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 Hypoparathyroidism, manifesting as tetany, was fi rst encountered in the late 
nineteenth century as a postoperative complication of total thyroidectomy, 
but, as described by Mannstadt and Potts in the fi rst chapter of this volume, 
the connection between parathyroid glands, post-thyroidectomy tetany, and 
hypocalcemia took years to be elucidated. Isolation and characterization, fi rst 
from bovine and then from human parathyroid glands, of the biologically 
relevant agent parathyroid hormone (PTH) took decades more. The pioneer-
ing work of the late Gerald Aurbach in this endeavor (as cited by Mannstadt 
and Potts) and in many other seminal studies that illuminated our understand-
ing of the causes of hypoparathyroidism is especially fi tting in this volume, to 
which so many of Aurbach’s collaborators and fellows and even fellows of 
those fellows have contributed. 

 The comprehensive scope of this volume refl ects the fact that studies of 
hypoparathyroidism go well beyond a simple delineation of the consequences 
of hormone defi ciency. Part   I    , “Anatomy and physiology of the parathyroid 
glands,” depicts (a) the complicated embryology and development of the 
parathyroids, (b) the intricate homeostatic mechanisms involving not only 
PTH but also vitamin D and FGF23 that maintain normal calcium and phos-
phate metabolism, (c) the relationship between PTH and PTH-related pep-
tides (PTHrP), and (d) the signal transduction mechanisms that govern Ca++ 
regulation of PTH secretion as well as PTH action on its target organs. Two 
particularly notable features of signal transduction relevant to PTH are the 
unique calcium-sensing receptor (CaSR), which in parathyroid cells trans-
duces the signal from extracellular ionized calcium to changes in PTH secre-
tion, and the role of G proteins in coupling both the CaSR and the PTH 
receptor to downstream intracellular effectors. The Gs protein, which couples 
not only PTH receptors but many other hormone receptors to stimulation of 
the second messenger, cyclic AMP, is the subject of its own chapter, given its 
relevance to a unique form of hypoparathyroidism discussed below. 

 Part   II    , “Conditions of hypoparathyroidism,” beginning with considerations 
of epidemiology and clinical presentation, proceeds to detailed descriptions 
of the genetic and acquired diseases that result in PTH defi ciency as either 
an isolated manifestation or as part of a syndromic constellation of other 
abnormalities. One of the remarkable features of hypoparathyrodism is that 
until recently, it represented the sole hormone defi ciency disorder for which 
cognate hormone replacement therapy is not the standard of care. Treatment 
with vitamin D (in one of its several forms) and calcium supplements, while 
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effective in restoring normocalcemia, is not, strictly speaking, physiological. 
Chapters discussing “conventional treatment” (i.e., vitamin D and calcium 
supplements) and the more physiological replacement approaches with the 
1–34 fragment of PTH or the intact 1–84 amino acid hormone provide an 
important perspective on the potential changes in practice that may ensue. 

 Mannstadt and Potts, in the fi rst chapter, pay tribute appropriately to one 
of endocrinology’s greatest fi gures, Fuller Albright. Without benefi t of mod-
ern tools such as radioimmunoassay, he astutely recognized that a subset of 
subjects with hypoparathyroidism suffered from resistance to PTH action 
rather than true defi ciency of the hormone. Hence, he termed the disorder in 
these subjects  pseudohypoparathyroidism  (PHP), the fi rst description of a 
hormone resistance syndrome. Analogous disorders were later recognized for 
most other peptide and also steroid hormones showing how studies of hypo-
parathyroidism provided a paradigm that infl uenced our understanding of 
endocrine disease in general. Perhaps fi ttingly from a historical perspective, 
following Albright’s initial description, studies by Aurbach and colleagues 
localized the site of hormone resistance in PHP as proximal to cyclic AMP 
generation. Studies by Aurbach’s fellows and others eventually defi ned the 
defect in “classic” PHP (characterized by the phenotypic appearance termed 
 Albright ’ s hereditary osteodystrophy ) as loss of function mutations in the 
gene encoding the alpha subunit of the Gs protein. Thus, the fi rst described 
hormone resistance disorder also became the fi rst human disease recognized 
to be caused by a G protein mutation. The complex transcriptional regulation 
of the Gs alpha gene involving multiple transcripts, each with differential 
parental imprinting, also turned out to have a correlate in human phenotypic 
expression called pseudoPHP. All of these conditions are well described in 
Part   III     of this volume, “Functional Hypoparathyroidism.” 

 This brief overview should make clear that the editors of this volume, 
Maria Luisa Brandi and Edward M. Brown, have succeeded in bringing 
together a broad array of experts from a number of fi elds, each of whom has 
contributed to a volume that in aggregate is surely greater than the sum of its 
parts. From the most basic aspects of biochemistry, molecular biology, and 
physiology to depiction at the molecular, genetic, and clinical level of a wide 
variety of disorders, the chapters in this volume defi ne our current under-
standing of hypoparathyroidism.  

    Allen     M.     Spiegel         
   Department of Medicine, 

and Montefi ore-Einstein Center for Cancer Care,  
 Montefi ore Medical Center, 

Albert Einstein College of Medicine,   
 Bronx ,  NY ,  USA     
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 This volume is the fi rst devoted solely to hypoparathyroidism and is intended 
for those who must deal with this disorder. The introduction of a book on a 
fi eld of clinical medicine today requires considerable justifi cation. In the fi eld 
of hypoparathyroidism, the recent growth of medical knowledge in general 
has created the need for a new volume fully dedicated to this topic. 

 That there has been a recent explosion of knowledge on the subject of 
hypoparathyroidism cannot be doubted, and much of the acceleration in its 
pace can be attributed to new insights into etiopathogenesis, epidemiology, 
and substitutive therapy. PubMed offers about 7,100 references to hypopara-
thyroidism since 1926, with over 1,200 published in the past 5 years. It is now 
a pleasure to record that the intensifi ed research in hypoparathyroidism has 
matured to the point that a handbook can be fully dedicated to an area that is 
enjoying a spectacular increase in interest among basic researchers and clini-
cians alike. 

 The information made available in the 38 chapters of this volume has been 
brought together from widely diverse sources, and, in some instances, is 
reported here for the fi rst time. Many subjects have been presented both in 
broad outline and in more comprehensive detail in different chapters to meet 
the differing requirements of the target audiences. The book is designed for 
use in the clinic and in the basic science laboratory connected to the clinic. 
Every effort has been made to make available suffi cient basic and clinical 
knowledge to satisfy the reader’s curiosity about each of these aspects. 

 This book is dedicated to our mentor, Gerald D. Aurbach, MD, whose 
pioneering studies on parathyroid hormone led to dramatic advances in our 
understanding of some hereditary diseases of calcium metabolism including 
pseudohypoparathyroidism. Gerry was not only a fi ne physician and an ele-
gant scientist but also a lover of classical music and an avid fan of the 
Washington Redskins football team. Through his wisdom and daring insights, 
he showed us the way in science and in life. This book honors him as a great 
scientist but also as a gentle, wise, and supportive person, loved and respected 
by everyone. 

 Credits for this book are many. The fi rst of these goes to the authors of 
the chapters, all leaders in their respective fi elds, for it is the success of 
their endeavors that forms the basis of and the reason for this publication. 
Credit is also due to the Springer team for their formidable effort in attend-
ing to the many needs that were part of the making of the handbook on 
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 hypoparathyroidism. The foreword to the book was kindly provided by Dr. 
Allen M. Spiegel, another of Gerry’s students, who has contributed greatly to 
our understanding of calcium metabolism.  

    Florence   ,  Italy      Maria     Luisa     Brandi   
    Boston ,  MA ,  USA      Edward     Meigs     Brown       
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1.1             Introduction 

 The history of the discovery of the parathyroid 
glands (Table  1.1 ) and the evolution of knowledge 
about parathyroid hormone (PTH) are rewarding 
for the insights it provides into the basic physiology 
and pathophysiology of bone and mineral metabo-
lism and the diseases hypoparathyroidism and 
hyperparathyroidism. The early history illustrates 
the surprising contradictions and confusion that can 
occur in scientifi c investigations along the pathway 
to a clearer understanding of biology and disease. 
This chapter will focus on hypoparathyroidism con-
sistent with the theme of this volume.

1.2        Discovery of the Glands 

 Credit for the discovery of the parathyroid glands 
clearly belongs to Ivar Sandström (1852–1889), 
who found this new organ in the dog in 1877 
when he was a medical student in Uppsala, 
Sweden. Later, as a temporary research assistant 

in the Department of Anatomy, he systematically 
and thoroughly investigated these glands further 
and identifi ed this novel organ also in cats, oxen, 
horses, rabbits, and fi nally humans. He examined 
50 corpses and found all four glands in most of 
them. Although the relationship to the thyroid 
gland was unsolved, it was Sandström who gave 
them the name “glandulae parathyreoideae,” 
parathyroid glands.

  Although both of the aforementioned kinds of 
glands [the parathyroids versus accessory thyroid 
glands] could with equal reasons claim the name of 
accessory thyroid glands, a special name seems to 
be required for those which are the subject of this 
paper [the parathyroids], both with regard to the 
essentially different structure and on account of the 
fact that this kind of gland [the parathyroids] is 
constant in its occurrence [referring to his careful 
work in dogs, cats, horses, and rabbits as well as 50 
human postmortem subjects] while the other one 
[accessory thyroids] is extremely variable. I there-
fore suggest the use of the name  Glandulae para-
thyreoideae ; a name in which the characteristic of 
being bye-glands to the thyroid is expressed. [ 1 ,  2 ] 

   He described in great detail the variable size, 
form, and color of the four glands found in 
humans, their vascular supply, and their micro-
scopic appearance. He had, of course, no knowl-
edge as to the function of this new organ. In a 
style that is somewhat different from today’s 
rigid scientifi c language, he writes

  Concerning the physiological importance of these 
glands for the organism, we are not able, from rea-
sons that are quite apparent, to allow ourselves 
even to make a guess. [ 1 ,  2 ] 
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   The inability to publish his work in a major 
medical journal was a great disappointment to 
him and prevented his international recogni-
tion. In 1880, he published his discovery “On 
a New Gland in Man and Several Mammals” 
in a local Swedish journal [ 1 ,  2 ]. It turned out 
to be his only scientifi c publication. Although 
Sandström received two local Swedish prizes 
for his discovery, international recognition 
was not achieved before his death and not until 
decades later. His personal life story was a 
tragic one. He had apparently inherited a pro-
pensity to depression and although he continued 
his studies and even fi nished his medical degree 
in 1887, he was hospitalized several times dur-
ing that period. He frequently expressed disap-
pointment at his lack of recognition and failure 
to be permitted further opportunity to work as 
an investigator. He shot and killed himself in 
1889 at the age of 37. 

 The glands were also found by others before 
him, but had not been carefully and systemati-
cally examined. Sir Richard Owen probably fi rst 
recognized them around 1852 in the Indian rhi-
noceros [ 3 ]. His publication, which was in all 
likelihood not accessible to Ivar Sandström, 
describes the glands in one single sentence:

  A small compact yellow glandular body was 
attached to the thyroid at the point where the veins 
emerge. [ 3 ] 

   The systematic description of the parathyroids 
in humans and in several other species and there-
fore their potential signifi cance for human physi-
ology and disease clearly begin with Sandström. 
The entertaining and highly readable monograph 
by Jörgen Nordenström [ 4 ] recalls the early his-
tory and explains the unusual circumstances that 
led to a postmortem examination of the rhinoc-
eros in the nineteenth century. More tellingly, it 
chronicles the tragic story of Sandström who 
never received full credit for the signifi cance of 
his painstaking work.  

1.3     Clarifi cation of the Separate 
Anatomy of the Parathyroids 

 Two lines of observation, one based on clinical 
experience and the other on animal experiments, 
led, but surprisingly quite slowly, to the identifi -
cation of the key role played by the parathyroids. 
Clinical reports discussed the poorly understood 
complex set of symptoms that we now recognize 
as hypocalcemic tetany in patients operated on 

   Table 1.1    Short history of parathyroid hormone   

 1880   Sandström  identifi es parathyroids in humans 

 1900 
 Parathyroids fi rst recognized as functionally distinct from thyroid ( Vassale and Generali ) 
 Acceptance of evidence mixed 

 1910–1925 
 Vital role established: removal causes tetany 
 Function debated over control of calcium vs. detoxifying function (guanidine toxicity) 

 1925 
 Endocrine function established by  Collip  
 Parathyroid extracts reverse tetany 

 1929–1952   Albright  describes idiopathic hypoparathyroidism, pseudohypoparathyroidism (PHP), and pseudo-PHP 

 1959 
  Era of chemical biology begins  
  Aurbach  isolates and purifi es PTH intact by use of organic solvents 

 1971–1975 
 Structure and synthesis of PTH 
 Defi nitive research and clinical uses 

 1987 
 Clinically useful immunoassays of PTH 
 Laboratory diagnosis of hypoparathyroidism possible 

  1990  

  Full impact of molecular biology unfolds  
 Receptor cloned 
 Genetic defects in hypoparathyroidism defi ned 
 Genetic manipulations defi ne PTH function in vivo in rodents 
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for thyroid disease after extensive (probably 
often complete) thyroidectomy. Mortality from 
thyroidectomy was so high (as great as 40 %) that 
the famous Austrian surgical pioneer Theodor 
Billroth (1829–1894) stopped thyroid surgery for 
several years. In some cases, tetany was the cause 
of death. Nordenström in his monograph pro-
vides some of these dramatic examples of patients 
who developed tetany and sometimes death after 
thyroidectomy [ 4 ]. The physicians were at a loss 
to understand, let alone treat, patients in whom 
tetany developed. He notes that, because of the 
typical spasm of the hands that can be seen in 
shoemakers, the condition came to be called 
Schusterkrampf (shoemaker’s cramp). 

 There were many false steps, and constant 
controversy, on the way to a full appreciation of 
the role of the parathyroids, but not until the early 
part of the twentieth century was it recognized 
that it was inadvertent removal of the parathy-
roids and not the thyroid that caused tetany in 
patients undergoing thyroidectomy (see below). 
Even after others eventually duly noted the work 
of Sandström, it was not clear that the parathy-
roids were a separate organ system rather than 
embryonic thyroid glands and/or an accessory 
part of the thyroid. This confusion in animal 
experiments in part arises from the presence of 
multiple glands as well as their variable location 
particularly what we now term the inferior para-
thyroids, which may be intrathyroidal. 

 In a comprehensive and scholarly review of the 
experimental studies, Boothby [ 5 ] observes (but in 
retrospect not entirely correctly) that Sandström 
believed that the glands were likely accessory thy-
roid tissue. Baber [ 6 ] in 1881 clearly described 
these glands under the name “undeveloped portions 
of the thyroid.” (Baber was apparently not aware of 
Sandström’s earlier paper). Horsley [ 7 ] in 1886 cor-
rectly deduced as a result of careful experimenta-
tion that these tissues recognized by Sandström and 
Baber were not undeveloped tissue of the thyroid, 
but separate organs. Horsley demonstrated that after 
partial thyroidectomy, while the “undeveloped tis-
sue” (the parathyroids) did not show any enlarge-
ment or conversion to thyroid tissue, the remaining 
thyroid tissue did immediately hypertrophy. 

 In 1891, Gley reported his fi ndings that exper-
imental thyroidectomy in animals often resulted 
in tetany [ 8 ,  9 ]. However, he incorrectly deduced 
that the external parathyroids were indeed embry-
onic thyroid tissue. He arrived at this deduction 
because he correctly noted that tetany did not 
develop if these external parathyroids were 
spared, but he noted that these glands doubled in 
size after removal of the thyroid. Therefore, he 
promulgated the view that they were then taking 
on the function of the thyroid without realizing, 
of course, that the internal parathyroids had been 
removed with the bulk of the thyroid tissue, and 
this led to hyperplasia of the remaining parathy-
roids. He persisted in this view despite the obser-
vations of Horsley. 

 It was the work of Vassale and Generali pub-
lished in 1896 that disagreed with Gley’s conten-
tion that the glands were embryonic thyroid rests 
and established that they were special organs dis-
tinct from the thyroid. In a series of papers result-
ing from careful work [ 10 ,  11 ], they demonstrated 
that removal of all four parathyroid glands caused 
tetany even if signifi cant amounts of thyroid tissue 
were preserved, whereas total thyroidectomy did 
not cause tetany if at least one parathyroid gland 
was spared. 

 Still, others as cited by Boothby contributed to 
the work that fi nally established the glands as 
essential to prevent tetany. Especially notable 
was the work of the great Viennese pathologist 
Jakob Erdheim (1874–1937) in 1904–1906. 
Through postmortem observations in patients 
who died of tetany after thyroidectomy, Erdheim 
established with painstaking care that the para-
thyroids were totally absent. Erdheim also under-
took experimental studies in rats, which normally 
have only two parathyroid glands, which are 
readily visible. Using cautery, Erdheim was able 
to destroy various portions of these glands with-
out damaging the thyroid. Complete removal of 
all parathyroid tissue with preservation of the 
thyroid resulted in tetany similar to the earlier 
work of Vassale and Generali. 

 Erdheim even provided what could have been 
an early clue to the role of the glands in calcium 
metabolism through his observations in his 
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 parathyroidectomized animals. He demonstrated 
that the tooth discoloration that developed in 
some of the surviving rats (teeth constantly grow 
in all rats) was due to the sudden cessation of cal-
cium deposition coincident with their loss of the 
parathyroid glands (hypoparathyroid state) and 
subsequent low blood calcium levels [ 12 ].  

1.4     Physiological Role 
of the Glands 

 Intense debate, surprising in retrospect, centered 
on the cause of the tetany and the role of these 
vital glands. Although the true explanation, 
severe hypocalcemia, was carefully documented 
by a number of investigators, others concluded 
that the principal function of the glands was 
detoxifi cation. One of the main reasons the 
detoxifi cation theory could survive so long was 
because attempts to treat animals with extracts of 
the parathyroid glands was not effective in revers-
ing the tetany. We can now appreciate that obtain-
ing parathyroid hormone from parathyroid 
extracts was unsuccessful at the time. 

 William MacCallum and his coworkers begin-
ning in 1908 were strong proponents of the view 
that the parathyroid glands were somehow 
involved in control of blood calcium. In 1909, 
MacCallum and his colleague Carl Voegtlin were 
able to demonstrate that infusions of calcium 
completely reversed the symptoms of cramps that 
dogs suffered after removal of their parathyroids 
[ 13 ]. They also measured blood calcium levels 
and reported that they were lower than normal in 
parathyroidectomized dogs. They concluded

  Tetany occurs spontaneously in many forms and 
may also be produced by the destruction of the 
parathyroid glands… The injection of a solution of 
a salt of calcium into the circulation of an animal in 
tetany promptly checks all the symptoms and 
restores he animal to an apparently normal condi-
tion. [ 13 ] 

   However, they were unable to reverse the tet-
any by administration of extract of the glands. 
Others also demonstrated that calcium would 
reverse the tetany in experimental animals after 
parathyroidectomy [ 14 ]. Confusion developed, 

however, when Koch stated in 1912 that there 
were high levels of methyl guanidine found in the 
urine of animals with tetany after parathyroidec-
tomy [ 15 ,  16 ]. A few years later, Paton demon-
strated that administration of guanidine or methyl 
guanidine could apparently cause symptoms 
characteristic of tetany in rats [ 17 ]. 

 In closing his very scholarly review summa-
rizing the fi eld as of 1921, Boothby concluded:
•    Removal of all parathyroid tissue in animals 

causes tetany and death; the younger the ani-
mals, the worse the problem. (Some noted that 
herbivores were more resistant.)  

•   Preservation of small amounts of parathyroid 
tissue prevents or greatly minimizes the tetany.  

•   The parathyroids have a function separate 
from that of the thyroid – their only relation-
ship is an anatomic proximity.  

•   Their function remains unclear. It seems to be 
concerned with calcium metabolism or guani-
dine metabolism or both. Nonetheless, admin-
istration of large amounts of calcium is usually 
of benefi t in lessening the symptoms in 
patients suffering tetany after thyroid surgery.  

•   Reported cases of idiopathic tetany are not 
necessarily related to the parathyroids, and the 
association of tetany with the function of the 
parathyroids is only fi rm in humans after 
extensive thyroid surgery.    
 It is evident that these early workers were 

imaginative investigators who learned much with 
what today might be considered rudimentary 
tools. Sometimes progress was stalled for years. 
Investigators, as well as clinicians, were not often 
aware of some innovative fi ndings lacking the 
rapid access to medical information available 
today. Sometimes, innovative fi ndings that did 
not fi t into the paradigms of the day were rejected 
or ignored.  

1.5     The Parathyroids Are 
Endocrine Glands 

 A defi nitive series of experiments by James 
Collip (1892–1965) in 1925 resolved the contro-
versy about the function of the glands [ 18 ]. Collip 
prepared hot hydrochloric acid extracts of the 
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parathyroid glands; an approach that he correctly 
hypothesized was needed to free the active sub-
stance from other stromal components of the 
gland and to render it soluble. He showed that 
these acid extracts of the parathyroid gland would 
completely relieve the tetany that followed para-
thyroidectomy in experimental animals and in 
humans [ 19 ]. Thereby, he established that the 
parathyroids are endocrine glands that secreted a 
hormone, PTH. Another author, Adolph Hansen, 
reported a similar acid extraction procedure in 
1924 [ 20 ,  21 ] and claimed priority for the discov-
ery although his efforts to demonstrate biological 
actions with his extract were at best inconsistent, 
so the bulk of the credit belongs to Collip in the 
opinion of the present authors. 

 The availability of biologically active extracts 
of parathyroid hormone made available by phar-
maceutical fi rms such as Lilly immediately 
attracted the interest of clinical investigators, 
who administered the preparations in clinical 
investigation in patients to better understand the 
etiology and pathophysiology of such condi-
tions as idiopathic tetany. Prior to the availabil-
ity of active preparations of PTH, the state of 
knowledge in the fi eld was as summarized above 
by Boothby [ 5 ], namely, that it was unproven 
whether idiopathic tetany could be due to a fail-
ure of the parathyroid glands. Leading clinical 
investigators in several institutions, most notably 
Fuller Albright (1900–1969) and his colleagues 
in the endocrine group at Massachusetts General 
Hospital (MGH) used these clinically available 
preparations (termed parathormone) to reverse 
hypocalcemia in hypoparathyroidism. (Beyond 
the scope of this chapter is the use of these prepa-
rations that led clinical investigators to discover 
the fi rst patient with overactivity of the para-
thyroids in the United States). Administration 
of these PTH preparations to patients with 
idiopathic hypoparathyroidism confi rmed the 
diagnosis by the demonstration of prompt phos-
phaturia achieved with what was then termed the 
Ellsworth-Howard test [ 22 ]. The brilliant obser-
vation of Albright and colleagues led further to 
the identifi cation of a form of hormone resistance 
to parathyroid hormone as the cause in some 
patients with apparent hypoparathyroidism. The 

 investigators demonstrated a failure of the extracts 
to promote phosphaturia in certain patients with 
additional striking phenotypic features, later 
termed Albright’s osteodystrophy, leading them 
to clarify the entity of pseudohypoparathyroid-
ism (PHP) [ 23 ] and later (foreshadowing the 
delineation of the role of gene imprinting in 
hereditary disorders many years later) the entity 
of pseudo- pseudohypoparathyroidism [ 24 ]. Their 
 remarkable foresight obtained on clinical grounds 
alone linked the two diseases with similar phe-
notypic features, the former PHP with hormone 
resistance and the latter pseudo-PHP devoid of 
hormone resistance per se. 

 The successful extraction of PTH from the 
glands created problems that blocked further 
progress toward fully characterizing the structure 
of parathyroid hormone. When techniques for 
protein structural analysis became available (fol-
lowing the seminal work of Sanger who deter-
mined the structure of insulin [ 25 ]), there was 
interest in applying the techniques to parathyroid 
hormone. The Collip hot acid extraction method 
had an undesired side effect (as we understand 
the issue in retrospect). The hormonal peptide 
was not only liberated and solubilized, but also 
cleaved at multiple sites (most likely at aspara-
gine or aspartate acid sites within the sequence) 
giving a multiplicity of peptides of varying length 
with a low yield of any one. In a 1954 report, for 
example, Handler et al. [ 26 ] summarized their 
frustration at the inability to use the techniques 
then available for purifi cation. They stated

  1) the active material in the gland… may be a large 
protein which in the course of isolation is degraded 
into fractions of varying size each of which still 
has activity, or 2) the active material may not be a 
large molecule at all, but instead a small molecule 
which adheres to each one of the fractions. [ 26 ] 

   The problem was compounded because the 
method of monitoring purifi cation, the bioassay, 
was itself diffi cult. The assay in use at that time 
involved injections of purifi ed preparations into 
parathyroidectomized rats to raise the blood cal-
cium concentration. The precision of the tech-
nique was much less than that of an enzymatic 
assay. The fi eld remained stalled until a break-
through development in 1959.  

1 The History: From Ivar Sandström to the Sequence of Parathyroid Hormone
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1.6     Era of Chemical Biology 

 In 1959, Aurbach reported a new technique that 
solved the problem and resulted in purifi cation of 
the intact, native polypeptide [ 27 ]. By using 
organic solvents like hot acid, he liberated the 
peptide in an active form but without producing 
multiple cleavage products. Later Rasmussen and 
Craig confi rmed his results using an analogous 
technique [ 28 ]. 

 With continued advances in protein sequenc-
ing techniques, which became available in the 
late 1950s and early 1960s, two independent 
groups determined the structure of PTH, fi rst of 
bovine hormone, in 1970 [ 29 ,  30 ]. Accumulation 
of suffi cient amounts of parathyroid tissue was 
possible using cows and other large animal spe-
cies used for meat consumption by scientists 
working with slaughterhouses and the meat pro-
duction industry. Only several years later, after 
laborious accumulation of suffi cient material 
from human parathyroid glands that were avail-
able as the byproduct of surgically removed para-
thyroid tumors, could the structure of human 
hormone itself be approached and ultimately 
completely solved by 1978 [ 31 ]. 

 It was hypothesized that a molecule compris-
ing the fi rst 34 residues might be suffi ciently long 
to be biologically active. This somewhat arbi-
trarily chosen peptide length was based on the 
deduced amino acid sequence of PTH, on the 
reports that hot acid produced active fragments, 
and on considerations of peptide synthesis tech-
niques then available. Successful reports of full 
biological activity of PTH(1–34), fi rst for the 
bovine hormone in 1971 [ 32 ] and then later the 
human in 1974 [ 33 ], confi rmed that the structure 
of the compound had been accurately deduced 
and even more importantly provided a material 
for defi nitive animal and clinical use. 

 Availability of highly purifi ed parathyroid 
hormone and active synthetic fragments made it 
also possible to develop improved immunoassays 
based on the principles clarifi ed by Ekins in 1980 
[ 34 ]. He championed the use of double antibody 
methods or so-called sandwich assays. Much of 
the circulating parathyroid hormones are frag-
ments, most of them biologically inactive [ 35 ]. 

These fragments were often detected in the ear-
lier radioimmunoassay techniques. Overall, as 
noted in earlier reviews [ 36 ], this caused a lack of 
precision in the results with these earlier assay 
techniques (see also Chap.   4    ). The introduction 
of an effective double antibody assay in 1987 
[ 37 ] greatly improved the detection capacity of 
the assays such that the low levels of PTH seen in 
patients with hypoparathyroidism could be read-
ily distinguished from normal levels making it 
possible to accurately confi rm by laboratory 
techniques the presence of hypoparathyroidism. 
The even greater advance in this instance (but 
beyond the scope of this chapter) was to greatly 
improve the capacity of the assays to discrimi-
nate between the diagnosis of primary hyperpara-
thyroidism (elevated levels of PTH) and 
hypercalcemia of malignancy (low levels of 
PTH) (see also chapter   4    ).  

1.7     Era of Molecular Biology 

 The wide availability of the powerful techniques 
of molecular biology accelerated progress lead-
ing to the successful cloning of the receptor for 
the hormone in 1991 [ 38 ] (see Chap.   9    ). Parallel 
advances in cell biology from many fi elds pro-
vided improved techniques that permitted a much 
clearer delineation of critical steps in hormone 
action in target cells (especially in bone and kid-
ney) using the cloned receptor and synthesized 
fragments of PTH and introduced the current era 
of the molecular biology of parathyroid hormone 
[ 39 ]. 

 As will be reviewed in Chaps.   16    ,   17    ,   18    ,   19    , 
  20    , and   21    , the powerful techniques of molecular 
biology have aided in characterizing the many 
genetic defects responsible for hypoparathyroid-
ism [ 40 ]. They include, but are not limited to, the 
rare loss-of-function mutations in the PTH gene 
itself or in transcriptions factors key to the devel-
opment of the parathyroid glands (such as GCM2 
and GATA3) and mutations in the AIRE gene 
leading to inherited forms of autoimmune hypo-
parathyroidism (APECED). The importance of 
the molecular diagnosis for patient care is illus-
trated by the autosomal-dominant hypocalcemia 
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(ADH), common among the inherited forms of 
hypoparathyroidism, which is caused by activat-
ing mutations in the calcium-sensing receptor. 
Patients with ADH are particularly prone to 
hypercalciuria and nephrocalcinosis, therefore 
rendering the molecular diagnosis important for 
the treating physician. Mutations in the gene 
encoding the guanine-binding protein G11 have 
recently been identifi ed as a cause of hypopara-
thyroidism [ 41 ,  42 ], demonstrating the power of 
genetics in shedding light on important signaling 
pathways in the parathyroid glands. Molecular 
biology also clarifi ed the mechanisms of resis-
tance to PTH in pseudohypoparathyroidism. 
Mutations in  GNAS , the gene encoding the alpha 
subunit of Gs, or methylation changes at the 
GNAS locus are responsible for this imprinted 
disorder (see Chaps.   10    ,   32    ,   33    ,   34    , and   35    ). In 
addition, the greater understanding of the molec-
ular actions of parathyroid hormone has led to 
such advances as a long-acting form of parathy-
roid hormone termed LA-PTH [ 43 ] which has 
potential as a hormone replacement therapy for 
hypoparathyroidism, one of the few endocrine 
defi ciency states heretofore not treated by 
replacement with the missing hormone. Clinical 
investigators have successfully demonstrated that 
treatment with PTH(1–34) and PTH(1–84) is a 
possible therapy for patients with hypoparathy-
roidism (see Chaps.   30     and   31    ). Recently, the fi rst 
randomized, placebo-controlled phase 3 clinical 
trial using human recombinant PTH(1–84) 
was successfully completed [ 44 ]. PTH replace-
ment therapy for hypoparathyroidism, which 
addresses the underlying defect, could therefore 
become a practical reality in the not too distant 
future.     
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2.1             Introduction 

    The parathyroid glands develop from the pharyn-
geal pouches, transient endodermal outpocket-
ings that also form the thymus and ultimobranchial 
bodies in vertebrates. The parathyroids vary in 
number and fi nal location in different vertebrates, 
including in humans and mice. Despite its impor-
tance in calcium physiology, the molecular regu-
lators and cellular events underlying parathyroid 
organogenesis have only recently begun to be 
elucidated, in part due to their small size, nonde-
script shape, and variable locations. Recent work 
has identifi ed some of the key molecular regula-
tors of parathyroid organogenesis, including the 
transcription factors GCM2, GATA3, and TBX1, 
and the sonic hedgehog (SHH) signaling path-
way, and the morphogenetic events leading to 
their development have begun to be defi ned. The 
parathyroid glands develop from a shared initial 
organ primordium with the thymus glands, lead-
ing to interesting connections between these two 
organs with diverse functions. Finally, a recent 
study has shown that parathyroid cell fate may be 
unstable during late fetal development. Further 
understanding of the mechanisms controlling 
parathyroid specifi cation and embryonic devel-
opment could contribute to better understanding 

of parathyroid biology and improved treatment 
for hypoparathyroidism in humans.  

2.2     Anatomy of Parathyroid 
Organogenesis 

 Parathyroids originate from the posterior pharyn-
geal pouches, transient bilateral endodermal out-
pocketings that form from the pharynx during 
embryogenesis. The number of parathyroids and 
which pouches they originate from is species spe-
cifi c; humans and birds (chickens) have four 
parathyroids arising from the 3rd and 4th pharyn-
geal pouches (pp) [ 1 – 4 ], while mice have two 
parathyroids that come from the 3rd pp [ 5 ]. 
Nearly all of the information we have regarding 
parathyroid organogenesis has come from studies 
in mice, facilitated by the identifi cation of the 
early regulator of parathyroid differentiation, 
 glial cells missing 2 , or  Gcm2  [ 6 ]. The expression 
of  Gcm2  throughout parathyroid organogenesis 
allowed the tracking of parathyroid-fated cells 
throughout embryonic development and has been 
a key to the recent developments in understand-
ing parathyroid organogenesis. 

 Initial parathyroid organogenesis is closely 
linked to thymus organogenesis – these organs 
arise from different regions of the same pouches, 
and during development they undergo a series of 
morphogenetic events to form separate organs 
(reviewed in [ 7 ]). The initial parathyroid domain 
forms in the dorsal-anterior region of the pp and 
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the forming pp-derived organ primordia, the 
ventral domain of which constitutes the develop-
ing thymus. These primordia must (in mice and 
humans) detach from the pharynx via localized 
apoptosis [ 7 ,  8 ]. The thymus and parathyroid 
domains separate from each other by less well- 
understood mechanisms, likely involving both 
differential cell adhesion, involvement of the sur-
rounding neural crest cells (NCCs), and physical 
forces derived in part from thymus migration [ 5 , 
 9 ]. Current evidence suggests that while the thy-
mus lobes actively migrate, via the activity of the 
NCC-derived capsule [ 10 ]; the parathyroids do 
not themselves migrate but are “dragged” along 
by the migrating thymus lobes until the separa-
tion process is complete. This process introduces 
variability in their fi nal locations, most often near 
the lateral aspects of the thyroid gland, but can be 
nearly anywhere in the neck region. 

 As a result of this connection during early 
organogenesis, the thymus and parathyroids have 
been often studied together and have been sug-
gested to have functional overlap as well. These 
issues are discussed at the end of this chapter; the 
majority of this chapter will focus on the current 
knowledge of the molecular regulation of para-
thyroid cell fate specifi cation and differentiation 
during organogenesis.  

2.3     Molecular Regulators 
of Initial Parathyroid 
Specifi cation 

2.3.1     Transcription Factors 

 Because of their small size, variable location, and 
rather indistinct shape, little was known about 
parathyroid gland organogenesis until the identi-
fi cation of the early parathyroid marker  Gcm2. 
Gcm2  encodes a transcription factor related to the 
 glial cells missing  gene, originally identifi ed in 
 Drosophila  as a molecular switch between neural 
and glial cell fate (reviewed in [ 11 ]. Although 
 Gcm2  does not have this same function in mam-
mals, it plays a critical role in parathyroid devel-
opment [ 12 ]. However,  Gcm2  expression does 
not appear to specify parathyroid cell fate or 

defi ne the parathyroid domain during initial 
organogenesis. In the absence of  Gcm2 , the para-
thyroid domain (or at least a domain that 
expresses some parathyroid-related genes) 
appears to be specifi ed at E10.5. This domain 
then undergoes rapid and coordinated apoptosis 
at about E11.5–12 [ 13 ]. Thus, other transcription 
factors and signaling pathways must specify 
parathyroid fate. While several candidates have 
been identifi ed, the transcriptional network that 
specifi es cell fate, and directly or indirectly 
upregulates  Gcm2  expression, has still not been 
clearly articulated. 

 A suite of genes including  Hoxa3 ,  Pax1 , 9 , 
 Eya1 , and  Six1 , 4  have been proposed to consti-
tute a Hox-Pax-Eya-Six network that controls 
early pouch patterning and organogenesis. While 
single and double mutants for these genes gener-
ally result in parathyroid agenesis or severe 
hypoplasia, the exact structure of such a network 
and whether these genes act individually or in 
concert to affect parathyroid fate specifi cation is 
less clear. The fi rst to be identifi ed was  Hoxa3  
[ 14 ]. Null mutants are aparathyroid and athymic, 
and due in part to the classical role of HOX pro-
teins in specifying regional identity, the prevail-
ing model has been that  Hoxa3  specifi es 3rd pp 
identity and patterning [ 15 ]. However, recent evi-
dence has demonstrated that in  Hoxa3  mutants, 
 Gcm2  is expressed its normal domain, but at very 
low levels indicating that  Hoxa3  upregulates 
 Gcm2  but is not required to specify parathyroid 
fate [ 16 ,  17 ]. Whether this regulation is direct or 
indirect is unknown; however, evidence from 
 Hoxa3  +/−  Pax1  −/−  mutants suggests that  Hoxa3  
may work with the paired box transcription factor 
PAX1.  Pax1  single mutants have normal initial 
 Gcm2  expression, but do not maintain it, result-
ing in signifi cant parathyroid hypoplasia [ 18 ]; 
this phenotype is exacerbated in  Hoxa3  +/−  Pax1  −/−  
compound mutants.  Eya1  and  Six1 , 4  have also 
been shown to be required for  Gcm2  expression, 
and mutants result in loss through apoptosis. As 
loss of  Gcm2  itself is suffi cient to cause apopto-
sis, it is possible that the effects of all of these 
genes, either individually or as a pathway or net-
work, are mediated by their effect (direct or indi-
rect) on  Gcm2  expression. 
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 The two best candidates for transcriptional 
regulators that specify parathyroid fate are TBX1 
and GATA3, both of which are expressed in the 
parathyroid domain in the 3rd pp and have been 
implicated in regulating  Gcm2. Tbx1  expression 
is correlated spatially and temporally with  Gcm2 , 
and its expression in the 3rd pp is unaffected in 
 Gcm2  null mutant mice [ 13 ], indicating that it 
acts upstream of, or in parallel to, Gcm2. 
However, recent work from the author and col-
laborators has shown that ectopic expression of 
 Tbx1  in the 3rd pp outside the parathyroid domain 
is not suffi cient to induce  Gcm2  expression [ 19 ], 
and  Tbx1  null mutants do not form the caudal 
pouches at all [ 20 ]. Thus, it is unclear whether 
TBX1 plays any specifi c role in parathyroid spec-
ifi cation or organogenesis and, if so, whether it 
regulates  Gcm2  expression directly or indirectly. 
In contrast, GATA3 has been shown to directly 
bind to the  Gcm2  promoter region and upregulate 
its expression, and  Gcm2  levels are reduced even 
in heterozygotes [ 21 ]. Whether GATA3 plays a 
role in organ fate specifi cation is less clear. 
 Gata3  +/−  heterozygotes have fewer  Gcm2 - 
expressing   cells, suggesting that GATA3 could 
affect cell fate [ 21 ]. However, this possibility has 
not been directly investigated. 

 The fi nal candidate gene identifi ed so far is 
 Sox3 . Human mutations in Sox3 are associated 
with hypoparathyroidism, and  Sox3  is expressed 
in the 3rd pp and developing parathyroids in mice 
[ 22 ]. However, no direct connection has so far 
been made between  Sox3  and  Gcm2  expression 
or other aspects of parathyroid organogenesis, so 
its specifi c role is still unknown. Thus, while all 
of these transcription factors have been shown to 
affect organogenesis and patterning, the identity 
of the direct targets for these transcription factors 
and clear evidence for a role in specifying para-
thyroid cell fate, as opposed to promoting  Gcm2  
expression, is lacking.  

2.3.2     Signaling Pathways 

 While transcriptional regulators generally act cell 
autonomously, signaling pathways can act either 
within or between tissues to infl uence cell fate 

and/or differentiation. Thus, signals that specify 
parathyroid fate could be expressed either within 
the endoderm or in the adjacent NCC mesen-
chyme, and there is evidence for both. Three sig-
naling pathways, SHH, BMP4, and FGF8/10, 
have been implicated as positive or negative reg-
ulators of parathyroid fate in the 3rd pp in mice 
and are discussed below. All of them are 
expressed within the endoderm. However, data 
from  Splotch  mutant mice, which have a defi -
ciency in NCCs, have shown that the size of the 
parathyroid domain within the pouch is in part 
determined by signals from the surrounding 
NCCs [ 23 ]. Thus, signals coming from either or 
both cell types during patterning could infl uence 
the location and size of the parathyroid domain 
within the endoderm. 

 The earliest identifi ed signaling pathway to 
infl uence parathyroid fate within the pouch endo-
derm is  sonic hedgehog  (SHH).  Shh  null mutant 
mice fail to establish a prospective parathyroid 
domain or express  Gcm2 , and thymus fate spreads 
to encompass the entire pouch [ 24 ]. However, 
there are confl icting data on whether SHH is act-
ing directly within the endoderm or indirectly 
(either from adjacent endoderm or through a 
NCC-mediated mechanism) to establish parathy-
roid fate [ 24 ,  25 ]. Intriguingly,  Tbx1  is known to 
act downstream of SHH signaling in heart devel-
opment [ 26 ], raising the possibility that SHH acts 
in part through inducing  Tbx1  in this case as well. 
However   , gain of function studies in the author’s 
lab, in which ectopic SHH signaling in other 
domains of the 3rd pp in mouse embryos induced 
 Tbx1 , but not  Gcm2 , indicate that this pathway is 
not suffi cient to turn on  Gcm2  outside the normal 
parathyroid domain [ 19 ]. These data indicate that 
either other SHH targets, or additional signals or 
pathways, may be required to fully induce the 
parathyroid pathway. 

 The fi broblast growth factor (FGF) signaling 
pathway has also been implicated in suppressing 
parathyroid fate and/or differentiation. The main 
 Fgf  gene implicated in 3rd pp patterning and 
development in mice is Fgf8, but as  Fgf8  null 
mutants fail to form the caudal pouches, loss of 
function approaches is limited. However, mem-
bers of the sprouty ( Spry ) class of FGF inhibitors 
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are expressed in the 3rd pp in mice, and mutations 
in these genes cause enhanced and ectopic FGF 
signaling throughout the pouch at E10.5 and later 
[ 7 ]. In  Spry1 , 2  double mutants, parathyroid size is 
reduced, and Gcm2 expression is delayed, indi-
cating that excessive FGF signaling can suppress 
parathyroid specifi cation and differentiation. This 
effect was suppressed by reducing the dosage of 
 Fgf8 , which is normally expressed in the ventral 
endoderm and off by E11.5. However, FGF10 is 
also expressed in the NCC mesenchyme adjacent 
to the dorsal domain, so some of the effect of FGF 
signaling on the parathyroid domain may come 
from FGF10. These results suggest that the effects 
of FGF signaling on parathyroid organogenesis 
may occur quite early and from both the within 
the endoderm and from the NCC mesenchyme, to 
restrict parathyroid fate to the most dorsal domain 
of the pouch. 

 The last signaling pathway that has been 
implicated in parathyroid fate specifi cation is the 
BMP pathway, specifi cally BMP4. The role of 
BMP4 is less clear, as there is evidence for both a 
positive and a negative role. Like  Fgf8 ,  Bmp4  
expression is not expressed in the parathyroid 
domain but is restricted to the ventral thymus 
domain. In the SHH null,  Bmp4  expansion 
throughout the 3rd pp is coincident with loss of 
the parathyroid domain and expansion of thymus 
fate. Furthermore, the expression of the BMP 
inhibitor Noggin in the NCC mesenchyme sur-
rounding the dorsal parathyroid domain suggests 
that suppressing BMP signaling is important for 
parathyroid fate or differentiation. Taken together, 
these data have been interpreted to indicate a 
SHH-BMP mutual antagonism in establishing 
parathyroid and thymus cell fate in the 3rd pp [ 5 ]. 
However, evidence from chick showed that 
 inhibition of BMP signaling (via ectopic Noggin) 
suppressed  Gcm2  expression, at least at early 
stages of pouch development, suggesting that 
BMP signaling is at least transiently a positive 
regulator of  Gcm2  expression and parathyroid 
differentiation in this system. Thus, the role of 
BMP signaling in parathyroid fate specifi cation 
and/or differentiation, and whether there are 
species- specifi c differences in this process, will 
require further investigation.   

2.4     Differentiation and Survival 
of Parathyroids:  Gcm2  

 Once the parathyroid domain is established, 
upregulation of  Gcm2  expression is necessary 
and suffi cient for parathyroid differentiation and 
survival.  GCM2  is also known to be important in 
human parathyroid development, as both domi-
nant negative [ 27 ] and loss-of-function [ 28 ] 
 GCM2  alleles are associated with hypoparathy-
roidism in humans (see also Chap.   14    ). In the 
 Gcm2  null mutant mouse, the parathyroid domain 
is specifi ed, as evidenced by normal expression 
of the parathyroid-associated genes  Tbx1 ,  Ccl21 , 
and  Casr  ( calcium - sensing receptor ) in the dorsal 
domain at E10.5 and failure of the thymus domain 
to expand into this region [ 13 ]. However, these 
cells fail to upregulate  parathyroid hormone  
( Pth ) at E11.5 and undergo coordinated apoptosis 
soon after, by E12.5. GCM2 also works with the 
transcription factor MAFB to upregulate  Pth  
gene expression [ 29 ].  MafB  mutation also affects 
parathyroid separation from the thymus and may 
itself be regulated by GCM2. 

 Thus, upregulation of  Gcm2  is a critical step 
in early parathyroid differentiation and survival. 
 Gcm2  continues to be expressed in parathyroids 
after the early stages of differentiation, and the 
loss of parathyroids after downregulation of 
 Gcm2  expression in  Hoxa3  and  Pax1  mutants 
suggests that it may still be required for parathy-
roid survival at least during fetal development. 
However, in the absence of conditional deletion 
of  Gcm2  at later stages, it is not clear if it is 
required for parathyroid maintenance once they 
are established.  

2.5     The Thymus-Parathyroid 
Connection 

2.5.1     Do the Thymus 
and Parathyroids Have 
Overlapping Functions? 

 The primary functions of the thymus and para-
thyroid glands are quite distinct, with the thymus 
playing a critical role in producing T cells and 
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parathyroids controlling calcium physiology 
through the production of PTH. However, the 
physical connection between the thymus and 
parathyroid organs during early organogenesis 
has led to reports that these organs may indeed 
have overlapping functions. 

 The original report of the  Gcm2  null mutant 
phenotype received attention not only because it 
was the fi rst gene to specifi cally be required only 
for parathyroid organogenesis but also because 
of the conclusion that the thymus could act as a 
secondary source of PTH [ 12 ]. This conclusion 
was based on survival of a signifi cant proportion 
of  Gcm2  null mutants, even in the absence of 
parathyroid glands, their report of low levels of 
serum PTH in the absence of parathyroids, and 
on the observation that removing the thyroid and 
parathyroids together from wild-type mice did 
not cause lethality, which removing the thymus 
as well caused rapid death (presumably due to 
lack of PTH). As the parathyroids had been 
thought to be the sole source of physiological 
PTH, this was considered a signifi cant fi nding 
with potential implications for human health 
[ 30 ]. A more recent study, based on this conclu-
sion, reported the ability to generate and isolate 
parathyroid- like cells from thymic epithelial 
cells, as an initial effort to produce parathyroid 
cells for transplant [ 31 ]. 

 While this report was consistent with the com-
mon origin of the thymus and parathyroids in the 
3rd pp, work from the author’s lab showed that 
this conclusion was not entirely accurate [ 2 ]. 
Instead, the PTH thought to be produced by the 
thymus was produced by authentic parathyroid 
cells that remain attached to the thymus during 
normal organogenesis. This study showed that 
the process of thymus-parathyroid separation is 
ineffi cient and “messy,” leading to small clusters 
of parathyroid cells remaining associated with 
the thymus and numerous small clusters of para-
thyroid cells throughout the neck region in addi-
tion to the primary parathyroid glands. These 
“ectopic” thymus-associated parathyroid cells 
are the likely source of PTH in the original  Gcm2  
null paper and also call into question the identity 
of the parathyroid cells that were thought to have 
been generated from thymus cells in the 2011 

study [ 31 ], as these could have been parathyroid 
cells already present in the thymus. 

 While the thymus does not have true 
parathyroid- like function, the parathyroid domain 
during initial organogenesis does have a transient 
thymus-related function. At E11.5, prior to the 
separation of the two organs, the parathyroid 
domain expresses  Ccl21 , a chemokine that con-
tributes to initial immigration of lymphoid pro-
genitors to the thymus, which is important in 
early thymus organogenesis [ 32 ,  33 ]. Therefore, 
while the thymus doesn’t appear to have any 
parathyroid function, the parathyroid domain 
does help recruit lymphoid cells to the thymus, at 
least during initial organogenesis.  

2.5.2     Stability of Parathyroid 
Cell Fate 

 The presence of small clusters of parathyroid 
cells throughout the neck in both mice and 
humans, as a consequence of normal develop-
ment, also has another unusual consequence. In 
about half of mice and in a substantial percent-
age of humans, these remnants of the organ 
separation process can downregulate the para-
thyroid program and transdifferentiate in a thy-
mus fate, forming small cervical thymi [ 34 ,  35 ]. 
In addition, the author’s lab has recently shown 
that about 25 % of these cervical thymi have 
previously differentiated as parathyroid, includ-
ing prior expression of  Pth  [ 36 ]. These 
parathyroid- derived cervical thymi (pCT) gen-
erate T cells with a specifi c functional pheno-
type that could have implications for the 
function of the immune system in individuals 
with pCT [ 36 ]. While the mechanisms by which 
this cell fate switch occurs are unknown, para-
thyroid fate appears to stabilize at about the 
newborn stage, after which the frequency of 
cervical thymi remains constant. This “window 
of opportunity” for parathyroid cells to down-
regulate the parathyroid program and transdif-
ferentiate to a thymus fate suggests that there is 
an underlying instability in parathyroid fate 
during a specifi c temporal window during the 
late fetal stage. 
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 This phenomenon is not just an oddity of 
development that may affect the immune sys-
tem. Understanding how cell fate is stabilized 
is important to the issue of therapeutic stem 
cell- based interventions in general and to the 
generation of parathyroid cells for transplant 
in particular. Parathyroid cells are excellent 
targets for generation of differentiated cells 
for transplant from ES or iPS cells. Further 

investigation of this apparently inherent but 
transient instability, and how it is resolved 
during development, could provide important 
keys to future efforts to generate parathyroid 
cells for transplant.      
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  Fig. 2.1    Parathyroid organogenesis in the mouse embryo. 
( a ,  b ) Saggital sections of mouse E10.5 ( a ) and E11.5 ( b ) 
embryos stained with an antibody recognizing GCM2. At 
these stages, GCM2 ( pink  or  green ) marks the dorsal- 
anterior domain of the 3rd pharyngeal pouch-derived 
organ primordium ( outlined  in  white dashed line ); the 
remainder of the pouch becomes thymus. ( c ) By    E15.5, 
the parathyroid ( pt ) has separated from the thymus and is 
usually located near the lateral aspects of the thyroid lobes 

( tyr ). In this panel, tra, trachea.  Gcm2  expression is shown 
using a GCM2-EGFP transgene. ( d ) At E18.5 and after 
birth, the main parathyroid gland ( pt ) is usually located at 
or within the thyroid gland, here identifi ed by in situ 
hybridization with a probe for  Pth . However, small clus-
ters of parathyroid cells are present throughout the neck 
between the main parathyroid and the thymus gland 
( arrows ), remnants of the process of organ separation and 
migration       
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3.1             Introduction 

 Parathyroid hormone (PTH) is an 84-amino acid 
polypeptide endocrine hormone that is produced 
by the parathyroid glands and secreted into the 
circulation in response to low calcium levels [ 1 ]. 
PTHrP is a polypeptide that was originally iso-
lated as the factor responsible for humoral hyper-
calcemia of malignancy. Subsequently, it became 
apparent that PTHrP is a critical developmental 
paracrine factor, and it is nearly ubiquitously pro-
duced and secreted by normal and malignant 
cells. Both peptides hold clinical interest for their 
capacities to control calcium/phosphate homeo-
stasis and bone metabolism [ 2 ].  

3.2     PTH and PTHrP: Genes, 
Structures, and Biosynthesis 

 PTH is a peptide comprised of a single 84-amino 
acid chain, which is synthesized and secreted by 
the parathyroid glands. The amino terminus (resi-
dues 1–34) is highly conserved and is important 
for the biological activity of the molecule. The 
PTH human gene is localized on chromosome 
11p15 and consists of three exons. In the rough 

endoplasmic reticulum of the parathyroid cells, 
PTH is synthesized as a 115-amino acid polypep-
tide (prepro-PTH), which is fi rst cotranslationally 
cleaved in the ER to pro-PTH (90 amino acids) 
and then to the mature, biologically active PTH 
molecule (84 amino acids) in the Golgi apparatus. 
The N-terminal cleaved pre-sequence is rich in 
hydrophobic amino acids that are necessary for 
transport of the nascent polypeptide chain into the 
endoplasmic reticulum, while the basic pro-pep-
tide directs accurate cleavage of pro-PTH into the 
mature 1–84 molecule [ 3 ]. The homology among 
species is high in the region that encodes prepro-
PTH, and substantial homology also is retained in 
the gene fl anking regions, introns, and mRNA 
UTRs. The transcription of the prepro-PTH gene 
is in a relatively suppressed state under normocal-
cemic conditions. This posttranscriptional regula-
tion is dependent upon binding of protective 
trans-acting factors to a specifi c element in the 
PTH mRNA 3′-UTR. The molecular weight of 
PTH(1–84) is 9.425 Da. The biosynthetic process 
is estimated to take less than 1 h. After its synthe-
sis, PTH(1–84) is stored in secretory vesicles. In 
the secretory vesicles some C-terminal fragments 
are produced, especially at high extracellular cal-
cium concentrations, which reduce the fraction of 
secreted PTH that is PTH(1–84). Under hypocal-
cemic conditions the stored PTH is released by 
exocytosis within seconds and, in a few hours, 
gene transcription increases. If hypocalcemic 
conditions persist for days, parathyroid cells start 
to replicate and became  hyperplastic.  
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 The mammalian and avian PTH genes include 
two introns, which are removed by RNA splicing 
while the fi nal mature RNA is being generated, 
that divide the gene into the three exons encod-
ing, respectively:
    1.    The 5′ untranslated region (UTR)   
   2.    The signal peptide   
   3.    The mature peptide and the 3′ UTR (Fig.  3.1 )     

 Study of parathyroid hormone-related protein 
(PTHrP) began in 1987 as the culmination of a 
40-year search for the humoral factor responsible 
for the most common paraneoplastic syndrome, 
humoral hypercalcemia of malignancy. Soon 
afterward came the discovery that PTHrP is a 
ubiquitously expressed protein that is essential 
for life. It is a classical paracrine peptide hor-
mone that undergoes extensive posttranslational 
processing before its secretion. The several 
secreted forms of PTHrP have a broad range of 
effects in many organs involving development, 
survival, and function [ 4 ]. Eight of the fi rst 
13 N-terminal amino acids of PTHrP are identi-
cal to those in PTH, and the three-dimensional 
structures of residues 13–34 of PTH and PTHrP 
are strikingly similar; this part of the two mole-
cules is responsible for the binding and activation 
of their common receptor, the PTH/PTHrP recep-
tor, type 1 (PTHR1) [ 5 ]. 

 Despite their N-terminal homology and their 
calciotropic properties, PTH and PTHrP are the 
products of separate genes located on distinct 

chromosomes. It is believed that both chromo-
somes originated from a single ancestral gene 
and were generated as distinct entities through 
tetraploidization events [ 6 ]. Human PTHrP is 
encoded by a single gene on chromosome 
12p12.1-11.2, which has regions homologous to 
chromosome 11p15. With the exception of the 
short N-terminal region, the structure of PTHrP 
is not closely related to that of PTH. The regions 
of the chromosomes containing the two hor-
mones have similar banding patterns and contain 
related genes, such as the A and B isoforms of 
lactate dehydrogenase, Sox 5 and 6, and the Hand 
K-ras genes [ 7 ,  8 ]. The PTHrP gene is more com-
plex than the human PTH gene: it consists of 9 
exons, and alternative splicing generates up to 12 
transcripts, which encode three separate isoforms 
of 139, 141, or 173 amino acids. Expression of 
the PTHrP gene is regulated by many hormones 
and growth factors. The multiple products of its 
posttranslational processing, including glycosyl-
ation, combined with the short half-life of PTHrP 
mRNA and the multiple biological activities con-
tained within PTHrP, equip it ideally to function 
as a paracrine effector with a developmental 
focus. Combined with the susceptibility of 
PTHrP to posttranslational modifi cation through 
proteolysis and the generation of several constit-
uent peptides, this increased complexity high-
lights the potential versatility of PTHrP as a 
paracrine regulator [ 9 ]. 

Signal peptideUntranslated

Pro - sequence

Exon Exon Exon

3´5´

Intron Intron

Pro - sequence
Untranslated

PTH peptide

  Fig. 3.1    Structure    of human PTH gene       
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 PTHrP is usually undetectable in the circulat-
ing blood of normal subjects, but is produced in a 
paracrine/autocrine fashion during fetal and adult 
life by a number of normal cells and tissues in 
which it is believed to play an expanding number 
of physiological roles through these autocrine/
paracrine pathways. PTHrP is synthesized and 
expressed by various tissues, such as blood vessels, 
smooth muscles, growth plate chondrocytes, 
bone, keratinocytes, mammary gland, placenta, 
kidney, pancreas, and neuronal and glial tissues 
[ 10 ].  

3.3     Regulation, Metabolism, 
and Catabolism of PTH 
and PTHrP 

 Once secreted, PTH is rapidly cleared from 
plasma through uptake principally by the liver 
and kidney, where PTH(1–84) is cleaved into 
amino- and carboxyl-terminal fragments that 
are then cleared by the kidney (see also Chap. 
  4    ). Carboxyl-terminal fragments of PTH can be 
found in the blood together with PTH(1–84), 
and they can also be secreted from the parathy-
roid glands. Peripheral metabolism of PTH does 
not appear to be regulated by physiologic states 
(high versus low calcium, etc.); hence periph-
eral metabolism of hormone, although respon-
sible for rapid clearance of secreted hormone, 
appears to be a high-capacity, metabolically 
invariant catabolic process [ 11 ]. The plasma 
concentration of PTH(1–84) is 10–55 pg/ml. 
Circulating immunoreactive PTH in normocal-
cemic subjects includes:
•    PTH(1–84)—5–30 %  
•   C-terminal fragments—70–95 %  
•   N-terminal fragments—a small percentage    

 In normocalcemic conditions, PTH(1–84) is 
about 20 % of total circulating PTH molecules; 
during hypocalcemia PTH increases to 33 % and 
decreases to 4 % under hypercalcemic condi-
tions. PTH(1–84) has a plasma half-life of 
2–4 min. In comparison, the C-terminal frag-
ments, which are cleared principally by the kid-
ney, have half-lives that are fi ve to ten times 
longer [ 12 ,  13 ]. 

 PTH secretion is mostly regulated by the level 
of serum ionized calcium and the concentration 
of 1,25-dihydroxyvitamin D3. Extracellular and 
resultant intracellular magnesium defi ciency can 
modify parathyroid function too, inhibiting PTH 
secretion, while high serum magnesium concen-
trations, well above the physiological range, also 
inhibit PTH secretion. Calcium ions interact with 
a calcium sensor, the extracellular calcium- sensing 
receptor (CaSR), a G protein-coupled receptor 
(GPCR). This receptor is a member of a distinc-
tive subfamily of the GPCR superfamily (family 
C or 3) that is characterized by large extracellular 
domains suitable for “clamping” small-molecule 
ligands. Stimulation of the receptor by high cal-
cium levels suppresses PTH secretion. The recep-
tor is expressed by the parathyroid glands and the 
calcitonin-secreting cells (C cells) of the thyroid, 
as well as in other sites such as the brain and kid-
ney. Genetic evidence has revealed a key biologic 
role for the CaSR in regulating parathyroid gland 
responsiveness to calcium, inhibiting PTH secre-
tion, PTH gene expression, and parathyroid cel-
lular proliferation as well as enhancing 
intracellular degradation of PTH(1–84). The 
CaSR also promotes renal calcium clearance. 

 Additional factors that participate in PTH reg-
ulation are the 1,25-dihydroxyvitamin D3, the 
serum phosphate concentration, and fi broblast 
growth factor 23 (FGF23). 1,25- dihydroxyvitamin 
D3 reduces expression of the PTH gene by inhib-
iting its transcription and decreases parathyroid 
cellular proliferation. 1,25-dihydroxyvitamin 
D3, in contrast, inhibits transcription of the CaSR 
gene. In contrast to 1,25-dihydroxyvitamin D, 
phosphate loading increases both expression of 
the PTH gene (by promoting stability of prepro- 
PTH mRNA) and parathyroid cellular prolifera-
tion. Recent data indicate that fi broblast growth 
factor 23 (FGF23) is also an important regulator 
of parathyroid function, suppressing both PTH 
gene expression and PTH secretion. 

 In contrast to PTH, PTHrP is a paracrine factor 
expressed throughout the body. It is a classical 
paracrine regulator that undergoes extensive 
posttranslational processing before secretion, and 
it is normally a secretory protein that enters the 
endoplasmic reticulum (ER) under the direction 
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of its signal peptide (Fig.  3.2 ) during its transla-
tion on ribosomes [ 14 ]. PTHrP is regulated by a 
variety of agents affecting its expression and 
secretion by many different cell types. An 
increase in PTHrP mRNA is observed rapidly 
and transiently following exposure of cells to 
serum, growth factors, and phorbol esters through 
mechanisms including increased gene transcrip-
tion and enhanced mRNA stability. PTHrP can be 
ligated effi ciently to multiple ubiquitin moieties. 
The ubiquitin-dependent proteolytic pathway is 
involved in regulating the metabolic stability of 
intracellular PTHrP, and this regulation may be 
an important mechanism for modulating its 
effects on cell growth and differentiation. Indeed, 
posttranslational control of PTHrP abundance 
may be defective in cancer cells [ 15 ].   

3.4     Receptor and Biological 
Effects of PTH and PTHrP 

 Because there is signifi cant homology within 
their N-termini, with 9 amino acid residues out 
of their fi rst 13 amino acids being identical, PTH 
and PTHrP can bind to and activate their com-
mon receptor, the PTHR1, with equal affi nity. 
The PTH/PTHrP receptor is a G protein-coupled 
receptor with 7 transmembrane-spanning domains 
and is encoded by a multi-exonic gene. The PTH/
PTHrP receptor or PTH1R is expressed on target 
cells for PTH and PTHrP, such as osteoblasts in 
the bone and renal tubular cells in the kidney. The 
PTH1R is also expressed at lower levels in a 
number of other tissues, in which it mediates a 
large array of nontraditional paracrine and auto-
crine functions in response to locally produced 
PTHrP. Thus, some evidence has been provided for 

the existence of a different receptor for N-terminal 
PTHrP in keratinocytes, insulinoma cells, lympho-
cytes, and squamous carcinoma cell lines. 

 PTH has multiple functions. Its main activity 
is in the fi ne regulation of the concentration of 
calcium in the blood circulation, modulating 
movement of calcium into and out of the bone 
and renal tubular reabsorption of calcium so as to 
maintain serum calcium concentration within a 
narrow range. PTH has multiple actions on the 
bone, some direct and some indirect. It acts 
directly on osteoblasts, which then activate 
 osteoblastic bone resorption and osteoclastogen-
esis. In the kidney PTH stimulates the conversion 
of 25-hydroxyvitamin D (25[OH]D) to 
1,25- dihydroxyvitamin D3 (1,25[OH]2D3), its 
active metabolite, thereby enhancing calcium 
absorption in the gut. Thus PTH acts indirectly at 
the gastrointestinal tract through its effects on the 
1-hydroxylation of 25-hydroxyvitamin D [ 16 ]. 
PTH also enhances renal calcium reabsorption 
and promotes renal phosphate excretion. 

 PTHrP can perturb calcium/phosphate homeo-
stasis and bone metabolism under pathological 
conditions, i.e., when large tumors, especially of 
the squamous cell type, lead to massive overpro-
duction of the hormone. However, normal circulat-
ing levels of PTHrP are negligible, and PTHrP is 
probably unimportant in normal calcium homeo-
stasis in human adults. However, mice with a tar-
geted disruption in the PTHrP gene show a lethal 
defect in bone development, thus demonstrating its 
importance in normal skeletal physiology. PTHrP 
is known to be a critical regulator of cellular and 
organ growth, development, migration, differentia-
tion, and survival and of epithelial calcium ion 
transport in a variety of tissues. PTHrP is normally 
produced in many tissues and acts in those sites in 

Mid-region NLSN-terminus

Signal Peptide

-5-1 19-21 88-91 96-98 102-106 13937-36

C-terminus

Thr85

  Fig. 3.2    Structure of the PTHrP protein, showing the signal peptide, amino (N)-terminus, mid region, nuclear 
localization signal ( NLS ), and carboxy (C)-terminus       
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a paracrine manner. In addition to these well-recog-
nized and classical autocrine/paracrine roles, 
PTHrP has been observed to have intracrine actions 
as well, entering the nucleus under the direction of 
a nuclear localization signal (NLS) [ 17 – 19 ]. 
Because it interacts with the type 1 PTHR, injec-
tion of PTHrP produces hypercalcemia in experi-
mental animals. There are only three identifi ed 
circumstances in which PTHrP species are present 
in the circulation and act in an endocrine manner:
    1.    Fetal life, where PTHrP regulates maternal-

to- fetal placental calcium transport.   
   2.    Lactation, in which PTHrP is produced in the 

breast and reaches the circulation under the con-
trol of the CaSR. In this situation, the breast epi-
thelial cells have been proposed to act as an 
“accessory parathyroid,” increasing PTHrP 
release when blood calcium is low and vice 
versa. The increase in PTHrP when maternal 
calcium is reduced is thought to increase blood 
calcium concentration in the mother by mobiliz-
ing calcium from the bone and reducing its loss 
in the urine. In addition to regulating PTHrP 
release, the CaSR promotes transport of calcium 
into the milk, thereby ensuring adequate calcium 
in the milk for the newborn child when maternal 
calcium is suffi cient. Thus, PTHrP is important 
not only during fetal but also newborn life for 
normal calcium and bone metabolisms.   

   3.    The humoral hypercalcemic syndrome, in 
which PTHrP is produced by tumors and stim-
ulates bone resorption.    
  There remains at present time no convincing 

evidence of biologically relevant circulating 
PTHrP levels otherwise in normal humans. The 
majority of the actions of PTHrP occur in a para-
crine/autocrine manner, particularly in fetal 
development and physiology. Several examples 
are as follows [ 20 ,  21 ]:
•    Stimulates bone resorption and also anabolic 

functions in the bone, when administered 
intermittently.  

•   Coordinates chondrocyte maturation, differen-
tiation, and apoptosis to maintain the orderly 
growth of the long bones during development; 
regulates endochondral bone development.  

•   Ensures tooth eruption, by resorption of the alve-
olar bone to allow passage of the newly devel-
oped tooth. Tooth eruption requires the spatial 

coordination of bone cell activity. Osteoclasts 
must resorb the bone overlying the crown of the 
tooth to allow it to emerge, and osteoblasts must 
form the bone at the base of the tooth to propel it 
upward out of the crypt. PTHrP is normally pro-
duced by stellate reticulum cells, and it signals to 
dental follicular cells to promote the formation of 
osteoclasts above the crypt. In the absence of 
PTHrP, these osteoclasts do not appear, eruption 
fails to occur, and the teeth become impacted.  

•   Regulation of fetal mineral homeostasis; it 
works together with PTH to support the nor-
mal fetal blood calcium concentration.  

•   During lactation embryonic mammary develop-
ment leading to nipple formation and branching 
morphogenesis. PTHrP might also participate in 
adolescent ductal morpho genesis .   

•   May modulate implantation of the fertilized 
ovum and retention of the embryo as well as 
relaxing the uterus and vascular smooth mus-
cle; it inhibits oxytocin-stimulated activity 
during pregnancy and prevents preterm labor.  

•   Modulates trophoblastic growth and 
differentiation.  

•   During lactation induced by prolactin, it is 
released into the mother’s bloodstream from 
the breast epithelial cells, as noted above, where 
it promotes calcium transport from blood to 
milk, increases mammary blood fl ow, and regu-
lates maternal and neonate Ca-Pi metabolism.  

•   Acts as a vasodilator in resistance vessels, 
decreases vascular tone and blood pressure, 
and is believed to regulate regional and sys-
temic hemodynamics.  

•   Regulates smooth muscle cell proliferation.  
•   PTHrP secreted in response to vasoconstrictor 

and mechanical stretching on smooth muscle 
cell mediates myorelaxant effects in a number 
of smooth muscle-containing organs. It also 
decreases vascular tone and blood pressure.  

•   Regulates keratinocyte differentiation, delaying 
terminal differentiation of hair follicles, epider-
mal keratinocytes, keratinization, and apopto-
sis. Decreases the number of hair follicles 
through epithelial-mesenchymal interactions.  

•   Delays beta cell apoptotic death, increases 
proliferation of human beta cells in the pan-
creas, and improves glucose-stimulated insu-
lin secretion.        

3 PTH and PTH-Related Peptides
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4.1             Introduction 

    The development of three generations of PTH 
assays has been necessary to understand the 
diversity of circulating molecular forms of 
PTH. The fi rst PTH radioimmunoassay was 
described in 1963 [ 1 ]; the second-generation 
PTH immunoradiometric assay (IRMA) was 
described in 1987 [ 2 ], 24 years later; and the 
third-generation PTH IRMA was described in 
1999 [ 3 ], 12 years later. Each generation has con-
tributed to the description of circulating PTH 
immunoheterogeneity. 

 The fi rst generation of PTH RIA used multiva-
lent antibodies raised against parathyroid extracts 
of various species, more or less purifi ed PTH(1–
84) preparations, and eventually synthetic frag-
ments representative of various regions of the PTH 
molecule. Epitopes recognized by these assays 
were mid-carboxyl-terminal, carboxyl- terminal, 
and rarely amino-terminal. Tracers evolved from 
 125 I-bPTH(1–84) to region-specifi c  125 I-synthetic 
fragments in the most sophisticated assays [ 4 ,  5 ]. 
These assays were initially responsible for the 
description of circulating PTH immunoheteroge-
neity [ 6 ,  7 ]. PTH composition in the basal state 
was demonstrated to be 20 % PTH(1–84) and 

80 %  carboxyl-terminal  fragments missing an 
amino-terminal structure [ 8 ]. In rats injected with 
 125 I-bPTH(1–84), these fragments started their 
structure at positions 34, 37, 40, and 43 [ 8 ] but at 
positions 34, 37, 38, and 45 in man [ 9 ]. 

 The second generation of PTH IRMA became 
available in 1987 [ 2 ]. It was commercialized by 
Nichols Institute. It uses a carboxyl-terminal anti-
body linked to a solid phase and a labeled amino-
terminal antibody to reveal hPTH(1–84). Initially 
believed to react only with hPTH(1–84), this assay 
was demonstrated to also react with large car-
boxyl-terminal fragments possessing an amino-
terminal structure, called non-(1–84) PTH 
fragments [ 10 ]. Their composition started at 
amino acids 4, 7, 10, and 15 with the major frag-
ment starting at position 7 [ 11 ]. They represented 
20 % of the immunoreactivity detected by a 
second- generation PTH assay but only 5 % of the 
immunoreactivity detected by a fi rst-generation 
assay [ 12 ]. HPLC had to be used to separate 
PTH(1–84) from these C-fragments [ 12 ]. Because 
these fragments represent 5 % of circulating PTH, 
one has to reduce the amount of hPTH(1–84) esti-
mated to be present in the sample to 15–20 % [ 12 ]. 

 The fi rst third-generation PTH assay was 
described in 1999 [ 3 ]. This assay was supposed 
to react only with hPTH(1–84) until we demon-
strated that it also reacts with N-PTH [ 13 ]. 
N-PTH is believed to be phosphorylated on ser-
ine 17 [ 14 ]. It represents 7–8 % of circulating 
PTH detected by a second-generation assay with 
a 13–20 epitope [ 12 ] but only 2 % of circulating 
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PTH detected by a fi rst-generation assay [ 12 ]. 
Overproduction of N-PTH has been described in 
primary and secondary hyperparathyroidism as 
well as in parathyroid carcinoma [ 15 – 21 ].  

4.2     Origin of Circulating PTH 
Molecular Forms 

 PTH molecular forms are generated in part by the 
peripheral metabolism of PTH(1–84) in the liver 
[ 22 ,  23 ] or directly secreted by the parathyroid 
glands [ 7 ,  10 ,  23 ]. The amount of PrePro PTH 
mRNA controls PTH(1–84) synthesis [ 24 ]. Both 
1,25(OH) 2 D and calcium concentration exert a 
negative control on the amount of PrePro PTH 
mRNA, while phosphate concentration exerts a 
positive control [ 25 ,  26 ]. 1,25(OH) 2 D acts though 
the vitamin D receptor presents in the parathyroid 
cells [ 27 ], while calcium and phosphate infl uence 
proteins that either reduce or enhance the stability 
of PrePro PTH mRNA, increasing or decreasing, 
respectively, the level of PrePro PTH mRNA [ 26 ]. 

 The fate of newly synthesized PTH(1–84) is 
infl uenced by calcium concentration. In the 
presence of hypocalcemia, most of PTH(1–84) 
remains intact, but hypercalcemia infl uences its 
degradation into fragments [ 28 ]. In one degra-
dative pathway, secretory granules fuse with 
lysosomes and cause complete PTH degradation 
[ 28 ]. In the second, they are degraded by intra-
vesicular cathepsins B and D to generate C-PTH 
fragments [ 29 ]. 

 Small and large C-PTH fragments are gener-
ated by the liver from PTH(1–84) [ 8 ,  23 ] in a 
calcium-independent manner [ 30 ]. Kidneys 
degrade fi ltered PTH(1–84) and C-PTH frag-
ments [ 22 ]. This results in the accumulation of 
small and large C-PTH fragments in terminal 
renal failure [ 10 ,  31 ]. 

 In the parathyroid venous blood in calves, 
plasma calcium infl uences the relative proportion 
of PTH(1–84) and of C-fragments. Hypocalcemia 
leads to mainly PTH(1–84) with few C-PTH frag-
ments. Hypercalcemia on the other hand decreases 
PTH secretion and favors a high C-PTH frag-
ment/PTH(1–84) ratio [ 32 ]. Again in calves, a 
sigmoidal relationship exists between calcium 

and parathyroid hormone secretion rate [ 33 ], and 
there is a non-suppressible fraction of PTH secre-
tion mainly composed of C-PTH fragments [ 34 ]. 

 Dogs maintained on a low calcium-vitamin 
D-defi cient diet increased PTH(1–84) secretion 
relative to C-PTH fragments [ 35 ]. Over 2 years, 
they developed a fi vefold increase in their para-
thyroid function with a decrease in their C-PTH 
fragments/PTH(1–84) ratio [ 36 ] with a slight 
decrease in the C-PTH fragments/PTH(1–84) 
ratio. When maintained on a calcium-suffi cient 
diet for 1 month, which was supplemented with 
1,25(OH) 2 D IV 0.25 μg twice a day, serum cal-
cium became normal, 1,25(OH) 2 D remained ele-
vated, and I-PTH decreased to a normal value, 
while the C-PTH/I-PTH ratio remained elevated 
at 14.8 [ 36 ]. Over the next 22 months, the situa-
tion remained the same with a normal diet sup-
plemented with vitamin D. A decrease in the set 
point of PTH regulation by calcium was also 
observed with a very high C-PTH fragment/
PTH(1–84) ratio of 11.4 [ 36 ]. Dogs injected with 
small doses of 1,25(OH) 2 D, which had no infl u-
ence on their serum calcium over 1 month, 
decreased I-PTH by 40 % without any change in 
the C-PTH levels resulting in high C-PTH frag-
ments/PTH(1–84) ratio [ 37 ]. One month after 
removing half the parathyroid glands of the dogs, 
we observed that I-PTH was decreased less than 
C-PTH fragments, reducing the C-PTH frag-
ments/PTH(1–84) ratio [ 37 ].  

4.3     Molecular Forms of PTH 
in Specifi c Clinical 
Conditions 

4.3.1     Primary Hyperparathyroidism 

 A set-point error in PTH secretion that increases 
the serum calcium level at which PTH secretion 
is suppressed characterizes primary hyperpara-
thyroidism [ 38 ]. The exact cause of this “right-
ward” shift remains uncertain. The evolution of 
the C-PTH/I-PTH ratio under hypocalcemia or 
hypercalcemia remains normal but at a higher 
set-point level [ 38 ]. In some cases, the set-point 
error is related to a decreased expression of the 

P. D’Amour



27

extracellular calcium-sensing receptor [ 39 ], 
while rare cases have been reported in which the 
set point is normal and PTH secretion is increased 
but is limited to the non-suppressible fraction, 
with a high C-PTH/I-PTH ratio similar to cases 
of non-parathyroid hypercalcemia [ 40 ]. Low cir-
culating levels of 25(OH)D can be found in 
patients with primary hyperparathyroidism [ 41 –
 49 ] and have been associated with larger parathy-
roid tumors [ 50 ]. This is explained both by an 
inadequate supply of vitamin D [ 51 ] and 
increased degradation of 25(OH)D related to the 
stimulatory effect of hypercalcemia and high 
1,25(OH) 2 D levels on 24-hydroxylase activity. 
Histomorphometric features of the bone are 
infl uenced by vitamin D defi ciency in primary 
hyperparathyroidism [ 52 ], and vitamin D reple-
tion increases bone mineral density [ 53 ].  

4.3.2     Hypoparathyroidism 

 The principal causes of hypoparathyroidism are 
illustrated in Table  4.1  (see also Chap.   14    ). 
Hypoparathyroidism is associated with increased 
bone mineral density at the lumbar spine, hip, 
and radius sites [ 54 – 57 ]. Bone biopsy histomor-
phometric analysis shows greater cancellous 
bone volume, trabecular width, and cortical width 
compared with age- and sex-matched controls 
[ 55 ]. Greater bone surface density, trabecular 
thickness, trabecular number, and connectivity 
density are observed in microcomputed tomogra-
phy in comparison with matched controls [ 58 ]. 
Markers of bone turnover are in the lower half of 
the normal range or frankly low [ 58 ]. Dynamic 
skeletal indices, including mineralizing surface 
and bone function, are profoundly suppressed in 
hypoparathyroid subjects on double-tetracycline 
labeling of biopsy specimens [ 59 ,  60 ]. 
Postsurgical hypoparathyroidism is associated 
with an increased risk of renal complications and 
hospitalizations related to seizures but not with 
an increased risk of cardiac arrhythmias or car-
diovascular disease or death [ 61 ] (see also Chap. 
  22    ). PTH assays performed during surgery can 
predict hypoparathyroidism after surgery even in 
patients with MEN-type 1 [ 62 – 65 ].

   Results of cryopreserved parathyroid auto-
grafts have been disappointing in one study [ 66 ] 
and slightly better in another study [ 67 ]. Various 
forms of therapy have been used to treat hypo-
parathyroidism mostly initially based on admin-
istration of 1,25(OH) 2 D and calcium [ 65 ]. But 
more recently, both PTH(1–34) [ 68 – 71 ] and 
PTH(1–84) [ 59 ,  60 ,  72 – 75 ] have been used to 
treat primary hypoparathyroidism and have 
induced marked changes in bone turnover and 
structure [ 59 ,  73 ].  

4.3.3     Non-parathyroid 
Hypercalcemia 

 Normocalcemic individuals made acutely hyper-
calcemic have an I-PTH level similar to patients 
with chronic non-parathyroid hypercalcemia but 
maintain an elevated C-PTH level in the absence 
of renal failure [ 76 ]. They have an elevated 
C-PTH/I-PTH ratio which is further increased 
when renal failure is present. This is related to an 
adaptation to chronic hypercalcemia with the 
production of more C-PTH fragments. It also 
explains the overlap of C-PTH values between 

   Table 4.1    Principal causes of hypoparathyroidism      

  Low-PTH-level hypoparathyroidism  
 Parathyroid destruction 
   Surgery 
   Autoimmune (isolated or polyglandular) 
   Cervical irradiation 
   Infi ltration by metastasis or systemic diseases 
   Sarcoidosis, amyloidosis, hemochromatosis, 

Wilson’s disease, thalassemia 
 Reduced parathyroid function 
   Hypomagnesemia 
   PTH gene defects 
  Activating calcium-sensing receptor mutations  
 Parathyroid agenesis 
   DiGeorge syndrome 
   Kenny-Caffey syndrome 
   Isolated X-linked hypoparathyroidism 
   Mitochondrial neuropathies 
 High-PTH-level hypoparathyroidism 
   Pseudohypoparathyroidism 
   Hypomagnesemia 
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mild primary hyperparathyroidism and non- 
parathyroid hypercalcemia with the majority of 
C-PTH assays [ 76 ,  77 ].  

4.3.4     Secondary 
Hyperparathyroidism Related 
to Vitamin D Defi ciency 

 Kawahara et al. demonstrated that 25(OH)D and 
not 1,25(OH) 2 D were involved in the negative 
regulation of PTH mRNA via the existence in the 
PT-r parathyroid cell line of 1α-hydroxylase 
activity [ 78 ]. Björkman et al. demonstrated that 
the response of PTH to vitamin D supplementa-
tion was not only determined by the baseline 
PTH levels and change in the vitamin D status 
but also by age and mobility of the patient [ 79 ]. 
PTH decreases quite linearly during vitamin D 
supplementation [ 80 ]. This is in accord with sev-
eral papers in the literature [ 81 ,  82 ].  

4.3.5     Renal Failure 

 An accumulation of small and large carboxyl- 
terminal fragments is observed as renal failure 
progresses [ 10 ,  23 ,  31 ]. The kidney has a major 
role in C-PTH fragments disposal and this is 
absent in end-stage renal disease [ 8 ]. Small and 
large carboxyl-terminal fragments represent 95 % 
of circulating PTH in end-stage renal disease [ 10 ]. 
The composition of PTH changes as renal failure 
progresses: in hypocalcemic patients with severe 
secondary hyperparathyroidism, the C-PTH frag-
ments/PTH(1–84) ratio is lower than it is in 
patients with mild secondary hyperparathyroid-
ism, refl ecting an adaptation to hypocalcemia [ 83 ] 
even in advanced renal failure [ 10 ]. Bone turnover 
was assessed by the PTH(1–84)/large C-PTH 
fragments ratio in patients with end- stage renal 
disease with success in one study [ 84 ] but without 
success in another [ 85 ]. In this last study, the lack 
of this relationship could be ascribed to 4 patients 
out of 34 [ 85 ]. A variation of the PTH(1–84)/large 
C-PTH fragments ratio has been observed as a 
function of the assays selected [ 86 ]. A decreased 
biological activity of PTH(1–84) has been linked 

to the accumulation of C-PTH fragments in renal 
failure [ 87 ]. An identical performance of second- 
and third- generation PTH assays has been 
observed in the diagnosis of renal failure [ 88 ]. 

 The Allegro intact PTH assay of Nichols 
Institute was used to establish the KIDOQI clini-
cal practice guidelines for PTH values in renal 
failure patients [ 89 ]. This assay is no longer 
available and has to be replaced by other assays. 
Souberbielle has demonstrated that the Elecsys 
PTH assay of second generation gave values very 
similar to the Nichols Allegro intact PTH assay 
over a large range of values [ 90 ].   

    Conclusion 

 Three generations of PTH assays have been 
used to characterize circulating molecular 
forms of PTH with success. Molecular forms 
described included small C-PTH fragments 
missing an N-structure with fi rst-generation 
PTH assays [ 8 ], while non-(1–84) PTH frag-
ments or large carboxyl- terminal fragments 
with a partial N-structure were described with 
the second- generation PTH assays [ 10 ,  11 ], 
and fi nally N-PTH, a phosphorylated form of 
PTH(1–84) with third-generation PTH assays 
[ 13 ].     
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5.1             Introduction 

 The chapter addresses the control of PTH secre-
tion by extracellular Ca 2+  (Ca 2+  o ), which is a criti-
cal component of the homeostatic system 
maintaining nearly constant levels of Ca 2+  o  and 
phosphate. It will cover not only the control of the 
secretion of preformed PTH by Ca 2+  o  but also the 
regulation of other parameters of parathyroid 
function contributing to the overall secretory 
response to changes in Ca 2+  o . These are listed in 
Table  5.1  and include above and beyond rapid 
Ca 2+  o -induced changes in the release of stored 
PTH, its intracellular degradation, the biosynthe-
sis of full-length PTH [PTH(1–84)], parathyroid 
cellular proliferation, and, perhaps, apoptosis. In 
aggregate, these determine the overall, minute-to- 
minute rate of PTH secretion from the total mass 
of parathyroid cells, which is the rate of secretion 
from each parathyroid cell summed over the total 
parathyroid cellular mass in any given individual.

   In addition to Ca 2+  o , phosphate, and 1,25 dihy-
droxyvitamin D 3  [1,25(OH) 2 D 3 ], fi broblast 
growth factor 23 (FGF23) also regulate parathy-
roid function (for reviews, see [ 1 – 4 ]), with 

 phosphate stimulating it, while 1,25(OH) 2 D 3  and 
FGF23 inhibit it. The regulatory roles of these 
three factors are covered in Chaps.   6     and   8     and 
will only be alluded to briefl y here.  

5.2     Role of PTH in Maintaining 
Mineral Ion Homeostasis 
In Vivo 

 Figures  5.1  and  5.2  show how PTH contributes to 
regulating Ca 2+  and phosphate homeostasis. Ca 2+  o  
is kept within a narrow range of ± ~1–2 % of its 
normal level in any given person, even though the 
normal level of Ca 2+  o  in the population as a whole 
is ~8.5–10.5 mg/dl, that is, ± ~10 % [ 6 ]. The 
normal level of serum phosphorus varies over a 
broader range of ~2.5–4.5 mg/dl (e.g., ± ~30 %). 
Deviation of the levels of these two ions substan-
tially above or below their normal limits can have 
severe clinical sequelae, as detailed elsewhere 
in this volume. Therefore, a homeostatic system 
maintaining their circulating levels within their 
respective normal ranges is critical.   
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     Table 5.1    Parameters modulating the overall secretory 
rate of normal parathyroid glands   

 1.  Alterations in the minute-to-minute secretion of 
preformed PTH 

 2. Alterations in the rate of PTH degradation 
 3. Alterations in preproPTH gene expression 
 4. Alterations in parathyroid cellular proliferation 
 5. Alterations in apoptosis of parathyroid cells 
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 Figure  5.1  demonstrates the homeostatic 
response to hypocalcemia. A key component is 
the parathyroid cell’s capacity to sense small 
(~1–2 %) alterations in Ca 2+  o  from its normal 
concentration and to respond with changes in 
PTH secretion that restore normocalcemia. The 
extraordinary sensitivity of the parathyroid cell to 
alterations in Ca 2+  o  derives from the steep inverse 
sigmoidal relationship between PTH release and 

Ca 2+  o , with slight changes in Ca 2+  o  producing 
large alterations in PTH secretion (Fig.  5.2 ).  

 PTH is a key Ca 2+  o -elevating hormone, as is 
1,25(OH)  2 D 3 . Four actions of PTH restore normo-
calcemia in the defense against hypocalcemia 
[ 5 ,  6 ,  8 ] (for review, see Chaps.   8     and   11    ): (1) PTH 
increases renal Ca 2+  reabsorption in both the 
 cortical thick ascending limb of Henle’s loop and 
the distal convoluted tubule of the kidney. (2) 

  Fig. 5.1    Schematic representation of the major hormones 
and tissues participating in extracellular Ca 2+  (Ca 2+  o ) homeo-
stasis. When defending against hypocalcemia—as illus-
trated here—parathyroid chief cells secrete more PTH, 
which modulates renal function so as to promote phosphatu-
ria, enhance Ca 2+  reabsorption, and increase 1,25(OH) 2 D 3  

synthesis. The latter enhances intestinal Ca 2+  and phosphate 
absorption. 1,25(OH) 2 D 3  and PTH act jointly to promote net 
release of skeletal Ca 2+ . Increased movement of Ca 2+  into the 
extracellular fl uid (ECF) from bone and intestine, combined 
with diminished Ca 2+  excretion, serve to normalize Ca 2+  o . 
See text for details (From Shoback [ 5 ], with permission)       
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It enhances  synthesis of 1,25(OH) 2 D 3  from 
25(OH)D 3  in the proximal tubule, which then aug-
ments intestinal Ca 2+  absorption and phosphate 
through separate transport systems. (3) It increases 
net Ca 2+  and phosphate release from bone. PTH’s 
actions on bone are thought to involve alterations 
in bone turnover (i.e., reductions in bone forma-
tion and/or increases in bone resorption) and/or 
mobilization of a pool of soluble mineral ions at 
the bone surface [ 9 ,  10 ]. (4) Finally, PTH pro-
motes phosphaturia, an action facilitating excre-
tion of any excess phosphate originating from 
1,25(OH) 2 D 3 -induced GI absorption and/or PTH- 
or 1,25(OH) 2 D 3 -stimulated release from the bone. 
The hyper- and hypophosphatemia in patients with 
hypo- or hyperparathyroidism [ 5 ,  11 ], respec-
tively, document PTH’s importance in maintaining 
phosphate homeostasis, notwithstanding the key 
roles that FGF23 plays in phosphate and to a lesser 
extent Ca 2+  o  homeostasis (see below). 

 If normocalcemia is not restored through the 
series of events just noted, the parathyroid glands 
have several adaptive responses to hypocalcemia 
that enhance their secretory capacity beyond just 
the rapid secretion of preformed PTH, which lasts 

for 1–2 h [ 12 ,  13 ]. Table  5.1  and Fig.  5.3  list these 
responses and depict the approximate time courses 
of their contributions to the overall secretory 
response. The initial release of stored, preformed 
PTH occurs within seconds to minutes. It is fol-
lowed by reduced intracellular degradation of PTH 
starting within 20 min [ 15 – 18 ], which increases the 
cellular content of PTH(1–84) [ 15 ]. A rise in PTH 
mRNA, occurring as early as an hour or less and 
lasting for weeks or longer, then ensues [ 19 ]. 
Finally, an increase in parathyroid cellular prolif-
eration takes place within ~2 days and can persist 
indefi nitely [ 6 ,  19 – 21 ]. The time courses of these 
various adaptive changes, lasting from seconds to 
years or more, ensure both immediate and sus-
tained responses, without the presence of any “win-
dows” of time that lack an enhanced secretory rate. 
For example, reduced degradation of PTH occurs 
prior to the depletion of preformed hormone, 
ensuring that more PTH(1–84) is available for 
secretion until expression of the preproPTH gene 
increases and, later, stimulation of parathyroid cel-
lular proliferation commences.  

 Over the past 10 years, it has become clear that 
an additional homeostatic system is essential for 
preserving phosphate homeostasis and, to some 
extent, Ca 2+  o  homeostasis. A central element is 
fi broblast growth factor 23 (FGF23), a phosphatu-
ric hormone secreted predominantly by osteocytes 
[ 22 ] (See Chap.   8    ). Figure  5.4  depicts the principal 
ways in which FGF23 contributes to phosphate 
homeostasis. Note the homeostatic events occur-
ring upon phosphate loading, which enhances 
FGF23 release. FGF23, in turn, acts to normalize 
the serum phosphate concentration, primarily via 
its powerful phosphaturic effect [ 1 ]. FGF23 also 
suppresses renal production of 1,25(OH) 2 D 3 , 
thereby diminishing release and absorption of 
phosphate from the bone and intestine, respec-
tively. Because 1,25(OH) 2 D 3  increases FGF23, 
there is a negative feedback loop, whereby FGF23 
reduces 1,25(OH) 2 D 3  synthesis, which decreases 
FGF23 production further. Since both increased 
serum phosphate and reduced 1,25(OH) 2 D 3  stimu-
late parathyroid function [ 23 ], the resulting 
increase in circulating PTH, combined with a rise 
in FGF23, further stimulates renal phosphate loss. 
Note in Fig.  5.4  that every effect of FGF23, phos-
phate, PTH, and 1,25(OH) 2 D 3  on one another con-
stitutes negative feedback loops. For example, 
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  Fig. 5.2    Steep inverse sigmoidal curve relating Ca 2+  o  and 
PTH in vivo. Serum PTH was measured by immunoradio-
metric assay while hyper- or hypocalcemia was induced in 
normal subjects by infusing calcium or ethylenediaminetet-
raacetic acid (EDTA), respectively. The steep slope of this 
relationship, which is a key component for maintaining Ca 2+  o  
within a very narrow range in normal persons in vivo, is illus-
trated, along with the set-point (the serum Ca 2+  that produces 
half of the maximal suppression of PTH), which participates 
in “setting” the serum Ca 2+  concentration. Two further 
parameters describing the curve (not shown) are the minimal 
and maximal levels of PTH secretion at high and low serum 
Ca 2+ , respectively. See text for details (Reproduced in modi-
fi ed form with permission from Brown [ 7 ])       
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hyperphosphatemia enhances both FGF23 and 
PTH release [ 4 ,  20 ,  24 ], and both promote hypo-
phosphatemia via their phosphaturic effects. The 
resultant lowering in phosphate then decreases 
production of both PTH and FGF23. In consider-
ing the regulation of parathyroid function by Ca 2+  o , 
the complex interactions between serum Ca 2+ , 
phosphate, PTH, FGF23, and 1,25(OH) 2 D 3  should 
be borne in mind to appreciate more fully the over-
all control of mineral ion homeostasis, a topic cov-
ered in recent reviews [ 1 ,  4 ,  25 ] and in Chap.   8    .  

5.3     Mechanisms That Determine 
the Overall Rate of PTH 
Secretion 

5.3.1     Production of PTH-Containing 
Secretory Vesicles 

 PTH is released by exocytosis of PTH-containing 
secretory vesicles. The overall regulation of 
PTH(1–84) secretion from each parathyroid cell 

PO4

FGF23 PTH

1,25 (OH)2D3

  Fig. 5.4    Diagram showing the interactions that take place 
between extracellular phosphate and the hormones regu-
lating it as part of the maintenance of phosphate homeo-
stasis.  Red arrows  show actions that elevate the levels of 
the hormones shown or of extracellular phosphate.  Black 
lines  ending in perpendicular bars illustrate actions that 
reduce the levels of the indicated hormones or phosphate. 
This phosphate-regulating homoeostatic system interacts 
with that controlling Ca 2+  o  homeostasis through direct 
effects of PTH on renal excretion of phosphate, synthesis 
of 1,25(OH) 2 D 3  and of FGF23, the direct actions of 
FGF23 on PTH and 1,25(OH) 2 D 3 , and the direct effect of 
1,25(OH) 2 D 3  on PTH. See text for details       

  Fig. 5.3    Schematic timeline for the sequence of events 
enabling progressive elevations in the secretory rate of 
PTH in response to hypocalcemia over a time frame rang-
ing from seconds to months or years. There is an initial 
increase in the secretion of stored PTH, which wanes over 
~90 minutes. Beginning at around 20-30 mins, there is a 
reduction in intracellular degradation of PTH, which sus-
tains PTH secretion at a level above baseline from 90 
mins until there are further increases in hormone secretion 

resulting from increased synthesis owing to an elevation 
in preproPTH mRNA and stimulation of parathyroid cel-
lular proliferation. Of the other key regulators of parathy-
roid function, increases in phosphate and decreases in 
1,25(OH)2D3 both raise the level of preproPTH and 
enhance parathyroid proliferation, while a decrease in 
FGF23 increases PTH secretion within minutes and ele-
vates the level of preproPTH within ~40 minutes to an 
hour. See text for details        
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involves alterations in the synthesis and packag-
ing of PTH in these vesicles, the degradation of 
PTH within them, the rate of release of PTH via 
exocytosis, and, to some extent, degradation of 
these vesicles prior to their secretion. Therefore, 
a description of how PTH is produced, packaged, 
and then secreted or, alternatively, broken down 
is the focus of the rest of this chapter. 

 After synthesis of preproPTH messenger 
RNA (mRNA) and its transport into the cyto-
plasm, the nascent peptide chain of preproPTH 
is directed into the lumen of the rough endoplas-
mic reticulum (ER) by the pre-segment of the 
preproPTH peptide with concomitant cleavage 
of the pre-segment over 10–15 min, leaving 
proPTH within the ER [ 18 ,  26 ]. ProPTH transits 
the Golgi within 5–10 min and is converted to 
PTH by the enzyme furin. The newly formed 
PTH likely resides within the so-called imma-
ture, prosecretory granules, which lack the dense 
core of the mature secretory granules [ 26 ]. 
Newly produced PTH is available for secretion 
within 20–30 min after its initial synthesis as 
preproPTH. Newly produced PTH has three pos-
sible fates—secretion, degradation, or conver-
sion to a storage pool of PTH [ 18 ]. Stored PTH 
presumably resides in dense core secretory gran-
ules. Conversion to the storage pool occurs with 
a t 1/2  of several hours. Stored PTH can remain in 
secretory granules or, like newly formed PTH, 
be secreted or degraded. Seventy to eighty per-
cent of initially synthesized PTH is degraded—a 
seemingly wasteful scenario [ 18 ]. However, as 
noted later in the context of the regulation of 
overall PTH production, modulation of PTH(1–
84) degradation and associated changes in intact 
hormone secretion provide an effective regula-
tory mechanism.  

 What controls PTH secretion from the newly 
synthesized and stored pools of PTH? The use 
of dispersed parathyroid cells [ 27 ,  28 ] made it 
possible to investigate cellular mechanisms 
underlying the control of PTH secretion by 
Ca 2+  o  and other factors. These studies showed 
that agents activating adenylate cyclase, such as 
beta- adrenergic agonists, promote PTH release 
solely from the storage pool [ 17 ,  29 ]. Therefore, 
the release of PTH by such agents is self-limited 
in vivo and in vitro, lasting for 20–30 min [ 13 , 

 16 ]. Inducing hypocalcemia in vivo promotes a 
substantial, four- to sevenfold increase in the 
rate of PTH secretion lasting ~1–2 h [ 30 ]. The 
secretory rate then decreases to a lower level 
~2–3- fold above the basal rate [ 30 ] (Fig.  5.3 ). 
Inducing hypocalcemia, in contrast to agents 
activating adenylate cyclase, mobilizes PTH 
from both the newly synthesized and stored 
pools [ 17 ]. 

 The remainder of this chapter addresses in 
more detail the mechanisms controlling the 
 overall rate of PTH secretion in response to 
changes in Ca 2+  o , its principal physiological 
regulator, and how this is matched to the body’s 
physiological needs. The cellular and molecu-
lar mechanisms underlying the adaptive 
responses to changes in Ca 2+  o  are depicted in 
Table  5.1  and are discussed in the temporal 
order in which they are activated in response to 
hypocalcemia.  

5.3.2     The Physiology of Ca 2+  o - 

Regulated  PTH Secretion 

 There is a steep inverse sigmoidal relationship 
between Ca 2+  o  and PTH release that can be 
described by four parameters, the maximal and 
minimal rates of PTH secretion, the midpoint or 
“set point” of the curve, and its slope [ 31 ] 
(Fig.  5.2 ). The set point is related to the level at 
which Ca 2+  o  is set in vivo, although the latter 
tends to be at a level of Ca 2+  o  where PTH secre-
tion is ~25 % of maximal rather than at the set 
point per se [ 31 ]. This gives the parathyroid cell a 
substantial secretory reserve with which to 
respond to a hypocalcemic stress. A rightward 
shift in set point is a key contributor to the hyper-
calcemia in PTH-dependent hypercalcemia [ 31 ]. 
Conversely, a leftward shift causes the parathy-
roid cell to be overly sensitive to Ca 2+ , as, for 
example, in hypoparathyroidism caused by acti-
vating mutations in the calcium-sensing receptor 
(CaSR) or in its downstream G protein (Gα 11 ) 
[ 6 ,  32 ]. The curve’s steep slope assures large 
changes in PTH in response to small alterations 
in Ca 2+  o , thereby contributing importantly to the 
narrow range within which Ca 2+  o  is maintained 
in vivo.   
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5.4     Mechanisms by Which Ca 2+  o  
Regulates the Diverse 
Aspects of Parathyroid 
Function That Determine 
the Overall Rate of PTH 
Release 

5.4.1     Molecular Basis 
for Ca 2+  o -Sensing 

 The CaSR is the molecular mechanism underly-
ing most, if not all, of the effects of Ca 2+  o  on the 
various aspects of parathyroid function detailed 
below [ 33 – 35 ]. Some appreciation of the struc-
ture and function of the CaSR and how it func-
tions is essential for this discussion. The CaSR 
was fi rst isolated from bovine parathyroid in 
1993 [ 36 ]. Before it was cloned, substantial 
indirect evidence supported the concept that a 
G protein-coupled receptor mediated some, if 
not all, of the actions of Ca 2+  o  on the parathy-
roid [ 7 ,  37 ,  38 ]. Exposing bovine parathyroid 
cells to elevated Ca 2+  o , for example, activates 
phospholipase C (PLC) increasing the cytosolic 
calcium concentration (Ca 2+  i ) both via calcium 
release from intracellular stores (via IP 3  pro-
duced by PLC) and infl ux of extracellular Ca 2+  
[ 35 ,  39 ]. These responses closely resemble those 
produced by known G protein-coupled receptors 
(GPCRs) stimulating PLC via the pertussis toxin- 
insensitive G proteins, G q  and G 11 . Furthermore, 
high-Ca 2+  o  concentrations evoke a pertussis 
toxin-sensitive inhibition of adenylate cyclase, 
resembling the actions of other GPCRs inhibiting 
adenylate cyclase through the inhibitory G pro-
tein, G i  [ 7 ,  40 ]. This evidence prompted the use 
of expression cloning in  Xenopus laevis  oocytes 
to isolate the CaSR [ 36 ], which is a member of 
the family C GPCRs [ 41 ]. This  family includes, 
in addition to the CaSR, 8 metabotropic gluta-
mate receptors (mGluRs), 2 GABA B   receptors, 
and receptors for sweet substances, odorants, and 
pheromones [ 41 ]. The human CaSR’s predicted 
structure features a large, 612 amino acid extra-
cellular domain (ECD) [ 42 ], a 250 amino acid 
transmembrane domain (TMD) containing the 7 
transmembrane helices that are characteristic of 
the GPCRs, and, lastly, a 216 amino acid carboxy 
(C)-terminal tail (C-tail). 

 The cell surface CaSR functions as a dimer. 
The two monomers are linked by non-covalent 
hydrophobic interactions as well as by intermo-
lecular disulfi de bonds involving cysteines 129 
and 131 of each monomer [ 43 ,  44 ]. The cell sur-
face CaSR desensitizes relatively little after pro-
longed or repeated exposure to high Ca 2+  o , at least 
in parathyroid cells. A recent study demonstrated 
a lack of a Ca 2+  o -induced increase in a compara-
tively rapid baseline rate of internalization of the 
CaSR (T 1/2  ~ 15 min) [ 45 ]. In contrast, a second 
documented a signifi cant increase in internaliza-
tion at high Ca 2+  o , a discrepancy not yet resolved [ 46 ]. 
Notably, both studies used CaSR-transfected 
HEK293 cells, which may or may not mimic faith-
fully the parathyroid cell per se. Regarding con-
trol of the CaSR’s forward traffi cking to the cell 
membrane, the fi rst study noted above described 
a novel mechanism, called ADIS ( A gonist- D riven 
 I nsertional  S ignaling) that produces agonist-
dependent traffi cking of intracellular CaSR to, 
rather than away from, the cell surface at high 
Ca 2+  o , thereby increasing the level of cell surface 
CaSR [ 45 ]. This mechanism has been postulated 
to ensure the CaSR’s persistent expression on the 
cell surface, thus enabling it to continuously moni-
tor and respond to changes in Ca 2+  o . 

 Molecular modeling strongly suggests that 
the CaSR’s monomeric ECD forms a bilobed, 
Venus fl ytrap (VFT)-like structure with a crev-
ice between the lobes [ 47 ,  48 ] (Fig.  5.5 ). The 
CaSR has marked positive cooperativity in bind-
ing Ca 2+  o  presumably owing to its several Ca 2+  o  
binding sites on each monomer [ 48 ]. The best- 
characterized Ca 2+  o  binding site lies between 
the two lobes of each VFT [ 48 ,  49 ]. Based on 
the known structures of glutamate-free and 
glutamate- bound mGluR ECDs, the cleft in the 
CaSR ECD is thought to open without agonist 
and to close upon binding Ca 2+  o . Thus, Ca 2+  o  
binding likely assists the transition of the inactive 
CaSR ECD to its active conformation, which then 
causes conformational changes of the CaSR’s 
TMD and intracellular domains that likely ini-
tiate signal transduction, but remain to be elu-
cidated. In contrast to Ca 2+  o , positive allosteric 
activators of the CaSR, for example, cinacalcet, 
which are elaborated upon later, bind within the 
CaSR’s TMD. 
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 The CaSR, after activation by Ca 2+  o , stimu-
lates the G proteins, G q/11 , G i , and G 12/13 , which 
activate PLC, inhibit adenylate cyclase, and stim-
ulate Rho kinase, respectively [ 35 ,  39 ]. In addi-
tion to directly inhibiting adenylate cyclase via 
G i , the CaSR can also decrease cAMP indirectly 
by virtue of the PLC-mediated increases in Ca 2+  i , 
which, as a result, reduce the activity of Ca 2+ - 
inhibitable forms of adenylate cyclase and/or 
stimulate phosphodiesterase [ 50 ]. Additional 
CaSR-regulated signaling pathways include 
mitogen-activated protein kinases (MAPKs) 
[e.g., extracellular signal-regulated kinase 1/2 
(ERK1/2), p38 MAPK, and c-jun N-terminal 
kinase (JNK)]; phospholipases A 2  and D; and the 
epidermal growth factor (EGF) receptor (for 
recent reviews, see [ 35 ,  39 ]).  

5.4.2     The CaSR Is the Mediator 
of the Regulation of PTH 
Secretion by Ca 2+  o  

 After its cloning, it was possible to identify those 
aspects of parathyroid function that are CaSR 
regulated. The CaSR’s involvement in the control 
of PTH secretion by Ca 2+  o  was proven by showing 

that calcimimetic CaSR activators, for example, 
the second-generation compounds, NPS R-467 
and R-568, or the third-generation drug, cina-
calcet, rapidly inhibits PTH release in vivo and 
in vitro [ 51 ]. Calcimimetics are low molecular 
weight positive allosteric modulators of the CaSR 
that sensitize it to Ca 2+  o  (i.e., reduce the EC 50  for 
activation of the receptor by Ca 2+  o ). They do not 
act in the absence of Ca 2+  o  and require the presence 
of ~0.5–1.0 mM Ca 2+  o  to do so [ 52 ]. Calcimimetics 
also increase the cell surface expression of both 
wild-type CaSR [ 53 ] and some naturally occurring 
inactivating mutants (see below) [ 54 ], by serving 
as “pharmacochaperones” and/or by promoting 
ADIS. Cinacalcet has been approved by the FDA 
for three indications: (1) as a treatment for severe 
secondary hyperparathyroidism in patients being 
dialyzed for chronic kidney disease, (2) as medical 
therapy for hypercalcemia and hyperparathyroid-
ism in patients with parathyroid cancer, and (3) as 
a treatment for severe primary hyperparathyroid-
ism in whom surgery is not an option [ 52 ,  55 ,  56 ]. 

 Further evidence for the CaSR’s essential role 
in Ca 2+  o -regulated PTH secretion has been pro-
vided by the impaired CaSR-mediated inhibition 
of PTH secretion in individuals heterozygous or 
homozygous for inactivating mutations of the 
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  Fig. 5.5    Proposed structure of the human CaSR. Shown 
are the two disulfi de-linked monomers of the extracellular 
domain (ECD) of the cell surface CaSR, each of which 
has two lobes that are predicted to fold into a structure 
resembling a Venus fl ytrap (VFT). The latter is postulated 
to close following binding of Ca 2+  in the crevice between 
the lobes, thereby activating the CaSR. The  lower part  of 
the fi gure depicts the seven transmembrane helices that 
are characteristic of the superfamily of G protein-coupled 

receptors (GPCRs) and transduce the Ca 2+  o  signal from 
the ECD to the G proteins and diverse intracellular effec-
tor systems to which the CaSR is linked. Red segments of 
the receptor’s ECD are alpha helices. The key calcium-
binding site in the crevice between the two lobes of each 
monomer is shown, while the separate binding site for cal-
cimimetics resides within the receptor’s transmembrane 
domain. See text for details (Reproduced in modifi ed 
form from Huang et al. [ 14 ], with permission)       
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CaSR, who have mild to moderate or severe 
hypercalcemia, respectively, owing to Ca 2+  o  
“resistance” [ 6 ]. Similarly, mice with “knockout” 
of the CaSR exhibit severe hypercalcemia as a 
result of severely dysregulated CaSR-mediated 
inhibition of PTH secretion [ 57 ,  58 ]. 

 The signaling pathways and molecular mecha-
nisms mediating CaSR-regulated PTH secretion 
remain elusive. A mouse model with inactivation 
of both G q  and G 11  [ 59 ] has a phenotype similar to 
the mice with global knockout of the CaSR 
described above [ 57 ]. Moreover, heterozygous 
inactivating mutations of Gα 11  produce mild hyper-
calcemia and “resistance” to inhibition of PTH 
secretion by Ca 2+  o  [ 32 ]. G q  and/or G 11  must, there-
fore, be important mediators of the CaSR- regulated 
PTH secretion, presumably by stimulating PLC 
and modulating key intracellular signaling path-
ways participating in the high- Ca  2 +  o -induced, 
CaSR-mediated inverse control of PTH secretion. 
The identity of these mediators remains incom-
pletely understood. Ca 2+  o - and CaSR-evoked ara-
chidonic acid production by PLA 2  is a candidate 
mediator [ 60 ], perhaps by being converted to 
metabolites of the 12- and 15-lipoxygenease path-
ways [ 61 ]. ERK1/2 has also been implicated in 
pathological parathyroid tissue [ 62 ]. In most secre-
tory cells, a rise in Ca 2+  i  stimulates exocytosis via 
stimulus-secretion coupling. The absence of 
SNAP-25 in parathyroid cells [ 63 ], a key compo-
nent of the machinery mediating Ca 2+ -induced exo-
cytosis, has been suggested as a possible contributor 
to the paradoxical inhibition rather than the stimu-
lation of PTH secretion at high Ca 2+  o . High levels 
of Ca 2+  o  markedly polymerize the actin-based cyto-
skeleton under the plasma membrane of dispersed 
bovine parathyroid cells, perhaps physically block-
ing exocytosis, as PTH-containing vesicles may be 
immobilized in this cytoskeleton [ 64 ].  

5.4.3     The CaSR Can Modulate PTH 
Secretion Independent 
of Changes in Ca 2+  o  

 There are several ways of activating the CaSR 
without increasing Ca 2+  o . For example, calcimi-
metics, by sensitizing the CaSR to Ca 2+  o  and 

increasing its cell surface expression [ 56 ,  65 ], 
suppress PTH release despite the accompanying 
decrease in Ca 2+  o . In addition, interleukin-1β 
[ 66 ] and interleukin-6 [ 67 ] increase CaSR 
expression, which may be a contributor to the 
hypocalcemia encountered in infl ammatory 
states and severe illness [ 68 ]. Moreover, because 
activating the CaSR can upregulate both its own 
expression and that of the vitamin D receptor 
(VDR) [ 65 ,  69 ] while activating the (VDR) 
upregulates its own expression and that of the 
CaSR, there is the possibility of synergistic 
interactions between the two receptors in regu-
lating their target tissues. 

 Several agents activate the CaSR in addition 
to Ca 2+  o  and calcimimetics. Polycationic ago-
nists, including other di- (e.g., Mg 2+ ) and trivalent 
cations (Gd 3+ ) as well as organic polycations, for 
example, neomycin, are called type l agonists 
[ 33 ]; by defi nition they do not require Ca 2+  o  to 
activate the receptor. They bind to the CaSR’s 
ECD, unlike the calcimimetics described earlier, 
which are termed type 2 allosteric activators and 
bind to the CaSR’s TMD. High Mg 2+  o , as encoun-
tered during magnesium infusion in the treatment 
of preeclampsia or eclampsia, inhibits PTH 
release and enhances renal Ca 2+  o  excretion by 
activating the CaSR in the parathyroid and kid-
ney, respectively, thereby causing the accompa-
nying hypocalcemia and hypercalciuria [ 70 ] (for 
review, see Chap.   7    ). In addition to calcimimet-
ics, several  l -amino acids, particularly aromatic 
amino acids [ 71 ], can also function as type 2 allo-
steric activators. In contrast to the calcimimetics 
that bind to the CaSR’s TMD, these amino acids 
interact with a site adjacent to the binding site for 
Ca 2+  o  in the crevice between the ECD’s two lobes 
and sensitize the receptor to Ca 2+  o . Aromatic 
amino acids, formed when a protein meal is 
digested [ 72 ], and high Ca 2+  o  are potent stimu-
lants of gastrin and gastric acid secretion as well 
as release of cholecystokinin from the small 
intestine [ 72 ,  73 ]. Therefore, in the GI tract, 
amino acids may serve as important activators of 
the CaSR, permitting the CaSR to monitor the 
levels of two key classes of nutrients, mineral 
ions (i.e., Ca 2+  and Mg 2+ ), on the one hand, and 
amino acids/proteins, on the other.  
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5.4.4     Control of PTH Degradation 
by Ca 2+  o  and the CaSR 

 PTH circulates as a complex mixture of intact 
PTH(1–84) and various carboxy (C)-terminal frag-
ments [ 74 ], as described in greater detail in Chap.   4    . 
Most of the C-terminal fragments have been 
cleaved within their amino-termini at amino acid 
residues 34 [PTH(34–84)] and 37 [PTH(37–84)] 
[ 15 ,  75 – 77 ]. These represent about 70–75 % of 
total immunoreactive PTH in the circulation during 
normocalcemia [ 78 ]. Because they lack much of 
PTH’s N-terminus, these C-terminal fragments are 
inactive and are not recognized by the two-anti-
body “intact” sandwich assays for PTH. These 
assays are widely used in clinical practice and are 
described as “second- generation” immunoradio-
metric assays [ 79 ]. Immunoreactive species of 
PTH recognized by them must have both C-terminal 
as well as N-terminal epitopes proximal to amino 
acid 34. Large circulating fragments of PTH 
cleaved closer to their N-termini have been recog-
nized more recently, especially PTH(7–84) [ 74 ]. 
These large PTH C-fragments are detected by 
second- generation immunoradiometric assays 
(which are not, therefore, truly “intact” assays), but 
not by more recently developed third-generation 
assays utilizing N-terminal antibodies recognizing 
epitopes at the extreme N-terminus (e.g., within 
residues 1–6) (third generation, so called “whole” 
PTH assays [ 80 ]). Consequently, third-generation 
assays are much more specifi c for PTH(1–84), but 
are not clearly better than second-generation assays 
in the clinical setting [ 80 ]. 

 Large N-terminally truncated PTH fragments 
comprise about 5 % of total circulating immuno-
reactive PTH in normal subjects and are substan-
tially less abundant than shorter fragments, such 
as PTH(37–84), which comprise 70–75 % of cir-
culating PTH. PTH(1–84) represents 20–25 % of 
total PTH during normocalcemia and increases 
during hypocalcemia and declines during hyper-
calcemia [ 78 ]. None of the N-terminally trun-
cated species of PTH stimulate the type 1 PTH 
receptor (PTHR1) in the bone and kidney [ 81 ] 
(see Chaps.   8     and   9    ). 

 The various C-fragments of PTH in blood are 
generated, at least in part, in parathyroid cells via 

enzymatic cleavage of PTH(1–84) within secre-
tory vesicles, most likely by cysteine proteases, 
for example, cathepsins D and H [ 18 ,  77 ,  81 ]. 
Ca 2+  o  modulates the intraglandular degradation of 
PTH, with more degradation at high Ca 2+  o  and 
less at low [ 15 ,  75 ,  76 ]. The fragments generated 
at high Ca 2+  o  are released from parathyroid cells 
in vitro as rapidly as 20 min following incubation 
in high-Ca 2+  o  medium [ 16 ,  18 ]. Reduced break-
down of PTH at low Ca 2+  o  likely contributes to 
the fact that PTH levels in vivo are higher than 
baseline after 1–2 h of hypocalcemia, despite 
depletion of stored PTH over this time frame [ 13 , 
 82 ]. This increased rate of secretion of PTH(1–
84) at low Ca 2+  o  owing to its reduced degradation 
precedes the rise in PTH synthesis and secretion 
resulting in the increased expression of the pre-
proPTH gene. The impact of Ca 2+  o -induced mod-
ulation of PTH degradation changes the 
percentage of total immunoreactive PTH that is 
intact PTH(1–84) during hypo- and hypercalce-
mia to 33 and ~10 %, respectively [ 78 ]. The 
CaSR mediates the Ca 2+  o -elicited changes in PTH 
degradation, as activation of the CaSR by cina-
calcet, as with high Ca 2+  o , elevates the ratio of 
PTH fragments to PTH(1–84) in vivo [ 83 ].  

5.4.5     Role of the CaSR in Regulating 
PTH Gene Expression 

 In addition to inhibiting PTH secretion, calcimi-
metics reduce preproPTH mRNA [ 84 ], document-
ing unequivocally the CaSR’s role in the regulation 
in expression of this gene. Ca 2+  o  - induced changes 
in preproPTH mRNA result from alterations in 
mRNA stability rather than in its transcription [ 84 ]. 
The 3′ untranslated region (UTR) of preproPTH 
mRNA has a conserved adenosine uridine (AU)-
rich (AUR) sequence element, which enables 
regulation of mRNA stability by interacting with 
appropriate protein binding partners (Fig.  5.6 ) (for 
review, see [ 24 ]). Cytosolic proteins from the para-
thyroid glands of hypocalcemic rats interact with 
the AU-rich element (ARE), thereby stabilizing 
preproPTH mRNA and increasing its expression. 
Two proteins that bind to the 3′-ARE and increase 
its stability are the so-called AU-rich factor 
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(AUF-1) and a second protein, Upstream of N-ras 
(Unr) [ 24 ]. Later studies showed that the decreased 
stability of preproPTH associated with dissocia-
tion of AUF-1 from the ARE is a consequence of 
the binding of an mRNA decay-promoting protein, 
called KH splicing regulatory protein (KSRP), to 
the same ARE. Pin-1, a petidylprolyl isomerase, 
then activates KSRP, thereby recruiting an endonu-
clease, PMR1, and the so-called exosome, which 
cleaves mRNAs internally [ 24 ,  85 ]. Following 
activation of the CaSR by a calcimimetic in rats 
with experimentally induced renal insuffi ciency, 
activation of calmodulin (CaM) and protein phos-
phatase 2B posttranslationally modifi es AUF-1, 
which decreases its binding to the ARE, thereby 
decreasing the stability and pari passu preproPTH 
mRNA expression [ 86 ]. Prolonged  exposure of 
parathyroid cells to low or high Ca 2+  o  increases or 
decreases, respectively, the machinery required for 
protein synthesis, that is, ER, Golgi apparatus, etc. 
[ 87 ,  88 ]. How the parathyroid cell recognizes the 
need for this increased biosynthetic capacity (i.e., 
producing more ER and Golgi rather than simply 
increasing preproPTH mRNA) is unclear .  

5.4.6     Ca 2+  o  Regulates Parathyroid 
Cellular Proliferation via 
the CaSR 

 Proliferation of parathyroid cells during chronic 
hypocalcemia or vitamin D defi ciency enhances 
the total secretory capacity of the parathyroid 
glands beyond that achieved solely by releasing 
preformed hormone, decreasing PTH degrada-
tion, and increasing preproPTH mRNA expres-
sion and is an important element in the defense 
against hypocalcemia. The CaSR’s mediatory 
role in regulating parathyroid cellular prolifera-
tion is proven by the striking parathyroid enlarge-
ment in humans and mice with homozygous 
inactivation of the CaSR gene [ 57 ,  89 ] as well as 
the suppression by calcimimetics of the parathy-
roid growth in rat models of secondary hyper-
parathyroidism (SHPT) [ 90 ]. 

 Experimental models of SHPT, particularly 
that produced by a high-phosphate diet in rats 
with experimentally induced renal impair-
ment, have provided most of the available data 
addressing how Ca 2+  o  regulates parathyroid 
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  Fig. 5.6    Mechanism by which elevated levels of Ca 2+  o , 
acting via the CaSR, decrease the expression of the 
mRNA for preproPTH. Reductions in phosphate have 
similar actions. The stability of the mRNA is enhanced in 
the presence of low Ca 2+  o  (or high phosphate) by the bind-
ing of the AU-rich binding factor (AUF-1) and the protein 
called “Upstream of N-Ras” (Unr) to the ARE in the 3’ 
UTR of the preproPTH gene. A key destabilizer of the 

mRNA is KSRP, which in the presence of high Ca 2+  o  or 
low phosphate, binds to the same site in the 3’-untrans-
lated region of the PTH gene as AUF1 and displaces the 
latter. The peptidylprolyl isomerase, Pin-1, then activates 
KSRP, and the latter recruits the endonuclease, PMR1, 
and the exosome, which cleaves the mRNA internally. See 
text for details. Reproduced in modifi ed form from 
Nechama M. et al. [ 85 ], with permission.       
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cellular hyperplasia [ 91 ]. Studies in normal 
animals are more diffi cult as there is mini-
mal parathyroid cell division in normal para-
thyroid glands. The increased proliferation of 
parathyroid cells  during SHPT is caused, at 
least in part, by an autocrine/paracrine loop 
that involves transforming growth factor-alpha 
(TGF-α) and its receptor, the epidermal growth 
factor receptor (EGFR) [ 92 ] (Fig.  5.7 ). TGF-
α-EGFR signaling regulates progression from 
G1 to S in the cell cycle via the reciprocal 
effects on the stimulatory cyclin D1 and inhib-
itors of cyclin-dependent kinases, particularly 
p21 [ 93 ]. Elevations in cyclin D1 promote 
entry into mitosis and the inhibitors reduce 
it. Whether EGFR signaling occurs in normal 
parathyroid glands is unclear, however, since 
normal parathyroid cells express EGFR but not 
TGF-α or EGF [ 94 ] . 

 Activation of EGFR activates ERK1/2, which 
elevates cyclin D1 expression in the rat model of 
SHPT described above [ 95 ]. The EGFR also 
transactivates the cyclin D1 gene [ 96 ]. The EGFR 
mediates the concomitant stimulation of parathy-
roid cellular proliferation, since an EGFR 
 tyrosine kinase inhibitor (erlotinib) inhibited the 
parathyroid growth and associated increases in 
proliferating cell nuclear antigen (PCNA) and 

TGF-α in the SHPT model fed a high-phosphate 
diet [ 95 ]. 

 In these rats, a high-Ca 2+  diet elevated p21 
expression and reduced the high-phosphate- 
evoked rise in TGF-α content (Fig.  5.7 ) [ 93 , 
 97 ]. The high-Ca 2+  o -induced decrease in TGF-α 
is reminiscent of high-Ca 2+  o -evoked suppres-
sion of PTH release, suggesting that the CaSR 
may mediate this action of high Ca 2+  o . 
Subsequent studies showed coordinate 
increases in TGF-α and EGFR, while the SHPT 
was developing in this model and demonstrated 
that the increase in this signaling pathway fur-
ther elevated TGF-α levels, producing a posi-
tive feedback loop [ 95 ]. 

 Endothelin-1 (ET-1) is another paracrine 
regulator that may participate in the regula-
tion of parathyroid cellular proliferation by 
Ca 2+  o  (Fig.  5.7 ). In rats fed with a low-Ca 2+  diet 
for 8 weeks, the number of proliferating para-
thyroid cells increased and was accompanied 
by an increase in immunostaining for ET-1 
[ 98 ]. Administration of the endothelin recep-
tor antagonist, bosentan, at the time when the 
low-calcium diet was instituted prevented the 
increase in cellular proliferation, supporting an 
important role of ET-1 in this low Ca 2+  o -induced 
parathyroid hyperplasia.  

Ca2+
o (+) CaSR

(+) ET-1R

TGF-α

p21 PT cell

growth

PT cell

growth
ET-1(–) CaSR

(–)EGFR

Control of parathyroid
growth by Ca2+

o/CaSR
Balance of cell cycle
activators and inhibitors

Ca2+
o

b

a

  Fig. 5.7    Mechanisms underlying the regulation of para-
thyroid cellular proliferation by Ca 2+  o . (A) High Ca 2+  o  
(acting via the CaSR) decreases the expression of TGF-α, 
which is an activator of the pro-proliferative epidermal 
growth factor receptor (EGFR), and also decreases 
expression of the cyclin dependent kinase inhibitor, p21. 

