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With this introductory text, the authors have
managed to de-mystify Statistics for students of
pharmacy and clinical research who may be
taking their first, or one of their earliest, courses
in the subject. Three fundamental departures
from the standard treatment of statistics are
evident from the start – the way in which “Statis-
tics” is defined, the organization of the book
itself, and the use of a single, unifying disease
area for illustration throughout the book. The
reference to Statistics as “an experimental
approach to gaining knowledge” at the start of
the first chapter sets the tone for the rest of the
book. Statistical concepts are defined and
explained relative to their usefulness in clinical
decision making. A unique operational defini-
tion of the discipline of Statistics is presented
that consists of six components, beginning with
the posing of a research question and concluding
with both a regulatory submission and peer-
reviewed publication. This is a far cry from the
standard definitions used in most Statistics texts
and alerts the reader to the fact that applications
and discussions of utility will be intertwined
with mathematical concepts and methodologies
for the duration of their reading.

Rather than simply providing an exposition of
mathematical terms and operators followed by a
canvassing of the usual array of statistical tools
and techniques, the authors choose instead to
follow the product development pathway in
organizing their book, showing how statistics
plays an important role in providing the ability
to move from step to step with objectivity and
sound decision making. After an overview of the
drug development paradigm that includes the
nonclinical, manufacturing, and marketing
aspects, the reader is introduced to the funda-
mentals of experimental design, probability dis-

tributions, and hypothesis testing. The reader is
then guided through each phase of pharmaceu-
tical clinical trials. From early phase to confir-
matory trials, the questions that need to be
addressed and the types of data and statistical
tools needed to address them are explained and
fully illustrated with an antihypertensive treat-
ment example. Note, however, that the straight-
forward nature of the exposition does not equate
to simplicity of subject matter. Nonparametric
statistics, noninferiority trials, and adaptive
designs all receive mention as the text covers the
majority of situations these future researchers are
likely to encounter. And unlike many basic sta-
tistics texts with a focus on efficacy occupying
the majority of the pages, safety analyses receive
nearly equal treatment here. Timely safety topics
of particular clinical interest, such as QT/QTc
interval prolongation and how to design a study
to test for this adverse effect, are covered.

Focusing on a potential treatment of hyper-
tension for illustration throughout the book pro-
vides consistency and really makes the product
development pathway come alive. The reader
has the sense of helping move this product from
phase to phase, and the example serves to not
only illustrate the statistical methods, but also
the clinical decision making surrounding the
product’s development. In addition, the reader is
able to accumulate the medical background
required to appreciate the data examples in a
minimum number of pages, and the example is
rich enough so as to not afford any loss of
generality with this singular focus. 

The dialogue between clinician and statistician
is of the utmost importance in the successful
execution of a product development program
today. The need for strong communication skills,
verbal and written, among those involved in this
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complex process has never been greater. The
authors have provided a text that fully equips
students to engage in clear and meaningful dia-
logue with their clinical colleagues and regula-
tory counterparts. By focusing on the common
goal of learning essential information about
experimental products through well-designed
and well-conducted studies, and accurately
collected and appropriately analyzed data, the
reader never loses sight of the fact that statistics
are the means to the end, and not the end in
themselves. As the authors note on page 191,
“Our interest in Statistics, then, is a pragmatic
one: The discipline provides the best way cur-
rently available to conduct clinical development
programs.”

I have had the pleasure of working with Todd
Durham for over 10 years and I am not surprised
in the least with his clear and concise treatment
of Statistics in this text. He is known among
friends, colleagues, and students for his thought-
ful approach to study design and analysis

problems, his excellent communication skills,
and his great capacity for mentoring and tutor-
ing others. His contributions through this text
will enable other classrooms to benefit from his
winning style of teaching even when he is not
present to lead the discussion himself. Todd is an
Adjunct Professor of Clinical Research at the
Campbell University School of Pharmacy, and
teaches Statistics to students in the Master of
Science in Clinical Research program. I am
delighted that this collaboration with Rick
Turner, the Chairman of the Department of
Clinical Research, has proved so successful.

Lisa M. LaVange, Ph.D. 
Professor and Director, Collaborative 

Studies Coordinating Center 
Department of Biostatistics, 

School of Public Health 
University of North Carolina at Chapel Hill 

Chapel Hill, NC, USA
January 2008
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This book is an introductory statistics textbook
designed primarily for students of pharmacy,
clinical research, and allied health professions. It
takes a novel approach by not only teaching you
how to conduct individual statistical analyses,
but also placing these analyses in the context of
the clinical research activities needed to develop
a new pharmaceutical drug. By taking this
approach, we are able to provide you with a uni-
fied theme throughout the book and, in addition,
to teach you the computational steps needed to
conduct these analyses and provide you with a
powerful conceptual understanding of why these
analyses are so informative. This approach also
makes the book well suited to professionals
entering the pharmaceutical, biotechnology, and
contract research organization (CRO) industries
whowish togainabroaderunderstandingof study
design and research methodology in clinical
trials. Both target audiences will find this book a
useful introduction to the central role of the disci-
pline of Statistics in the clinical development of
pharmaceutical drugs that improve the human
condition. Important concepts are reinforced
with review questions at the end of chapters.

By focusing on the statistical analyses most
commonly used in drug development and
employing an organizational structure that fol-
lows the order in which these statistical analyses
are commonly used in clinical drug develop-
ment, the book shows you how the discipline of
Statistics facilitates the acquisition of optimum
quality data, that is, numerical representations
of relevant information, which form the basis of
rational decision-making throughout the drug
development process. 

Although this book meaningfully integrates
the computational aspects of statistics with the
overall conceptual objectives for which they are

used, we have not included some topics that are
traditionally included in introductory statistics
textbooks, including linear regression and corre-
lation. We believe that the selected topics and
the depth at which they are discussed are appro-
priate and unique for our intended audience.
While we are very happy with the title of the
book as it is, the title The Statistical Basis of
Decision-making in Pharmaceutical Clinical Trials
would capture one of the book’s major themes
extremely well. 

The motivation to write this book is directly
related to our professional activities. Both of us
teach Statistics in the Department of Clinical
Research at the Campbell University School of
Pharmacy (TD, a professional biostatistician, is
also an Adjunct Professor of Clinical Research,
and RT is Chairman of this department). The
department is located in the heart of North
Carolina’s Research Triangle Park, one of the
world’s leading pharmaceutical and biotech-
nology research centers. Statistics courses in this
department are therefore taught in the context
of the development of new pharmaceutical and
biopharmaceutical products, with the goal of
providing a solid knowledge and understanding
of the nature, methods, applications, and impor-
tance of the discipline of Statistics. It should be
emphasized that we are not training our students
to be professional statisticians. Rather, we wish
them to become familiar with the basics of
design, methodology, and analysis as used in the
development of new drugs. We aim to convey
the following information:

• why, and how, data are collected in clinical
studies (to investigate a specific question,
using appropriate study design and research
methodology)
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• how these data are summarized and analyzed
(descriptive statistics, hypothesis testing and
inferential statistics, statistical significance)

• what the results mean in the context of the
clinical research question (interpretation,
estimation, and clinical significance)

• how the results are communicated to regu-
latory agencies and to the scientific and
medical communities.

By presenting statistical analysis in a meaningful,
integrated, and relevant manner, our students’
knowledge and retention of the material is
markedly improved. Moreover, their under-
standing and appreciation of the discipline of
Statistics in all of their future scientific endeavors
(both academically while studying, and profes-
sionally once in the workforce) is considerably
enhanced. This book will become the text for the
first of two Statistics courses in our Master of
Science in Clinical Research program.

It is appropriate to acknowledge here that
neither author is a clinician. The first author is
a professional statistician and the second a pro-
fessional educator, medical writer, and research
methodologist. We are also both clinical trial-
ists: The first author is experienced in statistical
aspects of clinical trials, and the second in writ-
ing regulatory clinical documentation. At vari-
ous points throughout this book, we discuss
how the discipline of Statistics provides the
rational evidence for making clinical decisions.
On several occasions we use hypothetical data,
show how statistical analyses of these data and
the associated statistical interpretations can
form the rational basis for clinical decision-
making, and illustrate what the hypothetical

clinical decision might be. This is done for edu-
cational purposes. Please remain aware, when
reading our hypothetical clinical interpreta-
tions, that we are not clinicians: We are con-
veying the logic and importance of incorporat-
ing statistical information in the process of clin-
ical decision-making. The crucial role that the
discipline of Statistics plays in clinical practice
is to provide the information upon which evi-
dence-based clinical practice is based. The most
effective drug development programs, one facet
of the larger field of clinical research, result
from the collaboration of many specialists,
including statisticians and clinicians. Actual
clinical decisions are, of course, the province of
clinicians.

We express our thanks to professional col-
leagues and students who have supported and
informed us during the preparation of this book.
Christina De Bono and Kevin Tuley at
Pharmaceutical Press have provided constant
support and assistance throughout this project,
and we are very grateful. Richard Zink provided
detailed reviews of several drafts of the manu-
script. Finally, our previous students have pro-
vided invaluable feedback on lecture material
and initial drafts of this book. 

Views expressed in this book are those of the
authors and Turner Medical Communications
LLC, and not necessarily those of Inspire
Pharmaceuticals and/or the Campbell University
School of Pharmacy.

Todd Durham and Rick Turner
Research Triangle Park, NC, USA

August 2007
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1.1 Introduction

It is common to start a textbook with a defini-
tion of the book’s topic. However, in the case of
the discipline of Statistics (indicated in this book
with a capital “S”), it is difficult to find a univer-
sally accepted definition. Different textbooks are
written for different target audiences, and their
goals can therefore be quite different. So, before
going any further, it is appropriate to identify
our target audiences, and to provide you with a
definition of Statistics that is informative and
meaningful in the context of this book.

The discipline of Statistics is discussed in the
context of pharmaceutical clinical trials because
two of the primary target audiences for this book
are students of pharmacy and students of clinical
research. A clinical trial can be defined as an
experiment testing a medical treatment on
humans (Piantadosi, 2005). In this definition,
the words “human” and “clinical” are closely
linked. However, this definition also makes it
clear that clinical trials can be performed to test
a variety of medical treatments. In addition to
pharmaceutical trials, the focus of this book,
clinical trials are conducted to test medical
devices (see Becker and Whyte, 2006) and some
surgical practices. 

In addition to being suitable for students of
both pharmacy and clinical research this book is
also suitable for other students who are inter-
ested in the development of new pharmaceutical
drugs, including students of medicine, nursing,
and other health-related professions where
pharmacotherapy is of relevance. Statistics
courses are typically part of such degree
programs, and we have designed this book so
that these students will also benefit from the
material presented and taught. Our goal in

this book is to introduce you to basic statistical
methodology and analysis in a meaningful and
very relevant context, the conduct of pharma-
ceutical clinical trials. We use the phrase “clin-
ical trials” from now on with the understanding
that all discussions are about the development of
pharmaceutical drugs. 

By teaching Statistics in a context that is very
relevant to you, the statistical analyses that you
will learn about will not simply be abstract ideas:
They will be techniques that meaningfully
collect and analyze numerical information of
importance in your profession. The development
of new drugs, whether brand-new chemical enti-
ties (NCEs), biologics, or new forms of existing
drugs, requires three steps: 

1. collection of numerical representations of
information 

2. analysis and interpretation of this numerical
information 

3. decision-making based on this analysis and
interpretation.

By the end of this book you will have a solid
conceptual knowledge and understanding of the
experimental methods and statistical analyses
used in new drug development. In addition, you
will have gained computational knowledge: You
will have learned how to conduct the most
commonly used statistical analyses and how to
interpret the results of these analyses. This combi-
nation of conceptual and computational knowl-
edge and understanding is a powerful one that
will serve you well in the rest of your studies.

A couple of conceptual points are useful here.
First, there is much more to the discipline of
Statistics than “obligatory calculations” at the
end of a study. Rather, the discipline of Statistics
is an integral component throughout the entire

1
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new drug process. Second, conducting the statis-
tical analyses most commonly employed in new
drug development is really not that hard. The
hard parts of new drug development are asking
the correct research questions, making sure that
the correct study design is used in each clinical
trial, and making sure that the correct experi-
mental methodologies are used to acquire
optimum quality data during the clinical trial
(we talk more about these issues in Chapters 3
and 4). If good research questions are asked, and
the correct study designs and experimental
methodologies used to collect optimum quality
data, performing the statistical analyses is not
really that difficult. As Piantadosi (2005)
commented, “good trials are usually simple to
analyze correctly.” 

1.2 The discipline of Statistics

The discipline of Statistics is a well-developed
and powerful discipline that involves much
more than simply number crunching.
Crunching numbers is certainly part of it, but,
unless those numbers have been carefully and
meaningfully collected, crunching them is not
going to provide any useful information. 

Statistics is a scientific discipline because it
adopts the scientific method: A method of
thinking and conducting business in a certain
way. You are very likely familiar with the sciences
of biology, chemistry, and physics, but these are
not the only sciences. Individual fields of investi-
gation can be called a science, or a scientific
discipline, if they adopt the scientific method
of inquiry. In this method, theories lead to
hypotheses, and these hypotheses are then tested
in the scientific manner. A key characteristic of
scientific hypotheses is that they need to be able
to be disproved. If repeated evaluations of a
theory via appropriate hypothesis testing do not
disprove the theory, compelling evidence starts to
accumulate that the theory may have merit. It is
then deemed reasonable to proceed on the basis
that the theory does indeed have merit, but with
the knowledge and acceptance that future inves-
tigations may provide evidence that the theory
does not have merit (see Turner, 2007).

In this book we have adopted the broad oper-
ational definition of Statistics provided by
Turner (2007). In this definition, Statistics is
regarded as a multi-faceted scientific discipline
that comprises the following activities: 

• Identifying a research question that needs to
be answered. 

• Deciding upon the design of the study, the
methodology that will be employed, and the
numerical information (data) that will be
collected. 

• Presenting the design, methodology, and
data to be collected in a study protocol. This
study protocol specifies the manner of data
collection and addresses all methodological
considerations necessary to ensure the collec-
tion of optimum quality data for subsequent
statistical analysis.

• Identifying the statistical techniques that will
be used to describe and analyze the data in an
associated statistical analysis plan that is
written inconjunctionwith thestudyprotocol.

• Describing and analyzing the data. This
includes analyzing the variation in the data to
see if there is compelling evidence that the
drug is safe and effective. This process
includes evaluation of the statistical signifi-
cance of the results obtained and, of critical
importance, their clinical significance. 

• Presenting the results of a clinical study to a
regulatory agency in a clinical study report,
and presenting the results to the clinical
community in journal publications. 

This functional definition makes clear that the
discipline of Statistics is indeed multi-faceted
and essential throughout clinical trials. It is crit-
ical at the start of the clinical trial process so that
a study can be designed appropriately to facili-
tate the collection of optimum quality data,
which then need to be organized and managed
correctly. These data are then described and
analyzed, and the numerical results of these
analyses are interpreted in the context of the
particular study. Finally, the numerical results of
the analyses and the authors’ interpretation of
these results are presented to regulatory agencies
to request permission to market the drug, and
published in clinical communications to provide
information to physicians. 

2 Chapter 1 • The discipline of Statistics: Introduction and terminology



This functional definition of Statistics may
well contain some concepts and terms with
which you are not familiar at this point, and that
is fine. This book’s goal is to make you familiar
with these terms and concepts so that you will
understand the statistical processes and proce-
dures that are used in clinical trials. Individual
chapters address different parts of this defini-
tion. However, it is important for us to empha-
size here that the individual aspects presented in
the chapters are really seamless components of
one overall experimental approach to gaining
knowledge, the discipline of Statistics. These
components act together to ensure that high-
quality data acquisition, correct analysis, and
appropriate interpretations provide optimal
answers to good research questions.

1.3 The term “statistic” and the plural
form “statistics” 

Having operationally defined the discipline of
Statistics, we will now operationally define the
terms “statistic” and “statistics,” each written
with a lower case “s.” A statistic typically
involves one piece of numerical information. For
example, the number of states in the United
States of America is 50, and the number of coun-
tries comprising the United Kingdom is 4. In
some circumstances, however, a statistic can
usefully involve more than one piece of numer-
ical information. Consider how you might
describe a sports team’s performance in a season.
A simple numerical representation of this success
might be the number of games they won,
perhaps 17. However, it is probably more useful
to provide information about wins and losses
(assume no draws), and therefore to provide the
total number of games as well. In this context, a
“17-3” summary of the season’s performance (a
winning season) is quite different from a “17-23”
summary of performance (a losing season), even
though the number of wins is the same. So, if
you want to regard 17-3 as a single statistic, even
though it contains two numbers, this seems
perfectly reasonable to us. Indeed, one medical
example of a single statistic involving two pieces
of numerical information, a person’s blood 

pressure, is particularly relevant for the discus-
sions in this book concerning the development
of a new investigational drug that is intended to
reduce high blood pressure. This point is
discussed further in Section 1.10.

The word “statistics” with a lower case “s” is
used throughout the book as simply the plural
of the term statistic. A listing of the sports
team’s wins and losses for the last 10 seasons,
perhaps along with similar details for every
other team in the same division or confer-
ence, would very adequately be described as
statistics.

1.4 The term “statistical analysis”

The term “statistical analysis” has two mean-
ings. Statistical analysis, used in a general
sense, can be regarded as a global description
or plan of how data collected will be analyzed.
The term “a statistical analysis” refers to an
individual analytical technique that is used to
describe and analyze numerical information.
This book teaches you how to conduct a collec-
tion of statistical analyses that are appropriate
for use in analyzing the results of clinical
trials.

1.5 Association versus causation

If we were to measure a number of characteristics
(for example, age, height, and bone mineral
density) in a large group of individuals we would
undoubtedly find that they were related in some
sense. For example, as we age from infants to
young adults, our height increases from 18
inches (or 45 cm) or so to 50 inches (1.27 m) or
more. If we were to examine the age and height
of children aged less than 17 years, we would not
find many (if any) 17-year-old children who
were 18 inches (45 cm) tall, and we would not
find many (if any) 2-year-old children who were
60 inches (1.52 m) tall. Biological and medical
traits with such a relationship are said to be
associated.

Association versus causation 3



When someone suffers an acute injury such
as a cut from a kitchen knife the immediate
bodily response may include bleeding and sharp
stinging pain. Various biological responses to
the trauma can lead to a number of measurable
effects. Had the trauma not occurred at this
time the finger would not have bled and nor
would the sharp stinging pain have occurred.
Some cuts are so minor that they do not result
in either bleeding or pain so the occurrence of
the trauma does not perfectly predict the effects
bleeding and pain. The philosophical descrip-
tion of causative effects is controversial.
Without delving into this controversy we can
think of cause-and-effect relationships as being
established on the basis of:

• biological plausibility
• temporal relationship between the antecedent

(cause) and the result (effect)
• some quantitative demonstration that occur-

rence of the “cause” increases the likelihood
of observing the effect.

The two concepts association and causation
occur throughout this text and they should not
be confused. Association of two characteristics is
a requirement to establish causation, but the
converse is not true. It is truer to say that aging
“causes” human growth than to say that growth
causes aging. There are a number of research
methods, especially in the field of epidemiology,
that may be used to study the relationship
among various health risks (including the use of
medical treatments) and health outcomes.
However, the randomized clinical trial is consid-
ered the gold standard when it comes to estab-
lishing cause-and-effect relationships. In this
book we discuss the likely causative effects of
new drugs on health outcomes of interest. 

1.6 Variation and systematic variation

The study of the biological sciences has major
differences from the physical and mathematical
sciences. In the physical sciences, the same oper-
ation done under the same conditions always
produces the same result. For example, a ball
dropped off the same building always accelerates

towards the earth at the same rate, a rate
governed by the gravitational pull between the
earth and the ball. In the biological sciences,
including the clinical sciences, this is simply not
the case. The same dose of medicine (even dose
adjusted for weight) will not have an identical
effect on two different people. In a large group of
people there will typically be considerable varia-
tion in response. Similarly, the optimum clinical
care of one patient will likely involve a different
combination of therapeutic interventions than
the optimum care of another. In clinical research
we have to deal with variation, and examining
data for systematic variation falls squarely
within the province of Statistics. The topic of
variation is discussed further in Chapter 5.

1.7 Compelling evidence

Compelling evidence in Statistics might be
thought of as the inverse of ‘reasonable doubt’ in
the legal system, but with the advantage that it
can be quantified according to the precise rules
of Statistics. The discipline of Statistics has been
developed as a widely accepted method of
conducting scientific investigation in many
fields, including drug development. Data are
collected, analyzed, interpreted, and presented
in a certain way such that the scientific and clin-
ical communities at large recognize the validity
of the study. 

In the practice of law, each attorney presents
his or her evidence in a certain manner to a jury
under the scrutiny of a judge, who makes sure
that each component of the evidence is legiti-
mate in that it meets an acknowledged level of
acceptance. It is often true in legal cases that
absolute proof is not possible (unless there is
incredibly strong evidence such as a video of the
crime, and even then the defense lawyer will
probably argue the existence of extenuating
circumstances), so the prosecutor’s arguments
have to be demonstrated to be likely true beyond
a reasonable doubt. In the context of clinical
trials the discipline of Statistics incorporates
accepted methods of data collection and data
analysis that can provide compelling evidence
that an investigational drug does indeed do what
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it is intended to do. A clinical trial may provide
compelling evidence that an investigational
drug does indeed lower blood pressure. The term
“compelling evidence” is not the same as the
term “proof” because a single clinical trial
cannot prove that a drug is effective. However, it
can certainly provide compelling evidence. 

1.8 The terms “datum” and “data”

The word data is a plural word indicating more
than one piece of numerical information. The
singular form of the term is datum. As the statis-
tical analyses described in this book always
analyze more than one data point the term
“data” is used throughout. Accordingly, accom-
panying plural words are used in conjunction
with the word data. Examples are “the data are,
the data were, these data, the data show.” 

If you have any uncertainty as to how to
construct a phrase including the word data,
replace the word data in your mind with the
word results. While the words data and results
are not synonymous, the word results is a plural
construct, as is the word data. This strategy will
likely help you express a phrase including the
word data correctly.

The word datum does not occur again in this
book.

1.9 Results from statistical analyses as
the basis for decision-making

Many decisions have to be made throughout the
drug development process. A lot of these deci-
sions concern whether it is prudent to continue
to the next phase of development, as outlined in
Chapter 2. To allow rational decisions to be
made we need reliable, quantitative information
upon which to base our decisions. In a very real
sense the main contribution of the discipline of
Statistics in research endeavors is providing
numerical representations of information that
facilitate good decision-making.

Data are numerical representations of indi-
vidual pieces of information. Once data have

been collected in a clinical trial that employed
the appropriate study design and experimental
methodology, statistical analysis utilizes these
individual pieces of numerical information to
obtain a numerical representation of the “big
picture.” The results of a statistical analysis and,
very importantly, the interpretation of these
results in the context of the specific research
question being asked provide the empirical
information upon which decisions can be made.
We talk a lot about decision-making in this book.

1.10 Blood pressure and blood
pressure medication 

We have deliberately chosen to focus on one
particular therapeutic area for the worked exam-
ples throughout this book: This strategy provides
a unified approach in all of the discussions about
clinical trials and statistical analyses. Our discus-
sion and worked examples focus on the develop-
ment of a new investigational drug for the
treatment of high blood pressure. The term
hypertension is used for this condition, and
drugs intended for the treatment of hyperten-
sion are called antihypertensive drugs, or simply
antihypertensives. 

1.10.1 Blood pressure and its
measurements

The measurement of blood pressure usually
involves the joint measurement of two aspects of
arterial blood pressure, systolic blood pressure
(SBP) and diastolic blood pressure (DBP). The SBP
provides a representation of the pressure of blood
as it is ejected from the heart into the body’s
arteries at each heart beat. The DBP provides a
representation of the blood pressure in the
arteries in between each heart beat. A healthy
blood pressure for a young adult is often repre-
sented as “120/80.” This is pronounced “one
twenty over eighty.” In this case, the “/” symbol
does not represent the division of 120 by 80 to
get a value of 1.5: It is simply used to separate the
two blood pressure readings. The units of blood
pressure are millimeters of mercury (mmHg), so
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the actual blood pressure values in this case are an
SBP of 120 mmHg and a DBP of 80 mmHg.

Suppose now that we measured someone’s
blood pressure five times, once every 5 minutes.
The average blood pressure could be represented
by calculating the average SBP (say 124 mmHg)
and the average DBP (say 82 mmHg) and then
writing this average blood pressure as 124/82. 

1.10.2 Medical management of blood
pressure

The Seventh Report of the Joint National
Committee on Prevention, Detection, Evalution,
and Treatment of High Blood Pressure (JNC 7:
National Institutes of Health, 2004) is a defin-
itive publication concerning the treatment of
hypertension. It provides the following blood
pressure classifications for adult blood pressures:

• Normal: SBP � 120 mmHg and DBP � 80
mmHg.

• Pre-hypertension: SBP 120–139 mmHg or DBP
80–89 mmHg.

• Stage 1 hypertension: SBP 140–159 mmHg or
DBP 90–99 mmHg.

• Stage 2 hypertension: SBP � 160 mmHg or
DBP � 100 mmHg.

These classifications are related to manage-
ment strategies for hypertension. This report is
the first of the JNC’s series of reports to use the
term “pre-hypertension,” a term introduced to
signal the need for increased awareness and
education among healthcare professionals and
the general public of the benefits of reducing
blood pressure before it reaches the levels in the
hypertensive categories. The relationship
between blood pressure and risk of cardiovas-
cular events is “continuous, consistent, and
independent of other risk factors. The higher the
BP, the greater is the chance of heart attack, heart
failure, stroke, and kidney disease” (National
Institutes of Health, 2004, p 2). These classifica-
tions are provided as a very useful means of
directing the management of blood pressure by
clinicians, who have to make a decision whether
or not to treat a patient. If they decide that phar-
macological treatment is warranted they need to
decide what regimen should be prescribed. There

are several classes of antihypertensive drugs on
the market, and clinicians typically follow the
recommendations in this report.

1.11 Organization of the book 

As noted in Section 1.1, reading this book
provides you with a solid conceptual knowledge
and understanding of the experimental methods
and statistical analyses used in new drug devel-
opment, teaches you how to conduct statistical
analyses commonly used in clinical trials, and
shows you how to interpret the results of these
analyses to facilitate rational, information-based
decision-making. This information is taught in
the context of a particular category of clinical
trials that are conducted during the develop-
ment of a new drug. As you will see in Chapter 2,
clinical drug development programs typically
consist of a progressive series of clinical trials.
These range from the first trials in which the
investigational drug is administered to humans
to much larger trials that are conducted as the
last item before requesting marketing approval
for the drug from a regulatory agency. This book
focuses on these larger trials, frequently called
Phase III trials and also known as therapeutic
confirmatory trials. 

This book, therefore, is a self-contained intro-
duction to the discipline of Statistics and its use in
therapeutic confirmatory clinical trials. The first
part of the book provides introductory comments
about the discipline of Statistics and lays the
foundations for our later discussions in the
context of pharmaceutical trials. Chapter 2
presents an overview of the process of new drug
development and the role of clinical trials in this
process. The categories of different types of clin-
ical trials are identified and discussed so that you
willunderstandthetypesofdatacollectedinthem.

Chapters 3 and 4 discuss how research 
questions are asked and answered in 
statistical language during clinical trials, and
introduce the study designs and experimental
methodologies that are used to acquire optimum
quality data with which to answer our research
questions. Chapter 5 discusses statistical ways of
describing and summarizing these data. Chapter 6
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introduces hypothesis testing and estimation,
two important ways of analyzing data from
clinical trials. 

The concepts and techniques discussed in
these chapters are then developed and extended
in later chapters, in which we teach you how
to conduct statistical analyses commonly
employed in preapproval clinical trials, that is,
clinical trials that are conducted before applying
for marketing approval from a regulatory agency.
Chapter 7 discusses clinical trials that are
conducted at the beginning of a clinical devel-
opment program. While these trials are not the
major focus of this book, it is appropriate to
consider them briefly. The statistical challenges
in early phase trials are different from those in
Phase III trials, and it is appropriate to highlight
these differences. 

Chapters 8–11 discuss clinical trials that are
conducted later during the clinical development
program. These chapters address both safety data
and efficacy data. Throughout these chapters,
each new statistical analysis taught is addressed
in the following way:

• identification of the research question (what
is the decision to be made?)

• identification of data that will provide an
answer to the research question

• identification of the appropriate study design
(how to conduct a trial that will provide data
capable of answering the research question as
accurately as possible)

• identification of the best methodologies to
collect optimum quality data during the study
with which to answer the research question as
accurately as possible

• identification of the appropriate statistical
analysis to be employed

• computational steps necessary to conduct the
statistical analysis chosen

• inference and decision-making: Interpreting
the results in the light of the specific research
question asked.

Chapters 12 and 13 then conclude the book
by providing an overarching discussion of the
topics covered in previous chapters, and
discussing further the philosophical rationales
for the employment of Statistics in new drug
development. 

1.12 Some context before reading
Chapters 2–11

The purpose of this section is to provide you
with a conceptual framework within which to
assimilate the statistical material presented in
Chapters 2–11. While this book teaches you the
computational skills to conduct some statistical
analyses, as an introductory statistics textbook
should, we also want to provide you with a
conceptual knowledge and understanding of
why these analyses are undertaken. Rephrasing
this last point, we want to provide you with a
conceptual knowledge and understanding of
how the information gained from a clinical trial
is used in various forms of decision-making. 

1.12.1 Decision-making during a clinical
development program

The process of developing a new drug is an
extremely expensive one. While we do not know
the precise exchange rate on the day that you are
reading this, estimates of US$1bn and £600m are
certainly very meaningful at the time of writing.
A related and highly relevant observation is that
most drugs fail to reach marketing approval. For
every 10 000 potential drug compounds only 10
make it to initial clinical trials in which the
investigational drug is administered to humans
for the first time. Of these ten, only one, or
maybe two, will successfully make it through all
phases of clinical trials and be approved by a
regulatory agency for marketing. Given that the
other eight or nine investigational drugs will not
receive marketing approval, that is, they will
“fail,” it makes sense from many perspectives
that they fail as early as possible.

This statement may initially (and very reason-
ably) seem counterintuitive to you: Isn’t the goal
to approve a new drug? It certainly is, but, to get
a drug approved, we need to provide a regulatory
agency with compelling evidence that the drug
is both safe and efficacious. If a drug is not safe
and efficacious, the sooner we find out the
better, for various reasons. First, money spent on
a drug that fails cannot be spent on developing
another drug that might receive marketing
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approval – that is, from a business perspective, it
is not optimal. Second, and more importantly,
individuals volunteer to be in clinical trials.

In later phase clinical trials, individuals with
the disease or condition of interest, that is, the
desired indication for the investigational drug
under development, volunteer for these trials.
One crucial ethical aspect of preclinical trials is
that we must be uncertain about whether the
investigational drug works. If we know that the
drug works we should not be giving a placebo to
half of our participants. If we know (or arguably
even strongly suspect) that the drug does not
work we should not administer it to clinical trial
participants. In addition, in the case of relatively
less common diseases, there are only so many
individuals who can participate in clinical trials,
and we would prefer that they participate in a
trial employing an investigational drug with a
relatively higher chance of being approved than
in one employing a drug with a relatively lower
chance. Therefore, we should be constantly
looking for evidence that our investigational
drug does not work, and we should stop the clin-
ical development program at that point. The
discipline of Statistics provides the information
that forms the rational basis for making the deci-
sion to stop the clinical development program,
that is, to kill the drug.

1.12.2 Decision-making during evidence-
based clinical practice

Evidence-based clinical practice has two
components:

1. Providing the evidence: This is the domain of
clinical research and, in the case of drug
development, the province of clinical trialists.
The discipline of Statistics is a central and crit-
ical component of the planning, conduct,
analysis, and interpretation of clinical trials.

2. Using the evidence to decide on the best treat-
ment for individual patients on a case-by-case
basis. This is the domain of clinical practice.

Both components are vital to evidence-based
clinical practice. Katz (2001, p xvii) has written
persuasively and eloquently on this issue: 

All of the art and all of the science of medicine
depend on how artfully and scientifically we as
practitioners reach our decisions. The art of clin-
ical decision making is judgment, an even more
difficult concept to grapple with than evidence.

1.12.3 Summary

This book introduces you to the statistical
methodology employed in drug development at
both a conceptual and a computational level.
Statistical methodology provides numerical
representations of information that facilitate
rational, information-based decision-making
during regulatory considerations and clinical
practice.
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1.13 Review

1. When studying the effect of an investigational
antihypertensive drug, what sources of background
variation might we be concerned with in
measurements of blood pressure?

2. Describe three cases where two biological or
health traits are associated.

3. Describe three cases where two biological or
health traits represent a cause and effect.



2.1 Introduction

This chapter provides an overview of the process
of new drug development. It introduces you to
this process in a relatively succinct way, but still
provides enough details for you to understand
the relevance and importance of the statistical
methodologies discussed in the following 
chapters. 

As well as evaluating how well a new drug does
its job (for example, how well an investigational
antihypertensive drug lowers blood pressure), it
is vital to evaluate the safety of the drug. Both
safety and efficacy are investigated very thor-
oughly in preapproval clinical trials, and the
discipline of Statistics provides the tools to
conduct these investigations. As you will see in
due course the types of statistical analyses used
in the assessment of safety and of efficacy are
quite different. Moreover, the evaluation of data
collected during postmarketing surveillance
once the drug has been approved for marketing
employs additional types of statistical analyses.
Hence, there is a wide variety of statistical
analyses, and it is critical to use the appropriate
methodologies and statistical analyses in each
case.

New drug development is a very long,
complex, and expensive undertaking. The
process starts with the identification of a drug
molecule, a chemical compound that may
become an approved drug many years later.
Extensive formulation and chemistry research
must be undertaken to put the drug molecule in
a form that may be used in nonclinical (animal)
and clinical studies. The characteristics of a new
drug that make it useful include the following
(Norgrady and Weaver, 2005):

• It is safe.
• It is efficacious.
• It can successfully navigate all necessary regu-

latory oversight, including those that govern
nonclinical trials and preapproval clinical
trials, and be approved by regulatory agencies
for marketing.

• It can be manufactured in sufficiently large
quantities by processes that can comply with
all necessary regulatory oversight and that are
financially viable for the sponsor.

This list of attributes provides a good map for
our discussions in this chapter. 

2.2 Drug discovery

Drug discovery is the first part of the process of
drug development. It can be conceptualized as
the research done from the time of the recogni-
tion of a therapeutic need to the time that a drug
candidate is selected for initial nonclinical
testing. A drug candidate may be a small mole-
cule or a biological macromolecule such as a
protein or nucleic acid. Drug discovery activities
vary between small molecules and biological
macromolecules but the way in which preap-
proval clinical trials are structured is very similar
in both cases. The descriptions here address
small molecule drug discovery.

The ultimate goals of drug discovery are to
identify a lead compound, a drug molecule that is
the first choice candidate for the next stage of the
drug development process, and then to optimize
the molecule. This latter activity is called lead
optimization. It refers to searching for a closely
related molecule or chemically engineering
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modifications in the lead drug molecule to
produce the molecule that is best suited to
progress to nonclinical testing. Contemporary
disciplines such as genomics and proteomics,
bioinformatics, structural–activity relationships,
and in silico computer modeling (see Turner,
2007) are used to maximize the chance of an
identified molecule producing the desired biolog-
ical result (having beneficial pharmacodynamic
activity) while simultaneously minimizing its
chance of producing unwanted side-effects
(having pharmacotoxic activity). Once a drug
molecule that appears to have a ‘good’ chance of
being suitable for human pharmacotherapy is
identified (someone has to make this decision)
the candidate drug is tested extensively in
nonclinical research.

2.3 Regulatory guidance and
governance

Once a certain point in a nonclinical develop-
ment program is reached, compliance with regu-
latory governance becomes necessary. From that
point on all aspects of the drug development
process – manufacturing, the remaining nonclin-
ical studies, and clinical trials – are conducted
following regulatory guidance and governance.
This section provides an overview of regulatory
agencies and their work and responsibilities. 

There are many regulatory agencies around
the world, each charged to be responsible for
public health within their respective countries.
While there are some differences among these
agencies, there are also many similarities: The
activities of the International Conference on
Harmonisation of Technical Requirements for
Registration of Pharmaceuticals for Human Use,
a long name that is usefully represented by the
acronym ICH, have led to greater homogeneity.
The ICH is an amalgamation of expertise from
regulatory agencies and trade associations in
Europe, Japan, and the USA. This chapter
includes overviews of two regulatory agencies,
the US Food and Drug Administration (FDA) and
European Medicines Agency (EMEA), and of the
regulatory dossiers submitted to them during the
development of a new drug.

2.3.1 The Food and Drug Administration

The US FDA is part of the Executive branch of
the US government, and it is the country’s regu-
latory agency responsible for the governance of
new drug development. The FDA is housed
within the Public Health Service, part of the
Department of Health and Human Services.
When a sponsor has generated sufficient
discovery, formulation, and nonclinical data to
justify (in their opinion) initiation of studies in
humans, they prepare an investigational new
drug application (IND). Generally, an IND
includes data and information in four broad
areas: 

1. Animal pharmacology, pharmacokinetic, and
toxicology studies. 

2. Manufacturing information: These data
address the composition, manufacture,
stability, and controls used for manufacturing
the drug. 

3. Clinical study protocol: When originally
submitted the general investigational plan
should outline the overall plan, but it need
articulate only the studies to be conducted
during the first year of clinical development.
The clinical study protocol submitted
includes precise accounts of the design,
methodology, and analysis considerations
necessary to conduct the proposed study
and analyze their results (see Section 4.8). A
clinical investigator brochure is also typically
included.

4. Investigator information: Information on the
qualifications of clinical investigators is
provided to allow assessment of whether they
are qualified to fulfill their duties at the
investigational sites used during the clinical
trials. 

As the IND progresses further clinical study
protocols and the results of completed studies
(manufacturing, nonclinical, and clinical) are
submitted, and the IND grows accordingly.

When the clinical development program is
complete and all nonclinical studies being
conducted contemporaneously are complete, the
sponsor submits a new drug application (NDA)
(in the case of a biologic product, a biologics
license application [BLA] is submitted). Typically,
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sponsors meet with the FDA to discuss the
content and format of an NDA before its prepara-
tion, because this “pre-NDA meeting” can be
crucial for the sponsor to understand the content
and format that will best facilitate the FDA’s
review (see Regulatory Affairs Professionals
Society or RAPS, 2007, for more details).
Marketing approval by the FDA means that a drug
can be marketed in all 50 states within the USA.

While the ICH publishes an extensive list of
guidances, the FDA also publishes guidances for
industry that can be very helpful and can be
located via the FDA’s website (www.fda.gov). 

2.3.2 The European Medicines Agency

The European Medicines Agency (EMEA: the
second E is correct here) has its headquarters in
London and is responsible for the evaluation and
supervision of medicines for human (and veteri-
nary) use in Europe. The EMEA coordinates the
evaluation and supervision of medicinal prod-
ucts throughout the European Union, bringing
together the scientific resources of the 27 (at the
time of writing) European Union member states.
It cooperates closely with international partners
in ICH activities. 

At the point where an IND would be
submitted to the FDA, a clinical trial application
(CTA) is submitted by the sponsor. We noted
earlier that an IND grows in size as additional
clinical study protocols in a clinical develop-
ment program are submitted to the FDA, each
being incorporated into the overall IND. In
contrast, CTAs are protocol specific and one CTA
must be filed for each clinical study protocol.
Hence, in this case, the number of individual CTAs
increases during a clinical development program.
CTAs are based on summary information only;
no full study reports are submitted.

At the completion of the sponsor’s clinical
development program a marketing authoriza-
tion application (MAA) is submitted. An MAA is
used for both small molecule drugs and
biologics. There are two submission routes for
the sponsor to choose from:

1. the centralized procedure
2. the decentralized procedure.

The centralized procedure has been in place
since 1995. The review of the MAA is coordi-
nated by nominees from the Committee for
Medicinal Products for Human Use (CHMP)
called the rapporteur and co-rapporteur. This
procedure leads to a single EU scientific opinion,
which is then translated into a pan-EU decision
by the European Commission. The centralized
procedure is mandatory in some cases (for
example, for biotech drugs, and drugs intended
for oncology, HIV, diabetes, and neurodegenera-
tive disease indications) and it is also gaining
popularity for all new NCEs.

The decentralized procedure has been in place
since 2006. The review of the MAA is conducted
by a single agency, called the Reference Member
State (RMS). However, other EU countries in
which the sponsor wishes to market the drug
receive a copy of the MAA and are involved in
confirming the assessment made by the RMS.
These additional agencies are called concerned
member states (CMSs). The decentralized proce-
dure has its roots in the earlier “mutual recogni-
tion” procedure that was put in place in 1995.
The mutual recognition procedure operated in a
similar way except that the CMSs did not receive
the whole MAA until after the RMS had approved
the product. In both the decentralized and the
mutual recognition procedure, the EMEA and
CHMP do not get involved unless the RMSs and
CMSs cannot reach a consensus decision.

Choice between centralized and decentralized
procedures in the case of many NCEs (those for
which the centralized procedure is not manda-
tory) involves many factors, and the decision is a
strategic milestone involving medical practice,
manufacturing plans, the nature of product,
market forces, and the size, resources, and
strengths of the sponsor in the EU (see Harman,
2004, for more details).

Similarly to the FDA, CHMP and its Expert
Working Parties provide scientific and regulatory
guidelines that apply across the EU to comple-
ment ICH guidance. (Regulatory agencies in
other countries and regions may develop guide-
lines as needed.) Thus, while considerable
progress towards harmonization has been
made, it is still important for those seeking
global regulatory approvals to consider regional
and national regulatory guidance. (For further
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information see www.emea.europa.eu/htms/
human/humanguidelines/efficacy.htm and www.
emea.europa.eu/htms/general/contacts/CHMP/
CHMP_WPs.html).

2.3.3 GMP, GLP, and GCP 

These three acronyms refer to good manufac-
turing practice (GMP), good laboratory practice
(GLP), and good clinical practice (GCP). The
various stages of new drug development should
be conducted according to the appropriate regu-
lations and guidance. The initial “c” can precede
each of these acronyms, in each case standing
for the word current. The implication here is
that, in the years between rewrites of regulations
and guidance, certain modifications in the gener-
ally accepted best way of performing a certain
activity (best practices) may occur. Therefore,
while the guidance as written in the most recent
version reflects the “official” stance, it is consid-
ered wise to conform to modified ideologies as
appropriate. 

2.3.4 Statistical aspects in the preparation
of regulatory documentation 

The discipline of Statistics plays a major role in
the preparation of all regulatory submissions,
including the INDs, NDAs, CTAs, and MAAs that
we have already mentioned. It also includes
other important documents such as study proto-
cols, statistical analysis plans, clinical investi-
gator brochures, and the prescribing information
and promotional materials that will be used by
the sponsor to inform clinicians (and, in coun-
tries such as the USA where direct-to-consumer
marketing is permitted, patients) about the drug.
Prespecification of the statistical analysis plan is
necessary to establish the credibility of study
results. The accurate (and concise) presentation
of the design of studies and their results is vital
to ensuring a favorable marketing decision and
approval of related documents. 

2.3.5 Statistical aspects in the preparation
of clinical communications 

Sponsors typically publish the results of
important clinical trials in clinical communica-
tions in medical journals, and present the
results at scientific conferences. As for the prepa-
ration of regulatory documentation, scientific
communications depend heavily on the disci-
pline of Statistics. Piantadosi (2005) made the
following comment about publishing clinical
communications:

Reporting the results of a clinical trial is one
of the most important aspects of clinical
research. Investigators have an obligation to
each other, the study participants, and the scien-
tific community to disseminate results in a
competent and timely manner (p. 479).

While the format of clinical communications
is different from the format of clinical study
reports that are submitted to regulatory agencies,
the discipline of Statistics provides the basis for
the approach taken. A typical format for a
clinical communication is:

• Abstract: A concise overview of the entire
article

• Introduction: The rationale for the study
• Methods: The study design, study sample,

methodology used, statistical analyses
employed

• Results: The findings from the study 
• Conclusions: The main findings and their

interpretation
• Discussion: How the conclusions fit in with

previous literature, and what the implications
are for future research. Any limitations of the
study are also a legitimate (and useful) aspect
of this section.

The purpose of clinical research is to provide
information that guides clinical practice. Clin-
ical communications are read by physicians who
use the information provided when deciding
whether a particular treatment might be appro-
priate for an individual patient. These articles are
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therefore extremely important, and the informa-
tion must be presented accurately, meaningfully,
and ethically. The term “ethically” emphasizes
that authors must tell “the truth, the whole
truth, and nothing but the truth” about their
study in these communications (see Turner,
2007, for further discussion).

Guidelines for reporting clinical trials in clin-
ical communications are provided by the
Consolidated Standards of Reporting Trials
(CONSORT) group. We recommend that you read
the CONSORT statements (see www.consort-
statement.org). We also refer you to Bowers et al.
(2006) and Stuart (2007) for extensive coverage
of this topic.

2.4 Pharmaceutical manufacturing

Once it has been decided to progress an identi-
fied drug molecule to nonclinical testing, the
molecule will be tested in various ways, both
in vitro and in vivo. Initial testing may require
extremely small amounts of the candidate drug
molecule. However, as testing progresses, larger
amounts are needed. In addition, when the
molecule is ready to be given to animals, it needs
to be administered in a certain manner – that is,
a drug molecule delivery system needs to be
manufactured. Once a certain stage of nonclin-
ical research has been reached, the drug delivery
system must be manufactured according to
cGMP standards as detailed by regulatory agen-
cies. GMP regulations also apply to drug delivery
systems used in clinical trials. 

When an investigational drug is tested in early
preapproval clinical trials relatively small
amounts of drug product supplies are needed.
However, if and when later stage preapproval
clinical trials are conducted, considerably larger
drug product supplies are needed. If the investi-
gational drug is then approved for marketing the
amount of drug that needs to be manufactured
increases again. The manufacturing facilities that
are needed to make the drug on a postapproval

marketing scale are likely to be very different in
their operation (not just bigger) from the various
manufacturing facilities used during the drug
development process (see Turner, 2007). 

Manufacturing is a critical topic that
frequently does not get the recognition and
attention that it deserves. Imagine discovering a
new drug molecule that could do wonders, but
you cannot find a way to manufacture a drug
delivery system that will get the drug safely into
a patient who needs it. The drug delivery system
needs to be able to be manufactured and then be
readily transported from the manufacturing
plant to the pharmacy in a form that demon-
strates stability, and therefore has a suitably long
shelf life. If you cannot do all this, the wonder
drug would, for all intents and purposes, be
useless (recall that the definition of a useful
drug in Section 2.1 included manufacturing
considerations). 

There are various methods of introducing a
drug molecule into the body: Tablets and injec-
tions are just two examples. In this chapter we
focus on the manufacture of drugs that are given
orally in tablets, because the largest percentage
of drugs are administered in this manner. A
tablet is a complex, manufactured, drug delivery
system that gets the drug molecule, the active
pharmaceutical ingredient (API) that exerts the
drug’s pharmacodynamic effect, into the
systemic (whole body) blood supply, which
carries it round the body to its target receptors. 

The API is likely to be a small component of
the tablet. Various other nonpharmacologically
active ingredients, called excipients, are also
constituents of the tablet. Each of these excipi-
ents has a specific characteristic that enables it to
perform a useful function in getting the API to
its target receptor. Some of the excipients protect
the API from various chemical attacks in the
mouth and on its way to the gastrointestinal
tract. Others help it to travel through the gastro-
intestinal tract. Eventually the API is released
from its formulation so that it can be absorbed in
the small intestine and be transported around
the body in the blood supply. 
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2.4.1 Manufacturing drug products for
clinical trials 

An additional consideration when manufac-
turing the drug products that are used in preap-
proval clinical trials is that they need to be
“disguised.” As we see later in the book, the
safety and efficacy of an investigational drug are
compared with those of another compound,
called a control compound. In the types of trials
on which we focus this control compound is
typically (but not always) a placebo. The experi-
mental methodology employed in these trials
(discussed in Chapter 4) requires that neither the
participants in the trials nor the investigators
who are conducting them know whether the
participants are being given the investigational
drug or the placebo. Therefore, both clinical
drug products need to look, smell, and taste the
same – that is, they need to be blinded. Trials in
which neither the investigator nor the partici-
pant can identify the investigational drug are
called double-blind trials. 

The blinding of clinical drug products adds
another degree of complexity to the manufac-
turing needed for these trials. It involves two
steps: Making the investigational drug and the
placebo the same in appearance, as noted, and
then packaging them in such a way that they
cannot be distinguished by the package in which
they are supplied to investigators. This practice
is, necessarily, contrary to the manner in which
marketed drugs are supplied. 

2.5 Nonclinical research

Nonclinical research (often called preclinical
research, but we prefer the term “nonclinical”)
involves the in vitro and in vivo animal research
that is conducted and reported to regulatory
agencies before starting preapproval clinical
trials. Once the drug molecule candidate iden-
tified in drug discovery has been optimized, it
moves into the nonclinical development
program. While human pharmacological therapy
is the ultimate goal, an understanding of
nonclinical drug safety and efficacy is critical to
subsequent, rationally designed, ethical, human

trials. The term “efficacy” is used in drug devel-
opment to refer to the desired therapeutic
(biological) effect of the candidate drug.
Nonclinical research gathers critical information
about the best likely drug dose, frequency, and
route of administration if and when research
progresses to human trials. It also investigates
pharmacokinetics, pharmacodynamics, and
toxicology in animals.

Pharmacokinetics is the study of the effect that
the body has on the drug. The pharmacokinetic
phase can be regarded as the time from the
drug’s absorption into the body until it reaches
its target receptor site. Dhillon and Gill (2006)
noted that pharmacokinetics “provides a mathe-
matical basis to assess the time course of drugs
and their effects in the body.” Pharmacokinetic
processes that determine the concentration of a
drug that has been administered include absorp-
tion, distribution, metabolism, and elimination
(ADME). Pharmacodynamics is the study of the
desired effect that a drug has on the body. For
example, the pharmacodynamic effect of an
antihypertensive drug is to lower blood pressure.
The pharmacodynamic phase begins once the
drug molecule reaches its target receptor. Toxico-
dynamics is the analogous study of the unde-
sired effect(s) that a drug has on the body. The
toxicodynamic phase begins once the drug
molecule reaches a nontarget receptor(s). 

Nonclinical safety pharmacology studies
submitted to regulatory agencies are outlined 
in ICH Guidance S7A (2001), and the basic pack-
age includes evaluation of a drug candidate’s
effects on the central nervous system, respiration,
and the cardiovascular system. Cardiovascular
system evaluation includes assessment of cardiac
function and cardiac electrophysiological
activity. 

Nonclinical toxicological testing is necessary
because some compounds can be so toxic that
they cause cell death, leading to loss of impor-
tant organ function. Other toxicological effects
are the result of interactions with various
biochemical and physiological processes that do
not affect the survival of the cells. ICH Guidance
M3 (R1) (2000) addresses several topics related to
toxicity, including single and repeat dose toxi-
city studies, genotoxicity, carcinogenicity, and
reproductive toxicity. Relatively less evidence of
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toxicity is considered as relatively greater
evidence of the safety of the drug. The route of
administration of the drug compound in
nonclinical research is typically the intended
route in clinical settings and therefore the route
that will be used in clinical trials.

Exploratory toxicology studies are conducted
to provide an idea of the main organs and phys-
iological systems involved, and to estimate the
drug’s toxicity when administered across a rela-
tively short period of time. These studies do not
need to be conducted according to cGLP guide-
lines and they are not typically conducted with
a drug compound that has been manufactured to
cGMP standards.

Regulatory toxicology studies are submitted to
regulatory agencies and are conducted according
to cGLP standards. Some regulatory toxicology
studies need to be done before the first clinical
trials are started. Other regulatory toxicology
studies are typically conducted in parallel with
clinical trials. These include toxicological studies
in two or more animal species lasting up to 
1 year, carcinogenicity tests and reproductive toxi-
cology studies lasting up to 2 years, and interac-
tion studies that examine possible drug–drug
interactions with other drugs that may be
prescribed concurrently in humans. These studies
are expensive to conduct, and so they are typi-
cally not started unless and until the drug
progresses into clinical studies.

Mutagenicity is the chemical alteration of
DNA that is sufficient to cause abnormal gene
expression. Mutagenicity, also known as geno-
toxicity, includes a comprehensive set of events,
of which carcinogenicity and teratogenicity are
important subsets. Carcinogenicity describes
activity that leads to cancer, and teratogenicity
describes activity that leads to the impairment of
fetal development. 

Nonclinical information can be useful in
another arena once a drug has been approved.
Prescribing information can include the results
of nonclinical toxicology studies (carcinogen-
esis, mutagenesis, and impairment of fertility).
In instances where no human (clinical) data
are available, it is possible for a clinician to
incorporate nonclinical evidence into his or
her decision-making process when deciding
whether the benefit:risk ratio of prescribing the

drug to a patient is favorable. The process of
using clinical data to form such decisions can
be challenging at times, and the process of
using nonclinical data even more so. Neverthe-
less, in some instances nonclinical data may
prove of assistance in this regard.

While a nonclinical development program is
informative and important, no amount of
nonclinical research can predict precisely what
will happen once the candidate drug is given
to humans. Therefore, a clinical development
program is also necessary. The clinical develop-
ment program builds in many meaningful ways
on the results from the nonclinical development
program.

2.6 Clinical trials

Clinical development programs consist of a
variety of preapproval clinical trials, all designed
for a specific purpose of revealing particular
information concerning the investigational
drug’s safety and efficacy. 

2.6.1 Categorization of clinical trials by
phase

A common system of categorization for preap-
proval clinical trials includes Phase I, Phase II,
and Phase III clinical trials (Phase IV clinical
trials are conducted postapproval to collect
additional information about a marketed
drug). Phase I, II, and III clinical trials can be
summarized as follows:

• Phase I: Pharmacologically oriented trials that
typically look for the best range of doses to
employ. These trials employ healthy adults,
usually men. Comparison of the investiga-
tional drug’s efficacy with other treatments
(such as a placebo or a drug that is already
marketed) is not a specific aim of these trials,
because by definition healthy individuals do
not have the disease or condition of interest.
However, incorporation of an inactive control
can be useful because some of the procedures
employed in these trials may themselves
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give rise to physiological changes that could
otherwise be perceived as adverse events (see
Section 7.5 for additional discussion).

• Phase II: These trials are designed to look for
evidence of activity and preliminary evidence
of efficacy and safety at a number of doses.
Relatively small numbers of individuals with
the condition or disease of interest are used.
To gain an understanding of efficacy a control
treatment is typically used at this stage. 

• Phase III: These trials employ larger numbers
of individuals with the condition or disease of
interest, and they are comparative in nature –
comparison with another treatment (often a
placebo, but possibly an active control) is a
fundamental component of the design. These
trials are undertaken if Phase I and II studies
have provided preliminary evidence that the
new treatment is safe and effective.

While this system of categorizing preapproval
clinical trials is widespread, unfortunately it is
not used consistently. As Turner (2007) noted,
two studies with the same aims may be classified
into different phases, and two studies classified
into the same phase may have different aims. 
An alternative system has been suggested by 
the ICH.

2.6.2 ICH categorization of clinical trials

The ICH has published a series of Guidances on
many aspects of conducting clinical trials (see
www.ich.org). One of these, ICH Guidance E8
(1997), provides an alternative approach to 
categorizing clinical trials, classifying them
according to their objective. This system is
shown in Table 2.1. 
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Table 2.1 ICH classification of clinical trials

Objectives of study Study examples

Human pharmacology
Assess tolerance Dose–tolerance studies
Describe or define pharmacokinetics (PK) and Single and multiple dose PK and/or PD studies

pharmacodynamics (PD) Drug interaction studies
Explore drug metabolism and drug interactions
Estimate (biological) activity

Therapeutic exploratory
Explore use for the targeted indication Earliest trials of relatively short duration in well-defined
Estimate dosage for subsequent studies narrow patient populations, using surrogates of
Provide basis for confirmatory study design, endpoints, pharmacological endpoints or clinical measures

methodologies Dose–response exploration studies

Therapeutic confirmatory
Demonstrate/confirm efficacy Adequate and well-controlled studies to establish
Establish safety profile efficacy
Provide an adequate basis for assessing benefit:risk Randomized parallel dose–response studies

relationship to support licensing Clinical safety studies
Establish dose–response relationship Studies of mortality/morbidity outcomes

Large simple trials
Comparative studies

Therapeutic use
Refine understanding of benefit:risk relationship in Comparative effectiveness studies

general or special populations and/or environments Studies of mortality/morbidity outcomes
Identify less common adverse reactions Studies of additional endpoints
Refine dosing recommendation Large simple trials

Pharmacoeconomic studies

From ICH Guidance E8 (1997).



Trials that might otherwise be categorized as
Phase I, II, III, and IV trials are referred to as
human pharmacology, therapeutic exploratory,
therapeutic confirmatory, and therapeutic use
trials, respectively. 

2.6.2.1 Human pharmacology trials

Human pharmacology or first-time-in-human
(FTIH) clinical trials are undertaken in an
extremely careful manner in tightly controlled
settings, often in residential or inpatient medical
centers. Typically, between 20 and 80 healthy
adults participate in these relatively short
studies, and are often recruited from university
medical school settings where trials are being
conducted. The main objectives are to assess the
safety of the investigational drug, understand
the drug’s pharmacokinetic profile and any
potential interactions with other drugs, and
estimate pharmacodynamic activity. A range
of doses and/or dosing intervals is typically
investigated in a sequential manner. 

Participants are given extensive physical
examinations before they receive their first dose
of the drug, at various intervals throughout the
treatment, and once they have finished the drug
regimen. The trials are designed to collect data
that can be compared with similar types of
data collected in nonclinical studies. As noted
earlier, no animal model data can ensure that a
drug will be safe when given to humans.
However, it can be informative to see how
similar the overall pictures of animal responses
and human responses are. Single-dose trials in
which the dose chosen is based on the nonclin-
ical work are conducted first. Later, dose-finding
studies are conducted to determine the
maximum tolerated dose (MTD) of the drug, and
to answer questions concerning the side-effects
that are seen, their characteristics, and whether
they are consistent across participants to any
notable degree. 

Although the data collected during human
pharmacology trials are not in themselves
enough to obtain marketing approval, they can
certainly have the opposite effect: Unfavorable
data can lead to a sponsor’s decision not to
pursue further development of the drug. While
achieving marketing approval of an investiga-

tional drug is the sponsor’s goal, if the drug is
unlikely to succeed it is financially attractive to
discover this as early as possible in the drug
development program. As we noted earlier, the
sentiment here is “If you are going to fail, fail
fast!” A well-conducted human pharmacology
study can reduce the possibility of later failed
trials by revealing unfavorable characteristics of
the drug at this stage. This is preferable to the
sponsor and, more importantly, in the best
interests of individuals who may have been
participants in later trials that failed.

From a statistical viewpoint the design of
human pharmacology studies has certain impli-
cations. These trials include a relatively small
number of participants, but a lot of measure-
ments are collected for each participant. This
strategy has both advantages and limitations.
The extensive array of measurements made
allows the drug’s effects to be characterized
reasonably thoroughly. However, few participants
in these studies makes generalization of results
to the general population relatively harder than
for studies with larger sample sizes. 

2.6.2.2 Therapeutic exploratory trials 

Therapeutic exploratory trials are conducted if
the results of the human pharmacology trials are
considered positive (someone has to decide that
the results are positive). These trials involve the
comprehensive assessment of the investigational
drug’s safety in perhaps 200–300 individuals
with the disease or condition of interest. They
are typically conducted by clinical pharmacolo-
gists, and participants in these trials are often
hospitalized and can therefore be closely moni-
tored. Extensive data are collected, including
self-report assessments by the participants and
biochemical assessments. 

Sometimes efficacy will be investigated in
these trials. Participants are again typically
hospitalized and can therefore be closely moni-
tored. Assessments of efficacy are typically
conducted by individuals specifically trained in
clinical trial methodology. 

2.6.2.3 Therapeutic confirmatory trials

If the therapeutic exploratory trials are successful
(someone has to decide if this is the case), the
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drug development program will proceed to 
therapeutic confirmatory trials. By now, the
earlier human pharmacology and therapeutic
exploratory trials have defined the most likely
safe and effective dosage regimen(s) for use in
these therapeutic confirmatory trials. These trials
may employ around 3000–5000 participants,
each of whom has the disease or condition 
of interest, and they are typically conducted 
as randomized, double-blind, concurrently
controlled trials (see Chapter 4).

Tight experimental control is an extremely
important goal in all experimental trials. Conse-
quently, we talk a lot about how to maximize
such control in these trials. However, it is
simply a realistic consequence of the way that
therapeutic confirmatory trials have to be
conducted that the experimental control cannot
be quite as tight in these trials as it is in human
pharmacology trials and therapeutic exploratory
trials.

As we note many times in this book there are
advantages and disadvantages associated with
many occurrences in clinical trials, and with the
last statement of the previous paragraph. The
very high level of experimental control that is
possible in therapeutic exploratory trials means
that these trials are better at assessing the ‘pure’
biological effect of the drug, that is, the efficacy
of the drug under near-ideal circumstances.
However, if and when a drug is approved for
marketing and is being used by many patients,
the drug will not be taken in the same very
highly controlled manner in which it was given
to participants in therapeutic exploratory trials.
The data from therapeutic confirmatory trials are
therefore likely to be more indicative of how the
drug will actually work in the general population
if it receives marketing approval.

2.6.2.4 Therapeutic use trials

Therapeutic use trials are conducted once a drug
has been approved to gain additional informa-
tion about the safety and efficacy, or effective-
ness, of the drug: The term “effectiveness” is
used to describe how well the drug works in
patients once the drug has been approved. One
example of this type of trial is the simplified clin-
ical trial (SCT). The intent of the word simplified

in the term “SCT” should be clarified here. It
refers to the fact that the demands on partici-
pants and investigators are less than in preap-
proval trials. It is not meant to indicate that the
implementation of these large trials is simple:
On the contrary, their design and logistics are
complex. 

As in preapproval therapeutic confirmatory
trials, participants in SCTs are randomly assigned
to a treatment group. However, SCTs have
several characteristics that distinguish them
from therapeutic confirmatory trials. Probably
the most immediately noticeable difference is
the number of participants who participate in
them. SCTs are designed to detect rare events by
including sample sizes that are much larger than
those employed in preapproval trials, and thus
they are very important in safety monitoring.
However, in order to facilitate the conduct of an
SCT involving such a large number of partici-
pants, the amount of information collected per
participant is much smaller than in therapeutic
exploratory studies. The demands on both the
participants and the investigators conducting
the trial have to be reduced to make these studies
viable. So, for example, instead of visiting the
investigative site every week during a 12-week
treatment period and having a large number of
assessments made, participants may visit only
twice (at the start and end of the treatment
period) and have relatively few assessments
made on those occasions. These assessments are
those of most interest.

Participants in SCTs receive treatments in a
more naturalistic setting than those in thera-
peutic confirmatory trials. Therefore, as well as
more participants, the treatment settings are
much more representative of how patients in
general will be treated when the drug is approved.
Advantages and disadvantages accompany many
choices and occurrences in designing and
conducting clinical trials.

2.7 Postmarketing surveillance

Postmarketing surveillance is conducted once
the approved drug is in widespread use to
examine safety in a more comprehensive
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manner. Postmarketing surveillance monitors all
reports of adverse reactions and thus can be used
to compile extended safety data. This pharmaco-
surveillance is a critical component of the overall
process of ensuring that all members of a target
disease population receive the greatest protec-
tion from adverse reactions. As this book focuses
on preapproval trials and their statistical
methodology, postmarketing surveillance is not
discussed. Readers are referred to Mann and
Andrews (2007).

2.8 Ethical conduct during clinical trials

The ethical conduct of all clinical researchers is
of supreme importance. Participants in all clin-
ical trials are volunteers: while the word “volun-
teers” is typically exclusively used to describe
participants in human pharmacology studies, all
participants in all clinical trials are, by defini-
tion, volunteers (see Turner, 2007). Individuals
participate in clinical trials for the greater good,
not specifically to benefit themselves. Everyone
involved in clinical research has an obligation to
conduct all aspects of this research to the highest
ethical standards. 

2.8.1 Ethical principles

Several fundamental ethical principles guide
drug development research in clinical trials (see
Turner, 2007):

• Clinical equipoise: This requires that a
comparative clinical trial must be started in
the good faith that the investigational drug
and the control treatment are of equal
merit. The aim is to discover whether or not
the investigational drug is of greater merit.
Once there is compelling evidence that the
investigational drug is of greater merit, it
becomes unethical to give the control drug
to participants.

• Respect for individuals: Investigators must
give potential trial participants all pertinent
information about the study, and answer all
of their questions. If a potential participant
then agrees to participate voluntarily (that is,

he or she is not coerced in any real or implied
manner), informed consent is obtained. 

• Beneficence: The study design employed in
the trial must be scientifically sound, and
any known risks of the research must be
acceptable in relation to the likely beneficial
knowledge that will be obtained.

• Justice: The burdens and the benefits of
participation in clinical trials must be distrib-
uted evenly and fairly. Vulnerable popula-
tions (for example, prisoners, residents in
nursing homes) should not be deliberately
chosen for participation in clinical trials
when nonvulnerable populations are also
appropriate participants. The benefits of
participation, such as access to potentially
life-saving new therapies, should be available
to all, including those not historically well
represented such as women, children, and
members of ethnic minorities.

The topic of ethics in clinical trials is addressed
again in Section 3.16.1, where we talk about
ethical considerations in choosing the nature of
the control treatment used in trials involving
investigational antihypertensive drugs.

2.8.2 Ethical considerations in statistical
methodology

It is appropriate here to highlight the additional
ethical responsibilities that are shouldered by
those involved in statistical aspects of clinical
trials, as outlined in the operational definition of
Statistics presented in Chapter 1. Derenzo and
Moss (2006) addressed the importance of ethical
considerations in scientific and statistical aspects
of clinical studies: 

Each study component has an ethical aspect.
The ethical aspects of a clinical trial cannot be
separated from the scientific objectives. Segre-
gation of ethical issues from the full range of
study design components demonstrates a flaw
in understanding the fundamental nature of
research involving humans. Compartmentaliza-
tion of ethical issues is inconsistent with a well-
run trial. Ethical and scientific considerations
are intertwined.

Derenzo and Moss (2006, p 4)
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Ethical awareness and ethical responsibility are
key aspects of statistical methodology in clin-
ical trials. Areas where ethical and scientific
considerations are inextricably linked include:

• Study design and experimental methodology:
It is unethical to include people in a study
where poor design and/or poor methodology
will lead to less-than-optimum quality data
and therefore less-than-optimum quality
answers to the study’s research question.

• Sample-size estimation: A trial requires suffi-
cient participants to answer the research ques-
tion without exposing them unnecessarily to
the risks of the experimental therapy. 

• Early termination of trials: Data monitoring
committees (DMCs), independent groups
charged with reviewing interim data from
clinical trials, face difficult ethical challenges
when deciding whether a clinical trial should
be terminated early. In a recent guidance
document the FDA described the roles and
responsibilities of DMCs and when such
committees may be useful or required (US
Department of Health and Human Services,
FDA, 2006). 

• Communicating trial results: Researchers
have an ethical responsibility to report infor-
mation accurately and fully in clinical
communications, as these directly impact
patient care.

Correct study design is absolutely essential
from both scientific and ethical perspectives
when conducting clinical trials. If a study’s
design cannot lead to the collection of data that
can be analyzed meaningfully, no meaningful
information about the investigational drug can
be gained. Participants in clinical trials have the
legitimate expectation that their participation in
the trial will help advance our knowledge of the
investigational drug, and if the study’s design
cannot possibly provide additional knowledge
about the drug their expectation is not fulfilled
(Turner, 2007).
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2.9 Review

1. What are the characteristics of a useful new drug?

2. Describe the ethical considerations in preparing
clinical communications.

3. What is the role of pharmaceutical manufacturing
in new drug development?

4. What is the role of nonclinical research in new
drug development?

5. Consider the ICH classification of clinical trials:
Human pharmacology, therapeutic exploratory,
therapeutic confirmatory, and therapeutic use:

(a) What is the role of each type of trial in the
development of a new drug from a molecule 
to a new therapy? 

(b) How do results from these types of trials
pertain to the use of the new drug in medical
practice?
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3.1 Introduction

One of the most efficient ways to acquire new
knowledge about any topic is to devise questions
that guide our investigations. These questions
can focus our thinking and keep us on track 
as we gather information that contributes to our
knowledge base. Devising more specific ques-
tions as we progress is typically a good strategy.
While relatively loosely formed questions can be
very helpful early on in the knowledge acquisi-
tion process, refining our knowledge is facili-
tated by asking more specific questions, and, in
turn, acquiring more specific information and
knowledge. 

The scientific method is one particular
method of acquiring new knowledge. In scien-
tific research, including drug development, our
questions need to be asked in a particular
manner. These questions are called research
questions, and they lead to the development of
research hypotheses. The scientific method
requires that these research hypotheses be struc-
tured in a certain way, and then tested in a scien-
tific manner. As noted earlier, a fundamental
characteristic of these research hypotheses is that
they can be disproved. The word “disproved” is
not a typo: These hypotheses need to be able to
be disproved, not “proved.” 

3.2 The concept of scientific research
questions

In our operational definition, Statistics is
regarded as a multifaceted scientific discipline
that comprises several activities. The first of
these is identifying a research question that

needs to be answered. We noted in Chapter 2
that the reason for the development of a new
drug is usually the identification of an unmet
medical need. The development of a drug that
will meet this need requires a series of nonclin-
ical studies that comprise the nonclinical devel-
opment program, followed by a series of clinical
studies that comprise the clinical program. In
each case, the study will be designed to answer a
specific research question or questions. (From a
statistical perspective, it is a good idea to have a
small number of research questions that will be
answered by an individual study, despite the real
temptation to try to collect data that will answer
many research questions.)

3.3 Useful research questions

In Section 2.1 we cited Norgrady and Weaver’s
(2005) definition of a useful drug in the context
of drug development. That definition is a good
illustration of how the term “useful” is used in
scientific research. A precise, operational defini-
tion is needed, rather than a vague statement
such as “it looks pretty useful to me.” 

