = 0ifi < —kori > m,fork < N—1orm < N — 1, we use the notation
Af, Q—f1s - - - s ag, ..., am—1, a, to represent the whole sequence generating the Toeplitz matrix.
For example, the notation A = Toeplitzy[a—;, @] then means that A; = ap, A;;—1 = a—, and

that all other elements of A are zero. For an N X N Toeplitz matrix, if ay—; = a—;, then the matrix
is, in addition, circulant. See Horn and Johnson (1990) for more on the definition and properties of
Toeplitz and circulant matrices.
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Thus, given the vector with independent noise terms, w, the risk structure, X, is
defined by

def , _
x=A"w.

The symmetry is merely for tractability and we would expect to get similar results
without it (although at the expense of higher model complexity). In fact, for large
N, the covariance structure in our model is very similar to that of a standard AR(1)
process, defined by

~

Xo = Wo,

Xit1 = PXi + Wit1, i=0,...,N—1,

where the W;’s are independent, 0>(Wg) = 1, 02(W;) = 1 — p?, i > 0 (although,
of course, i does not denote a time subscript in our model, as it does in a standard
AR(1) process). In this case, the matrix notation becomes Ax = w, where A=
Toeplitzy[—p, 1]. The only difference between A and Aisthat Ay = —p, whereas
Ay = 0. The covariance matrix 3 = [cov(X:, X;)];j has elements

£, = pl .

Thus, in the AR(1) setting, the covariance between risks decreases geometrically
with the distance |i — j|. As we shall see in Theorem 2.4.1, this property carries
over to the covariances in our symmetric structure when the number of risks within
an asset class, N, is large, (although, technically, for large N the distance needed
to be interpreted as the distance on the circle, i.e., the distance between i and j is
min(lj — i, N — |i = j[)).

We assume that the correlations between individual risks (2.12) are uncertain.
Specifically,

P(psy)zl—(l_y

Y
— . e[0,1), y >0, 2.14
1+y) yel[0,1), y (2.14)

i.e., the probability that the correlation is close to one satisfies a power-type law
with the tail index y, where a low y indicates that there is a substantial chance that
correlations are high, whereas a high y indicates that correlations are very likely low.
The uncertainty of correlations will lead to heavier-tailed distributions for portfolios
of risks, just as uncertain variances may cause the distribution of an individual risk
to have a heavy tail.’’

37As we shall see, our approach leads to very tractable formulas. An alternative approach for
introducing more complex correlation structures than the standard multivariate normal one is to
use copulas, which may also lead to heavy-tailed portfolio distributions.
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Relation (2.14) is equivalent to the condition that the ratio %ﬁ follows the Pareto
distribution in (1.1) with the tail index { = y :
1
P(IL;’ > v) —v7, vl (2.15)

We first consider the case in which intermediaries do not trade risks with each
other. At ¢ = 0, an intermediary invests in a portfolio of x; unit risks, with the total
portfolio size determined by the vector ¢ € R". The total portfolio is then ¢/x.*8
Here, ¢; represents the number of units of x; risk that the intermediary invests in.
The total dollar outcome of the investment in risk i, after the risks are realized, is ¢;X;
and the total dollar value of the whole portfolio, after realization, is ¢”x. Since the
elements of x can take on negative values, it is natural to think of ¢x as containing
both long and short positions. The short positions may be in risk-free capital (i.e.,
leverage through debt), but also in risky assets. At + = 0, the intermediary also
reserves capital, so that k < K is available at t+ = 1, where K represents the
maximum capital (in dollar terms) available for the intermediary to reserve and is
exogenously given. For simplicity, we assume that the capital is invested in risk-
free cash. We could allow the capital to be invested in the risky portfolio, but this
would further complicate the formulas without any new insights. The intermediary
has limited liability, so its losses are bounded by k. If the intermediary defaults, the
additional losses are borne by the counter-party. The shortfall that may be imposed
on the counter-party is taken into account in the asset pricing.

At t = 1, the values of the = 0 risks are realized. Because of limited liability,
the value of the portfolio (in dollars) is then

max(k + ¢’x,0) & ’x + &k + 0, (2.16)

where Q = max(k + ¢x,0) — ¢/x — k is the realized value of the option to default
(see Ibragimov et al., 2012). The intermediary ensures that the amount of capital
available at = 1 is k. The value of the portfolio of investments at # = 1, above the
capital reserved, is therefore c'x+ 0.

The price the intermediary pays at + = 0 for this portfolio of investments
is its discounted expected value, §E [e’x + O], less a premium, d, per unit risk.
This premium represents the part of the surplus generated by the transaction that
is captured by the intermediary. A similar feature is used in the work of Froot
et al. (1993) and Froot and Stein (1998). In a full equilibrium model, d would be
endogenously derived, but for tractability we assume that it is exogenously given
and that it is constant.®

3We allow for short-selling. In the proof, we show that the optimal portfolio does not involve
short-selling, so we could equivalently have permitted only nonnegative portfolios, ¢ € RIL

31n Tbragimov et al. (2010), equilibrium premiums are derived in a model with multiple risk
factors and risk-averse agents. The general model, however, is quite intractable, and the simplifying
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If the intermediary defaults, it is out of business from there on, generating zero
cash flows in all future time periods.*’ Later, we will introduce the possibility for
the intermediaries to trade with each other, after r = 0 (when they take on the risk),
but before t = 1 (when the value of the risk is realized), but for the time being, we
ignore this possibility.

The ex ante value of the total cash flows to the owners of the intermediary
between t = 0 and # = 1 is then

d(c"1) — 8k — SE[¢"x 4+ Q] + SE[(k + ¢"x 4+ Q)] = d (c"1). (2.17)

=0 =1

This is thus the net present value of operating the intermediary between ¢ = 0 and
r=1.
Now, if the intermediary survives, which it does with probability

g P(—"x < k),

the situation is repeated, i.e., at t = 1 the intermediary takes on new risk, reserves
capital, and then at # = 2 risks are realized, etc. If the intermediary defaults at any
point in time, it goes out of business and its cash flows are zero from there on. In the
infinite horizon case, the value of the intermediary in recursive form is therefore

VB =d(c"1) + 84V,
implying that

d (1)

VB =
1—38q

. (2.18)

We note that the counter-party of the x risk transaction understands that the
intermediary may default, and takes this into account when the price for the risk
is agreed upon. Therefore, since the price of the contract takes into account the
risk level of the intermediary, the counter-party does not need to impose additional
covenants.

assumptions in this section allow us to carry through a more complete study of the role of risk
distributions.

407t may be optimal, if possible, for the owners of the intermediary to infuse more capital even if
losses exceed k, to keep the option of generating future profits alive. Equivalently, they may be able
to borrow against future profits. Taking such possibilities into account would increase the point of
default to a value higher than &, but would qualitatively not change the results, since there would
always be some realized loss level beyond which the intermediary would be shut down even with
such possibilities.
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Equation (2.18) describes the trade-off the individual intermediary makes when
choosing its portfolio. On the one hand, a larger portfolio increases the cash flows
per unit time—increasing the numerator—but on the other hand, it also increases
the risk of default—increasing the denominator. It is straightforward to show that if
the intermediary could, it would take on an infinitely large portfolio. This is shown
in Ibragimov et al. (2011). In terms of Eq. (2.18), the numerator effect dominates
the denominator effect.

A regulator, representing society, therefore imposes restrictions on the prob-
ability for default, to counterweight the risk-shifting motive. Specifically, the
intermediary’s one-period probability of default is not allowed to exceed B at any
point in time. In other words, the intermediary faces the constraint that the VaR for
the loss probability of B can be at most k, VaRg (¢'x) < k. Therefore, since the
realized dollar losses are ¢’x and the capital reserved is k, the VaR constraint says
that the probability is at most S that the realized losses exceed the capital. In our
notation, this is the same as to say thatg > 1 — .

The VaR constraint is imposed in the model to reflect the existing management
and regulatory standards through which most financial intermediaries currently
operate. Most major financial intermediaries apply VaR as a management tool and
regularly report their VaR values. The Basel II bank capital requirements are based
on VaR. European securities firms face the same Basel II VaR requirements, while
the major U.S. securities firms have become bank holding companies and thus
also face these requirements. European insurance firms are being reregulated under
“Solvency II,” which is VaR-based, in parallel to Basel II. U.S. insurers are regulated
by individual states with capital requirements that vary by state and insurance line;
these are generally consistent with a VaR interpretation.

To be clear, VaR is not necessarily the optimal risk measure when financial
intermediary behavior may create systemic externalities. Indeed, in this section
we show that VaR requirements can lead to diversification decisions by individ-
ual intermediaries that are inconsistent with maximizing the societal welfare. In
Sect.2.4.2, we consider alternative proposals for intermediary regulation when
systemic externalities are important.

It is natural to think of CTTI as a measure of the leverage of the firm, since ¢’1
represents the total liability exposure and k represents the capital that can be used to
cover losses.

The assumption that there is an upper bound, K, that the intermediary faces on
how much capital can be reserved is reduced form. In a full equilibrium model
without frictions, the investment level would be chosen such that the marginal
benefit and cost of an extra dollar of investment would be equal, and K would
then be endogenously derived. In our reduced-form model, where the benefits d
are constant, we assume that the marginal cost of raising capital beyond K is very
high, so that K provides an effective hard constraint on the capital raising abilities
of the intermediary. We note that the bound may be strictly lower than the friction-
free outcome, because of other frictions on capital availability in imperfect financial
markets (see, e.g., Froot et al. 1993 for a discussion of such frictions). Given a
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choice of capital, k < K, the VaR constraint imposed by the regulator then imposes
a bound on how aggressively the intermediary can invest, i.e., on the intermediary’s
size. The VaR constraint therefore also automatically imposes a capital requirement
restriction on the intermediary. We next study the intermediary’s behavior in this
environment.

2.4.1.1 Optimal Behavior of Intermediary

In line with the previous arguments, the program for the intermediary is

d (1)
ng’a]l(x T 8P(—cTx < k)’ s.t., (2.19)
k € [0,K], (2.20)
c e R, (2.21)
k > VaRg(c'x). (2.22)

The following theorem characterizes the intermediary’s behavior:

Theorem 2.4.1 Given a VaR constrained intermediary solving (2.19)—(2.22),
where the risks are of the form (2.12), (2.13), B is close to zero, and the distribution
of correlations is of the form (2.14). Then, for large N:

a. For a given p, the covariance cov(x;, xj) converges to p"_fl foranyi, j.

b. The payoff of the intermediary’s chosen risk portfolio, ¢'x, follows power
law (1.2) in the left tail with the tail index § = 2y, and with the pdff(y), where

2
yorpr T ()’ + 3 %)
N

for some constant, b > 0, for all y € R\{0}. Here, T is the lower incomplete
Gamma function, T (a, x) & f(; 1" le7'dt, a > 0. Also, f(0) =
c. Maximal capital is reserved, k = K, i.e., (2.20) is binding.
d. Maximal VaR is chosen, i.e., (2.22) is binding.
e. If y > 1, then the variance of the portfolio is

f = (2.23)

2y
272y +1)"

14

o2 =p——,
y—1

(2.24)

else it is infinite.
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We note that, since I'(a,x) = I'(a) + o(1), as x — 400, (where I'(a) is the
Gamma function, I'(a) = fooo ““le~'dt, a > 0), we obtain that the distribution of
¢x has a heavy power law left tail (1.2):

26T (y + 3) +o(1)
YTy ’

Thus, the portfolio chosen by the intermediary when solving (2.19)-(2.22) is
moderately heavy-tailed, or even heavy-tailed when y < %, although the individual
risks are thin-tailed. We define the random variable § = ¢’x and the constant
¢ = ¢’1. We also note that the total portfolio risk changes with the number
of investments, N, in a very different way than what is implied by standard
diversification results, for which the size of the investment is taken for given. If
portfolio size were given, then the portfolio risk would vanish as N grew. However,
taking into account that the intermediary can change its total exposure with the
number of risks, in our framework, the risk does not mitigate, but instead converges
to a portfolio risk that is much more heavy-tailed than the individual risks.

Our approach of letting the number of risks within an asset class grow has some
similarities with the idea of an asymptotically fine-grained portfolio (see Gordy
2000, 2003) used for a theoretical motivation of the capital rules laid out in Basel II.
Gordy shows that under the assumptions of one systematic risk factor and infinitely
many small idiosyncratic risks, the portfolio invariant VaR rules of Basel II can be
motivated. Similar to Gordy’s setting, in our model each risk is a small part of the
total asset class risk when N is large. However, in our setting all risk is not diversified
away when the number of risks increases, as shown in Theorem 2.4.1. In fact, the
risk that is not diversified away adds up to systematic risk in our model (which turns
into systemic risk if it brings down the whole system), and since the number of risk
classes, M > 1, there will be multiple risk factors. This is contrary to the analysis in
Gordy (2000), where, after diversification, all institutions hold the same one-factor
risk. Therefore, the capital rules in Basel II would not be motivated in our model.

P(—c'x > y) =

2.4.1.2 The Value to Society

We next turn to the value to society of the markets for the M separate risk classes. For
the individual intermediary, the game ends if it defaults. From society’s perspective,
however, we would expect other players to step in and take over the business if an
intermediary defaults, although it may take time to set up the business, develop client
relationships, etc. Therefore, the cost to society of an intermediary’s default may not
be as serious as the value lost by the specific intermediary. The argument is that since
there is a well-functioning market, it is quite easy to set up a copy of the intermediary
that defaulted. We assume that an outside provider of capital steps in and sets up
an intermediary identical to the one that defaulted. The argument per assumption,
however, only works if there is a well-functioning market. In the unlikely event in
which all intermediaries default, the market is not well-functioning and it may take
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a much longer time to set up the individual copy. Thus, individual intermediary
default is less serious from society’s perspective, but massive intermediary default
(for simplicity, the case when all M intermediaries default at the same time) is much
more serious. A similar argument is made in Acharya (2009).

To incorporate this reasoning into a tractable model, we use a special numerical
mechanism. When only one individual intermediary fails (or a few intermediaries),
the market continues to operate reasonably well. In such cases, the replacement
of a failed intermediary occurs immediately if an intermediary defaults in an even
period (r = 0,2,4,...), and takes just one period if it defaults in an odd period
(t=1,3,5,...). We note that in this favorable case without massive default, it takes,
on average, half a period to rebuild after an intermediary’s default (zero periods or
one period with 50 % chance each). On the other hand, when all intermediaries
fail—a massive default—we assume there is a 50 % chance that it will take another
2T periods (2T + 1 — 1) to return to normal operations. Therefore, the expected
extra time to recover after a massive default is (50 %) x (2T) + (50 %) x (0) = T.
Henceforth, we call T the recovery time after massive default.

Our distinction between defaults in odd and even time periods significantly
simplifies the analysis by ensuring that in even periods there are either 0 or M
intermediaries in the market. Without the assumption, we would need to introduce
a state variable describing how many intermediaries are alive at each point in time,
which would increase the complexity of the analysis. Qualitatively similar results
arise when relaxing the assumption, i.e., when instead assuming that it always takes
one period to replace up to M — 1 defaulting intermediaries and T periods if all M
intermediaries default at the same time.

The assumption of longer recovery times after massive intermediary defaults can
be viewed as a reduced-form description of the externalities imposed on society
by intermediary defaults. The simplicity of the assumption allows us to carry out a
rigorous analysis of the role of risk distributions, which is the focus of this section
of the book. Micro foundations for such externalities have been suggested elsewhere
in the literature, e.g., liquidity risk as in Allen and Gale (2000). In Allen and Gale
(2000), the externality occurs when failure of intermediaries triggers failure of other
intermediaries.

Society’s and individual intermediaries’ objectives may be unaligned. From our
previous discussion, it follows that the value to society of all intermediaries at = 0
is, in recursive form:

VS = Mdc + §gMdc + 8*(1 — (1 — g)")VS + 87T2(1 — g)MVS,  (2.25)
implying that

_ Mdc(1 + 8q)
=824 82(1 =871 — g™’

VS (2.26)

The first term on the right-hand side of (2.25) is the value generated between t = 0
and + = 1, and the second term is the expected value between t = 1 and t = 2.
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The third term is the discounted contribution to the value from # = 2 and forward if
all M intermediaries do not default (which occurs with probability (1 — (1 — g)™)),
and the fourth term is the contribution to the value if all M intermediaries default
(which occurs with probability (1 — g)™). We shall see that this externality of
massive intermediary default in the form of longer recovery time significantly
decreases—or even reverses—the value of diversification from society’s perspective
and that the situations in which diversification is optimal versus suboptimal are
easily characterized.

2.4.1.3 Risk-Sharing

We next analyze what happens when the M different intermediaries, with identically
distributed risk portfolios, &1, ..., &y, get the opportunity to share risks. We recall
that the risk portfolios in the different risk classes are independently distributed.
Therefore, as long as the intermediaries do not trade, a shock to one intermediary
will not spread to others. If the intermediaries trade, however, systemic risk may
arise when their portfolios become more similar because of trades. In what follows,
we explore this idea in detail.

We assume that the intermediaries may trade risks at r = %, %, %, ..., after they
have formed their portfolio, but before the risks are realized. We assume that the
VaR requirement must hold at all times. For example, even if the intermediaries
trade with each other at r = %, the VaR requirement needs to be satisfied between
t=0andt = %.41 Also, the counter-party of the risk trade correctly anticipates
whether trades between intermediaries will take place at t = %, taking the impact of
such a trade on the default option, Q, into account when the price is decided.

We focus on symmetric equilibria, in which all intermediaries choose to share
risks fully. We define

M
QM:P<%<K ,

so gy is the probability that total losses in the market are lower than total capital.
Thus, 1 — gp, is the probability for massive intermediary default if intermediaries
fully share risks. We note, in passing, that systemic risk is generated through a
different mechanism in our model than in Acharya (2009). In Acharya (2009),
systemic risk arises when intermediaries take on correlated real investments, and
intermediaries do not trade risks. In our model, the risk portfolios of different inter-
mediaries are independent, and systemic risk arises when intermediaries become

41This is not a critical assumption. Alternatively, we could have assumed that the regulator
anticipates whether the individual intermediaries will trade risks, and adjusts the VaR requirements
accordingly.
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interdependent through trades. The latter type of systemic risk may have been
especially important in the financial crisis.

All intermediaries hold portfolios of the same risk features, albeit in different
risk classes, so when they share risks, the net “price” they pay at r = % is zero.
However, the states of the world in which default occurs are different when the
intermediaries share risks. In fact, defaults will be perfectly correlated in the full
risk-sharing situation: With probability 1 —gy, a massive intermediary default occurs
and with probability gy no intermediary defaults. Risk-sharing could, of course, be
achieved not only by cross-ownership, but also by trading in derivatives contracts
(credit default swaps (CDS), corporate debt, etc.).

For individual intermediaries, the value when sharing risks (using the same
arguments as when deriving (2.18)) is then

dc
1—8qm’

vy = (2.27)

which should be compared with the value of not sharing, (2.18). Therefore, as
long as

qu > ¢, (2.28)

the intermediaries prefer to trade risks, since it leads to a higher probability of
survival, and thereby a higher value.