(B) In addition to the actions of Ca 2+  o  in (A), low Ca 2+  o  
upregulates the expression of endothelin-1 (ET-1), which 
activates the endothelin receptor, ET-1R, thereby stimu-
lating parathyroid cellular proliferation. (+) depicts 
increased activity, and (-) indicates reduced activity. See 
text for details.       
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5.4.7     Does the CaSR Modulate 
Parathyroid Cell Apoptosis? 

 In addition to changes in cell number occurring 
through alterations in cellular proliferation, pro-
grammed cell death (apoptosis) can also modify 
cell number. It is a long-standing clinical observa-
tion that parathyroid hyperplasia caused by a 
reversible cause (i.e., vitamin D defi ciency, phos-
phate loading, or renal insuffi ciency corrected by 
renal transplantation) spontaneously involutes 
slowly and incompletely [ 8 ]. Therefore, parathy-
roid cell apoptosis is not an effi cient means of dis-
posing unneeded parathyroid cells and, therefore, 
reducing overall secretory capacity [ 99 ]. Data 
obtained more recently using calcimimetics in 
diverse models of parathyroid dysfunction and a 
variety of methods for quantifying apoptosis are 
confl icting. For instance, one study showed no 
effect of cinacalcet on parathyroid apoptosis in 
experimental SHPT in rats [ 100 ]. In another study 
using a similar experimental model, NPS R-568 
enhanced apoptosis, albeit at very high concentra-
tions (10 −4  M) of uncertain physiological relevance 
[ 101 ]. Given the potential therapeutic importance 
of promoting apoptosis with a calcimimetic or 
other agent in various forms of hyperparathyroid-
ism, further studies are needed on this issue.   

    Conclusions 

 This chapter has focused on the effects of 
Ca 2+  o  on various aspects of parathyroid func-
tion determining the overall secretory rate 
at any given moment in time, for example, 
release of preformed stored of PTH, intracel-
lular degradation of PTH, de novo synthesis 
of PTH, parathyroid cellular proliferation, 
and, perhaps, apoptosis. These Ca 2+  o -evoked, 
CaSR-mediated actions should be viewed in 
the context of the partially overlapping actions 
of 1,25(OH) 2 D 3 , phosphate, and/or FGF23 on 
various aspects of parathyroid function (also 
see Chap.   8    ). How these four regulatory factors 
interact in their actions on the various aspects 
of parathyroid function discussed here in the 
wide variety of physiological and pathophysi-
ological circumstances encountered in vivo 
are, in most cases, not well understood. The 
reader, in perusing the literature in this fi eld 

from the past, present, and future, would do 
well to not only focus on the individual com-
ponents reviewed here but also attempt to syn-
thesize the interactions between the various 
regulators and their actions on the different 
aspects of parathyroid function contributing 
to the overall rate of PTH secretion over time.     
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6.1             Introduction 

    Phosphate, chiefl y in association with calcium, is 
the main component of the mineralized phase of 
the bone, where it is mainly present in a crystal-
line form (hydroxyapatite). In addition to this 
essential function, phosphate is involved in a 
large series of basic biological processes, such as 
energy metabolic pathways, nucleic acid metabo-
lism, cell signalling, activity of a large number of 
proteins involved in metabolic pathways, control 
of the transport of organic or inorganic com-
pounds through the cellular membrane, and so 
forth [ 1 – 3 ].  

6.2     General Notes 
on Phosphorus Metabolism 

6.2.1     Main Functions and Body 
Distribution of Phosphorus 

 The total phosphate content of a medium-size 
human body approximates 650 g (12.0 g/kg of 
body weight), about 85 % of it being within the 
bone, 14 % in the intracellular space, and the 
remaining 1 % in the plasma. The intracellular 

phosphorus is mainly found in the form of organic 
compounds (nucleoside phosphates, phosphopro-
teins, phospholipids, 2,3-diphospho- glycerate, 
etc.), with a proportion of 10–100 to 1 as com-
pared with the intracellular inorganic phosphate 
content, with the two components being in strict 
reciprocal equilibrium. In turn, the intracellular 
inorganic phosphorus equilibrates with extracel-
lular phosphate, with a ratio of around 0.6. 
Phosphorus in blood circulates in part as inor-
ganic phosphate (mainly associated with inor-
ganic cations such as calcium, magnesium, and 
sodium) accounting for the usual normal range of 
2.5–4.2 mg/dl, while a consistent amount of phos-
phate (8–13 mg/dl), which is not usually mea-
sured, is present as phosphoric esters or as a lipid 
compound [ 4 ,  5 ]. The variable content of phos-
phate in these different bodily pools and its global 
balance are under a complex and integrated con-
trol system, which involves a number of transport 
systems expressed in many tissues and organs and 
a large number of hormonal and paracrine/auto-
crine factors. On the other hand, phosphate per se 
can also modulate all these transport pathways 
and the related regulatory factors.  

6.2.2     Factors Controlling Phosphate 
Metabolism 

 When looking at the issue of phosphate homeo-
stasis, it is worth distinguishing whether we are 
dealing with the phosphate content in the body 
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pool(s) or with the serum phosphorus levels. The 
bodily content of phosphate is determined by its 
global external balance, which is mainly regu-
lated by the net fl ux through the intestine, on the 
one hand, and the renal excretion of phosphate, 
on the other. The intestinal absorption of phos-
phate is mainly dependent on dietary phosphorus 
content; active transcellular transport across the 
intestinal wall, which occurs through the sodium- 
phosphate cotransporter type 2b (Na-P 2b) and to 
a lesser extent the PiT-1 transporter; and on pas-
sive paracellular transport, which is mainly 
dependent on the phosphate concentration gradi-
ent between the intestinal lumen and the intersti-
tial space. These absorptive processes are 
principally localized within the duodenum and 
jejunum. It has also been acknowledged that a 
minor amount of phosphate (approximately 
200 mg/day) is secreted (in the pancreatic juice 
and intestinal secretion), so that the net intestinal 
absorption of this mineral is the result of the 
actively and passively absorbed phosphate minus 
the secreted amount. It is accepted that the net 
intestinal phosphate absorption approximates 
60–70 % of its dietary intake, which is more or 
less 700–1,100 mg/day for a usual western 
dietary intake [ 6 ,  7 ]. The other component which 
regulates body content of phosphate is its excre-
tion by the renal route. The renal phosphate 
excretion is dependent on the amount of phos-
phate fi ltered through the glomerulus, which is 
proportional to the glomerular fi ltration rate, and 
the amount of the fi ltered load reabsorbed by the 
proximal tubule, mainly regulated by the activity 
of the Na-Pi 2a and Na-Pi 2b cotransporters [ 8 ]. 
In a normal individual, in metabolic and phos-
phate balance, the renal excretion of phosphorus 
exactly matches its net intestinal absorption. 

 When we deal with the control of the serum 
phosphorus concentration, in addition to the above 
described mechanisms determining the bodily con-
tent of phosphate, other factors are involved that 
control the fl uxes into and out of the bone and the 
changes in the distribution of inorganic phosphate 
between the intracellular and extracellular body 
compartments. Some of these processes, which are 
mainly responsible for the transport into and out of 
cells, have been demonstrated to depend on the 

activity of specifi c phosphate transporters (PiT-1 
and PiT-2) almost ubiquitously expressed at the cell 
membrane [ 9 – 13 ] (see also Chap.   11    ). Furthermore, 
in the physiological control of serum phosphorus 
level, a critical role has been focused on the modu-
lation of the distribution of phosphate within and 
outside of the miscible pool(s) in the bone. In the 
last few years, a huge amount of data has high-
lighted a key role of osteocytes in orchestrating 
these control mechanisms. In fact, these cells, far 
from being inert and quiescent as previously 
believed, have been shown to play a central role in 
the modulation of bone remodelling and mineral 
metabolism, by regulating the activities of the other 
bone cells (osteoblasts, osteoclasts), by functioning 
as mechanosensory cells, and by playing a true 
endocrine role through their secretion of circulating 
hormones (e.g., FGF23, sclerostin, osteocalcin) 
involved in mineral metabolism and in other puta-
tive functions [ 14 ,  15 ] (see also Chap.   11    ). 

    Overall, most of the mechanisms listed above 
are involved in the setting of both the balance and 
serum level of phosphorus and are, in turn, tightly 
controlled by hormonal, autocrine, and paracrine 
factors. Table  6.1  lists the most relevant of these 
factors and their main mechanisms of action.

6.2.3        Phosphorus Control of Its 
Controlling Factors 

 Many, if not all, of the metabolic pathways and 
hormonal/paracrine/autocrine factors involved in 
the regulation of either the balance and/or the 
serum levels of phosphate can be directly or indi-
rectly modulated by the dietary phosphate intake 
and/or the serum phosphorus levels. Therefore, 
phosphate can self-regulate its own balance and 
serum concentration. In fact, increased dietary 
intake of phosphorus stimulates FGF23 and PTH 
synthesis and secretion, reduces vitamin D levels, 
and induces a decrease of both renal tubular and 
intestinal phosphate transport, while opposing 
effects having been shown during dietary phos-
phate deprivation [ 21 – 23 ]. In the following 
 paragraphs, the putative mechanisms underlying 
the reciprocal control between phosphate and its 
regulatory factors will be described in more 
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detail; however, it can be said that all of these 
mechanisms suggest the presence of some cellu-
lar mechanism(s) that senses phosphate. Having 
said that, it is also worth pointing out that no 
clear demonstration of the existence of such a 
mechanism has been so far produced (see below) 
nor is it clear whether this hypothesized mecha-
nism senses phosphate concentration or phos-
phate intake or both. 

 In what follows, we will focus on the 
mechanism(s) by which phosphate and PTH 
reciprocally control one another, addressing in 
more detail the topic of this chapter, namely, the 
control of parathyroid function by phosphate. 

6.2.3.1     PTH-Mediated Phosphate 
Control 

 As already mentioned, the pathways by which 
PTH affects phosphate metabolism are manifold 
(Fig.  6.1 ). PTH mainly acts through its receptor 

(PTH/PTH-related peptide receptor), which is 
mainly expressed in the renal tubular cells and in 
bone cells (osteoblasts and osteocytes). At the 
renal tubular level, PTH promotes the synthesis of 
the 1-α-hydroxylase enzyme (CYP27B1), which 
converts 25-OH-vitamin D to its most active com-
pound (1,25-(OH) 2 -vitamin D), the main hor-
monal factor stimulating the intestinal absorption 
of calcium and phosphorus (see also Chap.   11    ). At 
the same time, PTH, by increasing the intracellu-
lar levels of cAMP, inhibits the expression at the 
membrane level of the renal proximal tubular 
cells of Na-Pi 2a and Na-Pi 2c cotransporters, 
reducing the tubular absorption of phosphate with 
a consequent increase in its urinary excretion (see 
also Chap.   11    ). Furthermore, PTH, in addition to 
its multiple anabolic and catabolic effects on bone 
cells, can also stimulate the fl ux of phosphate out-
side the bone by inducing the resorption of the 
bone mineral phase by activating osteoclasts 

   Table 6.1    Factors controlling inorganic phosphate metabolism: short description of the main sites (bone, intestine, 
renal) and mechanisms of action, with the relevant references   

 Controlling factor 

 Site of action  Global effect on 
phosphate 
metabolism 

 Relevant 
references 

 Intestine  Kidney  Bone 

 Vitamin D  ↑ Pi absorption  ↑ Pi tubular 
reabsorption 

 ↑ Bone turnover  ↑ Serum Pi levels  [ 16 ] 
 Positive Pi balance 

 PTH  Indirectly (↑vit D)  ↓ Pi tubular 
transport 

 ↑ Bone turnover  NRF: ↓ serum Pi 
levels 

 [ 17 ] 

 Neutral/neg. Pi 
balance 

 ↑ Pi abs  IRF: =/↑ serum Pi 
levels 
 Neutral/pos. Pi 
balance 

 FGF23/Klotho  Direct and 
indirect (↓vit D) 

 ↓ Pi tubular 
transport (via 
FGFR-1 and −4) 

 Direct and 
indirect (↓PTH) 

 ↓Serum Pi levels  [ 18 ] 

 ↓ Pi abs  Reduced bone 
turnover 

 Negative Pi balance 

 Phosphatonins 
(DMP-1, MEPE, 
sFRP-4) 

 Not completely 
defi ned 

 ↓ Pi tubular 
transport 

 Not completely 
defi ned 

 ↓Serum Pi levels  [ 19 ] 
 Negative Pi balance 

 Putative undefi ned 
intestinal factor(s) 

 ? ↓ Pi absorption  ?  ?  ↓ Serum Pi levels; 
maintenance 
of neutral Pi 
balance (?) 

 [ 20 ] 

   Notes :  Pi  inorganic phosphate,  PTH  parathyroid hormone,  NRF  normal renal function,  IRF  impaired renal function, 
 FGF23  fi broblast growth factor 23,  FGFR  FGF23 receptor,  DMP1  dentin matrix protein 1,  MEPE  matrix extracellular 
phosphoglycoprotein,  sFRP-4  secreted frizzled related protein 4  
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through increased RANKL expression by both 
osteoblasts and osteocytes [ 24 ].  

 Among all the abovementioned effects of 
PTH, the most potent one with respect to phos-
phate control is its inhibition of the renal tubular 
transport of phosphate, at least while renal func-
tion is preserved. In fact, hypophosphatemia is 
the most common feature of the conditions 
characterized by either primary or secondary 
hyperparathyroidism in patients with normal or 
near normal renal function. In contrast, when 
renal function is either acutely or chronically 
impaired, increased PTH levels, a usual fi nding 
in these conditions, are mainly associated with 
hyperphosphatemia, due to the reduced capacity 
of the kidney to eliminate phosphate, in the face 
of an almost unchanged intestinal absorption 

rate and increased resorption of phosphate from 
bone associated with the increased PTH levels.  

6.2.3.2     Phosphate-Mediated Control 
of Parathyroid Function 

 In turn, it has long been accepted that phosphate 
itself can regulate PTH secretion by some com-
plex and as yet not fully elucidated feedback 
mechanisms. There is also widespread evidence 
supporting the notion that phosphate-dependent 
PTH control can take place via both indirect and 
direct mechanisms. In the following paragraphs, 
these two different types of pathways will be 
dealt with separately. However, it would be worth 
underlining at the outset that most evidence of a 
putative phosphorus control of PTH secretion 
derives from experimental and clinical studies 

PTH/PTH -rP-R
Osteoblast/Ostecyte

↑RankL
Osteoclast
activation

↑ BT

PTH/PTH-rP-R
Tubular cells

↑CYP27B1

↑calcitriol

↑VDR-mediated
Ca  and Pi

intestinal absorption

↑cAMP

↓Activity of
NP-Co 2a-2c

↓Pi
reabsorption 

  Fig. 6.1    Main mechanisms by which PTH controls phos-
phorus metabolism.  Pi  inorganic phosphate,  PTH/
PTHrP-R  PTH-PTH-related peptide receptor,  RANK-L  
ligand of receptor activator of nuclear factor kappa-B,  BT  

bone turnover,  NP-Co 2a-2c  sodium-phosphate cotrans-
porter 2a and 2c,  cAMP  cyclic adenosine monophosphate, 
 CYP27B1  cytochrome 27B1 (25-hydroxyvitamin D 3  
1-alpha-hydroxylase),  VDR  vitamin D receptor       
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carried out in conditions mainly characterized by 
reduced renal function. So, most of these results 
cannot be easily generalized to the physiological 
or different pathological conditions.   

6.2.4     Indirect Effects of Pi on PTH 

 The fi rst known mechanism by which phosphate 
indirectly controls PTH levels is related to the 
reciprocal inverse relationship linking the changes 
in the serum concentrations of phosphate and cal-
cium, by a physicochemical mechanism, with an 
increase and a decrease of phosphate producing a 
decrease and an increase in calcium, respectively 
[ 25 ,  26 ]. The consequent changes in calcium con-
centration, acting through the specifi c calcium 
sensor (CaSR), a  G-protein- coupled receptor 
expressed at the plasma membrane levels of para-
thyroid cells, are the most potent stimuli for con-
trolling the release of PTH from the secretory 
granules and its synthesis within the parathyroid 
glands and the rate of parathyroid cellular prolif-
eration (see Chap.   5     dedicated to this topic in this 
book). So, in conditions of acute and, to a lesser 
extent, chronic increase in phosphorus levels, cal-
cium levels tend to be reduced, inducing a stimu-
lation of PTH release and secretion and in the 
long run, also stimulating parathyroid cell growth. 

 Another way by which phosphate can indi-
rectly induce changes of PTH levels is related to 
the control of the enzyme CYP27B1 (25-OH-vitD- 
1-α-hydroxylase), which is involved in the syn-
thesis of the most active vitamin D metabolite, 
1,25-dihydroxyvitamin D (calcitriol), principally 
in the renal proximal tubule. Increased phosphate 
levels and possibly increased phosphorus intake 
have been demonstrated to be associated with 
reduced calcitriol synthesis and, consequently, 
with increased levels of PTH. In fact, there is 
much experimental and clinical evidence demon-
strating that calcitriol controls PTH levels by 
both indirect and direct mechanisms. The best 
recognized indirect mechanism consists of the 
activation of the active transcellular transport of 
calcium at the intestinal level, which by increas-
ing serum calcium levels downregulates PTH 
secretion. Another well-recognized indirect 

mechanism of calcitriol is related to its activation 
of bone cells (direct osteoblast/osteocyte activa-
tion and indirect osteoblast-mediated osteoclast 
activation); this is followed by increased bone 
turnover, which would be expected to be fol-
lowed by increased release of calcium from its 
skeletal stores and inhibition of PTH release [ 27 ]. 
A third mechanism by which calcitriol can indi-
rectly induce PTH release is related to the 
recently recognized stimulatory effect of cal-
citriol on FGF23 synthesis, which probably 
involves activation of FGF23 gene transcription 
through both direct and indirect VDRE-mediated 
mechanisms [ 28 ,  29 ]. In turn, both in vivo and 
in vitro studies have demonstrated that FGF23 
reduces PTH mRNA levels and its secretion, 
through its interaction with its specifi c receptor 
(FGFR-1c) and the coreceptor Klotho, expressed 
in parathyroid cells [ 30 ,  31 ]. This inhibitory 
effect of FGF23 on PTH is mainly evident in con-
ditions of relatively normal renal function, while 
it no longer functions normally in patients with 
hyperparathyroidism secondary to impaired renal 
function, probably due to a progressive loss of 
both FGFR-1c and Klotho expression in parathy-
roid cells [ 32 ]. Finally, as has long been recog-
nized, calcitriol can directly inhibit PTH synthesis 
by a genomic effect mediated by its specifi c 
receptor (VDR), which is abundantly expressed 
in the parathyroid [ 33 – 36 ]. Also, the inhibitory 
effect of calcitriol tends to be dampened in 
chronic kidney disease patients, particularly in 
more advanced stages of the disease, due to a 
progressive reduction of VDR expression in 
parathyroid cells [ 37 ]. 

 There are confl icting data on the possibility 
that phosphate per se plays a role in stimulating 
FGF23 secretion or synthesis and consequently 
affecting PTH levels in this way. On the one 
hand, it has been reported that both increased 
dietary intake of phosphate and an increase in 
its serum levels are associated with increased 
levels of FGF23, though the exact mechanism 
through which this effect might be put into play 
is not clear [ 21 ,  38 ,  39 ]. On the other hand, other 
authors failed to fi nd any major change in 
FGF23 levels after modifying the dietary con-
tent of phosphate or after IV phosphate infusion 
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[ 40 ,  41 ]. The reasons for these discrepancies are 
not clear. However, a common fi nding of all 
these studies was that any modifi cation in 
dietary intake of phosphorus was always 
matched by a parallel change of its urinary 
excretion, independent of any signifi cant change 
in the serum phosphorus and/or in phosphate-
controlling hormone levels. This raised the 
question as to whether additional factors exist 
that might putatively infl uence phosphate 
balance. 

 There is some evidence that there is/are fur-
ther, but not yet demonstrated, intestinal factor(s), 
directly modulated by dietary phosphate content, 
which might control phosphate excretion and 
possibly also PTH secretion. In fact, some exper-
imental studies carried out in rats demonstrated 
that, while a force-feeding with a low-phosphate 

diet produces a rapid (within 15 min) reduction in 
both serum PTH and phosphorus levels [ 42 ], 
hypophosphatemia induced by an infusion of 
glucose did not yield any change in serum 
PTH. This putative additional mechanism opens 
the way to a string of unanswered questions on 
the possible existence of some mechanism(s) that 
are able to sense phosphorus in the different 
organs involved in phosphate control (Fig.  6.2 ).   

6.2.5     Direct Effects of Phosphate 
on PTH 

 The possibility of a direct effect of phosphate on 
PTH secretion is strictly linked to this putative 
sensing mechanism for phosphate. The presence 
of mechanisms able to directly sense phosphate 

↓CYP27B1

↓calcitriol

↓Ca
intestinal absorption

↓Osteoblast/Ostecyte

↓RankL
Osteoclast
activation

FGF23

↑Phosphaturic
intestinal factors

(?)↑ PTH

FGFR-1/Klotho
dependent

PTH inhibition

↑CaSR mediated
PTH stimulation

↓VDR
dependent

PTH inhibition

↑PTH stimulation

↓ BT

  Fig. 6.2    Indirect mechanisms by which phosphorus con-
trols PTH production.  Pi  inorganic phosphate,  RANK-L  
ligand of receptor activator of nuclear factor kappa-B,  BT  
bone turnover,  NP-Co 2a-2c  sodium-phosphate cotrans-

porter 2a and 2c,  CYP27B1  cytochrome 27B1 
(25-hydroxyvitamin D 3  1-alpha-hydroxylase),  VDR  vita-
min D receptor,  CaSR  calcium- sensing receptor,  FGF23  
fi broblast growth factor 23       
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concentration has been recognized both in plants 
and in some bacteria. Plant metabolism is largely 
dependent on the phosphate availability in the 
soil, and a sensing mechanism, involving the acti-
vation of a microRNA (miR399), has been 
described that might induce signalling pathways 
able to increase the uptake of this mineral, fol-
lowed by the activation of other metabolic pro-
cesses [ 43 ]. 

 In unicellular organisms (bacteria and yeast), a 
system directed at sensing extracellular phosphate 
levels has been described in great detail. This 
mechanism is characterized by a multicomponent 
system with some periplasmic membrane proteins 
(PstS, PstC, PstA, PstB associated with PhoU) 
sensing low phosphate concentration and trigger-
ing an increased fl ux of phosphate into the cell. 
The increased intracellular phosphate availability 
induces phosphorylation of PhoR, which in turn 
phosphorylates another Pho protein (PhoB), 
which ultimately acts as a transcription factor 
activating genes that encode for proteins involved 
in phosphate transport, in the production of alka-
line phosphatase, or in the control of cyclin-
dependent kinases [ 44 – 46 ]. 

 There is also some experimental evidence that 
sensing mechanisms for phosphate also exist in 
multicellular organisms, at least in intestinal, 
renal tubular, and bone cells. In fact, intestinal, 
renal, osteoblast, or marrow stromal cells, cul-
tured in low or high phosphate media, change the 
expression of some phosphate transport proteins 
and proteins with enzymatic control (alkaline 
phosphatase) or involved in regulating gene tran-
scription (Runx2/Cbfa1, BMP4) [ 7 ,  47 ,  48 ]. 
However, the exact mechanisms underlying this 
sensor activity remain unknown. 

 Though the possibility that phosphate might 
be directly sensed by parathyroid cells, inducing 
direct control of PTH secretion and synthesis has 
long been suggested; the actual proof of this 
concept and the possible way by which it might 
work are far from having been convincingly 
demonstrated. One critical diffi culty in achiev-
ing convincing results in this regard is the lack of 
a reliable cell line available for studying parathy-
roid function in culture. Another reason that 
makes it diffi cult to demonstrate a direct effect 

of phosphate on parathyroid cells is that most 
experimental conditions inducing a change in 
phosphate levels are invariably associated with 
changes also in calcium concentration, which is 
the most important factor in the control of PTH 
secretion and synthesis. Furthermore, most of 
the experimental models where this hypothesis 
have been challenged were those characterizing 
the secondary hyperparathyroidism of chronic 
kidney disease, and it is well recognized that in 
this condition, a number of confounding factors 
(changes in calcitriol, FGF23/Klotho levels, and 
in the levels of expression of CaSR and VDR) 
can muddy the interpretation of any result. 

 Seminal studies in animals demonstrated that 
a reduction of phosphate intake proportional to 
the GFR reduction prevents the development of 
SHP, independently of any major change in cal-
cium or calcitriol levels [ 49 ,  50 ]. In a further 
study, the same group reported data that strongly 
suggested that phosphate per se, independently of 
any change in calcium or calcitriol, can directly 
stimulate PTH secretion. In fact, these authors 
reported that cultured rat parathyroid glands, 
when incubated with high medium phosphate 
(2.8 mmol/l), secreted much more PTH than 
glands incubated with low medium phosphate 
(0.2 mmol/l), with these changes being indepen-
dent of changes in either calcitriol or calcium 
concentration [ 51 ]. Subsequent studies produced 
further data supporting a direct effect of phos-
phorus on PTH secretion [ 52 – 54 ] and suggested 
that this effect might be mostly posttranscrip-
tional. In fact, these authors demonstrated that in 
parathyroid cells, some specifi c cytosolic pro-
teins bound a 26-nucleotide sequence of PTH 
mRNA at its 3’-UTR, stabilizing this molecule 
and increasing PTH translation. In these experi-
ments, hypocalcemia and hypophosphatemia 
increased and decreased, respectively, the capac-
ity of these proteins to bind to PTH mRNA, with 
the fi nal effect of hypocalcemia increasing and 
hypophosphatemia decreasing the PTH levels. 

 Another proposed mechanism for explaining 
the putative direct effect of phosphorus on para-
thyroid cells was that it was mediated by changes 
in the activity of phospholipase A 2  and its meta-
bolic product, arachidonic acid (AA), which acts 
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as an inhibitor of PTH. Phosphate was suggested 
to decrease the production of AA and, as a conse-
quence of its inhibitory activity, leading to 
increased secretion of PTH. Other authors pro-
posed that high phosphorus intake can induce 
increased secretion and synthesis of PTH, by 
reducing the expression of CaSR on parathyroid 
cells [ 55 ]. Finally, a series of studies, coming 
from the Slatopolsky group, suggested another 
potential direct mechanism of phosphate on para-
thyroid glands. Namely, Dusso and co-workers 
[ 56 ] demonstrated that dietary phosphate restric-
tion counteracts the development of the parathy-
roid hyperplasia induced by uremia through the 

induction of the protein p21, an inhibitor of 
cyclin-dependent kinase, which mediated cell 
growth arrest; on the other hand, high phosphate 
intake induced transforming growth factor-α 
(TGF-α), which stimulates cell growth. 
Subsequently, Cozzolino et al. [ 57 ] clearly 
showed that a high dietary phosphate intake in 
chronic kidney disease (CKD) rats increases the 
expression of both TGF-α and the epidermal 
growth factor receptor (EGFR), which is essen-
tial for TGF-α signalling, in the parathyroid 
gland. Further studies from the same group [ 58 ] 
proposed that the increase of TGF-α was second-
ary to increased levels of TGF-α-converting 

PTH mRNA 
5′-UTR 3′-UTRCoding region

Cytosol
mRNA stabilizing
proteins

� PTH

  Fig. 6.3    Putative direct mechanisms by which phospho-
rus controls PTH production.  Pi  inorganic phosphate, 
 CaSR  calcium-sensing receptor,  TGF-α  transforming 

growth factor alpha,  TACE  TGF-α-converting enzyme, 
 EGFR  epidermal growth factor receptor,  PLA2  phospholi-
pase A2,  AA  arachidonic acid       
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enzyme (TACE), a metalloproteinase which 
plays an essential role in TGF-α signalling. 

 All these data strongly support the notion of 
the existence of some phosphate-mediated 
mechanism(s) that directly control PT cell activ-
ity and growth and suggest different models for 
explaining how these mechanisms function. 
However, while for all the factors that control PT 
cell function (calcium, vitamin D, FGF23), a 
defi ned receptor has been clearly defi ned (CaSR, 
VDR, Klotho-FGFR-1, respectively), no demon-
stration of an equivalent phosphate sensor exists 
so far (Fig.  6.3 ).    

    Conclusion 

 Phosphate plays many key biological roles in 
the body and its metabolism is under the con-
trol of a large number of factors. PTH is one of 
the main regulators of phosphate metabolism, 
and phosphate, in turn, has manifold mecha-
nisms for controlling parathyroid function 
itself, by both indirect and direct pathways. 
The indirect mechanisms, through which 
phosphate control PTH, are far more well 
defi ned than the putative direct ones. However, 
it is worth stressing that most of the evidence 
comes from experimental models character-
ized by a reduced renal function, which makes 
the available data not easily generalizable to 
the normal condition. Furthermore, in the 
in vivo studies, given the complex interrela-
tionship among all the components of mineral 
metabolism (calcium, vitamin D, FGF23/
Klotho, etc.), it is not easy to dissect the effect 
of phosphate from those of all these other fac-
tors on PTH.     

   References 

       1.    Kornberg A (1979) The enzymatic replication of 
DNA. CRC Crit Rev Biochem 7:23–43  

   2.    Krebs EG, Beavo JA (1979) Phosphorylation- 
dephosphorylation of enzymes. Annu Rev Biochem 
48:923–959  

    3.    Lardy HA, Ferguson SM (1969) Oxidative phosphor-
ylation in mitochondria. Annu Rev Biochem 
38:991–1034  

    4.    Bevington A, Brough D, Baker FE, Hattersley J, 
Walls J (1995) Metabolic acidosis is a potent stimulus 

for cellular inorganic phosphate generation in 
uraemia. Clin Sci (Lond) 88(4):405–412  

    5.    Fleisch H (1980) Homeostasis of inorganic phos-
phate. In: Urist MR (ed) Fundamental and clinical 
bone physiology. Lippincott, Philadelphia  

    6.    Lee DB, Walling MW, Brautbar N (1986) Intestinal 
phosphate absorption: infl uence of vitamin D and 
nonvitamin D factors. Am J Physiol Gastrointest 
Liver Physiol 250:G369–G373  

     7.    Segawa H, Kaneko I, Yamanaka S, Ito M, Kuwahata 
M, Inoue Y, Kato S, Miyamoto K (2004) Intestinal 
Na-P(i) cotransporter adaptation to dietary P(i) con-
tent in vitamin D receptor null mice. Am J Physiol 
Renal Physiol 287:F39–F47  

    8.    Berndt T, Kumar R (2009) Novel mechanisms in the 
regulation of phosphorus homeostasis. Physiology 
(Bethesda) 24:17–25  

    9.    Hruska K, Slatopolsky E (1996) Disorders of 
 phosphorous, calcium, and magnesium metabolism. 
In: Schrier R, Gottschalk C (eds) Diseases of the 
kidney. Little, Brown, and Company, London, 
pp 2477–2526  

   10.    Kronenberg HM (2002) NPT2a—the key to phos-
phate homeostasis. N Engl J Med 347:1022–1024  

   11.    Tanimura A, Yamada F, Saito A, Ito M, Kimura T, 
Anzai N, Horie D, Yamamoto H, Miyamoto K, 
Taketani Y, Takeda E (2011) Analysis of different 
complexes of type IIa sodium-dependent phosphate 
transporter in rat renal cortex using blue-native poly-
acrylamide gel ecletrophoresis. J Med Invest 
58(1–2):140–147  

   12.    Forster IC, Hernando N, Biber J, Murer H (2013) 
Phosphate transporters of the SLC20 and SLC34 fam-
ilies. Mol Aspects Med 34(2–3):386–395  

    13.    Gattineni J, Alphonse P, Zhang Q, Mathews N, 
Bates CM, Baum M (2014) Regulation of renal 
phosphate transport by FGF23 is mediated by 
FGFR1 and FGFR4. Am J Physiol Renal Physiol 
306(3):F351–F358  

    14.    Dallas SL, Prideaux M, Bonewald LF (2013) The 
osteocyte: an endocrine cell … and more. Endocr Rev 
34(5):658–690  

    15.    Wesseling-Perry K, Jüppner H (2013) The osteocyte 
in CKD: new concepts regarding the role of FGF23 in 
mineral metabolism and systemic complications. 
Bone 54:222–229  

    16.    DeLuca HF (2004) Overview of general physiologic 
features and functions of vitamin D. Am J Clin Nutr 
80:1689S–1696S  

    17.    Aurbach GD, Heath DA (1974) Parathyroid hormone 
and calcitonin regulation of renal function. Kidney Int 
6(5):331–345  

    18.    Berndt TJ, Schiavi S, Kumar R (2005) “Phosphatonins” 
and the regulation of phosphorus homeostasis. Am J 
Physiol Renal Physiol 289(6):F1170–F1182  

    19.    Feng JQ, Clinkenbeard EL, Yuan B, White KE, 
Drezner MK (2013) Osteocyte regulation of phos-
phate homeostasis and bone mineralization underlies 
the pathophysiology of the heritable disorders of rick-
ets and osteomalacia. Bone 54(2):213–221  

6 Phosphate Control of PTH Secretion



58

    20.    Berndt T, Thomas LF, Craig TA, Sommer S, Li X, 
Bergstralh EJ, Kumar R (2007) Evidence for a signal-
ing axis by which intestinal phosphate rapidly modu-
lates renal phosphate reabsorption. Proc Natl Acad 
Sci U S A 104(26):11085–11090  

     21.    Burnett SM, Gunawardene SC, Bringhurst FR et al 
(2006) Regulation of C-terminal and intact FGF-23 
by dietary phosphate in men and women. J Bone 
Miner Res 21(8):1187–1196  

   22.    Ferrari SL, Bonjour JP, Rizzoli R (2005) Fibroblast 
growth factor-23 relationship to dietary phosphate 
and renal phosphate handling in healthy young men. J 
Clin Endocrinol Metab 90:1519–1524  

    23.    Baxter LA, DeLuca HF (1976) Stimulation of 
25-hydroxy-vitamin D3-1α- hydroxylase by phos-
phate depletion. J Biol Chem 251:3158–3161  

    24.    Bellido T, Saini V, Pajevic PD (2013) Effects of PTH 
on osteocyte function. Bone 54(2):250–257  

    25.    Kaplan MA, Canterbury JM, Gavellas G, Jaffe D, 
Bourgoignie JJ, Reiss E, Bricker NS (1978) 
Interrelations between phosphorus, calcium, parathy-
roid hormone, and renal phosphate excretion in 
response to an oral phosphorus load in normal and 
uremic dogs. Kidney Int 14:207–214  

    26.    Boyle IT, Gray RW, DeLuca HF (1971) Regulation by 
calcium of in vivo synthesis of 1,25-dihydroxychole-
calciferol and 21,25- dihydroxycholecalciferol. Proc 
Natl Acad Sci U S A 68:2131–2134  

    27.    Tanaka Y, DeLuca HF (1973) The control of 
25-hydroxyvitamin D metabolism by inorganic phos-
phorus. Arch Biochem Biophys 154:566–574  

    28.    Razzaque MS (2009) The FGF23–Klotho axis: endo-
crine regulation of phosphate homeostasis. Nat Rev 
Endocrinol 5:611–619  

    29.    Saini RK, Kaneko I, Jurutka PW, Forster R, Hsieh A, 
Hsieh JC, Haussler MR, Whitfi eld GK (2013) 
1,25-dihydroxyvitamin D(3) regulation of fi broblast 
growth factor-23 expression in bone cells: evidence 
for primary and secondary mechanisms modulated by 
leptin and interleukin-6. Calcif Tissue Int 
92(4):339–353  

    30.    Ben-Dov IZ, Galitzer H, Lavi-Moshayoff V, Goetz R, 
Kuro-o M, Mohammadi M, Sirkis R, Naveh-Many T, 
Silver J (2007) The parathyroid is a target organ for 
FGF23 in rats. J Clin Invest 117(12):4003–4008  

    31.    Krajisnik T, Bjorklund P, Marsell R et al (2007) 
Fibroblast growth factor-23 regulates parathyroid hor-
mone and 1alpha-hydroxylase expression in cultured 
bovine parathyroid cells. J Endocrinol 195:125–131  

    32.    Komaba H, Fukagawa M (2010) FGF23–parathyroid 
interaction: implications in chronic kidney disease. 
Kidney Int 77:292–298  

    33.    Silver J, Naveh-Many T, Mayer H et al (1986) 
Regulation by vitamin D metabolites of parathyroid 
hormone gene transcription in vivo in the rat. J Clin 
Invest 78:1296–1301  

   34.    Silver J, Russell J, Sherwood LM (1985) Regulation 
by vitamin D metabolites of messenger ribonucleic 
acid for preproparathyroid hormone in isolated bovine 

parathyroid cells. Proc Natl Acad Sci U S A 
82:4270–4273  

   35.    Cantley LK, Russell J, Lettieri D, Sherwood LM 
(1985) 1,25-Dihydroxyvitamin D3 suppresses para-
thyroid hormone secretion from bovine parathyroid 
cells in tissue culture. Endocrinology 117:2114–2119  

    36.    Russell J, Lettieri D, Sherwood LM (1986) 
Suppression by 1,25(OH)2D3 of transcription of the 
pre-proparathyroid hormone gene. Endocrinology 
119:2864–2866  

    37.    Brown AJ, Dusso A, Lopez-Hilker S, Lewis-Finch J, 
Grooms P, Slatopolsky E (1989) 1,25-(OH)2D recep-
tors are decreased in parathyroid glands from chroni-
cally uremic dogs. Kidney Int 35:19–23  

    38.    Perwad F, Azam N, Zhang MY, Yamashita T, 
Tenenhouse HS, Portale AA (2005) Dietary and 
serum phosphorus regulate fi broblast growth factor 23 
expression and 1,25-dihydroxyvitamin D metabolism 
in mice. Endocrinology 146(12):5358–5364  

    39.    Sommer S, Berndt T, Craig T, Kumar R (2007) The 
phosphatonins and the regulation of phosphate trans-
port and vitamin D metabolism. J Steroid Biochem 
Mol Biol 103:497–503  

    40.    Ito N, Fukumoto S, Takeuchi Y, Takeda S, Suzuki H, 
Yamashita T, Fujita T (2007) Effect of acute changes 
of serum phosphate on fi broblast growth factor 
(FGF)23 levels in humans. J Bone Miner Metab 
25:419–422  

    41.    Larsson T, Nisbeth U, Ljunggren O, Juppner H, 
Jonsson KB (2003) Circulating concentration of FGF- 
23 increases as renal function declines in patients with 
chronic kidney disease, but does not change in 
response to variation in phosphate intake in healthy 
volunteers. Kidney Int 64:2272–2279  

    42.    Martin DR, Ritter CS, Slatopolsky E et al (2005) 
Acute regulation of parathyroid hormone by dietary 
phosphate. Am J Physiol Endocrinol Metab 
289:E729–E734  

    43.    Kuo HF, Chiou TJ (2011) The role of microRNAs in 
phosphorus defi ciency signaling. Plant Physiol 
156(3):1016–1024  

    44.    Suzuki S, Ferjani A, Suzuki I, Murata N (2004) The 
SphS-SphR two component system is the exclusive 
sensor for the induction of gene expression in response 
to phosphate limitation in synechocystis. J Biol Chem 
279(13):13234–13240  

   45.    Mouillon JM, Persson BL (2006) New aspects on 
phosphate sensing and signaling in  Saccharomyces 
cerevisiae . FEMS Yeast Res 6:171–176  

    46.    Lamarche MG, Wanner BL, Crepin S, Harel J (2008) 
The phosphate regulon and bacterial virulence: a reg-
ulatory network connecting phosphate homeostasis 
and pathogenesis. FEMS Microbiol Rev 32:461–473  

    47.    Markovich D, Verri T, Sorribas V, Forgo J, Biber J, 
Murer H (1995) Regulation of opossum kidney (OK) 
cell Na/Pi cotransport by Pi deprivation involves 
mRNA stability. Pfl ugers Arch 430:459–463  

    48.    Fujita T, Izumo N, Fukuyama R, Meguro T, Nakamuta 
H, Kohno T, Koida M (2001) Phosphate provides an 

P. Messa



59

extracellular signal that drives nuclear export of 
Runx2/Cbfa1 in bone cells. Biochem Biophys Res 
Commun 280:348–352  

    49.    Slatopolsky E, Caglar S, Gradowska L et al (1972) On 
the prevention of secondary hyperparathyroidism in 
experimental chronic renal disease using ‘propor-
tional reduction’ of dietary phosphorus intake. Kidney 
Int 2:147–151  

    50.    Lopez-Hilker S, Dusso AS, Rapp NS et al (1990) 
Phosphorus restriction reverses hyperparathyroidism 
in uremia independent of changes in calcium and cal-
citriol. Am J Physiol 259:F432–F437  

    51.    Almaden Y, Canalejo A, Hernandez A et al (1996) 
Direct effect of phosphorus on PTH secretion from 
whole rat parathyroid glands in vitro. J Bone Miner 
Res 11:970–976  

    52.    Nielsen PK, Feldt-Rasmussen U, Olgaard K (1996) A 
direct effect in vitro of phosphate on PTH release 
from bovine parathyroid tissue slices but not from dis-
persed parathyroid cells. Nephrol Dial Transplant 
11:1762–1768  

   53.    Kilav R, Silver J, Naveh-Many T (1995) Parathyroid 
hormone gene expression in hypophosphatemic rats. 
J Clin Invest 96:327–333  

    54.    Silver J, Naveh-Many T (2009) Phosphate and the 
parathyroid. Kidney Int 75:898–905  

    55.    Ritter CS, Martin DR, Lu Y et al (2002) Reversal of sec-
ondary hyperparathyroidism by phosphate restriction 
restores parathyroid calcium-sensing receptor expres-
sion and function. J Bone Miner Res 17:2206–2213  

    56.    Dusso AS, Pavlopoulos T, Naumovich L et al (2001) 
p21WAF1 and transforming growth factor-a mediate 
dietary phosphate regulation of parathyroid cell 
growth. Kidney Int 59:855–865  

    57.    Cozzolino M, Lu Y, Sato T et al (2005) A critical role for 
enhanced TGF-a and EGFR expression in the initiation 
of parathyroid hyperplasia in experimental kidney dis-
ease. Am J Physiol Renal Physiol 289:F1096–F1102  

    58.    Dusso A, Arcidiacono MV, Yang J et al (2010) 
Vitamin D inhibition of TACE and prevention of renal 
osteodystrophy and cardiovascular mortality. J Steroid 
Biochem Mol Biol 121:193–198      

6 Phosphate Control of PTH Secretion



61M.L. Brandi, E.M. Brown (eds.), Hypoparathyroidism,
DOI 10.1007/978-88-470-5376-2_7, © Springer-Verlag Italia 2015

7.1             Introduction 

    Magnesium (Mg 2+ ) is a divalent cation that is 
essential for numerous physiologic processes. By 
serving as a cofactor for various enzymes, it plays 
a vital role in energy metabolism as well as pro-
tein and nucleic acid synthesis [ 1 ]. Furthermore, 
Mg 2+  is involved in maintenance of the electric 
potential of nervous tissues and cell membranes 
[ 1 ]. It is the fourth most abundant cation [ 2 ] and 
second most abundant intracellular cation in the 
body [ 3 ]. 

 The average human body contains approxi-
mately 25 g of Mg 2+  [ 1 ]. Ninety-nine percent of 
this is contained in the intracellular compartment, 
while 1 % is found in the extracellular fl uid [ 1 ]. 
Approximately 90 % of the body’s total Mg 2+  
content is contained in the osseous tissue and 
skeletal muscle [ 4 ]. Only 0.3 % is found in the 
serum, of which 30 % is protein bound [ 5 ], 10 % 
is complexed as salts (e.g., bicarbonate, citrate, 
phosphate, sulfate), and 60 % is present as free 
Mg 2+  ions, the biologically active form [ 6 ,  7 ]. 
Unlike calcium (Ca 2+ ), however, serum Mg 2+  is 
not routinely adjusted for albumin. Maintenance 
of serum ionized Mg 2+  within a narrow range 
(0.44–0.59 mmol/L) [or total serum Mg 2+  of 

0.70–1.1 mmol/L] is dependent on the coordi-
nated actions of the kidneys, gut, and bone [ 8 ,  9 ]. 
There is still much that remains to be established 
regarding the precise homeostatic mechanisms 
responsible for Mg 2+  handling.  

7.2     Magnesium Homeostasis 

 Mg 2+  homeostasis is tightly regulated and 
involves the equilibrium between intestinal 
absorption and renal excretion of Mg 2+  (Fig.  7.1 ) 
[ 5 ]. The average dietary intake of Mg 2+  is 240–
365 mg per day [ 1 ]. The majority of ingested 
Mg 2+  is absorbed in the proximal small bowel, 
although absorption also occurs in the ileum and 
colon [ 10 ,  11 ]. Under normal conditions, 
30–40 % of ingested Mg 2+  is absorbed [ 12 ].  

 Ninety percent of Mg 2+  absorption in the gut 
and reabsorption in the kidneys occurs passively 
via the paracellular route; the remaining 10 % 
occurs transcellularly, which is an energy- 
dependent process [ 5 ]. The main channel 
involved in active reabsorption of Mg 2+  is tran-
sient receptor potential melastatin subtype 6 
(TRPM6) [ 5 ]. 

 The kidneys fi lter 80 % of total plasma Mg 2+ , 
95 % of which is reabsorbed under normal cir-
cumstances [ 13 ]. The proximal convoluted tubule 
(PCT) reabsorbs 15 % of fi ltered Mg 2+ , while 
70 % is reabsorbed in the thick ascending limb 
of the loop of Henle (TAL), and 10 % is reabsorbed 
in the distal convoluted tubule (DCT) [ 14 ]. 
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This is in contrast to most other ions, where the 
PCT is the major site of reabsorption. In the TAL, 
Mg 2+  is driven paracellularly by the positive tran-
sepithelial voltage via the tight junction proteins 
claudin-16 and claudin-19 [ 15 ,  16 ]. These pro-
teins copolymerize within the plasma membrane 
together with the integral protein occludin to 
form the tight junctions [ 17 ]. Mutations in either 
claudin-16 or claudin-19 result in familial hypo-
magnesemia with hypercalciuria and nephrocal-
cinosis (FHHNC) [ 13 ]. The DCT determines the 
fi nal urinary Mg 2+  concentration, since the more 
distal nephron tends to be impermeable to Mg 2+  
[ 18 ]. This is mediated by the apical TRPM6 [ 13 , 
 19 ,  20 ]. It involves active transcellular reabsorp-
tion, since the transepithelial voltage in this seg-
ment of the nephron is negative [ 13 ]. The 
basolateral mechanism involved in Mg 2+  trans-
port has yet to be elucidated, although CNNM2 
(cyclin M2) may be a possible candidate [ 13 ]. 
Mg 2+  absorption in the gut appears to be medi-
ated by TRPM6 as well, located at the brush bor-
der membrane [ 21 ]. 

 Serum Mg 2+  is considered a poor marker of the 
body’s Mg 2+  stores [ 22 – 28 ]. More precise meth-
ods for estimating total body magnesium content 

have been developed (such as the erythrocyte 
Mg 2+  concentration and the “magnesium toler-
ance test”); however, these are primarily used in 
research settings [ 27 ,  28 ]. Intracellular Mg 2+  
depletion may occur despite normal serum Mg 2+  
levels [ 29 ,  30 ]. It has therefore been postulated 
that intracellular Mg 2+  content may be a valuable 
indicator of suffi ciency and more important regu-
lator of serum parathyroid hormone (PTH) levels 
[ 22 – 28 ].  

7.3     Hypomagnesemia 

 Though often asymptomatic, hypomagnesemia 
(serum total Mg 2+  <0.70 mmol/L) is a common 
electrolyte disturbance and may result in compli-
cations due to consequent hypocalcemia and 
hypokalemia [ 5 ]. Causes of hypomagnesemia 
can be classifi ed into the following categories: 
decreased intake, decreased absorption, increased 
losses, and redistribution (Fig.  7.2 ) [ 5 ]. As mag-
nesium is present in essentially all the food 
groups, it is very unusual for defi ciency to occur 
on the basis of inadequate intake. The most com-
mon causes of decreased absorption include 

Skeleton

Ingestion Gastrointestinal
absorption

Plasma Mg2+

Skeletal muscle/other
soft tissues

Renal Handling

~65% of total body Mg2+

~35% of total body Mg2+

~100mg/day excreted

(0.7-1.1mmol/L)
60% free ions (physiologically active)

10% complexed with anions
30% protein bound
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of Henle)

~240-365 mg/day
Abundant In most food

groups
~ 30-50% of intake

  Fig. 7.1    Simplifi ed scheme of magnesium homeostasis       
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severe diarrhea, steatorrhea, malabsorption 
syndromes, and short bowel syndrome [ 5 ]. 
Familial hypomagnesemia with secondary hypo-
calcemia (FHSH) is secondary to a mutation in 
the epithelial cation channel TRPM6 [ 5 ] and 
results in decreased intestinal Mg 2+  absorption 
and increased renal Mg 2+  excretion. FHSH results 
in severe hypomagnesemia (0.1–0.4 mmol/L), 
secondary hypocalcemia, altered neuromuscular 
excitability, muscle spasms, tetany, and seizures [ 13 ].  

 Proton pump inhibitors (PPIs) have recently 
been identifi ed as a cause of drug-induced hypo-
magnesemia. Although the exact mechanism has 
yet to be elucidated, it is believed that chronic 
PPI use may cause severe hypomagnesemia via 
gastrointestinal Mg 2+  loss [ 31 ,  32 ], possibly by 
inhibiting TRPM6-mediated active transport of 
Mg 2+  as a result of intestinal pH alteration [ 33 ]. 
Causes of renal Mg 2+  loss can be subdivided into 
increased fl ow (i.e., any cause of polyuria) and 
decreased tubular reabsorption. Medications can 
result in decreased tubular reabsorption and 
include diuretics, antibiotics, calcineurin inhibi-
tors, and epiderrmal growth factor (EGF) recep-

tor antagonists [ 5 ]. Downregulation of TRPM6 is 
the mechanism by which diuretics, calcineurin 
inhibitors, and EGF receptor antagonists may 
increase urinary Mg 2+  losses [ 34 – 37 ]. As previ-
ously  mentioned, FHHNC involves a mutation of 
claudin- 16 or claudin-19. These proteins form 
cation- permeable channels and are responsible 
for Ca 2+  and Mg 2+  reabsorption in the PCT and 
TAL [ 8 ]. Inherited disorders predisposing to 
hypomagnesemia have been vital in furthering 
our understanding of Mg 2+  transport, and these 
are outlined in Table  7.1 .

7.4        Hypermagnesemia 

 Hypermagnesemia (serum Mg 2+  >1.1 mmol/L) 
is considerably less common than hypomagne-
semia. The most common cause of the former is 
renal insuffi ciency [ 38 ]. The kidneys are able to 
maintain Mg 2+  balance by increasing its frac-
tional excretion of Mg 2+  until severe renal 
impairment develops (GFR < 30 mL/min) [ 38 ]. 
Other causes of impaired renal Mg 2+  excretion 

Hypomagnesemia

↓ intake

Renal

-polyuria
-thiazide & loop diuretics

-hypercalcemia
-aminoglycosides

-EGF receptor antagonists
-calcineurin inhibitors

-primary aldosteronism
-amphotericin B

Acquired causes

Congenital Causes
-Bartter syndrome

-Gitelman syndrome
-FHHNC
-FHSH

-isolated dominant
hypomagnesemia

-autosomal dominant
hypocalcemia

Gastrointestinal

-diarrhea

Skin

-burns

-excessive sweating

↓ absorption

↑ losses

Shift (into cells)

- acute pancreatitis

-hungry bone syndrome
-administration of glucose,
amino acids, and insulin

- severe diarrhea

-steatorrhea
-malabsorption syndromes

-short bowel syndrome

  Fig. 7.2    Diagnostic approach to hypomagnesemia.  EGF  epidermal growth factor,  FHHNC  familial hypomagnesemia 
with hypercalciuria and nephrocalcinosis,  FHSH  familial hypomagnesemia with secondary hypocalcemia       
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include lithium therapy (via unclear mechanisms) 
[ 38 ] and familial hypocalciuric hypercalcemia, 
the latter due to hyporesponsiveness of the 
calcium- sensing receptor (CaSR) to hypercal-
cemia [ 39 ]. Hypermagnesemia can also be 
caused by increased intake. The most common 
such scenario would be parenteral magnesium 
infusions during the treatment of preterm labor 
or preeclampsia/eclampsia [ 38 ]. Though 
uncommon, hypermagnesemia due to oral 
ingestion has been reported with antacids, laxa-
tive abuse, cathartics (used to treat overdoses), 
and accidental ingestion of Epsom salts [ 38 ,  40 , 
 41 ]. There have also been reports of hypermag-
nesemia caused by Mg 2+ -containing enemas 
and aspiration from near-drowning in the Dead 
Sea [ 42 – 45 ].  

7.5     Relationship Between Mg 2+  
and PTH 

 The relationship between Mg 2+  and parathyroid 
hormone (PTH) is rather complex. Serum Mg 2+  
levels are known to infl uence serum PTH levels, 
although the precise nature of this relationship 
has yielded confl icting results in the literature 
[ 22 – 26 ]. 

 The CaSR is physiologically activated not 
only by Ca 2+  but by Mg 2+  as well; therefore, 
serum Mg 2+  levels can infl uence PTH secretion 
[ 2 ] (see also Chap.   5    ). The release of PTH from 
the parathyroid gland partially depends on the 
intracellular signaling of cyclic AMP (cAMP), 
and Mg 2+  plays an important role in adenylate 
cyclase activation [ 46 ]. Stimulation of the CaSR 
by Mg 2+  results in transient intracellular Ca 2+  
elevations [ 47 ], stimulation of phospholipases C 
and A 2  [ 48 ], and inhibition of cellular cAMP gen-
eration, resulting in inhibition of PTH release 
[ 25 ,  26 ,  49 ]. These effects are mediated by the G i  
and G q  subclasses of G-proteins [ 2 ]. Mg 2+  is two 
to three times less potent than Ca 2+  in activating 
phospholipase C by means of the CaSR [ 49 ]. 
Other mechanisms by which Mg 2+  regulates PTH 
secretion are as yet unclear. 

 PTH plays a role in renal Mg 2+  handling by 
increasing Mg 2+  reabsorption in the DCT [ 2 ]. 
Although the precise mechanisms remain elu-
sive, it is believed that protein kinase A, phospho-
lipase C, and protein kinase C-mediated pathways 
play a role [ 2 ]. PTH has also been shown to 
increase Mg 2+  reabsorption in the cortical TAL 
(cTAL) by increasing paracellular pathway per-
meability [ 50 ]. Activating mutations of the CaSR 
resulting in autosomal dominant hypocalcemic 
hypercalciuria lead to asymptomatic hypocalce-
mia, hypomagnesemia, and PTH levels in the 
lower-to-normal range [ 51 ]. Inactivating muta-
tions of the CaSR result in familial hypocalciuric 
hypercalcemia (FHH) or its recessive form neo-
natal severe hyperparathyroidism [ 52 ]. Patients 
possessing this mutation manifest with hypercal-
cemia, hypermagnesemia, and normal-to- high 
PTH levels [ 8 ]. The biochemical features of these 

   Table 7.1    Inherited disorders leading to disturbances in 
magnesium balance   

 Disorder  Mutation 

 Familial hypomagnesemia with 
hypercalciuria and 
nephrocalcinosis 

 Claudin 16 or 19 

 Isolated recessive 
hypomagnesemia 

 EGF receptor 

 Dominant hypomagnesemia  CNNM2 
 Familial hypomagnesemia with 
secondary hypocalcemia 

 TRPM6 

 Isolated dominant 
hypomagnesemia 

 γ-subunit of 
Na + K +  ATPase 

 Autosomal dominant 
hypomagnesemia 

 Kv1.1 

 Bartter syndrome  NKCC2 (type I), 
ROMK (type II), 
ClC-Kb (type III), 
barttin (type IV) 

 Gitelman syndrome  NCC 
 EAST (epilepsy, ataxia, 
sensorineural deafness, and renal 
tubulopathy) syndrome 

 Kir4.1 

   EAST  epilepsy, ataxia, sensorineural deafness, and renal 
tubulopathy,  EGF  epidermal growth factor,  CNNM2  
cyclin M2,  TRPM6  transient receptor potential melastatin 
subtype 6, Kv1.1 potassium voltage-gated channel sub-
family A member 1,  NKCC2  sodium-potassium-chloride 
co-transporter 2,  ROMK  renal outer medullary potassium 
channel, ClC-Kb chloride channel, voltage-sensitive Kb, 
 NCC  sodium-chloride co-transporter,  Kir4.1  inward recti-
fying potassium channel 4.1  
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conditions suggest that the CaSR plays an important 
role in not only Ca 2+  homeostasis but also Mg 2+  
homeostasis.  

7.6     Effects of Hypomagnesemia 
on PTH 

 Hypomagnesemia may cause relative hypopara-
thyroidism, as severe hypomagnesemia interferes 
with PTH secretion [ 5 ]. Although mild decreases 
in Mg 2+  levels to as low as 0.5 mmol/L result in 
stimulation of PTH secretion (as seen with hypo-
calcemia), more severe levels of hypomagnese-
mia actually inhibit PTH secretion [ 2 ]. This has 
been demonstrated at Mg 2+  levels <0.4 mmol/L 
[ 53 – 55 ]. This phenomenon has been referred to as 
“paradoxical block of PTH secretion” [ 2 ]. The 
block of PTH secretion is believed to be related to 
the effect of intracellular Mg 2+  depletion on the 
α-subunits of the heterotrimeric G-proteins asso-
ciated with the CaSR [ 2 ]. Since these proteins 
contain a Mg 2+ -binding site, Mg 2+  defi ciency can 
disinhibit the Gα subunits, thereby mimicking the 
effect of CaSR activation and consequently sup-
pressing PTH secretion [ 2 ,  5 ]. As a result, hypo-
calcemia occurs due to decreased renal Ca 2+  
reabsorption [ 56 ]. The inhibition of PTH secre-
tion tends to occur with prolonged, rather than 
acute, Mg 2+  defi ciency [ 57 ]. The resultant hypo-
calcemia can only be corrected by replacement of 
Mg 2+  [ 57 – 60 ]. Serum PTH levels increase within 
minutes of Mg 2+  administration [ 2 ]. Hence, it is 
believed that hypomagnesemia inhibits the secre-
tion of PTH, rather than its biosynthesis [ 59 – 61 ]. 

 Hypomagnesemia may also cause hypocalce-
mia by decreasing the responsiveness of target 
organs (renal tubules and bone in particular) to 
PTH activity [ 62 – 64 ]. PTH exerts its renal activ-
ity via activation of adenylate cyclase in the renal 
tubules, resulting in intracellular production of 
cAMP [ 65 ]. Free intracellular Mg 2+  is a cofactor 
of adenylate cyclase; thus, when the intracellular 
concentration of ionized Mg 2+  is reduced, resis-
tance to the action of PTH may ensue as a result 
of the disturbed signal transduction pathway [ 4 , 

 62 – 64 ]. There is also evidence implicating hypo-
magnesemia with inhibition of PTH binding 
to bone [ 66 ]. End-organ resistance, however, is 
felt to play less of a signifi cant role in 
hypomagnesemia- induced hypocalcemia com-
pared to inhibition of PTH release [ 53 ,  61 ].  

7.7     Effects of Hypermagnesemia 
on PTH 

 Hypermagnesemia may cause hypocalcemia, 
although it is typically mild in severity and 
asymptomatic [ 67 ,  68 ]. Similar to hypomagne-
semia, the cause of hypocalcemia in hypermag-
nesemia has been postulated to involve 
inhibition of PTH release [ 69 ], although some 
studies have actually found elevations of PTH in 
this setting [ 68 ].  

    Conclusion 

 Serum levels of Mg 2+  and PTH depend on 
each other in an intricate manner. Disturbances 
in magnesium balance may lead to secondary 
hypocalcemia through its inhibitory effects on 
PTH secretion and activity. The effects of 
hypomagnesemia on calcium homeostasis 
depend on whether this process is acute versus 
chronic, as well as on the severity of the hypo-
magnesemia. Further research is required to 
improve our understanding of Mg 2+  homeosta-
sis, as well as the role of Mg 2+  in parathyroid 
physiology.     
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8.1             Calcium and Phosphorus 
Balance 

 The skeleton, the gut, and the kidney each play a 
major role in assuring calcium (Ca ++ ) homeosta-
sis. Overall, in a typical individual if 1,000 mg of 
Ca ++  are ingested in the diet per day, approxi-
mately 200 mg will be absorbed across the 
 intestinal epithelium and about 200 mg excreted. 

 The traditional model of transcellular Ca ++  
transport consists of infl ux through an apical cal-
cium channel (TRPV6), which provides the rate- 
limiting step, diffusion through the cytosol, and 
active extrusion at the basolateral membrane by a 
plasma membrane ATPase (PMCA1b) [ 1 ]. 
Although entry of Ca ++  has been reported to 
involve TRPV6, other Ca ++  channels may also be 
involved. Ca ++  binding proteins including calmod-
ulin and calbindin-D9k (CaBP9k) may be impor-
tant for fi ne-tuning Ca ++  channel activity, and in 

the cytosol, calbindin 9 k may “buffer” and/or 
mediate the transit of intracellular absorbed Ca ++  
to the basolateral membrane. An additional mod-
ulator of transcellular Ca ++  transport is a Ca 
ATPase, PMCA1b, encoded by  ATP2B1 , which is 
important for the extrusion of Ca ++  at the basolat-
eral membrane to complete the transcellular 
transport of this ion. Increasing evidence also sug-
gests the importance of paracellular Ca ++  trans-
port in Ca ++  absorption via tight junctions. 

 The skeleton, where approximately 1,000 mg 
of calcium is stored, is the major Ca ++  reservoir in 
the body. Skeletal Ca ++  is stored mainly in the 
form of hydroxyapatite crystals, the major inor-
ganic component of the mineralized bone matrix. 
Ordinarily as a result of normal bone turnover, 
approximately 500 mg of Ca ++  is resorbed from 
the bone per day and the equivalent amount is 
accreted. Approximately 10 g of Ca ++  will be fi l-
tered daily through the kidney and most will be 
reabsorbed, with about 200 mg being excreted in 
the urine. The normal 24-h urine excretion of 
Ca ++  may however vary between 100 and 300 mg 
per day (2.5–7.5 mmoles per day). 

 The average consumption of phosphorus (Pi) 
(i.e., about 1,000–1,500 mg) in a Western diet is 
similar to that of Ca ++  (about 1,000 mg); however, 
about 70 % of phosphorus is absorbed daily com-
pared with only about 20–30 % of Ca ++ . Pi 
ingested through the diet is absorbed by the small 
intestine through sodium–phosphate cotransport-
ers, as well as by sodium-independent diffusional 
absorption across intercellular spaces in the 
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lumen. The skeleton also represents the largest 
reservoir in the body of Pi which is stored in an 
exact stoichiometry with Ca ++  as hydroxyapatite 
crystals. The major control site for Pi homeosta-
sis is the kidney where enhanced reabsorption 
can occur from the tubular lumen via sodium–
phosphate cotransporters, NaPi2s (also known as 
SLC34As) that are expressed in the renal proxi-
mal convoluted tubule [ 2 ] (see also Chap.   6    ).  

8.2     Hormones Regulating Ca ++  
and Pi Homeostasis 

8.2.1     Parathyroid Hormone (PTH) 

 PTH secretion from the parathyroid gland and 
parathyroid cell proliferation are inhibited by 
serum Ca ++ acting via a Ca ++ -sensing receptor 
(CaSR) [ 3 ], and PTH gene transcription [ 4 ] and 
parathyroid cell proliferation [ 5 ,  6 ] may be inhib-
ited by the active form of vitamin D, 
1,25- dihydroxyvitamin D [1,25(OH) 2 D], acting via 
the vitamin D receptor (VDR). Although the major 
glandular form of PTH is an 84 amino acid peptide, 
virtually all of the biological activity resides within 
its amino (NH 2 )-terminal domain [ 7 ,  8 ]. 
Intracellular degradation of PTH(1–84) within the 
parathyroid cell, which is enhanced by high ambi-
ent calcium concentrations, provides a means of 
modulating the fraction of secreted hormone that is 
PTH(1–84) (see Chap.   4     for details). The NH 2 -
terminal domain interacts in target tissues with a 
classical G protein-coupled receptor (GPCR) 
termed the PTH/PTHrP receptor type 1, or PTHR1 
[ 9 ,  10 ]. PTHR1 couples to several G protein sub-
classes, including Gs, Gq/11, and G12/13, result-
ing in the activation of many pathways, although 
the best studied are the adenylate cyclase (AC) and 
phospholipase C (PLC) pathways. 

 In the kidney, Ca ++  reabsorption primarily 
occurs in the distal tubules and collecting ducts 
[ 11 ]. Ca ++  ions cross the apical membrane from 
the tubular lumen via TRPV5, a highly selective 
Ca ++ channel, and are then transported across the 
basolateral membrane into the blood system by 
the sodium/calcium exchanger 1 (NCX1) and a 
plasma membrane ATPase. PTH regulates the 

expression of TRPV5 and NCX1 [ 12 ] as well as 
their activity. The PTH regulation of at least 
TRPV5 appears to occur through protein kinase 
C (PKC) [ 13 ]. TRPV5 is also regulated through 
the PKC-signaling pathway by the Ca ++  sensing 
receptor (CaSR) [ 14 ] (see also Chap.   5    ). 

 Pi reabsorption across the apical membrane of 
renal proximal tubules mainly occurs through 
two sodium-dependent phosphate cotransporters, 
NaPi-2a and NaPi-2c, that are exclusively 
expressed in the brush border membrane of the 
proximal tubules [ 15 ] (see also Chap.   6    ). PTH 
increases Pi excretion in the proximal tubule 
mainly by reducing the levels of these transport-
ers. Thus, PTH binding to PTHR1 at either apical 
or basolateral membrane results in removal of the 
transporters from the brush border membrane via 
clathrin-coated pits [ 16 ,  17 ]. PTH activation of 
apical PTHR1 leads to phospholipase C (PLC)–
protein kinase C (PKC) stimulation mediated by 
sodium–hydrogen exchanger regulatory factor 
(NHERF), whereas activation of basolateral 
PTHR1 utilizes the AC/protein kinase A (PKA) 
pathway [ 18 ]. Following endocytosis NaPi-2 is 
eventually transported to the lysosomes for 
degradation. 

 PTH also stimulates the conversion of 
25-hydroxyvitamin D [25(OH)D] to 1,25(OH) 2 D 
in the kidney by transcriptional activation of the 
gene encoding the 25-hydroxyvitamin D-1α 
hydroxylase [1(OH)ase] enzyme (CYP27B1) 
apparently by the AC/PKA pathway [ 19 ] (see 
also Chap.   11    ). 

 The bone undergoes constant remodeling in 
response to endocrine, autocrine/paracrine, and 
intracrine signals and bone mineral is maintained 
through a balance between bone formation and 
resorption. PTH binds to PTHR1 on cells of the 
osteoblastic lineage [ 20 ] including progenitor 
cells, osteoblasts, and osteocytes and can stimu-
late a variety of factors ultimately leading to 
increased proliferation of mesenchymal stem 
cells, such that these cells are committed into the 
osteoblast lineage, to enhance osteoblast differ-
entiation and activity with new bone matrix pro-
duction [ 21 ] and ultimately mineralization of 
bone tissue. However, osteoblastic cells also pro-
duce the TNF-related cytokine, receptor activator 
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of nuclear factor κ-B (RANK) ligand (RANKL), 
a critical stimulator of osteoclast production and 
action, as well as the soluble RANKL decoy 
receptor, osteoprotegerin (OPG) [ 22 ]. PTH 
enhances production of RANKL and inhibits 
production of OPG leading to increased osteo-
clastogenesis and osteoclastic bone resorption 
[ 23 ]. Bone resorption leads to the release of Ca ++  
and Pi as a result of the degradation of hydroxy-
apatite, and it is the resorptive effect of PTH 
which plays a major role in mineral and particu-
larly Ca ++  homeostasis  

8.2.2     Vitamin D 

8.2.2.1     Metabolism of Vitamin D 
 Vitamin D can be obtained as vitamin D3 (chole-
calciferol), via UV-light irradiation of a skin pre-
cursor, 7-dehydrocholesterol [ 24 ], or can be 
ingested from the diet as vitamin D3 or as the 
plant-derived sterol vitamin D2 (ergocalciferol). 
Vitamin D is then transported to the liver, bound 
to a plasma vitamin D binding protein (DBP) 
[ 25 ], where it is hydroxylated at the C-25 position 
of the side chain to produce 25(OH)D, the most 
abundant circulating form of vitamin D [ 26 ]. The 
fi nal step in the activation to the hormonal form, 
1,25(OH) 2 D, occurs mainly, but not exclusively, 
in the kidney via a tightly regulated 
1α-hydroxylation reaction catalyzed by a mito-
chondrial enzyme 1(OH)ase, or CYP27B1 [ 27 ]. 
The renal  CYP27B1  gene is stimulated by PTH 
and hypocalcemia and inhibited by hyperphos-
phatemia thus sensing the need for mineral 
homeostasis. The renal  CYP27B1  gene is also 
product-inhibited by 1,25(OH) 2 D, which acts via 
a short negative feedback loop to limit its own 
production [ 28 ]. 1,25(OH) 2 D circulates bound to 
vitamin D binding protein (DBP), to exert its 
endocrine actions in various target tissues. 
Extrarenal 1α-hydroxylation has also been 
described resulting in the production of 
1,25(OH) 2 D, which can act locally in an intra-
crine mode [ 29 ]. The 1,25(OH) 2 D-mediated 
endocrine or intracrine signal may be terminated 
in all target cells via the catalytic action of 
CYP24A1, an enzyme that initiates the process of 

1,25(OH) 2 D catabolism [ 30 ]. The  CYP24A1  gene 
is transcriptionally activated by 1,25(OH) 2 D [ 31 ]. 
This feed forward induction of 1,25(OH) 2 D catab-
olism therefore prevents hypervitaminosis D.  

8.2.2.2     Actions of Vitamin D 
 The active metabolite, 1,25(OH) 2 D, functions by 
initially binding to the VDR. The ligand- activated 
VDR interacts with the retinoid X receptor 
(RXR) to form a heterodimer that binds to vita-
min D responsive elements in the region of genes 
directly regulated by 1,25(OH) 2 D [ 32 ]. By 
recruiting complexes of either coactivators or 
corepressors, ligand-activated VDR–RXR modu-
lates the transcription of genes encoding proteins 
that carry out the functions of vitamin D. 

 Under conditions of low dietary Ca ++ , the 
1,25(OH) 2 D/VDR system induces TRPV6 [ 33 ] 
and vitamin D-dependent calcium binding pro-
tein 9K (CaBPD9k) [ 34 ], to promote transcel-
lular intestinal calcium absorption; the 
extrusion of calcium at the basolateral mem-
brane is likely constitutive in part and is exe-
cuted by the Ca ATPases PMCA1b/PMCA2c 
but could be amplifi ed via induction of these 
molecules by 1,25(OH) 2 D. 1,25(OH) 2 D also 
increases expression of claudins 2 and 12 to 
possibly promote paracellular Ca ++  entry [ 35 ]. 
Ca ++  absorption under normal dietary condi-
tions postnatally does not absolutely require 
TRPV6 and CaBPD9K. 

 Pi is predominantly absorbed in the intestine 
via paracellular mechanisms. Although 
1,25(OH) 2 D may also increase intestinal Pi 
absorption by increasing expression of NaPi2b 
[ 36 ], because Pi is abundant in the diet, the Pi 
absorption effect of 1,25(OH) 2 D may not be as 
profound as the effect on Ca ++  transport. The 
1,25(OH) 2 D/VDR system can promote bone 
resorption [ 37 – 39 ], suggesting that at least part 
of its skeletal action is catabolic. In support of 
this, the 1,25(OH) 2 D/VDR system enhances the 
expression of RANKL in osteoblastic cells to 
stimulate bone resorption through osteoclasto-
genesis [ 40 ]. Furthermore, osteoprotegerin, the 
soluble decoy receptor for RANKL that tempers 
its activity, is repressed by the 1,25(OH) 2 D/VDR 
system, thus amplifying the bioeffect of RANKL. 
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 The action of the 1,25(OH) 2 D/VDR system in 
the parathyroid gland to suppress PTH synthesis 
[ 4 ] effectively limits PTH-induced bone- 
resorbing activity and restricts PTH stimula-
tion of renal CYP27B1 thereby preventing 
hypercalcemia.   

8.2.3     Fibroblast Growth Factor 23 
(FGF23) 

 Fibroblast growth factors (FGFs) are a large 
superfamily of peptides that act mainly as para-
crine/autocrine substances to exert a broad range 
of biological functions in development and 
organogenesis. They act by binding and activa-
tion of FGF receptor (FGFR) tyrosine kinases 
[ 41 ,  42 ]. The unique FGF19 subfamily consists 
of FGF19, FGF21, and FGF23 [ 43 ] which act as 
hormones to regulate energy and mineral metab-
olism (see also Chap.   6    ). 

 FGF23 is a phosphaturic hormone produced 
and secreted by bone cells of the osteoblastic 
lineage, predominantly late osteoblasts and 
osteocytes, and was initially identifi ed as the 
mediator of the human disorder autosomal dom-
inant hypophosphatemic rickets (ADHR) [ 44 ]. 
FGF23 is synthesized as a 32 kDa, 251 amino 
acid protein, with a signal (leader) sequence of 
24 amino acids, an NH 2 -terminal FGF homol-
ogy domain of 155 amino acids, and a unique 
sequence in its carboxyl (COOH)-domain of 72 
amino acids [ 45 ]. The molecule can be cleaved 
between Arg 179  and Ser 180  by a subtilisin-like 
proprotein convertase, yet to be identifi ed, to 
generate NH 2 -terminal and COOH-terminal 
fragments; the entire sequence of the secreted 
25–251 amino acid protein appears to be neces-
sary for its biological action. O-glycosylation 
within the 162–228 region apparently reduces 
the susceptibility of the protein to proteolysis 
[ 46 ], and it is possible that the COOH-terminal 
fragment may compete with intact FGF23 for 
binding to its receptor complex and function as 
a competitive inhibitor [ 47 ]. ADHR patients 
carry missense mutations at the proteolytic 
cleavage site of FGF23 (176RXXR179), which 
confers resistance to inactivation by proteolytic 

cleavage [ 48 ]. As a result, ADHR patients 
exhibit increased blood levels of intact FGF23 
and Pi-wasting phenotypes. 

8.2.3.1     Regulation of FGF23 
Production 

   Local Regulators of FGF23 Production 
 Local regulators produced in osteoblast/osteo-
cytes appear to be important in modulating the 
release of FGF23. Mutations in the gene encod-
ing the membrane protein PHEX (phosphate- 
regulating neutral endopeptidase with homology 
to endopeptidase on the X chromosome) [ 49 –
 51 ] and in the gene encoding the SIBLING 
(small integrin-binding ligand interacting gly-
coproteins) protein DMP-1 (dentin matrix pro-
tein-1) [ 52 ,  53 ] increase FGF23 expression and 
induce renal Pi wasting in mice and humans. In 
one apparent mechanism [ 54 ], DMP-1 binds to 
the osteocyte through its integrin-binding 
domains and to PHEX through its ASARM 
domain [acidic serine aspartate-rich matrix 
extracellular phosphoglycoprotein (MEPE)-
associated motif]. Binding of DMP-1 to PHEX 
inhibits production of active FGF-23, while dis-
ruption of either DMP-1 or PHEX releases this 
inhibition, and active FGF23 production is 
increased. Local relative levels of the mineral-
ization regulators pyrophosphate and phosphate 
appear to be important modulators [ 55 ,  56 ] and 
disruption of bone mineralization may release 
low molecular weight FGFs from the bone 
matrix which may activate the osteocyte FGFR 
and stimulate transcription of the  FGF - 23  gene 
[ 57 ]. Finally reduced iron and tissue hypoxemia 
have also been reported to stimulate FGF23 
release [ 58 ].  

   Systemic Regulators 
 Extremely high FGF23 levels are observed in 
primary defi ciency of the Klotho protein 
(genetic deletion or mutational hypomorph) [ 59 , 
 60 ] and the much more common secondary 
Klotho defi ciency in chronic kidney disease 
(CKD) [ 61 ,  62 ]. However, there are no in vitro 
data to date to  support a direct effect of Klotho, 
either locally produced or circulating, on FGF23 
production. 
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 A critical regulator of FGF23 release is 
1,25(OH) 2 D, acting via the VDR [ 63 ] in part by 
directly upregulating gene expression [ 64 ] and in 
part by inhibiting PHEX and by inducing expres-
sion of the gene encoding ecto-nucleotide pyro-
phosphatase/phosphodiesterase (Enpp1), which 
could alter local levels of pyrophosphate and 
phosphate [ 65 ]. 1,25(OH) 2 D may also increase 
the levels of the hypoxia-inducible transcription 
factor, HIF1A, which might mediate the effects 
of tissue hypoxemia on FGF23 release [ 66 ]. PTH 
has also been reported to stimulate synthesis and 
secretion of FGF23 through activation of the 
PTHR1 on osteocytes/osteoblasts [ 67 ,  68 ]. 

 Increased Pi in the diet and increases in serum 
Pi can both increase FGF23 release by osteocytic 
cells; however, the mechanism is still unclear. 
Nevertheless, this observation has led to the con-
cept that the skeleton therefore serves as a sensor 
of Pi levels in a manner analogous to the function 
of the parathyroid glands as a Ca ++  sensor. 

 FGF23 is also regulated by serum Ca ++  [ 69 –
 71 ], as initially suggested by several lines of evi-
dence. Thus, serum Ca ++  levels are independently 
associated with FGF23 levels in dialysis patients, 
in transplant recipients, and in patients with pri-
mary hyperparathyroidism [ 3 ]. In patients with 
severe secondary and tertiary (persistent) hyper-
parathyroidism referred for parathyroidectomy, 
postoperative changes of FGF23 are limited and 
related to changes of Ca ++  [ 72 ]. In patients with 
acute untreated hypoparathyroidism occurring 
after thyroidectomy [ 73 ], FGF23 levels are 
 initially reduced when patients are hyperphos-
phatemic but still hypocalcemic. In contrast, in 
patients with chronic hypoparathryoidism and 
hyperphosphatemia who are normocalcemic on 
calcium and calcitriol treatment, serum FGF-23 
levels are elevated [ 74 ]. Consequently treatment 
of hypocalcemia in patients with chronic hypo-
parathyroidism may raise FGF23 which will pro-
mote phosphaturia, but the serum levels of 
phosphorus concentrations may not completely 
normalize, possibly because the concerted phos-
phaturic actions of both PTH and FGF23 may be 
required. 

 In vitamin D receptor-null mice, dietary cal-
cium supplementation signifi cantly increases 

serum calcium levels, FGF23 messenger RNA 
abundance, and circulating FGF23 levels. In 
PTH-null mice that are hypocalcemic and hyper-
phosphatemic, FGF23 levels are reduced [ 75 ]. 
In wild-type mice and PTH-null mice, acute ele-
vation of either serum Ca ++  or Pi by intraperito-
neal injection increased serum FGF23 levels. 
However, increases in serum Pi by chronic expo-
sure to a high dietary Pi load were accompanied 
by severe hypocalcemia, which appeared to blunt 
stimulation of FGF23 release. Calcium-mediated 
increases in serum FGF23 required a threshold of 
at least normal serum Pi levels. Similarly, 
Pi-elicited increases in FGF23 were markedly 
blunted if serum Ca ++  was less than normal. The 
best correlation between Ca ++  and Pi and serum 
FGF23 was found between FGF23 and the 
Ca ++  × Pi product.   

8.2.3.2    Actions of FGF23 
 In addition to being regulated by serum Ca ++  and 
Pi levels, FGF23 in turn acts to modulates serum 
Ca ++  and Pi levels, thus ensuring that the Ca ++  × Pi 
product remains within a physiological range. 
FGF23 is therefore not only a phosphoregulatory 
hormone but a dual calciophosphoregulatory hor-
mone (Figs.  8.1  and  8.2 ).   

 FGF23 combines with an FGFR, as well as 
with Klotho, an obligate coreceptor, in order to 
transmit the signal of FGF23 to target organs 
[ 76 ]. Thus, Klotho protein forms constitutive 
binary complexes with FGFR1c, FGFR3c, and 
FGFR4 which increase the affi nity of these 
FGFRs selectively to FGF23 [ 77 ] and produce a 
heterotrimeric complex which is required for 
FGF23 to activate downstream signaling mole-
cules, including FGFR substrate-2α and mitogen- 
activated protein kinases (MAPKs) such as 
extracellular signal-regulated kinases (ERK1/2). 
Klotho is a type I membrane protein but may also 
be expressed, due to alternative RNA splicing, as 
a secreted form that lacks the transmembrane and 
intracellular domains; it may therefore also act as 
a humoral factor [ 78 ] and may also have 
β-glucuronidase activity [ 79 ]. A unique structural 
feature of the endocrine FGFs, including FGF23, 
is their lack of a heparin-binding domain that is 
conserved in all paracrine/autocrine FGFs [ 80 ]. 

8 The PTH/Vitamin D/FGF23 Axis



74

This heparin-binding domain binds to heparan 
sulfate (HS) in the extracellular matrix, thereby 
imposing some restriction to the secretion of 
non-endocrine FGFs and increasing their local 
concentration to support their paracrine/auto-
crine mode of action; in addition, the HS-binding 
domain is essential for FGFR activation, forming 
a complex of HS, FGF, and FGFR [ 81 ]. Absence 
of the heparin-binding domain in endocrine FGFs 
may facilitate their release from sites of produc-
tion and Klotho proteins substitute for HS in 
enhancing receptor binding by endocrine FGFs. 
Although FGFRs are quite ubiquitous, Klotho 
expression is relatively restricted and may confer 
tissue specifi city for FGF23 action [ 42 ]. 

 The major target for FGF23 is the kidney, 
where it acts to promote phosphate excretion and 
to decrease production and increase clearance of 
1,25(OH) 2 D. FGF23 suppresses Pi reabsorption 
[ 28 ] by inhibiting NaPi2a and NaPi2c on the api-
cal brush border membrane of proximal tubular 
cells [ 82 ]. Although all the FGF23 actions seem 
to occur in the proximal tubule, Klotho expres-
sion is higher in the distal tubules [ 83 ]. Because 
proximal tubules also express Klotho, albeit in 
lower quantities [ 84 ], FGF23 may signal directly 
in proximal tubules to regulate their function 
with a small number of FGFR–Klotho com-
plexes. Alternatively FGF23 may act on distal 
convoluted tubules where Klotho is most abun-
dantly expressed and initiate release of a para-
crine factor(s) that acts on adjacent proximal 
tubules. It is currently unclear but unlikely that 
circulating Klotho can serve as a coreceptor for 
FGFR. 

 FGF23 also lowers blood levels of 
1,25(OH) 2 D by downregulating the expression 
of the  CYP27B1  gene [ 31 ] and by upregulating 
gene expression of 24-hydroxylase (CYP24A1), 
which converts 1,25(OH) 2 D to inactive metabo-
lites [ 85 ]. Thus, FGF23 suppresses synthesis 
and promotes degradation of the active hor-
monal form of vitamin D. By diminishing circu-
lating 1,25(OH) 2 D levels, FGF23 can therefore 
also indirectly reduce vitamin D-stimulated Pi 
(and Ca ++ ) absorption in the intestine (Figs.  8.1  
and  8.2 ). 

 In addition, FGF23 acts directly on the para-
thyroid gland FGFRs (likely via FGFR1 and 

FGFR3) and Klotho [ 26 ,  27 ] in an ERK1/2- 
dependent manner [ 86 ,  87 ] to suppress PTH syn-
thesis and secretion [ 86 ,  87 ]; FGF23 may also 
increase the levels of parathyroid CaSR and VDR to 
indirectly inhibit PTH gene expression, secretion, 
and cell proliferation via Ca ++  and 1,25(OH) 2 D 
respectively [ 88 ]. However, in most clinical and 
pathological situations associated with chronically 
increased circulating FGF23 concentrations, 
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  Fig. 8.1    Model of hormonal regulation of Pi (and Ca ++ ) 
homeostasis. In the presence of normal renal function, 
increased dietary phosphorus (Pi) ( 1 ) facilitated by 
1,25(OH) 2 D action on the intestine ( 2 ) may increase serum 
Pi levels. Increased Pi levels can directly or indirectly 
increase PTH secretion ( 3 ) leading to increased renal Pi 
excretion ( 4 ), but also to increased renal Ca ++  retention, 
increased 1,25(OH) 2 D production ( 5 ), and increased release 
of Ca ++  and Pi from the bone ( 6 ). The increased serum Pi 
in the presence of a threshold level of serum Ca ++  can 
now increase FGF23 secretion from the bone ( 7 ), as well as 
PTH ( 8 ), and 1,25(OH) 2 D ( 8 ) which may also each increase 
FGF23 production. Secreted FGF23 can decrease 
1,25(OH) 2 D ( 9 ) thus reducing its capacity to further enhance 
intestinal Pi absorption and can also inhibit PTH ( 10 ) thus 
reducing stimulation of renal production of 1,25(OH) 2 D, Pi 
mobilization from the bone, and enhancement of Pi excre-
tion. Serum Pi per se may also reduce 1,25(OH) 2 D produc-
tion ( 11 ). FGF23 can inhibit proximal tubular NaPi2a and 2c 
( 12 ) and produce phosphaturia ( 13 ) in place of the sup-
pressed PTH, thereby reducing the Pi (and Ca ++  × Pi prod-
uct). With prolonged elevation of FGF23 and suppression 
of 1,25(OH) 2 D, secondary hyperparathyroidism may occur 
to prevent signifi cant hypocalcemia       
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secondary hyperparathyroidism is present. In 
mice overexpressing FGF23 [ 89 ], secondary 
hyperparathyroidism also tends to occur, sug-
gesting that the effects of FGF23 on Pi, Ca ++ , and 
1,25(OH)D metabolism, which act to stimulate 
PTH production, may overcome any direct inhib-
itory effects of FGF23 on PTH release. 
Downregulation of FGFRs and Klotho in the 
parathyroids that reduces sensitivity to FGF23 
signaling has been reported as the underlying 
cause of FGF23 resistance in some [ 90 ,  91 ], but 
not all studies [ 92 ] of secondary hyperparathy-
roidism in uremia. In  Hyp  mice which have a 
loss of Phex function with resultant increased 
FGF23 and which are phenocopies of X-linked 

hypophosphatemic rickets (XLH) in man, secondary 
hyperparathyroidism occurs and deletion of the 
gene encoding PTH results in early lethality due 
to hypocalcemia [ 93 ]. Hyperparathyroidism, 
therefore, is an integral component in the patho-
physiology of Hyp, and likely XLH, despite 
excess circulating FGF23 and may serve as a 
compensatory mechanism to prevent severe 
hypocalcemia in mice and perhaps in patients 
affl icted with the disorder.    

8.3     Endocrine Regulation of Pi 
and Ca ++  Metabolism 

 When renal function is normal, in the presence of 
an increased dietary load of Pi, serum Pi levels 
may increase, enhanced by 1,25(OH) 2 D action on 
the intestine. This increased serum Pi may 
directly [ 94 ] or indirectly (by reducing serum 
Ca ++  levels) increase PTH secretion and facilitate 
renal Pi excretion. However, PTH may also 
mobilize Pi (and Ca ++ ) from the bone and enhance 
1,25(OH) 2 D production with resultant increased 
intestinal absorption of Pi (and Ca ++ ). In the pres-
ence of a threshold level of serum Ca ++ , Pi can 
then increase FGF23 secretion from the bone. 
1,25(OH) 2 D per se and PTH may also increase 
skeletal production of FGF23. Secreted FGF23 
can then inhibit 1,25(OH) 2 D production, thus 
reducing its capacity to further enhance intestinal 
Pi absorption, and can also inhibit PTH thus 
reducing its capacity to mobilize Pi from the 
bone, as well as to stimulate renal production of 
1,25(OH) 2 D and to promote Pi excretion. Pi per 
se may also inhibit 1,25(OH) 2 D production. 
FGF23 can inhibit proximal tubular NaPi2a and 
2c in the kidney and can produce phosphaturia in 
place of the suppressed PTH, restoring the serum 
Pi (and Ca ++  x Pi product) to normal. With pro-
longed elevation of FGF23 and prolonged 
 suppression of 1,25(OH) 2 D, secondary hyper-
parathyroidism may occur to prevent signifi cant 
hypocalcemia (Fig.  8.1 ). 

 Increased serum Ca ++  may arise from increased 
intestinal absorption of Ca ++ , (with Pi) or from 
increased bone resorption (with Pi) or from both 
mechanisms. The increased serum Ca ++  per se by 
stimulating the renal CaSR can enhance renal 
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  Fig. 8.2    Model of hormonal regulation of Ca ++  (and Pi) 
homeostasis. Increased intestinal absorption of Ca ++  ( 1 ) 
facilitated by increased 1,25(OH) 2 D ( 2 ) or increased bone 
resorption ( 3 ) or both may result in increased serum cal-
cium (Ca ++ ) (and Pi). Serum Ca ++ , by stimulating the renal 
CaSR ( 4 ), can enhance Ca ++  excretion ( 5 ). Serum Ca ++ , 
acting via the CaSR in the parathyroid gland, can inhibit 
PTH secretion ( 6 ). Decreased PTH results in reduced 
mobilization of skeletal Ca ++  (and Pi) ( 7 ), reduced renal 
production of 1,25(OH) 2 D ( 8 ), and reduced renal Ca ++  
retention ( 9 ) but also in reduced renal Pi clearance. 
Elevated serum Ca ++  in the presence of high normal or 
elevated serum Pi can then increase FGF23 secretion ( 10 ) 
which can further inhibit PTH secretion ( 11 ) and kidney- 
derived 1,25(OH) 2 D ( 12 ) and normalize the Ca ++  × Pi 
product       
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Ca ++  excretion. The increased serum Ca ++  acting 
via the CaSR in the parathyroid gland can inhibit 
PTH secretion. Decreased PTH results in reduced 
bone resorption and concomitant mobilization of 
skeletal Ca ++  (and Pi), decreased renal Ca ++  reten-
tion, and reduced production of 1,25(OH) 2 D in 
the kidney, but also in increased Pi retention. 
Elevated serum Ca ++  in the presence of high nor-
mal or elevated serum Pi can also increase FGF23 
secretion which can further inhibit PTH secre-
tion, can inhibit kidney-derived 1,25(OH) 2 D, and 
replace the action of PTH in promoting phospha-
turia (Fig.  8.2 ), thereby normalizing the Ca ++  × Pi 
product. 

 These complex interrelationships underlie the 
exquisite controls that have evolved to maintain 
serum Pi and Ca ++  levels within a defi ned range 
when one of these ions is dysregulated but also to 
ensure an appropriate ratio by maintaining a nor-
mal Ca ++  × Pi product.  

    Conclusion 

 Initial studies on mineral ion regulation 
focussed on the Ca ++ -regulating hormones 
PTH and 1,25(OH) 2 D, but these were also 
known to have profound effects on renal and 
intestinal handling of Pi. Analysis of genetic 
diseases of renal Pi wasting identifi ed FGF23, 
as a primary hormonal regulator of Pi homeo-
stasis. Subsequently FGF23 was found to par-
ticipate in complex feedback loops with the 
classic Ca ++ -regulating hormones, and all 
three hormones are now known to share inter-
acting functions on regulating both Ca ++  and 
Pi homeostasis.     
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9.1             Introduction 

 The parathyroid hormone receptor type 1 
(PTHR1) mediates the biological actions of para-
thyroid hormone (PTH) in target cells of the bone 
and kidney. The agonist-bound PTHR1 couples 
effi ciently to several signal transduction path-
ways, including the cAMP/PKA and PLC/IP3/
PKC pathways, and activation of signal transduc-
tion systems in target cells results in the deploy-
ment of a number of downstream effector 
responses, such as an increase in the production 
of RANK ligand in osteoblasts and a suppression 
of surface expression of the sodium-dependent 
phosphate co-transporter type 2A in renal proxi-
mal tubular cells. Such effector responses to 
PTHR1 signaling ultimately result in the fi nely 
tuned changes blood calcium (Ca) and inorganic 
phosphate (Pi) levels that serve to keep these 
mineral ions within a remarkably narrow range of 
their ideal set-point concentrations. The PTHR1 
also serves as the receptor for PTH-related pro-
teins (PTHrP) and thus plays a completely 
 distinct role by mediating the paracrine control of 
primordial cell proliferation and differentiation 
in a number of developing tissues, such as the 
skeleton. Understanding the molecular mecha-

nisms by which the PTHR1 engages its ligands, 
PTH and PTHrP, and mediates cellular signal 
transduction responses is an important goal to 
achieve in order to be able to fully explain and 
control systems of calcium homeostasis and tis-
sue growth development in normal and diseases 
states.  

9.2     The PTHR1: Background 

 The PTHR1 utilizes the seven transmembrane 
domain protein architecture used by all  G protein- 
coupled receptors  (GPCRs) (Fig.  9.1 ). As occurs 
in each GPCR upon activation by a cognate 
external stimulating agent, the PTHR1, when 
acted upon by a PTH agonist ligand, undergoes a 
series of conformational changes which result in 
coupling of the PTHR1 to cytoplasmic effector 
proteins, most prominently Gαs-containing het-
erotrimeric G proteins and hence activation of 
downstream intracellular signaling cascades. The 
activation of Gαs thus results in an increase in the 
activity of membrane-bound adenylyl cyclase, 
and the resulting increase in intracellular cAMP 
activates protein kinase A (PKA), which, in turn, 
phosphorylates and hence activates other down-
stream signaling proteins, such as the cAMP 
response element-binding protein transcription 
factor CREB. The activated PTHR1 can also cou-
ple to several other signaling cascades, including 
the Gαq/phospholipase C (PLC)/inositol trispho-
sphate (IP 3 )/intracellular Ca/protein kinase C 
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(PKC) pathway [ 1 ], the G α 12/13/phospholipase 
D (PLD)/RhoA pathway [ 2 ], and the mitogen- 
activated protein kinase (MAPK) signaling cas-
cades, such as extracellular signal-regulated 
kinase, ERK1/2. The last of these can occur 
through G protein-dependent mechanisms or G 
protein-independent, β-arrestin-dependent mech-
anisms [ 3 ].  

9.2.1     Parathyroid Hormone: Ligand 
Determinants of Biological 
Activity 

 While endogenous PTH in humans is an 84 
amino acid polypeptide, synthetic peptides 
comprised of the fi rst 34 amino acids are fully 
active for most if not all PTHR1-mediated bio-
logical responses. The key determinants of hor-
mone signaling and receptor binding reside 
within the N-terminal and C-terminal portions 
of the PTH(1–34) fragment, respectively. 
Critical ligand determinants of signaling include 
the fi rst two amino acids, particularly valine-2, 
and N-terminal truncated peptides such as 

PTH(7–34) function as effective PTH antagonist 
[ 4 ]. The PTH(15–34) peptide represents the 
shortest- length peptide fragment that retains at 
least some capacity to bind to the PTHR1 [ 5 ]. 
Short amino- terminal PTH fragments generally 
lack detectable activity, but analogs such as 
“M”-PTH(1–14) that are optimized with a set of 
six substitutions, collectively called the “M” mod-
ifi cations, exhibit signaling potencies in the low-
nanomolar range, similar to that of PTH(1–34) [ 6 ]. 

 Native PTHrP is 141 amino acids in length, 
with splice variants terminating at positions 139 
or 173 also detectable [ 7 ]. Here again the (1–34) 
peptide exhibits full activity on the PTHR1. The 
PTHrP peptide shares strongest homology with 
PTH in the N-terminal region, in which eight of 
the fi rst 13 amino acid residues are identical, but 
then diverges considerably. The PTHrP(15–34) 
peptide nevertheless competes with PTH for the 
same or an overlapping binding site on the recep-
tor. These fi ndings suggested that the principal 
binding domains of PTH and PTHrP adopt simi-
lar conformations when binding to the receptor, 
likely an amphipathic α-helix, which indeed was 
confi rmed by the recent x-ray crystallographic 
analyses of each ligand fragment in complex with 
the cognate portion of the receptor [ 8 ].  

9.2.2     The PTHR1: Structural 
and Functional Properties 

 While the cloning of the PTHR1 cDNA in 1991 
revealed the seven transmembrane domain motif 
of the GPCR class, there was no direct homology 
with most GPCRs identifi ed at the time, such as 
the β 2 -adrenergic receptor [ 9 ]. It was realized, 
however, that the PTHR1, together with several 
other recently identifi ed receptors, formed a dis-
tinct GPCR subgroup, thenceforth called the 
family B GPCRs. This family B GPCR subgroup 
is comprised of about 15 distinct receptors that 
bind peptide hormones, including, in addition to 
PTH, calcitoni n , secretin, glucagon, and 
corticotrophin- releasing factor (CRF) [ 10 ]. The 
sequence homologies between the related family 
B GPCRs, though low, at ~35 % identity, predict 
similarities in their structures and modes of 
action, as also suggested by the fi nding that each 

PTH

β-arrestin

ERK-1/2

Gαq/IP3/PLC/
PKC

Gα12/13/
RhoA/PLDGαs/cAMP/

PKA

PTHrP

  Fig. 9.1    The PTH/PTHrP receptor (PTHR1). The PTHR1 
mediates the actions of two peptide ligands, parathyroid 
hormone and PTH-related protein; the receptor displays 
the seven-membrane-spanning helical domain protein 
architecture characteristic of a GPCR. The PTHR1 couples 
to a variety of signal transduction pathways, including 
most prominently the Gαs/cAMP/PKA pathway, the Gαq/
PLC/PKC pathway, the Gα12/13/RhoA/PLD pathway, and 
the ERK-1/2-MAP-kinase pathway via indirect, Gαs-
dependent and β-arrestin-dependent mechanisms       
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binds a single-chain polypeptide ligand of 30–40 
amino acids. 

 The human PTHR1 is comprised of 593 amino 
acids. The mature receptor contains a relatively 
large amino-terminal extracellular domain (ECD) 
of ~160 amino acids, a transmembrane domain 
(TMD) region containing the seven-membrane- 
spanning helices and interconnecting loops (ICLs 
and ECLs), and a carboxy-terminal tail of about 
130 amino acids. The PTHR1 ECD contains a 
segment of 44 amino acids encoded by exon E2 
that is not found in other family B receptors and 
which can be deleted without an effect on func-
tion. Several hallmark features are well con-
served in the family B GPCRs, including six 
extracellular cysteines in the ECD. These con-
served residues presumably help to maintain a 
protein fold that is used by each of the family B 
GPCRs and defi nes a common mechanism of 
action.  

9.2.3     Mechanism of Binding: 
The Two-Site Model 

 The mode of ligand binding and activation used 
by the PTHR1 has been approached using bio-
chemical and mutational methods employing 
mutant receptors and altered ligand analogs. 
Such studies led to the so-called two-site model 
of binding for the PTH/PTHR1 interaction. By 
this model, the C-terminal (15–34) portion of 
PTH(1–34) fi rst docks to the ECD region of the 
receptor to establish initial affi nity interactions, 
and then the N-terminal (1–14) portion of the 
ligand engages the TMD region to induce the 
conformational changes involved in receptor 
activation and G protein coupling [ 11 ]. The two- 
site model that emerged from the early mutation- 
based functional studies gained strong support 
from more direct photoaffi nity cross-linking 
studies, which mapped specifi c sites of physical 
proximity between residues in the ligand and 
receptor. Examples of key intermolecular prox-
imities thus assigned were those between 
Lys13 in the ligand and Arg186 at the extracel-
lular of TMD helix 1, between Val2 in the ligand 
and Met425 at the extracellular end of TMD 
helix 6, and between Trp23 in the ligand and 

Thre33/Gln37 in the receptor’s ECD [ 12 ,  13 ]. 
The general two-site model is well validated for 
the PTHR1 and is likely used by other members 
of the family B GPCR subgroup [ 14 ]. Recent use 
of direct structural approaches provides further 
support for this general mode of interaction.   

9.3     The PTHR1 ECD Region: 
Affi nity Interactions 

 The complete three-dimensional structure of the 
intact PTHR1 has not yet been determined; how-
ever, such data are now available for the isolated 
ECD region. Pioszak and Xu thus determined the 
x-ray crystal structure of the PTHR1 ECD in 
complex with the (12–34) fragment of PTH as 
well as the (15–34) fragment of PTHrP [ 8 ]. 
Similar approaches have been used to acquire 
structures of the ECD regions of several other 
family B GPCRs [ 15 ]. The common protein fold 
is defi ned by a network of three intramolecular 
disulfi de bonds that braces the structure, a central 
core comprised of two pairs of antiparallel beta- 
strands and a prominent loop, and a long 
N-terminal fl anking α-helix (Fig.  9.2 ). A promi-
nent groove lies along the center of the structure 
and this groove serves as the binding site for the 
C-terminal ligand domain, which is indeed bound 
as an amphipathic α-helix. Extensive contacts are 
made between Trp23, Leu24, and Leu28 that 
form the hydrophobic surface of the PTH ligand 
helix and hydrophobic residues that line the 
groove of the ECD. The observed mode of bind-
ing directly confi rms prior PTH structure-activity 
studies which predicted an important role for the 
hydrophobic face of an amphipathic α-helix in 
this region of PTH in binding to the receptor [ 8 , 
 18 ]. The binding mode for PTHrP shows nearly 
complete overlap with that used by PTH, as pre-
dicted by the previous binding data; however, a 
slight bend in the PTHrP helix at position-27 
leads to a divergence in contacts made by the 
C-terminal portions of the two ligand helices. 
Such differences in binding could potentially 
contribute to any difference in action of the two 
ligands, as seen in some cell- and clinical-based 
studies [ 19 – 21 ]. The structures suggest how the 
C-terminal domain of the ligand binds so as to 
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present the N-terminal portion of the ligand in 
optimal position for interaction with the TMD 
portion of the receptor.   

9.4     The PTHR1 Transmembrane 
Domain Region: Signaling 
Interactions 

 Recent x-ray crystal structures have been deter-
mined for the TMD regions of two related family 
B GPCRs, the CRF receptor-1 and the glucagon 

receptor (GlucR) [ 17 ]. These breakthrough 
structures followed on the heels of the crystallo-
graphic structures obtained by Kobilka and col-
leagues for several family A GPCRs, including 
the β 2 - adrenergic receptor [ 22 ]. The family B 
TMD structures exhibit a heptahelical bundle 
that superimposes fairly well with that of the 
family A adrenergic receptors; however, the 
opening at the extracellular surface is wider in 
the family B receptors than in the family A 
receptors, which likely refl ects the larger size of 
the peptide ligand bound by the family B recep-
tors versus the small catecholamine ligands 
bound by the adrenergic receptors. An extensive 
mutational and cross- linking analysis of the pre-
dicted ligand-binding pocket of the CRFR1 
TMD indeed reveals as many as 35 distinct 
ligand-contact sites, dispersed among the extra-
cellular loops and the extracellular ends of the 
TM helices [ 23 ]. The structures of the family B 
TMD regions were obtained in the presence of a 
bound small molecule antagonist ligand, rather 
than a bound peptide agonist. Current data sug-
gest, however, that the N-terminal portion of 
PTH adopts at least some helical conformation 
when it is bound to the TMD region [ 24 ]. 
Determining the binding site in the receptor for 
Val2 in PTH ligands is a particularly crucial 
goal, given the importance of this residue for 
inducing receptor activation. Cross-linking and 
mutational studies have identifi ed several recep-
tor residues likely to be involved [ 12 ,  25 ,  26 ]. 
These residues include Ser370, Met425, and 
Gln440 located at the extracellular ends of TMD 
helices 5, 6, and 7, respectively. How these resi-
dues contribute to the receptor activation pro-
cesses remains to be elucidated.  

9.5     The PTHR1 Cytoplasmic 
Surface: Interaction 
with Effectors and Signal 
Regulators 

 In the structural models, the intracellular ends of the 
TM helices of the family B receptors are seen to 
spatially align closely with those of the family A 
GPCRs. This fi nding likely refl ects an overlap in the 

  Fig. 9.2    Molecular model of the PTH(1–34)·PTHR1 
complex: Shown is a plausible model of PTH(1–34) 
( magenta ) bound to the PTHR1 ( blue–green ), developed 
based on the x-ray crystal structures of the ECD region of 
the PTHR1 in complex with PTH(15–34) [ 16 ], and for the 
TMD region of the related CRFR1 [ 17 ]. The protein back-
bones are displayed in ribbon format, with the side chains 
displayed for a few selected residues, including Val2, 
Lys13, and Trp23 in PTH and Gln37 and Phe184 in the 
PTHR1. The three disulfi de bonds in the ECD are shown 
in  red , and the segment encoded by exon E2, absent in the 
crystal structure, is represented by a  dashed line        
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repertoire of effector and regulatory proteins with 
which the different GPCRs interact on their cyto-
plasmic surfaces. A key component or the activation 
mechanism is likely to be an outward movement of 
some of the TM helices at their intracellular ends, 
such that access to cytoplasmic G proteins and sig-
nal regulating proteins is increased. Evidence for 
dynamic movement of the intracellular ends of 
TM3 and TM6 upon agonist-induced PTHR1 acti-
vation is provided by prior zinc-chelation-based 
mutational studies [ 27 ]. The highly conserved 
His223 in TM2, Thr410 in TM6, and Arg458 in 
TM7 were identifi ed as the sites of PTHR1 muta-
tions in patients with Jansen’s chondrodysplasia, 
and the identifi ed mutations result in high levels of 
ligand- independent (constitutive) PTHR1 signal-
ing, which fully explains the disease phenotype 
[ 28 ]. These three residues are each located at the 
intracellular base of a TM helix and can be seen in 
the crystal structures to participate in a network of 
interhelical interactions that likely plays a key role 
in the receptor activation process [ 17 ]. 

 Several residues on the cytoplasmic surface of 
the PTHR1 have been identifi ed by mutational 
methods as determinants of G protein coupling. 
Thus, Lys388 in ICL3 is a determinant of Gαs 
and Gαq interaction [ 29 ], whereas Lys319 in 
ICL2 is a selective determinant of Gαq interac-
tion, as its mutation to Glu reduces coupling to 
the PLC/IP3 pathway but not the cAMP/PKA 
pathway [ 1 ]. This mutation along with three 
neighboring mutations, comprise the “DSEL” 
clustered mutation, which has been engineered 
into the PTHR1 gene in mice by “knock-in” 
approaches for the purpose of assessing the rela-
tive roles of PTH-mediated cAMP/PKA versus 
PLC/PKC signaling in vivo [ 1 ]. 

 As for most GPCRs, termination of signaling 
at the PTHR1 involves phosphorylation of the 
receptor’s C-terminal tail by G protein receptor 
kinases, followed by β -arrestin recruitment and 
receptor internalization. A cluster of seven serine 
residues in the mid-region of the cytoplasmic tail 
are the sites of ligand-induced receptor phosphor-
ylation and thus serve to regulate the interaction 
of activated PTHR1 with arrestin proteins and 
thus mediate receptor desensitization and subse-
quent receptor internalization [ 30 – 32 ]. Arrestins 

also mediate interaction of GPCRs with clathrin 
components of internalization vesicles and can 
also mediate signaling through the ERK- 1/2 
MAP-kinase pathway, as shown for the PTHR1 
[ 3 ,  33 ]. The PTHR cytoplasmic tail also mediates 
interaction with the  sodium-hydrogen- regulating 
factor (NHERF) family of proteins, which occurs 
via a PDZ domain-based interaction involving the 
last fi ve residues of the receptor’s C-terminal tail 
[ 34 ,  35 ]. Interaction with NHERF proteins regu-
late the docking of the receptor to the actin cyto-
skeleton via the EZRIN adaptor protein and 
thereby modulate intracellular traffi cking and 
recycling of the ligand- activated PTHR1 [ 36 ].  

9.6     Novel Mechanisms 
of Prolonged Signaling 
at the PTHR1 

 Recent studies suggest that the PTHR1 can form 
surprisingly stable complexes with certain PTH 
ligand analogs and can thus mediate persistent 
cAMP signaling responses [ 20 ,  37 ]. The mecha-
nism appears to involve binding of the ligand to a 
unique high-affi nity PTHR1 conformation, which 
can couple persistently to Gαs, even when follow-
ing internalization of the complex to endosomal 
vesicles [ 38 ]. Moreover, the PTH analogs that bind 
effi ciently to the R 0  conformation not only mediate 
markedly prolonged cAMP responses in cells but 
also induce markedly prolonged hypercalcemic 
and hypophosphatemic responses when injected 
into animals [ 32 ,  39 ]. One particularly long-acting 
analog, called LA-PTH and consisting of a unique 
M-PTH(1–14)/PTHrP(15–36) hybrid structure, 
can induce elevations of serum calcium in mice 
that persist for nearly 24 h following a single sub-
cutaneous injection, which contrasts markedly 
with PTH(1–34) which raises calcium for only 
2–4 h [ 32 ] (Fig.  9.3 ). The prolonged responses of 
these analogs in vivo cannot be explained by a pro-
longed half-life in the circulation, but rather by 
their stable binding to the PTHR1 in bone and kid-
ney target cells. This class of R 0 -selective PTH 
analogs is thus of interest as a potential new mode 
of therapy for patients with hypoparathyroidism 
[ 40 ] (see also Chaps.   30     and   31    ).      
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10.1             The α-Subunit 
of the Stimulatory 
Heterotrimeric G Protein 

 Heterotrimeric guanine nucleotide binding 
proteins transduce signals from a wide range of 
endogenous molecules into different cellular 
actions and, thus, mediate a plethora of biological 
processes. Expressed in nearly all tissues and cells, 
the α-subunit of the stimulatory G protein (Gsα) is 
essential for the cellular actions of many hormones, 
neurotransmitters, and autocrine/paracrine factors. 
Accordingly, complete loss of Gsα, as shown in 
mouse models, results in embryonic lethality [ 1 –
 3 ]. Furthermore, inactivating or activating muta-
tions within the gene encoding Gsα ( GNAS ) are 
responsible for various human diseases, including 
Albright’s hereditary osteodystrophy, progressive 
osseous heteroplasia, pseudohypoparathyroidism 
(PHP) type Ia, PHP-Ic, pseudopseudohypoparathy-
roidism, different endocrine and non-endocrine 
tumors, and McCune-Albright syndrome (see 
Chaps.   32    ,   33    ,   34    , and   35     for additional details) 
[ 4 – 11 ]. In addition, imprinting abnormalities of 
 GNAS  are found in patients with PHP-Ib [ 12 – 14 ] 
(see also Chaps.   32    ,   33    ,   34    , and   35    ). 

 Similar to the α-subunits of other heterotrimeric 
G proteins, agonist activation of a specifi c cell-sur-
face receptor results in a GDP-GTP exchange on 
Gsα, causing its dissociation from Gβγ subunits 
[ 15 ] (Fig.  10.1 ). GTP-bound, free Gsα can directly 
activate several different effectors. These effectors 
include Src tyrosine kinase [ 16 ] and certain Ca 
channels [ 17 ,  18 ]; however, the most extensively 
investigated effector molecule stimulated by Gsα is 
adenylyl cyclase. This enzyme catalyzes the syn-
thesis of the ubiquitous second messenger cyclic 
AMP (cAMP), which activates intracellular targets 
including protein kinase A (the cAMP-dependent 
protein kinase) and the exchange proteins directly 
activated by cAMP [ 19 ,  20 ] (Fig.  10.1 ).  

 Different molecular mechanisms tightly regu-
late the cAMP signaling pathway, and some of 
those mechanisms function at the level of Gsα. 
An important regulatory mechanism is the intrin-
sic GTP hydrolase (GTPase) activity of Gsα, 
which converts the active GTP-bound Gsα to its 
inactive GDP-bound state (Fig.  10.1 ). GDP- 
bound Gsα has a much higher affi nity for Gβγ, 
resulting in the re-formation of the heterotrimer 
and, thereby, preventing further effector stimula-
tion [ 15 ]. Some amino acid residues, such as 
Arg 201  and Gln 227 , are particularly critical for the 
GTPase activity, and modifi cations of these resi-
dues, such as ADP-ribosylation of Arg 201  that can 
be induced by cholera toxin or mutations at either 
residue, lead to inhibition of the GTPase activity 
and, therefore, constitutive Gsα signaling [ 8 ,  21 –
 23 ]. Gsα-mediated signaling is also regulated by 
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activation-induced subcellular redistribution of 
Gsα to the cytosol from the plasma membrane 
[ 24 ]. Gsα is palmitoylated at its N-terminus [ 25 ], 
and the plasma membrane avidity of activated 
Gsα protein is reduced due to its depalmitoylation 
and dissociation from Gβγ subunits [ 26 – 29 ]. 
Another mechanism regulating Gsα-induced sig-
naling entails changes in protein turnover. Upon 
activation, the rate of Gsα degradation increases 
through a mechanism that appears to be indepen-
dent of the plasma membrane localization of this 
protein [ 30 ]. 

 The Gsα transcript has a long and a short vari-
ant (Gsα-L and Gsα-S) formed as a result of alter-
native splicing of exon 3 [ 31 – 33 ]. In addition, each 
of these Gsα variants either includes or excludes a 
CAG trinucleotide (encoding serine) at the start of 
exon 4. The functional signifi cance of this addi-
tional serine residue is unknown. On the other 
hand, several lines of biochemical evidence sug-
gest that Gsα-L may be slightly more effi cient than 
Gsα-S in transducing receptor signals, although it 

remains to be determined whether this difference 
is biologically signifi cant [ 34 – 40 ]. Another Gsα 
variant, termed Gsα-N1, has been identifi ed in 
brain [ 41 ]. Owing to the use of a novel exon in 
intron 3 that comprises an in-frame termination 
codon, Gsα-N1 is truncated in the C-terminus and 
lacks the portion encoded by exons 4–13.  

10.2     The  GNAS  Complex Locus 

 The human  GNAS  locus maps to the telomeric 
end of the long arm of chromosome 20 (20q13.2- 
20q13.3) [ 42 – 44 ], while its mouse ortholog is 
located in the distal region of chromosome 2 [ 45 , 
 46 ]. Human Gsα is encoded by  GNAS  exons 1–13 
[ 32 ].  GNAS  in humans and mice appear structur-
ally and functionally similar to one another, 
although the mouse Gsα protein is encoded by 12 
rather than 13 exons [ 47 ]. In addition to the exons 
encoding Gsα,  GNAS  includes several additional 
exons and promoters located upstream of exon 1, 
thus leading to multiple additional transcripts 
(Fig.  10.2 ). These include the neuroendocrine 
secretory protein 55 (NESP55), the extra-large 
variant of Gsα (XLαs), the A/B transcript (also 
known 1A or 1′), and the  GNAS  antisense tran-
script (GNAS-AS1).  

 In humans, the NESP55 protein is encoded by 
a single exon, while in mice, the open reading 
frame consists of two separate exons; however, in 
both species, these exons splice onto Gsα exons 
2–13, which comprise the 3′-untranslated region 
(Fig.  10.2 ) [ 48 ,  49 ]. The promoter and the exon(s) 
encoding NESP55 are located in a differentially 
methylated region (DMR), and the expression 
takes place from the unmethylated maternal allele 
[ 48 ,  49 ]. NESP55 is a chromogranin-like protein 
expressed in neuroendocrine tissues, peripheral 
and central nervous system, and some endocrine 
tissues [ 50 – 53 ]. The knockout of NESP55 protein 
in mice leads to a mild phenotype characterized 
by increased reactivity to novel environments 
[ 54 ]; however, no discernible phenotype has yet 
been attributed to the loss of NESP55 protein in 
humans, as the clinical  fi ndings of patients with 
PHP-Ib who show gain of NESP55 DMR meth-
ylation appear indistinguishable from the clinical 

  Fig. 10.1    Activation-inactivation cycle of the heterotri-
meric stimulatory G protein. Upon binding of an agonist 
to its Gsα-coupled receptor ( R ), the GDP molecule bound 
to the α-subunit is replaced with a GTP molecule. The 
GTP-bound form of the α-subunit dissociates from βγ 
subunits and, thereby, stimulates its downstream effectors 
including adenylyl cyclase. The intrinsic GTP hydrolase 
activity of the α-subunit converts the GTP into GDP, 
resulting in the reassembly of the heterotrimer and, 
thereby, termination of effector stimulation. Adenylyl 
cyclase catalyzes the conversion of ATP into cAMP, 
which stimulates protein kinase A ( PKA ) and the exchange 
proteins directly activated by cAMP ( EPAC )       
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fi ndings of those who have normal NESP55 DMR 
methylation [ 55 ]. On the other hand, NESP55 
transcription is critical for  GNAS  imprinting (see 
below). 

 XLαs is expressed exclusively from the 
paternal allele, consistent with methylation of 
its maternal promoter [ 49 ,  56 ,  57 ] (Fig.  10.2 ); 
however, variable biallelic expression of XLαs 
has been demonstrated in clonal bone stromal 
cells [ 58 ]. XLαs mRNA is expressed abun-
dantly in the brain, cerebellum, and neuroendo-
crine tissues, but its expression can be detected 
at many other tissues [ 56 ,  59 – 63 ]. The 
N-terminal portion of XLαs, which is encoded 
by exon XL, consists of multiple repetitive 
amino acid motifs. Exon XL splices onto  GNAS  
exons 2–13, which, unlike in NESP55, belong 

to the open reading frame. Thus, XLαs protein 
is partially identical to Gsα protein and com-
prises most of the functional domains of the lat-
ter [ 49 ,  56 ]. Accordingly, XLαs can mimic Gsα 
in vitro and in vivo [ 64 – 69 ]. Multiple XLαs 
variants and alternative translation products of 
XLαs mRNA have been described [ 47 ,  56 ,  60 , 
 70 – 72 ], and disruption of exon XL leads to a 
severe phenotype in mice, including poor adap-
tation to feeding and defective glucose and 
energy metabolism [ 61 ,  73 ]. Based on addi-
tional XLαs knockout mouse models, some of 
those phenotypes refl ect XLαs defi ciency, while 
others are caused by the loss of other products 
that utilize exon XL [ 74 – 77 ]. Some studies in 
mice also suggest that XLαs plays a role in 
bone and mineral metabolism [ 76 – 78 ], and 

  Fig. 10.2    The  GNAS  complex locus yields multiple 
imprinted sense and antisense transcripts. Exons 1–13 
encode Gsα, which is biallelically expressed in most tissues; 
however, paternal Gsα allele is silenced in a small number of 
tissues, including the renal proximal tubule. From differen-
tially methylated promoters arise several other transcripts, 
including the maternally expressed NESP55 and the pater-
nally expressed XLαs. Both of these transcripts use indi-
vidual fi rst exons that splice onto exons 2–13. In addition, 
the paternal  GNAS  allele gives rise to a transcript termed 

A/B (also referred to as 1A or 1′). A noncoding antisense 
transcript is also derived from the paternal  GNAS  allele 
(GNAS-AS1). Open rectangles and rectangles fi lled with 
CH3 show non-methylated and methylated DMRs, respec-
tively. The distance between GNAS-AS1 exon 5 and exon 
NESP55 is ~19 kb and the distance between exon A/B and 
exon XL ~35 kb. Boxes and connecting lines depict exons 
and introns, respectively; splicing patterns are indicated by 
broken lines; fi lled boxes, untranslated sequences; only the 
major splicing patterns are depicted       
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alterations of XLαs activity/level are implicated 
in several human disorders, such as the intra-
uterine growth retardation observed in pseu-
dopseudohypoparathyroidism [ 79 ]. Functional 
properties and in vivo roles of XLαs and its 
variants are reviewed elsewhere [ 80 ,  81 ]. 

 Located ~2.5 kb upstream of the Gsα promoter 
is the maternally methylated, paternally active 
promoter of the A/B transcript, which is broadly 
expressed [ 82 – 84 ] (Fig.  10.2 ). The fi rst exon of 
the A/B transcript also splices onto Gsα exons 
2–13 [ 83 ]. Exon A/B does not contain an in-frame 
translation initiation codon, but translation can be 
initiated by an in-frame AUG located in exon 2, 
leading to an N-terminally truncated Gsα variant 
that localizes to the plasma membrane [ 84 ]. Thus, 
the A/B protein can interact with adenylyl cyclase 
and may, therefore, exert a dominant negative 
effect on Gsα. Indeed, a recent study has provided 
evidence supporting this possibility [ 85 ]. On the 
other hand, the A/B transcript exerts important 
actions at the transcriptional level (see below). 

 A promoter located immediately upstream of 
the XLαs promoter drives the expression of 
GNAS-AS1 transcript, which extends past the 
exon(s) encoding NESP55 [ 86 ,  87 ] (Fig.  10.2 ). 
The structural features of this transcript indicate 
that it is noncoding. The promoter of the 
GNAS-AS1 resides in a DMR and is active 
exclusively on the paternal allele [ 57 ,  86 – 88 ]; 
however, the antisense transcript shows biallelic 
expression in the adrenal and testes [ 57 ]. Similar 
to many noncoding RNAs in the genome, 
GNAS-AS1 has regulatory actions on  GNAS  
expression (see below). 

 In contrast to the promoters of these recently 
described  GNAS  products, which are located 
within DMRs and show activity on the non- 
methylated allele, the promoter of Gsα is not 
methylated and, in most tissues, Gsα expression 
is biallelic [ 48 ,  56 ,  89 ]. However, the paternal 
Gsα promoter is repressed in a small number of 
tissues, including renal proximal tubule, thyroid, 
pituitary, gonads, and certain parts of the brain [ 1 , 
 90 – 95 ]. The loss of paternal Gsα silencing in 
mice causes a phenotype consistent with 
increased PTH sensitivity at the renal proximal 
tubule, demonstrating the signifi cance of this epi-

genetic event at least in this tissue [ 96 ]. The 
tissue- specifi c monoallelic (maternal) expression 
of Gsα is also critical in determining the pheno-
type in certain diseases caused by  GNAS  muta-
tions, such as PHP and growth hormone-secreting 
pituitary adenomas [ 93 ,  97 ,  98 ].  

10.3     Control of Imprinting at 
the  GNAS  Complex Locus 

 Many familial PHP-Ib cases have isolated loss of 
methylation at the A/B DMR [ 12 ,  14 ]. These 
patients either have deletions within the neigh-
boring  STX16  locus – overlapping at exon 4 or in 
one case a ~19-kb deletion removing exon 
NESP55 and a large upstream genomic region 
[ 99 – 101 ]. Thus, the deleted regions are predicted 
to comprise critical cis-acting elements necessary 
for the establishment or maintenance of A/B 
methylation (Fig.  10.3 ). Note that the loss of one 
 STX16  allele is not predicted to contribute to the 
phenotype, as this gene is biallelically expressed 
and the ablation  Stx16  exons 4–6 in mice does 
not alter  Gnas  imprinting or cause PTH resis-
tance [ 100 ,  102 ]. A few familial PHP-Ib cases 
show broad epigenetic alterations at the  GNAS  
locus, including loss of A/B methylation (for 
additional details on PHP1b, see Chaps.   32    ,   33    , 
and   34    ) [ 14 ,  103 ,  104 ]. These cases have dele-
tions affecting the NESP55 DMR, with the short-
est region of overlap including exons 3 and 4 of 
the GNAS-AS1 transcript [ 103 ,  104 ]. Thus, this 
genomic region is also likely to include a cis- 
acting element controlling all maternal  GNAS  
imprints. In addition, important novel insights 
have been gained from generation and the analy-
sis of mice in which the Nesp55 transcript is pre-
maturely terminated through insertion of a 
polyadenylation cassette immediately down-
stream of exons encoding this protein [ 105 ]. 
Maternal inheritance of this defect leads to loss 
of A/B methylation and, in some animals, 
 additional loss of methylation at the DMR com-
prising the promoter of GNAS-AS1 (Nespas in 
mice) and exon XL [ 105 ]. Thus, NESP55 tran-
scription is essential for the establishment of 
maternal  GNAS  imprints, and it is thus possible 
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that the maternal deletions affecting the NESP55 
DMR in PHP-Ib patients result in loss of mater-
nal  GNAS  methylation because of disrupting 
NESP55 transcription.  

