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PREFACE TO THE FOURTH EDITION

This book, through its several editions, has continued to adapt to evolving

areas of research in epidemiology and statistics, while maintaining the orig-

inal objective of being non-threatening, understandable and accessible to

those with limited or no background in mathematics. New areas are covered

in the fourth edition, and include a new chapter on risk prediction, risk

reclassification and evaluation of biomarkers, new material on propensity

analyses and a vastly expanded and updated chapter on genetic epidemiology.

With the sequencing of the human genome, there has been a flowering of

research into the genetic basis of health and disease, and especially the

interactions between genes and environmental exposures. The medical liter-

ature in genetic epidemiology is vastly expanding and some knowledge of

the epidemiological designs and an acquaintancewith the statisticalmethods

used in such research is necessary in order to be able to appreciate new

findings. Thus this edition includes a new chapter on genetic epidemiology.

Such material is not usually found in first level epidemiology or statistics

books, but it is presented here in a basic, and hopefully easily comprehensi-

ble, way for those unfamiliar or only slightly familiar with the field.

Another new chapter is on risk prediction, which is important both

from an individual clinical perspective to assess patient risk in order to

institute appropriate preventive measures, and from a public health per-

spective to assess the needs of a population. As we get a better under-

standing of the biology involved in diseases processes, new biomarkers of

disease are being investigated either to predict disease or to serve as

targets for new therapeutic measures. It is important to evaluate such

biomarkers to see whether they actually improve the prediction of risk

beyond that obtained from traditional risk factors. The new chapter

explains the logic and statistical techniques used for such evaluations.

The randomized clinical trial is the “gold standard” for evidence on

causation and on comparing treatments. However, we are not able to do

clinical trials in all areas, either due to feasibility issues, high costs or sample

size and length of follow-up time required to draw valid conclusions.

Thus we must often rely on evidence from observational studies that may
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be subject to confounding. Propensity analysis is an analytical technique

increasingly used to control for confounding, and the 4th edition provides a

comprehensive explanation of the methods involved.

New material has also been added to several existing chapters.

The principal objectives of the earlier editions still apply. The pre-

sentation of the material is aimed to give an understanding of the under-

lying principles, as well as practical guidelines of “how to do it” and “how

to interpret it.” The topics included are those that are most commonly used

or referred to in the literature. There are some features to note that may aid

the reader in the use of this book:

(a) The book starts with a discussion of the philosophy and logic of

science and the underlying principles of testing what we believe against

the reality of our experiences. While such a discussion, per se, will not

help the reader to actually “do a t-test,” we think it is important to provide

some introduction to the underlying framework of the field of epidemiol-

ogy and statistics, to understand why we do what we do.

(b) Many of the subsections stand alone; that is, the reader can turn to the

topic that interests him or her and read the material out of sequential order.

Thus, the book may be used by those who need it for special purposes. The

reader is free to skip those topics that are not of interest without being too

much hampered in further reading. As a result there is some redundancy.

In our teaching experience, however, we have found that it is better to err

on the side of redundancy than on the side of sparsity.

(c) Cross-references to other relevant sections are included when addi-

tional explanation is needed. When development of a topic is beyond the

scope of this text, the reader is referred to other books that deal with the

material in more depth or on a higher mathematical level. A list of

recommended texts is provided near the end of the book.

(d) The appendices provide sample calculations for various statistics

described in the text. This makes for smoother reading of the text, while

providing the reader with more specific instructions on how actually to do

some of the calculations.
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The prior editions grew from feedback from students who indicated

they appreciated the clarity and the focus on topics specifically related to

their work. However, some users missed coverage of several important

topics. Accordingly, sections were added to include a full chapter on

measures of quality of life and various psychological scales, which are

increasingly used in clinical studies; an expansion of the chapter on

probability, with the introduction of several nonparametric methods; the

clarification of some concepts that were more tersely addressed previ-

ously; and the addition of several appendices (providing sample calcula-

tions of the Fisher’s exact test, Kruskal–Wallis test, and various indices of

reliability and responsiveness of scales used in quality of life measures).

It requires a delicate balance to keep the book concise and basic, and

yet make it sufficiently inclusive to be useful to a wide audience. We hope

this book will be useful to diverse groups of people in the health field, as

well as to those in related areas. The material is intended for: (1) physi-

cians doing clinical research as well as for those doing basic research;

(2) students—medical, college, and graduate; (3) research staff in various

capacities; (4) those interested in the growing field of genetic epidemiol-

ogy and wanting to be able to read genetic research or wishing to collab-

orate in genetic research; and (5) anyone interested in the logic and

methodology of biostatistics, epidemiology, and genetic epidemiology.

The principles and methods described here are applicable to various

substantive areas, including medicine, public health, psychology, and

education. Of course, not all topics that are specifically relevant to each

of these disciplines can be covered in this short text.

Bronx, NY, USA Sylvia Wassertheil-Smoller

Boston, MA, USA Jordan W. Smoller
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Chapter 1
THE SCIENTIFIC METHOD

Science is built up with facts, as a house is with stones. But a collection
of facts is no more a science than a heap of stones is a house.

Jules Henri Poincare

La Science et l’Hypothese (1908)

1.1 The Logic of Scientific Reasoning

The whole point of science is to uncover the “truth.” How do we go about

deciding something is true? We have two tools at our disposal to pursue

scientific inquiry:

We have our senses, through which we experience the world and make

observations.

We have the ability to reason, which enables us to make logical

inferences.

In science we impose logic on those observations.

Clearly, we need both tools. All the logic in the world is not going to

create an observation, and all the individual observations in the world

won’t in themselves create a theory. There are two kinds of relationships

between the scientific mind and the world and two kinds of logic we

impose—deductive and inductive—as illustrated in Figure 1.1.

In deductive inference, we hold a theory, and based on it, we make a

prediction of its consequences. That is, we predict what the observations

should be. For example, we may hold a theory of learning that says that

positive reinforcement results in better learning than does punishment,

that is, rewards work better than punishments. From this theory, we

predict that math students who are praised for their right answers during

the year will do better on the final exam than those who are punished for
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their wrong answers. We go from the general, the theory, to the specific,

the observations. This is known as the hypothetico-deductive method.

In inductive inference, we go from the specific to the general. We

make many observations, discern a pattern, make a generalization, and

infer an explanation. For example, it was observed in the Vienna General

Hospital in the 1840s that women giving birth were dying at a high rate of

puerperal fever, a generalization that provoked terror in prospective

mothers. It was a young doctor named Ignaz Phillip Semmelweis who

connected the observation that medical students performing vaginal

examinations did so directly after coming from the dissecting room, rarely

washing their hands in between, with the observation that a colleague who

accidentally cut his finger while dissecting a corpse died of a malady

exactly like the one killing the mothers. He inferred the explanation that

the cause of death was the introduction of cadaverous material into a

wound. The practical consequence of that creative leap of the imagination

was the elimination of puerperal fever as a scourge of childbirth by

requiring that physicians wash their hands before doing a delivery! The

ability to make such creative leaps from generalizations is the product of

creative scientific minds.

OBSERVATIONS

DEDUCTION
I
N
F
E
R

GENERAL THEORIES

INDUCTION

P
R
E
D
I
C
T

Figure 1.1 Deductive and inductive inference
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Epidemiologists have generally been thought to use inductive infer-

ence. For example, several decades ago, it was noted that women seemed

to get heart attacks about 10 years later than men did. A creative leap of

the imagination led to the inference that it was women’s hormones that

protected them until menopause. EUREKA! They deduced that if estrogen

was good for women, it must be good for men and predicted that the

observations would corroborate that deduction. A clinical trial was under-

taken which gave men at high risk of heart attack estrogen in rather large

doses, 2.5 mg per day or about four times the dosage currently used in

postmenopausal women. Unsurprisingly, the men did not appreciate the

side effects, but surprisingly to the investigators, the men in the estrogen

group had higher coronary heart disease rates and mortality than those on

placebo.2 What was good for the goose might not be so good for the

gander. The trial was discontinued, and estrogen as a preventive measure

was abandoned for several decades.

During that course of time, many prospective observational studies

indicated that estrogen replacement given to postmenopausal women

reduced the risk of heart disease by 30–50 %. These observations led to

the inductive inference that postmenopausal hormone replacement is

protective, i.e., observations led to theory. However, that theory must be

tested in clinical trials. The first such trial of hormone replacement in

women who already had heart disease, the Heart and Estrogen/progestin

Replacement Study (HERS), found no difference in heart disease rates

between the active treatment group and the placebo group, but did find an

early increase in heart disease events in the first year of the study and a

later benefit of hormones after about 2 years. Since this was a study in

women with established heart disease, it was a secondary prevention trial

and does not answer the question of whether women without known heart

disease would benefit from long-term hormone replacement. That ques-

tion has been addressed by the Women’s Health Initiative (WHI), which is

described in a later section.

The point of the example is to illustrate how observations (that women

get heart disease later than men) lead to theory (that hormones are

protective), which predicts new observations (that there will be fewer

heart attacks and deaths among those on hormones), which may

strengthen the theory, until it is tested in a clinical trial which can either
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corroborate it or overthrow it and lead to a new theory, which then must be

further tested to see if it better predicts new observations. So there is a

constant interplay between inductive inference (based on observations)

and deductive inference (based on theory), until we get closer and closer

to the “truth.”

However, there is another point to this story. Theories don’t just leap
out of facts. There must be some substrate out of which the theory leaps.

Perhaps that substrate is another preceding theory that was found to be

inadequate to explain these new observations and that theory, in turn,

had replaced some previous theory. In any case, one aspect of the

“substrate” is the “prepared mind” of the investigator. If the investigator

is a cardiologist, for instance, he or she is trained to look at medical

phenomena from a cardiology perspective and is knowledgeable about

preceding theories and their strengths and flaws. If the cardiologist

hadn’t had such training, he or she might not have seen the connection.

Or, with different training, the investigator might leap to a different

inference altogether. The epidemiologist must work in an interdisciplin-

ary team to bring to bear various perspectives on a problem and to enlist

minds “prepared” in different ways.

The question is, how well does a theory hold up in the face of new

observations?When many studies provide affirmative evidence in favor of

a theory, does that increase our belief in it? Affirmative evidence means

more examples that are consistent with the theory. But to what degree

does supportive evidence strengthen an assertion? Those who believe

induction is the appropriate logic of science hold the view that affirmative

evidence is what strengthens a theory.

Another approach is that of Karl Popper,1 perhaps one of the foremost

theoreticians of science. Popper claims that induction arising from accu-

mulation of affirmative evidence doesn’t strengthen a theory. Induction,

after all, is based on our belief that the things unobserved will be like those

observed or that the future will be like the past. For example, we see a lot

of white swans and we make the assertion that all swans are white. This

assertion is supported by many observations. Each time we see another

white swan, we have more supportive evidence. But we cannot prove that

all swans are white no matter how many white swans we see.
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On the other hand, this assertion can be knocked down by the sighting

of a single black swan. Now we would have to change our assertion to say

that most swans are white and that there are some black swans. This

assertion presumably is closer to the truth. In other words, we can refute

the assertion with one example, but we can’t prove it with many. (The

assertion that all swans are white is a descriptive generalization rather than

a theory. A theory has a richer meaning that incorporates causal explana-

tions and underlying mechanisms. Assertions, like those relating to the

color of swans, may be components of a theory.)

According to Popper, the proper methodology is to posit a theory, or a

conjecture, as he calls it, and try to demonstrate that it is false. The more

such attempts at destruction it survives, the stronger is the evidence for

it. The object is to devise ever more aggressive attempts to knock down

the assertion and see if it still survives. If it does not survive an attempt at

falsification, then the theory is discarded and replaced by another. He calls
this the method of conjectures and refutations. The advance of science

toward the “truth” comes about by discarding theories whose predictions

are not confirmed by observations, or theories that are not testable alto-

gether, rather than by shoring up theories with more examples of where

they work. Useful scientific theories are potentially falsifiable.
Untestable theories are those where a variety of contradictory obser-

vations could each be consistent with the theory. For example, consider

Freud’s psychoanalytic theory. The Oedipus complex theory says that a

child is in love with the parent of the opposite sex. A boy desires his

mother and wants to destroy his father. If we observe a man to say he loves

his mother, that fits in with the theory. If we observe a man to say he hates

his mother, that also fits in with the theory, which would say that it is

“reaction formation” that leads him to deny his true feelings. In other

words, no matter what the man says, it could not falsify the theory because

it could be explained by it. Since no observation could potentially falsify

the Oedipus theory, its position as a scientific theory could be questioned.

A third, and most reasonable, view is that the progress of science

requires both inductive and deductive inference. A particular point of

view provides a framework for observations, which lead to a theory that

predicts new observations that modify the theory, which then leads to new,

predicted observations, and so on toward the elusive “truth,” which we
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generally never reach. Asking which comes first, theory or observation,

is like asking which comes first, the chicken or the egg.

In general then, advances in knowledge in the health field come about

through constructing, testing, and modifying theories. Epidemiologists

make inductive inferences to generalize from many observations, make

creative leaps of the imagination to infer explanations and construct

theories, and use deductive inferences to test those theories.

Theories, then, can be used to predict observations. But these obser-

vations will not always be exactly as we predict them, due to error and the

inherent variability of natural phenomena. If the observations are widely

different from our predictions, we will have to abandon or modify the

theory. How do we test the extent of the discordance of our predictions

based on theory from the reality of our observations? The test is a

statistical or probabilistic test. It is the test of the null hypothesis, which
is the cornerstone of statistical inference and will be discussed later. Some

excellent classic writings on the logic and philosophy of science, and

applications in epidemiology, are listed in the references section at the end

of this book, and while some were written quite a while ago, they are still

obtainable.2–7

1.2 Variability of Phenomena Requires Statistical Analysis

Statistics is a methodology with broad areas of application in science and

industry as well as in medicine and in many other fields. A phenomenon

may be principally based on a deterministicmodel. One example is Boyle’s
law, which states that for a fixed volume an increase in temperature of a gas

determines that there is an increase in pressure. Each time this law is tested,

the same result occurs. The only variability lies in the error of measure-

ment. Many phenomena in physics and chemistry are of such a nature.

Another type of model is a probabilistic model, which implies that

various states of a phenomenon occur with certain probabilities. For

instance, the distribution of intelligence is principally probabilistic, that is,

given values of intelligence occur with a certain probability in the general

population. In biology, psychology, or medicine, where phenomena are
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influenced by many factors that in themselves are variable and by other

factors that are unidentifiable, the models are often probabilistic. In fact, as

knowledge in physics has become more refined, it begins to appear that

models formerly thought to be deterministic are probabilistic.

In any case, where the model is principally probabilistic, statistical

techniques are needed to increase scientific knowledge. The presence of
variation requires the use of statistical analysis.7 When there is little

variation with respect to a phenomenon, much more weight is given to a

small amount of evidence than when there is a great deal of variation. For

example, we know that pancreatic cancer appears to be invariably a fatal

disease. Thus, if we found a drug that indisputably cured a few patients of

pancreatic cancer, we would give a lot of weight to the evidence that the

drug represented a cure, far more weight than if the course of this disease

were more variable. In contrast to this example, if we were trying to

determine whether vitamin C cures colds, we would need to demonstrate

its effect in many patients, and we would need to use statistical methods to

do so, since human beings are quite variable with respect to colds. In fact,

in most biological and even more so in social and psychological phenom-

ena, there is a great deal of variability.

1.3 Inductive Inference: Statistics as the Technology
of the Scientific Method

Statistical methods are objective methods by which group trends are
abstracted from observations on many separate individuals. A simple

concept of statistics is the calculation of averages, percentages, and so

on and the presentation of data in tables and charts. Such techniques for

summarizing data are very important indeed and essential to describing

the population under study. However, they make up a small part of the

field of statistics. A major part of statistics involves the drawing of
inferences from samples to a population in regard to some characteristic

of interest. Suppose we are interested in the average blood pressure of

women college students. If we could measure the blood pressure of every

single member of this population, we would not have to infer anything.
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We would simply average all the numbers we obtained. In practice,

however, we take a sample of students (properly selected), and on the

basis of the data we obtain from the sample, we infer what the mean of the

whole population is likely to be.

The reliability of such inferences or conclusions may be evaluated

in terms of probability statements. In statistical reasoning, then, we
make inductive inferences, from the particular (sample) to the general
(population). Thus, statistics may be said to be the technology of the

scientific method.

1.4 Design of Studies

While the generation of hypotheses may come from anecdotal observa-

tions, the testing of those hypotheses must be done by making controlled

observations, free of systematic bias. Statistical techniques, to be valid,

must be applied to data obtained from well-designed studies. Otherwise,

solid knowledge is not advanced.

There are two types of studies: (1) Observational studies, where

“Nature” determines who is exposed to the factor of interest and who is

not exposed. These studies demonstrate association. Association may

imply causation or it may not. (2) Experimental studies, where the inves-

tigator determines who is exposed. These may prove causation.

Observational studies may be of three different study designs: cross-
sectional, case–control, or prospective. In a cross-sectional study, the
measurements are taken at one point in time. For example, in a cross-

sectional study of high blood pressure and coronary heart disease, the

investigators determine the blood pressure and the presence of heart

disease at the same time. If they find an association, they would not be

able to tell which came first. Does heart disease result in high blood

pressure or does high blood pressure cause heart disease, or are both high

blood pressure and heart disease the result of some other common cause?

In a case–control study of smoking and lung cancer, for example, the

investigator starts with lung cancer cases and with controls, and through

examination of the records or through interviews determines the presence

or the absence of the factor in which he or she is interested (smoking).

A case–control study is sometimes referred to as a retrospective study
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because data on the factor of interest are collected retrospectively and thus

may be subject to various inaccuracies.

In a prospective (or cohort) study, the investigator starts with a cohort
of nondiseased persons with that factor (i.e., those who smoke) and

persons without that factor (nonsmokers) and goes forward into some

future time to determine the frequency of development of the disease in

the two groups. A prospective study is also known as a longitudinal study.

The distinction between case–control studies and prospective studies lies
in the sampling. In the case–control study, we sample from among the
diseased and nondiseased, whereas in a prospective study, we sample
from among those with the factor and those without the factor. Prospective
studies provide stronger evidence of causality than retrospective studies

but are often more difficult, more costly, and sometimes impossible to

conduct, for example, if the disease under study takes decades to develop

or if it is very rare.

In the health field, an experimental study to test an intervention of

some sort is called a clinical trial. In a clinical trial, the investigator

assigns patients or participants to one group or another, usually randomly,

while trying to keep all other factors constant or controlled for, and

compares the outcome of interest in the two (or more) groups. More

about clinical trials is in Chapter 6.

In summary, then, the following list is in ascending order of strength

in terms of demonstrating causality:

♦ Cross-sectional studies: useful in showing associations, in pro-

viding early clues to etiology.

♦ Case–control studies: useful for rare diseases or conditions, or

when the disease takes a very long time to become manifest

(other name: retrospective studies).

♦ Cohort studies: useful for providing stronger evidence of causal-
ity, and less subject to biases due to errors of recall or measure-

ment (other names: prospective studies, longitudinal studies).

♦ Clinical trials: prospective, experimental studies that provide the

most rigorous evidence of causality.
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1.5 How to Quantify Variables

How do we test a hypothesis? First of all, we must set up the hypothesis in

a quantitative manner. Our criterion measure must be a number of some

sort. For example, how many patients died in a drug group compared with

how many of the patients died who did not receive the drug, or what is the

mean blood pressure of patients on a certain antihypertensive drug com-

pared with the mean blood pressure of patients not on this drug. Some-

times variables are difficult to quantify. For instance, if you are evaluating

the quality of care in a clinic in one hospital compared with the clinic of

another hospital, it may sometimes be difficult to find a quantitative

measure that is representative of quality of care, but nevertheless it can

be done and it must be done if one is to test the hypothesis.

There are two types of data that we can dealwith: discrete or categorical
variables and continuous variables. Continuous variables, theoretically, can
assume an infinite number of values between any two fixed points. For

example, weight is a continuous variable, as is blood pressure, time, intel-

ligence, and, in general, variables in which measurements can be taken.

Discrete variables (or categorical variables) are variables that can only

assume certain fixed numerical values. For instance, sex is a discrete vari-

able.Youmay code it as 1¼male, 2¼ female, but an individual cannot have

a code of 1.5 on sex (at least not theoretically). Discrete variables generally

refer to counting, such as the number of patients in a given group who live,

the number of people with a certain disease, and so on. In Chapter 3 we will

consider a technique for testing a hypothesis where the variable is a discrete

one, and, subsequently, we will discuss some aspects of continuous vari-

ables, but first we will discuss the general concepts of hypothesis testing.

1.6 The Null Hypothesis

The hypothesis we test statistically is called the null hypothesis.Let us take a
conceptually simple example. Suppose we are testing the efficacy of a new

drug on patients with myocardial infarction (heart attack). We divide the

patients into two groups—drug and no drug—according to good design
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procedures and use as our criterionmeasure mortality in the two groups. It is

our hope that the drug lowers mortality, but to test the hypothesis statisti-

cally,we have to set it up in a sort of backwardway.We say our hypothesis is

that the drugmakes no difference, andwhat we hope to do is to reject the “no

difference” hypothesis, based on evidence from our sample of patients. This

is known as the null hypothesis. We specify our test hypothesis as follows:

Ho (null hypothesis): Death rate in group treated with drug A¼
death rate in group treated with drug B

This is equivalent to:

Ho: (death rate in group A) – (death rate in group B)¼ 0

We test this against an alternate hypothesis, known as HA, that the

difference in death rates between the two groups does not equal 0.
We then gather data and note the observed difference in mortality

between group A and group B. If this observed difference is sufficiently

greater than zero, we reject the null hypothesis. If we reject the null

hypothesis of no difference, we accept the alternate hypothesis, which is

that the drug does make a difference.

When you test a hypothesis, this is the type of reasoning you use:

(1) I will assume the hypothesis that there is no difference is true.

(2) I will then collect the data and observe the difference between the
two groups.

(3) If the null hypothesis is true, how likely is it that by chance alone
I would get results such as these?

(4) If it is not likely that these results could arise by chance under

the assumption than the null hypothesis is true, then I will con-

clude it is false, and I will “accept” the alternate hypothesis.

1.7 Why Do We Test the Null Hypothesis?

Suppose we believe that drug A is better than drug B in preventing death

from a heart attack. Why don’t we test that belief directly and see

which drug is better rather than testing the hypothesis that drug A is
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equal to drug B? The reason is that there is an infinite number of ways in

which drug A can be better than drug B, so we would have to test an

infinite number of hypotheses. If drug A causes 10 % fewer deaths than

drug B, it is better. So first we would have to see if drug A causes 10 %

fewer deaths. If it doesn’t cause 10 % fewer deaths, but if it causes 9 %

fewer deaths, it is also better. Then we would have to test whether our

observations are consistent with a 9 % difference in mortality between the

two drugs. Then we would have to test whether there is an 8 % difference,

and so on. Note: each such hypothesis would be set up as a null hypothesis

in the following form: drug A – drug B mortality¼ 10 %, or equivalently

drug A � drug B mortalityð Þ � 10 %ð Þ ¼ 0:
drug A � drug B mortalityð Þ � 9 %ð Þ ¼ 0:
drug A � drug B mortalityð Þ � 8 %ð Þ ¼ 0:

On the other hand, when we test the null hypothesis of no difference,

we only have to test one value—a 0 % difference—and we ask whether

our observations are consistent with the hypothesis that there is no differ-

ence in mortality between the two drugs. If the observations are consistent

with a null difference, then we cannot state that one drug is better than the

other. If it is unlikely that they are consistent with a null difference, then

we can reject that hypothesis and conclude there is a difference.

A common source of confusion arises when the investigator really

wishes to show that one treatment is as good as another (in contrast to the

above example, where the investigator in her heart of hearts really

believes that one drug is better). For example, in the emergency room, a

quicker procedure may have been devised and the investigator believes it

may be as good as the standard procedure, which takes a long time. The

temptation in such a situation is to “prove the null hypothesis.” But it is
impossible to “prove” the null hypothesis.

All statistical tests can do is reject the null hypothesis or fail to reject

it. We do not prove the hypothesis by gathering affirmative or supportive

evidence, because no matter how many times we did the experiment and

found a difference close to zero, we could never be assured that the next

time we did such an experiment, we would not find a huge difference that

was nowhere near zero. It is like the example of the white swans discussed
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earlier: no matter how many white swans we see, we cannot prove that all

swans are white, because the next sighting might be a black swan. Rather,

we try to falsify or reject our assertion of no difference, and if the assertion

of zero difference withstands our attempt at refutation, it survives as a

hypothesis in which we continue to have belief. Failure to reject it does

not mean we have proven that there is really no difference. It simply

means that the evidence we have “is consistent with” the null hypothesis.

The results we obtained could have arisen by chance alone if the null

hypothesis were true. (Perhaps the design of our study was not appropri-

ate. Perhaps we did not have enough patients.)

So what can one do if one really wants to show that two treatments are

equivalent? One can design a study that is large enough to detect a small
difference if there really is one. If the study has the power (meaning a high

likelihood) to detect a difference that is very, very, very small, and one

fails to detect it, then one can say with a high degree of confidence that one

can’t find a meaningful difference between the two treatments. It is

impossible to have a study with sufficient power to detect a 0 % differ-

ence. As the difference one wishes to detect approaches zero, the number

of subjects necessary for a given power approaches infinity. The relation-

ships among significance level, power, and sample size are discussed

more fully in Chapter 6.

1.8 Types of Errors

The important point is that we can never be certain that we are right in

either accepting or rejecting a hypothesis. In fact, we run the risk of

making one of two kinds of errors: We can reject the null or test hypoth-

esis incorrectly, that is, we can conclude that the drug does reduce

mortality when in fact it has no effect. This is known as a type I error.
Or we can fail to reject the null or test hypothesis incorrectly, that is, we

can conclude that the drug does not have an effect when in fact it does

reduce mortality. This is known as a type II error. Each of these errors

carries with it certain consequences. In some cases, a type I error may be

more serious; in other cases, a type II error may be more serious. These

points are illustrated in Figure 1.2.
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Null hypothesis (Ho): Drug has no effect—no difference in mortality

between patients using drug and patients not using drug.

Alternate hypothesis (HA): Drug has effect—reduces mortality.

If we don’t reject Ho, we conclude there is no relationship between

drug and mortality. If we do reject HO and accept HA, we conclude there is

a relationship between drug and mortality.

Actions to Be Taken Based on Decision

(1) If we believe the null hypothesis (i.e., fail to reject it), we will not use

the drug.

Consequences of wrong decision: Type II error. If we believe Ho

incorrectly, since in reality the drug is beneficial, by withholding it

we will allow patients to die who might otherwise have lived.

(2) If we reject null hypothesis in favor of the alternate hypothesis, we

will use the drug.

Consequences of wrong decision: Type I error. If we have rejected the
null hypothesis incorrectly, we will use the drug and patients don’t
benefit. Presuming the drug is not harmful in itself, we do not directly

hurt the patients, but since we think we have found the cure, we might

no longer test other drugs.

TRUE STATE OF NATURE

DRUG HAS NO
EFFECT
Ho True

NO
ERROR

NO
ERROR

TYPE II
ERROR

TYPE I
ERROR

DRUG HAS
EFFECT;
Ho False,
HA True

DO NOT
REJECT Ho
No Effect

DECISION
ON BASIS

OF SAMPLE REJECT Ho
(Accept HA)

Effect

Figure 1.2 Hypothesis testing and types of error
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We can never absolutely know the “True State of Nature,” but we
infer it on the basis of sample evidence.

1.9 Significance Level and Types of Error

We cannot eliminate the risk of making one of these kinds of errors, but

we can lower the probabilities that we will make these errors. The
probability of making a type I error is known as the significance level of
a statistical test. When you read in the literature that a result was signif-

icant at the .05 level, it means that in this experiment, the results are such

that the probability of making a type I error is less than or equal to .05.

Mostly in experiments and surveys, people are very concerned about

having a low probability of making a type I error and often ignore the

type II error. This may be a mistake since in some cases a type II error is a

more serious one than a type I error. In designing a study, if you aim to

lower the type I error, you automatically raise the type II error probability.

To lower the probabilities of both the type I and type II error in a study, it

is necessary to increase the number of observations.

It is interesting to note that the rules of the Food and Drug Adminis-

tration (FDA) are set up to lower the probability of making type I errors. In

order for a drug to be approved for marketing, the drug company must be

able to demonstrate that it does no harm and that it is effective. Thus,

many drugs are rejected because their effectiveness cannot be adequately

demonstrated. The null hypothesis under test is, “this drug makes no

difference.” To satisfy FDA rules, this hypothesis must be rejected, with

the probability of making a type I error (i.e., rejecting it incorrectly) being

quite low. In other words, the FDA doesn’t want a lot of useless drugs on
the market. Drug companies, however, also give weight to guarding

against type II error (i.e., avoid believing the no-difference hypothesis

incorrectly) so that they may market potentially beneficial drugs.

1.10 Consequences of Type I and Type II Errors

The relative seriousness of these errors depends on the situation. Remem-

ber, a type I error (also known as alpha) means you are stating something

is really there (an effect) when it actually is not, and a type II error (also
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known as beta error) means you are missing something that is really there.

If you are looking for a cure for cancer, a type II error would be quite

serious. You would miss finding useful treatments. If you are considering

an expensive drug to treat a cold, clearly you would want to avoid a type I

error, that is, you would not want to make false claims for a cold remedy.

It is difficult to remember the distinction between type I and II errors.

Perhaps this small parable will help us. Once there was a King who was

very jealous of his Queen. He had two knights, Alpha, who was very

handsome, and Beta, who was very ugly. It happened that the Queen was

in love with Beta. The King, however, suspected the Queen was having an

affair with Alpha and had him beheaded. Thus, the King made both kinds

of errors: he suspected a relationship (with Alpha) where there was none,

and he failed to detect a relationship (with Beta) where there really was

one. The Queen fled the kingdom with Beta and lived happily ever after,

while the King suffered torments of guilt about his mistaken and fatal

rejection of Alpha.

More on alpha, beta, power, and sample size appears in Chapter 6.

Since hypothesis testing is based on probabilities, we will first present

some basic concepts of probability in Chapter 2.
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Chapter 2
A LITTLE BIT OF PROBABILITY

The theory of probability is at bottom nothing but common sense redu-
ced to calculus.

Pierre Simon De Le Place

Theori Analytique des Probabilites (1812–1820)

2.1 What Is Probability?

The probability of the occurrence of an event is indicated by a number

ranging from 0 to 1. An event whose probability of occurrence is 0 is certain

not to occur, whereas an event whose probability is 1 is certain to occur.

The classical definition of probability is as follows: if an event can

occur in N mutually exclusive, equally likely ways and if nA of these

outcomes have attribute A, then the probability of A, written as P(A),
equals nA/N. This is an a priori definition of probability, that is, one

determines the probability of an event before it has happened. Assume

one were to toss a die and wanted to know the probability of obtaining a

number divisible by three on the toss of a die. There are six possible ways

that the die can land. Of these, there are two ways in which the number on

the face of the die is divisible by three, a 3 and a 6. Thus, the probability of

obtaining a number divisible by three on the toss of a die is 2/6 or 1/3.

In many cases, however, we are not able to enumerate all the possible

ways in which an event can occur, and, therefore, we use the relative
frequency definition of probability. This is defined as the number of times

that the event of interest has occurred divided by the total number of trials

(or opportunities for the event to occur). Since it is based on previous data,

it is called the a posteriori definition of probability.
For instance, if you select at random a white American female,

the probability of her dying of heart disease is 0.00199. This is based on the

finding that per 100,000whiteAmerican females, 199 died of coronary heart

disease (estimates are for 2011, National Vital Statistics System, National

Center for Health Statistics, Centers for Disease Control and Prevention).
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When you consider the probability of a white American female who is

between ages 45 and 54, the figure drops to 0.00041 (or 41 women in that

age group out of 100,000), and when you consider women 75–84 years old,

the figure rises to 0.00913 (or 913 per 100,000). For white men 75–84 years

old, it is 0.01434 (or 1,434 per 100,000). The two important points are (1) to

determine a probability, you must specify the population to which you refer,
for example, all white females, white males between 65 and 74, nonwhite

females between 65 and 74, and so on; and (2) the probability figures are
constantly revised as new data become available.

This brings us to the notion of expected frequency. If the probability of

an event is P and there are N trials (or opportunities for the event to occur),

then we can expect that the event will occur N�P times. It is necessary

to remember that probability “works” for large numbers. When in tossing

a coin we say the probability of it landing on heads is 0.50, we mean that in

many tosses half the time the coinwill landheads. Ifwe toss the coin ten times,

we may get three heads (30 %) or six heads (60 %), which are a considerable

departure from the 50%we expect. But if we toss the coin 200,000 times, we

are very likely to be close to getting exactly 100,000 heads or 50 %.

Expected frequency is really the way in which probability “works.”

It is difficult to conceptualize applying probability to an individual. For

example, when TV announcers proclaim there will be, say, 400 fatal acci-

dents in State X on the Fourth of July, it is impossible to say whether any

individual person will in fact have such an accident, but we can be pretty

certain that the number of such accidents will be very close to the predicted

400 (based on probabilities derived from previous Fourth of July statistics).

2.2 Combining Probabilities

There are two laws for combining probabilities that are important. First, if

there are mutually exclusive events (i.e., if one occurs, the other cannot),
the probability of either one or the other occurring is the sum of their

individual probabilities. Symbolically,

P A or Bð Þ ¼ P Að Þ þ P Bð Þ
An example of this is as follows: the probability of getting either a 3 or

a 4 on the toss of a die is 1/6 + 1/6¼ 2/6.
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A useful thing to know is that the sum of the individual probabilities of

all possible mutually exclusive events must equal 1. For example, if A is the

event of winning a lottery, and not A (written as A ), is the event of not

winning the lottery, then P Að Þ þ A
� � ¼ 1:0

� �
andP A

� �þ Að Þ ¼ 1� P Að Þ.
Second, if there are two independent events (i.e., the occurrence of

one is not related to the occurrence of the other), the joint probability of

their occurring together (jointly) is the product of the individual proba-

bilities. Symbolically,

P A and Bð Þ ¼ P Að Þ � P Bð Þ
An example of this is the probability that on the toss of a die you will

get a number that is both even and divisible by 3. This probability is equal

to 1/2� 1/3¼ 1/6. (The only number both even and divisible by 3 is the

number 6.)

The joint probability law is used to test whether events are indepen-

dent. If they are independent, the product of their individual probabilities

should equal the joint probability. If it does not, they are not independent.

It is the basis of the chi-square test of significance, which we will consider

in the next section.

Let us apply these concepts to a medical example. The mortality rate

for those with a heart attack in a special coronary care unit in a certain

hospital is 15 %. Thus, the probability that a patient with a heart attack

admitted to this coronary care unit will die is 0.15 and that he will survive

is 0.85. If two men are admitted to the coronary care unit on a particular

day, let A be the event that the first man dies and let B be the event that the

second man dies.

The probability that both will die is

P A and Bð Þ ¼ P Að Þ � Bð Þ ¼ :15� :15 ¼ :0225

We assume these events are independent of each other, so we can

multiply their probabilities. Note, however, that the probability that either

one or the other will die from the heart attack is not the sum of their

probabilities because these two events are not mutually exclusive. It is

possible that both will die (i.e., both A and B can occur).
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To make this clearer, a good way to approach probability is through

the use of Venn diagrams, as shown in Figure 2.1. Venn diagrams consist

of squares that represent the universe of possibilities and circles that

define the events of interest.

In diagrams 1, 2, and 3, the space inside the square represents all

N possible outcomes. The circle marked A represents all the outcomes that

constitute event A; the circle marked B represents all the outcomes that

constitute event B. Diagram 1 illustrates two mutually exclusive events;

an outcome in circle A cannot also be in circle B. Diagram 2 illustrates

two events that can occur jointly: an outcome in circle A can also be an

outcome belonging to circle B. The shaded area marked AB represents

outcomes that are the occurrence of both A and B. The diagram 3 repre-

sents two events where one (B) is a subset of the other (A); an outcome in

circle B must also be an outcome constituting event A, but the reverse is
not necessarily true.

It can be seen from diagram 2 that if we want the probability of an

outcome being either A or B and if we add the outcomes in circle A to the

outcomes in circleB,wehave added in theoutcomes in the shaded area twice.

Therefore, we must subtract the outcomes in the shaded area (A and B) also
written as (AB) once to arrive at the correct answer. Thus, we get the result

P A or Bð Þ ¼ P Að Þ þ P Bð Þ � P ABð Þ

2.3 Conditional Probability

Now let us consider the case where the chance that a particular event

happens is dependent on the outcome of another event. The probability of

A, given that B has occurred, is called the conditional probability of

A B A

A

BAB B

N N N

Figure 2.1 Venn diagrams
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A given B and is written symbolically as P(A|B). An illustration of this is

provided by Venn diagram 2. When we speak of conditional probability,

the denominator becomes all the outcomes in circle B (instead of all

N possible outcomes) and the numerator consists of those outcomes that

are in that part of A which also contains outcomes belonging to B. This is
the shaded area in the diagram labeled AB. If we return to our original

definition of probability, we see that

P A
��B

� � ¼ nAB
nB

(the number of outcomes in both A and B, divided by the total number of

outcomes in B).
If we divide both numerator and denominator by N, the total number

of all possible outcomes, we obtain

P A
��B

� � ¼ nAB=N

nB=N
¼ P A and Bð Þ

P Bð Þ

Multiplying both sides by P(B) gives the complete multiplicative law:

P A and Bð Þ ¼ P A
��B

� �� P Bð Þ

Of course, if A and B are independent, then the probability of A given B is

just equal to the probability of A (since the occurrence of B does not

influence the occurrence of A) and we then see that

P A and Bð Þ ¼ P Að Þ � P Bð Þ

2.4 Bayesian Probability

Imagine that M is the event “loss of memory” and B is the event “brain

tumor.” We can establish from research on brain tumor patients the

probability of memory loss given a brain tumor, P M
��B

� �
: A clinician,

however, is more interested in the probability of a brain tumor, given that

a patient has memory loss, P B
��M

� �
:
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It is difficult to obtain that probability directly because one would

have to study the vast number of persons with memory loss (which in most

cases comes from other causes) and determine what proportion of them

have brain tumors.

Bayes’ equation (or Bayes’ theorem) estimates P B
��M

� �
: as follows:

P brain tumor, given memory lossð Þ ¼ P memory loss, givenbrain tumorð Þ � P brain tumorð Þ
P memory lossð Þ

In the denominator, the event of “memory loss” can occur either among

people with brain tumor, with probability¼ P M
��B

� �
P Bð Þ; or among

people with no brain tumor, with probability ¼ P M
��B

� �
P B
� �

:

Thus,

P B
��M

� � ¼ P M
��B

� �
P Bð Þ

P M
��B

� �
P Bð Þ þ P M

��B
� �

P B
� �

The overall probability of a brain tumor, P(B), is the “a priori prob-

ability,” which is a sort of “best guess” of the prevalence of brain tumors.

2.5 Odds and Probability

When the odds of a particular horse losing a race are said to be 4–1, he has
a 4/5¼ 0.80 probability of losing. To convert an odds statement to prob-

ability, we add 4 + 1 to get our denominator of 5. The odds of the horse

winning are 1–4, which means he has a probability of winning of

1/5¼ 0.20:

Theodds in favour of A ¼ P Að Þ
P notAð Þ ¼

P Að Þ
1� P Að Þ

P Að Þ ¼ odds

1þ odds
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The odds of drawing an ace¼ 4 (aces in a deck) to 48 (cards that are

not aces)¼ 1–12; therefore, P(ace)¼ 1/13. The odds against drawing an

ace¼ 12–1; P(not ace)¼ 12/13.

In medicine, odds are often used to calculate an odds ratio. An odds

ratio is simply the ratio of two odds. For example, say that in a particular

study comparing lung cancer patients with controls, it was found that the

odds of being a lung cancer case for people who smoke were 5–4 (5/4) and

the odds of having lung cancer for nonsmokers was 1–8 (1/8), then the

odds ratio would be

5=4

1=8
¼ 5� 8

4� 1
¼ 40

4
¼ 10

An odds ratio of 10 means that the odds of being a lung cancer case is

10 times greater for smokers than for nonsmokers.

Note, however, that we cannot determine from such an analysis what

the probability of getting lung cancer is for smokers, because in order to

do that we would have to know how many people out of all smokers

developed lung cancer, and we haven’t studied all smokers; all we do

know is how many out of all our lung cancer cases were smokers. Nor can

we get the probability of lung cancer among nonsmokers, because we

would have to a look at a population of nonsmokers and see how many of

them developed lung cancer. All we do know is that smokers have 10-fold

greater odds of having lung cancer than nonsmokers.

More on this topic is presented in Section 4.12.

2.6 Likelihood Ratio

A related concept is the likelihood ratio (LR), which tells us how likely it

is that a certain result would arise from one set of circumstances in relation

to how likely the result would arise from an opposite set of circumstances.

For example, if a patient has a sudden loss of memory, we might want

to know the likelihood ratio of that symptom for a brain tumor, say. What

we want to know is the likelihood that the memory loss arose out of the
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brain tumor in relation to the likelihood that it arose from some other

condition. The likelihood ratio is a ratio of conditional probabilities.

LR ¼ P memory loss, givenbrain tumorð Þ
P memory loss, givennobrain tumorð Þ

¼ P MgivenBð Þ
P MgivennotBð Þ

Of course to calculate this LR, we would need to have estimates of the

probabilities involved in the equation, that is, we would need to know

the following: among persons who have brain tumors, what proportion

have memory loss, and among persons who don’t have brain tumors, what

proportion have memory loss. It may sometimes be quite difficult to

establish the denominator of the likelihood ratio because we would need

to know the prevalence of memory loss in the general population.

The LR is perhaps more practical to use than the Bayes theorem,

which gives the probability of a particular disease given a particular

symptom. In any case, it is widely used in variety of situations because

it addresses this important question: If a patient presents with a symptom,

what is the likelihood that the symptom is due to a particular disease

rather than to some other reason than this disease?

2.7 Summary of Probability

Additive Law

P AorBð Þ ¼ P Að Þ þ P Bð Þ � P AandBð Þ

If events are mutually exclusive: P (A or B)¼P (A)+P (B).