We note that there may be additional reasons for intermediaries to prefer risk-
sharing. For example, if intermediaries anticipate that they will be bailed out
in case of massive defaults, if managers are less punished if an intermediary
performs poorly when all other intermediaries perform poorly too, or if the VaR
restrictions are relaxed, this provides additional incentives for risk-sharing, which
would amplify our main result.

2.4.1.4 The Value to Society

From society’s perspective, a similar argument as when deriving Eqgs. (2.25)
and (2.26) shows that

VS, = Mdc + SquMdc + 8*qu Vi, + 8*TT2(1 — qu) V3, (2.29)

so the total value of risk-sharing between intermediaries is

Mdc(1 + dqm)

Vs = .
M1 =82 482(1 = 82T)(1 — qu)

(2.30)
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Therefore, via (2.26), it follows that society prefers risk-sharing when

1+ $qu 1+ dq
> , 2.31
[T a0 T4 A—g" 230
where
82(1 = 87T)
A= — 7 2.32
—5 (2.32)

The value of A determines the relative trade-off society makes between the
costs in foregone investment opportunities of individual and massive intermediary
default.*> If T = 0, there is no extra delay when massive default occurs. In this case,
A = 0, and society’s trade-off (2.31) is the same as individual intermediaries’ (2.28).
If, on the other hand, T is large and § is close to one, representing a situation in which
it takes a long while to set up a market after massive default and the discount rate is
low, A is large, and the trade-off between (1 — gy) and (1 — ¢)™ in (2.31) becomes
very important. In this case, society will mainly be interested in minimizing the risk
of massive default and this risk is minimized when intermediaries do not share risk,
since 1 — gy > (1 —g)M.®

It is clear that society and individual intermediaries may disagree about whether
it is optimal to diversify. Specifically, this occurs when (2.28) holds, but (2.31) fails.
The opposite, that (2.28) fails but (2.31) holds, can never occur.** To understand the
situation conceptually, we study the special case when there are two risk classes,
M = 2. In Fig. 2.4, we show the different outcomes depending on the realizations
of losses in the diversified and separated cases. When both —§; > K and —§, > K,
it does not matter whether the intermediaries diversify or not, since there will be
massive intermediary default either way. Similarly, if —§; < K and —§, < K, neither
intermediary defaults, regardless of whether they diversify or not. However, in the
case when —§; > K and —& < K, the outcome is different, depending on the
diversification strategy the intermediaries have chosen. In this case, if —§; — & >
2K, then a massive default occurs if the intermediaries are diversified, but only a
single default if they are not. If —§; — & < 2K, on the other hand, no default
occurs if the intermediaries are diversified, but a single default occurs if they are
not. Exactly the same argument applies in the case when —§; < K and —§&, > K.
Therefore, the optimal outcome depends on the trade-off between avoiding single
defaults in some states of the world but introducing massive defaults in others, when
diversifying. One should note that the point that risk-sharing increases the risk for
joint failure was originally made in Shaffer (1994).

“1t is easy to show that A € [0, T, and that A is increasing in § and 7.
“3This follows trivially, since 1 — gy = P(}_; —& > MK) > P(N{—& > K}) = (1 — g).
“This also follows trivially, since 1 — gy > (1 — )™ and therefore, if ¢ > gy, then ﬁ >

1+3q > __14dqm
1+A(1—gu) = 1+A(1—g)" "
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Fig. 2.4 Cost to society for diversified and separated cases, when there are two intermediaries. In
the diversified case, massive default occurs if —§; —&, > 2K. In the separated case, massive default
occurs if —&; > K and —&, > K, whereas single default occurs if —§, > K and —§, < K, or if
—& > K and —§; < K. Thus, massive default is rarer in the separated case than in the diversified
case, but it is more common that at least one intermediary defaults in the separated case

It is clear that the objectives of the intermediaries and society will depend on the
distributions of the &-risks and it may not be surprising that standard results from the
theory of diversification apply to the individual intermediaries’ problem. Society’s
objective function is more complex, however, since it trades off the costs of massive
and individual intermediary defaults. It comes as a pleasant surprise that for low
default risks (i.e., for a B close to zero in the VaRg constraint) given the distribution
of the &-risk, we can completely characterize when the objectives of intermediaries
and society are different.

Theorem 2.4.2 Let &y, ..., &y bei.id. asset class risks that follow power law (1.2)
in the left tails with the tail index { # 1, and d, 8§, and T as previously defined. Then,
for low B,

a) From an intermediary’s perspective, risk-sharing is optimal if and only if { > 1,
regardless of the number of risk classes, M.

b) From society’s perspective, risk-sharing is optimal if and only if { > 1 and M >
M., where My is the diversification threshold

1 — g1y &1

Thus, the break-even for individual intermediaries, from (2.28), is a power law
distribution with the tail index of one, e.g., a Cauchy distribution. If the distribution
is heavier, then (2.28) fails, and intermediaries and society therefore agree that there
should be no risk-sharing. For thinner tails, intermediaries prefer risk-sharing. On
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the contrary, for society, what is optimal depends on M. It is easy to show that

M, € [1, 2T + 1)5%1), and that M, is increasing in § and 7. We note that for the
limit case when § — 0, { — oo, or T = 0, i.e., when M, — 1, then society and
intermediaries always agree.

It is useful to define

1 — §21+1

_ 2.34
— (234)

)’]:

so that M, = r)l%l. This separates the impact on M, of the tail behavior of the
risk distributions from the other factors (6 and 7). It follows immediately that n €
[1,2T +1).

From Theorem 2.4.2, it follows that if there is a large number of risk classes, M,
society agrees with the individual intermediaries:

Corollary 2.4.1 Given i.i.d. risk classes that follow power laws (1.2) with the tail
index ¢, if there is a large enough number of risk classes available, intermediaries
and society agree on whether risk-sharing is optimal.

In Fig. 2.5, we show the break-even number of risk classes, M, for heavy-tailed risks
with the tail indices { = 2, 2.5, 3, 4. With no externality of massive default (n =
1), society prefers diversification when ¢ > 1, just like individual intermediaries.
However, when n > 1, diversification is suboptimal up until M,.. For example, for
¢ = 2, and n = 10, at least ten risk-classes are needed for diversification to be
optimal for society.
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Fig. 2.5 Diversification threshold, M, for heavy-tailed risk distributions with tail indices { =
2,2.5,3,4, as a function of the coefficient n = % where § is the per period discount
factor and T is the recovery time after massive default. The diversification threshold is the break-
even number of risk classes needed for diversification to be optimal for society. Results are

asymptotically valid for VaR loss probabilities B close to zero in (2.22)



2.4 Financial Intermediation: Diversification Disasters 59

Theorem 2.4.2 provides a complete characterization of the objectives of
intermediaries and firms for VaR loss probabilities close to zero, by relating the
number of risk classes, M, the discount rate, §, the tail index of the risks, ¢, and
the recovery time after massive default, 7. It also relates to the uncertainty of
correlations, y, through the relation { = 2y. Theorem 2.4.2 is therefore the main
result of this section. The theorem has several immediate empirical implications,
since when (2.33) fails, we would expect there to exist financial regulations against
risk-sharing across risk classes:

Implication 2.4.1 Economies with heavier-tailed risk distributions should have
stricter regulations for risk-sharing between risk classes.

Equivalently, using the relationship between uncertainty of correlation structure and
tail distributions,

Implication 2.4.2 Economies with more uncertain correlation between risk classes
should have stricter regulations for risk-sharing.

We also have

Implication 2.4.3 Economies with lower interest rates should have stricter regula-
tions for risk-sharing.

Implication 2.4.4 Economies with fewer risk classes should have stricter regula-
tions for risk-sharing.

Implication 2.4.5 Economies with risk classes for which it takes longer to recover
after a massive default should have stricter regulations for risk-sharing.

Implication 2.4.4 may be related to the size of the economy, in that larger economies
may have more risk classes and therefore, society may be more tolerant to risk-
sharing across these classes. Moreover, Implication 2.4.5 may be related to the
degree to which an economy is open to foreign investments in that economies that
are open may be faster in recovering after a massive default, and thereby allow
more risk-sharing between risk classes. In Sect.2.4.2, we apply these implications
to derive policy solutions for controlling the social costs created when actions by
intermediaries to diversify create investments in highly correlated market portfolios.

2.4.2 Potential Implications for Risk Management
and for Policy Makers

Capital requirements provide the most common mechanism used to control the risk
of bank failure. Set at a high enough level, a simple capital-to-asset requirement can
achieve any desired level of safety for an individual bank. Such capital requirements,
however, impose significant costs on banks by limiting their use of debt tax shields,
expanding the problem of debt overhang, and creating agency problems for the
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shareholders.*> These costs have a negative impact on the overall economy because
they reduce the efficiency of financial intermediation.*® In our model, it is clear that
increasing capital requirements is an imperfect tool for the regulator, since it cannot
be used to specifically target negative externalities of systemic risk. In fact, there
is a one-to-one relationship between VaR and capital requirements in our model—
increasing the capital requirement is equivalent to decreasing the VaR.

For this reason, new proposals to control systemic risk in the banking sector
recommend focused capital requirements based on each bank’s specific contribution
to the aggregate systemic risk. Acharya (2009), for example, advocates higher
capital requirements for banks holding asset portfolios that are highly correlated
with the portfolios of other banks. This follows from his model in which banks
create systemic risk by choosing correlated portfolios. In a similar spirit, Adrian
and Brunnermeier (2011) advocate a “CoVaR” method in which banks face higher
capital requirements based on their measured contribution to the aggregate systemic
risk.

Focused capital requirements will be efficient in controlling systemic risk,
however, only if the source of the systemic risk is properly identified. In particular,
the model in this section creates a symmetric equilibrium in which each of the M
banks is responsible for precisely 1/M of the systemic risk. Furthermore, systemic
risk in our model arises only as a by-product—a true negative externality—of
each bank’s attempt to eliminate its own idiosyncratic risk. The risks that they
take on are independent, but the diversification changes the states of the world
in which massive default occurs. For this reason, neither VaR constraints, nor
the capital requirement plans advocated by Acharya (2009) will be effective in
controlling the type of systemic risk that arises in our model. The CoVaR measure
in Adrian and Brunnermeier (2011) may also be imperfect, since it does not take
tail-distributions into account. Of course, systemic risk in the banking industry may
reflect a variety of generating mechanisms, so we are not claiming anything like a
monopoly on the proper regulatory response. But it is the case that even focused
capital requirements will not be effective if the systemic risk arises because banks

4The debt overhang problem arises in recapitalizing a bank because the existing shareholder
ownership is diluted while some of the cash inflow benefit accrues as a credit upgrade for the
existing bondholders and other bank creditors. The agency problems arise because larger capital
ratios provide management greater incentive to carry out risky investments that raise the expected
value of compensation but may reduce expected equity returns; for further discussion, see Kashyap
et al. (2008). While the tax shield benefit of debt is valuable for the banking industry, it is not
necessarily welfare-enhancing for society.

46The efficiency costs of capital requirements can be mitigated by setting the requirements in
terms of contingent capital in lieu of balance sheet capital. One mechanism is based on bonds that
convert to capital if bankruptcy is threatened (Flannery 2005), but that instrument is not particularly
directed to systemic risk. Kashyap et al. (2008) take the contingent capital idea a step further by
requiring banks to purchase “capital insurance” that provides cash to the bank if industry losses,
or some comparable aggregate trigger, hits a specified threshold. This mechanism may reduce or
eliminate the costs that are otherwise created by bankruptcy, but it does not eliminate the negative
externality that creates the systemic risk.
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hedge their idiosyncratic risk by swapping into a “market” portfolio that is then held
in common by all banks.

For the case developed in our model, where all banks wish to adopt the same
diversified market portfolio, direct prohibitions against specific banking activities or
investments in specific asset classes will be more effective than capital requirements
as a mechanism to control systemic risk. For example, Volcker (2010) has recently
proposed to restrict commercial banking organizations from certain proprietary and
more speculative activities. While such prohibitions may seem draconian, they
would apply only to activities or asset classes in which moderately heavy tails
create a discrepancy between the private and public benefits of diversification. No
regulatory action would be needed for asset classes with thin-tailed risks, where the
banks and society both benefit from diversification, and for severely heavy-tailed
risks, where the banks and society agree that diversification is not beneficial.

It is also useful to note that direct prohibitions have long existed in U.S. banking
regulation. For one thing, U.S. commercial banks have long been prohibited from
investing in equity shares. Even more relevant, the 1933 Glass Steagall Act forced
U.S. commercial banks to divest their investment banking divisions. Subsequent
legislation—specifically the 1956 Bank Holding Company Act and the Gramm-—
Leach—Bliley Act of 1999—provided more flexibility, by expanding the range of
allowed activities for a bank holding company, although commercial banks are
themselves still restricted to a “banking business.” Glass—Steagall thus provides a
precedent for direct prohibitions on bank activities as well as an indication that the
prohibitions can be changed over time as conditions warrant.

Experience with regulating catastrophe insurance counter-party risk suggests an-
other practical and specific regulatory approach, namely “monoline” requirements.
Monoline requirements have long been successfully imposed on insurance firms
that provide coverage against default by mortgage and municipal bond borrowers;
see Jaffee (2006b, 2009). The monoline requirements prohibit these insurers from
operating as multiline insurers that offer coverage on multiple insurance lines. The
monoline restriction eliminates the possibility that large losses on the catastrophe
line would bankrupt a multiline insurer, thus creating a cascade of losses for
policyholders across its other insurance lines. Such monoline restrictions do create
a cost in the form of the lost benefits of diversification, because a monoline insurer
is unable to deploy its capital to pay claims against a portfolio of insurance risks.
Nevertheless, Ibragimov et al. (2012) show that when the benefits of diversification
are muted by heavy tails or other distributional features, the social benefits of
controlling the systemic risk dominate the lost benefits of diversification.

As a specific example, we reference the use of CDS purchased by banks and
other investors to provide protection against default on the subprime mortgage
securities they held in their portfolios. The systemic problem was that the CDS
protection was provided by other banks and financial service firms acting as banks,
i.e., American International Group, Inc. (AIG), with the effect that a set of large
banks ended up holding a very similar, albeit diversified, portfolio of subprime
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mortgage risks.*” When the risks on the individual underlying mortgages proved to
be highly correlated, this portfolio suffered enormous losses, creating the systemic
crisis. Capital requirements actually provided the investing banks with incentive
to purchase the CDS protection, so that higher capital requirements, per se, do
not solve the systemic problem. Instead, there must be regulatory recognition that
moderately heavy-tailed risk distributions create situations in which the social costs
may exceed the private benefits of diversification.

2.5 Marketing: Optimal Bundling Under Heavy-Tailed
Valuations*®

In December 2007, two tickets to a Led Zeppelin reunion concert in London were
sold in a charity auction. The face value of the two tickets was in total GBP 250 and
when the winning bid turned out to be GBP 83,000—332 times the face value—this
made headlines across the world. Kenneth Donnell, 25, who bought the tickets stated
in interviews that he had wanted to see his father’s (sic!) favorite band live for years
and that he had been sober when he joined the auction. Although the demand for
tickets to the concert had been overwhelmingly higher than the supply, it is plausible
to assume that most buyers’ valuations of the tickets were far lower than what Mr.
Donnell paid.

The case of Mr. Donnell and the Led Zeppelin tickets is just one example of
very diverse private valuations observed in markets for cultural and sport events, as
well as in those for antiques and collectibles and online auctions and marketplaces
such as eBay and StubHub. In these markets, bundling of goods is common practice
and a natural question is then what the consumers’ and the seller’s preferences over
bundles are when the buyers have diverse private valuations.

The problem of optimal bundling strategy has received much attention over
the last quarter of a century in the marketing and economics literature (see, e.g.,
the review in Stremersch and Tellis 2002, and the references therein). However,
the importance of the distribution of consumer valuations has, to the best of our
knowledge, not been emphasized.

In this section we analyze the optimal bundling strategy for a multiproduct
monopolist when the distribution of consumer valuations is heavy-tailed. We do
this for two situations. In the first, the seller chooses how to bundle a given set of
goods and sell the bundles in different auctions. In the second, he/she produces and

471t is important to note that AIG wrote its CDS contracts from its Financial Products subsidiary,
which was chartered as a savings and loan association and not as an insurance firm. Indeed, AIG
also owns a monoline mortgage insurer, United Guaranty, but this subsidiary was not the source of
the losses that forced the government bailout.

“8This section has drawn upon material from the article Ibragimov and Walden (2010), which was
published in the Management Science, Vol. 56, Issue 11, pp. 1963-1976.
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provides the bundles for profit-maximizing prices. We focus on the analysis of pure
bundling with one set of bundles offered for sale, as opposed to mixed bundling, in
which consumers can choose among all possible sets of bundles (see Adams and
Yellen 1976; McAfee and Whinston 1989).

In the auction case, our main contribution is to complement and generalize
the previous literature, e.g., Palfrey (1983), to the case of heavy-tailed valuations.
Palfrey (1983) showed that in the case of two buyers, the seller will prefer to bundle
the products. The two buyers, in contrast, unanimously prefer separate auctions
to any other bundling decision. Palfrey (1983) further showed that, with bounded
valuations, if there are more than two buyers, they will never unanimously prefer
separate auctioning of the goods. This section demonstrates that, on the contrary,
with extremely heavy-tailed distributions, the buyers always unanimously prefer
separate auctioning. The key distinction between the main results in Palfrey (1983)
and ours is the distributional assumption on consumers’ valuations.

In the case of profit-maximizing prices, the results of previous literature are
completely reversed when valuations are extremely heavy-tailed. For instance, the
results in Bakos and Brynjolfsson (1999) and Fang and Norman (2006) indicate
that, with thin-tailed valuations such as those with log-concave distributions, the
optimal strategy for a multiproduct monopolist is to bundle goods with low marginal
costs and to separately sell products with high marginal costs. We show that, to the
contrary, under extremely heavy-tailed valuations the monopolist prefers bundling
goods with high marginal costs and separately providing goods with low marginal
costs. However, the results in the thin-tailed case in the previous literature continue
to hold for moderately heavy-tailed valuations.

The main reason why the results are so different under heavy-tailed valuations
is the following. Under thin-tailed valuations, consumers’ valuations per good for
a bundle typically have a lower spread, measured by variance, relative to the valua-
tions for individual goods (see the discussion in Bakos and Brynjolfsson 1999; Fang
and Norman 2006; Palfrey 1983; Salinger 1995; Schmalensee 1984). Similarly,
under moderately heavy-tailed reservation prices, the consumers’ valuations per
good for bundles have less spread relative to the valuations for component products,
as measured by their peakedness.** Under extremely heavy-tailed valuations, this
property is reversed: in this case, the spread of reservation prices per product
for bundles, as measured by peakedness, is greater than that of valuations for
components.’” In the auction setting, given the relatively high spread of valuations
of the bundled goods, the potential upside for the seller is then very high. Therefore,
since the actual price is based on the second highest bid, the most important thing
for the seller is to increase the chances that multiple buyers with high valuation bid
in the same auction, which is achieved by bundling. The argument is reversed for the

“'The terms “reservation prices” and “valuations” are used as synonyms in this section, in
accordance with the well-established tradition in the bundling literature.