 The study of the mouse  Gnas  locus has 
revealed two female germ-line imprint marks, 
one at the exon A/B (1A in mouse) DMR [ 83 ] 
and the other at the promoter of GNAS-AS1 
(Nespas in mice) [ 106 ]. Ablation of the homolo-
gous non-methylated chromosomal region alters 
expression of different imprinted  Gnas  tran-
scripts. Ablation of the entire paternal A/B DMR 
derepresses the Gsα transcript, in cis, in those tis-
sues where paternal Gsα expression is normally 
silenced [ 96 ,  107 ]. Deletion of the paternal 
GNAS-AS1 DMR leads to derepression of the 
paternal Nesp55 transcription [ 108 ,  109 ]. In 

addition, loss of all maternal  Gnas  methylation in 
mice, including A/B and GNAS-AS1 (as in some 
familial PHP-Ib cases), which results from abla-
tion of the Nesp55 DMR, is associated with 
diminished Gsα expression in kidney [ 110 ]. 
Thus   , the A/B and the GNAS-AS1 germ-line 
imprints are necessary for maternal expression of 
Gsα in a tissue-specifi c manner and of NESP55, 
respectively.  

10.4     Regulation of Allelic Gsα 
Silencing 

 Data from mouse models indicate that the pater-
nal Gsα silencing is developmentally regulated in 
some tissues. For example, the paternal Gsα 

  Fig. 10.3    Regulation of gene expression from the  GNAS  
locus. The maternal  GNAS  allele comprises two female 
germ- line imprint marks, one at the GNAS-AS1 promoter 
and the other at exon A/B. Deletions identifi ed in PHP-Ib 
cases point to  STX16  exon 4, the NESP55 promoter and 
exon, and the region comprising exons 3 and 4 of 
GNAS-AS1 as important cis-acting elements regulating 

 GNAS  imprinting.  Arrows  indicate the regulatory effects 
revealed by these deletions. Findings from different 
mouse models indicate that the GNAS-AS1 transcript 
silences Nesp55 expression in cis and that the paternal 
exon A/B region and/or the A/B transcript silences Gsα 
expression in cis; the latter occurs in a tissue-specifi c 
manner (*)       
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allele is silenced in brown adipose tissue at birth, 
whereas the silencing mechanisms in the renal 
proximal tubule operate only after the early post-
natal period [ 90 ,  107 ]. The loss of A/B methyla-
tion observed in patients with PHP-Ib [ 12 – 14 ] 
and the fi ndings in mice with the ablation of 
paternal exon A/B [ 96 ,  107 ] clearly indicate that 
the A/B DMR and/or the A/B transcript plays an 
important role in the paternal silencing of Gsα. 
However, the mechanisms governing this impor-
tant epigenetic event remain poorly defi ned. One 
possible mechanism involves binding of a trans- 
acting factor to the non-methylated exon A/B 
region. This could be a tissue-specifi c repressor 
that acts directly on the Gsα promoter. 
Alternatively, a tissue-specifi c or universal insu-
lator could bind to this region and block the 
action of an upstream universal or a tissue- 
specifi c enhancer, respectively. Another possibil-
ity is that there could be competition between the 
promoters of A/B and Gsα transcripts for com-
mon regulatory elements (promoter competition) 
or transcriptional interference on the paternal 
Gsα promoter due to the upstream A/B transcrip-
tion. Data from mice in which the entire paternal 
exon A/B DMR is ablated do not argue for or 
against these possibilities, because both the A/B 
promoter and the A/B transcript are deleted [ 96 , 
 107 ]. However, consistent with mechanisms 
involving promoter competition or transcrip-
tional interference, a recent study measured 
higher A/B levels in tissues in which the paternal 
Gsα allele is silenced than in those in which Gsα 
expression is biallelic [ 77 ]. In fact, paternal Gsα 
expression is derepressed in mice in which the 
A/B transcript is prematurely terminated through 
insertion of a polyadenylation cassette down-
stream of exon A/B, thus supporting the mecha-
nism involving transcriptional interference [ 77 ]. 
The control mice, however, in which the polyad-
enylation cassette is inserted in the reverse orien-
tation, also show derepressed Gsα expression, 
thus making it diffi cult to entirely rule out any 
mechanisms involving binding of a trans-acting 
factor in this region [ 77 ]. Future studies are nec-
essary to elucidate the mechanisms governing the 
tissue-specifi c paternal silencing of Gsα.     
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11.1             Introduction 

 The major actions of parathyroid hormone 
(PTH) to regulate calcium and phosphorus 
homeostasis involve actions of PTH on bone 
and kidney. In this chapter, we will consider 
actions on these target organs individually, but 
we emphasize that these actions cannot be 
viewed separately. The 1,25(OH) 2 vitaminD 3  
made by the proximal tubule, and possibly by 
bone cells, in response to PTH synergizes with 
PTH in stimulating bone resorption. FGF23, 
whose synthesis is stimulated in osteocytes by 
1,25(OH) 2 vitaminD 3  and perhaps directly by 
PTH itself [ 1 ], acts along with PTH to decrease 
phosphate reabsorption in the proximal tubule. 
Nevertheless, it is useful to consider the actions 
of PTH on bone and kidney separately, not just 
because the topics are too large to consider in an 
integrated fashion, but also because PTH’s 
actions on these two organs appear to be quite 
different in their mechanisms at the cellular 
level. In the kidney, PTH acts primarily to regu-
late calcium, phosphorus, and vitamin D homeo-
stasis without signifi cantly changing the cellular 
composition and anatomy of the organ itself. In 

striking contrast, in bone, PTH not only regu-
lates calcium, phosphorus, and vitamin D metab-
olism, but profoundly affects the cellular 
composition, anatomy, and function of bone as 
an organ. Here we will fi rst consider the actions 
of PTH on bone and then on the kidney.  

11.2     PTH Actions on Bone 

 PTH modulates bone turnover and calcium and 
phosphorous homeostasis by binding to the PTH/
PTH related-peptide (PTHrP) type 1 receptor 
(PTHR1), a G-protein-coupled receptor highly 
expressed in bone and kidney and in a variety of 
other tissues in which it likely mediates the local 
paracrine effects of PTHrP [ 2 ] (see also Chaps.   9     
and   10    ). In bone, the receptor is expressed on 
chondrocytes and on cells of the osteoblastic lin-
eage, which include, among others, osteoprogen-
itors, mature osteoblasts, and osteocytes [ 3 ]. A 
detailed description and analysis of hormone-
receptor interactions and the subsequent intracel-
lular signaling can be found in Chap.   9    . 

11.2.1     Actions of PTHR1 on Growth 
Plate Chondrocytes 

 During bone growth, activation of the PTHR1 is 
required to slow the differentiation of chondro-
cytes. Studies on genetically modifi ed animals 
lacking the hormones (PTH-KO and PTHrP-KO) 
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[ 4 ,  5 ] or the receptor (PTHR1-KO animals) [ 6 ] 
have demonstrated that, during embryonic devel-
opment, PTHrP plays a critical role in skeletal 
development. Mice lacking either PTHrP or the 
PTHR1 die at birth and display a similar pheno-
type, which includes short bones and a domed 
skull that is a phenocopy of the human lethal 
form of dwarfi sm known as Blomstrand chondro-
dysplasia, in which homozygous inactivating 
mutations of the PTHR1 are found [ 7 ,  8 ] (see also 
Chaps.   23     and   36    ). The more severe phenotype of 
the PTHR1 versus PTHrP knockout mouse sug-
gests that PTH may contribute modestly to the 
activation of the PTHR1 in the growth plate, as 
well. In the PTH knockout mouse at birth, chon-
drocyte differentiation is normal, with modest 
expansion of the hypertrophic zone, decreased 
vascularization of the chondro-osseous junction, 
and decreased mineralization of the cartilage 
matrix [ 5 ]. Thus, PTHrP, not PTH, is the major 
activator of the PTHR1 on growth plate 
chondrocytes.  

11.2.2     Actions of PTHR1 on Cells 
of the Osteoblast Lineage 

11.2.2.1     Osteoblastic Cell Types 
Targeted 

 The PTHR1 receptor is expressed on cells of the 
osteoblastic lineage; however, the effects of PTH 
on bone cells at varying stages of differentiation 
have been challenging to study. Most such stud-
ies were fi rst performed on osteoblastic cells in 
primary culture. Early studies from Bellows et al. 
demonstrated that PTH had no detectable effects 
on early progenitors in vitro and exerted most of 
its actions on late-stage progenitors, osteoblasts, 
and osteocytes [ 9 ]. These earlier studies were 
further supported by work of Huang et al. [ 10 ], 
who reported that PTH signifi cantly regulated 
both receptor activator of NF-kb ligand (RANKL) 
and osteoprotegerin (OPG) in bone marrow 
osteoblasts with a maximal sensitivity at later 
stages of their differentiation (28 days in culture), 
demonstrating that receptor expression and activ-
ity increased with cell differentiation. Further 
in vitro studies have suggested that the actions of 
PTH might vary, depending on the state of 

differentiation of the PTH target cell. For exam-
ple, Isogai    et al. [ 11 ] noted that PTH added to 
confl uent, differentiated primary osteoblastic 
cells suppressed indices of osteoblast differentia-
tion. In contrast, when these investigators added 
PTH to osteoblastic cells growing at low cell den-
sity, the levels of alkaline phosphatase activity in 
these cells increased. This same group [ 12 ] noted 
that, when PTH was added to differentiated 
osteoblastic cells, the effects on differentiation 
changed, depending on whether exposure to PTH 
was continuous (suppression of differentiation, 
as just noted above) or only 6 h of every 48 h 
period (stimulation of differentiation in this con-
dition). These studies show that PTH has some 
direct actions that require only cells of the osteo-
blast lineage and that these actions, at least 
in vitro, can depend crucially on the stage of dif-
ferentiation of the cells and the duration of expo-
sure to the hormone. 

 More precise analysis of the actions of PTH 
on osteoblastic cells at varying stages of differen-
tiation has become possible with the tools pro-
vided by genetic manipulation of mice. In recent 
years, a series of papers has identifi ed early cells 
of the osteoblast lineage in vivo in genetically 
manipulated mice. In one such study, Mendez- 
Ferrer et al. [ 13 ] noted that pericytic cells in the 
bone marrow of mice, marked with expression of 
green fl uorescent protein (GFP) driven by a nes-
tin gene promoter, have properties in vivo of mul-
tipotential, self-renewing cells that can become 
osteoblasts, a fi nding ascertained through the use 
of a lineage tracking strategy. Strikingly, they 
showed that these nestin-GFP + cells contain 
immunologically defi ned PTH receptors. Further, 
after intermittent PTH administration, the num-
bers of the nestin-GFP + cells increased. Purifi ed 
nestin-GFP + cells responded to PTH in vitro. 
Further studies will be needed to clarify the roles 
of the PTHR1 on early cells of the osteoblast lineage 
in vivo, but their existence raises the possibility 
that some of the effects of PTH on precursor cells 
may refl ect direct actions of PTH on these cells. 

 PTHR1 expression has been noted for years 
on osteoblasts on the bone surfaces and on osteo-
cytes as well.    When a constitutively active 
PTHR1 was expressed in osteoblasts using a col-
lagen I(α1) promoter [ 14 ], that activity led to a 
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dramatic increase in trabecular bone and to an 
accumulation of stromal cells in the marrow, per-
haps resembling those changes seen in severe 
primary hyperparathyroidism. The increase in 
osteoblast number was accompanied both by an 
increase in proliferation of these cells and by a 
decrease in their rate of apoptosis. Indices of 
bone resorption were also increased. When the 
same constitutively active PTHR1 was activated 
only in osteocytes through the use of the dentin 
matrix protein-1 (DMP-1) promoter [ 15 ], an 
increase in trabecular bone mass was also seen 
along with an increase in resorption. This increase 
in bone mass was accompanied by a suppression 
of osteoblastic apoptosis. Sclerostin expression 
in osteocytes (see below) was suppressed and the 
increase in bone mass was attenuated by deletion 
of LRP5, a co-receptor for wnt signaling. Thus, it 
was suggested that increased wnt signaling in 
cells of the osteoblast lineage is part of the mech-
anism whereby activation of the PTHR1 in osteo-
cytes leads to increased bone mass. The 
apparently much more striking increase in stro-
mal cells (perhaps osteoblast precursors) in the 
mouse in which the PTHR1 was activated by the 
collagen I(α 1) promoter suggests that this accu-
mulation requires direct activation of the receptor 
in cells less differentiated than osteocytes. 

 These two mouse models differ in another 
way, as well. Cells of the osteoblast lineage pro-
vide part of a niche environment that fosters 
hematopoiesis. While the mouse with activation 
of the PTHR1 in osteoblasts exhibits an increase 
in hematopoietic stem cells [ 16 ], the mouse with 
activation of the PTHR1 only in osteocytes does 
not [ 17 ]. This result suggests that osteoblasts and 
other less mature cells in the lineage may be 
more important PTH targets for the effects of 
PTH on hematopoietic stem cells. 

 Studies of mice with knockout of the PTHR1 
suggest that the endogenous PTHR1 has proper-
ties predicted by the fi ndings in the transgenic 
mice with an activated PTHR1. Ablation of the 
receptor in osteocytes (and some osteoblasts), by 
using the 10Kb DMP-1 promoter fragment to drive 
Cre recombinase to target the fl oxed PTHR1 [ 18 ], 
leads to an increase in bone mass that may refl ect 
a low bone turnover state. Further, the bone mass 
and indices of bone formation failed to increase 

when PTH was administered by intermittent daily 
injection, a regimen that increases bone mass in 
normal mice. The failure of sclerostin expression 
to fall after PTH administration may contribute to 
this blunted response in bone formation to PTH. In 
contrast, ablation of the receptor in mature osteo-
blasts (and consequently in osteocytes also), using 
the osteocalcin (Oc) promoter to drive Cre expres-
sion, or in osteoprogenitors (using the osterix pro-
moter to drive Cre expression) causes profound 
osteopenia (PDP, unpublished data), suggesting an 
essential role for PTHR1 signaling in earlier cells 
of the osteoblast lineage. 

 PTH also affects the function of inactive bone 
lining cells on the surfaces of bone. Recent 
lineage- tracing experiments [ 19 ] confi rm earlier 
suggestions [ 20 ,  21 ] that PTH administration 
leads to conversion of inactive bone lining cells 
to active osteoblasts, synthesizing large amounts 
of collagen I. The mechanism for this activation 
and whether this mechanism involves direct 
actions on the lining cells are unknown.  

11.2.2.2     Cellular Mechanisms of PTH 
Action on Cells of the 
Osteoblast Lineage 

 This summary of the cell types in bone targeted 
by PTH indicates the complexity of PTH’s 
actions on cells of the osteoblast lineage. These 
actions are likely to be a mixture of direct, cell 
autonomous actions caused by activation of 
PTHR1 on the target cell, as well as indirect 
actions through autocrine and paracrine commu-
nication between various cell types with PTHR1s. 
The complexity of PTH’s actions is further com-
plicated by the substantial differences in the 
effects of PTH, depending upon whether it is 
administered by continuous infusion or by inter-
mittent injection, typically subcutaneously. 
While both modes of administration lead to an 
increase in bone formation and bone resorption 
[ 22 ], the continuous administration of PTH leads 
to a fall in bone mass, while the intermittent 
administration of PTH leads to an increase in 
bone mass. Presumably, the extent of resorption 
exceeds that of formation when PTH is adminis-
tered continuously and the rate of formation 
exceeds that of resorption after intermittent PTH 
administration. 
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 When PTH is administered continuously to 
experimental animals, stromal cells increase in 
number in the bone marrow. In one such model in 
the rat, Lotinun et al. [ 23 ] noted that, when triti-
ated thymidine was used to mark proliferating 
cells, a large fraction of the fi broblastic marrow 
cells incorporated thymidine, while almost no 
osteoblasts did so. A week after stopping the 
PTH infusion and thymidine administration, 
however, the fi broblastic stroma disappeared, and 
many of the osteoblasts exhibited incorporation 
of the previously administered thymidine, sug-
gesting that some of the labeled stromal cells had 
become osteoblasts. This observation is consis-
tent with the in vitro fi ndings noted earlier [ 24 ] 
that continuous exposure to PTH in vitro blocks 
differentiation of precursors into mature osteo-
blasts. These fi ndings may correlate with the 
observation that prolonged exposure of osteo-
blastic cells to PTH leads to degradation of 
Runx2, a key transcription factor for driving dif-
ferentiation of osteoblasts [ 25 ]. 

 Several cellular mechanisms have been dem-
onstrated that may contribute to the increase in 
bone formation when PTH is administered inter-
mittently. PTH suppresses apoptosis of osteo-
blasts in vivo and in vitro and this action is 
predicted to increase the number of osteoblasts 
on the bone surface [ 26 ]. Further, as noted earlier, 
PTH can activate previously dormant lining cells, 
thereby increasing the number of active osteo-
blasts on the bone surface [ 14 ,  20 ,  21 ]. PTH may 
also increase the number of osteoblast precursors 
[ 27 ], though this is a diffi cult issue to study, 
because currently the only way to identify and 
quantitate osteoblast precursors is by counting 
colonies of putative precursors from the marrow 
after plating cells in vitro [ 28 ].  

11.2.2.3     Biochemical Mediators 
and Pathways That Regulate 
PTH Action on Cells 
of the Osteoblast Lineage 

 Though PTH may exert some actions through yet 
uncloned receptors for PTH (1–84) [ 29 ], the 
known actions of PTH appear to be mediated by 
the cloned PTH/PTHrP receptor [ 30 ]. This recep-
tor activates heterotrimeric G proteins and arrestin 
in ways that lead to activation of intracellular 

signaling cascades [ 31 ]. Most of the actions of 
PTH in bone appear to involve predominantly 
activation of Gs and consequent activation of ade-
nylate cyclase. Studies of mice with mutations in 
the PTHR1 that do not allow stimulation of phos-
pholipase C in response to receptor activation 
[ 32 ], for example, show that such mice have fairly 
normal bones in adulthood, though, when treated 
with prolonged infusions of PTH, these mice fail 
to mount a marrow stromal proliferative response. 
When PTH is added to a cultured osteoblastic cell 
line or to primary osteoblasts, the levels of a large 
number of messenger RNAs change [ 33 ]. How to 
relate these direct actions of PTH to specifi c phys-
iologic functions in intact bone remains a major 
challenge. 

 PTH acts to increase bone resorption by 
increasing the expression of RANK ligand 
(RANKL) and decreasing the expression of OPG 
in cells of the osteoblast lineage [ 34 ]. Since 
increased activity of RANKL, by itself, can 
increase osteoblast number [ 35 ], the stimulation 
of RANKL expression and bone resorption by 
PTH probably contributes to the increase in bone 
formation caused by PTH administration. The 
release of TGF-β from bone matrix by osteoclas-
tic action may signal to osteoblast precursors to 
come to the bone surface [ 36 ], and signals from 
osteoclasts themselves may increase bone forma-
tion [ 37 ]. 

 PTH’s activation of several signaling pro-
grams probably contributes to PTH’s stimulation 
of bone formation. PTH increases the activity of 
the canonical wnt pathway by a variety of mecha-
nisms. PTH decreases the expression of the wnt 
antagonists, dkk1 [ 38 ] and sclerostin [ 39 ,  40 ]. 
Genetic evidence in mice suggests that the sup-
pression of sclerostin expression contributes to 
the increase in bone formation after PTH admin-
istration [ 41 ]. Further, PTHR1s bind directly to 
the wnt co-receptor, LRP6 [ 42 ] and to disheveled 
[ 43 ], a key mediator of canonical wnt signaling. 
Moreover, through activation of protein kinase A, 
PTH leads to the activation of β-catenin by phos-
phorylation. β-catenin is the key transcriptional 
mediator of canonical wnt signaling [ 38 ]. Thus, 
PTH activation of wnt signaling by multiple cell- 
autonomous and non-cell-autonomous pathways 
may contribute to stimulation of bone formation. 

P.D. Pajevic et al.



103

 The interactions between PTH and IGF I 
signaling are important for PTH’s ability to 
increase bone formation, as well. PTH increases 
IGF I production by cells of the osteoblast lin-
eage [ 44 ,  45 ], and knockout of the IGF receptor 
leads to blunted bone formation after intermittent 
administration of PTH [ 46 ]. PTH also increases 
the production of FGF2 in osteoblastic cells, and 
the action of PTH to increase bone formation is 
blunted in the FGF2 knockout mouse [ 47 ].    

11.3     PTH Actions in Kidney 

 Here we will review the renal actions of PTH that 
have clear physiologic importance. In the kidney, 
PTH exerts its effects on mineral ion metabolism 
via receptors expressed by epithelial cells in the 
proximal and distal tubules. In the proximal con-
voluted tubule, PTH has two principal actions: 
(1) increasing active vitamin D (1,25(OH) 2 D 3 ) 
synthesis and (2) decreasing phosphate reabsorp-
tion. In the distal nephron, PTH stimulates cal-
cium reabsorption. 

 Through these three actions (and in conjunc-
tion with the intimately related hormones, 
1,25(OH) 2 D 3 , FGF-23, and calcitonin), PTH 
plays a crucial role in maintaining normal min-
eral ion homeostasis (see also Chaps.   6    ,   7    , and   8    ). 
In addition to these three major actions of PTH in 
the nephron, chronic hyperparathyroidism leads 
to a mild hyperchloremic metabolic acidosis via 
promoting renal bicarbonate wasting and increas-
ing chloride effl ux [ 48 ]. Herein we will focus on 
the molecular mechanisms underlying these three 
major renal PTH actions with respect to mineral 
ion homeostasis. Potential non-epithelial renal 
effects of PTH and PTHrP [ 49 ], such as 
 modulation of glomerular fi ltration rate and vas-
cular tone, are less well established and beyond 
the scope of this chapter. 

11.3.1     Control of 1,25(OH) 2 D 3  
Synthesis by  Cyp27B1  
Expression 

 PTH control of 1,25(OH) 2 D 3  synthesis was fi rst 
described in experimental animals over four decades 

ago. In seminal studies, parathyroidectomized 
rats were unable to convert 25(OH)D 3  to 
1,25(OH) 2 D 3,  while purifi ed parathyroid extract 
containing PTH restored normal 1,25(OH) 2 D 3  
production [ 50 ]. Subsequent in vitro studies 
using cultured proximal tubule cells demon-
strated that this activity of PTH requires new 
RNA synthesis [ 51 ]. Signaling downstream of 
PTHR1 activates multiple second messenger 
pathways, including the Gsα-linked adenylate 
cyclase-cAMP-protein kinase A (PKA) pathway 
and the G q/11 -linked phospholipase C (PLC)-
protein kinase C (PKC) pathway [ 52 ,  53 ]. 
Although inhibitor-based studies have suggested 
that the PKC activity participates in PTH-induced 
1,25(OH) 2 D 3  synthesis [ 54 ], multiple laborato-
ries have described a cAMP/PKA pathway in 
cultured proximal tubule cells [ 51 ,  55 ]. More 
recently, experiments using mice expressing a 
PTH receptor that activates adenylate cyclase 
normally but cannot activate PLC/PKC [ 56 ] 
showed that PTH-dependent increases in 
1,25(OH) 2 D 3  levels in vivo do not require PKC 
signaling by PTHR1 [ 57 ]. 

  Cyp27B1  encodes the 1α-hydroxylase respon-
sible for conversion of 25(OH) 2 D 3  into 
1,25(OH) 2 D 3 . Cloning of the  Cyp27B1  gene [ 58 –
 60 ] allowed subsequent analysis of its proximal 
promoter. In kidney cell lines, PTH increases the 
activity of the murine and human  Cyp27B1  prox-
imal promoters [ 61 ,  62 ]. This same promoter 
region linked to a reporter gene in transgenic 
mice is activated in vivo by secondary hyperpara-
thyroidism due to vitamin D or dietary calcium 
defi ciencies [ 63 ]. While a complete understand-
ing of the transcription factors mediating 
 PTH- dependent  Cyp27B1  promoter activation is 
lacking, overexpression and mutagenesis studies 
have suggested stimulatory roles for NR4A2 
(Nurr1, whose expression itself is induced by 
PTH), Sp1, and NF-Y and an inhibitory role for 
C/EBPß [ 64 ,  65 ]. 

 1,25(OH) 2 D 3  itself negatively regulates 
 Cyp27B1  expression as part of a negative feed-
back loop. At the molecular level, this has been 
mapped to vitamin D receptor (VDR) binding to 
the proximal  Cyp27B1  promoter [ 66 ]. This inhib-
itory role of 1,25(OH) 2 D 3 /VDR has been linked 
to the basic helix loop helix (bHLH) transcription 
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factor, VDIR. Interestingly, VDIR is a PKA 
substrate. When phosphorylated, VDIR shows 
decreased VDR and transcriptional corepressor 
binding and increased association with transcrip-
tional coactivators [ 67 ]. Additional in vivo stud-
ies are required to confi rm the potential roles for 
all these transcription factors in controlling renal 
PTH-mediated  Cyp27B1  expression. Finally, 
although extrarenal  Cyp27B1  expression is well 
documented [ 68 ], we currently do not understand 
the molecular determinants of tissue-specifi c 
expression and why this gene’s expression in 
some tissue types is not regulated by PTH or 
other cAMP-inducing agents [ 69 ].  

11.3.2     Control of Phosphate 
Handling in the Proximal 
Tubule 

 A second, distinct action of PTH in the proximal 
tubule is to increase urinary phosphate excretion. 
As a phosphaturic factor, PTH’s action syner-
gizes with those of fi broblast growth factor-23 
(FGF-23), the other known circulating phospha-
tonin [ 48 ] (see also Chap.   6    ). A complete review 
of FGF-23-dependent physiology is beyond the 
scope of this chapter. The rate of phosphate reab-
sorption in the proximal tubule is mainly con-
trolled by the number of type II sodium/phosphate 
cotransporters (Npt2a and Npt2c) found on the 
brush-border membrane [ 70 ]. Both PTH and 
FGF-23 inhibit renal phosphate reabsorption in 
the proximal tubule by reducing surface levels 
and activity of these cotransporters [ 71 ]. 

 The signaling pathways leading from the PTH 
receptor to Npt2a downregulation have been the 
object of intense investigation over the past 
15 years [ 72 ]. A major advance came in 2002 
when two groups identifi ed the sodium/hydrogen 
exchanger regulatory factor-1 (NHERF-1) as an 
important regulator of apical membrane levels of 
Npt2a. Mice lacking this Npt2a-binding scaf-
folding protein have renal phosphate wasting 
and ineffective membrane targeting of Npt2a 
[ 73 ,  74 ]. Furthermore, mutations in NHERF1 
have been described in humans with low tubular 

phosphate reabsorption, nephrolithiasis, and 
bone demineralization [ 75 ]. 

 Proximal tubule cells from mice lacking 
NHERF-1 show resistance to the inhibitory effects 
of PTH on phosphate transport [ 76 ]. While Npt2a 
itself is not a phosphoprotein regulated by PTH, 
NHERF-1 is phosphorylated at serine 77 down-
stream of PTH receptor signaling. Phosphorylation 
at this site decreases NHERF-1/Npt2a interaction 
and leads to Npt2a- internalization [ 77 ]. NHERF-1 
and NHERF-2 constitutively bind to the PTH 
receptor and may dictate downstream signaling by 
coupling to a PKA versus a PKC pathway [ 78 ]. 
More recently, the cytoskeleton-associated protein 
ezrin has been implicated in dynamic regulation 
of NHERF-1/Npt2a interactions by PTH [ 79 ,  80 ]. 

 The relative contribution to PTH-mediated 
PKA versus PKC activation with respect to 
Npt2a-mediated phosphate reabsorption has 
been tested in vivo using two different experi-
mental systems. First, PTH analogs defective in 
PKC activation were competent to cause phos-
phaturia in the acute setting [ 81 ]. Second, phos-
phaturic responses to PTH were investigated in 
mice expressing PTH receptors that cannot acti-
vate PKC. Interestingly, while acute hypophos-
phatemia due to PTH infusion was comparable 
in control and PTH receptor mutant mice, pro-
longed hypophosphatemia required PTH recep-
tors that can activate PKC [ 57 ]. Future studies 
will be required to completely delineate the 
mechanism whereby PKC signaling stimulated 
by PTHR1 is required for prolonged (but not 
acute) PTH- mediated phosphaturia. In addition, 
an area ripe for future investigation is the inter-
play between PTH- and FGF-23-mediated 
effects on phosphate handling in the proximal 
tubule.  

11.3.3     Control of Calcium 
Reabsorption in the Distal 
Tubule 

 Parathyroid hormone promotes calcium reab-
sorption in the distal convoluted tubule (DCT) 
[ 82 ]. Conversely, hypoparathyroidism can cause 
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hypercalciuria and nephrolithiasis. Classical 
studies using isolated rabbit kidney connecting 
tubules demonstrated that PTH (and cAMP) rap-
idly increases cytosolic intracellular calcium 
concentrations only when calcium was present in 
luminal fl uid [ 83 ]. Pharmacologic inhibitor stud-
ies indicated that cAMP-dependent kinase activa-
tion is required for this effect [ 84 ]. An 
understanding of the precise pathways by which 
PTH controls transcellular calcium fl uxes in the 
DCT required identifi cation of the apical calcium 
channel TRPV5 (transient receptor potential 
vanilloid 5) [ 85 ]. Once calcium enters the cell via 
the TRPV5 channel, it is chaperoned across the 
cell via association with carrier proteins (most 
notably calbindin D28K and calmodulin) and 
ultimately extruded into the bloodstream via the 
Na + /Ca 2+  exchanger (NCX1) and the plasma 
membrane Ca 2+ -ATPase (PMCA1b) [ 86 ]. 

 At least three lines of evidence indicate that 
TRPV5-mediated transcellular calcium transport 
is regulated by PTH. First, PTH tonically con-
trols expression levels of TRPV5, as evidenced 
by reduced TRPV5 mRNA after parathyroidec-
tomy [ 87 ]. Second, PTH increases cell surface 
TRPV5 levels by reducing caveolae-mediated 
TRPV5 endocytosis in a mechanism that appears 
to be sensitive to PKC inhibitors [ 88 ]. Third, the 
TRPV5 channel itself is a direct PKA substrate at 
threonine 709. This phosphorylation event 
increases the probability of TRPV5 channel 
opening [ 89 ]. TRPV5 channel activity is nega-
tively modulated by calmodulin binding to its 
intracellular domain; interestingly, calmodulin 
binding is diminished by PTH-mediated threo-
nine 709 phosphorylation [ 89 ]. At this point, the 
relative contributions of PKA versus PKC signal-
ing with respect to PTH-mediated transcellular 
calcium reabsorption in the DCT in vivo have not 
been reported. In addition, the importance of 
TRPV5 threonine 709 phosphorylation in vivo 
remains to be established. 

 In addition to PTH-mediated regulation of 
TRPV5 activity by the mechanisms outlined 
above, parathyroidectomy in rodents reduces 
expression of calbindin D28, NCX1, and PMCA1b 
in the DCT [ 87 ]. Therefore, it is likely that PTH 

coordinates a program of gene expression in 
DCT cells necessary for optimal transcellular 
calcium reabsorption.   

    Conclusions 

 Renal actions of parathyroid hormone are 
predominantly due to expression of PTH 
receptors on epithelial targets in the proximal 
and distal nephron. As detailed above, PTH 
coordinates a response in the kidney includ-
ing increased 1,25(OH) 2 D 3  synthesis, phospha-
turia, and increased calcium reabsorption. 
While much is known about molecular mech-
anisms underlying these physiologic effects, 
we have also pointed out some of the many 
outstanding questions for future study. In 
addition, the precise mechanisms underlying 
failure of these pathways in the setting of 
renal insuffi ciency remain unknown. As such, 
the future of this fi eld remains exciting for 
discoveries of major physiological and clini-
cal signifi cance.     
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12.1             Introduction 

 In the last 25 years, it has become evident that the 
PTH/PTHrP/PTH receptorsome system is also 
present in organs not classically related to min-
eral homeostasis. Indeed, there is accumulating 
evidence that PTH itself displays multiple effects, 
which can contribute to the complexity of symp-
toms of diseases caused by PTH excess or defi -
ciency [ 1 ]. In parallel, PTHrP, initially identifi ed 
as the circulating factor responsible for the devel-
opment of malignant hypercalcemia in the setting 
of paraneoplastic syndromes [ 2 ], had been found 
to be expressed in multiple developing and dif-
ferentiating adult organs and tissues, both in 
physiology and pathology [ 3 ,  4 ]. In physiology, 
besides the conditions of pregnancy and lacta-
tion, in which PTHrP produced in the breast and 
uterus, respectively, circulates thus exerting 
proper endocrine functions (i.e., transplacental 
transfer of calcium to the rapidly mineralizing 
skeleton and milk production), PTHrP acts where 
it is produced and is not detected in the circula-
tion in physiologic states. In particular, as dem-
onstrated in mice devoid of PTHrP or PTH/
PTHrP receptor, this molecule displays key para-
crine roles in cartilage, bone, and mammary 

gland development and maintenance; in tooth 
eruption; and in endocrine pancreas, hair follicle, 
and smooth muscle physiology [ 5 – 8 ]. PTHrP is a 
growth factor in several tissues. This implies a 
potential key role in regeneration, but it can also 
serve as a tumor-promoting factor. 

 Human PTH and PTHrP are encoded by dif-
ferent, yet related, genes ( PTH  and  PTHLH ) with 
different chromosomal locations and likely derive 
from duplication of a common ancestral sequence 
(also see Chap.   3    ). Alternative splicing variants 
has been found for the  PTHLH  gene, so that the 
PTHrP group is made of at least three main iso-
forms of different length (1–139, 1–141, and 
1–173), whose transcription is regulated by three 
different promoter regions (Fig.  12.1 ). They 
share a similar N-terminal structure with PTH 
(fi rst 34 amino acids), so that they can bind and 
activate the same receptor, although PTH is a 
more potent agonist than PTHrP [ 9 ] (refer to 
Chap.   2     for further details). The fact that PTHrP 
can be processed into fragments by posttransla-
tional modifi cations (proteolysis) further high-
lights the complexity of this molecule, opening 
new fi elds of research (Fig.  12.1 ).  

 PTHrP mRNA itself harbors two different 
transcription initiation sites, so it can be trans-
lated into two different principal forms of 
PTHrP. The fi rst retains a signal peptide which 
drives PTHrP to the exocytic pathway (endoplas-
mic reticulum), while the second disrupts the sig-
nal peptide and directs PTHrP towards the 
cytoplasm and, then, the nucleus because of a 
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classic nuclear localization signal (NLS) retained 
in the C-terminal domain [ 10 ,  11 ]. The form of 
PTHrP lacking the signal peptide, also referred to 
as nuclear PTHrP, does not act as a secretory pro-
tein [ 12 ]. Its intracrine functions are not com-
pletely understood and characterized, although it 
seems to be able to bind to RNA or to the nucleo-
lus thus regulating gene transcription and transla-
tion. In some systems where cell proliferation is 
dysregulated (i.e., colon, breast, and prostate can-
cer), the pro-apoptotic functions of nuclear 
PTHrP seem opposite to the pro-apoptotic actions 
of secreted PTH [ 13 ,  14 ]. It is reasonable to infer 
that the balance of PTHrP isoforms would be 
important in determining its overall mitogenic or 
anti-mitogenic effects. 

 While the classical calciotropic actions of the 
PTH/PTHrP system are mediated by circulating 
PTH, the nonclassical effects are mainly deter-
mined by local actions of PTHrP. The locally pro-
duced PTHrP acts mainly nearby, thus exerting 
intracrine-autocrine-paracrine actions. Moreover, 
its constitutive production is elicited during 
pathologic conditions. Hence, in general, in the 
absence of malignant hypercalcemia, nonclassi-
cal actions of the PTH/PTHrP/PTH receptorsome 
system are sustained by circulating PTH (endo-
crine actions) and locally synthesized PTHrP 
(autocrine/paracrine actions) and are mediated by 
parathyroid hormone receptor 1 (PTH1R), which 
can be activated both by PTH and PTHrP (also 
see Chap.   3    ) [ 15 ] (Fig.  12.2 ). In contrast to PTH, 
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  Fig. 12.1    Parathyroid hormone-related peptide (PTHrP): 
main isoforms resulting from different transcripts (whole 
forms) and posttranslational processing (fragments). 
N-terminal fragments (PTHrP1-36) share homology with 
PTH in the fi rst 34 amino acids ( dashed area ), are secreted, 
and display PTH-like actions and growth regulatory activi-
ties. Mid- region fragments (PTHrP38- 94/95/96/101) har-

bor the nuclear localization signal (NLS, amino acids 
84–93), are retained in the cell, traffi cking between the 
cytoplasm and the nucleus, and thus act intracrinally and 
regulating calcium transport and cell proliferation. 
C-terminal fragments (PTHrP107/109-11/139, with 
PTHrP107-111 also referred to as osteostatin), inhibit 
osteoclast function and stimulate osteoblast proliferation       
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PTHrP is not capable of  activating parathyroid 
hormone receptor 2 (PTH2R), mainly expressed 
in the nervous system [ 16 ], the natural ligand of 
which is the tuberoinfundibular peptide of 39 
residues (TIP39), which displays a modest simi-
larity to PTH and PTHrP but a different 3D struc-
ture [ 17 ].  

 In this chapter the main physiological endo-
crine, paracrine, and autocrine effects of PTH 
and PTHrP through PTH1R in adult tissues not 
classically related to the maintenance of mineral 
and skeletal homeostasis will be described, 
mostly focusing on recently described effects in 
the vascular/cardiovascular system, in the hema-
topoietic system, and in the cell cycle, with the 
majority of the studies dealing with in vitro and 
animal studies and fewer translational approaches.  

12.2     Actions on Vascular 
and Cardiovascular Targets 

 A century ago, pioneering experiments in animal 
models showed that the infusion of parathyroid 
extracts had the ability to increase blood fl ow in 
several organs and lower systemic blood pres-
sure. Later on, the direct vasorelaxant activity of 
parathyroid extracts and N-terminal fragments of 
intact PTH was demonstrated [ 18 ]. These vasore-
laxant actions of PTH were demonstrated to be 
mediated by the activation of PTH1R expressed 
on the vascular smooth muscle myocytes mainly 
belonging to resistance vessels and to occur inde-
pendently of PTH-related changes in mineral 
homeostasis. Intravenous delivery PTH1R itself 
in rats was shown to reduce blood pressure and 
directly modulate renin-angiotensin system [ 19 ]. 
Similarly, PTH1R overexpression in smooth 
muscle cells increased the vasodilatory response 
to acute saline volume expansion and could 
counteract the vasoconstrictor effect of angioten-
sin II [ 20 ]. While it appeared clear that the vaso-
relaxant properties of PTH at nanomolar 
concentration could counteract the action of 
vasoactive agents by means of an independent 
mode of action, these results could not be applied 
to physiological conditions. Indeed, PTH is nor-
mally present in the range of picomolar 

 concentration in the serum. Moreover, conditions 
where PTH is constitutively high (i.e., primary 
hyperparathyroidism) can be associated with the 
development of hypertension. 

 It then became evident that PTHrP, the mole-
cule responsible for the paraneoplastic syndrome 
of humoral hypercalcemia of malignancy, is also 
a vasoactive peptide produced in the endothe-
lium and in the vascular smooth muscle cells 
(VSMC), and it could be responsible, at least in 
part, for the autocrine/paracrine activation of the 
PTHR1 in the cardiovascular system [ 21 ]. When 
injected systemically, PTHrP displays vasodila-
tor and hypotensive properties through nitric 
oxide- dependent and nitric oxide-independent 
mechanisms [ 22 ,  23 ]. In humans, infusion of 
PTHrP at a dose not causing hypotension leads 
to an important increase in renal blood fl ow [ 24 ]. 
Recent studies designed to establish the physio-
logic roles of endogenous PTHrP in the cardio-
vascular system have demonstrated that selective 
transient inhibition of endogenous PTHrP in 
adult mice does affect renal hemodynamics and 
renin release [ 25 ]. 

 The PTHrP/PTHR1 system is also important 
in vessel development, since knockdown of either 
PTHrP or PTH1R in zebra fi sh leads to a aortic 
coarctation due to altered notch signaling, as it is 
observed in cases of Blomstrand’s chondrodys-
plasia [ 26 ] (refer to Chap.   36     for further details). 

 Besides vasoactive properties, PTHrP regu-
lates VSMC proliferation, thus potentially play-
ing a key role in vasculoproliferative diseases. 
Mechanical stretch and vasoconstrictors are able 
to induce PTHrP in the vascular wall [ 27 ]. In vitro 
experiments had shown that overexpression of 
PTHrP leads to VSMC proliferation, while over-
expression of PTHrP devoid of NLS decreases 
VSMC number and might prevent in vivo neointi-
mal hyperplasia [ 11 ,  28 ]. Indeed, PTHrP is upreg-
ulated in VSMC and triggers neointimal 
development after vascular injury or a therapeutic 
procedure such as angioplasty [ 29 ]. The regula-
tion of the VSMC cell cycle is due, at least in part, 
to an induction of the phosphorylation retinoblas-
toma protein and c-myc-mediated downregula-
tion of the cell-cycle inhibitor p27 [ 30 – 32 ]. 
Conversely, secreted PTHrP or PTHrP devoid of 
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NLS is a potent inhibitor of VSMC proliferation, 
upregulating p27 via PTHR1 signaling triggering 
and cAMP formation through protein kinase A 
activation [ 33 – 35 ]. However, secreted PTHrP is 
capable of downregulating PTH1R, thus contrib-
uting to enhances VSMC proliferation [ 36 ]. 
Moreover, effectors of PTH1R signaling, such as 
NHERF1, which is also upregulated after vascu-
lar injury or angioplasty, may inhibit the receptor-
mediated antiproliferative actions of secreted 
PTHrP, thus representing local potential pharma-
ceutical targets to avoid restenosis after angio-
plasty procedures [ 37 ]. These studies further 
highlight the key roles of the PTHrP/PTHR1 sys-
tem in vascular remodeling. 

 Additional evidence highlights a new role of 
PTHrP as a proinfl ammatory cytokine and pro- 
atherogenic factor. Indeed, PTHrP overexpres-
sion in atherosclerotic plaques has been proposed 
as a mechanism for their instability [ 38 ]. 
Moreover, PTHrP expression in atheromata is 
regulated by LDL and can be modulated by 
statins [ 39 ]. On the other hand, it has been 
recently shown that PTHrP could also inhibit 
apoptosis of coronary endothelial cells by induc-
ing antiapoptotic genes such as bcl-2 and metal-
loproteinase (TIMP-1) [ 40 ]. Thus, also a 
downregulation of PTHrP could trigger athero-
sclerosis, since endothelial cell apoptosis is con-
sidered a key initial event for the development of 
atherosclerosis. Ex vivo and in vitro experiments 
on arteries obtained from patients on chronic 
hemodialysis and human aortic muscle cells, 
respectively, point towards a possible role of 
PTHrP in modulating vascular calcifi cation in 
hemodialysis patients because of possible inter-
actions with known key players in the process of 
Runx2 and BMP-2 co-expressed in the vascular 
wall [ 41 ]. Indeed, previous studies have shown 
that PTHrP secreted in a paracrine manner by the 
vasculature may limit VSMC calcifi cation [ 42 ], 
but it is known that increased PTH in kidney fail-
ure is linked to the development of uremic 
vasculopathy. 

 In the last years, along with the use of PTH 
and its analogs in the treatment of osteoporosis, 
new attention has been paid to the vasorelaxant 
and pro- or anti-atherogenic properties of these 

molecules. In vitro experiments on umbilical 
vein endothelial cells, expressing PTH1R, have 
shown that full-length PTH administered in pico-
molar concentrations, thus mimicking physiolog-
ical and pathophysiological conditions, is capable 
of inducing the expression of nitric oxide syn-
thase via c-AMP, providing an explanation for 
the vasodilation observed after acute treatment 
with PTH [ 43 ]. A recent ex vivo experiment on 
femoral principal nutrient arteries has further 
demonstrated that PTH induces vasodilatation in 
bone arteries through an increase in endothelium- 
dependent nitric oxide production, which is 
mediated, at least in part, by VEGF signaling 
[ 44 ]. These effects could provide an explanation 
for the bone anabolism elicited upon PTH admin-
istration in vivo. While intermittent PTH 
increases microvessel size and prevents the 
decrease in bone perfusion induced by ovariec-
tomy in mice, continuous PTH produce the oppo-
site effect [ 45 ]. Further translational studies are 
necessary to better characterize the effect on the 
vasculature of intermittent administration of PTH 
and PTH analogs versus the possible adverse 
effects observed in pathophysiologic conditions 
characterized by persistently elevated PTH lev-
els, where the increase in aldosterone contributes 
to increased cardiovascular risk [ 46 ]. Indeed, 
full-length PTH is also able of inducing athero-
sclerotic parameters such as the receptor for 
advanced glycation end products, the proinfl am-
matory IL-6, and the vascular endothelial growth 
factor via activation of protein kinase pathways, 
accounting for a possible PTH-mediated endo-
thelial dysfunction potentially responsible for 
chronic vascular lesions in the presence of long- 
standing hyperparathyroidism [ 47 ,  48 ]. It is likely 
that exposure to high levels of PTH and other cir-
culating factors such as FGF23 might trigger the 
progression of vascular calcifi cation, as high-
lighted in recent studies [ 49 ]. 

 It had been known for some time that ventric-
ular cardiomyocytes can respond to PTH and 
PTHrP, which seemed to display opposite and 
antagonistic effects at a molecular level [ 50 ,  51 ]. 
Indeed, recombinant full-length PTH(1–84) 
could induce creatine kinase, which is responsi-
ble for cardiomyocytes hypertrophy, while syn-
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thetic PTHrP was not able to stimulate creatine 
kinase and, indeed, antagonized PTH(1–84) 
actions when administered simultaneously [ 51 ]. 
Several groups have demonstrated that PTHrP is 
locally produced in the heart (by coronary endo-
thelial cells and cardiomyocytes), especially 
under hypoxic stress conditions and/or conges-
tive heart failure, and, like PTH, is able to induce 
vasodilatation, to increase directly heart rate and 
contractile function [ 52 – 56 ]. In particular, the 
release of PTHrP from the coronary endothelial 
cells seems to be dependent, at least in part, on 
mechanical forces or strains applied by blood 
fl ow to the vessel walls [ 57 ]. These effects are 
mediated, at least in part, by a PTH1R-
independent mechanisms, such as endothelial 
cells hyperpolarization, since PTHrP was still 
able to dilate the vessels in the presence of cAMP/
protein kinase antagonists [ 58 ]. In vivo studies 
demonstrated that PTHrP was indeed detectable 
in the serum of patients with congestive heart 
failure and its levels were signifi cantly directly 
correlated with ventricular ejection fraction and 
heart end-diastolic and end- systolic sizes [ 59 ]. 
The release of PTHrP by cardiomyocytes in con-
ditions of ischemia-reperfusion seems to be 
estrogen dependent, indicating that PTHrP could 
improve cardiac performance during postisch-
emic conditions to a greater extent in females 
than in males [ 60 ]. The reduction in the activity 
of nitric oxide synthase observed in conditions of 
estrogen defi ciency such as menopause or nico-
tine excess has been shown to downregulate 
PTH1R, suggesting that PTHrP signaling can be 
hampered in these conditions [ 61 ,  62 ]. As dem-
onstrated by the aberrant PTHrP action in the 
myocardium of aged spontaneously hypertensive 
rats as compared to normotensive animals, the 
protective effects of PTHrP might be lost in 
pathologic states and during aging, contributing 
to the reduction in the ischemic tolerance that 
usually characterizes these conditions [ 63 ]. 

 Although persistently, markedly elevated lev-
els of PTH have been linked to increased cardio-
vascular risk and mortality [ 64 ], PTH levels are 
positively associated with cardiac function in 
patients with congestive heart failure. It has been 
recently shown that cardiomyocytes exposed to 

low (i.e., picomolar) concentrations of PTH in a 
nonacute situation (i.e., after 24 h) respond better 
to electric stimulation in terms of cellular short-
ening taken as an index of inotropic responsive-
ness. This suggests that the modestly elevated 
PTH levels in heart failure can be interpreted as 
an adaptive response. Nonetheless, further in vivo 
and translational studies are necessary to assess 
whether PTH and PTH analogs might improve 
heart contractility [ 65 ].  

12.3     Proliferative/Mitogenic 
Effects of the PTH/PTHrP 
System 

 After the fi rst identifi cation of PTHrP as the 
responsible circulating factor for humoral hyper-
calcemia of malignancy, it has become evident 
that PTHrP may primarily act as a growth factor 
in several developing and adult organs and tis-
sues, and its expression can be increased in pro-
liferative states such as in various types of cancer, 
where it also regulates angiogenesis, invasive-
ness, and the progression towards a metastatic 
phenotype [ 66 ,  67 ]. 

 During the last years several studies have 
examined whether the increased expression of 
PTHrP in certain types of tumors is to be consid-
ered an epiphenomenon or an index of poor prog-
nosis. In prostate cancer cells, nuclear PTHrP 
protects cells from anoikis, a form of apoptosis in 
cells detaching from extracellular matrix, poten-
tially leading cancer cells to acquire metastatic 
capacity, as indirectly confi rmed by the decreased 
number of skeletal metastatic lesions in mice 
injected with PTHrP-knockdown prostate cancer 
cells relative to the ones injected with control 
cancer cells [ 14 ]. Neutralizing antibodies against 
PTHrP blunt the bone marrow-mediated angio-
genic and growth-promoting properties of circu-
lating PTHrP [ 68 ]. It has been recently shown 
that prostate cancer cells overexpressing PTHrP 
have the ability to promote epithelial-to- 
mesenchymal transition (i.e., a critical process 
for cancer invasiveness and metastasis) in vitro 
and bone metastasis in vivo when injected in 
nude mice [ 69 ]. Several pathways, such as canon-
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ical Wnt signaling, which are involved in cancer 
growth and invasiveness, have been identifi ed as 
being activated by PTHrP, and they represent a 
potential target for anticancer drug development 
[ 67 ,  70 – 74 ]. Other factors, such as 1,25(OH) 2  
vitamin D and specifi c microRNAs, might modu-
late PTHrP pro-oncogenic and pro-metastatic 
effects in cancer. Indeed, 1,25(OH) 2  vitamin D 
has been shown to inhibit PTHrP transcription 
and translation and to promote PTHrP intracel-
lular degradation in prostate cancer cells [ 75 ]. 
MicroRNA33a has been shown to act as a potent 
tumor suppressor in that it decreases PTHrP 
expression in lung cancer cells and inhibits 
PTHrP-induced osteoclastogenesis in vitro [ 76 ]. 

 In a mouse model of breast cancer, ablation of 
PTHrP delayed the initiation and progression of 
primary and metastatic lesions through modula-
tion of cellular proliferation and angiogenesis 
[ 77 ]. Indeed, in breast cancer patients, expression 
of PTHrP in the primary lesion was signifi cantly 
related to an overall decreased survival per se and 
is associated with an increased risk of bone 
metastasis if a positive lymph node is also present 
at baseline [ 78 ]. 

 PTHrP plays a key role also in the develop-
ment of primary bone lesions. In primary stromal 
cell cultures obtained from patients with giant 
cell tumor of bone, the addition of a PTHrP neu-
tralizing antibody inhibited cell proliferation and 
induced apoptosis, suggesting that PTHrP is an 
autocrine/paracrine inhibitory factor of pro-
grammed cell death [ 79 ]. Thus, neutralizing 
PTHrP by means of specifi c antisera could serve 
as an anticancer therapy, as suggested by in vitro 
experiments where anti-PTHrP neutralizing anti-
bodies induced caspase-mediated cell-cycle- 
mediated apoptosis and modulating cell adhesion, 
migration, and invasion of giant cell tumor stro-
mal cells [ 80 ,  81 ]. 

 Given the anabolic properties of full-length 
PTH and its analogs and the pro-proliferative 
properties of PTHrP, carcinogenicity studies 
were undertaken to assess whether these sub-
stances could induce bone neoplasms in rats. In 
this animal model, long-term (i.e., 2 years) treat-
ment with both PTH(1–84) at doses >10 μg/kg/
day and PTH(1–34) at doses >4.5 μg/kg/day pro-

duced osteosarcomas [ 82 ,  83 ]. Given these 
results, a post marketing 15-year-long surveil-
lance study has assessed the incidence of osteo-
sarcoma in patients with severe osteoporosis 
treated with PTH(1–34) for up to 2 years but has 
failed to detect any association between this 
treatment and the occurrence of osteosarcoma in 
humans [ 84 ], underlying the safety of this drug at 
the currently employed doses in humans.  

12.4     PTH and Regeneration: 
Actions on Hematopoietic 
and Endothelial Stem Cells, 
Nervous System, 
and the Kidney 

 The anabolic effects of PTH and PTH analogs 
have been widely characterized for their effects 
in mineral and skeletal metabolism, and, as a 
result of these studies, today PTH analogs have 
been widely used in severe osteoporosis to 
enhance osteoblast function (refer to Chaps.   30     
and   31     for further details). Nonetheless, there is 
experimental evidence that other cellular systems 
(e.g., the hematopoietic stem cell niche) can be 
both directly and/or indirectly infl uenced by 
these compounds, which can then be possibly 
employed in regenerative medicine. These effects 
are likely to be mediated by modulation of the 
osteoblastic and/or vascular niches, defi ned and 
restricted microenvironments within the bone 
marrow where stem cells reside, self-renew, dif-
ferentiate, and then migrate into the periphery. 
Even if endothelial cells do not secrete PTH, they 
are able to produce PTHrP and express PTH1R, 
thus establishing autocrine/paracrine positive 
feedback loops. 

 Preliminary experiments in mice with constitu-
tively active PTH1R in osteoblasts demonstrated 
an expansion of the pool of hematopoietic stem 
cells (HSCs) [ 85 ]. Since HSCs do not express the 
PTH1R, this effect was likely to be indirectly 
mediated by osteoblast actions on HSC niche 
within the bone marrow [ 85 ]. Indeed, PTH pro-
duces a cAMP-mediated expansion of the HSC 
pool and favors the engraftment of transplanted 
bone marrow. In adult mice, a 5-week treatment 
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with PTH(1–34), administered  intraperitoneally at 
a dose of 80 μg/kg/day followed by a standard 
HSC mobilization procedure with G-CSF, 
increased signifi cantly the mobilization of HSCs 
into the peripheral blood, as measured by the num-
ber of colony forming units (CFUs) detected in the 
peripheral circulation after such a treatment com-
pared to mice treated with PTH or G-CSF alone 
[ 86 ]. The proportion of mobilized mature and pro-
genitor elements in the periphery was not altered 
by PTH treatment, as compared to treatment with 
G-CSF alone. Moreover, the administration of 
PTH for 11 days protected the animals from the 
reduction in HSC pool in the bone marrow and 
then in the peripheral circulation that is induced by 
chemotherapy (cyclophosphamide) and combined 
pretreatment with G-CSF. PTH administered after 
bone marrow transplantation led to an increase in 
the number of HSCs in the bone marrow by 
expanding the exogenous stem cells received from 
the donors [ 86 ]. Additional studies in healthy mice 
have further shown that the PTH-dependent mobi-
lization of hematopoietic stem cells occurs with-
out a concurrent depletion of bone marrow, and 
that this is likely due to the direct actions of PTH 
on osteoblasts [ 87 ]. The mechanism by which 
PTH induces the expansion of the HSCs involves 
PTH/PTH1R signaling in T cells and the resulting 
production of Wnt10b, since mice devoid of 
PTH1R specifi cally in T-lymphocytes fail to show 
any of the above described effects of PTH on 
HSCs number [ 88 ]. These results have highlighted 
the potential of PTH(1–34) as a stem cell therapy 
in humans, especially to increase the number of 
HSCs in particular conditions, such as umbilical 
cord blood transplantation in adults, whose use is 
limited by the fact that the available number of 
HSCs is generally low. Thus, during the last sev-
eral years, this area of research has become trans-
lational, and the results of clinical studies are now 
available. The effects of a prolonged PTH(1–34) 
treatment on circulating HSCs have been assessed 
in postmenopausal women at high risk for fracture 
receiving this treatment for 2 years [ 89 ]. The 
administration of PTH(1–34) produced an early 
signifi cant increase in circulating CD34/CD45 
positive HSCs (40 % ± 14 % at 3 months,  p  = 0.004 
versus baseline) and early transitional B cells, as 

assessed by fl ow cytometry, in the absence of any 
change in blood count profi le. This increase 
persisted up to 18 months and then HSCs number 
returned to baseline at +24 months [ 89 ]. Although 
the origin of the modulation of HSCs could not be 
explored (increased proliferation of bone marrow 
HSCs or augmented peripheral HSC mobiliza-
tion), this clinical study highlights for the fi rst time 
the importance of PTH in regulating HSCs in vivo 
in humans. 

 The capacity of PTH to induce the mobilization 
of stem cells has paved the way for new possible 
applications of this hormone in the fi eld of the early 
treatment of ischemic disorders. Pioneering experi-
ments in dogs long before the bone anabolic proper-
ties of PTH were fully revealed demonstrated that 
administration of PTH(1–34), as repeated infusions 
of PTH every 30 min, to dogs in whom acute isch-
emic injury of the myocardium was induced resulted 
in a reduction of the infarct size. This was interpreted 
as a result of the vasoactive relaxant properties of 
PTH and the increased oxygen supply in the dam-
aged area [ 90 ]. Years later, after the evidence that 
PTH may indirectly act on stem and endothelial 
cells, in order to further assess the potential and 
mechanisms of PTH in regeneration after vascular 
injury, additional studies were undertaken in this 
fi eld. In mice with experimentally induced myocar-
dial infarction by coronary artery ligation, treatment 
with PTH(1–34) at a dose of 80 μg/kg/day for 
14 days produced an increased number of CD34/
CD45 positive progenitor cells recruited within the 
injured myocardium, an increased level of VEGF 
mRNA expression leading to enhanced neovascular-
ization, as demonstrated in the sacrifi ced animals 
[ 91 ]. In living mice, the treatment with PTH 
improved myocardial function and survival, demon-
strating that intermittent PTH can be successfully 
employed in ischemic cardiomyopathy [ 91 ]. Later 
studies in mice with knockout of granulocyte-colony 
stimulating factor (G-CSF) have demonstrated that, 
while the PTH-induced mobilization of stem cells is 
indeed G-CSF-dependent, the enhanced homing of 
stem cells in the injured myocardium and the posi-
tive outcomes of cardiac function and survival rely 
entirely on PTH and are due to an increased expres-
sion of stromal cell-derived factor- 1 (SDF-1) in the 
injured myocardium [ 92 ]. 
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 The vascular regenerative properties of PTH 
have been recently tested also in a major neuro-
vascular disorder such as stroke. PTHrP and the 
PTH1R are widely expressed in the brain [ 93 ]. 
PTHrP itself is upregulated after an injury and 
can have a role in maintaining the dedifferentia-
tion state for a proper nerve regeneration [ 94 – 96 ]. 
Given the actions of PTH on stem cells, a recent 
study has investigated whether PTH(1–34) could 
mobilize endogenous stem cells/progenitors cells 
early after the induction of focal ischemic stroke 
in adult mice. Indeed, the administration of 
PTH(1–34) at a dose of 80 μg/kg/day for 6 days 
induced an increase in circulating CD-34/fetal 
liver kinase-1 positive endothelial progenitors 
and increased the expression of trophic and 
regenerative factors and promoted neuroblast 
migration in the damaged tissue leading to 
enhanced angiogenesis. This was refl ected by an 
improved sensorimotor functional recovery com-
pared to control mice [ 97 ]. 

 Further studies on the use of PTH in a transla-
tional setting are needed to establish its possible 
use in regenerative medicine, both after bone 
marrow transplantation or after ischemic injury. 

 The PTH1R and PTHrP are abundantly 
expressed in the kidney, both in the renal paren-
chyma and the vasculature. Locally produced 
PTHrP has been shown to regulate renal blood 
fl ow and glomerular fi ltration rate and the prolif-
eration of glomerular mesangial cells and tubular 
epithelial cells [ 98 ]. As originally demonstrated 
in experimental models of nephropathy, PTHrP is 
transiently upregulated in the kidney in the very 
fi rst stages of acute renal failure, obstructive and 
diabetic nephropathy, and behaved unexpectedly 
as a proinfl ammatory agent and not as a regenera-
tive factor [ 99 – 104 ]. Interestingly, the upregula-
tion of PTHrP in the damaged kidney seemed to 
be mediated, at least in part, by angiotensin II, 
since pretreatment with angiotensin II blockers 
prevented the increase in the expression of PTHrP 
after the administration of nephrotoxins, suggest-
ing one mechanism by which these drugs offer 
protective effects in renal disease [ 103 ,  105 ,  106 ]. 
To dissect the effects of PTHrP in the kidney, 
mice overexpressing this growth factor in the 
renal proximal tubule cells were generated. In 

this murine model, overexpression of PTHrP in 
the renal proximal tubule failed to offer any pro-
tection against ischemia-induced renal failure, 
which was initially explained by the concomitant 
reduction in PTH1R expression due to renal 
injury [ 107 ]. Moreover, in a model of folic acid- 
induced nephropathy, mice overexpressing 
PTHrP in the proximal nephron displayed a mas-
sive tubulointerstitial fi brosis leading to sustained 
impairment of renal function in the long term as 
compared to control littermates [ 108 ]. This 
occurred mainly through an inhibition of 
 apoptosis of interstitial fi broblasts, a key mecha-
nisms in the development of renal fi brogenesis in 
damaged kidneys [ 108 ], and through cooperation 
with VEGF and other growth factors such as 
TGF-beta and RGF in inducing epithelial- 
mesenchymal transition of the renal tubuloepi-
thelium [ 109 ,  110 ]. In diabetic nephropathy, 
hypertrophy of mesangial cells is a key early 
event. In ex vivo experiments on kidneys from 
diabetic patients, increased tubular and glomeru-
lar immunostaining for PTHrP was observed and 
strongly associated with hypertrophy as esti-
mated by cell protein content and observed 
in vitro upon administration of PTHrP(1–36) in 
primary cultures of human mesangial cells cul-
tured with high glucose compared with controls 
[ 111 ,  112 ]. Recent in vitro studies on murine 
mesangial cells devoid of PTHrP and transfected 
with wild-type PTHrP, PTHrP lacking its signal 
peptide, or PTHrP lacking the NLS have further 
dissected the mechanisms and the pathways 
involved in PTHrP effects in this cellular system 
[ 113 ]. Transfection of cells with PTHrP lacking 
the signal peptide displayed an increased prolif-
eration rate, with minimal changes in apoptosis, 
while transfection with PTHrP lacking the NLS 
protected cells from apoptosis. Thus, PTHrP acts 
as a mitogenic factor in an autocrine way and as 
an antiapoptotic agent acting in an intracrine 
manner [ 113 ]. 

 Besides the reduction in apoptosis of intersti-
tial mesangial cells, overexpression of PTHrP 
has been shown to inhibit apoptosis of tubular 
epithelial cells via a Runx2-dependent mecha-
nism, which also has been demonstrated to be 
implicated in the epithelial-to-mesenchymal 
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transition in some metastatic tumors. Indeed, 
increased expression of Runx2, osteopontin, and 
Bcl-2 was demonstrated in the proximal kidney 
in association with the antiapoptotic effects 
[ 114 ]. These lines of evidence point towards a 
protective role of PTHrP in enhancing cell sur-
vival in renal tubules after renal damage and an 
additional pro-regenerative effect in this system. 
Further studies need to be performed to assess 
whether administration of PTHrP or PTH/PTH 
analogs in the long term could modify the out-
come of kidney injury.  

12.5     Other Nonclassical Actions 
of the PTH/PTHrP/PTH1R 
System: Effects on Endocrine 
Pancreas, Adrenals, 
and Innate Immune System 

 Endocrine organs nonclassically related to the 
maintenance of calcium and skeletal homeosta-
sis can constitute the target of the PTH/PTHrP 
system. Pancreatic β-cells express the PTH1R 
[ 115 ]. Preliminary studies demonstrated local 
production of PTHrP in rat and human endocrine 
pancreas (e.g., in all four cell types, α, β, δ, and 
pancreatic polypeptide cells), both in normal and 
neoplastic islets of Langerhans (insulinomas), 
suggesting a putative role in pancreatic physiol-
ogy and pathophysiology [ 116 ]. Mitogenic 
effects on pancreatic islet cells were shown 
in vitro by N-terminal PTHrP peptides capable 
of binding to the PTH1R [ 117 ]. From a func-
tional point of view, transgenic mice overex-
pressing PTHrP selectively in the β-cell under 
control of the rat insulin promoter displayed an 
increased islet mass apparently and unexpect-
edly not the result of either enhanced prolifera-
tion or cellular hyperplasia and hyperinsulinemia 
with consequent hypoglycemia [ 118 ,  119 ]. The 
fact that the β-cells overexpressing PTHrP were 
resistant to the cytotoxic, diabetogenic effect of 
streptozotocin suggested that the main mecha-
nism by which PTHrP-induced pancreatic islet 
hyperplasia was inhibition of β-cell death, i.e., 
by apoptosis [ 120 ]. In vitro experiments in which 

PTHrP was overexpressed confi rmed the ability 
of PTHrP to induce growth and increase insulin 
secretion in well- differentiated β-cell lines and 
further demonstrated that these effects occurred 
through activation of protein kinase pathways 
with the increased cAMP production of [ 121 ] 
and activation of MAP kinase-specifi c phospha-
tase 1 downregulating c-jun NH2-terminal 
kinase (JNK) [ 122 ]. Additional experiments 
have demonstrated that PTHrP(1–36) induces 
specifi c cell cycle activators (cyclin-dependent 
kinase 2 and cyclin E) [ 123 ]. These actions are 
refl ected in vivo in mice, in which the systemic 
administration of PTHrP(1–36) enhances β-cell 
proliferation [ 124 ]. Even if the role of PTHrP in 
the pancreas is fully not clear under physiologic 
conditions, all these observations support the 
concept that PTHrP could act as an autocrine/
paracrine growth factor within the endocrine 
pancreas regulating islet mass and function, sug-
gesting a potential use of PTHrP in type 1 diabe-
tes and islet transplantation. Nonetheless, 
pancreatic PTHrP can be released into the circu-
lation, potentially acting as an endocrine factor. 
An in vivo study demonstrated that serum PTHrP 
levels in patients with type 2 diabetes were 
detectable and higher relative to controls and 
increased in parallel to insulin in response to a 
glucose load [ 125 ]. Indeed, PTHrP and insulin 
are co-packaged into secretory vesicles and are 
released together upon the same stimuli. 
Additional in vivo and translational studies are 
necessary to explore the endocrine role of pan-
creatic PTHrP and its putative role in the modu-
lation of insulin resistance. 

 PTH(1–84), PTH(1–34), and PTHrP stimu-
late aldosterone secretion in vitro acting on the 
PTH1R expressed in the zona glomerulosa 
cells and activating both the adenylate cyclase/
protein kinase A and phospholipase C (PKC) 
pathways [ 126 – 129 ]. In addition, PTHrP 
expression has been documented in adrenocor-
tical tumors, where it acts as a growth factor 
[ 130 ]. In primary hyperparathyroidism, the 
increased morbidity and mortality resulting 
from cardiovascular diseases have been attrib-
uted, at least in part, to the increase in serum 
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aldosterone, which is directly linked to a 
greater risk for atherosclerotic cardiovascular 
disease [ 131 ]. After parathyroidectomy, aldo-
sterone levels return to normal, and this is 
linked to a parallel improvement in cardiovas-
cular outcomes (i.e., decrease in blood pres-
sure and in cardiovascular morbidity) in most 
studies [ 46 ,  132 ]. Indeed, after parathyroidec-
tomy a decrease in aldosterone levels in paral-
lel with improved cardiovascular outcomes is 
observed. PTH and aldosterone are closely 
related in a complex interplay. Aldosterone per 
se modulates PTH secretion acting directly on 
the mineralocorticoid receptor expressed on 
the parathyroid cell and indirectly through 
induction of hypocalcemia and hypomagnese-
mia owing to the mineralocorticoid receptor-
mediated hypercalciuric effect [ 46 ]. Secondary 
hyperparathyroidism induced by aldosterone 
excess, such as in primary hyperaldosteronism, 
is blunted by adrenalectomy or MR blockade. 

 Recent studies have ascribed a new role to 
PTH and PTHrP in innate immunity [ 133 ]. 

 Cathelicidin, an antimicrobial peptide pro-
duced in cells belonging to the innate immune 
system, such as macrophages, is also produced in 
keratinocytes in response to pathogens. Active 
vitamin D is able to enhance cathelicidin produc-
tion in macrophages in response to pathogens 
such as  Mycobacterium tuberculosis  [ 134 ]. 
Active vitamin D can induce the expression of 
the PTH1R in keratinocytes. On the other hand, 
PTH can enhance 1,25(OH) 2  vitamin D produc-
tion in this cellular system, thus establishing a 
positive feedback loop. In keratinocytes, PTH 
and PTHrP cooperate with active vitamin D in 
increasing cathelicidin expression in response to 
pathogens such as group A  Streptococcus , likely 
through modulation of epigenetic mechanisms 
(i.e., DNA methylation). In this view, the devel-
opment of secondary hyperparathyroidism in 
response to vitamin D defi ciency might compen-
sate for the decreased vitamin D and its role in 
innate immune system, thereby participating in 
the protection against infections [ 134 ]. These 
studies further expand the known pleiotropic 
actions of PTH/PTHrP, adding new unpredicted 
roles to this complex hormonal system.  

    Conclusion 

 Novel, formerly unexpected effects in organs 
nonclassically related to mineral homeostasis 
are today attributed to PTH and PTHrP. These 
molecules act primarily through the specifi c 
receptor, PTH1R, expressed in many tissues. 
While PTH exerts its actions systemically, 
PTHrP is an autocrine/paracrine/intracrine 
factor, with distinct abilities depending on 
whether it is retained in the cell or secreted 
into the extracellular milieu. Additional stud-
ies are needed to assess the various properties 
of nuclear and secreted PTHrP in different tis-
sues (e.g., cardiovascular system, cancer, and 
chronic kidney disease), especially in light of 
its potential for targeted treatments of a num-
ber of diseases. 

 Further translational studies are needed in 
order to assess specifi c extraskeletal effects of 
PTH and PTH analogs. Besides their known 
anabolic actions on the osteoblast, the proven 
effects of these peptides on HSC open new 
possibilities for the application of these mole-
cules to the fi eld of regenerative medicine.     
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13.1             Introduction 

 The parathyroid gland is an endocrine organ 
formed by four small glands, which have the 
important role of maintaining serum calcium lev-
els within a narrow physiological range, through 
the calcium-sensing receptor (CaSR) [ 1 ] (see 
also Chap.   5    ). It is mainly formed by two types of 
cells, named parathyroid chief cells and parathy-
roid oxyphil cells. Parathyroid chief cells are the 
most abundant cells of this gland, whereas para-
thyroid oxyphil cells are present in lower num-
bers [ 2 ]. Parathyroid chief cells secrete 
parathyroid hormone (PTH) in response to acute 
variations in the concentration of extracellular 
calcium (Ca 2+  o ), which is sensed by the CaSR, 
located in the surface of these cells [ 1 ]. The func-
tion of parathyroid oxyphil cells is still unknown. 
In the interior of the gland, chief cells and oxy-
phil cells are organized in small islets delimited 
by connective tissue. Blood vessels, endothelial 
cells, and a few adipose cells are also present in 
the interior of the gland, while more adipose tis-
sue is present in the exterior of the gland. The 
glands are surrounded by connective tissue in the 
form of a capsule that provides support to the 
parathyroid tissue and separation from other 
organs [ 2 ]. 

 In vitro cell cultures of parathyroid cells have 
long represented an issue of key importance for 
several researchers who have aimed their stud-
ies at the physiology and pathologies of this 
endocrine gland. Diverse pathologies can affect 
the parathyroid gland, such as parathyroid 
hyperplasia, parathyroid adenomas, parathyroid 
carcinomas, hypoparathyroidism, and hyper-
parathyroidism [ 3 – 6 ]. In order to learn more 
about these pathologies, as well as the physio-
logical functions of this gland, it is highly desir-
able to develop adequate in vitro parathyroid 
cell models. However, in vitro parathyroid cell 
culture has proved to be challenging, presenting 
several diffi culties to be overcome. Bovine para-
thyroid glands and human parathyroid glands 
have been extensively used to develop in vitro 
cell models of parathyroid cells. Human patho-
logic parathyroid glands, such as parathyroid 
adenomas and hyperplastic parathyroid glands 
from patients with secondary hyperparathyroid-
ism due to chronic kidney disease (CKD) con-
stitute the models most commonly used for the 
development of parathyroid cell systems. On the 
other hand, normal human parathyroid glands 
have been used less commonly to establish para-
thyroid cell cultures, because they have proved 
to be more diffi cult to grow in culture due to 
their very low proliferative activity [ 7 ]. 
Similarly, reports of parathyroid cell cultures 
derived from parathyroid carcinomas are scarce 
in literature given the very low frequency of 
parathyroid cancer [ 5 ]. 
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 Most of the in vitro parathyroid cell models 
described in the literature are primary cultures, 
which are only viable for a short period of time, 
while there are only a few reports regarding the 
achievement of long-term viable parathyroid cell 
cultures or cell lines. The term “primary culture” 
refers to proliferating cells isolated from a tissue 
until confl uence and fi rst subculture, while the 
term “primary cell line” or “cell line” represents 
a primary culture that has been subcultured. 
Primary cell lines are fi nite, i.e., are only viable 
and able to proliferate for a limited amount of 
time, since the cells lose the ability to proliferate 
and became senescent after a given number of 
passages. In contrast, continuous cell lines are 
immortal with an infi nite ability to proliferate [ 8 ]. 
However, the only report present in the literature 
regarding a continuous parathyroid cell line is a 
clonal rat cell line named PT-r [ 9 ].  

13.2     In Vitro Primary Cultures 
of Bovine Parathyroid Cells 

 Primary cultures of bovine parathyroid cells were 
among the fi rst in vitro parathyroid cell models 
used to study the physiological functions of the 
parathyroid, such as the regulated secretion of 
 PTH  in response to alterations in Ca 2+  o  [ 10 – 12 ]. 
However, primary cultures of bovine parathyroid 
cells have been shown to quickly lose responsive-
ness to Ca 2+  o  [ 12 – 14 ]. Freshly dispersed bovine 
parathyroid cells are able to sense changes in 
Ca 2+  o  and inhibit PTH secretion at high Ca 2+  o  lev-
els. However, the ability to respond to Ca 2+  o  levels 
and suppress PTH secretion begins to decrease 
starting the fi rst day in culture, and complete lack 
of response to changes in Ca 2+  o  has been shown to 
occur over a time period as short as 6 days of 
in vitro cell culture. The rapid loss of sensitivity to 
Ca 2+  o  and the absence of modulation of PTH 
secretion were attributed to the concomitant loss 
of CaSR at mRNA and protein level, which was 
reported to decrease rapidly in bovine parathyroid 
cells cultured in a monolayer [ 15 ,  16 ]. Several 
explanations were proposed for the decrease in 
CaSR mRNA and protein levels; however, the 
responsible mechanisms are still not fully under-
stood. Defi ciency in 1,25- dihydroxyvitamin D 3  

(1,25(OH) 2 D 3 ), the active form of vitamin D, was 
one of the proposed reasons, since 1,25(OH) 2 D 3  
was shown to increase CaSR mRNA levels [ 17 ]. 
However, the addition of 1,25(OH) 2 D 3  to primary 
bovine parathyroid cell cultures did not prevent 
the loss of CaSR expression [ 15 ]. Changes in con-
centrations of Ca 2+  o  were also proposed to con-
tribute to decreasing CaSR levels, but variations 
in Ca 2+  o  concentrations did not prevent the 
decrease in expression of the receptor or increase 
CaSR expression [ 15 ,  16 ]. Some researchers 
reported that changes in serum concentrations had 
no effect in preventing a decrease in CaSR expres-
sion [ 15 ], while others stated that reduced con-
centrations of serum or its replacement by bovine 
serum albumin (BSA) led to a delay in the 
decrease of CaSR expression levels [ 18 ]. Since 
parathyroid cells in vivo present a very slow pro-
liferation rate [ 19 ], it was also proposed that 
in vitro parathyroid cell culture could stimulate 
cell proliferation [ 20 ] and lead to loss of CaSR 
mRNA levels [ 15 ]. Furthermore, high levels of 
Ca 2+  o  have been shown to inhibit parathyroid cell 
proliferation [ 21 ], and this effect is thought to be 
CaSR mediated [ 22 ]. However, the incubation of 
primary cultures of bovine parathyroid cells with 
high Ca 2+  o  was shown to be ineffective in decreas-
ing cell proliferation [ 13 ]. The lack of effect of 
Ca 2+  o  in parathyroid cell proliferation was associ-
ated with decreased receptor expression in bovine 
primary cell cultures. 

 Another important obstacle that arises in pri-
mary cultures of bovine parathyroid cells is the 
overgrowth of fi broblasts in the culture that ulti-
mately may lead to the complete loss of parathy-
roid cells in culture [ 12 ,  13 ]. In spite of all the 
diffi culties associated with primary cultures of 
bovine parathyroid cells, i.e., such a rapid loss of 
parathyroid function, loss of sensitivity to 
changes in Ca 2+  o , and contamination of the cul-
ture with fi broblasts, some researchers have been 
able to maintain functional cultures of bovine 
parathyroid cells for long periods of time. Brandi 
et al. [ 23 ] maintained bovine parathyroid cells in 
culture for an impressive time period of 140 dou-
blings. The cells maintained secretion of PTH 
during the fi rst 30 passages, which showed that 
this parathyroid cell model was able to maintain 
one of the most important characteristics of the 
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parathyroid gland. However, this primary cell 
line showed some limitations, such as becoming 
rapidly senescent, inability to be cloned [ 9 ], and, 
similar to other reports in the literature [ 12 – 14 ], 
decreased sensitivity to Ca 2+  o .  

13.3     In Vitro Primary Cultures 
of Human Parathyroid Cells 

 Normal parathyroid cells have a very slow rate of 
proliferation [ 7 ] and in vitro primary cell cultures 
derived from normal human parathyroid cells are 
almost impossible to obtain [ 24 ]. Therefore, pri-
mary cultures of human parathyroid glands have 
mainly been derived from parathyroid adenomas 
and hyperplastic glands from patients with sec-
ondary hyperparathyroidism, which were shown 
to have higher proliferative activity than normal 
glands [ 7 ] and have led to the establishment of 
some long-term primary parathyroid cell lines 
[ 25 – 27 ]. The CaSR was shown to be decreased 
both at mRNA and protein expression levels in 
parathyroid adenomas [ 28 ], parathyroid carcino-
mas [ 29 ], and hyperplastic parathyroid glands 
from patients with secondary hyperparathyroidism 
[ 30 ]. In addition, the CaSR present in parathyroid 
tumors demonstrated decreased sensitivity to 
Ca 2+  o , with a higher concentration of Ca 2+  o  required 
to produce half-maximal inhibition of PTH 

 secretion [ 28 ,  30 ]. The culture of human parathy-
roid cells presents several diffi culties similar to 
what was observed in bovine parathyroid cell cul-
tures. The overgrowth of fi broblasts in the culture 
is perhaps the most important problem encoun-
tered with human parathyroid cells, together with 
the slow proliferation exhibited by these cells. The 
growth rate of fi broblasts exceeds that of parathy-
roid cells, leading to the eventual dominance of the 
culture by fi broblasts. In addition to the use of 
pathological parathyroid glands, culture medium 
and technical skills applied in the preparation of 
human parathyroid cell cultures seem to have a 
high importance in the successful development of 
a functional viable cell culture. It could be that the 
initial amount of connective tissue present in the 
parathyroid gland may also be an important factor, 
since an increased amount of connective tissue 
may possibly lead to an increased number of fi bro-
blasts in the culture (Figs.  13.1 and 13.2 ).  

 Primary cultures of human parathyroid cells 
have been used to study parathyroid cell function 
and proliferation, as well as the effects of several 
biological molecules involved in parathyroid 
downstream functions. For example, the effects 
of Ca 2+  o  and calcimimetics, allosteric modulators 
of the CaSR, on PTH secretion were studied 
using in vitro cell cultures derived from 
 parathyroid adenomas and hyperplastic glands 
from patients suffering from secondary 

  Figs. 13.1 and 13.2    Primary culture of human para-
thyroid cells derived from a parathyroid adenoma. In 
Fig. 13.1 are visible parathyroid cells organized in 
islets ( red arrows ), which are surrounded by cells with 
a fi broblastic shape, probably derived from connective 
tissue of the gland ( green arrows ). In Fig. 13.2 an islet 
of parathyroid cells can be seen in detail. The nuclei 

and the polygonal shape of the parathyroid cells are 
clearly visible in the fi gure. Human parathyroid cells 
were cultured for about 1 week after appropriate treat-
ment of the parathyroid tissue. Images were acquired in 
an Axiovert 200 M inverted microscope (Zeiss, 
Oberkochen, Germany) in phase contrast with a magni-
fi cation of 10× and 40×       

 

13 In Vitro Cellular Models of Parathyroid Cells



130

 hyperparathyroidism [ 28 ,  31 ]. Furthermore, the 
effects of  calcium, calcitriol, and phosphate on 
parathyroid cell proliferation [ 32 ,  33 ], as well as 
the downstream signaling pathways of the CaSR, 
such as the mitogen-activated protein kinase 
(MAPK) signaling pathway [ 34 ], modifi cations 
in intracellular calcium (Ca 2+  i ) release, and 
changes in intracellular cAMP levels were stud-
ied in human parathyroid cell cultures [ 28 ].  

13.4     Long-Term In Vitro Cell 
Models of Human 
Parathyroid Cells 

 Several researchers have tried to establish in vitro 
models of parathyroid cells. However, only a few 
reports of successful long-term parathyroid cell 
cultures with maintained proliferation and 
 functional parathyroid activity have been 
described in literature. The works of Liu et al., 
Roussanne et al., and Björklund et al. with human 
parathyroid cells drew attention from the others 
involved in such studies and will be discussed 
further below. 

 Roussanne et al. [ 25 ] were the fi rst to establish 
a long-term culture of human parathyroid cells. 
The culture was developed from hyperplastic 
parathyroid glands derived from patients with 
secondary hyperparathyroidism, and the cells 
maintained functional activity for a period of 
time as long as 5 months. This parathyroid cell 
system showed secretion of PTH and adequate 
inhibition of this hormone in response to 
increased concentrations of Ca 2+  o . The ability to 
modulate PTH secretion in response to changes 
in Ca 2+  o  was maintained until the fi fth passage, 
even though the concentration of PTH secreted 
decreased with each passage. This primary para-
thyroid cell line also maintained expression of 
the CaSR, both at mRNA and protein levels, 
which constitutes the probable explanation for 
the presence of PTH-regulated response to 
changes in Ca 2+  o . The success of this in vitro cell 
model was attributed to several factors, such as 
the different types of cells present in the culture; 
the organization of cell population in aggregates, 
described as clusters, instead of a monolayer; and 

the low cell proliferation. The majority of cells 
were of epithelial origin and a low percentage of 
cells of endothelial origin (1 %). Therefore, the 
mixed cell population could have contributed to 
the maintenance of active parathyroid cell func-
tion. Other contributing factors could also be the 
contact between adjacent cells, provided by cell 
aggregates, and the development of architecture 
more similar to the parathyroid gland in vivo. 

 Liu et al. have established a human primary 
parathyroid cell line derived from parathyroid 
adenomas with maintained parathyroid func-
tional activity for 2 months. The cell culture 
medium used contained a low concentration of 
calcium and did not contain serum, which proved 
to be effective in altering the proliferation of 
fi broblasts. Furthermore, cells showed ability to 
proliferate until confl uency and sense changes in 
Ca 2+  o  levels during 2 months in culture, as was 
shown by the ability to secrete PTH and to modu-
late the release of Ca 2+  i  in response to changes in 
Ca 2+  o  concentration. However, after subculture, 
the cells ceased to proliferate and lost the capac-
ity to modulate PTH and Ca 2+  i  in response to 
variations in Ca 2+  o , showing sustained levels of 
Ca 2+  i  at high Ca 2+  o . Interestingly, simultaneous 
culture of parathyroid cells in serum-enriched 
medium showed expression of PTH protein only 
for 10 days, absence of proliferation from the 
third day in culture, and increased growth of 
fi broblasts, which were the predominant cells in 
culture at day 10 [ 26 ]. Therefore, cell culture 
medium applied in this in vitro cell culture could 
have been a key point for the establishment of 
this cell system. 

 More recently, another research group suc-
cessfully established a long-term primary para-
thyroid cell culture. The cell line was named 
sHPT-1 and was derived from hyperplastic para-
thyroid glands from patients with secondary 
hyperparathyroidism [ 27 ]. The sHPT-1 cell line 
exhibited accumulation of non-phosphorylated 
stabilized β-catenin, a feature previously 
observed in other parathyroid tumors [ 27 ], and 
the role of β-catenin was studied in this cell line. 
The cells were maintained viable, with active 
proliferation and expression of PTH protein for 
more than 45 days. The cells were cultured in a 
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growth medium enriched with serum, which may 
contradict the poor results obtained by other 
groups when culturing primary human parathy-
roid cells in serum-rich medium. The culture pro-
tocol utilized by the authors presents two 
particular characteristics: the use of lithium chlo-
ride for the fi rst four passages and the culture of 
cells in suspension [ 27 ]. Consequently, perhaps 
these two features have also contributed to the 
success of this cell culture.  

13.5     In Vitro Cell Models 
of Continuous Parathyroid 
Cell Lines 

 In the light of all the diffi culties associated with 
in vitro parathyroid cell cultures, and in particular 
the diffi culty encountered in cloning bovine para-
thyroid cells, a group of researchers tried to use rat 
parathyroid glands in an attempt to establish a 
long-term functional parathyroid cell line [ 9 ]. The 
authors have cloned epithelial cells derived from 
hyperplastic parathyroid glands from Sprague–
Dawley rats due to a diet with low calcium and 
high phosphorus levels. The authors were success-
ful in developing a clonal epithelial parathyroid 
cell line, named PT-r, which showed features simi-
lar to parathyroid chief cells. The PT-r cell line 
exhibited secretion of  parathyroid-hormone- related 

peptide (PTHrP), expression of PTHrP at mRNA 
level, presence of cell proliferation (doubling time 
of 20 h), and modulation of cell proliferation and 
Ca 2+  i  with Ca 2+  o . Furthermore, the cell line exhibits 
characteristics of an immortal cell line, with 
 continuous cell proliferation [ 9 ,  35 – 37 ]. The 
authors have attributed the success of the PT-r cell 
line to the prevention of overgrowth of fi broblasts 
through selective cell isolation and the use of 
hyperplastic parathyroid tissue from rodents, 
enriched in epithelial cells [ 9 ] (Figs.  13.3 ,  13.4 , 
and  13.5 ).   

 However, initially expression of  PTH  mRNA 
and protein was not found in the PT-r cell line 
[ 35 ]. More recently, expression of PTH mRNA 
was found to be present in the PT-r cell line [ 38 ]. 
In addition, this cell line was used to study para-
thyroid cell proliferation [ 39 ], the role of 25OHD 
in PTH gene transcription in hypovitaminosis D 
[ 38 ], and the regulation of PTH gene transcrip-
tion by transcription factors [ 40 ].  

13.6     Three-Dimensional In Vitro 
Parathyroid Cell Models 

 In vitro cell cultures of parathyroid cells were not 
the only in vitro systems used to study the parathy-
roid gland. Researchers have also employed intact 
parathyroid glands [ 41 ], tissue slices of  parathyroid 

  Figs. 13.3 and 13.4    Continuous culture of clonal epithelial 
parathyroid cells from the PT-r cell line. In Fig. 13.3 larger 
and smaller islets of PT-r cells ( red arrows ) are visible, illus-
trating the typical type of proliferation of these cells, which 
grow in the form of islets. In Fig. 13.4 an islet of PT-r cells 

is seen in the image and the morphology of the cells is seen 
in detail, particularly the nuclei and the polygonal shape of 
the cells. Images were acquired in an Axiovert 200 M 
inverted microscope (Zeiss, Oberkochen, Germany) in 
phase contrast with a magnifi cation of 10× and 40×       
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glands [ 42 ], and explants [ 43 ] to study this endo-
crine organ. However, even these in vitro cell sys-
tems showed calcium-sensitive PTH secretion for 
short periods of time. In the view of this and the 
numerous diffi culties discussed here in establish-
ing long-term functional in vitro parathyroid cell 
systems, some research groups have also attempted 
to use three- dimensional in vitro cell culture mod-
els to culture parathyroid cells. The advantage of 
using such models lies in maintaining in cell cul-
ture a structural architecture and environment 
more similar to the parathyroid gland in vivo. The 
fi rst parathyroid cell model of this kind reported in 
literature was that of Ridgeway et al. [ 44 ], who 
developed a model of bovine parathyroid cells 
organized in multicellular aggregates, named 
organoids. The cells in the organoids presented a 
morphology similar to fresh parathyroid tissue and 
were able to sense alterations in Ca 2+  o  concentra-
tion and respond with adequate PTH secretion for 
2 weeks in culture; after this time PTH release suf-
fered a rapid decrease. In spite of the short time of 
maintained parathyroid function, this model con-
stituted an advance in parathyroid cell culture 
since it allowed the secretion of similar amounts of 
PTH by the organoids, which was not possible to 
obtain with parathyroid explants or tissue. 
Subsequently, Roussanne et al. [ 25 ] established 

long-term parathyroid cell cultures of human para-
thyroid cells derived from patients with secondary 
hyperparathyroidism. Cells were aggregated in 
clusters and were kept viable for 5 months with 
secretion of PTH in response to Ca 2+  o . The struc-
ture of parathyroid cells obtained in this cell 
model, with features more similar to the parathy-
roid gland in vivo and the possible cell-to-cell 
interactions due to the close proximity of the cells 
in the clusters, constitute two of the reasons 
claimed to explain the success obtained. Picariello 
et al. [ 45 ] have developed a model of human para-
thyroid cells encapsulated in membranes of algi-
nate–polylysine–alginate with the aim of using 
this three-dimensional model of parathyroid cells 
in the treatment of hypoparathyroidism. The main 
advantage of microencapsulation consists in the 
protection of parathyroid cells from immunologi-
cal rejection, which is the main risk of parathyroid 
transplantation [ 46 ]. Microencapsulated parathy-
roid cells were derived from two different patho-
logical tissues, human parathyroid adenomas and 
hyperplastic parathyroid glands. The microencap-
sulated cells were maintained viable for 3 months 
and showed parathyroid cell growth, secretion of 
PTH, and sensitivity to changes in Ca 2+  o . 
Interestingly, primary cultures of parathyroid cells 
in monolayer showed decreased PTH secretion 
after 20 days in culture, while microencapsulated 
parathyroid cells stably secreted PTH for 3 months. 
Another example of a three- dimensional cell cul-
ture system was developed by Ritter et al. [ 47 ]. 
This model used bovine parathyroid cells cultured 
in type I collagen matrix, which coalesced to form 
a cellular mass named a pseudogland. 
Pseudoglands maintained sensitivity to Ca 2+  o  and 
regulated PTH secretion for 3 weeks, even if these 
two features were absent in the fi rst week in col-
lagen culture. The set point for calcium was equiv-
alent to the values seen in freshly dispersed 
parathyroid cells, while CaSR mRNA expression 
was decreased. More recently, another three-
dimensional cell model of human parathyroid cells 
derived from patients suffering from secondary 
hyperparathyroidism due to CKD was reported in 
the literature. In this model, the cells were cultured 
in nonadherent plates and formed compact masses 
of parathyroid cells that were separated by 

  Fig. 13.5    Epithelial parathyroid cells from the PT-r cell 
line stably overexpressing the parathyroid hormone gene. 
In the image, the parathyroid hormone is visible in  green  
and the nuclei in  red . Image was acquired in laser scanner 
confocal microscopy (LSCM) using a LSM510META 
microscope (Zeiss, Oberkochen, Germany) equipped 
with Ar/ML458/477/488/514, HeNe543, and HeNe633 
laser lines       
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 acellular substrate, an architecture named spher-
oids. The cells organized in spheroids did not show 
overgrowth of fi broblasts, maintained CaSR 
expression, and maintained responsiveness to 
changes in Ca 2+  o  during 2–3 months [ 48 ]. The tis-
sue-like structural models of bovine parathyroid 
cells described above are still cell models that 
maintain parathyroid function for a short period of 
time, but the organization of parathyroid cells in a 
three- dimensional architecture appears to main-
tain viable parathyroid function for a period of 
time longer than usually observed in primary cul-
tures of bovine parathyroid cells in monolayers 
[ 15 ,  16 ]. The same is seen in three-dimensional 
cell cultures of human parathyroid cells, where the 
development of an environment more similar to 
that of parathyroid glands in vivo is possibly an 
advantage to maintaining long-term cell viability 
and sensitivity to Ca 2+  o . In addition, the culture of 
parathyroid cells in a three-dimensional cell sys-
tem appears to be less prone to the overgrowth 
with fi broblasts usually seen in primary cultures of 
bovine and human parathyroid cells. It can be con-
cluded that culture of parathyroid cells in three-
dimensional systems can possibly constitute a 
useful alternative to partially overcome the several 
diffi culties associated with primary cultures of 
parathyroid cells in monolayer.  

13.7     Differentiation 
of Parathyroid Cells 
from Stem Cells 

 Recently, researchers have also focused on 
attempting to differentiate parathyroid-like cells 
from stem cells, as well as to investigate whether 
stem cells are present in parathyroid gland tissue. 
Ignatoski et al. have tried to differentiate human 
embryonic stem cells (hESCs) into parathyroid- 
like cells. H1 hESCs were differentiated into 
cells expressing parathyroid cell markers such as 
glial cells missing-2 (GCM2), CaSR, CXCR4, 
and PTH. In addition, differentiated cells exhib-
ited PTH secretion and, at the same time, did not 
show production of other hormones characteris-
tic of other endocrine organs that develop from 
the same pouch common to the parathyroid gland 

(pharyngeal endoderm), such as cells secreting 
thyroid-stimulating hormone (TSH), thyroxine 
(T4), and calcitonin, supporting the evidence that 
the stem cells differentiated into parathyroid-like 
cells [ 49 ]. Previously, Bingham et al. had already 
differentiated hESCs into cells with a parathyroid 
phenotype, using the BG01-hES cell line [ 50 ]. 
The development of parathyroid-like cells from 
hESCs could represent an alternative treatment 
for hypoparathyroidism. In the future, hESCs 
could possibly be collected from a patient suffer-
ing from hypoparathyroidism, differentiated 
in vitro into parathyroid-like cells, and implanted 
in the patient as an autograft [ 49 ,  50 ]. In addition, 
parathyroid-like cells derived from stem cells 
could possibly represent an adequate in vitro cell 
model to study parathyroid gland function. 

 Conversely, other researchers have tried to 
determine if the human parathyroid gland pos-
sesses stem cells. Stem cells have been found to 
be present in several differentiated tissues such as 
bone marrow, adipose tissue, umbilical cord 
blood, and others [ 51 ]. This supports the hypoth-
esis that the parathyroid gland may contain stem 
cells. In this regard, Shih et al. attempted to iso-
late stem cells from the human parathyroid gland. 
The obtained cells presented a phenotype similar 
to mesenchymal stem cells, with the presence of 
markers such as CD73 and CD105, telomerase 
activity, and expression of CaSR gene and were 
differentiated into osteoblasts, chondrocytes, and 
adipocytes. However, the isolated cells were not 
able to secrete  PTH  in response to changes in 
Ca 2+  o  [ 52 ]. Consequently, although parathyroid- 
like cells differentiated from parathyroid stem 
cells could be a good in vitro parathyroid cell 
model, further research is needed to determine if 
the human parathyroid gland possesses stem cells 
and if so, whether these cells can be differenti-
ated into functional parathyroid-like cells.     
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14.1      Introduction 

 Hypoparathyroidism is a rare disorder diagnosed 
by the presence of low serum calcium and low or 
inappropriately low-normal serum parathyroid 
hormone. This condition may be acquired or 
inherited (see Table  14.1 ). The acquired form is 
most often due to the removal of, or damage to, 
the parathyroid glands or their blood supply at 
the time of neck surgery for thyroid disease, head 
and neck cancer, or parathyroid disease. 
Postsurgical hypoparathyroidism explains about 
75 % of acquired cases. The next most common 
cause in adults is thought to be autoimmune 
disease, either affecting only the parathyroid 
glands, or multiple other endocrine organs. 
Remaining cases are due to a variety of rare 
infi ltrative disorders, metastatic disease, iron or 
copper overload, ionizing radiation exposure, or 
rare genetic disorders.

   This chapter describes the known epidemio-
logy of hypoparathyroidism. Current estimates of 
the prevalence, incidence, risk factors, details 

regarding hospitalization for complications, 
medical costs of this disorder, and estimates of 
the morbidity and mortality of this disorder are 
reviewed.  

14.2     Prevalence 

 There are only a few estimates of the prevalence 
of hypoparathyroidism in the published litera-
ture. A recent retrospective study that analyzed a 
large US claims database gave an estimated prev-
alence of 65,389 insured individuals with hypo-
parathyroidism for more than 6 months in 2008 
[ 1 ]. This prevalence estimate was extrapolated to 
78,000 total insured and uninsured individuals. 
The database used in this retrospective study 
included fully adjudicated medical and pharma-
ceutical claims from all insured members, and 
contained longitudinal data for nearly 77 million 
patients from 75 health plans in the USA. The 
estimate of prevalence was obtained by calculat-
ing the number of diagnoses of hypoparathy-
roidism over a 12-month period using different 
methods. The fi rst method was diagnosis based, 
and the second was surgical based. This insur-
ance database was not cross-validated with other 
databases, although it has been used in the epide-
miologic assessment of other diseases. 

 Underbjerg et al. [ 2 ] identifi ed patients with 
hospital discharge diagnosis of postsurgical hypo-
parathyroidism through the Danish National 
Patient Registry. A national prescription database 
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was used to confi rm that these patients were 
treated with calcium and active vitamin D supple-
mentation. All diagnoses were confi rmed by 
review of individual patient hospital records. For 
each patient with postsurgical hypoparathyroidism 
where surgery was done for nonmalignant disease 
between 1988 and 2012, 3 age- (±2 years) and 
gender-matched controls were selected from the 
general Danish population. The prevalence esti-
mate of postsurgical hypoparathyroidism was 22 
per 100,000 person-years. A total of 688 patients 
were identifi ed who had undergone neck surgery 
for benign disease since 1988, with subsequent 
diagnosis of hypocalcaemia and inappropriately 
low parathyroid hormone levels that necessitated 
treatment with calcium and/or active vitamin D 
supplementation for more than 6 months. The 
average age at diagnosis was 49 years (range, 
17–87 years), with 88 % women. Sixteen percent 
of patients had neck surgery prior to the operation 
that caused hypoparathyroidism. Compared to 
controls, patients with postsurgical hypoparathy-
roidism had a 3.7-fold increased risk of renal 
 complications (HR 3.67, 95 % CI 2.41–5.59) 

and 3.8-fold increased risk of hospitalization due 
to seizures (HR 3.82; 95 % CI, 2.15–6.79), 
whereas risk of cardiac arrhythmias (HR 1.11; 
95 % CI, 0.79–1.57) or cardiovascular disease or 
death (HR 0.89, 95 % CI, 0.73–1.09) were not 
increased. The study concluded that, while risk of 
convulsions and renal disease is increased, mortal-
ity and risk of cardiovascular diseases or arrhyth-
mias were not increased in patients with 
postsurgical hypoparathyroidism. 

 In a preliminary report, the longitudinal 
population- based Rochester Epidemiology 
Project medical records–linkage resources were 
used to identify all persons residing in Olmsted 
County, Minnesota, in 2009 with any diagnosis 
of hypoparathyroidism assigned by a health care 
provider since 1945 [ 3 ]. Detailed medical records 
were reviewed to confi rm the diagnosis of hypo-
parathyroidism and assign an etiology. Subjects 
were then assigned 2 age- and sex-matched con-
trols per confi rmed case, and all medical diagno-
ses from 2006 to 2008 were then evaluated to 
compare cases with controls for the percent of 
cases with any diagnosis in each chapter and sub-
chapter of the International Classifi cation of 
Diseases, Version 9, Clinical Modifi cation (ICD-
9- CM). There were 54 confi rmed cases, giving a 
prevalence estimate of 37 per 100,000 person- 
years, which translates into approximately 
115,000 patients in the USA having hypopara-
thyroidism of any cause. Of these, 71 % were 
female, with a mean age for affected individuals 
of 58 ± 20 years. Hypoparathyroidism was caused 
by neck surgery in 78 % of cases, and due to rec-
ognized secondary causes in 9 %, familial disor-
ders in 7 %, and no identifi ed cause in 6 %. Cases 
were more likely than controls ( p  < 0.05) to have 
1 or more diagnosis within 7 of 17 chapters and 
15 subchapters. These population-based data on 
confi rmed hypoparathyroidism prevalence and 
case characteristics revealed that, compared to 
unaffected controls, persons with hypoparathy-
roidism exhibited a substantial burden of comor-
bid disease across multiple disease categories. 

 The Osteoporotic Fractures in Men (MrOS) 
study and Dallas Heart Study (DHS) were used to 
identify asymptomatic subjects with normocalce-
mic hypoparathyroidism [ 4 ]. Normocalcemic 

    Table 14.1    Classifi cation of hypoparathyroid disorders   

 Destruction or removal of parathyroid tissue with 
inadequate secretory reserve 
   Postsurgical hypoparathyroidism 
   Autoimmune hypoparathyroidism 
   Deposition of heavy metals in the parathyroid tissue 
   Radiation-induced destruction of the parathyroid 

tissue 
   Metastatic infi ltration of the parathyroid glands 
 Reversible impairment of PTH secretion or PTH action 
with intact underlying secretory action 
   Severe magnesium depletion 
   Hypermagnesemia 
   Constitutively active CaSR 
 Genetic disorders of PTH biosynthesis and parathyroid 
gland development 
   PTH gene mutations 
   Mutations or deletions in transcription factors and 

other regulators of the development of the 
parathyroid glands 

   Mutations in mitochondrial DNA 

  Adapted from Table 1, Bilezikian et al. [ 13 ], 2318. Used 
with permission 
  Abbreviations :  PTH  parathyroid hormone,  CaSR  calcium- 
sensing receptor,  DNA  deoxyribonucleic acid  
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hypoparathyroidism is defi ned as occurring in 
patients with normal serum calcium and serum 
PTH decreased below the normal range. Cross- 
sectional data obtained from these studies showed 
that of 2,364 men in MrOS, 26 had normocalce-
mic hypoparathyroidism, for a prevalence of 
1.1 %. Baseline data from the DHS showed that 
of 3,450 men and women, 68 had normocalcemic 
hypoparathyroidism, for a prevalence of 1.9 %. 
Follow-up data from these patients over 8 years 
showed that none developed overt hypoparathy-
roidism and that only two (0.09 %) had persistent 
normocalcemic hypoparathyroidism. The lack of 
persistence of the biochemical changes seen in 
most patients in this study may mean that the 
hypoparathyroidism was secondary to unidenti-
fi ed factors that resolved during follow-up or that 
laboratory measurement of parathyroid hormone 
(PTH) was variable, with some values inciden-
tally found to be low. 

 Because hypoparathyroidism is a rare disor-
der, large population-based studies will be 
required to determine the true prevalence of this 
condition in each country.  

14.3     Incidence 

14.3.1     Postsurgical 
Hypoparathyroidism 

 Acquired hypoparathyroidism is typically due to 
removal or irreversible damage to the parathyroid 
glands, sometimes due to damage to their blood 
supply, during various types of neck surgery [ 5 ] 
(Table  14.1 ) (see also Chap.   22    ). The rate of 
postsurgical hypoparathyroidism depends on 
the center, the type of intervention, and surgical 
expertise. Larger studies report total rates of 
5.4–8.8 %, although most cases are transient 
(4.9–7.3 %) [ 1 ,  6 ,  7 ]. Smaller series report an 
incidence of temporary hypoparathyroidism of 
25.4–83 % [ 8 – 12 ]. 

 Defi nitions of permanent postsurgical hypo-
parathyroidism vary, but the defi nition most 
generally accepted is insuffi cient parathyroid 
hormone to maintain normocalcemia with 
adequate daily intake of calcium and vitamin D 

longer than 6 months after surgery [ 5 ,  13 ]. 
Permanent hypoparathyroidism occurs less fre-
quently than temporary hypoparathyroidism, with 
estimates ranging from 0.12 to 4.6 % [ 6 – 11 ]. 

 The development of permanent hypoparathy-
roidism depends on a variety of risk factors. The 
risk is greater when more than one parathyroid 
gland is inadvertently removed during thyroidec-
tomy [ 6 ,  12 ], when the serum calcium level is 
≤8.0 mg/dL (≤2 mmol/L) 1 week after surgery, 
or when serum phosphorus is ≥4 mg/dL on oral 
calcium supplementation [ 6 ]. 

 The frequency of postsurgical hypoparathy-
roidism also depends on the experience of the sur-
geon. One study showed that 32.8 % of cases 
performed by surgical residents were documented 
to have transient postoperative hypoparathyroid-
ism, compared to only 19.4 % when surgeries 
were performed by an experienced endocrine sur-
geon [ 9 ]. Permanent hypoparathyroidism was 
reported to be more frequent during the earliest 
period of a surgeon’s practice during retrospective 
review of total thyroidectomy cases for thyroid 
cancer performed by one surgeon [ 8 ,  14 ]. 

 The type of diagnosis of thyroid disease also 
bears on the risk of postoperative hypoparathy-
roidism. Advanced thyroid cancer, Graves’ dis-
ease, and other types of hyperthyroidism are 
associated with higher rates of postoperative hypo-
parathyroidism compared to small thyroid cancers 
or benign euthyroid disease. More extensive sur-
gery also signifi cantly increases the incidence of 
permanent hypoparathyroidism, with greater risk 
associated with total thyroidectomy, repeat thyroid 
surgery, and thyroid surgery with central compart-
ment or more extensive neck dissection [ 12 ,  14 ]. 

 Serum parathyroid hormone or calcium after 
surgery may also be predictors of postoperative 
hypoparathyroidism. Several studies have shown 
that patients who have intact PTH levels below 
the lower limit of normal, or serum calcium lev-
els ≤8.0 mg/dL (2.0 mmol/L) are at greater risk 
of developing long-term hypoparathyroidism [ 9 , 
 15 ]. One series of 170 postoperative patients 
showed that measuring serum intact PTH 1 day 
after total thyroidectomy, in combination with 
measuring the serum calcium level on the second 
day after surgery, predicted the development of 
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hypoparathyroidism with high sensitivity, speci-
fi city, and positive predictive value. The highest 
sensitivity of predicting postoperative hypopara-
thyroidism was 97.7 % with measurement of intact 
PTH 1 day after surgery, with the best specifi city 
96.1 % with measurement of serum calcium 1 day 
after surgery. When both serum intact PTH and 
calcium were analyzed using a combined 
approach, the greatest predictive value was when 
intact PTH values were less than 15 pg/mL mea-
sured 24 h after surgery, and serum calcium values 
≤7.6 mg/dL (1.9 mmol/L) measured 48 h after 
surgery. This combined approach resulted in a sen-
sitivity of 96.3 %, and specifi city of 96.1 %, with 
positive predictive value (PPV) of 86.0 %, and 
negative predictive value (NPV) of 99.0 % [ 9 ]. 

 Parathyroid injury may be caused by inadver-
tent removal of the parathyroid glands, tying off 
blood vessels supplying the glands, or destruc-
tion of tissue due to intracapsular bleeding 
[ 16 ]. In order to prevent the development of per-
manent hypoparathyroidism, parathyroid auto-
transplantation is often recommended where 
these injuries are suspected to have occurred. 
Autotransplantation has been shown to predict 
transient postoperative hypoparathyroidism 
because of the time that engrafted parathyroid tis-
sue needs to regain its function, but the risk of 
permanent hypoparathyroidism after autotrans-
plantation is generally low [ 8 ,  16 – 18 ]. One study 
demonstrated that the risk of transient hypopara-
thyroidism increased when a greater number of 
parathyroid glands were autotransplanted, from 
9.8 % if glands were not autotransplanted to 11.9, 
15.1, and 31.4 % if 1,2, or 3 glands were auto-
transplanted, respectively ( p  < 0.05) [ 17 ]. The 
risk of permanent hypoparathyroidism decreased 
with a greater number of glands autotransplanted, 
with risk 0.98 % for one gland autotransplanted, 
and 0.77, 0.97, and 0 % for two to four glands 
autotransplanted, respectively ( p  = NS).  

14.3.2     Autoimmune 
Hypoparathyroidism 

 Autoimmune hypoparathyroidism is currently 
recognized as the second most common cause of 
adult hypoparathyroidism. Autoimmune isolated 

hypoparathyroidism occurs sporadically, with a 
low remission rate of 3.8 % [ 19 ]. Autoimmune 
hypoparathyroidism also occurs in combination 
with other autoimmune endocrine disorders as 
part of an autoimmune polyglandular syndrome 
type 1 (APS-1), otherwise known as autoimmune 
polyendocrinopathy-candidiasis-ectodermal dys-
trophy (APECED) [ 20 ]. This disorder is associ-
ated with hypoparathyroidism, Addison’s 
disease, and candidiasis, and at least two other 
conditions, including insulin-dependent diabetes 
mellitus, primary hypogonadism, autoimmune 
thyroid disease, pernicious anemia, chronic 
active hepatitis, steatorrhea, alopecia, or vitiligo. 
At least 80 % of APS-1 patients have hypopara-
thyroidism, which may be the only manifestation 
of the disorder. APS-1 is most often an autosomal 
recessive disorder caused by mutations in the 
autoimmune regulator ( AIRE ) gene, but autoso-
mal dominant versions have been reported. The 
 AIRE  gene product is a zinc-fi nger transcription 
factor located in the thymus gland and lymph 
nodes that is essential in mediation of central tol-
erance by the thymus [ 21 ]. In contrast to other 
immune conditions, this disorder is monogenic, 
and not associated with the major histocompati-
bility complex, and does not have a genotype- 
phenotype correlation [ 22 ]. 

 The majority of patients with APS-1 are identi-
fi ed in childhood or adolescence, but must be fol-
lowed long term because the other conditions 
associated with the syndrome only emerge gradu-
ally. APS-1 is estimated to occur in 1 per 1,000,000 
person-years, but is much more common in three 
genetically distinct populations. It occurs in Finns 
at a frequency of 1:25,000, and 1:14,500 in 
Sardinians, and 1:9,000 in Iranian Jews [ 23 ]. 

 NACHT leucine-rich repeat protein 5 
(NALP5) is an intracellular signaling molecule 
expressed in parathyroid glands that is thought to 
be a parathyroid cell-specifi c autoantigen in 
APS-1 patients with hypoparathyroidism. No 
patients without APS-1 have been shown to have 
antibodies to NALP5 to date [ 24 ]. The extracel-
lular domain of the calcium-sensing receptor 
(CaSR) may also be an autoantigen in some 
patients with autoimmune hypoparathyroidism. 
Activating antibodies to the extracellular domain 
of the receptor have been reported in both APS-1 
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and acquired hypoparathyroidism [ 25 – 27 ]. These 
studies suggest that, even though the majority of 
patients with APS-1 do not have autoantibodies 
to the CaSR, a subset of patients may exist with 
hypoparathyroidism due to functional suppres-
sion of parathyroid gland activity, rather than 
irreversible destruction of the parathyroid glands 
[ 28 ,  29 ]. 

 The CaSR is a G protein-coupled receptor 
(GPCR) of the same family (family 3 or C) as 
GPCRs sensing glutamate, gamma-aminobutyric 
acid (GABA), odorants, sweet taste, and phero-
mones [ 30 ]. This family of GPCRs has large 
amino terminal extracellular domains, with 612 
amino acids in the human CaSR, and seven 
membrane- spanning helices characteristic of the 
superfamily of GPCRs. The heavily glycosylated 
CaSR resides on the cell membrane as a disulfi de- 
linked dimer. The extracellular domain contains 
important determinants for binding calcium, 
although additional calcium binding sites are 
found within the 7 membrane-spanning domain, 
since a receptor lacking the extracellular domain 
still responds to extracellular calcium. The CaSR 
functions to inhibit parathyroid cell proliferation, 
PTH secretion, and PTH gene expression, to 
stimulate calcitonin secretion, and to directly 
inhibit renal tubular calcium reabsorption [ 31 ]. 
Other less well-documented actions include stim-
ulating proliferation, chemotaxis, and differentia-
tion of osteoblasts, mineralization of newly 
formed bone by osteoblasts, and inhibition of 
osteoclast differentiation and activity [ 32 ]. 

 One early study showed anti-parathyroid 
gland antibodies in 38 % of 75 patients with idio-
pathic hypoparathyroidism, 26 % of 92 patients 
with idiopathic Addison’s disease, 12 % of 49 
patients with Hashimoto thyroiditis, and 6 % of 
245 normal control patients [ 33 ]. Later studies 
demonstrated that some anti-parathyroid gland 
antibodies are specifi c for mitochondrial or endo-
mysial antigens. Li et al. reported that sera from 
20 % of 25 patients with autoimmune hypopara-
thyroidism, idiopathic hypoparathyroidism, or 
APS-1 had CaSR autoantibodies [ 34 ]. Patients 
with short-duration autoimmune hypoparathy-
roidism of less than 5 years were shown to be 
more likely to have CaSR autoantibodies, 
whereas CaSR autoantibodies were not found in 

22 healthy control patients and 50 patients with 
autoimmune disorders without hypoparathyroid-
ism. It is possible that CaSR autoantibodies play 
a causal role in the development of hypoparathy-
roidism, but also possible that they are simply 
markers of tissue injury [ 35 ]. Another report of 
two patients with activating CaSR autoantibodies 
showed that their antibodies inhibited PTH secre-
tion by dispersed cells from parathyroid adeno-
mas, suggesting that hypoparathyroidism in these 
two cases resulted from inhibition of PTH release 
mediated by the autoantibodies via the CaSR, 
and not permanent parathyroid gland damage [ 36 ].  

14.3.3     Excess Accumulation of Iron 
and Copper 

 Patients rarely develop hypoparathyroidism due 
to parathyroid gland storage of excessive iron 
deposits, resulting from either repeated transfu-
sions in thalassemia or increased intestinal iron 
absorption in hemochromatosis [ 37 ]. Vogiatzi 
et al. showed that subclinical hypoparathyroid-
ism and hypercalciuria were fairly common in 
patients with various forms of thalassemia in 
North America [ 38 ]. The prevalence of hypo-
parathyroidism in β-thalassemia major patients 
treated with multiple transfusions in the United 
Arab Emirates was recently estimated to be 
10.5 % [ 39 ]. A similar study in northwest Saudi 
Arabia showed the prevalence of hypoparathy-
roidism was 11.1 % [ 40 ]. No recent studies have 
been published on the incidence of hypoparathy-
roidism in hemochromatosis. 

 Excessive copper deposition in the parathyroid 
glands may cause hypoparathyroidism in Wilson’s 
disease. The estimated prevalence of hypoparathy-
roidism in Wilson’s disease is 1:50,000 to 
1:100,000 [ 41 ].  

14.3.4     Magnesium Defi ciency or 
Excess 

 Hypoparathyroidism developing due to magne-
sium defi ciency [ 42 ] because of malabsorption, 
alcoholism, or poor nutrition may be rever-
sible. Proton pump inhibitor therapy may cause 
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hypocalcemia associated with hypoparathyroid-
ism [ 43 ]. Magnesium excess due to infusion of 
magnesium during preterm labor may also cause 
hypoparathyroidism, thought due to magnesium- 
mediated inhibition of PTH secretion [ 44 ]. The 
hypoparathyroidism associated with hypermag-
nesemia is also typically reversible. Estimates of 
the incidence of hypoparathyroidism due to 
magnesium defi ciency or excess have not been 
published.  

14.3.5     Ionizing Radiation 

 Hypoparathyroidism may rarely be acquired after 
iodine-131 therapy is given for thyroid overactiv-
ity or thyroid cancer [ 45 ]. By extension, external 
beam radiation therapy could also theoretically 
cause hypoparathyroidism.  

14.3.6     Metastatic Disease 

 Hypoparathyroidism may occur in occasional 
patients with metastatic disease spreading to the 
parathyroid glands, when signifi cant gland 
destruction occurs [ 46 ].  

14.3.7     Genetic Causes 

 Genetic forms of isolated hypoparathyroidism 
are rare (see Table  14.2 ) (see also Chaps.   16    ,   17    , 
  18    ,   19    ,   20    , and   21    ). The incidence of the genetic 
causes of hypoparathyroidism is currently 
unknown, except for DiGeorge syndrome. 
Familial isolated hypoparathyroidism may occur 
with autosomal dominant, autosomal recessive, 
or X-linked recessive inheritance. Autosomal 
forms of hypoparathyroidism may be caused by 
mutations in the genes that synthesize the CaSR, 
PTH, and GCMB (glial cells missing homologue 
B) [ 47 – 51 ]. For most cases of idiopathic hypo-
parathyroidism, the genetic mutation remains 
unknown, but multiple unknown genes are sus-
pected to cause isolated hypoparathyroidism.

   Autosomal dominant hypocalcemia type 1 
due to mutations in the  CaSR  gene that result in 

constitutive activation of the protein may be 
among the most common nonsurgical causes of 
hypoparathyroidism [ 52 ]. Affected individuals 
have biochemical values similar to patients with 
idiopathic or postoperative hypoparathyroidism, 
typically with rare symptoms due to mild hypo-
calcemia and mildly decreased or inappropriately 
low PTH levels, with relatively increased urinary 
calcium excretion due to constitutive activation 
of the CaSR in the renal tubule. Families with 
autosomal dominant hypocalcemia usually have 
wide variability in the severity of hypocalcemia 
within the family. The diagnosis is confi rmed 
defi nitively by sequencing the proband’s  CaSR  
gene, along with the  CaSR  genes from unaffected 
family members. Many point mutations in the 
 CaSR  gene have been reported in patients with 
this condition that cause hyperactivity of the 

   Table 14.2    Classifi cation of congenital hypoparathyroid 
disorders with genetic characterization   

 Disorder 
 Gene defect/
chromosome locus 

 Isolated hypoparathyroidism 
   Autosomal recessive   PTH /11p15 

  GCMB /6p24.2 
   Autosomal dominant   PTH /11p15 

  CaSR /3q21/1 
  GCMB /6p24.2 

   X-linked   SOX3 /Xq26–27 
 Hypoparathyroidism with additional
features 
   Autoimmune polyglandular 

syndrome type 1 
  AIRE /21q22.3 

   DiGeorge syndrome   TBX1 /22q11 
   Hypoparathyroidism-retardation- 

dysmorphism syndrome 
  TBCE /1q42–43 

   Hypoparathyroidism-deafness- 
renal dysplasia syndrome 

  GATA3 /10p13–14 

 Mitochondrial disorders associated 
with hypoparathyroidism 
   Kearns-Sayre syndrome  Mitochondrial 

genome 
   Mitochondrial encephalopathy, 

lactic acidosis, and stroke-like 
episodes 

 Mitochondrial 
genome 

   Mitochondrial trifunctional 
protein defi ciency syndrome 

 Several other forms  Unknown 

  Adapted from Table 1 in Shoback [ 5 ]. Used with 
permission  
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CaSR in the presence of decreased or low-normal 
extracellular calcium. It may be diffi cult to know 
the functional effect of new CaSR mutations until 
they are assessed in vitro, because the  CaSR  gene 
has had multiple presumably benign polymor-
phisms reported. Autosomal dominant hypocal-
cemia type 2 has been reported to occur due to 
activating mutations in the G protein subunit α11 
[ 53 ], whereas autosomal dominant hypocalcemia 
type 3 due to activating mutations in the adaptor 
protein 2 sigma subunit (AP2S1) has not yet been 
identifi ed in patients [ 54 ]. The type 2 form of 
autosomal dominant hypocalcemia is much less 
common than type 1. 

 Other known genetic causes of isolated hypo-
parathyroidism include mutations in the  PTH  and 
 GCMB  (glial cells missing homologue B) genes. 
In most patients with genetic hypoparathyroid-
ism, the mutation has not yet been identifi ed. 
Mutations in the  PTH  gene that lead to altered 
processing of the pre-pro-PTH protein and/or to 
altered mRNA translation may be due to autoso-
mal recessive or dominant inheritance [ 55 ,  56 ]. 
Homozygous mutations in the pre-pro-PTH gene 
may cause very low or undetectable PTH levels. 
Patients with autosomal dominant isolated hypo-
parathyroidism may have a single thymine/cyto-
sine base substitution in exon 2, codon 18, with 
the resultant mutant PTH having a dominant- 
negative effect that leads to absent or very ineffi -
cient translocation of the nascent wild-type and 
mutant PTH molecules across the endoplasmic 
reticulum and to apoptosis of parathyroid cells 
[ 57 ,  58 ]. 

 The  GCMB  gene is expressed mainly in para-
thyroid cells [ 59 ]. Mutations in this gene lead to 
lack of normal development of parathyroid 
glands, leading to hypoparathyroidism. These 
mutations do not affect the ability of cells to 
respond to PTH. 

 X-linked recessive hypoparathyroidism has 
been reported in two related kindreds in the state 
of Missouri in the USA [ 60 ,  61 ]. Male infants are 
affected by seizures due to hypocalcemia, with 
the mutation identifi ed on chromosome Xq26–27 
[ 62 ]. Genetic material from chromosome 2p25.3 
is inserted into the Xq27.1 region, causing a posi-
tional effect on possibly regulatory elements 

 controlling  SOX3  gene transcription, resulting in 
impaired parathyroid gland development [ 63 ]. 

 DiGeorge syndrome is believed to occur in 
1:4,000–5,000 live births [ 64 ], with complete 
expression associated with asymptomatic hypo-
calcemia due to hypoparathyroidism in 60 % of 
cases, thymic aplasia or hypoplasia with immu-
nodefi ciency, congenital heart defects, cleft pal-
ate, dysmorphic facies, and renal abnormalities 
with impaired renal function. DiGeorge syn-
drome is associated with variable phenotypes 
due to defects that occur during early embryo-
logic development. DiGeorge syndrome most 
commonly develops due to new mutations, but 
autosomal dominant inheritance may occur. 
Molecular studies show that 70–80 % of cases 
of DiGeorge syndrome are due to a hemizygous 
microdeletion within the chromosomal region 
22q11.21–q11.23 [ 62 ]. The  TBX1  gene within 
this region has been shown to carry inactivating 
point mutations in some DiGeorge syndrome 
patients. Other patients with DiGeorge 
syndrome- like features have been shown to 
have deletions in chromosome 10p13, 17p13, 
and 18q21. Deletions within the chromosome 
22q11 region may cause the conotruncal anom-
aly facies and velocardiofacial syndrome. 
Hypocalcemia due to hypoparathyroidism is 
found in up to 20 % of cases with the velocar-
diofacial syndrome. The CATCH-22 deletion of 
chromosome 22q11 is associated with abnormal 
facies, thymic hypoplasia, cleft palate, and 
hypocalcemia. 

 Hypoparathyroidism-retardation-dysmorphism 
(HRD) syndrome is a rare form of autosomal 
recessive hypoparathyroidism incorporating the 
Sanjad-Sakati and the Kenny-Caffey syndromes 
[ 65 ,  66 ]. Mutations within the  TCBE  gene on 
chromosome 1q42–43 are associated with altera-
tions in microtubule assembly in affected tissues. 
The Sanjad-Sakati syndrome is characterized by 
parathyroid dysgenesis, short stature, mental retar-
dation, microphthalmia, microcephaly, small 
hands and feet, and abnormal teeth in individuals 
of mostly Arab descent. The Kenny-Caffey syn-
drome is characterized by hypoparathyroidism, 
dwarfi sm, medullary stenosis of the long bones, 
and eye abnormalities. 
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 The hypoparathyroidism-deafness-renal dys-
plasia (HDR) syndrome is due to autosomal 
dominant mutations or deletions in the  GATA3  
gene on chromosome 10p14-10pter. These lead 
to haploinsuffi ciency of the GATA3 transcription 
factor, a protein critical for normal parathyroid, 
kidney, and otic vesicle development [ 67 ]. This 
syndrome was fi rst reported in a kindred in 1992 
[ 68 ]. Affected subjects have asymptomatic hypo-
calcemia with undetectable or inappropriately 
normal serum PTH, and normal response to PTH. 

 Hypoparathyroidism is associated with mito-
chondrial dysfunction in three disorders: the 
Kearns-Sayre syndrome, the MELAS (mitochon-
drial encephalopathy, lactic acidosis, and stroke- 
like episodes) syndrome, and the mitochondrial 
trifunctional protein defi ciency syndrome. Point 
mutations, deletions, rearrangements, and dupli-
cation of maternally inherited mitochondrial 
DNA have been described in these disorders [ 69 ].   