Turner (2007) provided an operational
definition of a useful research question:

• It needs to be specific (precise).
• It needs to be testable.

If a candidate drug successfully makes it through
the nonclinical development program, the safety
and efficacy of the investigational drug will be
tested in humans in a series of clinical trials that
comprise the clinical development program.
Each study that is conducted will test a particular
aspect or facet of the drug, and the overall

3
Research questions and research hypotheses



development program will employ these trials in
a systematic fashion. We noted in Section 2.6 
that three kinds of trials are typically conducted
before a new drug is approved for marketing:
human pharmacology trials, therapeutic
exploratory trials, and therapeutic confirmatory
trials. The information that is collected during
human pharmacology trials forms the basis 
for the testing that is done in therapeutic
exploratory trials, and the information from
both categories of trials forms the basis for the
testing that is done in therapeutic confirmatory
trials – that is, a body of information and knowl-
edge about the investigational drug is gained in
an incremental manner, a hallmark of scientific
investigation. 

Information is gathered by conducting studies
each of which asks a specific, testable research
question. A general and vague question such as
“Is this investigational drug good for people’s
blood pressure?” is simply not useful in this
context, because it does not facilitate the acqui-
sition of useful information. The same is true in
nonclinical studies: the question “Do you think
that the drug is pretty safe when given to a
bunch of animals?” will not facilitate the
acquisition of useful nonclinical information. 

3.4 Useful information

You may have noticed that we used the term
“useful information” twice in the previous 
paragraph. Accordingly, it is helpful to provide
an operational definition of useful information
in the context of drug development. Useful
information has the following characteristics:

• It needs to be specific (this is the same as 
the first characteristic of a useful research
question – see Section 3.3).

• It provides a solid basis for further studies that
will acquire more useful information.

• It provides the rational basis for decision-
making during the drug development process.

• It will be acceptable to regulatory agencies,
which will eventually review the reports that
provide the information to them.

3.5 Moving from the research question
to the research hypotheses

Before discussing the connection between the
research question and the associated research
hypotheses, it should be noted that the word
“hypotheses” here is not a typo: We meant to
write the plural form “hypotheses” and not the
singular form “hypothesis.” As discussed shortly,
each research question has two associated
research hypotheses.

We noted in Section 3.3 that a research ques-
tion needs to be useful. We also noted that the
question “Is this investigational drug good for
people’s blood pressure?” is not useful, because it
does not provide a precise definition of “good” –
that is, the research question is not specific, or
precise. A better research question might be
“Does the investigational drug alter blood pres-
sure?” At the outset of any scientific inquiry
about the potential effects of an investigational
hypertensive drug, we must entertain the notion
that the drug may, contrary to our expectations,
actually increase blood pressure. For reasons that
we explain in Chapter 6, this potential is
expressed in the statement of the statistical
hypotheses. For now, this improved research
question addresses the intention of our experi-
ment and drug development program. However,
we can do better. 

3.6 The placebo effect

An interesting phenomenon in pharma-
cotherapy is called the “placebo effect.” The
dictionary currently sitting in our office (The
American Heritage College Dictionary, 3rd edn)
provides several definitions of the word placebo,
including:

A substance containing no medication and
given to reinforce a patient’s expectation to get
well

An inactive substance used as a control in an
experiment to determine the effectiveness of a
medicinal drug
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Both of these definitions are helpful in the
present context. The first is a more general one,
and relates to the observation that, if a person is
given a substance containing no medication, but
that person believes that the substance will have
a beneficial therapeutic effect, it is not unusual
that improvement may be seen in the person’s
condition. The second definition is a particularly
relevant definition in the context of this book,
and the term “placebo” will be used extensively
in later chapters.

3.7 The drug treatment group and the
placebo treatment group

The terms “drug treatment group” and “placebo
treatment group” will become very familiar to
you as you work your way through this book.
Chapter 4 provides more detail, but it is helpful
at this point to comment briefly on the
following aspect of certain preapproval clinical
trials. 

It is very common in therapeutic confirmatory
trials (and in some therapeutic exploratory trials)
to compare the effects of the investigational drug
with the effects of a placebo (see also the discus-
sions in Section 3.16.1) – that is, these trials are
comparative in nature. One common study
design involves giving the investigational drug
to one group of individuals, the drug treatment
group, and the placebo to a second group of
individuals, the placebo treatment group. In
addition, and extremely importantly, these indi-
viduals do not know whether they are receiving
the investigational drug or the placebo. All indi-
viduals are treated identically throughout the
trial, with the one exception of the treatment
that they receive. 

A key point to note is that individuals
receiving the placebo treatment often show a
small improvement in the condition that is the
focus of the trial. In some instances, such as
studies of antidepressants and analgesics,
improvement is self-reported by the individuals
themselves and can often be marked. In addi-
tion, improvement among individuals can be

accounted for by a phenomenon called “regres-
sion to the mean.” Imagine a clinical therapeutic
trial involving an investigational antihyperten-
sive drug where individuals are eligible for
enrollment only if they have a documented
systolic blood pressure (SBP) of a specified level
(say at least 140 mmHg). It is a simple fact that,
as a result of expected and naturally occurring
random variation, some individuals may
initially show this level of SBP even though it
does not accurately reflect their true SBP. On
subsequent observations the level of the charac-
teristic will return closer to its expected level,
resulting in an “improvement” caused simply by
the fact that the individual was enrolled at a
time when his or her SBP was higher than
normal. In trials involving investigational anti-
hypertensive drugs, it is not unusual for individ-
uals in the placebo treatment group to show
small decreases in BP during the trial. Therefore,
it becomes important to determine whether the
investigational drug has a larger effect on BP
than the placebo – that is, the trial is compara-
tive in nature and the placebo is the control
against which the investigational drug is
compared.

3.8 Characteristics of a useful research
question

In Section 3.4 we formulated some initial
versions of a research question. We decided that
the question “Is this investigational drug good
for people’s blood pressure?” is not useful. We
noted that an improved research question might
be “Does the investigational drug alter blood
pressure?” This is certainly moving in the right
direction. However, as noted at the end of that
section, we can do better. 

A good clue as to how we can devise a better
research question comes from the discussions
that we have just had about the comparative
nature of these trials, in which the effect of the
investigational drug is compared with the effect
of the placebo. Based on these discussions an
improved research question can be phrased as
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“Does the new drug alter SBP more than
placebo?” This version of the research question
has several useful characteristics:

• It involves both of the treatments received by
individuals in the trial: The investigational
drug and the placebo.

• It is comparative. The goal is to compare the
effects of the two treatments.

• It is precise. There will be a precise answer –
yes it does, or no it doesn’t. We will have to
define the term “more” in more detail shortly,
but in the meantime please trust us that this
can indeed be done in a precise manner by
using the discipline of Statistics.

3.9 The reason why there are two
research hypotheses

In this book all research questions are addressed
and then answered via the construction of two
research hypotheses, commonly called the null
hypothesis and the alternate hypothesis.
(Although another name for the alternate
hypothesis, the research hypothesis, has its own
appeal, we employ the commonly used term
“alternate hypothesis” in this book.) Both of
these hypotheses are key components of the
procedure of hypothesis testing. This procedure
is a statistical way of doing business. It is
described and discussed in detail in Chapter 6,
but it is beneficial to introduce the main concept
here.

3.9.1 The null hypothesis

The null hypothesis is the crux of hypothesis
testing. (It is important to note that the form of
the null hypothesis varies in different statistical
approaches. As the main type of clinical trial
discussed in this book is the therapeutic confir-
matory trial, we talk about this first. We then
talk briefly about the forms of the null hypoth-
esis that are used in other types of trials in
Section 3.10.) As noted earlier, therapeutic
confirmatory trials are comparative in nature.
We want to evaluate the efficacy of the investi-

gational drug, and the way that we do this is to
compare its efficacy with the efficacy of a control
treatment, typically a placebo. The key question,
expressed in our research question, is “Does the
new drug alter SBP more than placebo?” As
noted earlier, we need to provide a precise defin-
ition of “more,” and we will do this in due
course. In this type of trial, called a superiority
trial, the null hypothesis takes the following
form:

The average effect of the investigational drug on
SBP is equivalent to the average effect of the
placebo on SBP. 

3.9.2 The alternate hypothesis

The alternate hypothesis reflects the alternate
possible outcome of the trial, and therefore the
alternate possible answer to the research ques-
tion: The trial was conducted with the specific
goal of providing an answer to the research
question. In a superiority trial the alternate
hypothesis takes the following form:

The average effect of the investigational drug on
SBP is not equivalent to the average effect of the
placebo on SBP. 

Note that the research question “Does the
new drug alter SBP more than placebo?” allows
for the fact that the investigational drug could
actually increase SBP more than placebo, as does
the alternate hypothesis, which includes the
possibility that the drug could increase SBP. The
reason for this is that the statistical information
used to decide which hypothesis is more plau-
sible must include the possibility, however
remote we believe it to be, that the drug has the
opposite effect of what we hope for. Another
way of stating this is that exclusion of one side
of the alternate hypothesis – that is, that the
drug is worse than the placebo – is presumptive
and contrary to the scientific process of
collecting data to search for the true state of
nature. It is certainly true that, if we find
ourselves in a position to claim that the alter-
nate hypothesis should be accepted because the
drug did more harm than good (that is,
increased SBP), we will have answered the
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research question. For now, we must accept
that, despite its seeming incongruence with our
preferred research question, the use of a two-
sided alternate hypothesis is the norm in the
regulated world of drug development.

3.9.3 Facts about the null and alternate
hypotheses

It is important to note that, whatever the
outcome of the trial, both of these hypotheses
cannot be correct. It is also true that one of them
will always be correct. Again, we operationally
define the term “correct” in this context in due
course, but the point to note here is that:

• It is never the case that neither hypothesis is
correct.

• It is never the case that both hypotheses are
correct.

• It is always the case that one of them is
correct and the other is not correct.

The procedure of hypothesis testing allows us to
determine which hypothesis is correct. 

A helpful way of remembering which hypoth-
esis is which – that is, which form the null
hypothesis takes and which the alternate
hypothesis takes – is to conceptualize that the
alternate hypothesis states what you are
“hoping” to find and the null hypothesis states
what you are not hoping to find. It must be
emphasized here, however, that, although
helpful, this conceptualization skates on very
thin scientific ice: As Turner (2007, p 101) noted:

In strict scientific terms, hope has no place in
experimental research. The goal is to discover
the truth, whatever it may be, and one should
not start out hoping to find one particular
outcome. In the real world, this ideologically
pure stance is not common for many reasons
(financial reasons being not the least of them). 

When a pharmaceutical or biotechnology
company has spent many years and huge sums
of money developing an investigational drug,
and the drug has made it to the point where a
therapeutic confirmatory trial is being
conducted, the company hopes that the drug
will indeed be more effective than placebo, and

in due course be approved for marketing by a
regulatory agency. One reason for this hope is
that patients will (relatively) soon have the
opportunity to receive a new drug that is thera-
peutically beneficial for them. Another reason,
as noted in the previous quote, is that the drug
will be approved and make money for the
company. Drug companies are for-profit busi-
nesses, and this is not a negative judgmental
comment. The only way that they can develop
future drugs is to sell present drugs for a profit:
The costs in pharmaceutical research and devel-
opment (R&D) are enormous. In this pragmatic
sense, the alternate hypothesis (at least one side
of it) can meaningfully be conceptualized as
stating the outcome that you are hoping for.

3.10 Other forms of the null and
alternate hypotheses

The forms of the null and alternate hypotheses
are dictated by the goal of the trial. In the thera-
peutic confirmatory trial discussed so far the goal
of the trial is to demonstrate that the investiga-
tional drug shows greater efficacy than the
control treatment – that is, we are hoping to
demonstrate that the investigational drug shows
superior efficacy, hence the name superiority
trial. Following our earlier memory tip, you can
conceptualize the alternate hypothesis as stating
what you are hoping to find and the null
hypothesis as stating what you are not hoping to
find. As we have seen, this leads to the following
forms of these hypotheses:

• Null hypothesis: The average effect of the
investigational drug on SBP is equivalent to
the average effect of the placebo on SBP. 

• Alternate hypothesis: The average effect of the
investigational drug on SBP is not equivalent
to the average effect of the placebo on SBP. 

When we are hoping to demonstrate some-
thing different, however, these hypotheses take
different forms. Consider the example of a trial
called an equivalence trial. Equivalence trials are
conducted to demonstrate that an investigational
drug has therapeutic equivalence compared with
a control treatment. Equivalence trials are also
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comparative in nature, but in this case the control
treatment is not a placebo but a marketed drug.
Here, the control treatment is referred to as an
active comparator drug. This active comparator
drug is typically the drug that is currently the
best, or perhaps the only, treatment available for
the disease or condition of interest, and is referred
to as the gold standard treatment. The intent in
an equivalence trial is to provide compelling
evidence that the efficacy of the investigational
drug is “equivalent” to that of the active
comparator drug. (The term “equivalent” requires
a precise statistical definition, and this is
provided in Chapter 12.)

Why are equivalence trials important? That is,
why would we be interested in a new drug that
is only as effective as an existing drug? This is a
good question, but one that has an equally good
answer. One reason would be that we believe
(hope) that the investigational drug is equally
effective and also has the considerable advantage
that its safety profile is better. This would lead to
the same efficacy with less likelihood of side-
effects. If the side-effects of the current gold stan-
dard drug are particularly unpleasant, this would
be a considerable advantage. Other advantages
that may justify the use of equivalence trials
include convenience of the dosing regimen, and
the inability to use an inactive control for ethical
reasons. 

In an equivalence trial the research question
is: Does the new drug demonstrate equivalent
efficacy compared with the reference drug? The
resultant accompanying research and alternate
hypotheses take the following forms:

• Null hypothesis: The investigational drug
does not show equivalent efficacy to the
comparator drug (the reference drug).

• Alternate hypothesis: The investigational
drug does show equivalent efficacy to the
comparator drug (the reference drug).

Following the logic of our memory tip, you
will see that the alternate hypothesis in this
case, just like in the case of a superiority trial,
expresses what we are hoping to find, while the
null hypothesis states what we are hoping not
to find. The actual natures of the null and alter-
nate hypotheses in an equivalence trial are

different from those in a superiority trial, but
this sentiment is the same. This is equally true
in the case of various other types of trials,
including noninferiority trials.

Noninferiority trials are similar to equivalence
trials, but require that the investigational drug
be in the worst case only trivially worse than the
reference to be considered noninferior. A precise
statistical definition of “trivially worse” must be
agreed upon before the start of the trial. For
noninferiority trials the research question is:
Does the new drug demonstrate efficacy that 
is not unacceptably worse (Fleming 2007) than
the reference drug? The null and alternate
hypotheses corresponding to this research
question take the form of:

• Null hypothesis: The efficacy of the investiga-
tional drug is unacceptably worse than the
efficacy of the comparator drug (the reference
drug).

• Alternate hypothesis: The efficacy of the
investigational drug is not unacceptably
worse than the efficacy of the comparator
drug (the reference drug).

As for equivalence trials, additional details
about noninferiority designs are provided in
Chapter 12.

3.11 Deciding between the null and
alternate hypothesis 

A research question of interest, then, leads to the
null hypothesis and the alternate hypothesis. As
noted in Section 3.9.3:

• It is never the case that neither hypothesis is
correct.

• It is never the case that both hypotheses are
correct.

• It is always the case that one of them is
correct and the other is not correct.

(We also noted in that section that we would
address the precise operational definition of
correct in due course, and we have not
forgotten this.) Therefore, statistical analysis of
the data acquired in the trial enables us to
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decide between these two mutually exclusive
hypotheses. An ongoing theme in this book is
that many decisions have to be made in drug
development, and the discipline of Statistics
provides numerical representations of informa-
tion that provide the rational basis for decision-
making. At the end of every trial, a decision
needs to be made: Which of these two mutually
exclusive hypotheses is correct – the null
hypothesis or the alternate hypothesis? For the
rest of this chapter we talk about superiority
trials, but the points made apply equally to
equivalence trials and noninferiority trials.

3.12 An operational statistical
definition of “more”

Imagine the following results from a superiority
trial: 

• The average decrease in SBP for the individ-
uals in the drug treatment group was 3 mmHg
– that is, on average, the investigational drug
lowered SBP by 3 mmHg in this trial.

• The average decrease in SBP for the individ-
uals in the placebo treatment group was 
2 mmHg – that is, on average, the placebo
lowered SBP by 2 mmHg in this trial.

In this superiority trial we are interested to find
out whether the investigational drug is more
effective than the comparator treatment, the
placebo. As the number “3” is numerically greater
than the number “2,” the simple mathematical
answer is clear: Yes, the investigational drug
lowered BP more than the placebo. However, you
may well feel that this simple mathematical
answer, although true, does not capture the spirit
of the findings from the trial. The investigational
drug managed to lower blood pressure only
1 mmHg more than the placebo, a substance
that has no pharmacotherapeutic capability.

The term “treatment effect” is an important
one in drug development, and is defined as the
difference between the average response to the
investigational drug and the average response to
the comparator being used in the trial. In this
case of the development of a new antihyperten-

sive drug it is defined as the difference between
the average decrease in BP shown by the indi-
viduals in the drug treatment group and the
average decrease in BP shown by the individuals
in the placebo treatment group. The logic here is
that, as the placebo resulted in a small decrease,
even though it has no pharmacotherapeutic
capability, the pharmacotherapeutic capability
of the investigational drug should be regarded as
the decrease in BP over and above that caused by
the placebo. Another interpretation of the treat-
ment effect is that it is the amount of change in
SBP attributed to the drug over and above that
which would have been observed had the drug
not been given. Therefore, the treatment effect
here is 1 mmHg. This is � 0, and so the investi-
gational drug is mathematically more effective
than the comparator treatment, but, as noted
earlier, you may be left feeling that the term
“more” is not quite appropriate.

3.12.1 A very important aside: The
concept of clinical significance

We are about to introduce you to the concept of
a statistically significant difference between the
means of two sets of numbers. These numbers
can be any kind of data, not just the clinical data
that are the focus of this book. No matter how
large or how small the difference found between
the means of two sets of numbers, it is possible
for that difference to be declared statistically
significantly different after appropriate analysis
of those data. In some circumstances and for
some data, a difference of just one unit between
the means of the two groups of data may indeed
be found to be statistically significantly
different, and in such a case the use of the term
“more” would be statistically appropriate. 

However, in the context of clinical data,
another extremely important concept is clinical
significance. The clinical significance of a treat-
ment effect is a completely separate assessment
from the treatment effect’s statistical signifi-
cance. This is a clinical judgment, not the result
of a single numerical calculation. It is perfectly
possible for a treatment effect to be found to be
statistically significant after an appropriate
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statistical analysis and yet judged by clinicians to
be not clinically significant. As you will see, both
statistical significance and clinical significance
must be addressed in drug development – an
observation that highlights that statisticians and
clinicians must work very closely together
during this process. Later discussions address the
topic of clinical significance in detail. 

3.12.2 An operational statistical definition
of the term “more”

The discipline of Statistics provides us with
methodology that tells us whether or not the use
of the word “more” is appropriate from a statis-
tical point of view. The formulation of a scientif-
ically meaningful research question and its two
associated hypotheses, the null hypothesis and
the alternate hypothesis, allows us to reach an
answer in an objective manner by following a
prescribed methodology. Moreover, the regula-
tory and clinical communities acknowledge this
methodology. Therefore, for a given set of data
that have been collected in a trial, statistical
testing provides a precise answer that is couched
in statistical terms and that has effectively been
agreed upon as objective by all interested parties
(see Turner, 2007). This leads us to the concept of
a statistically significant difference.

3.13 The concept of statistically
significant differences

The concept of statistical significance and its
practical implementation are discussed in more
detail in Chapter 6, but it is appropriate here to
set the scene for those discussions. The words
“significant,” “significance,” and “significantly”
are used differently in Statistics than they are in
everyday language. In the language of Statistics
they have precise quantitative meanings. We
focus here on the meaning of the term “signifi-
cantly” in the discipline of Statistics. The disci-
pline of Statistics facilitates a single, quantitative

answer to questions concerning assessments of
“more.” For a given set of data collected in a
superiority trial, the employment of the appro-
priate statistical analysis will reveal whether the
treatment effect attained statistical significance –
that is, it will reveal whether or not the investi-
gational drug was statistically significantly more
effective than the placebo. In this manner it
provides a precise definition of the term “more.”
If there is a statistically significant difference
between the average decrease in blood pressure
in the drug treatment group and the placebo
treatment group – that is, if there is a statistically
significant treatment effect – the use of the term
“more” is warranted.

3.14 Putting these thoughts into more
precise language 

The following are the research question and the
two associated research hypotheses that we have
formulated so far:

• Research question: Does the new drug alter
SBP more than the placebo?

• Null hypothesis: The average effect of the
investigational drug on SBP is equivalent to
the average effect of the placebo on SBP. 

• Alternate hypothesis: The average effect of the
investigational drug on SBP is not equivalent
to the average effect of the placebo on SBP. 

The concept of statistical significance allows all
three of these to be reframed as follows: 

• Research question: Does the new drug alter
SBP statistically significantly more than the
placebo?

• Null hypothesis: The average effect of the
investigational drug on SBP is not statistically
significantly different from the average effect
of the placebo on SBP. 

• Alternate hypothesis: The average effect of the
investigational drug on SBP is statistically
significantly different from the average effect
of the placebo on SBP. 
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Each of these is now expressed in a more
precise manner. In addition, the null hypothesis
now allows for the treatment groups to differ to
a certain extent. In any trial involving any treat-
ments, the group averages will almost certainly
differ to some extent: The probability of a
treatment effect of zero is extremely small. 

3.15 Hypothesis testing

We have now formulated our research question,
null hypothesis, and alternate hypothesis in
precise statistical language. This facilitates the
strategy of hypothesis testing. Hypothesis testing
revolves around two actions after an appropriate
statistical analysis: Rejecting the null hypothesis
or failing to reject the null hypothesis. The
language used to express these two actions is
very important. After thinking about these two
actions for a few minutes, you might think that
these actions could be expressed as “accepting
the alternate hypothesis” and “accepting the
null hypothesis,” respectively. In everyday
thinking this might be thought very reasonable.
However, in the discipline and the language of
Statistics, the terminology of rejecting the null
hypothesis or failing to reject the null hypoth-
esis is deliberately employed. While data from
two groups (for example, means) may suggest
that the alternate is more plausible than the null
hypothesis, the sample size of the study also has
a direct bearing on our ability to reject the null
hypothesis. If there is at least a small difference
between groups in a study (which will almost
certainly be the case), it is possible that a null
hypothesis that is not rejected in a study of a
certain size would be rejected if the study had
been larger. The relationship between sample
size and the probability of rejecting the null
hypothesis or failing to reject the null hypoth-
esis is explored in Chapter 12.

The statistical convention of using the expres-
sion “failing to reject the null hypothesis”
reflects the position that null hypotheses of no
difference can always be rejected if enough

observations are studied. Statistical methodology
necessitates making a choice here. One of these
two actions, rejecting or failing to reject the null
hypothesis, has to be taken at the end of all
hypothesis testing. The action taken is precisely
determined by the result obtained from the
statistical technique used to analyze the data. 

3.16 The relationship between
hypothesis testing and ethics in clinical
trials

The issue of ethical considerations in clinical
trials was introduced in Section 2.8. The proce-
dure of hypothesis testing illustrates one impor-
tant ethical consideration, clinical equipoise,
particularly well. The fact that we have two
research hypotheses that express two opposing
possible occurrences makes it clear that we do
not know which best represents the actual state
of affairs. The bottom line is that, at the point in
time when the study is planned and started, we
do not know whether or not the investigational
drug will be more effective than placebo. This
uncertainty is a necessary prerequisite of
conducting a trial: If it were known that the
investigational drug were more effective it would
be unethical for people with the disease or
condition of interest to be given a placebo. 

The philosophy that makes it acceptable that
some individuals receive a placebo in a clinical
trial is that a comparative clinical trial in which
some receive a placebo while others receive the
investigational drug is the best way to find out if
that drug is indeed effective. If it is, the individ-
uals who received the placebo would not them-
selves have benefited on this occasion, but their
participation in the trial was a crucial compo-
nent contributing to the later treatment of
patients with the approved drug. As noted earlier
individuals take part in clinical trials for the
greater good, not for their own immediate
benefit.

Uncertainty is therefore a fundamental prereq-
uisite to conducting a therapeutic exploratory or
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therapeutic confirmatory trial. The results of the
trial will be used in a decision-making process at
the end of the trial: In the light of the prevailing
uncertainty, we need to decide whether the
results of the trial have provided compelling
evidence that the investigational drug is indeed
effective. If the statistical results show that the
drug is indeed effective – that is, the treatment is
statistically significant – the next step is for clin-
icians to decide if the treatment is also clinically
significant (as noted in Section 3.12.1 we discuss
clinical significance later in the book). If the
treatment effect is deemed to be both statisti-
cally and clinically significant, the study team is
likely to decide to move forward to the next
study in their clinical development program.

3.16.1 Ethics and the use of placebo
controls

At this point, it is appropriate to point out
diverging views on the use of placebo control
treatment in any clinical trial. Some authors
have expressed the view that the comparator
should always be an active control if possible
– that is, in cases where there is already at
least one drug on the market that has been
demonstrated to be effective for treating the
disease or condition of concern, the
comparator should be one of these drugs. This
issue is reviewed very effectively by Temple
and Ellenberg (2000), and we strongly recom-
mend that you read their paper. We agree
with the arguments that they present
supporting the use of placebo controls in
appropriate circumstances. In addition, ICH
Guidance E12A (2000) comments on this issue
specifically in the context of the evaluation of
efficacy in clinical trials for an investigational
antihypertensive drug. It states that, for
several important reasons, short-term (defined
as 4–12 weeks in duration), blinded, placebo-
controlled studies are “essential.” It also states
that long-term studies (defined as 6 months or
more) should also be conducted to demon-
strate maintenance of efficacy and to assess
long-term safety, and that these trials would
typically use an active control.

In this book we have chosen to focus on
teaching the computational aspects of statistical
analyses by using examples involving designs in
which the investigational drug is compared with
a placebo in short-term trials. In Section 4.7, we
describe two potential measurement scenarios
that are possible during a 12-week trial: Taking
measurements at baseline and at the end of
every 2-week period, and simply taking measure-
ments at baseline and at the end of week 12, the
end-of-treatment measure. In this book we use
the latter design for the sake of simplicity. We
have therefore chosen this form of example
because it is ethical as discussed in ICH Guidance
E12A, and, as noted in the previous section, a
comparative trial using both an investigational
drug and a placebo treatment group is the best
way to find out if the former is indeed effective. 

3.17 The relationship between research
questions and study design

Having introduced and discussed research
questions in this chapter, the following quotes
from authoritative sources emphasize their
importance:

The most critical and difficult prerequisite for
a good study is to select an important feasible
question to answer. Accomplishing this is pri-
marily a consequence of biological knowledge.
(Piantadosi, 2005)

The essence of rational drug development is to
ask important questions and answer them with
appropriate studies. (ICH Guidance E8, 1997)

Between them, these quotes capture the
notion that, once an important research ques-
tion has been formulated, a “good” and “appro-
priate” study must be conducted to answer the
question. As you have seen already, we provide
operational definitions of terms that are used in
statistical contexts. Accordingly, Chapter 4
provides operational definitions of the terms
“good” and “appropriate” in the context of
deciding how best to answer an important
research question.
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Before that, however, it is informative to
consider the second sentence in the quote
from Piantadosi (2005) – “Accomplishing this
[selecting an important feasible question to
answer] is primarily a consequence of biological
knowledge.” This book discusses the employ-
ment of the discipline of Statistics in a particular
context, the development of a new drug. It is
certainly true that the individual statistical
analyses that we teach you can be informatively
applied in other areas of investigation, but in this
book their application is in the development of a
biologically active drug that will influence
patients’ biology for the better (see Turner, 2007).
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3.18 Review

1. What are characteristics of a useful research
question?

2. Why is a placebo control used in many clinical
trials? 

3. When would a placebo control not be used? 

4. How do the null and alternate hypotheses relate to
the objective of a clinical trial?

5. What form do the null and alternate hypotheses
take for a superiority trial with a placebo control?

6. What form do the null and alternate hypotheses
take for an equivalence trial with an active control?





4.1 Introduction 

Chapter 3 introduced the central topic of
research questions in clinical trials. It also 
introduced the null and alternate hypotheses.
This chapter discusses the relationship between
research questions and study design, and shows
how optimum experimental methodology is crit-
ical to the successful implementation of studies
conducted to answer research questions. 

Each study in a clinical development program
addresses one or more research questions (we
noted in the previous chapter that it is a good
idea to limit the number of research questions in
any given trial). In Chapter 3 we also noted two
characteristics that a research question must
possess to be considered useful:

• It needs to be specific (precise).
• It needs to be testable.

We can now take this thinking one step
further. Formulating a good research question
and then fine-tuning it is critical to the potential
success of a trial. The research question is the
driving force behind the way that the trial will be
designed and implemented, because certain trial
designs, or study designs, are needed to permit
the acquisition of data that can be used success-
fully to answer the research question. The best
research question in the world cannot be
answered by the acquisition of inappropriate
data via the conduct of an inappropriately
designed trial, no matter how well the data are
collected. 

A useful research question suggests how a
study needs to be designed to provide the appro-
priate information to answer the question.
Choosing the best study design to answer the
research question is therefore critical. The word

“best” in the previous sentence is meaningful
because there may be more than one study
design that is capable of providing data that
enable the question to be addressed and
answered, but one of these designs may be more
appropriate than the other possibilities. 

This occurrence illustrates an important point.
It is certainly true that the discipline of Statistics
contains precise aspects that provide definite
answers in situations where that answer is the
only possible correct answer. However, it is also
true that the successful practice and implemen-
tation of the discipline of Statistics require a
considerable amount of well-informed judg-
ment. It is therefore vital that professional statis-
ticians are involved in all aspects of clinical
trials. This comment may initially come as some-
what of a surprise: This is because there is a wide-
spread tendency to think of statisticians being
involved only at the end of a trial when all the
data have been collected. This misperception is
as unfortunate as it is widespread. The conduct
of a successful trial requires that statisticians are
involved from Day 1, which can be thought of as
the time when a research team first decides that
knowledge about a certain characteristic of the
investigational drug is needed, to the end of the
entire process of acquiring and disseminating
the trial’s results. This includes submitting the
results from the trial to a regulatory agency
(multiple agencies if marketing permission is
desired in multiple countries) and publishing the
results in a clinical communication for other
research scientists and clinicians to read. 

This chapter also discusses experimental
methodology. As well as employing the best
study design to facilitate the collection of data to
answer a research question most appropriately
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and successfully the data acquired for this
purpose must be of optimum quality. For
example, each and every individual’s blood 
pressure must be measured as accurately as poss-
ible every single time that a measurement needs
to be made. The appropriate choice of the best
study design and the implementation of
optimum quality methodology work hand in
hand to facilitate the acquisition of optimum
quality data with which to answer the research
question that led to the clinical trial being
conducted.

4.2 Basic principles of study design

At the end of Chapter 3 we noted that we would
provide operational definitions of the terms
“good” and “appropriate study design” in the
context of answering an important research
question of biological (clinical) importance. Two
more quotes from Piantadosi (2005) and ICH
Guidance E8 (1997) are illuminating:

Conceptual simplicity in design and analysis is a
very important feature of good trials . . . . Good
trials are usually simple to analyze correctly. 

Piantadosi (2005, p 130)

Clinical trials should be designed, conducted,
and analyzed according to sound scientific
principles to achieve their objectives. 

ICH Guidance E8 (1997, p 2)

The first quote provides an excellent opera-
tional definition of the term “good” in the
context of the design of clinical trials. It also
captures a sentiment to which we return time
and time again in this book. Study design and
statistical analysis “are intimately and inextri-
cably linked: the design of a study determines
the analysis that will be used once the data have
been collected” (Turner, 2007, p 5). Conceptual
simplicity, as Piantadosi (2005) noted, is very
important when designing a trial. As design and
analysis are intimately linked, conceptual
simplicity in design leads to conceptual
simplicity in the associated statistical analyses.

Our operational definition of the term “appro-
priate” in the context of the design of clinical

trials has two aspects, one of which comes from
ICH Guidance E8 (1997) as cited earlier: Trials
need to be designed, conducted, and analyzed
according to sound scientific principles. This
chapter discusses the scientific experimental
methodology that is appropriate for the design
and conduct of trials. The second aspect of our
operational definition of the term “appropriate”
is that the design employed must be capable of
providing the data needed to answer the research
question of interest. There are many study
designs, each of which is appropriate for
providing the data necessary for specifically
formulated research questions. A design that
cannot possibly provide the data to answer the
research question of interest is not appropriate,
and the decision not to use that design is there-
fore clear cut. In some circumstances more than
one study design is capable of providing the data
needed to answer the research question. In this
case the decision as to which one is the most
appropriate requires a decision based on an
informed judgment, and statisticians must be
involved in this decision.

Clinical trials embody several fundamental
principles of experimental design (Piantadosi,
2005). Three of these are:

1. replication
2. randomization
3. local control.

4.2.1 Replication

Replication refers to the fact that clinical trials
employ more than one individual in each treat-
ment group. The reason for this is that there is
considerable variation in how individuals
respond to the administration of the same drug,
so it is not appropriate to choose only one indi-
vidual to receive the investigational drug and
another to receive the placebo: There is no way
of knowing how representative the individuals’
responses are of the typical responses of people
in general. 

Replication allows two important features of
individuals’ responses to the investigational drug
to be assessed. One is just how different their
responses are from each other. It might be that
all individuals show responses that are pretty
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close to each other, or that there is a consider-
able difference between individuals’ responses.
The second is to evaluate the “typical” response
of all the individuals. Both of these features are
important assessments in the discipline of Statis-
tics. Chapter 5 talks about these assessments and
puts these ideas into statistical language. It also
provides operational definitions of the term
“typical”: We use the plural term “definitions”
because the typical response can be opera-
tionally defined in several ways, each of which is
appropriate in certain circumstances. 

4.2.2 Randomization

The goal of randomization is to eliminate bias or,
in practical terms, to reduce bias to the greatest
extent possible. Bias is the difference between
the true value of a particular quantity and an
estimate of the quantity obtained from scientific
investigation. Various influences can introduce
error into our assessment of treatment effects,
and these are discussed at various points in the
following chapters. At this point we discuss an
example of systematic error, or bias.

Randomization involves randomly assigning
experimental individuals to one of the treatment
groups, the drug treatment group or the placebo
treatment group. The premise of randomization
is simple: Many potential influences on the
drug response of individuals participating in the
trial (for example, differences in the heights
and weights of participants, differences in meta-
bolic pathways involved in the metabolism of
the investigational drug) cannot readily be
controlled for. It is therefore important that, to
the best of our ability, we take steps to ensure
that these characteristics are likely to be equally
represented in both treatment groups. If all of
the individuals in one treatment group share a
characteristic that is not present in any of the
individuals in the other treatment group, it is
not possible to ascribe differences between the
groups to the one influence of central interest,
that is, the different treatments received by the
two groups. Putting all relatively tall individuals
into one treatment group and all relatively short
individuals into the other treatment group
would be an example of systematic bias. In this

scenario, height would have a direct impact on
the formation of the treatment groups and,
therefore, if height were to be a source of influ-
ence on the blood pressure change demonstrated
by individuals, height could be a cause of
systematic bias in the results obtained.

The preapproval clinical trials discussed in this
book are experimental studies: The data
collected comprise a series of observations made
under conditions in which the influence of
interest, the type of treatment received, is
controlled by the research scientist. (The term
“experimental” is used here as defined by
Piantadosi [2005]. The converse of an experi-
mental study is a nonexperimental study.
Nonexperimental studies are often called obser-
vational studies, but this term is inadequate,
because it does not definitively distinguish
between nonexperimental studies and experi-
mental studies, for example, preapproval clinical
trials, in which observations are also made. The
methodology employed in preapproval clinical
trials is experimental: It comprises a series of
observations made under conditions in which
the influences of interest are controlled by the
research scientist. The methodology employed
in other types of study can be nonexperimental;
the research scientist collects observations but
does not exert control over the influences of
interest. The term “nonexperimental” is not a
relative quality judgment compared with experi-
mental; the nomenclature simply distinguishes
different methodological approaches [Turner,
2007].)

There are various types of randomization
strategies. The strategy employed in the trials
discussed in this book is called simple random-
ization, which involves assigning treatments
to individuals in a completely random way.
Other more complex randomization techniques
include block randomization, stratified random-
ization, and cluster randomization: These are
not addressed in this book in any detail (see
Turner, 2007, for a brief review). Randomization
techniques have an important role in clinical
research in general and in drug development in
particular because they allow for balanced
assignment of treatments within strata of
interest (stratified randomization), minimize the
possibility of a long run of assignments to the
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same treatment (block randomization), and
facilitate the assignment of large groups of
individuals to the same treatment (cluster
randomization).

4.2.3 Local control 

Another important feature of conducting, or
running, clinical trials is local control. This topic
takes us into the realm of methodology. Tight
control on all aspects of methodology – for
example, the manner in which the treatments
are administered, the manner in which blood
pressure measurements are made, and the appa-
ratus used to make these measurements – must
be exercised at all investigative sites. As an
example, it is not appropriate that blood pres-
sures for all individuals in one treatment group
be measured using one strategy and measuring
device whereas blood pressures for all individ-
uals in the other treatment group are measured
differently. This naïve strategy could bias the
results of the study. As noted in Section 4.2.2, an
important objective of control in clinical trials is
to remove as much error from the results as
possible, that is, to reduce potential bias. 

Environmental conditions should also be
controlled as much as possible. Taking measure-
ments and evaluating some individuals in rela-
tively cold conditions and others in a relatively
warmer environment is not recommended.
Taking this example further, and considering
factors such as ease of access to the investigative
site and the general atmosphere (relaxed,
frenetic) of the site and its investigators, it is not
appropriate to have all individuals in one treat-
ment group enrolled at one investigative site and
all individuals in the other treatment group
enrolled at a different site. 

4.3 A common design in therapeutic
exploratory and confirmatory trials

As noted in Section 4.2, there are many study
designs that are employed during a clinical

development program. Some of these are typi-
cally used in early human pharmacology trials,
whereas others are typically used in later thera-
peutic exploratory and therapeutic confirmatory
trials. We discuss one particular study design
more than any others, but it must be emphasized
that this does not mean that it is more important
than other designs. Rather, its employment as
our central example allows us to introduce you
to statistical methodology and statistical analysis
in our chosen way.

The design that is predominantly discussed in
this book is the randomized, concurrently
controlled, double-blind, parallel group design.
The four descriptors in this title – randomized,
double-blind, concurrently controlled, and
parallel group – identify different aspects of this
design. We start with the last two descriptors,
parallel group and concurrently controlled,
because these capture the fundamental nature
of the design. We then discuss the first two
descriptors, randomized and double blind.

4.3.1 The concurrently controlled, parallel
group design

Individuals participating in a parallel group trial
are randomly assigned to one of two or more
distinct treatments. Those who are assigned to
the same treatment are frequently referred to as
a treatment group. While the treatments that
these groups receive differ, all groups are treated
equally in every other regard, and they complete
exactly the same procedures. This parallel
activity on the part of the groups of individuals
is captured in the term “parallel group design.”

The term “concurrently controlled” captures
two aspects of this study design. We have already
come across the concept that to quantify
meaningfully the effect of the investigational
drug (that is, the treatment effect), it is necessary
to compare the average blood pressure reduc-
tion of the group of individuals receiving the
investigational drug with the average of those
receiving the placebo. The two parallel groups
here are the drug treatment group and the
placebo treatment group, and the latter functions
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as the control group. Sometimes this design is
called a placebo-controlled parallel group design,
because the control employed is a placebo and
not another active, marketed drug. This is
perfectly valid. 

The term “concurrently” refers to the fact
that the individuals in the placebo treatment
group are participating in the trial at the same
time as those in the drug treatment group. This
is an important aspect of the study design. If
all the individuals in the drug treatment group
participated first, followed at some later time
by all those in the placebo treatment group,
several potential influences could impact the
results of the trial. For example, the staff at
the investigational sites at which individuals
participate in the trial might have changed
considerably, and aspects of the overall opera-
tion of these sites may have changed. The
goal of experimental methodology is to control
for all influences other than the type of treat-
ment (drug or placebo) received by individ-
uals, and so having all the individuals in one
group participate at one time under one set
of conditions and all those in the other
group(s) participate at a later time under a
potentially different set of conditions is not
desirable. (The goal of study protocols is to
detail the experimental procedures to be
employed during the trial in sufficient detail
that they will be executed identically by
all research staff at all times. This should
therefore minimize the differences just
described. However, practical reality sets in
here and, in the extreme example employed in
the text, the study protocol probably would
not be 100% successful.) This point links well
with the discussion of local control in Section
4.2.3.

This last point is well acknowledged, and it is
unlikely that a trial would not be “concurrently”
controlled. Therefore, if the term “placebo
controlled” is seen in a published report of a
trial, it is almost certainly fair to assume that the
trial is concurrently controlled. However,
assumption is a dangerous thing, and you
should check the details of the trial presented in
the report to confirm this.

4.3.2 The crossover design

In contrast to the parallel design, individuals in
a crossover design are assigned to receive two or
more treatments in a particular sequence. For
example, an individual in a crossover study may
receive the drug treatment in the first period.
Then, after a suitably long washout period
during which the individual is off drug, he or she
will receive placebo. Other individuals will
receive placebo in the first period and then cross
over to the drug treatment in the second period.
Such a study would be considered a two-period,
two-treatment, two-sequence crossover design.
Crossover designs may involve a number of treat-
ments, sequences, and periods. In a crossover
design, individuals are randomized to treatment
sequences, not treatment groups. 

The greatest advantage of the crossover design
is that individuals receive more than one treat-
ment so that they act as their own controls. This
results in more statistical efficiency and there-
fore smaller sample sizes. Crossover designs can,
for this reason, be particularly useful in early
pharmacology studies. Another advantage of
crossover designs is that they can aid in recruit-
ment of study participants when a serious condi-
tion is being treated and they would like to have
access to a potentially helpful investigational
drug. 

Crossover designs also have some disadvan-
tages – one is that their results can be difficult to
interpret. As all individuals receive more than
one treatment there can be a carryover effect
from one or more early periods to subsequent
periods, leading to a biased estimate of the treat-
ment effect. When an individual does not
contribute data to one of the periods, none of
the data can be used in the most straightforward
analyses – attributing adverse events or other
untoward effects to a single treatment can be
difficult. Another disadvantage is that they are
not applicable to all therapeutic indications.
Crossover trials are ideally suited for indications
that are chronic in nature and do not vary in
severity over time. For example, studying a new
analgesic for migraines may not be feasible
because, thankfully, migraines do not occur as
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frequently or predictably as would be required to
evaluate a number of treatments over the course
of two or more periods. Crossover designs would
be better suited for chronic conditions such as
hypercholesterolemia or hypertension. However,
having two or more observations from the same
individual under different experimental condi-
tions introduces additional complexities (that is,
dependence) for statistical analyses. These
methods are beyond the scope of this book.

4.3.3 Randomization and the descriptor
“randomized”

The topic of randomization was discussed in
Section 4.2.2. Any trial that has employed a
randomization strategy in its design is called a
randomized trial.

4.3.4 Blinding and double-blind trials

We discussed blinding earlier. As a brief recap,
making a drug and a placebo look, taste, and
smell the same ensures one part of the double
blind: It means that individuals do not know
which treatment they are receiving. A second
component of the blinding process is needed to
ensure that the investigators – that is, those
administering the treatments – do not know
which treatment individuals are receiving. This
component necessitates packaging the drug
and placebo products at their site of manufac-
ture so that investigators receiving them at the
investigational sites cannot tell which is which.
A system of codes guarantees that, when the
blind is eventually broken once all the data have
been acquired, it will be known which treatment
each and every individual received. 

The importance of double-blind trials can be
expressed in both scientific and regulatory
terms, with the second being a consequence of
the first. These trials are the scientific gold stan-
dard, and the results from a trial that is run in a

double-blind manner are afforded particular
weight by regulatory agencies and clinicians.

4.4 Experimental methodology

Experimental methodology is concerned with all
the aspects of implementation and conduct of a
study. Experimental methodology and study
design work hand in hand to ensure that
optimum quality data are collected from which
optimum quality answers to the research ques-
tion can be provided. As we have seen, an appro-
priate study design must be used to allow the
collection of optimum quality data, and we can
think of study design as providing the oppor-
tunity to collect such data. To take advantage 
of this opportunity, optimum experimental
methodology must be used in the acquisition of
the data. Optimum quality methodology is no
use if the wrong study design has been
employed, and the appropriate study design can
lead to optimum quality data only if optimum
experimental methodology is employed.

Consider also the data analysis and interpreta-
tion that occur once data have been acquired in
a trial. First, the appropriate analysis has to be
employed as determined by the study design.
However, the employment of this analysis alone
is not enough to ensure optimum quality
answers to the research question. A computa-
tionally perfect execution of the appropriate
analysis, and the most meaningful interpreta-
tion of the results obtained, will not yield
optimal answers if the data being analyzed are of
less than optimal quality. Therefore, experimental
methodology is also of critical importance. 

At this point it is worth considering the length
of time it takes to run a therapeutic confirmatory
clinical trial. Such trials are often conducted as
multicenter trials. Although the total numbers of
individuals who participate in trials vary, we
noted earlier that a typical number for a thera-
peutic confirmatory trial is 3000–5000 individ-
uals. Each of these individuals needs to have the
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disease or condition of interest. It may be that 50
investigational sites are needed to enroll the
total number of individuals needed for the trial.
Imagine a hypothetical scenario where 5000
individuals are recruited at 50 sites, with the
typical number of individuals per site at around
100 (in reality, the number of individuals
recruited at each of the sites might differ consid-
erably). Imagine also that the treatment length
employed in this trial is 12 weeks. That is, inves-
tigational site 01 recruits a total of 100 individ-
uals, and each individual receives either the
investigational drug or the placebo for a period
of 12 weeks. 

The question of interest is: How long does it
take to complete the trial? Although the answer
“12 weeks” tends to come to mind when first
thinking about this, the answer is that it will
almost certainly take much longer than that
because not all of the 100 individuals will start
their participation in the trial on the same day.
They will be recruited into the trial, and hence
start participation in the trial, in a staggered
manner. It is therefore quite possible that the last
of the 100 individuals might start his or her 12-
week participation months (and possibly years)
after the first. This will likely be true at all the
investigational sites. The expression “first partici-
pant first visit to last participant last visit” is often
used to describe the length of the entire trial.

In addition to giving you a feeling for how
long it takes to run real-life trials, we mention
this point because it emphasizes that it is essen-
tial that methodological considerations receive
constant vigilance in all studies because some
trials can last several years.

4.5 Why are we interested in blood
pressure?

The domain of experimental methodology
embraces many aspects of conducting a trial, and
we do not discuss the vast majority in this book.
However, it is important to make you aware of

the need for optimum quality methodology, and
you can learn more about this from other
sources: In particular we recommend Piantadosi
(2005). Our discussions focus on one aspect of
methodology that is directly relevant to a central
theme of this book, namely the measurement of
blood pressure. Before discussing this topic,
however, it is worth considering why we want to
develop drugs that lower blood pressure in the
first place, and why optimum quality blood
pressure measurements are therefore critical.

4.5.1 Clinically relevant observations

It is possible to make all sorts of observations
about people. For example, some are tall, some
are short, some have blonde hair, some have dark
hair, some love dogs, some love cats, some have
relatively high blood pressure, and some have
relatively low blood pressure. In drug develop-
ment we are interested in clinically relevant
observations and in making these observations
during a trial. (Recall the definition of experi-
mental studies presented earlier: In experimental
studies, observations are made when the influ-
ence of interest is under the control of the
researcher.) In the trials discussed in this book, we
are interested in observing (measuring) blood
pressure for the duration of individuals’ partici-
pation in the trial with the ultimate goal of
assessing the investigational drug’s treatment
effect, that is, how much more the investigational
drug lowers blood pressure than a placebo. There-
fore, the question of interest here is: Why is blood
pressure a clinically relevant observation? This
takes us into the realm of surrogate endpoints.

4.5.2 Surrogate endpoints

Two clinical endpoints of particular relevance
are morbidity and mortality: Morbidity can
lessen quality of life and make mortality more
likely, and mortality speaks for itself. Not
surprisingly, pharmacotherapy (along with
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other medical interventions) is concerned with
reducing both these clinical endpoints. However,
the development of morbidity can be prolonged,
and the impact of drug therapy on mortality
during a clinical trial can be very difficult to
evaluate. As it is very unlikely that many individ-
uals will die during (most) clinical trials, the
difference in death rates between the drug treat-
ment group and the placebo treatment group is
likely to be very small, and quite possibly zero.
(Mortality is unfortunately not uncommon in
clinical trials in some therapeutic areas and in
trials involving very ill or terminally ill patients.
On these occasions, it may well be possible to
detect the beneficial influence of an investiga-
tional drug by focusing on the clinical endpoint
of mortality.)

It therefore becomes important in clinical trials
to evaluate the influence of the investigational
drug on other endpoints of relevance. These can
be termed “clinically relevant endpoints” or
“surrogate endpoints.” Surrogate endpoints are
biomarkers or other indicators that substitute for
the clinical endpoint by predicting its likely
behavior. Justification for the choice of these
endpoints is of fundamental importance: The
endpoint chosen as the surrogate needs to repre-
sent the clinical endpoint in a meaningful
manner. How can this be demonstrated? The
following are characteristics of meaningful and
useful surrogate endpoints (see Oliver and Webb,
2003; Machin and Campbell, 2005):

• Biological plausibility: A detailed knowledge
of the pathophysiology of the disease or condi-
tion of interest is helpful, as is demonstration
that the surrogate endpoint of interest in the
clinical trial is on the causal pathway to the
clinical endpoint of primary interest.

• A detailed knowledge of the drug’s mecha-
nism of action: Coupled with similar knowl-
edge of the pathophysiology of the disease or
condition of interest, this can provide a solid
basis for believing that the drug will be bene-
ficial. (A drug can certainly be clinically bene-
ficial even if we do not know its mechanism
of action, but this does not mitigate the point
made here in the context of good surrogate
endpoints.)

• The surrogate endpoint predicts the clinical
endpoint consistently and independently. 

• They are particularly useful in cases where the
clinical endpoints occur after long periods. 

The choice of endpoints used in studies of new
therapies may evolve over time as knowledge is
gained about the natural history of the disease or
the reliability of surrogate endpoints. Endpoints
used to evaluate the benefits of new drugs are
provided in Table 4.1 for a number of diseases.
Many diseases are associated with numerous
medical conditions of consequence to the
patient (for example, pain and disability
resulting from rheumatoid arthritis), which may
be the target for a particular new therapy. 

Fleming and DeMets (1996) suggested that the
use of surrogate endpoints is most helpful in
early therapeutic exploratory studies to study
activity and decide if larger, more definitive
studies are warranted. Establishing the accept-
ability of a surrogate endpoint is a difficult
undertaking. Fleming and DeMets (1996)
cautioned about the use of surrogate endpoints
in Phase III confirmatory trials. One frequently
cited example (CAST Investigators 1989, 1992) of
a misleading surrogate endpoint is from the
Cardiac Arrhythmia Suppression Trial (CAST).
Ventricular arrhythmia has been established as a
risk factor for sudden death. In this study, three
drugs that had been approved for the control of
arrhythmias (encainide, flecainide, and mori-
cizine) were evaluated for their effect on
mortality among individuals with myocardial
infarction and ventricular arrhythmia. The
results from this study were surprising. All three
drugs were associated with higher risks of death
than placebo. Hence the benefit of these drugs
with respect to arrhythmia did not extend to the
underlying clinical endpoint. 

We are interested in high blood pressure
(hypertension) because of our interest in cardio-
vascular disease, a leading cause of morbidity
and mortality. High blood pressure is a mean-
ingful and useful cardiovascular surrogate end-
point because it is well established that chronic
high blood pressure causes cardiovascular and
cerebrovascular events.
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4.6 Uniformity of blood pressure
measurement

One method of measuring blood pressure is to
use a stethoscope and a sphygmomanometer;
you may have experienced this in your doctor’s
clinic/office. Other methods include the use of
various automated devices. Although we do not
go into these in detail here, the important point
is that considerable attention must be paid to
methodological considerations. It is important
that the same measurement technique be used at
all the investigational sites in a trial, and that
time is taken before the trial starts to train every
site in the correct use of whichever measuring
device is chosen. This might happen at an inves-
tigators’ meeting or a central meeting of all prin-
cipal investigators held before the start of the
trial to address procedural consistency across
sites. It is also important that every measure-
ment at each site be made correctly, and that any
routine calibration of the measurement device is
conducted as mandated.

4.7 Measuring change in blood
pressure over time

As antihypertensive drugs are intended to lower
blood pressure, their evaluation in clinical trials
requires at least two measurements. One of these
is an initial measurement, typically called a base-
line measurement, and the other is a measure-
ment some time later, such as at the end of the
treatment phase (the end-of-treatment measure-
ment). These two measurements allow us to
calculate a change score that represents the
change in blood pressure from the start to the
end of the treatment phase. Change scores can
be calculated in several ways. One of these, and
the method that is used in all of the examples in
this book, is simply to calculate the arithmetic
difference between each individual’s baseline
measurement and his or her end-of-treatment
measurement. 

It is also possible that blood pressure may be
measured more than twice in a trial. If the treat-
ment period is 12 weeks long, measurements
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Table 4.1 Examples of endpoints used in clinical trials of experimental drugs

Disease Example endpoints

Cancera Survival
Objective response (reduction in tumor size for a minimum amount of time)
Time to progression of cancer symptoms

Rheumatoid arthritisb Improvement in signs and symptoms
Radiological progression of disease

Uncomplicated urinary tract infectionc Eradication of bacterial pathogen
Hypertensiond Change from baseline SBP
Postmenopausal osteoporosise Bone mineral density

Bone fractures

aFood and Drug Administration (US Department of Health and Human Services or DHHS, FDA, 2007).
bFood and Drug Administration (DHHS, FDA, 1999). 
cFood and Drug Administration (DHHS, FDA, 1998). 
dICH Guidance E12A (2000). 
eFood and Drug Administration (DHHS, FDA, 1994).



might be taken, for example, at baseline, week 2,
week 4, week 6, week 8, week 10, and week 12
(end of treatment). By taking several measure-
ments, the change across the treatment phase
can be examined in more detail. Suppose that an
individual’s SBP decreases by 20 mmHg from
baseline to end of treatment. There are many
possible patterns of change across time here. For
example, most of the individual’s decrease in
blood pressure could happen in the first few
weeks, it could decrease steadily across the 12
weeks, or most of the decrease could occur
during the last few weeks. Although this level
of analysis is of interest in some trials, we focus
on change scores calculated by using two
measurements, the baseline measurement and
the end-of-treatment measurement.

4.8 The clinical study protocol

When the clinical research team has decided on
their research question, and the appropriate
study design and methodology to acquire
optimum quality data with which to answer this
question, all this information needs to be docu-
mented. The clinical study protocol is the docu-
ment that is written for this purpose. Chow and
Chang (2007, p 1) noted that the study protocol
is “the most important document in clinical
trials, since it ensures the quality and integrity of
the clinical investigation in terms of its planning,
execution, conduct, and the analysis of the data.”

The study protocol is a comprehensive plan of
action that contains information concerning the
goals of the study, details of individual recruit-
ment, details of safety monitoring, and all
aspects of design, methodology, and analysis.
Input is therefore required, for example, from
clinical scientists, medical safety officers, study
managers, data managers, and statisticians.
Consequently, although one clinical scientist or
medical writer may take primary responsibility
for its preparation, many members of the study
team make critical contributions to it. 

The following are some of the fundamental
components in a study protocol for a thera-
peutic confirmatory trial for an investigational
antihypertensive drug: 

• How the disease or condition of interest will
be diagnosed, that is, participating individ-
uals need to be diagnosed as hypertensive.
The protocol will state the precise criteria that
constitute high blood pressure in this
particular study, and how and by whom
determining measurements will be taken. 

• Inclusion and exclusion criteria: These
provide detailed criteria for individual eligi-
bility for participation in the trial. These
eligibility criteria can often represent a
compromise among several perspectives, such
as regulatory, medical, and logistical. For
example, the most valuable information
about the benefits of the new treatment will
be obtained from a group of study individuals
who are most representative of the patients to
whom the drug will be prescribed. On the
other hand, “real world” patients may be
taking a number of medications or have
concurrent illnesses that may confound the
ability to evaluate the investigational treat-
ment. It may be logistically impossible to
study individuals with poor reading abilities
because they will not comply with study
procedures. Eligibility criteria define the study
population, a term that is discussed in greater
detail in Chapter 5. 

• The primary objective and any secondary
objectives (it is a very good idea to limit the
number of objectives): These must be stated
precisely.

• Measures of safety: The criteria to be used to
evaluate safety are provided. These will typi-
cally include adverse events, clinical labora-
tory assays, electrocardiograms (ECGs), vital
signs, and physical examinations. 

• Measures of efficacy: The criteria to be used to
determine efficacy are provided. Decrease in
blood pressure will be the primary measure-
ment of interest. Also, it may be the case that
average decreases of a certain magnitude are
required for the investigational drug to be
deemed effective.

• Drug treatment schedule: Route of adminis-
tration, dosage, and dosing regimen are
detailed. This information is also provided 
for the control treatment.

• The statistical analyses that will be used once
the data have been acquired. The precise
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analytical strategy needs to be detailed, here
and/or in an associated statistical analysis
plan.

A study protocol is often supplemented with
another very important document called the
statistical analysis plan (sometimes referred to by
similar names such as a data analysis plan or
reporting analysis plan). The statistical analysis
plan often supplements a study protocol by
providing a very detailed account of the analyses
that will be conducted at the completion of data
acquisition. The statistical analysis plan should
be written in conjunction with (and at the same
time as) the protocol, but in reality this does not
always happen. At the very least it should be
finalized before the statistical analysis and
breaking of the blind. In many instances (for
example, confirmatory trials) it may be helpful
to submit the final statistical analysis plan to the
appropriate regulatory authorities for their
input. 
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4.9 Review

1. What is the importance of replication,
randomization, and local control in experimental
design?

2. Define the following aspects of clinical trial study
design:

(a) double blind

(b) concurrent control

(c) parallel group.

3. What is the difference between a clinical endpoint
and a surrogate endpoint?

4. What information is included in a study protocol?





5.1 Introduction

Selecting an appropriate study design to best
address the study objectives is just the first step
towards answering the questions of interest.
When most people think about Statistics they
are probably thinking about data. Unfortunately,
statisticians are not infrequently assigned the
nickname “number crunchers,” a name that
accentuates the numerical aspects of the use of
statistics but completely ignores the design,
methodology, and interpretation aspects of the
discipline of Statistics. Number crunching (and
computational accuracy) is certainly a necessary
component of Statistics, but it is important to
bear in mind that it is far from sufficient. 

Having reviewed the concepts of study design
we now turn our attention to data. We are inter-
ested in various questions relating to data, such
as: What are data? How might we classify
different types of data? How are data used to
answer questions arising during clinical trials?
This last question is, perhaps, the most impor-
tant one for this book. We start to answer it first
in conceptual terms before turning our attention
to more specific points.

5.2 Populations and samples

It is of considerable interest in new drug devel-
opment to assess the effects of a drug in a partic-
ular population, the population containing
individuals who may be prescribed the drug if
and when it is approved. This population is
known as the target population. Not all the
adults in the USA and the UK would be ideal

candidates for a therapeutic confirmatory trial
because of the presence of other conditions or
the use of other drugs, or for logistical reasons
because they do not live close enough to a center
that participates in clinical studies. Therefore,
another population of interest is all adults in the
USA and the UK who meet the specific eligibility
criteria (including a precise definition of hyper-
tensive) of a study. This group of individuals is
considered the study population. 

As study populations are often very large,
however, it is not possible to administer the drug
to every member of the population, so a sample
from the study population is chosen and the
effects of the drug in that sample are determined
in a clinical study. In clinical trials, samples are
typically considered or assumed to be simple
random samples from the study population. A
simple random sample is a sample in which each
observational unit (for example, study partici-
pant) has the same probability of selection from
the population. In other fields in which Statistics
are used (most notably population surveys)
samples need not be selected in this manner. 

A clinical trial provides numerical state-
ments of the drug’s effects in the specific
sample employed, but the investigator and the
regulatory agency are really interested in the
drug’s (likely) effect in the whole population.
Therefore, statistical procedures have been
developed to allow numerical assessments of
the likely effects in the study population
based on the evidence collected from the
sample that participated in the trial.

There are important limitations to the useful-
ness of generalizing the effects from a series of
clinical trials to the patient population as a
whole. The population from which clinical trial
participants are sampled, the study population,
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may not truly be representative of the population
(the target population) about which we would
like to make conclusions. The target population
may be sicker, have greater needs for concomitant
medications, and have more chronic illnesses
than the relatively homogeneous population
from which the study sample arose. This point is
well expressed by Senn (1997, p 28):

In a clinical trial the primary formal objective is
to assess what effects the treatments did have on
the patients studied in order to say what effects
they may have. To say what effects the treat-
ments will have or even will probably have,
requires arguments which go well beyond any
formal examination of the data.

The following discussions address statistical
methods that are applied to data from a sample
of study participants with the objective of
making an inference about the study population.
By including relevant populations in studies and
carefully documenting the methodology that
gave rise to the study sample in regulatory docu-
ments and clinical communications, reviewers
and physicians can judge for themselves the
extent to which the results from the study can be
inferred to the clinical situation. 

5.3 Measurement scales

Data are anything that is measured. Examples of
data encountered in clinical studies include
height, weight, plasma concentration of a drug
in a sample, days from the start of a study to a
particular adverse event, the presence or absence
of a characteristic of interest, and the gender of a
study participant. Some of these examples may
be surprising because we often think of data as
numbers, but data may also be non-numeric. 

Data can generally be classified into one of 
the following scales of measurement: nominal,
ordinal, interval, or ratio. 

5.3.1 Nominal scale

Nominal measurement scales involve names 
of characteristics. Characteristics frequently

encountered in clinical studies that are measured
on the nominal scale include gender (female or
male), occurrence or not of an adverse event, a
coded adverse event (for example, headache,
asthenia, nausea), and race or ethnicity. Data
measured on a nominal scale cannot be operated
on arithmetically. We could not, for example,
compare the values of females and males and
come up with a meaningful result. An important
caution is worth noting at this point. It is not
uncommon to encounter data measured on the
nominal scale to be represented as numbers or
codes in electronic databases. An example would
be when, in a database of a clinical study, the
presence or absence of an adverse event (for
example, headache) is represented as 0 (absent)
or 1 (present). Before we undertake a statistical
analysis of any sort it is necessary to understand
fully the nature of the data. 

5.3.2 Ordinal scale

This scale is best defined as one in which an
ordering of values can be assigned. Examples of
data from clinical studies measured on an
ordinal scale include: severity of an adverse event
classified as mild, moderate, or severe; age cate-
gorized as � 65, 65–70, 71–75, and � 75 years.
The ordinal nature of the measurement scales
means that we can say that a mild headache is
less severe than a moderate headache, which 
is less severe than a severe headache. However,
we cannot say that the difference between mild
and moderate is the same as the difference
between moderate and severe. 

5.3.3 Interval scale

In contrast, differences between any two values
measured on the interval scale do have meaning.
Temperature measured on the Celsius or Fahren-
heit scale is an example of an interval scale. For
example, the difference between 32°F and 64°F is
the same as the difference between 64°F and
96°F. On the interval scale, a value of zero is not
a true zero (meaning absence of heat) because a
value of �1°F is colder still. We can perform
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addition and subtraction on interval scaled data
but, because the value of zero is meaningless, we
cannot perform multiplication or division and
obtain a meaningful result. 

5.3.4 Ratio scale

Data measured on the ratio scale have all of the
characteristics of interval scaled data with the
exception that, in this case, a value of zero does
represent a true zero. Height, which is measured
on the ratio scale, has a true zero. A height of
zero centimeters or inches means that there is no
height. Likewise, a weight of zero kilograms or
pounds means that there is no weight. An
important characteristic of ratio scaled data is
that the ratio of two values can be computed. For
example, a study participant who weighs 220
pounds weighs twice as much as one who weighs
110 pounds. 

The importance of identifying these scales of
measurement is that not all statistical analysis
approaches are appropriate for each of them. It is
important to note that, although a particular
characteristic may be measured on one scale, it
may be reported using another. For example, age
at the time of study entry may be measured on a
ratio scale, but reported using an ordinal scale
(for example, � 25, 25–64, � 64 years).

5.4 Random variables 

Many individuals are involved in clinical trials
and a number of characteristics of these partici-
pants are recorded. As characteristics such as
age, systolic blood pressure, and gender can
vary from individual to individual, they are
generally classified as random variables (or,
simply, variables). A common convention in
statistics is to represent a particular random
variable as a letter, such as x. A particular real-
ization, or value, of a random variable for a
particular individual (participant i in this case)
is often denoted using a subscript such as xi. We
use these conventions in this chapter and
throughout the text.

5.5 Displaying the frequency of values
of a random variable

Since a random variable such as age can take on
a number of values for a group of study partici-
pants it is of interest to know something about
the relative frequency of each value. The relative
frequency is the count of the number of obser-
vations with a specific value (for example, the
number of 30-year-old participants) divided by
the total number in the sample. An informative
first step in a statistical analysis is to examine
characteristics of the relative frequency of values
of the random variable of interest, which can
also be called the empirical distribution of the
random variable. This knowledge is an essential
part of selecting the most appropriate statistical
analysis. Statistical software packages offer a
number of methods to describe the relative
frequency of values including tabular frequency
displays, dot plots, relative frequency histograms,
and stem-and-leaf plots. 

An example of a frequency table is provided in
Table 5.1, in which the frequency of age values
in a sample of 100 study participants is
displayed. The left-hand column is the value of
age for which frequency information is
provided. The column labeled “Frequency” is the
count of the number of participants with the
particular value of age. The column “Percentage”
is the count of the number of participants with
the particular value of age divided by the total
number of observations in the sample and multi-
plied by 100 to express this figure as a percentage
of the total. The next column “Cumulative
frequency” represents the total count of age
values less than or equal to the age value on a
certain row. Similarly, “Cumulative percentage”
is the cumulative frequency count of age values
as a percentage of the total. As seen in Table 5.1
there is one 40-year-old individual (1% of the
total) and there are five who are 40 and younger
(5% of the total). A frequency table allows us to
see how common all values are, but it can be
difficult to see whether or not certain values
tend to cluster together. 

Another helpful way of displaying the relative
frequency of observed values is to group values
into equally spaced intervals and display the
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resulting frequency in a histogram. There is no
single width of each interval, or bin, that can be
recommended. However, one might consider
the quantity W as a starting point for the
width:

Maximum value � Minimum value
W � ––––––––––––––––––––––––––––––––––

n

It is typically desirable to have at least 5 bins
and no more than 10, although less or more may
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Table 5.1 Frequency table of age values

Age (years) Frequency Percentage Cumulative frequency Cumulative percentage

31 1 1.00 1 1.00
35 1 1.00 2 2.00
39 2 2.00 4 4.00
40 1 1.00 5 5.00
43 3 3.00 8 8.00
45 1 1.00 9 9.00
48 2 2.00 11 11.00
49 4 4.00 15 15.00
50 4 4.00 19 19.00
51 2 2.00 21 21.00
52 2 2.00 23 23.00
53 2 2.00 25 25.00
55 3 3.00 28 28.00
57 3 3.00 31 31.00
58 3 3.00 34 34.00
59 5 5.00 39 39.00
60 2 2.00 41 41.00
61 6 6.00 47 47.00
62 4 4.00 51 51.00
63 2 2.00 53 53.00
64 1 1.00 54 54.00
65 1 1.00 55 55.00
66 3 3.00 58 58.00
67 4 4.00 62 62.00
68 3 3.00 65 65.00
69 2 2.00 67 67.00
70 3 3.00 70 70.00
71 4 4.00 74 74.00
72 3 3.00 77 77.00
73 4 4.00 81 81.00
74 1 1.00 82 82.00
75 3 3.00 85 85.00
76 1 1.00 86 86.00
77 3 3.00 89 89.00
78 3 3.00 92 92.00
79 1 1.00 93 93.00
80 2 2.00 95 95.00
81 2 2.00 97 97.00
82 1 1.00 98 98.00
83 1 1.00 99 99.00
88 1 1.00 100 100.00



be informative. Once the number and width of
the bins have been determined the next step is to
count the number of observations that fall into
each interval and display the frequency of each
grouping with contiguous bars. It is important
that the intervals or bins are defined such that
each observation can be assigned to only one
interval. Using the 100 age values in the previous
example, a histogram, displayed in Figure 5.1, has
been constructed from the following categories:
30–39, 40–49, 50–59, 60–69, 70–79, 80–89. Note
that each bar is centered over the interval
midpoint. For example, the bar centered at 54.5
represents the relative frequency of age values in
the interval 50–59.

By grouping the 100 age values (that is, the
100 participants in the indicated age groups)
into categories, much of the detail evident in
Table 5.1 has been lost. A display that retains the
graphical nature of the histogram and the detail
of the tabular frequency is a stem-and-leaf plot.
A stem-and-leaf plot displays the first significant
digit of the value of random variable as a “stem”
and the subsequent significant digit as a “leaf.”
The stems are ordered from lowest to highest so
that the relative frequency of each value can be

surmised in one concise display. A stem-and-leaf
plot of 100 individuals’ age values is provided in
Figure 5.2. To assist in your interpretation of this
display, the youngest participant in this study
was 31, the oldest was 88, and there were four 50
year olds. 