30The arguments for the results in this section are based on peakedness, majorization and VaR
comparison results for heavy-tailed distributions discussed in Sects. 2.1.3 and 2.1.4.
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buyers. Similar arguments can be made for the results with a monopolist producer,
as elaborated upon in the section.

The rest of the section is organized as follows. In Sect. 2.5.1, we discuss related
literature. Sect.2.5.2 reviews the framework for modeling optimal bundling. Sec-
tions 2.5.3 and 2.5.4 contain our main results in the section, which, for tractability,
are given in a rather special setting with i.i.d. valuations and heavy-tailed stable
distributions discussed in Sect. 2.1.2.

2.5.1 Related Literature

Many studies have emphasized that bundling decisions of a monopolist providing
two goods depend on correlations between consumers’ valuations for the prod-
ucts (see Adams and Yellen 1976; McAfee and Whinston 1989; Salinger 1995;
Schmalensee 1984), the degrees of complementarity and substitutability between
the goods (e.g., Dansby and Conrad 1984; Lewbel 1985; Venkatesh and Kamakura
2003) and the marginal costs for the products (see, among others, Salinger 1995;
Venkatesh and Kamakura 2003).

Most of these studies on bundling have focused, however, on prescribed dis-
tributions for valuations in the case of two products and their packages, such as
bivariate uniform or Gaussian distributions, and only a few general results are
available for larger bundles (e.g., Bakos and Brynjolfsson 1999, 2000a,b; Chu
et al. 2011; Fang and Norman 2006; Palfrey 1983). For instance, Palfrey (1983)
obtained characterizations of the monopolist’s and buyers’ preferences over bundled
Vickrey auctions with valuations concentrated on a finite interval. In a related paper,
Chakraborty (1999) obtained characterizations of optimal bundling strategies for a
monopolist providing two independently priced goods on Vickrey auctions under a
regularity condition on quantiles of bidders’ valuations. As follows from Proschan
(1965) results discussed in Remark 2.1.3 in Sect. 2.1.3, this regularity condition is
satisfied for symmetric valuations with log-concave densities.’'

Bakos and Brynjolfsson (1999) investigated optimal bundling decisions for a
multiproduct monopolist providing large bundles of independently priced goods
with zero marginal costs (information goods) for profit-maximizing prices to
consumers whose valuations belong to a class that includes, again by Proschan
(1965), reservation prices with log-concave densities symmetric about the mean.>>

3'From Theorems 2.1.1 and 2.1.2 it further follows that the regularity condition is also satisfied
for moderately heavy-tailed valuations, but it does not hold for extremely heavy-tailed valuations.
Therefore, Chakraborty’s analysis cannot be applied if consumers’ valuations are extremely heavy-
tailed.

32In particular, the assumptions are satisfied for valuations with a finite support [v, 7] distributed
as the truncation XI/(|X — u| < h), h > 0, of an arbitrary random variable X with a log-concave
density symmetric about u = (v 4 v)/2, where h = (v — v)/2 and I(-) is the indicator function
(see also Remark 2 in An 1998).
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Among other results, Bakos and Brynjolfsson (1999) showed that, for this class
of valuations, if the seller prefers bundling a certain number of goods to selling
them separately and if the optimal price per good for the bundle is less than the
mean valuation, then bundling any greater number of goods will further increase the
seller’s profits, compared to the case where the additional goods are sold separately.
According to the result, in the above settings, a form of superadditivity for bundling
decisions holds, that is, the benefits to the seller grow as the number of goods in the
bundle increases.

Fang and Norman (2006) showed that a multiproduct monopolist providing
bundles of independently priced goods to consumers with valuations with log-
concave densities prefers selling them separately to any other bundling decision
if the marginal costs of all the products are greater than the mean valuation; under
some additional distributional assumptions, the seller prefers providing the goods as
a single bundle to any other bundling decision if the marginal costs of the goods are
identical and are less than the mean reservation price.

Chu et al. (2011) focus on the analysis of near optimality of bundle-size pricing
where the prices for bundles depend (only) on their size. They also provide a range
of numerical experiments for different cost scenarios and distributional assumptions
on consumers’ valuations, including exponential, logit, uniform, multivariate nor-
mal and multivariate lognormal distributions, and an empirical analysis of pricing
schemes for a theater company offering tickets for eight different plays or musicals
and their packages.

Hitt and Chen (2005) and Wu et al. (2008) have focused on the analysis
of customized bundling of information goods, a pricing strategy under which
consumers can choose a certain quantity of goods sold for a fixed price. The results
in these papers, in particular, show that, under some commonly used assumptions,
the mixed-bundle problem can be reduced to customized bundling. They further
demonstrate how the customized-bundle solution is affected by heterogeneity and
correlations in customers’ valuations and by complementarity or substitutability
among the goods sold.

2.5.2 A Framework for Modeling Optimal Bundling

We consider a setting with a single seller providing m goods to n consumers. Let
M = {1,2,...,m} be the set of goods sold on the market and let J/ = {1,2,...,n}
denote the set of buyers. Let 2™ stand for the set of all subsets of M. As in Palfrey
(1983), the seller’s bundling decisions 5 are defined as partitions of the set of items
M into a set of subsets, {B;,...,B;} = B; the subsets B, € 2", s = 1,...,1,
are referred to as bundles. That is, By # @ fors = 1,...,l; BN B, = @ for
s # t,5,t = 1,...,1; and U‘Z_IB‘Y = M (see Bakos and Brynjolfsson 1999;
Fang and Norman 2006; Palfrey 1983). It is assumed that the seller can offer
one (and only one) partition B for sale on the market (this is referred to as pure
bundling, see Adams and Yellen 1976). We denote by B = {{1},{2},...,{m}} and
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B = {1,2,...,m} the bundling decisions corresponding, respectively, to the cases
where the goods are sold separately (that is, on separate auctions or using unbundled
sales) and as a single bundle M.

For a bundle B € 2™, we write card(B) for the number of elements in B and
denote by 5 the seller’s profit resulting from selling the bundle, with the convention
that =g = 0 if the bundle is not sold. For a bundling decision B = {By, ..., B;}, we
write Tl for the seller’s total profit resulting from following B3, that is, [Ip =
Zi=1 TTB; -

A risk-neutral seller prefers (strictly prefers) a bundling decision B; to a bundling
decision B, ex ante if ETlg, > EIlp, (resp., if EIlg, > EIlp,), where E denotes
the expectation operator. The seller prefers a bundling decision B; to a bundling
decision B, ex post if 1, > Ilp, (a.s.), that is, if P(Ilg, > IIp,) = 1. More
generally, if the seller has an increasing utility of wealth function U : Ry — R,
then she prefers (strictly prefers) a bundling decision 5; to a bundling decision 55,
it EU(Ilg,) > EU(Ilp,) (resp., it EU(Ilg,) > EU(Ilg,)). The setting with a
concave function U represents the case of a risk-averse seller. This section focuses
on characterizations of the seller and buyers’ ex ante preferences over bundles of
goods sold.

Consumers’ preferences over the bundles B € 2™ are determined by their
valuations (reservation prices) v(B) for the bundles and, in particular, by their
valuations X; = v({i}) for goods i € M (when the goods are sold separately)
which are referred to as stand-alone valuations. Consumers’ valuations for bundles
of goods are assumed to be additive in those of component goods:

v(B) =) (i) =) X (2.35)
ieB i€B
and their utilities from consuming goods in B = {Bj, ..., B;} are given by
1 I I m
vB) = > vB)=> Y uin=>>x=Yx = (@36
s=1 s=1 i€By s=1 i€By i=1

If additivity conditions (2.35) and (2.36) hold, then the products provided by
the monopolist are said to be independently priced (see Venkatesh and Kamakura
2003).

In the case where the valuations for bundles are nonnegative: v(B) > 0, B € oM,
it is said that the goods in M and their bundles satisfy the free disposal condition.
The free disposal condition is particularly important in the case of information goods
and in the economics of the Internet (see Bakos and Brynjolfsson 1999, 2000a,b).
In Sect.2.5.4, the valuations v(B) are allowed to be negative. This corresponds
to the situation where the goods have negative value to some consumers (e.g.,
articles exposing certain political views, advertisements or pornography in the case
of information goods, see Bakos and Brynjolfsson 1999).
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For our main results presented in the next two sections, X;, i € M, denote i.i.d.
r.v.’s representing the distribution of consumers’ valuations for goods i € M that
determine their reservation prices for bundles.

For j € J, the jth consumer’s valuations for goods in M are assumed to be 5(,7,
i € M, where XV = (Xy;,...,X,),j € J, are independent copies of the vector
(X1, ..., Xu), and her reservation prices v;(B) for bundles B € 2" of goods in M
are given by v;(B) = 3,5 X;;- The seller is assumed to know only the distribution
of consumers’ reservation prices for goods in M and their bundles. The valuations
vj(B) for bundles B € 2M " are known to buyer j; however, the buyer has only the
same incomplete information about the other consumers’ reservation prices as does
the seller (see Palfrey 1983).

2.5.3 Optimal Bundled Auctions with Heavy-Tailed Valuations

Let us first consider the case in which the goods in M and their bundles are provided
by a seller through Vickrey auctions (see Palfrey 1983). The Vickrey auctions
are separate and independent, one per bundle. In this setting, the buyers submit
simultaneous sealed bids for bundles of goods. The highest bid wins the auction and
pays the seller the second highest bid. It is well-known that, in such a setup, under
additivity conditions (2.35) and (2.36), a dominant strategy for each bidder is to bid
her true valuations for goods and their bundles.

Let j € J and let 70 = (X1, ..., X)) € RI.If a bundle B consisting
of independently priced goods is offered for sale in a Vickrey auction, then the
expected surplus, S;(B, 79), to consumer j with the values of stand-alone valuations
X0 = 30 and induced valuations for bundles v;(B) = Y ,cz%;j, B € 2 (the
conditional expectation of the surplus to the consumer, conditioning on X0 =
iy is

ES;j(B, i) =

P( max 0,(8) < u®) (v(8) ~ E( max (B max v(B) < u(®)).

S€J sF£j

where v,(B) = ZiEB)N(,-s, B € 2M s € J, s # j (see Palfrey 1983). If the
seller follows a bundling decision B = {By,..., B}, then the expected surplus
S;(B,3") to the jth buyer with the vector of stand-alone valuations X! = %0
is ES;(B,x0) = Y'_ ES;(B,,i?). The jth buyer with X' = %0 is said to
prefer (strictly prefer) a bundling decision ; to a bundling decision 5,, ex ante,
if ESj(Bl,)?U)) > ESj(Bz,Fc(/)) (resp., if ESj(Bl,FcU)) > ESj(Bz,)?U))). If all buyers
J € J (strictly) prefer a bundling decision B, to a bundling decision B, ex ante for
almost all realizations of their valuations X¥), it is said that buyers unanimously
(strictly) prefer B; to B, ex ante. More precisely, buyers unanimously prefer (strictly
prefer) a partition B to a partition B, if, for all j € J, P[E(Sj(Bl,)?(/))|}~((/)) >
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E(S(B2. X)) X)) = 1 (resp.. PIE(S;(B1. X)XD) > ES;(By, X9)|X0)] = 1),
where, as usual, E(-|X?) stands for the expectation conditional on X 53

In accordance with the assumption of nonnegativity of bids and consumers’
valuations usually imposed in the auction theory, we focus on the case where
consumers’ valuations for goods and bundles provided are nonnegative and model
them using the framework of positive (extremely heavy-tailed) stable r.v.’s. To
simplify the presentation, we consider the case of positive extremely heavy-tailed
valuations with Lévy densities (2.2) in Sect. 2.1.2 and the tail index and the index of
stability { = « = 0.5. The results continue to hold for all other extremely heavy-
tailed positive stable valuations with stable distributions with the indices of stability
a < 1 and the skewness parameter 8 = 1 (in notation of Sect. 2.1.2, the distributions
Sq(0,1, u) with @ < 1 and p > 0 that are concentrated on the semi-axis [u, 00)).
In addition, they continue to hold for symmetric extremely heavy-tailed valuations
from the class CS.

Theorem 2.5.1 shows that consumers unanimously prefer (ex ante) separate
provision of goods on Vickrey auctions to any other bundling decision in the case
of an arbitrary number of buyers, if their valuations are extremely heavy-tailed.
In the case of more than two buyers, these results are reversals of those given by
Theorem 6 in Palfrey (1983) from which it follows that if consumers’ valuations
are concentrated on a finite interval, then the buyers never unanimously prefer
separate provision auctions (Theorem 2.5.1 does not contradict Theorem 6 in Palfrey
1983, since the support of heavy-tailed distributions in Theorem 2.5.1 is the infinite
positive semi-axis Ry).

Theorem 2.5.1 Suppose that the stand-alone valuations X;, i € M, for goods in
M are i.i.d. positive stable r.v.’s with Lévy densities (2.2) with the index of stability
a = 0.5. Then buyers unanimously strictly prefer (ex ante) B (that is, n separate
auctions) to any other bundling decision.

The intuition behind the results given by Theorem 2.5.1 is a reversal of the
intuition for the results in Palfrey (1983). In the case of extreme heavy-tailedness,
consumers’ valuations per good for bundles become less concentrated about the
mean as the size of bundles increases (see the discussion at the beginning of the
section and the results in Sects. 1.3 and 2.1.4). Buyers who are on the upper tail
of the distributions for the goods are more likely to win separate auctions and the
next highest bidder is likely to have relatively lower valuations than in the case of
a bundled auction. Therefore, contrary to the case of bounded valuations (see the
discussion preceding Theorem 5 in Palfrey 1983) the winner of the auction is likely
to prefer separate provision of the products.

We note in passing that in this section’s setting with private values and the
assumptions that valuations for each good as well as each agent are independently

3Clearly, in the case of discretely distributed valuations X;, i € M, consumers unanimously prefer
B to B, ex ante if each of them prefers B to B, for all but a finite number of realizations of their
stand-alone valuations.
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distributed (so that interdependent valuations and affiliated signals—see Krishna
2002; Milgrom and Weber 1982—are ruled out). English ascending auctions over
bundles are weakly equivalent to Vickrey auctions. Therefore, the results given by
Theorem 2.5.1 continue to hold for English auctions as well.

As shown by Palfrey (1983), in Vickrey auctions with independently priced
goods and an arbitrary number of bidders, the total surplus (that is, the sum of
the seller’s profit and buyers’ surplus) is always maximized in the case when
the goods are provided in separate auctions. The results in Palfrey (1983) imply
that, under nonnegative valuations for individual goods and additive valuations for
bundles, the seller prefers a single bundled Vickrey auction to any other bundling
decision, if there are two buyers. The two buyers, on the other hand, unanimously
prefer separate provision of items. The results for the two-buyer setting in Palfrey
(1983) hold regardless of valuation distributions and therefore also for heavy-tailed
valuations.

In the two-buyer setting, our results on consumers’ preferences under heavy-
tailed valuations are in accordance with Palfrey’s. For more than two buyers,
however, our results on the buyers’ preferences differ from Palfrey’s, who showed
that (in the case of more than two buyers with bounded valuations) the buyers never
unanimously prefer separate auctioning of the goods. By contrast, Theorem 2.5.1
shows that with heavy-tailed valuations they always unanimously prefer separate
auctioning.

Theorem 2 in Palfrey (1983) shows that the seller always prefers to sell the
goods in a single bundle when there are two buyers. This result holds regardless
of distributions and therefore also when valuations are heavy-tailed. With more than
two buyers, it is an open question what the optimal strategy for the seller is when
distributions are heavy-tailed.

2.5.4 Optimal Bundling with Heavy-Tailed Valuations and
Profit-Maximizing Prices

We turn to the case in which the prices for goods on the market and their bundles
are set by the monopolist. To simplify the presentation of the results and their
arguments, we assume that the marginal costs c; of goods in M are identical: ¢; = c,
i € M; however, extensions are possible for the case of arbitrary c;. Suppose that
the seller can provide bundles B of goods in M for prices per good p € [0, pmax]s
where pnax 1S the (regulatory) maximum price, with the convention that pp,x can be
infinite. For a bundle of goods B € 2™, denote by pj the profit-maximizing price per
good for the bundle, so that the seller’s expected profit from producing and selling
bundles of B’s (at the price pp per good) is

E(mp) = nk(pp — c)P(v(B) > kpp),
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where k = card(B). We focus on the pure bundling case. The profit maximizing
price per good in the bundle is

k
pp =arg max (p—c)P(v(B) > kp) =arg max (p— c)P(ZX,- > kp).
i=1

PE[0.pmax] PE[0.pmax]

Such optimization problems become much more complex in the mixed bundling
case due to additional constraints in maximization for the buyers who can choose
among many sets of bundles. We assume that ¢ < p,x, so that all bundles of goods
in M are offered for sale. Clearly, in the case ¢; = ¢ for all i € M, the values of pg
are the same for all bundles B that consist of the same number card(B) of goods.
That is, pg = pp, if card(B) = card(B’). Denote by p the profit maximizing price
per good in the case where all the goods in M are sold as a single bundle and by
p the profit maximizing price of each good i € M under unbundled sales. That is,
p =pgwithB =M, and p = pg with B = {i},i € M.

Theorems 2.5.2 and 2.5.3 characterize the optimal bundling strategies for a
multiproduct monopolist with an arbitrary degree of heavy-tailedness of valuations
for goods in M. From Theorem 2.5.2 it follows that if consumers’ reservation prices
are moderately heavy-tailed, then the patterns in seller’s optimal bundling strategies
are the same as in the case of independently priced goods with log-concavely
distributed (thin-tailed) valuations (see Bakos and Brynjolfsson 1999; Fang and
Norman 2006, and the discussion at the beginning of this section).

Theorem 2.5.2 is formulated for symmetric moderately heavy-tailed valuations.
The results in the theorem further continue to hold for moderately heavy-tailed
valuations with asymmetric stable distributions Sy (o, B, ) with « > 1 discussed
in Sect. 2.1.2.

Theorem 2.5.2 Let u € R. Suppose that the stand-alone valuations X;, i € M, for
goods in M satisfy X; = ju + 1n;, where n; are i.i.d. r.v.’s such that n; ~ CS. The risk-
neutral seller strictly prefers B to any other bundling decision (that is, the goods are
sold as a single bundle), if p < . The risk-neutral seller strictly prefers B to any
other bundling decision (that is, the goods are sold separately), if p > L.