14.4     Hospitalization 

 The population-based study by Leibson et al. 
[ 70 ] quantitated overall cost of medical care for 
patients with hypoparathyroidism in Olmsted 
County, Minnesota. Unfortunately, the study was 
not able to quantify the individual costs related 
to, or the frequency of utilization of, outpatient 
clinics, hospital, emergency department, or phar-
macy. No other studies to date have addressed the 
frequency of hospitalization of patients with 
hypoparathyroidism relative to normal controls, 
but it is assumed that hospitalization for com-
plications of hypoparathyroidism, such as bron-
chospasm, laryngospasm, seizures, or cardiac 
dysrhythmias is increased.  

14.5     Cost 

 The population-based longitudinal medical 
records-linkage resources of the Rochester 
Epidemiology Project in Rochester, Minnesota, 
were also used to assess the cost of caring for 
patients with hypoparathyroidism [ 70 ]. All per-
sons residing in Olmsted County in 2009 with 

any diagnosis of hypoparathyroidism ever 
assigned by a health care provider since 1945 
were identifi ed, and their detailed medical 
records reviewed to confi rm their diagnosis of 
hypoparathyroidism and assign the most likely 
cause. Two age- and sex-matched controls were 
assigned per confi rmed case, and follow-up cen-
sored for every case/control set member at the 
shortest follow-up for each member. Since 1987, 
Rochester Epidemiology Project resources have 
included provider-linked line item billing data for 
essentially all medical services and procedures 
received by residents of Olmsted County, 
Minnesota, with the ability to assign nationally 
standardized wage- and infl ation-adjusted dollar 
estimates. Data on outpatient prescription costs 
are not included in these estimates. Using these 
resources, all medical care costs for each year 
2006 through 2008 were obtained for cases and 
controls for 2009 estimated dollar costs. Results 
of cost comparisons between cases and controls 
showed that average medical care for each patient 
with hypoparathyroidism cost about three times 
that of each control. These population-based data 
on medical care costs of patients with confi rmed 
hypoparathyroidism reveal that, although a rela-
tively rare condition, the burden of costs associ-
ated with hypoparathyroidism is substantial and 
consistent. Additional investigation is needed to 
elucidate the source of excess costs for cases 
compared to controls.  

14.6     Morbidity 

 In view of the fact that there are currently no 
formal guidelines, management of hypoparathy-
roidism is based on experience and clinical judg-
ment [ 5 ]. The primary goals of management of 
chronic hypoparathyroidism include maintaining 
serum total calcium in the low-normal range, 
serum phosphorus in the high-normal range, 24-h 
urine calcium less than 300 mg (7.5 mmol), and 
the calcium x phosphate product less than 55 mg 2 /
dL 2  (4.4 mmol 2 /L 2 ) [ 71 – 73 ]. 

 The currently accepted standard treatment for 
hypoparathyroidism consists of supplementation 
with calcium and vitamin D, active vitamin D 
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metabolites, or vitamin D analogs, but does not 
include hormone replacement therapy with PTH 
[ 5 ]. Complications of treatment of chronic 
hypoparathyroidism result from both inadequate 
treatment and overtreatment. The rates of com-
plications from hypoparathyroidism, or the man-
agement of hypoparathyroidism, however, are 
diffi cult to estimate given the lack of large natural 
history studies. 

14.6.1     Hypocalcemia 

 Suboptimal treatment of hypoparathyroidism 
with inadequate doses of calcium or vitamin D in 
the diet or with supplements may cause symp-
tomatic hypocalcemia (see also Chaps.   15    ,   30    , 
and   31    ). One study projected that 33 % of patients 
with chronic hypoparathyroidism required at 
least one emergency department visit or hospital 
admission each year [ 74 ]. Of hospital or emer-
gency department visits, 62 % were due to 
 symptomatic hypocalcemia. Seizures may occur 
in up to 15 % of patients with hypoparathyroid-
ism each year. Dilated cardiomyopathy may also 
rarely occur due to prolonged or frequent hypo-
calcemia in affected individuals.  

14.6.2     Hypercalcemia 
and Hypercalciuria 

 Given that patients with hypoparathyroidism 
require relatively high doses of calcium and 
vitamin D and its analogues to maintain serum 
calcium levels close to the normal range, hyper-
calcemia is a relatively frequent development in 
patients with hypoparathyroidism [ 13 ]. The 
replacement regimen with calcium and active 
vitamin D required for hypoparathyroidism can 
lead to hypercalciuria, because lack of circulating 
PTH reduces renal calcium reabsorption [ 75 ]. 
Prolonged or signifi cant hypercalciuria may lead 
to nephrolithiasis, nephrocalcinosis, or renal 
insuffi ciency [ 75 ,  76 ]. 

 The rate of nephrolithiasis reported in patients 
with hypoparathyroidism differs depending on the 
number of subjects studied. One cross-sectional 

study of 25 patients with postsurgical hypopara-
thyroidism showed that 23 % had 24-h urine cal-
cium excretion greater than 320 mg, whereas 8 % 
had asymptomatic nephrolithiasis noted on renal 
ultrasound. All patients had normal renal function 
[ 76 ]. Another cross-sectional study of 33 patients 
with hypoparathyroidism of diverse etiologies 
showed that 15 % had a history of nephrolithiasis 
[ 77 ]. A larger retrospective cohort of 120 patients 
reported nephrolithiasis and nephrocalcinosis in 
31 % of patients, most of whom were asymptom-
atic. The rate of chronic kidney disease stage 3 or 
higher was 2- to 17-fold greater than in age-
matched controls [ 74 ]. 

 Winer et al. have reported a higher rate of 
renal complications in patients participating in 
Clinical Research Center studies at the National 
Institutes of Health [ 78 – 80 ] (see also Chap.   30    ). 
In a short-term randomized controlled trial com-
paring therapies for hypoparathyroidism [ 78 ], 
evidence of renal insuffi ciency was reported in 
80 % of patients ( n  = 10). Four of the subjects had 
radiographic evidence of nephrocalcinosis, and 
two suffered from recurrent nephrolithiasis. In a 
separate cohort of 17 patients, 8 patients (47 %) 
had evidence of nephrocalcinosis by renal com-
puterized tomography scan, and 14 patients 
(80 %) had renal insuffi ciency [ 79 ]. In another 
randomized controlled trial comparing therapies 
for hypoparathyroidism over a longer period, 
40 % of 27 patients had nephrocalcinosis, and 
two-thirds had creatinine clearance values below 
the normal range [ 80 ].  

14.6.3     Neuropsychological State 

 Patients with chronic hypoparathyroidism who 
are treated with standard doses of calcium and 
vitamin D report suffering from signifi cant 
impairment in their neuropsychological state. 
Psychometric evaluation performed in a cross- 
sectional controlled study of 25 unselected 
women treated for postsurgical hypoparathyroid-
ism for 6.4 ± 8.0 years with calcium and vitamin 
D (or analogs) and 25 controls matched for sex, 
age, and time since surgery reported a variety of 
abnormalities [ 73 ]. Three validated questionnaires 
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were used, including the revised version 
Symptom Checklist-90-R (SCL-90-R), the von 
Zerssen Symptom List (B-L Zerssen), and the 
short form of the Giessen Complaint List (GBB- 
24). The higher the score or subscale score in any 
of the three psychometrical instruments, the 
greater the impairment of well-being as assessed 
by the respective questionnaire. Compared with 
controls, hypoparathyroid patients in this study 
had signifi cantly higher global complaint scores 
in the SCL-90-R ( P  = 0.020), B-L Zerssen 
( P  = 0.002), and GBB-24 ( P  = 0.036) instruments, 
with predominant increases in the subscale scores 
for anxiety, phobic anxiety, and their physical 
equivalents. 

 Aggarwal et al. [ 81 ] showed that signifi cantly 
more patients with idiopathic hypoparathyroid-
ism showed neuropsychological dysfunction than 
controls [32.3 % (95 % CI: 20.9–45.3) vs. 5.7 % 
(95 % CI: 1.6–14.0),  P  < 0.001]. Neurological 
signs were present in 35.5 % patients (extrapyra-
midal: 16.1 %; cerebellar: 20.9 %). Volume of 
basal ganglia calcifi cations and number of sites 
with intracranial calcifi cations including the cer-
ebellum and dentate nucleus were comparable in 
patients with and without neuropsychological, 
extrapyramidal, or cerebellar dysfunctions. 
Cognitive dysfunction score was lower by 1.7 
points in men than in women ( P  = 0.02), and 
increased by 0.21 and 5.5 for each year increase 
in duration of hypoparathyroidism ( P  = 0.001), 
and each unit increase in serum calcium × phos-
phorus product ( P  = 0.01), respectively. These 
scores improved by 0.27 for every 1.0 mg/dL 
increase in serum calcium ( P  = 0.001). The study 
concluded that neuropsychological dysfunction 
was present in up to a third of patients with idio-
pathic hypoparathyroidism and that dysfunction 
correlated with duration of illness, female gen-
der, serum calcium, and calcium × phosphate 
product during follow-up, but not with intracra-
nial calcifi cation. Neuropsychological dysfunc-
tion may affect daily functions, safety, and drug 
compliance. 

 Hadker et al. [ 82 ] evaluated symptoms of 
patients with hypoparathyroidism aged 18 years 
or older who were diagnosed 6 months or more 
previously using an Internet-based self-reported 

questionnaire. The study population ( N  = 374) 
included 85 % women with mean age 49 years. 
Surgery of the thyroid, parathyroid, or neck for 
cancer was the cause of hypoparathyroidism in 
43 %. Mean disease duration was 13 years, and 
moderate or severe disease reported by 79 %. 
Patients reported visiting an average of 6 differ-
ent specialists or physicians before and after their 
diagnosis. More than ten symptoms were experi-
enced by 72 % of patients in the preceding 12 
months, despite standard symptomatic manage-
ment with calcium and active vitamin D supple-
mentation. Symptoms were experienced for an 
average 13 h each day. Comorbidities were expe-
rienced by 69 % of patients. Disease-associated 
hospital stays or emergency department visits 
were required by 79 % of patients. Fifty-six 
percent of subjects strongly agreed that they 
felt unprepared to manage their condition at 
diagnosis, 60 % revealed that controlling their 
hypoparathyroidism was harder than expected, 
and 75 % were concerned about long-term com-
plications of their current medications. Forty-fi ve 
percent reported signifi cant interference from 
hypoparathyroidism in their daily lives. The 
study concluded that patients with hypoparathy-
roidism have a substantial multidimensional bur-
den of illness, experiencing comorbidities, acute 
episodes of hypocalcemia, and a nearly continu-
ous presence of symptoms despite standard 
symptomatic management.  

14.6.4     Basal Ganglia Calcifi cation 

 Basal ganglia calcifi cation is a well-known com-
plication of hypoparathyroidism [ 83 ], but it is not 
clear why the basal ganglia, among other intra-
cranial tissues, should be subjected to this. In 
patients with long-standing hypoparathyroidism, 
with duration of disease longer than 8–10 years, 
basal ganglia calcifi cation, or even more diffuse 
brain calcifi cation, may occur [ 84 – 87 ]. While 
this condition is generally asymptomatic, in some 
cases an association with cognitive dysfunction 
[ 87 ] and even with organic mood disorder [ 88 , 
 89 ] may be seen. 
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 In the general population, basal ganglia calcifi -
cation prevalence estimates are not well estab-
lished, but have been reported to be low at 
2–12.5 % [ 90 ,  91 ]. Reported rates of basal ganglia 
calcifi cation in hypoparathyroidism vary, from 
12 % in a cohort of 33 patients [ 77 ] to 36 % of 25 
patients with CaSR mutations [ 92 ]. In one cohort 
of mostly postsurgical hypoparathyroidism cases, 
52 % of 31 patients showed basal ganglia calcifi -
cation on head computerized tomography scan 
[ 74 ]. In contrast, in a cohort of 145 patients with 
idiopathic hypoparathyroidism, all of whom had 
head computerized tomography scans, 74 % had 
basal ganglia calcifi cation, and this correlated with 
the duration of hypocalcemia, choroid plexus cal-
cifi cation, seizures, and cataracts [ 93 ]. 

 Familial idiopathic basal ganglia calcifi cation 
has been shown to be caused by a mutation in a 
type III sodium-phosphate transporter leading to 
impaired cellular uptake of inorganic phosphate 
[ 94 ]. This fi nding suggests that increased extra-
cellular phosphate in the setting of chronic 
 hyperphosphatemia may contribute to basal gan-
glia calcifi cation in hypoparathyroidism. Serum 
phosphorus has been found to be quantitatively 
higher in patients with basal ganglia calcifi cation 
compared to those without [ 74 ].  

14.6.5     Cataracts 

 The presence of cataracts have long been associ-
ated with both postsurgical (55 %) [ 73 ] and idio-
pathic hypoparathyroidism (41–51 %) [ 93 ,  95 ]. 
Patients with cataracts tend to have a longer dura-
tion of hypoparathyroidism than those without 
(7.5 ± 11.0 vs. 4.8 ± 4.0 years,  P  = 0.49) and tend 
to be older (53.6 ± 15.3 vs. 43.2 ± 11.5 years, 
 P  = 0.11) [ 73 ]. 

 Patients with idiopathic hypoparathyroidism 
with intracranial calcifi cation had a higher fre-
quency of occurrence of cataracts when com-
pared with those without calcifi cation (19/39, 
48.7 % vs. 2/12, 17.7 %,  P  = 0.048) [ 95 ]. Mean 
duration of illness was greater in patients with 
intracranial calcifi cation or cataracts as com-
pared to patients without these complications 
(9.0 ± 9.5 years vs. 2.4 ± 4.1 years,  P  = 0.002; and 

11.6 ± 10.4 years vs. 4.4 ± 6.4 years,  P  = 0.01, 
respectively). Linear regression analysis of the 
data in models where age of onset of symptoms, 
duration of illness, and serum calcium levels 
were considered independent variables showed 
that duration of illness alone explained the varia-
tion in the frequency of occurrence of cataract or 
basal ganglia calcifi cation. However, duration of 
the illness could explain the variation in intracra-
nial calcifi cation and cataracts in only 15–16 % 
of patients. These fi ndings suggest a role for 
other factors in causation of cataracts in 
hypoparathyroidism.  

14.6.6     Skeletal Disease 

 In the absence of PTH, bone remodeling is mark-
edly reduced [ 96 – 98 ]. Chronically low bone 
turnover in patients with hypoparathyroidism 
typically leads to bone mass that is higher than in 
age- and sex-matched controls [ 99 – 104 ]. One 
study evaluated percutaneous iliac crest bone 
biopsies after double labeling with tetracycline 
from 33 subjects with hypoparathyroidism and 
33 age- and sex-matched control subjects with no 
known metabolic bone disease and assessed his-
tomorphometry for both static and dynamic 
structural skeletal parameters. Subjects with 
hypoparathyroidism had greater cancellous bone 
volume, trabecular width, and cortical width than 
controls. Dynamic skeletal indices, including 
mineralizing surface and bone formation rate, 
were profoundly decreased in the hypoparathy-
roid patients [ 77 ].   

14.7     Mortality 

 While patients with hypoparathyroidism likely 
have increased mortality due to the effects of 
chronic hypocalcemia, intermittent hypercalce-
mia, signifi cant hypercalciuria, and multiple 
comorbidities, few studies have yet quantifi ed 
overall or cause-specifi c mortality due to hypo-
parathyroidism. Underbjerg et al. [ 2 ] were unable 
to show increased cardiovascular mortality in the 
Danish population.  
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    Conclusion 

 The understanding of the epidemiology of 
hypoparathyroidism remains incomplete due to 
the fact that it is a rare condition, with only a few 
recent studies able to quantitate the incidence of 
the disorder and associated risk factors, preva-
lence, cost, hospitalization, morbidity, and mor-
tality. Further large population-based studies are 
required to provide the missing information 
necessary to complete our understanding of this 
disorder. Previous studies have estimated the 
incidence and risk factors for postsurgical hypo-
parathyroidism, with less information available 
on autoimmune hypoparathyroidism and other 
less common nonsurgical causes. The genetic 
causes for hypoparathyroidism are quite rare, 
and in many cases limited to a few reported kin-
dreds or individuals. Future studies will address 
these issues and further clarify the epidemiol-
ogy of hypoparathyroidism.     
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15.1             Introduction 

 Hypocalcemia, defi ned as low serum levels of 
albumin-corrected total calcium or of ionized 
calcium, is a common clinical occurrence and 
has many potential causes. In general, hypocal-
cemia results from inadequate parathyroid hor-
mone (PTH) secretion or receptor activation, an 
insuffi cient supply of vitamin D metabolites or 
activity of the vitamin D receptor, or abnormal 
magnesium metabolism [ 1 ]. The presence of 
severe systemic illness such as pancreatitis, sep-
sis, and shock as well as a myriad of congenital 
and acquired disorders should also be considered 
when establishing the etiology. 

 Hypocalcemia occurs in hypoparathyroidism 
because levels of PTH secretion are inadequate to 
mobilize calcium from the bone, reabsorb calcium 
from the distal nephron, and stimulate renal 
1α-hydroxylase activity; as a result, insuffi cient 
1,25-dihydroxyvitamin D (1,25(OH) 2 vitamin D) is 
generated for effi cient intestinal absorption of cal-
cium. Ultimately, the duration, severity, and rate of 
development of hypocalcemia as well as the age of 
onset determine the clinical presentation. This can 
range from the acute onset of neuromuscular irrita-
bility, seizures, and altered mental status to no 
symptomatology in incidentally discovered or 
chronic cases. In this chapter, we review the clinical 
presentations of hypocalcemia secondary to hypo-
parathyroidism and other features of the disorder.  

15.2     Clinical Presentation 
of Hypocalcemia 

15.2.1     In Adult Patients 

 Hypocalcemia can present dramatically with tet-
any (symptoms due to intermittent tonic spasms of 
voluntary muscles), seizures, altered mental status 
and sensorium, congestive heart failure, or stridor 
(Table  15.1 ). Neuromuscular symptoms are typi-
cally the most prominent and include muscle 
cramping, twitching, and spasms; circumoral and 
acral numbness and paresthesias; laryngospasm 
and or bronchospasm; and seizures that can mani-
fest as generalized, focal, or petit mal. Many 
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patients report that muscular symptoms interfere 
with exertion and exercise, such that these activi-
ties are limited because of painful cramping and 
stiffness of the involved muscle groups [ 2 ]. 
Cardiac function may be affected, manifested by a 
prolonged QT interval corrected for heart rate 
(QTc) on electrocardiogram and, in rare cases, 
depressed systolic function and congestive heart 
failure. If the disturbance is chronic, patients with 
extraordinarily low levels of ionized calcium may 
be asymptomatic. Other complications include 
premature cataracts, pseudotumor cerebri, and cal-
cifi cations of the basal ganglia. Rarely, calcifi ca-
tions of the basal ganglia can cause extrapyramidal 
neurological dysfunction [ 3 ].

15.2.2        In Pediatric Patients 

 Similar to adults, hypocalcemia in pediatric 
patients can present acutely with symptoms that 

include generalized or focal seizures, depressed 
consciousness, tachycardia, and stridor due to 
laryngospasm. However, the diagnosis can be 
challenging since the clinical manifestations of 
hypocalcemia in pediatric patients are often 
milder or nonspecifi c. Younger children can pres-
ent with a range of signs and symptoms including 
neuromuscular irritability, attention defi cit disor-
ders, poor academic performance, mental retar-
dation, and poor dental development (e.g., enamel 
hypoplasia), while older children can also exhibit 
psychological and behavioral problems including 
depression and sleep disturbances [ 4 ]. 

 The diagnosis of hypocalcemia is frequently 
made or suspected during periods of accelerated 
growth when there are increasing calcium 
demands for bone accrual, for instance, during 
infancy or puberty. The pediatric patient with 
mild or persistent hypocalcemia may become 
symptomatic or display nonspecifi c symptoms of 
hypocalcemia, including changes in growth 
velocity, delayed intellectual development, or 
behavioral problems in school [ 4 ]. These fi ndings 
may trigger a referral to a pediatrician who sub-
sequently uncovers hypocalcemia as the cause. 

 In contrast to hypoparathyroidism in adult-
hood, which is acquired usually due to damage 
incurred during thyroid, parathyroid, or neck sur-
gery, hypoparathyroidism in childhood is mostly 
due to a congenital disorder, even if symptoms 
did not manifest during the neonatal period. 
Mutations may be present in genes involved 
in parathyroid gland development; in the  PTH  
gene itself that affects the intracellular process-
ing and/or secretion of the hormone; and in the 
extracellular calcium-sensing receptor (CaSR) 
that controls responsiveness to changes in the 
extracellular calcium concentration. Mutations 
in molecules involved in PTH receptor signal 
transduction cause resistance to PTH or pseu-
dohypoparathyroidism [ 5 ]. The most frequently 
identifi ed disorder of parathyroid gland devel-
opment is the DiGeorge syndrome. The genetic 
abnormalities that cause the DiGeorge syndrome 
result in congenital hypoplasia or agenesis of the 
parathyroid gland and thymus and affect struc-
tures derived from the third and fourth pharyn-
geal pouches. Anomalies are seen in association 

     Table 15.1    Signs and symptoms of hypocalcemia   

 Paresthesias of the fi ngers, toes, and circumoral region 
 Increased neuromuscular irritability 
   Tetany 
   Muscle cramping and twitching 
   Muscle weakness 
   Abdominal cramping 
 Laryngospasm 
 Bronchospasm 
 Central nervous system involvement 
   Seizures 
   Altered mental status 
   Impaired memory and concentration 
   Papilledema 
   Pseudotumor cerebri 
   Personality disturbances 
   Extrapyramidal disorders 
 Chvostek’s sign 
 Trousseau’s sign 
 Cardiac involvement 
   Prolonged QT interval 
   QRS and ST segment changes that may mimic the 

changes of myocardial infarction 
   Ventricular arrhythmias 
   Congestive heart failure 
 Cataracts 
 Abnormal dentition (enamel hypoplasia) 
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with  microdeletions of chromosome 22q11.2. 
The DiGeorge syndrome includes hypopara-
thyroidism, T-cell defects caused by a partial 
or absent thymus, and conotruncal heart defects 
(tetralogy of Fallot, truncus arteriosus) or aortic 
arch abnormalities. Cleft palate and facial dys-
morphism may also occur [ 6 ]. Other genetic 
defects that result in disrupted parathyroid gland 
development include mutations in  GCM2  or 
 GATA3 . Altered PTH production in response to 
hypocalcemia that leads to hypoparathyroidism 
includes PTH mutations that affect intracellular 
processing, secretion, and functional properties 
of the hormone. Also, reduced PTH secretion 
may be due to altered extracellular calcium-
sensing and CaSR-induced signal transduction 
[ 7 ]. Individuals with pseudohypoparathyroidism, 
caused by loss of function of the Gsα protein 
(type 1), may not present with clinical manifes-
tations of hypocalcemia until later in childhood.  

15.2.3     In Neonates 

 Neonatal hypocalcemia is a potentially life- 
threatening condition, with reported prevalence 
varying by gestational age, maternal and infant 
comorbidities, and perinatal factors [ 8 ]. Although 
sometimes clinically asymptomatic, it may pres-
ent with signs of neuromuscular irritability rang-
ing from myoclonic jerks to seizures, apnea, 
cyanosis, or arrhythmias including tachycardia, 
atrioventricular heart block in premature babies 
[ 9 ], and severe bradycardia. Hypocalcemia in this 
age group is commonly differentiated by the time 
of onset [ 10 ]. 

 Early neonatal hypocalcemia occurs during 
the fi rst 3 days of life and is seen in premature 
babies, infants of diabetic mothers, and asphyxi-
ated infants [ 5 ]. The premature infant has an 
exaggerated postnatal depression in circulating 
calcium, such that total calcium levels drop below 
7.0 mg/dl, but the proportional drop in ionized 
calcium is less [ 11 ]. Inadequate PTH secretion 
may contribute to early neonatal hypocalcemia in 
premature infants; a delay in the phosphaturic 
action of PTH and resultant hyperphosphatemia 
may further decrease serum calcium [ 5 ]. 

 Late neonatal hypocalcemia most often pres-
ents clinically as tetany or seizures between 5 and 
10 days of life, and the differential diagnosis 
includes transient hypoparathyroidism, transient 
PTH resistance, DiGeorge syndrome, maternal 
vitamin D defi ciency, malabsorption, intake of 
formula high in phosphorus content, and hypo-
magnesemia [ 10 – 12 ]. 

 Maternal hyperparathyroidism or hypercalce-
mia may result in neonatal hypocalcemia. Infants 
who are exposed in utero to increased calcium 
delivery can have suppressed parathyroid func-
tion and responsiveness [ 3 ]. As a result, normal 
calcium levels are not maintained postnatally 
because of persistent parathyroid gland suppres-
sion in the baby. The resultant hypocalcemia can 
occur during the fi rst few weeks of life but may 
persist up to 1 year of age [ 5 ].   

15.3     Approach to Hypocalcemia 

15.3.1     Biochemistry 

 Total serum calcium includes a fraction of 
approximately 50 % that is free or ionized and 
another fraction approximately 45–50 % that is 
protein-bound, primarily to albumin. There is a 
small percentage (5–10 %) of the total calcium 
that is complexed to other anions in the circula-
tion. Thus, the total serum calcium level should 
be “corrected” if hypoalbuminemia exists [ 13 ]. 
The total calcium may be adjusted as follows to 
correct for calcium binding to albumin:

  

Corrected total calcium measured total calcium

serum alb

=
+ −0 8 4 0. . uumin ,( )  
  

where calcium is measured in milligrams per 
deciliter and albumin is measured in grams 
per deciliter. Hypocalcemia associated with 
hypoparathyroidism can be differentiated from 
other causes of hypocalcemia by routine labo-
ratory tests [ 2 ]. Serum calcium is low due to 
lack of PTH-mediated bone resorption and uri-
nary calcium reabsorption. Serum phosphate is 
increased because of impaired renal clearance. 
Serum 1,25(OH) 2  vitamin D is low because of 
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the lack of PTH-elicited stimulation of the renal 
25(OH)vitamin D 1α-hydroxylase. Consequently, 
1,25(OH) 2 vitamin D-mediated intestinal cal-
cium absorption is markedly decreased, further 
exacerbating the hypocalcemia. The phosphate- 
regulating hormone FGF23 (fi broblast growth 
factor 23) which can lower serum phosphate 
tends to be elevated in hypoparathyroidism, but 
it is unable to exert its full actions on the proxi-
mal tubule to increase phosphate excretion in the 
absence of PTH. It has also become clear that cal-
cium stimulates FGF23 and that the stimulation 
of FGF23 by phosphate requires an extracellular 
calcium level of ~8 mg/dL in rats and mice [ 14 , 
 15 ]. Therefore, the effects of mediators of FGF23 
production in vivo likely depend on the calce-
mic status of the patient, which can vary over a 
wide range in patients with hypoparathyroidism. 
The relative defi ciency of FGF23 in the severely 
hypocalcemic patient with hypoparathyroidism 
may contribute to the accompanying hyperphos-
phatemia since neither PTH nor FGF23 can exert 
a robust phosphaturic action. Moreover, correc-
tion of hypocalcemia during treatment of hypo-
parathyroidism may contribute to the reciprocal 
drop in serum phosphorus concentration by stim-
ulating FGF23 production. 

 In the laboratory workup of hypocalcemic 
patients, PTH levels, measured by sensitive intact 
PTH assays, are usually low or undetectable. They 
may be in some cases within the normal range, 
depending on the assay used, but such  levels are 
inappropriately normal. This refl ects the fact that 
some of the capacity to secrete hormone is still pres-
ent in many hypoparathyroid patients, but it is insuf-
fi cient to meet physiologic needs. Patients with 
pseudohypoparathyroidism have laboratory profi les 
that resemble those of patients with hypoparathy-
roidism (i.e., low calcium and high phosphate lev-
els), but they have elevated PTH levels [ 1 ]. 

 Serum levels of magnesium should be mea-
sured to rule out a defi ciency that could contrib-
ute to reduced serum calcium levels. It may be 
diffi cult to rule out hypomagnesemia completely 
as the cause of or a contributor to hypocalcemia 
because the serum magnesium level may be nor-
mal, even when intracellular magnesium stores 
are reduced. 

 Measurement of 25(OH)vitamin D levels is 
essential to rule out vitamin D defi ciency as a 
contributor to or cause of hypocalcemia. In clas-
sic vitamin D defi ciency, intact PTH levels are 
elevated, and serum phosphate levels are low or 
in the low-normal range. In contrast, serum phos-
phate levels are high in hypoparathyroidism. 
Measurement of 1,25(OH) 2  vitamin D levels is 
generally not necessary in the initial evaluation 
of patients with hypocalcemia, but may be needed 
later to assess 1,25(OH) 2 vitamin D production if 
the PTH levels are found to be elevated. 

 Renal function should also be assessed by the 
measurement of serum creatinine and the estima-
tion of glomerular fi ltration rates by standard for-
mula. A 24-h urine collection for formal creatinine 
clearance can be helpful and can be added to the 
assessment of calcium and or magnesium excre-
tion. The latter analytes are often helpful in the 
differential diagnosis of hypoparathyroidism [ 16 ]. 
Patients with activating mutations of the CaSR 
often have an elevated 24-h urinary calcium 
excretion, compared to patients with postsurgical 
hypoparathyroidism. This results from the fact 
that the activating mutation of the CaSR in the 
kidney leads to increased renal excretion of cal-
cium because the mutant receptor is providing the 
signal of excessive levels of serum calcium erro-
neously to the kidney. This can be a helpful initial 
tip to the diagnosis if the patient does the urine 
collection when hypocalcemic.  

15.3.2     History and Family History 

 A thorough history is very important in the workup 
of hypocalcemic patients. This includes surgical 
history, history of neck radiation or systemic ill-
ness, and family history. A history of neck surgery 
suggests that parathyroid function may have been 
compromised during surgery. A family history 
of hypocalcemia suggests a genetic cause. The 
presence of autoimmune disorders or of candidia-
sis should prompt an evaluation for autoimmune 
polyendocrine syndrome type 1 (APS-1). APS-1 
has a variable clinical presentation, but the clas-
sic triad is mucocutaneous candidiasis, adrenal 
insuffi ciency, and hypoparathyroidism. Any two 
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of these three conditions are suffi cient to establish 
the diagnosis. Most patients with APS-1 present 
during childhood with very early onset candidia-
sis, but presentations later in life of the other dis-
ease manifestations have been seen. Other features 
seen in APS-1 include hypogonadism, type 1 dia-
betes mellitus, hypothyroidism, vitiligo, alopecia, 
keratoconjunctivitis, hepatitis, pernicious anemia, 
and malabsorption [ 17 ,  18 ]. Immunodefi ciency 
and other congenital defects point to the DiGeorge 
syndrome, which occurs in 1 in 3,000–4,000 live 
births [ 6 ,  19 ]. History of symptoms such as cramp-
ing, tetany, twitching, and seizures should be elic-
ited in the patient and family members. 

 A personal or family history of deafness, renal 
anomalies, and hypocalcemia should trigger an 
evaluation for the hypoparathyroidism, deaf-
ness, and renal dysplasia (HDR) syndrome, an 
autosomal dominant disorder caused by muta-
tions in GATA3, a zinc fi nger transcription factor. 
Clinically, the HDR syndrome is characterized 
by low plasma calcium concentrations with 
low- normal to undetectable intact PTH levels. 
The sensorineural hearing loss is bilateral and is 
most pronounced at higher frequencies. Hearing 
loss is typically moderate to severe and present 
at birth. Numerous renal anomalies have been 
observed with variable penetrance, including renal 
 dysplasia, hypoplasia, aplasia, and vesicoure-
teral refl ux [ 20 ]. These anomalies are often only 
detected on renal imaging, but affected patients 
often show some mild degrees of renal dysfunc-
tion with mildly elevated serum creatinine levels.  

15.3.3     Physical Exam 

 Recognition of the signs and symptoms of hypo-
calcemia can be a valuable tool when diagnosing 
hypocalcemia and monitoring therapeutic 
responses. On physical examination, assessment 
of Trousseau’s and Chvostek’s signs, which are 
indicative of neuromuscular irritability, should be 
done. Chvostek’s sign is elicited by tapping the 
cheek (2 cm anterior to the earlobe below the 
zygomatic process) over the path of the facial 
nerve. A positive sign is ipsilateral twitching of 
the upper lip. Of note, a degree of twitching may 

be seen in 10–15 % of normal individuals. 
Trousseau’s sign is elicited by infl ating a sphyg-
momanometer placed on the upper arm to 
20 mmHg above the systolic blood pressure for 
3 min. A positive sign is the occurrence of a pain-
ful carpal spasm. Table  15.1  summarizes the 
signs and symptoms of hypocalcemia. 

 A history of muscle cramps, commonly 
involving the legs and feet, is also common. 
These muscle spasms may progress to carpopedal 
spasm with tetany, laryngospasm and stridor, or 
bronchospasm. The skin should be examined 
carefully for a neck scar (which suggests a post-
surgical cause of hypocalcemia); for candidiasis 
and vitiligo (which are suggestive of APS-1); and 
for generalized bronzing (which are suggestive 
of hemochromatosis) and signs of liver disease 
(which are seen in hemochromatosis or Wilson’s 
disease). Features such as growth failure, congen-
ital anomalies, hearing loss, or retardation suggest 
the possibility of genetic disease.   

15.4     Causes of Hypocalcemia 
Secondary to Parathyroid- 
Related Disorders 

 Assessing the intact PTH level is essential to 
establishing the etiology of hypocalcemia. It is 
important to ascertain whether the hypocalcemia 
is associated with an undetectable or inappropri-
ately low serum PTH concentration (hypopara-
thyroidism) or is associated with an appropriate 
compensatory increase in PTH. This evaluation 
can guide the appropriate approach the various 
causes of hypocalcemia secondary to PTH- 
related disorders that are outlined in Table  15.2 .

15.4.1       Absence of the Parathyroid 
Glands or of PTH 

 Postsurgical hypoparathyroidism (see also 
Chap.   22    ) is the most common acquired cause of 
hypoparathyroidism in adults [ 1 ,  21 – 23 ]. Surgery 
on the thyroid, parathyroid glands, and adjacent 
neck structures or neck dissection surgery for 
 malignancy may lead to acute or chronic 
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 hypoparathyroidism. Postoperative hypoparathy-
roidism usually is due to inadvertent or unavoidable 
removal of or damage to the parathyroid glands and/
or their blood supply. While transient hypoparathy-
roidism after neck surgery is relatively common, 
often called “stunning” of the glands, chronic  partial 
hypoparathyroidism is less common, and chronic 
complete hypoparathyroidism is relatively rare. 
Most patients with postoperative hypoparathyroid-
ism recover parathyroid gland function within sev-
eral weeks to months after surgery and thus do not 
develop permanent disease [ 23 ]. 

 Autoimmune hypoparathyroidism (see also 
Chap.   17    ) may be isolated or part of APS-1 which 
is due to loss-of-function mutations in  AIRE,  a 
transcription factor present in thymus and lymph 
nodes and critical for mediating central tolerance 
by the thymus [ 17 ,  18 ]. 

 Familial occurrences of hypoparathyroidism 
with autosomal dominant, autosomal recessive, 
or X-linked recessive modes of inheritance have 
been established and will be discussed in the sub-
sequent chapters. Autosomal forms of hypopara-
thyroidism are caused by mutations in the genes 
encoding PTH, GATA3, and GCMB (glial cells 
missing homologue B) [ 7 ] and molecules in the 
pathway leading to calcium ion sensing by the 
parathyroid glands [ 24 ]. Genes in this pathway 
include the CaSR and the G protein α subunit 
(Gα11) that couples the CaSR to intracellular sig-
naling pathways [ 25 ,  26 ]. X-linked hypoparathy-
roidism is due to a deletion and insertion 
involving genetic material from chromosomes 
2p25.3 and Xq27.1, causing a position effect on 
possible regulatory elements controlling tran-
scription of SOX3, a transcription factor thought 
to be expressed in the developing parathyroid 
glands [ 27 ]. 

 DiGeorge syndrome (see also Chap.   18    ) is due 
to loss of function of genes on chromosome 
22q11, most notably  TBX1 , a transcription factor 
responsible for regulating expression of other 
transcription and growth factors important in 
development of thymus and parathyroid glands; 
parathyroid and thymic defects are caused by 
abnormal development in the third and fourth 
branchial pouches [ 6 ,  7 ]. 

 Syndromes of hypoparathyroidism, growth 
and mental retardation, and dysmorphism includ-
ing Kenny–Caffey and Sanjad–Sakati syndromes 
(see also Chap.   20    ) are due to mutations in 
tubulin- folding cofactor E ( TBCE ) causing loss 
of function and probably altered microtubule 
assembly in affected tissues [ 28 ]. The Kenny–
Caffey syndrome presents with short stature, 
osteosclerosis, cortical bone thickening, calcifi -
cation of basal ganglia, ocular abnormalities, and 
hypoparathyroidism that is probably due to agen-
esis of the glands [ 29 ], while the Sanjad–Sakati 
syndrome presents with parathyroid aplasia, 

    Table 15.2    Causes of hypocalcemia secondary to PTH- 
related disorders   

  Absence of the parathyroid glands or of PTH  
 Postsurgical hypoparathyroidism 
 Autoimmune 
   Isolated 
   Autoimmune polyglandular syndrome type I 
 Idiopathic 
 Congenital/genetic 
   DiGeorge syndrome 
   X-linked 
   Autosomal dominant or recessive 
   Kenny–Caffey syndrome 
   Mitochondrial disorders 
   PTH gene mutations 
   Mutations of GATA3 and GCMB genes 
  Destruction of the parathyroid glands due to 
infi ltrative disorders or other acquired causes  
 Infi ltrative disorders 
   Hemochromatosis 
   Wilson’s disease 
   Metastases 
   Thalassemia due to iron overload from chronic 

transfusions 
 Other Acquired Causes 
   Radioactive iodine destruction following thyroid 

ablation 
  Impaired secretion of PTH  
 Activating mutations of the CaSR and G α11 
 Secondary to maternal hyperparathyroidism or 
hypercalcemia 
 Hypomagnesemia 
  Target organ resistance  
 Hypomagnesemia 
 Pseudohypoparathyroidism 
   Type 1 
   Type 2 
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growth failure, ocular malformations, microen-
cephaly, and retardation [ 30 ]. These syndromes 
are exceedingly rare. 

 Mitochondrial disorders with hypoparathyroid-
ism are due to deletions of varying size, mutations, 
rearrangements, and duplications in the mitochon-
drial genome (see also Chap.   21    ). These syndromes 
include the Kearns–Sayre syndrome; mitochon-
drial encephalomyopathy, lactic acidosis, and 
stroke-like episodes (MELAS); and mitochondrial 
trifunctional protein defi ciency (MTPDS). The 
Kearns–Sayre syndrome is characterized by pro-
gressive external ophthalmoplegia and pigmentary 
retinopathy before age 20. It is often associated 
with heart block or cardiomyopathy [ 31 ]. In 
MELAS, the constellation of symptoms typically 
occurs in childhood [ 31 ]. A varying degree of prox-
imal myopathy and insulin- dependent diabetes and 
hypoparathyroidism can be seen in both Kearns–
Sayre syndrome and MELAS. MTPDS is a disor-
der of fatty-acid oxidation associated with 
peripheral neuropathy, retinopathy, acute fatty liver 
in pregnant women who carry an affected fetus, 
and hypoparathyroidism [ 32 ]. 

 In addition to postsurgical hypoparathyroid-
ism, there are other less common acquired causes 
of hypoparathyroidism (see also Chap.   24    ). They 
include infi ltrative disorders with excessive accu-
mulation of iron in the parathyroid glands owing 
to thalassemia (post multiple transfusions) or 
untreated hemochromatosis or of copper in 
Wilson’s disease [ 33 – 36 ]. Acquired hypopara-
thyroidism has been reported to occur very rarely 
after iodine-131 therapy or due to metastatic 
infi ltration of the parathyroid glands [ 1 ].  

15.4.2     Impaired Secretion of PTH 

 Activating mutations of the CaSR are most com-
monly caused by mutations in the gene itself, but 
rare cases are due to production of antibodies that 
stimulate the CaSR and suppress PTH secretion. 
These activating mutations appear to be one of 
the most common causes of hypoparathyroidism. 
Activating CaSR mutations cause a left-shifted 
set point for PTH secretion, defi ned as the extra-
cellular calcium level required for half-maximal 

suppression of secretion, causing inappropriately 
normal or low PTH levels even at low serum cal-
cium levels [ 37 – 41 ]. Once thought to cause mild, 
asymptomatic hypocalcemia that did not require 
any intervention, it is now clear that, depending 
on the mutation and its effects on the parathyroid 
cells, the disorder can present in the neonatal 
period with refractory hypocalcemia and severe 
symptomatology such as seizures. Two recent 
reports [ 25 ,  26 ] demonstrate that activating muta-
tions in the α subunit (Gα11) that mediate the 
coupling of the CaSR to its intracellular signaling 
partners in parathyroid cells can produce sup-
pression of PTH secretion, inherited in an autoso-
mal dominant manner in families and present as 
hypoparathyroidism. Thus, defects in CaSR 
function and or CaSR signaling can cause the 
hypoparathyroid phenotype. 

 Hypomagnesemia can be seen in chronic con-
ditions that include alcoholism, malnutrition, 
pancreatitis, malabsorption, diarrhea, or diabetes; 
chronic drug intake (e.g., diuretics, cisplatinum, 
aminoglycoside antibiotics, amphotericin B, and 
cyclosporine); metabolic acidosis; and renal dis-
orders leading to magnesium wasting (chronic 
pyelonephritis, post-obstructive nephropathy, renal 
tubular acidosis, primary renal magnesium wast-
ing, and diuretic stage of acute tubular necrosis). 
During chronic and severe magnesium depletion, 
PTH secretion is impaired, and most patients will 
have PTH concentrations that are undetectable or 
inappropriately normal for the degree of hypocal-
cemia. The basis for the defects in PTH secretion 
and in PTH end-organ resistance in patients with 
hypomagnesemia is unclear [ 42 ].  

15.4.3     Target Organ Resistance 

 Several clinical disorders characterized by PTH 
end-organ resistance have been described and 
are collectively referred to as pseudohypopara-
thyroidism (see also Chaps.   32    ,   33    ,   34    , and   35    ). 
PTH resistance is defi ned as hypocalcemia and 
hyperphosphatemia in the presence of high 
plasma PTH levels, after excluding chronic renal 
failure or magnesium and or vitamin D defi ciency 
states [ 3 ]. 
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 Pseudohypoparathyroidism type 1a is character-
ized by short stature and other skeletal abnormali-
ties, known collectively as Albright’s hereditary 
osteodystrophy (AHO), as well as hypocalcemia 
and high serum concentrations of parathyroid hor-
mone. It is caused by heterozygous inactivat-
ing mutations in the  α  subunit of G s  (GNAS) and 
is inherited as an autosomal dominant trait with 
maternal transmission of the biochemical pheno-
type. Many patients with pseudohypoparathyroid-
ism type 1a have resistance not only to PTH but 
also to thyrotropin and less frequently, gonadotro-
pin resistance resulting in hypogonadism [ 21 ,  43 ]. 
Pseudohypoparathyroidism type 1b has the same 
biochemical features as pseudohypoparathyroid-
ism type 1a but has selective resistance to PTH and 
not to other hormone receptors. Patients with pseu-
dohypoparathyroidism 1b do not manifest AHO 
[ 21 ,  43 ]. Pseudohypoparathyroidism type 2 has the 
same biochemical profi le as type 1a or 1b but is less 
common. However, pseudohypoparathyroidism 
type 2 lacks a clear genetic or familial basis, and 
the mechanism of PTH resistance is unknown [ 1 ].   

15.5     Imaging in 
Hypoparathyroidism 

 Although no specifi c imaging studies are used to 
diagnose hypoparathyroidism or distinguish 
hypoparathyroidism from other forms of hypo-
calcemia, computed tomography (CT) of the 
brain, which may be done for other reasons, may 
show calcifi cations in the basal ganglia and other 
locations in the brain [ 44 ]. These deposits do not 
usually cause neurological problems. Generally, 
such calcifi cations are found in patients who have 
been treated for extended periods of time with 
calcium salts and activated vitamin D metabolites 
(e.g., calcitriol) that tend to raise the calcium × 
phosphate product. It has been noted, however, 
that brain calcifi cations can be seen at the time of 
diagnosis, before treatment has been initiated. 
This is particularly the case in patients with acti-
vating mutations in the CaSR. 

 Renal imaging by ultrasound or CT can be 
helpful in the chronic care of patients with hypo-
parathyroidism to monitor nephrocalcinosis and 

nephrolithiasis. At the time of diagnosis and 
before the initiation of therapy, one rarely sees 
these pathologic fi ndings in the kidneys. There is 
one exception, however, and that is hypoparathy-
roidism due to activating CaSR mutations. In that 
situation, nephrocalcinosis may be seen even in 
young children—many severely affected—and 
even before long-term treatment is initiated with 
calcium salts and activated vitamin D metabo-
lites. Renal anomalies may also be noted in 
patients with the HDR syndrome. Patients with 
pseudohypoparathyroidism type 1a may have 
subcutaneous or soft tissue calcifi cations as part 
of the features of Albright’s osteodystrophy. 
When these subdermal and soft tissue lesions are 
imaged, diffuse calcifi cations may be appreciated 
on plain X-rays. 

 Patients with chronic hypoparathyroidism 
usually do not have bone mineral density (BMD) 
or T-scores by dual energy X-ray absorptiometry 
(DXA) indicative of osteopenia or osteoporosis. 
In fact, bone mass, by DXA, is generally substan-
tially higher in hypoparathyroidism than in age 
and sex-matched controls [ 45 – 48 ]. It has been 
suggested that chronic treatment with calcium 
salts and vitamin D and its metabolites contribute 
to the preservation of bone mass. Low levels of 
bone turnover, assessed by circulating biochemi-
cal markers and by dynamic histomorphometry, 
have been shown in hypoparathyroidism [ 49 ]. 
This is likely to be the other key reason for the 
higher BMD in these patients because when PTH 
is replaced and turnover increases, BMD declines 
modestly verifi ed by biochemical markers [ 50 ].  

    Conclusions 

 The signs and symptoms of hypoparathy-
roidism are manifestations of hypocalcemia 
including increased neuromuscular irritabil-
ity, paresthesias, muscle spasm and cramp-
ing, and central nervous system involvement 
(Table  15.1 ). The initial evaluation of a 
patient with hypocalcemia should include 
a detailed family history that might suggest a 
genetic cause, and relevant medical history, 
including surgical history and known history 
of autoimmune disease. Laboratory testing 
should include measurements of serum total 
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and ionized calcium, albumin, phosphorus, 
magnesium, and intact PTH levels. When 
determining the etiology of hypocalcemia, it 
is important to determine whether it is asso-
ciated with a detectable or inappropriately 
low PTH or with an appropriate compensa-
tory increase in PTH. The causes of hypo-
calcemia secondary to PTH- related disorders 
are outlined in Table  15.2 ; however, there is 
much to uncover regarding the etiology and 
clinical phenotypes of many of the disorders 
associated with hypoparathyroidism. Imaging 
studies, including CT, ultrasound, and DXA, 
can add further diagnostic value but cannot 
be used at this time to diagnose hypoparathy-
roidism or rule out other etiologies of hypo-
calcemia. Recognition of hypocalcemia is 
paramount to establish its etiology in order to 
initiate the appropriate evaluation and treat-
ment (discussed in subsequent chapters) espe-
cially since acute symptomatic hypocalcemia 
can be medical emergencies necessitating 
rapid, life-saving interventions.     
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16.1            Introduction 

 This chapter reviews those disorders that are clas-
sifi ed strictly as isolated hypoparathyroidism due 
to single gene mutations [ 1 ]. The hypoparathy-
roidism is characterized clinically by hypocalce-
mia and hyperphosphatemia and low or low-normal 
1,25-dihydroxyvitamin D [1,25(OH) 2 D] [ 2 ]. It 
occurs when parathyroid hormone (PTH) secreted 
from the parathyroid glands is either absent or 
insuffi cient to maintain normal extracellular fl uid 
calcium concentrations. The Mendelian inheri-
tance of FIH can be autosomal dominant, autoso-
mal recessive, or X-linked [ 3 ] (Table  16.1 ).

   In 8 families with 23 affected individuals ful-
fi lling strict criteria for familial isolated hypo-
parathyroidism (FIH, OMIM# 146200), Ahn 
et al [ 4 ] noted autosomal dominant inheritance in 
fi ve and autosomal recessive inheritance in three. 
In one dominant and two recessive kindreds, the 
pedigrees were consistent with X-linked inheri-
tance. The presence of large deletions, insertions, 

or rearrangements of the  PTH  gene was excluded 
in all cases. In four families, linkage with the 
 PTH  locus (11p15.2) was excluded by restriction 
fragment length polymorphism (RFLP) analysis, 
whereas in two families the hypoparathyroidism 
was concordant with  PTH  gene markers.  

16.2     PTH 

 The preproPTH mRNA, translated on rough 
endoplasmic reticulum (ER) polyribosomes, 
encodes an amino-terminal 25-amino-acid signal 
or prepeptide that directs the nascent chain into 
the ER where it is removed cotranslationally by 
the signalase enzyme, followed by a six–amino 
acid propeptide that is removed by the propro-
tein convertases furin and PC7 after traffi cking 
of the prohormone to the Golgi apparatus [ 5 , 
 6 ]. The mature 84–amino acid PTH molecule is 
packaged into secretory vesicles and is released 
from the parathyroid endocrine cells following 
a decrease in blood  calcium monitored by the 
plasma membrane G-protein-coupled calcium-
sensing receptor (CaSR). The human  PTH  
gene (OMIM# 168450) has three exons. Exon 
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1 encodes the 5′-untranslated region, exon 2 
encodes the signal peptide and part of the propep-
tide, while exon 3 encodes the propeptide cleav-
age site and the mature PTH molecule [ 7 ,  8 ]. 

 In a few instances of autosomal dominant dis-
ease, a mutation in the  PTH  gene has been identi-
fi ed. In one family presenting with reduced 
hormone production and chronic hypocalcemia, a 
missense mutation (p.Cys18Arg) in the signal 
sequence of the preproPTH precursor was identi-
fi ed [ 9 ] and the mutant shown to be defective 
in vitro in processing of preproPTH to proPTH 
[ 10 ]. Patients had one normal gene copy, leaving 
the autosomal dominant mode of inheritance 
unexplained. Further studies in transfected cells 
showed that the mutant protein accumulated 
abnormally in the ER, promoting ER stress and 
apoptosis [ 11 ]. The intracellular accumulation of 
the mutant hormone was corrected by a chemical 
chaperone, 4-phenylbutyric acid, with decrease in 
expression of ER stress markers and protection 
from cell death. The same mutation was found in 
an unrelated individual with idiopathic hypopara-
thyroidism [ 12 ]. A hypoparathyroid patient was 
reported to be heterozygous for a Met1_Asp6 
deletion mutation [ 13 ]. The c.2T>C mutation in 
the methionine initiation codon predicted abnor-
mal initiation of translation of the mutant prepro-
PTH mRNA starting at the Met +7 codon. How 
the mutant protein might function in an autosomal 
dominant fashion in this patient is unclear. 
Previous functional studies of an engineered 
Met1_Asp6 mutant found that loss of the fi rst 6 
amino acids did not impair cleavage and translo-
cation of the mutant preproPTH in a cell-free 
translation system, nor did it inhibit export of 
processed PTH from intact secretory cells in cul-
ture [ 14 ]. 

 In three siblings of a consanguineous family 
with autosomal recessive hypoparathyroidism, a 
donor splice site mutation (c.86 + 1G>C) at the 
exon2/intron 2 junction of the  PTH  gene was 
identifi ed [ 15 ]. The mutation leads to exon skip-
ping and loss of exon 2 containing the initiation 
codon and signal sequence of preproPTH 
mRNA. In another family, a novel mutation in the 
signal sequence (p.Ser23Pro) segregated with 
affected status [ 16 ]. This mutation may prevent 

proper cleavage of the signal peptide during pro-
cessing of the nascent protein. In a girl with iso-
lated hypoparathyroidism, a homozygous p.
Ser23X signal sequence mutation was found pre-
dicting a truncated inactive PTH peptide [ 17 ]. 
However, the circulating PTH level was not 
undetectable suggesting some translational 
readthrough of the mutant PTH mRNA.  

16.3     CaSR 

 The human  CASR  gene maps to 3q13.3-21, and 
the CaSR protein encoded by exons 2–7 is a 
member of group 3 or C of the GPCR superfam-
ily [ 18 ]. After removal of the signal peptide, the 
mature CaSR has a ~600–amino acid extracel-
lular domain comprised of a bilobed Venus-
fl ytrap- like domain connected by a cysteine-rich 
region and a peptide linker to the 250-amino-
acid transmembrane domain, followed by an 
intracellular COOH-terminal tail of 216 amino 
acids [ 19 ]. The CaSR is predominantly expressed 
in the parathyroid gland and the nephron. 
Binding of the receptor at the plasma membrane 
by extracellular calcium couples it to Gi, Gq, and 
G11 proteins that activate signaling pathways, 
modulating PTH secretion and renal mineral ion 
handling [ 20 ]. 

 Altered activity or function of the CaSR con-
tributes to a variety of human disorders [ 21 – 23 ]. 
Loss-of-function mutations underlie familial 
hypocalciuric hypercalcemia type 1 (FHH1; het-
erozygous mutations), neonatal (severe) hyper-
parathyroidism (heterozygous, homozygous), 
and primary hyperparathyroidism (heterozygous, 
homozygous). Gain-of-function mutations cause 
autosomal dominant hypocalcemia type 1 
(ADH1; heterozygous) and sometimes Bartter 
syndrome subtype V (heterozygous) [ 24 ,  25 ]. 
Loss-of- function mutations in the  GNA11  and 
 AP2S1  genes whose products mediate signaling 
and endocytic activity of the CaSR underlie 
FHH2 (heterozygous) and FHH3 (heterozygous), 
respectively [ 26 – 28 ]. Mutations of the  AP2S1  
gene do not appear to be involved in familial 
hypoparathyroidism [ 29 ]. Gain-of-function 
mutations in  GNA11  cause autosomal dominant 
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hypocalcemia type 2 (ADH2, heterozygous) [ 26 , 
 30 ] (see also Chap.   5    ). Phenocopies due to inacti-
vating and activating CaSR antibodies are well 
known and can cause autoimmune hypocalciuric 
hypercalcemia (AHH) and autoimmune hypo-
parathyroidism (AH), respectively [ 31 – 34 ]. 

16.3.1     ADH1 

 ADH1 (OMIM# 146200) due to  CASR  gain-of- 
function mutation may be associated with rela-
tive hypercalciuria [ 35 – 37 ] (see also Chap.   5    ). 
The hypocalcemia is mild and asymptomatic in 
some but, when more pronounced, may be asso-
ciated with neuromuscular symptoms such as 
paresthesias, carpopedal spasm, and seizures [ 35 , 
 36 ]. Serum phosphate concentrations are elevated 
or in the upper-normal range, and the serum mag-
nesium concentrations are low or low-normal 
[ 35 ]. ADH1 patients have serum PTH levels that 
are also in the low-normal range and may not be 
overtly hypoparathyroid. 

 In most ADH1 patients, the relative hypercal-
ciuria is accompanied by urinary calcium to cre-
atinine (Ca/Cr) ratios that are within or above the 
upper reference limit, whereas most patients with 
untreated hypoparathyroidism of other etiologies 
have urinary Ca/Cr ratios below or within the 
lower half of the reference range [ 37 ]. Treatment 
of ADH1 patients with active vitamin D prepara-
tions may exacerbate or induce hypercalciuria 
and result in nephrocalcinosis, nephrolithiasis, 
and renal impairment [ 35 ,  38 ]. Both promoters of 
the  CASR  gene have vitamin D response ele-
ments that mediate upregulation of CaSR expres-
sion by active vitamin D [ 39 ]. 

 Some ADH patients receiving vitamin D prep-
arations can develop polyuria and polydipsia. 
This may refl ect the role of the apical renal col-
lecting duct CaSR in sensing the luminal calcium 
concentration and signaling the suppression of 
vasopressin-dependent aquaporin-2-expression 
and/or insertion in the apical membrane that pro-
motes water reabsorption, actions that would be 
accentuated by an activating CaSR mutation, par-
ticularly during treatment [ 40 ]. 

 To minimize the adverse effects of vitamin D 
in ADH1, it is important to distinguish ADH1 

from other causes of hypoparathyroidism. When 
possible, vitamin D therapy may be reserved for 
those with symptomatic ADH1 to avoid the long- 
term consequences of nephrocalcinosis, nephro-
lithiasis, and renal impairment [ 36 ]. Therapeutic 
alternatives include recombinant human PTH 
that raises serum calcium levels, and helps pre-
vent symptomatic hypocalcemic episodes. It may 
lower urinary calcium excretion to some extent 
but may not completely mitigate the risk of neph-
rocalcinosis [ 41 – 43 ]. The combination of a thia-
zide diuretic with calcitriol may alleviate the 
hypocalcemia in some but not all patients and 
lower the urinary calcium excretion relative to 
those receiving calcitriol alone [ 36 ,  44 ]. 

 Thus,  CASR  mutation analysis can be key in 
diagnosing ADH1 [ 45 ]. Thus far, about one hun-
dred different  CASR  mutations have been identi-
fi ed in ADH1 affected individuals, and of these, 
95 % are heterozygous missense substitutions 
[CASRdb – calcium-sensing receptor database, 
  www.casrdb.mcgill.ca/    ;  21 ,  22 ]. In vitro expres-
sion studies demonstrate a gain of function of the 
mutant receptors with a leftward shift of the extra-
cellular calcium-response curve and a reduction 
of the EC 50  for extracellular calcium concentra-
tion relative to wild-type CaSR [ 46 ]. It has been 
suggested that the relative in vitro functional 
activity of mutant CaSRs also correlates with the 
serum magnesium level, renal magnesium han-
dling, and PTH levels in patients with ADH1 [ 47 ]. 

 The CaSR, after entry into the ER and removal 
of the signal peptide, is synthesized as a constitu-
tive dimer and functions as such at the plasma 
membrane [ 48 ,  49 ]. Studies of ADH1-associated 
mutations have provided insight into critical struc-
tural regions of the receptor. Activating mutations 
cluster within the second peptide loop of the extra-
cellular domain (residues 116–131) that contrib-
utes in part to the interface between individual 
protomers in the CaSR dimer. It may be that these 
mutations enhance the sensitivity of the CaSR to 
extracellular calcium by promoting conforma-
tional changes that facilitate receptor activation 
[ 50 ]. A further clustering of ADH1-associated 
mutations is found in a region (residues 820–836) 
that encompasses the sixth and seventh transmem-
brane helices and the intervening third extracellu-
lar loop. Residues in this region are critical for 

G.N. Hendy and D.E.C. Cole

http://dx.doi.org/10.1007/978-88-470-5376-2_5
http://dx.doi.org/10.1007/978-88-470-5376-2_5
http://www.casrdb.mcgill.ca/


171

maintaining the CaSR in an inactive conformation 
and also for the binding and activity of allosteric 
modulators such as calcimimetics and calcilytics 
[ 50 ]. 

 In the future, calcilytics (synthetic allosteric 
inhibitors of the CaSR) may provide a novel 
treatment for patients with ADH1. In vitro analy-
ses demonstrated distinct effects of the calcilytic 
NPS-2143 on different ADH1 CaSR mutations, 
with some being responsive and others less so or 
unresponsive [ 51 ]. However, under in vitro con-
ditions that mimicked the heterozygous in vivo 
situation in patients, the calcilytic corrected the 
overactivity of all the mutants [ 51 ]. In a separate 
study, NPS-2143 suppressed the enhanced activ-
ity of gain-of-function CaSR mutants without 
altering cell-surface expression levels [ 52 ].  

16.3.2     Bartter Syndrome Subtype V 

 Although Bartter syndrome subtype V is repre-
sented by only a handful of cases with heterozy-
gous severe activating mutations in the  CASR , they 
provide special insight into the functioning of the 
CaSR in the thick ascending limb of the nephron 
[ 53 – 55 ]. Bartter syndrome encompasses a hetero-
geneous group of electrolyte homeostasis disor-
ders, the common features of which are 
hypokalemic alkalosis, hyperreninemia, and 
hyperaldosteronism. Bartter syndrome subtypes 
I–IV are autosomal recessive disorders due to 
inactivating mutations in the following ion trans-
porters or channels active in the thick ascending 
limb of the loop of Henle: type I, the sodium-
potassium- chloride cotransporter (NKCC2); type 
II, the outwardly rectifying potassium channel 
(ROMK); type III, the voltage-gated chloride 
channel (CLC-Kb); type IV, Barttin, a β subunit 
that is required for traffi cking of CLC-Ka and 
CLC-Kb. Patients with the autosomal dominant 
Bartter syndrome subtype V have, in addition to 
the classic features of the syndrome, hypocalce-
mia and may exhibit neuromuscular  manifestations, 
seizures, and basal ganglia calcifi cations. 

 NKCC2 and ROMK in the apical membrane 
(luminal side) of the thick ascending limb of the 
loop of Henle generate a transepithelial electro-
chemical gradient that drives passive paracellular 

transport of Na + , Mg 2+ , and Ca 2+  from the lumen 
to blood [ 25 ]. The CaSR is situated in the baso-
lateral membrane (antiluminal side) and when 
activated increases 20-hydroxyeicosatetraenoic 
acid and decreases cAMP concentrations, both of 
which would inhibit ROMK and NKCC2 activi-
ties. Thus, severe activating mutations of the 
CaSR lead to the salt wasting of Bartter syn-
drome in addition to the hypercalciuric hypocal-
cemia of ADH1.  

16.3.3     ADH2 

 Heterozygous gain-of-function missense muta-
tions of  GNA11  have been identifi ed in ADH 
patients without detectable  CASR -activating 
mutations [ 26 ,  30 ]. The  GNA11 -activating muta-
tions increase the sensitivity of the parathyroid 
gland and renal tubule to the extracellular cal-
cium concentration. Autosomal dominant hypo-
calcemia and hypoparathyroidism due to  CASR  
mutations and  GNAS11  are now designated as 
ADH type1 and type 2, respectively. The human 
Gα11 protein (a Gq family member) has 359 
amino acids with an α-helical domain in the NH 2 - 
terminal region, a GTPase domain in the COOH- 
terminal region, and three switch regions (SR1-3) 
in the middle portion that change conformation 
based on whether GTP or GDP is bound [ 56 ]. 
The R60C, R181Q, S211W, and F341L muta-
tions found in hypocalcemic individuals are pre-
dicted by 3D modeling to disrupt the normal 
Gα11 protein structure. Moreover, cells stably 
expressing the CaSR and transfected with the 
mutants exhibit increased sensitivity to changes 
in extracellular calcium [ 26 ,  30 ].   

16.4     GCM2 

 Glial cells missing (GCM) acts in  Drosophila  as a 
binary switch between glial cell and neuronal 
development. In mammals, there are two ortho-
logs GCM1/GCMA and GCM2/GCMB important 
for parathyroid and placental development, respec-
tively [ 57 – 59 ] (see also Chap.   2    ). The  GCM2  gene 
(OMIM# 603716) localizes to chromosome 
6p24.2 and its fi ve exons encode a transcription 
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factor of 509 amino acids. It is expressed in the 
PTH-secreting cells of the developing parathyroid 
glands, is critical for their development in terres-
trial vertebrates, and continues to be expressed in 
the adult [ 60 – 63 ]. From NH 2  to COOH termini of 
the GCM2 protein, there is a DNA-binding 
domain, transactivation domain 1, an inhibitory 
domain, and transactivation domain 2. 

 In a few cases, homozygous or heterozygous 
inactivating mutations in the  GCM2  gene have 
been implicated in FIH inherited in an autosomal 
recessive or dominant manner, respectively. 
Autosomal recessive mutations include gene 
deletion, missense, stop, and frameshift: specifi -
cally intragenic deletion of exons 1–4, R39X, 
R47L, G63S, R110W, Y136X, I298fsX307, and 
T370M [ 64 – 70 ]. Autosomal dominant mutations 
include C106R, N502H, c.1389delT, and 
c.1399delC [ 71 – 74 ]. In vitro functional studies 
of some of these mutants have demonstrated loss 
of GCM response element binding and/or tran-
scriptional activity in the case of recessive muta-
tions, as well as an ability of dominant mutants to 
inhibit activity of wild-type GCM2 when the two 
are cotransfected into cells [ 71 – 73 ]. 

 The prevalence of genetic defects affecting 
GCM2 function is not high in FIH, and a 
recent study investigating 20 unrelated cases 
with this disorder (10 familial and 10 spo-
radic) identified several polymorphic variants, 
but failed to identify actual GCM2 mutations 
segregating with the disease and/or leading to 
loss of function [ 75 ]. 

 Absent or reduced levels of parathyroid 
GCM2, either in  gcm2  knockout mice or in cul-
tured human parathyroid cells treated with GCM2 
siRNA, correlate with maintenance of expression 
of the parathyroid early differentiation marker, 
CaSR [ 60 ,  63 ,  76 ]. GCM2 transactivates the 
 CASR  gene via GCM response elements in pro-
moters P1 and P2 [ 72 ,  77 ]. This provides the 
mechanistic link for the association between 
GCM2 and CaSR and the development of the 
evolutionarily related parathyroid glands (in ter-
restrial vertebrates) and gills (in fi sh) [ 62 ]. 

 The transcriptional activator, v-maf musculo-
aponeurotic fi brosarcoma oncogene homologue 
B (MafB), is expressed in developing and mature 
parathyroid glands [ 78 ]. MafB acts downstream 

of GCM2 and is necessary for proper localiza-
tion of the developing parathyroid glands 
between the thymus and the thyroid. Although 
GCM2 alone does not stimulate the  PTH  pro-
moter, as it does the  CASR  promoter, it associ-
ates with MafB to synergistically activate PTH 
expression [ 78 ]. 

 Haploinsuffi ciency of the dual zinc-fi nger 
transcription factor, GATA3, results in the con-
genital hypoparathyroidism-deafness-renal dys-
plasia (HDR) syndrome.  Gata3  knockout mouse 
embryos lack  Gcm2  expression and have gross 
defects in the third and fourth pharyngeal 
pouches including absent parathyroid-thymus 
primordia [ 79 ]. GATA3 transactivates the 
 GCM2  gene by binding specifi cally to a double- 
GATA-motif within the  GCM2  promoter. Thus, 
GATA3 and GCM2 are part of a critical tran-
scriptional cascade in the parathyroid morpho-
genesis pathway [ 80 ].  

16.5     Xq27.1 

 In two multigenerational families with X-linked 
recessive hypoparathyroidism exhibiting neonatal 
onset of hypocalcemia and parathyroid agenesis, 
the trait was mapped to a 906-kb region on distal 
Xq27 that contains three genes including SOX3, 
but no intragenic mutations were found (OMIM# 
307700) [ 81 ]. A deletion-insertion [del(X) (q27.1)
inv ins (X;2)(q27.1;p25.3)] mutation was identi-
fi ed that was speculated to exert a positional effect 
on SOX3 expression and affect embryonic devel-
opment of the parathyroid glands.  

    Conclusion 

 Studies of familial isolated hypoparathyroid-
ism have highlighted the critical roles played 
by several genes in parathyroid gland develop-
ment and function.     
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17.1             Introduction 

 The earliest suggestion of a possible autoimmune 
basis for parathyroid disease came from observa-
tions on patients with autoimmune thyroid disease, 
the archetype of autoimmune disorders, combined 
with Addison’s disease: this clustering was fi rst 
recognized by Schmidt in 1926 [ 1 ] (see also Chaps. 
  14     and   15    ). The association between these two con-
ditions implied that other diseases occurring with 
them might also be autoimmune, and several cases 
were already known of Addison’s disease accom-
panied by idiopathic hypoparathyroidism when 
thyroid autoimmunity was discovered in 1953 [ 2 ]. 
The fi rst attempt to determine whether autoanti-
bodies to parathyroid tissue could be detected in 
such patients used an indirect immunofl uorescence 
assay with selected human parathyroid adenoma 
tissue as substrate; autoantibodies were found in 
38 % of 74 patients with idiopathic hypoparathy-
roidism, 26 % of 92 patients with idiopathic 
Addison’s disease, 12 % of 49 patients with 
Hashimoto’s thyroiditis, and 6 % of 245 controls 
[ 3 ]. Patients with hypoparathyroidism also had a 
higher than expected frequency of adrenal, thyroid, 

or gastric parietal cell autoantibodies, and parathy-
roid hormone was excluded as a target of the para-
thyroid autoantibodies. The specifi city of the 
autoantibodies was confi rmed by the inability of 
any tissue extracts, other than parathyroid, to 
absorb out the reactivity. 

 Further work on the distribution of autoanti-
bodies in affected families identifi ed a subset of 
patients with early-onset Addison’s disease and 
hypoparathyroidism that could be distinguished 
from Schmidt’s syndrome, with a possible autoso-
mal recessive inheritance [ 4 ]. This syndrome was 
initially called autoimmune polyendocrinopathy- 
candidiasis-ectodermal dystrophy, with chronic 
mucocutaneous candidiasis added as a third major 
disease component and manifesting in early child-
hood (Fig.  17.1 ), but it is now usually referred to 
as autoimmune polyendocrine syndrome type 1 
(APS1; OMIM 240300) [ 5 ].  

 APS1 has become well characterized clini-
cally [ 6 ,  7 ], and a variety of features distinguish 
it from the much more common Schmidt’s syn-
drome, which is now termed APS type 2 
(Table  17.1 ). It is more prevalent in isolated pop-
ulations, including Finland, Sardinia, and Iranian 
Jews. APS1 is known to be due to mutations in 
the autoimmune regulator ( AIRE ) gene which 
leads to defi cient negative selection of autoreac-
tive T cells in the fetal thymus and an aberrant 
thymic microenvironment in which autoreactive 
T cells are more likely to occur [ 8 ]. Although the 
original study distinguishing different types of 
polyendocrine autoimmunity [ 5 ] and others [ 9 ] 
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  Fig. 17.1    The ages of onset of the three major compo-
nents of autoimmune polyendocrine syndrome type 1 

(From Neufeld et al. [ 5 ]. With permission from Lippincott 
Williams & Wilkins)       

   Table 17.1    Key features of autoimmune polyendocrine syndromes (APS) types 1 and 2   

 Characteristic  APS1  APS2 

 Prevalence  Rare  Common 
 Age at onset  Childhood  Adulthood 
 Genetics  Autosomal recessive: mutations in  AIRE  

gene 
 Polygenic: associated with HLA 
DR3-DQB1*0201 

 Interferon autoantibodies  Present  Absent 
 Major components  Mucocutaneous candidiasis (100 %)  Autoimmune thyroid disease 

(70 %) 
 Hypoparathyroidism (80 %) a   Type 1 diabetes mellitus (60 %) 
 Addison’s disease (70 %)  Addison’s disease (50 %) b  

 Signifi cant minor components c   Alopecia (30 %)  Vitiligo (15 %) 
 Type 1 diabetes mellitus (15 %)  Alopecia (5 %) 
 Vitiligo (10 %)  Pernicious anemia (5 %) 
 Pernicious anemia (10 %)  Celiac disease (3 %) 

 Non-autoimmune manifestations  Enamel hypoplasia (90 %)  None 
 Dental, nail, and tympanic membrane 
dystrophies (60 %) 
 Keratopathy (50 %) 
 Asplenia (10 %) 

   a Females, 95 %; males, 70 %. This is the only disease component of APS1 that shows a sex difference 
  b An alternative classifi cation system has been proposed in which Addison’s disease is an essential (100 % present) 
component of APS2; those family clusters associated with autoimmune thyroid disease have been termed APS3, and 
clusters of organ-specifi c autoimmunity without either component, APS4 [ 7 ] 
  c Many other autoimmune disorders occur in these syndromes; only the key disorders are listed  
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identifi ed hypoparathyroidism as occurring 
uniquely in the context of APS1 and not APS2, 
idiopathic hypoparathyroidism is a well-known 
but rare entity, and autoimmunity now appears to 
be a cause for some of these cases too. 
Nonetheless, a recent study of such sporadic 
cases of hypoparathyroidism surprisingly failed 
to fi nd any increase in associated thyroid auto-
immunity, which is the commonest of the organ- 
specifi c autoimmune disorders [ 10 ]. However, 
this was a small series of only 87 patients, and it 
is probable that the patients are heterogeneous, 
with some having an autoimmune basis for their 
disorder (only these would be expected to show 
an increase in the prevalence of other autoim-
mune conditions like thyroid disease) and others 
with a non-autoimmune basis.

17.2        Histological and T Cell 
Studies 

 As well as the fi nding of autoantibodies, the pres-
ence of autoimmunity is suggested by the estab-
lishment of animal models replicating the human 
disease, the presence of a characteristic lympho-
cytic infi ltration in the target tissue, and the dem-
onstration of T cell reactivity to putative tissue 

antigens [ 11 ]. Lymphocytic infi ltration of the 
parathyroid glands, accompanied by hypopara-
thyroidism, has been induced in rats and dogs by 
immunization with parathyroid tissue; autoanti-
bodies against parathyroid tissue were also 
detectable in these animals [ 12 ]. Immunization 
with homologous thyroid tissue induced both 
thyroiditis and parathyroiditis in chickens, pre-
sumably through contamination of the thyroid 
extract with parathyroid tissue; thymectomy 
reduced the severity of disease, indicating an 
important role for T cells in pathogenesis [ 13 ]. 
Immunization of rabbits with bovine or rat para-
thyroid homogenate produced species- and para-
thyroid tissue-specifi c autoantibodies, and 
passive immunization of rats with the serum from 
the rabbits immunized with rat parathyroid tissue 
induced a severe lymphocytic infi ltration of the 
parathyroid glands in a fi fth of the animals, but 
hypoparathyroidism was not observed [ 14 ]. 

 Sporadic case reports have appeared of histo-
logical changes in cases of idiopathic hypopara-
thyroidism which include lymphocytic and 
plasma cell infi ltration (Fig.  17.2 ); in one case this 
was accompanied by a positive leukocyte migra-
tion inhibition test and  hypergammaglobulinemia 
[ 15 ,  16 ]. The appearance described contrasts with 
the fi nding of a lesser degree of lymphocytic 

  Fig. 17.2    Lymphocytic infi ltration in the parathyroid in autoimmune hypoparathyroidism (From Van de Casseye and 
Gepts [ 16 ]. With permission from Springer)       
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 infi ltration in around 6 % of autopsy cases of 
unselected patients, associated with generalized 
infl ammatory conditions or venous congestion, 
and is also different to the much rarer parathyroid-
itis associated with parathyroid hyperplasia and 
hyperparathyroidism [ 17 ]. T cell reactivity to 
parathyroid tissue antigens has not been convinc-
ingly demonstrated so far, although in a study of 
eight patients with idiopathic hypoparathyroid-
ism, there was an increase in circulating activated 
T cells compared to controls [ 18 ].   

17.3     Parathyroid Autoantibodies 

 The fi rst detection of parathyroid autoantibodies 
employed indirect immunofl uorescence micros-
copy techniques which are prone to artifacts and 
diffi cult to quantitate [ 3 ]. These diffi culties are 
illustrated by the attempt to replicate the original 
description of parathyroid autoantibodies, in which 
only one of nine sera from patients with idiopathic 
hypoparathyroidism reacted with parathyroid oxy-
phil cells and with chief cells of the parathyroid 
(using a human adenoma as substrate), but whether 
other sera contained low-titer antibody to chief 
cells could not be determined [ 19 ]. The positive 
serum came from a patient with APS1. 

 In an attempt to refi ne the assay, cultures of 
bovine parathyroid cells were used in immuno-
fl uorescence or cytotoxicity assays [ 20 ]. Seven 
sera were studied from patients with idiopathic 
hypoparathyroidism and all were positive by 
immunofl uorescence against these cells; pooled 
normal sera were negative. Moreover, all seven 
serum samples lysed the parathyroid cells in the 
presence of complement, unlike control sera. 
Although preincubation with parathyroid cells 
absorbed out the activity, so did preincubation 
with adrenal cells, raising some concerns over 
tissue specifi city of these autoantibodies. 

 The same group subsequently reported that 
six of these hypoparathyroid sera reacted with 
bovine endothelial cells by fl ow cytometry and 
indirect immunofl uorescence microscopy, and by 
adsorption experiments it was shown that the 
reactivity to parathyroid cells was due to endo-
thelial cell cross-reaction [ 21 ]. Although the 

authors postulated that parathyroid-specifi c 
endothelial rather than epithelial cells may there-
fore be the target of autoimmunity, this would be 
at odds with the pathogenesis of other known 
endocrinopathies. Further indications of the dif-
fi culties of these techniques came from another 
study in which sera from 5 of 32 patients with 
idiopathic hypoparathyroidism and 1 of 50 con-
trols gave strong reactivity against parathyroid 
oxyphil cells and weak reactivity against chief 
cells, but this reactivity was exactly replicated by 
reactivity with a variety of other  mitochondria- rich 
tissues and was absorbed out with mitochondria 
[ 22 ]. 

 Better evidence in support of parathyroid cell 
autoimmunity came from studies using dispersed 
human parathyroid cells, with immunofl uores-
cence microscopy and inhibition of parathyroid 
hormone (PTH) secretion being measured as 
indices of antibody binding [ 23 ]. Eight out of 23 
sera from patients with idiopathic hypoparathy-
roidism reacted by immunofl uorescence; two of 
the positive sera came from patients who proba-
bly had APS1, but the others were adults, two of 
whom also had thyroid or adrenal autoantibodies. 
None of the sera reacted with bovine parathyroid 
cells. Three of these eight positive sera inhibited 
PTH action, and in one, sequential samples 
showed a diminution in antibody levels with 
spontaneous amelioration of disease. These fi nd-
ings clearly suggested an etiological role for spe-
cifi c parathyroid autoantibodies in some patients 
with hypoparathyroidism, but further character-
ization of the parathyroid autoantigen(s) was not 
attempted for nearly a decade.  

17.4     Calcium-Sensing Receptor 
Autoantibodies 

 Most organ-specifi c autoantigens are either intra-
cellular enzymes or extracellular receptors; well- 
known examples of the latter include the 
thyroid-stimulating hormone (TSH) receptor in 
Graves’ disease and the acetylcholine receptor in 
myasthenia gravis. The calcium-sensing receptor 
(CaSR) was cloned in 1993 and identifi ed to have a 
central role in control of PTH secretion in response 
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to extracellular calcium concentration [ 24 ,  25 ] (see 
also Chap.   5    ). The relative restriction of this recep-
tor to the PTH-producing chief cells and renal 
tubular cells led its identifi cation as a candidate 
parathyroid autoantigen by Li and colleagues [ 26 ] 
who performed immunoblotting experiments 
which revealed that of 25 sera from patients with 
hypoparathyroidism (17 with APS1 and 8 with 
adult-onset disease plus thyroid autoimmunity), 
fi ve reacted with a parathyroid antigen of the 
appropriate size. Further immunoblotting experi-
ments showed similar reactivity using HEK293 
cells transfected with the CaSR, and 14 (56 %) of 
the sera immunoprecipitated the extracellular 
domain of receptor in radioimmunoprecipitation 
assays (Table  17.2 ), whereas there was no reactiv-
ity with the intracellular domain. Control sera were 
uniformly  negative, as were experiments using 
non- transfected HEK293 cells. With regard to the 
patients who were positive for CaSR autoantibod-
ies, six (35 %) had APS1 and eight (100 %) had 
adult- onset disease, and there was signifi cantly less 
chance of detecting positive autoantibodies in the 
patients if hypoparathyroidism had been present 
for more than 5 years. No effect of the CaSR auto-
antibodies on intracellular calcium levels could be 
identifi ed in preliminary experiments.

   Initial attempts aimed at confi rming these 
results were unsuccessful [ 27 ]. In a series of 90 
APS1 patients (16 of whom were studied within 
a year of diagnosis), 19 % had autoantibodies 
that recognized canine parathyroid tissue in indi-
rect immunofl uorescence assays, and this species 
difference was taken to exclude mitochondrial 
cross-reactivity. By immunoblotting, multiple 
bands of reactivity to human parathyroid tissue 
were found in 37 % of APS1 sera, although there 
was no difference found when this reactivity was 
compared with the control sera. Using a radioim-
munoprecipitation technique, 12 % of APS1 sera 
were positive for autoantibodies to the extracel-
lular domain of the CaSR, but so were 4 % of 
control sera. There was no apparent difference 
between the prevalence of CaSR autoantibodies 
in APS1 patients with and those without hyper-
parathyroidism (Table  17.2 ). No autoantibodies 
could be detected to PTH. A further paper from 
some of the same authors reported an absence of 

CaSR autoantibodies in APS1 patients when the 
radioimmunoprecipitation assay was used 
(Table  17.2 ), but it is unclear whether these cases 
overlapped with those previously reported [ 28 ]. 

 In contrast, other studies were able to confi rm 
the presence of CaSR autoantibodies in hypo-
parathyroidism. By immunoblotting with human 
parathyroid tissue extracts containing the CaSR, 
49 % of 51 patients with idiopathic hypoparathy-
roidism (mean disease duration of 7 years) were 
positive for autoantibodies, and although a sur-
prisingly high prevalence of CaSR autoantibod-
ies was also noted in controls (13 %), this 
difference was signifi cant (Table  17.2 ) [ 29 ]. In a 
further study of 147 idiopathic hypoparathyroid 
patients, between 16 and 25 % were positive for 
CaSR autoantibodies depending on the assay 
used (Table  17.2 ) [ 30 ]. Controls were positive at 
a frequency of 0.5–14 %. In addition, using a 
recombinant extracellular domain of the CaSR in 
immunoblotting, 29 % of 17 sera from patients 
with idiopathic hypoparathyroidism were posi-
tive for autoantibodies, compared with one 
patient from eight (13 %) with APS1 and one 
patient from six (17 %) with APS2 (Table  17.2 ) 
[ 31 ]. The mean duration of hypoparathyroidism 
was 4.3 years in this study. Controls were nega-
tive, reactivity could be absorbed out by recombi-
nant receptor, and this assay was found to be 
more sensitive than radioimmunoprecipitation. 

 The fi rst detection of functional activity of 
CaSR autoantibodies came from a study of four 
patients with hypocalciuric hypercalcemia who 
also had celiac disease or thyroid autoantibodies, 
indicating a possible autoimmune origin for their 
calcium disorder [ 32 ]. Parathyroid autoantibodies 
could be detected in these patients by immuno-
fl uorescence, CaSR autoantibodies were detected 
by immunoprecipitation (Table  17.2 ), and func-
tional effects on the receptor were demonstrated 
by showing that patient IgG could increase PTH 
release from cultured human parathyroid cells. 
This receptor blocking activity could be inhibited 
specifi cally by preabsorption with CaSR-
transfected HEK293 cells. In two cases, affi nity-
purifi ed autoantibodies inhibited CaSR-mediated 
accumulation of inositol phosphates and activa-
tion of MAP kinase activity in response to high 
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extracellular calcium signaling. Thereafter, two 
unusual patients with idiopathic hypoparathyroid-
ism were described in whom CaSR-stimulating 
autoantibodies could be detected by similar meth-
ods; one had Graves’ disease but intact parathy-
roid glands were observed at neck surgery (and 
confi rmed histologically), and the other had 
Addison’s disease and spontaneously remitting 
hypoparathyroidism, thus indicating in both cases 
that parathyroid tissue had not been destroyed by 
any autoimmune process [ 33 ]. It therefore seemed 
likely that the hypoparathyroidism in these 
patients was the direct result of the CaSR autoan-
tibodies affecting the function of the receptor, 
akin to the effect of thyroid-stimulating autoanti-
bodies in Graves’ disease. 

 Taken together, these observations support the 
existence of CaSR autoantibodies in a moderate 
proportion of patients with idiopathic hypopara-
thyroidism, and in rare cases these autoantibodies 
may have an etiological role in activating the 
receptor, thereby inhibiting PTH secretion. 
However, the relatively low frequency or even 
apparent absence of these autoantibodies in 
APS1 [ 26 – 28 ] begged the question of whether 
CaSR autoantibodies are associated more with 
idiopathic hypoparathyroidism than the hypo-
parathyroidism that occurs in APS1. This possi-
bility would be compatible with other features of 
APS1; for instance, antibody markers of type 1 
diabetes mellitus have different sensitivity and 
specifi city in APS1 compared to idiopathic dia-
betes, possibly refl ecting a different pathogenic 
basis [ 28 ]. However, using an immunoprecipita-
tion technique with CaSR expressed in HEK293 
cells, 12 out of 14 (86 %) APS1 sera were found 
to be positive for CaSR autoantibodies; controls 
were negative, but 7 % of 20 Graves’ disease sera 
were also positive (Table  17.2 ) [ 34 ]. Activity 
could be absorbed out specifi cally with CaSR in 
the form of CaSR-transfected HEK293 cell 
extract. By contrast, the same sera were negative 
when the previously described radioimmunopre-
cipitation assay for CaSR autoantibodies [ 26 – 28 ] 
was employed, indicating that the type of assay is 
critical to the results. Overall, the prevalence of 
CaSR autoantibodies was signifi cantly increased 
in APS1 patients compared with controls. 

Autoantibodies against the CaSR were absent in 
the only APS1 patient who was not hypoparathy-
roid and available for study [ 34 ]. 

 Subsequent studies using phage-display 
 technology and ELISAs revealed that the major 
autoepitope for CaSR autoantibodies in this 
group of APS1 patients was localized between 
amino acids 41 and 69 in the extracellular domain 
of the receptor, with antibody reactivity demon-
strated in all 12 individuals [ 35 ]. Minor epitopes 
were located between amino acids 114 and 126 
and between 171 and 195 with antibody responses 
detected in fi ve out of 12 (42 %) and four out of 
12 (33 %) APS1 patients, respectively. 
Furthermore, IgG purifi ed from two of the 
patients with CaSR autoantibodies increased 
both Ca 2+ -dependent MAP kinase phosphoryla-
tion and inositol phosphate accumulation 
(Fig.  17.3 ) in HEK293 cells expressing the CaSR, 
indicating a stimulatory action upon the receptor 
[ 36 ]. Both patients had hypoparathyroidism. An 
important implication of this fi nding was that 
although the majority of APS1 patients do not 
have detectable CaSR-stimulating autoantibod-
ies, there may be a small but signifi cant minority 
of patients in whom the hypoparathyroid state is 
the result of functional suppression of the para-
thyroid glands rather than their irreversible 
destruction. Other CaSR antibody binding sites 
include those between amino acids 214 and 236, 
344 and 358, and 374 and 391, as reported for 
idiopathic hypoparathyroid patients [ 30 ,  33 ].  

 Overall, several aspects of CaSR autoantibod-
ies in idiopathic hypoparathyroidism and APS1 
remain to be addressed. For example, the vari-
ability of their prevalence in patients with idio-
pathic hypoparathyroidism or APS1 (Table  17.2 ) 
could be due to differences in the type of assay 
employed as currently there is no gold standard 
test for CaSR autoantibodies. Particularly, the 
source of the CaSR antigen used can have a sig-
nifi cant effect upon the frequency of antibody 
positives [ 27 ,  34 ]. In addition, the study design 
including the size and origin of the patient and 
control groups and the criteria for positivity may 
infl uence the reported prevalence of CaSR auto-
antibodies. Secondly, although they may just be 
markers for parathyroid gland damage caused by 
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cytotoxic T cells [ 18 ], the functional relevance of 
CaSR autoantibodies in the development of 
hypoparathyroidism requires further exploration. 
So far, only a minority of patients have been 
identifi ed with receptor-activating autoantibodies 
that could potentially reduce PTH secretion [ 33 , 
 36 ]. However, CaSR autoantibodies could also 
impair parathyroid cells through complement- 
fi xation or antibody-dependent cellular cytotox-
icity [ 20 ]. Finally, the question as to the 
relationship between the presence of CaSR auto-
antibodies and clinical hypoparathyroidism in 
APS1 requires clarifi cation.  

17.5     NALP5 Autoantibodies 

 The absence of CaSR autoantibodies in APS1 
patients in some reports prompted the search for 
other parathyroid autoantigens in these patients, 
who are well known to have a plethora of tissue 
autoantibodies [ 28 ]. Immunoscreening of a human 

parathyroid cDNA library with the serum of a 
patient with APS1 and severe hypoparathyroidism 
initially revealed reactivity to NALP5 (NACHT 
leucine-rich-repeat protein 5) [ 37 ]. Subsequent 
assay with a sequential immunoprecipitation assay 
showed that NALP5-specifi c autoantibodies were 
detectable in 41 % of 87 patients with APS1 but 
were absent in all of the 11 APS1 patients without 
hypoparathyroidism and in patients with other 
autoimmune endocrine disorders and in controls. 
Immunostaining of human parathyroid glands 
with serum samples from patients with APS1 spe-
cifi cally identifi ed parathyroid chief cells rather 
than oxyphilic cells: there was no staining of para-
thyroid tissue by APS1 sera without NALP5 auto-
antibodies, and absorption of positive sera with    
recombinant NALP5 blocked the parathyroid 
staining. Hypoparathyroidism in APS1 is more 
common in women than men, and the authors 
noted that NALP5 expression is found in both the 
parathyroid glands and the ovaries in women, so 
the increased amount of the autoantigen in women 
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might explain this sex difference. NALP5 autoan-
tibodies were absent in 20 patients with idiopathic 
hypoparathyroidism. 

 This association of NALP5 autoantibodies 
with APS1 has been confi rmed in a study of 145 
patients with idiopathic hypoparathyroidism, 
only one of whom was positive by immunopre-
cipitation assay for NALP5 autoantibodies 
[ 38 ]. Further genetic and serological study 
revealed that this patient had occult APS1. 
Nonetheless, this study also identifi ed two 
patients with APS1 who had hypoparathyroid-
ism, and both were negative for NALP5 autoan-
tibodies. Their disease duration was 6 and 8 
years. NALP5 autoantibodies have also been 
detected in a 64-year-old patient with acquired 
APS1 and hypoparathyroidism as a result of a 
thymoma [ 39 ] and in an APS1 patient with 
chronic hypoparathyroidism [ 40 ]. 

 The apparent specifi city of NALP5 autoanti-
bodies for the hypoparathyroidism of APS1 in 
these studies is striking and suggestive of a spe-
cifi c type of autoimmune pathogenesis in this 
syndrome, although it is notable that less than 
half of all patients were positive, possibly due to 
disease duration. It must also be emphasized that 
autoimmune destruction in organ-specifi c auto-
immune disorders like Hashimoto’s thyroiditis 
and type 1 diabetes mellitus is mediated by T 
cells and autoantibodies have only a limited role 
in pathogenesis. This distinction might be 
 particularly relevant when considering a role for 
an intracellular autoantigen such as NALP5. 
Regarding how NALP5 might be involved, the 
NALP family of molecules are components of 
the “infl ammasome” involved in particle sensing 
and activation of the innate immune system, and 
so it is possible that autoimmunity to NALP5 
could lead to an enhanced infl ammatory response 
in parathyroid tissue [ 41 ].  

17.6     Immunogenetics 

 Most autoimmune diseases are associated with 
particular human leukocyte antigen (HLA) speci-
fi cities and with a number of other gene polymor-
phisms which regulate various aspects of immune 

function; sharing of these genetic associations 
accounts in large part for the clustering of differ-
ent autoimmune diseases within individuals and 
within families [ 42 ,  43 ]. Due to its rarity, there is 
a paucity of information relating to the immuno-
genetic basis of idiopathic hypoparathyroidism. 
 AIRE  gene polymorphisms have been reported as 
being associated with the disease, but these are 
rare, dependent upon the size and origin of the 
study population, and beg the question as to 
whether these are really APS1 patients [ 40 ,  44 ]. 
A strong association has been reported of  HLA- 
A    * 26:01  with idiopathic hypoparathyroidism, 
suggesting an important role in its pathogenesis 
for major histocompatibility complex (MHC) 
class I-mediated presentation of autoantigenic 
peptides to CD8 +  cytotoxic T cells [ 45 ]. It is also 
noteworthy that a critical role for disordered CD8 
cell regulation has been suggested to occur in 
APS1 [ 46 ], and this association therefore pro-
vides further circumstantial evidence for an auto-
immune etiology for idiopathic 
hypoparathyroidism. In another study, MHC 
class II  HLA-DRB1*01  and  HLA-DRB1*09  
alleles were more frequent in idiopathic hypo-
parathyroidism patients than in controls, and this 
too supports an autoimmune basis for the disease 
[ 29 ]. So far other immunogenetic associations, 
including polymorphisms in  CTLA-4  and 
 PTPN22 , which are associated with susceptibil-
ity to several autoimmune diseases, have not 
been linked to the development of idiopathic 
hypoparathyroidism [ 44 ,  47 ]. Here, small sample 
size and disease heterogeneity may be masking 
modest associations.  

    Conclusion 

 Overall, there is considerable evidence for an 
autoimmune etiology for hypoparathyroidism 
both as a sporadic disease and as part of APS1. 
Most work has been done to identify parathy-
roid autoantibodies in these patients, but these 
do not appear to be either specifi c or sensitive 
as diagnostic tools. Future investigations 
should aim to identify whether any novel para-
thyroid antigens exist besides CaSR and 
NALP5 and clarify the pathogenic role played 
by autoantibodies against the CaSR and any 
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newly discovered autoantigens in the patho-
genesis of hypoparathyroidism. However, 
apart from rare cases with functional CaSR 
autoantibodies, parathyroid autoantibodies 
seem unlikely to have a primary role in pro-
ducing disease. Because mutations in the 
 AIRE  gene cause the development of APS1 
following a failure to establish self-tolerance 
against peripheral tissue-specifi c antigens in 
developing T lymphocytes [ 48 ,  49 ], a cellular 
immune response against known parathyroid 
autoantigens such as NALP5 and the CaSR 
must be present in such patients. By analogy 
with other autoimmune endocrinopathies, 
T cells also are likely to play the major role in 
parathyroid destruction in sporadic hypopara-
thyroidism, and so it will also be essential to 
characterize the parathyroid autoantigens and 
epitopes that are targeted by T cells.     
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18.1             Introduction 

    DiGeorge syndrome (DGS), described in 1968 by 
the pediatric endocrinologist Angelo DiGeorge, is 
a genetic disorder (see also Chaps.   14     and   15    ). 
The term “genomic disorders” refers to those dis-
eases that are caused by chromosomal rearrange-
ments involving large regions of one to several 
megabase pairs in size [ 1 ]. The worldwide inci-
dence is estimated at 1/2,000–1/4,000 live births 
[ 2 ]. DiGeorge or velocardiofacial syndrome, 
caused in over 90 % of cases by the deletion of a 
small piece of chromosome 22, is also known as 
the deletion 22q11.2 syndrome (Del22) and 
results in the poor development of several body 
systems, with resultant symptoms that vary 
greatly between individuals but commonly 
include a primary immunodefi ciency, often, but 
not always, characterized by defi ciency in cellular 

(T-cell) immunity, characteristic facies,  congenital 
heart disease, and hypocalcemia. Endocrinopathies 
are common in patients with a 22q11.2 deletion. 
Hypoparathyroidism, which results in hypocalce-
mia, was the fi rst endocrine disturbance docu-
mented in DGS. A wider phenotype is recognized 
today, including congenital heart defects, abnor-
mal facies, lack of resistance to infection, and 
cognitive, behavioral, and psychiatric problems. 

 Most features show variable expressivity and 
penetrance due to genetic modifi ers, chance asso-
ciation, or environmental interactions. Somatic 
mosaicism or postzygotic second hit have been 
hypothesized as potential mechanisms underly-
ing such phenotypic discordance. The deletion in 
chromosome 22 was fi rst identifi ed by cytoge-
netic methods and was later confi rmed by molec-
ular approaches, including FISH and haplotype 
analysis with genetic markers.  

18.2     Clinical Features 

 Signs and symptoms of DGS can vary signifi -
cantly in type and severity. This variation depends 
on what body systems are affected and how severe 
the defects are. Some signs and symptoms may be 
apparent at birth; others may not appear until later 
in infancy or early childhood or not appear for a 
lifetime. This is called phenotypic variability. The 
clinical manifestations leading to the diagnosis in 
the fi rst 2 years of life are  frequently congenital 
heart disease, defects in the palate, mild 
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 abnormalities in facial features, and/or convul-
sions due to neonatal hypocalcemia. After 2 years 
of age, the manifestations that can give rise to sus-
picion of the disease include recurrent infections, 
delay in psychomotor developmental and/or 
speech, hypothyroidism, hypoparathyroidism, 
and changes in behavior [ 3 – 5 ]. 

 Patients with DGS may have any or all of the 
following. 

18.2.1     Unusual Facial Appearance 

 The facies of children with 22q11.2DS com-
monly exhibit the following characteristics: 
underdeveloped chin; small mouth; eyes with 
heavy eyelids (narrow palpebral fi ssures); ears 
that are rotated backward with, in some cases, 
defective upper portions of their ear lobes; nasal 
bossing; hypertelorism; micrognathia, high 
arched palate; and periorbital fullness. In infancy, 
micrognathia may be present [ 6 ]. These facial 
characteristics may diminish with age, vary 
greatly from person to person, and may not be 
prominent in many patients [ 7 ].  

18.2.2     Heart Defects/Congenital 
Heart Defect (CHD) 

 These include a variety of cardiovascular defects. 
These usually involve the aorta and the part of the 
heart from which the aorta develops [ 8 ]. A vari-
ety of cardiac malformations are seen, especially 
affecting the outfl ow tract. These include tetral-
ogy of Fallot, type B interrupted aortic arch, trun-
cus arteriosus, right aortic arch, and aberrant 
right subclavian artery [ 9 ]. 

 In most cases, when present together with 
hypocalcemia, the onset of symptoms in affected 
infants and the discovery of a heart murmur on a 
routine physical exam may lead to the diagnosis 
of the condition. Affected individuals may show 
signs of heart failure, or they may have low oxy-
gen saturation of their arterial blood and appear 
“blue” or cyanotic. Associated with these forms 
of heart disease, specifi c cardiovascular anatomic 
variants have been described in patients with 
22q11.2DS that require accurate diagnosis and 

may infl uence the surgical treatment of these 
patients. In some patients, in contrast, heart 
defects may be very mild or absent [ 10 ].  

18.2.3     Parathyroid Gland 
Abnormalities 

 These glands may be underdeveloped in patients 
with DGS, causing hypoparathyroidism. The 
parathyroids are small glands found in the front 
of the neck, generally close to (and usually poste-
rior to) the thyroid gland, hence the name “para-
thyroid.” They function to control the normal 
metabolism and blood levels of calcium. People 
with DGS may have trouble maintaining normal 
levels of calcium, and this may cause seizures 
(convulsions). In some cases, the parathyroid 
abnormality is not present at all, relatively mild, 
or only a problem during times of stress such as 
severe illness or surgery. The parathyroid defect 
often becomes less severe over time [ 11 ].  

18.2.4     Hypocalcemia 

 It is considered one of the cardinal features of 
DiGeorge syndrome. This symptom is related to 
hypoparathyroidism due to absence or underde-
velopment of parathyroid glands, which leads to 
low blood calcium levels [ 12 ]. In the immediate 
neonatal period, hypoparathyroidism can present 
with symptoms of hypocalcemia, including sei-
zures, tremors, or tetany. These are due to abrupt 
discontinuation of the active transport of calcium 
from mother to fetus at birth. The calcium level 
usually improves over the fi rst year of life because 
of parathyroid gland hypertrophy and dietary cal-
cium intake. More commonly, however, hypocal-
cemia is transient, and as dietary calcium intake 
increases, the remaining parathyroid activity sup-
plies suffi cient PTH to meet metabolic demands. 
Therefore, in children with severe parathyroid 
hypoplasia, hypocalcemia is persistent. Bastian 
et al. reported 18 patients with at least two of four 
features of DGS (typical facial features, charac-
teristic cardiac lesion, hypocalcemia within the 
fi rst month of life, and absent thymus), 13 (72 %) 
of them had hypocalcemia [ 13 ]. Muller et al., 
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using similar criteria, reported 16 patients with 
DGS, 11 (69 %) of them had hypocalcemia. 
These results confi rm that in patients with con-
fi rmed DGS, the prevalence of hypocalcemia 
may be as high as 70 % [ 14 ].  

18.2.5     Thymus Gland Abnormalities 

 As part of the fetal developmental defect, the thy-
mus gland may be affected, and development of 
the cellular (T-cell) immune system may be 
impaired. The thymus is normally located in the 
upper area of the front of the thoracic cavity 
behind the breastbone (sternum). The thymus 
begins its development high in the neck during 
the fi rst 3 months of fetal development. As the 
thymus matures and enlarges, it drops down into 
the chest to its ultimate location under the ster-
num and in front of the heart [ 15 ]. 

 DGS is a primary immunodefi ciency disease 
caused by abnormal migration and development 
of certain cells and tissues during development 
[ 16 ]. The thymus controls the development and 
maturation of one kind of lymphocyte, the 
T-lymphocyte. Patients with a small thymus pro-
duce fewer T-lymphocytes than someone with a 
normally sized thymus [ 17 ]. T-lymphocytes are 
essential for resistance to certain viral and fungal 
infections. Some T-lymphocytes, the cytotoxic 
T-lymphocytes, directly kill cells infected with 
viruses and some other pathogens. 

 T-lymphocytes also help B-lymphocytes to 
develop into plasma cells and produce immuno-
globulins or antibodies. Patients with DGS may 
have poor T-cell production compared to their peers, 
and as a result, they may have an increased suscep-
tibility to viral, fungal, and bacterial infections [ 11 ]. 

 As with the other defects in DGS, the 
T-lymphocyte defect varies from patient to 
patient. In addition, small or mild defi ciencies 
may disappear with time [ 18 ]. In a very small 
number of patients with DGS, the thymus is com-
pletely absent, so the number of T-cells is severely 
low. These patients require prompt medical atten-
tion since they are severely immunocompro-
mised. The majority of patients with DGS have 
less severe or mild defi ciencies.  

18.2.6     Autoimmunity 

 The immunological alterations of 22q11.2DS 
may predispose to the onset of autoimmune man-
ifestations [ 19 ]. Autoimmune disease occurs 
when the immune system inappropriately attacks 
its own body. The most common autoimmune 
diseases in DGS are idiopathic thrombocytopenia 
purpura (antibodies against platelets) [ 20 ], auto-
immune hemolytic anemia (antibodies against 
red blood cells) [ 21 ], and autoimmune disease of 
the thyroid gland [ 22 ]. Further, it may    include 
juvenile rheumatoid arthritis [ 23 ], pancytopenia 
[ 24 ], autoimmune diabetes [ 25 ], vitiligo [ 26 ], and 
hepatitis [ 27 ].  

18.2.7     Miscellaneous Clinical 
Features 

 Patients with DGS may occasionally have a vari-
ety of other developmental abnormalities includ-
ing cleft palate, poor function of the palate, 
delayed acquisition of speech, and diffi culty in 
feeding and swallowing. In addition, some 
patients have learning disabilities, behavioral 
problems, psychiatric disorders, and hyperactiv-
ity. For example, schizophrenia occurs at a higher 
rate in patients with DGS compared to the rate in 
the general population [ 5 ]. 

 Salient features can be summarized using the 
mnemonic CATCH-22 to describe DiGeorge 
syndrome, with the 22 to remind one that the 
chromosomal abnormality is found on chromo-
some 22, as in the following:  C ardiac abnormal-
ity (especially tetralogy of Fallot),  A bnormal 
facies,  T hymic aplasia,  C left palate, and 
 H ypocalcemia/ H ypoparathyroidism [ 28 ].   

18.3     Diagnosis 

 The diagnosis of DGS is made on the basis of 
signs and symptoms that are present at birth, or 
develop soon after birth, including the typical 
facial features that, if you look carefully, are 
always present. Further, the dysmorphic facial 
appearance in an individual with a major  outfl ow 
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tract defect of the heart or a history of recurrent 
infection should raise suspicion. In infancy, 
hypocalcemia is a characteristic feature although 
this may be intermittent and has a tendency to 
resolve during the fi rst year. Immunological 
assessment relies on chest radiography to detect 
a thymic shadow. In some children, all of the 
classical features are present and the diagnosis 
of DGS is made very early. In other people, all 
of the different organs and tissues may not be 
affected, and the organs and tissues that are 
involved may be impaired to different degrees 
so that the presentation is more subtle and the 
diagnosis is not made until later on in life when 
a delay speech development, feeding problems, 
or autoimmune disease(s) are noted. In the past, 
the diagnosis of DGS was usually made when 
all the characteristic fi ndings described above 
were present without obtaining a confi rmatory 
genetic test. Unfortunately, this caused many 
mild cases to be missed. In recent years, the 
genetic test has been more widely used [ 29 ,  30 ]. 

 The clinical suspicion must be confi rmed on a 
blood sample with genetic testing that demon-
strate the microdeletion in the region 22q11.2: 
FISH (fl uorescent in situ hybridization) analysis, 
multiplex ligation-dependent probe amplifi cation 
(MLPA), and/or array-comparative genomic 
hybridization (array-CGH) [ 2 ]. In FISH one 
DNA probe from the 22q11.2 chromosomal 
region is used at a time. In MLPA testing, various 
probes for selected regions of 22q11.2 are used to 
identify microdeletions [ 31 ]. However, any fi nd-
ings should be further confi rmed by other tech-
niques (FISH or array-CGH) (Fig.  18.1 ). 
Array-CGH is a technique of molecular karyo-
typing and can identify the extent of the microde-
letion in the region of chromosome 22q11.2 
characterizing any missing genes. In case of a 
positive genetic test in a child, it is advisable to 
perform the same examination in the parents to 
evaluate the potential familial involvement of the 
disease. Some cases of DGS have defects in other 
chromosomes, notably a deletion in chromo-
somal region 10p14 [ 32 ]. They may have variant 
deletions of DGS that may be detectable on a 
research basis only or with other more advanced 
clinical testing methods.   

18.4     Genetics 

 The syndrome is caused by hemizygous deletion 
found on the long arm of one of the pair of chro-
mosomes 22, at a location designated q11.2. Of 
83 % of patients with a detectable deletion, 90 % 
had a similar 3 Mb deletion. Another 7 % of the 
patients with deletions had the same proximal 
breakpoint as those with the 3 Mb deletion but 
had an additional nested distal deletion endpoint 
resulting in a 1.5 Mb deletion [ 33 ] (Fig.  18.2 ).  

 Deletions of other sizes have also been identi-
fi ed in the interval in a small subset of patients 
[ 34 ,  35 ]. The deletion results from nonallelic 
homologous recombination, occurring during 
meiosis, and is mediated by low-copy repeats 
(LCR) on chromosome 22 [ 34 ]. The deletion of 
the 3 Mb region on 22q11.2 includes about 30 
genes, whereas the deletion of the 1.5 Mb region 
contains 24 genes. No correlation between the 
severity of the phenotype and the different size of 
the deletions has been documented [ 33 ]. 
However, while several studies have analyzed the 
phenotypic variability of the syndrome, extensive 
and conclusive intergenerational and intrafamil-
ial comparisons have not yet been reported. DGS 
can be inherited, but this is the case in the minor-
ity of newly diagnosed individuals. Only 5–10 % 
have inherited the 22q11.2 deletion from a parent 
with an autosomal dominant pattern, following 
standard Mendelian inheritance, so an individual 
carrying the deletion 22q11.2 has a 50 % (one in 
two) chance of passing it on to their offspring. 
Conversely, 90–95 % of cases have a de novo 
(new to the family) deletion of 22q11.2. 

 Recent studies have shown that the recombina-
tion rate in the 22q11.2 region in females was about 
1.6–1.7 times greater than that for males, suggest-
ing that for this region in the genome, enhanced 
meiotic recombination rates, as well as other 
22q11.2-specifi c features, could be responsible for 
the observed excess in maternal origin [ 36 ]. 

 To determine the molecular basis of DGS, 
several studies have used techniques of mouse 
genetics. The complete sequence of chromosome 
22 [ 37 ] and orthologous regions in the mouse 
have provided the tools for such efforts [ 37 ,  38 ]. 
For the identifi cation of candidate genes for 
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a

b

  Fig. 18.1    Array-CGH identifi ed a de novo microdeletion 
in 22q11.21 (arr 22q11.21 (19746363–19747209) × 1 dn) 
in a case ( a ), which had gone undetected by fl uorescence 

in situ hybridization (FISH) with the DiGeorge 
TBX1/22q13.3 combination probe ( b ) [ 62 ]       

DGS, nested deletions and duplications of the 
orthologous region on MMU16 were generated 
[ 39 – 42 ]. Mice that harbor a large 1.5 Mb dele-
tion, containing 124 genes and mimicking the 
nested 1.5 Mb deletion in humans, had reduced 

viability, conotruncal heart defects, and 
hypoparathyroidism. 

 Many of the tissues and structures affected in 
patients with DGS derive, during embryonic 
development, from the pharyngeal arches [ 43 ], 
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  Fig. 18.2    Schematic diagram showing the 22q11.2 deletions and some of the genes included in this region       

which are conserved among all vertebrate 
 organisms. Neural-crest cells migrate from a 
position adjacent to the neural tube and partici-
pate in the formation of both the pharyngeal 
arches and their derivatives. It has been hypothe-
sized that defects in neural-crest cells are respon-
sible for the characteristic features of DGS 
[ 44 – 47 ]. Neural-crest ablation generates mice 
with malformations that are similar to those in 
patients with DGS [ 48 – 50 ]. Therefore, a gene 
that is important for neural- crest cell function 
would be a candidate for DGS. 

 A BAC that harbored four human genes, 
GP1Bb, PNUTL1, TBX1, and WDR14, pro-
vided complete rescue in most mice [ 42 ], sug-
gesting that one of these four genes is responsible 
for the defects. One of the four genes in the 
BAC, TBX1, a member of the T-box-containing 
family of transcription- factor genes, is highly 
expressed in the pharyngeal arches during mouse 
embryonic development [ 51 ]. Tbx1 hemizygotes 
had mild cardiovascular defects but did not show 
reduced viability, whereas homozygotes had 
more severe defects. Tbx1 homozygosity was 
perinatally lethal, with thymus and parathyroid 
gland aplasia and major ear malformations. 
Homozygotes also showed cleft palate and trun-
cus arteriosus, a more severe conotruncal heart 
defect than that shown in the heterozygotes. 

Mice,  haploinsuffi cient for TBX1, share several 
features with humans carrying the homologous 
deletion and, in particular, structural cardiac 
anomalies [ 51 – 54 ]. On the basis of these studies, 
it was proposed that TBX1 in humans is a key 
gene in the etiology of DGS.  

18.5     Treatment 

 Therapy for DGS is aimed at correcting the 
defects in the affected organs or tissues. The ther-
apeutic approach varies according to the clinical 
manifestations of individual patients and depends 
on the nature of the various defects and their 
severity. The type and timing of cardiac treatment 
is evaluated based on the congenital heart abnor-
malities, and cardiac surgery is often required to 
improve the function of the heart [ 55 ]. Surgery 
can be performed before any immune defects are 
corrected. Indeed, it is important that the immune 
problems are identifi ed early as special precau-
tions are required regarding blood transfusion 
and immunization with live vaccines. The admin-
istration of vaccines that consist of purifi ed pro-
teins (tetanus, diphtheria, pertussis, hepatitis B, 
 Haemophilus infl uenzae , infl uenza, pneumococ-
cal) is recommended in all subjects; in fact, they 
are not harmful and can induce an antibody 
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response [ 56 ]. For patients with an immunological 
phenotype with a severity similar to that of 
patients with severe immunodefi ciency, however 
a rare event, the only experimental treatment 
showing promise is the transplantation of alloge-
neic [ 57 ], postnatal thymus tissue or alternatively 
the transplantation of hematopoietic cells from 
healthy donors. Indeed, thymus transplantation 
can be used to address the absence of the thymus 
in the rare, so-called “complete” DGS [ 58 ]. 
Immunologic care for patients with DGS includes 
monitoring the overall immune system including 
the numbers and function of T-lymphocytes. 

 Treatment of severe symptomatic hypocalce-
mia requires prompt administration of parenteral 
calcium, 10–15 mg/kg elemental calcium, 
infused slowly to avoid cardiac dysfunction [ 59 ]. 

 Asymptomatic hypocalcemia may be treated 
with oral calcium supplements, 75–100 mg/kg/day 
elemental calcium. Maintenance therapy is usually 
accomplished with 1,25-dihydroxy vitamin D, 
with or without calcium supplementation [ 60 ]. 

 Finally, the key issue is the early intervention 
speech therapy and psychomotor physiotherapy 
to limit the diffi culty of articulation and language 
delay and motor learning. It is important that a 
speech-language pathologist specializing in the 
evaluation of this assessment should participate 
in the patient’s care within the fi rst year of life. 
Many children need speech therapy to learn how 
to properly articulate sounds [ 61 ]. The correction 
of cleft palate and renal velopharyngeal can be 
performed by different specialists such as plastic 
surgeons, maxillofacial surgeons, and pediatric 
surgeons. The physiotherapy offered should be 
directed at the antigravity extensor muscles 
(especially the hamstring and paraspinal crural) 
in order to restore the physiological curves lost as 
a result of the disease.  

18.6     Expectations for Patients 
with DiGeorge Syndrome 

 DGS is a multisystem disorder and early diagno-
sis is important, and optimal management of 
patients with DGS requires a multidisciplinary 
approach to management. Each child, regardless 

of age, should have an echocardiogram, renal 
ultrasound scan, lymphocyte count and func-
tional assessment, and screening for hypocalce-
mia; their parents should have their karyotype 
checked. Each family should be offered a review 
by a clinical geneticist. Affected children should 
be under regular medical review from a commu-
nity pediatrician or general pediatrician who 
would be best placed to monitor developmental 
and behavioral aspects of this condition and to 
coordinate the wide-ranging medical care that 
these patients need. With regard to the risks for 
developing hypoparathyroidism, it is suggested 
that families with DGS be aware of the symp-
toms that might occur with hypocalcemia. Serum 
calcium determination should be considered at 
the time of diagnosis of DGS, when symptoms of 
hypocalcemia occur, prior to surgery, and during 
pregnancy. Finally, genetic investigation for DGS 
should be considered in patients with idiopathic 
hypoparathyroidism.     
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19.1             Introduction 

 Heterozygous mutations of  GATA3 , which 
encodes a dual zinc-fi nger transcription factor 
leading to haploinsuffi ciency, cause the autoso-
mal dominant hypoparathyroidism, deafness, and 
renal dysplasia (HDR) syndrome. The HDR phe-
notype is consistent with the expression pattern 
of  GATA3  during embryogenesis (see also 
Chap.   2    ). The spectrum of HDR-associated 
GATA3 mutations comprises complex chromo-
somal translocations, whole gene loss, missense, 
nonsense, frameshifting intragenic insertions and 
deletions, in-frame deletion, and splice site muta-
tions. Analysis of the effects of key missense 
mutations has revealed DNA- and protein- 
binding structure-function relationships of the 
GATA3 molecule. There is variability of the 
HDR phenotype with no apparent correlation 
with the underlying genetic defect, suggesting 
the infl uence of genetic modifi ers or epigenetic 
modifi cation. Clinical description of an increas-
ing number of HDR syndrome patients is reveal-
ing roles for GATA3 in tissues beyond the original 
triad. Mouse models have demonstrated the 
important roles of GATA3 in the embryonic 
development of the parathyroids, inner ear, and 

kidney and in parathyroid cell proliferation in the 
adult in response to hypocalcemia.  

19.2     Description of the Syndrome 
and Gene Discovery 

 The combined occurrence of familial hypopara-
thyroidism, nerve deafness, and nephrosis 
(OMIM #146255) was fi rst described in 1977 by 
Barakat [ 1 ] in two brothers with steroid-resistant 
progressive renal failure resulting in death at the 
ages of 5 and 8 years. Postmortem investigations 
revealed that the parathyroid glands were absent 
in one child and hypoplastic in the other. Similar 
fi ndings were described in male twins from 
another family [ 1 ]. In 1991, Shaw et al. [ 2 ] 
described four cases of autosomal recessive 
hypoparathyroidism with renal insuffi ciency, 
developmental delay, and lack of auditory 
responses. The children were the products of 
consanguineous marriages in three related Asian 
families, and all died within 15 months after 
birth. 

 Inheritance of hypoparathyroidism, deaf-
ness, and renal dysplasia (HDR) as an autoso-
mal dominant trait was fi rst reported in one 
family by Bilous in 1992 [ 3 ]. The patients, two 
brothers and the daughters of one of the broth-
ers, had asymptomatic hypocalcemia with 
undetectable or inappropriately normal serum 
concentrations of PTH. Mutation of the  PTH  
gene was excluded, and PTH infusion resulted 
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in normal brisk increases in plasma cAMP, 
indicating  unaffected sensitivity of the PTH 
receptor cAMP signaling pathway. The patients 
also had bilateral, symmetrical, sensorineural 
nonprogressive deafness involving all frequen-
cies. The renal abnormalities consisted mainly 
of bilateral cystic or dysplastic kidneys with 
abnormally compressed glomeruli and tubules 
leading, in some patients, to renal impairment. 
Cytogenetic analysis of this family revealed no 
detectable abnormalities [ 4 ]. 

 The gene responsible for the HDR syndrome 
was identifi ed as a result of the identifi cation of a 
subset of individuals with DiGeorge syndrome 
without a microdeletion or translocation involv-
ing chromosome 22q11 that is present in the 
majority of DiGeorge patients. In this small 
group of patients, there is evidence of deletion or 
aberration in chromosome 10p. First described 
by Elliot [ 5 ], more than 50 patients with a 
“DiGeorge-like” phenotype and a partial deletion 
of chromosome 10p have been reported in the lit-
erature (reviewed [ 6 ]). Analysis of the deletions 
in these patients allowed the delineation of two 
nonoverlapping regions on chromosome 10p that 
contribute separately to this phenotype. Terminal 
10p deletions (10p14–10pter) are associated with 
hypoparathyroidism, sensorineural deafness, and 
renal anomalies (HDR), whereas interstitial dele-
tions (10p13–14) are associated with heart 
defects and immunodefi ciency [ 6 – 10 ]. 
Construction of a 1.2 megabase pair (Mbp) yeast 
artifi cial chromosome (YAC), bacterial artifi cial 
chromosome (BAC), and P1-derived artifi cial 
chromosome (PAC) contig of the breakpoint 
region facilitated a molecular analysis by fl uores-
cent in situ hybridization (FISH) of the break-
point region in defi ning a 900kbp deletion in a 
patient who had a complex reciprocal, insertional 
translocation of chromosomes 10p and 8q [ 4 ]. An 
analysis in members of the family ascertained by 
Bilous [ 3 ], using polymorphic microsatellite 
markers from the 10p15 region, revealed a single 
allele at D10S1779 in the affected individuals, 
suggesting the absence of this marker on the 
other chromosome [ 4 ]. The presence of a micro-
deletion in the affected family members was con-
fi rmed by FISH analysis using PACs and BACs 

spanning the D10S1779 locus. The combined 
results from the patient with the reciprocal 
 insertional translocation and the original HDR 
family delineated a critical HDR deletion region 
about 200 kbp in extent. A search for candidate 
genes within this region identifi ed GATA3, which 
has an expression pattern that includes the para-
thyroid, the embryonic kidney, and the inner ear 
[ 11 ,  12 ]. FISH analysis using a cosmid clone 
containing the entire coding region of the GATA3 
gene showed that one GATA3 allele was deleted 
both in the translocation-deletion patient and in 
the affected family members from the original 
HDR family. Mutation analysis in HDR patients 
without cytogenetic abnormalities revealed 
GATA3 mutations that were shown to result in 
loss of GATA3 function and consequent haploin-
suffi ciency, confi rming the involvement of 
GATA3 in the human HDR syndrome [ 4 ]. 

 In addition to the cases of HDR associated 
with whole gene loss caused by chromosomal- 
scale deletions and insertions, 46 mutations of 
GATA3 have been described in 84 individuals 
(Table  19.1 ) [ 4 ,  8 ,  13 – 39 ]. These consist of 12 
missense mutations, six nonsense mutations, 
seven frameshifting intragenic insertions, 16 
frameshifting intragenic deletions, one in-frame 
intragenic deletion, and four splice site mutations. 
The majority of these mutations are unique to one 
family, but fi ve are recurrent: c.404_405insC [ 14 , 
 16 – 18 ], c.431delG [ 14 ,  19 ], c.431_432insG [ 20 , 
 21 ], c.829C>T [ 4 ,  14 ], and c.1099C>T [ 25 ,  28 ]. 
Examination of the exome variant server database 
reveals that the HDR- associated GATA3 muta-
tions are not seen in over 13,000 alleles studied 
and that 11 different missense polymorphisms of 
unknown functional signifi cance are observed at 
frequencies of less than 0.1 % [ 40 ].

   GATA3 belongs to a family of six related zinc- 
fi nger transcription factors that are involved in 
vertebrate embryonic development [ 41 – 43 ]. The 
mammalian GATA factor family can be subdi-
vided into two families based on their structures 
and expression patterns [ 44 ,  45 ]. Thus, GATA1, 
GATA2, and GATA3 are expressed in the hema-
topoietic cell lineages in which they control dif-
ferentiation and development of the erythroid, 
megakaryocyte, hematopoietic stem cell, and 
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T-cell lineages, whereas the structurally related 
proteins GATA4, GATA5, and GATA6 are 
expressed in overlapping patterns in the heart, 
gut, urogenital system, and smooth muscle cell 
lineages [ 44 ,  45 ].  

19.3     Structure-Function 
Relationships of HDR- 
Associated GATA3 Mutations 

 GATA3 is a 444-amino-acid protein which has 
two C4-type (Cys- X 2-Cys-X17-Cys- X 2-Cys 
(where X represents any amino acid residue)) 
zinc-fi nger DNA-binding domains that bind to 
the consensus motif 5′-(A/T)GATA(A/G)-3′ 
[ 46 ] – the C-terminal fi nger (ZnF2) is essential 
for DNA binding, whereas the N-terminal fi nger 
(ZnF1), which has a preference for GATC motifs 
[ 47 ], stabilizes this DNA binding and interacts 
with other zinc-fi nger proteins, such as the multi- 
type zinc-fi nger proteins friends of GATA (FOG) 
[ 48 – 50 ]. 

 The majority (>70 %) of HDR-associated 
mutations that do not involve whole gene loss are 
predicted to result in truncated forms of the 
GATA3 protein. Most result in the loss of both 
ZnF1 And ZnF2 or only the loss of ZnF2, while 
one nonsense mutation results in the loss of a 
stretch of basic amino acids immediately 
C-terminal to ZnF2 [ 25 ,  28 ,  33 ]. Less commonly 
C-terminal mutations result in a long C-terminal 
extension [ 14 ,  34 ]. All but one of the 12 missense 
mutations described to date are clustered within 
either ZnF1 or ZnF2, emphasizing the importance 
of these domains to GATA3 function (Fig.  19.1a ).  

 The functional consequences of HDR- 
associated mutations have been investigated by a 
variety of methods. An assessment of the subcel-
lular localization of GATA3 mutants using GFP- 
tagged GATA3 constructs revealed that mutations 
that resulted in protein truncation before ZnF1 
did not accumulate in the nucleus [ 25 ], fi ndings 
that are consistent with the nuclear localization 
signal (NLS) for GATA3 being contained within 
residues 249–311 that encompass ZnF1 [ 53 ,  54 ]. 
Interestingly, mutation of the fi rst zinc-chelating 
cysteine residue of ZnF1, Cys264Arg (equivalent 
to the HDR-associated ZnF2 mutation Cys318Arg 

[ 25 ]), has no effect upon nuclear localization of 
the mutant GATA3, suggesting that the GATA3 
NLS is intrinsic to the amino acid sequence rather 
than to either the tertiary structure of ZnF1 or its 
ability to bind DNA [ 54 ]. Electrophoretic mobil-
ity shift assays have demonstrated that mutations 
within GATA3 ZnF2 or C-terminally adjacent 
basic amino acids result in a loss of DNA binding 
(Fig.  19.1b ), whereas mutation of particular resi-
dues within ZnF1 altered DNA-binding affi nity 
[ 14 ,  25 ,  27 ]. Yeast two-hybrid and GST pull- 
down assays revealed that other ZnF1 mutations 
lead to a loss of interaction with FOG2 ZnFs [ 25 , 
 27 ]. These fi ndings are consistent with the three- 
dimensional model of GATA3 ZnF1, which has 
separate DNA- and protein-binding surfaces [ 14 , 
 25 ,  27 ,  51 ,  55 ] (Fig.  19.1c ). Finally, luciferase 
reporter assays have been used to demonstrate 
the functional consequences of mutations upon 
the transactivation ability of GATA3 [ 27 ,  31 ]. 