Multiplicative Law

P AandBð Þ ¼ P A
��B

� �� P Bð Þ

If events are independent: P(A and B)¼P(A)�P(B).
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Conditional Probability

P A
��B

� � ¼ P AandBð Þ
P Bð Þ

Bayes’ Theorem

P B
��A

� � ¼ P A
��B

� �
P Bð Þ

P A
��B

� �
P Bð Þ þ P A

��B
� �

P B
� �

Odds of A

P Að Þ
1� P Að Þ

Likelihood Ratio

P A
��B

� �

P A
��B

� �
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Chapter 3
MOSTLY ABOUT STATISTICS

A statistician is someone who, with his head in an oven and his feet in a
bucket of ice water, when asked how he feels, responds: “On the aver-
age, I feel fine.”

Anonymous

Different statistical techniques are appropriate depending on whether the

variables of interest are discrete or continuous. We will first consider the

case of discrete variables and present the chi-square test, and then we will

discuss methods applicable to continuous variables.

3.1 Chi-Square for 2� 2 Tables

The chi-square test is a statistical method to determine whether the results

of an experiment may arise by chance or not. Let us, therefore, consider

the example of testing an anticoagulant drug on female patients with

myocardial infarction. We hope the drug lowers mortality, but we set up

our null hypothesis as follows:

♦ Null
hypothesis

There is no difference in mortality

between the treated group of

patients and the control group

♦ Alternate
hypothesis

The mortality in the treated group is

lower than in the control group

(The data for our example come from a study done a long time ago

and refer to a specific high-risk group.8 They are used for illustrative

purposes, and they do not reflect current mortality rates for people with

myocardial infarction.)

We then record our data in a 2� 2 contingency table in which each

patient is classified as belonging to one of the four cells:
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Observed frequencies

Lived 312
Died 79

Total 391

Control Treated

89 223
40 39

129 262

The mortality in the control group is 40/129¼ 31 % and in the treated

it is 39/262¼ 15 %. But could this difference have arisen by chance? We

use the chi-square test to answer this question. What we are really asking

is whether the two categories of classification (control vs. treated by lived

vs. died) are independent of each other. If they are independent, what

frequencies would we expect in each of the cells? And how different are
our observed frequencies from the expected ones? How do we measure

the size of the difference?

To determine the expected frequencies, consider the following:

a b

c d

Lived
Died

Total

Control Treated

(a + b)

(c + d)

(a + c) (b + d) N

If the categories are independent, then the probability of a patient being

both a control and living is P(control)�P(lived). [Here we apply the law

referred to in chapter 2 on the joint probability of two independent events.]

The expected frequency of an event is equal to the probability of the

event times the number of trials¼N�P. So the expected number of

patients who are both controls and live is

N � P controland livedð Þ ¼ N � P controlð Þ � P livedð Þ

¼ N
aþ cð Þ
N

� aþ bð Þ
N

� �
¼ aþ cð Þ � aþ bð Þ

N
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In our case, this yields the following table:

Control Treated

Lived 129    312
391

 =  103× 262    312
391

 =  209× 312

Died 129    79
391

 =  26× 262    79
391

 =  53× 79

Total 129 262 391

Another way of looking at this is to say that since 80 % of the patients

in the total study lived (i.e., 312/391¼ 80 %), we would expect that 80 %

of the control patients and 80 % of the treated patients would live. These

expectations differ, as we see, from the observed frequencies noted

earlier, that is, those patients treated did, in fact, have a lower mortality

than those in the control group.

Well, now that we have a table of observed frequencies and a table of

expected values, how do we know just how different they are? Do they

differ just by chance or is there some other factor that causes them to

differ? To determine this, we calculate a value called chi-square (also

written as χ 2). This is obtained by taking the observed value in each cell,

subtracting from it the expected value in each cell, squaring this differ-

ence, and dividing by the expected value for each cell. When this is done

for each cell, the four resulting quantities are added together to give a

number called chi-square. Symbolically this formula is as follows:

Oa � eað Þ2
ea

þ Ob � ebð Þ2
eb

þ Oc � ecð Þ2
ec

þ Od � edð Þ2
ed

where O is the observed frequency and e is the expected frequency in

each cell.

This number, called chi-square, is a statistic that has a known distri-

bution. What that means, in essence, is that for an infinite number of such

2� 2 tables, chi-squares have been calculated, and we thus know what the

probability is of getting certain values of chi-square. Thus, when we

calculate a chi-square for a particular 2� 2 contingency table, we know

how likely it is that we could have obtained a value as large as the one that
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we actually obtained strictly by chance, under the assumption the hypoth-

esis of independence is the correct one, that is, if the two categories of

classification were unrelated to one another or if the null hypothesis were

true. The particular value of chi-square that we get for our example

happens to be 13.94.

From our knowledge of the distribution of values of chi-square, we

know that if our null hypothesis is true, that is, if there is no difference in

mortality between the control and treated group, then the probability that

we get a value of chi-square as large or larger than 13.94 by chance alone

is very, very low; in fact this probability is less than .005. Since it is not

likely that we would get such a large value of chi-square by chance under

the assumption of our null hypothesis, it must be that it has arisen not by
chance but because our null hypothesis is incorrect. We, therefore, reject

the null hypothesis at the .005 level of significance and accept the alternate

hypothesis, that is, we conclude that among women with myocardial

infarction, the new drug does reduce mortality. The probability of

obtaining these results by chance alone is less than 5/1000 (.005). There-

fore, the probability of rejecting the null hypothesis, when it is in fact true

(type I error) is less than .005.

The probabilities for obtaining various values of chi-square are

tabled in most standard statistics texts, so that the procedure is to

calculate the value of chi-square and then look it up in the table to

determine whether or not it is significant. That value of chi-square that

must be obtained from the data in order to be significant is called the

critical value. The critical value of chi-square at the .05 level of signif-

icance for a 2� 2 table is 3.84. This means that when we get a value of

3.84 or greater from a 2� 2 table, we can say there is a significant

difference between the two groups. Appendix 1 provides some critical

values for chi-square and for other tests.

In actual usage, a correction is applied for 2� 2 tables known as the

Yates’ correction and calculation is done using the formula

N ad � bcj j � N
2

� �2
aþ bð Þ cþ dð Þ aþ cð Þ bþ dð Þ
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Note: jad–bcj means the absolute value of the difference between a� d
and b� c. In other words, if a� d is greater than b� c, subtract bc from
ad; if bc is greater than ad, subtract ad from bc. The corrected chi-square

so calculated is 12.95, still well above the 3.84 required for significance.

The chi-square test should not be used if the numbers in the cells are

too small. The rules of thumb: When the total N is greater than 40, use the

chi-square test with Yates’ correction. When N is between 20 and 40 and

the expected frequency in each of the four cells is 5 or more, use the

corrected chi-square test. If the smallest expected frequency is less than

5, or if N is less than 20, use the Fisher’s test.
While the chi-square test approximates the probability, the Fisher’s

exact test gives the exact probability of getting a table with values like

those obtained or even more extreme. A sample calculation is shown in

Appendix 2. The calculations are unwieldy, but the Fisher’s exact test is
also usually included in most statistics programs for personal computers.

More on this topic may be found in the book Statistical Methods for Rates
and Proportions by Joseph L. Fleiss. The important thing is to know when

the chi-square test is or is not appropriate.

3.2 McNemar Test

Suppose we have the situation where measurements are made on

the same group of people before and after some intervention, or suppose

we are interested in the agreement between two judges who evaluate

the same group of patients on some characteristics. In such situations,

the before and after measures, or the opinions of two judges, are not

independent of each other, since they pertain to the same individuals.

Therefore, the chi-square test or the Fisher’s exact test is not appropriate.
Instead, we can use the McNemar test.

Consider the following example. Case histories of patients who

were suspected of having ischemic heart disease (a decreased blood

flow to the heart because of clogging of the arteries) were presented to

two cardiology experts. The doctors were asked to render an opinion

on the basis of the available information about the patient. They could
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recommend either (1) that the patient should be on medical therapy or

(2) that the patient have an angiogram, which is an invasive test, to

determine if the patient is a suitable candidate for coronary artery bypass

graft surgery (known as CABG). Table 3.1 shows the results of these

judgments on 661 patients.

Note that in cell b Expert 1 advised surgery and Expert 2 advised

medical therapy for 97 patients, whereas in cell c Expert 1 advised

medical therapy and Expert 2 advised surgery for 91 of the patients.

Thus, the two physicians disagree in 188 of the 661 cases or 28 % of the

time. Cells a and d represent patients about whom the two doctors agree.

They agree in 473 out the 661 case or 72 % of the time.

To determine whether the observed disagreement could have arisen

by chance alone under the null hypothesis of no real disagreement in

recommendations between the two experts, we calculate a type of

chi-square value as follows:

χ2 chi-squareð Þ ¼ b� cj j�1jð Þ2
bþ cð Þ ¼ 25

188
¼ :13

(jb–cj means the absolute value of the difference between the two cells,

that is, irrespective of the sign; the�1 in the numerator is analogous to the

Yates’ correction for chi-square described in Section 3.1 and gives a better

TABLE 3.1

E X P E R T      1

Medical Surgical

E
X
P
E
R
T

2

Medical a = 397 b = 97 a + b = 494

Surgical c = 91 d = 76 c + d = 167

a + c = 488 b + d = 173 N = 661
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approximation to the chi-square distribution.) A chi-square of .13 does not

reach the critical value of chi-square of 3.84 needed for a .05 significance

level, as described in Section 3.1, so we cannot reject the null hypothesis,

and we conclude that our data are consistent with no difference in the

opinions of the two experts. Were the chi-square test significant, we would

have to reject the null hypothesis and say the experts significantly dis-

agree. However, such a test does not tell us about the strength of their

agreement, which can be evaluated by a statistic called Kappa.

3.3 Kappa

The two experts could be agreeing just by chance alone, since both experts

are more likely to recommend medical therapy for these patients. Kappa is

a statistic that tells us the extent of the agreement between the two experts

above and beyond chance agreement.

K ¼ Proportion of observed agreement� Proportion of agreement by chance

1� Proportion of agreement by chance

To calculate the expected number of cases in each cell of the table, we

follow the procedure described for chi-square in Section 3.1. The cells a and
d in Table 3.1 represent agreement. The expected number by chance alone is

cella :
494� 488

661
¼ 365

celld :
167� 173

661
¼ 44

So the proportion of agreement expected by chance alone is

365þ 44

661
¼ :619
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that is, by chance alone, the experts would be expected to agree 62 % of

the time. The proportion of observed agreement is

397þ 76

661
¼ :716

Kappa ¼ :716� :619

1� :619
¼ :097

:381
¼ :25

If the two experts agreed at the level of chance only, Kappa would be 0; if

the two experts agreed perfectly, Kappa would be 1.

3.4 Description of a Population: Use of the Standard
Deviation

In the case of continuous variables, as for discrete variables, we may be

interested in description or in inference. When we wish to describe a

population with regard to some characteristic, we generally use the mean

or average as an index of central tendency of the data.
Other measures of central tendency are the median and the mode. The

median is that value above which 50 % of the other values lie and below

which 50 % of the values lie. It is the middle value or the 50th percentile.

To find the median of a set of scores, we arrange them in ascending

(or descending) order and locate the middle value if there are an odd

number of scores, or the average between the two middle scores if there

are an even number of scores. The mode is the value that occurs with the

greatest frequency. There may be several modes in a set of scores but only

one median and one mean value. These definitions are illustrated below.

The mean is the measure of central tendency most often used in inferential

statistics.
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Measures of central tendency

Set of scores Ordered

12 6

12 8

6 10

8 11 Median

11 12 Mode

10 12

15 15

SUM: 74 Mean¼ 74/7¼ 10.6

The true mean of the population is called m, and we estimate that

mean from data obtained from a sample of the population. The sample

mean is called x (read as x bar). We must be careful to specify exactly the

population from which we take a sample. For instance, in the general

population, the average IQ is 100, but the average IQ of the population of

children age 6–11 years whose fathers are college graduates is 112.9

Therefore, if we take a sample from either of these populations, we

would be estimating a different population mean, and we must specify

to which population we are making inferences.

However, the mean does not provide an adequate description of a

population. What is also needed is some measure of variability of the data
around the mean. Two groups can have the same mean but be very

different. For instance, consider a hypothetical group of children each of

whose individual IQ is 100; thus, the mean is 100. Compare this to another

group whose mean is also 100 but includes individuals with IQs of 60 and

those with IQs of 140. Different statements must be made about these two

groups: one is composed of all average individuals and the other includes

both retardates and geniuses.

The most commonly used index of variability is the standard devia-
tion (s.d.), which is a type of measure related to the average distance of the

scores from their mean value. The square of the standard deviation is

called variance. The population standard deviation is denoted by the

Greek letter σ (sigma). When it is calculated from a sample, it is written
as s.d. and is illustrated in the example below:
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IQ scores Deviations from mean

Squared scores

for B

Group A Group B xi � xB xi � xBð Þ2 xb
2

100 60 �40 1,600 3,600

100 140 40 1,600 19,600

100 80 �20 400 6,400

100 120 20 400 14,400

Σ ¼ 400

xA ¼ mean

¼ 100

Σ ¼ 400

xB ¼ mean

¼ 100

Σ¼ 0 Σ¼ 4,000 of

squared

deviations

Σ¼ 44,000 sum

of squares

Note: The symbol “Σ” means “sum.”
Note: The sum of deviations from the mean, as in column 3, is always 0; that is

why we sum the squared deviations, as in column 4.

xA ¼ mean ¼ 400

4
¼ 100; xB ¼ 400

4
¼ 100

s:d: ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Σ of each value� mean of groupð Þ2

n� 1

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Σ xi � xð Þ2
n� 1

s

s:d: A ¼ 0

3
¼ 0;

(In Group A since each score is equal to the mean of 100, there are no

deviations from the mean of A.)

s:d: B ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
4, 000

3

r
¼ ffiffiffiffiffiffiffiffiffiffiffiffi

1, 333
p ¼ 36:51

An equivalent formula for s.d. that is more suited for actual calculations is

s:d: ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Σx2i � nx2

n� 1

s
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For group B we have

s:d: ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
44, 000� 4 100ð Þ2

3

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
44, 000� 40, 000

3

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
4, 000

3

r
¼ 36:51

Variance¼ (s.d.)2

Note the mean of both groups is 100, but the standard deviation of group A

is 0, while the s.d. of group B is 36.51. (We divide the squared deviations

by n–1 rather than by n because we are estimating the population σ from

sample data, and dividing by n–1 gives a better estimate. The mathemat-

ical reason is complex and beyond the scope of this book.)

3.5 Meaning of the Standard Deviation: The Normal
Distribution

The standard deviation is a measure of the dispersion or spread of the data.
Consider a variable like IQ, which is normally distributed, that is, it can be

described by the familiar, bell-shaped curve where most of the values fall

around the mean with decreasing number of values at either extremes. In

such a case, 68% of the values lie within 1 standard deviation on either side

of the mean, 95 % of the values lie within 2 standard deviations of the

mean, and 99 % of the values lie within 3 standard deviations of the mean.

(The IQ test was originally constructed so that it had a mean of 100 and a

standard deviation of 16.)

This is illustrated in Figure 3.1.

In the population at large, 95 % of people have IQs between 68 and

132. Approximately 2.5 % of people have IQs above 132 and another

2.5 % of people have IQs below 68. (This is indicated by the shaded areas

at the tails of the curves.)

If we are estimating from a sample and if there are a large number of

observations, the standard deviation can be estimated from the range of
the data, that is, the difference between the smallest and the highest value.

Dividing the range by 6 provides a rough estimate of the standard devi-

ation if the distribution is normal, because 6 standard deviations (3 on

either side of the mean) encompass 99 %, or virtually all, of the data.
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On an individual, clinical level, knowledge of the standard deviation is

very useful in decidingwhether a laboratory finding is normal, in the sense of

“healthy.” Generally a value that is more than 2 standard deviations away

from the mean is suspect, and perhaps further tests need to be carried out.

For instance, suppose as a physician you are faced with an adult male

who has a hematocrit reading of 39. Hematocrit is a measure of the amount

of packed red cells in a measured amount of blood. A low hematocrit may

imply anemia, which in turn may imply a more serious condition. You also

know that the average hematocrit reading for adult males is 47. Do you know

whether the patient with a reading of 39 is normal (in the sense of health) or

abnormal? You need to know the standard deviation of the distribution of

hematocrits in people before you can determine whether 39 is a normal

value. In point of fact, the standard deviation is approximately 3.5; thus, plus

or minus 2 standard deviations around the mean results in the range of from

40 to 54 so that 39 would be slightly low. For adult females, the mean

hematocrit is 42 with a standard deviation of 2.5, so that the range of plus or

minus 2 standard deviations away from themean is from37 to 47. Thus, if an

adult female came to you with a hematocrit reading of 39, she would be

considered in the “normal” range.

8468IQ
m-2s m-s m+s

ss

s =16

m+2sm
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68%

95%

116 132

Figure 3.1 Normal Distribution
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3.6 The Difference Between Standard Deviation
and Standard Error

Often data in the literature are reported as� s.d. (read as mean + or �1

standard deviation). Other times they are reported as� s.e. (read as mean

+ or �1 standard error). Standard error and standard deviation are often

confused, but they serve quite different functions. To understand the

concept of standard error, you must remember that the purpose of statistics

is to draw inferences from samples of data to the population from which

these samples came. Specifically, we are interested in estimating the true

mean of a population for which we have a sample mean based on, say,

25 cases. Imagine the following:

Population

IQ scores, xi

Sample means based on

25 people randomly selected

110 x1 ¼ 102

100

105 x2 ¼ 99

98

140 x3 ¼ 101

– x4 ¼ 98

– –

100 100

m¼mean of

all the xis
mx ¼ m,

mean of the means is m,
the population mean

σ¼ population standard

deviation

σffiffiffi
n

p ¼ Standard deviation of the distribution

of the x called the standard error

of the mean¼ σx

There is a population of IQ scores whose mean is 100 and its standard

deviation is 16. Now imagine that we draw a sample of 25 people at

random from that population and calculate the sample mean x. This
sample mean happens to be 102. If we took another sample of 25 individ-

uals, we would probably get a slightly different sample mean, for exam-

ple, 99. Suppose we did this repeatedly an infinite (or a very large) number

of times, each time throwing the sample, we just drew back into the
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population pool from which we would sample 25 people again. We would

then have a very large number of such sample means. These sample means

would form a normal distribution. Some of them would be very close to

the true population mean of 100, and some would be at either end of this

“distribution of means” as in Figure 3.2.

This distribution of sample means would have its own standard

deviation, that is, a measure of the spread of the data around the mean

of the data. In this case, the data are sample means rather than individual

values. The standard deviation of this distribution of means is called the

standard error of the mean.
It should be pointed out that this distribution of means, which is also

called the sampling distribution of means, is a theoretical construct.

Obviously, we don’t go around measuring samples of the population to

construct such a distribution. Usually, in fact, we just take one sample of
25 people and imagine what this distribution might be. However, due to

certain mathematical derivations, we know a lot about this theoretical

distribution of population means, and therefore we can draw important

x

σ

25

Based on n = 25
Distribution of X

93.6 96.8 100 103.2 106.4

Figure 3.2 Distribution of sample means
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inferences based on just one sample mean. What we do know is that the

distribution of means is a normal distribution, that its mean is the same as

the population mean of the individual values, that is, the mean of the
means is m, and that its standard deviation is equal to the standard

deviation of the original individual values divided by the square root of

the number of people in the sample.

Standard error of the mean ¼

σx ¼ σffiffiffi
n

p

In this case it would be

16ffiffiffiffiffi
25

p ¼ 16

5
¼ 3:2

The distribution of means would look as shown in Figure 3.2.

Please note that when we talk about population values, which we

usually don’t know but are trying to estimate, we refer to the mean as

m and the standard deviation as σ. When we talk about values calculated

from samples, we refer to the mean as x, the standard deviation as s.d., and
the standard error as s.e.

Now imagine that we have a distribution of means based on samples

of 64 individuals. The mean of these means is also m, but its dispersion,

or standard error, is smaller. It is 16=
ffiffiffiffiffi
64

p ¼ 16=8 ¼ 2. This is illustrated

in Figure 3.3.

It is easily seen that if we take a sample of 25 individuals, their mean is

likely to be closer to the true mean than the value of a single individual, and

if we draw a sample of 64 individuals, their mean is likely to be even closer

to the true mean than was the mean we obtained from the sample of 25.

Thus, the larger the sample size, the better is our estimate of the true

population mean.

The standard deviation is used to describe the dispersion or variabil-
ity of the scores. The standard error is used to draw inferences about the
population mean from which we have a sample.We draw such inferences

by constructing confidence intervals, which are discussed in Section 3.11.
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3.7 Standard Error of the Difference Between Two Means

This concept is analogous to the concept of standard error of the mean.

The standard error of the differences between two means is the standard

deviation of a theoretical distribution of differences between two means.

Imagine a group of men and a group of women each of whom have an IQ

measurement. Suppose we take a sample of 64 men and a sample of

64 women, calculate the mean IQs of these two samples, and obtain

their differences. If we were to do this an infinite number of times, we

would get a distribution of differences between sample means of two

groups of 64 each. These difference scores would be normally distributed;

their mean would be the true average difference between the populations

of men and women (which we are trying to infer from the samples), and

s

s

s

64

25

m

Distribution of X Based on N = 25  

Distribution of X Based on N = 64  

Distribution of X

Figure 3.3 Distribution of means for different sample sizes
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the standard deviation of this distribution is called the standard error of
the differences between two means.

The standard error of the difference between two means of

populations X and Y is given by the formula

σx�y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2x
nx

þ σ2y
ny

s

where σ2x is the variance of population X and σ2y is the variance

of population Y, nx is the number of cases in the sample from population

X and ny, is the number of cases in the sample from population Y.
In some cases, we know or assume that the variances of the two

populations are equal to each other and that the variances that we calculate

from the samples we have drawn are both estimates of a common vari-

ance. In such a situation, we would want to pool these estimates to get a

better estimate of the common variance. We denote this pooled estimate

as s2pooled¼ s2p, and we calculate the standard error of the difference

between means as

s:e::x�y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2p

1

nx
þ 1

ny

� �s
¼ sp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

nx
þ 1

ny

s

We calculate s2p from sample data:

s2p ¼
nx � 1ð Þs2x þ ny � 1

	 

s2y

nx þ ny � 2

This is the equivalent to

s2p ¼
Σ xi � xð Þ2 þ Σ yi � yð Þ2

nx þ ny � 2

Since in practice we will always be calculating our values from

sample data, we will henceforth use the symbology appropriate to that.
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3.8 Z Scores and the Standardized Normal Distribution

The standardized normal distribution is one whose mean¼ 0, standard

deviation¼ 1, and the total area under the curve¼ 1. The standard normal

distribution looks like the one shown in Figure 3.4.

On the abscissa, instead of x, we have a transformation of x called the
standard score; Z. Z is derived from x by the following:

Z ¼ x� m

σ

Thus, the Z score really tells you how many standard deviations from the

mean a particular x score is.
Any distribution of a normal variable can be transformed to a

distribution of Z by taking each x value, subtracting from it the mean of

x (i.e., m), and dividing this deviation of x from its mean, by the standard

deviation. Let us look at the IQ distribution again in Figure 3.5.

Thus, an IQ score of 131 is equivalent to a Z score of 1.96 (i.e., it

is 1.96, or nearly 2, standard deviations above the mean IQ).

Z ¼ 131� 100

16
¼ 1:96

One of the nice things about the Z distribution is that the probability of

a value being anywhere between two points is equal to the area under the

s = 1 s = 1

2s 2s 

-2 -1 +1 +20
Z

Figure 3.4 Standard normal distribution
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curve between those two points. (Accept this on faith.) It happens that the

area to the left of 1.96 corresponds to a probability of .025, or 2.5 % of the

total curve. Since the curve is symmetrical, the probability of Z being to

the left of �1.96 is also .025. Invoking the additive law of probability

(Section 2.2), the probability of a Z being either to the left of �1.96 or to
the left of +1.96 is .025 + .025¼ .05. Transforming back up to x, we can

say that the probability of someone having an IQ outside of 1.96 standard

deviations away from the mean (i.e., above 131 or below 69) is .05, or

only 5 % of the population have values that extreme. (Commonly, the Z

value of 1.96 is rounded off to �2 standard deviations from the mean as

corresponding to the cutoff points beyond which lies 5 % of the curve, but

the accurate value is 1.96.)

A very important use of Z derives from the fact that we can also convert

a sample mean (rather than just a single individual value) to a Z score.

DISTRIBUTION OF X

69

.025

−1.96 1.96−1 0 1

.025

84 100 116 131

DISTRIBUTION OF Z

Figure 3.5 Distribution of Z scores
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Z ¼ x� m

σx

The numerator now is the distance of the sample mean from the popula-

tion mean, and the denominator is the standard deviation of the distribu-

tion of means, which is the standard error of the mean. This is illustrated
in Figure 3.6, where we are considering means based on 25 cases each.

The s.e. is 16=
ffiffiffiffiffi
25

p ¼ 16=5 ¼ 3:2.
Now we can see that a sample mean of 106.3 corresponds to a Z score

of 1.96.

DISTRIBUTION OF MEANS X
BASED ON 25 CASES

DISTRIBUTION OF Z

93.7

−1.96 −1 0 1 1.96

.025 .025

96.8 100 103.2 106.3

Figure 3.6 Distribution of means based on samples of size 25
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Z ¼ 106:3� 100

3:2
¼ 1:96

We can now say that the probability that the mean IQ of a group of
25 people is greater than 106.3 is .025. The probability that such a mean

is less than 93.7 is also .025.

A Z score can also be calculated for the difference between two means.

Z ¼ xA � xBð Þ � mA � mBð Þ
σxA�xB

ButmA–mB is commonly hypothesized to be 0 so the formula becomes

Z ¼ xA � xB
σxA�xB

You can see that a Z score in general is a distance between some value

and its mean divided by an appropriate standard error.

This becomes very useful later on when we talk about confidence

intervals in Sections 3.10, 3.11, 3.12, 3.13, 3.14 and 3.15.

3.9 The t Statistic

Suppose we are interested in sample means and we want to calculate a Z

score. We don’t know what the population standard deviation is, but if our

samples are very large, we can get a good estimate of σ by calculating the

standard deviation, s.d., from our sample, and then getting the standard

error as usual: s:e: ¼ s:d:=
ffiffiffi
n

p
. But often our sample is not large enough.

We can still get a standardized score by calculating a value called student’s t:

t ¼ x� m

s:e:x

It looks just like Z; the only difference is that we calculate it from the

sample and it is a small sample.
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We can obtain the probability of getting certain t values similarly to

the way we obtained probabilities of Z values—from an appropriate table.

But it happens that while the t distribution looks like a normal Z distribu-

tion, it is just a little different, thereby giving slightly different probabil-

ities. In fact there are many t distributions (not just one, like for Z). There

is a different t distribution for each different sample size. (More will be

explained about this in Section 3.10.)

In our example, where we have a mean based on 25 cases, we would

need a t value of 2.06 to correspond to a probability of .025 (instead of the

1.96 for the Z distribution). Translating this back to the scale of sample

means, if our standard error were 3.2, then the probability would be .025

that we would get a sample mean as large as 106.6 (which is 100 + 2.06

times 3.2) rather than 106.3 (which is 100 + 1.96 times 3.2) as in the Z

distribution. This may seem like nit-picking, since the differences are so

small. In fact, as the sample size approaches infinity, the t distribution

becomes exactly like the Z distribution, but the differences between Z and

t get larger as the sample size gets smaller, and it is always safe to use the t

distribution. For example, for a mean based on five cases, the t value

would be 2.78 instead of the Z of 1.96. Some t values are tabled in

Appendix 1. More detailed tables are in standard statistics books.

3.10 Sample Values and Population Values Revisited

All this going back and forth between sample values and population

values may be confusing. Here are the points to remember:

1. We are always interested in estimating population values from

samples.

2. In some of the formulas and terms, we use population values as if

we knew what the population values really are. We of course don’t
know the actual population values, but if we have very large

samples, we can estimate them quite well from our sample data.

3. For practical purposes, we will generally use and refer to tech-

niques appropriate for small samples, since that is more common

and safer (i.e., it doesn’t hurt even if we have large samples).
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3.11 A Question of Confidence

A confidence interval establishes a range and specifies the probability that
this range encompasses the true population mean. For instance, a 95 %

confidence interval (approximately) is set up by taking the sample mean,

x, plus or minus two standard errors of the mean.
95 % confidence interval:

x� 2 s:e: ¼ x� 2
s:d:ffiffiffi
n

p
� �

Thus, if we took a random sample of 64 applicants to the Albert

Einstein College of Medicine and found their mean IQ to be 125, say,

(a fictitious figure), we might like to set up a 95 % confidence interval to

infer what the true mean of the population of applicants really is. The 95%

confidence interval is the range between 125–2 s.e. and 125 + 2 s.e.

We usually phrase this as

“We are 95 % confident that the true mean IQ of Einstein medical

school applicants lies within 125� 2 s.e.”

For the purposes of this example, assume that the standard deviation is

16. (This is not a particularly good assumption since the IQ variability

of medical school applicants is considerably less than the variability of IQ

in the population in general.) Under this assumption, we arrive at the

following range:

125þ 2 16ð Þffiffiffiffiffi
64

p ¼ 125� 2 16ð Þ
8

¼ 125� 4 ¼ 121� 129

Our statement now is as follows: “The probability is approximately

.95 that the true mean IQ of Einstein Medical School applicants lies within

the range 121–129.” (A more rigorous interpretation of this is given in

Section 3.11.)

A 99 % confidence interval is approximately the sample mean� 3 s.e.

In our example, this interval would be
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125� 3
16ð Þffiffiffiffiffi
64

p
� �

¼ 125� 6 ¼ 119� 131

We would then be able to say: “The probability is approximately .99

that the true mean IQ of Einstein Medical School applicants lies within the

range 119–131.”

The “approximately” is because to achieve .95 probability, you don’t
multiply the s.e. by 2 exactly as we did here; we rounded it for conve-

nience. The exact multiplying factor depends on how large the sample

is. If the sample is very large, greater than 100, we would multiply the

s.e. by 1.96 for 95 % confidence intervals and by 2.58 for 99 % confidence

intervals. If the sample is smaller, we should look up the multiplier

in tables of t values, which appear in many texts. These t values are

different for different “degrees of freedom,” explained in Section 3.13,

which are related to sample sizes. Some t values are shown in Appendix 1.

(Also refer back to Section 3.9 for the meaning of t statistics.)

Note that for a given sample size, we trade off degree of certainty for

size of the interval. We can be more certain that our true mean lies within a

wider range, but if we want to pin down the range more precisely, we are

less certain about it (Figure 3.7). To achieve more precision and maintain

a high probability of being correct in estimating the range, it is necessary

to increase the sample size. The main point here is that when you report a

sample mean as an estimate of a population mean, it is most desirable to

report the confidence limits.

CONFIDENCE INTERVALS FOR I.Q.

99% CONFIDENCE

95% CONFIDENCE

119 121 125 129 131

Figure 3.7 Confidence intervals
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3.12 Confidence Limits and Confidence Intervals

Confidence limits are the outer boundaries that we calculate and about

which we can say: we are 95 % confident that these boundaries or limits

include the true population mean. The interval between these limits is

called the confidence interval. If we were to take a large number of

samples from the population and calculate the 95 % confidence limits

for each of them, 95 % of the intervals bound by these limits would

contain the true population mean. However, 5 % would not contain

it. Of course, in real life we only take one sample and construct confidence

intervals from it. We can never be sure whether the interval calculated

from our particular sample is one of the 5 % of such intervals that do not

contain the population mean. The most we can say is that we are 95 %

confident it does contain it. As you can see, we never know anything

for sure.

If an infinite number of independent random samples were drawn

from the population of interest (with replacement), then 95 % of the

confidence intervals calculated from the samples (with mean x and

standard error s.e.) will encompass the true population mean m.
Figure 3.8 illustrates the above concepts.

CONFIDENCE INTERVALS

Diastolic
Blood Pressure

Population mean: m

0 2 4 6 8 10 12 14 16 18

SAMPLE NUMBER

X + 2 s.e.

X + 2 s.e.
X + 2 s.e.

X + 2 s.e.

X + 2 s.e.

X + 2 s.e.

X – 2 s.e.

X
X

X

X

X

X X – 2 s.e.
X – 2 s.e.

X – 2 s.e.

X – 2 s.e.

X – 2 s.e.

Figure 3.8 Confidence intervals
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3.13 Degrees of Freedom

The t values that we use as the multiplier of the standard error to construct

confidence intervals depend on something called the degrees of freedom
(df), which are related to the sample size. When we have one sample, in

order to find the appropriate t value to calculate the confidence limits, we

enter the tables with n–1 degrees of freedom, where n is the sample size.

An intuitive way to understand the concept of df is to consider that if we

calculate the mean of a sample of, say, three values, we would have the

“freedom” to vary two of them any way we liked after knowing what the

mean is, but the third must be fixed in order to arrive at the given mean. So

we only have 2 “degrees of freedom.” For example, if we know the mean

of three values is 7, we can have the following sets of data:

Value 1: 7 �50

Value 2: 7 +18

Value 3: 7 +53

Sum ¼ 21 21

Mean ¼ x ¼ 7 x ¼ 7

In each case, if we know values 1 and 2, then value 3 is determined

since the sum of these values must be 21 in order for the mean to be 7. We

have “lost” one degree of freedom in calculating the mean.

3.14 Confidence Intervals for Proportions

A proportion can be considered a continuous variable. For example, in the

anticoagulant study described in Section 3.1, the proportion of women in

the control (placebo-treated) group who survived a heart attack was found

to be 89/129¼ .69. A proportion may assume values along the continuum

between 0 and 1. We can construct a confidence interval around a pro-

portion in a similar way to constructing confidence intervals around

means. The 95 % confidence limits for a proportion are p� 1.96 s.e.p,

where s.e.p is the standard error of a proportion.
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To calculate the standard error of a proportion, we must first calculate

the standard deviation of a proportion and divide it by the square root of n.
We define our symbology:

s ¼ standard deviation of a proportion ¼ ffiffiffiffiffi
pq

p

p ¼ sample proportion ¼ number of survivors in control group

total number of women in control group

q ¼ 1� p ¼ number dead in control group

total number of women in control group

s:e:p ¼
ffiffiffiffiffi
pq

p ffiffiffi
n

p ¼
ffiffiffiffiffi
pq

n

r

In our example of women survivors of a heart attack in the control

group, the 95 % confidence interval is

:69� 1:96x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
:69ð Þ � :31ð Þ

129

r
¼ :69� :08

And we can make the statement that we are 95 % confident that the

population proportion of untreated women surviving a heart attack is

between .61 and .77 or 61 % and 77 %. (Remember this refers to the

population from which our sample was drawn. We cannot generalize this

to all women having a heart attack.)

For 99 % confidence limits, we would multiply the standard error of a

proportion by 2.58, to get the interval .59 to .80. The multiplier is the Z

value that corresponds to .95 for 95 % confidence limits or .99 probability

for 99 % confidence limits.

3.15 Confidence Intervals Around the Difference Between
Two Means

We can construct confidence intervals around a difference between means

in a similar fashion to which we constructed confidence intervals around a

single mean. The 95 % confidence limits around the difference between

means are given by
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x� yð Þ � tdf , :95
	 


s:e:x�y

	 

In words, this is the difference between the two sample means, plus or

minus an appropriate t value, times the standard error of the difference; df

is the degrees of freedom and .95 says that we look up the t value that

pertains to those degrees of freedom and to .95 probability. The degrees of

freedomwhen we are looking at two samples are nx+ ny–2. This is because
we have lost one degree of freedom for each of the two means we have

calculated, so our total degrees of freedom is (nx–1) + (ny–1)¼ nx + ny� 2.

As an example, consider that we have a sample of 25 female and

25 male medical students. The mean IQs for each sample are

xfemales ¼ 130, xmales ¼ 126, spooled ¼ 12, df ¼ 48

The 95 % confidence interval for the mean difference between men and

women is calculated as follows:

From t tables, we find that the t value for df¼ 48 is 2.01:

xfemales � xmales � 2:01�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sp

1

nx
þ 1

ny

� �s
¼

130� 126ð Þ � 2:01
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 1=25þ 1=25ð Þp ¼ 4� 6:8

The interval then is �2.8 to 10.8, and we are 95 % certain it includes the

true mean difference between men and women. This interval includes

0 difference, so we would have to conclude that the difference in IQ

between men and women may be zero.

3.16 Comparisons Between Two Groups

Amost common problem that arises is the need to compare two groups on

some dimension. We may wish to determine, for instance, whether

(1) administering a certain drug lowers blood pressure, or (2) drug A is

more effective than drug B in lowering blood sugar levels, or (3) teaching

first-grade children to read by method I produces higher reading achieve-

ment scores at the end of the year than teaching them to read by method II.
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3.17 Z-Test for Comparing Two Proportions

As an example, we reproduce here the table in Section 3.1 showing data

from a study on anticoagulant therapy.

Observed frequencies

Lived 312
Died 79

Total 391

Control Treated

89 223
40 39

129 262

If we wish to test whether the proportion of women surviving a heart

attack in the treated group differs from the proportion surviving in the

control group, we set up our null hypothesis as

HO: P1 ¼ P2 orP1 � P2 ¼ 0; P1 ¼ proportion surviving in

treated population

P2 ¼ proportion surviving in

control population

HA: P1 � P2 6¼ 0 the difference does not equal 0ð Þ

We calculate

Z ¼ p1 � p2
s:e:p1�p2

p1 ¼
223

262
¼ :85, q1 ¼ 1� p1 ¼ :15, n1 � 262

p2 ¼
89

129
¼ :69, q2 ¼ 1� p2 ¼ :31, n2 ¼ 129
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Thus, the numerator of Z¼ .85–.69¼ .16.

The denominator ¼
standard error of the difference between two proportions ¼

s:e: p1�p2ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ q̂

1

n1
þ 1

n2

� �s

where p̂ and q̂ are pooled estimates based on both treated and control

group data. We calculate it as follows:

p̂ ¼ n1p1 þ n2p2
n1 þ n2

¼ number of survivors in treated þ control

total number of patients in treated þ control

¼ 262 :85ð Þ þ 129 :69ð Þ
262þ 129

¼ 223þ 89

391
¼ :80

q̂ ¼ 1� p̂ ¼ 1� :80 ¼ :20

s:e: p1�p2ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
:80ð Þ :20ð Þ 1

262
þ 1

129

� �s
¼ :043

Z ¼ :85� :69

:043
¼ 3:72

We must now look to see if this value of Z exceeds the critical value.

The critical value is the minimum value of the test statistics that we must

get in order to reject the null hypothesis at a given level of significance.

The critical value of Z that we need to reject HO at the .05 level of

significance is 1.96. The value we obtained is 3.74. This is clearly a large

enough Z to reject HO at the .01 level at least. The critical value for Z to

reject HO at the .01 level is 2.58.

Note that we came to the same conclusion using the chi-square test in

Section 3.1. In fact Z2 ¼ χ 2¼ (3.74)2¼ 13.99 and the uncorrected

chi-square we calculated was 13.94 (the difference is due to rounding

errors). Of course the critical values of χ 2 and Z have to be looked up in

their appropriate tables. Some values appear in Appendix 1.
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3.18 t-Test for the Difference Between Means of Two
Independent Groups: Principles

When we wanted to compare two groups on some measure that was a

discrete or categorical variable, like mortality in two groups, we used the

chi-square test, described in Section 3.1. Or we could use a test between

proportions as described in Section 3.17. We now discuss a method of

comparing two groups when the measure of interest is a continuous variable.

Let us take as an example the comparison of the ages at first preg-

nancy of two groups of women: those who are lawyers and those who are

paralegals. Such a study might be of sociological interest, or it might be of

interest to law firms, or perhaps to a baby foods company that is seeking to

focus its advertising strategy more effectively.

Assuming we have taken proper samples of each group, we now have

two sets of values: the ages of the lawyers (group A) and the ages of the

paralegals (group B), and we have a mean age for each sample. We set up

our null hypothesis as follows:

HO: “The mean age of the population of lawyers from which we have

drawn sample A is the same as the mean age of the population of

paralegals from which we have drawn sample B.”

Our alternate hypothesis is

HA: “The mean ages of the two populations we have sampled are

different.”

In essence, then, we have drawn samples on the basis of which we will

make inferences about the populations from which they came. We are

subject to the same kinds of type I and type II errors we discussed before.

The general approach is as follows. We know there is variability of the

scores in group A around the mean for group A and within group B around

the mean for group B, simply because even within a given population,

people vary. What we want to find is whether the variability between the

two sample means around the grand mean of all the scores is greater than

the variability of the ages within the groups around their own means.
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If there is as much variability within the groups as between the groups,

then they probably come from the same population.

The appropriate test here is the t-test. We calculate a value known as t,

which is equal to the difference between the two sample means divided by

an appropriate standard error. The appropriate standard error is called the

standard error of the difference between two means and is written as

s:e:x1�x2

The distribution of t has been tabulated, and from the tables, we can

obtain the probability of getting a value of t as large as the one we actually

obtained under the assumption that our null hypothesis (of no difference

betweenmeans) is true. If this probability is small (i.e., if it is unlikely that by

chance alone we would get a value of t that large if the null hypothesis were

true), wewould reject the null hypothesis and accept the alternate hypothesis

that there really is a difference between the means of the populations from

which we have drawn the two samples.

3.19 How to Do a t-Test: An Example

Although t-tests can be easily performed on personal computers, an

example of the calculations and interpretation is given below. This statis-

tical test is performed to compare the means of two groups under the

assumption that both samples are random, independent, and come from

normally distributed populations with unknown but equal variances.

Null hypothesis : mA ¼ mB, or the equivalent : mA � mB ¼ 0

Alternate hypothesis : mA 6¼ mB, or the equivalent : mA � mB 6¼ 0

[Note: When the alternate hypothesis does not specify the direction of

the difference (by stating, for instance, that mA is greater than mB) but
simply says the difference does not equal 0, it is called a two-tailed test.