Theorem 2.5.3 shows that the patterns in the solutions to the seller’s optimal
bundling problem in Theorem 2.5.2 are reversed if consumers’ valuations are
extremely heavy-tailed. Similar to Theorem 2.5.1, Theorem 2.5.3 is formulated for
extremely heavy-tailed valuations with densities (2.2) and the tail index and the
index of stability { = « = 0.5. The results continue to hold for all other extremely
heavy-tailed stable valuations with stable distributions S, (o, 8, () in Sect. 2.1.2 with
the indices of stability @ < 1 (in particular, the results hold for extremely heavy-
tailed distributions Sy (o, 1, ) with @ < 1 and B = 1 that are concentrated on
the semi-axis [w, 00)). In addition, they continue to hold for symmetric extremely
heavy-tailed valuations X; = w + 7;, where n; are i.i.d. r.v.’s from the class

Cs.
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Theorem 2.5.3 Let 1 € R and pmax < 00. Suppose that the stand-alone valuations
X, i € M, for goods in M are i.i.d. positive stable r.v.’s with Lévy densities (2.2) with
the index of stability « = 0.5. The risk-neutral seller strictly prefers B to any other
bundling decision (that is, the goods are sold separately), if p < . The risk-neutral
seller strictly prefers B to any other bundling decision (that is, the goods are sold
as a single bundle), if p > .

Remark 2.5.1 Analogues of Theorems 2.5.2 and 2.5.3 hold for expected utility
comparisons for a risk-averse seller, as long as her risk-aversion is not too high.
Specifically, since the preferences over bundling decisions in Theorems 2.5.2
and 2.5.3 are strict, they will also hold for a slightly risk-averse seller. For a severely
risk-averse seller, however, the results in Theorems 2.5.2 and 2.5.3 may not hold (see
also Theorem 3 in Ibragimov and Walden 2007, for a discussion of diversification
decisions in the VaR versus expected utility framework).

Remark 2.5.2 From property (2.3) it follows that, in the case of Cauchy valuations
with densities (2.1) and & = 1, P( X > kp) — P(X, > p)forall 1 <k < m,
and, consequently, pp = p = p and E(I1g) = E(I1g) = E(Ilp) for all bundling
decisions B. Thus, in the case of heavy-tailed valuations with the tail index (index of
stability) @ = 1 as in the case of Cauchy valuations, the seller is indifferent among
all bundling decisions in Theorems 2.5.2 and 2.5.3.

The condition pn,x < oo in Theorem 2.5.3 is necessary since otherwise the
monopolist would set an infinite price for each bundle of goods under extremely
heavy-tailed distributions of consumers’ valuations considered in the theorem.

Similar to the argument based on variance in Bakos and Brynjolfsson (1999),
the underlying intuition for Theorem 2.5.2 is that for moderately heavy-tailed
distributions of reservation prices and the marginal costs of goods on the right
of the mean valuation, bundling decreases profits since it reduces concentration
(peakedness) of the valuation per good and thereby decreases the fraction of buyers
with valuations for bundles greater than their total marginal costs (this is implied by
the results in Sects. 2.1.3 and 2.1.4). For the identical marginal costs of goods less
than the mean valuation, bundling is likely to increase profits.

On the other hand, similar to Vickrey auctions in Sect.2.5.3, the results in
Theorem 2.5.3 are driven by the fact that, in the case of extremely heavy-tailed
reservation prices, concentration and peakedness of the valuations per good in
bundles decreases with their size (see the results and discussion in Sects.2.1.3
and 2.1.4 and also the discussion in the previous section). Therefore, bundling
of goods in the case of extremely heavy-tailed valuations and marginal costs of
goods higher than the mean reservation price increases the fraction of buyers with
reservation prices for bundles greater than their total marginal costs and thereby
leads to an increase in the monopolist’s profit. This effect is reversed in the case of
the identical marginal costs on the left of the mean valuation.
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2.6 Economic Theory: Models of Firm Growth>*

The goal of this section is to demonstrate that robustness of statistical procedures to
heavy-tailedness can have important effects on the properties of firm growth models.
Focusing on the model of demand-driven innovation and spatial competition over
time in Jovanovic and Rob (1987), we show that the firms’ growth patterns depend
crucially on the degree of heavy-tailedness of consumers’ signals and on the choice
of estimators employed by the firms to make inferences about their markets. If
consumers’ signals in the model are extremely heavy-tailed and the firms use the
sample means of the signals as product designs, then the firms’ output levels exhibit
anti-persistence and smaller firms have an advantage over their larger counterparts.
These properties are reversals of those that hold under moderately heavy-tailed
signals or in the case when the firms switch to more robust estimators of the ideal
product, such as sample medians, in the presence of extreme heavy-tailedness.

2.6.1 Output Persistence and Demand-Driven Innovation
and Spatial Competition Over Time

Since the seminal work of Nelson and Plosser (1982), many studies in economics
have focused on models that could account for positive persistence in levels of out-
put, among other “stylized facts” on output dynamics. Most of the models proposed
in this stream of literature focus primarily on technology shocks as the driving force
of economic fluctuations and usually rely on capital accumulation, intertemporal
substitution, capital irreversibility or different types of capital adjustments costs or
lags as sources of shock propagation to generate persistence.

Jovanovic and Rob (1987), hereafter JR, develop a model of demand-driven in-
novation and spatial competition over time in which the source of output persistence
is, in contrast, private information alone. The model is based on the idea that larger
firms get better information about their markets. The firms choose their products
and then make output decisions based on how successful their product design is
(in terms of the closeness to the ideal product). In the model, output decision has
two effects. One is to maximize contemporaneous profits. The other is that output
generates signals and thus information about the next period’s ideal product. The
greater is the output the more signals are likely to be received regarding the next
period’s ideal product and more information about the firm’s market is likely to be
collected.

34This section has drawn upon material from the article Ibragimov (2014) “On the robustness of
location estimators in models of firm growth under heavy-tailedness,” in press in the Journal of
Econometrics, reproduced with permission from Elsevier, Copyright Elsevier (2014).
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JR further focus on the analysis of the properties of the model in the case where
the distribution of consumers’ signals is log-concave which implies that the tails of
signals’ distributions decline at least exponentially fast and, thus, the distributions
are thin-tailed, see Sect. 2.1.2. From the results in JR it follows that if the signals are
log-concavely distributed and the firms use the sample mean of consumers’ signals
to estimate the ideal product (the center of the signals’ distribution) and choose
it as the product design, the model implies positive persistence in output levels.
Furthermore, in such a setting, large firms always have an advantage over their
smaller counterparts. More precisely, according to JR, under the above assumptions,
the model has the following properties: the probability of rank reversals in adjacent
periods (that is, the probability of the smaller of two firms becoming the larger
one next period) is always less than one half; this probability diminishes as the
current size-difference increases; and the distribution of future size is stochastically
increasing as a function of current size. The intuition for the results is that the larger
is a firm’s size, the greater is the amount of information the firm gets. The larger
firms that learn more are thus more likely to come up with a successful product.

One should note here that the analysis of (arbitrary) log-concavely distributed
signals in JR implicitly makes the assumption that the firms choose the sample mean
of consumers’ signals as the product design. This is because the optimal product
design in the setting employed in JR is the posterior median of the ideal product 8
given a sample of signals S (see Eq. (6) in JR and their discussion at the beginning
of Sect. 2.5). Although the posterior median coincides with the sample mean in the
case of normal signals and diffuse priors, it is not the case in general, see, e.g.,
Sects.4.2.1, 4.2.3, and 4.3.1 in Berger (1985), Sects. 3.1 and 3.2 in Box and Tiao
(1973) and Chap. 2 and Sect.4.2 in Carlin and Louis (2000) (under the normality
assumption for the sample of observed signals S and a diffuse prior for 6, the sample
mean of signals in S is the posterior median, mode and mean of 8).

The fact that a number of economic and financial time series have the tail
exponents of approximately equal to or (slightly or even substantially) less than
one discussed in Sect. 1.2 is important in the context of the results in section. As we
demonstrate, the value of the tail index ¢ = 1 (that is, existence of the first moment)
is exactly the critical boundary between robustness of implications of the model
of demand-driven innovation and spatial competition over time to heavy-tailedness
assumptions and their reversals. According to the results obtained in this section,
the implications of the model are robust to heavy-tailedness assumptions with tail
indices ¢ > 1 (Theorem 2.6.1). But its conclusions are reversed for extremely heavy-
tailed distributions with { < 1 and infinite first moments (Theorem 2.6.2).

We prove inter alia that if consumers’ signals are independent and extremely
heavy-tailed and the firms choose the sample mean of the signals as the product
design then relatively large firms are not likely to stay larger and the model
thus implies anti-persistence in output levels. In this case, a surprising pattern of
oscillations in firm sizes emerges, with smaller firms being likely to become larger
ones next period, and vice versa. Moreover, it is likely that very small firms will
become very large next period, and the size of very large firms will shrink to very
small.
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More precisely, under the above assumptions, the probability of rank reversals in
adjacent periods (that is, the probability of the smaller of the two firms becoming
the larger one next period) is always greater than one half; this probability increases
as the current size-difference increases; and the distribution of future size is
stochastically decreasing as a function of current size.

Essentially, in the case of extremely heavy-tailed signals, smaller firms, in fact,
have an advantage over their larger counterparts if the sample mean is employed
as the product design. The driving force for this conclusion is that in the presence
of extremely heavy-tailed shocks, the sample mean of signals is not informative
about the ideal product (population center) 6 since the sample of signals is very
likely to contain extreme outliers. Sensitivity of the sample mean to the presence of
extreme outliers also implies, according to our results, that if consumers’ signals are
extremely heavy-tailed, then it is optimal for the firms to switch to employing more
robust estimators of the next period’s product such as the sample median.

The assumption that the sample mean of signals is employed to approximate the
ideal product (estimate the population center) and is chosen as the product design
in the case of extremely heavy-tailed signals is appropriate in the setting where
the firms do not realize that they are in the presence of extreme heavy-tailedness
and utilize the same inference methods as in the case of distributions with thin
tails. The firms might not be able to make inferences about heavy-tailedness of
consumers’ signals on their markets because of time or data availability constraints.
The presence of heavy-tailedness and extreme signals, together with constraints on
making inferences about it, is likely to be the case for industries with very uncertain
consumer perception of new products or constantly changing environments and
new industries in which business decisions on the basis of former experience are
impossible and the risk facing the firms is higher than in other sectors. Many high-
tech industries, together with the Net economy, exhibit the above patterns (see the
discussion at the end of Sect.2.6.4).

As follows from the results in Theorem 2.6.3 in the section, if the firms know that
they are in the presence of extreme heavy-tailedness and employ robust inference
methods, namely, use the sample median instead of the sample mean as the
product design, then the counterintuitive conclusions discussed above disappear.
According to Theorem 2.6.3, if the sample median is employed as the product
design, then larger firms have an advantage over their smaller counterparts in the
case of arbitrary symmetric consumers’ signals. That is, in any such setting, the
implications of the model of demand-driven innovation and spatial competition over
time for the sample mean and log-concavely distributed signals in JR continue to
hold.

The results obtained in this section highlight, therefore, the necessity of making
inferences about the presence or absence of heavy-tailedness and extreme outliers
before making business decisions, if possible, and of employing robust estimation
methods, such as the use of the sample median instead of the sample mean in the
presence of heavy-tailed signals. According to the results, having more information
is always advantageous if robust inference methods are employed; this advantage,
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however, can be completely lost and even become a disadvantage if the decisions
are made using non-robust estimators in the presence of extreme heavy-tailedness.

2.6.2 Growth Theory for Firms Investing into Information
About Their Markets

In this and in the next section, we review the setup of the model of demand-driven
innovation and spatial competition over time developed by JR and its properties
under log-concavity of signals’ distributions.

Consider a market for a differentiated commodity. Let 6 € R4 be a location
variable which differentiates the firm’s product, let 6 € Ry be an “ideal” product,
and let p(x, 8) = |x — 0|, x € Ry, denote the absolute loss function.’>> A consumer
of type u € Ry has the utility function u — p(é, 0)) —p;, if she purchases one unit of
good produced by the firm, and 0, if not, where p; is the price the consumer pays for
the good. Consumers are assumed to be perfectly informed about all price-quality
combinations offered by various sellers and the firm is assumed to be a price taker.
In what follows, we suppose that the price p of the ideal product 6 is unity in terms
of some “outside good”: p = 1.

Under the above assumptions, a necessary condition for an equilibrium is that
p(0,0) +p; = 1forall § € R.

Simplifying the setting of the model considered in JR, we suppose that each
period the firm makes two decisions. First, it chooses the product design 6, and does
so before knowing what 6 prevails for that period. The commitment to a particular
6 is costless but irreversible until next period. Having committed to é, the firm then
learns 6. Being of measure zero, the firm will be a price taker and its price is

p;=1-p@,0). (2.37)

The firm then chooses the level of output y, with C(y) denoting the corresponding
convex and twice differentiable cost function.

Each period, the firm observes a sample S of signals s; = 0 +¢;,i = 1,...,N,
about the next period’s ideal product § € R, where ¢;, i = 1,...,N, are i.i.d.
unimodal shocks with mode 0 and N is a (random) sample size. The size N of
the sample S of signals about the next period’s ideal product observed by the firm
follows a distribution 7 (n;y) conditionally on y : mw(n;y) = P(N = nly),n =
0,1,2,... The function (n;y) is assumed to be increasing in y for all n, so that N
is stochastically increasing in y and larger firms are likely to get more signals each
period and to learn more about the next period’s ideal product.

35From the proof of the results in this section it follows that they continue to hold in the case of
arbitrary loss functions p(x,y) = ¥ (|x — y|), where ¥ is nonnegative and increasing on R.
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Below, we denote by S;, é,, 6, and y, the values of the variables in period 7. In the
model, the sequence of events is as follows: in period ¢, first S; is observed, next é,
is chosen; then 6, is observed and y, is chosen; the period then ends.

Throughout the section, for v = (v, v3,...,v,) € R", we denote by v, =
gi(vy,...,vy) = n! Z?=1 v; the sample mean of vlfs. In the case when » is odd,
n = 2k—1, we further denote by v, the sample median (that is, the kth order statistic)
of vi,..., v, : Uy = g1,...,V,) = Vg = median(vy, vy, ...,v,) (here and in
what follows, v(1) < v2) < ... < v, stand for components of x in nondecreasing
order).

Let g(v) = g(vi1,va2,...,v,) be an estimator based on a sample of observations
v = (vy, Vy,...,V,) € R" that satisfies the translation equivariance condition: g(v;+
a,v+a,...,v,+a) = g(vy,v,...,v,)+aforall a € R (see Bickel and Lehmann
1975a,b, Chap. 4 in Rousseeuw and Leroy 1987, and Sects. 2.3 and 2.4 in Jureckova
and Sen 1996). Evidently, this condition holds for the sample mean g, (vy, ..., v,) =
Uy, n > 1, and the sample median g, (vy,...,v,) = Uy, n =2k—1,k=1,2,...

Let F(x;n) = P(|g(er, €2,...,€)] <x), x> 0,n = 1,2,..., denote the cdf of
lg(er, €2, ...,€),n=1,2,...,on Ry, sothat F(x;n) = P(|€,| <x),n=1,2,...,

for the sample mean gi(¢y, ..., €,) = €,, and F(x;n) = P(|€,| < x),n = 2k — 1,
k=1,2,..., for the sample median g;(€y, ..., €,) = €,.

Suppose that, for N > 0, the firm chooses the estimator H = é(S) =
(gi(sl, ...,8sy) of 8 as the product design. The loss associated with this choice of

0 for N > 0is p(é(S), 0) = |g(€1, €2, ..., €n)|. In the case when N = 0 belongs
to the support of N, so that 7 (0;y) # 0, it is usually assumed that p(68(S), 0) = oo
for N = 0. The cdf of p(6(S), 8) (on R4) conditional on y is

£(6y) = P(p(6(S),0) < xly) = Y Flx;n)m(n; ), (2.38)

n=0

x > 0 (with F(x;0) = 0if N = 0 belongs to the support of N under the above
convention).

Each period, the firm wishes to maximize expected profits discounted by the
factor 8. The dynamic programming formulation of the firm’s problem of choosing
y following a realization p(é, f) = x, is the (recursive) Bellman equation

V@ =maxfy(1 =9 = C0) + B [ VEdeG|
¥

(see also JR for details).
Let G(y) = B [ V(X)dE(X; y). The first-order and second-order conditions for an
interior maximum in y are
ps—C () +G () =0, (2.39)
G'(y) < C"(y). (2.40)
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We assume that, for any continuous f : R — R, the expression [ f(X)d& (x; 1) is
differentiable in A. Under this assumption, one can implicitly differentiate first-order
condition (2.39) (see JR).

Evidently, condition (2.40) holds if the function G(y) is strictly concave: G’ < 0.
However, G” > 0 (strictly convex G) is also consistent with maxima being interior.>®

2.6.3 Log-Concave Signals and Demand-Driven Innovation
and Spatial Competition Over Time

Throughout the section, the distribution 7 (n;y) = P(N = nl|y) of N conditional on
y will be assumed to be one of the following: a Poisson distribution with the mean

wy tmo(n;y) = %exp(—,uy), n = 0,1, ... (with the convention that p(é, 0) = o0
for N = 0); a shifted Poisson distribution m(n;y) = (532”1;!1 exp(—puy), n =
1,2,...; or a Poisson-type distribution concentrated on odd numbers m»(n;y) =

() !
=D

k = 0,1,2,... (note that there is no ambiguity concerning the value of p(é, 0)
in the case N = O for distributions 7r; and ;). The supports of the distributions
mj, j = 0,1,2, are, respectively, My = {0,1,2,...,}, M; = {1,2,3,...,} and
M, ={1,3,5,...,}.

In this section, we consider the conclusions of the model of demand-driven
innovation and spatial competition over time in the case where the firm employs the
sample means sy as in JR (see the discussion in Sect. 2.6.1) or sample medians Sy of
consumers’ signals sy, ..., sy as product designs: 6 = é(S) =g1(s1,...,8v) =3y
orf =0(S) = go(s1,...,sy) =3y forN=2k—1,k=1,2,...

JR obtained the following Proposition 2.6.1.°7 In the proposition and its ana-
logues for heavy-tailed signals obtained below (Theorems 2.6.1 and 2.6.2), yil) and
yfz) are sizes of two firms at period #; yg_)l and yﬁ_)l stand for their sizes next period.

exp(—py) forn = 2k — 1,k = 1,2,..., mo(n;y) = 0 for n = 2k,

Proposition 2.6.1 (JR) Suppose that, conditionally on 'y, N has one of the distribu-
tions wj(n;y), j = 0,1,2. Let the shocks €, €2, ... be ii.d. rv.'s such that €; ~ LC,
i = 1,2,... If the optimal level y, of output satisfies the first- and second-order
conditions for an interior maximum (2.39) and (2.40) and the firm chooses the

3By Proposition 4 in JR, in the model of demand-driven innovation and spatial competition over
time involving the choice of informational gathering effort z in addition to the choice of output
y, larger firms always invest more in information if the function G is convex (G” > 0). Thus,
under this condition, investment z into gathering information in JR is secondary with respect to
persistence results comparing to y. One should note that, according to empirical studies, there is
a positive relationship between R&D expenditures and firm size, that suggests that G is indeed
convex (see Kamien and Schwartz 1982, and the discussion following Proposition 4 in JR).