The shape of the overall distribution in this
case could be called somewhat bell shaped,
as characterized by relatively fewer observations
at either extreme than in the middle. Some
distributions are symmetric, whereas others are
asymmetric. Those that are asymmetric are said to
be skewed. If fewer observations are at the upper
end of the distribution (that is, the long tail is
toward the right or higher values) the distribu-
tion’s shape is called positively skewed. If the
long tail is pointing toward the left, or lower
values, the distribution is called negatively
skewed. In the case of this particular example,
turning Figure 5.2 on its side so it has lower values
on the left reveals that the distribution of age
values is somewhat negatively skewed. Although
the stem-and-leaf display in Figure 5.2 has more
detail (that is, more bins) than the histogram in
Figure 5.1, the histogram retains the basic shape
elements of the stem-and-leaf display.
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5.6 Central tendency

One fundamental idea in the development of
new pharmaceutical products is that pharmaceu-
tical companies (sponsors) would like to demon-
strate that participants who receive a test
treatment tend to fare better than those who
receive some alternate therapy. This alternate
therapy could be an inactive control (a placebo)
or some other approved therapy (an active
control). We said “tend to fare better” because
participants will not all respond in the same way
to the same test treatment. It is also true that, if
and when the drug is approved for marketing
and prescribed for patients, some patients will do
better on the drug than others, but it is still very
useful to clinicians to know how patients will
tend to respond.

When we flip a fair coin ten times, we do not
always expect to observe five heads and five tails.
If we do several series of ten flips, we know that,
by chance, we will observe six heads and four
tails sometimes, and even more lopsided results
would not be all that surprising. The same
phenomenon happens with the response to test
treatments in clinical studies. When doctors
prescribe a new medicine to a patient it would be
helpful to know what kind of response could be
expected. Although we might expect that a fair
coin flipped ten times will result in five heads,
we also would expect that four or three heads
could be observed. The determination of values
that might be expected is the next topic in this
chapter, that is, measures of central tendency.

Once we have assembled individual observa-
tions in a sample from a clinical study, our
ability to understand the nature of those obser-
vations as a whole is limited by our ability to
synthesize several disparate pieces of observation
into an overall impression. Imagine that you
have observed the following 10 observations of
age of study participants in an early exploratory
therapeutic clinical trial: 45, 62, 32, 38, 77, 28,
25, 62, 41, and 50. 

Regulatory authorities are concerned about
how well study participants match those in the
general population of patients with the condi-
tion. How might such a question be answered?
There are several strategies here.

5.6.1 The mode

One possible way to answer this question is to
report that the most common value of age is 62.
There are two such observations with this value
of age. This measure of central tendency is
known as the mode. The mode is most
commonly used with non-numeric data (for
example, most of the study participants were
female), but it may also be useful for numeric
data if there are only a few unique values. Unfor-
tunately, the choice of the mode as the typical
value in this case is a little misleading. Although
there are two 62-year-olds in the study, most
study participants (seven of them) are younger
than that. 

A question that comes to mind here is: What
would the mode have been if all values of age
were unique? The answer is that there would
have been no mode – all values occurred equally
as frequently. Likewise, suppose that there had
also been two observations with the value of age
of 32: In this case there would not be one value
of the mode, but two. These two properties of
the mode – that is, it is undefined in some
instances and it may have multiple values in
others – are considerable drawbacks to its use. 

5.6.2 The median

Another reasonable choice for the typical value
of age would be the value of age that is right in
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the middle of all values. This middle value is
called the median. Citing the median would
ensure that there were as many participants
younger than the typical value as there were
participants older. In this case, as there are 10
values there is no single middle value because
there are an even number of values. The fifth
and sixth greatest values of age are 41 and 45. To
obtain the median value with an even number of
observations, we simply split the difference
between the two middle values. In this case the
median is calculated as:

(41 � 45)
––––––––– � 43.

2

A quick check to know that we got it right is to
see that exactly 5 observations are less than 43
and exactly 5 observations are greater than 43.
When there is an odd number of observations,
the median is the value of the middle observa-
tion after ordering them from the smallest to the
largest. Unlike the mode, the median for a set of
observations is unique: There is only one value
and it is always defined. 

5.6.3 The arithmetic mean

The last measure of central tendency that we
consider is the most commonly encountered.
The arithmetic mean is the sum of the individual
observations divided by the total number of
observations. Using mathematical notation the
mean is calculated as:

n

R xi

i � 1x̄ � –––—–
n

where R stands for the addition of the values of
each observation in the sample (n of them), that
is:

n

R xi � x1 � x2 � . . . � xn.
i � 1

For our sample of 10 values of age, the mean is
46 (verification of this calculation is left to you).
The arithmetic mean, commonly called the
average, is the value that balances the weight of
the distribution. 

Some noteworthy characteristics of the mean
are that, like the median, it is unique and always
defined for a set of observations. However, the
mean is sensitive to extreme observations – that
is, if there is a single observation that is much
higher or lower than the rest, the mean will be
heavily influenced by that single observation. 

One of the primary goals of Statistics is to use
data from a sample to estimate an unknown
quantity from an underlying population, called
a population parameter. In general, we typically
use the arithmetic mean as the measure of
central tendency of choice because the sample
mean is an unbiased estimator of the population
mean, typically represented by the symbol l.
The main conceptual point about unbiased esti-
mators is that they come closer to estimating the
true population parameter, in this case the popu-
lation mean, than biased estimators. When
extreme observations influence the value of the
mean such that it really is not representative of a
typical value, use of the median is recommended
as a measure of central tendency.

Returning to the query posed by the regulatory
authorities, we came up with the following
responses. The typical value of age in our sample
using the mode is 62, using the median is 43,
and using the mean is 46. Suppose that the
authorities are satisfied with that response
initially and then pose the following question.
“So was your study among middle-aged adults
with the condition?” You refer once again to the
list of 10 observations and realize that it is not
that simple. There actually were some younger
adults in your study and it would be ideal to
quantify the extent to which the mean does not
tell the whole story. It is no surprise that not all
values of age in the study are the same. Fortu-
nately there are ways to quantify the extent to
which they vary from participant to participant. 

5.7 Dispersion

Dispersion refers to the variety or “spread” of
individual observations in a sample. As for
central tendency there are various measures of
dispersion.
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5.7.1 The range

A quick way to reflect the variety of values in a
sample is to cite the lowest and highest values,
the minimum and maximum. Calculating the
difference between these two (calculated as
maximum minus minimum) yields a value
called the range:

Range � xmax � xmin.

Although the range is informative in that it
conveys the difference between the two most
extreme values, it does have a deficiency: It
really does not adequately reflect the extent to
which observations are similar or dissimilar.
Imagine a study in which 99 of the 100 partici-
pants are aged between 20 years and 29 years,
and one is 60 years old. The range is quite large
(40 years), but the value of this range does not
give any indication about how close together
most age values in the sample are to each other.

5.7.2 The variance

In contrast, the variance of a sample does indi-
cate how close together most values in a sample
are. The sample variance is calculated as the sum
of squared deviations of each observation from
the sample mean divided by the sample size
minus 1:

n

R (xi � x̄)2

i � 1s2 � –––––––––—–.
n � 1

A calculation of this sort ensures that the measure
of dispersion is positive (squaring the deviations
ensures that) and dividing by (n � 1) results in a
quantity that represents an average of sorts. The
sample variance is the “typical” or “average”
squared deviation of observations from the
sample mean. The use of the (n � 1) in the
denominator may seem confusing, but the reason
why this is done is that calculating the sample
variance in this manner yields an unbiased esti-
mator of the population variance, which is repre-
sented by the symbol r2. (The exact mathematical

demonstration that s2 is an unbiased estimator of
r2 is beyond the scope of this text.)

5.7.3 The standard deviation

Although very useful in some ways, the sample
variance has the unfortunate characteristic that
it is expressed in terms of squared units that are
typically nonsensical. From our earlier example
of 10 ages, we would calculate the sample vari-
ance as 282 “squared years.” To overcome the
significant drawback of squared units we can
take the square root of the sample variance to
obtain the standard deviation (s):

s � �
__
s2 .

The standard deviation represents an average
(of sorts) deviation of each observation from the
sample mean. Again, the only reason why we do
not call this quantity the average deviation
without qualification is that there really are n
deviations from the sample mean, but the stan-
dard deviation is calculated using the denomi-
nator of (n � 1) instead of n. The sample
standard deviation is an unbiased estimator of
the population standard deviation. For our
previous example of 10 age values, the value of
the sample standard deviation is 16.8 years (we
leave confirmation of this to you).

The sample standard deviation captures a great
deal of information about the spread of the data.
The value of the standard deviation is helpful
across a number of datasets because of the results
of what is called Tchebysheff’s theorem. A simple
way of thinking of Tchebysheff’s theorem is that
most values lie close to the sample mean.
According to this theorem, no matter what the
shape of the distribution is:

• 25% (1–4 � 1–22) or less of observations lie outside
of 2 standard deviations away from the mean

• 11% (1–9 � 1–32) or less of observations lie outside
of 3 standard deviations away from the mean

• 6% ( 1––16 � 1–42) or less of observations lie outside
of 4 standard deviations away from the mean. 

Applying Tchebysheff’s theorem to our sample
of 10 ages, we can say to the regulatory agency that
the study really is not just among middle-aged
adults.
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5.7.4 Variability and the coefficient of
variation

A commonly asked question among investiga-
tors is: How do I know if I have a lot of or a little
variability in my study results? There is no
straightforward answer to this question: The
magnitude of the variance (or synonymously the
standard deviation) can be called a lot or a little
only when it is compared with some other
quantity – that is, it is relative. 

In Chapter 11 we discuss an analytical strategy
called analysis of variance (ANOVA) in which
one variance is compared with another. For now,
another useful measure of relative dispersion is
the coefficient of variation (CV), calculated as
the ratio of the sample standard deviation to the
sample mean:

sCV � ––.
x̄

The coefficient of variation is useful when
comparing the magnitude of variability between
two or more different random variables. 

To illustrate the coefficient of variation,
consider the following (extremely simple and
artificial) example. Imagine that there are two
random variables in an early therapeutic
exploratory clinical trial. One random variable is
pulse (ranging from 50 to 80) and the other is
age, which in this case is pulse minus 20. We can
see that, from this example, values of pulse and
age are just as disperse, but what differs between
them is the mean. Hence, when we calculate the
standard deviation, one random variable will
appear to have more or less dispersion, but, after
re-scaling the standard deviation with the
sample mean, the measure of dispersion is the
same. 

5.7.5 Percentiles

Another descriptive measure of variability or
dispersion is the percentile. The Pth percentile is
the value of the random variable, X � X P––100

, such
that:

• P% of values of X are � X P––100
• 100 � P% of values of X are � X P––100

.

For example, the 75th percentile is the value of
X below which 75% of the values lie and above
which 25% lie. The 50th percentile is synonymous
with the median. Likewise the 25th percentile is
the value of X below which 25% of the values lie
and above which 75% lie. The difference between
the 75th and 25th percentiles is called the
interquartile range, which can be a useful measure
of dispersion when the distribution of the random
variable is heavily skewed or asymmetric.

5.8 Tabular displays of summary
statistics of central tendency and
dispersion

As we discuss in more detail in Chapter 6, one of
the primary goals of studies in a clinical devel-
opment program is to describe the effect that the
test treatment had on study participants so that
some inference can be made about the drug’s
effects on patients who may receive the drug 
in the future. Summary descriptive statistics of
central tendency and dispersion give us 
better understanding of the typical effect of the 
test treatment and how varied participants’
responses were. 

In our experience the mean and the standard
deviation are the most commonly used summary
statistics for these purposes. However, other
measures can be useful to reviewers when inter-
preting data from clinical studies. We encourage
researchers to present the following statistics:
The sample size, the mean, the median, the stan-
dard deviation, and the minimum and the
maximum. Presenting all these values for a given
random variable provides a reviewer with two
measures of central tendency and two measures
of dispersion. For clinical studies that are
comparative in nature, such as therapeutic
confirmatory trials, it is our recommendation
that summary statistics – for example, the mean
and standard deviation – be formatted in a
report so that the primary comparison of interest
is read across columns (left to right). In clinical
studies this is typically treatment groups or dose
groups. Secondary comparisons of interest – for
example, time points of observation – should be
arranged as separate rows. 
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5.9 Review

1. What scale are each of the following participant
characteristics measured on:

(a) eye color
(b) body mass index (kg/m2)
(c) number of cerebrovascular events diagnosed in

the past 5 years
(d) days from study entry to last follow-up visit
(e) concentration of test drug in plasma (ng/mL) 
(f) blood pressure classification: Normal;

prehypertension; stage 1 hypertension; stage 2
hypertension.

2. Using the histogram in Figure 5.1 and the stem-
and-leaf plot in Figure 5.2, comment on the
appropriateness of each of the following measures
of central tendency:

(a) mean
(b) median
(c) mode.

3. From the frequency table of age values in Table 5.1,
calculate:

(a) the median or 50th percentile
(b) the 25th percentile
(c) the 75th percentile.



6.1 Introduction

A common goal of pharmaceutical clinical trials
is to establish with some high degree of confi-
dence that the test treatment is superior to a
control with respect to some measurable effect. If
we are able to say that the expected effect of the
test treatment tends to be superior (by some
amount) to the expected effect of the control,
we could conclude that the test treatment was
superior to the control. 

To accomplish this objective, sponsors design
studies that allow them to attribute any differ-
ence in the response of interest to the test treat-
ment itself. This is accomplished through the
use of randomization, a carefully selected study
population, treatment blinding, careful data
collection, and other measures that minimize
the possibility that other factors may have influ-
enced the outcome of the study. However, if too
few study participants are studied any difference
observed might have been caused by chance. A
chance, or spurious, result is one that may not be
repeatable or, to put it another way, a chance
result is not reliable. Provision of a high degree
of confidence that a new drug is beneficial
requires sponsors to demonstrate that effects
observed from a new treatment are reliable. This
chapter discusses the statistical concepts that
allow researchers to make the conclusion that
the effect seen in a study was unlikely to be
the result of chance. 

6.2 Probability

The statements at the end of the previous section
can be expressed differently, and more quantita-

tively, in the language of Statistics. We noted
that provision of substantial evidence that a new
drug is beneficial requires sponsors to demon-
strate that effects observed from a new treatment
are reliable. This chapter discusses the statistical
concepts that allow researchers to make the
conclusion that the effect seen in a study is reli-
able, that is, it is unlikely to be the result of
chance. 

The statistical techniques that can be used to
rule out chance events require us first to consider
some concepts of probability. Many outcomes in
life are inherently uncertain, and others can be
considered certain. If you play the lottery, it is
uncertain whether you will win on any given
occasion (it is also incredibly unlikely). If you
drop an apple, it is certain that it will fall to the
ground. Other outcomes fall in the middle of
the range. It is useful to be able to quantify the
degree of certainty, and conversely the degree
of uncertainty, associated with a particular
occurrence. This is the realm of probability.

Like the word significance, the concept of
probability is used in everyday language as well
as in the discipline of Statistics. As Turner (2007)
noted, the statement “I’ll probably be there on
Saturday” involves a probabilistic statement, but
there is no degree of quantification (if you know
the individual making this statement, past expe-
rience may lead you to have an informed
opinion concerning the relative meaning of
“probably,” but this is a subjective judgment).

As for many aspects of statistical analysis,
there are axioms in probability that make it a
very useful tool. In the context of Statistics,
probability can be defined in quantifiable terms.
A probability is a numerical quantity between
zero and one that expresses the likely occurrence
of a future event. A probability of 0 denotes that
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the event will not occur. A probability of 1
denotes that the event will undoubtedly occur.
Any numerical value between 0 and 1 expresses
a relative likelihood of an event occurring. 

A probability value can be represented as a
fraction or as a decimal value. In addition, it is
common in some aspects of Statistics to multiply
the decimal expression of a particular probability
by 100 to create a percentage statement of likeli-
hood. A probability of 0.5 would thus be
expressed as a 50% chance that an event would
occur. Percentage statements of likelihood are a
central component of hypothesis testing, which
is introduced later in the chapter. 

The probability of an event (E) can be repre-
sented as P(E) and we use this notational
convention. In general, the probability of either
of two events (A or B) occurring is calculated as:

P(A or B) � P(A) � P(B) � P(A and B).

In other words, the probability of either event
occurring is the sum of the probabilities of each
event minus the probability of both occurring
together (or jointly). 

Consider the cross-tabulation of the gender
and age of participants in a clinical trial as
presented in Table 6.1. As seen there were 200
participants, 100 of whom were male and 100
female. There were 65 participants aged 45 years
or younger, 90 between 46 and 64 years, and 45
who were aged 65 years or older. We illustrate
several of the axioms of probability using 
Table 6.1. For example, the probability of
selecting at random a participant from this
group who was male or aged 65 years or older:

P(maleor�65) � P(male) � P(�65) � P(maleand�65) �

100 45 15 130
P(male or � 65) � –––– � –––– � –––– � –––– � 0.65.

200 200 200 200

In the special case that the events A and B
cannot occur at the same time, they are said to
be mutually exclusive, meaning that P(A and B)
� 0. Hence, for mutually exclusive events A
and B:

P(A or B) � P(A) � P(B).

A randomly selected participant cannot be
both “� 45” and “� 65.” The events of selecting
a participant aged 45 years or younger and one

65 years or older are mutually exclusive. This
result is generalizable to more than two events of
interest. 

If one or more events, E1, E2, . . . En, represent
all unique and mutually exclusive outcomes in 
a particular circumstance, the probability of
observing at least one of the events sums to one:

P(E1 or E2 or . . . or En) � P(E1) � P(E2) � . . . � P(En) � 1.

This result can be used to calculate the proba-
bility of one or more events of interest. For any
event E1 among n mutually exclusive and
exhaustive events:

P(E1) � 1 � {P(E2) � . . . � P(En)}.

This expression is called the complement rule
and will be referenced throughout this book.

The probability of selecting a male at random
can be calculated by adding the probabilities for
the events “male � 45 years,” “male 46–64
years,” and “male � 65 years,” because these are
all mutually exclusive events. The probability
can be calculated as follows:

P(male) � P(male � 45 years) �
P(male 46–64 years) � P(male � 65 years)

35 50 15
� –––– � –––– � ––––

200 200 200
100 1

� –––– � –– .
200 2

The probability of an event B given that A has
been observed is called a conditional probability
and is defined as:

P(A and B)
P(B | A) � ––––––––––,

P(A)

where the vertical bar signifies “given.”
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Table 6.1 Cross-tabulation of age and gender

Age (years) Male Female

� 45 35 30 65
46–64 50 40 90
� 65 15 30 45

100 100 200



The probability of selecting a participant � 45
years of age, given that a male has been
selected, is:

P(� 45 years and male)
P(� 45 years | male) � –––––––––––––––––––––

P(male)

35––––
P(� 45 years and male) 200 35
–––––––––––––––––––––– � –––– � –––– .

P(male) 100 100
––––
200

It follows that the probability of two events
occurring jointly is calculated as:

P(A and B) � P(A)P(B|A).

One important use of conditional probabilities
occurs in Bayes’ theorem. The conditional
probability of an event A given an event B is:

P(B | A)P(A)
P(A | B) � ——————.

P(B)

Note that throughout this book we have
adopted a standard mathematical notation for
the product of two or more terms. In the expres-
sion above the numerator is the product of the
two terms, P(B|A) and P(A), that is, these two
quantities are multiplied. Please keep this
standard in mind when you encounter other
mathematical expressions.

It is also possible to state the probability of an
event, A, as a function of two or more condi-
tional events. If the events B and C are mutually
exclusive and exhaustive – for example, they
represent male and female – the probability of
event A can be expressed as:

P(A) � P(A | B)P(B) � P(A | C)P(C).

This expression can be extended to more than
two conditional events.

A common application of Bayes’ theorem is in
estimating the probability of a participant
having a disease, given a positive test for that
disease. These concepts are important in their
own right with regard to the development of
diagnostic tests. As the clinical trials discussed in
this book are for the purposes of developing new
pharmaceutical interventions rather than testing
for the existence of a disease or condition, this
issue may not seem directly relevant. However,

these concepts are discussed in Chapter 12 in a
different light, and we would therefore like to
establish these concepts at this earlier stage. 

For simplicity, in the notation used in this
example we define the following events using
the symbol “�” which means “is equivalent to”:

• D� � participant has the disease of interest
• D� � participant does not have the disease of

interest
• T� � participant tests positive for the disease
• T� � participant tests negative for the disease.

When developing a diagnostic test, investigators
identify two groups: One is known (by some
gold standard testing procedure) to have the
disease; the other is known (also by a gold stan-
dard testing procedure) not to have the disease.
Then all participants in both these groups are
given the new diagnostic test. The accuracy of a
new diagnostic test is measured by two criteria:

1. Sensitivity is the probability that a new test
will have a positive result among those who
are known to have the disease. This is denoted
by: P(T�|D�).

2. Specificity is the probability that a new test
will have a negative result among those who
are known not to have the disease. This is
denoted by: P(T�|D�).

Once a new diagnostic test has been developed it
may be considered for a public health screening
program. Evaluating the utility of a proposed
new diagnostic test in a population involves the
following two criteria:

1. The true positive rate is the probability that a
participant has the disease given that she or
he has tested positive. This is denoted by
P(D�|T�) and is also referred to as predictive
value positive. The complement, 1 � P(D�|T�)
� P(D�|T�), is the false-positive rate.

2. The true-negative rate is the probability that a
participant does not have the disease given
that she or he has tested negative. This is
denoted by P(D�|T�) and is also referred to 
as predictive value negative. The complement,
1 � P(D�|T�) � P(D�|T�), is the false-
negative rate. 

If the true-positive rate is low (or the false-
positive rate high) a number of participants will

Probability 59



needlessly incur the expense and anxiety of
further medical investigations. If the true-
negative rate is low (or the false-negative rate
high) a number of them will carry on undiag-
nosed. The goal would be to adopt a screening
tool that had high rates of true positives and true
negatives. Bayes’ theorem can be used to show
that the rates of true positives and true negatives
are a function of the sensitivity and specificity of
the diagnostic test itself and the prevalence of
the disease in the population of interest. 

We illustrate this concept for the true-positive
rate, which is:

� P(D� | T�)

P(T� | D�)P(D�)
� ––––––––––––––––– by Bayes’ theorem.

P(T�)

Bayes’s theorem is applied again to obtain:

P(T� | D�)P(D�)
� –––––––––––––––––––––––––––––––––––.

P(T� | D�)P(D�) � P(T� | D�)P(D�)

Noting that P(T� | D�) � 1 � P(T� | D�) we
have the desired result.

P(T� | D�)P(D�)
� ––––––––––––––––––––––––––––––––––––––––.

P(T� | D�)P(D�) � [1 � P(T� | D�)]P(D�)

Note that P(D�) is often called the prevalence of
the disease in a population. Its complement is
P(D�) � 1 � P(D�). Prevalence of a disease is
estimated through the use of epidemiologic
studies and not clinical trials. Thus, to fully eval-
uate the utility of the new diagnostic test, we
must have an estimate of the prevalence of
the disease, the sensitivity of the test, and the
specificity of the test.

Two events are said to be statistically indepen-
dent if the probability of one occurring does not
depend on the other. If A and B are independent
events the joint probability is given by:

P(A and B) � P(A)P(B).

If we sample from our 200 study participants
“with replacement” – that is, after each selection
the participant is available for selection again –
the probability of selecting a male does not
depend on previous selections. The probability
of selecting two males in a row is given by:

P(two males in a row) � P(male)P(male)

1 1
� ( –– ) ( –– )2 2

1
� –– � 0.25.

4

The probability of selecting four males in a
row is:

P(four males in a row) �
P(male)P(male)P(male)P(male)

1 1 1 1
� ( –– ) ( –– ) ( –– ) ( –– )2 2 2 2

1
� –– � 0.0625.

16

These basic principles and characteristics of
probability are referred to throughout subse-
quent chapters.

6.3 Probability distributions

In Chapter 5 we described a number of ways to
examine the relative frequency distribution of a
random variable (for example, age). An important
step in preparation for subsequent discussions is
to extend the idea of relative frequency to proba-
bility distributions. A probability distribution is a
mathematical expression or graphical representa-
tion that defines the probability with which all
possible values of a random variable will occur.
There are many probability distribution func-
tions for both discrete random variables and
continuous random variables. Discrete random
variables are random variables for which the
possible values have “gaps.” A random variable
that represents a count (for example, number of
participants with a particular eye color) is consid-
ered discrete because the possible values are 0, 1,
2, 3, etc. A continuous random variable does not
have gaps in the possible values. Whether the
random variable is discrete or continuous, all
probability distribution functions have these
characteristics:
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• All possible values of the random variable
must be represented by the distribution
function.

• The probability of each value of the random
variable occurring is bounded by 0 and 1,
inclusive.

• The probabilities of values of the random
variable occurring must sum to 1 (in the
case of a discrete random variable) or inte-
grate to 1 (in the case of a continuous
random variable).

A simple example of a discrete probability
distribution is the process by which a single
participant is assigned the active treatment
when the event “active treatment” is equally
likely as the event “placebo treatment.” This
random process is like a coin toss with a
perfectly fair coin. If the random variable, X,
takes the value of 1 if active treatment is
randomly assigned and 0 if the placebo treat-
ment is randomly assigned, the probability
distribution function can be described as
follows:

1
P(X � x) � ––, where x � 0 or 1.

2

This probability distribution function has the
characteristics defined previously:

• The random variable can take on only values
of 0 or 1. 

• The probability distribution function is
defined for both values. 

• The probability of each value is between 0
and 1, inclusive. It is, in fact, half for both
values.

• Finally, the sum of the probability of all
mutually exclusive outcomes is equal to one,
that is, P(X � 0)�P(X � 1) � 1. 

6.4 Binomial distribution 

The first probability distribution function that we
discuss in detail is the binomial distribution,
which is used to calculate the probability of
observing x number of successes out of n observa-
tions. As the random variable of interest, the

number of successes, is discrete (as are all counts),
the binomial distribution is called a discrete
random variable distribution. The binomial
distribution is applicable when the following
conditions apply:

• Each of n observations results in only one of
two outcomes (one is typically called a success
and the other failure).

• The probability of a success, p, is the same
from observation to observation.

• Each observation is independent of the
others. 

The probability of observing x successes out of n
observations under these conditions (called a
Bernoulli process) can be expressed as:

P(X � x; p, n) � Cn
xpx(1 � p)n�x.

The left part of this expression can be read as
“the probability of the random variable, X,
taking on a particular value of x, given parame-
ters p and n.” The quantity (1 � p) is the proba-
bility of failure for any trial. The notation Cn

x is
shorthand to represent the number of combina-
tions of taking x successes out of n observations
when ordering is not important. This quantity
can be calculated as:

n!
Cn

x � –––––––––.
x!(n � x)!

The expression n! is read as “n factorial” and is
calculated as n(n � 1)(n � 2) . . . (1). 

The mean of the binomial distribution func-
tion is:

Mean � np.

The variance of the binomial distribution is:

Variance � np(1 � p).

A simple example of the use of the binomial
distribution is the result of four random assign-
ments to either the active or the placebo treat-
ment group when each outcome is equally likely.
What is the probability of observing 0, 1, 2, 3, or
4 assignments to the active treatment group out
of 4 random treatment assignments when the
probability of assigning to active or placebo is
equally likely? We must assume that the
outcome of one assignment does not impact the

Binomial distribution 61



outcome on subsequent assignments, that is,
they are independent. There are only two
possible outcomes on any given trial: Assign-
ment to active or placebo. The probability of
each outcome, the number of “successes” or
assignments to active, can then be calculated
using the binomial probability distribution
function. 

The probability of each outcome of four
random treatment assignments is displayed in
Table 6.2. In some instances, we may be inter-
ested in knowing what the probability of
observing x or fewer successes would be, that is,
P(X � x). This cumulative probability is also
displayed for each outcome in Table 6.2. For a
discrete random variable distribution, the sum of
probabilities of each outcome must sum to 1, or
unity. 

As you might expect, the most probable
outcome is 2 actives (probability 0.375) and the
least probable outcomes are 0 and 4 actives (each
with a probability of 0.0625). We can use the
cumulative probability distribution to answer
other probability questions of interest. For
example, what is the probability of observing 3
or fewer actives? This probability is denoted as
P(X � 3) � 0.9375. We can use the complement
rule from Section 6.2 to calculate the probability
of observing 2 or more actives, P(X � 2), as:

1 � P(X � 1) � 1 � 0.3125 � 0.6875.

The binomial distribution is discussed later in
the chapter to illustrate concepts of hypothesis
testing. 

6.5 Normal distribution

Similar probability models can be used for
continuous random variables. The most
common, and arguably the most important of
these in Statistics, is the normal distribution. As
it is encountered so frequently in this book, we
spend some time describing its characteristics
and uses. 

The normal distribution is a particular form of
a continuous random variable distribution. The
relative frequency of values of the normal distri-
bution is represented by a normal density curve.
This curve is typically described as a bell-shaped
curve, as displayed in Figure 6.1.

More precisely, it is one specific kind of symmet-
rical curve. The precise nature of this curve can be
described mathematically by a formula that
contains both the mean, l, and the standard
deviation, r, of the population that is being
represented graphically by the normal curve:

(x��)2

1 � ––––––
2r2

f (x ; l, r) � –––––– e .
r�

___
2p

The term “population” is defined in detail later
in the chapter. Until then we can think of a
population as the largest group of experimental
units (for example, study participants) about
which we would like to make a conclusion.

As we need to know two parameters – that is,
the mean, l, and the standard deviation, r, to
fully characterize this distribution – it is consid-
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Table 6.2 Distribution of the number of assignments to active from four random assignments when the probability
of assignment to active and placebo is equal (p�0.5)

Outcome Probability of the Cumulative probability
(no. of actives, x) outcome P(X � x) P (X � x)

0 C4
00.50(0.5)4 � 0.0625 0.0625

1 C4
10.51(0.5)3 � 0.2500 0.3125

2 C4
20.52(0.5)2 � 0.3750 0.6875

3 C4
30.53(0.5)1 � 0.2500 0.9375

4 C4
40.54(0.5)0 � 0.0625 1.0000



ered to be a two-parameter distribution. This fact
is also conveyed by the use of the symbols l and
r on the left side of the expression. The mean
specifies the distribution’s location, whereas the
standard deviation specifies the spread of the
distribution. If a random variable X has a normal
distribution with mean l and variance r2, this is
written as X ~ N(l,r2). Note that most practical
applications involve the use of r rather than r2,
but it is conventional to describe the normal
distribution in terms of its mean and variance.

Figure 6.2 displays three normal density curves
with the same mean (location) but different
standard deviations (spread). Several characteris-
tics of the normal distribution are very helpful in
developing the statistical tests introduced in this
book: 

• The highest point of the normal curve occurs
for the mean of the population, l. 

• The shape of the curve (relatively narrow or
relatively broad) is influenced by the standard
deviation, r. The sides of the curve descend
more gently as the standard deviation
increases.

• At a distance of 2 standard deviations from
the mean, the slope of the curve changes from
a relatively smooth downward slope to a
curve that technically extends out to infinity,
that is, the curve technically never reaches
(touches) the x axis of the graph. This concept

is analogous to starting a certain distance
away from a fence and taking steps that
always cover half the distance between you
and the fence. As your next step always covers
only half the remaining distance, theoreti-
cally you never reach the fence. However,
after a certain number of steps, you are, to all
practical purposes, at the fence. In the same
manner, the curve is regarded as intercepting
the axis at a distance of 4 standard deviations
from the mean.

• The area under the curve is 1.0. This can be
demonstrated formally using integral
calculus, which is beyond the scope of this
book: A simpler demonstration is provided by
Turner (2007, pp 94–5). That the area under
the curve is equal to 1 is analogous to the
statement that the probability of all mutually
exclusive events must sum to 1.

The precise mathematics of the normal distribu-
tion allows quantitative statements of the area
under the curve between any two points on the
x axis. Of most interest here is the area under the
curve between two points that are equidistant
from the mean. 

These points, equidistant from the mean on
either side, can be represented by statements of
the form:

l � distance.
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Figure 6.1 A normal density curve (l � 40, r � 10) 



It can be shown for any normal distribution that: 

• 68.3% of the area under the curve lies in the
range l � r

• 95.4% of the area under the curve lies in the
range l � 2r

• 99.73% of the area under the curve lies in the
range l � 3r.

As the area under the entire density curve equals
1 the statements above also imply by the
complementary rule that:

• 31.7% of the area under the curve lies outside
l � r

• 4.6% of the area under the curve lies outside
l � 2r

• 0.27% of the area under the curve lies outside
l � 3r.

Expressing a similar concept in terms of pertinent
“round number” percentages:

• The central 90% of the area lies in the range 
l � 1.645r

• The central 95% of the area lies in the range 
l � 1.960r

• The central 99% of the area lies in the range 
l � 2.576r. 

You may recall from Chapter 5 that by using
Tchebysheff’s theorem we could estimate the
probability with which observations fall within 
k standard deviations for any distribution. You
are encouraged to compare the results from
Tchebysheff’s theorem and those cited above for
the normal distribution. Although values of any
percentage of interest can be determined from
statistical tables of normal distributions, the 95%
and 99% values are of particular importance in
the context of this book.

It is important to note here that the areas
under the curve of a continuous random variable
distribution can be thought of as probabilities.
Assume that we know that age in a population of
study participants is normally distributed with a
mean of 40 and variance of 100 (standard devia-
tion of 10). This normal distribution is displayed
in Figure 6.3 with vertical lines marking 1, 2, and
3 standard deviations from the mean.

It is then possible, using the results above and
similar ones from statistical tables, to estimate
the probability that a participant randomly
selected from the population of study partici-
pants would be aged 	 50 or 
 30. The answer is
0.32 or 32% – that is, the proportion or
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percentage of the area under the curve translates
directly in to the percentage of participants (or
other observational units) whose age values fall
outside of the two identified points. 

6.5.1 The standard normal (Z) distribution

One unique and important normal distribution
is the standard normal distribution, or Z distrib-
ution, which has a mean of 0 and a variance of
1. If a random variable X is distributed as stan-
dard normal with mean 0 and variance 1, it is
written as X ~ N(0,1). To use some of the general
results from normal distributions provided
earlier, we can make the following statements for
the standard normal distribution:

• The central 90% of the area lies between 
� 1.645

• The central 95% of the area lies between 
� 1.960

• The central 99% of the area lies between 
� 2.576.

The standard normal or Z distribution is used
extensively in Statistics and throughout this

book. For later reference, the standard normal
distribution is provided in Figure 6.4. Note that
the area under the curve to the left of the value
�1.96 is 0.025 (or 2.5%). As the distribution is
symmetric, the area under the curve to the right
of the value 1.96 is also 0.025. Another way of
stating this is that, if we were to randomly select
a value from the distribution, there is a 95%
chance that the value would be between �1.96
and �1.96. One can also think of the values
�1.96 and �1.96 as the 2.5th and 97.5th

percentiles, respectively. 
Values of the Z that define areas under the

standard normal curve in the left tail, the right
tail, and the symmetric central region are
provided in Appendix 1. 

6.5.2 Transforming a normal distribution
to the standard normal distribution

One helpful method possible with a random
variable that has a normal distribution with
mean, l, and variance, r2, is to transform values
of the random variable so that they have the
scale of the standard normal distribution. This
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makes it possible to answer a number of proba-
bility questions using statistical tables that
provide the areas under the standard normal
curve. In general, for a random variable X ~
N(l,r2), the random variable:

X � �
Z � ––––––

r

is normally distributed with mean 0 and 
variance 1. 

We can use the example from earlier in Section
6.5 to illustrate this method. If age in a popula-
tion of study participants is normally distributed
with a mean of 40 and variance of 100 (standard
deviation of 10), what is the probability that a
participant randomly selected from the popula-
tion of study participants would be aged 	 50 or

 30?

First we are interested in the probability that a
randomly selected participant will be 	 50 years
of age. The transformed value for X � 50 is:

50 � 40
Z � –––––––– � 1.

10

As a result of this transformation, P(X 	 50)
corresponds to P(Z 	 1). The probability, 
P(Z 	 1), can be obtained from Appendix 1, the
look-up table for areas under the standard

normal distribution curve. As seen in Appendix
1, the area under the standard normal
distribution curve for Z 	 1 is 0.159. 

Then we would like to know what the proba-
bility is that a randomly selected participant will
be 
 30 years of age. The transformed value for
X � 30 is:

30 � 40
Z � –––––––– � �1.

10

As above, P(X 
 30) is equal to P(Z 
 �1). Using
Appendix 1 as a reference, the area under the
standard normal distribution curve for Z 
 �1 is
0.159. 

The probability of interest is obtained by
summing the two probabilities associated with
P(Z 	 1) and P(Z 
 �1) because the two events
are mutually exclusive. That is, a participant
cannot be both 
 30 and 	 50, so the probability
of interest is 0.159 � 0.159 or 0.318. 

At first glance it may seem that this transfor-
mation method is useful only in a few instances
(when the random variable is known to have a
normal distribution) and contrived ones at that.
However, it is actually useful in many instances.
Many random variables can be shown to have
approximately normal distributions. The reason
for this is given shortly. It turns out that, if a
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random variable has an approximate normal
distribution, for which the mean and variance
are known, a transformation results in a random
variable that has an approximate standard
normal distribution. 

6.6 Classical probability and relative
frequency probability

Before concluding the first part of this chapter
on the fundamentals of probability it is impor-
tant to point out that there are two ways to esti-
mate a probability. To contrast these two types of
probability we consider the question: “What is
the probability of observing a ‘head’ when
tossing a coin?” 

The first type of probability, termed by some
“classical” probability, is based on an assumption
about the state of the experiment and some basic
mathematical expressions. For example, we
would begin answering this question by
assuming that the coin was fair. Further, we
would note to ourselves that a fair coin has two
sides, the only two outcomes of a coin toss are
“heads” and “tails,” and only one of these two
outcomes is the one of interest. The probability of
observing a head from a single toss of a fair coin
is therefore 1⁄2 or 0.5. The most straightforward
way to solve classical probability problems is to
write out all of the unique possible outcomes, the
sample space, and then identify the number of
times that the outcome of interest would occur. In
this case the sample space is “heads” or “tails.”
The event of interest, observing heads, is repre-
sented by just one of these events, so the proba-
bility of interest is 1⁄2. The use of the binomial
distribution to calculate the probability distribu-
tion of observing the number of assignments to
active is another example. In that case we knew
(by design) that the probability of assignment
to active was exactly half.

Many Statistics students have suffered
immensely over the years by having to solve
classical probability problems. Marilyn vos
Savant (1997) stumped many readers with the
following classical probability problem: 

A woman and a man (unrelated) each have two
children. At least one of the woman’s children is

a boy, and the man’s older child is a boy. Do the
chances that the woman has two boys equal the
chances that the man has two boys? 

vos Savant (1997, p 15)

What is your answer? We leave it to you to
conduct an online search to investigate the
controversy surrounding this problem. We do
not dwell any further on this method of esti-
mating probabilities because we also dislike
them, and the second type is more useful for us
anyway. 

The second type of probability, relative
frequency probability, is calculated by repeating
an experiment a large number of times (say n)
and counting the number of times out of n that
the outcome of interest (say m) occurred. The
probability of the event is then calculated as:

m
P(event) � –––.

n

The calculated probability is simply an estimate
of the true probability (which remains
unknown). 

Using a relative frequency approach to esti-
mating the probability of observing a head we
would toss the coin a number of times (for
example, 10), count the number of times a head
landed face up (for example, 4 times), and then
calculate the probability as 4/10 or 0.4. It is
perhaps not surprising that the estimated proba-
bility here is not exactly 0.5. We were only one
head shy of 5/10, so the relatively small number
of coin tosses may have had an impact. You can
imagine tossing the coin 100 times and
observing 46 heads for a probability of 0.46. That
would be much closer to the classical probability
solution. Another possible reason that only four
heads came up could be that the coin really was
not fair at all. For the classical probability solu-
tion to this problem we would need to assume
that the coin was fair or be told that it was. The
relative frequency solution has the advantage of
not requiring the assumption of a fair coin, but
has the disadvantage of possibly being limited by
the number of experiments. 

Our initial probability estimate of 0.4 from 10
coin tosses does not seem to be that far off
because we might reason that observing 4, 5, or
6 heads would be expected from 10 tosses of a
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fair coin. You may be intuitively thinking that, if
we were to repeat the 10 coin tosses, we would
probably count 4–6 heads again. Your intuition
would be correct, and there is a statistical
concept that explains how results from experi-
ments vary from sample to sample. The magni-
tude of expected differences from sample to
sample enables us to estimate a quantity that we
can never really know, one that represents the
truth. In the case of the coin-tossing experiment,
our goal would be to infer whether or not the
true probability of observing a head was 0.5. 

6.7 The law of large numbers

In clinical trials we do not know what the proba-
bility of observing a particular serious adverse
event is, but we observe a large number of
outcomes (for example, participants exposed to a
new treatment) to estimate it. As the sample size
increases the estimate becomes more precise (that
is, closer to the truth). An illustration of the “law
of large numbers” is provided in Figure 6.5.
Suppose that a relatively uncommon adverse

event is represented by the chance event of two
thrown dice landing with a total of two (or “snake
eyes”). The classical probability solution to esti-
mating the probability of this event is (1/6)2 �

0.02778. The relative frequency solution can be
obtained by rolling two dice a large number of
times (n), counting the number of times “snake
eyes” occurs (m), and estimating the probability
as m/n. The most convenient means to conduct
this experiment is using computer simulation.
As seen in Figure 6.5, the estimates of the prob-
ability (denoted by the oscillating curve) vary
quite a bit from the truth (represented by the
horizontal reference line) until the sample size is
around 10 000. The implication of the law of
large numbers for clinical trials of new drugs is
that the unknown quantities of interest are more
precisely estimated with larger samples. These
would include the mean change in SBP (systolic
blood pressure) or the proportion of partici-
pants experiencing a serious adverse event. Given
the limited size of most clinical development
programs, the most precise estimates of risks of
new therapies become evident only once a new
drug has been marketed and used by many
thousands of patients.
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6.8 Sample statistics and population
parameters

The unknown quantities of interest described in
the previous section are examples of parameters.
A parameter is a numerical property of a popula-
tion. One may be interested in measures of
central tendency or dispersion in populations.
Two parameters of interest for our purposes are
the mean and standard deviation. The popula-
tion mean and standard deviation are repre-
sented by l and r, respectively. The population
mean, l, could represent the average treatment
effect in the population of individuals with a
particular condition. The standard deviation, r,
could represent the typical variability of treat-
ment responses about the population mean. The
corresponding properties of a sample, the sample
mean and the sample standard deviation, are
typically represented by x� and s, which were
introduced in Chapter 5. Recall that the term
“parameter” was encountered in Section 6.5
when describing the two quantities that define
the normal distribution. In statistical applica-
tions, the values of the parameters of the normal
distribution cannot be known, but are estimated
by sample statistics. In this sense, the use of
the word “parameter” is consistent between the
earlier context and the present one. We have
adhered to convention by using the term
“parameter” in these two slightly different
contexts. 

An expression that defines how individual
observations are used to derive a numerical esti-
mate is called an estimator (much like a formula
is used to calculate a number). The sample mean, 

n

R xi

i � 1x̄ � –––—–,n

is considered an estimator for the population
mean, l. When individual observations are
applied to the estimator, the result is a numeric
value or estimate. When a single value is calcu-
lated, it represents a best guess of sorts, and is
called a point estimate. No single estimate could
be expected to be perfect so “interval estimates”
are commonly used to reflect more accurately a
range of plausible values. 

Inferential statistics comprises two distinct,
although closely related, procedures. In each
case observations from a sample are used to:

• calculate an interval estimate that includes
the unknown population parameter with
some degree of confidence; in clinical trials, it
is common practice to use a 95% confidence
interval

• test whether or not a sample statistic is consis-
tent with or contrary to a hypothesized value
of the population parameter. 

Inferences about a population are made on the
basis of a sample taken from that population.
The process of inferential statistics requires:

• identification of a representative sample of
participants from a population of interest

• collection of individual observations
• calculation of sample statistics from the indi-

vidual observations
• a statistical method to relate the sample

statistic to the parameter of interest; this can
be done in one of two ways:

– estimation of plausible values of the
parameter

– testing a hypothesis of a proposed value
of the parameter.

We discuss the former method, confidence
intervals, first, after a necessary introduction to
the concept of sampling variation. The latter
method (hypothesis testing) is discussed later.
First, however, it is useful to introduce a few
other ideas.

6.9 Sampling variation

If we take a sample of 100 numbers from a popu-
lation of 100 000 numbers, that sample’s mean,
which is precisely known, will provide an esti-
mate of the population mean. The same is true
for the standard deviation, that is:

• x� is an estimate of l
• s is an estimate of r.

If we replaced the first sample of 100 numbers
and then took another sample of 100 numbers,
it is likely (effectively guaranteed) that the
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numbers would not be identical to those in the
first sample, and that the calculated sample
mean would be different from the first one. This
logic applies to any number of means taken.
Suppose that we were to repeat this process a
number of times (in a simulated manner using
computer software) and, at the end of each repli-
cation, tabulate the values of the sample mean or
plot their relative frequencies. The shape of the
resulting distribution of values would be recog-
nizable. We would notice that a typical value
would be apparent (the population mean l), as
would a symmetrical bell-shaped distribution. In
short, the sample statistic from a sample of size n
(in this case the sample mean) varies from
sample to sample and its distribution has a mean
and a standard deviation. Such a distribution is
called a sampling distribution. An important
general result for the sampling distribution of
the sample mean is as follows:

• For any continuous random variable X which
has a distribution with population mean, �,
and variance, r2, the sampling distribution of
the mean for samples of size n has a distribu-
tion with population mean, l, and variance,
r2/n. 

The square root of the variance, 

___
r2 r�––– � ––– ,
n �

__
n

is the population standard error of the mean,
which describes the typical variability of sample
means around the population mean. If we know,
or can assume, that the random variable X has a
normal distribution with population mean, l,
and variance, r2, the sampling distribution of
the mean of samples of size n will also have a
normal distribution with population mean, l,
and variance, r2/n. Using the notation described
earlier, this result can be summarized in this
manner: 

r2
If X ~ N(l,r2) then X̄n ~ N(l,–––).n

6.10 Estimation: General considerations

It is not possible to know whether any single
sample estimate, like the sample mean, is a good
estimate of the population parameter that it is
intended to estimate. However, it is possible to
use the fact that most estimates of the sample
statistic (for example, sample mean) are not too
far removed from the population parameter, as
specified by the shape of the sampling distribu-
tion, to define a range of values of the popula-
tion parameter (for example, population mean)
that are best supported by the sample data. 

As exact knowledge of the population para-
meter is not possible, we must settle for a range
of values that, with some specified probability or
confidence, are most plausible. In other words,
we would like to know the lower limit (LL) and
upper limit (UL) of the most probable range of
values of the true population parameter. In the
case of the population mean, we seek two values,
LL and UL, such that:

P(LL 
 � 
 UL) � 1 � a.

The quantity a is the probability that the interval
estimate does not include the value of the para-
meter of interest – that is, l in this case. In most
cases small values of a are desirable (for example,
0.10 or 0.05). Depending on the importance of
the decision to be made on the basis of the
interval estimate defined by LL and UL, very
small values of a may be desirable (for example,
0.01 or 0.001). 

When conducting a clinical trial, we do not
know if our sample was representative of the
population or not. We have only data from a
sample and the statistics calculated from the
sample data. Yet, our ultimate interest is not in
the sample but in the population. In this chapter
we consider the sample statistics for the mean
and the standard deviation, x̄ and s. A clinical
trial represents a situation in which we can take
only one sample from a population. Given that,
what degree of certainty can we have that the
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mean of that sample represents the mean of the
population? Before we answer this question fully
we define a confidence interval for the sample
mean in a special case. This special case will serve
as our starting point for more realistic and
common cases.

6.10.1 Confidence interval for the
population mean when the population
variance is known

Assume that the random variable X has a normal
distribution with an unknown population mean,
l, and with a known population variance, r2. For
a sample size of n, the sampling distribution of
the sample mean has a normal distribution with
population mean, l, and variance, r2/n. The
implication of this result is that, for example:

• 90% of the sample mean values lie between 

l � 1.645 
r–

�
–n

• 95% of the sample mean values lie between 

l � 1.960 
r–

�
–n

• 99% of the sample mean values lie between 

l � 2.576 
r–

�
–n.

In general, the following statement is true: For
samples of size n, (1 � a)% of sample means x̄ lie
in the range:

r
l � z1�a/2

–––
�
__
n

where z1�a/2 is the value from the standard
normal distribution that defines the upper and
lower tail areas of size a/2. Note that z1�a/2 is a
particular example of a reliability factor. As the Z
distribution is symmetric it is also true that the Z
value on the negative side that cuts off an area of
size a/2 in the lower tail is equal to the Z value
on the positive side (change in sign) that cuts off
an area of size a/2 in the upper tail. Equivalently,
in mathematical terms, this means:

|za/2| � z1�a/2.

We can therefore express a two-sided (1 � a)%
confidence interval for the population mean as:

r r
P(x̄ � z1�a/2 ––– 
 l 
 x̄ � z1�a/2 –––) � 1 � a.

�
__
n �

__
n

This expression for a two-sided (1 � a)% confi-
dence interval can be shortened in the following
manner:

x̄ � z1�a/2 (r/�
__
n ).

The assumption of a normal distribution for the
random variable X is somewhat restrictive.
However, for any random variable, as the sample
size increases, the sampling distribution of the
sample mean becomes approximately normally
distributed according to a mathematical result
called the central limit theorem. For a random
variable X that has a population mean, l, and
variance, r2, the sampling distribution of the
mean of samples of size n (where n is large, that
is, 	 200) will have an approximately normal
distribution with population mean, l, and vari-
ance, r2/n. Using the notation described earlier,
this result can be summarized as: 

r2

X̄n → N(l, –––)n

when n is large. This is an important result,
because it holds no matter the shape of the orig-
inal distribution of the random variable, X. The
reader is encouraged to search for online refer-
ences that illustrate, through animation, this
important theorem. 

Therefore, the expression written above for the
confidence interval for the population mean also
applies to any continuous random variable as
long as the sample size is large (as just noted, of
the order of 200 or more). The other rather
restrictive assumption required for this confi-
dence interval is that the population variance be
known. Such a scenario is neither common nor
realistic. 

We now apply the fundamental concept of the
confidence interval as developed here to the case
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where the population variance is not known, but
there is interest in defining a confidence interval
for the population mean.

6.10.2 Confidence interval for the
population mean when the population
variance is unknown

A reasonable suggestion for devising a confi-
dence interval for the population mean would be
to substitute the sample estimate, s, for the corre-
sponding population parameter, a and proceed
as described earlier in Section 6.10. However,
when the sample size is small (particularly 
 30)
the use of the Z distribution is less appropriate.
William S Gossett, writing anonymously as
“Student” while employed at Guinness Brewery,
proposed the following statistic as an alternative.
When X is a normally distributed variable and
the sample size is small, the statistic

x̄ � �
t � ––––––

s/�
__
n

follows a t distribution (“Student’s t”). The single
parameter defining its shape is (n � 1) degrees of
freedom (df), the sufficient number of observa-
tions needed to estimate the sample mean. The 

t distribution is symmetric about its mean (zero)
and looks like a normal distribution with, in
cases of sample sizes 	 200, heavier “tails.” 

Three density functions are plotted for t distri-
butions with 5, 30, and 200 df in Figure 6.6. The
greater the number of df, the “flatter” the tails.
In the figure, the two curves that are closest
together are associated with 30 and 200 df. It is
interesting to note (and a convenient fact) that
the area under the density curve between any
two points for the case with 30 df is not appre-
ciably different from the case with 200 df. 

As was the case with the normal distribution,
the shape of the t distribution can be used to
find two values that define a central area under
the density curve of size (1 � a). It can be shown
that, once a value of t associated with an area of
interest is determined, the difference between
the sample mean x– is within t(s/�

__
n ) of the

population mean, l. This enables us to calculate
a confidence interval for the population 
mean when the sample size is small and the
population variance unknown.

The interval estimate of the population mean,
the two-sided (1 � a)% confidence interval for
the population mean, is:

x̄ � t1�a/2,n�1(s/�
__
n ).
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As in Section 6.10, the confidence interval has
three components:

1. point estimate
2. standard error
3. reliability factor.

The point estimate in this case is the sample
mean, which represents the best estimate of the
population mean. 

The second component is the standard error of
the mean, which quantifies the extent to which
the process of sampling has mis-estimated the
population mean. The standard error of the
mean has the same meaning as in the case for
normally distributed data – that is, the standard
error describes the degree of uncertainty present
in our assessment of the population mean on the
basis of the sample mean. It is also the standard
deviation of the sampling distribution of the
mean for samples of size n. The smaller the stan-
dard error, the greater the certainty with which
the sample mean estimates the population
mean. When n is very large the standard error is
very small, and therefore the sample mean is a
very precise estimate of the population mean. As
we know the standard deviation of the sample, s,
we can make use of the following formula to
determine the standard error of the mean, SE:

sSE � –––.
�
__
n

At this point, it is worth emphasizing the
difference between the terms “standard error”
and “standard deviation,” which, despite the
same initial word, represent very different
aspects of a data set. Standard error is a measure
of how certain we are that the sample mean
represents the population mean. Standard devia-
tion is a measure of the dispersion of the original
random variable. There is a standard error asso-
ciated with any statistical estimator, including a
sample proportion, the difference in two means,
the difference in two proportions, and the ratio
of two proportions. When presented with the
term “standard error” in these applications the
concept is the same. The standard error quanti-
fies the extent to which an estimator varies over
samples of the same size. As the sample size
increases (for the same standard deviation) there

is greater precision in the estimate of the popu-
lation mean because the standard error becomes
smaller as a result of the division of the square
root of the sample size. 

The third component of the interval estimate
is a reliability factor, which represents the
number of standard deviations required to
enclose (1 � a)% of the sample means from the
sampling distribution. It is used to quantify how
close we would like our estimate to be to the real
population mean or, in short, how reliable it is.
The particular value of the reliability factor
chosen above, t1�a/2,n�1, is the value of t with
(n � 1) df that “cuts off” an area of a/2 in the
upper tail. As the t distribution is symmetric it is
also true that the t value on the negative side
that cuts off an area of size a/2 in the lower
tail is equal to the same t value but with a
change in sign that cuts off a/2 in the upper tail.
Equivalently, in mathematical terms, this means
that |ta/2,n�1| � t1�a/2,n�1. Values of t1�a/2,n�1 are
provided in Appendix 2 for various values of a.

For a sample size of 100 (99 df) the reliability
factors for two-sided 90%, 95%, and 99% confi-
dence intervals are 1.66, 1.98, and 2.63. The
implication of these three values is that, all other
things being equal (that is, x–, s, and n), requiring
greater confidence in the interval estimate
results in wider interval estimates. The more
confidence that is required, the less reliable is the
single sample estimate, and therefore greater
numerical uncertainty is expressed in the
interval estimate. This very important point is
illustrated in the following example. 

The following values of age (n � 100) were
examined using a stem-and-leaf display in
Chapter 5: 

53, 69, 72, 48, 60, 61, 49, 71, 43, 31, 62, 51,
58, 61, 70, 66, 78, 39, 75, 63, 59, 53, 49, 61,
50, 88, 51, 80, 68, 75, 78, 81, 57, 70, 68, 66,
43, 60, 57, 35, 75, 61, 71, 45, 50, 82, 52, 65,
61, 77, 80, 58, 50, 59, 55, 59, 50, 39, 78, 72,
71, 79, 48, 55, 52, 55, 62, 59, 68, 63, 81, 69,
67, 67, 58, 57, 70, 73, 49, 43, 76, 73, 71, 77,
61, 62, 72, 73, 67, 62, 64, 40, 66, 74, 77, 67,
49, 83, 73, 59.

Assuming that these observations represent a
simple random sample from the population of
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interest and that the age values in the popula-
tion are normally distributed, the task is to
calculate the two-sided 90%, 95%, and 99%
confidence intervals for the population mean
age.

The sample mean age is 62.6 and the standard
deviation 12.01. The standard error of the mean
is calculated as:

SE � 12.01/�
____
100�1.20.

With these numbers calculated, all that is left to
compute the three confidence intervals are the
reliability factors associated with each. For the
90% confidence interval, the value of the relia-
bility factor will be the value of t that cuts off the
upper 5% of the area (half the size of a) under
the t distribution with 99 df. This value is 1.66
and can be verified from a table of values or from
statistical software. Note that the t value of
�1.66 is the value of t that cuts off the lower 
5% of the area (half of the size of a) under the 
t distribution with 99 df. The reliability factors
listed previously for the two-sided 95% and 99%
confidence intervals can also be used to compute
the following interval estimates:

• 90% CI � 62.6 � (1.20)(1.66) � (60.6, 64.6)
• 95% CI � 62.6 � (1.20)(1.98) � (60.2, 65.0)
• 99% CI � 62.6 � (1.20)(2.63) � (59.4, 65.8).

Note that the two values that comprise the lower
and upper limits of the confidence interval are
typically placed in parentheses. The width of the
confidence intervals (the difference between the
upper and lower limits) increases because greater
confidence (corresponding to smaller values of
a) is required. 

A statistical interpretation of these results is to
say that we are 90% confident that the mean age
of the population from which this sample was
selected is enclosed in the interval 60.6–64.6
years. If greater confidence is required, we can
say that with 99% confidence the mean age of
the population is enclosed in the interval
59.4–65.8 years. Another interpretation of these
confidence intervals is that they represent the
most plausible values of the population mean. It
is important to note that the lower and upper
limits of the confidence interval are random
variables. The population mean is considered to

be an unknown fixed quantity for which the
confidence interval serves as an estimate. 

To summarize, the computational aspects of
confidence intervals involve a point estimate of
the population parameter, some error attributed
to sampling, and the amount of confidence (or
reliability) required for interpretation. We have
illustrated the general framework of the compu-
tation of confidence intervals using the case of
the population mean. It is important to empha-
size that interval estimates for other parameters
of interest will require different reliability factors
because these depend on the sampling distri-
bution of the estimator itself and different
calculations of standard errors. The calculated
confidence interval has a statistical interpretation
based on a probability statement.

Another useful interpretation of confidence
intervals is that the values that are enclosed
within the confidence interval are those that
are considered the most plausible values of the
unknown population parameter. Values outside
the interval are considered less plausible. All
other things being equal, the need for greater
confidence in the estimate results in wider
confidence intervals, and confidence intervals
become narrower (that is, more precise) as the
sample size increases. This last fact is explored
in greater detail in Chapter 12 because it is
directly relevant to the estimation of the
required sample size for a clinical trial. The
methods to use for the calculation of confi-
dence intervals for other population parame-
ters of interest are provided in subsequent
chapters.

6.11 Hypothesis testing: General
considerations 

As this book focuses on clinical trials our primary
interest is in providing you with relevant exam-
ples of hypothesis testing in that arena.
However, it is useful initially to lay some concep-
tual foundations with simpler examples. As for
many other examples in statistics and proba-
bility, we illustrate these concepts first with flips
of a coin. 
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Imagine the following scenario. You are
holding a half-dollar coin. Our question to you
is: Do you think this coin is fair or not? You
examine it and hold it and with no other infor-
mation you decide that you really cannot tell
without more information. You propose to flip
the coin twice. Flipping it twice, you get the
following results: Heads (H) and heads (H). If we
forced you to answer our question at this time,
you may guess, based on these two observations,
that the coin is not fair. After all, if the coin were
really fair you would “expect” one head (H) and
one tail (T). However, you are not at all confi-
dent with your answer because you note that the
probability of observing two heads is not that
small. It is (0.5)(0.5) � 0.25. This means that an
outcome like this results 25% of the time that
you conduct such an experiment. Accordingly,
you wisely recognize that it would be better to
have additional data before making your guess,
because with just two heads observed out of two
flips there is a non-trivial chance that you have
guessed incorrectly. 

Suppose you then revise the experiment and
request that the results from 10 flips of the coin
be recorded. You reason that, if the coin were
fair, you would expect five heads and five tails. If
you were to observe that only one or as many as
nine heads came up out of ten tosses, you would
conclude that the coin was not fair. Your logic is
that, by chance alone, a fair coin would not very
likely yield such a lopsided result. If you were to
observe an event with even more extreme result,
that is, 0 or 10 heads out of 10 tosses, you would
also have concluded, perhaps with even more
confidence, that the coin was not fair. 

The rule that you intuitively arrived at was
that if you observed as few as 0 or 1 or as many
as 9 or 10 heads out of 10 coin flips, you would
conclude that the coin was not fair. How likely is
it that such a result would happen? In other
words, suppose you repeated this experiment a
number of times with a truly fair coin. What
proportion of experiments conducted in the
same manner would result in an erroneous
conclusion on your part because you followed
the evidence in this way? This is the point where
the rules of probability come into play. You can
find the probability of making the wrong
conclusion (calling the fair coin biased) by

following such a decision rule using the bino-
mial distribution.

Using the binomial distribution, the proba-
bility of observing 9 heads out of 10 when
the probability of observing a head with each
trial is 1⁄2 is 0.00977. Likewise, the probability of
observing 10 heads out of 10 is 0.00098. So the
probability of observing either 9 or 10 heads is
the sum of these two (we sum them because
these are mutually exclusive outcomes). That
probability is 0.01075 (around 1%). We note that
the probability of observing 0 or 1 heads is the
same as for observing 9 or 10. Therefore the
probability of observing a result as extreme as 1
or fewer or 9 or more heads is around 0.02. If
after 10 coin flips, we have observed 1 or fewer
heads or 9 or more heads, we would conclude
that the coin was biased because a fair coin
would yield such a result only with probability
around 2% (not very often). Put another way, if
we conducted this experiment many times and
used such a rule when we have observed such a
result, we would be incorrect in 2% of the exper-
iments. That seems like an acceptable risk to
take. Besides, in this scenario, there seems to be
no adverse consequence to being wrong except
for a bit of damaged pride.

This rather simple example is an illustration of
the conceptual components of hypothesis
testing. The basis of hypothesis testing is “proof
by contradiction.” We use the word “proof”
rather liberally here because the scientific stan-
dard for establishing proof is more rigorous than
a single trial or set of trials could possibly
provide. Hypothesis testing is a statistical
method in which we use data (evidence) to
choose between two decisions, each with their
own course of action and related implications.
The real world implication of making either deci-
sion depends on the field of study. In the world
of new drug development, these decisions could
be to decide that a drug is not efficacious at any
dose studied, and is therefore not worth
studying further. Another decision could be to
select one particular dose (among many studied)
for further development in confirmatory trials. 

The process of testing a hypothesis usually
begins with the statement of the hypothesis
that we would like to conclude as a result of
the research (we refer to this as the alternate

Hypothesis testing: General considerations 75



hypothesis). There is another hypothesis that we
need to define and it is referred to as the null
hypothesis. The null hypothesis can be viewed
as a “straw man” hypothesis, one that we would
like to knock over by collecting evidence that
contradicts it in favor of the alternate hypoth-
esis. One important consideration in the state-
ment of the two hypotheses is that they should
represent all possible outcomes. In the context 
of our coin-tossing illustration, the alternate
hypothesis would be that the coin is biased and
the null hypothesis would be that the coin is fair.
In that experiment, we counted the number of
heads and were looking for evidence that would
contradict the null hypothesis and compel us to
conclude that the alternate hypothesis was true.
Evidence that contradicted the null hypothesis
would be a very high or very low proportion of
heads because a fair coin would yield approxi-
mately the same number of heads as tails. Impor-
tantly, these two hypotheses cover the only two
possible outcomes: The coin is either fair or
biased.

The next part of the hypothesis-testing process
is to decide on a numerical result (a test statistic)
that, if observed, would sufficiently contradict
the null hypothesis such that the null hypoth-
esis would be rejected in favor of the alternate
hypothesis. As we discovered with our coin-
tossing example, some results would not be all
that rare by chance alone. Therefore, our deci-
sion rule should be defined such that erroneous
conclusions are not made more often than we
are willing to tolerate. 

You will recall that we might have chosen
other results before we concluded that the coin
was biased, but we chose results that would
rarely be expected by chance alone. In fact, the
decision rule is based on our chosen probability
of rejecting the null hypothesis when it is really
true. For the coin example, this is the probability
of claiming that the coin is biased when it is
really fair. When asked to take part in this exper-
iment the fairness of the coin remains unknown
to us, but we choose a decision rule that is
consistent with results that would not be
expected by chance very often. 

6.11.1 Type I errors and type II errors

Rejecting the null hypothesis when it is true is
called a type I error. The probability of making a
type I error is called alpha (a). There is another
kind of error that we might commit by using
data from our sample (in this case, 10 coin
tosses) to make an inference about the state of
nature. This second kind of error is called a type II
error and results from failing to reject the null
hypothesis (suppose we observed seven heads)
when, in fact, the alternate hypothesis is true
(that is, the coin was biased). We would then act
as if the coin were fair – perhaps taking part in a
new challenge that involved wagering a lot of
money. 

When making decisions of any type, whether
they are as inconsequential as our coin-tossing
experiment or as important and costly as devel-
oping a new drug, we would like to minimize the
chances that we make the wrong decision. In
planning a new study or experiment, such as a
clinical trial, it is worthwhile to consider mini-
mizing the probability of committing each of
these errors. The two types of errors are
presented in Table 6.3. In clinical trials a type I
error is committed when we claim that the new
antihypertensive is superior to placebo but it
really is similar. A type II error is committed
when we fail to claim the new antihypertensive
is superior to placebo but it really is. In reality we
cannot know the truth, but the study design,
including the sample size and the statistical
analyses used to evaluate the trial, will enable us
to limit the probability of committing each of
these errors. 

6.11.2 Probability of type I and II errors

An important aspect of study design is defining
the probabilities of committing each of these
two kinds of errors. A type I error could mean
that a new drug is approved for marketing but
really does not provide a benefit. Ideally, the
probability of committing a type I error of this
type would be fairly small. Committing a
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type II error in a superiority trial of a new anti-
hypertensive is not appealing for a study
sponsor because it could lead to discontinua-
tion of a development program for a new treat-
ment that is actually efficacious. Therefore, it is
desirable to limit the probability of committing
a type II error as well. We have more to say
about these two probabilities in subsequent
chapters, but for now it is sufficient to identify
them formally.

The probability of committing a type I error is
the probability of rejecting the null hypothesis
when it is true (for example, claiming that the
new treatment is superior to placebo when they
are equivalent in terms of the outcome). The
probability of committing a type I error is called
a, which is sometimes referred to as the size of
the test. The probability of committing a type II
error is the probability of failing to reject the null
hypothesis when it is false. This probability is
also called beta (b). The quantity (1 � b) is referred
to as the power of the statistical test. It is the
probability of rejecting the null hypothesis (in
favor of the alternate) when the alternate is true.
As stated earlier it is desirable to have low error
probabilities associated with a test. As we would
like a and b to be as low as possible the quanti-

ties (1 � a) and (1 � b) are typically fairly large.
These probabilities are provided in Table 6.4.

6.11.3 Hypothesis testing and research
questions

Statistical hypothesis testing represents a means
to formulate and answer the research question in
a quantitative manner. The null hypothesis is
the hypothesis that is tested. If quantitative data
are produced that are not consistent with the
null hypothesis, it is rejected. 

Beforeproceedingwith this statistical approach,
a researchquestionmustbeposed,whichwill then
prompt the design of a study that will lead to the
collection of data and an appropriate statistical
analysis. A simple research question from a drug
development program, as stated in Chapter 3, is
“Does the investigational drug lower blood pres-
sure?” A way to answer this research question is to
design a study to estimate the mean change from
baseline in SBP. If the mean change from baseline
is negative, the answer to the research question
would be that the investigational drug does lower
blood pressure. This example will be used to
illustrate the concept of hypothesis testing.
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Table 6.3 Two possible errors in hypothesis testing

Truth about null hypothesis

Decision based on test statistic True False 
Fail to reject null hypothesis Correct Type II error
Reject null hypothesis Type I error Correct 

Table 6.4 Probabilities of outcomes (conditional on the null hypothesis) in hypothesis testing 

Truth about null hypothesis

Decision based on test statistic True False 
Fail to reject null hypothesis 1 � a b

Reject null hypothesis a 1 � b (i.e., power)



6.12 Hypothesis test of a single
population mean

Suppose our interest is in testing whether the
population mean was equal to a particular
hypothesized value, l0. A hypothesis testing
process typically starts with a statement of the
null and alternate hypotheses. The null hypoth-
esis can be stated in the following manner:

H0: � � l0.

If data are found to contradict the null hypoth-
esis, it will be rejected in favor of the alternate
hypothesis:

HA: � � l0.

The alternate hypothesis is two sided in the
sense that values clearly less than l0 would be
consistent with it as would values that were
clearly greater than l0. Rejection of the null
hypothesis because l0 

 l (l is much greater
than the hypothesized value l0) may lead to one
decision (for example, continue with the devel-
opment of the new drug with a larger study)
whereas rejection of the null hypothesis because
l0 		 l (l is much less than the hypothe-
sized value l0) may lead to a completely different
decision (for example, to stop development of
the new drug because it has no effect on SBP or
actually increases SBP). What is important is
that, a priori, either outcome is possible.

The next step of the hypothesis testing process
is to identify a numeric criterion by which the
plausibility of the null hypothesis is tested. This
numeric criterion is called the test statistic, and
we use it to decide if the value that resulted from
the study contradicts the null hypothesis or not.
The test statistic to be used in this case is:

x̄ � �0t � –––––– .
s/�

__
n

If the null hypothesis is true – that is, the popu-
lation mean is the hypothesized value, l0 – the
value of the test statistic will be close to 0. The
further the test statistic value is from 0 (either
negative or positive) the less plausible is the
hypothesized value, l0 – that is, the null hypoth-
esis should be rejected in favor of the alternate.

The next step of hypothesis testing is to deter-
mine those values of the test statistic that would
lead to rejection of the null hypothesis, that is,
to determine the critical region.

Assuming that the random variable is
normally distributed (or approximately so if the
sample size is 	 30) and if the null hypothesis is
true, the test statistic just defined has a t distrib-
ution with (n �1) df. Referring to Figure 6.6 you
will see that most values of a random variable
that follow a t distribution fall in the range �1 to
�1. A value in this range would be expected just
by chance alone. However, values 
 �2 or 	 �2
occur much less frequently, that is, there is less
area to the left of �2 and to the right of �2. We
would like to define a critical region that is asso-
ciated with small tail areas because values in the
tail do not occur frequently, whereas values in
the center of the distribution are very common.
In other words, we would like to define the test
so that we do not reject the null hypothesis very
often when in fact it is true – that is, we would
like to define a critical region so that the proba-
bility of committing a type I error, a, is small. 