When the direction of the difference is specified, it is called a one-tailed

test. More on this topic appears in Section 5.4.]

t ¼ xA � xBð Þ
sxA�xB
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Ages of sample A Ages of sample B

xi (xi–xA) (xi–xA)
2 xi (xi–xB) (xi–xB)

2

28 �3 9 24 2.4 5.76

30 �1 1 25 3.4 11.56

27 �4 16 20 �1.6 2.56

32 1 1 18 �3.6 12.96

34 3 9 21 �0.6 0.36

36 5 25 Σ¼ 108 Σ¼ 0 Σ¼ 33.20

30 �1 1

Σ¼ 217 Σ ¼0 Σ¼ 62

MeanA ¼ xA ¼ Σxi
n

¼ 217

7
¼ 31; MeanB ¼ xB ¼ Σxi

n
¼ 108

5
¼ 21:6

(The subscript i refers to the ith score and is a convention used to indicate that we sum over

all the scores.)

The numerator of t is the difference between the two means:

31� 21:6 ¼ 9:4

To get the denominator of t, we need to calculate the standard error of the

difference between means, which we do as follows:

First we get the pooled estimate of the standard deviation.We calculate:

sp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Σ xi � xAð Þ2 þ Σ xi � xBð Þ2

nA þ nB � 2

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
62þ 33:20

7þ 5� 2

r

¼
ffiffiffiffiffiffiffiffiffiffiffi
95:20

10

r
¼ ffiffiffiffiffiffiffiffiffi

9:52
p ¼ 3:09

sxA�xB ¼ sp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

nA
þ 1

nB

r
¼ 3:09

ffiffiffiffiffiffiffiffiffiffiffi
1

7
þ 1

5

r
¼ 3:09

ffiffiffiffiffiffiffiffiffiffiffi
:3428

p ¼ 3:09� :5854 ¼ 1:81

t ¼ xA � xB
sxA�xB

¼ 9:4

1:81
¼ 5:19
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This t is significant at the .001 level, which means that you would get a

value of t as high as this one or higher only one time out of a thousand by

chance if the null hypothesis were true. So we reject the null hypothesis of

no difference, accept the alternate hypothesis, and conclude that the

lawyers are older at first pregnancy than the paralegals.

3.20 Matched Pair t-Test

If you have a situationwhere the scores in one group correlatewith the scores

in the other group, you cannot use the regular t-test since that assumes the

two groups are independent. This situation arises when you take two mea-

sures on the same individual. For instance, suppose group A represents

reading scores of a group of children taken at time 1. These children have

then been given special instruction in reading over a period of 6 months and

their reading achievement is againmeasured to see if they accomplished any

gains at time 2. In such a situation, you would use a matched pair t-test.

Child

A

Initial

reading

scores of

children

B

Scores of same

children after

6 months’ training d¼B–A d � d d � d
	 
2

(1) 60 62 2 1.4 1.96

(2) 50 54 4 3.4 11.56

(3) 70 70 0 �0.6 0.36

(4) 80 78 �2 �2.6 6.76

(5) 75 74 �1 �1.6 2.56

Sum 3 0 23.20

Mean difference ¼ d ¼ 3=5 ¼ 0:60
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Null hypothesis: Mean difference¼ 0.

Alternate hypothesis: Mean difference is greater than 0.

t ¼ d

sd
; sd ¼ sffiffiffi

n
p

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Σ d � d
	 
2
n� 1

s
¼

ffiffiffiffiffiffiffiffiffiffiffi
23:20

4

r
¼ ffiffiffiffiffiffiffi

5:8
p ¼ 2:41

sd ¼ 2:41ffiffiffi
5

p ¼ 2:41

2:23
¼ 1:08

t ¼ :60

1:08
¼ :56

This t is not significant, which means that we do not reject the null

hypothesis and conclude that the mean difference in reading scores could

be zero; that is, the 6 months’ reading program may not be effective. (Or it

may be that the study was not large enough to detect a difference, and we

have committed a type II error.)

When the actual difference between matched pairs is not in itself a

meaningful number but the researcher can rank the difference scores

(as being larger or smaller for given pairs), the appropriate test is the

Wilcoxon matched-pairs rank sums test. This is known as a nonparamet-
ric test and along with other such tests is described with exquisite clarity

in the classic book by Sidney Siegel, Nonparametric Statistics for the
Behavioral Sciences and in Nonparametric Statistics for Non-Statisticians
(listed in the Suggested Readings).

3.21 When Not to Do a Lot of t-Tests: The Problem
of Multiple Tests of Significance

A t-test is used for comparing the means of two groups. When there are

three or more group means to be compared, the t-test is not appropriate. To
understand why, we need to invoke our knowledge of combining proba-

bilities from Section 2.2.

Mostly About Statistics 61

http://dx.doi.org/10.1007/978-1-4939-2134-8_2


Suppose you are testing the effects of three different treatments for

high blood pressure. Patients in one group A receive one medication, a

diuretic; patients in group B receive another medication, a beta-blocker;

and patients in group C receive a placebo pill. You want to know

whether either drug is better than placebo in lowering blood pressure

and if the two drugs are different from each other in their blood pressure

lowering effect.

There are three comparisons that can be made: group A versus group

C (to see if the diuretic is better than placebo), group B versus group C

(to see if the beta-blocker is better than the placebo), and group A versus

group B (to see which of the two active drugs has more effect). We set our

significance level at .05, that is, we are willing to be wrong in rejecting the
null hypothesis of no difference between two means, with a probability of

.05 or less (i.e., our probability of making a type I error must be no greater

than .05). Consider the following:

Comparison

Probability of

type I error

Probability of not making a

type I error¼
1–P (type I error)

1. A versus C .05 1–.05¼ .95

2. B versus C .05 1–.05¼ .95

3. A versus B .05 1–.05¼ .95

The probability of not making a type I error in the first comparison

and not making it in the second comparison and not making it in the third

comparison¼ .95� .95� .95¼ .86. We are looking here at the joint
occurrence of three events (the three ways of not committing a type I

error), and we combine these probabilities by multiplying the individual

probabilities. (Remember, when we see “and” in the context of combin-

ing probabilities, we multiply, when we see “or” we add.) So now, we

know that the overall probability of not committing a type I error in any

of the three possible comparisons is .86. Therefore, the probability of

committing such an error is 1—the probability of not committing it, or

1–.86¼ .14. Thus, the overall probability of a type I error would be

considerably greater than the .05 we specified as desirable. In actual fact,
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the numbers are a little different because the three comparisons are not

independent events, since the same groups are used in more than one

comparison, so combining probabilities in this situation would not involve

the simple multiplication rule for the joint occurrence of independent

events. However, it is close enough to illustrate the point that making

multiple comparisons in the same experiment results in quite a different

significance level (.14 in this example) than the one we chose (.05).When

there are more than three groups to compare, the situation gets worse.

3.22 Analysis of Variance: Comparison Among
Several Groups

The appropriate technique for analyzing continuous variables when there

are three or more groups to be compared is the analysis of variance,

commonly referred to as ANOVA. An example might be comparing the

blood pressure reduction effects of the three drugs.

3.23 Principles Underlying Analysis of Variance

The principles involved in the analysis of variance are the same as those in

the t-test. Under the null hypothesis, we would have the following situa-

tion: there would be one big population and if we picked samples of a

given size from that population, we would have a bunch of sample means

that would vary due to chance around the grand mean of the whole

population. If it turns out they vary around the grand mean more than

we would expect just by chance alone, then perhaps something other than

chance is operating. Perhaps they don’t all come from the same popula-

tion. Perhaps something distinguishes the groups we have picked. We

would then reject the null hypothesis that all the means are equal and

conclude the means are different from each other by more than just

chance. Essentially, we want to know if the variability of all the group

means is substantially greater than the variability within each of the

groups around their own mean.
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We calculate a quantity known as the between-groups variance,
which is the variability of the group means around the grand mean of all

the data. We calculate another quantity called the within-groups variance,
which is the variability of the scores within each group around its own

mean. One of the assumptions of the analysis of variance is that the extent

of the variability of individuals within groups is the same for each of the

groups, so we can pool the estimates of the individual within group

variances to obtain a more reliable estimate of overall within-groups

variance. If there is as much variability of individuals within the groups

as there is variability of means between the groups, the means probably

come from the same population, which would be consistent with the

hypothesis of no true difference among means, that is, we could not reject

the null hypothesis of no difference among means.

The ratio of the between-groups variance to the within-groups vari-
ance is known as the F ratio. Values of the F distribution appear in tables

in many statistical texts, and if the obtained value from our experiment is

greater than the critical value that is tabled, we can then reject the

hypothesis of no difference.

There are different critical values of F, depending on how many

groups are compared and on how many scores there are in each group.

To read the tables of F, one must know the two values of degrees of

freedom (df). The df corresponding to the between-groups variance,

which is the numerator of the F ratio, is equal to k–1, where k is the

number of groups. The df corresponding to the denominator of the F

ratio, which is the within-groups variance, is equal to k� (n–1), that is,
the number of groups times the number of scores in each group minus

one. For example, if in our hypertension experiment there are

100 patients in each of the three drug groups, then the numerator degrees

of freedom would be 3–1¼ 2, and the denominator degrees of freedom

would be 3� 99¼ 297. An F ratio would have to be at least 3.02 for a

significance level of .05. If there were four groups being compared,

then the numerator degrees of freedom would be 3, and the critical

value of F would need to be 2.63. If there is not an equal number of

individuals in each group, then the denominator degrees of freedom is

(n1–1) + (n2–1) + (n3–1).
We will not present here the actual calculations necessary to do an F

test because nowadays these are rarely done by hand. There are a large
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number of programs available for personal computers that can perform F

tests, t-tests, and most other statistical analyses. However, shown below

is the kind of output that can be expected from these programs. Shown

are summary data from the TAIM study (Trial of Antihypertensive

Interventions and Management). The TAIM study was designed to

evaluate the effect of diet and drugs, used alone or in combination

with each other, to treat overweight persons with mild hypertension

(high blood pressure)10,11.

The next table shows the mean drop in blood pressure after 6 months

of treatment with each drug, the number of people in each group, and the

standard deviation of the change in blood pressure in each group.

Drug group n

Mean drop (in diastolic

blood pressure units

after 6 months of treatment)

Standard

deviation

A. Diuretic 261 12.1 7.9

B. Beta-blocker 264 13.5 8.2

C. Placebo 257 9.8 8.3

The next table results from an analysis of variance of the data from

this study. It is to be interpreted as follows:

ANOVA

Source of

variation

Degrees of

freedom

Sum of

squares

Mean

square F ratio P2> F

Between

groups

2 1776.5 888.2 13.42 .0001

Within groups 779 5256.9 66.2

781

The mean square is the sum of squares divided by the degrees of

freedom. For between-groups, it is the variation of the groupmeans around

the grand mean, while for within-groups, it is the pooled estimate of the

variation of the individual scores around their respective group means.
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The within-groups mean square is also called the error mean square.

(An important point is that the square root of the error mean square is the

pooled estimate of the within-groups standard deviation. In this case, it isffiffiffiffiffiffiffiffiffi
66:2

p ¼ 8:14. It is roughly equivalent to the average standard deviation.)
F is the ratio of the between to the within mean squares; in this example, it

is 888.2/66.2¼ 13.42.

The F ratio is significant at the .0001 level, so we can reject the null

hypothesis that all group means are equal. However, we do not know

where the difference lies. Is group A different from group C but not from

group B? We should not simply make all the pairwise comparisons

possible because of the problem of multiple comparisons discussed

above. But there are ways to handle this problem. One of them is the

Bonferroni procedure, described in the next section.

3.24 Bonferroni Procedure: An Approach to Making
Multiple Comparisons

This is one way to handle the problem of multiple comparisons. The

Bonferroni procedure implies that if, for example, we make five compar-

isons, the probability that none of the five p values falls below .05 is at

least 1–(5� .05)¼ .75 when the null hypothesis of equal means is really

true. That means that there is a probability of up to .25 that at least one

p value will reach the .05 significance level by chance alone even if the
treatments really do not differ. To get around this, we divide the chosen

overall significance level by the number of two-way comparisons to be

made, consider this value to be the significance level for any single

comparison, and reject the null hypothesis of no difference only if it

achieves this new significance level.

For example, if we want an overall significance level of .05 and

we will make three comparisons between means, we would have to

achieve .05/3¼ .017 level in order to reject the null hypothesis and

conclude there is a difference between the two means. A good deal of

self-discipline is required to stick to this procedure and not declare a

difference between two means as unlikely to be due to chance if the

particular comparison has significance at p¼ .03, say, instead of .017.
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The Bonferroni procedure does not require a prior F test. Let us apply the

Bonferroni procedure to our data.

First we compare each of the drugs to placebo. We calculate the t for

the difference between means of group A versus group C.

t ¼ xA � xC
s:e:xA�xC

s:e:xA�xC ¼ sp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

nA
þ 1

nC

r
12:1� 9:8

8:14
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
261

þ 1
257

q ¼ 2:3

:715
¼ 3:22

p ¼ :0014

Note that we use 8.14 as s pooled. We obtained this from the analysis of

variance as an estimate of the common standard deviation. The degrees of

freedom to enter the t tables are 261 + 257–2¼ 516.

It turns out that the probability of getting such a high t value by chance

is only .0014. We can safely say the diuretic reduces blood pressure more

than the placebo. The same holds true for the comparison between the

beta-blocker and placebo. Now let us compare the two drugs, B versus A:

t ¼ 13:5� 12:1

8:14
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

264
þ 1

261

q ¼ 1:4

:711
¼ 1:97

The p value corresponding to this t value is .049. It might be tempting

to declare a significant difference at the .05 level, but remember the

Bonferroni procedure requires that we get a p value of .017 or less for

significance adjusted for multiple comparisons. The critical value of t

corresponding to p¼ .017 is 2.39, and we only got a t of 1.97. However,

there has been some questioning of the routine adjustment for multiple

comparisons12 on the grounds that we thereby may commit more type II

errors and miss important effects. In any case, p levels should be reported

so that the informed reader may evaluate the evidence.
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3.25 Analysis of Variance When There Are Two
Independent Variables: The Two-Factor ANOVA

The example above is referred to as the one-way ANOVA because you

can divide all the scores in one way only, by the drug group to which

patients were assigned. The drug group is called a “factor,” and this factor

has three levels, meaning there are three categories of drug. There may,

however, be another factor that classifies individuals, and in that case we

would have a two-way, or a two-factor, ANOVA. In the experiment we

used as an example, patients were assigned to one of the three drugs noted

above as well as to one of three diet regimens—weight reduction, sodium

(salt) restriction, or no change from their usual diet, which is analogous to

a placebo diet condition. The diagram below illustrates this two-factor

design, and the mean drop in blood pressure in each group, as well as the

numbers of cases in each group, which are shown in parenthesis.

Now we are interested in comparing the three means that represent

change in blood pressure in the drug groups, the three means that represent

changes in the diet groups, and the interaction between drug and diet. We

now explain the concept of interaction.

Diet

Drug Usual
Weight

reduction
Sodium

restriction Total

Diuretic
10.2
(87)

14.5
(86)

11.6
(88)

12.1
(261)

Beta-blocker
12.8
(86)

15.2
(88)

12.6
(90)

13.5
(264)

Placebo
8.7
(89)

10.8
(89)

10.1
(79)

9.8
(257)

Total
10.5
(262)

13.5
(263)

11.5
(257)
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3.26 Interaction Between Two Independent Variables

Interaction between two independent variables refers to differences in

the effect of one variable, depending on the level of the second variable.

For example, maybe one drug produces better effects when combined

with a weight-reduction diet than when combined with a sodium-

restricted diet. There may not be a significant effect of that drug

when all diet groups are lumped together, but if we look at the effects

separately for each diet group, we may discover an interaction between

the two factors: diet and drug.

The diagrams below illustrate the concept of interaction effects. WR

means weight reduction and SR means sodium (salt) restriction.

Good

Bad

WR WR WR

SR

A B A B A B

SR
SR

Example 1 Example 2 Example 3

In example 1, drug B is better than drug A in those under weight

reduction, but in those under salt restriction, drug A is better than drug

B. If we just compared the average for drug A, combining diets, with the

average for drug B, we would have to say there is no difference between

drug A and drug B, but if we look at the two diets separately, we see quite

different effects of the two drugs.

In example 2, there is no difference in the two drugs for those who

restrict salt, but there is less effect of drug A than drug B for those in

weight reduction.

In example 3, there is no interaction; there is an equal effect for both

diets: the two lines are parallel; their slopes are the same. Drug B is better

than drug A both for those in weight reduction and salt restriction.
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3.27 Example of a Two-Way ANOVA

Next is a table of data from the TAIM study showing the results of a

two-way analysis of variance:

Two-way ANOVA from TAIM data

Source DF

ANOVA sum

of squares

Mean

square F value Probability

Drug group 2 1776.49 888.25 13.68 .0001

Diet group 2 1165.93 582.96 8.98 .0001

Drug� diet 4 214.50 53.63 0.83 .509

Error 773 50,185.46 64.93

Note that the error mean square here is 64.93 instead of 66.9 when we

did the one-way analysis. That is because we have explained some of the

error variance as being due to diet effects and interaction effects (we have

“taken out” these effects from the error variance). Thus, 64.93 represents

the variance due to pure error, or the unexplained variance. Now we can

use the square root of this which is 8.06 as the estimate of the common

standard deviation. We explain the results as follows: There is a signifi-

cant effect of drug (p¼ .0001) and a significant effect of diet (p¼ .0001),

but no interaction of drug by diet (p¼ .509).

We have already made the three pairwise comparisons, by t-tests for

the difference between two means among drugs (i.e., placebo vs. diuretic,

placebo vs. beta-blocker, and diuretic vs. beta-blocker). We can do the

same for the three diets. Their mean values are displayed below:

Diet group n
Mean drop in diastolic

blood pressure

Standard

deviation

Weight reduction 263 13.5 8.3
Sodium restriction 257 11.5 8.3
Usual diet 262 10.5 8.0

Pooled estimate of s.d.¼ 8.06
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If we did t-tests, we would find that weight reduction is better than

usual diet (p¼ .0000), but sodium restriction shows no significant

improvement over usual diet (p¼ .16).

Weight reduction when compared with sodium restriction is also

significantly better with p¼ .005, which is well below the p¼ .017

required by the Bonferroni procedure. (The t for this pairwise comparison

is 2.83, which is above the critical value of 2.39.)

3.28 Kruskal–Wallis Test to Compare Several Groups

The analysis of variance is valid when the variable of interest is contin-

uous, comes from a normal distribution, that is, the familiar bell-shaped

curve, and the variances within each of the groups being compared are

essentially equal. Often, however, we must deal with situations when we

want to compare several groups on a variable that does not meet all of the

above conditions. This might be a case where we can say one person is

better than another, but we can’t say exactly how much better. In such a

case, we would rank people and compare the groups by using the Kruskal–

Wallis test to determine if it is likely that all the groups come from a

common population. This test is analogous to the one-way analysis of

variance, but instead of using the original scores, it uses the rankings of
the scores. It is called a nonparametric test. This test is available in many

computer programs, but an example appears in Appendix 3.

3.29 Association and Causation: The Correlation
Coefficient

A common class of problems in the accumulation and evaluation of

scientific evidence is the assessment of association of two variables. Is

there an association between poverty and drug addiction? Is emotional

stress associated with cardiovascular disease?

To determine association, we must first quantify both variables. For

instance, emotional stress may be quantified by using an appropriate

Mostly About Statistics 71

http://dx.doi.org/10.1007/978-1-4939-2134-8_BM1


psychological test of stress or by clearly defining, evaluating, and rating

on a scale the stress factor in an individual’s life situation, whereas

hypertension (defined as a blood pressure reading) may be considered as

the particular aspect of cardiovascular disease to be studied. When vari-

ables have been quantified, a measure of association needs to be calcu-

lated to determine the strength of the relationship. One of the most

common measures of association is the correlation coefficient, r, which
is a number derived from the data and which can vary between�1 and +1.

(Most statistical computer packages will calculate the correlation coeffi-

cient, but if you want to do it yourself, the method of calculation appears

in Appendix 4.) When r¼ 0, it means there is no association between the

two variables. An example of this might be the correlation between blood

pressure and the number of hairs on the head. When r¼+1, a perfect

positive correlation, it means there is a direct relationship between the two

variables: an individual who has a high score on one variable also has a

high score on the other, and the score on one variable can be exactly

predicted from the score on the other variable. This kind of correlation

exists only in deterministic models, where there is really a functional

relationship. An example might be the correlation between age of a tree

and the number of rings it has. A correlation coefficient of �1 indicates a

perfect inverse relationship, where a high score on one variable means a

low score on the other and where, as in perfect positive correlation, there

is no error of measurement. Correlation coefficients between 0 and +1 and

between 0 and �1 indicate varying strengths of associations.

These correlation coefficients apply when the basic relationship

between the two variables is linear. Consider a group of people for each

of whom we have a measurement of weight against height; we will find

that we can draw a straight line through the points. There is a linear

association between weight and height, and the correlation coefficient

would be positive but less than 1. When the variables are continuous,

the calculated correlation is the Pearson product–moment correlation. If
the variables are ranked and ordered according to rank, we calculate the

Spearman rank–order correlation, which is a nonparametric statistic.

Nonparametric statistics are used when the data do not have to be nor-

mally distributed and are ordinal (i.e., can be sorted in order, but the

distances between any two values do not have to be the same). An
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example is educational level which can be categorized into less than a

high school education, graduated from high school, some college, gradu-

ated from college, and received a graduate degree. You can assign num-

bers to these from 1 to 5, but the numbers do not represent years of

education but rather categories of education that are ordered from lowest

to highest category, and you can categorize them differently if you wish.

The diagrams in Figure 3.9 illustrate representations of various cor-

relation coefficients.

Scatter Diagrams

Weight

Height

Perfect Positive
Correlation

Perfect Negative
Correlation

Correlation
Coefficient

r = 1

r = 0

r = –1

Variable 1

Variable 1

No Correlation

Variable 1

Variable
2

Variable
2

Variable
2

– 0 ≤  r  ≤  1 

Figure 3.9 Correlations between 2 variables
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3.30 Some Points to Remember About Correlation

• A correlation coefficient squared (r2) tells you what proportion of the

variance in one variable is explained by the other variable. Thus,

r¼ .40 means that .4� .4¼ .16 or 16 % of the variation in one variable

is explained by the other variable, but the remaining 84 % of the

variation is due to other factors.

• How high is high? The answer to this question depends upon the field of

application as well as on many other factors, including precision of

measurement, as well as the fact that there may be different relationships

between two variables in different groups of people. For example, the

correlations between verbal aptitude and nonverbal aptitude, asmeasured

for Philadelphia schoolchildren by standardized national tests, range

from .44 to .71 depending on race and social class of the groups.13

• Size of the correlation coefficient and statistical significance. A very

low correlation coefficient may be statistically significant if the sample

size is large enough. What seems to be a high correlation coefficient

may not reach statistical significance if the sample size is too low.

Statistical significance tells you that the correlation you observed is not

likely due to chance, but does not tell you anything about the strength

of the association.

• Correlation is not causation. This is the most important point and one

that is often ignored. Correlation tells you nothing about the direction-

ality of the relationship, nor about whether there is some third factor

influencing both variables. The most famous case is that which is

invoked to support the theory that storks bring babies. There is a high

correlation between the number of strokes in an area and the number of

babies born. This was observed in the city of Copenhagen by looking at

records of number of births and the number of storks over a 10-year

period after World War II.1 It turns out that after the war, more people

1 Reference thanks to Professor Angela Pignotti of Modesta Junior College,

Modesta California, Ornithologische Monatsberichte, 44 No. 2, Jahrgang, 1936,

Berlin Ornithologische Monatsberichte, 48 No. 1, Jahrgang, 1940, Berlin

Statistiches Jahrbuch Deutscher Gemeinden, 27–33, Jahrgang, 1932–1938, Gus-

tav Fischer, Jena.
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moved to Copenhagen (so more babies were born there) and more

construction was going on in the city (so storks had more nesting

places, thus more storks). An amusing parody on this topic is by

Thomas Hofer.2

3.31 Causal Pathways

If we do get a significant correlation, we then ask what situations could be

responsible for it. Figure 3.10 illustrates some possible structural relation-

ships that may underlie a significant correlation coefficient.14 We consider

two variables, W (weight gain) and B (blood pressure), and let rWB

represent the correlation between them. Note that only in diagrams (1),

(2), and (6) do the correlation between W and B arise due to a causal

relationship between the two variables. In diagram (1), W entirely deter-

mines B; in diagram (2), W is a partial cause of B; in diagram (6), W is one

of several determinants of B. In all of the other structural relationships, the

correlation between W and B arises due to common influences on both

variables. Thus, it must be stressed that the existence of a correlation
between two variables does not necessarily imply causation. Correlations
may arise because one variable is the partial cause of another or the two

correlated variables have a common cause. Other factors, such as sam-

pling, the variation in the two populations, and so on, affect the size of the

correlation coefficient also. Thus, care must be taken in interpreting these

coefficients.

2 New evidence for the Theory of the Stork, Thomas Höfera, Hildegard

Przyrembelb and Silvia Verlegerc, Federal Institute for Risk Assessment, Berlin,

Office of the National Breast Feeding Committee at BfR, Berlin, and Independent

Midwife, Berlin, Germany, Blackwell Publishing Ltd. Paediatric and Perinatal

Epidemiology 2004, 18, 88–92
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3.32 Regression

Note that in Figure 3.9 we have drawn lines that seem to best fit the data

points. These are called regression lines. They have the following form

Y ¼ a þ bX: In the top scattergram-labeled (a), Y is the dependent

variable weight and X, or height, is the independent variable. We say

(1)

(2)

(3)

(4)

(5)

(6)

W

W

A

A

A

A

A

G

G

C

C

K

K

W

W

W

W

W = Weight gain; B = blood pressure
W entirely determines B

The correlation between W and B is due to
the direct effect of W (weight gain) on B
(blood pressure) as well as to a common
cause, A (age) which affects both variables;
G (genetic factors) also affect B (blood pres-
sure) and C (caloric intake) affects W
(weight gain)

Correlation between W and B is due to two
common causes, A (age) and G genetic
factors

The correlation between W and B is due to a
common cause, A (age), but C (caloric in-
take) and K (kidney function) also determine
W(weight gain) and B (blood pressure re-
spectively)

The common cause, age, totally determines
both blood pressure and weight gain 

W is one of several determinants of B
A = age; K = kidney functions These variables
could also affect blood pressure

rWB = 1

rWB = 1

rWB is less than 1

rWB is less than 1

rWB is less than 1

rWB is less than 1

B

B

B

B

B

B

Figure 3.10 Possible relationships that underlie correlations
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that weight is a function of height. The quantity a is the intercept. It is

where the line crosses the Y axis. The quantity b is the slope and it is the

rate of change in Y for a unit change in X. If the slope is 0, it means we

have a straight line parallel to the x axis, as in the illustration (d). It also

means that we cannot predict Y from a knowledge of X since there is no

relationship between Y and X. If we have the situation shown in scatter-

grams (b) or (c), we know exactly how Y changes when X changes and we

can perfectly predict Y from a knowledge of X with no error. In the

scattergram (a), we can see that as X increases Y increases, but we can’t
predict Y perfectly because the points are scattered around the line we

have drawn. We can, however, put confidence limits around our predic-

tion, but first we must determine the form of the line we should draw

through the points. We must estimate the values for the intercept and

slope. This is done by finding the “best-fit line.”

The line that fits the points best has the following characteristics: if we

take each of the data points and calculate its vertical distance from the line

and then square that distance, the sum of those squared distances will be

smaller than the sum of such squared distances from any other line we

might draw. This is called the least-squares fit. Consider the data below

where Y could be a score on one test and X could be a score on another test.

Score

Individual X Y
A
B
C
D
E

5
8

15
20
25

7
4
8

10
14

The calculations to determine the best-fit line are shown in Appendix 4.

However, most statistical computer packages for personal computers pro-

vide a linear regression program that does these calculations.

Figure 3.11 illustrates these points plotted in a scattergram and shows the

least-squares line.
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The equation for the line is Y¼ 2.76 + .40 X. The intercept a is 2.76 so
that the line crosses the y axis at Y¼ 2.76. The slope is .40. For example,

we can calculate a predicted Y for X¼ 10 to get

Y ¼ 2:76þ :40ð Þ 10ð Þ ¼ 2:76þ 4 ¼ 6:76

The dis are distances from the points to the line. It is the sum of these

squared distances that is smaller for this line than it would be for any other

line we might draw.

The correlation coefficient for these data is .89. The square of the

correlation coefficient, r2, can be interpreted as the proportion of the

variance in Y that is explained by X. In our example, .892¼ .79; thus

79 % of the variation of Y is explainable by the variable X, and 21 % is

unaccounted for.

LEAST SQUARES LINEAR REGRESSION
25

20

15

Y

10

5

d1

d2

d3

d4

d5

0 5 10

X

X

15 20 25

Figure 3.11 Least squares regression line
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3.33 The Connection Between Linear Regression
and the Correlation Coefficient

The correlation coefficient and the slope of the linear regression line are

related by the formulas

r ¼ b
sx
sy
, b ¼ r

sy
sx

where sx is the standard deviation of the X variable, sy is the standard

deviation of the Y variable, b is the slope of the line, and r is the correlation
coefficient.

3.34 Multiple Linear Regression

When we have two or more independent variables and a continuous

dependent variable, we can use multiple regression analysis. The form

this takes is

Y ¼ aþ b1X1 þ b2X2 þ b3X3 þ . . .þ bxXk

For example, Y may be blood pressure and X1 may be age, X2 may be

weight, and X3 may be family history of high blood pressure. We can have

as many variables as appropriate, where the last variable is the kth
variable. The bis are regression coefficients. Note that family history of

high blood pressure is not a continuous variable. It can either be yes or

no. We call this a dichotomous variable, and we can use it as any other

variable in a regression equation by assigning a number to each of the two

possible answers, usually by making a yes answer¼ 1 and a no

answer¼ 0.

An example from the TAIM study follows and is meant only to give

you an idea of how to interpret a multiple regression equation. This

analysis pertains to the group of 89 people who were assigned to a placebo

drug and a weight-reduction regimen. The dependent variable is change in

blood pressure.
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The independent variables are shown below:

Variable Coefficient: bi p

Intercept �15.49 .0016

Age .077 .359

Race 1¼ black

0¼ nonblack

4.22 .021

Sex 1¼male

0¼ female

1.50 .390

Pounds lost .13 .003

Note: Sex is coded as 1 if male and 0 if female; race is coded as 1 if black

and 0 if nonblack; p is used to test if the coefficient is significantly

different from 0. The equation, then, is

change in blood pressure ¼
� 15:49þ :077 ageð Þ þ 4:22 raceð Þ þ 1:5 sexð Þ þ :13 Change in weightð Þ

Age is not significant (p¼ .359) nor is sex (p¼ .390). However, race is

significant (p¼ .021), indicating that blacks were more likely than non-

blacks to have a drop in blood pressure while simultaneously controlling

for all the other variables in the equation. Pounds lost are also significant,

indicating that the greater the weight loss, the greater was the drop in

blood pressure.

Linear regression models assume that the observations are indepen-

dent of each other, i.e., they are uncorrelated. In the example above,

change in weight for another person is independent of change in weight

for another person in the sample. But in longitudinal studies, where

individuals have repeated measures, the observations are correlated

because they are observations on the same persons. Here it is appropriate

to use a technique for regressions on correlated data called GEE, standing
for generalized estimating equations, described in an article by Hanley

and colleagues.15
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3.35 Summary So Far

Investigation of a scientific issue often requires statistical analysis,

especially where there is variability with respect to the characteristics of

interest. The variability may arise from two sources: the characteristic

may be inherently variable in the population and/or there may be error of

measurement.

In this chapter, we have pointed out that in order to evaluate a program

or a drug, to compare two groups on some characteristic, and to conduct a

scientific investigation of any issue, it is necessary to quantify the

variables.

Variables may be quantified as discrete or as continuous, and there are

appropriate statistical techniques that deal with each of these. We have

considered here the chi-square test, confidence intervals, Z-test, t-test,
analysis of variance, correlation, and regression. We have pointed out

that in hypothesis testing, we are subject to two kinds of errors: the error of

rejecting a hypothesis when in fact it is true and the error of accepting a

hypothesis when in fact it is false. The aim of a well-designed study is to

minimize the probability of making these types of errors. Statistics will

not substitute for good experimental design, but it is a necessary tool to

evaluate scientific evidence obtained from well-designed studies.

Philosophically speaking, statistics is a reflection of life in two impor-

tant respects: (1) as in life, we can never be certain of anything (but in

statistics we can put a probability figure describing the degree of our

uncertainty) and (2) all is a trade-off—in statistics, between certainty

and precision or between two kinds of error; in life, well, fill in your

own trade-offs.
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Chapter 4
MOSTLY ABOUT EPIDEMIOLOGY

Medicine to produce health has to examine disease; and music to create
harmony must investigate discord.

Plutarch

A.D. 46–120

4.1 The Uses of Epidemiology

Epidemiology may be defined as the study of the distribution of health and

disease in groups of people and the study of the factors that influence this

distribution. Modern epidemiology also encompasses the evaluation of

diagnostic and therapeutic modalities and the delivery of health-care ser-

vices. There is a progression in the scientific process (along the dimension

of increasing credibility of evidence), from casual observation, to hypo-

thesis formation, to controlled observation, to experimental studies.

Figure 4.1 is a schematic representation of the uses of epidemiology. The

tools used in this endeavor are in the province of epidemiology and biosta-

tistics. The techniques used in these disciplines enable “medical detectives”

to uncover amedical problem, to evaluate the evidence about its causality or

etiology, and to evaluate therapeutic interventions to combat the problem.

Descriptive epidemiology provides information on the pattern of

diseases, on “who has what and how much of it,” information that is

essential for health-care planning and rational allocation of resources.

Such information may often uncover patterns of occurrence suggesting

etiologic relationships and can lead to preventive strategies. Such studies

are usually of the cross-sectional type and lead to the formation of

hypotheses that can then be tested in case–control, prospective, and

experimental studies. Clinical trials and other types of controlled studies

serve to evaluate therapeutic modalities and other means of interventions

and thus ultimately determine standards of medical practice, which in turn

have impact on health-care planning decisions. In the following section,

we will consider selected epidemiologic concepts.
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4.2 Some Epidemiologic Concepts: Mortality Rates

In 1900, the three major causes of death were influenza or pneumonia,

tuberculosis, and gastroenteritis. Today, the three major causes of death

are heart disease, cancer, and accidents; the fourth is strokes. Stroke

deaths have decreased dramatically over the last few decades probably

due to the improved control of hypertension, one of the primary risk

factors for stroke. These changing patterns of mortality reflect changing

environmental conditions, a shift from acute to chronic illness, and an

USES OF EPIDEMIOLOGY
DESCRIPTIVE: HEALTH

CARE
PLANNING

EMERGENCE
OF PATTERNS

ETIOLOGIC: FORMATION
OF
HYPOTHESES

STANDARDS OF
MEDICAL
PRACTICE

EXPERIMENTAL:

Associations
among
variables,
temporal
relationships
(case-control and
prospective studies)

Distribution of
diseases in
population
subgroups
(Cross
sectional
studies)

(suggesting)

Testing of
interventions

(clinical trials)

(suggesting)

Figure 4.1 Uses of epidemiology
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aging population subject to degenerative diseases. We know this from an

analysis of rates.
The comparison of defined rates among different subgroups of indi-

viduals may yield clues to the existence of a health problem and may lead

to the specification of conditions under which this identified health prob-

lem is likely to appear and flourish.

In using rates, the following points must be remembered:

(1) A rate is a proportion involving a numerator and a denominator.

(2) Both the numerator and the denominator must be clearly defined

so that you know to which group (denominator) your rate refers.

(3) The numerator is contained in (is a subset of) the denominator.

This is in contrast to a ratio where the numerator refers to a

different group from the denominator.

Mortality rates pertain to the number of deaths occurring in a partic-

ular population subgroup and often provide one of the first indications of a

health problem. The following definitions are necessary before we con-

tinue our discussion:

The Crude Annual Mortality Rate (or death rate) is:

The total number of deaths
during a year in the population at risk

The population at risk

ðusually taken as the population at midyearÞ

The Cause-Specific Annual Mortality Rate is:

The number of deaths occurring due to a particular cause

during the year in the population at risk

The population at risk ðall those alive at midyearÞ
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The Age-Specific Annual Mortality Rate is:

The number of deaths occurring in the given age group

during the year in the population at risk

The population at risk

ðall those alive at midyearÞ
A reason for taking the population at midyear as the denominator is

that a population may grow or shrink during the year in question and the

midyear population is an estimate of the average number during the year.

One can, however, speak of death rates over a 5-year period rather than a

1-year period, and one can define the population at risk as all those alive at

the beginning of the period.

4.3 Age-Adjusted Rates

When comparing death rates between two populations, the age composi-

tion of the populations must be taken into account. Since older people

have a higher number of deaths per 1,000 people, if a population is heavily

weighted by older people, the crude mortality rate would be higher than in

a younger population, and a comparison between the two groups might

just reflect the age discrepancy rather than an intrinsic difference in

mortality experience. One way to deal with this problem is to compare

age-specific death rates, death rates specific to a particular age group.

Another way that is useful when an overall summary figure is required is

to use age-adjusted rates. These are rates adjusted to what they would be if
the two populations being compared had the same age distributions as

some arbitrarily selected standard population.

For example, the table below shows the crude and age-adjusted

mortality rates for the United States at five time periods 15.7. The adjust-

ment is made to the age distribution of the population in 1940 as well as

the age distribution of the population in 2000. Thus, we see that in 1991,

the age-adjusted rate was 5.1/1,000 when adjusted to 1940 standard,

but the crude mortality rate was 8.6/1,000. This means that if in 1991

the age distribution of the population were the same as it was in 1940, then

the death rate would have been only 5.1/1,000 people. The crude and
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age-adjusted rates for 1940 are the same because the 1940 population

serves as the “standard” population whose age distribution is used as the

basis for adjustment.

When adjusted to the year 2000 standard, the age-adjusted rate was

9.3. If in 1991 the age distribution were the same as in 2000, then the death

rate would have been 9.3/1,000 people. So, age-adjusted rates depend on

the standard population being used for the adjustment. Note that the

age-adjusted rate based on the population in year 2000 is higher than

the age-adjusted rate based on the population in 1940; this is because the

population is older in year 2000.

Year

Crude mortality rate

per 1,000 people

Age-adjusted rate

(to population in 1940)

Age-adjusted rate

(to population in

2000)

1940 10.8 10.8 17.9

1960 9.5 7.6 13.4

1980 8.8 5.9 10.4

1991 8.6 5.1 9.3

2001 8.5 Not computed after

1998

8.6

Although both crude and age-adjusted rates have decreased from

1940, the decrease in the age-adjusted rate is much greater. The percent

change in crude mortality between 1940 and 1991 was (10.8–8.6)/

10.8¼ 20.4 %, whereas the percent change in the age-adjusted rate was

(10.8–5.1)/10.8¼ .528 or 52.8 %.

The reason for this is that the population is growing older. For instance,

the proportion of persons 65 years and over doubled between 1920 and 1960,

rising from 4.8% of the population in 1920 to 9.6% in 1969. After 1998, the

National Center for Health Statistics used the population in 2000 as the

standard population against which adjustments were made. The crude rate

and the age-adjusted death rate in the year 2001 are similar, and that is

because the age distribution in 2001 is similar to the age distribution in 2000

so age adjustment doesn’t really change the mortality rate much.

The age-adjusted rates are fictitious numbers—they do not tell you

how many people actually died per 1,000, but how many would have died
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if the age compositions were the same in the two populations. However,

they are appropriate for comparison purposes. Methods to perform age

adjustment are described in Appendix 5.

4.4 Incidence and Prevalence

Prevalence and incidence are two measures of morbidity (illness).

Prevalence of a disease is defined as:

The number of persons with a disease

The total number of persons in population

at risk at a particular point in time

(This is also known as point prevalence, but more generally referred

to just as “prevalence.”) For example, the prevalence of hypertension

in 1973 among black males, ages 30–69, defined as a diastolic blood

pressure (DBP) of 95 mmHg or more at a blood pressure screening

program conducted by the Hypertension Detection and Follow-Up Pro-

gram (HDFP),16 was calculated to be

4, 268 with DBP > 95mmHg

15, 190 black men aged 30� 69 screened

�100 ¼ 28:1per 100

Several points are to be noted about this definition:

(1) The risk group (denominator) is clearly defined as black men,

ages 30–69.

(2) The point in time is specified as time of screening.

(3) The definition of the disease is clearly specified as a diastolic

blood pressure of 95 mmHg or greater. (This may include people

who are treated for the disease but whose pressure is still high and

those who are untreated.)

(4) The numerator is the subset of individuals in the reference group

(denominator) who satisfy the definition of the disease.
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Prevalence can also be age-adjusted to a standard population, mean-

ing that the prevalence estimates are adjusted to what they would be if

the population of interest had the same age distribution as some standard

population (see Appendix 5 and Section 4.3). The prevalence of hyper-

tension estimated by the Hispanic Community Health Study/Study of

Latinos (HCHS/SOL),17 in 2007–2011, was found to be 25.5 % when

age adjusted to the year 2000 standard. Hypertension was defined as

systolic blood pressure of 140 mmHg or above or diastolic blood pressure

of 90 mmHg or above, or on medications for high blood pressure.

Incidence is defined as:

The number of new cases of a disease per unit of time

The total number at risk in beginning of this time period

For example, studies have found that the 10-year incidence of a major

coronary event (such as heart attack) among white men, ages 30–59, with

diastolic blood pressure 105 mmHg or above at the time they were first

seen, was found to be 183 per 1,000.18 This means that among 1,000 white

men, ages 30–59, who had diastolic blood pressure above 105 mmHg

at the beginning of the 10-year period of observation, 183 of them had

a major coronary event (heart attack or sudden death) during the next

10 years. Among white men with diastolic blood pressure of <75 mmHg,

the 10-year incidence of a coronary event was found to be 55/1,000. Thus,

comparison of these two incidence rates, 183/1,000 for those with high

blood pressure versus 55/1,000 for those with low blood pressure, may

lead to the inference that elevated blood pressure is a risk factor for

coronary disease.