5’In JR, the proposition is formulated for the Poisson distribution my. The argument for the
distributions 7;, j = 1, 2, is completely similar to that case.
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sample mean 6 = g1(s1,...,5y) = Sy as the product design for N > 0, then
the following conclusions (a)—(c) hold.

(a) The probability of rank reversals in adjacent periods P(yg_)l > yﬁ_)l |y§2) > yil))

is always less than 1/2.

(b) This probability diminishes as the current size-difference yﬁz) - yﬁl) increases
(holding constant the size of one of the firms).

(c) The distribution of future size is stochastically increasing as a function of
current size y,, that is, P(y.+1 > y|y;) is increasing in y; for all y > 0.

Lemma 2.6.1 in JR and its proof imply the following sufficient conditions for
concavity of the function G(y); under the assumptions of the lemma, therefore, the
second-order condition (2.40) for an interior maximum with respect to y is satisfied.

Lemma 2.6.1 (JR) Suppose that, conditionally on'y, N has one of the distributions
mi(n;y), j = 0,1,2. The function G(y) is strictly concave in y if the sequence
{F(x;n+ 1) — F(x; n)}S2,, is strictly decreasing in n for all x > 0.

As noted in JR, the conditions of Lemma 2.6.1 are satisfied for normal r.v.’s
€ ~N(0,0%),i=1,2...and the sample means 5y employed as product designs.

2.6.4 Main Results: Robustness to Heavy-Tailedness
Assumptions

In this section, we present the main results of the section on the robustness of the
model of demand-driven innovation and spatial competition over time to heavy-
tailedness assumptions and the choice of location estimators as product designs.
The results are formulated for the case of symmetric heavy-tailed signals from the
classes CSLC and CSLC. They also continue to hold for signals with heavy-tailed
asymmetric stable distributions Sy (0, 8, 1) discussed in Sect. 2.1.2.

The following theorem provides a generalization of Proposition 2.6.1 that shows
that the results obtained by JR continue to hold in the case of moderately heavy-
tailed signals.

Theorem 2.6.1 Suppose that, conditionally on y, N has one of the distributions
mi(n;y), j = 0,1,2. Let the shocks €1, €, ... be i.i.d. rv’s such that €, ~ CSLC,
i=1,2,... Then conclusions (a), (b), and (c) in Proposition 2.6.1 hold.

Lemma 2.6.2 shows that strict concavity of the function G(y) in Lemma 2.6.1
and, consequently, the second-order condition (2.40) are satisfied for shocks
€1, €2, ... with moderately heavy-tailed symmetric stable distributions and the
sample mean of signals employed as the product design.

Lemma 2.6.2 Suppose that the firm chooses the sample mean 6= gi1(s1,...,8y) =
sy as the product design for N > 0 and the shocks €1, €, ... are i.i.d. rv.’s such
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that €; ~ Sq(0), i = 1,2,..., for some 0 > 0, and o € (1,2]. Then the sequence
{F(x;n+ 1) = F(x;n)}22, in Lemma 2.6.1 is strictly decreasing in n for all x > 0.
Thus, the function G(y) is strictly concave in 'y if, conditionally on 'y, N has one of
the distributions mj(n;y), j = 0,1, 2.

As the following theorem shows, the conclusions of Proposition 2.6.1 and
Theorem 2.6.1 are reversed in the case of shocks €y, €5, ... with extremely heavy
tails.

Theorem 2.6.2 Suppose that, conditionally on y, N has one of the distributions
mi(n;y), j = 1,2. Let the shocks €1,€a,... be iid. rv’s such that ¢, ~ CS,
i = 1,2,... If the optimal level y, of output satisfies the first- and second-order
conditions for an interior maximum (2.39) and (2.40) and the firm chooses the
sample mean 0 = gi(si,...,Sy) = Sy as the product design for N > 0, then
the following conclusions (a’)—(c’) hold.

(a’) The probability of rank reversals in adjacent periods P(yg_)1 > yi_zl_)l |y§2) > yil))

is always greater than 1/2.

(b’) This probability increases as the current size-difference yiz) — yil) increases
(holding constant the size of one of the firms).

(c’) The distribution of future size is stochastically decreasing as a function of
current size y;, that is, P(y;+1 > y|y;) is decreasing in y, for all y > 0.

Remark 2.6.1 From the proof of Theorem 2.6.2 it follows that, under its assump-
tions, G < 0. It is not difficult to see that this implies that, in the setting of JR’s
model with the choice of investment z into information gathering in addition to the
choice of quantity y, the optimal level of z is zero if the investment cost K(z) is
increasing and the first- and second-order conditions for an interior maximum are
satisfied.

According to our results, there is no informational advantage in the presence of
extremely heavy-tailed signals if the sample mean is used as the product design. As
the following theorem shows, having more signals is, however, always advantageous
if a more robust estimator of 6, namely, the sample median, is used as the product
design instead of the sample mean. Moreover, this conclusion holds for arbitrary
symmetric consumers’ signals.

Theorem 2.6.3 Suppose that, conditionally on y, N has the Poisson-type distri-
bution my(n;y) and €1, €z, ... are i.i.d. rv.s with a symmetric density f(x). If the
optimal level y, of output satisfies (2.39) and (2.40) and the firm chooses the sample
median 0 = g,(s1,...,sy) = Sy as the product design for N = 2k—1,k=1,2,..,
then conclusions (a)—(c) of Proposition 2.6.1 hold.

The results in this section provide new insights concerning firm size and
growth patterns in different industries. According to the results in Audretsch
(1991), survival rates for incumbents are higher than for entrants in markets for
“nontechnical” products, where advantages of experience and learning by doing
are high. These conclusions are similar to advantages of large firms over small
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ones in the model of demand-driven model of innovation and spatial competition
over time with moderately heavy-tailed consumers’ signals in Theorem 2.6.1. On
the other hand, Agarwal and Gort (1996) have observed that entrants in markets
for high-technology products tend to have higher survival rates than incumbents.
These results for “technical” products are consistent with findings in Audretsch
(1991) who showed that new firm survival rates tend to be higher in sectors
with high innovative activity by small firms, which are more likely to be recent
entrants. Agarwal and Gort (1996) note that their results are consistent with entry
in high technology industries being accompanied by breakthroughs in knowledge or
innovations by inventors and firms initially outside the market. Such breakthroughs
in knowledge are extreme events that yield superior knowledge to entrants and give
them an advantage over incumbents, similar to an advantage of small firms over their
large counterparts in the model of demand-driven model of innovation and spatial
competition over time with extremely heavy-tailed signals in Theorem 2.6.2. The
oscillation patterns in the firm sizes predicted by the results for extremely heavy-
tailed signals in Theorem 2.6.2 might be further illustrated by the rapid rise of
Internet businesses during the late 1990s and their sudden fall following an extreme
event, the fall of NASDAQ by 10 % in April, 2000.

2.7 Summary and Conclusions

The results presented in this chapter demonstrate that heavy-tailedness is of key
importance for robustness of many models in economics, finance, risk manage-
ment, insurance, econometrics, and statistics. Importantly, its presence may either
reinforce or reverse the properties and implications of key models in these fields,
depending on the degree of heavy-tailedness. This includes diversification analysis,
the properties of (re-)insurance markets for catastrophe risks, the models of risk-
sharing, optimal bundling strategies for a multiproduct monopolist, firm growth
theory models and the properties of important econometric and statistical inference
procedures, among others. The models considered in this chapter have the value
of the tail index { = 1 as the critical boundary between robustness and reversals
of their properties under heavy-tailedness. In other words, the models are robust
to moderate heavy-tailedness with tail indices ¢ greater than one and finite first
moments. Their properties and conclusions are reversed in presence of extreme
heavy-tailedness with tail indices ¢ smaller than one and infinite first moments.
The results in the chapter further emphasize importance of econometrically and
statistically justified inference, e.g., using correct standard errors and confidence
intervals, for the tail indices { and the degree of heavy-tailedness. The analysis
of the degree of uncertainty in estimation of tail indices ¢, their standard errors
and confidence intervals is of key importance in deciding whether the standard
economic and financial models and classical econometric and statistical methods
are applicable. This is especially so in markets where there may be a potential for
non-robustness due to possible presence of heavy tails with ¢ < 1, and thus the tests
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of the hypothesis ¢ = 1 vs. ¢ < 1 and ¢ > 1 are of key interest. Naturally, { = 2 is
another tail index value important in inference on the degree of heavy-tailedness as it
is the critical boundary between finite and infinite second moments and well-defined
vs. undefined variances: The tests of the hypothesis { = 2 vs. ¢ < 2and ¢ > 2 using
correct standard errors and confidence intervals on ¢ are of crucial importance for
applicability of classical econometric and statistical inference methods, including
the regression and least squares analysis and (auto-)correlation based and related
approaches (see the discussion in Sects. 1.2 and 2.1.4). In the case of applications of
the standard autocorrelation based methods in the analysis of financial returns and
foreign exchange rates that are often modelled using GARCH and related processes,
the property whether { < 4 becomes of crucial importance (see Cont 2001; Davis
and Mikosch 1998; Mikosch and Stdricd 2000). Further, testing whether 2 < { < 4
for a particular (e.g., emerging or developing) financial or foreign exchange market
is of key importance in the analysis whether its heavy-tailedness properties are
similar to those implied by empirical results that are well-established in the case
of developed markets (see the review and discussion in Sect. 1.2 and its references).

The goal of the next chapter is to review econometrically and statistically justified
approaches to inference on tail indices and the degree of heavy-tailedness based on
widely used Hill’s estimates and log-log rank-size regressions. The chapter provides
several empirical applications for estimating tail indices in foreign exchange
rate markets across countries. In addition, it further discusses recently developed
methods for robust inference in the presence of heterogeneity, dependence, and
heavy-tailedness of largely unknown form.

Of course, inferences about tail indices will typically not be conclusive. Instead,
they will imply a range of possible indices (e.g., confidence intervals), in contrast to
the models presented in this chapter, which assume a known tail index. An extension
would be to consider risks that are Pareto law distributed, but with a particular
distribution for their possible tail index. Given such a distribution of the tail index,
with support on [o, c0) for some @ > 0 and such that P(@ < «a + €) > 0 for all
€ > 0, it is straightforward to show that the unconditional (on «) risk distribution
is of Pareto type with the tail index «. The results in this section could therefore be
extended to such situations with unknown tail indices.



Chapter 3
Inference and Empirical Examples

3.1 Inference on Heavy Tails'

Several approaches to the inference about the tail index ¢ of heavy-tailed distri-
butions are available in the literature (see, among others, the reviews in Beirlant
et al. 2004; Embrechts et al. 1997). The two most commonly used ones are Hill’s
estimator and the OLS approach using the log-log rank-size regression.

Let ri,rp,...,ry be a sample from a population satisfying power law (1.3).
Further, let, forn < N,

Irlay = Irl@) = -+ = [rloy = [rlm+) 3.1
be decreasingly ordered largest absolute values of observations in the sample. Hill’s
estimator () of the tail index ¢ is given by

n

; . 32)
> (log |l —log [r|w+1))

é‘Hill =

The standard error of the estimator is s.e.ygj = ﬁéHilI- The corresponding 95 %-
confidence interval for the true tail index ¢ is thus given by

A 1.96 » A 1.96 ~
il — —= Cill, Shin + —=Cwin ) - 33
(CH i NG Cuint» Suin + NG lu 11) (3.3)

!"This section draws upon material from Gabaix and Ibragimov (2011) “Rank—1/2: A simple way
to improve the OLS estimation of tail exponents,” Journal of Business and Economic Statistics,
Vol. 29, No. 1, 24-39.
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It was reported in a number of studies that inference on the tail index using Hill’s
estimator suffers from several problems, including sensitivity to dependence and
small sample sizes (see, among others, Embrechts et al. 1997, Chap. 6). Motivated
by these problems, several studies have focused on alternative approaches to the tail
index estimation. For instance, Huisman et al. (2001) propose a weighted analogue
of Hill’s estimator that was reported to correct its small sample bias for sample
sizes less than 1,000. Embrechts et al. (1997), among others, advocate sophisticated
nonlinear procedures for tail index estimation.

Despite the availability of more sophisticated methods, a popular way to estimate
the tail index ¢ is still to run the following OLS log-log rank-size regression with
y =0:

log (t—y) = a—blog |r|ey, (3.4)

t = 1,...,n, or (calling ¢ the rank of an observation, and |r|y its size):
log (Rank — y) = a — blog(Size), and take b as an estimate of the tail index
(here and throughout the section, log(-) stands for the natural logarithm). Similar
log-log rank-size regressions applied to positive and negative observations r; in the
sample are employed to estimate the tail indices ¢; and ¢ in (1.1) and (1.2). The
reason for the popularity of the OLS approaches to tail index estimation is arguably
the simplicity and robustness of these methods. In various frameworks, the log-log
rank-size regressions of form (3.4) in the case y = 0 and closely related procedures
were employed, in particular, in Levy (2003), Levy and Levy (2003), Helpman et al.
(2004), and many other works (see also the review and references in Gabaix and
Ibragimov 2011).

Unfortunately, tail index estimation procedures based on OLS log-log rank-size
regressions (3.4) with y = 0 are strongly biased in small samples. The recent study
by Gabaix and Ibragimov (2011) provides a simple practical remedy for this bias,
and argues that, if one wants to use an OLS regression, one should use the Rank
—1/2, and run log (Rank — 1/2) = a — blog (Size) , that is,

log (t—1/2) = a—blog |r|q. (3.5)

t = 1,...,n. In (3.5), one takes the OLS estimate b as the log-log rank-size
regression estimate (rs of the tail index ¢. The shift of 1/2 is optimal, and
reduces the bias to a leading order. The standard error of the estimator (rs is
S.6.Rs = \/% ERS (the standard error is thus different from the OLS standard error).”
The corresponding 95 % confidence interval for the true tail index ¢ (denoted by

2Similar to the analysis in Gabaix and Ibragimov (2011), one can also obtain the results on the
standard error on the estimate a of the constant term in the above log-log rank-size regression
(evidently, a is an estimate of the logarithm of the scaling constant C in heavy-tailed population
model (1.3)). Together with estimates and standard errors on the tail index ¢, these results can be
used in calculating loss exceedance probabilities and in assessing commonly used risk measures
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95 % Clgs in estimation results in this section) is

. 2. . 2.
(gRS —1.96 x 1/ Zexs. Ers + 1.96 x \/ngs). (3.6)
n n

Numerical results in Gabaix and Ibragimov (2011) demonstrate the advantage
of the proposed approach over the standard OLS estimation procedures (3.4) with
y = 0 and further show that it performs well under deviations from power laws and
heavy-tailed dependent GARCH processes that are often used for modeling financial
returns, exchange rates, and other important economic and financial variables in
different markets. The modifications of the OLS log-log rank-size regressions with
the optimal shift y = 1/2 and the correct standard errors provided by Gabaix
and Ibragimov (2011) were subsequently used in Bosker et al. (2007), Bosker
et al. (2008), Gabaix and Landier (2008), Ioannides et al. (2008), Le Gallo and
Chasco (2008), Zhang et al. (2009), di Giovanni et al. (2011), Acemoglu et al.
(2012), Chollete et al. (2012), Hinloopen and van Marrewijk (2012), Toda (2012)
and several other works. Due to inherent heterogeneity and dependence properties
and data availability constraints, foreign exchange rates in emerging and developing
markets provide natural areas for applications of robust inference methods. The
next section provides the empirical analysis of heavy-tailedness in emerging country
foreign exchange markets using the above log-log rank-size regressions with correct
standard errors and optimal shifts in ranks developed in Gabaix and Ibragimov
(2011).

3.2 Empirical Illustrations: Heavy-Tailedness in Emerging
Foreign Exchange Markets’

Foreign exchange markets are arguably the world’s largest markets, operating
continuously, and bringing together a wide variety of buyers and sellers, within
and across national borders. In recent years these markets have been characterized
by turbulence and volatility, with extreme variations marking some exchange rates.
As the literature on the determination of exchange rates points out, there are many
processes capable of generating extreme exchange rate variations. These include
economic crises, speculative attacks, bailouts, stabilization efforts, regime reforms
and regulatory changes, among others. Recent theoretical literature contains useful
models that explain extreme changes in financial returns, in terms of trading actions

such as the value at risk and expected shortfall relatively far in the tails of heavy-tailed distributions
considered (see Sects. 1.2 and 2.1).

3This section is based on the article Ibragimov et al. (2013), which was published in the Journal
of Banking and Finance, Volume 37, Issue 7, pp. 2546-2559, reproduced with permission from
Elsevier, Copyright Elsevier (2013).
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of large market participants (see, for instance, Gabaix et al. 2006), and in terms of
government interventions in the case of foreign exchange markets.

Large fluctuations in exchange rates carry significant real consequences for
international trade, foreign investment, asset prices, and a wide range of other
economic and financial outcome variables. The on-going financial and economic
crisis has raised the need for accurate estimates of probabilities associated with large
changes in financial returns and exchange rates. Emerging and developing countries
are generally held to be subject to more frequent and more pronounced external and
internal shocks than their developed counterparts, and in that context it is ever more
important to identify currencies that are relatively more prone to large fluctuations.

To our knowledge there are very few studies on heavy-tailedness properties in
emerging and developing economies. Akgiray et al. (1988) focus on maximum
likelihood estimation in parametric stable and Generalized Pareto power law
families fitted to monthly observations for a number of Latin American exchange
rates. The confidence intervals obtained using Hill’s estimator suggest that the
variance and even first moments of these time series may be infinite (see also
Fofack and Nolan 2001, for maximum likelihood estimates for infinite variance
stable distributions fitted to different exchange rates). Koedijk et al. (1992) estimate
tail indices for Latin American exchange rates and find evidence for different
tail behavior in exchange rate returns under different exchange rate regimes. The
analysis in Akgiray et al. (1988) and Koedijk et al. (1992) is based on relatively
small samples of monthly observations and therefore has wide confidence intervals.
Quintos et al. (2001) develop tests for structural breaks in the tail index, and
motivated by the Asian financial crisis, apply these tests to emerging Asian stock
prices. Using extensions of tests in Quintos et al. (2001) to allow for multiple tail
index breaks, Candelon and Straetmans (2006) focus on changes in the tail indices
of six emerging Asian currencies (Indonesian Rupiah, Malaysian Ringgit (MYR),
Thai Baht (THB), Philippine Peso, South Korean Won (KRW), and Pakistan Rupee)
and five developed currencies (Japanese Yen (JPY), British Pound, Swiss Frank,
Canadian Dollar (CAD), and German Mark) over the period from the beginning
of 1994 to the middle of 2003.* The empirical results in Candelon and Straetmans
(2006) point to statistically significant changes in the tail indices of exchange rates
of most of the above emerging currencies over the 1997 Asian crisis period (with
tail index drops corresponding to increases in the degrees of heavy-tailedness).
In a number of cases the tail index breaks can be linked to changes in monetary
and exchange rate policies. In contrast, statistically significant breakpoints are not
observed in the tail indices of exchange rates of the developed countries. The
estimates for (relatively small) samples of quarterly data on exchange rates in
Asian, Latin American, and European economies in Pozo and Amuedo-Dorantes

4See also Payaslioglu (2009), for applications of tests in Quintos et al. (2001) in the analysis of
structural breaks in the tail index of the exchange rate in Turkey over periods with different foreign
exchange regimes.