In most scientific endeavors the choice of a is
0.05. We are willing to accept a 1 in 20 chance
that, at the end of the study, it is concluded that
the population mean is not the hypothesized
value when in fact it really is. It is important to
remember that the choice of a is part of the
study design, and not a result of a study. Also, it
is important to note here that there is nothing
special about the value of 0.05. Depending on
the stage of development or the severity or
importance of the disease for which we wish to
develop the drug, we may choose a value of a
that is higher or lower than 0.05. What is impor-
tant in the choice of a are the implications (for
sponsors, regulatory bodies, clinicians, and
patients) of committing a type I error. Having
alerted you to the possibility of choosing other
values for a, and the fact that this choice has
various implications, we adopt the conventional
value of a of 0.05 in subsequent discussions. 

Knowledge of the distribution of the test
statistic enables us to define a critical region that
would erroneously lead to rejection with proba-
bility of 0.05. In the case of the current test, the
critical region will be any value of the test
statistic such that: 
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t 
 ta/2,n�1 or t 	 t1�a/2,n�1.

Similarly to the case of the standard normal
distribution, the critical values can be obtained
from a series of tabulated values or from statis-
tical software. A number of percentiles of various
t distributions are provided in Appendix 2. It is
important to note that there is not just one 
t distribution; there are many of them, and their
shapes are determined by the number of degrees
of freedom. As either low or high values of the
test statistic could lead to rejection, the hypoth-
esis test is considered a two-sided test. The prob-
ability of committing a type I error is 0.05, but,
because the critical region is evenly split
between low values and high values, the proba-
bility of committing a type I error in favor of one
direction (for example, large values of t) is a/2. 

Once the critical region of the test has been
defined, the next step of hypothesis testing is to
calculate the value of the test statistic from the
sample data. The test statistic is calculated as:

x̄ � �0t � ––––––
s/�

__
n

where x̄ is the sample mean, l0 the hypothesized
value of the population mean, s the sample
standard deviation, and n the sample size. 

If the value of the test statistic is in the critical
region the null hypothesis is rejected and the
conclusion is made that the population mean is
not equal to l0. When the null hypothesis is
rejected, such a result is considered “statistically
significant” at the a level, meaning that the
result was unlikely (with probability no greater
than a) to have been observed by chance alone.
If the value of the test statistic is not in the crit-
ical region we fail to reject the null hypothesis. It
is important to emphasize the fact that we
cannot claim that the population mean is equal
to l0, but simply that the data were not sufficient
to conclude that they were different. 

The use of this method, the one-sample t test,
is appropriate when:

• the observations represent a simple random
sample from the population of interest

• the random variable is continuous 
• the random variable is normally distributed

or approximately normally distributed

(mound shaped) with a sample size of at
least 30.

This hypothesis test is illustrated with the
following simple example. 

Imagine that, having identified a promising
new investigational antihypertensive drug, a
pharmaceutical company would like to admin-
ister it to a group of 10 hypertensive individuals
to see if the drug has the desired effect. For
simplicity we assume that there is no control
group. The first study of the new antihyperten-
sive will be a single-dose, nonrandomized,
uncontrolled trial in 10 participants. SBP was
recorded at the start of the study before initia-
tion of treatment (baseline) and at the end of 4
weeks (end of study). The research question of
interest is: Does the new drug lower SBP? The
scientists designing the trial would like to main-
tain a type I error of 0.05, that is, a � 0.05. As the
test conducted is two sided, the probability of
making a type I error in favor of the drug having
a beneficial effect (one side of the critical region)
is 0.025.

The null hypothesis is:

H0: � � 0.

And the alternate hypothesis is:

HA: � � 0.

The one-sample t test will be used to test the
null hypothesis. As there are 10 observations and
assuming the change scores (the random vari-
able of interest) are normally distributed, the test
statistic will follow a t distribution with 9 df. A
table of critical values for the t distribution
(Appendix 2) will inform us that the two-sided
critical region is defined as t 
 �2.26 and t 	

2.26 – that is, under the null hypothesis, the
probability of observing a t value 
 �2.26 is
0.025 and the probability of observing a t value
	 2.26 is 0.025. 

Baseline and end-of-study values of SBP are
presented for the 10 participants in Table 6.5,
along with their respective change scores. 

The mean change score is �7 and the standard
deviation is 7.1. (We leave it to you to verify
this.) The test statistic is therefore calculated as:

� 7 � 0
t � –––––––––– � �3.10.

7.1/�
_____
10
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As this calculated test statistic is in the critical
region (t � �3.10 
 �2.26) the null hypothesis is
rejected. The result is considered statistically
significant at the a � 0.05 level because there
was less than a 5% chance of such a result being
observed by chance alone. The conclusion from
the study is that the new drug did lower SBP by
a mean of 7 mmHg. Scientists from the sponsor
company may use this information as sufficient
preliminary evidence to continue with the
development of the new drug. 

6.13 The p value

One shortcoming of the hypothesis testing
approach is the arbitrary choice of a value for a.
Depending upon our risk tolerance for commit-
ting a type I error, the conventional value of 0.05
may not be acceptable. Another way to convey
the “extremeness” of the resulting test statistic is
to report a p value. 

A p value is the probability that the result
obtained or one more extreme (in favor of the
alternate) would be observed by chance alone.
We know from the definition of the critical
region that a value of the test statistic t 
 �2.26
or t 	 2.26 would have occurred with probability
� 0.05 by chance alone. In fact, the test statistic
value was �3.10 which lies to the left of �2.26.
A value of �3.10 led to rejection, as would values

 �3.10 or 	 3.10. The p value in this case is the

area under the t-distribution density curve with
9 df associated with values of t 
 �3.10 or 	 3.10
and is equal to 0.01. This means that there is
only a 1% chance of observing a value of the test
statistic as large as 3.10 (in absolute magnitude)
or larger by chance alone. The difference
between a (a design parameter) and the p value
(a study result) can be seen in Figure 6.7, where
the areas to the left and right of the dashed lines
represent a and the areas to the left and right of
the solid line represent the p value.

The p values can be estimated from a table of
values from the appropriate t distribution (for
example, by finding the tail areas associated with
a particular value of the test statistic). More
commonly, however, statistical software is used
for all statistical analyses and p values are
included in the results. The following is a helpful
way to interpret p values:

• Hypothesis tests are rejected if the calculated
p value � a. 

• Hypothesis tests are not rejected if the
calculated p value 	 a. 

It is not uncommon for results of hypothesis
tests to be represented simply by the p value.
However, it is not a wise practice to rely solely on
them. Recall that increasing the sample size
reduces the standard error, which increases the
size of the test statistic and therefore reduces the
p value. This serves as a reminder that it is not
just the statistical significance of the result (that
is, the p value) that counts. The clinical rele-
vance of the size of the effect (for example, the
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Table 6.5 Systolic blood pressure (SBP) values and change scores

Study participant Baseline SBP End-of-study SBP Change in SBP 
(mmHg) (mmHg) (mmHg)

1 143 147 4
2 152 144 �8
3 162 159 �3
4 158 157 �1
5 147 131 �16
6 149 133 �16
7 150 145 �5
8 148 144 �4
9 154 150 �4

10 149 132 �17



confidence interval for the parameter of interest)
is probably more important than the p value, as
we argue in the following section. 

6.14 Relationship between confidence
intervals and hypothesis tests 

Confidence intervals can be used to test a
number of hypotheses. This is illustrated using
the study data from the previous example in
Section 6.12. 

Scientists from the pharmaceutical company
believe that reporting a 95% confidence interval
for the population mean change in SBP may
prove helpful. Following the confidence interval
defined in Section 6.10, a 95% confidence
interval for the population mean is: 

� 7 � 2.26(7.1/�
_____
10) � (�12.1, �1.9).

The scientists can report from this study that
they are 95% confident that the true population
mean change in SBP is within the interval
(�12.1, �1.9). One interpretation of this interval
is that the scientists are 95% confident that the
drug works by reducing SBP, as evidenced by an
upper limit of the confidence interval that is less
than 0. Another less favorable interpretation is
that the drug does not work all that well – after
all, the confidence interval does not rule out
some very minor reductions in SBP (upper limit
of �1.9 mmHg). It is true that, had the scientists
hypothesized a value of the population mean
outside of the values of this 95% confidence
interval, the null hypothesis would have been
rejected at the a � 0.05 level. For example, the
following null hypotheses would have been
rejected:

H0: � � 2
H0: � � �15.
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Figure 6.7 The t distribution with 9 degrees of freedom, critical region (dashed line) and p value (solid line). Note that
the critical region is represented by the tail areas to the left and right of the dashed lines; the p value is represented by
the tail areas to the left and right of the solid lines



Conversely, the following null hypotheses would
not have been rejected:

H0: � � �8
H0: � � �2.

This relationship can be stated more generally as:

• All values outside the (1 � a)% confidence
interval for a parameter of interest would be
rejected by a hypothesis test (of size a) of the
parameter.

• Values within the (1 � a)% confidence interval
for a parameter of interest would fail to be
rejected by a hypothesis test (of size a) of the
parameter. 

In this example, l represents the population
mean change from baseline SBP. If the upper
limit of the 95% confidence interval excludes 0,
negative values of population mean are most
plausible, implying that the drug lowered SBP. If
the lower limit of the 95% confidence interval
excludes 0, positive values of the population
mean are most plausible, implying that the drug
actually increased SBP. If 0 is enclosed in the 95%
confidence interval, negative and positive values
of the mean are most plausible, implying that we
cannot rule out the possibility that the drug had
no effect. These three scenarios are displayed in
Figure 6.8.

As confidence intervals can be used to test a
number of hypotheses simultaneously, they
convey much more information than a single 
p value resulting from a hypothesis test. In addi-
tion to being able to test various hypotheses (the
null hypothesis of zero change from baseline was
rejected) the confidence interval allows regula-
tory agencies and physicians who review the
data to interpret the clinical relevance of the
magnitude of the values within the confidence
interval. 

6.15 Brief review of estimation and
hypothesis testing 

This chapter started with an introduction to the
concepts of probability and random variable
distributions. The role of probability is to assist
in our ability to make statistical inferences. Test
statistics are the numeric results of an experi-
ment or study. The yardstick by which a test
statistic is measured is how extreme it is. The
term “extreme” in Statistics is used in relation to
a value that would have been expected if there
was no effect, that is, the value that would be
expected by random chance alone. Confidence
intervals provide an interval estimate for a popu-
lation parameter of interest. Confidence intervals
of (1 � a)% can also be used to test hypotheses,
as seen in Chapter 8. 

The process of hypothesis testing is carried
out using the following steps, which will be
highlighted in subsequent chapters:

• State the null and alternate hypotheses. It is
sometimes easier to state the alternate
hypothesis first because that is what we 
would like to conclude at the end of the
study. The null hypothesis then covers the
remainder of values of the population para-
meter. The specific statements of the null and
alternate hypotheses depend on the type of
study and the analysis approach used. We
cover many different examples in later
chapters. 

• Determine the test statistic appropriate for the
method used. Choosing the appropriate test
statistic depends on the analysis method and
the assumptions that we must make. 

• Select a value of a (as noted earlier, our
standard for this book is 0.05).
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Figure 6.8 Conclusions to be drawn from the population mean change from baseline



• Calculate the value of the test statistic under
the null hypothesis and the corresponding 
p value. Compare the p value with the value
of a. 

• State the statistical decision either to reject or
to fail to reject the null hypothesis. 

Statistical inference is one way to use data to
make a decision in the presence of uncertainty.
The resulting decisions are not perfect. The
commission of either a type I or a type II error
can have significant impacts on drug companies,
study participants, patients, and public health.
Therefore, minimizing the probability that each
might occur is an important part of the study
design, including the manner in which data are
analyzed and interpreted. 
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6.16 Review

1. Using Table 6.1, calculate the probability of
selecting a participant who is:

(a) female
(b) female and � 65 years of age
(c) � 65 years of age
(d) female given that the participant is � 65 years

of age.

2. Show that the true negative rate of a diagnostic
test is a function of the sensitivity and specificity of
the test and the prevalence of the disease.

3. Assume that SBP among all adults aged 30 years
and older in the UK has a normal distribution with
mean 120 mmHg and variance 100 mmHg. What
proportion of participants in this population has:

(a) SBP 
 90 mmHg?
(b) SBP 
 120 mmHg?
(c) SBP 
 100 mmHg or SBP 	 140 mmHg?
(d) SBP 	 160 mmHg?

4. What is the difference between standard
deviation and standard error?

5. What is a? How does a researcher decide on a
value for a?

6. What is b? How does a researcher decide on a
value for b?

7. What are the three components of a confidence
interval?

8. What is a two-sided hypothesis test?

9. The one-sample t test is being used for a two-
sided test of the null hypothesis, H0: l � 0. For
each of the following scenarios, define the
rejection region for the test:

(a) n � 10; a � 0.10
(b) n � 10; a � 0.01
(c) n � 30; a � 0.05
(d) n � 30; a � 0.001.

10. For each of the following 95% confidence
intervals for the population mean, would a two-
sided test of the null hypothesis, H0: l � 0, be
rejected or not rejected?

(a) (�4.0, 4.0)
(b) (�2.0, �1.0)
(c) (22.3, 44.6)
(d) (�12.7, 0.01).





7.1 Introduction

As we noted in Section 1.11, this book focuses on
teaching you the statistical methodologies and
analyses that are employed in the therapeutic
confirmatory clinical trials conducted before a
sponsor applies for marketing approval for the
drug that they have been developing. We also
noted that there are other clinical trials that
precede therapeutic confirmatory trials. Two
other categories of preapproval trials mentioned
are Phase I (human pharmacology) trials and
Phase II (therapeutic exploratory) trials. There-
fore, before focusing on therapeutic confirma-
tory trials in Chapters 8–11, it is appropriate to
provide an overview of human pharmacology
and therapeutic exploratory trials.

The usefulness of numerical information from
clinical trials in decision-making is an ongoing
theme in this book. The first few clinical studies
for new drugs are important because they
provide information relevant to the critical deci-
sions that must be made with regard to
continued investment in the development
program. Ideally, studies are designed to answer
research questions, the answers to which provide
sufficient information to inform the next step of
development, that is, either to go forward (a
“go” decision) or not to go forward (a “no-go”
decision). The answer to these critical early ques-
tions must be “go” if we are to reach the later
stages of clinical development. For example, we
need to have reasonable confidence that the
drug is safe enough to progress to therapeutic
exploratory trials in which it will be adminis-
tered for the first time to participants with the
disease or condition of interest. 

In addition, we need to have reasonable confi-
dence that a particular selected route of adminis-

tration will prove successful for administering
the drug to patients if and when the drug is
approved. Although many other questions must
be addressed during later-stage clinical develop-
ment, these critical early phase questions have
significant bearing on the ultimate safety and
efficacy attributes of the product, as well as
commercial implications (for example, route or
schedule of administration). 

Discussions in this chapter emphasize statis-
tical considerations in early phase clinical trials.
These include study designs employed, the
types of data collected, and the usefulness and
limitations of these data.

7.2 A quick recap of early phase
studies

Human pharmacology studies are pharmacolog-
ically oriented trials that typically look for the
best range of doses to employ. These trials typi-
cally involve healthy adults. Comparison with
other treatments (such as a placebo or a drug
that is already marketed) is not typically an aim
of these trials, which are undertaken in an
extremely careful manner in very controlled
settings, often in residential or inpatient medical
centers. Typically, between 20 and 80 healthy
adults participate in these relatively short
studies, and participants are often recruited from
university medical school settings where trials
are being conducted. The main objectives are to
assess the safety of the investigational drug,
understand the drug’s pharmacokinetic profile
and any potential interactions with other drugs,
and estimate pharmacodynamic activity. A range
of doses and/or dosing intervals is typically
investigated in a sequential manner. 

7
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From a statistical viewpoint, the design of
human pharmacology studies has certain impli-
cations. They include a relatively small number
of participants, but a lot of measurements are
collected for each participant. This strategy has
both advantages and limitations. The extensive
array of measurements made allows the drug’s
effects to be characterized reasonably thor-
oughly. However, as so few participants partici-
pate in these studies, generalizations to the
general participant population are relatively
more tenuous than for studies with larger sample
sizes. 

7.3 General comments on study
designs in early phase clinical studies

A disappointing result in early clinical studies, as
a result of either a real liability of the investiga-
tional drug or chance alone, can doom the
prospects for the new drug ever entering the
market. No-go decisions are a logical conse-
quence of such disappointing results. To provide
optimum quality data and the associated
optimum quality information upon which to
base go and no-go decisions, early clinical
studies are very well controlled, thereby limiting
extraneous sources of variation as much as
possible. Early clinical studies, especially FTIH
(first-time-in-human) studies, are typically
conducted at a single investigative center. As a
relatively small number of participants are
studied in such early phase trials, a single center
can feasibly accommodate the study by itself. It
can recruit enough participants at that single
location, and provide all the necessary resources
for investigators at that site to conduct all the
study procedures documented in the study
protocol. Conducting a study at a single center
ensures greater consistency with respect to parti-
cipant management, study conduct, and assess-
ment of adverse events, and provides for frequent
and careful monitoring of study participants.

Participants in early clinical studies are usually
healthy adults whose health status is carefully
documented at the start of the study through
physical examinations, clinical laboratory tests,
and medical histories. Limiting early studies to

healthy participants allows the sponsor to
attribute any untoward findings to the drug, or
to a particular dose of the drug, as significant
background diseases are all but absent. 

Early clinical studies frequently involve the
use of a concurrent inactive control. This can 
be important because the study procedures can
be somewhat invasive and associated with some
adverse effects themselves – for example,
frequent blood draws resulting in a lowering of
hematocrit. Without a concurrent control arm
(even in a study of healthy participants) study
sponsors and investigators would not be 
able to rule out a drug effect when observing 
such occurrences, which are expected, easily
explained, and non-drug related. In early studies
that involve inpatient facilities for close moni-
toring, other controls may be instituted, for
example, standardized meals and set times for
study procedures. 

7.4 Goals of early phase clinical trials

Early clinical trials used in new drug
development typically have the following goals: 

• characterize the pharmacokinetic profile of
the investigational drug 

• describe the safety and tolerability of the
investigational drug in study participants who
do not have significant medical conditions

• describe the extent to which a pharmacody-
namic effect is affected by different doses of
the new drug

• begin to identify a dose range that would
likely provide adequate exposure to yield an
important clinical effect. 

Although somewhat overly simplistic (especially
to readers who are students of pharmacy) we can
consider pharmacokinetic effects as “what the
body does to the drug” and pharmacodynamic
effects as “what the drug does to the body.” For
those readers who are less familiar with pharma-
cokinetics and pharmacodynamics, Tozer and
Roland (2006) provide an excellent and very
readable introduction to these topics.

Patients with diseases or conditions of interest
can have a number of attributes that, although
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very important in the context of the eventual
use of the new drug, make accurate assessments
of the safety and pharmacokinetics of the inves-
tigational drug difficult. For example, patients
with the disease may have compromised kidney
or liver function, which would confound the
characterization of the metabolism of the new
drug. Similarly, patients with the disease may
take several other medications for the disease
under study or for other related or unrelated
diseases. It then becomes difficult to ascertain in
early studies whether potential adverse effects or
laboratory abnormalities are attributable to the
investigational drug, to concomitant drugs, or to
any potential interactions between the investiga-
tional drug and other drugs. (Drug interactions
are not discussed in this book and readers are
referred to Hansten [2004].)

The employment of healthy participants in
early clinical studies provides essential informa-
tion about the pharmacokinetics, pharmacody-
namics, and safety of the new drug. This chapter
focuses on the research questions relevant to
early human studies, the designs used to 
address them, the data and analysis approaches
commonly encountered, and the development
decisions that are made as a result of these
studies. 

We should note here that there are some
special cases for which the use of healthy
participants is not justified in early studies. For
particularly invasive therapies (for example,
implantation of a medical device) or therapies
with known toxicity (for example, oncologics) it
is not ethical to study healthy participants. The
use of healthy participants in early studies may
also provide a misleading result for future
studies of participants with disease. For
example, the maximum tolerated dose of new
antidepressants or anxiolytics may differ quite
markedly between healthy participants and
those with the disease.

7.5 Research questions in early phase
clinical studies

In the early clinical development of a new drug,
the following questions arise:

• How does the magnitude of systemic expo-
sure to the new drug differ as a function of
increasing concentrations of the drug?

• How does the magnitude of systemic expo-
sure to the new drug differ as a function of
different dosing schedules (for example, once,
twice, or three times a day)?

• How do varying degrees of drug exposure
modify measurable pharmacodynamic effects?

• How does the total amount of drug exposure
from the route of administration being studied
(for example, oral) compare with the total
amount of drug exposure when administered
parenterally (that is, intravenously or intra-
arterially)? In other words, how bioavailable is
the drug?

• How safe is the new drug? Evaluations include
clinical laboratory tests, physical assessments,
vital signs, adverse events, and cardiac effects
through electrophysiological monitoring via
an ECG.

To address the first four research questions listed
above, pharmacokinetic data are typically
collected at various time points in early clinical
studies: These data are discussed in the next
section. To evaluate the difference between back-
ground variation (influences that are not directly
of interest) and changes brought about by the
administration of drug (influences that are of
interest), measurements are collected on several
occasions before the start of the drug, at several
times during drug administration, and at least
once after the administration of the drug when
its effect is likely to be minimal (for example, 24
hours later). Evaluation of the fifth question is
discussed in Section 7.10.

7.6 Pharmacokinetic characteristics of
interest

Investigations at this stage of a clinical develop-
ment program focus primarily on a very careful
evaluation of how well the drug reaches the
bloodstream, and how its concentrations in 
the bloodstream change over time, that is, on
pharmacokinetics. The extent and duration of a
drug’s presence in the bloodstream determine
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how good a chance it has ultimately to exert its
intended clinical effect by reaching and inter-
acting with its target receptors, the domain of
pharmacodynamic investigation. Therefore, we
need to study pharmacokinetic factors before
studying the actual clinical effects of the drug in
therapeutic exploratory trials, trials in which the
relationship between drug concentrations and
clinical response are typically addressed for the
first time.

As mentioned in Section 2.5, the term “phar-
macokinetics” generally refers to the absorption,
distribution, metabolism, and excretion (ADME)
of a drug. When developing a new drug a great
deal of time and effort is devoted to formulating
the drug so that it has the most desirable charac-
teristics from the standpoint of safety, efficacy,
and commercial concerns (for example, patient
convenience and patient adherence to the
prescribed regimen). There are several commonly

used summary measures that are useful for quan-
tifying absorption and excretion. In contrast,
metabolism and distribution are not as easy to
define in terms of quantifiable measures,
although it is possible to characterize how a drug
is metabolized through the identification of
certain markers. 

7.6.1 Total systemic exposure

Total systemic exposure to an administered drug
is usually measured by the area under the drug
concentration curve. For each participant the
drug concentration (in nanograms/milliliter) can
be plotted as a function of time, as displayed in
Figure 7.1. The maximal drug concentration
(Cmax) and the time at which it is observed (tmax)
are also shown. These two parameters are
discussed in Section 7.6.2.
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The estimated area under the curve from time
point zero to infinity (AUC(0��)) is calculated
using the trapezoidal rule. There are two steps in
this process:

1. Calculate the trapezoidal area between all
adjacent time points

2. Sum all areas calculated in the first step. 

This calculation is an estimate of the real
AUC(0��), but a meaningful and useful estimate.
By progressively increasing the sampling
frequency we could obtain more and more
precise measurements, but pragmatism dictates
frequency, and a reasonable frequency produces
a useful estimate of AUC(0��). AUC(0�t) denotes
the area under the curve from 0 to any time
point t.

7.6.2 Maximum concentration

Another important measure of absorption is the
peak or maximum concentration or maximum
systemic exposure (Cmax). It may be of interest to
know the Cmax associated with a beneficial effect.
However, it is more common to use the value of
Cmax to provide assurance that, despite observing
a specific Cmax value, there was no unwanted toxi-
city. If the Cmax is too high for a given dose of drug
as measured by a clinical effect, such a finding
could guide development of other formulations
and treatment schedules. The Cmax is calculated as
the maximum value of the drug concentration
during the period of monitoring. The time from
administration to achieve the Cmax is called tmax.
Depending on the intended clinical use for the
new drug, it may be more desirable to have
shorter or longer values of tmax. For example,
when in need of headache pain relief, we might
be interested in a tmax that is as short as possible.
As noted in the previous section, both Cmax and
tmax are shown in Figure 7.1, where Cmax has a value
of 290 ng/mL and tmax has a value of 6 hours.

7.6.3 Elimination

Elimination of a drug is measured using a quan-
tity called a half-life (t1/2). A half-life is the time
required to reduce the plasma concentration to

half its initial value. Longer half-lives can be
associated with desirable characteristics (for
example, longer activity requiring less frequent
administration of the drug) or undesirable ones
(for example, adverse effects). 

7.6.4 Excretion

Excretion concerns the removal of a drug
compound from the body. Both the original
(parent) drug compound and its metabolites can
be excreted. The primary mode of investigation
here is excretion balance studies. A radiolabeled
drug compound is administered and radioac-
tivity is then measured from excretion sites (for
example, urine, feces, expired air). These studies
provide information on which organs are
involved in excretion and the time course of
excretion. 

7.7 Analysis of pharmacokinetic and
pharmacodynamic data

Statistical analyses of pharmacokinetic and phar-
macodynamic effects are primarily descriptive in
nature. As described in Chapter 6, inferential
statistical methods such as hypothesis testing are
used to make decisions in the presence of uncer-
tainty, while limiting the likelihood of making
decisions with unwanted consequences (for
example, marketing an ineffective drug or not
bringing to market an effective one). The deci-
sions to be made in pharmacokinetic studies do
not have such dire consequences nor are they
directly applicable to the real world use of the
new drug. Rather, the data acquired in pharma-
cokinetic studies are used as a starting point to
identify doses, dosage forms, and dosage regi-
mens for the new drug which, when studied in
individuals with the disease, will allow a reason-
able chance at evaluating the potential benefits
and risks associated with its use. 

Pharmacokinetic measures such as AUC(0–24),
Cmax, and tmax are analyzed as continuous
measures. As seen in the example in Table 7.1,
measures of central tendency and dispersion can
be helpful to highlight differences among groups. 
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Before discussing the interpretation of the data
in Table 7.1, a couple of points about tabular
displays like this one are worth pointing out.
First, every study or analysis has a primary
comparison of interest: In this case it is to
compare AUC across groups. The ability of a
regulatory reviewer to interpret data with respect
to the primary comparison is aided by displaying
data across columns for the comparison. In this
case, a single summary measure of interest
(AUC) represents a row and the groups may be
compared by reading left to right. Secondary
comparisons should then be placed as rows on a
table. 

A common example of a secondary compar-
ison in pharmacokinetic studies is the concen-
tration of drug at various time points during the
study. It is important to know how the within-
group average concentration changes over time,
but it is more important to know how the mean
concentration differs among groups at one time
point. The fundamental nature of clinical trials is
comparative, above all else. The second point
about tabular displays such as this one is that the
table itself is well labeled with titles and column
headers. In the regulated world of drug develop-
ment, presentation is extremely important.
“Substance” is our first concern, but “style” is
certainly important to convey the substance to a
regulatory reviewer. 

Descriptive analyses were discussed in 
Chapter 5, particularly measures of central
tendency and dispersion. Those discussions now
enable us to examine the pharmacokinetic data
presented in Table 7.1. As can be seen, a total of
10 participants were studied in each group. The
mean (SD) AUC values were 812 (132), 1632

(264), and 2237 (412), respectively. From these
results we can conclude that the three times
daily dosage regimen resulted in overall greater
systemic exposure to the drug. 

7.7.1 Decisions and inferences from FTIH
studies

Having completed one or more pharmacokinetic
and pharmacodynamic studies in early develop-
ment, a multidisciplinary team, consisting of
clinical scientists, regulatory specialists, pharma-
cologists, and statisticians, will examine these
early clinical data to plan for studies of early effi-
cacy and safety in individuals with the disease or
condition of interest. They will interpret the data
to decide which combinations of dosage forms,
concentration, and regimen resulted in the
optimal exposure to the drug with minimal
apparent toxicities. In many instances the data
may be too ambiguous to make clear decisions,
especially as a degree of subjectivity is present in
such decisions. For example, two regimens may
have similar total exposure (as measured by
AUC) but one may be associated with a greater
Cmax, which may lead to adverse effects in subse-
quent studies. These judgments and decisions
are fairly imperfect anyway because the relation-
ship between pharmacokinetics and clinical
effects is more relevant. 

For this reason alone, early clinical studies are
not considered definitive and most sponsors are
wise to interpret the data carefully. Ideally,
certain combinations of dosage forms, drug
concentrations, and regimens can be eliminated
from future consideration as a result of early
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Table 7.1 Pharmacokinetic measures: Mean (SD) for three dosage regimens of a new investigational drug

Dosage regimen

20 mg once a day 20 mg twice daily 20 mg three times daily  
(n � 10) (n � 10) (n � 10)

AUC(0–24) (ng h/mL) 812 (132) 1632 (264) 2237 (412)
Cmax (ng/mL) 174 (61) 181 (74) 308 (94)
tmax (h) 2.4 (0.9) 2.6 (0.6) 7.4 (1.0)



studies (for example, inadequate exposure, too
much exposure). Pharmaceutical companies can
then conduct future research on the drug in
forms that may realistically provide a benefit.
AUC and Cmax are very useful measures in initial
clinical development activities and, accordingly,
we need statistical methods and analyses to
assess them in a scientific and therefore infor-
mative manner. However, these are not the para-
meters that are of ultimate interest: It is the
clinical benefits and risks of the new drug that
are ultimately the characteristics of importance.
The statistical evaluation clinical benefits (thera-
peutic efficacy) and risk (adverse events, etc.) are
covered in Chapters 8–11. 

7.8 Dose-finding trials

A drug’s dosing regimen comprises the dose of
the drug given and the schedule on which it is
administered – that is, both concentration and
timing are important characteristics. A variety of
dosing regimens may be explored in these trials,
and the specific regimens chosen in a specific
trial depend on the objectives of the trial and the
type of drug being studied. 

Dose-finding studies are conducted to provide
information that facilitates selection of a safe
and efficient drug administration regimen.
Chevret (2006a, p 5) defined dose-finding trials
as “early phase clinical experiments in which
different doses of a new drug are evaluated to
determine the optimal dose that elicits a certain
response to be recommended for the treatment
of patients with a given medical condition.”
Chevret (2006a) also provided some related
definitions that are helpful:

• Dose: The amount of active substance that is
given in a single administration or repeated
over a given period, as dictated by an admin-
istration schedule of equal or unequal single
doses at equal or unequal intervals.

• Response: The outcome of interest in study
participants. This can be defined in pharma-
codynamic terms as the therapeutic points of
interest, or in terms of pharmacotoxicity/
tolerability of the drug.

• Maximum tolerated dose (MTD): The highest
dose that produces an “acceptable” risk for
toxicity or, expressed differently, the dose
that, if exceeded, would put individuals at
“unacceptable” risk for toxicity.

• Minimally effective dose (MED): The dose that
elicits a specified lowest therapeutic response.

Before continuing with our current discussions,
the word “acceptable” in the third bullet point
may initially seem somewhat incongruous here.
All drugs lead to some side-effects, that is, some
adverse events. Therefore, there is some degree
of risk associated with taking any drug. To 
be useful, a drug needs to have an acceptable
benefit–risk ratio – that is, the benefit must be
larger than the risk, and it must be larger by a
certain amount. Stating the precise amount by
which a drug must provide more benefit than it
may lead to harm is a difficult judgment call that
must be made ultimately by physicians.
However, we can make some observations. If 
a drug that is extremely beneficial to very sick
patients shows relatively strong side-effects, a
clinician may well decide that the benefit–risk
ratio is still acceptable. In contrast, a drug taken
for a relatively mild condition such as a head-
ache would need to show relatively much less
strong side-effects for the benefit–risk ratio to be
acceptable.

Human pharmacology studies often involve
dose-finding trials that focus on the evaluation
of MTDs such as trials in oncology. It is impor-
tant to note that studies that aim to define an
MTD require clear and consistent definitions of
toxicities and toxicity grades. In many disease
areas outside cancer it is difficult to define the
MTD in a clear manner because the drugs them-
selves may not be as apparently toxic as a new
chemotherapeutic. Dose-finding trials that focus
on the evaluation of MED are commonly
referred to as early Phase II trials. (As noted in
Chapter 2, the categorization of clinical trials
into Phase I, II, or III, although very common,
can result in confusing and less than definitive
nomenclature. Here, the nomenclature “early
Phase II trials” is used to distinguish these trials
from therapeutic exploratory or “late Phase II
trials.”) One common design for FTIH studies is
a dose-escalation cohort study. In this design the
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first cohort consists of participants administered
the lowest dose of the drug or placebo. An assess-
ment of the safety of the first dose is undertaken
and, if the lowest dose is considered safe, a
second cohort of participants is studied at the
next highest dose. Additional cohorts are studied
in this manner until a dose has been found to
have unacceptable risks or the maximum dose
has been studied in the final cohort. Chevret
(2006b) provides a comprehensive discussion of
dose-finding experiments.

7.9 Bioavailability trials

Another type of early clinical study may be
conducted with the primary objective of estab-
lishing the bioavailability of a particular dosage
form, concentration, and regimen. Bioavail-
ability can be defined as the proportion of an
administered dose that reaches the systemic
circulation in an unchanged form. Maximum
bioavailability results after an intravenous injec-
tion of the drug. In this case, the bioavailability
is by definition 100%. When administered
orally, however, a drug experiences first-pass
metabolism, also called first-pass loss, before it
reaches the systemic circulation. 

Metabolism is a complex and tremendously
beneficial process in most cases, but one that
poses interesting challenges in pharmacological
therapy. We are constantly exposed to xenobi-
otics, substances that are foreign to our bodies.
For example, our modern environment is a
constant source of xenobiotics that are toxi-
cants. These can enter our bodies via our lungs
as we breathe and our stomachs as we eat, and
some can enter the body through our skin. In
addition, animal and plant food contains many
chemicals that have no nutritional value but
do have potential toxicity. Fortunately, our
bodies are very good at getting rid of bodily
toxicants. The processes of metabolism and
excretion are involved in this. As noted by
Mulder (2006), metabolism can be divided into
three phases:

1. Phase 1: The chemical structure of the
compound is modified by oxidation, reduc-

tion, or hydrolysis. This process forms an
acceptor group.

2. Phase 2: A chemical group is attached to the
acceptor group. This typically generates
metabolites that are more water soluble and
therefore more readily excreted.

3. Phase 3: Transporters transport the drug or
metabolites out of the cell in which Phase 1
and Phase 2 metabolism has occurred.

Along with all animals, humans have a wide
variety of xenobiotic-metabolizing enzymes
that convert a wide range of chemical structures
to water-soluble metabolites, which can be
excreted in urine. Humans have a high concen-
tration of these enzymes in the gut mucosa
and the liver. This arrangement ensures that
systemic exposure to potentially toxic chemicals
is limited. A high percentage of these may be
caught in first-pass metabolism. Xenobiotics
that are absorbed from the intestine travel via
the hepatic portal vein to the liver, the major
organ of metabolism, before being circulated
systemically, and metabolism in the liver means
that damage to the rest of the body is amelio-
rated. Under normal circumstances this is
extremely advantageous.

From the point of view of pharmacological
therapy, however, this protective system repre-
sents a considerable challenge. Orally adminis-
tered drugs also travel via the hepatic portal vein
to the liver before being circulated systemically.
Therefore, before the drug gets a chance to exert
any therapeutic activity in the body, it has to
withstand this first attempt to degrade it. This
first-pass metabolism is more or less effective
depending on factors including the drug’s
chemical and physical properties, but almost
certainly there will be some degree of degrada-
tion. This means that most orally administered
drugs display less than 100% bioavailability.

The most rigorous quantitative way to assess
the extent of bioavailability for an orally admin-
istered drug is to compare the areas under the
respective plasma–concentration curves after
oral and intravenous administration of the same
dose of drug. The AUC is then calculated for
both, and a ratio calculated by dividing the AUC
for the oral administration by that for the intra-
venous administration. If the area ratio for the
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drug administered orally and intravenously is
0.5 (which can be expressed as 50%), only 50%
of the oral dose was absorbed systemically. 

Consider the development of a new drug that
is going to be given orally. Assessing its bioavail-
ability is important. An intravenous infusion of
the new drug will result in a certain systemic
exposure as measured by the AUC. This amount
of systemic exposure will by definition be called
100% bioavailability. It is important to identify
the dosage form and schedule that provide rela-
tively high bioavailability. In this case, partici-
pants may be randomly assigned to receive one
of the following drug administration regimens:

• intravenous infusion of the drug for 4 hours
• 10 mg tablet once a day 
• 10 mg tablet twice a day 
• 10 mg three times a day 
• 20 mg tablet once a day 
• 20 mg tablet twice a day 
• 20 mg three times a day. 

At the end of the study, the pharmacokinetic
characteristics of the drug would be evaluated,
and the systemic exposure for each dosage
regimen compared with the intravenous route of
administration. 

7.10 Other data acquired in early
phase clinical studies

As we saw in Section 7.5, one research question
of interest in early phase trials is:

• How safe is the new drug? Evaluations include
clinical laboratory tests, physical examina-
tions, vital signs, adverse events, and cardiac
effects through ECG monitoring.

More extensive discussion of these safety assess-
ments is provided in the following chapters, but
it is useful to introduce these topics at this point.

7.10.1 Clinical laboratory tests

There is a very wide range of clinical chemistry
tests that can be conducted, including liver

(hepatic) and kidney (renal) tests. These are
discussed in Section 9.2.

7.10.2 Physical examinations

Although perhaps not as sensitive as other safety
assessments, physical examinations are still 
very helpful, because a general exam may iden-
tify more pronounced effects to the drug such as
allergic reactions or edema (fluid retention).
Data collected from physical exams include a
subjective assessment by the investigator as 
to whether the participant has “normal” or
“abnormal” function for each body system (for
example, respiratory, dermatologic) examined. If
the body system is considered abnormal, addi-
tional descriptions of the particular abnormality
are also recorded. Data recorded as normal or
abnormal are measured on the nominal scale.
These data are typically summarized by tabu-
lating the number and percentage of individuals
with each result. 

7.10.3 Vital signs

Monitoring of vital signs, including heart rate,
respiration rate, and blood pressure, is carried
out on a regular basis, typically several times a
day. Each of these is measured on the continuous
scale. Analyses of these outcomes primarily focus
on measures of central tendency and dispersion. 

7.10.4 Adverse events

The collection of adverse events can be based on
observation by either the investigator or partici-
pant self-report. Participant self-reports of
adverse events can vary according to how the
information is elicited from them. It is advisable
to standardize the manner in which participants
are asked about how they feel during the trial.
Data collected from adverse events usually
include text descriptions of several characteris-
tics of the adverse event:

• the adverse event, for example, “rash on left
forearm”
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• the severity or intensity of the adverse event,
for example, mild, moderate, severe

• the date and time of onset
• the outcome of the adverse event (resolved

without sequelae, resolved with sequelae, or
ongoing)

• any treatments administered for the adverse
event

• any action taken with the study drug (for
example, temporarily discontinued, stopped,
none)

• whether or not the adverse event is considered
serious. 

To standardize the reporting of adverse events,
the adverse event descriptions are coded using
medical dictionaries such as MedDRA (Medical
Dictionary for Drug Regulatory Affairs coding
dictionary: See, for example, Chow and Liu,
2004, p. 563) or COSTART. The original descrip-
tion of the adverse event provides qualitative
information about the finding that may not be
captured in the coded event. Both aspects – that
is, coded and uncoded – are retained in the
scientific database for reporting and analysis. 

7.11 Limitations of early phase trials

In this chapter we have discussed the impor-
tance, and the strengths, of early phase clinical
trials. Before moving on to later phase clinical
trials, it is also appropriate to consider their limi-
tations. The word “limitations” should not be
seen as a negative assessment in this context. As
we will discuss in Chapter 12, later-phase preap-
proval clinical trials also have their limitations.
Acknowledgment of the strength and the limita-
tions of any method of inquiry is legitimate and
helpful: As Katz (2001, p xi) noted, “to work
skillfully with evidence is to acknowledge its
limits.”

7.11.1 Studying pharmacokinetics in
healthy participants

Studying the pharmacokinetics of a new investi-
gational drug in FTIH studies – that is, in indi-
viduals with healthy renal and hepatic systems –
results in a pharmacokinetic assessment that is
somewhat artificial. In later stages of develop-
ment, it may be necessary to study the drug in
individuals with impaired kidney or liver func-
tion, especially if these conditions are expected
in the types of patients who will be prescribed
the drug if and when it is approved for
marketing. However, this initial FTIH assessment
can serve as a useful starting point and provide
guidance for such later studies. 

7.11.2 Extremely tight experimental
control 

It may seem paradoxical to see tight experi-
mental control listed in a section discussing the
limitations of a clinical trial. After all, in
Chapter 4 we extolled the merits of such control.
The issue here is related to the issue addressed in
Section 7.2. Since the investigational drug is
administered in such a carefully controlled
manner, the generalizability of the results from
these studies becomes questionable. If and when
the drug is approved for marketing, patients who
are prescribed the medication will be unlikely to
take the medication in such a precisely
controlled manner. As in many places in drug
development, there are advantages and disad-
vantages to this strategy. We have noted the
disadvantages and now focus on the advantages. 

The advantage of very tight control in early
Phase II (therapeutic exploratory) trials is that
the “pure” efficacy of the drug can be assessed as
well as possible. The drug has every chance to
demonstrate its efficacy in these circumstances.
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In other words, we can assess how well the drug
can work. It is not so easy to assess how the drug
will work if and when approved and prescribed
to a very large population of heterogeneous
patients who take the drug in various states of
adherence with the prescribed regimen, but that
is another question for another stage of the
clinical development program.
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7.12 Review

1. What are some reasons that inferential statistics
(that is, hypothesis testing) are not used very often
in early phase studies?

2. What information from early phase trials may be
used to inform the study designs of therapeutic
exploratory and therapeutic confirmatory trials?

3. Name three advantages or strengths of early phase
trials as they pertain to the overall development of
a new drug.

4. Name three disadvantages of early phase trials as
they pertain to the overall development of a new
drug.





8.1 Introduction

The regulatory standard for the approval of new
drugs for marketing can be framed in the
following manner: The benefits associated with
the new treatment outweigh the risks associated
with the new treatment. All pharmaceutical
products carry the potential for side-effects,
some of which are more serious than others.
Therefore, for a given investigational drug to be
approved for marketing the regulatory agency
needs to be presented with compelling evidence
that the likely benefits to the target population
with the disease or condition of interest out-
weigh the likely risks. This requires conducting
clinical trials that employ samples selected from
the target population, and use of Statistics to
design these trials appropriately, collect optimum
quality data, analyze and interpret the data
correctly, and make inferences about the popula-
tion from which those samples were drawn. 

Judgments about the benefit–risk profile of an
investigational drug require, by definition,
consideration of both benefit and risk. This
means that the therapeutic benefit of the inves-
tigational drug needs to be assessed quantita-
tively, and considered together with quantitative
assessments of risk. In this chapter we discuss the
assessment of risk in terms of evaluating the
drug’s safety profile. Even though we typically
use the nomenclature benefit–risk profile and
not risk–benefit profile, we discuss safety evalua-
tions first because the safety of patients must be
our first concern.

Safety analyses in pharmaceutical clinical trials
tend to be largely descriptive because there are so
many adverse events (AEs) and other safety para-
meters evaluated, and analysis of them leads to
issues of multiplicity (see Section 8.9). As

described in Chapter 6, the appropriate use of
inferential statistics requires a prespecified
hypothesis of interest. As knowledge is gained
about an experimental therapy during its devel-
opment (for example, in therapeutic exploratory
trials) a specific hypothesis about the drug’s
safety may emerge and can then be tested appro-
priately. In such instances there are inferential
statistical analyses that can be used for safety
data, and we present some of those applicable to
AEs in this chapter. (See also Chow and Liu
[2004b, Chapter 13] for additional discussions of
safety assessment.)

8.2 The rationale for safety
assessments in clinical trials

When a clinician prescribes a new treatment for
a patient for the first time, the clinician and
indeed the patient may be interested in the
following questions about the safety of the drug: 

• How likely is it that my patient will experience
an adverse drug reaction? (The term “adverse
drug reaction” refers to an unwanted occur-
rence caused by a drug. Hence, a prescribing
clinician [and researchers conducting post-
marketing surveillance studies] is concerned
with adverse drug reactions. During preap-
proval clinical trials, we do not know which
treatment an individual is receiving, so
unwanted occurrences are called AEs. Formal
definitions are provided shortly.)

• How likely is it that my patient will experi-
ence an adverse drug reaction that is so
serious that it may be life threatening?

• How will the risk of an adverse drug reaction
vary with different doses of the drug? 

8
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• How will the risk of an adverse drug reaction
change with the length of treatment? 

• Are the typical adverse drug reactions
temporary or permanent in nature? 

• Are there specific clinical parameters that
should be monitored more closely in my
patient while he or she is receiving this treat-
ment because of increased risks from the
newly marketed drug? 

At the time that a new drug receives marketing
approval, the best information available upon
which the clinician can form an answer to these
questions is the information gathered during the
preapproval clinical trials. This information is
provided to the clinician (and to all patients
receiving an approved drug) in the package
insert. (This situation changes in due course as
additional [and more detailed] safety evaluation
takes place during the process of postmarketing
surveillance [see Mann and Andrews, 2007].
However, this process may take several years to
acquire meaningful data, and so the statement in
the text may remain true for quite a while.)

A number of clinical parameters are assessed
during preapproval clinical trials. This informa-
tion provides the basis upon which the clinician
will formulate answers to these questions. The
precise set of clinical parameters employed in a
given trial may vary according to the disease and
the type of drug under study. In general, the
safety evaluation of new drugs is intended to
detect quantifiable effects in as many organs and
systems as possible. In other words, when
looking for risks associated with a new drug, the
strategy is to “cast a wide net.” 

8.3 A regulatory view on safety
assessment

The view of the US Food and Drug Administra-
tion (FDA) concerning safety reviews is
presented in their guidance document on the
safety review of new drug applications (US FDA,
2005, p 5). As this guidance states, most thera-
peutic exploratory and therapeutic confirmatory
trials are carefully designed to establish that a

new drug is efficacious, while controlling the
probability of committing a type I or II error.
Unless safety concerns have arisen in earlier
stages of the clinical development program,
these trials typically do not involve assessments
of safety that are as sensitive as those designed
for establishing the efficacy of the investiga-
tional drug. Quoting from this guidance:

In the usual case, however, any apparent finding
emerges from an assessment of dozens of poten-
tial endpoints (adverse events) of interest,
making description of the statistical uncertainty
of the finding using conventional significance
levels very difficult. The approach taken is there-
fore best described as one of exploration and
estimation of event rates, with particular atten-
tion to comparing results of individual studies
and pooled data. It should be appreciated that
exploratory analyses (for example, subset
analyses, to which a great caution is applied in a
hypothesis testing setting) are a critical and
essential part of a safety evaluation. These
analyses can, of course, lead to false conclusions,
but need to be carried out nonetheless, with
attention to consistency across studies and prior
knowledge. The approach typically followed is
to screen broadly for adverse events and to
expect that this will reveal the common adverse
reaction profile of a new drug and will detect
some of the less common and more serious
adverse reactions associated with drug use. 

US FDA (2005, p 5)

Safety evaluations of investigational drugs focus
primarily on estimating the risk of unwanted
events associated with the drug, and, more
specifically, on the risk of those events relative to
what would be expected in the patient popula-
tion as a whole if the drug were to be approved.
Although more specialized tests and assays may
be evaluated in certain instances, in this chapter
and in Chapter 9 we describe statistical
approaches used for the most common clinical
data used to assess the safety of new drugs: AEs,
clinical laboratory data, vital signs, and changes
in ECG parameters. This chapter focuses on
discussions of AEs. Adverse events are nominal
data, and therefore summaries of AEs are based
on counts.

98 Chapter 8 • Confirmatory clinical trials: Safety data I



8.4 Adverse events

ICH Guidance E6 (R1) (1996, p 2) provides the
following definition of the term adverse event:

Any untoward medical occurrence in a patient
or clinical investigation subject administered a
pharmaceutical product and which does not
necessarily have a causal relationship with the
treatment. An adverse event (AE) can therefore
be any unfavourable and unintended sign
(including an abnormal laboratory finding),
symptom, or disease temporally associated with
the use of a medicinal (investigational) product,
whether or not associated with the medicinal
(investigational) product.

ICH Guidance E2A (1995, p 3) provides a defin-
ition of the term “adverse drug reaction” that is
applicable during preapproval clinical experi-
ences with a new medicinal product:

All noxious and unintended responses to a
medicinal product related to any dose should be
considered adverse drug reactions. 

There are various types of AEs, as shown in 
Table 8.1. 

The length of observation for AEs is typically
specified in the study protocol. In most instances,
on-treatment AEs (also called treatment-
emergent AEs) are considered to be those
events with an onset from the time that study
treatment has been initiated through the
protocol-defined follow-up period. For example,

a protocol may specify that AEs occurring within
30 days of the last exposure to the study drug be
reported. In some therapeutic areas it may be
desirable to assess separately those AEs that
occur once treatment has been discontinued, for
example, to evaluate withdrawal or rebound
effects during the follow-up period. 

In the hypothetical data presented in Table 8.1,
the numbers of participants in the drug and
placebo groups are deliberately similar but not
identical. This is why provision of both absolute
numbers and percentages is so informative when
making comparisons between the treatment
groups.

8.5 Reporting adverse events

Adverse events are typically reported in one of
two ways: 

1. By study investigators on the basis of their
own observations (for example, from a
physical exam)

2. By the study participant as a self-reported
event.

In the second case, it is advisable to elicit AEs
from participants using a standardized script to
ensure that they are collected as accurately as
possible. For example, a question such as “Have
you noticed anything different or had any
health problems since you were last here?” is a
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Table 8.1 Participant accountability (Safety Population: Study AB0001)

Adverse events (AEs) Number (%) of participants 

Placebo (n � 2603) Drug (n � 2456)

Pre-treatment AEs 24 (1) 31 (1)
On-treatment AEsa 297 (11) 386 (16)
Drug-related AEsb 31 (1) 42 (2)
Serious AEs 20 (1) 27 (1)
AEs leading to withdrawal 12 (� 1) 17 (1)

aAEs that occur on any treatment, whether active or nonactive.
b”Drug-related” is a designation made by an investigator who decides that there is a reasonable chance that the AE was caused by the treatment being

taken.



way of asking a participant about potential AEs
without leading him or her to answer in a certain
way. 

Study personnel who interact with partici-
pants are trained to capture the essence of any
self-reported AEs on a case report form (CRF),
one of the most important documents in clinical
trials. Examples of reported AEs include “short-
ness of breath,” “rash on left wrist,” “dry mouth,”
and “vomiting.” In addition to the description of
the nature of the AE, additional information
such as the following is typically collected: 

• the severity
• the date and time of onset
• the resolution date (if the event resolved), any

action that was taken with the study drug (for
example, stopped, dosage reduced)

• the presumed relationship to the study
treatment

• whether or not the AE was considered
“serious” according to a regulatory definition. 

8.6 Using all reported AEs for all
participants

The first question listed in Section 8.2 was: “How
likely is it that my patient will experience an
adverse drug reaction?” We turn this question
around, and reframe it in terms of assessing how
likely it is that a participant in a preapproval
clinical trial will experience an AE. The data that
are typically used to answer this question are all
on-treatment AEs for all participants treated (or
exposed) in each treatment group. The proba-
bility that a participant in a particular treatment
group will report any AE is estimated by the
proportion of participants in the group who
reported any AE. 

When describing proportions, it is important
to note what event is being counted in the
numerator and what event in the denominator.
Many times it is clear what the appropriate
numerator for a proportion should be, but not
so clear what the appropriate denominator
should be. The simplest starting point for deter-
mining which participants should be counted
in the denominator is to identify all those who

are at risk of experiencing the event of interest.
For example, the proportion of participants
experiencing an AE in the first 90 days should
be calculated by counting the number of parti-
cipants who were treated for at least 90 days in
the denominator and the number of parti-
cipants who were treated for at least 90 days
and reported an AE in the first 90 days in the
numerator.

As described earlier, proportions are numbers
between 0 and 1. We have also noted that it is
common for proportions to be multiplied by 100
so that the quantity being assessed is expressed
in percentage terms. In the present context, we
are interested in the percentages of participants
experiencing a certain event. 

The probability of an individual reporting an
AE in a trial is estimated by the following
proportion:

[Number of participants who were 
administered the treatment and reported 

any AE]
––––––––––––––––––––––––––––––––––––––––

[Number of participants who were
administered the treatment]

Some participants will have reported more than
one AE. For this analysis, we count participants
only once if they experienced any AE(s). 

As noted in Chapter 6, this calculated propor-
tion is considered a point estimate, because it
was obtained from a single sample and the esti-
mate does not take into account any variability
attributed to sampling. In most clinical study
reports (and, ultimately, package inserts for
marketed products), the point estimate of the
proportion of individuals experiencing AEs is
expressed as a percentage of individuals. This
quantity can be thought of as a rate (ratio of
individuals experiencing an event among those
exposed to the treatment) or, in the terminology
used in the discipline of epidemiology, the
incidence of AEs. 

Calculating the proportion (or, equivalently,
the percentage) of individuals reporting any AE
for all treatment groups in a study enables us to
see whether AEs are more or less likely in the test
treatment group than in other groups. The use of
an inactive control group (for example, a
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placebo) in a study allows us to compare the
probability attributed to the test treatment group
to what can be thought of as the background
risk, which is approximated for by the risk in the
inactive control group. 

8.7 Absolute and relative risks of
participants reporting specific AEs 

Similar analysis approaches are used to describe
the risk, in both the absolute and relative
(comparative) sense, of individuals reporting
specific AEs. These analyses are much more
useful clinically because not all AEs are created
equal. One example is to estimate the proportion
of individuals in a given group who reported a
headache. To do this in a standardized manner it
is necessary to “code” the AE descriptions (for
example, “tension headache”, “achy head”). The
use of the MedDRA coding dictionary for this
purpose is now widely accepted, and in some
instances may be required. Coding is performed
before statistical analysis and the “coded” terms
are used in statistical summaries that require
counting of participants reporting each event. 

The proportion from the sample in the study
can be estimated as:

[Number of participants who received 
the treatment and reported a 
headache during the study]

––––––––––––––––––––––––––––––––––
[Number of participants who received 

the treatment].

For example, if 25 participants received treat-
ment A and, among them, 5 reported a head-
ache, the estimated proportion of participants
reporting a headache is 5/25 � 0.20, which
can also be expressed as 20%. When such
an analysis is repeated for all AEs reported,
and the quantities are expressed as percentages
and displayed in tabular form in a package
insert, it is relatively easy for prescribing physi-
cians and their potential patients to answer
their questions.

Suppose that an investigational antihyperten-
sive drug is evaluated at multiple doses in a
parallel-group placebo-controlled study. Partici-
pants in this therapeutic exploratory study were
randomly assigned to receive either placebo or
one of three possible doses of the test treatment
(low, medium, or high). The treatment period
was for 6 weeks. The number and percentage of
participants experiencing any AE, and particular
AEs, are displayed in Table 8.2. 

We now have data with which to begin to
answer the question: How likely is a patient to
experience an AE after use of the new treatment?
As this study included three doses of the test
treatment, we need to consider the dose in our
answer. Examining the top row in Table 8.2, it
seems that the overall chance of observing an AE
at all doses of the active treatment is similar to
that for the placebo group: The percentages for
“Any event” range from 10% to 13% across the
groups with no apparent relationship to dose.
From these data, our best guess as to the proba-
bility of an individual treated with the test treat-
ment experiencing any AE is between 10% and
13%. However, the probability of experiencing
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Table 8.2 Number and percentage of participants reporting adverse events (AEs) by group

AE Placebo (n � 98) Low (n � 101) Medium (n � 104) High (n � 97)

Any event 12 (12%) 13 (13%) 10 (10%) 12 (12%)
Headache 6 (6%) 8 (8%) 9 (9%) 8 (8%)
Dizziness 1 (1%) 3 (3%) 4 (4%) 3 (3%)
Upper respiratory infection 4 (4%) 1 (1%) 2 (2%) 2 (2%)
Nausea 1 (1%) 2 (2%) 1 (1%) 3 (3%)



an AE is almost equal to the probability of expe-
riencing an AE after treatment with placebo. The
implication of this result is that the risk of expe-
riencing an AE after treatment with the new drug
is no different than if the participant had not
been treated with the drug.

Looking at the specific AEs in Table 8.2, there is
really little difference among the groups with one
exception, the AE of dizziness. Only 1% of parti-
cipants in the placebo group reported dizziness
compared with 3–4% of participants treated with
the active drug. How might a regulatory reviewer
interpret these data? The first conclusion is that
dizziness was not reported very often in any
participant group, so, if the drug is approved and
marketed, most patients treated with the new
drug would probably not have a problem.
However, the difference in the percentage of
participants might generate some concern.

Initially, the absolute difference in dizziness
rates (2–3%) may not seem extreme. However,
when considering the rates in relative terms,
those treated with the investigational drug are
three to four times as likely to experience dizzi-
ness as someone who did not receive the active
drug. This measure of risk is called a relative risk
and is calculated as follows:

The probability of the event in group A
Relative risk � –––––––––––––––––––––––––––––––––––––.

The probability of the event in group B

In many instances, the communication of a
risk (probability of experiencing the event) is
most clear with an absolute measure (such as 
the point estimate for a group) and a relative
measure (such as the relative risk). The relative
risk is a ratio of two probabilities, and can
therefore range from zero to infinity. 

8.8 Analyzing serious AEs

ICH Guidance E2A (1994) provides the following
definition of a serious event: A serious adverse
event (experience) or reaction is any untoward
medical occurrence that at any dose:

• results in death
• is life threatening (note that the term “life

threatening” in the definition of “serious”

refers to an event in which the patient was at
risk of death at the time of the event; it does
not refer to an event that hypothetically
might have caused death if it were more
severe)

• requires inpatient hospitalization or
prolongation of existing hospitalization

• results in persistent or significant disability/
incapacity

• is a congenital anomaly/birth defect.

A similar analysis can be performed to address
another question of interest: How likely is it that
an individual will experience an adverse effect
that is potentially life threatening? The data used
to answer this question include all of the AEs
that were rated as serious at the time of
reporting. We would estimate the probability by
calculating the proportion of participants treated
in each group who experienced a serious AE. The
proportions (or, equivalently, the percentages) of
patients could be compared across groups to see
if there was an increased risk of a serious AE
associated with the new treatment. 

8.9 Concerns with potential multiplicity
issues

As noted earlier, safety analyses in clinical trials
tend to be largely descriptive because so many
AEs and other safety parameters are evaluated. If
we were to perform hypothesis tests for the large
number of parameters evaluated – for example,
for all AEs reported in a trial – it is probable that
at least one of the tests would be nominally
statistically significant at the a � 0.05 level. In
most instances the statistical analysis is planned
so that the probability of making a type I error is
� 0.05. In Table 8.2 rates were presented for five
AEs (including any event). If we were interested
in identifying statistically significant differences
for each active dose group versus placebo, we
would need to conduct 15 hypothesis tests (three
dose groups to be tested against placebo for five
AEs). As we saw in Chapter 6, if we test a number
of hypotheses without taking into account
multiplicity of comparisons we will likely
commit a type I error. For the 15 tests that could
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be conducted using the data in Table 8.2, it is
certainly possible that one of them might have a
nominal p value � 0.05 by chance alone.
Committing a type I error in this setting would
mean concluding that the new treatment was
associated with an excess risk of an AE when that
really is not the case. 

If a single test were considered nominally
statistically significant after looking at so many
other AEs, the result should be treated with a
great deal of skepticism. Before making any regu-
latory or business decisions on the basis of such
a result, medical, clinical, and statistical experts
should, at a minimum, evaluate the medical and
statistical plausibility of the result. Ideally, addi-
tional data would be collected to provide
supporting evidence for such a finding. As we
have pointed out a number of times already,
statistical results such as these aid in decision-
making, in concert with insights and evidence
from other disciplines. This view, as it relates to
analyses of safety data, is perfectly in line with
the EMEA’s Committee for Proprietary Medicinal
Products (CPMP) (2002, p 4) guidance, Points to
Consider on Multiplicity Issues in Clinical Trials:

In those cases where a large number of statis-
tical test procedures is used to serve as a flag-
ging device to signal a potential risk caused by
the investigational drug it can be generally
stated that an adjustment for multiplicity is
counterproductive for considerations of safety.
It is clear that in this situation there is no
control over the type I error for a single
hypothesis and the importance and plausibility
of such results will depend on prior knowledge
of the pharmacology of the drug.

8.10 Accounting for sampling variation 

Hypothesis tests and interval estimates of
proportions are frequently presented in clinical
study reports, especially in earlier studies of
development when late phase studies are being
planned. Accordingly, discussion now turns to
analysis methods that can be used to account for
sampling variation and, therefore, determine if
the results observed are likely due to chance
alone.

In Chapter 6 we described the basic compo-
nents of hypothesis testing and interval estima-
tion (that is, confidence intervals). One of the
basic components of interval estimation is the
standard error of the estimator, which quantifies
how much the sample estimate would vary from
sample to sample if (totally implausibly) we were
to conduct the same clinical study over and over
again. The larger the sample size in the trial, the
smaller the standard error. Another component
of an interval estimate is the reliability factor,
which acts as a multiplier for the standard error.
The more confidence that we require, the larger
the reliability factor (multiplier). The reliability
factor is determined by the shape of the
sampling distribution of the statistic of interest
and is the value that defines an area under the
curve of (1 � a). In the case of a two-sided
interval the reliability factor defines lower and
upper tail areas of size a/2.

If the shape of the sampling distribution is
symmetric (for example, the Z or t distributions),
the reliability factor used for the lower and upper
limits is exactly the same, but with a change in
sign. Some sampling distributions are not
symmetric (for example, the F distribution for
the ratio of two variances) and, therefore, the
reliability factors for the lower and upper limits
are not equal. 

Let us now look at how we would calculate a
confidence interval for a single proportion, such
as a within-treatment group proportion of
participants experiencing an AE. 

8.11 A confidence interval for a sample
proportion

The estimator for a sample proportion can be
defined as follows:

number of observations with the event of interest
p̂ � ––––––––––––––––––––––––––––––––––––––––––––––,

total number of observations at risk of the event

which is an unbiased estimator of the unknown
population proportion, P. The standard error of
the estimator, 

_____
p̂ q̂

SE(p̂) � � ––––,
n
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where q̂ � 1 � p̂, the sample proportion of obser-
vations without the event of interest. The esti-
mator p̂ is approximately normally distributed
for large samples (that is, when p̂n � 5) so the
reliability factor for interval estimates will come
from the Z distribution. For now, we will
consider only two-sided confidence intervals.
Hence, the reliability factor Z1�a/2 will be the
specific value of Z such that an area of (1 � [a/2])
lies to the right of the cutoff value. A two-sided
(1 � a)% confidence interval for a sample
proportion, p̂ is:

p̂ � z1�a/2SE(p̂).

This is also a confidence interval for the para-
meter p, probability of success, of the binomial
distribution. The use of the Z distribution for
this interval is made possible because of the
Central Limit Theorem. Consider the random
variable X taking on values of 0 or 1, such that
the sampling distribution of the sample mean
(the proportion) is approximately normally
distributed. A table of the most commonly
encountered values of the standard normal
distribution is provided in Table 8.3 
for quick reference. Others are provided in
Appendix 1.

This methodology can be used to answer a
question about the data presented in Table 8.2,
where the percentages of participants reporting
headache during the 6-week study were 6%, 8%,
9%, and 8% for the placebo, low-dose, medium-
dose, and high-dose groups respectively.
Headaches may be reported fairly often among
people with hypertension as a matter of course,
but these data suggest that the proportion
(expressed here as a percentage) of individuals
reporting headache is a bit higher for individuals

treated with the active treatment than for those
in the placebo group. We can calculate the 95%
confidence interval for the proportion of partici-
pants in the combined active dose groups
reporting a headache. We can also calculate 
the corresponding confidence interval for the
placebo group and compare the two.

The research question

Is the risk (or probability) of experiencing a
headache after treatment with the active drug
(all doses combined) higher than the risk after
treatment with placebo? 

Study design

In this study, an investigational antihypertensive
drug was evaluated at multiple doses in a
parallel-group, placebo-controlled study. An
important feature of the design was random-
ization to treatment, which provides us with
unbiased (accurate) estimates of treatment 
differences. Another feature of the design of the
statistical analysis is that we have chosen to
compare the rates of one particular AE among
many only after seeing the results (that is, a
posteriori). As we have already seen, any differ-
ence between treatments that we may find at
this point may be a type I error resulting from
the large number of AEs that could have been
selected for this particular analysis. 

Data

The data for this analysis are the counts of parti-
cipants treated in each group (that is, the denom-
inator for within-group proportions) and the
counts of participants within each group who
reported a headache during the study (that is, the
numerator for the within-group proportions). As
the research question involved all active dose
groups combined (that is, any dose of the drug) it
is necessary to pool the data across the active dose
groups to calculate the confidence interval of
interest. Having done that, we now have the
following data for our example: 6 out of 98
participants in the placebo group reported a
headache, and 25 out of 302 participants in the
combined active groups.
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Table 8.3 Selected values of Z for two-sided
confidence intervals

a (two sided) Z1 � a/2

0.10 1.645
0.05 1.96
0.01 2.576
0.001 3.3



Statistical analysis

The statistical analysis approach is to calculate
95% confidence intervals for the proportion of
participants in each group (placebo and com-
bined active) reporting a headache. This analysis
approach is reasonable because the sample size 
is sufficiently large (that is, the values, p̂n, in
each group are at least five). Satisfying this
assumption enables us to use the Z distribution
for the reliability factor. 

The first step is to calculate the point estimate
of the proportion. For the placebo group the
proportion is 0.06. The second step is to calcu-
late the standard error. For this estimator the
standard error is calculated as follows:

____________

(0.06)(0.94)� ––––––––––– � 0.02.
98

The third component of the interval estimate is
the reliability factor. As we are calculating a two-
sided 95% confidence interval, we select the
value of Z from Table 8.3 corresponding to a of
0.05, that is, 1.96. 

With all of the components now available, the
last step is to calculate the confidence interval.
The lower limit is 0.06 – 1.96(0.02) � 0.02. The
upper limit is 0.06 � 1.96(0.02) � 0.10. We write
the 95% confidence interval as (0.02, 0.10).
Repeating these steps for the combined active
dose group, we obtain a 95% confidence interval
of (0.04, 0.12). (We leave it to you to verify this
calculation.)

Interpretation and decision-making

Using these two confidence intervals we can
now make some conclusions about the
unknown population proportion of participants
who experience headache after exposure in each
group. In the case of the placebo group, we are
95% confident that the population proportion of
participants experiencing a headache is enclosed
in the interval (0.02, 0.10). For the combined
active dose group, we are 95% confident that the
population proportion of participants experi-
encing a headache is enclosed in the interval
(0.04, 0.12). Although it may initially have
seemed that there may be an increased risk of
headache associated with the active treatment,

the overlapping within-group confidence inter-
vals suggest that there is insufficient evidence to
conclude that the observed difference is real
(that is, not due to chance). 

8.12 Confidence intervals for the
difference between two proportions

There is also another way to answer this research
question. If the proportions of individuals
reporting headache are the same among partici-
pants in the active dose groups and the placebo
group, the difference between the two propor-
tions would be 0. Further, because of the influ-
ence of sampling error, with which we are now
very familiar, we would not necessarily expect
the difference to be exactly 0 (just like we do not
expect precisely equal numbers of heads and
tails in a series of coin tosses). In this approach,
therefore, we calculate a confidence interval
about the difference in proportions for two inde-
pendent groups. This interval estimate allows us
to exclude implausible values of the difference.
This method and others throughout this book
require independence of groups (for example,
two groups of participants). Examples of groups
that are not considered independent are
measurements on the same study participant (for
example, in ophthalmology left eyes are not
considered independent of right eyes in the
same individual). 

For this method we have sample proportions
for independent groups 1 and 2 defined as
above:

number of observations in group 1 with the event of interest
p̂1� ––––––––––––––––––––––––––––––––––––––––––––––––––––––––– and

total number of observations in group 1 at risk of the event

number of observations in group 2 with the event of interest
p̂2� –––––––––––––––––––––––––––––––––––––––––––––––––––––––––.

total number of observations in group 2 at risk of the event

The estimator for the difference in the two
sample proportions is p̂1 � p̂2 and the standard
error of p̂1 � p̂2 is: 

_______________
p̂1q̂ 1 p̂2q̂ 2

SE(p̂1 � p̂2) � �–––––– � ––––––,
n1 n2

where q̂1 � 1 � p̂1 and q̂2 � 1 � p̂2.
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For large samples (that is, when p̂1 n1 � 5 
and  p̂2 n2 � 5) the estimator p̂1 � p̂2 is
approximately normally distributed with mean, 

p1 � p2

and variance,

p1(1 � p1) p2(1 � p2)
–––––––––– + ––––––––––.

n1 n2

So the reliability factor for interval estimates will
come from the Z distribution. Then a two-sided
(1 � a)% confidence interval for the difference
in sample proportions, p̂1 � p̂2 is:

(p̂1 � p̂2) � z1�a/2SE(p̂1 � p̂2).

While this form of the confidence interval is
widely used we suggest the use of a correction
factor, 

1 1 1
–– ( ––– � ––– ) ,
2 n1 n2

attributed to Yates (see Fleiss et al., 2003). This
continuity correction factor accounts for the fact
that the normal distribution is being used as an
approximation to the binomial. With the correc-
tion factor, a two-sided (1 � a)% confidence
interval for the difference in sample proportions,
p̂1 � p̂2, is:

1 1 1
(p̂1 � p̂2) � (z1�a/2SE(p̂1 � p̂2) � –– (––– � –––)) .

2 n1 n2

As an example, we look at the headache AE data
again and calculate a two-sided confidence
interval for the difference in sample proportions.

Data

As above, the data are in the form of counts: 6
out of 98 participants in the placebo group
reported a headache and 25 out of 302
participants in the combined active groups
reported a headache.

Statistical analysis

As with the previous method, the first step is to
calculate the point estimate, but this time the
point estimate of the difference in sample
proportions. For the placebo group the propor-
tion is 0.06. For the active group the proportion

is 0.08. So the point estimate for the difference is
0.06 � 0.08 � �0.02. 