Often, one may hear the word “incidence” used when what is really

meant is prevalence. You should beware of such incorrect usage. For

example, you might hear or even read in a medical journal that the inci-

dence of diabetes in 1973was 42.6 per 1,000 individuals, ages 45–64,when

what is really meant is that the prevalence was 42.6/1,000. The thing to

remember is that prevalence refers to the existence of a disease at a specific
period in time, whereas incidence refers to new cases of a disease devel-
oping within a specified period of time.
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Note that mortality rate is incidence, whereas morbidity may be
expressed as incidence or prevalence. In a chronic disease, the prevalence
is greater than the incidence because prevalence includes both new cases

and existing cases that may have first occurred a long time ago, but the

afflicted patients continued to live with the condition. For a disease that is

either rapidly fatal or quickly cured, incidence and prevalence may be

similar. Prevalence can be established by doing a survey or a screening of

a target population and counting the cases of disease existing at the time of

the survey. This is a cross-sectional study. Incidence figures are harder to

obtain than prevalence figures since to ascertain incidence, one must

identify a group of people free of the disease in question (i.e., a cohort),

observe them over a period of time, and determine how many develop the

disease over that time period. The implementation of such a process is

difficult and costly.

4.5 Standardized Mortality Ratio

The standardized mortality ratio (SMR) is the ratio of the number of

deaths observed to the number of deaths expected. The number expected

for a particular age group, for instance, is often obtained from population

statistics.

SMR ¼ observed deaths

expected deaths

4.6 Person-Years of Observation

Occasionally, one sees a rate presented as some number of events per
person-years of observation, rather than per number of individuals

observed during a specified period of time. Per person-years (or months)

is useful as a unit of measurement when people are observed for different

lengths of time. Suppose you are observing cohorts of people free of heart

disease to determine whether the incidence of heart disease is greater for

smokers than for those who quit. Quitters need to be defined, for example,
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as those who quit more than 5 years prior to the start of observation. One

could define quitters differently and get different results, so it is important

to specify the definition. Other considerations include controlling for

the length of time smoked, which would be a function of age at the start

of smoking and age at the start of the observation period, the number of

cigarettes smoked, and so forth. But for simplicity, we will assume

everyone among the smokers has smoked an equal amount and everyone

among the quitters has smoked an equal amount prior to quitting.

We can express the incidence rate of heart disease per some unit of

time, say 10 years, as the number who developed the disease during that

time, divided by the number of people we observed (number at risk).

However, suppose we didn’t observe everyone for the same length of

time. This could occur because some people moved or died of other causes

or were enrolled in the study at different times or for other reasons. In such

a case, we could use as our denominator the number of person-years of
observation.

For example, if individual 1 was enrolled at time 0 and was observed

for 4 years, then lost to follow-up, he/she would have contributed

4 person-years of observation. Ten such individuals would contribute

40 person-years of observation. Another individual observed for 8 years

would have contributed 8 person-years of observation, and 10 such indi-

viduals would contribute 80 person-years of observation for a total of

120 person-years. If six cases of heart disease developed among those

observed, the rate would be 6 per 120 person-years, rather than 6/10

individuals observed. Note that if the denominator is given as person-

years, you don’t know if it pertains to 120 people each observed for one

year, or 12 people each observed for 10 years or some combination.

Another problem with this method of expressing rates is that it reflects

the average experience over the time span, but it may be that the rate of

heart disease is the same for smokers as for quitters within the first 3 years

and the rates begin to separate after that. In any case, various statistical

methods are available for use with person-year analysis.
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4.7 Dependent and Independent Variables

In research studies, we want to quantify the relationship between one set of

variables, which we may think of as predictors or determinants, and some

outcome or criterion variable in which we are interested. This outcome

variable, which it is our objective to explain, is the dependent variable.

A dependent variable is a factor whose value depends on the level of

another factor, which is termed an independent variable. In the example of

cigarette smoking and lung cancer mortality, the duration and number of

cigarettes smoked are independent variables upon which the lung cancer

mortality depends (thus, lung cancer mortality is the dependent variable).

4.8 Types of Studies

In Section 1.4, we described different kinds of study designs, in the context

of our discussion of the scientific method and of how we know what we

know. These were observational studies, which may be cross-sectional,

case–control, or prospective and experimental studies, which are clinical

trials. In the following sections, we will consider the types of inferences that

can be derived from data obtained from these different designs.

The objective is to assess the relationship between some factor of

interest (the independent variable), which we will sometimes call expo-

sure, and an outcome variable (the dependent variable).

The observational studies are distinguished by the point in time when
measurements are made on the dependent and independent variables, as
illustrated below. In cross-sectional studies, both the dependent and inde-

pendent (outcome and exposure) variables are measured at the same time,

in the present. In case–control studies, the outcome is measured now and

exposure is estimated from the past. In prospective studies, exposure (the

independent variable) is measured now and the outcome is measured in

the future. In the next section, we will discuss the different inferences to

be made from cross-sectional versus prospective studies.
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Time of measurement

Past Present Future

Cross-sectional Exposure

Outcome

Case–control Exposure Outcome

Prospective Exposure Outcome

4.9 Cross-Sectional Versus Longitudinal Looks at Data

Prospective studies are sometimes also known as longitudinal studies,

since people are followed longitudinally, over time. Examination of

longitudinal data may lead to quite different inferences than those to be

obtained from cross-sectional looks at data. For example, consider age and

blood pressure.

Cross-sectional studies have repeatedly shown that the average sys-

tolic blood pressure is higher in each successive 10-year age group, while

diastolic pressure increases for age groups up to age 50 and then reaches a

plateau. One cannot, from these types of studies, say that blood pressure

rises with age because the pressures measured for 30-year-old men, for

example, were not obtained on the same individuals 10 years later when

they were 40, but were obtained for a different set of 40-year-olds. To

determine the effect of age on blood pressure, we would need to take a

longitudinal or prospective look at the same individuals as they get older.

One interpretation of the curve observed for diastolic blood pressure, for

instance, might be that individuals over 60 who had very high diastolic

pressures died off, leaving only those individuals with lower pressure

alive long enough to be included in the sample of those having their

blood pressure measured in the cross-sectional look.

The diagrams in Figure 4.2 illustrate the possible impact of a “cohort

effect,” a cross-sectional view and a longitudinal view of the same data.

(Letters indicate groups of individuals examined in a particular year.)
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If you take the blood pressure of all groups in 1965 and compare

group F to group D, you will have a cross-sectional comparison of

30-year-olds with 40-year-olds at a given point in time. If you compare

group F in 1965 with group F (same individuals) in 1975, you will have a

longitudinal comparison. If you compare group F in 1965 with group H in

1975, you will have a comparison of blood pressures of 30-year-olds at

different points in time (a horizontal look).

These comparisons can lead to quite different conclusions, as is

shown by the schematic examples in Figure 4.3 using fictitious numbers

to represent average diastolic blood pressure.

CROSS SECTIONAL DATA

45 A

B

C

D

E

B

C

D

E

F

C

D

E

F

G

D

E

F

G

H

E

Cohort or
Longit udinal Data

F

30 Year Olds in
Successive Years

G

H

I

40

35

30

25

1955 1960 1965 1970 1975

Year of examination

Age of Individuals
Examines

Figure 4.2
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110− 90 = 20,

110− 90 = 20,

110−90 = 20,
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110−110 = 0

F−F = 90− 90 = 0,

F−D = 90− 110 = −20,

1975 19751965 19751965

F=90

F=90
F
90

D=90
F=110 F=110D=

110

30 Year Olds

Cross-Sectional:

Longitudinal:

Horizontal

Figure 4.3 Cross-sectional versus longitudinal comparisons
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In example (1), measurements in 1965 indicate that average diastolic

blood pressure for 30-year-olds (group F) was 90 mmHg and for 40-year-

olds (group D) it was 110 mmHg. Looking at group F 10 years later, when

they were 40-year-olds, indicates their mean diastolic blood pressure was

90 mmHg. The following calculations result:

Cross-sectional look D � F ¼ 110� 90¼ 20

1965 1965

Conclusion 40-year-olds have higher blood pressure

than 30-year-olds (by 20 mmHg)

Longitudinal look F � F ¼ 90� 90¼ 0

1975 1965

Conclusion Blood pressure does not rise with age

Horizontal look
(cohort comparisons)

F � F ¼ 90� 110¼�20

1975 1965

Conclusion 40-year-olds in 1975 have lower blood

pressure than 40-year-olds did in 1965

Apossible interpretation:Bloodpressure doesnot risewith age, but different
environmental forces were operating for the F cohort than for the D cohort.

In example (2), we have

Cross-sectional look D � F ¼ 90� 90¼ 0 mmHg

1965 1965

Conclusion From cross-sectional data, we conclude that

blood pressure is not higher with older age

Longitudinal look F � F ¼ 110� 90¼ 20

1975 1965
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Conclusion From longitudinal data, we conclude that

blood pressure goes up with age

Horizontal look F � D ¼ 110� 90¼ 20

1975 196

Conclusion 40-year-olds in 1975 have higher blood pres-

sure than 40-year-olds in 1965

A possible interpretation: Blood pressure does rise with age and different

environmental factors operated on the F cohort than on the D cohort.

In example (3), we have

Cross-sectional look D � F ¼ 110� 90¼ 20

1965 1965

Conclusion Cross-sectionally, there was an increase in

blood pressure for 40-year-olds over that for

30-year-olds

Longitudinal look F � F ¼ 110� 90¼ 20

1975 1965

Conclusion Longitudinally, it is seen that blood pressure

increases with increasing age

Horizontal look F � D ¼ 110� 110¼ 0

1975 1965

Conclusion There was no change in blood pressure

among 40-year-olds over the 10 year period

A possible interpretation: Blood pressure does go up with age (supported

by both longitudinal and cross-sectional data), and environmental factors

affect both cohorts similarly.
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4.10 Measures of Relative Risk: Inferences from
Prospective Studies (the Framingham Study)

In epidemiologic studies, we are often interested in knowing howmuchmore

likely an individual is todevelopadisease if heor she is exposed to aparticular

factor than the individual who is not so exposed. A simple measure of such

likelihood is called relative risk (RR). It is the ratio of two incidence estimates:

the rate of development of the disease for people with the exposure factor,
divided by the rate of development of the disease for people without the
exposure factor. Suppose we wish to determine the effect of high blood

pressure (hypertension) on the development of cardiovascular disease

(CVD). To obtain the relative risk, we need to calculate the incidence rates.

We can use the data from a classic prospective study, the Framingham Heart

Study.19

This was a pioneering prospective epidemiologic study of a

population sample in the small townofFramingham,Massachusetts.Beginning

in 1948, a cohort of peoplewas selected to be followed up biennially. The term
cohort refers to a group of individuals followed longitudinally over a period of
time.Abirth cohort, for example,wouldbe thepopulationof individualsborn in

a given year. The Framingham cohort was a sample of people chosen at the

beginningof the studyperiodand includedmenandwomenaged30–62yearsat

the start of the study. These individuals were observed over a 20-year period,

andmorbidity andmortality associatedwith cardiovascular diseasewere deter-

mined. A standardized hospital record and death certificate were obtained,

clinic examination was repeated at 2-year intervals, and the major concern of

the Framingham study has been to evaluate the relationship of characteristics

determined in well persons to the subsequent development of disease.

Through this study, “risk factors” for cardiovascular disease were

identified. The risk factors are antecedent physiologic characteristics or

dietary and living habits, whose presence increases the individual’s prob-

ability of developing cardiovascular disease at some future time. Among

the most important predictive factors identified in the Framingham study

were elevated blood pressure, elevated serum cholesterol, and cigarette
smoking. Elevated blood glucose and abnormal resting electrocardiogram

findings are also predictive of future cardiovascular disease.
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Relative risk can be determined by the following calculation:

Incidence of cardiovascular disease ðnew casesÞ
over a specified period of time among people free
of CVD at beginning of the study period who have
the risk factor in question ðe:g:; high blood pressureÞ
Incidence of CVD in the given time period among

peoplefree of CVD initially; who do not have the risk
factor in question ðnormal blood pressureÞ

From the Framingham data, we calculate for men in the study the

RR of CVD within

18 years after first

exam

¼
353:2=10;000 persons at risk
with definite hypertension

123:9=10;000 persons at risk
with no hypertension

353:2

123:9
¼ 2:85

This means that a man with definite hypertension is 2.85 times more

likely to develop CVD in an 18-year period than a man who does not have

hypertension. For women, the relative risk is

187:9

57:3
¼ 3:28

This means that hypertension carries a somewhat greater relative risk

for women. But note that the absolute risk for persons with definite

hypertension (i.e., the incidence of CVD) is greater for men than for

women, being 353.2 per 10,000 men versus 187.9 per 10,000 women.

The incidence estimates given above have been age adjusted. Age

adjustment is discussed in Section 4.3. Often, one may want to adjust

for other variables such as smoking status, diabetes, cholesterol levels,

and other factors that may also be related to outcome. This may be
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accomplished by multiple logistic regression analysis and by Cox propor-

tional hazards analysis, which are described in Sections. 4.17 and 4.19,

respectively, but first we will describe how relative risk can be calculated

from prospective studies or estimated from case–control studies.

4.11 Calculation of Relative Risk from Prospective
Studies

Relative risk can be determined directly from prospective studies by

constructing a 2� 2 table as follows20:

DISEASE
(developing in the specified period)

a + b = 493
(persons with

factor)

RISK
FACTOR

(determined
at beginning

of study
period)

c + d = 1271
(persons without

factor)

Yes No

PRESENT
(high blood
pressure)

a = 90 b = 403

ABSENT
(normal
blood

pressure)

c = 70 d = 1201

Relative risk is

incidenceof diseaseamongthosewithhighBP

incidencediseaseamongthosewithnormalBP
¼

a= aþ bð Þ
c= cþ dð Þ ¼

90=493

70=1271
¼ 3:31

Relative risk, or hazard ratio, can be calculated from Cox proportional

hazards regression models (which allow for adjustment for other vari-

ables) as described in Section 4.19.
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4.12 Odds Ratio: Estimate of Relative Risk from
Case–Control Studies

A case–control study is one in which the investigator seeks to establish an

association between the presence of a characteristic (a risk factor) and the

occurrence of a disease by starting out with a sample of diseased persons
and a control group of nondiseased persons and by noting the presence or
absence of the characteristic in each of these two groups. It can be

illustrated by constructing a 2� 2 table as follows:

DISEASE

PRESENT ABSENT

PRESENT a b
RISK

FACTOR
ABSENT c d

a + c
(number of persons

with disease)

b + d
(number of persons

without disease)

The objective is to determine if the proportion of persons with the

disease who have the factor is greater than the proportion of persons

without the disease who have the factor. In other words, it is desired to

know whether a/(a+ c) is greater than b/(b+ d).
Case–control studies are often referred to as retrospective studies

because the investigator must gather data on the independent variables
retrospectively. The dependent variable—the presence of disease—is

obtained at time of sampling, in contrast to prospective studies where the

independent variables are measured at time of sampling and the dependent

variable is measured at some future time (i.e., when the disease develops).

The real distinction between case–control or retrospective studies and pro-

spective studies has to do with selecting individuals for the study—those

with and without the disease in case–control/retrospective studies and those
with and without the factor of interest in prospective studies.

Since in prospective studies we sample the people with the charac-
teristic of interest and the people without the characteristic, we can obtain
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the relative risk directly by calculating the incidence rates of disease in

these two groups. In case–control studies, however, we sample patients
with and without the disease and note the presence or absence of the

characteristic of interest in these two groups; we do not have a direct

measure of incidence of disease. Nevertheless, making certain assump-

tions, we can make some approximations to what the relative risk would

be if we could measure incidence rates through a prospective study. These

approximations hold best for diseases of low incidence.
To estimate relative risk from case–control studies, note that

a= aþ bð Þ
c= cþ dð Þ ¼

a cþ dð Þ
c aþ bð Þ

Now assume that since the disease is not all that common, c is negligible
in relation to d (in other words, among people without the risk factor, there

aren’t all that many who will get the disease, relative to the number of

people who will not get it). Assume also that, in the population, a is

negligible relative to b, since even among people with the risk factor, not

all that many will get the disease in comparison to the number who won’t

get it. Then, the terms in the parentheses become d in the numerator and

b in the denominator so that

a cþ dð Þ
c aþ bð Þ reduces to OR ¼ ad

bc

This is known as the odds ratio (OR) and is a good estimate of relative risk

when the disease is rare.

An example of how the odds ratio is calculated is shown below. In a

case–control study of lung cancer, the table below was obtained.21 Note

that we are not sampling smokers and nonsmokers here. Rather, we are

sampling those with and without the disease. So, although in the popula-
tion at large a is small relative to b, in this sample it is not so.
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Patients with lung
cancer

Matched controls
with other diseases

Smokers of 15–24
cigarettes daily

475 a 431 b

Nonsmokers 7 c 61 d

(persons with
disease)

(persons without
disease)

The odds ratio, as an estimate of the relative risk of developing lung

cancer for people who smoke 15–24 cigarettes a day, compared with

nonsmokers is

Odds ratio ¼ 475� 61

431� 7
¼ 9:60 ¼ estimateof relativerisk

This means that smokers of 15–24 cigarettes daily are 9.6 times more

likely to get lung cancer than are nonsmokers.

One more thing about the odds ratio is that it is the ratio of odds of

lung cancer for those who smoke 15–24 cigarettes a day, relative to odds

of lung cancer for those who don’t smoke. In the example above, we get

for smokers: oddsof lungcancer are
475

431

for nonsmokers: oddsof lungcancer are
7

61

ratioof odds ¼ 475=431

7=61

So the point is that the odds ratio is the odds ratio, whether the disease is

rare or not. It is always the ratio of odds of disease for those with the
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exposure versus the odds of disease for those without the exposure. But

when the disease is rare, it is also a good estimate of the relative risk.

We can also put confidence limits on the odds ratio. We calculated the

odds ration as 9.60. The 95 % confidence limits for an odds ratio (OR) are

OR� e �1:96
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1
aþ1

bþ1
cþ1

d

p� �

Upper 95 % confidence limit ¼

OR� e 1:96
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
475

þ 1
431

þ1
7
þ 1

61

p� �

OR� e 1:96�:405ð Þ ¼ 9:6� e:794 ¼ 9:6� 2:21 ¼ 21:2

Lower 95 % confidence limit¼

OR� e �1:96�:405ð Þ ¼ 9:6� e�:794 ¼ 9:6� :45 ¼ 4:3

Note:e�:794 ¼ 1

e:794
¼ :45

Thus, the confidence interval is 4.3–21.2.
We often express this as (OR; 95 % confidence limits), which is our

example is:

OR ¼ 9:60; 95%CI : 4:3, 21:2ð Þ

Odds ratios can be calculated from logistic regression (which allow

for adjustment for other variables) as described in Section 4.17.

4.13 Attributable Risk

Attributable risk (AR) is:

The risk in exposed—risk in unexposed individuals:

Population attributable risk (PAR) is:
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AR � risk factor prevalence

While relative risk pertains to the risk of a disease in exposed persons

relative to the risk in the unexposed, the attributable risk pertains to the
difference in absolute risk of the exposed compared to the unexposed

persons. It may tell us howmuch excess risk there is due to the exposure in
the exposed. In the example in Section 4.11, the 10-year risk among those

with high blood pressure was 90/493¼ .183 (or 183 per 1,000 people with

high blood pressure), while in those with normal blood pressure, it was

70/1,271¼ .055 (or 55 per 1,000 with normal pressure).

Thus, the attributable risk in those exposed (i.e., with high blood pres-

sure) is .183 – .055¼ .128 (128 per 1,000). In other words, heart disease

events in 128 of the 183 people per 1,000 with high blood pressure can be

attributed to the high blood pressure. We can also express this excess as a

percentage of the risk in the exposed that is attributable to the exposure

128=1000

183=1000
¼ 128 ¼ :70 or 70%

But, we must be very careful about such attribution—it is only valid when

we can assume the exposure causes the disease (after taking into account

confounding and other sources of bias).

Population attributable risk (PAR) is a useful measure when we want

to see how we could reduce morbidity or mortality by eliminating a risk

factor. It depends on the prevalence of the risk factor in the population as

noted above. Here is an example from the Women’s Health Initiative

(described in more detail in Chapter 6). It was found in a clinical trial that

postmenopausal women who were taking estrogen plus progestin had an

annualized rate of coronary heart disease of 39 per 10,000 compared to a

rate of 33 per 10,000 for women taking placebo.22

Thus,

AR ¼ 39� 33

10, 000
¼ :0006

or six excess coronary heart disease events per 10,000 women taking this

preparation, per year.
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Since approximately 6,000,000 women were taking that hormone

preparation at the time (exposed), then .0007� 6,000,000¼ 3,600 coro-

nary heart disease events per year could be attributed to taking estrogen

plus progestin.

The prevalence of use of estrogen plus progestin estimated from the

same study when it was first begun was about 18 %. If we use this

estimate,

PAR ¼ AR� prevalence of risk factor ¼ :0006� :18 ¼ :000108;

Thus, if use of estrogen plus progestin were eliminated, there would

be 10.8 per 100,000 fewer postmenopausal women who had heart disease

events.

4.14 Response Bias

There are many different types of bias that might lead you to either

underestimate or overestimate the size of a relative risk of odds ratio,

and it is important to try to anticipate potential sources of bias and avoid

them. The illustration on the next page shows the impact of one kind of

possible bias: ascertainment or response bias.
Assume that you have the following situation. Of 100 people exposed

to a risk factor, 20 % develop the disease and of a 100 people unexposed,

16 % develop the disease, yielding a relative risk of 1.25, as shown in the

illustration.

Now imagine that only 60 % of the exposed respond to follow-up or

are ascertained as having or not having the disease, a 60 % response rate
among the exposed. Assume further that all of the ones who don’t respond

happen to be among the ones who don’t develop disease. The relative risk
would be calculated as 2.06.

Now imagine that only 60 % of the nonexposed reply, a 60 %
response rate among the nonexposed, and all of the nonexposed who

don’t respond happen to be among the ones who don’t have the disease.

Now, the relative risk estimate is .75.
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To summarize, you can get conflicting estimates of the relative risk if

you have differential response rates. Therefore, it is very important to get

as complete a response or ascertainment as possible. The tables showing

these calculations follow.

FULL RESPONSE RATE

D I S E A S E

+ –

+
R = 100%

20

100%

80

100
E
X
P
O
S
U
R
E

–
100%

16

100%

84

100

36 164 200

RR = = = 1.25
20 / 100
16 / 100

.20

.16
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DIFFERENTIAL RESPONSE RATE

D I S E A S E

+ –

+
R = 100%

20

50%

40

60
(response

rate =
60%)

E
X
P
O
S
U
R
E

–
100%

16

100%

84

100

36 124 160

RR = = = 2.06
20 / 60
16 / 100

.33

.16

DIFFERENTIAL RESPONSE RATE

D I S E A S E

+ –

+
R = 100%

20

100%

40

60
(response

rate =
60%)

E
X
P
O
S
U
R
E

–
100%

16

52%

84

100

36 124 160

RR = = = .75
20 / 100
16 / 60

.20
.266
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4.15 Confounding Variables

A confounding variable is one that is closely associated with both the

independent variable and the outcome of interest in those unexposed. For

example, a confounding variable in studies of coffee and heart disease

may be smoking. Since some coffee drinkers are also smokers, if a study

found a relationship between coffee drinking (the independent variable)

and development of heart disease (the dependent variable), it could really

mean that it is the smoking that causes heart disease, rather than the

coffee. In this example, smoking is the confounding variable.

If both the confounding variable and the independent variable of

interest are closely associated with the dependent variable, then the

observed relationship between the independent and dependent variables

may really be a reflection of the true relationship between the confounding
variable and the dependent variable. An intuitive way to look at this is to

imagine that if a confounding variable were perfectly associated with an

independent variable, it could be substituted for it. It is important to

account or adjust for confounding variables in the design and statistical
analysis of studies in order to avoid wrong inferences.

There are several approaches to dealing with potential confounders.

One approach is to deal with it in the study design by matching, for

example, as described in Section 4.16 below; another way of controlling

for confounding variables is in the data analysis phase, by using multi-

variate analysis, as described in the sections below. An excellent discus-

sion is found inModern Epidemiology by Rothman, Lash, and Greenland.

4.16 Matching

One approach to dealing with potential confounders is to match subjects in

the two groups on the confounding variable. In the example discussed

above concerning studies of coffee and heart disease, we might match

subjects on their smoking history, since smoking may be a confounder of

the relationship between coffee and heart disease. Whenever we enrolled a

coffee drinker into the study, we would determine if that person was a

smoker. If the patient was a smoker, the next patient who would be
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enrolled who was not a coffee drinker (i.e., a member of the comparison

group) would also have to be a smoker. For each coffee-drinking

nonsmoker, a non-coffee-drinking nonsmoker would be enrolled. In this

way, we would have the same number of smokers in the two groups. This

is known as one-to-one matching. There are other ways to match, and

these are discussed more fully in the books by Anderson, Elwood, and

Rothman as noted in the Suggested Readings section.

In case–control studies, finding an appropriate comparison group may

be difficult. For example, suppose an investigator is studying the effect of

coffee on pancreatic cancer. The investigator chooses as controls patients

in the hospital at the same time and in the same ward as the cases but with

a diagnosis other than cancer. It is possible that patients hospitalized for

gastrointestinal problems other than cancer might have voluntarily given

up coffee drinking because it bothered their stomachs. In such a situation,

the coffee-drinking habits of the two groups might be similar, and the

investigator might not find a greater association of coffee drinking with

cases than with controls. A more appropriate group might be patients in a

different ward, say an orthopedic ward. But here one would have to be

careful to match on age, since orthopedic patients may be younger than the

other cases if the hospital happens to be in a ski area, for example, where

reckless skiing leads to broken legs, or they may be substantially older

than the other cases if there are many patients with hip replacements due

to falls in the elderly or osteoarthritis.

It needs to be pointed out that the factor that is matched cannot be

evaluated in terms of its relationship to outcome. Thus, if we are compar-

ing two groups of women for the effect of vitamin A intake on cervical

cancer and we do a case–control study in which we enroll cases of cervical

cancer and controls matched on age, we will not be able to say from this

study whether age is related to cervical cancer. This is because we have

ensured that the age distributions are the same in both the case and control

groups by matching on age, so obviously we will not be able to find

differences in age between the groups.

Some statisticians believe that matching is often done unnecessarily

and that if you have a large enough study, simple randomization or

stratified randomization is adequate to ensure a balanced distribution of

confounding factors. Furthermore, multivariate analysis methods, such as
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logistic regression or proportional hazards models, provide another, usu-

ally better, way to control for confounders. A good discussion of matching

can be found in the book Methods in Observational Epidemiology, by
Kelsey and colleagues.

4.17 Multiple Logistic Regression

Multiple logistic regression analysis is used to calculate the probability of an

event happening as a function of several independent variables. It is useful in

controlling for confounders when examining the relationship between an

independent variable and the occurrence of outcome (e.g., such as heart

attack) within a specified period of time. The equation takes the form of

P eventð Þ ¼ 1

1þ e�k

where k ¼ C0 þ C1X1 þ C2X2 þ C3X3 þ . . .þ CmXm

note that e�k ¼ 1=ek
� �

Each Xi is a particular independent variable and the corresponding

coefficients, C’s, are calculated from the data obtained in the study. For

example, let us take the Framingham data for the probability of a man

developing cardiovascular disease within 8 years. Cardiovascular disease

(CVD) was defined as coronary heart disease, brain infarction, intermit-

tent claudication, or congestive heart failure.

P CVDð Þ ¼
1

1þ e �19:77þ:37 ageð Þ�:002 ageð Þ2þ:026 chlð Þþ:016 SBPð Þþ:558 SMð Þþ1:053 LVHð Þþ:602 GIð Þ�:00036 chl�ageð Þ½ �

Where

chl¼ serum cholesterol.

SBP¼ systolic blood pressure.
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SM¼ 1 if yes for smoking, 0 if no.

LVH¼ left ventricular hypertrophy, 1 if yes, 0 if no.

Gl¼ glucose intolerance, 1 if yes, 0 if no.

For example, suppose we consider a 50-year-old male whose choles-

terol is 200 and systolic blood pressure is 160, who smokes and who has

no LVH and no glucose intolerance. When we multiply the coefficients by

this individual’s values on the independent variables and do the necessary

calculations, we come up with a probability of .17. This means that this

individual has 17 chances in a 100 of developing some form of cardio-

vascular disease during a period of 8 years.

The coefficients from a multiple logistic regression analysis can be

used to calculate the odds ratio for one factor while controlling for all

the other factors. The way to do this is to take the natural log e raised to the

coefficient for the variable of interest, if the variable is a dichotomous one

(i.e., coded as 1 or 0). For example, the odds of cardiovascular disease for

smokers relative to nonsmokers among males, while controlling for age,

cholesterol, systolic blood pressure, left ventricular hypertrophy, and

glucose intolerance is e.558¼ 1.75. This means that a person who smokes

has 1.75 times higher risk of getting CVD (within 8 years) than the one

who doesn’t smoke if these two individuals are equal with respect to the

other variables in the equation. This is equivalent to saying that the

smoker’s risk is 75 % higher than the nonsmokers.

If we want to compare the odds of someone with a systolic blood

pressure of 200 versus someone with systolic blood pressure of 120, all

other factors being equal, we calculate it as follows:

OR ¼ eβ 200�120ð Þ ¼ e:016 80ð Þ ¼ e1:28 ¼ 3:6

The man with systolic blood pressure of 200 mmHg is 3.6 times more

likely to develop disease than the one with pressure of 120. (Of course,

this would imply that someone with systolic blood pressure of 260 would

also be 3.6 times more likely to develop CVD than one with pressure of

180. If the assumption of a linear increase in risk didn’t hold, then the

prediction would be incorrect.)
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Logistic regression can be used in case–control studies. Raising

e to the coefficient of the variable of interest gives us the odds ratio.

The confidence intervals for the odds ratio are

OR ¼ e β�1:96 s:e:ð Þ½ � as the lower limit

OR ¼ e βþ1:96 s:e:ð Þ½ � as the upper limit:

s.e. is the standard error of the beta coefficient and is an output of all

statistical computer packages.

Multiple logistic regression is appropriate for cross-sectional and

case–control studies when the dependent variable (outcome) is dichoto-

mous (i.e., can be coded as 1¼ event, 0¼ no event) and when the question

deals with the occurrence of the event of interest within a specified period

of time and the people are all followed for that length of time. However,

when follow-up time for people in the study differs, then survival analysis

should be used, as described in Sections 4.18 and 4.19.

4.18 Survival Analysis: Life Table Methods

Survival analysis of data should be used when the follow-up times differ

widely for different people or when they enter the study at different times.

It can get rather complex, and this section is intended only to introduce

the concepts. Suppose you want to compare the survival of patients treated

by two different methods and suppose you have the data shown below.23

We will analyze it by using the Kaplan–Meier survival curves.

DEATHS AT A GIVEN MONTH IN TWO GROUPS

Status: (D¼ dead at that month; L¼ living at that month)

(The +means patient was lost to follow-up and last seen alive at that

month)

Status: D L D D D D D D D L

Group A: 4, 5+ 9, 11, 12 Group B: 2, 3, 4, 5, 6+
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In each group, four patients had died by 12 months, and one was seen

alive some time during that year, so we don’t know whether that patient

was dead or alive at the end of the year. If we looked at the data in this

way, we would have to say that the survival by 1 year was the same in

both groups.

Group
At end of 12 months A B

Dead 4 4
Alive 1 1

Survival rate 20% 20%

However, a more appropriate way to analyze such data is through

survival curves. The points for the curves are calculated as shown in the

table below.

Col. 1 Col. 2 Col. 3 Col. 4 Col. 5 Col. 6 Col. 7

Case#

Time

in

Mos. Status

# Pts.

enter

Prop. Dead

qi¼ dead

entered

Prop.

surv.

P1¼
1� qi

Cum. surv.

P1¼
Pi� 1�Pi

Group A

1 4 Dead 5 1/5¼ .2 .80 1� .8¼ .8

2 5 Surv 4 0/4¼ .0 1.00 .8� 1¼ .8

3 9 Dead 3 1/3¼ .33 .67 .8� .67¼ .53

4 11 Dead 2 1/2¼ .5 .50 .53� .5¼ 27

5 12 Dead 1 1/1¼ 1.0 .00 .27� 0¼ 0

Group B

1 2 Dead 5 1/5¼ .2 .80 1� .8¼ .8

2 3 Dead 4 1/4¼ .25 .75 .8� .75¼ .6

3 4 Dead 3 1/3¼ .33 .67 .6� .67¼ .4

4 5 Dead 2 1/2¼ .5 .50 .4� .5¼ .2

5 6 Surv 1 0/1¼ .0 1.00 .2� .1¼ .2
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First of all, the patients are placed in order of the time of their death or

the last time they were seen alive. Let us go through the third row for

group A, as an example.

The third patient died at 9 months (columns 1 and 2). At the beginning

of the 9th month, there were three patients at risk of dying (out of the total

of five patients who entered the study). This is because one of the five

patients had already died in the 4th month (case #1), and one was last seen

alive at the 5th month (case #2) and so wasn’t available to be observed.

Out of these three patients at risk in the beginning of the 9th month, one

died (case #3). So, the probability of dying in the 9th month is 1/3, and we

call this qi, where i in this case refers to the 9th month. Therefore, the

proportion surviving in the 9th month is pi¼ 1� qi¼ 1� .33¼ .67.

The cumulative proportion surviving means the proportion surviving

up through the 9th month. To survive through the 9th month, a patient had

to have survived to the end of month 8 and have survived in month

9. Thus, it is equal to the cumulative probability of surviving up to the

9th month, which is .8, from column 7 row 2, and surviving in the 9th

month, which is .67. We multiply these probabilities to get .8� .67¼ .53

as the probability of surviving through the 9th month. If we plot these

points as in Figure 4.4, we note that the two survival curves look quite

different and that group A did a lot better.
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Figure 4.4 Survival curves
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Survival analysis gets more complicated when we assume that

patients who have been lost to follow-up in a given interval of time

would have died at the same rate as those patient on whom we had

information. Alternatively, we can make the calculations by assuming

they all died within the interval in which they were lost to follow-up, or

they all survived during that interval.

Survival analysis can also be done while controlling for confounding

variables, using the Cox proportional hazards model.

4.19 Cox Proportional Hazards Model

The Cox proportional hazards model is a form of multivariate survival

analysis that can control for other factors. The dependent variable is time
to event (or survival time),which could be death, heart attack, or any other
event of interest. This is in contrast to multiple logistic regression, where

the dependent variable is a yes or no variable.

Cox proportional hazards model is appropriately used when there are

different follow-up times because some people have withdrawn from the

study or can’t be contacted. People falling into one of those categories are

considered to have “censored” observations. If the event of interest is, say,

stroke, then people who died during the study from accidental causes

would also be “censored” because we couldn’t know whether they would

have gone on to have a stroke or not, had they lived to the end of the study.

The coefficients from this analysis can be used to calculate an esti-

mate of the relative risk of event, after controlling for the other covariates

in the equation. This estimate from Cox proportional hazards models is

more accurately called the “hazard ratio” or HR. If the event of interest is

death, then it is the hazard at a point in time of dying in one group versus

the hazard of dying in the other group. The ratio of these two hazards is the

HR. The proportional hazards assumption means that we assume the ratio

of these two hazards is the same over time.

An example of how to interpret results from such an analysis is given

from the Systolic Hypertension in the Elderly Program (SHEP). This was

a study of 4,736 persons over age 60 with isolated systolic hypertension

(i.e., people with high systolic blood pressure and normal diastolic blood
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pressure) to see if treatment with a low-dose diuretic and/or beta-blocker

would reduce the rate of strokes compared with the rate in the control

group treated with placebo.

A sample of a partial computer printout of a Cox regression analysis

from the SHEP study is shown below. The event of interest is stroke in the

placebo group.

Independent variable Beta coefficient s.e. eBeta¼RR

Race �0.1031 .26070 0.90

Sex (male) 0.1707 .19520 1.19

Age 0.0598 .01405 1.06

History of diabetes 0.5322 .23970 1.70

Smoking (baseline) 0.6214 .23900 1.86

Let us look at the history of diabetes. The HR¼ e.5322¼ 1.70, which is

the natural logarithm e raised to the power specified by the beta coeffi-

cient; e¼ 2.7183. (Don’t ask why.) This means that a person with

untreated systolic hypertension who has a history of diabetes has 1.7

times the risk of having a stroke than a person with the same other

characteristics but no diabetes. This can also be stated as a 70 % greater

risk. The 95 % confidence limits for the hazard ratios are 1.06, 2.72,

meaning that we are 95 % confident that the relative risk of stroke for

those with a history of diabetes lies within the interval between 1.06 and

2.72. The formula for the 95 % confidence interval for the hazard ratio is

Limit1 ¼ e beta�1:96 S:E:ð Þ½ �

Limit2 ¼ e betaþ1:96 S:E:ð Þ½ �

If we are dealing with a continuous variable, like age, the HR is given

per one unit or 1-year age increase. The hazard ratio per 5-year increase in

age is

e5 beta ¼ e5�:0598 ¼ 1:35

There is a 34 % increase in risk of future stroke per 5-year greater age

at baseline, controlling for all the other variables in the model. To
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calculate confidence intervals for this example, you also need to multiply

the s.e. by 5 (as well as multiplying the beta by 5), so the 95 % confidence

intervals of HR are [1.18, 1.55] for a 5-year increase in age.

The above example pertains to a linear relationship between age and

risk of stroke. However, some relationships are not linear but rather have a

J or U shape. Section 4.25 provides information on exploring a J or U

shape relationship between a variable and the outcome.

4.20 Overlapping Confidence Intervals and Statistical
Significance

Suppose you are looking at the risk of stroke in two groups, one being

treated with a particular drug and the other with a different drug. You

obtain a hazards ratio and 95 % confidence interval for each group.

Suppose further that the confidence intervals overlap. For example, in

group A, you have an HR of 1.30 and 95 % confidence interval of 1.20–

1.40, and in the other group, the confidence interval is 1.45–1.55. Can you

conclude that the two groups are significantly different from each other

with regard to risk of stroke? If the confidence intervals do not overlap,
then the two groups are statistically significantly different from each

other, and you can reject the hypothesis of no difference at the .05 level

of significance. If these had been 99 % confidence intervals, you could

reject the null hypothesis of no difference at the .01 level of significance.

However, if the confidence intervals do overlap, you cannot be sure that

there is not a significant difference.

4.21 Confounding by Indication

One type of confounding that can occur in observational studies when you

are looking at the effects of drug treatment on future events is confounding
by indication. For example, suppose you want to compare the effects on

heart disease of different drugs for high blood pressure. You determine

what antihypertensive drugs study participants are taking at a baseline
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examination and then you follow them forward in time to see who

develops heart disease. The problem may be that the reason people were

taking different drugs at baseline was that they had different indications

for them and the doctors prescribed medications appropriate to those

indications. Thus, people with kidney disease may have been prescribed

a different drug to control high blood pressure than those with angina, or

than those with no other medical conditions, and each of those indications

may be differently related to the outcome of heart disease. Only a clinical

trial, where the patients are randomly assigned to each drug treatment, can

truly answer the question about different effects of the drugs.

However, there are ways to minimize the confounding by indication

in observational studies; one way is to exclude from the analysis people

who have angina or kidney disease in the above example. Another method

gaining in use is propensity analysis.24

4.22 Propensity Analysis

The general idea behind propensity analysis is that you predict who is

likely to be taking the drug from the independent variables you have

measured and calculate an index of “propensity” for taking the drug.

The propensity score is the probability of an individual having the expo-

sure (taking the drug) conditional on his/her set of covariates. The pro-

pensity probability can be used in three different ways, and there is no

consensus on which is best: (1) regression adjustment, (2) stratification,
and (3) matching.

(1) The first, called regression adjustment, is to use the propensity

score (or propensity probability) as a covariate in the logistic or

Cox regression models (described in Section 4.19) that are

looking at the relationship of your variable of interest to the

outcome of interest, as described below. The propensity

(or probability of exposure) is then entered as an independent

variable in your final multivariate equation, along with a subset of

the variables that you are controlling for. Each person’s data then

include the values of the covariates and his/her propensity score.
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For example, in the hypertension example, if we are looking to see

whether a calcium channel blocker is associated with mortality,

we want to take into account that in an observational study, people

might be more likely to have had a calcium channel blocker

prescribed if they had angina, for example, and we know that

angina is related to mortality. We might then take the following

steps:

(a) Calculate a multiple logistic regression where Y (the depen-

dent variable) = 1 if on drug, 0 otherwise

Xi (independent variables)¼ age, race/ethnicity, angina,

BMI, systolic blood pressure, and other covariates that

might influence prescribing a calcium channel blocker, like

region of the country, socioeconomic indices, and so on. You

should enter into this logistic as many baseline variables as

you have measured to get a best fit model that predicts

exposure.

(b) Calculate a propensity score for each person (probability of

exposure based on the regression developed above).

(c) Calculate the regression you are really interested in which is

to determine the association of calcium channel blockers

with mortality after controlling for potential confounders,

where Z¼ 1, if mortal event, 0 otherwise (dependent

variable)

Xi¼ propensity score, age, race/ethnicity, plus some of the

other relevant covariates that were in the original propensity

equation.

(2) The second way to use propensity scores is called stratification
(or subclassification). In this method, the propensity probabilities

obtained from the logistic regression equation are divided into

quintiles (or deciles), i.e., strata based on quintile of propensity.

When subsequently obtaining the hazard ratio from a Cox regres-

sion equation (see Section 4.19), we would enter the drug of

interest as an independent variable and the covariates that we

wish to control for and stratify on propensity quintile (or decile).
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This means that the baseline hazard function is allowed to vary

between the quintiles of propensity. What does that mean? Well,

in each quintile stratum, the people are more or less equally likely

to be on the drug (they have similar propensities). The hazard

ratio (which is the hazard of the event in the group using the drug

divided by the hazard in the group not using the drug, sometimes

thought of as the relative risk) might be different in the group least

likely to be using the drug (the bottom propensity quintile) than

the hazard ratio in those most likely to use the drug (those in the

highest quintile). Stratification then compares people in groups

similar in their propensity to use the drug.

Here is an example from a study of antidepressant use in the Women’s

Health Initiative.25 The researchers were interested in the effects of

antidepressant drugs on cardiovascular risk. The population studied

consisted of 136,293 postmenopausal women who were followed for an

average of 6 years. We will look at the effects of a particular antidepres-

sant type of drug called selective serotonin reuptake inhibitors (SSRIs) on

coronary heart disease and on stroke.