3.2 Empirical Illustrations: Heavy-Tailedness in Emerging Foreign Exchange. . . 87

(2003) produce confidence intervals that indicate that the variances of the time series
considered may be infinite.

Our principal goal in this section is the robust analysis of heavy-tailedness prop-
erties of exchange rates of emerging and developing countries, in comparison with
developed countries. This comparative examination is motivated by the generally
held view that the former set of countries are more subject to severe external
and internal shocks, and therefore suffer greater potential for extreme changes in
financial returns and exchange rates. We use recently proposed robust tail index
estimation methods, based on log-log rank-size regressions with optimal shifts in
ranks, and correct standard errors (see Sect. 3.1), applying them to large data sets on
daily exchange rates for a number of countries. This is in contrast to earlier studies
of exchange rates of emerging countries which have tended to use model-specific
parametric maximum likelihood procedures or (semiparametric) Hill’s estimators,
with a number of contributions using relatively small data sets, with potentially non-
robust conclusions.>*¢

A further dimension to our analysis is the on-going economic crisis. We assess
whether the crisis led to significant changes in the likelihood of large variations in
exchange rates. We also draw conclusions on the applicability of standard economic
and econometric models, including regression methods, and models explaining
heavy tails in financial markets.

We find that the tail indices for exchange rates of emerging countries are indeed
considerably smaller than those of developed countries. Our estimates imply that,
in contrast to developed countries, the value of the tail index { = 2 is not rejected
at commonly used statistical significance levels for the exchange rates of several
emerging countries (Sect. 3.2.2), implying that their variances may be infinite. Tail
index values { = p € (2.6,2.8) appear to be at the dividing boundary between
developed country exchange rates on the one hand, and emerging country exchange
rates on the other: while the moments of order p € (2.6, 2.8) are finite for most of
the developed country exchange rates, they may be (or are) infinite for most of the
emerging country exchange rates.

With respect to the on-going financial and economic crisis, we find that while
the heavy-tailedness properties of most exchange rates did not change significantly,
a few foreign exchange markets did see structural changes. There was significant
increase in the degree of heavy-tailedness of the Swiss franc (CHF) and pound

SRobustness of the tail index estimation approaches based on log-log rank-size regressions is
illustrated by their favorable performance under deviations from power laws (1.1)—(1.3) in the
form of slowly varying factors and dependent GARCH processes that are often used for modeling
financial returns, exchange rates and other economics and financial time series (see the discussion
in Sect. 3.1).

SFor illustration, we compare the tail index estimates obtained using the log-log rank-size
regression approach with those obtained using Hill’s estimation procedure used in previous works
in the literature (see Sect.3.2.2). The comparisons typically point out to similar conclusions for
both estimation approaches.
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sterling (GBP), and surprisingly, a decrease in the degree of heavy-tailedness of
the Russian rouble (RUB).

These results have a number of implications. They underscore the need for robust
econometric and statistical methods in the analysis of emerging country financial
markets. Further, they highlight the aspects of macroeconomic management and
policy in emerging countries. In a structural model that explains the determination
of the tail indices of exchange rates, the tail indices of trading volumes as well as
of sizes of market participants have a bearing (Gabaix et al. 2006). These reflect
the extent of official intervention in the currency market (see the discussion in
Sect. 3.2.3.) Further, estimates for emerging exchange rates may be used to forecast
patterns in their future development and convergence to distributions with ¢ € (2, 4)
as in the case of developed countries.

The section is organized as follows. Section 3.2.1 discusses the data on exchange
rates of developed and emerging countries used in the analysis. Section 3.2.2
presents the empirical analysis of heavy-tailedness in the exchange rates considered.
In Sect. 3.2.3, we discuss the implications of the empirical analysis and the results
presented in Chap. 2 for several economic, financial, and econometric models, as
well as for economic policy and forecasting, and make some suggestions for further
research.

3.2.1 Data

We analyze daily exchange rates to US dollar (USD) for the currencies listed below,
for the period from 1 January 1999 to 22 June 2012.” The developed country
currencies we analyze in this section are: Australian dollar (AUD), CAD, CHF,
Danish krone (DKK), Euro (EUR), GBP, JPY, Norwegian kroner (NOK), and
Swedish Krona (SEK). The currencies of emerging countries in our analysis are:
Chinese renminbi (CNY), Hong Kong dollar (HKD), Indian rupee (INR), KRW,
MYR, RUB, Singapore dollar (SGD), Taiwan dollar (TWD), and THB. For an

"The exchange rate of Russian Ruble is available from the Central Bank of Russia, http://www.cbr.
ru/eng/currency_base/default.aspx. The data source for all other exchange rates considered in this
section is the Board of Governors of the Federal Reserve System, http://www.federalreserve.gov/
datadownload.


http://www.cbr.ru/eng/currency_base/default.aspx
http://www.cbr.ru/eng/currency_base/default.aspx
http://www.federalreserve.gov/datadownload
http://www.federalreserve.gov/datadownload
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overview of exchange rate regimes in the emerging countries, see Patnaik et al.
(2011) (Table 1 therein) and IMF AREAER, various issues.?-’

3.2.2 Estimation Results

Tables 3.1 and 3.2 present the estimation results for the tail indices in power law
models (1.3) for all the exchange rates discussed in Sect. 3.2.1.

Due to sensitivity of the commonly used Hill’s tail index inference approach to
dependence and sample sizes used in estimation and the robustness of the log-log
rank-size regression tail index estimation methods discussed in Sect. 3.1 (including
favorable performance of the methods under deviations from power laws and heavy-
tailed dependent GARCH processes that are often used for exchange rate modeling),
we mainly focus on applications of the log-log rank-size regression approaches to
inference on the foreign exchange rate tail indices. For illustration, we compare a
number of the conclusions to those obtained using Hill’s estimation approach (see
Tables 3.1 and 3.2). The comparisons typically indicate similar conclusions for both
the log-log rank-size regression and Hill’s tail index estimation approaches.

Tables 3.1 and 3.2 report the tail index estimates ERS obtained from log-log rank-
size regressions (3.5), with the optimal shift y = 1/2 and the correct standard errors

\/ngs. The tables also provide the correct 95 % confidence intervals (3.6) for the
true tail index values {. For comparison, the last three columns in Tables 3.1 and 3.2
provide Hill’s approach estimates (3.2), their standard errors s.e.yiy = ﬁCHiII, and

the corresponding 95 %-confidence intervals (3.3) for . The estimates relate to the
5 and 10 % truncation levels for extreme observations as in (3.1): n &~ 0.05N and
n ~ 0.1N, where N is the total sample size for the time series.

Through the rest of this section, for brevity, we refer to the extreme observations
used for estimation, defined with respect to the 5 and 10 % truncation levels in (3.1),
by AUDsq,, AUD g, etc. Failure to reject the null hypothesis H, : { = {, refers to
the 5 % significance level and the two-sided alternative H, : { # {y. Rejection of
H, refers to the 2.5 % significance level and the one-sided alternatives H, : { < o

8The classification of the countries considered as emerging follows the Economist; this list
includes Hong Kong, Singapore, and Saudi Arabia and the following economies in the Morgan
Stanley Emerging Markets Index: Brazil, Chile, China (mainland), Colombia, Czech Republic,
Egypt, Hungary, India, Indonesia, Iran, Israel, Jordan, Malaysia, Mexico, Morocco, Pakistan, Peru,
Philippines, Poland, Russia, South Africa, South Korea, Taiwan, Thailand, Tunisia, Turkey, and
Vietnam (the Morgan Stanley Capital International classifies the economies of Hong Kong and
Singapore as developed countries).

“Two of these exchange rates, CNY and MYR, were pegged to the US dollar till 2005, and HKD
regime is the related linked exchange (see Table 1 in Patnaik et al. 2011). Existence of peg periods
for currencies, however, does not affect tail index estimates for their exchange rates since the
estimates are based on largest absolute values of exchange rates (see Sect.3.1).
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or H, : { > (. Similar to the results in Tables 3.1-3.5, the confidence intervals
discussed below are 95 % confidence intervals.

The results in Tables 3.1 and 3.2 point to remarkable differences in heavy-
tailedness properties of the exchange rates of developed and emerging countries.
The point estimates ERS for developed country exchange rates in Table 3.1 lie
between 2.7 and 4.6. This range of values is preserved by estimates EHill, which
lie between 2.8 and 4.3. These results are in line with the results for developed
country financial markets, which report { estimates in the interval (2, 5) for returns
on stocks and stock indices.

The null hypothesis { = 2 is rejected in favor of { > 2 for all developed
country exchange rates by both the log-log rank-size regression and Hill’s estimation
procedures (Table 3.1). The null hypothesis { = 3 is not rejected for AUDsg,,
AUDjyg, CADsq,, CAD1o%, GBPsg, JPY5q, and JPY g using the log-log rank-
size regression approach, and for AUDsq,, AUD1og, CADsq, CAD1o%, JPY10%,
NOKj5¢, NOK ¢4, and SEK g4 using Hill’s estimation. Both approaches reject the
null hypothesis ¢ = 3 in favor of { > 3 for CHFs¢,, CHF %, DKKsq,, DKK;¢%,
EURsq, EUR|¢%, GBPjyq and SEKs5¢. The hypothesis is also rejected for GBPsq,,
and at the margin for JPY5q using Hill’s estimation, and for NOK5¢,, NOK;gq
and SEK¢¢, using log-log rank-size regression. Both approaches do not reject the
null hypothesis § = 4 for CHFS%, CHFlO%, DKK5%, DKK]O%, EURS%, EURl()%,
GBPs5¢,, GBPyy4, JPY 54, NOKsq, and SEKs5q,; this hypothesis is also not rejected
for CADsq, NOK;o%, and SEK;pg by the confidence intervals based on log-log
rank-size regressions. Both methods reject the null hypothesis { = 4 in favor of
¢ < 4 for AUDsq,, AUD g9, CAD\g and JPY 9. This hypothesis is also rejected
in favor of ¢ < 4 for CADsq,, NOK ¢4, and SEK;q using Hill’s estimation.

The conclusions that can be drawn from Table 3.1 on the existence of the second,
third, and fourth moments for the exchange rates of developed countries are similar
for both estimation approaches. All developed country exchange rates have finite
variances. In addition, CHF, DKK, EUR, and, apparently, GBP and SEK have
finite third moments; however, the fourth moments of these exchange rates may
be infinite. In contrast, according to both approaches, AUD and, apparently, CAD
have infinite fourth moments, and both may have infinite third moments. The third
and fourth moments may be infinite for JPY and NOK. All in all, the results in
Table 3.1 show that CHF, DKK, and EUR exchange rates are less heavy-tailed than
AUD, CAD, GBP, JPY, NOK and SEK exchange rates, with AUD and CAD being
the most heavy-tailed. The latter set of exchange rates would appear to be subject to
more extreme shocks.

The results in Table 3.2 for emerging countries exchange rates can be summa-
rized as follows. The point estimates fRs lie between 2.1 and 4.1, and the point
estimates EHm lie between 1.9 and 3.5. In particular, for CNY, HKD, KRW, RUB,
THB, and TWD, both the point estimates ERS and inH are less than 2.9. The null
hypothesis { = 1 is rejected in favor of { > 1 for all emerging country exchange
rates. The null hypothesis Hy : ¢ = 2 is not rejected for CNYsq, CNY 9%,
HKD¢%, KRWs4, and KRW g4, using the log-log rank-size regression approach,
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and for CNYlo%, HKDS%, HKDlo%, KRWS%, KRWl()%, and RUBl()% using Hill’s
estimation. Both approaches reject the null hypothesis Hy : { = 2 in favor of
Ha . C > 2 for INRS%, INRlo%, MYRS%, MYRl()%, RUBS%, SGDS%, SGDlo%,
THBsq,, THB 9%, TWDsg,, and TWD¢,. The hypothesis is also rejected in favor of
H, : { > 2 for HKDsg, and RUB ¢, using the log-log rank-size regression approach
and for CNY 5¢, using Hill’s method. The log-log rank-size regression approach does
not reject the hypothesis Hy : ¢ = 3 for HKDsg,, INRsg, INR 9%, MYRj0%,
RUBsq, SGDsq,, SGDjo%, THBs¢, THB %, and TWDsq,, while the hypothesis
Hy : { = 3isrejected in favor of H, : { < 3 for all other exchange rates in Table 3.2,
except MYRsq,, for which the hypothesis is rejected in favor of H, : { > 3. The
hypothesis Hy : { = 3 is also not rejected for INR5¢,, MYRsg,, SGDsq,, SGD1¢9 and
TWDsq, using Hill’s estimation, which also leads to the rejection of the hypothesis
Hy : ¢ = 3 in favor of H, : { < 3 for all other exchange rates in Table 3.2. The
null hypothesis Hy : { = 4 is not rejected only for SGDsg, using the log-log rank-
size regression approach, and for MYR5¢, using both the estimation methods; it is
rejected in favor of Hy : { < 4 for all the other exchange rates.

The results in Table 3.2 thus imply that the first moments are finite for all
emerging country exchange rates. The variance is finite for INR, MYR, SGD, THB,
TWD and, apparently, for RUB. The variances may be infinite for CNY, HKD, and
KRW. CNY and KRW have infinite third moments. The same conclusion holds,
apparently, for HKD and RUB. The third moments may also be infinite for INR,
MYR, SGD, THB, and TWD. The fourth moments may be infinite for MYR and
are, apparently, infinite for SGD; they are infinite for all the remaining exchange
rates in Table 3.2.

Summarizing the results in Tables 3.1 and 3.2, typically the tail indices of ex-
change rates in emerging countries are considerably smaller than those of developed
economies. The heavy-tailedness properties of exchange rates of emerging countries
are indeed more pronounced than those of their developed counterparts. A key
difference is that the exchange rates of developed countries appear to have finite
variances, in contrast to the exchange rates of several emerging countries. Similarly,
the third moments are infinite, or may be infinite, for most of the emerging country
exchange rates, while they are finite for most developed country exchange rates.

These differences can be described in terms of the maximal order p of their finite
moments as follows (see Sect. 1.2): For p = 2.7, while the null hypothesis { = p
is rejected in favor of ¢ > p for all developed country exchange rates in Table 3.1
except AUD, it is not rejected or is rejected in favor of { < p for all the emerging
country exchange rates in Table 3.2 except MYRsq,. Tail index values { = p €
(2.6,2.8) are in some sense at the dividing boundary between those characteristic
of developed and emerging countries: while the moments of order p € (2.6,2.8) are
finite for most of the developed country exchange rates, they may be infinite, or are
infinite, for most of the emerging country exchange rates.

Tables 3.3 and 3.4 present estimation results pertaining to the effects of the
on-going economic and financial crisis on the heavy-tailedness of exchange rates.
Developed country exchange rates appear to have become more pronouncedly
heavy-tailed since the beginning of the crisis (Table 3.3). The crisis-period con-
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Table 3.3 Tail index estimates for exchange rates in developed countries before and after the
beginning of the on-going crisis in 2008

4 Jan. 1999 to 15 Sept. 2008 to
15 Sept. 2008 22 June 2012
S.€.rRs = S.C.Rs =

Currency | Truncation (%) ERS \/g ERS 95 % Clgs ERS \/g ERS 95 % Clgs
AUD 10 391 0.35 (3.22,4.61) |2.42 |0.35 (1.73, 3.10)

5 3.99 0.51 (2.99,4.99) |2.54 |0.52 (1.51, 3.57)
CAD 10 4.48 0.41 (3.69,5.28) |3.19 |0.46 (2.28, 4.10)

5 5.02 | 0.64 (3.76,6.28) |3.36 |0.69 (2.00, 4.73)
CHF 10 4.89 |0.44 (4.02,5.75) |3.04 |0.44 (2.18,3.91)

5 584 10.75 (4.37,7.30) |2.78 |0.57 (1.66, 3.90)
DKK 10 4.07 |0.37 (3.34,4.79) |3.84 |0.56 (2.75, 4.93)

5 3.84 | 0.56 (2.75,4.93) |4.19 |0.86 (2.49, 5.88)
EUR 10 4.97 10.45 (4.09,5.85) |3.87 |0.56 (2.77, 4.98)

5 5.67 10.73 (4.25,7.10) |4.24 |0.87 (2.52,5.95)
GBP 10 543 10.49 (4.47,6.40) |2.86 |0.42 (2.05, 3.67)

5 6.28 | 0.80 (4.71,7.86) |2.89 |0.60 (1.72, 4.06)
JPY 10 3.80 | 0.34 (3.12,4.47) 12.90 |0.42 (2.07,3.72)

5 4.26 |0.55 (3.19,5.33) |3.37 |0.70 (2.01, 4.73)
NOK 10 4.65 0.42 (3.83,5.48) |3.54 |0.51 (2.53, 4.54)

5 5.49 10.70 (4.11,6.86) | 4.15 |0.86 (2.47,5.83)
SEK 10 476 |0.43 (3.92,5.61) |3.80 |0.55 (2.72, 4.88)

5 6.23 | 0.80 4.67,7.79) |3.75 |0.77 (2.23,5.26)

Note 1 Jan. 1999 to 15 Sept. 2008: N = 2444,10 %N = 244,5 %N = 122; 15 Sept. 2008 to 22
June 2012: N = 947,10 %N = 95,5 %N = 47

fidence intervals for the tail indices of AUD;q¢,, CHFs¢,, CHF;99,, GBPs¢, and
GBP 4 lie to the left of their pre-crisis confidence intervals. This points to structural
breaks and statistically significant decreases in the tail indices of these exchange
rates after the beginning of the crisis in 2008 that correspond to the increase in
the degree of their heavy-tailedness and the likelihood of large fluctuations. The
pre- and post-crisis confidence intervals in Table 3.3 for other currencies intersect
implying that the tail indices of these currencies before and after the beginning of
the crisis are statistically indistinguishable from each other. This is also true of
emerging country currencies in Table 3.4 with two notable exceptions: for RUB,
and for MYR ¢, the post-crisis confidence intervals lie to right of the pre-crisis
confidence intervals. Heavy-tailedness properties have become less pronounced for
these currencies, suggesting a corresponding decrease in the likelihood of large
fluctuations in their exchange rates.