The next step is to calculate the standard error,
which is: 

__________________________

(0.06)(0.94) (0.08)(0.92)� ––––––––––– � ––––––––––– � 0.03.
98 302

The third component of the interval estimate is
the reliability factor. The Z value will be the same
as for the previous example (that is, 1.96). For
this interval estimate, we also use the continuity
correction factor. The continuity correction is
calculated as 0.5(1/98 � 1/302) � 0.007. 

We now have all the components of the
interval calculation. The lower limit is given as
follows:

�0.02 � 1.96(0.03) � 0.007 � �0.09.

The upper limit is given as follows:

�0.02 � 1.96(0.03) � 0.007 � 0.04.

Note that the calculated limits do not appear to
be equidistant from the point estimate, as we
might have expected. This is the result of
rounding to two significant digits in the calcula-
tions. The calculated 95% confidence interval
about the difference in proportion of partici-
pants reporting headache as an AE is written as
follows:

95% Cl � (�0.09, 0.04).

Interpretation and decision-making

Given its importance, it is worth restating the
interpretation of this confidence interval. We are
95% confident that the true difference in propor-
tions of individuals reporting headache as an AE
is within the interval (�0.09, 0.04). As the
interval includes 0, there is not enough evidence
to suggest that the two groups are statistically
significantly different with respect to the risk of
headache as an AE. Following this conclusion,
we could reasonably continue with further
studies in our clinical development program of
the active drug, with some assurance from these
limited data that the active treatment did not
increase the risk of headache. 

Suppose, however, that a skeptical colleague
insisted that the risk of headache had to be
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higher for participants treated with the active
drug than with placebo. Using these data, how
confident could he or she be that this was really
the case? What if all of the headaches in the
active treated group were reported in the first
week of treatment, whereas in the placebo group
the events were spread evenly over the entire 
6-week treatment period? Would your view of
the relationship between the active treatment
and the risk of headache change? A method-
ology called time-to-event analysis is useful here.

8.13 Time-to-event analysis

An illustration of this scenario is given in 
Figure 8.1, which shows data from a hypothet-
ical study, study 1 (we discuss another hypothet-
ical scenario, study 2, in due course). There are
two treatment groups represented: Active and
placebo. Suppose for this example that there are
10 participants in each group, and the length of
treatment is 20 days. On the x axis of each panel
is time, that is, the number of days since the start
of study treatment. Different study participants
are represented on the y axis of each panel.
Participants numbered 1–10 are in the placebo
group and participants numbered 11–20 are in
the active group. The occurrence of an AE (“A”)
is represented with an “X.” Completion of the
study on day 20 without the AE is denoted by an
open circle. The time to either the first report of
the AE or the completion of the study is repre-
sented by the length of the line from day 1 to the
event. Note that it is possible for participants to
report more than one instance of the same AE,
but only the first occurrence is represented in
Figure 8.1. 

Here is a descriptive summary of the data
displayed in Figure 8.1. For both groups (placebo
and active), 5 out of 10 (50%) of the participants
reported the particular AE. So, if we were to
report these rates and a 95% confidence interval
about the difference in proportions, there would
not appear to be any difference between these
two groups. However, when we look at the times
relative to the start of study treatment, this is not
so clear any more. In the placebo group, the 
AE was reported on days 4, 9, 11, 14, and 18. In

contrast, the AE was reported much earlier
among participants in the active group, on days
1, 2, 4, 5, and 6. The remainder of participants in
both groups completed the study on day 20
without experiencing the AE. It appears as if the
probability of experiencing the AE (as estimated
by the proportion of participants reporting it) is
the same between the groups, but that there is a
temporal relationship between the start of the
study treatment and the time at which the AE is
reported. How might we report such a result? 

One possibility that might come to mind,
although it is not recommended for reasons we
discuss shortly, would be to calculate the average
number of days to the reported AE. This is prob-
lematic, however, because we can calculate such
a quantity only for those participants who actu-
ally reported the AE. The mean number of days
is 11.2 and 3.6 among participants reporting AE
“A” in the placebo and active groups, respec-
tively. This analysis completely ignores those
who did not report the AE. It hardly seems accu-
rate to exclude these individuals from our
analysis. In fact, although half of the partici-
pants in both groups did not report “A,” they
might have eventually reported it if we had
followed them longer. Such an estimate of the
expected time at which an AE is reported is
biased, because not all participants were part of
the estimate. 

This example suffers from an oversimplifica-
tion that we have to deal with in the real world,
namely that study participants do not always
complete the study for the full length of the
follow-up period. Participants may drop out of
studies for a number of reasons, some of which
reflect their experience with the drug (for
example, it may be poorly tolerated). Therefore,
the “time at risk” differs from individual to
individual within the same trial, and it can differ
to a considerable degree from trial to trial
throughout a clinical development program. 

The most important points to remember here
are as follows. Simply comparing the relative
frequency (that is, the proportion of participants
reporting the AE) of the AE between two groups
does not tell the whole story: Such an analysis
does not address the potential temporal relation-
ship between exposure to the study treatment
and the AE of interest. As we saw in this
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example, exactly the same proportion of partici-
pants in both groups reported the AE. However,
the AE occurred in the first 6 days among parti-
cipants in the active group, whereas the AE
reported by participants in the placebo group
occurred at evenly spaced intervals over the
course of the time at risk. Such a difference in
times of the events would suggest that there is a
cause-and-effect relationship between the active
treatment and the AE. 

A more informative approach would be to take
into account the time of the event relative to the
start of treatment. Ideally, we should use the data
from all participants in this approach and should
account for varying lengths of time at risk for
experiencing the event. O’Neill (1987) advocated

such an approach especially for serious AEs
caused by the shortcomings of simply describing
the incidence (or “crude rate” as he defines it) 
of AEs:

For drugs used for chronic exposure, one
number or rate such as the crude rate is not
likely to be informative without reference to
time. To be useful as a summary measure of
combined safety data from several studies and
which would estimate an overall rate that
describes experiences of all participants exposed
for varying time periods, there is a need to
stratify for time as well as other factors. (O’Neill
1987, p 20)

The next section in this chapter addresses just
such a method. 
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Figure 8.1 Days since the start of study drug at which adverse event “A” was first reported: Study 1 with no dropouts



8.14 Kaplan–Meier estimation of the
survival function

The analysis method attributed to Kaplan and
Meier (1958) enables us to analyze the time to the
first reported AE while accounting for different
lengths of time at risk. To illustrate this method
fully, we have modified the data from the
previous example slightly, as shown in Figure 8.2.
We refer to this new example as study 2.

The proportion of participants with the event
is still equal between the groups (this time 0.6 in
both). As seen in Figure 8.2, some participants
dropped out of the study before reporting the
AE, which are denoted by the open circles at
days before day 20. When analyzing data in this
way, observations for which the event of interest
was not recorded during the time at risk are
called censored observations. As noted earlier it

is conceivable that, if we had followed these
participants for a longer period of time, or if they
had not dropped out of the study, they may have
experienced the AE of interest. 

When analyzing the time to the AE, we need
an analytic way to deal with these censored
observations. Although we do not know what
would have happened for these participants, we
do know that they were at risk for some period of
time and “survived” their time in the study
without experiencing the AE. Accordingly, the
main objective of this analysis is to describe how
long participants survive without experiencing
the event. 

The name survival analysis reflects one situa-
tion in which this type of analysis is used. When
the participants in a clinical trial are very ill, the
measurement of efficacy can be the length of
time that they live, that is, death is the “event.”
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An example may be an oncology trial in which
one group receives the investigational drug and
the other receives an active control, usually the
current gold standard of therapy for the specific
type of cancer. Of interest is whether those
receiving the investigational treatment survive
longer than those receiving the active control.
However, survival analysis, as will be seen in our
examples, can also be used to measure the time
to any defined event.

In this analytic methodology the data for each
participant are expressed in a different manner.
We present the event times for every participant,
defined in one of two ways:

1. The day at which the participant reported the
AE

2. The last day the participant was “at risk” for
reporting the AE without having done so. This
type of participant is labeled parenthetically
as “censored.”

The data are therefore as follows:

• placebo: 4, 9, 11, 14, 15 (censored), 17, 18, 19
(censored), 20 (censored), 20 (censored)

• active: 1, 2, 4, 4 (censored), 5, 6, 9, 9
(censored), 20 (censored), 20 (censored).

Before discussing the formal definition of this
method, it is instructive to think through how
we might interpret these data. Let us start with
the active group. At the start of the study, all 10
participants are at risk of reporting the AE.
Therefore, at day 0 (the day before the start of
study treatment), the probability of surviving
day 0 without having experienced the AE is 1.00
(we accept this as a given when we define this
analysis formally). On day 1, 1 participant out of
10 at risk reported the AE. The probability of an
AE on day 1 is 1/10 or 0.10 (that is, 10%). This
participant is no longer at risk of reporting the
AE later. On day 2 there are nine participants at
risk and on this day one more participant
reported the event. The probability of an AE on
day 2 is 1/9 or 0.11. 

This also leaves eight participants at risk on
day 3. On day 3 no participant reported the
event. Of the eight participants who were at risk
on day 4, one reported the AE and one dropped
out (that is, was “censored” from the analysis).
As before, the probability of an AE occurring is

calculated relative to the number at risk, that is,
1/8 or 0.13. On day 5 there are only six partici-
pants still at risk. These data are provided in the
first five columns of Table 8.4 for the active
group, and the same interpretation follows
through the end of the 20-day study. 

The primary interest in this analysis is not
what happens at a single time point, but rather
what happens at time t and all points preceding
time t. This leads us to the final column of 
Table 8.4. The numbers in this last column are
the estimated probabilities of participants
surviving the interval time t without having
reported the AE. Given these data, it becomes
possible to compare among treatments the prob-
ability of a participant not having the event of
interest at any given time t.

This method has two desirable characteristics
that a simple comparison of proportions does
not have. First, it takes into account the variable
timing of AEs, which can occur if there is a
cause-and-effect relationship of drug to AE.
Second, it takes into account the possibility that
not all participants will remain at risk for the
same amount of time. 

Having thought about this methodology in
conceptual terms, we now address the necessary
calculations for arriving at the data presented in
the final column in Table 8.4. This methodology
is called the survival function. 

8.14.1 The survival function

We introduced you to Bayes’ theorem in 
Chapter 6. According to this theorem, the condi-
tional probability of A given B can be written as:

P(B | A)
P(A | B) � ———— 	 P(A).

P(B)

Or, equivalently, as:

P(A | B)
P(A) � ———— 	 P(B).

P(B | A)

In this methodology we define A as surviving
through time t, and B as surviving through time
t � 1. Then, P(A|B) is the probability of a partic-
ipant surviving through time t given that he or
she has survived through all preceding times
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(t � 1), (t � 2), . . . , (1). In addition, P(B|A) is the
probability of surviving through t � 1 given that
the participant survived through time t. By
definition, that probability is 1.00. Therefore, 
to calculate the conditional probability of
surviving through time t, we need two pieces of
information:

1. The probability of surviving through time 
t given that the participant survived the
previous time

2. The probability of surviving the previous
interval.

At day 0 (before any participants are at risk), the
probability of surviving through time t is 1.00 by
definition. On day 1 the probability of surviving
through day 1 is the probability of surviving
through day 1 given survival through day 0
(that is, 1 minus the probability of the event on
day 1 among those at risk), which is equal to

1 � 0.10 � 0.90 times the probability of
surviving through day 0 (1.00). That is, the
probability is 0.90 	 1.00 � 0.90. Therefore, to
calculate the probability in the last column we
use the cumulative survival probability (last
column) for the previous time and the probability
of the event in the interval among those at risk.

Sometimes, these data are presented in a
shorter table that displays only those time points
at which an individual had an event or was
censored, and thus the only values of time for
which the probability of survival changes. It is
more common, however, to see analyses of this
type displayed graphically. The Kaplan–Meier
estimate of the survival distribution is displayed
for both groups in Figure 8.3. The survival curves
displayed in the figure are termed “step func-
tions” because of their appearance. We return to
the interpretation of Figure 8.3 after we have
fully specified the survival distribution function.
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Table 8.4 Event times for the active group in study 2

Time (day), t Individuals at risk Individuals Probability of AE Individuals Probability of
for the AE before reporting AE at time t among dropping surviving through
time t at time t those at risk out at time t time t without AE

0 10 0 0 0 1.00
1 10 1 0.10 0 0.90
2 9 1 0.11 0 0.80
3 8 0 0 0 0.80
4 8 1 0.13 1 0.70
5 6 1 0.17 0 0.58
6 5 1 0.20 0 0.46
7 4 0 0 0 0.46
8 4 0 0 0 0.46
9 4 1 0.25 1 0.35

10 2 0 0 0 0.35
11 2 0 0 0 0.35
12 2 0 0 0 0.35
13 2 0 0 0 0.35
14 2 0 0 0 0.35
15 2 0 0 0 0.35
16 2 0 0 0 0.35
17 2 0 0 0 0.35
18 2 0 0 0 0.35
19 2 0 0 0 0.35
20 2 0 0 2 0.35



8.14.2 Kaplan–Meier estimation of a
survival distribution

The survival function is the probability that a
participant survives (that is, does not experience
the event) longer than time t: 

S(t) � P (participant survives longer than t).

By definition, a participant cannot experience
the event until he or she is at risk of the event,
so will survive longer than time 0 or, equiva-
lently, S(0) � 1. Also, we accept as a given that, if
we waited an infinite amount of time, an indi-
vidual would eventually experience the event no
matter how rare. Therefore, the survival distribu-
tion at infinity is defined to be 0, or S(
) � 0.
We also define the following: 

• ti is the unique event time, where i � 1, 2, . . ., i.
• ni is the number of participants who are at risk

just before ti

• mi is the number of participants with events
at time ti

• ci is the number of participants censored in
the interval (ti, ti�1).

The Kaplan–Meier estimate of the survival
function at time t is:

mtŜ(t) � P (1 � –––).
ti �t

nt

We can write this series of products out in full as
follows:

m1 m1 m2 mt�1 mt
Ŝ(t) � 1 	 (1 �–––) 	 (1 �–––)(1 �–––)	 . . . 	(1 �–––––)(1 �–––).

n1 n1 n2 nt�1 nt

This expression means that the probability of
surviving past time t is the product of the proba-
bility of surviving time t conditional upon
surviving all preceding time points and the prob-
ability of surviving all other preceding time
points. 
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The variance of the survival distribution
function at time t is:

mtvar[Ŝ(t)] � [Ŝ(t)] R –––––––––––.
t(i)�t

nt (nt � mt )

Consequently, we can take the square root of the
variance to obtain the standard error and calcu-
late a (1 � a)% confidence interval:

________
Ŝ(t) � Z1�a/2 �var[Ŝ(t)].

A common measure of central tendency from
the Kaplan–Meier estimate is the median
survival time (note that this can be estimated
only if more than half the participants experi-
ence the event). The median survival time is the
earliest value of t such that the probability of
survival is � 0.5. Note that when observations
are censored any estimate of the mean is biased
because, technically, the event would eventually
occur if we followed participants indefinitely.

We now return to our example to work with
some of these expressions. Looking at the last
column in Table 8.4 (the estimated survival
distribution), we can see that the probability of
surviving day 5 is 0.58. Similarly the probability
of surviving day 6 is 0.46. Therefore, the esti-
mated median time to an AE in the active group
is 6 days, the earliest time at which the proba-
bility of survival is � 0.5. For a comparison, the
median time to an AE is 16 days in the placebo
group. The graphical representation of the
survival distribution in Figure 8.3 can also be
used to estimate the median time to event. 

In Figure 8.3 the survival distribution is
plotted against time. As can be seen from the
tabular presentation of these estimates in 
Table 8.4, the survival estimate changes only
when there is an event. In the active group on
day 1 the estimate is 0.9 and then it drops down
to 0.8 on day 2. An important property of the
step function defined using discrete event times
is that it is a discontinuous function (that is, not
defined) between event times. For example, the
survival distribution function is 0.46 on days 6,
7 and 8, and then at day 9 the estimate is 0.35.
Looking at the Kaplan–Meier curve for the active
group you could read day 9 as having an esti-
mate of 0.35 or 0.46, but it is appropriate to
remember that the outside edge of the step (right

at day 9) is discontinuous, and thus the esti-
mated probability of survival for day 9 or later is
0.35. 

Using this guideline we can read off the
median survival times by drawing a reference
line across Figure 8.3 at S(t) � 0.50 and finding
the earliest value of time on the curve below the
reference line. We leave it to you to verify the
median times of 6 and 16 days for the active and
placebo groups, respectively, using this method. 

The point estimate of the probability of
surviving past day 6 is 0.46 for the active group.
Using the notation above, we write Ŝ(6) � 0.46.
We can now calculate a 95% confidence interval
about this estimate. The first step is to calculate
the variance about the estimate. Using the
expression above and point estimate and the
number of events and participants at risk at each
time point before day 6, we obtain the following: 

1 1 1 1
var[Ŝ(6)] � (0.46)2 [––––– � –––– � –––– � ––––]10(9) 9(8) 8(7) 6(5)

1 1 1 1
� (0.46)2 [––– � ––– � ––– � –––]90 72 56 30

� 0.016.

As we have chosen a confidence level of 95%,
the corresponding value of Z (the reliability
factor) is 1.96. Finally, the 95% confidence
interval is calculated as follows:

0.46 � 1.96  (0.016), i.e., (0.43, 0.49).

That is, we are 95% confident that the true prob-
ability of not experiencing the event (surviving)
past day 6 is in the interval (0.43, 0.49). 

The Kaplan–Meier estimate is a non-
parametric method that requires no distribu-
tional assumptions. The only assumption
required is that the observations are indepen-
dent. In the case of this example, the observa-
tions are event times (or censoring times) for
each individual. Observations on unique study
participants can be considered independent. The
confidence interval approach described here is
consistent with the stated preference for estima-
tion and description of risks associated with new
treatments. A method for testing the equality of
survival distributions is discussed in Chapter 11. 
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8.14.3 Cox’s proportional hazards model

Although we do not cover them in detail, there
are parametric methods to analyze time to event
data of this type, the most notable of which is
Cox’s proportional hazards model. 

A hazard can be thought of as the risk of the
event in a small interval of time, given survival
up to the start of the short interval. Parametric
approaches to time-to-event data such as Cox’s
model have a number of advantages, including
the ability to adjust for other explanatory effects
in a model and to extend them to recurring
events for a single individual. In this case, event
times would not be independent because within-
participant event times would be correlated.
Such an approach is appealing statistically
because it makes use of more data. However, 
the main disadvantage of Cox’s model is that the
single parameter of the model, the ratio of the
hazards of two groups, is assumed to be constant
over time. The risk of an AE for participants
treated with an active drug could vary in a
nonconstant manner over time relative to the
risk for placebo-treated participants, making
such an assumption tenuous. 

8.14.4 Considerations for the use of
Kaplan–Meier estimation for AEs

We suggest the use of the Kaplan–Meier estimate
for a better understanding of the risk of AEs in
clinical trials for two reasons. First, the propor-
tional hazards model has important assumptions
which must be made. Secondly, the
Kaplan–Meier method is easier to implement
and interpret. The analysis of AEs using the
Kaplan–Meier method allows us to account for
the different lengths of time at risk without
making any significant assumptions about the
shape of the underlying distributions of the
survival or hazard functions. Reviewing the
rather exaggerated data from Figure 8.3 it may
seem obvious that ignoring the time at risk could
be problematic. Employing an appropriate
method of analysis (for example, properly
accounting for all individuals and calculating an
interval estimate for the proportion) does not
necessarily mean that the analysis is the most

appropriate one. Consideration should be given
to the varying lengths of follow-up or “time at
risk” when reporting AEs. It is wise to consider
the denominator carefully when making any
statement about probabilities. 

A final word of caution here is that, although
the Kaplan–Meier method (and other methods
for time-to-event data) appropriately accounts
for the time at risk of an event within a group, if
the pattern of censoring is dependent on the
treatment (for example, suppose the dropout
rate is dose dependent as might be seen with
chemotherapy), any treatment group compar-
isons of the estimate of the risk of AEs would be
potentially biased. Thus, a more complete
analysis would include first an assessment of
censoring times (visually at a minimum) and the
reason for drop out, and then the appropriate
analysis to account for the time at risk. Failing to
quantify the probability of an AE accurately
during drug development can have significant
implications for sponsors, regulatory authorities,
prescribing clinicians, and patients.
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8.15 Review

1. What measures are taken to ensure that AE data
are of a high quality?

2. Refer to Table 8.2. Calculate a two-sided 99%
confidence interval for the proportion of
participants reporting any event in the:

(a) placebo group
(b) active dose groups combined.

3. In a therapeutic exploratory trial, 22 participants
out of 140 reported an AE:

(a) What is the 95% confidence interval for the
sample proportion of participants reporting an
AE?

(b) What is the 99% confidence interval for the
sample proportion of participants reporting an
AE?

(c) How confident would you be that the true
population proportion of participants reporting
an AE does not exceed 0.18?
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4. A total of 290 participants were studied in the first
therapeutic exploratory trial of an investigational
antihypertensive drug. Of the 150 individuals
treated with the test treatment, 32 reported fatigue.
Of the 140 treated with placebo, 19 reported
fatigue:

(a) Calculate a 90% confidence interval for the
difference in proportions of participants
reporting fatigue.

(b) Calculate a 95% confidence interval for the
difference in proportions of participants
reporting fatigue.

(c) Calculate a 99% confidence interval for the
difference in proportions of participants
reporting fatigue.

(d) What is the statistical interpretation of these
results?

(e) How might these results influence the course of
future development of the drug? 

5. Why is it important to account for the time that
individuals are at risk of an AE?

6. Describe in your own words what a survival
function is.





9.1 Introduction

Chapter 8 focused on adverse event (AE) data, a
large component of the overall safety data
collected in clinical trials. Although AE data are
often presented descriptively, we demonstrated
that it is indeed possible to conduct inferential
statistical analyses using AE data. This chapter
discusses other safety data, including laboratory
data, vital signs, and an assessment of cardiac
safety that involves investigation of the cardiac
QT interval (the QT interval can be identified
on the ECG, as seen in Figure 9.2). In each of
these cases, descriptive statistics, including
measures of central tendency and dispersion,
and categorical data are common forms of
assessment.

9.2 Analyses of clinical laboratory data

Safety monitoring in clinical studies can be both
data and labor intensive. In the context of later-
stage therapeutic exploratory and therapeutic
confirmatory trials, the collection of laboratory
data is no exception. Typically, participants in
clinical trials provide blood or urine samples at
every clinic visit. There is an expansive range of
clinical chemistry tests that can be conducted
using these samples. 

Samples may be analyzed by laboratories asso-
ciated with each site (sometimes called local
labs), each with its own handling procedures,
assays, and reporting conventions, but this is not
an optimal strategy. The use of a site’s own labor-
atory poses no difficulties when the emphasis is
on medical care, that is, the values obtained for
a single individual. However, when conducting

clinical research the emphasis is on using data
from a group of individuals to make optimally
informed conclusions and decisions. 

Differences from local lab to local lab may
preclude a sponsor from meaningfully
combining data from all participants across a
number of investigative sites. A statistical
approach to standardizing laboratory values from
a number of different labs (each potentially with
their own reference ranges) has been described by
Chuang-Stein (1992). However, standardization
is time-consuming and the use of a number of
local labs can introduce unwanted sources of
variability that are neither easily quantified nor
accounted for.

To overcome the difficulties with using local
labs the use of central laboratories (central labs)
is desirable. The advantages of using a central lab
are that the samples are handled in a similar
fashion, the assays used are consistent over
time and across individuals, and the reporting
conventions (for example, units of measurement)
are uniform. Techniques for proper sample
collection, storage, and handling, including
shipment to a central lab, should be included in
study protocols. Once the samples have been
obtained by the central lab they are analyzed
and the data recorded in a database that includes
participant identifiers, study visit, date and time
of sample collection, test name, result, reporting
units, and the value of the reference (“normal”)
range. 

The determination of values for reference
ranges is based on the distribution of test values
in large samples. Reference ranges are deter-
mined using large databases from a general
population and typically represent “2r” limits,
assuming that the values are normally distrib-
uted in the general population. The lower limit
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of the reference range is the value that cuts off
the lowest 2.5% of values from individuals in the
general population (l �2r). Likewise, the upper
limit of the reference range is the value that cuts
off the highest 2.5% of values from individuals
in a general population (l � 2r). Reference ranges
for certain parameters (for example, hematocrit)
may be defined specific to age and gender.
Whichever approach is employed, local or
central labs, the reference ranges are provided
with lab values themselves to gauge the extent to
which an individual’s value is considered within
an expected range or extreme. 

In ICH Guidance E3 (1995), several analyses of
clinical laboratory data are recommended. The
approaches to describing clinical laboratory data
include: 

• measures of central tendency (for example,
means or medians) for all groups at all time
points examined

• shift analyses that classify laboratory values at
baseline and later time points as normal, low
or high relative to a reference range

• description of the number and proportion of
participants for whom a change of a specified
magnitude or more was reported at a partic-
ular time point. This is typically called a
responders’ analysis

• graphical displays of each subject’s baseline
value plotted against an on-treatment and/or
end-of-study value

• identification of individual values that are
so extreme that they would be considered
clinically significant. 

9.2.1 Measures of central tendency at
each time point

Laboratory values are summarized descriptively
for continuous measures by displaying the
sample size, measures of central tendency
(including the mean and median), the standard
deviation, and the minimum and maximum
values. A sample of such a descriptive display is
provided in Table 9.1. 

As the primary comparison is among or
between treatment groups, the groups are
displayed in the columns. Values of each test
over time are of secondary interest and, there-
fore, are placed on the rows of the table. Reading
between columns, we can see if the typical value
(for example, the mean) for a parameter differs
between groups. It is also possible to read down
the column (that is, across time within a group)
to see how the typical values vary over time.
Provision of the minimum and maximum values
allows the reviewer to identify any extreme
values that might be considered out of the
normal range. On occasion, similar analyses may
also be presented for change from baseline
values (typically calculated as endpoint value
minus baseline value). If there are consistent and
systematic changes from the start of the study,
they may be apparent by examining the mean
values and looking for values that deviate
considerably from zero.

It may be of interest to provide a confidence
interval for the change from baseline value
within a group where an interval estimate that
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Table 9.1 Summary of hemoglobin values (g/dL)

Treatment group

Visit Statistic Placebo Active

Baseline n 20 20
Mean (SD) 13.78 (1.97) 14.61 (2.05)
Median 13.5 14.6
Min., Max. 11.0, 17.3 11.2, 17.7

Endpoint (last visit) n 20 20
Mean (SD) 13.41 (2.07) 13.75 (2.00)
Median 13.3 13.5
Min., Max. 10.6, 16.9 10.4, 17.2



excludes zero represents evidence of a change in
mean value that exceeds what might be observed
by chance alone. Similarly, confidence intervals
may be calculated to provide an estimate of the
between-group difference in a laboratory para-
meter. Comparison with a control group can be
especially important when there is a laboratory
test that changes as a result of study procedures
(for example, decreases in hematocrit or hemo-
globin as a consequence of frequent blood
sampling). A summary of the change from
baseline at the last visit is provided in Table 9.2.

9.2.2 A confidence interval for a mean
with unknown variance

For a sample size of n observations of a random
variable, the sample mean, an estimator of the
population mean, is calculated as:

n

R xi

i�1x̄ � –––—–
n

and the sample standard deviation, s, an esti-
mator of the population standard deviation is
calculated as: 

n
____________

R (xi � x̄)2

i�1s � �–––––––––—–.
n � 1

The standard error of the sample mean is then
calculated as:

sSE(x̄) � –––.
�
__
n

Finally, assuming that the random variable is
normally distributed (or at least symmetrically
distributed with a sample size � 30), a (1 �a/2)%
confidence interval is:

x̄ � t1�a/2,n�1SE(x̄),

where t1�a/2,n�1 represents the reliability factor
and is the value of the t distribution with n �1
degrees of freedom (df) to the left of which is 
(1 �a/2)% of the area under the curve. These
values are provided in Appendix 2. 

As an example, let us calculate a 95% two-
sided confidence interval for the mean hemo-
globin value at the end of the study for the active
group using data in Table 9.1. 

Data

The data are 20 hemoglobin values from indi-
viduals treated with the active drug, obtained
from blood samples collected at the last visit of
the study. The mean and standard deviation
were calculated as 13.75 and 2.00, respectively,
and these values serve as the basis of the confi-
dence interval. 

Statistical analysis

As the population variance is unknown and is
therefore being estimated by the sample vari-
ance, we use the t distribution for a reliability
factor. The use of the t distribution requires us to
assume that the underlying distribution of
hemoglobin values is approximately normally
distributed, or at least symmetrically distributed.
The standard error of the sample mean is
calculated as:
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Table 9.2 Summary of change from baseline hemoglobin values (g/dL)

Treatment group

Visit Statistic Placebo Active

Endpoint (last visit) n 20 20
Mean (SD) �0.37 (1.47) �0.86 (1.67)
Median �0.4 �0.8
Min., Max. �3.8, 2.1 �4.5, 1.4



s 2.00SE(x̄) � ––– � –––– � 0.44.
�
__
n �

___
20

As we are interested in a 95% two-sided confi-
dence interval, the value of the variate that
cuts off the upper 2.5% of area from the t distri-
bution with 19 df is 2.093. Therefore, the 95%
confidence interval for the mean hemoglobin is
calculated as follows:

13.75 � 2.093 (0.44) � (12.83, 14.67).

Interpretation and decision-making

From the confidence interval we can conclude
with 95% confidence that the true population
mean hemoglobin is in the interval (12.83, 14.67).
Assuming that the reference range is 12–15 g/dL
for females and 14–17 g/dL for males, we can
proceed with development of the new drug with
some degree of assurance although gender-
specific intervals would be more informative.

9.2.3 A confidence interval for the
difference in two means with equal
unknown variance

Within-group confidence intervals can be infor-
mative, but usually the primary interest in a 
clinical trial is to compare the effect of one 
treatment with that of another. Therefore, a
confidence interval for the difference in two
means can better address the goals of the
research.

For two independent groups 1 and 2, a sample
size of n1 observations of a random variable from
group 1 and n2 observations of a random variable
from group 2, the sample means from each
group are:

n1

R x1i

i�1x̄1 � –––—– andn1

n2

R x2j

j�1x̄2 � –––—–, respectively.n2

The within-group sample variances are
estimated as:

n1

R (x1i � x̄1)
2

i�1s2
1 � ––––––––––—– and

n1 � 1

n2

R (x2j � x̄2)
2

j�1s2
2 � ––––––––––—–, respectively.

n2 � 1

As before, these sample statistics are estimates of
the unknown population parameters, the popu-
lation means, and the population variances. If
the population variances are assumed to be
equal, each sample statistic is a different estimate
of the same population variance. It is then
reasonable to average or “pool” these estimates
to obtain the following:

(n1 � 1)s2
1 � (n1 � 1)s2

2s2
p � –––––––––––––––––––––.

(n1 � n1 � 2)

The standard error of the difference in sample
means is:

_______
1 1SE(x̄1 � x̄2) � sp �–– � ––.
n1 n2

Calculation of a confidence interval for the
difference in means requires an assumption of
normal data (or, alternately, symmetrical
distributions with sample sizes of 30 or
more). If the population variances are
assumed to be equal, a two-sided (1 � a)%
confidence interval is:

(x̄1 � x̄2) � t1�a/2,n1+n2�2SE(x̄1 � x̄2),

where t1�a/2,n1+n2�2 represents the reliability factor
and is the value of the t distribution with
n1�n2�2 df to the left of which is (1 � a/2)% of
the area under the curve. 

To illustrate this methodology we use the data
from Table 9.2 to calculate a between-group
difference in the mean change from baseline
hemoglobin at the end of the study.
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Data

The description of the data for this analysis is
provided in Section 9.2.1. 

Statistical analysis 

For this analysis we are required to use the 
t distribution, and therefore to make the 
assumption that the distribution of change 
from baseline values is normally or approxi-
mately normally distributed. When calculating 
a between-group confidence interval, it is very
important to understand how the difference is
being calculated and what the interpretation
of the interval is, given the direction of the
difference. 

In this case, each change from baseline value is
calculated as “endpoint minus baseline.” There-
fore, a mean value of change from baseline that
was � 0 would imply an increase from baseline,
whereas a mean change from baseline value that
was � 0 would imply a decrease from baseline.
In this instance we are interested in the between-
group difference in mean change from baseline.
We interpret the calculated confidence interval
accordingly. 

To start, the point estimate for the between-
group (active minus placebo) difference in
mean change from baseline is (�0.86) � (�0.37)
� �0.49. To calculate the standard error we first
need to obtain an estimate of the pooled variance,
which is calculated as follows:

(20 � 1)1.672 � (20 � 1)1.472 (19)2.79 � (19)2.16
s2
p � –––––––––———–—–––—––––– � –––––––——––––––– � 2.47.

(20 � 20 � 2) 38

The pooled standard deviation is calculated as:

�
____
2.47 � 1.57.

The standard error of the difference in means is
calculated as:

_______
1 1SE(x̄1 � x̄2) � 1.57�–– � –– � 0.50.

20 20

The final component is to obtain the reliability
factor from the t distribution with 38 df, which

is 2.02. The 95% confidence interval for the
difference in means is therefore calculated as:

�0.49 � 2.02(0.50) � (�1.5, 0.52). 

Interpretation and decision-making 

On the basis of this confidence interval, there
does not appear to be much of a difference
between the groups with respect to a change in
hemoglobin from baseline to the end of the
study, particularly because the confidence
interval includes the value 0. 

9.2.4 Shift analysis

Another method used to analyze clinical labora-
tory data is called a shift analysis. For this analysis
the data themselves are not the actual numeric
values of the laboratory test, but a categorical
ordinal variable that indicates whether the value
was within the reference range (normal), low
relative to the reference range (low), or high rela-
tive to the reference range (high). With these
classifications on observations from baseline and
some other post-randomization time point (for
example, end of study), the primary interest is in
the proportion of individuals who shifted from
normal to high or normal to low. Depending on
the parameter being investigated, a shift from
high to low or low to high may also be of
interest.

A typical summary table representing this kind
of analysis is provided in Table 9.3. As seen there
25% of participants in the placebo group who
had normal values at baseline had low values at
the last visit. In the active group 20% of partici-
pants experienced this shift from baseline to last
visit. 

9.2.5 Responders’ analysis

We noted earlier in this book that there is no
such thing as an effective drug without some
associated risks. Some drugs may be known to be
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associated with a small but consistent change in
a clinical laboratory parameter (for example,
treatment with hydrochlorothiazide is often
associated with increases in blood glucose).
Imagine a scenario in which a small change is
not troubling in itself. A concern may then be:
What is the chance that an individual who
receives the test treatment will have a change in
the lab test above a certain threshold, one that
would no longer be trivial? 

An analysis approach that may be informa-
tively used here is to calculate a change from
baseline for each observation and then categor-
ize the change from baseline value as either a
responder (that is, someone whose change from
baseline was less or greater than a specified
value) or a non-responder (that is, someone
whose change from baseline was within the
tolerable values of change). Whether or not a
decrease or increase in the lab value is indicative
of harm depends on the laboratory test itself.
The descriptive analysis for this type of data
includes the presentation of counts and percent-
ages (recall that these can be represented as
proportions) of responders in each group. As
there usually are a number of visits at which the
lab test is performed, the analysis may be
presented for all post-baseline visits, the last
visit, or both. 

An extension of the responder analysis
described above would be to categorize the
change from baseline values into several (� 2)
categories (for example, no change, increase 	 X,
increase � X). 

9.2.6 Graphical displays of end-of-study
values plotted against baseline

One common element shared by a number of
the analyses of laboratory data that we have
described is that the magnitude of change from
the start to the end of the study is important,
but so is the final value itself. In addition, the
relative frequency of such outcomes is of vital
interest when gauging the overall risk of treat-
ment with a new drug. One descriptive
approach to address several of these issues is a
graphical one.

A scatter plot of each individual’s baseline
value plotted against his or her end-of-study
value enables us to see how many individuals (in
the absolute or relative sense) had end-of-study
values beyond a normal level or changes from
baseline to end-of-study that represent a signifi-
cant health risk. As an example, hemoglobin
values at the end of the study have been plotted
against the baseline value for two treatment
groups (placebo and active) in Figure 9.1. 

Note the diagonal line in each plot that
connects all points for which the baseline value
is equal to the end-of-study value. With the end-
of-study value on the y axis, points above the
diagonal line represent an increase from baseline
and points below represent a decrease from base-
line. Larger vertical deviations from the diagonal
line represent larger changes from baseline
values. Thus, the need to interpret a number of
quantities at once is satisfied by one graphical
display. 
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Table 9.3 Shift analysis of hemoglobin values

Baseline value

Placebo (n � 20) Active (n � 20)

Last visit Low Normal High Low Normal High

Low 3 (15%) 5 (25%) 0 1 (5%) 4 (20%) 1 (5%)
Normal 2 (10%) 7 (35%) 2 (10%) 1 (5%) 11 (55%) 0
High 0 1 (5%) 0 0 0 2 (10%)



9.2.7 Clinically significant laboratory
values

A graphical display such as the one in Figure 9.1,
or a table of summary descriptive statistics
including the minimum and maximum, may
reveal values that are so extreme that they merit
additional scrutiny. This is typically accom-
plished with the use of a listing that provides all
values of the laboratory test, the dates and times
of the sample collection, and the characteristics
of the participant. Such an analysis is not based
on aggregate information but rather on an indi-
vidual observation. If a clinically significant
observation were noted a medical reviewer
would look to see if the participant’s values
returned to normal levels or remained abnormal,
and if there were any accompanying AEs. 

9.3 Vital signs

Vital signs typically measured in clinical trials
are blood pressure (both systolic or SBP and dias-
tolic or DBP) and heart rate, often measured as
pulse rate, in beats per minute. Weight might
also be of interest. In our ongoing scenario of

the development of a new antihypertensive
drug, blood pressure measurements are efficacy
measurements, not safety measures as such.
However, we discuss the use of blood pressures in
safety assessment here because this is so common
in the development of non-antihypertensive
drugs. 

As for laboratory data, both continuous and
categorical data analytical methods can be
employed here. Measures of central tendency
and dispersion are appropriate for continuous
data. Categories of interest, and the associated
categorical data, can take various forms. Imagine
a trial in which the treatment phase is 12 weeks
and participants visit their investigational site
every 2 weeks – that is, a baseline value taken
before treatment commences is followed by six
values measured during the treatment phase. It
may be of interest to know how many individ-
uals show clinically significant vital sign changes
during the treatment period. In this case a
precise definition of clinically significant must
be provided in the study protocol. The following
hypothetical changes in vital signs might be
considered of clinical significance by clinicians
on the study team if they occurred at any of
the six measurement points in the treatment
phase:
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Figure 9.1 Scatterplot of hemoglobin values at baseline and end of study: (a) Placebo; (b) active



• an increase from baseline in SBP � 20 mmHg
• an increase from baseline in DBP � 12 mmHg
• an increase from baseline in SBP � 15 mmHg

and an increase in DBP � 10 mmHg
• a pulse rate � 120 beats/min and an associated

increase from baseline of at least 15 beats/min.

The clinicians on the study team might also be
interested in sustained changes in vital signs.
Hypothetical examples of definitions of
sustained changes might be:

• an increase from baseline in SBP � 15 mmHg
at each of three consecutive visits

• an increase from baseline in DBP � 10 mmHg
at each of three consecutive visits

• an increase from baseline in pulse rate � 10
beats/min at each of three consecutive visits.

Appropriate categorical analyses could then be
used with these data.

9.4 QT interval prolongation and
torsades de pointes liability 

The ECG is a very recognizable pattern of bio-
logical activity. The ECG consists of the P wave,
the QRS complex, and the T wave. These compo-
nents, represented in Figure 9.2, are associated
with different aspects of the cardiac cycle: Atrial
activity, excitation of the ventricles, and repolar-
ization of the ventricles, respectively. Modern

computerized systems not only display these
electrophysiological signals but also concur-
rently digitize them and store them for later
examination. 

The QT interval is highlighted in Figure 9.2.
This interval is of particular interest in assessing
cardiac safety in drug development, because QT
interval prolongation is one potentially informa-
tive surrogate biomarker available for very
serious cardiac events including sudden cardiac
death. (This section focuses on cardiac safety
assessment in all systemically available drugs
being developed for uses other than the control
of cardiac arrhythmias: QT/QTc interval
prolongation – an occurrence deemed highly
undesirable in all other drugs – can occur with
antiarrhythmic drugs as a consequence of their
mechanism of clinical efficacy [ICH Guidance
E14, 2005].) The ICH Guidance E14 addresses
the evaluation of QT intervals in clinical
development programs. 

The time interval between the onset of the
QRS complex and the offset of the T wave is
defined as the QT interval. Consider an indi-
vidual with a steady heart rate of 60 beats/min, a
number chosen to make the math easy in this
example. This represents one heart beat/second,
and so the total length (in the time domain) of
all ECG segments during one beat would add up
to 1 second, represented in this research field as
1000 milliseconds (ms). Each component of the
ECG can therefore be assigned a length, or dura-
tion, in milliseconds. The length of the QT
interval can be obtained by measurement from
inspecting the ECG and identifying the QRS
onset and the T-wave offset. 

As the heart beats faster (heart rate increases),
the duration of an individual cardiac cycle
decreases, because more cardiac cycles now occur
in the same time. Therefore, as the cardiac cycle
shortens, so do each of the components of the
cardiac cycle. This means that the QT interval
will tend to be shorter at a higher heart rate. As
it is of interest to examine the QT interval at
various heart rates, the interval can be
“corrected” for heart rate. This leads to the term
QTc, which is calculated (by one of several
methods including two corrections attributed to
Bazett and Fridericia), taking into account the
actual QT and the heart rate (the duration of
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Figure 9.2 Stylized representation of the ECG, showing
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the entire cardiac cycle, sometimes referred to as
the RR interval) at that point. The title of ICH
Guidance E14 uses the term “QT/QTc interval” to
indicate that both QT and QTc are of interest: In
this book, the term “QT interval” represents
both QT and QTc.

It is of considerable interest in drug develop-
ment to determine whether the investigational
drug under development leads to prolongation
of the QT interval: Although QT interval prolon-
gation can be congenital, it can also be acquired,
for example, induced by drug therapy. QT
prolongation, which represents delayed cardiac
repolarization of the myocardial cells, is regarded
as a potentially very informative surrogate
marker for certain dangerous cardiac arrhyth-
mias, namely polymorphic ventricular tachy-
cardia and torsades de pointes,and sudden cardiac
death. Extensive ECG monitoring during preap-
proval clinical trials is therefore a critical part of
clinical development programs, and results from
this testing must be presented to a regulatory
agency to obtain marketing approval. One of
the biggest causes of delay in getting a new
drug approved by a regulatory agency, or failure
to be given marketing approval, is cardiac
safety issues, and therefore the choice of the
correct study design, appropriate methodology
for collecting optimum quality data, and appro-
priate statistical analyses are of tremendous
importance.

Although ICH Guidance E14 (2005) provides
guidance on each of these considerations, we
focus here on the statistical approaches that
should be taken in the investigation of QT
prolongation. As this guidance noted (p 9), “The
QT/QTc interval data should be presented both
as analyses of central tendency (for example,
means, medians) and categorical analyses. Both
can provide relevant information on clinical risk
assessment.” The effect of the investigational
drug on the QT intervals is most commonly
analyzed using the largest time-matched mean
difference between the drug and placebo
(adjusted for baseline) over the data collection
period.

Categorical analyses are based on the number
and the percentage of individuals who meet or
exceed a predefined upper limit. Such limits can
be stated in the study protocol in terms of either

absolute QT interval prolongation values or
changes from baseline. At this time, there is no
consensus concerning what is the “best” choice
of these upper limit values. ICH Guidance 14
therefore suggested that multiple analyses using
several predefined limits is a reasonable
approach in light of this lack of consensus. For
absolute QT interval data, the guidance suggests
providing absolute numbers and percentages of
individuals whose QT intervals exceed 450, 480,
and 500 ms. For change-from-baseline QT
interval data, the same information might be
provided for increases exceeding 30 ms and
those exceeding 60 ms. The design and analysis
of studies intended to evaluate changes in QT
can be rather difficult to implement. Some of the
difficulties and areas for further research brought
to light by ICH Guidance E14 are discussed in a
recent paper (Pharmaceutical Research and
Manufacturers of America QT Statistics Expert
Working Team, 2005). 

For further discussion of QT/QTc interval
prolongation and other cardiac safety assess-
ments for noncardiac drugs, see Morganroth and
Gussak (2005) and Turner and Durham (2008).

9.5 Concluding comments on safety
assessments in clinical trials

In this chapter we have seen that the goal of
safety analyses is to cast a wide net in the hopes
of identifying any events that may be attribut-
able to treatment with the new drug. Such a
broad search, however, also has a significant
disadvantage: If we look at so many outcomes,
we might find one that looks problematic just by
chance alone. Rather than rely solely on statis-
tical approaches to limit the chance of this
occurring, a sensible approach is to substantiate
such a finding with additional data, either a
similar result in a different study or some data on
the medical explanation for the event (the
mechanism of action). 

The analysis tools that we have described in
this chapter provide ways to evaluate the risk of
the new drug, given the constraints of sample
sizes obtainable in clinical development. The
limitations of relatively little human experience
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before marketing approval have to be consid-
ered, especially when reviewing clinical safety
data. Thus far, regulatory agencies have not
required pharmaceutical companies to increase
the sizes of their studies to find the best way to
uncover safety risks that would otherwise be
hard to find. Rather, the emphasis has been to
use more modern tools (for example, genetics
and candidate screening) to identify potentially
dangerous drugs before there are a large number
of participant exposures (US Department of
Health and Human Services, FDA, 2004). The
role of postmarketing surveillance will continue
to be important (see also ICH Guidance E2E,
2004; Strom, 2005; Mann and Andrews, 2007).
This is especially true when we think of the rela-
tive homogeneity of participants in clinical trials
compared with patients in the real world and the
implications of the law of large numbers (recall
discussions in Chapter 6). 

As a final note to this chapter, any potential
risks to individuals treated with a new drug have
to be considered and cannot automatically be
considered trivial. The acceptability of the
magnitude of the risk depends largely on a
statistical demonstration of the expected benefit
of the new treatment, which is the topic of
Chapters 10 and 11. 
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3. What is the statistical and clinical
interpretation (or relevance) of the following
95% confidence intervals for the between-
group difference (for example, test group
minus placebo) in mean change from baseline
hemoglobin (g/dL) at endpoint (last visit)? 

(a) (�1.2, 2.6)
(b) (1.7, 3.4)
(c) (�6.2, �2.3).

9.6 Review

1. What are some advantages and disadvantages of
the various analytical approaches cited from ICH
Guidance E3 listed in Section 9.2?

2. Refer to the data in Table 9.1:

(a) Calculate a two-sided 90% confidence interval
for the difference in mean hemoglobin value at
endpoint (last visit). 

(b) Calculate a two-sided 95% confidence interval
for the difference in mean hemoglobin value at
endpoint (last visit).

(c) Calculate a two-sided 99% confidence interval
for the difference in mean hemoglobin value at
endpoint (last visit).

(d) What is the statistical interpretation of these
results?



10.1 Introduction: Regulatory views of
substantial evidence

When thinking about the use of statistics in clin-
ical trials, the first thing that comes to mind for
many people is the process of hypothesis testing
and the associated use of p values. This is very
reasonable, because the role of a chance outcome
is of utmost importance in study design and the
interpretation of results from a study. A sponsor’s
objective is to develop an effective therapy that
can be marketed to patients with a certain disease
or condition. From a public health perspective,
the benefits of a new treatment cannot be sepa-
rated from the risks that are tied to it. Regulatory
agencies must protect public health by ensuring
that a new treatment has “definitively” been
demonstrated to have a beneficial effect. The
meaning of the word “definitively” as used here
is rather broad, but we discuss what it means in
this context – that is, we operationally define the
term “definitively” as it applies to study design,
data analysis, and interpretation in new drug
development. 

Most of this chapter is devoted to describing
various types of data and the corresponding
analytical strategies that can be used to demon-
strate that an investigational drug, or test
treatment, is efficacious. First, however, it is
informative to discuss the international stand-
ards for demonstrating efficacy of a new product,
and examine how regulatory agencies have
interpreted these guidelines. ICH Guidance E9
(1998, p 4) addresses therapeutic confirmatory
studies and provides the following definition:

A confirmatory trial is an adequately controlled
trial in which the hypotheses are stated in

advance and evaluated. As a rule, confirmatory
trials are necessary to provide firm evidence of
efficacy or safety. In such trials the key hypoth-
esis of interest follows directly from the trial’s
primary objective, is always pre-defined, and is
the hypothesis that is subsequently tested when
the trial is complete. In a confirmatory trial it is
equally important to estimate with due precision
the size of the effects attributable to the treat-
ment of interest and to relate these effects to
their clinical significance.

It is common practice to use earlier phase
studies such as therapeutic exploratory studies
to characterize the size of the treatment effect,
while acknowledging that the effect size found
in these studies is associated with a certain
amount of error. As noted earlier, confidence
intervals can be helpful for planning confirma-
tory studies. The knowledge and experience
gained in these earlier studies can lead to
hypotheses that we wish to test (and hopefully
confirm) in a therapeutic confirmatory trial, for
example, the mean reduction in systolic blood
pressure (SBP) for the test treatment is 20 mmHg
greater than the mean reduction in SBP for
placebo. As we have seen, a positive result from
a single earlier trial could be a type I error, so a
second study is useful in substantiating that
result.

The description of a confirmatory study in
ICH Guidance E9 (1998) also illustrates the
importance of the study design employed. The
study should be designed with several important
characteristics:

• It should test a specific hypothesis.
• It should be appropriately sized.
• It should be able to differentiate treatment

effects from other sources of variation (for
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example, time trends, regression to the mean,
bias).

• The size of the treatment effect that is being
confirmed should be clinically relevant.

The clinical relevance, or clinical significance, of
a treatment effect is an extremely important
consideration. The size of a treatment effect that
is deemed clinically relevant is best defined by
medical, clinical, and regulatory specialists. 

Precise description of the study design and
adherence to the study procedures detailed in
the study protocol are particularly important for
confirmatory studies. Quoting again from ICH
Guidance E9 (1998, p 4):

Confirmatory trials are intended to provide firm
evidence in support of claims and hence adher-
ence to protocols and standard operating proce-
dures is particularly important; unavoidable
changes should be explained and documented,
and their effect examined. A justification of the
design of each such trial, and of other important
statistical aspects such as the principal features
of the planned analysis, should be set out in
the protocol. Each trial should address only a
limited number of questions. 

Confirmatory studies should also provide
quantitative evidence that substantiates claims
in the product label (for example, the package
insert) as they relate to an appropriate popula-
tion of patients. In the following quote from
ICH Guidance E9 (1998, p 4), the elements of
statistical and clinical inference can be seen:

Firm evidence in support of claims requires that
the results of the confirmatory trials demonstrate
that the investigational product under test has
clinical benefits. The confirmatory trials should
therefore be sufficient to answer each key clinical
question relevant to the efficacy or safety claim
clearly and definitively. In addition, it is impor-
tant that the basis for generalisation . . . to the
intended patient population is understood and
explained; this may also influence the number
and type (e.g. specialist or general practitioner) of
centres and/or trials needed. The results of the
confirmatory trial(s) should be robust. In some
circumstances the weight of evidence from a
single confirmatory trial may be sufficient.

The terms “firm evidence” and “robust” do
not have explicit definitions. However, as clin-
ical trials have been conducted and reported in
recent years, some practical (operational) defini-
tions have emerged, and these are discussed
shortly. 

In its guidance document Providing Clinical
Evidence of Effectiveness for Human Drug and
Biological Products, the US Food and Drug
Administration (US Department of Health and
Human Services, FDA, 1998) describes the
introduction of an effectiveness requirement
according to a standard of “substantial evidence”
in the Federal Food, Drug, and Cosmetic Act
(the FDC Act) of 1962: 

Substantial evidence was defined in section 505(d)
of the Act as “evidence consisting of adequate
and well-controlled investigations, including
clinical investigations, by experts qualified by
scientific training and experience to evaluate the
effectiveness of the drug involved, on the basis
of which it could fairly and responsibly be
concluded by such experts that the drug will
have the effect it purports or is represented to
have under the conditions of use prescribed,
recommended, or suggested in the labeling or
proposed labeling thereof.”

US Department of Health and 
Human Services, FDA (1998, p 3)

The phrase “adequate and well-controlled inves-
tigations” has typically been interpreted as at
least two studies that clearly demonstrated that
the drug has the effect claimed by the sponsor
submitting a marketing approval. Furthermore, a
type I error of 0.05 has typically been adopted as
a reasonable standard upon which data from
clinical studies are judged. That is, it was widely
believed that the intent of the FDC Act of 1962
was to state that a drug could be concluded to be
effective if the treatment effect was clinically
relevant and statistically significant at the a �

0.05 level in two independent studies. 
The ICH Guidance E8 (1998, p 4) clarified this

issue:

The usual requirement for more than one
adequate and well-controlled investigation
reflects the need for independent substantiation
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of experimental results. A single clinical experi-
mental finding of efficacy, unsupported by other
independent evidence, has not usually been
considered adequate scientific support for a
conclusion of effectiveness. The reasons for this
include the following:

• Any clinical trial may be subject to unantici-
pated, undetected, systematic biases. These
biases may operate despite the best intentions
of sponsors and investigators, and may lead
to flawed conclusions. In addition, some
investigators may bring conscious biases to
evaluations.

• The inherent variability in biological systems
may produce a positive trial result by chance
alone. This possibility is acknowledged, and
quantified to some extent, in the statistical
evaluation of the result of a single efficacy
trial. It should be noted, however, that
hundreds of randomized clinical efficacy trials
are conducted each year with the intent of
submitting favorable results to the FDA. Even
if all drugs tested in such trials were ineffec-
tive, one would expect one in forty of those
trials to “demonstrate” efficacy by chance
alone at conventional levels of statistical
significance. It is probable, therefore, that
false positive findings (that is, the chance
appearance of efficacy with an ineffective
drug) will occur and be submitted to FDA as
evidence of effectiveness. Independent
substantiation of a favorable result protects
against the possibility that a chance occur-
rence in a single study will lead to an erro-
neous conclusion that a treatment is effective.

• Results obtained in a single center may be
dependent on site or investigator-specific
factors (for example, disease definition,
concomitant treatment, diet). In such cases,
the results, although correct, may not be
generalizable to the intended population.
This possibility is the primary basis for
emphasizing the need for independence in
substantiating studies.

• Rarely, favorable efficacy results are the
product of scientific fraud.

Although there are statistical, methodologic,
and other safeguards to address the identified
problems, they are often inadequate to address
these problems in a single trial. Independent

substantiation of experimental results addresses
such problems by providing consistency across
more than one study, thus greatly reducing the
possibility that a biased, chance, site-specific, or
fraudulent result will lead to an erroneous
conclusion that a drug is effective.

This guidance further clarified that the need for
substantiation does not necessarily require two
or more identically designed trials:

Precise replication of a trial is only one of a
number of possible means of obtaining indepen-
dent substantiation of a clinical finding and, at
times, can be less than optimal as it could leave
the conclusions vulnerable to any systematic
biases inherent to the particular study design.
Results that are obtained from studies that are
of different design and independent in execu-
tion, perhaps evaluating different populations,
endpoints, or dosage forms, may provide
support for a conclusion of effectiveness that is
as convincing as, or more convincing than, a
repetition of the same study.

ICH Guidance E8 (1998, p 5)

Regulatory agencies have traditionally accepted
only two-sided hypotheses because, theoreti-
cally, one could not rule out harm (as opposed to
simply no effect) associated with the test treat-
ment. If the value of a test statistic (for example,
the Z-test statistic) is in the critical region at the
extreme left or extreme right of the distribution
(that is, � �1.96 or � 1.96), the probability of
such an outcome by chance alone under the null
hypothesis of no difference is 0.05. However, the
probability of such an outcome in the direction
indicative of a treatment benefit is half of 0.05,
that is, 0.025. This led to a common statistical
definition of “firm” or “substantial” evidence as
the effect was unlikely to have occurred by
chance alone, and it could therefore be attrib-
uted to the test treatment. Assuming that two
studies of the test treatment had two-sided 
p values � 0.05 with the direction of the treat-
ment effect in favor of a benefit, the probability
of the two results occurring by chance alone
would be 0.025 � 0.025, that is, 0.000625 (which
can also be expressed as 1/1600).

It is important to note here that this standard
is not written into any regulation. Therefore,
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there may be occasions where this statistical
standard is not met. In fact, it is possible to
redefine the statistical standard using one large
well-designed trial, an approach that has been
described by Fisher (1999). 

Whether the substantial evidence comes from
one or more than one trial, the basis for
concluding that the evidence is indeed substan-
tial is statistical in nature. That is, the regulatory
agency must agree with the sponsor on several
key points in order to approve a drug for
marketing:

• The effect claimed cannot be explained by
other phenomena such as regression to the
mean, time trends, or bias. This highlights the
need for appropriate study design and data
acquisition.

• The effect claimed is not likely a chance
outcome. That is, the results associated with a
primary objective have a small p value, indi-
cating a low probability of a type I error. 

• The effect claimed is large enough to be
important to patients, that is, clinically rele-
vant. The magnitude of the effect must
account for sampling during the trial(s).

A clinical development program contains
various studies that are designed to provide the
quantity and quality of evidence required to
satisfy regulatory agencies, which have the
considerable responsibility of protecting public
health. The requirements for the demonstra-
tion of substantial evidence highlight the
importance of study design and analytic strate-
gies. Appropriate study design features such as
concurrent controls, randomization, standardiza-
tion of data collection, and treatment blinding

help to provide compelling evidence that an
observed treatment effect cannot be explained
by other phenomena. Selection of the appropriate
analytical strategy maximizes the precision and
efficiency of the statistical test employed. The
employment of appropriate study design and
analytical strategies provides the opportunity for
an investigational drug to be deemed effective if
a certain treatment effect is observed in clinical
trials. 

10.2 Objectives of therapeutic
confirmatory trials 

Table 10.1 provides a general taxonomy of the
objectives of confirmatory trials and specific
research questions corresponding to each.
Confirmatory trials typically have one primary
objective that varies by the type of trial. In the
case of a new antihypertensive it may be suffi-
cient to demonstrate simply that the reduction
in blood pressure is greater for the test treatment
than for the placebo. A superiority trial is appro-
priate in this instance. However, in other thera-
peutic areas – for example, oncology – other
designs are appropriate. In these therapeutic
areas it is not ethical to withhold life-extending
therapies to certain individuals by randomizing
them to a placebo treatment if there is already an
existing treatment for the disease or condition.

In such cases, it is appropriate to employ trials
with the objective of demonstrating that the
clinical response to the test treatment is equiva-
lent (that is, no better or worse) to that of an
existing effective therapy. These trials are called
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Table 10.1 Taxonomy of therapeutic confirmatory trial objectives

Objective of trial Example indication Example research question

Demonstrate superiority Hypercholesterolemia Is the magnitude of LDL reduction for the test 
treatment greater than for placebo?

Demonstrate equivalence Oncology Is the test treatment at worst trivially inferior to and at 
best slightly better than the active control with 
respect to the rate of partial tumor response?

Demonstrate noninferiority Anti-infective Is the microbial eradication rate for the test treatment 
at least not unacceptably worse than for the active control?



equivalence trials. A question that arises here 
is: Why would we want to develop another drug
if there is already an existing effective treat-
ment? The answer is that we believe the test
treatment offers other advantages (for example,
convenience, tolerability, or cost) to justify its
development. Another type of trial is the 
noninferiority trial. These trials are intended
only to demonstrate that a test treatment is not
unacceptably worse (noninferior) than an active
control. Again, the test treatment may provide
advantages other than greater therapeutic
response such as fewer adverse effects or greater
convenience. 

Equivalence and noninferiority trials are quite
different from superiority trials in their design,
analysis, and interpretation (although exactly
the same methodological considerations apply
to collect optimum quality data in these trials).
Superiority trials continue to be our focus in this
book, but it is important that you are aware of
other designs too. Therefore, in Chapter 12 we
discuss some of the unique features of these
other design types. 

10.3 Moving from research questions to
research objectives: Identification of
endpoints

There is an important relationship between
research questions and study objectives, and it is
relatively straightforward to restate research
questions such as those in Table 10.1 in terms of
study objectives. As stated in ICH Guidance E9, a
confirmatory study should be designed to
address at most a few objectives. If a treatment
effect can be quantified by an appropriate
statistical measure, study objectives can be trans-
lated into statistical hypotheses. For example,
the extent of low-density lipoprotein (LDL)-
cholesterol reduction can be measured by the
mean change from baseline to end-of-treatment,
or by the proportion of study participants who
attain a goal level of LDL according to a treat-
ment guideline. The efficacy of a cardiovascular
intervention may be measured according to the
median survival time after treatment. For many
drugs, identification of an appropriate measure

of the participant-level response (for example,
reported pain severity using a visual analog scale)
is not difficult. However, there may be instances
when the use of a surrogate endpoint can be
justified on the basis of statistical, biological and
practical considerations. Measuring HIV viral
load as a surrogate endpoint for occurrence of
AIDS is an example. 

Identification of the endpoint of interest is
one of the many cases in clinical research that
initially seem obvious and simple. We know
exactly what disease or condition we are inter-
ested in treating, and it should be easy to iden-
tify an endpoint that will tell us if we have
been successful. In reality, the establishment of
an appropriate endpoint, whether it is the
most clinically relevant endpoint or a surrogate
endpoint, can be difficult. Some of the statistical
criteria used to judge the acceptability of surro-
gate endpoints are described by Fleming and
DeMets (1996), who caution against their use in
confirmatory trials. One might argue that the
most clinically relevant endpoint for a antihy-
pertensive is the survival time from myocardial
infarction, stroke, or death. Fortunately, the
incidence of these events is relatively low during
the typical observation period of clinical trials.
The use of SBP as a surrogate endpoint enables the
use of shorter and smaller studies than would be
required if the true clinical endpoint had to be
evaluated. For present purposes, we assume the
simplest scenario: The characteristic that we are
going to measure (blood pressure) is uncontro-
versial and universally accepted, and a clinically
relevant benefit is acknowledged to be associated
with a relative change in blood pressure for the
test treatment compared with the control. 

Common measures of the efficacy of a test
treatment compared with a placebo include the
differences in means, in proportions, and in
survival distributions. How the treatment effect
is measured and analyzed in a clinical trial
should be a prominent feature of the study
protocol and should be agreed upon with
regulatory authorities before the trial begins. In
this chapter we describe between-group differ-
ences in general terms. It is acceptable to
calculate the difference in two quantities, A and
B as “A minus B” or “B minus A” as long as the
procedure chosen is identified unambiguously. 
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10.4 A brief review of hypothesis
testing

We discussed hypothesis testing in some detail
in Chapter 6. For present purposes, the role of
hypothesis testing in confirmatory clinical trials
can be restated simply as follows:

Hypothesis testing provides an objective way to
make a decision to proceed as if the drug is
either effective or not effective based on the
sample data, while also limiting the probability
of making either decision in error. 

For a superiority trial the null hypothesis is that
the treatment effect is zero. Sponsors of drug
trials would like to generate sufficient evidence,
in the form of the test statistic, to reject the null
hypothesis in favor of the alternate hypothesis,
thereby providing compelling evidence that the
treatment effect is not zero. The null hypothesis
may be rejected if the treatment effect favors
the test drug, and also if it favors the placebo
(as discussed, we have to acknowledge this
possibility).

The decision to reject the null hypothesis
depends on the value of the test statistic relative
to the distribution of its values under the null
hypothesis. Rejection of the null hypothesis
means one of two things:

1. There really is a difference between the two
treatments, that is, the alternate hypothesis is
true.

2. An unusually rare event has occurred, that is,
a type I error has been committed, meaning
that we reject the null hypothesis given that
it is true. 

Regulatory authorities have many reasons to be
concerned about type I errors. As a review at the
end of this chapter, the reader is encouraged to
think about the implications for a pharmaceu-
tical company of committing a type I or II error
at the conclusion of a confirmatory efficacy study.

The test statistic is dependent on the analysis
method, which is dependent on the study
design; this, in turn, is dependent on a precisely
stated research question. By now, you have seen

us state this fundamental point several times,
but it really cannot be emphasized enough. In
our experience, especially with unplanned data
analyses, researchers can be so anxious to know
“What’s the p value?” that they forget to
consider the possibility that the study that
generated the data was not adequately
designed to answer the specific question
of interest. The steps that lead toward opti-
mally informed decision-making in confirma-
tory trials on the basis of hypothesis testing are
as follows:

1. State the research question.
2. Formulate the research question in the form

of null and alternate statistical hypotheses.
3. Design the study to minimize bias, maximize

precision, and limit the chance of committing
a type I or II error. As part of the study design,
prespecify the primary analysis method that
will be used to test the hypothesis. Depending
on the nature of the data and the size of the
study, consider whether a parametric or
nonparametric approach is appropriate.

4. Collect optimum-quality data using optimum-
quality experimental methodology. 

5. Carry out the primary statistical analysis
using the prespecified method.

6. Report the results of the primary statistical
analysis. 

7. Make a decision to proceed as if the drug is
either effective or ineffective:

(a) If you decide that it is effective based on
the results of this study, you may choose
to move on to conduct the next study in
your clinical development plan, or, if this
is the final study in your development
plan, to submit a dossier (for example,
NDA [new drug application], MAA
[marketing authorisation application]) to
a regulatory agency. 

(b) If you decide that it is ineffective based on
the results of this study, you may choose
to refine the original research question
and conduct a new study, or to abandon
the development of this investigational
new drug.
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10.5 Hypothesis tests for two or more
proportions

The research question of interest in some studies
can be phrased: Does the test treatment result in
a higher probability of attaining a desired state
than the control? Examples of such applications
include: 

• survival after 1 year following a cardiovascular
intervention

• avoiding hospitalization associated with
asthmatic exacerbations over the course of
6 months

• attaining a specific targeted level of LDL
according to one’s background risk.

In a confirmatory trial of an antihypertensive,
for example, a sponsor might like to know if
the test treatment results in a higher propor-
tion of hypertensive individuals (which can be
interpreted as a probability) reaching an SBP 
� 140 mmHg. 

10.5.1 Hypothesis test for two
proportions: The Z approximation

In the case of a hypothesis test for two propor-
tions the null and alternate statistical
hypotheses can be stated as follows:

H0: p1 � p2 � 0
HA: p1 � p2 � 0

where the population proportions for each of
two independent groups are represented by p1
and p2.

The sample proportions will be used to esti-
mate the population proportions and, as in
Chapter 8, are defined as:

number of observations in group 1 with the event of interest
p̂1 � ––––––––––––––––––––––––––––––––––––––––––––––––––––––––

total number of observations in group 1 at risk of the event

and

number of observations in group 2 with the event of interest
p̂2 � ––––––––––––––––––––––––––––––––––––––––––––––––––––––––.

total number of observations in group 2 at risk of the event

The estimator for the difference in the two
sample proportions is p̂1 �p̂2 and the standard
error of the difference p̂1 �p̂2 is:

_______________
p̂1q̂1 p̂2q̂ 2

SE(p̂1 � p̂2) � �–––––– � ––––––,
n1 n2

where q̂1 � 1 �p̂1 and q̂2 � 1 �p̂2. The test statistic
for the test of two proportions is equal to:

(p̂1 � p̂2)
Z � –––––––––––.

SE(p̂1 � p̂2)

Use of a correction factor may be useful as well,
especially with smaller sample sizes. A test
statistic that makes use of the correction factor is:

1 1 1
|p̂1 � p̂2| � –– (–– � ––)2 n1 n2

Z � ––––––––––––––––––––––.
SE(p̂1 � p̂2)

For large samples (that is, when p̂1n1 � 5 and
p̂2n2 � 5), these test statistics follow a standard
normal distribution under the null hypothesis.
Values of the test statistic that are far away from
zero would contradict the null hypothesis and
lead to rejection. In particular, for a two-sided
test of size a, the critical region (that is, those
values of the test statistic that would lead to
rejection of the null hypothesis) is defined by 
F � Fa/2 or F � F1 �a/2. If the calculated value of
the test statistic is in the critical region, the 
null hypothesis is rejected in favor of the alter-
nate hypothesis. If the calculated value of the
test statistic is outside the critical region, the 
null hypothesis is not rejected.

As an illustration of this hypothesis test,
consider the following hypothetical data from a
confirmatory study of a new antihypertensive.
In a randomized, double-blind, 12-week study,
the test treatment was compared with placebo.
The primary endpoint of the study was the
proportion of participants who attained an SBP
goal � 140 mmHg. Of 146 participants assigned
to placebo, 34 attained an SBP � 140 mmHg at
week 12. Of 154 assigned to test treatment, 82
attained the goal. Let us look at how these results
can help us to make a decision based on the
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information provided. We go through the steps
needed to do this.

The research question

Is the test treatment associated with a higher rate
of achieving target SBP?

Study design

As noted, the study is a randomized, double-
blind, placebo-controlled, 12-week study of an
investigational antihypertensive drug.

Data

The data from this study are in the form of
counts. We have a count of the number of partic-
ipants in each treatment group, and, for both of
these groups, we have a count of the number
of participants who experienced the event of
interest. As the research question pertains to a
probability, or risk, we use the count data to
estimate the probability of a proportion of
participants attaining the goal SBP. 

Hypotheses and statistical analysis

The null and alternate statistical hypotheses in
this case can be stated as:

H0: pTEST � pPLACEBO � 0
HA: pTEST � pPLACEBO � 0

where the population proportions for each
group are represented by pTEST and pPLACEBO. As
the response is attaining a lower SBP, the group
with the greater proportion of responses will be
regarded as the treatment with a more favorable
response. The difference in proportions is calcu-
lated as “test minus placebo.” Positive values of
the test statistic will favor the test treatment. 

As the samples are large according to the defi-
nition given earlier, the test of the two propor-
tions using the Z approximation is appropriate.
For a two-sided test of size 0.05 the critical region
is defined by Z � �1.96 or Z � 1.96. The value
of the test statistic is calculated as:

p̂TEST � p̂PLACEBOZ � ––––––––––––––––––.
SE(p̂TEST � p̂PLACEBO)

The difference in sample proportions is 
calculated as:

82 34
p̂TEST � p̂PLACEBO � –––– � –––– � 0.5325 � 0.2329 � 0.2996.