There are many factors that may influence a doctor prescribing an

antidepressant, in general, and a given antidepressant, in particular. An

especially important factor is the severity of the depression. Other factors

may have to do with age, other comorbid conditions, region of the country

(antidepressant use may be more common in certain geographic loca-

tions), and numerous other variables that could be potential confounders.

The investigators wanted to know whether new use of antidepressants had

an effect on subsequent heart disease or stroke risk. To address potential

confounding by indication, the researchers obtained a propensity score

from a logistic regression model to predict any new antidepressant use

from 33 demographic, lifestyle, risk factor, and comorbidity variables

measured at enrollment. (Some studies use upwards of 100 variables for

creating a propensity score, if these variables are available.) Thus, these

propensity scores were a weighted composite of the individual covariates

for each person.

To determine how good the logistic regression was at discriminating

between those who used antidepressants versus those who didn’t, we can
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use the c-statistic. The c-statistic is a measure of how much better than

chance our prediction of drug use is based on the variables in our logistic

regression model. A c-statistic of .5 would mean our logistic model is no

better than chance at predicting membership in the drug group versus

nonmembership. A c-statistic of 1.0 would mean the logistic regression is

perfectly able to discriminate between people who use antidepressants

versus those who don’t. In our example, the c-statistic was .72, indicating

a moderate ability of the variables included in the model to discriminate

new use of antidepressants. (A c-statistic of .7 or higher is considered

reasonable, and one of .8 or higher is considered to have strong discrim-

inatory ability.)

The propensity scores were then divided into decile groups (quintiles

are more commonly used and are perfectly adequate). The Cox regression

model was then run using the STRATA statement in SAS software,

version 9.1; (SAS Institute Inc, Cary, North Carolina). The dependent

variable in the Cox regression was stroke, and the Cox model was

stratified by decile of propensity to be taking any new antidepressant at

the start of follow-up and adjusted for the following covariates: systolic

blood pressure, body mass index, depression measure on a depression

scale, hormone use, migraine or bad headache, aspirin or nonsteroidal

anti-inflammatory use, and history of stroke or heart attack.

First, we look at the hazard ratio unadjusted for anything. For heart

disease, which was defined as a heart attack or a death from heart disease,

the unadjusted HR was 1.28 with 95 % confidence intervals being 1.01–

1.61 (usually written as 1.28 (95 % CI: 1.01–1.61). This would lead us to

believe that the new antidepressant users had a 28 % greater risk of heart

disease than nonusers. Since the confidence interval does not overlap 1.0,

we are 95 % confident that the true HR lies within that interval and thus

that there is greater risk for users than nonusers. But, when we control for

propensity to be on the drug and other covariates as described above, the

hazard ratio is .95 (95 %CI: .70–1.29), i.e., the confidence interval over-

laps 1.0, and our conclusion is that the antidepressant is not associated

with subsequent heart disease.

The situation was different for stroke, where the unadjusted HR was

1.40 (95 % CI: 1.09–1.80) and the propensity adjusted HR was 1.45 (95 %

CI: 1.08–1.97)—indicating that risk of stroke was higher in users even
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after controlling for propensity and other covariates. Thus, it is very

important to control for confounders.

A third way to use propensity scores is by matching. In this method,

we select a person on the drug and find a person not taking the drug who

has the closest propensity score; then, we take the next person on the

drug and find that person’s closest propensity match who is not on the

drug and so on. Of course, there are computer programs that do that.

The matching can be done up to 5 digits, 4 digits, and 3 digits. That is

for the researcher to decide.

Thus, we form two groups: treated and control (matched on propen-

sity), and that is the closest we can come to simulating randomization in

an observational study. We can then compare these two groups on out-

come. One problem is that we may not be able to find a match for each

treated person, in which case the sample size (the matched groups) will be

much less than we would have if we could match everyone and we may

not have enough power to detect an effect (see chapter on power). In our

example, the researchers were able to find only 4,204 matched pairs or

8,408 participants, out of the 136,293 women who were in the original

analytic cohort. The two matched groups were similar on most baseline

characteristics, indicating they were well balanced, except for several

characteristics that were controlled for the in Cox models. The matched

analysis provided a hazard ratio for stroke of 1.36 with 95 % confidence

intervals of .88–2.10. This compares to the 1.45 (95 %CI: 1.08–1.97)

found with propensity adjustment by stratification. The matched analysis

still indicates the increased risk of drug use, but the confidence interval

overlaps 1.0, reflecting the inadequate power because of the smaller

sample size. But the order of magnitude of the hazard ratio is about

the same.

In our example of antidepressants and cardiovascular disease, it is

difficult to tease apart the effects of the antidepressants from the effects of

severity of depression, since depression itself is a risk factor for cardio-

vascular disease. Due to problems of measurement of depression and

variation in prescribing patterns, even propensity analysis may not be

sufficient to disentangle these two variables.

Note several things about propensity scores. They can only control for

known potential confounders, i.e., the variables that are available to
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the study. Unknown confounders of course cannot be controlled for. When

you randomize people to a treatment and control group in a clinical trial, it

is expected that the randomization will balance both known and unknown

confounders in the two groups and thus avoid bias. And so the best way to

determine the effects of antidepressants on outcomes would be through

controlled, randomized, double-blind clinical trials. This presents many

challenges, including the cost, time, and feasibility of enrolling a large

enough sample to have sufficient power to detect an effect. In the mean-

time, we may have to rely on observational study data, but we should

remember that a randomized clinical trial is considered a “gold standard”

of proof of causality. (See Chapter 6 on clinical trials.)

4.23 Selecting Variables for Multivariate Models

Suppose we want to determine the effect of depression on subsequent

heart disease events using data from a prospective follow-up study. We

can run Cox proportional hazards models to obtain relative risk of depres-

sion for heart disease endpoints, but we want to control for confounders.

Otherwise, any association we see might really be a reflection of some

other variable, like, say, smoking which is related to depression and is also

a risk factor for heart disease. How shall we go about deciding which

variables to put in the model? There is no single answer to that question,

and different experts hold somewhat different views, although it is gen-

erally agreed that known confounders should be included. So, we would

put in variables that are significantly related to depression and also to heart

disease among the nonexposed, i.e., nondepressed.

We would not include variables in the model that are presumed from

past experience to be either highly correlated to depression (referred to as

colinear) or intermediate in the pathway relating depression to heart

disease, such as say some blood biomarker related to heart disease

which is elevated by depression. In such a case, the elevation in the

blood biomarker is intermediate between depression and heart disease; it

may be the first manifestation of heart disease. We should not adjust for

variables intermediate between exposure and outcome.
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If we include variables related to the exposure but not the outcome, it

will weaken the association of exposure and outcome. If we include

variables related to outcome but not exposure, we may increase the

precision of the estimate of the exposure–outcome relationship. If you

control for variables related to the outcome but not the exposure, in

general, it reduces the unexplained variation of the outcome variable

and, therefore, reduces the variance of the parameter estimate for the

exposure, whether it is a hazard ratio, odds ratio, or the coefficient in a

linear regression. The point is that a lot of judgment has to be used in

selecting variables for inclusion.

The objective is to see whether effects of depression that were found

remain after accounting for other established risk factors. One strategy is

to start by getting the hazard ratio of depression alone and then add

successively, one at a time, other potential confounders to see if they

change the hazard ratio for depression by 10 % or more (though that is an

arbitrary percentage). Variables that qualify by this criterion are kept in

the model. For example, in the study of depression and deaths from

cardiovascular causes, among postmenopausal women enrolled in the

Women’s Health Initiative, who had no prior cardiovascular disease, the

hazard ratio associated with depression controlling for age and race was

1.58; adding education and income to that resulted in a hazard ratio of

1.52. Adding additional variables to the model (diabetes, hypertension,

smoking, high cholesterol requiring pills, hormone use, body mass index,

and physical activity) didn’t change things, resulting in a hazard ratio of

1.50. So, it was concluded that depression was an independent risk factor

for cardiovascular death.

Now, if one were interested in developing a model that would predict

risk (rather than one that would evaluate whether a particular risk factor

was an independent contributor to risk, as in the example above), one

might choose other strategies, like stepwise regression. Stepwise regres-

sion can be forward stepwise or backward stepwise, and computer pro-

grams calculating regressions ask you to specify which you want.

The basic principle is that in forward stepwise regression, you first

enter the single variable that has the highest correlation with your out-

come, then keep adding variables one at a time until you add one that is

not statistically significant at some pre-chosen level, and then stop. In
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backward stepwise regression, you start out with all the potential variables

that can be explanatory and drop them one at a time, eliminating the one

that is least significant (has the highest p value) first, until dropping the

next variable would result in a poorer model.

Many people don’t like stepwise regression because it is somewhat

arbitrary; it depends on the significance levels you chose to enter or leave

the model, and also a variable may have quite a different effect if it is in a

model with some other variables that might modify it, rather than when it

is in the model alone. Another strategy is to look at all possible regres-

sions—i.e., look at all two variable models, then at all possible three

variable models, and so on. You select the best one according to how

much of the variance in the dependent variable is explained by the model.

An excellent discussion of variable selection in epidemiologic models is

by Sander Greenland26 and also in the advanced texts noted in the

Suggested Readings section.

4.24 Interactions: Additive and Multiplicative Models

An interaction between two variables means that the effect of one variable

on the outcome of interest is different depending on the level of the other

variable, as described in Section 3.26. Interactions may be additive, where
the joint effect of two variables is greater than the sum of their individual
effects, or multiplicative, where the joint effect of the two variables is
greater than the product of the individual effects of each variable.

Logistic and Cox regression models are inherently multiplicative.

When we say that smoking carries a relative risk of 2 for coronary heart

disease, for example, we mean that smokers are two timesmore likely than

nonsmokers to get the disease. We may want to know if there is an

interaction between smoking and hypertension. In other words, we want

know whether smoking among hypertensives has a greater effect on heart

attacks than we would expect from knowing the separate risks of smoking

and hypertension. We can test the hypothesis of no interaction versus the

alternative hypothesis of an interaction, but first we need to know what we

would expect under a multiplicative model if there were no interaction.
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Consider two dichotomous variables A (smoking) and B

(hypertension).

The table below shows the pattern of relative risks expected under

the multiplicative model if there really is no multiplicative interaction.

The reference group is RRno,no¼ 1. In other words, all our comparisons

are to the risk among those who have neither A nor B, i.e., nonsmokers

and non-hypertensives in our example. Note that RRyes,yes¼RRyes,no

�RRno,yes¼ 2.0� 1.5¼ 3.0. (RRyes,no is the relative risk of B in the absence

of A, and RRno,yes is the relative risk of A in the absence of B).

Relative Risk (RR)

A no A yes

B no RRno,no = 1 RRno,yes = 1.5

B yes RRyes,no = 2.0 RRyes,yes = 3.0

If our observed RRyes,yes is significantly different from 3.0, we can

reject the null hypothesis of no interaction and conclude that there is a

multiplicative interaction.

To test this statistically, we would include a product term in our

regression model, or Cox proportional hazards model (multiplying the

value of variable B by the value of variable A for each person to get a new

variable which is the product of A and B), and then calculate the following

quantity:

β̂ coefficient of theproduct term in the logistic regressionð Þ
standard error of β̂

This quantity squared is approximately distributed as chi-square with

1 degrees of freedom.

What we are really testing is whether the coefficient β is significantly

different from 0. If it is, then this is equivalent to concluding that the

RRyes,yes is significantly different from our expected value of 3.0

Note that if there is a significant interaction, we cannot interpret the

main effects from that same model in the way we usually do. For example,

if there were a significant interaction between smoking and hypertension,
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we would have to stratify on hypertension—i.e., look at the effects of

smoking separately among hypertensives and non-hypertensives.

Suppose we wanted to see what kind of incidence figures might give

rise to the table above. Remember, incidence is absolute risk, while

relative risk is the absolute risk in one group relative to the absolute risk

in the reference group. The two tables below both contain incidence

figures that would give rise to the RR table above, so you can see it is

possible to have different incidence rates or risks which have the same

relative risk.

Risk or incidence per 1,000

Ino,no = 20 Ino,yes = 30

Iyes,no = 40

Ino,no = 10

Iyes,no = 20

Iyes,yes = 60

Ino,yes = 15

Iyes,yes = 30

A no A yes

B no

B yes

A no A yes

B no

B yes

Additive risk is less commonly tested for, although somepeople think it

should be. It is calculated from a difference in absolute risks (rather than

from the ratio of absolute risks). Under the hypothesis of no interaction in

an additive model, we would expect the data in the tables below.

Incidence per 1,000

Ino,no = 20 Ino,yes = 30

Iyes,no = 40 Iyes,yes = 50

A no A yes

B no

B yes
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Note: Incidenceyes,yes¼ base incidence + effect of A+ effect of B or

Iyes,yes ¼ Ino,no þ Ino,yes � Ino,no
� �þ Iyes,no � Ino,no

� � ¼ 20þ 10þ 20 ¼ 50

Risk differences or attributable risk (AR) Per 1,000

ARno,no = 0

ARyes,no = 20

ARno,yes = 10

ARyes,yes = 30

A no A yes

B no

B yes

The ARyes,yes¼ effect of A plus effect of B¼ 10 + 20¼ 30

If the ARyes,yes is sufficiently different from the expected value of

30, then we may conclude there is an interaction on the additive scale.

The relative risk table that corresponds to the incidence table for the

example given above of the additive model is:

Relative risk (RR)

A no A yes

B no RRno,no = 1 RRno,yes = 1.5

B yes RRyes,no = 2.0 RRyes,yes = 2.5

Thus, the expected value of RRyes,yes under the null hypothesis of no

additive interaction is RRyes,yes¼RRyes,no +RRno,yes� 1. If RRyes,yes is

significantly different from the above expectation, we would be able to

reject the null hypothesis of additive risk.

Interactions depend on the scale—i.e., whether we are talking about

relative risks (multiplicative) or attributable risks (additive). It is wise to

consult a statistician for appropriate interpretations.
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Summary

Additive model interaction effect
See if observed value of ARyes,yes differs from expected value

ARyes,yes ¼ ARyes,no þ ARno,yes

or, RRyes,yes ¼ RRyes,no þ RRno,yes � 1

Multiplicative model interaction effect
See if observed value of RRyes,yes differs from expected value

RRyes,yes ¼ RRyes,no � RRno,yes

4.25 Nonlinear Relationships: J Shape or U Shape

In the discussions of logistic regression and Cox proportional hazards

models, we have been talking about linear relationships between the

covariates in the model and the outcome or dependent variable. However,

there are many biological phenomena that have a J- or U-shaped relation-

ship where the risk of the outcome is higher at both the low end and high

end of the exposure variable and lowest in the midrange. This is illustrated

by Figure 4.5 below showing the relationship of BMI (body mass index

Figure 4.5 Adjusted probability in % of deaths in treated hypertensives

by quintile of BMI
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which is weight in kilograms divided by the square of the height in meters)

to death among older men and women being treated for systolic hyper-

tension in the Systolic Hypertension in the Elderly Program (SHEP).27

The J or U shape means that as BMI goes up, the death rate goes up, but

the death rate also goes up at very low values of BMI, hence the J or U

shape. This may be due to preexisting illness: people who are on the very

thin side may have lost weight because they are already ill and so of

course they will be more likely to die. Or it may be due to the physiolog-

ical consequences of very low weight.

As you can see, the death rate per 100, adjusted for covariates, is

higher in the lowest quintile of BMI and the highest quintile and lower in

the 2nd, 3rd, and 4th quintiles.

To test whether there is a significant nonlinear relationship, we add

the quadratic (square) term to the Cox proportional hazards model, so we

would enter both BMI and BMI2. (Of course first we would have to

calculate BMI2 for each person). In our example in this study, the coef-

ficients we got, after controlling or adjusting for multiple variables, were

for death:

Coefficient

Standard error

of the coefficient p value

BMI �.3257 .1229 .008

BMI2 .005857 .0020 .003

For stroke

BMI �.2812 .1482 .06

BMI2 .0048 .0024 .05

Since the coefficient for BMI2 is significant for both death and stroke,

we conclude there is a nonlinear relationship between BMI and these

outcomes. We cannot interpret the coefficients for BMI in the usual way

because those reflect linear relationships, so they don’t have the usual

meaning now that we know the relationship is not linear.

From the Cox model, we can then calculate the hazard ratio or relative

risk (we are using these interchangeably here) of death and stroke, for

different values of BMI relative to the lowest value of BMI (the nadir of

our curves), and we get the plots in the Figure 4.6 below. Calculation of

the nadir and the risks relative to the nadir are presented below the figure.
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4.25a Nadir of Quadratic Relationship

If the quadratic (square term) coefficient is significant, we want to know at

what level of BMI is the relative risk lowest, which is the nadir of the

curve. The nadir for stroke is calculated as

Nadir ¼ �½ linear coefficient= quadratic coefficientð Þ
Nadirstroke ¼ �½ �:2812=:0048ð Þ ¼ �:5��58:5833 ¼ 29:3
Nadirdeath ¼ �½ �0:3257=0:005857ð Þ ¼ 27:7

This means that the lowest mortality risk for this group occurred at a BMI

of 27.7 and the lowest stroke risk occurred at a BMI of 29.3.

Figure 4.6 Relation of low body mass to death and stroke in the systolic

hypertension in the elderly program (Arch Intern Med. 2000; 160(4):494–

500. doi:10.1001/archinte.160.4.494)

Adjusted relative risk of death and fatal and nonfatal stroke within the

active treatment group by body mass index (BMI) (calculated as weight in

kilograms divided by the square of height in meters). The variables

included educational level, history of diabetes, history of myocardial

infarction, history of stroke, age, activity level, sex, race, smoking status,

cholesterol level, BMI, BMI2, systolic blood pressure (SBP), and SBP2

(time dependent)
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4.25b Risk Relative to Nadir

As an example, if we want to see what the risk of a BMI of 20 is relative to

the risk of BMI of 29.3 (the nadir) for stroke, we can calculate it as shown

below.

RR¼ ek (Sections 4.17 and 4.19)

k ¼ linear coefficient BMIi � BMInadirð Þ
þquadratic coefficient BMIi

2 � BMI2nadir
� �

k ¼ �:2812 20� 29:3ð Þ þ :0048 202 � 29:32
� �

¼ �:2812 �9:3ð Þ þ :0048 �458:49ð Þ
¼ 2:6152 � 2:2008 ¼ :4144

ek ¼ e:4144 ¼ 1:51

Thus, compared to a BMI of 29.3, having a BMI of 20 is associated

with a 51 % higher risk of stroke after adjusting for multiple covariates. To

get the points for Figure 4.6, we do such calculations for each BMI value

for stroke and death separately, each with their own nadir.

4.25c Relative Risk Comparing Any Two Values

To calculate the relative risk of death for a given BMI value compared to

any another BMI value,

k ¼ linear term coefficient� BMI1 � BMI2ð Þ
þsquare term coefficient BMI1

2 � BMI2
2

� �
Note : if the square term coefficient were not significant,

then k ¼ linear coefficient BMI1 � BMI2½ �
� �
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Chapter 5
MOSTLY ABOUT SCREENING

I had rather take my chance that some traitors will escape detection than
spread abroad a spirit of general suspicion and distrust, which accepts
rumor and gossip in place of undismayed and unintimidated inquiry.

Judge Learned Hand

October 1952

5.1 Sensitivity, Specificity, and Related Concepts

The issue in the use of screening or diagnostic tests is to strike the proper

trade-off between the desire to detect the disease in people who really

have it and the desire to avoid thinking you have detected it in people who

really don’t have it.

An important way to view diagnostic and screening tests is through

sensitivity analysis. The definitions of relevant terms and symbols are as

follows:

T+ means positive test, T� means negative test, D+ means having

disease, D� means not having disease. The symbol j means, “given that,”

so that P(T+ jD�) means positive test, given that there is no disease or D�.

Sensitivity: the proportion of diseased persons the test classifies as

positive,

¼ a

aþ c
¼ P Tþj Dþð Þ; probabilityof positive test, givendiseaseð Þ

Specificity: the proportion of nondiseased persons the test classifies as

negative,

¼ d

bþ d
¼ P T�j D�ð Þ; probabilityof nagative test, givennodiseaseð Þ

False-positive rate: the proportion of nondiseased persons the test clas-

sifies (incorrectly) as positive,
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¼ b

bþ d
¼ P Tþ j D�ð Þ; probabilityof positive test, givennodiseaseð Þ

False-negative rate: the proportion of diseased people the test classifies

(incorrectly) as negative,

¼ c

aþ c
¼ P T� j Dþð Þ; probabilityof negative test, givendiseaseð Þ

Predictive value of a positive test: the proportion of positive tests that

identify diseased persons,

¼ a

aþ b
¼ P Dþ j Tþð Þ; probabilityof diseasegivenpositive testð Þ

Predictive value of a negative test: the proportion of negative tests that

correctly identifies nondiseased people,

¼ d

cþ d
¼ P D� j T�ð Þ; probabilityof nodiseasegivennegative testð Þ

Accuracy of the test: the proportion of all tests that are correct

classifications,

¼ aþ d

aþ bþ cþ d

Likelihood ratio of positive test: the ratio of probability of a positive test,

given the disease, to the probability of a positive test, given no disease,

¼ P Tþ jDþð Þ
P Tþ jD�ð Þ ¼ positive test, givendiseaseversuspositive test, givennodisease

¼ sensitivity

falsepositive rate
¼ sensitivity

1� specificity
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Likelihood ratio of a negative test:

¼ P T� jDþð Þ
P T� jD�ð Þ ¼ negative test, givendiseaseversusnegative test, givennodisease

1� specificity

sensitivity

Note also the following relationships:

(1) Specificity + the false-positive rate¼ 1:

d

bþ d
þ b

bþ d
¼ 1

therefore, if the specificity of a test is increased, the false-

positive rate is decreased.

(2) Sensitivity + false-negative rate¼ 1:

a

aþ c
þ c

aþ c
¼ 1

therefore, if the sensitivity of a test is increased, the false-

negative rate will be decreased.

Pretest probability of disease: The pretest probability of a disease is its

prevalence. Knowing nothing about an individual and in the absence of a

diagnostic test, the best guess of the probability that the patient has the

disease is the prevalence of the disease.

Posttest probability of disease: After having the results of the test, the

posttest probability of disease if the test is normal is c/(c+ d), and if it is

abnormal, the posttest probability is a/(a+ b). The last is the same as the

predictive value of a positive test.

Agood diagnostic test is one that improves your guess about the patient’s

disease status over the guess you would make based on just the general

prevalence of the disease. Of primary interest to a clinician, however, is the
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predictive value of a positive test (PV+), which is the proportion of people

who have a positive test who really have the disease, a/(a+ b), and the

predictive value of a negative test (PV�), which is the proportion of people

with a negative test who really don’t have the disease, d/(c+ d).
Sensitivity and specificity are characteristics of the test itself, but the

predictive values are very much influenced by how common the disease

is. For example, for a test with 95 % sensitivity and 95 % specificity used

to diagnose a disease that occurs only in 1 % of people (or 100 out of

10,000), we would have the following:

Yes

95
Test

5

100 9,900 10,000

9,410

590

9,405

495

No
Disease

−

−

+

+

The PV+ is 95/590¼ .16; that means that only 16 % of all people with

positive test results really have the disease; 84 % do not have the disease

even though the test is positive. The PV�, however, is 99.9 %, meaning that

if a patient has a negative test result, you can be almost completely certain

that he really doesn’t have the disease. The practical value of a diagnostic

test is dependent on a combination of sensitivity, specificity, and disease

prevalence, all of which determine the predictive values of test results.

If the prevalence of the disease is high, the predictive value of a

positive test will also be high, but a good test should have a high predictive

value even though the prevalence of the disease is low. Let us take a look

at the relationship between disease prevalence and sensitivity, specificity

and predictive value of a test, shown in Figure 5.1.

Let us, for instance, consider a test that has a sensitivity of .95 and a

specificity of .99. That means that this test will correctly label as diseased

95 % of individuals with the disease and will correctly label as

nondiseased 99 % of individuals without the disease. Let us consider a

disease whose prevalence is 10 %, that is, 10 % of the population have this

disease, and let us now look and see what the predictive value of a positive
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test is. We note that it is approximately .90, which means that 90 % of

individuals with a positive test will have the disease. We can see that the

predictive value of a positive test drops to approximately .70 for a test that

has a sensitivity of .95 and a specificity of .95, and we can see that it

further drops to approximately .40 for a test that has a sensitivity of .95

and a specificity of .85. In other words, only 40 % of individuals with a

positive test would truly have the disease for a test that has that particular

sensitivity and specificity.

One thing you can note immediately is that for disease of low prev-
alence, the predictive value of a positive test goes down rather sharply.
The other thing that you can notice almost immediately is that large

difference in sensitivity makes a small difference in the predictive value

of a positive test and that a small difference in specificity makes a big

difference in the predictive value of a positive test. This means that the

characteristic of a screening test described by specificity is more important

in determining the predictive value of a positive test than is sensitivity.

Figure 5.2 shows us a situation of a test that’s virtually perfect. A test that

has a sensitivity of .99 and a specificity of .99 is such that at most prevalence

levels of disease, the probability of disease, given a normal or negative test
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Figure 5.1 Relationship between prevalence, sensitivity, specificity and

predictive value
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result, is very low.Thatwould be a very good test, and the closerwe can get to

that kind of situation, the better the diagnostic test is. The diagonal line in the

center represents a test with a sensitivity of .50 and a specificity of .50, and

that, of course, is a completely useless test because you can note that at the

prevalence of the disease of .4, the probability of the disease given a positive

test is also .4, which is the same as the probability of the diseasewithout doing

any test, and this pertains at each prevalence level. Therefore, such a test is

completely useless, whereas a test with sensitivity and specificity of .99 is

excellent, and anything in between represents different usefulness for tests.

This, then, is an analytic way to look at diagnostic test procedures.

A particularly relevant example of the implications of prevalence on

predictive value is the case of screening for the presence of infection with

the AIDS virus. Since this disease is generally fatal, treatable but incur-

able at present, provokes high anxiety, has a stigma attached to it, and

entails high costs, one would not like to use a screening strategy that

falsely labels people as positive for HIV, the AIDS virus.

Let us imagine that we have a test for this virus that has a sensitivity of

100 % and a specificity of 99.995 %, clearly a very, very good test.
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Figure 5.2 Post-test probability of disease versus prevalence for different

sensitivities and specificities
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Suppose we apply it routinely to all female blood donors, in whom the

prevalence is estimated to be very low, say .01 %. In comparison, suppose

we also apply it to homosexual men in San Francisco in whom the

prevalence may be estimated to be 50 % (this is for illustrative purposes

only). For every 100,000 such people screened, we would have values as

shown in the table on the following page.

Although in both groups all those who really had the disease would be

identified, among female blood donors, one third of all people who tested

positive would really not have the disease; among male homosexuals,

only 6 out of 100,000 people with a positive test would be falsely labeled.

Positive Predictive Value as a Function of Prevalence
Test characteristics:

Sensitivity = 100%; Specificity = 99.995%; False positive rate = .005%

A. FEMALE BLOOD DONORS     Prevalence = .01%,
True State

HIV: + HIV: –

+ 10 5 15

Screen Result

– 0 99,985 99,985

10 99,990 100,000
PV+ = 10/15 = .66667

B. MALE HOMOSEXUALS     Prevalence = 50%,

True State

HIV: + HIV: –

+ 50,000 3 50,003

Screen Result

– 0 49,997 49,997

50,000 50,000 100,000

PV+ = 50,000/50,003 = .99994
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5.2 Cutoff Point and Its Effects on Sensitivity
and Specificity

We have been discussing sensitivity and specificity as characteristic of a

diagnostic test; however, they can be modified by the choice of the cutoff
point between normal and abnormal. For example, we may want to

diagnose patients as hypertensive or normotensive by their diastolic

blood pressure. Let us say that anyone with a diastolic pressure of

90 mmHg or more will be classified as “hypertensive.” Since blood

pressure is a continuous and variable characteristic, on any one measure-

ment, a usually nonhypertensive individual may have a diastolic blood

pressure of 90 mmHg or more, and similarly a truly hypertensive individ-

ual may have a single measure less than 90 mmHg. With a cutoff point

of 90 mmHg, we will classify some nonhypertensive individuals as

hypertensive, and these will be false positives. We will also label some

hypertensive individuals as normotensive and these will be false negatives.

If we had a more stringent cutoff point, say, 105 mmHg, we would classify

fewer nonhypertensives as hypertensive since fewer normotensive individ-

uals would have such a high reading (and have fewer false positives).

However, we would have more false negatives (i.e., more of our truly

hypertensive peoplemight register as having diastolic blood pressure less than

105mmHgonanysingleoccasion).Theseconceptsare illustratedinFigure5.3.

CUTOFF A:
GREATER SENSITIVITY;
LOWER SPECIFICITY;
MORE FALSE POSITIVES

CUTOFF B:
LOWER SENSITIVITY;
HIGHER SPECIFICITY;
MORE FALSE NEGATIVES

FALSE NEGATIVES

NO
DISEASE

TN

TP

DISEASE

CIT-OFF

TEST

B

FALSE POSITIVES

CUT-OFF

TEST
A

−
−

+
+

Figure 5.3 Different test cutoff points and false positives and false

negatives
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There are two population distributions, the diseased and nondiseased,

and they overlap on the measure of interest, whether it is blood pressure,

blood glucose, or other laboratory values. There are very few screening

tests that have no overlap between normal and diseased individuals.

One objective in deciding on a cutoff point is to strike the proper

balance between false positives and false negatives. As you can see in

Figure 5.3, when the cutoff point is at A, all values to the right of A are

called positive (patient is considered to have the disease). In fact, how-

ever, the patient with a value at the right of cutoff A could come from the

population of non-diseased people, since a proportion of people who are

perfectly normal may still have values higher than those above A, as seen

in the normal curve. The area to the right of A under the no-disease curve

represents the false positive.

If an individual has a test value to the left of cutoff A, he may be a true

negative or he may be a false negative because a proportion of individuals

with the disease can still have values lower than cutoff A. The area

under the “disease” curve to the left of cutoff A represents the proportion

of false negatives.

If we move the cutoff point from A to B, we see that we decrease the

area to the right of the cutoff, thereby decreasing the number of false

positives but increasing the number of false negatives. Correspondingly,

with cutoff A, we have a greater probability of identifying the truly

diseased correctly, that is, pick up more true positives, thereby giving

the test with cutoff A greater sensitivity. With cutoff B, we are less likely

to pick up the true positives (lower sensitivity) but more likely to correctly

identify the true negatives (higher specificity).

Thus, by shifting the cutoff point beyond what we call a test positive,

we can change the sensitivity and specificity characteristics of the test.

The choice of cutoff, unless there is some special physiological reason,

may be based on consideration of the relative consequences of having too

many false positives or too many false negatives. In a screening test for

cancer, for example, it would be desirable to have a test of high sensitivity

(and few false negatives), since failure to detect this condition early is

often fatal. In a mass screening test for a less serious condition or for one

where early detection is not critical, it may be more desirable to have a

high specificity in order not to overburden the health-care delivery system
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with too many false positives. Cost consideration may also enter into the

choice of cutoff point.

The relationship between sensitivity (the ability to correctly identify

the diseased individuals) and the false-positive fractions is shown in

Figure 5.4.

This is called the receiver operating characteristic (ROC) curve of the

test. Often we can select the cutoff point between normal and abnormal,

depending on the trade-off we are willing to make between sensitivity and

the proportion of false positives.

We can see that with cutoff A, while we can detect a greater percent-

age of truly diseased individuals, we will also have a greater proportion of

false-positive results, while with cutoff B we will have fewer false posi-

tives but will be less likely to detect the truly diseased. Screening tests

should have corresponding ROC curves drawn.
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Figure 5.4 Receiver operating characteristic (ROC) curve, sensitivity

versus false positive fraction
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Chapter 6
MOSTLY ABOUT CLINICAL TRIALS

It is no easy task to pitch one’s way from truth to truth through besetting
errors.

Peter Marc Latham

1789–1875

I wouldn’t have seen it if I didn’t believe it!

Attributed to Yogi Berra

Unfortunately, sometimes scientists see what they believe instead of

believing what they see. Randomized, controlled clinical trials are

intended to avoid that, and other kinds, of bias.

A randomized clinical trial is a prospective experiment to compare

one or more interventions against a control group in order to determine the

effectiveness of the interventions. A clinical trial may compare the value

of a drug versus a placebo. A placebo is an inert substance that looks like

the drug being tested. It may compare a new therapy with a currently

standard therapy, surgical with medical intervention, two methods of

teaching reading, and two methods of psychotherapy. The principles

apply to any situation in which the issue of who is exposed to which

condition is under the control of the experimenter and the method of

assignment is through randomization.

6.1 Features of Randomized Clinical Trials

(1) There is a group of patients who are designated study patients. All

criteria must be set forth and met before a potential candidate can

be considered eligible for the study. Any exclusions must be

specified.

(2) Any reasons for excluding a potential patient from participating in

the trial must be specified prior to starting the study. Otherwise,

unintentional bias may enter. For example, supposing you are
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comparing coronary bypass surgery with the use of a new drug for

the treatment of coronary artery disease. Suppose a patient comes

along who is eligible for the study and gets assigned to the

surgical treatment. Suppose you now discover the patient has

kidney disease. You decide to exclude him from the study

because you think he may not survive the surgery with damaged

kidneys. If you end up systematically excluding all the sicker

patients from the surgical treatment, you may bias the results in

favor of the healthier patients, who have a better chance of

survival in any case. In this example, kidney disease should be

an exclusion criterion applied to the patients before they are
assigned to any treatment group.

(3) Once a patient is eligible, he or she is randomly assigned to the

experimental or control group. Random assignment is not “hap-

hazard” assignment, but rather it means that each person has an

equal chance of being an experimental or control patient. It is

usually accomplished by the use of a table of random numbers,

described later, or by computer-generated random numbers.

(4) Clinical trials may be double-blind, in which neither the treating

physician nor the patient knows whether the patient is getting the

experimental treatment or the placebo; they may be single-blind,

in which the treating physician knows which group the patient is

in but the patient does not know. A double-blind study contains

the least bias but sometimes is not possible to do for ethical or

practical reasons. For example, the doctor may need to know the

group to which the patient belongs so that medication may be

adjusted for the welfare of the patient. There are also trials in

which both patients and physicians know the treatment group, as

in trials comparing radical mastectomy versus lumpectomy for

treatment of breast cancer. When mortality is the outcome, the

possible bias introduced is minimal, provided that exclusion

criteria were specified and applied before eligibility was finally

determined and that the randomization of eligible participants to

treatment groups was appropriately done.

(5) While clinical trials often compare a drug or treatment with

placebo, they may also compare two treatments with each other,
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or a treatment and “usual care.” Trials that compare an interven-

tion with “usual care” obviously cannot be blinded, for example,

comparing a weight-loss nutritional intervention with “usual”

diet; however, the assessment of effect (measurement of weight,

or blood pressure, or some hypothesized effect of weight loss)

should be done in a blinded fashion, with the assessor not know-

ing which group the participant has been assigned to.

(6) It is essential that the control group be as similar to the

treatment group as possible so that differences in outcome can

be attributed to differences in treatment and not to different

characteristics of the two groups. Randomization helps to achieve

this comparability.

(7) We are concerned here with Phase III trials. New drugs have to

undergo Phase I and II trials, which determine toxicity, and safety

and efficacy, respectively. These studies are done on small num-

bers of volunteers. Phase III trials are large clinical trials, large

enough to provide an answer to the question of whether the drug

tested is better than placebo or than a comparison drug.

6.2 Purposes of Randomization

The basic principle in designing clinical trials or any scientific investiga-

tion is to avoid systematic bias.When it is not known which variables may

affect the outcome of an experiment, the best way to avoid systematic bias

is to assign individuals into groups randomly. Randomization is intended

to insure an approximately equal distribution of variables among the

various groups of individuals being studied. For instance, if you are

studying the effect of an antidiabetic drug and you know that cardiac

risk factors affect mortality among diabetics, you would not want all the

patients in the control group to have heart disease, since that would clearly

bias the results. By assigning patients randomly to the drug and the control

group, you can expect that the distribution of patients with cardiac prob-

lems will be comparable in the two groups. Since there are many variables

that are unknown but may have a bearing on the results, randomization is

insurance against unknown and unintentional bias. Of course, when
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dealing with variables known to be relevant, one can take these into

account by stratifying and then randomizing within the strata. For

instance, age is a variable relevant to diabetes outcome. To stratify by

age, you might select four age groups for your study: 35–44, 45–54, 55–

64, 65 plus. Each group is considered a stratum. When a patient enters into

the clinical trial, his age stratum is first determined, and then he is

randomly assigned to either experimental or control groups. Sex is another

variable that is often handled by stratification.

Another purpose of randomization has to do with the fact that the

statistical techniques used to compare results among the groups of patients

under study are valid under certain assumptions arising out of randomi-

zation. The mathematical reasons for this can be found in the more

advanced texts listed in the Suggested Readings.

It should be remembered that sometimes randomization fails to result

in comparable groups due to chance. This can present a major problem in

the interpretation of results, since differences in outcome may reflect

differences in the composition of the groups on baseline characteristics

rather than the effect of intervention. Statistical methods are available to

adjust for baseline characteristics that are known to be related to outcome.

Some of these methods are logistic regression, Cox proportional hazards

models, and multiple regression analyses.

6.3 How to Perform Randomized Assignment

Random assignment into an experimental group or a control group means

that each eligible individual has an equal chance of being in each of the

two groups. This is often accomplished by the use of random number

tables. For example, an excerpt from such a table is shown below:

48461 70436 04282

76537 59584 69173

Its use might be as follows. All even-numbered persons are assigned to the

treatment group, and all odd-numbered persons are assigned to the control

groups. The first person to enter the study is given the first number in the

146 Biostatistics and Epidemiology: A Primer for Health Professionals



list, the next person gets the next number, and so on. Thus, the first person

is given number 48461, which is an odd number and assigns the patient to

the control group. The next person is given 76537; this is also an odd

number so he/she too belongs to the control group. The next three people

to enter the study all have even numbers, and they are in the experimental

group. In the long run, there will be an equal number of patients in each of

the two groups.

6.4 Two-Tailed Tests Versus One-Tailed Test

A clinical trial is designed to test a particular hypothesis. One often sees

this phrase in research articles: “Significant at the .05 level, two-tailed

test.” Recall that in a previous section, we discussed the concept of the

“null hypothesis,” which states that there is no difference between two

groups on a measure of interest. We said that in order to test this hypoth-

esis, we would gather data so that we could decide whether we should

reject the hypothesis of no difference in favor of some alternate hypoth-

esis. A two-tailed test versus a one-tailed test refers to the alternate
hypothesis posed. For example, suppose you are interested in comparing

the mean cholesterol level of a group treated with a cholesterol-lowering

drug to the mean of a control group given a placebo. You would collect the

appropriate data from a well-designed study, and you would set up the null

hypothesis as

Ho: Mean cholesterol in treated group¼mean cholesterol in con-

trol group

You may choose as the alternate hypothesis

HA: Mean cholesterol in treated group is greater than the mean in

controls

Under this circumstance, you would reject the null hypothesis in favor

of the alternate hypothesis if the observed mean for women was suffi-

ciently greater than the observed mean for men, to lead you to the
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conclusion that such a great difference in that direction is not likely to

have occurred by chance alone. This, then, would be a one-tailed test of

the null hypothesis.

If, however, your alternate hypothesis was that the mean cholesterol

level for females is different from the mean cholesterol level for males,

then you would reject the null hypothesis in favor of the alternate either if
the mean for women was sufficiently greater than the mean for men or if
the mean for women was sufficiently lower than the mean for men. The

direction of the difference is not specified. In medical research, it is more

common to use a two-tailed test of significance since we often do not

know in which direction a difference may turn out to be, even though we

may think we know before we start the experiment. In any case, it is

important to report whether we are using a one-tailed or a two-tailed test.

6.5 Clinical Trial as “Gold Standard”

Sometimes observational study evidence can lead to misleading conclu-

sions about the efficacy or safety of a treatment, only to be overturned by

clinical trial evidence, with enormous public health implications. The

Women’s Health Initiative (WHI) clinical trial of hormone therapy is a

dramatic example of that.22 Estrogen was approved by the FDA for relief

of postmenopausal symptoms in 1942, aggressively marketed in the

mid-1960s, and after 1980, generally combined with progestin for

women with a uterus because it was found that progestin offset the risks

of estrogen for uterine cancer. In the meantime, many large prospective

follow-up studies almost uniformly showed that estrogen reduced heart

diseases by 30–50 %. In the 1993, WHI mounted a large clinical trial to

really answer the question of long-term risks and benefits of hormone

therapy. One part was the study of estrogen alone for women had had a

hysterectomy and thus didn’t need progestin to protect their uterus, and

another part was of estrogen plus progestin (E + P) for women with an

intact uterus.

The E + P trial was a randomized, double-blind, placebo-controlled

clinical trial meant to run for an average of 8.5 years. It included 16,608

148 Biostatistics and Epidemiology: A Primer for Health Professionals



women ages 50–79; such a large sample size was deemed necessary to

obtain adequate power. The trial was stopped in 2002, 3 years before its

planned completion, because the Data and Safety Monitoring Board or

DSMB (as described in Chapter 10) found estrogen plus progestin caused

an excess of breast cancer, and surprisingly, there was a significant and

entirely unexpected excess of heart attacks in the E+ P group compared to

placebo! Final results, reported in subsequent papers, showed that the

adverse effects (a 24 % increase in invasive breast cancer, 31 % increase

in strokes, 29 % increase in coronary heart disease, and more than a

twofold increase in pulmonary embolism and in dementia) offset the

benefits (a 37 % decrease in colorectal cancer and 34 % decrease in hip

fractures), so that taken together, the number of excess harmful events per

year was substantial. Since there were six million women taking this

preparation in the United States alone, and millions more globally, these

results have important implications for women other than those in the

trial itself.

Why such different results from a clinical trial than from observa-

tional longitudinal studies? The most likely explanation is selection bias.

Women who were taking hormones and then followed to observe their

rates of heart disease were, in virtually all the observational studies,

healthier, thinner, more active, more educated, and less overweight, than

their non-hormone-taking counterparts, and their healthier lifestyle and

better baseline health status, rather than the hormones per se, was what

accounted for their lower rates of heart disease.

The question now is answered using the “gold standard,” the clinical

trial: estrogen plus progestin does not protect against heart disease and in

fact increases the risk. As noted before, the impact of this research is great

since so many millions of women were using the preparation tested.