 Thus, it may be useful for an understanding of 
the structure-function relationships of GATA3 to 
divide the HDR-associated GATA3 mutations 
into three broad classes, which depend upon their 
functional consequences with respect to altera-
tions in DNA binding and interactions with 
cofactors such as FOG2. The fi rst class comprises 
the majority of mutations which result in trun-
cated or deleted forms of GATA3 lacking ZnF2, 
loss of the important C-terminal basic tail, or 
missense mutations in ZnF2 resulting in a loss of 
DNA binding [ 4 ,  13 – 16 ,  18 ,  19 ,  21 – 26 ,  28 ,  30 –
 34 ] (Fig.  19.1b ). The second class is defi ned by a 
loss of DNA-binding affi nity and is represented 
by one missense mutation, Arg276Pro, in ZnF1 
[ 29 ]. This mutant GATA3 binds to DNA but with 
a reduced affi nity such that it rapidly dissociates 
from the bound DNA in EMSA dissociation 
assays. The crystallographic study of GATA3 
zinc fi ngers bound to DNA confi rms that Arg276 
is involved in binding DNA and reveals more 
specifi cally that hydrogen bonds between its gua-
nidinium group and guanine lead to specifi c rec-
ognition of the base-pair identity of the GATA 
motif [ 51 ] (Fig.  19.1c ). Interestingly, the crystal 
structure reveals that, in addition to binding 
GATA or GATC motifs in palindromic GATA 
sites, ZnF1 residues may also stabilize binding of 
GATA3 to DNA by interaction with the stretch of 
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basic residues C-terminal to ZnF2 [ 51 ]. An 
Arg262Gly mutation may also belong to this 
class. It has been shown to signifi cantly diminish 
the transactivation function of GATA3 [ 21 ] and 

to form a hydrogen bond with DNA that would 
be lost on mutation to glycine [ 51 ]. The third 
class of mutation is characterized by normal 
DNA binding and affi nity and is represented by 

a

b c

  Fig. 19.1    ( a ) Schematic representation of the clustering 
of HDR-associated  GATA3  missense mutations in the 
zinc- fi nger (ZnF) domains and their functional conse-
quences. The ZnF domains consist of a C-X 2 -C-X 17 -C- 
X 2      -C consensus sequence, where X represents any 
amino acid. The zinc ion coordinates with four cysteine 
residues. The location of the missense mutations is indi-
cated by arrows. Missense mutations which have been 
shown to affect DNA binding are shown in red (C318R, 
N320K, C321S [ 25 ,  31 ]), to affect DNA-binding stabil-
ity in orange (R276P [ 29 ]), to affect interaction with 
FOG2 in blue (W275R [ 25 ,  28 ]), to affect DNA binding 
and interaction with FOG2 in purple (T272I [ 27 ]), to 
reduce transactivation activity in green (R262G, C318S 
[ 21 ]), and to affect neither DNA binding nor stability of 
binding in yellow (L348R [ 14 ]). Mutations in which 
functionality has not been assessed are left uncolored 
(W275L, C318S, C342Y, R353S [ 18 ,  21 ,  22 ,  32 ]). ( b ) 
Three-dimensional model of the human GATA3 ZnF2 
showing clustering of HDR-associated missense GATA3 

mutations around the zinc ion based on a structure of 
GATA3 bound to a 20 mer palindromic GATA site, 
AATGTC CATC T GATA AGACG (Protein Data Bank 
4HCA [ 51 ]). Mutation of the cysteine residues (Cys318, 
Cys321, and Cys342) directly results in loss of coordina-
tion of the zinc ion, while mutation of Asn320 will likely 
result in structural changes affecting its binding. ( c ) 
Three-dimensional model of the human GATA3 ZnF1 
showing important hydrogen bonds between residues 
and DNA. The residues Thr272, Trp275, and Arg276, 
missense mutations of which cause HDR, all lie in close 
proximity to one another. However, while Arg276 forms 
hydrogen bonds with the DNA and is involved in specifi c 
recognition of the GATA motif, Trp275 faces away from 
the DNA and can interact with FOG2 [ 25 ]. Loss of 
hydrogen bonds between Arg276 and Asn286 and 
between Thr272 and Asn286 and Leu274 will result in 
changes in the structure affecting DNA binding and/or 
protein interaction [ 27 ,  29 ]. Hydrogen bonds are shown 
as black dashed lines [ 52 ]       
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three HDR-associated missense mutations, 
Trp275Arg, Trp275Leu, and Leu348Arg [ 14 ,  18 , 
 25 ,  28 ]. The Trp275Arg GATA3 mutant has been 
shown to result in a loss of interaction with FOG2 
zinc fi ngers 1, 5, and 8 [ 25 ]. Such mutations may 
interfere with the long-range control of gene 
expression that GATA and FOG proteins mediate 
by facilitating chromosome looping, bringing 
distant enhancers and promoters into close 
 proximity [ 56 ,  57 ]. The Leu348 residue lies six 
residues C-terminal to ZnF2 at the end of an 
α-helix linking ZnF2 and the C-terminal basic 
domain. ZnF2 binds to DNA in the major groove, 
whereas the C-terminal basic domain inserts 
deeply into the DNA minor groove [ 51 ,  58 ], and 
mutation from a nonpolar leucine residue to the 
larger polar arginine residue may have been pre-
dicted to signifi cantly affect DNA binding. 
Indeed, the residues which fl ank Leu348, Lys347, 
and His349 both form hydrogen bonds with the 
bound DNA, and the Leu348 side chain may lie 
away from the DNA-binding surface [ 51 ]. 

 That this broad classifi cation of mutations 
may be too simplistic is shown by a mutation that 
has characteristics of more than one class. Thus, 
mutation of Thr272 to Leu causes not a loss, but 
a reduction in DNA binding that is nonetheless 
stable, a loss of interaction with FOG2 zinc fi n-
gers, and a reduction in transactivation that is 
consistent with the degree of the reduction in 
DNA binding [ 27 ]. It should be noted that GATA3 
mutations are likely to have effects beyond the 
interactions with FOG2 as GATA3 has also been 
shown to interact with other proteins including 
GATA1, GATA2 [ 59 ,  60 ], smad3 [ 61 ], sp1 [ 62 ], 
EKLF [ 62 ], RBTN2 [ 63 ], menin [ 64 ], MTA-2 
[ 65 ], IRX5 [ 66 ], and BRCA1 [ 67 ]. GATA2 [ 68 ], 
smad3 [ 69 ], and RBTN2 [ 69 ] are expressed in the 
kidney, whereas SP1 and menin are expressed in 
both the kidney and parathyroids [ 70 – 72 ].  

19.4     Genotype-Phenotype 
Relationships of HDR- 
Associated GATA3 Mutations 

 An examination of the spectrum of HDR- 
associated GATA3 mutations shows that there is 
both great intra- and interfamilial variability of 

the HDR phenotype with each proband and fam-
ily generally having its own unique mutation, and 
there appears to be no correlation with the under-
lying genetic defect and the phenotypic variation. 
Studies have demonstrated that more than 90 % 
of patients with at least two of the defi ning 
 clinical features of HDR syndrome—hypopara-
thyroidism, deafness, or renal anomalies— har-
bor a GATA3 mutation [ 14 ]. The penetrance of 
all three clinical features has been investigated in 
87 patients (Table  19.1 )—of these 54 (62.1 %) 
exhibit the complete clinical triad (HDR), 25 
patients (28.7 %) have hypoparathyroidism and 
deafness (HD), 1 patient (1.2 %) has hypopara-
thyroidism and renal anomalies, 3 (3.4 %) 
patients have deafness and renal anomalies (DR), 
3 patients (3.4 %) have isolated deafness, and 1 
(1.2 %) has isolated hypoparathyroidism. Thus, 
deafness is the most highly penetrant feature. The 
cases in which only one feature is observed occur 
in families in which other family members have 
other features further emphasizing the pheno-
typic variability. However, in a study of patients 
with isolated hypoparathyroidism, no  GATA3  
mutations were found [ 14 ], and no studies have 
been performed in patients with nonsyndromic 
deafness or isolated renal dysplasia given the 
large number of alternative genes which are 
known to cause these disorders. 

 Some of those HDR patients without a GATA3 
mutation of the coding region and that appear to 
be cytogenetically normal, who nonetheless 
appear indistinguishable phenotypically from 
those with a GATA3 mutation [ 4 ,  14 ], may harbor 
mutations in the regulatory sequences fl anking the 
GATA3 gene. These regulatory elements are 
located at substantial distances both upstream and 
downstream of the gene [ 73 – 75 ]. Alternatively, 
these patients may represent genetic heterogene-
ity in HDR with mutations in other genes. 

 The variability in the penetrance of GATA3 
mutation-associated characteristics is exempli-
fi ed by two unrelated families from Japan and 
Britain who had an identical Arg367X mutation 
[ 25 ,  28 ]. Thus, the Japanese patients had hypo-
parathyroidism and renal abnormalities but no 
deafness [ 28 ], whereas the British patient had 
hypoparathyroidism and deafness but no renal 
abnormalities [ 25 ]. Furthermore, even within 
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families with patients harboring identical GATA3 
mutations, there appears to be a variable expres-
sion of the triad [ 4 ,  14 ,  22 ,  25 ,  28 ] 

 The severity of the HDR phenotype is vari-
able, with the greatest variation reported for the 
development of kidney defects. Some GATA3 
mutations, such as Cys318Arg [ 14 ] which 
 disrupts zinc ion coordination and causes a com-
plete loss of GATA3 function, are associated 
with abnormalities of the parathyroids, kidneys, 
and hearing. However, a similar severity of effect 
is also found in patients with a GATA3 Thr272Ile 
mutation, which retains  approximately 30 % of 
the wild-type function [ 27 ]. These fi ndings sug-
gest that there is a critical threshold of GATA3 
essential for parathyroid, otic, and renal devel-
opment. Indeed, a study of the effects of GATA3 
dosage on metanephrogenesis [ 75 ] demonstrated 
that at least 70 % of diploid GATA3 levels are 
required to restore renal development in mice. 
Thus, any residual level of activity that mutant 
GATA3 molecules retain is unlikely to be suffi -
cient to reach this threshold and prevent hypo-
parathyroidism, deafness, or renal defi ciency. 

 There is a wide variability in the presentation 
of hypoparathyroidism in HDR patients, ranging 
from asymptomatic hypocalcemia to paresthe-
sias, muscular aching, and tetany, with hypocal-
cemia ranging from low to normal and serum 
PTH levels ranging from undetectable to slightly 
elevated. The clinical feature of early-onset sen-
sorineural deafness is the most completely pen-
etrant aspect of the HDR syndrome. The deafness 
is, most often, bilateral and symmetrical, 
involves all frequencies, and is more severe at 
higher frequencies, with the severity ranging 
from moderate to severe (40–105 dB), necessi-
tating the use of hearing aids [ 4 ,  17 ]. The renal 
phenotype displayed in patients with HDR syn-
drome shows the greatest variation, even in the 
same family, with no detectable anomalies in 
some [ 4 ,  14 ,  16 ,  20 – 22 ,  24 ,  25 ,  28 ,  29 ,  33 ,  36 , 
 37 ] and renal agenesis, renal hypoplasia, renal 
dysplasia, multicystic kidneys, or vesicoureteric 
refl ux in others often leading to end-stage renal 
failure. Additional renal phenotypes observed 
include hypomagnesemia [ 13 ] and nephrocalci-
nosis with or without detected distal renal tubu-
lar acidosis [ 21 ,  30 ,  76 ,  77 ].  

19.5     Additional Phenotypic 
Characteristics of HDR 
Syndrome Patients 

 With the description of a growing number of 
HDR syndrome patients, a number of phenotypic 
characteristics in addition to hypoparathyroidism, 
deafness, or renal anomalies have been described 
in a small but signifi cant proportion of patients 
(Table  19.1 ). These include  malformations in 
the female genital tract [ 4 ,  19 ,  21 ,  31 ,  32 ], basal 
ganglia calcifi cation [ 8 ,  15 ,  22 ,  28 ,  36 ], intracra-
nial calcifi cation [ 22 ,  24 ,  33 ], moderate mental 
retardation with or without recurrent cerebral 
infarction [ 8 ,  29 ], seizures or epilepsy [ 16 ,  21 ], 
polycystic ovaries [ 29 ,  32 ], pyloric stenosis [ 28 ], 
diffuse goiter [ 26 ], and diabetes mellitus [ 34 ],  

19.6     The Gata3 Heterozygous 
Knockout Mouse as a Model 
of Human HDR 

 Homozygous disruption of  Gata3  in mice causes 
severe deformities in the brain and spinal cord, 
fetal liver hematopoiesis with a total block of 
T-cell differentiation, and massive internal bleed-
ing, resulting in mid-gestation embryonic lethal-
ity (E11.5–E12.5) [ 42 ]. Partial pharmacological 
rescue of mutant mice (to E16.5) by feeding cat-
echol intermediates to the pregnant dams reveals 
that embryonic lethality is partially due to a nor-
adrenaline defi ciency of the sympathetic nervous 
system [ 78 ]. These rescued embryos reveal later- 
onset defects that more closely mimic the human 
pathology with cephalic neural crest abnormali-
ties, thymic hypoplasia, renal hypoplasia, a fail-
ure to form the metanephros, and an aberrant 
elongation of the nephric duct [ 79 ,  80 ]. 

 Although heterozygous  Gata3  knockout mice 
were initially reported to be normal with a nor-
mal life span and fertility [ 42 ], careful reexami-
nation of these mice revealed the presence of 
hypoparathyroidism and sensorineural deafness 
[ 81 ,  82 ].  Gata3 -null mice lack a parathyroid- 
thymus primordium, and in heterozygous  Gata3  
knockout mice, it is smaller [ 81 ]. Although nor-
mocalcemic, when challenged with a low- 
calcium/low-vitamin D diet, the parathyroids do 
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not enlarge or increase cellular proliferation rate 
in response to the induced hypocalcemia, result-
ing in an inadequate increase in plasma PTH 
[ 81 ], consistent with the observed hypocalcemia 
that occurs in HDR patients. The role of 
GATA3 in parathyroid development and func-
tion appears to be maintenance of the differentia-
tion and survival of parathyroid and thymus 
progenitor cells, at least in part by the transcrip-
tional regulation of  GCMB  ( Gcm2  in mouse) by 
GATA3 [ 81 ]. 

 The hearing loss in  Gata3  heterozygous 
mutant mice is peripheral and is associated with 
cochlear abnormalities, which consist of a sig-
nifi cant progressive morphological degeneration 
that starts with the outer hair cells at the apex and 
ultimately affects all the inner hair cells, pillar 
cells, and nerve fi bers [ 82 ,  83 ]. These studies 
have shown that hearing loss in  Gata3  
 heterozygous mutant mice is detectable in the 
early postnatal period with outer hair cells of the 
cochlea showing early signs of cell degeneration 
in affected mice as young as 1–2 months and pro-
gressing through adulthood [ 82 ,  83 ].  

19.7     GATA3 as a Determinant 
of Serum Calcium Levels 

 Apart from  CASR , the genes associated with the 
determination of serum calcium concentration 
are largely unknown. The potential involvement 
of GATA3 was suggested by a recent genome- 
wide association study (GWAS) of 39,400 indi-
viduals which identifi ed six loci, in addition to 
 CASR , that are in association with serum calcium 
[ 84 ]. One of these, rs10491003, lies within a long 
noncoding RNA upstream of GATA3 and may 
infl uence the expression of GATA3. In the tibia, 
 CASR  was markedly upregulated in response to a 
low-calcium diet, as was  GATA3 . In parathyroid, 
alterations in GATA3 expression have been dem-
onstrated to affect parathyroid cell proliferation 
in response to hypocalcemia and thus the maxi-
mum PTH secretion capacity of the gland [ 81 ]. 
GATA3 has been shown to regulate  GCMB  
expression [ 81 ] that, in turn, may regulate expres-
sion of  CASR  in the parathyroid [ 85 ].  

    Conclusion 

 In conclusion, GATA3 haploinsuffi ciency 
causes the HDR syndrome. Mutations of 
GATA3 have not been found in a small, but 
signifi cant, proportion of HDR patients, sug-
gesting the involvement of other genes or dis-
tant enhancer elements in the etiology of the 
disease. The advent of next- generation 
sequencing of HDR patients will undoubtedly 
help to resolve this. Description of further 
HDR patients will allow further defi nition of 
the spectrum of developmental abnormalities 
associated with this syndrome and additional 
dissection of the structure-function relation-
ships of the GATA3 transcription factor.     
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20.1             Introduction 

 In 1966, Kenny and Linarelli described a mother 
and son who had severe short stature, thin long 
bones with narrow diaphyses, and episodes of 
hypocalcemia [ 1 ]. In 1967, Caffey described the 
radiographic features of the same patients [ 2 ]. 
The condition has since been known as Kenny- 
Caffey syndrome (KCS [MIM127000]) (see also 
Chap.   15    ). The inheritance of this disorder is 
autosomal dominant, and it was recently recog-
nized to be allelic (i.e., caused by mutations in 
the same gene) to a lethal disorder, osteocranio-
stenosis (OCS [MIM 602361]), characterized by 
gracile bones with thin diaphyses, premature clo-
sure of basal cranial sutures, and microphthalmia 
[ 3 ,  4 ]. Hypocalcemia due to hypoparathyroidism 
has been reported among patients with OCS who 
survived the perinatal period. 

 The syndrome of hypoparathyroidism, retar-
dation (of growth and mental development) with 
dysmorphic features, HRD syndrome, also known 
as Sanjad-Sakati syndrome has been described by 
Sanjad and Sakati in 1988 in an abstract followed 
by a detailed report 3 years later [ 5 ]. This syn-
drome has been described mostly in Arab patients 
and is inherited by the autosomal recessive mode. 
HRD syndrome shares several important clinical 
features with KCS, a fact that has caused some 
confusion in the literature. This syndrome has 
been classifi ed by some authors as autosomal 
recessive KCS or KCS type 1 in contrast to KCS 
type 2, the autosomal dominant form. 

 The identifi cation of the causative mutations 
for KCS/OCS and the HRD syndrome has clearly 
confi rmed that KCS/OCS and the HRD syn-
drome are separate clinical and genetic disorders. 
KCS/OCS is caused by heterozygous mutations 
in the  FAM111A  gene, while HRD syndrome is 
caused by homozygous or compound heterozy-
gous mutations in the  TBCE  gene as will be sub-
sequently described. 

 The following clinical description of the clini-
cal picture of KCS/OCS in this chapter will rely 
upon genetically diagnosed patients or sporadic 
patients from non-consanguineous, non-Arab 
families. Most of the currently described HRD 
patients were of Arab origin. Many were born to 
consanguineous families and carry a common 
single homozygous mutation in the TBCE gene.  
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20.2     HRD/Sanjad-Sakati 
Syndrome 

20.2.1     Epidemiology 

 Most genetically diagnosed HRD patients have 
been of Middle Eastern (Arab) origin. In Saudi 
Arabia, estimated incidence varies from 1:40,000 
to 1:100,000 live births. In Kuwait, the estimated 
incidence of the syndrome is 7–18 per 100,000 
live births [ 6 ]. Based on the number of new cases 
and the total live births over the past 10 years, we 
estimated the incidence of HRD syndrome at 1 
per 10,000 live births among the Bedouin in 
southern Israel (unpublished data).  

20.2.2     Clinical Phenotype 

 The early literature on the HRD syndrome has 
been reviewed previously [ 7 ]. 

 Growth retardation is seen in most of the 
patients. Both prenatal and postnatal growths are 
impaired [ 6 – 9 ]. In a recent study, all of the 
reported children suffered from intrauterine 
growth restriction (IUGR) with a resultant low 
birth weight and short birth length. Mean birth 
weight was 2,100 ± 200 g (−2.2 ± 0.25 SDS) in 
boys and 1970 ± 450 g (−2.6 ± 0.7 SDS) in girls. 
Mean birth length was 44.7 ± 3.3 cm (−5.1 ± 1.27 
SDS) in boys and 44.6 ± 2.75 cm (−4.7 ± 1.7 SDS) 
in girls. Analysis of growth in those patients by 
the infancy-childhood-puberty (ICP) growth 
model revealed that during the fi rst year of life, 
linear growth followed a path of growth that, 
although very short, coincided with the fi rst com-
ponent (I) of the ICP model. However, further 
decrease in linear growth was observed during 
the second year of life. Growth analysis of the 
path of growth by the ICP model disclosed a 
markedly delayed appearance of the childhood 
component that normally occurs between 6 and 
12 months of age, when the infancy component 
markedly decelerates. In HRD patients, the 
appearance of the C component occurred at the 
age of 17.6 ± 5.6 months in boys and 
19.7 ± 6 months in girls. The latest available 
growth measurements, expressed as weight and 

height SDs, in boys were −13.1 ± 3.8 and −8.7 ± 1, 
respectively. In girls, the latest available weight 
and height SDs were −16.6 ± 4.4 and −9.5 ± 2.4, 
respectively. BMI SDs or weight for length SDSs 
(in patients younger than 3 years) was below 
−2 in almost all the patients [ 10 ]. 

 Global developmental delay is a universal fea-
ture of the syndrome. Although, many patients 
have moderate to severe mental retardation, some 
had mild to moderate mental retardation [ 7 – 9 ]. 
Speech skills have been reported as variable. 
Some patients’ speech improved after attending 
speech therapy [ 9 ]. Several characteristic dys-
morphic features have been described in patients 
with HRD syndrome (Fig.  20.1 ). Microcephaly, 
deep-set eyes, external ear malformations, 
depressed nasal bridge, thin upper lip, hooked 
small nose, micrognathia, and small hands and 
feet are consistent features of the syndrome. 
Prominent forehead, microphthalmia, and long 
philtrum have been reported as well [ 7 – 9 ]. 
Cryptorchidism and micropenis have been 
reported in some of the male patients. No fertility 
has been reported in patients with HRD. Dental 
abnormalities include microdontia and oligodon-
tia, delayed teeth eruption, enamel hypoplasia, 
and severely carious teeth [ 7 ,  11 ,  12 ].  

 HRD patients display a variety of ocular fi nd-
ings, including microphthalmia, microcornea, 
keratitis, errors of refraction, strabismus, and 
retinal vascular tortuosity [ 13 ,  14 ]. Seizures due 
to hypocalcemia may appear as early as in the 
neonatal period and are a common feature of the 
syndrome [ 7 ,  9 ]. Signifi cant neurological dis-
abilities are rare [ 9 ]. 

 The patients are susceptible to severe infec-
tions including life - threatening pneumococcal 
infections especially during infancy. The syn-
drome carries a high risk for mortality with a 
reported rate ranging between 25 and 55 % dur-
ing infancy and early childhood. Recurrent 
infections and hypocalcemic seizures are the 
main reported causes of death in some infants [ 7 , 
 10 ]. Chronic intestinal pseudo-obstruction has 
been also implicated as a cause of mortality in a 
child with the HRD syndrome [ 15 ]. Patients 
have been described as late as in their third 
decade of life.  
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20.2.3     Biochemical and Radiological 
Findings 

 Hypocalcemia and hyperphosphatemia due to 
congenital permanent hypoparathyroidism are 
the hallmarks of HRD syndrome. Serum parathy-
roid hormone (PTH) levels are undetectable to 
very low in most of the patients [ 5 ,  6 ,  8 ,  10 ,  16 –
 20 ]. Surprisingly, high PTH levels have been 
reported in two patients [ 17 ,  18 ]. Postmortem 
examinations of HRD patients have been seldom 
reported, but the absence of the parathyroid 
glands had been documented in one of the 
author’s patient. Increased liver transaminases 
have been found in some patients without pro-
gression to chronic liver disease [ 17 ]. 

 Partial growth hormone defi ciency (GH <10 ng/
ml) has been found following stimulation tests in 

several patients [ 10 ,  17 ,  21 – 23 ]. Low serum IGF-I 
concentrations were found in all patients investi-
gated in two studies [ 10 ,  22 ]. Normal immuno-
globulin levels were found in all but one of the 
patients tested [ 7 ]. Normal T-cell responses to 
mitogens were observed in about ten patients 
studied [ 5 ,  16 ,  23 ], but reduced numbers of all 
T-cells subclasses were found in fi ve patients 
reported by Richardson and Kirk 1990 [ 17 ]. 
Chemotactic migration, random migration, and 
phagocytosis of PMN from HRD patients were 
signifi cantly lower than in PMN from healthy 
controls. Functional hyposplenism has been dem-
onstrated in most of the studied patients [ 10 ]. 

 Delayed bone age and osteopenia are common 
fi ndings [ 17 ,  23 ], while medullary stenosis of the 
long bones, a common fi nding in the KCS syn-
drome, is infrequently observed in HRD patients 

a b

  Fig. 20.1    HRD syndrome. ( a ) Facial dysmorphism. Note 
prominent forehead, small deep-set eyes, and depressed 
nasal bridge (Reproduced with permission from 

Hershkovitz et al. [ 7 ]) ( b ) A 14 years old patient with 
severe growth retardation and lack of pubertal signs       
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[ 8 ,  9 ]. Cranial MRI showed severe hypoplasia of 
the anterior pituitary and corpus callosum, with 
decreased white matter bulk in one study [ 22 ].  

20.2.4     Diagnosis 

 The clinical signs of severe growth and mental 
retardation, typical dysmorphism, and congenital 
hypoparathyroidism are highly suggestive of the 
HRD syndrome, especially in Arab patients. The 
HRD syndrome should be differentiated from 
the KCS (see Table  20.1 ), the CHARGE associa-
tion (coloboma, heart anomaly, choanal atresia, 
retardation, genital and ear anomalies) and 
DiGeorge’s syndrome.

20.2.5        Therapy 

 Early recognition and therapy of hypocalcemia is 
important. Humanized milk formulas containing 
low phosphorous, supplements with calcium salts, 
and administration of vitamin D analogs are effec-
tive in keeping serum calcium at the required low 
normal range. Hypercalciuria, which may cause 
nephrocalcinosis, should be treated by thiazides. 
Recombinant human PTH(1–34) may offer an 
advantage in the treatment of these patients, but it 
has not been tried on HRD patients. Since the rec-
ognition of the susceptibility of patients with HRD 
to serious bacterial infections, we recommend on 
daily prophylactic antibiotic therapy and prudent 
vaccination against pneumococci.   

   Table 20.1    Comparison between HRD/Sanjad-Sakati and Kenny-Caffey syndromes   

 Feature  HRD/Sanjad-Sakati syndrome  Kenny-Caffey syndrome 

 Mode of inheritance  Autosomal recessive  Autosomal dominant 
 Ethnicity  Mostly Arabs  Pan ethnic 
 Growth  IUGR in most patients  IUGR in less than 50 % 

 Extreme short stature  Short stature 
 Mental development  Mental retardation  Normal mentality in most of the 

patients 
 Dysmorphic features  Microcephaly  Relative macrocephaly 

 Deep-set eyes  Delayed closure of the anterior 
fontanel 

 Micrognathia  Deep-set eyes 
 Dental anomalies  Micrognathia 
 Small hands and feet  Dental anomalies 

 Hypoparathyroidism  Universal  Common with variable age of onset 
 Neonatal or early infantile onset 

 Other clinical complications  Susceptibility to severe bacterial 
infections 

 None in most patients 

 High mortality  Fertility has been reported in females 
only.  Probably infertile 

 Laboratory fi ndings  Hyposplenism  Hypomagnesemia 
 Impaired PMN chemotaxis and 
phagocytosis 

 Impaired T-cell function 

 Normal cell-mediated immunity 
 Growth hormone defi ciency 

 Radiologic fi ndings  Severe hypoplasia of anterior 
pituitary and corpus callosum. 

 Medullary stenosis and cortical 
thickening of the long bones 

 Molecular abnormality  Homozygous mutation in the 
tubulin-specifi c chaperone E gene 
(TBCE) 

 Heterozygous mutation in the 
FAM111A gene 
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20.3     KCS/OCS 

 KCS is a rare disorder, and sporadic cases have 
been reported from various parts of the world in 
different ethnic groups [ 1 ,  24 – 30 ]. 

20.3.1     Clinical Phenotype 

 Larsen, reviewing 20 previously described 
patients, has reported short stature in most of 
them. The attained adult height was between 
121 and 155 cm, in contrast to the extreme 
dwarfi sm observed in adult HRD patients 
(around 100 cm). Intrauterine growth restric-
tion was observed in less than half of the 
patients unlike the 95–97 % presence of IUGR 
in HRD syndrome [ 26 ]. 

 Most of the patients exhibited delayed 
closure of the anterior fontanel [ 26 ,  30 ]. The 
patients had typical facial appearance, includ-
ing prominent forehead, deep-set eyes, beaked 
nose, thin upper lip, micrognathia, and external 
ear abnormalities [ 26 ,  28 – 30 ]. Microcephaly 
is a common feature in the HRD syndrome, 
while normal head circumference or even 
 macrocephaly characterizes patients with KCS 
[ 12 ,  27 ,  28 ]. 

 Most reported KCS patients had normal mental 
development [ 12 ,  26 ,  29 ,  30 ]. Ophthalmic abnor-
malities are common in patients with KCS. The 
various fi ndings include reduced visual acuity; 
hyperopia; myopia; small corneal diameter; ele-
vated, blurred margin of the optic nerve; tortuous 
blood vessels; glaucoma; and strabismus [ 12 ,  26 , 
 29 ,  30 ]. Defective dentition, accompanied by oli-
godontia and severe carries is very common in 
the KCS [ 12 ,  26 ,  29 ]. 

 Mother-to-son transmission was reported in 
the original description of the disorder [ 1 ] and 
some other women with KCS were reported to 
have unaffected children [ 26 ]. No cases of 
paternity were reported among males with the 
KCS. Micropenis, hypospadias, and small testes 
have been reported in some patients [ 26 ,  28 , 
 29 ]. Except for hypocalcemia most of the 
patients with KCS do not suffer from life-threat-
ening complications.  

20.3.2     Biochemical and Radiological 
Findings 

 Hypoparathyroidism is often found among KCS 
patients but is not a universal phenomenon as it is 
in the HRD syndrome. The age of onset of hypo-
calcemia is variable, ranging from the neonatal 
period to adulthood [ 12 ,  26 ]. Interestingly, some 
patients have hypomagnesemia [ 30 ]. Absence of 
the parathyroid glands has been reported in a 
patient with the KCS [ 31 ]. Medullary stenosis 
with cortical thickening of the long bones is a 
hallmark feature of KCS, while infrequently 
described in HRD patients [ 2 ,  26 ,  27 ,  29 ,  30 ]. 
Delayed bone age is a common fi nding [ 26 ].  

20.3.3     Osteocraniostenosis (OCS) 

 Osteocraniostenosis was delineated by Verloes 
et al. [ 3 ]. It has been recently recognized as allelic to 
the KCS. Osteocraniostenosis was lethal in the few 
reported cases in the neonatal period, but survival 
to 21 months of age has been reported [ 29 ,  32 ]. It is 
characterized by IUGR; spleen hypoplasia or apla-
sia; a striking bone dysplasia consisting of thin ribs 
and long, thin, straight, or curved tubular diaphyses, 
fl ared metaphyses, hypoplastic distal phalanges, and 
drumstick metacarpals; marked cranial hypominer-
alization, leading to wide fontanels and cloverleaf 
head shape; and intrauterine fractures [ 3 ,  4 ]. The 
facial appearance was variable, from mild anomaly 
to a striking combination of midface hypoplasia, 
short, upturned nose, short philtrum, and inverted 
V-shaped mouth. Hypocalcemia and hypoparathy-
roidism are recognized in surviving neonates [ 29 ].   

20.4     Molecular Genetics 
and Pathogenesis of HRD 
and KCS/OCS Syndromes 

20.4.1     HRD 

20.4.1.1     Tubulin Folding and Assembly 
 Microtubules are polymerized from α/β-tubulin 
heterodimers [ 33 ]. Newly synthesized α-and 
β-tubulin polypeptides undergo a sequence of 
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folding steps catalyzed by chaperones. Initially, 
the tubulins are associated with the hexameric 
prefoldin complex that passes them on to the 
cytosolic chaperonin complex [ 34 ], and they are 
then further processed by tubulin-folding cofac-
tors (the standard now seems to be TBCA-E or 
just cofactor) [ 35 ,  36 ]. In vitro folding assays 
suggest that in mammals α-tubulin binds to 
cofactors B and E, whereas β-tubulin binds to 
cofactors A and D. α-tubulin/TBCE and 
β-tubulin/TBCD are bound by TBCC, forming a 
super complex from which α/β-tubulin heterodi-
mers are released by GTP hydrolysis of β-tubulin. 
The small G-protein Arl2 appears to play a 
 regulatory role, binding to and sequestering 
cofactor D [ 37 ]. Budding yeast mutants lacking 
tubulin cofactor homologs have only conditional 
effects and are normally not lethal ([ 38 ] and ref-
erences therein). In contrast, null mutations in 
fi ssion yeast  TFC  genes cause abnormal cell 
shapes and mostly result in lethality [ 39 – 43 ]. 
Genetic analysis of tubulin cofactor function in 
fi ssion yeast has led to a different model of tubu-
lin folding: an essential pathway of α-tubulin 
folding involves, successively, cofactors B, E, 
and D, with the Arl2 homolog acting upstream 
of D, whereas a nonessential pathway of 
β-tubulin folding involves cofactor A passing 
β-tubulin on to cofactor D to associate with 
α-tubulin [ 40 – 42 ]. Results in the plant 
 Arabidopsis  suggest that cofactors C–E and Arl2 
are stringently required for microtubule forma-
tion, similar to the requirements for in vitro 
assays using purifi ed mammalian cofactors [ 44 ]. 
 PFI , the ortholog of the vertebrate  Tbce  in 
 Arabidopsis , is necessary for continuous micro-
tubule organization, mitotic division, and cytoki-
nesis but do not mediate cell cycle progression 
[ 45 ,  46 ]. Vesicle traffi cking to the division plane 
during cytokinesis but not to the cell surface dur-
ing interphase was impaired [ 45 ]. 

 Coincident with the discovery that mutations 
in  TBCE  cause recessive HRD, a missense muta-
tion in murine  Tbce  (W527G) inherited in homo-
zygosity was described in a mouse model of 
peripheral motor neuropathy,  pmn  [ 47 ,  48 ]. The 
W527G mutation destabilized the chaperone, 
resulting in diminished protein levels [ 48 ]. The 

original  pmn  mice had low birth weight, decreased 
brain size, and hypogonadism, reminiscent of the 
human trait, but no hypoparathyroidism was 
noted and no report of continued low weight or 
size [ 49 ]. Since mice that lack parathyroid glands 
have PTH serum levels identical to those of wild- 
type mice, as do parathyroidectomized wild-type 
animals, are viable and fertile and have only a 
mildly abnormal bone phenotype [ 50 ], it is pos-
sible that the parathyroid defect has been over-
looked. Although many embryonic cell lines 
enabling creation of a mouse in which  TBCE  is 
deleted are available [ 51 ], there are no reports of 
such a mouse model. In agreement with no exis-
tence of a mouse null for  TBCE Drosophila, tbce  
nulls are embryonic lethal, requiring tissue- 
specifi c knockdown for the study of the effects of 
absence of TBCE. Tissue-specifi c knockdown 
and overexpression of  tbce  in neuromusculature 
resulted in disrupted and increased microtubules, 
respectively. Alterations in TBCE expression 
also affected neuromuscular synapses [ 52 ]. No 
other phenotype was observed in  Drosophila . 

 As in mice and  Drosophila , complete absence 
of TBCE function was not reported in human. 
The common homozygous mutation: a deletion 
of four amino acid deletion (del52-55) leaves 
tubulin GAP-enhancing activities (unpublished 
results), while the cryptic out-of-frame transla-
tional initiation caused by a heterozygous muta-
tion of the TBCE gene, rescues tubulin formation 
in a compound heterozygous HRD patient carry-
ing a second nonsense mutation [ 53 ]. 

 Our studies on the effect of a homozygous 
four amino acid deletion of TBCE(del52-55) in 
patients’ cells demonstrated that lymphoblastoid 
cells showed aberrant microtubule polarity and 
the microtubules arrays are not centered on cen-
trosomes in disease cells. This effect was more 
pronounced in fi broblasts than in keratinocytes. 
Thus, the cellular phenotype may be tissue spe-
cifi c despite ubiquitous transcriptional  TBCE  
expression. Organization of the Golgi complex in 
patients’ fi broblasts was diffuse and surrounded 
the nucleus, in contrast to its compact and local-
ization near one side of the nucleus in control 
cells. The distribution of late endosomes which, 
like the Golgi complex, is microtubule dependent 
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revealed an abnormally diffuse pattern in the 
whole cell in contrast to the predominantly peri-
nuclear pattern observed in control cells [ 54 ]. 

 The specifi c absence of parathyroid glands, 
with accompanying normal development of the 
thyroid and other branchial pouch derivatives, is 
an intriguing and unexpected aspect of a derange-
ment in tubulin physiology [ 55 ]. The interplay 
between the known factors involved in the para-
thyroid development and the TBCE and/or 
microtubule cytoskeleton remains to be eluci-
dated by future studies.   

20.4.2     KCS/OC 

 The mutation causing the dominant form of the 
KCS2 was recently identifi ed by the power of 
exome sequencing. Interestingly, the same mis-
sense mutation, R569H in the gene  FAM111A  
(NM_001142519.1), occurring de novo was 
detected in heterozygosity in fi ve patients stud-
ied by a Swiss group [ 29 ] and in four Japanese 
patients [ 30 ].  FAM111A  encodes a previously 
uncharacterized protein consisting of 611 amino 
acids. The carboxy-terminal half of the protein 
has homology to trypsin-like peptidases, and 
the catalytic triad specifi c to such peptidases 
is conserved [ 56 ], but its possible proteolytic 
activity was not studied. Similarly to  TBCE , 
the transcriptional expression of  FAM111A  is 
ubiquitous according to the human protein atlas 
[ 57 ]. It is expressed in the parathyroid gland 
and bone, but the expression levels are similar 
to those in other tissues. A recent report showed 
that FAM111A functions as a host range restric-
tion factor and is required for viral replication 
and gene expression by specifi cally interacting 
with Simian Virus 40 large T antigen (LT) [ 56 ]. 
In addition,  FAM111A  mRNA and protein lev-
els have been shown to be regulated in a cell 
cycle-dependent manner with the lowest expres-
sion during the G0 or quiescent phase and peak 
expression during the G2/M phase [ 56 ]. Another 
recent report revealed that variants in the region 
including  FAM111A  and  FAM111B  were asso-
ciated with prostate cancer [ 58 ]. However, the 
clinical course of disease in KCS2 patients 

revealed neither increased viral infections nor 
carcinogenesis up to early adulthood .  Again, 
in similarity to  TBCE , the de novo mutation 
(R569H) would not signifi cantly affect the 
function of FAM111A as suggested by in silico 
analyses. Additionally, the mutant  FAM111A  
mRNA was expressed similarly to the wild type 
in peripheral blood cells. This raises the ques-
tion of how this mutation causes KCS2. One 
hypothesis is that this mutation does not cause 
loss of function of the protein but rather modu-
lates its peptidase activity for a particular target 
peptide in a mutant-specifi c way. Another pos-
sibility is that FAM111A functions with some 
physiological partner(s) and the disease occurs 
as a result of specifi c modulation of this putative 
network. In agreement with the suggestion that 
the amino acid changed by the mutation inter-
acts with other partners is exposed on the pro-
tein surface as indicated by molecular modeling. 
Since other LT-interacting proteins, such as RB, 
p53, FBXW7, and CDC73, are involved in gene 
transcription and are bona fi de tumor suppres-
sors, FAM111A is localized in the nucleus and 
its expression is cell-cycle dependent; it was 
suggested that FAM111A might be involved in 
the regulation of gene transcription [ 29 ]. KCS1 
and KCS2 share distinctive phenotypic features. 

 FAM111A is important for skeletal develop-
ment, the dysmorphic features, and primary 
hypoparathyroidism but not for intrauterine 
growth and mental development. 

 The autosomal recessive Kenny-Caffey syn-
drome [ 59 ] (AR-KCS; MIM244460), HRD [ 16 ] 
(MIM241410), or Sanjad-Sakati syndrome (SSS) 
[ 5 ] is caused by mutations in the tubulin-specifi c 
chaperone E gene,  TBCE  (Fig.  20.2 ) [ 54 ]. 
Presently, the only known function for TBCE is 
to serve as a chaperone of α-tubulin.    

    Conclusion 

 The partly phenotypic overlap between KCS 
and HRD syndromes might indicate a func-
tional relationship between FAM111A and 
TBCE. It is tempting to speculate that the two 
proteins might be interlinked in a common 
regulatory pathway. It could also be that one 
of the candidate partner proteins of FAM111A 
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is TBCE. The identifi cation of mutations in 
these two genes as causative of KCS and HRD 
syndromes provides novel tools for the study 
of the pathophysiological mechanisms of 
these pathologies.     
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21.1             Introduction 

 The fundamental task of the mitochondrion is the 
generation of energy as ATP (adenosine triphos-
phate), by means of the respiratory chain or elec-
tron transport chain. This pathway is under 
control of both the nuclear and mitochondrial 
(mtDNA) genomes [ 1 ]. Mitochondrial diseases 
are a group of disorders caused by impairment of 
the respiratory chain. The genetic classifi cation 
of these diseases distinguishes the disorders due 
to defects in mtDNA from those due to defects in 
nuclear DNA [ 2 ] (Table  21.1 ). The estimated 
prevalence of mitochondrial disorders is 1–2 in 
10,000 [ 3 ]. They are, therefore, one of the most 
common genetic metabolic diseases.

   The clinical features may be multisystem, 
with possible involvement of visual and audi-
tory pathways, heart, central nervous system, 
and skeletal muscle. The “red fl ags” are myopa-
thy with exercise intolerance, eyelid ptosis, oph-
thalmoparesis, axonal multifocal neuropathy, 
sensorineural hearing loss, pigmentary retinop-
athy, optic neuropathy, diabetes mellitus, hyper-
trophic cardiomyopathy, migraine-like 
headache, and short stature [ 4 ] (Table  21.2 ). 
Furthermore, even if only encountered rarely, 

mitochondrial  diseases may present with 
 hypoparathyroidism (see also Chap.   15    ).

   Because of the frequent multisystem involve-
ment caused by mitochondrial disorders, a wide 
range of medical specialists (including endocri-
nologists, pediatricians, internists, general practi-
tioners, cardiologists, audiologists, 
ophthalmologists, neurologists) may fi rst encoun-
ter these patients; therefore, an acute “clinical 
awareness” about this diagnosis is essential in 
order to initiate a correct diagnostic workup.  

21.2     Mitochondrial Genetics 

 Mitochondrial diseases related to abnormalities 
in nuclear DNA are inherited according to the 
Mendelian rules. They are caused by mutations 
in structural components or ancillary proteins of 
the respiratory chain, by defects of the interge-
nomic signaling (associated to mitochondrial 
DNA (mtDNA) depletion or multiple deletions) 
and, rarely, by mutations in coenzyme Q10 bio-
synthetic genes (see Table  21.1 ). 

 MtDNA-related diseases are inherited accord-
ing to the rules of mitochondrial genetics (mater-
nal inheritance, heteroplasmy and the threshold 
effect, mitotic segregation). Each cell contains 
multiple copies of mtDNA. Heteroplasmy refers 
to the coexistence of two populations of mtDNA, 
normal and mutated. Mutated mtDNA in a given 
tissue has to reach a minimum critical number 
before oxidative metabolism is impaired severely 
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enough to cause dysfunction (threshold effect) 
[ 1 ]. The pathogenic threshold varies from tissue 
to tissue according to the relative dependence of 
each tissue on oxidative metabolism [ 1 ]. Nervous 
and endocrine tissues have a highly active metab-
olism and are therefore frequently involved in 
mitochondrial diseases. MELAS (mitochondrial 
encephalomyopathy with lactic acidosis and 
stroke-like episodes) and MERRF (myoclonic 
epilepsy with ragged-red fi bers) syndromes are 
two typical examples of diseases due to mtDNA 
point mutations. 

 Furthermore, the sporadic occurrence of a 
mitochondrial disease, such as progressive exter-
nal ophthalmoplegia (PEO), Kearns-Sayre syn-
drome (ophthalmoplegia associated to pigmentary 
retinopathy and cardiac conduction block), and 
Pearson syndrome (pediatric refractory sidero-
blastic anemia associated with pancreatic insuf-
fi ciency), is suggestive of a single, sporadic, 
mtDNA deletion [ 2 ]. 

 Therefore, every inheritance pattern (mater-
nal inheritance, autosomal dominant, autosomal 
recessive, sporadic) can be seen in mitochondrial 
diseases, and a negative family history does not 
rule out this potential diagnosis. Furthermore, 
the phenotypic heterogeneity between the 
affected family members may be remarkable, 
and gene- environment interactions could have a 
role as well. Drugs must also be considered; the 
medications with potential mitochondrion-toxic 
actions (i.e., aminoglycosides, valproic acid, 
metformin, linezolid, etc.) have been reviewed 
elsewhere [ 5 ].  

    Table 21.1    Genetic classifi cation of mitochondrial dis-
eases (selected phenotypes)   

 Disorders of 
mitochondrial genome 
(mtDNA) 

 Diseases caused by nuclear 
gene mutations 

  Sporadic 
rearrangements  

  Structural proteins of the 
respiratory chain  

 Kearns-Sayre 
syndrome 

 Leigh syndrome 

 Pearson syndrome  Paraganglioma, 
pheochromocytomas 

 PEO   Assembling factors of the 
respiratory chain  

  Sporadic point 
mutations  

 Leigh syndrome 

 PEO   Defects of mtDNA stability 
and integrity  

 MELAS  Autosomal PEO 
  Maternal-inherited 
point mutations  

 MNGIE 

 MELAS  mtDNA depletion syndromes 
 MERRF   Coenzyme Q10 defi ciency  
 PEO   Defects of mitochondrial 

fi ssion or fusion  
 Leber hereditary optic 
neuropathy 

 Dominant optic atrophy 

 NARP 

 Leigh syndrome 

   MELAS  mitochondrial encephalomyopathy with lactic 
acidosis and stroke-like episodes,  MERRF  myoclonic epi-
lepsy with ragged-red fi bers,  MNGIE  mitochondrial neu-
rogastrointestinal encephalomyopathy,  NARP  neuropathy, 
ataxia, and retinitis pigmentosa,  PEO  progressive external 
ophthalmoplegia  

   Table 21.2    Selected clinical features of mitochondrial diseases   

 Nervous system  Migraine, myoclonus, cognitive impairment, stroke-like episodes, seizures, 
leukoencephalopathy, ataxia, dystonia, parkinsonism, tremor, psychiatric 
involvement, sensorineural hearing loss, neuropathy 

 Skeletal muscle  Weakness, ophthalmoparesis, eyelid ptosis, exercise intolerance, myoglobinuria, 
respiratory impairment, hypotonia 

 Visual system  Pigmentary retinopathy, cataract, optic neuropathy 
 Digestive system  Malabsorption, intestinal pseudo-obstruction 
 Kidney  Tubulopathy, Fanconi syndrome 
 Metabolic/endocrine system  Lactic acidosis, multiple lipomatosis, short stature, diabetes mellitus, 

hypothyroidism, hypoparathyroidism 
 Heart  Cardiomyopathy, conduction system defects, Wolff-Parkinson- White syndrome 
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21.3     Diagnostic Approach 

 The diagnostic process should start from patient 
and family history and complete physical and 
neurologic examination [ 6 ]. Diagnosis of mito-
chondrial disease requires a complex approach: 
measurements of serum lactate at rest and after 
exercise, electromyography, muscle histology and 
enzymology, and molecular analysis [ 4 ]. Serum 
creatine kinase (CK) levels are usually normal or 
moderately elevated. Unfortunately, a really reli-
able biomarker is not available yet, and muscle 
biopsy is still needed in the majority of patients 
with suspected mitochondrial disease [ 4 ].  

21.4     Mitochondrial 
Hypoparathyroidism 

 Possible metabolic/endocrine disturbances in 
mitochondrial disorders include (but are not 
limited to) diabetes mellitus, hypothyroidism, 
hypogonadism, short stature, lactic acidosis, 
and multiple lipomatosis. Hypoparathyroidism 
has been occasionally reported in mitochondrial 
patients since the early years of mitochondrial 
medicine [ 7 ]. Most of the reported patients are 
children or teenagers (range 1–18 years) with 
 complicated forms of mitochondrial disorder 
and multisystem involvement [ 7 – 24 ]. Frequently 
associated features include renal disease, espe-
cially tubulopathy [ 7 ,  15 ,  16 ,  19 – 21 ,  24 ]; lactic 
acidosis [ 7 ,  8 ,  10 ,  19 ]; diabetes [ 9 ,  10 ,  19 ,  25 ]; 
psychomotor retardation [ 7 ,  10 ,  11 ,  20 ,  24 ]; and 
hearing loss [ 7 – 11 ,  18 ,  19 ,  23 ,  24 ]. 

 From a genetic perspective, the most typical 
molecular alteration is a large, single deletion of 
the mtDNA. Therefore, most cases are sporadic 
(as discussed above, single large mtDNA rear-
rangements are not inherited). A single deletion 
was fi rst reported in an 11-year-old boy with 
hypoparathyroidism and combined features of 
Kearns-Sayre syndrome and MELAS (ptosis, 
progressive external ophthalmoplegia, pigmen-
tary retinopathy, recurrent vomiting, and cere-
bral infarcts with lactic acidosis) [ 8 ]. 
Subsequently, it was observed in a girl who pre-
sented with painful carpopedal spasms due to 
hypoparathyroidism at the age of 4 years, fol-

lowed by truncal and limb ataxia, spastic parapa-
resis, muscle weakness and wasting, pigmentary 
retinal degeneration, sensorineural hearing loss, 
hirsutism, anemia, diabetes mellitus, and exo-
crine pancreatic dysfunction [ 9 ]. 

 Many other case reports have further con-
fi rmed the specifi c association between primary 
hypoparathyroidism and single mtDNA dele-
tions (and/or duplications), e.g., a 26-month-old 
child with growth retardation, tubulopathy, and 
episodic encephalopathy [ 20 ]; a 5-year-old boy 
with myopathy, Addison’s disease, and Fanconi 
syndrome [ 21 ]; a 5-year-old patient with sidero-
blastic anemia, failure to thrive, chronic diarrhea, 
and lactic acidosis [ 13 ]; an 8-year-old boy with 
Kearns-Sayre syndrome and atrophic gastritis 
with pernicious anemia [ 22 ]; an 11-year-old boy 
with short stature, bilateral ptosis, sensorineu-
ral hearing loss, muscle weakness, and growth 
hormone defi ciency [ 18 ]; a 12-year-old patient 
with incomplete Kearns-Sayre syndrome [ 14 ]; 
a 17-year-old girl with Kearns-Sayre syndrome 
and insulin-dependent diabetes mellitus [ 10 ]; an 
18-year-old girl with Kearns-Sayre syndrome 
and tubulopathy [ 15 ]; and an 18-year-old male 
patient with Kearns-Sayre syndrome, short stat-
ure, sensorineural hearing impairment, cerebel-
lar ataxia, diabetes mellitus, hyperaldosteronism, 
and severe tubulopathy with complete Fanconi 
syndrome [ 19 ]. 

 In four children with hypoparathyroidism 
and deafness as initial major manifestations 
of Kearns-Sayre syndrome, a unique pattern 
of mitochondrial DNA rearrangements was 
observed [ 11 ]. Hypocalcemic tetany caused by 
PTH defi ciency started between age 6 and 13 
years and was well controlled by small amounts 
of 1.25-(OH) 2 -cholecalciferol. Rearranged mito-
chondrial genomes were present in blood cells 
of all patients and consisted of partially dupli-
cated and deleted molecules. The deletions were 
localized between the origins of replication of 
heavy and light strands and encompassed at least 
eight polypeptide-encoding genes and six tRNA 
genes [ 11 ]. Sequence analysis revealed imper-
fect direct repeats present in all rearrangements 
fl anking the break points. The duplicated popu-
lation accounted for 25–53 % of the mitochon-
drial genome and was predominant to the deleted 
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DNA (5–30 %) in all cases. The proportions of 
the mutant populations (30–75 %) correlated with 
the age at onset of the disease, suggesting that, 
unlike heteroplasmic deletions, such “pleioplas-
mic” rearrangements may escape selection in rap-
idly dividing cells, distribute widely over many 
tissues, and thus cause multisystem involvement 
[ 11 ]. Hypoparathyroidism and deafness could 
represent the result of one or more altered signal-
ing pathway caused by selective ATP defi ciency 
[ 11 ], but further studies are still needed. 

 The respiratory chain cofactor coenzyme Q10 
was reported to stabilize calcium levels within nor-
mal range in two pediatric patients suffering from 
hypoparathyroidism and Kearns-Sayre syndrome 
[ 23 ]. Unfortunately, the mechanism of action was 
unclear, and subsequent studies confi rming this 
isolated observation are not available. 

 Other genetic causes of mitochondrial hypo-
parathyroidism are rarer. A mtDNA heteroplasmic 
point mutation (A3252G), in the mtDNA gene 
tRNA leucine (UUR), has been reported in a 
patient who also had dementia, pigmentary reti-
nopathy, and diabetes mellitus [ 25 ]. Primary hypo-
parathyroidism was also observed in two children 
with the A3243G “MELAS” mutation with psy-
chomotor retardation and diabetes mellitus [ 26 ], 
and in a 54-year-old woman with diabetes mellitus, 
hearing loss, and myopathy due to the same muta-
tion [ 27 ] still in the tRNA leucine (UUR) gene. 

 Of note, even if it is not strictly a mitochon-
drial respiratory chain disorder, mitochon-
drial trifunctional protein defi ciency has been 
associated with hypoparathyroidism [ 17 ,  28 ]. 
Mitochondrial trifunctional protein defi ciency is 
a rare disorder of fatty-acid oxidation which may 
show characteristic features such as peripheral 
neuropathy, pigmentary retinopathy, and acute 
fatty liver degeneration in pregnant women with 
an affected fetus [ 28 ].  

    Conclusion 

 In some instances, primary mtDNA genetic 
abnormalities can directly cause endocrine 
dysfunction, including primary hypoparathy-
roidism. Mitochondrial hypoparathyroidism 
typically shows a pediatric onset, and features 

of multisystem involvement are commonly 
associated. Given that the most frequent genetic 
abnormality is the presence of a sporadic 
mtDNA rearrangement (followed by point 
mutations in the mtDNA tRNA leucine (UUR) 
gene), a negative family history does not rule 
out this diagnosis. It is important to consider 
the possibility of a mitochondrial disease 
especially in children/teenagers with primary 
hypoparathyroidism associated to other mani-
festations of mitochondrial dysfunction (e.g., 
eyelid ptosis, external ophthalmoplegia, myop-
athy with exercise intolerance and/or muscle 
weakness, pigmentary retinopathy, heart con-
duction block, ataxia, sideroblastic anemia, 
diabetes mellitus, psychomotor retardation, 
hearing loss, nephropathy, lactic acidosis). In 
most cases, muscle biopsy is needed for a cor-
rect diagnosis, showing signs of mitochondrial 
dysfunction (ragged-red fi bers, COX-negative 
fi bers) and representing the fi rst- choice tis-
sue for mtDNA analyses. Further studies are 
needed in order to study the prevalence of 
mitochondrial disorders among patients with 
idiopathic primary hypoparathyroidism, and 
conversely of hypoparathyroidism among mito-
chondrial patients. Endocrinologists and pedia-
tricians should consider a possible diagnosis of 
mitochondrial disease (especially when other 
suggestive clinical features are associated), 
in order to start a correct diagnostic workup. 
Metabolic/endocrine screening may be war-
ranted in patients with mitochondrial diseases, 
since it can guide the molecular diagnosis and 
because specifi c treatments are frequently 
needed. Large, multicenter studies are strongly 
needed to better characterize the clinical pic-
ture and natural history of these diseases.     
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22.1             Introduction 

    Postsurgical hypoparathyroidism is the most 
common cause of acquired hypoparathyroidism. 
Surgery on the thyroid, parathyroid glands, adja-
cent neck structures (esophagus, larynx), or 
lymph node neck dissection may lead to hypocal-
cemia and/or hypoparathyroidism. This compli-
cation is more likely to occur in patients who 
have undergone repetitive neck operations or 
extensive cervical surgery. 

 Hypoparathyroidism is not a synonymous 
with hypocalcemia. Hypocalcemia is a multifac-
torial phenomenon that may occur also in the 
presence of normally functioning parathyroid 
glands. Approximately 50 % of total serum cal-
cium is protein bound, principally (80 %) to albu-
min. Therefore, a decrease of serum calcium can 
occur after surgery owing to a lowering of the 
serum albumin level due to postoperative water 
retention, hemodilution, or transcapillary leak of 
albumin into the extravascular space. However, 
in this case the serum ionized or free calcium 
remains normal. This type of hypocalcemia is 
termed  spurious .  

22.2     Etiopathogenesis 
of Postoperative 
Hypocalcemia 

 The main cause of postoperative hypocalcemia is 
insuffi cient secretion of PTH to maintain normo-
calcemia. The causes are (1) removal of parathy-
roid glands or damage to them or their blood 
supply and (2) functional defi ciency of PTH 
secretion.
    1.    Damage of the blood supply to the parathyroid 

glands can explain the majority of postopera-
tive hypoparathyroidism. The parathyroid 
arteries are tenuous terminal vessels that must 
be preserved during surgery. Most often, the 
blood supply to the parathyroid glands arises 
from the inferior thyroid artery. The vascular 
supply of the parathyroid glands also includes 
small vessels arising from the adjacent thyroid 
gland. These small bridging vessels can be 
divided without compromising the viability of 
the parathyroid glands as long as the parathy-
roid arteries are preserved, whereas the blood 
supply from the medial thyroidal site is not 
usually suffi cient to maintain normal parathy-
roid vascularity [ 1 ]. The identifi cation of the 
parathyroid glands must always be assured 
before ligation of the thyroidal arteries, taking 
care to preserve their integrity and to ligate the 
branches of the inferior thyroidal artery near 
the thyroid capsule distal to the emergence of 
the parathyroid vessels. However, even a 
meticulous  dissection of the parathyroid 
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glands, which at the end of the surgery seem 
perfectly preserved, can be associated with 
temporary hypoparathyroidism as can be doc-
umented by low levels of PTH postoperatively. 
It can be diffi cult to ascertain if the vascularity 
of the parathyroid glands is really preserved. 
Observation of change of color of the parathy-
roid glands, use of the knife test, and Doppler 
fl ow imaging have been proposed as ways of 
determining the viability, but may not be reli-
able or practical    [ 2 ]. A possible explanation 
could be that surgical dissection induces vas-
cular spasm with temporary ischemia. The 
resultant  stunning  usually lasts for a few 
weeks. Also hypothermia or dehydration due 
to the climatic variations of the operating the-
ater has been referred as causal in the block of 
PTH secretion [ 1 ].   

   2.    Functional suppression of the parathyroid 
glands is typically observed after excision of a 
parathyroid adenoma. Hyperparathyroidism 
causes increase in bone resorption and negative 
calcium balance with a consequent parathyroid 
suppression due to the feedback inhibition by 
hypercalcemia of PTH synthesis and secretion. 
Hypoparathyroidism can also be induced by an 
excess or a depletion of magnesium. 
Hypermagnesemia activates the extracellular 
calcium-sensing receptors and suppresses PTH 
secretion, while hypomagnesemia reduces PTH 
secretion [ 3 ]. Moreover, hypomagnesemia 
favors the calcium excretion in the kidney for a 
reduced competition with calcium at the trans-
porter sites of the renal tubules    [ 4 ]. In the last 
situation, hypocalcemia can be observed. 
Therefore, a latent functional hypoparathyroid-
ism due to low circulating levels of magnesium 
can be revealed after parathyroidectomy.     
 Temporary causes of postoperative hypocalce-

mia independent of parathyroid damage or para-
thyroid suppression are the following: The fi rst is 
 hungry bone syndrome . This cause of hypocalce-
mia occurs frequently after parathyroidectomy 
for primary hyperparathyroidism (PHPT) and has 
been proposed to contribute to postoperative 
hypocalcemia in cases of hyperthyroidism after 
thyroidectomy. Both these endocrinopathies are 
accompanied by a negative calcium balance, 

hypercalciuria, and osteodystrophy (due to an 
increased osteoclastic activity and an impaired 
mineralization). Parathyroidectomy and thyroid-
ectomy can acutely reverse this osteodystrophy 
with avid deposition of calcium and phosphorus 
in bone and consequently the rapid development 
of temporary hypocalcemia and hypophosphate-
mia. The serum levels of PTH are normal or high. 
Symptoms of hypocalcemia can last for several 
weeks until adequate mineralization of bone has 
been achieved. However, it seems unlikely that 
postoperative hypocalcemia after thyroidectomy 
for hyperthyroidism is due to hungry bone syn-
drome, since acute postoperative hypocalcemia is 
also observed in patients in whom osteodystro-
phy has been corrected by antithyroid drugs 
before surgery or in patients in whom surgery has 
not immediately decreased the circulating levels 
of thyroidal hormones [ 5 ]. The second is 
decreased renal reabsorption of calcium. It was 
hypothesized that this could happen owing to the 
release of calcitonin from thyroidal C cell reserve 
during thyroidectomy. Calcitonin favors an 
increase in renal excretion of calcium by decreas-
ing its renal absorption and also inhibiting osteo-
clastic activity. However, the increase of 
calcitonin in relationship to thyroidectomy has 
not been universally proven   , and the role of calci-
tonin in contributing to post-thyroidectomy 
hypocalcemia remains controversial [ 1 ]. The 
third is a low level of vitamin D. Vitamin D has 
an important role in calcium homeostasis and 
promotes bone formation by both indirect (i.e., 
increasing intestinal calcium absorption) and 
direct mechanisms. 25-OH vitamin D is activated 
by 25-hydroxyvitamin D 1-alpha-hydroxylase in 
the kidney, a process that is stimulated by 
PTH. The activated vitamin D increases gut 
absorption of dietary calcium and promotes cal-
cium reabsorption in the kidney and bone resorp-
tion at high doses. Therefore, it has been 
hypothesized that the preoperative 25-OH vita-
min D level could infl uence postoperative hypo-
calcemia. Vitamin D defi ciency has been 
frequently observed in elderly patients and can be 
responsible for reduced intestinal calcium 
absorption. A signifi cant difference in 
 post- thyroidectomy hypocalcemia has been 
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found between patients with vitamin D levels 
more than 20 ng/ml and those with levels of less 
than 10 ng/ml [ 6 ]. A serum 25-OH vitamin D 
level less than 15 ng/ml increases the risk of post-
thyroidectomy hypocalcemia by 28-fold accord-
ing to Erbil et al. [ 7 ]. However, other recent 
studies did not show any signifi cant association 
between the preoperative values of 25-OH vita-
min D and postoperative hypocalcemia [ 8 ,  9 ]. 

 Thus, postoperative hypocalcemia is a multi-
factorial process that is not always due to the pres-
ence of impaired secretion of PTH. True 
postoperative hypoparathyroidism occurs only 
when the low serum level of calcium ion is accom-
panied and caused by a low serum level of PTH.  

22.3     Symptomatology 

 Usually hypoparathyroidism has an acute phase 
that compare immediately after surgery with a 
latency of hours or days (usually one or two). 
The clinical presentation of hypocalcemia can 
be variable and sometimes aspecifi c. The fi rst 
symptomatology is usually bland but progres-
sive, characterized by circumoral tingling 
and numbness, tingling in the hands and feet, 
muscle cramps, carpopedal cramps, and tetany. 
The increased neuromuscular excitability that 
accompanies these symptoms can be tested 
by assessing for Chvostek’s and Trousseau’s 
signs. The most dramatic manifestations of 
hypocalcemia are tetany, laryngospasm, bron-
chospasm, and seizure. Fatigue and mental 
changes including confusion, depression, irri-
tability, psychosis, and congestive heart failure 
may be observed especially when hypocalce-
mia becomes chronic. Most    of the time in pres-
ence of hypocalcemia and hypoparathyroidism 
symptoms are present, but can also happen that 
patients do not present the typical symptoms 
in presence of these biochemical defi ciencies 
or that aspecifi c neurological symptoms can 
be interpreted as due to hypocalcemia, but the 
value of calcemia is normal [ 10 ]. 

 Postoperative    hypoparathyroidism can be 
 transient  when hypocalcemia, low PTH, and 
symptoms requiring supplementation with cal-

cium and active vitamin D last less than 6 months 
or  persistent  when they are present for more than 
6 months. Other authors advice to wait at least 
1 year for indicating persistent hypoparathyroid-
ism [ 11 ]. However, a persistent postoperative 
hypoparathyroidism can disappear also more 
than 6–12 months after surgery [ 12 ,  13 ]. Recently, 
a recovery of parathyroid function in four patients 
with undetectable PTH assay in whom PTH1–84 
was administered was documented. These 
patients had previous neck operation for hyper-
parathyroidism or for Graves’s disease and pre-
sented hypoparathyroidism for at least 8 years 
[ 14 ]. A potential role for exogenous PTH infl u-
encing parathyroid cell function by increasing 
VEGF has been hypothesized.  

22.4     Thyroid Surgery 

 Thyroid surgery is accompanied by frequent 
occurrence of hypocalcemia and hypoparathy-
roidism. The reported incidence is highly vari-
able in the literature in relationship to the type of 
thyroidal pathology, to the choice of the surgical 
procedure, to the modality of the assessment of 
the hypoparathyroidism, and to the use of auto-
transplantation of parathyroid tissue [ 15 – 30 ]. 
The majority of the studies referred in the litera-
ture are retrospective, not following a strict meth-
odological assessment of hypoparathyroidism. 
Some    prospective studies made on a large num-
ber of patients have been recently produced and 
can be used to look for more detailed information 
on the epidemiology of postoperative hypopara-
thyroidism and the risk factors responsible for 
this occurrence    (Table  22.1 ).

22.4.1       Potential Risk Factors 
for Postoperative 
Hypocalcemia 
and Hypoparathyroidism 

  Age 

 Even if a    clear age cutoff has not clearly emerged, 
the majority of the studies observed a signifi cant 
lower postoperative calcemia in patients over 
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50 years of age in comparison to those less than 
50 years of age [ 7 ,  24 ,  26 ]. This has been correlated 
to the reduction of exchangeable calcium in the 
elderly and the lower levels of 1,25-OH vitamin D 
and therefore a decrease in intestinal absorption of 
calcium. Another explanation of the higher risk of 
postoperative hypoparathyroidism in the elderly 
could be the diffi culties in the identifi cation of the 
parathyroid glands that have an increasing fat 
deposition and can be confused with the fatty areo-
lar tissue located adjacent to the thyroid gland and 
therefore damaged or accidentally removed [ 1 ].  

  Gender 

 Even if some authors [ 31 ,  32 ] are of the opinion 
that women have a higher incidence of postoper-
ative hypocalcemia, the majority retain that gen-
der does not interfere with calcium homeostasis 
after thyroidectomy.  

  Extent of Thyroidal Resection 

 The extent of thyroidal resection is the main risk 
factor for postoperative hypoparathyroidism. 
Both retrospective and prospective studies evalu-
ating the incidence of postoperative hypocalcemia 
showed a signifi cantly higher incidence of hypo-
calcemia after total thyroidectomy in comparison 
to more limited thyroidectomy. Total thyroidec-
tomy is also considered the strongest independent 
risk factor for postoperative hypoparathyroidism 
in several multivariate analyses [ 16 ,  33 ]. Transient 
hypocalcemia can be observed even after thyroi-
dal unilateral lobectomy, but in this setting the 
permanent hypoparathyroidism is exceptional 
[ 34 ]. When a bilateral subtotal resection is per-
formed, the risk of transient hypocalcemia 
increases, but persistent hypoparathyroidism is 
exceptional (0–0.4 %) [ 28 ,  35 ]. Total lobectomy 
associated to contralateral subtotal resection (the 
Dunhill procedure) increases only lightly of both 
transient and persistent hypoparathyroidism (2 
and 0.5 %, respectively) [ 28 ]. Completion thy-
roidectomy for recurrence of benign goiter or for 
remnant thyroid tissue in case of unsuspected thy-
roid carcinoma, which has been removed by a 
procedure less than total thyroidectomy, seems 
not to be accompanied by a higher risk of tran-
sient or persistent  hypoparathyroidism than a pri-
mary total thyroidectomy [ 36 ].  

  Thyroidectomy for Thyroid Cancer 

 The majority of the surgeons did not observe dif-
ferences of postoperative hypoparathyroidism 
after total thyroidectomy without central neck 
compartment or lateral neck lymph node dissec-
tion between patients operated for a differenti-
ated thyroidal cancer or a benign euthyroidal 
goiter [ 10 ,  30 ]. However, lymph node dissection 
of the central neck compartment is accompanied 
by a higher risk of postoperative hypoparathy-
roidism in several surgical experiences [ 37 – 39 ].  

  Thyroidal Volume 

 Massive goiter and goiter with an intrathoracic 
component can be associated to longer operative 
time and major risk of damage of the parathyroid 
glands [ 17 ,  33 ].  

  Hyperthyroidism 

 A signifi cant higher incidence of both transient 
and persistent hypoparathyroidism is observed in 
patients operated for hyperthyroidism or Graves’s 
disease. Hyperthyroidism is considered an inde-
pendent predictor of postoperative hypocalcemia 
when the risk factors are analyzed with a multi-
variate logistic regression analysis [ 17 ,  33 ]. A 
signifi cant correlation between the decrease in 
serum magnesium in the fi rst 48 h after surgery 
and development of persistent hypocalcemia has 
been observed in patients operated for Graves’s 
disease [ 40 ]. The mechanism of this acute post-
operative hypomagnesemia remains obscure. 
Perioperatively, serum magnesium should be 
assessed in order to diagnose or prevent this type 
of hypoparathyroidism. A meta-analysis of 35 
clinical studies on surgery for Graves’s disease 
reported no signifi cant difference of persistent 
hypocalcemia between subtotal and total thyroid-
ectomies (1.0 and 0.9 %, respectively) [ 41 ]. A 
prospective longitudinal cohort study of 149 
patients undergoing surgery for Graves’s disease 
and operated with total thyroidectomy, Dunhill 
procedure, or subtotal thyroidectomy by two con-
sultant endocrine surgeons has been recently 
published: transient hypocalcemia was observed 
in 84.9 % of the total thyroidectomies, in 65.2 % 
of Dunhill procedure, and in 37 % of the subtotal 
thyroidectomy. Persistent hypocalcemia was 
observed in 7.5 % of the total thyroidectomies, in 
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1.3 % of the subtotal thyroidectomy, and in none 
of the Dunhill procedure [ 42 ].  

  Ligature of the Main Trunk of the Inferior 

Thyroidal Artery 

 It is a controversial point if the ligation of the main 
trunk of the inferior thyroidal artery can increase 
the incidence of postoperative hypoparathyroid-
ism. Some randomized trials  comparing the cen-
tral ligation with ligation of the peripheral ramus 
near the thyroidal capsule have shown no differ-
ences with regard to postoperative hypoparathy-
roidism. However, a multivariate analysis of a very 
large number of patients operated on showed that 
the bilateral central ligation of the inferior thyroi-
dal artery is an independent risk factor for both 
transient and persistent hypoparathyroidism. In 
particular, the risk of persistent hypoparathyroid-
ism increases fi ve times with bilateral central liga-
tion but two times with peripheral ligation of the 
inferior thyroidal artery [ 16 ].  

  Lack of Identifi cation of the Parathyroid Glands 

and the Number of Preserved Parathyroid Glands 

 There is no consensus on the recommendation to 
identify the parathyroid glands in order to pre-
serve them. Some authors discourage identifi ca-
tion because of the risk of injuring their blood 
supply due to parathyroid manipulation [ 43 ]. 
Furthermore, no correlation between the number 
of parathyroid identifi ed during surgery and the 
rate of transient or persistent hypoparathyroidism 
has been found [ 30 ]. However, in the opinion of 
other surgeons, the careful dissection of the thy-
roid along the thyroidal capsule allows the identi-
fi cation of the parathyroid glands and most of the 
time the preservation of their vascularization with 
ligation of the terminal branches of the inferior 
thyroid artery close to the thyroid parenchyma [ 1 , 
 2 ,  17 ]. The identifi cation of the parathyroid glands 
allows also the assessment of their viability at the 
end of surgery and the necessity to transplant the 
nonviable parathyroid tissue. It has been also 
observed that the identifi cation of none or only 
one parathyroid gland increases four times the 
risk of persistent hypoparathyroidism [ 16 ]. It is 
not always possible to preserve one or more para-
thyroid glands at the end of surgery. This happens 
especially if parathyroid glands are located in the 

anterior portion of the thyroid gland or within the 
thyroid gland. There is a relationship between the 
number of preserved parathyroid glands and the 
occurrence of transient or persistent hypoparathy-
roidism. In the opinion of some surgeons at least 
two parathyroid glands should be preserved to 
avoid postoperative hypocalcemia and overall a 
persistent hypoparathyroidism [ 44 – 46 ]. However, 
it seems that preserving only one parathyroid 
gland with a good blood supply is suffi cient for 
avoiding a persistent hypoparathyroidism [ 44 ].  

  Autografting of the Parathyroid Gland 

 Autotransplantation of the parathyroid glands is 
considered an important tool for avoiding persis-
tent hypoparathyroidism. Since 1909, Halsted 
showed the prevention of tetany with autotrans-
plantation of the parathyroid glands in an experi-
mental animal [ 47 ]. The transplanted tissue 
spontaneously revascularizes and reinnervates. 
This process is presumably favored by the local 
production of growth factors [ 48 ]. The most 
employed technique makes 10–20 little cubes 
(1 mm 3 ) of the parathyroid gland and inserts 2–3 
pieces into individual muscle pockets. The sterno-
cleidomastoid muscle is used most frequently 
because of convenience. The sites of the auto-
transplant are marked with stitches of non- 
adsorbable material or with clips to allow fi nding 
the transplanted tissue in case it becomes hyper-
functioning. This occurrence can be observed 
especially in the parathyroid autotransplantation 
performed after a total parathyroidectomy for pri-
mary hyperparathyroidism due to MEN1 or 
MEN2 syndrome. Exceptionally, hyperfunction 
of the autotransplant has been observed also after 
autotransplantation of histological normal para-
thyroid tissue several years after a period of hypo-
parathyroidism consequent to thyroidectomy 
[ 49 ]. Even if it has been shown from 1975 that 
autografting of normal or hyperfunctioning para-
thyroid tissue can secrete PTH, this procedure is 
not commonly adopted during thyroidectomy in 
the case of accidental or deliberate excision of the 
parathyroid glands. The success rate of parathy-
roid autotransplantation is very high ranging from 
75 to 100 %, and the function of the grafted para-
thyroid seems to begin after a minimum of 
2 weeks to a maximum of 6 months [ 50 ].  
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 Autotransplantation can be performed  selec-
tively  when one or more than one parathyroid 
gland cannot be preserved or appear with a 
 compromised vascularization or  routinely  for the 
prevention of hypoparathyroidism that could rise 
after the simple manipulation or dissection 
around the parathyroid glands. Selective auto-
transplantation is the most commonly adopted. It 
has been shown that increasing this employment    
in patients undergoing thyroidectomy determines 
a zero incidence of persistent hypoparathyroid-
ism [ 51 ]. Some surgeons have advocated routine 
autotransplantation of at least one parathyroid 
gland for preventing a persistent hypoparathy-
roidism [ 11 ,  52 – 54 ]. They explain    that the func-
tion of the autotransplanted parathyroid tissue is 
more predictable than that of parathyroid glands 
left in situ with a questionable blood supply. The 
routine autotransplantation of one or more para-
thyroid glands is usually accompanied by a high 
incidence of transient hypoparathyroidism but by 
very low or zero incidence of persistent hypo-
parathyroidism [ 20 ,  50 ,  52 ]. Also, intraoperative 
PTH assay has been proposed for guiding the sur-
geon to a selective parathyroid tissue autotrans-
plantation adopting as criterion a level of PTH 
less than 10 pg/dl 10–20 min after completion of 
total thyroidectomy. In one recent experience 
none of the 21 patients selected with this criterion 
and submitted to parathyroid autotransplantation 
suffered a persistent hypoparathyroidism [ 22 ]. 

  Impact of New Surgical Technologies 

 The introduction of the minimally invasive video- 
assisted thyroidectomy (MIVAT) or of new 
energy-based devices (LigaSure vessel sealing 
system, Harmonic scalpel) has not modifi ed the 
incidence of persistent hypoparathyroidism. 
However, a lower incidence of transient hypo-
parathyroidism has been observed in some expe-
riences with MIVAT [ 55 ] and with LigaSure [ 56 ].  

  Surgeon Expertise 

 It is controversial if the expertise of a surgeon has 
a determinant role in preventing postoperative 
hypoparathyroidism. The majority of the authors 
did not fi nd any signifi cant difference in transient 
and persistent hypoparathyroidism between 
patients undergoing operation by an experienced 

surgeon and those undergoing surgery by residents 
who are supervised by their superiors [ 10 ,  16 ].   

22.4.2     Is the Early Prediction of Post- 
thyroidectomy 
Hypoparathyroidism 
Possible? 

    In the last decade, many efforts have been dedi-
cated to the possibility of predicting postoperative 
hypoparathyroidism in order to prevent hypocal-
cemia with an early supplementation of vitamin D 
and calcium and/or allow a safe early dimission 
(same day or postoperative day 1). Various pro-
posals have been reported: one of the most fre-
quently adopted is the monitoring of serum 
calcium with one or more serial determination in 
order to design a slope of the calcemia. The serum 
calcium slope correlates well with the develop-
ment of symptomatic hypocalcemia, but the 
results often are not useful until 12 or 24 h after 
operation. Therefore, there is a delay in initiating 
the therapy and the hospitalization cannot be 
avoided. More recently, the dosage of PTH has 
been indagated for a prompt identifi cation of post-
operative hypoparathyroidism. For contain    the 
cost, a single value of PTH has been  proposed. 
Either an intraoperative assay by a quick method 
at the end of surgery or an early postoperative 
determination (immediately after surgery or at 1, 
2, 4, or 8 h after operation) has been indagated. 
The accuracy of this method in predicting post-
thyroidectomy hypocalcemia was not very high, 
confi rming that hypocalcemia can be multifacto-
rial even if the most important cause remains the 
impaired parathyroid function [ 19 ]. Comparing 
different criteria of the intraoperative PTH 
(IOPTH) monitoring, it has been shown that the 
highest accuracy in predicting hypocalcemia after 
total thyroidectomy is a serum level of PTH less 
than 10 pg/dl at 4 h postoperatively [ 57 ,  58 ]. A 
positive predictive value of postoperative hypo-
calcemia around 100 % has been observed in the 
presence of a decrease of PTH in the fi rst postop-
erative day of more than 75 % compared to the 
preoperative value [ 21 ,  59 ,  60 ]. Values of PTH 
less than 15 pg/mL on the fi rst postoperative day 
and of serum calcium less than 1.9 mmol/L on the 
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second postoperative day have a predictive value 
of 86 % for postoperative hypoparathyroidism 
[ 10 ]. In any case, a very high negative predictive 
value of postoperative hypocalcemia has been 
observed in patients with normal parathyroid hor-
mone levels after thyroidectomy [ 10 ]. Prospective 
clinical trials have demonstrated the safety for 
same day discharge after thyroidectomy in the 
presence of a 4 h postoperative PTH level within 
the normal range [ 61 ] or the effi cacy of prophy-
lactic calcium and vitamin D administration based 
on the early postoperative PTH evaluation in min-
imizing the symptomatic hypocalcemia [ 62 ,  63 ].   

22.5     Parathyroidectomy 

 Transient hypoparathyroidism is frequently 
observed in relationship to a functional sup-
pression of the normal parathyroid glands after 
surgery for primary and secondary hyperpara-
thyroidism; meanwhile, persistent hypoparathy-
roidism is essentially a surgical complication 
associated to a damage of parathyroid tissue, 
more frequently observed when it is necessary to 
explore bilaterally the neck, to remove more than 
2 parathyroid glands, or in case of reoperation 
(Table  22.2 ).

22.5.1       Surgery for Sporadic 
Adenoma 

22.5.1.1     Transient Hypoparathyroidism 
 Patients affected with PHPT who undergo 
parathyroidectomy have a rapid decrease in 
serum PTH and calcium levels after successful 
removal of one or more hyperactive parathy-
roid gland(s). In this occurrence the presence 
of hyperfunctioning parathyroid gland(s) sup-
presses the biochemical function of healthy 
parathyroid(s). The hypocalcemia is usually 
mild, has a peak on the 2–4 postoperative days, 
and becomes symptomatic in 15–30 % of the 
patients [ 77 ]. This complication seems inde-
pendent of the size of pathological gland(s) and 
of surgical approach (focused parathyroidec-
tomy, unilateral or bilateral neck exploration) 
[ 64 ,  65 ,  70 ,  71 ,  78 – 81 ]. 

 The hypocalcemia lasts usually for few days 
and it is easily controlled by medical substitu-
tive therapy. However, sometimes a prolonged 
(longer than 4 days postoperatively), symptom-
atic hypocalcemia characterized by a profound 
decrease of serum calcium (<2.1 mmol/l) that 
is diffi cult to treat can occur. In such patients 
in whom hyperparathyroidism is particularly 
severe, the preoperative indices of bone turnover 
are high (osteocalcin, bone alkaline phosphatase), 
and marked osteoporosis, osteitis fi brosa cystica, 
and  brown tumors  are present.  Hungry bone syn-
drome  is to be suspected. This syndrome persists 
until the normal parathyroid glands regain their 
full sensitivity and activity [ 82 ]. 

 Some pre- or intraoperative biochemical 
parameters can predict transient postoperative 
hypocalcemia or hypoparathyroidism:
    Normocalcemia:  normal or only slightly elevated 

preoperative calcemia is an independent risk 
factor for postoperative transient hypocalce-
mia within the fi rst 4 postoperative days [ 68 ].  

   Defi cit of vitamin D:  patients with PHPT and con-
current vitamin D defi ciency seem to show a 
signifi cantly higher preoperative PTH level and 
a greater incidence of late-onset symptomatic 
hypocalcemia after parathyroidectomy [ 83 ].  

   Intraoperative PTH : a drop of more than 80 % of 
IOPTH 10 min after removal of hyperfunc-
tioning parathyroid tissue seems to be a sig-
nifi cant factor for predicting postoperative 
hypoparathyroidism [ 77 ].     

22.5.1.2     Persistent Hypoparathyroidism 
 PTH values lower than the normal range and not 
increasing after more than 4 days after parathy-
roidectomy may be due not to suppression of 
residual non-pathological parathyroid glands but 
to organic damage of the residual parathyroid 
glands [ 64 ,  71 ,  78 ,  84 ]. 

 Data about surgery for PHPT showed 0–14 % 
persistent hypoparathyroidism after a fi rst opera-
tion, with the lowest rates obtained in high- 
volume centers [ 85 ]. The experience of the 
surgeon and especially the choice of the surgical 
approach are extremely important in this setting, 
as postsurgical hypoparathyroidism is usually 
due to damage to the parathyroid gland(s) or to 
their vascular supply or to inadvertent (or 
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unavoidable) removal of the parathyroid gland(s) 
[ 85 ,  86 ]. Persistent hypoparathyroidism was 
observed when bilateral neck exploration, even-
tually performing biopsies of all parathyroid 
glands, was the treatment of choice for 
PHPT. Today, the localization modalities based 
on high-resolution ultrasonography [ 87 – 89 ] and 
sestamibi scintigraphy [ 90 – 92 ] allowed to indi-
cate a safe and successful unilateral approach. 
The unilateral approach is based on the concept 
that if an enlarged parathyroid gland and a nor-
mal gland are found while exploring the fi rst side 
of the neck, then this is an adenoma, and the sec-
ond side should not be explored. Only if both 
glands on the initial side are recognized to be 
abnormal is the second side explored. The theo-
retical advantages of this unilateral approach are 
a decrease both in operative morbidity rates 
(hypoparathyroidism and nerve injuries) and in 
operative time. 

 Furthermore, the intraoperative measurement 
of PTH has been shown to be a valid method for 
confi rming the complete removal of hyperfunc-
tioning parathyroid tissue [ 93 – 99 ] and allows a 
focused surgery without exploring the other ipsi-
lateral    parathyroid gland. Good results have 
been claimed, with a decreased risk of hypocal-
cemia [ 67 ,  100 – 102 ] and vocal cord injury [ 7 ]. 
Bergenfelz et al. analyzed 91 patients affected 
by PHPT and randomized them for unilateral or 
bilateral neck exploration fi nding, after unilat-
eral procedure, a lower incidence of persistent 
hypoparathyroidism compared with patients 
undergoing bilateral exploration (0 vs 2.5 %, 
respectively) [ 68 ].   

22.5.2     Surgery for Persistent 
or Recurrent PHPT 

 The percentage of persistent hypoparathyroidism 
is high (>10 %) after a cervical reoperation to 
correct a recurrent or persistent PHPT, even if the 
operation is performed by an experienced surgi-
cal team [ 66 ]. In fact, a reoperation is character-
ized by high morbidity and complication rates, 
since an intensive scarring due to the previous 
operation sometimes makes it diffi cult to identify 

and to preserve the recurrent laryngeal nerve and 
the normal parathyroid gland(s) [ 86 ]. In the last 
years, the introduction of IOPTH monitoring 
seems to have reduced the incidence of postop-
erative hypoparathyroidism after reoperations for 
persistent or recurrent primary hyperparathyroid-
ism changing from 9 % before to 2 % after the 
employment of IOPTH dosage [ 73 ]. However, it 
is to underline that the real contribution of IOPTH 
monitoring for the cure of persistent or recurrent 
PHPT is still controversial as Irvin et al. reported 
an increase in operative success from 76 to 
94.3 %, while Sebag et al. found no statistically 
signifi cant differences in success with (82 %) or 
without (87 %) the use of IOPTH monitoring 
[ 103 ,  104 ].  

22.5.3     Surgery for PHPT: Familial 
Syndromes 

 The risk of transient or persistent hypoparathy-
roidism is clearly increased after surgical treat-
ment of multiglandular familial PHPT; in the 
majority of cases, multiglandular PHPT needs to 
be treated with bilateral cervical exploration, and 
in familial syndromes all parathyroid glands are 
often genetically affected, even if apparently 
macroscopically healthy, since parathyroid gland 
involvement is asynchronous and asymmetrical 
with a variable volume enhancement. 

 Many data are now available about surgical 
results in multiple endocrine neoplasia type 1 syn-
drome (MEN1). According to the different surgi-
cal approach adopted, postoperative persistent 
hypoparathyroidism is variable: after    less than 
subtotal parathyroidectomy is reported in 7.38 % 
of cases, while after subtotal (SPTX) and total 
parathyroidectomy (TPTX) with thymectomy and 
autograft, the rates are 11.1 and 25.2 %, respec-
tively [ 105 ]. Analyzing our experience about 
MEN1 PHPT, we globally found after TPTX with 
autograft a persistent  hypoparathyroidism in 25 % 
of cases, with a higher incidence in patients 
undergoing a second surgical cervical revision 
than in those who underwent a primary surgery 
(50% vs 22 %, respectively) [ 106 ]. In our recent 
experience,  better results seem to be obtained 
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after TPTX with autograft using 12–14 fragments 
of parathyroid tissue of about 1 mm 3  in volume 
each, obtained from the most normal- appearing 
gland, removed at surgery as the last one, and 
immediately placed in a sterile lactated Ringer or 
Wisconsin solution at 4 °C to be grafted at the end 
of the operation, after a time of ischemia <60 min, 
into separate pockets between the muscular fi bers 
of the brachioradial muscle of the nondominant 
forearm. 

 Apparently higher rates of postoperative 
hypoparathyroidism are reported after surgical 
treatment of PHPT in MEN2A syndrome, with 
persistent hypoparathyroidism affecting 17.4, 30, 
and 13.6 % of patients who had undergone less 
than subtotal, subtotal, and total parathyroidec-
tomy with autograft, respectively [ 107 ]. 

 Only few data are still available about postop-
erative hypoparathyroidism in the other genetic 
form of PHPT as MEN4, FHH-NSHPT, ADMH, 
HPT-JT, and FIHPT [ 107 ].  

22.5.4     Surgery for Secondary 
Hyperparathyroidism 

 TPTX with autograft of parathyroid tissue and 
SPTX are currently considered as the gold stan-
dard surgical procedures also for the treatment of 
secondary hyperparathyroidism (SHPT) [ 108 , 
 109 ]. Transient hypocalcemia is extremely fre-
quent after all surgical procedures for SHPT as it 
develops as a consequence of the lack of osteo-
clastic activity due to PTH decrease and  hungry 
bone syndrome  [ 110 ]. In the majority of patients, 
it can be easily treated by oral or intravenous 
supplementation of calcium and vitamin 
D. Otherwise, persistent hypoparathyroidism 
after surgery for SHPT seems to be extremely 
rare. Schneider et al. found this condition in only 
1.19 % of patients who had undergone total para-
thyroidectomy with thymectomy and autotrans-
plantation, in 0 % after total parathyroidectomy 
without thymectomy and without autotransplan-
tation, and in 0 % after subtotal parathyroidec-
tomy. However   , paradoxically these authors 
described 14.29 % persistent hypoparathyroid-
ism after less than subtotal parathyroidectomy 

underlining as the postoperative persistent hypo-
parathyroidism rate does not depend from the 
type of surgery adopted but from the function of 
the preserved parathyroid tissue [ 111 ]. For this 
reason, the IOPTH monitoring could be theoreti-
cally useful to guide the surgeon even if Roshan 
et al. reported that in the surgical management of 
SHPT, the IOPTH fails to predict postoperative 
hypoparathyroidism while it is useful in predict-
ing the cure of hyperparathyroidism [ 112 ]. 
Considering that in uremic patients long-lasting 
decreased PTH levels lead to a suppression of 
bone turnover that may provoke the development 
of adynamic bone disease [ 113 ], adequate PTH 
levels should be maintained. Values ranging from 
150 to 300 pg/ml after parathyroidectomy have 
been recently recommended for patients with 
stage V chronic kidney disease [ 114 ]. For this 
reason, persistent hypoparathyroidism should be 
treated by autotransplantation of autologous 
cryopreserved parathyroid tissue [ 115 ]. Because 
of the lack of reliable predicting factors for per-
sistent postoperative hypoparathyroidism, cryo-
preservation of parathyroid tissue should be 
theoretically considered in any SHPT patient 
undergoing parathyroid surgery [ 111 ]. 

 Levels of calcium and parathyroid hormone 
(PTH) in the immediate postoperative period 
(1–3 days after surgery) are informative about the 
function of the parathyroid remnant within the 
neck after SPTX [ 116 ,  117 ], while parathyroid 
fragments at the site of the autograft after TPTX 
may require up to 6 months to resume adequate 
function [ 116 – 118 ].  

22.5.5     Laryngectomy 
and Hypopharyngo- 
esophagectomy    

 Transient and persistent hypoparathyroidism may 
also occur after surgical treatment for laryngeal 
and hypopharyngo-esophageal cancer as a conse-
quence of neoplastic invasion of the parathyroid 
gland(s) and/or of its resection. Furthermore, 
during this kind of surgery, resection of all or 
part of the thyroid gland or ligature of thyroidal 
vessels is usually performed. The occurrence of 
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transient hypoparathyroidism is variable as the 
incidence range reported in the literature is par-
ticularly wide (from 7.3 to 92 %) and it seems to 
be particularly increased when it is necessary to 
perform an associated total thyroidectomy [ 119 –
 122 ]. Hypocalcemia is more common after total 
laryngectomy, in the postradiotherapy setting, and 
in patients undergoing bilateral neck dissection; 
meanwhile, the preservation of one thyroid lobe, 
when oncologically feasible [ 120 ,  122 ], the extent 
of pharyngectomy, and the preoperative tracheos-
tomy are not signifi cantly related to the postoper-
ative development of hypoparathyroidism [ 120 ]. 
No considerable data is available about persistent 
hypoparathyroidism occurring in these operations 
because of the short-term prognosis of the major-
ity of these patients.      
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23.1             Introduction 

 Pregnancy and lactation require that women 
deliver substantial calcium and other minerals to 
meet the needs of the rapidly growing fetus and 
neonate, respectively. The specifi c adaptations 
that are invoked to meet this demand for mineral 
lead to altered maternal serum chemistries and 
calciotropic hormone concentrations. In turn, the 
presentation, diagnosis, and management of 
hypoparathyroidism are also altered during preg-
nancy and lactation. 

 Fetal mineral metabolism is characterized by 
low levels of parathyroid hormone (PTH) and 
calcitriol. After birth the blood calcium falls, and 
this triggers an upregulation in parathyroid func-
tion and calcitriol synthesis. Fetal and neonatal 
parathyroids can be disturbed by genetic parathy-
roid disorders and by exposure in utero to mater-
nal hypocalcemia or hypercalcemia. 

 This chapter begins with a review of mineral 
physiology in pregnant and lactating women, and 
in normal fetuses and neonates. The focus then 
turns to the presentation and management of 
hypoparathyroidism during pregnancy and 

 lactation, and the effects that altered maternal 
mineral homeostasis and genetic parathyroid dis-
orders can have on fetal and neonatal parathyroid 
function. Due to space limitations, other reviews 
by the author provide more detailed references 
for normal mineral physiology during reproduc-
tion and development [ 1 – 5 ].  

23.2     Mineral Physiology During 
Pregnancy 

 Women deliver about 30 g of calcium to the aver-
age fetal skeleton by term, 80 % of which is 
transported across the placenta during the third 
trimester [ 6 – 8 ]. 

23.2.1     Serum Minerals 
and Calciotropic Hormones 

 Pregnancy is characterized by distinct changes in 
serum mineral and calciotropic hormone concen-
trations. The total serum calcium concentration 
falls in tandem with a decline in the serum albu-
min. This is physiologically unimportant and 
should not be interpreted to indicate true hypocal-
cemia. The ionized calcium (the physiologically 
important fraction) and the albumin-corrected 
serum calcium remain normal during pregnancy, 
and these should be measured in pregnant women 
whenever a disturbance in serum calcium is 
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suspected. Serum magnesium and phosphorus 
remain normal. 

 In pregnant North American and European 
women who consume diets adequate in cal-
cium, intact PTH is usually in the low-normal 
range or suppressed below it during early preg-
nancy, after which it steadily increases back to 
the mid- normal range by term [ 9 – 14 ]. In con-
trast, several studies of women from Asia and 
Africa did not fi nd suppressed PTH levels; 
instead, serum PTH concentrations may even 
increase above normal [ 15 ]. 

 Serum calcitriol concentrations double or tri-
ple in the fi rst trimester and remain there until 
after delivery, whereas free calcitriol levels may 
only be increased in the third trimester [ 1 ,  16 ]. 
PTH is evidently not responsible for this 
increased production of calcitriol because PTH is 
declining while calcitriol is increasing, and 
because mice lacking the  Pth  gene achieved a 
more than fourfold increase in calcitriol during 
pregnancy [ 17 ]. The mother’s main source of cal-
citriol is her kidneys and not the placenta (as has 
often been assumed). This conclusion is sup-
ported by an anephric woman on hemodialysis 
whose endogenous calcitriol level was low before 
and during a pregnancy [ 18 ], and by the fi nding 
that  Cyp27b1  mRNA expression is 30-fold higher 
in maternal kidneys of pregnant mice as com-
pared to their placentas [ 17 ]. Serum calcitonin is 
increased during pregnancy, and some of that 
may come from non-thyroidal sources, including 
the breasts and placenta. 

 PTH-related protein (PTHrP) shows a steady 
increase in the maternal circulation between the 
fi rst and third trimesters [ 14 ], and it likely derives 
from the breasts, decidua, and placenta (see also 
Chap.   3    ). Two case reports confi rmed that pla-
cental PTHrP reaches the maternal circulation in 
suffi cient amounts to affect maternal calcium 
homeostasis. In the fi rst case, a hypoparathyroid 
woman developed sudden and symptomatic 
hypocalcemia immediately after delivery, which 
resolved when lactation was established [ 19 ]. In 
the second case, a healthy woman developed a 
hypercalcemic crisis in the third trimester asso-
ciated with a high (27 pmol/L) circulating level 
of PTHrP and undetectable (<5 pg/mL) PTH 

[ 20 ]. Within 6 h after an urgent C-section, she 
became hypocalcemic with undetectable 
(<1.1 pmol/L) PTHrP and high (110 pg/ml) PTH 
[ 20 ]. Other case reports confi rmed that the 
breasts also contribute PTHrP to the maternal 
circulation during pregnancy, with high levels of 
breast-derived PTHrP causing maternal hyper-
calcemia (so- called pseudohyperparathyroidism 
of pregnancy) [ 21 ,  22 ]. In one such case, a bilat-
eral mastectomy was needed to correct the 
hypercalcemia [ 23 ,  24 ]. 

 Although PTHrP may achieve high levels in 
the maternal circulation by the third trimester, 
this is too late to explain the rise in calcitriol and 
suppression of PTH during the fi rst trimester. 
Furthermore, PTHrP is much less potent than 
PTH in stimulating Cyp27b1, the enzyme that 
synthesizes calcitriol [ 25 ,  26 ]. On the other hand, 
PTHrP is a prohormone that is processed into 
amino-terminal, mid-region, and carboxyl- 
terminal forms. Each of these may have effects 
on maternal mineral and bone physiology. 
Carboxyl-terminal PTHrP, also called osteo-
statin, has been shown to suppress bone resorp-
tion in vitro [ 27 – 29 ]; conceivably, osteostatin 
may help prevent excessive resorption of the 
maternal skeleton during pregnancy.  

23.2.2     Intestinal Absorption 
of Calcium 

 Intestinal calcium absorption in the mother dou-
bles as early as the 12th week [ 1 ] and creates a 
positive calcium balance by midpregnancy [ 30 ]. 
The two- to threefold increased calcitriol concen-
trations likely contribute to the upregulation of 
intestinal calcium absorption. However, pregnant 
rodents made severely defi cient in vitamin D or 
which lack the vitamin D receptor upregulate 
intestinal calcium absorption [ 31 – 33 ]; therefore, 
factors other than calcitriol must also stimulate 
calcium transport during pregnancy. Isotope 
studies revealed that over 90 % of calcium in the 
fetus is absorbed from the maternal diet during 
pregnancy [ 34 ], which agrees with other estima-
tions that increased intestinal calcium absorption 
meets the fetal demand for calcium.  
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23.2.3     Renal Handling of Calcium 

 A consequence of increased intestinal calcium 
absorption is that urinary calcium excretion 
increases during pregnancy and hypercalciuric 
values can be reached. Low PTH and high calci-
tonin concentrations likely contribute to this 
increase. The fasting urine calcium remains nor-
mal or may be low, refl ecting that this is absorp-
tive hypercalciuria [ 1 ].  

23.2.4     Skeletal Calcium Metabolism 

 There is evidence from clinical studies that skel-
etal resorption increases modestly during normal 
pregnancy. In 15 women who had elective fi rst 
trimester abortions, iliac crest histomorphometry 
demonstrated an increase in indices of bone 
resorption as compared to biopsies from non-
pregnant women [ 35 ]. Biochemical markers of 
bone resorption increase early in pregnancy, 
while markers of bone formation are low in the 
fi rst trimester, and normal or slightly increased in 
the third trimester [ 1 ]. Use of these markers of 
bone resorption and formation has confounding 
problems that are discussed in detail elsewhere 
[ 36 ]. Total alkaline phosphatase in the mother 
increases markedly due to a placental fraction 
and does not indicate increased bone resorption. 

 Whether the modest increase in bone resorp-
tion causes net loss of the bone during pregnancy 
is less certain. Longitudinal studies used single- 
and/or dual-photon absorptiometry and found no 
signifi cant change in cortical or trabecular bone 
density during pregnancy [ 1 ]. Dual x-ray absorp-
tiometry (DXA) has been used 1–18 months 
before planned pregnancy and 1–6 weeks post-
partum, but not during pregnancy [ 37 – 43 ]. These 
small studies have found no change to as much as 
a 5 % decrease in lumbar spine bone density 
between the two measurements. Serial ultrasound 
measurements of a peripheral site, the os calcis, 
have found small decreases in BMD; in one 
study, this was shown to be restored after 
 pregnancy [ 44 ]. 

 Although there have been no longitudinal 
DXA studies of hip or spine  during  pregnancy, 

the available data indicate that some resorption of 
the maternal skeleton may occur. Such resorption 
may be needed to supply mineral or to adapt the 
skeleton to the changing load that it bears during 
pregnancy. Does this resorption have conse-
quences? Vertebral crush fractures have rarely 
occurred during or shortly after pregnancy, but 
whether excess loss of bone mass occurred prior 
to the fracture is unknown. So-called transient 
osteoporosis of the hip can also occur, but this 
appears to result from local factors that increase 
the water content of one or both femora, not from 
skeletal resorption [ 5 ]. For most women, these 
apparent small losses of bone mass during preg-
nancy are inconsequential in the long term. 
Several dozen studies have found no signifi cant 
association of parity with bone density or frac-
ture risk [ 1 ,  45 ]. Some studies have even found a 
protective effect of parity on adult bone mass, 
including a study of twins [ 46 ].   

23.3     Mineral Physiology During 
Fetal Development 

 The fetus and placenta work together to actively 
pump mineral from the maternal circulation 
against concentration gradients, maintain serum 
mineral concentrations above simultaneous 
maternal values, and rapidly mineralize the skel-
eton during the fi nal quarter of gestation. 

23.3.1     Minerals and Calciotropic 
Hormones 

 Human babies are hypercalcemic relative to their 
mothers from as early as 15 to 20 weeks of gesta-
tion, the earliest time point studied. Serum phos-
phorus and magnesium are also higher than 
maternal values. This “fetal hypercalcemia” has 
been found among all mammalian fetuses and is 
robustly maintained even when the mother has 
hypocalcemia from various causes [ 1 ,  47 ,  48 ]. A 
high serum calcium appears to be necessary to 
achieve normal mineralization of the fetal skeleton, 
because a lower (normal adult) level of calcium is 
associated with a reduced skeletal mineral content 
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at term in mice [ 49 ]. Studies in fetal rodents found 
that loss of the normally high serum calcium does 
not affect survival to term in utero [ 1 ,  50 – 52 ]; how-
ever, it may protect against neonatal mortality from 
hypocalcemia. The serum calcium undergoes an 
obligate 20–30 % fall after birth in humans [ 53 – 55 ] 
and by 40 % in rodents [ 56 ,  57 ], before increasing 
to adult values during the next 24–48 h. A lower 
fetal blood calcium may, therefore, predispose to 
an even lower trough level of blood calcium after 
birth, and a higher risk of tetany and death. 

 Intact PTH is normally low at term in human 
and other mammalian fetuses, but PTH remains 
important for fetal development because the loss 
of parathyroids or PTH in rodents causes hypocal-
cemia, hyperphosphatemia, and under- mineralized 
skeletons [ 47 ,  50 ,  51 ,  58 ]. 25-Hydroxyvitamin D 
(25(OH)D) readily crosses the placenta, but cal-
citriol does not [ 59 – 61 ], which means that cal-
citriol within the fetal circulation derives from 
fetal sources. Cord blood 25(OH)D is normally 
75–100 % of the maternal 25(OH)D value, while 
calcitriol is 25–50 % of the mother’s calcitriol 
level [ 62 – 66 ]. Such low calcitriol levels may result 
from suppression of Cyp27b1 by the fetal milieu 
of high serum calcium and phosphorus, and low 
PTH, combined with relatively high activity of 
Cyp24a1 that catabolizes 25(OH)D and calcitriol 
into inactive 24-hydroxylated forms. Fibroblast 
growth factor- 23 (FGF23) reduces calcitriol by 
inhibiting Cyp27b1 and stimulating Cyp24a1, but 
the loss of FGF23 does not affect the circulating 
calcitriol level in fetal mice [ 67 ]. 

 Clinical studies have found that severely vita-
min D-defi cient babies have normal blood cal-
cium, phosphorus, PTH, and mineral content of 
skeletal ash at birth; however, in rare cases, vita-
min D-defi cient rickets has been diagnosed soon 
after birth [ 68 ]. Children with inactivating muta-
tions of Cyp27b1 or the vitamin D receptor do 
not present with hypocalcemia or rickets until a 
year or two of age [ 68 ]. Animal studies have also 
found that despite severe vitamin D defi ciency, 
the loss of Cyp27b1, or deletion of the vitamin D 
receptor, affected fetuses have normal serum cal-
cium, phosphorus, and PTH and normally 
 developed and mineralized skeletons at term 
[ 68 ]. These fi ndings suggest that calcitriol may 
be nonessential for fetal mineral homeostasis, 

and this is likely because the fetal intestines are 
not a signifi cant source of mineral. Fetal serum 
calcitonin levels are also increased above mater-
nal values, possibly as a response to the increased 
serum calcium in fetal blood. 

 In human babies, cord blood PTHrP [ 1 – 86 ] is 
up to 15-fold higher than simultaneous intact PTH 
when expressed in equimolar units [ 49 ]. PTHrP is 
a signifi cant regulator of fetal mineral homeostasis 
because fetal mice lacking PTHrP ( Pthrp  null 
fetuses) have abnormal endochondral bone devel-
opment, hypocalcemia, hyperphosphatemia, and 
reduced placental calcium transfer [ 69 ,  70 ]. Serum 
PTH increases several-fold in  Pthrp  null fetuses 
[ 50 ], but their low calcium and high phosphorus 
indicate that PTH cannot fully compensate for the 
loss of PTHrP. Conversely, PTHrP does not com-
pensate for the absence of PTH, since aparathyroid 
and  Pth  null fetuses have normal serum PTHrP 
despite signifi cant hypocalcemia and hyperphos-
phatemia [ 47 ,  50 ,  51 ]. The absence of fetal para-
thyroids, PTH, or PTHrP each causes a similar 
degree of hyperphosphatemia [ 47 ,  50 ,  51 ,  71 ,  72 ]. 
Overall, despite PTH circulating at low levels, 
PTH and PTHrP are both important regulators of 
fetal mineral homeostasis.  

23.3.2     Placental Mineral Transport 

 Studies in lambs and mice have shown that a 
mid-regional form of PTHrP stimulates placental 
calcium transfer [ 49 ,  72 ,  73 ]; it also stimulates 
placental magnesium transport in fetal sheep. 
PTH has recently been found to be expressed at 
low levels in murine placentas, where it may act 
locally to stimulate placental calcium transport 
[ 47 ,  71 ]. PTHrP and PTH had no effect on pla-
cental phosphorus transport in fetal lambs, and 
no other regulators of phosphate transport are 
known [ 74 ,  75 ].  

23.3.3     Intestinal Mineral Absorption 
and Renal Mineral Handling 

 The placenta is the main source of mineral for the 
fetus. Fetuses also excrete mineral into urine, 
which in turn contributes much of the volume of 
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amniotic fl uid. When amniotic fl uid is  swallowed, 
voided mineral can then be absorbed by the fetal 
intestines. The extent to which this pathway con-
tributes to fetal mineral homeostasis is unknown, 
but it may be a trivial route.   

23.4     Mineral Physiology During 
Lactation 

 Breastfeeding women lose a mean 210 mg in 
milk daily during exclusive lactation; women 
who nurse twins lose even more. 

23.4.1     Minerals and Calciotropic 
Hormones 

 The ionized calcium and albumin-corrected 
serum calcium are normal during lactation, 
whereas the serum phosphorus may exceed the 
normal range [ 1 ]. Intact or bio-intact PTH is nor-
mally low or undetectable during the fi rst several 
months in North American and European women 
who exclusively breastfeed their babies. As solid 
foods are introduced, lactation becomes less 
intense, and PTH increases into the mid-normal 
range. In contrast, this decline in PTH during lac-
tation may not occur in women from Asia and 
Africa, possibly due to their diets being lower in 
calcium and higher in phytate. Calcitriol increases 
two- to threefold during pregnancy but falls 
promptly to normal values during lactation, 
which may indicate that the factors that stimulate 
Cyp27b1 during pregnancy are lost at delivery. 

 The lactating breasts produce substantial 
amounts of PTHrP, such that human and cow’s 
milk contain 1,000–10,000 times the concentra-
tion of PTHrP found in patients with hypercalce-
mia of malignancy and normal human controls. 
Breast-derived PTHrP also enters the maternal 
circulation with the highest levels reached after 
suckling [ 76 ,  77 ]. Data from lactating animals 
confi rmed that mammary tissue is the main source 
of PTHrP. The venous drainage of mammary 
glands contains a higher PTHrP concentration 
than the arterial infl ow [ 78 ], and selective deletion 
of the murine PTHrP gene from mammary tissue 
reduced the circulating PTHrP level [ 79 ]. 

 Upon entering the maternal circulation from 
the breasts, PTHrP plays a central role to alter 
maternal mineral metabolism. It stimulates osteo-
clast-mediated bone resorption, renal tubular reab-
sorption of calcium, and (at least in rodents) 
osteocytic osteolysis. Higher plasma PTHrP levels 
in breastfeeding women correlate with greater loss 
of bone mineral density [ 80 ], higher serum cal-
cium, and lower PTH [ 76 ,  81 ]. In mice, ablation of 
the PTHrP gene from the mammary tissue caused 
less bone to be resorbed during lactation [ 79 ]. In 
hypoparathyroid women (discussed in detail 
below), PTHrP normalizes mineral homeostasis 
during lactation and occasionally can cause hyper-
calcemia. PTHrP- mediated hypercalcemia has 
also occurred in normal women during lactation; it 
resolves with cessation of breastfeeding. 

 Calcitonin levels are elevated during the fi rst 6 
weeks of lactation in women, but whether this has 
physiological importance is unknown. Calcitonin 
protects the maternal skeleton of mice against 
excess resorption, since deletion of the calcitonin 
gene resulted in the loss of twice the normal amount 
of bone mineral content during lactation [ 82 ].  

23.4.2     Intestinal Absorption 
of Calcium 

 Intestinal calcium absorption occurs at normal 
rates in breastfeeding women. Increased intake of 
calcium does not alter skeletal resorption or 
breast milk calcium [ 83 – 86 ]. Similarly, high 
intake of vitamin D (up to 6,400 IU daily in tri-
als) has no effect on breast milk calcium, even 
with a mean maternal 25(OH)D level of 
160 nmol/l (64 ng/ml) [ 87 – 89 ].  

23.4.3     Renal Handling of Calcium 

 Twenty-four-hour renal calcium excretion drops to 
low-normal or overtly hypocalciuric values, due to 
the loss of calcium in breast milk and the effect of 
PTHrP to stimulate renal tubular reabsorption of 
calcium. The phosphaturic actions of PTHrP and 
the increased fi ltered load of  phosphorus (which 
arises from resorbed bone) contribute to increased 
urine phosphorus excretion.  
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23.4.4     Skeletal Calcium Metabolism 

 Resorption of the skeleton during lactation pro-
vides calcium for milk production. In breastfeed-
ing women, 3–10 % of trabecular bone mineral 
content will be resorbed over the fi rst 2–6 months, 
with smaller losses occurring at cortical sites 
[ 1 ,  45 ,  90 ]. Randomized clinical trials and cohort 
studies have shown that these lactational bone 
losses are not minimized by high intake of cal-
cium [ 83 – 86 ] or aggravated by low intake of cal-
cium [ 91 – 94 ]. Instead, resorption of the bone 
appears to be programmed by hormonal and 
other changes that are invoked by breastfeeding, 

such that more intense lactation or greater breast 
milk output causes greater loss of the bone [ 95 ]. 
Bone turnover markers increase, and bone resorp-
tion markers increase more than markers of bone 
formation. Lactating rodents show increased 
osteoclast-mediated bone resorption, accompa-
nied by enhanced resorption of mineral by osteo-
cytes from their perilacunar matrices (osteocytic 
osteolysis). 

 Figure  23.1  depicts the known mechanisms that 
increase bone resorption during lactation. Prolactin 
and suckling both suppress ovarian function by 
acting on the GnRH pulse center in the hypothala-
mus, leading to low estradiol levels. Prolactin and 

  Fig. 23.1    Brain-breast-bone circuit. Suckling and prolac-
tin [ PRL ] both inhibit the hypothalamic gonadotropin- 
releasing hormone ( GnRH ) pulse center, which in turn 
suppresses the gonadotropins (luteinizing hormone [ LH ] 
and follicle-stimulating hormone [ FSH ]), leading to low 
levels of the ovarian sex steroids (estradiol [ E   2  ] and pro-
gesterone [ PROG ]). Prolactin may have direct effects on 
its receptor in bone cells.  PTHrP  production and release 
from the breast is controlled by several factors, including 
suckling, prolactin, low estradiol, and the calcium recep-
tor. PTHrP enters the bloodstream and combines with sys-
temically low estradiol levels to markedly upregulate 

bone resorption. Increased bone resorption releases cal-
cium and phosphate into the bloodstream, which then 
reaches the breast ducts and is actively pumped into the 
breast milk.  PTHrP  also passes into milk at high concen-
trations, but whether swallowed  PTHrP  plays a role in 
regulating calcium physiology of the neonate is unknown. 
In addition to stimulating milk ejection, oxytocin ( OT ) 
may directly affect osteoblast and osteoclast function 
( dashed line ). Calcitonin ( CT ) may inhibit skeletal respon-
siveness to  PTHrP  and low estradiol (Adapted from 
Kovacs [ 96 ]; ©2005 Springer Science and Business 
Media B.V.)       
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suckling also stimulate PTHrP  production by the 
breasts. PTHrP and low estradiol have synergistic 
effects to upregulate bone resorption and osteo-
cytic osteolysis, achieving more rapid bone loss 
than caused by estradiol defi ciency alone. Other 
factors such as oxytocin and serotonin have also 
been proposed to contribute to the increased bone 
resorption during lactation.  

 After weaning, bone formation upregulates, 
and skeletal mineral content appears fully 
restored over the subsequent 6–12 months in 
most women [ 1 ,  45 ,  85 ]. Restoration of normal 
ovarian function facilitates bone recovery but 
cannot fully explain it. Animal studies have found 
that the classical calciotropic hormones PTH, 
PTHrP, calcitriol, calcitonin, and estradiol are not 
required for skeletal recovery to be fully achieved 
[ 1 ,  17 ,  33 ,  82 ,  97 ]. The identifi cation of the 
factor(s) that stimulate post-weaning bone for-
mation is the subject of active research [ 98 ]. 
Although skeletal recovery is complete as 
assessed by DXA, the trabecular microarchitec-
ture may not be completely restored at all sites 
after weaning in women and rodents [ 99 ,  100 ]. 
The cross-sectional diameters of the long bones 
have increased by the end of lactation or post- 
weaning recovery, while cortical bone area is 
restored after weaning to prepregnant values 
[ 101 – 103 ]. The increase in bone volumes may 
compensate for the loss of trabecular microarchi-
tecture and, thereby, maintain bone strength. 

 Vertebral compression fractures occasionally 
occur during lactation, but subsequent skeletal 
recovery makes lactational bone loss clinically 
unimportant in the long term. Several dozen 
 epidemiological studies have found that a history 
of lactation has no effect, or even a protective 
effect, on peak bone mass, bone density, and risk 
of osteoporosis or hip fractures [ 1 ,  45 ].   

23.5     Mineral Physiology 
in the Neonate 

 Cutting the umbilical cord causes the placental 
calcium infusion and placental hormones (espe-
cially PTHrP) to be lost, and the onset of breath-
ing causes the blood pH to rise. These factors 
contribute to a sharp fall in the ionized calcium, 

which triggers a switch in how mineral metabo-
lism is regulated. 

23.5.1     Minerals and Calciotropic 
Hormones 

 In human babies, the serum calcium and ionized 
calcium each fall 20–30 % over the fi rst 12 h, fol-
lowed by an increase to adult values over the suc-
ceeding 24 h [ 53 ]. Phosphorus increases over the 
same interval and then declines as the serum cal-
cium rises. These changes in calcium and phos-
phorus are indicators of a progressive stimulation 
of parathyroid function after birth. PTH rises 
from the suppressed fetal values during the fi rst 
24 h, and this is followed by a rise in calcitriol 
[ 53 ]. 

 As noted earlier, at birth, the 25(OH)D value 
is typically 75–100 % of the maternal level [ 62 –
 66 ]. Cord blood calcium is usually no different 
between babies born of vitamin D-replete and 
severely vitamin D-defi cient mothers, but can be 
signifi cantly lower after the fi rst or second day. 
The serum calcium is also normal at birth in ani-
mal fetuses that have severe vitamin D defi ciency 
or lack vitamin D receptors or Cyp27b1 [ 2 ]. In 
the days to months after birth, skeletal manifesta-
tions of rickets will develop if hypocalcemia and 
defi cient mineral delivery persist [ 2 ,  68 ]. Breast 
milk normally contains little vitamin D or 25(OH)
D, and so exclusively breastfed babies are at high 
risk for developing vitamin D-defi cient rickets.  

23.5.2     Intestinal Calcium Absorption 
and Renal Mineral Handling 

 The human neonate now requires the intestines 
and kidneys to provide the mineral delivery 
functions that the placenta previously per-
formed. Intestinal calcium absorption is initially 
passive, non-saturable [ 104 ,  105 ], and facili-
tated by lactose in milk [ 106 ,  107 ]. As the neo-
nate matures, the intestines become less 
permeable to passive calcium absorption, and 
the dominant mechanism of intestinal calcium 
delivery becomes active, saturable, and cal-
citriol dependent [ 104 ,  108 ,  109 ]. A similar 
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developmentally  programmed change from pas-
sive, lactose-facilitated to active, calcitriol-
dependent mechanisms has also been observed 
in neonatal rodents [ 49 ,  110 ].   

23.6     Hypoparathyroidism During 
Pregnancy 

 Most cases of maternal hypoparathyroidism are 
known prior to pregnancy, but some were not 
diagnosed until the newborn displayed severe 
secondary hyperparathyroidism, hypercalcemia, 
bone demineralization, and fractures [ 111 ,  112 ]. 
The normal adaptations in mineral homeostasis 
that occur during pregnancy, and the fetal demand 
for mineral, can contribute to two quite different 
outcomes that have been reported in pregnant, 
hypoparathyroid women. 

 First, hypoparathyroidism can become sig-
nifi cantly improved during pregnancy, with 
fewer hypocalcemic symptoms, and reduced 
need for supplemental calcitriol and calcium. 
This likely occurs because the normal upregula-
tion of calcitriol and intestinal calcium absorp-
tion, which begin in the fi rst trimester, do not 
appear to require PTH. Instead, high levels of 
calcitriol, PTHrP, placental lactogen, prolactin, 
and other factors may upregulate intestinal cal-
cium absorption despite the absence of 
PTH. Indeed, in several case reports of hypo-
parathyroidism during pregnancy, hypocalcemic 
symptoms lessened, serum calcium increased, 
and the requirement for supplemental calcium 
and calcitriol decreased [ 1 ,  19 ,  113 ]. Animal 
studies have confi rmed that despite total para-
thyroidectomy or the absence of the  Pth  gene, 
calcitriol and intestinal calcium absorption 
increase normally during pregnancy [ 1 ,  17 ]. 

 Second, hypoparathyroidism may worsen dur-
ing pregnancy with the fetal demand for calcium 
overwhelming the hypoparathyroid woman’s 
ability to maintain her own blood calcium. 
Several case reports have confi rmed that higher 
doses of calcium and calcitriol were implemented 
during pregnancy [ 1 ,  113 ,  114 ]. One woman had 
a low calcitriol level at midpregnancy, indicating 
that the normal two- to threefold increase in 
 calcitriol did not occur [ 114 ]. In other cases, it 

was not clinical symptoms but the normal 
pregnancy- related fall in serum calcium (uncor-
rected for albumin) that prompted the clinician to 
increase the dose of calcium and calcitriol [ 1 ]. 
The ionized calcium or albumin-corrected cal-
cium must be used during pregnancy so that the 
artifactual fall in serum total but not ionized 
serum calcium is not misinterpreted as worsening 
hypocalcemia. 

 It is unknown why some hypoparathyroid 
women improve while others worsen, but vari-
able responsiveness to the normal adaptations of 
pregnancy may be the cause. For example, the 
high estradiol concentrations of pregnancy may 
cause more marked suppression of bone turnover 
in some women, and more potent stimulation of 
Cyp27b1 in other women. The production of 
PTHrP by the breasts and placenta, and achieved 
level in the maternal circulation, may also vary. 
Animal models have confi rmed that the fetal 
demand for calcium can cause maternal hypocal-
cemia during pregnancy when challenged by a 
low-calcium diet or a large litter size. 

 In nonpregnant hypoparathyroid adults, the 
treatment target is a serum calcium at or just 
below the lower end of the normal range, thereby 
balancing prevention of hypocalcemia against 
worsening hypercalciuria and nephrocalcinosis. 
There are no consensus guidelines for manage-
ment of hypoparathyroidism during pregnancy, 
but this author contends that the target during 
pregnancy should be to maintain the ionized or 
albumin-corrected calcium  well within the nor-
mal range  in order to minimize the risk of fetal 
and neonatal complications. Maternal hypocalce-
mia increases the risk of premature birth and fetal 
and neonatal secondary hyperparathyroidism 
(see below) [ 115 ]. 

 Due to the variability in presentation, manage-
ment should be expectant, with the ionized or 
albumin-corrected calcium, and hypocalcemic 
symptoms, used as indicators as to whether the 
condition is improving (due to the pregnancy- 
related adaptations) or worsening (due to the fetal 
demand for calcium, especially in the third tri-
mester). Calcitriol normally increases at least 
twofold starting in the fi rst trimester, and so a 
higher dose of calcitriol may be the most 
appropriate method to raise the ionized or 
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albumin- corrected calcium into the mid-normal 
range. As pregnancy progresses, the calcitriol 
dose should be adjusted based on the ionized or 
albumin- corrected calcium. Thiazides decrease 
urine calcium excretion and the dose of calcium 
or calcitriol required to maintain normocalcemia, 
but are usually avoided during pregnancy because 
they cross the placenta (FDA category C). 
However, hydrochlorothiazide was well tolerated 
in a pregnant hypoparathyroid woman whose 
severe hypocalcemia and hypercalciuria were 
unresponsive to calcium and calcitriol, but 
responded well to a thiazide [ 116 ]. 

 Maternal hypercalcemia must also be avoided 
because it causes suppression of the fetal and neo-
natal parathyroids, and because higher doses of 
vitamin D analogs may increase the risk of terato-
genicity [ 117 ,  118 ]. Calcitriol and 1α-calcidiol 
have shorter half-lives and lower risk of toxicity 
as compared to the older preparations, and are 
preferred over newer vitamin D analogs for use 
during pregnancy. High-dose vitamin D (chole-
calciferol) is still used in many cases because it is 
cheap. Very high levels of 25(OH)D (>250 nmol/l 
or 100 ng/ml) are needed, and the risk of fetal 
adverse effects of such doses is uncertain. 

 Genetic resistance to PTH action, or pseudo-
hypoparathyroidism, resembles hypoparathy-
roidism except that for the presence of high PTH 
levels (see also Chaps.   32    ,   33    ,   34    , and   35    ). 
Pseudohypoparathyroidism may improve during 
pregnancy, such that the women have become 
normocalcemic and asymptomatic, with lower 
PTH levels and no need for supplemental cal-
cium or vitamin D analogs [ 119 ]. Such improve-
ment may refl ect that the pregnancy-related 
increase in intestinal calcium absorption occurs 
independent of PTH. 

 But two other case reports found that pseudo-
hypoparathyroidism symptomatically worsened 
during pregnancy, such that increased doses of 
calcium, calcitriol, or 1α-calcidiol were needed 
to maintain a normal serum calcium. In both 
cases, the worsening occurred in the third trimes-
ter, which is when the peak fetal demand for cal-
cium occurs [ 120 ,  121 ]. 

 In two women whose hypocalcemia improved 
during pregnancy, their calcitriol levels more 
than doubled (similar to normal pregnancy) dur-

ing the second and third trimester [ 119 ]. In con-
trast, in a woman whose hypocalcemia worsened 
in the third trimester, calcitriol had increased dur-
ing the fi rst two trimesters but declined in the 
third [ 121 ]. An increase in calcitriol may result 
from actions of estradiol, placental lactogen, pro-
lactin, or other factors to stimulate Cyp27b1, as 
has been shown in animal models. Also, higher 
estradiol levels and other hormonal changes of 
pregnancy could conceivably improve post- 
receptor signaling of the PTH receptor. Placental 
production of calcitriol has also been invoked to 
explain normalization of mineral homeostasis in 
four pseudohypoparathyroid women [ 122 ], but 
this explanation seems doubtful because of the 
evidence (cited earlier) that the placenta normally 
does not contribute a signifi cant amount of cal-
citriol to the maternal circulation and has 30-fold 
lower expression of Cyp27b1. 