154 146

The standard error of the difference in sample
proportions is calculated as:

_________________________________
(0.5325)(0.4675) (0.2329)(0.7671)

SE(p̂TEST � p̂PLACEBO) � � ––––––––––––––– � ––––––––––––––– � 0.0533.
154 146

Using these calculated values, the value of the
test statistic is:

0.2996
Z � ––––––– � 5.62.

0.0533

The test statistic using a correction factor is
obtained as:

1 1 1
0.2996 � – (–––– � ––––)2 154 146

Z � –––––––––––––––––––––––– � 5.50.
0.0533

Interpretation and decision-making

As the value of test statistic – that is, 5.62 – is in
the critical region (5.62 � 1.96), the null hypoth-
esis is rejected in favor of the alternate hypoth-
esis. Note that the value of the test statistic using
the correction factor was also in the critical
region. The probability of attaining the SBP goal
is greater for those receiving the test treatment
than for those receiving placebo. 

It is fairly common to report a p value from
such an analysis. As we have seen, the p value is
the probability (under the null hypothesis) of
observing the result obtained or one that is more
extreme. In this analytical strategy we refer to a
table of Z scores and the tail areas associated
with each to find the sum of the two areas (that
is, probabilities) to the left of �5.62 (a result as
extreme as the observed or more so) and to the
right of 5.62 (the result observed and those more
extreme). A Z score of this magnitude is way out
in the right-hand tail of the distribution, leading
to a p value � 0.0001.

The results of this study may lead the sponsor
to decide to conduct a second confirmatory trial,
being confident that the drug is efficacious.
Alternately, if the entire set of clinical data are
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satisfactory, the sponsor may decide to apply for
marketing approval. 

10.5.2 Hypothesis test for two (or more)
proportions: v2 test of homogeneity

An alternative method to the Z approximation
for the comparison of two proportions from
independent groups is called the v2 test, which is
considered a goodness-of-fit test; this quantifies
the extent to which count data (for example, the
number of individuals with and without the
response of interest) deviate from counts that
would be expected under a particular mathemat-
ical model. The mathematical model used in
clinical studies for goodness-of-fit tests is that of
homogeneity. That is, if a particular response is
homogeneous with respect to treatment, we
would expect all the responses of interest to be
proportionally distributed among all treatment
groups. The assumption of homogeneity will
allow us to calculate the cell counts that would
be expected. These will then be compared with
what was actually observed. The more the
expected counts under the particular model of
interest (for example, homogeneity) deviate
from what is observed, the greater the value of
the test statistic, and therefore the more the data
do not represent goodness of fit. The v2 test is
useful because it can be used to test homogeneity
across two or more treatment groups. We first
describe the case of two groups and the more
general case is described in Section 10.5.3.

If there are two independent groups of interest
(for example, treatment groups in a clinical trial)
each representing an appropriate population,
the proportions of participants with the charac-
teristic or event of interest are represented by p̂1
� m1/n1 and p̂2 � m2/n2. The counts of partici-
pants with events and nonevents can be
displayed in a contingency table with two
columns and two rows, representing the
numbers of observations with (m1 and m2) and
without (n1 � m1 and n2 � m2) the characteristic
of interest. The marginal total of individuals
with events (the sum across the two groups) is
denoted by R � m1 � m2. The marginal total of
individuals without the events (sum across the
two groups) is denoted by S � (n1 � n2) � (m1 � m2).

Finally, the total sample size (sum across the two
groups) is denoted by N � n1 � n2. The overall
proportion of responses of interest across both
groups is p̂ � R/N. The complementary propor-
tion of responses is q̂ � S/N. A sample contin-
gency table displaying the observed counts is
represented in Table 10.2. 

The null hypothesis for the v2 test of 
homogeneity for two groups is stated as: 

H0: The distribution of the response of interest is
homogeneous with respect to the two treatment
groups. Equivalently, the proportion of “yes”
responses is equal across the two groups.

The alternate hypothesis is:

HA: The distribution of the response of interest
is not homogeneous with respect to the two
treatment groups.

If the null hypothesis is true – that is, the propor-
tion of participants with the event of interest is
similar across the two groups – the expected
count of responses in groups 1 and 2 would be in
the same proportion as observed across all
groups. That is, the expected cell count in row 1
(participants with events of interest) for
group 1 is: 

E1,1 � p̂n1.

Likewise, the expected cell count in row 1
(participants with events of interest) for
group 2 is: 

E1,2 � p̂n2.

Similarly, the expected cell count in row 2
(participants without the event of interest) for
group 1 is:

E2,1 � q̂ n1.
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Table 10.2 Sample contingency table for two groups
and two responses (2 � 2)

Group

Event or characteristic? 1 2 Total

Yes m1 m2 R
No n1 � m1 n2 � m2 S

n1 n2 N



Lastly, the expected cell count in row 2 (partici-
pants without the event of interest) for group 2 is:

E2,2 � q̂ n2.

The corresponding observed counts in Table 10.2
are:

O1,1 � m1,
O1,2 � m2,
O2,1 � n1 � m1,

and

O2,2 � n2 � m2.

The test statistic v2 is calculated as the sum of
squared differences between the observed and
expected counts divided by the expected count
for all four cells (two groups and two responses)
of the contingency table: 

2 2 (Or,i � Er,i)
2

X2 � RR –––––––––––.
i�1 r�1

Er,i

Under the null hypothesis of homogeneity, the
test statistic, X2, for two groups and two
responses (for example, interest is in the propor-
tion) is approximately distributed as a v2 with 1
degree of freedom (df). Only large values of the
test statistic are indicative of a departure from
the null hypothesis. Therefore, the v2 test is
implicitly a one-sided test. Values of the test
statistic that lie in the critical region are those
with X2 � v1

2. 
The notation in this section tends to be

more complex than we have encountered in
previous chapters. A worked example using the
data from Section 10.5.1 may clarify the descrip-
tion. In a randomized, double-blind, 12-week
study, the test treatment was compared with
placebo. The primary endpoint of the study 
was the proportion of participants who attained
an SBP goal � 140 mmHg. Of 146 partici-
pants assigned to placebo, 34 attained an SBP 
� 140 mmHg at week 12. Of 154 assigned to
test treatment, 82 attained the goal. 

The research question

Are participants who take the test treatment
more likely than placebo participants to attain
their SBP goal? 

Study design

The study is a randomized, double-blind, placebo-
controlled, 12-week study of an investigational
antihypertensive drug.

Data

The data from the study are represented as the
contingency table displayed in Table 10.3.

Statistical analysis

The null and alternate statistical hypotheses can
be stated as follows:

H0: The proportion of individuals who attained
SBP � 140 mmHg is homogeneous (equal) across
the two treatment groups.

HA: The proportion of individuals who attained
SBP � 140 mmHg is not homogeneous across
the two treatment groups.

In cases where there are only two categories,
such as in this one, we need to know only how
many individuals are in the “yes” row, because
the number in the “no” row can be obtained by
subtraction from the sample size within each
group. 

To calculate the test statistic, we first need to
know the expected cell counts. These can be
calculated as the product of the marginal row
total and the marginal column total divided by
the total sample size. The expected cell counts
under the null hypothesis of homogeneity are
provided in Table 10.4. The expected cell count
for the placebo group in the first row (“Yes”) was
calculated as: (146)(116)/300 � 56.453. The
expected cell count for the test treatment group
in the second row (“No”) was calculated as:
(154)(184)/300 � 94.453. You are encouraged to
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Table 10.3 Contingency table for individuals
attaining goal SBP

Attained SBP � 140? Placebo Test Total

Yes 34 82 116
No 112 72 184

146 154 300



verify the remaining two cell counts using the
same methodology. 

Now that we have calculated the expected cell
counts, we can calculate the test statistic using
these expected cell counts in conjunction with
the observed cell counts:

(34 � 56.453)2 (82 � 59.547)2 (112 � 89.547)2 (72 � 94.453)2

X2 � ––––––––––––– � ––––––––––––– � ––––––––––––– � –––––––––––––
56.453 59.547 89.547 94.453

� 28.3646

Tabled values to determine critical regions are
not as concise as those for the standard normal
distribution, because there is not just one v2

distribution but many of them. However, the 
v2 distribution with 1 df is quite frequently
encountered as 2 � 2 contingency tables. Hence,
for reference, values of the v2 distribution for 
1 df that cut off various areas in the right-hand
tail are provided in Table 10.5. Additional values
of v2

1�a are provided in Appendix 3.

For a test of size 0.05 the value of the test
statistic, 28.3646, is much greater than the
critical value of 3.841.

Interpretation and decision-making

Just as the hypothesis test using the Z approxi-
mation resulted in a rejection of the null hypo-
thesis, so does this v2 test. We can also tell from
the critical values in Table 10.5 that the p value
must be � 0.001 because less than 0.001 of the
area under the 1 df v2 distribution lies to the
right of the value 10.38 and the calculated test
statistic, 28.3646 lies to the right of that value. 

10.5.2.1 Odds ratio as a measure of
association from 2 � 2 contingency tables 

Many articles published in medical journals cite
a measure of association called an odds ratio,
which is an estimate of the relative risk of the
event or outcome of interest, a concept that was
introduced in Chapter 8. If the probability of an
outcome of interest for group 1 is estimated as p̂1
the odds of the event are:

p̂1
Odds of the event for group 1        � –––––––.

1 � p̂1

Similarly:
p̂2

Odds of the event for group 2        � ––––––.
1 � p̂2

Then the estimated odds ratio is calculated as:
p̂1(1 � p̂2)

Odds ratio � ––––––––––.
p̂2(1 � p̂1)

Note that an equivalent definition of the odds
ratio using the observed counts from the 2 � 2
contingency table in Section 10.5.2 is:

O1,1O2,2
Odds ratio � ––––––––.

O1,2O2,1

A standard error may be calculated for
purposes of constructing a confidence interval
for the odds ratio, but it requires an iterative
solution. Statistical software is useful for this
purpose. Interested readers will find a wealth of
information on the odds ratio in Fleiss et al.
(2003). 

If the estimated probabilities of the event are
the same (or similar) between the two groups,
the odds ratio will have a value around 1 (unity).
Thus an assumption of no association in a 2 � 2
table implies that the odds ratio is equal to 1.
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Table 10.4 Expected cell counts for v2 test of
homogeneity

Attained SBP � 140? Placebo Test Total

Yes 56.453 59.547 116
No 89.547 94.453 184

146 154 300

Table 10.5 Critical values for the v2 distribution with
1 degree of freedom 

a (one sided) v2
(1 � a),1

0.10 2.706
0.05 3.841
0.01 6.635
0.001 10.38



This also means that the v2 test for binary
outcomes from Section 10.5.2 can be considered
a test of the null hypothesis that the population
odds ratio � 1. Values of the odds ratio appro-
priately � 1 or appropriately � 1 are suggestive
of an association between the group and the
outcome. 

Using the data from Table 10.3 as presented
and using the formula for observed cell counts,
the estimated odds ratio is calculated as:

(34)(72)
Odds ratio � –––––––– � 0.27.

(112)(82)

Interpreting this value as an estimate of the rela-
tive risk of attaining the target SBP level, we
would say that patients treated with placebo are
0.27 times as likely as patients treated with the
active drug to attain the SBP goal. This statement
may seem awkward (we would not disagree),
which points out a potentially difficult aspect of
the odds ratio. As the name implies it is a ratio
scaled quantity so the odds ratio can be
expressed as a/b or b/a. Keeping in mind that the
odds ratio is an estimate of the relative risk,
selecting the more appropriate method will aid
the clinical interpretation of the result. In this
case the response of interest is a favorable
outcome, so a relative risk � 1 would imply that
a favorable outcome was more likely after treat-
ment with the active drug than the placebo.
Similarly, if the response of interest is a bad
outcome (for example, serious adverse event) a
relative risk � 1 would suggest that the proba-
bility of a bad outcome was less for the active
drug than the placebo. 

Hence we can make more sense of this calcu-
lated value by taking its inverse as 1/0.27 � 3.75.
This expression is more appealing and an accu-
rate interpretation in that patients treated with
the test drug are 3.75 times more likely to attain
the SBP goal than those treated with placebo.
One can also obtain this result by switching the
order of the columns in Table 10.3 and
performing the calculation as:

(82)(112)
Odds ratio � –––––––– � 3.75.

(72)(34)

Odds ratios are one of the most common statis-
tics cited from logistic regression analyses.

Logistic regression is an advanced topic and
therefore not included in this book. An overly 
simple description is that it is an analysis
method by which binary outcomes are modeled
(or explained) using various predictor variables.
The proper interpretation of odds ratios from
logistic regression models will depend on the
way in which the predictors were used in the
statistical model. However, the general concept
is the same as in this example. The odds ratio
represents the relative increase in risk of a partic-
ular event for one group versus another. We
recommend two excellent texts on logistic
regression by Hosmer and Lemeshow (2000) and
Kleinbaum and Klein (2002). 

10.5.2.2 Use of the v2 test for two
proportions

The v2 test of homogeneity is useful for
comparing two proportions under the following
circumstances:

• The groups need to be independent.
• The responses need to be mutually exclusive.
• The expected cell counts are reasonably sized. 

With regard to the last of these requirements, we
need to operationally define “reasonably sized.”
A commonly accepted guideline is that the v2

test is appropriate when at least 80% of the cells
have expected counts of at least five. In the case
of the worked example, the use of the v2 test is
appropriate on the basis of independence (no
participant was treated with both placebo and
test treatment) and sample size. If a participant
can be counted in only one response category
the responses are considered mutually exclusive
or non-overlapping, as was the case here.

The v2 test of homogeneity is a special case
because it can be used for any number of groups.
The more general case is discussed in the
following section. 

10.5.3 Hypothesis test for g proportions:
v2 test of homogeneity

If there are g independent groups of interest (for
example, treatment groups in a clinical trial)
each representing relevant populations, the
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proportion of individuals with the characteristic
or event of interest is represented by:

p̂
i � 

m
i—

ni

for i � 1, 2, . . . g, where g represents the number
of groups. The counts of individuals with events
and nonevents can be displayed in a contin-
gency table with g columns and two rows repre-
senting the numbers of observations with (mi)
and without (ni � mi) the characteristic of interest.
The marginal total of individuals with events
(the sum across the g groups) is denoted by: 

g

R � R mi .
i�1

The marginal total of individuals without the
events (sum across the g groups) is denoted by: 

g

S � R ni �mi .
i�1

Finally, the total sample size (sum across the 
g groups) is denoted by: 

g

N � R ni .
i�1

The overall proportion of responses across all
groups is:

R
p̂ � ––.

N

A sample contingency table displaying the
observed counts in this more general case is
represented in Table 10.6. 

As before with the case of two groups, the null
hypothesis is stated as: 

H0: The distribution of the response of interest is
homogeneous with respect to the g treatment
groups. Equivalently, the proportion of “yes”
responses is equal across all g groups.

The alternate hypothesis is:

HA: The distribution of the response of interest is
not homogeneous with respect to the g treatment
groups.

If the null hypothesis is true, that is, the propor-
tion of individuals with the event of interest is
similar across the groups, the expected count of
responses in group i will be in the same propor-
tion as observed across all groups. That is, the
expected cell count in row 1 (individuals with
events of interest) for group i is: 

E1,i � p̂ni .

Similarly, the expected cell count in row 2
(individuals without the event of interest) for
group i is:

E2,i � q̂ ni.

The expected cell counts are calculated in this
manner for all 2g cells of the contingency table.
The corresponding observed counts for groups 
i � 1, 2, . . ., g, in Table 10.6 are:

O1,i � mi

and

O2,i � ni � mi.

The test statistic X2 is calculated as the sum of
squared differences between the observed and
expected counts divided by the expected count
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Table 10.6 Sample contingency table for g groups and two responses (g � 2)

Group

Event or characteristic? 1 2 . . . g Total

Yes m1 m2 . . . mg R
No n1 � m1 n2 � m2 . . . ng � mg S

n1 n2 . . . ng N



for all 2g cells (g groups and 2 responses) of the
contingency table: 

g 2 (Oi,g � Ei,g)
2

X2 � RR –––––––––––.
i�1 r�1

Ei,g

Under the null hypothesis of homogeneity, the
test statistic, X2, for g groups and two responses
is approximately distributed as a v2 with (g �1)
df. Values of the test statistic that lie in the
critical region are those with X2 � v2

g �1. 

10.5.4 Hypothesis test for r responses
from g groups

The v2 test can be applied to more general situa-
tions, including data with r response levels and g
independent groups. When there are more than
two response categories, however, the null and
alternate hypotheses cannot be stated simply in
terms of one proportion, but need to be stated in
terms of the distribution of response categories. 

One example containing more than two
groups would be an evaluation of the following
three categories of response: Worsening, no
change, and improvement. It would not be suffi-
cient to state the null hypothesis in terms of the
proportion of individuals with a response of
worsening because there are two other responses
of interest. We highlight this point because the
v2 test is used extensively in clinical research,
and it can be correctly applied to multilevel
responses and multiple groups. If we use the
more general terminology, “distribution of
responses is homogeneous with respect to treat-
ment group,” we are always correct no matter
how many responses there were or how many
groups. 

The specific methodology associated with
these more general cases is beyond the scope of
our text. The most appropriate and efficient
analyses of data of this type can depend on the
hypothesis of interest and whether or not the
response categories are ordered. Additional
details can be found in two excellent texts by
Stokes et al. (2001) and Agresti (2007).

10.5.5 Hypothesis test for two
proportions: Fisher’s exact test

The two methods described earlier, the Z approxi-
mation and the v2 test of homogeneity, are appro-
priate when the sample sizes are large enough.
There are times, however, when the sample sizes in
each group are not large enough or the proportion
of events is low such that np̂ � 5. In such cases
another analysis method, one that does not
require any approximation, is appropriate.

An alternate hypothesis test for two propor-
tions is attributed to Fisher. Fisher’s exact test is
applicable to contingency tables with two or
more responses in two or more independent
groups. We consider one case, 2 � 2 tables, repre-
sented by counts of individuals with and
without the characteristic of interest (two rows)
in each of two treatment groups (two columns),
for which the cell counts are small. For this test
the row and column marginal totals are consid-
ered fixed. That is, one assumes that the total
number of individuals with events is fixed as
well as the number in each group. The extent to
which the two groups are similar or dissimilar
accounts for the distribution of events between
the two groups. For any 2 � 2 table, the proba-
bility of the particular distribution of response
counts, assuming the fixed marginal totals, can
be calculated exactly via something called the
hypergeometric distribution (we do not go into
details here). Using slightly different notation
from the examples above, the cell counts and
marginal totals of a general 2 � 2 table are
displayed in Table 10.7. The total number of
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Table 10.7 Cell counts and marginal totals from a
general 2 � 2 table

Event or characteristic Group 1 Group 2 Total
of interest?

Yes Y1 Y2 Y.
No N1 N2 N.

n1 n2 n



“yes” responses is denoted by the symbol, Y.,
where the dot in the index means that the count
is obtained by summing the responses over the
two columns, that is, Y1 � Y2. Likewise, the total
number of “no” responses is denoted by the
symbol, N., the sum over groups 1 and 2. 

Given the fixed margins as indicated in 
Table 10.7, the probability of the distribution of
responses in the 2 � 2 table is calculated from
the hypergeometric distribution as:

Y.!N.!n1!n2!P(Y1, Y2, N1, N2, | Y., N., n1, n2, n) � ––––––––––––.
n!Y1!Y2!N1!N2!

The null and alternate hypotheses in this case
are as follows:

H0: The proportion of responses is independent
of the group.
HA: The proportion of responses is not 
independent of the group.

If the null hypothesis is rejected, the alternate
hypothesis is better supported by the data. 

For this test there is no test statistic as such,
because this test is considered an exact test.
Therefore, we need not compare the value of a
test statistic to a distribution. Instead, the p value
is calculated directly and compared with the
predefined a level. Recall that a p value is the
probability, under the null hypothesis, of
observing the obtained results or those more
extreme, that is, results contradicting the null
hypothesis. The calculation of the p value for
this exact test entails the following three steps: 

1. Calculate the probability of the observed cell
counts using the expression above.

2. For all other permutations of 2 � 2 tables with
the same marginal totals, calculate the proba-
bility of observed cell counts in a similar
manner. 

3. Calculate the p value as the sum of the
observed probability (from the first step) and
all probabilities for other permutations that
are less than the probability for the observed
table. 

As a consequence, the p value represents the like-
lihood of observing, by chance alone, the actual

result or those more extreme. The calculated p
value is compared with the value of a and we
either reject or fail to reject the null hypothesis.

As an example of Fisher’s exact test, we
consider other data from the antihypertensive
trial introduced in Section 10.5.1. These data are
presented in Table 10.8. 

The research question

Is there sufficient evidence at the a � 0.05 level
to conclude that the probability of attaining a
SBP � 120 mmHg (a remarkable response for a
hypertensive person!) is greater for people
receiving the test treatment than for those
receiving the placebo?

Study design

The study is a randomized, double-blind, placebo-
controlled, 12-week study of an investigational
antihypertensive drug.

Data

The data from the study are represented as a
contingency table as displayed in Table 10.8. As
seen in Table 10.8, only four individuals had the
event of interest. Neither the Z approximation
nor the v2 test would be appropriate given the
small cell sizes of one and three. 

Statistical analysis

The null and alternate statistical hypotheses can
be stated as:
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Table 10.8 Contingency table for individuals
attaining SBP � 120 mmHg

Attained SBP � 120? Placebo Test Total

Yes 1 3 4
No 145 151 296

146 154 300



H0: The proportion of individuals who attained
SBP � 120 mmHg is independent of treatment
group.
HA: The proportion of participants who attained
SBP � 120 mmHg is not independent of treat-
ment group. 

In this instance, independence means that the
probability of the response is no more or less
likely for one group versus the other. In his orig-
inal paper, Fisher stated the null hypothesis
slightly differently (although equivalent mathe-
matically). The null hypothesis, after Fisher, can
be stated in this form: The population odds ratio
of response to nonresponse for one group versus
the other is equal to one. 

In Figure 10.1 all of the possible permutations
of cell counts, given the marginal totals, are
displayed. To be concise, the row and column
labels are not included. The calculated proba-
bility from the hypergeometric distribution is
provided to the right of each arrangement of cell
counts. The probabilities in Figure 10.1 are
included to illustrate the calculation. Note that
by definition, 0! � 1. For this particular dataset it
is manageable to calculate each probability with
a calculator, but in many instances this partic-

ular test should be done using statistical soft-
ware. When calculating these probabilities by
hand it is helpful to re-write the factorial
expressions in a way so that numerator and
denominator terms “cancel out.” For example,
writing 154! as 154*153*152*151! allows us to
cancel 151! from the numerator and denomi-
nator of the probability associated with the
observed result.

The calculated p value is the probability from
the observed result plus all probabilities less than
the probability associated with the observed
result. For this example the exact p value is:

p value � 0.263453 � 0.236537 � 0.068119
� 0.054910 � 0.623019.

Rounding to three significant digits, this can be
expressed as p value � 0.623.

Interpretation and decision-making

Comparing the p value of 0.623 to a � 0.05, the
statistical conclusion is not to reject the null
hypothesis. There is insufficient evidence to con-
clude that the alternate hypothesis is true. If the
goal of a new antihypertensive therapy were to
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0 4

146 150

4! 296! 146! 154!

0! 4! 146! 150! 300!
P � 0.068119� 

1 3

145 151

4! 296! 146! 154!

1! 3! 145! 151! 300!
P � 0.263453 (observed result)� 

2 2

144 152

4! 296! 146! 154!

2! 2! 144! 152! 300!
P � 0.376981� 

3 1

143 153

4! 296! 146! 154!

3! 1! 145! 151! 300!
P � 0.236537� 

4 0

142 154

4! 296! 146! 154!

4! 0! 142! 154! 300!
P � 0.054910� 

Figure 10.1 All permutations of response counts given fixed marginal totals and probabilities of each



reduce SBP to levels � 120 mmHg, such a result
would be disappointing and may lead to a decis-
ion to halt the clinical development program.
However, the study was not designed to answer
such a question. In fact, the research question,
having been formulated as an exploratory
analysis, may not be well suited for the study that
was actually conducted. Perhaps a greater dose or
more frequent administration of the investiga-
tional antihypertensive drug would increase the
rate of the desired response. In any case, as the
analysis earlier in the chapter illustrated, the new
drug does seem to lower SBP to levels that would
beconsideredclinically important (�140mmHg).

10.5.6 Test of two proportions from
stratified samples: The Mantel–Haenszel
method

Confirmatory efficacy studies typically involve a
number of investigative centers and, accord-
ingly, are known as multicenter trials. Multi-
center trials have a number of benefits, which
are discussed later. A common analysis method
used in multicenter trials is to account for differ-
ences from center to center by including them in
the analysis. Stratifying the randomization to
treatment assignment by investigative center
ensures that there are approximately equal
numbers of participants assigned to test or
placebo within each center. Analyses from
studies with this design typically account for
center as it is conceivably another source of vari-
ation. This is accomplished by calculating a
summary test statistic within each center and
then pooling or calculating weighted averages 
of the within-center statistics across all centers,
thereby removing the effect of the centers from
the overall test statistic. 

The weights used in the analysis are chosen at
the trial statistician’s discretion, which provides
a good example of the “art” of Statistics, because
the statistician must make a well-informed judg-
ment call. Some commonly employed choices of
weights are as follows:

• equal weights for all centers
• weights proportional to the size of the center
• weights that are related to the standard error

of the within-center statistic (for example,

more precise estimates have more weight
than less precise estimates). 

One method applicable to the difference of two
proportions, originally described by Mantel and
Haenszel (1959) and well described by Fleiss et
al. (2003), utilizes weights that are proportional
to the size of each stratum (in this case, centers)
to calculate a test statistic that follows approxi-
mately a v2 distribution. 

Assume that there are h strata of interest, and
within each of the strata (h � 1, 2, . . ., H) there
are nh1 observations for group 1 (for example,
treatment group 1) and nh2 observations for
group 2 (for example, treatment group 2). The
proportion of observations with the character-
istic of interest within each stratum for the two
groups is denoted by p̂h1 and p̂h2, respectively.
The overall proportion of participants with the
characteristic of interest within each stratum is
denoted by p–h; the overall proportion without
the characteristic of interest with each stratum is
denoted by q–h �1 � p–h. 

The null hypothesis tested by the
Mantel–Haenszel method is as follows:

H0: There is no overall association between
response and group after accounting for the
stratification factor.

If the null hypothesis is rejected, the data favor
the following alternate hypothesis:

HA: There is an overall association between
response and group after accounting for the
stratification factor.

The test statistic for the Mantel–Haenszel
method is:

H nh1 nh2( | R –––––– (p̂h1 � p̂ h2)| � 0.5)
2

h�1
nh

X2
MH � ––––––––––––––––––––––––––––––.

H nh1 nh2R –––––– p̄ hq̄ h

h�1
nh�1

Note that the differences in proportions, 
p̂h1 – p̂h2, are weighted by the quantities nh1nh2——— .nh
This test statistic utilizes a continuity correction
factor of 0.5 as well. As described by Fleiss et al.
(2003), the test performs well when expected cell
counts within each of H 2 � 2 tables differ by at
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least 5 (maximum – minimum). The test statistic
that is computed in this manner is approxi-
mately distributed as a v2 with 1 df. 

A similar test statistic, Cochran’s statistic, orig-
inally attributed to Cochran (1954), is described
by Fleiss et al. (2003):

H nh1 nh2( R –––––– (p̂h1 � p̂ h2))
2

h�1
nh

X2
CMH � –––––––––––––––––––––––––.

H nh1 nh2R –––––– p̄hq̄h

h�1
nh

Note that Cochran’s statistic does not use a
correction factor and the denominator of the
stratum weights is nh instead of (nh � 1). We
mention Cochran’s statistic because it is used by
some statistical software packages instead of the
Mantel–Haenszel statistic. Fleiss points out that
the difference between the Mantel–Haenszel
statistic and Cochran’s statistic is small when the
sample sizes are large, but considerable when the
sample sizes within each of the strata are small. 

As an illustration of the Mantel–Haenszel
method, we take the data from our example as
detailed in Section 10.5.1 and separate them into
data collected at each of three centers, which in
this case represent the three strata. 

The research question

Is there sufficient evidence at the a � 0.05 level
to conclude that the probability of attaining a
goal SBP level is greater for individuals receiving
test treatment than for those receiving the
placebo after accounting for differences in
response among centers?

Study design

The study is a randomized, double-blind, placebo-
controlled, 12-week study of an investigational
antihypertensive drug.

Data

The data from the study are represented as three
contingency tables, one for each of the centers in
Table 10.9.

Statistical analysis

The null and alternate statistical hypotheses can
be stated as:

H0: There is no overall association between the
response (attaining SBP � 140 mmHg) and
treatment group after accounting for center.
HA: There is an overall association between the
response and treatment group after accounting
for center.

For a test of size a � 0.05, a v2 test with 1 df has
a critical value of 3.841. 

The differences in the proportions of interest
(test minus placebo) are as follows:
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Table 10.9 Contingency table for individuals
attaining goal SBP by center

Center 1
Attained SBP � 140? Placebo Test Total

Yes 12 24 36
No 34 21 55

46 45 91

Center 2
Attained SBP � 140? Placebo Test Total

Yes 15 31 46
No 29 19 48

44 50 94

Center 3
Attained SBP � 140? Placebo Test Total

Yes 7 27 34
No 49 32 81

56 59 115

Overall
Attained SBP � 140? Placebo Test Total

Yes 34 82 116
No 112 72 184

146 154 300



• Center 1: (0.533 � 0.261) � 0.272
• Center 2: (0.620 � 0.341) � 0.279
• Center 3: (0.458 � 0.125) � 0.333.

The overall response rates for the event of
interest and their complements are:

36 55Center 1: p̄1 � ––– � 0.396 and q̄1 � ––– � 0.604
91 91

46 48Center 2: p̄2 � ––– � 0.489 and q̄2 � ––– � 0.511
94 94

34 81Center 3: p̄3 � ––– � 0.296 and q̄3 � ––– � 0.704.
115 115

The test statistic is then computed as:

46 * 45 44 * 50 56 * 59{ | [(––––––)(0.272) �(––––––)(0.279) � (––––––)(0.333)] | � 0.5}
2

91 94 115
X2

MH � –––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
46 * 45 44 * 50 56 * 59(––––––)(0.396)(0.604) �(––––––)(0.489)(0.511) �(––––––)(0.296)(0.704)

90 93 114

� 27.21

Although the calculation details are not shown
here, the value of Cochran’s statistic for this
example is 28.47, which is consistent with the
result obtained for the Mantel–Haenszel statistic.

Interpretation and decision-making

The value of the test statistic is much greater
than the critical value of 3.841. Hence the statis-
tical decision is to reject the null hypothesis of
no association after accounting for center differ-
ences. The proportion of responders is signifi-
cantly higher among those receiving the test
treatment. The p value associated with the test
can be obtained from statistical software.
However, we know from the sample of critical
values in Table 10.5 that the p value must be 
� 0.001. As before, a pharmaceutical company
would be encouraged by such results. 

10.6 Concluding comments on
hypothesis tests for categorical data

All of the methods described in this chapter are
applicable to data that are in the form of “binary”

events, that is, either the event or characteristic
occurred for a given individual or it did not. For
binary data, the summary statistic representing
each treatment group is a sample proportion. To
account for variation from sample to sample,
hypothesis-testing methods allow a researcher to
draw an inference about the underlying popula-
tion difference in proportions. Although not
covered in great detail, some of the methods can
also be expanded to more than two categories.

In contrast, the methods described in 
Chapter 11 are applicable to data with outcomes
that are continuous in nature. In those cases,
other summary statistics are required to describe
the typical effect in each group and the typical
effect expected for the population under study. 
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10.7 Review

1. What constitutes “compelling evidence” of a
beneficial treatment effect?

2. Consider a pharmaceutical company that has just
completed a confirmatory efficacy study. What 
are the implications for the company of committing
a type I error? What are the implications for the
company of committing a type II error?

3. The equality of two proportions is being tested with
the null hypothesis, H0: pTEST � pPLACEBO � 0. Given
that this is a two-sided test and using the following
information, would the null hypothesis be rejected
or not rejected?

(a) a � 0.05, Z approximation test statistic � 1.74
(b) a � 0.10, Z approximation test statistic � 1.74
(c) a � 0.05, Z approximation test statistic � 4.23
(d) a � 0.01, Z approximation test statistic � 4.23
(e) a � 0.05, v2 test statistic � 1.74
(f) a � 0.10, v2 test statistic � 1.74
(g) a � 0.05, v2 test statistic � 4.23
(h) a � 0.01, v2 test statistic � 4.23.

4. The equality of two proportions is being tested with
the null hypothesis, H0: pTEST � pPLACEBO � 0. Given
that this is a two-sided test, what is the p value that
corresponds to the following values of the Z
approximation test statistic?

(a) �1.56
(b) �2.67
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(c) 3.29
(d) 1.00.

5. The term “responders’ analysis” was first
introduced in Chapter 9 with regard to clinical
laboratory data. A responders’ analysis approach
can be used in the context of efficacy data, as
well. Consider a double-blind, placebo-controlled,
therapeutic confirmatory trial of an investigational
antihypertensive (“test drug”). Based on earlier
experience, a period of 12 weeks is considered
sufficient to observe a clinically meaningful
treatment effect that can be sustained for many
months. In this study, a participant whose SBP is
reduced by at least 10 mmHg after 12 weeks 
of treatment is considered a responder. Similarly, 
a participant whose SBP is not reduced by at 
least 10 mmHg after 12 weeks is considered a
non-responder. A total of 1000 participants were
studied: 502 on placebo and 498 on test drug.
Among the placebo participants, 117 were
responders. Among those on the test drug, 152
were responders. 

(a) Summarize these results in a 2 � 2
contingency table.

(b) The sponsor’s research question of interest is:
Are individuals treated with the test drug more
likely to respond than those treated with
placebo? What are the null and alternate
statistical hypotheses corresponding to this
research question? 

(c) What statistical tests may be used to test the
null hypothesis? Are any more appropriate
than others?

(d) Is there sufficient evidence to reject the null
hypothesis using a test of size a � 0.05?
Describe any assumptions necessary and show
the calculation of the test statistic.

(e) Calculate the odds ratio from the contingency
table. What is the interpretation of the
calculated odds ratio?

6. When would the Mantel–Haenszel v2 test be more
useful than the v2 test?



11.1 Introduction

As we have seen, several summary measures of
central tendency can be used for continuous
outcomes. The most common of these measures
is the mean. In clinical trials we calculate sample
statistics, and these serve to estimate the
unknown population means. When developing
a new drug, the estimated treatment effect is
measured by the difference in sample means for
the test treatment and the placebo. If we can
infer (conclude) that the corresponding popula-
tion means differ by an amount that is consid-
ered clinically important (that is, in the positive
direction and of a certain magnitude) the test
treatment will be considered efficacious. 

In Chapter 10 we saw that there are various
methods for the analysis of categorical (and
mostly binary) efficacy data. The same is true
here. There are different methods that are appro-
priate for continuous data in certain circum-
stances, and not every method that we discuss is
appropriate for every situation. A careful assess-
ment of the data type, the shape of the distribu-
tion (which can be examined through a relative
frequency histogram or a stem-and-leaf plot),
and the sample size can help justify the most
appropriate analysis approach. For example, if
the shape of the distribution of the random vari-
able is symmetric or the sample size is large
(� 30) the sample mean would be considered a
“reasonable” estimate of the population mean.
Parametric analysis approaches such as the two-
sample t test or an analysis of variance (ANOVA)
would then be appropriate. However, when the
distribution is severely asymmetric, or skewed,
the sample mean is a poor estimate of the popu-
lation mean. In such cases a nonparametric
approach would be more appropriate. 

It should be emphasized at this point that the
term “nonparametric” is not a quality judgment
compared with the term “parametric.” The
nomenclature simply serves to delineate two
types of analyses. Nonparametric tests are not
“less good” than parametric tests. Indeed, if 
it were appropriate to use a nonparametric
approach in a certain circumstance, that test
would have higher statistical power than a para-
metric approach. We respectfully feel that the
differentiation between parametric and nonpara-
metric approaches in many introductory Statis-
tics textbooks is misleading, and does tend to
imply that nonparametric tests are naturally
inferior to the other: Nonparametric tests are
commonly discussed separately, often toward
the end of the book, leaving the reader feeling
that the books’ authors regarded these discus-
sions as unwanted but obligatory. We encourage
you as your first step to consider what valid and
appropriate analyses there are for a given situa-
tion, and then to select the most efficient
analysis method from among them. We have
reinforced this notion by including nonpara-
metric analysis approaches side by side with
parametric approaches. 

11.2 Hypothesis test of two means:
Two-sample t test or independent
groups t test

A common measure of central tendency of
continuous outcomes is the mean. In clinical
studies employing measurement of continuous
variables such as blood pressure, the typical
response among participants in a treatment
group is represented by this summary descriptive

11
Confirmatory clinical trials: Analysis of continuous
efficacy data



statistic. As we have seen, sample statistics, by
definition, vary from sample to sample. When
developing new drugs we would like to make an
inference about the magnitude of the difference
between two population means, typically repre-
sented by the symbol l, one for a test treatment
and the other for a control. If the difference in
means exceeds the typical variability that would
be expected from sample to sample, we can
conclude that the difference is unlikely to be due
to chance. More specifically, when comparing
two population means, we are interested in
testing the null hypothesis, 

H0: l1 � l2 � 0.

If the null hypothesis is rejected the following
alternate hypothesis is better supported by the
data:

HA: l1 � l2 � 0.

Treatment group 1 is represented by n1 observa-
tions, x11, x12, x13, . . ., x1n1

. Similarly, treatment
group 2 has n2 observations, x21, x22, x23, . . ., x2n2

.
For this statistical test these two groups must be
independent. The population means, l1 and l2,
are estimated by the sample means from each
group, x̄1 and x̄2:

n1

R x1i

i � 1x̄1 � –––—–,
n1

n2

R x2i

i � 1x̄2 � –––—–.
n2

The population variances, r2
1 and r2

2, are
estimated by the sample variances:

n1

R (xli � x̄1)
2

i � 1s2
1 � –––––––––—––,

n1 � 1

n2

R (x2i � x̄2)2

i � 1s2
2 � ––––––––––—––.

n2 � 1

Assuming that the two populations have the
same, albeit unknown, population variance, an
average or pooled estimate of the sample 

variances is an estimator of the unknown popu-
lation variance. The pooled variance, s2

p, is
obtained as:

s2
1(n1 � 1) � s2

2(n2 � 1)
s2
p � –––––––––––––––––––––.

n1 � n2 � 2

Finally, the pooled standard deviation, sp, is the
square root of the variance:

sp � �
__
s2

p .

The estimator for the difference in population
means is the difference in sample means, that is,
x̄1 � x̄2. The standard error of the estimator,
SE(x̄1 � x̄2), is calculated as:

_______
1 1SE(x̄1� x̄2) � sp � –– � ––.
n1 n2

The test statistic for the two-sample t test is:
x̄1� x̄2t � ––––––––––.

SE(x̄1� x̄2)

Under the null hypothesis of equal population
means, the test statistic follows a t distribution
with n1 � n2 � 2 degrees of freedom (df),
assuming that the sample size in each group is
large (that is, � 30) or the underlying distribu-
tion is at least mound shaped and somewhat
symmetric. As the sample size in each group
approaches 200, the shape of the t distribution
becomes more like a standard normal distribu-
tion. Values of the test statistic that are far away
from zero would contradict the null hypothesis
and lead to its rejection. In particular, for a two-
sided test of size a, the critical region (that is,
those values of the test statistic that would lead
to rejection of the null hypothesis) is defined by
t � ta/2,n1�n2�2 or t � t1�a/2,n1�n2�2. Note that as t
distributions are symmetric, |ta/2|�t1�a/2. If the
calculated value of the test statistic is in the
critical region, the null hypothesis is rejected 
in favor of the alternate hypothesis. If the
calculated value of the test statistic is outside the
critical region, the null hypothesis is not
rejected.

As there are an infinite number of t distribu-
tions there is no concise way to display all
possible values that may be encountered.
However, as can be seen in Table 11.1, the value
of the t distribution that cuts off the upper 2.5%
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area of the distribution becomes smaller with
increasing sample sizes (and therefore increasing
df). Tabled values in Appendix 2 are provided for
other values of a.

The use of the two-sample t test is illustrated
here with sample data from a clinical trial of an
investigational antihypertensive drug.

The research question

Does the test treatment lower SBP more than
placebo?

Study design

In a randomized, double-blind, 12-week study,
the test treatment, one tablet taken once a day,
was compared with placebo (taken in the same
manner). The primary endpoint of the study was
the mean change from baseline SBP. The primary
analysis will be based on a two-sample t test 
with a � 0.05 (two-sided). 

Data

In the placebo group (146 individuals) the mean
change from baseline was �3.4 mmHg with a
standard deviation of 17.4 mmHg. In the test
treatment group (154 individuals) the mean
change from baseline was �19.2 mmHg with a
standard deviation of 16.9 mmHg. 

Statistical analysis

The null and alternate statistical hypotheses can
be stated as:

H0: lTEST � lPLACEBO � 0.

HA: lTEST � lPLACEBO � 0.

The pooled sample variance is calculated as:

17.42(145) � 16.92(153)
s2
p � –––––––––––––––––––––– � 293.95.

146 � 154 � 2

It follows from this that the pooled standard
deviation is:

sp � �
______
293.95 � 17.1.

The estimate of the difference in mean change
from baseline is:

x̄TEST � x̄PLACEBO � �19.2 � (�3.4) � �15.8.

The standard error of the difference is calculated
as:

__________
1 1SE(x̄TEST � x̄PLACEBO) � 17.1� –––– � –––– � 1.98.

146 154

The test statistic is then calculated using these
values:

�15.8
t � –––––– � �7.98

1.98

Under the null hypothesis of no difference in
population means, and assuming somewhat
symmetric distributions, the test statistic follows
a t distribution with 298 (that is, 146 � 154 � 2)
df. Therefore the critical region (values of the test
statistic that lead to rejection) is defined as
t � �1.968 and t � 1.968. Note that this partic-
ular entry is not in Appendix 2, but the closest is
for 300 df.

Interpretation and decision-making

As �7.98 � �1.968, the null hypothesis is
rejected in favor of the alternate one. The mean
change from baseline for the test treatment
group is significantly different from the placebo
group’s at the a � 0.05 level. To determine the p
value associated with this test, we need statistical
software or an extensive look-up table. Given the
large sample size in this example, we can use the
percentiles of the standard normal distribution
to approximate the p value. These study results
allow us to conclude that the test treatment is
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Table 11.1 Sample values from t distributions for a
two-sided test of a � 0.05

Degrees of freedom (n1 � n2 � 2) t0.975

10 2.2281
30 2.0423
50 2.0086

100 1.9840
200 1.9719



efficacious. The difference between treatments in
the magnitude of the change in SBP was unlikely
to be the result of chance. Therefore the sponsor
can submit these data as substantial statistical
evidence of the test treatment’s efficacy. 

11.3 Hypothesis test of the location of
two distributions: Wilcoxon rank sum
test

The two-sample t test is useful on many occa-
sions, but there are occasions when its use is not
justified. One reason is that the sample size is
small (� 30 per group). Although small studies
are certainly encountered frequently in clinical
research, most confirmatory efficacy studies are
sizable, and so this reason is not applicable here.
A second reason is, however, applicable. The
most common reason why a two-sample t test
would not be appropriate is a heavily skewed
distribution, whether or not the sample size is
large. 

The sample mean is a poor measure of central
tendency when the distribution is heavily
skewed. Despite our best efforts at designing
well-controlled clinical trials, the data that are
generated do not always compare with the
(deliberately chosen) tidy examples featured in
this book. When we wish to make an inference
about the difference in typical values among two
or more independent populations, but the distri-
butions of the random variables or outcomes 
are not reasonably symmetric, nonparametric
methods are more appropriate. Unlike para-
metric methods such as the two-sample t test,
nonparametric methods do not require any
assumption about the shape of a distribution for
them to be used in a valid manner. As the 
next analysis method illustrates, nonparametric
methods do not rely directly on the value of the
random variable. Rather, they make use of the
rank order of the value of the random variable.

It is appropriate to note here that performing
an analysis on an assigned rank instead of on the
raw data results in a loss of information. Think
of the related example of receiving a grade A on
an assignment. If a grade A is given for any mark
between 90% and 100%, the grade alone does

not tell you how well you have actually done on
the assignment: A score of 91% is assigned the
same grade as a score of 100%. If the mark for
this assignment is the first one of several in a
course that will ultimately be combined to yield
your final grade in some manner, you may very
legitimately be interested in your actual (raw)
score. Nevertheless, in clinical trials there can 
be a sound rationale for not using raw data in
certain circumstances. 

When rather extreme departures from
required assumptions are noted, our choice of an
appropriate statistical method should be one of
first validity and second efficiency. The
difference between an extreme departure from
required assumptions and any departure from
required assumptions is again a matter of
judgment. It should be noted that many of the
parametric methods in this book are robust to
departures from distributional assumptions,
meaning that the results are valid under a
number of conditions. This is especially true
with the larger sample sizes encountered in ther-
apeutic exploratory and confirmatory trials. We
should also note that all the methods described
in this book require that observations in the
analysis are independent. There are statistical
methods to be used for dependent data, but they
are not described in this book. 

In our opinion, therefore, nonparametric
methods should be chosen when assumptions
(such as normality for the t test) are clearly not
met and the sample sizes are so small that there
is very little confidence about the properties of
the underlying distribution. The nonparametric
method discussed in this section is a test of a
shift in the distribution between two popula-
tions with a common variance represented by
two samples, and it will always be valid when
comparing two independent groups. 

The two-sample t test was based on the
assumption that the two samples were drawn
from an underlying normal population with the
same (assumed) population variance. A rejection
of the null hypothesis in the setting of the two-
sample t test would imply that the two popula-
tions from which the samples were drawn were
represented by two normal distributions with
the same variance (shape), but with different
means. The Wilcoxon rank sum test does not
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require the assumption of the normal distribu-
tion, but does require that the samples be drawn
from the same population. The Wilcoxon rank
sum test tests a similar hypothesis such that, if it
is rejected, the two populations from which the
samples were drawn had the same shape (not
necessarily normal or otherwise symmetric), but
differed by some distance. That is, a rejection of
the null hypothesis in the setting of Wilcoxon’s
rank sum test would imply that the two popu-
lation distributions were shifted, that is, not
overlapping. 

Although this approach has its advantages,
one disadvantage is that no single numerical
estimate, either a point estimate or an interval
estimate, can convey the extent to which the
populations differ because the test of the loca-
tion shift is based on relative rank and not the
original scale. 

Using the Wilcoxon rank sum test, interest is
in a location shift between two population
distributions so the following null hypothesis is
tested:

H0: The location of the distribution of the
random variable in population 1 does not differ
from the location of the random variable for
population 2.

If the null hypothesis is rejected the following
alternate hypothesis is better supported by the
data:

HA: The location of the distribution of the
random variable in population 1 is different
from the location for population 2.

Treatment group 1 (representing population 1) is
represented by n1 observations measured on a
continuous scale, x11, x12, x13, . . ., x1n1

. Similarly,
treatment group 2 (representing population 2)
has n2 observations measured in a continuous
scale, x21, x22, x23, . . ., x2n2

. The total sample size
of the two groups is n1 � n2. The first step in
calculating the test statistic is to order the values
of all observations from smallest to largest,
without regard to the treatment group. Then, a
rank is assigned to each observation, starting
with 1 for the smallest value after sorting, then
2, and so on for all n1 � n2 observations. If two
or more observations are tied, the assigned rank
will be the average of the ranks that would have
been assigned if there were no ties. For example,

if the third, fourth, and fifth sorted observations
were all tied, the assigned rank for each of the
three observations would be [3 � 4 � 5]/3 � 4.
The next largest value would then be assigned a
rank of 6. 

At this stage, we now have n1 ranks for treat-
ment group 1, r11, r12, r13, . . ., r1n1

. Similarly, treat-
ment group 2 has n2 ranks, r21, r22, r23, . . ., r2n2

.
The test statistic for the Wilcoxon rank sum test
is the sum of the ranks in group 1:

n1

S1 � R r1i .
i�1

Only the ranks from group 1 are required
because, if the values from group 1 tend to be
smaller than those from group 2, the sum of
ranks will be small, leading to rejection of the
null hypothesis. Similarly, if the values from
group 1 tend to be larger than those from 
group 2 the sum or ranks will be a large number
and will also lead to rejection. 

The null hypothesis will be rejected if the test
statistic is less than or equal to or greater than or
equal to cut points obtained from a table (which
need not be provided here) – that is, the null
hypothesis will be rejected if S1 � WL or S1 � WU.
Other authors (Schork and Remington, 2000)
have suggested a large sample approximation,
which is possible because the test statistic,
S1, is approximately normally distributed
with mean [n1(n1 � n2 � 1)]/2 and variance
[n1n2(n1 � n2 � 1)]/12. The derivation of these
two parameters is beyond the scope of this text.
Applying a familiar mathematical operation
(standardization of a normally distributed
random variable), we obtain an alternate test
statistic, which has an approximate standard
normal distribution:

n1(n1 � n2 � 1)
S1 � ––––––––––––––

2
Z � –––––––––––––––––––._________________

n1n2(n1 � n2 � 1)
––––––––––––––––� 12

Values of this test statistic can then be compared
with the more familiar critical values of the stan-
dard normal distribution.

To illustrate this method, consider the
following example that (deliberately) has a small
dataset. 
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The research question

Does the test treatment lower SBP more than
placebo?

Study design

In a randomized, double-blind, 6-week study, the
test treatment (one tablet taken once a day) was
compared with placebo. The primary endpoint
of the study was the mean change from base-
line SBP. Given the small sample size of the study,
the primary analysis is based on the Wilcoxon
rank sum test with a � 0.05 (two-sided).

Data

Each value listed below represents change from
baseline SBP for a participant in a clinical trial
comparing a new antihypertensive treatment
with placebo. Lower values indicate a greater
reduction in blood pressure from baseline, the
favored outcome. 

Test treatment (n � 10):
�8, �1, 0, 2, �20, �18, �12, �17, �14, �11.
Placebo (n � 10):
�9, 0, �4, �4, �3, 1, �7, 1, 2, �3.

Statistical analysis

After ordering all observations from highest to
lowest within the two groups, we have the
following:

Then ranking each observation across groups,
accounting for ties as described above, we obtain
the following ranks:

The test statistic is computed as the sum of the
ranks for the test treatment group:

S1 � 1�2�3�4�5�6�8�14�15.5�19.5 � 78.

When testing the null hypothesis at the two-
sided a � 0.05 level and a sample size of 10 in

each group, the critical region is any value of
S1 � 78 or � 132. 

Interpretation and decision-making

As the value of the test statistic is in the rejection
region (only just, but still in it), the null hypoth-
esis is rejected. The conclusion is that the distri-
butions of the two populations from which the
samples were selected differ in their location.
The test treatment is associated with a greater
reduction in SBP than placebo. 

Alternately, if we were to use the test statistic
based on a normal approximation, it would be:

10(10 � 10 � 1)
78 � ––––––––––––––––

2
Z � –––––––––––––––––––––– � �2.007._____________________

10 * 10(10 � 10 � 1)
––––––––––––––––––––� 12

Under the null hypothesis, this test statistic
follows a standard normal distribution. The
null hypothesis is rejected because the test
statistic falls in the rejection region for a two-
sided test of a � 0.05 based on the standard
normal distribution (Z � � 1.96 or Z � 1.96).

11.4 Hypothesis tests of more than two
means: Analysis of variance 

The t tests are extremely helpful, commonly
used tests, but they do have one noteworthy
limitation: They can address only the equality of
two means. In the present context, they can
compare only the results from two treatment
groups. Situations that require us to test the
equality of more than two means occur quite
frequently, and so a test that can be used with
two or more groups is needed. 

In many instances in drug development, two
or more doses may seem to be promising based
on results from earlier phases of clinical devel-
opment. The question of interest therefore
becomes: Of all the doses studied, which has the
greatest beneficial effect? Confirmatory efficacy
studies aim to answer this question. As in other
study designs that we have discussed, the
sponsor would like to minimize the chance of
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Test �20 �18 �17 �14 �12 �11 �8 �1 0 2
Placebo �9 �7 �4 �4 �3 �3 0 1 1 2

Test 1 2 3 4 5 6 8 14 15.5 19.5
Placebo 7 9 10.5 10.5 12.5 12.5 15.5 17.5 17.5 19.5



committing a type I or II error. We therefore
need an appropriate statistical method that can
identify the best dose (among a number of
them), while accounting for the inherent vari-
ability in the data and limiting the chances of
committing an error in the final decision-
making process. Analysis of variance (ANOVA) is
well suited to this task. 

Assume that there are k independent groups
(k � 2), each of which represents populations of
interest, for example, individuals given a partic-
ular treatment. An important objective of many
clinical trials is to determine if there is any differ-
ence among the treatments administered with
regard to the underlying population means. The
null hypothesis for such an objective is:

H0: l1 � l2 � . . . � lk.

If there is sufficient evidence to conclude that
the null hypothesis should be rejected, the
alternate hypothesis that would be favored is
that there was at least one difference among all
[k(k � 1)]/2 pairs of population means:

HA: l1 � l2 or . . . l1 � lk or . . . lk�1 � lk.

Each treatment group j (j � 1, 2, . . ., k) is repre-
sented by nj observations, x1j, x2j, x3j, . . ., xnjj

. The
sample sizes for each of the groups need not be
equal. For each group the population mean, �j, is
estimated by the sample mean, x̄j:

nj

Rxij

i�1x̄ j � –––—–.
nj

We can calculate the mean of all values across
the k groups, the grand mean, as:

k nj

RRxij

j�1 i�1x̄ . � ––––––––––,
n

where

k

n �R nj ,
j�1

the overall sample size. The total variability
across all n � n1 � n2 � . . . nk observations is the
sum of the squared difference between each

observation and the grand mean divided by the
number of df:

k nj

RR(xij � x̄.)2

j�1 i�1
VT � –––––––––––––––.

n � 1

The sum of the squared deviations of each obser-
vation from the overall mean (the numerator) is
also called the “total sums of squares.” 

The population variance for each group, r2
j, is

estimated by the sample variance:

nj

R(xij � x̄ j)
2

i�1
s2

j � –––––––––––––.
nj � 1

While the notation here is a little more compli-
cated than we have seen before (because of the
addition of the subscript j) the basic principle is
exactly the same. All we have done to this point
in this example is to calculate the sample means
and variances for each group in the study. 

An estimate of the average variance over all 
k groups represents the “typical” spread of data
over the entire study or experiment. This vari-
ability is often referred to as random variation or
noise. In the ANOVA strategy this number is
called the within-group variance (or mean
square error), and is calculated as a weighted
average of the sample variances:

k

R(nj � 1)s 2
j

j�1
Within-group variance (Vw) � –––––––––––––.

n � k

The denominator – that is, the df – in this calcu-
lation may be puzzling at first, but, again, the
principle is the same as we have seen before.
Recall that, when estimating the sample vari-
ance, the df value is n � 1. This is because the
sum of deviations has to equal 0. Given knowl-
edge of n � 1 observations in the sample, we can
determine the last observation: It is the value
that will ensure that the sum of all deviations
adds to 0. In this case, the “minus 1” is applied
for all k groups. This leads to:

(n1 � 1) � (n2 � 1) � . . . (nk � 1) �

(n1 � n2 � . . . nk) � k � n � k.
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As there are also k sample means, each repre-
senting an estimate of the typical value of the
population (that is, the population mean), those
estimates may also vary from sample to sample.
The variance of the means across all groups is
called the among-group variance (or the mean
square among groups), and is calculated as a
weighted average (weighted by the sample size)
of the squared differences of each sample mean
from the grand mean:

k

Rnj (x̄j � x̄.)2

j�1
Among-group variance (VA) � ––––––––––––––.

k � 1

where 

k nj

RRxij

j�1 i�1x̄ � ––––––––––,. n

the grand mean, as before. The total variability
in the data can be split or partitioned as the
within-group variability (the background vari-
ability) and the among-group variability of
means (how much the sample means vary from
the overall mean):

VT � VA � VW.

As we have seen with a number of methods so far
(most notably, the two-sample t test) the extent
to which point estimates differ is measured
against the typical variability of means from
sample to sample. In the case of an ANOVA, we
have an analogous method by which we can
evaluate the extent to which the means differ. If
the variance among the samples greatly exceeds
the typical variance of the data in general there
is an indication that the typical difference in
means is not the result of random variation, but
of systematic variation. If the variance among
the samples is similar to the variance of the data
in general such a result suggests that, whatever
the difference in means, it is just like what
happens by chance alone. 

The test statistic (F) for this comparison in the
ANOVA takes the form of a ratio of the among-
sample variance to the within-sample variance: 

VAF � ––– .
VW

This test statistic is not well defined in all cases,
which means that a rejection region is not auto-
matically defined from a known distribution.
However, if some assumptions are made about
the distribution of the random variable X, the
distribution of the test statistic can be defined.
The following assumptions are required for an
appropriate use of ANOVA:

• Each group represents a simple random
sample from each of k populations and the
observations are statistically independent. 

• The random variable, X, is normally
distributed within each population.

• The variance of the random variable, X, is
equal among all k populations.

Given these assumptions the test statistic, F,
follows an F distribution with (k � 1) numerator
df and (n � k) denominator df. This is written in
shorthand as Fk�1,n�k. Although we do not
describe this distribution in detail, its essential
characteristics are that it is a two-parameter
distribution (that is, the numerator and denom-
inator df) and it is asymmetric. As you might
imagine, this distribution is not nearly as
convenient to work with as the standard normal
distribution. Defining the critical region for a
given situation is best accomplished using
statistical software because there are countless 
F distributions, each requiring a table. Similarly,
calculating the sums of squares is best left to soft-
ware (it can certainly be done by hand, but the
required calculations are tedious). 

ANOVA can be extended to situations where
the experimental units (in our context, study
participants) are classified on a number of
factors. When they are classified on the basis of
one factor, it is referred to as a one-way ANOVA.
The result of partitioning the total variance into
its components, in this case among and within
samples defined by one factor, is displayed in
Table 11.2.

The F distribution with (k � 1) numerator df
and (n � k) denominator df is used to define the
rejection region for a test of size a. The critical
region may be obtained from a table of values or
provided by statistical software. Tabled F values

154 Chapter 11 • Confirmatory clinical trials: Analysis of continuous efficacy data



for a number of combinations of a, numerator
and denominator df are provided in Appendix 4.
The null hypothesis of no difference among
means will be rejected only if the value of the
test statistic, F, is larger than the cut point speci-
fied from the parameters of the distribution.
Therefore, the test is inherently one sided – that
is, the rejection region is any value F � F(k�1),(n�k).

Rejection of the null hypothesis means only
that there is at least one difference among all
pairwise comparisons of means. This conclusion
is hardly satisfactory in the world of drug devel-
opment because the decisions to be made typi-
cally require the selection of a dose or treatment
regimen for purposes of designing another study
or proposing a dose for marketing approval.

11.5 A worked example with a small
dataset

Since, as noted, the calculations involved in
ANOVA are fairly tedious, we illustrate the
method using an overly simplistic example with
a small dataset. This example is for illustrative

purposes: In reality, datasets for which ANOVA is
most appropriate have large sample sizes and are
analyzed using statistical software. However,
once you have a conceptual understanding of
ANOVA you can interpret ANOVA tables for a
wide variety of study designs. 

The research question

Does the reduction in SBP differ among three
doses of an investigational antihypertensive
drug?

Study design

A clinical study was conducted to investigate
three doses of an investigational antihyperten-
sive drug. Fifteen participants were recruited
(five per group), and randomized to three treat-
ment groups: 10 mg, 20 mg, and 30 mg. Each
treatment was taken once a day. SBP was
measured 5 min before the administration of the
drug (baseline) and again 30 min after. A
“change from baseline score” was calculated for
each participant by subtracting the baseline
value from the post-treatment value. 
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Table 11.2 General one-way ANOVA table

Source Sum of squares Degrees of freedom Mean square F

Among samples k � 1

Within samples n � k

Total n � 1

k

Rnj(x̄j � x̄ .)2

j�1

� SSA

k

Rnj(x̄j � x̄ .)2

j�1
–––––––––––––––––––

k � 1
� VA

VA–––
VW

k nj

RR (xij � x̄.)2

j�1 i�1

� SST

k nj

RR (xij � x̄.)2

j�1 i�1
–––––––––––––––––––

n � 1
� VT

k

R (nj � 1)s2
j

j�1

� SSW

k

R (nj � 1)s2
j

j�1
–––––––––––––––––––

n � k
� VW



Data

The change from baseline scores for the 15
participants are displayed below:

• 10 mg treatment group: �6, �5, �6, �7, �6
• 20 mg treatment group: �8, �9, �8, �9, �6
• 30 mg treatment group: �10, �8, �10, �8, �9.

Statistical analysis

A one-factor ANOVA is the appropriate analysis
here assuming that the data are normal: The
only factor of interest is the dose of drug given.
There are three levels of this factor: 10, 20, and
30 mg. Following convention, the results of an
ANOVA are displayed in an ANOVA summary
table such as the model in Table 11.3. In the
following calculations the values are presented
without their units of measurement (mmHg)
simply for convenience. At the end of the calcu-
lations, however, it is very important to
remember that the numerical terms represent
values measured in mmHg. The calculations
needed are as follows.

1. Calculate the group means and the grand
mean:

�30
• 10 mg group mean � x̄10 � –––– � �6

5
�40

• 20 mg group mean � x̄20 � –––– � �8
5

�45
• 30 mg group mean � x̄30 � –––– � �9

5
(�6) � (�8) � (�9)

• grand mean � x̄ � –––––––––––––––––– � �7.67.
3

2. Calculate the group sample variances:

3. Calculate the total sums of squares (SST): The
total sums of squares is the variability of
observations across all three groups. It is
calculated by summing the squared difference
of each observation (in this case 15 of them)
from the grand mean, � 7.67. For brevity, the
calculation is not written out here. We suggest
that you verify the calculations with software:

• SST � 35.33.

4. Calculate the among-sample sums of squares
(SSA):

SSA � 5((� 6) � (� 7.67))2 � 5(( � 8) �

(� 7.67))2 � 5((� 9) � (� 7.67))2 � 23.33.

5. Calculate the within-sample sums of squares
(SSW):

• SSW � (4)(0.50) � (4)(1.50) � (4)(1.00) � 12.

As expected, the total sums of squares is the
sum of the among-sample sums of squares
and the within-sample sums of squares.

6. Calculate the df:

• Total: We started with 15 scores. To get
the same grand mean, 14 of these can
vary, but number 15 cannot. Therefore,
there are (n � 1) df:

df (total) � 15 � 1 � 14.

• Among samples: There are three groups,
and thus three sample means. These must
also average to the grand mean. Once two
have been determined, the third can be
only one value (that is, it cannot vary).
Again, therefore, there are (k � 1) df:
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• 10 mg group sample variance �

((�6) � (�6))2 � ((�5) � (�6))2 � ((�6) � (�6))2 � ((�7) � (�6))2 � ((�6) � (�6))2

s2
10 � ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– � 0.50

4

• 20 mg group sample variance �

((�8) � (�8))2 � ((�9) � (�8))2 � ((�8) � (�8))2 � ((�9) � (�8))2 � ((�6) � (�8))2

s2
20 � ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– � 1.50

4

• 30 mg group sample variance �

((�10) � (�9))2 � ((�8) � (�9))2 � ((�10) � (�9))2 � ((�8) � (�9))2 � ((�9) � (�9))2

s2
30 � ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– � 1.00.

4



df (among) � 3 � 1 � 2.

• Within samples: By exactly the same logic
that we saw for the within-groups sums of
squares, we can calculate these df as:

df (within) � df (total) � df (among) �

14 � 2 � 12.

(Note: There is also another way to think
of this. Within each sample there are five
values. Therefore, there are four df per
sample. There are three samples. The total
within-samples df is the total of the df
within each sample, or 4 � 4 � 4 � 12.)

7. Construct the ANOVA table: Having calcu-
lated the total sums of squares from all
sources of variation, along with their degrees
of freedom, we can now start to construct the
ANOVA table. The only other calculations
required are the mean squares for among-
samples and within-samples (divide each
sums of squares by its associated df) and the
test statistic, F (divide among-samples mean
square by within-samples mean square). All of
this information is shown in the partial
ANOVA table presented as Table 11.3.

8. Determine if the test statistic is in the rejec-
tion region: As always, we need to determine
if the test statistic F falls in the rejection
region. So far, we have not determined the

rejection region for this test. As noted earlier,
the F distribution has two parameters that
determine its shape and, therefore, the F
values that cut off tail areas of the distribu-
tion. The two parameters are the numerator
df (associated with the numerator of the F
ratio or the among-sample source of varia-
tion) and the denominator df (associated with
the denominator of the F ratio or the within-
samples source of variation). In this case, the
numerator df is 2 and the denominator df is
12. This is written as: 

F(2,12) � 11.67.

Tables with values of F for several distributions
are used to determine the significance of this
result, or the critical values can be obtained from
statistical software. We have provided a table in
Appendix 4. For a test of size a � 0.05, the crit-
ical value associated with 2 numerator df and 12
denominator df that cuts off the upper 5% of the
distribution is 3.89. Although tabled values are
helpful at identifying nominal p values (for
example, � 0.01) statistical software is required
to report the specific p value. Using statistical
software, you will find that the actual p value is
0.002. Table 11.4 shows the completed ANOVA
table for this example. You will see that the 
p value is commonly included in a complete
ANOVA table. 
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Table 11.3 One-way ANOVA table for the SBP study (partially complete)

Source Sum of squares Degrees of freedom Mean square F

Among samples 23.33 2 11.67 11.67
Within samples 12.00 12 1.00

Total 35.33 14

Table 11.4 Completed one-way ANOVA table for the SBP study 

Source Sum of squares Degrees of freedom Mean square F p value

Among samples 23.33 2 11.67 11.67 0.002
Within samples 12.00 12 1.00

Total 35.33 14



It is important to recognize that the actual p
value, not simply p � 0.05, is stated in the table.
Regulatory reviewers and journal editors prefer
this practice, because the actual value provides
more information than simply a statement that
the value is less than 0.05.

Interpretation and decision-making

As the value of the test statistic, 11.67, is in the
rejection region for this test of size a � 0.05 (that
is, 11.67 � 3.89), the null hypothesis is rejected in
favor of the alternate, which means that at least
one pair of the population means is not equal.

Recall the original research question: Does the
reduction in SBP differ among three doses of a
new antihypertensive? The results of the one-
way ANOVA that we have conducted so far are
interpreted in the following manner: 

• There is evidence at the a � 0.05 level that
the levels of the factor “dose of drug” differ.
Therefore, there is a statistically significant
difference in SBP change scores between the
groups. (The p value of 0.002 indicates that
the null hypothesis would also have been
rejected at smaller a levels, for example, at the
a � 0.01 level.)

The above statement by itself does not, however,
tell us anything about which group showed the
greatest change score, or indeed how any specific
group compared with any of the other groups.
Consideration of the group means is necessary to
do this. These means, with the associated units
of measurement reinserted, are:

• 10 mg group � �6 mmHg
• 20 mg group � �8 mmHg
• 30 mg group � �9 mmHg.

Therefore, we can now state that the 30 mg
group showed the greatest mean decrease in SBP,
the 20 mg group the second greatest mean
decrease, and the 10 mg group the least mean
decrease. However, a full answer to the research
question has still not been supplied, at least not
in terms of determining possible statistical
differences between specific pairs of dose levels. 

The ANOVA test statistic revealed that, overall,
the groups differed statistically significantly, but,

as there are more than two groups, it cannot
reveal the precise pattern of statistical signifi-
cance. For any three groups (call them D, E, and
F) there are C3

2 � 3 possible comparisons
between pairs of groups: D can be compared
with E; D can be compared with F; and E can be
compared with F. These three comparisons can
lead to the following patterns of outcomes: 

• All groups differ statistically significantly
from each other. 

• None of the groups differs statistically 
significantly from any other group.

• D and E both differ statistically significantly
from F, but do not differ statistically 
significantly from each other.

• D and F both differ statistically significantly
from E, but do not differ statistically 
significantly from each other.

• E and F both differ statistically significantly
from D, but do not differ statistically 
significantly from each other.

To determine which pattern of outcomes
occurred in any given situation, an additional
statistical test is needed. In situations such as
this, where we have a partial answer to our orig-
inal research question, multiple comparisons are
performed. These are tests that allow us to
compare the means of each pair of groups to see
which pairs (if any) differ statistically signifi-
cantly from each other. Multiple comparisons
therefore provide a more detailed understanding
of our data than the overall test (referred to as
the omnibus test) provided by the ANOVA. If the
omnibus test yields a nonsignificant result,
multiple comparisons are not necessary, because,
in fact, none of them would be significant. In
the case of a significant omnibus test, the second
option above is not actually a possible outcome,
whereas all of the others are. This means that we
need a method of determining which of the
other possibilities is the case – that is, we need a
statistical methodology that will allow us to
conduct multiple comparisons, and to use this
methodology before we can provide the full
answer to our original research question. The full
answer is provided in Section 11.10, but first we
need to look at another issue.
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11.6 A statistical methodology for
conducting multiple comparisons

In clinical studies, the probability of declaring a
treatment efficacious when in reality it is not effi-
cacious is termed a. This is the probability of
detecting a false positive, or committing a type I
error. As we have seen, the probability of commit-
ting a type I error should be limited to a specific
value so that erroneous conclusions are not made
very often. For a sponsor, committing a type I error
could result in investing significant amounts of
money on a drug that really does not work. For a
regulatory agency, committing a type I error
(approving a drug that is not efficacious) could
result in many people taking a drug that does not
offer a meaningful treatment benefit and may
carry some risk (every drug has a side-effect
profile). It is therefore important to constrain the
probability of committing a type I error to an
acceptable level. Traditionally, this acceptable
level has been and is still regarded as the a � 0.05
level, but, as noted before, we can choose other
values when we consider them appropriate.