6.6 Regression Toward the Mean

When you select from a population those individuals who have high blood

pressure and then at a later time measure their blood pressure again, the

average of the second measurements will tend to be lower than the
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average of the first measurements and will be closer to the mean of the

original population from which these individuals were drawn. If between

the first and second measurements you have instituted some treatment,

you may incorrectly attribute the decline of average blood pressure in the

group to the effects of treatment, whereas part of that decline may be due

to the phenomenon called regression toward the mean. (That is one

reason why a placebo control group is most important for comparison of

effects of treatment above and beyond that caused by regression to the

mean.) Regression to the mean occurs when you select out a group

because individuals have values that fall above some criterion level, as

in screening. It is due to variability of measurement error. Consider blood

pressure.

The observed value of blood pressure is the person’s true value plus

some unknown amount of error. The assumption is that people’s measured

blood pressure is normally distributed around the mean of their true but

unknown value of blood pressure. Suppose we will only take people into

our study if their blood pressure is 160 or more. Now suppose someone’s

true systolic blood pressure is 150, but we measure it 160. We select that

person for our study group just because his measured value is high.

However, the next time we measure his blood pressure, he is likely to be

closer to his true value of 150 than the first time. (If he had been close to

his true value of 150 the first time, we would never have selected him for

our study to begin with, since he would have been below our cutoff point.

So he must have had a large error at that first measurement.) Since these

errors are normally distributed around his true mean of 150, the next time

we are more likely to get a lower error and thus a lower measured blood

pressure than the 160 that caused us to select him/her.

Suppose now that we select an entire subgroup of people who have

high values. The averages of the second measurements of these selected

people will tend to be lower than the average of their first measurements

and closer to the average of the entire group from which we selected them.

The point is that people who have the highest values the first time do not

always have the highest values the second time because the correlation

between the first and second measurement is not perfect. Similarly, if we

select out a group of people because of low values on some characteristic,

the average of the second measurements on these people will be higher
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than the average of their first measurements and again closer to the mean

of the whole group.

Another explanation of this phenomenon may be illustrated by the

following example of tossing a die. Imagine that you toss a die 360 times.

Whenever the die lands on a five or a six, you will toss the die again. We

are interested in three different averages: (1) the mean of the first

360 tosses, (2) the mean of the tosses that will result in our tossing

again, and (3) the mean of the second tosses. Our results are shown in

the table below.

Although on the first toss the mean of the 360 tosses is 3.5, we only

pick the two highest numbers, and their mean is 5.5. These 120 times

when the die landed on 5 or 6 will cause us to toss again, but on the

second toss, the result can freely vary between 1 and 6. Therefore, the

mean of the second toss must be lower than the mean of the group we

selected from the first toss specifically because it had the high values.

First toss Second toss

Result # of times

result is

obtained

Result # of times

result is

obtained

1 60

2 60

3 60

4 60

5 60 1 20

6 60 2 20

3 20

4 20

5 20

Mean of 360 tosses¼ 3.5 6 20

Mean of the 120 tosses that landed

5 or 6¼ 5.5

Mean of the 2nd toss¼ 3.5
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6.7 Intention-to-Treat Analysis

Data from clinical trials in general should be analyzed by comparing the

groups as they were originally randomized and not by comparing to the

placebo control group only those in the drug group who actually did take

the drug. The people assigned to the active drug group should be included

with that group for analysis even if they never took the drug. This may

sound strange, since how can one assess the efficacy of a drug if the

patient isn’t taking it? But the very reason people may not comply with the

drug regimen may have to do with adverse effects of the drug, so that if we

select out only those who do comply, we have a different group from the

one randomized, and we may have a biased picture of the drug effects.

Another aspect is that there may be some quality of compliers in

general that affects outcome. A famous example of misleading conclu-

sions that could arise from not doing an intention-to-treat analysis comes

from the Coronary Drug Project.28 This randomized, double-blind study

compared the drug clofibrate to placebo for reducing cholesterol. The

outcome variable, which was 5-year mortality, was very similar in both

groups, 18 % in the drug group and 19 % in the placebo group. It turned

out, however, that only about two thirds of the patients who were sup-

posed to take clofibrate actually were compliant and did take their med-

ication. These people had a 15 % mortality rate, significantly lower than

the 19 % mortality in the placebo group. However, further analysis

showed that among those assigned to the placebo group, one third didn’t

take their placebo pills either. The two thirds of the placebo group who

were compliant had a mortality of 15 %, just like the ones who complied

with the clofibrate drug! The noncompliant people in both the drug and

placebo groups had a higher mortality (25 % for clofibrate and 28 % for

placebo). It may be desirable in some circumstances to look at the effect of

a drug in those who actually take it. In that case, the comparison of drug

compliers should be to placebo compliers rather than to the placebo group

as a whole.

The inclusion of non-compliers in the analysis dilutes the effects, so

every effort should be made to minimize noncompliance. In some trials,

a judged capacity for compliance is an enrollment criterion, and an

evaluation is made of every patient as part of determining his or her
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eligibility as to whether this patient is likely to adhere to the regimen.

Those not likely to do so are excluded prior to randomization. However,

if the question at hand is how acceptable is the treatment to the patient,

in addition to its efficacy, then the basis for inclusion may be the general

population who might benefit from the drug, including the

non-compliers.

In the Women’s Health Initiative, the primary analysis was intention

to treat. However, a secondary analysis adjusted for compliance (more

commonly referred to as adherence). In this analysis, the event history of

the participant was censored 6 months after she either stopped taking the

study pills or was taking less than 80 % of the study pills. In the placebo

group, the event history was censored 6 months after the participant

started taking hormones (some participants in the placebo group stopped

taking study pills but were prescribed hormones by their physicians and

started taking them on their own). Thus, this secondary analysis basi-

cally compared the two groups “as treated” rather than as assigned to a

particular treatment. In the intention-to-treat analysis, the hazard ratio

for coronary heart disease was 1.24, while in the “adherence-adjusted”

analysis, it was 1.50. Thus, the findings from the intention-to-treat

analysis were confirmed and strengthened in the adherence-adjusted

analyses.

6.8 How Large Should the Clinical Trial Be?

A clinical trial should be large enough, that is, have big enough sample

size, to have a high likelihood of detecting a true difference between the

two groups. If you do a small trial and find no significant difference, you

have gained no new information; you may not have found a difference

simply because you didn’t have enough people in the study. You cannot

make the statement that there is no difference between the treatments. If

you have a large trial and find no significant difference, then you are able

to say with more certainty that the treatments are really not different.

Mostly About Clinical Trials 153



Suppose you do find a significant difference in a small trial with

p< .05 (level of significance). This means that the result you obtained is

likely to have arisen purely by chance less than 5 times in 100 (if there

really were no difference). Is it to be trusted as much as the same p value

from a large trial? There are several schools of thought about this.

The p value is an index of the strength of the evidence with regard to

rejecting a null hypothesis. Some people think that a p value is a p value

and carries the same weight regardless of whether it comes from a large or

small study. Others believe that if you get a significant result in a small

trial, it means that the effect (or the difference between two population

means) must be large enough so that you were able to detect it even with

your small samples, and therefore, it is a meaningful difference. It is true

that if the sample size is large enough, we may find statistical significance

if the real difference between means is very, very small and practically

irrelevant. Therefore, finding a significant difference in a small trial does

mean that the effect was relatively large.

Still others say that in practice, however, you can have less confidence

that the treatments really do differ for a given p value in a small trial than if

you had obtained the same p value in testing these two treatments in a large

trial.29 This apparent paradox may arise in situations where there are many

more small trials being carried out worldwide studying the same issue than

there are large trials—such as in cancer therapy. Some of those trials, by

chance alone, will turn out to have significant results that may bemisleading.

Suppose that there are 1,000 small trials of anticancer drug therapy.

By chance alone, 5 % of these will be significant even if the therapies have

no effect, or 50 significant results. Since these are by chance alone, it

means we are incorrect to declare anticancer drug effects in these trials

(we have committed type I errors). Suppose, further, that there are only

100 large trials studying this same issue. Of these, 5 %, or five such

studies, will declare a difference to exist, incorrectly. So if we combine

all the trials that show significant differences incorrectly, we have 55 such
significant but misleading p values. Of these, 50 % or 91 % come from

small trials and 5 out of the 55 incorrect ones (or 9 %) come from the large

trials. The following points are important:
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(1) There is a distinction between statistical significance and clinical
significance. A result may not have arisen by chance, that is, it

may reflect a true difference, but be so small as to render it of no

practical importance.

(2) It is best to report the actual probability of obtaining the result by

chance alone under the null hypothesis, that is, the actual p value ,
rather than just saying it is significant or not. The p value for what
we commonly call “significance” is arbitrary. By custom, it has

been taken to be a p value of .05 or less. But the .05 cutoff point is
not sacred. The reader should decide what strength he or she will

put in the evidence provided by the study, and the reader must

have the information to make that decision. The information must

include the design of the study, the sample selection, the sample

sizes, the standard deviations, and the actual p values.

In summary:

(1) Finding no significant difference from a small trial tells us

nothing.

(2) Finding no significant difference in a large trial is a real finding

and tells us the treatments are likely to be equivalent.

(3) Finding a significant difference in a small trial may or may not be

replicable.

(4) Finding a significant difference in a large trial is to be trusted as

revealing a true difference.

6.9 What Is Involved in Sample Size Calculation?

(a) Effect size

Let us say that 15 % of victims of a certain type of heart attack die if they

are given drug A and 16 % die if they are given drug B. Does this 1 %

difference mean drug A is better? Most people would say this is too small

a difference, even if it doesn’t arise by chance, to have any clinical

importance. Suppose the difference between the two drugs is 5 %.

Would we now say drug A is better? That would depend on how large a
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difference we thought was important. The size of the difference we want

to detect is called the effect size.
To calculate sample size, you need to know the minimum size of the

difference between two treatments that you would be willing to miss
detecting. Suppose, for example, that in your control group, 30 % of the

patients without the treatment recover. It is your belief that with treatment

in the experimental group, 40 % will recover. You think this difference in

recovery rate is clinically important, and you want to be sure that you can

detect a difference at least as large as the difference between 30 % and

40 %. This means that if the treatment group recovery rate were 35 %, you

would be willing to miss finding that small an effect. However, if the

treatment rate was 40 % or more, you would want to be pretty sure to find

it. How sure would you want to be? The issue of “how sure” has to do with

the “power” of the statistical test.

(b) Power

Statistical power means the probability of finding a real effect (of the size
that you think is clinically important). The relationships among power,

significance level, and type I and type II error are summarized below:

Significance level¼ probability of a type I error¼ probability of find-

ing an effect when there really isn’t one. This is also known as alpha or α.

Probability of type II error¼ probability of failing to find an effect

when there really is one. This is also known as beta or β.

Power¼ 1 – probability of type II error¼ probability of finding an

effect when there really is one. This is also known as 1 – beta.

(c) Sample size

To calculate sample size, you have to specify your choice of effect size,
significance level, and desired power. If you choose a significance level of

.05 and a power of .80, then your type II error probability is 1� power or .20.

This means that you consider a type I error to be four times more serious

than a type II error (.20/.05¼ 4) or that you are four times as afraid of

finding something that isn’t there as of failing to find something that is.
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When you calculate sample size, there is always a trade-off. If you want to

decrease the probability ofmaking a type I error, then for a given sample size

and effect size, you will increase the probability of making a type II error.

You can keep both types of error low by increasing your sample size. The top

part of the table on the next page shows the sample sizes necessary to

compare two groups with a test between two proportions under different

assumptions.

The second row of the table shows that if you want to be able to detect a

difference in response rate from 30 % in the control group to 50 % or

more in the treatment group with a probability (power) of .80, you would

need 73 people in each of the two groups. If, however, you want to be

fairly sure that you find a difference as small as the one between 30 % and

40 %, then you must have 280 people in each group.

If you want to be more sure of finding the difference, say 90 % sure

instead of 80 % sure, then you will need 388 people in each group (rather

than the 280 for .80 power). If you want to have a more stringent

significance level of .01, you will need 118 people in each group (com-

pared with the 73 needed for the .05 significance level) to be able to detect

the difference between 30 % and 50 %; you will need 455 people (com-

pared with 280 for the .05 level) to detect a difference from 30 % to 40 %

response rate.

The bottom part of the table on the next page shows the impact on

sample size of a one-tailed test of significance versus a two-tailed test.

Recall that a two-tailed test postulates that the response rate in the

treatment group can be either larger or smaller than the response rate in

the control group, whereas a one-tailed test specifies the direction of the

hypothesized difference. A two-tailed test requires a larger sample size,
but that is the one most commonly used.

(d) Some additional considerations

For a fixed sample size and a given effect size or difference you want to

detect, maximum power occurs when the event rate is about 50 %. So to

maximize power, it may sometimes be wise to select a group for study that

is likely to have the events of interest. For example, if you want to study

the effects of a beta-blocker drug on preventing heart attacks, you could

get “more power for the money” by studying persons who have already
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had one heart attack rather than healthy persons, since the former are more

likely to have another event (heart attack). Of course, you might then be

looking at a different question, the effect of beta-blockers on survivors of

heart attack (which would be a secondary prevention trail), rather than the

effect of beta-blockers in preventing the first heart attack (a primary

prevention trial). Sometimes, a primary prevention trial gives a different

answer than a secondary prevention trial. You may be able to intervene to

prevent disease among people not yet suffering from the disease, but your

intervention may have little effect on someone who has already developed

the disease. Clearly, judgment is required.

Sample size examples

Significance

level

(1-tailed) Assume Effect size Power

Sample

size

Control

group

response

rate ¼

Detect increase in

treatment group at

least to

With

probability

of

n Needed

in each

group

.05 30 %

30 %

40 %

50 %

.80

.80

280

73

30 %

30 %

40 %

50 %

.90

.90

388

101

.01 30 %

30 %

40 %

50 %

.80

.80

455

118

30 %

30 %

40 %

40 %

.90

.90

590
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Sample size examples

Significance

level¼ .05 Assume Effect size Power

Sample

size

Control

group

response

rate ¼

Detect

increase in

treatment

group at

least to

With

probability

of

n Needed

in

each

group

1-Tailed

2-Tailed

30 %

30 %

40 %

40 %

.80

.80

280

356

1-Tailed

2-Tailed

30 %

30 %

50 %

50 %

.80

.80

73

92

6.10 How to Calculate Sample Size for the Difference
Between Two Proportions

You need to specify what you think the proportion of events is likely to be

in each of the two groups being compared. An event may be a response, a

death, or a recovery—but it must be a dichotomous variable. Your spec-

ification of the event rates in the two groups reflects the size of the

difference you would like to be able to detect.

Specify:

p1 ¼ rate in group1; q1 ¼ 1� p1; alpha ¼ significance level

p2 ¼ rate in group 2; q2 ¼ 1� p2; power

n ¼ p1q1ð Þ þ p2q2ð Þ
p2 � p1ð Þ2 � f alpha, powerð Þ

The values of f (alpha, power) for a two-tailed test can be obtained from

the table below.
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Values of f (alpha, power)

.95 .90 .80 .50

.10 10.8 8.6 6.2 2.7
Alpha

significance
level .01

.05 13.0 10.5 7.9 3.8

.01 17.8 14.9 11.7 6.6

Note: n is roughly inversely proportional to (p2–p1)
2.

Example Suppose you want to find the sample size to detect a difference

from 30 % to 40 % between two groups, with a power of .80 and a

significance level of .05. Then,

p1 ¼ :30; q1 ¼ :70; alpha ¼ :05

p2 ¼ :40; q2 ¼ :60; power ¼ :80

f alpha, powerð Þ ¼ 7:9 from the table

n ¼ :30ð Þ :70ð Þ þ :40ð Þ :60ð Þ
:40� :30ð Þ2 � 7:9 ¼ 356

You would need 356 people in each group to be 80 % sure you can detect a

difference from 30 % to 40 % at the .05 level.

6.11 How to Calculate Sample Size for Testing
the Difference Between Two Means

The formula to calculate sample size for a test of the difference between

two means, assuming there is to be an equal number in each group, is

n ¼ k � 2σ2

MDð Þ2 ¼ number in each group

where σ2 is the error variance,MD is the minimum difference one wishes to
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detect, and k depends on the significance level and power desired. Selected
values of k are shown on the next page. For example, to detect a difference

in mean IQ of 5 points between two groups of people, where the

variance¼ 162¼ 256, at a significance level of .05 and with power of .80,

we would need 161 in each group, or a total sample size of 322. This means

we are 80 % likely to detect a difference as large or larger than 5 points. For

a 10-point difference, we would need 54 people in each group.

n ¼ 7:849� 2 256ð Þ
5ð Þ2 ¼ 161 people

Significance level Power k

.05 .99

.95

.90

.80

18.372

12.995

10.507

7.849

.01 .99

.95

.90

.80

24.031

17.814

14.879

11.679

A common set of parameters for such sample size calculations are

α¼ .05 and power¼ .80. However, when there are multiple comparisons,

we have to set α at lower levels as described in Section 3.24 on the

Bonferroni procedure. Then, our sample size would need to be greater.

If we are hoping to show that two treatments are equivalent, we have

to set the minimum difference we want to detect to be very small and the

power to be very, very high, resulting in very large sample sizes.

To calculate values of k that are not tabulated here, the reader is

referred to the book Methods in Observational Epidemiology by Kelsey,

Whittmore, Evans, and Thompson for an excellent explanation. There are

computer programs available to calculate power for many different situ-

ations. An excellent one is NCSS (National Council for Social Studies

statistical software) which can be obtained by going to the website www.

ncss.com.
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Chapter 7
MOSTLY ABOUT QUALITY OF LIFE

The life which is unexamined is not worth living.

Plato, Dialogues
428–348 B.C.

I love long life better than figs.

Shakespeare

(Anthony and Cleopatra)

The two quotes above illustrate how differently people
view the quality of their lives and how difficult it is to pin
down this concept.

A welcome development in health-care research is the increasing attention

being paid to the quality of life issues in epidemiological studies and when

evaluating competing therapies. A key aspect is the measurement of

the effects of symptoms of illness, as well as of the treatment of

these symptoms, on well-being, which is a subjective and relative state.

Therefore, it is quite appropriate that measurement of improvement or

deterioration in quality of life be based on the patient’s perception and
self-report. A person who has had severe and disabling angina may

perceive improved well-being as a result of treatment if he can walk

without pain, whereas a young ski enthusiast may experience marked

deterioration if he is unable to ski. For that reason, in studies on this

issue, the individual often serves as his or her own control, and the

measures used are change scores in some quality of life dimensions

from before to after treatment. However, it remains important to have an

appropriate control group to compare the changes, because people show

changes in these dimensions over time that may be unrelated to the

particular treatment being evaluated.

The principles and techniques described in this book apply to

research in any health-related field. However, there are certain analytic
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methods that are particularly appropriate to investigations concerning

psychological or emotional states. The primary principle is that if it is to

be scientific research, it must adhere to scientific standards, which means

that first of all, the variables of interest must be quantified. Fortunately,
almost any concept related to the health fields can be quantified if one is

ingenious enough.

7.1 Scale Construction

The scales used to measure quality of life dimensions reflect the degree of

distress with particular symptoms or psychological states as well as degree

of satisfaction and general well-being. There are many such scales avail-

able, which have been well constructed and tested on different

populations. Sometimes, however, investigators find it necessary to con-

struct their own scales to fit particular circumstances.

There are three characteristics of such scales that are important:

reliability, validity, and responsiveness.

7.2 Reliability

Reliability is the ability to measure something the same way twice. It rests

on the assumption that a person’s score on a scale or a test is composed of

his true (but unknown) score plus some component that is subject to

variation because of error (by which we mean random variability).

Reliability of a scale is related to its repeatability, or how close the

responses are on two administrations of the scale. To measure how close

they are, we can calculate the correlation coefficient between the two

administrations of the scale to the same subjects. But often we can’t give

the same scale to our patients twice under exactly the same circumstances,

since in reality a patient responding twice to the same questions would

respond differently either because something has intervened between the

two occasions or because he remembered the previous responses or just

because there is inherent variability in how one feels. The next best thing
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would be to give two equivalent scales to the same group, but that has its

problems as well. How do we know the two scales are really equivalent?

Fortunately, there are various measures of what we call “internal

consistency” that give us the reliability of a scale or test. The most

common one is called Cronbach’s alpha. There are many software pack-

ages for personal computers that readily calculate Cronbach’s alpha,

including SPSS, SAS, STATA, and many others. Thus, it is not necessary

to calculate it yourself, but the following explanation indicates what it

really means and how to interpret it.

α ¼ k

k � 1

� �
� varianceof total scale� sumof variancesof individual items

varianceof total scale

� �

Variance is the standard deviation squared. Section 3.4 shows how to

calculate it. (When we talk about variance here, we actually mean the

population variance, but what we really use are estimates of the popula-

tion variance that we get from the particular sample of people on whom

we develop the test or scale, since obviously we can’t measure the entire

population.)

This formula is really a measure of how homogeneous the scale items

are, that is, to what extent they measure the same thing. If you have a scale

that is composed of several different subscales, each measuring different

things, then the Cronbach’s alpha should be used for each of the subscales

separately rather than the whole scale. Cronbach’s alpha gives the lower

bound for reliability. If it is high for the whole scale, then you know the

scale is reliable (repeatable, highly correlated with the “true,” but

unknown, scores). If you get a low alpha for the whole scale, then either

it is unreliable or it measures several different things.

Reliability can also be looked upon as a measure of correlation, and in

fact it does reflect the average correlation among items of a scale, taking

into account the total number of items. Another way to get reliability is

from the Spearman–Brown formula, which is
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k average correlation among all itemsð Þ
1þ k � 1ð Þ average correlation among all items ¼

k raverage
� �

1þ k � 1ð Þ raverage
� �

As this formula indicates, a longer test or scale is generally more reliable if

the additional items measure the same thing. On the other hand, shorter

scales aremore acceptable to patients. An alpha above .80 is considered very

good, and sometimes subscales are acceptable with alpha over .50, particu-

larly when there are a large number of subjects (over 300), but it should be

considered in the context of the other psychometric qualities of the scale.

There are other measures of reliability as well. Psychometrics is a

specialized and complex field and there are many excellent books on the

subject, for example, Health Measurement Scales by Streiner and

Norman.

7.3 Validity

Validity refers to the degree to which the test measures what it is supposed

to measure. An ideal situation would be one in which there is some

external criterion against which to judge the measuring instrument, a

“gold standard.” For example, if it could be shown that anxiety as mea-

sured on one scale correlates better with some objectively definable and

agreed upon outcome than anxiety measured on a second scale, one could

say the first scale is more valid. (This is called “criterion validity.”)

Unfortunately, in quality of life issues, there are generally no external

criteria. A person may feel he or she is miserable, but may be functioning

at a high level. The very idea of quality of life is conceptually subjective.

Whose quality of life is it anyway?

Therefore, we often must rely on content validity, which is a blend of

common sense and technical psychometric properties. If we want to know

if someone feels depressed, we might ask, “Do you feel sad a great deal?”

rather than, “Do you feel athletic?” However, even that is not so simple,

since what someone who is not an expert on depression might consider

overtly irrelevant, like sleep disturbances, is one of the most powerful

signs of depression.
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Of course, if there is an external criterion against which to validate a

scale, it should be used. But even content validity may be made more

objective, for instance, by forming a group of experts to make judgments

on the content validity of items. To test the agreement between judges, the

kappa coefficient may be used, as described in Section 3.3.

7.4 Responsiveness

Responsiveness of a scale is a measure of how well it can detect changes

in response to some intervention. Responsiveness, or sensitivity of a scale,

can be assessed in several different ways and there is no consensus as to

which is the best. Some related concepts are described below, which

pertain to the situation when you are looking at change from pre- and

posttreatment measures.

(1) The use of change scores (pre-post) is appropriate when the

variability between patients is greater than the variability within

patients. In general, change scores can safely be used if

σ2between patients
σ2between þ σ2error

� 0:5

σ2between patients and σ2error can be obtained from an analysis of

variance of scores of a group of patients who have replicated

measures, so that you can estimate the variance due to error.

(2) A coefficient of sensitivity to change due to a treatment is

σ2change
σ2change þ σ2error

To get the σ2error, one needs to do an analysis of variance of

repeated measures on the same subjects. Computer programs are

available. Detailed explanations of this appear in more advanced

texts.
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(3) Effect size is simply the change in the scale from before to after

treatment, divided by the standard deviation at baseline. The

standard deviation is an index of the general variability in scores

among the group of people in the study. One can measure the

magnitude of the average change in scores after some treatment

by determining what percentage of the “background variation”

that change represents. Effect size ¼
meanchangescore

standard deviation of baseline or pretreatmentð Þ scores

(4) A measure of responsiveness proposed by Guyatt et al.30 is

mean change score

standard deviation of change scores for “stable subjects”

“Stable subjects” are hard to define, but what this suggests is that

a control group that doesn’t get the intervention or gets placebo

may be used. Then one can use the standard deviation of the

change scores in the control group as the denominator in the

term above.

The variability of the change scores in the control group (or in a

group of stable subjects) can be looked at as the “background

variability” of changes and the measuring instrument is respon-

sive to the degree it can detect changes above and beyond this

background variability.

(5) When evaluating change due to treatment, one should always
have a control group (i.e., a no-intervention or placebo group)

for comparison, since change can occur in control patients as

well, and the question of interest is whether the pre- to

posttreatment change in the treatment group exceeds the “back-

ground” change in the control group. If you use effect size as a

measure, then you should compare effect size in the treatment

group with effect size in the control group.

A numerical example of these concepts is provided in Appendix 6.
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7.5 Some Potential Pitfalls

(a) Multiplicity of variables

Quality of life research often deals with a vast quantity of variables.

Let us say an investigator is examining the effects of a drug to treat

hypertension and comparing it with placebo. The investigator may

have several hundred items to assess various physical and psycho-

logical symptoms and side effects. If one were to compare the two

groups by t-test on each of the items, at the p¼ .05 level of signif-

icance, one would expect that roughly 5 % of these tests would

produce a significant result by chance alone. The exact probability

is difficult to determine, since some of these comparisons would be

correlated by virtue of the fact that the same patients are responding

to all of them, that is, the responses are not independent. But in any

case, if the investigators pick out just the significant items and

conclude that there are effects of the drug, they may be committing

type I errors, that is, rejecting the null hypothesis incorrectly.

That is why it is important to use scales that measure particular

constructs or to group items in a clinically meaningful way. For

example, one might wish to measure depression, anxiety, hostility,

and well-being (each of which consists of multiple items). On the

other hand, certain drugs may be related to very specific symptoms,

such as nightmares, and this might need to be assessed by a single

item that asks about the frequency of nightmares.

The point is that quality of life research should generally be driven

by some specific hypotheses. Otherwise, it becomes a “fishing expe-

dition” that just fishes around for anything significant it can find. It

should be noted that “fishing expeditions” may be useful to generate

hypotheses that then need to be tested in a different study.

(b) Generalization

Another important issue is the extrapolation of results to populations

other than the one fromwhich the study sample was drawn. Quality of

life effects may be different in men than in women, in younger than in

older people, andmay differ by ethnic and cultural groups. One should

be careful in making generalizations. In addition, psychometric
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properties of a scale in one languagemay not be the same as in another

language, so the researcher must be careful to ensure that a translated

scale has the same meaning as the original scale. A psychometrician

should be consulted when constructing a scale.

(c) Need for rigorous standards of research

Some people consider quality of life measures “soft.” What they

generally mean is that they think such measures are subjective,

variable, and perhaps meaningless. That is nonsense, and to the

extent it is true in some studies it reflects the inadequacies of the

researcher, not of the subject matter. These measures should be
subjective from the patient’s perspective, since they reflect the

patient’s subjective perception of well-being or distress. It is the
researcher who should not be subjective and who need not be if he

follows the principles of research. The variability in quality of life

measures is no greater than in many physiologic measures and, in

any case, is part of the essence of some quality of life constructs.

As for meaning, that is a philosophical issue, not a scientific one.

From the scientific viewpoint, the “meaning” should be defined

operationally. Quality of life research should adhere to the princi-

ples of all good research and the general approach is the same as for

any scientific investigation:

(1) Formulate a testable hypothesis.

(2) Quantify the dependent variable (or variables).

(3) Select a study design that can answer the question you’ve posed.

(4) Quantify the independent variables.

(5) Control for potential confounders (through study design and/or

data analysis).

(6) Plan for a sample size that will give you enough power to detect

an effect size of interest.

(7) Try to ensure that you minimize systematic bias.

(8) Collect the data, paying much attention to quality control.

(9) Analyze the data using appropriate statistical techniques.

(10) Make inferences consistent with the strengths and limitations of

the study.

170 Biostatistics and Epidemiology: A Primer for Health Professionals



Chapter 8
MOSTLY ABOUT GENETIC EPIDEMIOLOGY

Let us then suppose the mind to be, as we say, white paper (tabula rasa),
void of all characters without any ideas; how comes it to be furnished?
Whence comes it by that vast store, which the busy and boundless fancy
of man has painted on it with an almost endless variety?. . ..To this I
answer, in one word, From experience: in that all our knowledge is
founded. . ..

John Locke

An Essay Concerning Human Understanding (1689)

8.1 A New Scientific Era

We are a long way from believing that the mind is a “tabula rasa,” a blank

slate. We know now that much is in fact innate, i.e., under genetic

influence. The purpose of this chapter is to help those who wish to read

the rapidly expanding literature in genetic epidemiology. Thus, it is an

overview of the basic designs and statistics used in this area; it is not

comprehensive, nor is it highly technical.

The focus of epidemiological research has evolved as parallel pro-

gress has been made in other fields of medicine and basic science. In the

era when infectious diseases were rampant, epidemiology was concerned

with identifying the sources of the infection and methods of transmission,

largely through fieldwork. As the infectious agents were discovered, as

sanitation and health status improved, chronic diseases, such as heart

disease and cancer, became the leading causes of death and disability in

the developed world and came to be the foremost targets of epidemiolog-

ical research. (Now that new infectious diseases are once again emerging,

this part of epidemiology is again gaining prominence).

The objective of chronic disease epidemiology was to identify risk

factors for these diseases. This part of the story has been a great public

health success. We now know, because of epidemiological studies, what the

major modifiable risk factors are for cardiovascular disease: hypertension,

171



high cholesterol and LDL, smoking, overweight, and inactivity. Our chal-

lenge now is to find ways to make the lifestyle changes in the population,

which will further lower the rates of cardiovascular disease. We also know

many of the exposures related to cancer, but not as comprehensively as for

heart disease.

At this scientifically historic time, as science is fully entering into the

era of genomics, epigenomics, and proteomics (and other “omics”), epide-
miology has entered a new phase of research activity: molecular epidemi-
ology. This is the search for blood or tissue biomarkers and genetic

polymorphisms (variants) that are associated with or predispose to disease.

Why is this different from any other risk factor investigated in epidemiol-

ogy? In many ways it isn’t, especially with regard to the blood biomarkers,

but in genetic epidemiology, there are study designs and statistical analysis

methods that are quite different. A really new aspect of molecular and

genetic epidemiology is the true collaboration of basic scientists, clini-

cians, and epidemiologists. For too long the disciplines have gone their

separate research ways and scientists read mostly the scientific journals in

their own field. But molecular epidemiology cannot fruitfully proceed

without the interface of laboratory scientists and population researchers.

Below are some basics of genetics which you can skip reading if this

is all familiar. DNA (deoxyribonucleic acid) is made up of four units—or

nucleotides. These nucleotides, also called bases, are adenine, guanine,

thymine, and cytosine and are denoted by the letters A, G, T, and C. The

DNA is arranged in two strands twisted in a double helix form, such that

the nucleotides AGCT pair with each other in fixed ways. An A always

pairs with T and C always pairs with G. These are called base pairs. If one

strand of the double helix were strung out in a line, it might look like this:

AATTCGTCAGTCCC. The other strand that pairs with it would be

TTAAGCAGTCAGGG.

There are three billion base pairs (or six billion bases) in the human

genome (which refers to all the genetic material in humans). These three

billion base pairs are organized into 23 chromosome pairs (one from the

mother and one from the father), which are in every living cell in the body

(except the sperm and egg cells each of which have 1 chromosome each
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until they merge to form a fertilized cell that now has the full complement

of chromosomes). Within these three billion base pairs, there are about

20,000 genes which are sequences of base pairs of different lengths and

which provide the code for the formation of proteins. The remaining

sequences serve mostly regulatory functions or have functions that are

unknown at the present time. The most common variations in the genome

are known as single nucleotide polymorphisms (SNPs, pronounced as

“snips”) and involve a difference in a single letter of the genetic code.

Some SNPs are normal variants in a population, some may protect against

disease, and some may predispose to disease.

8.2 Overview of Genetic Epidemiology

Genetic epidemiology seeks to identify genes related to disease and to

assess the impact of genetic factors on population health and disease. Here

is an overview of the strategy often used to study genetic determinants of

disease. First we may want to determine if the disease runs in families. If it
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is not familial, it is not likely to be heritable; if it is familial, it may or may

not be due to genetic factors (environments run in families also). Next, we

want to see if genetic variation contributes to the familial transmission.

One method for determining this is by studying twins (described in

Section 8.3). If we determine the disease is heritable, we would want to

localize and identify the genes involved. And finally, we want to under-

stand the mechanisms by which these genes contribute to disease.

As a first step, we may want to find out where the genes that contribute

to the disorder are located. One approach to this is to conduct linkage

studies of individuals affected with the disease and their families

(described in Section 8.4). Linkage studies may identify regions on the

chromosome that are likely to harbor the disease genes. Once we’ve

identified one or more such regions, we may look to see what genes are

known to reside in those regions. We can then test these genes using

association studies in unrelated individuals (described in Section 8.6) to

determine whether any variants (also called alleles) of these genes are

associated with the disease. Another approach, better suited to common

complex diseases, is to begin with genomewide association studies

(discussed in Section 8.10).

So, there are a variety of designs and statistical tests that can be used

to define the genetic basis of a disease, including (1) twin studies to

determine if the disease has a heritable component; (2) linkage studies
to identify and locate regions of chromosomes containing genes involved

in the disease; and (3) association studies to determine whether specific

genetic variants are associated with the disease, to examine how they

interact with the environment, and to determine how they affect popula-

tion health. We will limit the discussion to some pretty simple models that

will give the flavor of the topic. Readers interested in more depth are

referred to the many more technical writings on the subject, listed in the

reference 31–35section for this chapter.
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8.3 Twin Studies

To explore a genetic influence on disease, we may first look to see if it

runs in families. But something that is familial is not necessarily heritable.

For example: do obese parents have obese children because of genetics or

because of nutrition and activity levels that are transmitted from the

parents to the children? What we want to know is whether and to what

extent the phenotype (what we observe in the person, e.g., obesity) is

affected by genetic factors.

One way to assess the influence of genetic variation is from studies of

twins. Identical twins (monozygotic—coming from the same fertilized

egg) share 100 % of their genes, while fraternal twins (dizygotic—coming

from two fertilized eggs) share on average 50 %, just as non-twin siblings

do. One way to estimate the strength of genetic influences is to calculate

the heritability, h2. For twin studies, heritability can be calculated as twice
the difference between the correlation for that trait among monozygotic

twins minus the correlation in dizygotic twins or

h2 ¼ 2 rmz � rdzð Þ

Consider blood pressure. If variation in the condition or trait under

investigation were completely attributable to genetic variation, then

each member of a monozygotic twin pair would be equally affected

(each member would have the same blood pressure) and the correlation

between monozygotic twins would be 1.0; the correlation in dizygotic

twins, however, would be .50.

In this case, h2 would be 2(1–0.5)¼ 1.0 or 100 %. If the condition is

completely not heritable in the population, then rmz¼ rdz and h
2¼ 0. Since

diseases and traits are generally partially heritable, h2 lies somewhere

between 0 and 1.0.

If we are talking about continuous variables, we can think of herita-

bility in terms of correlation coefficients. If we are talking about categor-

ical variables, we may speak of concordance rates, where
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h2 ¼ %monozygotic twinsconcordant for thedisease�% of dizygotic twinsconcordant

1�% of dizygotic twinsconcordant

Some reported approximate estimates31–33 of heritability from twin stud-

ies are .60 for alcoholism, .30–.50 for personality traits, .35 for colorectal

cancer, .26 for multiple sclerosis, 0.75 for height, and .80 for

schizophrenia.

It is important to remember that heritability doesn’t measure how

much of an individual’s disease is attributable to genetics; rather it tells

us what proportion of the population’s variability in the phenotype is the

result of variation in the genes in the population. So it is a measure

applicable to a population, not to an individual. If you have people living

in exactly the same environment, then any variation you encounter in the

phenotype would be mainly due to genetic factors, since there is no

environmental variation. In such a case, if all environmental factors are

constant for the population, heritability would be 100 %. So there are

some limitations to this measure, but it does give us an idea to what extent

genetic variation contributes to phenotypic variation in a population.

However, heritability tells us nothing about what genes are responsible

for that variation, which genetic variants are involved, how many variants

are involved, or what their effect sizes are. This more detailed information

is referred to as the “genetic architecture” of a trait or disease.

8.4 Linkage and Association Studies

If we know that a disease is heritable, we can now turn to the task of

actually identifying the genes that are involved. Most disorders that are

studied by epidemiologists (e.g., cardiovascular diseases, psychiatric dis-

orders, common forms of cancer) are considered “complex” disorders.

Unlike single-gene or Mendelian disorders, such as cystic fibrosis or

Huntington’s disease, complex disorder diseases are thought to result

from the contribution of several or many genes interacting with environ-

mental risk factors. That can make identifying the effect of an individual

gene quite a difficult task. The effect of a particular allele within that gene
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may be quite small. It is a bit like looking for the proverbial needle in the

haystack. Nevertheless, genes contributing to diseases are being discov-

ered and there are certain strategies that are employed in the search.

Where in the genome do we look for the genes that confer suscepti-

bility to the disease? One way to answer this question is to use genetic
linkage analysis.

(a) Linkage analysis relies on the phenomena of crossing over and

recombination that occur during the process of meiosis when the

sex cells (sperm and egg) are formed. Each person has two

copies of each of the 23 chromosomes that make up the genome:

one copy is inherited from the mother and one from the father.

During the formation of sperm and egg cells, these 23 chromo-

some pairs line up and exchange segments of genetic material in

a process known as crossing over. This recombination occurs at

one or more places along the chromosome. The closer two loci
are on a chromosome, the less likely a recombination event will
occur between them and so the more likely they will be inherited
together. Loci that tend to be co-inherited are said to be genet-

ically linked. We can use this fact to estimate the distance

between two genetic loci or markers (a genetic marker is a

DNA variation whose chromosomal location is known). The

physical distance between two markers is inversely related to

how frequently they are co-inherited across generations in a

family.

(b) The distance between two loci is sometimes measured in centi-
morgans. A centimorgan (cM) is a unit of distance along a

chromosome, but not in the ordinary sense of physical distance.

It is really a probability measure which is a reflection of the

physical distance; it reflects the probability of two markers or

loci being separated (or segregated) by crossing over during

meiosis. If the two markers are very close together, they won’t

separate (we say they are “linked”); if they are far apart, they are

likelier to cross over and the genetic material gets recombined
during meiosis. Then this recombined DNA gets transmitted to

the offspring. Two loci are one centimorgan apart if the
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probability that they are separated by crossing over is only 1 %

(once in a hundred meioses). It has been estimated that there are

about 1 million base pairs in a 1 cM span. Loci that are far apart,

say 50 cM, will be inherited independently of each other, as they

would be if they were on different chromosomes. The purpose of
linkage studies is to localize the disease susceptibility gene to be
within some region on the chromosome.

(c) So we might begin our search for a disease gene by collecting

families affected by the disease and performing a linkage anal-

ysis using markers spaced at intervals (say 10 cM apart) across

the entire genome. If we find a marker that appears to be

co-transmitted with the disease, we would have evidence that

the marker is genetically linked to a gene for the disease. In other

words, there is likely to be a gene for the disease in the same

region as the linked marker.

(d) Having found a chromosomal region linked to the disease, we

might try to narrow the region down by genotyping and testing

additional markers within that region (say at 1 cM intervals).

However, even this relatively small region may contain many

genes.

(e) Our next step might be to screen the genes that are known to

reside in this region. We would be particularly interested in

genes that have a plausible connection to the disease of interest

(these would be good “candidate genes”). For example, if we are

studying diabetes, genes that make proteins involved in glucose

metabolism would be important “candidate genes.”

(f) Now we can see if any particular alleles (variants) of the genes in

that chromosomal region are associated with the disease. This

can be done by:

(1) Association studies using case–control methods in unrelated
people, examining whether an allele is more common in

cases than controls (described in Sect. 8.6)

(2) Association studies in families to see whether an allele is

being transmitted more commonly to cases than expected by

chance (described in Sect. 8.9)
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So, essentially, linkage analysis tells us that a particular marker

location is near a disease susceptibility gene; association analysis tells

us that a particular allele of a gene or marker is more commonly inherited

by individuals with the disease.

8.5 LOD Score: Linkage Statistic

The classic statistic used to evaluate the strength of the evidence in favor

of linkage of a genetic marker and disease susceptibility gene is the LOD

score (the log10 of the odds in favor of linkage). It will be described in

principle only, to help in interpretation of epidemiological articles dealing

with genetics. The actual calculations are complex and require special

program packages.

The principle underlying the LOD score is described in the previous

section: if we have two loci—say, a marker and a disease gene—the closer

they are on a chromosome, the lower the probability that they will be

separated by a recombination event during meiosis and the more likely

they will be co-inherited by offspring.

The probability of recombination, called the recombination fraction,

is denoted by the symbol θ and depends on the distance between the gene

and the marker. If there is no recombination and the gene and marker are
completely linked, then the recombination fraction is 0. The maximum

value of θ is .5 (if gene and marker were independently inherited, then the

probability that the marker was transmitted but not the gene ¼ the

probability that gene was transmitted but not the marker ¼ .50).