In order to illustrate the appropriateness of the tail truncation levels (5 and
10 %) used in this section, we follow the analysis and suggestions in Embrechts
et al. (1997) and Mikosch and Stérica (2000), and present the analogues of Hill’s
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Table 3.4 Tail index estimates for exchange rates in emerging countries before and after the
beginning of the on-going crisis in 2008

4 Jan. 1999 to 15 Sept. 2008 to
15 Sept. 2008 22 June 2012
S.€.rRs = S.C.Rs =

Currency | Truncation (%) ERS \/g ERS 95 % Clgs ERS \/g ERS 95 % Clgs
CNY 10 1.99 |0.18 (1.64,2.35) |2.46 |0.36 (1.76, 3.15)

5 2.20 |0.28 (1.65,2.76) |2.60 |0.54 (1.55, 3.65)
HKD 10 2.05 [0.19 (1.69,2.42) |2.69 [0.39 (1.93, 3.46)

5 2.31 [0.30 (1.73,2.89) |2.89 |0.60 (1.72, 4.06)
INR 10 245 10.22 (2.02,2.89) |3.41 [0.49 (2.44, 4.38)

5 2.72 10.35 (2.04,3.40) |3.83 [0.79 (2.28,5.37)
KRW 10 3.26 | 0.30 (2.68,3.84) |2.26 |0.33 (1.62, 2.90)

5 3.93 0.50 (2.94,4.92) | 2.44 |0.50 (1.45,3.42)
MYR 10 2.28 [0.21 (1.88,2.69) | 4.01 |0.58 (2.87, 5.15)

5 2.99 |0.38 (2.24,3.74) | 4.82 [0.99 (2.87,6.77)
SGD 10 3.92 10.36 (3.23,4.62) |3.14 |0.46 (2.25, 4.03)

5 4.10 |0.52 (3.07,5.12) |3.62 |0.75 (2.15, 5.08)
THB 10 2.62 0.24 (2.15,3.08) | 4.07 |0.59 (2.91,5.22)

5 2.95 10.38 (2.21,3.69) | 5.09 |1.05 (3.03, 7.15)
RUB 10 1.87 |0.17 (1.54,2.20) |3.32 |0.48 (2.38,4.27)

5 1.84 |0.24 (1.38,2.31) | 4.27 |0.88 (2.54, 6.00)
TWD 10 2.50 |0.23 (2.06,2.95) |2.46 |0.36 (1.76, 3.16)

5 2.61 |0.33 (1.95,3.26) |2.30 |0.47 (1.37,3.22)

Note 1 Jan. 1999 to 15 Sept. 2008: N = 2444,10 %N = 244,5 %N = 122; 15 Sept. 2008 to 22
June 2012: N = 947,10 %N = 95,5 %N = 47

plots for the log-log rank-size regression tail index estimates for EUR, GBP, and
RUB (Figs. 3.1, 3.2 and 3.3). These are graphs of the log-log rank-size regression
point estimates ERS of the tail indices for the currencies’ exchange rates, for
different values of the truncation levels n for extreme observations, together with
the corresponding 95 %-confidence intervals 95 % Clgs in (3.6) for the true tail
index values computed using log-log rank-size regressions. The figures highlight the
relative stability of the point estimates across truncation levels. In particular, we note
that the 95 % Clgs confidence intervals constructed for different tail truncation levels
intersect. This shows that the tail indices in power law approximations of the tails of
distributions of the exchange rates are statistically indistinguishable for different tail
truncation levels. In addition, according to confidence intervals in Figs. 3.1, 3.2 and
3.3, the qualitative conclusions in this section on (in)finiteness of second, third, and
fourth moments for the exchange rates remain unchanged regardless of the choice
of truncation levels for extreme observations used in estimation.
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Fig. 3.1 Log-log rank-size estimates and 95 % confidence intervals for EUR tail index with
different tail truncation levels

2.5% 50% 7.5% 10.0% 12.5% 15.0%

Tail truncation level n, % of N

Fig. 3.2 Log-log rank-size estimates and 95 % confidence intervals for GBP tail index with
different tail truncation levels

3.2.3 Implications for Economic Models and Policy Decisions

As discussed in Chap. 2, heavy-tailedness has crucial implications for the robustness
of many economic and financial models, leading, in a number of settings, to
reversals of conclusions drawn from them. The finding that the exchange rates of all
countries considered in this section have tail indices greater than one is reassuring.
The results in Sect. 2.1.3 show that the stylized facts on optimality of diversification
are robust to heavy-tailedness of risks or returns in value at risk models as long as the
distributions of these risks or returns are moderately heavy-tailed with tail indices
¢ > 1 and finite means. However, the stylized fact that portfolio diversification
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Fig. 3.3 Log-log rank-size estimates and 95 % confidence intervals for RUB tail index with
different tail truncation levels

is preferable is reversed when tail indices are less than one and first moments are
infinite. As discussed in Sect.2.1.4, a similar conclusion holds for the efficiency
property of the sample mean: the sample mean is the BLUE of the population mean
in the sense of peakedness properties for moderately heavy-tailed populations with
tail indices ¢ > 1. In addition, for such populations, the sample mean exhibits the
property of monotone consistency, and thus, an increase in the sample size always
improves its performance. However, the efficiency of the sample mean in the sense
of its peakedness in estimating the population center decreases with sample size
under extreme heavy-tailedness, when tail indices { < 1.

Our estimates indicate that the tail indices may be less than two for exchange
rates of several emerging countries. As discussed in Sect. 2.1.4, this presents a chal-
lenge to the applicability of standard statistical and econometric methods, including
many classical approaches to inference based on variances and (auto)correlations,
such as regression and spectral analysis, least squares methods, and autoregressive
models. Our results imply that traditional econometric and statistical methods
should be applied with care in studies of exchange rates for many emerging and
developing countries. This is especially important in cases where tail indices are
close to critical robustness boundary ({ = 1), or close to the threshold value for
applicability of standard inference methods (¢ = 2).

Our tail index estimates can further be used, together with estimates of the
constant in log-log rank-size regressions and the implied estimates of the scaling
constants in heavy-tailed models (1.3), for evaluation of commonly used risk
measures such as the value at risk and expected shortfall relatively far in the tails of
exchange rate distributions (see Sects. 1.2 and 2.1).

The results obtained are pertinent to economic policy making and macroeco-
nomic forecasting. The finding that exchange rates of emerging and developing
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countries are typically more heavy-tailed than those of their developed counterparts,
reflect their susceptibility to more frequent and extreme external and internal shocks.
Secondly, estimated tail indices for the exchange rates of emerging and developing
countries can be used to forecast the patterns in their future development, as they
converge to distributions with tail indices { € (2,4) implied by empirical results
and theoretical models in the literature for financial returns and exchange rates of
developed country currencies (see Gabaix et al. 2006, Sect. 1.1 and the references
therein). Third, our results suggest modification of structural models of heavy
tailedness to suit emerging and developing countries exchange rates. For example,
Gabaix et al. (2006) propose a model where the tail index value { ~ 3 for
financial returns in developed economies is generated by the trading actions of
market participants who have a size distribution with tail indices { = 1 (Zipf’s
law). Due to government intervention and regulation, it seems likely that the tail
indices may be less than { = 1 for largest participants in emerging and developing
foreign exchange markets (implying deviations from the Zipf’s law), with the states
being some of the largest key traders. It is also likely that price impacts of trading
volume differ between emerging and developed country currency markets. It will be
interesting and important to provide estimation of these characteristics for different
countries.

Developing structural models that explain the presence of heavy tails in emerging
country exchange rates and the factors (including macroeconomic and institutional
variables) that affect them would be an important direction for further research. This
will require estimates of tail indices for size distributions of market participants, and
of trading volume distributions. Cross-country analysis of relationships between tail
index estimates and macro economic variables that are proximate to government
intervention in foreign exchange markets should be interesting. Similar estimates
for export and import volumes and their concentration across industries and trade
partners are also important.

Application of other estimation and inference approaches, including the methods
for adaptive selection of the tail sample fraction used in inference on heavy-
tailedness (see Sect.4.7 in Beirlant et al. 2004), small sample analogues of Hill’s
estimates developed in Huisman et al. (2001) and other robust econometric and
statistical procedures under heavy tails such as the #-statistic based robust inference
methods proposed in Ibragimov and Miiller (2010) (see the next section) to this
research issue would be of interest. Further analysis of structural breaks in the
heavy-tailedness of exchange rates, using for example, tests developed in Quintos
et al. (2001) will be useful. Going beyond the on-going economic and financial
crisis, it would be of interest to study the impacts of changes in currency regimes
and of other shocks (such as the 1998 Russian financial crisis).
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3.3 Robust Inference Under Heterogeneity, Heavy Tails,
and Dependence Using Conservativeness of Test Statistics

3.3.1 Description of the Robust Inference Approaches'’

Focusing on the problem of estimation of the unknown mean of a stationary
time series, Brillinger (1973) presents the important idea of dividing data into
(say, g) groups, calculating the estimates of the mean (sample means) for each
of the group and then basing the inference on the #-statistic of the resulting group
estimates (sample means)."! Brillinger (1973) further discusses (weak) dependence
assumptions on the data generating and data sampling processes that guarantee that,
asymptotically, the group sample means will be independent normal r.v.’s with the
same variance (that is, i.i.d. and, thus, homogeneous, normal r.v.’s). Under such
assumptions, the asymptotic distribution of the #-statistic of the group sample means
used in inference is a Student-t distribution with g — 1 degrees of freedom. Quantiles
of the later distribution can thus be used in asymptotic hypothesis tests on the
unknown mean and in constructing its confidence intervals.

Suppose now we want to do inference on some scalar parameter 8 of an
economic or financial model in a large data set with n observations. For a wide
range of models and estimators ,3 of B, it is known that the distribution of ,3
is approximately normal in large samples, that is, ﬁ(,é — B) = N(0,0?) as
n — 0o, where “="" denotes convergence in distribution. Suppose further that the
observations exhibit correlations of largely unknown form. If such correlations are
pervasive and pronounced enough, then it will be very challenging to consistently
estimate 02, and inference procedures for B that ignore the sampling variability of
a candidate consistent estimator 62 will have poor finite sample properties.

Ibragimov and Miiller (2010) propose the following general approach to robust
inference about an arbitrary parameter B under heterogeneity and correlation
of a largely unknown form. The approach provides substantial extensions and
refinements of Brillinger (1973) analysis of estimation the unknown mean of a
stationary time series using the z-statistic in asymptotically homogeneous normal
group sample means and its limiting Student-z distribution. These extensions cover,
in particular, inference on an arbitrary unknown parameter of interest, possibly
nonstationary models with changing or stochastic variances, and heterogeneous
normal and non-normal limits for the parameter’s group estimators, including many
important settings with panel, clustered, spatially correlated and heavy-tailed data.

10This section has drawn upon material from Ibragimov and Miiller (2010) “t-statistic based
correlation and heterogeneity robust inference,” Journal of Business and Economic Statistics, Vol.
28, No. 4, 453-468.

"'We are very grateful to an anonymous reviewer of the book for the important reference to
Brillinger (1973) that the authors of the manuscript and the paper this section is based on were
unaware of.
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The approach to robust inference under heterogeneity, correlation, and heavy-
tailedness in Ibragimov and Miiller (2010) is described as follows. Consider a
partition of the original data set into ¢ > 2 groups, with n; observations in group

Jj, and 27=1 n; = n. Denote by B; the estimator of 8 using observations in group j
only. Suppose the groups are chosen such that ﬁ(ﬁ; - B) = N(0, 0].2) for all j,

and, also, such that ﬁ(ﬁi —pB) and ﬁ(,éi — B) are asymptotically independent for
i # j—this amounts to the convergence in distribution

JaBi =B, ... ,ﬁq —B) = N(0,diag(a?, ... ,qu)), max ojz >0 (3.7
<j<q

and {crj2 ;’=1 are, of course, unknown. The asymptotic Gaussianity of ﬁ(,é i—B),J =

1,...,q, typically follows from the same reasoning as the asymptotic Gaussianity of
the full sample estimator ,é The argument for an asymptotic independence of ,é ; and
,3,< for i # j, on the other hand, depends on the choice of groups and the details of
the application (see Sect. 4 in Ibragimov and Miiller 2010 for the discussion of such
arguments for several common econometric models, including time series, panel,
clustered and spatially correlated settings).

As discussed in Ibragimov and Miiller (2010), one can perform an asymptotically
valid test of level o, @ < 0.05 of Hy : B = By against H; : 8 # Po by rejecting Hy
when |fg| exceeds the (1 — «/2) percentile of the Student—¢ distribution with g — 1
degrees of freedom, where 74 is the usual 7-statistic

B - Bo

i

ts = /4 (3.8)

with B = ¢! 1 ﬁj, the sample mean of the group estimators ﬁj,j =1,....q

and S,zé =(g—-17" Z}]:l(:éj — ,3)2, the sample variance of ﬁj,j =1,...,q

In other words, the usual #-tests can be used in the presence of asymptotic
heteroskedasticity in group estimators as long as the level of the tests is not greater
than the typically used 5 % threshold.

As discussed in Ibragimov and Miiller (2010), the #-statistic approach provides
a number of important advantages over the existing methods. In particular, it can
be employed when data are potentially heterogeneous and correlated in a largely
unknown way. In addition, the approach is simple to implement and does not
need new tables of critical values. The assumptions of asymptotic normality for
group estimators in the approach are explicit and easy to interpret, in contrast to
conditions that imply validity of alternative procedures. Furthermore, as shown in
Ibragimov and Miiller (2010), the #-statistic based approach to robust inference
efficiently exploits the information contained in these regularity assumptions, both
in the small sample settings (uniformly most powerful scale invariant test against a
benchmark alternative with equal variances) and also in the asymptotic frameworks.
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It is important to emphasize that the asymptotic efficiency results for #-statistic based
robust inference further imply that it is not possible to use data dependent methods to
determine the optimal number of groups ¢ to be used in the approach when the only
assumption imposed on the data generating process is that of asymptotic normality
for the group estimators ,31-. The numerical results presented in Ibragimov and
Miiller (2010) demonstrate that, for many dependence and heterogeneity settings
considered in the literature and typically encountered in practice for time series,
panel, clustered and spatially correlated data, the choice ¢ = 8 or ¢ = 16 leads to
robust tests with attractive finite sample performance.

It is further important to note that the #-statistic approach described provides
a formal justification for the widespread Fama—MacBeth method for inference in
panel regressions with heteroskedasticity (see Fama and MacBeth 1973). In the
approach, one estimates the regression separately for each year, and then tests
hypotheses about the coefficient of interest using the #-statistic of the resulting yearly
coefficient estimates. The Fama—MacBeth approach is a special case of the 7-statistic
based approach to inference, with observations of the same year collected in a group.

In addition, the same approach remains valid under deviations from normality as
in the case of heavy-tailed models, as long as the estimators ,31-, j=1,...,q, are
asymptotically independent and converge (at an arbitrary rate) to heavy-tailed scale
mixtures of normals. Namely, the approach is asymptotically valid if

ima(By — B}, = {ZViYL, (3.9)

for some real sequence m,, where Z; ~ i.i.d. N'(0, 1), the random vector {Vj};Ll is
independent of the vector {Zj};']=l and max; |V;| > 0 almost surely (see the discussion
and the numerical results on performance of the approach in heavy-tailed models in
Sect.3.3.3.). The class of limiting scale mixtures of normals in (3.9) is a rather
large class of distributions: it includes, for instance, Student—¢ distributions with
arbitrary numbers of freedom d that follow power laws (1.1)—(1.3) with the tail
indices {; = ¢, = ¢ = d (including the Cauchy distribution with { = d = 1),
double exponential distributions, logistic distributions and all symmetric stable
distributions (see Sect. 2.1.2) that typically arise as distributional limits of estimators
in econometric models under heavy-tailedness with infinite variances.

3.3.2 Small Sample Properties of t-Statistics and Inequality
Indices Based on Self-Normalized Sums

The robust approach to asymptotic inference in Ibragimov and Miiller (2010)
reviewed in the previous section relies on the following powerful result on small
sample properties of the #-statistic in heterogeneous normal observations due to
Bakirov and Székely (2005).
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LetX;,j =1,...,q, with g > 2, be independent Gaussian random variables with
common mean E[X;] = u and variances V[X;] = 01.2. Consider the usual 7-statistic
for the hypothesis test Hy : ;1 = 0 against the alternative H, : 1 # 0 :

X
= \/a;. (3.10)

If the variances crjz are the same: crjz = o2 for all j, by definition, the critical value
cv of |t] is given by the appropriate percentile of the distribution of a Student—¢
distributed random variable 7, _; with g — 1 degrees of freedom.

The case of equal variances is extremal for the #-statistic in (1) in the following
sense (see the results in Bakirov and Székely 2005). Let cv,(«) be the critical value
of the usual two-sided t-test of Hy against H, of level @ < 0.05 : P(|T,—1| >

cvg(ar)) = a. Then then for all ¢ > 2,

sup P(|t] > cvy(a)|Ho) = P(|Ty—1| > cvy(@)) = a. (3.11)

The conservativeness result in (3.11) does not hold for 10 % level with « = 0.1.
The conservativeness properties of z-statistic given by (3.11) imply analogous
results for the tail probabilities of self-normalized sums

1/2
q

q
Sg=2_ %/ 2% (3.12)
j=1

Jj=1
and their squares using the equality

Pt >y) =P (S2 > q—yz) (3.13)
VEIT g '
forall y > 0.

As follows from Bakirov (1998) and the recent paper by Ibragimov and Miiller
(2013), conservativeness properties similar to those for one-sample #-statistics also
hold for two-sample #-statistics (Behrens—Fisher statistics) for testing equality of
means: that is, for commonly used significance levels, the two-sample #-tests remain
conservative for underlying observations that are independent and Gaussian with
heterogeneous variances. These small sample conservativeness results provide the
basis for the development of new approaches to asymptotic robust inference under
heterogeneity, dependence, and heavy-tailedness using two-sample z-statistics in
Ibragimov and Miiller (2013) and their applications in several important problems
including robust tests for structural breaks and the analysis of treatment effects.
Similar to the #-statistic based approach discussed in the previous, the large sample
inference using two-sample #-statistics can be conducted as follows: partition the
data into some number of groups, estimate the model for each group, and conduct



3.3 Robust Inference Under Heterogeneity, Heavy Tails, and Dependence. . . 103

the standard two-sample 7-test on equality of parameters (e.g., the test of the no-
break hypothesis of equality of pre- and post-break parameters or the test on equality
of parameters in the treatment and no-treatment groups) with the resulting parameter
estimators of interest.

The above small sample conservativeness properties of #-statistics are closely
related to the properties of several income inequality measures and other economic
indicators such as the coefficient of variation.

Consider a sample of observations Xi,...,X,, ¢ > 2 (e.g., income or wealth
levels of ¢ individuals). Let cv (o) denote the (1 — o/2)—quantile of Student-¢
distribution with (g — 1) degrees of freedom: P(|T,—1| > cvy(@)) = a.