The important point to note here is that the
a � 0.05 level is deemed appropriate when a
single test is being conducted. Multiple compar-
isons, by definition, mean that more that one test
is being conducted. When testing a number of
pairwise comparisons – for example, after an
ANOVA where the null hypothesis has been
rejected – it is not acceptable to test each pairwise
comparison at the a � 0.05 level because of the
potential inflation of the overall type I error rate.

When three treatment groups are evaluated in
a clinical study, there are three possible pairwise
comparisons of means (D vs E, D vs F, and E vs
F). If each mean is tested at the a � 0.05 level,
and assuming that they are mutually exclusive,
the probability of declaring at least one of the
pairs significantly different is equal to 1 minus
the probability of accepting all three (by the
complement rule). Assuming that the compar-
isons are independent, the probability of
accepting all three null hypotheses is the proba-
bility of accepting the first null hypothesis
multiplied by the probability of accepting 
the second multiplied by the probability of

accepting the third. When testing each at the
a � 0.05 level, this probability becomes:

P (incorrectly rejecting at least one hypothesis)
� 1 � (0.95)(0.95)(0.95) � 1 � 0.953 � 0.14.

That is, instead of a type I error rate of a � 0.05,
this analysis has resulted in a higher probability of
committing a type I error, just by chance alone. 

In fact, the comparisons made here cannot be
thought of as independent because each group is
compared with two others in this case. It is more
correct to use an inequality sign to say that the
probability is no more than 0.14, that is, � 0.14.
However, this technicality is of little comfort
because, to make sound decisions, we would
really like to limit that probability to a reason-
able level. In general, if C comparisons are each
made at the a level, the probability of rejecting
at least one by chance alone is:

P (rejecting at least one of c hypotheses) 
� (1 � (1 � a)c)

Table 11.5 lists the probability of rejecting at
least one hypothesis for a number of values of C,
the number of hypothesis tests performed at the
conventional a � 0.05 level.

Suppose that a clinical trial has to evaluate
four doses of a test treatment and a placebo (a
total of five groups) on relieving headache pain.
The study was carefully designed and conducted,
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Table 11.5 Maximum probability of committing a
type I error when each hypothesis is tested at a � 0.05

C: No. of hypotheses Maximum probability
tested at a � 0.05 of type I error

1 0.050
2 0.098
3 0.143
4 0.185
5 0.226
6 0.265
7 0.302
8 0.337
9 0.370

10 0.401
15 0.537
20 0.642



and the data are now ready for the statistical
analysis. A one-way ANOVA is conducted, and
the conclusion from the omnibus F test (compar-
ison of the among-sample variance with the
within-sample variance) is that the population
means are not all equal. Five treatment groups
give rise to C5

2 � 10 pairwise group comparisons.
Suppose that one of the researchers failed to get
input from the trial statistician, and hurriedly
(and mathematically correctly) analyzed all 10
pairwise comparisons of means performed using
10 two-sample t tests. The researcher takes his or
her results to the study director and the rest of
the study team and points out with tremendous
excitement that the pairwise comparison of the
lowest dose with the placebo yielded a p value of
0.023, a statistically significant result at the
a � 0.05 level. A surge of positive energy fills the
room as everyone but the statistician declares,
“We have found our lowest effective dose! On to
the confirmatory trial!” 

As you have probably realized by now, there
would actually be little reason for enthusiasm, as
the study statistician would very soon point out.
The problem is this: While each of the 10 two-
sample t tests had been conducted mathemati-
cally correctly, it is not appropriate statistical
methodology to use 10 two-sample t tests in this
setting. The analytic strategy employed did not
limit the type I error rate to 0.05. Rather, as seen
in Table 11.5, when 10 such pairwise compar-
isons are made – that is, 10 hypotheses are tested
– the probability of rejecting at least one of the
hypotheses is limited to 0.401, a value consider-
ably greater in magnitude than 0.05. In other
words, use of this naïve analytic strategy has
resulted in an inflated type I error. There is up to
a 40% chance of being misled by one test with a
nominal p value � 0.05. 

The issue of type I error inflation caused by
multiple testing appears in many guises in the
realm of new drug development. This issue is of
great importance to decision-makers, and we
discuss this topic again later in the chapter. For
now, we have not yet provided a full answer to
our research question; our description of analysis
of variance is incomplete without a discussion of
at least one analysis method that controls the
overall type I error rate when evaluating pairwise
comparisons from an ANOVA.

11.7 Bonferroni’s test

Bonferroni’s test is the most straightforward of
several statistical methodologies that can appro-
priately be used in the context of multiple
comparisons. That is, Bonferroni’s test can
appropriately be used to compare pairs of means
after rejection of the null hypothesis following a
significant omnibus F test. Imagine that we have
c groups in total. Bonferroni’s method makes use
of the following inequality: 

P(R1 or R2 or R3 or . . . or Rc)
� P(R1) � P(R2) � P(R3) � . . . � P(Rc).

This means that the probability of rejecting at
least one of c hypotheses is less than or equal to
(thus the term “inequality”) the sum of the prob-
abilities of rejecting each hypothesis. This
inequality is true even if the events, in this case
rejecting one of c null hypotheses, are not inde-
pendent. Recall from Section 6.2 that, when
events are not independent, the probability of
intersecting events should be subtracted. Using
Bonferroni’s method, testing each pair of means
with an a level of aB � a–c will ensure that the
overall type I error rate does not exceed the
desired value of a. It follows that the probability
of rejecting at least one of c null hypotheses can
be expressed as follows:

a
p(rejecting at least one of c hypotheses at aB level)� c (––) � a.

c

It is important to note that the researcher in our
scenario in Section 11.6 who hurriedly
conducted 10 pairwise comparisons using 10
two-sample t tests and rejoiced in one particular
finding was not completely out of line in the
analytic strategy chosen. It is indeed possible to
approach this situation (the need for 10 pairwise
comparisons) with the intent to conduct 10 two-
sample t tests. However, a correction must be
made to the a level used to determine statis-
tical significance. In the scenario as told in
Section 11.6 the researcher did not perform this
critical step.

In practice, then, we can carry out each of a
series of pairwise comparisons of means using a
two-sample t test for each comparison, but the 
a level must be modified accordingly. When
deciding whether or not to reject the null
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hypothesis associated with each comparison, we
need to use an a level of aB � a–c instead of the
naïve choice of a. Note that this is equivalent to
defining a rejection region for each test as: 

t � ta/2c,n�k or t � t1�(a/2c),n�k

which makes sense as the tail areas in the left
and right of the t distribution are smaller than
those obtained using the two-sided test of size a.

Consider the two-sample t-test statistic again:

(x̄1 � x̄2)t � ––––––––––– ._______
1 1sp � –– � ––
n1 n2

In an ANOVA involving more than two groups,
we estimate the underlying variability from
more than two samples, and yet we are inter-
ested in the extent to which (only) two of the
means differ from each other. Therefore, when
comparing the means of two samples, the pooled
standard deviation from the two-sample case, sp,
is replaced by an estimate that captures the vari-
ability across all groups in the analysis – the
mean square error or the within-samples mean
square. Recall from Section 11.4 that this quan-
tity has the same interpretation as the pooled
standard deviation, the typical spread of data
across all observations.

When using Bonferroni’s method, the null
hypothesis associated with a pairwise com-
parison is rejected if the calculated test statistic,
that is,

x̄1 � x̄2t � ––––––––––––––____________
1 1� Vw (–– � ––)n1 n2

is in the rejection region defined as t � t(a/2c),n�k
or t � t1�(a/2c),n�k. 

Remember that Vw comes from the ANOVA
table and it is the mean square error, which has
also been referred to as the within-samples vari-
ability or, more informally, the background
noise. This is analogous to s2

p in the two-sample
case. As we assume equal variances, we use the
estimator that uses the most data and therefore
gives the most precise estimate. 

The critical value can be determined from a
table or software (using a two-sided test of size

a/c). The estimate of the underlying variability,
Vw, comes from the ANOVA table, and the
sample sizes for each group are known and equal.
Then we can define a quantity, the minimally
significant difference (MSD), which is the
smallest difference (in absolute value) between
any two sample means that could be considered
statistically significant at the a level. (Note that
when sample sizes are not equal the MSD is not
defined, but there are other methods available.)

____________
1 1

MSD � t1�(a/2c),n�k � Vw (–– � ––).n1 n2

Once the value of MSD has been determined, the
absolute value of the difference in means will be
compared with the MSD. If the absolute value of
the difference in means, |(x̄1 � x̄2)|, is greater
than or equal to the MSD the null hypothesis
will be rejected. 

11.8 Employing Bonferroni’s test in our
example 

Having introduced Bonferroni’s test, we can 
now return to our earlier example to see how to 
apply Bonferroni’s method to our pairwise
comparisons of treatment group means.

Statistical analysis

The significant result of the omnibus F test led
to the rejection of the null hypothesis of no
significant differences, thereby revealing the
presence of a significant difference between at
least one pair of means. It is now of interest to
determine precisely which pair or pairs of
means are significantly different.

Given that the decisions made from this 
trial could result in sizeable further investment
in the development of the investigational
antihypertensive drug, the company would like
to minimize its chances of committing a type I
error. That is, it would like to maintain an overall
type I error of 0.05. As we have just seen in
Section 11.7, one analysis that will maintain this
desired type I error of 0.05 is Bonferroni’s
method. 
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In our example of three treatment groups
there are three pairwise comparisons of interest.
Therefore, each pairwise comparison will be
tested at an a level of 0.05/3 � 0.01667. This a
level will require defining a critical value from
the t distribution with 12 (that is, 15 � 3) df that
cuts off an area of 0.00833 (half of 0.01667) in
the right-hand tail. Use of statistical software
reveals that the critical value is 2.77947. From
inspection of the ANOVA table presented as
Table 11.4 the within-samples mean square
(mean square error) can be seen to be 1. The final
component needed for the MSD is:

________
1 1� –– � –– � �

___
0.4 � 0.632.

n1 n2

Then the MSD is equal to:

MSD � (2.77947)(1)(0.632) � 1.757.

The mean values for each group are �6 mmHg
(10 mg), �8 mmHg (20 mg), and �9 mmHg 
(30 mg). The absolute values of the three
differences in means are displayed in Table 11.6. 

Each cell represents the differences in means
for the groups represented by each row and
column. The differences between the 10 mg and
20 mg groups and the 10 mg and 30 mg groups
were both greater than the MSD (1.757). There-
fore, these differences are considered statistically
significant at the a � 0.05 level. The difference
between the 20 mg and 30 mg groups was not
significant, however, because it was less than the
MSD.

Interpretation and decision-making

We are now in a position to provide a full
answer to our research question of interest as
expressed at the start of Section 11.5: Will the

reduction in SBP differ among three doses of an
investigational antihypertensive drug?

The first step in our analytical strategy was to
conduct an ANOVA. This ANOVA tested the null
hypothesis that there were no differences among
the three means. The null hypothesis was tested
at an a level of 0.05, and was rejected on the
basis of the significant omnibus F test. 

The second step in our analytical strategy was
to determine which of the pairs of means were
significantly different from each other. Testing
each of the three hypotheses at an a level of
0.05 would have resulted in a probability of
committing a type I error possibly � 0.05 (the
desired level). Bonferroni’s inequality was there-
fore used to test each of the three hypotheses at
an a level of 0.05/3 � 0.01667. Using the crit-
ical value for this a level resulted in two pairs of
means being declared significantly different at
the 0.05 level.

The full interpretation of the study, therefore,
is that the magnitude of the reduction in SBP
does indeed differ according to different dose
levels. The 20 mg and 30 mg doses both resulted
in a statistically significantly greater SBP reduc-
tion than the 10 mg dose. There was insufficient
evidence to claim that there is a statistically
significant difference between the 20 mg and 
30 mg doses. 

What are the implications of this interpreta-
tion? First, if we decided that it would be useful
to continue the clinical development program
with another trial, it would be salient to note
that, in terms of efficacy, the 10 mg dose was
inferior to the other two. Therefore, if contin-
uing, it is likely that we would not include the 
10 mg dose in further trials. What else would
help us to decide to continue with the clinical
development program? The safety and tolera-
bility of the 20 and 30 mg doses would need to
be examined and deemed acceptable. Examining
the safety and tolerability data from the partici-
pants in these two treatment groups would
provide the evidence on which to base this deci-
sion (the safety and tolerability data from parti-
cipants in the 10 mg treatment group would not
be informative at this point). If there were no
safety or tolerability concerns with the 20 or 
30 mg doses, the next stage in development
could be to continue to investigate both of these
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Table 11.6 Absolute values of differences in means

20 mg 30 mg 
treatment treatment 
group group

10 mg treatment group 2 3
20 mg treatment group 1



doses. Another possible interpretation is
discussed in Section 11.10.

11.9 Tukey’s honestly significant
difference test

Bonferroni’s method that we have just discussed
is perhaps one of the most easily understood
methods to maintain an overall type I error,
which is one of its advantages. In addition,
Bonferroni’s method does indeed control the
overall type I error rate well, such that it is guar-
anteed to be � a. However, like many items that
we discuss in this book, it has its disadvantages
as well as its advantages. 

Bonferroni’s test is overly conservative, in that
the critical values required for rejection need not
be as large as they are. In other words, using a
less conservative method may result in more
null hypotheses being rejected. The reason that
Bonferroni’s method is so conservative is that it
does not in any way account for the extent of
correlation among the various hypotheses being
tested. If a method could take into account 
the overlap, or lack thereof, of the various
hypotheses, the critical values would not need to
be defined as narrowly as with Bonferroni’s. In
this section, we therefore discuss another analyt-
ical strategy for multiple comparisons, Tukey’s
honestly significant difference (HSD) test.

Bonferroni’s method for testing pairs of means
(maintaining an overall type I error rate of a)
involved comparing the absolute differences in
means to the MSD, which was defined as a
function of: 

• the critical value from a t distribution with a
combined area of a/c in the tails of the
distribution

• the within-samples variability
• the sample sizes in each group. 

Once a value of the MSD was determined each
difference in means was calculated and
compared with the MSD. Any difference that was
equal to or greater than the MSD was considered
statistically significant. Tukey’s HSD test is
carried out in a similar manner. A value called

the honestly significant difference is determined
as a function of three things:

1. The critical value from the studentized range
statistic

2. The within-samples variability
3. The sample sizes in each group.

The studentized range statistic, called q in the
following description of the test, has a limited
use for us now and we shall not spend any addi-
tional time characterizing it, except to say that
the value of q does account for the relative size of
differences among the normalized means,
resulting in a test with an overall type I error of
exactly 0.05. The value, q, is often provided in
tables and to look it up we need to know the
number of groups (k from the ANOVA descrip-
tion), and the number of df associated with the
within-samples mean square (n � k). Statistical
software packages also supply this number. The
HSD (or, equivalently, the MSDT for minimum
significant difference – Tukey) is defined as: 

___
VWHSD � MSDT � q�–––.
n

In this expression n represents the per-group
sample size which, for the moment, we require
to be equal. 

Once the value of HSD has been determined,
the absolute value of the difference in means is
compared with it. If the absolute value of the
difference in means, |(x̄1 � x̄2)|, is greater than or
equal to the HSD the null hypothesis is rejected. 

The quantity represented by the letter “q” is
determined from a table of values used just
for this test. Two characteristics are needed to
determine the appropriate value of q each
time that it is used. These characteristics are
represented by the letters “a” and “v.” The
letter a represents the number of groups,
which in this example is 3. The letter v
represents the df, which in this test is the df
associated with the within-samples mean
square. In this case, the value of v is 12, as
calculated for and shown in the ANOVA
summary table in Table 11.4. From the table
of q values for Tukey’s test (provided in
Appendix 5) the value of q associated with an
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(a, v) value of (3, 12) is 3.77. HSD is then
calculated as follows:

__
1

HSD � 3.77� –– � 1.686.
5

The absolute values of the three differences in
means were displayed in Table 11.6. The differ-
ences between the 10 mg and 20 mg groups and
the 10 mg and 30 mg groups were both greater
than the HSD (1.686). Therefore, these differ-
ences are considered statistically significant at
the 0.05 level. The difference between the 20 mg
and 30 mg groups was not significant, however,
because it was less than the HSD.

Although Tukey’s method does not require
equal sizes among the groups, imbalanced group
sizes do require a different calculation of HSD.
When the sample sizes are unequal among all
groups being compared, there is not one
common value of HSD because this value relies
on the sample size per group. For the compar-
ison of any two means with group sample sizes
of n1 and n2, the value of HSD corresponding to
that particular comparison is:

____________
q 1 1

HSD � –––– � Vw (–– � ––).�
__
2 n1 n2

In the case that n1 and n2 are equal this expres-
sion simplifies to the one we originally
presented.

Interpretation and decision-making

Having gone through the calculations necessary
for Tukey’s test, we can look at how these results
would lead to decision-making, and also
compare the interpretation and decision-making
with those that followed from using Bonferroni’s
methodology on the same dataset.

The statistical interpretations of these results
are the same as with Bonferroni’s method. The 20
and 30 mg doses both resulted in a statistically
significantly greater SBP reduction than the 10 mg
dose. There was insufficient evidence to claim
that there is a statistically significant difference
between the 20 mg and the 30 mg doses.

11.10 Implications of the methodology
chosen for multiple comparisons

The most important lesson to be learned from
our discussions of various analytic methodolo-
gies for multiple comparisons is that the method
chosen can have a major impact on the risk of
making incorrect decisions. 

Consider the absolute difference in any two
means that was required to reject a null hypoth-
esis of H0: l1 � l2 � 0 after rejection of the
omnibus F test. In the case of the naïve
approach, which was to test each pair of means
separately and use an a level of 0.05 in each case,
the minimum significant difference would be
1.126, but the overall type I error could be guar-
anteed to be bounded only by 0.143 (see 
Table 10.5). The use of Bonferroni’s method
resulted in a minimum significant difference of
1.757, but it is overly conservative and the
overall type I error rate would be guaranteed to
be � 0.050. Tukey’s method, which accounts for
the actual distribution of differences through q,
resulted in a minimum significant difference of
1.686 and guaranteed that the overall type I
error rate � 0.050, resulting in a more powerful
test than Bonferroni’s method. Given their
importance, these characteristics are summarized
in Table 11.7. 

Lastly, it is important to note that differences
such as these underscore the importance of
declaring the primary analysis approach in a
study protocol or statistical analysis plan.
Committing to the most appropriate analysis
from first principles is not only good scientific
discipline, it is also necessary to withstand
regulatory scrutiny.

It should be noted that these are not the only
acceptable methods applicable to multiple
comparisons from an ANOVA. In each individual
case, the choice among possible approaches is
largely dependent on the study design. For
example, Dunnett’s test can be used when the
only comparisons of interest are each test treat-
ment versus a control (for example, in a placebo-
controlled, dose-ranging study). Like Tukey’s
test, Dunnett’s method is more powerful than
Bonferroni’s. In general, other methods gain
power compared with Bonferroni’s method by
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using methods that account for the correlation
of tests (for example, Tukey’s HSD test) or by
reducing the number of tests about which we
would like to make an inference (for example,
Dunnett’s test). When conducting these types of
analyses, it is theoretically possible (although
not common) to report a significant overall F
test, but not declare any pairwise comparison as
statistically significant as a result of the multiple
comparison procedure. 

Consideration of the possible clinical interpre-
tation of these results is also worthwhile. The
interpretations given in the above sections are
the full statistical interpretations from the statis-
tical analyses that were performed on the data
collected in this study. In real clinical trials, these
results are also interpreted clinically, that is, their
clinical significance is discussed. Making these
clinical efficacy interpretations is the province of
the clinicians on the study team. As we empha-
sized earlier in this book, we are not clinicians,
and these “hypothetical comments” concerning
the potential clinical significance of hypothet-
ical data must be regarded in this light. 

First, the clinical significance of a decrease in
SBP of 6 mmHg versus a decrease of 8 or 9
mmHg would need to be considered. As these
numerical values are all relatively close, let us
create some hypothetical values that conform
to the same overall pattern of significance but
are more different from each other. Suppose
that these mean decreases in SBP were
observed using the same doses of a different
antihypertensive drug:

• 10 mg group mean � �6 mmHg
• 20 mg group mean � �18 mmHg
• 30 mg group mean � �19 mmHg. 

Suppose also that Tukey’s test provided evidence
of the same pattern of statistical significance:

• 10 versus 20 mg � �6�(�18) � 12; p � 0.05
• 10 versus 30 mg � �6�(�19) � 13; p � 0.05
• 20 versus 30 mg � �18�(�19) � 1; not

significant (ns).

In this scenario, the clinical significance of a
decrease in SBP of 6 mmHg versus a decrease of
18 or 19 mmHg would need to be considered.
Suppose that decreases of 18 and 19 mmHg are
both considered to be much more clinically
significant than a decrease of 6 mmHg. Suppose
also that the 20 mg dose had a good (and there-
fore acceptable) safety profile, whereas the safety
profile of the 30 mg dose was not so good. Of
relevance in this scenario is that there was not a
statistically significant difference in efficacy
between these two dose groups. It is true that the
mean decrease in the 20 mg group was numeri-
cally less than the mean decrease in the 30 mg
group, but it was not statistically significantly
less. Therefore, it might be the case that, when
input had been received from all members of the
study team, including statisticians and clini-
cians, a decision would be made to progress only
the 20 mg dose to further trials: The 10 mg dose
is statistically significantly less effective, and 
the 30 mg dose has a less desirable safety profile
while also not being statistically significantly
more effective (see Turner, 2007).

This scenario illustrates several key points:

• Decision-making is not necessarily straight-
forward.

• The empirical evidence from our clinical 
trials provides the basis for rational decision-
making.
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Table 11.7 Characteristics of the methods to test the three pairwise comparisons of means in the ANOVA example

Method Minimally significant Overall type I error rate: P (rejecting
difference at least one null hypothesis)

Naïve approach (incorrect) 1.126 � 0.143
Bonferroni’s test (correct but 1.757 � 0.050
conservative)
Tukey’s HSD test (correct, and more 1.686 � 0.050
powerful than Bonferroni’s)



• In most cases many members of the study
team, including statisticians and clinicians,
are needed to make the optimum decision.

In real life, clinical interpretations are vital to
balance the relative weight of safety and efficacy
considerations. If a higher dose of a given drug is
considerably more efficacious than a lower dose
and leads to only a minimal increase in very
mild side-effects, a clinician may decide that, on
balance, it is worth recommending the higher
dose. Conversely, if a higher dose of a given drug
is only minimally more efficacious than a lower
dose and leads to a considerable increase in
moderate or severe side-effects, a clinician may
recommend the lower dose. 

11.11 Additional considerations about
ANOVA

Before completing our discussions of ANOVA,
there are several additional points that we would
like to address, because these questions may
have occurred to you as you have read the
preceding descriptions of the use of ANOVA and
multiple comparisons in this chapter.

11.11.1 ANOVAs with only two groups

A one-way ANOVA containing three levels was
used as the worked example in this section
because a t test cannot address a design with
more than two levels. However, the one-way
ANOVA can certainly be used in situations
involving only two levels. A reasonable question,
therefore, is: In situations involving only two
levels, where the only possible comparison is
between one level and the other, is there any
advantage in using the one-way ANOVA instead
of the t test? 

The answer is no. In cases where there are 
only two levels, either test is applicable. The
values obtained in the calculations of the respec-
tive tests will be different, but the tests will give
precisely the same answer in terms of the degree
of statistical significance obtained by the respec-
tive test statistic. That is, the t value and F value

will not be the same (the F-test statistic will be
square of the t-test statistic), but the associated 
p values will be identical. The advantage of the
ANOVA lies with its ability to address situations
involving more than two levels, which are very
common in clinical research.

11.11.2 Only collect data that you intend
to analyze

Consider a scenario where a series of possible
comparisons exists, but the investigator is
genuinely interested only in one of these compar-
isons. Such a hypothetical scenario might involve
a study employing four groups, with participants
in each group receiving one of four dose levels (1,
2, 3, and 4) of a particular drug, and primary
interest lay with comparing dose levels 1 and 4 –
that is, out of the possible six comparisons,
interest lay only with the comparison of dose
levels 1 and 4. A question that arises here is: Is it
possible to argue that this one comparison could
be made without having to adopt a more conser-
vative approach? The correct answer from a
purely statistical computational viewpoint is yes,
this argument can successfully be made. The indi-
vidual test may be undertaken using a t test at the
a � 0.05 level, that is, without adopting a more
conservative approach, because this one partic-
ular comparison of interest was specified from
first principles. However, this is not the final
answer here.

Although this argument is perfectly satisfac-
tory from a purely computational view, another
question begs to be asked: If the investigator was
interested only in comparing dose levels 1 and 4,
why were dose levels 2 and 3 included in the
study? This question is pertinent in several ways.
It costs a lot of time and money to collect such
clinical data, and the costs associated with
participants in two of the four experimental
groups would be wasted. Much more important
than the unnecessary costs, however, would be
that the participants in the dose level 2 and 3
treatment groups would have taken part in the
study for no useful reason, a gross violation of
experimental ethics.

A much more realistic scenario is one in which
four doses are included in such a study because
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the investigator does not have clear logical ideas
(hypotheses) about the relative merits (perhaps
relative efficacy) of the doses. In this case, an
original omnibus analysis such as the one-factor
ANOVA provides a very efficient initial test for
differences among the groups. If a statistically
significant result is given by the ANOVA, the
investigator can then proceed to comparing pairs
of groups in formal (and appropriate) multiple
comparison testing. 

11.12 Nonparametric analyses of
continuous data

There are times when the required assumptions
for ANOVA, a parametric test, are not met. One
example would be if the underlying distributions
are non-normal. In these cases, nonparametric
tests are very useful and informative. For
example, we saw in Section 11.3 that a nonpara-
metric analog to the two-sample t test, Wilcoxon’s
rank sum test, makes use of the ranks of obser-
vations rather than the scores themselves. When
a one-factor ANOVA is not appropriate in a
particular case a corresponding nonparametric
approach called the Kruskal–Wallis test can be
used. This test is a hypothesis test of the location
of (more than) two distributions.

11.13 The Kruskal–Wallis test

All that is required for this test to be employed is
that the observations classified into k groups are
independently sampled from populations and
the random variable is continuous with the same
variability across the populations represented by
the samples. Importantly, no assumption about
the shape of the underlying distribution is
required, making this test suitable for 
non-normal underlying distributions. 

In the Kruskal–Wallis test the original scores
are first ranked and an ANOVA analysis is then
carried out on the ranks. As with Wilcoxon’s
rank sum test, ranking of the observations must
deal with ties. The sums of squares are based on

these ranks, and the test statistic is based on a
ratio of the among-samples variability in ranks
and the within-samples variability in ranks. 

All observations, xij, are assigned ranks, rij, and
therefore the usual sums of squares can be calcu-
lated for the rank scores, rij. For brevity, the
expressions for each are provided in Table 11.8, a
general one-way ANOVA table, on the basis of
ranks.

The quantities in the ANOVA table based on
ranks represent similar quantities as the ANOVA
table based on the original scores:

rij is the rank for individual i in group j
nj is the sample size for group j

k

n �R nj is the total sample size
j�1

r̄j is the average rank for group j
nj

R(rij � r̄ j )
2

i�1s2
j � –––––––—–– is the variance of ranks in group j.

nj � 1

r̄ is the average rank over all groups (the grand
mean rank), which can be simplified as: 

n � 1
r̄ . � ––––––.

2

The omnibus test statistic, X2, follows a v2 distri-
bution with k � 1 df. If the omnibus test is
rejected the pairs of groups can be evaluated
using a Bonferroni-type approach. This requires
the assumption that the ranks are normally
distributed. As with the parametric one-way
ANOVA, a minimally significant difference in
ranks can be calculated for this purpose as:

________________
1 1

MSD � z1�(a/2c) � VW,ranks (–– � ––).n1 n2

For the sake of this example, we use the data
from the parametric ANOVA example to illus-
trate the Kruskal–Wallis test. If it seems at all
strange to use the same data for both examples,
a parametric analysis and a nonparametric
analysis, it is worth noting that a nonparametric
analysis is always appropriate for a given dataset
meeting the requirements at the start of the
chapter. Parametric analyses are not always
appropriate for all datasets.
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Statistical analysis

The analysis begins with ordering all 15 observa-
tions. Note that statistical software packages
order and rank the observations and do the
ANOVA for you. The ordered observations from
lowest to highest across the three groups are as
follows:

Then ranking each observation, accounting for
ties as described for the one-way ANOVA, the
following ranks are obtained:

The within-samples average ranks are:

r̄10 � 12.5
r̄20 � 7.1
r̄30 � 4.4.

And the grand mean rank:

r̄ . � 8.

The within-samples variances (of ranks) are:

s2
10 � 4.63

s2
20 � 12.18

s2
30 � 9.05.

The among-samples mean square is calculated
as:

5(12.5 � 8)2 � 5(7.1 � 8)2 � 5(4.4 � 8)2

VA,ranks � –––––––––––––––––––––––––––––––––––––– � 85.05.
2

The within-samples mean square (mean square
error) is calculated as:

4(3.13) � 4(12.18) � 4(9.05)
VW,ranks � ––––––––––––––––––––––––––– � 8.12.

12

Finally, the test statistic is the ratio of these two: 

85.05/8.12 � 10.48.

We note that the test statistic is greater than the
critical value of 5.991 (2 df with an a level of
0.05), so the null hypothesis is rejected. 

The next step is to decide which groups (three
comparisons) are different with respect to their
location. For this purpose the MSD is calculated
as:

____________ ____________
1 1 1 1MSD � z0.992 �8.12 (–– � ––) � 2.41 �8.12 (–– � ––) � 4.34.
5 5 5 5
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Table 11.8 General one-way ANOVA table for ranks (Kruskal–Wallis test)

Source Sum of squares Degrees of freedom Mean square X2

Among samples k � 1

Within samples n � k

Total n � 1

k

Rnj(r̄ j � r̄ .)2

j�1

� SSAranks

k

Rnj(r̄ j � r̄ .)2

j�1
–––––––––––––––––––

k � 1
� VA, ranks

VA,ranks/VW,ranks

k n
j

RR (rij � r̄ )2

j�1 i�1

� SSTranks

k n
j

RR (rij � r̄ )2

j�1 i�1
–––––––––––––––––––

n � 1
� VT, ranks

k

R (nj � 1)s2
j

j�1

� SSWranks

k

R (nj � 1)s2
j

j�1
–––––––––––––––––––

n � k
� VW, ranks

10 mg �7 �6 �6 �6 �5
20 mg �9 �9 �8 �8 �6
30 mg �10 �10 �9 �8 �8

10 mg 10 12.5 12.5 12.5 15
20 mg 4 4 7.5 7.5 12.5
30 mg 1.5 1.5 4 7.5 7.5



The differences in mean ranks are displayed in
Table 11.9. Differences in mean ranks that are
greater than the MSD are considered significantly
different.

Interpretation and decision-making

As the difference in mean ranks exceeds the MSD
for the comparison of 10 vs 20 mg and 10 vs 
30 mg, we can conclude that these distributions
differ in location. This testing procedure ensured
that the overall type I error did not exceed 0.05.
To interpret the clinical relevance of the differ-
ences detected by the test requires some addi-
tional point estimates. As the initial procedure
was a nonparametric one, the differences in
sample means are not appropriate. A more
reasonable choice would be to compare the
medians as an estimate of the treatment effect. 

The nonparametric one-way ANOVA can be
quite useful in a number of settings. The most
obvious is when reasonable judgment does not
allow you to conclude that the distributional
assumptions for the one-way parametric ANOVA
will hold. Another instance is when the data
available for analysis are only ordinal (for
example, like a rank) such that the difference
between two values does not hold the same
meaning as an interval scaled random variable. 

There are a number of nonparametric analysis
methods dealing with continuous data. The last
statistical method included in this chapter is to
be used when the continuous outcome is time to
an event. 

11.14 Hypothesis test of the equality of
survival distributions: Logrank test

In Chapter 8 we described analyses to estimate
the survival distribution of time to an adverse
event. The survival function is the probability

that an individual survives (that is, does not
experience the event) longer than time t: 

S(t) � P(individual survives longer than t).

In Chapter 10 the use of this method was
discussed in terms of estimating the median
survival time for participants in a clinical trial.
The median survival time can be helpful as a
single summary statistic that defines a typical
survival time. However, survival distributions
may deviate at various points in time. In this
section we present the logrank test, which can
be used to test the equality of two or more
survival distributions. This is not the only test
that can be used for this purpose, but it is a
natural extension of a method that we have
already described and so we have chosen to
discuss it.

A test of the equality of two survival distribu-
tions would be expressed in terms of the null
hypothesis:

H0: S1(t ) � S2(t ).

If there is sufficient evidence to reject the null
hypothesis the alternate hypothesis would be
favored:

HA: S1(t ) � S2(t ).

If, in the context of the survival distribution we
consider all of the times at which an event
occurred and index them as t(1) � t(2) � t(3)
. . . � t(H), it is possible to create a 2 	 2 classifi-
cation table for event times t(h), where h � 1, 2,
3, . . ., H in which the numbers of individuals
with and without the event of interest are
displayed for each group. Table 11.10 is a sample
cross-classification table for time h. 

Given the familiar set-up of this contingency
table it may not surprise you that we can use the
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Table 11.9 Absolute differences in mean ranks

20 mg 30 mg

10 mg 5.4 8.1
20 mg 2.7

Table 11.10 Cross-classification table of treatment
and event at time h

Event? Group 1 Group 2 Total

Yes m1h m2h mh

No n1h � m1h n2h � m2h nh � mh

n1h n2h nh



methods of the stratified (Mantel–Haenszel) v2

test to define a test statistic. Each of the distinct
event times is treated as a stratum, just as we
treated investigative centers as strata earlier. The
test statistic for the logrank test is:

H nh1 nh2( R –––––– (p̂h1 � p̂h2))
2

h�1
nh

X2
LR � ––––––––––––––––––––––––.

H nh1 nh2R –––––– p̄hq̄h

h�1
nh�1

As before, the proportion of observations with
the characteristic of interest at time h for the two
independent groups is denoted by p̂h1 and p̂h2,
respectively. The overall proportion of individ-
uals with the characteristic of interest within
each time h is denoted by p̄h. The overall propor-
tion of individuals without the characteristic of
interest within each time h is denoted by
q̄h � 1 � p̄h. 

When the sample size is reasonably large
(n � 30), the test statistic X2

LR follows a v2 distri-
bution with 1 df. Values of the test statistic that
lie in the critical region are those with
X2

LR � v2
1,1�a, that is, values of v2 with 1 df that cut

off the upper tail area of a.
To illustrate an example, we use the data from

Chapter 9 with some modifications. Although
the event of interest in that case was an adverse
event, a safety parameter, we can treat it this
time as an efficacy parameter. 

Event of interest

The event of interest is return to a state of
normal blood pressure (by some measure). The
treatment administered to the group demon-
strating earlier event times would be considered
the better treatment.

Design

In this 10-day study of a novel antihypertensive,
hypertensive study participants were randomly
assigned to test treatment or placebo (10 in each
group). They were monitored once a day (in the
evening) to measure their resting SBP. The
primary endpoint of the study was the time
(days) to return to a normal blood pressure. 

Data

The event times for the placebo and active
groups are provided below (“C” indicates a
censored observation):

The unique times at which events occurred (not
censored observations) are on days 2, 3, 4, 5, 
and 8. Table 11.11 represents the required
contingency tables for the logrank test.
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Table 11.11 Contingency table of treatment by event
at each event time

Day 2:
Normal SBP? Active Placebo Total

Yes 1 0 1
No 9 10 19

10 10 20

Day 3:
Normal SBP? Active Placebo Total

Yes 2 0 2
No 7 10 17

9 10 19

Day 4:
Normal SBP? Active Placebo Total

Yes 3 1 4
No 4 8 12

7 9 16

Day 5:
Normal SBP? Active Placebo Total

Yes 0 1 1
No 4 7 11

4 8 12

Day 8:
Normal SBP? Active Placebo Total

Yes 0 3 3
No 4 4 8

4 7 11

Placebo: 3(C) 4 5 8 8 8 10(C) 10(C) 10(C) 10(C)
Active: 2 3 3 4 4 4 10(C) 10(C) 10(C) 10(C).



Note that on day 2 there were 10 participants
at risk for the event in the active group. On day
2 one participant in the active group had the
event of interest and is therefore removed from
the number at risk at later time points. At day 3
there were nine remaining in the active group,
two of whom experienced the event, leaving
seven in the “risk set” for later times. On day 3
one placebo participant was censored, meaning
that day 3 was the last known time at which the
participant had not experienced the event. This
person is removed from the risk set for later
times. The tables are filled out in a similar
manner for all times at which the events
occurred. The important thing to remember with
these contingency tables is that the number in
eachgroupdecreasesfor latertimepointswhenthe
individual either had the event or was censored.

The test statistic can be computed by hand, but
software is the ideal method, especially for more
than a handful of event times. The numerator
part of the test statistic would be calculated as:

(10)(10) (9)(10) (4)(7)[ ––––––– (0.10 � 0) � –––––– (0.22 � 0) � . . . � ––––– (0 � 0.43)]
2

20 19 11

� 1.90.

The denominator would be calculated as:

(10)(10) (9)(10) (4)(7)
––––––– (0.05)(0.95) � –––––– (0.11)(0.89) � . . . � ––––– (0.27)(0.73)

19 18 10

� 2.286.

The test statistic is calculated as the ratio of the
two:

1.90
v2

LR � –––––– � 0.831.
2.286

Interpretation and decision-making

As we saw in Table 10.5, the critical value for the
test at an a level of 0.05 is 3.841. As the value of
the test statistic 0.831 � 3.841 there is not
enough evidence to reject the null hypothesis. 

Small studies such as this can be difficult to
interpret. There is a suggestion that the times to
response may be shorter with the active treat-
ment, but the hypothesis test did not suggest
that the variation seen was attributable to
anything but chance given the sample size. 
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11.15 Review

1. In a therapeutic exploratory trial comparing a
single dose of a new analgesic to placebo, 17
individuals were treated with the new analgesic
(test treatment) and 15 were treated with the
placebo (control). The participants reported the
severity of their pain 6 hours after dental surgery
using a visual analog scale (VAS). Pain scores on
this scale range from 0 to 100, where 0 � “no
pain” and 100 � “very severe pain.” The mean
(SD) pain score in the test treatment group
(n � 17) was 18 (7). The mean (SD) score in the
control group (n � 15) was 24 (8). Investigators
would like to know if the mean VAS pain score is
different between the two populations assumed to
be represented by the two samples of study
participants.

(a) What are the null and alternate hypotheses?
(b) Assume a � 0.05. What are the values of the

rejection region?
(c) What assumptions are necessary for the use

of the t test? 
(d) What is the value of the test statistic?
(e) What is your interpretation of the hypothesis

test?

2. This ANOVA table represents data from a study of
an analgesic. The variable of interest is a pain
score (higher values mean greater pain). 

Source SS df MS F
drug 99.89459 2 * *
Error * 30 *
Total 338.57355 32

(a) Write in the missing values of the ANOVA
table (denoted with *).

(b) In this study, how many treatments were
tested? 

(c) What are the null and alternate hypotheses?
(d) How many individuals were studied? 
(e) What is the critical region for a test with

a � 0.05?
(f) What is the statistical conclusion and

interpretation of the hypothesis test? 

3. Consider an ANOVA with four treatment groups
(30 participants in each), placebo, and three
doses of an investigational drug: Low, medium,
and high. 
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(a) What are the null and alternate hypotheses?
(b) What assumptions must be made for the

ANOVA?
(c) If the omnibus F test is significant, what are

the pairwise comparisons that would be of
interest?

(d) Why would Tukey’s test be useful to evaluate
the pairwise comparisons in (b)? 

(e) Assume the mean square within-samples is
20. What is the value of the minimum
significant difference – Tukey (MSDT) that
would determine whether pairs of treatments
were significantly different? 

4. In what situations would the Kruskal–Wallis test be
appropriate?



12.1 Introduction

The previous chapters have provided you with
an introduction to statistical methods and
analyses that are commonly used in pharmaceu-
tical clinical trials, with an emphasis on thera-
peutic confirmatory trials. Although we certainly
have not covered all of the analyses that can be
conducted in these trials, those that we have
discussed have given you a solid foundation that
will also enable you to understand the basics of
other analyses.

Throughout our discussions we have illus-
trated the importance of selecting the appro-
priate analytical strategy that best serves the
objective of a given trial. There is hardly a
single statistical method that always applies to a
given study design or type of data: Rather, the
choice of the analytical strategy for a given trial
is the result of statistical considerations, clinical
judgments, and regulatory standards. 

In this chapter we highlight additional statis-
tical considerations relevant to therapeutic
confirmatory trials, and other study designs that
also provide important information upon which
to base decision-making. These additional
insights and information build upon the mater-
ial presented so far. As this chapter is largely
conceptual rather than computational, we have
included a number of references to guide your
further reading.

12.2 Sample size estimation

An important part of study design is the “deter-
mination” of the required sample size. Before
starting, we should note that we prefer the term

“estimation” to the terms “determination” and
“calculation” of a sample size. Although a math-
ematical calculation is certainly performed here,
the values that are put into the appropriate
formula are chosen by the researcher. 

It is also appropriate to note that not all clin-
ical trials utilize formal sample size estimation
methods. In many instances (for example, FTIH
studies) the sample size is determined on the
basis of logistical constraints and the size of the
study thought to be necessary to gather suffi-
cient evidence (for example, pharmacokinetic
profiles) to rule out unwanted effects. However,
when the objective of the clinical trial (for
example, a superiority trial) is to claim that a
true treatment effect exists while at the same
time limiting the probability of committing type
I or II errors (a and b), there are computational
methods used to estimate the required sample
size. The use of formal sample size estimation is
required in therapeutic confirmatory trials, this
book’s major focus, and strongly suggested in
therapeutic exploratory trials. 

12.2.1 Sample size for continuous
outcomes in superiority trials

Consider the simple case of a superiority trial of
an investigational drug (the test treatment)
being compared with placebo with respect to a
continuous outcome (for example, change from
baseline SBP). The null hypothesis typically
tested in such a trial and its complementary
alternate hypothesis are:

H0: lTEST � lPLACEBO � D

HA: lTEST � lPLACEBO � D.

12
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There are a number of values of the treatment
effect (delta or D) that could lead to rejection of
the null hypothesis of no difference between the
two means. For purposes of estimating a sample
size the power of the study (that is, the proba-
bility that the null hypothesis of no difference is
rejected given that the alternate hypothesis is
true) is calculated for a specific value of D. In the
case of a superiority trial, this specific value
represents the minimally clinically relevant
difference between groups that, if found to be
plausible on the basis of the sample data through
construction of a confidence interval, would be
viewed as evidence of a definitive and clinically
important treatment effect. 

Another way of stating this is that, if the true
difference in population means is as large as a
specific value of D proposed as clinically impor-
tant, we would like to find the sample size such
that the null hypothesis would be rejected 
(1 �b)% of the time. The sample size must also
be chosen so that a is maintained at an acceptably
low value. 

The sample size formula required to test (two-
sided) the equality of two means from random
variables with normal distributions is:

2r2(Z1�a/2 � Z
�
)2

n per group � ––––––––––––––––.
D2

In this equation:

• n is the sample size per group
• r2 is the assumed variance
• Z1�a/2 is the value of the Z distribution that

defines an area of size a/2 in the upper tail of
the Z distribution

• Zb is the value of the Z distribution that
defines an area of size b in the lower tail of the
Z distribution

• D is the difference in means that we would
like to detect, if it exists, by virtue of rejecting
the null hypothesis. 

Both a and b are design parameters, and are
chosen at the discretion of those designing the
trials. In confirmatory trials, a is 0.05 and b is
typically 0.10 or 0.20 (meaning that the study
has 90% or 80% power, respectively). The
choices of r and D are not quite as straightfor-
ward, because the range of possible values is

outside the direct control of the study planner.
The standard deviation r must be estimated
using (any) available data, and the value of the
treatment effect D is determined using clinical
judgment. 

It is important to note that, all other things
being equal, the following statements are true:

• The required sample size increases as the vari-
ance increases.

• The required sample size increases as the size
of the treatment effect decreases.

• The required sample size increases as a
decreases.

• The required sample size increases as the
power (1 �b) increases.

This sample size formula can be illustrated with
the following example. Suppose that, in
exploratory therapeutic trials of a new anti-
hypertensive, the standard deviation for the
between-treatment difference in mean change
from baseline SBP was estimated to be 50 mmHg.
After reviewing the literature and consulting
with regulatory authorities, it is agreed that a
between-treatment group difference in mean
change from baseline (that is, the treatment
effect) of at least 20 mmHg would be considered
a clinically important benefit of a new drug to
treat hypertension. The study sponsor is plan-
ning a confirmatory trial comparing the test
drug with a placebo and would like to have an
excellent chance (90%) of claiming that the
treatment effect is not zero if the drug is as effi-
cacious as they believe. From the expression
above, the sample size required per group is:

2(50)2(1.96 � 1.645)2

n � ––––––––––––––––––––
202

� 133 per group for a total of 266 individuals.

This sample size estimate would be described in
the study protocol in this manner: 

A total of 266 participants (133 per group) will
be randomized in this study in a 1:1 ratio to test
and placebo. Assuming a common standard
deviation of 50 mmHg, this sample size will
provide 90% power to detect a between-group
difference in mean change from baseline of at
least 20 mmHg using a two-sided test of size a �

0.05.
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The power of the study is the probability of
rejecting the null hypothesis of no difference in
means, assuming that the true difference is at
least 20 mmHg and the estimated variance is
correct. As we have seen in this book, all esti-
mates have sampling variation associated with
them. Therefore, it can be helpful to see how the
power to detect a difference of 20 mmHg varies
as a function of sample size using three different
values of the standard deviation. The impact of
these two factors on the power can be seen in
Figure 12.1, a graphical display called a power
curve. Figure 12.1 is a compelling illustration of
the importance of the assumed value of the stan-
dard deviation. Consider that, in the design of
the study in our worked example, the assumed
standard deviation of 50 mmHg led to a sample
size of 133 per group for a power of 90% to
detect the important difference of 20 mmHg. If
the standard deviation was underestimated such
that it was really 70 mmHg, the study would
really only have 64% power to detect the differ-
ence that was considered important. Of course,
this cannot be known in advance of a trial, but a
post hoc examination of the study data, and a
possible re-estimation of the standard deviation,
can better inform future trials and increase the
probability that they will be successful.

12.2.2 Sample size for binary outcomes in
superiority trials

We have encountered a number of statistical
methods used to test the difference between two
population proportions. Suppose that we are
interested in estimating the sample size for a
superiority trial of an investigational drug (the
test treatment), which will be compared with
placebo with respect to a binary outcome, for
example, proportion of individuals attaining a
goal SBP. The null hypothesis and its comple-
mentary alternate hypothesis typically tested in
such a trial are:

H0: pTEST � pPLACEBO � 0.

HA: pTEST � pPLACEBO � 0.

As in Chapter 10, the population proportions for
each of two independent groups are represented
by pTEST and pPLACEBO. Just as for the case of
continuous outcomes, the power of the study is
calculated for a specific value of D � pTEST �

pPLACEBO, a value that is considered the minimally
clinically relevant difference (CRD). 

The sample size formula required to test (two-
sided) the equality of two population propor-
tions used here is cited from Fleiss et al. (2003).
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Figure 12.1 Power curve (D � 20 mmHg) as a function of sample size (n) for r � 30 mmHg, 50 mmHg, and 70 mmHg



The calculation involves two parts. The first
makes use of a normal approximation:

_____ ___________________________
(Z1�a/2 �2p̄ q̄ � Zb�pTESTqTEST � pPLACEBOqPLACEBO)2

n� � –––––––––––––––––––––––––––––––––––––––––––,
(D)2

where:

D � pTEST � pPLACEBO,

pTEST � pPLACEBO,
p̄ � ––––––––––––––,

2

q̄ � 1 � p̄ ,

qTEST � 1 � pTEST,

and

qPLACEBO � 1 � pPLACEBO.

Note that the sample size depends not only on
the value of D, but also on the individual propor-
tions themselves. The implication of this is that
the sponsor must make a reasonable estimate of
the response in the placebo group (that is,
pPLACEBO) and then postulate a value of D that is
clinically relevant. The corresponding value of
pTEST can be obtained by subtraction. This first
sample size estimate (n�) can be improved
through the use of a continuity correction,
which gives more accurate results when a
discrete distribution (in this case the binomial
distribution) is used to approximate a contin-
uous distribution (in this case the normal). The
sample size formula with continuity correction
is:

________
n� 4

n per group � –– (1 � � 1� ––––)
2

.
4 n��	�

In a confirmatory efficacy trial the study sponsor
would like to evaluate a test treatment (an anti-
hypertensive) versus placebo with respect to a
binary outcome of attaining a goal SBP 
 140
mmHg. After reviewing several sources of data
the sponsor estimates that the placebo response
will be around 0.20 (that is, 20% of individuals
will attain the goal without medical therapy).
The sponsor would like to estimate the sample

size required to detect a difference in response
rates of 0.20 – that is, the postulated value of the
response for test treatment is 0.40. As the study
is a confirmatory trial, 90% power is recom-
mended and the test will be a two-sided test with
a � 0.05. 

Substituting these values into the formula for
the per-group sample size, we obtain:

____________ ________________________
(1.96�2(0.30)(0.70) � 1.645�(0.40)(0.60) � (0.20)(0.80)2

n� � ––––––––––––––––––––––––––––––––––––––––––––––––––––– � 306.
(0.20)2

With a continuity correction the result is:
_____________

306 4
n � –––– (1 � � 1� –––––––––)

2

� 316 individuals per group.
4 306(0.20)

This sample size estimate would be described in
the study protocol in this manner: 

A total of 632 individuals (316 per group) will be
randomized in this study in a 1:1 ratio to the test
treatment and the placebo treatment. Assuming
a placebo response rate of 20%, this sample size
will provide 90% power to detect a between-
group difference in response rates of 20% using
a two-sided test with a � 0.05. 

As for continuous data, a power curve can be
generated for a number of scenarios for binary
outcomes. As seen in Figure 12.2, the power of a
test of proportions (for a fixed value of D) is quite
sensitive to the particular assumed value of the
response rate in the control (for example,
placebo) group. 

12.2.3 a and b reconsidered using Bayes’
theorem

After a study has been completed, a statistical
analysis provides a means either to reject or to
fail to reject the null hypothesis. The statistical
conclusion will, in part, be used to justify
whether or not further investment is made in
the development of a test product. A sound busi-
ness strategy would dictate that further invest-
ment be made only if objective information
from the study suggests it. Inferential statistics
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(for example, a hypothesis test) is the appro-
priate means to differentiate a real effect from a
chance effect. For the remainder of this section
we investigate the wisdom of adopting such a
policy, using an approach similar to that
described by Lee and Zelen (2000). In particular,
the remainder of this section will address the
following two questions:

1. How likely is the sponsor to be misled by the
result of the statistical conclusion from a
hypothesis test with design parameters a
and b?

2. What is the role of accumulating evidence
about the true treatment effect on the
credibility of results from a hypothesis
test?
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Throughout this book we have emphasized the
role of Statistics in designing and analyzing
studies that enable sponsors to make decisions
about the future development of new drugs.
When developing a new drug, information is
accumulated over time, with each step
informing the next. As studies are completed
through various stages of clinical development
(FTIH studies, therapeutic exploratory studies,
and one or more therapeutic confirmatory
studies) evidence is gathered that supports the
efficacy of the new drug. This is true only if new
studies are planned because such a promise
exists. Hence we assume over time, with the
accumulation of new information, that various
scientists involved in the development program
could make an informed guess about the
probability that the drug works (that is, that the
alternate hypotheses considered in Sections
12.2.1 and 12.2.2 really represent the truth). Let
us call this probability, s (tau). 

s � probability that D � 0.

However, as additional studies would be
conducted only if the accumulating evidence
suggested that there was a treatment benefit, s
represents the probability that the treatment is
truly effective. We can think of s � 0 as repre-
senting a molecule that has just been discovered,
for which no evidence has been generated about
its ultimate effect on a clinical outcome of
interest. At the other extreme a value of s � 0.8
represents a drug for which a great deal of infor-
mation has been collected and most of the data
support a beneficial effect of the treatment.
Values of s around 0.5 may represent a drug for
which some (or limited) data support a treat-
ment benefit. 

Consider the following probabilities, which
express the likelihood of the true state of affairs
given the statistical conclusion at the end of the
study:

a* � P(Null is true|Reject null)

b* � P(Alternate is true|Fail to reject the null).

The value a* is the probability that a rejected
null hypothesis (for example, p value 
 a) is
misleading. That is, it represents the chance that,
having rejected the null hypothesis of no effect,
the treatment is not efficacious. Its complement,
(1 �a*), is the probability that the rejected null
hypothesis is consistent with the truth (that is,
the treatment is efficacious).

Similarly, the value b* is the probability that
failure to reject the null hypothesis (for example,
p value � a) is misleading. It represents the
chance that, having failed to reject the null
hypothesis of no effect (and acting as if the null
is true), the treatment really is efficacious. The
complement, (1 �b*), is the probability that our
inability to reject the null hypothesis is consis-
tent with the truth (that is, the treatment is not
efficacious).

If we are to adopt a policy of using inferential
statistics to make decisions in the light of uncer-
tainty, we would like to minimize these proba-
bilities, a* and b*, as they directly lead to wasted
investment in the former case or a lost commer-
cial opportunity in the latter.

Using Bayes’ theorem (recall our discussions in
Chapter 6), the probability,

a* � P(Null is true|Reject null), 

can be written as:

P(Null is true)
a* � P(Reject null | Null is true) –––––––––––––.

P(Reject null)

Recall also from Chapter 6 that the marginal
probability of an event can be expressed as a
series of conditional probabilities as long as
the conditional events are mutually exclusive
and exhaustive. This allows us to express the
probability,
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P(Reject null) � P(Reject null) | Null is true) P(Null is true) � P(Reject null) | Alternative is true)P(Alternative is true).

Finally, putting this entire expression together we have:

P(Reject null) | Null is true)P(Null is true)
a* � ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––.

P(Reject null) | Null is true)P(Null is true) � P(Reject null) | Alternative is true)P(Alternative is true)



This probability can then be expressed as a func-
tion of the design parameters, a and b, and the
estimated probability that the alternative is
true, s:

a(1 � s)
a* � –––––––––––––––––.

a(1 � s) � (1 � b)s

Bayes’ theorem and algebra can be used in a
similar fashion to obtain the following expres-
sion for b*:

�s
b* � –––––––––––––––––.

�s � (1 � a)(1 � s)

We can use these two expressions to answer the
questions posed at the beginning of this section.
The first of these is: 

How likely is the sponsor to be misled by the
result of the statistical conclusion from a
hypothesis test? 

The short answer is that it depends on the power
(and therefore the sample size) of the study. To
illustrate this, assume that the value of the
design parameter a is dictated by regulatory
concerns, which is reasonable especially in
confirmatory trials. Further, before a new study
is completed there is still some doubt as to
whether the new treatment is efficacious, such
that the value of s is conjectured to be 0.5.
Resulting values of the error rates, a* and b*, are
presented in Table 12.1 as a function of the
power (or, equivalently, b) of the study.

The key message from Table 12.1 is that the
probability of both errors decreases with
increases in statistical power. A study planned
with power of 0.5 and a statistical decision to
reject the null (for example, because p value 


0.05) yields a probability of 0.09 that the two

treatments are not significantly different. In
contrast, a study with power 0.9 and the same
outcome (to reject the null) yields a probability
of 0.05 that the two treatments are really signif-
icantly different. Even though the statistical test
has indicated that further investment should be
considered because the test treatment appears to
be efficacious, the underpowered study leads to
an unwise decision 1.8 times (0.09/0.05) more
often than the conventionally powered study.
Similar statements can be made about unwisely
abandoning an efficacious product by exam-
ining the values of b*. Another way of stating
this is that the greater the statistical power for a
study, the more reliable the decisions made as a
result. 

Now consider the second question:

What is the role of accumulating evidence about
the true treatment effect on the credibility of
results from a hypothesis test?

To address this question, the error rates, a* and
b*, are presented in Table 12.2 as a function of s
(a measure of the likelihood the treatment is effi-
cacious) with power 0.9 and a � 0.05, typical
values for highly powered studies. An examina-
tion of a couple of cases will help to answer this
question.

When s � 0 there is a great deal of uncertainty
about the probability that the treatment is effi-
cacious. This situation may apply when there is
no experience with the test treatment or some
experience with mixed or poor results. When a
statistically significant result leading to rejection
of the null hypothesis has been observed in this
situation, the sponsor will be misled into
thinking that the drug is effective when it really
is not with probability 0.33. On the other hand,
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Table 12.1 Error rates a* and b* as a function of b (a � 0.05 and s � 0.5)

b 1 � b (power) a* 1 � a* b* 1 � b*

0.5 0.5 0.09 0.91 0.34 0.66
0.4 0.6 0.08 0.92 0.30 0.70
0.3 0.7 0.07 0.93 0.24 0.76
0.2 0.8 0.06 0.94 0.17 0.83
0.1 0.9 0.05 0.95 0.10 0.90



failure to reject the null hypothesis in this situa-
tion will mislead the sponsor who abandons
development with probability 0.01. 

Once some studies have been completed and
evidence has been gathered to support the effi-
cacy of the new treatment, the value of s may be
around 0.5. This value represents at least
moderate evidence that the treatment is truly
efficacious. When a statistically significant result
leading to rejection of the null hypothesis has
been observed in this situation, the sponsor will
be misled into thinking that the drug is effective
when it really is not, with probability only 0.05.
This reflects previous experience, which has
shown that the treatment provides a benefit.
Failure to reject the null hypothesis will mislead
the sponsor who then abandons development as
a result, with probability 0.10. Again, this proba-
bility reflects previous experience because the
new evidence contradicts the prior belief that
the treatment is efficacious so that acting on the
new study result may be misleading. 

The case where s � 0.9 represents nearly
certain knowledge. It is hard to understand why
any additional data would be required in this
instance. However, an examination of the error
rates a* and b* in this situation is illuminating.
Rejection of the null hypothesis would come as
no surprise so that such a result would rarely be
misleading. Failure to reject the null hypothesis
would come as a surprise because it is almost
known with certainty that the null is false. Thus,
this information is too bad to be true and acting
on it is unwise. 

The probability s is analogous to the under-
lying prevalence of disease in a population. In

the setting of diagnostic testing, a* and b* refer
to the positive and negative predictive values of
a test. As illustrated in Chapter 6, when evalu-
ating a diagnostic test, even high values of sensi-
tivity and specificity can lead to skepticism
about a positive test when the prevalence of the
underlying disease is low. 

In a similar manner, s should serve to temper
the enthusiasm of study sponsors who have
observed a new positive study result, especially
early in development programs. It can be used to
calibrate the credibility of statistical results.
Without sufficient prior information about the
treatment even a statistically significant result
can lead to poor (and expensive) business deci-
sions. When a sponsor desires either to continue
or to discontinue development of a new drug as
a result of a study, the results in this section
point to the importance of power. Despite their
other benefits, exploratory therapeutic trials,
which tend to be small in size (and therefore
have low power), are poor studies on which to
make business decisions. Small, early clinical
studies may provide some evidence on which to
base future research, including s. However, once
that is done, there is no substitute for definitive,
highly powered studies in appropriate popula-
tions, using acceptable clinically relevant
endpoints. In short, power, a statistical design
parameter, has a direct bearing on the quality of
decision-making. We believe that recognition of
this relationship is very much underappreciated,
and that it has a profound bearing on the way
sound business decisions should be made.

12.2.4 Importance of collaboration in
sample size estimation

Sample size estimation requires the input of a
number of specialists involved with the develop-
ment of new drugs. The estimate of the standard
deviation can be informed by exploratory thera-
peutic trials of the same drug or by literature
reviews of similar drugs. Synthesis of these data
from a number of sources requires statistical and
clinical judgments. As was seen in Figure 12.1
the estimate of the standard deviation has an
important effect on the sample size. Study teams
should understand the sources of variability in
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Table 12.2 Error rates a* and b* as a function of s
(a � 0.05 and 1 � b � 0.9)

s a* 1 � a* b* 1 � b*

0.1 0.33 0.67 0.01 0.99
0.3 0.11 0.89 0.04 0.96
0.5 0.05 0.95 0.10 0.90
0.7 0.02 0.98 0.20 0.80
0.9 0.01 0.99 0.49 0.51



the response variable and attempt to minimize
unwanted variability. 

The definition of the minimally clinically rele-
vant difference of interest involves clinical,
medical, and regulatory experience and judg-
ments. The appropriate sample size formula
depends on the test of interest and should take
into account the need for multiple comparisons
(either among treatments or with respect to
multiple examinations of the data). The project
statistician provides critical guidance in this area.

It is appropriate to note here that in some
instances the sample size may not be completely
dictated by the statistical requirements for a
given power calculation. The ICH has published
a guidance document (ICH Guidance E1, 1994)
applicable to drugs given chronically. This guid-
ance specifies the minimum number of individ-
uals who should be exposed for certain periods
of time so that potential adverse events (AEs)
may come to light before the drug is marketed.
The need for a larger safety database may super-
sede the sample size required to demonstrate a
statistically significant and clinically relevant
treatment effect. 

In summary, sample size estimation requires
the input of a number of disciplines involved in
the design of clinical trials. 

12.3 Multicenter studies

A certain number of participants need to be
recruited for any given trial. In Section 12.2 we
discussed sample size estimation, which takes
into account a number of considerations that are
important not only to the statistician but also to
the clinical scientist and the regulator. Once
determined, the value produced by this process
of estimation is incorporated into the study
protocol.

We have seen that relatively small numbers of
participants are recruited for early phase trials
(perhaps 20–80 in FTIH studies and 200–300 in
early Phase II studies), and relatively larger
numbers are recruited for therapeutic confirma-
tory trials (perhaps 3000–5000). It is relatively
easy to recruit between 20 and 80 participants at

a single investigational site. Indeed, as we noted
in Section 7.3, conducting a FTIH study at a
single center enhances consistency with respect
to management of participants, study conduct,
and assessment of AEs, and provides for
frequent and careful monitoring of study partic-
ipants. However, it is not feasible to recruit
3000–5000 participants at a single investiga-
tional site, so multicenter studies are typical at
this stage of clinical development programs.

As for so many of the topics that we have
discussed, multicenter studies have both advan-
tages and disadvantages. Let us consider the
disadvantages first and then focus on the advan-
tages. The major disadvantage relates to the
logistic demands of coordinating a multicenter
trial. The rarer the medical condition of interest
in the trial, the more sites that will probably
be needed because fewer individuals will likely
be available at each site. It is not unusual to
have between 50 and 100 investigational sites
participating in some trials. These sites may be
scattered across a country and, increasingly,
they may be scattered across several countries
and continents. This occurrence has many
consequences, including:

• All investigational sites must obtain approval
from their investigational review board (IRB)
to conduct their portion of the trial. 

• The drug products used in the trial must be
shipped to all sites, which may entail dealing
with customs and import/export controls.

• If some sites speak different languages, all
relevant issues must be addressed (for
example, translating the informed consent
form into each language).

• All principal investigators (one from each site)
and certain members of their staff must receive
training that will attempt to ensure consis-
tency of all methodology used in the trial.
Investigator meetings are held accordingly.

• Multicenter studies benefit from (rely on) the
use of central labs to analyze certain samples
taken during the trial (for example, blood
samples). This is a complex shipping
problem, especially when samples must be
transported to the central laboratory under
certain conditions and very quickly from
distant locations.
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Each of the above considerations adds
considerably to the total cost of a multicenter
trial.

From a statistical point of view, while every
attempt is made to standardize the implementa-
tion of study methodology at all sites, perfect
standardization is not a realistic expectation.
Although simpler is usually better, study proto-
cols often become complex during their devel-
opment, and different investigational sites will
likely differ in their implementation of some
procedural aspects. This occurrence introduces
extraneous variability into data collected and
analyzed. Extensions of some of the analysis
methods described in this book can be used 
to account for center-to-center variability,
including multi-way ANOVA models for contin-
uous variables, stratified v2 tests for categorical
variables, and stratified log-rank tests for time-
to-event analyses. Various other methodological
controls can be introduced in an attempt to
minimize such extraneous variability, but the
success of any control strategy is unlikely to be
perfect. 

For these and other reasons, we believe that, if
it were possible to conduct a trial requiring
3000–5000 participants at a single investiga-
tional site, sponsors would do so, even though
this statement is at odds with the commonly
cited major advantage of multicenter trials,
which is that they enable greater generalization
of results obtained from the trial. It is statistically
possible to assess the treatment effect at each
investigational site as well as assessing it using
the data from all sites, although a given site
needs to have reasonable enrollment for the
treatment effect calculated from its participants
to be meaningful. If similar treatment effects are
observed at sites that tended to enroll relatively
older individuals, relatively younger ones, ethni-
cally homogeneous samples, ethnically hetero-
geneous samples, with less or more experience of
treating the designated indication, and so forth,
it is reasonable to have a certain degree of faith
that the treatment effect is generalizable to the
eventual patient population if and when the drug
is approved for marketing.

12.4 Analysis populations 

Various analysis populations for clinical trial
data can be defined and are used in statistical
analyses, including:

• The intent-to-treat (ITT) population: This
comprises all participants in a clinical trial
who were randomized to a treatment group,
regardless of whether any data were actually
collected from them. 

• The safety population: This is a subset of the
ITT population, defined as the population of
participants who received at least one dose of
a study treatment.

• The per-protocol population (also known as
the efficacy or evaluable population): This is
also a subset of the ITT population, and
comprises individuals whose participation
and involvement in the trial were considered
to comply with significant requirements and
activities detailed in the study protocol.
Participants would typically be excluded from
the per-protocol population if they exhibited
poor dosing compliance, missed a number of
clinic visits, or used prohibited medications
that may interfere with the evaluation of the
test treatment. 

Both the ITT and the safety populations can be
used in the analysis of safety data. The ITT and
per-protocol population are typically used in the
analysis of efficacy data.

12.4.1 Using both ITT and per-protocol
populations in efficacy analyses

In therapeutic confirmatory trial efficacy, the
same analyses are typically conducted twice,
using data from the ITT population and data
from the per-protocol population (see Turner,
2007). The analyses conducted using the ITT
population are considered to be the primary
analyses because ITT analysis provides a conser-
vative strategy in the sense that it tends to bias
against finding the results that the researcher
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“hopes” for, particularly in the case of superi-
ority trials. The conservative nature of ITT
analysis is deemed particularly appropriate when
attempting to demonstrate the efficacy of an
investigational drug because these data do not
favor the desired outcome. Then, if there is
compelling evidence of the drug’s efficacy, this
evidence will be particularly noteworthy. The
ITT population is the most appropriate sample
population from which to make inferences to
the population of patients who may receive the
drug if and when it receives marketing approval. 

Having conducted primary analyses using the
ITT population it is then appropriate to conduct
secondary analyses using the per-protocol popu-
lation, the subset of participants whose partici-
pation in the trial was compliant with the study
protocol. This analysis is regarded as less conser-
vative than ITT analysis because analysis of the
per-protocol population may maximize the
opportunity to demonstrate efficacy: The per-
protocol population is the population in which
the treatment is likely to perform best. 

Regulatory authorities are encouraged if the
results from the ITT efficacy analysis and the 
per-protocol efficacy analysis are similar, and
their overall confidence in the trial results is
increased. However, if they are not similar, ques-
tions may be raised as to why they are not. Some
of these questions are (Turner, 2007):

• Is the per-protocol population a lot smaller
than the ITT population (it will almost
certainly be somewhat smaller)? 

• If so, were there a lot of major protocol
violations? 

• Were a lot of participants removed for the
same protocol violation? 

• Were many of the participants with protocol
violations enrolled at the same investigative
site? 

• Are there any systematic problems in the
conduct of the trial? 

All of the issues addressed by these questions 
can reduce the regulatory reviewers’ overall
confidence in the trial’s findings.

12.4.2 Proper and improper subgroup
analysis

Investigators may be interested to examine
potential differences among groups of partici-
pants according to some characteristic. For
example, there may be differences in the response
to treatment according to age. An analysis to
investigate such a phenomenon could involve
separate analyses for participants aged 18–34,
35–54, 55–74, and 75 years and older. Similar
analyses could be presented in which partici-
pants are grouped according to some measure of
disease severity. Results such as these should be
interpreted with caution because the more
subgroups that are examined the greater the
chance of discovering a false positive (recall our
earlier discussions of multiple comparisons).

Although we have not discussed this topic,
differences in treatment effects may be tested to
see if they are homogeneous across the various
subgroups. This test is called a test of the
treatment-by-subgroup (for example, treatment
by age) interaction. It is useful because it can rule
out, using a hypothesis test, apparent differences
among subgroups of subgroups that really repre-
sent random variation. Citing from the ICH
Guidance E9 (1994, p 27): 

The treatment effect itself may also vary with
subgroup or covariate – for example, the effect
may decrease with age or may be larger in a
particular diagnostic category of subjects. In
some cases such interactions are anticipated or
are of particular prior interest (e.g. geriatrics),
and hence a subgroup analysis, or a statistical
model including interactions, is part of the
planned confirmatory analysis. In most cases,
however, subgroup or interaction analyses are
exploratory and should be clearly identified as
such; they should explore the uniformity of 
any treatment effects found overall. In general,
such analyses should proceed first through the
addition of interaction terms to the statistical
model in question, complemented by additional
exploratory analysis within relevant subgroups
of subjects, or within strata defined by the
covariates. When exploratory, these analyses
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should be interpreted cautiously; any conclusion
of treatment efficacy (or lack thereof) or safety
based solely on exploratory subgroup analyses
are unlikely to be accepted. 

These cautions having been noted, some unex-
pected subgroup findings may actually reveal
important findings that should be further inves-
tigated in additional studies. This can be espe-
cially important when there is evidence of
different safety profiles among subgroups.
Matthews (2006) distinguished between two
sorts of subgroup formation, and hence analysis:

• a limited number of subgroups identified a
priori with an apparent biological/clinical
reason for the difference of interest

• subgroups whose apparent importance is
retrospective, and arises only as a result of
doing analyses.

If the treatment effect appears to differ across
subgroups identified in the first way, the
phenomenon “should be taken much more seri-
ously” than if the subgroups came to light via
the second process (Matthews, 2006, p 171). 