So if you want to know if there is linkage, we have to estimate how

likely it is that θ is less than .5, given the data we have observed. We use

the likelihood ratio for this, which as you recall from Chapter 2 is the ratio

of the probability of observed symptoms, given disease divided by the

probability of observed symptoms given no disease. In this case

LR ¼ Probabilityobserved inheritancedata, given linkage

Probabilityobserved inheritancedata, givenno linkage

Mostly About Genetic Epidemiology 179

http://dx.doi.org/10.1007/978-1-4939-2134-8_2


The null hypothesis here is no linkage (or recombination fraction θ¼ .5)

and the alternate hypothesis is linkage (or θ< .5). If we reject the null, we

“accept” the alternate hypothesis. The test statistics used to see if we have

sufficient data to conclude linkage is the LOD score which is the log10
(LR). For Mendelian (single-gene) disorders, a LOD score of 3 has tradi-

tionally been the threshold for declaring significant linkage, although for

complex disorders higher thresholds (3.3–3.6) have been recommended.

A LOD score of 3.0 indicates 103 odds in favor of linkage compared to no

linkage, i.e., 1,000:1 odds in favor of linkage.

For complex reasons beyond the scope of this book (but described in

the references at the end), a LOD score can be translated into probability by

multiplying it by the constant 4.6: LOD� 4.6 is distributed as chi-square

with 1 degree of freedom. (The 4.6 is 2 times the natural log of 10.) Thus, a

LOD of 3.0 is equivalent to a chi-square of 3� 4.6¼ 13.82 and corre-

sponds to p¼ .0002. The inheritance data for linkage analyses can come

from family pedigree studies, from sibships or other family groups.

LOD score linkage analysis is sometimes referred to as “parametric”

linkage analysis because it requires that we specify certain parameters

(e.g., disease and marker allele frequencies, recessive vs. dominant mode

of inheritance, penetrance of the disease gene). When these parameters are

known or can be approximated, parametric LOD score analysis is the most

powerful method of linkage analysis. This may be true for Mendelian

(single-gene) disease, but for many complex disorders, these parameters

are not known. “Nonparametric” linkage methods (known as the allele-

sharing approach) are often used to study complex disorders because they

do not require knowledge of the mode of inheritance or other genetic

parameters. There are a number of statistics available, described in the

more advanced texts.

8.6 Association Studies

Compared to linkage analysis, association studies are more closely akin to

traditional epidemiological studies and most often rely on the case–con-

trol design. In an association study, investigators are interested in finding
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whether there is any association between a particular allele at a polymor-

phic locus and the phenotype in question. (A polymorphism is a variation

in DNA sequence that occurs in at least 1 % of the population. A variation

that occurs in less than 1 % is referred to as a mutation). For the purposes

of this discussion, we will assume that the polymorphisms we are looking

at are SNPs (single nucleotide polymorphisms) or variants in a single one

of the bases A, T, C, G (standing for adenine, thymine, guanine, cytosine)

at a particular locus. Note that there are many other classes of DNA

variation including small insertions and deletions of nucleotides and

copy number variations that involve deletion or duplication of larger

chunks of DNA, as illustrated below.

Reprinted by permission from Macmillan Publishers Ltd: [Nature

Reviews Genetics] (Frazer KA, Murray SS, Schork NJ, Topol EJ, Human

genetic variation and its contribution to complex traits), copyright (2009)

So let us say at a particular SNP some people have the A allele and

other people have the G allele. We want to know if people with the disease

are more likely to have say, the A allele than the G allele. For a binary

phenotype (e.g., diseased or not), we can do case–control studies of

association by taking cases who are affected with the disease and

unrelated controls who are not. Remember that each person gets one

copy of an allele at a particular locus from the mother and one copy
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from the father. (These are exactly at the same locus on each chromosome

of the paired chromosomes). So if a person gets an A from the mother and

a G from the father, that person’s genotype is AG. If the person gets an A

from each parent, that person’s genotype is AA. We can compare the

frequencies of genotypes AA, AG, or GG between cases and controls,

represented by the numbers 0, 1, or 2 for the number of minor alleles it

contains (a major allele is the more common one in the population, a

minor allele is the less common one). So in our example, let’s say the G

allele is the minor allele; then we can convert the genotypes to numbers as

follows: 0 for the AA genotype, 1 for the AG genotype (since it contains

one G), and 2 for the GG genotype. We can then see whether the number

of minor alleles (0, 1, or 2) differs between the cases and controls. We can

use ordinary statistical tests of the differences between proportions or

multiple logistic regressions (see Section 4.17) to determine the odds ratio

connected with the allele in question, and we can test for gene–environ-

ment interactions by including an interaction term of the presence of the

allele and some environmental factor, such as smoking. For a continuous

phenotype (e.g., blood pressure), we can use linear regression.

Association studies can be more powerful than linkage analysis for

detecting genes of modest effect, making them an attractive approach for

studying complex disorders, which involve many risk variants of rela-

tively small individual effect. Power calculations for association tests can

be conducted using several online tools including the Genetic Power

Calculator (http://pngu.mgh.harvard.edu/~purcell/gpc/).

8.7 Candidate Gene Association Studies

Association studies may be used to evaluate a candidate gene—that is, a

gene that previous data, often from linkage studies or prior biological

studies, have suggested is involved in our phenotype of interest. However,

our knowledge of the biological basis of many diseases is incomplete.

Thus, the prior probability that any given candidate gene or polymorphism

is actually involved is often low. In this circumstance, a significant

association is likely to be due to chance. Indeed, candidate gene findings
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have been notoriously difficult to replicate, suggesting that many reported

associations are spurious. As a result, candidate gene studies have largely

fallen into disfavor and have been replaced by genomewide analyses

(GWAS, discussed in Section 8.10) that do not rely on prior hypotheses.

8.8 Population Stratification or Population Structure

One important issue for association studies is the choice of control groups.

The frequency of alleles in a population can differ based on ancestry for

reasons that are unrelated to the disease of interest. Such differences in

genetic background may confound our results due to a phenomenon

referred to as “population stratification”.36

For example, let us say the A variant is more common in individuals

of European descent and the G variant is more common among those of

African descent. If it happens that our disease (case) group has more

European-Americans and our no-disease (control) group has more

African-Americans, then we might find that allele A is more common

among those with disease than in those without disease, but it might really

just be a reflection of the fact that we had more European-American cases

than European-American controls and the European-Americans are more

likely to be carriers of the A allele. So we would have a false-positive

finding because of the unmatched ancestry of the two groups.

The numerical example below illustrates this point. You can skip

reading the example if you like, but it is shown here for those who want

to work through it numerically. Let us assume that 80 % of people of

European ancestry carry allele A at a specific SNP and only 40 % of

people of African ancestry carry allele A. The respective percentages for

allele G are 20 % in Europeans and 60 % in African ancestry (Table 8.1).

Now let us say that it happens that among the cases of disease, 70 % are of

European origin, but in the controls only 10 % are of European ancestry

(Table 8.2). What % of A alleles would we expect in the cases and

controls?

Well, among the cases, since 70 % are of European ancestry and 80 %

of those carry the A allele, we would expect .70� .80¼ .56 or 56 % of the
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European ancestry cases to carry the A allele; the remaining 30 % of the

cases are of African ancestry in whom the A allele frequency is 40 %, so

we would expect another .30� .40¼ .12 or 12 % to carry the A allele, for

a total of 56 %+ 12 %¼ 68 % of cases carrying the A allele, as shown in

Table 8.3.

Table 8.3 Calculations

A allele Cases Controls

EA .70� .80¼ .56 .10� .80¼ .08

AA .30� .40¼ .12 .90� .40¼ .36

Total A allele .56 + .12¼ .68 .08 + .36¼ .42

G allele Cases Controls

EA .70� .20¼ .14 .10� .20¼ .02

AA .30� .60¼ .18 .90� .60¼ .54

Total G allele .14 + .18¼ .32 .02 + .56¼ .58

Summary of this table

Cases Controls

Prevalence of A allele 68.0 % 42.0 %

Prevalence of G allele 32.0 % 58.0 %

Table 8.1 Allele frequencies of a hypothetical SNP by population ancestry

Ethnic group European-American African-American

Prevalence of A allele 80.0 % 40.0 %

Prevalence of G allele 20.0 % 60.0 %

Table 8.2 Hypothetical disease prevalence by population ancestry

Disease Cases Controls

% European-American 70.0 % 10.0 %

% African-American 30.0 % 90.0 %
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In the controls we would have only 10 % Europeans of whom 80 %

carry the A allele, so we would expect .10� .80¼ .08 or 8 % of the

European ancestry controls to carry A allele; 90 % of our controls are of

African ancestry, for whom the A allele frequency is 40 %, so we expect

.90� .40¼ .36 or 36 % of them to carry the A allele. Combining the

European and African ancestry controls, we expect that 8 %+ 36 %¼
42 % carry the A allele. Similar calculations are made for the G allele, as

shown in summary of Table 8.3.

Now let’s assume we have a study of 1,000 cases and 1,000 controls

and there is no real association between the A allele and our disease.

Nevertheless, as shown in Table 8.4, the allele frequencies simply based

on population differences in our case control sample would indicate an

association (chi-square¼ 136.6; p< .00001). So we have to very carefully

account for population stratification.

There are several options available to deal with the problem of

confounding by population stratification. First, one could try to restrict

the analysis to cases and controls of homogeneous genetic background—

for example, those of European ancestry. This is frequently done by

limiting the sample to be studied based on self-reported ethnicity. How-

ever, population genetic studies have shown that population subgroups

may exist even within broad categories like this so that residual

confounding may be present.

One can also apply a technique known as “genomic control” which

adjusts for an inflation factor called λ (lambda). To do this, we genotype

(i.e., determine the alleles for) a set of 50 or more SNPs across the genome

that are assumed to be unrelated to the disease of interest (“null” SNPs).

We then calculate the test statistics (chi-squares) comparing cases and

Table 8.4 Example of a case–control study with 1,000 cases and 1,000 controls

Cases Controls

Prevalence of A allele 680 420 1,100

Prevalence of G allele 320 580 900

1,000 1,000 2,000
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controls for our null SNPs. We now obtain the median of these observed

chi-square values for our null SNPs. The expected median of a chi-square
distribution with one degree of freedom where there really is no difference

(i.e., the null distribution) turns out to be 0.456. We calculate λ as the

median of the observed chi-square statistics for the null markers divided

by 0.456. We can now correct our observed chi-squares for the candidate

SNPs by dividing them by λ.
Finally, we can avoid the problem of population stratification by using

a family-based rather than case–control design, as described in Section 8.9.

Thus, if we find an association between a particular allele and the

disease we are studying, it may be for one of four reasons: (1) it could be a

false positive due to chance (type I error); (2) it could be a false positive

due to confounding because of population stratification; (3) it may be in

“linkage disequilibrium” with the true disease allele, meaning that the

allele we found more frequently in cases than in controls is located

physically close enough to the true disease allele that the two alleles

tend to be inherited together and co-occur in affected individuals; and

(4) there really is a true causal association of the allele we studied and the

disease. (As we said before, genetics—and life—are not simple).

8.9 Family-Based Association and the Transmission
Disequilibrium Test (TDT)

A statistical test of both linkage and association is the transmission
disequilibrium test. This is a family-based association test that avoids

confounding due to population stratification by examining the transmis-

sion of alleles within families. Transmission disequilibrium refers to a

deviation from the Mendelian law of independent transmission of alleles

at a given locus. Let’s again consider a SNP at which there are two

possible alleles, A and G. A parent who is heterozygous at this SNP

(i.e., has genotype AG) can transmit either an A or a G to the child.

Under the null hypothesis of no linkage and no association, the probability

of transmitting either of these alleles is 50 %. If we observe transmission

of the A allele significantly more often than chance expectation (i.e., more
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than 50 % of the time) to the affected offspring, then we conclude that the

A allele is associated with the disease.

The basic statistics are fairly straightforward. The unit of analysis is a

transmission of an allele. Here is an example using trios. A trio is an

affected offspring and both parents. There are two transmissions possible

of an allele in a particular locus—one from the mother and one from the

father. In the diagram below we construct a 2�2 table and count the

number of transmitted alleles that belong in each cell of the table.

Trio 1: since the affected child has two AA alleles in the locus under
consideration, she had to have received an A from each parent; thus, we
see that the father transmitted his A allele and not his G and the mother
also transmitted her A allele and not her G, indicating that these two
transmissions belong in cell b which describes the transmission of an A
and not a G allele.

Not
transmitted Allele G Allele A

Allele G Cell a Cell b = 2

AG AG

AA

Allele A Cell c Cell d

Transmitted Allele

Trio 2: Here one transmission was of an A and not a G and the other was
of a G and not an A. (We don’t know which was from which parent, but
we do know that 1 transmission is described by cell b and the other by
cell c.)

1 (mother or father)

1 (mother or father)

Transmitted Allele
Not
transmitted Allele G Allele A

Not G

AG AG

AA

Not A

Trio 3: Here, the A in the child had to have come from the father since
that was all he had to transmit, so he transmitted an A allele and also did
not transmit his other A allele; thus, that transmission belongs in cell
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d. The mother transmitted her G allele and not her A allele and so that
transmission belongs in cell c.

1 (father)1 (mother)

Transmitted Allele
Not
transmitted Allele G Allele A

Not G

AG AG

AA

Not A

Imagine we have 120 such trios. We would now combine the data from the

240 transmissions among the 120 trios by adding the numbers in each cell

into a summary table, as shown in the example below:

Not
transmitted Allele G Allele A

Not G 65 90

Not A 50 45

Transmitted Allele

and calculate the test statistic TDT as the quantity:

b� cð Þ2
bþ cð Þ ¼ 90� 50ð Þ2

140
¼ 11:43

which is distributed as x2, with one degree of freedom, and since it is more

than 3.84, we can reject the hypothesis of no linkage at an alpha level of

0.05 (though as we will discuss, this statistical threshold is usually con-

sidered too liberal for genetic association studies). The TDT is really a

McNemar’s test (described in Sect. 3.2), analogous to matched case–

control analysis, where controls are untransmitted alleles, rather than

persons.

Note that any transmissions that land in the a or d cell are
non-informative. The test statistic TDT only uses information from the b
and c cells. Thus, only parents who are heterozygous (having an A and G)

are informative. Since we start out with affected children identified by
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phenotype, we don’t know whether the parents are heterozygous and must

genotype all the parents in our collection of trios even though some will

turn out not to be informative.

The TDT has been extended to be applicable to cases where one or

both parents’ DNA is not available, to sibships and to other family groups,

as well as to quantitative traits. An example is the program FBAT (http://

www.hsph.harvard.edu/fbat/default.html).

8.10 Genomewide Association Studies: GWAS

Rather than investigating a single candidate gene, we can conduct

genomewide association studies (GWAS) to test polymorphisms through-

out the whole genome.37 The first thing to note is that a GWAS does not

cover all genetic variation in the genome. Instead, a GWAS examines a

large set of SNPs (typically on the order of 500,000 to several million)

distributed across the genome to cover common variation (alleles that are

carried by 1 % or more of the population). These SNPs are genotyped

using DNA microarrays (sometimes called “SNP chips”). Newer

microarrays also include rarer variants that occur in the exome; the

exome consists of the 1–2 % of the genome that actually codes for

proteins.

Although the genome contains many millions of SNPs, we can select a

smaller subset to cover genomewide common variation because alleles at

many SNPs within a given region are correlated and therefore carry

redundant information. This is due to the phenomenon of linkage disequi-

librium that we mentioned earlier. Linkage disequilibrium refers to the

nonrandom association (i.e., correlation) between alleles that are physi-

cally close together on a chromosome and are inherited together. In other

words, because of linkage disequilibrium, one SNP may stand in for

(or “tag”) a larger set of SNPs. As a result, if we find that an SNP is

associated with our phenotype, it may or may not be causally related to the

phenotype but rather may simply be correlated (i.e., in linkage disequi-

librium) with the true causal SNP.

Mostly About Genetic Epidemiology 189

http://www.hsph.harvard.edu/fbat/default.html
http://www.hsph.harvard.edu/fbat/default.html


In addition to the SNPs directly genotyped on a microarray, it is now a

standard practice to expand the coverage of ungenotyped SNPs by

performing imputation. This is made possible by efforts—including the

International HapMap Project and the 1000 Genomes Project—that have

genotyped or sequenced the genomes of individuals from populations

around the world. These samples serve as reference panels that include

many more SNPs than those included in a given experiment. Knowing the

linkage disequilibrium patterns of SNPs in these reference panels, we can

impute alleles at SNPs that we have not been directly genotyped, recov-

ering a much larger number of SNPs for our experiment.

GWAS analysis is typically performed using specialized statistical

packages, of which the most widely used is known as PLINK (http://pngu.

mgh.harvard.edu/~purcell/plink/).

A major advantage of GWAS and other genomewide methods is that

we can survey the entire genome to identify associated SNPs without

having to place bets in advance on candidate genes. As a result, GWAS is

often referred to as an “unbiased” approach to association—that is, it

doesn’t rely on prior hypotheses that are usually based on incomplete

knowledge of the biological basis of a disease or trait.

Recent studies have shown that most common SNPs identified by

GWAS fall outside of the protein-coding part of genes. Instead, they are

found mostly in DNA regions thought to be involved in regulating the

activity of genes (gene expression). As noted above, however, an associ-

ated SNP may be merely in linkage disequilibrium with the true causal

SNP (or it may be a false positive as we discuss later). Identifying the true

source of an association signal thus requires additional studies. These can

include fine-mapping studies in which the associated region is more

deeply genotyped or sequenced (see Section 8.17) to narrow down the

signal, or biological studies in which associated SNPs are examined for

their possible functional effect on gene expression, or other biological

assays.
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8.11 GWAS Quality Control and Hardy–Weinberg
Equilibrium

Before examining the results of a GWAS, it is crucial to clean the data by

performing a series of quality control steps. We typically begin by remov-

ing SNPs and individuals for whom data quality is poor. For example, it’s

customary to remove SNPs for which more than say 5 % of genotypes are

missing and then remove individuals for which more than 2 % of geno-

types are missing. Next, we may remove SNPs for which the difference

between cases and controls in % missing genotypes is greater than 2 %;

for instance, you would remove SNPs where 10 % of genotypes are

missing in cases and only 2 % are missing in controls. In addition, we

remove SNPs that are not in Hardy–Weinberg equilibrium. Hardy–

Weinberg equilibrium (HWE) refers to the notion that, under the assump-

tion of random mating, genotype frequencies remain constant across

generations, unless some evolutionary disturbances disrupt the equilib-

rium. This principle is useful for quality control of genotyping, as

described below.

Consider one SNP locus with two alleles, say A and G. The frequency

of A in the population is p and the frequency of G is q. Since at that locus

you can only have either an A or a G, then p + q ¼1. Now the probability

that you get an A allele from your mother and an A allele from your father

is the product of the two probabilities since they are independent (see

Section 2.2). So the probability that your genotype is AA is

p Amotherð Þ � p Afatherð Þ ¼ p2:

What’s the probability that your genotype has one A and one G, i.e., you

are AG or GA?Well there are two ways you can have one A allele and one

G allele: you get an A from your mother and a G from your father with

probability pq or you can get a G from your mother and an A from your

father also with probability of p� q. So the probability of having one A

and one G is 2pq.

What’s the probability of a GG genotype? Here you need to get a G

from your father and mother and the probability of a G allele is q so the

probability of GG is q� q or q2. Thus, there are three possible genotypes:
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AA, AG, or GG and the sum of the total of all the possible genotype

probabilities at that locus is 1, so p2 + 2pq + q2¼ 1. If you recall your basic

algebra, p2 + 2pq + q2 is the expansion of (p + q)2.

If the genotype proportions in a sample are significantly different

from p2 + 2pq + q2, we need to know why. SNP genotypes may not be in

Hardy–Weinberg equilibrium because of genotyping errors or because of

violations of the random mating assumption. Thus, we need to remove

these SNPs from our dataset. However, in case–control studies, a SNP that

is truly associated with the disease may not follow HWE in the combined

case–control sample because the alleles have different distributions in

cases and controls. So the HWE tests are typically done for each SNP in

the controls only and those that violate HWE are removed.

8.12 Quantile by Quantile Plots or Q-Q Plots

Constructing a Q-Q plot is often the first step in evaluating the quality of a

GWAS. Q-Q plots allow us to visually compare two distributions of test

statistics or p values. In GWAS, Q-Q plots are often used to examine if the

observed p values follow the distribution expected under the overall null

hypothesis. Deviations from the null distribution may indicate problems

with the data including inflation of test statistics due to population strat-

ification, problems with imputation, sparse data, or genotyping error.

Suppose you do a GWAS of 5,000 cases and 5,000 controls looking at

one million SNPs. Each of those SNP statistical tests between cases and

controls has a p value associated with it. The p value comes from a

chi-square test comparing the frequency of a given allele in cases

vs. controls (or it may come from a logistic regression, where you

ascertain the odds ratio of disease [case status] associated with a given

allele while controlling for other variables). In any case, you can put those

p values for the million SNPs into an ordered list, except that instead of

going from the lowest value to the highest value, we reverse it and order

the list going from the largest p value to the lowest p value, for example,

going from p¼ 1.0 to p¼ .000001.
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An observed p value of 1.0 is at the 0th percentile—meaning that all p

values are less than p¼ 1.0 and there are no values higher than p¼ 1.0

(in our scheme, they are to right of 1.0 in our ordered list—see example

below). The p value of .000001 may be at the 99th percentile meaning that

99 % of the p values are higher than .000001 or only 1 % of p values are

lower than .000001 (to the right of .000001). In actuality, we transform

them to –log p so that p of 1.0 would be 0 and p of .000001 would be

6. This is illustrated in the table below.

P 1.00 0.10 0.05 0.01 0.001 0.0001 0.00001

Percentile 0 90th 95th 99th 999th 9999th 99999th

–log10 P 0 1 1.3 2 3 4 5

Now consider the expected distribution of p values if in fact the null

hypothesis were true, meaning that there is no significant overall differ-

ence between cases and controls, only random variation in the million

SNP test p values from chi-square statistics. Now you plot the observed

distribution of p value quantiles from your GWAS against the expected

theoretical distribution, as below.
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If the distribution of the p values in your GWAS were exactly like the

expected distribution of p values under the null hypothesis, the points
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would lie along the diagonal red reference line. The points in black are

what you actually got from your GWAS. They follow along the red line up

until the upper right portion where they are above the red line. This means

that you got more points with very, very low p values (or high values of –

log10 p), than you would expect to get under the null hypothesis. So there

are a bunch of SNP tests that have lower p values than expected and these

may represent true SNP differences between cases and controls.

Now look at another Q-Q plot below. Here the points from your

GWAS depart from the reference line pretty much along most of the

plot, meaning the quantiles from your GWAS do not correspond to the

expected quantiles. There are more higher p value SNP tests in your

GWAS than you would expect along a large portion of the ordered p

values. So something is wrong—there are probably too many false posi-

tives, maybe due to laboratory errors, population stratification, or other

reasons like hidden genetic relatedness among your subjects. This is not a

happy situation as it casts doubt on the significant SNP tests you found.

What you want to see in a Q-Q plot is points as close to the diagonal line as

possible throughout most of the distribution to indicate that there are no

errors or biases or confounding between cases and controls. So Q-Q plots

are a sort of visual quality control method.

We can also quantify inflation of the test statistics using λ (see

Section 8.8) In the case of a GWAS study, λ is the median of the

chi-squares of tests between cases and controls for all the markers, divided

by 0.456, which is the median of the chi-square distribution under the null.

A λ of 1.0 indicates no inflation. For the Q-Q plot shown above, λ is 1.1
suggesting minimal inflation. However, for the Q-Q plot shown below, the

λ is substantial (1.788) suggesting something is wrong.
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As we noted earlier (Section 8.8), we can correct for the inflation of

test statistics by dividing all chi-square values by λ. However, a more

powerful and more common method for dealing with population stratifi-

cation in GWAS involves controlling for genetic ancestry using the many

thousands of SNPs that are not associated with the disease you are

studying. Essentially, we use these SNPs to capture variation in ancestry

and we reduce this genetic background variation to a manageable number

of variables (usually 4–20), by applying “principal component analysis.”

These principal components of genetic variation can then be added as

covariates to logistic regression or linear regression association tests of

each SNP. When a GWAS includes the appropriate number of principal

components, we are effectively controlling for population stratification,

and λ is no longer inflated.

8.13 Problems of False Positives

Remember that in an association study we are trying to see if a specific

allele, say the G allele of an A/G SNP, appears more frequently in cases

than in controls. We can use a standard statistical test like chi-square to

compare case and control frequencies. But recall the problem of

multiple testing, which leads to a high type I error—i.e., a high probability

that we will declare a difference between cases and controls when there
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really is no difference (Section 3.24). We noted that, for example, if we

make 5 two-way comparisons in a study, the probability that at least one of

those comparisons will reach the .05 significance level by chance alone is

really 1–.955, or .23, which would be our effective significance level. To

achieve a true overall significance level of .05, we use the Bonferroni

correction where we divide .05 by the number of comparisons or .05/

5¼ .01, so that we have to reach a level of significance of .01 (rather than

.05) to conclude that there is a significant difference in any of the two-way

comparisons.

What correction should we use for a GWAS? It turns out that a typical

GWAS study involves effectively one million independent tests. Note

that, because of the linkage disequilibrium structure of the genome (i.e.,

the correlation between nearby SNPs), this effective number of tests is

true whether our DNA microarray includes 500,000 SNPs or two million

SNPs. If we used the traditional p value threshold of 0.05, without

correcting for the multiple tests, we would expect 5 % or 50,000 SNPs

to exceed that threshold just by chance! So to avoid false positives we

must apply the Bonferroni correction and divide .05 by 1 million which

gives us a statistical threshold of 5� 10�8. Thus, we need to achieve a p

value of <.00000005 to declare statistical significance of any given SNP.

Of course, if we test multiple phenotypes, we need to further correct by the

number of phenotypes examined to maintain our type I error rate of 5 %. It

should also be noted that false positives can occur due to errors in

genotyping or even due to insufficient sample size. Thus, genomewide

significant findings are most reliable when they are obtained in well-

powered studies after stringent quality control of the dataset. Ultimately,

the validity of an association is not established until it has been replicated

in independent samples.

8.14 Problem of False Negatives

If you do a GWAS and find no SNPs that are significantly different in

cases versus controls (with p< 5� 10�8), it may be due to a lack of

power. Recall that power is the probability of finding an effect when
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there really is one and depends on both the effect size of your predictor

(here an SNP) and sample size. Typical effect sizes in GWAS give small

odds ratios, in the range of 1.01–1.3. The power to detect such an effect

depends on several factors: the allele frequency, sample size, disease

prevalence (for a binary disease), case/control ratio, and the mode of

inheritance of the risk allele (additive, recessive, or dominant). To give

an example, detecting an allele with a frequency of 5 % that carries an

odds ratio of 1.3 for a disease with 2 % prevalence under an additive

model, we would need 10,350 cases if we assume an equal number of

controls.1 For an allele with a frequency of 10 %, we would need 5,540

cases using the same assumptions for effect size, disease prevalence, case/

control ratio, and mode of inheritance. We can also calculate the mini-

mum detectable odds ratio for a given sample size. For example, given

10,000 cases and 10,000 controls and assuming an allele frequency of

10 %, a disease prevalence of 2 %, and an additive model, we could detect

an odds ratio of about 1.22. As these examples make clear, very large

sample sizes are needed to detect the kind of effects we expect to see in a

GWAS. That is the reason that nowadays most genetic studies have relied

on collaborations or consortia of several different cohorts to achieve

sufficient power.

Some have suggested that the threshold for significance of 5� 10�8 is

too stringent and instead of the Bonferroni simple procedure, they use a

statistic called false-discovery rate, which is the number of null hypoth-

eses falsely rejected divided by the total number of rejections. There are

other nuances in trying to avoid false positives while ensuring the highest

probability of finding true positives that are beyond the scope of this book,

but references are provided in the reference section.38

1 This also assumes a multiplicative model for the effect—i.e., if carrying one risk

allele confers a relative risk of 1.3, carrying two risk alleles confers a relative risk

of 1.69 (i.e., 1.3� 1.3).
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8.15 Manhattan Plots

A Manhattan plot is a visualization tool that allows us to summarize the

entire association results of a GWAS in a single plot. Consider a case–

control study of the genetics of ischemic stroke. Each case and each

control has been genotyped on a microarray chip containing one million

SNPs. How do you make sense of these one million tests? The Manhattan

plot is basically a plot of the p values achieved by each SNP you have

tested.

On the X axis is the location of the SNPs across the genome, ordered

according to the position along the chromosomes. Imagine the one million

SNPs on the chip stretched out in a long line. The Y axis corresponds to

the significance level for the association test of each SNP; it is�log of the

probability, so that for a p value of .0001, �log of .0001¼ 4; for a p value

of .00001, �log of .00001¼ 5; and soon. So the lower the p value, the

higher is the number –log(P)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

chromosome

0
5

10
15

–l
og

10
(P

)

The upper horizontal line corresponds to the accepted threshold p

value of 5� 10�8, which minimizes false positives (see Section 8.13).

Anything above that line is considered unlikely enough to have arisen by

chance so that we may suppose there is an actual difference between cases

and controls at that SNP. In the figure above, we see five genomewide

significant hits—i.e., regions that exceed this threshold (one each on

chromosomes 6, 8, 12, and 19). The most significant SNP is at the highest
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point, and the “tail” of dots directly underneath corresponds to SNPs that

are in linkage disequilibrium with the top SNP.

8.16 Polygene Scores

Complex diseases or traits are usually thought to be polygenic—that is,

many hundreds or thousands of loci may contribute. Thus, we assume that

many SNPs that fail to exceed genomewide significance (i.e.,

p< 5� 10�8) are nevertheless truly associated with the phenotype of

interest. Thus, in addition to discovering new associations by testing

each SNP, GWAS can also be used to generate aggregate scores that

capture the effects of many alleles in a single variable. These “polygene

scores” can then be used as predictors or covariates in future studies of a

disease in independent samples that have been GWAS’d. In other words,

the polygene score provides a single measure of genetic loading for

common risk alleles.

Here’s how to construct a polygene score. We begin with a GWAS of

the disease of interest, say myocardial infarction (MI), in our primary or

“discovery” sample. Then we rank the SNPs by their p values from the

lowest to the highest. We only use SNPs whose p values are less than a

certain threshold, say p< .0001; actually we usually construct scores for a

few different thresholds. Once we have all the SNPs we are going to use,

the formula for the score is

Polygene score ¼ Σ i to jð Þ xi log ORið Þ

where x is the number of risk alleles (0, 1, or 2) that an individual carries at

the ith SNP; ORi is the allelic odds ratio we found for that SNP; and i to j

means we sum across all the SNPs below our p value threshold, up to the

final jth SNP.

We now apply the polygene score formula to each person in our new,

independent “target” dataset to get their score across all SNPs. Often,

polygene score weights for a disease have already been calculated from

prior GWAS studies and the weights (log(ORi)) can be obtained without

having to do a discovery GWAS ourselves.
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Now, imagine we are conducting a study to examine the effect of an

exposure (say, stressful life events, SLE) on the risk of myocardial

infarction (MI). It would be customary to control for known risk factors

in our regression so that our model would be written as

Y ¼ αþ β1SLE þ β2smoking þ β3cholesterol þ β4diabetes
þ β5hypertension

where Y¼ case vs. control and the β’s are coefficients for each predictor

or covariate. We can now add the polygene score for MI (derived from a

prior GWAS) as a covariate:

Y ¼ αþ β1SLE þ β2smoking þ β3cholesterol þ β4diabetes
þ β5hypertension þ β6polygene score

In this regression, we can estimate the independent effect of the polygene

score on depression, and we can also estimate the independent effect of

SLE on depression risk controlling for risk factors including genetic

loading (i.e., polygene score) for MI.

8.17 Rare Variants and Genome Sequencing

As we have said, GWAS using DNA microarrays are designed to test

common SNPs across the genome. However, they do not cover all of the

variation that exists in the genome. In order to measure all variation, we

would need to examine the full sequence of the human genome. Sequenc-

ing involves measuring the complete sequence of the four nucleotides A,

G, C, and T in a region of DNA; see figure below.
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Courtesy of the National Library of Medicine and National Human

Genome Institute, NIH

The Human Genome Project (HGP) sequenced the entire human

genome of about three billion bases, derived from the DNA of several

anonymous volunteers. This “reference sequence” (rs) was completed in

2003. (Recall that once you know the sequence of nucleotides in one

strand of DNA, you know it in the matching strand, since A always pairs

with T and G always pairs with C). More recently, a larger-scale effort to

catalog rare variants through DNA sequencing was undertaken through

the 1000 Genomes Project. This project is an international undertaking to

map variants in the human genome that occur with a frequency of at least

1 % in order that researchers may study these variants in relation to

disease. It is now clear that complex diseases involve both common

variants (which individually have small effects and are captured in a

GWAS) and rarer variants (which individually may have moderate to
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large effects but are not measured in a typical GWAS). As of June 2014,

the 1000 Genomes Project has sequenced the genomes of 2,535 people

from 26 populations around the world, resulting in a catalog of 79 million

DNA variants.

8.18 Analysis of Rare Variant Studies

The first human genome sequence required more than a decade to produce

at a cost of about $1 billion. Since then, advances in technology have

vastly reduced the cost and increased the speed of sequencing. The cost of

sequencing a whole genome has now fallen below $1,000. DNA sequenc-

ing studies typically take one of two forms. The first involves sequencing

all of the exons (the protein-coding portion of the genome, known as the

“exome”). Although the exome makes up less than 2 % of the genome,

variations in exons are easier to interpret. That’s because when a mutation

disrupts an exon, it’s easy to see how this can lead directly to a disease.

The second approach involves sequencing the whole genome (i.e., “whole

genome sequencing”). While this provides much more information than

whole exome sequencing, it can be harder to be sure that a change

elsewhere in the genome has a functional impact.

As we pointed out earlier, the rare variants detected by sequencing can

have much larger effects than the common variants that show association

in a GWAS. Variants with large effects are expected to be rare because

natural selection will have prevented harmful alleles from becoming

common in a population. Since larger effects are easier to detect

than smaller ones, you might think that sequencing studies wouldn’t

need the large sample sizes that are required for GWAS. And that’s

true. . .sometimes. For example, rare mutations in Mendelian (single-

gene) diseases have been discovered by studying a few families that

carry the mutation. But for complex diseases like diabetes or schizophre-

nia—where many different rare variants may be involved, some of which

may not even be inherited (de novo mutations)—the sample size issue is

still a challenge. That’s because rare variants are rare. The power to find a
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genetic association depends on both the effect size and the frequency of a

variant. So, just as we need many thousands of cases and controls to find a

variant that’s common but has a small effect (GWAS), we need similar

numbers (on the order of 25,000 cases) to find a variant that is rare even if

it has a large effect.

For rare variants, the standard association tests we use in GWAS

won’t work for sample sizes that are available at this point. A variant

with a frequency of 0.1 % will occur only 10 times in 10,000 individuals.

So, one common strategy is to collapse rare variants in a gene

(or biological pathway) and analyze the data at the level of genes. For

example, we can ask whether the “burden” of rare variants is greater

among cases than controls. The variants can also be weighted by their

likelihood of being functionally important or deleterious (e.g., whether

they would disrupt a protein). We can then correct for multiple testing by

using a Bonferroni correction for the number of genes in the genome—

i.e., 0.05/20,000.

8.19 Whats in a Name? SNPs and Genes

HUGO is the Human Genome Organization. The HUGO Gene Nomen-

clature Committee (HGNC) is responsible for providing human gene

naming guidelines and approving new, unique human gene names and

short form abbreviations. The figure below illustrates the meaning of the

name: 7q31.2. It is the cytogenetic location on the chromosome of the

CFTR gene, which is the gene for cystic fibrosis. The symbols 7q31.2

mean that it is on the seventh chromosome, in the long arm of the

chromosome (q), in band 1, sub-band 2.
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The human genome sequenced by the Human Genome Project is

represented by a single sequence known as the reference sequence,
which is a composite of data from a number of anonymous volunteers.

A SNP, for example, may have the name rs2532087. The “rs” stands for

“reference SNP” and the number is assigned by the NCBI dbSNP group

(National Center for Biotechnology Information database of Single

Nucleotide Polymorphisms). These numbers are simply identifiers (not

genomic positions).

There has been a paradigm shift in science—from believing things are

simpler than they seem to understanding they are more complex than they

seem. For the last century the principle guiding scientific endeavor was

Occam’s razor—that the most parsimonious explanation for phenomena is

the best. But as genomic and molecular discoveries accelerate, it becomes

apparent that in the biological sphere, simple explanations are not possible

and the aim is to more accurately uncover and explain the inherent

complexity (and marvel) of life.
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Chapter 9
RISK PREDICTION

AND RISK CLASSIFICATION

It is far better to foresee even without certainty than not to foresee at all.

–Henri Poincare in The Foundations of Science, p. 129.

9.1 Risk Prediction

We are interested in predicting risk of a disease for an individual because

treatment decisions are often based on risk. We will use cardiovascular

risk as an example in the following sections since risk prediction is most

developed for this disease. Treatment guidelines for high blood pressure

or high cholesterol from the American Heart Association differ for people

at high risk of cardiovascular disease from those at lower risk. For

example, anticoagulant drugs are recommended to people who have atrial

fibrillation (a type of heart arrhythmia) if they are at high risk of stroke

as determined by their age, whether they have diabetes, a history of

stroke, heart failure, and hypertension. Since anticoagulants pose a risk

of bleeding, they are not recommended for people who have a low risk of

stroke. Prediction of risk is also very useful for public health matters.

Knowing what percentage of a population is at high risk can help health

planners to mount preventive measures and to plan utilization of

resources.

Traditionally accepted risk factors for stroke generally available to

clinicians are age, systolic blood pressure, diabetes mellitus, cigarette

smoking, prior cardiovascular disease, atrial fibrillation, left ventricular

hypertrophy by electrocardiogram, and the use of antihypertensive medi-

cation. Equations estimating risk for stroke were developed from prospec-

tive studies like the Framingham Study (see Section 4.10) in which a

specified population in the town of Framingham Massachusetts had mea-

sures of these variables and were followed up over time to see who

developed events like stroke or heart attack and how well the baseline

variables studied could predict who would develop the event or
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outcome.39–41 With the advent of more sophisticated techniques of mea-

suring certain proteins in the blood (biomarkers), people became interested

in refining risk predictionmodels and in seeing whether certain biomarkers

could improve prediction. The question is how do we evaluate whether or

how much the new biomarker improves risk prediction? It is an important

question because if the biomarker does help in prediction, it may become

routinely used in doctors’ offices. Adding biomarkers to risk prediction

may indicate that some people, previously thought to be at low risk, are at

higher risk and should be treated. On the other hand, this may add to health-

care costs, so if it does not improve prediction and has no bearing on

treatment decisions, it may not be worth doing the test routinely.

The first indication that a biomarker may be useful is that it is signifi-

cantly associated with the outcome of interest, either in a logistic regres-

sion or a Cox proportional hazards regression model (see Section 4.19 for

explanation of Cox proportional hazards models). The important point to

note is that a biomarker may be significantly associated with a disease

outcome but that doesn’t mean it necessarily improves risk prediction or

reclassifies people into different categories of risk.

As an example, let us consider a protein called CRP (C-reactive

protein), which is a marker of general inflammation and can be

assayed from a simple blood test. We want to see if it adds to the prediction

of stroke.

The ideal situation would be if we measured the biomarker of

interest in everyone before the event and then followed them forward

in time as some developed the outcome and others did not (in other words,

a prospective study) and then added the biomarker to the variables in

our risk prediction model. But it gets very expensive to do that, so

the usual approach is to do a case–control study and measure the bio-

marker only in the cases and their controls. This chapter discusses

the measures we use to evaluate the additive value of a biomarker in

predicting risk.
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9.2 Additive Value of a Biomarker: Calculation
of Predicted Risk

We will consider risk prediction of ischemic stroke as our example,

using data from a case–control study of ischemic stroke nested within

the prospective Women’s Health Initiative Observational Study of post-

menopausal women.42 We consider the biomarker CRP (C-reactive pro-

tein), a marker of inflammation. There were 868 cases and 883 controls

who had CRP assayed at the baseline examination and who had had no

history of prior stroke. (Actually, the 883 stroke cases were matched to

883 controls on several variables, but 15 of the cases did not have an

adequate blood sample, leaving 868 cases and the 883 controls).

First we need to develop a risk prediction equation from our data

and then we need to estimate the probability of stroke during a specified

period of time for each person in our study population using the risk

prediction equation without the biomarker in it. This probability will

depend on the specific values for each person of the variables we use in

the prediction model. The general idea is that first we have to classify

people into risk categories based on our old model without CRP. Next

we classify the same people based on our new model, which consists

of the variables in the old model plus the biomarker CRP. We compare

the two classification schemes with the actual outcomes and see which

model predicts more accurately. The sections below describe several

measures used to evaluate how well the biomarker adds to prediction.

Some excellent papers by Pencina go into further detail.43–45

We first run a logistic regression model from which we can calculate

the probability of stroke. We use variables traditionally used in the

prediction of stroke in the Framingham Study: age, systolic blood pres-

sure, diabetes mellitus, cigarette smoking, prior cardiovascular disease,

atrial fibrillation, left ventricular hypertrophy by electrocardiogram, and

the use of antihypertensive medication in an equation to predict the future

occurrence of stroke. (In our example we left out LVH because we did not

have data on that and because the prevalence of LVH in the WHI

population was very low. Furthermore, the use of antihypertensive med-

ication is a variable that depends on the level of blood pressure, but for
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simplification we just consider medication¼ 1 if the woman uses it

and¼ 0 if she does not).

Recall from Chapter 4 that in a logistic regression, the probability of

an event is

P eventð Þ ¼ 1

1þ e�k

where k ¼ C0 þ C1X1 þ C2X2 þ C3X3 þ . . .þ CmXm

The parameters in k (the values of C0 to Cm) are obtained from

the logistic regression which can be run in various computer statistical

packages like SAS or STATA. In our stroke case–control study, the

unconditional logistic regression we calculated with the variables used

in the Framingham risk score, k, was

k¼ (�2.4421� .0108 (age) + .0207(SBP) + .0003 (on blood pressure

medication) + .2228 (history of CHD) + .9868 (current smoker) + .5829

(atrial fibrillation) + .7867 (diabetes) + .2411 (Caucasian))

But we must make an adjustment to k to account for the fact that it is a

case–control study. Thus, we add the term ln P
1�P : ncontrols

ncases

� �
to the intercept

of the unconditional logistic regression model; P is the probability of

stroke in the target population. In a prospective study we can get P directly

because it will just be the number of stroke cases over our follow-up time

period (we are choosing 8 years). But because this is a case–control study

and P by definition is 50 %, i.e., there are 50 % stroke cases and 50 %

controls in our design, we have to estimate P for the target population.