 The treatment goal should be to maintain nor-
mocalcemia in the mother, thereby minimizing 
the risk of fetal and neonatal secondary hyper-
parathyroidism. As with hypoparathyroidism, the 
approach needs to be expectant, anticipating that 
there may be either increased or decreased need 
for supplemental calcium and calcitriol.  

23.7     Hypoparathyroidism During 
Lactation 

 Increased production of PTHrP by lactating breasts 
has clinically obvious effects in hypoparathyroid 
women. Years before PTHrP was identifi ed, clini-
cians recognized that doses of calcium and cal-
citriol in hypoparathyroid women need to be 
decreased or stopped during lactation; otherwise, 
hypercalcemia occurs [ 123 – 127 ]. In fact, this effect 
of lactation to “normalize” hypoparathyroidism led 
to the correct deduction that breastfeeding induces 
a novel calcium-regulating hormone. High concen-
trations of PTHrP upregulate bone turnover, renal 
tubular calcium reabsorption, and endogenous cal-
citriol formation [ 126 – 128 ], thereby normalizing 
mineral homeostasis despite the absence of PTH. In 
clinical studies of nonpregnant adults, PTHrP is 
less potent than PTH in stimulating Cyp27b1, and 
that probably explains why calcitriol does not 
increase above normal [ 25 ,  26 ]. 

23 Hypoparathyroidism During Pregnancy, Lactation, and Fetal/Neonatal Development

http://dx.doi.org/10.1007/978-88-470-5376-2_32
http://dx.doi.org/10.1007/978-88-470-5376-2_33
http://dx.doi.org/10.1007/978-88-470-5376-2_34
http://dx.doi.org/10.1007/978-88-470-5376-2_35


258

 The management plan for hypoparathyroidism 
should include reducing or stopping calcium and 
calcitriol as lactation becomes established. 
Hypercalcemia has occurred as early as the fi rst- or 
second-day postpartum when the doses were not 
decreased. When the baby later begins to take solid 
food, the implied reduction in milk output will be 
accompanied by a decline in PTHrP. Calcium and 
calcitriol will need to be reintroduced when the 
serum calcium drifts below normal and hypocalce-
mic symptoms resume. However, production of 
PTHrP can also be sustained well after lactation 
ceases. The author is aware of a hypoparathyroid 
woman who normalized mineral homeostasis dur-
ing lactation and maintained this for over a year 
after the baby was weaned. Symptomatic hypocal-
cemia eventually recurred, and calcium and cal-
citriol had to be resumed. These    observations 
underscore that there will be variability in when the 
calcium and calcitriol need to be restarted. It may be 
needed while lactation is still ongoing, and it is most 
commonly needed at weaning, but it may not be 
required for months after breastfeeding has ceased. 

 There are no case reports describing the clini-
cal experience of pseudohypoparathyroid women 
during lactation (see also Chaps.   32    ,   33    ,   34    , and 
  35    ). As occurs with hypoparathyroidism, lacta-
tion should lead to decreased calcium and cal-
citriol requirements when PTHrP and low 
estradiol combine to cause increased bone resorp-
tion. Skeletal responsiveness to PTH is normal in 
pseudohypoparathyroidism, and so it is conceiv-
able that these patients may resorb more bone 
than normal, because they will have the effects of 
breast-derived PTHrP added to that of concur-
rently high levels of PTH.  

23.8     Effects of Maternal 
Hypoparathyroidism 
on Fetal and Neonatal 
Parathyroid Function 

 Maternal hypocalcemia due to hypoparathyroid-
ism limits the supply of mineral and provokes 
compensatory responses in the fetal-placental unit. 
The placenta upregulates the expression of factors 
known to be involved in active calcium transport 
(calbindins, calcium channels, Ca 2+ -ATPase). Of 

greater concern is that the fetal parathyroids will 
enlarge (secondary hyperparathyroidism) and 
cause resorption of the fetal skeleton. Prolonged 
maternal hypocalcemia can result in a signifi cantly 
demineralized fetal skeleton and fractures that 
occur in utero or during birth [ 129 – 133 ]. 
Spontaneous abortion, stillbirth, and neonatal 
death have also been reported [ 134 – 136 ]. The fetal 
parathyroids are enlarged and hyperplastic, while 
the cord blood calcium may be normal, low, or 
even increased. After birth, the increased parathy-
roid function can appear autonomous for days to 
weeks, resulting in hypercalcemia and progressive 
skeletal demineralization before eventually sub-
siding to normal [ 111 ]. These potential outcomes 
emphasize why signifi cant maternal hypocalcemia 
must be avoided during pregnancy. 

 These outcomes are not normally associated 
with maternal hypocalcemia due to vitamin D 
defi ciency; instead, PTH, calcium, phosphorus, 
and skeletal mineral content are normal in fetuses 
born of severely vitamin D-defi cient mothers 
(reviewed in detail in [ 2 ]). The explanation is that 
secondary hyperparathyroidism blunts the fall in 
serum calcium caused by vitamin D defi ciency, 
whereas hypocalcemia is usually more severe in 
hypoparathyroidism. 

 There are limited data examining whether the 
specifi c treatments used during pregnancy affect 
the fetal or neonatal outcomes. One report exam-
ined 12 hypoparathyroid women treated with cal-
citriol and calcium. Ten women delivered healthy 
babies, while serious adverse events occurred in 
two others, including premature closure of the 
frontal fontanelle and stillbirth [ 113 ]. It is 
unknown whether those were chance events or 
the result of over- or undertreatment of mater-
nal hypoparathyroidism. In nine other women, 
use of high-dose cholecalciferol, calcitriol, or 
1α-calcidiol was not associated with obvious 
teratogenicity or toxicity [ 113 ]. 

 If a pregnant woman with pseudohypopara-
thyroidism remains hypocalcemic, parathyroid 
hyperplasia will occur in the fetus, and skeletal 
demineralization and fractures may result [ 137 , 
 138 ]. The autonomous parathyroid function can 
cause neonatal hypercalcemia before the 
 parathyroids eventually involute. As with 
 hypoparathyroidism, normocalcemia must be 
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maintained in the mothers during pregnancy in 
order to avoid these complications.  

23.9     Fetal and Neonatal 
Hypoparathyroidism 
Secondary to Maternal 
Disturbances 

23.9.1     Primary Hyperparathyroidism 
in the Mother 

 Maternal hypercalcemia due to primary hyperpara-
thyroidism has caused fetal morbidity and mortal-
ity in up to 80 % of published cases [ 139 ]. These 
complications include severe outcomes such as 
stillbirth, miscarriage, and tetany. When case series 
from older and more recent decades are compared, 
the impression is that these outcomes have 
improved, with stillbirth declining from 13 to 2 %, 
neonatal death from 8 to 2 %, and neonatal tetany 
from 38 to 15 % [ 140 ]. Fetal death still occurs in 
modern case series, such that in 30 of 62 medically 
managed cases the babies were lost in the second or 
third trimester, which represented a 3.5-fold 
increased risk of fetal mortality that correlated with 
the increase in maternal serum calcium [ 141 ]. 

 Fetal and neonatal hypoparathyroidism remains 
an important complication of maternal primary 
hyperparathyroidism during pregnancy. The 
pathophysiology may simply be that maternal 
hypercalcemia increases the fl ow of calcium 
across the placenta, which in turn suppresses the 
fetal parathyroids. The cord blood calcium may 
be higher than normal fetal values, after which it 
slowly declines [ 142 ]. The normal increase in 
PTH after birth may be delayed or not occur at all 
in the baby born of a hypercalcemic mother, 
thereby leading to hypocalcemia and tetany in the 
neonate. As much as 50 % of neonates have had 
some complication of maternal hypercalcemia 
(most commonly tetany), while 25–30 % of neo-
nates died (presumably from hypocalcemia- 
induced tetany or arrhythmias) [ 143 – 146 ]. 

 Neonatal hypoparathyroidism caused by 
maternal hypercalcemia usually resolves by 3–5 
months after birth [ 140 ], but permanent hypo-
parathyroidism has also been reported [ 140 ,  145 , 
 147 ]. The presentation may even be delayed, 

with symptomatic hypocalcemia not occurring 
until several weeks or months after birth [ 148 –
 150 ]. Bottle-feeding increases the risk of hypo-
calcemia because the higher phosphate content of 
infant formulas and cow’s milk binds calcium 
more tightly than breast milk does [ 140 ]. 

 Fetal and neonatal hypoparathyroidism are not 
inevitable, since many neonates of hypercalcemic 
mothers do not show signs of hypocalcemia. The 
degree of elevation in maternal serum calcium is 
not an accurate predictor either because neonatal 
hypocalcemia and tetany have occurred after mild 
maternal primary hyperparathyroidism [ 151 ]. This 
variability and unpredictability is exemplifi ed by 
primary hyperparathyroidism complicating a twin 
pregnancy: one neonate had hypocalcemic seizures 
while the other remained normocalcemic [ 152 ]. 

 When primary hyperparathyroidism occurs dur-
ing pregnancy, the neonate should be closely moni-
tored for hypocalcemia. The cord blood calcium 
may be normal or increased, but it is after the nor-
mal postnatal fall in serum calcium that problems 
can develop. In an infant that is normocalcemic up 
to discharge from hospital, the parents should be 
advised to look for signs of hypocalcemia that may 
be delayed for days or weeks. Calcium and cal-
citriol are the usual treatments, but the latter will 
not be effective in premature infants due to low 
intestinal expression of the vitamin D receptor at 
that early stage of development. Formulas that are 
high in calcium and low in phosphate will mini-
mize the risk of hypocalcemia. In the infant that 
does develop hypoparathyroidism, follow-up will 
reveal whether it is transient or permanent.  

23.9.2     Familial Hypocalciuric 
Hypercalcemia (FHH) 
in the Mother 

 The comparatively mild maternal hypercalcemia 
of FHH is suffi cient to cause suppression of fetal 
parathyroids followed by neonatal hypocalcemia 
and tetany [ 153 – 155 ]. Even the heterozygous 
neonate – who will later develop hypercalcemia 
and hypocalciuria – can present with hypocalce-
mia and tetany [ 111 ]. Hypocalcemia will occur 
unexpectedly if the mother is not known to have 
FHH. Animal models have confi rmed that fetal 
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PTH is suppressed by the hypercalcemia in moth-
ers with FHH [ 156 ], likely because hypercalce-
mia causes increased fl ux of calcium across the 
placenta. Surveillance and treatment consider-
ations are the same as in babies born of mothers 
with primary hyperparathyroidism.  

23.9.3     Maternal Magnesium 
Infusions (Tocolytic Therapy) 

 Intravenous magnesium sulfate (“tocolytic ther-
apy”) is used to treat preterm labor, preeclampsia, 
and eclampsia. Magnesium readily and actively 
crosses the placenta and can lead to fetal hyperma-
gnesemia, suppressed PTH and parathyroid respon-
siveness, and variable effects on the total and 
ionized calcium of neonates [ 157 ,  158 ] (see also 
Chap.   7    ). Published reports have described benefi -
cial, neutral, and adverse effects of tocolytic therapy 
on the fetus and neonate. Respiratory depression 
and hypotonia were more likely to occur if the 
mothers had received several days of tocolytic ther-
apy [ 159 ,  160 ]. Prolonged magnesium exposure has 
caused defective ossifi cation of the bone and enamel 
in the teeth [ 161 ] and abnormal mineralization 
within the metaphyses of long bones [ 162 – 164 ]. 
Severe hypermagnesemia (>7 mg/dl) is also more 
likely to cause hypotonia, respiratory depression, 
and bone abnormalities [ 157 ,  160 ,  164 ,  165 ]. 

 Monitoring of fetal movements is advisable 
when tocolytic therapy is given for 2 days or lon-
ger. Neonates with hypotonia and respiratory 
depression may need to be ventilated for a day or 
two. Hypocalcemia may develop from parathy-
roid suppression. Intravenous calcium has also 
been used to reverse central nervous system 
depression and peripheral neuromuscular block-
ade caused by the high magnesium level [ 160 ].  

23.9.4     Hypercalcemia of Malignancy 
(HoM) in the Mother 

 HoM is uncommon, but maternal hypercalcemia 
can be more severe and likely to cause fetal and 
(possibly permanent) neonatal hypoparathyroid-
ism. Among limited data from babies born of 

mothers with HoM, hypercalcemia was present in 
cord blood and the fi rst few postnatal samples 
[ 166 – 168 ]. It should be expected that after the 
serum calcium falls, the neonate will be at high 
risk for hypocalcemia, respiratory distress, tetany, 
and seizures [ 169 ,  170 ]. The baby died in one of 
four cases where the outcome was reported [ 169 ]. 

 High doses of bisphosphonates have been 
used to treat affected women during pregnancy. 
Bisphosphonates cross the placenta and, at least 
theoretically, could impair endochondral bone 
development and reduce bone turnover, thereby 
lowering the blood calcium. Fetal and neonatal 
hypocalcemia have been reported in cases where 
women received bisphosphonates to treat HHM 
or other causes of hypercalcemia during preg-
nancy, but since maternal hypercalcemia itself 
causes fetal hypocalcemia, one cannot determine 
from those few cases whether bisphosphonates 
added to the risk of hypoparathyroidism in the 
baby. Pamidronate was used to treat HoM in two 
reported pregnancies, and no adverse effects 
were reported in the neonates [ 166 ,  168 ].  

23.9.5     Pseudohyperparathyroidism 
in the Mother 

 Excess production of PTHrP by the breasts 
(pseudohyperparathyroidism) during pregnancy 
can cause maternal hypercalcemia. In one case, 
the baby was normal after the maternal condition 
was corrected by mastectomy during pregnancy 
[ 23 ,  24 ]. In another case, the baby was hypercal-
cemic for several days after birth and only mildly 
hypocalcemic thereafter [ 21 ]. As with other 
causes of maternal hypercalcemia during preg-
nancy, these babies are at increased risk of neona-
tal hypoparathyroidism and hypocalcemia.  

23.9.6     Maternal Diabetes Causing 
Fetal and Neonatal 
Hypoparathyroidism 

 Poorly controlled maternal diabetes is a known 
risk factor for neonatal hypocalcemia, seizures, 
and tetany. Hyperphosphatemia is often present 
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and provides an additional indication that the neo-
natal parathyroids are hypofunctioning. Why 
maternal diabetes can cause this outcome remains 
unclear. One case series found that, compared to 
controls, neonates born of diabetic mothers had 
higher ionized and total serum calcium in the cord 
blood and were more likely to have prolonged 
parathyroid suppression [ 171 ]. A high cord blood 
calcium can explain suppression of the fetal and 
neonatal parathyroids, but how maternal diabetes 
might cause fetal hypercalcemia is unknown. 
Another theory is that maternal hypomagnesemia 
results from glucosuria- induced wasting of mag-
nesium in pregnant diabetic women, and in turn 
maternal hypomagnesemia causes fetal hypomag-
nesemia and parathyroid suppression. However, 
there are no data on cord blood magnesium in 
babies born of diabetic mothers, and the data cited 
earlier suggest that the cord blood calcium in 
these babies is increased, not decreased. 
Furthermore, postnatal magnesium supplementa-
tion had no effect on the incidence of neonatal 
hypocalcemia in infants of diabetic mothers [ 172 ]. 
Hypocalcemia also occurs in infants of diabetic 
mothers because they are at increased risk of pre-
term birth, lung immaturity, and asphyxia.   

23.10     Fetal and Neonatal 
Hypoparathyroidism 
Due to Primary Parathyroid 
Disorders 

23.10.1     Hypoparathyroidism 

 Hypoparathyroidism can result from genetic 
deletion of the parathyroids (DiGeorge and other 
22q11.2 deletion syndromes, ablation of Gcm2, 
etc.), activating mutations of the calcium-sensing 
receptor, and other genetic mutations [ 173 ]. The 
absence of parathyroids does not necessarily 
cause symptomatic hypocalcemia; instead, devel-
opment of hypocalcemia in utero may enable the 
affected neonate, infant, and child to be accus-
tomed to a low level of calcium that a normal 
child would fi nd intolerable. In one large series of 
22q11.2 deletions, only 60 % of affected indi-
viduals ever had hypocalcemia [ 174 ]. In those 

who did develop hypocalcemia, most presented 
as neonates (some with seizures), but in others 
the hypocalcemia occurred in childhood or as late 
as 18 years of age [ 174 ]. In another series of 12 
cases with confi rmed hypocalcemia, only 4 were 
symptomatic, 10 were diagnosed before 1 month 
of age, and the remaining 2 presented at 3 months 
and 12 years of age, respectively [ 175 ]. In another 
series of 10 cases of hypoparathyroidism, the age 
at diagnosis ranged from 9 days to 13 years [ 176 ]. 

 Numerous animal species (sheep, rats, mice) 
and models (loss of PTH, parathyroids, or the 
type 1 PTH receptor) have confi rmed that the loss 
of PTH causes hypocalcemia in utero [ 47 ,  51 ]. 
Fetal mice lacking parathyroids ( Hoxa3  null) or 
the type 1 PTH receptor ( Pth1r  nulls) have the 
lowest blood calcium (well below the maternal 
level), whereas mice lacking PTH ( Pth  nulls) have 
a blood calcium equal to the maternal level [ 47 , 
 51 ,  70 ]. The absence of PTH also causes hyper-
phosphatemia and hypomagnesemia in thyropara-
thyroidectomized fetal lambs and rats, and in all 
PTH-defi cient fetal mouse models [ 47 ,  51 ]. The 
skeletons in these PTH-defi cient fetuses were also 
under-mineralized. The long bones of aparathy-
roid or PTH-defi cient mice showed either normal 
or slightly shortened lengths, depending upon the 
genetic background [ 47 ,  51 ,  58 ].  

23.10.2     Pseudohypoparathyroidism 

 Clinical experience of pseudohypoparathyroid-
ism is that hypocalcemia develops later in 
childhood, preceded by an interval of hyperphos-
phatemia and elevated PTH [ 177 ,  178 ]. Although 
no data have been specifi cally reported from 
affected newborns, it is anticipated that cord 
blood calcium will be normal and neonatal hypo-
calcemia unlikely to occur.  

23.10.3     Defi cient Production 
of PTHrP 

 Mice lacking the PTHrP gene have a hypopara-
thyroid phenotype in utero with hypocalcemia, 
hyperphosphatemia, reduced placental calcium 
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transport, and dwarfi sm due to accelerated endo-
chondral bone formation [ 69 ,  70 ]. They normally 
die at birth, but a few have survived for several 
days. Death may be due to a variety of causes, 
including hypocalcemia, impaired ventilation 
due to an abnormally calcifi ed rib cage, and pul-
monary abnormalities that include defi cient type 
II alveolar cells and surfactant defi ciency [ 69 ,  70 , 
 179 ]. The human equivalent has not been reported 
but would presumably cause hypocalcemia, skel-
etal abnormalities, and lethality at or soon after 
birth. An autosomal dominant microdeletion in 
the PTHrP gene has been linked to the nonlethal 
human condition of brachydactyly type E. It is 
characterized by short stature and shortened 
metacarpals and metatarsals; calcium and phos-
phorus are normal [ 180 ].  

23.10.4     Absent Type 1 PTH Receptor 

  Pth1r  null fetal mice have a phenotype that is 
similar but more severe than the absence of 
PTHrP, including dwarfi sm, hypocalcemia, 
hyperphosphatemia, shortened limbs due to 
accelerated endochondral bone formation, and 
lethality at birth (embryonic lethality in some 
genetic backgrounds) [ 70 ,  181 ] (see also Chap. 
  9    ). The human equivalent is Blomstrand chon-
drodysplasia, which is characterized by acceler-
ated endochondral ossifi cation and dysplasia, and 
lethality in utero [ 182 ,  183 ]. Hypocalcemia and 
hyperphosphatemia are likely present but have 
not been measured.   

    Conclusions 

 Pregnancy invokes a doubling of intestinal 
calcium absorption to meet the fetal demand 
for calcium. In contrast, lactation programs 
increased bone resorption in order to provide 
calcium to the breast milk. These adaptations 
during normal pregnancy and lactation can 
lead to novel presentations and management 
issues for hypoparathyroid women. 

 Fetal calcium metabolism is regulated dif-
ferently from that is the adult, but the loss of 
the placenta and decline in serum calcium 
after birth invoke a switch to adult regulatory 

mechanisms. Maternal hypoparathyroidism 
can cause fetal and neonatal hyperparathy-
roidism. Fetal and neonatal hypoparathyroid-
ism can be caused by maternal disorders 
during pregnancy (hypercalcemia, diabetes, 
and use of tocolysis) and by disorders that 
directly impair the baby’s parathyroid anat-
omy or function. If the mother has abnormal 
calcium homeostasis during pregnancy, then 
the fetus and neonate must be closely moni-
tored for abnormalities. Similarly, if a neonate 
has an unexpected disorder of calcium homeo-
stasis, the mother should be assessed for an 
undiagnosed disturbance of parathyroid 
function.     
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24.1             Introduction 

 The main causes of hypoparathyroidism are 
congenital anomalies of parathyroid organogen-
esis, autoimmune diseases, and surgery [ 1 ,  2 ]. 
However, infi ltrative disorders, radioisotopic 
destruction, and burn injuries also cause lesions 
to the parathyroid glands and acute or permanent 
parathyroid gland hypofunction (see also Chaps. 
  14     and   15    ). Transient or sometimes prolonged 
functional parathyroid dysfunction can also 
develop in the neonatal period in relation to 
maternal hypercalcemia that is usually linked 
to undiagnosed primary hyperparathyroidism 
(see also Chap.   23    ). 

 Knowledge of these rarer causes is warranted, 
since hypoparathyroidism may be the presenting 
sign. In this review, we will identify, as far as 
possible, the prevalence of these conditions, 
their mechanisms, the specifi c features of their 
 management and their prognosis.  

24.2     Radiation-Induced 
Hypoparathyroidism 

 External irradiation, such as that delivered for 
benign cervical diseases, is a traditional risk 
factor for thyroid cancers as well as parathyroid 
adenomas, which are responsible for primary 
hyperparathyroidism [ 3 ,  4 ]. Hyperparathyroidism 
can also be observed after iodine 131 treatment 
for hyperthyroidism [ 5 ]. Paradoxically, the role 
of ionizing radiation must also be considered in 
the presence of parathyroid hypofunction, even if 
the irradiation occurred long ago and has been 
forgotten. 

 The fi rst evaluation of parathyroid functional 
reserve was carried out in 1965 by Adams and 
Chalmers in 60 subjects who had received a ther-
apeutic dose of iodine 131 for hyperthyroidism 
[ 6 ]. The assessment, done over a variable time 
period, consisted of a calcium deprivation test 
provoked by the infusion of a calcium-chelating 
agent (disodium EDTA = disodium hydrogen 
ethy lenediaminetetracetic acid), followed by 
serum calcium measurements after 2, 6, 12, and 
24 h. Ten percent of patients had persistent hypo-
calcemia, while normal subjects had a restoration 
of serum calcium levels to at least 90 % of pre- 
EDTA levels by 12 h. Another investigation was 
done in 19 asymptomatic subjects 6 months 
after receiving a therapeutic dose of iodine 131 
(100–150 mCi) for thyroid cancer remnant 
ablation. The study results showed low serum 
calcium levels (<84 mg/l) with inappropriately 

        J.-L.   Wémeau      
  Department of Endocrinology and Metabolic Disease , 
 Marc Linquette Endocrinological Clinic, 
Claude Huriez Hospital, CHRU , 
  Lille Cedex   59 037 , 
 France   
 e-mail: Jean-Louis.WEMEAU@chru-lille.fr; 
jl-wemeau@hotmail.fr  

  24      Rare Causes of Acquired 
Hypoparathyroidism 

           Jean-Louis     Wémeau    

http://dx.doi.org/10.1007/978-88-470-5376-2_14
http://dx.doi.org/10.1007/978-88-470-5376-2_15
http://dx.doi.org/10.1007/978-88-470-5376-2_23
mailto: Jean-Louis.WEMEAU@chru-lille.fr
mailto: jl-wemeau@hotmail.fr
mailto: jl-wemeau@hotmail.fr


272

normal parathyroid hormone PTH levels in 7 of 
19 patients. None of them had symptoms of 
hypocalcemia. 

 In contrast, reported cases of severe hypocal-
cemia related to radiation-induced hypopara-
thyroidism are rare. The excellent report by 
Komarovskiy and Raghavan in 2012 found 11 
cases in the literature, including one personal 
case, which occurred after radioactive iodine 
treatment and in the absence of parathyroid 
disease [ 7 ]. The female to male ratio was 7:4. 
Hypocalcemia related to hypoparathyroidism 
occurred within 5 days to 10 months of the 
treatment. The situation required prolonged 
calcium supplementation with vitamin D therapy 
for at least 1 year (up to 12 years) in the majority 
of cases (Table  24.1 ). Animal studies showed 
the development of parathyroid gland lesions 
caused by iodine 131 β-radiation, which could 
penetrate surrounding structures to a depth of up 
to 2.5 cm [ 8 ,  9 ].

   Potential additional contributors to hypocalce-
mia in this setting include acceleration of bone 
formation during recovery from the prior hyper-
thyroidism (i.e., “hungry bones”), a shortage or 
defi ciency of vitamin D, and other factors such as 
corticosteroid therapy for asthma [ 7 ]. The possi-
bility of autoimmune hypoparathyroidism should 
also be kept in mind (see Chap.   17    ), although its 
association with Graves’ disease is very rare.  

24.3     Infi ltrative 
Hypoparathyroidism 

 Parathyroid gland hypofunction can result in 
infi ltration related to infl ammatory (granulomatosis, 
thyroiditis) or neoplastic processes or as a 
reaction to metal overload (hemochromatosis, 
Wilson’s disease) (Table     24.2 ).

24.3.1       Infi ltrative Granulomatosis 
Hypoparathyroidism 

 Sarcoidosis, tuberculosis, and some other 
granulomatous diseases are well-known causes 
of hypercalcemia and hypercalciuria [ 10 ]. They 
are explained by the extrarenal production of 1, 
25-hydroxyvitamin D in the granuloma. However, 
there are few reports of hypoparathyroidism in 
patients with sarcoidosis, which are usually not 
well documented. Possible infi ltration of the 
parathyroid glands by sarcoid granulomas was 
suspected by some authors [ 11 – 13 ]. 

 Some histologically described infl ammatory 
and granulomatous parathyroid disorders (96 
cases in 27 articles) have been reported using the 
terms “parathyroiditis,” “infl ammation of the 
parathyroid glands,” “granulomatous infl amma-
tion,” “sarcoidosis,” or “tuberculosis.” There 
has been a surprising absence of associations 

   Table 24.1    Review of post-RAI therapy hypoparathyroidism   

 References  Age (years)  Gender 
 Total RAI 
dose (mCi) 

 Time to onset 
of symptoms 

 Duration of 
treatment for 

    Calcium at time 
of symptoms 
mg/dl 

 TIGHE  14  M  4  72 days  6 months  n/a 
 CHATTERJEE  36  F  5  2 months  More than 1 year  6.4 
 FULOP  45  F  14  9 months  10 years  6.5 
 ORME  57  M  40  10 months  5 
 WINSLOW  38  F  150  1 month  More than 1 year  5.7 
 TOWNSEND  52  M  10  4 months  More than 1 year  n/a 
 JIALAL  46  F  5  6 months  2 years  5 
 BURCH  22  F  4  10 months  12 years  7.1 
 EIPE  58  M  15.7  5 months  More than 1 year  4.5 
 FREEMAN  58  F  3.5  5 days  7.7 
 KORAKOVSKIY  12  F  11.1  1 month  More than 6 months  6.6 

  From Komarovskiy [ 7 ]  
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between histologically proven parathyroiditis 
and hypoparathyroidism [ 14 ]. 

 Hypoparathyroidism has also been reported in 
the endocrine expression of POEMS syndrome 
(polyneuropathy, organomegaly, endocrinopathy, 
monoclonal protein, skin changes) [ 15 ,  16 ]. 
There is still a lack of knowledge concerning the 
nosology, pathogenesis, and medical approach to 
this condition [ 17 ]  

24.3.2     Amyloidosis 
and the Parathyroid Glands 

 Autopsy investigations have found a very high 
frequency of amyloid infi ltration of the parathy-
roid glands, which increases with age and with 
atherosclerosis and occurs without evidence of 
altered endocrine function [ 18 ]. In a Scottish 
study, it was found to be more prevalent in the 
parathyroid glands removed at necropsy (46 %) 
than in those that were surgically removed [ 19 ]. 
Parathyroid gland infi ltration is also seen in 
systemic amyloidosis, as in other endocrine 
glands [ 20 ]. It has also been observed in amyloi-
dosis related to the relapsing disease and familial 
Mediterranean fever [ 21 ,  22 ], and it is a possible 
accompanying sign of amyloid goiter [ 23 ]. In these 
conditions, a reduction in parathyroid hormone 
production is possible but rare.  

24.3.3     Hypoparathyroidism 
Associated with Riedel’s 
Thyroiditis 

 Riedel’s thyroiditis is a rare, if not exceptional, 
condition, which is defi ned as an invading fi brosis 

of the thyroid gland. It infi ltrates and extends 
beyond the capsule, then become an invasive 
fi brosis of the neck [ 24 ,  25 ]. As a result, a 
rock- hard goiter eventually leads to severe 
compressive signs; this process may include 
hypoparathyroidism, as well as possibly hypo-
thyroidism [ 26 ,  27 ]. 

 Interestingly, hypoparathyroidism is some-
times an early presenting sign of a fibrous 
process forming in the neck, which has been little 
known until now [ 28 ]. These conditions should 
be distinguished from hypoparathyroid lesions 
formed during attempts at debulking surgery for 
thyroiditis [ 29 ]. Riedel’s thyroiditis is actually 
discovered during thyroidectomies in 0.06 % of 
cases [ 30 ]. 

 The mechanisms behind the formation of 
these fi brous processes are poorly understood. 
In rare cases, it is a reaction to an autoimmune 
disorder corresponding to a fi brous variant of 
Hashimoto thyroiditis, with extracapsular exten-
sion of the processes marking the transition to 
Riedel’s thyroiditis [ 31 ]. The fi brosis is usually 
isolated, however, showing no evidence of preex-
istent autoimmunity, giant-cell granulomatous 
reaction, or neoplastic invasion [ 32 ]. This fi brotic 
process is, however, likely to spread to the medi-
astinum, the hepatobiliary tract, the retroperito-
neum, and the eye socket. The fi broblastic 
proliferation appears to be induced by cytokines 
from the B and T lymphocytes [ 24 ,  33 ]. 

 Means of limiting the spread of fi brosis 
include corticosteroid therapy, thyroid hormone 
therapy, tamoxifen (antiestrogen agent that 
stimulates TGF-β production and reduces the 
maturation of immature fi broblasts) and, as far as 
possible, partial surgical resection. Therapeutic 
success is modest, however [ 24 ,  33 ,  34 ]. 

 According to the published cases, 14 cases of 
hypoparathyroidism accompanying Riedel’s 
 thyroiditis have been reported, 10 of them in 
women. The mean age at occurrence was 45 
years (range 36–66 years). Hypoparathyroidism 
was a presenting diagnosis in one case; it occurred 
at the time of the discovery of the thyroiditis in 
four cases and occurred separately with an inter-
val between the diagnoses of the two conditions 
of between 4 and 32 months in the other cases. 

   Table 24.2    Infi ltrative hypoparathyroidisms   

 Granulomatosis: sarcoidosis, tuberculosis, syphilis 
 Amyloidosis 
 Riedel’s thyroiditis 
 Metastasis 
 Metal deposition 
   Hemochromatosis 
   Wilson’s diseases 
   Aluminum deposit in patients with renal failure 
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 Hypoparathyroidism was present in 3 of the 
21 cases of Riedel’s thyroiditis studied at the 
Mayo Clinic between 1976 and 2008 [ 35 ].  

24.3.4     Hypoparathyroidism Related 
to Metastasis 

 There are very few reports of secondary tumors 
developing in the parathyroid glands, sometimes 
with hypoparathyroidism [ 36 ]. 

24.3.4.1     Hypoparathyroidism 
Related to Metal Storage 

 Hypoparathyroidism is rare but constitutes a 
classical feature of hemochromatosis, mainly 
observed in secondary iron overload following 
blood transfusions. However, parathyroid insuf-
fi ciency can also be observed in relation to copper 
(Wilson’s disease) and aluminum (in patients 
with renal failure). 

 There are well-documented cases of hypopara-
thyroidism occurring in patients who received 
multiple blood transfusions for thalassemia 
major, Diamond-Blackfan anemia, or other vari-
eties of chronic transient aplastic anemia. These 
cases particularly involved subjects treated from 
a young age. The onset of hypocalcemia was 
most often after the age of 10 years. It usually 
was associated with few symptoms and was dis-
covered on laboratory testing. As a general rule, 
it occurred simultaneously with massive tissue 
overload of iron, a determinant of liver involve-
ment, pituitary insuffi ciency (hypogonadism with 
eunuchoidism, growth hormone insuffi ciency 
resulting in short stature), and hypothyroidism. 
With iron chelation therapy, the hypoparathy-
roidism rarely appeared to regress [ 37 – 43 ]. 

 In an Iranian prospective study of 220 patients 
with thalassemia, hypoparathyroidism was present 
in 7.6 % (while short stature was seen in 39.3 %, 
hypogonadism in 22.9 % of boys and 12.8 % of 
girls, and hypothyroidism in 7.7 %). The patients’ 
mean age at the time of diagnosis of hypoparathy-
roidism was 16.9 ± 3.7 years, and the highest prev-
alence was seen at the age of 20, with a distribution 
of 81.8 % in males and 18.2 % in females. The 
mean serum ferritin level (1,444 ± 798 μg/l) was 

not signifi cantly different from other patients [ 44 ]. 
In other reports, the prevalence of hypoparathy-
roidism was lower: 3.6–7 % [ 45 – 47 ], and there 
was a lower male to female ratio [ 46 ,  48 ]. There 
are no reports showing a potential protective effect 
of hypoparathyroidism with regard to osteoporosis 
and osteopenia, which were observed in the lower 
back and femoral neck in 10–50 % of individuals 
[ 44 ,  49 ]. In a patient with multiple endocrinopa-
thies and secondary hemochromatosis due to mul-
tiple blood transfusions, admitted due to adrenal 
crisis, serum calcium decreased to 6.4 mg/dl; it 
was presumed that administration of glucocorti-
coid and alendronate therapy, prescribed for frac-
tures and osteoporosis, had unmasked a latent 
hypoparathyroidism [ 50 ]. In contrast, hypopara-
thyroidism has rarely been reported with primary 
hemochromatosis caused by a mutation of the 
HFE gene (<1 %) [ 51 ]. This difference in the 
expression of the disease is surprising. It shows 
that hypoparathyroidism in the setting of hemo-
chromatosis may not only result from iron over-
load but also from the ability of the disease to 
generate sclerosis and tissue lesions. 

 Observations of long-term hemodialysis 
patients suggest that multiple transfusions and iron 
overload causing hemochromatosis play a caus-
ative role in hypoparathyroidism [ 52 ]. The authen-
ticity of staining of bone for iron was confi rmed in 
a series of 48 patients on dialysis. It occurred with 
osteomalacia and with bone aluminum staining. In 
patients with iron overload in the bones and other 
tissue such as bone marrow, the observation of 
lower levels of iPTH in overloaded patients raises 
the possibility that iron overload induces a state of 
relative hypoparathyroidism [ 53 ]. 

 Hypoparathyroidism is a possible manifesta-
tion of Wilson’s disease, which involves congeni-
tal anomalies of copper metabolism and affects 
the liver and nervous system. Its prevalence is 
rare (<1/100,000) [ 51 ]. Hypoparathyroidism has 
been attributed to copper deposits in the parathy-
roid glands [ 54 ,  55 ]. It has also been observed 
in the setting of intestinal lymphangiectasia with 
protein-losing enteropathy and toxic copper 
accumulation [ 56 ]. 

 Hypoparathyroidism has also been described 
in adrenoleukodystrophy of Schilder’s disease, 
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which involves an accumulation of long-chain 
triglycerides, with a particular affi nity for the 
central nervous system, the adrenal glands, and 
testicles [ 57 ]. It has also been found in Fabry’s 
disease [ 58 ], and fi nally during mitochondrial 
cytopathies that alter the respiratory chain [ 59 ,  60 ]. 
Transient hypoparathyroidism has also been 
reported in cases of acute decompensation of 
fatty acid oxidation disorders (FAO), which also 
have involvement of muscle, heart, and liver [ 61 ].    

24.4     Hypoparathyroidism Related 
to Burn Injuries 

 It is now well known that extensive burns are 
likely to alter calcium and bone metabolism. This 
has been particularly well established in children. 
The survey of Klein et al. showed that in middle-
school- aged children (9.6 ± 4.7), burns affecting 
±57 % of the body surface area clearly lower the 
total and ionized calcium. At the same time, the 
serum iPTH concentrations are not increased, 
which is inappropriate given the hypocalcemia, 
and appear to be weakly reactive during the cal-
cium deprivation test provoked by EDTA [ 62 ]. 
Due to simultaneous hypomagnesemia and the 
well-known role of magnesium defi ciency on the 
production and activity of PTH [ 63 ], the role of 
the magnesium defi ciency had been suggested, but 
oral and parenteral magnesium  supplementation 
proved ineffective in correcting the hypocalce-
mia and the hypoparathyroidism [ 64 ]. In contrast, 
experimental studies on sheep suggest rather an 
upregulation of the parathyroid calcium- sensing 
receptor and a related decrease in the set point for 
calcium suppression of the parathyroid hormone, 
thus contributing to post- burn hypoparathyroidism 
and hypocalcemia [ 65 ]. At the same time, there 
is a decrease in the parameters of bone formation 
and bone mass as assessed by bone mineral den-
sity testing, which may be contributed to by the 
increase in endogenous glucocorticoid production, 
functional growth hormone defi ciency, immobili-
zation, and the proinfl ammatory cytokines inter-
leukin 1β and 6. As a consequence, the risk for 
post-burn fractures increases [ 66 ]. The adminis-
tration of the bisphosphonate pamidronate did not 

exacerbate post-burn hypocalcemia and effectively 
preserved bone mass, as attested by a double-blind 
randomized controlled study [ 67 ].  

24.5     Hypoparathyroidism 
in Children in Relation 
to Maternal Hypercalcemia 

 Primary hyperparathyroidism is the main cause of 
hypercalcemia, and its prevalence is estimated to 
be 1/1,000. Fortunately the condition is rare in 
women of childbearing age, with an incidence dur-
ing pregnancy estimated at 8 cases per 100,000 and 
per year [ 68 ]. Hyperparathyroidism has profound 
consequences for pregnant women (vomiting, kid-
ney stones, nephrocalcinosis, pancreatitis, and pre-
eclampsia), as well as fetuses (miscarriage, mental 
retardation) [ 69 – 72 ] (see also Chap.   23    ). 
Consequently, surgical intervention is usually rec-
ommended during the second trimester of preg-
nancy and particularly if the serum calcium exceeds 
2.85 mmol/L. The intervention and successful cure 
of the hyperparathyroidism very signifi cantly 
reduce the maternal and fetal risk [ 72 ,  73 ]. 
Cinacalcet, a calcimimetic agent was used during 
pregnancy [ 74 ], but its potential effects on calcium 
transport in the placenta and the fetus require that 
its risks and benefi ts be carefully considered. 

 Maternal hyperparathyroidism may go unde-
tected during pregnancy and present as neonatal 
tetany. The chronic exposure of the fetus to 
hypercalcemia from the mother in fact causes 
inhibition of parathyroid function in the fetus, 
which continues into the neonatal period. This 
effect is ordinarily transient, but prolonged para-
thyroid hypofunction has been reported [ 72 ]. 

 Due to the placental transfer of calcium to the 
fetus, neonatal hypocalcemia is delayed and is 
usually observed from the second or third week 
with a dramatic presentation of convulsions in 
some cases [ 75 – 77 ] (Table  24.3 ).   

All neonatal hypocalcemia requires 
the measurement of serum calcium in the 
mother.
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 Neonatal hypocalcemia may be related to 
other causes of maternal hypercalcemia. The 
diagnosis of familial hypocalciuric hypercalce-
mia should be considered here in conjunction 
with an inactivating mutation of the calcium- 
sensing receptor expressed in the parathyroid 
glands and kidneys [ 78 ]. These situations are 
usually asymptomatic and have no consequences 
in adults, particularly for the pregnant woman. 
However, the situation of the fetus needs to be 
very carefully considered. If the child were to 
inherit a homozygous mutation from the mother 
and father, he/she would be at risk of developing 
severe neonatal hyperparathyroidism, with dra-
matic consequences and therapeutic management 
that is diffi cult [ 78 ]. Some cases have also been 
reported of severe neonatal hypercalcemia sim-
ply from inheritance of a single heterozygous 
mutation of the gene [ 79 ]. If the fetus is unaf-
fected, as in half of the cases with a Mendelian 
pattern of inheritance for an autosomal dominant 
condition, the exposure to maternal hypercalcemia 
is inconsequential, since it is usually moderate 
(less than 115 mg/L). Cases of functional inhibi-
tion and convulsions during the neonatal period 
have been reported, however [ 76 ].     
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25.1             Introduction 

 Hypoparathyroidism, a hormonal insuffi ciency 
state, is characterized by hypocalcemia and 
hyperphosphatemia which are the result of a defi -
ciency in parathyroid hormone (PTH) secretion 
or action [ 1 ]. The prevalence of this disorder in 
the population remains unknown. Postsurgical 
hypoparathyroidism has been observed in 5–25 % 
of patients in different series in the literature, and 
it is the most frequent form of hypoparathyroidism. 
Primary hypoparathyroidism    may also be caused 
by developmental defects in the parathyroid glands, 
resulting from agenesis (e.g., the Di George 
syndrome) or destruction of the parathyroid glands 
(e.g., in autoimmune diseases) or due to reduction 
of PTH secretion (e.g., neonatal hypocalcemia or 
hypomagnesemia). Hypoparathyroidism may 
occur as an inherited disorder and fi nally as an 
impaired regulation of PTH secretion, as in CaR 
mutations [ 2 ,  3 ]. 

 The majority of cases of hypoparathyroidism 
are well controlled under conventional treatment 
with calcium and vitamin D analogs. 

 However, this treatment may be diffi cult to 
manage, especially in the following situations: (1) 

in the context of autoimmune polyendocrinopathy- 
candidiasis-ectodermal dystrophy, (2) in all condi-
tions of  hypoparathyroidism associated with 
malabsorption (celiac disease), and (3) activating 
mutations in the calcium- sensing receptor [ 4 ]. 
These situations are indicated as  refractory 
hypoparathyroidism . 

 Some conditions of hypocalcemia which are 
not always follow-on hypoparathyroidism may 
be resistant to administration of oral calcium and 
vitamin D and will be here indicated as  refractory 
hypocalcemia  due to: (1) hungry bone syndrome, 
(2) abdominal surgery, and (3) hypomagnesemia. 

 The biochemical diagnosis of hypoparathy-
roidism is made with the coexistence of inappro-
priately low serum PTH with hypocalcemia and 
hyperphosphatemia. Primary renal failure must 
be excluded by determination of serum creatinine 
or urea, because it may produce similar plasma 
mineral changes. The differentiation of hypo-
parathyroidism and pseudohypoparathyroidism, 
a hormonal resistance state, can be made by 
simultaneous measurement of serum Ca and PTH 
concentrations. Serum 25-hydroxyvitamin D 
(25 OH D) should also be measured to exclude 
vitamin D defi ciency. In    addition, mutational 
analysis of genes involved in the pathogenesis of 
hypocalcemia is important to identify mutations 
that have been described in the literature and 
to identify new mutations responsible for the 
various forms of hypoparathyroidism. 

 Conditions with high bone turnover can induce 
a hungry bone syndrome resulting in increased 
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bone demand for calcium with hypocalcemia that 
can be resistant to administration of oral calcium 
and vitamin D [ 5 ]. Symptoms of hypocalcemia 
diffi cult to treat with oral therapy may be due to 
malabsorption, possibly as a result of intestinal 
hurry in subjects after abdominal surgery treat-
ment [ 6 ]. In addition, ionized hypocalcemia 
accompanied by signifi cant elevation of intact 
PTH has been described during surgical proce-
dures of varying severity [ 7 ]. Indeed, Lapage R. 
et al. showed that an important part of this fall in 
ionized calcium was associated with falls in 
albumin resulting from acute hemodilution by 
physiological saline [ 7 ]. 

 Mg depletion is often secondary to another 
disease process or to a therapeutic agent; the 
features of the primary disease process may 
complicate or mask the Mg depletion. A common 
laboratory feature of Mg depletion is hypokale-
mia due to a loss of potassium from the cell 
with intracellular potassium depletion and an 
inability of the kidney to conserve potassium. 
Hypocalcemia is also a common manifestation of 
moderate to severe Mg depletion. 

 Treatment of hypoparathyroidism is depen-
dent on many factors including the presenting 
symptoms and the severity and rapidity that these 
symptoms developed. The aim of therapy is to 
maintain the serum calcium at or around the 
lower limit of the normal concentration range 
(8–9 mg/dl), so that, on the one hand, hypocalcemic 
manifestations are limited to the mildest symptoms 
and, on the other hand, harmful hypercalcemia and 
hypercalciuria are avoided. If therapy is successful, 
symptoms associated with hypoparathyroidism 
should not disturb the patient’s daily life, and 
long-term complications should be avoided. 

 Transient hypercalcemia should be avoided 
because recurrent episodes may cause irreparable 
kidney damage. 

 The conventional treatment for hypoparathy-
roidism is  vitamin D and its analogs . Table  25.1  
indicated the calciferol steroid therapy used in 
the therapy of hypoparathyroidism.

   Some forms of hypocalcemia with or without 
hypoparathyroidism require special attention and 
monitoring, and patients become refractory to 
oral steroid therapy [ 8 ]. 

 Magnesium defi ciency can be managed with 
MgCl 2  supplementation in daily doses of 2 mmol/
kg divided into four doses.  

25.2     Refractory 
Hypoparathyroidism 

25.2.1     Refractory 
Hypoparathyroidism 
Associated with Autoimmune 
Polyendocrine 
Syndrome (APS)  

 This r   efractoriness is most common in patients 
with hypoparathyroidism associated with auto-
immune polyendocrine syndrome (APS) [ 9 ,  10 ]. 
There are four different types of APS, types I–IV 
(Table  25.2 ) [ 11 ]. Their presentation and mani-
festations are quite varied, and therefore careful 
attention to clinical and laboratory evaluation is 
important. The term “polyendocrine” itself may 
be a misnomer because some patients have mul-
tiple endocrine disorders while some have many 
nonendocrine issues [ 11 ,  12 ]. Prompt recognition 
of APS is crucial because it may require that a 
patient or family member undergo further evalu-
ation for certain genetic syndromes or autoim-
mune disorders. APS type I often appears early in 
life, typically in infants with chronic candidal 
infections, hypoparathyroidism, and autoimmune 
AD 8 [ 11 ]. The APS type I disorder has also 
been referred to as either the autoimmune 
polyendocrinopathy- candidiasis-ectodermal 
dystrophy (APECED) [ 13 ]. It is characterized by 

   Table 25.1    Calciferol steroid therapy used in the therapy 
of hypoparathyroidism   

 Sterol 

 Average 
dosage 
(μg/kg-day) 

 Average 
T1/2 (days)  Comments 

 1,25 
(OH) 2 D 3  

 0.03  1  Risk of 
cumulative action 

 1α (OH) D  0.06  2 
 DHT  20  7 
 25 (OH) D  4  15 
 D2 and D3  50  30 

  From Masi and Brandi [ 8 ]  
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the triad hypoparathyroidism, mucocutaneous 
candidiasis, and adrenal insuffi ciency and two or 
three of the following: insulin-dependent diabe-
tes primary hypogonadism, autoimmune thyroid 
disease, pernicious anemia, chronic active hepatitis, 
steatorrhea (malabsorption), alopecia (totalis or 
areata), and vitiligo [ 13 ]. It is caused by a muta-
tion in the autoimmune regulator gene (AIRE), 
located in locus 21q22.3, which produces a 
protein that functions as a transcription regulator 
[ 14 – 15 ].

   In these patients, one contributing factor to 
their chronic hypocalcemia and refractoriness to 
vitamin D therapy is fat malabsorption. 
Gastrointestinal (GI) dysfunction is commonly 
induced by infection, allergy, gluten-sensitive 
enteropathy, infl ammatory bowel disease, or 
eosinophilic gastroenteropathy. In APECED, GI 
symptoms such as malabsorption, constipation, 
watery diarrhea, or steatorrhea are part of the 
syndrome in around 24 % of the patients [ 16 ,  17 ]. 
In contrast to the major organ-specifi c autoim-
mune symptoms of APECED, the GI symptoms 
and their underlying pathogenesis are poorly 
understood. Yet isolated case reports and small 
series depict severe intestinal involvement in 
children, leading to malabsorption, multiple 
defi ciencies, growth impairment, and possible 
death [ 11 ]. Possible explanations include intes-
tinal candidiasis, mucosal atrophy, intestinal 
lymphangiectasia, pancreatic insuffi ciency, bile 
salt defi ciency, and hypoparathyroidism leading 
to hypocalcemia [ 17 – 20 ]. Some studies proposed 
the importance of enteroendocrine (EE) cells 
in APECED-associated diarrhea [ 16 ,  17 ]. 
Posovszky C. et al. demonstrated that APECED 
with GI dysfunction is associated with severe or 

complete loss of enteroendocrine (EE) cells. 
The author showed that GI symptoms together 
with a loss of EE cells preceded the onset of the 
typical diagnostic features of APECED. This has 
enormous clinical implications because GI dys-
function is the fi rst manifestation of the syndrome 
in approximately10 % of APECED patients [ 17 ]. 
In these patients, dietary and supplemental cal-
cium is poorly absorbed. These patients are prone 
to vitamin D defi ciency which further exacer-
bates their tendency to hypocalcemia. Magnesium 
defi ciency is also common which can be man-
aged with MgCl2 supplementation in daily doses 
of 2 mmol/kg divided into 4 doses [ 21 ].  

25.2.2     Refractory 
Hypoparathyroidism 
Associated with Celiac 
Disease 

 Hypoparathyroidism can coexist with celiac 
disease and can lead to dramatic fl uctuations in 
plasma calcium levels. Cases of idiopathic hypo-
parathyroidism coexisting with celiac disease are 
described in a handful of cases in the literature 
[ 22 – 27 ], although this situation occurs very 
rarely and mainly in patients with long-standing 
disease and therefore lengthy exposure to anti-
bodies [ 28 ]. Celiac disease has a high prevalence 
of 1:300 in white Caucasians of northern 
European ancestry [ 28 ]. Both hypoparathyroid-
ism and celiac disease lead to hypocalcemia. 
When calcium levels in a previously stable 
treated patient with hypoparathyroidism decrease 
or begin to fl uctuate signifi cantly, the differential 
diagnosis includes prolonged use of laxatives or 
anticonvulsant therapy, chronic renal failure, 
decreased dietary intake of calcium and vitamin 
D or malabsorption such as occurs with celiac 
disease. The possibility of celiac    disease should 
be considered in patients with hypoparathyroid-
ism that seems unduly diffi cult to treat, and this 
should be evaluated even in the absence of gas-
trointestinal symptoms [ 27 ]. The hypoparathy-
rodism    causes hypocalcemia through a fall of 
PTH levels and in celiac disease, the mechanism 
leading to hypocalcemia is chronic infl ammation 

   Table 25.2    Types of APS   

 Type  Characteristic 

 I  Chronic candidiasis, chronic hypoparathyroidism, 
autoimmune Addison’s disease (AD) (at least 2 
present) 

 II  Autoimmune AD + autoimmune thyroid diseases 
and/or type 1 diabetes 

 III  Autoimmune thyroid disease + other autoimmune 
diseases (excluding autoimmune AD) 

 IV  ≥2 autoimmune diseases 
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of the intestinal mucosa leading to malabsorption 
of vitamin D and calcium [ 28 ,  29 ]. Hypocalcemia 
is often exacerbated by a decreased intake of 
dairy products because of lactose intolerance, as 
lactase cannot be produced by degenerated intes-
tinal epithelial cells and is not available to cleave 
the lactose in dairy products [ 30 ]. Enteric bacte-
ria switch to lactose metabolism, and the resul-
tant fermentation produces large amounts of gas, 
which can cause painful abdominal bloating. In 
both conditions oral or intravenous calcium (if cal-
cium levels fall rapidly and severe symptoms 
occur) as well as vitamin D supplements are 
given. The institution of and adherence to a 
gluten- free diet in a newly diagnosed patient 
with celiac disease on vitamin D may lead to 
rapid improvement of intestinal absorption with 
prompt increases in plasma calcium levels in 
70 % of patients [ 28 ]. Kohler S. et al. described 
two patients diagnosed with hypoparathyroidism, 
both of whom went on to develop celiac disease 
at a later stage. Profound alterations in calcium bal-
ance occurred before and after the diagnosis of 
celiac disease and illustrate the changes in calcium 
levels that may result from the combination of 
hypoparathyroidism and celiac disease and to alert 
them to the potential complications of this com-
bination of pathologies. On the other hand, the 
authors suggested that given that the response to 
a gluten-free diet is rapid, this must be consid-
ered when a patient taking calcium and vitamin D 
supplements starts the diet. Calcium levels need to 
be monitored carefully, as dangerously high 
plasma calcium levels and acute renal failure can 
develop [ 28 ].  

25.2.3     Refractory 
Hypoparathyroidism 
Associated with Activating 
Mutation of Calcium-Sensing 
Receptor 

 This particular form    of hypoparathyroidism is 
insert in the “refractory hypoparathyroidism” 
because require a particular attention in the man-
agement of the therapy. Indeed, this form of 
hypocalcemia is due to the activating mutation of 

calcium-sensing receptor (CaSR) where there is a 
tendency to excessive hypercalciuria even at low 
or below normal serum calcium levels. Congenital 
isolated hypoparathyroidism caused by activat-
ing mutations in the  CaSR  gene is identifi ed as 
autosomal dominant hypocalcemia (ADH) [ 31 ]. 
Lienhardt et al. identifi ed activating CaSR 
mutations in 8 (42 %) of 19 unrelated probands 
with isolated hypoparathyroidism. The severity 
of hypocalcemic symptoms at diagnosis was 
independent of age, mutation type, or mode of 
inheritance but was related to the degree of hypo-
calcemia [ 31 ]. The authors underlined that treat-
ment of hypocalcemia in these patients need to be 
optimized, because the use of 1- hydroxylated 
vitamin D3 derivatives can cause hypercalciuria 
and nephrocalcinosis [ 31 ]. The prevalence of 
activating mutations of the CaSR as a cause 
of isolated hypoparathyroidism is unknown, 
making it diffi cult to identify those patients with 
hypoparathyroidism in whom mutational analy-
sis is warranted. However, the diagnosis of ADH 
should be suspected in any case with isolated, 
autosomal hypocalcemia or in any sporadic case 
of idiopathic hypoparathyroidism, particularly 
those who have had complications, such as 
marked hypercalciuria and nephrocalcinosis 
during treatment with oral calcium and vitamin D 
metabolites [ 32 ]. It is important, therefore, to 
determine the optimal mode of treatment for this 
condition, which minimizes the risk of hypercal-
ciuria and resultant complications, particularly 
nephrocalcinosis and impaired renal function 
[ 31 – 33 ]. 

 The hypocalcemia in the families with hypocal-
cemia and hypercalciuria was initially attributed to 
hypoparathyroidism [ 15 ,  33 – 39 ] because it was 
associated with serum parathyroid hormone con-
centrations in the low-normal range [ 33 ]. However, 
it is important to differentiate patients with famil-
ial hypocalcemic hypercalciuria from those with 
hypoparathyroidism, because treatment with vita-
min D to correct the hypocalcemia in the former 
may lead to hypercalciuria, nephrocalcinosis, and 
renal impairment. In addition, polyuria and poly-
dipsia develop at normal serum calcium concen-
trations in some subjects with hypocalcemia 
hypercalciuria, perhaps due to increased activity 
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of the mutant receptors in the collecting duct and 
thus, the  combined effects of hypercalciuria and 
dehydration may make subjects with hypocalce-
mic hypercalciuria particularly susceptible to 
nephrocalcinosis and renal impairment [ 33 ] 
Asymptomatic patients with familial hypocalce-
mic hypercalciuria should not routinely receive 
vitamin D; such treatment should be reserved for 
symptomatic patients and given to them with the 
aim not of restoring normocalcemia, but of main-
taining a serum calcium concentration just suffi -
cient to alleviate the symptoms. Familial 
hypocalcemic hypercalciuria may be diffi cult to 
distinguish from hypoparathyroidism on the basis 
of measurements of serum parathyroid hormone 
and urinary calcium. However, the identifi cation 
of mutations in the calcium-sensing receptor gene 
will help in making this distinction and in facilitat-
ing early recognition of patients with hypocalce-
mic hypercalciuria, but the mutational diversity of 
the gene makes screening for the disorder arduous 
and time consuming [ 33 ].   

25.3     Refractory Hypocalcemia 
with or Without 
Hypoparathyroidism 

25.3.1     Refractory Hypocalcemia 
due to Hungry Bone 
Syndrome 

 Postsurgical hypoparathyroidism is one of the 
common postsurgical complications following 
thyroidectomy and/or parathyroidectomy. However, 
serum calcium    concentration can be controlled 
by oral administration of vitamin D 3  and calcium 
or venous infusion of calcium gluconate hydrate. 
Hungry bone    syndrome is recognized caused of 
hypocalcemia following thyroidectomy for thyro-
toxicosis since 1958 [ 40 ]. Indeed, severe Graves’ 
disease (GD) and/or severe primary hyperpara-
thyroidism (PHPT) may induce a high bone turn-
over that can be the cause of a  hungry bone 
syndrome. In these cases, after surgical treatment 
for hyperthyroidism and/or hyperparathyroidism, 
the bone metabolism is dramatically changed 
because of decreased bone resorption and 

increased bone formation. If hungry bone syn-
drome is complicated by postsurgical hypopara-
thyroidism, hypocalcemia after surgery is 
exacerbated. In brief, bone formation becomes 
greater than bone resorption after surgery, result-
ing in increased demand for calcium that can be 
resistant to administration of oral calcium and 
vitamin D [ 5 ]. 

 In the literature, there have been some reports 
of hungry bone syndrome or bone loss associated 
with PHPT [ 41 ,  42 ]. In addition, Yamashita et al. 
reported that GD patients often show secondary 
hyperparathyroidism because of a relative defi -
ciency in calcium and vitamin D due to increased 
demand for bone restoration after preoperative 
medical therapy [ 43 ]. 

 Recently, Tachibana et al. [ 5 ] described a case 
with severe hypocalcemia after total parathy-
roidectomy and thyroidectomy in a multiple 
endocrine neoplasia type 1 (MEN1) patient with 
PHPT, GD, and acromegaly (AC) indicating that 
all the three conditions are associated with high 
bone turnover resulting in severe bone loss and 
their surgery treatment can induce a hungry bone 
syndrome with refractory hypokalemia [ 5 ]. 
Finally, severe hypocalcemia due to a hungry 
bone syndrome is also present in parathyroid 
carcinoma, a rare and severe entity, with marked 
clinical and laboratory manifestations at diagnosis. 
Hungry bone syndrome observed refl ects the 
rapid mineralization after correction of hyper-
parathyroidism and is related to bone disease 
severity prior to surgery [ 44 ]. 

 The hypoparathyroidism and hungry bone 
syndrome may induce a critical hypocalcemia 
that can be resistant to the oral calcium and vita-
min D therapy.  

25.3.2     Refractory Hypocalcemia 
due to Abdominal Surgery 

 A poor response to treatment of hypoparathyroidism 
following thyroidectomy has been reported as 
due to malabsorption as a result of abdominal 
surgery [ 45 – 47 ]. 

 Recently Etheridge et al. [ 6 ] described a case 
of hypocalcemia unresponsive to oral therapy in 
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a patient with hypoparathyroidism following a 
thyroidectomy. The    patient had a history of 
panproctocolectomy that concurred to realize 
refractories to oral therapy.  

25.3.3     Refractory Hypocalcemia 
due to Hypomagnesemia 

 Magnesium (Mg) is required both for the synthe-
sis and release and the peripheral action of 
PTH. Because Mg depletion is often secondary to 
another diseases process or to a therapeutic agent, 
the features of the primary disease process may 
complicate or mask the Mg depletion. Table  25.3   
indicates the major causes of Mg depletion [ 48 ].  

 The hypocalcemia may be a major contrib-
uting factor to the increased neuromuscular 
excitability in these conditions. The pathogen-

esis of hypocalcemia is multifactorial. In nor-
mal subjects, acute change in the serum Mg 
concentration can influence PTH secretion in 
a manner similar to calcium through binding 
to the calcium- sensing receptor. During 
chronic Mg depletion, however, PTH secretion 
is impaired. Impaired PTH secretion seems to 
be a major factor in hypomagnesemia-induced 
hypocalcemia. Patients with hypocalcemia 
caused by Mg depletion have both skeletal and 
renal resistance to exogenously administrated 
PTH. Clinically, patients with hypocalcemia 
caused by Mg depletion are resistant not only 
to PTH but also to calcium and vitamin D ther-
apy. The vitamin D resistance may be caused 
by impaired metabolism of vitamin D, because 
serum concentration of 1,25-d   ihydroxyvita-
min D is low [ 49 ].      

   References 

       1.    Bilezikian JP, Khan A, Potts JT Jr (2009) Guidelines 
for the management of asymptomatic primary hyper-
parathyroidism: summary statement f rom the third 
international workshop. J Clin Endocrinol Metab 
94:335–339  

    2.    Pollack ME, Brown EM, Estep HL, McLaine PN, 
Kifor O, Park J, Hebert SC, Seidman CE, Seidman JG 
(1994) Autosomal dominant hypocalcemia caused by 
Ca + −sensing receptor gene mutation. Nat Genet 
8:303–307  

    3.       Takker R (2013) Chapter 26. Hypoparathyroidism. In: 
Thakker RV, Ehyte MP, Eisman JA, Igarashi T (eds) 
Genetic of bone biology and skeletal diseases. 
Academic, London, pp 409–422  

    4.    Linglart A, Rothenbuhler A, Gueorgieva I, Lucchini 
P, Silve C, Bougneres P (2011) Long-term results of 
continuous subcutaneous recombinant PTH (1–34) 
infusion in children with refractory hypoparathyroid-
ism. J Clin Endocrinol Metab 96:3308–3312  

       5.    Tachibana S, Sato S, Yokoi T, Nagaishi R, Akehi Y, 
Yanase T, Yamashita H (2012) Severe hypocalcemia 
complicated by postsurgical hypoparathyroidism and 
hungry bone syndrome in a patient with primary 
hyperparathyroidism, Graves’ disease, and acromeg-
aly. Intern Med 51:1869–1873  

     6.    Etherige ZC, Schofi eld C, Prinsloo PJJ, Sturrock 
NDC (2014) Hypocalcaemia following thyroidec-
tomy unresponsive to oral therapy. Hormones 
13:286–289  

     7.       Lepage R, Légaré P, Racicot C, Brossard J-H, 
Lapointe R, Dagenais M, D’Amour P (1999) 
Hypocalcemia induced during major and minor 

   Table 25.3    Major causes of hypomagnesemia   

  Gastrointestinal losses  
 Disorders of the small bowel 

 Small bowel bypass surgery 
    Primary intestinal hypomagnesemia (X-linked 
recessive inheritance or autosomally recessive with 
linkage to chromosome 9q) 
 Acute pancreatitis 

  Renal losses  
 Loop and thiazide-type diuretics (inhibition of Mg 
absorption) 
 Volume expansion 
 Alcohol 
 Hypercalcemia 
 Nephrotoxic drugs (aminoglycoside antibiotics, 
amphotericin B, cisplatin, pentamidine, and 
cyclosporine) 
 Loop of Henle or distal tubule dysfunction (tubular 
necrosis following renal transplantation, during a 
postobstructive diuresis, or in patients with Bartter’s 
syndrome) 
 Primary renal magnesium wasting 
 (a) Associated with hypercalciuria 
 (b) Associated with hypocalciuria and hypokalemia 
(Gitelman’s syndrome) 
 (c) Isolated magnesium wasting with both an 
autosomal dominant and recessive mode of inheritance 

  Miscellaneous  
 Diabetes 
 Hungry bone syndrome 

L. Masi



285

abdominal surgery in humans. J Clin Endocrinol 
Metab 84:2654–2658  

     8.    Masi L, Brandi ML (2012) Chapter 15. 
Hypoparathyroidism and hypocalcemic states. In: 
Khan AA, Clark OH (eds) Handbook of parathyroid 
diseases. Springer, New York, pp 245–256  

    9.    Dent CE, Harper CM, Morgans ME, Philpot GR, 
Trotter WR (1955) Insensitivity to vitamin D develop-
ing during treatment of postoperative tetany. Its speci-
fi city as regards the form of vitamin D taken. Lancet 
2:687–690  

    10.    Harrison HE, Lifshitz F, Blizzard RM (1967) 
Comparison between crystalline dihydrotachyferol 
and calciferol in patients requiring pharmacologic 
vitamin D therapy. N Engl J Med 276:894–900  

       11.    Schneller C, Finkel L, Wise M, Hageman JR, 
Littlejohn E (2013) Autoimmune polyendocrine syn-
drome: a case-based review. Pediatr Ann 42:
203–208  

    12.    Eisenbarth G, Gottlieb P (2004) Autoimmune polyen-
docrine syndromes. N Engl J Med 350:2068–2079  

     13.    Ahonen P, Myllarniemi S, Sipila I, Perheentupa J 
(1990) Clinical variation of autoimmune polyendocri-
nopaty-candidiasis-ectordermal dystrophy 
(APECED) in a series of 68 patients. N Engl J Med 
322:1829–1836  

    14.    Maeda SS, Fortes EM, Oliveira UM, Borba VCZ, 
Lazaretti-Castro M (2006) Hypoparathyroidism and 
pseudohypoparathyroidism. Arq Bras Endocrinol 
Metabol 50:664–673  

     15.    Aaltonen J, Bjorses P, Sandkuijl L, Perheentupa J, 
Peltonen L (1994) An autosomal locus causing autoim-
mune disease: autoimmune polyglandular disease type 
1 assigned to chromosome 21. Nat Genet 8:83–87  

     16.    Ekwall O, Hedstrand H, Grimelius L, Haavik J, 
Perheentupa J, Gustafsson J, Husebye E, Ka¨mpe O, 
Rorsman F (1998) Identifi cation of tryptophan 
hydroxylase as an intestinal autoantigen. Lancet 
352:279–283  

       17.    Posovszky C, Lahr G, von Schnurbein J, Buderus S, 
Findeisen A, der Schro C, Schu¨ tz C, Schulz A, 
Debatin KM, Wabitsch M, Barth TF (2012) Loss of 
enteroendocrine cells in autoimmune-polyendocrine-
candidiasis-ectodermal-dystrophy (APECED) syn-
drome with gastrointestinal dysfunction. J Clin 
Endocrinol Metab 97:E292–E300  

   18.    Scire G, Magliocca FM, Cianfarani S, Scalamandre 
A, Petrozza V, Bonamico M (1991) Autoimmune 
polyendocrine candidiasis syndrome with associated 
chronic diarrhea caused by intestinal infection and 
pancreas insuffi ciency. J Pediatr Gastroenterol Nutr 
13:224–227  

   19.    Bereket A, Lowenheim M, Blethen SL, Kane P, 
Wilson TA (1995) Intestinal lymphangiectasia in a 
patient with autoimmune polyglandular disease type I 
and steatorrhea. J Clin Endocrinol Metab 
80:933–935  

    20.    Heubi JE, Partin JC, Schubert WK (1983) 
Hypocalcemia and steatorrhea—clues to etiology. Dig 
Dis Sci 28:124–128  

    21.    Masi L, Winer KK, Potts JP, Brandi ML (2004) 
Management of hypoparathyroidism. Clin Cases Min 
Bone Metab 2:127–128  

    22.    Khandwala HM, Chibbar R, Bedia A (2006) Celiac 
disease occurring in a patient with hypoparathyroid-
ism and autoimmune thyroid disease. South Med J 
99:290–292  

   23.    Matsueda K, Rosenberg IH (1982) Malabsorption 
with idiopathic hypoparathyroidism responding to 
treatment for coincident celiac sprue. Dig Dis Sci 
27:269–273  

   24.    Sari R, Yildirim B, Sevinc A, Buyukberber S (2000) 
Idiopathic hypoparathyroidism and celiac disease in 
two patients with previous history of cataract. Indian J 
Gastroenterol 19:31–32  

   25.    Isaia GC, Casalis S, Grosso I, Molinatti PA, Tamone 
C, Sategna-Guidetti CJ (2004) Hypoparathyroidism 
and co-existing celiac disease. J Endocrinol Invest 
27:778–781  

   26.    Frysák Z, Hrcková Y, Rolinc Z, Hermanová Z, Lukl J 
(2000) Idiopathic hypoparathyroidism with celiac dis-
ease – diagnostic and therapeutic problem. Vnitr Lek 
46:408–412  

     27.    Marcondes JAM, Seferian PJ, da Silveria Mitteldorf 
CAP (2009) Resistance to vitamin D treatment as an 
indication of celiac disease in a patient with primary 
hypoparathyroidism. Clinics 64:259–261  

        28.    Kohler S, Wass JAH (2009) Hypoparathyroidism and 
coeliac disease: a potentially dangerous combination. 
J R Soc Med 102:311–314  

    29.    Van Heel DA, West J (2000) Recent advances in coe-
liac disease. Gut 55:1037–1046  

    30.    Selby PL, Davies M, Adams JE, Mawer EB (1999) 
Bone loss in celiac disease is related to secondary 
hypoparathyroidism. J Bone Miner Res 14:652–765  

       31.    Lienhardt A, Bai M, Lagarde JP, Rigaud M, Zhang Z, 
Jiang Y, Kottler ML, Brown EM, Garabedian M 
(2001) Activating mutations of the calcium-sensing 
receptor: management of hypocalcemia. J Clin 
Endocrinol Metab 86:5313–5323  

    32.    Egbuna OI, Brown EM (2008) Hypercalcaemic and 
hypocalcaemic conditions due to calcium- sensing 
receptor mutations. Best Pract Res Clin Rheumatol 
22:129–148  

        33.    Pearce SH, Williamson C, Kifor O, Bai M, Coulthard 
MG, Davies M, Lewis-Barned N, McCredie D, Powell 
H, Kendall-Taylor P, Brown EM, Thakker RV (1996) 
A familial syndrome of hypocalcemia with hypercal-
ciuria due to mutations in the calcium-sensing recep-
tor. N Engl J Med 335:1115–1122  

   34.    Thakker RV (1994) Molecular genetics of hypopara-
thyroidism. In: Bilezikian JP, Marcus R, Levine MA 
(eds) The parathyroids: basic and clinical concepts. 
Raven, New York, pp 765–779  

   35.    Carey AH, Kelly D, Halford S et al (1992) Molecular 
genetic study of the frequency of monosomy 22q11 in 
DiGeorge syndrome. Am J Hum Genet 51:964–970  

   36.    Thakker RV, Davies KE, Whyte MP, Wooding C, 
O’Riordan JL (1990) Mapping the gene causing 
X-linked recessive idiopathic hypoparathyroidism to 

25 Refractory Hypoparathyroidism



286

Xq26-Xq27 by linkage studies. J Clin Invest 
86:40–45  

   37.    Arnold A, Horst SA, Gardella TJ, Baba H, Levine 
MA, Kronenberg HM (1990) Mutations of the signal 
peptide-encoding region of the preproparathyroid 
hormone gene in familial isolated hypoparathyroid-
ism. J Clin Invest 86:1084–1087  

   38.    Parkinson DB, Thakker RV (1992) A donor splice site 
mutation in the parathyroid hormone gene is associ-
ated with autosomal recessive hypoparathyroidism. 
Nat Genet 1:149–152  

    39.    Ahn TG, Antonarakis SE, Kronenberg HM, Igarashi T, 
Levine MA (1986) Familial isolated hypoparathyroid-
ism: a molecular genetic analysis of 8 families with 23 
affected persons. Medicine (Baltimore) 65:73–81  

    40.    Dent CE, Harper CM (1958) Hypoparathyroid tetany 
(following thyroidectomy) apparently resistant to 
vitamin D. Proc R Soc Med 51:489–490  

    41.    Brasier AR, Nussbaum SR (1988) Hungry bone syn-
drome: clinical and biochemical predictors of its occur-
rence after parathyroid surgery. Am J Med 84:654–660  

    42.    Smith D, Murray BF, McDermott E, O’Shea D, 
McKenna MJ, McKenna TJ (2005) Hungry bones 
without hypocalcaemia following parathyroidectomy. 
J Bone Miner Metab 23:514–515  

    43.    Ymashita H, Murakami T, Noguchi S et al (1999) 
Postoperative tetany in Graves disease important role 
of vitamin D metabolites. Ann Surg 229:237–245  

    44.    Ohe NM, Santos RO, Hojaij F, Neves MC, Kunii IS, 
Orlandi D, Valle L, Martins C, Janovsky C, Ferreira 
R, Delcelo R, Domingos AM, Abrahão M, Cervantes 
O, Lazaretti-Castro M, Vieira JGH (2013) Parathyroid 
carcinoma and hungry bone syndrome. Arq Bras 
Endocrinol Metabol 57:79–86  

    45.    Pietras S, Holick M (2009) Refractory hypocalcemia 
following near-total thyroidectomy in a patient with a 
prior Roux-en-Y gastric bypass. Obes Surg 
19:524–526  

   46.    Hylander E, Madsen S (1979) 1 alpha-hydroxyvita-
min D3 treatment of therapy-resistant symptomatic 
hypocalcemia in a hypoparathyroid patient with intes-
tinal malabsorption. Acta Med Scand 205:603–605  

    47.    Seki T, Yamamoto M, Ohwada R et al (2010) 
Successful treatment of postsurgical hypoparathy-
roidism by intramuscular injection of vitamin D3 in a 
patient associated with malabsorption syndrome due 
to multiple abdominal surgeries. J Bone Miner Metab 
28:227–232  

    48.    Agus Z (1999) Disease of the month. 
Hypomagnesemia. J Am Soc Nephrol 10:1616–1622  

    49.      Rude RK Chapter 70. Hypomagnesemia In: Primer 
and metabolic bone diseases and disorders of mineral 
metabolism, 7th edn. ASBMR, pp 325–328      

L. Masi



287M.L. Brandi, E.M. Brown (eds.), Hypoparathyroidism,
DOI 10.1007/978-88-470-5376-2_26, © Springer-Verlag Italia 2015

26.1             Introduction 

 PTH is one of the key regulators of skeletal 
homeostasis, and the effects of chronic PTH 
defi ciency on the human skeleton are dramatic. 
These effects have been well characterized by 
histomorphometric analysis of iliac crest bone 
biopsy specimens. Under normal circumstances, 
a delicate balance between bone resorption and 
bone formation, in the process termed bone 
remodeling, maintains bone mass and structure. 
Reduced circulating concentrations of PTH ini-
tially cause a decrease in bone resorption fol-
lowed by a coupled decrease in bone formation. 
Over time, bone mass increases indicating that 
the bone balance in each remodeling cycle is pos-
itive, i.e., more bone is replaced than is removed.  

26.2     The Bone Biopsy 
in Hypoparathyroidism 
Treated with Vitamin D 

 The fi rst histomorphometric study of hypopara-
thyroidism was conducted by Langdahl and colleagues 
[ 1 ]. They analyzed biopsies from 8 women and 4 

men with vitamin D-treated hypoparathyroidism 
and compared them with 13 age- and sex-matched 
controls. The duration of the disease ranged from 
2 to 53 years. Cancellous bone volume was 
higher in the hypoparathyroid patients, although 
given the small sample size, this difference was 
not statistically signifi cant and other structural 
indices (marrow star volume, trabecular star volume, 
and trabecular thickness) were also not different 
from the controls. In the hypoparathyroid subjects, 
mineralizing surface, bone formation rate, and 
remodeling activation frequency were all signifi cantly 
reduced by 58, 80, and 54 %, respectively. 
Resorption depth was reduced and the total resorp-
tion period was extended from 26 to 80 days. 
Figure  26.1  shows the reconstructed remodeling 
cycles from the hypoparathyroid and control sub-
jects in this study. Note that there was a slightly 
positive balance of approximately 5 μm between 
the resorption depth and wall thickness of cancellous 
bone packets in the hypoparathyroid subjects 
compared to the controls. In other words, slightly 
more bone was being replaced than was removed 
in each remodeling transaction.  

 More recently, our group performed a larger 
histomorphometric study on 33 subjects (24 women 
and 9 men) with vitamin D-treated hypoparathy-
roidism and compared the results with 33 age- and 
sex-matched controls [ 2 ]. The etiologies of the 
hypoparathyroidism were post-thyroid surgery 
(n = 18), autoimmune ( n  = 13), and DiGeorge 
syndrome ( n  = 2), and the mean duration of the 
disease was 17 ± 13 (SD) years. Vitamin D intake 

        D.  W.   Dempster      (*) 
  Department of Pathology and Cell Biology ,  College 
of Physicians and Surgeons of Columbia University , 
  630 W 168th St ,   New York ,  NY   10032 ,  USA    

  Department of Regional Bone Center , 
 Helen Hayes Hospital ,   West Haverstraw ,  NY ,  USA   
 e-mail: ddempster9@aol.com  

  26      Bone Histomorphometry 
in Hypoparathyroidism 

              David     W.     Dempster    

mailto: ddempster9@aol.com


288

ranged between 400 and 100,000 IU/day, 
calcitriol intake was between 0 and 3 μg/day, and 
calcium supplementation ranged between 0 and 
9 g/day. Ten of the 33 hypoparathyroid subjects 
were receiving thiazide diuretics. In contrast to 
the study described above [ 1 ], we found that 
cancellous bone volume was elevated in the 
hypoparathyroid subjects (Figs.  26.2  and  26.3 ). 
The structural basis for this was higher trabecular 
width, with trabecular number and trabecular 
spacing being similar to those in control subjects. 
The hypoparathyroid subjects also displayed 

higher cortical width than the controls, and cortical 
porosity was slightly, but not signifi cantly, 
lower. We assessed remodeling separately on 
cancellous, endocortical, and intracortical skeletal 
envelopes. On all three envelopes, bone formation 
rate, osteoid surface, and width were reduced in 
the hypoparathyroid subjects relative to controls 
with the greatest decrease in bone formation rate 
(>5-fold) occurring on the cancellous envelope 
(Fig.  26.4 ). Decreases in both the mineralizing 
surface and the mineral apposition rate contributed 
to the marked decrease in bone formation rate. 
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  Fig. 26.1    Bone remodeling cycles in hypoparathyroid 
( upper ) and normal ( lower ) subjects. All phases of the 

remodeling cycle are elongated in hypoparathyroidism 
(Reproduced with permission [ 1 ])       
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  Fig. 26.2    Iliac crest bone biopsies from a control subject 
( left ) and a hypoparathyroid subject ( right ). Goldner tri-
chrome stain. Note the higher cortical thickness and can-

cellous bone volume in the hypoparathyroid subject 
(Reproduced with permission [ 2 ])       
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There was no difference in eroded surface 
between groups, but the bone resorption rate was 
signifi cantly lower in the hypoparathyroid sub-
jects in all three envelopes. Our study confi rmed 
the earlier observation [ 1 ] of a markedly reduced 
bone remodeling rate in hypoparathyroidism 
and, in addition, revealed elevated cancellous 
and cortical bone mass.    

 This study was also the fi rst to employ the 
technique of microcomputed tomography 
(microCT) to assess the structural changes in 

bone in hypoparathyroidism in 3 dimensions [ 3 ]. 
Confirming and extending the histomorpho-
metric fi ndings, the microCT analysis revealed 
higher cancellous bone volume in  hypopa-
rathyroidism due to both higher trabecular thick-
ness and higher trabecular number. Trabecular 
connectivity was also higher than in matched 
controls and the structural model index was 
reduced indicating a higher ratio of trabecular 
plates to trabecular rods (Fig.  26.5 ). Elevated 
cancellous bone volume in hypoparathyroidism 

  Fig. 26.4    Tetracycline labels in a hypoparathyroid ( left ) 
and control subject ( right ). Note reduction in tetracycline 

uptake in the hypoparathyroid subject refl ecting reduced 
bone turnover (Reproduced with permission [ 2 ])       
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  Fig. 26.5    Microcomputed tomographic images of can-
cellous bone from a hypoparathyroid subject ( left ) and a 
control subject ( right ). Note the higher cancellous bone 

volume and dense trabecular structure in hypoparathy-
roidism (Reproduced with permission [ 3 ])       
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has also been confi rmed by high-resolution 
pQCT and microfi nite element analysis indicates 
that bone strength is also improved [ 4 ].   

26.3     The Bone Biopsy 
in Hypoparathyroidism 
Treated with PTH 

 There have now been several studies in which 
bone histomorphometry has been used to charac-
terize the skeletal effects of treating hypopara-
thyroidism with PTH (see also Chaps.   30     and 
  31    ). In our own study, we used PTH(1–84) at a 
dose of 100 μg every 2 days [ 5 ]. We performed a 
longitudinal study in which we examined the 
effects of 3 months of treatment using a quadruple 
 fl uorochrome labeling technique and the effects 

of 1 or 2 years of treatment with a paired biopsy 
design. The principal fi ndings are summarized in 
Figs.  26.6  and  26.7 . There was no overall change 
in cancellous bone volume with PTH(1–84) treat-
ment, but trabecular width decreased relative to 
baseline at 12 months and was still lower than 
baseline at 24 months, although the latter difference 
was non-signifi cant. On the other hand, trabecu-
lar number was signifi cantly increased at both 12 
and 24 months of treatment compared to baseline. 
These structural changes in cancellous bone were 
accompanied by an increase in cancellous miner-
alizing surface, which was signifi cantly elevated 
as early as 3 months and remained high through 2 
years of treatment, indicating a rapid and persistent 
increase in bone turnover. Tunneling resorption 
was also seen within trabeculae, explaining the 
increase in trabecular number. Similar increments 
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  Fig. 26.6    Temporal changes in trabecular width ( a ), trabecu-
lar number ( b ), and mineralizing surface ( c ) in cancellous 
bone following treatment with PTH(1–84) 100 μg every 

other day for the indicated durations (Reproduced with 
permission [ 6 ])       
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in mineralizing surface, bone formation rate, and 
bone resorption rate were also seen in the 
endocortical and intracortical envelopes. The 
histomorphometric evidence of increased turn-
over was mirrored by contemporaneous increases 
in biochemical markers of bone turnover. 
Interestingly, PTH(1–84) treatment was also 
associated with an increase in circulating osteogenic 
precursor cells, which were highly correlated 
with bone formation indices in the biopsy and 
showed the same temporal pattern as biochemical 
markers of bone formation [ 6 ]. Figure  26.7  

illustrates the changes in cancellous and cortical 
bone structure and turnover in a patient who was 
treated with PTH(1–84) for 1 year. This study 
was the largest histomorphometric study of the 
skeletal effects of PTH replacement in hypopara-
thyroidism to date, involving 64 subjects, ranging 
in age from 18 to 71 years.   

 Gafni et al. [ 7 ] studied the effects of PTH(1–
34) replacement in 2 adults and 3 adolescents 
with hypoparathyroidism. Subjects were injected 
2–3 times daily with doses of PTH(1–34) that 
were titrated to maintain total serum calcium 

Hypoparathyroidism Baseline Hypoparathyroidism 1 Yr PTH(1−84)

Hypoparathyroidism Baseline Hypoparathyroidism 1 Yr PTH(1−84)

a

b

  Fig. 26.7    Changes in cancellous ( a ) and cortical ( b ) bone 
structure following 1 year of treatment with PTH(1–84) in 
a subject with hypoparathyroidism.  Arrow  indicates 

tunneling in cancellous and cortical bone (Reproduced 
with permission [ 6 ])       
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concentration in the range 1.9–2.25 mmol/L.
Paired biopsies were performed before and after 
1 year of treatment. Unlike the studies described 
above, cancellous bone volume was dramatically 
increased by an average of 58 % with PTH(1–34) 
treatment. This was due to an increase in trabecular 
number and a decrease in trabecular separation. 
As previously seen, trabecular remodeling was 
stimulated (Fig.  26.8 ) and intra-trabecular tunneling 
was observed, leading to variable changes in 
trabecular width. Cortical width did not change 
but cortical porosity was increased. Similar 
changes in remodeling were seen on cancellous, 
endocortical, and intracortical envelopes.  

 Sikjaer and colleagues [ 8 ] have used microCT 
to assess the effects of PTH(1–84) 100 μg/day on 
three-dimensional cortical and cancellous bone 
structure in hypoparathyroid patients. This was a 
randomized control study in which 23 PTH(1–84)-
treated subjects were compared with 21 placebo- 
treated subjects. The treatment period was 6 
months. Compared to the placebo group, 
PTH(1–84) treatment lowered trabecular bone 
tissue density by 4 % and trabecular thickness by 
27 %, whereas connectivity density was increased 
by 34 %. Trabecular tunneling was seen in 48 % 
of the PTH(1–84)-treated subjects (Fig.  26.9 ), 
and those with tunneling had higher levels of 
biochemical markers of bone resorption and 

formation than those without. In cortical bone, 
there was a 139 % increase in the Haversian canal 
number per unit area and a strong trend towards 
an increase in cortical porosity in the PTH(1–84)-
treated group.  

 The longest reported duration of PTH treat-
ment of a patient with hypoparathyroidism is 
13.75 years [ 9 ]. The patient was a 6-year-old girl 
with a sporadic calcium-sensing receptor muta-
tion who was treated continuously with PTH(1–
34) until age 20. A bone biopsy obtained after 
13.5 years of treatment revealed dramatically 
elevated cancellous bone volume with increased 
trabecular number and intra-trabecular tunneling. 
Tetracycline labeling was not performed.  

26.4     The Mechanism Underlying 
Elevated Bone Mass 
in Hypoparathyroidism 

 While bone histomorphometry has revealed 
much insight into the effects of hypoparathy-
roidism on bone metabolism and structure, it has 
so far provided little information on the cellular 
mechanisms underlying the marked increase in 
bone mass in this disease. This is partly because 
the biopsies have generally been performed at a 
point when the disease is well established rather 

Baseline 1 Year of hPTH 1-34

  Fig. 26.8    Tetracycline labels in cancellous bone from a 
46-year-old woman with hypoparathyroidism before ( left ) 

and after ( right ) treatment with daily injections of 
PTH(1–34) (Reproduced with permission [ 7 ])       
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than when it is developing. The biopsy has 
revealed low turnover, and in adults, this should 
certainly preserve bone mass, but not necessarily 
increase it to the extent seen in hypoparathyroid-
ism. The one study [ 1 ] that reported bone bal-
ance at the bone remodeling unit level found a 
modest positive balance of 5 μm. This is unlikely 
to account for the magnitude of the increases in 
bone mass, especially since turnover is low and, 
therefore, the activation frequency of bone 
remodeling units in which bone formation 

exceeds resorption is limited. Christen and col-
leagues [ 10 ] have taken a theoretical approach to 
this problem. These authors used a load adaptive 
bone modeling and remodeling simulation 
model that is able to predict changes in micro-
architecture due to changes in mechanical load-
ing or cellular activity. They applied the 
simulation to iliac crest biopsies from 7 healthy 
subjects and validated the outcome by comparing 
the models they generated with biopsies from 13 
subjects with hypoparathyroidism. Their model 

PTH (1−84) Placebo

PTH (1−84) Placebo

a

b

  Fig. 26.9    Microcomputed tomography images of a con-
trol subject ( right ) and a subject with hypoparathyroid-
ism ( left ) after 6 months of treatment with PTH(1–84) 
100 μg/day. The upper images show cross-sectional 

views and the lower images show longitudinal views. 
Note the tunneling resorption of trabeculae following 
treatment with PTH(1–84) ( arrows ) (Reproduced with 
permission [ 8 ])       
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predicted that, in addition to lowering turnover, 
the hypoparathyroid state must also cause 
increased mechanosensitivity of the osteocytes, 
which leads to a dramatic increase in bone for-
mation during the fi rst year after disease onset 
(Fig.  26.10 ).   

    Conclusion 

 In conclusion, histomorphometric analysis of 
iliac crest bone biopsies has contributed sig-
nifi cantly to our understanding of the patho-
genesis of hypoparathyroidism and the effects 
of hormone replacement therapy on bone 
remodeling and structure. The biopsies col-
lected so far will continue to yield new infor-
mation as researchers apply other techniques 
to determine the effects of the disease and its 
treatment on the material properties of bone 
matrix, such as mineralization  density and 
collagen cross-links. More studies are needed 
on the long-term effects of injectable PTH 
therapy and on the effects of continuous infu-
sion of PTH peptides.     
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27.1             Introduction 

 The spectrum of hypocalcemia ranges from an 
asymptomatic biochemical abnormality to a 
life- threatening medical emergency with mani-
festations such as paresthesias, carpopedal spasm, 
tetany, and seizures. Its management will depend 
on factors such as rapidity of onset, the extent of 
the fall in serum calcium, the presence of signs 
and symptoms, and its likely cause. The aims of 
acute management are to safely raise the serum 
calcium to a level at which symptoms dissipate 
and to prevent serious cardiac disturbance. 
Symptomatic patients and those with an acute 
decrease in serum calcium to less than 1.9 mmol/L 
(7.6 mg/dL) usually require the intravenous 
administration of calcium salts. Asymptomatic 
patients with milder degrees of hypocalcemia can 
often be managed with oral calcium preparations, 
with or without the addition of vitamin D (or one 
of its analogues). The optimal management of 
acute hypocalcemia has not been examined 
extensively in clinical trials, and thus, there is not 
a well-developed evidence base. There are, how-
ever, long-standing treatment regimens that are 
regarded as effective and safe [ 1 – 5 ].  

27.2     The Biochemical Diagnosis 
of Acute Hypocalcemia 

 The serum calcium concentration must be 
interpreted in relation to the serum albumin con-
centration as approximately 50 % of the calcium 
within the serum is bound to albumin or to other 
small anions (e.g., citrate), with the remaining 
fraction being unbound ionized calcium. It is the 
ionized calcium that is biologically active. An 
abnormal serum albumin concentration will alter 
the ratio of ionized calcium to bound calcium and 
must be corrected for. Various formulae are 
available for estimation of the corrected serum 
calcium. Most commonly, the serum calcium 
concentration is corrected to a reference albumin 
concentration of 40 g/L (4.0 g/dL) [ 1 ,  3 ]. For 
every 1 g/L (0.1 g/dL) of albumin above or below 
this value, the calcium is adjusted by decreasing 
or increasing it by 0.02 mmol/L (0.08 mg/dL), 
respectively. For example, a calcium level of 
2.05 mmol/L (8.2 mg/dL) with an albumin 
concentration of 35 g/L (3.5 g/dL) would be 
corrected to 2.15 mmol/L (8.6 mg/dL). 

 There are, however, limitations to the use of 
these correction formulae. The extent of binding 
of calcium to albumin is infl uenced by acid–base 
balance, with alkalosis being associated with an 
increase in protein binding and a reduction in the 
fraction of ionized calcium. In patients with critical 
illness or a very low serum albumin concentration, 
the estimates of total calcium based on albumin 
correction can be particularly unreliable [ 6 ,  7 ]. 
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In these situations, the ionized calcium should be 
measured directly. Other factors that can interfere 
with serum calcium measurement and give a 
falsely low estimate include contamination of 
blood collection tubes with EDTA and recent use 
of gadolinium-containing contrast materials [ 8 ]. 

 In addition to the measurement of serum 
calcium, patients presenting with acute hypocal-
cemia should have urgent measurement of renal 
function, serum phosphate, and magnesium. 
Serum should also be collected for measurement 
of PTH and 25-hydroxyvitamin D.  

27.3     The Clinical Presentation 
of Acute Hypocalcemia 

 Hypocalcemia causes neuromuscular excitability. 
Classical symptoms of hypocalcemia are skeletal 
muscle twitching, carpopedal spasm, and both 
perioral and peripheral tingling and numbness. 
In severe cases, life-threatening generalized tetany, 
laryngeal spasm, and seizures can occur. 

 In hypocalcemic subjects who are asymptom-
atic, neuromuscular excitability can frequently 
be unmasked by use of the Chvostek or Trousseau 
test [ 9 ]. The Chvostek test involves gently tap-
ping the parotid gland over the facial nerve 
(approximately 2 cm anterior to the earlobe) 
(Fig.  27.1 ) to induce facial muscle spasm. 
However, this test lacks both sensitivity and 
specifi city as 10 % of normocalcemic individuals 
display a positive Chvostek response and a 
substantial proportion of patients with clinically 
signifi cant hypocalcemia have a negative response. 
Trousseau test involves infl ating a blood pressure 
cuff placed on the arm above arterial pressure for 
up to 3 min (this induces ischemia of the muscle 
which is thought to increase its sensitivity to low 
calcium levels). A positive test suggesting neuro-
muscular excitability is the development of car-
pal spasm in the limb (Fig.  27.2 ). Trousseau test 
is positive in approximately 95 % of patients with 
signifi cant hypocalcemia and in only 1 % of 
normocalcemic individuals and is thus a more 
discriminating test [ 9 ].   

 The typical ECG fi nding in signifi cant hypocal-
cemia is prolongation of the QT interval, but cardiac 

dysrhythmias can also occur. An important but 
infrequent feature of hypocalcemia is cardiac 
failure. This condition is poorly responsive to 
inotropic therapy unless the hypocalcemia is 
rectifi ed. Long-standing hypocalcemia can 
occasionally present with neuropsychiatric 
symptoms, cataract formation, or raised intracra-
nial pressure/optic nerve damage in the absence 
of the more typical neuromuscular symptoms. 

 Depending on the cause of hypocalcemia, 
symptoms can develop slowly over many 
months or rapidly over hours. The development 

  Fig. 27.1    Chvostek sign. Tapping the lateral aspect of the 
face over the facial nerve induces a facial twitch in the 
presence of hypocalcemia. This sign lacks specifi city and 
sensitivity for the accurate diagnosis of signifi cant hypo-
calcemia when used in isolation       

  Fig. 27.2    Trousseau sign. Infl ation of a blood pressure 
cuff at the level of the forearm to above arterial pressure 
for up to 3 min induces carpal spasm in the presence of 
hypocalcemia. This sign has greater sensitive and speci-
fi city for the diagnosis of signifi cant hypocalcemia com-
pared to Chvostek sign       
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of neuromuscular excitability depends on both 
the absolute level of serum calcium and how rap-
idly the serum calcium falls. When hypocalcemia 
develops gradually, e.g., in autoimmune hypo-
parathyroidism, the serum calcium can fall to as 
low as 1.1 mmol/L (4.4 mg/dL) before the patient 
becomes symptomatic. By contrast, in patients 
with postsurgical hypoparathyroidism, symptoms 
commonly arise when the serum calcium falls 
below 1.9 mmol/L (7.6 mg/dL). In patients who 
develop hypoparathyroidism gradually, there is 
frequently an intercurrent event that reduces 
calcium levels acutely and precipitates the 
development of symptoms. Examples include 
viral infections, hyperventilation, or use of glu-
cocorticoids (which reduce calcium absorption 
and stimulate renal calcium loss).  

27.4     The Immediate Management 
of Acute Hypocalcemia 

 The following management plan relates to the 
management of hypocalcemia in adults, but the 
principles of management are similar for children 
(discussed further below). Neuromuscular irritability 
due to hypocalcemia necessitates prompt admission 

to hospital and treatment with intravenous calcium. 
This should also be considered in asymptomatic 
patients with a corrected serum calcium of less 
than 1.9 mmol/L (7.6 mg/dL) as there is a risk of 
serious complications developing. The approach 
to management of acute hypocalcemia is outlined 
in Fig.  27.3 . This is based on clinical experience 
and expert recommendations [ 1 ,  4 ,  5 ,  10 ] (but not 
randomized trials).  

 Both calcium gluconate and calcium chloride 
are available for intravenous use, but calcium 
gluconate should be used preferentially as the 
chloride form can cause serious local irritation if 
extravasation occurs. With either preparation, 
care should be taken to avoid extravasation. 

 One to two 10-mL ampules of 10 % calcium 
gluconate (each of which contains 1 g of calcium 
gluconate which equates to approximately 94 mg 
of elemental calcium) should be diluted in 
50–100 mL of 5 % dextrose in water and infused 
slowly over 10 min. ECG monitoring is recom-
mended as dysrhythmias can occur if correction 
is too rapid. This regimen can be repeated until 
acute symptoms have resolved. Possible side 
effects of intravenous calcium infusion include 
the development of a chalky taste, hot fl ushes, and 
peripheral vasodilatation. Boluses of intravenous 

  Fig. 27.3    Algorithm for the management of acute hypocalcemia (adults)       
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calcium will often only provide temporary relief 
of symptoms, and continuous infusion of a dilute 
calcium solution may be required to prevent 
recurrent hypocalcemia. A typical approach 
would involve using 10 ampules of 10 mL of 
10 % calcium gluconate in 1 L of 5 % dextrose in 
water or 0.9 % saline. This is infused at an initial 
rate of 50 mL/h with subsequent frequent moni-
toring of the serum calcium, aiming to maintain it 
at the lower end of the reference range [ 5 ]. An 
infusion of 10 mL/kg of this solution over 4–6 h 
will be expected to increase serum calcium by 
approximately 0.3–0.5 mmol/L (1.2–2.0 mg/dL). 
Particular care is needed when administering 
intravenous calcium to subjects taking digoxin as 
it is associated with increased cardiac sensitivity 
to changes in extracellular calcium. Slower infu-
sion rates and ECG monitoring are required in 
this situation.  

27.5     Concurrent 
Hypomagnesemia 

 Hypomagnesemia is an important cause of 
hypocalcemia, both by inducing resistance to 
PTH and diminishing its secretion (see also 
Chap.   7    ). When hypocalcemia is induced by 
hypomagnesemia, the level of magnesium in 
typically less than 0.5 mmol/L. However, serum 
levels of magnesium poorly refl ect total body 
(and primarily intracellular) magnesium levels, 
and thus, any level of magnesium below the 
normal range needs to be considered as a 
possible contributory factor to hypocalcemia. 
Hypomagnesemia should be rectifi ed with an 
infusion of magnesium sulfate 1–2 g in 100 mL 
5 % dextrose in water over 10 min (1 g of magne-
sium sulfate contains approximately 93 mg of 
elemental magnesium). This can be followed by a 
continuous infusion of between 4 and 6 g/day. 
Lower infusion rates are required in patients 
with signifi cant renal impairment. Persistent 
hypomagnesemia can occur in individuals with 
ongoing gastrointestinal or renal losses, and this 
necessitates supplementation with oral magne-
sium. The most frequently recommended form of 
oral magnesium in this situation is magnesium 

oxide 400 mg. Each tablet contains 242 mg of 
elemental magnesium and should be given two to 
three times per day. 

 Serum phosphate should be measured prior 
to administration of intravenous calcium, as pre-
cipitation of calcium phosphate can occur in 
hyperphosphatemic subjects. In clinical practice, 
this situation has been encountered in patients 
with tumor lysis syndrome and renal failure but 
is unlikely to occur in uncomplicated hypopara-
thyroidism. Caution is necessary if the serum 
phosphate exceeds 2.0 mmol/L (6 mg/dL).  

27.6     Oral Calcium and Vitamin D 

 Almost all subjects with signifi cant hypocalcemia 
will require supplementation with oral calcium 
and/or vitamin D or one of its analogues. Oral 
calcium supplementation is preferable for those 
with mild acute hypocalcemia (1.9–2.0 mmol/L) 
or for chronic hypocalcemia. Various prepara-
tions of oral calcium salts are available. The most 
commonly used are calcium carbonate and cal-
cium citrate. The carbonate form has the highest 
amount of elemental calcium at about 40% of its 
total weight, with the citrate form being around 
21%. The typical starting dose is 1,000–1,200 mg 
of calcium two to three times per day. There are 
limited data to suggest that the absorption of cal-
cium carbonate is reduced in patients with achlor-
hydria or those on proton pump inhibitors. In this 
situation, it is reasonable to use calcium citrate. 

 Several vitamin D preparations are available 
for the treatment of hypocalcemia due to hypo-
parathyroidism or vitamin D defi ciency. Vitamin D 
defi ciency is typically treated with oral ergocalcif-
erol (vitamin D2) or cholecalciferol (vitamin 
D3). In some countries, parenteral forms are 
available. The major advantage of vitamin D in 
comparison to calcitriol (1,25-dihydroxyvitamin D) 
is its low cost. Disadvantages are the need for 
hepatic and renal metabolism and slow duration 
of onset. 

 In patients with hypoparathyroidism, 
standard doses of non-hydroxylated vitamin D 
(cholecalciferol or ergocalciferol) are unlikely to 
be effective as PTH is required for the renal 
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conversion of 25-hydroxyvitamin D to calcitriol 
(1,25- dihydroxyvitamin D). The most appropriate 
treatment is with calcitriol, initially 0.25–0.5 mcg 
twice daily. The half-life of this preparation is 
approximately 5–8 h, and the dose can be adjusted 
every 48 h. 

 Pharmacological doses of vitamin D, e.g., 
10,000 to 50,000 units per day (0.25–1.25 mg/
day), can be used, but the half-life of these prepa-
rations is prolonged, and they have a slower onset 
of action and a greater risk of serious toxicity 
(hypervitaminosis D) than calcitriol. 

 As with intravenous calcium administration, 
the goal of oral therapy is to increase the level of 
serum calcium to a level at which symptoms of 
hypocalcemia resolve and the risk of their recur-
rence is minimized. The major risks of therapy 
are hypercalcemia and hypercalciuria, which can 
lead to nephrolithiasis and nephrocalcinosis. 
Hypercalciuria is most likely to occur in subjects 
with hypoparathyroidism, as PTH stimulates 
renal calcium reabsorption. The goal of therapy 
in hypoparathyroid subjects is maintenance of 
serum calcium in the low to normal range 2.0–
2.1 mmol/L. Serum and urine calcium should be 
monitored regularly.  

27.7     Special Situations 

 The treatment of neonates, infants, and children 
with acute hypocalcemia follows similar prin-
ciples to those described above, but the doses of 
medications are based on patient weight rather 
than absolute amounts. Acute hypocalcemia in 
the context of recent neck surgery is treated in 
a similar fashion to that outlined above. Where 
hypocalcemia might be anticipated, patients are 
often treated preemptively with oral calcium 
supplements. The decision to initiate calcitriol 
or alfacalcidol (1-alpha-hydroxycholecalciferol) 
is often based on a measurement of serum PTH 
six to twelve hours after the operation. An unde-
tectable level indicates a need for active vitamin 
D preparations. Depending on the nature of the sur-
gery, the hypoparathyroidism could be tempo-
rary or permanent, but this often only becomes 
clear in the months following surgery when with-

drawal of calcium and vitamin D supplements 
is attempted. An alternative approach to the 
management of acute hypoparathyroidism is the 
injection of PTH or one of its analogues (e.g., 
teriparatide) as a replacement therapy. The effec-
tiveness of these agents has been evaluated in the 
context of chronic hypoparathyroidism and is dis-
cussed in depth in chapters 30 and 31. However, 
the use of PTH in acute hypoparathyroidism has 
not been studied. Another therapeutic approach 
that is commonly used in patients with chronic 
hypoparathyroidism is the administration of thia-
zide diuretics. These drugs reduce urinary cal-
cium excretion and can maintain a higher level 
of serum calcium for the same amount of vitamin 
D analogue therapy. In the context of acute hypo-
parathyroidism, the use of thiazides to increase 
serum calcium has not been reported. As such, 
both PTH and thiazide therapy are inappropriate 
in the acute setting.     
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28.1             Introduction 

 Hypoparathyroidism is characterized by hypo-
calcemia due to inappropriately low levels of 
PTH. Conventional treatment of hypoparathy-
roidism is a combination of calcium supplemen-
tation and vitamin D analogues. Although serum 
calcium levels are (near-)normalized in response 
to this therapy, it does not restore the normal 
physiological regulation of calcium homeostasis. 
Despite normocalcemia, the lack of PTH causes 
an abnormally low bone turnover, and bone min-
eral density is often markedly increased [ 1 ]. 
Moreover, renal calcium losses are increased 
with a concomitantly low renal phosphate 
 clearance. Due to reduced renal clearance, serum 
phosphate levels are often high normal or above 
the upper level of the reference interval causing a 
relatively high calcium–phosphorous product, 
which may increase the risk of extraskeletal cal-
cifi cations. Compared with the general back-
ground population, patients with postoperative 
hypoparathyroidism have an almost fourfold 
increased risk of renal complications [ 2 ]. In addi-
tion to these well-known effects of the lack of 
PTH, an increasing number of studies suggest 
that PTH may exert effects beyond its classical 

effects on kidney and bone. Receptors for PTH 
are expressed by cells in several tissues, including 
the central nervous system [ 3 ]. It is possible that 
the lack of PTH in the central nervous system may 
account for the neuropsychological complains 
often reported by patients [ 4 ]. Despite normal 
serum calcium levels, patients with hypoparathy-
roidism on conventional therapy often complain 
of reduced quality of life (QoL), mood disorders, 
cognitive dysfunction, and numerous nonspecifi c 
symptoms [ 4 – 6 ]. Accordingly, although calcium 
levels are restored in response to conventional 
therapy, it should be emphasized that a number of 
physiological and neuropsychological defi cits 
are present in hypoparathyroidism.  

28.2     Therapeutic Targets 

 Table  28.1  shows the therapeutic targets during 
conventional treatment of chronic hypoparathy-
roidism. Treatment should be titrated in such a 
manner that patients are without major symptoms 
of hypocalcemia. Preferably, serum calcium lev-
els are maintained slightly below or in the lower 
range of the reference interval. This is of impor-
tance in order to lower urinary calcium excretion 
and to keep the calcium–phosphorous product as 
low as possible. Magnesium levels should be 
monitored, as magnesium homeostasis may be 
disturbed with a tendency towards hypomagnese-
mia [ 7 ]. Moreover, if magnesium levels are very 
low, PTH cannot be secreted by the parathyroid 
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glands, and severe hypomagnesemia may thereby 
blunt a recovery of the parathyroid function [ 8 ]. 
Finally, hypomagnesemia may cause symptoms 
similar to hypocalcemia, including an increased 
neuromuscular excitability.

28.3        Treatment with Calcium 
and Vitamin D 

 Calcium supplements in combination with 
vitamin D analogues are the mainstay in the treat-
ment of hypoparathyroidism. Different traditions 
seem to exist on how to titrate the dose of calcium and 
vitamin D, as some institutions seem to prefer a 
relative high dose of calcium (3–5 g/d) in combi-
nation with a relative low dose of vitamin D, 
whereas other institutions are using a relatively 
high dose of vitamin D analogues in combination 
with a lower dose of calcium (800–1,200 mg/d). 
The two strategies have not been formally com-
pared, but is does somehow seem reasonable to 
keep calcium intake relatively low in order to 
lower urinary calcium and thereby (probably) 
lower risk of renal stone formation [ 9 ]. 

28.3.1     Calcium Supplements 

 Doses of calcium supplements should be spread 
throughout the day, as the fraction of calcium 
absorbed decreases as the ingested amount of 
calcium increases. Normally, a dose of 400–
500 mg of elementary calcium should be given 
twice a day. If patients experience symptoms of 
hypocalcemia despite normal serum calcium lev-
els, it may be diffi cult to increase the dose of vita-
min D, as this often will result in hypercalcemia. 
If so, patients may have relief of their hypocalce-
mic symptoms by using calcium supplements 
more than twice a day. If symptoms of hypocal-
cemia occur intermittently, but less frequently 
than on a daily basis, patients may be instructed 
to use additional calcium supplements PRN (pro 
re nata). Taking a dose of calcium at bedtime may 
be favorable, as nighttime is a state of fasting. 
Normally, PTH levels and bone turnover increase 
during nighttime causing an effl ux of calcium 

from the bone to the extracellular fl uid [ 10 ]. 
Although this has not been thoughtfully investi-
gated, it seems likely that these homeostatic 
mechanisms do not function properly in hypo-
parathyroidism. Evening administration of cal-
cium supplements may be a solution to patients 
with symptoms of hypocalcemia during night-
time or in the early morning hours. 

 Calcium is bound to carbonate in most cal-
cium supplements, but it may as well be bound to 
citrate or an organic molecule, such as malate in 
others. Calcium carbonate is often preferred, as it 
is less expensive than other calcium supplements. 
It should, however, be taken with food, as its 
absorption in the intestine depends on low pH 
levels [ 11 ]. Despite impaired acidifi cation, 
patients with achlorhydria seem to have proper 
absorption calcium from calcium carbonate as 
long as it is taken together with a meal [ 11 ]. 
Calcium citrate and calcium malate can be taken 
without a meal as calcium from these compounds 
is better absorbed on an empty stomach. 
Apparently, the absorption of calcium from sup-
plements is similar to the absorption from dairy 
products [ 12 ]. Although there are no data com-
paring intake from supplements with intake from 
dairy products in hypoparathyroidism, a high 
intake of calcium from dairy products may not be 
favorable, as dairy products are rich in phosphate. 
As renal phosphate clearance is impaired in 
hypoparathyroidism, it seems reasonable to limit 
phosphate intake. 

 Discrepant results have been reported on the 
effects of use of calcium supplements on cardio-
vascular events [ 13 ,  14 ]. However, in a recent 
epidemiological study on comorbidity in hypo-
parathyroidism, risk of cardiovascular diseases 
was not increased in patients with hypoparathy-
roidism [ 2 ]. 

 Use of calcium supplements may cause gas-
trointestinal discomfort, especially constipation. 
Such side effects may be avoided by taking the 
supplements with food and concomitant use of 
magnesium supplements [ 15 ]. 

 A common cause of hypoparathyroidism is 
accidental removal of the parathyroid glands dur-
ing thyroid surgery or other operations in the 
neck such as radical neck dissections, and many 
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patients with postsurgical hypoparathyroidism are 
on substitution therapy with thyroid hormones. As 
calcium supplements may impair the absorption of 
levothyroxine, patients should be instructed not 
to take levothyroxine and calcium simultane-
ously or near-simultaneously [ 16 ]. Similarly, 
calcium may interfere with the absorption of 
other drugs such as ciprofl oxacin and tetracycline 
[ 17 ]. Care should be taken to advise patients 
with hypoparathyroidism appropriately on such 
“food”-drug interactions.  

28.3.2     Vitamin D Treatment 

 Before the development of active (1α-hydroxylated) 
vitamin D analogues, calciferol was used in the 
treatment of hypoparathyroidism, either as chole-
calciferol (vitamin D3) or ergocalciferol (vitamin 
D2) [ 18 ]. Although the affi nity of 1,25(OH) 2 D to 
the vitamin D receptor (VDR) is much higher 
than the affi nity of calciferol, calciferol do, 
nevertheless, bind to the VDR and exert biologi-
cal effects if the concentrations are high enough. 
Moreover, despite reduced activity of the 
1α-hydroxylase if PTH is missing, a small amount 
of 25-hydroxyvitamin D (25OHD) is neverthe-
less converted into its active metabolite. In hypo-
parathyroidism, serum levels of 1,25(OH) 2 D are 
subnormal, but a positive correlation is present 

between levels of 25OHD and 1,25(OH) 2 D 
[ 19 ,  20 ]. If treated with calciferol, very high 
doses are needed to achieve normocalcemia 
resulting in markedly elevated serum 25OHD 
levels. Typically, patients receive a daily dose of 
25,000–200,000 IU of vitamin D2 or D3 result-
ing in serum 25OHD levels between 500 and 
1,000 nmol/l [ 1 ,  19 ,  21 ]. 

 Since the development of 1α-hydroxylated 
vitamin D analogues, most patients with hypo-
parathyroidism have been shifted to treatment 
with either alfacalcidol or calcitriol, as the serum 
half-life of activated vitamin D metabolites is 
much shorter (approximately 3–6 h) than the bio-
logical half-life of vitamin D2 or D3 (approxi-
mately 3 weeks) [ 18 ,  19 ,  22 – 25 ]. The advantage 
of the shorter serum half-life is that a new equi-
librium is obtained at a much faster rate [ 7 ]. Dose 
titration may be performed every 2–3 days if acti-
vated vitamin D metabolites are used, whereas 
2–3 months have to pass before a new equilib-
rium is obtained in response to dose titration of 
calciferol. Similarly, if intoxication occurs, this 
has a much longer duration if caused by too high 
levels of calciferol rather than too high levels of 
calcitriol. 

 The synthetic vitamin D analogue  dihydrota-
chysterol  may also be used. Similar to alfacal-
cidol, dihydrotachysterol is activated in the liver, 
but does not require renal hydroxylation [ 26 ,  27 ]. 

   Table 28.1    Therapeutic targets and monitoring of patients with chronic hypoparathyroidism on conventional therapy   

 Therapeutical target  Monitoring interval 

 Symptomatic hypocalcemia  None or infrequently  Every 3rd month 
 Serum calcium  Slightly below or in the lower range 

of the reference interval 
 Every 3rd month 

    Calcium–phosphorus 
product 

 <4.4 mmol 2 /L 2  (<55 mg 2 /dL 2 )  Every 3rd–6th month 

 Serum magnesium  Within the reference interval  Every 3rd–6th month 
 24-h urinary calcium  Within the sex-specifi c reference 

interval 
 Once a year 

 Serum PTH  Following surgery causing hypoparathyroidism, 
 PTH levels should be measured once 
a month for the fi rst 6 months. In chronic 
hypoparathyroidism, PTH should be measured 
once a year in order to detect whether there is 
any recovery of parathyroid function 

 Eye examination  No cataract     Awareness of symptoms at clinical follow-up 
(once a year). If symptoms occur, an eye 
examination should be performed 
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Although used frequently in the past, most 
 institutions now p   refer the use of more specifi c 
vitamin D analogues (alfacalcidol or calcitriol). 

 The dose of alfacalcidol needed to maintain 
normocalcemia is normally 1–3 μg/day, whereas 
calcitriol typically is administrated in a daily 
dose of 0.5–1.5 μg. However, large interindivid-
ual variations exist in dose needed, and the dose 
required to maintain serum calcium in the desired 
range may vary with time within patients. No for-
mal comparison has been performed on whether 
differences exist on long-term treatment out-
comes between alfacalcidol, calcitriol, and dihy-
drotachysterol. However, it has been reported 
that hypercalcemia following treatment with 
dihydrotachysterol may take slightly longer to 
resolve (3–14 days) than following treatment 
with either alfacalcidol (5–10 days) or calcitriol 
(2–10 days) [ 27 ,  28 ]. 

 Although active vitamin D analogues are the 
mainstay of treatment of hypoparathyroidism, a 
suffi cient vitamin D status in terms of 25OHD 
levels >80 nmol/l should be ensured, as calciferol 
may be of importance to extraskeletal tissues [ 29 ].   

28.4     How to Handle 
Hypercalciuria? 

 In hypoparathyroidism, a linear relationship has 
been reported between serum and urinary cal-
cium [ 18 ,  30 ]. In order to lower urinary calcium, 
serum calcium levels should be in the lower part 
(or slightly below the lower limit) of the refer-
ence interval. Moreover, salt intake should be 
restricted [ 31 ]. 

 Treatment of patients with hypoparathyroid-
ism with thiazide diuretics has been shown to 
lower urinary calcium by increasing the renal 
tubular reabsorption of calcium [ 32 – 34 ]. A low- 
salt diet should be advocated, as a high-salt 
intake may abolish the hypocalciuric action of 
thiazides [ 34 ]. 

 There are no data available on long-term 
effects of treatment with thiazides in hypopara-
thyroidism. However, as thiazides have been 
shown to lower risk of renal stones in idiopathic 
hypercalciuria, it seems likely that a similar 

 benefi cial effect may apply to patients with hypo-
parathyroidism [ 35 ]. 

 To obtain a sustained hypocalciuric effect 
throughout the day, most thiazide diuretics 
(e.g., hydrochlorothiazide and bendrofl umethi-
azide) need to be administrated twice a day due 
to their relatively short serum half-life. The 
hypocalciuric effect is dose dependent, why a 
relative high dose may be used if tolerated by 
patients [ 36 ]. Hydrochlorothiazide may be 
given as 25–50 mg twice a day and bendrofl u-
methiazide as 2.5–5.0 mg twice a day. Thiazide-
like diuretics such as chlorthalidone have a 
longer serum half-life and may be adminis-
trated only once a day [ 34 ]. 

 Effects on 24-h urinary calcium should be 
assessed 2–3 weeks after initiation of treatment 
or following dose increment. In addition, blood 
pressure should be measured to exclude hypo-
tensive side effects. Potassium supplementation 
is needed in most patients. It is of importance to 
avoid hypokalemia, as this is associated with 
metabolic alkalosis. In serum, approximately 
50 % of calcium is bound to proteins, and the 
binding of calcium is pH dependent. The fraction 
of calcium bound to proteins increases with an 
increase in serum pH (0.04–0.05 mmol/L 
change in ionized calcium per 0.1 unit change 
in pH) [ 37 ]. Accordingly, the free (physiologi-
cal active) fraction of calcium decreases if a 
hypokalemic metabolic alkalosis develops [ 38 ]. 
This is in contrast to the common fi nding of a 
slight increase in total serum calcium levels in 
response to therapy with thiazide diuretics. 
Importantly, the increase in total levels does not 
necessarily correspond with an increase in the 
free fraction if metabolic alkalosis develops. 
Moreover, if ionized serum calcium levels are 
measured, the result is often reported as a value 
adjusted to a pH value of 7.4 and does therefore 
not provide information on serum level of free 
calcium at the actual pH. 

 As thiazide diuretics may increase renal mag-
nesium excretion, magnesium supplements or 
co-administration of a potassium-sparing diuretic 
may be considered (see below). Treatment with 
loop diuretics should be avoided as this will 
increase renal calcium excretion [ 36 ,  39 ].  
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28.5     How to Handle 
Hyperphosphatemia? 

 In addition to an increased risk of renal calcifi ca-
tions, long-standing hypoparathyroidism is asso-
ciated with extraskeletal calcifi cations at other 
organs such as the eye (cataract) and the brain 
(basal ganglia calcifi cations) [ 40 – 42 ]. Serum 
phosphorus levels are often high normal or ele-
vated in hypoparathyroidism which is attribut-
able to a reduced renal clearance (the phosphaturic 
effect of PTH is lacking) and an enhanced intes-
tinal phosphate absorption caused by vitamin D 
treatment. 

 As high serum phosphorus levels and a 
high serum calcium–phosphorus product may 
increase the risk of soft tissue precipitation of 
calcium phosphate salts, it seems reasonable to 
aim at lowering phosphorus level. In a case 
series with 145 patients with idiopathic hypo-
parathyroidism, basal ganglia calcifi cation was 
present in 74 % of the patients, and the progres-
sion of basal ganglia calcifi cations was associated 
with the calcium–phosphorus ratio. For each 
1 % increase in the ratio, risk of progression 
decreased by 5 % [ 42 ]. 

 There are no available data from clinical trials 
on whether soft tissue calcifi cations or renal 
stones are preventable with aggressive therapy 
(e.g., use of phosphate binders) in hypoparathy-
roidism [ 43 ]. If the calcium–phosphorus product 
is elevated, it seems, however, reasonable to pre-
scribe a low-phosphorus diet.  

28.6     How to Handle 
Hypomagnesemia? 

 Magnesium is essential for PTH secretion and 
activation of the PTH receptor. If magnesium 
stores are depleted, the parathyroid glands are 
unable to secrete PTH, and renal and skeletal 
responses to PTH are blunted causing hypocalce-
mia (functional hypoparathyroidism) [ 8 ,  44 ]. The 
hypocalcaemia is unlikely to be corrected without 
fi rst correcting the low magnesium levels [ 45 ]. 
Accordingly, if magnesium levels are low, this 
may blunt a potential recovery of the parathyroid 

glands in postsurgical hypoparathyroidism. 
Moreover, a number of case reports have suggested 
that patients with postsurgical and idiopathic 
hypoparathyroidism may develop resistance 
to conventional treatment with vitamin D if mag-
nesium levels are low and hypomagnesemia 
may cause symptoms similar to hypocalcemia 
[ 46 – 48 ]. 

 In chronic hypoparathyroidism, not caused 
by magnesium depletion, mild hypomagnese-
mia often occur during conventional therapy [ 7 , 
 49 ]. It seems that hypoparathyroidism may 
infl uence magnesium status by affecting the 
renal magnesium handling as well as its intesti-
nal absorption [ 7 ]. PTH has been shown to 
increase magnesium reabsorption in the renal 
distal tubule [ 50 ,  51 ]. 

 In patients with hypomagnesemia, other 
causes than hypoparathyroidism should of 
course be considered, including treatment with 
proton pump inhibitors [ 52 ]. Magnesium sup-
plements may be used to correct hypomagnese-
mia. Supplementation with magnesium does not 
affect serum calcium levels in patients with 
hypoparathyroidism [ 53 ]. Common side effects 
include stomach upset, nausea, and diarrhea. If 
magnesium supplements are not tolerated, a 
potassium- sparing diuretic may be an option, as 
these diuretics also lower renal magnesium 
excretion [ 54 ]. In patients with intact parathy-
roid function treated with hydrochlorothiazide, 
amiloride (but not spironolactone) has been 
shown to cause a dose-dependent increase in 
serum magnesium levels [ 55 ]. There are no spe-
cifi c data available on effects of amiloride in 
hypoparathyroidism.  

28.7     Is Estrogen Status 
of Importance to Treatment 
Responses? 

 In a few small case series and case reports, estro-
gen status has been reported to infl uence vitamin 
D requirement in women with hypopara-
thyroidism, although discrepant results have been 
reported on the effect of estrogen on calcium 
levels [ 56 ]. Hypercalcemia necessitating a reduced 
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dose of active vitamin D analogue drugs has been 
reported in women with hypoparathyroidism 
entering the menopause [ 56 ], starting treatment 
with danazol (a hypoestrogenic drug) [ 57 ] or 
stopping use of oral contraceptive pills [ 58 ] or 
hormone replacement therapy [ 56 ]. In accor-
dance with these observations, hypocalcemia has 
been reported in women starting estrogen therapy 
[ 59 ]. However, changes in serum calcium levels 
in relation to estrogen therapy is not a universal 
fi nding, as no changes in serum calcium in 
women stopping oral contraceptive pills also 
have been reported [ 60 ]. In addition, some 
women of childbearing age may experience 
symptoms of hypocalcemia at time of menses or 
at the time of withdrawal bleeding (hormonal 
contraceptive users), which may or may not be 
related to measurable changes in serum calcium 
levels [ 60 ]. The mechanism of action by which 
estrogen status affects calcium homeostasis is 
unclear. Apparently, the menses-associated 
symptoms of hypocalcemia are related to an 
acute decline in estrogen levels. However, a 
decrease in estrogen levels also occurs if hor-
mone replacement therapy is stopped, which has 
been associated with the development of hyper-
calcemia. Although estrogen increases the 
synthesis of vitamin D binding protein and 
thereby the total concentration of 25OHD and 
1,25(OH) 2 D, the calculated free index is not 
altered in women using hormonal contraceptives 
[ 61 ]. It has been suggested that the effects of 
estrogens on calcium homeostasis in hypopara-
thyroidism may be due to effects on bone resorp-
tion, but further studies are needed to clarify such 
mechanisms [ 56 ]. 

 Hypercalcemia may develop immediately 
after delivery, necessitating a reduced dose 
of active vitamin D as long as the woman is lac-
tating [ 62 – 64 ]. It is unclear    whether this is due 
to the hypoestrogenic state associated with 
breast feeding or due to an increased level of 
parathyroid hormone-related peptide (PTHrP) 
synthesized by the mammary glands [ 65 ]. In 
one study, it was suggested that a window may 
exist during which there are increased needs 
for active vitamin D immediately following 
delivery [ 66 ].  

28.8     How to Manage Acute 
Hypocalcemia? 

 Whether hypocalcemia causes symptoms 
depends on both the absolute serum calcium level 
and how rapidly it falls. A rapid fall in serum cal-
cium is often associated with marked symptoms, 
whereas patients who are born with hypoparathy-
roidism or who develop hypoparathyroidism 
slowly can be almost free of symptoms (see also 
Chap.   27    ). Moreover, hypoparathyroidism repre-
sent a spectrum extending from mild degrees of 
PTH insuffi ciency to the complete absence of cir-
culating PTH. Some patients may only experi-
ence symptoms when they are in a state of 
emotional or physiological stress. Indication for 
acute treatment should therefore not be based on 
serum calcium levels alone. The decision on 
whether to initiate treatment and/or to change the 
dose of already initiated treatment should be 
based on a combination of biochemical measure-
ments and symptoms experienced by the patient. 