12.5 Dealing with missing data

For various reasons there are often participants
in a trial for whom a complete set of data is not
collected. This is the province of missing data.
When conducting efficacy analyses we need to
address this issue, and the way(s) in which it is
addressed can influence the regulatory reviewers’
interpretation of the analyses presented. The
issue of missing data is problematic in clinical
research because humans have complex lives.
Human participants may choose to leave a study
early or be unable to attend a specific visit, both
situations leading to missing data. Nonclinical
research involves tighter experimental control in
which the subjects (animals) do not have the
ability voluntarily to leave the study early. 

Piantadosi (2005) observed that there are only
three generic analytic approaches to addressing
the issue of missing data:

1. Disregard the observations that contain a
missing value.

2. Disregard a particular variable if it has a high
frequency of missing values.

3. Replace the missing values by some appropriate
value.

The last of these approaches is called imputation
of missing values. As Piantadosi (2005, p 400)
commented, although this approach sounds a
lot like “making up data,” when done properly it
may be the most sensible strategy. While tech-
niques for addressing missing data can be tech-
nically difficult, one commonly used, simple
imputation method is called last observation
carried forward (LOCF). In a study with repeated
measurements over time, the most recent
observation replaces any subsequent missing
observations (Piantadosi, 2005). 

An assumption of such an imputation strategy
is that the future course of the individual’s
condition can reasonably be predicted by the last
known state. If participants in the test group
drop out of the study more often than those on
placebo because the test treatment has failed,
such an assumption may not be realistic. It is
possible that participants who dropped out for
treatment failure actually got worse than when
they left the study. A commonly proposed
strategy is to use a number of imputation
methods and see how the analysis results change
as a result. If the results of this sensitivity
analysis suggest that the overall conclusion
remains the same, it is less important how the
missing data are managed. 

Differential rates of loss to follow-up among
groups or high rates in any single group compli-
cate the management of missing data. Strategies
that minimize the chance that participants will
leave a study prematurely should be considered
at the design and protocol writing stage, and
incorporated in the protocol as appropriate. 

A number of approaches to dealing with
missing data are described by Molenberghs and
Kenward (2007).

12.5.1 The importance of study conduct
and study monitoring

While there are widely accepted methodologies
for dealing with missing data, it is certainly
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preferable to have as many “actual” data as
possible. This simple point underscores the crit-
ical nature of study conduct. All procedures
detailed in the study protocol need to be
followed, and all data required need to be
collected to the greatest degree possible (there
will always be occasional genuine reasons why
this was not possible in a specific situation). 

This need for as complete a dataset as possible
underscores the importance of the clinical
monitor. Two related and critical responsibilities
of clinical monitors are to ensure that all sites in
the trial follow the study protocol, and to check
that the required data are recorded as and when
they should be. A good monitor will spot the
absence of recorded data sooner rather than
later, which considerably increases the likeli-
hood of locating and subsequently recording
those data.

12.6 Primary and secondary objectives
and endpoints

A given trial is conducted to collect optimum
quality data with which to answer an identified
and important research question. The data
collected are intended to provide the most accu-
rate answers to the research questions posed. A
study protocol will often include both primary
and secondary objectives, and also the associated
primary and secondary endpoints. 

12.6.1 The primary objective and
endpoint

Turner (2007) noted that, in a very real sense, all
the clinical studies that are conducted before a
therapeutic confirmatory trial is undertaken
have one purpose: To allow the primary objec-
tive in the therapeutic confirmatory trial to be
stated as simply as possible. An objective that
can be stated simply can be tested simply, that is,
in a straightforward and unambiguous manner.
This is a highly desirable attribute in a primary
objective. 

By the time a therapeutic confirmatory trial is
appropriate it should be possible to state a single

primary objective (or perhaps two if the sponsor
really feels that this is appropriate) that is clini-
cally relevant and biologically plausible. Having
stated this primary objective, deciding upon the
primary endpoint should be straightforward.
Deciding on the appropriate study design and
the associated statistical analyses should also be
straightforward. Throughout this book we have
focused on the development of a new antihyper-
tensive drug. The primary objective of a thera-
peutic confirmatory trial in this therapeutic
area will be to determine if the investigational
drug does indeed lower blood pressure, and the
associated endpoint(s) may be a certain magni-
tude reduction in systolic blood pressure (SBP),
diastolic BP (DBP), or both. 

At the analysis stage of the trial this endpoint
provides the focus for rigorous statistical analysis
and interpretation (Machin and Campbell, 2005).
Formal hypothesis testing will be employed to
determine the presence or absence of a statisti-
cally significant difference between the mean
decrease seen in the drug treatment group and
that seen in the control group. In addition, the
clinical significance of the treatment effect will
be addressed.

Having a single primary objective has an addi-
tional advantage in a study. It means that
sample-size estimation can be based on that
objective and the associated estimated treatment
effect of interest (recall our discussion of sample-
size estimation in Section 12.2). Having multiple
primary endpoints requires adjustments for
multiplicity and can be difficult to interpret if
only one of multiple primary endpoints is found
to have a statistically significant effect. 

12.6.2 Secondary objectives and
endpoints

In addition to the primary objective, a study may
have a small number of secondary objectives. A
secondary endpoint will be associated with each
secondary objective. For example, assessments 
of quality of life may fall under the category of
secondary objectives. (In some studies quality 
of life may be the primary objective: It is simply
used here as a realistic example.) Quality of life
(QoL) is an extremely important consideration,
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and particularly so in long-term pharmaceutical
therapy. Even if a disease or condition cannot be
cured, keeping the symptomatology at accept-
able levels can be considered a tremendous
success.

Formal hypothesis testing is less likely to occur
for secondary endpoints. Descriptive statistics
are more likely to be presented. It is also possible
that findings of particular interest may lead to a
primary objective in a subsequent trial. That is,
these data are more suited to hypothesis forma-
tion than hypothesis testing. It is important to
emphasize here that data leading to the forma-
tion of a hypothesis cannot be used to test that
hypothesis: As just noted, a new dataset must be
generated.

12.6.3 How many objectives should we
list?

The number of objectives that should be incor-
porated in any clinical trial is often a topic of
considerable debate among study teams (Turner,
2007). Some members will likely argue that,
while taking all the trouble to conduct the trial,
why not collect as much data as possible and ask
as many questions as possible? This approach
leads to a large number of study objectives,
sometimes broken down into primary objectives,
secondary objectives, and even tertiary objec-
tives. It is certainly legitimate in some studies to
be interested in more than one primary
endpoint and possibly in several secondary
endpoints. However, from a statistical point of
view, increasing the number of objectives leads
to serious problems, and it can compromise the
weight of any particular piece of evidence that is
eventually presented to regulatory agencies.

In Chapter 11 we discussed the issue of
multiple comparisons and multiplicity in the
context of pairwise treatment comparisons
following a significant omnibus F test. When we
adopt the 5% significance level (a � 0.05), by
definition it is likely that a type I error will occur
when 20 separate comparisons are made. That is,
a statistically significant result will be “found”
by chance alone. The greater the number of
objectives presented in a study protocol, the
greater the number of comparisons that will be

made at the analysis stage, and the greater the
chance of a type I error. Machin and Campbell
(2005) commented: “If there are too many
endpoints defined, the multiplicity of compar-
isons then made at the analysis stage may result
in spurious statistical significance.” 

The concern of multiplicity can also apply to
studies in which data are examined during the
study at interim time points. Interim analyses
are discussed in Section 12.9.

12.7 Evaluating baseline characteristics

It is common practice in analyses of clinical data
to inspect the distributions of baseline character-
istics – for example, demographics and measures
of disease severity – through the use of descrip-
tive summary statistics. This is an important
analysis because it helps to describe the sample
representing the target population of interest. If
the sample is representative of the target popula-
tion the inferences drawn from the study will be
considered relevant. 

Sometimes the baseline homogeneity of these
characteristics is assessed using a hypothesis test,
for example, an omnibus F-test from a one-way
ANOVA testing for differences in age. If a “signif-
icant” result is found, some researchers might
offer this as evidence that something went awry
with the randomization process. However, this
view has two problems: One is that multiple
hypothesis tests can lead to spurious findings or
“false positives;” the second is that, on any given
single instance, a proper randomization cannot
ensure that this possibility does not occur. What
randomization can ensure is that, on average,
over all possible randomizations, distributions of
baseline characteristics will be homogeneous
across groups. This result is all that is required for
proper statistical inferences. Senn (1997) empha-
sized that “inferential statistics calculated from a
clinical trial make an allowance for differences
between patients and that this allowance will be
correct on average if randomization has been
employed.” It is worth noting that standard
errors represent such allowances. 

When there is evidence to suggest a baseline
imbalance with respect to a characteristic that
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may influence an important outcome of the
study, such as the primary efficacy endpoint,
some investigators choose to examine the effect
of this factor in additional statistical analyses.
Possible approaches to this would include
ANOVA or analysis of covariance (ANCOVA) in
which a continuous variable (for example, age) is
adjusted for in assessing the main effect of
interest, that is, the treatment effect for the
primary outcome variable. 

Such a step is not required from a statistical
point of view, as a result of the role of a properly
executed randomization process, but it can be
comforting if it supports the clinical relevance of
the effect after adjustment for the baseline
covariate. If there are specific explanatory factors
that are suspected of having an effect on the
outcome of interest at the start of a study, it is
advisable to incorporate them into the overall
study design (for example, through stratified
randomization). A brief discussion of this topic
has been published by Roberts and Torgerson
(1999). The EMEA CPMP has also published a
guidance document on baseline covariates
(EMEA CPMP 2003).

12.8 Equivalence and noninferiority
study designs

The goal of equivalence trials is to demonstrate
that a new (test) drug (T) and an active
comparator drug (C) are “equivalent” or have a
similar effect. This means that, in the best-case
scenario, the test treatment is trivially better
than the reference treatment and, in the worst, it
is tolerably worse. 

Equivalence trials are important when it
would be unethical to compare the test treat-
ment with an inactive control, and when
comparing the test with the control for equiva-
lent efficacy with a superior safety profile for
the test drug. The difference between groups
that we believe to be “trivially better” or “toler-
ably worse” is called the equivalence margin.
Defining the equivalence margin is not an easy
task and requires input from regulatory authori-
ties. The definition of the equivalence margin is
required in estimating a sample size for such a

study and it must be decided upon in advance of
the study and detailed in the study protocol. 

Noninferiority trials are very similar to equiva-
lence trials in the manner of their statistical
approach. In noninferiority trials the objective is
to demonstrate that the test drug is no worse
than – that is, not inferior to – the control.
Assuming that the test drug had some other
benefit, such as better tolerability or safety or
cost, a claim of noninferiority could mean that
the effect for the test drug is trivially worse than
the control. The design, including the choice 
of the noninferiority margin, must be agreed to
with regulatory authorities and provided in the
study protocol. A guidance document published
by the EMEA CPMP (2000) addresses issues
related to interpreting data from superiority
studies for noninferiority claims, although it is
our opinion that such a practice is rarely justified. 

12.8.1 Why the hypothesis-testing
strategies are different in these designs

The research questions in equivalence and
noninferiority trials are different from those
used in superiority trials. Hypothesis testing
strategies that are so frequently used in superi-
ority trials do not serve the needs of these
designs well. As Matthews (2006, p 199)
commented: “Failing to establish that one treat-
ment is superior to the other is not the same as
establishing their equivalence.” In other words,
obtaining a nonsignificant p value in a superi-
ority trial does not demonstrate that the two
treatments are the same. As we shall see, conven-
tional p values have no role in establishing
equivalence or noninferiority. 

12.8.2 Use of confidence intervals for
inferences

Given that the research questions in these trials
are different from those used in superiority trials,
the formats of the null and alternate hypotheses
are also different. The research question associ-
ated with an equivalence trial is: Does the test
drug demonstrate equivalent efficacy compared
with the comparator drug? The null hypothesis,
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stated in terms of differences in population
means, is:

H0: | lTEST � lCONTROL | � 
equivalence.

The alternate hypothesis is:

HA: | lTEST � lCONTROL | � 
equivalence.

If the null hypothesis is rejected in this case, the
conclusion would be that the two population
means were within dequivalence units of each other.
The equivalence margin would be selected such
that the two treatments were considered equiva-
lent. If two antihypertensive therapies were
compared in this manner, an equivalence
margin might be 5 mmHg (a trivial difference).
The inferential statistical analysis for equiva-
lence trials typically involves the calculation of a
(1 �a)% confidence interval for the difference in
population means. If the lower and upper
bounds of the confidence interval are both
within the equivalence margin, the conclusion is
that we are (1 �a)% confident that the true
difference in population means does not exceed
dequivalence. The conclusions that can be drawn
from an equivalence trial are displayed in Figure
12.3.

The research question for a noninferiority trial
is stated as: Is the test drug not inferior to the
control? The null hypothesis to be tested in this
study is:

H0: lTEST � lCONTROL � 
noninferiority.

If the null hypothesis is rejected, the following
alternate hypothesis will be favored:

HA: lTEST � lCONTROL � 
noninferiority.

If the null hypothesis is rejected in this case, the
conclusion would be that the population mean
for the control treatment did not exceed that for
the test group by more than dnoninferiority. The
inferential statistical analysis for noninferiority
trials typically involves the calculation of a one-
sided (1 �a)% confidence interval for the differ-
ence in population means. If the upper bound 
of the confidence interval is within the non-
inferiority margin, the conclusion is that we 
are (1 �a)% confident that the true difference 
in population means is less than dnoninferiority. 
The conclusions that can be drawn from a 
noninferiority trial are displayed in Figure 12.4.

Equivalence and noninferiority trials may be
the only viable means to test a new drug in
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HA: Test is non-inferior to
control

H0: Test is inferior to
control

Test appreciably worse than controlTest better than control
Test tolerably

worse than control

l test � lcontrol

dnoninferiority0

Figure 12.4 Conclusions to be drawn from the difference in population means from a noninferiority trial

HA: Test is equivalent to
control

H0: Test is inferior to
control

Test worse than controlTest better than control

H0: Test is superior to
control

0
l test � lcontrol

�dequivalence�dequivalence

Figure 12.3 Conclusions to be drawn from the difference in population means from an equivalence trial



certain circumstances. One important considera-
tion in equivalence trials with a single active
comparator is to consider what it means to
conclude that the test drug is equivalent to the
comparator. Not all marketed drugs are effica-
cious in every study. If the test drug were shown
to be equivalent to the control, the test drug
would be either efficacious or not efficacious.
Which of these outcomes represents the truth
depends on how the comparator would have
performed had it been tested against a placebo.
The ability to establish that a study can distin-
guish effective treatments from ineffective ones
is called assay sensitivity. One way to establish
this for equivalence trials is to select a comparator
that had demonstrated consistent superiority to
a placebo. Another option for equivalence trials
in some instances is to include a third placebo
arm. This is not possible when the ethics of the
situation preclude this possibility. This is yet
another illustration of the complexity of
designing trials for which the outcomes have
universally meaningful interpretations. 

12.9 Additional study designs

Other appealing design features in new drug
development include those that allow for moni-
toring of data while the trial is ongoing, and
those that permit adaptations during a trial.

12.9.1 Interim analyses 

Analyses conducted during a study are called
interim analyses. Common uses of interim
analyses are as follows: 

• re-estimate the study sample size
• evaluate whether or not a study has accumu-

lated sufficient data to stop early for definitive
evidence of efficacy, for evidence of harm, or
definitive evidence that the trial is unlikely to
be successful in terms of its originally planned
objectives. 

A number of methodologies are available to
assist in the quantification of evidence
(accounting for type I and II errors) that enable

early stopping of trials. Jennison and Turnbull
(1999) provide a detailed description of sequen-
tial designs in which data are evaluated periodi-
cally for evidence of benefit, harm, or futility.
Sequential designs typically involve the use of
boundaries for the test statistic that define each
of these outcomes. 

One complicating factor of interim analyses is
that they require the use of a data monitoring
committee (DMC), which is independent of the
study sponsor and others involved in the study.
This is intended to protect the integrity of the
clinical trial and to avoid any influence that
knowledge of results may have on the future
course of the trial. The work of the DMC is
dictated by a specific protocol, or charter, written
for the purpose of listing responsibilities of
all parties and measures undertaken to protect
the integrity of the trial. Ellenberg et al. (2003)
have written a valuable reference outlining
the complex issues associated with DMC
involvement in trials. 

12.9.2 Adaptive designs

Adaptive designs have become a topic of great
interest, as evidenced by a recent Pharmaceutical
Research and Manufacturers of America
(PhRMA) working group convened to discuss
adaptive designs methods. Dragalin (2006)
provided an excellent overview of these studies.
The ability to modify a study in midcourse may
offer significant advantages to pharmaceutical
companies, especially given the tremendous
investment of time and money required for
developing new drugs. 

However, the logistical aspects of monitoring
data at several points during a study are not
trivial. An important concern with interim
analyses is to ensure that knowledge of the
results, however vague, does not unduly influ-
ence or bias the study. Hung et al. (2006, p 572)
stated: “When the adaptation in confirmatory
trials is extensive, the key hypothesis tested
becomes unclear, protection of trial integrity is
difficult, the infrastructure that is needed for
logistics may be impossible to establish, and
evaluation by regulatory agencies may be impos-
sible.” Summarizing the opportunities and the
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challenges of adaptive designs on behalf of the
PhRMA working group, Gallo and Krams (2006,
p 423) stated that: “We feel that the potential
benefits for all involved parties suggested by
adaptive designs are too enticing not to make
every effort to find out if their promise can be
realized.” These designs represent an area for
emerging research.
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12.10 Review

1. Consider a design for an exploratory therapeutic
trial of a new antihypertensive drug compared with
placebo. It has been agreed that a between-
treatment group difference in mean change from
baseline (that is, the treatment effect) of at least 
20 mmHg in SBP would be considered clinically
meaningful. The primary hypothesis must be tested
with a � 0.05. 

(a) If the standard deviation for the between
difference in mean change from baseline SBP
is 40 mmHg, what is the required sample size
for a test with power of 80%? What is the
required sample size for a test with 90%
power?

(b) If the standard deviation for the between
difference in mean change from baseline SBP
is 60 mmHg, what is the required sample size
for a test with power of 80%? What is the
required sample size for a test with 90%
power?

(c) How is the estimate of the standard deviation
obtained?

2. What are some advantages and disadvantages of
using multiple investigational centers in clinical
trials?

3. In what ways are noninferiority trials different from
superiority trials? 



We conclude with two overarching comments
that bring together the various topics and
considerations that we have discussed
throughout the book.

First, when faced with the myriad challenges
that occur during drug development, the disci-
pline of Statistics is the knight in shining armor
that rides to our assistance and facilitates 
the collection, analysis, and interpretation of
optimum quality data as the basis for rational
decision-making at all stages of the process. The
discipline of Statistics as operationally defined in
this book includes study design, experimental
methodology, statistical analysis, and the inter-
pretation of the findings of the trial. Very impor-
tantly, the interpretation involves addressing
issues of both statistical significance and clinical
significance. Our interest in Statistics, then, is a
pragmatic one: The discipline provides the best
way currently available to conduct clinical
development programs.

Second, it is appropriate to remind ourselves
that our ultimate interest is in providing a new,
biologically active, pharmacological agent that
will alter a patient’s biology for the better. Statis-
tical analyses can be performed on any kind 
of data (some extremely influential statistical
methods were developed in the agricultural
arena). In this book, however, the data of interest
are biological data, both desirable biologically
therapeutic effects and undesirable biological
side-effects. Producing a drug that has an
acceptable benefit–risk ratio is a long and
complex process, and one in which statistical
methodology is invaluable. 

It is also good to remind ourselves frequently
that the welfare of real patients is our ultimate
concern. This may not be the first thought that
pops into our heads when we are in the middle
of a sample-size estimation calculation for an
upcoming clinical trial, or when deciding upon
which imputation methodology to use to deal
with missing data in a clinical database. Never-
theless, this is why we do these things. The
pharmaceutical industry is not immune to
controversy; far from it. However, as Turner
(2007, p 239) noted: “New drug development is
a very complicated and difficult undertaking,
but one that makes an enormous difference to
the health of people across the globe. It is a
noble pursuit.” 

In this book, set in the context of drug devel-
opment, we have taught you how to conduct an
array of statistical analyses. While teaching such
computational skills is appropriate in a statistics
textbook, we also hope that we have been
successful in providing you with a conceptual
understanding of and appreciation for the
contribution of the discipline of Statistics to the
development of pharmaceutical drugs that may
improve the health of your family members,
your friends, and yourself.
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Appendix 1

Standard normal distribution areas

z P(Z � z) P(Z � z) P(�z � Z � z) P(Z � �z or Z � z)

0.00 0.50000 0.50000 0.00000 1.00000
0.01 0.50399 0.49601 0.00798 0.99202
0.02 0.50798 0.49202 0.01596 0.98404
0.03 0.51197 0.48803 0.02393 0.97607
0.04 0.51595 0.48405 0.03191 0.96809
0.05 0.51994 0.48006 0.03988 0.96012
0.06 0.52392 0.47608 0.04784 0.95216
0.07 0.52790 0.47210 0.05581 0.94419
0.08 0.53188 0.46812 0.06376 0.93624
0.09 0.53586 0.46414 0.07171 0.92829
0.10 0.53983 0.46017 0.07966 0.92034
0.11 0.54380 0.45620 0.08759 0.91241
0.12 0.54776 0.45224 0.09552 0.90448
0.13 0.55172 0.44828 0.10343 0.89657
0.14 0.55567 0.44433 0.11134 0.88866
0.15 0.55962 0.44038 0.11924 0.88076
0.16 0.56356 0.43644 0.12712 0.87288
0.17 0.56749 0.43251 0.13499 0.86501
0.18 0.57142 0.42858 0.14285 0.85715
0.19 0.57535 0.42465 0.15069 0.84931
0.20 0.57926 0.42074 0.15852 0.84148
0.21 0.58317 0.41683 0.16633 0.83367
0.22 0.58706 0.41294 0.17413 0.82587
0.23 0.59095 0.40905 0.18191 0.81809
0.24 0.59483 0.40517 0.18967 0.81033
0.25 0.59871 0.40129 0.19741 0.80259
0.26 0.60257 0.39743 0.20514 0.79486
0.27 0.60642 0.39358 0.21284 0.78716
0.28 0.61026 0.38974 0.22052 0.77948
0.29 0.61409 0.38591 0.22818 0.77182
0.30 0.61791 0.38209 0.23582 0.76418
0.31 0.62172 0.37828 0.24344 0.75656
0.32 0.62552 0.37448 0.25103 0.74897
0.33 0.62930 0.37070 0.25860 0.74140
0.34 0.63307 0.36693 0.26614 0.73386
0.35 0.63683 0.36317 0.27366 0.72634
0.36 0.64058 0.35942 0.28115 0.71885
0.37 0.64431 0.35569 0.28862 0.71138
0.38 0.64803 0.35197 0.29605 0.70395
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z P(Z � z) P(Z � z) P(�z � Z � z) P(Z � �z or Z � z)

0.39 0.65173 0.34827 0.30346 0.69654
0.40 0.65542 0.34458 0.31084 0.68916
0.41 0.65910 0.34090 0.31819 0.68181
0.42 0.66276 0.33724 0.32551 0.67449
0.43 0.66640 0.33360 0.33280 0.66720
0.44 0.67003 0.32997 0.34006 0.65994
0.45 0.67364 0.32636 0.34729 0.65271
0.46 0.67724 0.32276 0.35448 0.64552
0.47 0.68082 0.31918 0.36164 0.63836
0.48 0.68439 0.31561 0.36877 0.63123
0.49 0.68793 0.31207 0.37587 0.62413
0.50 0.69146 0.30854 0.38292 0.61708
0.51 0.69497 0.30503 0.38995 0.61005
0.52 0.69847 0.30153 0.39694 0.60306
0.53 0.70194 0.29806 0.40389 0.59611
0.54 0.70540 0.29460 0.41080 0.58920
0.55 0.70884 0.29116 0.41768 0.58232
0.56 0.71226 0.28774 0.42452 0.57548
0.57 0.71566 0.28434 0.43132 0.56868
0.58 0.71904 0.28096 0.43809 0.56191
0.59 0.72240 0.27760 0.44481 0.55519
0.60 0.72575 0.27425 0.45149 0.54851
0.61 0.72907 0.27093 0.45814 0.54186
0.62 0.73237 0.26763 0.46474 0.53526
0.63 0.73565 0.26435 0.47131 0.52869
0.64 0.73891 0.26109 0.47783 0.52217
0.65 0.74215 0.25785 0.48431 0.51569
0.66 0.74537 0.25463 0.49075 0.50925
0.67 0.74857 0.25143 0.49714 0.50286
0.68 0.75175 0.24825 0.50350 0.49650
0.69 0.75490 0.24510 0.50981 0.49019
0.70 0.75804 0.24196 0.51607 0.48393
0.71 0.76115 0.23885 0.52230 0.47770
0.72 0.76424 0.23576 0.52848 0.47152
0.73 0.76730 0.23270 0.53461 0.46539
0.74 0.77035 0.22965 0.54070 0.45930
0.75 0.77337 0.22663 0.54675 0.45325
0.76 0.77637 0.22363 0.55275 0.44725
0.77 0.77935 0.22065 0.55870 0.44130
0.78 0.78230 0.21770 0.56461 0.43539
0.79 0.78524 0.21476 0.57047 0.42953
0.80 0.78814 0.21186 0.57629 0.42371
0.81 0.79103 0.20897 0.58206 0.41794
0.82 0.79389 0.20611 0.58778 0.41222
0.83 0.79673 0.20327 0.59346 0.40654
0.84 0.79955 0.20045 0.59909 0.40091
0.85 0.80234 0.19766 0.60467 0.39533
0.86 0.80511 0.19489 0.61021 0.38979
0.87 0.80785 0.19215 0.61570 0.38430
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z P(Z � z) P(Z � z) P(�z � Z � z) P(Z � �z or Z � z)

0.88 0.81057 0.18943 0.62114 0.37886
0.89 0.81327 0.18673 0.62653 0.37347
0.90 0.81594 0.18406 0.63188 0.36812
0.91 0.81859 0.18141 0.63718 0.36282
0.92 0.82121 0.17879 0.64243 0.35757
0.93 0.82381 0.17619 0.64763 0.35237
0.94 0.82639 0.17361 0.65278 0.34722
0.95 0.82894 0.17106 0.65789 0.34211
0.96 0.83147 0.16853 0.66294 0.33706
0.97 0.83398 0.16602 0.66795 0.33205
0.98 0.83646 0.16354 0.67291 0.32709
0.99 0.83891 0.16109 0.67783 0.32217
1.00 0.84134 0.15866 0.68269 0.31731
1.01 0.84375 0.15625 0.68750 0.31250
1.02 0.84614 0.15386 0.69227 0.30773
1.03 0.84849 0.15151 0.69699 0.30301
1.04 0.85083 0.14917 0.70166 0.29834
1.05 0.85314 0.14686 0.70628 0.29372
1.06 0.85543 0.14457 0.71086 0.28914
1.07 0.85769 0.14231 0.71538 0.28462
1.08 0.85993 0.14007 0.71986 0.28014
1.09 0.86214 0.13786 0.72429 0.27571
1.10 0.86433 0.13567 0.72867 0.27133
1.11 0.86650 0.13350 0.73300 0.26700
1.12 0.86864 0.13136 0.73729 0.26271
1.13 0.87076 0.12924 0.74152 0.25848
1.14 0.87286 0.12714 0.74571 0.25429
1.15 0.87493 0.12507 0.74986 0.25014
1.16 0.87698 0.12302 0.75395 0.24605
1.17 0.87900 0.12100 0.75800 0.24200
1.18 0.88100 0.11900 0.76200 0.23800
1.19 0.88298 0.11702 0.76595 0.23405
1.20 0.88493 0.11507 0.76986 0.23014
1.21 0.88686 0.11314 0.77372 0.22628
1.22 0.88877 0.11123 0.77754 0.22246
1.23 0.89065 0.10935 0.78130 0.21870
1.24 0.89251 0.10749 0.78502 0.21498
1.25 0.89435 0.10565 0.78870 0.21130
1.26 0.89617 0.10383 0.79233 0.20767
1.27 0.89796 0.10204 0.79592 0.20408
1.28 0.89973 0.10027 0.79945 0.20055
1.29 0.90147 0.09853 0.80295 0.19705
1.30 0.90320 0.09680 0.80640 0.19360
1.31 0.90490 0.09510 0.80980 0.19020
1.32 0.90658 0.09342 0.81316 0.18684
1.33 0.90824 0.09176 0.81648 0.18352
1.34 0.90988 0.09012 0.81975 0.18025
1.35 0.91149 0.08851 0.82298 0.17702
1.36 0.91309 0.08691 0.82617 0.17383
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z P(Z � z) P(Z � z) P(�z � Z � z) P(Z � �z or Z � z)

1.37 0.91466 0.08534 0.82931 0.17069
1.38 0.91621 0.08379 0.83241 0.16759
1.39 0.91774 0.08226 0.83547 0.16453
1.40 0.91924 0.08076 0.83849 0.16151
1.41 0.92073 0.07927 0.84146 0.15854
1.42 0.92220 0.07780 0.84439 0.15561
1.43 0.92364 0.07636 0.84728 0.15272
1.44 0.92507 0.07493 0.85013 0.14987
1.45 0.92647 0.07353 0.85294 0.14706
1.46 0.92785 0.07215 0.85571 0.14429
1.47 0.92922 0.07078 0.85844 0.14156
1.48 0.93056 0.06944 0.86113 0.13887
1.49 0.93189 0.06811 0.86378 0.13622
1.50 0.93319 0.06681 0.86639 0.13361
1.51 0.93448 0.06552 0.86896 0.13104
1.52 0.93574 0.06426 0.87149 0.12851
1.53 0.93699 0.06301 0.87398 0.12602
1.54 0.93822 0.06178 0.87644 0.12356
1.55 0.93943 0.06057 0.87886 0.12114
1.56 0.94062 0.05938 0.88124 0.11876
1.57 0.94179 0.05821 0.88358 0.11642
1.58 0.94295 0.05705 0.88589 0.11411
1.59 0.94408 0.05592 0.88817 0.11183
1.60 0.94520 0.05480 0.89040 0.10960
1.61 0.94630 0.05370 0.89260 0.10740
1.62 0.94738 0.05262 0.89477 0.10523
1.63 0.94845 0.05155 0.89690 0.10310
1.64 0.94950 0.05050 0.89899 0.10101
1.65 0.95053 0.04947 0.90106 0.09894
1.66 0.95154 0.04846 0.90309 0.09691
1.67 0.95254 0.04746 0.90508 0.09492
1.68 0.95352 0.04648 0.90704 0.09296
1.69 0.95449 0.04551 0.90897 0.09103
1.70 0.95543 0.04457 0.91087 0.08913
1.71 0.95637 0.04363 0.91273 0.08727
1.72 0.95728 0.04272 0.91457 0.08543
1.73 0.95818 0.04182 0.91637 0.08363
1.74 0.95907 0.04093 0.91814 0.08186
1.75 0.95994 0.04006 0.91988 0.08012
1.76 0.96080 0.03920 0.92159 0.07841
1.77 0.96164 0.03836 0.92327 0.07673
1.78 0.96246 0.03754 0.92492 0.07508
1.79 0.96327 0.03673 0.92655 0.07345
1.80 0.96407 0.03593 0.92814 0.07186
1.81 0.96485 0.03515 0.92970 0.07030
1.82 0.96562 0.03438 0.93124 0.06876
1.83 0.96638 0.03362 0.93275 0.06725
1.84 0.96712 0.03288 0.93423 0.06577
1.85 0.96784 0.03216 0.93569 0.06431
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z P(Z � z) P(Z � z) P(�z � Z � z) P(Z � �z or Z � z)

1.86 0.96856 0.03144 0.93711 0.06289
1.87 0.96926 0.03074 0.93852 0.06148
1.88 0.96995 0.03005 0.93989 0.06011
1.89 0.97062 0.02938 0.94124 0.05876
1.90 0.97128 0.02872 0.94257 0.05743
1.91 0.97193 0.02807 0.94387 0.05613
1.92 0.97257 0.02743 0.94514 0.05486
1.93 0.97320 0.02680 0.94639 0.05361
1.94 0.97381 0.02619 0.94762 0.05238
1.95 0.97441 0.02559 0.94882 0.05118
1.96 0.97500 0.02500 0.95000 0.05000
1.97 0.97558 0.02442 0.95116 0.04884
1.98 0.97615 0.02385 0.95230 0.04770
1.99 0.97670 0.02330 0.95341 0.04659
2.00 0.97725 0.02275 0.95450 0.04550
2.01 0.97778 0.02222 0.95557 0.04443
2.02 0.97831 0.02169 0.95662 0.04338
2.03 0.97882 0.02118 0.95764 0.04236
2.04 0.97932 0.02068 0.95865 0.04135
2.05 0.97982 0.02018 0.95964 0.04036
2.06 0.98030 0.01970 0.96060 0.03940
2.07 0.98077 0.01923 0.96155 0.03845
2.08 0.98124 0.01876 0.96247 0.03753
2.09 0.98169 0.01831 0.96338 0.03662
2.10 0.98214 0.01786 0.96427 0.03573
2.11 0.98257 0.01743 0.96514 0.03486
2.12 0.98300 0.01700 0.96599 0.03401
2.13 0.98341 0.01659 0.96683 0.03317
2.14 0.98382 0.01618 0.96765 0.03235
2.15 0.98422 0.01578 0.96844 0.03156
2.16 0.98461 0.01539 0.96923 0.03077
2.17 0.98500 0.01500 0.96999 0.03001
2.18 0.98537 0.01463 0.97074 0.02926
2.19 0.98574 0.01426 0.97148 0.02852
2.20 0.98610 0.01390 0.97219 0.02781
2.21 0.98645 0.01355 0.97289 0.02711
2.22 0.98679 0.01321 0.97358 0.02642
2.23 0.98713 0.01287 0.97425 0.02575
2.24 0.98745 0.01255 0.97491 0.02509
2.25 0.98778 0.01222 0.97555 0.02445
2.26 0.98809 0.01191 0.97618 0.02382
2.27 0.98840 0.01160 0.97679 0.02321
2.28 0.98870 0.01130 0.97739 0.02261
2.29 0.98899 0.01101 0.97798 0.02202
2.30 0.98928 0.01072 0.97855 0.02145
2.31 0.98956 0.01044 0.97911 0.02089
2.32 0.98983 0.01017 0.97966 0.02034
2.33 0.99010 0.00990 0.98019 0.01981
2.34 0.99036 0.00964 0.98072 0.01928
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z P(Z � z) P(Z � z) P(�z � Z � z) P(Z � �z or Z � z)

2.35 0.99061 0.00939 0.98123 0.01877
2.36 0.99086 0.00914 0.98173 0.01827
2.37 0.99111 0.00889 0.98221 0.01779
2.38 0.99134 0.00866 0.98269 0.01731
2.39 0.99158 0.00842 0.98315 0.01685
2.40 0.99180 0.00820 0.98360 0.01640
2.41 0.99202 0.00798 0.98405 0.01595
2.42 0.99224 0.00776 0.98448 0.01552
2.43 0.99245 0.00755 0.98490 0.01510
2.44 0.99266 0.00734 0.98531 0.01469
2.45 0.99286 0.00714 0.98571 0.01429
2.46 0.99305 0.00695 0.98611 0.01389
2.47 0.99324 0.00676 0.98649 0.01351
2.48 0.99343 0.00657 0.98686 0.01314
2.49 0.99361 0.00639 0.98723 0.01277
2.50 0.99379 0.00621 0.98758 0.01242
2.51 0.99396 0.00604 0.98793 0.01207
2.52 0.99413 0.00587 0.98826 0.01174
2.53 0.99430 0.00570 0.98859 0.01141
2.54 0.99446 0.00554 0.98891 0.01109
2.55 0.99461 0.00539 0.98923 0.01077
2.56 0.99477 0.00523 0.98953 0.01047
2.57 0.99492 0.00508 0.98983 0.01017
2.58 0.99506 0.00494 0.99012 0.00988
2.59 0.99520 0.00480 0.99040 0.00960
2.60 0.99534 0.00466 0.99068 0.00932
2.61 0.99547 0.00453 0.99095 0.00905
2.62 0.99560 0.00440 0.99121 0.00879
2.63 0.99573 0.00427 0.99146 0.00854
2.64 0.99585 0.00415 0.99171 0.00829
2.65 0.99598 0.00402 0.99195 0.00805
2.66 0.99609 0.00391 0.99219 0.00781
2.67 0.99621 0.00379 0.99241 0.00759
2.68 0.99632 0.00368 0.99264 0.00736
2.69 0.99643 0.00357 0.99285 0.00715
2.70 0.99653 0.00347 0.99307 0.00693
2.71 0.99664 0.00336 0.99327 0.00673
2.72 0.99674 0.00326 0.99347 0.00653
2.73 0.99683 0.00317 0.99367 0.00633
2.74 0.99693 0.00307 0.99386 0.00614
2.75 0.99702 0.00298 0.99404 0.00596
2.76 0.99711 0.00289 0.99422 0.00578
2.77 0.99720 0.00280 0.99439 0.00561
2.78 0.99728 0.00272 0.99456 0.00544
2.79 0.99736 0.00264 0.99473 0.00527
2.80 0.99744 0.00256 0.99489 0.00511
2.81 0.99752 0.00248 0.99505 0.00495
2.82 0.99760 0.00240 0.99520 0.00480
2.83 0.99767 0.00233 0.99535 0.00465
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z P(Z � z) P(Z � z) P(�z � Z � z) P(Z � �z or Z � z)

2.84 0.99774 0.00226 0.99549 0.00451
2.85 0.99781 0.00219 0.99563 0.00437
2.86 0.99788 0.00212 0.99576 0.00424
2.87 0.99795 0.00205 0.99590 0.00410
2.88 0.99801 0.00199 0.99602 0.00398
2.89 0.99807 0.00193 0.99615 0.00385
2.90 0.99813 0.00187 0.99627 0.00373
2.91 0.99819 0.00181 0.99639 0.00361
2.92 0.99825 0.00175 0.99650 0.00350
2.93 0.99831 0.00169 0.99661 0.00339
2.94 0.99836 0.00164 0.99672 0.00328
2.95 0.99841 0.00159 0.99682 0.00318
2.96 0.99846 0.00154 0.99692 0.00308
2.97 0.99851 0.00149 0.99702 0.00298
2.98 0.99856 0.00144 0.99712 0.00288
2.99 0.99861 0.00139 0.99721 0.00279
3.00 0.99865 0.00135 0.99730 0.00270
3.01 0.99869 0.00131 0.99739 0.00261
3.02 0.99874 0.00126 0.99747 0.00253
3.03 0.99878 0.00122 0.99755 0.00245
3.04 0.99882 0.00118 0.99763 0.00237
3.05 0.99886 0.00114 0.99771 0.00229
3.06 0.99889 0.00111 0.99779 0.00221
3.07 0.99893 0.00107 0.99786 0.00214
3.08 0.99896 0.00104 0.99793 0.00207
3.09 0.99900 0.00100 0.99800 0.00200
3.10 0.99903 0.00097 0.99806 0.00194
3.11 0.99906 0.00094 0.99813 0.00187
3.12 0.99910 0.00090 0.99819 0.00181
3.13 0.99913 0.00087 0.99825 0.00175
3.14 0.99916 0.00084 0.99831 0.00169
3.15 0.99918 0.00082 0.99837 0.00163
3.16 0.99921 0.00079 0.99842 0.00158
3.17 0.99924 0.00076 0.99848 0.00152
3.18 0.99926 0.00074 0.99853 0.00147
3.19 0.99929 0.00071 0.99858 0.00142
3.20 0.99931 0.00069 0.99863 0.00137
3.21 0.99934 0.00066 0.99867 0.00133
3.22 0.99936 0.00064 0.99872 0.00128
3.23 0.99938 0.00062 0.99876 0.00124
3.24 0.99940 0.00060 0.99880 0.00120
3.25 0.99942 0.00058 0.99885 0.00115
3.26 0.99944 0.00056 0.99889 0.00111
3.27 0.99946 0.00054 0.99892 0.00108
3.28 0.99948 0.00052 0.99896 0.00104
3.29 0.99950 0.00050 0.99900 0.00100
3.30 0.99952 0.00048 0.99903 0.00097
3.31 0.99953 0.00047 0.99907 0.00093
3.32 0.99955 0.00045 0.99910 0.00090
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z P(Z � z) P(Z � z) P(�z � Z � z) P(Z � �z or Z � z)

3.33 0.99957 0.00043 0.99913 0.00087
3.34 0.99958 0.00042 0.99916 0.00084
3.35 0.99960 0.00040 0.99919 0.00081
3.36 0.99961 0.00039 0.99922 0.00078
3.37 0.99962 0.00038 0.99925 0.00075
3.38 0.99964 0.00036 0.99928 0.00072
3.39 0.99965 0.00035 0.99930 0.00070
3.40 0.99966 0.00034 0.99933 0.00067
3.41 0.99968 0.00032 0.99935 0.00065
3.42 0.99969 0.00031 0.99937 0.00063
3.43 0.99970 0.00030 0.99940 0.00060
3.44 0.99971 0.00029 0.99942 0.00058
3.45 0.99972 0.00028 0.99944 0.00056
3.46 0.99973 0.00027 0.99946 0.00054
3.47 0.99974 0.00026 0.99948 0.00052
3.48 0.99975 0.00025 0.99950 0.00050
3.49 0.99976 0.00024 0.99952 0.00048
3.50 0.99977 0.00023 0.99953 0.00047
3.51 0.99978 0.00022 0.99955 0.00045
3.52 0.99978 0.00022 0.99957 0.00043
3.53 0.99979 0.00021 0.99958 0.00042
3.54 0.99980 0.00020 0.99960 0.00040
3.55 0.99981 0.00019 0.99961 0.00039
3.56 0.99981 0.00019 0.99963 0.00037
3.57 0.99982 0.00018 0.99964 0.00036
3.58 0.99983 0.00017 0.99966 0.00034
3.59 0.99983 0.00017 0.99967 0.00033
3.60 0.99984 0.00016 0.99968 0.00032
3.80 0.99993 0.00007 0.99986 0.00014
3.82 0.99993 0.00007 0.99987 0.00013
3.84 0.99994 0.00006 0.99988 0.00012
3.86 0.99994 0.00006 0.99989 0.00011
3.88 0.99995 0.00005 0.99990 0.00010
3.90 0.99995 0.00005 0.99990 0.00010
3.92 0.99996 0.00004 0.99991 0.00009
3.94 0.99996 0.00004 0.99992 0.00008
3.96 0.99996 0.00004 0.99993 0.00007
3.98 0.99997 0.00003 0.99993 0.00007
4.00 0.99997 0.00003 0.99994 0.00006
4.02 0.99997 0.00003 0.99994 0.00006
4.04 0.99997 0.00003 0.99995 0.00005
4.06 0.99998 0.00002 0.99995 0.00005
4.08 0.99998 0.00002 0.99995 0.00005
4.10 0.99998 0.00002 0.99996 0.00004
4.12 0.99998 0.00002 0.99996 0.00004
4.14 0.99998 0.00002 0.99997 0.00003
4.16 0.99998 0.00002 0.99997 0.00003
4.18 0.99999 0.00001 0.99997 0.00003
4.20 0.99999 0.00001 0.99997 0.00003
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z P(Z � z) P(Z � z) P(�z � Z � z) P(Z � �z or Z � z)

4.22 0.99999 0.00001 0.99998 0.00002
4.24 0.99999 0.00001 0.99998 0.00002
4.26 0.99999 0.00001 0.99998 0.00002
4.28 0.99999 0.00001 0.99998 0.00002
4.30 0.99999 0.00001 0.99998 0.00002
4.32 0.99999 0.00001 0.99998 0.00002
4.34 0.99999 0.00001 0.99999 0.00001
4.36 0.99999 0.00001 0.99999 0.00001
4.38 0.99999 0.00001 0.99999 0.00001
4.40 0.99999 0.00001 0.99999 0.00001
4.42 1.00000 0.00000 0.99999 0.00001
4.44 1.00000 0.00000 0.99999 0.00001
4.46 1.00000 0.00000 0.99999 0.00001
4.48 1.00000 0.00000 0.99999 0.00001
4.50 1.00000 0.00000 0.99999 0.00001
4.52 1.00000 0.00000 0.99999 0.00001
4.54 1.00000 0.00000 0.99999 0.00001
4.56 1.00000 0.00000 0.99999 0.00001
4.58 1.00000 0.00000 1.00000 0.00000
4.60 1.00000 0.00000 1.00000 0.00000





Appendix 2

Percentiles of t distributions

Area in the symmetric central region P(�t � T � t)
0.80 0.90 0.95 0.99 0.999

Area to the left of t: P(T �t)
Degrees of freedom 
(df) 0.90 0.95 0.975 0.995 0.9995

1 3.078 6.314 12.71 63.66 636.6
2 1.886 2.920 4.303 9.925 31.60
3 1.638 2.353 3.182 5.841 12.92
4 1.533 2.132 2.776 4.604 8.610
5 1.476 2.015 2.571 4.032 6.869
6 1.440 1.943 2.447 3.707 5.959
7 1.415 1.895 2.365 3.499 5.408
8 1.397 1.860 2.306 3.355 5.041
9 1.383 1.833 2.262 3.250 4.781

10 1.372 1.812 2.228 3.169 4.587
11 1.363 1.796 2.201 3.106 4.437
12 1.356 1.782 2.179 3.055 4.318
13 1.350 1.771 2.160 3.012 4.221
14 1.345 1.761 2.145 2.977 4.140
15 1.341 1.753 2.131 2.947 4.073
16 1.337 1.746 2.120 2.921 4.015
17 1.333 1.740 2.110 2.898 3.965
18 1.330 1.734 2.101 2.878 3.922
19 1.328 1.729 2.093 2.861 3.883
20 1.325 1.725 2.086 2.845 3.850
21 1.323 1.721 2.080 2.831 3.819
22 1.321 1.717 2.074 2.819 3.792
23 1.319 1.714 2.069 2.807 3.768
24 1.318 1.711 2.064 2.797 3.745
25 1.316 1.708 2.060 2.787 3.725
26 1.315 1.706 2.056 2.779 3.707
27 1.314 1.703 2.052 2.771 3.690
28 1.313 1.701 2.048 2.763 3.674
29 1.311 1.699 2.045 2.756 3.659
30 1.310 1.697 2.042 2.750 3.646
31 1.309 1.696 2.040 2.744 3.633
32 1.309 1.694 2.037 2.738 3.622
33 1.308 1.692 2.035 2.733 3.611
34 1.307 1.691 2.032 2.728 3.601
35 1.306 1.690 2.030 2.724 3.591
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Area in the symmetric central region P(�t � T � t)
0.80 0.90 0.95 0.99 0.999

Area to the left of t: P(T � t)
Degrees of freedom 
(df) 0.90 0.95 0.975 0.995 0.9995

36 1.306 1.688 2.028 2.719 3.582
37 1.305 1.687 2.026 2.715 3.574
38 1.304 1.686 2.024 2.712 3.566
39 1.304 1.685 2.023 2.708 3.558
40 1.303 1.684 2.021 2.704 3.551
45 1.301 1.679 2.014 2.690 3.520
50 1.299 1.676 2.009 2.678 3.496
60 1.296 1.671 2.000 2.660 3.460
70 1.294 1.667 1.994 2.648 3.435
80 1.292 1.664 1.990 2.639 3.416
90 1.291 1.662 1.987 2.632 3.402

100 1.290 1.660 1.984 2.626 3.390
120 1.289 1.658 1.980 2.617 3.373
140 1.288 1.656 1.977 2.611 3.361
160 1.287 1.654 1.975 2.60 3.352
180 1.286 1.653 1.973 2.603 3.345
200 1.286 1.653 1.972 2.601 3.340
220 1.285 1.652 1.971 2.598 3.335
240 1.285 1.651 1.970 2.596 3.332
260 1.285 1.651 1.969 2.595 3.328
280 1.285 1.650 1.968 2.594 3.326
300 1.284 1.650 1.968 2.592 3.323
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Percentiles of �2 distributions

Area to the left of X2: P(X � X2)
Degrees of freedom 
(df) 0.90 0.95 0.99 0.999

1 2.706 3.841 6.635 10.828
2 4.605 5.991 9.210 13.816
3 6.251 7.815 11.345 16.266
4 7.779 9.488 13.277 18.467
5 9.236 11.070 15.086 20.515
6 10.645 12.592 16.812 22.458
7 12.017 14.067 18.475 24.322
8 13.362 15.507 20.090 26.124
9 14.684 16.919 21.666 27.877

10 15.987 18.307 23.209 29.588
11 17.275 19.675 24.725 31.264
12 18.549 21.026 26.217 32.909
13 19.812 22.362 27.688 34.528
14 21.064 23.685 29.141 36.123
15 22.307 24.996 30.578 37.697
16 23.542 26.296 32.000 39.252
17 24.769 27.587 33.409 40.790
18 25.989 28.869 34.805 42.312
19 27.204 30.144 36.191 43.820
20 28.412 31.410 37.566 45.315
21 29.615 32.671 38.932 46.797
22 30.813 33.924 40.289 48.268
23 32.007 35.172 41.638 49.728
24 33.196 36.415 42.980 51.179
25 34.382 37.652 44.314 52.620
26 35.563 38.885 45.642 54.052
27 36.741 40.113 46.963 55.476
28 37.916 41.337 48.278 56.892
29 39.087 42.557 49.588 58.301
30 40.256 43.773 50.892 59.703
35 46.059 49.802 57.342 66.619
40 51.805 55.758 63.691 73.402
45 57.505 61.656 69.957 80.077
50 63.167 67.505 76.154 86.661
55 68.796 73.311 82.292 93.168
60 74.397 79.082 88.379 99.607
70 85.527 90.531 100.43 112.32



208 Appendix 3 • Percentiles of �2 distributions

Area to the left of X2: P(X � X2)
Degrees of freedom 
(df) 0.90 0.95 0.99 0.999

80 96.578 101.88 112.33 124.84
90 107.57 113.15 124.12 137.21

100 118.50 124.34 135.81 149.45
110 129.39 135.48 147.41 161.58
120 140.23 146.57 158.95 173.62
130 151.05 157.61 170.42 185.57
140 161.83 168.61 181.84 197.45
150 172.58 179.58 193.21 209.26
160 183.31 190.52 204.53 221.02
170 194.02 201.42 215.81 232.72
180 204.70 212.30 227.06 244.37
190 215.37 223.16 238.27 255.98
200 226.02 233.99 249.45 267.54



Appendix 4

Percentiles of F distributions (a � 0.05)

Numerator degrees of freedom (ndf)
(ddf) 1 2 3 4 5 6 7 8 9

1 161.4 199.5 215.7 224.6 230.2 234.0 236.8 238.9 240.5
2 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38
3 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81
4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00
5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77
6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10
7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68
8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39
9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18

10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02
11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90
12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80
13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71
14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65
15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59
16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54
17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49
18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46
19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42
20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39
21 4.32 3.47 3.07 2.84 2.68 2.57 2.49 2.42 2.37
22 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34
23 4.28 3.42 3.03 2.80 2.64 2.53 2.44 2.37 2.32
24 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30
25 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28
26 4.23 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27
27 4.21 3.35 2.96 2.73 2.57 2.46 2.37 2.31 2.25
28 4.20 3.34 2.95 2.71 2.56 2.45 2.36 2.29 2.24
29 4.18 3.33 2.93 2.70 2.55 2.43 2.35 2.28 2.22
30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21
40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12
50 4.03 3.18 2.79 2.56 2.40 2.29 2.20 2.13 2.07
60 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04
70 3.98 3.13 2.74 2.50 2.35 2.23 2.14 2.07 2.02
80 3.96 3.11 2.72 2.49 2.33 2.21 2.13 2.06 2.00
90 3.95 3.10 2.71 2.47 2.32 2.20 2.11 2.04 1.99

100 3.94 3.09 2.70 2.46 2.31 2.19 2.10 2.03 1.97
110 3.93 3.08 2.69 2.45 2.30 2.18 2.09 2.02 1.97
120 3.92 3.07 2.68 2.45 2.29 2.18 2.09 2.02 1.96



210 Appendix 4 • Percentiles of F distributions (a � 0.05)

Numerator degrees of freedom (ndf)
(ddf) 10 12 15 20 25 30 40 60 80 100 120

1 241.9 243.9 245.9 248.0 249.3 250.1 251.1 252.2 252.7 253.0 253.3
2 19.40 19.41 19.43 19.45 19.46 √19.46 19.47 19.48 19.48 19.49 19.49
3 8.79 8.74 8.70 8.66 8.63 8.62 8.59 8.57 8.56 8.55 8.55
4 5.96 5.91 5.86 5.80 5.77 5.75 5.72 5.69 5.67 5.66 5.66
5 4.74 4.68 4.62 4.56 4.52 4.50 4.46 4.43 4.41 4.41 4.40
6 4.06 4.00 3.94 3.87 3.83 3.81 3.77 3.74 3.72 3.71 3.70
7 3.64 3.57 3.51 3.44 3.40 3.38 3.34 3.30 3.29 3.27 3.27
8 3.35 3.28 3.22 3.15 3.11 3.08 3.04 3.01 2.99 2.97 2.97
9 3.14 3.07 3.01 2.94 2.89 2.86 2.83 2.79 2.77 2.76 2.75

10 2.98 2.91 2.85 2.77 2.73 2.70 2.66 2.62 2.60 2.59 2.58
11 2.85 2.79 2.72 2.65 2.60 2.57 2.53 2.49 2.47 2.46 2.45
12 2.75 2.69 2.62 2.54 2.50 2.47 2.43 2.38 2.36 2.35 2.34
13 2.67 2.60 2.53 2.46 2.41 2.38 2.34 2.30 2.27 2.26 2.25
14 2.60 2.53 2.46 2.39 2.34 2.31 2.27 2.22 2.20 2.19 2.18
15 2.54 2.48 2.40 2.33 2.28 2.25 2.20 2.16 2.14 2.12 2.11
16 2.49 2.42 2.35 2.28 2.23 2.19 2.15 2.11 2.08 2.07 2.06
17 2.45 2.38 2.31 2.23 2.18 2.15 2.10 2.06 2.03 2.02 2.01
18 2.41 2.34 2.27 2.19 2.14 2.11 2.06 2.02 1.99 1.98 1.97
19 2.38 2.31 2.23 2.16 2.11 2.07 2.03 1.98 1.96 1.94 1.93
20 2.35 2.28 2.20 2.12 2.07 2.04 1.99 1.95 1.92 1.91 1.90
21 2.32 2.25 2.18 2.10 2.05 2.01 1.96 1.92 1.89 1.88 1.87
22 2.30 2.23 2.15 2.07 2.02 1.98 1.94 1.89 1.86 1.85 1.84
23 2.27 2.20 2.13 2.05 2.00 1.96 1.91 1.86 1.84 1.82 1.81
24 2.25 2.18 2.11 2.03 1.97 1.94 1.89 1.84 1.82 1.80 1.79
25 2.24 2.16 2.09 2.01 1.96 1.92 1.87 1.82 1.80 1.78 1.77
26 2.22 2.15 2.07 1.99 1.94 1.90 1.85 1.80 1.78 1.76 1.75
27 2.20 2.13 2.06 1.97 1.92 1.88 1.84 1.79 1.76 1.74 1.73
28 2.19 2.12 2.04 1.96 1.91 1.87 1.82 1.77 1.74 1.73 1.71
29 2.18 2.10 2.03 1.94 1.89 1.85 1.81 1.75 1.73 1.71 1.70
30 2.16 2.09 2.01 1.93 1.88 1.84 1.79 1.74 1.71 1.70 1.68
40 2.08 2.00 1.92 1.84 1.78 1.74 1.69 1.64 1.61 1.59 1.58
50 2.03 1.95 1.87 1.78 1.73 1.69 1.63 1.58 1.54 1.52 1.51
60 1.99 1.92 1.84 1.75 1.69 1.65 1.59 1.53 1.50 1.48 1.47
70 1.97 1.89 1.81 1.72 1.66 1.62 1.57 1.50 1.47 1.45 1.44
80 1.95 1.88 1.79 1.70 1.64 1.60 1.54 1.48 1.45 1.43 1.41
90 1.94 1.86 1.78 1.69 1.63 1.59 1.53 1.46 1.43 1.41 1.39

100 1.93 1.85 1.77 1.68 1.62 1.57 1.52 1.45 1.41 1.39 1.38
110 1.92 1.84 1.76 1.67 1.61 1.56 1.50 1.44 1.40 1.38 1.36
120 1.91 1.83 1.75 1.66 1.60 1.55 1.50 1.43 1.39 1.37 1.35



Appendix 5

Values of q for Tukey’s HSD test (a � 0.05)

a
v 2 3 4 5 6

4 3.92649 5.04024 5.75706 6.28702 6.70644
5 3.63535 4.60166 5.21848 5.67312 6.03290
6 3.46046 4.33902 4.89559 5.30494 5.62855
7 3.34392 4.16483 4.68124 5.06007 5.35909
8 3.26115 4.04101 4.52880 4.88575 5.16723
9 3.19906 3.94850 4.41490 4.75541 5.02352

10 3.15106 3.87676 4.32658 4.65429 4.91202
11 3.11265 3.81952 4.25609 4.57356 4.82295
12 3.08132 3.77278 4.19852 4.50760 4.75015
13 3.05529 3.73414 4.15087 4.45291 4.68970
14 3.03319 3.70139 4.11051 4.40661 4.63854
15 3.01432 3.67338 4.07597 4.36699 4.59474
16 2.99800 3.64914 4.04609 4.33269 4.55681
17 2.98373 3.62796 4.01999 4.30271 4.52365
18 2.97115 3.60930 3.99698 4.27629 4.49442
19 2.95998 3.59274 3.97655 4.25283 4.46846
20 2.95000 3.57794 3.95829 4.23186 4.44524
21 2.94102 3.56463 3.94188 4.21300 4.42436
22 2.93290 3.55259 3.92704 4.19594 4.40547
23 2.92553 3.54167 3.91356 4.18045 4.38831
24 2.91880 3.53170 3.90126 4.16632 4.37265
25 2.91263 3.52257 3.89000 4.15337 4.35831
26 2.90697 3.51417 3.87964 4.14146 4.34511
27 2.90174 3.50643 3.87009 4.13047 4.33294
28 2.89690 3.49918 3.86125 4.12030 4.32167
29 2.89240 3.49263 3.85304 4.11087 4.31121
30 2.88822 3.48651 3.84540 4.10208 4.30147
31 2.88432 3.48065 3.83828 4.09389 4.29238
32 2.88068 3.47525 3.83162 4.08622 4.28389
33 2.87726 3.47019 3.82537 4.07904 4.27592
34 2.87405 3.46544 3.81951 4.07230 4.26844
35 2.87103 3.46097 3.81400 4.06595 4.26141
36 2.86818 3.45676 3.80880 4.05997 4.25477
37 2.86550 3.45278 3.80389 4.05432 4.24851
38 2.86296 3.44902 3.79925 4.04898 4.24258
39 2.86055 3.44546 3.79486 4.04392 4.23697
40 2.85827 3.44208 3.79069 4.03913 4.23165
41 2.85610 3.43888 3.78673 4.03457 4.22659
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a
v 2 3 4 5 6

42 2.85404 3.43582 3.78296 4.03024 4.22179
43 2.85208 3.43292 3.77938 4.02611 4.21721
44 2.85020 3.43015 3.77596 4.02217 4.21284
45 2.84842 3.42751 3.77270 4.01842 4.20868
46 2.84671 3.42499 3.76958 4.01483 4.20469
47 2.84508 3.42257 3.76660 4.01140 4.20089
48 2.84352 3.42026 3.76375 4.00812 4.19724
49 2.84203 3.41805 3.76102 4.00497 4.19375
50 2.84059 3.41592 3.75839 4.00195 4.19040
51 2.83921 3.41389 3.75588 3.99906 4.18719
52 2.83789 3.41193 3.75346 3.99627 4.18410
53 2.83662 3.41005 3.75104 3.99360 4.18113
54 2.83540 3.40824 3.74886 3.99103 4.17827
55 2.83422 3.40649 3.74677 3.98855 4.17552
56 2.83308 3.40482 3.74475 3.98616 4.17287
57 2.83199 3.40320 3.74268 3.98386 4.17031
58 2.83093 3.40163 3.74075 3.98164 4.16785
59 2.82992 3.40013 3.73889 3.97949 4.16547
60 2.82893 3.39867 3.73709 3.97742 4.16317
61 2.82798 3.39726 3.73535 3.97542 4.16094
62 2.82706 3.39590 3.73367 3.97348 4.15879
63 2.82617 3.39458 3.73204 3.97161 4.15671
64 2.82531 3.39331 3.73047 3.96979 4.15470
65 2.82448 3.39207 3.72894 3.96804 4.15275
66 2.82367 3.39088 3.72746 3.96633 4.15085
67 2.82288 3.38971 3.72603 3.96468 4.14902
68 2.82212 3.38859 3.72464 3.96308 4.14724
69 2.82138 3.38750 3.72329 3.96152 4.14552
70 2.82067 3.38644 3.72198 3.96001 4.14384
71 2.81997 3.38540 3.72071 3.95855 4.14221
72 2.81929 3.38440 3.71947 3.95712 4.14063
73 2.81864 3.38343 3.71827 3.95574 4.13909
74 2.81800 3.38248 3.71710 3.95439 4.13759
75 2.81738 3.38156 3.71596 3.95308 4.13614
76 2.81665 3.38067 3.71485 3.95181 4.13472
77 2.81606 3.37979 3.71377 3.95056 4.13334
78 2.81548 3.37894 3.71273 3.94935 4.13200
79 2.81492 3.37812 3.71170 3.94818 4.13069
80 2.81437 3.37731 3.71071 3.94703 4.12941
81 2.81384 3.37652 3.70973 3.94591 4.12817
82 2.81332 3.37575 3.70879 3.94481 4.12696
83 2.81281 3.37501 3.70786 3.94375 4.12577
84 2.81232 3.37428 3.70696 3.94271 4.12462
85 2.81184 3.37356 3.70608 3.94169 4.12349
86 2.81136 3.37287 3.70522 3.94070 4.12239
87 2.81090 3.37219 3.70438 3.93974 4.12132
88 2.81045 3.37152 3.70356 3.93879 4.12027
89 2.81001 3.37087 3.70276 3.93778 4.11924
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a
v 2 3 4 5 6

90 2.80958 3.37024 3.70197 3.93691 4.11824
91 2.80916 3.36962 3.70121 3.93607 4.11725
92 2.80875 3.36901 3.70046 3.93524 4.11630
93 2.80835 3.36842 3.69972 3.93443 4.11536
94 2.80795 3.36784 3.69901 3.93363 4.11444
95 2.80757 3.36727 3.69830 3.93274 4.11354
96 2.80719 3.36671 3.69762 3.93194 4.11266
97 2.80682 3.36617 3.69694 3.93117 4.11180
98 2.80646 3.36564 3.69628 3.93041 4.11095
99 2.80611 3.36511 3.69564 3.92967 4.11013

100 2.80576 3.36460 3.69501 3.92894 4.10932
101 2.80542 3.36410 3.69439 3.92822 4.10853
102 2.80509 3.36361 3.69378 3.92752 4.10775
103 2.80476 3.36313 3.69318 3.92684 4.10699
104 2.80444 3.36266 3.69260 3.92616 4.10624
105 2.80412 3.36219 3.69203 3.92550 4.10550
106 2.80382 3.36174 3.69147 3.92486 4.10478
107 2.80351 3.36129 3.69092 3.92422 4.10408
108 2.80322 3.36085 3.69038 3.92360 4.10339
109 2.80293 3.36043 3.68984 3.92299 4.10271
110 2.80264 3.36000 3.68932 3.92239 4.10204
111 2.80236 3.35959 3.68881 3.92180 4.10139
112 2.80208 3.35918 3.68831 3.92122 4.10074
113 2.80181 3.35878 3.68782 3.92065 4.10011
114 2.80155 3.35839 3.68733 3.92009 4.09949
115 2.80129 3.35801 3.68686 3.91954 4.09888
116 2.80103 3.35763 3.68639 3.91900 4.09828
117 2.80078 3.35726 3.68593 3.91847 4.09769
118 2.80053 3.35689 3.68548 3.91795 4.09711
119 2.80028 3.35653 3.68503 3.91744 4.09655
120 2.80004 3.35618 3.68460 3.91694 4.09599
121 2.79981 3.35583 3.68417 3.91644 4.09544
122 2.79958 3.35549 3.68375 3.91596 4.09490
123 2.79935 3.35516 3.68333 3.91548 4.09436
124 2.79913 3.35482 3.68292 3.91501 4.09384
125 2.79890 3.35450 3.68252 3.91454 4.09333
126 2.79869 3.35418 3.68213 3.91409 4.09282
127 2.79847 3.35387 3.68174 3.91364 4.09232
128 2.79826 3.35356 3.68135 3.91320 4.09183
129 2.79806 3.35325 3.68098 3.91276 4.09135
130 2.79785 3.35295 3.68061 3.91234 4.09087
131 2.79765 3.35265 3.68024 3.91192 4.09040
132 2.79745 3.35236 3.67988 3.91150 4.08994
133 2.79726 3.35208 3.67953 3.91109 4.08949
134 2.79707 3.35179 3.67918 3.91069 4.08904
135 2.79688 3.35152 3.67883 3.91029 4.08860
136 2.79669 3.35124 3.67849 3.90990 4.08817
137 2.79651 3.35097 3.67816 3.90952 4.08774
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a
v 2 3 4 5 6

138 2.79633 3.35071 3.67783 3.90914 4.08723
139 2.79615 3.35045 3.67751 3.90877 4.08683
140 2.79598 3.35019 3.67719 3.90840 4.08644
141 2.79580 3.34993 3.67687 3.90804 4.08606
142 2.79563 3.34968 3.67656 3.90768 4.08562
143 2.79547 3.34943 3.67626 3.90732 4.08538
144 2.79530 3.34919 3.67596 3.90698 4.08495
145 2.79514 3.34895 3.67566 3.90663 4.08459
146 2.79498 3.34871 3.67537 3.90630 4.08423
147 2.79482 3.34848 3.67508 3.90596 4.08388
148 2.79466 3.34825 3.67479 3.90563 4.08342
149 2.79451 3.34802 3.67451 3.90531 4.08306
150 2.79435 3.34780 3.67423 3.90499 4.08271



Chapter 5

1.

a nominal
b ratio
c ratio
d ratio
e ratio
f ordinal

3.

a 63
b 53
c 72

Chapter 6

1.

a 100/200 � 0.5
b 30/200 � 0.15
c 45/200 � 0.225
d 30/45 � 0.67

3.

a 0.00135
b 0.5
c 0.05
d 0.00003

9.

a t � � 1.833 or t � 1.833
b t � � 3.250 or t � 3.250
c t � � 2.045 or t � 2.045
d t � � 3.659 or t � 3.659

10.

a not reject
b reject
c reject
d not reject

Chapter 8

2.

a (0.04, 0.21)
b (0.08, 0.16)

3.

a (0.10, 0.22)
b (0.08, 0.24)
c Z � 0.74 therefore we would be 54%

confident.

4.

a (0.005, 0.15)
b (� 0.01, 0.16)
c (� 0.04, 0.19)

Chapter 9

2.

a (�0.745, 1.425)
b (�0.963, 1.643)
c (�1.405, 2.085)

3.

a The difference between groups is not
statistically significant.
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b The difference between groups is statisti-
cally significant and the treatment appears
to increase SBP.

c The difference between groups is statisti-
cally significant and the treatment appears
to lower SBP.

Chapter 10

3.

a not rejected
b rejected
c rejected
d rejected
e not rejected
f not rejected
g rejected
h not rejected

4.

a 0.119
b 0.008
c 0.001
d 0.317

5.

a

b H0: p1 � p2 � 0
HA: p1 � p2 � 0

c Chi-square test, Fisher’s exact test, or z
approximation

d Yes, there is sufficient evidence to reject
the null hypothesis (a � 0.05). Using the
chi-square test the assumptions are 
that the two groups are independent;
responses are mutually exclusive; and 
the expected cell counts are at least 5 in
� 80% of the cells. The value of the 
chi-square test statistic is 6.62.

(152)(385)
e The odds ratio � ––––––––– � 1.45(117)(346)

Participants exposed to the test treatment
are 1.45 times more likely to respond
than participants in the placebo group.

Chapter 11

1.

a H0: lTEST � lPLACEBO � 0
HA: lTEST � lPLACEBO � 0

b t � � 2.0423 or t � 2.042
c Independent samples; outcome approxi-

mately normally distributed; equal
unknown variance

d �2.26
e Do not reject H0 since � 2.042 � � 0.68

� 2.042. The mean pain scores are not
significantly different between the two
groups.

2.

a SS error � 238.67896
MS Drug � 49.947295
MS Error � 7.95597
F � 6.28

b 3
c H0: l1 � l2 � l3

HA: at least one pair of population means
are unequal

d 33
e F � 3.32
f Reject H0 since 6.28 � 3.32. At least one

pair of population means is unequal.

3.

a H0: lP � lL � lM � lH
HA: at least one pair of population means
are unequal

b Each group represents a simple random
sample from relevant populations; obser-
vations are independent; outcome is
approximately normally distributed; the
variance is equal across the populations

c Placebo vs. low; placebo vs. medium;
placebo vs. high; low vs. medium; low vs.
high; medium vs. high

d To control the overall Type I error
–––20

e MSDT � 3.68639�–––– � 3.0130

Placebo Test

Responder 117 152
Non-responder 385 346

502 498
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Chapter 12

4.

a 80% power: 64/group
90% power: 86/group

b 80% power: 143/group
90% power: 191/group
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a, 70, 76, 77, 159
application of Bayes’ theorem, 178–180
in Bonferroni’s test, 160–161
choice of, 78, 82, 128, 174

b, 77, 174
application of Bayes’ theorem, 178–180

v2 distributions
critical values, 137
percentiles, 207–208

v2 test of homogeneity, 135–137
comparing g proportions, 138–140
comparing two proportions, 138
r responses from g groups, 140

active comparator drugs, 28, 32
active pharmaceutical ingredients (APIs), 13
adaptive designs, 189–190
adverse drug reactions, 99
adverse events (AEs), 97, 99, 181

analysis of, 102
Kaplan–Meier estimation of survival function,

109–114
probability of, 100–101
reporting of, 93–94, 99–100
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