For WHI we estimate P as the annual incidence of stroke in the WHI

Observational Study which was .0029 annually, times the average follow-

up of 8 years or .0232. Thus, our correction factor is

correction factor ln
P

1� P
:
ncontrols
ncases

� �
¼ ln

:0232

:9768

� �
:

883

868

� �� �

¼ ln :02375 times 1:01728ð Þ ¼ ln :02416ð Þ ¼ �3:7230

Note if there is an equal number of cases and controls, then ncontrols
ncases

becomes 1 and the correction factor is simply the natural log of P
1�P
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Our corrected kcorrected¼ k+ correction factor

Next we calculate the probability of stroke within 8 years for each

person in our study, using that person’s values of the variables. So, for

example, for the ith person who is a white, nonsmoking woman of age

55, with systolic blood pressure of 120, who does not have diabetes, is not

on antihypertensive medication, with no atrial fibrillation or history of

heart disease, the probability of stroke in 8 years is calculated as follows:

kcorrected¼ (�2.4421� .0108 (55age) + .0207(120sbp) + .0003 (0medications)

+ .2228 (0chd) + .9868 (0current smoker) + .5829 (0atrial fibrillation) + .7867 (0diabetes)

+ .2411(1Caucasian) + (�3.7230correction factor)¼�4.0340

and Pi ¼ 1
1þe�k ¼ 1

1þ 56:4862 ¼ 1
57:4862 ¼ :0171

So that person has an estimated risk of stroke in 8 years of 1.7 %.

We calculate these probabilities for each of the stroke cases and each

of the controls. Next we divide these probabilities into risk categories.

We have chosen the following risk categories: <2 %, 2 % to <5 %, 5 %

to <8 %, and �8 %. The usually accepted categories are <5 % low risk,

5 to less than 10 % low intermediate risk, 10–20 % high intermediate risk,

and >20 % high risk. But in our example, we have a generally low to

intermediate risk population (by virtue of the fact that we excluded all

those with a previous stroke or heart attack). The risk categories we chose

roughly correspond to low, intermediate, and high risk levels used in

decisions to initiate treatment to prevent stroke in persons with atrial

fibrillation. The person in our example above is in the lowest risk category

of <2 %.

We repeat this same process using the new model that includes the

variable CRP. Note that this new model with the CRP has slightly

different coefficients for each of the variables than did the old model

without the CRP. (We use lnCRP—the natural log of CRP, because CRP

is not normally distributed).
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Let us assume our sample woman has a CRP level of 12 (which is

very high):

ln 12:0ð Þ ¼ 2:4849

In our example, kCRP, corrected¼ (�2.7246� .0078(55age) + .0201(120sbp)

+ .0000(0medications) + .2048(0history of chd) + .9789(0current smoker) + .5615

(0atrial fibrillation) + .7003(0diabetes) + .2076(1Caucasian)) + .1954 (2.4849lnCRP)

+ (�3.7230)¼�3.7714 and her estimated probability of stroke in 8 years

is shown below:

Pi CRPð Þ ¼ 1

1þ e�k
¼ 1

1þ 44:4746
¼ 1

45:4746
¼ :0215

or a 2.2 % probability of a stroke in 8 years.

Adding her CRP level to the model increased her low risk from 1.7 %

to 2.2 %. Thus, she has moved from the lowest risk category (<2 %) to a

higher risk category (2 % to <5 %). This may or may not lead her doctor

to change her treatment, but it may lead the doctor to do more active

surveillance of her risk factors. Doing these same calculations for a

65-year-old, Caucasian, diabetic women with a systolic blood pressure

of 170 whose risk with the old model was 8.2 % and whose CRP was 5.0

(still higher than the 3.0 considered in the normal range, but not as high as

the CRP of 12 in our previous example), does not really change her risk

much, which is now 8.3 %. Since she was high risk to begin with, though

her CRP was higher than normal but not terribly much so, she remains at

high risk and the other risk factors, like her diabetes and high blood

pressure, overwhelm the effects of the elevated CRP. Now of course,

what we want to know is are these women cases or controls? We have to

test our predictions against the actual outcomes.

After calculating the risk with and without CRP for all women in the

study, we next cross-tabulate the risk categories for the two models

separately for those who had a stroke during the 8-year period and those

who did not have a stroke to get the table below:
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Predicted risk with 
Old model with no CRP Predicted risk with the new model thatincludes CRP

Stroke Cases
Risk 
categories

<2% 2 to <5% 5 to <8% >=8% total

<2% 6 3 0 0 9
2 to <5% 20 336 67 0 423
5 to <8% 0 44 157 42 243
>=8% 0 0 20 173 193
total 26 383 244 215 868

Controls
Risk 
categories

<2% 2 to <5% 5 to <8% >=8% total

<2% 23 10 0 0 33
2 to <5% 63 480 51 0 594
5 to <8% 0 44 107 26 177
>=8% 0 0 11 68 79
total 86 534 169 94 883

Note that the numbers on the diagonal represent women whose

predicted risk was not changed by the addition of CRP to the model. For

example, there were 336 stroke cases with predicted risk of 2 % to <5 %

with both the old and the new model and 480 of the no-stroke controls

that remained in the same risk category. The numbers above the diagonal

represent people whose risk went up with the addition of the biomarker to

the model and those below the diagonal represent people whose predicted

risk went down with the new model that includes the biomarker.

What we would like to see with a new biomarker is that stroke cases

should go up in a predicted risk when the biomarker is added and

no-stroke controls should go down in a predicted risk. In other words,

we want the predicted risk to move in the right direction: stroke cases

should move up and controls should move down. From our example we

have the following: (proportion (up|case) means proportion moving up in

risk among cases; proportion (down|control) means proportion moving

down in risk among controls).
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Prop(up|case) #cases moving up

#cases

112

868
¼ :129 ¼ 12:9%

Right

direction

Prop (down|case) #cases moving down

#cases

84

868
¼ :097 ¼ 9:7%

Wrong

direction

Prop (up|control) #controls moving up

#controls

87

883
¼ :099 ¼ 9:9%

Wrong

direction

Prop (down|control) #controls moving down

#controls

118

883
¼ :134 ¼ 13:4%

Right

direction

9.3 The Net Reclassification Improvement Index

NRI is¼ (prop (up|case)� prop (down|case))� (prop (up|control)� prop

(down|control))

In our example it is (.129� .097)� (099� .134)¼ .032�
(�.035)¼ .032 + .035¼ .067¼ 6.7 %

This means that by adding the biomarker, we have correctly

reclassified 6.7 % of people (i.e., had a net improvement in classification).

Another way to write this is below, where p̂ is the estimated probability

(which we estimate from our sample by looking at the proportion), D¼D

is disease (or stroke)¼ 1 and D¼ 0 no disease (or no stroke)¼ 0:

NRI ¼ p̂ up
��D ¼ 1

� �� p̂ down
��D ¼ 1

� �	 

þ p̂ down

��D ¼ 0
� �� p̂ up

��D ¼ 0
� �	 


But is this significantly different from zero? To find out, we need to

calculate a z score (see Chapter 3) which is the NRI divided by its standard

error. The formula is given below.

z ¼ NRIffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ up

��D¼1
� �

þp̂ down
��D¼1

� �
#events þ p̂ up

��D¼0
� �

þp̂ down
��D¼0

� �
#non�events

r

In our example,

z ¼ 0:67ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
:129þ:097

868
þ :099þ:134

883

q ¼ :067ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
:000260þ :000264

p ¼ :067ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
:000524

p ¼ :067

:02289

¼ 2:93
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Z of 2.93 has a p value of <.01; thus, the NRI is significantly different

from 0.

The NRI is one index of the additive value of a biomarker to risk

prediction. A drawback, however, is that it depends on the absolute risk

categories we select. The category-less NRI is another index, which does

not depend on how we categorize risk.

9.4 The Category-Less NRI

The category-less NRI just looks at movement in predicted risk up or

down when the biomarker is in the model, regardless of whether this

movement means people crossed over to another risk category. It is the

percent of all subjects whose risk estimates are changed in the correct

direction minus the percent changed in the incorrect direction to get a net

effects figure. The correct direction for cases is increased risk in the model

with the biomarker compared to the model without the biomarker, and for

controls it is decreased risk in the model with the biomarker compared to

the model without the biomarker. So for each person we have to calculate

the probability of stroke using her values of the variables in the model

with and without the biomarker, and then we count.

It is calculated as

number of cases whose risk with biomarker is greater than risk without the biomarker

total number of cases

þ number of controls whose risk with biomarker is less than risk without the biomarker

total number of controls

� number of cases whose risk with biomarker is less than risk without the biomarker

total number of cases

� number of controls whose risk with biomarker is greater than risk without the biomarker

total number of controls

Basically, we see what proportion of people had their risk changed in

the correct direction (up for cases, down for controls) and subtract the

proportion of people who had their risk changed in the wrong direction

(down for cases and up for controls).
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In our example, the category-less Net Reclassification Improvement

was 18.9 %, meaning that 18.9 % of people had their risk estimate

changed by any amount in the right direction when CRP was added to

the prediction model.

9.5 Integrated Discrimination Improvement (IDI)

A quality we want in adding a new biomarker to a prediction equation is

that it should improve discrimination between those who suffer a stroke

from those who don’t. An index of discrimination is the Integrated

Discrimination Improvement (IDI) measure, where we compare average

predicted probabilities for cases and controls. To calculate IDI we first

calculate two quantities for each person: (1) the probability of stroke for

each person using the logistic regression model without CRP in it (old

model) and (2) the probability of stroke using the model with CRP in it

(new model). We then get the average of these probabilities for the stroke

cases and the average for the controls. IDI is the difference in mean

predicted probabilities between cases and controls using the new model

minus the difference in mean predicted probabilities between cases and

controls using the old model.

We denote p̂ ¼ estimated probabilty

IDI ¼ mean p̂ new model, casesð Þ �mean p̂ new model, controlsð Þ
h i

�
mean p̂ old model, casesð Þ �mean p̂ old model, controlsð Þ
h i

IDI for our example ¼ 0:0688new model, cases � 0:0474new model, controlsð Þ �
0:0661old model, cases � 0:0475old model, controlsð Þ ¼ 0:0028 We can test the

null hypothesis that IDI¼ 0 by calculating Z (see Chapter 3) as

Z ¼ IDIffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SE2 casesð Þ þ SE2 controlsð Þ

p

To get SE (cases) we get the differences for each person between the

predicted probability with the old model and the new model. Then we get
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the standard error of these differences. (Recall that SE ¼ standard deviationffiffiffi
n

pð Þ ).

The SE (controls) is calculated in the same way but using the paired

differences in probabilities in controls.

In our example the IDI of .0028 is statistically significant with

p< .001.

9.6 C-Statistic

Another measure of discrimination is the c-statistic which is the proba-

bility that a randomly selected person with the event of interest (stroke

in our example) will have a higher predicted risk than a randomly selected

person without the event. The c-statistic reflects the area under the

curve (AUC) from a receiver operating characteristic (ROC) curve (see

Section 5.2). (The ROC curve is a plot of sensitivity on y-axis vs. 1--

specificty on x-axis). Higher c-statistic values indicate better discrimina-

tion. Generally, the c-statistic does not move very much with the addition

of a biomarker and is somewhat hard to interpret in this context. Never-

theless, it is widely used and reported even though it may not be a very

good measure of the added predictive value of a new biomarker. SAS will

print out the c-statistic when running a logistic regression analysis as will

STATA.

9.7 Caveats

Note that the prediction equation you get from your own data will always

predict better than when applying it to some other population. So you

should validate it on another sample. Or if your dataset is large enough,

you can do internal validation by developing the model on half the sample

and testing it on the other half.

Note also, that a new biomarker is clinically useful if it results in some

change of treatment or some other action, like increased surveillance. If no

treatment decisions will be affected by improving your risk prediction,
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then you might as well use the old variables on which to base your

treatment decisions, though the new biomarker might still be interesting

scientifically.

9.8 Summary

To evaluate the added predictive ability of a new biomarker, we take the

following steps:

1. Ascertain whether the biomarker is significantly associated with

the outcome of interest (from the literature or from your own

study).

2. Develop a risk prediction model using traditionally accepted vari-

ables but without the biomarker. Use Cox proportional hazards

regression models if you have prospective data. Use logistic

regression models with a correction factor if you have a case–

control study.

3. See if the c-statistic for the new model with biomarker increases

significantly from the old model without the biomarker

(Section 9.6).

4. Calculate probabilities of stroke for each person from the model

with and without the biomarker.

5. Calculate the NRI (see Section 9.3).

6. Calculate the category-less NRI (Section 9.4).

7. Calculate the IDI (Section 9.5).

8. Report all of these measure as no one measure is perfect.
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Chapter 10
RESEARCH ETHICS AND STATISTICS

Morality, like art, means drawing a line someplace.

Oscar Wilde (1854–1900)

10.1 What Does Statistics Have to Do with It?

At first glance it may seem that statistics and research ethics have nothing

to do with each other. Not so! Consider why so many people volunteer for

medical research studies. In many cases it is because there is an expected

benefit. For example, in cancer clinical trials often the investigational drug

is a last hope and may not be available outside of the trial. In many

cardiovascular disease studies, participants appreciate the additional

care and attention and are willing to try a new drug, for example, for

hypertension. And in fact, it has been shown that often, clinical trial

participants live longer and do better than the general population even if

they are treated with a placebo. But what is perhaps not sufficiently

appreciated is that many, many people participate in studies out of altru-

ism to advance scientific knowledge. Scientific knowledge is not

advanced when a study is poorly designed, or carried out without suffi-

cient rigor, or not large enough to give an answer. Proper statistics are a

determinant of the ethics of a study.

A prime example is the Women’s Health Initiative (WHI), described

in Chapter 6. Postmenopausal women were asked to join a study of

hormone replacement therapy; the study would continue for up to

12 years before the results were known and might not directly benefit

the women themselves, but they would answer the important question of

the effect of hormones on cancer, heart disease, and osteoporosis. Many of

theWHI participants took part for their daughters and granddaughters, and

they expressed pride and enthusiasm for answering the questions for

future generations. And indeed they did achieve that goal—one part of

WHI, the estrogen plus progestin trial versus placebo, has already

answered these important questions, with a startling result: estrogen plus
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progestin increases risk of breast cancer and also increases heart attacks,

stroke and blood clots, and dementia. So although the treatment does show

benefit with regard to colorectal cancer and osteoporotic fractures, the

overall risks outweigh the benefits. This trial has changed medical practice

for generations to come.

Well that brings us back to statistics. This study was able to answer

these questions because it had sufficient power to answer them. It required

16,608 women in that part of WHI to be able to detect these effects. Even

if the result had been null (i.e., if it showed no difference between the

treatment and placebo groups), we could have had faith in that result

because the power was there to detect a true effect if there really was one.

As it turned out, the results were clear-cut, though unexpected, in favor of

placebo. So the point is that in order for a study to be “ethical,” it must be

designed and powered well enough so that it can answer the questions it

poses. Otherwise, people who consent to participate in the expectation that

they will contribute to knowledge may actually not be contributing

because the study is poorly designed, powered, or executed and may be

needlessly exposed to risk.

Note that there are certain study designs for which power consider-

ations are less relevant. Examples are pilot studies, which by definition are

intended to test the feasibility of a research protocol or to gather prelim-

inary data to plan a full study and are exempt from the power issue. Power

considerations may also not apply to certain drug toxicity studies (Phase I

trials) or certain types of cancer trials, but certainly in prevention trials, as

well as Phase III treatment trials, power is a major consideration in the

ethics of research.

10.2 Protection of Human Research Subjects

Human subjects in medical research contribute greatly to improving the

health of people. These volunteers must be protected from harm as much

as possible. In the not-too-distant past, there were some egregious

breaches of ethical principles in carrying out medical research. The

world’s most appalling examples are the medical experiments carried
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out in the Nazi concentration camps—by doctors! It defies any kind of

understanding how educated, presumably “civilized” professionals could

so have distorted their profession and their own humanity. But these

atrocities did occur and demonstrate the horrors people are capable of

perpetrating. When these atrocities became known after World War II, the

Nuremberg trials of Nazi war criminals (including the doctors who

preformed such research) also resulted in the Nuremberg Code for con-

duct of medical research which established the basic requirement of

voluntary informed consent. Subsequently, the Declaration of Helsinki,

in 1964, expanded and refined the research guidelines, and became a

world standard, which undergoes periodic revisions.

The most infamous example of unethical research in the United States

was probably the Tuskegee Institute study of syphilis, which took place in

the south in the United States from 1932 to 1972. The researchers wanted

to study the natural course of syphilis. In the 1940s antibiotics became

available which could treat this disease, but were withheld from the

participants, who were poor Black men, because an intervention to treat

the disease would interfere with this observational study. In 1972 the

public became aware of this experiment and in 1974 the National Com-

mission for the Protection of Human Subjects of Biomedical and Behav-

ioral Research was established. They developed a report known as The
Belmont Report: Ethical Principles and Guidelines for the Protection of

Human Subjects of Research. These guidelines are followed by all med-

ical schools and other research institutions that conduct research involving

human participants, and they are deemed to be universal principles,

cutting across cultural lines. The guidelines are based on three basic

principles: respect for persons, beneficence, and justice.
Respect for persons recognizes that people are autonomous beings

and can make their own informed choices about participating in research,

free of coercion. The informed consent process is predicated on this

principle. Participants who are not able to make their own choices, such

as comatose patients, or mentally incapacitated persons, or young chil-

dren, must have special protections.

Beneficence, or the principle of non-malfeasance, means that the risks

of the research must be kept to a minimum, the benefits maximized, and

the researcher is responsible for protecting the participant.
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Justice in this context refers to a fair distribution of the risks and

benefits of research. One group of people should not be exposed to

research risks for the benefit of another group of people. This can get to

be a pretty complicated concept. While it may be easy to discern breaches

in certain situations—to take the most extreme example, prisoners of the

Nazis were subjected to freezing experiments to benefit soldiers who

might have to fight under arctic conditions—it may be more subtle in

many situations and these must be examined carefully, according to this

principle.

10.3 Informed Consent

One of the most important elements in protection of human subjects is the

principle of informed consent. The study subject must freely consent to be

part of the study after being fully informed of the potential risks and

benefits.

There are certain elements that must be in a written consent form. The

purpose of the research must be stated; a 24-h contact person must be

listed; there must be a description of the study procedures: what is

expected of the participant, the duration of the study, and how much of

the participant’s time it will take. The potential risks and discomforts,

potential benefits, and inconvenience to the participants must all be clearly

stated. There must be a statement that participation is voluntary and that

the participant has the right to withdraw at any time and that this will not

prejudice the care of the participant. If the research may result in need for

further care or diagnostic procedures, the participant must be told to what

extent he or she is responsible for further care and what the study will pay

for. If there is any compensation to the participants, either for expenses

incurred in participating or time spent, they must be informed of the

amount. (The amount should not be excessive, as that may appear coer-

cive.) A statement assuring confidentiality and how it will be maintained

must be included.

Most important, the participant must understand what he or she is

agreeing to and the consent form must be phrased in language that is

understandable and, if appropriate, translated into the participant’s native
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language. All this must be approved by the medical institution’s IRB

(or Institutional Review Board), which is generally a committee of

experts and lay people who review and must approve all research pro-

tocols before the research is started and who monitor adverse events as

the research progresses. Different IRBs have different specific require-

ments that are usually posted on their websites. Informed consent is an

ongoing process—it is not just signing a form at the beginning of a study.

The researcher has an obligation to keep the participant informed of

relevant new research that may affect his or her decision to continue

participating.

Back to the WHI, since it was believed at the time WHI was started

that hormones would protect women from heart disease, the initial consent

form stated this as a potential benefit. Potential risks stated in the consent

form included an increase in breast cancer and blood clots. When WHI

was in progress, the HERS (Heart and Estrogen Replacement Study)

published results indicating that for women who already had heart disease

(secondary prevention trial), hormone replacement provided no benefit.

They observed more heart attacks in the early part of the study, with a

possible late reduction, resulting in no overall difference between the

treatment and placebo groups by the end of the study. This information

was provided by a special mailing to all women participating in the WHI

hormone program for primary prevention of heart disease. (Primary pre-

vention means the study was carried out in generally healthy women.)

Subsequently, early data from the WHI itself indicated there was early

harm with respect to heart disease. Again, the women were informed by a

special mailing, telephone, and personal discussion with clinic staff.

Ultimately, the estrogen plus progestin trial was stopped after 5.2 years

(instead of the originally planned average of 8.5 years) because the excess

breast cancer risk crossed a predetermined stopping boundary and a global

index of overall effects suggested more harm than benefit, and all women

in the trial were discontinued from their study pills.
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10.4 Equipoise

That brings us to another concept: when is it ethical to begin a clinical trial

of a new treatment? When there is equipoise. Equipoise means that there

is about equal evidence that the treatment may provide benefit as there is

that it will not provide benefit. If we are sure the treatment provides

benefit, we should not deny it to people who would be getting placebo

in the trial. Of course we may be wrong. There were critics of the

Women’s Health Initiative who said it was unethical to do such a trial

because it was well known that hormones protect against heart disease and

it would be unethical to deny these hormones to the women randomized to

placebo! Of course we now know that was wrong—the placebo group did

better. At the time WHI was started, the observational evidence pointed to

benefit with regard to heart disease, but it had never been tested in a

clinical trial, which is the “gold standard.” Thus, there were many people

who did not believe that the benefits of hormone replacement were already

established by the observational studies, and it turns out they were right.

The researcher, whose obligation is to protect human research partici-

pants, must believe it is equally likely that the treatment is better or that

the placebo or comparison treatment is better. The scientific community

that judges the research proposal must believe, based on the “state of the

art,” that there is a reasonable question to be answered.

10.5 Research Integrity

For research conclusions to be valid, data collection procedures must be

rigorously and uniformly administered. No data may be altered without

documentation. If there is a clerical error, the change and reason for it

must be documented. Enrollment must be according to strict and

preplanned standards. Sometimes (fortunately, rarely) there is a great

pressure to enroll subjects in a given time frame, or the researcher

(in violation of the principle of equipoise) really believes the treatment

can help his or her patients and so “bends” the enrollment rules. This may

invalidate the research and so is unethical. A very sad example of this
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occurred in the National Surgical Adjuvant Breast and Bowel Project

(NSABP). This multicenter study demonstrated that lumpectomy could

be equivalent to mastectomy in hundreds of thousands of women. The

chairman of this study discovered that the principal investigator in one of

the clinical centers had falsified some patient records so that women who

were not eligible to be in the study based on predetermined enrollment

criteria were made falsely eligible to participate. This excellent and

extremely important study was initially tainted when this became known

and the chairman of the study was charged by the Office of Research

Integrity (ORI) with scientific misconduct, even though he had notified the

NIH of the problem when he learned of it. He was subsequently

completely cleared, and he was offered multiple apologies. The study

has had profound implications on the treatment of women with breast

cancer. Nevertheless, this was a serious breach of ethics on the part of an

investigator in one of the many centers that could have invalidated the

findings. Fortunately the results held up even when all the patients from

the offending clinic were excluded.

10.6 Authorship Policies

In medical research most original research articles have multiple

authors, since medical research is a collaborative effort. Most medical

journals, and research institutions, have specific and strict authorship

policies (published in journals and/or on websites) many of which

embody the following elements: (1) coauthors must make an intellectual

contribution to the paper (e.g., conceive the research, perform analyses,

write sections of the paper, or make editorial contributions), (2) all

coauthors must bear responsibility for its contents, and (3) coauthors

must disclose potential conflicts of interest (e.g., relevant support from

industry, lectureships, stock ownership). Order of authorship may some-

times be a point of contention and should be discussed by the coauthors

early in the process.
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10.7 Data and Safety Monitoring Boards

Generally, clinical trials have a Data and Safety Monitoring Board

(DSMB) to oversee the trial. These are independent groups of experts in

the relevant disciplines who are in an advisory capacity. Their job is to

monitor the trial and to assure the safety of participants. In a blinded trial

they are the only ones who see the unblinded data at regular, prespecified

intervals. If they find excessive benefit or harm in one arm of the trial, they

would advise to stop the trial (as happened in the Women’s Health

Initiative). Usually the criteria for stopping a trial due to harm in the

treatment group are more stringent than stopping for benefit.

10.8 Summary

The ethical conduct of research has many components. New and difficult

ethical questions arise as science advances and new technologies become

available. This brief chapter just begins to give you an idea of some of the

issues involved. Much more detailed information is available from various

websites and NIH has an online course in protection of human subjects.

Local IRBs can give you information and additional sources.
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Postscript
A FEW PARTING COMMENTS ON THE IMPACT

OF EPIDEMIOLOGY ON HUMAN LIVES

Ten years ago a woman with breast cancer would be likely to have a

radical mastectomy, which in addition to removal of the breast and the

resulting disfigurement would also include removal of much of the muscle

wall in her chest and leave her incapacitated in many ways. Today, hardly

anyone gets a radical mastectomy and many do not even get a modified

mastectomy, but, depending on the cancer, may get a lumpectomy which

just removes the lump, leaving the breast intact. Years ago, no one paid

much attention to radon, an inert gas released from the soil and dissipated

through foundation cracks into homes. Now it is recognized as a leading

cause of lung cancer. The role of nutrition in prevention of disease was not

recognized by the scientific community. In fact, people who believed in

the importance of nutrients in the cause and cure of disease were thought

to be faddists, just a bit nutty. Now it is frequently the subject of articles,

books, and news items, and substantial sums of research monies are

invested in nutritional studies. Such studies influence legislation, as for

example the regulations that processed foods must have standard labeling,

easily understood by the public at large, of the fat content of the food as

well as of sodium, vitamins, and other nutrients. All this has an impact on

the changing eating habits of the population, as well as on the economics

of the food industry.

In the health field, changes in treatment, prevention, and prevailing

knowledge come about when there is a confluence of circumstances: new

information is acquired to supplant existing theories; there is dissemina-

tion of this information to the scientific community and to the public at

large; and there is the appropriate psychological, economic, and political

climate that would welcome the adoption of the new approaches. Epide-

miology plays a major role by providing the methods by which new

scientific knowledge is acquired. Often, the first clues to causality come

long before a biological mechanism is known. Around 1850 in London,

Dr. John Snow, dismayed at the suffering and deaths caused by epidemics

of cholera, carefully studied reports of such epidemics and noted that

225



cholera was much more likely to occur in certain parts of London than in

other parts. He mapped the places where cholera was rampant and where it

was less so, and he noted that houses supplied with water by one company,

the Southwark and Vauxhall Company, had many more cases of cholera

than those supplied by another company. He also knew that the Vauxhall

Company used as its source an area heavily contaminated by sewage.

Snow insisted that the city close the pump supplying the contaminated

water, known as the Broad Street Pump. They did so and cholera abated.

All this was 25 years before anyone isolated the cholera bacillus and long

before people accepted the notion that disease could be spread by water. In

modern times, the AIDS epidemic is one where the method of spread was

identified before the infectious agent, the HIV virus, was known.

Epidemiologic techniques have been increasingly applied to chronic

diseases, which differ from infectious diseases in that they may persist for

a long time (whereas infections usually either kill quickly or are cured

quickly) and also usually have multiple causes, many of which are diffi-

cult to identify. Here, also, epidemiology plays a central role in identify-

ing risk factors, such as smoking for lung cancer. Such knowledge is

translated into public action before the full biological pathways are elu-

cidated. The action takes the form of educational campaigns, anti-

smoking laws, restrictions on advertisement, and other mechanisms to

limit smoking. The risk factors for heart disease have been identified

through classic epidemiologic studies resulting in lifestyle changes for

individuals as well as public policy consequences.

Chronic diseases present different and challenging problems in anal-

ysis, and new statistical techniques continue to be developed to accom-

modate such problems. New statistical techniques are also being

developed for the special problems encountered in genetics research.

Thus the field of statistic is not static and the field of epidemiology is

not fixed. Both adapt and expand to deal with the changing health prob-

lems of our society and with advances in knowledge, as for instance in

genetics, that require new methodologies.

226 Biostatistics and Epidemiology: A Primer for Health Professionals



Appendix 1
CRITICAL VALUES OF CHI-SQUARE, Z, AND t

When Z, χ2, or t value calculated from the observed data is equal to or

exceeds the critical value listed below, we can reject the null hypothesis at

the given significance level, α (alpha).

Selected critical values of chi-square

Significance level .1 .05 .01 .001

Critical value of χ2 2.71 3.84 6.63 10.83

Selected critical values of Z

Significance level
Two-tailed test
(One-tailed test)

.1
(.05)

.05
(.025)

.01
(.005)

.001
(.0005)

Critical value of Z 1.64 1.96 2.58 3.29

Selected critical values of t

Significance level
Two-tailed test
(One-tailed test)

.10
(.05)

.05
(.025)

.01
(.005)

.001
(.0005)

Degrees of freedom
9

19
100

1,000

1.83
1.73
1.66
1.64

2.26
2.09
1.98
1.96

3.25
3.86
2.63
2.58

4.78
3.88
3.39
3.29

NOTE: Interpretation:

If you have 19 degrees of freedom, to reject Ho, at α¼ .05 with a two-tailed

test, you would need a value of t as large or larger than 2.09; for α¼ .01,

a t at least as large as 3.86 would be needed. Note that when df gets

very large, the critical values of t are the same as the critical values of Z.

Values other than those calculated here appear inmost of the texts shown in

the Suggested Readings.
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Appendix 2
FISHER’S EXACT TEST

Suppose you have a 2-by-2 table arising from an experiment on rats that

exposes one group to a particular experimental condition and the other

group to a control condition, with the outcome measure of being alive

after one week. The table looks as follows:

87.5 % of the experimental group and 16.7 % of the control group

lived. A more extreme outcome, given the same row and column totals,

would be

where 100 % of the experimental and 0 % of the control group lived.

Another more extreme outcome would be where 25 % of the experimental

and all of the controls lived:

Table A.1 Exposure by outcome

Control Experimental

Alive a
1

b
7

Row 1 = R1= 8

Dead c
5

d
1

Row 2 = R2 = 6

Total Col 1 = C1 = 6 Col 2 = C2 = 8 N = 14

Table A.2 Exposure by outcome

Alive

Dead

Total

Control Experimental

880

606

1486
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(Any other tables we could construct with the same marginal totals

would be less extreme than Table A.1, since no cell would contain a

number less than the smallest number in Table A.1, which is 1).

We calculate the exact probability of getting the observed outcome of the

experiment by chance alone (Table A.1), or one even more extreme (as in

either Table A.2 or A.3), if it were really true that there were no differences in

survival between the two groups. Fisher’s exact test is calculated by getting

the probability of each of these tables and summing these probabilities.

First we have to explain the symbol “!”. It is called a “factorial.”

A number n! means (n)� (n–1)� (n–2)� . . .� (1). For example,

6! ¼ 6� 5� 4� 3� 2� 1. By definition, 0! is equal to 1.

The probability of getting the observations in Table A.1 is

R1!ð Þ � R2!ð Þ � C1!ð Þ � C2!ð Þ
a!� b!� c!� d!� N!

¼ 8!6!6!8!

1!7!5!1!14!
¼ :015984

The probability of getting the observations in Table A.2 is

8!6!6!8!

0!8!6!0!14!
¼ :000333

The probability of getting the observations in Table A.3 is

8!6!6!8!

6!2!0!6!14!
¼ :009324

The sum of these probabilities is .015984 + .000333 + .009324¼ .025641.

Thus we can say that the exact probability of obtaining the results we

observed in Table A.1, or results more extreme, is .025641, if the null

hypothesis was true. We may reject the null hypothesis that the survival

rate is the same in both groups at a significance level p¼ .026.

Table A.3 Exposure by outcome

Alive

Dead

Total

Control Experimental

820

660

1486
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Appendix 3
KRUSKAL-WALLIS NONPARAMETRIC TEST

TO COMPARE SEVERAL GROUPS

For example, suppose you have three groups of people each having a

score on some scale. The total number of people in all three groups is N.

The general procedure is as follows: (1) Combine all the scores from the

three groups and order them from lowest to highest. (2) Give the rank of

1 to the lowest score, 2 to the next lowest, and so on, with N being

assigned to the person with the highest score. (3) Sort the people back

into their original groups, with each person having his assigned rank.

(4) Sum all the ranks in each group. (5) Calculate the quantity shown

below, which we call H. (6) If you have more than five cases in each

group, you can look up H in a chi-square table, with k–1 degrees of

freedom (where k is the number of groups being compared).

Scores on reading comprehension

Group A Group B Group C

Scores (Rank) Scores (Rank) Scores (Rank)

98 (13) 80 (9) 120 (21)

70 (6) 60 (2) 110 (17)

68 (5) 106 (15) 90 (12)

107 (16) 50 (1) 114 (19)

115 (20) 75 (8) 105 (14)

65 (4) 74 (7) 85 (10)

(64) 64 (3) 112 (18)

(45) 87 (11)

Sum

of

ranks
(122)
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H ¼ 12

N N þ 1ð Þ �
X Rð Þ2

nj

 !
� 3 N þ 1ð Þ

H ¼ 12

21 22ð Þ
� �

� 642

6
þ 452

7
þ 1222

8

� �
� 3 22ð Þ

¼ 7:57

degrees of freedom ¼ 3� 1 ¼ 2

If the null hypothesis of no difference in mean rank between groups was

true, the probability of getting a chi-square as large as, or larger than, 7.57

with 2 degrees of freedom is less than .05, so we can reject the null

hypothesis and conclude the groups differ. (When ties occur in ranking,

each score is given the mean of the rank for which it is tied. If there are

many ties, a correction to H may be used, as described in the book by

Siegel listed in Suggested Readings).
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Appendix 4
HOW TO CALCULATE A CORRELATION

COEFFICIENT

Individual X Y X 2 Y 2 XY

A 5 7 25 49 35

B 8 4 64 16 32

C 15 8 225 64 120

D 20 10 400 100 200

E 25 14 625 196 350

73 43 1339 425 737S

r ¼ NΣXY � ΣXð Þ ΣYð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NΣX2 � ΣXð Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NΣY2 � ΣYð Þ2

q

¼ 5 737ð Þ � 73ð Þ 43ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5 1339ð Þ � 73ð Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5 425ð Þ � 43ð Þ2

q ¼ 3685� 3139ffiffiffiffiffiffiffiffiffiffi
1366

p ffiffiffiffiffiffiffiffi
276

p

¼ 546

37ð Þ 16:6ð Þ ¼
546

614
¼ :89

How to Calculate Regression Coefficients

b ¼ ΣXY � ΣXð Þ ΣYð Þ
N

ΣX2 � ΣXð Þ2
N

; a ¼ ΣY

N
� bΣX

N
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b ¼
737� 73ð Þ 43ð Þ

5

1339� 73ð Þ2
5

¼ 737� 628

1339� 1066
¼ 109

273
¼ :40

a ¼ 43

5
� :40 73ð Þ

5
¼ 8:60� 5:84 ¼ 2:76

234 Biostatistics and Epidemiology: A Primer for Health Professionals



Appendix 5
AGE-ADJUSTMENT

Consider two populations, A and B, with the following characteristics:

Population Age

Age-
specific
rates

# of
people in
population

# of
deaths in
population

Crude
death
rate

Young 4
1,000

=.004 500 .004 × 500 = 2

Old 16
1,000

=.016
500 .016 × 500 = 8

A

Total 1,000 10 10
1,000

Young 5
1,000

=.005 667 .005 × 667 = 3.335

Old 20
1,000

=.020
333 .020 × 333 = 6.66

B

Total 1,000 10 10
1,000

Note that the population B has higher age-specific death rates in each

age group than population A, but both populations have the same crude

death rate of 10/1,000. The reason for this is that population A has a

greater proportion of old people (50 %) and even though the death rate for

the old people is 16/1,000 in population A compared with 20/1,000 in

population B, the greater number of people in that group contribute to a

greater number of total deaths.

To perform age adjustment, we must select a standard population to

which we will compare both A and B. The following examples use two

different standard populations as illustrations. In practice, a standard

population is chosen either as the population during a particular year or
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as the combined A and B population. The choice of standard population

does not matter. The phrase “standard population” in this context refers

to a population with a particular age distribution (if we are adjusting for

age) or sex distribution (if we are adjusting for sex). The age-specific

(or sex-specific, if that is what is being adjusted) rates for both group

A and B are applied to the age distribution of the standard population

in order to compare A and B as if they had the same age distribution.

Note if you use two different standard populations you get different

age-adjusted rates but relative figures are the same, that is, the

age-adjusted rates for A are lower than for B. This implies that the

age-specific rates for A are lower than for B, but since the crude rates

are the same it must mean that population A is older. Because we know

that age-specific rates for older people are higher than for younger people,

population A must have been weighted by a larger proportion of older

people (who contributed more deaths) in order to result in the same crude

rate as B but in a lower age-adjusted rate.

There are exceptions to the above inference when we consider groups

where infant mortality is very high. In that case it could be that the young

have very high death rates, even higher than the old. In industrialized

societies, however, the age-specific death rates for the old are higher than

for the young.
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STANDARD POPULATION I: Example (more old people than young)

Age
# of
people

Apply
age-specific
death rates
for
population A
to standard
population

# of deaths
expected in
A if it were
the same age
composition
as the
standard
population

Apply
age-specific
death rates
for
population B
to standard
population

# of deaths
expected in B
if it were the
same age
composition
as the
standard
population

Young 300 × .004 = 1.2 .005 1.5

Old 700 × .016 = 11.2 .020 14.0

Total 1,000 15.512.4

Age-adjusted rates for: A = 12/1,000  B = 15/1,000

STANDARD POPULATION II: Example (more young people than old)

Age
# of
people

Apply
age-specific
death rates
for
population A
to standard
population

# of deaths
expected in
A if it were
the same
age
composition
as the
standard
population

Apply
age-specific
death rates
for
population B
to standard
population

# of deaths
expected in B
if it were the
same age
composition
as the
standard
population

Young 1,167 × .004 = 4.67 .005 5.84

Old 833 × .016 = 13.33 .020 16.66

Total 22.50182,000
Age-adjusted rates for:

A = 18
2,000

= 9
1,000

Age-adjusted rates for:

B = 22.5
2,000

= 11.25
1,000

Appendix 5 237





Appendix 6
DETERMINING APPROPRIATENESS

OF CHANGE SCORES

(1) To determine if change scores are appropriate:

Consider a group of 16 patients who have the following scores on a

scale assessing depressive symptoms; a retest is given shortly after to

determine the variability of scores within patients (Table A.4):

Table A.4 Test and retest scores

Patient #
First Test

Scale Score
Retest
Score

1 12 13

2 16 15

3 22 21

4 24 23

5 30 29

6 18 19

7 16 15

8 12 12

9 14 15

10 18 18

11 24 24

12 30 29

13 18 19

14 16 15

15 14 15

16 10 11

Mean 18.38 18.31
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An analysis of variance indicates the following (Table A.5):

This is greater than .5, so that the use of change scores is appropri-

ate. [Note: σ2, or the variance, is the MS (mean square) from the

analysis of variance.]

Next, the patients are divided into two groups; one group is given a

dietary intervention lasting 10 weeks, while the other group serves as

a control group. The scale is administered again after 10 weeks to both

groups, with the following results (Table A.6):

(2) To calculate coefficient of sensitivity to change, do a repeated mea-

sures analysis of variance on the scores in the treatment group; to get

the error variance, calculate the variance of the change scores

(Table A.7).

Coefficient of sensitivity¼ variance of change scores in treatment
group/(variance of change scores+ error variance)¼

44:57

44:57þ 22:57ð Þ ¼ :66

(the 44.57 is obtained from in the last column of Table A.6).

(3) Effect size¼mean of the change scores/s.d. of pretest scores: in the

treatment group¼�11/6.32¼�1.74 (there was a decline in depres-
sion symptom score of 1.74 pretest standard deviation units).

Table A.5 Analysis of variance

Source of variation SS df MS F P-value

Patients 1014.7188 15 67.6479 156.8647 .0000

Test retest .0313 1 .0313 .0725 .7915

Error 6.4688 15 .4313

Total 1021.2188 31

σ2between patients ¼ (67.65 – .43)/2 ¼ 33.61

σ2between patients + error ¼ 33.61/(33.61 + .43) ¼ .987
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(4) Guyatt’s responsiveness measure30 is (mean change scores in the

treatment group)/(s.d. of change scores in stable subjects). We are

assuming here that the control group is the group of stable subjects,

Table A.7 Analysis of variance of change scores

Source of variation SS df MS F P value

Between test/retest 484 1 484.0000 21.4430 .0004

Within patients 316 14 22.5714

Total 800 15

Table A.6 Change scores between pre and post-test

Control Group Treatment Group

Patient
#

Pre-
test

Post-
test

Change
Score

Patient
#

Pre-
test

Post-
test

Change
Score

1 12 13 1 9 14 7 –7

2 16 15 –1 10 18 10 –8

3 22 20 –2 11 24 7 –17

4 24 18 –6 12 30 5 –25

5 30 25 –5 13 18 10 –8

6 18 16 –2 14 16 8 –8

7 16 12 –4 15 14 4 –10

8 12 10 –2 16 10 5 –5

Mean 18.75 16.13 –2.63 18 7 –11

Variance 38.79 23.27 5.13 40.00 5.14 44.57

s.d. 6.23 4.82 2.26 6.32 2.27 6.68
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although generally “stable subjects” refers to subjects who are stable

with regard to some external criterion.

G ¼ �11

2:26
¼ �4:86

(5) Comparison with a control group: The effect size for the treatment

group is �1.74, so clearly it exceeds the control group change, which

is�2.63/6.23¼�.42. If we calculate the ratios of treatment to control

group for the above indices of responsiveness, we will find in this

example that they are very similar.

For effect size the ratio is �1.74/–.42¼ 4.14. For Guyatt’s statistic it

is �4.86/–1.16¼ 4.19. (The �1.16 was obtained by mean change in

control group divided by standard deviation of change scores in control

group, i.e., ¼�2.63/2.26.)

For the coefficient of sensitivity, it is .66/.14¼ 4.71. (The .14 was

obtained by doing an analysis of scores in the control group, not shown

here, so take it on faith, or calculate it as a check on the accuracy of this.)
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