 Most patients with hypocalcemia can be man-
aged by initiating treatment with oral calcium 
supplementation and a 1α-hydroxylated vitamin 
analogue. Typical starting doses are 1–2 μg of 
alfacalcidol or 0.5–1.0 μg of calcitriol each day. 
According to measurement of serum calcium lev-
els, dose can be increased every 4–7 days, as 
appropriate. If the hypoparathyroidism is newly 
developed, for example, following surgical dam-
age to the parathyroid glands, the initial dose of 
1α-hydroxylated vitamin analogue needed is 
often higher than the long-term maintenance 
dose. It seems that an initial refractoriness of 
hypocalcemia to vitamin D and oral calcium sup-
plementation may exist during initiation of ther-
apy. In such patients, it may be appropriate to use 
a relatively high starting dose of active vitamin D 
analogues, i.e., a daily dose of 2–4 μg of alfacal-
cidol or 1–2 μg of calcitriol, while patients are 
monitored closely. 

 If severe symptoms (including tetany) are 
present, these may be controlled by a bolus intra-
venous infusion (IV) of calcium. Calcium gluco-
nate is often preferred, as calcium chloride is 
more likely to cause local irritation. Ten to twenty 
milliliter of 10 % calcium gluconate diluted in 

L. Rejnmark

http://dx.doi.org/10.1007/978-88-470-5376-2_27


309

50–100 ml of isotonic sodium chloride, which 
should be infused slowly over 5–10 min. A bolus 
IV infusion can be repeated until symptoms have 
weaned. If repeated infusions are needed, therapy 
may be changed to a continuous calcium infu-
sion. If the hypocalcemia is likely to persist, ther-
apy with oral calcium supplements and an active 
vitamin D analogue should also be started. 
During IV infusion of calcium, serum calcium 
levels should be monitored every 4–6 h. If hypo-
magnesemia is present, this needs to be corrected 
before the hypocalcemia will resolve. Other elec-
trolyte abnormalities (potassium, sodium, etc.) 
should be corrected as well. Electrocardiographic 
monitoring is recommended because dysrhyth-
mias can occur if correction is too rapid. This is 
of particular importance to patients on treatment 
with a cardiac glycoside as rapid changes in 
serum calcium levels may cause arrhythmias.  

28.9     How to Treat Episodes 
of Hypercalcemia? 

 Patients with chronic hypoparathyroidism may 
develop episodes of hypercalcemia that may 
occur unpredictably without prior changes in 
dose of calcium supplements or vitamin D 
 analogue. The hypercalcemia is most often due to 
vitamin D intoxication, although levels of 
1,25(OH) 2 D may not always be elevated. 

 In most instances, serum calcium levels are 
only slightly elevated with no or only mild symp-
toms of hypercalcemia. Mild hypercalcemia can 
often be handled by encouraging a high oral fl uid 
intake and by decreasing dose of calcium supple-
ment and active vitamin D analogues by 25–50 %. 
If severe hypercalcemia is present with deteriora-
tion in renal function, calcium supplements and 
vitamin D analogues should be discontinued until 
serum calcium concentration returns to the 
desired level, and patients should be treated by 
IV isotonic saline infusions (3–4 L per day). 
Renal calcium excretion can be increased by 
treatment with loop diuretics. However, their use 
is not supported by strong clinical evidence, and 
the combination of aggressive fl uid therapy 
and loop diuretics may cause hypokalemia and 

hypomagnesemia and increase the risk of pre-
cipitation of calcium phosphate crystals in the 
renal tissue. The use of forced diuresis should 
therefore be reserved for the management of vol-
ume overload [ 67 ]. 

 Infusion with IV calcitonin may be of value if 
a rapid reduction of serum calcium is warranted. 
Unlike other hypocalcemic agents, calcitonin is 
effective within 2 h after infusion. As the half-life 
of calcitonin is short, infusions may need to be 
repeated every 12–24 h. However, tolerance often 
develops within 72–96 h with disappearance of 
the calcium-lowering effects [ 68 ]. If additional 
treatment is needed, glucocorticoids have long 
been used in the treatment of hypercalcemia asso-
ciated with vitamin D intoxication. The rational 
for this is that glucocorticoids partly function as a 
vitamin D antagonist by decreasing intestinal cal-
cium absorption and increasing renal calcium 
excretion. Normally, it takes 2–3 days before the 
hypocalcemic effect of glucocorticoids emerges. 
The duration of glucocorticoid administration 
should be short as possible to minimize long-term 
complications of these agents. 

 In order to avoid episodes of severe hypercal-
cemia, it is of importance that patients with hypo-
parathyroidism are aware on symptoms of 
hypercalcemia and are told to contact their 
health-care providers in case of such symptoms, 
including nausea, vomiting, constipation, diar-
rhea, dry mouth with polydipsia, polyuria, leth-
argy, generalized malaise, or drowsiness. Case 
series have been published suggesting that the 
requirement for vitamin D is diminished after an 
episode of hypercalcemia [ 69 ,  70 ]. This may 
especially apply to those treated with calciferol 
due to its long serum half-life.  

28.10     Therapeutic Challenges 

 Although serum calcium levels are stable for most 
of the time in patients with chronic hypoparathy-
roidism managed by conventional therapy, it is 
obvious that this treatment regime does not restore 
the normal physiology of calcium homeostasis 
and that patients often have a number of com-
plaints in terms of musculoskeletal symptoms, a 
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reduced quality of life, and an increased risk of 
renal complications. The daily dose of vitamin D 
or serum measurement of 25OHD or 1,25(OH) 2 D 
levels does not correlate well with serum calcium 
levels, as large (unexplained) differences exist 
between individuals in their needs for vitamin D 
[ 71 ]. Moreover, fl uctuations in calcium levels 
may occur without changes in treatment in any 
given individual. Patients may suddenly become 
 overly sensitive  or  insensitive  to a given dose of 
vitamin D after months or years of good control 
on a given therapeutic regimen [ 19 ,  29 ,  70 ]. 
Although a few case series have suggested that 
such changes in some women may be due to 
changes in estrogen status [ 56 ], the change in 
vitamin D sensitivity is largely unexplained in 
most patients. No associations have been found 
between changes in vitamin D requirements and 
the season of the year or the state of thyroid func-
tion [ 72 ]. Emphasis should also be paid to the 
fact that although serum calcium levels are mea-
sured as being within the target range, calcium 
homeostasis exhibits diurnal variations. Patients 
may experience symptoms due to diurnal fl uctua-
tions in calcium levels that are not disclosed by a 
single measurement. In subjects with intact para-
thyroid function, there is a minute-to-minute 
regulation of PTH release; moreover, PTH is 
secreted in a diurnal pattern, which helps to 
maintain serum calcium levels within very nar-
row limits [ 73 ,  74 ]. 

 As hypoparathyroidism represents a spectrum 
extending from mild degrees of PTH insuffi ciency 
to the complete absence of PTH, there is a need for 
studies focusing on how to classify the severity of 
the disease. It may be that patients with some 
residual PTH secretion do better and should be 
treated differentially from patients with a complete 
lack of PTH [ 75 ]. There is also a need for data that 
may shed light on whether serial measurements of 
calcium levels during the day provide a better 
measure for assessing calcium homeostasis in 
hypoparathyroid patients than a single measure-
ment. Moreover, the inherited and idiopathic 
forms of hypoparathyroidism may need to be 
treated differently from post surgical hypoparathy-
roidism. Finally, data are needed on how to protect 
patients from renal complications and how to 
improve their quality of life.     
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29.1             Introduction 

 Patients with hypoparathyroidism are at risk of 
many complications, both from the disease itself 
as well as from adverse effects of currently avail-
able treatment regimens. Ongoing care with a 
provider familiar with the treatment of this disor-
der is critical in order to meet the complex needs 
of patients and to optimize their outcomes (see 
also Chap.   15    ). The overarching goals of follow-
 up care for hypoparathyroidism are to ensure that 
effective care is in place and that the manifesta-
tions of the disease are as well controlled as pos-
sible [ 1 ]. 

 A key aspect of ongoing follow-up is engag-
ing the patient as a partner in his or her medical 
care. Patients with hypoparathyroidism need to 
have a basic understanding of the underlying 
pathophysiology, the rationale for treatment, 
and signs and symptoms of complications of the 
disorder. This is particularly true due to the fact 
that it is an extremely rare disorder, and other 
medical providers seen by the patient may be 
less familiar with the potential manifestations of 
the disease. Patient education and encourage-
ment are therefore important parts of follow-up 
visits. For example, the patient who understands 

the importance of preventing kidney damage 
due to excessive urinary calcium excretion 
might be more accepting of the inconvenient 
24-h urine collections. 

 There are no data from clinical trials available 
that would determine the optimal follow-up inter-
vals or the optimal frequency of laboratory and 
imaging tests. As a result, there are currently no 
guidelines for the management of the disease 
available from professional societies. The fol-
lowing chapter therefore is a refl ection mainly 
based on personal preference and experience.  

29.2     Control of Symptoms 

 In acute, severe hypocalcemia, the goal of treat-
ment is the rapid correction of the biochemical 
abnormalities and accompanying symptoms, 
often through intravenous infusion of calcium 
gluconate (see Chap.   27     for more details). For 
chronic management, the goal of treatment is to 
control symptoms while minimizing complica-
tions of overtreatment. Symptoms of hypocalce-
mia to be sought include the more common 
paresthesias and tetany, but also rare symptoms 
which may not be readily recognized as hypocal-
cemic, such as stridor, bronchospasm, and symp-
toms of heart failure [ 2 ,  3 ]. 

 The generally accepted target serum calcium 
concentration is in the low-normal range, a state 
in which symptoms of hypocalcemia are gener-
ally rare. Higher serum levels of calcium, even 
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within the normal range, are to be avoided. This 
is because urinary calcium excretion, an impor-
tant determinant of long-term renal complica-
tions, is directly correlated with the fi ltered load 
of calcium, which in turn is correlated with the 
serum calcium level. Because of the lack of para-
thyroid hormone (PTH), urinary excretion of cal-
cium at any given level of serum calcium is 
greater than normal. It follows therefore logically 
that the lower the serum calcium level, the lower 
the urinary calcium excretion. Although no pro-
spective data exist proving that this approach 
minimizes long-term complications, retrospec-
tive data does support the notion that keeping 
serum calcium at a low-normal or slightly hypo-
calcemic level has benefi cial effects in the long 
term. For example, Mitchell et al. reported that 
relative hypercalcemia over time was inversely 
associated with estimated glomerular fi ltration 
rate, a measure of renal function [ 4 ]. In certain 
cases, such as hypoparathyroidism due to activat-
ing mutations of the calcium-sensing receptor, 
maintenance of a serum calcium level just high 
enough to prevent symptomatic hypocalcemia 
may be the goal. 

 Occasional mild symptoms of hypocalcemia 
can often be tolerated, since they indicate that 
the patient’s serum calcium level is within, or 
close to, the target range. By contrast, serum cal-
cium concentrations in the high-normal or 
slightly elevated range are often asymptomatic 
or associated with nonspecifi c symptoms such as 
fatigue or abdominal pain, which may be missed. 
However, keeping serum calcium in the low to 
low-normal range comes at a price: the lower the 
serum calcium level, the more likely a patient is 
to develop symptomatic hypocalcemia. This is 
particularly relevant in the setting of a stressor 
such as an intercurrent illness or increase in 
physical activity. 

 When inquiring about the frequency and 
intensity of hypocalcemic symptoms, it is impor-
tant to also identify triggers of hypocalcemia. In 
some patients, strenuous physical activity can 
lead to a drop in serum calcium, as can gastroen-
teritis. In addition, some women report an asso-
ciation of hypocalcemia with the onset of 
menstruation [ 5 ,  6 ]. Once triggers are identifi ed, 

strategies to mitigate the symptoms can be 
 instituted, for example, taking extra 500–
1,000 mg oral calcium half an hour to one hour 
before engaging in strenuous physical activity. 
Monitoring serum calcium levels is recom-
mended when feasible.  

29.3     Minimizing Complications 

29.3.1     Biochemical Measurements 

 For the typical patient with chronic hypoparathy-
roidism, serum calcium levels should be moni-
tored every 3–6 months. Additional serum 
calcium checks are indicated after changes in 
oral calcium or vitamin D therapy, or if unex-
plained symptoms of hypo- or hypercalcemia 
occur. We typically measure serum albumin, cre-
atinine, and phosphate simultaneously to ensure 
that albumin-corrected serum calcium can be cal-
culated, renal function is stable, and the calcium- 
phosphate product is not elevated. The goals of 
therapy include control of symptoms (see above), 
albumin-corrected serum calcium level at or 
slightly below the lower end of the normal range 
(about 8.0–8.5 mg/dL), and a serum calcium- 
phosphate product well below 55 mg 2 /dL 2 . 

 In clinical practice, we typically measure total 
serum calcium concentrations, despite the fact 
that it is the ionized portion that is both regulated 
and biologically active. In typical physiologic 
states, approximately 50 % of the total calcium is 
ionized, 10 % is bound to anions such as bicar-
bonate, and 40 % is protein bound, mostly to 
albumin. Formulas exist which correct the mea-
sured calcium concentration if the serum albumin 
is signifi cantly different from 4.0 mg/dL. The 
most commonly used formula is:

  

Corrected calcium concentration
Total calcium concentration

=
+

0.88 4 0× −( ). Albumin
   

Additional complexities arise in the setting of 
altered acid-base status, as alkalosis increases the 
fraction of total serum calcium bound to albumin, 
decreasing the ionized fraction. In addition, the 
above formula does not perform well in patients 
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with chronic kidney disease (CKD), due at least 
in part to the high prevalence of metabolic acido-
sis among patients with CKD. In certain situa-
tions, it is therefore best to check an ionized 
calcium level, but the handling of the specimen is 
demanding [ 7 ,  8 ]. 

 As the serum calcium concentration is often 
lowest in the morning, we typically adjust calcium 
and vitamin D therapy to achieve a morning fasting 
serum calcium concentration that is in the low-nor-
mal range. Once the fasting serum calcium is in the 
target range, we occasionally check serum calcium 
values during the day. If the serum calcium level or 
the calcium-phosphate product is unacceptably 
high during the day, changes in dosing or frequency 
of medication might be helpful. Examples of 
changes include spreading out calcium tablets 
more evenly throughout the day, or splitting a once-
daily calcitriol dose into two doses. 

 24-h urinary calcium excretion is measured at 
least once yearly to detect hypercalciuria. A 
simultaneous urinary creatinine measurement 
ensures adequate sampling. The goal is a 24-h 
urinary calcium excretion of well below 300 mg 
for a typical adult or 4 mg/kg for a pediatric 
patient. Decreasing the urinary calcium excretion 
can often be achieved by decreasing serum cal-
cium. If this cannot be achieved, thiazide diuret-
ics may be given as they can signifi cantly 
decrease urinary calcium excretion [ 9 ,  10 ] with 
or without potassium bicarbonate [ 11 ]. 
Hydrochlorothiazide or the longer-acting 
chlorthalidone is generally started at 25 mg/d and 
uptitrated to 50–100 mg/day. Hydrochlorothiazide 
at 50 mg or higher is typically split into two 
doses. As described in other chapters, either syn-
thetic PTH(1–34) or recombinant PTH(1–84) 
represents additional treatment modalities that 
may have advantages over the traditional treat-
ment of hypoparathyroidism with calcium and 
activated vitamin D supplementation.  

29.3.2     Imaging 

 Nephrocalcinosis, nephrolithiasis, and impaired 
renal function are important potential complica-
tions of hypoparathyroidism. Urinary calcium 

excretion is directly proportional to serum 
 calcium levels [ 12 ], and since PTH increases 
renal calcium reabsorption, PTH defi ciency 
leads to higher urinary calcium losses for any 
given serum calcium level [ 13 ,  14 ]. Standard 
therapy with calcium supplementation and active 
vitamin D can therefore cause renal calcifi ca-
tions [ 15 ], and great care has to be given to pre-
vent these outcomes. 

 Estimates of the prevalence of nephrolithiasis 
range from 2 to 15 % [ 13 ,  16 ,  17 ]. For example, 
a Danish population-based case-control study 
involving 688 patients with hypoparathyroidism 
and 2,064 controls reported an almost fi vefold 
increased risk of renal stones and renal insuffi -
ciency in hypoparathyroidism [ 17 ]. Reported 
rates of medullary nephrocalcinosis range from 
12 to 57 %, with the higher rates observed in 
patients with calcium-sensing receptor muta-
tions [ 18 – 20 ]. 

 In addition to symptomatic renal colic, calcifi -
cation may also lead to impaired renal function. 
Of 27 participants in a trial of PTH replacement, 
two thirds had creatinine clearance rates below 
the normal range, and participants with nephro-
calcinosis had, on average, lower GFRs than 
those without nephrocalcinosis [ 20 ]. In a cohort 
of 120 patients seen in a single hospital system, 
41 % had estimated Glomerular fi ltration rate 
(GFR) less than 60 mL/min/1.73 m 2 , consistent 
with chronic kidney disease stage 3 or higher [ 4 ]. 
The prevalence of decreased GFR among hypo-
parathyroid patients was 2–35-fold higher than in 
an age-matched population-based cohort [ 21 ]. 
Predictors of lower GFR in this study included 
age, duration of disease, and relative hypercalce-
mia. In addition, two patients in this study (1.7 %) 
progressed to severe renal failure requiring 
transplant. 

 There is no consensus regarding modality 
and frequency of renal imaging. Options for 
detecting nephrocalcinosis and nephrolithiasis 
include plain radiographs of the abdomen, 
computed tomography (CT) without contrast, 
and renal ultrasound. Ultrasound has been 
shown in one recent study to be more sensitive 
than CT for the detection of calcifi cation [ 22 ]. 
We typically check for occult kidney stones or 
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nephrocalcinosis when initiating treatment to 
establish a  baseline. We then obtain an ultra-
sound of the abdomen every several years to 
investigate whether nephrocalcinosis or kidney 
stones are developing. 

 Brain calcifi cations, especially basal ganglia 
calcifi cations (BGC), are a well-known compli-
cation of hypoparathyroidism [ 4 ,  19 ,  23 ]. The 
reported prevalence of BGC varies widely. In one 
cohort of 33 patients, 12 % had BGC [ 16 ]. In 
another cohort of 31 patients who had head imag-
ing, 52 % had BGC [ 4 ]. In a large study of 145 
patients with hypoparathyroidism, all of whom 
were imaged by CT, 74 % had BGC [ 23 ]. The 
prevalence in the general population is not well 
established, but estimates are signifi cantly lower 
[ 24 ,  25 ]. The clinical signifi cance of BGC in 
hypoparathyroid patients is unclear. It is there-
fore unknown at this time whether head imaging 
has any role in the care of patients with 
hypoparathyroidism.  

29.3.3     Slit-Lamp 
and Ophthalmoscopic 
Examinations 

 Cataracts are opacities in the lens of the eye and 
are a potential complication of hypoparathyroid-
ism. In several case series, cataracts have consis-
tently been found in approximately 50 % of 
hypoparathyroid patients [ 26 – 28 ]. Arlt et al. con-
ducted slit-lamp eye exams in 20 women with 
postsurgical hypoparathyroidism and reported 
that 11 (55 %) had cataracts, the majority bilater-
ally [ 13 ]. Older age and longer duration of illness 
were more common among patients with cata-
racts [ 13 ,  27 ]. Annual slit-lamp and ophthalmo-
scopic examinations are therefore recommended 
to monitor for the development of cataracts in all 
patients.  

29.3.4     Dental Abnormalities 

 A wide variety of dental manifestations of hypo-
parathyroidism have been reported including 
missing or hypoplastic teeth, abnormal tooth 

spacing, and “stumpy” roots [ 29 ,  30 ]. Enamel 
hypoplasia, often considered to be the most 
 characteristic dental fi nding in hypoparathyroid-
ism, has been reported at a prevalence ranging 
from 20 to 80 % vs. 3–15 % of normal controls 
[ 31 ,  32 ]. We do not modify the recommendations 
for general dental care solely because the patient 
has hypoparathyroidism. More research is needed 
to defi ne dental abnormalities and their implica-
tion for management.  

29.3.5     Other 

 The clinician should check an electrocardiogram 
or an echocardiogram if symptoms of heart fail-
ure or arrhythmia occur [ 2 ,  33 ]. While bone min-
eral density as measured by dual-energy x-ray 
absorptiometry (DXA) is often increased in 
patients with hypoparathyroidism, bone microar-
chitecture is abnormal [ 16 ,  34 ]. However, cur-
rently no data are available with which to assess 
whether risk of fracture is altered in hypoparathy-
roidism. Therefore, the presence of hypoparathy-
roidism does not change our approach to 
screening for osteoporosis for the general popu-
lation. In patients who develop myalgia or mus-
cle weakness, we measure creatinine 
phosphokinase (CPK) in the blood, as hypocalce-
mia is associated with a nonspecifi c myopathy 
and elevation in circulating levels of this muscle 
enzyme [ 35 ,  36 ].   

29.4     Practical Considerations 
for Follow- u p 

 In contrast to patients with conditions such as 
hypertension and diabetes mellitus, who can 
self- monitor blood pressure or blood sugar, 
patients with hypoparathyroidism cannot easily 
measure blood calcium levels themselves. It is 
therefore important for the patient to have quick 
access to laboratory measurements of serum 
calcium. It can be useful, especially for newly 
diagnosed patients, to have several lab slips at 
their disposal that are already fi lled out (or 
standing laboratory orders) in order to check 
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calcium and albumin as needed. Combined with 
clear instructions for when to use them, these 
can empower the patient and signifi cantly 
increase the effi ciency of responding to symp-
toms of hypo- or hypercalcemia. 

 In certain situations, a patient diary can also 
be of tremendous help. For example, in a patient 
with frequent symptoms and signifi cant fl uctua-
tions in serum calcium levels, it can be helpful to 
have detailed notes available recording the tim-
ing of medication, doses, meals, physical activity, 
etc., as a means of determining the reason(s) for 
the fl uctuations and optimizing treatment. 

 Several excellent educational resources for 
patients are available, most of them through the 
Internet. The Hypoparathyroidism Association 
(  www.hypopara.org    ) is an independent nonprofi t 
organization that provides educational material, 
including videos, for patients (see also Chap.   38    ). 
Other resources include disease websites main-
tained by academic institutions such as the Mayo 
Clinic (  www.mayoclinic.org    ).     
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30.1            Introduction 

 The clinical presentation of hypoparathyroidism 
includes inappropriately low or undetectable 
serum parathyroid hormone (PTH), hypocalcemia, 
hyperphosphatemia, and frequently, hypomagne-
semia. Chronic symptoms include neuromuscular 
irritability causing tetany, muscle cramping, 
spasms, and seizures. In adults, the disorder is 
usually a complication of neck surgery due to an 
excision of a goiter or thyroid cancer. In children, 
the condition is most often due to inherited disor-
ders such as autoimmune polyglandular syn-
drome type I (APS1) or an activating mutation in 
the calcium-sensing receptor (CaSR). Children 
with hypoparathyroidism pose a particular thera-
peutic dilemma, because recurrent episodes of 
hypocalcemia, if associated with seizures, may 
adversely affect brain development.  

30.2     Why Is Conventional 
Therapy Not Adequate? 

 Unlike most other hormonal insuffi ciencies, 
hypoparathyroidism is not treated by replacing 
the missing hormone, PTH [ 1 – 3 ]. Instead, con-
ventional treatment of this disorder consists of 
daily doses of vitamin D analogues and calcium 
and magnesium supplementation (see also 
Chap.   28    ). But, this therapy does not fully restore 
normal mineral ion homeostasis, because it relies 
entirely on calcium transport across the intestinal 
epithelium to normalize blood calcium (see also 
Chap.   25    ). The objective of standard therapy is to 
fl ood the GI tract with calcium, which is given 
with oral supplements throughout the day, and to 
enhance the absorption of calcium across the 
intestinal epithelium by providing the active form 
of vitamin D (calcitriol). Although calcitriol is 
usually effective in raising serum calcium, this 
therapy is a poor surrogate for replacement of the 
missing hormone as it entirely bypasses the kid-
ney, where much of the sensing and regulation of 
blood calcium occurs, and the bone, the main cal-
cium reservoir for the body. In the distal tubule, 
PTH and the calcium-sensing receptor actively 
regulate calcium reabsorption stimulating and 
inhibiting, respectively, the paracellular reab-
sorption of calcium in the cortical thick ascend-
ing limb, while PTH also stimulates transcellular 
reabsorption in the distal convoluted tubule. 
Passive calcium reabsorption also occurs in the 
proximal tubule, where reabsorption occurs along 
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with the fl ow of sodium and water. Without the 
renal calcium-retaining effect of PTH, excessive 
urinary calcium losses eventually lead to calcium 
deposits in the kidneys. This condition may prog-
ress over time to irreversible kidney damage, 
renal insuffi ciency, and failure [ 4 – 9 ]. This pro-
gression is particularly evident in patients with 
hypoparathyroidism due to activating mutations 
of the calcium-sensing receptor (CaSR), where 
the molecular defect inappropriately activates the 
receptor even at low serum calcium concentra-
tions, signaling an apparent hypercalcemic state 
(leading to suppression of PTH secretion and 
increased renal calcium excretion) [ 10 ,  11 ] (see 
also Chap.   25    ). 

 To minimize hypercalciuria-induced renal 
damage, the calcitriol dosage can be adjusted to 
maintain serum calcium at the lowest tolerated 
level, but for most hypoparathyroid patients, this 
leads to varying symptoms of hypocalcemia. 
Frequent monitoring of urine and serum calcium 
levels is required to properly attain the therapeu-
tic goals of avoiding symptomatic hypocalcemia 
while minimizing the risk of renal damage. 
Furthermore, many patients do not tolerate the 
many pills, often more than a dozen calcium, 
calcitriol, and magnesium pills daily, that are 
required by the conventional therapy regimen. 
Moreover, patients with autoimmune poly-
glandular syndrome type 1 (APS-1), also called 
autoimmune polyendocrinopathy candidiasis 
ectodermal dystrophy (APECED), often have 
intermittent malabsorption, which interferes 
with the absorption of the multiple conventional 
therapy pills and can lead to hypocalcemic 
crisis [ 12 ]. 

 Additionally, various adverse effects of PTH 
defi ciency are diffi cult to measure such as fatigue, 
muscle weakness, exercise intolerance, and cog-
nitive defi cits including memory loss [ 13 ,  14 ]. 
Patients with hypoparathyroidism often complain 
of an increased level of anxiety, malaise, and 
depression. These symptoms may lead to a sig-
nifi cant reduction in quality of life after the onset 
of hypoparathyroidism. Conventional therapy 
often fails to restore a sense of well-being.  

30.3     Past History of Experimental 
PTH Replacement Therapy 

 In 1925, J.B. Collip was the fi rst to show that 
bovine PTH extract can be used as a replacement 
therapy when injected into parathyroidectomized 
dogs [ 15 ,  16 ]. A few years later, Fuller Albright 
treated a 14-year-old boy with postsurgical hypo-
parathyroidism with bovine PTH for 27 days 
[ 17 ]. In 1967, an attempt to use bovine PTH 
extract [ 18 ] in the treatment of a woman with 
postsurgical hypoparathyroidism resulted in neu-
tralizing antibodies within days after injections 
were initiated [ 19 ]. The investigators concluded that, 
although this result was disappointing, vitamin D 
analogues remained the appropriate treatment for 
the disease. Over the subsequent decade, the 
sequencing of parathyroid hormone 1-34 [ 20 ] 
and PTH 1-37 [ 21 ] led to the use of synthetic 
parathyroid hormone 1-34 fragment for studies in 
animals and humans to characterize its effects on 
the kidney and bone. PTH(1–34) was also used 
experimentally as a therapy for osteoporosis 
[ 22 – 24 ]. These studies demonstrated dose-depen-
dent effects of PTH(1–34) on bone in animals 
and humans. In 1990, Strogmann et al. [ 25 ] were 
the fi rst to report successful PTH replacement 
therapy for hypoparathyroidism using synthetic 
human PTH 1-38 in 2 adolescents who were 
refractory to conventional therapy with calcitriol 
and calcium. One child had APS-1 and the other 
had idiopathic hypoparathyroidism. Although 
given just every other day, this replacement ther-
apy was successful in one of the adolescents, but 
treatment was stopped due to lack of drug avail-
ability. This study and the studies demonstrating 
the safety and effi cacy of PTH(1–34) in adults 
with osteoporosis [ 22 – 24 ] provided the founda-
tion for our studies. In 1991, we initiated studies 
of the replacement therapy of hypoparathyroid-
ism with synthetic human PTH(1–34) [ 6 ]. 

 Six decades have passed from the fi rst suc-
cessful use of bovine PTH in the treatment of 
parathyroidectomized animals and more than 
four decades since the identifi cation of the human 
PTH amino acid sequence before the fi rst studies 
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of synthetic human PTH(1–34) replacement were 
initiated in patients with hypoparathyroidism. 
What concerns led to the hesitation to explore 
PTH as a replacement therapy and allowed this 
vital area to remain dormant? First, the pharma-
cokinetic profi le of PTH(1–34) given subcutane-
ously did not appear to be well suited for disease 
management. Peak plasma concentrations of 
PTH occur approximately 30 min after injection, 
and the serum elimination half-life of PTH is 
approximately 2 h after injection [ 26 ]. Second, 
PTH(1–34) must be injected, whereas for most 
individuals with hypoparathyroidism, oral cal-
citriol and calcium can maintain serum calcium 
levels within an acceptable range. Third, only a 
small subset of patients were considered so 
refractory to conventional therapy that they were 
at high risk of recurrent hypocalcemic crises. 
Fourth, an additional impediment occurred in 
1999, with the emergence of Eli Lilly carcinoge-
nicity data in rats demonstrating dose-dependent 
occurrence of osteosarcoma with chronic 
rhPTH(1–34) administration. In 2002, when 
recombinant human PTH(1–34) (Forteo®; terip-
aratide; rhPTH(1–34)) received FDA approval 
for treatment of osteoporosis, a black box warn-
ing was included because of the rodent osteosar-
coma data. According to the warning, Forteo was 
contraindicated in growing children, and the 
duration of treatment in adults with osteoporosis 
was limited to 2 years, which was the duration of 
the osteoporosis trials at the time that rat osteo-
sarcomas were detected and the trials were halted 
as a precaution. During the more than 10 years 
since FDA approval, however, there has been no 
osteosarcoma signal from human or primate 
exposure to rhPTH(1–34) [ 27 – 35 ]. 

 Over the past two decades, studies of replace-
ment therapy for hypoparathyroidism sought to 
determine the optimal PTH(1–34) regimen, in 
terms of dose and frequency of administration 
that best restores normal calcium homeostasis. 
During these studies it has become apparent that 
administration of the missing hormone can 
achieve more physiologic calcium homeostasis 
than conventional therapy. Furthermore, recent 

studies suggest that PTH replacement may reme-
diate the quality of life impairments that have 
been associated with conventional treatment 
[ 13 ,  14 ].  

30.4     Evidence of Safety 
and Effi cacy of Synthetic 
Human PTH(1–34) 
Replacement 
in the Treatment 
of Hypoparathyroidism 

 Hypoparathyroidism is one of the few hormonal 
defi ciencies for which replacement therapy with 
the missing hormone is not available. Based upon 
the demonstrable need for an alternative to con-
ventional therapy, we have studied synthetic 
human parathyroid hormone 1-34 over the past 
two decades as a potential replacement therapy 
for hypoparathyroidism [ 6 ,  7 ,  36 – 40 ]. Our studies 
of PTH(1–34) replacement of hypoparathyroid-
ism produced results that one might have pre-
dicted from the known physiologic effects of 
PTH and calcitriol. For many protocol subjects, the 
replacement of the missing hormone was as effec-
tive as conventional therapy in maintaining serum 
calcium within the desired range. For a majority 
of patients, however, replacing the missing hor-
mone was better than conventional therapy, as 
PTH replacement reduced urinary calcium excre-
tion and improve quality of life. For patients who 
were refractory to conventional treatment due to 
APS-1 and malabsorption, PTH replacement was 
a potentially life-saving measure. 

 We investigated different doses, dose regi-
mens, and delivery modalities in adults and 
children ages 4–70 years. The simultaneous 
normalization and minimal fl uctuation of serum 
and urine calcium, phosphorus, magnesium, and 
markers of bone turnover were the main goals of 
this hormone replacement therapy. No study par-
ticipant received diuretics or phosphate binders. 
Patients who received PTH did not concurrently 
receive calcitriol or calcium supplements. PTH is 
a peptide and, therefore, cannot be given as an 
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oral medication because it is broken down by 
proteolytic enzymes in the digestive tract. To 
bypass the gastrointestinal tract, we administered 
PTH by subcutaneous injection. Synthesized 
human PTH(1–34) was formulated as previously 
described at the NIH Clinical Center Pharmacy in 
vials containing 50 mcg/mL and 200 mcg/mL 
synthetic human PTH(1–34) [ 6 ]. 

30.4.1     Once-Daily Injection Therapy 

 The initial study with synthetic human parathy-
roid hormone 1-34 included 10 adults with 
hypoparathyroidism [ 6 ]. At study entry, 80  % of 
subjects had evidence of renal insuffi ciency and 
half had radiographic evidence of renal calcifi -
cations. A 27-year-old woman with APS-1 and 
recurrent episodes of hypocalcemia in the past 
requiring intravenous calcium infusions had 
stage 3 chronic kidney disease with a creatinine 
clearance of 47 mL/min (normal: 90–125 mL/
min). We compared daily treatment with subcu-
taneous PTH to conventional therapy in a 
20-week randomized crossover trial. During the 
conventional treatment arm, subjects received 
oral twice-daily calcitriol and four times daily 
calcium supplementation. With the initiation of 
PTH therapy, calcitriol and calcium supple-
ments were abruptly discontinued. None of the 
patients received thiazides or cholecalciferol 
during either treatment arm. The patients were 
instructed to consume a daily diet containing 
approximately 1–2 g of calcium. Consistent 
with our hypothesis, PTH replacement simulta-
neously normalized both serum and urinary cal-
cium levels and demonstrated an improvement 
over conventional therapy in control of mineral 
metabolism. 

 Within this cohort of 10 subjects, one patient 
([ 6 ]; Table 1, patient H) required higher mean 
PTH (120 mcg/day; 1.4 mcg/kg/day) and cal-
citriol doses (3 mcg/day) compared to the other 
patients. Despite high doses of medication, serum 
calcium remained low and urine calcium 
remained above the normal range. This subject’s 
markers of bone turnover in response to PTH 
therapy were also elevated (alkaline phosphatase: 

196 U/L; normal 37–116). We discovered a muta-
tion in the calcium-sensing receptor [ 10 ] and con-
cluded that she could not be well managed on a 
single daily dose of PTH(1–34). The relatively 
large dose of PTH(1–34) that she required in this 
initial study produced too much stimulation of 
bone turnover, and urine calcium could not be nor-
malized. This case was the fi rst of our patients to 
illustrate a phenomenon that we later observed in 
other subjects, namely, that the rise in bone mark-
ers (which refl ects the level of PTH stimulation of 
bone) is directly proportional to the PTH(1–34) 
dose. This observation led us to focus on the use of 
smaller, more frequent doses of PTH(1–34).  

30.4.2     Twice-Daily Injection Therapy 

 We studied 17 adults (age 19–64 years) and 14 
children (age 4–17 years) comparing once-daily 
with twice-daily PTH(1–34) injections in a ran-
domized crossover design over a 28-week period. 
Adults and children yielded similar results 
[ 7 ,  36 ]. The study included fi ve subjects with 
APS-1 (four children), fi ve subjects with activat-
ing mutations of the CaSR (one child), ten 
 subjects with postsurgical hypoparathyroidism 
(1 child), and the remaining subjects had idio-
pathic hypoparathyroidism. Of the 17 adult 
patients, 14 (80 %) had renal insuffi ciency at the 
start of the study. Four patients with CaSR from 
the same family, had stage 3–4 chronic kidney 
disease (creatinine clearance ranging from 21.6 
to 44.7 mL/min). 

 We compared the safety and effi cacy of these 
two treatment schedules between adults with 
congenital hypoparathyroidism due to a mutation 
of the CaSR and adults with acquired hypopara-
thyroidism due to APS-1 or thyroid surgery. 
We found that the responses to PTH therapy 
differed signifi cantly between the CaSR group 
and the group with postsurgical or autoimmune 
hypoparathyroidism. For the adult subjects with 
postsurgical or autoimmune hypoparathyroidism, 
single or twice-daily subcutaneous injections of 
PTH(1–34) restored both serum and urine cal-
cium to the normal or near-normal range. This 
was achieved with a signifi cantly lower total 
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daily dose during the twice-daily PTH(1–34) 
regimen than during once-daily administration. 

 This study was the fi rst to highlight contrasting 
physiologic responses and resultant management 
issues in the patients with CaSR mutations 
compared to patients with other forms of hypo-
parathyroidism. As we had observed in the prior 
study, a single daily PTH(1–34) injection was 
inadequate to maintain serum calcium in the 
near-normal range throughout the day in patients 
with CaSR mutations. To maintain normal serum 
calcium, this regimen required excessively large 
doses and caused fl uctuations in both serum and 
urine calcium. Furthermore, once-daily PTH(1–
34) produced lower extremity bone pain and nau-
sea post-injection in one subject with a CaSR 
mutation. 

 Twice-daily injections of PTH(1–34) lowered 
the daily dose and improved metabolic control in 
the CaSR patients, but the average urinary calcium 
remained in the high or above-normal range. We 
concluded that smaller, more frequent PTH(1–
34) doses would be needed for this group of 
patients. We implemented administration of more 
frequent doses in the 3-year long-term study 
(twice-daily injections) and in a more recent 
long-term observational study (unpublished data) 
in which most patients with CaSR mutations 
were treated with thrice-daily PTH injections. 
Optimal therapy was achieved when PTH 
replacement through an insulin pump was initi-
ated. Investigators in Spain and France were the 
fi rst to report the advantages of pump delivery of 
rhPTH(1–34) (Forteo) over conventional therapy. 
Their work shows improved control of refractory 
hypoparathyroidism for periods of 1–3 years in 
one adult [ 41 ] and in 3 children [ 42 ] while they 
were receiving PTH replacement therapy deliv-
ered by an insulin pump (Medtronic).  

30.4.3     PTH Replacement by 
Continuous Subcutaneous 
Infusion 

 To improve further the metabolic response to 
PTH, we initiated studies using an insulin pump 
(OmniPod by Insulet) to deliver PTH(1–34). 

For the fi rst time, in all patients, regardless of 
disease etiology, PTH delivery by insulin pump 
simultaneously normalized serum and urine 
calcium and markers of bone turnover. We used 
200 mcg/mL PTH(1–34) vials. Calcitriol and cal-
cium supplements were discontinued at baseline, 
and all patients received cholecalciferol 1,000 IU 
daily. This method enabled continuous delivery 
of fi xed subcutaneous microbolus doses at vary-
ing time intervals, determined by the basal rate 
[ 39 ,  40 ]. 

 During pump delivery, subjects fi lled the 
pump-pod device with PTH(1–34), attached it to 
the abdomen or back, and changed it every 72 h. 
Seven basal rates were programmed into a 
wireless device that controlled the pump delivery 
rate. Initial basal rates were estimated for each 
subject based upon body weight (0.2 mcg/kg/day) 
and prior calcitriol or PTH(1–34) dose require-
ments. Basal rates ranged from 3 to 14 pulses per 
hour, with each pulse delivering 0.1 mcg of 
PTH(1–34). Two of the 7 basal options included 
a 4-h or 8-h nighttime dosage step-up of 1 pulse 
per hour from midnight to 0400 or from MN to 
0800 to mimic the known circadian variation in 
circulating PTH [ 43 ,  44 ]. 

 We compared PTH(1–34) delivered by an insu-
lin pump with twice-daily injections in a random-
ized crossover study, fi rst in 8 adults with 
postsurgical hypoparathyroidism [ 39 ] and subse-
quently in 12 children with APS-1 or CaSR muta-
tions [ 40 ]. Subjects were randomized to either 
pump therapy or to twice-daily injections at the 
beginning of the study and crossed over to the 
alternate PTH delivery system (injections vs. 
pump) at the conclusion of the initial 3-month 
treatment period. There were three inpatient 
admissions, baseline, 3 months, and 6 months. 

 Compared to twice-daily injection, pump 
delivery in adult patients with postsurgical hypo-
parathyroidism resulted in a 65 % reduction in 
the mean ± SD daily PTH dose (13 ± 4 μg/day 
[0.17 ± 0.03 μg/kg/day] vs. 37 ± 14 μg/day 
[0.47 ± 0.13 μg/kg/day],  P  < 0.001). Pump deliv-
ery in children with APS-1 or CaSR mutations 
resulted in a 62 % reduction in their daily PTH 
dose during pump therapy compared to treatment 
with injections (0.32 ± 0.04 vs. 0.85 ± 0.11 mcg/
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kg/day,  P  < 0.001). Additionally, by raising serum 
magnesium levels, pump delivery of PTH permit-
ted reduction in mean magnesium supplement 
dose. Most importantly, PTH delivered by pump 
produced normal urinary calcium excretion and 
normal bone turnover markers. 

30.4.3.1     Vitamin D Supplementation 
 Initially, PTH replacement was not supplemented 
with cholecalciferol in our studies unless patients 
developed vitamin D defi ciency. At dose-study 
baseline [ 7 ], adult subjects had normal mean 
serum 25-hydroxyvitamin D (25(OH)D) levels 
(40 ± 29 ng/mL) that dropped by 27 % (to 
29 ± 22 ng/mL) and 45 % (to 22 ± 14 ng/mL) 
while on once- and twice-daily PTH, respec-
tively. The children’s dose study also showed a 
reduction of 25(OH)D levels during PTH ther-
apy, from 32 ± 3.3 ng/mL at baseline to 30 % less 
(22 ± 2.5 ng/mL) and 15 % less (27 ± 2.2 ng/mL) 
in response to once- and twice-daily PTH 
injections, respectively [ 36 ]. In a subsequent 
three-year study in children [ 38 ], serum 
1,25-dihydroxyvitamin D3 (1,25(OH)2D3) levels 
were signifi cantly higher during PTH therapy 
despite lower levels of 25(OH)D (23 ± 1 [when 
receiving PTH(1–34)] vs. 34 ± 2 ng/mL [when 
receiving calcitriol],  P  < 0.01). 

 The reductions in 25(OH)D during PTH 
treatment suggested that it might be desirable 
to supplement vitamin D 3  intake. Initially, treat-
ment with ergocalciferol or cholecalciferol was 
provided in response to decreasing 25(OH)D 
levels [ 37 ,  38 ]. Later, during the pump studies, 
prophylactic cholecalciferol (1,000 IU daily) 
was given to all patients to avoid a drop in 
25(OH)D levels [ 39 ,  40 ]. Because a major 
effect of PTH is to regulate conversion of 
25(OH)D precursor to the active 1,25-dihy-
droxyvitamin D 3  product by the enzyme 1-alpha 
hydroxylase, it seemed prudent to ensure that 
normal levels of 25(OH)D were maintained 
during PTH treatment. The intent was to ensure 
that PTH replacement would have the desired 
effect of providing exogenous PTH and endog-
enous calcitriol (1,25(OH)2D3), which would in 
turn act synergistically on the kidney, gut, and 
bone to maintain calcium homeostasis.  

30.4.3.2     Magnesium 
Supplementation 

 Hypomagnesemia and the requirement for 
magnesium supplementation are most common 
in patients with autoimmune hypoparathyroidism 
or with CaSR mutations. In our study, we divided 
the daily magnesium supplement into 3 or 4 
doses to bring the target level of magnesium to 
just below the normal range. An attempt to nor-
malize serum magnesium levels may result in 
large magnesium losses in the urine which, 
along with excess calcium excretion, can damage 
the kidney. Additionally, large magnesium 
doses may cause diarrhea which can result in 
malabsorption. 

 For patients who received magnesium supple-
mentation, the dose of elemental magnesium was 
similar during both treatment arms in the study 
comparing once-daily with twice-daily PTH 
replacement therapy [ 7 ,  36 ]. The delivery of 
PTH by pump,, however, signifi cantly reduced 
the need for magnesium supplementation [ 39 , 
 40 ]. Pump therapy allowed 4 of the 5 adult 
patients who were magnesium defi cient to dis-
continue their supplements and still maintain 
normal serum magnesium levels. In children, 
pump delivery increased serum magnesium and 
permitted a reduction in mean ± SE magnesium 
supplement (532 ± 105 [pump] vs. 944 ± 158 mg/
day [injections],  P  < 0.001).  

30.4.3.3     Impact of PTH on Bone 
 PTH can be either anabolic or catabolic to the 
skeleton. The effects on bone are dose and fre-
quency dependent. Our studies of long-term 
twice-daily replacement therapy, did not result in 
an increase or decrease in bone mineral density 
over time in adult subjects [ 37 ]. The 3-year study 
in children demonstrated a normal rise in bone 
density—nearly identical to that of age-matched 
growing children [ 38 ]. 

 The PTH stimulation of bone, with increases 
in bone turnover markers, was apparent from the 
initial study comparing once-daily PTH with 
twice-daily calcitriol [ 6 ]. A single daily dose of 
PTH with no additional calcium or  vitamin D 
supplements caused a rise in markers of bone 
turnover. In response to these  observations, the 
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second study [ 7 ] was undertaken, in part, to 
ascertain whether administering PTH twice-
daily in smaller doses would result in lower 
markers of bone turnover. In this second study, 
we found that twice-daily injections produced 
far less stimulation of bone turnover and 
resulted in lower bone markers than once-daily 
 injections. At baseline, subjects had normal 
mean total alkaline phosphatase levels (66 ± 21 
U/L), which increased by 270 % (243 ± 272 ng/
mL) and 120 % (146 ± 51 U/L) while on once- 
and twice- daily PTH, respectively [ 7 ]. The 
same study performed in children produced 
similar but less remarkable increases in bone 
markers [ 36 ]. At baseline, children with hypo-
parathyroidism had normal mean alkaline phos-
phatase levels (207 ± 20 U/L), which increased 
by 60 % (330 ± 29.4 U/L) and 44 % (298 ± 26.4 
U/L) while on once- or twice-daily PTH, 
respectively. 

 We then investigated whether more frequent 
microboluses of PTH, through an insulin pump, 
would be more physiologic for the bone and 
avoid increases in markers of bone turnover 
beyond the normal range. PTH(1–34) replace-
ment delivery with an insulin pump in both adults 
and children produced consistently lower mark-
ers of bone turnover compared to twice-daily 
PTH injections and maintained such markers 
within the normal range [ 39 ,  40 ].  

30.4.3.4    PTH Dose 
 Most adults with postsurgical hypoparathyroid-
ism respond well to a total daily dose of 
PTH(1–34) of 0.5 mcg/kg/day divided into two 
daily doses. Children with congenital hypo-
parathyroidism require a larger dose of 0.6 mg/
kg/day divided into two or three daily doses. 
The mean total daily PTH dose required to 
maintain serum calcium in the normal or near-
normal range varied from one study to the next 
due to the different etiologies and severity of 
hypoparathyroidism within the subject groups 
studied. The evidence suggests that more fre-
quent, smaller doses of PTH result in lower 
total daily PTH doses that are needed to nor-
malize serum calcium and less stimulation to 
the bone. The mean daily PTH dose was signifi -

cantly lower for all adult subjects receiving 
twice-daily PTH (46 ± 32 μg/day [0.62 ± 0.45 μg/
kg/day]) than once-daily PTH (97 ± 60 μg/day 
[1.48 ± 1.29 μg/kg/day],  P  < 0.001) [ 7 ]. Children 
required half the PTH(1–34) dose during the 
twice-daily  regimen compared to the once-
daily regimen (twice daily, 25 ± 15 mcg/day vs. 
once daily, 58 ± 28 mcg/day,  P  < 0.001). 

 When PTH was delivered by insulin pump to 
adults with postsurgical hypoparathyroidism, the 
mean ± SD daily PTH(1–34) dose (0.17 ± 0.03 μg/
kg/day) was 65 % less than twice-daily delivery 
(0.47 ± 0.13 μg/kg/day). Compared to the results 
observed in the earlier study of pump delivery of 
PTH(1–34) in adults with postsurgical hypopara-
thyroidism [ 39 ], pediatric patients with APS-1 or 
CaSR mutations [ 40 ] required nearly twice the 
per kilogram PTH(1–34) pump dosage 
(0.17 ± 0.03 [adults] vs. 0.32 ± 0.11 mcg/kg/day).  

30.4.3.5    Long-Term Replacement 
Therapy 

 We studied PTH(1–34) replacement in both 
adults and children in a 3-year randomized, par-
allel trial comparing twice-daily PTH(1–34) to 
twice-daily calcitriol with supplemental calcium 
[ 37 ,  38 ]. In addition to the outcome measures in 
the adults [ 37 ], the study in growing children 
included observations of linear growth, weight 
gain, and bone mineral accrual [ 38 ]. 

 Our studies have shown that PTH(1–34) ther-
apy is safe and effective in maintaining for up to 
three years stable calcium homeostasis and renal 
function in adults and children with hypoparathy-
roidism. PTH(1–34) was able to maintain mean 
serum calcium in the low or just below the nor-
mal range with normal concurrent urine calcium 
excretion. Markers of bone turnover remained 
elevated, but PTH did not produce, in the adults, 
signifi cant longitudinal changes in A-P spine or 
whole body bone mineral density (BMD) or 
bone mineral content (BMC) as measured by 
dual- energy x-ray absorptiometry (DXA). The 
children participating in our studies had normal 
linear growth and bone accrual; there were no 
differences in BMD  Z  scores or mean height 
percentiles over time between the PTH and cal-
citriol treatment groups.  
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30.4.3.6    Treatment of Children 
 The study of PTH(1–34) replacement therapy in 
children began with comparing once-daily and 
twice-daily PTH [ 36 ]. Results of this study of 
14 children ages 4–17 years demonstrated that 
twice-daily dosing effectively reduced urine 
calcium excretion and maintained normal serum 
calcium with half the total daily PTH dose 
needed in the once-daily arm (twice daily, 
25 ± 15 mcg/day vs. once daily, 58 ± 28 mcg/day). 

 A subsequent three-year study of PTH vs. cal-
citriol and calcium in 12 children, ages 
5–14 years, demonstrated that twice-daily PTH 
maintained normal serum calcium and reduced 
urine calcium levels compared to conventional 
therapy. Both PTH(1–34) and conventional treat-
ment maintained normal skeletal development, 
linear growth, weight gain, and renal function. 
PTH therapy in children led to higher markers of 
bone remodeling than was seen in those treated 
with calcitriol. Bone mineral density  Z  scores, 
refl ecting rates of bone mineral accrual, did not 
differ across time or between treatment groups 
(PTH vs. calcitriol). As one would expect in 
growing children, BMC and BMD showed a con-
sistent upward trend over the three-year study 
period. Unpublished data from a ten-year obser-
vational study of 13 children and adolescents 
treated with PTH also demonstrated normal linear 
growth, weight gain, and bone mass accrual.  

30.4.3.7    Treatment of Infants 
 Severe neonatal hypocalcemia due to hypopara-
thyroidism may be refractory to calcitriol and cal-
cium treatment and can lead to life- threatening 
seizures. Emergency therapy with intravenous cal-
cium, often administered through a central line, 
has risks of thrombosis and infection. Cho et al. 
[ 45 ] describe a preterm infant with a rare autoso-
mal recessive form of hypoparathyroidism, 
Sanjad-Sakati syndrome, which included perinatal 
growth retardation and dysmorphic facial features. 
This infant developed hypocalcemia and hypo-
magnesemia on day 3 of life with concurrent mal-
absorption. After 2 weeks of hypocalcemia 
refractory to calcitriol and calcium supplementa-
tion, she received a 1 mcg/kg rhPTH(1–34) 
(Forteo) subcutaneous injection followed by the 
same dose divided in twice-daily injections. Serum 

calcium and phosphorus normalized after 6 days 
of therapy and there was an improvement in weight 
gain. PTH replacement was continued for an addi-
tional week. The child was discharged on conven-
tional therapy and required 9 hospitalizations for 
hypocalcemia during her fi rst year of life. During 
this time, linear growth and weight gain were poor. 
Newfi eld [ 46 ] described a 17-day-old infant who 
received successful rhPTH(1–34) (Forteo) therapy 
during a hypocalcemic crisis with seizures. After 
2 days of unsuccessful treatment with intravenous 
calcium and oral calcitriol, a single 1 mcg/kg sub-
cutaneous PTH injection raised the serum calcium 
to the normal range within 4 hours. Mittleman 
et al. [ 47 ] described a 14-month-old boy with 
poorly controlled hypoparathyroidism due to 
CaSR mutation diagnosed at 3 weeks old after 
hypocalcemic seizures. He remained hospitalized 
for a month due to refractory hypocalcemia. 
Twice-daily rhPTH(1–34) (Forteo) injections were 
initiated when the child was 14 months old at a 
daily dose of 0.5 mcg/kg/day and continued for 
17 months with symptomatic relief and improved 
urine and serum calcium levels. 

 Large boluses of intravenous calcium may lead 
to fl uctuations in plasma ionized calcium which 
cause further neuromuscular irritability and 
increased risk of seizures. Furthermore, large intra-
venous doses of calcium may lead to renal damage 
if administered repeatedly. Subcutaneous PTH is a 
rapid, safe, and more physiologic therapy for severe 
hypocalcemia due to hypoparathyroidism. Further 
study is needed in both the acute hypocalcemic set-
ting as well as in long-term maintenance therapy 
during infancy. Additionally, early intervention 
with PTH replacement therapy would theoretically 
avoid kidney damage that can be evident from a 
young age in patients with congenital hypoparathy-
roidism treated with conventional therapy.    

30.5     Management of the Patient 
with Hypoparathyroidism: 
Synopsis 

 In the last 20 years, we have witnessed major 
changes in the approach to the treatment of 
hypoparathyroidism. The commercial availabil-
ity of recombinant human PTH(1–34) as an 
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approved drug for osteoporosis has provided the 
option for off-label use in hypoparathyroidism, 
which was not available prior to 2002. The 
improvement in drug manufacturing techniques 
allowed for both rhPTH(1–84)    and synthetic 
human PTH(1–34) peptides to be available for 
investigational use in the treatment of hypopara-
thyroidism. These preparations replaced the ani-
mal extracted preparations from decades ago 
that were associated with antibody formation. 
New PTH analogues, with distinct pharmacoki-
netic profi les, are in development and may pro-
vide advantages over treatment with PTH(1–34). 
The use of the insulin pump to deliver PTH(1–
34) represents an important breakthrough as it 
provides a potential for true physiologic replace-
ment that mimics endogenous secretion of 
parathyroid hormone. 

 A successful therapeutic approach to the 
patient with hypoparathyroidism requires atten-
tion to disease etiology to determine individual 
PTH replacement requirements. These require-
ments also depend upon age, level of activity, 
nutrition, and GI tract integrity. 

 Dietary management, a key component of 
successful therapy, is often ignored. The use of a 
low-phosphorus diet does not reduce the serum 
phosphorus level. This diet also forces the patient 
to avoid dairy products, a key source of calcium. 
The use of calcium supplements to raise serum 
calcium levels can increase the risk of renal calci-
fi cations [ 48 ]. Providing additional calcium in 
the diet is the optimal way for the patient to con-
sume the calcium needed to manage the disease. 
The amount of dietary calcium intake should be 
no more than the recommended levels for age. 
25-Hydroxyvitamin D levels should be main-
tained between 30 and 50 ng/mL, which is 
readily accomplished with 1,000 IU daily sup-
plemental cholecalciferol. Patients with malab-
sorption, as in APS-1, need two to four times this 
daily dose of vitamin D 3 . 

 Until recently, there has been a lack of guide-
lines for treatment of hypoparathyroidism with 
conventional therapy or with PTH. Much of the 
practice in this area is based on anecdotal infor-
mation rather than evidence-based recommenda-
tions. Several common misconceptions: include 
the following:

    1.    Supplementing conventional therapy with 
thiazides offers the same protection to renal 
function as PTH to decrease urine calcium 
excretion. 

 Hypoparathyroidism patients may develop 
renal disease and nephrocalcinosis due to 
chronic elevated urinary calcium levels. 
Thiazide diuretics are often added to the con-
ventional treatment regimen as an off-label 
therapy to block sodium chloride cotransport 
and raise the distal tubular calcium reabsorp-
tion, which should theoretically decrease 
calcium excretion. However, when Parfi tt 
compared the reaction to thiazide diuretics 
of control subjects with hypercalciuria to 
that of patients with hypoparathyroidism, 
he observed distinctly different responses 
between the two groups [ 49 ]. The effect of a 
thiazide diuretic on urinary calcium in patients 
with hypoparathyroidism differed from its 
effect on urine calcium in subjects with hyper-
calciuria and intact parathyroid function. 
Urine calcium increased initially in the hypo-
parathyroid group but did not exhibit the 
expected decrease observed in the control 
group. Both groups experienced a rise in urine 
magnesium, phosphorus, potassium, and 
sodium excretion with concurrent fall in 
plasma magnesium and potassium. Parfi tt 
concluded that PTH is necessary to achieve 
the usual hypocalciuric effects of thiazides. 
These results were supported by a second 
study demonstrating that thiazide diuretics 
reduce urine calcium excretion in patients 
with intact parathyroid glands but not in 
patients with hypoparathyroidism, despite 
equivalent sodium losses between the two 
groups [ 50 ]. Although the reasons why thia-
zides were ineffective in patients with hypo-
parathyroidism remained unknown, the 
investigators from both studies hypothesized 
that thiazides may potentiate the renal 
calcium- retaining action of parathyroid hor-
mone and, in its absence, are not effective. 

 There is no evidence that thiazides are 
effective in avoiding long-term adverse renal 
outcomes for patients with hypoparathyroid-
ism, especially in the treatment of more severe 
forms of hypoparathyroidism associated with 
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a CaSR or APS-1. One could argue that the 
off-label use of these drugs should be avoided 
in hypoparathyroid patients who have concur-
rent hypomagnesemia or who are prone to 
other electrolyte imbalances as in Addison’s 
disease, a common feature of APS-1. To be 
effective in treating hypercalciuria, thiazides 
should be administered with a low-salt diet 
[ 51 ,  52 ], which would be contraindicated in a 
patient with Addison’s disease and diffi cult to 
implement in most other forms of hypopara-
thyroidism. Eknoyan et al. [ 52 ] demonstrated, 
in hypoparathyroid dogs given chlorothiazide, 
a progressive increase in the fractional clear-
ance of calcium, magnesium, and phosphate 
as the clearance of sodium increased. We 
observed, in patients with hypoparathyroid-
ism, a rise in magnesium excretion and a 
decrease in serum magnesium with thiazide 
therapy. This was particularly exaggerated in 
patients with CaSR. Furthermore, the use of 
thiazides may lead to potassium depletion 
which requires adding potassium supplements 
to the regimen.   

   2.    Patients prefer conventional therapy because 
they fi nd oral medication far more practical 
than injections. 

 When given the choice, patients will choose 
the therapy that provides the optimal meta-
bolic and health advantages. Ultimately, 
patients choose whatever regimen improves 
their quality of life. Parenteral treatment was 
chosen over oral conventional therapy by all 
but one patient in the fi rst study comparing 
PTH with conventional therapy and the major-
ity of patients we treated in subsequent studies. 
In all of our studies, we discontinued calcitriol 
and all calcium supplements. For many, this 
was, on average, 15 pills daily. Substituting 
two subcutaneous injections was a relief to 
most of the patients and the preferred therapy, 
especially if the metabolic advantages were 
evident in their individual response to the drug.   

   3.    FDA’s black box warning implies that osteo-
sarcoma risk heightens with each year of 
therapy with PTH. 

 In 1998, as part of obtaining approval for 
rhPTH(1–34) (Forteo) as a treatment for osteo-

porosis in adults, Eli Lilly released to the FDA 
their 2-year rat carcinogenicity data demon-
strating a dose-dependent risk of osteosarcoma. 
These experiments later prompted an FDA 
black box warning against rhPTH(1–34) use in 
children with open epiphyses or in anyone for 
more than 2 years [ 27 ]. The experimental rats 
did not have parathyroid hormone insuffi -
ciency and were given daily supraphysiologic 
subcutaneous doses (5, 30, or 75 mcg/kg/dose) 
of rhPTH(1–34) from the time of weaning 
throughout most of their natural lifespan. The 
appearance of osteosarcomas appeared to be 
dose and duration dependent and was most 
evident in the highest dose group [ 28 ]. 
Compared to adults with hypoparathyroidism, 
the rhPTH(1–34) doses administered during 
the rat carcinogenicity studies were 20, 125, 
and 330 times greater than those administered 
during twice-daily injections (0.23 μg/kg/
dose) and were 33, 166, and 500 times greater 
than the daily PTH replacement dose during 
pump administration (0.17 μg/kg/day) [ 39 ]. 

 Additional data have emerged further 
demonstrating that the effect of PTH on bone 
is dose dependent and that, thus far, no osteo-
sarcoma signal has been observed during 
clinical use of PTH(1–34) in humans [ 29 – 33 ]. 
Furthermore, in nonhuman primate studies, 
daily high-dose PTH(1–34) (5 mcg/kg), 
administered to ovariectomized monkeys 
with normal parathyroid function for 
18 months, produced a signifi cant rise in bone 
density but no bone proliferative lesions or 
microscopic osteosarcomas – either during 
treatment or during 3 years of observation after 
stopping treatment [ 34 ]. These results suggest 
that the potential osteosarcoma risk of PTH(1–
34) is far greater in rats than in nonhuman 
primates. A possible explanation for the 
greater oncogenic sensitivity of rat skeleton is 
that differences in skeletal physiology between 
rodents and primates lead to an exaggerated 
anabolic response to PTH treatment in the rat. 
An additional observation is that osteosarcoma 
is not a feature of long-standing hyperparathy-
roidism in humans despite chronically elevated 
endogenous serum PTH blood levels [ 35 ].    
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30.6       Future Directions 

 Continuous monitoring devices with alarms to 
signal hypoglycemia have revolutionized diabe-
tes management and served to reduce the anxiety 
associated with not knowing the glycemic status. 
Similar technologic advances could be imple-
mented for monitoring blood calcium. One of the 
major diffi culties for patients with hypoparathy-
roidism is their inability to monitor their own 
calcium levels. When symptoms develop, doses 
may be changed without knowing the calcemic 
status. Alternatively, patients are forced to 
ignore their symptoms or seek emergency care. 
Monitoring devices would enable more fi ne- 
tuned dose adjustments based on real-time serum 
calcium levels. 

 It would also be useful to further explore PTH 
replacement therapy in infants and young chil-
dren, particularly the long-term safety, effi cacy, 
and tolerability of PTH(1–34) delivered by pump. 
Pump therapy from early life in children with 
congenital hypoparathyroidism offers the best 
current prospect of avoiding the renal damage 
that often develops in these patients with conven-
tional treatment.     

   References 

             1.    Horowitz MJ, Stewart AF (2008) Hypoparathyroidism: 
is it time for replacement therapy? J Clin Endocrinol 
Metab 93(9):3307–3309  

   2.    Romijn JA, Smit JWA, Lamberts SW (2003) Intrinsic 
imperfections of endocrine replacement therapy. Eur J 
Endocrinol 149:91–97  

    3.    Rejnmark L, Sikjaer T, Underbjerg L, Mosekilde L 
(2013) PTH replacement therapy of hypoparathyroid-
ism. Osteoporos Int 24:1529–1536  

    4.    Weber G, Cazzuffi  MA, Frisone F, De Angelis M, 
Pasolini D, Tomaselli V et al (1998) Nephrocalcinosis in 
children and adolescents: sonographic evaluation during 
long-term treatment with 1, 25- dihydrocholecalciferol. 
Child Nephrol Urol 9:273–276  

   5.    Santos F, Smith MJ, Chan JC (1986) Hypercalciuria 
associated with long term administration of calcitriol 
(1.25- dihydroxyvitamin D). Am J Dis Child 
140:139–142  

         6.    Winer KK, Yanovski JA, Cutler GB Jr (1996) Synthetic 
human parathyroid hormone 1-34 vs calcitriol and cal-
cium in the treatment of hypoparathyroidism: results 
of a randomized crossover trial. JAMA 276:631–636  

          7.    Winer KK, Yanovsiki JA, Sarani B, Cutler GB Jr 
(1998) A randomized, crossover trial of once-daily 
versus twice-daily human parathyroid hormone 
1-34 in the treatment of hypoparathyroidism. J Clin 
Endocrinol Metab 83:3480–3486  

   8.    Underbjerg L, Sikjaer T, Mosekilde L, Rejnmark L 
(2013) Cardiovascular and renal complications to 
postsurgical hypoparathyroidism: a Danish nation-
wide controlled historic follow-up study. J Bone 
Miner Res 28(11):2277–2285  

    9.    Mitchell DM, Regan S, Cooley MR, Lauter KB, 
Vrla MC, Becker CB, Burnett-Bowie SA, Mannstadt M 
(2012) Long-term follow-up of patients with hypo-
parathyroidism. J Clin Endocrinol Metab 
97(12):4507–4514  

     10.    Mancilla EE, De Luca F, Ray K, Winer KK, Fan GF 
(1997) A Ca(2+) sensing receptor mutation causes 
hypoparathyroidism by increasing receptor sensitivity 
to CA2+ and maximal signal transduction. Pediatr 
Res 42(4):443–447  

    11.    Pearce SH, Williamson C, Kifor O, Bai M, 
Coulthard MG, Davies M, Lewis-Barned N, McCredie D, 
Powell H, Kendall-Taylor P, Brown EM, Thakker RV 
(1996) Familial Syndrome of hypocalcemia with 
hypercalciuria due to mutations in the calcium-sensing 
receptor. N Engl J Med 335(15):1115–1122  

    12.    Husebye ES, Perheentupa J, Rautemaa R, Kämpe O 
(2009) Clinical manifestations and management of 
patients with autoimmune polyendocrine syndrome 
type I. J Intern Med 265(5):514–529  

     13.    Arlt W, Fremerey C, Callies F, Reincke M, Schneider P, 
Timmermann W, Allolio B (2002) Well-being, mood 
and calcium homeostasis in patients with hypopara-
thyroidism receiving standard treatment with calcium 
and vitamin D. Eur J Endocrinol 146(2):215–222  

     14.    Cusano NE, Rubin MR, McMahon DJ, Irani D, 
Tulley A, Sliney J Jr, Bilezikian JP (2013) The effect 
of PTH(1-84) on quality of life in hypoparathyroidism. 
J Clin Endocrinol Metab 98(6):2356–2361  

    15.    Collip JB (1925) The extraction of parathyroid hor-
mone which will prevent or control parathyroid tetany 
and which regulates the level of blood calcium. J Biol 
Chem 63:395–438  

    16.    Collip JB (1925) Clinical use of parathyroid hormone. 
Can Med Assoc J 15(11):1158  

    17.    Albirght F, Ellsworth R (1929) Studies on the 
physiology of the parathyroid glands; calcium and 
phosphorus studies on a case of idiopathic hypopara-
thyroidism. J Clin Invest 7(2):183–201  

    18.    Aurbach GD (1959) Isolation of parathyroid hormone 
after extraction with phenol. J Biol Chem 
234:3179–3181  

    19.    Melick RA, Gill JR Jr, Berson SA, Yalow RS, Bartter FC, 
Potts JT Jr, Aurbach GD (1967) Antibodies and clini-
cal resistance to parathyroid hormone. N Engl J Med 
276(3):144–147  

    20.    Brewer HB, Fairwell R, Ronan R, Sizemore GW, 
Arnaud CD (1972) Human parathyroid hormone 
amino acid sequence of the amino- terminal residues 
1-34. Proc Natl Acad Sci U S A 69:3585–3588  

30 Treatment of Hypoparathyroidism with Parathyroid Hormone 1-34



330

    21.    Niall HD, Sauer RT, Jacobs JW, Keutmann HT, Segre 
GV, O’Riordan JL, Aurbach GD, Potts JT Jr (1974) 
The amino-acid sequence of the amino-terminal 37 
residues of human parathyroid hormone. Proc Natl 
Acad Sci U S A 71(2):384–388  

     22.    Slovik D, Neer R, Potts J (1981) Short term effects of 
synthetic human parathyroid hormone on bone min-
eral metabolism in osteoporotic patients. J Clin Invest 
68(5):1261–1271  

   23.    Slovik DM, Rosenthal DI, Doppelt SH, Potts JT, 
Daly MA, Campbell JA, Neer RM (1986) Restoration of 
spinal bone of osteoporotic men by treatment with human 
parathyroid hormone (1-34) and 1, 25- dihydroxyvitamin 
D. J Bone Miner Res 1(4):377–381  

     24.    Reeve J, Meunier P, Parson J, Bernat M, Bijvoet OL, 
Courpron P, Edouard C, Klenerman L, Neer RM, 
Renier JC, Slovik D, Vismans FJ, Potts JT Jr (1980) 
Anabolic effect of human parathyroid hormone frag-
ment on trabecular bone in involutional osteoporosis: 
a multicenter trail. Br Med J 280:1340–1344  

    25.    Strogmann W, Bohrn E, Woloszczuk W (1990) First 
experiences in the substitution treatment of hypopara-
thyroidism with synthetic human parathyroid hor-
mone. Monatasschr Kinderheilkd 138:141–146  

    26.    Chu NN, Li XN, Chen WL, Xu HR (2007) 
Pharmacokinetics and safety of recombinant human 
parathyroid hormone (1-34) (teriparatide) after single 
ascending doses in Chinese healthy volunteers. 
Pharmazie 62(11):869–871  

     27.    Vahle JL, Sato M, Long GG, Young JK, Francis PC, 
Engelhardt JA, Westmore MS, Linda Y, Nold JB 
(2002) Skeletal changes in rats given daily subcutane-
ous injections of recombinant human parathyroid 
hormone (1-34) for 2 years and relevance to human 
safety. Toxicol Pathol 30(3):312–321  

    28.    Vahle JL, Long GG, Sandusky G, Westmore M, Ma 
YL, Sato M (2004) Bone Neoplasms in F344 rats given 
teriparatide [rhPTH(1-34)] are dependent on duration 
of treatment and dose. Toxicol Pathol 32(4):426–438  

    29.    Vahle JL, Sato M, Long GG (2007) Variations in animal 
populations over time and differences in diagnostic 
thresholds used can impact tumor incidence data. 
Toxicol Pathol 35(7):1045–1046  

   30.    Turner RT, Evans GL, Lotinun S, Lapke PD, Iwaniec 
UT, Morey-Holton E (2007) Dose-response effects of 
intermittent PTH on cancellous bone in hindlimb 
unloaded rats. J Bone Miner Res 22(1):64–71  

   31.    Tashijan AH Jr, Gagel RF (2006) Teriparatide: 2.5 
years of experience on the use and safety of the drug 
for the treatment of osteoporosis. J Bone Miner Res 
21:354–365  

   32.    Tashjian AH Jr, Golzman D (2008) Perspective on the 
interpretation of Rat carcinogenicity studies for 
human PTH 1-34 and human PTH 1–84. J Bone 
Miner Res 23(6):803–811  

    33.    Haseman JK, Hailey JR, Morris RW (1998) 
Spontaneous neoplasm incidences in Fischer 344 rats 
and B6C3F1 mice in two-year carcinogenicity stud-
ies: a National Toxicology Program Update. Toxicol 
Pathol 26(3):428–441  

    34.    Vahle JL, Zuehlke U, Schmidt A, Westmore M, Chen 
P, Sato M (2008) Lack of bone neoplasms and persis-
tence of bone effi cacy in cynomolgus macaques after 
long-term treatment with teriparatide [rhPTH(1-34)]. 
J Bone Miner Res 23(12):2033–2039  

     35.    Silverberg SJ, Shane E, Jacobs TP et al (1999) A 10 
year prospective study of primary hyperparathyroid-
ism with or without parathyroid surgery. N Engl J 
Med 341:1249–1255  

         36.    Winer KK, Sinaii N, Peterson D, Sainz B Jr, 
Cutler GB Jr (2008) Effects of once-daily versus 
twice-daily parathyroid hormone 1-34 in children 
with hypoparathyroidism. J Clin Endocrinol Metab 
93(9):3389–3395  

       37.    Winer KK, Ko CW, Reynolds J, Dowdy K, Keil M, 
Peterson D et al (2003) Long-term treatment of 
hypoparathyroidism: a randomized controlled 
study comparing parathyroid hormone 1–34 and 
calcitriol and calcium. J Clin Endocrinol Metab 
88:4214–4220  

        38.    Winer KK, Sinaii N, Reynolds J, Peterson D, Dowdy 
K, Cutler GB Jr (2010) Long-term treatment of 12 
children with chronic hypoparathyroidism: a random-
ized trial comparing synthetic human parathyroid 
hormone 1-34 versus calcitriol and calcium. J Clin 
Endocrinol Metab 95(6):2680–2688  

          39.    Winer KK, Zhang B, Shrader JA, Peterson D, Smith 
M, Albert PS et al (2012) Synthetic human parathy-
roid hormone 1-34 replacement therapy: a random-
ized crossover trial comparing pump versus injections 
in the treatment of chronic hypoparathyroidism. 
J Clin Endocrinol Metab 97(2):391–399  

          40.   Winer KK, Fulton K, Albert PS, Cutler GB Jr (2014) 
Twice-daily subcutaneous injections vs. pump deliv-
ery of PTH 1-34 in the Treatment of Children with 
Severe Congenital Hypoparathyroidism. J Pediatr 
165(3):556–563.  

    41.    Puig-Domingo M, Diaz G, Nicolau J, Fernandez C, 
Rueda S, Halperin I (2008) Successful treatment of 
vitamin D unresponsive hypoparathyroidism with 
multipulse subcutaneous infusion of teriparatide. Eur 
J Endocrinol 159:653–657  

    42.    Linglart A, Rothernbuhler A, Gueorgieva I, Lucchini 
P, Silve C, Bougneres P (2011) Long-term results of 
continuous subcutaneous recombinant PTH 1–34 
infusion in children with refractory hypoparathyroid-
ism. J Clin Endocrinol Metab 96(11):3308–3312  

    43.    Samuels MH, Veldhuis JD, Cawley C, Urban RJ, 
Luther M, Bauer R et al (1993) Pulsatile secretion of 
parathyroid hormone in normal young subjects: 
assessment by deconvolution analysis. J Clin 
Endocrinol Metab 77(2):399–403  

    44.    Harms HS, Kaptiana U, Kulpmann WR, Brabant G, 
Hesch RD (1989) Pulse amplitude and frequency 
modulation of parathyroid hormone in plasma. J Clin 
Endocrinol Metab 69:843–851  

    45.    Cho YH, Tchan M, Roy B, Halliday R, Wilson M, Dutt 
S, Siew S, Munns C, Howard N (2012) Recombinant 
parathyroid hormone therapy for severe neonatal hypo-
parathyroidism. J Pediatr 160(2):345–348  

K.K. Winer and G.B. Cutler Jr.



331

    46.    Newfi eld RS (2007) Recombinant PTH for initial 
management of neonatal hypocalcemia. N Engl J Med 
356(16):1687–1688  

    47.    Mittleman SD, Hendy GN, Fefferman RA, Canaff 
L, Mosesova I, Cole DE, Burkett L, Geffner ME 
(2006) A Hypocalcemic child with a novel activat-
ing mutation of the calcium-sensing receptor gene: 
successful treatment with recombinant human 
parathyroid hormone. J Clin Endocrinol Metab 
91(7):2474–2479  

    48.   Jackson RD, LaCroix AZ, Gass M, Wallace RB, 
Robbins J, Lewis CE, et al. Women's Health Initiative 
Investigators (2006) Calcium plus vitamin D supple-
mentation and the risk of fractures. N Engl J Med 
354(7):669–683  

    49.    Parfi tt AM (1972) The interactions of thiazide 
Diuretics with parathyroid hormone and vitamin D 
studies in patients with hypoparathyroidism. J Clin 
Invest 51(7):1879–1888  

    50.    Middler S, Pak CY, Murad F, Bartter FC (1973) 
Thiazide diuretics and calcium metabolism. 
Metabolism 22(2):139  

    51.    Porter RH, Cox BG, Heaney D, Hostetter TH, 
Stinebaugh BJ, Suki WN (1978) Treatment of 
 hypoparathyroid patients with chlorthalidone. N Engl 
J Med 298(11):577–581  

     52.    Eknoyan G, Suki WN, Martinez-Maldonado M 
(1970) Effect of diuretics on urinary excretion of 
phosphate, calcium and magnesium, in thyroparathy-
roidectomized dogs. J Lab Clin Med 76:257–266      

30 Treatment of Hypoparathyroidism with Parathyroid Hormone 1-34



333M.L. Brandi, E.M. Brown (eds.), Hypoparathyroidism,
DOI 10.1007/978-88-470-5376-2_31, © Springer-Verlag Italia 2015

31.1             Introduction 

 Hypoparathyroidism, a rare disorder of min-
eral metabolism, is characterized biochemically 
by low serum calcium and low or undetectable 
parathyroid hormone (PTH) levels. In adults, it is 
most often caused by inadvertent removal of all 
parathyroid glands during neck surgery, while 
in children it is associated with rare genetic 
disorders, including familial-isolated hypopara-
thyroidism, DiGeorge syndrome, autoimmune 
polyglandular syndrome type 1, and autosomal 
dominant hypocalcemia [ 1 ]. The most recent esti-
mates place the prevalence of  hypoparathyroidism 
to be approximately 58,700 in the United States 
[ 2 ]. In the absence of PTH, well- characterized, 
biochemical abnormalities develop. A normal 
serum calcium concentration cannot be main-
tained and hypocalcemia often ensues with 
associated symptoms of neuromuscular irritabil-
ity, such as muscle spasms, numbness, and pares-
thesias of the extremities. At its worst, laryngeal 
spasm and seizures occur. Moreover, in the 

absence of PTH, the fi ltered calcium load at the 
renal tubule cannot be conserved, especially dur-
ing treatment of the condition with calcium and 
vitamin D supplementation, leading to hyper-
calciuria. Nephrocalcinosis, nephrolithiasis, and 
renal dysfunction can follow. 

 Conventional therapy of hypoparathyroidism 
attempts to address these abnormalities by treat-
ment with large, pharmacologic dosages of oral 
calcium, parent vitamin D (cholecalciferol), and/
or active vitamin D (1,25-dihydroxyvitamin D) 
(see also Chap.   28    ). This therapeutic approach is 
associated with variable success in regulating 
serum calcium levels. It also does not address 
many other key management issues. For exam-
ple, impaired quality of life, specifi cally with 
regard to cognition and mood, a nearly universal 
fi nding in hypoparathyroidism, is not improved 
by calcium and vitamin D. Furthermore, without 
PTH, bone turnover is abnormally low, leading to 
markedly altered microarchitectural and biome-
chanical properties of the skeleton (see also 
Chap.   26    ). Calcium and vitamin D cannot 
improve these structural and dynamic skeletal 
abnormalities. Moreover, in addition to renal cal-
cifi cations, other extraskeletal calcifi cations can 
develop in hypoparathyroidism, such as in the 
basal ganglia, other areas in the brain, and in the 
vasculature itself. Thus, there has been a clear 
need to improve the management of hypopara-
thyroidism with an approach that goes beyond 
the use of pharmacologic amounts of calcium 
and vitamin D.  
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31.2     Treatment 
of Hypoparathyroidism 
with Injections of PTH(1–84) 

 Hypoparathyroidism is the only classic hormone 
defi ciency state for which approved replacement 
therapy is still not available. To address this gap, 
studies have investigated the utility of PTH 
replacement therapy in hypoparathyroidism over 
the past two decades. PTH(1–34) has been stud-
ied in a series of randomized and controlled stud-
ies, in which it was titrated to fully abolish the 
need for supplemental calcium and vitamin D 
therapy [ 3 – 7 ]. It was able to maintain normocal-
cemia for up to 3 years in hypoparathyroidism 
adults and children, although because of the short 
half-life of PTH(1–34), twice daily and some-
times more frequent dosing was required [ 3 – 7 ]. 

 Other studies, conducted over the past decade, 
have investigated the use of PTH(1–84), the full 
length, native PTH molecule, as a potentially more 
natural therapy of hypoparathyroidism [ 8 – 10 ]. 
The pharmacokinetic profi le of PTH(1–84) differs 
from that of PTH(1–34). With PTH(1–34), PTH 
peaks in 30 min and calcium levels reach their 
peak within 4–6 h [ 11 ]. In contrast, PTH(1–84) 
reaches its peak 1–2 h after subcutaneous adminis-
tration with calcium peaking between 6 and 8 h 
[ 12 ]. Although no head-to- head comparisons with 
PTH(1–34) exist, the longer half-life of PTH(1–
84), particularly when injected in the thigh [ 13 ], 
theoretically offers an advantage in comparison to 
PTH(1–34) by having a more prolonged biologic 
effect and requiring less frequent injections. 

 To date, three studies of PTH(1–84) therapy in 
hypoparathyroidism have been conducted. One 
study, reported by Sikjaer et al. was a randomized 
clinical trial (RCT) with a fi xed dose of 100 mcg 
daily as add-on therapy to conventional treatment 
for 24 weeks [ 8 ]. The participants included 62 
subjects with hypoparathyroidism, mostly women 
with postsurgical disease. Replacement therapy 
included alfacalcidol (1- hydroxycholecalciferol) 
for treatment of the hypoparathyroidism. A sec-
ond study, the largest to date, was a multicenter 
randomized control trial (RCT) sponsored by 
NPS Pharmaceuticals, of 134 hypoparathy-
roid patients who were randomized in a 2:1 

fashion to PTH(1–84) or placebo for 24 weeks 
[ 9 ]. Treatment with PTH(1–84) was started at 
50 mcg/d, with the option to increase to either 
75 or 100 mcg/d. A third study, the longest trial 
to date, is an ongoing open-label cohort study in 
the metabolic bone diseases group at Columbia 
University Medical Center in which PTH(1–84) 
was administered initially at 100 mcg every other 
day. The 4-year results of 27 subjects (postsurgi-
cal  n  = 16, idiopathic  n  = 10, DiGeorge  n  = 1) have 
been reported [ 10 ]. Overall, the data from these 
studies indicate that PTH(1–84) addresses many 
of the biochemical, renal, skeletal, and neuropsy-
chological abnormalities of hypoparathyroidism 
to a greater extent than conventional treatment.  

31.3     Effects of PTH(1–84) 
on Serum Calcium 
and Requirement 
for Calcium 
Supplementation 

 In each of the PTH(1–84) studies, supplemental 
calcium and vitamin D dosages could be reduced 
while normal serum calcium levels were main-
tained. In the RCT of Sikjaer et al., calcium supple-
mentation fell by 75 % and active vitamin D by 
73 %; seven patients were able to stop calcium and 
vitamin D altogether [ 8 ]. In the face of these reduc-
tions in supplemental calcium and vitamin D, ion-
ized calcium levels with PTH(1–84) treatment 
actually increased, although at 24 weeks the ion-
ized calcium level was not signifi cantly higher than 
baseline [ 8 ]. Pharmacodynamic studies showed 
that the rise in PTH levels after injection into the 
thigh was rapid, peaking at 15 min postinjection, 
with ionized calcium peaking at 7 h and PTH levels 
returning to baseline levels over 16 h [ 14 ]. 

 Similar effects on the control of serum calcium 
were observed in the NPS randomized control 
study (RCT). Calcium and/or calcitriol dosages 
could be reduced by at least 50 % while maintain-
ing the serum calcium level in the normal range 
(the triple primary endpoint of the study) in 53 % 
of the PTH group, as compared with 2 % in the 
placebo group [ 9 ]. Moreover, 41 % of patients in 
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the PTH group completely stopped vitamin D and 
decreased their calcium dosages to <500 mg/d. 
Despite these large reductions in active vitamin D 
and calcium doses, as in the Sikjaer study [ 8 ], 
serum calcium levels remained at or above base-
line in the PTH-treated patients [ 9 ]. 

 Data from the Columbia cohort suggest that 
these benefi cial effects of PTH(1–84) to maintain 
normocalcemia in hypoparathyroidism, with 
reduced need for treatment with calcium and 
vitamin D, can be maintained long term [ 10 ]. 
With 4 years of PTH(1–84) treatment, supple-
mental calcium was reduced by 37 % and vitamin 
D by 45 % (Fig.  31.1 ), with seven subjects com-
pletely stopping active vitamin D [ 10 ]. Serum 
calcium levels remained in the low-normal range 
throughout the 4 years [ 10 ], suggesting that 

PTH(1–84) may be effective for long-term treat-
ment of chronic hypoparathyroidism.   

31.4     Effects of PTH(1–84) 
on Quality of Life 

 Hypoparathyroid patients treated with calcium 
and vitamin D have been found to have defi cits in 
mental and physical functioning as measured by 
the RAND 36-Item Health Survey (SF36) tool 
[ 15 ], suggesting that the absence of PTH, even in 
the presence of eucalcemia, is accompanied by 
compromised quality of life. Data from the 
Columbia cohort suggest that 1 year of PTH(1–
84) treatment is associated with an improvement 
in both mental and physical health domains 
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  Fig. 31.1    Changes in 
calcium and 
1,25- dihydroxyvitamin D 
supplementation. Calcium 
requirements decreased by 
6 months after baseline, 
whereas 1,25-dihydroxyvita-
min D requirements 
decreased by 36 months. 
Data are expressed as 
mean ± SE. *,  P  < 0.05 
compared with baseline; †, 
 P  < 0.01 compared with 
baseline (Reproduced with 
permission from Cusano 
et al. [ 10 ])       
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(Fig.  31.2 ) [ 15 ]. The PTH dose for subjects in 
this study was titrated to maintain serum calcium 
in the intended low-normal range. Although these 
data are limited by the uncontrolled, open-label 
design of the study, they nevertheless indicate a 
marked improvement in quality of life with 
PTH(1–84). Sikjaer et al. published the results of 
their randomized clinical trial investigating the 
effect of a fi xed dose of PTH(1–84) 100 μg daily 
vs. placebo on quality of life over 24 weeks [ 16 ]. 
There was improvement in quality of life mea-
sures in both the placebo and PTH arms but no 
between-group differences. In their study, mean 
serum calcium levels in the PTH-treated group 
were signifi cantly increased, and there was a rel-
atively high incidence of hypercalcemia, which 
the investigators noted as asymptomatic. The 
authors posited that the large fl uctuations in 
serum calcium might have negated the possible 

benefi ts of PTH therapy. These results may indi-
cate that the reference range for serum calcium in 
normal subjects may not be suitable for all hypo-
parathyroid subjects with regard to their mental 
and physical health considering that they are 
acclimated to relatively lower serum calcium 
 values. Further randomized and controlled data 
will be necessary to investigate this outcome.   

31.5     Effect of PTH(1–84) 
on Urinary Calcium Excretion 

 Without PTH, hypoparathyroid patients are 
unable to conserve normally the fi ltered cal-
cium load at the renal tubule, predisposing 
them to hypercalciuria and renal damage. 
Nephrocalcinosis, nephrolithiasis, and renal fail-
ure can ensue [ 17 ]. Recent data suggest that nearly 
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  Fig. 31.2    Changes in the 
mental health domains with 
PTH(1–84) therapy. ( a ) 
Change in RAND 36-Item 
Health Survey domain 
scores from baseline to 
1 year. ( b ) Change in RAND 
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domain T-scores from 
baseline to 1 year. Values are 
mean ± SE. #,  P  < .05 
compared with normal 
population; *,  P  < .05 
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half of  hypoparathyroid subjects have eGFR lev-
els that are consistent with stage 3 CKD or worse 
[ 17 ], along with a nearly fourfold risk of renal 
complications [ 18 ]. Preliminary data suggest 
that PTH(1–84) might address this issue. In the 
Sikjaer study, urinary calcium excretion initially 
increased, possibly due to the increased fi ltered 
calcium load, but after week 12 was not differ-
ent from baseline levels [ 8 ]. In the NPS RCT, 
there was no change in urinary calcium excretion 
[ 9 ], while in the Columbia cohort there was a 
decrease at 3 but not at 4 years [ 10 ]. Most likely, 
a dosing regimen which maximizes the exposure 
of PTH to the renal tubule and thus enhances 
renal calcium absorption, without increasing the 
fi ltered calcium load, would optimally address 
the hypercalciuria.  

31.6     Effects of PTH(1–84) 
on Extraskeletal 
Calcifi cations 

 In each of the PTH(1–84) studies, serum phos-
phate levels fell, but the calcium-phosphate prod-
uct did not decrease [ 8 – 10 ]. It remains to be seen 
whether the fall in the serum phosphate, with a 
possible reordering of the calcium-phosphate 
product, will have a benefi cial effect on extraskel-
etal calcifi cations.  

31.7     Effects of PTH(1–84) 
on Bone Turnover 

 Biochemical markers of bone turnover initially 
increase dramatically with PTH(1–84) treatment 
[ 8 ,  10 ]. Sikjaer et al. found that biochemical 
markers of bone turnover rose dramatically 
(P1NP by 1,315 % and s-CTx increased by 
1,209 %), although the levels of osteocalcin and 
s-CTx appeared to plateau between 20 and 
24 weeks [ 8 ]. Similarly, in the 27 subjects treated 
in the Columbia study with PTH (1–84) for 
4 years, bone turnover markers increased signifi -
cantly, reaching a threefold peak from baseline 
values at 6–12 months and subsequently declin-
ing to steady-state levels at 30 months, with 

P1NP and tartrate-resistant acid phosphatase 
(TRAP) remaining statistically higher than at 
baseline [ 10 ] (Fig.  31.3 ). Taken together, these 
data suggest that PTH has an initial exuberant 
effect to increase biochemical markers of bone 
turnover, with subsequent tempering over time to 
a new, steady-state, more euparathyroid level.   

31.8     Effects of PTH(1–84) 
Treatment on Bone Mineral 
Density (BMD) 

 When PTH(1–84) was given by Sikjaer et al. to 
adults at 100 μg/d for 6 months, BMD decreased 
at the whole body, spine, hip, and femoral neck, 
but not at the forearm [ 8 ]; the BMD decreases 
correlated with the increases in biochemical 
markers of bone turnover [ 8 ]. Quantitative com-
puted tomography (QCT) analysis of this cohort 
showed that vBMD in cancellous bone increased, 
despite the decrease in a BMD at the lumbar 
spine, while cortical vBMD decreased [ 8 ]. These 
data suggest that the relative distribution of tra-
becular and cortical bone might differ with PTH 
treatment at specifi c skeletal sites. In the 4-year 
Columbia treatment study of PTH(1–84), lumbar 
spine BMD increased by 5.5 %, while the femoral 
neck and total hip BMD remained stable; the dis-
tal radial BMD decreased, but at 4 years was not 
different from baseline [ 10 ] (see also Chap.   26    ).  

31.9     Effects of PTH(1–84) 
Treatment on 
Histomorphometric Indices 

 Iliac crest bone biopsies were performed by 
Sikjaer et al. in 51 patients in the 6-month RCT 
of treatment with PTH(1–84) (PTH group  n  = 26; 
placebo group  n  = 25) [ 19 ]. MicroCT analysis 
demonstrated lower trabecular thickness with 
PTH treatment, with an increase in the bone sur-
face and the presence of a more complex trabecu-
lar network, suggesting the development of 
thinner and better connected trabeculae [ 19 ]. 
Intratrabecular tunneling, or the longitudinal 
splitting of single trabeculae into two thinner new 
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trabeculae (Fig.  31.4 ), was observed in the 
PTH(1–84) group. The presence of intratrabecu-
lar tunneling was associated with greater calcium 
mobilization, as evidenced by higher bone turn-
over and a tendency toward a greater decrease in 
calcium and active vitamin D supplementation 
[ 8 ,  19 ]. With regard to cortical bone, at 6 months, 
more Haversian canals per unit area were 
observed, with a trend toward increased cortical 
porosity, although cortical bone tissue density 
was not different [ 19 ](see also Chap.   26    ).  

 In a 2-year study of open-label PTH(1–84) 
treatment in the Columbia cohort, paired iliac 
crest bone biopsies were obtained before and 

after PTH(1–84) treatment at 1 year ( n  = 14) and 
at 2 years ( n  = 16); a separate group had an early 
“quadruple-label” biopsy [ 20 ] at 3 months ( n  = 16) 
[ 21 ]. An immediate anabolic effect was apparent, 
with an early increase in the mineralizing surface 
(MS), osteoid surface, and bone formation rate at 
3 months (MS at baseline: 0.39 ± 0.6 % vs. MS at 
3 months: 5.47 ± 6.0 %;  p  = 0.004), which peaked 
at 12 months (MS at baseline: 0.7 ± 0.6 % vs. MS 
at 1 year: 7.1 ± 6.0 %,  p  = 0.001) and was similar 
to euparathyroid levels at 2 years (MS at base-
line: 1.18 ± 2.2 % vs. MS at 2 years: 3.34 ± 0.8 %; 
 p  = 0.04; MS in healthy controls: 4.33 ± 3.2 %). 
The remodeling changes were most pronounced in 
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  Fig. 31.3    Changes in 
markers of bone formation 
(P1NP, BALP, OCN;  a ) and 
resorption (CTX, TRAP;  b ) 
over 4 years of PTH(1–84). 
With PTH(1–84) treatment, 
all bone turnover markers 
increased signifi cantly, 
peaking at levels of up to 
threefold above baseline 
values at 6–12 months and 
subsequently declining to 
steady-state levels at 
30 months.  BALP  bone-
specifi c alkaline phosphatase, 
 OCN  N-mid osteocalcin, 
 CTX  collagen type 1 
cross-linked C-telopeptide. 
Data are expressed as 
mean ± SE. *,  P  < 0.05 
compared with baseline; †, 
 P  < 0.01 compared with 
baseline; ‡,  P  < 0.0001 
compared with baseline 
(Reproduced with permission 
from Cusano et al. [ 10 ])       
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the cancellous envelope at 1 year; within 2 years, 
with the exception of osteoid surface, the differ-
ences were no longer signifi cant at the endocor-
tical and intracortical envelopes [ 21 ]. Structural 
changes after 2 years of PTH(1–84) treatment 
included reduced trabecular width (144 ± 34 to 
128 ± 34 μm,  p  = 0.03) and increases in trabecular 
number (1.74 ± 0.34 to 2.07 ± 0.50/mm,  p  = 0.02). 
As in the study of Sikjaer et al., intratrabecu-
lar tunneling was apparent (Fig.  31.5 ). Cortical 
porosity increased at 2 years (7.4 ± 3.2 % to 
9.2 ± 2.4 %,  p  = 0.03), although cortical width did 

not change. Recent data employing longitudinal 
3-D analysis of the biopsies by microcomputed 
tomography (microCT) confi rm that the micro-
structural changes, including decreased trabecu-
lar thickness and increased connectivity density, 
occur relatively early with PTH treatment and are 
detectable to a greater extent at 1 than at 2 years 
[ 22 ]. Overall, the histomorphometric data sug-
gest that administration of PTH improves abnor-
mal dynamic and structural skeletal properties in 
hypoparathyroidism, restoring bone metabolism 
toward normal euparathyroid levels.   

PTH (1−84) Placebo

PTH (1−84) Placebo

a

b

  Fig. 31.4    Iliac crest biopsies, one with intratrabecular 
tunneling from a patient treated with PTH(1–84) 100 mcg/
day for 24 weeks and one without tunneling from a 

placebo- treated patient. ( a ) Cross-sectional view; ( b ) lon-
gitudinal sectional view (Reproduced with permission 
from Ref. [ 19 ])       
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31.10     Effects of PTH(1–84) 
Treatment on Fractures 

 Data are not available on the effects of 
PTH(1–84) treatment in hypoparathyroidism 
on fracture risk. Given the well-characterized 
improvements in skeletal properties, a decrease 
in fracture risk would be anticipated, but this 
expectation awaits confi rmation from larger 
and longer studies.  

31.11     Safety Concerns: 
Hypercalcemia with PTH 
(1–84) Treatment 

 Hypercalcemia occurred, albeit with low fre-
quency, in the three PTH(1–84) studies. In the 
Sikjaer study, 11 patients had a total of 17 epi-
sodes of symptomatic hypercalcemia [ 8 ]. In the 
NPS study, there was 1 hospitalization because of 
hypercalcemia [ 9 ], while in the Columbia cohort 

Hypoparathyroidism Baseline Hypoparathyroidism 1 Yr PTH(1−84)

Hypoparathyroidism Baseline Hypoparathyroidism 1 Yr PTH(1−84)

a

b

  Fig. 31.5    Iliac crest biopsy illustrating changes in tra-
becular ( a ) and cortical ( b ) structure before and after 
1 year of PTH(1–84) treatment in a hypoparathyroid sub-

ject. Note the increases in trabecular tunneling and corti-
cal porosity ( arrows ) in the posttreatment biopsy 
(Reproduced with permission from Rubin et al. [ 21 ])       
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there were 11 episodes of hypercalcemia in 8 
subjects over 4 years [ 10 ].  

31.12     Safety Concerns: 
Osteosarcoma Risk 
with PTH(1–84) Treatment 

 PTH(1–84) was found to increase osteosarcoma 
risk in rats [ 23 ]. However, the risk is dose and 
duration related, and the noncarcinogenic doses 
for PTH(1–84) (10 μg/kg/d) in the studies in rats 
are markedly above that used to treat hypopara-
thyroidism in humans [ 24 ]. Most reassuring of all, 
no increased risk of osteosarcoma has emerged, 
since recombinant human PTH(1–34) (Forteo) 
was approved in 2002 [ 25 ] (see also Chap.   26    ).  

    Conclusion 

 In a disorder characterized by absent or inade-
quate parathyroid function, accumulating data 
suggest that PTH(1–84) is able to address many 
of the biochemical, renal, skeletal, and neuro-
psychological features of hypoparathyroidism 
to a greater extent than conventional treatment. 
One looks forward to a time when the missing 
hormone, namely, PTH(1–84), will become the 
standard option for therapy of this disease.     
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32.1             Introduction 

 Pseudohypoparathyroidism was described in 
1942 by Fuller Albright and colleagues, as they 
reported patients with normal renal function in 
whom signifi cantly reduced levels of plasma 
calcium with hyperphosphatemia were associated 
with parathyroid overactivity. This contrasted 
with patients affected with primary hypoparathy-
roidism, in whom low-normal or frankly low 
PTH levels are insuffi cient to maintain normocal-
cemia. Due to clinical and biochemical similari-
ties with hypoparathyroidism, the disease was 
called Pseudohypoparathyroidism (PHP) and the 
presence of target tissue resistance (in proximal 
renal tubules) to PTH action was hypothesized as 
the pathogenetic mechanism. 

 Moreover, these individuals presented with 
a constellation of specifi c somatic and develop-
mental abnormalities referred to as Albright’s 
hereditary osteodystrophy (AHO) that included 
short stature, centripetal obesity, rounded face, 
short neck, short and low-set nasal bridge, and 
brachydactyly due to early closure of the epiph-
yses with resultant shortening of one or more 

metacarpals or metatarsals [ 1 ]. Further reports 
also described ectopic subcutaneous calcifi ca-
tions (now better defi ned as true ossifi cations) 
and cognitive abnormalities of varying degrees, 
from learning disabilities to severe men-
tal retardation, as additional features found in 
the majority of AHO cases [ 2 ,  3 ]. Subsequent 
studies demonstrated that there was no urinary 
cyclic AMP (cAMP) generation and reduced 
calcemic and phosphaturic responses in PHP 
patients after the administration of parathyroid 
tissue extracts, thus confi rming that PTH resis-
tance was indeed the underlying defect [ 4 ,  5 ]. A 
decade after their fi rst report of PHP, Albright 
and colleagues reported patients showing all 
physical features of AHO without any evidence 
of PTH resistance and termed this new syndrome 
pseudopseudohypoparathyroidism (PPHP) [ 6 ]. 
As more cases came to be described, it appeared 
that this disease might present either as a spo-
radic or as a familial defect and that in familial 
cases it was inherited in an autosomal dominant 
manner [ 7 – 9 ]. 

 The identifi cation of the PTH receptor and 
its signal transduction cascade enhanced our 
understanding of PHP pathophysiology and the 
underlying molecular defect, i.e., inactivating 
mutations in the gene enco ding for the alpha 
subunit of the stimulatory G protein (Gsα), 
now known as  GNAS  [ 10 – 15 ]. GNAS is a com-
plex imprinted locus mapping to chromosome 
20q13.2–13.3 coding for several different tran-
scripts besides Gsα (see Chap.   10    ) [ 16 ]. 
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 Several variants of this disorder have been 
defi ned since then, and different forms have been 
classifi ed based on the absence or presence of 
AHO, as well as of resistance to other hormones 
in addition to PTH. Indeed, the term PHP now 
encompasses a heterogeneous group of rare, 
related metabolic disorders with proven genetic 
components. The most frequently encountered 
variants of PHP, caused by molecular alterations 
within or upstream of the GNAS locus, include 
PHP type Ia (PHP-Ia), pseudopseudohypopara-
thyroidism (PPHP), and PHP type Ib (PHP-Ib). 

 Patients with PHP-Ia have features of AHO 
and present with hypocalcemia and hyperphos-
phatemia despite elevated serum PTH levels. 
Hormone resistance is usually not limited to PTH, 
as affected individuals may show evidence also 
for resistance to thyroid-stimulating hormone 
(TSH), gonadotropins, growth hormone- releasing 
hormone (GHRH), and calcitonin, even if the fre-
quencies of these abnormalities remain poorly 
defi ned so far [ 17 – 24 ]. Most PHP-Ia carry hetero-
zygous maternally derived mutations in  GNAS  
exons 1–13 and show a partial defi ciency (about 
50 %) of Gs alpha activity in red blood cells [ 10 ]. 

 In contrast, patients with PPHP have the typi-
cal features of AHO but do not show evidence for 
resistance to PTH or other hormones. PPHP is 
also caused by heterozygous inactivating muta-
tions in Gs alpha coding exons, but the phenotype 
(AHO only) is associated with paternal transmis-
sion of the genetic defect. As two sides of the 
same coin, PHP-Ia and PPHP can be found in the 
same kindred but not in the same sibship, because 
clinical features result from the gender of the 
 parent transmitting the mutation, thus refl ecting 
the imprinted nature of  GNAS  [ 13 ]. 

 On the other hand, the majority of PHP-Ib 
patients present with signs and symptoms of PTH 
resistance but lack features of AHO, and hor-
mone resistance seems to be confi ned to the renal 
actions of PTH. Only recently, mild TSH resis-
tance has been observed in some PHP-Ib patients, 
which raises the possibility that additional endo-
crine systems may also be affected in this PHP 
variant. Relatively recent studies showed a 
normal/slightly reduced Gs alpha activity in 
erythrocytes and fi broblasts and identifi ed as 

underlying molecular cause methylation defects 
in the imprinted GNAS cluster [ 25 – 29 ]. 

 During the last decade, incoming data on both 
clinical and molecular aspects of these complex 
disorders have challenged the distinction between 
different  GNAS -related diseases. In particular, in 
a subset of patients with PHP and variable 
degrees of AHO, GNAS epigenetic defects simi-
lar to those classically found in PHP-Ib patients 
have been detected by independent groups, sug-
gesting a molecular overlap between PHP-Ia and 
PHP-Ib. These fi ndings confi rm the complexity 
in establishing an accurate diagnosis of PHP, as 
sometimes clinical and molecular data do not 
fully discriminate between the main variants of 
the disease [ 30 – 34 ] (Table  32.1 ).

32.2        Pathophysiology of PTH 
Resistance/Molecular Basis 

 Defi ciency of a given hormone leads to decreased 
activity at its target organs, often leading to clini-
cal manifestations. Similar abnormalities may 
arise when a target organ becomes nonresponsive 
to the hormone itself, despite suffi cient or even 
elevated hormone levels. Endocrine disorders 
deriving from target organ resistance are mostly 
caused by inactivating mutations affecting hor-
mone receptors. PHP is therefore an unusual 
form of hormone resistance as the molecular 
defect affects a downstream effector of PTH, the 
Gs alpha protein (alpha subunit of the stimulatory 
guanine nucleotide-binding protein) [ 35 – 39 ]. 

 Heterotrimeric guanine nucleotide-binding 
proteins, called G proteins, are a superfamily of 
heterotrimers composed of three distinct subunits 
(alpha, beta, and gamma), which are involved in 
the intracellular signal transduction from seven 
transmembrane receptors, called G-protein- 
coupled receptors (GPCRs), and their functional 
specifi city depends on the alpha subunit. The 
interaction between the agonist and its specifi c 
GPCR activates alpha subunit-triggered effec-
tors, enzymes, and ion channels that induce both 
short-term effects on hormone secretion, neuro-
transmission, and muscle contraction and long- 
term effects on gene transcription [ 40 ]. 
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 Characterization of the molecular bases of 
PHP began with the observation that cAMP is the 
mediator of various PTH actions in different cell 
types and organs. PTH is the primary regulator of 
serum calcium, mainly acting on kidney and 
bone via its Gs alpha-coupled receptor PTHR1 
[ 41 ,  42 ]. The alpha subunit of Gs is a primary 
modulator of the adenylyl cyclase, promoting the 

intracellular formation of cyclic adenosine mono-
phosphate (cAMP), which rapidly activates pro-
tein kinase A (PKA), and a cascade of intracellular 
responses (Fig.  32.1 ). At the kidney level, PTH 
enhances active reabsorption of calcium and 
magnesium from the distal tubules and the thick 
ascending limb. It also decreases the reabsorption 
of phosphate from the proximal tubule, further 
increasing free calcium in the circulation [ 43 ]. In 
the intestine it promotes the absorption of cal-
cium (as Ca 2+  ions) via TRPV6, an apical Ca 2+  
channel, calbindin, a putative ferry to the basolat-
eral membrane, and membrane pumps and trans-
porters on the latter membrane, all of which are 
stimulated by activated vitamin D. The concen-
tration of this metabolite in blood is, by necessity, 
tightly regulated, and the most important stimu-
lus for renal 1,25-(OH)2D synthesis is PTH 
through the upregulation of 25-hydroxyvitamin 
D 1-alpha-hydroxylase mRNA and protein. 
Moreover, PTH indirectly enhances the release of 
calcium from bone by osteoblast-mediated stim-
ulation of bone resorption by osteoclasts [ 44 ].  

 As a result of PTH resistance, patients with 
PHP develop hypocalcemia and hyperphosphate-
mia have diminished serum concentrations of 
1,25-(OH)2D, and exogenous administration of 
PTH fails to induce an appropriate increase in 
urinary phosphate and cAMP excretion when 
compared with normal controls or patients with 
other forms of hypoparathyroidism [ 5 ,  45 ,  46 ]. 
Because of the different sites of action of the anti- 
calciuric (thick ascending limb and distal convo-
luted tubule) and the phosphaturic (proximal 
tubule) effects of PTH, the anti-calciuric action 
of this hormone seems to remain intact in PHP 
patients. As a result of these unimpaired func-
tions, PHP patients may present with prolonged 
periods of normocalcemia maintained by an 
 elevated PTH concentration, interrupted by epi-
sodes of hypocalcemia with associated clinical 
manifestations (i.e., seizures or muscle spasm), 
and normo-/hypocalciuria with, however, con-
served renal handling of calcium in the absence 
of kidney stones. This cell-specifi c defect in PHP 
is in accordance with the demonstration of the 
cell- specifi c imprinting of GNAS. The extent 
to which PTH signaling in bone, which is 

   Table 32.1    PHP diagnostic criteria   

 Laboratory fi ndings 
  Major:  
   Hypocalcemia, hyperphosphatemia, and raised 

serum PTH levels in the absence of vitamin D 
defi ciency (PTH resistance) 

  Additional:  
   Raised serum TSH levels, in the absence of 

antithyroid antibodies and in the presence of 
normal thyroid scan (TSH resistance) 

   Elevated LH and FSH levels, together with low 
estradiol/testosterone levels (resistance to 
gonadotropins) 

   Blunted GH response to provocative tests (GHRH 
resistance) 

 Clinical fi ndings 
  Major  ( associated with acute or chronic 
hypocalcemia ): 
   Nervous hyperexcitability with paresthesias, cramps, 

tetany, hyperrefl exia, convulsions, and tetanic 
crisis 

   Cataracts 
   Basal ganglia calcifi cations 
  Additional:  
   Secondary amenorrhea and/or infertility 
   Reduced growth velocity (in children) 
   AHO manifestations (at least brachydactyly and/or 

heterotopic ossifi cations are required for the 
defi nition of AHO): 

   Brachydactyly (shortening of fourth and/or fi fth 
metacarpals defi ned as the metacarpal sign and/or 
shortening below -2SDS at the 
metacarpophalangeal profi le pattern in at least one 
metacarpal bone or distal phalanx) 

   Ectopic ossifi cations (either clinically evident or at 
X-ray) 

   Short stature (height below the third percentile for 
chronological age) 

   Obesity (BMI >30 kg/m 2  in adults and >97th centile 
in children) 

   Round face 
   Mental retardation, defi ned in case of history of 

delayed motor and/or speech milestones or need 
of extra help in preschool or mainstream school 
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independent of vitamin D action, is defective in 
PHP patients is less clear, as bone remodeling in 
response to PTH appears to be intact in most 
patients, although clinical manifestations in the 
skeleton, ranging from decreased bone density 
(BMD) to overt osteitis fi brosa cystica to osteo-
sclerosis, have been reported [ 47 – 54 ].  

32.3     Classifi cation 
and Differential Diagnosis 

 The distinction between PHP and primary hypo-
parathyroidism is usually easy, given the signifi -
cantly elevated PTH levels that characterize 
PHP. Moreover, unlike patients with primary 
hypoparathyroidism, PHP patients are not prone 
to hypercalciuria, thus maintaining normal renal 
calcium handling and indicating that the anti- 
calciuric action of PTH in the thick ascending 
limb and DCT is unaffected. On the contrary, the 
differential diagnosis among the various forms of 
the disorders is sometimes challenging, as out-
lined below.  

32.4     PHP Type I Versus Type II 

 Since the fi rst description of PHP, different clini-
cal variants of this disorder have been reported 
(see also Chaps.   33    ,   34     and   35    ), and today PHP is 
divided into two main subtypes according to the 
response to the administration of exogenous 
PTH. PTH infusion remains the most consistent 
test for the distinction between the two forms, as 
PHP type I patients show blunted nephrogenous 
cAMP generation and phosphate excretion fol-
lowing this administration [ 1 ,  5 ,  18 ,  45 ,  46 ]. In 
contrast, PHP type II patients retain a normal 
generation of nephrogenous cAMP in response to 
PTH, with impaired urinary excretion of phos-
phate. Only few cases of PHP type II have been 
described, and the molecular determinant under-
lying this PHP variant is still elusive, although 
the observed defi cient phosphaturic response 
suggests a defect distal to cAMP generation in 
the PTH-mediated transduction pathway in target 
cells [ 55 ]. It is now believed that in most of these 
cases, PHP-II may be an acquired defect secondary 
to vitamin D defi ciency, as calcium and vitamin D 

  Fig. 32.1    The hormone-activated cAMP intracellular transduction pathway       
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replacement often normalizes the phosphaturic 
response to PTH in these subjects.  

32.5     PHP Type I Subtypes 

 PHP type I, besides PTH resistance associated 
with blunted cAMP and phosphaturic responses 
to exogenous PTH, is classically further differen-
tiated according to the presence (PHP-Ia, MIM 
103580;  PHP-Ic, MIM 612462) or absence 
(PHP-Ib, MIM 603233) of AHO features 
(Table  32.2 ).

32.5.1       PHP-Ia, PPHP, and PHP-Ic 

 In PHP-Ia, PTH resistance usually develops over 
the fi rst years of life, with hyperphosphatemia 
and elevated PTH generally preceding hypocal-
cemia, even if some patients remain normocalce-
mic throughout life [ 17 ]. Typically, in PHP-Ia 
patients hormone resistance is not restricted to 
PTH, as they also display resistance to other hor-
mones that act via GPCRs, such as TSH, gonado-
tropins, and GHRH. Resistance to these additional 
hormones may develop with interindividual vari-
ability in severity and time course [ 11 ,  17 ,  56 , 
 57 ]. Indeed, most PHP-Ia patients become clini-
cally resistant to TSH over childhood or adoles-
cence, but hypothyroidism may be detected at 
neonatal screening as well [ 58 – 61 ]. Generally, 
TSH resistance is mild, with normal or slightly 
low thyroid hormone levels, no goiter, and 
absence of antithyroid antibodies. 

 Clinical evidence of hypogonadism, particu-
larly in females, is usually manifested as delayed 

or incomplete sexual maturation, amenorrhea or 
oligomenorrhea, and/or infertility. Laboratory 
fi ndings showed that PHP-Ia women are slightly 
hypoestrogenic, but the relation with increased 
basal or GnRH-stimulated levels of circulating 
gonadotropins is still unclear [ 62 ]. More recently, 
Mantovani and Germain-Lee reported defi ciency 
in GH secretion due to resistance to GHRH in a 
large subset of these patients [ 63 – 65 ]. Although 
the mechanism is unknown, prolactin defi ciency 
has also been documented in some PHP-Ia 
patients. In PHP-Ia patients plasma cAMP 
responses to glucagon and isoproterenol can also 
be reduced, but the rise in serum glucose is nor-
mal, suggesting that even a blunted cAMP 
response is able to induce the physiological 
response. Moreover, patients are not resistant to 
vasopressin, ACTH, or CRH, whereas resistance 
to calcitonin has been occasionally described [ 24 , 
 63 ,  66 – 68 ]. Although conclusive data are lack-
ing, a recent report described normal region- 
specifi c bone mineral density (BMD) together 
with increased total body BMD in a quite large 
series of patients, with consequent normal or 
even reduced risk of fracture, confi rming the 
apparently intact skeletal responsiveness to PTH 
in PHP-Ia and PHP-Ib [ 69 ]. 

 As previously stated, PPHP patients may 
coexist with PHP-Ia within the same family but 
never in the same sibship and, similarly to their 
relatives with PHP-Ia, have an approximately 
50 % defi ciency in Gs activity in cell membranes, 
but show a normal response of urinary cAMP to 
exogenous PTH [ 70 ,  71 ]. Clinical features of 
PPHP can also be found in sporadic cases, mak-
ing the diagnosis more diffi cult. In fact, some 
of the typical AHO features, especially when 

   Table 32.2    PHP classifi cation   

 PHP subtype  AHO 
 Hormone 
resistance  PTH infusion  Gs activity  GNAS defect 

 Type Ia  Yes  Yes  No response  Reduced  Genetic (maternal transmission) 
 PPHP  Yes  No  Normal 

response 
 Reduced  Genetic (paternal transmission) 

 Type Ib  No  Yes  No response  Normal/slightly reduced  Epigenetic 
 Type Ic  Yes  Yes  No response  Normal  Few cases reported 
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considered individually, may be present within the 
normal population as well as in other disorders, 
some of which ascribed to specifi c chromosomal 
defects such as deletions involving chromosome 
2q37 associated with the brachydactyly-mental 
retardation syndrome (BDMR) [ 72 ,  73 ]. 
Moreover, in clinical practice AHO is often dif-
fi cult to diagnose as some clinical features are not 
obvious at birth or shortly after and may be very 
heterogeneous later. PHP-Ia and PPHP are caused 
by heterozygous inactivating mutations located 
within  GNAS  coding exons inherited from the 
mother or the father, respectively, and this 
pattern of inheritance refl ects the tissue-specifi c 
imprinting of GNAS. 

 In 1990, Patten and colleagues identifi ed the 
fi rst GNAS mutation responsible for PHP-Ia, and 
since then numerous different mutations (about 
130 unique mutations reported in the literature) 
distributed throughout the entire gene have been 
identifi ed [ 15 ,  74 ]. Missense mutations and small 
insertions/deletions predominate, but nonsense 
mutations, splice mutations, and macrodeletions 
have also been documented. Most of these genetic 
defects are private mutations, confi ned to one or 
few patients, and the observation of few recurring 
mutations in unrelated patients suggests that the 
presence of identical de novo mutations probably 
derives from the presence of a common molecu-
lar mechanism rather than a founder effect. No 
genotype-phenotype correlations have been 
observed, as neither the mutation type nor its 
location correlate with the onset of the disease (as 
marker of disease precocity and severity), with 
the severity of endocrine resistances, or with the 
number of AHO signs [ 74 ]. The detection of a 
 GNAS  mutation is associated with 50 % risk of 
recurrence, thus providing the possibility of pre-
dictive genetic testing in relatives, as well as 
 prenatal diagnosis. In case of negative  GNAS  
mutational screening, patients should be also 
tested for the presence of GNAS imprinting 
defects and  GNAS  macrodeletions. Screening of 
mutations in the  PRKAR1A  and  PDE4D  genes 
may be also considered in those cases showing a 
phenotype suggestive of acrodysostosis. 

 From the clinical point of view, PHP-Ic is 
indistinguishable from PHP-Ia, being characte-

rized by the presence of multi-hormone resistance 
and AHO. Nevertheless, it is possible to differen-
tiate between these two PHP variants by means 
of Gs activity measurements in the membranes of 
various cell types (erythrocytes, fi broblasts, 
platelets): the partial defi ciency (about 50 %) 
demonstrated in patients with PHP-Ia is usually 
absent in patients with PHP-Ic although excep-
tions to these rules have been reported [ 75 ,  76 ].  

32.5.2     PHP-Ib 

 PHP-Ib is typically characterized by renal resis-
tance to PTH in the absence of other endocrine or 
physical abnormalities and a normal/slightly 
reduced Gs activity in red blood cells [ 77 – 80 ]. 
Recent studies have also reported resistance to the 
action of TSH, with conserved GH secretion in a 
large subset of patients [ 20 ,  29 ]. In all PHP-Ib 
cases, a defect in the signaling pathway proximal 
to cAMP generation is documented by a blunted 
urinary cAMP response to exogenous PTH. For 
this reason, originally, the PTH receptor type 1 
(PTHR1) gene was suggested as a candidate to 
explain the molecular basis of the disease. We now 
know that PHP-Ib is associated with methylation 
alterations affecting GNAS differentially methyl-
ated regions (DMRs), streches of DNA showing 
an allele-specifi c methylation pattern according to 
the parental inheritance. As in PHP-Ia, hormonal 
resistance develops only after maternal inheritance 
of the disease, whereas paternal inheritance of the 
same defect is not associated with endocrine 
abnormalities [ 27 ,  28 ,  81 ]. 

 These imprinting defects are often sporadic 
(spor-PHP-Ib), but the disease may occasionally 
present as familial, with an autosomal dominant, 
maternally inherited pattern of transmission, 
known as AD-PHP-Ib. The molecular fi ndings in 
the two forms are different and will be specifi cally 
described in another chapter [ 82 – 87 ] Nevertheless, 
it is important to note that, despite different under-
lying pathogenetic mechanisms, no clinical dif-
ferences have been observed between the sporadic 
and the familial forms of the disease [ 88 ]. Finally, 
a partial clinical overlap between PHP type Ia and 
type Ib has been recently demonstrated, as patients 
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with GNAS imprinting defects may occasionally 
present with variable degrees of AHO. These 
fi ndings indicate the need to investigate GNAS 
methylation status in all PHP patients with associ-
ated AHO signs who are found to be negative for 
classical  GNAS  mutations [ 76 ].   

32.6     AHO Versus AHO-Like 
Syndromes 

 The term AHO encompasses heterogeneous and 
nonspecifi c clinical fi ndings, including rounded 
face, short stature, central obesity, and variable 
degrees of mental retardation; accordingly, 
brachydactyly and heterotopic ossifi cations are 
considered as the most specifi c features of AHO 
phenotype. However, the diagnosis may remain 
unclear in the absence of a specifi c molecular 
diagnosis, because of the occasional detection 
within the normal population of some AHO fea-
tures (i.e., rounded face, obesity, or shortening of 
hand bones as well). Moreover, most of AHO 
features may be detected in other genetically 
determined diseases outlined thereafter. Mental 
retardation is included among the clinical charac-
teristics of AHO, despite the fact that its fre-
quency and severity are not well established, with 
an apparent discrepancy between the adult (27 %) 
and the pediatric populations (64 %) [ 76 ]. It is 
well known that mental retardation is included in 
a wide variety of genetic syndromes. 

 Recently, mutations in  PRKAR1A  and  PDE4D  
genes, both encoding proteins crucial for cAMP- 
mediated signaling, have been detected in a small 
subset of patients with PHP-Ia or PPHP features, 
showing a phenotypic overlap with acrodysostosis 
(ACRDYS). Acrodysostosis is a rare congenital 
malformation syndrome characterized by skeletal 
dysplasia presenting with short stature, severe 
brachydactyly, facial dysostosis, nasal hypoplasia, 
and often advanced bone age and obesity. In some 
patients, laboratory fi ndings show resistance to 
multiple hormones (including PTH, TSH, calcito-
nin, GHRH, and gonadotropins) [ 89 ,  90 ]. 

 Finally, brachydactyly-mental retardation 
syndrome (BDMR) is a contiguous gene syn-
drome, as most patients described to date display 

a large deletion of chromosome 2q37.2. Patients 
show a phenotype resembling the physical anom-
alies found in AHO, such as short stature, mental 
retardation, and brachymetaphalangia, but classi-
cally no soft tissue ossifi cations and no abnor-
malities in calcium metabolism are observed 
[ 72 ]. In conclusion, patients negative for GNAS 
defects with suggestive clinical presentations 
should be also screened for chromosomal regions 
and genes associated with diseases that undergo 
differential diagnosis with PHP.     
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33.1             Introduction 

 Albright hereditary osteodystrophy (AHO) is a 
congenital disorder caused by heterozygous inacti-
vating mutations of the G s α gene ( GNAS ) on chro-
mosome 20 that is characterized by the presence of 
short stature, brachydactyly, subcutaneous ossifi ca-
tions, centripetal facial abnormalities, including 
depressed nasal bridge or hypertelorism, and men-
tal defi cits or developmental delay [ 1 ] (Fig.  33.1 ) 
(see also Chaps.   32    ,   34    , and   35    ). Patients who 
inherit the  GNAS  mutation from their mother (or 
have a de novo maternal  GNAS  mutation) also 
develop resistance to parathyroid hormone (PTH) 
and other hormones as well as early-onset obesity 
(also known as pseudohypoparathyroidism type 
1a; PHP1a). In contrast, patients who inherit their 
mutation paternally only have the physical and 
neurobehavioral features of AHO (also known as 
pseudopseudohypoparathyroidism; PPHP). Rarely 
patients with  GNAS  mutations will develop a more 
severe form of ectopic ossifi cation referred to as 
progressive osseous heteroplasia (POH). This 
chapter will summarize the clinical features, genet-
ics, pathogenesis, diagnosis, and treatment for 
these disorders associated with  GNAS  mutations.   

33.2     Clinical Features 

 The extent and severity of AHO features found in 
individual patients (both with PHP1a and PPHP) 
is very variable. Almost all AHO patients present 
with short stature and most have brachydactyly 
(shortening and widening of the long bones in the 
hands and feet), most often the distal thumb and 
third, fourth, and fi fth metacarpals and metatar-
sals. The extent of brachydactyly is highly vari-
able and is often asymmetric. Brachydactyly is 
primarily due to premature closure of the growth 
plate and is associated with coning of the epiph-
ysis [ 2 ]. Other musculoskeletal abnormalities 
associated with AHO include spinal cord com-
pression [ 3 ] and carpal tunnel syndrome [ 4 ]. 
AHO patients often, although not always, pres-
ent with neurocognitive abnormalities, includ-
ing developmental delay, mental retardation, and 
emotional disorders. A recent report suggests 
that these neurocognitive features may be more 
prominent in PHP1a than in PPHP [ 5 ]. 

 The most specifi c feature of AHO is the pres-
ence of ectopic ossifi cations (osteoma cutis), 
which are generally limited to the dermis and 
subcutaneous tissues and may present as palpable 
hard nodules or calcifi cations on radiographs. 
While short stature and brachydactyly are more 
frequently observed in AHO patients, ectopic 
ossifi cation is a more specifi c manifestation and 
therefore its presence is more diagnostically use-
ful. In rare cases the lesions coalesce to form 
plate- or cast-like structures and invade into deep 
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soft tissues leading to joint stiffness and bone 
deformity, and this presentation is referred to as 
POH [ 6 ]. 