Representations similar to #-statistic ¢ = \/Z]}_(/Sx, and self-normalized sums

e

Sy = 217_11 J]?
economics and finance, including, for instance, one of the widely used inequality
measures, the empirical coefficient of variation cV x = sx/X = Ja/ t."2 These
representations together with the conservativeness results for z-statistics and self-
normalized sums given by (3.13) and (3.11) imply similar results for the tail
probabilities of the empirical coefficient of variation cV x, and a number of other
variables in economics and finance. These comparisons for the empirical inequality
measures such as CV x and their analogues for transformations (such as logarithms)
of the observations X; provide comparisons between the tail probabilities and the
cdf’s of these measures under heterogeneity and heavy-tailedness and those in the
standard homogeneous Gaussian case.

Below, Y; = log X; denote the logarithms of the observations, provided that X; >
0. In addition, let Z;, ..., Z,; denote the i.i.d. standard normal r.v.’s: Z; ~ N(,1)
and let V; = €%, j = 1,..,¢q, be the corresponding homogeneous log-normal r.v.’s.

in (3.10) and (3.12) hold for a number of variables of interest in

Following the above notation, in Proposition 3.3.1, CV y = sy/Y and CV 7z =s7/Z.

Proposition 3.3.1 IfY, = logX,,...,Y, = logX, are independent heterogeneous
normal rv’s Y; ~ N(O, 01.2) or are scale mixtures of normals (for instance,
independent not necessarily identically distributed stable r.v.’s), then

P(0 <CVy <y) < P(0<CVz <y) (3.14)

P(ICVy| <y) < P(ICVz| < y) (3.15)

12Similar representations also hold for the estimators of Sharpe ratio SR for excess returns
Xj, j = 1,...,q. In addition, this is the case for the Herfindahl-Hirschman Index of market

. 2 . . .
concentration that has the form HHI = Y'_, X7 /( >_7_, X;)” and is, thus, the inverse of the square
of the self-normalized ratio in (3.12) for firm sizes X;,j =1, ..., q. The representations also hold,
for instance, for commonly used sample split prediction test statistics employed in testing for time

series stationarity (see Loretan and Phillips 1994a,b, and references therein).
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forally < 1/(cvs—1(0.05)/q). In general, inequalities (3.14), (3.15) do not hold
fory < 1/(cvq_1(0.1)ﬂ).

Inequalities (3.14) and (3.15) in Proposition 3.3.1 provide first order stochastic
dominance comparisons of inequality measured by the coefficient of variation for
log-incomes. The comparisons are between the income distribution (Xi,...,X,)
generated by heterogeneous log-normal X; and the income distribution (Vi, ..., V,)
generated by the homogeneous log-normal V;. Naturally, inequality is expected to
be less in the latter case of homogeneity. Inequalities (3.14) and (3.15) imply that
homogeneity is indeed likely to reduce inequality, as measured by the coefficient of
variation for log-income, in the region of small values of this inequality measure.
However, according to Proposition 3.3.1, this does not hold in general. This
conclusion may be viewed as an indicator that the coefficient of variation is a poor
measure of inequality for some parts of the income or wealth distribution, including
the middle and high income and wealth ranges.

3.3.3 Robust Inference in Heavy-Tailed Models'>

Many works in econometrics and statistics have focused on the analysis of inference
for the mean EX; or, more generally, the location parameter of stationary heavy-
tailed time series {X,}°, with infinite variance. As is illustrated by the results in
Sect. 2.6, robust inference in such problem is crucial in a number of settings in
economics and finance, including the analysis of properties of important models of
firm growth.

Let {e;}2_, be a sequence of i.i.d. random variables that have a distribution
with regularly varying tails in the form of power laws (1.1)—(1.3)

P(e; < —x) ~ x°L(x), P(& > x) ~ x*L(x), x — o0, (3.16)

where { € (1,2) and L(x) is a slowly varying (at oco) function, that is,
lim,—o0 L(tx)/L(x) = 1 for all + > 0 (note that this assumption concerns only
the tails of the distribution of ¢;s; it is not assumed that the random variables have a
symmetric distribution).

According to the results in Logan et al. (1973) (see also Loretan and Phillips
1994a; Phillips 1990; Phillips and Hajivassiliou 1987), the ¢-statistics of i.i.d.
random variables {¢,} have a well-defined asymptotic distribution. This asymptotic
distribution, however, depends in a complicated way on the tail index ¢ of ¢,’s
that makes problematic the use of the latter weak convergence results, with further
substantial complications under dependence.

3This section has drawn upon the extended version of supplementary material to Ibragimov and
Miiller (2010).
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Motivated by the above problems and also by the failure of the bootstrap for
the sample mean of heavy-tailed observations, several papers in statistics and
econometrics have focused on developing subsampling inference for the mean of
heavy-tailed and possibly dependent time series (see Politis et al. 1999; Romano
and Wolf 1999 for subsampling methods for i.i.d. thick-tailed observations, McElroy
and Politis 2002 for the case of linear processes and Kokoszka and Wolf 2004 for
extensions to GARCH-like time series models). In particular, McElroy and Politis
(2002) show that the #-statistic of stationary linear processes

o0 o0
Xo= Y ceg. Y lgl<oo, t=1, (3.17)

Jj=—00 j=—00

driven by heavy-tailed i.i.d. innovations ¢, satisfying (3.16) have a well-defined
limit distribution that depends on the filter coefficients {c;}2_, as well as on the
tail index ¢ of €/s. McElroy and Politis (2002) further use this result to show that
subsampling leads to asymptotically valid #-statistic based inference on the mean
EX, under the additional assumption that the linear time series {X,} is strong mixing
and derive asymptotically correct subsampling confidence intervals for the mean
of such processes without knowledge or explicit estimation of their tail index or
dependence parameters.'*

As discussed in McElroy and Politis (2002) (see also Politis et al. 1999, Chap. 11,
and Romano and Wolf 1999), subsampling is the only feasible method available in
the literature for solving the problem that the limiting distributions of sums and ¢-
statistics of i.i.d. and autocorrelated time series are not pivotal. This is due to the
complicated form of the asymptotic distributions and the difficulties in inference on
the tail index ¢ and the rate of convergence of its estimators needed in the alternative
methods.

As discussed in the previous section, the fact that scale mixtures of normals in-
clude, as particular cases, a number of heavy-tailed distributions such as symmetric
stable and Student-#, makes the #-statistic based approach to robust inference dis-
cussed in this section applicable in the statistical analysis under thick-tailedness and
dependence.'® In particular, the -statistic based inference considered in Sect. 3.3.1
provides an alternative to subsampling methods for the mean of heavy-tailed
autocorrelated time series. Similar to subsampling methods, the z-statistic based
robust inference approach does not require knowledge or explicit estimation of

14The strong mixing assumption is satisfied, in particular, for MA processes of finite order and
stationary AR(1) models driven by absolutely continuous i.i.d. innovations.

13Tn addition to the statistical analysis of location parameter of heavy-tailed time series considered
in this section, further applications of the r-statistic based robust inference approach that are
currently under way by the authors of the book and their co-authors include inference on income
and wealth inequality measures and inference on autocorrelation functions of heavy-tailed GARCH
and related processes where application of standard asymptotic results becomes problematic (see
the discussion in Sects. 1.2, 2.1.4 and 2.7, and the references therein).
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the tail index or dependence characteristics of thick-tailed processes. Furthermore,
in contrast to subsampling, the validity of the f-statistic based inference does not
require that the time series in consideration satisfy strong mixing conditions that are
usually difficult to check (see Doukhan 1994 and the discussion in Nze and Doukhan
2004). The applications of the proposed method hold in all settings satisfying
condition (3.9) that also includes models beyond heavy-tailed ones.

Let {X,}2, be a linear process in (3.17) driven by i.i.d. innovations {€}2__
satisfying (3.16), and let © = EX,. As in Brillinger (1973) and Ibragimov and
Miiller (2010) discussion of time series applications of the 7-statistic based approach
to robust inference (see Sect. 3.1 in the latter paper), consider dividing the sample
{X;}_, into ¢ (approximately) equal sized groups of consecutive observations: the
observation indexed by #, t = 1,...,T, is element of group j if t € Z; = {s5 :
G—DT/q<s<jT/q}forj=1,...,q

For some positive sequence dr — oo (e.g., dr = T/ if L(x) = 1 in (3.16)),
the finite-dimensional distributions of the partial sum process dT Z[Tr] X, —
converge weakly to those of a symmetric Lévy {—stable process S:(r) (see
Astrauskas 1983; Davis and Resnick 1985, Lemma 1 in Avram and Taqqu 1992 and
Remarks 3.20 in Phillips and Solo 1992).'¢ Therefore, as in (3.9), the following joint

convergence holds for the sample means X ? of observations in groupsj=1,...,q:
Td;! ()_((7’ — 1) =5, (3.18)

as T — oo, where Sé are i.i.d. symmetric {—stable random variables (the increments

of the stochastic process S;(r) multiplied by g'/*=1). From the discussion in
Sect.3.3.1 we thus conclude that one can perform an asymptotically valid test of
level o, @ < 0.05 of Hy : 0 = o against Hy : p # o by rejecting Hy when |z,
exceeds the (1 — «/2) percentile of the student—¢ distribution with ¢ — 1 degrees
of freedom, where tu is the #-statistic calculated usmg the sample means xV

= VA S X — o) s 5= - 17 S (R - L, X0)

Table 3.1 presents the results of the Monte Carlo comparisons of small sample
properties of subsampling and the #-statistic based inference for the mean of heavy-
tailed dependent time series. As in McElroy and Politis (2002), we provide the
results for the AR(1) model with the autoregressive parameter 0.5 and an MA(11)
process for the sample sizes T = 100, 1000 and the tail index ¢ equal to 1.2 and 1.5.

107t is important to note that, despite this convergence of finite-dimensional distributions, the
process dy ! Z[Tr] (X; — p) does not converge weakly to S¢(r) in D[0, 1] endowed with the usual
Skorohod topology (see Avram and Taqqu 1992 and Remarks 3.20 in Phillips and Solo 1992).

17The fact that, in this approach, the inference is based on the z-statistic for block sample means
is in contrast to subsampling that uses the empirical distribution function of t-statistics calculated
over the block of size b as an approximation to the limit distribution of the full-sample #-statistic

tr = NT(Xr — p)/s7.
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The AR(1) model is X; = 0.5X,—; + ¢,¢t=1,...,T, with p = 0.5 and p = 0.9,
Xo = €p and symmetric {—stable i.i.d. random variables ¢, > 0. The MA(11) time
series is X; = 2}21 Vi€, t = 1,..., T, with the coefficients {1;} equal to 0.03,
0.05, 0.07, 0.10, 0.15, 0.20, 0.15, 0.10, 0.07, 0.05, 0.03. The choice of the (fixed)
block sizes b for subsampling also follows that in McElroy and Politis (2002).'®

The results in Table 3.5 show that the #-statistic based approach to inference on
the mean of the considered weakly dependent time series with heavy tails (3.16)
substantially outperforms subsampling, both in terms of controlling size and with
respect to the small sample power properties'® Unreported results indicate that,
overwhelmingly, this is also the case for other values of the tail index, the
autoregressive parameters in the AR(1) specifications and other choices of the
subsampling block size b. The dominance of the t-statistic based inference for
the mean over subsampling is especially pronounced for the AR(1) heavy-tailed
processes with the tail index ¢ close to 1, with the empirical rejection probabilities
being, e.g., for { = 1.2 and T = 1,000, 63.1 % for the former approach with g=16
(the corresponding empirical size is equal to 3 %) vs. 5.2 % for the latter method
with b = 2 (the corresponding empirical size is 2.9 %). The advantages of the ¢-
statistic based inference on the mean over subsampling are also very significant in
the case of the MA(11) model, both in the case of small (e.g., { = 1.2) and large
(e.g., ¢ = 1.8) values of the tail index {; the advantages further continue to exist
in the case of AR(1) processes with {’s close to two, including the case { = 1.8
reported in Table 3.1.

In addition, as is seen from the numerical results presented below, the dependence
of finite-sample performance of the z-statistic based inference on the parameter
g (the number of blocks) is much weaker than the dependence of subsampling
performance on the block size b. As discussed in McElroy and Politis (2002),
while some insights on optimally picking b are available in the case of finite second
moments (see Politis et al. 1999), little is known on the problem in the presence of
dependence and heavy-tailedness. For example, even the computationally expensive
approaches to the optimal choice of the block size b for i.i.d. heavy-tailed observa-
tions considered in Romano and Wolf (1999) and Politis et al. (1999), Chaps. 9 and

18We could not replicate several numerical results for subsampling reported in McElroy and Politis
(2002), in part because the formulas that enter the description of subsampling inference therein
break down for the block size b = 1 present in the tables in this section. We have noticed that
Tables 1 and 2 in McElroy and Politis (2002) for AR(1) processes with autoregressive parameters
0.5 and 0.9 are identical up to Monte Carlo. Also, it is our sense that the values of the block sizes b
in the first column of tables in McElroy and Politis (2002) do not always correspond to the actual
values used in the computations.

YOne should note that subsampling is generally designed to work under broad assumptions and
hence sometimes it does not perform as well as more highly tuned methods. In the context of
this section, subsampling also works in the case of unbalanced tails of the innovations €, with
lim,— o0 P(¢; > x)/P(e;, < —x) = ¢ # 1 (see McElroy and Politis 2002). Balancedness of the
tails of €, (the property that the above limit ¢ = 1 for ¢, in (3.16)) that implies that the limits
in (3.18) are symmetric stable r.v.’s (and, thus, scale mixtures of normals as in (3.9)) is important
for applications of the #-statistic based inference in the analysis dealt with.
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Table 3.5 Small sample results in a time series location model with symmetric {-stable distur-
bances
t-statistic (q) Subsampled #-statistic (b)
2 4 8 16 2 4 8 16
DGP |¢ T
MA 1.2 100

" Size

0 3.8 3.4 4.7 9.8 0.0 0.5 3.4 | 187

MA 1.2 {1,000 0 3.6 3.1 2.9 3.1 |20 3.3 7.1 |16.5

MA 1.8 100 0 4.9 5.0 6.7 |12.1 |0.0 0.1 1.6 9.4

MA 1.8 |1,000 0 4.9 4.7 5.0 50 0.1 0.1 0.2 0.9

AR 1.2 100 0 3.9 3.2 3.7 54 102 7.0 |18.6 |32.6

AR 1.2 {1,000 0 4.1 3.0 2.5 30 |29 |10.5 [20.5 263

AR 1.8 100 0 4.7 44 5.3 6.9 (0.0 1.1 6.5 |14.9

AR 1.8 |1,000 0 4.7 4.6 4.8 48 0.1 0.3 1.9 4.8

DGP |¢ T " Non-size adjusted power

MA 1.2 100 1.0 |104 [30.1 (453 |564 [0.6 |10.5 |28.6 |49.4

MA 1.2 {1,000 1.0 |142 [457 (589 |63.8 |25 [19.0 441 |59.1

MA 1.8 100 04 |142 |384 589 |73.5 |0.0 29 [20.6 |49.2

MA 1.8 |1,000 02 |19.0 |56.8 |76.0 |82.0 |O0.1 0.1 |158 |51.1

AR 1.2 100 20 |10.8 |29.2 425 |50.5 |3.5 |36.2 [51.3 |60.2

AR 1.2 {1,000 20 |149 [450 583 |63.1 |52 |523 [657 695

AR 1.8 100 08 |142 |37.7 |554 |656 |0.1 |241 [51.2 664

AR 1.8 |1,000 04 |18.7 |572 756 |81.3 |0.1 |34.6 |70.0 |78.6

Notes: Rejection probabilities of nominal 5 % level two-sided tests about p in the model y, =
f+u,t = 1,....T where uy, = 0.5u_y + S, and up = So (AR) and u, = 3,2 VS,
with {y; }go = {0.03,0.05,0.07,0.1,0.15,0.2,0.15,0.1,0.07,0.05, 0.03} (MA), and S, are i.i.d.
¢-symmetric stable distributed. The subsampled #-statistic rejects if the full sample OLS t-statistic
falls outside the 2.5 and 97.5 % quantiles of the empirical distribution function of OLS z-statistics

computed on all 7 — b + 1 consecutive subsamples of length b, as described in detail in McElroy
and Politis (2002). Based on 10,000 replications

11, are heuristic in nature and are not known to satisfy any asymptotic optimality
properties. In addition, if tail index ¢ is close to 1, the methods for the block size
selection available in the literature result in the empirical coverage probabilities
of subsampling confidence intervals for the mean that are quite far apart from the
nominal coverage levels both in the i.i.d. (Politis et al. 1999, Chaps.9) and the
dependent case (Kokoszka and Wolf 2004).

3.4 Conclusion

As discussed in this book, the presence of heavy-tailed risk distributions in
economics, finance, and insurance has important implications: it decreases the
potential for diversification, which in turn affects the welfare of risk averse market
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participants, may magnify agency problems, and under some circumstances even
lead to the break down of markets for risk. These implications are well understood
and, as noted in the introduction, the study if heavy-tailedness is in some ways
mature, dating back 50 years. In other ways, however, it is still in its infancy. We
mention two areas where we believe future research may deepen our understanding
significantly.

First, previous research—including ours—has usually focused on the effects of
heavy-tailed shocks on economic, financial, or insurance markets, by modeling these
shocks as exogenous. There is substantial evidence, however, that many of these
shocks seem to arise endogenously, “within the system.” This certainly applies to the
recent financial crisis, which is commonly referred to as “systemic,” the term having
exactly this interpretation. It can also be argued that it is also the case for many other
events, e.g., the stock market crash of October 19, 1987, which was not triggered by
any public news events. Similarly, shocks to individual firms, e.g., operational risk
events, may be triggered by the behavior of agents within the system, e.g., when the
interaction between a firm and its customers leads to major law-suits. An exciting
area of future research, with potentially significant policy implications, would focus
on furthering our understanding of how the joint strategic actions of agents in an
economic system endogenously may generate heavy-tailed risks.

Second, the results on (non-)robustness of economic and financial models
presented in the book motivate the development and applications of robust infer-
ence approaches under heavy tails, heterogeneity, and dependence. The inference
methods discussed in the book include the log-log rank-size regression approaches
to tail index estimation with correct standard errors and optimal shifts in ranks and
t-statistic-based approaches to robust inference under heterogeneity, dependence,
and heavy-tailedness of largely unknown type. The inference methods discussed
are illustrated by several empirical applications, including the analysis of heavy-
tailedness properties of foreign exchange markets in emerging and developed
countries. The approaches dealt with in this chapter can also be used in the analysis
of heavy-tailedness properties of many other economic and financial variables
and the effects of crises on them (see Ibragimov and Ibragimov 2014a for the
empirical analysis of heavy-tailedness of income and wealth distributions and upper
tail income and wealth inequality in Russia and the world and Ibragimov and
Ibragimov 2014b for the study of the effects of the 2008 crisis on the dynamics
of unemployment, economic growth and other key variables and indicators in CIS
economies and world markets). Further applications of the presented inference
methods and related robust inference approaches in the analysis of a number of
important problems in economics and finance complicated by heavy-tailedness,
heterogeneity, and dependence are currently under way by the authors and their
co-authors.
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