 In addition to the AHO features described 
above, PHP1a patients also have other additional 
features not present in PPHP, including multihor-
monal resistance and early-onset obesity. The 
most prominent hormonal resistance seen in 
PHP1a is renal resistance to the actions of PTH in 
the proximal tubule, leading to impaired generation 

of 1,25-dihydroxyvitamin D and increased urinary 
phosphate reabsorption. The biochemical hall-
marks of PHP1a (and other forms of PHP) are 
hypocalcemia, hyperphosphatemia, and elevated 
serum PTH levels in the absence of renal failure or 
25-hydroxyvitamin D defi ciency. Serum levels of 
1,25-dihydroxyvitamin D are typically low or low 
normal despite PTH levels being elevated. Elevated 
PTH levels and hyperphosphatemia usually 
develop in early childhood prior to the  development 

  Fig. 33.1    Albright hereditary osteodystrophy.  Left : AHO 
patient with short stature, obesity, and rounded face. 
 Right : Photograph ( above ) and radiograph ( below ) showing 

brachydactyly of the fourth metacarpal (Reproduced 
from: Thakkar et al. [ 39 ])       
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of hypocalcemia. Typically patients present with 
hypocalcemic symptoms (paresthesias, tetany, sei-
zures) during late childhood, although some 
patients never develop hypocalcemic symptoms or 
may even remain eucalcemic. Patients often 
develop features in common with primary hypo-
parathyroidism, such as basal ganglia calcifi ca-
tions and cataracts, and rarely will develop rachitic 
bone changes. One study showed that bone min-
eral density is maintained in PHP1a [ 7 ]. 

 PHP1a patients also develop resistance to 
other hormones that also activate G s α in their tar-
get tissues, including thyrotropin (TSH), gonado-
tropins, and growth hormone-releasing hormone 
(GHRH). TSH resistance is often detected during 
perinatal screening with elevated TSH levels and 
typically leads to mild to moderate nongoitrous 
hypothyroidism. Gonadotropin resistance pres-
ents primarily in females as delayed or incom-
plete sexual development, oligomenorrhea, and/
or infertility, and typically estrogen levels are 
low, although gonadotropins are not uniformly 
elevated [ 8 ]. Another feature in many, but not all, 
PHP1a patients is growth hormone defi ciency 
due to pituitary GHRH resistance. However this 
may not be the major factor leading to short stat-
ure, as short stature primarily results from prema-
ture closure of growth plates in the axial skeleton 
[ 9 ]. It should be noted that in PHP1a, there is no 
clinical resistance to other hormones that activate 
G s α, such as vasopressin, glucagon, and 
ACTH. Another feature associated with PHP1a 
but not PPHP is severe, early-onset obesity [ 10 ]. 
Adult PHP1a patients also develop insulin resis-
tance independent of their level of adiposity and 
are probably more prone to the development of 
type 2 diabetes [ 11 ]. Prolactin defi ciency and 
impaired olfaction have also been reported in 
PHP1a patients.  

33.3     Genetics 

 AHO is an autosomal dominant disorder result-
ing from heterozygous mutations in the  GNAS  
gene at 20q13 resulting in loss of expression 
or function of the ubiquitously expressed G 

protein α-subunit G s α [ 1 ]. G s α couples many 
seven- transmembrane receptors for hormones, 
neurotransmitter, and other signals to the enzyme 
adenylyl cyclase and is required for receptor- 
stimulated intracellular cAMP generation. G s α 
mutations on the paternal allele (de novo or inher-
ited from the father) lead to PPHP (AHO alone), 
while the same mutations on the maternal allele 
lead to PHP1a (AHO plus multihormone resis-
tance and obesity). This parent-of-origin effect 
of G s α mutations is due to genomic imprinting 
leading to tissue-specifi c effects on G s α expres-
sion from each parental allele. While G s α is bial-
lelically expressed in most tissues (i.e., from 
both copies of the gene), it is expressed primarily 
from the maternal allele in some tissues, includ-
ing renal proximal tubules, thyroid, gonad, pitu-
itary somatotrophs, and certain brain regions [ 1 , 
 12 ]. Tissue-specifi c G s α imprinting has been con-
fi rmed in mice [ 13 ]. G s α imprinting is associated 
with and caused by differences in DNA methyla-
tion within the G s α gene  GNAS  between the two 
parental alleles. Pseudohypoparathyroidism type 
1b (PHP type 1b), a form of renal PTH resistance 
without the features of AHO, is associated with 
a loss of DNA methylation at a specifi c region 
on the maternal allele which leads to both paren-
tal alleles having a paternal methylation pattern. 
Recently it has been reported that patients with 
the  GNAS  methylation defect typically associated 
with PHP type 1b may occasionally have features 
of AHO, particularly brachydactyly [ 14 ,  15 ], 
and this may correlate with the extent of tissue- 
specifi c G s α imprinting [ 16 ]. 

 Most G s α mutations associated with AHO 
are complete null mutations (splice junction, 
nonsense, or frameshift mutations) and there is 
no clear genotype-phenotype correlation. One 
specifi c 4 base pair deletion in exon 7 has been 
identifi ed in many families [ 17 ]. A mutation 
within the alternatively spliced exon 3 result-
ing in loss of expression of the long but not 
short form of G s α was associated with a mild 
form of PHP1a without hypocalcemia or obe-
sity [ 18 ]. Several specifi c missense mutations 
leading to single amino acid substitutions have 
been identifi ed and shown to have specifi c 
effects on G s α function [ 1 ]. Mutation of either 
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Arg231 or Glu259 results in a receptor-activa-
tion defect, probably by  disrupting interactions 
required to stabilize the active conformation. 
The Ala366Ser mutation results in PHP1a plus 
gonadotropin-independent precocious puberty 
(testotoxicosis) in males. At core body tem-
perature, the mutant protein is thermolabile 
resulting in PHP1a, while at the lower testicu-
lar temperature, the mutant protein is stable but 
is constitutively activated due to increased 
basal GDP release leading to more G s α in the 
active GTP-bound conformation. 

 POH (severe ectopic ossifi cation) is associ-
ated with the same mutations as AHO and may 
present with or without other features of AHO or 
PHP1a. There is a predilection for patients who 
present with POH alone to inherit their mutations 
from the father, although even within these fami-
lies, female POH patients may have affected off-
spring with classic AHO [ 19 ].  

33.4     Pathogenesis 

 The differences in clinical manifestations between 
PHP1a and PPHP (presence or absence of multi-
hormonal resistance and obesity) result from tis-
sue-specifi c G s α imprinting, which results from 
differences in DNA methylation between the two 
parental alleles of  GNAS  [ 1 ,  20 ]. G s α is bialleli-
cally expressed in most tissues but primarily 
expressed from the maternal allele in specifi c tis-
sues, including those that are targets of hormone 
action (e.g., renal proximal tubules for PTH, thy-
roid, pituitary, and gonad). In these tissues an inac-
tivating mutation on the active maternal allele 
disrupts G s α expression and hormone signaling, 
while the same mutation on the inactive paternal 
allele has little effect on G s α expression or hor-
mone signaling (Fig.  33.2 ). This is consistent with 
the markedly reduced PTH- stimulated urinary 
cAMP observed in PHP1a but not PPHP patients.  

  Fig. 33.2    Role of tissue-
specifi c G s α imprinting in 
the pathogenesis of PHP1a. 
In renal proximal tubules 
( above ) G s α is silenced from 
the paternal allele due to 
genomic imprinting (denoted 
with  X ). Mutation ( Mut ) on 
the active maternal allele in 
the setting of PHP1a leads to 
loss of G s α expression and 
PTH signaling, while 
mutation on the inactive 
paternal allele in the setting 
of PPHP has little effect on 
G s α expression or PTH 
action. In other tissues, 
including renal inner 
medulla ( below ), G s α is not 
imprinted and therefore both 
maternal and paternal G s α 
mutations lead to similar 
~50 % loss of G s α expres-
sion (Reproduced from: 
Thakkar et al. [ 39 ])       
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 In PHP1a, loss of G s α in renal proximal 
tubules leads to impaired PTH signaling in renal 
proximal tubules, leading to lower conversion of 
25-hydroxyvitamin D to 1,25-dihydroxy vitamin 
D and lower reabsorption of phosphate. Low 
1,25-dihydroxy vitamin D levels result in low 
intestinal calcium absorption and skeletal cal-
cium mobilization. Decreased phosphate excre-
tion leads to hyperphosphatemia, which further 
inhibits 1,25-dihydroxy vitamin D production. 
All of these effects combine to produce hypocal-
cemia, hyperphosphatemia, and secondary 
hyperparathyroidism. In PHP1a patients PTH 
resistance is not present at birth but develops over 
the fi rst 2–3 years of life. A recent study in mice 
suggests that this is due to the early postnatal 
onset of G s α imprinting in renal proximal tubules 
[ 21 ], which may relate to the postnatal matura-
tion of proximal tubular cells [ 22 ]. 

 Hypothyroidism, hypogonadism, and growth 
hormone defi ciency in PHP1a result from TSH, 
gonadotropin, and GHRH resistance due to par-
tial G s α defi ciency in thyroid, gonads, and pitu-
itary somatotrophs, respectively [ 1 ]. Because 
gonadotropin levels are not clearly elevated in 
PHP1a, it has proposed that PHP1a patients have 
a partial gonadotropin resistance that allows for 
follicular development and estrogen production 
but does not allow for the high level of gonado-
tropin signaling required for ovulation [ 8 ]. 

 The absence of clinical resistance to other hor-
mones that also activate G s α in their target tis-
sues, such as ACTH and vasopressin, in PHP1a 
patients may be related to the absence of G s α 
imprinting in their respective target tissues [ 20 ]. 
In these tissues heterozygous mutations lead to 
only a 50 % reduction in G s α, which may still 
allow enough cAMP signaling to elicit a normal 
physiological response. Lack of G s α imprinting 
in the thick ascending limb of the nephron may 
also explain why the anticalciuric action of PTH 
is maintained in PHP1a patients [ 23 ]. 

 Severe early-onset obesity associated with 
PHP1a (but not PPHP) likely results from G s α 
imprinting in one or more metabolically active 
tissues leading to severe G s α defi ciency. Maternal 
(but not paternal) germline G s α mutation in mice 
is also associated with this parent-of-origin effect 

on obesity, as well as insulin-resistant diabetes 
and hyperlipidemia, and this phenotype is pre-
vented when G s α imprinting is lost [ 24 ]. The 
liver, muscle, and adipose tissue are unlikely to 
mediate these effects as there is no G s α imprint-
ing in these tissues and mice with G s α knockout 
in these specifi c tissues do not mimic the germ-
line phenotype [ 24 ]. However maternal G s α 
mutation limited to the central nervous system 
(CNS) recapitulated the metabolic phenotype 
observed in the germline knockout mice, indicat-
ing that the metabolic effects are related to G s α 
imprinting in one or more regions of the CNS 
[ 12 ]. Although G s α is imprinted in the paraven-
tricular nucleus of the hypothalamus (PVH), G s α 
knockout limited to this region resulted in only a 
minimal metabolic phenotype indicating that the 
metabolic effects of G s α mutations are the conse-
quence of impaired G s α signaling in a brain 
region outside of the PVH [ 25 ]. 

 The obesity in maternal G s α knockout mice 
(both germline and CNS-specifi c) is associated 
with reduced sympathetic nervous system (SNS) 
activity and energy expenditure but not with an 
increase in food intake [ 12 ,  24 ]. This is consistent 
with the fi nding of severely reduced plasma nor-
epinephrine levels in PHP1a patients [ 26 ] and the 
report of a PHP1a infant who developed early- 
onset obesity in the absence of hyperphagia [ 27 ]. 
However two recent studies failed to show reduced 
metabolic rate in PHP1a patients [ 11 ,  28 ]. Obesity 
in maternal CNS-specifi c G s α knockout mice was 
associated with an impaired ability of a central 
melanocortin agonist to stimulate energy expendi-
ture, while the ability of the agonist to acutely 
reduce food intake was maintained [ 12 ], indicating 
selective resistance to the effects of central mela-
nocortins (which mediate their actions via G s α) on 
SNS activity and energy expenditure. Brain G s α 
imprinting may also account for the greater sever-
ity of neurocognitive problems in PHP1a patients 
as compared to PPHP patients [ 5 ]. It is likely that 
the increased insulin resistance observed in PHP1a 
patients [ 11 ] and in G s α knockout mouse models 
[ 12 ] is also related to impaired melanocortin 
actions on peripheral glucose metabolism. 

 AHO features common to both PHP1a and 
PPHP are likely the consequence of G s α 
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 haploinsuffi ciency in tissues where G s α is not 
imprinted. Brachydactyly appears to be the result 
of impaired local action of PTHrP (which acti-
vates G s α via the type 1 PTH receptor that medi-
ates most the actions of both PTH and PTHrP) on 
growth plate chondrocytes leading to accelerated 
differentiation, premature growth plate closure, 
and long bone shortening [ 1 ,  29 ,  30 ]. Ectopic 
ossifi cation in AHO and POH, which has also 
been reported in a mouse AHO model [ 31 ], 
occurs by intramembranous ossifi cation as 
reduced cAMP promotes osteoblast differentia-
tion and expression of the osteoblast-specifi c fac-
tor Cbfa1/RUNX2 [ 1 ]. Hedgehog signaling has 
been shown to be upregulated in ectopic ossifi ca-
tions from POH patients and manipulations of 
Hedgehog signaling in mouse models indicate 
that G s α defi ciency also promotes ectopic ossifi -
cation by altering both Wnt-β-catenin and 
Hedgehog signaling in mesenchymal cells [ 32 ]. 
As AHO and POH patients have similar complete 
null mutations of G s α, the difference in severity 
of the ossifi cations in these two disorders likely 
relates to genetic or environmental factors lead-
ing to differences in G s α expression from the 
unaffected allele, in another component of the 
G s α signaling pathway, or in another pathway 
involved in osteoblast differentiation.  

33.5     Diagnosis 

 PHP1a (as well as PHP1b) typically presents 
with hypo- or eucalcemia, hyperphosphatemia, 
and elevated PTH in the absence of renal insuffi -
ciency or vitamin D defi ciency. Renal PTH resis-
tance can be confi rmed by showing an impaired 
urinary cAMP response to exogenous PTH ana-
logue (Ellsworth-Howard test). However the ana-
logue is not commercially available in a form to 
easily perform this test and this test is generally 
not clinically necessary. Brachydactyly, obesity, 
and neurocognitive defi cits are not specifi c for 
AHO and are seen in other genetic disorders such 
as Prader-Willi syndrome, brachydactyly syn-
dromes, Turner’s syndrome, Rubinstein- Taybi 
syndrome, 2q37 deletion, and acrodysostosis. 
Therefore the presence of only these features 

is not enough to make the specifi c diagnosis of 
AHO or PPHP. Osteoma cutis and PTH resistance 
are much more specifi c for AHO and PHP1a and 
therefore are more useful for establishing this 
diagnosis. The coexistence of PTH resistance 
with other hormone resistance (TSH, gonadotro-
pins) and early-onset obesity makes the diagnosis 
of PHP1a highly likely. Acrodysostosis is another 
syndrome associated with severe short stature, 
brachydactyly, and neurocognitive impairment 
that has been shown to be associated with muta-
tions affecting cAMP action (protein kinase A 
regulatory-1α subunit; PRKAR1A) or cAMP 
degradation (phosphodiesterase 4D) [ 33 ,  34 ]. 
Patients with PRKAR1A mutations also develop 
multihormonal resistance. Mutations in patients 
who present with severe ectopic ossifi cations typ-
ical of POH should be examined for features of 
AHO and biochemically screened for multihor-
monal resistance. 

 The presence of the features of AHO in the 
absence of a clear family history or hormone resis-
tance requires biochemical or genetic confi rmation 
of a G s α defect to establish the diagnosis.  GNAS  
mutation screening can be obtained from commer-
cial laboratories but is only ~70 % sensitive. The 
diagnosis of AHO can also be confi rmed by dem-
onstrating an ~50 % loss of erythrocyte G s α bioac-
tivity or expression levels, but these tests are only 
performed in research laboratories. For the bio-
chemical assays, patient erythrocyte membranes 
are mixed with membranes from a G s α-defi cient 
cell line and reconstitution of G s α signaling is 
quantifi ed. Historically, these assays were per-
formed by stimulating G s α with a non- hydrolyzable 
GTP analogue. However this method will not iden-
tify a defect in patients whose mutation leads to a 
disruption in receptor- G s α coupling, and this could 
lead to a misdiagnosis of PHP1c (clinical PHP1a in 
the absence of a G s α defect) [ 35 ]. Therefore these 
assays should be performed using a receptor ligand 
such as isoproterenol.  GNAS  methylation analysis 
can be performed in patients with AHO features 
and PTH resistance with no apparent G s α mutation. 
However one must consider that an apparent loss of 
methylation typical of PHP1b may in fact be due to 
genetic loss of the differentially methylated region 
on the maternal allele.  
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33.6     Treatment/Counseling 

 There is no specifi c therapy for the physical and 
neurocognitive manifestations of AHO. Ectopic 
ossifi cations do not require surgical excision 
unless they are causing discomfort or disfi gure-
ment. PTH resistance should be treated aggres-
sively with oral calcium and vitamin D (either 
high-dose ergo- or cholecalciferol or calcitriol at 
more physiologic doses) to normalize both cal-
cium and PTH, if possible. In contrast to patients 
with primary hypoparathyroidism, PHP patients 
generally do not develop hypercalciuria on treat-
ment as the calcium-reabsorbing effect of PTH in 
the renal distal tubule is not affected [ 23 ]. 
However urine calcium should be periodically 
monitored. Normalizing PTH is important for 
preventing the skeletal consequences of high cir-
culating PTH levels and preventing the develop-
ment of tertiary hyperparathyroidism, although 
these complications are more typically present in 
PHP1b rather than PHP1a [ 36 ]. TSH and gonad-
otropin resistance in PHP1a is treated with levo-
thyroxine and oral contraceptives (in females) or 
testosterone (in males), respectively. Growth hor-
mone replacement may improve short stature in 
PHP1a patients [ 37 ]. 

 AHO patients (both PHP1a and PPHP) 
should be counseled that each offspring has a 
50 % chance of inheriting AHO, and offspring 
of affected females (both with PHP1a and 
PPHP) will also develop multihormone resis-
tance, obesity, and potentially signifi cant neuro-
cognitive problems. Offspring of affected males 
will almost certainly not develop multihormone 
resistance or severe obesity, although neurocog-
nitive problems may be present. The AHO phe-
notype is variable and it is impossible to predict 
its severity in offspring. Even patients with mild 
features need to be told that their affected off-
spring may develop severe physical and neuro-
cognitive manifestations, including POH. Male 
POH patients should be counseled that each of 
their offspring has a 50 % chance of having 
PPHP or possibly POH. Female POH patients 
should be counseled that each of their offspring 
has a 50 % chance of developing PHP1a and a 
chance of developing POH.  GNAS  mutation 

screening may be useful in identifying further 
affected family members and possibly for 
prenatal testing [ 38 ].     
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34.1            Introduction 

 This chapter will focus primarily on the forms of 
pseudohypoparathyroidism type Ib (PHP-Ib) that 
are caused by different genetic and epigenetic 
abnormalities at the  GNAS  locus. To better com-
prehend the underlying molecular mechanisms 
leading to these PHP-Ib variants, two closely 
related disorders that are caused by different 
 GNAS  mutations, namely, PHP type Ia (PHP-Ia) 
and pseudo-pseudohypoparathyroidism (PPHP), 
will be reviewed fi rst (see also Chaps.   32     and   33    ).  

34.2     Parathyroid Hormone 
and the Regulation 
of Calcium Homeostasis 

 An important role of the parathyroids in the regu-
lation of calcium and phosphate homeostasis was 
established approximately 100 years ago (see also 
Chap.   1    ). Since the early 1900s, it was further-
more known that parathyroid extracts can correct 
the hypocalcemia in parathyroidectomized ani-
mals and in patients with postsurgical or idio-
pathic hypoparathyroidism and increase urinary 

phosphate excretion, thereby improving serum 
phosphate levels. The biologically active princi-
ple in the parathyroids, namely, parathyroid hor-
mone (PTH), could thus be used for investigations 
exploring some of the mechanisms contributing 
to the regulation of mineral ion homeostasis.  

34.3     PTH Resistance Causes 
Hypocalcemia 
and Hyperphosphatemia 

 Once biologically active PTH had become avail-
able, Fuller Albright and his colleagues were 
able to show that certain patients with hypocal-
cemia and hyperphosphatemia failed to increase 
urinary phosphate excretion upon treatment 
with parathyroid extracts [ 1 ]. It was therefore 
hypothesized that these patients had end-organ 
resistance to PTH rather than a defi ciency of 
this hormone, which led to the term “pseudohy-
poparathyroidism” (PHP). These PTH-resistant 
patients showed, besides the abnormalities in 
mineral ion homeostasis, a combination of dif-
ferent physical features, including short stature, 
brachydactyly, and ectopic ossifi cations, as well 
as obesity and various degrees of intellectual and 
cognitive impairment. Largely because of the 
skeletal fi ndings, these physical stigmata are now 
referred to as Albright hereditary osteodystrophy 
(AHO), although a different term refl ecting the 
nonskeletal aspects of the syndrome might be 
more appropriate.  
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34.4     Multiple Variants of 
Pseudohypoparathyroidism 

 To add to the complexity of the PHP syndrome, 
Albright and colleagues described patients who 
presented with AHO features but without evidence 
for an abnormal regulation of calcium and phos-
phate homeostasis; this disorder is referred to as 
pseudo-pseudohypoparathyroidism (PPHP) [ 2 ]. 

 Consistent with the conclusion that PHP-Ia 
patients are resistant toward the actions of PTH 
rather than suffering from hormonal defi ciency, 
Tashjian et al. subsequently showed that affected 
patients have elevated concentrations of immu-
noreactive PTH [ 3 ]. Subsequently, it was further-
more shown that PHP-Ia patients have, besides 
elevated PTH levels, resistance toward other hor-
mones that are now known to mediate their 
actions through G protein-coupled receptors 
(GPCRs) (see Chap.   33    ). Thus, although PTH 
resistance is usually the most prominent feature 
of the disease, involvement of multiple hormonal 
systems raises the question of whether pseudohy-
poparathyroidism is the most appropriate term. 

 After the discovery of cAMP as a second mes-
senger, Aurbach and colleagues demonstrated 
that PTH increases the formation of cAMP in 
 kidney- and bone-derived tissue and that the 
increase in the urinary excretion of phosphate is 
preceded by a striking increase in urinary cAMP 
excretion [ 4 ,  5 ]. These authors furthermore 
showed that patients with PHP and obvious AHO 
features, i.e., individuals affected by PHP-Ia, 
failed to respond to a PTH challenge with an 
increase in urinary cAMP excretion [ 6 ]. This 
indicated that the lack of PTH-induced phospha-
turia in PHP-Ia, initially described by Albright 
et al. [ 1 ], is associated with a severely impaired 
production of this second messenger. However, 
Marcus et al. had been unable to detect a gross 
defi ciency in PTH- dependent cAMP formation 
in renal cortical tissue obtained from a PHP-Ia 
patient [ 7 ], and the authors therefore speculated 
correctly that the underlying defect may occur 
only in certain cells of the renal cortex. It was 
subsequently discovered that tissues readily 
accessible from PHP-Ia patients (erythrocytes, 

skin fi broblasts, and platelets) showed an about 
50 % reduction of G  protein activity (see Chap. 
  33    ). This indicated that the hormonal resistance 
observed in these patients is caused by an abnor-
mal coupling between PTH/PTHrP receptor and 
adenyl cyclase, rather than defi ciency of the hor-
mone receptor or the enzyme catalyzing the for-
mation of cAMP. Reduction in G protein activity, 
combined with the presence or absence of uri-
nary cAMP and phosphate excretion in response 
to PTH, led to the current classifi cation of the dif-
ferent disorders of PTH resistance, namely, PHP 
type I in which the PTH- induced urinary excre-
tions of cAMP and phosphate are both impaired 
and PHP type II in which phosphate excretion, 
but not cAMP excretion, is blunted [ 8 ]. PHP 
type I was further subdivided, based on reduced 
or normal G protein activity, into PHP type Ia or 
PHP type Ib, respectively; patients with PHP type 
Ic show normal G protein activity in comple-
mentation assays using non- hydrolyzable GTP 
analogs but present with clinical and laboratory 
features that are indistinguishable from those of 
PHP type Ia.  

34.5     PHP-Ia Is Caused by 
Mutations in Those  GNAS  
Exons That Encode 
the α-Subunit 
of the Stimulatory G (Gsα) 

 Consistent with the reduction in G protein activ-
ity, subsequent studies identifi ed mutations in 
 GNAS , the gene encoding the stimulatory G pro-
tein (Gsα), i.e., the signaling protein that couples 
the adenylate cyclase to a large variety of different 
GPCRs, thereby stimulating the formation of 
cAMP and the subsequent activation of PKA [ 9 , 
 10 ]. Numerous Gsα mutations (point mutations, 
deletions/insertions, intronic or constitutional 
deletions) have been described to date that can 
affect any of the 13 exons, intervening sequences, 
or splice sites, most of which cause the previously 
observed reduction in G protein activity (see 
Chap.   33    ). It remained unclear, however, why 
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these Gsα mutations were all heterozygous and 
why the loss of Gsα protein from one parental 
allele should lead to PTH resistance at all. This 
conundrum was partially resolved when Davies 
and Hughes revealed that PHP-Ia and the associ-
ated PTH resistance become apparent only when 
the genetic defect is inherited maternally [ 11 ].  

34.6     Gsα Is Expressed in Some 
Tissues Only 
from the Maternal Allele 

 It is now well established that Gsα is ubiquitously 
expressed and couples adenylate cyclase to 
numerous GPCRs, including the PTH/PTHrP 
receptor. Gsα is derived from the  GNAS  locus, a 
complex imprinted genomic region located on 
chromosome 20q13, which encodes besides Gsα 
several other alternatively spliced transcripts (see 
Chap.   10    ). In some tissues such as the proximal 
renal tubules (PTH target), the thyroid (TSH tar-
get), or the pituitary gland (CRF, GHRH target), 
Gsα is predominantly or exclusively expressed 
from the maternal allele, while expression from 
the paternal allele is silenced through as-of-yet 
unknown mechanisms (Fig.  34.1 ). This mecha-
nism appears to be particularly effi cient in the 
proximal renal tubules, thus explaining the PTH 
resistance observed in patients with different 
PHP variants that are caused by maternally inher-
ited  GNAS  mutations. PTH resistance develops 
gradually after birth in humans, and this delay is 
consistent with recent fi ndings in mice showing 
that the silencing of paternal Gsα expression in 
the proximal tubule develops gradually after 
early postnatal stages [ 12 ,  13 ]. Gsα expression is 
biallelic in most other tissues, including distal 
renal tubules [ 14 – 16 ] and bone [ 17 ,  18 ], i.e., two 
tissues in which patients with PHP-Ia and PHP-Ib 
show no evidence for PTH resistance. Silencing 
of Gsα expression from the paternal allele in 
the proximal renal tubules is thus of critical 
importance for the development of PTH-resistant 
hypocalcemia and hyperphosphatemia that is 
encountered in the  GNAS -related forms of PHP.   

34.7     Pseudohypoparathyroidism 
Type Ib (PHP-Ib) 

 In contrast to PHP-Ia, which was resolved at the 
molecular level following the identifi cation of 
heterozygous  GNAS  mutations that lead to an 
inactive Gsα protein [ 9 ,  10 ], the mechanisms 
leading to PHP-Ib remained to a large extent 
unknown. Fuller Albright and others had already 
described some patients with PTH-resistant 
hypocalcemia and hyperphosphatemia, who did 
not show typical AHO features [ 19 – 21 ]; in one 
family, this form of PHP followed an autosomal 
dominant mode of inheritance [ 22 ]. Subsequent 
studies showed that similar patients without 
apparent AHO features have normal G protein 
activity in peripheral blood cells or skin fi bro-
blasts [ 23 ,  24 ]; this disease variant is therefore 
referred to as PHP-Ib. Fibroblasts from some of 
these patients showed evidence for decreased 
responsiveness to PTH, which suggested that this 
PHP variant could be caused by mutations in the 
receptor for PTH, i.e., the PTH/PTHrP receptor 
[ 25 ]. However, mutations in this GPCR were 
subsequently excluded at the genomic and the 
mRNA level [ 26 – 30 ]. It was furthermore shown 
that PTH/PTHrP receptor mutations lead to dis-
eases that are much more severe than PHP-Ib, 
namely, Jansen’s and Blomstrand’s diseases 
that are caused by heterozygous activating and 
homozygous/compound heterozygous inactivat-
ing mutations, respectively, in this GPCR (for 
review, see [ 31 ]).  

34.8     Genetic Causes of Autosomal 
Dominant PHP-Ib 
(AD-PHP-Ib) 

 After mutations had been excluded in the gene 
encoding the PTH/PTHrP receptor, genetic link-
age studies were pursued to identify the disease- 
associated locus. DNA was available from a large 
family, in which the disease followed an autosomal 
dominant trait, albeit with incomplete penetrance 
since two daughters of the index case were healthy, 
yet had affected children and  grandchildren [ 32 ]. 
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  Fig. 34.1    PTH actions in proximal and distal renal 
 tubular cells.  Upper panels:  Proximal ( left ) and distal 
( right ) tubular cells express the PTH/PTHrP receptor. 
Stimulation by PTH enhances the formation of cAMP 
(Ca 2+ /IP3 signaling pathway not shown) resulting in PKA 
activation. Second messenger production is mediated by 
the stimulatory G protein (Gsα), which is expressed in 
the distal tubules from both parental alleles, while this 
signaling protein is derived in the proximal tubules pre-
dominantly from the maternal allele.  Lower panels:  A 
loss of Gsα expression from the maternal allele is 

observed in patients affected either by PHP-Ia ( maternally 
inherited mutations in the  GNAS  exons encoding Gsα) 
or PHP-Ib (maternally inherited deletions within or 
upstream of  GNAS  that are associated with loss of the 
maternal methylation imprints). Consequently, the PTH-
stimulated increase in urinary cAMP and phosphate 
excretion by the proximal renal tubules is blunted ( left ). 
In the distal tubules ( right ), however, Gsα expression 
from the paternal allele remains intact, thus enhancing 
PTH-stimulated calcium reabsorption which results in 
diminished urinary calcium excretion       
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A single linkage peak was observed for chromo-
some 20q13.3, e.g., the genomic region compris-
ing the  GNAS  locus. Several additional unrelated 
kindreds mapped to the same locus suggesting 
that AD-PHP-Ib could be caused by a genetic 
defect involving  GNAS , although the exons encod-
ing Gsα had been excluded [ 32 ,  33 ]. In addition, 
it became apparent that PTH-resistant hypo-
calcemia and hyperphosphatemia develop only 
when the disease-associated allele is inherited 
from a female who is either affected by PHP-Ib 
or is an obligate carrier; affected males never had 
affected children. This imprinted mode of inheri-
tance was identical to the fi ndings in patients with 
Gsα mutations, who develop hormonal resistance 
only when the  GNAS  mutation is inherited from a 
female affected either by PHP-Ia or PPHP [ 11 ]. 
Subsequently, Weinstein et al. showed that all 
familial and most sporadic PHP-Ib cases show 
methylation changes involving one or several of 
the four differentially methylated regions (DMRs) 
within the  GNAS  locus [ 34 ]. However, additional 
mapping of the linked region on chromosome 
20q13.3 showed that the mutation which causes 
AD-PHP-Ib is located centromeric of the  GNAS  
locus itself [ 33 ]. The disease-causing mutation 
was eventually identifi ed as a maternally inherited 
3-kb deletion within  STX16 , the gene encoding 
syntaxin 16, and that the deletion is associated 
with a loss of  GNAS  methylation affecting only 
exon A/B [ 35 ]. This heterozygous deletion 
removes  STX16  exons 4–6 and is the most fre-
quent cause of AD-PHP-Ib, which has been iden-
tifi ed thus far in almost 50 unrelated families [ 36 ]. 
Two subsequently identifi ed  STX16  deletions that 
are also associated with only limited  GNAS  meth-
ylation change remove either exons 2–4 [ 12 ] or 
exons 2–8 [ 37 ]. Another deletion of about 18.9 kb 
was discovered in a kindred in which the affected 
members show an isolated loss of exon A/B meth-
ylation. This novel deletion removes most of the 
genomic region between  GNAS  antisense exons 
4 and 5, including exon NESP55 [ 38 ]. In con-
trast, deletions extending from exon NESP55 to 
AS exon 3 or comprising only AS exons 3–4 are 
associated with loss of methylation of all maternal 
methylation imprints [ 39 ,  40 ].  

34.9     Genetic Causes of Sporadic 
PHP-Ib 

 The sporadic variant of PHP-Ib remains unresolved 
at the molecular level for most patients. These spo-
radic cases have broad  GNAS  methylation changes 
that usually involve all four DMRs; incomplete 
loss of methylation has been observed in several of 
these patients [ 34 ,  41 – 43 ]. Analysis of microsatel-
lites and single nucleotide  polymorphisms of the 
 GNAS  region for siblings and parents of affected 
individuals showed, for numerous families, that the 
healthy siblings shared the same maternally inher-
ited allele as the affected patients; furthermore, the 
healthy mothers of these patients revealed no evi-
dence for apparent methylation changes at  GNAS  
exon NESP55, which would be expected for a 
 GNAS  deletion comprising this exon. These data 
excluded an inherited deletion or point mutation 
involving this chromosomal region, but a de novo 
mutation remained plausible [ 42 ]. However, more 
recent data made such an event unlikely, at least in 
several females with sporadic PHP-Ib, who passed 
either the maternally or the paternally inherited 
 GNAS  allele to their children, yet these children 
were healthy and showed no  GNAS  methylation 
changes [ 44 ,  45 ]. The fi ndings made linkage to 
the  GNAS  region unlikely and raised the possibil-
ity that the sporadic variant of PHP-Ib is caused 
by a recessive mutation elsewhere in the genome. 
However, certain fi ndings argue against this pos-
sibility. Thus far, only a single family with two 
affected individuals has been described that does 
not appear to be linked to the  GNAS  locus [ 46 ]. 
Furthermore, all other unsolved sporadic PHP-Ib 
cases have, in our experience, only healthy siblings 
(unpublished observations), thus raising doubts that 
dominant or recessive mutations in an as-of-yet 
unknown gene are a frequent cause of this disease 
variant. Moreover, mutations involving a gene that 
is involved in establishing or maintaining  GNAS  
methylation would be expected to lead to changes 
at other imprinted genomic loci; however, only few 
sporadic PHP-Ib cases revealed epigenetic changes 
outside the  GNAS  locus [ 47 ,  48 ]. 

 A clearly established cause of sporadic PHP-Ib 
is paternal uniparental isodisomy (patUPD) 
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involving either the long arm of chromosome 20, 
large segments thereof, or the entire chromosome 
20 [ 46 ,  49 – 52 ] (Fig.  34.2 ). Because these regions 
comprise only paternally inherited DNA that is 
not methylated at exons A/B, XL, and AS, Gsα 
expression is predicted to be markedly reduced 
in the proximal renal tubules and other tissues in 
which Gsα expression from the paternal allele 
is silenced. The known cases with patUPD20q 
comprise large chromosomal segments, but 
such extensive duplications were excluded in 
 numerous sporadic PHP-Ib patients, thus raising 
the possibility that other causes are responsible 
for this disorder.   

34.10     Hypotheses Regarding 
the Cause of Unresolved 
Sporadic PHP-Ib Cases 

 The lack of multiple families with more than one 
affected child yet the apparent exclusion of the 
 GNAS  locus raises the question of whether mech-
anisms other than patUPD20q or a recessive 
mutation might be responsible for the sporadic 
PHP-Ib variant. Such an alternative cause for 
sporadic PHP-Ib could include interallelic gene 
conversion [ 53 ,  54 ] or stochastic  GNAS  methyla-
tion changes [ 55 ]. Most sporadic PHP-Ib patients 
show a loss of the three maternal methylation 
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  Fig. 34.2     GNAS  locus: parent-specifi c methylation and 
locations of heterozygous deletions that cause autosomal 
dominant PHP-Ib. Maternally inherited mutations in the 
Gsα-encoding exons 1–13 cause PHP-Ia, while pater-
nally inherited mutations lead to the related disorders 
PPHP and POH. Autosomal dominant PHP-Ib is caused 
either by maternal deletions within  STX16  or within 
 GNAS ; these disease variants are associated either with 
loss of  GNAS  methylation restricted to exon A/B alone 

( light green horizontal bars ) or with methylation 
changes at multiple  GNAS  exons ( dark yellow horizontal 
bars ). Paternal uniparental isodisomy for chromosome 
20q (patUPD20q) is a rare cause of sporPHP-Ib, but 
most sporadic cases have not yet been defi ned at the 
molecular level.  Boxes  exons,  connecting lines  introns,  P  
paternal,  M  maternal,  methylated  (+),  non-methylated  
(−), transcriptional direction ( arrows ) (Modifi ed from 
Turan et al. [ 36 ])       
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imprints (A/B, XL, and AS) and a gain of meth-
ylation at the NESP55 DMR, yet no evidence for 
a loss of the maternal allele. Duplication of the 
paternal DNA through gene conversion would 
thus be expected to comprise all DMRs at the 
 GNAS  locus, unless all methylation imprints at 
this locus are established and/or maintained 
through a small, as-of- yet undefi ned region 
within this locus.  

34.11     Laboratory 
and Radiographic 
Abnormalities 
in the Different PHP-Ib 
Variants 

 Autosomal dominant PHP-Ib and patUPD20q, and 
other sporadic variants of PHP-Ib, are all associ-
ated with  GNAS  methylation changes. Despite hav-
ing distinct epigenetic abnormalities at the  GNAS  
locus (i.e., isolated loss of methylation at exon A/B 
vs. broad methylation defects involving exon A/B 
and at least one other  GNAS  DMR), most PHP-Ib 
patients typically present with similar laboratory 
abnormalities early in the second decade of life 
[ 42 ]; some patients become symptomatic much 
earlier, and others do not present with symptoms 
until much later in life or they develop only mild or 
no laboratory abnormalities. The delay in the 
development of symptoms is most likely related to 
the lack of imprinted Gsα expression in the bone 
[ 56 ], which allows maintaining normocalcemia for 
extended periods of time through increased PTH-
dependent bone resorption. In fact, PHP-Ib patients 
with long- standing elevations in PTH levels can 
show an impressive increase in bone turnover 
resulting in hyperparathyroid bone disease, which 
led to the introduction of the term “pseudohypo- 
hyperparathyroidism” [ 57 – 60 ]. Besides PTH resis-
tance, PHP-Ib patients can show evidence for TSH 
and calcitonin resistance, while GHRH resistance 
leading to growth hormone defi ciency is not a fre-
quent occurrence, which is different from the fi nd-
ings in PHP-Ia patients [ 49 ,  61 ]. 

 Initially PHP-Ib patients were thought to lack 
AHO features. However, several recent reports 
identifi ed patients who carry genetic and epigen-

etic defects associated with PHP-Ib yet present 
with mild AHO features, particularly shortness of 
metacarpal bones [ 43 ,  62 – 64 ]. In one large  family 
in which PHP-Ib is caused by the frequently 
observed 3-kb deletion within  STX16 , skeletal 
abnormalities vary from brachydactyly to 
Madelung-like deformity despite the same under-
lying genetic defect [ 65 ]. These skeletal abnor-
malities occurred only when the genetic mutation 
was maternally inherited.  

34.12     Pseudohypoparathyroidism 
Type II 

 Patients with PTH-induced nephrogenous cAMP 
formation but a blunted phosphaturic effect with-
out skeletal abnormalities are referred to as hav-
ing pseudohypoparathyroidism type II (PHP-II). 
This rare form of PHP is typically sporadic, but a 
case with a familial form of PHP-II type has been 
reported [ 66 ], and several reports describe evi-
dence for a self-limited form of this disease in 
newborns, which could indicate that it is transient 
in nature [ 67 – 70 ]; the underlying molecular 
defect was postulated to involve a defect down-
stream of cAMP generation [ 8 ]. In fact, muta-
tions in the regulatory subunit of protein kinase A 
have been identifi ed in some patients with a form 
of acrodysostosis that is associated with normal 
PTH-stimulated urinary cAMP excretion but 
with a blunted phosphaturic response. However, 
unlike individuals with transient PHP-II, these 
patients show resistance toward multiple hor-
mones, and they present with characteristic skel-
etal abnormalities [ 16 ,  71 ]. Alternatively, Gq- or 
G 11 -dependent signaling by the PTH/PTHrP 
receptor may be defective in PHP-II patients, 
since PKC signaling appears to be important for 
sustaining the phosphaturic actions of PTH, as 
recently shown for mice expressing a mutant 
PTH/PTHrP receptor that fails to activate IP3/
PKC signaling [ 72 ,  73 ]. Furthermore, vitamin D 
defi ciency has been associated with PTH- 
resistant hyperphosphatemia [ 74 – 76 ]. PHP-II 
may thus be caused by different genetic and non-
genetic defects.     
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35.1             Introduction 

 When Fuller Albright described in 1942 the con-
cept of  pseudohypoparathyroidism  (PHP) in three 
patients who showed no improvement in their 
serum calcium or their serum phosphate con-
centrations in response to parathyroid extract, he 
could not imagine the future extent of the fi eld he 
was creating [ 1 ]. More than ten different pheno-
types, a similar number of causative mechanisms 
and/or genes and major biological functions like 
 cAMP  signaling, epigenetics, development, and 
cell differentiation are concealed behind the term 
“pseudohypoparathyroidism.” This explains the 
diffi culty for experts to produce a consensual 
classifi cation of PHP and the rapid evolution of 
the recommendations in both care and genetic/
epigenetic testing of affected patients. 

 The genetic testing of a patient affected with 
PHP or a PHP-like phenotype requires knowing 
the following elements:
•    The peculiarity of  parental imprinting   
•   The overlap among clinical presentations of PHP 

and their underlying molecular mechanisms  
•   The ongoing discovery of new genes    

 It is therefore of utmost importance to delin-
eate the symptoms and biochemical fi ndings of 
the affected patient in order to guide the genetic 
investigation and identify the disease-causing 
mechanism (see also Chaps.   32    ,   33    , and   34    ).  

35.2     Genetics, Epigenetics, 
and PTH Signaling 

 Under physiological conditions, upon ligand 
binding (e.g., parathyroid hormone (PTH)) to 
the parathyroid hormone (PTH), Gsα, the alpha- 
stimulatory subunit of the G protein, encoded by 
the  GNAS  gene, dissociates from the ßγ-subunits of 
the G protein, activates adenylate cyclase, and trig-
gers cAMP synthesis, which acts as a second mes-
senger to elicit the effects on target cells. Binding 
of cAMP to the regulatory subunits (R1A encoded 
by PRKAR1A) of protein kinase A (PKA) unlocks 
catalytic subunits and unleashes a cascade of 
events, including phosphorylation of PDE4D and 
CREB. Phosphodiesterases (PDEs), including 
PDE4D, degrade cAMP to maintain intracellular 
concentrations. Other cAMP targets have been 
identifi ed, such as cyclic nucleotide-gated cation 
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channels (CNG) and the exchange proteins 1 and 2 
activated by cAMP (Epac1 and Epac2) [ 2 ,  3 ]. 

 Pseudohypoparathyroidism is the conse-
quence of the lack of the downstream, cAMP- 
mediated signaling activated via the PTH receptor 
(PTHR1) following its activation by its ligand, 
PTH. So far, most of the identifi ed causes of PHP 
affect the signaling of the PTHR1 through this 
Gsα/cAMP/PKA pathway. Molecular alterations 
of this pathway also affect, although with differ-
ent severities or at different times of develop-
ment, the signaling of numerous other hormones 
and their receptors, including TSH, PTHrP 
(PTH-related peptide, a ligand of the PTHR1 
specifi cally acting on chondrocyte differentia-
tion) catecholamine, and calcitonin that signal 
through GPCRs and the same Gsα/cAMP/PKA 
pathway [ 4 ]. 

 Genomic imprinting is an epigenetic mecha-
nism whereby expression of a subset of genes is 
restricted to a single parental allele. The  GNAS  
locus is a complex imprinted locus that encodes 
Gsα and four additional alternative transcripts: 
XLαs, NESP55 (neurosecretory protein 55), the 
A/B transcript, and the antisense transcript (AS). 
AS, XLαs, and A/B are paternally derived tran-
scripts, while NESP55 is a maternally derived 
transcript [ 5 ,  6 ]. Consistent with their monoallelic 
expression, the promoters of these imprinted tran-
scripts are located within differentially methylated 
regions (DMRs) (Fig.  35.1 ). In contrast, the pro-
moter giving rise to Gsα is not methylated, and, 
accordingly, transcripts are derived in most tissues 
from both parental  GNAS  alleles. In some tissues, 
including proximal renal tubules, brown adipose 

tissue, pituitary, gonads, and thyroid, however, 
Gsα transcripts are predominantly derived from 
the maternal allele [ 7 ]. Gsα and its splice variant 
XLαs are identical in their C-termini encoded by 
exons 2–13 of  GNAS  and differ in their N-termini 
encoded by different fi rst exons [ 8 ].   

35.3     Classifi cations of PHP 
and Guidance for Genetic 
Testing 

 An update on the classifi cation of PHP has been 
given in Chap.   32    , and diseases have been 
described in detail in Chaps.   33     and   34    . The phe-
notype of the patients will remain the primary 
guide for the genetic testing and will determine 
the order of investigations. Juxtaposing pheno-
types and molecular fi ndings in PHP provides the 
grounds for the choice of genetic/epigenetic test-
ing in patients (Table  35.1 ).

35.4        Patients Affected 
with PHP1A 

 Patients presenting a collection of features, includ-
ing Albright hereditary osteodystrophy (AHO) 
and obesity, and end-organ resistance to hormones 
that signal through G-protein-coupled receptors 
(GPCRs) are categorized under the term pseudo-
hypoparathyroidism 1A (PHP1A).  Heterozygous 
loss-of-function mutations of  Gsα are the main 
cause of PHP1A [ 9 ,  12 ,  26 – 28 ]. Because of the 
parental imprinting of  GNAS , these mutations 
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  Fig. 35.1    Schematic representation of the  GNAS  locus. 
The  GNAS  locus is scaled, based on HG19. The four DMRs 
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always lie on the maternal allele of  GNAS . As 
would be expected, these mutations are either 
maternally inherited or occur  de novo  on the 
maternal  GNAS  allele [ 12 ]. Deletions, insertions, 
amino-acid substitutions, or stop codons have 
been found in coding exons and exons-introns 
boundaries, with three hot spots located in exons 
6, 7, and 13 of  GNAS ; mutations may also lie in the 
alternatively spliced exon 3 [ 29 ].  In vitro  analyses, 
in transfected cells that endogenously lack both 
Gsα and XLαs ( Gnas  −/−  cells), have demonstrated 
that mutations impair Gsα transcript expression or 
cAMP generation upon agonist stimulation [ 8 , 
 30 ]. These mutations are identifi ed in about 
60–70 % of the PHP1A patients [ 12 ,  27 ]. The 
sequencing of  GNAS , whatever the technique 
used, is therefore the primary investigation to con-
sider in these patients. However, some issues have 
been identifi ed. Firstly, as for many genes, exon 1 
of  GNAS  is highly GC enriched and consequently 
is diffi cult to amplify and sequence. Secondly, 
 large deletions  removing the entire  GNAS  gene or 
several exons may cause PHP1A [ 31 ,  32 ]. If the 
sequencing technique, i.e., Sanger method, does 
not measure the gene dosage (copy number), such 
large deletions cannot be detected and require spe-
cifi c quantitative strategies such as multiplex liga-
tion-dependent probe amplifi cation (MLPA), a 
custom-made CGH array encompassing the  GNAS  
locus (an approach utilized by us), quantitative 
genomic PCR [ 33 ], or next- generation sequencing 
(the list is not exhaustive). 

 As mentioned above, about 30 % of patients 
with a phenotype compatible with PHP1A do not 
display mutations in the coding regions of  GNAS . 
There is now enough evidence that several differ-
ent molecular defects present as phenocopies of 
PHP1A. They constitute the second line of inves-
tigation in these patients:
•    We and others have shown that abnormal 

methylation of the  GNAS  DMRs is the cause, 
in some patients, of PTH resistance and 
Albright hereditary osteodystrophy (24 out of 
40 patients in the series of Mantovani et al. 
[ 10 ,  33 ,  34 ]). It is therefore mandatory to 
investigate the imprinting pattern of the  GNAS  
locus in these patients as described below in 
patients identifi ed as PHP1B.  

•   Mutations in  PRKAR1A , encoding the regula-
tory subunit of PKA, leading to a decreased 
affi nity of the subunit for cAMP hence 
decreased PKA activity, have also been identi-
fi ed in patients fi rst characterized as PHP1A 
by their physicians [ 11 ,  35 ] (our experience, 
Fig.  35.2 ).      

35.5     Patients Affected 
with PHP1C 

 Pseudohypoparathyroidism 1C (PHP1C) differs 
from PHP1A by the preserved Gsα activity mea-
sured in patients’ blood cells. Our group has 
demonstrated through functional  in vitro  analysis 
that some of these patients carry a maternal loss-
of- function mutation of the coding regions of 
 GNAS . Interestingly, these mutations (1) are 
located within the carboxy-terminus of Gsα, (2) 
impair the ability of the protein to interact with 
GPCRs, but (3) do not prevent the generation of 
cAMP through stimulation of adenylate cyclase 
which explains the normal  in vitro  Gsα bioactiv-
ity [ 12 ,  13 ]. All considerations regarding genetic 
testing for PHP1A, therefore, also apply to 
PHP1C.  

35.6     Patients Affected 
with PHP1B 

 The molecular diagnosis of PHP1B is a three-
step strategy:
   First step: document that the patient’s phenotype 

is compatible with PHP1B    
 In most cases, the phenotype of patients 

affected with PHP1B is restricted to the renal 
resistance to the action of PTH, i.e., the associa-
tion of normal or low calcium levels, elevated 
serum phosphate, elevated PTH, and normal kid-
ney function. Careful attention should be paid to 
the biochemical characterization of PTH resis-
tance as other conditions may lead to increased 
PTH levels and normal calcium levels (normo-
calcemic hyperparathyroidism) or increased PTH 
levels and hypocalcemia (vitamin D defi ciency). 
As mentioned above, in Chap.   34     and illustrated 
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  Fig. 35.2    Phenotypic overlap in patients affected with 
PHP. ( a – c ) are X-rays of the hand from a 30-year-old 
male, a 13-year-old girl, and an 11-year-old girl, respec-
tively, all affected with PHP1A and a maternal loss-of- 
function mutation of  GNAS . ( d ,  e ) are hand X-rays from a 
24-year-old male and a 13-year-old girl, respectively, both 

affected with PHP1B and broad loss of imprinting at the 
 GNAS  DMRs. ( f ,  g ) are hand X-rays from a 9-year-old girl 
and an 11-year-old girl, respectively, both affected with a 
bone phenotype and PTH and TSH resistance and who 
carry a heterozygous mutation in PRKAR1A (OMIM 
ACRDYS1)       
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Fig. 35.2 (continued)
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in Fig.  35.2 , the diagnosis should also be consid-
ered in patients with resistance to hormones that 
signal through GPCRs and exhibit features of 
Albright hereditary osteodystrophy in the absence 
of loss-of-function mutations in the  GNAS  gene.
   Second step: prove the loss of imprinting at the 

A/B promoter of  GNAS     
 All patients affected with PHP1B share the 

loss of methylation at the A/B promoter of  GNAS  
(Fig.  35.1 ), which likely results in suppressed 
Gsα transcription in imprinted tissues. The asso-
ciation between the decreased methylation of 
cytosines at the A/B promoter of  GNAS  and the 
increased expression of the A/B transcript (and 
hence the suppression of Gsα transcript expres-
sion) is based on a few experimental observations 
[ 36 ,  37 ], mostly from animal studies. We have 
shown that patients with LOI at the A/B promoter 
of  GNAS  display a signifi cant decrease in eryth-
rocyte Gsα activity compared to normal controls 
[ 13 ] and that the percent of methylation at A/B 
correlates with serum PTH in these patients [ 38 ]. 
Loss of the maternal imprint at A/B appears to be 
the molecular defect mandatory for the develop-
ment of PHP1B. In about 80 % of PHP1B 
patients, loss of imprinting (LOI) encompasses at 
least another DMR of  GNAS , i.e., XL, AS, and/or 
NESP [ 14 ,  39 ]. DMRs’ methylation along the 
 GNAS  locus might be altered unevenly among 
patients [ 38 ]. 

 Because imprinted DMRs have opposite meth-
ylation profi les, e.g., methylated on the paternal 
allele and unmethylated on the maternal allele, 
quantitative measure of DNA methylation at the 
A/B, XL, AS, and NESP DMRs of  GNAS  is more 
or less 50 % in samples from healthy individuals. 
The range of methylation indices is very narrow 
[ 38 ] and constant throughout life at these DMRs. 
In patients, the profound loss of methylation at 
A/B, XL, and AS and the gain of methylation at 
NESP indicate the loss of maternal imprinting. 
However, in some patients, the methylation defect 
is incomplete, suggesting that (1) different cell 
populations coexist, cells with abnormal methyla-
tion at  GNAS  and cells with a normal methylation 
pattern, and (2) the epimutation occurred post-
zygotically in these patients. There is a need to 
defi ne the boundaries of normal/abnormal 

 methylation patterns at the different DMRs of 
 GNAS ; the sharing of human samples and the 
results obtained should facilitate this. 

 Several methods have been developed to assess 
the  methylation  pattern at imprinted regions of 
 GNAS . All techniques necessitate discriminat-
ing methylated and unmethylated DNA. The fi rst 
description of LOI at  GNAS  was done by digest-
ing the genomic DNA of patients extracted from 
leukocytes by methyl-sensitive enzymes, fol-
lowed by probe hybridization onto the A/B DMR 
of  GNAS  (also called 1A). Southern blotting was 
then rapidly replaced by less DNA- and time- 
consuming methods. Today, most techniques 
differentiate the methylated and unmethylated 
alleles through chemical modifi cation of unmeth-
ylated cytosines by sodium bisulfi te followed 
by DNA amplifi cation. Qualitative, semiquan-
titative, or quantitative assessment of the meth-
ylated cytosines (not modifi ed by the sodium 
bisulfi te) or unmethylated cytosines (converted 
into thymidines) may be done through numerous 
tactics including enzymatic restriction (COBRA 
or combined bisulfi te restriction enzymatic 
analysis), Sanger sequencing, pyrosequencing, 
MethylQuant, or EpiTYPER. Alternatively, other 
methods, such as methylation-specifi c MLPA or 
MS-MLPA, profi le the methylation semiquanti-
tatively using methyl-sensitive restriction of the 
DNA combined with copy number detection (see 
below). The diagnosis of PHP1B should include 
characterization of the methylation defect at the 
A/B DMR of  GNAS , which we know is associ-
ated with impaired Gsα expression.
   Third step: identify the cause of the loss of mater-

nal imprint at the A/B promoter of  GNAS     
 Genomic imprinting is mainly due to the dif-

ferential allelic DNA methylation of regulatory 
regions or  promoters that occurs under the con-
trol of  imprinting control elements  (ICEs). The 
integrity of the ICEs and the factors necessary for 
the establishment of imprinting and its mainte-
nance, together with a proper environment, are 
necessary to ensure a 50 % methylation index in 
all DMRs of  GNAS . We and others propose that 
the LOI at the A/B promoter of  GNAS  is the con-
sequence of a cytogenetic, genetic, or environ-
mental assault that needs to be identifi ed. 
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 The known causes of loss of maternal imprint 
at  GNAS  are as follows:
•    Deletion of an ICE of  GNAS     

 In most familial cases of PHP1B, the LOI is 
restricted to A/B and associated with a maternal 
heterozygous deletion of  STX16  [ 14 ,  40 ,  41 ], 
located 220 kb telomeric of A/B, or NESP [ 15 ]. 
In a few familial cases with LOI extending along 
the whole  GNAS  locus, deletions of the entire 
maternal NESP or of the AS DMRs have been 
identifi ed [ 16 ,  42 ]. The deleted regions are con-
sidered as ICEs of  GNAS . In theory, maternal 
deletion of the entire  GNAS  locus should also 
lead to PHP. 

 Identifi cation of ICE deletions has been car-
ried out through various methods including 
Southern blot [ 14 ], quantitative genomic PCR 
[ 33 ], comparative genomic hybridization, multi-
plex long-range PCR [ 14 ], and MS-MLPA [ 41 ]. 
The latter is now widely used as it assesses both 
the methylation profi le and copy number of 
 GNAS  alleles in a single experimental run and it 
is commercially available. However, the large 
size of the imprinted  GNAS  locus and the likeli-
hood of necessary long-acting regulator elements 
of  GNAS  prevent the complete search for ICE 
deletions with these methods.
•    Cytogenetic errors involving chromosome 20q    

 Uniparental disomy (UPD) arises usually from 
the failure of the two members of a chromosome 
pair to separate properly during meiosis in the par-
ent’s germline (nondisjunction). Rescue events 
such as duplication of a single chromosome in a 
monosomy or nondisjunction of chromosomes 
causing a trisomy will then result in UPD. UPD 
can also occur post fertilization. Consequently, the 
imbalance of paternal and maternal  GNAS  alleles 

leading to the loss of maternal imprinting is asso-
ciated with decreased Gsα expression. Paternal 
UPD of chromosome 20q comprises isodisomy 
(identical copies of the paternal chromosome 
20q – or segments containing  GNAS  – and loss 
of the maternal chromosome), heterodisomy 
(lack of transmission – or loss – of the maternal 
chromosome 20q and transmission of both pater-
nal chromosome 20q), or a mixture of isodisomy 
and heterodisomy. Overall, patUPD represents 
10–25 % of investigated PHP1B patients [ 17 , 
 43 ,  44 ]. Because the discovery of patUPD will 
make it possible to inform the patient of the near-
absent risk of transmission, we propose to investi-
gate patients with broad LOI at the  GNAS  locus, 
especially if they also display LOI at the nearby 
imprinted locus  L3MBTL1  [ 44 ]. 

 Isodisomy is characterized by perfect homozy-
gosity along segments or the entire chromosome. 
All methods used to demonstrate isodisomy feature 
loss of heterozygosity (LOH), such as microsatel-
lite analysis or single nucleotide polymorphism 
(SNP) arrays (Fig.  35.3 ). The search for heterodi-
somy requires analyzing parents’ and proband’s 
samples and performing haplotype analysis.  

 Identifi cation of LOI will therefore trigger 
genetic and cytogenetic investigations depending 
on the  GNAS  methylation profi le. Loss of meth-
ylation restricted to the A/B promoter of  GNAS  
leads to a thorough analysis of the  STX16  and 
NESP regions. Broad LOI at  GNAS  implies the 
need to look for patUPD, deletion of the locus, 
and deletion of an ICE of  GNAS . However, in 
about 70 % of PHP1B patients with broad LOI at 
 GNAS , the underlying defect accounting for the 
loss of maternal imprint at A/B remains to be 
discovered.  
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35.7     Patients Affected 
with Pseudopseudo -
hypoparathyroidism (PPHP) 

 The diagnosis of PPHP is remarkably challenging 
because of the nonspecifi c symptoms of Albright 
hereditary osteodystrophy. Brachydactyly may 
reveal PPHP as well as numerous developmental 
bone disorders [ 11 ,  45 ]. Several situations direct 
the genetic testing in these patients and need to 
be recognized. 

35.7.1     PPHP with Ectopic 
Subcutaneous Ossifi cations 
or Osteoma Cutis 

 The presence of ectopic bone in the dermis or 
subcutaneous fat is essential to the diagnosis of 
PPHP. Very few diseases, especially in children, 
lead to the formation of ectopic bone. The main 
differential diagnosis is fi brodysplasia ossifi cans 
progressiva (FOP), a rare disorder characterized 
by bone growing from deep tissues, not from the 
surface. Altogether, when ectopic bone is pres-
ent – in the absence of hormonal resistance – one 
should search for paternal mutations of the cod-
ing region of  GNAS . Of note, in young children 
affected with PHP1A, including ectopic subcuta-
neous ossifi cations and a maternal mutation of 
 GNAS , the hormonal resistance may be absent.  

35.7.2     PPHP in a Familial 
Context of PHP1A 

 The genetic testing will aim at identifying a loss-
of- function mutation in the coding region of 
 GNAS .  

35.7.3     “Isolated” PPHP 

 This represents the most problematic situation 
for genetic testing, which will depend on the 
involvement and expertise of the physician and 
availability and cost of gene analyses in order to 
trigger and orient the investigations. Besides 

paternal coding mutations in  GNAS , PPHP could 
uncover mutations in PDE4D, PTHLH, HOXD3, 
or 2q37 deletions (non-exhaustive list of possible 
genes affected).   

35.8     Patients Affected with POH 

 Mutations in the coding sequence of Gsα found 
in patients with POH are also found in patients 
with PHP1A or PPHP, although they are exclu-
sively located on the paternal allele [ 19 ], and 
mostly severely affect protein function [ 46 ].  

35.9     Patients Affected 
with Acrodysostosis 

 Acrodysostosis is a developmental chondrodys-
plasia presenting some phenotypic similarities 
to PHP1A. Patients typically present with facial 
and peripheral dysostosis characterized by severe 
brachydactyly, indicating a defect in impairment 
of PTHrP actions on endochondral bone devel-
opment [ 20 – 22 ,  47 ].    In some patients, resistance 
to PTH and other hormones signaling through 
GPCRs is present, although it is less pronounced 
than in PHP1A. This resistance is associated 
with elevated cAMP levels measured in blood 
and urine, as expected with cAMP resistance. 
These patients are named ACRDYS1 in contrast 
with ACRDYS2 (acrodysostosis without hor-
monal phenotype). Heterozygous mutations of 
 PRKAR1A  are responsible for ACRDYS1 [ 20 ]. 
These mutations are mainly missense mutations, 
except for very few mutations, like the hot-spot 
mutation, R368X, that induces frameshifts and 
produces R1A proteins lacking the very last amino 
acids at the carboxy-terminus. So far, all identifi ed 
mutations (more than 30 including those reported 
and our unpublished results) lie within the cAMP-
binding domain A or B of the regulatory subunit 
1A of the PKA. Functional studies are consistent 
with the  in vivo  hormonal resistance and cAMP-
signaling impairment [ 20 ,  35 ]. Noteworthy, none 
of these 30 mutations were inherited; hence, they 
were all considered sporadic. 
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 Heterozygous mutations in  PDE4D , the gene 
encoding one of the numerous phosphodiester-
ases, were found in patients with acrodysostosis, 
yet there was no hormonal resistance 
(ACRDYS2). Vertical transmission of the muta-
tion is possible. To date, there is no report of 
 in vitro  functional analysis of mutated PDE4D. It 
is therefore almost impossible to anticipate the 
consequences of the mutations on the protein 
function as (1) mutations have been identifi ed in 
all domains of the protein, (2) they are almost 
exclusively missense mutations, (3) blood and 
urine cAMP are found normal in patients, and (4) 
resistance to PTHrP should result from impaired 
cAMP signaling and, therefore, increased activ-
ity of phosphodiesterases in chondrocytes. 

 Even if the phenotype/genotype correlation of 
ACRDYS1/ PRKAR1A  and ACRDYS2/ PED4D  is 
very convincing, physicians should be reminded that:
•    ACRDYS1 and PHP1A have overlapping 

phenotypes.  
•   Mental retardation is more frequent in patients 

with  PDE4D  mutations.  
•   TSH resistance has been reported in few 

patients with ACRDYS2 and  PED4D  muta-
tions, although not in any detail.  

•    PRKAR1A  and  PDE4D  mutations do not 
account for all patients with acrodysostosis, 
and more genes are very likely involved in the 
pathogenesis of this disorder.     

35.10     The Place of Complementary 
Biochemical Investigation 
to Guide Genetic Testing 

 The above paragraphs show the challenge in 
identifying the molecular cause of PHP in any 
given patient. It is of utmost importance to delin-
eate the clinical and biochemical phenotype of 
the patients in order to adjust genetic exploration 
toward gene sequencing, methylation analysis, or 
cytogenetic arrays. 

 The renal response to the infusion of exoge-
nous PTH (formerly Ellsworth-Howard test, 
which has been replaced by the infusion of 
recombinant PTH( 1–34 ) [ 48 ,  49 ]) may be used to 
document the impairment of the cAMP-signaling 

pathway in vivo. PHP1A and PHP1B are typi-
cally associated with absent urinary cAMP pro-
duction and an increase in urinary phosphate 
excretion; in contrast, patients with ACRDYS1 
display elevated basal urine cAMP levels and a 
normal rise of cAMP upon agonist stimulation. 
Normal basal cAMP levels have been measured 
in PHP1A, PHP1B, and ACRDYS2, and, there-
fore, this fi nding should not exclude any of these 
diagnoses. 

 The erythrocyte bioassay for measuring Gsα 
 activity  allows an appraisal of the defect in the 
cAMP-signaling pathway. With the easy access of 
modern-day genetics, this assay is no longer used 
to discriminate PHP1A and PHP1B. However, it 
is valuable in phenocopies of PHP, as it may orient 
research toward a specifi c factor in the pathway [ 13 ].  

35.11     The Place of Complementary 
Genetic/Epigenetic Analyses 
to Refi ne Diagnosis 
and Prognosis 

 The peculiarity of genomic imprinting adds a 
layer of complexity to the genetic testing and pre-
diction of disease inheritance. Several laborato-
ries have developed strategies to further 
characterize the molecular defects of PHPs. 

35.11.1     Allelic Localization 
of Loss-of- Function 
Mutations Within the 
Coding Regions of  GNAS  

 The parental origin of the  GNAS  mutations out-
lines the phenotype of the associated disease. 
Paternal mutations (PPHP) are associated with 
absent hormonal resistance, low risk of obesity, 
but increased occurrence of ectopic bone forma-
tion. By contrast, maternal mutations (PHP1A) 
are associated with pronounced hormonal resis-
tance, greater risk of cognitive dysfunction, and 
obesity. Both diseases share similar phenotypes 
early in life as the Albright hereditary osteodys-
trophy and PTH resistance develop gradually 
over time. Through the allelic localization of the 
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 GNAS  mutations, genetics will predict the pheno-
type of the patient and have a signifi cant impact 
on the subsequent clinical follow-up. 

 When the  GNAS  mutation occurs sporadically, 
the parental allele carrying the  GNAS  mutation 
can be recognized through various methods, such 
as analysis of linkage disequilibrium between the 
mutation and parental haplotypes [ 12 ], or the 
amplifi cation and sequencing of the monoallelic 
transcripts [ 46 ,  50 ].  

35.11.2     Identifi cation of Multilocus 
Molecular Defects (MLMD) 

 In imprinting disorders different from PHP1B, i.e., 
Russell-Silver syndrome, Beckwith- Wiedemann 
syndrome, or transient neonatal diabetes mellitus, 
it has been shown that, in a subset of patients, the 
LOI may not be restricted to one imprinted locus 
but may affect other imprinted loci [ 51 ,  52 ]. We 
have demonstrated similarly that about 10 % of 
PHP1B patients display LOI at  PEG1/MEST , 
 L3MBTL1 , and  DLK1/GTL2  DMRs located on 
chromosomes 7q32, 20, and 14q32, respectively. 
These MLMDs could account for the variable phe-
notype of some patients; they may have been 
underestimated by the targeted investigation of a 
few imprinted loci in a cohort of PHP1B patients 
with broad LOI at  GNAS  [ 44 ]. We propose that 
they may result from molecular alteration of fac-
tors necessary for the establishment/maintenance 
of genomic imprint marks or the integrity of the 
imprinted gene- coregulated network [ 53 ]. So far, 
no mutations have been identifi ed in PHP1B in 
factors involved in maternal hypomethylation syn-
dromes like  ZFP57  and  NLRP2  [ 54 ].  

35.11.3     Involvement/Exclusion 
of  GNAS  

 At the interface of clinical genetics and research, 
thorough haplotype analysis of chromosome 20q 
may help to determine in some patients if  GNAS  is 
involved in the development of the disease. It 
requires analyzing genotypes of patients, parents, 
and, as possible, affected and unaffected siblings.   

35.12     Genetic Counseling 
and Prenatal Diagnosis 

 The identifi cation of PHP or PHP phenocopies 
(acrodysostosis, PPHP, POH) in a patient implies 
the need to look for an underlying genetic/epi-
genetic mechanism. Depending on the molecular 
mechanisms, symptoms can be latent or develop 
over time, which renders essential identifi cation 
of the molecular mechanism whenever possible. 
Once the genetic cause has been identifi ed, famil-
ial screening is performed in coordination with 
physicians and geneticists. In puzzling situations 
without any hint of the molecular defect, deter-
mination of PTH, TSH, or calcitonin resistance 
may help to screen other family members. 

 Disease inheritance is a major concern for 
patients and an important trigger for the molec-
ular investigations. We have summarized the 
main situations encountered in Table   35.2  . 
Schematically, PHP1A and PHP1B occur through 
maternal transmission, whereas PPHP and POH 
are paternally transmitted. UPD should be erased 
through germinal transmission. Acrodysostosis 
syndromes are compatible with autosomal domi-
nant inheritance.

   Ante- and prenatal diagnoses have been done 
in patients affected with  GNAS  coding mutations 
and PHP1A/PPHP willing to give birth to unaf-
fected children [ 55 ] (and our experience). 
Cognitive development and ectopic bone are the 
main concerns of future parents. Their concern, 
however, will be impacted by the severity of the 
gonadotropin resistance and the individual coun-
tries’ ethical laws. At birth, mutations or epigen-
etic anomalies may be searched for using cord 
blood [ 40 ].  

    Conclusion 

 Pseudohypoparathyroidism clearly is not one 
disorder but, for many, with different causes 
and mechanisms, different prognoses, and dif-
ferent risks of recurrence. It requires an inte-
grated view of the patient’s phenotype, 
epigenotype, and genotype to deliver the most 
appropriate care and counsel. 

 Despite our efforts, a signifi cant number of 
patients with PHP1B and broad LOI at  GNAS  
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do not as yet have a complete molecular char-
acterization of their disease. Research is very 
active in trying to identify the mechanisms 
leading to the loss of maternal imprints. 
Candidate gene strategies based on thorough 
phenotypic investigation of the patients as 
well as whole genome/methylome approaches 
are currently undergoing. It is therefore impor-
tant to fully understand and complete the 
molecular characterization of these patients as 
it will (1) allow proper genetic counseling and 
clinical guidance and (2) promote research in 
this area.     
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36.1             Introduction 

 Blomstrand’s chondrodysplasia (BOCD) (OMIM 
phenotype number 215045) is an autosomal 
recessive disorder, caused by homozygous or 
compound heterozygous inactivating mutations 
in the parathyroid hormone receptor-1 gene 
( PTH1R ) (OMIM gene number 168468) [ 1 ,  2 ]. 
Defects in this receptor are also known to be the 
cause of other disorders. Activating heterozygous 
mutations of PTH1R    have been detected in 
Jansen’s metaphyseal chondrodysplasia (JMC) 
(OMIM 156400) [ 3 ,  4 ], while recessive inacti-
vating mutations have been found in isolated 
cases of multiple enchondromatosis (ENCHOM) 
(OMIM 166000) [ 5 ], Eiken skeletal dysplasia 
(EISD) (OMIM 600002) [ 6 ], and primary failure 
of tooth eruption (PFE) (OMIM 125350) [ 7 ]. All 
fi ve disorders are characterized by various defects 
in skeletal development.  

36.2     Clinical Features 

 BOCD is a rare disease (prevalence: 
<1/1,000,000), with few cases reported in the 
literature to date. It is characterized by multiple 
malformations, including very short limbs and 
dwarfi sm; a narrow thorax; facial anomalies 
such as macroglossia, micrognathia, and 
depressed nasal bridge (Fig.  36.1a–c ); as well as 
polyhydramnios, hydrops fetalis, hypoplastic 
lungs, protruding eyes showing cataracts, and 
internal malformations such as preductal aortic 
coarctation [ 1 ]. Fetuses show increased bone 
mineral density and advanced bone maturation 
(Fig.  36.2a–d ). Signs of the disease are present 
at birth, and it leads to neonatal death. 
Although an assessment of mineral metabolism 
has not been performed in the reported cases 
due to the early lethality of the disease, it is 
likely that a triad of hypocalcemia, hyperphos-
phatemia, and elevated PTH levels, confi guring 
a syndrome of PTH resistance, is present. 
Normal birth weight can be overestimated 
because most infants are hydroptic and the pla-
centa can be immature and edematous. Recently, 
defects in mammary gland and tooth develop-
ment have also been demonstrated [ 8 ].   

 The fi rst case of a female Finnish neonate who 
died shortly after birth with clinical and radiologic 
features related to dysplasia was described in 1985 
by Blomstrand, after whom the disorder was named 
[ 9 ]. In 1990, Spranger and Maroteaux [ 10 ] 
described another similar case with increased bone 
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density. In 1993, Young et al. [ 11 ] reported a patient 
with advanced dentition, general ossifi cation, and 
sclerotic bones. Autopsy revealed that the patient 
had a very small foramen magnum and larynx and 
pulmonary hypoplasia. In all these cases, the 
patient was born to consanguineous parents. 

 In 1996, Leroy et al. [ 12 ] described two 
fetuses who were the offspring of consanguin-
eous parents and exhibited edema of the face, 
hypoplastic nose, hypoplastic and narrow tho-
racic cage, prominent abdomen, and extremely 
short limbs and were most likely affected by 
BOCD.The fact that the disease is most common 
in infants born to consanguineous parents, both 
in females and males, and with no ethnic differ-
ences [ 1 ], suggests that BOCD manifests as an 
autosomal recessive trait. In 1997, Loshkajian 
et al. [ 1 ] described a case of a 26-year-old woman 
who was referred for a routine ultrasound exami-
nation at 26 weeks of gestation. The exam 
showed a hydropic fetus with very short limbs and 
multiple anomalies and a normal 46, XY pattern. 
The patient opted for an elective termination 

of the pregnancy. A few years later, her fourth 
pregnancy terminated spontaneously at 33 weeks 
of gestation with the delivery of a dead girl with 
the same syndrome. These two fetuses were 
born to a non-consanguineous couple. At histol-
ogy, the epiphyseal cartilage appeared markedly 
reduced with fusiform and occasionally vacuo-
lated chondrocytes and erratic distribution of 
chondrocytes. The epiphyseal-metaphyseal 
junction was wide and irregular; the zone of pro-
liferating cartilage was narrow and irregular with 
irregular columnization in the hypertrophic 
zone. Osteoclasts were rare with defi cient bone 
remodeling. The growth cartilage    showed dilated 
segments of the rough endoplasmic reticulum 
containing amorphous material, a relatively high 
number of cells with shrunken or pyknotic 
nuclei, and a matrix with fi ne unequal fi bers, 
some with visible cross- striations, small gran-
ules, and fi ne fi laments irregularly arranged 
between the fi bers. 

 Den Hollander et al. [ 13 ] reported a family in 
which 2 female fetuses presented with a severe 

a b c

  Fig. 36.1    ( a ) General appearance of the male fetus (at 26 
weeks of gestation). ( b ) Postmortem appearance of the 
female fetus (at 33 weeks of gestation) with the same syn-

drome. ( c ) Detail of the face of the male fetus; note swol-
len tongue and depressed nasal bridge (Reproduced with 
permission from Ref. [ 1 ])       
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  Fig. 36.2    ( a ) Radiograph    of 
the male fetus, frontal view; 
overall bone density is 
increased, the tubular bones 
are short with wide ends and 
shafts of humeri and femora 
bowed. ( b ) Radiograph of the 
same fetus, lateral view. 
( c ) Radiograph of the female 
fetus; most tarsal bones are 
ossifi ed. ( d ) Radiograph of 
the upper limbs, showing 
advanced bone maturation; 
most all the carpal bones are 
present at 33 weeks of 
gestation (Reproduced with 
permission from Ref. [ 1 ])         

a b
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skeletal dysplasia during prenatal screening 
(at 18.5 and 12 weeks of gestation, respectively). 
The pregnancy was terminated and the diagnosis 
of BOCD was confi rmed at autopsy. In 2000, 
Oostra et al. [ 14 ] described 3 novel cases 
(2 isolated and a sib-pair). The above reported 
clinical signs are the consequence of extremely 
accelerated skeletal maturation and mineraliza-
tion at sites of endochondral bone formation. 
Metaphyseal growth plates are undetectable, and 
an increased bone mineral density is present in 
radiological examinations. Signs associated with 
BOCD are summarized in Table  36.1 .

36.3        Molecular Pathogenesis 

 BOCD is caused by inactivating mutations of the 
 PTH1R  gene, which encodes for the receptor of 
PTH and PTH-related peptide (PTH/PTHrP) [ 15 , 
 16 ]. The  PTH1R  gene is located on the short (p) 
arm of chromosome 3 between positions 22 and 
21.1, and more precisely, it is located from 
base pair 46,877,745 to base pair 46,903,798 on 
chromosome 3 (Fig.  36.1 ) [ 15 ,  16 ]. The PTH1R 
is a member of the G protein-coupled receptor 
family 2; its activity is mediated by G proteins 
that activate adenylate (AC)/protein kinase A 
(PKA) and the phospholipase C beta (PLCβ)/protein 
kinase C (PKC) signaling pathway [ 15 ,  16 ] (see 
Chap.   9     for further details). The PTH receptor is 
expressed in most tissues but is found at particu-
larly high levels in bone, kidneys, and growth 
plate (see Chap.   11     for further details). 

 Recent studies have demonstrated that signaling 
through the PTH/PTHrP receptor, in addition to 
its role in regulating mineral metabolism, plays 
an essential role in fetal development due to the 
important regulatory effects of PTHrP on the 
development of cartilage and bone [ 17 – 19 ]. 

 Indeed, while during postnatal life, it regulates 
calcium and phosphate homeostasis mediating 
the endocrine actions of PTH in the bone and 
kidney; during fetal life, it is a critical component 
in endochondral bone formation as part of the 
PTHrP-dependent autocrine/paracrine regulation 
of chondrocyte growth and differentiation [ 2 , 
 20 ]. In bone, it is expressed on the surface of 
osteoblasts. It is activated on osteoblasts when 
it binds PTH, which causes upregulation of 
RANKL expression (receptor activator of nuclear 
factor kB ligand). RANKL, in turn, binds to 
RANK (receptor activator of nuclear factor kB) 
on osteoclasts. This turns on osteoclasts to 
ultimately increase both their formation and 
resorption rate [ 2 ,  20 ]. 

 In growth plate, when the receptor is activated 
through cAMP-dependent mechanisms, it stimu-
lates proliferation of the fetal growth plate 
chondrocytes and inhibits their differentiation 
into hypertrophic chondrocytes [ 2 ,  20 ]. Mice 
with disruptions of either the PTH/PTHrP 

   Table 36.1    Signs associated with Blomstrand’s 
chondrodysplasia   

 Skeletal anomalies 
   Short stature and/or nanism 
   Very short limbs 
   Micromelia 
   Advanced bone maturation 
   Osteosclerosis/osteopetrosis/bone condensation/

synostosis 
   Abnormal vertebral size and shape 
   Metacarpal anomalies (Archibald’s sign) 
   Metaphyseal anomaly 
   Narrow and short rib cage 
   Rib structure anomalies 
   Clavicle absent or abnormal 
 Internal anomalies 
   Hypoplastic or agenesis lung 
   Preductal aortic coarctation 
   Defects in mammary gland 
   Small larynx 
 Facial anomalies 
   Low and posteriorly rotated ears 
   Macroglossia (prominent and hypertrophic tongue) 
   Micrognathia 
   Retrognathia 
   Hypoplasia and/or arhinia 
   Depressed nasal bridge 
   Premature eruption of teeth or natal teeth 
   Exophthalmos 
   Cataracts 
   Lens opacifi cation 
 Intrauterine fetal anomalies 
   Polyhydramnios 
   Hydrops fetalis 

F. Giusti et al.

http://dx.doi.org/10.1007/978-88-470-5376-2_9
http://dx.doi.org/10.1007/978-88-470-5376-2_11


393

receptor or PTHrP genes exhibit multiple, severe 
skeletal defects characterized by an advanced 
endochondral bone formation that prove lethal in 
utero or shortly after birth [ 17 – 19 ], resembling 
individuals with BOCD. Indeed, the majority 
of the genetically ascertained cases of BOCD 
have been proven to be caused by homozygous 
inactivating mutations of the PTH1R. 

 In 1998, Jobert reported a case of BOCD, born 
to non-consanguineous parents, whose genetic 
assessment showed a heterozygous point muta-
tion in the  PTH1R  gene (G → A substitution at 
nucleotide 1176) inherited from the mother [ 2 ]. 
This point mutation caused the deletion of the 
fi rst 11 amino acids of exon M5 (encoding the 
fi fth transmembrane domain of the receptor), 
resulting from the use of a novel splice site cre-
ated by the base substitution [ 2 ]. In vitro studies 
showed that this altered receptor, although well 
expressed, was not capable of binding PTH 
nor PTHrP and failed to induce detectable 
stimulation of either cAMP or inositol phosphate 
production in response to these ligands [ 2 ]. 
The paternal allele was not expressed in the 
patient’s chondrocytes, and only the abnormal 
and nonfunctional PTH/PTHrP receptor encoded 
by the maternal allele was expressed, indicating a 
dominant negative mode of inheritance [ 2 ]. 

 After this initial report, all other ensuing cases 
of BOCD have been shown to follow a recessive 
mode of inheritance and to be determined by 
homozygous inactivating mutations of  PTH1R . 

 An infant born    to consanguineous parents, 
who show alteration of a single homozygous 
nucleotide changing a strictly conserved proline 
residue at position 132 in the receptor’s amino 
terminal extracellular domain to leucine. An 
in vitro functional study showed that COS-1 cells 
expressing the mutant receptor did not accumu-
late cyclic adenosine 3′,5′-monophosphate in 
response to PTH or PTH-related peptide (PTHrP) 
and did not bind the radiolabeled ligand [ 20 ]. 

 In another case, a homozygous deletion of G 
at position 1,122 (exon EL2) was identifi ed [ 21 ]. 
This missense mutation resulted in a shift in the 
open reading frame, leading to a truncated pro-
tein, lacking transmembrane domains 5, 6, and 7, 

the connecting intra- and extracellular loops, and 
the cytoplasmic tail [ 21 ]. Functional analysis of 
the mutant receptor in COS-7 cells and of dermal 
fi broblasts obtained from the case proved that the 
mutation was indeed inactivating [ 21 ]. 

 Recently, a P132L mutation, which inacti-
vates the PTH/PTHrP receptor incompletely, 
was identifi ed in two additional patients affected 
by BOCD characterized by a less severe pheno-
type [ 22 ]. This suggests that BOCD can be clas-
sifi ed in two different forms, BPCD type I and 
BOCD type II, according to the degree of sever-
ity of the disease and the associated PTH1R 
abnormality. The more serious BOCD type I is 
determined by completely inactivating mutation 
in the  PTH1R  gene, while the milder BOCD type 
II phenotype is caused by incomplete inactiva-
tion of PTH1R [ 14 ]. 

 As previously stated, mutations of the  PTH1R  
gene can be found in additional disorders charac-
terized by skeletal abnormalities not resembling 
BOCD. Jansen’s metaphyseal chondrodysplasia 
is caused by constitutively active heterozygous 
mutations in the PTH1R gene on chromosome 
3p21. JMC is a rare autosomal dominant disorder 
characterized by a short-limbed dwarfi sm 
associated with hypercalcemia and normal or low 
serum concentrations of the two parathyroid 
hormones [ 3 ,  4 ]. 

 ENCHOM is a condition characterized by 
multiple formations of enchondromas, benign 
neoplasms derived from mesodermal cells that 
form cartilage, without abnormalities in mineral 
metabolism [ 5 ]. A recessive mutation in PTH1R, 
leading to a decrease in signal transduction, has 
been found in one case of ENCHOM. Indeed, 
a knock-in mouse model expressing this muta-
tion displays enchondroma-like lesions. 

 EISD is a rare skeletal dysplasia characterized 
by severely retarded ossifi cation, principally of 
the epiphyses, pelvis, and hands and feet, as well 
as by abnormal modeling of the bones in hands 
and feet, abnormal persistence of cartilage in the 
pelvis, and mild growth retardation [ 6 ]. In one 
case, a homozygous mutation in the C-terminal 
cytoplasmic tail of the  PTH1R  gene has been 
shown. 
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 Primary failure of tooth eruption can be caused 
by heterozygous mutation in the  PTH1R  gene. 
PFE is a rare condition that has high penetrance 
and variable expressivity and in which failure of 
tooth eruption occurs without evidence of any 
obvious mechanical interference. Instead, mal-
function of the eruptive mechanism itself appears 
to cause nonankylosed permanent teeth to fail to 
erupt, although the eruption pathway has been 
cleared by bone resorption [ 7 ].  

    Conclusions 

 Despite the fact that BOCD is a very rare and 
lethal disease, its study, determined by the 
absence or reduction of a functional PTH1R in 
humans, has helped further defi ne the multiple 
roles of PTH1R in skeletal homeostasis. 
Although a proper assessment of mineral 
metabolism has not been undertaken in infants 
affected by BOCD because of early lethality, 
it is probable that it represents a syndrome of 
PTH resistance leading to functional hypo-
parathyroidism, and for this reason, it has 
been included in this volume.     
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37.1             Introduction 

 In humans, body magnesium content amounts to 
25 g, with 66 % located in the bone, 33 % within 
cells, and only 1 % in the extracellular fl uid (ECF), 
including blood [ 1 – 5 ] (see also Chap.   7    ). In the 
bone, magnesium as the divalent cation is adsorbed 
on the hydroxyapatite crystal and is in equilibrium 
with magnesium in the ECF. It is the most abundant 
intracellular cation together with potassium, reach-
ing a concentration of approximately 0.5 mmol/l, 
which is thus close to that of magnesium in the 
ECF. Free cytosolic magnesium accounts for 
5–10 % of total cellular magnesium. It binds 
to various organelles, 60 % of which is within 
mitochondria, where it is involved in phosphate 
transport, ATP synthesis, and utilization. ATP is 
synthesized by a magnesium- dependent oxidative 
phosphorylation process. Magnesium is a cofactor 
and regulator of a large series of enzymatic reac-
tions, particularly those utilizing magnesium-ATP 
(glycolysis, oxidative phosphorylation), but also of 
DNA transcription and protein synthesis [ 1 ,  6 ]. In 
serum, 30 % of magnesium is protein bound. 
Circulating magnesium, which is between 0.7 and 
1.0 mmol/l, is determined by bidirectional fl uxes 
taking place at the levels of the intestine, kidney, 

and bone. Ionic magnesium interacts with the 
calcium-sensing receptor (CaSR) on parathyroid 
cells, and also on renal tubular cells, with a potency 
lower than calcium [ 7 ]. 

 Magnesium is present in all nutrients of cellular 
origin. The recommended dietary allowance is 420 
and 320 mg/day for men and women, respectively 
[ 8 ]. Inadequate dietary intake is rare. Net absorp-
tion is proportional to intake, usually representing 
35–40 % of dietary magnesium [ 5 ,  9 ]. Phosphate 
and cellulose phosphate form complexes with 
this divalent cation, thereby impairing its absorp-
tion. A low pH is important to displace magnesium 
bound to dietary fi ber and to make it available 
to the absorptive processes. Calcitriol does not 
stimulate intestinal magnesium absorption [ 10 ]. 
Bidirectional fl uxes are voltage dependent. A para-
cellular pathway plays an important role in intesti-
nal magnesium absorption. The cation transporter 
TRMP6 is present in the apical membrane of gut 
epithelial cells of the small intestine. It appears 
that magnesium absorption takes place through 
two processes, a saturable transcellular pathway 
mediated by TRPM6 when magnesium intake is 
low and passive paracellular diffusion when it is 
high [ 9 ]. TRPM6 is expressed in the small intes-
tine, while paracellular magnesium absorption 
takes place along the whole small and large intes-
tine [ 11 ,  12 ]. Inactivating mutations in the gene 
coding for the TRPM6 channel are associated 
with impaired intestinal magnesium absorption, 
hypomagnesemia, and hypocalcemia [ 13 ,  14 ] in a 
rare autosomal recessive disease. 
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 Of serum magnesium, 70 % is ultrafi ltrable, and 
95 % of this is reabsorbed (15 % in the proximal 
tubule, 70 % in the cortical thick ascending limb of 
Henle’s loop, 10 % in the distal convoluted tubule) 
[ 15 – 17 ]. TRMP6 is present in the apical membrane 
of the distal convoluted tubule [ 18 ]. Magnesium 
interacts with CaSR in the basolateral membrane 
and lowers tubular reabsorption of both calcium 
and magnesium [ 15 ]. Various factors control renal 
tubular magnesium reabsorption (Table  37.1 ). PTH 
and/or PTHrP stimulates renal tubular reabsorption 
of magnesium in the loop of Henle and in the distal 
convoluted tubule [ 15 ,  19 ], through mechanisms 
independent of TRMP6 expression [ 20 ]. The latter 
is not affected by 1,25(OH) 2 -vitamin D. ECF 
expansion, hypercalcemia, and hypermagnesemia 
(through the interaction with CaSR), loop diuretics, 
systemic metabolic acidosis, and alcohol decrease 
this transport, whereas an increase is detected in the 
thick ascending limb of the loop of Henle during 
hypomagnesemia, or during magnesium deple-
tion in the distal convoluted tubule [ 20 ]. A series 
of inherited disorders of renal tubular reabsorption 
of magnesium cause renal wasting [ 15 ]. Some of 
them can be associated with hypercalciuria as well.

37.2        Role of Magnesium in PTH 
Secretion 

 Calcium is the main agonist of CaSR, but other 
divalent or even trivalent cations are also able to 
activate this receptor [ 7 ]. Among them, the divalent 
cation magnesium is also able to acutely modulate 
PTH secretion. Indeed, hypermagnesemia inhibits 

PTH secretion [ 21 ]. However, the effi cacy of 
magnesium in controlling acute PTH secretion is 
lower than that of calcium [ 7 ,  22 ]. It is well recog-
nized that chronic magnesium defi ciency is 
associated with major perturbations of calcium 
and phosphate metabolism [ 5 ,  6 ] (Fig.  37.1 ). 
Indeed, magnesium depletion is accompanied by 
hypocalcemia, without a concomitant increase of 
PTH, producing a state of functional hypopara-
thyroidism [ 5 ,  23 ]. Low or inappropriately normal 
PTH levels are found in chronic magnesium defi -
ciency despite hypocalcemia [ 5 ,  24 ]. Conversely, 
acute administration of magnesium to magnesium-
depleted subjects leads to a rapid increase in PTH 
[ 24 ,  25 ]. This is quite different from the situation 
seen in magnesium- replete normal subjects in 
whom magnesium decreases PTH secretion [ 26 ]. 
To reconcile these clinical observations, one 
could assume that the PTH response is adequate 
when the magnesium concentration decreases, as 
expected when a divalent cation interacts with 
CaSR. However, with depletion of intracellular 
magnesium stores, as a result, for example, of 
long-term exposure to magnesium defi ciency, 
PTH secretion becomes impaired, hence hypo-
calcemia and the inadequate PTH response. The 
rapid rise of PTH upon magnesium administra-
tion in this latter condition would indicate that 
impaired production of PTH in magnesium- 
defi cient patients is related to an altered secretion 
rather to an inhibition of protein synthesis [ 5 ,  7 ].  

 Low circulating levels of calcitriol have been 
reported in hypocalcemic, magnesium-defi cient 
patients [ 27 ]. This observation could be related to the 
low PTH, though hydroxylation of the 1-alpha posi-
tion of 25-hydroxyvitamin D to form 1,25-dihy-
droxyvitamin D [1,25(OH) 2  vitamin D] in response 
to hypocalcemia could also occur through a PTH-
independent mechanism and/or by a direct inhibition 
of calcitriol synthesis by magnesium defi ciency [ 26 ].  

37.3     Role of Magnesium in PTH 
Action 

 Though the response of PTH to magnesium 
administration is rapid in hypocalcemic patients 
with magnesium defi ciency, the restoration of 

   Table 37.1    Factors infl uencing renal tubular reabsorption 
of magnesium   

 Renal tubular reabsorption 

 Increased  Decreased 

 ECF volume contraction  ECF volume expansion 
 Hypocalcemia  Hypercalcemia 
 Hypomagnesemia  Hypermagnesemia 
 Phosphate administration  Phosphorus deprivation 
 Metabolic alkalosis  Metabolic acidosis 
 PTH/PTHrP  Loop diuretics 

 Cyclosporin A, tacrolimus 
 Cinacalcet 
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normocalcemia is delayed in time, suggesting 
some resistance to the effects of PTH [ 23 ] 
(Fig.  37.1 ). This resistance could be detected at 
the two major target organs for PTH, that are, the 
kidneys, as shown by a blunted urinary cyclic 
AMP excretion following PTH infusion in 
magnesium- defi cient patients [ 23 ,  28 ], and bone 
[ 29 ]. One main intracellular mediator of PTH 
action is cyclic AMP. Magnesium is required for 
the stimulation of adenylyl cyclase and thus 
cAMP production. These observations are com-
patible with the hypothesis that there is impaired 
cyclic nucleotide metabolism in cells depleted of 
magnesium, both in terms of magnesium-induced 
enzyme stimulation and of magnesium constituting 
a component of the substrate magnesium- ATP 
[ 6 ]. However, in a child with primary hypomag-
nesemia, the urinary cyclic AMP and phosphate 
responses to PTH were found to be similar in 
normomagnesemic or hypomagnesemic states, 
suggesting a normal end-organ responsiveness in 
these conditions [ 30 ]. 

 A reduced response to vitamin D in hypo-
parathyroidism with magnesium depletion together 
with a greater responsiveness upon magnesium 
administration has also been reported [ 31 ]. This 
suggests the presence of resistance to vitamin D 
during magnesium defi ciency as well. A possible 
mechanism is an impaired conversion of 25-OH-
vitamin D to 1,25(OH) 2 -vitamin D during 

magnesium depletion, but preclinical data and 
case reports have also suggested some primary 
resistance to active vitamin D metabolites [ 32 ].  

37.4     Causes of Magnesium 
Defi ciency 

 Magnesium defi ciency is relatively frequent in 
hospitalized patients, particularly in intensive 
care units [ 33 ,  34 ]. It occurs when dietary intake 
of magnesium cannot compensate for gastroin-
testinal or renal losses of magnesium (Table  37.2 ). 
Prolonged nasogastric suction and chronic 
 diarrhea are risk factors for magnesium deple-
tion. Indeed upper GI tract fl uid contains 2 mmol/l 
of magnesium, whereas in diarrheal fl uids, 
magnesium concentration may be as high as 
30 mmol/l. Regarding renal wasting, kidney 
tubule disorders and a large series of drugs or 
conditions, such as osmotic diuresis in the setting 
of diabetes mellitus or hypercalcemia, can con-
tribute to the development of magnesium 
deficiency (Table  37.2 ). Chronic alcoholism 
affects both the intestinal component of magne-
sium homeostasis through the undernutrition 
often observed in subjects with chronic high 
consumption of alcoholic beverages and thus 
low magnesium intakes and the kidney by an alcohol-
dependent impairment of tubular magnesium 

PTH

Tubular
reabsorption

Formation

Resorption

1,25(OH)2D

PiCa -
Absorption
Ca & Pi

Magnesium
Deficiency

  Fig. 37.1    Effects of magnesium defi ciency on PTH-regulated calcium and phosphate homeostasis.  Dashed lines  illustrate 
the various effects of magnesium defi ciency on PTH secretion and action       
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reabsorption. Among the most frequent causes of 
magnesium defi ciency, several drugs are at the 
forefront. These include loop diuretics, amino-
glycosides, cisplatinum derivatives, amphoteri-
cin B, cyclosporin A, and pentamidine. EGF 
appears to directly regulate the TRMP6 channel 
in the distal convoluted tubule. This could explain 
the high prevalence of hypomagnesemia in 
patients treated with the anti-EGF receptor anti-
bodies cetuximab or panitunumab [ 35 ]. Although 
the underlying mechanisms are unclear, proton 
pump inhibitors, but not H2-blockers, may be 
associated with magnesium defi ciency [ 36 ,  37 ]. 
By interacting with the renal tubule CaSR, 
cinacalcet, in a way similar to hypercalcemia 
or hypermagnesemia, can reduce renal tubular 
magnesium reabsorption [ 38 ].

37.5        Features and Diagnosis 
of Magnesium Defi ciency 

 Because of impaired PTH secretion and action, 
magnesium defi ciency can cause hypocalcemia 
and its associated neuromuscular hyperexcitabil-
ity, including paresthesia, spasms, seizures and 
depression, and cardiac arrhythmia [ 5 ,  6 ]. The 
latter is further aggravated by hypokalemia 
secondary to a magnesium defi ciency-dependent 
renal potassium wasting [ 39 ]. Under this condi-
tion, potassium therapy may be totally ineffective 
without magnesium repletion. The same may be 
true for hypocalcemia, and its correction may 
sometimes only be achieved with magnesium 
treatment, which restores adequate PTH secre-
tion and action. 

 Circulating electrolyte concentrations are 
often poor refl ections of body stores. This is 
even more relevant as far as magnesium is con-
cerned. Indeed, magnesium is mainly an intra-
cellular ion, and less than 1 % is present in 
ECF. However, serum magnesium concentration 
is commonly measured, and serum levels below 
0.7 mmol/l are considered to be suggestive of 
magnesium defi ciency (Table  37.3 ). Cellular 
magnesium can be evaluated by measuring lym-
phocyte magnesium content. This approach has 
been used in various studies, and the assay is 
available in commercial laboratories. Large 
variability (the ratio of lymphocyte magnesium 

    Table 37.2    Causes of magnesium defi ciency   

 Gastrointestinal 
tract loss 

 Malabsorption (including 
steatorrhea) 
 Chronic diarrhea (including 
laxatives use) 
 Bypass surgery, bowel resection 
 Pancreatitis 
 Abdominal irradiation 
 Gastric suction 
 Proton pump inhibitors a  
 Inborn errors of metabolism 

 Renal loss  Loop diuretics 
 Osmotic diuresis (diabetes mellitus) 
 Alcohol consumption 
 Nephrotoxics (aminoglycosides, 
pentamidine, amphotericin B) 
 Cyclosporin A, tacrolimus 
 Chemotherapy (cisplatinum 
derivatives) 
 Hypercalcemia 
 Metabolic acidosis 
 Renal tubule disorders 
(pyelonephritis, renal tubular 
acidosis) 
 Bartter’s syndrome, Gitelman’s 
syndrome 
 cinacalcet a  

   a Limited evidence, mostly case reports  

    Table 37.3    Diagnosis of magnesium defi ciency   

 1.  Plasma magnesium 
level 

 Poor refl ection of magnesium 
stores 

 2.  Lymphocytes 
magnesium content 

 Large variability (ratio of 2 
measurements, i.e., 
magnesium and protein) 

 3.  Magnesium retention 
test a  

 Retention >0.5 -> magnesium 
defi ciency 
 >0.25 -> Possible magnesium 
defi ciency 

   a Two 24 h urine collections for magnesium excretion, 
infusion of 8 mmol magnesium on the second day 
 Retention = 1 – ([U-Mg/24 h (day 2) – U-Mg/24 h (day 1)]/

Infused Mg)  
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to protein is measured) and poor discriminatory 
values preclude the use of this determination as 
a standard diagnostic procedure for document-
ing magnesium defi ciency. In the presence of 
magnesium defi ciency, repletion of bodily stores 
is associated with a higher retention of an 
administered dose than in subjects with normal 
magnesium homeostasis. This provides the 
rationale for the magnesium retention test [ 40 ] 
(Table  37.3 ). A magnesium retention of more 
than 50 % indicates magnesium defi ciency. The 
interpretation of this test may be limited in the 
case of renal magnesium leak or of drugs asso-
ciated with renal magnesium wasting.

37.6        Management of Magnesium 
Defi ciency 

 In the presence of hypocalcemia of unknown 
origin, magnesium defi ciency should be suspected 
and magnesium repletion rapidly undertaken, 
like a therapeutic test (Table  37.4 ) (see also 
Chaps.   7     and   28    ). This is achieved by the intrave-
nous administration of a magnesium salt [ 6 ]. For 
rapid magnesium repletion, the oral route is not 
recommended because of the limited amount of 
magnesium tolerated, before diarrhea occurs, 
because of the cathartic properties of magnesium. 
An effective regimen includes 8 mmol magnesium 
(200 mg of elemental Mg) over 1–2 h, followed 
by 20–24 mmol (500–600 mg of elemental Mg) 
over 24 h intravenously (Table  37.4 ). Though this 
treatment may transiently normalize serum mag-
nesium concentration, possibly with correction 
of hypocalcemia and hypokalemia, this does not 

mean that repletion of bodily magnesium stores 
is complete. Intravenous therapy should be 
continued for 3–5 days, since defi ciency may be as 
high as 100 mmol. Dietary sources of magnesium 
include almonds, soybeans, seeds, wheat germs, 
wheat brans, millets, dark green vegetables, 
fruits, and seafood. If magnesium losses from 
the intestine or kidney are persistent, dietary 
repletion may not be suffi cient. A large variety of 
magnesium preparations are available (sulfate, 
lactate, hydroxide, chloride, and glycerophos-
phate). Daily doses should be between 12 and 
24 mmol (300–600 of elemental Mg). Three to 
four divided daily doses may help to prevent 
diarrhea.

       Conclusion 

 Functional hypoparathyroidism under magne-
sium defi ciency is a well-recognized clinical 
entity. Attention should be paid to risk factors 
for magnesium depletion (Table  37.5 ). In the 
case of hypocalcemia of unknown origin, a 
therapeutic test of magnesium administration 
should be undertaken.
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38.1            Introduction 

 In the realm of hypoparathyroidism, one major 
way advocacy is supported is through the 
HypoPARAthyroidism Association, Inc. The 
focus of the HypoPARAthyroidism Association 
is to improve lives touched by hypoparathyroid-
ism through awareness and support [ 1 ]. 
Encouraging hypoparathyroidism patients to 
become their own advocate has been a part of the 
HypoPARAthyroidism Association itself and is 
specifi cally relevant in the story of its founder 
James E. Sanders. His story serves to illustrate 
not only the vital role of the patient as self- 
advocate but also of the importance of network-
ing within one’s greater community.  

38.2     James Sanders’ Story 

38.2.1     Misdiagnosis 

 When I was about 8 years old, I experienced an 
attack of severe tetany. This was my introduction 

to hypoparathyroidism, though I did not know it 
at the time. My father and brother had to take 
me to the hospital at Chateauroux Air Force 
Base in France where my father was stationed. 
The emergency room physicians there were 
unable to fi nd anything medically wrong with me 
and told my father that this episode was probably 
“all in my head” and not a medical problem. So 
I lived with this diagnosis of “psychosomatic 
illness” for the next several years – a diffi cult 
time where I had to learn on my own how to deal 
with the many and, at times, complex symptoms 
as they presented themselves. 

 The symptoms I remember most vividly 
included tetany, severe muscle and joint pain, and 
facial cramps, but the worst were the laryngo-
spasms where I would suddenly fi nd myself 
unable to breathe or talk, or even be able to let 
anyone know I was in trouble. 

 The fi rst time I experienced a  laryngospasm , it 
was terrifying. I didn’t know at the time that they 
usually last less than 60 s (it felt like an eternity 
to me); all I knew is that when they occurred 
I could not talk and often I couldn’t even breathe! 
Panicking…desperate for air…breathing just 
didn’t work…but within a few seconds…I was 
able to catch some breath…and soon after…
I could breathe again, the panic response subsiding. 
Experience taught me to fi nd ways to relax which 
was the only remedy available to subdue a laryn-
gospasm – though it did not always help. 

 In the setting of the 1960s when “PE” 
(Physical Education) was considered an 
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 important aspect of public education, I found 
the exertion to be a real problem for me. 
Strenuous exercising, like running laps, was 
commonplace, and whenever I exerted myself, 
I experienced muscle and joint pain. My mus-
cles became uncontrollable and my joints would 
feel like they were tight and swollen, so much so 
that any movement felt like I was tearing or 
damaging the tissues. The only relief I was 
able to fi nd was to lie on a cold bathroom fl oor 
next to a toilet. Eventually I found ways to avoid 
exercising so I could in turn avoid the pain I 
experienced. Naturally the PE teachers did not 
appreciate my “laziness,” nor did it occur to 
them to understand the underlying cause. 

 I would also experience severe peripheral 
tetany. In the absence of blood fl ow, similar to 
having your blood pressure checked during a 
routine physical exam or if my hand fell asleep, 
my hypocalcemia, and subsequent neuromus-
cular irritability, would induce spasm in the 
muscles of my hand and forearm. My wrists 
would fl ex, the joints in my fi ngers would 
extend, and my fi ngers would adduct. Of course, 
I didn’t understand the mechanisms at the time 
(and had never heard of Trousseau); I just 
knew my hand would sometimes “claw up.” 
These spasms, so severe that adults were unable 
to separate my fi ngers or straighten my 
hands, seemed spontaneous at the time, though 
I would later learn that you could recreate them 
in just a few seconds by infl ating a blood pres-
sure cuff on my forearm. Talk of symptoms 
wouldn’t be complete without what we refer 
today as “brain fog,” which has been a part of 
most of my life. 

 I had to deal with all of these symptoms by 
myself since no one else, not even my parents, 
understood the causes, or how severe the pain 
could be, or how to correct any of it – a heavy, 
and at times frightening, burden for a boy not yet 
10 years old. The symptoms remained a part of 
my life, in varying degrees, until I was diagnosed 
with “hypoparathyroidism” and began treatment 
at the age of 22. All the while, physicians could 
not fi nd anything medically to account for them, 
and my medical records still bore the cruel indi-
cation that the problem was “in my head,” 
“psychosomatic.”  

38.2.2     Road to Answers 

 When I was about 19 years old, I had returned 
from a work study program in the Philippine 
Islands and went to the hospital at Holloman Air 
Force Base in New Mexico, where my father was 
stationed at the time. I had been struggling with 
fatigue and wanted to fi nd out why. The lab work 
and x-rays done there were puzzling and incon-
clusive, which led the doctors to consult with 
other physicians at William Beaumont Regional 
Medical Center (WBRMC), which was the 
major military hospital in the Southwest (in El 
Paso, Texas). After some testing, Dr. Martin 
Nusynowitz, a WBRMC department head, con-
cluded that the lab results for serum calcium 
must be wrong and advised to redo the test. The 
subsequent blood test showed results even lower 
than the fi rst. 

 I was then referred to Dr. Nusynowitz, at 
the WBRMC, who concluded that I had hypocal-
cemia and that it was probably caused by 
 hypoparathyroidism. What is that? However, 
while he suspected hypoparathyroidism, I did 
not fi t the physical and clinical characteristics 
for the disease as they were understood in 1969. 
Dr. Nusynowitz, thankfully, proved a tenacious 
investigator [ 2 ]. 

 Many years later I asked him why he went the 
extra mile with me; after all he could have just 
treated my hypocalcemia and left it at that. He 
told me

  (my) motivation was a combination of (1) the fact 
that something was wrong with you on the basis 
of your history, physical, and lab work, and I felt 
it was my responsibility as your physician to 
make the diagnosis and initiate treatment to cor-
rect the condition, and (2) my innate intellectual 
curiosity. [ 3 ] 

   He went on to explain that the extensive 
diagnostic tests and treatment were covered by 
the military medical system enabling him to go 
beyond a simple diagnosis and treatment to try 
and fi nd what the correct diagnosis should be. 
Over the next couple of years, I would spend 
months in the WBRMC at El Paso and at 
Holloman Air Force Base, as he looked for 
answers to questions which were missed earlier in 
my life.  
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38.2.3     Finally, a Diagnosis 

 Using the calcium homeostasis feedback loop as 
a basis for his research, Dr. Nusynowitz was, after 
several months, able to describe what had been 
“wrong” with me for most of my life. He diagnosed 
me with pseudo-idiopathic hypoparathyroidism. 
My parents were devastated. They had accepted 
for all these years that these problems were in my 
head but now learned that, in fact, I had been sick 
all of those years. Of course, we were also 
relieved because now we fi nally had a diagnosis 
and a treatment which offered some hope to us. 

 Dr. Nusynowitz published his fi ndings in an 
article in the  American Journal of Medicine  [ 2 ], 
and followed with a second paper describing a new 
category of hypoparathyroidism disorders [ 4 ]. 

 My quest for answers was well underway and 
things were changing. Within several years of 
my diagnosis, Dr. Michael A. Levine, then of 
Johns Hopkins University School of Medicine, 
contacted me. He was just beginning his molecular 
studies into the causes of hypoparathyroidism 
and had read the papers by Dr. Nusynowitz. I began 
working with him to see if he could fi nd the origin 
of my hypoparathyroidism in my family.  

38.2.4     The Path to a More Effective 
Treatment 

 In the early 1990s, Dr. Karen K. Winer, a research 
fellow at the National Institutes of Health (NIH) 
in Bethesda, Maryland, had begun investigating 
the use of parathyroid hormone as an effective 
means of treating hypoparathyroidism [ 5 ]. 

 To recruit patients for her clinical trials, she got 
in touch with Dr. Levine and other physicians to 
see if they had any patients who would be inter-
ested in participating in her clinical trials. Though 
the 1990s may not seem like so long ago, it was 
long enough that recruiting patients for a rare-
disease trial took more time, money, and patience 
than it might now (and it’s still not easy). But like 
all successful investigators, Dr. Winer was tena-
cious. Dr. Winer contacted me in 1992 and asked 
if I would be interested in participating in her 
clinical trials!  I was!  I was able to obtain permis-
sion from my employer to get the time off, with 

full pay, without which I would not have been 
able to participate in the clinical trials. It was dur-
ing my participation in Dr. Winer’s clinical trials 
that the idea of the HypoPARAthyroidism 
Association was born.  

38.2.5     Birth of an Idea 

 I was held over for a few days on one of my 
periodic trips to NIH, when I had an opportunity 
to actually meet one of Dr. Winer’s other hypo-
parathyroidism patients. It was the fi rst time 
either of us had ever met another patient, and, 
needless to say, it was an emotional meeting for 
us both. We shared common misadventures and 
reveled in the realization that neither of us was 
alone anymore as a patient with hypoparathy-
roidism. It was something neither of us would 
ever forget. 

 I discussed this transformative encounter with 
a psychiatrist I was seeing for depression (yet 
another comorbidity of hypoparathyroidism), 
when he asked me what I wanted to do with 
this new discovery. My own answer surprised 
me. I explained that I wanted others to be able 
to experience the same great liberation of not 
feeling alone while dealing with this “thing” 
that had invaded our lives. His encouragement 
was priceless and gave me the strength I needed 
to overcome my doubts and my shyness and 
take action. 

 And so it was that in August of 1994 I wrote 
the fi rst issue of the Hypoparathyroidism Newsletter 
[ 6 ]. I sent it to nearly 100 medical schools across 
the United States and my relatives (a captive 
audience) and a few friends. By December 31, 
1998, we had evolved into the tax- exempt 
501(3) (c) HypoPARAthyroidism Association, 
Inc., and were moving forward. Fast forward 
over 20 years and we have over 4500 members 
in 70 different countries. As an association for a 
rare medical disorder, we have been able to make 
a difference by helping physicians understand 
the disorder and the impact it has on the lives of 
those suffering with it. We have also been able to 
make a difference in the lives of individual 
patients and treating physicians, all in ways not 
possible prior to 1994. 
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 Though I’ve come a long way, I am still learning 
about this disease; however, now I do it through 
the eyes of my extended hypoparathyroidism 
family.   

38.3     Patient Advocacy 
and Hypoparathyroidism 

 Patient advocacy, as a policy, is a “concept that 
generally refers to efforts to support patients and 
their general interests within the context of the 
health care system. A more specifi c or applied 
defi nition of patient advocacy is diffi cult to 
articulate, in part because the term has been used 
in many difference ways” [ 7 ]. But here is how 
we see it. 

 As the medical community grows and oceans 
of medical knowledge become vaster, it is becom-
ing increasingly important for patients to have an 
advocate within the medical system. Advocacy 
goes from important to essential when the patient 
is dealing with a rare medical disorder. So how 
are we going to defi ne patient advocacy? 

 While patient advocacy can involve groups 
that develop policies that help patients, or civil 
committees that develop legislation, the real 
starting point for advocacy is always  activities 
that benefi t patients . 

 Patient advocacy is a relatively new and evolv-
ing fi eld, but then, so is the medical industrial 
complex. The collective experience of the 
HypoPARAthyroidism Association shows us that 
advocacy must begin from the bottom up (start-
ing with the patient), instead of the top down 
(starting with government legislation). Advocacy 
ends up playing a role between patients, doctors, 
researchers, and the many people impacted by a 
patient’s disease, so it enhances every part of 
medical care. That advocate might be a sibling, a 
neighbor, a member of your parish, your nurse, 
a researcher assistant, your doctor, your parent, 
your spouse…essentially anyone, oneself included, 
who shares in the impact of the disease and has 
the will to take action or play a role. 

 Advocacy is necessary because  patients have 
needs that are not being properly met . Given the 
underserved, underfunded, and misunderstood 

nature of rare diseases, its patients are often left 
to their own devices to seek the best possible help 
and information. Fear of consequences and the 
impact on loved ones often motivates the patient 
to become active in seeking solutions to their 
needs. Those needs may be fear of being sick, 
fear of what will happen to loved ones in a worst 
case scenario, the consequences of not having a 
diagnosis (such as years of misguided treatment 
and random testing), the burden of the cost of 
testing, the impact of radiation, the wasted time, 
or simply the ongoing suffering with the symptoms 
of the disease. So we can say that the advocate is 
born out of motivation to address the unmet needs 
of the patient. 

 As we return to considering the    hypoparathy-
roidism patient as a model for any rare disease 
patient, we begin with the question: 

 What are the needs of the hypoparathyroidism 
patient? 

38.3.1     Communication 

 The hypoparathyroidism patient needs to know 
that they are not alone. Alienation is a terrible 
thing, especially when stacked on top of a debili-
tating disease. When James Sanders met another 
hypoparathyroidism patient for the fi rst time, it 
was a transformative experience. Suddenly the 
ongoing struggle with hypoparathyroidism in an 
individual could be communicated between two 
people using ideas and concepts that had never 
quite made sense to other outsiders. Imagine vis-
iting a place that doesn’t speak the language you 
speak – what a relief to fi nd someone you can talk 
to who understands what you are saying and who 
you in turn can understand! Being able to share 
“war stories” between members of the Association 
has been fuel for the overall progress of the 
group. It takes a patient’s internalized struggle 
and brings it into the light to be confronted. It 
allows patients to share hard-earned wisdom on 
how to live with the disease. 

 A patient must also be able to share their expe-
riences with loved ones. It is a sad truth that some 
relationships cannot withstand a partner becoming 
ill. When a partner in a codependent or dependent 
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relationship suddenly undergoes a drastic change, 
it feels like a violation of a pact. The young spouse 
suddenly becomes the unwilling caregiver, or the 
child gets less time and attention from the parent, 
or previously enjoyed activities are now limited or 
eliminated. The impact can do great damage to the 
unprepared. A sense of betrayal (you don’t act 
the way you used to), unfairness (why did your 
disease happen to me?), or burden (years of 
emergency room visits) can fester. 

 If rescue from such despair were to be possible, 
above all else the partners would  need to 
communicate . They must convey their experi-
ences, revelations, fears, and hopes, not just 
from the mouth of the diagnosed but by all 
parties profoundly affected. By understanding, 
respecting, and accepting the impact of the disease, 
the illness need not be the dominant feature 
of the relationship. 

 The advocate must, therefore, nurture a com-
fortable arena where  communication     can fl ourish 
(Fig.  38.1 ).   

38.3.2     Understanding the Disease 

 Patients also need to understand the nature of 
what they are experiencing. Communicating 

between partners is not likely to be effective 
without at least a rudimentary understanding 
of the nature of the disease. Fear of the uncon-
trollable numbness around their mouth might 
be diminished by understanding the physiologic 
principles behind it. Anxiety and depression 
(so prominent in hypoparathyroidism) only 
serve to magnify the gravity and turmoil of 
each involuntary tingle, twitch, and ache. 
Rather than being a victim of these symptoms, 
a person can take control of the symptom if 
they  understand  its nature. To obtain such 
understanding, a patient/advocate can turn to 
sources of information starting with their doc-
tors, but turning also to reliable online sources, 
medical texts, and medically verifi ed support 
groups. 

 The fi rst step any hypoparathyroidism patients 
should take should be to educate themselves and 
their loved ones about the disorder. By doing so, 
not only will they be able to understand the disor-
der and the reasons for their symptoms but they 
will be able to communicate better and be in a 
better position to cooperate with their physicians. 
Self-education is important but, if done 
poorly, has serious downsides. For the patient 
who  cannot fi nd the time to read the medical 
texts, search the pertinent academic publications 
or scour the internet for expertise; one could 
turn to the resources available through the 
HypoPARAthyroidism Association, which 
strives to be a reliable source of accurate and eas-
ily digestible information.  

38.3.3     Stay Informed/Stay Involved 

 Understanding the disease is not complete 
without further understanding of the treatment 
options that are available for the disease or 
those emerging on the horizon. Living with 
hypoparathyroidism becomes more manage-
able when one understands the causes and the 
impacts of the disease. Of equal importance is 
how one addresses those impacts and that 
includes staying informed on what advances 
are emerging. 

Advocacy

Physician

Researcher

Family

Patient

  Fig. 38.1    Advocacy can be performed by multiple people 
in the patient’s life and should not be limited just to the 
patient       
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 Every hypoparathyroidism patient has been 
told at one time or another that they don’t have 
problems that can’t be fi xed by taking calcium. 
If that were so, texts like this one would not need 
to exist. By simply asking a few basic questions, 
we can see the problem is deeper than taking 
calcium. What are the consequences of the dis-
ease, what are the treatments for the disease, and 
what are the consequences of the treatments? 
Treatment has consisted of calcium and vitamin 
D analogs for longer than a lifetime, and these 
tools, though potentially effective, do come with 
many caveats and secondary effects. The capa-
bilities of calcium and vitamin D may be many, 
but it can be argued that they cannot, for 
instance, correct the quality of life issues that the 
hypoparathyroidism patient faces [ 8 ], and what 
of the threat to the kidneys and soft tissues from 
the overuse of calcium? In other words, “simply” 
taking calcium is not so simple. Fortunately, we 
live in an exciting time for hypoparathyroidism 
because we are only a few steps away from 
seeing recombinant human parathyroid hormone 
(1–84) get approval as a treatment for hypopara-
thyroidism which will alter the lives of patients 
profoundly. 

 Patients need to be cautious about the fi nancial 
and physiologic consequences of available 
treatments, explore alternatives to those treat-
ments, and contribute in any way possible to the 
evolution of drugs and treatments that they and 
their loved ones will benefi t from. What was the 
leading therapy when the patient was fi rst diag-
nosed may now be well outdated. Treatments 
cannot evolve without participation and interac-
tion between patient, physician, and investigator. 
Therefore, it is prudent for patients to not only 
 stay informed  of new therapies and approaches to 
wellness but to  stay involved  in the investigation 
of these approaches. The best ways to stay involved 
are by providing quality feedback to the treating 
physician, by communicating with  fellow 
patients, hopefully through an advocacy group, 
and by participating in research studies. 

 In summary, the patient advocate, or self- 
advocate, or advocacy organization must foster 
communication, understanding, and ongoing 
education. Maintaining this level of advocacy 

takes much effort which is why the more successful 
patient is the one who involves their families, 
friends or community, physician-infrastructure, 
and fellow patients and doesn’t try to go it 
alone. Therein lays the value of a central sup-
port group. 

 “How different might my life have been had 
the physicians in the emergency room in France, 
or in the other hospitals I visited before I was 
fi nally diagnosed, felt it was  their  responsibility 
as  my  physician to make the diagnosis and initiate 
treatment to correct the condition and  maintained 
their  innate intellectual curiosity.” Therein lays 
the foundation of “Advocacy and Hypopara-
thyroidism in the Twenty-First Century.   ”  

38.3.4     The Argument for a Patient 
Advocacy Group 

 Many patients diagnosed with hypoparathyroidism 
had a long and tortuous journey leading to their 
diagnosis, involving several physicians, years of 
misdiagnosis and mistreatment, and feeling 
isolated from their families and society because 
they “do not look sick,” when, in fact, they have a 
serious medical disorder. Their journey was 
made diffi cult for them because they experienced 
symptoms that others could not see, and which 
were not fully understood until recently. It wasn’t 
until the collective experience of hundreds 
of patients over several years found a forum that 
the impact of hypoparathyroidism on people 
began to be more fully understood by the medical 
community. 

 The HypoPARAthyroidism Association is, at its 
core, an advocacy generator. It attracts advocates, 
like its Board of Directors, Medical Adviser’s, 
and volunteers. It is also there to provide the tools 
to others who wish to advocate for hypoparathy-
roidism. We communicate with our members and 
help them communicate with each other. We keep 
them informed of our activities and educate them 
about their disease. We try to keep them apprised 
of new studies and new ideas and encourage them 
to share their own. We also aim to teach them 
how to better care for themselves, to improve the 
care with their doctors, to gain independence 
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from this disease, to improve their quality of life, 
and to ultimately have fewer unmet needs. That 
is, after all, what advocacy is all about. 

 A good support group is not complete until it 
makes information available to physicians as 
well. By providing easy access to precisely the 
information that physicians need to administer 
the best possible care, we help them as well. 

 There are several organizations that can provide 
legitimate medical information on hypoparathy-
roidism, or rare diseases in general. These are 
both built by patients and then vetted by medical 
experts or come directly from physician or 
commercial sources:
   National Organization for Rare Disorders 

(NORD)   http://www.rarediseases.org/      
  Offi ce of Rare Diseases Research (ORDR)   http://

rarediseases.info.nih.gov/      
  HypoPARAthyroidism Association   https://www.

hypopara.org/      
  Mayo Clinic, United States   http://www.mayoclinic.

org/diseases-conditions/hypoparathyroidism/
basics/defi nition/con-20030780      

  Hypoparathyroidism Answers – Getting Clarity 
on a Complex Disorder   http://hypoparathy-
roidism.com/          

38.4     The Physician’s Role 

 Few people look to their physician as one of their 
advocates, but in reality the physician should be 
the most important advocate! The physician is 
the medical expert who brings all of the pieces 
of the puzzle together which results in holistic 
care for individual patients. In the theater of rare 
diseases, this may require extra work for the 
physician, but the rewards far outweigh the labor 
thanks to the growing availability of information 
on rare diseases. 

 In a successful doctor-patient relationship, the 
patient must come to terms with the doctor’s 
expertise and ability to prognosticate, while the 
doctor must come to terms with what he “does 
not yet know,” namely, the impacts and limitations 
brought on by the disease for that particular 
patient. Therefore, if the doctor and patient 
choose to enter into this special relationship, 

the physician’s part of the agreement includes 
accepting the responsibility of becoming educated 
about the patient’s specifi c medical disorder and 
how it may best be managed. 

 One way the doctor can accomplish this is to 
allow the patient to become a partner in their 
care. The patient who is practicing good self- 
advocacy can bring in pertinent medical informa-
tion (i.e., medical publications or information 
from medically vetted sources) and discuss this 
information with the doctor. With such open 
exchange, the doctor becomes more familiar 
with both the overt and subtle impacts of 
hypoparathyroidism, and the patient is able to 
gain more targeted insights from the medical 
professional. 

 Given the value of a well-informed patient, the 
physician who has rare disease patients serves 
both himself and his patient best by encouraging 
them to participate in advocacy groups like the 
HypoPARAthyroidism Association. From such 
sources patients can get many of their needs met 
and get good quality education on their disease, 
allowing the doctor-patient relationship to focus 
on more immediate medical needs. 

 The physician ultimately has a responsibility 
to help his patient become well, and so if, for any 
reason, the physician is unable or unwilling to 
take on the level of commitment necessary for 
a rare disease patient, that doctor should help 
the patient fi nd another physician who will. 

 In the HypoPARAthyroidism Association’s 
experience, their medical advisers are extremely 
willing to help other physicians who are looking 
for help and/or information (including referrals 
to other doctors) in order to help their patients.  

    Conclusion 

 By putting the well-educated patient and doc-
tor together in a partnership based on mutual 
respect and understanding, it becomes possi-
ble to achieve a paradigm of healthcare. Let 
that patient and that doctor be advocates for 
improvements in holistic care of hypopara-
thyroidism and they can overcome much of 
the secondary suffering caused by the dis-
ease. With the addition of support groups, 
clinical research, and extended advocates, 
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there is virtually no limit to the achievements 
possible. Together they can make a difference 
for each other and for all people with 
hypoparathyroidism.     
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